Neven Elezovi´c VJEROJATNOST I STATISTIKA 1. Diskretna vjerojatnost
ISBN 953-197-539-6
Neven Elezovi´c Redoviti p...
253 downloads
739 Views
1MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Neven Elezovi´c VJEROJATNOST I STATISTIKA 1. Diskretna vjerojatnost
ISBN 953-197-539-6
Neven Elezovi´c Redoviti profesor Fakulteta elektrotehnike i raˇcunarstva Zavod za primijenjenu matematiku
VJEROJATNOST I STATISTIKA Diskretna vjerojatnost
0. izdanje
Zagreb, 2007
c Prof. dr. sc. Neven Elezovi´c, 2007.
Urednik Sandra Graˇcan, dipl. inˇz.
Nakladnik Element, Zagreb
Dizajn ovitka Edo Kadi´c
Tisak Element, Zagreb
Nijedan dio ove knjige ne smije se preslikavati niti umnaˇzati na bilo koji naˇcin, bez pismenog dopuˇstenja nakladnika
ˇ SADRZAJ
1. Vjerojatnost . . . . . . . . . . . . . . . . . . . . . - ............ 1.1. Algebra dogadaja 1.2. Vjerojatnost . . . . . . . . . . . . . . . 1.3. Klasiˇcni vjerojatnosni prostor . . . 1.4. Beskonaˇcni vjerojatnosni prostor 1.5. Geometrijska vjerojatnost . . . . . . 1.6. Elementi kombinatorike . . . . . . . 1.7. Rijeˇseni primjeri . . . . . . . . . . . . Zadatci za vjeˇzbu . . . . . . . . . . . .
.. .. .. .. .. .. .. .. ..
. . . . . . . . .
.. .. .. .. .. .. .. .. ..
.. .. .. .. .. .. .. .. ..
.. .. .. .. .. .. .. .. ..
.. .. .. .. .. .. .. .. ..
.. .. .. .. .. .. .. .. ..
.. .. .. .. .. .. .. .. ..
.. .. .. .. .. .. .. .. ..
.. .. .. .. .. .. .. .. ..
.. .. .. .. .. .. .. .. ..
. . . . . . . . .
1 1 9 14 21 26 30 45 58
2. Uvjetna vjerojatnost . . . . . . . . . . . . . 2.1. Uvjetna vjerojatnost . . . . . . . . - ....... 2.2. Nezavisnost dogadaja 2.3. Formula potpune vjerojatnosti 2.4. Bayesova formula . . . . . . . . . 2.5. Rijeˇseni zadatci . . . . . . . . . . . Zadatci za vjeˇzbu . . . . . . . . . .
.. .. .. .. .. .. ..
. . . . . . .
.. .. .. .. .. .. ..
.. .. .. .. .. .. ..
.. .. .. .. .. .. ..
.. .. .. .. .. .. ..
.. .. .. .. .. .. ..
.. .. .. .. .. .. ..
.. .. .. .. .. .. ..
.. .. .. .. .. .. ..
.. .. .. .. .. .. ..
. . . . . . .
64 64 67 71 73 77 83
3. Diskretne sluˇcajne varijable i vektori . . . . . . . . . . . . . . . . . 3.1. Diskretne sluˇcajne varijable . . . . . . . . . . . . . . . . . . . 3.2. Dvodimenzionalne diskretne razdiobe . . . . . . . . . . . . 3.3. Momenti i karakteristiˇcne funkcije diskretnih varijabli 3.4. Rijeˇseni zadatci . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zadatci za vjeˇzbu . . . . . . . . . . . . . . . . . . . . . . . . . . .
.. .. .. .. .. ..
.. .. .. .. .. ..
.. .. .. .. .. ..
. 88 . 89 . 93 . 97 . 107 . 113
4. Primjeri diskretnih razdioba . 4.1. Geometrijska razdioba 4.2. Binomna razdioba . . . 4.3. Poissonova razdioba . Zadatci za vjeˇzbu . . . .
.. .. .. .. ..
.. .. .. .. ..
.. .. .. .. ..
. . . . .
.. .. .. .. ..
.. .. .. .. ..
.. .. .. .. ..
.. .. .. .. .. .. ..
.. .. .. .. ..
.. .. .. .. ..
. . . . .
.. .. .. .. ..
.. .. .. .. ..
.. .. .. .. ..
.. .. .. .. ..
.. .. .. .. ..
.. .. .. .. ..
116 116 119 123 128
Odgovori i rjeˇsenja . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Kazalo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
1.
Vjerojatnost
1. 2. 3. 4. 5. 6. 7.
Algebra dogadaja .......... Vjerojatnost . . . . . . . . . . . . . . Klasiˇcni vjerojatnosni prostor . . Beskonaˇcni vjerojatnosni prostor Geometrijska vjerojatnost . . . . . Elementi kombinatorike . . . . . . Rijeˇseni primjeri . . . . . . . . . . . Zadatci za vjeˇzbu . . . . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. 1 . 9 . 14 . 21 . 26 . 30 . 45 . 58
Temeljni pojmovi koje zˇ elimo opisati u ovom poglavlju su algebra dogadaja i vjerojatnost. - dovesti u vezu s stohastiˇckim pokusom. Tako nazivamo Najjednostavnije je pojam dogadaja svaki pokus cˇiji ishod nije unaprijed odreden. Taj ishod ovisi o nekim nepredvidivim okolnostima i stoga je sluˇcajan. Novˇci´c baˇcen uvis pada na jednu od svoje dvije strane, na koju — unaprijed ne - ne moˇze se unaprijed predvidjeti. moˇzemo znati. Vrijeme ispravnog rada nekog uredaja Ishod pokusa zovemo elementarni dogadaj. Njih u nekom pokusu moˇze biti konaˇcno, ali i beskonaˇcno mnogo. Kocka c´e pasti na jednu od sˇ est svojih strana, a biranje na sre´cu jedne toˇcke unutar, recimo, jediniˇcnog kruga ima kao mogu´ci ishod beskonaˇcno mnogo elementarnih dogadaja. Pri svakom se pokusu mogu ostvariti ili ne razliˇciti dogadaji. Kocka moˇze, na primjer, pasti - moˇzemo predvidjeti pridruˇzuju´ci mu na paran ili na neparan broj. Ho´ce li se dogoditi neki dogadaj - izvjesniji, njegova c´e vjerojatnost biti bliˇza jedinici. Malo ˇ je dogadaj odredenu vjerojatnost. Sto - imat c´e vjerojatnost blisku nuli. vjerojatni dogadaji Raˇcun s dogadajima i vjerojatnostima mora se pokoravati izvjesnim zakonima koje c´emo upoznati u ovom poglavlju.
1.1. Algebra dogadaja - oznaˇcavati s ω . Skup svih elementarnih dogadaja Elementarne c´emo dogadaje oznaˇcavamo s Ω . Skup Ω i sam je dogadaj, on se ostvaruje pri svakom ishodu pokusa. - Njegova je suprotnost nemogu´c dogadaj, - koji se Nazivamo ga stoga sigurni dogadaj. pri realizaciji pokusa nikad ne moˇze ostvariti. Oznaˇcavamo ga simbolom ∅ . Razliˇcite - vezane uz neki pokus oznaˇcavat c´emo velikim slovima latiniˇcne abecede: dogadaje A , B , C . . . . Oni se sastoje od izvjesnog broja elementarnih dogadaja. To su dakle podskupovi od Ω . 1
2
1. VJEROJATNOST Primjer 1.1. Bacamo jednu kocku kojoj su strane oznaˇcene brojevima od 1 do 6. - i skup Ω . Odredimo elementarne dogadaje - brojevi na koje kocka moˇze pasti: Elementarni su dogadaji
ω1 = 1, ω2 = 2, . . . , - je Skup svih elementarnih dogadaja
ω6 = 6.
Ω = {ω1 , ω2 , . . . , ω6 } = {1, 2, 3, 4, 5, 6}. - je bilo koji podskup od Ω . U pokusu koji ima samo konaˇcno mnogo ishoda dogadaj - vezanih uz ovaj pokus: Evo nekoliko dogadaja A = {pao je parni broj} = {2, 4, 6}, B = {pao je broj ve´ci od 2} = {3, 4, 5, 6}, C = {pao je parni broj manji od 5} = {2, 4} - postoji 26 = 64 , jer toliko skup Ω ima podskupova. Medu i sliˇcno. Razliˇcitih dogadaja njima su nemogu´c dogadaja ∅ , 6 jednoˇclanih (elementarnih) dogadaja, 15 dogadaja od - s tri elementarna itd. po dva elemenentarna, 20 dogadaja
Primjer 1.2. Novˇci´c je baˇcen tri puta. U svakom bacanju biljeˇzimo je li se pojavilo - te nekoliko dogadaja pismo ( P ) ili glava ( G ). Odredimo Ω , elementarne dogadaje vezanih uz ovaj pokus.
- ima osam. To su Elementarnih dogadaja
ω1 = GGG, ω5 = GPP,
ω2 = GGP, ω6 = PGP,
ω3 = GPG, ω7 = PPG,
ω4 = PGG, ω8 = PPP,
(poredak nabrajanja nije vaˇzan). Ovdje smo, kratko´ce radi, s GGP oznaˇcili uredenu - sastoji se trojku (G, G, P) i sliˇcno za ostale elementarne dogadaje. Siguran dogadaj - vezanih uz ovaj pokus (ukupan od gornjih osam elementarnih. Evo nekoliko dogadaja 8 broj dogadaja je 2 = 256 ): A = {pismo se pojavilo jednom} = {ω2 , ω3 , ω4 }, B = {pismo se pojavilo u drugom bacanju} = {ω3 , ω5 , ω7 , ω8 }, C = {pojavilo se barem jedno pismo i barem jedna glava} = {ω2 , ω3 , . . . , ω7 }, D = {pismo se pojavilo dvaput za redom} = {ω5 , ω7 , ω8 }. Usporedivanje dogadaja
- A povlaˇci dogadaj - B ako iz realizacije dogadaja Kaˇzemo da dogadaj A slijedi realizacija dogadaja B . To znaˇci da B sadrˇzi sve elementarne dogadaje koji ulaze u - A . Piˇsemo A ⊂ B , u skladu s zapisom iz teorije skupova. Koristimo takoder - i dogadaj - B , B slijedi iz A , A zapis A =⇒ B . Govorimo joˇs: A je specijalni sluˇcaj dogadaja je sadrˇzan u B , A je dovoljan uvjet za B , B je nuˇzdan uvjet za A .
1.1. ALGEBRA DOGA -DAJA
A
3
B
- A povlaˇci Sl. 1.1. Dogadaj - B dogadaj
Primjer 1.3. Bacamo dvije kocke. Oznaˇcimo dogadaje A = {oba broja ve´ca su od 4}, B = {zbroj brojeva na kockama ve´ci je od 8}. Vrijedi A =⇒ B , jer je zbroj brojeva koji su ve´ci od 4 sigurno ve´ci od 8. Obrat nije ispunjen, jer zbroj brojeva moˇze biti ve´ci od 8 i kad jedna kocka padne na, recimo, 3, a druga na 6. Tad se ostvario B , ali se nije ostvario A . Primjer 1.4. Bacamo dvije kocke. Oznaˇcimo dogadaje: A = {zbroj brojeva na kockama ve´ci je od 8}, B = {oba broja ve´ca su od 2}. Sad vrijedi A =⇒ B . Naime, zbroj brojeva ne moˇze biti ve´ci od 8 ako oba broja nisu ve´ca od 2, jer inaˇce najve´ci zbroj iznosi 2 + 6 = 8 . Vezu ovih dogadaja moˇzemo izraziti joˇs ovako: • Da bi zbroj brojeva bio ve´ci od 8, oba broja nuˇzno moraju biti ve´ca od 2 ( B je nuˇzdan uvjet za A ). ˇ • Zelimo li da oba broja na kocki budu ve´ca od 2, dovoljno je da njihov zbroj bude ve´ci od 8 ( A je dovoljan uvjet za B ). ∗∗∗ Ukoliko vrijedi A ⊂ B i B ⊂ A , onda kaˇzemo da su A i B ekvivalentni ili jednaki - sastoje se od istih elementarnih dogadaja. i piˇsemo A = B . Ekvivalentni dogadaji Suprotnost ovoj situaciji je ona u kojoj A i B nemaju zajedniˇckih elementarnih dogadaja. - A i B su disjunktni, ako se istovremeno ne mogu ostvariti i jedan i Dogadaji 1 drugi . Kaˇzemo joˇs da se A i B medusobno iskljuˇcuju. Tako na primjer, pri bacanju kocke su dogadaji A = {pao je paran broj} i B = {pao je broj 3} disjunktni. Ω B
Sl. 1.2. Disjunktni dogadaji
1
A
Nije nuˇzno da se ostvari neki od ova dva dogadaja, mogu´ce je dakle da se ne ostvari niti jedan od njih
4
1. VJEROJATNOST
Primjer 1.5. Novˇci´c bacamo cˇ etiri puta. Istaknimo sljede´ce dogadaje: A = {pojavila su se toˇcno tri pisma}, B = {pojavile su se najviˇse dvije glave}, C = {pojavila se toˇcno jedna glava}, D = {ostvario se niz PGGP}. - povlaˇce neki drugi, koji su ekvivalentni, a koji se medusobno koji od ovih dogadaja iskljuˇcuju? Operacije s dogadajima
Neka su A , B dogadaji. Pomo´cu njih moˇzemo naˇciniti nove dogadaje: Unija i presjek dogadaja
- koji se ostvaruje ako se ostvario barem jedan od dogadaja Dogadaj A, B naziva se unija ili zbroj (suma) dogadaja i oznaˇcava s A ∪ B , A + B , A ili B. - koji se ostvaruje ako su se ostvarila oba dogadaja Dogadaj A i B naziva se - i oznaˇcava s A ∩ B , AB , A i B . presjek ili umnoˇzak (produkt) dogadaja
Ω
Ω A
A B
B
A B
A B
Sl. 1.3. Unija i presjek dvaju dogadaja
Primjer 1.6. Bacamo jednu kocku. Istaknimo dogadaje A = {pao je parni broj}, B = {pao je broj ve´ci od 2}. Onda je A ∪ B = {pao je parni broj ili broj ve´ci od 2} = {pao je broj ve´ci od 1} = {2, 3, 4, 5, 6}, A ∩ B = {pao je parni broj ve´ci od 2} = {4, 6}. ∗∗∗ Operacije unije i presjeka mogu se definirati i za nekoliko dogadaja. Unija n - je dogadaj dogadaja A = A1 ∪ A2 ∪ . . . ∪ An - A1 ,. . . An . koji se ostvaruje ako se ostvario barem jedan od dogadaja
1.1. ALGEBRA DOGA -DAJA
5
A 1 A2 ... A n
A 1 A2 ... A n
Sl. 1.4. Unija (lijevo) i presjek (desno) viˇse dogadaja
- je dogadaj Presjek n dogadaja A1 ∩ A2 ∩ . . . ∩ An - A1 , . . . , An . koji se ostvario ako se ostvario svaki od dogadaja ∗∗∗ Razlika dogadaja. Komplement dogadaja
- koji se ostvaruje ako se ostvari dogadaj - A , a da se ne ostvari dogadaj Dogadaj B , nazivamo razlika dogadaja A i B i oznaˇcavamo s A \ B , A − B . - Ω \ A nazivamo komplementom ili suprotnim dogadajem Dogadaj dogadaja A . On se ostvaruje ako i samo ako se A nije ostvario. Oznaˇcavamo ga s A ili s Ac .
A
B
A _ A
Sl. 1.5. Razlika dvaju dogadaja (lijevo) i komplement dogadaja (desno)
A\ B
Uvjerite se da vrijedi A \ B = A ∩ B , A = A . ∗∗∗
6
1. VJEROJATNOST
ˇ se moˇze zakljuˇciti o dogadajima Primjer 1.7. Sto A , B , C za koje vrijedi
1. 3. 5.
1. ABC = A ;
2. A + B = A ;
3. A + B + C = A ;
4. A + B = A ;
5. A + B = AB ;
6. AB = A ?
(Skiciraj gornje situacije Euler–Vennovim dijagramima). A⊆B i A⊆C 2. B ⊆ A B⊆A i C⊆A 4. A = ∅ , B = Ω A=B 6. A = Ω , B = ∅ .
De Morganovi zakoni
- operacija komplementiranja, unije i presjeka iskazana je u sljede´cim Veza izmedu formulama: A∪B =A∩B
(1)
A∩B =A∪B Te formule nazivamo de Morganovi zakoni.
(2)
Ω
Ω A
A B
A B
B
A B
Sl. 1.6. De Morganovi zakoni
Dokaˇzimo (1):
ω ∈ A ∪ B ⇐⇒ ω ∈ / A ∪ B ⇐⇒ ω ∈ /A i ω∈ /B ⇐⇒ ω ∈ A i ω ∈ B ⇐⇒ ω ∈ A ∩ B. Drugu formulu moˇzemo pokazati na sliˇcan naˇcin. Medutim, korisno je vidjeti da - vrijedi A = A , moˇzemo ona slijedi iz prve formule. Naime, kako za svaki dogadaj raˇcunati ovako A ∪ B = po (1) = A ∩ B = A ∩ B te je A ∩ B = A ∪ B = A ∪ B. Primjer 1.8. De Morganove zakone moˇzemo ilustrirati koriste´ci se jednostavnim modelima serijskog i paralelnog spoja. - A oznaˇcava da je 1. Serijski spoj. Neka u serijskom spoju dviju sklopki dogadaj prva sklopka iskljuˇcena, a dogadaj B da je iskljuˇcena druga sklopka.
1.1. ALGEBRA DOGA -DAJA
7
1
2
A
B
- toˇcaka 1 i 2 ne´ce postojati ako se ostvari barem jedan od dogadaja - A Veza izmedu ili B : { ne postoji veza } = A ∪ B. - tih toˇcaka postojat c´e ako se nije ostvario niti dogadaj - A , niti dogadaj - B Veza izmedu (nema prekida niti na jednoj sklopki): { postoji veza } = A ∩ B. Ova su dva dogadaja komplementarna. Zato vrijedi A ∪ B = A ∩ B. Dobili smo prvu de Morganovu formulu. 2. Paralelni spoj. Neka su dvije sklopke spojene u paralelnom spoju: A 1
2
B
Onda vrijedi: {ne postoji veza} = A ∩ B, {postoji veza} = A ∪ B = A ∩ B. ∗∗∗ De Morganovi zakoni poop´cavaju se na uniju i presjek n dogadaja: A1 ∪ · · · ∪ An = A1 ∩ · · · ∩ An , A1 ∩ · · · ∩ An = A1 ∪ · · · ∪ An . Ilustrirajte ove formule pomo´cu serijskog i paralelnog spoja n sklopki. Algebra dogadaja Dosadaˇsnji pristup dogadajima i operacijama zasnivao se na intuiciji. Tako smo, na primjer, - ponovo dogadaji. preˇsutno podrazumjevali da su presjek i unija dvaju dogadaja U strogo definiranoj matematiˇckoj teoriji ovi pojmovi moraju biti vrlo precizno definirani. To je nuˇzno da bi se izbjegli - podskupovi mogu´ci paradoksi unutar same teorije. Tako na primjer, potpuno je jasno da su dogadaji - nije uvijek istinita! Op´cenito, skupa Ω . Medutim, obratna tvrdnja: svaki podskup od Ω je dogadaj, - ne´ce biti svi podskupovi od Ω . postojat c´e situacije kad dogadaji - c´emo definirati kao elemente algebre dogadaja: Da izbjegnemo mogu´ce paradokse, dogadaje
8
1. VJEROJATNOST Algebra dogadaja
Algebra dogadaja je svaka familija F podskupova od Ω na kojoj su definirane binarna operacija zbrajanja + : F × F → F i unarna operacija komplementiranja sa svojstvima 1) Ω ∈ F , ∅ ∈ F , 2) A ∈ F =⇒ A ∈ F , 3) A, B ∈ F =⇒ A + B ∈ F . Elemente algebre F zovemo dogadaji. Primijetimo da je bilo dovoljno zahtijevati samo Ω ∈ F , jer je ∅ = Ω pa prema - pripada algebri F . svojstvu 2) on takoder ˇ je s umnoˇskom dogadaja? Sto Ako su A i B dogadaji, onda A i B pripadaju algebri F , pa toj algebri pripada i njihov zbroj A + B . Konaˇcno je A · B = A + B ∈ F. - ponovo je dogadaj. Dakle, umnoˇzak dogadaja Isto vrijedi i za razliku dvaju dogadaja, jer za A, B ∈ F vrijedi A \ B = A · B ∈ F. Booleova algebra
U mnogim se primjenama koristi struktura sastavljena od familije F dvije binarne operacije + i · , unarne operacije komplementiranja koja zadovoljava sljede´cih devet svojstava: 1) A+B=B+A A·B=B·A 2) (A + B) + C = A + (B + C) (A · B) · C = A · (B · C) 3) ∅+A=A Ω·A= A 4) A · (B + C) = A · B + A · C A + B · C = (A + B) · (A + C) 5)
(∀A ∈ F)(∃A ∈ F) A + A = Ω, A · A = ∅,
gdje su Ω i ∅ dva istaknuta elementa. Takvu familiju nazivamo Booleova algebra. Operacije + i · mogu biti definirane na razliˇcite naˇcine. Ako su to operacije unije - primjer i presjeka, a elementi od F podskupovi, zakljuˇcujemo da je algebra dogadaja Booleove algebre. Primjer 1.9. Pokaˇzi da u svakoj Booleovoj algebri vrijede relacije 1. A + AB = A ,
2. A B = A + B ,
3. (A+B)(A+B)(A+B)(A+B) = ∅ ,
4. A + AB + BC + AC = A + C ,
5. AB + AB + A B = AB.
1. A + AB = A jer je AB ⊆ A , ili
A + AB = AA + AB = A(A + B) = A , jer je A ⊆ A + B , ili A + AB = (A + A)(A + B) = A(A + B) = A .
1.2. VJEROJATNOST
9
2. Komplementiranjem relacije A + B = A · B . 3. (A + B)(A + B)(A + B)(A + B) = (AA + B)(AA + B) = BB = ∅ . 4. A + AB + BC + AC = A + BC + AC + AC = A + BC + (A + A)C = A + BC + C =
A + C.
5. AB+AB+A B = AB+A B+AB+A B = A(B+B)+(A+A)B = A+B = AB .
- je prikazan shemom na slici. Neka dogadaj - Ai oznaˇcava Primjer 1.10. Uredaj prekid na dijelu i , i = 1, 2, 3 . Odredi izraz za dogadaj - je prestao s radom}, A = {uredaj - A. kao i za dogadaj
A1 1
2
A2
A3
Sl. 1.7.
- prestaje s radom ako se ostvari dogadaj - A1 i barem jedan od dogadaja Uredaj A2 , A3 . Dakle, A = A1 (A2 + A3 ) i po de Morganovim formulama A = A1 (A2 + A3 ) = A1 + A2 + A3 = A1 + A2 · A3 .
1.2. Vjerojatnost
Vjerojatnost
Vjerojatnost je preslikavanje P : F → [0, 1] definirano na algebri dogadaja F , koje ima svojstva 1) P (Ω) = 1 , P (∅) = 0 (normiranost), 2) ako je A ⊂ B , onda vrijedi P (A) P (B) (monotonost), - onda je P (A ∪ B) = P (A) + P (B) 3) ako su A i B disjunktni dogadaji, (aditivnost). Broj P (A) nazivamo vjerojatnost dogadaja A.
10
1. VJEROJATNOST Svojstva vjerojatnosti
Izvedimo neka dodatna svojstva vjerojatnosti. - a A njegov komplement. Onda vrijedi Neka je A po volji odabran dogadaj, A ∪ A = Ω i pritom su A i A disjunktni. Zato, po svojstvima normiranosti i aditivnosti vrijedi 1 = P (Ω) = P (A ∪ A) = P (A) + P (A), te je P (A) = 1 − P (A) . Time smo pokazali: Vjerojatnost komplementa
- A vrijedi P (A) = 1 − P (A) . Za svaki dogadaj ∗∗∗ Pokaˇzimo sad kako se raˇcuna vjerojatnost unije u sluˇcaju kad A i B nisu disjunktni. - ovdje c´emo pisati kao umnoˇzak, dakle bez znaka ∩ . Presjek dvaju dogadaja Vjerojatnost unije
- A i B vrijedi Za bilo koja dva dogadaja P (A ∪ B) = P (A) + P (B) − P (AB).
- A ∪ B prikazat c´emo kao uniju dvaju disjunDa dokaˇzemo ovo svojstvo, dogadaj ktnih dogadaja: A ∪ B = A ∪ (BA) (vidi sliku 1.8). Sliˇcno tome, B moˇzemo rastaviti ovako B = AB ∪ BA - s desna disjunktni. i ponovo su dogadaji
A
B
_ A B=A BA
A
B
B= A B
_ BA
Po svojstvu aditivnosti vjerojatnosti slijedi: P (A ∪ B) = P (A) + P (BA), P (B) = P (AB) + P (BA).
Sl. 1.8. Skup A ∪ B moˇze se rastaviti na uniju disjunktnih skupova (lijevo). Sliˇcno vrijedi i za skup B (desno)
1.2. VJEROJATNOST
11
Oduzimanjem dobivamo traˇzenu formulu: P (A ∪ B) − P (B) = P (A) − P (AB).
Primjer 1.11. Neka su A i B dogadaji, P (A) = 0.4 , P (B) = 0.5 , P (AB) = 0.2 . Izraˇcunaj P (A + B) , P (A) , P (B) , P (A B) , P (A + B) , P (AB) , P (AB) . P (A + B) = P (A) + P (B) − P (AB) = 0.7 P (A) = 1 − P (A) = 0.6 P (B) = 1 − P (B) = 0.5 P (A B) = P (A + B) = 1 − P (A + B) = 0.3 P (A + B) = P (AB) = 1 − P (AB) = 0.8 P (AB) = P (A) − P (AB) = 0.2 P (AB) = P (B) − P (AB) = 0.3. Konaˇcni vjerojatnosni prostor
Vjerojatnosni prostor Ω , koji posjeduje samo konaˇcno mnogo elementarnih dogadaja nazivamo konaˇcni vjerojatnosni prostor. Oznaˇcimo njegove elemente, - u ovakvu prostoru je svaki podskup od Ω . VjeroΩ = {ω1 , ω2 , . . . , ωN } . Dogadaj - mo´ci c´emo odrediti ako znamo vjerojatnosti elementarnih jatnost bilo kojeg dogadaja dogadaja, tj. ako poznajemo brojeve p1 = P ({ω1 }), .. . pN = P ({ωN }). Ovi brojevi imaju svojstvo p1 > 0, . . . , pN > 0,
p1 + . . . + pN = 1.
- su medusobno Zaista, kako je Ω = {ω1 , ω2 , . . . , ωN } , a elementarni dogadaji disjunktni, to je 1 = P (Ω) = P ({ω1 }) + . . . + P ({ωN }) . - On se sastoji od nekoliko elementarnih dogadaja: Neka je A ∈ F bilo koji dogadaj. A = {ωi1 , ωi2 , . . . , ωiM }. Vjerojatnost dogadaja A raˇcunamo tako da zbrojimo vjerojatnosti tih elementarnih dogadaja P (A) = pi1 + pi2 + . . . + piM .
12
1. VJEROJATNOST Primjer 1.12. Bacamo jedan novˇci´c dok se ne pojavi pismo, ali najviˇse cˇ etiri puta. Opiˇsi vjerojatnosni prostor. Kolika je vjerojatnost dogadaja A = {pismo se pojavilo u prva dva bacanja}, B = {pismo se pojavilo nakon drugog bacanja}?
Skup Ω sastoji se od 5 elementarnih dogadaja. Tim je dogadajima prirodno pridruˇziti sljede´ce vjerojatnosti:
ω1 = P
p1 =
ω2 = GP
p2 =
ω3 = GGP
p3 =
ω4 = GGGP
p4 =
ω5 = GGGG
p5 =
1 2 1 4 1 8 1 16 1 16
Vrijedi A = {ω1 , ω2 } , B = {ω3 , ω4 } . Zato je P (A) = p1 + p2 = 3 p3 + p4 = 16 .
3 4
, P (B) =
Modeli konaˇcnih vjerojatnosnih prostora
Opiˇsimo nekoliko jednostavnih modela konaˇcnih vjerojatnosnih prostora. ω1 = P , ω2 = G . Ako je novˇci´c ispra• Novˇci´c. Dva su elementarna dogadaja: van i naˇcin njegova bacanja uobiˇcajen, onda je prirodno pretpostaviti da su vjerojatnosti - jednake: p1 = P ({ω1 }) = 1 , p2 = P ({ω2 }) = 1 . pojavljivanja obaju ovih dogadaja 2 2 • Neispravni novˇci´c. Joˇs uvijek postoje dva elementarna dogadaja ω1 = P , ω2 = G . Medutim, zbog nesimetriˇcnosti novˇci´ca ili moˇzda zbog naˇcina njegova bacanja, jedna njegova strana, recimo P , pojavljuje se cˇeˇsc´e nego druga. Sad je p1 > p2 . • Kocka. Za ispravnu kocku prirodno je uzeti pi = P ({ωi }) = 16 , za svaku od - vezane uz pokus bacanja kocke sˇ est mogu´cnosti na koje kocka moˇze pasti. Za dogadaje imamo na primjer: 3 P ({pao je paran broj}) = P ({2, 4, 6}) = , 6 4 P ({pao je broj ve´ci od 2}) = P ({3, 4, 5, 6}) = . 6 ˇ • Bacanje dvaju novˇci´ca. Cetiri su elementarna dogadaja, iako na prvi pogled postoje tri razliˇcita ishoda: dva pisma, pismo i glava, te dvije glave: 1. novˇci´c
2. novˇci´c
ω1 — palo je P P ω2 — palo je P G ω3 — palo je G P ω4 — palo je G G Da bismo lakˇse mogli razlikovati elementarne dogadaje ω2 i ω3 , moˇzemo zamisliti da bacamo dva razliˇcita novˇci´ca ili da jedan novˇci´c bacamo dva puta!
1.2. VJEROJATNOST
13
• Bacanje dvaju novˇci´ca, drugi model. Po pisanim dokumentima, francuski je veliki matematiˇcar i enciklopedist d’Alembert (1717–1783) u ovom primjeru postavio samo tri elementarna dogadaja: ω1 = {pala su dva pisma}, ω2 = {palo je jedno pismo i jedna glava}, ω3 = {pale su dvije glave}. - nisu I ovaj je pristup ispravan! Medutim, vjerojatnosti ovih elementarnih dogadaja 1 1 1 1 jednake, ve´c mora biti P (ω1 ) = 4 , P (ω2 ) = 2 , P (ω3 ) = 4 . • Bacanje dviju kocki. Postoji 36 elementarnih dogadaja. Da bismo razlikovali - poput (2, 5) i (5, 2) , moˇzemo zamisliti da su kocke obojene razliˇcitim bodogadaje jama ili pak da umjesto dvije kocke istovremeno, bacamo jednu kocku dva puta tako da znamo koji je rezultat na prvoj, a koji rezultat na drugoj kocki. Ako su kocke i - jednako naˇcin bacanja ispravni, prirodno je pretpostaviti da su svi elementarni dogadaji vjerojatni. ∗∗∗ Primjer 1.13. Izvlaˇcimo na sre´cu jednu kartu iz snopa od 52 karte. Kolika je vjerojatnost da je ta karta Q (dama). Kolika je vjerojatnost da je njezina boja ♠ (pik). Kolika je vjerojatnost da je ta karta dama ili pik boje? Oznaˇcimo s A i B dogadaje: A = {izabrana karta je dama}, B = {izabrana karta je pik boje}. - A je P (A) = 4 = 1 . 13 je karata Kako postoje cˇetiri dame, vjerojatnost dogadaja 52 13 13 1 pik boje pa je P (B) = = . Tre´ci je dogadaj C unija prvih dvaju. Prvi dojam da 52 4 - A i B nisu disje broj povoljnih ishoda jednak 17 = 4 + 13 pogreˇsan je, jer dogadaji 4 16 = . Primjetimo junktni. Njihov je presjek AB pikova dama! Zato je P (C) = 52 13 1 da je ovdje P (AB) = i da vrijedi: 52 1 1 1 4 = + − = P (A) + P (B) − P (AB). P (A ∪ B) = P (C) = 13 13 4 52
ˇ ci se naˇsaliti s prijateljima u igri Monopola, djeˇcak je izbrisao Primjer 1.14. Zele´
jednu toˇcku sa strane kocke koja oznaˇcava broj 5 , a ucrtao dvije na stranu na kojoj je broj 1 , tako da njegova kocka ima sljede´ce brojeve na svojim stranama: 2, 3, 3, 4, 4, 6. Kolika je vjerojatnost sljede´cih dogadaja, ako bacamo ovakvu kocku: A = {pojavio se paran broj}. B = {pojavio se broj ve´ci od 2}. C = {pojavio se broj 5}. 1
- jednako vjerojatna! Veliki autoritet d’Alembert smatrao je da su sva tri elementarna dogadaja
14
1. VJEROJATNOST
Pokus bacanja kocke ima cˇetiri mogu´ca ishoda: ω1 = 2 , ω2 = 3 , ω3 = 4 i ω4 = 6 . Ako pretpostavimo da je kocka bila ispravna, tad je razumno pridijeliti ovim elementarnim dogadajima vjerojatnosti p1 = P ({ω1 }) = 16 , p2 = P ({ω2 }) = 13 , p3 = P ({ω3 }) = 13 , p4 = P ({ω4 }) = 16 . Vaˇzno je shvatiti da ne moˇzemo matematiˇcki dokazati ove vrijednosti. Mi vrijednosti - moˇzemo zadati po volji, i time dobivamo matematiˇcki model za elementarnih dogadaja bacanje ovakve kocke. Medutim, ako vjerojatnosti izaberemo na ovaj naˇcin, oˇcekujemo da c´e model biti dobar, da c´e vjerno opisivati bacanje ovakve kocke. Dogadaju A odgovaraju sljede´ci elementarni dogadaji: A = {ω1 , ω3 , ω4 } , te je 1 1 1 2 P (A) = p1 + p3 + p4 = + + = . 6 3 6 3 Dogadaju B odgovaraju elementarni dogadaji B = {ω2 , ω3 , ω4 } , te je 1 1 1 5 P (B) = p2 + p3 + p4 = + + = . 3 3 6 6 Mogli smo raˇcunati pomo´cu suprotnog dogadaja: B = {ω1 } : 1 5 P (B) = 1 − P (B) = 1 − p1 = 1 − = . 6 6 - C je za ovu kocku nemogu´c, P (C) = 0 . Dogadaj
1.3. Klasiˇcni vjerojatnosni prostor Promatrajmo pokus koji ima konaˇcno mnogo ishoda i u kojem je razumno pret- jednako vjerojatni (poput bacanja ispravnog postaviti da su svi elementarni dogadaji novˇci´ca, kocke, izvlaˇcenja broja u LOTU, lutriji ili ruletu, izbor karte iz snopa i sl.). - i p1 , . . . , pN pripadNeka je Ω = {ω1 , . . . , ωN } skup svih elementarnih dogadaja ne vjerojatnosti. Kako su svi ti brojevi jednaki, a njihov je zbroj 1, vrijedi 1 pi = P ({ωi }) = , i = 1, . . . , N. N Ovakav vjerojatnosni prostor nazivamo klasiˇcni vjerojatnosni prostor jer se problemi iz kojih je iznikla teorija vjerojatnosti mogu opisati ovim modelom. - Da bismo izraˇcunali vjerojatnost dogadaja Neka je A ⊂ Ω bilo koji dogadaj. A, nije nam viˇse potrebno znati koje elementarne dogadaje A sadrˇzi, ve´c samo njihov broj. Naime, ako A sadrˇzi M elementarnih dogadaja, A = {ωi1 , . . . , ωiM } , tad je 1 M P (A) = pi1 + . . . + piM = M · = . N N Ovu formulu moˇzemo interpretirati na sljede´ci naˇcin: Svaki elementarni dogadaj nazovimo mogu´cim ishodom (svi su jednako vjerojatni). Tako je N = broj svih mogu´cih ishoda. - koji su sadrˇzani u A nazovimo povoljnima za dogadaj - A: Elementarne dogadaje M = broj svih povoljnih ishoda.
ˇ 1.3. KLASICNI VJEROJATNOSNI PROSTOR
15
Klasiˇcna vjerojatnost
- raˇcuna se formuU klasiˇcnom vjerojatnosnom prostoru vjerojatnost dogadaja lom: M broj povoljnih ishoda P (A) = = . N broj mogu´cih ishoda
∗∗∗ - broj Primjer 1.15. Bacamo jednu ispravnu kocku. Neka je elementaran dogadaj na koji je kocka pala. Opiˇsi vjerojatnosni prostor. - sastoji se od 6 elemenata: Skup elementarnih dogadaja Ω = {ω1 , ω2 , . . . , ω6 } = {1, 2, . . . , 6}. Algebra dogadaja sastoji se od svih podskupova od Ω : F = P(Ω) = ∅, {1}, . . . {6}, {1, 2}, . . . , {5, 6}, . . . , {1, 2, 3, 4, 5, 6} . - je card(F) = 26 = 64 . Broj svih dogadaja Zbog pretpostavljene ispravnosti kocke, vjerojatnost pojavljivanja svakog elemen- je jednaka: P (ωi ) = 1 . tarnog dogadaja 6 Primjer 1.16. Bacamo dvije ispravne kocke. Opiˇsi vjerojatnosni prostor. Odredi - i izraˇcunaj im vjerojatnost: sljede´ce dogadaje A = na obje kocke pao je broj 1, B = obje kocke pokazuju paran broj, C = pao je jedan paran i jedan neparan broj, D = zbroj brojeva na obje kocke iznosi barem 10. - sastoji se od uredenih Skup elementarnih dogadaja parova: Ω = (ωi , ωj ) : ωi , ωj ∈ {1, 2, 3, 4, 5, 6} . N = card(Ω) = 36 . Vrijedi F = P(Ω) . Broj svih mogu´cih dogadaja je 36 card(F) = 2 ! Zbog simetrije vrijedi 1 P {(ωi , ωj )} = . 36 - od kojih se sastoje dogadaji - A, B, C i D, Odredimo sada elementarne dogadaje te vjerojatnosti tih dogadaja. Pisat c´emo 26 umjesto uredenog para (2, 6) itd.
A = {11}, B = {22, 24, 26, 42, 44, 46, 62, 64, 66}, C = {12, 14, 16, 32, . . . , 56, 21, 23, 25, 41, . . . , 65}, D = {46, 55, 64, 56, 65, 66},
1 , 36 9 , P (B) = 36 18 , P (C) = 36 6 . P (D) = 36 P (A) =
16
1. VJEROJATNOST
∗∗∗ Raˇcunanje vjerojatnosti u klasiˇcnom vjerojatnosnom prostoru povezano je s prebrojavanjem elemenata konaˇcnih skupova, cˇime se bavi kombinatorika. Stoga je za rjeˇsavanje sloˇzenijih zadataka nuˇzno poznavanje temeljnih pojmova kombinatorike. Primjer 1.17. (Loto) Kolika je vjerojatnost da c´ e igraˇc koji je zaokruˇzio jednu kombinaciju u igri LOTO 7 od 39 pogoditi svih sedam brojeva? Kolike su vjerojatnosti za preostale dobitke (za toˇcno pogodenih 6, 5 ili 4 broja)? 39 Razliˇcitih kombinacija ima N = . Povoljnih za glavni dobitak je 7 M7 = 1 . Vjerojatnost dobitka iznosi
p7 =
M7 1 1 = = = 6.50 · 10−8 . 39 N 15 380 937 7
- i s puno ve´com vjerojatnoˇsc´u tretiramo kao praktiˇcno nemogu´ce. Ipak, zbog Dogadaje - s vremena na vrijeme velikog broja ukupno ispunjenih kombinacija, ovaj se dogadaj ostvaruje. - sedam izvuˇcenih moˇzemo odabrati na 7 naˇcina. Jedan ˇ Sest brojeva izmedu 6 - preostalih moˇzemo odabrati na 32 naˇcina. Ako zaokruˇzimo bilo koju od broj izmedu 7 ovih M6 = · 32 kombinacija, dobit c´emo zgoditak od sˇ est pogodaka. Zato je: 6 7 · 32 M6 224 6 p6 = = = = 1.46 · 10−5 . 39 N 15 380 937 7 Ovaj je dogadaj 224 puta vjerojatniji od prethodnog. - sedam moˇzemo odabrati na 7 naˇcina, a dva broja iz skupa Pet brojeva izmedu 5 32 od 32 broja koji nisu izvuˇceni na naˇcina. Zato je vjerojatnost dobitka od pet 2 pogodaka: 7 32 10 416 5 2 p5 = = = 6.77 · 10−4 39 15 380 937 7 (prije raˇcunanja umnoˇzaka korisno je skratiti brojnik s nazivnikom). Vjerojatnost zgoditka od cˇetiri pogotka je: 7 32 173 600 4 3 p4 = = = 0.0113 . 39 15 380 937 7
ˇ 1.3. KLASICNI VJEROJATNOSNI PROSTOR
Vjerojatnost da ne pogodimo niti jedan broj je: 32 7 p0 = = 0.219 . 39 7 Primjer 1.18. (Kontrola kvalitete) U poˇsiljci koja se sastoji od N proizvoda ima M neispravnih. Iz poˇsiljke se na sre´cu bira uzorak od n proizvoda (radi kontrole). Ako - njima nade - barem m neispravnih, poˇsiljka se vra´ca. Kolika je vjerojatnost da se medu c´e se poˇsiljka vratiti? Izraˇcunaj za N = 1000 , M = 20 , n = 20 , m = 1 .
Oznaˇcimo dogadaje A = {poˇsiljka nije vra´cena}, Ai = {u uzorku je pronadeno i neispravnih proizvoda}. Tada je A = A0 + A1 + . . . + Am−1 - Ai su disjunktni. Zato je P (A) = m−1 P (Ai ) . i dogadaji i=0 N−M M m − 1 n−i i n−i CM CN −M i P (Ai ) = =⇒ P (A) = . N CNn i=0 n U konkretnom primjeru je 980 20 980 · . . . · 961 20 0 P (A) = = 0.66. = 1000 1000 · . . . · 981 20 Stirlingova formula
Pri raˇcunanju brojeva n! (za veliki n ) i binomnih koeficijenata moˇzemo koristiti Stirlingovu formulu n n √ n! ≈ 2π n . e Joˇs toˇcnije, vrijedi n n 1 n n 1 √ √ 2π n e 12n+1 < n! < 2π n e 12n . e e Primijenimo prvu aproksimaciju na raˇcun u proˇslom zadatku: 980 980 2 √ 2π 980 (980!)2 e P (A) = =√ 960 960 √ 1000 1000 960!1000! 2π 960 2π 1000 e e 960.5 40 2 980 980 = = 0.664999. 960 · 1000 1000
17
18
1. VJEROJATNOST
Broj je izraˇcunat na sˇ est decimala da bi se vidjela razlika prema toˇcnoj vrijednosti koja iznosi P (A) = 0.664990 . ∗∗∗ Primjer 1.19. (Problem rodendana 1) Koliko ljudi treba biti u druˇstvu da bi s
vjerojatnoˇsc´u od barem 0.5 dva bila rodena istog dana?
