Andreas Bartholomé | Josef Rung | Hans Kern Zahlentheorie für Einsteiger
Aus dem Programm
Mathematik für Einsteiger
...
26 downloads
673 Views
10MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Andreas Bartholomé | Josef Rung | Hans Kern Zahlentheorie für Einsteiger
Aus dem Programm
Mathematik für Einsteiger
Algebra für Einsteiger von Jörg Bewersdorff Algorithmik für Einsteiger von Armin P. Barth Diskrete Mathematik für Einsteiger von Albrecht Beutelspacher und Marc-Alexander Zschiegner Finanzmathematik für Einsteiger von Moritz Adelmeyer und Elke Warmuth Graphen für Einsteiger von Manfred Nitzsche Knotentheorie für Einsteiger von Charles Livingston Stochastik für Einsteiger von Norbert Henze Strategische Spiele für Einsteiger von Alexander Mehlmann Zahlen für Einsteiger von Jürg Kramer Zahlentheorie für Einsteiger von Andreas Bartholomé, Josef Rung und Hans Kern
www.viewegteubner.de
Andreas Bartholomé | Josef Rung | Hans Kern
Zahlentheorie für Einsteiger Eine Einführung für Schüler, Lehrer, Studierende und andere Interessierte Mit einem Geleitwort von Jürgen Neukirch 6., überarbeitete und erweiterte Auflage STUDIUM
Bibliografische Information Der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über abrufbar.
Dr. Andreas Bartholomé und Josef Rung unterrichten am Hans-Leinberger-Gymnasium in Landshut. Anschrift: Jürgen-Schumann-Straße 20, 84034 Landshut Dr. Hans Kern unterrichtet am Schyren-Gymnasium in Pfaffenhofen/Ilm. Anschrift: Niederscheyerer Straße 4, 85276 Pfaffenhofen Online-Service: http://www.andreasbartholome.de
1. Auflage 1995 2., überarbeitete Auflage 1996 3., verbesserte Auflage 2001 4., durchgesehene Auflage 2003 5., verbesserte Auflage 2006 6., überarbeitete und erweiterte Auflage 2008 Alle Rechte vorbehalten © Vieweg+Teubner Verlag |GWV Fachverlage GmbH, Wiesbaden 2008 Lektorat: Ulrike Schmickler-Hirzebruch | Susanne Jahnel Der Vieweg+Teubner Verlag ist ein Unternehmen von Springer Science+Business Media. www.viewegteubner.de Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlags unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen. Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften. Umschlaggestaltung: KünkelLopka Medienentwicklung, Heidelberg Druck und buchbinderische Verarbeitung: MercedesDruck, Berlin Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier. Printed in Germany ISBN 978-3-8348-0440-2
! "
"# ! $ " % & # ' (
) ( '
% ) %* ( ' % (
' +
, * ' - % . " . / "0 ' "
1*
' + ( % 2' - / /
/ + ' 1 ( # % 2 ( 3 / ' 4 1 $$ -
5 - # 6 2' + + %$
7 / 5 ' + (
- *' - $#
6 8
'
+ ( *
9
"0 ' 9 :# ; % *
" ' < + =>>?
5' +' @ 4
ÎÓÖÛÓÖØ
! "
# ! ! $ % " !
! & !
% # ! '
" ! & (
!
! ) ( & (
$ * + ( & ( ! % &( % (
! , ! - (
(
(
% .
! ( -( / 0
1 -
! 2 +% 3 4
! " # $ % & # # 1, 2, 3 $ ! & $ '! (
! $ ) *$ (!! $ +! , $ , ( -$ $ % ($! ) . / 0110213 13214 -, !,56 7 $ ! 8 "! !9 % : ;: < # ! <: , 5 " ! ( ! : * / " (! ' !!
5$! $ ( (! % 8 " $! ! $ : ' -$ # = ! > -
(! (! = .
%
! " # $ % $ & ' ( ) * % % + ,, * % * % - . / ' % & % 0 - 12 3 # . 4 1 /% 5 3 0 % & % 6 ! " * . . 7 % 0 & 3 13 ( . 8 ! 7 1 9 : 9 "1 ;<=>?@ - 0 9 A & B % % 8 !6 3 - " : :0 ' 0 : 300
' C 7 6
D % 0 * & , - 4 / * , ' , : . % * : 4 90 % A =E ' ( ! 6A " ( 200 A 3
4 % ! " - &, : A ' , Q R
< ! " # ! # ! $ Z/pZ p # %
& ' ( ' ! ! ) Z[φ] φ * !
+ , x2 − x − 1 = 0 - ' , * ! ! ' + Z . * / + / Z[φ] ) ! *" (
! * ! " 0 )/ 1 . 2 ! # - ! ' 3 / * 3 2
% / % / + ( !!4 ! / !
0 ( ! #! ) ' ! / ! / ( ( / ! ( #! + ' ' ! ( . ( ! . 5 6
/ 6 * #! ! ,3$ + $ 7! 8 + 0 #! ! 6 8 3! ( & 0 / 9 9 1 ! 2 : + . ( ! + , ;< ! !1 ( , / ( ( ' ! / 1 ! ! ! +
(
!
" #$$%& '
! # $% '() !*+ , ' ! " ' " - + " ! '+ 0 + 1 23 *+ + 1 # + 1 ! *+ *+ ! 45
"
/ 1
& .
" / 1 & .
, 5 6 + + $ 7 *+ ! # ' 8 9 5 :*+3 , 5 ; + p + 5 !
" & " " " ". // 1" & & . ."
& . / 1 " " "1 /
a # $ $ ! ' ( )! *'+,!-
! "
%& % %% .
! " #$
%&! '()*+, - ).
! " # $ % & ' $ $ % () * s
s
s
s
s
+ , - .
s
- ∞
/ % 0 '
1
2 1
3 4 5 1
4 6 1 4 ' 1 7 4 7 & 1 8 0 / N = {0, 1, 2, 3, 4 . . .} 5 94 ' " : / 1 2 ;
7 74 1 ' : 4 0 $ 6 2 1 74' 2 ; 1
!" # ! !$ % ! &'" ( &% % N
)! ! * + , - % $. $ ! % + /! 0 1 ! $
1 $, ! " #
$
D
C
y F x A
x
B
2 3 3, 4 %% 4
% & '% ( ) * +, , + " * # # . # 72◦ + / ( 0 + / ( x . , # #1 2 #1 # ( $ % /. ( # . / ( x y 1 . # " x < y , 13 2# 13. / 2 . AC " 2# 2# α = ∠BAC # [B, D] F # BF A DAF . # % F D = x F B = y − x y y − x / ( , # BF A / " " y − x < x 2 2 x
( # BF A ABD + 3 x y−x = ⇐⇒ x2 + xy − y 2 = 0 y x 2 ! -
¿
x, y ∈ N \ {0}
(x, y) y2 = xy + x2 y > x (y − x, x) x2 + xy − y 2 = 0
(y − x)2 + x(y − x) − x2 = (−1)(x2 + xy − y 2 ) = 0.
! " !# (x, y) $! x (y−x, x) !
y−x $ x % (x, y) # $ & ' ( " ' & ) * " + ! ) * , % & -$
. & Z = {. . . , −3, −2, −1, 0, 1, 2, 3, . . .}.
$ " & # " " / . - % # . & a+b 2 . ' $! 2 2 2 2 6 9 12 15 # % ! & 0 - $ " / $ ! " . + # &0 % + " & . && - $ 6 9 12 15 18 21 . . ." $ " & - $ $# ???? 0 3 6 9 $ + 0 −3
$ + −6 " 1 $ 2 " )* 3 4 $ $! " .
0 & $ " $ m . " - m ≤ a" m ≤ b % m < a m < b" 2m < a + b 2m = a + b" m . + a b m = a = b - + a b m " " 5 1 $ "
!" T N m t ∈ T m ≤ t
#" $
N % Q, R Q+ &
! " # x y−x ∈ R × R = R2 $ y x x y $ % & $ ' y x+y ½ ( y x ∈ R2 → φ : R2 )* x+y y 0 1 1 0 = = + φ φ 1 1 0 1 1 , φ - ( 0 2 1 1 0 1 → ... → → → 3 2 1 1 0 x = G(x) . G(x) = x2 + xy − y 2 G y / # ( $ )0*
G(x) = ±1 2
( 1 . ( $ N 2 3 1 + φ n4
+ φn x ∈ N2 n y x 1 n = φ y 0
½
φ φ
φn xm > 1
xm ym
1 0
2 x2m ± 1 = ym − xm ym
x2m ± 1 = ym (ym − xm ) ym > xm
ym − xm xm
! " n ∈ N φn
φn+1
1 0
=φ
ym − xm xm
=
1 0
xm ym
=
ym − xm xm
.
# xm 1
0 φ 2 $ % & % ' x2 + xy − y 2 ( # ') *# +
' x2 + xy − y2 ,- . % √ / # 0 2 + √ 2 . + 1 . √ ( + n > 0 n · 2 ( + √ √ √ √ 1 < 2 < 2 % n < n · 2 < 2n 0 < n · 2 − n = n · ( 2 − 1) < n √ √ √ √ (n · 2 − n) ( + (n · 2 − n) · 2 = 2n − n · 2 ( + # 2 . n
! " # 2
. . . − 3, −2, −1, 0, 1, 2, . . . ! " # $ % $ & ' ! ( ) * ! $ & ' ! ( + * , & - ' . , $ $ ( * / %
0 ! ( * / √ √ √ 3 5 a a 1
2 3 - x2 + xy − y 2 = 2 N2 45 - x2 + xy − y 2 = 3 N2 45 - x2 + xy − y 2 = 5 N2 * 45 6 $ 7 / , $ 45 3 - x2 + xy − y 2 = d d ∈ N * 45
45 % 8 ! x 7+ 9 y !( 03 / ) + ! $) !
C
/ , $ x 45 - x2 −2y 2 = 7 y
D E
A
B
* 45 N2 - 3 x2 − 2y 2 = 2%
: - ; H(x, y) = x2 − 2 · x · y − y 2
H(x, y) = 1 N2 H(x, y) = d d ∈ N x2 − axy − y 2 = 1 a ∈ N
! " #$ % prod x y prod + x · y & & 0 13 21 ? ' 13 · 21 ( 13 13 20 ? ) *+ 13 26 10 ? , ! * ! 13 52 5 ? , & ! 65 52 4 ? & " ' 65 104 2 ? + 65 208 1 ? " 273 208 0 ? + 273 ( ( - . 21 · 13 / . 0 -& " x, y 1 2 " prod - 0 3 2 y ! prod % , x % , y 1 x 4 2 y ! x 2 y 2 , 5 6 ! y = 0 2 " prod ' % ! ' 7 6 8 ) 9 " 1 &: prod+x·y . 0+13·21 = 13+13·20 = 13+26·10 = 13 + 52 · 5 . . . = 273 + 208 · 0! ' 16 & ;< )& 6 , ! !
! " # $ % ! " & '(
) " & * ! + aemul(a, b) ) +
• aemul(a, 0) = 0 a ∈ N • b , aemul(a, b) := aemul(a, b − 1) + a • b , aemul(a, b) := aemul(a · 2, b/2) ) b ∈ N aemul(a, b) !& " a ∈ N aemul(a, 1) = a·1 = a & , b - * ! ) ! , b > 0 . /+ b ) aemul(a, b) = aemul(a, b − 1) + a = a · (b − 1) + a = a · b " 0 (b − 1) < b 1 /+ b ) aemul(a, b) = aemul(a · 2, b/2) = a · 2 · (b/2) = a · b % b/2 < b - , " 2 !+ 2, 3 ! " # $ 1, 2, 3 % & F : R2 → R2 ' % (
) " ) )" " ) ) ) * " +
, ) +
! " #$ % & '
& ( ' ) *
0 532 532 532 532 1064 532 2128 2660 2128 2660 4256 2660 8512 11172 8512 11172 17024 28196 17024
53 52 26 13 12 6 3 2 1 0
+ , -#$ & . /0 32 · 31' /0 31 · 32' /0 172' / 0 111 · 1231 1 2 ' 3 4 3 a, b, c % a+ b ·c 5 & 6 7 4 #$ & 5 8 ' % & 0 1' &* ' , & 0 xy = 37 , 73 418 0 2 0 , 9 53
! "
#
50
!" #$%&'%# ( ) ) * + !, - * a ≥ b ≥ c ≥ d ≥ e > 0
, (a, b, c) (c, d, e) + . /0 1 a ≥ b + c 2 +
2
2
2
1 = 12 ;
1 + 3 = 22 ;
1 + 3 + 5 = 32 .
(∗) 1 + 3 + 5 + . . . + (2n − 1) = n2 .
n n2 !" # $!
% U = {n ∈ N|1 + 3 + 5 + . . . + (2n − 1) = n2 }.
& ' ( ' U ) " U m m > 1 * m − 1 * ) 1 + 3 + . . . + (2 · (m − 1) − 1) = (m − 1)2 | + (2m − 1) 1 + 3 . . . + (2m − 1) = (m − 1)2 + 2m − 1 = m2
m U N ! " G # $ % & ' % 0
% 0 = 02 ( ) * 1, 2, 3, 4 ) + , - * + % ! . 5 / 0 # 1 / " " 2 3 4 5 ) 4678 1 # % # )
* ,/ 9 120 1, 2, 3, 4 5: $ # 120 % ; < 6 : # # = 8 10 12 15 > 20 24 . . . $ # ! . * " 120 % ' ?) # + @ ## g > A % ( ? ?> % ' '
+ @ g +
1 + 3 + . . . + (2 · g − 1) 1 + 3 + . . . + [2 · (g + 1) − 1]
= =
g2 (g + 1)2 .
| + (2g + 1)
' # % * " ) # % g ∈ G g + 1 ∈ G ? # G +> 0 ∈ G 0 " # ) N ,# - % " G = N !# +B
# # < *
T ⊂ N t ∈ T t + 1 ∈ T
b ≥ a T
T⊂N
a ∈ T
! "#" $ % A(n) & a ∈ N #
' # a
' # % (
) A(n) n ≥ a
' *# $" # + !
'
1 1 1 1 + + ... + < . 1·3 3·5 (2n − 1) · (2n + 1) 2 ' # , - .! /
! 0 13 < 12
! ) k k + 1 '
1 1 1 1 + + ... + < . 1·3 3·5 (2k − 1) · (2k + 1) 2 '
) !
1 (2k+1)·(2k+3)
% * ) 12 + 1 1 (2k+1)·(2k+3) 1 2 ! 2 3 ' 4 ! 5 4 1 2 3 ' 1 $
' ( # n(= 1, 2, 3, 4 . . .) 5 ) # , 12 ) 1 1 1 6 2·3 , 2·5 , 2·7
1 1 1 1 1 1 + + ... + = − < . 1·3 3·5 (2n − 1) · (2n + 1) 2 2 · (2n + 1) 2
n = 1 1 (2n+1)·(2n+3)
! " # $ ## %! &
1 '( 12 − 2·(2n+3) # ) #
" * + , #
, % ( % - ( + # ./
0.1
&2 3 #! " 2
#
4 # # ) - #' , 1 · 1! + 2 · 2! + 3 · 3! + . . . + n · n! = (n + 1)! − 1 n! ! 1! = 1" 2! = 2" 3! = 6" 4! = 24" n · (n + 1) . 1 + 2 + 3 + . . . + n = 2 11 · 22 · 33 · . . . · nn ≤ n #
n(n+1) 2
! $% f (x) = f (x + 1) = f (x) + (x + 1)
1 ·x·(x+1) & & x ∈ R 2
! ' $% ( % & ' & f (0) = 0 f (x + 1) = f (x) + (x + 1)2 '
% & 1 + 23 + 33 + . . . + n3 '
% & 1 + 24 + 34 + . . . + n4 ) * ' ' & & & ! " &
+ ! ! & n ∈ N 2n > 5n + 10 & n ∈ N 2n > n2 & n ∈ N 2n > n2 + n & n ∈ N 2n > n3 & n ∈ N 2n > n4 . & k & ! " 2n > nk & & n ∈ N , n ( - ' +
n(n+1) 2
+ 1 .
2 3 4 3 4, 5, 6 n ! "# $ ! % & n '( ) * + %$$ n , - 1 #
x $ 0 < x < 1
n 1 + x + x2 + ... + xn < 1−x '. % * n /0 !" !
/0 !" ) * + n* # n = 1 )& + % n " n + 1 "# "# n = 3 1 /0 ! ) 2 + ! ) 2 + !" 3 $ n = 3 ! ) 2 ) 2 + !" +$
!" 4 0 5& $
!"
# a b $ % a b & a|b'
b (
a ! ) c ∈ N b = c · a
1 0 a|b b|c
a|c r, a, b ∈ N r|a r|b
r|(a + b) r, a, c ∈ N r|a
r|(ac)
* + , $ Z = {. . . , −2, −1, 0, 1, 2, . . . } * , $ )
2
2 · j - $
2 · k + 1 (j, k ∈ N) .
x (1+x+x2 +x3 +. . . xn )·(x−1) = xn+1 −1
1 1000 1 n
! 3 5 1 1000 100000 1000000!
" #$$ n 12 n % n &'
( )* $$ $ #+ ,$ % $ ) % - % .
# / 01 . 2,$ $ 3 + $$ 1 (% 3 9 % $ % $ 4 (10n an + 10n−1an−1 + . . .+ 10a1 + a0 )− (an + an−1 + . . .+ a1 + a0 ) 9 (3) 5% $ 51 % 9 $$ $ 3 $$ % 3 $$ % 1% % ! ( 6 3 $$7 8 % $ ,$
& 9 : 2 : $ ; / - 1%
1 4 <1 )1/ ( 1% 1 : 4 $ / $ 11 $) ( % - $ $ % #$$ % ( / . 4 : = - /* / ; / && : # ) < / ) / % . 0 < % 9 $ 5 1 1 >1 :>/ # ) : $! &?
0 % 1 100 51 1 1% * % %)) % % 5 $ ( 1% 01 $ $ @ 5% 200 101 * + * <
% 01 $ 101 100 !
2n − 1 5 ! " #$ ! n = 0, 1, 2, . . . : 5 " % & 20 − 1 = 0' 21 − 1 = 1' 22 − 1 = 3' 23 −1 = 7' 25 −1' 26 −1' 27 −1' ' 5 % & 24 −1 = 15, 28 −1 = 255' $ & n ( ) & 4 n = 4k, k ∈ N)' 5 % & 2n − 1 * +" , "-$' 24k − 1 = 16k − 1 ( ) & 5 +") 160 − 1 = 0 ( ) & 5 +" . 16k+1 − 1 = 16 · 16k − 1 = 15 · 16k + (16k − 1) / 5 +" 5 ' / ( ) & 5 ( 0 1) # 2 ' 2n − 1 5 ' n = 4k + n = 4k + i i = 1, 2, 3' 5 " % & 2n − 1 + 3& +" 4 ) ,5 .- 1 5 24k+1 − 2, 24k+2 − 4, 24k+3 − 3 + ' " 2 5 " % & 24k+1 − 1 )1 " k$' )
5 % & (24k+1 − 1) − (24k+1 − 2) = 1' ) ) 5 24k+1 − 2 24k+2 − 4
24k+3 − 3
! 2n − 1 3 7 11" ! 2n + 1 3 (5, 7, 11) " #!
$ %! &!' ! 2n − 1 32 , 33 , 34 " ( ) *+ 3k , "
-
. *! /* * % 0 *! , . *+ *+ 1
·
0 , *! ( 2 !, ' &!' ! 3 ,! &!'
1 1993
! ! " # $
% &'()*(& & + # , -. /
!"# $
0( - 1 2 + 0( 324% 0( % # " $ 5 ! 3 5 , 3 1 4m + 2 (m = 2, 3, 4, . . .) 6 k 7 k " #8 $ 4 k = 10, 11, 100 9 1993, 1992, 512 "
" 2% 2 · 3n (n = 1, 2, 3, . . .) " 0: ; 2 -. < " 1984 2001 2010 -. < " = 4 >2 = 2009 = a2 − b2 >2 ? -. < " @ 2%
7 -. <
"
a, b a · b c d a2 + b2 + c2 = d2 a · b c d ! "# $ % n & ' n & ( # ' # ( ') # * +' n + 1 ( ++
1 + 2 + 22 + . . . + 2n ! " n ≥ 1 ∈ N # $ % & '
(
2(1 + 21 + 22 + . . . + 2n−1 ) = x2 − 1 = (x − 1)(x + 1). ) x * + , $ - ./ 0 1 " + ) x * + ) 4ab ( + 2*
, / 2 0 . 31 ,
- 1 + 4 + 42 + . . . 4n # n ≥ 1 . + - / 11, 111, 1111, 11111, . . . !01 . +
- 2 / 101, 10101, 1010101 . . . . + 3 ' / + - % 1 + 3 + 32 + . . . + 3n = y 2 4 5 ) # n = 0 n = 1 n = 4 6 1 + 3 + 32 + 33 + 34 = 112 3 ( ' n 78 4 8 2n + 1 ( +
$9
& . + / 4a + 1 & 1 1020 4 & . + / . . . 89 & 1 1020
22 . . . 21 . + . + : # +' + ;
! " #
$ %
& #' ( ! ) *
' ! + , -%.
/ %. !
/ 0 / , + !
1 2 % + +* 3 # % +* 3 # 4 / 0 + - 1 2 3 # 0 * 5 * - * , * + + * ! + - 6
(∗)
Y 2 + Y 2 + 1 = X2
X 2 − 2Y 2 = 1.
4 * ) 7% / )
(a, b) . 7% - *
a2 − 2b2 = 1 8#* # (3, 2) 7% (1, 0) 6
(a, b)
!" # √ √ √ (a + b 2) · (3 + 2 2) = x + y 2.
$ %
(x, y)
$ # (a, b) # (c, d) # √ √ √ (a + b 2) · (c + d 2) = x + y 2
x, y N (x, y) √ # % & x + y 2 x, y ∈ N \ {0} # (x, y) (3, 2) ' &(
$ √ √ (xn + yn 2) := (3 + 2 2)n . % # xn # yn
) xn , yn
* # # xn /yn !
(
√ 2 #
' + ,&
1992 = a2 −2b2
- '
1992 # 1984
√ (a, b)
1 < a + b 2 a, b > 0 (a, b)
(∗) a √ √ b n ∈ N a + b 2 = (3 + 2 2)n !"
#
$
%
& '( ) %
√ 1 a+b 2< n √ a+b 2
n
a, b
0<
x
! !
a
*
√ 2 ! " " # $ % &"
" ! '" " ( % $ &! +, - ! . +/
2
3 · Y = 1 ++
X2 −
0 1 1 1 ( % !1 . 0 1 1 "
!1
0 !1 1 2
2 · a2 = b 2 + 1
1 3 ( !
( '
1
"
0 1 3 ( 1 '
1 3 ( 1
- ! 1 ' ( "
1 3 ( 1 (
0
a+(a+1)+(a+2) . . .+b = a·b
(a, b ∈ N) !
1 3 ( 1 1% '
b−a
43
2a − 1
&%
5 +6 -3 7 # # ) 8 2 (2 ' 0
x = 1 + 2 + 3 + . . . + n x 1 ! *
*
0 4 -
1 !1 1 !1 1 1 ) ! 1
21 2211 222111
! " 5151 501501 50015001, . . .
# $ %
& ' (k − 1) · k tk = k ( tk + k $ 2 )
! # ' ' $ $ * # ' * # $ +! $
! , + -. / ' ! ( 0 &1 $ X Y 1 + 2 + . . . + X = (X + 1) + (X + 2) + . . . + Y ) + -2 "! b2
$
b 3 ! (
!" !# $
% & ' ( ) *+ , " "
& " -
. / &
&
"
,
" + 0 & " 1 2 & 3
! " ! #
$ %
& %' ( ) # % M * # & n $ + , ! f : M → {0, 1, . . . , n − 1} n
- M *
* & n &* ! , ! f .!
& n ( +! M ! |M | / +! 0+
1# % 2 3 445 6789 !
:!! 646 . / ; % < 1 ! & 2 ; " % & 1+ ,
2 1 = " 2
# * ! / ; # > % ? % ! $ < !
=( # @! A
! " #! N $ ! % & T $ #! N 0 T ' & T $ #! T ≥ k
k
= N
*! * :!
& $ 6 !B M +! *! > +! N < 0 ∈ M 0 !
# M ! % B
B = {k|k ≤ m m ∈ M }, ! % ! & B
M
> % !
g B m ∈ M
g ≤ m g < m m ∈ M
g + 1 ≤ m m ∈ M g + 1 ∈ B g g ∈ M M
! ! " # T $ % $ N k ! M & N \ T
M m 0 < m 0 ∈ T m − 1 T T $
m ∈ T ' ( " ! ) * M +, #
T = {k ∈ N| - + |M | = k +, }. # k ∈ T M + k+1 x ∈ M
M \{x} g x > g x $ M ! g # . /0$ 1 $ 2 32 4 2 5 6 7 8 9 : $ ; 2 < $ = > < $ $ # ;
7 $ 9 ?
2 5 1 $
A
n ∈ N
α : A → A a ∈ A f : N → A f (0) = a f (n + 1) = α(f (n))
α0 = IdA : A x → x ∈ A
"
f : N n → αn (a) ∈ A = f (n+1) = αn+1 (a) = α(αn (a)) = α(f (n)) n ∈ N g =
T = {k ∈ N|g(k) = f (k)}.
0 ∈ T k ∈ T k+1" g(k+1) = α(g(k)) = α(f (k)) = f (k+1) ! T $ " g = f 2 ! "
! "! # $ "% & ! !!!
%
'
( ) (! *! + $ , - # . ! " / - .
0 ! *! + $ 1 # 2) 334! " % ) ( % /% )5( ! *! + $ 1 # 2) 336!
76! " - % )5( /% 8 " $ " 0 ) 9 # . : " 5 ; (
:% 05 . % < ( /% " % , 5 - " " ( ( " " (
% " " ( % 5 - " 9 ! , :%% ( <= /% + % 0 ! 7>! ,- 8 %
( 8 ?% ) @!
! "# $%&'() %%*
a
b
!
! " # a $ a ! %
! $ b b
Erde
Andromeda
& '() a, b b > 0 q r N a = qb + r r < b q r
* Vb = {s · b|sb ≤ a# s ∈ N} = +
% " b ≤ a Vb
# 0 ∈ Vb Vb # , - * qb ) qb ≤ a < (q + 1)b 0 ≤ r := a − qb < (q + 1)b − qb = b.
! * ) a = qb + r = q1b + r1 . r1 = r# q1b = qb q1 = q
r1 > r )
b > r1 − r = (q − q1 )b > 0 q > q1 (q − q1 )b > 1b 2 a = bq + r r < b 12121212 : 11
12345678 : 250
5
. . . , 4 5!
" 7 . . . , 428571428571 . . .
" 11 . . . , 90909090 . . .
# $ %& ' (
!
)* + 1000
100000000 $!
), - &" . n % % n )/
0 1
2 3 '2 a, b + 2 ' 2 % b ' 4 # a ' & 5 1
2
( -2 ' -2 0' 6 7 8 '8 0 ' 1 4
b 2 % a ' -2 0' 6 9# 8 '8 0 1
2 3 a b #
)
( 92# ( n4#!
( n4# & % &# 2 n :! )) & & a, b " 100a + b 7 a + 4b 7 -2 )6 1 1000 2 4
- 1 2 ; %&%' 1, 16, 31, 46, . . .) - 2 . % 2 4
' 1 '
' % #
2 !
