This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
UI U1<~,>Ul<6>U1<=>>, ~+P+z+6+~=24, P->l, z->1, 6->I, ~->1 is the scheme of M-curve of 9-th degree then ~ 0 mod 4 and p,~,6,~ are odd. Conjecture 5. If <Jk~UI
Con,jecture 4. I f <JU~UI
I.
~zl
is
Viro O.Ya. Gluing of plane real algebraic curves and constructions of curves of degrees 6 and 7. -Lect. Notes in Math., 1984, N 1080, pp. 187-200. 2. Viro O.Ya. Gluing of algebraic hypersurfaces, smoothing o f s i n g u l a r i t i e s and constructions of curves. - Proceedings o f I~ningrad I n t . Topological Conf., 1983, pp. 149-197 (in Russian).
306
3. Korchs~in A.B. Isotopy classification of plane seventh degree curves with the only singular point Z15. - Iect.Notes in Math., 1988, v. 1346, pp. 407-426. 4. Korchs~in A.B. M-curves of the 9-th degree: realizability of 167 types. - P a p e r placed in VINITI 10.11.87, N7884-B87 (in Russian). 5. Polotovskii G.M. To the problem of nonsingular algebraic cureve ovals arrangement topology classification in projective plane. - Methods of quA]itative theory of diff. equations, Gorky State Univ., 1975, pp. 101-128 (in Rassian). 6. Korchsgin A.B. New capacity of Bruzotti method for construction of M-curves of degree >- 8. - Methods of qns]itative theory of diff. equations, Gorky State Univ., 1978, pp. 149-159,(1n Russian). 7. Korchagin A.B. M-curves of the g-th degree: constructions of !41 curves. - Paper placed in VINITI 29.10.86, NY45g-B86 (in Russian). 8. Korchsgin A.B. M-curves of the 9-th degree: realizability of 32 types. - Paper placed in VINITI 14.04.87, NZ566-BS7 (in Russian). 9. Korclqagin A.B. M-curves of the 9-th degree: realizability of 24 types. - Paper placed in VINITI 29.11.87, N3049-B87 (in Russian). 10. Fiedler T. Shears of lines and real algebraic curves topology. -Izvestia Acad. of Sc. USSR, math., v.46, N 4, 1982, pp.853-863 (in Rassian). 1 I. Korchagin A.B. M-curves of the 9-th degree: nonrealizability of 12 types. - Methods of q11~]itative theory of diff. equations, Gorky State Univ., 1985, pp.72-76, (in Russian). 13. Korctmgin A.B. M-curves of the 9-th degree: the new prohibitions. -Math. Zametki, v.Sg, N2, 1986, pp.277-283, (in Russian). IB. Korchsgin A.B. M-curves of the 9-th degree: nonrealizability o5 !2 types with two nests. - Paper placed in VINITI 04.03.88, N1&32-B88 (in Russian). 14. Petrovsky I.G. On the topology of real plane algebraic curves.- Ann. of Math., v.39, N I, 1938, pp. 187-209.
307 1 5. Ragsd~!e V. On the arrsngment of the real branches of plane algebraic
curves.
-
Amer.
Jour.
Math., v. 28,
1906,
pp. 377-404. 18. Viro O.Ya. Curves of degree 7, curves o$ degree 8 and RagsdAle conjecture. Soviet D o k l . , v.254, N6, 1980, pp. t306-1310 ( i n Russian). 17. Viro O.Ya. Curves of degrees 7 and 8: new r e s t r i c t i o n s . I z v e s t i a Acad.o$ Sc. USSR, math. ,V.47, NS, 1983, pp.1135-1150 ( i n Russian).
ON LINEAR DIFFERENTIAL JACOBIAN CONJECTURE
OPERATORS
RELATED
TO
THE
n-DIMENSIONAL
Tadeusz KRASI~SKI Stanislaw SPODZIEJA I n s t i t u t e of Mathematics, U n i v e r s i t y of Lod±, 90-238 L6dz, P o l a n d
ul.S. Banacha 22,
Introduction Let
En
be
the
ring
standard
topology
of
C n,
let
F =
(fl'''"
into en. In operators
the
and
of
uniform
paper
entire
convergence
fn ) ~ En be u n we consider
AT1 : En E f ~-~ J a c ( f l , . . . , f i _ l i
=
l,...,n,
where
functions
Jac(.)
on
Cn
compact
a fixed the
on
subsets
mapping
linear
such
Let
that
F =
JacF
(i) F is
the
a polynomial
(ii)
A~(E ) lF n (iii) AI(En)
is d e n s e
means
the
is d e n s e
following
automorphism in
E
in
n En
of
from
Cn
' f ' f i + l ' ' ' ' ' f n ) ~ En' usual
(Pl .... 'Pn ) : cn --~ Cn
= I. T h e n
the
differential
jacobian.
operators AT w e r e s t u d i e d m a n y t i m e s in c o n n e c t i o n 1 Jacobian Conjecture ([i],[3],[9],[i0],[ii],[12],[13]). In t h e p a p e r we p r o v e the f o l l o w i n g t h e o r e m Theorem.
with
for and
with
be a p o l y n o m i a l
conditions of
The the
mapping
are e q u i v a l e n t :
C n,
i = i,
.. n-l, " ' kerA[ = { f(P2,...,Pn)
:
f ~ En_l}. For n = 2 the e q u i v a l e n c e (i) ~ (ii) w a s p r o v e d by Y . S t e i n in [I0]. He c a l l e d the i m p l i c a t i o n J a c F = 1 ~ (ii) the Analytic Jacobian Conjecture. A s c o r o l l a r i e s we o b t a i n s i m i l a r t h e o r e m s if we r e p l a c e E n by t h e r i n g s of p o l y n o m i a l s C[X] := C [ X l , . . . , X n ] or R[X] := R[Xl,...,Xn] i. O p e r a t o r s Let fi ~ En'
F =
(in the
latter
case
for a r e a l
polynomial
mapping
F).
AT l (fl .... 'fn ) : cn
i = l,...,n.
The
basic
~ Cn
be an e n t i r e
properties
of
a~l
mapping,
i.e.
(defined
in
309
Introduction)
are g i v e n The
in the f o l l o w i n g p r o p o s i t i o n s
Proposition
I.I.
functions
differential
o p e r a t o r s on
A F1
En, c o n t i n u o u s
T h e y are a l s o d e r i v a t i o n s
of the r i n g
Proposition
for
constant, such that
1.2
(cf.[3]
n=2,
k ..
for any
ik(f ) =
1.3
(cf.[l],
,n, c o m m u t e .
.
i e.
2.Operators Let
i
if
JacF
A[ I
are
F =
°
in the t o p o l o g y of
[9]).
and
If
JacF
f ~ En
is
a
E n-
nonzero
U
of
x
o F
o
[3], [9]). The o p e r a t o r s
3
3
for any
i,j
~FI ' i = = 1 ..... n,
i
is c o n s t a n t ,
(PI,...,Pn)
: Pj(x)
and its d e c o m p o s i t i o n
o
: en
~ en
be
a polynomial
i ~ {l,...,n} and C o n s i d e r the a l g e b r a i c set
= yj,
mapping numbers
j = 1 ..... i - l , i + l ..... n}
into irreducible
S = S1 u ... u S k
components
•
J a c F = I, t h e r e f o r e and d i s j o i n t
SI,...,S k
algebraic
Proposition
2.1.
If
Ai(En)
superscript
F
in
A[)
curves
are
biregular
Sj
linear
a n d level sets of p o l y n o m i a l m a p p i n g s
S := { x e ~n
PiISj,
n,
E n. o
a F = AF o AF
with JacF = i. Fix yl,...,Yi_l,Yi+l,...,y n e e
mensional surfaces.
t
aYil--.aYik
p.297,
AF
.
if and o n l y
Since
i,...
ak(f°(FIu)-l)
(JacF)
i l , . . . , i k ~ {l,...,n}
Proposition ' .
=
then, for any x e C n and a n e i g h b o u r h o o d FIU is a b i h o l o m o r p h i s m , we h a v e in U
Ii
1
i
t
sets.
(if is to
are n o n s i n g u l a r ,
F
is
They
are
f i x e d we
dense
in
En,
C
for
j =
also
open Riemann
shall
then
one-di-
omit
the
the
algebraic
1,...,k.
Moreover,
j = 1 ..... k, are b i r e g u l a r .
Proof. (cf.[lO] for n = 2). S i n c e the p r o o f is a n a l o g o u s for e a c h of the i r r e d u c i b l e c o m p o n e n t Sj of S, we m a y a s s u m e t h a t S is irreducible. Let us d e n o t e f u n c t i o n s on S w i t h the c o m p a c t s u b s e t s of S, and
by O(S) the ring of h o l o m o r p h i c t o p o l o g y of u n i f o r m c o n v e r g e n c e on by I(S) the ideal in En of all
entire
on
functions
vanishing
S.
By
Cartan's
theorem
O(S)
310
En/I(S ).
Since
Ai(I(S))
c I(S),
Ai
induces,
in
the
canonical
way,
a unique continuous derivation D of the ring O(S). The p r o o f w i l l be d i v i d e d in several steps: i. D(O(S)) is dense in O(S). It follows from the a s s u m p t i o n that Ai(En) is d e n s e in E n2. For any (PilS)
where the
is
(PilS)
other
=
f ~ O(S)
we have
a holomorphic
chart
is invertible)
hand,
we have
I.
This
gives
=
exist
g n , h n e O(S)
Fix
zo ~ S. We may a s s u m e
any c o n t i n u o u s z ~ S we have
Hence,
on
S. Locally,
locally
(i.e.
S
On
= D(fo(PilS)-Io(PilS))
equality
on
because
locally
is exact.
and
hence
Since
(PiIS)
S, therefore, for a g i v e n ~ = gd(PilS ). By step 1 there
gn
by step
have
(fo(Pils)-l)'o(Pi~S)
e
such that
gn = D(hn)"
D(f)
desired
form
we
(fo(Pils)-l)'o(PilS)d(PilS).
is l o c a l l y a h o l o m o r p h i c chart on there exists g ~ O(S) such that
and
So,
locally
the
globally. 3. Each h o l o m o r p h i c
So
df =
also
(fo(Pils)-l)'o(PilS)D(PiiS)
D~PilS ) =
df = D ( f ) d ( P i l S )
on
) g
in the t o p o l o g y
of
0(S)
2, dh = D ( h n ) d ( P i l S ) = gnd(PilS).
that
hn(Zo)
piecewise-differentiable
= 0
for
path
n ~ ~. Then,
~
joining
z o
for with
hn(Z ) = Idh n = Ignd(PilS). Hence,
there
exists
the
limit
h(z)
:= l'mn~ hn(Z)
= /gd(PilS )
and
it does not d e p e n d on the choice of ~ Of course, h is h o l o m o r p h i c on S and dh = ~ . 4.S is b i r e g u l a r to C. From the above step and the R i e m a n n theorem S is b i h o l o m o r p h i c to the unit disc or to e. Since S is an a l g e b r a i c set, then by the L i o u v i l l e p r o p e r t y of a l g e b r a i c sets, S is b i h o l o m o r p h i c to C. Let ~ :C ~ S be such a biholomorphism. Again, since S is an a l g e b r a i c set, ~ is a b i r e g u l a r m a p p i n g (see [7], Th.4). 5. (PilS) is a b i r e g u l a r mapping. Obviously, (PilS) is regular, mapping and
locally invertible ~ :C ) S we have
locally
invertible.
So,
mapping. Hence, for any b i r e g u l a r that (PilS)o~ : C ) C is r e g u l a r this
az + b, a,b ~ C, a ~ O. Hence 3.
composition
(PilS)
has the
= Lo #-I
form
L(z)
is biregular,
o
The m a i n t h e o r e m Let
such
that
F =
(PI,...,Pn)
JacF
F(C n) = C n . well-defined
=
I.
: Cn
Then
F
will
a
So, the d e g r e e degF ([6], §3A). Put d := degF
B F := {y ~ C n : #F-l(y) which
) Cn is
be c a l l e d
the
set
of
be
a
polynomial
dominating
mapping
mapping,
i.e.
of the m a p p i n g F and d e f i n e the set
is
~ d} bifurcation
points
of
F.
It
is
=
311
known that On
the
BF
is a c o n s t r u c t i b l e
other
hand,
from
set
tile
([5],
fact
Lemma
in
that
1.8.4).
F
is
a
local b i h o l o m o r p h i s m we have from P r o p o s i t i o n 3.17 in [6] that C n \ B F is open and non-empty. Hence BF is an a l g e b r a i c set d i f f e r e n t from C n. For any i ~ {l,...,n}, e n-I
the
we
canonical
shall
denote
projection
by
~i
: ~n
>
~i(Yl,...,yn):=
(Yl,---,Yi_I,Yi+I,---,Yn)Lemma
3.1.
Fix
there e x i s t s
i 6 {I .... ,n}.
an a l g e b r a i c
If
set
Ai(En)
is d e n s e
B i c C n-I
En,
then
has
the
such t h a t
-i BF = gi (Bi)"
(3.2)
Proof. We shall first show that f o l l o w i n g property:
the
(3.3)
nil(=i(y))
if
Indeed,
y ~ e n \ BF, then
let
2.l,the Yi-l'
us
take
set
S
=
y
=
{x
~
complement
(y~,...,yn) e
:
function
components
Pi[Sj
BF,
therefore
the
fact
z E C,
is a b i r e g u l a r
k = d.
that
Hence,
Sl,...,S d
and,
mapping
from
are
if
(3.3)
it
easily
y ~ B F , then
we
obtain
the
an a l g e b r a i c is o b v i o u s . o
set in
follows
(i) F
is a p o l y n o m i a l
(ii) Ai(En)
= En,
of
yl,...,Pi_l(X)
=
into d i s j o i n t
any
Sj
such
Sj,
the
onto e. since
we
obtain
= d.
This
BF
that Bi
the
of
Pi[Sj
that, gives
for
y and any
property
has t h e p r o p e r t y :
automorphism
set
B i := ~i(BF)
so defined,
assumptions
on
of
F,
equality
the
is (3.2)
following
C n,
i = 1 ..... n-l,
(iii) Ai(En)
is d e n s e
in
En,
(iv)
is dense
in
En
AI(En)
=
Proposition
c BF .
For the
T h e o r e m 3.4. U n d e r the above c o n d i t i o n s are equivalent:
By
bijectivity
that
difficulty
C n-l.
BF
for
disjoint,
~il(~i(y))
without
g
decomposes
#F-l(yl,...,Yi_l,z,Yi+l,...,yn)
(3.3) . From
Hence
Sl,...,S k
~\B
c en \ BF .
Pl(X)
Pi+l (x) = Y i + l ' ' ' ' ' P n (x) = Yn }
irreducible
E
in
i = 1 .... ,n-l, and
kerA 1 =
{f(P2,...,Pn)
n : f ~ En_l}.
Proof.
I.
function Propositon
(i) such 1.2,
,
(ii).
that
f
Take
og/0Y i
=
c E . Let g be an e n t i r e _I n . Put h := goF. Then, by
foF
312
A i (h) = a(h°F-l) a¥. 1 2. 3. be
oF = ~ . o F 1
= f.
(ii) ~ (iii). Obvious. (iii) ~ (i). Let d
the
bifurcation
set
algebraic
set
B* c C
therefore algebraic
B ~ C. Take set
of
the
F.
degree
By
Lemma
of
F
3.1,
and
there
let
BF
exists
B F = cn-lx B * . Since
such that
,
an
B F ~ C n,
,
V := Pnl(z) Since
be
z ~ B
and c o n s i d e r
the n o n s i n g u l a r
= F-l(cn-lx{z}).
(cn-lx{z})
n B F = ~, the m a p p i n g
has the same number, Moreover, FIV is a
equal local
FIV : V
) en-lx{z}
to d, of e l e m e n t s in each fibre. b i h o l o m o r p h i s m . H e n c e we e a s i l y get
that FIV is a covering. Since en-lx{z} is simply connected, then F is a b i h o l o m o r p h i s m on each t o p o l o g i c a l c o m p o n e n t of V. So, the n u m b e r of t h e m is equal to d. Let Vl,...,V d be these components.
Since
gradP n
:=
(aPn/aXl,...,aPn/aXn)
vanishes
nowhere, therefore, from the c o n n e c t i v i t y of the i r r e d u c i b l e components of a l g e b r a i c sets ([6], Coro4.16) we o b t a i n that Vl,...,V d are also the irreducible components of V. The mappings Hence
FlVi,
and
FIV i
from
i
=
is a b i r e g u l a r Let
Qi(x)
=
Since
be
regular
of
Vi
([6],
onto
polynomials
gradP n
Pn - z = ~QI...Qd,
that
nowhere,
and
biholomorphic. we get that
en-lx{z},
such
vanishes ~ ~ e,
and
Th.3°20)
i = l,...,d.
Vi =
{x
therefore,
QilVj
= const,
~ ~n: by
the
for any
Qi = TijQj + ~ij w h e r e Tij ~ C[X], ~ij ~ e. T h e n we degTij = O. In consequence, there e x i s t s a p o l y n o m i a l
i,j. H e n c e e a s i l y get H ~ e[Z]
are
Main T h e o r e m
mapping
QI,...,Qd 0}.
above,
l,...,d,
Zariski's
such
that
because, otherwise, g r a d P n vanishes.
degH = d there
and
would
Pn - z = HoQ I. H e n c e
exist
points
in
en
d = 1
at w h i c h
Since d = i, t h e r e f o r e F is injective. H e n c e F is a p o l y n o m i a l a u t o m o r p h i s m (see [8], Th.l.4, [i], Th.2°l). 4. (i) ~ (iv). By the i m p l i c a t i o n (i) ~ (ii) it s u f f i c i e s to show only the e q u a l i t y ker~ 1 = { f(P2,...,Pn) ~ E n : f ~ En_l}. D e n o t e the set on the right hand side of this e q u a l i t y Obviously, sition
we have
Enc
ker~ I. Let
depends
E n-
By Propo-
i.2, a(g°F-l) 8Y 1
Then
g ~ kerA I.
by
B(goF-l)/aY 1
=
O,
and
only on the v a r i a b l e s
oF = 0
hence
the
Y2,...,Yn.
entire
function
Denoting
goF -I
goF -I by
f,
313
we have 5.
g = f(P2,...,Pn). (iv) ~ (i). Put
dominating
mapping.
So,
ring
C[YI,...,Yn_I]
ring
e[X]
of
So, g ~ En" F~= (P2 ..... Pn ) it
of
regular
induces
regular
C[X]
then
P
~
functions
functions
assumption kerA 1 = E ~, n F (C[YI,...,Yn_I]) =C[P2,...,Pn] Indeed, if an element P ~ C[X] kerA 1
: C n --~ e n-l.
a monomorphism on
on
C n.
C n-I
We
implies
It
F
claim
that
is
a
of
the
into
the
that
the
the
ring
is integrally closed in e[X]. is integral over e[p2,...,pn] c
(because
P
is
constant
on
each
irreducible component of any fibre of F). Hence P = f(P2,...,Pn) for some f ~ En_ I. Since P'P2' .... Pn are polynomials, therefore, f is also a polynomial. This means that P ~ ~[P2,...,Pn]. From the fact that e[P2, .... Pn] is integrally c l o s e d in C[X]
it
easily
follows
that
the
field
e(P2,...,Pn)
is
a l g e b r a i c a l l y closed in C(XI,...,Xn). Hence F is primitive, i.e. there exists an a l g e b r a i c set V c ~n-l, V ~ C n-l, such that,
for
any
y
~
en-l\v,
the
algebraic
set
irreducible ([4]). So, for any y e en-l\v, c o n n e c t e d ([6],Cor.4.16). On the other hand, the a s s u m p t i o n that
the
En
each
implies
mapping
(by
Proposition
PlIF-l(y)
F-l(y).Hence,
for
2.1)
is b i r e g u l a r each
that
for
on each
y E Cn-l\v,
the
topological mapping
automorphism
Remark. 3.5. = En in that
is
~-l(y)
AI(En)
injective. This implies that in the open set mapping F is injective. Also, degF =i. This polynomial
~-l(y)
set
is
is dense
in
~ c n-l,
the
y
component
of
Pl[F-l(y)
is
F-I(cx(cn-I\v)) the gives that F is a
([8],Th.I.4,[I],Th.2.1).D
In the above theorem,
(iv) can be omitted
for
because
n = 2
it follows
the c o n d i t i o n
kerA 1
from the a s s u m p t i o n
J a c F = i. G
4. O p e r a t o r s Let
A[
k = ~
polynomial
mapping
operators
A~l
in the polynomial
rings
or
(PI,...,Pn)
C.
such
Let that
to the ring
F = JacF
k[X 1 t ' "
= °
i.
,Xn]
The
: k n -~ k n restriction
we shall
be of
also denote
a
the by
1 T h e o r e m 4.1. Under the above assumptions, the f o l l o w i n g are equivalent: (i) F is a polynomial a u t o m o r p h i s m of k n,
conditions
(ii) A[(k[X 1 ..... Xn] ) = k[X 1 .... ,Xn], i = 1 ..... n-l, (iii) ~ & ~~( k [ X 1 ..... Xn]) = k[XI,...,X n ] and kerA~TM
=
314
k[P2,...,Pn]. Proof. i. (i) ~ (ii). A n a l o g o u s l y as the i m p l i c a t i o n in t h e o r e m 3.4. 2. (i) ~ (iii). A n a l o g o u s l y as the i m p l i c a t i o n in t h e o r e m 3.4. 3. (ii) ~ (i). a) k = C. From (ii) it follows that is d e n s e
in
En
for
i = l,...,n-l.
a polynomial automorphism. b) k = ~. F has a :C n
--~ C n.
We
shall
Hence,
canonical
show
that
by t h e o r e m
extension ~[(C[X])
to
=
(i) ~
(ii)
(i) ~
(iv)
A~l(e[X]) 3.4.,
the
C[X]
F
is
mapping for
i
=
t
l,...,n-l. T a k e i ~ {l,...,n-l} and P ~ C[X]. Let P = P' + iP'', P',P'' ~ ~[X]. By the a s s u m p t i o n there exist Q',Q'' ~ ~[X] such t h a t =
P.
From
automorphism the t h e o r e m
A[(Q') the of in
= P'
and
case
a)
we
en [2]
Hence F is
~[(Q'') obtain F = also
= P''. that
Hence F
~[(Q"
is
a
+ iQ")
polynomial
Fi~ n is an injection. a surjection. So, F
bijection. Since F -I = F -ll~n, t h e r e f o r e F -I p o l y n o m i a l mapping. 4. (iii) ~ (i). a) k = e. A n a l o g o u s l y as the (iv) ~ (i) in t h e o r e m 3.4.
is
a
By is a real
implication
b) k = ~. As above, let F : Cn > Cn be a c a n o n i c a l e x t e n s i o n of F. From the a s s u m p t i o n s it f o l l o w s easily that ~l(e[X])
= ~[X]
and
kerA~
= C[P2,...,Pn].
From
the
case
a)
we
have that F is a p o l y n o m i a l a u t o m o r p h i s m . P r o c e e d i n g a n a l o g o u s l y as in 3b) we o b t a i n that F is a real p o l y n o m i a l automorphism, a Acknowledgement. We thank Mr K. R u s e k for our a t t e n t i o n to the p a p e r by Y. Stein [i0].
his
having
called
References [I]
H.Bass, E . H . C o n n e l and D.Wright, The J a c o b i a n C o n j e c t u r e : Reduction degree and formal expansion of the inverse, Bull.Amer. Math. Soc.7(2) (1982) 287-330. [2] A . B i a l y n i c k i - B i r u l a and M. R o s e n l i c h t , I n j e c t i v e m o r p h i s m s of real a l g e b r a i c varietties, P r o c . A m e r . M a t h . S o c . 1 3 ( 1 9 6 2 ) , 200-203. [3] Z . C h a r z y ~ s k i , J . C h ~ d z y n s k i and P . S k i b i n s k i , A c o n t r i b u t i o n to K e l l e r ' s J a c o b i a n C o n j e c t u r e III, Bull. Soc. S c i . L e t t r e s L6d~ 39, N O . 4 ( 1 9 8 9 ) , I - 8 . [4] T . K r a s i n s k i and S.Spodzieja, On the i r r e d u c i b i l i t y of fibres of c o m p l e x p o l y n o m i a l m a p p i n g s (to appear). [5] S . L o j a s i e w i c z , I n t r o d u c t i o n to C o m p l e x A n a l y t i c G e o m e t r y (PWN, Warszawa, 1988) (in Polish). [6] D.Mumford, A l g e b r a i c G e o m e t r y I, C o m p l e x P r o j e c t i v e V a r i e t i e s (Springer, B e r l i n - H e i d e l b e r g - N e w York, 1976). [7] K . R u s e k and T.winiarski, Criteria for regularity of h o l o m o r p h i c mappings, B u l l . A c . P o l . : M a t h . 2 8 ( 1 9 8 0 ) , 471-475. [8] K . R u s e k and T . W i n i a r s k i , Polynomial Automogphisms of C n, Univ. Iagell. Acta M a t h . 2 4 ( 1 9 8 4 ) , 1 4 3 - 1 4 9 . [9] S.Spodzieja, On c o m m u t a t i v i t y of the c o m p o s i t i o n of W h i t n e y operators, Bull. Soc. Sci. Lettres Lodz 39, N o . 1 3 ( 1 9 8 9 ) , I - 6 . [I0] Y.Stein, On lineir d i f f e r e n t i a l o p e r a t o r s r e l a t e d to the
315
Jacobian Conjecture, J.Pure Appl.Algebra 57(1989),175-186. [ii] Y.Stein, On the density of image of differential operators generated by polynomials, J.Analyse Math. 52(1989),291-300. [12] Y.Stein, Linear differential operators related to the Jacobian Conjecture have a closed image, J.Analyse Math. 54 (1990),237--245. [13] D.Wright, On the Jacobian Conjecture, Illinois J.Math.25
(1981),423-440.
On a subanalytic stratification satisfying a Whitney property with exponent 1
by K r z y s z t o f K u r d y k a Instytut Matematyki, Uniwersytet Jagiellofiski, Reymonta 4, Krakdw PL-30059 (Poland)
If A is a subanalytic and closed set in R n, then A satisfies following Whitney property (see [St]): every point of A has a neighbourhood U such that, if x and y are two points in A M U then there exists an are )~ joining x and y in A M U such that length~_< C I x - y I~ ,where C and o~ are constants depending only on U. Actually we have the same property for strata of a stratification obtained by projections (e.g. triangulations or cellular decompositions, see [Ha], [Lo3] ). In this paper we construct a stratification compatible with a given family of subanalytic sets such that on each stratum the above property holds with exponent o~=1 ( corollary B ). Actually the strata we obtain (theorem A) are L-regular in the sense of Parusifiski [Pall i.e. are of the form {(z',zn) E R n-1 x R; / ( x ' ) < x~ < g(x'),x' G A'} ,where A' is L-regular in R ~-1, f and g are subanalytic and continous in --~, A analytic in A', f(x') < g(x') for x' G A'. Moreover I dx, f 1< _ M,I d~,g I< M for each z' ~ A',where M is a constant depending only on n. Other strata are the graphs of aaaalytic functions (with bounded differentials) defined on sets of previous form. Our result is related to the papers of Parusifiski ([Pal],[Pa2l). We use only elementary facts on subanalytic sets i.e. subanalycity of tangent mapping and stratifications of mappings. Hence our result holds in semialgebraic and semianalytic case. This paper was inspired by a question of Prof. S.Lojasiewicz (corollary C), the author is very grateful, to him for interest and encouragement. The author thanks G.Jasi~ski for helpful remarks. The paper was written when the author was associate member of Dept. of Math. of Universit~ de Savoie at Chambfiry and wants to acknowledge people working there (particulary P.Orro) for friendly ambiance and hospitality. The author thanks also the referee for valuables remarks.