Koristimo za rjeˇsavanje model u kojemu su svi dani rodenja za svakog cˇovjeka jednako vjerojatni (zanemarujemo npr. mogu´cnost da u skupini postoje blizanci) te - mogu´cnost da je netko roden - 29. veljaˇce. Uzimanje u obzir bilo koje od ovih takoder pretpostavci znatno bi iskompliciralo raˇcun, no ne bi bitno promijenilo rezultat jer je rijeˇc o malo vjerojatnim dogadajima. Rjeˇsavanje zadatka c´emo olakˇsati oznaˇcimo li sa n broj dana u godini. Neka je i - raznih dana u godini. r broj ljudi. Odredimo vjerojatnost da su svi rodeni - je Prvi ima na raspolaganju n dana, drugi n − 1 itd. Vjerojatnost ovog dogadaja n(n − 1) · · · (n − r + 1) . nr Traˇzena vjerojatnost iznosi n(n − 1) · · · (n − r + 1) Pr = 1 − . nr Tako treba rijeˇsiti nejednadˇzbu Pr 0.5 , sˇ to je vrlo neugodan posao. Za konkretni n moˇzemo uvrˇstavati razliˇcite vrijednosti od r i procijeniti pa potom provjeriti pravu - korisno je koristiti sljede´cu aproksimaciju. vrijednost. Ukoliko je n neodreden, Krenimo od prikaza funkcije e−x , odnosno njene aproksimacije za malene x : e−x = 1 − x + Zato je
x2 x3 − + ... ≈ 1 − x 2! 3!
n−k k = 1 − ≈ e−k/n , n n
i stoga
n(n − 1) · · · (n − r + 1) ≈ e−[0+1+...+(r−1)]/n = e−r(r−1)/2n nr
Sada imamo r(r − 1) − log 0.5 ≈ 0.693. 2n Odavde dobivamo, za n = 365 , r = 23 . Za taj n imamo sljede´cu tablicu vjerojatnosti Pr : 1 − e−r(r−1)/2n 0.5 =⇒ e−r(r−1)/2n 0.5 =⇒
r Pr
10 0.117
20 0.411
22 0.476
23 0.507
30 0.706
40 0.891
60 0.994
70 0.9992
80 0.9999
ˇ 1.3. KLASICNI VJEROJATNOSNI PROSTOR
Primjer 1.20. (Problem rodendana 2) Koliko ljudi treba biti u skupini da bi vje-
- istog dana kad i Vi bude ve´ci od 0.5 ? rojatnost da je neko od njih roden
Ovaj zadatak ne smijemo brkati s prethodnim. Sad nam nije vaˇzno ho´ce li neka druga dva cˇovjeka biti rodena istog dana (ukoliko se taj dan ne podudara s Vaˇsim). Joˇs - 366 ljudi sigurno postoje dva s istim danom rodenja, je jedna razlika. Dok medu ovdje je mogu´ce da u po volji velikoj skupini baˇs nitko ne bude roden istoga dana kad i Vi! - istog dana kad i Vi je n − 1 . VjeroVjerojatnost da jedan cˇovjek ne bude roden n (n − 1)r . Zato je traˇzena vjerojatnost jatnost za r ljudi je nr n − 1 r Pr = 1 − . n Da bi bilo Pr > 0.5 , treba biti n − 1 r log 0.5 < 0.5 =⇒ r > ≈ 253 n log[(n − 1)/n] ukoliko je n = 365 . Op´cenito, r ≈ 0.693n . Silvesterova formula
- poop´cava se na uniju tri dogadaja Formula za vjerojatnost unije dvaju dogadaja ovako: P (A ∪ B ∪ C) = P (A) + P (B) + P (C) − P (AB) − P (AC) − P (BC) + P (ABC). - cˇ esto je sloˇzenije od raˇcunanja vjerojatRaˇcunanje vjerojatnosti unije dogadaja nosti umnoˇska dogadaja. Stoga je korisno odrediti poop´cenje ove formule na uniju n dogadaja. Silvesterova formula
P(
n
i=1
Ai ) =
n
P (Ai ) −
i=1
+
P (Ai Aj )
i<j
P (Ai Aj Ak ) − . . . + (−1)n+1 P (A1 A2 · · · An ).
i<j
Dokaz c´emo sprovesti indukcijom po n . Baza je indukcije dokazana za n = 2 . Pretpostavimo da formula vrijedi za familije od najviˇse n − 1 cˇlanova. Oznaˇcimo potom n −1 B= Ai , Ci = Ai ∩ An (i < n) i=1
i iskoristimo bazu indukcije: n P ( Ai ) = P (B ∪ An ) = P (B) + P (An ) − P (B ∩ An ). i=1
19
20
1. VJEROJATNOST
Kako je B ∩ An = (
n −1 i=1
Ai ) ∩ An =
n −1
n −1
i=1
i=1
(Ai ∩ An ) =
Ci ,
moˇzemo primijeniti i pretpostavku indukcije P (B) = P (B ∩ An ) =
i
i<j
i
=
P (Ai ) −
P (Ci ) −
i<j
P (Ai ∩ An ) −
i
P (Ai ∩ Aj ) + . . . + (−1)n P (
n −1
Ai )
i=1
P (Ci ∩ Cj ) + . . . + (−1)n P (
n −1
Ci )
i=1
P (Ai ∩ Aj ∩ An ) + . . .
i<j
Sredivanjem dobivamo Silvesterovu formulu. Primjer 1.21. Totalna zbrka. 1) n ljudi je bacilo sˇ eˇsire u zrak. Svako je nakon toga pokupio prvi sˇ eˇsir na kojeg je naiˇsao. Kolika je vjerojatnost da je barem jedan dobio svoj sˇ eˇsir? 2) (Rastreseni) profesor napisao je n pisama i zalijepio ih u koverte. Potom je napisao adrese na koverte. Kolika je vjerojatnost da je barem jedno pismo otiˇslo na pravu adresu?
Rijeˇc je o identiˇcnom problemu. Oznaˇcimo Ai = {i-to pismo stiglo je na pravu adresu}. 1 Oˇcito je P (Ai ) = . Raˇcunajmo dalje, za i = j : n 1 P (Ai Aj ) = . n(n − 1) Naime da dva pisma stignu na toˇcne adrese, reba se ostvariti jedina povoljna od n·(n−1) mogu´cnosti na koje ta dva pisma mogu biti poslana. Sliˇcno je 1 P (Ai Aj Ak ) = , n(n − 1)(n − 2) i t.d.Neka je A traˇzeni dogadaj: barem jedan cˇovjek dobio je svoj sˇ eˇsir. Vrijedi A = Ai . Po Silvesterovoj formuli je P (A) = P (Ai ) − P (Ai Aj ) + P (Ai Aj Ak ) − . . . i
i<j
i<j
1 n 1 1 n = n· − + − ... 2 3 n n(n − 1) n(n − 1)(n − 2) 1 1 1 + − . . . + (−1)n−1 . = 1− 2! 3! n! Kolika je ta vrijednost za, recimo, n = 10 ? Gornja suma teˇzi (vrlo brzo) ka broju 1 1 1− =1− = 0.632121 i to je traˇzena vjerojatnost. e 2.71828
ˇ 1.4. BESKONACNI VJEROJATNOSNI PROSTOR
21
1.4. Beskonacˇ ni vjerojatnosni prostor Iako smo nauˇcili mnogo o svojstvima vjerojatnosti, joˇs uvijek ne moˇzemo odgovoriti na mnoga pitanja povezana s nekim vrlo jednostavnim modelima. • Novˇci´c bacamo dok se ne pojavi pismo. Kolika je vjerojatnost da se pismo ne´ce nikad pojaviti? • Biramo ‘na sre´cu’ realan broj unutar intervala [0, 1] . Kolika je vjerojatnost da c´emo izabrati 13 ? Zajedniˇcko je svojstvo u oba ova pokusa to sˇ to je skup Ω elementarnih dogadaja beskonaˇcan. U prvom sluˇcaju broj bacanja u kojem se pismo moˇze pojaviti bilo koji prirodni broj, pa elementarnih iskoda ima prebrojivo mnogo. U drugom sluˇcaju, ele- izbor bilo kojeg realnog broja x iz intervala [0, 1] . Tih dogadaja mentaran je dogadaj ima neprebrojivo mnogo. - koje smo istaknuli, osje´camo da je u oba Razmislimo li o vjerojatnostima dogadaja sluˇcaja ta vjerojatnost jednaka nuli. I dok se u prvom primjeru to ne kosi sa zorom (jer se pismo ‘mora’ pojaviti ako je novˇci´c ispravan), u drugom sluˇcaju je takav zakljuˇcak direktno protivan ‘zdravoj logici’, zato sˇ to kao rezultat pokusa mi moramo dobiti neki realni broj. Ovi uvodni primjeri pokazuju da pri promatranju modela s beskonaˇcnim vjerojatnosnim prostorom moˇzemo imati ozbiljnih logiˇckih poteˇsko´ca. Da bismo ih otklonili, - i pripadne vjerojatnosti. moramo biti precizni u definiranju svojstava algebre dogadaja Neprekinutost vjerojatnosti
Uvjet zatvorenosti algebre na zbrajanje moramo proˇsiriti i na uniju od prebrojivo mnogo dogadaja. Isto tako, zahtjevat c´emo da aditivnost vjerojatnosti vrijedi i za prebrojivu uniju disjunktnih dogadaja. σ -algebra i σ -aditivnost vjerojatnosti
Ako je Ω beskonaˇcan skup, tad zahtjevamo da algebra dogadaja F bude σ -algebra, tj. za nju vrijedi ∞
A1 , A2 , . . . , An , . . . ∈ F =⇒ An ∈ F. n=1
Vjerojatnost P na σ -algebri F mora zadovoljavati uvjet σ -aditivnosti (prebrojive aditivnosti): ∞ ∞
P An = P (An ), ako je An Am = ∅ za sve n = m . n=1
n=1
- vrijedi Prema uvjetu monotonosti vjerojatnosti znamo da za rastu´ce dogadaje A1 ⊂ A2 ⊂ . . . ⊂ An =⇒ P (A1 ) P (A2 ) . . . P (An ).
22
1. VJEROJATNOST
Neka je sada (An ) niz rastu´cih dogadaja: A1 ⊂ A2 ⊂ . . . ⊂ An ⊂ . . . . ∞
- oznaˇcujePrema uvjetu σ -aditivnosti, A = An element je algebre F . Taj dogadaj i=1
mo joˇs ovako:
A = lim An . n→∞
- An teˇze ka vjerojatnosti dogadaja - A. Prirodno je oˇcekivati da je vjerojatnosti dogadaja Pokazat c´emo da je ta tvrdnja ekvivalentna uvjetu σ -aditivnosti vjerojatnosti P . Neprekinutost vjerojatnosti Teorem 1.1. Neka je P vjerojatnost na σ -algebri F . P je σ -aditivna ako i samo ako vrijedi ∞
A1 ⊂ A2 ⊂ . . . =⇒ lim P (An ) = P ( An ). (1) n→∞
n=1
Dokaz. Neka je (An ) rastu´ci niz dogadaja. Definirajmo B1 := A1 , B2 := A2 \ A1 , .. . Bn := An \ An−1 .. . Skupovi B1 , B2 , . . . su disjunktni i vrijedi za svaki n An = B1 ∪ B2 ∪ . . . ∪ Bn ∞ ∞
Zato je i Bn = An . Ako je P σ -aditivna, onda vrijedi n=1
n=1
P(
∞
Bn ) =
n=1
∞
P (Bn ).
n=1
S druge strane, iz (2) imamo P (An ) =
n
P (Bi ).
i=1
Zato je lim P (An ) =
n→∞
∞
n=1
P (Bn )
ˇ 1.4. BESKONACNI VJEROJATNOSNI PROSTOR
23
pa je P neprekinuta. Stavimo Pokaˇzimo obrat. Neka je B1 , B2 , . . . niz disjunktnih dogadaja. A1 := B1 , A2 := B1 ∪ B2 , .. . An := B1 ∪ B2 ∪ . . . ∪ Bn , .. . kako su B1 , B2 , . . . disjuntni, za svaki n vrijedi n P (An ) = P (Bi ) i=1
- za koji je Dobili smo niz (An ) rastu´cih dogadaja ∞
A = lim An = Bn . n→∞
n=1
Ako je P neprekinuta, onda vrijedi ∞ n ∞
P ( Bn ) = P (A) = lim P (An ) = lim P (Bi ) = P (Bi ) n=1
n→∞
n→∞
i=1
i=1
te je vjerojatnost P σ -aditivna. - i A= Korolar 1.2. Ako je (An ) niz padaju´cih dogadaja
∞
An , onda vrijedi
n=1
P (A) = lim P (An ). n→∞
daja.
- An koji cˇine rastu´ci niz dogaDokaz. Dovoljno je primijeniti teorem na dogadaje ∗∗∗
Prebrojivi vjerojatnosni prostor
Pretpostavimo da je Ω beskonaˇcan prebrojiv skup: Ω = {ω1 , ω2 , . . .}. I sada c´e algebra svih dogadaja biti F = P(Ω) , skup svih podskupova od Ω . Ona zadovoljava uvjet ∞
An ∈ F =⇒ An ∈ F. n=1
tako da je F σ -aditivna
24
1. VJEROJATNOST
Vjerojatnost P na algebri F mora zadovoljavati uvjet prebrojive aditivnosti: ∞ ∞
P An = P (An ), ako je An Am = ∅ za sve n = m . n=1
n=1
Kao i prije, P je zadana ako su zadani brojevi pi = P (ωi ) > 0 . Pri tom je ∞ ∞ pi = P (ωi ) = P (Ω) = 1. i=1
i=1
- ωi ne mogu biti jednako vjerojatni, tako da klasiˇcna defiMedutim, svi dogadaji nicija vjerojatnosti gubi smisao. Primjer 1.22. Novˇci´c se baca dok se ne pojavi pismo. Opiˇsi vjerojatnosni prostor. Izraˇcunaj vjerojatnost dogadaja: A = pismo se pojavilo u prvih pet bacanja, B = pismo se uop´ce nije pojavilo. - je beskonaˇcan i prebrojiv, Ω = {ω1 , ω2 , . . .} . Skup elementarnih dogadaja gdje je ω1 = P P (ω1 ) = 1/2, ω2 = GP P (ω2 ) = 1/4, ω3 = GGP P (ω3 ) = 1/8, .. . ωn = G · · · GP P (ωn ) = 1/2n , .. . - A , B i njihove vjerojatnosti. Vrijedi Odredimo dogadaje
A = {ω1 , ω2 , ω3 , ω4 , ω5 },
P (A) =
5 1 31 = . 2n 32 n=1
- B , definirajmo najprije Da bismo odredili vjerojatnost dogadaja An = pismo se pojavilo u prvih n bacanja. Neka je i Bn = pismo se nije pojavilo u prvih n bacanja = An . Vrijedi 1 1 2n − 1 1 , + + ... + n = 2 4 2 2n 1 P (Bn ) = 1 − P (An ) = n . 2 P (An ) =
Oˇcito je B1 ⊃ B2 ⊃ . . .
i B=
∞
n=1
Bn .
ˇ 1.4. BESKONACNI VJEROJATNOSNI PROSTOR
25
Zato po uvjetu neprekinutosti vjerojatnosti P (B) = lim P (Bn ) = lim n→∞
n→∞
1 = 0. 2n
Primjer 1.23. U urni se nalaze dvije bijele i cˇ etiri crne kuglice. Dva igraˇca izvlaˇce - onaj koji prvi izvuˇce bijelu kuglicu. Opiˇsi naizmjence po jednu kuglicu. Pobjeduje vjerojatnosni postor. Izraˇcunaj vjerojatnost sljede´cih dogadaja A = pobijedio je prvi igraˇc, B = pobijedio je drugi igraˇc, C = igra se zavrˇsila u prva cˇetiri izvlaˇcenja, u svakom od sljede´ca dva naˇcina izvlaˇcenja a) nakon izvlaˇcenja kuglica se vra´ca u urnu, b) izvuˇcena kuglica ne vra´ca se natrag.
- saˇcinjavaju svi a) Vjerojatnosni prostor je beskonaˇcan. Elementarne dogadaje konaˇcni nizovi oblika 1 , 3 2 P (ω2 ) = · 3 2 P (ω3 ) = · 3
ω1 = B,
P (ω1 ) =
ω2 = CB, ω3 = CCB, .. .
ωn = C · · · C B,
P (ωn ) =
n−1
1 , 3 2 1 · , 3 3
2 n−1 1 · . 3 n
- A , B , C iznose: Vjerojatnosti dogadaja P (A) = P (ω1 + ω3 + ω5 + . . .) = =
3 , 5
P (B) = 1 − P (A) =
2 , 5
=
1 · 3
1 1−
4 9
P (C) = P (ω1 + ω2 + ω3 + ω4 ) =
1 2 2 1 2 4 1 + + + ... 3 3 3 3 4
1 2 4 8 65 + + + = . 3 9 27 81 81
26
1. VJEROJATNOST
b) U ovom je sluˇcaju vjerojatnosni prostor konaˇcan. Sastoji se od sljede´cih elementarnih dogadaja 1 3 4 2 ω2 = CB, P (ω2 ) = · 6 5 4 3 2 ω3 = CCB, P (ω3 ) = · · 6 5 4 4 3 2 ω4 = CCCB, P (ω4 ) = · · · 6 5 4 4 3 2 ω5 = CCCCB, P (ω5 ) = · · · 6 5 4 - A , B , C su Prema tome, vjerojatnosti dogadaja 5 3 + P (A) = P (ω1 + ω3 + ω5 ) = 15 15 2 P (B) = 1 − P (A) = , 5 14 . P (C) = 1 − P (ω5 ) = 15
ω1 = B,
P (ω1 ) =
= = = 2 = 3 1 2 · = 3 2 +
5 , 15 4 , 15 3 , 15 2 , 15 1 . 15
1 3 = , 15 5
1.5. Geometrijska vjerojatnost Zamislimo pokus u kojem biramo na sluˇcajan naˇcin toˇcku unutar kvadrata Ω sa stranicom duljine a . Istaknimo neke podskupove tog kvadrata. Neka je A polovina kvadrata ispod dijagonale. Neka je B trokut dobiven spajanjem poloviˇsta susjednih stranica. B
A
Sl. 1.9. Geometrijska vjerojatnost: vjerojatnost da na sre´cu odabrana toˇcka unutar nekog skupa padne u neki njegov podskup jednaka je omjeru povrˇsina podskupa prema povrˇsini cijeloga skupa
Biramo li toˇcku unutar kvadrata, moˇzemo se upitati kolika je vjerojatnost da c´e ta toˇcka biti izabrana unutar nekih od ovih podskupova. U ovdje opisanom pokusu prirodno je sljede´cim dogadajima pridruˇziti vjerojatnosti: 1 2 2a a2
1 , 2 1 2 a 1 P (B) = P {toˇcka je pala u skup B} = 8 2 = . a 8
P (A) = P {toˇcka je pala u skup A} =
=
1.5. GEOMETRIJSKA VJEROJATNOST
27
Te smo vjerojatnosti dobili promatraju´ci omjer povrˇsina podskupova i cˇitava kvadrata. ∗∗∗ Opiˇsimo op´cenitu situaciju. Geometrijska vjerojatnost
Neka je Ω ograniˇceni podskup n -dimenzionalnog prostora Rn ( n = 1, 2, 3 ). Pretpostavit c´emo da je Ω izmjeriv skup, tj. da postoji njegova mjera m(Ω) (duljina za n = 1 , povrˇsina za n = 2 , obujam za n = 3 ). Neka je A izmjeriv podskup od Ω . Kaˇzemo da biramo toˇcku na sre´cu unutar skupa Ω , ako je vjerojatnost da ona bude izabrana unutar podskupa A jednaka m(A) P (A) = . (1) m(Ω) Ovako definiranu vjerojatnost nazivamo geometrijska vjerojatnost. ∗∗∗ Formulom (1) uistinu je definirana vjerojatnost. Provjerimo jesu li ispunjena svojstva vjerojatnosti 1◦ – 3◦ . - je izbor toˇcke unutar praznog 1◦ . U geometrijskoj vjerojatnosti nemogu´c dogadaj skupa. Mjera praznog skupa je 0, pa je: m(∅) m(Ω) P (∅) = = 0, P (Ω) = = 1. m(Ω) m(Ω) 2◦ . Ako su A i B podskupovi od Ω takvi da je A ⊂ B , onda je m(A) m(B) . Zato: m(A) m(B) P (A) = = P (B). m(Ω) m(Ω) 3◦ . Ako su A i B disjunktni podskupovi od Ω , onda je mjera njihove unije jednaka zbroju mjera pojedinih skupova. Zato je vjerojatnost da toˇcka bude izabrana unutar jednog od podskupova jednaka: m(A ∪ B) m(A) m(B) P (A ∪ B) = = + = P (A) + P (B). m(Ω) m(Ω) m(Ω) ∗∗∗ Primjer 1.24. Biramo na sre´cu toˇcku unutar kvadrata Ω sa stranicom duljine a . Kolika je vjerojatnost da ona padne unutar kruga upisanog u taj kvadrat? - Povrˇsina kruga je: Neka je A traˇzeni dogadaj. a 2 m(A) = π, 2 pa je odgovaraju´ca vjerojatnost:
P (A) =
1 2 aπ π m(A) = 4 2 = . m(Ω) a 4
28
1. VJEROJATNOST Primjer 1.25. Unutar intervala [0, 1] biraju se na sre´cu dva broja x i y . Odredi vjerojatnost dogadaja: a) A = {x > y} ; b) B = {x + y < 32 } ; c) C = {x = y} .
Izbor dvaju brojeva x i y unutar intervala [0, 1] odgovara izboru jedne toˇcke (x, y) unutar jediniˇcnog kvadrata [0, 1] × [0, 1] . Oznaˇcimo taj kvadrat s Ω (slika 1.10). On predstavlja skup elementarnih dogadaja. Da bismo odredili traˇzene vjerojatnosti, moramo izraˇcunati povrˇsinu podskupova od Ω koji odgovaraju tim dogadajima. - A odgovara istoimeni podskup: skup svih toˇcaka jediniˇcnog kvadrata a) Dogadaju za koje je x > y . Tad vrijedi: m(A) 1 P (A) = = . m(Ω) 2
y=x
1
1
3 x+y= _ 2
B
A
1
1
Sl. 1.10. Izbor dviju toˇcaka unutar intervala [0, 1] odgovara izboru jedne toˇcke unutar jediniˇcnog kvadrata
b) Sad je B = {(x, y) : x + y < 32 } , te imamo: P (B) =
1 − 12 · m(B) = m(Ω) 1
1 2
·
1 2
=
7 . 8
c) Skup svih toˇcaka (x, y) za koje je x = y je dijagonala kvadrata. Povrˇsina takvog skupa je 0. Zato je i pripadna vjerojatnost jednaka nuli: biraju´ci na sre´cu dva broja unutar intervala [0, 1] vjerojatnost da ta dva broja budu jednaka jest 0! To ne - nemogu´c, jer u vjerojatnosnom modelu s neprebrojivo mnogo znaˇci da je ovaj dogadaj ishoda (kao sˇ to je geometrijski model vjerojatnosti) razlikuju se pojmovi nemogu´ceg - 1 i dogadaja - s vjerojatnoˇsc´u nula! dogadaja - {x < y} i {x y} imaju jednaku vjerojatnost. Kao posljedica ovog, dogadaji Isto vrijedi za sve sliˇcne skupove. 1 Brzopletim razmiˇsljanjem moˇzemo do´ci do sljede´ceg paradoksa: pri izboru toˇcke unutar intervala [0, 1] vjerojatnost izbora za svaku pojedinu toˇcku jednaka je nuli. Medutim, svaki se podskup intervala [0, 1] sastoji od toˇcaka, pa je koriˇstenjem svojstva aditivnosti vjerojatnosti i njegova vjerojatnost jednaka nuli. Tu smo previdjeli svojstvo realnih brojeva koje kaˇze da je svaki njegov interval neprebrojiv, dok svojstvo aditivnosti vjerojatnosti vrijedi samo za prebrojivo mnogo dogadaja. Tako teorija realnih brojeva ulazi u same aksiome teorije vjerojatnosti. U dubljem prouˇcavanju teorije vjerojatnosti koja se uˇci na studiju matematike izuˇcava se detaljno ta veza. Pokazuje se da u ovom modelu postoje podskupovi intervala Ω = [0, 1] koji nisu - dakle, algebra dogadaja - razlikuje se od skupa svih podskupova od Ω . dogadaji; - cˇija je vjerojatnost nula, iako teorijski mogu´c, ipak ne´ce ostvariti. Biranje broja unutar U praksi se dogadaj intervala [0, 1] moˇzemo poistovjetiti s izborom beskonaˇcno mnogo njegovih decimala, od kojih je svaka na sre´cu odabrani broj iz skupa {0, 1, 2, . . . , 9} . Dva c´ e broja biti jednaka ako se u postupku biranja svaki put izaberu po dvije istovjetne znamenke iz ovoga skupa. To se nikad ne´ce zbiti.
1.5. GEOMETRIJSKA VJEROJATNOST
29
Primjer 1.26. Trenutak u kojem c´ e signal sti´ci do prijemnika je na sre´cu odabrani trenutak unutar intervala [0, T] . Prijemnik ne´ce registrirati drugi signal, ukoliko je - dva uzastopna signala manja od τ , τ T . Odredi vjerojatnost da razlika izmedu prijemnik ne´ce registrirati drugi signal.
Ako je X trenutak prijema prvog signala, a Y trenutak prijema drugog signala, taj drugi signal ne´ce biti registriran ako je |X − Y| < τ . X i Y su dva na sre´cu izabrana broja unutar intervala [0, T]
6
y =x +τ
y
............ .............. ................ . .. . .. . .. . .. . .. . .. . .. . .. . .. . . . . . . . . . . . ...................... ...................... . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . . . ..................... ................... ................. ............... ............. . . . . . .
S
P {|x−y| < τ } = P {x − τ < y < x + τ } m(G) = P {(x, y) ∈ G} = m(S) T 2 − (T − τ )2 = . T2
y =x τ
G
τ
T
x
Sl. 1.11. Primjer 1.27. Buffonov problem. Ravnina je podijeljena paralelnim pravcima
koji su udaljeni jedan od drugog za 2a . Na tu se ravninu baca na sre´cu igla duljine 2l , (l < a) . Izraˇcunaj vjerojatnost da igla presjeca neki pravac. Oznaˇcimo sa x udaljenost srediˇsta igle to najbliˇzeg pravca, sa ϕ (manji) kut kojeg igla zatvara s tim pravcem. Igla se baca na sre´cu trebamo prevesti sa: x i ϕ se biraju na sre´cu unutar intervala [0, a] , [0, π ] , neovisno jedan o drugom. Poloˇzaj igle - izborom para (x, ϕ ) . Njega pak biramo unutar pravokutnika jednoznaˇcno je odreden S (slika 3.9). x
a
2a
?
6
6 ϕ
S
x =l sin ϕ
. . ... . . ............... . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . ................................. . ....................................... ...........................................
2l
G
x
Sl. 1.12.
π
ϕ
Igla c´e sije´ci pravac ako je x < l sin ϕ . Neka je
G = {(x, ϕ ) : x < l sin ϕ }. Tada imamo
1 m(G) = p= m(S) aπ
0
π
l sin ϕ dϕ =
2l . aπ
2l . Pri velikom broju bacanja, ap vjerojatnost p moˇzemo aproksimirati relativnom frekvencijom. Tako dobivamo 2ln π≈ . am Iz ove formule moˇzemo izraziti broj π : π =
30
1. VJEROJATNOST
- svima koji Ponavljanjem pokusa mogu´ce je dobiti pribliˇznu vrijednost broja π . Medu su na ovaj naˇcin isprobavali stohastiˇcke zakone i ispravnost bacanja obiˇcno se spominju Wolf koji je 1850. bacio iglu 5000 puta, dobivˇsi π ≈ 3.1596 te Lazzarini koji je 1901. iz 3408 pokuˇsaja dobio sumnjivo toˇcan rezultat π ≈ 3.1415929 .
1.6. Elementi kombinatorike ∗ Kartezijev umnoˇzak skupova
Neka su A i B dva neprazna skupa. Kartezijev umnoˇzak skupova A i B je skup - parovi (a, b) , pri cˇemu je a ∈ A , b ∈ B . Piˇsemo A × B cˇiji su elementi uredeni A × B = {(a, b), a ∈ A, b ∈ B}. Dva su uredena para (a, b) i (x, y) jednaka ako i samo ako je a = x , b = y . Koliki je broj elemenata u Kartezijevu umnoˇsku skupova? Ako je A = {a1 , a2 , . . . , am } , - parovi: B = {b1 , b2 , . . . , bn } , onda su elementi Kartezijeva umnoˇska sljede´ci uredeni (a1 , b1 ) (a2 , b1 ) (a3 , b1 ) .. . (am , b1 ) Njihov je broj mn . Tako vrijedi:
(a1 , b2 ) (a2 , b2 ) (a3 , b2 )
... ... ...
(a1 , bn ) (a2 , bn ) (a3 , bn )
(am , b2 )
...
(am , bn )
Broj elemenata Kartezijeva umnoˇska
Ako skup A ima m elemenata, a skup B n elemenata, tad Kartezijev umnozˇ ak A × B ima mn elemenata. Piˇsemo k(A × B) = k(A) · k(B) .
B
(a i ,bj )
bn ... bj .. . b2 b1 a1
a2
...
ai
. ..
am
A
∗∗∗
Sl. 1.13. Kartezijev umnoˇzak dvaju skupova
1.6. ELEMENTI KOMBINATORIKE
31
Poredak skupova u Kartezijevu umnoˇsku vaˇzan je, jer za A = B vrijedi A × B = B × A . Medutim, broj elemenata u oba ova skupa podudara se. Tako, ako nas zanima samo broj elemenata u Kartezijevu umnoˇsku, ne moramo paziti na poredak skupova. ∗∗∗ Na potpuno identiˇcan naˇcin moˇze se opisati i Kartezijev umnoˇzak nekoliko skupova. Neka su S1 ,. . . , Sk zadani skupovi. Kartezijev umnoˇzak tih skupova skup je svih uredenih k -torki: S1 × S2 × · · · × Sk = {(s1 , s2 , . . . , sk ) : s1 ∈ S1 , s2 ∈ S2 , . . . , sk ∈ Sk }.
Primjer 1.28. Koliko postoji razliˇcitih troznamenkastih brojeva?
Odgovor je 900: to su brojevi od 100 do 999. Povezat c´emo ga s Kartezijevim umnoˇskom skupova. Ovdje se radi o umnoˇsku triju skupova: skupa S1 = {1, 2, . . . , 9} iz kojeg biramo prvu znamenku, skupa S2 = {0, 1, 2, . . . , 9} iz kojeg biramo drugu znamenku i istovjetnog skupa S3 . Primjerice, ako uredena trojka (s1 , s2 , s3 ) ima oblik - troznamenkasti broj 353. (3, 5, 3) , ona odreduje Broj 900 jednak je umnoˇsku 9 · 10 · 10 broja elemenata iz svakoga skupa: prvu - na deset naˇcina. znamenku moˇzemo birati na devet naˇcina, drugu na deset i tre´cu takoder Prema tome, u ovom primjeru vrijedi k(S1 × S2 × S3 ) = 900 = 9 · 10 · 10 = k(S1 ) · k(S2 ) · k(S3 ). ∗∗∗ Na istovjetan naˇcin raˇcunat c´emo broj elemenata Kartezijeva umnoˇska viˇse skupova. Neka je n1 broj elemenata u skupu S1 , n2 broj elemenata u skupu S2 itd. Prvu komponentu iz skupa S1 moˇzemo izabrati na n1 naˇcina. Svakoj toj komponenti moˇzemo dodati drugu komponentu iz skupa S2 na n2 naˇcina. Tako prve dvije komponente moˇzemo odabrati na n1 · n2 naˇcina. Tre´cu komponentu moˇzemo birati na n3 naˇcina, pa uredenih trojki ima n1 · n2 · n3 itd. Kartezijev umnoˇzak nekoliko skupova
Broj elemenata u Kartezijevu umnoˇsku k skupova je k(S1 × S2 × · · · × Sk ) = n1 · n2 · · · nk = k(S1 ) · k(S2 ) · · · k(Sk ).
∗∗∗
(1)
32
1. VJEROJATNOST Primjer 1.29. Varijacije s ponavljanjima u skupu S . Neka je S = {a1 , a2 , . . . , an } zadani skup. • Koliko postoji razliˇcitih uredenih k -torki elemenata skupa S ? Isto pitanje moˇzemo postaviti i na ovaj naˇcin: • Na koliko se razliˇcitih naˇcina moˇze izabrati k elemenata skupa S paze´ci na njihov poredak, s tim da se elementi mogu ponavljati? Rijeˇc je oˇcito o broju elemenata u Kartezijevu umnoˇsku k istovjetnih skupova S × S × · · · × S . Njihov je broj nk . Varijacija s ponavljanjem k -tog razreda u n -ˇclanom skupu S je svaka uredena k k -torka Kartezijeva umnoˇska k skupova S × S × · · · × S = S . Broj varijacija s k ponavljanjem oznaˇcavamo s V n . On jednak je broju elemenata Kartezijeva umnoˇska Sk : k V n = k(S × S × · · · × S) = [k(S)]k = nk .
S
1
S
2
S
3
S
k
- jedan put, Sl. 1.14. Varijacije s ponavljanjem. Izbor uredene k -torke (x1 , x2 , . . . , xk ) odreduje koji povezuje izabrane elemente pojedinih skupova
Tako su na primjer varijacije s ponavljanjima drugog razreda u skupu S = {1, 2, 3, 4} : 11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44 2
Njihov je broj V 4 = 42 = 16 . Ovdje i u sliˇcnim primjerima, radi jednostavnosti pisat c´emo 11 umjesto uredenog - umjesto uredene para (1, 1) , a sliˇcno i za ostale parove. Takoder, k -torke govorimo - elemenata. cˇesto o nizu elemenata, i piˇsemo x1 , x2 , . . . , xn , sa ili bez zareza izmedu ∗∗∗ Primjer 1.30. Broj podskupova zadanog skupa. Koliki je broj podskupova skupa S koji ima n elemenata (ukljuˇcuju´ci prazan skup i cijeli skup)? Svakom elementu skupa S moˇzemo pridruˇziti broj 0 ili 1, sa znaˇcenjem 0: taj se element ne uzima u podskup, 1: taj se element uzima u podskup. Tako dobivamo niz duljine n koji se sastoji od nula i jedinica, a koji opisuje naˇcin izbora podskupa.
1.6. ELEMENTI KOMBINATORIKE
33
Na primjer, ako je S = {a, b, c, d, e} , tad niz 1, 0, 0, 1, 1 odreduje podskup {a, d, e} , a niz 0, 0, 1, 0, 0 odreduje podskup {c} . Niz {0, 0, 0, 0, 0} odgovara praznom podskupu, a niz {1, 1, 1, 1, 1} cijelom skupu. Time smo pokazali da je broj podskupova jednak broju nizova duljine n koji se sastoje od nula i jedinica. Prvu znamenku u tom nizu moˇzemo izabrati na dva naˇcina, - na dva naˇcina. Zato je ukupan broj razliˇcitih nizova 2n . drugu i sve ostale takoder Skup svih podskupova skupa S oznaˇcavamo s P(S) i nazivamo partitivnim skupom skupa S . Dakle, ako je k(S) = n , onda je k(P(S)) = 2n . Princip uzastopnog prebrojavanja
Brojanje elemenata Kartezijeva umnoˇska moˇzemo poop´citi i na sluˇcaj kad promatramo broj elemenata u nekim njegovim podskupovima. Pogledajmo sljede´ci jednostavni primjer. Primjer 1.31. Koliko postoji dvoznamenkastih brojeva s razliˇcitim znamenkama?
Prvu znamenku biramo iz skupa S1 = {1, 2, . . . , 9} , a drugu iz skupa S2 = {0, 1, 2, . . . , 9} , ali pritom moramo paziti da ne odaberemo ve´c prije odabranu znamenku. Zato c´e izbor biti uredeni par (s1 , s2 ) , pri cˇemu je s2 = s1 . Time - neki podskup Kartezijeva umnoˇska, koji (u sloˇzenijim primjerima) nije je odreden jednostavno opisati. Medutim, broj njegovih elemenata moˇzemo lako odrediti. Prvu znamenku moˇzemo birati po volji, devet je mogu´cih izbora. Bez obzira ko- devet preostalih znamenki ju znamenku s1 izabrali, drugu znamenku biramo izmedu skupa S2 , koje su razliˇcite od s1 . Njihov izbor ovisi dakle o izboru prve znamenke, ali njihov broj ne ovisi. Ukupan broj svih mogu´cnosti je 9 · 9 . Primjer 1.32. Koliko se peteroznamenkastih brojeva moˇze napisati znamenkama 0, 1, 2, 3, 4, 5, 6 ako se 0 ne smije na´ci niti na prvom, niti na posljednjem mjestu, a sve znamenke moraju biti razliˇcite?
Brojeva kod kojih nula nije na prvom mjestu ima 6·6·5·4·3 , jer prva znamenka mora biti razliˇcita od nule, druga bilo koja od preostalih itd. Neki od ovih brojeva imat c´e nulu na posljednjem mjestu. Zato c´ emo sada prebrojati koliko je takvih brojeva. Kod njih prvu znamenku moˇzemo odabrati na 6 naˇcina, drugu na 5 naˇcina, tre´cu na cˇetiri naˇcina, a cˇetvrtu na 4 naˇcina. Peta znamenka je nula. Ukupno ima 6 · 5 · 4 · 3 ovakvih brojeva. Prema tome, svega je 6 · 6 · 6 · 5 · 3 − 6 · 5 · 4 · 3 = 5 · 6 · 5 · 4 · 3 = 1800 koji zadovoljavaju oba uvjeta. ∗∗∗ Naˇcin razmiˇsljanja u svim dosadaˇsnjim primjerima moˇzemo formulirati na sljede´ci naˇcin: Princip uzastopnog prebrojavanja
Ako element s1 moˇzemo izabrati iz skupa S1 na n1 razliˇcitih naˇcina, nakon toga (bez obzira na to koji smo element ve´c izabrali) element s2 iz skupa S2 na n2 naˇcina, nakon toga element s3 iz skupa S3 na n3 naˇcina itd., onda je ukupan broj naˇcina izbora niza s1 , s2 , . . . , sk jednak N = n1 · n2 · · · nk .
34
1. VJEROJATNOST
Princip obiˇcno iskazujemo u slobodnijoj formi ovim rijeˇcima: Ako se prvi dio posla moˇze uˇciniti na n1 naˇcin, drugi dio posla na n2 naˇcina,. . . , posljednji na nk naˇcina, onda se cijeli posao moˇze uˇciniti na n1 · n2 · · · nk naˇcina 1 . Ukoliko poredak elemenata nije vaˇzan, pri primjeni principa o uzastopnom prebrojavanju moramo biti vrlo oprezni. Objasnit c´emo to kroz sljede´ca dva primjera. Primjer 1.33. Koliko dijagonala ima pravilan n -terokut?
Dijagonala je odredena s dva nesusjedna vrha n -terokuta. Prvi vrh moˇzemo odabrati na n naˇcina. Za drugi vrh nakon toga na raspolaganju imamo n−3 nesusjedna vrha. Ukupan broj (uredenih) parova vrhova je n(n − 3) . Medutim, broj dijagonala je dva puta manji, jer svaka dijagonala povezuje dva vrha: dva uredena para (A, B) i (B, A) vrhova odreduju istu dijagonalu. Dakle, broj dijagonala je N = 12 n(n − 3) . Ovaj je broj uvijek cjelobrojan, jer su brojevi n i n − 3 razliˇcite parnosti. Primjer 1.34. Snop karata sastoji se od 52 karte, podijeljenih u cˇ etiri boje (po 13 karata svaka). Na koliko razliˇcitih naˇcina moˇzemo odabrati dvije karte iste boje? Boju moˇzemo odabrati na cˇetiri naˇcina. Prvu kartu u toj boji na 13 naˇcina. Nakon sˇ to smo odabrali prvu kartu, preostaje 12 mogu´cnosti za izbor druge karte iste boje. Ponovno je svaki par brojen dva puta. Ukupan broj izbora dviju karata je 4 · 13 · 12 · 12 = 312 .
∗∗∗ Primjer 1.35. Varijacije bez ponavljanja. Uredena k -torka razliˇcitih elemenata istog skupa S = {a1 , . . . , an } naziva se varijacijom k -tog razreda u skupu od n elemenata. Pri tom mora biti k n . Broj varijacija oznaˇcavamo s Vnk . Odredimo taj broj koriste´ci princip uzastopnog prebrojavanja. Prvi element moˇzemo odabrati na n naˇcina. Nakon toga, drugi element moˇzemo odabrati na n − 1 naˇcin, jer mora biti razliˇcit od prvog. Tre´ci moˇzemo odabrati na n − 2 naˇcina. Posljednji, k -ti na n − (k − 1) = n − k + 1 naˇcin. Zato je Vnk = n(n − 1) · · · (n − k + 1). Primjer 1.36. Na koliko se razliˇcitih naˇcina moˇze podijeliti zlatna, srebrna i bron- osam natjecatelja? cˇana medalja izmedu Rijeˇc je o varijacijama tre´ceg razreda u skupu od osam elemenata. Zato je traˇzeni broj N = V83 = 8 · 7 · 6 = 336 . Svakako je korisnije zapamtiti naˇcin na koji smo doˇsli do ovog broja, nego samu formulu. Moramo biti sigurni da razumijemo princip uzastopnog prebrojavanja: • zlatnu medalju moˇzemo podijeliti na 8 naˇcina, - preostalih 7 natjecate• srebrnu medalju moˇzemo podijeliti na 7 naˇcina (medu lja), - preostalih 6 natjeca• bronˇcanu medalju moˇzemo podijeliti na 6 naˇcina (medu telja). Zato je broj razliˇcitih naˇcina za dodjelu sve tri nagrade jednak 8 · 7 · 6 . 1 Murphyjev zakon: Postoji li ijedan naˇcin da posao krene naopako, sigurno c´e krenuti naopako — iskustvena je cˇinjenica koja se ne da matematiˇcki dokazati
1.6. ELEMENTI KOMBINATORIKE
S
1
35
S
2
S
3
S
k
Sl. 1.15. Varijacije bez ponavljanja u skupu od n elemenata. Prvi element biramo po volji, drugi element tako da bude razliˇcit od prvog itd. Primjer 1.37. Abeceda u hrvatskome jeziku sastoji se od 30 slova od kojih je 5 samoglasnika i 25 suglasnika. Na koliko se razliˇcitih naˇcina moˇze ispisati rijeˇc od pet slova ako: A. sva slova u rijeˇci moraju biti razliˇcita, B. poredak slova je suglasnik-samoglasnik-suglasnik-samoglasnik-suglasnik, C. isto sˇ to i B.; ali su sva slova u rijeˇci razliˇcita.
A. Na 30 · 29 · 28 · 27 · 26 = 17 100 720 naˇcina. B. Na 25 · 5 · 25 · 5 · 25 = 390 625 naˇcina. C. Na 25 · 5 · 24 · 4 · 23 = 276 000 naˇcina.
Permutacije
- je n -torka Permutacija skupa S = {a1 , . . . , an } od n razliˇcitih elemenata uredena svih njegovih cˇlanova. Tako su na primjer, permutacije skupa S = {1, 2, 3} : (1, 2, 3) , (1, 3, 2) , (2, 1, 3) , (2, 3, 1) , (3, 1, 2) , (3, 2, 1) , i to su sve mogu´ce permutacije. Jedna permutacija skupa S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 0} je (1, 3, 5, 7, 9, 0, 2, 4, 6, 8) . Koliko razliˇcitih permutacija ovog skupa postoji? Broj razliˇcitih permutacija skupa s n elemenata oznaˇcavamo s Pn . Taj broj dobivamo ovako: • prvi element moˇzemo izabrati na n naˇcina, • drugi element moˇzemo izabrati nakon toga na n − 1 naˇcina, .. . • pretposljednji element moˇzemo izabrati na dva naˇcina (jer su samo dva elementa preostala), • posljednji element biramo samo na jedan naˇcin, jer je jedini preostao.
Broj permutacija
Broj razliˇcitih permutacija skupa od n elemenata je Pn = n · (n − 1) · · · 2 · 1 = n!
(2)
36
1. VJEROJATNOST
Primje´cujemo da je permutacija zapravo varijacija n -tog razreda u skupu od n elemenata. Zato je Vnn = Pn . Primjer 1.38. Koliko se razliˇcitih rijeˇci (smislenih i besmislenih) moˇze sastaviti od svih slova rijeˇci POVIJEST ako A. slova moˇzemo postavljati po volji; B. suglasnici dolaze na prvo, tre´ce, peto, sedmo i osmo mjesto, baˇs kao i u poˇcetnoj rijeˇci?
- jednu permutaciju. Ukupan broj rasporeda je A. Svaki raspored slova odreduje N = P8 = 8! = 40 320 . B. Svaki suglasnik moˇze do´ci na bilo koje od pet mjesta. Broj mogu´cih rasporeda suglasnika je N1 = P5 = 5! = 120 . Broj mogu´cih rasporeda samoglasnika je N2 = P3 = 3! = 6 . Po principu uzastopnog prebrojavanja, ukupan broj mogu´cih rasporeda je N = N1 N2 = 720 . Permutacije s ponavljanjem
- kojima ima i jednakih, ˇ Zelimo li izraˇcunati broj permutacija od n elemenata medu njihov c´e broj biti oˇcito manji. Naime, neke od permutacija ispisanih na gore opisani naˇcin ne´cemo viˇse mo´ci razlikovati i njihov c´e se ukupni broj smanjiti. Primjer 1.39. Odredimo sve permutacije koje moˇzemo dobiti od slova rijeˇci SOS. Pretpostavimo za trenutak da moˇzemo razlikovati oba slova S , tj. da naˇsa rijeˇc ima oblik S1 OS2 . Tad imamo 3! = 6 razliˇcitih permutacija. To su redom:
OS1 S2 OS2 S1
S1 OS2 S2 OS1
S1 S2 O S2 S1 O
Pritom S1 OS2 i S2 OS1 izgledaju kao razliˇcite permutacije, ali, uklonimo li indekse, one c´e postati jednake. Neka P oznaˇcava broj razliˇcitih permutacija slova S, O, S. U svakoj od njih postoje dva slova S, koja ne razlikujemo. Dodavanjem indeksa od njih bismo dobili 2! razliˇcitih permutacija. Zato je u ovom sluˇcaju 3! 2! · P = P3 =⇒ P = = 3. 2!