! 11 " #$ %&
n n = 11q + r 0 ≤ r < 11 n2 = (11q + r)2 = 121q2 + 22q · r + r2 = 11m + r2 = 11k + s s r2 11 0, 1, 4, 9, . . . , 81, 100 11 ! "# $ 0, 1, 3, 4, 5, 9. % &' (
11 ) * 2, 6, 7, 8, 10 ' +
,-
$ ' 3 (5) ./
' $ + 101132 3 (5 11 13 . . .)/ *
,0
$ 1 2 . . / 3 4 2 . .5 (x − 1)2 + x2 + (x + 1)2 = 3x2 + 2 6 3 2 * * !/ 7 3. ,- 8 !$$ $ 1 2 5 . . 5
/ $ 1 2 4 . . 5
/
$ 1 2 3 . . 2 5 . . / $ 1 2 11 . . / !9 : n * . 2 n . . 5
*; 2 . . 9 % -< !=<<>$ --50? ; @ 4 2 . *5 A . 4 8 B -C !?DDC$ C05DC$
,C 9 3. . 6* ' !6 % * ?D0<E0? ? $ 9 : * F 2 n n F 3. * F : 2A 9 2 3 6
n
!
"
#
$% & " ' ( x ) % y * % z + % ,
-. !! n ∈ N (n + 1) / 0 (n2 + 1) 12 !! n + 1992 / 0 n2 + 1992 ( 1992
$ 2001 1) 3 3 / 0 n2 + m2 3 n m 1*
0 n $ 5 (4n2 + 1)
$ 13 (4n2 + 1)
$ 17 (4n2 + 1)
4 ' ! 4 ! ' 5
! ! 5 5 6 0987654321 4
%! 7 8 %!
! 9 0, 9, . . . , 1 3
$7 % %! & !: %;
7 ( ! 1240 <
! " # " !
! $ " % ! " ! & % ! & ' ( ) $ ' * " + " !
! " #$ % &$ ' $ ( ! )* (+ ($ , ( - . /01 2 )- *$ 3 $ "4 ' , !$ , , 24000 ( 5 67
5 2 ($8 9 : $ 8 9 5 , ( + ; ( $ !$ < , = : , ( 6 5 5 8 * ( . , ( 2 * 8 ( 8 ", % = : > * & 2 ; ( 8 $ ( & $
= ; % ( - >, ; *$ & $7 * # ! $ #$ & # 43 # #$ & >? = & # * , # = 5 = - , ; ( @ 5 A
¿
5 ||||||||||||||||||||||||||||||||||||||||||| !
! " #
\ \ \ \ \ \ \ \ ||| $ % ! ! & ' ( ) #
| ||| ||| ) $ $ ! ) $ ! ) $ ) ' * % % + , - . * / $ ) $ ( " $ ' " ' ) ' Y )* '
Y > 0 #
• Y 5 0 $ • Y 1
( % - ' ( #
an X n
ai
Y
> 1 Y = a0 + a1 X + ... + 0 X
¿
Y Y < X a0 = Y, Y = a0 + 0 · X < Y Y = q · X + r ! a0 = r < X " q < Y q # $% q = a1 + a2 X + . . . + an X n−1 Y = a0 + a1 X + . . . + an X n " % &
Y = a0 + a1 X + . . . + an X n = b0 + b1 X + . . . + bn X n . ' ( $ & X )( * $ + a0 = b0
a1 X + . . . + an X n = b1 X + . . . + bn X n . ' ( X ( < Y $ $ + a1 = b1 , . . . ai = bi i = 1, . . . , n 2 &! ( X = 10 $ , " - $ ( ( . ( ( ! / ! , ! & 0 , " ( 2 + 1 +,$ $ 345 +0 2 23 6 " ' 7 +,$ ,8 & ' " + 9 # 1000 6 : ' & ! 1 * , ( ; " $ ( "< 0 *0 1000 6 # 1 # ( 7" ( 1 9 8 $ 15. 6 ( . ! $ & 7,8 7 .8
7 8 7 . 8 =! 7>8 ' 1 " $! +$ ? $ ( +$ ! # 9 $ ( $ : 0 01 @4A3 ? 44AB ; $ + 0 7C 8 7C 8 $ +$ +$ 1 $ 1 0C( ! 01 @ ! 0C( ! B 813 − 833 " 1
¿
! "
# $ % & ' ( ) a ˇ* % )* + + 23,! " ) - . * ! / . ) * 0 1 2 $ 0 3 ( ! 4 2 5 3 . 6 % 7 . ) 0 * 7 8 ) 9 + 8
9 8 7 6 5 4 3 2 1. " 9 0 4 , 9 * :0 . $ / ;<=>? % % )9 * . 9 @ 3 ! 3 7 A % 3 3 A 9 7
$! 3 !- 7 ) 18* " 9 !4 1 # 8 B 9 @C 7 ) 0* ! / " # # 0 7 ! 8 "C (
7 9 C 8 B / . D 7 9 . 1 0 #
3
¿¿
! "# $% & % ' # & % () ( % * + () n , - 0. 0 2047 ( / n% () "0$ " $ ( / % () % ( , & . 12 + ( () -+ 3 * 2 * 14 5 () "6 $%
( "7$ % " 0$ / 8 ! / 9 0 1 2
( - ! :' ,: % () 2 ( /% % 0% & () ( ' () 9 % ' & 1., 2., 3., 4., 6., 8., 9. & &
2. 3. 4. & ; % ( . 5 + 11 111 1111 12 123 1234 12345 111 321 231 1230 30000123 123 + 321 213 + 12301 333333 + 12303. ! " 15 · 17 33 · 65 127 · 255 1025 · 999 #
$ % & ' ( ' $ % & ' ( ' $ % n( m( %
( ! < ( ! 0 9 % ! = ! & 9 ' +
¿
0
1
2
3
4
5
6
10
13
14
15
16
17
18
19
! 360 = 18 · 20 ! 18 · 202 "
! # $ % #
1 · 7200 17 · 360 8 · 20 15
3350 788533 1992 ! " # $ !% !
"& 0 9 ' ( ) * & 10, . . . , 19
+$ ! , - ' ! . " 9 ! 3 $ ! ,
9 ! 3 /0 ' 12 1* ! " < 12 $
( $ , $ 2 /3
$ $ " X !
" XX = Y 6 $ " Y * 4 X 7 11 13 2 5 6 " ! % 2 7! 7 · 11 · 13
/8 . ! $ " X $ $ X % " Y = XXXX Y 5 11 ' X 9 :; $ 2 /< * " $ 13 $ , /= " $ > 79 $ " $ , 13 " $ 79 78 5' ! ! 3-?3@?8 8 A /
. * " B $ "& 1 " $ C $ , 8 1 5D $ , D
"&
¿
a
! " # " $% & ! ' 8( $% & ! ' !%( ! )*
)*
16( + ! ,
#! - . 10 =: A 11 =: B 12 =: C 13 =: D 14 =: E 15 =: F /
0 X Y . X + Y = 999999999 1
(X)+ 1
(Y ) = 81 - # 1 109 1234567891011121314 . . . 2 3 1
"
& !
4 '5!! -
67/89/: 8 - ! 0 ;. < = . n
n= 1 2 2n ! 5 4" 7 '> 5!! 6748 8 + . # . p . q ≤ 100 ,!
! ?
1, 9, 8 - . # '?
100 101 "
1
! " # $ %& ' ( a, b %& # a b ggT(a, b) ! ) " ggT(123123, 555555) = 3003 * ! ggT % ! + ' , & ! + # -
¿
ggT(955354721, 330435) ! a "# " ! $ % & % '
a = qb + r ⇐⇒ r = a − q · b
()*+
, )* ggT(a, b) ! b r - ggT(a, b) ≤ ggT(b, r) ggT(b, r) ! a b ggT(b, r) ≤ ggT(a, b) ' ggT(a, b) ≤ ggT(b, r) ≤ ggT(a, b) - ggT(a, b) = ggT(b, r) . %/ 0% 0 & ggT(b, r) 1 2 b = 0 ggT(a, b) = a 0 ! 0 0 - = 0 "# ' 3 4
' ! 0 3 4 r(0) := a, r(1) := b 2 r(n) = 0 r(n−1) "# 0 3 r(n + 1) 4 r(n − 1) = q(n − 1) · r(n) + r(n + 1) - 0 % {r(n) = 0|n ∈ N} & ' r(n + 1) 0 &4
r(0) = a = q(0) · r(1) + r(2) = q(0) · b + r(2) r(1) = q(1) · r(2) + r(3) = r(n) = q(n) · r(n + 1) 5% i ∈ {0, 1 . . . , n} ggT(r(i), r(i + 1)) = ggT(a, b) r(n + 1) = ggT(a, b). 6 4 • •
•
¿
a b
! " #
! "##$#%&'( $$)%$# &($ (*"( #'%# %("
ggT(955354721, 330435) = 2891 · 330435 + 67136 = 4 · 67136 + 61891 = 1 · 61891 + 5245 = 11 · 5245 + 4196 = 1 · 4196 + 1049 = 4 · 1049 + 0
1049 = ggT(955354721, 330435) a b = 0 b a mod b ! " # $ % & $' ($ )* + , % - ) " % - . /0 $ 1 2 3 4 5! $ 4 1! ! ! ! 64 7 8 % 1 9 % " ! 4 ! ! 5. : ; &)
+ , ggT - . ! /0 10081 8401
/ 0 4811 17551
/0 29401 1617
- 2 &( 34 . ! 3381821 48529591 /0 / 0 17759 6186818 &'
x ∈ Z (x = 3) 1 (x − 3)|(x3 − 3)
&$
- n ∈ N / - 5 0 /0 ggT(n, 2n − 1)1
/ 0 ggT(2n − 1, 2n2 − 1).
&% + 6 7 2 20 8 1 ggT(a, b) 1
¿
r(20) = 1 · 1 + 0
a, b ab 20 !" a, b # # $ 200 % 2 ggT(a, b) 1 a, b 100 # # & # ggT(a, b) ' a, b !( ) ggT $ # & # #% a b # * * + b = 12 + a & 1, 2, 3 . . . * & ggT # !! ,- . - n # - an , bn& n * & $ ggT # Z
a = 15 b = 42 ! " ! 1 # $ % & ' $ % 2 · 42 + 15 = 99 ( ) " # * !+ ,# - * . + * ( # '( 27 = 42 − 15 42 − 3 · 15 = −3 " % / 0+ "1 ! . x = 42 · a + 15 · b a, b ∈ Z 1 2 x )3 ! 3 100 3 3 )3 ! 3 42 15 ' 2 $ % & $ % 3 ggT(15, 42) 4 $ + $ ! 3 % a, b ∈ Z aZ = {a · x|x ∈ Z} aZ + bZ := {a · x + b · y|x, y ∈ Z} "3 %
!/ # 10 ## 0 4Z& 7Z& 4Z + 7Z& 4Z + 4Z& 8Z 1 . $ - 2
¿
d = ggT(a, b) aZ + bZ = dZ d = ggT(a, b) aZ + bZ ⊂ dZ dZ ⊂ aZ + bZ a = d · r b = d · s r s Z a · x + b · y = d · rx + d · sy = d · (rx + sy) ∈ dZ x, y ∈ Z 2) !
! !" # ggT(a, b) $ a = b · q1 + r1 % & ' rk ' aZ + bZ ( r1 = a + (−q1 ) · b ) rn−1 = qn · rn + d. * " ! k rk−2 = a · x2 + b · y2 , rk−1 = a · x1 + b · y1 . rk−2 = qk · rk−1 + rk
rk = (a·x2 + b·y2 )− qk (a·x1 + b·y1 ) = a·(x2 − qk x1 )+ b·(y2 − qk ·y1 ) ∈ aZ + bZ. + ( ' ggT(a, b) aZ + bZ !! % aZ + bZ = cZ c = ggT(a, b)
! % d = ggT(a, b) aZ + bZ = dZ , cZ = dZ ! c ∈ dZ d ∈ cZ + ! e ∈ Z c = d · e
e d = c · e + c = d · e = c · e · e e = ±1 , c d " e = 1 d = c 2
c = ax + by a, b, c a b c
, c = a · x + b · y x, y ∈ Z d = ggT(a, b) - a b - c % d - c ! s ∈ Z c := d · s ! x1 , y1 ∈ Z d = a · x1 + b · y1 c = d · s = a(x1 s) + b(y1 s) 2
ggT(a, b) = 1
x, y ∈ Z ax + by = 1.
d ggT(a, b) 1 = ggT(x, y).
x, y ∈ Z
a = dx
b = dy
ggT(a, b) = 1 a b · c a c
ggT(a, b) = 1 a b a · b c ggT x, y Z 1 = a · x + b · y ! c" # c = axc + (bc)y $ a % c a c = ad = be &' ! d, e ∈ Z %( 1 = ax + by &' ! x y ! ) c" !# c = axc + byc = axbe + byad = ab(xe + yd). 2 a, b" ggT(a, b) = 1 ( * x y " d = xa+yb + &' ' " ' , % , - . & / 0 & a b * ' $ &' ' .! % a b a b ' x y 12 # a = 1 · a + 0 · b b = 0 · a + 1 · b 0 / & ( 3 x y #
Dividend = xalt · a + yalt · b; Divisor = xneu · a + yneu · b Dividend = q · Divisor + Rest. Rest = (xalt − q · xneu) · a + (yalt − q · yneu) · b. ! . xneu := xalt − xmitte · q 4 yneu := yalt − ymitte · q; xalt := xmitte4 yalt := ymitte; xmitte := xneu4 ymitte := yneu; aalt := amitte4 amitte := aneu; ! $ &' . &' $ ! $ #
53 29 24 5 4
29 24 5 4 1
1 0 1 −1 5
0 1 −1 5 −6
0 1 −1 2 −9
1 −1 2 −9 11
1 1 4 1 4
# % 1 = 53 · (−6) + 11 · 29
24 5 4 1 0
a, b ggT(a, b) x, y
ggT(a, b) = a · x + b · y !"
# $
%
! & 1 ½ ' ( ) * +
! "# $% &%' ( &%' ) * + )* , - ! .$ ($ "$ $ , ) $/# ' ' 0 '
)' 0 )
$ 1 ) ' (%' 0
1 1 '$ ' ' ' * 1
) )' * ) 1
' )' ) ) ) '
' ' ' )'
, ' . ggT a b x y
ax + by = d /0 60, 35 1
/0 632, 547
/0 455, 247
/0 16065140, 50883872
0 - 2 2 x g(x) = x4 + 1 f (x) = x2 + x + 1 0 . ,3 & x a(x) b(x)
1 = f (x) · a(x) + g(x) · b(x) 2 x
½
a, b a ! b "#
a·b . a b kgV (a, b) = ggT(a, b)
d = ggT(a, b) x ! y a = d · x ! b = d · y x ! y $ a d· b = d · x · y a ! b ! % z = ae = bf = dxe = dyf.
x ! y y e h %
z = (d · x · y) · h =
a·b d
· h.
$ & a ! b ! a d· b
2
$!% '( ) % * ggT(m, n) = 1 xn + yn = z m +,! x, y, z ∈ N "- % ) ! . m = n + 1 ! / # !0 '1 # ) n ∈ N (n + 1)|(n2 + 1) # a ∈ N 2 (n + a)|(n2 + a) # a ∈ N 2 (n + a)|(n2 + na + a2 ) '3 ) ! "# ggT(2n + 1, 9) "# ggT(2n + 1, 27) "# ggT(2n + 1, 3m) ' % . ggT(n2 − n + 1, 3n3 + n2 + n + 2) = 1. '4 # ) ggT(X + 1, X n + 1) $5 X # ) ggT(X 2 + 1, X n + 1) $5 X ! n # ) ggT(X + 1, X 2n + X n + 1) $5 X ! n # ) ggT(X 3 + 1, X n + 1) n ≥ 3 $5 6 '7 ")! (//( ( 8!# ! f (n) = g n + 1 (n ∈ N). & n ∈ N % # f (n) 9 & f (3n) f (5n) f (7n) . . .
f (n) f (2n) f (4n) f (6n), . . . ggT
3, 4, 5, . . . ! " # $ %
& !% ' % ( ) & % A = {an |n ∈ N} % ) ) !% A = {a0 · x0 + . . . + an · xn |n ∈ N, xi ∈ Z} ) ' * & ) % &
+ , ' %
- * -% . ' ) U ⊂ R , // !% R !% Z % , // !% Z
a, b ∈ U a − b ∈ U 0 U
1/ U = {0} U = 2 · Z U = dZ d ∈ Z , / /!% Z , // !% Q Q , // !% R 0 u ∈ U z ∈ Z % z · u ∈ U
Z
Z
U
U = dZ
0 U = {0} % U = 0Z 2 0 = u ∈ U ' u % −u /%! ) P = {u|u ∈ U, u > 0}
% 3 4 / !% )
' m & u ∈ P u = q · m + r 0 ≤ r < m r = u − q · m ∈ U q · m ∈ U m ' P
r = 0 u = q · m 5 % U = mZ 2 2 * 67 8 /* 0 U , // !% R u ∈ U z ∈ Z % z · u ∈ U 1 66 2 & 99 % &3 ggT ) % 1 ! 4 / !% ' ' )% ggT - , : !% % ; 6< ' , // U ⊂ R !% ' a, b ∈ R U = {a · x + b · y|x, y ∈ Z} ) U = aZ + bZ
U = 12 Z + 13 Z ⊂ Q Q
Q R
R
a, b m ∈ N, m > 0 m a ≡ b mod m ! a " b m#
$% 19 ≡ 12 mod 7 23103 ≡ 0 mod 453
a ≡ b mod m (a − b) m
& a = qa ·m+r b = qb ·m+r
' m " ' m a = q · m + r (b − a) = q m b = (b − a) + a = 2 (q + q )m + r a ≡ b mod m $' ( ) Z
* a ≡ b mod m (a − b) m
+ ) " m > 0 ) ,
Z/mZ := {0, ..., m − 1}.
r : N n → n mod m ∈ Z/mZ
-. ./
0 Z/mZ 1"2 ) " 3 $
m r(a) := a mod m r(a) ∈ Z/mZ
a, b ∈ N r(a + b) = r(r(a) + b) = r(r(a) + r(b)) = r(a + r(b))
¾º r(a · b) = r(r(a) · b) = r(r(a) · r(b)) = r(a · r(b))º
!
" #
$ $ %
&
r(a + b) − r(r(a) + r(b)) m
!
a = qa · m + r(a) b = qb · m + r(b) $ a + b − (r(a) + r(b)) = (qa + qb ) · m '
m '
a + b r(a) + r(b) ' ( r(a + b) = r(r(a) + r(b)) ' ) ' * %
& +$ !
a · b = (qa m + r(a) · (qb m + r(b)) = qa · qb m2 + qa · m · r(b) + r(a) · qb · m + r(a) · r(b). $ ' ' , a · b − r(a) · r(b)
m ' - 2 . /
&
212066 − 1 7
0 1 7
2 ) - 3 1& " 4 " ' !
- 2 5 ( "
26 = 64 64 ≡ 1 mod 7 5 (
12066 6 $ 12066 = 2011 · 6 '$ 212066 = (26 )2011 - /
/ ' % 212066 mod 7 ≡ (26 )2011 mod 7 ≡ 12011 mod 7 ≡ 1 mod 7 6
212066 − 1 7 2 6 7 .
/ 5 % 8 6) 2 ' )
Z/mZ '9 : - ) Z/mZ $ m > 0 %
• a +m b := r(a + b) • a ·m b := r(a · b).
m
a b c ∈ Z/mZ (a +m b) +m c = a +m (b +m c). a ∈ Z/mZ a +m 0 = a. aZ/mZ b ∈ Z/mZ a +m b = 0. a, b ∈ Z/mZ a +m b = b +m a. a ∈ Z/mZ 1 ·m a = a a b c ∈ Z/mZ a ·m (b ·m c) = (a ·m b) ·m c a b c ∈ Z/mZ a ·m (b +m c) = a ·m b +m a ·m c a b ∈ Z/mZ a ·m b = b ·m a
! "
a +m (b +m c) = r(a + r(b + c)) = r(a + (b + c)) = r((a + b) + c) = r(r(a + b) + c) = (a +m b) +m c. # a +m 0 = r(a + 0) = r(a). $% a = 0 ∈ Z/mZ 0 +m 0 = r(0) = 0. $% a ∈ {1, . . . , m − 1}
m − a ∈ Z/mZ a +m (m − a) = r(a + m − a) = r(m) = 0 ! "# & a ∈ Z/mZ b ∈ Z/mZ a +m b = 0. ' a +m b = r(a + b) = r(b + a) = b +m a ( ) # * # +"
2
Z/mZ , " " - " ". / - 0 1139225 # 7 - " # 1 1139225 ≡ 325 = (36 )4 · 3 = 3 mod 7 11392 , ." 0 # 7 - # 1139225 ≡ 3 . . . 2# Z/mZ ,. * / " - "" , 2 - %" 3 4 / !" - " Z/mZ ,
0"
(Z/mZ, +m ) 0
a ∈ Z/mZ +m 0 0 a = 0 m − a −a Z/mZ ! a, b ∈ Z/mZ " −(a +m b) = (−a) +m (−b) a∗ +m a a ∈ 1, . . . , m − 1} a∗ = a∗ +m 0 = a∗ + (a +m (m − a)) = (a∗ +m a) +m (m − a) = (m − a) (a +m b) +m ((−a) +m (−b)) = 0. 2
r : N n → n mod m ∈ Z/mZ #
# " $ % r(a + b) = r(a) +m r(b) $% r(a · b) = r(a) ·m r(b) # a, b ∈ N0
! " # ! $ " %& ! 2 ' ( ) * + ,(( ( , . ! / m ! 0 " 1 2 m > 1 a, b ∈ Z/mZ a + 3 b& ! a · b = 1 Z/mZ 3 ( 4 & a b ( +
ggT(a, m) = 1 a &' Z/mZ 2 ( ! ( 2 5 6( m ! " # $
¾ ! a = b := 214748364 " # (a+ b) $ % &
' () * ++ , +m ·m
+- ( % . (
m
m & $ ( /0 , +1 & ! "
m #
*
+2 * 3 # $
# ab mod c # +4 ( * 3 !"# $ $ !* # ab mod c ¾
236 37 !
"236 ) # $
%& ! ' n3 + 11n n 6 $ $' n7 − n 42 $
' 12512 − 1 4147 $ ' 18128 − 1 104975 $ ' 13 270 + 370 . ' ( ) 52n + 24n − 1 48 $ ' ( ) 56n+1 + 35 · (2n + 1) + 2 14 $ %
' * ( 4n2 + 1 3 $+ $' * ( 4n2 + 3 7 $+ n
' ,
n - 19|(22 + 3) n
' . Fn = 22 + 1 Fn |(2Fn − 2) n ∈ N %/ . 01 ! ' 2 Z/7Z- 2 Z/19Z- 2 Z/17Z $' . $ 3
- 4 $ m $ 0 1 2 Z/mZ
' . $ 3
- 4 $ a, m ggT(a, m) = 1 $ 1 2 # 2 a mod m ' . 3
1 5 2$ 23- 4- 5- 6- 7- 13- 17- 19- 20 %6
' 7 " 8 '- # $ 7 $ $' ,
- 1992 # 7 $ , 9
' ! # abcdef 7 $ - 4 5a + 4b + 6c + 2d + 3e + f : $ ' 0 2 2 $ $ . ' #4 ; $ 11, 13, 17, 19, 37.
%<
' 1984 $ 1986 $ 8 #$ 17472 $
7 1984 . . . 1984 19 f (x) = x2 + x + 1. x f (x) 3 ! f (x) " # f (x) = x2 − x + 1. $ % & # f (x) = x4 + x3 + x2 + x + 1
x f (x) 5 f (x) 25 ! f (x5 ) 25
x
f (x) f (x5 ) ggT 5
! " #$% & # %
' ( ' % & ) * ' " ' ' % ' + + " + , % & , ' - % & - . ) % " % / ' 0 ( 1
2 ( 03 1% % % .) 4' ( . 5 " 67 ! #$
' 5 ! 67 " ! # 2
!" # $
%& ' G ( G × G = {(a, b)|a, b ∈ G} ( )* + , g : G×G → G - . /. G % - . g : G×G + *
g(a, g(b, c)) = g(g(a, b), c) a, b, c ∈ G % - . 0 *
e ∈ G g(e, a) = g(a, e) = a a ∈ G (
- . 0 + 1.. ( % 2 ◦ - . * 3 a ◦ (b ◦ c) = (a ◦ b) ◦ c a, b, c ∈ G ' )"
. . /. 4 *
5 %
- ."
6 - . a ◦ b ◦(a, b)
1.. ! .3 N Z Q R +m : Z/mZ × Z/mZ (a, b) → a+m ∈ Z/mZ M Abb(M ) := {f : M → M } ! "
%& 7 1.. (G, ◦) + 5..*
3 8 , a ∈ G a∗ ∈ G a ◦ a∗ = a∗ ◦ a = e % 5.. +
*
2 a, b ∈ G a ◦ b = b ◦ a
a a−1 a, b ∈ G! (a ◦ b)−1 = b−1 ◦ a−1
e1 e2 e1 = e1 ◦ e2 = e2
a1 , a2 a a1 = a1 ◦e = a1 ◦(a◦a2 ) = (a1 ◦a)◦a2 = e ◦ a2 = a2 (a ◦ b) ◦ (b−1 ◦ a−1 ) = a ◦ (b ◦ b−1 ) ◦ a−1 = a ◦ e ◦ a−1 = e
2
(Z/mZ, +m ) N (R, +), (Q, +), (Z, +) ! " Q \ {0} # ! R \ {0} ! $% # & Q+ # '% ! $% # # '% ! $% # ( M # S(M ) = {f |f : M → M f ) } * + *! , - $% %. $% / # '%+ R2 0 0 % 1 2 a+c c a = + b+d d b $% 03% $% * '0 * / / *
A, B G A ◦ B := {a ◦ b|a ∈ A, b ∈ B} A−1 := {a−1 |a ∈ A}.
U ⊂ G ! G " U ◦ U ⊂ U U −1 ⊂ U ! ! # E ⊂ G $ G % & ! [E] [E] = {U |U ! G E ⊂ U }
[E] E
E
a
G a
[a] := {az |z ∈ Z}
!
Z m · Z
" V
G G # a $ G % a & & n ∈ N, n ≥ 1 an ∈ V b = an ! V = {bz |z ∈ Z} ! ' v ∈ V v = az () z ∈ Z * z = m ∈ N m ≥ n & q, r ∈ N m = q · n + r r < n + am = aq·n ◦ar ar ∈ V & r = 0 + am = (an )q = bq ' z −z = m , 2 - ./ 0)
U a ∈ G aU = {au|u ∈ U } 1& U G U a 2 & ! u ∈ U u · U = U · u = U m ∈ N U = mZ
Z U k + mZ k ∈ {0, . . . , m − 1}
! N U "# "#$ N = z + mZ z ∈ Z ! z + U = (−z) + U # z ∈ N % ! z = q · m + r q ∈ N r ∈ {0, . . . , m − 1} ! & N = z + U = r + q · m + mZ = r + mZ # N %'"#
U
G U U
+&& l(a, −) : U u → au ∈ aU & U &3 ( 1# & aU & aU U # () 2 & 2
aU bU c = au = bv u, v ∈ U auv −1 = b b aU bU ⊂ aU aU ⊂ bU aU = 2 bU
! U G ! " # ord(G) U ⊂ G $! % & ' U G # [U : G]
ord(G) = [U : G] · ord(U )
G ( ) % G =
U a
a∈G
* + ord(U ) [U : G] ' ( , 2 - # . p / ! 0 ' 0 # 1 . 0 2 ' p 1 p
" # $ " %
ord(G) = p / ! e = x ∈ G " ' x $ " ' G ord(x) = ord(G) x 2 (3 a ∈ Q [a] = Z · a (Q, +) a Z + Z · ! Z + Z ·
2 3 2 3
Z + Z · +Z·
3 5
2 3
"
# Q $
%
& Z/3Z
Z/9Z
Z/27Z
Z/10Z +
Z
x ∼ y := x + y + 1 + (Z, ∼) ! " G ! f : G → M # $ M % x ◦ y := f (a ◦ b) & ! ' f (a) = x f (b) (
" G ! f : G → M # " )
a, b, c ∈ G f (a) = f (b) f (a ◦ c) = f (b ◦ c)$ M
*) ! " x, y ∈ M $ a ∈ G b ∈ G x = f (a) y = f (b) + x ◦ y := f (a ◦ b) , R x → x − x ∈ [0, 1[
'
% - . ' x ∈ [0, 1[ = / & ≤ x.