0 . P r e l i m i n a r y r e m a r k s . Let M be an analytic manifold. By a stratification of M we mean a locally finite family T of analytic, connected submanifolds of M such that: M = U { T : T E T} (disjoint union), moreover if S M(T \ T) ~ 0, where S, T E T, then S C (T \ T) and d i m s < dimT. We say that stratifcation T is subanalytic if all strata (i.e. members of :r) are subanalytic in M. Let A be a family of subsets of M, we say that stratification 7" is compatible with family ,4 if T M A ~ 0 implies T C A, for each T C T, A E A. Let C be a family of analytic, connected submanifolds
317
of M, subanalytic in M. We say that family C is stratifying if for every locally finite family A of subanalytic subsets of M there exists a subanalytic stratification T of M , compatible with .,4 such that T C C. It follows from the general m e t h o d of constructing of subanalytic stratification (see e.g. [DS],[Lo3]) that C is stratifying if and only if : (*)For every A analytic submanifold of M, subanalytie in M, there exists F subanalytic in M, closed, nowhere dense subset of A such that every connected component of A \ F belongs to the family C. We recall a definiton of angle between linear subspaces. 1 . D e f i n i t i o n . Let X be a linear subspace in R'`, let P be a line in R'`.\¥e define angle between P and X as
5(P, X ) = inf{sin(P, S); S is a line in X } where sin(P, S) is a sine of the angle between P and S. Let Y be a linear subspace in R'~,we put 5(]I, X ) = sup{5(P, X); P is a line in Y } If Y = 0 we put 5 ( 0 , X ) = 0. Function 5 takes values in [0, 1]. In general 5 is not symmetric, however we have: (1.0) if d i m X = d i m Y then 5(X, Y) = 5(]I, X). (1.1) if Y C X then 5 ( Y , X ) = O. (1.2) if dirnZ < dirnY < dirnX then 5(Z, X ) <_ 5(Z, Y ) + 5(Y, X). Let us denote by Gim the grassmanian space of all i-dimensional linear subspaces of R n equiped with the natural structure of real algebraic variety. Then we have (1.3) the mapping Gi,n x Gj,,~ 9 (Y, X ) ~ 5(Y, X ) E R is continous and semiatgebraie (see [Lo4]). 2 . R e m a r k . Let X denotes a hyperplane and P a line in R'`. Then for each rn > 0 there exists M > 0 such that if 5(P, X ) > rn then X is a graph of linear mapping ~: P± , P satisfying II ~ II< M ( P ± denotes the orthogonal complement of P). 3 . L e m m a . Given r,n C N, there exists constants c > 0 and rn > 0 such that for given X1, ...Xr hyperplanes in R n ,there exists a line P such that, if Y1, ...Y~ are hyperplanes verifying 5(Y/,Xi) < ~, i = 1, ...r, then
5(P, Yi) > rn f o r each i = 1, ..., r Proof. Let us take a metric d on the sphere S "-1 defined as follows : d(p, q) = 5(Rp, Rq) forp, q C S "`-1. Let us denote X~ = {p E S "`-1 : dist(p, Xi 7/5 ' ' - 1 ) < c}, where dist(p, Z) = inf{d(p, q) : q C Z}. It is enough and sufficient to prove the following fact : (3.1) Given r E N, there exists c > 0 and m > 0 such that the complement of Ui~=l x ~ in S n-1 contains a ball of radius rn (in metric d). We use induction on r to prove (3.1). The case r = 1 is obvious. Let us denote cr and m r corresponding constants in (3.1) for r hyperplanes. Let B(p, mr) be a ball in
318
S n-1 disjoint with each X ~ ' , i = 1, . . . r . P u t s~+~ = m~+~ = min{e~,m~}/3, then the x'~'+~ contains a ball of radius rn~+l Let us recall some known facts on subanalytic sets. Let F be an analytic submanifold and subanalytic subset of R n, dirnF = k, then the Gauss m a p p i n g
set B(p, m,) \
T :F g X l
, T=F • G~,,~
is subanalytic i.e. its g r a p h is subanalytic in R ~ x Gk,n. As usual T~F denotes the tangent space to P at x. Moreover if E is a subanalytic subset of Gk,~ then T - I ( E ) is subanalytic in R ~ (see e.g. [DW],[Lo2]). 4 . D e f i n i t i o n . Let F be a C 1 submanifold of R ~ and let e > 0. We say t h a t P is s - flat, if for each x, y • F we have 5(T=F, TyF) < ¢. If dimF = 0 we assume t h a t F is s-flat for every e > 0. 5 . P r o p o s i t i o n . Let A be locally finite family of subanalytic sets in R n. Then for given e > 0 there exists a subanalytic stratification T compatible with the family ~4, such that each stratum of ~r is s-flat.
Proof. We use condition (*) of remark 0 to prove the existence of such stratifications. For every k = 1, ...,n - 1 let us take a subanalytic finite partition of Gk,n into disjoint sets E/k, i = 1,..., rk such t h a t 5(X, Y) < ¢ for each X, Y • Eik. Actually we can take a stratification of Gk,n compatible with a finite covering by 5-balls of radius ¢.Let A be an analytic submanifold, subanalytic subset of R ~, d i m A = k. Let r : A ~ Gk,~ rk be corresponding Gauss mapping, then the set F = A \ Ui=l IntA(v--l(E~)) is closed and nowhere dense in A. Clearly every connected c o m p o n e n t of A \ F is s-flat. Hence by (*) of r e m a r k 0 the proposition follows. Remark 5.I. Actually we can require more for the stratifcation 2r. By a theorem of Stasica [St] (see also [KR]), for given M > 0, we can refine T in a such way that every s t r a t u m T of T , dirnT = k < n, is a g r a p h (in suitable coordinate s y s t e m in R n) of an analytic m a p p i n g ¢ : U ~ R n - k , where U is open in R k and [ dz¢ 1<_ M for each z • U. Suppose t h a t ¢ = ( ¢ l , . . . , ¢ n - k ) and put ~ = S n - k , t h a n T is also a g r a p h of :B * R , where B is a graph of (¢1, . . . , ¢ , - k - 1 ) : U ~ R n-k-1. Clearly B is an analytic submanifold of R n-1 , we have also [ d ~ [_< M for each x • B. 6. D e f i n i t i o n . W e say that subanalytic set A in R n is a 8-cell, if A is a point or in some coordinates in R n A is of one of the following forms
4) /~)
A={(x',x,~)eR A={(x',x,,)eR
n-1 x R :
'~-' xR:
h(x')=xn, x'•B}
f(x')<xn
x'eB}
where B is a s-cell in R n-1 ; f , g and h are subanalytic continous functions on the closure of B, analytic on B. Moreover we assume t h a t f ( z ' ) < g(x') for each x' E B. Let A be a s-cell of dimension k, then A is an analytic submanifold of R n h o m e o m o r p h i c to an open ball in R k. Moreover ~ \ A is h o m e o m o r p h i c to a sphere in R k.
319
7 . D e f i n i t i o n . We keep the notation of definition 6. We say that s-cell A in R " is L-regular with constant M > 0, if I d=,h t<_ M (resp. I d~,f I<_ M and I d~,g I< M ) for each x f C B, where B is a L-regular s-cell with constant M in R ~-1 . If A is a point we assume t h a t A is L-regular with every constant M > 0. Remark. T h e closure of our L-regular s-cell is a subanalytic version of the L-regular set of Parusifiski (comp. def.3.2 of [Pal]). Proceeding by induction n we get: 8 . P r o p o s t i o n . Let A C R ~ be a L-regular s-cell with constant M > O. Then for every x, y E A there exists a smooth curve ,~ joining x and y such that
length~ < C l x - y l , where C is a constant depending only on n and M . Now" we state our m a i n result. T h e o r e m A. Let `4 be a locally finite family of subanalytic sets in R ~. Then there exists a subanalytic stratification f of R ~, compatible with the family `4, such that every stratum of :T is a L-regular s-cell with a constant M , where M depends only on n. From t h e o r e m A and proposition 8 we get C o r o l l a r y B. Let `4 be a locally finite family of subanalytic sets in R ~. Then there exists a subanalytic stratifcation 7" of R'~,compatible with the family `4, such that , if x , y E T, where T E ~I-, then there exists a smooth curve ~ in T joining x and y, such that length£ < C I x - y l,
where C is a constant depending only on n. We state also an i m m e d i a t e consequence of corollary B, which seems to be of its own interest. C o r o l l a r y C. Let U be a subanalytic set, analytic submanifoId of R n. Then there exist M > 0 and a subanalytic stratification T of R ~, compatible with U such that~ if 9~ : U ..... ~ R is a differentiable function such that for some constant C > O, I d=~ I< C for every ~z C U, then I V ( x ) - ~ ( Y ) I<- C M I x - y l,
for every x and y belonging to the same stratum T 6 7-, T C U. Proof of theorem A. By (*) of r e m a r k 0 it is enough to prove the following: (**) Let A be a subanalytic set, analytic submanifold of R n, t h e n there exists F a subanalytic, closed, nowhere dense subset of A such t h a t every connected component of A \ F is a L-regular s-cell with constant M . Constant M will be determined later on. We use induction on n to prove (**). We m a y add to .4 a family of cubes [kl, 1 + kx] x ... x [kn, 1 + k,], kl E Z, ki = 1, ...,n. We call this new family .4'. Clearly every stratification compatible with `4f will have only b o u n d e d strata. Hence it is enough to prove (**) for A bounded. Suppose now t h a t
320
A is a bounded, subanalytic, analytic submanifold of R n, d i m A = k < n. T h e n by r e m a r k 5.1 for given M > 0 we have A=FUFIU...
UFs
where F is subanalytic in R n, closed in A, dim F < k. Each Fi is a connected component of A \ F, moreover in suitable coordinate system every Fi is a graph of an analytic, subanalytic function pi : Bi ~ R, where Bi is an analytic submanifold of R n-1 and I dx~i I<_ M for x E Bi. Now applying induction hypothesis in R n-1 we m a y suppose t h a t Bi is a s-cell L-regular with constant M. This ends the proof of (**) for A of dimension less than n. Suppose now that A is subanalytic, open, bounded subset of R n. T h e following l e m m a is crucial for the proof of (**) in this case. 9 . L e m m a . Let A be an open, bounded, subanalytic subset of R '~, let e > O. Then there exists finitely many open and disjoint s-cells A i , i = 1, ...,p, Ai C A such that P A i is closed and nowhere dense in A, i) the set A \ Ui=l i such that ii) for each i = 1,...,p there exists subanalytic subsets BI, .. ., B k, a) ki <_ 2n b) each B} is an e-flat analytic submanifold of R n, dirnB} = n - 1, c) ~I Ijk~ = l B j~ is an open, dense subset of-~i \ Ai.
Proof of the lemma 9. We prove the l e m m a by induction on n = dimA. The case n = 1 is obvious. Let us assume the l e m m a holds true for open, bounded, subanalytic subsets of R n - l . W e proceed by following steps: Step 1. By Prop.5 there exists a subanalytic stratification ~ of R n, compatible with A \ A, such t h a t all s t r a t a of 71 are e-flat. Step 2. By K o o p m a n - B r o w n theorem (see [Lol],[Lo3] ) we can find such coordinates in R " that, if we denote by 77 a projection 7r(xl, ..,Xn--l,Xn) = (Xl, ..,Xn-1) = X', then 77 is finite on each s t r a t u m T E 71, T C ~ \ A. By a theorem of H a r d t (see [Hal] ) we can stratify the projection 77 restricted to A, i.e. there exists a stratification ~ of R n compatible with family {T E 71 : T E A}, there exists a stratification $ of R n - l , such that i) each bounded s t r a t u m T of 2r2 is of one of the following f o r m ~)
r={(x',xn) T
= { ( xi, x ~ ) E
ER~:
xn=h(x'),
x'ES}
R n : f(x') <x~
where S is a s t r a t u m of ,5" , f ( x ' ) < g(x') for every x' E S. Functions f , g and h are subanalytic and analytic in S.
ii) if T is s t r a t u m of T2 of the type a ) and T C ~ , d i m T = n - 1, then T C T1 for some T1 E ~ , dirnT1 = n - 1 ( this follows from the proof the t h e o r e m of Hardt). Hence T is also e-flat. iii) if s t r a t u m S satisfies condition (s) (i.e. every point of ~ has a basis of neighbourhoods {U,}, such that U, M S is connected), then the function h (resp. f and g)
321
be extended continously on S (see [Lol],[Lo3] ). Notice that every s-cell satisfies condition (s).
can
Step 3. For each open s t r a t u m S E S, S C 7r(A) we apply induction hypothesis. ! Hence S is a union of open, disjoint s-cells A~, ..., Aq and a nowhere dense, closed subset of S. Every A} verifies conditions a), b), c) of ii) of lemma 9. Let us take a s-cell of the form Q={(x',xn) ER': f(x') < x , < g(x'), x' E A',} where f and g are those of Step 2. T h e boundary of Q is a union of the graphs of f and g (which are already e-flat by Step 2) and the set
b(Q) = { ( x ' , x . ) E R " : f ( x ' ) <_ x . < g(x'), x' e -A7i \ A~} Let us denote by B~' the sets, contained in the boundary of Ai, satisfying b) and c) of ii) in lemma 9. T h e n the sets (some of them perhaps empty) •
B}--{(x',xn):
I
f ( x ' ) < x , < g ( x ' ) , x' • B~ i}
are e-flat. ActuMly they are open in B~ ~ x R which are e-flat, since each B~' is e-flat by induction hypothesis. Clearly the union of all B} is dense in b(Q) \ (7 U ~) ( we identify function with its graph ). Hence making the induction step we get at most two sets more in ii) i.e. graphs of f a n d g. Thus our s-cell V satisfies a), b), and c) of ii). All s-cells constructed in the same way as Q i.e. { ~ r - I ( A ~ ) M T : i = l,...,q; T e T2, T e A ,
dimT--n}
gives our family of desired s-cells A1, ..., Ap. This ends the proof of lemma 9. Now we come back to the proof of (**) for A open and bounded in R n. Applying lemma 3 in R n for r = 2n we get corresponding positive constants e and m. By lemma 9 we can suppose that A is a s-cell satisfying a), b) and c) of ii) with e as above. Let us denote by B j , j = 1, ..., k, k _< 2n open sets in the boundary of A, satisfying b) and c) of ii). Let us take arbitrary points xj • B j , j = 1, ...,k and put X j = TxjBj. Since Bj is e-fiat, we have 5(Xj, Tu¢ By) < e for every yj G By. Hence by lemma 3 there exists a line P in R '~ such that 6(P, Tuj Bj) > m. We take this line as x,~ - axis, the orthogonal complement of P will be a (xl, ;..., x n - 1 ) -hyperplane denoted by R n-1. Locally each set Bj is a graph of an analytic mapping ~ : U --~ R , where U is an open subset of R '~- a. Moreover by Remark 2 there exists a constant M > 0 (depending only on m) such that ] d~,~ ]<_ M for each x ~ • U. Since in the claim of the theorem of Koopman-Brown the set of admissible projections is dense , so we can assume that canonical projection ~r : R n -~ R n-1 is finite on the boundary of A. Now we repeat the construction of Step 2 of the proof of lemma 9. Hence our A is a disjoint union of a nowhere dense, closed set F and sets of the form {(x',x,~) • R n : f ( x ' ) < x . < g(x'),x' • A'} where A I is an open and subanalytic subset of R ~ - l , f and g are analytic functions in A r such that I d=,f I< - M , I d=,g I< - M. By induction hypothesis we can assume that A' is a L-regular s-cell with constant M. This ends the proof of (**) for A open and bounded. Hence theorem A is proved.
322
Remark. Actually in the above step the th. of Koopman-Brown is superfluous, since the fact that 7r is finite on the boundary of A follows from Cor. 1.8 in [KR]. 1 0 . R e m a r k To obtain a semialgebraic version of theorem A we suppose that ,4 is a finite family of semialgebraic subsets of R n. The stratification we obtain will be also finite and semialgebraic. However we should change the definition of s-cell. We simply assume in definitions 6 and 7, case fl), that f or g may be identically equal to ec or to - o o . Clearly we can assume d , f = 0 (resp. dxg = 0) in that case. Notice that proposition 5 and the theorem of Hardt have semialgebraic versions, see respectively the proof in [Lo2] and chap.9 in [BCR]. Hence our proof holds in semialgebraic case.
References
[BCR] J.
[DS] [DW] [Hall
Bochnak, M. Coste, M-F. Roy; G6ometrie alg@brique r6elle, (Ergeb. der Math., Folge 3, Bd.12), Springer, 1987. Z. Denkowska, J. Stasica; Sur la stratifiction sous-analytique, Bull. Acad. Pol. Sci. S@r. Math., 30 (1982), 337-340. Z. Denkowska, K. Wachta; Sur la sous-analycit@ de l'application tengente, Bull. Acad. Pol. Sci. S6r. Math., 30 (1982), 329-331. R. Hardt; Stratification of real analytic mappings and images, Invent. Math.
28 (1975), 193-208.
[Ha2] R. Hardt; Triangulation of subanalytic sets and proper light subanalytic maps, Invent. Math. 38 (1977), 207-2170.
[KR] K. Kurdyka, G. Raby; Densit6 des ensembles sous-analytiques, Ann. Inst.
[Loll [Lo2] [Lo3] [Lo4] [Pail [Pa2] [St]
Fourier, 39 (1989), 753-771. S.Lojasiewicz; Triangulation of semi-analytic sets, Annali Scuola Norm. Sup., $6r.3, 8 (1964), 449-474. S.Lojasiewicz; Sur la semi-analycit6 de l'application tangente, Bull. Acad. Pol. Sci. S@r. Math. 27 (1979)525-527. S.Lojasiewicz; Stratifications et triangulations sous-analytiques, Seminari di Geometria (Bologna), (1986) 83-97. S.Lojasiewicz; Semianalytic and subanalytic geometry, book in prepartion. A. Parusifiski; Lipschitz properties of semianalytic sets, Ann. Inst. Fourier, 38 (1988) 189-213. A. Parusifiski; Regular projections for subanalytie sets, C. R. Acad. Sci. Paris, 307 S@rie I (1988) 343-347. J. Stasica; The Whitney condition for subanalytic sets, Zeszyty Naukowe Uniw. Jag. 23 (1982), 211-221.
UNE POUR
BORNE LE
SUR
LES
THEOREME REEL
DEGRES DES
ZEROS
EFFECTIF
Henri LOMBARDI Laboratoire de Math6matiques. UFR des Sciences et Techniques Universit6 d e Franche-Comt6. 25030 Besan¢on c6dex France R4sum4. Nous donnons les id6es et r6sultats essentiels d'un calcul d'une majorafion des degr6s pour le th6or6me des z6ros r6els effectif. Abstract We give the main ideas and results concerning a computation of a degree majoration for the real nullstellensatz.
1)
Introduction
N o u s rendons compte dans cet article d u calcul d ' u n e borne sur les degr6s a c c o m p a g n a n t la p r e u v e constructive d u th6or6me des z4ros r4el et d e ses variantes (cf. [Lom d]). Les preuves sans les majorations de degr6 p e u v e n t atre trouv6es dans [Lom b ] . Les r4sultats o b t e n u s
Une formulation g~n4rale d u th6or~me des z6ros r6el et de ses variantes p e u t ~tre la suivante (cf [BCR] th6or6me 4.4.2) : o n consid~re u n syst~me d'6galit~s et in~galit4s portant sur des polynomes de K[X] = K[X1,X2,...,Xn], oR K est un corps ordonn6 de cl6ture r6elle R ; ce syst~me d6finit une partie S semialg6brique d e R n ; le th6or~me affirme que S est vide (fait g6om6trique) si et s e u l e m e n t si il y a u n e certaine identit6 alg6brique construite ~ partir des p o l y n o m e s donn6s, identit4 qui d o n n e une p r e u v e d e ce fait g6om4trique. Calculer u n e b o r n e sur les degr6s p o u r le th6or~me des z6ros r6els consiste calculer u n e m a j o r a t i o n sur les degr6s des p o l y n o m e s i n t e r v e n a n t dans le r4sultat (l'identit6 alg6brique construite) ~ partir de la taille de l'entr4e (le syst~me de conditions de signes portant sur la liste de polynomes donn4e au d6part). Les param6tres qui controlent la majoration des degr6s dans le r6sultat sont en fait : le n o m b r e k de p o l y n o m e s dans l'entr6e, le degr6 d des polynomes dans Pentr6e, et le n o m b r e n de variables. Le calcul de majoration est obtenu en suivant pas a pas la p r e u v e constructive d'existence d e Pidentit6 alg6brique et en explicitant les majorations a chaque 6tape de la preuve. C'est une majoration primitive r6cursive, donn6e par une tour d'exponentielles : le nombre d'6tages dans la tour est n+4 et en haut de la tour on trouve : d.log(d) + loglog(k) + cte.
324
Ce r4sultat n'est pas trop mauvais, dans la mesure oh la principale responsabilit6 de l'explosion est support6e par l'algorithme de H 6 r m a n d e r , ~t la base de la p r e u v e effective. On peut esp6rer baser une autre p r e u v e effective sur des algorithmes plus p e r f o r m a n t s et n6anmoins de conception tr~s simple, et obtenir en cons6quence une majoration o~ le param~tre n interviendrait de mani6re m o i n s c a t a s t r o p h i q u e , sans t o u r d ' e x p o n e n t i e l l e s . I1 s e m b l e n 6 a n m o i n s i m p r o b a b l e d'obtenir d'aussi bonnes bornes que dans les meilleures versions effectives d u th6or~me des z6ros de Hilbert (cf. [He] ,[FG] et [Ko]). La preuve constructive du th4or~me des z6ros r4els
De mani~re g6n6rale u n ~th6or6me des z6ros~ affirme q u e certains faits ~g6om6triques~ ont une p r e u v e p u r e m e n t ~alg6brique~. Un exemple simple est fourni par la formule de Taylor. Par exempte p o u r un polynome de degr6 < 4 , on a l'identit6 alg6brique : (avec A = U - V) P(U) = P(V) + A.P'(V) + (1/2).A2.p"(V) + (1/6).A3.p(3)(V) + (1/24).A4.P (4) Cette idenfit6 alg6brique r e n d manifeste le fait g6om6trique suivant : si en un point v le p o l y n o m e P a toutes ses d6riv6es positives, alors p o u r tout u > v on a P(u) > P ( v ) . Ce fait g6om6trique, qui peut ~tre rendu manifeste par un tableau de variation, est 6galement clair par la formule de Taylor. C'est u n cas particulier d u l e m m e de Thorn, qui affirme (entre autres) que l'ensemble des points o~ un p o l y n o m e et ses d6riv6es successives ont chacun un signe fix6, est convexe. La construction d u nullstellensatz r6el utilise u n e version "identit4 alg6brique" de ce fait, donn6e par ce que nous appelons les formules de Taylor mixtes et les formules de Taylor g6n6ralis6es. L'id6e g6n6rale de notre p r e u v e constructive est la suivante. P o u r un corps o r d o n n 6 K il y a un algorithme de conception tr~s simple p o u r tester si u n syst6me de csg (conditions de signes g6n6ralis6es) portant sur ces p o l y n o m e s en plusieurs variables est possible ou impossible dans la cl6ture r6elle de K . C'est l'algorithme d e H 6 r m a n d e r (cf. la p r e u v e d u principe de Tarski-Seidenberg dans [BCR] chap. 1), appliqu6 de mani~re it6rative pour diminuer par 6tapes le nombre de variables sur lesquelles portent les csg. Si on r e g a r d e les a r g u m e n t s sur lesquels est bas6e la p r e u v e d'impossibilit6 (en cas d'impossibilit6), on voit qu'il y a essentiellement des identit6s alg6briques (traduisant ta division euclidienne), le th6or~me des accroissements finis et l'existence d'une racine p o u r un p o l y n o m e sur un intervalle oi~ il change de signe. Les ...-stellensatz r6els effectifs doivent donc pouvoir ~tre obtenus si on arrive "alg6briser" les arguments de base de la p r e u v e d'incompatibilit6 et les m6thodes de d6duction impliqu6es. Un pas important a d6j~ 6t6 r6alis6 avec la version alg6brique d u th4or6me des accroissements finis p o u r les p o l y n o m e s (cf. [LR]), qui a 6t6 ~ l'origine des formules d e Taylor mixtes et g6n6ralis6es. Un a u t r e pas a consist6 a t r a d u i r e sous f o r m e d e constructions d°identitds algdbriques certains raisonnements 616mentaires (du genre si A ~ B et B ~ C alors A ~ C ). I1 fallait en outre trouver une version "identit6 alg6brique" des axiomes d'existence dans la th6orie des corps r6els clos. C'est ce qui est fait a t-ravers la notion
d'existence potentielle.
325
Remarques sur Particle present N o u s intoduisons dans cet article une probl6matique o~ le role central est tenu par les constructions d'identit6s alg~briques (appel6es ~dncompatibilit~s fortes~) partir d'autres identit4s alg6briques, alors que dans les versions pr4c6dentes c'6taient plut6t les identit~s alg6briques elles-m~mes qui jouaient le role central. Ce c h a n g e m e n t de point de r u e a 6t6 motiv6 par le calcul de majoration luim~me. Ce qui, dans [Lom d], apparaissait sous l'appellation p e u plaisante d'~dmplication forte v u e c o m m e existence potentielle~, s'appelle d6sormais ~dmplication d y n a m i q u e ~ . Q u a n t aux anciennes implications fortes, elles ne jouent p r a t i q u e m e n t plus aucun role. N o u s d o n n o n s darts ce n o u v e a u cadre un t r a i t e m e n t unifi6 p o u r les p r e u v e s cas par cas 0~disjonction d y n a m i q u e ~ ) , l'implication (~dmplication dynamique~0 et l'existence 0~existence potentielle~). Significations de la preuve constructive pour diff6rentes 4coles philosophiques Bien que nous nous placions a priori dans un cadre constructif "~ la Bishop", tel que d6velopp6 dans [MRR] p o u r ce qui concerne la th6orie des corps discrets, comme nous ne pr6cisons pas le sens d u mot effectif ni celui du mot d6cidable, toutes les preuves p e u v e n t ~tre lues avec des lunettes adapt6es ~ la philosophie ou au cadre de travail de chaque lecteur particulier. Si on a d o p t e un point de vue "classique" par exemple, les procedures effectives r6clam6es dans la structure d u corps des coefficients par le math6maticien constructif p e u v e n t ~tre consid~r6es comme donn6es par des oracles. En cons6quence, les p r e u v e s fournissent u n e p r e u v e dans le cadre classique, et sans recours ~ l'axiome du choix, d u th60r~me des z~ros r~els dans un corps ordonn6 arbitraire. En fait les preuves donn6es fournissent des algorithmes uniform6ment primitifs r6cursifs, "uniform6ment" s'entendant par r a p p o r t ~ un oracle qui d o n n e la structure du corps des coefficients d u syst~me de csg consid6r6 : Si (Ci)i=l,...,m est la famille des coefficients et si P ~ 72 [(Ci)i=l,...,m ] l'oracle r6pond a la question ~ Quel est le signe de P((q)i=L...,m) ? ""
2)
Incompatibilit6s fortes
Incompatibilit6s fortes : d6finitions et notations N o u s consid6rons un corps ordonn6 K , et une liste de variables X1, X2..... Xn d~sign6e par X. N o u s notons doric K[X] l'anneau des polynomes K[X1,X2,._,Xn]. Etant donn~e une partie finie F de K[X] : nous notons F .2 l'ensemble des carr6s d'616ments de F . le monot'de multiplicatif engendrd par F est l'ensemble des produits d'616ments de FU {1}, nous le noterons M ( F ) . le c6ne positif engendrd par F est l'ensemble des sommes d'616ments d u type p.p.Q2 o~ p e s t positifdans K , P est dans M(F), Q est dans K[X]. Nous le noterons C~F) . enfin nous noterons I(F) l'id6al engendr6 par F .