Primjer 1.40. Slova rijeˇci MAMA moˇzemo permutirati na sljede´cih sˇ est naˇcina:
AAMM AMAM AMMA MAAM MAMA MMAA
1.6. ELEMENTI KOMBINATORIKE
Razlikovanjem pojedinih slova A i M 2! · 2! = 4 nove permutacije. Na primjer: ⎧ ⎪ ⎪ ⎨ AAMM = ⎪ ⎪ ⎩
37
iz svake od ovih permutacija dobili bismo
A1 A2 M1 M2 A1 A2 M2 M1 A2 A1 M1 M2 A2 A1 M2 M1 Na taj bismo naˇcin dobili ukupno P4 = 24 permutacije od cˇetiri razliˇcita elementa. Zato za broj permutacija P slova u rijeˇci MAMA vrijedi: 4! 2! · 2! · P = P4 =⇒ P = = 6. 2! · 2! ∗∗∗ Poop´cavaju´ci ova razmatranja, dolazimo do sljede´ceg zakljuˇcka: Permutacije s ponavljanjem
Neka u nizu s1 , s2 , . . . , sn postoji prva skupina od k1 identiˇcnih elemenata, druga skupina od k2 identiˇcnih elemenata,. . . , r -ta skupina od kr identiˇcnih elemenata, k1 + k2 + . . . + kr = n . Bilo koji razmjeˇstaj elemenata takva niza nazivamo permutacijom s ponavljanjem. Njihov ukupni broj oznaˇcavamo s Pkn1 ,k2 ,...,kr i vrijedi n! Pkn1 ,k2 ,...,kr = . (3) k1 ! · k2 ! · · · kr !
Primjer 1.41. Koliko se razliˇcitih rijeˇci moˇze napisati od slova rijeˇci MATEMATIKA? Ovdje je rijeˇc o nizu slova A, A, A, E, I, K, M, M, T, T. Zato je 10! N = P3,1,1,1,2,2 = = 151 200. 10 3!1!1!1!2!2! Po dogovoru, u ovakvim primjerima ne piˇsemo broj 1 niti u oznaci, niti u razlomcima: 10! N = P3,2,2 . 10 = 3!2!2!
Kombinacije
U mnogim problemima prebrojavanja poredak izabranih elemenata nije bitan. Na primjer, u igri LOTO 7 od 39 nije vaˇzno kojim se redom izvlaˇci prvih 7 brojeva, ve´c samo koji su to brojevi. Na koliko se naˇcina moˇze izvu´ci 7 brojeva od 39? Op´cenitije, pitamo se: • Na koliko se naˇcina moˇze izvu´ci k elemenata iz skupa S od n elemenata, ne paze´ci na njihov poredak? Oznaˇcimo taj broj s Cnk .
38
1. VJEROJATNOST
Svaki izbor k razliˇcitih elemenata skupa S = {a1 , a2 , . . . , an } odreduje jedan njegov podskup koji ima k elemenata. k Cn
Sa Cnk oznaˇcavamo broj naˇcina na koji iz skupa od n elemenata moˇzemo odabrati k elemenata, ne paze´ci na njihov poredak.
Odredimo taj broj. Primjetimo da je on jednak broju razliˇcitih podskupova s k - je elemenata uzetih iz skupa od n elemenata. Izbor jednog takvog podskupa odreden nizom nula i jedinica duljine n , ali takvih da u njemu postoji toˇcno k jedinica.
Primjer 1.42. Ilustrirajmo izbor podskupova koji imaju dva elementa na skupu S = {a, b, c, d} . Na koliko naˇcina moˇzemo odabrati dva njegova elementa? Ispiˇsimo niz nula i jedinica i njemu odgovaraju´ci izbor elemenata ovoga skupa:
1, 1, 0, 0 1, 0, 1, 0 1, 0, 0, 1 0, 1, 1, 0 0, 1, 0, 1 0, 0, 1, 1
a, b a, c a, d b, c b, d c, d
Broj svih naˇcina jednak je broju svih permutacija niza 1, 1, 0, 0 , kojih ima P2,2 4 =
4! 24 = = 6. 2! · 2! 2·2
Vidimo da je ukupan broj naˇcina jednak broju permutacija u nizu od n nula i jedinica, u kojem ima k jedinica i n − k nula: n! n −k Cnk = Pk,n = = . n k k!(n − k)! Kombinacije
Svaki podskup od k (razliˇcitih) elemenata skupa S nazivamo kombinacijom u skupu S . Broj razliˇcitih kombinacija je n! n Cnk = = . (4) k k!(n − k)!
1.6. ELEMENTI KOMBINATORIKE
39
Primjer 1.43. U ravnini je zadano deset toˇcaka, od kojih nikad po tri toˇcke nisu na jednom pravcu. Koliko se pravaca moˇze odrediti tim toˇckama? Koliko trokuta postoji s vrhovima u tim toˇckama? - s dvije toˇcke. Te dvije toˇcke od deset zadanih moˇzemo Svaki je pravac odreden odabrati na 10 · 9 10 2 C10 = = = 45 2 1·2
naˇcina. Trokuta ima onoliko koliko ima izbora triju toˇcaka od deset zadanih. Njih moˇzemo odabrati na 10 · 9 · 8 10 3 C10 = = = 120 3 1·2·3 naˇcina.
Primjer 1.44. Na koliko se naˇcina u igri LOTO moˇze izvu´ci 7 brojeva i jedan dopunski broj od 39 zadanih? 7 Najprije se izvlaˇci 7 brojeva od 39. To se moˇze uˇciniti na C39 naˇcina: 39 · 38 · 37 · 36 · 35 · 34 · 33 39 = = 15 380 937. 7 1·2·3·4·5·6·7 Nakon toga, dopunski se broj moˇze odabrati na 32 naˇcina. Ukupan je broj razliˇcitih izbora 39 N = 32 · = 492 189 984. 7
∗∗∗ Pokazat c´emo joˇs jedan naˇcin na koji moˇzemo potvrditi ovu formulu, a koji moˇze biti koristan u razliˇcitim prebrojavanjima. Primjer 1.45. Veza kombinacija, permutacija i varijacija. Broj varijacija k -tog
n! . Sve varijacije moˇzemo dobiti (n − k)! tako da najprije odaberemo k elemenata skupa S , a zatim ih permutiramo na sve mogu´ce naˇcine. Izbor elemenata moˇzemo uˇciniti na Cnk naˇcina, a permutirati ih na Pk naˇcina. Po teoremu o uzastopnom prebrojavanju, ukupan broj varijacija jednak je razreda u skupu S od n elemenata je Vnk =
Vnk = Cnk · Pk , odakle slijedi n! n! (n − k)! Cnk = = = . Pk k! k!(n − k)! Vnk
40
1. VJEROJATNOST Primjer 1.46. Koˇsarkaˇski tim raspolaˇze s tri centra, cˇ etiri krila i pet braniˇca. Igru zapoˇcinje jedan centar, dva krila i dva braniˇca. Na koliko naˇcina trener moˇze izabrati poˇcetnu petorku? 4 Centar se moˇze odabrati na tri naˇcina, dva krila na = 6 naˇcina, dva 2 5 braniˇca na = 10 naˇcina. Broj razliˇcitih poˇcetnih postava je 3 · 6 · 10 = 180 . 2
Primjer 1.47. Snop od 52 karte sastoji se od 13 karata razliˇcite jakosti u svakoj od cˇetiri boje. Na koliko naˇcina moˇzemo odabrati: A. dvije karte iste boje, B. dvije karte razliˇcitih boja, C. dvije karte iste jakosti, D. dvije karte razliˇcitih jakosti? 2 A. Boju moˇzemo izabrati na cˇetiri naˇcina, a dvije karte u toj boji na C13 naˇcina. 13 N =4· = 312 . 2 Moˇzemo razmiˇsljati i ovako: prvu kartu biramo po volji, pa imamo 52 mogu´c- 12 karata koje su iste boje. Time smo nosti. Nakon toga, drugu kartu biramo izmedu dobili uredeni par. Kako nas poredak karata ne zanima, ukupan je broj mogu´cnosti 52 · 12 N= = 312 . 2 B. Dvije boje moˇzemo odabrati na C42 naˇcina, a po jednu kartu iz svake boje na 4 13 naˇcina. N = · 13 · 13 = 1014 . 2 Razmiˇsljaju´ci na drugi naˇcin, raˇcunamo ovako: za izbor prve karte imamo 52 mo- 39 karata koje nisu iste boje. Ukupan gu´cnosti. Nakon toga, drugu kartu biramo izmedu 52 · 39 je broj mogu´cnosti za izbor dviju karata dvostruko manji: N = = 1014 . 2 52 · 3 4 C. Razmiˇsljaju´ci na oba ovakva naˇcina, dobivamo N = 13 · = = 78 . 2 2 52 · 48 13 D. Sad je N = · 4 · 4 ili N = = 1248 . 2 2
Promotrimo joˇs jedan sloˇzeniji primjer. Primjer 1.48. U pokeru se dobiva 5 karata od 52. Njihov poredak nije vaˇzan. Na koliko se razliˇcitih naˇcina moˇze dobiti 5 karata koje sadrˇze A. jedan par (npr. K K J 6 3), B. dva para (npr. J J 2 2 8), C. tri karte iste jakosti (npr. 8 8 8 K 24), D. tri karte iste jakosti i jedan par (npr. A A A 7 7)?
1.6. ELEMENTI KOMBINATORIKE
4 naˇcina. Prvu od preos2 tale tri karte na 48 , drugu na 44, tre´cu na 40 naˇcina. Mnoˇze´ci ove brojeve dobit c´emo permutaciju preostale tri karte, pa je zato broj kombinacija posljednjih triju karata 3! 48 · 44 · 40 puta manji i iznosi . Pomnoˇzimo ova dva broja: 3! 48 · 44 · 40 4 . N = 13 · 2 3! Jesmo li time ponovno brojili permutacije? Odgovor je: ne! Mi uvijek moˇzemo brojati ovakve kombinacije od pet karata tako da prvo istaknemo dvije karte koje cˇine par, a zatim tri preostale. Te su skupine razliˇcite po svojim svojstvima. 4 B. Razmiˇsljajmo na isti naˇcin: 13 · je naˇcina da se odabere prvi par. Nakon 2 4 sˇ to smo njega odabrali, ima 12 · naˇcina za izbor drugog para. Medutim, ukupan 2 broj naˇcina za izbor prvih cˇetiriju karata dvostruko je manji od umnoˇska ovih brojeva, jer su i prvi i drugi par skupine istih svojstava i u ovim su izborima brojeni dva puta - parovi). Nakon izbora prvih cˇetiriju karata, petu moˇzemo odabrati na 44 (kao uredeni naˇcina. Zato je 4 4 13 · 12 2 2 N= · 44. 2! C. Razmiˇsljaju´ci kao u A. dobivamo 48 · 44 4 N = 13 · . 3 2! D. Skupine od tri karte i od dvije karte razliˇcitih su svojstava. Zato je 4 4 N = 13 · 12 . 3 2 A. Dvije karte iste jakosti moˇzemo odabrati na 13 ·
Razdioba predmeta
Razdiobe predmeta na razliˇcite osobe predstavlja interesantan kombinatorni problem. Izdvojit c´emo u sljede´cim primjerima nekoliko tipiˇcnih situacija. Primjer 1.49. Na koliko se naˇcina deset jednakih predmeta moˇze podijeliti na cˇ etiri osobe (mogu´ce je da neka osoba ne dobije niti jedan predmet)? Predmeti su jednaki, pa ih moˇzemo oznaˇciti kruˇzi´cem. Jednu mogu´cu razdiobu moˇzemo opisati na sljede´ci naˇcin: ◦ ◦ | ◦ ◦ ◦ ◦ || ◦ ◦ ◦ ◦ Ovdje smo zajedno s kruˇzi´cima rasporedili i tri crtice. Crtice oznaˇcavaju naˇcin dijeljenja: prva osoba dobiva dva predmeta, druga cˇetiri, tre´ca nijedan, cˇetvrta cˇetiri predmeta. - kojima su Razliˇcitih rasporeda ima koliko i permutacija od 13 elemenata medu dvije skupine od po deset i tri jednaka predmeta: 13! N = P10,3 = 286. 13 = 10!3!
41
42
1. VJEROJATNOST
Op´cenito, ako dijelimo n jednakih predmeta na k osoba, tad postupamo na identicˇan naˇcin. Razliˇcitih rasporeda ima onoliko koliko i permutacija od n + k − 1 elementa, - kojima ima n kruˇzi´ca i k − 1 crtica: medu −1 N = Pn,k n+k−1 =
(n + k − 1)! . n!(k − 1)!
Isti broj dobit c´emo ako se zapitamo na koliko razliˇcitih naˇcina moˇzemo postaviti k − 1 crticu na raspoloˇzivih n + k − 1 mjesta: n+k−1 k−1 N = Cn+k = . −1 k−1 Na primjer, deset predmeta se na tri osobe moˇze podijeliti na 10 + 3 − 1 12 = = 66 3−1 2 naˇcina. Dva predmeta se na deset osoba moˇze podijeliti na 2 + 10 − 1 11 11 = = = 55 10 − 1 9 2 naˇcina. (Deset je naˇcina u kojih jedna osoba dobije dva predmeta, a 45 naˇcina u kojih dvije osobe dobiju po jedan predmet.)
Primjer 1.50. Na koliko se naˇcina deset jednakih predmeta moˇze podijeliti na cˇ etiri osobe tako da svaka osoba dobije barem jedan predmet?
Oznaˇcimo ponovno predmete kruˇzi´cima. Poredajmo ih i postavimo izmedu njih tri crtice, ali tako da dvije crtice ne smiju do´ci zajedno. Jedna mogu´ca razdioba opisana je ovako: ◦ ◦ ◦|◦ ◦|◦|◦ ◦ ◦ ◦ (prva osoba dobiva tri, druga dva, tre´ca jedan i cˇetvrta cˇetiri predmeta). Crtice se moraju ubaciti na tri od devet mogu´cih mjesta izmedu kruˇzi´ca. Broj mogu´cih naˇcina je 10 − 1 9 = = 84 . 4−1 3 Op´cenito, ako n predmeta dijelimo na k osoba, ali tako da svaka osoba mora dobiti barem jedan predmet, onda postupamo ovako: k − 1 crticu postavimo na neka - kruˇzi´ca. Broj je razliˇcitih naˇcina jednak od n − 1 mjesta izmedu n−1 1 N = Cnk− . −1 = k−1 ∗∗∗
1.6. ELEMENTI KOMBINATORIKE
43
Primjer 1.51. Na koliko se naˇcina osam razliˇcitih predmeta moˇze podijeliti na cˇ etiri osobe, ali tako da svaka osoba dobije po dva predmeta? 8 Dva predmeta koja c´e pripasti prvoj osobi biramo na naˇcina. Nakon 2 6 toga, dva predmeta za drugu osobu moˇzemo izabrati na naˇcina itd. Ukupan broj 2 razliˇcitih podjela je 8 6 4 2 = 28 · 15 · 6 · 1 = 2520. 2 2 2 2 Primijetimo da je jedna podjela odredena permutacijom niza 1, 1, 2, 2, 3, 3, 4, 4 . Tako na primjer nizu 2, 4, 1, 1, 3, 2, 3, 4
odgovara podjela u kojoj prva osoba dobiva tre´ci i cˇetvrti, druga osoba prvi i sˇ esti, tre´ca osoba peti i sedmi a cˇetvrta osoba drugi i osmi predmet. Ovakvih permutacija ima 8! P2,2,2,2 = = 2520. 8 2! · 2! · 2! · 2! Promotrimo op´ceniti problem: n razliˇcitih predmeta trebamo podijeliti na k osoba, ali tako da prva dobije n1 predmeta, druga n2 predmeta,. . . , posljednja nk predmeta, n = n1 + n2 + . . . + nk . Broj razliˇcitih naˇcina na koji se to moˇze uˇciniti je n! n + nk n − n1 n nk · · · k−1 = . n1 n2 nk−1 nk n1 ! · n2 ! · . . . · nk ! ∗∗∗ Kombinacije s ponavljanjima
Pretpostavimo da biraju´ci elemente nekoga skupa imamo mogu´cnost izabrati isti element viˇse puta. • Na koliko se naˇcina moˇze izabrati k elemenata iz skupa od n medusobno razliˇcitih elemenata, ako svaki element moˇzemo birati viˇse puta, a poredak izabranih elemenata nije bitan? Moˇzemo zamisliti da iz bubnja — u kojem se nalazi n kuglica oznaˇcenih brojevima od 1 do n — biramo k kuglica, jednu po jednu i to tako da se nakon svakog izbora kuglica vra´ca u bubanj. Redoslijed izabranih brojeva nije nam pri tome vaˇzan. Jedan takav izbor nazivamo kombinacijom s ponavljanjem k -tog razreda u skupu k od n elemenata, a njihov ukupan broj oznaˇcavamo s Cn . Primjer 1.52. Ispiˇsimo sve kombinacije s ponavljanjem: a) drugog razreda u skupu S = {1, 2, 3, 4} : 11 12 13 14 22 23 24 33 34 44. 2
Dakle, C4 = 10 . b) tre´ceg razreda u skupu S = {1, 2, 3} : 111 112 113 122 123 133 222 Dakle,
3 C3
= 10 .
223
233
333.
44
1. VJEROJATNOST
c) cˇetvrtog razreda u skupu S = {1, 2} : 1111
1112
1122
1222
2222.
4 C2
Dakle, = 5. d) cˇetvrtog razreda u skupu S = {1, 2, 3} : 1111 1112 1113 1122 1123 1133 1222 1223 1233 1333 2222 2223 2233 2333 3333. 4
Dakle, C3 = 15 . U svim su primjerima kombinacije poredane leksikografskim poretkom. Kako k c´emo utvrditi broj Cn ? Uˇcinimo sljede´cu transformaciju: drugom elementu u gornjim kombinacijama dodajmo broj 1, tre´cem broj 2, a cˇetvrtom broj 3. Pritom c´e kombinacije s ponavljanjem prije´ci u kombinacije bez ponavljanja u ve´cem skupu: a) drugog razreda u skupu S = {1, 2, 3, 4, 5} : 12 13 14 15 23 24 25 34 35 45. b) tre´ceg razreda u skupu S = {1, 2, 3, 4, 5} : 123 124 125 134 135 145 234
235 245
345.
c) cˇetvrtog razreda u skupu S = {1, 2, 3, 4, 5} : 1234
1235
1245
1345
2345.
d) cˇetvrtog razreda u skupu S = {1, 2, 3, 4, 5, 6} : 1234 1235 1236 1245 1246 1256 1345 1346 1356 1456 2345 2346 2356 2456 3456. Op´cenito, ovom transformacijom skup kombinacija s ponavljanjem k -tog razreda u skupu od n elemenata prelazi u skup kombinacija bez ponavljanja k -tog razreda u skupu od n + k − 1 elemenata. Zato je: n+k−1 k n Cn = Cn+k = . −1 k U gornjim primjerima ti brojevi iznose: 4+2−1 5 5·4 2 C4 = = = = 10, a) 2 2 1·2 3+3−1 5 5 3 b) C3 = = = = 10, 3 3 2 5 5 2+4−1 4 = 5, = = c) C2 = 1 4 4 3+4−1 6 6 6·5 4 d) C3 = = = = = 15. 4 4 2 1·2
ˇ 1.7. RIJE SENI ZADATCI
45
Primjer 1.53. Iz snopa od 52 karte biramo dvije, ali tako da nakon izbora svake karte zapiˇsemo njezinu vrijednost, a samu kartu vratimo u snop. Na koliko naˇcina moˇzemo odabrati A. dvije karte iste boje; B. dvije karte iste jakosti?
A. Boju moˇzemo odabrati na cˇetiri naˇcina. Dvije karte iste boje moˇzemo 13 + 2 − 1 14 odabrati na C13 2 naˇcina. Zato je N = 4 =4 naˇcina. 2 2 B. Jakost moˇzemo odabrati na 13 naˇcina, a dvije karte te jakosti na C42 =
4+2−1 2
5 naˇcina. Zato je N = 13 . 2
1.7. Rijeˇseni zadatci
Zadatak 1.1. Novˇci´c bacamo dok se dva puta za redom ne pojavi isti znak, a naj- u skupu Ω i u sljede´cim dogadajima; viˇse pet puta. Opiˇsite elementarne dogadaje A = { pokus je zavrˇsen u tre´cem bacanju } ; B = { pokus je zavrˇsen u prva tri bacanja } . Odredite B .
- popisujemo redaju´ci ih prema broju potrebnih bacanja: Elementarne dogadaje
ω1 ω2 ω3 ω4 ω5
= GG, = PP, = GPP, = PGG, = GPGG,
ω6 ω7 ω8 ω9 ω10
= PGPP, = GPGPP, = GPGPG, = PGPGG, = PGPGP.
Sada je A = {ω3 , ω4 } , B = {ω1 , ω2 , ω3 , ω4 } . Dogadaj B sadrˇzi preostalih sˇ est elementarnih dogadaja.
je:
Zadatak 1.2. Pokus se sastoji od bacanja dvaju novˇci´ca. Uoˇcimo sljede´ce dogada-
A = {glava na prvom novˇci´cu}, B = {pismo na prvom novˇci´cu}, C = {glava na drugom novˇci´cu}, D = {pismo na drugom novˇci´cu}, E = {jedna glava i jedno pismo}, F = {barem jedna glava}, G = {barem jedno pismo}, H = {dva pisma}, I = {dvije glave}. - ekvivalentni sljede´ci dogadaji: Odredi kojem su dogadaju B∪D, B∩D, E∪I , B∪G, B ∩ G, A ∪ B, A ∩ B, F ∪ G, F ∩ G.
46
1. VJEROJATNOST
Postoje cˇetiri elementarna dogadaja, to su uredeni parovi (P, P) , (P, G) , (G, P) , (G, G) koji odreduju mogu´ci rezultat na oba novˇci´ca. Te c´emo dogadaje oznaˇcavati jednostavnije s PP , PG , GP , GG . - ima 24 = 16 . Devet medu - njima zapisani su gore (pronadite Razliˇcitih dogadaja preostalih sedam!). Da bismo odgovorili na pitanja, najjednostavnije je odrediti elementarne dogadaje od kojih se sastoje gore navedeni. Tako imamo A = {GG, GP}, B = {PG, PP}, C = {GG, PG}, D = {GP, PP}, E = {GP, PG}, F = {GP, PG, GG}, G = {GP, PG, PP}, H = {PP}, I = {GG}. Sada raˇcunamo ovako: B ∪ D = {PG, PP, GP} = G, B ∩ D = {PP} = H, E ∪ I = {GP, PG, GG} = F i sliˇcno u drugim sluˇcajevima. Dobivamo: B ∪ G = G , B ∩ G = B , A ∪ B = Ω , A ∩ B = ∅, F ∪ G = Ω, F ∩ G = E. Ovakav je naˇcin siguran, ali nije pouˇcan. Svakako je korisnije pokuˇsati na gornja pitanja odgovoriti direktno, koriste´ci veznike kao oznaku operacije: B ∪ D = {pismo na prvom novˇci´cu} ili {pismo na drugom novˇci´cu} = {barem jedno pismo} = G, F ∩ G = {barem jedna glava} i {barem jedno pismo} = {jedna glava i jedno pismo} = E, E ∪ I = {jedna glava i jedno pismo} ili {dvije glave} = {barem jedna glava} = F. Uˇcinite sliˇcno za ostale primjere. - je prikazan shemom na slici. Neka dogadaj - Ai oznaˇcava Zadatak 1.3. Uredaj prekid na dijelu i , i = 1, 2, 3 . Odredi izraz za dogadaj - je prestao s radom}, A = {uredaj - A. kao i za dogadaj
n n n n B1
A1
B2
B3
n n
n n
n n n n
A1
B1
A1
A2
A2
B2
B1
B2
Slik
12
Sl. 1.16.
a) A = A1 + B1 B2 B3 , A = A1 · B1 B2 B3 = A1 (B1 + B2 + B3 ) .
ˇ 1.7. RIJE SENI ZADATCI
47
b) A = A1 A2 + B1 B2 , A = A1 A2 · B1 B2 = (A1 + A2 )(B1 + B2 ) . c) A = (A1 + A2 )(B1 + B2 ) , A = A1 + A2 + B1 + B2 = A1 A2 + B1 B2 . Zadatak 1.4. Bacamo dvije ispravne kocke. Kolike su vjerojatnosti sljede´cih do-
gadaja:
A = {pojavile su se dvije sˇ estice}, B = {pojavila se jedna jedinica i jedna dvojka}, C = {pojavila su se dva jednaka broja}, D = {zbroj brojeva jednak je 5}, E = {pojavio se broj ve´ci od 2}? - (6, 6) . Zato je P (A) = Samo je jedan ishod povoljan za A : elementarni dogadaj 1 . 36 - B ; to su elementarni dogadaji - (1, 2) i (2, 1) . Dva su ishoda povoljna za dogadaj 2 Ovo su razliˇciti ishodi bacanja dviju kocki! P (B) = . 36 ˇ je povoljnih ishoda. P (C) = 6 Sest 36 - D ima cˇetiri povoljna ishoda: (1, 4) , (2, 3) , (3, 2) , (4, 1) . Zato je Dogadaj 4 P (D) = . 36 Opiˇsimo suprotan dogadaj: E = {oba su broja manja ili jednaka 2}. ˇ Cetiri su povoljna ishoda za ovaj dogadaj: (1, 1) , (1, 2) , (2, 1) , (2, 2) . Zato je 4 1 8 P (E) = i P (E) = 1 − P (E) = 1 − = . 36 9 9 Zadatak 1.5. Novˇci´c se baca n puta i pri tom se biljeˇzi je li palo pismo ili glava. - i izraˇcunaj im vjerojatnost: Opiˇsi vjerojatnosni prostor. Odredi sljede´ce dogadaje A = {svih n puta palo je pismo}, B = {pismo je palo toˇcno jednom}, C = {pismo je palo barem jednom}, D = {pismo je palo u prvom bacanju}. - je niz od n znakova P i G . Ω = skup svih n -torki sastav Elementaran dogadaj n ljenih od znakova P i G . Opet je F = P(Ω) , card(F) = 22 : broj svih dogadaja. 1 - su jednako vjerojatni. Zato je P (ωi ) = - A, B, Svi elementarni dogadaji . Dogadaji 2n C , D i njihove vjerojatnosti iznose: A = {PP · · · P}, B = {PG · · · G, GPG · · · G, . . . , G · · · GP}, C = Ω \ {G · · · G}, D = {P∗∗ . . . ∗ : ∗ bilo koji},
1 , 2n n P (B) = n , 2 2n − 1 , P (C) = 2n 2n−1 1 P (D) = n = . 2 2
P (A) =
48
1. VJEROJATNOST Zadatak 1.6. U kutiji se nalazi deset kuglica, sˇ est plavih i cˇ etiri crvene. Biramo na sre´cu tri kuglice. Odredimo vjerojatnosti sljede´cih dogadaja: A = {sve su tri kuglice plave}. B = {sve su tri kuglice iste boje}. C = {dvije su kuglice plave, a jedna je crvena}.
Da bismo postavili ispravan model, zamislit c´emo da sve kuglice moˇzemo razlikovati. (Moˇzemo zamisliti da su sve one oznaˇcene razliˇcitim brojevima, od 1 do 10.) 10 Tri kuglice iz skupa od 10 kuglica moˇzemo odabrati na N = naˇcina. Povoljnih 3 - A je M = 6 , jer se na toliko naˇcina mogu izabrati tri kuglice iz skupa za dogadaj 3 od sˇ est plavih kuglica. Zato je 6 M 1 20 3 P (A) = = = = . 10 N 120 6 3 Broj povoljnih ishoda za dogadaj B je 6 4 M= + 3 3 jer kuglice mogu biti ili plave ili crvene. Zato je 6 4 + 24 M 1 3 3 = P (B) = = = . 10 N 120 5 3 Odredimo broj povoljnih ishoda za dogadaj C . Dvije plave kuglice moˇzemo 6 odrediti na naˇcina, a jednu crvenu na cˇetiri naˇcina: 2 1 60 6 = . M= · 4 = 60 =⇒ P (C) = 2 120 2 Zadatak 1.7. Slova rijeˇci MATEMATIKA napisana su na karticama, ove potom promijeˇsane i poredane jedna do druge. Kolika je vjerojatnost da c´e i nakon toga matematika ostati MATEMATIKA?
Prvo rjeˇsenje. U rijeˇci postoje tri slova A, dva slova M, dva slova T te po jedno slovo E, I, K. Broj razliˇcitih permutacija ove rijeˇci jednak je broju permutacija skupa - kojima postoje jednaki: od 10 elemenata medu 10! N = P3,2,2,1,1,1 = . 10 3!2!2! 3!2!2! Samo je jedna povoljna mogu´cnost! Zato, P(A) = = 6.6 · 10−6 . 10! Drugo rjeˇsenje. Moˇzemo problemu pristupiti i ovako. Zamislimo da umijemo razlikovati svako slovo (jer su, recimo, napisana na karticama razliˇcitih boja). Tada je
ˇ 1.7. RIJE SENI ZADATCI
49
- jednak broju svih permutacija, N = P10 = 10! . Povoljne broj svih mogu´cih dogadaja su one kod kojih su slova E, I, K na svojim mjestima; slova M moˇzemo rasporediti na dva naˇcina; tri slova A na sˇ est naˇcina: prvo na bilo koje od tri slobodna mjesta, drugo na neko od preostala dva i tre´ce na slobodno mjesto, sliˇcno za slovo T. Dakle, M = 4 · 6 · 4 i dobivamo P(A) kao gore. Zadatak 1.8. Baˇceno je 12 kocaka. Kolika je vjerojatnost da c´ e se svaki od brojeva 1, 2, . . . , 6 pojaviti dvaput?
Prvo rjeˇsenje. Rezultat pokusa je niz od 12 brojeva uzetih iz skupa S = {1, 2, 3, 4, 5, 6} . Na svakoj kocki moˇze se pojaviti bilo koji od tih brojeva, pa je broj svih mogu´cih ishoda N = 612 . Koliko je povoljnih? Onoliko koliko i razliˇcitih permutacija (s ponavljanjima) niza {1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6} jer svaka takva permutacija daje povoljan ishod bacanja: 12! M = P2,2,2,2,2,2 = . 12 (2!)6 Tako dobivamo p = M/N = 0.00344 . Drugo rjeˇsenje. Do broja povoljnih kombinacija moˇzemo do´ci i drukˇcijim razmiˇsljanjem. Znamo da se u povoljnoj kombinaciji moraju pojaviti toˇcno dvije jedinice, dvije dvojke itd. Pitanje je: na kojim kockama? Dvije se jedinice mogu pojaviti na bilo 2 kojim kockama, dakle na C12 razliˇcitih naˇcina. Nakon toga, za dvije dvojke imamo na 2 raspolaganju deset kocaka, sˇ to daje C10 naˇcina itd. Ukupan broj naˇcina za pojavljivanje - je povoljnog dogadaja 12! 12 10 8 6 4 2 M= = . 2 2 2 2 2 2 (2!)6 Zadatak 1.9. Raˇcunalo, raˇcunalo. . . Raˇcunalo ispisuje brojeve s 8 znamenaka. Uz pretpostavku da je pojava svake znamenke na svakom mjestu jednako vjerojatna, izraˇcunaj vjerojatnost dogadaja A. sve znamenke su razliˇcite, B. cˇ etiri posljednje znamenke su jednake, C. broj zapoˇcinje znamenkom 5, D. broj sadrˇzi tri znamenke 5, E. broj sadrˇzi tri znamenke 5, tri znamenke 2 i dvije znamenke 7, F. pojavile su se toˇcno tri jednake znamenke (a preostalih pet su medusobno razliˇcite), G. broj ima dva para jednakih znamenaka, H. u zapisu broja pojavljuju se najviˇse tri znamenke. 8
Svih mogu´cih ishoda ima N = V 10 = 108 . 8 A. Brojeva s razliˇcitim znamenkama ima V 10 = 10!/2! , P(A) = 0.00181 . B. Jednake cˇ emu? 10 je mogu´cnosti. Na prva cˇ etiri mjesta moˇze do´ci bilo koja znamenka (ukljuˇcivo i posljednju znamenku), 104 mogu´cnosti. M = 10 · 104 , P(B) = 0.001 . C. Prva je znamenka odredena, preostalih sedam je slobodno. Dakle, M = 107 , P(C) = 0.1 . Jasno, u ovom sluˇcaju ovakav izbor brojeva M i N je neprikladan; nas
50
1. VJEROJATNOST
zanima samo prva znamenka a za ostale nas nije briga: prirodnije je uzeti N = 10 , M = 1. D. Na kojim mjestima? C83 mogu´cnosti. Na preostalih 5 mjesta moˇze do´ci bilo koja od preostalih 9 znamenki: 95 mogu´cnosti. 8 M= · 95 , P(D) = 0.0331. 3 8 5 2 E. M = , P(E) = 0.56 · 10−5 . 3 2 3 F. U zapisu broja pojavljuje se 6 razliˇcitih znamenki. Tih 6 znamenki moˇzemo 6 odabrati na C10 naˇcina. Od njih trebamo ispisati sve mogu´ce 8-znamenkaste brojeve kod kojih c´e se jedna znamenka ponavljati tri puta. Koja znamenka? 6 je izbora istaknute znamenke. Razliˇcitih permutacija potom ima P3,1,1,1,1,1 . Zato je 8 8! 10 6 M = C10 · C61 · P3,1,1,1,1,1 = ·6· . 8 6 3! i odavde p = 0.08467 . G. Zakljuˇcuju´ci kao u F, dobili bismo 8! 10 6 6 M = C10 · C62 · P2,2,1,1,1,1 = · · . 8 6 2 2!2! Moˇzda c´e nekome biti prihvatljiviji ovakav pristup: Prvu znamenku (dvostruku) moˇzemo izabrati na 10 naˇcina, rasporediti je na 8 mogu´cih mjesta na C82 naˇcina. Sada biramo drugu (dvostruku) znamenku. 9 je mogu´cih izbora, a C62 mogu´cnosti da se ona rasporedi na preostalih 6 mjesta. Na koncu moramo popuniti 4 mjesta s razliˇcitim znamenkama od 8 preostalih. Te 4 znamenke moˇzemo izabrati na C84 naˇcina, a rasporediti ih na P4 naˇcina. Po teoremu o uzastopnom prebrojavanju, dobivamo 8 6 8 M = 10 · ·9 · · 4! 2 2 4 Ovaj broj M dvostruko je ve´ci od gornjeg. Koji je ispravan? G. M = 38 . Zadatak 1.10. Statistika Maxwell–Boltzmanna. Svaka od n cˇ estica ulazi na sre´cu u jednu od r kutija (energetskih nivoa). Pretpostavljamo da cˇestice umijemo razlikovati te nam je vaˇzan i broj i vrsta cˇestica koje ulaze u pojedinu kutiju. Pretpostavljamo (u statistici Maxwell–Boltzmanna) da je svaki mogu´ci raspored jednako vjerojatan. - redom n1 , n2 ,. . . , nr cˇestica A. Kolika je vjerojatnost da se u kutijama nade ( n1 + n2 + . . . + nr = n )? B. Odredi vjerojatnost pk da zadana kutija sadrˇzi k cˇ estica. C. Neka n i r rastu tako da kvocijent n/r teˇzi ka λ (to je srednji broj cˇ estica po e−λ λ k jednoj kutiji). Pokaˇzi da tada vrijedi pk → . k!
A. U ovom su modelu sve cˇestice medusobno razliˇcite. Svaka cˇestica moˇze - ima N = rn . upasti u bilo koju od r kutija. Zato svih mogu´cih elementarnih dogadaja
ˇ 1.7. RIJE SENI ZADATCI
51
Povoljnih ima koliko i permutacija s ponavljanjem: M = Pnn1 ,...,nr =
n! n1 ! · n2 ! · · · nr !
jer se na ovoliko naˇcina mogu odabrati cˇestice koje c´e u´ci u pojedine kutije. B. i C. k cˇ estica koje upadaju u izabranu kutiju moˇzemo odrediti na Cnk naˇcina. Preostalih n−k moˇzemo rasporediti u r −1 kutiju po volji, dakle na (r −1)n−k naˇcina. Stoga je (r − 1)n−k n pk = k rn λ k −λ n(n − 1) · · · (n − k + 1) 1 1 n−k = · → · 1 − e . rk k! r k!
Zadatak 1.11. Statistika Bose–Einsteina. Svaka od n cˇ estica ulazi na sre´cu u jednu od r kutija. U ovom modelu cˇestice ne umijemo razlikovati. Mogu´ce rasporede razlikujemo samo po tome koliko se u pojedinoj kutiji nalazi cˇestica. U ovoj statistici pretpostavljamo da su svi ti rasporedi jednako vjerojatni. - redom n1 , n2 ,. . . , nr cˇestica A. Kolika je vjerojatnost da se u kutijama nade ( n1 + n2 + . . . + nr = n )? B. Odredi vjerojatnost qk da zadana kutija sadrˇzi k cˇ estica. C. Neka n i r rastu tako da kvocijent n/r teˇzi ka λ . Pokaˇzi da tada vrijedi λk . qk → (1 + λ )k+1
A. Ispitajmo na koliko naˇcina moˇzemo izvrˇsiti sve mogu´ce razmjeˇstaje (samo jedan je povoljan za nas). Oznaˇcimo svaku cˇesticu istim znakom, recimo zvjezdicom - tih n ∗ , poˇsto ih ne razlikujemo i poredajmo ih jednu za drugom. Ubacimo medu zvjezdica joˇs i r − 1 crticu, recimo na sljede´ci naˇcin, za n = 7 i r = 5 : ∗ ∗ | | ∗ | ∗ ∗ ∗ | ∗ ∗. (Mogu´ce je da crtica dode na sami poˇcetak, kao i na kraj razmjeˇstaja.) Sada podijelimo cˇestice u kutije tako da prvoj pridjelimo onoliko cˇestica koliko ih ima do prve crtice, - prve i druge crtice itd. U gornjoj razdiobi bi bilo: drugoj onoliko koliko ih ima izmedu u prvu dvije, u drugu niti jednu, u tre´cu jednu, u cˇetvrtu tri itd. - jedan mogu´ci razmjeˇstaj. Stoga Svaki raspored n cˇestica i r − 1 crtice odreduje ukupan broj takvih razmjeˇstaja odgovara broju naˇcina na koji moˇzemo poredati tih n + r − 1 elemenata: (n + r − 1)! n Cn+r . −1 = n!(r − 1)! B. Nakon sˇ to k cˇ estica rezerviramo u odabranoj kutiji, preostalih n − k moˇzemo rasporediti u preostale r − 1 kutije na po volji nam naˇcine. Po dijelu A, to se moˇze
52
1. VJEROJATNOST −k uˇciniti na Cnn− cina. Zato je k+r−2 naˇ r+n−k−2 (r + n − k − 2)! n! (r − 1)! n−k qk = = r+n−1 (n − k)! (r − 2)! (r + n − 1)! n (r − 1)n(n − 1) · · · (n − k + 1) = (r + n − 1)(r + n − 2) · · · (r + n − k − 1) i odavde lako, dijeljenjem svakog faktora (kojih u brojniku i nazivniku ima k + 1 ) s r ) slijedi C. Ovako bombastiˇcan model ima i mnogo prizemniju interpretaciju: 13 (jednakih) bombona dijelimo na cˇetvero djece. Na koliko naˇcina to moˇzemo uraditi? Kolika je vjerojatnost da prvi djeˇcak dobije 2, drugi 4, tre´ci 3 a cˇetvrti 4 bombona? Kolika je vjerojatnost da Petar ne dobije nijednog?
Zadatak 1.12. Neka bude svjetlo. Od 4 grla za zˇ arulje dva su ispravna, a od 7 zˇ arulja koje imamo 4 su ispravne. Ako odaberemo na sre´cu 4 zˇ arulje i stavimo ih u grla, kolika je vjerojatnost da c´emo dobiti svjetlo?
ˇ Prvo rjeˇ senje. Cetiri zˇ arulje moˇzemo izabrati na C74 naˇcina, a staviti ih u grla na C74 · P4 = 74 4! naˇcina. Svjetlo ne´cemo dobiti ako su prve dvije zˇ arulje neispravne (zbog jednostavnijeg razmiˇsljanja, moˇ zemo slobodno pretpostaviti da su prva dva grla ispravna), a to c´e se desiti u 32 2! 52 2! kombinacija. Dakle, 3 5 2! 2! 3·2·5·4 6 p = 1 − 2 7 2 =1− = . 7 · 6 · 5 · 4 7 4 4! Drugo rjeˇsenje. Oznaˇcimo dogadaje: A = {dobili smo svjetlo}, A1 = {dobili smo svjetlo iz prvog grla}, A2 = {dobili smo svjetlo iz drugog grla}. - A moˇzemo sada raˇcunati na naˇcin Tada je A = A1 + A2 . Vjerojatnost dogadaja P (A) = P (A1 ) + P (A2 ) − P (A1 A2 ). - u oba ispravna grla stavljene Tu je P (A1 ) = P (A2 ) = 4 . A1 A2 oznaˇcava dogadaj: 7
su ispravne zˇ arulje. Dvije zˇ arulje se mogu izabrati na C72 naˇcina, dvije ispravne na C42 4·3 2 6 naˇcina. Zato je P (A1 A2 ) = = i P (A) = . 7·6 7 7 - disjunktni, Jednostavnije je napisati A u obliku A = A1 + A1 A2 i ovi su dogadaji zato je P (A) = P (A1 ) + P (A1 A2 ). - u jedno (ispravno) grlo stavljena je ispravna, a u drugo neispA1 A2 oznaˇcava dogadaj: ravna zˇ arulja. To se moˇze uˇciniti na 3 · 4 naˇcina, dok postoji 72 2! mogu´cih rasporeda dviju zˇ arulja: 4 3·4 6 P (A) = + = . 7 7·6 7
ˇ 1.7. RIJE SENI ZADATCI
Zadatak 1.13. U liftu zgrade od 10 katova nalazi se 7 osoba. Kolika je vjerojatnost da c´e svaka od njih izi´ci na razliˇcitom katu?
Na koliko naˇcina moˇzemo izabrati sedam elemenata iz skupa {1, 2, . . . , 10} , paze´ci na njihov poredak? Prvi element moˇzemo izabrati na 10 naˇcina, drugi na 10 naˇcina, 7 itd. Broj razliˇcitih naˇcina je V 10 = 107 . To je upravo broj svih mogu´cih naˇcina na koji osobe mogu izi´ci iz lifta. Jer, izbor (3, 2, 6, 3, 7, 2, 9) oznaˇcava na primjer da prva osoba izlazi na tre´cem, druga na drugom, tre´ca na sˇ estom katu itd. Koliko je povoljnih mogu´cnosti? Onoliko na koliko se moˇze odabrati sedam razlicˇitih brojeva iz skupa {1, 2, . . . , 10} , paze´ci na njihov poredak. Sedam brojeva (sedam 7 razliˇcitih katova) moˇzemo odabrati na C10 naˇcina, a rasporediti ih potom na osobe na 10 · 7! . Traˇzena je vjerojatnost P7 naˇcina. Zato je broj povoljnih dogadaja M = 7 10! 1 = 0,06. · 3! 107 Dakako, ovo je rjeˇsenje ispravno u modelu u kojem pretpostavljamo da je vjerojatnost izlaska za svaku pojedinu osobu na svakom katu jednaka (i ne ovisi o izborima drugih osoba). Ta pretpostavka nije realna u svakidaˇsnjem zˇ ivotu gdje je obiˇcaj da pojedine osobe uvijek izlaze zajedno na istome katu, naprosto stoga sˇ to zˇ ive u istom stanu. Primjetimo da model ponovo postaje dobar ako se umjesto osoba promatraju takve zajedniˇcke skupine kao jedinke. Zadatak 1.14. Iz snopa od 32 karte izabrano je na sre´cu 6 karata. Kolika je - njima zastupljene sve cˇetiri boje? vjerojatnost da su medu Neka je Ai dogadaj - kartama nema i -te boje}, i = 1, 2, 3, 4. Ai = {medu
- cˇiju vjerojatnost traˇzimo dade se prikazati na naˇcin A = A1 A2 A3 A4 . Zato je Dogadaj - raˇcunamo po Silvesterovoj formuli. A = A1 +A2 +A3 +A4 i vjerojatnost ovog dogadaja Ukoliko medu tih sˇ est karata nema neke, recimo ♠ boje, tada se one biraju iz skupa od preostale 24 karte. Vjerojatnost toga jest C6 P (Ai ) = 24 = 0.14853, ∀i. 6 C32 Vjerojatnost da ne budu zastupljene dvije boje je, za svaki od sˇ est parova (i, j) , C6 = 0.00884, P (Ai Aj ) = 16 6 C32 i sliˇcno za bilo koju od cˇetiri kombinacije C6 P (Ai Aj Ak ) = 68 = 0.00003. C32 Dogadaj A1 A2 A3 A4 je nemogu´c. Po Silvesterovoj formuli dobivamo P (A) = 4P (A1 ) − 6P (A1 A2 ) + 4P (A1 A2 A3 ) = 0.54122 te je P (A) = 0.459 .