' "
[0, 1[ & ! ' ! & R/Z % Q/Z.
0 " / & ≤ x
- & 1
2 " + 3 1
Z2
Z dZ d ∈ Z Z × Z = Z2 {0} ! a " Z2
a · Z a Z2 U, V Z2 U + V : = {u + v |u ∈ U v ∈ V }
Z2 a b ∈ Z2 aZ+bZ
Z2 Z2
Z2 U → Z2 Z2 !
U2 :=
0 0 |u ∈ U = U ∩ Z u|u = 1 u2
U
"# $
0 Z = U2 &
Z "# % b ∈ Z b !
p(U ) := a| % u ∈ U
u =
a u2
"#
d ∈ Z ' d Z
d u1
u0 ∈ U u0 = ∈ U u1 = d·z u = u2 y ( z ∈ Z )
u =
u1 u2
= u0 z + (u − u0 ) =
d y
z+
0 u2 − yz
U * d 0 U= Z+ Z y b
0 b
z2 2
B
A
!" Z2 # $ 9
% b = & 6 bZ
b
'
a & (
) a1 b2 = a2 b1 * a1 b2 − a2 b1 = 0 & +
a b & , " -. det(a, b) = 1 1 := a1 · b2 − a2 · b1 * & !" a a2 b2
b
a + b b a
$
% ) " "
& & 0 " (a1 + b1 ) · (a2 + b2 ) − 2b1 a2 − a1 · a2 − b1 · b2 = a1 b2 − a2 b1 & & % " !" a
b
0 " % " 1
/ &
det(a, b) + det(a, c)
a, b, c ∈ Z × Z det(a, b + c) =
a, b ∈ Z × Z det(a, b) = − det(b,a) a, b, c ∈ Z × Z det(a + b, c) = det(a, c) + det(b, c) z ∈ Z a, b ∈ Z × Z det(a, b · z) = det(a, b) · z &
2
2
" 1 % " 3 &
U
Z × Z
a ∈ Z × Z d(a, U ) := {det(a, u)|u ∈ U } Z n ∈ Z d(a, U ) = n · Z
d(U, U ) = {det(u, v )|u, v ∈ U }
a1 α 2 a = a ∈ Z a = β d 2
2
V : = {v |v ∈ Z2
Z
det(a, v ) = 0} =
d = ggT(a1 , a2 ) α β
Z.
v ∈ V a1 ·v2 = a2 ·v1 α·d·v2 = β·d·v1 αv2 = β·v1 α β v1 = α·v = β·v2 v2 1 αβ·v 2 = αβ·v1 α v1 α = v1 ∈ v2 = v1 v = Z β v2 β α α Z⊂V V ⊂ Z 2 β β a, b U → Z2 U = aZ + bZ a, b U → Z2 det(a, b) = 0
U = aZ + bZ
det(U, U ) = det(a, b) · Z
!=⇒" # u1 , u2 ∈ U $ α1 , α2 β1 , β2 ∈ Z
u1 = aα1 + bβ1 u2 = aα2 + bβ2 % det(u1 , u2 ) = det(a, b)(α1 β2 − α2 β1 ) ∈ det(a, b)Z " =⇒! & $ V = {v |v ∈ Z2 det(a, v ) = 0} V ' # " U ∩ V = uZ ( u ∈ U a = u · s ( s ∈ Z $
det(a, b) = det(us, b) = det(u, b) · s = det(a, b) · x · s s, x = ±1 U ∩ V = aZ u ∈ U $$ $ k ∈ Z det(a, u) = det(a, b) · k = det(a, b · k) det(a, u − b · k) = 0 u − b · k ∈ V ∩ U = aZ $ z ∈ Z u = az + bk 2
U a b
aZ + bZ = U → Z2 det(a, b) = 0 c, d ∈ U
= U cZ + dZ
c) = ± det(a, b) det(d,
! ! " det(a, b) # $% U & ' ' ' ( ) * & '
) U a = aa1 b = bb1 Z × Z 2 2 a1 b1 det(a, b) = a b = ±1 2 2 + ' + ',
x =
x =
x =
x y x y x y
2
∈ Z2 2x + 3y = 0? ∈ Z2 2x + 3y = 1 ∈ Z2 2x + 3y 7
a ∈ Z
8 3
Z+
12 a
Z
aZ + bZ → Z2 ! " ## $ Z2 %"& ' Z2 · det(a, b) ⊂ U ( " ) x |x + 2y 5 } * + 2 " , $ U = { y
!- ./ ) +'' f : A → B 0 ' % 0 1
a, b ∈ A , f (a ◦ b) = f (a) ◦ f (b)
r : N a → a mod m ∈ Z/mZ + · R x → c · x ∈ R
R x → 2x ∈ R+ (R, +) → (R+ , ·) y x ∈ R2 → ! φ : R2 x+y y "
f : G → H g : H → N a, b ∈ G gf (a ◦ b) = g(f (a) ◦ f (b)) = gf (a) ◦ gf (b) gf 2 g : G → H ! " # $ {g|f (g) = e, g ∈ G} # % & f
f : G → H
" #
f (eG ) = eH
a ∈ G f (a−1) = f (a)−1 U ! G f (U ) ! H V ! H f −1(V ) ! G $ f ! N G % & ' (% x ∈ G xN x−1 = N
f (eG ) = f (eG ◦ eG ) = f (eG ) ◦ f (eG ) ' eH = f (eG ) ◦ f (eG )−1 = f (eG )◦f (eG )◦f (eG )−1 eH = f (eG ) ( '' ) " ' * ' ! & + ' ,- . ' / 0 f (a)−1 ◦ f (a) = eH = f (eG ) = f (a−1 ◦ a) = f (a−1 ) ◦ f (a) ' f (a)−1 = f (a−1 ) 1 x, y ∈ f (U )! ) a, b ∈ U f (a) = x f (b) = y x ◦ y = f (a) ◦ f (b) = f (a ◦ b) ∈ f (U ) 2 x−1 = f (a)−1 = f (a−1 ) ∈ f (U ) ' f (U ) 3 & H
a, b ∈ f −1 (V ) f (a ◦ b) = f (a) ◦ f (b) V H a ◦ b ∈ f −1 (V ) f (a−1 ) = f (a)−1 ∈ V a−1 ∈ f −1 (V ) {e} H Kern(f ) = f −1 ({e}) G x ∈ G a ∈ N = Kern(f ) f (x ◦ a ◦ 2 a−1 ) = f (x) ◦ eH ◦ f −1 (x) = eH . f : A → B ! " b ∈ B # a ∈ A " f (a) = b $ ! " b ∈ B " a ∈ A " f (a) = b $ $ f f % & '"" ("") " "" (""" ) "" "" " *"""
f
f
:G→H
(f ) = {e} g, h : F g = h
→G
f g = f h
=⇒+, y ∈ -(f ) f (y) = f (e) = e y = e +=⇒, f (x) = f (y) f (x) ◦ f (y)−1 = e f (x ◦ y −1 ) = e x ◦ y −1 = e " x = y =⇒., x ∈ F f (h(x)) = f (g(x)) h(x) = g(x) /0 x ∈ F $ h = g .=⇒, ι : -(f ) → G g : -(f ) x → e ∈ G 1 (""" f (ι(x)) = f (g(x)) = e /0 x ∈ -(f ) ι = g /0 x ∈ -(f ), x = ι(x) = g(x) = e -(f ) = {e} 2
G f : N → G ! " ! fˆ : Z → G
fˆ(n) = f (n) # n ∈ N $ f
% # Z # & fˆ 2 ! /0 m ∈ N, fˆ(m + (−m)) = fˆ(0) = e fˆ(−m) = f (m)−1 " /0 3! ! 0
fˆ(n − m) = fˆ(n) ◦ fˆ(−m) = f (n) ◦ f (m)−1 n, m, a, b ∈ N n − m = a − b n + b = a + m f (n) ◦ f (m)−1 = f (a) ◦ f (b)−1
fˆ : Z z = n − m → f (n) ◦ f (m)−1 ∈ G n, m ∈ N n, m ∈ N ! ! " z1 ∈ Z z2 ∈ Z n1 , m1 , n2 , m2 ∈ N z1 = n1 − m2 z2 = n2 − m2 # fˆ(z1 + z2 ) = fˆ((n1 + n2 ) − (m1 + m2 )) = f (n1 + n2 ) ◦ f (m1 + m2 )−1 = (f (n1 ) ◦ f (m1 )−1 ) ◦ (f (n2 ) ◦ f (m2 )−1 ) = fˆ(z1 ) ◦ fˆ(z2 ) fˆ 2
r : N → Z/mZ π : Z z → π(z) ∈ Z/mZ
$ %&
π(−k) = r(m − k)
k ∈ Z/mZ r(m − k) k ∈ Z/mZ
2
' ( # ) * ) + , ) Z - ! . / 01 - ) ! + !
(A, +) a ∈ A Φ(a, −) : Z → A Φ(a, 1) = a
2 ,- ) 3 *- f : N → A f (0) = 0 f (n + 1) = f (n) + a *- N A f (1) = a - * ) Φ(a, −) : Z → A 2
Φ(a + b, −) = Φ(a, −) + Φ(b, −)
# Φ(a + b, −) ) Φ(a + b, 1) = a + b / Φ(a, −) + Φ(b, −) / 2
(A, +)
· : A × Z (a, z) → a · z := Φ(a, z) ∈ A
!
"#
a ∈ A z1 , z2 Z a·(z1 +z2 ) = a·z1 +a·z2
a1 , a2 ∈ A z ∈ Z (a1 + a2 ) · z = a1 · z + a2 · z a ∈ A a · 1 = a a · 0 = 0 $ (A, +) Z−$ % & ' % ( & & ' ) *+
a·x+b·y =c
,!
) a, b, c ∈ Z $ x - . ∈ Z × Z / 01 2 a · x + b · y = c y 2 3 01 2x + 3y = 1 −1 &
f : Z → Z f : Z → Z ! f (z + 1) = f (z) + f (1) f
"
!# $ # 2x + 4y = 0, x, y ∈ Z % &'
$ # ( !# $ # $ 5 Z $ $ $ # ( g = 3 $ # ) a · x + b · y = 0
g &'
$ # * # $ # 6 Z $ # ", # $ + g = 9 $ - # ! c, d ∈ Z
c Z &'
$ # ) " g= d % . / # 3 0 U Z × Z ! a, b ∈ Z
aZ + bZ = U
U → Z2
U x → 5(x + 2y) ∈ Z f : Z2 y ! "(f ) # $% # U Z2 &
U + "(f ) = Z2 U ∩ "(f ) = 0 ' U (
f : Z2 → Z2 1 0 e1 = e2 = 0 1
a, b A f : Z2 → A f (e1 ) = a, f (e2 ) = b x f ( ) := a · x + b · y f y f (e1 ) = a f (e2 ) = b. f
2 f : Z2 → Z2
f (e1 ) f (e2 )
a11 a12 (f (e1 ), f (e2 )) = a21 a22 ! f " #$ 4 % & ' e1 & ' e2
( a12 x a11 x+ y f( ) = f (e1 x + e2 y) = a21 a22 y ) # #$ * ( a11 a12 x1 a11 x1 + a12 x2 ◦ := a21 a22 x2 a21 x1 + a22 x2 f, g : Z2 → Z2 * " a11 a12 #$( (gf (e1 ), gf (e2 )) + F = f " #$ a21 a22
G=
b11 b12 b21 b22
G ◦ F :=
g g ◦ f
b11 b12 b21 b22
a11 a12 b11 a11 + b12 a21 b11 a12 + b12 a22 ◦ = a21 a22 b21 a11 + b22 a21 b21 a12 + b22 a22
! " # $ % f : Z2 → Z2 & det(f (e1 ), e2 ) f det(f )
det(g) · det(f )
f, g : Z2 → Z2 det(g ◦ f ) =
'
a1,2 a1,1 ,g det(g(f (e1 )), g(f (e2 ))) = det g a2,1 a2,2 = det(g(e1 ), g(e2 )) · a1,1 a2,2 − det(g(e1 ), g(e2 )) · a1,2 a2,1 = det(g) · det(f )
det(f ) = ±1
f : Z2 → Z2
% f ( ( g : Z2 → Z2 g ◦ f = Id det(g) · det(f ) = 1 det(f ) = ±1 a11 a12 ) * + % f a21 a22
a11 a12 a21 a22
a22 −a12 det(f ) 0 ◦ = 0 det(f ) −a21 a11
% det(f ) ( , -
2
A R = Hom(A, A)
f, g ∈ R f + g : A a → f (a) + g(a) ∈ A Hom(A, A)
! " #$ % & #' %
% %
f ◦ (g + h) = f ◦ g + f ◦ h (f + g) ◦ h = f ◦ h + g ◦ h Id ◦ f = f ◦ Id f ∈ R
R = Hom(A, A) (f ◦(g +h))(a) = f (g(a)+h(a)) = f (g(a))+f (h(a))
a ∈ A f ◦ (g + h) = f ◦ g + f ◦ h 2
!" "
" R #$ +, · % & ' (R, +) $ ( ) *
r, s, x, y ∈ R + r · (x + y) = r · x + r · y (x + y) · r = x · r + y · r + (r · s) · x = r · (s · x) + 1& &
x ∈ R 1 · x = x · 1 = x % $ (& !
a, b R a · b = b · a $ ( K % ,-& . 0 = a ∈ K a−1 ∈ K a · a−1 = 1 $ ( Z, Q, R, Z/nZ
Hom(A, A) A
R a1,1 a1,2 (2,2) 2 2 R ={ |ai,j ∈ R} a2,1 a2,2 a b11 b12 a b a + b12 a21 b11 a12 + b12 a22 !"# ◦ 11 12 = 11 11 b21 b22 a21 a22 b21 a11 + b22 a21 b21 a12 + b22 a22 $ R(2,2)
ρ : R r →
r 0 ∈ R(2,2) 0 r
ρ(r · s) = ρ(r) · ρ(s) r, s ∈ R ρ(1) = E E % & ' ( ) * a11 a12 A = $ * det(a) = a11 a22 − a21 a22 a12 a21 + , % ) - - % . /01
A R(2,2) det(A)
R
$2 "/ % 3 T ⊂ R ' 4 (T, +) 4 (R, +) (T, ·) 4 (R, ·) ' 1 ∈ T $ $ 4 4 R 4 S R ⊂ M ⊂ S 4 S M 5 6 R[M ] 7 1 Z
Q 1 Z[ 10 ] =
Q
Z[ 12 ] = { ab |a, b ∈ Z b }
Q
A f : A → A Z[f ] Hom(A, A) f y x 2 2 ∈ Z2 ! → A = Z Φ : Z x+y y 0 1 Z[φ] Hom(Z2 , Z2 ) " 1 1 a b # b a+b a −b $% Z[i]& # a, b ∈ Z b a
R S ρ : R → S ρ ! " # $ ρ(a · b) = ρ(a) · ρ(b) %& a, b ∈ R
ρ(1) = 1 ! ' ( ρ : R → S ) {x|ρ(x) = 0} = *(ρ)
ρ : R → S (ρ) = {0}
*(ρ) = {0} ( ρ(a) = ρ(b) ρ(a − b) = 0 a − b = 0 a = b ρ +,- ., ! % ! 2
ρ :
Z→R R
ρ(1) = 1 nZ ρ n
! " ρ : Z → R ρ(1) = 1 ' -/ %& a ∈ Z f : Z z → ρ(a · z) ∈ R g : Z z → ρ(a) · ρ(z) ∈ R ! " f (1) = ρ(a) = g(1) f = g ρ(a · z) = ρ(a) · ρ(z) %& z ∈ Z 2
a ⊂ R a, b ∈ a r ∈ R a + b ∈ a a · r ∈ a
R
a ∈ a a · (−1) = −a ∈ a
2
!
Z a ∈ R aR = {ar|r ∈ R} a a b R a + b := {a + b|a ∈ a, b ∈ b} a ! a1 , . . . , an ∈ a " # a = a1 R + · · · + an R
Z[φ]
0 1 "% 1 1 ' () *
R " # $ φ =
(2,2) & # R a b + , (- ' , ,.! b a+b
a b 1 0 =a· +b·φ =a·E +b·φ b a+b 0 1
,. 1 E R[φ] = {x · 1 + y · φ|x, y ∈ R}. a + bφ /- a, b = 0 R $ Z[φ] ., 0 φ 1 , $ , 2$ 13 " ), 4, x2 − x − 1 = 0 2 4,3
φ 1 − φ
x2 − x − 1 = 0
φ φ − 1 φn = f (n − 1) + f (n)φ (f (n)|n ∈ N) ! (1 − φ)n = f (n + 1) − f (n)φ " φ−n = (−1)n · (f (n + 1) − f (n)φ)
(1−φ)2 −(1−φ)−1 = 1−2φ+φ2 −1+φ−1 = φ2 − φ − 1 = 0 φ(φ − 1) = φ2 − φ = 1 ! "# k = 1 $ # k φk+1 = φ(f (k − 1) + f (k)φ) = f (k − 1)φ + f (k)φ2 = f (k) + f (k + 1)φ % "# k = 1 $ # k & '
(1 − φ)k+1 = (f (k + 1) − f (k)φ) · (1 − φ) = f (k + 1) − f (k + 1)φ − f (k)φ + f (k)φ + f (k) = f (k + 2) − f (k + 1)φ. ( φ · (1 − φ) = −1 '
2
'
300
100 f (1) + f (3) + . . . + f (2n + 1) = f (2n + 2) 1 + f (1) + f (2) + . . . + f (n) = f (n + 2) f (n)
n 3 f (n)
4
n 6 f (n)
5
n 5 f (n)
7
n 8 n m f (n) f (m) f (n + 1) · f (n − 1) − f (n)2 = (−1)n f (2n) an := n ≥ 1 bn := f (2n − 1) f (2n − 1) an ≤ bn n ∈ N f (2n − 2)
)' * ' + Z[φ] , "' - ' n "' .- / 0 φn ' ' 1 '' α Z[φ] 2 3 n = 00 αn = 1 3 n 0 αn = (α2 )(n−1)/2
n αn = α · αn−1 Z[φ]
! " (a + bφ) · (c + dφ) = # $ %
&
' ( 4 '% φ16 15 16 ) ( 987 * '' (1346269 2178309) 31 32 ) ( + ,
! " # $ - % 300. ) ( %
$$$$%$$&&'$(&$&&))$(*%(+(%&'((('*$''''(%(('&((*'&(((*('
Z[φ]
R
Z[φ] → R
a2 − a − 1 = 0
R
a a2 − a − 1 = 0 ρ : Z[φ] → R ρ(φ) = a
a∈R
Z[φ] φ2 − φ − 1 = 0 a = ρ(φ) ρ(x + yφ) := x + y · a ∈ R ρ ! " ρ(1) = 1 " # # $ ρ % & # x + yφ x + y φ # ' Z[φ] (x + yφ) · (x + y φ) = (xx + yy ) + (xy + yx + yy ) · φ ρ((x + yφ) · (x + y φ)) = (xx +yy )+(xy +yx +yy )·a $ a2 −a−1 = 0 R $ ρ(x+yφ)·ρ(x +y φ) = (x+ya)·(x +y a) = (xx +yy )+(xy +yx +yy )a ( $ 2 "
•
•
α∈R R
S
α2 − α − 1 = 0
ρ:S →R
ρ(α) = a
R∼ = Z[φ]
& R % α ) # ρ : Z[φ] → R ρ(α) = a ! μ : R → Z[φ] μ(α) = φ μ(ρ(φ)) = φ " # % Z[φ] → Z[φ]
" μ ◦ ρ = IdZ[φ] $ ) R R Z[φ] 2
x2 − x− 1 = √ 1+ 5 # $% &'
0 ! " a = 2 ( )! Z[φ] * √ 1+ 5 + R , φ -% 2
ρ √
√ 1+ 5 1+ 5 = 0. ρ(a+bφ) = 0 a, b ∈ Z
a+b 2 2 a = b = 0 ρ ! "
2 # ! Z[φ] $ %
R & ' Z[φ] %
Q[φ] = {x + yφ|x, y ∈ Q} ( $
Z[φ] $ & ! α = a+bφ ∈ Q[φ]) N (α) := a2 +ab−b2
* α N (α) $ a b ! α, β ∈ Z[φ]) N (α·β) = N (α)·N (β) +, a+bφ = b a+b +
$ $ $ N (α) = (a + bφ) · (a + b(1 − φ))
α = a + bφ ∈ Z[φ]
N (α) = ±1
$ -
. !
$ /
$ ' α ∈ Z[φ] β ∈ Z[φ] α · β = 1 N (α · β) = N (α) · N (β) = 1 N (α) = ±1 ' N (α) = ±1 (a + bφ) · (a + b(1 − φ)) = ±1 α 2 10 9 (5|8)
8 7 6 5 4 (2|3)
3 2 1
(1|1)
0
(1|0) (2|-1)
-1 -2
(5|-3)
-3 -4 -5 -6 -7 -8 -9 -10 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1
0
1
2
3
4
- 01)
5
6
7
8
9
10
$ 2 x2 + xy − y 2 = 1 / 34 " ! $ 34 $ - {φz |z ∈ Z} " $ 2 (1|1) 1 + φ *$
$
2 * /$ 5
$ Z[φ] /
U
Z[φ]
U = {±1} · {φz |z ∈ Z}. α = a+bφ N (α) = ±1
0 1 a, b > 0 φ = 1 1 1 a 1 0 a b = = = n ∈ N φn
φn 0 b 0 1 b a+b n a + bφ. α φ
a, b < 0 (−1) · α φn
! a > 0 b < 0 " #
a > |b| $ a + b(1 − φ) = (a + b) + (−b)φ = φn " n ∈ N (a + bφ) · (a + b(1 − φ)) = (a + bφ) · φn = ±1 a + bφ = ±1 · φ−n
a < 0 b > 0 " % &' −1 2 ("'
$ ! "
#$% & ' ! ( ) % * (+ , ! -. / 0 + 1/ % ! ! ! 2 & 3 4 555 67 / 89:/ # 358; 9
1 < 2 ' R ) x2 − x − 1 = 0
( = 5 1 > ' R ) x2 − 3x − 1 = 0 ( =
3
1 ' Z/11Z ( φ ) x2 − x − 1 = 0 1 & . $ & φ % ++ . $ #% & -#% :1
? # p @ %/ / 5 A ' Z/pZ ! f ib(p − 1) p ! f ib(p − 1) (p − 1) 7
0 −1 1 0 Z[i] i a −b Z[i] = a, b ∈ Z b a
Z(2,2) i
! Z[i] " x2 = −1 #$
" % & ρ : Z[i] → Z/38Z'
( ) * + , Z[i] ( ) * +- ., Z[i] . / ( N : Z a + b · i → a2 + b2 ∈ N &0 / 1 N (α · β) = N (α) · N (β) 2 Z[i] 3 Z[i] 4,5
, 6 "1 % 789 ( :; < !!= .,
! " # $ % % & $ ' ( # & ! % % ) * ' +% , # * # ! + ' !#% &
- ' .# # & .# % " ! # +% ! & - .# ' # / # 0 ' # ( % 1 % % , 2' * % # 3 ' * "- + # 2 # # 0 ' 1 0 4) * 5+ 6 7 & $8 {0, 1, 2, . . . , 9} 9 & * - : { + $;<=}
! 41 " # $ % 0 "
40
& " $ {0, . . . , 40} ' ( ) "* + +
, ,
,+
$ 1
.
/
0 2
3
4+
5 %
6 , ! " " 5 " 7 $ 5 " 3 # " 5 234+ & 8 9" " " V 5 9: " "*
V : Z/41Z x → V (x) := (x + 3) mod 41 ∈ Z/41Z - ; 6 " 5 V (x) - * 9-!- <) =>5! #!?!- !5 -;)< );< * @#==#7A?7;B?79C?#7B7#DA?7DA? 8 E 4 # ;
'( "
<
(
E : Z/41Z y → (y + 38) mod 41 ( y # > % - -' " m $ $ ' -6!! $ 256 $ %
? ( *
V : Z/mZ x → (a · x + t) mod m # "
a m ( $ # <'(F
& 5 G H 8 # 8 V "& % # I * $ & y ∈ Z/mZ "
x ∈ Z/mZ V (x) = y a m a a−1 ∈ Z/mZ ! " # ! y $ y = a · x + t mod m x " %
x = (a−1 · (y + m − b)) mod m. & ' ' ( ) * + ,
- ../ 0 1 23 ' * #
+ 4 5! 5$ 62 ) 6 789 ,
8 + : , ', '% ! "#$ a = 1, t = 10% "$ a = 10, t = 1% " $ a = t = 11 & ' ()! *+ ,
#$ ' - *. */(0 ) V : Z/41Z x → 3 · x + 2 mod 41 ∈ Z/41Z 1* ) '# 2 ! 3 ! 4 &*#0 # / # 5 ** % ) ! /#* # & # $ ! 60 ) V : Z/41Z x → 5 · x + t mod 41 ∈ Z/41Z #* t / 1* % #! ! - *. * ) #* * $ ! 60 ) V : Z/41Z x → a · x + 5 mod 41 ∈ Z/41Z #* a / 1* % #! ! - *. * ) #* *
$ # 2 # 7) - *. */% # * # )/ 8 7 * 3 / # 9 &* :## ! !# ! % ! *. */ 8 0
; & # :## % &% 0 7 *. * % ! < ! =## / # #* # Z/(41 · 41)Z 8) # : - *. */ 0 #( & # :## # 8#* & # / # % ) (./ !# (# # ) A # #$ / ) ! ) $ 5 - *. */9 *. *:)/#!!
! "
#$ % &" '
< 0.01
( )
! " # $ % % & '
& ( % & ) * % +
* , % - .
% , % + # 0
/
1 2 3 4 5 % 6 ( % .5 7 # % - % " - % ( % 8 % - % 9 % : ( 5
V : Z/41Z → Z/41Z, n → an + t
ggT(a, 41) = 1
5 % 2 3 0 % 6 5 % 2 8 ; /5< - => ? - 5 % 2 8 7 % 41 ( % > ? - 9 V : Z/41Z → Z/26Z, n → an + t, ggT(a, 41) = 1 > : $ % 3 @ % .A % + # B5 % * % " : ;9*= .?+.*= C 9D CC 9(+E9 0. D =C /C 9=C*C C&,EC @*.+CEE.*C (&C,CEC (*F &CE 9C /C, C* E. ( C.,+C (= 9D9C(*9+ &CE*C C /9* 9*= ,9E EC .,C *9D9(79 DC D
*C& 9 C&,9=G
$ + # " C 5 9 8 $ 1 . % + # .% 1 % . 8 5 % & H ;?% < % % . ! 7 3 B- :
! "# $% %$ &'() *&+ ,*' *,-' .% -./! % 0/!1'-&' !%2 0/!.'- 1*%0.'-) -'.&& -$% 3*/ -.1 .% -.&& !%2 4*/'&*-) $% -'%') $% 51(') $% 6/'(' -.1) .1 6*$$7 2 %.1' $.' -+' *&+ 8 4 ( 9 ! " . 9 /:;<' /:7 1 = >? @9 A @
9 4 B C@ ! " ? A B A8 D E A , E A A ?F ! , # /:- E 3 A G = $ H 9 E E 3 B=8 I4? 9 D 9 E J E K /:< L ! E ! L E = ( A M i A 6 = m t G M E = & i (
j := (m · i + t) mod Laenge. E m t 9 = $ = E @ DA M , = 8 G 9 A A = M 9 A
A M D @ n ∈ N9 V n = G != A D 8 4 A
=9 @
A ! @ @
B" &= @ != 9 A (=
@ @ 9 A = =
A B" 5 $ H K D 3 1 @
9 = @ 9 9 >@ A@
!"