326
D6finition et n o t a t i o n I : Etant donn6s 4 parties finies de K[X] : F>, F~, F=, F~, contenant des polynomes auxquels on souhaite imposer respectivement les conditions de signes > 0 , >/0, = 0 , :~ 0 , on dira que F = [F> ; F~ ; F= ; F~ ] est fortement incompatible dans K si on a une 4galit4 dans K[X] du type suivant : S + P + Z = 0 avec S c Yvf(F>U F#'2), P c Cp(F~U F>), Z c I(F=) Nous utiliserons la notation suivante pour une incompatibilit6 forte: ,~ [ S1 ) 0..... Si> 0, P1 )/0 ..... Pj,'/0, Z 1 = 0..... Zk= 0,N 1 • 0..... Nh:~ 0 ] ,], I1 est clair qu'une incompatibilit6 forte est une forme tr6s forte d'incompatibilit6. En particulier, elle implique l'impossibilit4 d'attribuer les signes indiqu4s aux polynomes souhait4s, dans n'importe quelle extension ordonn6e de K . Si on consid~re la cl6ture r6elle R de K , l'impossibilit6 ci-dessus est testable par l'algorithme de H6rmander, par exemple. Le th4or~me des z4ros r6els et ses variantes
Les diff6rentes variantes du th6or6me des z6ros dans le cas r6el sont cons6quence du th6or6me g6n6ral suivant : Th4or~me : Soit K un corps ordonn6 et R une extension r6elle close de K . Les trois fairs suivants, concernant un syst6me de csg portant sur des polynomes de K[X], sont 6quivalents : l'incompatibilit4 forte dans K l'impossibilit4 dans R l'impossibilit6 dans toutes les extensions ordonn4es de K Ce th4or6me des z4ros r4els remonte/~ 1974 ([Ste]). Des variantes plus faibles ont 6t6 4tablies par Krivine ([Kri]), Dubois ([Du]), Risler (IRis]), Efroymson ([Efr]). Toutes les preuves jusqu'~ ([Lom a]) utilisaient l'axiome d u choix. Degr6 d'une incompatibilit4 forte Si nous voulons pr6ciser les majorations de degr4 fournis par notre preuve du th6or6me des z6ros r6el, nous devons pr6ciser la terminologie. Nous manipulons des incompatibilit6s fortes 6crites sous forme paire, c.-~-d.: S + P + Z = 0
avec S c g , f(F>"2UF#'2), P c C ~ F ~ U F > ) ,
Zc/(F=)
(la consid6ration des formes paires d'implications fortes a pour unique utilit6 de faciliter un peu le calcul de majoration des degr4s). Q u a n d nous parlons de degr6, sauf pr4cision contraire, il s'agit du degr6 total maximum. Le degr~ d'une incompatibilitd forte est par convention au moins 4gal ~ 1, c'est le degr4 m a x i m u m des polynomes qui ~composenb~ l'incompatibilit6 forte. Par exemple, si nous avons une incompatibilit4 forte : ~, [ A > 0 , B > 0 , C > / 0 , D > , , 0 , E = 0 , F = 0 ] ~, explicit6e sous forme d'une identit6 alg6brique :
327
h k A2.B6 + C. ~ pi.Pi2 + A.B.D. ~ qj.Qj2 + E.U + F.V = 0 i=1 i=1 le degr6 de I'incompatibilit6 forte est : sup { d(A2.B6), d(C.Pi2) (i = 1,...,h), d(A.B.D.Q2) (j = 1,...,k), d(E.U), d(F.V) }. Le calcul de majoration Nous allons expliquer dans cet article comment peut ~tre men4 un calcul de majorations primitives r4cursives pour le th6or6me des z6ros r6els. Les d6tails des calculs sont dans [Lom d]. Les donn4es sont trois enfiers d, n, k qui majorent, dans un syst6me de csg incompatible H , respectivement les degr4s des polynomes, le hombre des variables et le nombre de csg. Le calcul doit aboutir ~ 3 fonctions primitives r6cursives explicites ~(d,n,k), ~(d,n,k) et ~(d,n,k) qui donnent des majorants pour, dans une incompatibilit6 forte ~, H ~, , respectivement le degr6 maximum, le nombre de termes dans la somme, et le nombre d'op4rations arithm6tiques dans K n6cessaires pour calculer les coefficients dans l'incompatibilit4 forte ~ partir des coefficients donn6s au d6part. En fait, chacun des th40r6mes ou propositions qui conduit ~ la preuve constructive du th4or6me des z4ros r6el peut ~tre accompagn4 d'une majoration primitive r6cursive du m~me type. Ces majorations s'enchainent les unes les autres, sans difficult4 majeure. Comme le calcul est tr6s fastidieux, nous nous en sommes tenus aux majorations de degr6s, laissant au lecteur courageux les deux autres majorations. On notera que l'usage de l'algorithme de H6rmander 'sans raccourci', ~ la base de notre m6thode, rend a priori les majorations obtenues sans int6r~t pratique. Constructions d'incompatibilit4s fortes D6finition 2 : Nous parlerons de construction d'une incompatibilit6 forte h partir d'autres incompatibilit6s fortes, lorsque nous avons un algorithme qui permet de construire la premi6re ~ partir des autres. I1 s'agit donc d'une implication logique, au sens constructif, liant des incompatibilit6s fortes. Notation 3 : Nous noterons cette implication logique (au sens constructif) par un signe de d6duction "constructif". La notation
($
$ et $ H2 $)
o.s $ H3 $
signifie donc qu'on a Tan algorithme de construction d'une incompatibilit4 forte de type H 3 ~ partir d'incompatibilit6s fortes de types H~ et H 2 Cela n'a d'int4r~t que lorsque les incompatibilit6s fortes d4sign6es en hypoth6se et en conclusion comportent des 616ments variables. Un exemple fondamental aidera a mieux comprendre.
328 Le raisonnement par s~parafion des cas (selon le signe d'un polynome) N o u s donnons ici un ~nonc~ d~taill~ des <
Proposition 4 : Soit H u n systbme de csg portant sur des polynomes de K[X], Q un ~l~ment de K[X] , alors: [ $ ( H , Q < O ) $ et ,], ( H , Q > O ) ,], ] ~ons ~, ( H, Q * 0 ) ,], (a) ~.~ $ H $ (a') [ J. ( H , Q~
3)
Versions alg~briques dynamiques de l'implicafion et d e la d i s j o n c t i o n
La v e r s i o n a l g 6 b r i q u e d y n a m i q u e
de l'implicafion
D6finition et notation 5 : Soient H I e t H 2 deux syst6mes de csg portant sur des polynomes de K[X] . N o u s dirons que le syst~me H I implique dynamiquement H2 lorsque, pour tout syst6me de csg H portant sur des polynomes de K[X,Y], on a la construction d'incompafibilit6 forte : .~, [ H2(X), H(X,Y) ] .1. ~ns "]- [ Hi(X), H(X,Y) ] .~ N o u s noterons cette implication dynamique par :
329
"(Hx(x) =~ H2(x) )" Lorsque le syst6me H 1 est vide, nous utilisons la notation " ( H 2 ( X ) ) ' .
Remarques : 1) On a trivialement l'4quivalence des affirmations : $ HI$ et "( H x ~ ( 1 = 0 ) ) " 2) La vision dynamique de l'implication correspond, dans les r6f6rences [Lore x] a l',dmplication forte vue comme existence potentielle),. En tant qu'implication forte ~statique,,, c'4tait une liste d'identit6s alg6briques. En tant qu'implication dynamique, cela devient un algorithme de manipulations d'identit6s alg4briques. Dans la mise en oeuvre concr6te d'algorithmes de construction du th4or~me des z6ros r4el, la vision dynamique est en fait beaucoup plus fructueuse que la vision statique. Certaines subtilit6s s'introduisent, comme le fait que deux implications qui ont la m@me signification peuvent avoir des dynamiques distinctes (c.-~-d. qu'elles se traduisent pas des algorithmes de manipulations d'identit6s alg6briques distincts), et ont alors des cofits (en termes de temps de calcul) diff6rents (pour plus de d6tails voir le paragraphe "Variations sur le th6me des implications dynamiques'). II apparait en fin de compte que les "bonnes notions" sont celles d'incompatibilit6 forte et d'implication dynamique, tandis que la notion d'implication forte serait plut6t un incident de parcours. Nous verrons un peu plus loin que les raisonnements cas par cas peuvent ~tre interpr6t6s par une autre "bonne notion", la version dynamique du ~ou~. La notation que nous utilisons iciest 16g6rement distincte de celle utilis6e dans les pr4c6dentes r6f6rences [Lom] pour noter les existences potentielles. Ceci nous permet de mieux insister sur la diff6rence de signification entre une implication forte ~statique~ et une implication dynhmique. Fonction-degr~ d'une implication dynamique Une implication dynamique *( H~ ~ algorithme fournissant la construction :
H2)*
signifie par d6finition un
$[H2,H] $ ~on,$[Hi,H]$ Chaque fois que nous 6tablissons une implication dynamique particuli~re, nous devons 6tablir des "majorations primitives r6cursives de degr6" pour cette construction d'incompatibilit6s fortes : le degr6 de l'incompatibilit6 forte construite est major6 par une fonction A(d,..;k,...) o~ d est le degr6 de l'incompatibilit4 forte initiale, k le nombre de csg dans H 2 etc .... (le pointvirgule isole les 'variables', qui d6pendent de l'incompatibilit6 forte initiale, des 'param~tres', qui ne d6pendent que de Hx et H 2 ). Nous disons qu'il s'agit d'une fonction-degr6 acceptable pour l'implication dynamique consid6r4e, ou encore, (par abus) nous parlons de la fonction-degr6 attach4e ~t l'implication dynamique.
Renforcement simultan4 de l'hypoth~se et de la conclusion dans les implications dynamiques Soient H I , H 2 , H3 des syst6mes de csg portant sur des polynomes de K[X].
330 Si on a l'implication dynamique
*(HI ~ H2)* on a 6galement l'implication d y n a m i q u e
° ( [ H 1, H 3] ~
[H2, H31 )°
et cette derni~re accepte la mSme fonction degr6 que la premi6re (simple constatation).
La transitivit6 des implications dynamiques La proposition suivante est imm6diate : il suffit d'enchainer les deux algorithmes de constructions d'incompatibilit6s fortes.
Proposition 6 : Soient H ~ , H 2, H 3 trois syst~mes de csg portant sur des polynomes de K[X]. Alors: [ ' ( H I ~ H 2)* et * ( [ H 1 , H 2] ~ H 3 ) ' ] impliquent *( H I ~ H 3)* Supposons que la premi6re implication dynamique admette comme fonctiondegr6 acceptable Al(d;p) off d est le degr6 de , ] , [ H 2, H ] ,~, et p repr6sente certains param6tres d6pendant de H 1 et H 2, supposons de mSme une fonction-degr6 acceptable A2(d;q) pour la deuxi6me implication dynamique, alors une fonction-degr6 pour I'implication dynamique construite est obtenue en composant les deux fonctions-degr6 pr6c6dentes : A(d;p,q) = Al(A2(d;q);p) La proposition qui suit est un corollaire imm6diat de ta pr6c6dente.
Proposition 7 • Soient H 1 , K 1 , K 2 ...... K n des syst6mes de csg portant sur des polynomes de K[X] . Alors : ['(H 1 ~
K1)','(H
I ::~ K2)" ...... " ( H I =~ K n ) ' ] ~ns "( HI ~ [ K 1 , K 2 , - - - ' , K n ] ) " En outre, une fonction-degr6 pour l'implication dynamique construite est obtenue en composant (dans un ordre arbitraire) les fonctions-degr4 des implications dynamiques de l'hypoth6se
Cas des implications dynamiques avec une seule condition de signe dans la conclusion Combin4e avec la proposition 7, la proposition qui suit permet de montrer l'6quivalence d'une implication dynamique avec la donn6e d'une liste d'incompatibilit6s fortes. Cette donn6e 6tait appel6e une implication forte dans les articles [Lom x].
Proposition 8 : Soient H 1 un syst6me de csg portant sur des polynomes de K[X] , Q un 616ment de K[X], (~ un 616ment de { >, < , =, > , <, ~ } et Cf l'~16ment oppos6, ators : ,], ( H 1 , Q G 0 ) ,], si et seulement si ° ( H I ~ Q (3" 0 ) °
331
Si d 1 est le degr4 d'une incompatibilit6 forte ,], ( H 1 , Q ~ 0 ) ,~, alors une fonction-degr4 acceptable pour l'implication dynamique est doon6e par (d;d 1) J ~ q~(d,dI) = d.d 1 + d + d 1 . (cf. prop. 4) Inversement si dQ est le degr6 du polynome Q et si A1 est une fonctiondegr4 acceptable pour l'implication dynamique °( H~ ~ Q ~" 0 )°, le degr4 de l'incompatibilit6 forte peut ~tre major6 par AI(2.dQ).
preuve> Dans le sens direct : soit H u n
syst~me de csg et une incompatibilit6 forte ,], ( H , Q a ' 0) ,~ de degr6 d , on peut construire l'incompatibilit6 forte ,], ( H I , H ) ,~ en raisonnant cas par cas. Dans te cas Q ~ 0 on utilise l'incompatibilit6 forte .J, ( H I , Q o 0 ) ,~ de degr6 d 1 et dans le cas Q G' 0 on utilise l'incompatibilit4 forte ~, H , Q o ' 0 ,], , on conclut en utilisant la proposition 4. R6ciproque : on a une incompatibilit6 forte sous forme paire de degr6 2.dQ : ~, ( Q o 0 , Q ~' 0),~, obtenue en lisant convenablement l'identit6 Q2+Q.(_Q) = 0, on applique alors la d6finition de l'imptication d y n a m i q u e en prenant pour H la seule condition Q 0 0. O v e r s i o n a l g 6 b r i q u e d y n a m i q u e d e la d i s j o n c t i o n D ~ f i n i t i o n et n o t a t i o n 9 :
Soient H 1 , H 2 . . . . . H k et K~, K 2 ..... K m des syst~mes de csg portant sur des polynomes de K[X] . Nous disons que le syst~me H~ implique dynamiquement la disjonction K I V K 2 V ... V K m lorsque, pour tout syst6me de csg H portant sur des polynomes de K[X,Y], on a la construction d'incompatibilit6 forte : {,~[ K~(X), H(X,Y) ]~, et ... et ,],[ KIn(X) , H(X,Y) ],~, } ~ons ,~[ HI(J0 , H(X,Y) ],~ NOUS noterons cette implication-disjonction dynamique p a r : " ( H i ( X ) ~ [K~(X) V K2(X) V ... V KIn(X)] ) ' . Lorsque le syst6me H 1 est vide, nous utilisons la notation " ( K I ( X ) V K2(X) V ... V Km(X))'. Enfin, la notation : " ( [ H I V H 2 V ... V Hk] ~ [ K I V K2V .... V Kin] )" signifie que chacune des implications-disjonctions dynamiques ° ( H i ( X ) ::~ [KI(X) V K2(X) V ... V Kin(X)] )° est v6rifi6e
(i = 1,...,k)
Remarque : Toute formule sans quantificateur de la thdorie du premier ordre des anneaux totalement ordonn6s dicrets/~ param6tres dans K est 6quivalente a une formule en forme normale disjonctive et donc ~ une formule d u type KI(X) V K2(X) V ... V Kin(X) oh les Ki(X) sont des syst~mes de csg portant sur des polynomes de K[X]. Les implications-disjonctions d y n a m i q u e s consituent une forme de raisonnement p u r e m e n t ~ddentit6 alg6brique~> concernant les formules sans quantifi-
332 cateur, oh la logique a 6t6 6vacu6e au profit d'algorithmes de constructions d'identit6s alg4briques. Fonction-degr4 d'une implication-disjonction dynamique
Une implication-disjonction dynamique " ( H I ( X ) ::~ [KI(X) V K2(X) V ... V KIn(X) ] )* signifie par d6finition un algorithme fournissant la construction : {~,[ KI(X), H(X,Y) ]~, et ... et ,~[ Km(X), H(X,Y) ],~ } ~ons ,~,[ HI(X), H(X,Y) ]~, Chaque fois que nous 6tablissons une implication-disjonction dynamique particuli6re, nous devons 6tablir des 'majorations primitives r6cursives de degr6' pour cette construction d'incompatibilit6s fortes : le degr6 de l'incompatibilit6 forte construite est major6 par une fonction A(d t .... d m) off d i est le degr6 de l'incompatibilit4 forte initiale n°i. Nous disons qu'il s'agit d'une fonction-degr6 acceptable pour l'implicationdisjonction dynamique consid6r6e. Exemples : La proposition 4 peut ~tre relue comme affirmant des disjonctions ou implications-disjonctions dynamiques : Proposition 4 bis : On a les implications-disjonctions dynamiques suivantes :
" ( Q e a 0 ==~[Q>O v Q < O ] ) * "( Q,,
(a) (a') (b) (c) (d) (e) q0x d6crites ~ la
La transitivit6 des implications-disjonctions dynamiques
L'6nonc4 le plus g6n6ral est le suivant : les implications-disjonctions dynamiques "( [ H 1 V H 2 V V Hk] ~ [K 1 V K2 V V Km] )° et "([ KIV K2V...VKm]~[LlV L2V...VLn])" impliquent : ...
...
"([ H~v H 2 V . . . V H k ] ~ [ L ~ V L2V...VL.])"
Cette transitivit6 s'obtient en enchainant les algorithmes de constructions d'incompatibilit6s fortes. Les fonctions-degr6 r6sultantes s'obtiennent donc par composition convenable des fonctions-degr6 initiales. On d6montrerait pour les implications-disjonctions dynamiques le principe de substitution analogue a celui d6montr6 pour les implications dynamiques (cf. infra proposition 15), par la m~me m6thode.
333
Cas avec une seule condition de signe Proposition 10:
Supposons que dans une implication-disjonction dynamique "( H I ::~ [ K 1 V K 2 V . . . V K m ] )" chaque syst6me K i du second membre soit une seule condition de signe Qi (~i 0, et notons Qi ~i 0 la condition de signe oppos6e. Alors on a l'implication-disjonction dynamique : ° ( H I ( X ) ~ [QI¢yl0 v Q2a2 0 v ... v QmOm 0] )° si et seulement si on a une incompatibilit6 forte : ,~[ HI(X),QI'C10,Q2-f20 ..... QmIm 0 ]•
(a) (b)
On obtient sans difficult4 les pr4cisions suivantes concernant les degr6s : Si (a) est v4rifi6 avec une foncfion-degr6 acceptable Al(dl ..... d m) et si chaque Qi a pour degr6 8 i alors on a une incompatibilit4 forte (b) de degr6 A1(2.81 ..... 2.8m). Si on a une incompafibilit6 forte (b) de degr6 8 , alors l'implication d y n a m i q u e (a) admet pour fonction-degr6 acceptable : (d 1 ..... d m) ~ * q0(d1 , q~(d2 .... , q0(dm, 8)...) (fonction q0 de la prop. 4) V a r i a t i o n s s u r le t h 6 m e d e s i m p l i c a t i o n s d y n a m i q u e s Pour de nombreuses implications de base, on a des algorithmes plus rapides, et moins cofiteux en degr6, que celui donn6 en appliquant les propositions 7 et 8, lorsqu'on veut les traiter en implications dynamiques.
Implications triviales et implications simples D6finition 11 : ( implications triviales ) Une implication HI(X) ~ H2(X) est dite triviale lorsque toute incompafibilit6 forte ~, [ H2(X) , H(X,Y) ] ~, fournit par simple relecture rincompafibilit6 forte $ [ H i ( X ) , H(X,Y) ] $ . L'implication dynamique "(HI(X) ~ H2(X))* accepte alors pour fonctiondegr4 : Ao(d) = d . Exemples : L'implicafion patibilit6 forte
[ A > 0, B > 0 ] ~
AB > 0 est triviale : dans l'incom-
.1, [ A B > 0 , H ] ,l, on relit chaque constituant AB (dans la partie .monoide>> ou dans la partie ,cone-) sous forme d u produit de A par B pour obtenir l'incompafibilit6 forte ~, [ A > 0 , B > 0 , H ] ,1, Notez que l'implication "contrappos6e" [ A > 0 , A.B < 0 ] ~ B < 0 n'est pas une implication simple. L'implication dynamique "([A>0,AB<0] ~ B < 0 )" peut 8tre obtenue par l'algorithme suivant : multipliez chaque terme de l'incompatibilit6 forte ,~ [ B < 0 , H ] ,~ par A et relire les termes off apparMt le produit A.B en consid6rant que AB est un seul bloc, provenant de l'hypoth6se AB _<0 : on obtient alors l'incompatibilit6 forte ~, [ A > 0 , A . B < 0 , H I ,1,
334
De m~me, l'implication B = 0 ~ A.B = 0 est triviale, tandis que la contrappos6e ne l'est pas. On a aussi l'implication triviale [ A > 0 , A ~ 0 ] ~ A > 0 , tandis que l'implication [ A > 0, A < 0 ] ~ A = 0 ne l'est pas. D6finitions 12: ( implications simples ) a) Une implication : HI(X) ~ T(X) = 0 est dite simple torsqu'elle est donn6e par une 4galit4 T = Y~Ni.V i o~ les N i sont les polynomes suppos6s nuls dans H~. On appelle degr6 absolu d'une telle implication simple l'entier : sup(d(Ni.Vi)) - d(T), et degr6 relatif le rationnel sup( d(NI.V i) ) / d(T) b) Une implication : Hi(X) ~ T(X) 5/ 0 est dite simple lorsqu'elle est donn6e par une 6galit6 T = Y. Ph.(Z Uh,j Uh,j 2 ) + Y. Ni.V i avec les m~mes hypotheses qu'en a), et off en outre tes Ph sont des produits de polynomes suppos6s > 0 , ou > 0, dans H~. (les Uh,j sont des positifs de K ). On appelle degr6 absolu d'une telle implication simple la diff6rence : sup(d(Ni.Vi) , d(Ph.Uh,j 2) ) -- d(T), et degr6 relatif leur rapport. c) Une implication : Hi(X) ~ T(X) > 0 est dite simple lorsqu'elle est donn6e par une 6galit6 T = S.R2 + Y. Ph.(Z Uh,j Uh,j 2 ) + ~ Ni.V i avec les m~mes hypoth6ses qu'en b), et off en outre S (resp. R ) est un produit de polynomes suppos6s > 0 (resp ¢ 0 ) dans H I . On appelle degr4 relatif d'une telle implication simple le rationnel : sup(d(S.R2), d(Ni.Vi) , d(Ph.Uh,j 2) ) / d(T) d) Une implication : Hi(X) ~ T(X) ¢ 0 est dite simple lorsqu'elle est donn6e par une 6galit6 T = S.R + ~ Ni.V i avec les m4mes hypoth6ses qu'en c). On appelle degr6 relatif d'une telle implication simple le rationnel : sup(d(S.R), d(Ni.V i) ) / d(T) e) Une implication Hi(X) ~ H2(X) est dite simple lorsque chacune des csg du second membre, Qi c~i 0, r6sulte de Hi(X) par une implication simple. On appelle degr6 relatif de cette implication simple le sup des degr6s relatifs des implications simples Hi(X) ~ Qi (3i 0. Lorsque le syst6me H2(X) ne comporte que des conditions de signes ferm6es ( = 0 , < 0, > 0 ) on appelle degr6 absolu de l'imptication simple, le sup des degr6s absolus des implications simples Hi(X) ~
Qi ~i 0.
I1 y a un algorithme particuli6rement simple p o u r expliciter l'implication dynamique correspondant a une implication simple donn6e d u type : H~(x) ~
T(X) = 0
Dans l'incompatibilit6 forte : ,], [ H(X,Y), T(X) = 0 ] ~, on remplace T par ~ N i . V i . Par exemple si T apparaissait sous forme T . W ,
on aura maintenant une
335
s o m m e Y. Ni.(W.V i) o~ chaque terme a un r61e a u t o n o m e dans la nouvelle implication forte :
~, [ H(X,Y) , Hi(X) ] ,1, On voit que le degr4 de cette derni~re a augment6 au plus du degr6 absolu de t'implication simple, et on en d4duit qu'it a 6t6 multipli4 au plus par le degr6 relatif de l'implication simple. Des consid6rations d u m~me genre s'appliquent aux autres cas d'implications simples et o n obtient : Proposition 13 : ( implications simples en tant qu'implications d y n a m i q u e s ) a) Une implication simple : Hi(X) ~ H2(X) , o~1 H2(X) ne comporte que des conditions de signes ferm4es, accepte p o u r fonction-degr6 : (d,8) ~ ~ d + 8 , o~ 8 est le degr6 absolu de l'implication simple. b) Une implication simple : Hi(X) ~ H2(X) accepte pour fonction-degr6 : (d;8") s * d.8" , oi~ ~' est le degr6 relate de l'implication simple. R e m a r q u e : Souvent, une implication simple a un degr~ absolu nul et u n degr6 relatif 4gal ~ 1, ce qui signifie que l'implication forte consid6r6e ne cofite rien p o u r ce qui concerne les degr6s. N o u s dirons indiff6remment 'implication simple de degr6 relatif 6gal ~ 1' o u 'implication simple qui ne cofite rien'. Dans une 4ventuelle mise en o e u v r e de l'algorithme, il est tou]ours plus 6conomique de traiter une implication simple en rant que telle. Trois e x e m p l e s :
Substitution d'dgaux : L'implicafion U = V ~ P(X,U) = P(X,V) est une implication simple qui ne coftte rien. (U et V sont ici suppos4es ~tre des variables et non des polynomes) Somme de deux positifs : L'implication [A > 0, B > 0 ] ~ A + B > 0 est simple de degr6 relate 5' = sup(d(A),d(B))/d(A+B) et accepte la fonction-degr6 : d~ ~ d.ff. L'implication [A > 0, B _ 0 ] ~ A + B _>0 est simple de degr6 absolu 8 = sup(d(A),d(B)) - d(A+B) et accepte la fonction-degr6 A : d t ....* d + 5. Point of~ un polynome unitaire a l e signe de son coefficient dominant : Soit Q un polynome, unitaire en la variable U distincte des Xi : Q(X,U) = U s + Cs_I(X).Us-1 + .... + CI(X).U + Co(X) Soit V(X) = s + Cs_I(X) 2 + .... + CI(X) 2 + Co(X) 2 . Alors on a des implications simples simultan6es qui ne coutent rien : [ ] ~ Q(X,V(X)) > 0 [ ] ~ Q(i)(x,v(x)) > 0 (d6riv6es par rapport ~ U) Signalons enfin quelques implications, qui sans &tre des implications simples, sont d'un traitement "rapide" en rant qu'implications dynamiques :
336
P r o p o s i t i o n 14 : (fonctions-degr4 de quelques implications particuli6res) a) L'implication [ A > 0 , A.B > 0 ] ~ (d;5)...~d+2.5
o~ 5 = d ( A )
B> 0
• M 6 m e chose avec = a la place de > .
b) L'implication [ A > 0 , A.B > 0 ] ~ (d;5,~'); .... ; sup( d.[i', d + 2.5 )
B> 0
"d+2.5
olh 5 = d ( A . B )
~ s u p ( d.5", d + 2.5 )
B> 0
accepte p o u r fonction-degr6 :
B> 0
accepte p o u r fonction-degr6 :
.
d) L'implication [ A > 0 , A.B > 0 ] ~ (d;5,5") ~
off 5 = d(A.B), 5' = d(A.B) / d(B).
e) L'implication [ A.B > 0 , A+B > 0 ] ~ fonction-degr6 : (d;5,5'), 8 = sup(d(A),d(B)). f) L'implication A 2k _<0 ~ (d;k):
[ A > 0 , B > 0 ] accepte p o u r
* d.3' + 25 off 5' = d ( A B ) / i n f ( d ( A ) , d ( B ) ) , A= 0
accepte p o u r fonction-degr6 :
" 2k.d
D e m ~ m e l'implication [ A > 0 , A < 0 ] ~ degr6 : d :
A = 0 accepte p o u r fonction-
," 2d.
g) L'implication (d;8').
accepte p o u r fonction-degr6 :
ot~ ~ = d ( A ) , 3' = d(A.B) / d(B).
c) L'implication [ A > 0 , A.B > 0 ] ~ (d;8):
accepte p o u r fonction-degr4 :
P(X,U) • P(X,V) ~ U :~ V accepte p o u r fonction-degr6 : ~ d.3' o£l 5' = d(P(X,U) - P(X,V)) / d(U - V)
Par e x e m p l e p o u r le a) : on multiplie, t e r m e a terme, l'implication forte p a r A 2, en p r e n a n t soin d e r e m p l a c e r les B.A 2 p a r (BA).A. Le p r i n c i p e de s u b s t i t u t i o n P r o p o s i t i o n 15 : O n consid6re des variables X1,X2..... Xn, UI,U2,...,U h, Z1,Z2,...,Zk, et des p o l y n o m e s P1,P2 ..... Pn d e K[Z]. N o t o n s P(Z) p o u r PI(Z) .... , Pn(Z) . Si on a
"(~,-~I(X,U) :~ ~--~2(X,U))"
(a)
alors o n a aussi ° ( H I ( P ( Z ) , U ) ~ H2(P(Z),U) ) ° (b) Si A 1 est u n e fonction-degr6 acceptable p o u r (a), u n e fonction-degr6 acceptable p o u r (b) est donn6e p a r :
d ~
~ g + Al(g + 8.d) of1 8 = sup(deg(Pi))
et X et g sont explicit6s dans la p r e u v e .