53
54
1. VJEROJATNOST Zadatak 1.15. Silvester i bridge. U bridgeu, 52 karte dijele se na 4 igraˇca. Visoke karte su (tim redom) A, K, Q, J. Kolika je vjerojatnost da u jednom dijeljenju A. jedan, - 13 karata ne dobije niti jednu visoku? B. neki igraˇc medu
A. Ovdje traˇzimo vjerojatnost da neki konkretni igraˇc nema visokih karata. 13 - ima C13 Mogu´cih razdioba 13 karata u jednoj ruci je N = C52 . Povoljnih za dogadaj 36 jer je 36 karata koje nisu visoke. Zato je p=
13 C36 = 0.00364. 13 C52
B. Na prvi pogled identiˇcno pitanje vodi na sad znatno sloˇzeniju analizu. Moramo uzeti u obzir sva cˇetiri igraˇca. Oznaˇcimo dogadaj
Ai = {i − ti igraˇc nema visoku kartu}, Mi traˇzimo P (
4 i=1
P(
4
Ai ) =
i = 1, . . . , 4.
Ai ) . Raˇcunamo po Silvesterovoj formuli:
P (Ai ) −
P (Ai Aj ) +
i<j
i=1
P (Ai Aj Ak ) − P (A1 A2 A3 A4 ).
i<j
Vrijedi, po dijelu A, P (Ai ) =
13 C36 , 13 C52
∀i.
Takoder P (Ai Aj ) =
13 13 C36 C23 · , 13 13 C52 C39
∀i < j.
- Ai Aj Ak , i < j < k je nemogu´c (ima samo 36 karata koje nisu Medutim, dogadaj visoke), a pogotovo umnoˇzak A1 A2 A3 A4 . Zato p = 4P (A1 ) − 6P (A1 A2 ) = 0.01455. - praktiˇcki nemogu´c jer je P (Ai Aj ) = 5.13 · 10−7 . Zato je - Ai Aj je takoder Dogadaj - iz A. traˇzena vjerojatnost pribliˇzno jednaka cˇetverostrukoj vjerojatnosti dogadaja ∗∗∗
Zadatak 1.16. Na sre´cu se bira broj x ∈ [0, 1] , te broj y ∈ [0, 2] . Izraˇcunaj vjerojatnost da je zbroj x + y ve´ci od 2, a umnoˇzak xy manji od 1.
- cˇine sve toˇcke unutar pravokutnika S = [0, 1] × Skup elementarnih dogadaja [0, 2] . Uvjet zadatka zadovoljavaju sve toˇcke iz podruˇcja G (slika 1.17).
ˇ 1.7. RIJE SENI ZADATCI
55
p = P {x + y > 2, xy < 1} m(G) = P {(x, y) ∈ G} = . m(S) 2 1 m(G) = − 2 + y dy y 1 2 y2 = ln 2 − 12 . = ln y − 2y + 2
6 @ @@G
x +y =2 2
1
=
y
... xy 1 ... ... .. .. ... . . . . . . . ..... . . . . . ..... . . . . .... . . . .... . ..... .... ... ... ... ... ... .... ..... ...... ...... ...... ....
@
S
1
@@ @ 1
Dakle, p=
1 2
ln 2 −
1 4
x
Sl. 1.17.
= 0.097.
Zadatak 1.17. Na duˇzini PQ duljine 1 na sre´cu se biraju dvije toˇcke L i M . Odredi vjerojatnost da je toˇcka L bliˇza toˇcki M nego toˇcki P .
y=2x 1
y P
x
L
Q
M
1
Sl. 1.18.
Oznaˇcimo x = d(P, L) , y = d(P, M) . Tad vrijedi: d(L, M) = |y − x|. - odgovara skup svih toˇcaka (x, y) za koje je |y − x| < x , odnosno: Traˇzenom dogadaju −x < y − x < x ⇐⇒ 0 < y < 2x. Taj je skup naznaˇcen na slici 1.18. P {d(L, M) < d(P, L)} = P {|y − x| < x} m(A) 3 = P {0 < y < 2x} = = . m(Ω) 4
56
1. VJEROJATNOST Zadatak 1.18. Unutar intervala [0, 1] na sre´cu su odabrane dvije toˇcke koje ga dijele na tri dijela. Kolika je vjerojatnost da se od tih dijelova moˇze sastaviti trokut?
Oznaˇcimo sa x i y duljine duˇzina AL i AM , kao u prethodnom zadatku.
6 y
1
.. .... . .. . .. . .. . . . . . .......... ............ .............. . . . . . . . ............. ........... ......... ....... ..... ... .
G
a
A
x
M
L
a
y
B
1
x
Sl. 1.19.
Dvije su mogu´cnosti. 1) x < y . Tada su duljine dijelova x , y − x i 1 − y . Da bi se od njih mogao sastaviti trokut, mora svaka od njih biti manja od zbroja preostalih dviju, tj. mora biti manja od 1/2 . Tako dobivamo uvjete x < 12 ,
y − x < 12 ,
1 − y < 12 .
2) Ako je pak y > x tada su duljine dijelova y , x − y i 1 − x . Sada dobivamo uvjete y < 12 , x − y < 12 , 1 − x < 12 . - podruˇcje G . Ovi uvjeti odreduju m(G) 1 = . m(S) 4
p=
Zadatak 1.19. Unutar duˇzine duljine a = 5 cm izabrane su na sre´cu dvije toˇcke. Izraˇcunaj vjerojatnost da je svaka od tri tako dobivene duˇzine kra´ca od b = 2 cm (op´cenito, b > a/3 ).
Oznaˇcimo sa x duljinu prvog, a sa y duljinu tre´ceg dijela: a
y
x
A
L
M
a
B
Sl. 1.20.
Izboru dviju toˇcaka L i M odgovara izbor jedne toˇcke s koordinatama (x, y) unutar podruˇcja {(x, y) : x > 0, y > 0, x + y < a} . Traˇzimo vjerojatnost dogadaja G = {0 < x < b, 0 < y < b, a − b < x + y < a}. Razlikujemo dva sluˇcaja: a) b < a/2 . Tada je P (G) =
m(G) (3b − a)2 . = m(S) a2
ˇ 1.7. RIJE SENI ZADATCI
57
6 @
6 @ @ S@@ = @@G @ @ @@@ @@ =
@@ = @ G @@ @@ @ @@ @ @ =
x +y =a b
x +y =a b
y b
3b a
a b
b
a
.............. ................ .................. .................... ...................... ........................ ......................... ....................... ..................... ................... ................. ............... . . . . . . .
a b
x b
Sl. 1.21.
b
y b
2b a
a
x b
Sl. 1.22.
b) b > a/2 . Sada imamo P (G) =
b2 − 12 (a − b)2 − 12 (2b − a)2 6ab − 2a2 − 3b2 = . 1 2 a2 2a
U konkretnom sluˇcaju, a = 5 , b = 2 je P (G) =
1 . 25
Zadatak 1.20. Odredi vjerojatnost da su korijeni jednadˇzbe x2 + 2ax + b = 0 realni, ako su jednako mogu´ce vrijednosti koeficijenata |a| < 3 , |b| < 12 .
b
6
.. . 12 .. .. ... . . .... S .. 9 .... ....... . ... . . . ... ... . .. . . . ... . . . . ... ...... ... .. ... .. . . . . . ... . . . . . . . . .... .... . . . . . . . . . . . . . .... . . . . . . . . . ..... ..... . .. . .. . .. . .. . . . . . . . . . . . .................. .. . .. . .. . .. . .. .
3
............................. ............................. ............................. ............................. ............................. ............................. ............................. ............................. ............................. ............................. ............................. ............................. ............................. . . . . . . . . . . . . . . .
-
3 a
G
12
Sl. 1.23.
- je Po uvjetu zadatka skup elementarnih dogadaja S = {(a, b) : −3 < a < 3, −12 < b < 12}. Da bi korijeni bili realni, mora biti 4a2 − 4b 0 , tj. b a2 . P {b a2 } = P {(a, b) ∈ G} m(G) 90 5 = = = . m(S) 144 8
58
1. VJEROJATNOST
Naime,
3
a2
da
m(G) = −3
db = 90. −12
Zadatak 1.21. Na kruˇznici polumjera R na sre´cu su odabrane tri toˇcke A , B i C . Kolika je vjerojatnost da je trokut ABC sˇ iljastokutan?
B
6 @S @@ @@ = @@G @@ @ @= @ y
A ... ....... .. ........ .... ........ . . . . . . . . . .. . ........ .. ......... ... .... ... ... ... .. . ... ... .... ... ... ... ... ... .... .... ... .. ... .. ... .. y .... x
2Rπ x +y =Rπ
............. ........... ......... ....... ..... ... .
C
x Rπ
Sl. 1.24.
y Rπ
2Rπ
x
Moˇzemo pretpostaviti da je poloˇzaj toˇcke A na kruˇznici fiksan. Sa x oznaˇcimo - jednoznaˇcno duljinu luka AB , sa y duljinu luka BC . Izbor toˇcaka B i C odreduje brojeve x i y za koje vrijedi 0 < x, 0 < y, x + y < 2Rπ . - je skup elementarnih dogadaja Ovim nejednakostima odreden S . Obratno, izbor bilo koje toˇcke (x, y) ∈ S odreduje jednoznaˇcno poloˇzaj toˇcaka B i C . Trokut c´e biti sˇ iljastokutan ako je ispunjeno x < Rπ , y < Rπ , x + y > Rπ . Ovim je uvjetima odredeno podruˇcje G . Traˇzena vjerojatnost iznosi p=
1 2 2 Rπ m(G) 1 = 2 2 2 = . m(S) 2R π 4
§ 1. Zadatci za vjeˇzbu
1. U urni se nalaze cˇetiri kuglice, dvije jednake bijele i dvije jednake crne. Izvlaˇcimo jednu po jednu tri kuglice, ne vra´caju´ci ih u urnu. Opiˇsite prostor elementarnih dogadaja. Odredite sljede´ce dogadaje: A = {prva je izvuˇcena crna kuglica}. B = {prva je izvuˇcena bijela kuglica}.
C = {bijela kuglica je izvuˇcena barem jednom}. D = {bijela kuglica je izvuˇcena toˇcno jednom}. E = {izvuˇcena je jedna bijela i dvije crne kuglice} . 2. Bacamo dvije kocke. Biljeˇzimo rezultat na svakoj od njih. Koliko ima elementarnih dogadaja?
ˇ 1. ZADATCI ZA VJE ZBU
- imaju sljede´ci dogaKoliko elementarnih dogadaja daji: A = { oba broja su parna } , B = { oba broja ve´ca su od 4 } , C = { razlika brojeva iznosi 2 } ? 3. Bacamo dvije kocke. Biljeˇzimo rezultat na svakoj od njih. Neka je A = { pojavio se broj manji od 3 } , B = { zbroj brojeva manji je od 9 } , C = { oba broja ve´ca su od 4 } . Iskaˇzi rijeˇcima dogadaje A , B , C . Pokaˇzite da su A i C disjunktni, baˇs kao i A i B . Uvjerite se da vrijedi A =⇒ B , ali da ne vrijedi A = B . 4. Bacamo dvije kocke. Biljeˇzimo samo zbroj do- ima bivenih brojeva. Koliko elementarnih dogadaja ovaj pokus? 5. Bacamo dvije kocke. Oznaˇcimo dogadaje A = { zbroj brojeva je neparan } , B = { pojavio se broj 1 } , C = { na obje kocke pao je broj 1 } . Opiˇsite dogadaje AB , AC , BC , A ∪ C , AB . 6. Neka su A , B , C dogadaji. Iskaˇzite s pomo´cu - sljede´ce dogadaje: unije i presjeka ovih dogadaja - A }; A. { ostvario se samo dogadaj B. { ostvarili su se A i B , ali ne i C } ; - }; C. { ostvarila su se sva tri dogadaja - }; D. { ostvario se barem jedan dogadaj E. { ostvario se toˇcno jedan dogadaj } ; - }. F. { nije se ostvario niti jedan dogadaj
7. Bacamo n kocaka. Neka Ai (i = 1, . . . , n) oz- pojavila se sˇ estica na i -toj kocki. naˇcava dogadaj: Izrazi sljede´ce dogadaje: A = nije se pojavila nijedna sˇ estica, B = pojavila se barem jedna sˇ estica, C = pojavila se najviˇse jedna sˇ estica. ∗∗∗ ˇ 8. Neka je A ⊂ B . Cemu su ekvivalentni dogadaji AB , A ∪ B , ABC , A ∪ B ∪ C ? - A i B ekvi9. Jesu li po volji odabrani dogadaji valentni ako je a) A = B , b) A ∪ C = B ∪ C , - C. c) AC = BC , za neki dogadaj 10. Neka su A , B , C dogadaji. Pojednostavni izraze (A + B)(B + C)(C + A) , (A + B)A + A(B + C) . 11. Dokaˇzi relacije: A − B = A − AB = (A + B) − B,
59 A(B − C) = AB − AC, (A − C)(B − C) = AB − C, AC − B = AC − BC, (A − B) + (A − C) = A − BC. 12. Koja je od sljede´cih relacija istinita za sve A, B, C ∈ F ? (A + B) − C = A + (B − C), ABC = AB(B + C), ABC ⊆ A + B, (A + B)C = ABC. 13. Izraˇcunaj X iz relacija X + A + X + A = B, (A + X)(A + X) + X + A + X + A = B. ∗∗∗ 14. Ako je P (A) = 0.6 , P (B) = 0.4 , P (A ∪ A, B, B) = 0.8 , izraˇcunajte vjerojatnost dogadaja AB , A B , A B . 15. Neka su A i B dogadaji, P (A + B) = 0.8 , P (AB) = 0.2 , P (A) = 0.6 . Odredi P (A) , P (B) , P (AB) . 16. Za dogadaje A i B vrijedi A ∪ B = Ω . Ako je P (A) = 0.6 , P (B) = 0.7 , kolika je vjerojatnost P (AB) ? - A1 i A2 , 17. Ako se istovremeno ostvare dogadaji - A . Dokaˇzi da je tada se nuˇzno ostvaruje i dogadaj P (A) P (A1 ) + P (A2 ) − 1. 18. Dokaˇzi da za svaka tri dogadaja A , B , C vrijedi: P (A ∪ B ∪ C) = P (A) + P (B) + P (C) − P (AB) − P (AC) − P (BC) + P (ABC). 19. Neka su A , B , C dogadaji. Dokaˇzi da vrijedi P (A) + P (B) + P (C) − P (ABC) < 2. 20. Dokaˇzi da za bilo koje dogadaje A i B vrijedi P (A + B)P (AB) P (A)P (B). 21. Dokaˇzi da za bilo koje dogadaje A i B vrijedi |P (AB) − P (A)P (B)| 14 .
60
1. VJEROJATNOST ∗∗∗
Simetriˇcna razlika dvaju dogadaja AΔB definira se na naˇcin AΔB := (A−B) + (B−A). 22. Dokaˇzi relacije AΔB = (A + B) − AB, AΔB = AB + A B, AΔB = AB + A B, AΔ(AΔB) = B. 23. Dokaˇzi da je simetriˇcna razlika asocijativna: AΔ(BΔC) = (AΔB)ΔC. 24. Dokaˇzi P (AΔB) = P (A) + P (B) − 2P (AB) = P (A + B) − P (AB), P (AB) − P (AB) = P (A) − P (B). 25. Dokaˇzi da za bilo koje dogadaje A , B , C vrijedi ocjena |P (A ∩ B) − P (A ∩ C)| P (BΔC). 26. Dokaˇzi nejednakost P (AΔB) P (AΔC) + P (CΔB). - iz F . Dokaˇzi da iz 27. Neka su A , B dogadaji P (AΔB) = 0 slijedi P (A) = P (B) . ∗∗∗ 28. Bacamo dvije kocke. Oznaˇcimo dogadaje A = zbroj brojeva je neparan, B = pojavio se broj 1, C = na obje kocke je pao broj 1. Opiˇsi dogadaje AB , AC , BC , A + C , AB . 29. Novˇci´c bacamo dok se dva puta za redom ne pojavi isti znak. Opiˇsi vjerojatnosni prostor. Izracˇunaj vjerojatnost dogadaja A = pokus c´e se zavrˇsiti u cˇetvrtom bacanju, B = pokus c´e se zavrˇsiti u parnom broju bacanja, C = pokus se nikad ne´ce zavrˇsiti. 30. Pokus se sastoji od bacanja dviju kocki. Opiˇsi vjerojatnosni prostor. Oznaˇcimo dogadaje A = zbroj brojeva je paran, B = pojavila se barem jedna jedinica. Opiˇsi dogadaje A + B , AB , A , B i izraˇcunaj im vjerojatnost.
31. Novˇci´c se baca cˇetiri puta. Kolika je vjerojatnost sljede´cih dogadaja: A = pojavilo se je toˇcno jedno pismo; B = u drugom bacanju pojavilo se pismo; C = pojavilo se barem jedno pismo; D = pismo se pojavilo barem dvaput? 32. Kolika je vjerojatnost da se pri bacanju dviju kocki pojavi: A = zbroj 8; B = barem jedna cˇetvorka; C = broj ve´ci od 9; D = broj djeljiv s 2 ili djeljiv s 3? 33. Deset kartica obiljeˇzeno je brojevima od 1 do 10. Kolika je vjerojatnost da c´e se izvu´ci jedan paran i jedan neparan broj ako se A = izvuˇcemo odjednom obje kartice; B = izvuˇcemo prvu karticu, a nakon nje drugu; C = izvuˇcemo prvu karticu, vratimo je u snop i zatim izvuˇcemo drugu? ∗∗∗ 34. U jednakokraˇcnom trokutu osnovice a i visine a upisan je kvadrat. Kolika je vjerojatnost da na sre´cu odabrana toˇcka u trokutu ne leˇzi unutar tog kvadrata? 35. Na ravninu na kojoj su istaknute toˇcke s cjelobrojnim koordinatama baˇcen je novˇci´c promjera 0.5 jedinica. Kolika je vjerojatnost da novˇci´c ne´ce pokriti nijednu istaknutu toˇcku? 36. Dva broja biraju se na sre´cu unutar intervala [0, 1] . Kolika je vjerojatnost da je njihov zbroj ve´ci od 3 ? 2 ∗∗∗ 37. Na kvadratiˇcno ispletenu mreˇzicu pada s velike visine metalna kuglica okomito na mreˇzicu. Ako je stranica kvadrata mreˇzice duga 10 mm, a promjer kuglice 5 mm, kolika je vjerojatnost da c´e kuglica pro´ci kroz mreˇzicu, a da ne dotakne njezine niti? 38. Kovani novˇci´c polumjera R pada na podlogu oblika pravilnog sˇ esterokuta stranice a = 5R , tako da srediˇste novˇci´ca pada unutar sˇ esterokuta. Kolika je vjerojatnost da novˇci´c ne presjeˇce niti jednu od stranica sˇ esterokuta? 39. U pravokutniku se duljine stranica odnose kao √ - A se realizira ako je a : b = 1 : 3 . Dogadaj udaljenost na sre´cu odabrane toˇcke unutar pravokutnika do najbliˇze stranice pravokutnika manja od udaljenosti te toˇcke do bliˇze dijagonale. Izraˇcunaj vjerojatnost dogadaja A. 40. Unutar kruˇznice polumjera R na sre´cu se bira n toˇcaka. Izraˇcunaj vjerojatnost da je udaljenost od srediˇsta kruga do najbliˇze toˇcke ve´ca od r , r < R . Pustimo da R → ∞ i pove´cavajmo n tako da bude ˇ n/R2 → π . Cemu teˇzi ta vjerojatnost?
ˇ 1. ZADATCI ZA VJE ZBU
41. Toˇcka A izabrana je na sre´cu unutar pravilnog n -terokuta. Izraˇcunaj vjerojatnost Pn da se toˇcka A nalazi bliˇze rubu n -terokuta nego nekoj njegovoj dijagonali. Odredi lim n2 Pn . n→∞
42. Bertrandov paradoks. Odgovor na pitanje: “Kolika je vjerojatnost da na sre´cu odabrana tetiva u danom krugu ima duljinu ve´cu od stranice upisanog jednakostraniˇcnog trokuta?” nije jednoznaˇcan. Izraˇcunaj traˇzenu vjerojatnost uz sljede´ce interpretacije na sre´cu odabrane tetive: a) Tetiva je jednoznaˇcno odredena svojim poloviˇstem, biramo ga na sre´cu unutar kruga. b) Tetiva je odredena svojim krajevima. Biramo ih na sre´cu na kruˇznici. c) Svaka tetiva okomita je na neki promjer. Fiksirajmo promjer i odaberimo na sre´cu toˇcku na njemu kroz koju tetiva prolazi. d) Postoje li joˇs neke razumne interpretacije koje c´e dati ve´cu ili manju vjerojatnost od ovdje navedenih? ∗∗∗ 43. Dva realna broja izabrana su na sre´cu unutar intervala [0, 1] . Kolika je vjerojatnost da c´e njihov produkt biti ve´ci od 1/ 2, a apsolutna vrijednost njihove razlike ne´ce biti manja od 1/ 2? 44. Teretni vlakovi duljine 200 m kre´cu se brzinom 72 km/ h po prugama koje se medusobno sijeku. Trenutak u kojem c´e oni pro´ci kroz raskriˇzje je slu- 22h i 22h 30 . Izraˇcunaj vjerojatnost cˇajan, izmedu sudara. 45. Na kruˇznici polumjera R na sre´cu se biraju dvije toˇcke. Kolika je vjerojatnost da c´e udaljenost - njima biti manja od r (r < 2R) ? medu ˇ 46. Stap duljine L prelomljen je na dva mjesta. Izraˇcunaj vjerojatnost da je svaki od tako dobivena tri dijela sˇ tapa dulji od 14 L , ako je vjerojatnost preloma na svakom mjestu sˇ tapa jednaka. 47. Na odresku AD duljine d na sre´cu su odabrane dvije toˇcke B i C . Izraˇcunaj vjerojatnost da je udaljenost d(B, C) manja od d/2 . 48. Dva broda moraju sti´ci u isto pristaniˇste. Vremena dolaska brodova su nezavisna i jednako vjerojatna u toku dana. Odredi vjerojatnost da c´e jedan od brodova morati cˇekati na oslobadanje pristaniˇsta, ako je vrijeme zadrˇzavanja prvog broda u pristaniˇstu 1 sat, a drugog 2 sata. 49. Unutar duˇzine AB duljine 10 na sre´cu odaberemo dvije toˇcke, koje zadanu duˇzinu dijele na 3 dijela. Kolika je vjerojatnost da je duljina najkra´ceg od njih ve´ca od 2 ?
61 50. U pravokutnom trokutu ABC duljine kateta su |AC| = 3 , |BC| = 4 . Toˇcka T1 bira se na sre´cu na kateti AC , a toˇcka T2 na kateti BC . Izraˇcunaj vjerojatnost da je povrˇsina cˇetverokuta ABT1 T2 ve´ca od polovine povrˇsine zadanog trokuta. 51. Biramo tri duˇzine cˇije su duljine na sre´cu odabrani brojevi iz intervala [0, a] . Kolika je vjerojatnost da se od tih dijelova moˇze sastaviti trokut? ∗∗∗ ˇ bijelih, cˇetiri crne i dvije plave kuglice re52. Sest daju se na sre´cu. Kolika je vjerojatnost da c´e prve dvije biti bijele? 53. Dijete se igra s karticama na kojima su napisana slova A, E, E, J, J, N, N, O, O, R, T, V. Kolika je vjerojatnost da c´e, redaju´ci ih na sre´cu, sloˇziti rijeˇc NEVJEROJATNO? 54. U kutiji se nalazi sedam bijelih i tri crne kuglice. Izvlaˇcimo odjednom dvije kuglice. Koja je najvjerojatnija kombinacija broja izvuˇcenih kuglica? 55. U prostoriji se nalazi sˇ est braˇcnih parova. Ako odaberemo na sre´cu dvoje ljudi, kolika je vjerojatnost da su 1) razliˇcitog spola; 2) braˇcni par? 56. U snopu od 52 karte postoji po 13 karata sljedec´ih boja: pik, karo, herc i tref. Kolika je vjerojatnost da c´e u 13 karata koje dobiva prvi igraˇc biti pet pikova, tri herca, dva karona i tri trefa? 57. U kutiji se nalazi pet crvenih i cˇetiri bijele kuglice. Kolika je vjerojatnost da c´emo biraju´ci na sre´cu sˇ est kuglica izvu´ci tri crvene i tri bijele? 58. Slova rijeˇci MATEMATIKA napisana su na kartice i potom promijeˇsana. Kolika je vjerojatnost da c´e se, otkrivaju´ci jednu po jednu cˇetiri kartice, pojaviti rijeˇc MATE? A kolika za rijeˇc TIKA? 59. Baˇcene su cˇetiri kocke. Kolika je vjerojatnost da sve cˇetiri padnu na isti broj? 60. Baˇcene su dvije kocke. Izraˇcunaj vjerojatnost da je ve´ci od dva dobivena broja manji od 5. 61. Dva igraˇca su bacila kocku. Kolika je vjerojatnost da drugi igraˇc dobije ve´ci broj od prvog? 62. Bacili smo sˇ est kocaka. Kolika je vjerojatnost da se pojavilo a) sˇ est razliˇcitih brojeva, b) barem dvije sˇ estice, c) tri para jednakih brojeva, d) sˇ est brojeva manjih od pet? - vjerojat63. Paradoks de Merea. Koji je dogadaj niji: A = pri bacanju cˇetiriju kocaka pojavila se bar jedna jedinica, B = barem jednom u 24 bacanja dviju kocki pojavile su se dvije jedinice. - jednako De Mere je smatrao da su ti dogadaji
62
1. VJEROJATNOST
vjerojatni, a kako nisu (izraˇcunaj!), otada se ovaj problem naziva paradoksom. ˇ je vjerojatnije: dobiti barem jednu sˇ esti64. Sto cu pri 6 bacanja kocke, barem dvije sˇ estice pri 12 bacanja ili barem 3 sˇ estice pri 18 bacanja kocke? 65. Kolika je vjerojatnost da se u igri LOTO 6 od 45 u jednoj kombinaciji postigne dobitak od 6, 5, 4 ili 3 pogotka?
77. Iz snopa od 52 karte izabrane su na sre´cu tri karte. Odredi vjerojatnost da izvuˇcemo a) toˇcno jednog asa, b) bar jednog asa, c) jednog asa, dvojku i trojku, d) tri karte iste boje, e) karte razliˇcitih boja.
∗∗∗
78. Devet putnika ulaze u neki od tri vagona sluˇcajnim izborom. Kolika je vjerojatnost da c´e a) u prvi vagon u´ci tri putnika, b) u svaki vagon u´ci po tri putnika? - poljima 79. Tri kvadrata izabrana su na sre´cu medu na sˇ ahovskoj ploˇci. Kolika je vjerojatnost da nikoja dva nisu u istom retku ili istom stupcu? 80. Bacamo tri igra´ce kocke. Odredi vjerojatnost dogadaja: A = broj na prvoj kocki ve´ci je od zbroja brojeva na drugoj i tre´coj kocki, B = najve´ci od tri pojavljena broja ve´ci je od zbroja preostala dva broja. 81. Proklotonk se nalazi u donjem lijevom polju (A1) sˇ ahovske ploˇce. On se pomiˇce prema gore s vjerojatnoˇsc´u p , ili desno s vjerojatnoˇsc´u q = 1−p . Proklotonk zavrˇsava gibanje u onom trenutku kad stigne do desnog ili do gornjeg ruba ploˇce. Kolika je vjerojatnost da c´e on zavrˇsiti u polju D8? 82. Svije´cnjak ima 5 grla za zˇ arulje, od kojih su 2 ispravna i 3 neispravna. U grla uvrnemo na sre´cu - kojima su 2 ispravne i 3 neisprav5 zˇ arulja medu ne. Kolika je vjerojatnost da c´emo ukljuˇcivanjem svije´cnjaka u struju dobiti svijetlo? 83. U jednom se razredu nalazi 30 uˇcenika. Kolika je vjerojatnost da barem dvojica imaju istoga dana rodendan? Kolika je vjerojatnost da su u nekom odabranom tjednu rodena barem dvojica uˇcenika? 84. Joˇs o rodendanima. Kolika je vjerojatnost da - 12 osoba ne postoje dvije rodene a) medu u istom mjesecu, b) od tih 12 osoba, dvije po dvije rodene su u istom mjesecu, - 30 osoba, u sˇ est mjeseci padaju po tri, c) medu a u preostalih sˇ est mjeseci po dva rodendana. - ele85. Elementi skupova A1 i A2 biraju se medu mentima skupa S = {1, 2, . . . , n} nezavisno jedan od drugog, tako da je svaki element iz S ukljuˇcen u podskup Ai s vjerojatnoˇsc´u p . Izraˇcunaj vjerojatnost da A1 i A2 imaju prazan presjek.
- 6 crvenih i 4 plave kuglice na sre´cu 66. Izmedu odabiremo tri. Kolika je vjerojatnost da je barem jedna od njih plava? 67. Iz kutije u kojoj se nalazi 5 crnih, 6 bijelih i 7 crvenih kuglica izvlaˇce se na sre´cu 4 kuglice. Ko- izvuˇcenim kuglicama lika je vjerojatnost da medu nisu zastupljene sve tri boje? 68. Iz 4 snopa karata od kojih svaki sadrˇzi 32 karte sa po 4 asa, izvlaˇci se po jedna karta. Odredi vjerojatnost da su izvuˇcena 2 razliˇcita para identiˇcnih aseva! 69. Iz snopa od 32 karte izabrano je na sre´cu 10 - njima biti karata. Kolika je vjerojatnost da c´e medu svih 8 karata iste boje? 70. U kutiji ima 5 bijelih, 4 crne i 2 crvene kuglice. Izvlaˇcimo na sre´cu 4 kuglice. Kolika je vjerojatnost da je broj izvuˇcenih crnih kuglica (striktno) ve´ci od broja izvuˇcenih bijelih? - 6 braˇcnih parova izabiru se 4 osobe 71. Izmedu sluˇcajnim izborom. Kolika je vjerojatnost da medu te 4 osobe nije niti jedan braˇcni par? 72. Na sˇ ahovskom turniru sudjeluje 20 natjecatelja, podijeljenih zˇ drijebom u dvije skupine. Odredi vjerojatnost da a) dva najjaˇca sˇ ahista budu u razliˇcitim skupinama, b) cˇetiri najjaˇca sˇ ahista budu dva i dva u razlicˇitim skupinama. 73. 5 djeˇcaka i 10 djevojˇcica na sre´cu su podijeljeni u 5 jednako velikih skupina. Kolika je vjerojatnost da u svakoj skupini bude djeˇcak? 74. Iz kutije u kojoj se nalazi n bijelih i n crnih kuglica izvlaˇcimo na sre´cu po dvije kuglice (bez vra´canja). Kolika je vjerojatnost da c´e u svih n tako dobivenih parova kuglice biti razliˇcitih boja? 75. Iz snopa od 32 karte izvlaˇci se karta po karta, dok izvuˇcena karta nije as, ili dok nisu izvuˇcene 4 - izvuˇcenim karte. Kolika je vjerojatnost da medu nema crnih karata? 76. Koliki najmanji broj m karata moramo izabrati iz snopa od 52 karte da bi vjerojatnost pm da se izvuku dvije karte iste boje bila ve´ca od 12 ?
∗∗∗
∗∗∗ 86. U urni se nalazi m crvenih i n bijelih kuglica. Na sre´cu je odabrano k kuglica. Kolika je vjerojat- njima m1 crvenih i n1 bijelih? nost da je medu
ˇ 1. ZADATCI ZA VJE ZBU
87. U urni se nalazi n bijelih i m crnih kuglica, m n . Izvlaˇcimo redom, bez vra´canja, n puta po 2 kuglice. Kolika je vjerojatnost da su svaki put izvuˇcene raznobojne kuglice? 88. Iz skupa {1, 2, . . . , n} na sre´cu odaberemo (odjednom) tri broja. Izraˇcunaj vjerojatnost da je A = prvi broj po iznosu manji od drugog i trec´eg, - drugog i tre´ceg. B = prvi broj po iznosu izmedu 89. Iz niza 1, 2, . . . , N biramo na sre´cu n brojeva i poredamo ih po veliˇcini: x1 < x2 < . . . < xn . Kolika je vjerojatnost da je xm = M ? ( m n, M N )? 90. n muˇskaraca i n zˇ ena sjeda za jedan stol, odabiru´ci mjesta na sre´cu. Kolika je vjerojatnost da nikoja dva muˇskarca ne sjede jedan pored drugog? 91. Vlak se sastoji od N vagona. Svaki od n ( n > N ) putnika odabire na sre´cu neki od vagona. Kolika je vjerojatnost da c´e u svakom vagonu biti barem jedan putnik? 92. U svakoj od 3 kutije nalazi se po n kuglica, u prvoj bijele, drugoj crne te u tre´coj crvene boje. Istresemo kuglice iz kutije, izmijeˇsamo ih i zatim na sre´cu napunimo svaku od 3 kutije sa po n kuglica. Kolika je vjerojatnost da su ponovo u svakoj od kutija kuglice iste boje?
63 93. n uˇcenika i n uˇcenica poredano je u red po datumima njihovih rodenja. Kolika je vjerojatnost osobe istog spola ne stoje jedna pored druge? 94. U kutiji se nalazi 2m bijelih i 2n crnih kuglica. Polovina sadrˇzaja kutije prebaˇcena je u drugu kutiju. Kolika je vjerojatnost da se u toj kutiji nade m bijelih i n crnih kuglica? 95. Na n kartica napisani su brojevi od 1 do n . Izvlaˇcimo na sre´cu dvije kartice (bez vra´canja). Izraˇcunaj vjerojatnost dogadaja: A = oba izvuˇcena broja manja su od zadanog broja k ( 2 < k n ), B = jedan broj je manji, a jedan ve´ci od k . ∗∗∗ 96. Baˇceno je n kocaka. Kolika je vjerojatnost da je barem jedan od okrenutih brojeva paran, te da je barem jedan neparan? 97. Iz 4 snopa karata sa po 52 karte, izvlaˇcimo na sre´cu po jednu kartu. Kolika je vjerojatnost da c´emo u skupu izvuˇcenih karata imati barem jednog asa i barem jednu crvenu kartu? 98. Iz 6 snopova od po 32 karte izvlaˇci se po jedna karta. Kolika je vjerojatnost da su barem dvije karte crne i da su barem 3 karte asevi? 99. Iz snopa od 32 karte na sluˇcajan naˇcin odabiremo 4 karte. Kolika je vjerojatnost da je izvuˇcena bar jedna ♠ karta, i bar jedna karta crvene boje?
2.
Uvjetna vjerojatnost
1. 2. 3. 4. 5.
Uvjetna vjerojatnost . . . . . . - ...... Nezavisnost dogadaja Formula potpune vjerojatnosti Bayesova formula . . . . . . . . Rijeˇseni zadatci . . . . . . . . . Zadatci za vjeˇzbu . . . . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. 64 . 67 . 71 . 73 . 77 . 83
2.1. Uvjetna vjerojatnost Pri bacanju jedne kocke, vjerojatnost da se pojavi broj 1 jednaka je 16 . Nakon - realizirao ili nije. Pretpostavimo bacanja mi sa sigurnoˇsc´u znamo je li se taj dogadaj medutim da je netko pogledao na kocku koju mi ne vidimo i kazao nam: kocka je pala na neparan broj. Kolika je sad vjerojatnost da je ona pala na broj 1 ? Oˇcito, ta se vjerojatnost promijenila. Kako su nam preostale samo tri mogu´cnosti, brojevi 1 , 3 i 5 , ta je vjerojatnost sad 13 . ∗∗∗ Evo joˇs jednog primjera. Bacamo dvije kocke. Neka je: A = {na prvoj kocki pao je broj 2}, B = {zbroj brojeva na obje kocke je 6}. Od 36 elementarnih dogadaja, dogadajima A i B pripadaju sljede´ci A = {(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)}, B = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}. Zato je: 6 5 P (A) = , P (B) = . 36 36 64
2.1. UVJETNA VJEROJATNOST
65
- B? U Kolika je vjerojatnost dogadaja A , ako je poznato da se realizirao dogadaj tom je sluˇcaju dovoljno samo promotriti elementarne dogadaje koji saˇcinjavaju B (jer - njima traˇziti one povoljne za dogadaj - A — time samo neki od njih dolazi u obzir) i medu - za umnoˇzak AB tih dogadaja. traˇzimo elementarne dogadaje Ova vjerojatnost ovisi o dogadaju B , nazivamo je uvjetna vjerojatnost i biljeˇzimo ju simbolom PB . Uvjetnu - A cˇitamo: vjerojatnost od A uz uvjet B . Imamo: vjerojatnost PB (A) dogadaja PB (A) = - (2, 4) povoljan za A . jer je samo dogadaj
1 5
Definicija uvjetne vjerojatnosti
Da bismo doˇsli do op´cenite formule za uvjetnu vjerojatnost, primijetimo da brojnik - koji su povoljni i za dogadaj - A i za dogadaj - B. 1 oznaˇcava broj elementarnih dogadaja Naime, vrijedi AB = {(2, 4)} . Stoga ovu vjerojatnost moˇzemo pisati i u obliku: PB (A) =
1 = 5
1 36 5 36
=
P (AB) . P (B)
Ovo razmatranje ukazuje na opravdanost sljede´ce definicije. Uvjetna vjerojatnost
- pozitivne vjerojatnosti: P (B) > 0 . Uvjetna Neka je B ∈ F dogadaj vjerojatnost uz uvjet B je funkcija PB : F → [0, 1] definirana formulom P (AB) PB (A) := , ∀A ∈ F. (1) P (B)
Lako se je uvjeriti da je formulom (1) uistinu definirana vjerojatnosna funkcija. Naime vrijedi, P (B ∩ Ω) P (B) PB (Ω) = = =1 P (B) P (B) - po definiciji (1), i sliˇcno za P (∅) . Monotonost i aditivnost dokazuju se takoder koriˇstenjem istovjetnih svojstava vjerojatnosne funkcije P . ∗∗∗ Uobiˇcajeno je da se uvjetna vjerojatnost PB oznaˇcava i formulom P ( · | B) , dakle - A uz uvjet B pisat c´emo P (A | B) umjesto PB (A) . za vjerojatnost dogadaja Primjer 2.1. Dva broja x i y , biramo na sre´cu unutar intervala [0, 2] . Kolika je vjerojatnost da je x > 1 ako je poznato da vrijedi x + y > 2 ?
66
2. UVJETNA VJEROJATNOST
Oznaˇcimo dogadaje A = {x > 1} , B = {x + y > 2} . Traˇzimo uvjetnu vjerojatnost P (A | B) . Toˇcka s koordinatama (x, y) je na sre´cu odabrana toˇcka unutar kvadrata Ω stranice 2 (slika 2.1). Izra- B i AB : cˇunajmo vjerojatnost dogadaja m(B) 2 1 P (B) = = = , m(Ω) 4 2 3/2 3 m(AB) = = . P (AB) = m(Ω) 4 8 Zato je 3 3 P (AB) 8 = . = P (A | B) = 1 P (B) 4 2 ∗∗∗
x=1 x+y=2 2
B
1
A 1
2
Sl. 2.1.
Uvjetna se vjerojatnost u mnogim primjerima lakˇse raˇcuna nego vjerojatnost umnoˇska. Zato se definicijsku formula za uvjetnu vjerojatnost (1) koristi u raˇcunanju vjerojatnosti umnoˇska dvaju dogadaja: Vjerojatnost umnoˇska
- raˇcuna se formulom Vjerojatnost umnoˇska dvaju dogadaja P (AB) = P (B)P (A | B)
(2)
- A i B (koji oboje imaju pozitivnu vjerojatnost), dobit Ako zamijenimo dogadaje c´emo istovrsnu formulu P (AB) = P (A)P (B | A). (3) Primjer 2.2. U urni se nalazi sˇ est bijelih i cˇ etiri crne kuglice. Kolika je vjerojatnost da c´e prve dvije kuglice koje izvuˇcemo biti bijele? Moˇzemo zamisliti da kuglice izvlaˇcimo jednu po jednu. Neka su A i B dogadaji A = {prva kuglica je bijela}, B = {druga kuglica je bijela}. Tad je AB dogadaj cˇiju vjerojatnost traˇzimo. Oˇcito je: 6 P (A) = . 10 Nakon sˇ to izvuˇcemo prvu kuglicu, u urni je preostalo devet kuglica, od kojih je pet bijelih. Stoga je: 5 P (B | A) = 9
2.2. NEZAVISNOST DOGA -DAJA
67
i po formuli (3) slijedi: P (AB) = P (A)P (B | A) =
6 5 1 · = . 10 9 3
∗∗∗ Na sliˇcan c´emo naˇcin raˇcunati i vjerojatnost produkta viˇse dogadaja. Na primjer P (ABC) = P (A)P (B | A)P (C | AB). - s desne strane. Mogu´ce su i druge kombinacije dogadaja Primjer 2.3. Kolika je vjerojatnost da tri na sre´cu odabrane karte iz snopa od 52 karte budu tref boje? - i neka je Ai = {i -ta karta je tref boje } , Oznaˇcimo s A traˇzeni dogadaj i = 1, 2, 3 . Tad je A = A1 A2 A3 i raˇcunamo vjerojatnost po formuli: P (A) = P (A1 )P (A2 | A1 )P (A3 | A1 A2 ).
Pojedine vjerojatnosti su 13 P (A1 ) = , u snopu ima 13 karata tref boje, 52 12 P (A2 | A1 ) = , nakon sˇ to je prva izvuˇcena, preostalo ih je 51 od kojih je 12 51 tref boje, 11 P (A3 | A1 A2 ) = . 50 Dakle, 13 12 11 · · = 0.013. P (A) = 52 51 50
2.2. Nezavisnost dogadaja Promotrimo sljede´cu inaˇcicu primjera iz proˇsle toˇcke: Primjer 2.4. U urni se nalazi sˇ est bijelih i cˇ etiri crne kuglice. Izvlaˇcimo jednu po jednu dvije kuglice. Kolika je vjerojatnost da c´e druga kuglica biti bijela, ako je prva kuglica bila bijela. Kolika je ta vjerojatnost ako je prva kuglica bila crna? Izraˇcunajmo obje ove vjerojatnosti u sljede´ce dvije situacije: a) prva se kuglica nakon izvlaˇcenja ne vra´ca u urnu b) prva se kuglica nakon izvlaˇcenja vra´ca u urnu.
Oznaˇcimo s A i B dogadaje A = {prva kuglica je bijela}, B = {druga kuglica je bijela}. Traˇzimo uvjetne vjerojatnosti P (B | A) i P (B | A) . Oˇcito je 6 4 P (A) = , P (A) = . 10 10
68
2. UVJETNA VJEROJATNOST
a) Nakon izvlaˇcenja prve kuglice, u urni imamo jednu kuglicu manje. Zato je 6 5 P (B | A) = . P (B | A) = , 9 9 b) Ako kuglicu nakon izvlaˇcenja vratimo u urnu, prije izvlaˇcenja druge kuglice imat c´emo identiˇcnu situaciju: sˇ est bijelih i cˇetiri crne kuglice, bez obzira je li se - A ili nije: ostvario dogadaj 6 6 P (B | A) = , P (B | A) = 10 10 - A ne utjeˇce na vjerojatnost realizacije dogadaja - B. Kaˇzemo da realizacija dogadaja ∗∗∗ Neka dogadaji A i B imaju pozitivnu vjerojatnost. Neka je P (B | A) = P (B) , tj. vjerojatnost dogadaja B ne mijenja se nakon - A . Tad kaˇzemo da su A i B nezavisni sˇ to nam je poznato da se realizirao dogadaj dogadaji. U tom sluˇcaju vrijedi P (AB) = P (A)P (B | A) = P (A)P (B). Ako je pak ispunjena ova jednakost, onda za uvjetnu vrijedi P (AB) P (A)P (B) P (B | A) = = = P (B). P (A) P (A) Isto tako, bit c´e P (AB) P (A)P (B) P (A | B) = = = P (A). P (B) P (B) Definicija i kriterij nezavisnosti dogadaja
Za dogadaje A i B kaˇzemo da su nezavisni, ako vrijedi bilo koja od jednakosti: P (A | B) = P (A) ili P (B | A) = P (B) . Nuˇzdan i dovoljan uvjet za nezavisnost jest da bude: P (AB) = P (A)P (B). (1)
- A i B nezavisni, tad nije posve oˇcito da su nezavisni Primjer 2.5. Ako su dogadaji i njihovi komplementi A i B . Pokaˇzimo to koriste´ci ovaj kriterij nezavisnosti. P (A)P (B) = (1 − P (A))(1 − P (B)) = 1 − P (A) − P (B) + P (A)P (B) = 1 − P (A) − P (B) + P (AB) = 1 − P (A ∪ B) = P (A ∪ B)
(nezavisnost od A i B) (vjerojatnost unije dogadaja) (vjerojatnost komplementa) (de Morganov zakon)
= P (A B) Dobili smo P (A B) = P (A)P (B) pa su A i B nezavisni.