# # $ # % &
' &(
) * +,-. * ) ! / % % #
! " ! # " $ % & ' # ( ) * ( + , $
- . * / . 1 /
. 12 / * T12 = {1, 2, 3, 4, 6, 12} ! . 1 0 , ' . 0 1 , ) 5 = 1 · 5 17 = 1 · 17 1013 = 1 · 1013 / % 23 . p > 1 ∈ N 4 5 * 1 % . 5 6 7 . 283 7 , 9 / / & 4 ' : 5 + 0 ;(< ) " , 2 8 =" ; 0( , > , # $ , : 5 / : ?( < 5 5 @ & , 9 : 0 7 0 : < @ A , 1
" #A &1 $ 0 ' * 5 + ; 1 & < 1 > > "= % % :
! "
# "$ " % $ & '() ( * + " "$ ," " - &
. " / " " ! " 13%
+ / 0 1 " ) " * . " # " 1 ! 2" 3 !4 0 2 10000 / 0 ! 3 * & +" 5 3! ! 3 . 2 0 > 2 3 % ! 0 3 " ! . 3 . 5
0 " . ! 0 " &
$ 3 0 6 & " 1 ! ) " ! 7 ! & ! $ 0 ) " 3 3 " # ' / 3 3 40009 " %" 6 / 3 3 3 p " " 3 0 2 p − 1 ) 8 p 9 ! √ 3 ) p * : / ! ; <)* 0 ! 3 = ! " ") " " "" 3 3 " 1000000 # )
m > 1 > 1 p p ≤ √m m m > 1 Tm > & 8 > 1 Tm m ∈ Tm Tm ! " " ! ! #! > 1 ! # ! 8
√ 2 6 p ≤ t := m m 2 p % p ≤ p · t = m , p ≤
! "
# $ 2 · 3 · 5 · 7 + 1 = x %
2, 3, 5, 7 p & " ! n
x = p1 · p2 · p3 · . . . · pn + 1. / {p1 , . . . , pn } & ' x p ∈ & ! ! " (! ) * + & & , - . % # * ' % // , 0 1 ! ! & , 2 & 0 1 , % 3, ! " 4 , 0 ! 0 / 5 0 6 * 5& 7889:7 7;7<= " / 5& 788>: 7;8=¿ ="
2 · 3 + 1 = 7 2 · 3 · 5 + 1 = 31 / 2 · 3 · 5 · 7 + 1 = 211 / 2 · 3 · 5 · 7 · 11 + 1 = 2311 / " % p1 , . . . , pn p1 · p2 · · · pn + 1 4 ? ¿
! "
# $
2 · 3 · 5 · 7 · 11 · 13 + 1 = 30031 = 59 · 509, % ! & '! ( p1 , p2 , . . . , pn n ) * p1 · P2 · · · pn n ! +
pn # ! & pn #, # - ! .//0 -* 392113# + 1! # 1 169966 ( ! .! 2
2 = 2 2+1 = 3 2·3+1 = 7 2 · 3 · 7 + 1 = 43 2 · 3 · 7 · 43 + 1 = 1807 = 13 · 139 2 · 3 · 7 · 13 · 43 + 1 = 53 · 443 2 · 3 · 7 · 13 · 43 · 53 + 1 = 5 · 248867. &
3 1 ! 4 & , 5 4 % 1 11 & , 6 1 17 , (% ) 1
! ! 2 - )
n! + 1 ! &
& n! + 1) n! − 1, + 7 + ) 8% 9 : !
p ∈ N p Z/pZ = 0
a, b ∈ Z p|(a · b) ⇐⇒ p|a p|b =⇒ 0 < b ≤ p − 1, b ∈ Z/pZ ggT(b, p) = 1 b ! Z/pZ =⇒" p|(a · b) a = a mod p b = b mod p # ! 0 = (a · b ) ∈ Z/pZ
p $ a # a = 0 mod p a Z/pZ % ! 0 = b mod p & b p " =⇒ a N ' ! p# b N ( a · b = p
p a ! b ( ) p · c = a# ! p · c · b = p c = 1 ( a = p ( ) d ∈ N ( p · d = b % ! a = 1 p * ( 2 + ,
1.=⇒2.=⇒3=⇒1. ( - . '
! ! /0 1!(
≤ n ! "
! " !! !" "# ! "# ! !! $ # % !
! & #
$ ' $ % ' ())*+
& $ ' ' ( ,)*- , ' .) ())*+ $ ) % -/ /
& * !#!
100
! " # $ % $ & " ' # ( % )( (** ' +
R = Z/mZ ! "# = 0 R $#% &#'# ( '% )*'
p +#( Z/pZ )*'
p +#( Z/pZ ,#% "%-( .# Q R &% #( # "#% % / % 0 * Z/pZ 1 2 % & # ## .# 3'# -$ p = 17( # Z/17Z4 ( ,
5 · (4 · 6 − 6) = 5 · (7 − 6) = 5
1 2
· (12 − 9) =
1 2
· 3 = 9 · 3 = 10
3x + 2 = 9 = 13 =
5x − 7 2x | ·9 - . x
/ 0 (1 . 2 13 + k · 17
3
x + 2y
=
11
x−y =⇒ 3y
= =
2 9|
=⇒ y
=
3
·6
x = 5.
x2 + 5x − 2 D x1 x2
= 0 = 25 − 4 · (−2) = 16 −5 − 4 =4 = 2 −5 + 4 = 8. = 2
Z/pZ p ! "# $ % Z/pZ ! &' ( ! ) * f : Z/pZ → Z/pZ
f (x) = a0 + a1 · x + . . . + an · xn + $ * , - n an = 0 a ∈ Z/pZ
f f (a) = 0
f n Z/pZ a ∈ Z/pZ f g n − 1 f (x) = (x − a) · g(x) x ∈ Z/pZ
(xn − an ) = (x − a) · (xn−1 + a · xn−2 + · · · + an−1 )
f (x) = f (x) − f (a) = a0 + a1 · x + . . . + an · xn − (a0 + a1 · a + . . . + an · an ) = a1 · (x − a) + . . . + an · (xn − an ).
Z/pZ f (x) = x3 = x x ∈ Z/3Z ! " f n# a0 , . . . , an ∈ Z/pZ f (x) = a0 + . . . an xn x ∈ Z/pZ " R # Z/pZ
(x−a)
n − 1 ! n = 1, 2, 3 . . . " 2
n n ≥ 1 Z/pZ n
# ! $ % f 1& f (x) = ax + c& ! a = 0 ∈ Z/pZ f (x) = 0& ' ' ' x ( ' ' ) * $ + ' ' ! k f k + 1 % f ) & ' $ + ' ( ) a #' ,- f (x) = (x − a) · g(x) . g k b ) f & 0 = (b−a)·g(b) * / = 0 & / = 0 0 ) f 1 a ) g ) ' g k ) ( f k + 1 ) 2 ( 2 3 (
n > 1 ! "! #
* ' % + 3 * & '' ' + # $ + 4 5 -" ('
' 3& ' * ' a 4 a > 2 a / p * a & 61 < p < a 4 a = p · b 1 < b < a /' b ' b = p1 · · · · pn * a 3 ' & * ' 2 ' / ' * ' a ''
a = q 1 · q 2 · · · q r = p · p1 · · · pn
p = qi i p = q1
q2 · · · qr = a/p = p1 · · · pn b = a/p ! q2 = p1 , . . . , qr = pn a " # # $ ! a = pr11 · · · prnn % ri 2 & ' ( $ T = {n ∈ N | n = 1 mod 4} T ' ) p ∈ T * + , - T. % a · b = p a, b ∈ T ! a = 1 b = 1 & ' % 9 21 49 T % 3, 7 ∈ / T / N
#) 0 T 9 · 49 = 21 · 21 /! p > 3
p = 1 mod 6 p = 5 mod 6 6 > 3 ! 2 "# 41141 41143 $ " $ % & ' #
( ) * + , - . p
) / 30 , % & ' ( 0 1
, . 30 2 > 31 ) , . 3
4 30 ≥ 31 5 3 / ' / 2 60, 5 30 $ ! '2 " 5 1 3 / *#( 6% 7 8
a b a · b a b ! "# $% & p & '( ) Z/7Z +, (5 · 2 − 3) · 6 +, 217 · 35 +, 12 + . . . + 62 +-, 70 + 71 + . . . + 716
Z/17Z* +, 13 · ( 15 − 1) +, 1 + . . . + 6 +, 1 + . . . + 162 +#, 13 + . . . + 163
+, 23 : 32 · 14 + , 1 + 2 + . . . + 101 +, 12 + . . . + 1012 +, 110 + . . . + 11101
' ./ 0 13 19* , 7x − (3 + 4x) = 6x , 8x − 25 = 19 − (26 − 2x) , −18x − 12(9 − 3x) = 3(3x + 12) − 5(−x + 32) ,
1 2 (4x
+ 13 ) − 13 (9x − 14 ) = 14 (12x + 1)
' ./ 01 23 31* , 1) 12x + 7y + 16 = 0 2) 8x − 21y +
31 10
= 0
, 1) 4(3x − 5) − 2(y − x) = 2 2) 2(5x − y) − 3y = 5 '' & 2 01 2 34 # & p / '5 ./ 6 0 & 4 * +, x2 + 5x + 4 = 0 mod 197 +, x2 + 12x + 11 = 0 mod 23 2 +, x − 18x + 19 = 0 mod 317 +, x2 + 21x − 13 = 0 mod 67 7 8 3 − = mod 417 +, x+5 x−6 x−1 '8 9 0 k ∈ Z/23Z 2: ./ 2 # 2 2 ./ ; 2x2 + 6x + k = 0. '<
, ) # n ) * 2|(n + 1), 3|(n + 2), 5|(n + 4), 7|(n + 6) , ) # n * 2|n 3|(n + 2) 5|(n + 4) 7|(n + 6) 11|(n + 8) , ) 2 # n * 2|n 3|(n + 2) 5|(n + 4) 7|(n + 6) 11|(n + 8) 13(n + 10) 17|(n + 12) 19|(n + 14) , 3 =" > 9 % & $ 4 % 2 # n +, 2 # n +, ! " 3 2 ( ? % 9 % & : - $ %;
p1 = 2 p2 . . . pk k n 2|(n + 1) 3|(n +
2) . . . pk |(n + k)
! " # n $ 2, 3, 5, 7, . . . 19 2 3 . . . 19 # % & n n + 2 2 n + 3 3 n + 19 19 # ' ! $ (" # ) 49 2 * ≥ 210# + , - 30 8 . , - 30 ! 8 !7, 9 .
/01# 2 p n " 3 pn $ 20 # 4 # !'" p = 3 #
/561 /#7 # '" p = 3 ' 7 # /06# !8#
/516 9# 7 # $ $ : 2 + 4 $ # + * 4 # /05# !
/515 9#7 p1 , p2 , . . . ' "& $ # '" + i ∈ N $ 4 pi+1 2 4 9 # 4
; pi # $ ' ; # /<=# a1 = 5 an+1 = a2n " n ∈ N# an − 1 n # ' # /#
> ; ? @ # * ! 2 !,A $ * B ( - 7 /6
/<9# > * # X " # - ' X + 1 X 2 + 1 X 4 + 1 X 8 + 1 ggT ' 2#
4n + 1 4n + 3 (3n + 2) ! " # = 1 mod 8 $%&
' ( ' x4 + 9 = y 2 ' ( ' x4 + 81 = y 2 ' ( ' x4 + 25 = y 2 ' ( ' x4 + 625 = y 2 ' ( ' x4 + p2 = y 2 ) *
+) (
),
$%% f (x) = x2 + x + 1
- x 3 f (x) f (x3 ) ) - x 3 ). n ∈ N, n > 1 f (x) f (x3n ) ) " +) $%/
*
( 2x + 2y = z 2 ' ( ' 3x + 2y = z 2 * 0 1
$234 5 6 *
( ' 2x + 2y + 1 = z 2
$%7 *
( ' xa = 3n + 1 $%4 ! n ) ) 8 $%3 9 n . > 4 n (n − 1)! $%2 9 p q > 3 24 (p2 − q 2 ) $/:
; " 235, p q x y . *
+ " px q y < + 9 σ(n) = 9
" n * σ(2x ) * σ(px ) p * σ(4px ) p ) 9 p q n = pa q b σ(n) =
pa+1 − 1 q b+1 − 1 · < + p−1 q−1
2x2 + x = 3y 2 + y.
x − y 2x + 2y + 1 3x + 3y + 1 ! " # $ % $ &'%'(( σ(n) = 2n ) 6 &'%'(( ' 28 &'%'(( # * + ,- &'%'((
$' # - . / 01 & ( 2( % + $' 3 # - . &'%'(( 4 5% " + 6 n = 2a (2a+1 − 1) 2a+1 − 1 )( ' n &'%'(7 ( 8 " 9
5 " + 6 n &'%'(( ' &' '( n = 2a (2a+1 − 1).
:(" '( 2a+1 − 1 ; :(" &' 1604 1609 &' < # ( = %' &' > ? 5 - " % (@ %'7 )' A > ( & ( % 5 &' A > :(" p 3 " 2p − 1 )( * $ ' 5( > @ > &' A 8 ; ' B &' A + 6 2a − 1 )( ' a )( ( % " '/ :' ( & + 8 ; ' & &'%'(( C ( + $ & 0:("7 9 # @; % :(" 0:(" $ ) &'%'(( 9 B " ' % 3 D )
3 % ( E 5 )FG > + 7 ' E 5(' " + # % &'%'(( (
@; 10200 H &' I " + # % &'%'(( (
( 8 & :(7 " E ( $ A & D 3' + J
σ(220) σ(284) 5 '
; 3 σ(a) = σ(b) = a + b ,# ( ( " $ 3 5 + " "" @% 4 $ KKK66 L =%' ( 5 3 ' 2 3 H ( & # ( ( MA( 220
! " # $
220
284
% & '( ! ) * &
# + &
10000
#
! ) $ , #
) ! '(
152
!
! " 2000 # $ % " # 1737 & ' ( ) &* +
,-
n
1 . / |n ∈ N n → ∞ + " i i=1 ! 0 1 ' & + 2 3 4" 0 4
1 x → ∞ + " + 1 p p≤x 4 1
lim
x→∞
p 4 ln(ln(x))
p≤x
p
=1
5 ln(x) 6 7 8 9 ) 3" 24 : ) ) $ ;4<"
1 -! . / 0 & 1 / 2
10000 ! " #$ %&'(
! " # $% &
π(x) = $% ' % ≤ x (x ∈ R) ($ % ) π(1) = 0 π(2) = 1 π(17, 3) = 6* π(x) x ln(x) + ! ) 1792 $ % , % - % % . ) $ %/ 0 % 1 2 ' % %%/ 3000000
x t 0 π(x) ln(t) dt + 2
/ ! 0 $ 3 1 0 4 + 0 (5675856 * 1850 9 % 2 2 x ∈ R & x x < π(x) < 1, 10555 0, 92129 ln(x) ln(x) $ 0 & ! %0 π(x) lim x x→∞
ln(x)
: 1 - 1896 ( 100 , 9 ! !* , ; (56<=85 <>* ( / * 1? ' (56<<85 <7* )0 ' % % 3/ )%0 ' % % 02 & @ 4 0 100 , A . 2 0 0 % ) ) A? . ' % ! 3 - BC7 (5 >* - 57585>7 !
! x2 + xy − y 2 " # $ % & ' &(' ) * +,- . / / # ) * R = Z[φ] )
x, y ∈ Q (a, b) ∈ Z2
|(x − a)2 + (x − a)(y − b) − (y − b)2 | < 1
x, y a, b ∈ Z |x − a| ≤ 12 , |y − b| ≤ 21 0
|(x − a)2 + (x − a)(y − b) − (y − b)2 | ≤ |x − a|(|x − a| + |y − b|) + (y − b)2 1 1 ≤ ·1+ <1 2 4 !$ α = a + bφ ∈ Z[φ] d(α) := |N (α)| = |a2 + ab + b2 | 1 2 Z[φ] Z )
α, β β = 0 q, r ∈ Z[φ]
α = q · β + r d(r) < d(β)
3 αβ = x + yφ x, y ∈ Q 3 q = a + bφ ∈ Z[φ] d( αβ − q) < 1 4 r = α − qβ d(r) = d( αβ − q))d(β) < d(β) 2 3 ) * # $ a, b ∈ R 0 * a · b = 0 a = 0 b = 0 5 + 3 R * # d : R∗ := R \ {0} → N \ {0} d 6 0 - 4 a, b ∈ R∗ q, r ∈ R a = q · b + r r = 0 d(r) < d(b) + !$ a, b ∈ R∗ d(a · b) ≥ d(a) 3 ) 6
7 ) (0
Z Z[φ] d(x + yφ) := |x2 + xy − y 2 |
d(α · β) = d(α) · d(β)
α, β ∈ R∗ ! " #
$
! " # " $$ # b R % & ' b ( d(b) = 0 a a = q · b + r q r ∈ R d(r) < d(b) $ ) * r = 0 & a ∈ b · R ) * r = 0 & d(r) < d(b) & r ∈ b b + % 2 , " ! - . '
bR
R
b a
aR ⊂
b a & ' x ∈ R a = b · x & / a ∈ bR aR ⊂ bR # aR ⊂ bR & a ∈ bR + ' x ∈ R a = bx & b . a 2 0" ( 1 , + b ∈ R "'
# $
!
p = b · x
bR
p
x
b
R
"
= R
pR
% %
pR
bR = pR
&
=⇒ pR ⊂ bR = R
x ∈ R p = b · x b
bR = R x
b = p · x−1 ∈ pR pR = bR =⇒ pR p = b · x b
p ∈ bR = R pR ⊂ bR pR = bR
y b = p · p ! b = py = bxy b(1 − xy) = 0 R
"
1 − xy = 0 # 1 = xy x
2 $ %&
p
"
R # '
( ) ! ' * !+
,
#
!+ a, b ∈ R " p
- . a · b p
/
p
R
R
p
! $ p
' p a · b p
- ) a
a ∈ / pR 0 pR pR + aR pR aR + pR = R
x
y ∈ R ax + py = 1 abx + pby = b ab, p ∈ pR
b ∈ pR 0 p
- ) b 2 1
. ,
Z[φ]2 1
3 ! . '
Z 4 5. ' 6 ' " ,
5. 6 7 2 Z[φ] 2 Z[φ] 2 = α · β α, β ∈ Z[φ] 4 = d(2) = d(α) · d(β) d(α) = 1 α d(α) = 2 x, y ∈ Z 2 = x2 + xy − y 2 ! " # d(α) = 4 β $ % 3 Z[φ] &' α ∈ Z[φ] d(α) α d(α) = p p α = β·γ β, γ ∈ Z[φ] d(α) = p = d(β) · d(γ) β γ ( 2 + φ Z[φ] )* + * 2 3
R
a = 0
a ∈ R a = 0 a α α ! α = β · γ β, γ ∈ R d(α) ≥ d(β) q, r ∈ R β = q · α + r β " α # β r $% r = 0# % d(β) ≤ d(r) < d(α) # & α "
a
' r = 0 ' β = q · α = q · β · γ 2 β
α (
p > 2
5 p p Z[φ] = R p α α Z[φ]
5 ) * p # Z/pZ a a2 − a − 1 = 0 Z/pZ ! ρ : Z[φ] x + yφ → x + ya ∈ Z/pZ
* $ ρ(a − φ) = a − a = 0 Z/pZ a − φ ∈ +(ρ) ! a − φ ∈ / pR α ∈ R
pR +(ρ) = αR α " p β ∈ R p = α · β p2 = d(p) = d(α) · d(β)# α, β d(α) = p 2 , ( # ( Z , * (
p > 2 α
Z[φ]
p
! p = N (α) = x2 +xy −y 2 x p % y p p p2 ! Z/pZ . x2 + xy − y 2 −x2 y 2 y − −1=0 x x ! Z/pZ . x2 − x − 1 = 0 / α
(2α − 1)2 = 4(α2 − 4α − 4) + 5 = 5 5 ) * p 0 1 2 α, β # p = α · β
p2 = N (α) · N (β) N (α) = p 0 N (α) = 1
N (α) = p2
α
β 2 p
!
" #$ % & ' # % ( ! ) *
+$ , % -
' - & a = 0 % . ' . / a % % 0 d(a) a .
# - #
a . # π a = π · b #$
b ∈ R d(b) < d(a) b . ' . b = π1 · · · πn % a = π · π1 · · · πn . #
N 2 , ! 1
(!
- % ' (% 2(% 3 4 5 67 % ' - , . # 8
% & % ( , % . 0 ' '
. # Z[φ] % ,
$ %
)
0 ' 0% ( . Z[φ]
α := a+ bφ ∈ Z[φ] a + b(1 − φ)
Z[φ] ρ(α) =
1 9 # #$ % 0% ( %
π ∈ Z[φ] N (π) = ±1·p N (π) = ±1·p2 p ∈ N
N (π) = p · a a ∈ N π . π ) p a
p = π · α α ∈ Z[φ] N (π) = π · ρ(π) = π · α · a ρ(π) = α · a ρ(π) Z[φ] α a a N (a) = a2 = 1 a = ±1 N (π) = ±p α Z[φ] p2 = N (p) = N (π) · N (α) = ±1 · N (π)
π a π · ρ(π) = p · π · α α ∈ Z[φ] ρ(π) = pα α N (ρ(π)) = N (π) = p2 · (±1) 2 !" # $
# % & % Z[φ] ' "
n α ∈ Z[φ] N Z[φ] Z[φ] " p " 5 ( ) * p +,- # " $ 5n ± 2 !" . " /# $ n = ±1 / , 0 % / , + " 0 ( + n = N (α) " α ( Z[φ] α = N (π1 · · · πk ) n = p · a " p % a . -
n = p · a = N (π1 · · · πk ). 1 -( (2 # p % N (π1 ) p = N (π1 ) a & Z[φ] $ ( % a 3 / , + " " $ p2 = N (π1 ) (2 # 4 p2 + " #0 2 √ √ Z[i] Z[ 2] Z[ 3]
α !" # x2 +x−3 = 0 $ %& '() *+ ,- . / 0 1$ 2 3 4 56 2 Z[α]
√
Z[φ] = { a2 + 2b 5|a, b ∈ Z ! ! } x+yφ ∈ √ Z[φ] " x + yφ = a2 + 2b 5 ! N (x + yφ) = x2 + xy − y 2 = 1 2 5 2 4a − 4b √
# $% & Z[ −5] $ 21 ' ()
! ! * ! + ' +
35 !" # $ % & ' ( " ) * # $ %
& ' ( ) * # #
" + ## #$ #% #& #' #( #)
! + , #* $ $ $# $$ $% $& &-
. /+0 1 + " + 2 /
3 4 " + 54 + !6 ,7 4 - 8
3 1 4. + 6 , !" 19 - !" 9" . " : : ;; 1 0 <" . 0 " + 1 2 =8 ;> : + ? 3 + 4 ! x@ • x . 7 5 ? x ≡ 5 mod 7 • 8 2+ 3 + + ? 6 x ≡ 4 mod 5 3 x = 4 + a · 5 = 5 + b · 7 + a b a · 5 = 1 + b · 7 + 7" a · 5 = 1" a ≡ 3 mod 7 ?" s" a = 3 + s · 7 A 6 x = 4 + (3 + s · 7) · 5 = 19 + 35 · s
x ≤ 35 x = 19
a
! b
! " # $ %
& ' (
% %
35 45 ) * + ,-
./ + ./ "0 1 2 x ≡ 2 mod 7 x ≡ 5 mod 93 2 x ≡ −1 mod 3 x ≡ 3 mod 43 2 x ≡ 2 mod 6 x ≡ 5 mod 93 2 x ≡ −1 mod 12 x ≡ 1 mod 14
,
,9
,=
4 % 5 0 999 6 8 $ a 125 b (
% 7 5 a b % 8 a = 7 b = 5
6 " 5 : ; : 7 " ( 88 # 6 "
< 2
( $
( # 88 % $
( (
5$ &88 1, 2, 3 4 6 ( < >? 1 % 7 %7 / @2
2 ./ $ % a1 x ≡ 1 mod 2 x ≡ 2 mod 3 x ≡ 3 mod 4 x ≡ a mod 5 (
a ∈ {0, . . . , 4} % 8 ./
! " 1) x ≡ a mod m 2) x ≡ b mod n (a, b, m, n ∈ Z, m, n = 0) #
• $ %& ' • $ %& ( '
•
x = a + r · m = b + s · n b − a = m · r + n · (−s) r, s! "# $ % ! ggT(m, n) & '" b − a ( r, s ) ) * " +( , "
- m n '" ( . + / ) * " ! 0 1 r, s! "
m · r + n · s = 1, m · r · (a − b) + n · s · (a − b) = a − b, x := a + m · r · (b − a) = b + n · s(a − b). . x = a mod m x = b mod n( . 2! x ( ) " 3 4
m, n a, b x ∈ N x < m · n x ≡ a mod m x ≡ b mod n
x
x ≡ 1 mod m x ≡ 0 mod n
x x ! m · n" # " 0 ≤ x < mn x x $ 1
x1 = a + r1 m = b + s1 n x = a + rm = b + sn
(r − r)m = (s − s)n = x − x $ x − x m n " mn % (x − x) x = x . & # '" ( & " ) 2 1
1
1
1
1
1
a, b, m, n ggT(m, n) = 1 x
(a, b) 0 ≤ a < m 0 ≤ b < n x x ≡ a mod m x ≡ b mod n. ! " #
Z/mZ × Z/nZ $%
f : Z/mZ × Z/nZ → Z/mnZ f (a, b) ≡= a mod m f (a, b) ≡ b mod n $%
f (a, b) : = a + m · r · (b − a) = b + n · s(a − b).
&'()
! r s # 1 = mr + ns * mr = 1 mod n ns = 1 mod m " + , $% $% m = 5 n = 7 - ' .
&1) & 1) &'1) &.1) &1)
&1 & 1 &'1 &.1 &1
' .
' 2 '(
) ) ) ) )
' &1') & 1') &'1') &.1') &1')
/ '' ( '3
' . 0 ' '. 3
. &1.) & 1.) &'1.) &.1.) &1.) . . 2 . '
&1) & 1) &'1) &.1) &1) '/ .' (
/ / '0 ' .. 3
/ &1/) & 1/) &'1/) &.1/) &1/)
0 &10) & 10) &'10) &.10) &10)
0 ' 0 '2 . .