preuve> N o t o n s X = P(Z) p o u r : X 1 = P I ( Z ) ..... X n = Pn(Z). Soient Y1,Y2 ..... Yn d e s nouvelles variables. P o u r t o u t R f i g u r a n t d a n s H2(X,U) consid6rons P6galit6 qui p e u t ~tre o b t e n u e p a r d i v i s i o n s s u c c e s s i s v e s ties degr6s d e s R i sont tous inf6rieurs o u 4 g a u x au degr6 d e R) : R(X,U) = R(Y,U) + (X 1 - Y1) RI(X,Y,U) + ... + (Xn - Yn) Rn(X,Y,U) (1) En s u b s t i t u a n t Pi(Z) /~ Yi on obtient u n e 6galit6 : R(P(Z),U) = R(X,U) + (X 1 - P I ( Z ) ) R1(X, PfZ),U) + ... + (X n - P n ( Z ) ) Rn(X,P(Z),U) (2) Ces 6galit6s f o u r n i s s e n t u n e implication s i m p l e :
337
• ( [ H2(X,U), X = P(Z) ] ::# H2(P(Z),U) )" (3) d o n t le d e g r 4 absolu est major6 par ~t = s u p ( 0 , sup{ deg((X i - Pi(Z)) Ri(X,P(Z),U)) - deg(R(P(Z),U)) ; R figure d a n s H 2 , R(P(Z),U) ¢ cte } D e la me, m e manii~re, p o u r les R figurant d a n s H 1 o n a des 6galit6s : R(X,U) = R(P(Z),U) - (X1 - PI(Z)) RI(X,P(Z),U) - ... - (Xn - Pn(Z)) Rn(X,P(Z),U) (4) qui f o u r n i s s e n t u n e i m p l i c a t i o n s i m p l e • ( [ HI(P(Z),LO, X = P(Z) ] ::#
[ H I ( X , U ) , X = P(Z) ] ) •
(5)
d o n t le degr4 absolu est major6 par k = s u p ( 0 , sup{ deg((X i - Pi(Z)) Ri(X,P(Z),U)) - deg(R(X,U)) ; R figure d a n s H 1 } Par ailleurs l'implication d y n a m i q u e : • ( [ H I ( X , U ) , X = P(Z) ] ~
[ H2(X,U), X = P(Z) ] )•
accepte la m 6 m e f o n c f i o n - d e g r 6 q u e l'implication d y n a m i q u e En c o m p o s a n t (5), (6) et (3) o n obtient : • ( [ H I ( P ( Z ) , U ) , X = P(Z) ] ::~ Enfin, c o m m e les v a r i a b l e s l'implication dynamique :
X
H2(P(Z),U) ) •
ne f i g u r e n t pas d a n s
• ( H I ( P ( Z ) , U ) :::) [ H I ( P ( Z ) , U ) , X = P(Z) ]) )•
(6)
(a). (7) HI(P(Z),U),
on a
(8)
o b t e n u e en r e m p l a q a n t les X i par les Pi d a n s l'incompatibilit6 forte initiale. Elle accepte p o u r fonction-degr6 : d t * d.5 avec ~ = sup(deg(Pi)). En r6sum6, si a 1 est u n e fonction-degr6 acceptable p o u r (a), u n e f o n c t i o n - d e g r 6 acceptable p o u r ( b ) e s t d o n c : d. * ~,+Al(~t+&d) Q F o r m u l e s de T a y l o r m i x t e s
O n consid6re d e u x variables U et V e t o n p o s e A := U - V . O n consid6re u n p o l y n o m e P a coefficients d a n s u n corps o r d o n n 6 K o u plus gdndralement dans Un
commutatif A qui est une Q-alg~bre.
flnnffflu
Si degfP) x( 4 , o n a l e s 8 formules d e Taylor mixtes suivantes: P(U) P(V) = A.P'(V) + (1/2).A2.p'(v) + (1/6).A3.p(3)(V) + (1/24).A4.p (4) P(U) - P(V) = A.P'(V) + (1/2).A2.p"(V) + (1/6).A3.p(3)(U) - (1/8).A4.p (4) P(U) - P(V) = A.P'(V) + (1/2).A2.p"(u) - (1/3).A3.p(3)(V) - (5/24).A4.p (4) P(U) - P(V) = A.P'(V) + (1/2).A2.p"(U) - (I/3).A3.pC3)CU) + (1/8).A4.P (4) -
P(U) - P(V) = A.P'(LO - (1/2).A2.p'(v) - (1/3).A3.p¢3)(V) - (1/8).A4.p (4) PfU) - P(V) = A.P'CU) - (1/2).A2.p'(v) - (1/3).A3.p(3)0d) + (5/24).A4.P (4) P(U) - P(V) = A.P'(U) - (1/2).A2.p'0d) + (1/6).A3.p(3)(V) + (1/8).A4.P (4) P(U) - P(V) = A.P'CU) - (1/2).A2.p"(U) + (1/6).A3.p(3)(U) - (1/24).A4.p (4) C o m m e toutes les c o m b i n a i s o n s de signes possibles se pr4sentent, o n obtient : supposons que u et v attribuent la m ~ m e suite de signes (au sens large) p o u r les d6riv6es successives d ' u n p o l y n o m e P n o n c o n s t a n t de d e g r 6 < 4 , n o t o n s e 1 = 1 o u -1 selon que P'(u) et P'(v) sont tous d e u x > 0 o u tous d e u x < 0 , alors le fait q u e P(u) - P(v) a m S m e signe q u e e p ( u - v) est r e n d u 6vidnet
338
par l'une des formules ci-dessus, ce qui d o n n e l'implication sous f o r m e d ' u n e implication simple (u et v peuvent ~tre des 614ments de K mais aussi des variables, ou des polynomes) si u et v n'attribuent pas la m~me suite de signes p o u r un p o l y n o m e P de degr6 < 4 et ses d6riv6es successives, alors on a une identit6 alg6brique qui donne le signe de u - v a partir des signes des P(i)(u) et des ~(i) r (V) : la formule de Taylor mixte a utiliser est avec p(i) ( i = 0, 1, 2, ou 3) off i e s t le plus grand indice p o u r lequel tes deux signes ne sont pas identiques Plus g4n6ralement on a : Proposition 16 : (formules de Taylor mixte)
Pour chaque degr6 s , il y a 2 s- 1 formules de Taylor mixtes et toutes les combinaisons de signes possibles apparaissent. Formules de T a y l o r g6n6ralis6es (le l e m m e de T h o m sous f o r m e d'identit4s alg4briques) Le l e m m e de T h o m affirme (entre autres) que l'ensemble des points o~ un p o l y n o m e et ses d6riv6es successives ont chacun un signe fix6, est un intervalle. Une p r e u v e facile, p a r r6currence sur le degr6 d u p o l y n o m e , est bas6e sur le th6or~me des accroissements finis. Nous pouvons, grace aux formules de Taylor mixtes, traduire ce fait g6om6trique sous forme d'identit4s atg6briques, que nous appellerons des f o r m u l e s de T a y l o r g6n6raIis6es. Plut6t que de risquer un 6nonc6, nous d o n n o n s un exemple. Un exemple : Consid4rons le polynome g6n6rique de degr6 4 P(X) = co X~ + c I X3 + c2 X3 + c3 X2 + c4 X4 + cs Consid6rons le syst6me de conditions de signe portant sur le p o l y n o m e P e t ses d6riv4es successives par rapport a la variable X : H(U) : P(U) > 0, P'(U) < 0, P(2)(U) < 0, P(3)(U) < 0, P(4)(U) > 0. Consid4rons 6galement le syst6me de conditions de signe g6n6ralis6es obtenues en relachant toutes les in6galit6s, sauf la derni6re : H'(U) : P(LO > 0, P'(U) < 0, P(2)(U) ~ 0, P(3)(U) _<0, P(4)(LD > 0. Le lemme de T h o m affirme (entre autres) : [H'(U),H'(V), U
P'(Z) = P'(U) + P(2)(U).(Z - U) + 1/2 P(3)(Z).(Z - U) 2 - 1/3 P(4).(Z - U) 3 P(Z) = P(V) + P'(Z).(Z V) - 1/2p(2)(Z).(Z - V) 2 + 1/6 P(3)(V).(Z - V) 3 + ... 1/8 P(4).(Z - V)4
Po
n,
Dans ~) on remplace P(3)(Z) ,par son expression donn6e dans c0 et, 0n,,,,,0btient : !
[ ~,)
I
p(2)(Z) = p(2)(LD + p(3)(V).al _ p(4) [hi.a2 + 1/2 hi21
[
339
On obfient de la m~me mani6re, par substitutions : 'it)
P'(Z) = P'(U) + P(2)(U).A1 + 1/2 P(3)(V).A12-- P(4).[a12.A2/2 + A13/3]
et enfin 5') P(Z)
= P(V) - P ' ( U ) . A 2 - P ( 2 ) O d ) . [ • I . A 2 + 1/2A22] p(3)(V).[ A12.A2/2 + ~1.A22/2 + A23/6] + P(4).[A13.A2/3 + A12.Z~22/2+ A1.A23/2 + A24/8] -
Les 6galit6s (z), [Y), 7'), ~') donnent l'implication (1) sous forme d'une implication simple. La premi6re 4galit4 est une formule de Taylor ordinaire portant sur le p o l y n o m e p(3). Les trois derni6res peuvent ~tre r u e s c o m m e des formules de Taylor g6n6ralis6es portant sur les polynomes p(2), p, et P . Plus g4n4ralement, on obtient: Th6or~me 17 : (4vidence forte du lemme de Thorn) Soit T u n e variable distincte des C i . Soient P E K[C][T], de degr6 s e n T , °1, (~2..... a s une liste form6e de < ou >. On note H(C,T) ou H(T) le syst6me de csg : P'(C,T) c~ 0 ..... P(i)(C,T) c~i 0, ..., P(s)(C,T) crs 0 (les d6riv6es sont par rapport h T ). Soit H'(T) le syst6me de csg obtenu ~t partir de H(T) en relachant toutes les conditions de signe sauf celle relative h p(s). Soit HI(T) le syst~me de csg : P(s)(C,T) > 0, P(i)(C,T) )/0, i = 1, ..., s - 1 . Soient enfin trois variables U , V , Z distincte des C i . On a alors les implications dynamiques suivantes : "( [ H'Od), H'(V), U o 1 V ] ~ POd) > P(V) )" (a) "( [ HI(U), V > U ] ~ P(V) ) POd) )" (b)
"( [ H'(U), H'(V), U < Z < V ] ~
H(Z) )"
(c)
Ce sont des implications simples qui ne cofitent rien. preuve> L'implication d y n a m i q u e (a) r6sulte de formules de Taylor mixtes. L'implication d y n a m i q u e (b) r6sulte de la formule de Taylor ordinaire au point U. Les formules de Taylor g4n6ralis6es 6tablies pour l'implication dynamique (c) r6sultent des formules de Taylor mixtes. On constate qu'il s'agit d'implicafions simples qui ne cofitent rien (ceci parce que U, V, Z sont des variables et non des polynomes). Q
340
4)
Existences p o t e n t i e l l e s
N o t a t i o n s et d6finitions Elles sont tout h fait analogues ~ celles donn6es pour les implications dynamiques.
D6finition et notation 18 : Soient H I un syst~me de csg portant star des polynomes de K[X], H 2 un syst~me de csg portant sur des polynomes de K[X,TvT2,._,Tm] = K[X,T]. Nous dirons que les hypotheses H I autorisent l'existence des Ti vdrifiant H 2 lorsque, pour tout syst~me de csg H portant sur des polynomes de K[X,Y], les variables Yi et Tj 6tant deux ~ deux disfinctes, on a la construction d'implication forte :
$ [ H2(X,T) , H(X,~9 15 ~ons$ [ Hi(X) , H(X,Y) ] $ . d'existence potentielle des Ti vdrifiant les hypotheses H~
Nous parlerons 6galement
H 2 sous
Nous noterons cette existence potentielle par : "(H1CX) ::~ B T H2(X,T) ) ' . Lorsque le syst~me H 1 est vide, nous utilisons la notation * ( 3 T H2(X,T) )*. La notion de fonction-degr4 acceptable pour une existence potentielle peut ~tre elle aussi directement recopi4e du cas des implications dynamiques.
Remarques : 1) La notion d'existence potentielle est une notion d'existence faible. L'existence potentielle signifie qu'il n'est pas grave de faire comme si les T i existaient vraiment, parce que cela n'introduit pas de contradiction: on peut paraphraser la d6finition en disant : pour construire l'incompatibilit4 forte $ [ HI(X), H(X,Y) ] $ il suffit d'avoir construit $ [ H2(X,T) , H(X,Y) ]$ 2) On pourrait 4tendre la d6finition de l'existence potentieUe en remplaqant le syst&me de csg H2(X,T) par une disjonction de syst6mes de csg, comme on a fait avec la notion d'implicafion-disjonction dynamique.
Quelques r6gles de manipulation des 6nonc6s d'existence potentielle Transitivit4 La transitivit6 des existences potentielles est imm6cliate. Voici l'6nonc6 pr6cis6 en termes de fonctions-degr6 acceptables.
Proposition 19 : (transitivit6 dans les existences potentielles) On consid~re des variables X1,X2,...,Xn,TvT2,...,T m, U1,U2,...,Uk et des syst~mes de csg Hi(X), H2(X,T) et H3(X,T,U).
341
Les existences potentielles ° (HI(X) ~ 3 T H2(X,T) ) ° et ° (H2(X.T) ~ B U H3(X,T,U) ) ° impliquent l'existence potentielle : °(HI(X) ~ 3 T,U Ha(X,T,U) )" Supposons que la premiere existence potenfielle admette comme foncfiondegr6 acceptable Al(d;p) off d est le degr~ de l'incompafibilit~ forte ~, [ H2(X,T), H(X,Y) ] ,]. et p repr~sente certains param~tres d6pendant de HI(X) et H2(X,T), supposons de mSme une fonction-degr6 acceptable A2(d;q) pour la deuxi~me existence potentielle, alors une fonction-degr6 pour l'existence potentielle construite est donn6e par : A(d;p,q) = A1(A2(d;q);p) Preuves cas par cas Voici maintenant u n 6nonc6 corresponclant aux preuves cas par cas d'une existence potentielle, cons6quence imm6diate de la proposition 4 . Proposition 20 : (raisonnement cas par cas) Soit Q un polynome de K[X]. a) Pour d6montrer une existence potentielle "( [ HI(X), Q ~: 0 ) ~ B T H2(X,T) )" il suffit de d6montrer chacune des existences potenfielles " ( [ H I ( X ) , Q > 0 ] ~ B T H2(X,T))* e t ' ( [ H I ( X ) , Q ( 0 ] ~ B T H2(X,T))" Si A i (i = 1,2) sont les deux fonctions-degr6 des existences potentielles suppos6es, une fonction-degr6 pour l'existence potentielle d6duite est donn6e par : A1 + A 2 a'), b), c), d), e) : 6nonc6s analogues d6calqu6s de la proposition 4 Le principe de substitution Le principe de substitution pour les existences potentielles se d6montre comme pour les implications clynamiques. L'existence implique l'existence potentielle Un autre principe utile est le fait que l'existence implique l'existence potentielle. II s'obtient facilement : on remplace les variables T i ~existentielles~ par les polynomes concrets Pi qui r6alisent l'existence. On reconnait l~ une analogie formelle avec la r~gle d'introduction du quantificateur existentiel en calcul naturel par exemple (cf. [Pra]). Proposition 21 : ( l'existence implique l'existence potentielle) Soient PI,P2,...,Pm E K[X] et notons P(X) pour PI(X) ..... Pro(X). On a l'existence potentielle : "(H2(X,P(X)) ~ 3 T H2(X,T) )" . Si 8 majore les degr6s des Pi • l'existence potenfielle accepte pour fonctiondegr6 : (d;8) ~ ~ d.sup(1,8)
342
CoroUaire : (m~mes hypoth6ses)
Si *(HI(X) ::~ H2(X,P(X)) )" alors °(HI(X) ~
3 T H2(X,T)) °
Si A1 est une fonction-degr6 acceptable pour l'implication forte de l'hypoth6se, une fonction-degr6 acceptable pour la conclusion est donn4e par : (d;8) ~ , Al(d.sup(1,8)) off 8 majore les degr6s des Pi •
E.xistences p o t e n t i e l l e s f o n d a m e n t a l e s On sait d6montrer les existences potentielles correspondant aux deux axiomes existenfiels de la th4orie des corps r4els dos. Th4or~me 22 : (autorisation de rajouter l'inverse d'un non nul) On a l'existence potentielle de l'inverse d'un non nul. Ce qui s'6crit: " ( U ~ : 0 ~ 3 T I = U . T )* Soit ~ le degr6 de U, une fonction-degr6 acceptable pour l'existence potentielle est (d;8) : - d + d.3 + R e m a r q u e : La preuve de cette existence potentieUe recopie ce qu'on fait, dans la preuve d u th6or6me des z4ros de Hilbert, pour passer d u th6or~me des z6ros faible au th6or6me des z4ros g6n6ral (c'est le ~
343
5)
Majorations finales
Tableaux de H6rmander N o u s d o n n o n s ici quelques majorations directement li6es a l'algorithme de H6rmander lui-m~me (cf. [H6r] annexe, ou [BCR] chap. 1). Proposition 24 : (Tableau de H6rmander pour des polynomes en une variable) Soit K un corps ordonn6, sous-corps d'un corps r6el d o s R . Soit L = [P~, P2, ..., Pk] une liste de polynomes de K[Y]. Soit P la famille de polynomes engendr6e par les 416ments de L et par les op6rations P* ~ P ' , et (P,Q)* J Rst(P,Q). Alors : 1) T estfinie. 2) On peut 6tablir le tableau complet des signes pour T e n utilisant les seules informations suivantes : le degr6 de chaque polynome de la famille; les diagrammes des op4rations P 1 * P ' , et (P,Q) 1 * Rst(P,Q) (o1:1 deg(P) ~ deg(Q) ) dans T; et les signes des constantes de T . Si s majore les degr6s des Pi, le nombre de coefficients d'616ments de P , et donc aussi le nombre de points d u tableau de HSrmander est major6 par: (k+l) 2s Ualgorithme de H 6 r m a n d e r traite des polynomes en n variables, en 61iminant chaque variable l'une apr6s l'autre. A chaque 61imination d°une variable, le n o m b r e de p o l y n o m e s ~t consid6rer et leurs degr6s croissent de mani6re impressionnante. Ceci est pr6cis6 dans la proposition suivante : Proposition 25 : (Tableau de HSrmander param6tr4) Soit K un corps ordonnG sous-corps d'un corps r6el d o s R . Soit L = [Q1, Q2, -.., Qk] une liste de polynomes de K[X1, X2, .... Xn][Y]. On peut construire une famille finie y" de polynomes de K[X 1, X2, ..., Xn] telle que, pour tous x 1, x 2, ..., x n dans R , en posant Pi(Y) = Qi(Xl, x2, .... xn;Y), le tableau complet des signes pour L = [P1, P2 ..... Pk] est calculable a partir des signes des S(x1, x 2, .... x n) pour S E y-. Supposons que la liste L poss6de k 616ments de degr4 en X major6 par 8 et de degr4 en Y major4 par s . Consid6rons la famille G , form6e de tousles coefficients de t o u s l e s polynomes de tousles tableaux de H6rmander possibles, construits sur L , en remplaqant l'op6ration "reste" par l'op6ration "pseudoreste". Une famille F convenable peut ~tre extraite de G. Alors : le degr6 de chaque polynome de ~ et de chaque pseudo-division est major6 par : 8.(s+1)!, (sauf s i n = 0 , d o n c 8 = 0, et les degr6s sont major6s par s ). le nombre d'416ments de la famille
~
est major6 par :
(k+l) 2s
344
Men6 jusqu'au bout, cet algorithme p r o d u i t donc une explosion de degr4s obtenue en it6rant n-1 fois ( n 6tant le nombre de variables) la fonction s : ; s !. Ceci conduit a la majoration finale.
Nullstellensatz, positivestellensatz et nichtnegativestellensatz r6els effectifs Th4or~me 26 : Soit K un corps ordonn6, sous-corps d'un corps r6el d o s R . Soit H(X1,X 2.....Xn) un syst6me de csg portant sur une famille finie de polynomes de K[XI,X2,...,X n] . Ce syst6me est impossible dans R si et seulement siil est fortement incompatible dans K . En termes plus formalis6s : Si ~, H(XI,X2,...,X n) ~, (dans K ) , alors les csg H sont impossibles ~ r6aliser dans n'importe quelle extension ordonn6e de K . Si V x p x 2 , . . . , x n E R H(xl,x2,...,Xn) est absurde, alors : ~, H(X1,X 2..... X n) J, (dans K ). Pr6cis6ment, si k est le nombre de csg dans H(X1,X2,...,X n) et d le degr4 maximum, on peut calculer une implication forte ,], H(X1,X 2.....Xn) ~, (dans K ) de degr6 major6 par le nombre ~26(d,k,n) donn6 par la tour d'exponentielle a n+4 6tages •. d.lg(d)+lglg(k)+cte 22''
Remarque : La principale cause d'explosion des degr6s dans la majoration finale actuelle r6side dans l'utilisation de l'algorithme de H6rmander. On p e u t donc esp6rer am61iorer sensiblement ces majorations en se basant sur d'autres preuves, 616mentaires mais moins longues, d'incompatibilit6. R e m e r c i e m e n t s : Je remercie Marie-Franqoise Roy p o u r ses n o m b r e u x commentaires et suggestions. Bibliographie :
[BCR]
[Du] [Err] [1G]
Bochnak, Coste M., Roy M.-F. : G6om6trie Alg6brique r6elle. Springer-Verlag. A series of Modern Surveys in Mathematics n°11. 1987. Dubois, D. W. : A nullstellensatz for ordered fields, Arkiv for Mat., Stockholm, t. 8, 1969, p. 111-114 Efroymson, G. : Local reality on algebraic varieties, J. of Algebra, t. 29, 1974, p. 113-142. Fitchas N., Galligo A. : Nullstellensatz effectif et Conjecture de Serre (Th6or~me de Quillen-Suslin) pour le Calcul Formel. Math. Nachr. 149
p 231-253(1990) [He]
H e r m a n n Greta : Die Frage der endlich vielen Schritte in der Theorie der Polinomideale, Math. ANN. 95 (1926), 736-788
345
[H6r]
[Ko] [Kril [Lore a]
[Lom b] [Lore c]
[Lore d] [LR]
[MRR] Feral [Rts] [Ste]
H6rmander, L. : The analysis of linear partial differential operators, vol 2, Berlin, Heidelberg, New-York, Springer (1983). 364-367. Koll~ir J. : Sharp effective Nulstellensatz. I. AMS 1 p 963-975 (1988) Krivine, J. L. : Anneaux pr6ordonn6s. Journal d'analyse math6matique, t.12, 1964, p. 307-326 LombardiH.: Th4or~me effectif des z6ros r6el et variantes. Publications Math6matiques de l'Universit6 (Besanqon). 88-89. Fascictfle 1. Lombardi H . : Effective real nullstellensatz and variants, in ~MEGA 90~, mai 1991, chez Birkhafiser. (Version anglaise plus courte) Lombardi H. : Nullstellensatz r6el effectif et variantes. C.R.A.S. Paris, t. 310, S6rie I, p 635-640, 1990. Lombardi H.: Th6or6me effectif des z6ros r6el et variantes, avec une mat,oration explicite des degr6s. 1990. M6moire d'habilitation. Lombardi H., Roy M.-F. : Th6orie constructive 616mentaire des corps ordonn6s. 1989. Publications Math6matiques de Besanqon. Th6orie des Nombres 1990-91. Version anglaise moins d6taill6e ~Constructive elementary theory of ordered fields~ in ~MEGA 90~, mai 1991, chez Birkhafiser. R. Mines, F. Richman, W. Ruitenburg : A Course in Constructive Algebra. Springer-Verlag. Universitext. 1988. PrawitzD. : Ideas and results of proof theory. Proceedings of the second scandinavian logic symposium (juin 70). Studies in Logic and Foundations of Mathmatics n°63, 235-307. North Holland. Risler, J.-J. : Une caract6risation des id6aux des vari6t6s alg6briques r6elles, C.R.A.S. Paris, t. 271, 1970, s6rie A, p. 1171-1173. Stengle, G. : A Nullstellensatz and a Positivestellensatz in semialgebraic geometry. Math. Ann. 207, 87-97 (1974)
MINIMAL
GENERATION
OF B A S I C S E M I - A L G E B R A I C
OVER AN ARBITRARY
ORDERED
SETS
FIELD
M. MARSHALL AND L. WALTER If A is a ring (commutative with 1), F ( p ) denotes the residue field of A at a prime p c_ A and Sper A denotes the real spectrum of A [2], [3], [8], [9]. If A is an F-algebra and T C_ F is a preordering, SperTA := {Q e Sper A ! Q D_T}. This is a saturated set in Sper A in the terminology of [13]. Fix a real closed field R and a subfield F C_ R. Let P C Sper F be the ordering induced by the inclusion. Fix an algebraic set V = {x E R n I fi(x) = 0 for i = 1 , . . . , k} FiX, ,...,X.] where f l , . . . , f k e F [ X 1 , . . . , X ~ ] and let A = (/1,...,A) ' A semi-algebraic set S C V is basic over F (or simply F-basic ) if s = {~ ~ v 1g~(~) > o A . . . A g,(~) > 0 ^ h~(x) >_ 0 A - . . A h,(~) _> 0} where g~,..., g~, h i , . . . , h t G F [ X 1 , . . . , Xn]. If t = 0 (resp. s = 0), S is said to be basic open over F (resp. basic closed over F ). A semi-algebraic set is defined over F if it is a finite union of F-basic sets. Define s f ( V ) (resp. ~-F(V)) to be the least integer s _> 1 such that each S C_ V which is basic open over F (resp. basic closed over F ) is expressible as S = {X E V [ g l ( x ) > 0 ^ . . . ^ ~ ( x ) > 0} (resp. S = {x e V lgl(x) > 0 A . . . ^ ~ ( x ) > 0}) where g l , - . . , gs 6 F [ X 1 , . . . , Xn].
The object of this paper is to give bounds for s y ( V ) and ~F(V), thus generalizing results in [5], [16]. The result we obtain is stated in Theorem 1.2 below. In §2, we show, at least in the case V = R n, that the bounds in T h e o r e m 1.2 are best possible. 1. B o u n d s f o r s F ( V ) a n d g F ( V ) . We need the following notation: for any Q E S p e r F , let AQ : F --* N U o o be the associated real place and vq the valuation associated with AQ (see [10].) Define ~Q(F*) and e(Q) e {0,1} is defined as ~ ( Q ) := re(Q) + e(Q) where re(Q) :. . . .a. :. ~ 22vq(F.) follows: let qoQ : F -~ F(Q) U oo be the coarsest place such that AQ factors through ~Q and such that the induced place F(Q) -~ N U oc has 2-divisible value group. T h e n e(Q) :=
0
if F(Q) is hereditarily Euclidean
1
otherwise.
Here a field K is called hereditarily Euclidean if K and all its formally real (finite) algebraic extensions are Euclidean [11].
347
N o t e 1.1. An ordered field (K, P ) is hereditarily Euclidean iff P extends uniquely to each formally real finite extension of K. (The one implication is clear. For the other, let L be an extension of K and let Q 6 S p e r L extend P. If Q ¢ L 2, there exists a E Q, a ~ L 2. Then Q (and therefore, P) extends in two ways to L I v e ] . ) T h e o r e m 1.2. Let "~ := ~ ( P ) and d = dim V. Then
sf(V) <_d+-~ -gF(V)
--
.....x~] ~ T[x~ ..... x,] is precisely the ideal n{supp Q ] of the composite map A --~ T[x~ (fl,...,f~) I(vn~") Q E SperpA}. Since F C_F is algebraic, A ~ T[x~/(vnY,),...,x.] is integral so d l ( S p e r p A ) = dim-~[zt,...,x,] z(vn~") = dim V n F'~ and by [3, 7.5.6], dim V N-F ~ = do(SpereA). It remains only to show that dim V = dim V n-~n. By [3, 2.3.6], V N ~ n is a disjoint union of semi-algebredc sets $ 1 , . . . , Sm where each Si is semi-algebraically homeomorphic to (0,1) a' C_ ~ d , and by [3, 2.8.9], d i m Y N-F n = m a x { d l , . . . , d m } . By the Transfer Principle [3, 5.2.3], V is the disjoint union of the semi-algebraic sets (S~)R,..., (Srn)R and each (Si)R is semi-algebraically homeomorphic to (0, 1) d' C R d~. Therefore, by [3, 2.8.9], dim V = m a x { d 1 , . . . , dm} = dim V n F=. This completes the proof. L e m m a 1.6. The map • : V -+ S p e r p A given by x ~-* P~ {f E F[X1,...,Xn] [ f ( z ) >_O} induces an isomorphism C ~-~ ~-1 (C) o£ ~he Boolean algebra of cons~ruc6ble se~s in SperpA onto ~he Boolean a/gebra of seml-algebraic sets in V which are defined over F. =
Proof. It is clear that the map C ~ (I'-I(C) is a surjectlve homomorphism. injectivity follows from the Transfer Principle [3, 5.2.3].