2.2. NEZAVISNOST DOGA -DAJA
69
Primjer 2.6. Bacamo dvije kocke. Kolika je vjerojatnost da broj na prvoj bude paran, a na drugoj manji od 3 ? Rezultat na jednoj kocki nezavisan je od toga sˇ to c´e se pojaviti na drugoj kocki. Vjerojatnost pojave parnog broja na prvoj kocki je 12 , vjerojatnost da broj na drugoj - produkt je ovih dvaju. Stoga je njegova bude manji od 3 je 13 . Traˇzeni dogadaj 1 1 1 vjerojatnost 2 · 3 = 6 .
∗∗∗ - definira se na sloˇzeniji naˇcin. Nezavisnost skupine dogadaja Nezavisnost dogadaja
- A1 , A2 , . . . , An su nezavisni ako za svaki k , 2 k n i svaki Dogadaji - vrijedi izbor Ai1 , Ai2 ,. . . , Aik nekolicine tih dogadaja P (Ai1 Ai2 · · · Aik ) = P (Ai1 )P (Ai2 ) · · · P (Aik ).
Neka su A , B i C nezavisni. Onda vrijedi, na primjer P (AB) = P (A)P (B), - u pa su A i B nezavisni. Proˇcitavˇsi joˇs jednom definiciju, zakljuˇcujemo da su doadaji - takoder - nezavisni. svakom podskupu skupa nezavisnih dogadaja Raˇcunajmo sad uvjetnu vjerojatnost sljedeceg tipa: P (A | BC) =
P (ABC) P (A)P (B)P (C) = = P (A). P (BC) P (B)P (C)
Vidimo da je uvjetna vjerojatnost jednaka bezuvjetnoj. - onda imamo Ako su A , B i C po volji odabrani dogadaji, P (ABC) = P (A) · P (B | A) · P (C | AB). - znaˇci da c´e sve uvjetne vjerojatnosti u kojima se ti dogadaji Nezavisnost triju dogadaja javljaju biti jednake bezuvjetnima: P (B | A) = P (B) , P (C | AB) = P (C) i sliˇcno - A , B i C vrijedi za druge mogu´ce kombinacije. Tako za nezavisne dogadaje P (ABC) = P (A)P (B)P (C). - vjerojatnost Naglasimo da obrnuta tvrdnja nije istinita: ako je za tri dogadaja umnoˇska dogadaja jednaka umnoˇsku vjerojatnosti, oni ne moraju biti nezavisni. ∗∗∗
Primjer 2.7. Serijski spoj. Proizvodnja nekog proizvoda organizirana je na traci koja se sastoji od n dijelova, od kojih svaki radi neovisno o ostalima. Ako barem jedan od dijelova prestane s radom, prestaje i cjelina:
70
2. UVJETNA VJEROJATNOST
A1
An
A2 ...
Sl. 2.2.
Vjerojatnost da j -ti dio ne´ce otkazati tijekom dana jednaka je rj . Kolika je vjerojatnost da c´e cˇitava traka raditi ispravno u tom danu? Oznaˇcimo s Aj dogadaj Aj = { j -ti dio je ispravan} i neka je A = {ˇcitava traka je ispravna}. - A ostvarit c´e se ako se ostvare svi dogadaji - A1 , . . . , An . Dakle, Dogadaj A = A1 A2 · · · An . Zbog nezavisnosti P (A) = P (A1 ) · · · P (An ) = r1 · · · rn . Na primjer, za n = 5 i r1 = . . . = r5 = 0.9 dobivamo P (A) = 0.9n = 0.59 . Vjerojatnost ispravnog rada serijski spojenog sklopa brzo opada s brojem elemenata u sklopu. Primjer 2.8. Paralelni spoj. Uz iste oznake kao i prije, izraˇcunajmo vjerojatnost ispravnog rada za proces proizvodnje u kojem se na nekoliko mjesta obavlja istovrsna radnja:
A1
A2
...
An
Sl. 2.3.
Ovaj c´e se put proces odvijati ako je ispravan bar jedan njegov dio. Zato je A = A1 ∪ A2 ∪ · · · ∪ An . Vjerojatnost ove unije nije lako direktno izraˇcunati. - A : proizvodnja je prestala. Oˇcigledno, on c´e se Promotrimo suprotan dogadaj - A1 , . . . , An . Po de ostvariti ako su u kvaru svi elementi, tj. ako se ostvare svi dogadaji Morganovim zakonima vrijedi A = A1 A2 · · · An
2.3. FORMULA POTPUNE VJEROJATNOSTI
71
- A1 , . . . , An takoder - su nezavisni. Zato je Dogadaji P (A) = P (A1 ) · · · P (An ), tj. 1 − P (A) = (1 − P (A1 )) · · · (1 − P (An )), P (A) = 1 − (1 − r1 ) · · · (1 − rn ). S vrijednostima iz proˇslog primjera imali bismo P (A) = 1−0.15 ≈ 1 . Paralelnim organiziranjem procesa postiˇze se velika pouzdanost ispravnog rada. Rezultat P (A) ≈ 1 ne znaˇci da sklop ne moˇze nikako biti u kvaru, ve´c samo da - zanemariva. Za takav dogadaj - kaˇzemo da je praktiˇcki je vjerojatnost takva dogadaja siguran.
2.3. Formula potpune vjerojatnosti Pri raˇcunanju vjerojatnosti ponekad moramo sve mogu´ce ishode podijeliti u razlicˇite klase. Ilustrirajmo to primjerom. Primjer 2.9. Vo´carnica se opskrbljuje jabukama iz dvaju vo´cnjaka, i to 60% potrebne koliˇcine iz prvog i 40% iz drugog vo´cnjaka. 15% jabuka prvog vo´cnjaka prve su kvalitete, dok to vrijedi za 25% jabuka drugog vo´cnjaka. Kolika je vjerojatnost da na sre´cu odabrana jabuka bude prve kvalitete? Odaberemo na sre´cu jednu jabuku u vo´carnici. Dvije su mogu´cnosti: H1 = {odabrana je jabuka iz prvog vo´cnjaka}. H2 = {odabrana je jabuka iz drugog vo´cnjaka}. - su Vjerojatnosti da se ostvari neki od ovih dogadaja P (H1 ) = 0.6, P (H2 ) = 0.4 . Neka je A traˇzeni dogadaj: A = {odabrana jabuka prve je kvalitete}. Ilustrirajmo ovu situaciju slikom:
H2
H1
Sl. 2.4. Vjerojatnost dogadaja lakˇse se raˇcuna ako promotrimo zasebno razliˇcite situacije koje se pri njegovoj realizaciji mogu ostvariti
AH1
AH 2
A
- A razbili smo na dva disjunktna dogadaja: Dogadaj AH1 = {odabrana jabuka prve kvalitete potjeˇce iz prvog vo´cnjaka}, AH1 = {odabrana jabuka prve kvalitete potjeˇce iz drugog vo´cnjaka}.
72
2. UVJETNA VJEROJATNOST
Zato je P (A) = P (AH1 ) + P (AH2 ). - raˇcunamo na poznati naˇcin: Vjerojatnosti umnoˇska dogadaja P (AH1 ) = P (H1 ) · P (A | H1 ). Vjerojatnost da je jabuka prve kvalitete, ako je poznato da potjeˇce iz prvog vo´cnjaka je, prema podacima P (A | H1 ) = 0.15 =⇒ P (AH1 ) = 0.6 · 0.15 = 0.09 . Analogno tome vrijedi P (A | H2 ) = 0.25 =⇒ P (AH2 ) = 0.4 · 0.25 = 0.10 . Sad dobivamo P (A) = P (AH1 ) + P (AH2 ) = 0.09 + 0.10 = 0.19 . ∗∗∗ Poop´cimo ovo razmatranje na sluˇcaj kad se moˇze pojaviti viˇse razliˇcitih mogu´cnosti. - moˇzemo rastaviti u n medusobno Pretpostavimo da skup elementarnih dogadaja disjunktnih dogadaja: Ω = H1 ∪ H2 ∪ . . . ∪ Hn - Hi , Hj disjunktni su za i = j i vrijedi P(Hi ) > 0 za svaki i . pri cˇemu su dogadaji Ovakav rastav nazivamo particija vjerojatnostnog prostora. Kaˇzemo joˇs da familija H1 , . . . , Hn cˇini potpun sustav dogadaja. H1
H2
Hn
A AH1
AH2
AH n
Sl. 2.5. Particija vjerojatnosnog prostora. Skup Ω razbijen je na medusobno disjun- A ktne skupove. Time je i svaki dogadaj razbijen na medusobno disjunktne dogadaje
Neka je A ⊂ Ω bilo koji dogadaj. Familijom H1 , . . . , Hn i on je razbijen na dogadaje: A = AH1 ∪ AH2 ∪ · · · ∪ AHn . - AHi medusobno Kako su dogadaji disjunktni, vrijedi: P (A) = P (AH1 ) + P (AH2 ) + . . . + P (AHn ) = P (H1 )P (A | H1 ) + . . . + P (Hn )P (A | Hn ). Formula potpune vjerojatnosti
- A ⊂ Ω Neka je {H1 , . . . , Hn } potpun sustav dogadaja. Za svaki dogadaj vrijedi n P (A) = P (Hi )P (A | Hi ). i=1
2.4. BAYESOVA FORMULA
73
Korisno je, zbog razloga koji c´e kroz primjere i zadatke postati jasnim, dogadaje H1 , . . . , Hn zvati hipotezama. Tijekom realizacije nekog pokusa ostvaruje se toˇcno jedna hipoteza. Primjer 2.10. U prvoj kutiji nalaze se tri bijele i dvije crne kuglice, a u drugoj cˇ etiri bijele i dvije crne. Odaberemo na sre´cu jednu kuglicu iz prve kutije i prebacimo je u drugu. Kolika je vjerojatnost da c´e kuglica nakon toga izvuˇcena na sre´cu iz druge kutije biti crna? Vjerojatnost izbora plave kuglice ovisi o tome koje je boje kuglica koja je prebaˇcena iz prve kutije u drugu. Postavimo sljede´ce hipoteze:
3 , 5 2 P (H2 ) = . H2 = {prva kuglica je plava}, 5 - cˇiju vjerojatnost traˇzimo: kuglica izvuˇcena iz druge kutije je Oznaˇcimo s A dogadaj plava. Ako se ostvari prva hipoteza, tad se u drugoj kutiji nalazi pet crvenih i dvije plave kuglice. Zato je 2 P (A | H1 ) = . 7 Ako se ostvari druga hipoteza, tad se u drugoj kutiji nalaze cˇetiri crvene i tri plave kuglice. Zato je 3 P (A | H2 ) = . 7 Prema formuli potpune vjerojatnosti, vrijedi 3 2 2 3 12 P (A) = P (H1 )P (A | H1 ) + P (H2 )P (A | H2 ) = · + · = . 5 7 5 7 35 H1 = {prva kuglica je crvena},
P (H1 ) =
2.4. Bayesova formula Iz poznatih relacija P (AB) = P (A)P (B | A) = P (B)P (A | B) moˇzemo napisati P (B)P (A | B) P (B | A) = . P (A) - B jedna od hipoteza Ovu formulu koristimo uglavnom onda kad je dogadaj H1 , . . . , Hn na koje je razbijen skup Ω . P (Hi )P (A | Hi ) P (Hi | A) = . P (A) Pritom se vjerojatnost P (A) raˇcuna uglavnom pomo´cu formule potpune vjerojatnosti. Tako dobivamo Bayesovu 1 formulu. 1
Thomas Bayes (1702.–1761.), engleski matematiˇcar
74
2. UVJETNA VJEROJATNOST Bayesova formula
Vrijedi P (Hi | A) =
P (Hi )P (A | Hi ) . n P (Hj )P (A | Hj ) j=1
Bayesovu formulu koristimo pri raˇcunanju aposteriornih vjerojatnosti pojedinih hipoteza. Prije poˇcetka pokusa svaka hipoteza ima svoju vjerojatnost realizacije P (Hi ) . - ostvario, tad je nesNakon realizacije pokusa, ako znamo koji se elementarni dogadaj tala neizvjesnost: ostvarila se samo jedna od mogu´cih hipoteza H1 , . . . , Hn , dok za sve ostale znamo sa sigurnoˇsc´u da se nisu ostvarile. - ostvario, Pretpostavimo medutim da nam nije poznato koji se elementarni dogadaj ve´c umjesto toga znamo da se ostvario dogadaj A ⊂ Ω . U tom sluˇcaju ne znamo toˇcno koja je od hipoteza H1 , . . . , Hn nastupila, ali dodatna informacija o realizaciji dogadaja A mijenja apriorne vjerojatnosti pojedinih hipoteza. Pomo´cu Bayesove formule raˇcunamo uvjetne vjerojatnosti P (H1 | A) ,. . . , P (Hn | A) , koje nazivamo aposteriornim vjerojatnostima pojedinih hipoteza. H1
H2
Hn
A
Sl. 2.6. Bayesova formula. Na slici je interpretirana situacija kad su apriorne vjerojatnosti svih hipoteza jednake. Nakon realizacije dogadaja A (sivo podruˇcje) vjerojatnosti se pojedinih hipoteza mijenjaju
Primjer 2.11. Bacamo kocku. Neka su H1 i H2 hipoteze
H1 = {pao je parni broj}, H2 = {pao je neparni broj}. Prije bacanja kocke vjerojatnosti (apriorne) pojedinih hipoteza su P (H1 ) = 12 , P (H2 ) = 12 . Bacili smo kocku i netko nam je priop´cio da se ostvario dogadaj A = {pao je broj ve´ci od 3}. On sadrˇzi tri elementarna dogadaja, A = {4, 5, 6} . Oˇcigledno, sad hipoteza H1 postaje - A sadrˇzi dva parna i samo jedan neparan broj. vjerojatnija od H2 , budu´ci da dogadaj Nove, aposteriorne vjerojatnosti su P (H1 | A) =
P (H1 )P (A | H1 ) = P (A)
1 2
P (H2 | A) =
P (H2 )P (A | H2 ) = P (A)
1 2
· 1 2
· 1 2
2 3 1 3
=
2 , 3
=
1 . 3
2.4. BAYESOVA FORMULA
75
Ako je pak poznato da se ostvario npr. dogadaj B = {kocka je pala na broj 5}, tad nestaje svaka neizvjesnost. Naime, vrijedi P (B | H1 ) = 0,
P (B | H2 ) = 13 ,
P (B) =
1 6
i Bayesova formula daje oˇcekivani rezultat: P (H1 | B) = 0, P (H2 | B) =
1 2
· 1 6
1 3
= 1,
budu´ci da uz ovu informaciju sa sigurnoˇsc´u znamo da se ostvarila hipoteza H2 .
Primjer 2.12. U urni se nalaze tri kuglice. Znamo da je svaka od njih bijele ili crne boje. Toˇcan broj kuglica pojedine boje nepoznat je i pretpostavljamo da je svaka mogu´cnost jednako vjerojatna. Pretpostavimo cˇetiri hipoteze:
Hi = {u urni se nalazi i bijelih kuglica},
i = 0, 1, 2, 3.
Po pretpostavci je P (H0 ) = P (H1 ) = P (H2 ) = P (H3 ) = 14 . ˇ Izaberimo na sre´cu jednu kuglicu iz urne. Ispostavilo se da je ona bijele boje. Sto se sada moˇze re´ci o vjerojatnostima pojedinih hipoteza? Hipoteza H0 postaje nemoguc´a, dok se i vjerojatnosti ostalih hipoteza mijenjaju. Vidjet c´emo da raste vjerojatnost onih hipoteza koje zastupaju ve´ci broj bijelih kuglica. Izraˇcunajmo koliko. Vrijedi P (A | H0 ) = 0,
P (A | H1 ) = 13 ,
P (A | H2 ) = 23 ,
P (A | H3 ) = 1.
Prema formuli potpune vjerojatnosti, P (A) =
1 1 1 2 1 1 1 ·0+ · + · + ·1= 4 4 3 4 3 4 2
i Bayesova formula daje (provjerite!): P (H0 | A) = 0 , P (H1 | A) = 1 1 3 , P (H3 | A) = 2 .
1 6
, P (H2 | A) =
Primjer 2.13. U prvoj urni nalaze se 2 bijele i 4 plave, a u drugoj 3 bijele i 2 plave kuglice. Iz prve urne na sre´cu izabiremo dvije kuglice i prebacimo ih u drugu. Kolika je vjerojatnost da potom izvuˇcena kuglica iz druge urne bude bijela?
Nazovimo traˇzeni dogadaj A = {kuglica izvuˇcena iz druge urne je bijela}.
76
2. UVJETNA VJEROJATNOST
Pri prebacivanju dviju kuglica u drugu urnu postoje tri mogu´cnosti: 4 6 2 P (H1 ) = 6 2 P (H0 ) = 6
H0 = {niti jedna kuglica nije bijela}, P (H0 ) = H1 = {jedna kuglica je bijela}, H2 = {obje kuglice su bijele}, Vrijedi P (A|H0 ) =
3 , 7
P (A|H1 ) =
4 , 7
3 · , 5 4 · · 2, 5 1 · . 5
P (A|H2 ) =
5 . 7
Po formuli potpune vjerojatnosti dobivamo P (A) =
2 i=0
P (Hi )P (A|Hi ) =
3 12 4 16 5 2 11 · + · + · = . 7 30 7 30 7 30 21
Primjer 2.14. Neki izvor emitira poruke koje se sastoje od znakova 0 i 1 . Vjerojatnost emitiranja znaka 1 je 0.6 , vjerojatnost emitiranja znaka 0 je 0.4 . Na izlazu iz kanala 10 % znakova se pogreˇsno interpretira. Ako je primljena poruka 101, kolika je vjerojatnost da je ona i poslana?
Oznaˇcimo dogadaje A = {primljen je znak 0}, B = {primljen je znak 1}, H0 = {poslan je znak 0}, H1 = {poslan je znak 1}, D = {poslana je poruka 101, ako je primljena poruka 101}. Vrijedi P (H1 ) = 0.6, P (H0 ) = 0.4, P (A) = P (H0 )P (A|H0 ) + P (H1 )P (A|H1 ) = 0.4 · 0.9 + 0.6 · 0.1 = 0.42, P (B) = 1 − P (A) = 0.58. Izraˇcunajmo sada vjerojatnosti da su pojedini znakovi bili pravilno primljeni. P (H0 )P (A|H0 ) 0.36 = = 0.857, P (H0 |A) = P (A) 0.42 P (H1 )P (B|H1 ) 0.54 = = 0.931. P (H1 |B) = P (B) 0.58 - zato je Prijemovi pojedinih znakova su nezavisni dogadaji, P (D) = P (H1 |B)P (H0 |A)P (H1 |B) = 0.931 · 0.857 · 0.931 = 0.743.
ˇ 2.5. RIJE SENI ZADATCI
77
2.5. Rijeˇseni zadatci Zadatak 2.1. Promotrimo sljede´ci algoritam biranja prirodnog broja: zadano je 11 simbola: znamenke 0, 1, . . . , 9 i znak ∗ . U prvom biranju uzimamo na sre´cu jednu - 1, 2, . . . , 9 . U sljede´cim biranjima uzimamo na sre´cu bilo koji medu znamenku medu 11 simbola. Postupak se prekida ako se izabere znak ∗ . Tako npr. niz 1, 2, 0, 8, ∗ oznaˇcava broj 1208. Izraˇcunaj vjerojatnost sljede´cih dogadaja: 1) izabran je zadani n -teroznamenkasti broj, 2) izabrani broj ne sadrˇzi u svom prikazu znamenku 0 , 3) izabrani broj ne sadrˇzi u svom prikazu znamenku 1 , 4) algoritam se nikada ne´ce zavrˇsiti.
1) Neka je x = a1 a2 . . . an zadani broj. Izbor svake znamenke nezavisan je od izbora prethodnih znamenki. Zato je n 1 1 P (x) = P (a1 )P (a2 ) · · · P (an )P (∗) = . 9 11 2) Neka je x izabrani broj. On mora imati oblik x = a1 a2 · · · an , pri cˇemu je n bilo koji i ai = 0, ∗ . ∞ P (a1 )P (a2 ) · · · P (an )P (∗) P (x) = n=1 ∞
9 11
n−1
1 = . 9 2 n=1 1− 11 3) Sliˇcno kao i u (2), vrijedi x = a1 a2 . . . an , pri cˇemu je n bilo koji, ai = 1, ∗ . ∞ P (x) = P (a1 )P (a2 ) · · · P (an )P (∗) =
1·
·
1 1 = · 11 11
1
n=1
n−1 ∞ 9 8 1 8 = · · = · 9 11 11 99 n=1
1 9 1− 11
=
4 . 9
4) A = {algoritam se nikad ne´ce zavrˇsiti} = {znak ∗ se ne´ce pojaviti} ∞ ∞ = {∗ se ne´ce pojaviti u prvih n biranja} = An . n=2
n=2
Vrijedi
A2 ⊃ A3 ⊃ . . . ,
Zato je
P (An ) =
10 11
n−1
P (A) = lim P (An ) = 0. n→∞
.
78
2. UVJETNA VJEROJATNOST Zadatak 2.2. Kutija ima tri jednake pregrade. U prvoj se nalaze 4 bijele i 5 plavih kuglica, u drugoj 3 bijele i 6 plavih, u tre´coj 5 crvenih i 8 plavih kuglica. Kolika je vjerojatnost da c´emo vade´ci dvije kuglice iz na sre´cu odabrane pregrade izvu´ci dvije plave?
- i hipoteze: Oznaˇcimo dogadaj A = {izvukli smo dvije plave kuglice}, Hi = {kuglice su izvuˇcene iz i–te pregrade}, i = 1, 2, 3. Pregrada se odabire na sre´cu, zato je P (Hi ) =
1 3
, za svaki i .
5 4 6 5 · , P (A|H2 ) = · , 9 8 9 8 Po formuli potpune vjerojatnosti P (A|H1 ) =
P (A) =
3
P (Hi )P (A|Hi ) =
i=1
P (A|H3 ) =
8 7 · . 13 12
1 5 5 14 + + = 0,351. 3 18 12 39
- iz tri topa. Topovi pogadaju - cilj neovisno jedan od druZadatak 2.3. Cilj se gada
gog s vjerojatnoˇsc´u 0.4 . Ako jedan top pogodi cilj, on ga uniˇstava s vjerojatnoˇsc´u 0.3 , a ako ga pogode dva topa, onda s vjerojatnoˇsc´u 0.7 , a ako ga pogode sva tri topa, onda - vjerojatnost uniˇstenja cilja. s vjerojatnoˇsc´u 0.9 . Nadi - i hipoteze: Oznaˇcimo dogadaj A = {cilj je uniˇsten}, Hi = {i topova je pogodilo cilj},
i = 1, 2, 3.
Tada je 6 3 27 = , 10 125 4 6 6 3 P (H1 ) = · · · = 1 10 10 10 4 4 6 3 P (H2 ) = · · · = 2 10 10 10 4 3 8 P (H3 ) = = , 10 125
P (A|H0 ) = 0,
P (H0 ) =
54 , P (A|H1 ) = 0.3, 125 36 , P (A|H2 ) = 0.7, 125 P (A|H3 ) = 0.9.
Odavde slijedi P (A) =
3 i=0
P (Hi )P (A|Hi ) =
243 = 0.389. 625
ˇ 2.5. RIJE SENI ZADATCI
79
Zadatak 2.4. Na ispitu je zadano 10 pitanja. Student prolazi ako toˇcno odgovori na dva proizvoljno odabrana pitanja, ili, ako toˇcno odgovori na jedno od njih i zatim odgovori i na tre´ce postavljeno pitanje. Na koliko pitanja student treba znati odgovor da bi s vjerojatnoˇsc´u 0.8 proˇsao na ispitu?
Neka je n broj pitanja na koja student zna odgovoriti. Postavimo sljede´ce hipoteze: H1 = {student je odgovorio na prva dva pitanja}, H2 = {student je odgovorio na jedno pitanje}, H3 = {student nije odgovorio niti na jedno pitanje}, i oznaˇcimo dogadaj A = {student je poloˇzio ispit}. Tada imamo n n−1 · , P (A|H1 ) = 1, 10 9 n 10 − n 10 − n n n−1 P (H2 ) = · + · , P (A|H2 ) = , 10 9 10 9 8 10 − n 9 − n · , P (A|H3 ) = 0, P (H3 ) = 10 9 n(n − 1) n − 1 2n(10 − n) n(n − 1)(14 − n) P (A) = 1 · + · = = f (n). 90 8 90 360 P (H1 ) =
Vrijedi f (5) = 0.50 , f (6) = 0.67 , f (7) = 0.82 , f (8) = 0.93 , f (9) = 1 , f (10) = 1 . Student mora znati odgovoriti na barem 7 pitanja. Primijetimo da je f (11) = 0.92 , sˇ to dokazuje da nije uvijek korisno previˇse znati. - brojeva 1, 2, . . . , n biramo dva broja. Kolika je vjerojatnost Zadatak 2.5. Izmedu da razlika prvog i drugog broja bude barem m ( 0 < m < n ). Neka je x1 prvi a x2 drugi izabrani broj. Oznaˇcimo Hk = {x1 = k},
k = 1, 2, . . . , n.
P (Hk ) =
A = {x1 − x2 m}.
1 , n
Tada je
i zato
za k = 1, 2, . . . , m, P (A|Hk ) = 0, k−m P (A|Hk ) = , za k = m + 1, . . . , n, n−1 P (A) =
n k−m 1 1 · = [1 + 2 + . . . + (n − m)] n−1 n n(n − 1)
k=m+1
=
(n − m)(n − m + 1) . 2n(n − 1)
80
2. UVJETNA VJEROJATNOST
- A glasi Tako na primjer, za m = 1 dogadaj A = {prvi broj je ve´ci od drugog} i vrijedi P (A) =
1 2
.
- istu metu (recimo, pticu u letu), svaki ispalivˇsi Zadatak 2.6. Dva strijelca gadaju po jedan hitac. Vjerojatnost pogotka za prvog strijelca je 0.8 , a za drugog 0.4 . Poslije gadanja ustanovljeno je da je meta pogodena jednim metkom. Odredi vjerojatnost da ju je pogodio prvi strijelac. Prvo rjeˇsenje. Oznaˇcimo dogadaj: A = {meta je pogodena jednim metkom} i mogu´ce hipoteze H0 H1 H2 H3
= {niti jedan strijelac nije pogodio}, = {pogodio je samo prvi strijelac}, = {pogodio je samo drugi strijelac}, = {pogodila su oba strijelca}.
Vrijedi P (H0 ) = 0.2 · 0.6 = 0.12, P (H1 ) = 0.8 · 0.6 = 0.48, P (H2 ) = 0.2 · 0.4 = 0.08, P (H3 ) = 0.8 · 0.4 = 0.32,
P (A|H0 ) = 0, P (A|H0 ) = 1, P (A|H0 ) = 1, P (A|H0 ) = 0
i zato dobivamo P (A) = 0.48 + 0.08 = 0.56 . Po Bayesovoj formuli vjerojatnost da je prvi strijelac pogodio metu (nakon sˇ to znamo da je ona pogodena samo s jednim metkom) iznosi P (H1 |A) =
P (H1 )P (A|H1 ) 0.48 = = 0.857. P (A) 0.56
Drugo rjeˇsenje. Umjesto hipoteza H0 , H1 , H2 , H3 koje saˇcinjavaju potpun sistem dogadaja, istaknimo dva dogadaja: D1 = {prvi strijelac je pogodio metu}, P (D1 ) = 0.8, D2 = {drugi strijelac je pogodio metu}, P (D2 ) = 0.4. - D1 i D2 se ne iskljuˇcuju medusobno. Dogadaji Sada raˇcunamo P (A) = P (D1 D2 + D1 D2 ) = P (D1 )[1 − P (D2 )] + [1 − P (D1 )]P (D2 ) = 0.8 · 0.6 + 0.4 · 0.2 = 0.56 i dobivamo kao i prije P (D1 |A) = 0.857 . Prema tome, loˇsijem strijelcu pripada samo jedan batak.
ˇ 2.5. RIJE SENI ZADATCI
81
ˇ Zadatak 2.7. Cetiri strijelca gadaju u metu. Vjerojatnosti pogotka za pojedine
strijelce iznose redom 0.6 , 0.7 , 0.8 , 0.9 . Izraˇcunaj vjerojatnost da barem tri strijelca pogode metu. Ako je meta pogodena s tri hica, izraˇcunaj vjerojatnost da su pogodili prvi i drugi strijelac. Oznaˇcimo dogadaje Bi = {i-ti strijelac je pogodio metu}, i = 1, 2, 3, 4, B = {meta je pogodena s barem tri hica}. Tada je .
.
.
.
B = B1 B2 B3 B4 + B1 B2 B3 B4 + B1 B2 B3 B4 + B1 B2 B3 B4 + B1 B2 B3 B4 i kako su Bi nezavisni, to lako dobivamo P (B) = 0.743 . Neka je A = {meta je pogodena s toˇcno tri hica}. Postavimo sljede´ce hipoteze: H1 = B1 B2 ,
P (H1 ) = 0.42,
P (A|H1 ) = 0.8 · 0.1 + 0.2 · 0.9 = 0.26,
H2 = B1 B2 ,
P (H2 ) = 0.18,
P (A|H2 ) = 0.8 · 0.9 = 0.72,
H3 = B1 B2 ,
P (H3 ) = 0.28,
P (A|H3 ) = 0.8 · 0.9 = 0.72,
H4 = B1 B2 ,
P (H4 ) = 0.12,
P (A|H4 ) = 0.
Po formuli potpune vjerojatnosti je P (A) =
4
P (Hi )P (A|Hi ) = 0.440,
i=1
P (H1 |A) =
P (H1 )P (A|H1 ) = 0.248. P (A)
Zadatak 2.8. Iz urne u kojoj se nalazi n kuglica izvlaˇcimo na sre´cu jednu kuglicu. Kolika je vjerojatnost da c´e ta kuglica biti bijela, ako su sve pretpostavke o prethodnom broju bijelih kuglica jednako vjerojatne? Nakon sˇ to je izvuˇcena bijela kuglica, kolika je vjerojatnost da su sve kuglice u urni bijele?
Prirodno je postaviti sljede´ce hipoteze: Hi = {u urni se nalazi i bijelih kuglica}, Po pretpostavci je P (Hi ) =
i = 0, 1, . . . , n.
1 - P (A|Hi ) = i , gdje je . Takoder, n+1 n
A = {izvuˇcena je bijela kuglica}.
82
2. UVJETNA VJEROJATNOST
Po formuli potpune vjerojatnosti i Bayesovoj formuli dobivamo n n 1 i P (Hi )P (A|Hi ) = · P (A) = n+1 n i=0
i=0
1 = (1 + 2 + . . . + n) = n(n + 1) 1 n · P (Hn )P (A|Hn ) = n+1 n P (Hn |A) = 1 P (A) 2
1 , 2 =
2 . n+1
Zadatak 2.9. U jednom su skladiˇstu svi proizvodi ispravni, a u drugom ima 25 % sˇ karta. Odabran je na sre´cu dobar proizvod iz nekog skladiˇsta. Izraˇcunaj vjerojatnost da je drugi proizvod izvuˇcen iz istog skladiˇsta sˇ kart.
Oznaˇcimo dogadaje H1 = {proizvod je izvuˇcen iz prvog skladiˇsta}, H2 = {proizvod je izvuˇcen iz drugog skladiˇsta}, A = {prvoizvuˇceni proizvod je dobar}.
P (H1 ) = 0.5, P (H2 ) = 0.5,
P (A) = P (H1 )P (A|H1 ) + P (H2 )P (A|H2 ) = 0.5 · 1 + 0.5 · 0.75 = 0.875. Nakon sˇ to je izvuˇcen ispravan proizvod, vjerojatnosti hipoteza se mijenjaju. Aposteriorne vjerojatnosti hipoteza su P (H1 )P (A|H1 ) 0.5 · 1 = = 0.571, P (A) 0.875 P (H2 |A) = 1 − P (H1 |A) = 0.429. P (H1 |A) =
Postavimo sada nove hipoteze H1 = H1 |A = {dobar proizvod je izvuˇcen iz prvog skladiˇsta}, H2 = H2 |A = {dobar proizvod je izvuˇcen iz drugog skladiˇsta}. Oznaˇcimo sa B dogadaj B = {drugoizvuˇceni proizvod je sˇ kart}. Pretpostavljamo da je broj proizvoda velik, tako da se postotak nije promijenio ako smo prvi proizvod izvukli iz, recimo, drugog skladiˇsta. Tako imamo P (B) = P (H1 )P (B|H1 ) + P (H2 )P (B|H2 ) = 0.571 · 0 + 0.429 · 0.25 = 0.107.
ˇ 2. ZADATCI ZA VJE ZBU
83
§ 2. Zadatci za vjeˇzbu
- A i B su disjunktni. Mogu li oni biti 1. Dogadaji nezavisni? 2. Neka su A i B nezavisni i A ⊂ B . Pokaˇzi da je P (A) = 0 ili P (B) = 1 . - A , B , C nezavisni, pokaˇzi da 3. Ako su dogadaji - A i B + C takoder - nezavisni. su i dogadaji 4. Ako je P (A) > 0 i P (B|A) = P (B|A) , pokaˇzi da su A i B nezavisni. 5. Dokaˇzi da jednakost P (A) = P (A | B) + P (A | B) - vrigdje B nije niti siguran, niti nemogu´c dogadaj, jedi jedino u sluˇcaju kada je A nemogu´c dogadaj. 6. Ako su A i B sluˇcajni dogadaji s vjerojatnostima P (A) = a , P (B) = b , dokaˇzi da vrijedi P (A|B)
a+b−1 . b
7. Dokaˇzi da vrijedi: a) P (A + B|C) = P (A|C) + P (B|C) − P (AB|C) . b) P (A | B) = P (A) =⇒ P (B | A) = P (B) . c) Ako su A1 , . . . , An u cjelini nezavisni, tada vrijedi P (A1 + . . . + An ) = = 1 − (1 − P (A1 )) · · · (1 − P (An )). 8. Toˇcka T(x, y) bira se na sre´cu unutar kvadrata {0 x, y 1} . Neka je A = {x 12 } , B = {y 12 } , C = {(x − 12 )(y − 12 ) < 0} . Pokaˇzi - A , B , C u parovima nezavisni, no da su dogadaji nisu nezavisni u cjelosti. 9. Toˇcka T(x, y) bira se na sre´cu unutar kvadrata {0 x, y 1} . Za kakvu vrijednost od r su do- A = {|x − y| r} , B = {x + y 3r} gadaji nezavisni? ∗∗∗ 10. Ispravan novˇci´c baca se deset puta. Kolika je vjerojatnost da c´e svih deset puta pasti pismo, ako je poznato da je pismo palo devet puta? 11. Istovremeno se bacaju novˇci´c i kocka. Kolika je vjerojatnost dogadaja A = { pojavili su se grb i sˇ estica } , B = { pojavili su se grb ili sˇ estica } , C = { na kocki se pojavio broj ve´ci od 4 } ?
- metu dok je ne pogodi. Vjerojat12. Strijelac gada nost pogotka u svakom gadanju je 0.6. Izraˇcunajte vjerojatnost sljede´cih dogadaja: A. meta je pogodena u tre´cem pookuˇsaju; B. meta je pogodena u prva tri pokuˇsaja; C. meta je pogodena nakon petog pokuˇsaja. 13. Baˇcene su dvije kocke. Oznaˇcimo dogadaje: A = pojavila se barem jedna jedinica, B = pojavila su se dva razliˇcita broja. 1) Izraˇcunajte P (A) , P (B) , P (A|B) . 2) Jesu li - A i B nezavisni? dogadaji - brojeva 1 , 2 , 3 , 4 , 5 odabire se na 14. Izmedu sre´cu jedan broj, a od preostalih se ponovno odabire na sre´cu joˇs jedan broj. Kolika je vjerojatnost da je drugi broj paran? 15. U skupini od deset strijelaca nalaze se cˇetiri odliˇcna i sˇ est dobrih. Vjerojatnost pogotka za odliˇcne strijelce je 0.9 , za dobre 0.7 . Iz skupine na sre´cu izaberimo jednog strijelca. Kolika je vjerojatnost da c´e on pogoditi metu? 16. U prvoj se urni nalaze dvije bijele i tri crne kuglice, u drugoj jedna bijela i cˇetiri crne. Iz prve urne prebacimo u drugu dvije na sre´cu odabrane kuglice. Izraˇcunajte vjerojatnost da c´e nakon toga na sre´cu odabrana kuglica iz druge urne biti bijela. 17. U dvije od tri jednake pregrade nalaze se dvije crne i dvije bijele kuglice, a u tre´coj pet bijelih i jedna crna. Iz na sre´cu odabrane pregrade izvuˇcena je bijela kuglica. Kolika je vjerojatnost da je ona izvuˇcena iz tre´ce pregrade? 18. U kutiji se nalazi 1000 kockica, od kojih su sve ispravne osim jedne koja na svim stranama ima broj 6. Izvuˇcena je na sre´cu jedna kockica i baˇcena cˇetiri puta: sva cˇetiri puta pala je na broj 6. Kolika je vjerojatnost da je to neispravna kockica? ∗∗∗ 19. Bacamo dvije kocke. Neka su X i Y brojevi na njima. Oznaˇcimo dogadaje A = X je djeljiv s 2, B = X je djeljiv s 3, C = X je djeljiv s 2, Y s 3, D = X je djeljiv s 3, Y s 2, E = X + Y je djeljiv s 2, F = X + Y je djeljiv s 3. Odredi sve parove medusobno nezavisnih dogadaja. 20. Pokus se sastoji u bacanju dviju kocaka. Promatraju se dogadaji: A = pojavila se bar jedna sˇ estica,
84
2. UVJETNA VJEROJATNOST
30. U novˇcaniku je bilo 10 kovanica, 6 od jednog B = pojavila se bar jedna dvojka, i 4 od dva dinara. Na sre´cu smo izvadili dvije, a C = pojavio se jedan paran i jedan neparan broj. zatim joˇs dvije kovanice. Kolika je vjerojatnost da Odredi uvjetnu vjerojatnost P (B|C) . Ispitaj jesu li - A i B nezavisni. su sume u oba izvlaˇcenja jednake? dogadaji 21. Baˇcene su tri kocke. Oznaˇcimo dogadaje: 31. U jednom je druˇstvu organizirana lutrija sa saA = pojavila se barem jedna jedinica, mo jednim dobitkom. Svaka osoba izvlaˇci po jednu B = pojavila se toˇcno jedna sˇ estica, kuglicu iz urne, dok se ne izvuˇce ona dobitna. KoC = pojavila su se tri razliˇcita broja. ja osoba ima ve´cu vjerojatnost dobitka: ona koja Izraˇcunaj P (A) , P (C) , P (A|C) . Jesu li dogadaji izvlaˇci kuglicu prva, ili pak ona koja je posljednja, B i C nezavisni? n -ta po redu? 22. Baca se 8 kocaka. Promatramo dogadaje 32. U igri Craps igraˇc baca dvije kocke, pobjeduje A = 4 kocke su pale na broj 3 a 4 kocke na isti ako se pojavi zbroj 7 ili 11, a gubi ako je zbroj 2, broj, 3 ili 12. U ostalim sluˇcajevima, bacanje se nastavB = Zbroj brojeva na svim kockama je paran lja sve dok igraˇc ne ponovi svoj prvobitni broj kada broj. pobjeduje, ili pak dok se ne pojavi zbroj 7 u kojem Jesu li A i B medusobno zavisni ili nezavisni i sluˇ c aju on gubi. Kolika je vjerojatnost dobitka za zaˇsto? igraˇca? 23. Bacamo tri igra´ce kocke. Izraˇcunaj vjerojatnost 33. Dvoboj u troje. Tri (nesretno zaljubljena) stridogadaja - s vjerojatnoˇsjelca sudjeluju u troboju. Prvi pogada A = pala su tri razliˇcita broja, c ´ u 0.5 , drugi s vjerojatnoˇ s c ´ u 0.8 , a tre´ci uvijek poB = pala je barem jedna sˇ estica. - Poredak strijelaca odreduje - se kockom. PrvoIzraˇcunaj zatim uvjetne vjerojatnosti P (A|B) i P (B|A) .gada. - bilo kojeg protivnika. odabrani strijelac moˇze gadati 24. Bacamo odjednom 6 kocaka. Oznaˇcimo dogaPotom dolazi na red drugo-odabrani (ukoliko je zˇ iv) daje - onaj koji preˇzivi. i tako dalje. Pobjeduje A = pale su 2 jedinice i 2 dvojke, Koji strijelac ima najve´cu sˇ ansu da preˇzivi? KoB = svi su brojevi manji od 4 , ju strategiju treba izabrati? C = zbroj brojeva na svim kockama je manji od 9. ∗∗∗ Izraˇcunaj P(A) , P(B) , P(C) , P(B|A) . 25. Bacamo odjednom cˇetiri kocke. Oznaˇcimo dogadaje 34. Igraˇc baca jednu kocku i potom u drugom bacaA = pale su dvije jedinice i jedna dvojka, nju onoliko kocaka koliki je rezultat prvog bacanja. B = svi brojevi su manji od 4, Kolika je vjerojatnost da se u oba bacanja zajedno C = zbroj brojeva na svim kockama je ve´ci od pojavi toˇcno jedna petica? 6. 35. Bacamo pet novˇci´ca. Nakon prvog bacanja sve Izraˇcunaj P (A) , P (B) , P (C) , P (C|B) . novˇci´ce koji pokazuju grb bacamo ponovo. Kolika 26. U urni se nalaze 4 plave, 5 bijelih i 6 crnih je vjerojatnost da c´emo nakon drugog bacanja dobiti kuglica. Na sre´cu odabiremo 3 kuglice. Oznaˇcimo (ukupno) barem tri pisma? dogadaje A = sve tri kuglice su razliˇcitih boja, 36. Bacaju se 4 kocke od kojih su dvije obojene B = prva kuglica je bijela, bijelo, a dvije crveno. Nakon izvrˇsenog bacanja C = prve dvije kuglice su razliˇcitih boja. bacaju se ponovo one bijele kocke koje pokazuju Izraˇcunaj P (A) , P (A|B) , P (A|C) . Jesu li dogaparan broj i one crvene kocke koje pokazuju broj 6. daji A i B nezavisni? Kolika je vjerojatnost da c´e nakon izvrˇsenog drugog bacanja sve cˇetiri kocke pokazivati broj 5? ∗∗∗ 37. U snopovima A i B nalaze se po 32 igra´ce kar27. Brojevi 1, 2, . . . , n napisani su u sluˇcajnom pote sa po 4 asa. Izvuˇcemo 2 karte iz snopa A i jednu retku. Izraˇcunaj vjerojatnost da se znamenka 2 pokartu iz snopa B , zatim izvuˇcene 3 karte izmijeˇsajavi neposredno nakon znamenke 1. mo i otkrijemo 2 karte. Kolika je vjerojatnost da su - brojeva 1, 2, 3, 4, 5 odabire se na sre´cu to 2 asa? 28. Izmedu jedan broj, a od preostalih se ponovo odabire na sre38. Na raspolaganju imamo dva snopa karata od po c´u joˇs jedan broj. Kolika je vjerojatnost da je drugi 52 karte, pri cˇemu svaki snop sadrˇzi cˇetiri asa. Izvubroj paran? cˇ emo na sre´cu po dvije karte iz svakog snopa, zatim 29. Baca se 6 kocaka, od kojih su 4 obojene bijelo, izvuˇcene cˇetiri karte izmijeˇsamo i otkrijemo dvije. a 2 zˇ uto. Izraˇcunaj vjerojatnost da broj okrenutih Kolika je vjerojatnost da su to dva asa? zˇ utih sˇ estica bude ve´ci od broja bijelih.