! $% chines(a, b, n, m) - *#4
$ - 5 Z/mnZ
% 6 6 6# 7 - 5 8 3 - 7 8 4 # +
chines : Z/mZ×Z/nZ → Z/mnZ chines Z/mnZ chines n m ! " #! f (a, b) chines(a, b, m, n). $ a, a ∈ Z/mZ = {0, 1, 2, . . . , (m−1)} b, b ∈ Z/nZ f (a, b) = f (a , b ) " b+n·s·(a−b) = b +n·r·(a −b ) b ≡ b mod m % a ≡ a mod n $ x ∈ Z/mnZ a :≡ x mod m b :≡ x mod n x = f (a, b) " ! " # $% & ' ( $ r, s n · r ≡ 1 mod m m · s ≡ 1 mod n x ≡ a · n · r + b · m · s. )
) chines & *
+ ,!(
+ x ≡ 20 mod 35 x ≡ 28 mod 36+ x ≡ 10 mod 19 x ≡ −2 mod 28 + x ≡ 4421 mod 5891 x ≡ 11800 mod 16200+ 3x ≡ 5 mod 77 x ≡ −6 mod 12 + 5x ≡ −3 mod 11 −3x ≡ 5 mod 13+ x ≡ a mod m x ≡ b mod (m + 1)- ' .
/ 0 1 !2 3 99999 0 1
0 9 3 0 1 49375 0 5 4
5
+ ,! 6 ' [−1000, +1000]( x = 2 mod 12 x = −1 mod 21 + ,! 6 ' [−200000, 200000]( x = 51 mod 255 x = 120 mod 247
+ ,! 6 ' [−900, 900]( 3x = 2 mod 5 11x = −3 mod 14
x = a mod n x = b mod m [c, d] ! " # $ % & $ ' ( ) * " m((n(+ $ m, n , - m, n > 1) $ ( " . 53747712 = 6561 · 8192 = 38 · 213 " , / 0 + 6561 1. 8192 1.
/ 2 $ + a 2 $ + b 3 2 4 " 1 53747712( + 17432577 · b − 17432576 · a 2 5 ,6 " .$ $ 6 "
# .. # 5 / 7 . ( # * 8 5 " 5 &$ $5 m n $ 5 6 $ m n $ '5 ' 7 + ) x ≡ a mod m x ≡ b mod n x + kgV (m, n) · k " 9 x ≡ a mod m x ≡ b mod n : x ≡ 17 mod 40 x ≡ 7 mod 25 ,2 1 ;< $ 1 <=) x ≡ 17 + 40 · k ≡ 7 + 25 · l 40 · k − 25 · l ≡ −10 2 19 6 $ ! ' 19 x ≡ a mod m x ≡ b mod n , % $ * m · n 19 , % $ '5 ) ' " 18 24(+ $5 / 2 5 " $ m · n(+ ;<
/ /- m = 21 ( n = 52 /- $ * ! 3 / # ' # / + 5 $ % * /- 0 20 5 0 51 8 > / ' ? / 5 4 0 $ * ! 5 +- / 4 17 , +
11 ! " ! # 54 "$ # % ! 21& ' $ ! ! ( ) * +,-& . # # # % # # # $ & ' #
52 : 21 54 : 21 # # " *
" # +-+&
/ 0 1 2 $ ) # . 3 88, 225 365 4& # .
# # # # # 15, 43 !& 100 4&
2 $ ## . % 5 # $ ## # 2 ) #$ 2 . & +,-$ . ) # & +,-
! 3 # 6 ! 4 ! # !# # ! #" ! # # . # # $ ## # 1 3 # 6 +-7& 0 ! "#5 # 89 :
/0 ; /0 < ==/0$
.>3 ; .>3 < ===.>3& ? # # *! # #% # # ! & +-@& 0 # * 5 /# * A x2 = x mod m. . x # .# !
9# . m (0 < x < m)& m = 2, . . . , 50 9 . m& ' 9 . # !# 2 # 1 $ # m * 9 .% m #& ' ) # * " # ' ! # ) # m !% #$ ## ! # 1 # & ' ! ! # !# # m & # x2 = x mod 11 0 : x·(x− 1) = 0 mod 11 $ ## x2 = x mod p ! #
p$ ! p 1 #& # x2 = x mod 81 * ## 1 % 9 &
21 x2 = x mod 21 x2 = x mod 21 x·(x−1) = 0 mod 21 x · (x − 1) = 0 mod 3 x · (x − 1) = 0 mod 7 (x = 0 mod 3 x = 0 mod 7 (x = 0 mod 3 x = 1 mod 7) (x = 1 mod 3 x = 0 mod 7) (x = 1 mod 3 x = 1 mod 7). 1) x2 = x mod 77! 2) x2 = x mod 77! " x2 = x mod 675 # p, q $ % & pr · q s $ $ ' ( )*+ , - $ )*" ./'0 5678·5678=444445678 123·123=4444123 )*9 x2 = 1 mod 10! x2 = 1 mod 100! x2 = 1 mod 1000 )*: ; # ' & < # 1
= # $ > 5 ? , @( 0 = ; $ A & & B A & $ & & $ ; C # 1
> 100 $ < 8 7 ' 9DE 0 ::9
? ; &
1 6, 5, 4, 3 5, 4, 3, 2 6 ; ' 7 F6 )GGG 5
<
7 ; & 1 2, 3, 4, 5, 6 1 A 7 F6 3 = ( 0
.
$ . 7 .
8 B < H =
; # 6 IB 0 . $ A ( & # 1 + 24 + . . . + n4 , 0 #& # $ 'A = A < ; 7 'A $ % @
C
(
$ = )+":F)+*:
7
0 ; A 1 10, 13, 17 3, 11, 15J
! "#$ $ % # & '$## $ ( ) *
+ ,- # # % , . # Z /. Z[φ] 0 "#$ 1 $ 2 / 3
4 5 6 7 % # # $
3 , # - . "#$ % ($
# - ,- 8 a (= mn , m > 1, n > 1) 2a 8 3 ) # $ a = 4 2a = 8 9. a = 3n 2n > 1 # %
%.5 3a 8 3 $ 8# 8 a 2 · a 3 · a - 8 2" ,- # 5 % # $
- , ) -( a = 2r · 3s , 2a = 2r+1 · 3s , 3a = 2r · 3s+1 . 3# a, 2a 3a 8 #( ggT(r, s) = d > 1 ggT(r+1, s) = e > 1 ggT(r, s + 1) = f > 1 3
a, 2a, 3a 8 # :. d > 1, e > 1, f > 1 8 -( - r = 14 s = 6 2 r = 6 s = 145 $ #) 8 3
a = 214 · 36 = 11943936 = 34562 $ 8 2a 3a 8 2 2a = 2883 3a = 127 5 % I " ( 9 1 ;# ( 9 a i · a -( i ∈ I 8 < .- -( I = {1, 3, 4, 5} -( 3 +-
.# # %
$ #) a - # = $ - I >? a = 3r · 4s · 5t r, s, t
(∗)
ggT(r, s, t) > 1
ggT(r + 1, s, t) > 1 ggT(r, s + 1, t) > 1 ggT(r, s, t + 1) > 1 8$ P 8# P = 2·3·5·7 = 210 3
- r ≡ 0 mod P2 @
s ≡ 0 mod P3 t ≡ 0 mod P4 r ≡ −1 mod 2 s ≡ −1 mod 3 t ≡ −1 mod 5 7, 2, 3 5 > 1 ! ! "# r = 105 s = 140 t = 84 a = 3105 · 4140 · 584 a1 = 3105 · 435 · 584 $ % & a1 ' (
$ ) * I ⊂ N +& , a ∈ N i · a - i ∈ I . ! * . ! a - n ∈ N +& 2 · a, 3 · a, . . . , n · a . ! ( )
a 2 · a, 5 · a, 7 · a
a 2 · a, 3 · a, 4 · a, 5 · a I ! "
#
" $ % & ' n n(
) M ' & * ! ! ' ∈ M $ a a 2 · a 3 · a 4 · a, . . . , 12 n · (n + 1) · a + * ! ! M = {a, 2 · a, 3 · a, . . . , n · a} ! % i · a
i ∈ {1, 2, . . . , 12 n · (n + 1)}. " M ) % , ) ' x, y, z x y z x + y x + z y + z x + y + z -. /) / ( 0 ! 1 2 3 $ 4 % - & n n/
) * ! & ' ) 5 - $ k ( (
k > 1 ) {6, 19, 30} {407, 3314, 4082, 5522} {7442 28658 148583 177458 763442} (k = 2) {63, 280, 449} (k = 3) ) 6
7
)8 -9 : ! %6 k = 2 * ! n = 6, k = 2 ! *; n > 6 < = + : .* ;
; > ; ? 0 " " @: - ,# , (,A
/& $ ! +& +& ! ! -+/ % 0 +& 1 +& +& 2 !3 & !$ 2 ! 4 5 ( 67 8, 9 m & !$ +& . & 4 1 & $ #0 5 "# +& / $0 : & 2 0 "# 0)
0 1000 7 a 11 b 13 c a, b, c ! ! ! "# $%
(∗) x ≡ a mod 7;
x ≡ b mod 11;
x ≡ c mod 13.
x [0, 1000]. & 7·11·13 = 1001 x ∈ [0, 1000] '7, 11, 13 ( !) * + , $ # - ' .
! , /!
1001 ∈ [0, 1000] )% & % $ ! - - ! 0+ ! * !% 1 = 2 · 11 − 3 · 7 x x = 22a − 21b + 77k ! $ . x = c + 13 · l 0 ! 22a−21b+77k = c+13l 13 k = −c+9a−8b 1
x = 22a − 21b + 77(−c + 9a − 8b) $ ! 1001 & 2- % 3 "
m1 , . . . , mn a1 , . . . , an x = a1 mod m1
=
x = an mod mn
m1 · . . . · mn 1 * /! 2-
! 0 ≤ x < m1 · . . . · mn - 2- ! n = 2% & x ≤ x 2- ! 1 mi , (i ∈ {1, . . . , n}) 4 x −x 5 mi 4 x −x 0 ≤ (x −x) < m1 ·. . .·mn ! x −x = 0
m1 · . . . · mn - 2- &
M 2- & % M = m1 · · · mn Mi = mi
Mi mi i bi bi · Mi = 1 mod mi
x = a1 · b1 · M1 + . . . + ai · bi · Mi + . . . + an · bn · Mn ! " # mi Mj = 0 j = i x = ai · bi · Mi = ai $ % bi bi · Mi = 1 mod mi 2 & ' ' ()) * ' % * + , % , "
a = 5, b = 6, c = 8 (∗) ! x ≡ 1 mod 5" x ≡ 3 mod 7" x ≡ 5 mod 12 ! x ≡ 109 mod 210" x ≡ 4 mod 1155" x ≡ 389 mod 5005
# $ ! % & " '( " ( ) x ≡ a mod 2" x ≡ b mod 3" x ≡ c mod 5 * a ≡ 0" b ≡ 1" c ≡ 3+ x ≡ a mod 3" x ≡ b mod 5" x ≡ c mod 7 * a ≡ 1" b ≡ 4" c ≡ 2+ x ≡ a mod 7" x ≡ b mod 8" x ≡ c mod 9 * a ≡ −2" b ≡ 1" c ≡ 3+ x ≡ 5 mod 16" x ≡ −4 mod 9" x ≡ 9 mod 13+ x ≡ a mod 3" x ≡ b mod 5" x ≡ c mod 7" x ≡ d mod 11 *'( ! a ≡ 1" b ≡ 2" c ≡ 5" d ≡ 7+
x ≡ 2 mod 8" x ≡ 3 mod 81" x ≡ 4 mod 25" x ≡ 5 mod 11 , '( - x ≡ a mod 7" x ≡ b mod 11" x ≡ c mod 13 % ( ( # $ ) . ( / 0 ( ( # $ ( *% $ ( % ! % $ " ggT(M1 , . . . , Mn ) = 1 1 $ '( k1 , . . . , kn " 1 = n
n
i=1
ai ki Mi
i=1
2 ! x ≡ 1 mod 2" 2x ≡ 1 mod 3" 3x ≡ 1 mod 5+
ki Mi ' ! x =
x ≡ a mod 2 2x ≡ b mod 3 3x ≡ c mod 5 2x + 1 ≡ 0 mod 3 3x − 2 ≡ 0 mod 4 4x + 2 ≡ 0 mod 5 x − a ≡ 0 mod 3 3x + b ≡ 0 mod 5 2x + c ≡ 0 mod 7 a ≡ 2 b ≡ −c ≡ 1 3(x − 2) − 1 ≡ 0 mod 4 2(x − 3) − 1 ≡ 0 mod 3 2(x − 4) − 3 ≡ 0 mod 5
ggT(a, n) = 1
x, y ∈ Z 1 = ax + ny n
a · x = 1 mod n x a · x ! n 1 " a # Z/nZ # n $ ≤ n % n ∈ N ϕ(n) &
n $' ≤ n &
# ( Z/nZ ( )
n 1 2 3 4 5 6 7 8 9 10 .. n ϕ(n) 1 1 2 2 4 2 6 4 6 4 .. ? * ) )+
n ,$ ) " + n - * . n = 24 Cd = {x | x ≤ n ggT(x, n) = d} / n = 24 )+
Cd
# ggT(x, n) = d $ x ≤ n
ggT( xd , nd ) = 1 nd ϕ( nd ) $)
C1 = {1, 5, 7, 11, 13, 17, 19, 23} C2 = {2, 10, 14, 22} C3 = {3, 9, 15, 21} C4 = {4, 20} C6 = {6, 18} C8 = {8, 16} C12 = {12} C24 = {24} * 0 $ " &
Cd 24 1" #
ϕ(n)
24 ϕ(24) ! " # ggT $ % x ≤ n n & !
n n = ϕ(d). n d|n
ϕ(d) d n Cd = {x | x ≤ n ggT(x, n) = d} # {1, 2, . . . , n} =
Cd
d|n
' (
) Cd d n * & + 'Cd ) = ϕ( nd ) # ) Cd , 2 . ϕ(m) m /+ , +
p n ∈ N ! ϕ(pn ) = pn · (1 − 1/p) = pn−1 · (p − 1). 0
pn = ϕ(1) + ϕ(p) + . . . ϕ(pn ) p
n−1
= ϕ(1) + ϕ(p) + . . . ϕ(pn−1 ).
& ! ϕ(pn ) = pn − pn−1
2
m n + ϕ(m · n) 1 + 2 + 3
chines(a, b) := a + m · r · (b − a) = b + n · s · (a − b) # m · r + n · s = 1. # & 0
m n ! ggT(a, m) = 1 = ggT(b, n) chines(a, b)
m · n
" + ggT(a, m) = 1 = ggT(b, n) &4 c = ggT(chines(a, b), m · n) # chines(a, b) = c · d m · n = c · e d, e ∈ N 0
chines(a, b) · e = c · d · e = c · e · d = m · n · e chines(a, b) · e ˙ − b) · e = m · n · e = a · e + m · r · (b − a) · e = b · e + n · s(a a · e ≡ 0 mod m b · e ≡ 0 mod n. ggT(a, m) = 1 ggT(b, n) = 1 a Z/mZ b Z/nZ e = 0 mod m e = 0 mod n m n e m · n e k e = k · mn mn = c · k · mn 1 = ck c = 1 c ggT(chines(a, b), mn) ! ggT(chines(a, b), mn) = 1. x ∈ N
chines(a, b) · x = a · x + m · r · (b − a) · x = b · x + n · s(a − b) · x = 1 mod mn. 2
ax = 1 mod m bx = 1 mod n
m, n ϕ(m · n) = ϕ(m) · ϕ(n).
" # $ % chines & ! ' ( (a, b) ∈ Z/mZ × Z/nZ ggT(a, n) = 1 ggT(b, m) = 1 m · n % )
Z/mnZ mn % ) (
ϕ(m) · ϕ(n) 2
n = pr11 · . . . · prkk ϕ(n) = p1r1 −1 · (p1 − 1) · . . . · pkrk −1 · (pk − 1) 2
" * % n %
Z/21Z Z/63Z Z/49Z 7 · x + 14 = 3 Z/45Z ϕ(10n )
n ϕ(n) !
" # $ % n & ' < n
n 2
5 3327 ϕ(n) ! " " # !$ ! % ! ! & p n
! ' ! p ( pk
n "
! ϕ(n) = (p − 1) · pk−1 · ϕ( pnk ) ! )! ϕ(n) ! ϕ(n) * ++ ! # ! !! % ! " & ! ( ,
-%
. /% ! ! 0 ! 12 "* ϕ(n) = ϕ(n + 1) 3! ! &
! ! )42 5! ! 2 ! 06 -* ( '! 3 & - ! * . 2 ! 6 3 ( ! +7 % ! " # $ n d " 8 ! - a, a+d, . . . , a+ (n − 1) · d ( 9! - n
9 ' .! α1 , α2 , . . . , αϕ(n)
* < n " n !
n " " α1 α2 . . . αϕ(n) n + α1 n + α2 . . . n + αϕ(n) 2n + α1 2n + α2 . . . n + αϕ(n) ... ... ... ... (m − α1 )n + α1 (m − α1 )n + α2 . . . (m − α1 )n + αϕ(n) : $ 8 )" n m ! nm " -* ( ! !
; ( ! +< ( !" (! " ! !
! ( !( (
( (! = > ( ! 3 =?2 !!> @! ! ! ( A 3 . & 2 !! ! B . R . S ϕ : R → S ϕ(x + y) = ϕ(x) + ϕ(y) ϕ(x · y) = ϕ(x) · ϕ(y) "*
x, y ∈ R @ % " Z/mZ × Z/nZ = {(a, b)|a ∈ Z/mZ, b ∈ Z/nZ} 2 ( ! B C 2 $ (a, b) + (c, d) := ((a + c) mod m, (b + d) mod n) (a, b) · (c, d) := ((a · c) mod m, (b · d) mod n)
R := Z/mZ × Z/nZ ! " # R$ "
f : Z/mnZ ∈ x → (x mod m, x mod n) ∈ R % chines ◦f = IdR f "
% & e Z/mZ " & f (e) R "
' () * +" * "
,
' * # , ! - & . m · n " m, n * , 0, 1, 4 . 5 0, 1, 2, 4 . 7 ! . 35$ " , m n & m n & " m · n
/)
, 0- 60 * " (1 x2 = x mod 602 x2 = 1 mod 60 3 * " " ! 700 x2 − x = 0 mod 7002
x2 − 1 = 0 700
, 210 4 5! 6 1
# 78 9 2 " - : ; " 9 *< = 78 m$ /> , ? * " (1 4 m = pr11 · . . . · prnn 7 ; * m& " 2n 0- m
! "# $ % & ' & () * ) + n n
) + , ' -& & ". /& ,
0) -& & , -& , 1
+ 2
3-& & ) 4 05
3#
n
n ! " # ax + b (a = 0, x = 0, 1, 2, . . .) $
% 2n
! p1,1 . . . p2,n a # & ' ! a ! # & ( )
a · x + b ≡ 0 mod p1,1 · p2,1 a · (x + 1) + b ≡ 0 mod p1,2 · p2,2 ... ≡ ... a · (x + n − 1) + b ≡ 0 mod p1,n · p2,n
x ≡ −a1 · b mod p1,1 · p1,2 x ≡ −a2 b − 1 mod p2,1 · p2,2 ... ≡ ... x ≡ −an b − (n − 1) mod p1,n · p2,n
%* # i ∈ {1, . . . , n} ai · a ≡ 1 mod p1,i · p2,i +$ ggT(a, p1,i · p2,i ) = 1., & - " .)
/ 0' x 1 p1,1 · . . . · p2,n " % # &
2
n x, . . . , x + (n − 1) !
! # ( n ! " # & # 2
! " ! " ! # $ % &
" ! $ ' " ! " % ! ! (
) ' * # $ % &
" ! + ,!!- . / x = ((n + 1)!)2 + 1. $ x + 1, . . . , x + n % &
" ! 01 " ! ! * * 2 3
x, x + 1, x + 2, . . . , x + (n − 1) x + 1, x + 2, . . . , x + n x = (n + 1)! + 1 ! " # " " $ $ %& '
( )* + %$ , +- "
# .$ $ /$ $ 0 ( # 1 2 ax + b ggT(a, b) = 1 # $ 1 0$ $ . ' # ( 3 )* 4 5 "0 6 $ 7- # ( 89: 1 " 4" $ "0 " , ; 4 . < = & 0$ * 0 > ? " # @ > 1 =$
30 ? "
$ * ( " =$ "0 2 0 n n " " 0 ? " A 0 2 n $ n " " 0 ? "
=$ "0 n = 3 n = 4 n = 5 "0 $ $ 1 < 0 ? " π62 0 x > 25 $ 0, 1 · x ? " $ x " ( k n 0 $ n " " 0 k > 1 $ 7 $ " " $ $ 7 %
"0 4"0 $ 2 n n = =$ 2 n
n = $ " k > 1A
( " "0 k = 3 n = 4 k = 10 n = 2 * $ 899 d # # # 2, 5, 13 = d > 1 "0 2 # a, b B {2, 5, 13, d} 15 a · b − 1 ? " < $ # dA
½¾¼
{2, 5, 13, d}
a, b a · b − 1 ! "#$% &''
( ) * + ,
- + + . - ( * ) ) + / 0 ( * 1 + 2 3 a < b ) 4 ) 5 a + n b + n + , a < b < c < d ) 4
) a + n, b + n, c + n, d + n 6 + , 7 n 2 + n, 4 + n, 24 + n 6 + 8 a < b < c ) ) n a + n, b + n, c + n 6 5 + ggT(a + n, b + n) = ggT(b − a, b + n) ggT(a + n, c + n), ggT(b + n, c + n) p1 , . . . , pr 5 1 + b − a q1 , . . . , qs 1 + c − a r1 , . . . , rt 1 + c − b 9 + . : 5 ;+ b + n = 1 mod p . . . < i + j + k : ) <+ ggT(b − a, c − a) > 1 q = p b = c mod p 9
+
) =) : + + . >
&'" 4 6 1 + : 2 5 4 6 8 8+ Z2 8 1 P > + 4 6 Q +
? [P Q] > P Q 4 6 +
A(0, 0) B(1, 0) C(0, 1) D(1, 1) 4 6 3 + A B C D 4 6 E 4 6 , 4 6 Q(q, kq + 1) ) k, q ∈ Z + 2 6 (0, 0) ? A B C 4 6 4 6 D 1 A B C @ A 5 + x5: 1 A B C y 5:
+
3
"B# > "$' + + .@
Zn ! "# $ " % & '( #
Z/12Z 0 12 2 0 → 2 → 4 → 6 → 8 → 10 → 0 {0, 2, . . . , 10} = 2 · Z Z/12Z U !" # u ∈ U U
uZ = U
0 < m ∈ N a ∈ Z/mZ Z/mZ a m
a, m $ % x, y ∈ Z 1 = ax + my & b = axb + myb ' ( b ∈ Z/mZ % b = abx ) " a !" # Z/mZ
% x ∈ Z 1 = a · x mod m & % y 1 = a · x + m · y a m $ 2 )$ " ϕ(m) % & ) Z/mZ
&$%
))# * !+ $ ,( Z[φ]# %- #
! " " #
# $ " " #% &
" " # ' #
(
) * + *, " """" -% #% ./0 123456 2758
9
+ " " 9 $ " : " . ; -
36 ! " #$% % #$% & ' (%' ) $ ! % ' ! % # % ) ! ' * 19 + * )' + , ' $ - %
2
=
7
...
25
23
=>
=2
==
...
74
+"" "
=
?
4
...
74
2
7
@
A
...
7@
+""
"
<) <)
./ % & ! ' ! % + , / & 0 0 ' !' a (a ∈ {1, 2, . . . , 36}) 1 / 2 ! 34' 5 6 a∗ ' / a∗ = 2 · a mod
37 (1 ≤ a ≤ 36). n a
a∗ (1 ≤ a ≤ 36) a∗ = 2n · a mod 37. n a∗ = a a a = a∗ ≡ 2n · a mod 37. 2n = 1 mod 37. ! " n (n > 0) 2n # 37 $ 1 %& '
(%' 36 ) $ 37 36 " 2 · 1, 2 · 2, . . . , 2 · 36 & * + + $ " # 1 36 , " $ & - .' $ # 2 · 1, 2 · 2, . . . , 2 · 36
" # 1 36
& / (2 · 1) · (2 · 2) · (2 · 3) · . . . · (2 · 36) = 1 · 2 · 3 · . . . · 36 mod 37. % / 0 1 2 1 % n! ≡ 1 · 2 · . . . · n)
'
236 · 36! ≡ 36! mod 37. (' 37 " # 1 36 36! 37 236 = 1 mod 37. " 2 3 . 36 / 0 % . $ & + %
/ 0 &
% $ # 2n 37 n ≡ 1 36 4 . . .4 ' .% 5! - 236 ≡ 1 mod 37 % # 6
0 = a ∈ Z/pZ
p
ap−1 = 1 mod p
a
ap − a
p
a
Z/pZ \ {0} x → a · x ∈ Z/pZ \ {0}
(1a)(2a)(3a) · . . . · (p − 1)a = 1 · 2 · 3 · . . . · (p − 1) mod p (p − 1)! · ap − 1 = (p − 1)! mod p
p (p − 1)!
ap−1 = 1 mod p. a ap ≡ a mod p p a ap ≡ 0 ≡ a mod p. 2 ! " #
$ " % &
p 2 · p ap − a m5 m m ∈ N ! "
# ! $ % $ & ' ( ) * & + , 652 = 650 · 62 = (610 )5 · 62 = 36 = 3 mod 11 - ( ! , 20350 : 7 382 : 17 6100003 : 101 217 : 19 . p−2
2 : p p = 2 (270 + 370 ) : 13 / &
% - , % m ∈ N , 42 m7 − m 1 1 7 · m 0 · m5 + m3 + 5 3 15 1
- 2 3 4 5 &
3+ 6 6 4 -
3 7 6 4 -
3 4 7 8 4 -
3 - ! 3 + 9 3 ! :; < $ $
3 0 8 3 - + $ = 3 - + ! ; $ > < < 3 & $ $ >
? - + 2 -+ $ 4 - + 4 5 8 4 ( 3
3 - + !
! "#$ % & ' ()*
t, ! t t+ + t t! + t = = t t t
!
,
,
! - a % + a = 2. & - p - p - + / - 0' 0' 1 - 2 3 0' 2 1 - ' 0'. & 2 & 2 2
& ' 0' 1 - p 4 ' %5 6& %0. 4 7' ' 0 ! / p - & ap − a +a 2 0' - p / p 8 2 ap − a ap = a mod p 4
&
' 3 9' : + 3' ; %"#<=& 1 > ; ' 1 ? 1 5@ A . & / p ' ' p - ! 2 2 ! ' p ' 6 %B & ' 6 C 6 2 4 4 ' ' & "#= % & "#= %& p ' -
! " # $ % & '( m n) ( n * m) # n! n n · (n − 1) · . . . · (n − m + 1) = := 1 ·2 · ...· m m! · (n − m)! m # + (a + b)n = an +
n
n n−i i n n−1 n n−2 2 a b. a b+ a b + . . . + bn = i 1 2 i=0
' , ( $ )# # * + p - * m, 1 ≤ m < p :
p = m
0 mod p.