The
It follows from (1.6) that a F ( V ) = s(SperpA) and ~ F ( V ) = "~(SperpA) where s, are defined as in [13]. Thus, to prove (1.2), we need only show that s(Sper~,A) < d + ~
348
and X(SperpA) < d(d + 1)/2 + (d + 1 ) ~ , where d = do(SperpA) = dl(SperpA). fact, we obtain a slightly more general result.
In
1.7. Let A be a finitely-generated F-algebra, T C F a proper preordering and X = SperTA. Then
Theorem
(t)
do(X)
:
dl(X).
this e~e, we c m d ( X )
::
do(X) = d l ( X ) the di.~¢~io~ or X . mso,
(2)
s(X) <_ d + -~
(3)
~(X) < d(d + 1)/2 + (d +
l)m
where d : : d(X) and -~ := sup{~(P) I P 6 SperTF}.
Proof. (1) is true if T is an ordering (by (1.5) applied in the case R is the real closure of (F, T).) Also, it is clear that any chain of orderings in SperTA contracts to an ordering P 6 SperTF. Thus, do(SperTA) --sup{do(SperpA) [ P 6 SperTF} =sup{dl(SpervA) [ P 6 SperTF] <_d~(Sp~rTA).
The remaining inequality dl(SRerTA) < sup{dl(SperpA) I P 6 SRerTF} is a consequence of the following: L e m m a 1.8. Suppose A is a commutative ring, X C Sper A is Tychonoff dosed and
p is a minimal prime over •{suppP I P E X } . Then p = s u p p P for some P G X . Proof. For each f 6 A \ p , there exists P E X such that f ~ suppP. By the compactness of X in the Tychonoff topology, N
{P6X]ftsuppP}¢O"
f6_A\p
Thus, there exists P E X with suppP C_ p and by the minimality of p, we have
supp P : p. Before we can complete the proof of (1.7), we must generalize a result in [7] on the behavior of the stability index under field extensions. T h e o r e m 1.9. Let F C K be £elds, T C F a proper preordering, X = SperTK. Then
s(X) <_ trdeg K ] F + where ~ := sup{'~(P) [ P e SperTF}.
Proof. We use the fan characterization of s(X) [10]:
s(x) = ~p{log~ IVl I v c x is a fan}. Let V _C X be a fan. By Brgcker's theorem on trivialization of fans [10, 5.13j, there exists a valuation v on K fully compatible with V such that the induced fan V on the
349
residue field K is trivial. Let T1 = ~ K2T. By the Krull-Baer Theorem [10, 3.12], we have
,.
v(K*)
--
and Iog2[V I E {0, 1}. (Replacing V by a bigger fan if necessary, we may even assume we have equality.) Fix an ordering Q E V and let P = Q cl F. It suffices to show
_. v(K*) -dzm2v--(~l. ) + log2 IV I < trdeg KIF + -~(P).
(1)
Since T~ = ~ K2T C Q and Q is v-compatible, we have v(Tl*) = 2v(K*) + v(T*). Let W = {c~ e v(K*) 12~(~ e v(F*) for some r > 0}. Then
a. .(K*) .(K*) .. 2~(K*) + W zm2 v(Tl") = dim2 2v(K*) + W + a z m 2 2 ~ +'v(T-*)"
(2)
If ai E K*, ki C Z not all zero are such that ~ k l v ( a i ) C v(F*) then, dividing by the highest power of 2 common to the ki, we have ~ liv(ai) E W, where the li ~ Z and at ., v(K*) ., v(K*) least one of the Ii is odd. This shows azmz v(F.) --> azm22vUFa'yyw and hence, •
v(K*)
trdeg K[F > d z r n z ~
(3)
+ trdeg K I F
_.
~(g*)
>_e,m~
2v(-F6¥ w
--
2,(K*)+w
where F is the residue field of VIE. Also, 2v(g*)+v(T*)
(4)
,. 2v(K*) + W a,m: 2 ~ - ~ ~ - ~ )
~ ~--
w 2W+v(T*) SO we have
W W ,. v(F*) = dim2 2W + v(T*) < ~ i ' ~ -< a'm~ 27--~)
where the last inequality follows from Brbcker's Index Formula [7, 3.2]. Since Q is v-compatible, P is compatible with VIE so the place ,~p : F --+ ~ [.J oo factors through the place p : F -~ F U c~ associated with V[F. Thus, we have (5)
v( F * )
6"
zrn2 ~ )
,.
vp(F * )
< azm22vp(F,) =
re(P).
Combining (2)-(5), we have (6)
,.
v(g*)
azm2~
< trdeg K]F + re(P).
This leaves the case where IV I = 2 and we have equality at (6). To prove (1) in this case, we must show e(P) = 1.
350 N
w
Since we have equality at (6), we must have equality at (3) so F C K is algebraic. Fix a finite extension F1 of F such that F1 C_ K and the two orderings in V C Sper K remain distinct when restricted to F I . W'e also have equality at (5) so re(P) = a*rn2 " v(F*) Thus the place F ~ IR U eo 2v-ggp~. induced by factoring Ap through p has 2-divisible value group. By the definition of the place hop : F ~ F ( P ) U oe, p factors through hop inducing a place F ( P ) -+ F U ~ . Let F1 be a finite unramified extension of F(P) having F1 as residue field. Then F1 has at least two distinct orderings so F ( P ) is not hereditarily Euclidean and therefore, e(P) = 1. This completes the proof. We return to the proof of (1.7). By [13, 5.1],
s(X) = sup{s(X(p)) I p C_ A is a real prime with X(p) ~ (~}. Let p C_ A be a real prime with X(p) ¢ 0. Since X = SperTA, X(p) = SperTF(p) so we have
(*)
s(X(p)) < trdeg F ( p ) l f + ~ = dim A/p + m
by (1.9). Since dim A/p <_ d(X) = d, s ( X ) <_d +-~. This proves (2). Also, by [13, 5.3], d
_< ~0
where si = sup{s(X(p)) ] p C A is a real prime and d i m A / p <_ i}. By (*), si <_ i +-~ for 0 < i < d. Thus, d "g(X) < ~-~(i + "~) = d(d + 1)/2 + (d + 1 ) ~ i=0
which proves (3). This completes the proof of (1.7). 2. s r ( R n) a n d gF(Rn). One would like to show the bound for sF(V) given in §1 is the best possible. Although we are not able to do this in general, we can in the special case where V = R n. We use the following: T h e o r e m 2.1. For each P 6 Sper F and for each finite k <_~ ( P ) , there exists a finite extension K o f F such that s(SperpK) >_ k.
Proof. Let P denote the pushdown of P along the place hop : F -~ F ( P ) U oo. Fix a finite extension ~ of F ( P ) so that T extends at least 2 ~(P) ways to K ( K exists by w (1.1).) Let W be a group with v(F*) C_ W C_ ½v(F*) and [~(-[PU[ = 2k' where v is the valuation associated with hop. Choose a x , . . . ,ak • P* such that ½v(al),..., ½v(ak)is a Z2-basis of W modulo v(F*). Then v extends (in fact, uniquely) to F [ v # ~ , . . . , x / ~ ] and F[v/'~,... , v / - ~ ] / F is totally ramified of degree 2 k. Let K be a finite unramified extensi°n °f F [ x / ~ , - - . , x / ~ ] h a v i n g K as residue field. Since W C v(K*)and 1 ~ 1 = 2 k, v(K*) = W.
351
Let T = ~ K 2 P
andT
= ~'~-~2"~. Suppose x l , . . . , x s
E K * , p l , . . . , p 8 E P* are
2 v(a3) + v(yi), where x 2i p i e T* . Sincev(K*) -- W,v(zd=Ei=1 j=l mij E {0, 1} and y~ E F*, and therefore, there exists u~ E K* with v(ui) = 0 such t h a t ~,2~rnll "" "akm i k YiPi" 2 2 E p* and assume v(ql) _< v(qi) x~pi = ~i~l Let qi . .aTil . . a m,, k YiPi such t h a t t =
for all i. T h e n t = qlu, where u = £ u~qi/ql. Clearly v(u) > O,-~ E -T = E-K2-fi and i=1
since - 1 ~ T , we must have v(u) = 0. Thus, v(t) = v(ql) = v(x~pl) and if v(t) = 0 then v(ql) = 0 s o t = ~ l g E P . T = T. This s h o w s T i s the pushdown o f T and v ( T * ) = 2 v ( K * ) + v ( P * ) = 2 W + v(F*) = v ( F * ) so I = v(K*) .(F*) = 2 k. It follows t h a t s( SperpIf) > k + s( Sper-p If) k k + e( P ), which completes the proof. Let the notation be as in T h e o r e m 1.2. Suppose, for each finite k < ~ , there exist primes P0 D . . . D Pd in A such t h a t the natural m a p s ,ki : A/pi ---+ A/pi-1 extend to discrete rank 1 places Ai : F ( p i ) ---+ F ( P i - 1 ) U oo and such t h a t s(SperpF(po)) >_ k. Then, we have a fan Z0 in SperpF(po) of order 2 k and inductively, a fan Zi in SperpF(pi) of order 2 i+k obtained by pulling back Zi-1 C SperpF(pi-1) along Ai, i = 1 , . . . , d. It follows t h a t SF(Y) k s(SperpF(pd)) k s(Zd) = d + k. For example, such a sequence of primes exists if V = R " (so d = n and A = F [ X 1 , . . . , X , ] . ) Namely, one can t a k e p d = (0), Pd-1 = ( Z d ) , . . . , p l = ( Z 2 , . . . , Z d ) , P0 = (f, X 2 , . . . ,Xd) where f E FIX1] such t h a t F [ X l ] / ( f ) ~- If, K as in (2.1). Thus we have the following: Theorem
2.2. s y ( R ~) = s ( S p e r p F ( Z l , . . . , X , ) ) = n +-~.
T h a t is, the bound for s f ( V ) given in (1.2) is best possible, at least if V = R ". The analogous problem for -~F(V) is more complicated. Motivated by Scheiderer's construction in [16] we look for a sequence of prime ideals P0 _D . . . __DPd in A such t h a t A~ : A/pi --+ A/pi-~ extends to a discrete rank 1 place ~i : F(p~) --* F ( p i - 1 ) U oo, i _> 1, and spaces of orderings
Zi @ Z~ C_ SperpF(pl),
i >_ O,
such t h a t Zi, Z~ are fans of order 2 i + ~ and Zi is the pull-back of Z~_ 1 along ,ki if i > 1. (We assume ~ < oo.) T h e n we take i
r,= U(zj e z;). j=0
i
s,=
U({P,} e z.b j=o
where Pj is a fixed element of Zj. To obtain Z~, i >_ 1, we want to choose additional primes qi-1 D Pi, i = 1 , . . . , d , with qi-1 ~ P0 such t h a t the natural m a p pi : A/pi --* A/qi-~ lifts to a discrete rank 1 place pi : F ( p i ) ~ F ( q i - 1 ) U oo and s(SperpF(qi-1)) = i - 1 + ~ . T h e n Z~ can be obtained by pulling back a fan of order 2 i - 1 + ~ in SperpF(qi-1) along pi. By our construction, the places pi, /~i a r e independent so Zi, Z~ lie in distinct Brgcker classes and therefore Zi U Z~ = Zi @ Z~ holds automatically if i >_ 1 (see [6], [14, 3.2].) We use the notation and theory in [13] to show t h a t Y/ is s a t u r a t e d and Si is basic closed in Y/. Let 2 i = {a E A I a > 0 on Yi}. T h e n a 2 E Ei for a E A \ P0. Thus,
352 if Q E cl(Yi), Q ~ ~, then supp(Q) D_ q j-1 for some j _< i so supp(Q) ¢ Po, and consequently Q ~ U(E2). This proves that Yi is closed in U(E 2) = Sper E~-IA. Since Yi(Pj) = Zj • Z} is saturated in SperpF(pj) for all j < i, this implies Yi is saturated (see [13, 2.3].) Also, it is clear that Si is closed in Yi and S(pj) = {Pj} @ Z} is basic in Y,(pj) = Zj ® Z} for all j < i so, by [13, 3.21, s~ is basic closed in Yi. The argument in [16] shows that at least ~ = 0 ( J + m) = i(i + 1)/2 + (i + 1)N inequalities (>) are required to describe Si in Yi. Namely, i + ~ of these inequalities, say f~ >_ 0 , . . . , fi+m >_ 0, are required just to describe {Pi} = Si A Zi in Zi = Yi N Zi (since Zi is a fan of order 2i+m.) Moreover, each fk is strictly negative at some Q c Zi and, of course, fk _> 0 at Q' where Q' D Q is the specialization of Q in Z~_ 1 (since Z~_ 1 c_ Si.) Thus fk = 0 at Q', that is, fk c Pi-1. This is true for k = 1 , . . . , i + ~ . Thus, none of the inequalities fl >_0,..., fi+-~ >_0 can contribute to the description of Si-1 = Si 71Yi-1 in Yi-1 = Yi C?Yi-1. Therefore, by induction on i, ~ j =i--1 0 ( 3 - + ~ ) additional inequalities i
are required for the description of Si-1 in Yi-1 so, altogether, ~ j = 0 ( ) + ~ ) inequalities are required to describe Si in Y/. Thus g(Yi) _> i(i + 1)/2 + (i + 1)~. In particular,
"g(SperpA) > 2(Yd) >_d(d + 1)/2 + (d + 1)~. To be able to apply this in the case V = R n, we assume
(,)
There exists a finite extension L of F with Zo • Z~ C_SperpL where Z0, Z~ are fans of order 2 m.
Assuming this, we can realize the above set-up in A = / ~ [ X I , . . . , Xd] as follows: take Pa = (0), Pa-1 = ( X a ) , . . . , P l = ( X 2 , . . . , X a ) , P0 = (f, X2,...,Xa) where f E F[X1] is such that F[X1]/(f) ~ L. The choice of qi-1, i = 1,...,d, is fairly arbitrary, for example, we could take qa-1 = (Xa + 1 ) , . . . , ql = (-X'2 + 1, X 3 , . . . , Xd) and qo = (I(X~ + 1 ) , X 2 , . . . , X d ) . The point is, with this choice of qi, qi-x ~ P0, r(qi-1) F(X1,...,XI_I) for i _> 2, and F(q0) ~ L so s(SperpF(qi_l)) = i - 1 + ~ , i = 1 , . . . , d . This proves: Theorem
2.3. If (F, P) satisfies (*) then 5F(R") = n(n + 1)/2 + (n + 1)~.
If (*) does not hold, we are still able to get a somewhat weaker result by replacing L by the field K constructed in (2.1) and taking Z0 = ~ (so we only require that SperpF(po) contains a fan Z~ of order 2m) and taking i
Yi = U ( Z j ® Z}), j=l
i
Si = U ( { P j }
® z;).
j=l
i Then, starting our induction at i = 1 instead of i = 0 yields-g(Y~) _> ~j=1(2 +-~) = i(i + 1)/2 + i ~ . Thus we have:
Theorem
2.4. For any F, n(n + 1)/2 + nm < -gF(Rn) < n(n + 1)/2 + (n + 1)~.
353
Remarks 2.5. (1) If ~ -- 0, (F, P) is hereditarily Euclidean so cannot satisfy (*) but, nonetheless, by (2.4) the conclusion of (2.3) is valid. (2) We have been assuming ~ < co but this is unnecessary. If ~ -- co, then 7F(R n) SF(R ~) = n + ~ = co, so the conclusion of (2.3) is true in this case as well.
>__
(3) For 0 < ~ < co, (F, P ) may or may not satisfy (*). Fixing an integer k, 0 < k < co, we have the following examples: (i) Take F to be the iterated formal power series field ~ ( ( t l ) ) . . . ((tk)) and denote by A : F --* R U co the naturally associated discrete rank k place. Any ordering P E Sper F is compatible with ), and ~ ( P ) = k. But (F, P ) does not satisfy (*) since, for any finite extension L of F , L has at most 2 k orderings.
(ii) Take F to be the rational function field R ( t l , . . . , tk) and take P E Sper F to be the restriction to r of any ordering on R ( ( t l ) ) . . . ((tk)). Again, ~ ( P ) ---- k, but now, according to [15, §4], (F, P) does satiny (*). Of course, having (*) fail does not necessarily imply that the conclusion of (2.3) fails. We know of no example where the conclusion of (2.3) fails. REFERENCES 1. C. Andradas, L. BrCcker, J.M. Ruiz, Minimal generation of basic open semi-analytic sets, Invent. Math. 92 (1988), 409-430. 2. E. Beeker, On the real spectrum of a ring and its application to semi-algebraic geometry, Bull. Amer. Math. Soc. 15 (1986), 19-61. 3. J. Bochnak, M. Coste, M.-F. Roy, Gdomdtrie Algdbrique RdeUe, Ergeb. der Math. 3 12, SpringerVerlag, Berlin Heidelberg New York, 1987. 4. L. BrScker, On the stability indez o] Noefherian rings, preprint. 5. _ _ , On basic semi-algebraic sets, Expositiones Math. (to appear). 6.--, Uber die Anzahl der Anordnungen eines kommutativen KSrpers, Arch. Math. 29 (1977), 458-464. 7. _ _ , Zur Theorie der quadratischen Formen iiber formal reelen KSrpern, Math. Ann. 210 (1974), 233-256. 8. M. Knebusch, C. Scheiderer, Einfiihrung in die reele Algebra, Fiedr. Vieweg & Sohn, Braunschweig/Wiesbaden, 1989. 9. T.Y. Lam, A n introduction to real algebra, Rocky Mountain J. Math. 14 (1984), 767-814. 10. _ _ , Orderings, valuations, and quadratic forms, CBMS Regional Conf. Ser. in Math. no. 52, Amer. Math. Soc., Providence, R.I., 1983. 11. _ _ , The theory of ordered fields, Ring Theory and Algebra III (ed. B. McDonald), Lecture Notes in Pure and Applied Math., col. 55, Dekker, New York, 1980, pp. 1-152. 12. L. MahC, Une dgmonstration Jlementaire du thdor~me de BrJcker-Scheiderer, preprint. 13. M. Marshall, Minimal generation of basic sets in the real spectrum of a commutative ring, preprint. 14. J. Merzel, Quadratic forms over fields with finitely many orderings, Ordered Fields and Real Algebraic Geometry (eds. D. Dubois and T. RCcio), Contemporary Math., col. 8, Amer. Math. Soc., Providence, R.I., 1982, pp. 185-229. 15. C. Scheiderer, Spaces of orderings of fields under finite extensions, Manuscripta Math. 72 (1991), 27-47. 16. _ _ , Stability index of real varieties, Invent. Math. 97 (1989), 467-483. DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF SASKATCHEWAN~ SASKATOON, CANADA STN 0W0
CONFIGURATIONS
O F AT M O S T 6 L I N E S O F R P a
V. F. MAZUROVSKII Ivanovo Civil Engineering Institute
An unordered (n; k)-configuration of degree m is defined to be an unordered collection of rrz linear k-dimensional subspaces of R P n. We associate with each configuration its upper and lower ranks, i.e. the dimensions of the projective hull and intersection respectively of all the subspaces of the configuration. The combinatorial characteristic of a configuration is, by definition, the list of upper and lower ranks of all its subconfigurations. Two configurations are said to be rigidly isotopic if they can be joined by isotopy which consists of configurations with the same combinatorial characteristics. It is obvious that the property of being rigidly isotopic is equivalence relation. The equivalence class of a configuration by this relation is called its rigid isotopy type. The space SPC~k of unordered (n; k)- configurations of degree rn is naturally isomorphic to m-th symmetric power of Grassmanian manifold G,,+l,k+~. A configuration is said to be non-singular if all its subspaces are in general position. The set GSPC~k of non-singular configurations is an open subset of manifold SPCnm,~,in Zanski topology. The set of all non-singular configurations of the same rigid isotopy type forms a connected component of GSPC~,,k (in strong topology). These connected components are called cameras of manifold SPC~k. In the paper [6] O. Ya. Viro enumerated the cameras of the spaces SPC~,,1 for m _< 5 and showed that non-singular (3; 1)-configurations of degree ___5 are determined up to rigid isotopy by the linking coefficients of the lines of a configuration. In [4] the author enumerated the cameras of SPC~,1 and proved that non-singular configurations of 6 lines of R P a are not determined up to rigid isotopy by the linking coefficients. The main purpose of the present paper is to describe the mutual position of the cameras in SPC~,1 for ra < 6. In particular we give a detailed proof of classification of non-singular (3; 1)-configurations of degree 6 up to rigid isotopy (in [4] this proof was only outlined). The author is grateful to O. Ya. Viro for posing the problem and fruitful discussions. § 1. BASIC CONSTRUCTIONS 1.1. L i n k i n g coefficients. In the next two sections we describe the constructions of O. Ya. Viro (see [61, [7]). Two disjoint oriented lines L~, L~ in the oriented space R P a have linking coefficient Ik(L~, L~) equal to +1 or - 1 (here the doubled linking coefficient of cycles L~ and L~ in the oriented manifold NP a is considered). Let L = {L1,L2,La} be an unordered non-singular configuration of three lines of the oriented space R P a, and let L~, L~, L~ be the same lines equiped with some orientations. The product lk(L~,L~) x
355
Ik(L~,L~)lk(L~,L~) denoted by Ik(L1,L2,La) does not depend on the choise of the orientations of Li,i = 1,2, 3, is preserved under isotopies of L, and changes under reversal of the orientation of R P a. Unordered non-singular (3; 1)-configurations L = ! {L1, L 2 , . . . , Lm} and L' = {L1, L 2I . . . L~} are said to be homology equivalent if there exists a bijection q0 : L ---+ L' such that for a fixed orientation of R P a Ik(Li,Lj,Lk) = Ik(~(Li), v(Lj), v(Lk)) with any i,j,k = 1 , 2 , . . . , m , i C j , i # k, j # k. 1.2. C o n s t r u c t i o n o f t h e j o i n o f t w o c o n f i g u r a t i o n s . Let A = { A 1 , . . . , Am} be an unordered configuration of k-dimensional subspaces of R P ~, and let B = { B 1 , . . . , Bm} be an unordered configuration of/-dimensional subspaces of N P ~. We suppose that R P ~ and N P s are imbedded into I~P n+8+1 as disjoint linear subspaces. If n and s are odd we suppose, in addition, that N P n, NP~, and NP "+~+1 are oriented, and linking coefficient of the images o f R P n and R P ~ in R P n+s+l equals +1. Let f : { 1 , . . . ,m} ---* {1,... ,m} be some bijection, and Ci be the projective hull of the images of Ai and Bf(i) in ~P'~+~+~,i = 1 , . . . , m . It is clear that C = {C1,---,Cm} is a ( n + s + l ; k + l + l ) configuration of degree m. The configuration C is called the join of A and B. A configuration is called an isotopy join if it is rigidly isotopic to the join of some two configurations. 1.2.1. L e m r n a . The mirror image of an isototy join is also an isotopy join. 1.3. D e g e n e r a t i o n a n d p e r t u r b a t i o n . Let s : [0,1] --* SPCnm,k be a path with the beginning at a point A such that the restriction s][0,1) is a rigid isotopy of A. If configurations A and A' = s(1) have distinct combinatorial characteristics, then s is called a degeneration of configuration A, and path s -1 is called a perturbation of A'. Two subspaces Ai and A 1 of a configuration A = { A 1 , . . . , Am} are said to be contiguous if either they coincide, or there exists a degeneration such that (1) its restrictions on the configurations { A 1 , . . . , Ai-1, Ai+l,..., Am} and { A 1 , . . . , A j-l, A i + a , . . . , Am } which are obtained by removing the elements Ai, Aj from A respectively are rigid isotopies, and (2) the subspaces corresponding to the subspaces Ai and Aj coincide in the result of this degeneration. 1.4. A d j a c e n c y g r a p h . A configuration is said to be 1-singular if all configurations rigidly isotopic to it form a codimension 1 subset in the configuration space. The set of all 1-singular configurations of the same rigid isotopy type is called a wall. Two 1singular configurations are said to be p-equivalent if they belong to walls which separate the same cameras. The set of all 1-singular comCigurations of SPC~, k will be denoted by GI SPCr,n,k. The mutual position of the cameras in the configuration space can be described by means of the adjacency graph (see [2]), whose vertices and edges are in one-to-one correspondence with the cameras and walls respectively, and two vertices representing some cameras are connected by an edge if and only if these cameras are adjacent to the wall corresponding to this edge. It may happen that the beginning of an edge coincides with its end, as in the following cases: a) if the configuration space has a boundary and the wall is contained in it; b) if the wall is a one-sided subset of the configuration space; c) if the wall is a two-sided subset, but has the same camera adjacent at each side.
356 Each of these cases corresponds to a loop in the adjacency graph. In cases b) and c) the wall is called inner one. 1.5. A f f i n e (3; 1)-configurations. By an unordered afffine (3; 1)-configuration of degree m we mean an unordered collection of m lines of R 3. The canonical imbedding R3 ~ ~ p 3 induces a map of the set of a/fine (3; 1)-configurations of degree m into SPC~, 1. This map is called the projective completion, and the image of an atone (3; 1)-configuration K under this map is called the projective completion of K . A rigid isotopy of an affine (3; 1)-configuration is an isotopy of this configuration which induces a rigid isotopy of its projective completion. Let Oxyz be the canonical Cartesian coordinate system in R 3. The planes of R 3 defined by the equations z = const will be called horizontal planes. The common line of the projective completions of horizontal planes is called the horizontal line of infinity. Consider the affine (3; 1)-configuration S which consists of the following lines f y = 0 [ z 1' {x----0 z=l'
{ y=x
z=-l'
(y=--x
Thepairsoflines {y=0 z=l'
z=-l"
{x=O z=l
and { y = x
z=-l'
y = - x will be called the frames of configuration S. Let S be the projective comple-
x = --1 tion of S. Consider a configuration obtained by adjoining to S several pairwise disjoint lines which have no common points with :~. Such configuration is said to be framed. The subconfiguration S of a framed configuration will be called the skeleton, the other lines will be called free lines. We call the sliding translation the a ~ n e transformation given by the formulas x ~ = x + az, y' = y + bz, z t -- z, where a and b are some numbers. In what follows we suppose that X3 is canonically imbedded into ~ p 3 . § 2. JOIN CONFIGURATIONS OF LINES OF R P 3
2.1. Classification of non-singular isotopy join configurations of 6 lines of R P 3 up to rigid isotopy. Let L 1 and L 2 be two oriented disjoint lines in R P 3 with positive linking coefficient. Let A j be some pairwise different points of LJ, j = 1,2, i = 1, 2 , . . . , m, such t h a t the increase of index i agrees to the orientation of L j. Consider a permutation a of degree m. The lines passing through points A~ and Aa( 2 0 form a nonsingular join (3; 1)-configuration of degree m, which will be denoted by jc(a). It is easy to see that up to rigid isotopy this construction provides all isotopy join configurations of m lines of R P 3. It is also clear that the map Sm ~ rco(GSPC~,I ) which assigns to a permutation a C Sm the rigid isotopy type of jc(a) is well defined. We denote this map by >r. In what follows ( a l , a 2 , . .. am) denotes permutation ( 1 '
0-1
2
...
0"2
• . •
rn) am
"
2.1.1. L e m m a . 1) Let # and ~ be permutations of degree m preserving the natural cycle order. Then ~ ( , . 0 - . v) = ~(0-). 2) x(0- -1) = ~:(0-). 3) x ( ( m , m - 1 , . . . , 2 , 1 ) - a - (re, m - 1 , . . . , 2 , 1 ) ) = x(0-) .