ˇ 2. ZADATCI ZA VJE ZBU
39. U dva snopa karata nalaze se po 52 karte sa po 4 asa. Izvuˇcemo na sre´cu po jednu kartu iz svakog snopa, zatim izvuˇcene karte pomijeˇsamo i otkrijemo jednu. Kolika je vjerojatnost da ta karta nije as? 40. U dva snopa karata nalaze se po 52 karte, sa po 4 asa. Iz jednog snopa izvuˇcemo jednu kartu, a iz drugog dvije. Zatim tri izvuˇcene karte promijeˇsamo i otkrijemo jednu. Kolika je vjerojatnost da je ta karta as? 41. U kutiji A ima m1 bijelih i n1 crnih kuglica, a u kutiji B m2 bijelih i n2 crnih kuglica. Iz svake kutije odabere se na sre´cu jedna kuglica, a zatim se od te dvije kuglice odabere na sre´cu jedna. Kolika je vjerojatnost da je ta kuglica bijela? 42. U prvoj pregradi nalaze se 2 bijele i 3 crne kuglice, a u drugoj 1 bijela i 4 crne. Iz prve pregrade prebacimo u drugu dvije na sre´cu odabrane kuglice. Izraˇcunaj vjerojatnost da nakon toga na sre´cu izvuˇcena kuglica iz druge pregrade bude bijela. 43. U grupi od 10 strijelaca nalaze se 4 odliˇcna i 6 dobrih. Vjerojatnost pogotka za odliˇcne strijelce je 0.9 , za dobre 0.7 . Iz grupe na sre´cu odabiremo - u metu jedanput. Kolika je dva strijelca, koji gadaju vjerojatnost da c´e oba strijelca pogoditi metu? 44. Gadanje se vrˇsi tako da svaki od 2 tenka odabire jedan od 3 razliˇcita cilja i ispaljuje 1 metak prema tom cilju. Ako je poznato da svaki od tenko- cilj s vjerojatnoˇscu p , nadi - vjerojatnost va pogada - toˇcno jedan cilj i to s da je nakon gadanja pogoden barem jednim metkom. 45. Gadanje se vrˇsi tako da svaki od 2 tenka na sre´cu odabire jedan od 2 razliˇcita cilja i ispaljuje 2 metka prema njemu. Ako je poznato da prvi tenk poga- s vjerojatnoˇsc´u p1 , a drugi tenk s vjerojatnoˇsc´u da p2 , na´ci vjerojatnost da je nakon izvrˇsenog gadanja - toˇcno jedan cilj, i to s barem 2 metka! pogoden 46. U grupi od 8 strijelaca nalaze se 3 odliˇcna i 5 dobrih. Vjerojatnost pogotka za odliˇcne strijelce je 0.9 , za dobre 0.6 . Dva na sre´cu odabrana strijelca - u metu jedanput. Kolika je vjerojatnost da gadaju c´e meta biti pogodena (s barem jednim metkom)? ∗∗∗ 47. U urni se nalaze bijela i crvena kuglica. Izvlaˇci se po jedna kuglica, sve dok se ne pojavi crvena. Ako se izvuˇce bijela kuglica, u urnu se vra´ca ta i dodaje se joˇs jedna bijela kuglica. Kolika je vjerojatnost da u prvih n izvlaˇcenja crvena kuglica ne´ce biti izvuˇcena? 48. U prvoj urni se nalaze 2 bijele i 3 crne kuglice, u drugoj 1 bijela i 4 crne. Iz prve urne prebacimo u drugu dvije na sre´cu odabrane uglice. Izraˇcunaj vjerojatnost da nakon toga na sre´cu odabrana kuglica iz druge urne bude bijela.
85 49. U kutiji A ima m1 bijelih i n1 crnih, a u kutiji B m2 bijelih i n2 crnih kuglica. Iz kutije A izvadimo na sre´cu 2 kuglice i prebacimo ih u kutiju B . Zatim ponovimo postupak tako da iz kutije B na sre´cu izvuˇcemo dvije kuglice i vratimo ih u kutiju A . Kolika je vjerojatnost da c´e u kutiji A ponovo biti m1 bijelih i n1 crnih kuglica? 50. U kutiji A ima m1 bijelih i n1 crnih kuglica, a u kutiji B m2 bijelih i n2 crnih kuglica. Iz svake kutije odabere se na sre´cu jedna kuglica, a zatim se od te dvije kuglice odabere na sre´cu jedna i vrati u kutiju A . Kolika je vjerojatnost da nakon toga u kutiji A bude ponovo m1 bijelih i n1 crnih kuglica? 51. U kutiji A su 3 bijele i 2 crne kuglice, u kutiji B 1 bijela i 3 crne, te u kutiji C 5 bijelih i 4 crne kuglice. Iz kutije A prebacimo na sre´cu izvuˇcenu kuglicu u kutiju B , zatim iz B prebacimo jednu kuglicu u C te na kraju jednu kuglicu prebacimo iz C u A . Ako je poznato da je broj bijelih i crnih kuglica u svim kutijama ostao nepromijenjen, kolika je vjerojatnost da smo iz kutije B prebacili u kutiju C kuglicu crne boje? 52. Kutija A sadrˇzi 2 bijele i 3 crne kuglice, B 1 bijelu i 3 crne, C 2 bijele i 1 crnu, te kutija D 3 bijele i 1 crnu kuglicu. Na sre´cu izvuˇcena kuglica iz A prebacuje se u B , zatim se na sre´cu izvlaˇci jedna kuglica iz B i prebacuje u C i na koncu na sre´cu izabrana kuglica iz C ulazi u kutiju D . Ako je poznato da je iz D na sre´cu izvuˇcena bijela kuglica, Izraˇcunaj vjerojatnost da je kuglica prebaˇcena iz B u C bila crna. 53. Urna sadrˇzi m bijelih i n − m crnih kuglica. Izraˇcunaj vjerojatnost dogadaja A = izvuˇcena je bijela kuglica; B = izvuˇcena je bijela kuglica, ako je poznato da je jedna kuglica (nepoznate boje) izgubljena; C = izvuˇcena je bijela kuglica, ako je izgubljeno k kuglica, nepoznatih boja. 54. U svakoj od n kutija nalazi se po m bijelih i k crnih kuglica. Iz prve kutije izaberemo na sre´cu jednu kuglicu i prebacimo ju u drugu, zatim iz druge kutije prebacimo jednu kuglicu u tre´cu, itd. Kolika je vjerojatnost da c´e kuglica izvuˇcena iz posljednje kutije biti bijela? 55. U svakoj od n kutija nalazi se po jedna bijela i jedna crna kuglica. Iz prve kutije na sre´cu izaberemo jednu kuglicu i prebacimo je u drugu, zatim iz druge prebacimo jednu kuglicu u tre´cu itd. a) Kolika je vjerojatnost da je kuglica izvuˇcena iz posljednje kutije bijela? b) Kolika je vjerojatnost da je crna kuglica izvuˇcena samo jednom? 56. U kutiji A imamo 2 bijele i 5 crnih kuglica, u kutiji B 2 bijele i 4 crne kuglice te u kutiji C 2 bijele i 2 crne. Na sre´cu odaberemo 2 kuglice iz kutije C i prebacimo ih u kutiju A a preostale 2 kuglice iz C prebacimo u kutiju B . Ako nakon to-
86
2. UVJETNA VJEROJATNOST
ga izvuˇcemo na sre´cu po jednu kuglicu iz kutija A i B , kolika je vjerojatnost da su te kuglice istobojne? 57. U kutiji I nalaze se 3 bijele i 4 crne kuglice, u kutiji II 2 bijele i 3 crne, te u kutiji III 1 bijela i 2 crne kuglice. Iz I kutije prebacimo na sre´cu jednu kuglicu u II, zatim jednu na sre´cu iz II u III, te konaˇcno jednu iz III u I. Kolika je vjerojatnost da je distribucija kuglica u kutiji I ostala nepromijenjena? 58. U kutiji se nalazi n kuglica, oznaˇcenih brojevima od 1 do n . Izvlaˇcimo prvu kuglicu i vra´camo je nazad, osim ako se na njoj nalazi broj 1 . Potom izvlaˇcimo drugu kuglicu. Kolika je vjerojatnost da c´emo u prvom ili drugom izvlaˇcenju izvu´ci kuglicu oznaˇcenu brojem 2 ? ∗∗∗ 59. Kocka je baˇcena tri puta. Neka je X zbroj broˇ je vjerojatnije, X = 12 jeva u svim bacanjima. Sto - X = 12 , ili X = 11 ? Ako je realiziran dogadaj kolika je vjerojatnost da se pojavila barem jedna sˇ estica? 60. Baˇcene su dvije kocke. Kolika je vjerojatnost da se pojavio broj 6 ako je poznato da je zbroj znamenaka jednak 8 ? 61. Dva igraˇca su bacila kocku i prvi je igraˇc dobio ve´ci broj od drugog igraˇca. Kolika je vjerojatnost da je taj broj jednak 6? 62. Poznato je da se pri bacanju deset igra´cih kocaka pojavila barem jedna jedinica. Kolika je vjerojatnost da su se pojavile dvije ili viˇse jedinica? 63. Na fakultetu je upisano n studenata od kojih nk studira k–tu godinu ( k = 1, 2, 3, 4 ). Na sre´cu su odabrana dva studenta i pokazalo se da je prvi sluˇsaˇc viˇse godine. Kolika je vjerojatnost da je to cˇetvrta godina? 64. Tri igraˇca su bacila po jednu kocku. Poznato je da je prvi dobio najve´ci broj. Kolika je vjerojatnost da je taj broj ve´ci od 4? 65. Baˇcene su cˇetiri kocke. Kolika je vjerojatnost da je pala barem jedna sˇ estica, ako je poznato da su pala toˇcno 2 jednaka broja? 66. Baˇcene su tri kocke, crvena, bijela i plava. Zbroj okrenutih brojeva je 13. Kolika je vjerojatnost da je bijela kocka pala na broj 4? 67. Iz skupa {1, 2, . . . , n} biramo na sre´cu tri broja x1 , x2 , x3 . Ako je poznato da vrijedi x1 < x2 , kolika je vjerojatnost dogadaja x1 < x3 < x2 ? 68. U devet od deset jednakih pregrada nalaze se 2 crne i 2 bijele kuglice, a u desetoj 5 bijelih i 1 crna. Iz na sre´cu odabrane pregrade izvuˇcena je bijela kuglica. Kolika je vjerojatnost da je ona izvuˇcena iz desete pregrade?
∗∗∗ ˇ 69. Cetiri strijelca gadaju u istu metu. Vjerojatnosti njihovih pogodaka su redom 0.4 , 0.6 , 0.7 , 0.8 . Kolika je vjerojatnost da c´e meta biti pogodena? Ako je pogodena s toˇcno tri metka, kolika je vjerojatnost da je promaˇsio cˇetvrti strijelac? - metu sa po jednim 70. Strijelci A, B, C, D gadaju metkom. Vjerojatnost pogotka za A je 60%, za B 70%, za C 80%, a za D 90%. Ako je meta pogodena sa 2 pogotka, kolika je vjerojatnost da su te pogotke ostvarili strijelci A i B? 71. Vjerojatnosti pogotka u metu za svakog od cˇetiri strijelca su redom 0,8 , 0,7 , 0,6 , 0,5 . Ako je meta pogodena sa dva metka, kolika je vjerojatnost da prvi strijelac nije pogodio? 72. Baterija ima 4 topa. Vjerojatnost pogotka prvog topa je 30 %, a ostalih triju topova 20 %. Za uniˇstenje cilja dovoljan je jedan pogodak. Jedan od topova izvrˇsio je 2 gadanja i cilj je bio uniˇsten. - vjerojatnost da je gadao - prvi top. Nadi 73. Iz urne koja sadrˇzi m bijelih i n crnih kuglica izvuˇcene su dvije kuglice. Pokazalo se je da je prva kuglica bijela. Kolika je vjeroatnost da je i druga kuglica bijela? 74. U kutiji sa dvije jednake pregrade nalaze se kuglice — u prvoj 3 bijele i 3 plave, a u drugoj 3 bijele i 4 crvene. Izvlaˇcimo istovremeno dvije kuglice iz na sre´cu odabrane pregrade. Kolika je vjerojatnost da su obje izvuˇcene kuglice iste boje? Ako su obje izvuˇcene kuglice iste boje, kolika je vjerojatnost da je ta boja plava? 75. U jednoj se vre´cici nalaze jedna bijela i tri crvene, a u drugoj dvije bijele i dvije crvene kuglice. Izvuˇcemo na sre´cu po jednu kuglicu iz svake vre´cice. Ako je jedna od njih bijela, kolika je vjerojatnost da je druga crvena? 76. U posudi se nalazi 5 kuglica bijele ili crne boje. Sve pretpostavke o broju bijelih kuglica su jednako vjerojatne. U tri izvlaˇcenja izvukli smo kuglice bijele boje (kuglica se nakon izvlaˇcenja vra´ca u posudu). Izraˇcunaj vjerojatnost da su u posudi sve kuglice bijele boje. 77. U urni se nalazi n kuglica, pri cˇemu svaka kuglica moˇze s jednakom vjerojatnoˇsc´u biti bijela ili crvena. Izvlaˇcimo jednu po jednu k kuglica, u modelu s vra´canjem. Ako niti jednom nismo izvukli crnu kuglicu, kolika je vjerojatnost da su sve kuglice u urni bijele? 78. U jednoj kutiji nalaze se 2 bijele i 3 crvene kuglice, a u drugoj 1 bijela i 3 crvene kuglice. Izvuˇcemo na sre´cu po jednu kuglicu iz svake kutije. Ako je jedna od izvuˇcenih kuglica bijela, kolika je vjerojatnost da je druga crvena?
ˇ 2. ZADATCI ZA VJE ZBU
87
79. U kutiji se nalazi 5 kuglica, od kojih svaka mozˇ e biti crvena ili plava, s jednakom vjerojatnoˇsc´u. Na sre´cu izabrana kuglica iz kutije imala je crvenu boju. Koji je najvjerojatniji broj plavih kuglica u kutiji? 80. U kutiji sa 10 pregrada nalazi se ukupno 55 kuglica i to tako da se u k –toj pregradi nalazi k kuglica (k = 1, 2, . . . , 10) . Na sre´cu odaberemo 2 razliˇcite pregrade i izvuˇcemo sve kuglice iz tih pregrada. Ako je poznato da je izvuˇceno najviˇse 8 kuglica, kolika je vjerojatnost da su one izvuˇcene iz susjednih pregrada? 81. Iz poˇsiljke u kojoj se nalazi n ispravnih i m neispravnih proizvoda uzeto je r proizvoda zbog - njikontrole. Prvih k proizvoda ( k < r ) medu ma bilo je ispravno. Kolika je vjerojatnost da je i sljede´ci proizvod ispravan? ∗∗∗ 82. U kutiji I nalaze se 2 bijele i 2 crne kuglice, u kutiji II 5 bijelih i 7 crnih. Iz I kutije prebacimo na sre´cu dvije kuglicu u II, a zatim dvije na sre´cu iz II u I. Ako je poznato da su nakon toga kuglice u I kutiji istobojne, kolika je vjerojatnost da su crne boje? 83. Vjerojatnost kvara svakog od dijelova A , B , C sklopa na slici u nekom vremenskom intervalu - prestaje sa radom ako je u kvaru iznosi 0.2 . Uredaj dio C , dijelovi A i B (ili pak A , B i C ). Ako je - prestao sa radom, kolika je vjerojatnost da je uredaj pokvaren samo dio C ?
A
C
B
84. Dva od tri nezavisna dijela nekog stroja su otkazala. Odredi vjerojatnost da su to prvi i drugi dio, ako vjerojatnosti otkazivanja prvog, drugog odnosno tre´ceg dijela iznose 0.2 , 0.4 i 0.3 . 85. Na slici su navedene vjerojatnosti kvara pojedi- u nih dijelova uredaja. Poznato je da je cˇitav uredaj kvaru, poˇsto je pokvaren jedan ili viˇse njegovih dije- pokvarenim lova. Kolika je vjerojatnost da je medu dijelovima i dio B ?
A 01
B 02
D 03
02 C
86. Vjerojatnost da c´e prijemnik registrirati signal u vremenskom intervalu duljine 1 iznosi p . Ako je poznato da se do trenutka t < 1 signal nije pojavio, kolika je vjerojatnost da c´e se on pojaviti u ostatku vremena 1 − t ? 87. Neki izvor emitira tri vrste poruka: AAAA , BBBB , i CCCC . Vjerojatnosti njihovog emitiranja iznose 0,3, 0,4, 0,3 . Kao posljedica smetnji u kanalu, svaki se znak A , B ili C prima ispravno s vjerojatnoˇsc´u 0.6 . Vjerojatnost da znak bude pogreˇsno interpretiran iznosi 0.2 za obje preostale mogu´cnosti. Pretpostavlja se da je prijem svakog znaka u poruci nezavisan jedan od drugog. Izracˇunaj vjerojatnost da je emitirana poruka AAAA , ukoliko je primljena ABCA . 88. Neki izvor emitira dvije vrste poruka: 0000 i 1111 , s vjerojatnostima q i p , za svaku od njih (p + q = 1) . Prijem svakog znaka u poruci je nezavisan jedan od drugog. Svaki se znak ( 0 ili 1 ) prima ispravno s vjerojatnoˇsc´u 1 − α . Izraˇcunaj vjerojatnost da je emitirana poruka 0000 ako je primljena poruka 1000 . 89. Izvor emitira dvije vrste poruka: 1 i 0, s jednakim vjerojatnostima. Svaki od triju serijski povezanih primopredajnika prima poruku i sˇ alje je sljedec´em primopredajniku. Pri tom svaki od njih u 10% sluˇcajeva pogreˇsno interpretira poruku. Ako je na izlazu primljena poruka 1, kolika je vjerojatnost da je ona i poslana? 90. Niz nula i jedinica prenosi se komunikacijskim kanalom. Zbog smetnji, svaki se znak prima ispravno s vjerojatnoˇsc´u 0.8 . Da bismo pove´cali vjerojatnost ispravnog prijema, svaki se znak u poruci ponavlja n puta. Niz od n simbola se interpretira kao simbol koji se pojavljuje najˇceˇsc´e u tom nizu. (Npr. za n = 5 , niz 10110 se interpretira kao 1, a 10100 kao 0). a) Odredi vjerojatnost ispravnog prijema za n = 5. b) Izaberi minimalnu vrijednost od n tako da vjerojatnost ispravnog prijema bude ve´ca od 0.99 . 91. Tisu´cu znakova poslano je kroz komunikacijski kanal. Svaki znak moˇze biti pogreˇsno primljen, s vjerojatnoˇsc´u 0.005 , nezavisno od ostalih. Odredi vjerojatnost da je najviˇse pet znakova pogreˇsno primljeno.
3.
Diskretne sluˇcajne varijable i vektori
1. 2. 3. 4.
Diskretne sluˇcajne varijable . . . . . . . . . . . . . . . . . Dvodimenzionalne diskretne razdiobe . . . . . . . . . . Momenti i karakteristiˇcne funkcije diskretnih varijabli Rijeˇseni zadatci . . . . . . . . . . . . . . . . . . . . . . . . Zadatci za vjeˇzbu . . . . . . . . . . . . . . . . . . . . . . .
. . . . .
. 89 . 93 . 97 107 113
- ω ∈ Ω . Cesto ˇ Pri realizaciji nekog pokusa ostvaruje se elementaran dogadaj je svrha pokusa mjerenje neke numeriˇcke veliˇcine cˇije vrijednosti ovise o toj realizaciji elementarnog dogadaja. Jednostavan primjer toga je model bacanja kocke. Tu je prirodno svakom elementarnom dogadaju pridruˇziti broj na koji je kocka pala. Time je definirano preslikavanje iz skupa Ω svih elementarnih - u skup S = (1, 2, 3, 4, 5, 6) svih mogu´cih ishoda. Takvo se preslikavanje naziva sluˇcajna dogadaja varijabla. Uz jedan stohastiˇcki pokus moˇze biti (na prirodan naˇcin) povezano i viˇse sluˇcajnih varijabli. Tako na primjer, ako bacamo dvije kocke onda se kao sluˇcajne varijable pridruˇzene tom pokusu mogu uzeti (uz mnoge druge) zbroj brojeva na kockama, njihova razlika, manji od brojeva, ve´ci od brojeva itd. itd. Podruˇcje vrijednosti realne sluˇcajne varijable neki je podskup skupa realnih brojeva. Pri prouˇcavanju sluˇcajnih varijabli izvrˇsit c´emo grubu njihovu podjelu i izdvojiti dvije klase sluˇcajnih varijabli: diskretne i neprekinute sluˇcajne varijable. Prve poprimaju svoje vrijednosti unutar diskretnog skupa (obiˇcno prirodnih ili cijelih brojeva) a neprekinute mogu kao svoju vrijednost poprimiti bilo koji realni broj unutar nekog intervala. Ova je podjela uglavnom uvjetovana time sˇ to se za prouˇcavanje ovih dviju vaˇznih klasa koristi razliˇciti matematiˇcki aparat, uz diskretne varijable vezani su prirodno nizovi i redovi realnih brojeva i matrice, dok se matematiˇcki aparat kojim se prouˇcavaju kontinuirane sluˇcajne varijable zasniva na sredstvima matematiˇcke analize: diferencijalnom i integralnom raˇcunu. Naglasimo da ta podjela cˇesto nije uvjetovana samom prirodom pokusa. Uzmemo li kao primjer sluˇcajnu varijablu koja mjeri duljinu odabranog proizvoda, ta je varijabla neprekinutog tipa jer se duljina neprekinuto mijenja. Medutim, izrazimo li tu duljinu u milimetrima, dobit c´emo sluˇcajnu varijablu diskretnog tipa. U ovom c´emo poglavlju prouˇcavati diskretne sluˇcajne varijable.
88
ˇ 3.1. DISKRETNE SLU CAJNE VARIJABLE
89
3.1. Diskretne slucˇ ajne varijable Zakon razdiobe sluˇcajne varijable
Neka je S = (x1 , x2 , . . .) konaˇcan ili prebrojiv skup bez gomiliˇsta. Obiˇcno je to podskup skupa prirodnih ili pak cijelih brojeva. Promatrat c´ emo sluˇcajne varijable, - pridruˇzuju neku vrijednost iz skupa S . Neka je X koje svakom elementarnom dogadaju - u skup S . Uz to je preslikavanje preslikavanje sa skupa Ω svih elementarnih dogadaja prirodno postaviti pitanje: “kolika je vjerojatnost da sluˇcajna varijabla poprimi neku - koji se vrijednost xk is skupa S ”. Oznaˇcimo s Ak skup svih elementarnih dogadaja preslikavaju u xk : Ak := (ω ∈ Ω : X(ω ) = xk ). - dakle, element Da bismo mogli odgovoriti na gornje pitanje, skup Ak mora biti dogadaj, σ -algebre F svih dogadaja. Tek ako je ovaj uvjet ispunjen, za preslikavanje X c´emo re´ci da je sluˇcajna varijabla. Sluˇcajna varijabla
Preslikavanje X : Ω → S je diskretna sluˇcajna varijabla ako je za svaki - Oznaˇcimo xk ∈ S skup Ak := (ω ∈ Ω : X(ω ) = xk ) dogadaj. pk := P (Ak ) = P (X = xk ). (1) Za ove brojeve vrijedi pk > 0 , pk = 1 . Zakon razdiobe sluˇcajne varijable X sastoji se od podruˇcja vrijednosti koje ona poprima i odgovaraju´cih vjerojatnosti. Piˇsemo x1 x2 x3 . . . X∼ . (2) p1 p2 p3 . . .
Pn P0
P1 P2
Sl. 3.1. Razdiobu sluˇcajne varijable skiciramo kao na ovoj slici
x0
x1
x2
xn
90
ˇ 3. DISKRETNE SLU CAJNE VARIJABLE I VEKTORI
Primjer 3.1. Novˇci´c bacamo tri puta. Neka je X broj pisama. Odredimo razdiobu te sluˇcajne varijable. Vjerojatnosni prostor sastoji se od osam elementarnih dogadaja. Ispiˇsimo ih i naznaˇcimo vrijednost sluˇcajne varijable X na svakom od njih: ω1 = GGG, X(ω1 ) = 0 ω2 = GGP, X(ω2 ) = 1 ω3 = GPG, X(ω3 ) = 1 ω4 = GPP, X(ω4 ) = 2 ω5 = PGG, X(ω5 ) = 1 ω6 = PGP, X(ω6 ) = 2 ω7 = PPG, X(ω7 ) = 2 ω8 = PPP, X(ω8 ) = 3 Vidimo da X poprima vrijednosti u skupu (x1 =0, x2 =1, x3 = 2, x4 =3) a vjerojatnosti su 1 p1 = P (X = 0) = P (ω1 ) = , 8 3 p2 = P (X = 1) = P ((ω2 , ω3 , ω5 )) = , 8 3 p3 = P (X = 2) = P ((ω4 , ω6 , ω7 )) = , 8 1 p4 = P (X = 3) = P (ω8 ) = . 8 Dakle zakon razdiobe sluˇcajne varijable X je, 0 1 2 3 X∼ 1 3 3 1 . 8
8
8
8
Primjer 3.2. Neka je p vjerojatnost realizacije nekog dogadaja A . Pokus ponav- A ne ostvari. Neka je X broj ponavljanja ljamo pod istim uvjetima sve dok se dogadaj pokusa do realizacije dogadaja A . Tad za X kaˇzemo da ima geometrijsku razdiobu s parametrom p . Odredimo zakon razdiobe za X . Ispiˇsimo elementarne dogadaje, vrijednost sluˇcajne varijable i pripadne vjerojatnosti u ovom pokusu.
ω1 = A, ω2 = A A
P (ω1 ) = p,
X(ω1 ) = 1,
P (ω2 ) = qp,
X(ω2 ) = 2,
2
ω3 = A A A, .. .
P (ω3 ) = q p,
X(ω3 ) = 3,
ωn = A · · A A,
·
P (ωn ) = qn−1 p,
X(ωn ) = n,
n−1
.. .
ˇ 3.1. DISKRETNE SLU CAJNE VARIJABLE
Zakon razdiobe je
X∼
1 2
91
3 ···
n
···
p qp q2 p · · · qn−1 p · · ·
.
∗∗∗ Zamislimo jednostavan pokus u kojem se kocka baca dva puta. Neka nam X oznaˇcava rezultat prvog bacanja, a Y rezultat drugog bacanja. Prirodno je pretpostaviti da rezultati jednog bacanja ne ovise o rezultatima drugoga. Tako na primjer, vrijedi 1 1 1 P (X = 3, Y = 5) = P(((3, 5))) = = · = P (X = 3) · P (Y = 5). 36 6 6 - koje odgovaraju dogadaju s Sliˇcno se moˇze pokazati (ispisuju´ci elementarne dogadaje lijeve strane jednakosti) da vrijedi 2 3 6 = · = P (X 2) · P (Y 4). P (X 2, Y 4) = 36 6 6 Ovaj primjer upu´cuje da je razumno iskazati sljede´cu definiciju. Nezavisne slucˇ ajne varijable — definicija i temeljno svojstvo
Sluˇcajne varijable X, Y : Ω → S su nezavisne ako za sve xk , yj ∈ S vrijedi P (X = xk , Y = yj ) = P (X = xk )P (Y = yj ) (3) Tada vrijedi op´cenitije, za sve A , B ⊂ S P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B). (4)
Neka su X i Y nezavisne, odnosno, neka vrijedi (3). Dokaˇzimo da onda vrijedi (4). Oznaˇcimo elemente skupova A i B ovako: A = (x1 , . . . , xn ), B = (y1 , . . . , ym ). Onda vrijedi P (X ∈ A, Y ∈ B) = P (X ∈ (x1 , . . . , xn ), Y ∈ (y1 , . . . , ym ))
(X = xk , Y = yj ) =P 1 k n 1 j m
=
1 k n 1 j m
=
P (X = xk ) ·
(X = xk )) · P (
1 k n
= P (X ∈ A)P (Y ∈ B).
P (X = xk )P (Y = yj )
1 k n 1 j m
P (Y = yj )
1 j m
1 k n
= P(
P (X = xk , Y = yj ) =
(Y = yj ))
1 j m
92
ˇ 3. DISKRETNE SLU CAJNE VARIJABLE I VEKTORI
Definicija nezavisnosti proˇsiruje se i na skup od konaˇcno mnogo, pa i beskonaˇcnog niza sluˇcajnih varijabli: Nezavisnost niza slucˇ ajnih varijabli
Sluˇcajne varijable X1 , X2 , . . . , Xn definirane na istom vjerojatnosnom prostoru su nezavisne, ako za sve A1 , A2 , . . . , An ⊂ S vrijedi P (X1 ∈ A1 , X2 ∈ A2 , . . . , Xn ∈ An ) = P (X1 ∈ A1 )P (X2 ∈ A2 ) · · · P (Xn ∈ An ). (5) Sluˇcajne varijable X1 , X2 , . . . su nezavisne ako su za svaki n nezavisne sluˇcajne varijable Xi1 , Xi2 , . . . , Xin , za svaki izbor (razliˇcitih) indeksa i1 , i2 , . . . , in .
Primjer 3.3. Bacamo kocku dok se ne pojavi broj manji od 5 . Neka sluˇcajna varijabla X oznaˇcava potreban broj bacanja, sluˇcajna varijabla Y prvo bacanje u kojem se pojavio broj 6 ( Y = 0 ako se broj 6 uop´ce ne pojavi). Odredimo zakone razdioba varijabli X i Y .
Oznaˇcimo sa Xi sluˇcajne varijable: rezultate i -tog bacanja. To su nezavisne identiˇcki distribuirane sluˇcajne varijable, svaka poprima vrijednosti iz skupa (1, 2, 3, 4, 5, 6) s jednakom vjerojatnoˇsc´u. Varijabla X poprima vrijednosti iz skupa (1, 2, 3, . . .) : P (X = n) = P (X1 5, X2 5, . . . , Xn−1 5, Xn 4) = P (X1 5) · P (X2 5) · · · P (Xn−1 5) · P (Xn 4) 2 n−1 4 2 = · = n , n 1. 6 6 3 Varijabla Y poprima vrijednosti iz skupa (0, 1, 2, . . .) : 1 , n 1, 6n P (Y=0) = P (X1 4) + P (X1 =5, X2 4) + P (X1 =5, X2 =5, X3 4) + . . . 4 4 1 4 1 2 4 4 1 · + ... = · = . = + · + 6 6 6 6 6 6 1 − 16 5
P (Y=n) = P (X1 =5) · P (X2 =5) · · · P (Xn−1 =5) · P (Xn =6) =
Zakoni razdioba su:
X∼ Y∼
1 2 ... n ... 2 3
2 9
...
2 3n
...
0 1 ... n ... 4 5
1 6
...
1 6n
...
, .
3.2. DVODIMENZIONALNE DISKRETNE RAZDIOBE
93
Funkcije diskretnih sluˇcajnih varijabli
Neka je X diskretna sluˇcajna varijabla s poznatim zakonom razdiobe, ψ : R → R zadana funkcija i Y = ψ (X) . Ako je x1 x2 . . . X∼ p1 p2 . . . zakon razdiobe varijable X , tada je ψ (x1 ) ψ (x2 ) . . . Y∼ p1 p2 . . .
(6)
zakon razdiobe varijable Y . Njega dovodimo u reducirani oblik y1 y2 . . . Y∼ q1 q2 . . . gdje su y1 , y2 , . . . sve razliˇcite vrijednosti iz skupa (ψ (x1 ), ψ (x2 ), . . .) . yi = ψ (xi1 ) = ψ (xi2 ) = . . . , tada je qi = pi1 + pi2 + . . . .
Ako je
Primjer 3.4. Sluˇcajna varijabla X ima zakon razdiobe
X∼
−2 −1 1 2 0.1 0.3 0.2 0.4
.
Odredi zakon razdiobe varijable Y = X 2 .
Y∼
4 1 1 4 0.1 0.3 0.2 0.4
=
1 4 0.5 0.5
3.2. Dvodimenzionalne diskretne razdiobe Neka sluˇcajna varijabla X poprima vrijednosti u skupu (x1 , . . . , xn ) , a sluˇcajna varijabla Y u skupu (y1 , . . . , ym ) . Razdioba sluˇcajnog vektora (X, Y) je poznata ako znamo vjerojatnosti pij = P (X = xi , Y = yj ) pri cˇemu mora biti pij = 1 . Zakon razdiobe sluˇcajnog vektora piˇsemo u obliku tablice
i,j
X x1 x2 .. . xn
Y
y1
y2
...
ym
p11 p21 .. .
p12 p22
... ...
p1m p2m .. .
pn1
pn2
...
pnm
94
ˇ 3. DISKRETNE SLU CAJNE VARIJABLE I VEKTORI
Marginalne razdiobe
Oznaˇcimo pi =
pij =
j
qj =
pij =
i
Oˇcito vrijedi
P (X = xi , Y = yj ) (suma i-tog retka),
j
P (X = xi , Y = yj ) (suma j-tog stupca).
i
P (X = xi , Y = yj ) = P (X = xi )
j
tako da zbrajanjem elemenata nekog retka u ovoj tablici dobivamo razdiobu varijable X . Sliˇcno tome, zbrajanjem elemenata stupca dobit c´emo razdiobu varijable Y . Te razdiobe upisujemo u marginama tablice, pa c´emo ih nazivati marginalnim razdiobama komponenti sluˇcajnog vektora: X x1 x2 .. . xn
Y
y1
y2
...
ym
p11 p21 .. .
p12 p22
... ...
p1m p2m .. .
p1 p2
pn1 q1
pn2 q2
... ...
pnm qm
pn 1
Marginalne razdiobe varijabli X i Y su x1 x2 . . . xn y1 y2 . . . ym X∼ , Y∼ , p1 p2 . . . pn q1 q2 . . . qm Ako poznajemo marginalne razdiobe, razdioba vektora joˇs uvijek nije odredena, pomo´cu margina ne moˇzemo op´cenito rekonstruirati vjerojatnosti u tablici. To je mogu´ce uˇciniti samo ako su komponente sluˇcajnog vektora nezavisne, jer onda vrijedi pij = P (X = xi , Y = yj ) = P (X = xi )P (Y = yj ) = pi qj .
Primjer 3.5. Bacamo dvije kocke. Neka je X broj na prvoj kocki, Y ve´ci od dvaju brojeva na kockama. Odredi razdiobu vektora (X, Y) . Izraˇcunaj marginalne razdiobe od X i Y .
Postoji 36 elementarnih, jednako vjerojatnih dogadaja. Za svaki od njih mozˇ emo odrediti vrijednosti varijabli X i Y . Pri tom neka vrijednost moˇze ukljuˇcivati viˇse elementarnih dogadaja. Dobivamo sljede´ci zakon razdiobe vektora (X, Y) (zbog 1 kratko´ce smo oznaˇcili p = 36 ):
3.2. DVODIMENZIONALNE DISKRETNE RAZDIOBE
Y 1
2
3
4
5
6
p
p
p
p
p
p
6p
2
0
2p
p
p
p
p
6p
3
0
0
3p
p
p
p
6p
4
0
0
0
4p
p
p
6p
5
0
0
0
0
5p
p
6p
6
0
0
0
0
0
6p
6p
p
3p
5p
7p
9p
11p
1
X 1
Marginalne razdiobe su 1 2 3 4 5 6 X∼ 1 1 1 1 1 1 , 6
95
6
6
6
6 6
Y∼
1 2 3 4 5 6
1 36
3 5 7 36 36 36
9 11 36 36
.
Uvjetne razdiobe
- {X = xi | Y = yj } dana je sa Uvjetna vjerojatnost dogadaja P (X = xi | Y = yj ) =
P (X = xi , Y = yj ) pij = . P (Y = yj ) qj
Skup svih takvih vjerojatnosti za sve i daje uvjetnu razdiobu varijable X uz uvjet Y = yj : x1 x2 . . . X | Y = yj ∼ p1j p2j . . . . qj qj Ta se razdioba cˇita iz j -tog stupca razdiobe vektora (X, Y) . Elementi tog stupca podijeljeni su sa odgovaraju´com marginom. Na isti naˇcin raˇcunamo i uvjetnu razdiobu varijable Y uz uvjet X = xi : y1 y2 . . . Y | X = xi ∼ pi1 pi2 . . . . pi
pi
Primjer 3.6. Bacamo dvije kocke. Neka je sluˇcajna varijabla X manji, a varijabla Y ve´ci od dva pojavljena broja. Odredi razdiobu vektora (X, Y) , marginalne razdiobe, te uvjetnu razdiobu od X uz uvjet Y = 4 . Izraˇcunaj vjerojatnost dogadaja A = (X 2 | Y = 4) , B = (Y = 4 | X 2) .
Postoji 36 jednakovjerojatnih elementarnih dogadaja. Odredi za svaki od njih vrijednost vektora (X, Y) ! Dobivamo sljede´cu razdiobu (oznaˇcimo zbog kratko´ce 1 p = 36 ).
96
ˇ 3. DISKRETNE SLU CAJNE VARIJABLE I VEKTORI
Y 1
2
3
4
5
6
p
2p
2p
2p
2p
2p
11p
2
0
p
2p
2p
2p
2p
9p
3
0
0
p
2p
2p
2p
7p
4
0
0
0
p
2p
2p
5p
5
0
0
0
0
p
2p
3p
6
0
0
0
0
0
p
p
p
3p
5p
7p
9p
11p
1
X 1
Marginalne razdiobe varijabli X i Y cˇitamo iz posljednjeg retka odnosno stupca: 1 2 3 4 5 6 X ∼ 11 9 7 5 3 1 , 36 36 36 36 36 36 1 2 3 4 5 6 Y ∼ 1 3 5 7 9 11 . 36 36
36 36 36
36
Uvjetna razdioba varijable X | Y = 4 je P (X = 1, Y = 4) 2p 2 P (X = 1 | Y = 4) = = = P (Y = 4) 7p 7 i sliˇcno za ostale vrijednosti od X : 1 2 3 4 X|Y=4∼ 2 2 2 1 . 7 7
7
7
- tu razdiobu direktno iz cˇetvrtog stupca razdiobe vektora (X, Y) .) (Pronadi 2p + 2p + p 5 P (X 2, Y = 4) = = , P (A) = P (Y = 4) 7p 7 2p + 2p + p 1 P (X 2, Y = 4) = = . P (B) = P (X 2) 9p + 7p + 5p + 3p + p 5 Primjer 3.7. Nezavisne sluˇcajne varijable X1 i X2 imaju isti zakon razdiobe
X1 , X2 ∼
0 1 2 0.3 0.5 0.2
.
Odredi zakon razdiobe sluˇcajnih varijabli a) Y = X1 + X2 ; b) Z = X1 X2 . a) Y poprima vrijednosti u skupu (0, 1, 2, 3, 4) s vjerojatnostima P (Y = 0) = P (X1 = 0, X2 = 0) = 0.3 · 0.3 = 0.09, P (Y = 1) = P (X1 = 0, X2 = 1) + P (X1 = 1, X2 = 0) = 2 · 0.3 · 0.5 = 0.3 itd. Dobivamo 0 1 2 3 4 . Y∼ 0.09 0.30 0.37 0.20 0.04
ˇ 3.3. MOMENTI I KARAKTERISTICNE
97
FUNKCIJE DISKRETNIH VARIJABLI
b) Z poprima vrijednosti u skupu (0, 1, 2, 4) s vjerojatnostima P (Z = 0) = P (X1 = 0) + P (X1 = 0, X2 = 0) = 0.3 + 0.7 · 0.3 = 0.51, P (Z = 1) = P (X1 = 1, X2 = 1) = 0.25, P (Z = 2) = P (X1 = 1 X2 = 2) + P (X1 = 2, X2 = 1) = 0.20, P (Z = 4) = P (X1 = 2, X2 = 2) = 0.04. te je
Z∼
0 1 2 4 0.51 0.25 0.20 0.04
.
3.3. Momenti i karakteristiˇcne funkcije diskretnih varijabli Oˇcekivanje sluˇcajne varijable
Sluˇcajne varijable se najlakˇse opisuju pomo´cu svojih numeriˇckih karakteristika. Najvaˇznija karakteristika je oˇcekivanje. Oˇcekivanje slucˇ ajne varijable
Neka sluˇcajna varijabla X ima zakon razdiobe: x1 x2 x3 . . . . X∼ p1 p2 p3 . . . Oˇcekivanje sluˇcajne varijable X definirano je kao zbroj E(X) := xk pk .
(1)
k
ˇ Cesto se oˇcekivanje sluˇcajne varijable oznaˇcava i simbolima x ili mX . Tako na primjer, za sluˇcajnu varijablu sa zakonom razdiobe −1 0 1 2 3 X∼ 0.2 0.3 0.1 0.3 0.1 vrijedi
E(X) = −1 · 0.2 + 0 · 0.3 + 1 · 0.1 + 2 · 0.3 + 3 · 0.1 = 0.8. Ovaj primjer pokazuje da oˇcekivanje sluˇcajne varijable ne mora biti jednako nekoj od mogu´cih realizacija te varijable. Oˇcekivanje ne mora biti blisko niti realizaciji s najve´coj vjerojatnosti. Za sluˇcajnu varijablu 1 5 100 X∼ 0.8 0.1 0.1 vrijedi
E(X) = 1 · 0.8 + 5 · 0.1 + 100 · 0.1 = 11.3. Geometrijska interpretacija oˇcekivanja je sljede´ca. Ako zamislimo da smo u toˇckama s apscisama x1 , x2 ,. . . postavili utege s teˇzinama p1 , p2 ,. . . , tada c´e teˇziˇste tog sustava biti u toˇcki s apscisom x .
98
ˇ 3. DISKRETNE SLU CAJNE VARIJABLE I VEKTORI
Sl. 3.2. Oˇcekivanje sluˇcajne varijable je teˇzinska sredina njezinih realizacija. Svaka realizacija ima treˇzinu koja odgovara njezinoj vjerojatnosti.
Oˇcekivanje ne mora postojati. Tako na primjer, za sluˇcajnu varijablu 1 2 4 . . . 2n−1 . . . X∼ 1 1 1 1 ... 2 4 8 ... 2n vrijedi
1 1 1 1 + 2 · + 4 · + . . . + 2n−1 · n + . . . = +∞. 2 4 8 2 Zato ova sluˇcajna varijabla nema oˇcekivanja. E(X) = 1 ·
Svojstva oˇcekivanja Teorem 3.1. Neka je X i Y sluˇcajne varijable definirane na istom vjerojatnosnom prostoru. Oˇcekivanje ima svojstvo linearnosti, za sve realne brojeve s i t vrijedi E(sX + tY) = sE(X) + tE(Y).
Ako su varijable X i Y nezavisne, tada vrijedi E(XY) = E(X)E(Y).
Dokaz. Svojstvo E(sX) = sE(X) slijedi direktno iz definicije oˇcekivanja: E(sX) = (sxk )pk = s xk pk = sE(X). Dokazat c´emo sad da vrijedi E(X + Y) = E(X) + E(Y) . Time c´e prva tvrdnja u teoremu biti dokazana. Neka je razdioba vektora (X, Y) zadana u standardnom obliku: X x1 x2 .. . xn
Y
y1
y2
...
ym
p11 p21 .. .
p12 p22
... ...
p1m p2m .. .
p1 p2
pn1 q1
pn2 q2
... ...
pnm qm
pn 1
ˇ 3.3. MOMENTI I KARAKTERISTICNE
99
FUNKCIJE DISKRETNIH VARIJABLI
Sluˇcajna varijabla X + Y poprima vrijednosti xj + yk s vjerojatnoˇsc´u pjk . Zato je E(X + Y) = (xj + yk )pkj = xj pkj + yk pkj k,j
=
xj ·
j
k,j
pkj +
k
yk ·
k,j
pkj =
j
k
xj pj +
j
yk qk
k
= E(X) + E(Y). Dokaˇzimo sad drugu tvrdnju. Varkijable X i Y su nezavisne, pa vrijedi pjk = pj qk za sve j i k . Zato je E(XY) = xj yk pjk = xj yk pj qk j,k
=
j,k
xj pj
j
yk qk
= E(X)E(Y).
k
Momenti sluˇcajne varijable
Neka je sluˇcajna varijabla Y funkcija sluˇcajne varijable X , zadana formulom Y = ψ (X) . Kako c´emo odrediti njezino oˇcekivanje? Jedna je mogu´cnost da odredimo razdiobu od Y i zatim primjenimo formulu (1) na varijablu Y . −2 −1 0 1 2 Primjer 3.8. Neka je X ∼ i Y = X 2 . Odredimo E(Y) . 1 1 1 1 1 8
4
4
4
8
. Odredimo razdiobu od Y : (−2)2 (−1)2 0 12 22 4 1 0 1 4 0 1 4 Y = X2 ∼ ∼ ∼ 1 1 1 1 1 1 1 1 1 1 1 1 1 8
4
4
4
8
8
4
4
4
8
4
2
4
Zato je
1 1 3 1 +1· +4· = . 4 2 4 2 Primjetimo da ovdje vrijedi E(X) = 0 , pa je dakle E(X 2 ) = E(X)2 . E(Y) = 0 ·
∗∗∗ Druga mogu´cnost za raˇcunanje oˇcekivanja funkcije sluˇcajne varijable je koriˇstenjem formule E(ψ (X)) = ψ (xk )pk . Do nje dolazimo u gornjem postupku tako da ne svodimo zakon razdiobe varijable Y na reducirani oblik, ve´c oˇcekivanje raˇcunamo iz nesredenog oblika. Iz 4 1 0 1 4 Y = X 2 ∼∼ 1 1 1 1 1 8
dobivamo E(Y) = 4 ·
4
4
4
8
1 1 1 1 1 3 +1· +0· +1· +4· = . 8 4 4 4 8 2
100
ˇ 3. DISKRETNE SLU CAJNE VARIJABLE I VEKTORI
∗∗∗ Posebno c´e nam biti vaˇzne funkcije oblika ψ (x) = xn i ψ (x) = (x − a)n . Ishodiˇsni i centralni momenti sluˇcajne varijable
Neka sluˇcajna varijabla X ima zakon razdiobe: x1 x2 x3 . . . X∼ p1 p2 p3 . . . i neka je n prirodni broj. Ishodiˇsni moment reda n sluˇcajne varijable X definirano se formulom E(X n ) := xnk pk . (2) k
Ako je mX oˇcekivanje od X , onda se centralni moment μn reda n definira formulom μn := E[(X − mX )n ] = (xk − mX )n pk . (3) k
Disperzija i standardna devijacija sluˇcajne varijable
Centralni moment reda 2 nazivamo posebnim imenom. Disperzija sluˇcajne varijable
Disperzija (rasipanje, varijanca) sluˇcajne varijable X definira se formulom D(X) = E[(X − mX )2 ] Ovaj se izraz najˇceˇsc´e raˇcuna na naˇcin: 2 D(X) = E(X 2 ) − m2X = x2k pk − xk pk , k
k
Jednakost ovih dviju formula slijedi iz svojstva linearnosti oˇcekivanja: E[(X − mX )2 ] = E[X 2 − 2XmX + m2X ] = E(X 2) − 2mX E(X) + m2X = E(X 2 ) − m2X . Svojstva disperzije Teorem 3.2. Za sluˇcajnu varijablu X i realni broj s vrijedi
D(sX) = s2 D(X). Ako su X i Y nezavisne sluˇcajne varijable, onda vrijedi D(X + Y) = D(X) + D(Y).