# . (a+b)p = ap +bp mod p 'p -# / Z/pZ (a+ b)p = ap + bp '+ Z/2Z . (a + b)2 = a2 + b2 0 , * 1# 2 3 4 p 4 5 - p 6 2 4 (. 7 86 ) #
* n 9 (a1 + a2 + . . . an )p = ap1 + ap2 + . . . + apn mod p
# . * a1 = a2 = . . . = an = 1 : np = n mod p. :
# ! (9 4 % ) + p - (p − 1)! = −1 mod p '8 2 Z/pZ -; X p−1 − 1 8 . < # # + = 0
:: p - q = (p − 1) · t + 1 - t ∈ N t > 1 ' q > p# % 2p·q = 2p mod pq 0 : > 6 '( 6 )# 2 / > 6 2 n * Rn 10n − 1 Rn = 1111 . . . 111 'n # = " . 9 * > 6 ' 4 2 #
Rn ! " # $ % & &' 4 ( ) * ! + % , - x 7 · x . / 0 x * - 13 1 0 p > 5 Rn 2 ' p p Rn 3 3 4 % ) % 5+ 15873 6 15873 5 6 ) % 5& 4 8 7 3 56 8 - 6 / 7 . / . * " ! 8 9 12345679 3 2 ' 9 (9, 18, . . . , 81) 9 : $ 7 ; * + ' / -
p ! "
"# Z/nZ # # !
n>1∈N
a
n
aϕ(n) = 1 mod n
$ a n {a · x | x ∈ Z/nZ} %
! &' a·x # Z/nZ ( # Z/nZ ! )*# # + !, &
+ # a · x! a1 . . . aϕ(n)
+ # Z/nZ a · a1 , . . . a · aϕ(n)
+ # !
a1 · . . . · aϕ(n) = a · a1 · . . . · a · aϕ(n) a1 · . . . · aϕ(n) = aϕ(n) · a1 · . . . · aϕ(n) 1 = aϕ(n) mod n &# <=> 7 2 ) ?
!
" # $ %
& n < 36 ! 2n = 1 mod 37 ' ( )
! *
+# ) ,- # !
. / , e & 1 36 0 / e, 1 ≤ e < 361 2e = 1 mod 37 ' $ 36 e/ 36 = k · e + r, 0 ≤ r < e / 1 = 236 = 2k · e + r = (2e )k · 2r = 2r mod 37! 2r = 1 mod 37 ' 0 ≤ r < e! e & , 2e = 1 mod 37 ! r = 0 ' ! e + $ 36 ' ,
p
a p n an = 1 mod p e ae = e n e p − 1
1 mod p
a = 2 p = 37 0. 21
2
3 4 5 + $ 36 + $ 12 $ 18 , ! " $ 212 218 / 212 = 26 mod 37, 218 = 26 · 26 = (−11) · (−10) = −1 mod 37 ' n < 36 : 2n = 1 mod 37 ' 6 77 3 & e > 0 ae = 1 mod p 8 $ a p / p (a) ! 8 & p + $ p − 1 ! 37 (2) = 36 = 37 − 1 ' 6 79 3 ( p (a) = p − 1! a ( $ p , : / % ; ( p ( $ < & : ' %= /
p > 2 m2 + 1 4 p − 1 ggT(a, b) = 1 a2 + b2 = 0 mod p p = 2 p = 1 mod 4 ! " # 3 36 37 $ %& p = 2, 3, 5, 7, 11, 13 17 1 < a < p−1 " a p ' " # a p ( ) a a2 a3 . . . , ae * ' p e " a p + , ) " e a p # ae/2 p - a p Z/pZ \ {0} = {an | n ∈ N} .
/ 0 Z/pZ 1' 2** 3 a 4 5 6 ' 3 5 7 11 . . . 31 7%' 7 p ' " (p−1)
a p a q = 1 mod p & q p−1 & & a p−1 p a 2 = −1 mod p p ' p 8 9
) ' : & ' p(p > 2) p + %& p p − 1(= −1) p+
d Z/pZ p ! " d # $ p − 1 Z/pZ # d % & !
2 ' ( Z/7Z) * 6 ( # + ! " p ≥ 3
, 2 +- . X 2 − 1 = 0 = (X − 1) · (X + 1) ! % /0 $
0 1 −1 = p−1 mod p 1 1 ! " #$ $
%# &
Z/pZ
p d p − 1 d d Z/pZ
' y d y ( X d − 1 = 0 ! ( )% d 2 * % $
p 0 ≤ d ≤ p − 1 Z/pZ ϕ(d) d p + Z/pZ d $
$ a ∈ Z/pZ d ' M = {1, a, . . . , ad−1 } , " % - " xd − 1 ! " )% d " xd − 1 M ! % . d (% * ,, M / 01 (% * ,, d ϕ(d) ! $ 2 , 2 ! %
p d p − 1 d Z/pZ
ϕ(d)
Z/pZ \ {0} = {1, . . . , (p − 1)} % Ad := {x | p (x) = d} ! |Ad | := (Ad ) = 0
|Ad | = ϕ(d) 3 {1, . . . , p − 1} = Ad ! $ (p − 1) = ϕ(d) =
d|(p−1)
d|(p−1)
|Ad | / 0 # |Ad | = 0 # % /
d|(p−1)
|Ad | = ϕ(d) $& 4 d " p − 1
p
2
Z/pZ ϕ(p−1)
! " # $ % & & ' $& (& % ) % & ' * +& % ) , &% -.- !
/0 / .1/ 2& % , ' & /0 3
4 , % % " 5 = 1% 6 % (& &' (& p & %
(& 7 2 8 (& p = 3% 5% 11% 13% 19% 37% 53% 59% 61% 67% 83
+ & 84 9923 9941 9949 $& &% 2 (& && 9&& & 2 '% & 5 2, 3 5 (& (& p
& $& & & :; <" (& => , =& , ? +@ , & 9 % $ 0% A B + .--4% 88 C. ' 1D4 * 1 9949 1
9949 !
" #" $ %
& ' ( ) " !* ) 5, 7 17
"
n ! !*
+ , - ." ! 2 ! * / 5, 7, 17, 23, 29, 31. 0 1 2" ! 1000
" 2 !* 3
!* / 3, 5, . . ." 101 $ 10 !* & 4 ! 5 p = 4 · t + 1 / a !* " −a !* 67 1 p ! 5 4·t+3 / a !* p " p (−a) = p−1 2 68 ( ! 2, 3, 6 !* & $ " 9
15 + 25 + 35 + . . . + 65 7 15 + 25 + . . . + 105 11 15 + 25 + . . . + 165 mod 17
! "
! #! $ % p−1
p > 3
i3 = 0 mod p i=1
p−1
i4 mod p
i=1
& #! ' ( )
p−1
ik mod p
i=1
"* + #! , + - (p − 1)! = −1 mod p " . + /
+ - 01 20 " 3 (4 + 5 # + !$ ( # 6 78 #! 09 " : ( ; & . 3 (
4 <" " $= 1
5' > x7 = 1 mod 29 ?
5' > 1 + x+ x2 + x3 + x4 + x5 + x6 = 0 mod 29 9 5' ! >
1 + x2 = 0 mod 49
1 + x4 = 0 mod 49
1 + x8 = 0 mod 49
! " #
$ % &
' ( % % % ) $ % & % * +* , 1 , - & $ = 3
1 0, 3333 . . . = 0, 3 1 = 0, 142857 6 7 2 5
a
!" p p = 5 #p a$ #!
% 1p $ & ' (" % !" 1
) * p 1 z = = 0, a1 . . . al = 0, A A )+ a1 . . . al l p & A
a1 · 10l−1 + . . . + al 10l − 1 10l ·z−z = A z·(10l −1) = " ) 10l = 1 mod p p l ) ( l , % - . % p − 1 & ( /
l %
0 l . % p − 1
1 , % 10 p p 2
' ( /
l = p (10) l p
1 p − 1 10 p
!" l = p − 1 l < p − 1 # $ !" %& & p $ p − 1 ' %& $ %& %& ! %& p − 1 % ( ) ! * %& + + "
1 %&%$ p , & p %&%$ - . 4
- . 10
1 p
-% . 7 &
%& %&%$ ' ( ./ 0 ! *! $ ( ' a ≥ 2 ' n ∈ N & p (a) = n 1
p p (2) = 4(5, 6, 7, 8, 9, 10) n ∈ N p (2) = n 2n 22 + 1 ! 2n · k + 1 " n ∈ N p ! p1 # 2n $ a ≥ 3 " n ∈ N p (a) = 2n p (3) = 3 %9, 27, . . . , 3n p (10) = 3 %9, 27, . . . , 3n & ' ' (
# f (X) = X 2 + X + 1 ' n n ∈ N ggT(f (X), f (X 3 ))
$ x ≥ 2 n ∈ N p p (x) = 3n ) ) *+, % 5 7 " - ' # ./,* $ a ≥ 2 n 0 p (a) = n ) a = 2 n = 6 1 2 3 ) ! ( & ! # ! An − 1 4# 4 % 2 ) 15' ( 6 2 /,+ & *., 0 *** 6 7'& .,/, %- ) 8 0 ! ! Φd (a) ) ! 2 ' - 9+ :;; < :;/ %.,,=
*=;
" l ! p l > ! p % ? " > 10l − 1 1/p - & ! # 1 0 9 ) *.* @ Rl 1 > ! 1 0 ) # & " @ % ' Rl 2 < l < 8 ' > #0 & %1 Rl ' AB l ' ! @
! p ! " # 100 ! " $" p1 $" p1 %!
&' 0
&' 8 " "! $ (" ! ) * + , ( " $" - .) ) " $" 17 &' 142857 / 0# & 142 + 857 =? 1 1 1 1 2 13 ! 17 ! 9091 #3 4 1 ) - - " $" 5 l = 2k $" p &' 2 " 0# A B # k ! " A + B = 10k − 1 (5 6 ! p / a · 10k + B ∈ N! $" 10k + 1 " + 10k − 1 A+B A+B ∈ N! k = 1 10k − 1 10 − 1 ) * 4975 4976
7" 1
$" 9949 ,
) 8 2 + & 142857 & $" 1 6 " + " &' *
, # ( ,). ) ( ) " #" ! 588235294117647 + 1 16 2 9 - 2 ) 8 & " 7 * 2, 3, 4, 5 6 & " 7 " ! * &' :& ; 142857 < + " . < 2 & & = 7 ! "
& ! 7 + " & 7 - " " /! & 142857 > 7 & 2 "3 & : ; & *# & 7 ! "3 - / ? 8 2 " ! & "3 7 " - "
& 8 2 " & 9 * & ! / " , * / # ,
! ! " #$ % x2 = a mod p ! ! 5 # & 11 ' (
p a = 0 mod p a
p−1 2
= 1 mod p
) a = 0 mod p # & * ! x ∈ Z/pZ p−1 x2 = a * a 2 = xp−1 = 1 + , & ! -. / p−1
a 2 = 1 ! / b ! s s(p−1) bs = a b 2 = 1 * b " p (b) = p−1 (p − 1) 0 s · p−1 2 * 1 s * s = 2k a = (bk )2 " # & 2 2 / 3- 4 " ! a # & p /" ! 5 $ (
(−1) p p = 1 mod 4 2 p p = ±1 mod 8 * ' $ *
! /(
2 · 4 · · . . . · (p − 3) · (p − 1) = 2
p−1 2
·
p−1 !. 2
p − 1 = −1 mod p p − 3 = −3 mod p p−1 p−k > −k k < p−1 2 k 2 ! "#$ %&
2 · 4 · . . . · (p − 3) · (p − 1) = 2 · 4 · . . . · (−3) · (−1) = (−1)1 · 2 · (−1)2 · (−1)3 · 3 · . . . · (−1) p−1 p−1 ! = (−1)1+2+...+ 2 · 2 p2 −1 p−1 = (−1) 8 · ! 2 p−1
p2 −1
p−1 2
·
p−1 2
# 2 2 = (−1) 8 mod p p = ±1 mod 8 # # '
p2 − 1 8 2
(
( ) *
+'( , -. / x2 ≡ p mod q -. / x2 ≡ q mod p "p, q > 2 '% 0 0 1#$ / ! 2 & 2 3 p p 4 / a ∈ N #5 (& +1 a ) + p a := " % p −1 a ) + p
p
a ≡ b mod p
a, b ∈ N p
b a = p p
a·b a a = · p p p
6 #
p p−1 p+1 U (p) = 1, . . . ,
O(p) = ,...,p − 1 2 2
! " 2 x ∈ U (p) 2
r(2 · x) ∈ O(p) p − r(2 · x) ∈ U (p) a p ! "
a = 3 p = 17
# U (p) ! ! 17 3 !
$
% # & # x >= 17+1 17 − x ' ( 2 )
' # ! ' $
1 2 3 4 5 6 7 8 3 6 9 12 15 1 4 7 3 6 1 5 2 1 4 7
8! = 38 · 8! · (−1)3 mod 17. ⇐⇒ −1 = 38 mod 17
! 3 * + ! ! 17 ' ,
( ' " !$
fa : U (p) x →
fa : U (p) → U (p) x∈U (p)
x
x=
r(a · x) ∈ U (p)
r(a · x) ∈ O(p)
r(a · x) p − r(a · x)
x∈U (p)
fa (x) =
p−1 ! mod p. 2
U (p)
x∈U (p)
fa (x) = fa (y) - r(a · x) = r(a · y) ' a · (x − y) p ' p ,! x − y ' . x, y ∈ Z/pZ . x = y / 0 r(a · x) = p − r(a · y) ' x + y p ' . x, y ∈ U (p) 1 ' fa & , 2 & ,2
p
p μ(a, p) = |{x|r(a · x) ∈ O(p)}|
a
a = (−1)μ(a,p) p ⎛ ⎞ ⎛ ⎞ p−1 a 2 ⎝ x⎠ = ⎝ r(a · x)⎠ mod p x∈U (p)
⎛ =⎝
x∈U (p)
⎞ ⎛ r(a · x)⎠ · ⎝
r(ax)∈U (p)
⎞
r(a · x)⎠
r(ax)∈O(p)
r(a · x) p − r(a · x) = fa (x) ⎞ ⎞ ⎛ ⎛ p−1 fa (x)⎠ mod p a 2 ⎝ x⎠ = ·(−1)μ(a,p) · ⎝ x∈U (p)
⎛ = (−1)μ(a,p) · ⎝
x∈U (p)
⎞
x⎠ mod p
x∈U (p)
a
p−1 2
2
= (−1)μ(a,p) !
" 3 p p = ±1 mod 12 p = 11 ! 52 ≡ 25 ≡ 3 mod 11 " p = 13 : 42 ≡ 16 ≡ p−1 3 mod 13 x ∈ U (p) 3 · x ≤ 3 · p−1 2 < p + 2 # p+1 3 · U (p) ⊂ {1, . . . , p−1 2 } ∪ { 2 , . . . , p − 1} ∪ {p + 1, . . . , p +
p−1 2 }
# 3·x = p $ 3 p " % " 3·x ∈ { p+1 2 , . . . , p− 1} r(3 · x) ∈ O(p) # & x ∈ U (p) ' " p+1 ≤ 3 · x ≤ p − 1 ⇐⇒ 2
p + 1 ≤ 6 · x ≤ 2p − 2
p p = 12 · n + k k ∈ {1, 5, 7, 11} 12n + k + 1 ≤ 6x ≤ 24n + 2k − 2 ⇐⇒ 2n +
k−1 k+1 ≤ x ≤ 4n + 6 3
x ∈ N 2n + 1 ≤ x ≤ 4n 2n 3 p ! 2n + 1 ≤ x ≤ 4n + 1 2n + 1 3 p " 2n + 2 ≤ x ≤ 4n + 2 2n + 1 # 3 p $ %
2n + 2 ≤ x ≤ 4n + 3 & $ ' ( 2
)*+ , - ' ( p = 13 q = 19 )** '. / , - & 0 . 2 1 2 p )*! 5 1 2 p 0 . p = ±1 mod 10 )*3 % . p p − 3 1 2 4 )*" 5 7 1 2 6 7 % 8 · k + 7 6 7 % 12n + 11 # 89$ 2 0 ::;0 # !+<6
! "!# x2 + xy − y 2 $ % &' ! (!#)! ! (!# ! "!# 5n ± 2 ! # ! # *+, !)## $
p, q
p−1 q−1 p q = (−1) 2 · 2 q p
-.$./
p q = (−1)μ(p,q)+μ(q,p) q p
μ(p, q) + μ(q, p) mod 2 x ∈ U (p) r(q · x) ∈ O(p) x p−1 }
q · x < q · p2 = 2q · p μ(q, p) x ∈ {1, 2, . . . , 2
x y ∈ U (q)
(y − 1) · p +
p+1 ≤q·x≤y·p−1 2 1−p ≤ q · x − p · y ≤ −1 2
!"#
$% (x|y) ∈ U (p)×U (q)& '
" ( ' p ) * q
& ( y ∈ U (q) r(p · y) ∈ O(q)
(x − 1) · q +
q+1 ≤p·y ≤x·q−1 2 q−1 1≤q·x−p·y ≤ 2
(q−1) 2
y=
q p
(p−1) 2
"
*+ U (23) × U (19)
·x−
q−1 2p
μ(p, q) x · q − y · p = 0 x · q = y · p p q q y y ≤ q−1 2 !
A := {(x, y)|x ∈ U (p), y ∈ U (q); −
q−1 p−1 ≤x·q−y·p≤ } 2 2
"#
%$ |A| = μ(q, p) + μ(p, q) A &' ( ' (
) R = U (p) × U (q) ' A
q−1 } 2 q q−1 = {(x, y)|y < · x − } p 2p p−1 }. C : = {(x, y)|x · q − y · p < − 2
B : = {(x, y)|x · q − y · p >
*+ B C , ' q+1 *+ ( p+1 4 , 4 ) - ' ) . ' / . , ,, ' φ(x, y) = ( p+1 2 − − y) ,0 ,, '
) B x, q+1 2
C ,', ' , B C ' q−1 '+ |A| = |R| − 2|B| 1 |A| mod 2 = p−1 2 · 2 ' 2
p q
=
q p
p, q 4n + 1
4n + 3
pq q
p
= (−1)
p−1 q−1 2 2
p q
=−
q p
= 1 ', * '
- ' ( ' −1 2 p q q p ''' 3 , * + a 313 56 4 2 7 257 313 = 257 = 257 = 257 · 257 · 257 = 257 5 2 = = = −1 7 7 5
4
) ' * 5' 67$ - 8*9 , 52 ( 1 ( 11 : , !
! " # $ " % & ' # & # ( ) ! * $ * #+ " $ " " $ , # $ " #' # - . / " 0 # 1 $ * % 2 # 3 ' 4 5 6 - " 7 $ "58 - 0 4 9 " 9" p5 / : 4 ! #+ ; <"" " "4 !
; " < !4 % &= >?@@@A " $ " 0 # . −1 p = 1 mod 4 p x2 = −1 mod p 2 p−1 ! = −1 mod p !" # $ p = 1 mod 4 # 2 % # & ' &
( x2 = −1 mod 61 )* & + , - !"# $ Z/pZ\{0} & . " / 0' !" 1 n 23 45 Fn = 22 + 1 & *6 & ( 0n ≥ 3
5 # $ p (* & Fn 0n ≥ 3 2 p
7 (* & Fn & 2n+2 · k + 1 8 1 & % ( ' ( 9 * ' (* & 264 + 1 2:
' p = 2n + 1 0n 5"9 ( 0 4( 5 # 8 3 (&" modp
5 %* 0 # ; n = 64 k−1 n = 128 p = 2n + 1 ( ! 32 mod p n = 2k
p p a ∈ N r(a · x) ∈ U (p) r(a · x) fa : U (p) x → p − r(a · x) r(a · x) ∈ O(p)
p−1 2
i=1
fa (x) =
p2 − 1 8
μ(a, p) = |{x|r(a · x) ∈ O(p)}|
r(ax) +
r(ax)∈U(p)
r(ax)∈O(p)
r(ax) ≡
p2 − 1 + μ(a, p) mod 2. 8
! p−1
2
p2 − 1 xa (a − 1) mod 2 ≡ μ(a, b). + p 8 x=1
"# a p p−1 2
a p
= (−1)m m =
ia . i=1 p
$ a, b ! % a−1
b−1
2 2
a−1 b−1 i·b j·a + = · . a b 2 2 i=1 j=1
" & '( ) *
"# ! p ! +, -! x3 = 1 Z/pZ. "# ! p -! x2 −3x−1 = 0 +, Z/pZ. ! "# ! p -! x3 − 3x − 1 = 0 !/ +, Z/pZ.
0
"# ! p 7 1 ! '. "# ! p 6 1 ! '.
2 p = 3 + 8k q = 1 + 4k 3k ∈ N 2 p
p = 8k − 1 q = 4k − 1 −2
p q p = 2q + 1 q 2 −2 ! "#$ % X 4 = −1 mod p & p = 1 mod 8 X 4 = −4 mod p & p = 1 mod 4 '( X 4 + 4 ) * + "#, - . 2 ) / p p = ±1 mod 8 %0 2 ) / p = 3 - 1 = ±3 mod 8 2 2 ) ! / 3 + - p x, q ∈ N q < p q x2 − 2 = q · p - 1 + q + ±1 mod 84 * x2 − 2 = ±3 mod 8 x 5 ' + 6 4 "#7 6 & 8 1+ + ( x2 − 2y 2 = −t2 9& x, y ∈ Z 1 t + ±1 mod 8 : 9& + 2 t x2 +(x+t)2 = y 2 x, y ∈ Z ggT(x, t) = 1 ; % 2 t 9& < t = ±1 mod 8 - t + 4 "#=
- −1 ) / p p = 1 mod 4 ( !> ! . p = 1 mod 4 2 a, b a2 + b2 = p 3 * ? 1659 % @ A -0 0 < x < p x2 = −1 mod p L = {(a, b) ∈ Z × Z|ax = b mod p} 'L 9 B * 2 p = 5 0
(0, 0), (1, x), (1, p+x) (0, p) ! A = p " # $ % & (a, b) ≤ 2 · πp < 2p ' ( ) * &+ a% b#
0 < a2 + b2 < 2p
a2 + b2 = 0 mod p ,- # (a, b) L
a2 + b2 = p. & % " !. !' / # - 0 % " 1. 1' 1 ' - % $ ' 23 4541672,6337 - $ ,489: ! 4535 ' % ;& 625 < = 1890 & & $ + &+ > " ? , @ >$ < ? + ' A 0 + % @B p = x2 + y 2 693 0 p = 1 mod 4 % ;& 625 @B# p = a2 + b 2 0 % # (∗) p = a2 + b2 = x2 + y 2
0 ( > ?C (∗)
p2 = (ax ± by)2 + (ay ∓ bx)2
p (a2 + b2 )y 2 − (x2 + y 2 )b2 = (ay − bx)(ay + bx). @ u2 + v2 = 1 & % p & B ; 0 ' . / 1640 &+ ! % " !. !' BD % % ; & 4E23 " (μ, ν) ∈ N × N % # % μ · ν & " % & 0
μ · a2 + ν · b 2
! "
#
$
% & # '
(
) * +
Z[i]
-. + ',/ %
' -#
",
Q(i)
'
+ /
01 % # ' ' + . 2
3
! " 4 ' ' 5 6
3
. 2
# $ % '&()
07
5 (8
% & (
! " # $% " # &' & ( ) ' $* + '$ , ' '- ' + " . '
- / / 0) ' 0 1 " ( , 2 ( " 3 45 ' ' - - + ) - 5 n > 2 1 xn + y n = z n . 0 " ( 2 - "6 / ' 7 8 - 1 / - 2
400 ! "# $ % & ' () *+ , - '. / , (a, b, c) & &. 0&$ a2 + b2 = c2 1
(a, b, c) a b ! a (a, b, c) p q q > p a = 2p · q b = q 2 − p2 c = q 2 + p2 " p q # p > q a = 2 ·p·q b = p2 − q 2 c = q 2 + p2 $ (a, b, c) % b = 7 p & ! $ ' (a, p, c) # % (a, 81, c)
% (a, pn , c) $ p & !
a 4 c 3 (a, b, c) c 5 ( a b 3 ) (a, b, c) c 5 a b 5 " & ( #* a ≤ 100 ' #!
&. , 2 ' 3& 45 a ∈ [0, 100] b ∈ [0, 75] 6 ' 7 $ c2 = a2 + b2 , & (a, b, c) &. 8 , & & $ 9 : ;
pp p p p
p p
p
p
p p
p
p p p p p pp p p p p p p p p p p p p p p p p p p p
p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p
! " # $ "% & ' " ( ( % ) a2 +b2 = c2 " *+ , a3 + b3 = c3 an + bn = cn - , $ *+ . # ( / '( (' $ n = 4 / & / (' n = 3 / " / 0 1( + 23. 2 1993 , 3 " & (' 4 / " $ $ , 5 & 2 , 6 $ / / $7 . . /% )$ 8 , $ . 0 9 : ;< =( > ??7 > @ 2 A $7 # ;B9 2 + - 0.70 C ;D7 > 2 1 8 $" & 0 B9: B< >7>B
" $ (' $ n = 4 / E 0 / " , " A F >? 0 / G 0 ) $ : B< 2 D; F / (' n > 3 ) xn + y n = z n " ( :"< // *+ . $/+ ) ( / # , ( / , $ "
, / ( / "
x > y ggT (x, y) = 1 p > 2 ggT (x + y, xp−1 − y · xp−2 + . . . + y p−1 ) p q #( +H 6 x = −y mod q xp−1 − y · xp−2 + y 2 · xp−3 − . . . + y p−1 = p · xp−1 = 0 mod q. , q = p ' q 6 " x I q (x + y) ' ( q 6 " y H q ggT (x, y) , ggT (x, y) = 1 q = p 2
p
2p + 1
xp + y p + z p = 0
(∗)
(x, y, z)
p
x·y·z
x, y, z p x · y · z q = 2p + 1 x y z −xp = (y + z) · (z p−1 − z p−2 · y + . . . + y p−1 ).
s ! " s = p p xyz # (y + z) = Ap ,
z p−1 − z p−2 · y . . . + y p−1 = T p
(x + y) = B p x + z = C p $ p = 21 (q − 1) q %!# q x · y · z $ xq−1 = 1 = yq−1 = zq−1 mod q " ! & ' q = 2p + 1 ( ) (∗) q # xp + y p + z p = x
q−1 2
+y
q−1 2
+z
q−1 2
= (±1) + (±1) + (±1) = 0 mod q
q ≥ 5 *!# q (x · y · z) q x $ B p + C p − Ap = (x + y) + (x + z) − (y + z) = 2 · x B p + C p − Ap = 0 mod q + ! ,-# q (A · B · C) q x q (B · C) q . B B p = x + y y +/- q z x y z ) q C q A # 0 = Ap = y + z mod q −y = z mod q T p = p · yp−1 mod q 0 y = B p mod q + q x- T p = p · (B p )p−1
' q B p = ±1 mod q p−1 # ±1 = T p = p mod q 1 p = ±1 mod q 1 < p < q − 1 2 2 "3 ) " %4%556 7 8 & 9 $ !
! " ! #
$ % & ' ( )* % ) * % & ! + % "
! " #$
% "! # &
!
#! ' ## (
' ,-'. /-0 * % )*. % 1 ) +"
! * # #
,
#
- .!/
! #
* 0 # )
1
' # 2 & !
" )
3 4 / - # " ## ) # 1 3 .
3 ! .5 # / . " .
" 1
"
'! . 0 # 1 # " &
# # #! , 3
3 3 . .. (
( p% 2 · p + 1 % ( ( " ! 2. 33 4 3, 11, 23 . . . 5. " ( % 6 7 ! * '+ +8 % . % .! 9 * :; <<:% /- =
9 *& :> 5? @#6 @ = & '. % !6 % '. & A ) . B ) 6 ). !
"
"
"
! "#
"$
%
& ' = {0, . . . , 40} ( ) *+* , ' - ./ 0
C:
n → 7 · n − 4 mod 41 ∈
1 C(n) = c = 7 · n − 4 mod 41 2
n 34 ) 5 / 6
6 / 7 8'7 7 9 C 2 4 :7 7 7 * ) ; :' 6 < .+ = >; ' ?@ = 9 ) ( ' - ' ' - 7 & 9 * - 0 40 & >6A- @ e 40 ' B' - 7C / n = 0, . . . , 40 ./ 9 0
V :
n → c = n7 mod 41 ∈
.