357
4) Suppose that permutation a ---- ( a l , . . . , a i - 1 , a i , . . . , a j , a j + l , . . . , a m ) satisfies the following condition: for any integer p, with rain ak < p < max ak, there exists an i<_k<_j -- -- i<_k<_j index l(i <__l < j) such that cq = p. Leta= min.ak,(Ti,...,rj)---(j--i,...,2,1).(al--a+l,...,aj--a+l)(j--i,... 2,1), i
a)
jc(1,2,3,4,8,6), jc(1,2,3,4,6,5), jc(1,2,3,5,6,4), jc(1,2,4,3,6,5), jc(1,2,4,6,3,5), jc(1,2,5,6,3,4); b) mirror configurations jc(1, 2, 3, 6, 5, 4), jc(1,3, 5, 2, 6, 4), jc(1,2, 4, 6, 5, 3); c) the mirror images of the configurations of a): jc(6, 5, 4, 3, 2, 1), jc(5, 6, 4, 3, 2, 1), jc(4,6,5,3,2, 1), jc(5, 6, 3,4, 2, 1), jc(5,3,6,4, 2,1), jc(4,3,6,5,2,1). Proof of Theorem 2.1.2 is reduced to sorting all permutations of $6. First we split $6 into union ofdisjoint classes of permutations with homology equivalentcorresponding join configurations. Then, using Lemma 2.1.1, weprove that elements of each of these classes define rigidly isotopic non-singular join configurations. 2.1.3. R e m a r k . A similar consideration shows that any non-singular isotopy join (3; 1)-configuration of degree < 5 is rigidly isotopic to one of the following pairwise non-isotopic non-singular join configurations:jc(1), jc(1, 2), jc(1, 2, 3), jc(3, 2, 1), jc(1,2,3,4), jc(1,2,4,3), jc(4,3,2,1), jc(1,2,3,4,5), jc(1,3, 4,5,2), jc(1,4;5,2,3), jc(1, 3, 5, 2, 4), jc(3, 2, 5, 4, 1), jc(2, 5, 4, 3, 1), jc(5, 4, 3, 2, 1) (compare with Viro's classification in [6]). 2.2. Classification of 1-slngular isotopy join (3; 1)-configurations of degree _< 6 up to rigid isotopy. Consider again two oriented disjoint lines L 1 and 132 in R P a with positive linking coefficient. Let A], • .., A,~_ 1 1,Am 1 be different points of L 1, and 2 A~,... Am_ 1 be different points of L 2 such that the increase of the lower indices of the points agrees to the orientations of L 1 and L 2. Consider a map f from { 1 , . . . , m - 1, rn} onto { 1 , . . . , m - 1} and connect points A~ and AI(i ) 2 by lines, i = 1,.. ., rn - 1, m. The obtained 1-singular join (3; 1)-configuration of degree m is denoted by sjc(f). The set
358
of all surjections of { 1 , . . . , m - 1,m} onto { 1 , . . . , m - 1} will be denoted by Sin. It is clear that the map ~: S m --+ rco(G1SPC~,I) which assigns to a map f e Sra the rigid isotopy type of sjc(f) is well defined. Since a surjection f can be represented by the table
(
) ..."" f(mm-l-1)
f(m)m ) w e s h a l l a l s ° u s e t h e s y m b ° l ( f ( 1 ) ' ' ' ' '
,f(m-1),f(m))
to denote f. 2.2.1. L e m m a . 1) If # and lJ are permutations of degree m and m - 1 respectively preserving the natural cyclic orders, then k(#. f . ,) = k(f); 2) k ( ( m , m - - 1 , . . . , 2 , 1 ) - f . ( m - 1 , . . . , 2 , 1 ) ) = ?4(f); 3) Suppose that surjection f = ( f ( 1 ) , . . . , f(i - I), f ( i ) , . . . , f(j), f ( j + 1 ) , . . . , f(m)) satisfes the following conditions: (1) the dements f(i),.., f ( j ) are parwise different, and (2) for any integer p, with min f(k) <_ p <_ ir~xjf(k), there exists an index l i
_
_
(i <_1 <_j) such that f ( t) = p. Let a = min f(k), ( ~ i , . - . , aj) = (j - i , . . . , 2, 1). (f(i) - ~ + 1,..., f ( j ) - ~ + 1) iSk<_j •(j - i , . . . ,2, 1), and g = (g(1),... ,g(i - 1), g(i),...,g(j), g(j + 1 ) , . . . , g ( m ) ) , where g(s) = f(s) for any s = 1 , . . . , j - 1 and any s = j + 1 , . . . , m and g(k) = ak for any k = i, i + 1 , . . . , j - 1,j, where ak = ak + o~- 1. Then &(g) = &(f). Proof is analogous to the proof of Lemma 2.1.1. 2.2.2. L e m m a . The result of any perturbation of 1-singuIar join (3; 1)-confguration is a non-singular isotopy join (3; 1)-cont~guration. 2.2.3. T h e o r e m . Two 1-singular isotopy join confgurations of < 6//nes of IRP 3 are rigidly isotopic if and only if they are p-equivaJent. a) Any 1-singular isotopy join (3; 1)-comqguration of degree 2 is rigidly isotopic to the join confguration sj c(1, 1). b) Any 1-singular isotopy join (3; 1)-cor~guration of degree 3 is rigidly isotopic to the join confguration sjc(1, 1, 2). c) Any 1-singular isotopy join (3; 1)-confguration of degree 4 is rigidly isotopic to one d the following 3 pairwise non-isotopic join cont]guratlons: sjc(1, 1,2, 3), sic(l, 2, 1, 3), sjc(3, 2,1,1). Onty sjc(1, 2,1, 3) is a mirror configuration. d) Any 1-singular isotopy join (3; 1)-cont~guration of degree 5 is rigidly isotopic to one of the following 8 pairwise non-isotopic join confgurations: 1) sjc(1,1,2,3,4), sjc(1,2,1,3,4), sjc(1,3,1,2,4), sjc(1,1,3,4,2); 2) the mirror images of the configurations from 1): sjc(4, 3, 2, 1, 1), sjc(4, 3, 1, 2, 1), sjc(4,2,1,3,1), sjc(2,4,3,1,1). e) Any 1-singular isotopy join (3; 1)-configuration of degree 6 is rigidly isotopic to one of the following 31 pairwise non-isotopic join comqgurations: i) sjc(1,1,2,3,4,5), 8jc(1,2,1,3,4,5), sjc(1,1,2,3,5,4), sjc(1,2,3,1,4,5), 8jc(1,1, 3,4,5,2), sjc(1,1,2,4,5,3), sjc(1,3,1,2,4,5), sjc(1,2,1,3,5,4), sjc(1,3,4,1,5,2), sjc(1,1,3,2,5,4), 8jc(1,2,4,1,3,5), sjc(1,2,5,1,3,4), sjc(1,3,1,4,2,5), sjc(1,3, 1,4, 5, 2); ii) mirror contlgurations sic(l, 1, 3, 5, 2, 4), sjc(1, 2, 3, 1, 5, 4), sjc(1,2, 4, 1,5, 3); iii) the mirror images of the comfigurations from i): sjc(5,4,3,2, 1, 1), sjc(5,4, 3,1,2,1), sjc(4,5,3,2,1,1), sjc(5,4,1,3,2,1), sjc(2,5,4,3,1,1), sjc(3,5,4,2,1,1),
359
sjc(5,4, 2, 1, 3, 1), sjc(4, 5,3, 1, 2, 1), sjc(2,5,1,4,3,1), sjc(4,5,2,3,1,1), sjc(5,3,1,4,2,1), ~jc(4,3,1,5,2,1), sjc(5,2,4, 1,3, 1), sjc(2,5,4,1,3,1).
Proof of Theorem 2.2.3 is reduced to sorting all elements of Sm for rn < 6. At the beginning, using Lemma 2.2.2, Remark 2.1.3, and Theorem 2.1.2, we split ~5,~(rn _< 6) into union of disjoint classes consisting of maps with p-equivalent corresponding 1singular join configurations. Then, using Lemma 2.2.1, we prove that elements of each of these classes define rigidly isotopic 1-singular join configurations. 2.3. A d j a c e n c y g r a p h o f SPC~, 1 for rn < 5. 2.3.1. L e m m a . Any 1-singular (3; 1)- configuration of degree ~_ 4 is an isotopy join.
Proof. It is sufficient to prove the lemma for the case of 1-singular (3; 1)-configurations of degree 4. Let K = {K1, K2, K3, K4} be a 1-singular (3; 1)- configuration. W'e assume that K3 Cl 1(4 7t 0. Let Q be the quadric containing disjoint lines K1,/(2, and K3. Up to a small rigid isotopy of/(4 it can be assumed to intersect Q in two different points A and B. Consider the generatrices L 1 and L 2 of Q which pass through points A and B respectively and belong to the family of generatrices dual to the family containing K1, K2, and K3. It is clear that K i f l LJ 7t 0 for any i = 1, 2, 3, 4 and j = 1,2. 2.3.2. L e m m a . If there exists a line intersecting all lines of a given 1-singular (nonsingular) (3; 1)-configuration K, then K is an isotopy join.
Proof. (This proof is due to 0. Ya. Viro). Let line L 1 intersect all lines of the given (3; 1)-configuration K. Consider a projective transformation of ]RP 3 which preserves the orientation of R P 3 and puts L 1 on the horizontal line at infinity. Let K ~ be the image of K under this transformation. It is easy to see that the afl~ine parts of lines of K I lie on horizontal planes. Let line L 2 be transversal to the horizontal planes and, in the case when K is a 1-singular configuration, intersect the two lines of K ~ meeting each other. Obviously, every other line of K ~ can be translated (in its horizontal plane) so as to intersect L 2. After that we shall obtain a join configuration K ' , which is evidently rigidly isotopic to the given configuration K. 2.3.3. L e m m a . Any 1-singular (3; 1)-configuration of degree 5 obtained by a perturbation of a framed configuration is an isotopy join.
Proof is reduced to sorting all possible locations of the free line of a framed colffiguration and using Lemma 2.3.2. 2.3.4. L e m m a . Any 1-singular (3; 1)-configuration of degree _< 6 either is an isotopy join, or can be obtained by a perturbation of a framed cor~guration.
Proof uses induction on the number of the lines of the configuration. Lemma 2.3.1 provides the basis of the induction. Assume that the statement is true for 1-singular (3; 1)-conflgurations of degree < 6. Let K ---- {KI, K2,/(3,/(4, Ks,/(6 } be a 1-singular (3; 1)-configuration. Assume that K1 A K3 ~ O. If lines K1 and /(3 of K are contiguous, then K is an isotopy join due to the inductive hypothesis and Lemmas 2.2.2 and 2.3.3. Let lines K1 and K3 be not contiguous. Then there exists a subconfiguration K " of K which is a 1-singular mirror (3; 1)-configuration of degree 4. We can assume, without loss of generality, that
360
K'" = {/~1, K2, K3,/x~4}. Let Q be the quadric containing the disjoint lines K2, Ks, and /(4. Up to a small rigid isotopy of K1 it can be assumed to intersect Q in two different points A and B. Let L 1 and L 2 be the two generatrices of Q which belong to the family dual to that containing K2, K3, and K4 and pass through points A and B respectively. It is clear that Ki A L j ~ (g for any i = 1,2,3,4 and j = 1,2. Let K1 gl/(3 = A. Consider a projective transformation of N P 3 which preserves the orientation of R P 3 and puts L 2 on the horizontal line of infinity. After that we shall have the following situation in N 3 (canonically imbedded into N P 3) : the images of lines K1 and Ks have a single common point, the images of the lines K1, K2, /(3, and I~24 lie on horizontal plazles and intersect the image of L 1. Consider a sliding translation such that the image of L 1 is perpendicular to a horizontal plane. Let K~ be the image of the affine part of Ki after the transformations given above, where i = 1, 2 , . . . , 6. It is easy to see that lines K~ and K~ have a single common point, lines K~, K~, K~, and I~'~ lie on horizontal planes and intersect a vertical line (i.e. a line perpendicular to a horizontal plane). We can assume, without loss of generality, that K~ lies over K~, and line h~ lies over KI and K~. Consider the orthogonal projection of the affine configuration K ' = {K~, K~, K~, K~, K~, K~} onto the plane perpendicular to K~. If this projection differs from the cases a) and b) below, then it is clear that configuration K' can be obtained by a perturbation of a framed configuration.
0
0 ......
S ~ K/'$ Kz t \
Kx
,/K;, ..........
Kta
In cases a) and b) it can be proved, using Lemma 2.3.2 and sorting all possible locations of K~ and K~ in respect to K~ and K~, that K' is an isotopy join. The next theorem is a consequence of Lemmas 2.3.4 and 2.3.3. 2.3.5. T h e o r e m . Any 1-singular (3; 1) - comqguration of degree _< 5 is an isotopyjoin. 2.3.6. R e m a r k . Due to Theorem 2.3.5 and Lemma 2.2.2 any non-singular (3; 1) configuraton of degree _< 5 is an isotopy join. Together with Remark 2.1.3 it yields the classification of non-singular (3; 1) - configurations of degree _< 5 up to rigid isotopy obtained by O.Ya.Viro in [6]. In what follows [K] denotes the rigid isotopy type of configuration K. The following statements are consequences of Theorems 2.3.5 and 2.2.3. 2.3.7. T h e o r e m . Two 1-singular conIigurations of<_ 5 lines o f N P 3 are rigidly isotopic if and only if they are p-equivalent. Any 1-singular (3; 1) - configuration of degree _< 5 is rigidly isotopic to one of the pairwise non-isotopic join comqgurations given in Theorem
z2.s a)-d).
361 2.3.8. T h e o r e m . a) The adjacency graph of SPC2 : has one vertex and one edge-loop, which corresponds to the one-sided inner wall. b) The adjacency graph of SPCg,: is shown on the diagram below.
[sic (*,i,~)]
ti~(i,~,~)]
IL
[]c(~,a,i)]
c) The adjacency graph of SPC4,: is the graph presented below. The loop corresponds to the one-sided inner wail.
[s]c(~,2,i,l)] I
[j~O,~,~,~)]
t~(~,~,~,i)]
d) The adjacency graph of Spch,1 is the following.
T [jc(~,2,s,~,5)]
[S]¢'L~ 'T~'['i 'i)] [ []c(5,t~,~,2,i)]
362
§ 3. KAUFFMAN POLYNOMIAL OF NON-SINGULAR CONFIGURATIONS OF LINES OF ]t~P 3
3.1. Polynomial invariant of non-singular (3; 1)-configurations. Yu. V. Drobotukhina in [1] defined an analogue of Jones p o l y n o m i a l for links in R P a. T h i s p o l y n o m i a l was defined b y m e a n s of t h e s t a t e m o d e l analogous to K a u f f m a n ' s m o d e l [3] for the J o n e s p o l y n o m i a l of links in S 3. This c o n s t r u c t i o n yields the b r a c k e t e d K a u f f m a n p o l y n o m i a l of links in R P 3. This p o l y n i m i a l is not an isotopy invariant of links in ]RP 3, since it is not p r e s e r v e d u n d e r tile R e i d e m e i s t e r m o t i o n f~l of link d i a g r a m . Nevertheless, it is an rigid isotopy invaxiant of non-singular configurations of p r o j e c t i v e lines, since in the process of rigid isotopy this R e i d e m e i s t e r m o t i o n does not occur. This p o l y n o m i a l will be called the K a u f f m a n p o l y n o m i a l of a non-singular configuration of lines of R P 3.
3.2. Insufficiency of the linking coefficients. 3.2.1. Theorem. The non-singular (3; 1) - configuration M, afBne part of which is shown on d i a g r a m 1 in Appendix, and its mirror i m a g e are homology equivadent, but not rigidly isotopic.
Pro@ T h e configuration M a n d its m i r r o r i m a g e can be distinguished by K a n f f m a n p o l y n o m i a l , which for M is equal to - A 15 -t- 6A 11 + 6A 9 - 5A 7 - 6A 5 + 10A a + 16A + A - I - 10A -3 + 10A -7 + 5A - 9 , a n d for its m i r r o r i m a g e is equal to 5A 9 + 10A 7 - 10A a + A + 16A -1 + 10A - a - 6A -5 - 5A -~ + 6A -9 + 6A -11 - A -15. 3.2,2. Theorem. The non-singular (3; 1)-configuration L, aft/he p a r t of which is shown on d i a g r a m 2 in Appendix, and n o n - s i n g u l a r join (3; 1)-configuration jc(1, 2, 5, 6, 3, 4) are homology equivalent, but not rigidly isotopic.
Pro@ T h e s e two non-singular (3; 1) - configurations have different K a u f f m a n p o l y n o mials: for L it is A 17 - 5A 13 + 15A 9 + 10A 7 - 13A ~ - 12A a + 15A + 22A -1 _ A - a _ 1 2 A - ~ + A -7 + 8A -9 + 3A -11, a n d for jc(1, 2, 5, 6, 3, 4) it is A 13
+ A 11 + 4A 7 + 7A 5 + 3A 3 + 2 A - ' + 5A -3 + 3A -5 + 2A -9 + 3A - 1 I + A -13.
We d e n o t e t h e m i r r o r images of the configurations L and M by L ' a n d M I respectively. 3.2.3. Corollary. isotopy joins.
T h e non-singular (3; 1) - configurations M , L, M ~, a n d L t are not
363
§ 4 . CONFIGURATIONS OF 6 LINES OF N P 3 4.1. S i n g u l a r f r a m e d c o n f i g u r a t i o n s o f 6 lines o f N P 3. Consider the projection of the skeleton of the affine part of a framed configuration onto a horizontal plane / \
/ /
/ \
/
/
\ \ \
Here the projection of the frame in the horizontal plane z = 1 is shown by the continuous lines, the projection of the frame in the horizontal plane z = - 1 is shown by the dash lines. The frames of the skeleton divide the horizontal planes z = 1 and z = - 1 into four open domains, which we denote as it is shown below
Xt
Xt
Z=-£ We denote by {Xl, Yj} the union of all lines of R 3 which intersect the open domains Xi and Yj of the horizontal planes z = 1 and z = - 1 , where i,j = 1,2,3,4. It is easy to show that {XIYj} N {XkYt} # O for any i,j, k, l = 1, 2, 3, 4. Thus there exists a degeneration of any afflne framed configuration of 6 lines which keeps the skeleton fixed, and such that the images of t h e free lines of the configuration after this degeneration have a single common point and do not intersect the skeleton. T h e result of such a degeneration will be called an affine singular framed configuration of 6 lines. T h e free lines of an affine singular framed configuration are said to intersect in the middle part if their point of intersection lies between the horizontal planes z = 1 and z = - 1 . Let Z - l , 1 = {(x,y,z) E N 3 1 - 1 < z < 1}, and let i,j,k,l be some fixed elements of the index set such that {XiYj}n{XkYt}NZ-I,1 # 0. Consider the space X consisting of ordered configurations (L1, L2) of two lines of N 3 such that L1 C {XiYj}, L2 C {XkYt}, and La and L2 intersect at a point of Z - l , a .
Space 2( with the naturM topology is arcwise connected. Proof. L e t / 3 = {XiYj} f~ {XkYt} fl Z-a,1. It is clear that B is an open convex subset of
4.1.1. L e m m a .
R a. Fix some point b E/3. Let .Tb be the set of all configurations of 2( the lines of which intersect at b. It is easy to see that the subset .Tb of X is arcwise connected. Consider the m a p p : 2( ~ / 3 which assigns to a configuration of X the point of intersection of its lines. It is not difficult to prove that the bundle (X',p,/3) is topologically trivial. Since
364
the fibre and the base of this bundle are arcwise connected, the total space 2( is also arcwise connected. 4.1.2. L e m m a . Any atone singutar framed comqguration of 6 lines is rigidly isotopic to an a/~ne singular framed configuration of 6 lines the free lines of which intersect in the midd/e part.
Pro@ If the free lines of an atone singular framed configuration of 6 lines do not intersect in the middle part, then we consider a projective transformation which preserves the orientation of II{Pa and moves the plane of infinity onto the horizontal plane z = 0. Introduce the following notation: the symbol [XiYj] denotes the set of all affine singular framed (3; 1) - configurations of degree 6 the free lines of which intersect in the middle part and one d them is contained in {XiYj}, where i,j E {1,2,3,4}. The projective (3; 1) - configuration of degree 6 will be called a singular framed configuration if it is the projective completion of an afflne singular framed configuration of 6 lines. Two projective configurations are said to belong to the same coarse projective type if either they belong to the same rigid isotopy type, or one of t h e m is rigidly isotopic to the mirror image of the other. 4.1.:3. L e m m a .
Any singular framed cont~guration of 6 Iines of N P s belongs to the
coarse projective type of the projective compietion of a configuration of [X1 }1"1]or [X1Y2]. Pro@ It immediately follows from s y m m e t r y of the skeleton. 4.2. Classification o f 1-singular (3; 1) - configurations o f degree 6 up to rigid i s o t o p y . We shall denote a free line of an affine framed (3; 1) - configuration of degree 6 intersecting domain Xi of the horizontal plane z = 1 and domain Yj of the horizontal plane z = - 1 , where i,j E {1,2,3,4}, by XIY/. 4.2.1. L e m m a . Any 1-singular (3; 1) - configuration of degree 6 either is an isotopy join, or belongs to the coarse projective type of a 1-singu/ar cont~guration which is obtained by a perturbation of the projective completion of one of the followlng three a n n e framed con~gurations of 6 lines:
,,J/ ,--....
365
¢)
Proof. We sort all possible cases, using Lemmas 2.3.4, 4.1.1, 4.1.2, 4.1.3, 2.3.2. and 1.2.1. 4.2.2. L e m m a . Any 1-singular (3; 1) - configuration of degree 6 either is an isofopy join, or belongs ~o the coarse projective type of fhe projecfive completion of one of the following three aiFme configurations of 6 lines:
t) I~ ~
4
:K
~X~, 2~.~ ~L" ~,,
~L~~ ~,(~~'~,/.~"~,~
366
0
Z~4t >
(The notation z~cl > z~c3 > zlc~ =
> Z
"-
z~c4 m e a n s
that horizontal line 1Ci lies over
horizontal tine K3, line K3 lies over intersecting horizontal lines }C2 and K4). Proof. Perturbing the framed configurations of Lelnma 4.2.1 we obtain twelve 1-singular configurations. Three of them are represented above. The free lines of the other nine configurations either can be moved so as to intersect the line I xY = 0 ' or can be put onto k
horizontal planes: hence, these configurations are isotopy joins due to Lemma 2.3.2. To complete the proof we use Lemma 1.2.1. 4.2.3. L e m m a . 1-singular (3; 1) - configurations 2C, £, and M of Lemma 4.2.2 are not isotopy joins and belong to different coarse projective types.
Proof. K belongs to the inner wall which separates the camera containing jc(1, 3, 5, 2, 6, 4). Configuration L~ belongs to the wall separating the cameras containing jc(1, 2, 4, 6, 3, 5) and L. A4 belongs to the wall separating the cameras containing jc(1, 3, 5, 2, 6, 4) and M. Indeed, similar to Lemma 4.2.2, one can see that after one (or both, in the first case) of the two possible perturbations of these configurations we obtain an isotopy join: its rigid isotopy type can be calculated using Theorem 2.1.2. Therefore, due to Theorem 2.2.3, K, £ and M can not be p-equivalent to a 1-singular isotopy join (3; 1)-belong to different coarse projective types. 4.2.4. L e m m a .
1-singular (3; 1) - cont~gurations lC, f., and A4 of Lemma 4.2.2 are not
mirror. Proof. ]C is not mirror, since its non-singular subconfiguration consisting of lines •I,
]C3, ]C5, /C6, is not mirror. 3/I is not mirror, since, due to Theorem 3.2.1, it is not p-equivalent to its mirror image, f is not mirror for the same reason. As a consequence of Lemmas 4.2.2, 4.2.3, and 4.2.4 we obtain the following theorem.
367
4.2.5. T h e o r e m . Any 1-singular (3; 1) - configuration of degree 6 is either an isotopy join (see Theorem 2.2.3), or rigidly isotopic to one o£ the following six pairwise nonisotopic configurations: 1) configuration ]C, 2) configuration L, 3) configuration .MI, 4) the mirror image of ~, 5) the m/rror image of f~, 6) the mirror image of .A/(. 4.2.6. C o r o l l a r y . There exist exactly 37 rigid isotopy types of 1-singular (3; 1) configurations of degree 6. 4.3. C l a s s i f i c a t i o n o f n o n - s i n g u l a r c o n f i g u r a t i o n s o f 6 l i n e s o f R P 3 u p t o r i g i d
isotopy. Any non-singular (3; 1) - configuration o f degree 6 either is an isotopy join, or belongs to the coarse projective type of the projective completion of one of the following two atone configurations: 4.3.1. L e m m a .
%., i)
ii)
Ms/
M~
Li
/Lw ZL~.~'ZLz,>ZL~) ZL~
Ha ZML>ZM~) ZMz) Z M~
(It is easy to see that the configurations of i) and ii) are rigidly isotopic to L and M respectively (see, respectiveIy, dia.2 and 1 in Appendix)). Proof. Perturb the 1-singulax (3; 1) - configurations of L e m m a 4.2.2 and use Lemmas 2.3.2 and 1.2.1.
L e m m a . Non-singular (3; 1) - con~gurations M, L, and L' are not homology equivalent. As a consequence of Lemmas 4.3.1, 4.3.2, Theorems 3.2.1, and Corollary 3.2.3 we obtain the following theorem.
4.3.2.
4.3.3. T h e o r e m . Any non-singular (3; 1) - configuration o£ degree 6 is either an isotopy join (see Theorem 2.1.2), or rigidly isotopic to one of the following four pairwise non-isotopic configurations:
368
1) 2) 3) 4)
configuration L, configuration M, the mirror image of L, the mirror i m a g e o f M .
4 . 3 . 4 . C o r o l l a r y . T h e r e exist exactly 19 rigid isotopy types of non-singular (3; 1)configurations of degree 6.
Non-singular configurations of 6 lines of R P 3 are rigidly isotopic if and only if their Kauffman polynomials are equal. To prove this theorem it is sufficient to show that the configurations of each of the 19 rigid isotopy types o f non-singular (3; 1) - configurations o f degree 6 have different Kauffman polynomials. The complete list o f these polynomials can be found in [5].
4.3.5, Theorem.
4 . 4 . A d j a c e n c y g r a p h o f SPC6,1. D e n o t e t h e m i r r o r images of the 1-singular (3; 1) configurations ]C, f , a n d A4 b y / C , f e a n d A/I t respectively. Theorem. Adjacency g r a p h o f SPC~, 1 is shown on diagram 3 in Appendix. All loops of the graph correspond to one-sided unner walls.
4.4.1.
Proof. T h e t h e o r e m follows f r o m T h e o r e m s 4.3.3 a n d 4.2.5. REFERENCES [1] Yu. V. Drobotukhina, An analogue of the Jones polynomial for links in ~p3 and a generalization of the Kauffman-Murasugi theorem, Leningrad Math. J. 2 no. 3 (1991). [2] S. M. Finashin, Configurations of seven points in ~p3 Lect. Notes in Math. 1346 (1988), 501-526. [3] L. Kauffman, State models and Jones polynoraial, Preprint, 1986. [4] V. F. Mazurovskii, Configurations of six skew lines, J. Soviet Math. 52 no. i (1990), 2825-2832. [5] V.F. Mazurovskii, Kauffman polynomials of non-singular configurations of projective lanes,Russian Math. Surveys 44 no. 5 (1989), 212-213. [6] O. Ya. Viro, Topological problems concerning lines and points of three-dimensional space, Soviet Math. Dokl. 32 no. 2 (1985), 528-531. [7] O. Ya. Viro and Yu. V. Drobotukhina, Configurations of skew lines, Leningrad Math. J 1 no. 4 (1990), 1027-1050.
O
Ovq
O
~.
O
o
Lid
C~ a~ C~O
0
0
Y
=, 0
371
Dctt,z,~,~,s,6)]
)]
t~3 )]
~L']/
T DIA. 3. Adjacency graph of
SPC6~,I.
E x t e n s i o n s of R o k h l i n c o n g r u e n c e for c u r v e s o n
surfaces Grigory Mikhalkin Abstract The subject of this paper is the problem of arrangement of a real nonsingular algebraic curve on a real non-singular algebraic surface. This paper contains new restrictions on this arrangement extending Rokhlin and Kharlamov-GudkovKrakhnov congruences for curves on surfaces.