ˇ 3.3. MOMENTI I KARAKTERISTICNE
FUNKCIJE DISKRETNIH VARIJABLI
Dokaz. Koristit c´ emo svojstva oˇcekivanja. Za prvu formulu dobivamo D(sX) = E[(sX)2] − [E(sX)]2 = E(s2X 2 ) − [sE(X)]2 = s2 E(X 2 ) − s2 [E(X)]2 = s2 D(X). Ako su X i Y nezavisne, onda imamo D(X + Y) = E[(X + Y)2 ] − [E(X + Y)]2 = E(X 2) + 2E(XY) + E(Y 2 ) − E(X)2 − 2E(X)E(Y) − E(Y 2) = E(X 2) − E(X)2 + E(Y 2) − E(Y 2) = D(X) + D(Y).
∗∗∗ Ova se svojstva moraju dobro razumjeti. U tu svrhu, navest c´emo najprije sljede´ci primjer. Primjer 3.9. Nezavisne sluˇcajne varijable X i Y imaju identiˇcnu razdiobu s oˇcekivanjem a i disperzijom σ 2 . Kolika je disperzija sluˇcajne varijable X + 2Y ? Koliko je oˇcekivanje a kolika disperzija sluˇcajne varijable X − Y ?
U prvom sluˇcaju vrijedit c´e D(X + 2Y) = 12 · D(X) + 22 · D(Y) = 5σ 2 . U drugom sluˇcaju je E(X − Y) = E(X) − E(Y) = a − a = 0, D(X − Y) = 12 D(X) + (−1)2 D(Y) = D(X) + D(Y) = 2σ 2 . ∗∗∗ Zapamtimo, disperzija sluˇcajne varijable je uvijek pozitivna. Ovo je svojstvo potpuno jasno jer slijedi iz formule D(X) = E[(X − mX )2 ] = (xj − mX )2 pk . Svi pribrojnici u ovom izrazu su nenegativni. Moˇze li disperzija biti jednaka nuli? U tom sluˇcaju vrijedi xj = mX za svaki j , a to znaˇci da se sve realizacije sluˇcajne varijable X podudaraju. Drugim rijeˇcima, tada X nije sluˇcajna, ve´c uvijek poprima istu vrijednost.
X.
∗∗∗ Veliˇcinu σX := D(X) nazivamo standardna devijacija (odstupanje) varijable
101
102
ˇ 3. DISKRETNE SLU CAJNE VARIJABLE I VEKTORI
Primjer 3.10. Izraˇcunaj oˇcekivanje i disperziju sluˇcajnih varijabli
X∼
−4 6 10 0.2 0.3 0.5
,
Y∼
−1 4 0.4 0.6
.
Odredi E(X + 2Y) te, ukoliko su X i Y nezavisne, E(XY) i D(X − 2Y) . Odredimo E(X) , E(Y) , D(X) , D(Y) . E(X) = −4 · 0.2 + 6 · 0.3 + 10 · 0.5 = 6, E(X 2 ) = 16 · 0.2 + 36 · 0.3 + 100 · 0.5 = 64, D(X) = E(X 2 ) − E(X)2 = 64 − 36 = 28, E(Y) = −1 · 0.4 + 4 · 0.6 = 2, E(Y 2 ) = 1 · 0.4 + 16 · 0.6 = 10, D(Y) = E(Y 2 ) − E(Y)2 = 10 − 4 = 6. Zbog linearnosti oˇcekivanja je E(X + 2Y) = E(X) + 2E(Y) = 10 . Ako su X i Y nezavisne, E(XY) = E(X)E(Y) = 12 i D(X − 2Y) = D(X) + D(−2Y) = D(X) + 4D(Y) = 52 . Primjer 3.11. Bacamo dvije ispravne kocke. Sluˇcajne varijable X i Y definirane su na naˇcin X = apsolutna vrijednost razlike brojeva na kockama, Y = manji od dva broja ako su oni razliˇciti, jednaka nuli ako su brojevi jednaki. Pokaˇzi da X i Y imaju identiˇcan zakon razdiobe. Odredi njihovo oˇcekivanje i disperziju.
Vjerojatnosni prostor sastoji se od 36 jednako vjerojatnih elementarnih dogadaja. Odredimo vrijednost varijabli X i Y na tim dogadajima. X 1 2 3 4 5 6 Y 1 2 3 4 5 6 1 0 1 2 3 4 5 1 0 1 1 1 1 1 2 1 0 1 2 3 4 2 1 0 2 2 2 2 3 2 1 0 1 2 3 3 1 2 0 3 3 3 4 3 2 1 0 1 2 4 1 2 3 0 4 4 5 4 3 2 1 0 1 5 1 2 3 4 0 5 6 5 4 3 2 1 0 6 1 2 3 4 5 0 Vidimo da varijable X i Y poprimaju razliˇcite vrijednosti na pojedinim elementarnim dogadajima, medutim njihova je razdioba identiˇcna! 0 1 2 3 4 5 X, Y ∼ 6 10 8 6 4 2 36 36
36 36
36 36
Vrijedi 10 8 6 4 2 70 6 +1· +2· +3· +4· +5· = . 36 36 36 36 36 36 36 10 8 6 6 +1· +4· +9· D(X) = D(Y) = 0 · 36 36 36 36 70 2 4 2 + 16 · = 2.052. + 25 · − 36 36 36
E(X) = E(Y) = 0 ·
ˇ 3.3. MOMENTI I KARAKTERISTICNE
FUNKCIJE DISKRETNIH VARIJABLI
∗∗∗ Neke informacije o medusobnoj ovisnosti dviju sluˇcajnih varijabli moˇzemo dobiti na temelju sljede´cih numeriˇckih karakteristika. Kovarijacijski moment. Koeficijent korelacije
Kovarijacijski moment varijabli X i Y definira se formulom cov(X, Y) := E[(X − mX )(Y − mY )] = E(XY) − mX mY . Koeficijent korelacije definira se formulom cov(X, Y) . r(X, Y) := σX σY
Koeficijent korelacije daje nam neku informaciju o meduovisnosti sluˇcajnih varijabli X i Y . Za nezavisne sluˇcajne varijable uvijek je cov(X, Y) = 0 pa s tim i r(X, Y) = 0 . Obrat nije istinit. Varijable koje su nekorelirane ne moraju biti nezavisne. Centrirane i normirane sluˇcajne varijable
Neka je a realan broj. Razdioba sluˇcajne varijable X − a poznata nam je ukoliko znamo razdiobu varijable X . Kako se mijenjaju numeriˇcke karakteristike? Vrijedi E(X − a) = E(X) − a, D(X − a) = D(X). Zbog cˇega se disperzija ne mijenja? Najlakˇse je to razumjeti ako na konstantu a gledamo kao na sluˇcajnu varijablu koja poprima uvijek istu vrijednost a . Ta je varijabla nezavisna od X , a njezina je disperzija jednaka nuli. Zato je D(X − a) = D(X) + D(a) = D(X) . Pri translaciji ne mijenja se niti kovarijacijski moment: cov(X − a, Y − b) = E{[(X − a) − E(X − a)][(Y − b) − E(Y − b)]} = E{[X − E(X)][Y − E(Y)]} = cov(X, Y) Posljediˇcno, pri translaciji se ne mijenja niti koeficijent korelacije. ◦ Izaberemo li a = mX , tada sluˇcajnu varijablu X − mX oznaˇcavamo s X . Za nju ◦ ◦ ◦ vrijedi E(X = 0 , D(X) = D(X) . Za sluˇcajnu varijablu X kaˇzemo da je centrirana. Oˇcekivanje i disperzija sluˇcajne varijable aX + b iznose E(aX + b) = aE(X) + b, D(aX + b) = a2 D(X). Posebno vaˇzan sluˇcaj izbora konstanti a i b nastupa kad je rezultiraju´ce oˇcekivanje jednako nuli, a disperzija jedinici. Neka je m = E(X) , σ 2 = D(X) . Za sluˇcajnu varijablu X−m X ∗ := σ kaˇzemo da je dobivena normiranjem iz sluˇcajne varijable X . Vrijedi 1 1 1 D(X ∗ ) = 2 D(X − m) = 2 D(X) = 1. E(X ∗ ) = E(X − m) = 0, σ σ σ
103
104
ˇ 3. DISKRETNE SLU CAJNE VARIJABLE I VEKTORI
Koeficijent korelacije ne mijenja se normiranjem! Naime, vrijedi mX ∗ = mY ∗ = 0 , σX ∗ = σY ∗ = 1 pa dobivamo X − mX Y − mY cov(X, Y) r(X ∗ , Y ∗ ) = E(X ∗ Y ∗ ) = E · = r(X, Y). = σX σY σX σY ∗∗∗ Za sluˇcajne varijable koje nisu nezavisne, op´cenito je D(X +Y) = D(X)+D(Y) . Toˇcniju vezu iskazat c´emo u sljede´cem teoremu. Disperzija zbroja sluˇcajnih varijabli Teorem 3.3. Disperzija zbroja S = X1 + . . . + Xn sluˇcajnih varijabli raˇcuna
se formulom
D(S) =
n
D(Xi ) + 2
cov(Xi , Xj ).
i<j
i=1
Dokaz. Vrijedi mS = mX1 + . . . + mXn pa je 2 n D(S) = E[(S − mS )2 ] = E (Xi − mXi ) i=1
=
n
E(Xi − mXi )2 +
n
E[(Xi − mXi )(Xj − mXj )]
i=j
i=1
=
D(Xi ) + 2
i=1
cov(Xi , Xj ).
i<j
Svojstva koeficijenta korelacije Teorem 3.4. Za koeficijent korelacije uvijek je ispunjeno
|r(X, Y)| 1. Jednakost r(X, Y) = ±1 vrijedi onda i samo onda kad je Y = aX + b za neke konstante a i b .
Dokaz. Neka su X ∗ , Y ∗ normirane sluˇcajne varijable pridruˇzene varijablama X i Y . Onda imamo D(X ∗ ± Y ∗ ) = D(X ∗ ) + D(Y ∗ ) ± 2 cov(X ∗ , Y ∗ ) = 2[1 ± r(X, Y)]. Lijeva strana je uvijek pozitivna, pa je zato pozitivna i desna. Odatle slijedi |r(X, Y)| 1.
ˇ 3.3. MOMENTI I KARAKTERISTICNE
105
FUNKCIJE DISKRETNIH VARIJABLI
Nadalje, jednakost r(X, Y) = 1 vrijedit c´e samo onda kad bude D(X ∗ − Y ∗ ) = 0 . To je mogu´ce samo kad je sluˇcajna varijabla X ∗ − Y ∗ jednaka konstanti. Odavde zakljuˇcujemo da mora biti Y − mY X − mX − = const σY σX odnosno Y = aX + b, pri cˇemu je a = σY /σX i b neki realni broj. Sliˇcno zakljuˇcujemo i u sluˇcaju kad je r(X, Y) = −1 . Primjer 3.12. Ispravan novˇci´c je baˇcen tri puta. Neka X oznaˇcava broj pojavljenih grbova, Y duljinu najduˇzeg niza uzastopno pojavljenih grbova. Odredi zakon razdiobe vektora (X, Y) te koeficijent korelacije r(X, Y) .
Postoji osam jednako vjerojatnih elementarnih dogadaja. Odrediti c´emo za svaki od njih vrijednosti varijabli X i Y i zatim sastaviti zakon razdiobe vektora (X, Y) . PPP PPG PGP GPP PGG GPG GGP GGG
X 0 1 1 1 2 2 2 3
Y 0 1 1 1 2 1 2 3
Y 0
1
2
3
1 8
0
0
0
1
0
0
0
2
0
3 8 1 8
2 8
0
3
0
0
0
1 8
4 8
2 8
1 8 1 8
X 0
1 8 3 8 3 8 1 8
1
Izraˇcunajmo sada cov(X, Y) , D(X) i D(Y) . 1 3 3 1 12 +1· +2· +3· = , 8 8 8 8 8 4 2 1 11 1 , E(Y) = 0 · + 1 · + 2 · + 3 · = 8 8 8 8 8 3 1 2 1 22 1 , E(XY) = 0 · + 1 · + 2 · + 4 · + 9 · = 8 8 8 8 8 8 44 22 12 11 − · = , cov(X, Y) = 8 8 8 64 1 3 3 1 12 2 48 D(X) = 0 · + 1 · + 4 · + 9 · − = , 8 8 8 8 8 64 1 4 2 1 11 2 47 D(Y) = 0 · + 1 · + 4 · + 9 · − = , 8 8 8 8 8 64 44 cov(X, Y) 44 r(X, Y) = =√ = 64 = 0.926. 48 47 47 · 48 D(X)D(Y) · 64 64 E(X) = 0 ·
106
ˇ 3. DISKRETNE SLU CAJNE VARIJABLE I VEKTORI
Karakteristiˇcna funkcija
Integralne transformacije vaˇzan su alat u matematiˇckoj analizi. Pokazat c´emo da se tim sredstvom uspjeˇsno rjeˇsavaju i mnogi problemi teorije vjerojatnosti. Analogoni Fourierovih i Laplaceovih transformata ovdje predstavljaju karakteristiˇcne funkcije i funkcije izvodnice. Karakteristiˇcna funkcija
Karakteristiˇcna funkcija sluˇcajne varijable X definira se formulom
ϑX (t) := E(eitX ) Dakle,
ϑX (t) =
pk eitxk .
(4)
k
Karakteristiˇcna funkcija postoji za svaku sluˇcajnu varijablu, jer je oˇcekivanje slucˇajne varijable eitX uvijek konaˇcno. (Apsolutna vrijednost te sluˇcajne varijable jednaka je jedinici.) U sljede´cem c´emo poglavlju koristiti neka od svojstava karakteristiˇcnih funkcija, koja ne´cemo u ovom trenutku dokazivati. Svojstva karakteristiˇcne funkcije
- razdiobu: dvije razliˇcite 1◦ Karakteristiˇcna funkcija jednoznaˇcno odreduje razdiobe ne mogu imati istu karakteristiˇcnu funkciju. 2◦ Ako su X1 , . . . , Xn nezavisne, tada je ϑX1 +...+Xn (t) = ϑX1 (t) · · · ϑXn (t). (5) 3◦ Vrijedi formula
ϑ (r) (0) , r = 1, 2, . . . ir ukoliko oˇcekivanje postoji. Posebice, E(X) = −iϑ (0), E(X r ) =
D(X) = −ϑ (0) + ϑ (0)2 .
(6)
(7)
Funkcije izvodnice
Za diskretne sluˇcajne varijable, koje uzimaju vrijednosti u skupu (0, 1, 2, . . .) cˇesto je jednostavnije umjesto karakteristiˇcne funkcije promatrati funkciju izvodnicu ψX definiranu ovako: ∞ ψX (z) = pk zk = E(zX ). k=0
ˇ 3.4. RIJE SENI ZADATCI
107
Ovaj red konvergira sigurno na podruˇcju |z| < 1 jer je pk 1 za svaki k . Poznavanje funkcije izvodnice cˇesto nam omogu´cava da jednostavno odredimo zakon razdiobe sluˇcajne varijable, jer vrijedi: ψ (n) (0) pn = . n! Za ovu tvrdnju ne trebamo dodatni dokaz, jer je funkcija izvodnica definirana zbrojem svog McLaurinovog reda, pa za koeficijente reda mora vrijediti navedena formula.
3.4. Rijeˇseni zadatci Zadatak 3.1. Zadana je sluˇcajna varijabla X svojom razdiobom
X∼
1 2 3 ... 1 1 1 2 22 23 . . .
.
Odredi zakon razdiobe sluˇcajne varijable Y = cos π X . Y poprima samo dvije vrijednosti +1 i −1 . Y = −1 za X = 1, 3, 5, . . . , Y = 1 za X = 2, 4, 6, . . . , 1 1 2 + + ... = , 2 8 3 1 1 1 + ... = . q2 = P (Y = 1) = p2 + p4 + p6 + . . . = + 4 16 3 −1 1 Y∼ . 2 1
q1 = P (Y = −1) = p1 + p3 + p5 + . . . =
Dakle,
3
3
Zadatak 3.2. Zadana je razdioba sluˇcajnog vektora (X, Y) : P (X = −1, Y = −1) = P (X = 0, Y = −1) = P (X = 1, Y = −1) = 16 , P (X = −1, Y = 1) = 14 , P (X = 0, Y = 1) = P (X = 1, Y = 1) = 18 . Odredi marginalne razdiobe varijabli X i Y , te razdiobe varijabli Z = X + Y , W = XY .
Napiˇsimo najprije razdiobu vektora (X, Y) : Y −1 X 1 −1 6 0 1
1 6 1 6 1 2
1 1 4 1 6 1 8 1 2
10 24 7 24 7 24
108
ˇ 3. DISKRETNE SLU CAJNE VARIJABLE I VEKTORI
Dakle, marginalne razdiobe su −1 0 1 X ∼ 10 7 7 , 24
Y∼
24 24
−1 1 1 2
1 2
.
Varijabla Z = X + Y ima razdiobu −2 −1 0 1 2 Z∼ 1 1 5 1 1 6
6
12 8
8
(Provjeri! Razdiobu varijable Z cˇitamo iz razdiobe vektora (X, Y) , nikako iz marginalnih razdioba varijabli X i Y , poˇsto ove nisu nezavisne.) Varijabla W poprima vrijednosti −1 , 0 , 1 : 5 P (W = −1) = P (X = −1, Y = 1) + P (X = 1, Y = −1) = , 12 7 , P (W = 0) = P (X = 0) = 24 7 . P (W = 1) = P (X = −1, Y = −1) + P (X = 1, Y = 1) = 24 Dakle, −1 0 1 W ∼ 10 7 7 . 24
24
24
Zadatak 3.3. Odredi razdiobu vektora (W, Z) iz prethodnog zadatka.
Vektor (W, Z) uzima samo pet vrijednosti: P (Z = −2, W = 1) = P (X = −1, Y = −1) = P (Z = −1, W = 0) = P (X = 0, Y = −1) =
1 , 6
1 , 6
P (Z = 0, W = −1) = P (X = −1, Y = 1) + P (X = 1, Y = −1) = 1 , 8 1 P (Z = 2, W = 1) = P (X = 1, Y = 1) = . 8 Tako dobivamo razdiobu vektora (W, Z) : P (Z = 1, W = 0) = P (X = 0, Y = 1) =
Z −2 W −1 0
−1
0
1
2
0
5 12
0
0
0
0
1 6
0
1 8
0
1
1 6 1 6
0
0
0
1 6
5 12
1 8
1 8 1 8
5 12 7 24 7 24
1
5 , 12
ˇ 3.4. RIJE SENI ZADATCI
109
Zadatak 3.4. Adrese na n pisama napisane su na sre´cu. Neka je Xn broj pisama koja su otiˇsla na toˇcnu adresu. Izraˇcunaj E(Xn ) i D(Xn) .
Izraˇcunati c´emo E(Xn) i D(Xn ) , ne raˇcunaju´ci razdiobu varijable Xn ! Naime, ona se moˇze napisati u obliku Xn = ξ1 + . . . + ξn , gdje je 1, ako je k–to pismo toˇcno adresirano, ξk = 0, u protivnom sluˇcaju. Sve sluˇcajne varijable ξk imaju istu razdiobu 1 0 ξk ∼ 1 n−1 n
n
ali medusobno nisu nezavisne. Njihovo je oˇcekivanje E(ξk ) = 1n . Stoga je - vrijedi D(ξk ) = 1 − 12 = n−2 1 . Da odredimo E(Xn ) = E(ξk ) = 1 . Takoder, n n n D(Xn ) , potrebno je joˇs znati E(ξk ξl ) , za k = l . Kako ta varijabla poprima samo dvije vrijednosti, 0 i 1, dovoljno je odrediti P(ξk ξl = 1) = n(n1−1) , te je i E(ξk ξl ) = n(n1−1) . Zato 1 1 1 cov(ξk , ξl ) = = 2 − . n(n − 1) n2 n (n − 1) Konaˇcno dobivamo n n−1 1 n D(Xn) = D(ξk ) + 2 cov(ξk , ξl ) = +2 = 1. 2 2 n n (n − 1) k=1
k
Zadatak 3.5. Bacamo dvije kocke. Definirajmo sluˇcajne varijable
X = ve´ci od brojeva na kockama, Y = manji od brojeva na kockama, Z = zbroj brojeva na kockama. Odredi zakon razdiobe, oˇcekivanje i disperziju ovih sluˇcajnih varijabli. a) Vrijednosti sluˇcajne varijable X na elementarnim dogadajima su X 1 2 3 4 5 6 1 1 2 3 4 5 6 2 2 2 3 4 5 6 3 3 3 3 4 5 6 4 4 4 4 4 5 6 5 5 5 5 5 5 6 6 6 6 6 6 6 6 Zato je njen zakon razdiobe 1 2 3 4 5 6 X ∼ 1 3 5 7 9 11 36 36
Sada dobivamo
36 36 36
36
1 3 11 +2· + ... + 6 · = 4.47, 36 36 36 3 11 1 +4· + . . . + 36 · − 4.472 = 1.97. D(X) = 1 · 36 36 36 E(X) = 1 ·
110
ˇ 3. DISKRETNE SLU CAJNE VARIJABLE I VEKTORI
b) Zakon razdiobe varijable Y dobivamo na sliˇcan naˇcin 1 2 3 4 5 6 Y ∼ 11 9 7 5 3 1 36 36
36 36
36 36
te je E(Y) = 2.53 , D(Y) = 1.97 . - dobic) Ispisavˇsi vrijednosti sluˇcajne varijable na svih 36 elementarnih dogadaja vamo razdiobu varijable Z 2 3 4 5 6 7 8 9 10 11 12 Z∼ 1 2 3 4 5 6 5 4 3 2 1 . 36
36 36
36 36
36 36 36
36
36
36
- vrijedi (Jednostavnije je obrnuti postupak i upitati se za koliko elementarnih dogadaja (Z = k) , za sve mogu´ce vrijednosti k koje poprima varijabla Z .) Sada raˇcunamo 1 2 1 E(Z) = 2 · +3· + . . . + 12 · = 7, 36 36 36 2 1 1 +9· + . . . + 14 · − 72 = 5.83. D(Z) = 4 · 36 36 36 Samo oˇcekivanje i disperziju moˇzemo dobiti jednostavnije. Definirajmo nezavisne sluˇcajne varijable: X1 = broj na prvoj kocki, X2 = broj na drugoj kocki. Oˇcigledno su X1 i X2 identiˇcki distribuirane, ali i nezavisne sluˇcajne varijable, s razdiobom 1 2 3 4 5 6 X1 , X2 ∼ 1 1 1 1 1 1 6
6
6
6
6
6
Izraˇcunajmo njihovo oˇcekivanje i disperziju: 1 1 1 + 2 · + . . . + 6 = 3.5, 6 6 6 1 1 1 D(X1) = D(X2 ) = 1 · + 4 · + . . . + 36 − 3.52 = 2.92. 6 6 6
E(X1) = E(X2 ) = 1 ·
Kako je Z = X1 + X2 , to dobivamo E(Z) = E(X1 ) + E(X2 ) = 7, D(Z) = D(X1 ) + D(X2 ) = 5.83.
Zadatak 3.6. Sluˇcajna varijabla X poprima samo cijele pozitivne vrijednosti. Po-
kaˇzi da vrijedi
E(X) =
∞
n=1
P (X n).
ˇ 3.4. RIJE SENI ZADATCI
∞
111
P (X n) =
n=1
∞ ∞
P (X = k)
n=1 k=n
=
∞ k
P (X = k) =
k=1 n=1
∞
kP (X = k) = E(X).
k=1
Primjer 3.13. Ispravan novˇci´c bacamo dok se grb ne pojavi po drugi put. Neka sluˇcajna varijabla X oznaˇcava broj bacanja. Izraˇcunaj E(X) te vjerojatnost da se pokus zavrˇsi u prvih pet bacanja.
Mogu´ci ishodi i pripadne vjerojatnosti su elem. dogadaj vrijednost od X GG X=2 GPG X=3 PGG .. . ⎧ GP . . . PG ⎪ ⎪ ⎪ ⎨ PG . . . PG X=n .. ⎪ . ⎪ ⎪ ⎩ PP . . . GG .. .
vjerojatnost 1 4
2·
1 8
(n − 1) ·
1 2n
Prema tome, oˇcekivanje iznosi E(X) =
∞
n(n − 1)
n=2
1 . 2n
Da bismo sumirali ovaj red, definirajmo funkciju ∞ xn x2 1 x2 f (x) = = · = , −2 < x < 2. 2n 22 1 − x 2(2 − x) n=2 2 Ovaj red konvergira uniformno na svakom zatvorenom podintervalu intervala (−2, 2) i tu se moˇze derivirati cˇlan po cˇlan: ∞ 4x − x2 xn−1 = n· n , f (x) = 2 2(2 − x) 2 n=2 f (x) =
∞
4 xn−2 = n(n − 1) . (2 − x)3 2n n=2
Dobiveni redovi konvergiraju na istom intervalu (−2, 2) . Uvrˇstavaju´ci toˇcku x = 1 dobivamo ∞ 1 f (1) = 4 = n(n − 1) n = E(X). 2 n=2
112
ˇ 3. DISKRETNE SLU CAJNE VARIJABLE I VEKTORI
Vjerojatnost da c´e pokus zavrˇsiti u prvih pet bacanja je 1 1 1 1 13 P (X 5) = + 2 · + 3 · +4· = . 4 8 16 32 16 Primjer 3.14. Dva igraˇca bacaju naizmjeniˇcno novˇci´c dok se ne pojavi pismo. Pobjednk dobiva sumu novca koja je jednaka broju bacanja. Da li je bolje igrati kao prvi ili kao drugi igraˇc?
Neka je X1 sluˇcajna varijabla: dobitak prvog igraˇca, X2 : dobitak drugog igraˇca. Moramo odrediti njihova oˇcekivanja. Ovaj se pokus sastoji od prebrojivo mnogo elementarnih dogadaja. Odredimo vjerojatnost svakog od njih i vrijednosti sluˇcajnih varijabli. elem. dogadaj
vjerojatnost
X1
X2
P
1 2 1 4 1 8 1 16
1
0
0
2
3
0
0
4
GP GGP GGGP .. . Zakoni razdioba varijabli X1 i X2 su 1 3 5 ... X1 ∼ 1 1 1 . . . , 2 23 25
X2 ∼
Oˇcekivani dobitak prvog igraˇca je E(X1 ) = ∞ x2n+1 x = · 2n+1 2 2
2 4 6 ... 1 1 1 22 24 26 . . .
.
∞ 1 (2n + 1) 2n+1 . Definirajmo 2 n=0
1
2x , 4 − x2
−2 < x < 2. x 1− 4 ˇ Cim je |x| < 2 red se moˇze derivirati cˇlan po cˇlan: ∞ x2n 2(4 + x2 ) (2n + 1) 2n+1 = . f (x) = 2 (4 − x2 )2 n=0 f (x) =
2
=
n=0
Uvrstimo x = 1
f (1) =
∞ 2n + 1
n=0
22n+1
=
10 = E(X1). 9
Analogno moˇzemo izraˇcunati E(X2) =
∞ 2n 8 = . 2n 2 9
n=0
Stoga je bolje igrati kao prvi igraˇc.
ˇ 3. ZADATCI ZA VJE ZBU
113
Zadatak 3.7. Pokaˇzi da je funkcija
3 + cos t 4 karakteristiˇcna funkcija i odredi pripadnu razdiobu.
ϑ (t) =
3 1 eit + e−it 3 + cos t = + · = 18 e−it + 34 eit0 + 18 eit . 4 4 4 2 Dakle, ϑ je karakteristiˇcna funkcija diskretne sluˇcajne varijable X s razdiobom −1 0 1 X∼ . 1 3 1 8
4
8
§ 3. Zadatci za vjeˇzbu
1. U urni se nalazi n kuglica, od kojih je samo jedna bijela. Izvlaˇcimo na sre´cu jednu po jednu kuglicu iz urne (bez vra´canja). Neka X oznaˇcava pokuˇsaj u kojem je izvuˇcena bijela kuglica. Odredi razdiobu od X . 2. Iz skupa (1, 2, . . . , n) izvlaˇcimo na sre´cu (odjednom) tri broja. Neka sluˇcajna varijabla X poprima vrijednost najve´ceg od ta tri broja. Odredi razdiobu od X . 3. Urna sadrˇzi N kuglica, oznaˇcenih brojevima od 1 do N . Na sre´cu biramo n kuglica, s vra´canjima. Neka je X najve´ci broj koji je pri tom izvuˇcen. Izraˇcunaj razdiobu varijable X . 4. Zadan je zakon razdiobe diskretne sluˇcajne varijable ” “ −2 −1 0 1 2 X ∼ 0.2 0.1 0.4 0.1 0.2 Izraˇcunaj E(X) i D(X) . 5. Sluˇcajna varijabla X poprima vrijednosti x = (n − 1)2 , n ∈ N , s vjerojatnostima 2−n . n ln 2 Izraˇcunaj oˇcekivanje varijable X . P (X = (n − 1)2 ) =
6. Igraˇc baca jednu kocku. Ako se pojavi broj 6 ima pravo bacati ponovo, ali samo joˇs jedanput. Sluˇcajna varijabla X jednaka je rezultatu prvog bacanja, odnosno zbroju dvaju bacanja ukoliko je kocka baˇcena dvaput. Izraˇcunaj oˇcekivanje i standardnu devijaciju varijable X . 7. Igraˇc baca 5 kocaka zˇ ele´ci posti´ci sˇ to viˇse jedinica. Nakon prvog bacanja, sve kocke koje ne pokazuju na broj 1 baca ponovo. Izraˇcunaj oˇcekivani broj jedinica dobivenih u oba bacanja. 8. Neka je X ve´ci od dva na sre´cu odabrana broja iz skupa (1, 2, . . . , n) . (Isti broj moˇze biti izabran dva puta). Izraˇcunaj oˇcekivanje E(X) . - 6 crvenih i 4 plave kuglice na sre´cu se 9. Izmedu biraju tri. Izraˇcunaj oˇcekivanje broja plavih kuglica. ˇ 10. Covjek ima pet kljuˇceva, od kojih samo jedan otvara vrata njegovog stana. Kljuˇcevi su sliˇcnog oblika pa ih on ne razlikuje. Da bi otvorio vrata, on isprobava kljuˇceve jedan za drugim, s tim da kljuˇc koji ne odgovara nakon pokuˇsaja odvaja, da ga ne bi ponovo isprobavao. Koliki je oˇcekivani broj pokuˇsaja? 11. Na raspolaganju nam je jedno grlo za zˇ arulje i ukupno 6 zˇ arulja, od kojih su 2 ispravne i 4 neisˇ pravne. Zarulje isprobavamo jednu za drugom, do pojave svjetlosti. Koliko je oˇcekivanje broja pokusˇ aja?
114
ˇ 3. DISKRETNE SLU CAJNE VARIJABLE I VEKTORI
12. Sluˇcajna varijabla X poprima vrijednosti u skupu (0, 1, 2, . . . , n, . . .) s vjerojatnostima koje opadaju po geometrijskom nizu. - vezu izmedu - E(X) i D(X) . a) Nadi b) Ako je E(X) = a , izraˇcunaj P (X = k) . 13. Tri osobe bacaju novˇci´c jedna za drugom. Pob- onaj koji prvi dobije grb. Kolika je vjerojatjeduje nost da c´e pobijediti prvi igraˇc? Koliko je oˇcekivanje broja bacanja? ∗∗∗ 14. Pokus, koji se sastoji u bacanju novˇci´ca n puta, ponovimo dvaput. Izraˇcunaj vjerojatnost da c´e se broj grbova podudarati u oba pokusa. 15. X i Y su nezavisne sluˇcajne varijable koje poprimaju vrijednosti u skupu (0, 1, . . . , n) , pri cˇemu je 1 P (X = i) = P (Y = i) = . n+1 Odredi razdiobu sluˇcajne varijable Z = X + Y . 16. Neka su X i Y nezavisne sluˇcajne varijable, s vrijednostima u skupu N , te E(X) < ∞ . Dokaˇzi da vrijedi E(min(X, Y)) =
∞ X
20. Bacamo dvije kocke. Sluˇcajna varijabla Xk poprima vrijednost 1 ako se u k–tom bacanju pojave razliˇciti brojevi, a vrijednost 0 ako su oba broja u k–tom bacanju jednaka. Definirajmo Y = X1 + . . . + Xn . Odredi oˇcekivanje, disperziju varijable Y te vjerojatnost dogadaja (0 Y 2) . 21. Sluˇcajne varijable X1 , X2 , . . . su nezavisne i jednako distribuirane, “ ” −1 0 1 Xk ∼ 1/4 1/2 1/4 . Neka je X = X1 + . . . + Xn . Odredi prva tri momenta E(X m ) , m = 1, 2, 3 . 22. Baca se kocka. Sluˇcajna varijabla X poprima vrijednost koja je tri puta ve´ca od broja okrenutog na kocki, dok sluˇcajna varijabla Y poprima vrijednost 3 kad je broj okrenut na kocki ve´ci od 2 , a vrijednost 0 kad okrenuti broj nije ve´ci od 2 . Izraˇcunaj disperziju sluˇcajne varijable Z = X + Y . 23. Baca se kocka. Sluˇcajna varijabla X poprima vrijednost koja je jednaka kvadratu broja okrenutog na kocki, dok sluˇcajna varijabla Y poprima vrijednost −1 kad je broj okrenut na kocki 2 , a vrijednost +1 kad je on > 2 . Izraˇcunaj disperziju sluˇcajne varijable Z = X + Y . 24. Razdioba vjerojatnosti dvodimenzionalnog slucˇajnog vektora (X, Y) zadana je tablicom
P (X i)P (Y i).
i=1
17. Sluˇcajna varijabla X poprima samo cjelobrojne nenegativne vrijednosti. Dokaˇzi da je E(X [k] ) = k
∞ X
n[k−1] P (X > n)
X 0 1 2 3
Y
0 1/8 1/8 0 0
1 0 1/8 1/8 1/4
2 0 0 0 1/4
- koeficijent korelacije r . Nadi
n=1 [k]
za proizvoljan cjelobrojni k 2 . (Ovdje je x x(x − 1) · · · (x − k + 1). )
=
18. Biramo dva broja iz skupa (1, 2, . . . , n) (isti broj moˇze biti izabran dva puta). Kolika je vjerojatnost da njihov zbroj ne´ce biti ve´ci od n ? Kolika je oˇcekivana vrijednost tog zbroja? ∗∗∗ 19. X i Y su nezavisne diskretne sluˇcajne varijable sa zakonom razdiobe: 1 1 P (X = n) = · , n = 0, 1, 2, . . . e n! n 1 2 , n = 0, 1, 2, . . . P (Y = n) = 2 · n! e Odredi razdiobu sluˇcajne varijable Z = X + Y te izraˇcunaj njeno oˇcekivanje i disperziju.
25. Baca se kocka. Sluˇcajna varijabla X poprima vrijednost koja je dva puta ve´ca od broja okrenutog na kocki, dok sluˇcajna varijabla Y poprima vrijednost 1 kad je broj okrenut na kocki neparan, a vrijednost 3 kad je okrenuti broj paran. Odredi disperziju sluˇcajne varijable Z = X + Y . 26. Iz skupa od tri broja S = (1, 2, 3) na sre´cu biramo 2 broja. Ako su izvuˇceni brojevi i, j ∈ S , sluˇcajnu varijablu X definiramo sa X = max(i, j) , a sluˇcajnu varijable Y sa Y = min(i, j) . Jesu li varijable X i Y korelirane, i ako jesu, izraˇcunaj pripadni koeficijent korelacije r(X, Y) .
ˇ 3. ZADATCI ZA VJE ZBU
115
27. Baca se kocka. Sluˇcajna varijabla X poprimi vrijednost +1 ako je okrenuti broj paran, a vrijednost −1 ako je okrenuti broj neparan, dok sluˇcajna varijabla Y poprimi vrijednost +1 kad je broj okrenut na kocki 3 , a vrijednost −1 kad je okrenuti broj > 3 . Izraˇcunaj disperziju D(Z) sluˇcajne varijable Z = X − Y . 28. Kod bacanja dviju kocaka sluˇcajna varijabla X poprima vrijednost maksimuma, a sluˇcajna varijabla Y vrijednost minimuma okrenutih brojeva. Jesu li varijable X i Y korelirane; ako jesu odredi koeficijent korelacije r(X, Y) . 29. Zadana je razdioba diskretnog sluˇcajnog vektora (X, Y) : Y X −1 0 1
0 1/4 1/6 1/8
1 1/6 1/8 1/6
Odredi razdiobu sluˇcajnog vektora (Z, T) , ako je Z = 2X + Y , T = 2X − Y . 30. Baca se kocka. Sluˇcajna varijabla X poprima vrijednost koja je jednaka dvostrukom broju od broja okrenutog na kocki, dok sluˇcajna varijabla Y poprima vrijednost 0 kad je broj okrenut na kocki paran, a vrijednost 1 kad je okrenuti broj neparan. Izraˇcunaj koeficijent korelacije r(X, Y) . ∗∗∗ 31. Sluˇcajna varijabla X poprima vrijednosti u skupu (−2, −1, 0, 1, 2) s jednakim vjerojatnostima. Odredi njenu karakteristiˇcnu funkciju.
32. Diskretna sluˇcajna varijabla X ima jednoliku razdiobu na skupu S = (1, 3, 5, . . . , 2n+1) . Odredi njenu karakteristiˇcnu funkciju. 33. Diskretna sluˇcajna varijabla X definirana je sljede´com razdiobom vjerojatnosti P (X = x) = 0.5|x| , x = . . . , −4, −2, 1, 3, 5 . . . - oˇcekivanje Koriste´ci karakteristiˇcnu funkciju nadi od X . 34. Odredi karakteristiˇcnu funkciju geometrijske razdiobe, dane sa P(X = k) = p(1−p)k , k = 0, 1, 2, . . . i na temelju toga izraˇcunaj njeno oˇcekivanje. ∗∗∗ 35. Pokaˇzi da je 1 + cos3 t 2 karakteristiˇcna funkcija i odredi pripadnu razdiobu. 36. Provjeri da je
ϑ (t) =
ϑ (t) =
1 2
cos t +
1 6
cos 2t +
1 2
cos 3t
karakteristiˇcna funkcija i odredi pripadnu razdiobu. ∗∗∗ 37. Neka je ψ (z) = E(zX ) funkcija izvodnica varijable X . Dokaˇzi da za svaki α > 0 vrijedi „ « Z 1 1 zα −1 ψ (z)dz. E = X+α 0
4.
Primjeri diskretnih razdioba
1. Geometrijska razdioba 2. Binomna razdioba . . . 3. Poissonova razdioba . Zadatci za vjeˇzbu . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
116 119 123 128
U ovom c´emo se poglavlju upoznati s najvaˇznijim diskretnim sluˇcajnim varijablama: geometrijskom, binomnom i Poissonovom. Opisat c´emo pripadne razdiobe, objasniti u kojim se modelima one pojavljuju, izraˇcunati njihove karakteristiˇcne funkcije i pripadne numeriˇcke karakteristike.
4.1. Geometrijska razdioba Neka je pri izvodenju nekog pokusa p vjerojatnost realizacije dogadaja A . Ponavljamo taj pokus u nepromijenjenim uvjetima do prve realizacije tog dogadaja. Neka - A . Onda kaˇzemo sluˇcajna varijabla X mjeri broj pokusa u kojem se realizirao dogadaj da X ima geometrijsku razdiobu s parametrom p i piˇsemo X ∼ G(p) . Odredimo zakon razdiobe ove sluˇcajne varijable. Najprije, X poprima vrijednosti u skupu {1, 2, 3, . . .} . Odredimo vjerojatnost pk = P (X = k). Ako se realizirao dogadaj {X = k} , to znaˇci da se u prvih k − 1 pokusa A nije pojavio, a pojavio se u k -tom pokusu, pa je pk = P (X = k) = p(1 − p)k−1 . Stavimo q := 1 − p . Primjetimo da vrijedi P (X > k) = (1 − p)k = qk
- A nije ostvario u prvih k pokusa. h jer se tada dogadaj 116
4.1. GEOMETRIJSKA RAZDIOBA
117
Karakteristiˇcna funkcija, oˇcekivanje i disperzija
Odredimo najprije karakteristiˇcnu funkciju geometrijske razdiobe: ∞ ∞ peit ϑ (t) = eitk · pqk = peit (qeit )k = . 1 − qeit k=1
k=0
Iskoristimo tu funkciju da izraˇcunamo oˇcekivanje ove razdiobe. Vrijedi ipeit ϑ (t) = (1 − qeit )2 pa je E(X) = −iϑ (0) =
p 1 = . (1 − q)2 p
Dakle, oˇcekivanje je jednako reciproˇcnoj vrijednosti parametra — vjerojatnosti p . Taj je rezultat u skladu s iskustvom. Pri bacanju jedne kocke, vjerojatnost pojavljivanja sˇ estice jednaka je p = 16 . Broj bacanja kocke do pojave sˇ estice mjeri sluˇcajna varijabla koja ima geometrijsku razdiobu. Oˇcekivani broj ponavljanja jednak je E(X) = 1/p = 6 . Kolika je vjerojatnost da c´e se sˇ estica zaista pojaviti u tih prvih sˇ est bacanja? Odgovor na to pitanje daje zakon razdiobe sluˇcajne varijable: 6 5 P (X 6) = 1 − P (X > 6) = 1 − = 0.665 . 6 ∗∗∗ Odsustvo pam´cenja — temeljno svojstvo geometrijske razdiobe Teorem 4.1. Sluˇcajna varijabla X koja poprima vrijednosti u skupu {1, 2, 3, . . .} ima geometrijsku razdiobu onda i samo onda ako vrijedi za sve k, m 1 P (X = k + m | X > k) = P (X = m). (1)
Dokaz. Jedan je smjer jednostavan: ako X ima geometrijsku razdiobu, onda je P (X = k + m, X > k) P (X = k + m) P (X = k + m | X > k) = = P (X > k) P (X > k) k+m−1 p(1 − p) = = p(1 − p)m−1 = P (X = m). (1 − p)k Pokaˇzimo obrat. Iz (1) slijedi, zbrajanjem svih nejednakosti po prirodnim brojevima ve´cim od m : P (X > k + m | X > k) = P (X > m). Uvjetna vjerojatnost na lijevoj strani moˇze se napisati u obliku: P (X > k + m, X > k P (X > k + m) P (X > k + m | X > k) = = . P (X > k) P (X > k)
118
4. PRIMJERI DISKRETNIH
RAZDIOBA
Tako smo dobili identitet P (X > k + m) = P (X > k)P (X > m). To znaˇci da funkcija Q(k) := P (X > k) zadovoljava funkcionalnu jednadˇzbu Q(k + m) = Q(k)Q(m), ∀k, m 0. (2) Nadalje, vrijedi Q(0) = P (X > 0) = 1 , Q(1) = P (X > 1) = 1 − p =: q . Stavimo u (2) k = 1 : Q(m + 1) = Q(1)Q(m) =⇒ Q(m + 1) = q · Q(m). Iteriraju´ci ovu relaciju dobivamo Q(k) = qk Q(0) = qk . Dakle, P(X > k) = qk . Zato je P (X = k) = P (X > k − 1) − P (X > k) = qk−1 − qk = (1 − q)qk−1 = pqk−1 . Time smo dokazali tvrdnju. ∗∗∗ Na sˇ to ovaj teorem ukazuje? Rekli smo da X mjeri broj realizacija pokusa do pojavljivanja nekog dogadaja. Ako promatramo bacanje kocke i sˇ estica se nije pojavila u prvih pet bacanja, Kolika je vjerojatnost da c´e se ona pojaviti u sljede´ca dva bacanja? Koliki je oˇcekivani broj bacanja do pojave sˇ estice u tom trenutku? Odgovori na ova pitanja su: ista (isti) kao i na poˇcetku bacanja. Niti se mijenjaju vjerojatnosti, niti se mijenja oˇcekivani broj bacanja. Ako se sˇ estica nije pojavila u prvih pet bacanja, oˇcekivani broj (novih) bacanja do njezine pojave je opet jednak 6. Kaˇzemo da geometrijska razdioba nema pam´cenje. Pokusi sa dva nezavisna obiljeˇzja
- A1 i Pretpostavimo da pri realizaciji pokusa promatramo dva nezavisna dogadaja A2 . Pokus ponavljamo do realizacije bilo kojeg od njih. Opiˇsimo ovaj pokus koriste´ci aparat sluˇcajnih varijabli. - A1 . Ona ima geometrijsku Neka sluˇcajna varijabla X1 prati pojavljivanje dogadaja razdiobu s parametrom p1 = P (A1 ) . A2 ima Na isti naˇcin, sluˇcajna varoijabla X2 koja biljeˇzi realizaciju dogadaja geometrijsku razdiobu s parametrom p2 = P (A2 ) . Te dvije sluˇcajne varijable su nezavisne, jer su A1 i A2 nezavisni. Sluˇcajna varijabla X koja registrira prvo pojavljivanje bilo kojeg od ovih dogadaja moˇze se zapisati formulom X = min(X1 , X2 ) . Dokazat c´emo da ona ima takoder geometrijsku razdiobu i odrediti njezin parametar. Vrijedi, zbog nezavisnosti P (X > k) = P (X1 > k, X2 > k) = P (X1 > k)P (X2 > k) = qk1 qk2 =: qk gdje je q = q1 q2 . Zato P (X = k) = P (X > k − 1) − P (X > k) = qk−1 − qk = pqk−1
4.2. BINOMNA
119
RAZDIOBA
te X ima geometrijsku razdiobu s parametrom p = 1 − q = 1 − (1 − p1 )(1 − p2 ) . Korisno je izraˇcunati vjerojatnost dogadaja A = A1 ∪ A2 i usporediti s ovim rezultatom. Primjer 4.1. Izlazna centrala poduze´ca ima N linija. U jednom trenutku, sve su linije zauzete. Duljina razgovora, mjerena u jedinicama vremena, ima geometrijsku razdiobu s oˇcekivanjem μ . Izraˇcunaj oˇcekivano vrijeme do prve slobodne linije.