' ./ & )8 '/ 41=? 9 13 30 ' - '4 ? ' ' D ' 7'E ; '' -' 1 ' - 137 = 26 mod 41 307 = 6 mod 41 ) , )8 E F ./
+ ( / 6'- * , cG & 6 / 7 2 G & ' ; ' p 9 & 6A- d V (n)d = (n7 )d = n mod 41 / n ∈ B n40 = 1 mod 41 / b ∈
$ ) / k ∈ Z n40k = 1 mod 41 B/ n ∈ C 8 n40k+1 = n mod 41 & d ∈ N
7 · d = 40k + 1 / k ∈ Z
& ' ./ A- 40 '
) 7 9 ' 40 2 4+ & H I4 7 ' '
p
7 · 23 = 161 = 1 mod 40.
E:
c → c23 mod 41 ∈
E(V (n)) = E(n7 mod 41) = n7·23 mod 41 = n mod 41
!"# $ % e = 17 # &p = 41 $ ' ( p = 41# e = 11 = d &% ) * + '' '' p = 41 e# % ) * + '' &d = e &"$ , +
- .' % / 0 11 $
# $ $ 2 3 244) + * 5 6 255 '7 3 ' 8 # 8 .+ . 3 # 1# 9 # :'* ' 32 255 − 32 = 223 3 223 1 $ 0 '+ +' 19 ' + 222 17 *
'; 6 , V : {0, . . . , 223} n → n19 mod 223 ∈ {0, . . . , 223}
' " 6 % ''# $ 6 . ( 6 2* + ( & + 7 1 6 '7 % <
= % # % >1 < = % V # V ◦ V < = % # ' 2"2 ?"? $
<
p
!
@ . 3 6 2, . . . , 10 $
'/; c = ne mod 11 6 p = 11 1 2;
' $ ; ' # 3 2 3 7 $
% ) e +$ d<
2e = 7 mod 11 ! " #$% & '( ) % * 2e = 7 + e ) $ 7 ' 2 , log2 7 - ! #' 10& log10 x = lg x ) #' e = 2, 71828 . . . & loge x = ln(x) % ! "% . $ /
" ax = b lg b #a, b 0- +1& * x = 2 . lg a # 3 + a, b& p / ! 4 ., 5 " ! ' 2x = 3 mod 17 % " ax = b mod p, b = 0 mod p a $, $ p 6 . , 4 '( , 7 89 / p a $, b ∈ Z/pZ ! i ∈ {0, . . . , p − 2} ai = b ! + $ b ' a , inda (b) , p $4 $ 6 : 4 " , : )
p a
inda (b · c) = inda (b) + inda (c) mod (p − 1)
inda (bc ) = c · inda (b) mod (p − 1)
inda (1) = 0 inda (a) = 1
', , ; 6 . / ' 3 $, $ 17 * a ind3 (a)
1 0
2 14
3 1
4 12
5 5
6 15
7 11
8 10
9 2
10 3
11 7
12 13
13 4
14 9
p
6 13 17 ! " # $ 315 = 6 mod 17 34 = 13 mod 17 "% 6e = 13 $ 315·e = 34 mod 17 315e−4 = 1 mod 17 3 & '$ 15e − 4 = 0 mod 16 15e = 4 mod 16
e = 12 mod 16 ( ) 612 = 13 mod 17 "% *
& + ! 16 6 13 ' 15 16 , ! 9 6 - ./ 0 1 & a 2 p % b c $ b = aind(b) 3 c = aind(c) be = c ae·ind(b) = aind(c) e · ind(b) = ind(c) mod (p − 1) 1 ggT(ind(b), p − 1) # ind(c) / , e " ' 4 / e ' %$
• + z ind(c) = ggT(ind(b), p − 1) · z • , 5&6ind(b), p − 1, x, y, ggT) 6 7 8 9 : & ; x, y x · ind(b) + y · (p − 1) = ggT(ind(b), p − 1) (z · x) ind(b) + y · z(p − 1) = ind(c)
• c · x / e + ! & 5 % & ! 8 8 " & & 4 5 + & & + + & + & & 4 8 & ; 1 & 2 2 % & < 8 & % b c + = "' $ 7
p = 11 p = 17 ! p
a " #$% " & ' a mod p! b ( )' *+ , 6x = 4 mod 11! , 9y = −2 mod 17 - . +/0 1 & 2 p (a) =
p−1 ggT(ind(a), p − 1)
3 p = 8963 4 < p 5 $ c = n143 mod 8963 , * & 6 7 8 * 6 9 4 5885 8
0 :# 2 , , - ;
" 8963 *+ d e * ! 4 4701 4 8720 " < *+ d e ! * ! p ! d e :2 ,
* p − 1 = 8962 = 2 · 4481 ==3 ! + >? > 8 5 5! )' ? $
ax = b mod q ;9 " @ + & + + > ? >
! p d "! e# $ % & ! '
( % ) *
$ ' $ "+, - #% & . ! *
$ / $ %
a ∈ Z/nZ Z/nZ
ggT(a, n) = 1
! Z/pZ p " #
p
$ % Z/9Z 1, 2, 4, 5, 7, 8 & 6 ' ( #
'
ϕ)(
p " (* +
"
& " , - " $ $ 9% " 2 9 . 1, 2, 4, 8, 7, 5 - . #
"
/ 0 '$
1
2 -
(
1
m ∈ N
Z/mZ
1
a
1
a
- Z/mZ 3 $$ $$ + 45 $$ Z/mZ 6 7( x Z/mZ E = {xn | n ∈ N} 6 . x " x & 8 . x
3 $$
- . p " $$ Z/pZ 7(
" 3
1 Z/9Z $$ 7( 9
1
:
* 1 #1 . #1 .
2 Z/27Z 2 Z/81Z 2 Z/3n Z
7 (2) = 3 49 (2)
7n (2) = 3 · 7n−1 n
≤ 100000! 2
" # p! 2 $ % Z/pZ! % Z/p2 Z 1093 ! ! & ' &
6 52 · a − 1 a ∈ N 28
( 5a − 1 128 7 ! 97 )
) & b 2b − 1 97 * ( 2300 · a − 1 97 ! 257
b ! 5b − 1 257
) n ∈ N, n ≥ 2 2n |(52
p xp−1 = 1 mod p2
n−2
− 1)
Z/pZ
x
Z/pZ x ∈ Z x xp−1 = 1 mod p2 xp−1 = 1 mod p2 ! "
y = x+p p−3 · x Z/p2 Z # (x + p)p−1 = xp−1 + (p − 1) · xp−2 · p + p−1 · p2 . . . 2 p−2 2 p−2 2 = 1 mod p !$ $" 1 − p · x = 1 Z/p Z $ = 1−p·x −p · xp−2 = 0 $ −p = −p · xp−1 = −p · xp−2 · x = 0 mod p2 xp−1 = 1 mod p2 −p = 0 mod p2 2
Z/pZ
p
Z/p2 Z
% & ' " Z/pZ xp−1 = 1 mod p2 % d = p2 (x) ( (p − 1) · p ) " xd = 1 mod p (p−1) d d = (p−1)·k * d ( (p − 1) · p k = p k = 1 "+ xp−1 = 1 mod p2 $ 2
Z/p2 Z
p
r ≥ 2 xϕ(p
ϕ
r−1 )
= 1 mod pr .
x
r r = 2
r ≥ 2 r−1 r−1 !" # xϕ(p ) = 1 mod pr−1 $# xϕ(p ) = 1 + n · pr−1 % & p n # # ' r xϕ(p ) = (1 + n · pr−1 )p
= 1+p·n·p
r−1
p + · n2 · (pr−1 )2 + . . . 2
r xϕ(p ) = 1 + n · pr mod (pr+1 )
= 1 mod (pr+1) , p ( # n
2
p r ≥ 1 Z/pr Z x Z/pZ xp−1 = 1 mod p2 x Z/pr Z r ≥ 1 " & ) # x # p %
xp−1 = 1 mod p2 d = (x) mod (pr ) xd = 1 mod pr $# xd = 1 mod p% (p − 1) ( # d $ #' d ( # ϕ(pr ) d # ( # (p − 1) · pr−1 ) #' d = (p − 1) · pk−1 = ϕ(pk ) r−1 1 < k ≤ r )* k < s% * xϕ(p ) = 1 mod pr % ) 2 & +&# $# d = ϕ(pr )
x d mod p xd = 1 mod p2 r−1 r−2 d · r ≥ 2! x p = 1 mod pr xd · p = 1 mod pr
r−1 , * ' xd · p = 1 mod pr ## r ≥ 2 ) d r = 1 x = 1 mod p
r r p xd · p = (1 + n · pr )p = 1 + p · (n · pr ) + · (n · pr )2 + . . . 2
= 1 + n · pr+1 + . . . = 1 mod pr+1 . ( # #
r = 2 r−2 ' # r ≥ 2 xd · p = 1 mod pr−1
r−2 # xd · p = 1 + n · pr−1 % &
p
n
xd · p
r−1
= (1 + n · pr−1 )p = 1+p·n·p
r−1
p + · n2 (pr−2 )2 + . . . 2
= 1 + n · pr = 1 mod pr+1 .
p x d mod p xd = 1 mod p2 (x) = d · pr−1 r ≥ 1 pr r = 1 xd = 1 mod p2 xd·p = 1 mod p2 s = (x) mod p2 s d · p xs = 1 mod p d s ! s = d · y d · p = s · k = d · y · k p = yk y = 1 k = 1 k = 1 !
p = k " s = d # xd = 1 mod p2 $
% r ≥ 2 & ' ( ' r−1 r + 1 '" xd·p = 1 mod pr+1 r xd·p = 1 mod pr+1 % ) s = (x) mod pr+1 s *+ d · pr s $ s · y = d · pr !# xs = 1 mod pr s = d · pr−1 · k k · y = p %
' # , k = p 2 !
10 487 4872. 14 29 292 (2) = 10 · 11r−1 ! r ≥ 1 (2) mod 17r (2) mod 13r
"
#$ % xb = 3a + 1 #$ % xb = 5a + 1 p #$ % xb = pa + 1 & % ' xb = y a + 1 $ y ( ) 5b = 6a + 1 #$ 7b = 6a + 1 #$ 13b = 6a + 1 17b = 6a + 1
#$ xb = 6a + 1
p 2p−1 = 1 mod p2 x, y, z ! p " xp +y p +z p = 0 2p−1 = 1 mod p2 #$ % & $ ' #( $ ) * * $ ( " $+ , ' ( % ! - & +- ( .+ 1000000 % " , p 2p−1 = 1 mod p2 / ap−1 − 1
* 01 % a 23+! p p #a ≥ 2' ( * 0 1 ( % 2 3 5 100000 * 01 4 p 5 4 ) , ! p x, y, z " 6 p xp + y p + z p = 0 qp (l) = 0 mod p - l ≤ 31 #6
7 8 * 9 : # p' 7 4 5 " #;;' <0 '
qp (a) =
! "! 2 × 2 # Z/nZ $ !
"!
n
n n−i i n n n n n−1 n−2 n a (a + b) = a + ·a ·b+ ·a · b + ... + b = ·b . i 1 2 i=0
% & '( ) * + & "! $ * kp = 0 Z/pZ , ! p 1 ≤ k < p $
(x + y)p = xp + y p x, y ∈ Z/pZ & ρ : Z/Zx → xp ∈ Z/pZ !-! . (1 + x)p = 1 + xp &"! . /
0 xp = x x ∈ Z/pZ 1 2 /
- "! - % 3 "! (a+b)2 ! a2 +ab+ba+b2 . 4
"! a2 + 2ab + b2 *
ab = ba
a, b ∈ R "! * R / . . A ∈ R(2,2) # 5 R / * R[A] / R(2,2) * A !6 * R[A] / 4 "! / 7 6"!
B(n, 0) := B(n, n) := 1 n ∈ N B(n + 1, k) := B(n, k − 1) + B(n, k) 1 ≤ k < n
1 1 1 1 1
! " # $ ! % Z ! "
1 2 1 3 3 1 4 6 4 1
(a + b)n =
n
R
a, b
B(n, k)an−k bk .
k=0
& ! n = 0, 1, 2 ' ! n + 1 ( (a + b)n · (a + b) % ' ) an−k bk ! B(n, k−1)+B(n, k) = B(n+1, k) ! " !2 * ' Z + , -
0 < k < n k! · B(n, k) = n · (n − 1) · · · (n − k + 1)
& n = 0 n = 1, 2 " ! " ! ! n ≥ 2 B(n + 1, k) 1 ≤ k ≤ n % k = n. B(n + 1, n) = B(n, n) + B(n − 1) = n + 1 */ n!(n + 1) = (n + 1) · 22 & k < n !/ k!B(n + 1, k) = k!(B(n, k) + B(n, k − 1)) = (n + 1) · · · (n + 1 − (k − 1)) ! 2 0 &! !. ! /
B(p, k) = 0
R
R
p
1 ≤ k < p
p ( , k! p 1 B(p, k) 2
ρ : R x → xp
p
!
(x · y)p = xp · y p 1p = 1 (x + y)p = xp + y p B(n, k) = 0 1 ≤ k < p 2 ! α " Z/pZ(2,2)
#$ % x2 + p ·x+ q R = Z/pZ[α] $ $
& "
(a + b · α)p '
& αp
#
( #
)
R
α
αp = 3
p = 5
5
!
"
5
!
p > 2
x2 − x − 1
p
p
αp = a αp = 1 − α
α2 − α − 1 = 0 R ( (2α − 1)2 = 4(α2 − α − 1) + 5 = 5 p−1 p−1 (2α − 1)p−1 = ((2α − 1)2 ) 2 (2α − 1)p = 5 2 (2α − p−1 1) = 2p αp − 1p = 5 2 (2α − 1) '
* p−1 2 · αp = 1 + 5 2 (2α − 1) p = 5 (
2α5 = 1 α5 = 3 + 5 , " p (
5 2 · αp = 1 + 2α − 1 = 2α ( αp = a 5 - (
5 2 − 2α (
αp = 1 − α
bα ∈ R, a, b ∈ Z
p = 5
5
"
5 = β
2 βp
= 1 R
= −1 ∈ R 2·αp = 1−(2α−1) = 2
# $ % &'
β = a+
p−1 2
p−1 2
β 5 = a + 3b
!
p
!
(
p
βp = β
β p = a + b(1 − α)
R 2n =
n
B(n, i).
i=0
n
i=0
B(n, i)2 =
2n n
!"#
!" $ %& '&( )%& '&(* ++ * ,- ./ 0 " "
" , . 1 - 2 a, b R * 3
a2 + 2ab + b2 = (a + b)2
4 !" B(n, k) Z/2Z !" n = 16 B(n, k) Z/2Z 0 % 52 !" n B(n, 2) = 06 52 !" n ∈ N B(n, k) = 06 52" !" $" !" 7
Z/3Z, Z/5Z
8 9 K ,#- (Q, R, Z/pZ)* : !" 1!" x2 + ax + b = 0 ;a, b ∈ K <# " 4 R = K (2,2) 2 × 2 % 2 K 0 1 R <# 1!" 0 %= α = −b −a α $ K[α] ! β = b · α2 <# 1!" 0 ρ : K[α] x + yα → x + yβ ∈ K[α] " 7
-" * > !" 9 K > 0 ? -" > 0 N : K[α] γ → γ · ρ(γ) -$ K[α] ,#- 0 "@ 9 = 0 2!" %7 - $ K[α] 9
K = Z/pZ !" αp K[α]
! "# $%&'() * %+,-
! " # $ % & % ' & ($ ) !$ ! # *+ , . /0 1 # F7 = 22 + 1 1 /023 ($ # 4 F7 = 59649589127497217 · 574689200685129054721 5, ! /02/6 $ % . 4 ) p ap = a mod p # a ) # a p 4 ) # an = a mod n n 2 & 7 8 97: a = 24 7
/ =
6 5 ; <6 23363148097 = 131072(= 221 ) mod 3363148097 # > 5 =/=6 Rn = 19 · (10n − 1) = 111 . . . 11 5n ?6 n 3 13 2R 8 Rn @ rn 24 26 = 4 mod 6
n
n rn
n rn
3 8
4 937
10 242935453
5 9961
6 42869
11 2992649798
7 1107782
8 8230414
12 34901278238
9 96666315
13 920227682634
Rn
n
Rn Rp p
! " # R3 , . . . , R13
R16 R2 $
R2 , R19 , R23 , R317 R1031 ! % &' p < 10000
Rp & ( ) !
* + # Rn &' n < 100 ! " ' , &
- ./ & 01 ' & -& Rn n
2n 3n n !" " # 1, . . . , 31 $ %& ! '( ) '&* 31 ) " + ,"! 5099719 86146913 -
. #) R9 R10 R12 ! .
!) ) R11 11111111111 = 21649 · 513239. " /0 12 " ) 3! #) ) )! )) " 4 5 6 7 8 9 :; ) # 11 111 111111 3 < (!) 9 !) ) R13 !") 4 ) ! = 9 ) 9!) 8 ! > #) ) ! ? ' 100 ) . 4 @ ! 8 ) R13 !
. #) R15 A) ?2906161 B. -C 9 # ' Rn = 19 · (10n − 1) ) an − 1 ' ? / 0 a. a−1
Dp = 12 · (3p − 1) p ! " # D3 # D7 # D13 # D71 # D103 D541 $ % % Dp # & ' " Fp a = 5 Ep a = 11 '( ! ) # F3 # F7 # F11 # F13 # F47 # F127 # F149 # F181 # F619 # F929 # E17 # E19 # E73 # E139 # E907 ( ! * + ,
2n ± 1
13 · (4n − 1)
! -. / 333 . . . 331 zn = 31 (10n − 7) 0 # 31, 331, 3331 & ! # / + + ! a = 2 1 n )
2 8 2
9 235425188
10 2799910860
11 1684575087
12 38750750244
2 + # z9 , z10 , z11 z12 & z5 z8 # + + 0 3 + + + " z2 z8 " 1
! 456 7
a = 3 5 z2 , z3 , z4 + ' + + 454
t > 1 8 z9 = 333333331 + # t 9 z16k+9 (k ∈ N 7 333 . . . 31 8 u > 1 z12 + # u z18k+12 (k ∈ N) '3 # zn
45.
: 0 " z9 z12 ; < t u ! " n = 1, 2, 3, . . . ' = n Sn = n4 + (n + 1)4 ) 2Sn 3Sn / Sn : n # " Sn Sn #
n4 + (n + 1)4 n ∈ N 17|Sn ! 2Sn = 217 mod Sn "# $ % % & ' ( ' a, b ∈ N ggT(a, b) = 1
" a + b · n n ∈ N ) *+ ( 1805 1859 ' )" (, % - .$ % ' / ) ( 0 % - 1" 2 2 ' ( ) ' *3 "
4 0
/ 2 $ 5# ! ( ) 4 0 (6 ! % - * $ # , ', 5 7
(" f (x) =
n
ai · X i )8 59
i=0
+ , k ∈ N n ≥ k f (n) " ) $ ) n4 +(n+1)4 %, " n # $ : 5 0 ) Sn 1 0 ) n2 + 1 , " 1" 1 % # ; # ' * - 1"! an = a mod n 2n = 2 mod n n
! "
2n = 2 mod n # n $ # % $ % & ' 2n = 2 mod n
n ( $ )*
+ ,
, # % #, - + .! / " 0 ) 1 + 2 3 #, n = 1, . . . , 99
2n mod n =?
n=1
100
99 2 !"# $ % & " '% ( % & " ' ) * " + , -% . & , 2n = 2 mod n " n / "
) 0 1 2 %" 3 " ' 4/ + 5 & , +' " " & " , & +' 6
, "" " & 7& -" 3 & " "
"# + 2 8 39 : 39 & " 1 4"$ 5 ;' *" < & 3 < 1 =" 2n = x mod n ) % " ) % 1 >
2n
Z/nZ
! " #$
n∈N
! " #$
n%
$ $#
n
2n + 1
n ∈ N n
2n + 1
$ & '()* $ #$ $)
$ +# , $ -) -))$ ./ $ &
n
)% $
2n = 13 mod n% 2n = 17 mod n% 2n = 67 mod n
0 * .*% $ $ "#
n>1
!
2n = 1 mod n
φ12#&)
/!
ggT(2a − 1, 2b − 1) = 2ggT(a,b) − 1
" $ $
n > 1 2n = 1 mod n d = ggT(φ(n), n) 2d = 1 mod n 1 < d ≤ φ(n) < n 2d = 1 mod d !
" # $!% & ! ! ! '() * *& r > 1 & n +
2n = r mod n , r n < L $L - 2n = r mod n $r ≤ n " * '(. -
/ $
2n 0 n 3 1
1 ! 2 3 1 0 4 *& / 5 * ! *&* 4 5 & !1 n = 1 $6
# 5 ! & 5 7 3 8 9 n $ ! * 24700063497 = 3 mod 4700063497 : , * 1 $; & ,* < 19 · 47 · 5263229 " ! % * 5 5 * 4 #
= $ ! > ? 2n−2 = 1 mod n * ?# @A $B(C@ 'DB<'D' * ! *
-
! * !
n 2n = 4 mod n
'(D n := 2m − 1 ! m = 4700063497 $ 2m = 3 mod m * '() 0 n 2n = 4 mod n 4! = $;! " 22 − 3 = 1 mod (2m − 1)% 0 n 1 E = ! * ! n * 2n = 4 mod n " n = 4208 ?#
!& n * < : B(C) ! ! ?# m
n 1000000 20737 93527 228727 373457 540857 2n−k = 1 mod n !
"#$! %"&%"! ' ( ) * + 7 , - . -/0 1 23 / 2n = 4 mod n 7 4 5 1 0 0 6 / n 2n = 4 mod n 0 3 7 6 0 . / -0 /0 5 8 90 8 * / + : 15 n > 6
p / 2n −1 2m −1 0 m < n * p 0 / / 2n − 1 p 1 p = 2nk + 1 ≥ 2n − 3 > n ggT(p, n) = 1, k ∈ N * n > 8 0) 2n = 4 mod n p = 2(n − 2)k + 1 / / 4(2n−2 − 1). *; - np − 2 = (n − 2)(2nk + 1) 2np−2 − 1 = 0 mod (2n−2 − 1) 2np−2 − 1 = 0 mod np 9 < ' 9 ; - + = 5 + k / 5 + n 2n = 2k mod n. * 0 * 5 a ≥ 2 2 . 90 5 0 / .
' =0 n 2n = 8 mod n 2n = 16 mod n 2n = 32 mod n 2n = 64 mod n 6 ; 19147 / . - 23 ' 2n = 5 mod n > 0 . ? ( 3 5 = 5 k ' 2n = k mod n 23 / / 23 ( ) 5 0 p @ n / p 2n = 2k mod n 5 k
k = 1, 2, 3 k
2n = 2 mod n n !" # $ " % & ' ( 2 99 ) * & + , - % ./ + 0
• ! "
# • $## % & ! #
' n #
2n = 2 mod n ! ( ) * # +
,#
+#
# -
. / /
% 0 +# 1 # 2 +# 2n (" + # % n > 99 , # 2 % n = 100, 102, 104, 105, . . . . $#3 4 $5# * , ) . / # 6 +# 2 + 2 $#3" 78. +#
1000 # 10000 # 1000 )#" # 9 ) ! # : # #3 / + ! / 1 2 ; ' " 5 :# 11111 . . . 1 # <# " (an − 1) 4n − 1 = (2n − 1) · (2n + 1) (a − 1) =
,% a = 4. 4" ' ,2 . 1111111 . . . 111 $ 4" 2 ( 5 > 1, 5, 21, 85 341, 1365, 5461 ( 21 #3 "
,5461 =?. 4 9
:% 6 n > 2 v(n) =
(4n − 1) 3
2
#9 $
(2n − 1) · (2n + 1) > v(n) = ( 3 0 :# 3 n ' 3 0 ! 6 2n − 1 2n + 1 : % n > 2> > > 1 ( 3 3 ,: > :# # > 29.
p
> 3
2v(p) = 2 mod v(p)
v(p)
! v(p) v(5) = 13 · (45 − 1) = 341 = 11 · 31 ! " # $ 2341 = (231 )11 = 231 = (210 )3 · 2 = 2 mod 11 2341 = (211 )31 = 211 = 2 mod 31# ! % & # 31 11 # '( ) ! " #* + , n = 341 ! - 2n = 2 mod n# . ( % 2p = 2 mod p# p = 2 mod 2p#
2p
2p − 1 = 1 mod 2p
p = 3
2p + 1 = 1 mod 2p. 3
$ v(p) = 1 mod 2p# 3 · v(p) = 22p − 1
22p = 1 mod v(p) . v(p) = 1 + 2pk(k ∈ N) 2v(p) = 2 · (22p )k = 2 · 1k = 2 mod v(p) # !/ 4p − 1 p > 3 " v(p) = " # 2 3
0 1# '&20 * - - n 2n = 2 mod n 3 4 " # 5 v(p) ) p = 7, 11, 13. '%! 6 " ( 3 7 %486*# & "
. & - 9 3 2n = 2 mod n# n 2n = 2 mod n 2n−1 = 1 mod n ) 2:& #
341 ! " # ; & " # 2
. <1#
561 645 n ! " # $ 341 561 645 1000 10000 22 % 1229 100000 78 1000000 245
N 103 104 105 106 107 108 109 1010
& ' ≤ N 3 22 78 245 750 2057 5597 14885
& ≤ N 167 1228 9591 78497 664578 5761454 50847533 455052510
( 4369 4371 %) ' '&! 25 · 109 1105 # 1000 " ! '
*++ , ! ! ! ! - 100000 . # # ! / 0 1 2 34+ , $ 5 % 6 7 8 161038 , ) ! ! ! .! & 8 & 161038 % & 8 2161038 = 2 mod 161038 343 %9 2m − 2 : 4 %343 44*'444 ( 2n−1 = 1 mod n ;
1951 161038 ! "# $ % $ & " ' () *+,+ -./-.+ 0 1 2 · 178481 · 154565233 2 · 1087 · 164511353 2 % 1 223 = 1 mod 178481 21119 = 1 mod 154565233 2543 = 1 mod 1087 241 = 1 mod 164511353 3 & 4 4 5 & 2n − 26 " ! n = 2, . . . , 21, . . . 7 & "# 7 3 8 9 2465794 − 2 : $ 2 6 2n = 2 mod n 100000 ! 100000"#
$ n > 2 ! n % # $ 2n = 2 mod n n % # & n "
%# $ n # & n #
' 100000(
341 1905 4033 7957 11305 15709 23001 31417 39865 49981 62745 74665 87249
100000 561 645 1105 1387 2047 2465 2701 2821 4369 4371 4681 5461 8321 8481 8911 10261 12801 13741 13747 13981 15841 16705 18705 18721 23377 25761 29341 30121 31609 31621 33153 34945 41041 41665 42799 46657 52633 55245 57421 60701 63973 65077 65281 68101 75361 80581 83333 83665 88357 88561 90751 91001
1729 3277 6601 10585 14491 19951 30889 35333 49141 60787 72885 85489 93961
! " #"$ % n&' ( ) * ! + #, -. , ! 200000000 +& '
lim
x→∞
/ < x = 0. < x
" 0
! " # $ 2n = 2 mod n2 n2 % & '
n = 1093 ( 1093 &) * +
, - . / 2p − 2 p = 1093 0 . *
! 1 &22 223 4 5 6 7
6000000000 p 2p = 2 mod p2 p = 3511 ! 8
1 ' ! / / 2 + 34 ! # " 5 & ' ! p 2p = 2 mod p2 + 6 "
7 -8.' 9" :' :8;.<' ) = ( 1093 + ' ! "> ? > > ! > ) $ 6 > + 6 " @ ! ? " 0 7 p > 2 ' "$ A xp + y p = z p
! ,5 # ! ,5 B& ' p ( ! x · y · z ' 0 2p = 2 mod p2 + # + A % )C + ? " )6 +& ? D ( E ! / ) ' #"$ & ;6 2n −1+ ? n ( ' 2n −1 ( + ? ) F )6 0 6 2p −1' p ' % )6 Mp = 2p − 1+ ) 6 (5 / #M2 , M3 , M5 & #M11 = 23 · 89) + D 0
a
2p = 1 mod (2p − 1) p p 2p − 2
(2p )
(2p −2) p
2p −1
2
= 1 mod (2p − 1) = 2 mod (2p − 1)
Mp ! n
2n − 1 ! " # $ % % # & ' ( #
!) *+, *. & - " / & 0&" 1 " "" # , 2(34 5 2 0&" ) , ) 2n − 1 6 7", 8 ) ,
$ ",
" 9 #
1) 2p − 1 : & ; #
1) & " # ,
5 , & p < #
1 ) Mq
p2
< % Mq
2p = 2 mod p2 % 0&" 2 + &8 = >
' % * p Mq p2 2p−1 − 1- & * p2 Mq - 0 * ? @ ?- " " 8 ,
p p am − 1 p2 ap−1 − 1
p2 < % am − 1
* r := p (a) m p − 1- n
A ' &8 " . Fn = 22 + 1 B . > n + 1 < 2n &8 n > 1
a " # $ % n & 2n n ' 2 ( 341 ) * ' & a > 2 % 3341 = 168 mod 341
341 ! " n 3n = 3 mod n 36 = 3 mod 6 #$ #$ % & n 3 ' ' ( 391 = 3 mod 91 ) * +, &-* . " n 3n = 3 mod n / 0 ! 3 1 3 2 & n ! -3& 3n−1 = 1 mod n ) 4 $' ) * #$ 5 0 ! a
) * + $ 6 a $ " & & 1 n
a # $ " n / 05 ! a an−1 = 1 mod n 6 ' 0 7 0 ! 2 ! 0 341 0 ! 2 ' ! 3 %# ' ( 8' ' ! 0 0 ! 5 ) 9 # 6
' 2 & ( : ( 6 n 0 ! 2 n 0 ! 3 5 - ( n ! a > 2 6 - # ) - 2 : #; ) #$ %# ' #$ 0 ! < 561 2561 = 2 mod 561 ' ! '- & !