1
Introduction
If we fix a degree of a real nonsingular algebraic surface then in accordance with Smith theory there is an u p p e r b o u n d for the total Z2-Betti n u m b e r of this surface (the same thing applies to curves). T h e most interesting case according to D.Hilbert is the case when the u p p e r b o u n d is reached (in this case the surface is called an M-surface). Let A be a real nonsingular algebraic projective curve on a real nonsingular algebraic projective surface B. If A is of even degree in B then A divides B into two p a r t s / 3 + and B_ (corresponding to areas of B where polynomial determining A is positive and negative). Rokhlin congruence [1] yields a congruence modulo 8 for Euler characteristic X of B+ provided t h a t (i) B is an M-surface
(ii) A
is an M-curve
(iii) B+
lies wholly in one component of B
(iv) rk(in.:
Ha(B+; Z2) ~ Ha(B; Z:)) = 0
(v) if the degree of polynomial determining A in B is congruent to 2 modulo 4 t h e n all c o m p o n e n t s of B containing no components of A are contractible in Pq 1 K h a r l a m o v - G u d k o v - K r a k h n o v [2],[3] congruence yields congruence m o d u l o 8 for x(B+) under a s s u m p t i o n s (i),(iii),(v) and either a s s u m p t i o n t h a t A is an (M-1)-curve and rk(in.) = 0 or a s s u m p t i o n t h a t A is an M-curve and rk(in.) = 1 a n d all c o m p o n e n t s of A are Z2-homologically trivial. Recall t h a t Rokhlin congruence for surfaces yields
1Remark. Paper [1] contains a mistake in the calculation of characteristic class of covering Y ---*CB. It leads to the omission (after reformulation) of (v) in assumptions of congruence. The proof given in [1] really uses (v).
373
congruence modulo 16 for x(B) so a congruence modulo 8 for x(B+) is equivalent to a congruence modulo 8 for x(B-). One of the properties of M-surfaces (similar to the property of M-curves) remarked by V.I.Arnold [4] is t h a t a real M-surface is a characteristic surface in its own complexification (for M-curves it means that a real M-curve divides its own complexlfication since a complex curve is orientable).We shall say that a real surface is of a characteristic type if it is a characteristic surface in its own complexification.Note that the notion of characteristic type of surfaces is analogous to the notion of type I of curves. Consider at first the weakening of assumption (i) in Rokhlin and Kharlamov-GudkovKrakhnov congruences.Instead of (i) we can only assume that B is of characteristic type. According to O.Ya.Viro [5] there are some extra structures on real surfaces of characteristic type ,namely, Pin_-structures and semiorientations or relative semiorientations (semiorientation is the orientation up to the reversing). In this paper we introduce another structure on surfaces of characteristic type - - complex separation which is also determined by the arrangement of a real surface in its complexification. T h e complex separation is a natural separation of the set of components of a real surface of characteristic type into two subsets.Note that the set of semiorientations of a surface is an affine space over Z2-vector space of separations of this surface. We use the complex separation to weaken assumption (iii). In theorem 1 instead of (iii) we assume only that B+ lies in components of one class of complex separation. The further extension ,theorem 2, can be applied not only for curves of even degree but also sometimes for curves of odd degree. Another weakening of assumptions in theorem 2 is t h a t components of a curve are not necessarily Z2-homologically trivial. These extensions can be applied to curves on quadrics and cubics. T h e o r e m 1 together with an analogue of Arnold inequality for curves on cubics gives a complete system of restrictions for real schemes of flexible curves of degree 2 on cubics of characteristic type (see [6]).An application of theorem 2 to curves on an ellipsoid gives a complete system of restrictions for real schemes of flexible curves of degree 3 on an ellipsoid and reduces the problem of classification of real schemes of flexible curves of degree 5 on an ellipsoid to the problem of the existence of two real schemes (see [7]). An application of theorem 2 to curves on a hyperboloid extends Matsuoka congruences [8] for curves with odd branches on a hyperboloid (see [9]). Applications of theorem 2 to empty curves on surfaces give restrictions for surfaces involving complex separation of surfaces. Restrictions for curves of even degree on surfaces can be obtained also by the application of these restrictions for surfaces to the 2sheeted covering of surface branched along the c u r v e , if we know the complex separation of this covering. This complex separation is determined by complex orientation of the curve.For example in this way one can obtain new congruences for complex orientations of curves on a hyperboloid. These applications and further extension of Rokhlin congruence for curves on surfaces will be published separately in [9]. For example the assumption that the surface and the curve on the surface are complete intersections is quite unnecessary ,but this assumption simplifies definition of number c in formulations of theorems. The formulations of these results were announced in [7] as well as the formulations of results of the present paper. T h e a u t h o r is indebted to O.Ya.Viro for advices.
374
2
N o t a t i o n s and formulations of main t h e o r e m s
Let the surface B be the transversal intersection of hypersurface in Pq defined by equations P j ( x 0 , . . . , xq) = 0,j = 1 , . . . , s - 1 ; C B and R B be sets of complex and real points of B; let A be a nonsingular curve on B defined by an equation Ps(x0,..., xq) = 0 ,where Pj is a real homogenous polynomial of degree mj j = 1,... ,s, q = s + 1; CA and R A be sets of complex and real points of A. Let conj denote the involution of complex con]-r as - Ii
jugation. Set c to be equal to ~ . I f m, is even then denote {x e RB[ + P,(x) >__0} by B+ and set d to be equal to rk(in. : Hi(B+; Z2) --* H I ( R B ; Z2)). A real algebraic variety is called an (M-j)-variety if its total Z:-Betti number is less by 2j then total Z2-Betti number of its complexification (Harnack-Smith inequality shows that j > 0). Let A be an (M-k)-curve. Let DM be the operator of Poincar6 duality of manifold M.We shall say that B is a surface of characteristic type if [RB] = DCBW2(CB) E H2(CB; Z2) (as it is usual we denote by [RB] the element of H2(CB; Z2) realized by R B ) . We shall say that (B, A) is a pair of characteristic type if [RB] + [CA] -4- DcB(w2(CB)) = 0 E H2(CB; Z2).It is said that A is a curve of type I if [RA] -0 E H~(CA; Z2).It is said that A is of even(odd) degree if [CA] = 0 E H2(CB; Z2) (otherwise). As it is usual we denote by a and X the signature and the Euler characteristic.By /~(q) we mean Brown invariant of Z4-valued quadratic form q.
Theorem 1 If B is a surface of characteristic type then there is defined a natural separation of surface R B into two closed surfaces B1 and B2 by the condition that B j , j = 1,2, is a characteristic surface in CB/conj.Suppose that m, is even, B+ C B1, every component of R A is Z2-homologous to zero in R B a n d / f rn8 -- 2 (rood 4) then suppose besides that B2 is contractible in R P q. a) I f d + k = O t h e n x ( B + ) ~ _ c b) I f d + k = l
(rood8).
thenx(B+)=c4-1
c) I f d + k = 2 and x(B+) -- c + 4 orientable.
(mod8). (rood8) then A is of type I and B+ is
d) If A is of type I and B+ is orientable then x(B+) -~ c
(rood 4).
Theorem 2 If (B, A) is a pair of characteristic type then there is defined a natural separation of surface R B \ R A into two surfaces B1 and B2 with common boundary R A by the condition thai Bj U CA/conj is a characteristic surface in C B / c o n j , there is defined Guillou-Marin form qj on HI(Bj O CA/conj; Z2) and x(Bj) - c + x ( R B ) - a ( C B ) 4 + fl(qj)
3
(mod S).
Proof of theorem 2
Consider the Smith exact sequence of double branched covering ~r : C B --* C B / c o n j
--~ H3(CB/conj, R B ; Z2) ~ H2(RB; Z2) @ H2(CB/conj, R B ; Z2) -~ H2(CB; Z2) ~
375
Let ¢ denote the composite homomorphism
H2(CB/conj, RB; Z~) o~d H2(RB; Z2) @ H2(CB/conj, RB; Z~) -% H2(CB; Z2). Let j denote the inclusion map (CB/conj, +) -+ (CB/conj, RB).Recall that ¢. 0 j . is equal to Hopf homomorphism rc~. It is easy to deduce from the exactness of the Smith sequence that ¢ is a monomorphism. Indeed, ~rl(CB) = 0 hence ~rl(CB/conj) = 0 and Ha(CB/conj; Z~) = 0. Therefore boundary homomorphism 0 : H3(CB/conj, R B ; Z2) --* H2(RB; Z2) is a monomorphism.Therefore,since 0 is the first component of 73, Ira73 N ({0} + g2(CB/conj, RB; Z2)) = 0 and ¢ is a monomorphism. It is easy to check that
:r*w2(CB/conj) = D ~ [RA] + w2(CB). Thus 7r:(DcB/~o,jw2(CB/conj)) = [CA], therefore,because of the injectivity of ¢,we obtain that
j.DcB/co,jw2(CB/conj) = [CA/cony, RA] e H2(CB/conj, RB; Z2). It means that there exists a compact surface Ba C R B with boundary RA such that B1 U CA~cony is a characteristic surface in CB/conj. Surface RA is homologous to zero in CB/conj since RA is the set of branch points of :r. Set B~ to be equal to the closure of ( R B \ B1). Then B2 U CA/cony is a characteristic surface CB/conj,
B1 U B2 = RB,B1 n ]32 = OB1 = OB2 = RA. Let us prove the uniqueness of pair {B1, B2 }.It is sufficient to prove that the dimension of the kernel of inclusion homomorphism H2(RB; Z2) -+ H2(CB/conj; Z2) is equal to t. This follows from the equality dimH3(CB/conj, RB; Z2) = 1 that can be deduced from the exactness of the Smith sequence. We apply now Guillou-Marin congruence [10] to pair (CB/cony, Bj U CA/conj),j = 1,2 a(CB/cony) =- [By U CA/cony] o [By U CA/cony] + 2/3(qj) (mod 16). Hirzebruch index theorem gives an equality a(CB/conj) = °(CS)-x(l~).To finish the 2 proof note that [Bj U CA/cony] o [Bj U CA/cony] = 2c - 2x(Bj) (the calculation is similar to Marin calculation in [11]).
4
Proof of the theorem 1
Pair (B, 0) is of characteristic type since A is of even degree in B. Thus the first part of theorem 1 follows from theorem 2 - - there exist a natural separation of B into two surfaces ]31 and B2 such that B1 and B2 are characteristic surfaces in CB/conj. Let V denote B+ U CA/cony.Let W denote V U B1. Recall that ]3+ N B2 = 0 thus VnB~ =0. Lemma I IV] = 0 E H2(CB/conj; Z2)
Proof. Since A is of even degree in B, there exists a 2-sheeted covering p : Y -+ C B branched along CA. Involution cony can be lifted to involutions T+ and T_ : Y
376
Y since C A construction points of T+ Consider
is invariant under conj. It is easy to see using the straight algebraic of p that T+ and T_ can be chosen in such a way that the set of fixed is p-l(B:t:), p the diagram Y • CB
Y/T_
CB/co j.
This diagram can be expanded to a commutative one by map p' : Y/T~: --~ C B / c o n j . It is easy to see that p' is a 2-sheeted covering branched along V. Therefore [V] = 0 E
H2(CB/eonj; Z2). Using Lemma 1 we see that W is a characteristic surface in C B / c o n j as well as B2.We apply Guillou-Marin congruence to these two surfaces :
a(eB/eonj)
==_[W] o [W] + 2~(qw) = 2c - 2x(B+) - 2x(B2) + 2~(qw)
a ( C B / c o n j ) =_ [B2] o [B21 + 2fl(qB,) - - 2 x ( B 2 ) + 2fl(qB2)
(mod 16)
(rood 16)
,where qw and qs2 are GuiUou-Marin forms of W and B2. Therefore
x(B+) =--.c + fl(qw) - fi(qB2) L e m m a 2 Vx E Ha(B2; Z2), qB2(X) -- q w ( x ) = ~ 0
(
(rood S).
if x is contractible in R P q if x is noncontractible in R P q .
Proof. It follows from the definition of Guillou-Marin form that values on x of qB2 and qw are differed by linking number of x and V in C B / c o n j that is equal to linking number of x and C A in C B . The last linking number can be calculated from the straight construction of a 2-sheeted covering branched along CA. It was shown in [12] that Brown invariant of form q on the union of two surfaces with common boundary is equal to the sum of Brown invariants of restrictions of q on these surfaces in the case when q vanishes on the common boundary. Now theorem 1 follows from this additivity of Brown invariant and the classification of low-dimensional Z4valued quadratic forms (see[12]). Indeed, since every component of R A is homologous to 0 in R B , fl(qw) = fl(qw]cA/co,~j) + fl(qwIB+) + fl(qWtB2)" Lemma 2 shows that under assumptions of theorem 1 ~(qw IB2) = fl(qB2)" To complete the proof note that ranks of intersection forms on Hi(B+; Z2) and H l ( C A / c o n j ; Z2) are equal to d and k respectively.
References [1] V.A.Rokhlin. Congruences modulo 16 in sixteenth Hilbert problem. Functsional'ni Analiz i ego Prilozheniya. 1972. Vol. 6(4). P. 58-64 [2] V.M.Kharlamov. New congruences for the Euler characteristic of real algebraic manifolds. FunctsionM'ni Analiz i ego Prilozheniya. 1973. Vot. 7(2). P. 74-78 [3] D.A.Gudkov and A.D.Krakhnov. On the periodicity of Euler characteristic of real algebraic (M-1)-manifolds. Functsional'ni Analiz i ego Prilozheniya. 1973. Vol. 7(2). P. 15-19
377
[4] V.I.Arnold. On the arrangement of the ovals of real plane curves, involutions of 4-dimensional smooth manofolds and the arithmetic of integral quadratic forms. Functsional'ni Analiz i ego Prilozheniya. 197t. Vol. 5(3). P.1-9 [5] O.Ya.Viro. The progress in topology of real algebraic varieties over last six years. Uspehi Mat. Nauk. 1986. Vol. 41(3). p. 45-67 [6] G.B.Mikhalkin. Real schemes of flexible M-curves of virtual degree 2 on cubics of type I tel. Diploma paper. Leningrad. 1991. [7] G.B.Mikhalkin. Congruences for real aldebgaic curves on an ellipsoid. Zapiski Nauchnyh Seminarov LOMI. 1991. Vol. 192, Geometry and Topology 1 [8] S.Matsuoka. Congruences for M- and (M-1)-curves with odd branches on a hyperboloid. Preprint. 1990. [9] G.B.Mikhalkin. The complex separation and extensions of Rokhlin congruence for curves and surfaces (to appear). [10] L.Guillou and A.Marin. Une extension d'un theoreme de Rohlin sur la signature. C.R. Acad. Sci. Paris. 1977. Vol. 285. P. 95-97 [11] A.Marin. Quelques remarques sur les courbes algebriques planes reeles. Publ. Math. Univ. Paris VII. 1980. Vol.9. P.51-86. [12] V.M.Kharlamov, O.Ya.Viro. Extensions of the Gudkov-Rokhlin congruence. Lect. Notes Math. 1988. Vol. 1346. P. 357-406
Complexit6
de la construction
des s t r a t e s h m u l t i p l i c i t ~ c o n s t a n t e d~un e n s e m b l e a l g 6 b r i q u e d e C ~
T.Mostowski
E. Rannou
R6sum~: Nous d@crivons dans cet article un algorithme qui construit la partition d'un ensemble alg@brique de C '~ en ensembles o~t la multiplicit@ est fix@e. L'ent%e de l'algorithme est constitu@ par un nombre fini de polyn6mes d@finissant l'ensemble alg~brique. Chaque strafe de la partition sera d6finie par l'algorithme ~ l'aide d'une formule du langage du premier ordre des corps algdbriquement clos sans quantificateurs. Cet algorithme est d6crit par un %seau arithm~tique, de complexit@ sequentielle polynomiale en la somme des degr~s des polyn6mes d'ent%e et simplement exponentielle en le nombre de variables. Une consequence imm@diate de cet algorithme est la possibilit@ de construire des ~quations polynomiales d@finissant l'ensemble des points singuliers d'un ensemble alg@brique de C n avec une complexit6 s@quentielle simplement exponentielle. Le coeur de l'algorithme est constitu@ par une g@n~ralisation ~ plusieurs variables d'une m6thode d'Hermite, qui permet de compter le hombre de points d'un ensemble alg6brique de C ~ de dimension z~ro. Cette m~thode est particuti~rement simple ~ mettre en oeuvre. Les auteurs sont tr&s reconnaissants g Mme M-F. Roy qui, pendant plusieurs discussions, a suggdr6 le probl~me et les id~es principales de la solution. Ils remercient le rapporteur pour ses critiques constructives tr~s utiles.
1.Introduction: 1.1.Notatlon
de base:
Soit V C C n une ensemble alg6brique d6fini par des polyn6mes f l , ..., L de C[X1, ..., Xn]. 8 Soit D := }-~-i=l degfi. Nous noterons V d la composante @quidimensionnelle de dimension d de V. Soit x un point de V. Nous d6finirons ta multiplicit6 ra,(V) de V en x par:
~(v) ::~ m~(V~) d:O et, pour d=O~...,n nous poserons:
379
m ~ ( V d) := ~L a n V a - ~H a n V a + 1
p o u r L d u n n-d-plan tel que ~L a f3 V d soit fini et maximal, et H a un (n - d)-plan passant p a r x tel que ~H a N V a soit fini et maximal. En effet, rnx(V d) est ddfini (dans [M], chapter 5, section 5A, p a r exemple) c o m m e ~L a r3 V d r3 B~, oh B , est une boule de centre x et de rayon e, e est assez petit, et L d est un (n - d)-plan qui passe assez pr6s de x et tel que ~L d N V a soit fini et maximal. R e m a r q u o n s que cette derni6re condition est satisfa]te si et seulement si L d coupe V a transversalement et[,a nr-da C C ~, ohLd,r/d sont les el6tures de L d, V d dans CP ~ . Si H d passe par x, alors Hal3 V a = {x, x a , . . . , xk } est m a x i m a l si et seulement si ~a Cl~a C C '~ et H a coupe V d traasversalement en chaque xi. Si Be, B,,i sont les boules de centres z, xi et de rayon e, et si L d est parall61e ~ H a, coupe V a transversalement et passe assez pr6s de x, alors, p o u r chaque i, L a fq V a f3 Be,i contient exactement un point, et (L d f'l V d) \ Be C U i ( L d n V d n Be,i). On a done
~(L a N y a) = ~(L a N y d 71B~) T k = m x ( V a) + ~(H d fl V a) - l, et il suffit de r e m a r q u e r que ~(L d fl V a) ne d6pend pas de L d. Nous appelerons la quantit6 ~L a n V d degr6 de 1'ensemble alg6brique V d que nous noterons degV d. Soit Vk (resp. Vd) l'ensemble des points de V (resp. de V a) o9, la multiplicit6 de V (resp. V d) vaut k.
1.2.Rdsultats: Le but est de construire les ensembles Vk = {x E V I m d V ) = k} avec une eomplexit6 s6quentielle simplement exponentielle. Nous d6montrerons done le r6sultat suivant:
Thdor~me
1.2.1: Soit V un ensemble algdbrique de C n ddfini par des polyn6mes f l , . . . , fs h coefficient dans un anneau fl. Soit D := ~ i = 1 degfi. Soit Vk = {x E V I
mdv)
= k}.
Alors il existe un r~seau arithm~tique sur Pi qui construit avec une complexit~ sdquentielle D n°(1) un entier kma~ < D n°°) et des formules du premier ordre du Iangage des corps algdbriquement clos 0 1 , ..., Okrna ~ tels que: Vk = 0 pour k > kma~ et Vk = {x E C n I Ok} sinon. On en d6duit le corolla]re suivant:
Corollaire 1.2.2: Soit V un ensemble algdbrique de C n dgfini par des polynSmes 8 f l , . . . , fs a coe.O~cient clans un anneau fl. Soit D := ~i=1 degfi.
380
Alors il existe un rdseau arithmdtique sur t2i qui construit avec une complexitd sdquentielle D n°(l) des polynSmes gl, ...,gt de C[X1,...,Xn] ddfinissant l'ensemble des points singuliers de V par: Vsing -- {gl = 0, ...,gt = 0}
Nous a v o n s Ysing = LJk>lYk. Pour obtenir les polyn6mes gl,..., gt, il suffit d'utiliser le thfior~me 1.3.3.(ici V~i~g = V~i~g). Remarque: Le re@me r@sultat peut @tre obtenu sur un corps Mg4briquement clos de caract6ristique 0.
1 . 3 . 0 u t i l s utilisds: Nous utiliserons les r~sultats suivants pour construire l'algorithme annonc4. Elimin_ation ,rapide" des qt~antificateurs:(Fitchas/Galligo/Morgenstem[FGM]) Soit d2 une formuIe prdnexe du premier ordre du langage des corps aIgdbriquement clos d n variables et h r blocs de quantificateurs definie par des pol~nomes ?t coej~cient dans un anneau ~. Soit D Ia somme des degrds des polynSmes apparaissant dans la formule ~.
Th ~o r ~ m e 1 . 3 . 1 :
Alors il existe un r~seau arithm6tique sur [4 qui construit avec une complexitd s~quentielle D n°(~) une formule q! sans quantificateurs dquivalente it d2.
A priori l'6timination des quantificateurs est doublement exponentielle en n (cas oh r = n)(voir [H]). Cependant dans de nombreuses situations significatives le nombre de blocs de quantificateurs est ind6pendant de n. Dans ce cas, l'41iminations "rapide" des quantificateurs permet d'obtenir des algorithmes simplements exponentiels. Le calcul de la multiplicit4 d'une vari4t4 V en un point x se fera en sommant les multiplicit6s des composantes 4quidimensionnelles V d de V en x. Aussi le r@sultat suivant nous sera d'une grande utilit@: D4comp0sition d'une vari4t4 V en composantes fiquidimensionnelles V d (Giusti/Heintz[GH]): Th~or~me 1 . 3 . 2 : Soit V un ensemble alg~brique de C n d~fini par des polyn6mes f l , . . . , fs. Soit D := ~i"=1 degfi. Alors il existe un rdseau arithmdtique qui construit avec une complexitd sgquentielle 0 °("2) des polynSmes f~,..., fs°o, ..., fd, .--, f,~, ..., f ? , ..., f , : ddfinissant les composantes dquidimensionneIles V d de V et vgrifiant: * V d = {x e Cn l f d . . . . . fsdn = 0 } pour d = O , . . . , n * E d.= l E i s=d l degfi d <- DO(~ ~)
381
Cloture de Zariski d'un constructible (Heintz): Th~or~me 1 . 3 . 3 : Soit ~ une formule sans quantificateur du langage des corps algdbriquement clos ddfinissant sur C'* un ensemble constructible V. Soit D Ia somme des degrds de tout les polynSmes apparaissant dans ~.
Alors il existe un rdseau arithmgtique qui construit avec une comptexitd sdquentielle D n°(~) des polyn6mes fl,..., fs ddfinissant la cloture de Zariski "V de V: Y={xeCnlfl ..... f~=0} I1 semble qu'il n'y ait pas de r6f6rence pr6cise pour ce r6sultat. En voici une d6monstration, aimablement fournie par le rapporteur. (i) Soit Y = {fl = 0,...,fp = 0, g # 0}, d'apr~s la d6finition de degr6 de [H], on a deg(V) < O n. (ii) En utilisant un raisonnement similaire £ [HI Remark 4 + Prop. 3, on montre qu'il existe une famille de polyn6mes gl,..-, gn telle que V = {gl = 0, ..., gn -= 0} et deg(gi) _< D n (voir aussi [CGH] Prop 1.2 ). (iii) Etant donn~ que g.gi(x) = 0 (1 < i < n) si f l ( x ) - f~(x) = 0, on a
g.gi E R a d ( f l , . . . , f p ) , et , comme deg(g.gi) < D n+l, (g.gi) D°("2~ e ( f l , . . . , h ) et il existe des representations (g.gi) D°("2) = A1fi + ... + Apfp avec deg(A/ _< D °(n2) Voir [DFGS] Remark 7. (iv) Soit B l'ensemble des polyngmes F E k[X1,...,Xn] tels que g D ° ( ~ b F = AIF1 + ... + ApFp, avec deg(Ai ___ D °(n2), deg(F) _< D °(n2), B e s t un k-espace vectoriel de dimension _< D O(n~). On peut en calculer une base en r6solvant un syst&me d'6quations o~ les inconnues sont les coefficients des polyn5mes F, A1,..., Ap. Si H1,..., HN en est une base, clairement V = {HI = 0, ..., HN = 0}.
2.G~n~ralisatlon d'une m~thode d'Hermite permettant de compter le cardinal d'une vari~t~ alg~brique de dimension zero: 2.1.Principe
de la m~thode:
La m6thode consiste g g6n6raliser au cas de plusieurs variables la m6thode d'Hermite qui permet de compter le nombre de racines distinctes d ' u n polyn6me d'une variable.(L'interpr6tation dans le cas r6el clos de cette g6n6ralisation sera expos6 par Pedersen et Roy dans Mega92 ~ para~tre) Soit K un corps alg~briquement clos de caract6ristique 0. Soit p u n ideal de K[X1, ...,Xn]. Supposons que l'ensemble z(p) des z~ros de p dans K n soit de dimension z6ro.
382
Posons z ( p ) = { a l , . . . , a , } . Notons A l'anneau de coordonn6es suivant: A = K[X1, ..., X , ] / p . P a r hypoth~se, A est noetherien et artinien, e'est un K-espace veetoriel de dimension finie que nous pouvons 6trite sous la forme:
8
A = l~k=l A~, off p o u r k = 1, ..., s, nous avons: A~ = K[X1,...,Xn]/3~ l'ensemble alg6brique {ak}-
qui v6rifie ~
= m~ k id6al m a x i m a l associ6 £
Nous d6finissons la multiplicit6 n~ h de p au point ak par: n~ k := dimKA~ k = dimKK[X1, ...,Xn]/2c, k. Soit 11,..., lq une base de A comme K-espace vectoriel. Soit Q E A. Consid~rons la forme bilin6uire symdtrique de Aq x Aq dmls K d6finie par: B ( p , Q)(al,..., aq) := ~ ; = 1 nak Q(ak )(al I] (ak) + ... + aq lq(ak ))2 =
On
Eqj=I(E =i n
Q(ak)li(ak)lj(ak))aiaj
a alors:
Proposition
2.1.1:
Le rang de la matrice de B ( p , Q ) est dgal au hombre de point,s
de z(p) n'annulant pas Q. Preuve: I1 suffit de m o n t r e r que les formes lin6aires ( a l l l ( a k ) ind6pendantes. Soient A1,..., A, E K tels que ~ = 1
+ ... +
aqlq(ak))k=l,...,, sont
Akli(ak) = 0 p o u r i = 1, ..., q.
C o m m e (h)~=l,.. ,q est une base de A = K[X~,..., X , ] / p , la forme lin6aire
A
=
K[Xl,...,Xn]/p e
~ I
K )
8
est identiquement nulle. Mais la forme lin6aire
, P
'
K
E;=I
) kP(O k)
est identiquement nutle sur p, elle est donc identiquement nulle sur K[X1,..., X , ] . Soient ;3k l'id6al r6duit associ6 £ l'ensemble alg6brique { a l , ..., a k - 1 , a k + l , . . . , a , } p o u r k = 1, ..., s.
383
Nous avons £ cause du Nullstellensatz 3k # VfP-. I1 existe donc un polyn6me Pk e 3 k \ v ~ pour chaque k = 1, ..., s. Nous avons done, pour chaque k = 1,...,s:
~;'=1 )~k,Pk( ak' ) =
Ak Pk( ak ) = 0
==~ Ak = 0 pour k = 1, ..., s. Par consequent les formes lin~aires ( a~ l~ ( ak ) +... + aq lq( ak )) k=L...,8 sont ind~pendantes. Remarque: Darts le cas o~ K est un corps r~el clos, la signature de ia matrice de B(p, Q) est ~gale £ Ia difference du hombre de z~ros de z(p) rendant Q positif et du hombre de z~ros de z(p) rendant Q n~gatif (voir [PRS]). Ii nous reste £ exprimer la matrice de B(p, Q) de mani~re £ pouvoir effectuer son calcul de maniSre agr6able. C'est l'objet du r6sultat suivant.
Proposition 2.1.2:
Soi, h e A =
K[X1,...,X,]/p.