Neka su X1 , . . . , Xn duljine razgovora preko pojedinih linija. Tad je X = 1 min{X1 , . . . , Xn } . Ako je p parametar geometrijske razdiobe, onda vrijedi μ = p 1 te je p = . Sluˇcajna varijabla X ima i sama geometrijsku razdiobu s parametrom μ 1 − qN . Njezino je oˇcekivanje 1 1 E(X) = = . N 1 N 1−q 1− 1− μ μ Za veliki μ , pribliˇzna vrijednost ovog oˇcekivanja je . N U interpretaciji ovog rezultata treba biti vrlo oprezan. Nije svejedno u kojim se jedinicama mjeri vrijeme. Uzmemo li da je na primjer μ = 120 sekunda, dobit c´emo potpuno razliˇcite rezultate od pretpostavke μ = 2 minute. Evo tablica vrijednosti oˇcekivanja E(X) za razne vrijednosti broja N : N μ = 120 sec μ = 2 min
1 120 2.00
2 60.3 1.33
3 40.3 1.14
4 30.4 1.07
5 24.4 1.03
6 20.4 1.02
7 17.6 1.01
8 15.4 1.00
9 13.8 1.00
10 12.5 1.00
Zbog cˇega dolazi do ovako razliˇcitih rezultata?
4.2. Binomna razdioba Vjerojatno najvaˇznija diskretna razdioba jest binomna. Neka je p vjerojatnost realizacije dogadaja A pri izvodenju nekog pokusa. Pretpostavimo da istovjetan pokus ponavljamo n puta. Neka sluˇcajna varijabla X mjeri broj - A . Onda kaˇzemo da X ima binomnu razdiobu s parametrima pojavljivanja dogadaja n i p i piˇsemo X ∼ B(n, p) . X poprima vrijednosti u skupu {0, 1, 2, . . . n} . Odredimo pk = P (X = k) . - {X = k} , to znaˇci da se u n pokusa A ostvario toˇcno Ako se realizirao dogadaj k puta, a n − k puta se nije ostvario. Broj razliˇcitih mogu´cnosti za odabir pokusa u n kojima se A ostvario je . Zato je k n k pk = P (X = k) = p (1 − p)n−k . k Uobiˇcajeno je oznaˇciti q := 1 − p .
120
4. PRIMJERI DISKRETNIH
RAZDIOBA
Pn P= 1 2
P< 1 2
n
m
Sl. 4.1. Razdioba binomne sluˇcajne varijable, za p < (desno).
1 2
(lijevo) i u simetriˇcnom sluˇcaju p =
1 2
ˇ je vjerojatnije u igri s ravnopravnim protivnikom: dobiti 3 partije Primjer 4.2. Sto od 4 ili 5 partija od 8? (Igra nema nerijeˇsenog ishoda.) Broj dobivenih partija ravna se po binomnoj razdiobi. U prvom sluˇcaju to je zakon B(4, 12 ) , a u drugom sluˇcaju B(8, 12 ) . Zato imamo 1 1 8 4 P {3 partije od 4} = · 3· = , 3 2 2 32 1 1 7 8 . P {5 partija od 8} = · 5· 3 = 5 2 2 32 Primjer 4.3. Pokus se sastoji u bacanju triju kocki. Izraˇcunaj vjerojatnost da se u 10 nezavisnih pokusa 4 puta pojave toˇcno 2 jedinice. - { pri bacanju triju kocaka pojavile su se toˇcno 2 Oznaˇcimo s A dogadaj jedinice } . Broj pojavljivanja jedinica je binomna sluˇcajna varijabla B(3, 16 ) , poˇsto se bacaju - A 3 kocke a vjerojatnost pojavljivanja jedinice iznosi 16 . Zato je vjerojatnost dogadaja jednaka 1 2 5 5 3 p = P (A) = = . 2 6 6 72 Broj realizacija dogadaja A pri ponavljanju 10 pokusa je binomna sluˇcajna varijabla B(10, p) . Vjerojatnost da se on pojavi toˇcno 4 puta iznosi 5 4 67 6 10 4 6 10 p q = = 3.17 · 10−3 . 4 4 72 72
Karakteristiˇcna funkcija, oˇcekivanje i disperzija
Odredimo najprije karakteristiˇcnu funkciju binomne razdiobe. Neka je X ∼ B(n, p) . Tada imamo n n n k n−k ϑ (t) = eitk pk = eitk pq k k=0
k=0
n n (peit )k qn−k = (peit + q)n . = k k=0
4.2. BINOMNA
121
RAZDIOBA
Po formuli (7) vrijedi
ϑ (t) = n(peit + q)n−1peit i, ϑ (0) = n(p + q)n−1 pi = npi =⇒ E(X) = np. Na isti naˇcin dobivamo ϑ (0) = n(n − 1)p2 i2 + npi2 = −n(n − 1)p2 − np te je D(X) = −ϑ (0) + ϑ (0)2 = n(n − 1)p2 + np − n2 p2 = np − np2 = npq. Binomna razdioba, definicija i numeriˇcke karakterisike
Kaˇzemo da sluˇcajna varijabla X ima binomnu razdiobu s parametrima n i p i piˇsemo X ∼ B(n, p) , ako X poprima vrijedosti unutar skupa {0, 1, 2, . . . , n} s vjerojatnostima n k pk = P (X = k) = p (1 − p)n−k . k Oˇcekivanje i disperzija binomne razdiobe su mX = np,
σX2 = npq.
Stabilnost binomne razdiobe
Ako su X1 ∼ B(n1 , p) i X2 ∼ B(n2 , p) nezavisne binomne sluˇcajne varijable, onda je X1 + X2 binomna sluˇcajna varijabla. Odredimo njezine parametre. Vrijedi ϑX1 (t) = (q + peit )n1 , ϑX2 (t) = (q + peit )n2 te je zbog nezavisnosti od X1 i X2 ϑX1 +X2 (t) = ϑX1 (t)ϑX2 (t) = (q + peit )n1 +n2 a to je karakteristiˇcna funkcija binomne razdiobe B(n1 + n2 , p) . Ovaj je rezultat prirodan. Rijeˇc je o tome da smo promatrali isti pokus, s time da smo ga podijelili na dvije cjeline: u prvoj smo pokus ponovili n1 puta, a u drugoj n2 puta. Broj realizacija dogadaja A u cijelom pokusu jednak je zbroju tih realizacija u pojedinim cjelinama. Bernoullijeve sluˇcajne varijable
Poseban, najjednostavniji primjer binomne sluˇcajne varijable je Bernoullijeva ili indikatorska sluˇcajna varijabla: ona poprima samo dvije vrijednosti: 1 s vjerojatnoˇsc´u - A u jednom pokusu. p i 0 s vjerojatnoˇsc´u q = 1 − p . Ona biljeˇzi realizaciju dogadaja Ako su Xi Bernoullijeve nezavisne varijable s istim parametrom p , tada je njihov zbroj X1 + X2 + . . . + Xn binomna sluˇcajna varijabla B(n, p) . Ova tvrdnja slijedi zbog svojstva stabilnosti binomnih sluˇcajnih varijabli.
122
4. PRIMJERI DISKRETNIH
RAZDIOBA
Na temelju toga moˇzemo lakˇse izraˇcunati oˇcekivanje i disperziju binomne sluˇcajne varijable. naime, za indikatorsku sluˇcajnu varijablu vrijedi E(Xi ) = 0 · q + 1 · p = p,
D(Xi ) = 02 · q + 12 · p − p2 = pq,
∀i,
pa je, zbog nezavisnosti E(X) = E(X1 ) + . . . + E(Xn ) = np, D(X) = D(X1 ) + . . . + D(Xn ) = npq. ∗∗∗ Primjer 4.4. (Najvjerojatnija realizacija) Sluˇcajna varijabla X ima binomnu razdiobu B(n, p) . Koja je najvjerojatnija realizacija sluˇcajne varijable X ?
Traˇzimo takav k za koji je
n k n−k pq k najve´ce. Tada c´e biti p0 p1 . . . pk i pk pk+1 . . . pn . Dovoljno je stoga promatrati dvije nejednakosti pk−1 pk i pk pk+1 i prona´ci k za koji su one ispunjene. Vrijedi n k n−k pq pk q k+1 k = = · n pk+1 p n−k pk+1 qn−k−1 k+1 pk = P (X = k) =
i ovaj kvocijent je ve´ci od 1 ako je q(n − k) p(k + 1) . Odavde dobivamo k (n + 1)p − 1 . Sliˇcno n k n−k pq pk q n−k+1 k = = · 1 n pk−1 p k pk−1 qn−k+1 k−1 daje k (n + 1)p . Prema tome, najvjerojatnija realizacija sluˇcajne varijable B(n, p) je onaj cijeli - (n + 1)p − 1 i (n + 1)p . Ako je (n + 1)p cijeli broj, postoje broj ukljeˇsten izmedu tada dvije takve vrijednosti. Primjer 4.5. Koliko puta moramo baciti kocku da bi najvjerojatniji broj pojavljivanja sˇ estice bio 10?
Neka je n broj bacanja kocke. Broj pojavljivanja sˇ estice u n bacanja je binomna varijabla B(n, 16 ) . Po proˇslom zadatku mora biti 1 1 (n + 1) − 1 10 (n + 1) . 6 6 Dakle, n + 1 66 i n + 1 60 , odnosno, 59 n 65 .
4.3. POISSONOVA RAZDIOBA
123
Zadatak 4.1. Vjerojatnost kvara brodskog motora u toku jednog dana iznosi p . Ukoliko je motor bio u kvaru m puta, vjerojatnost da mora oti´ci u remont jednaka je 1 m P(m) = 1 − 1 − , gdje je ω neki parametar (srednji broj kvarova do odlaska ω broda u remont). Dokaˇzi da je vjerojatnost da c´e brod morati oti´ci na remont nakon n p n . dana plovidbe jednaka Pn = 1 − 1 − ω Neka je Pn,m vjerojatnost da c´e u toku n dana motor biti u kvaru m puta. Po formuli potpune vjerojatnosti, dobivamo n Pn = Pn,m P(m). m=0
Vjerojatnost kvara u toku svakog dana jednaka p . Broj kvarova unutar n dana ravna se po binomnoj razdiobi. Zato je vjerojatnost Pn,m dana sa n m Pn,m = p (1 − p)n−m . m Uvrˇstavanjem u gornju formulu dobivamo n 1 m n m p (1 − p)n−m 1 − 1 − Pn = m ω m=0
n n p m n m n n−m = p (1 − p) p− − (1 − p)n−m m m ω m=0 m=0 n p p n =1− p− +1−p =1− 1− . ω ω
4.3. Poissonova razdioba Poissonovu razdiobu moˇzemo dobiti kao graniˇcni sluˇcaj binomne, kad broj pokusa - zamjenjuje intenzitet neograniˇceno raste. Ulogu vjerojatnosti p pojavljivanja dogadaja λ pojavljivanja dogadaja. Promotrimo sljede´ci primjer. Unutar smjese od koje c´e se ispe´ci m = 25 kolaˇci´ca stavljeno je n = 100 zrna groˇzdica. Neka je X sluˇcajna varijabla: broj zrna unutar jednog kolaˇcica. Kakva je razdioba sluˇcajne varijable X ? Pretpostavljamo da se svako zrno moˇze neovisno jedno o drugom na´ci s jednakom - unutar jednog vjerojatnoˇsc´u unutar bilo kojeg kolaˇci´ca. Vjerojatnost da se zrno nade 1 odabranog kolaˇci´ca je p = . Broj zrna unutar tog kolaˇci´ca je binomna sluˇcajna m 1 varijabla s parametrima n i p = . m Primjetimo da je oˇcekivani broj zrna unutar jednog kolaˇci´ca jednak E(X) = np = n . Oznaˇcimo tu veliˇcinu s λ . Ona oznaˇcava intenzitet pojavljivanja zrna unutar nekog m kolaˇci´ca.
124
4. PRIMJERI DISKRETNIH
RAZDIOBA
Model sliˇcan ovom pojavljuje se pri promatranju broja poziva koji c´e sti´ci na neku telefonsku centralu u nekoj jedinici vremena. Ako za m = 25 minuta na centralu stigne u prosjeku n = 100 poziva, tada je broj poziva unutar jedne minute — baˇs kao u prijaˇsnjem primjeru s groˇzdicama — binomna razdioba s parametrima n = 100 , 1 p= . Primjetimo da je oˇcekivani broj poziva λ = 4 . 25 - ova dva primjera jest u tome sˇ to je broj groˇzdica - bio unaprijed Razlika izmedu poznat, i ograniˇcen odozgo. Ukupan broj poziva u drugom primjeru nije poznat, ve´c je dan kao statistiˇcka veliˇcina. Sasvim je razumno pretpostaviti, barem u teoriji, da taj broj nije ograniˇcen odozgo. Od binomne razdiobe prema Poissonovoj
Aproksimacija binomne razdiobe Teorem 4.2. Neka je n velik a p malen. Oznaˇcimo λ = np . tad vrijedi
aproksimacija
λ k −λ n k n−k ≈ e . pq k k!
1 i transformirajmo izraz slijeva: p 1 k 1 n−k n k n 1− p (1 − p)n−k = k k m m n Sada je λ = np = . Pustimo da broj n neograniˇceno raste: m λ k λ n−k λ n−k 1 n(n − 1) · · · (n − k + 1) k n 1− 1 − = λ k n n k! nk n k − 1 k λ n−k 1 1 ··· 1 − = λ 1− ·1· 1− k! n n n λ k −λ → e . k! Dokaz. Oznaˇcimo m =
Greˇska koja se cˇini ovakvom aproksimacijom pribliˇzno je jednaka izrazu rn (k) = sˇ to ne´cemo ovdje dokazivati.
k − (k − np)2 kp2 + , 2n 2
(1)
4.3. POISSONOVA RAZDIOBA
125
Poissonova razdioba, definicija i numeriˇcke karakteristike
Kaˇzemo da sluˇcajna varijabla X ima Poissonovu razdiobu s parametrom λ > 0 i piˇsemo X ∼ P(λ ) ako ona poprima vrijednosti unutar skupa {0, 1, 2, . . .} s vjerojatnostima
λ k −λ e . k! Za oˇcekivanje i disperziju ove razdiobe vrijedi pk = P (X = k) =
σX2 = λ .
mX = λ ,
Pn
n
Sl. 4.2. Razdioba Poissonove sluˇcajne varijable
Karakteristiˇcna funkcija, oˇcekivanje i disperzija
Odredimo najprije karakteristiˇcnu funkciju Poissonove razdiobe P(λ ) . ∞ ∞ it it λk (λ eit )k ϑ (t) = eitk e−λ = e−λ = e−λ eλ e = eλ (e −1) . k! k! k=0
k=0
Odavde, na temelju veze karakteristiˇcne funkcije i momenata sluˇcajne varijable, dobivamo E(X) = λ , D(X) = λ . Primjer 4.6. U telefonskoj centrali tijekom jednog sata bilo je 240 poziva. Odredi vjerojatnost da tijekom jedne minute a) nije bilo nijednog poziva, b) bilo je barem dva poziva.
Neka je X sluˇcajna varijabla: broj poziva u jednoj (bilo kojoj) minuti. To je Poissonova varijabla s intenzitetom λ koji je jednak oˇcekivanoj vrijednosti, λ = 240 60 = 4 .
λ 0 −λ e = e−4 = 0.018, 0! P (X > 2) = 1 − P (X = 0) − P (X = 1) = 1 − e−4 − 4e−4 = 0.908. P (X = 0) =
Stabilnost Poissonove razdiobe
Ako su X1 ∼ P(λ1 ) i X2 ∼ P(λ2 ) nezavisne sluˇcajne varijable, onda je X1 + X2 - Poissonova sluˇcajna varijabla. Dokaˇzimo tu tvrdnju i odredimo parametar ove takoder razdiobe.
126
4. PRIMJERI DISKRETNIH
RAZDIOBA
Karakteristiˇcna funkcija Poissonove razdiobe je it
ϑXk (t) = eλk (e te slijedi
−1)
k = 1, 2
,
it
ϑX1 +X2 = e(λ1 +λ2 )(e
−1)
sˇ to je karakteristiˇcna funkcija Poissonove razdiobe P(λ1 + λ2 ) . ∗∗∗ Zamislimo li varijablu X1 kao broj poziva na prvi telefon centrale nekog poduze´ca, a X2 kao broj poziva na drugi telefon, tada, po gornjem, ukupan broj poziva ima takoder Poissonovu razdiobu. Ako je poznata vrijednost tog zbroja, pogledajmo sˇ to se moˇze re´ci o vrijednostima pojedinih varijabli. Primjer 4.7. Neka su X1 i X2 nezavisne sluˇcajne varijable, s Poissonovim zakonom P(λ1 ) , odnosno P(λ2 ) . Poznato je da je njihov zbroj X1 +X2 poprimio vrijednost n . Dokaˇzi da je tada vrijednost od X1 rasporedena po binomnom zakonu s parametrima λ1 n i p= , tj. λ1 + λ2 n k n−k pq . P (X1 = k | X1 + X2 = n) = k
Jednostavni raˇcun daje P (X1 =k | X1 + X2 = n) =
P (X1 = k, X2 = n − k) P (X1 + X2 = n)
λ1k −λ1 λ2n−k −λ2 k n−k · e e λ λ2 k! (n − k)! n 1 = = . k (λ1 + λ2 )n −λ1 −λ2 λ1 + λ2 λ1 + λ2 e n! Primjer 4.8. Centrala poduze´ca ima dva pozivna broja. Na prvi stiˇze oko 20% poziva viˇse nego na drugi broj. Ako je u protekloj minuti stiglo 5 poziva, kolika je vjerojatnost da je cˇeˇsc´e pozivan prvi broj?
Pozivi na pojedine brojeve su nezavisne Poissonove varijable s parametrima λ1 i λ2 pri cˇemu je λ1 = 1.2λ2 . Iskoristit c´emo rezultat proˇslog zadatka: razdioba varijable X1 uz uvjet X1 + X2 = 5 je binomna, s parametrima n = p i λ1 6 p= = . λ1 + λ2 11 Zato je 6 3 5 2 6 4 5 6 5 5 5 P (X1 3 | X1 + X2 = 5) = + · + = 0.585. 3 11 4 11 11 11 11
4.3. POISSONOVA RAZDIOBA
127
Aproksimacija binomne razdiobe Poissonovom
Za veliko n i maleno p , binomna razdioba B(n, p) moˇze se aproksimirati Poissonovom razdiobom P(np) . Primjer 4.9. Proizvodi neke velike serije, koja sadrˇzi 0.7% sˇ karta, pakiraju se u kutije po 100 komada. Koliki c´e postotak kutija biti bez ijednog sˇ karta, a koliki sa dva ili viˇse sˇ kartova?
Broj sˇ kartnih proizvoda u jednoj kutiji je sluˇcajna varijabla X distribuirana po binomnom zakonu B(100, 0.007) . Zato 100 P (X = 0) = 0.0070 0.993100 = 0.4954, 0 P (X 2) = 1 − P (X = 0) − P (X = 1) 100 = 1 − 0.993100 − 0.007 · 0.99399 = 0.1554. 1 Moˇzemo aproksimirati X ≈ P (0.7) . Jednostavniji raˇcun daje P (X = 0) = e−0.7 = 0.4966, P (X 2) = 1 − e−0.7 − 0.7e−0.7 = 0.1558. Primjer 4.10. Na lovaˇcki zrakoplov ispaljeno je 5000 metaka. Vjerojatnost po- vjerojatnost da c´e metak gotka za svaki metak je 0.001 . Ako je zrakoplov pogoden, prouzroˇciti pad zrakoplova je 0.05 . Izraˇcunaj vjerojatnost da c´e zrakoplov biti sruˇsen.
Neka je X sluˇcajna varijabla: broj pogodaka u zrakoplov. Tada je X ∼ B(5000, 0.001) . Oznaˇcimo - sa k metaka}, Hk = {zrakoplov je pogoden A = {zrakoplov je sruˇsen}. Vrijedi 5000 P (A|Hk )P (Hk ). P (A) = k=1
Pri tom je
P (A|Hk ) = 1 − P (A|Hk ) = 1 − 0.95k - s k metaka jednaka je (vjerojatnost da zrakoplov ne´ce biti sruˇsen ukoliko je pogoden k 0.95 ). 5000 0.001k 0.9995000−k P (Hk ) = P (X = k) = k sˇ to je nepraktiˇcno za daljnji raˇcun. Zato aproksimiramo B(5000, 0.001) ≈ P(5) i dobivamo 5k P (Hk ) = e−5 . k!
128
4. PRIMJERI DISKRETNIH
RAZDIOBA
Sada je P (A) =
5000 k=1 −5
=e
(1 − 0.95k )
5k −5 e k!
5000 k 5
5000 4.75k
k=1 5
k!
−
k=1
k!
= e−5 (e − e4.75 ) = 0.22.
§ 4. Zadatci za vjeˇzbu
1. Sluˇcajne varijable X1 i X2 su nezavisne, distribuirane po geometrijskom zakonu s parametrom q . Dokaˇzi da vrijedi P (X1 = k | X1 + X2 = n) =
1 , n+1
( k = 0, 1, . . . , n ). 2. Neka je X broj pokusa u Bernoullijevoj shemi koje je potrebno izvesti do r -tog pojavljivanja dogadaja A ( r fiksan broj). Dokaˇzi da je „ « n P (X = n) = r − 1 pr qn−r+1 (n r) . Kaˇzemo da X ima negativnu binomnu razdiobu. Provjeri da se za r = 1 dobiva geometrijska razdioba. Izraˇcunaj E(X) i D(X) . 3. U urni se nalazi n kuglica od kojih je samo jedna bijela. Izvlaˇcimo na sre´cu jednu po jednu kuglicu iz urne (bez vra´canja). Neka X oznaˇcava pokuˇsaj u kojem je izvuˇcena bijela kuglica. Odredi razdiobu i oˇcekivanje varijable X . 4. Dokaˇzi: ako je prolaznost studenta na nekom ispitu 40 %, onda je matematiˇcko oˇcekivanje broja izlazaka na dotiˇcni ispit jednako 2.5 . 5. Sluˇcajna varijabla X poprima nenegativne cjelobrojne vrijednosti s vjerojatnostima P (X = n) =
an , (1 + a)n+1
(a > 0)
(Pascalova razdioba). Izraˇcunaj oˇcekivanje i disperziju varijable X .
6. Hipergeometrijska razdioba. U urni se nalazi - kojima je M bijelih. Iz urne uziN kuglica, medu mamo na sre´cu n kuglica. Neka je X broj bijelih - njima. Odredi razdiobu varijable X . medu - kojima je M 7. U urni se nalazi N kuglica, medu bijelih. Izvlaˇcimo na sre´cu n kuglica u modelu a) s vra´canjem b) bez vra´canja Izraˇcunaj oˇcekivanje i disperziju broja bijelih kuglica u oba sluˇcaja. Koja je disperzija manja? ∗∗∗ 8. Pokus se sastoji u bacanju triju kocki. Izraˇcunaj vjerojatnost da se u 5 nezavisnih pokusa 2 puta pojave toˇcno 3 jedinice. 9. Neka je X sluˇcajna varijabla distribuirana po binomnom zakonu B(n, p) . Odredi parametre n i p ako je poznato E(X) = 12 i D(X) = 4 . 10. U krug je upisan jednakostraniˇcni trokut. Izracˇunaj vjerojatnost da c´e se od 10 na sre´cu odabranih toˇcaka unutar kruga barem dvije na´ci unutar trokuta. 11. Sluˇcajna varijabla X ima binomnu razdiobu B(n, p) . Odredi oˇcekivanje i disperziju sluˇcajne varijable Y = e2X+1 . ∗∗∗ 12. Sluˇcajna varijabla X ima Poissonovu razdiobu. Ako vrijedi P (X = 1) = P (X = 2) , izraˇcunaj - {X 4} . oˇcekivanje E(X) i vjerojatnost dogadaja 13. Pretpostavimo da je 220 greˇsaka rasporedeno sluˇcajno unutar knjige od 200 stranica. Odredi vjerojatnost da dana stranica sadrˇzi
ˇ 4. ZADATCI ZA VJE ZBU
a) niti jednu greˇsku, b) jednu greˇsku, c) barem dvije greˇske. - 200 ljudi budu 14. Kolika je vjerojatnost da medu barem 4 ljevaka, ako ljevaka ima prosjeˇcno 1% ? 15. Vjerojatnost pogotka u cilj pri jednom hicu iz- vjerojatnost da od 5000 metaka nosi 0.001 . Nadi barem dva pogode cilj. 16. Stroj proizvodi 99.8% ispravnih i 0.2% neispravnih proizvoda. Kolika je vjerojatnost da u uzorku od 500 proizvoda budu viˇse od tri neispravna? 17. Pri prijemu neke poruke vjerojatnost pogreˇsnog prijema svakog pojedinog znaka iznosi 0.01 . Kolika je vjerojatnost da u primljenoj poruci od 10 znakova a) ne bude nijednog pogreˇsnog znaka, b) budu barem dva pogreˇsna znaka? 18. Sluˇcajna varijabla ima „ Poissonov « zakon s para1 metrom λ . Izraˇcunaj E . 1+X - ima 2000 jednakih dijelova. Vje19. Neki uredaj rojatnost kvara pojedinog dijela je 0.0005 . Kolika je vjerojatnost da c´e se pokvariti viˇse od tri dijela? 20. Ako je vjerojatnost da c´e pacijent pokazati loˇsu reakciju na lijek 0.001 , odredi vjerojatnost da medu 3000 ljudi 5 ili viˇse pokazuje loˇsu reakciju na lijek.
129 21. Kamion prevozi na gradiliˇste 4000 komada cigala. Vjerojatnost da se cigla pri prijevozu razbije je 0.005 . Odredi vjerojatnost da kamion stigne na gradiliˇste sa najmanje 10 i najviˇse 40 razbijenih cigala. 22. Na automatsku telefonsku centralu dolazi prosjeˇcno 90 poziva na sat. Uz pretpostavku da je broj poziva u bilo kojem vremenskom intervalu sluˇcajna varijabla koja ima Poissonovu razdiobu, na´ci vjerojatnost da za 2 minute na centralu prispiju najmanje 5 poziva. 23. Pri korekturi knjige od 300 stranica primije´ceno je 1100 greˇsaka. Koriste´ci Poissonovu razdiobu izraˇcunaj vjerojatnost da se na pojedinoj stranici nalazi viˇse od 3 greˇske. Koliki je najvjerojatniji broj greˇsaka na pojedinoj stranici? 24. Mjerenja su pokazala da radioaktivna tvar ispuˇsta za 7.5 sekundi u prosjeku 3.87 α –ˇcestica. Kolika je vjerojatnost da u toku 1 sekunde ta tvar ispusti barem jednu α –ˇcesticu, a kolika da u toku 1 sekunde ispusti najviˇse dvije α –ˇcestice? 25. Broj rodenja djeˇcaka odnosno djevojˇcica u toku jednog dana su nezavisne sluˇcajne varijable s Poissonovom razdiobom, s parametrima λ1 i λ2 . Ako je poznato da je u toku tog dana bilo ukupno - njima n rodenja, kolika je vjerojatnost da je medu bilo k djeˇcaka?
130
ˇ ODGOVORI I RJE SENJA
Odgovori i rjeˇsenja
§ 1. Vjerojatnost
6. A. A B C , B. ABC , C. ABC , D. A+B+C , E. A B C+ABC+A B C , F. A B C , G. (A+B+ C) − ABC . 7. A = A1 A2 · · · An , B = A1 + A2 + . . . + An = A, C = A1 A2 · · · An + A1 A2 A3 · · · An + . . . + A1 · · · An−1 An + A1 A2 · · · An . 8. A , B , AC , B + C . 9. da, ne, ne. 10. AB + BC + CA , A . 10. da, ne, ne. 12. ne, ne, da, ne. 13. B , B . 15. 0.4 , 0.6 , 0.2 . 17. Po uvjetima zadatka je A1 A2 ⊆ A , zato
41. tg
π π π2 tg , . 2n n 2
43. 0 . 44. 0.011 r 2 arc sin 45. . π 2R 1 . 46. 16 47. 3 . 4 48. 139 1152 49. 0.16 . 50. 12 (1 + ln 2) .
51. 0.5 . 58. Smatramo (pri konstrukciji vjerojatnosnog prosˇ tora) da su sva slova razliˇcita! Cetiri slova moˇzemo 4 odabrati na N = V10 = 10 · 9 · 8 · 7 naˇcina. Povoljni naˇcini su 2 · 3 · 2 · 1 poˇsto na prvo mjesto moˇze do´ci bilo koje od dva slova M, na drugo neko od tri slova P (A) P (A1 A2 ) = P (A1 ) + P (A2 ) − P (A1 + A2 ) A itd. 1 59. 3 . P (A1 ) + P (A2 ) − 1. 6 60. 4 . 20. Oznaˇci x = P (AB) , y = P (AB) , z = P (AB) 9 i izrazi traˇzene vjerojatnosti preko x, y, z . 61. 5 . 12 28. AB = {12, 14, 16, 21, 41, 61} , AC = ∅ , BC = 6 {11} , AB = {11, 13, 15, 31, 51} . 62. U svim sluˇcajevima je N = V 6 = 66 . Povoljni su a) M = 6! . b) Raˇcunamo vjerojatnost 29. 1 , 2 , 0 . suprotnog dogadaja: najviˇse jedna Povoljni 8 3 ` sˇ´estica. ` ´` ´` ´ 6 su M = 5 + 6 · 55 . c) M = 63 · 3! 62 42 22 . 5 18 25 24 , , , . 30. 36 36 36 36 d) M = 46 . π 63. 0.5177 , 0.4914 . 35. 16 64. 0.665 , 0.619 , 0.597 37. 0.25 . 6 1 65. N = C45 , M6 = 1 , M5 = C65 C39 , M4 = 38. 0.5915 . 4 2 3 3 −7 C6 C39 , M3 = C6 C39 , p6 = 1.228 · 10 , p5 = 39. 0.399 . 2.973 · 10−5 , p4 = 1.364 · 10−3 , p3 = 0.022 . „ 2 «n r −r2 π ; 1−e . 40. p = 1 − 1 − 2 66. 5 . R 6
ˇ ODGOVORI I RJE SENJA
67. 33 . 68 68. 0.0000342 . 2 10 /C32 = 69. 4 · C24
1 . 58435
2 C51 C10 C1 C2 C1 C2 C1 C2 · 43 8 · 3 3 6 · 2 3 4 3 C15 C12 C9 C6 35 5!10! = 0.081 . = 15! 2n (n!)2 . 74. (2n)! 75. 0.101 . 76. m = 6 . 3 2 C3 4C13 4C48 64 77. a) ; b) 1 − 48 ; c) 3 ; d) ; 3 3 3 C52 C52 C52 C52 4 · 133 ; e) 3 C52
73.
C93 26 C3 C3 C3 ; b) 9 96 3 9 3 3
79. 14 . 31 80. P (A) = 5 , P (B) = 5 . 54 18 81. 84p7 q3 . 82. 7 . 10 83. 0.7063 ; 0.1130 . 12! 1 12! 6 , b) · C12 · 12 , 84. a) 1212 (2!)6 12 30! 1 6 c) 6 6 · C12 · 30 ≈ 0.00035 . 2 ·6 12 85. (1 − p2 )n . m1 n1 m1 +n1 Cn /Cm+n . 86. Cm
2n m!n! (m + n)! 88. 1 , 1 . 3 3 m−1 n−m CN−M /CNn . 89. CM−1
87.
90.
2(n!)2 (2n)!
` ´ ` ´ 1 (N n − N1 (N − 1)n + N2 (N − 2)n − . . . + Nn ` N ´ n (−1)N−1 N−1 1 ). 91.
70. 19 66 71. 16 . 33 9 10 /C20 = 0.526 , 72. p1 = C21 C18 2 8 10 p2 = C4 C16 /C20 = 0.428 .
78. a)
131
92.
6(n!)3 . (3n)!
2(n!)2 . (2n)! „ «„ « 2m 2n m n « . 94. „ 2m + 2n m+n 93.
95.
(k−1)(k−2) 2(k−1)(n−k) , . n(n−1) n(n−1)
96. 97. 98. 99.
1 − 21−n 0.2568 . 0.0259 . 0.6436
§ 2. Uvjetna vjerojatnost 1. Ne. 9. r 0 , r 23 te r = 13 . 19. A i B ; A i D ; A i E ; A i F ; B i C ; B i E ; B i F; C i D; C i E; C i F; D i E; D i F; E i F. 1 20. , zavisni su. 3 21. 91 , 5 , 1 , ne. 216 9 2 22. Zavisni su. 5 91 60 1 , , , . 23. 9 216 91 2 7 , 1 . 24. 0.0309 , 0.56 , 11664 16 1281 25. P (A) = 1 , P (B) = 1 , P (C) = 4 , 27 16 6 P (C|B) = 22 . 27 26. P (A) = P (A|B) = 24 , P (A|C) = 1260 . 91 3367 A i B su nezavisni. 1 . 27. n 28. 2 . 5
132 29. 0.1581 . 30. 38 . 105 31. Vjerojatnost je 1/n , za svaku osobu. 32. 244 . 495 33. Prvi! Vjerojatnost za njega je 47 90 , za drugog 16 27 , a za tre´ c eg . Optimalna strategija za prvog 90 90 strijelca jest (ukoliko su preostala dva joˇs uvijek - u zrak. nazoˇcna) da gada 34. 0.3302 . 35. 0.896 . 36. 0.00236 37. 43 . 2976 38. 0.00416 . 39. 12 . 13 40. 0.0769 . 2m1 m2 + m1 n2 + m2 n1 . 41. 2(m1 + n1 )(m2 + n2 ) 42. 9 . 35 43. 0.607 . 44. 13 p(6 − 5p) .
ˇ ODGOVORI I RJE SENJA
58.
2n2 − 3n + 2 . n2 (n − 1)
27 25 , P{X = 11} = , 216 216 P (A | X = 12) = 0.6 . 60. 2 . 5 61. 1 . 3 62. 0.615 . n4 (n1 +n2 +n3 ) 63. . n2 n1 + n3 (n1 +n2 ) + n4 (n1 +n2 +n3 ) 64. 41 . 55 65. 1 2 66. 4 21 67. 1 . 3 68. 5 . 32 69. p1 = 0.9856 , p2 = 0.0879 . 70. 0.0392 . 71. 11 40 45. 12 − p1 q1 q22 − q21 p2 q2 − 12 q21 q22 + 12 p21 q22 + 72. 17 53 2 2 1 2 2 m−1 2 p2 q1 + p1 p2 q2 + p1 p2 q1 . . 73. 46. 0.9204 . m+n−1 1 74. 0.41 ; 0.24 . . 47. n 75. 4 . 5 48. 9 . 35 76. 0.556 . 2 1 Xn „ n «“ i ”k C2 + Cm C1 C1 C1 + Cn21 Cn22 +2 Cm 1 m2 +2 1 n1 m2 +1 n2 +1 . 49. . 77. 1/ 2 i=0 i n Cm C2 1 +n1 m2 +n2 +2 m1 m2 + n1 n2 1 78. 37 . + 50. 72 2 2(m1 + n1 )(m2 + n2 ) 79. Dvije plave kuglice. 51. 10 . 80. 0.25 . 19 n−k 12 , baˇs kao da uzorka i nema. 81. 52. . n+m−k 17 53. m/n u svim sluˇcajevima 82. 21 . 31 m . 54. 83. 0.552 . m+k „ « 84. 0.298 . 1 n 2n−3 55. . , 1+ 85. 0.251 . n−1 2 2 3 (1−t)p . 86. 56. 124 . 1−tp 243 87. 9 . 57. 13 24 16 59. P{X = 12} =
ˇ ODGOVORI I RJE SENJA
88.
133
q(1 − α )2 . + (1 − α )2 q
i zatim transformiraj desnu stranu u jednakosti
pα 2
E(X [k] ) =
89. 0.756 . „ « P5 1000 0.005k 0.9951000−k . 91. k=0 k
1. P (X = k) = 2. P (X = k) = 3. 4. 5. 6.
1 , k = 1, . . . , n . n 2 Ck−1
Cn3
, k = 3, . . . , n .
kn − (k−1)n P (X = k) = , k = 1, . . . , N . Nn 0 ; 1.80 . 2 + 1. ln 2 4.08 ; 2.837 .
7. 1.53 (n + 1)(4n − 1) 8. . 6n 9. 6 . 5 10. 3. 11. 7 . 3
n−1 , n + 1. 2n
19. Poissonova s parametrom λ = 3 , E(Z) = 3 , D(Z) = 3 . „ «„ «k „ «n−k 1 5 n 20. P (Y = k) = k ; 6 6 5n ; E(Y) = 6 5n 1 + 5n + 12.5n(n−1) D(Y) = . ; 36 6n 21. E(X) = 0 , E(X 2 ) = n/2 , E(X 3 ) = 0 22. D(Z) = 161 . 4 23. 166.92 . √ 24. r(X, Y) = 14 10 . 25. D(Z) = 44 . 3 26. r(X, Y) = 0.5 . 27. D(Z) = 8 . 3 28. r(X, Y) = 35 . 73 29. f (−2, −2) = 14 , f (−1, −3) = 16 , f (0, 0) = 1 1 1 1 6 , f (1, −1) = 8 , f (2, 2) = 8 , f (3, 1) = 6 .
12. a) D(X) = E(X) + E(X)2 ; ak b) P (X = k) = . (a + 1)k
30. −0.293 . 31.
13. 4 , 10 . 7 7 „ « n „ «2 X 1 1 2n 1 n ≈ = 14. k πn 22n 22n n k=0 8 k+1 > > k = 0, 1, . . . , n < (n+1)2 , 15. P (Z=k) = 2n+1−k > > : , k = n+1, . . . , 2n (n+1)2
2 5 (cos 2t
32. ϑX (t) = 33. ϑX (t) =
n[k] = k
m=1
m[k−1] ,
+ cos t + 12 ) e2it(n+1) − 1 eit · . n+1 e2it − 1 1 4e2it
2eit ; E(X) = 2 . 9 4 − e2it
p 1 ; E(X) = − 1 . 1 − (1 − p)eit p „ « −3 −1 0 1 3 35. X ∼ . 1 3 8 3 1 16
∀n
−1
+
34. ϑX (t) =
17. Uputa. Dokaˇzi da vrijedi n−1 X
n[k] P (X = n).
n=1
18.
§ 3. Diskretne sluˇcajne varijable i vektori
∞ X
36. X ∼
„
16
16
16
16
−3 −2 −1 1 2 3 1 4
1 12
1 6
1 6
1 12
1 4
«
.
134
§ 4. Primjeri dskretnih razdioba q q 2. E(X) = r , D(X) = r 2 . p p 1 3. P (X = k) = , k = 1, . . . , n ; n n+1 . E(X) = 2 1 1 = 2.5 4. E(X) = = p 0.4 5. E(X) = a ; D(X) = a(a + 1) . „ «„ « M N−M k n−k „ « . 6. pk = P (X = k) = N n nM N − M nM , D(X) = · . 7. a) E(X) = N N N nM N − M N − M nM , D(X) = · · . b) E(X) = N N N N−1 8. 2.11 · 10−4 .
ˇ ODGOVORI I RJE SENJA
9. 18 , 2 . 3 10. 0.961 . 11. E(Y) = e(e2 p + q)n , D(Y) = e2 (e4 p + q)n − e2 (e2 p + q)2n . 12. 2 ; 0.143 13. 0.333 ; 0.366 ; 0.301 14. 0.143 15. 0.960 16. 0.019 17. 0.9044 ; 0.0043 18. 19. 20. 21. 22. 23. 24. 25.
1 − e−λ λ 0.019 . 0.185 . 0.55 0.185 . 0.4989 , 3 greˇske. 0.4031 , 0.9844 . „ «„ «k „ «n−k λ1 λ2 n k λ1 +λ2 λ 1 + λ2
KAZALO
135
KAZALO A
aditivnost vjerojatnosti, 9 algebra dogadaja, 8 aposteriorne vjerojatnosti, 74 apriorne vjerojatnosti, 74
B
Bayesova formula, 74 Bernoullijeva sluˇcajna varijabla, 121 binomna razdioba, 119 Booleova algebra, 8 Buffonov problem, 29
C
centralni moment reda n , 100 centrirana sluˇcajna varijabla, 103
D
de Morganovi zakoni, 6 - 3 disjunktni dogadaji, diskretna sluˇcajna varijabla, 89 disperzija, 100 - elementarni, 1 dogadaj, - 7 dogadaj, - ekvivalentni, 3 dogadaji, - nezavisni, 68 dogadaji,
E
- 3 ekvivalentni dogadaji, - 1 elementarni dogadaj,
F
funkcija izvodnica, 106
G
geometrijska razdioba, 90, 116 geometrijska vjerojatnost, 27
H
hipoteze, 72
I
ishodiˇsni moment reda n , 100
K
karakteristiˇcna funkcija, 106 kartezijev umnoˇzak, 30 klasiˇcni vjerojatnosni prostor, 14 koeficijent korelacije, 103 kombinacije s ponavljanjem, 43 kombinacije, 38 komplement dogadaja, 5 konaˇcni vjerojatnosni prostor, 11 kovarijacijski moment, 103
M
marginalne razdiobe, 94 monotonost vjerojatnosti, 9
N
negativna binomna razdioba, 128 - 1 nemogu´c dogadaj, neprekinutost vjerojatnosti, 22 nezavisne sluˇcajne varijable, 91, 92 - 68, 69 nezavisni dogadaji, normirane sluˇcajne varijable, 103 numeriˇcke karakteristike, 97
O
oˇcekivanje, 97
P
particija vjerojatnostnog prostora, 72 partitivni skup, 33 permutacije s ponavljanjem, 37 permutacije, 35 Poissonova razdiobu, 125 potpun sustav dogadaja, 72 prebrojiva ( σ -) aditivnost, 21 prebrojiva ( σ -) algebra, 21 presjek dogadaja, 4
R
rasipanje, 100 razlika dogadaja, 5
S
- 1 sigurni dogadaj, Silvesterova formula, 19 simetriˇcna razlika, 59 sluˇcajne varijable, nezavisne, 91 standardna devijacija, 101 Stirlingova formula, 17 stohastiˇcki pokus, 1 - 5 suprotni dogadaj,
U
umnoˇzak dogadaja, 4 unija dogadaja, 4 uvjetna razdioba, 95 uvjetna vjerojatnost, 65
V
varijacije s ponavljanjem, 31 varijacije, 34 varijacije bez ponavljanja, .34 varijanca, 100 vjerojatnost dogadaja, 9 vjerojatnost umnoˇska dogadaja, 66 vjerojatnosti, aposteriorne, 74 vjerojatnosti, apriorne, 74
Z
zakon razdiobe sluˇcajne varijable, 89 zakon razdiobe sluˇcajnog vektora, 93 zakon razdiobe, 93 zbroj dogadaja, 4