#$ ( a561 = (a187 )3 = a187 = a · (a93 )2 = a mod 3 a561 = a mod 11 a561 = a mod 17. 6 ' ' #$ $ a ( a561 = a mod 561 6' #$ 561 # ! a a560 = 1 mod 561 % 561 0 #$ 7 ! ) * +< . " n / = 5" #$ n # ! a ( an−1 = 1 mod n. > 4 = 5" ' 100000(
a
561 15841
1105 29341
1729 41041
2465 46657
2821 52633
6601 62745
8911 63973
10585 75361
(6m + 1) · (12m + 1) · (18m + 1)! " m = 5 · 7 · 11 · 13 · . . . · 397 · 882603 · 10185
" 1057 # $ % " & '
( ) * + ,- .$/$)! ) " ( ) '
" 01 ) $2 a ! "# a $% & vp = (a2p − 1) : (a2 − 1) ! p ' a(a2 − 1) %( ) *+ ! ( a = 2 (, + - . M11 "# 2(3, 5, 7) / 0 p = 6m+ 1 q = 12m+ 1 r = 18m+ 1 " 1 p·q ·r 2 ! . 3
( !/ 4 ) / 5 4 101101 . *
, 6 7 (
N ! " p p − 1 ' N − 1 N $6 3 ! ! ) 6 3 # , !, 8 66 + 1 , 8 nn + 1 $ ( . "
9,
- 3 ) 456 1 ) ) " $ ! )
) 1057
!
3 ) ) ) 3710 " ! 7$! 8 " 3 ) ') % 8 ! 3$ 9$ :4 6! ; ; ;$ ($ < =>3 # ? 7 ) 1989/90 >
3
' " $ 3$ 9$ :: 5! 46446$ 1012 1000 3 3 ' ! 2102 3 4! 3156 5! 1713 6! 260 7! 7 8 ) 3
8 ' $
n b n ! " ! # n ! # $! % ! &' ( n ) " ! " ! ! ( * n + " ! n b0 # bn−1 = 1 mod n ' , 0 ! ! # - n ! # ' . ! /0 n + " ! # n ! 50 % 1 ! n ! 1 n 2 0 n = 341 = 11 · 31 # ! - b = 3 - . b ! 3 ! % 31 % 11 4 ! 1 340 30 + 10 = 40 3 ! % 11 31 # 341 + )
2 - 340−40 = 150 2 ' . 0 5
" + 300 ) 6 + 5 / 150 7 8 4 9 : ' ( 0 3 - 341 + )
2 ; b - 341 )
2 3b + - 341 )
2 : ! b 3b 4 3 341 + / :
< = % ! !
1 5 # %
# = #% ! + =! -
# # n !- 2 ! " ! / ! !+ - (!" ! n n b $ # = & 12 = ! !+ - (!" ! n k n b1 , b2 , . . . , bk 0 bn−1 = 1 mod n (i = 1, . . . , k) 1! i n−1 1 ;
+ b = 1 mod n - k n b1 , . . . , bk
i 2k ! !+ - n (!" ! 1! 21k #
n ! !+ % 1 − 21k ) " ! 4 ! / # ! ! %+ + - 50 % 1 ! !
n n = pq d = ggT(p−1, q−1) b n bd = 1 mod n n b pq − 1 = (pq − p) + (p − 1) ! "# bn−1 = 1 mod n bd = 1 mod n $ bp−1 = 1 mod q bq−1 = 1 mod p % d = x(p − 1) + y(q − 1) x, y; bd = 1 mod p & '
q ( ) * n = 91 ' b90 = 1 mod 91 b6 = 1 mod 91. + , b6 = 1 mod 7 b6 = 1 mod 13 ! -. b6 = 1 mod 7 b6 = 1 mod 13 / 62 = 36 -. b6 = 1 mod 91 ! / 72 91 0 91 ! ! !% 1 ' 341 ' * * b < 341 (ggT(b, 341) = 1 "# & ! '! -. b10 = 1 mod 341 2 2 11 3 mod 31 3 p q = 2p + 1 4",$ 5 b ' pq / & 6 2 & ! ! d2 ' n = pq + &
-. bd = 1 mod pq ! 7 bd = 1 mod p, bd = 1 mod q ! 8 d -. ! bd = 1 mod pq d2 -. /% 9 ' 0 n = pq ' 50 % n < n
! " #
! " # $ % & ' ( ) ' * n ! + b ' ggT(b, n) = 1' n ,- bn−1 − 1' n n = 2m + 1' n - "- b2m − 1 = (bm − 1)(bm + 1)' () n " - n - & . $ ) n - - / 2' n %' 0 # 1 n ) 2 - &- - bm = 1 - bm = −1 mod n. 1 n " - ! - ,- n ,- bm − 1 ,- bm + 1 ' 1 ) n + b ) bm - 1 bm = −1 mod n' + 2 # + b = 2, n = 341 = 11 · 31' ( 341 " -2 + 2 # 2340 = 1 mod 341' 2170 = 1 mod 341 (m = 170) - - ) 341 " ' - 285 = ±1 mod 341 ' ) 285 = 32 mod 341' 341 ' )
11 ,- 285 + 1 31 ,- 285 − 1 $ - 2170 = 1 mod 341%' # 1 n − 1 = 2a · t t a ≥ 1' b n & $' +' 2% #
(∗)
a−1 t
bn−1 − 1 = (bt − 1) · (bt + 1) · . . . · (b2
+ 1).
n " ) n ,- - & i . '' bt = 1 - b2 ·t = −1 mod n & i 0 a − 1' 3 - , 4 &- 5 - 67' * n 8 " -2 + $--% b n & - & . ,- $9% ' :/ 4 " -2 + b " -2 + b $ -/ ;%' ( - - 2 + 2 " -2 - " -2 $ + 2% ' & #
b = 2 b = . . .!
n = 645 n = 2047 2
2 2047 2! " 2047 = 23 · 89
22046 − 1 = 1023
(2
− 1)(2
1023
+ 1) = (211 − 1) · (211 + 1) = 2047 · 2049 = 0 mod 2047.
# $ % & ' ( $ P2 (x) S2 (x) C(x) 2 %! 2 %! ) *+ < x
,
x 103 104 105 106 107 108 109 1010 25 · 109
P2 (x) 3 22 78 245 750 2057 5597 14884 21853
S2 (x) 0 5 16 46 162 488 1282 3291 4842
C(x) 1 7 16 43 105 255 646 1547 2163
- * ! . . ! - + * / 0 %
% *
+ * .
1 23 4 5 1 21634 2 73 4
)!+ 278 4
15841
+
2 ) 9+ ! 1373653 2 (3, 5)
561 1105 1729 2465 2821 6601 8911 10585 15841 spsp(b) ! ! " b # $ % &' ! ( ≤ 7# ) $ % # * < 15841 ! ! " + +,
# " - $ 65 spsp(8) spsp(18) spsp(14) ) 14 = 8 · 18 mod 65 # ") n = 1069 · 2137 spsp(2) spsp(7) spsp(14)
25 · 109 ! " #$ % &'( ''#) '*+ , , - 2 3 5 . , % / . !(0
25326001 161304001 960946321 1157839381 3215031751 3697278427 5764643587 6770862367 14386156093 15579919981 18459366157 19887974881 21276028621
&.#
&#
& #
/
2251 · 11251 7333 · 21997 11717 · 82013 24061 · 48121 151 · 751 · 28351 30403 · 121609 37963 · 151849 41143 · 164569 397 · 4357 · 8317 88261 · 176521 67933 · 271729 81421 · 244261 103141 · 206281
25 · 109 x 2 x ! " 3 x ! # 5 x ! $ x % & ' ( x x )
(k + 1) · (rk + 1) r k + 1 ! " " " # 2 " $% &
' & ( n psp(2) 2n − 1 spsp(2) )*& n−1 2n−1 − 1 = 0 mod n 2n = 1 mod 2n − 1 22 −1 = 1 mod 2n − 1 + " ," " -' ' + " )' "' + . )'%/ 0%-
& spsp(2) 1 z8 =
108 −7 3
= 33333331
25 · 109
2, 3, 5 7 ! " # $
spsp(11) % n &' (() * + # ' , -' n . #/ 100 $ n ' & %+ 100 n " &' + n $ &'+ 0 # # % 1 # #
1 # ' , .2 3 ) ' " 3 " " % " n 3 $ n 3 3 " n ) "" ' $
" N N − 1 = 2t · d d
" a ad = 1 mod N s ad·2 = −1 mod N s = 0, 1, . . . , t − 1 "" n 2, 3, 5, . . . ( 4"3 3 53 n " $ n " n " 2 20 3 5 20 " n " "" " 3 2, 3, 5 7
" 3 25 · 109 /
2 3 * &2' 4 5 5 # 35 # n + 0 6 n b '- n 1 - ,
n n 25% b 0 < b < n
!"#$% &%' k n
0 n !
n " 1 − ( 14 )k # !
n " #$ k % &' "
( 2400 − l! l = 1, 3, 5, . . . , 591! % 2400 − 593 100 " ) * $ % + " 4−100 < 10−60 # % )% ,%
-" ! $ ! .' ! ( " . + "(! & ( # /' 01 10−60 % ' % ' '
2
& n (
) * + ) ! ,- . +) / ). # b < 2 · (ln n)2 n + ' ! . n < 2! 6 · 1043 '
b < 20000 3 ! n " spsp(b) % 45 " b " %6 7 8 '" ! #$ ' 2 · (ln n)2 2( #$ . b < n 2(&' (
% 9 ' 9 ' ! 4/6 ' + ' 1 )0 $ " ! . 4 & ! - # 6 %
n n
# b < n n
% : n # p > q > 2%
# g p n . b b = g mod p b = 1 mod q % + & 0 %
b n
b = 1 mod n n p q ! " n " # $ %& ' b ( & # $ n ) n = 2c · u + 1 u c > 0
(∗)
c−1
bn − 1 = (bu − 1)(bu + 1)(b2u + 1) · · · (b2
u + 1).
i * q b − 1 bu − 1 (b2 )u + 1 # u = 1, 2, . . . , c − 1 1 + 1 = 2 = 0 mod q (q > 2) + bu − 1 = gu − 1 = 0 mod p , g p ( p − 1 ( u - p − 1 p gu − 1 . ) / 0 spsp(b) / ) 1 )2 n = pa (a > 1) n " ! 3 4( & b n " & b ($ ( g < n gj = 1 mod p2 # j < (p − 1)p ! 2 g p2 5 5 "" Z/p2 Z &" 2 )# b = g 2 gn−1 = 1 mod n $ gn−1 = 1 mod p2 p(p − 1) n − 1 = pa − 1 = (pa−1 + pa−2 + . . . + p + 1)(p − 1) 6 2
7 $ / # # $ 3 4 3 4(2 n ( ! n 8 > 1 n 3 4 %3 4( 9 ' ! n 9 n 3 # p n ( p − 1 n − 1 1 & n p > q & ) 5: g /
# g % 9 ; ' p x 1 p − 1 x2 = g mod p / # & $ # +2 n = 91 25%
11 10761055201 6
! " # $ spsp(2)
%
# & 561 '
() *+
2p − 1 p
! "# $ %&&'( )
! M32582657 = 232582657 − 1 $* *
+ ,
-./+( ./+ ! + # 0 * )
./+ + . 1 1)
M32582657 "# )
1 # )
!
2 Mq q = 39051 · 26001 − 1 q "#! $ 33'( )
+ 2. 2 $4 56 + 6 ( 1 7 8 ! ./+ 1 * 1 9 ) , : 8 ; ; Z[φ] < n
n
r(n) := φ2 + (1 − φ)2
$= (
1 <
r(1) = φ2 + (1 − φ)2 = φ2+1 − 2φ + φ2 = 2(φ2 − φ − 1) + 3 = 3. = m
m
m+1
(φ2 + (1 − φ)2 )2 = φ2
m
m+1
+ 2(φ(1 − φ))2 + (1 − φ)2
= r(m + 1) + 2.
r(m + 1) = r(m)2 − 2
7 < 3 7 47 2207 4870847 23725150497407
r(m) r(m) = 0 mod p r(m + 1) = −2 mod p r(m + 2) = 2 mod p n φ2 n
n+1
φ2 · r(n) = φ2
n
n+1
+ (−1)2 = φ2
!"
+1
# $ % & ' (
p
r(p − 1)
M
4n + 3
M = 2p − 1
% M ) %
M = 2p − 1 = 24n+3 − 1 = 8 · 16n − 1 = 8 − 1 mod 10 = 7 mod 10 5 M & *
+ $ , R = (Z/M Z)[φ] - , . /0 φM = (1 − φ)
φM +1 = φ(1 − φ) = −1 mod M. . p − 1 1 n ! $ p−1
φ2
· r(p − 1) = φM +1 + 1
. 0 R φ R % r(p − 1) M $ 2 2& . + 3 $ $ '
!
q
5
5 2n+1
r(n)
q q −1
q
q+1
2n+2
+ $ ! Z[φ] 5 4
, q $ Z/qZ (5 a
x2 − x − 1 = 0 $ 6 , ρ : Z[φ] → Z/qZ ρ(φ) = a. - Z/qZ r(n) q $ n
n+1
0 = a2 ρ(r(n)) = a2
n+1
+ 1 ⇐⇒ a2
= −1
7 ' a Z/qZ 2n+2 q − 1 8 ' 2n+2
Z/qZ 0 1
2 × 2 Z/qZ φ = 1 1 ! Z/qZ[φ] " φ # $ % φ # 2n+2 & φq = 1 − φ ' ( )* φ2(q+1) = 1 + 2 · (q + 1) , - % 2n+2 q − 1 , - % 2n+1 2 , . / 0 1 r(1) = 3 r(2) = 7 r(3) = 47 r(4) = 2207 r(5) = 4870847 = 1087·4481 1374 x2 −x−1 = 0 Z/4481Z 1374 4481 27 = 25+2 4480 = 35 · 128 1087 10n ± 3 1088 ! " 2 1088 = 17 · 64 = 17 · 26
2 3 (r(n)|n ∈ N) 4 5 - - 6 - ! (
M = 2p − 1
r(p − 1)
M
2 3 (r(n)|n ∈ N) 5 - 3 k · 2n+2 + 1 l · 2n+1 − 1 - + q 5 - % M q 5 - % r(p − 1) q % 3 k · 2p+1 + 1 q ≤ M + q % 3 l · 2p − 1 l = 1 q = M = 2p − 1 5 2 2 / 3 r(n) / % φk +(1−φ)k "70 ,- 8
9 % + & : ;<)= + . 3 2n −1 5 > r(p − 1) M = 2p − 1 &- 9 2127 − 1 5 % ?0 9 ( & % 0 &-1 #$% & ' (" ))# r(6)
!" # $ " M = 2127 −1 " % $ " & √ ≥ M ' ( p " 5 ) !" * p a +, - !" Z/pZ . & ap + (1 − a)p = 1 Z/pZ / 0 0
p−1 2 p−1 2
a
a
p−1 2
p−1 2
+ (1 − a)
+ (1 − a)
p−1 2
p−1 2
= 0 Z/pZ
= ±2 n
n
# 1, !" 2 & s(n) = (3 + 5φ)2 + (8 − 5φ)2 !" - 2 3 !" 2 4 5 ( α ( " = ±1 ∈ Z[φ] β α 16 ." " β = ρ(α) ρ * " " ρ : Z[φ] x + yΦ → n n x+y(1−φ) ∈ Z[φ] 7 8 s(n) = α2 +β 2 - 3 s(n)4 9 : $ " ; !" +!< " 2 p = 4n + 3 M = 2p − 1 " !" ( !" ( " # 2 r(1) = 4 3 !" 3 " !" √ : - 1 !" Z[ 3] # 8 √ m √ m r(m) := (2 + 3) + (2 − 3) ( 6 = ( " " !" >? !"" # 1 !" !" 2 @2 /A B /5 C # 11 @''AC !"
#" +! 1 !" 7 2 (r(n)|n ∈ N) p M = 2p − 1 " !" 7 " r(1) = 4 21 !" r(n) mod M 0 r(p − 1) = 0 M "
' # 21 !" 21 !" ." # " !"
!
"
• • Mp = 2p − 1 p ! " # # $% & • ' Mp p ( )! "% )" % & )" % % "% % $! )* • * a ≥ 2 * $ p Φp (a) = 1 + a + · · · + ap−1 + , *" - . / a . ! 0 1 %"% / $ 11 10 '1 2 1093 3 '1 , $ 3 % 4 5 $6 4 .
/ $ % 5 * % % % #) ' 7 )% $ / B = {0, 1, 2, . . . , 40} = Z/41Z - #
V : B n → n7 ∈ B $, + $ B = Z/41Z + * $ 8 9% 23
E : B n → n23 ∈ B
7 · 23 = 1 mod 40
E(V (n)) = V (E(n)) n ∈ Z/41Z ! " "#$ m = 15 % & ' ( ϕ(15) = ϕ(3) · ϕ(5) = 2 · 4 = 8 ) 15 * ≤ 15 % $ ! +
V : Z/15Z x → x3 ∈ Z/15Z $, $ %"½ (
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 1 8 12 4 5 6 7 8 9 10 11 3 7 14 - * Z/15Z + % . ! / + " ! ) " Z/12Z ϕ(12) = 4 ggT(4, 3) = 1 3 4 . %" +
V : Z/12Z x → x3 ∈ Z/12Z (
0 1 2 3 4 5 6 7 8 9 10 11 0 1 8 3 4 5 0 7 8 9 4 11
0 + ! 1 $ . + 0 * % * 0 ! $ $ * 62 )" 3 " 4# +5 $ $!
$! 6# ! *,! $ )$ ! ! 7 7! ! !
m, n 0 ≤ x < m · n xr = x mod (m · n) xr = x mod m xr = x mod n 8 xr = x mod (m · n) " k ∈ Z xr = x + k · (m · n) ) xr = x mod m xr = x mod n
+ xr = x mod m xr = x mod n % ! ! 7 xr = x mod (m · n) 2 - ½
p, q v (p − 1) · (q − 1) = ϕ(p · q) V : Z/(p · q)Z x → xv ∈ Z/(p · q)Z
e Z/ϕ(p · q)Z v · e = 1 mod ϕ(p · q) E : Z/(p · q)Z y → y e ∈ Z/(p · q)Z
v ·e = 1 mod ϕ(p·q) k ∈ Z v ·e = 1+k ·ϕ(p·q) x ∈ Z/(p · q)Z
E(V (x)) = x1+k·ϕ(p·q) = x1+k·(p−1)·(q−1) = x mod p E(V (x)) = x mod q x ∈ Z/(p · q)Z
! " E(V (x)) = x ! 2
# $ % $ & ' ' ( ) * ! + , " - *' ! (. " " / " " ' 0 m = p · q " "1 (" 0 mod m ! $ " (" "! 2 ( " % 1 $ "3 0"$ m " ' " ' " p " q $ 4 ! * ( * "" 0"$ ) 0 m = p · q 0! $ $ ' $ " ϕ(p · q) = (p − 1) · (q − 1) 5 " ϕ(p · q) ! 6 ' $ 7 " " 7 8" 9 1 0 "! : 6 e ≤ (p − 1) · (q − 1) " v · e = 1 mod (p − 1) · (q − 1) ( " 6 m' 0"$ 0 " ;1 v $ ( < ( ' ) %
V : Z/mZ x → xv ∈ Z/mZ !5 3 6 m " ;1 v ' 1 $ "3 " e $3 "
(p − 1)(q − 1) p q !" # $ %$ (nB , vB )
&'( ) $ *+ nB
vB , -% vB (
ϕ(nB ) . -% eB " % , ( $ , ( , *+ . / ! 0 . $ .-% vB
nB 0 ! 1 eB / 2 ! $ / 3 4 / ! 5 ( ( 3 / 6 $ '- 0% 78 &9 2 / $ 0 ) 4 ! : ;9 X ≥ nA ! 0* (< . 0 ( 5 (= Y = VB (EA (X)) 1 . ( EA , " ( $ 0 VB 0 . (
VA $ / VA (EB (Y )) . VA (EB (Y )) = VA (EB (VB (EA (X)))) = X 5 0 % $ '- X ! $ / EA : . , , ( > ( / ( * / (=
n = 323 v = 17 k V k = Id ! " #
$ % # " & '&()) * + " , % p · q = 257 · 263 = 67591 ' ,- & " (67591, 7) . '&()) * + / < 256 & / " ' 65 / 66 0 , " 1 + 2 # '+ " . + * 256&3 + &
4'5 * 65 · 256 + 66 = 16706 6 * " " & 7
% "
! "#$%&' && ( )
* + ( *
) , . /
( 67591 + ) 0 V 2 1 ''2 34 5 ) +
( / 5 !) ''6 703 " * +0 '$8 1 n ∈ Z a ∈ Z/nZ [a] = {an |n ∈ N} ! ( a
a0 = 1 5 9 ! ( [a] ! ! Z/12Z !
1 " 1 ∈ [a] a Z/nZ 1 a : 9 ! [a] n (a) 34 5 n (a) ϕ(n)
34 5 )) ( Z/6Z, Z/10Z, Z/14Z, . . . ; . < 34 1 p > 2 )) ( Z/(3 · p)Z ; * 3 4 p, q > 2 ( )) ( Z/(p · q)Z ; ! m (vB )m = 1 mod φ(n) " # ! VB $
VB (X) %& '$
VB (m − 1) ( (X vB )m = X mod n m = ) * m !
vB 1 mod (p−1)·(q −1)) + '" ,- ' ./ m 0 $ $
1 0 2 p q ! m # $ " 3 ( 0 4 % $ 5 6 3 & ! 2 7 '
4 " 4 + 8 " 9 :;
3 "
!| "#$%& ' ( ) * + ,- , (+ ( * * * . * / 0 ,- ( + , 1 2 -+ %
3 2 4 !5 * .6,0 *7 6 7 8 2 , + * , 3 + * 0 09: 8 09: ; + <- ( *7 * <- = ,+9 < < 8
!" # $%&'
! "#$
% % $ # & '(() ! # '(*( + , #
- '( ./ !
& 0 1 !# ! , 2 #$ " # '('( ! #3 "#$$ % "&&& '(* !4 5#
'
! 2 $6 7 8/9 -6 '(** 5 (
) '((' 5 *
+ " $ $ '() .# 7# '
'((% :# 7 5;;< =# >< . 5# , * + - ) '() ? @ , ; 8/< ? '(() @# 5# . (
& ! '(( : @ < / 0 ! '((0 !# : $ 1 2 2 3 ,# '(* @ 2$ / 0 ' , ; '(*(
! " #$% & ' ( ) ! !
*+ , -( ! + . ! + ( .///0 ! "# 1 " ,$ .$ $ / $% %
+2*
1 ( .3 $
" & " "' ( "
4 $5 4 '56 ""
1
37 $ 4 8 ! ! "*
)
* *+ # + , + & !
1 / $ 9 :(
8 $ / '! ; 1 * 8 $ / 1
" + -, + & '! ;
1 & -$ +& 1 ++
,
. # 70
$0 $ / +
, 3
$
!
"# $% &
% % '" ) )** % +,
!"! (
-% (
# $% $ & ' (% -%
.
' % # (
R(2,2) 2 × 2 R∗ R \ {0} R[φ]R φ Z[φ] det(a, b) ggT x! " # I x∈I $ %
) ) * + , ) -# , ) # &% %# , ) ./
N & ' $ R $ R2 ( ) Z Z[i] ' Z2 ( *
0 0 &% 1% / 0% / 0%2 (
%&% / 0%&% 3# .
ϕ#*," $$ |M a| - M .. p =
4 4 . 3&% * 4 ( 4&% / 4&#% ,.
+
!"# $ % &%
5 5% * 5% ( 5&% 6 ( 5 % 5 % /. / 5 , 5 ,( *,
! " ! ! !# $ %!
$ %!
&! % '( ) %* + $ " "! ,- "!. /! " $ ! "0,1 22 " 3 4. ! 5 " )) $ !% !+ 6 ( (!!! 7!8 (!% )) (!) ! (!) ! ( 9! 6! ( ) $ 3 2 0 0% !'(!! 2
0 ! ) $ 0 9 inda (b) : )) 0 9 + % 6 ;! ! 0 + < + 0 < + $ 0+ + %! $ 0 ) 7 7! % 7!% 4 ) !+ 2 ( ) 3 ) 2 #=!%> ! ! # ! 6 $ ! $$ ) !) $ ! ? ?! #! @ 1 /! ?! ! ? ? ',! ? A % $ ? $ 2 ? ! + 1 ! ?% !%!
! ! " # $% & ' $ $ " ( ! ) ! *+ , $ ! !& ! !, - . - / Z[φ] -0 , -
1 1 ) 1 2 1 3 4 4 4 & 4 4) - 4)0 5 Z/pZ 4 $ 3 40 4 3&. $ 4 4. , $ 0 ! $ 6, *2 4. , . 3 7, 4. ,.& 4. 8 / 3 ! " 4 . , $ . 9 2 . 9 3 . 9 a 4 . , : % 0 % , ; $ :
! " # $ $ % " " "" &' # ( ( $ ) ( # (*+ (*+ *, ( %- -% ,. /%% # 0 0 0 " #" 1 1 2.
1 2 " $ # ) ) 34 " ) % " ). " ).*5 " ) 6 % # ) ) 7 7* ( %- 5 5
8 " -! . 5 - # 5 - 5 - " 5%**( - "