Soii m h t'endomorphisme suivant: mh:
A P
~ A ~ , hP
Alors:
les ( h ( a k ) ) k = l ..... s sour les valeurs propres de mh avec les multiplicitds (n,~k)~=l ..... 8. Preuve: Nous avons: $
A -- 1]k=l A,~k avec, pour k = 1, ..., s, nc,, := dimKA,~ k = d i m • K [ X 1 , ..., X , ] / 3 ~ , k oh A,~, = K [ X 1 , . . . , X , , ] / 3 ~ , k et ~ = m~, ideal maximal associ~ £ l'ensemble alg~brique {ak }. I1 suffit donc de montrer que les (A,~,)k=l ..... 8 sont les sous-espaces propres associ~s au valeurs propres (h(ak))k=l,...,s. Comme h -
h ( a k ) E ma~, il existe un entier nk tel que (h - h ( a k ) ) n~ E :ta~.
Soit P E K[X~, ...,X,]. Soient I d l'identit~ de K[X1, ...,Xn] et I d A celle de A Nous avons (ink -- h ( a k )Id)"k P E 3 ~ Done A~,, est nilpotent par m h -- h ( a k ) I d A . On en d6duit imm~diatement
Corollaire 2.1.3:
trace(mh ) = ~=1
na, h ( a k ).
384
On peut donc 6crire la forme bilin6aire B(O, Q) de la mani6re suivante: B(p, Q)(al, ..., aq) := ~ q , j = l ( ~ k = l na~Q(ak)l,(ak)lj(ak))aiaj q = Ei,j=I
trace(mQld~ )aiaj
2.2.Complexit~ de la m6th0de: Pour mettre en oeuvre cette m6thode permettant de compter le nombre d'616ment d'un ensemble alg6brique de dimension z6ro, nous avons besoin: * d'une base (/1,-.-, Ip) de d = K[X1,..., Xn]/P * d'effectuer des calculs dans A, e'est h dire modulo p. Le calcui d'une base de Gr6bner de p remplit ces besoins. Tout les autres calculs sont ensuite des constructions d'Mg6bre lin6aire pour lesquels nous disposons d'Mgorithmes polynonfiaux, ou des r6duction modulo la base de Grbbner de p. Les calcuts de base de Grbbner ayant 6t6 paxticuli6rement d6velopp6s ces derni6res ann6es, l'impl6mentation de la m6thode d'Hermite g6n6ralis6e ne pose pas de probl6me majeur. Pour construire notre algorithme de partition en strate de multiplicit6 donn6e, nous aurons besoin d'une version param6tr6e de la m6thode d'Hermite g~n6ralis~e. I1 nous faudra construire une subdivision de l'ensemble des param~tres en sous-ensembles sur lesquels la base de Gr6bner de p prend une forme donn6e. Il nous faudra en particulier connMtre l'ensemble des param6tres off la dimension de l'ensemble alg6brique z(p) n'est pas de dimension z6ro. Nous utiliserons le r6sultat suivant, qui r6sulte facilement de [DFGS]:
Proposition 2.2.1: Soient fl,...,f, E K[Y1,...,Ym, X1,...,Xn]. Soient Yl,-.., Ym des dldment8 de K, Pyl,...,v,, d6signera l'id6al de K[X1,..., Xn] engendr6 par f l , ...,ft o~z les Y1,...,Ym ont dtd spdcialis~s en Yl, ...,Ym. Alors il existe un r~seau arithmdtique qui construit, ave un complexitd D (n+m)°O), un entier r ~_ D (n+m)°°) et une partition de K n ( K - 1 , K o , K 1 , ...,Kr) d6finie par: Ki -- {(yl,---,ym) E K m ]dim z(pyl ..... y~) = 0 et rang B(p w .....y,,, 1) = i} pour i >_ 0 et g - 1 = {(Yl,...,Ym) e ~ m I dim z(pv, .....v~) > 0} v6rifiant: K,- # O. 3.Ddmonstration
du
th6orhme
principal:
Dans le th6orSme 1.2.1, nous voulons construire les ensembles Vk = {x Z V I m~(Y ) = k} La multiplicit6 m , ( V ) de l'ensemble alg6brique V au point x est d6finie par:
385
n
m.(v) := F., m*(v~) d----O
oh V a d4signe la eomposante 4quidimensiormelle de dimension d de V. P o u r d=O,...,n nous aeons: m x ( V a) := d e g V a
-
~H d n v ~ + 1
pour H a un n-d-plan passant par x tel que ~H d fl V a soit fini et maximal, d e g V d 6rant d6fini par la quantit6 ~ L a O V d pour L d u n n-d-plan tel que ~ L a N V a soit fini et maximal. Dans un premier temps, nous d6composons V en vari6t6s 6quidimensionnelles V a l'aide de l'algorithme de Giusti et de Heintz (Th6or6me 1.3.2). Nous obtenons donc avec une complexit6 s6quentielle D °(n2) des polyn6mes:
S o, ..., So0, ..., St, ..., SL, ..., S;', ..., S:o v ~ a n t : * V d = {x e C n l f (
..... Sd, = 0 } pour d = O , . . . , n * ~ d'*= l ~ i =~d1 degS~ <_ DO(n~).
P o u r chaque d -- 0, ..., n,nous allons construire les ensembles Vkd = {x E V d I m = ( V a) = k} Fixons k E {0, ..., D "°(~) }. * Calculons t o u t d ' a b o r d le degr6 d e q V a de Vd: Soit (ai,j)i,j E Ma,.+I(C) l'ensemble des matrices £ d lignes et n + 1 colonnes £ coefficients dans C. Soit L(a~, i)i,j l'ensemble alg6brique d6fini par les 6quations affines: al,lX1 ...
+ -Jr
... ...
+ ..]-
al,nXn ...
= ~-
al,n+l ...
ad,lX 1
-Jr
...
.ar
ad,nX n
---- ad,n+ 1
, -t-
,,, ...
, +-
fL, al,nXn
...
+
...
+
...
ad,lX1
+
...
+
aa,nXn
Soit P(~,i)~,i l'id6al engendr6 par: s~ al,lXl
- -
--
al,n+l, ad,n+l
E n appliquant la version param6tr6e de la m6thode d'Hermite g6n6ralis6e (proposition 2.2.1) £ cette situation, nous obtenons avec une complexit6 ( D ° ( n * ) ) ('*+d('*+1))°(1) = D '~°(~) u n entier r > 0 tel que:
Kr = {(a~,~)~,i ~ Ma,.+I(C) I dim z(P(a,.~),,~ ) = 0 et ,'ang B(p(a,,~),,~ , 1) = r} #
386
et {(ai,j)i,j E K/]d,n+l(C) l d i m
z(p(~,,j),,, ) =
0 et r a n g B ( p ( a , j ) , j , 1) > r} ----0.
Pour (a~,j)~,j fix6, L(a~j)~j est soit vide, soit sous-espace affine de C n de dimension sup6rieure ou 6gale £ n - d. Si d i m L(~j)~,i > n - d, alors L ( ~ j ) , j M V d est soit vide, soit irdini. Par consdquent K r 17 {(ai,j),,j E Md,~+l(C) I d i m
L(~,,i),, j > n - d} = O
En appliquant la proposition 2.1.1 de la m6thode d'Hermite g6n6ratis6e, nous avons: { L n-d-plan affine ] ~L M V d = r} # 0 et { L n-d-plan affine I r < ~L fq V d < ~ } = O.
Par cons6quent d e g V d = r. * Calculons les ensembles Vd = {x ~ V d I m r ( V d) = k}: Soit (bi,j)i,j E Md+I,,~(C). Soit H(b~j),j l'ensemble alg~brique d~fini par les 6quations affines: bl,l(Xl -bd+l,1) ... b d , l ( X l -- bd+l,1)
+ ... + ... "4- ...
+ + +
bl,n(Xn-bd+l,n) ... bd,n(Xn - bd+l,n)
+ + +
... ... ...
+ + +
=
0
=
0
Soit q(b~,j),.i l'id6al engendr6 par: fd bl,l(Xl-bd+l,1) ... bdj(Xl--bd+l,1)
fd bl,n(Xn-ba+l,n), bd,,(X,~'"'bd+l,n).
E n appliquant la version param6tr6e de la m6thode d'Hermite g6nfralis6e (proposition 2.2.1) £ cette situation, nous obtenons avec une complexit6 ( D ° ( n 2 ) ) (n+n(d+l))°(t) = d T.(d K 1d , ' " , K r~] d D n°(1) un entier r d < D n°O) et une partition de Md+l,n(C) ( k'_l,,~0, v6rifiant: K/a = { ( b i j ) i j e Md+l,n(C) l d i m z(q(b,,~),,j) = 0 et r a n g B(q(b,,i),.i,1) i>0 et K - 1 = {(bi,j)i,j e P~d+l,n(C) I d i m z(q(bij )ij > 0}.
= i} pour
En utilisant le m~me argument que pour le ealeul du degr6 nous avons que V~ est l'ensemble des x = ( x l , ..., Xn) E V d qui v6rifient :
387
3(bi,/)ij E Md+a,.(C) tel que: ;V1 ~-- b d + l , 1 , . . . , X n ~- bd+l, n
(b~j)~,i e K dde g V C l + l - k
et
v(c~,i)~,i E M~+~,.(c) Ceci constitue une formule du premier ordre du langage des corps a]g~briquement clos £ 2n(d + 1) variables, £ 2 blocs de quantificateurs et de degr6 totM au plus D'*°°).D ~°~) = D ~°(~) (ou plus exactement 2 formules £ n(d + 1) variables et 1 seul bloc). I1 suffit alors d'utiliser pour chaque 1 < k < r d l'61imination "rapide" des quantificateurs (thror&me 1.3.1) pour obtenir des formules sans quantificateurs drfinissant les Vd de degr~ total au plus (D2(d+a)"°(~)) ("°(~)) = D "°(~). Au total, pour chaque 0 < d < n , avec une complexit6 (n + 1).D~°°).D ~°u) = D ~°u), nous obtenons une partition (Vd)k=l .....degYd de V d. Afin d'obtenir la partition (Vk)k=l ..... k,~o= de V, il suffit d'dcrire les Vk sous la forme:
(ko,...,k,,.,) EN"
d=o
ko+...+k~=k
Nous pouvons ehoisir pour km.x l'entier degV = ~.'d=o deg Vd (kin,,= <_ D"°(~)). I1 y a, au plus pour k _< k.~.~ fixr, k , ~ k0 + ... + k, -- k.
= D "°u) n+l-uplet (k0, ..., k~) E N "+1 vrrifiant
Par consrquent chaque Vk est drfini par une formule du premier ordre du langage des corps algrbriquement clos sans quantificateur de degr6 total au plus Dn°(~).(n + 1).D ~°0) = D n°(1).
R~f$rences: [CGH] L.Caaiglia, A.Galligo, J.Heintz Equations for the projective closure of an aJ~ne algebraic variety, £ parMtre dans AAECC 7, Toulouse 1989 [DFGS] A.Dickenstein, N.Fitchas, M.Giusti, Sessa The membership problem for unmixed polynomial ideals is solvable in single exponential time, £ parMtre dans AAECC 7, Toulouse 1989 [FGM] N.Fitchas, A.Galligo, J.Morgenstern Precise sequantial and parallel complexity bounds for the quantifier elimination in algebraically closed fields, £ para/tre dans J. Pure Applied Algebra
388
[GH] M.Giusti, J.Heintz Algorithmes "disons rapides" pour la ddcomposition d'une varidtd algdbrique en composantes irr~duetibles et Lquidimensionnelles , Effective Methods in Algebraic Geometry (MEGA 90), 169-191, Birkhauser (1991) [H] J.Heintz Definability and fast quantifier elimination in algebraically close fields Theoret. Comp. Sci. 24 (1983)239-277 [MR] T.Mostowski ,E.Rannou Complexity of the computation of the canonical Whitney stratification of an algebraic set in C n , AAECC 9 Springer Lecture Notes in Computer Science 539 [M] D.Mumford Algebraic Geometry I: Complex Projective Varieties, Springer 1976 [PRS] P. Pedersen, M-F. Roy, A. Szpiglas Counting real zeros in the multivariate case, soumis £ MEGA 92
T. M. : University of Warsaw, Institute of Mathematics, ul. Banacha 2, 00-913 Warszawae, Poland E. R. : IRMAR (unit6 associ6e CNRS 305), Universit6 de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
REAL PLANE ALGEBRAIC CURVES WITH MANY SINGULARITIES E.I.Shustin (Math. Dept., Samara State University, 443011 Samara, USSR)
ul. Acad. Pavlova 1,
In this article we give the construction of real plane algebraic curves of a given degree with prescribed singularities. In particular, we construct real curves of degree V77 with ~ 4 ~ / ~ real cusps. Introduction Let ~ ~p2 be an isolated singular point of the curve , and ~ C ~ p ~ be the sufficiently small closed ball centred at Z . The topological type of the pair C ~ ~)~F~ we call the type of singular point ~ ~ F (or singularity). The topological type of triad ( ~ D ~ 29 ~ F j ~ D / ~ ~ 2 ) is called the real type of singular point ~ p ~ ( or real singularity). It is well-knov~ ~7~ that for any integers ~ p ~90 satisfying O ~ ~ ~ ~ M 4 - 0 ~ M 4 - ~ / ~ there is an irreducible curve of degree ~ in ~ p a with ~ nodes. The same for real curves [2], although in this case the relation of numbers of knots (type 3f 2 - ~ a ~ ) , of single points (type 5~2+~2--O) and of imaginary nodes is unknown in general (Viro [11] constructed curves with only single points). For other singularities there are results on complex curves: some constructions [3~ with singularities number, which is a linear function of the curve degree, and upper bounds of singularities number by a quadratic function of the curve degree [5, 6~. Here we'll give the complete solution of the problem on nodal curves (sec. 2), the construction of real cuspidal curves (sec. 3), the construction of real curves with arbitrary singularities (sec 4). Our constructions are based on the theory of gluing algebraic curves and on the independence of singularities deformations. From now on the term "curve" means the polynomial ~-- and the locus of points defined by F = ~ . we use below the joint numbering of formulae and statements. I. Preliminaries 1.1. Th~ ~l_ui~g_o_f~i~g~lar curves. Further on we'll use the suggested in ~8~ modification of the Viro method ~11-13]. Recall certain definitions (see [8, 11-13~)o
390 Let ~ be an isolated singular point of a curve F ~ ~ p 2 . If ~ is zero-modal we put ~ C 2 ) --- ~ ( ~ ) - - ~ , where ~ is a Milnor number. If the modality of Z is positive we put e ( ~ ) equal to the sum of orders of all infinitely near points in full resolution of 2 , except the nodal points of union of exceptional divisor with the proper transform of F . Let F ( ~ # ~ ) be a real polynomial with the non-degenerate Newton polygon Ah The section F ~° of F ( ~ ) on edge ~ c z A is the sum of items from F , corresponding to the edge j~ . If each section F J° hasn't any multiple factors (except ~ j ~ ), we'll call F g ~ ~) peripherally non-degenerate. Let ~ ( F ) denote the singularities collection of the curve F \ ~ ~ ~ - - 0 } . Remind of the definition of the chart of a peripherally nondegenerate polynomial ~ ( ~ j ~ ) [11-13]. Introduce the covering
E '. E
\ o ) z ,,
E
=
e. f
Put ~ £ = R a × (R~7) a • There is a sufficiently gon z ~ z C ~ such that (i) there is a homotety ~.~Z__# ~ Z , which z~" into Zh , (ii) the pair ( 7 ~ Z 2 E-q(F)/q "~/u~:X ) , --_ /klx ( ~ ~ l ~ ) z is a strict deformation retract
large polytransforms where Z of the pair
E-'(F))
.. (iii) E - f ( F ) ~ V(~') x ( ~ i ~ ) 2) -~ ~ , where V ( ~ is a set of vertexes of /hi , (iv) for each edge 2 1 ~ /%1 , the set E ' ¢ ( F ) ~ ( f ~ is, firstly, homeomorphic to a disjoint union of intervals, which correspond one-to-one to local branches of the curve F determined by a relevant edge ~ ~ /k , ~nd, secondly, isotopic to
( 7J9
E - ' ( F . P ) n (,p')~(lRil:--{)z,.)
in
.9"× [ I R ~ , ) ~
.
Then there is a set ~ ~ Z~ such that (a) F" is isotopic to E - ' ( F ) in (z~'\ ~/(za'))x([~P,~if) ~ by an isotopy, which is invariant with respect to the action of the complex conjugation and the automorphism group of the covering ~ , ( b ) ~ D (~'~¢ ([~r'2~.)~) = E-f(F,P) I,') (j~,~, (IR~E])') for every edge ~ z ~ A t . At last, put
2
391 The chart of the polynomial
F
is a pair
Let
be peripherally non-degenerate real polynomials with Newton polygons
Z k 1 ~ , , .2 Z h N - Assume (i) ZZ~ U . , . U Z~ N -- Zh (ii)
Zh~ • Zhg
is a convex polygon,
is empty, or a common vertex, or a com-
mon edge of ZZ~) Zhg if 2[9~ ~ , (iii) there is a convex continuous function
~--~ ~
, li-
near on any /k ~ ) 4_< K_K ~J , and non-linear on any union I. 1.2. Remarks. We observe that the adjacency relation for Zhl~ ,,.;
Z~lq
j%
is like one for
~
~I)'--~
/%
Z ~ t~,.. tJ Z ~ N --- Zh = ~/J~Z~ ~ ( ~ / 7 ) from (1.1.1) that
F~P = ~L
mon edge. In particular,
, if F~ 0~O
Define the gluing of charts of
2
Z~/j
)
, and that
. Also it follows
#--z~#z~
is a com-
zhe --- F~ ~ ] ~ FI~,..~
~ zZ~
F~J
.
by
It should be noted that the singularities set of
~F.1),,.,,~
•
consist of onwith the chart
/-
and Newton polygon Z~ . be an oriented graph of adjoining the polygons
ZhA/
without cycles.
1.1.4. Theorem [8]. Assume that for any kl= ~ ,..; ,/%/ curve F~ \ { X ~ - -
where
~
OJ
runs through all edges of Z ~
pond to arcs of ~ lynomial F
coming to Zl~
with Newton polygon Z~
< F., > # . . . I T
the
i s irreducible, and
, which don't corres-
Then there exists a real poand the chart
F ,,/.>
1.1.5. R~merks.
(1) Proofs of theorems 1.1.3, 1.1.4 E8] impl y that local branches of curve f with centres on coordinate ax-
392 es correspond one-to-one to local branches of Ft~,,,; F,v determined by edges of Z~ . (2) In [8 ] it is shown that we can smooth an arbitrary subset of S C F ) in theorems 1.1.3, 1.1.4, while all other singularities are retained. 1.2 Singularities deformation. Let ~l~p ~ * 9 = S 4 ( ~ 4 + 3 ) / ~ j be the space of real curves of degree ~99 in plane. Let F ~ ~ p ~ be a reduced curve and S£ M S ( F ) -- 5,/bJ 5 2, where 51 ~ 5a = ----~ and 51, 5 z are invarlant with respect to complex conjugation COMj . If ~ = { 0 ) O ) in some affine coordinate system { x 1 ~ ) ~ then F C x ~ I ~ ) denotes the polynomial, which defines the curve ~ in this affine plane• The minimal order /< of a not vanishing K-jet of polynomial F[-xj ~/~ ) is called the order OV-~/= (~-) of F at the point ~ . Put
~O(~) = ~/~P ~ [t?,P'~I
o~(~)
~ ozd Fc~)-~].
Let T ( ~ ) ~ E65~}[I::.)~ mean the tangent cone at F to the germ of locus of curves 5m ~ ~ P ~ with a singular point in some sufficiently small neighbourhood of 1.2.1. Lemma (see [9]). For any 2 ~ 5 6 ~ (F) ,
T(~)
= ( ~ ~/~p'~ I
a E
1.2•2• Lemma (see [9]). Linear varieties
intersect transversally in ~ P Put
n4£
= O~Z,~F (2:) -- 2 ~ 2 ~- S ¢
1.2.3. Coro!lary. %vith properties
(i)
For any polynomials
J~P~n4~
P/9~-jet of
&
(x,~),
~e
5f)
~S~
(iii) P~ ~ ~ 6 5~ ~ there exists the close to F following conditions : (1)
~
qb(:~l~
curve
)
are sufficiently close to zero; ~ ~ ~P n satisfying the
P~ (x~)~@51,, neighbourhood of 5 4
is equal to
(2) ~ is non-singular outside some 1.2.4. Theorem [2]. If ~ ~ P ~ is a nodal curve, then there exists the anyhow close to F curve ~ b ~ ~ n with nodes in neighbourhoods of every point ~ ~ ~ ~ and non-singular outside these neighbourhoods.
393 2. Construction of nodal curves Here we consider curves with ~ ( / : 3 consisting of only nodes. Any gluing of such curves is allowed by theorem I. 1.3. The curve ~ with Newton polygon z~ and ~ { ~ ) , consisting of d~ knots, ~ single points and ~ g imaginary nodes, we'll denote as F ~ z~ ~ j ~/ c~ or F ~ ~ / ¢ c~ . If F~ {~/~ 6~ is irreducible and has the degree ~ , then according to the PlUcker formula [14]. 2.2. Theorem. For any non-negative integers &~ ~/ C satisfying (2.1), there is an irreducible curve ~ 6 {&]/~/ C ~ of degree ~ . Proof. According to theorem 1.2.4 it is enough to study the case ~x W- ~ -~- ~ C -: { M 4 - 4 ~ 4 - ~ / ~ . We'll use induction in ~ . All nodal curves of degree ~ Z/ are well-known [15], therefore we suppose ~ ~ ~ . I step. Assume ~ = O ) 6L ~ 2 ~ - ~ . Then
-,- ,I. (c
7-.) =
therefore there is a curve q) ree M4--~ . Using theorem from curve ~O U g ~ t] t ~ ginary conic with C~/ {] ~ p Z 2 step. Assume ~= O) (2 ~ ~ . Since -I- 2. ( c
3.)
~ ( ' ~ / O / g- - 2 ~ + ~ of deg1.2.4 we obtain the desired curve C2, where C 2 is an ima-__ ~ . ~ - 3 -~C--< ~m,!-- ~ . Then
=
.,
there is a curve q9 ~ {61-"/~ ,O, C - ~ 4 + 3 ) of degree M~-~ . Also there is a real conic C 2 meeting @9 exactly at two real points, because g l - { $ "/ . Using theorem 1.2.4 we smooth one of real points in ~ ~ ~ 2 and obtain the desired curve /c ~ {~/ % C ) . 3 step. Assume ~---- O ; C ~ PM-2.3. Lemma. ;or any ~ ~ O there exist curves ~ ¢ ; Z~¢~ (~C9-{3/~2
O2
(0; ~p.f-'f~, {9,.v~,'O]
(9.) ]
with Newton triangles and
/ (O; @3
{ ((9,'0)/ ((9,-~+~2 (~,1 /JJ
resp ec t ively. Proof. We get the curves ~ by gluing the curve ~ F~, where ~ ( ~ ) = ~ - Dg ~ { 5 ~ + ~ ~ ( ~ , ~ is a union of different real straight lines in general position, with curves
,
394
g~'=~H*~fczD+z ~+~
g+= ~(4*~c~3)÷ 4 m
Let H = ~-~ (~-43 (2d-2~)'..." (:3~-144 + ~g ) o There are real straight lines Lfj L a meeting H exactly at ~ [ C / ~ and ~ [ ( d t ~ / ~ _ ] imaginary points respectively. The gluing of 7 ~ _ 4 and H gives a curve ~ E ~ E ~ 4 4 - 3 ) ~ N 4 - ~ p / ~ ; O 1 0 3. Smoothing two real points in ~ / O (L~ U I-2) we get the desired curve F from the curve ~ U L ~ L 2 / _ z " 4 step. Assume ~ ~ j c ~ M4- ~ . Since ,~ . ( t - ~ ) -,- ~- (c - ~ . 3 ) = (~-3.)(~-~)/2 .. there is a curve ~b E {G2 g- % d - ~ t 4 + 3 ) of degree /~/?-2. Let L be a general imaginary straight line. Then we obtain the desired curve F from the curve %~ U L ~ d D ~ Zby smoothing two conjugate points in ? D ( L U co~' L ) . 5 step. Assume ~ ~ ~ ~< M4-~,. C ~ ~ta-c/ 2.4. Lemma. For any triangle U- with integral vertexes
there i~ a c ~ v e
{ E T(O,
~, O )
, and al~o, if ¢, is even,
a curve S E-T"fd~ I O / 9 / ~ ) " Proof. A curve with Newton triangle V- can be obtained from a curve with Newton triangle ~ fO/'2)~ (~-4,' ~ ~" ~ ~ by birational transformation remaining ~ (~3 (or ~ {~ ). Then is an image of
where
P~,.¢ ( g ) ---" ~-O.S6 ~ 0
polynomial, and, ~
~T~g~ ~ )
is the Chebyshev
is an image of
2.5. Remark. It should be noted that sections of polynomials /~ ~ on edge [ ( p g ? - p ; g ) 2 { ~ - f , . d p ~ ] of Newton triangle m are products of real factors, linear in ~ . Introduce the following polygons: ( i ) quadrangle ~E" =" { {~]0),, (~,1 .~)/ (JIM-'l] "/.,)2 ('IM/ OJ ~,; (ii) triangles T ~
-- {<0} ~ - ¢ - ~ )
}
{O;
I,'14-¢Ji,
¢=o,<..-,~-v,. (ii±) tri~gles T¢-= {{~-¢-¢,'03; 6~-¢; ~)~ ~-¢-z; ¢,~-z) 3, or= o,'/, - - - ~ ~ - g .
(~,~,~; n~- ¢-©,
The corresponding curves from lemma 2.4 we denote by
395
To get the desired curve F we have to glue curves 7~q ~~- f into a curve of type f C ( ~ - ~ ) / 2 ) 6~) O 2 and then to complete the construction as in 3 step. 6 step. Assume ~ ~ /4,1- ~ C ~ /4,?- ~ . 2.6. Lemma. :For any non-negative integers ~ j ~ satisfying
j
there is a curve of type ~ g - ~ ( ~ l ~ ) • Proof. According to lemma 2.4 there is a curve ~ ~I-~O a ~I-~ 0 ~ • The statement follows from the method to substitute (A) a single point for a knot, or (B) two single points for two imaginary nodes. Realize the Cremona transformation supposing that o ~ g T ( ~ ; O ; O ) = ~ - ~ , and. / O : 1 : O ) ( O ; O ~ I~ are single points of ~ . According to [14~ the proper image ~ of ~ has order ~ - 4 ' at 14;0 ; O~ , touches the line ~ = O and meets the line ~ / = O at two imaginary points, We have to turn the line ~ / = O round the point (~:O;O~ so that a pair of imaginary intersection points with ~ substitutes for a pair of real these, or we have to substitute lines ~= O) ~ = O for a pair of imaginary conjugate lines through ( ~ : ~ : ~ . And then we realize the transformation It is easy to see that the first operation is (A), the second operation is (B) Now we'll construct a curve ~ ~ ( ~ ~ ~ ) by the following algorithm. Put
~,,= ~'~ ~ -, c ~
F ,= ~ 2
~z~-~
,,
c~ = ~-~,
~= -t.
The algorithm step is as follows: (I) if ~ > ~,~a-,~-~~ ~C'~ or ~ < 0 then stop, (2) if ~ is even and ~ C ~ then glue F / with ~ ( ~ ' ¢ ~ and decrease ~/ by ~ / ~ , other~ wise glue ~ with I [ ~ £ 3 and decrease by ~ (3) substitute F ~ for the obtained curve, ~ for - ~ , and ~ for -~ , and then return to (S). After stopping algorithm we get: If ~ = ~ then ~ is the gluing of F / and a curve
F " ~ ~c'~[cb 6" c? zf ,~, ;> O )
"
l ' q - .~d' ~ ~ -
£
then F
i s the g l u i n g
396
't ec rve E ~ " ( i , i , l - y _ --
~, ~ g'j
Let
E =
q
E COjg~I
O)
"-<
#' - ! e
,, ~
dao
ve
c').
q,~ ~_c'; #'+ ~ c ' ~ ~ - ~ ,
g ' ~ (~-.~J/2#
. According to lemma 2.4 there is a curve with Newton triangle
q~
-I Cos ~ - ~ - ~ ) . , {~.~ ; v~-~J,, <"q+t, ~ - q - I J j , where ~ = ~ - ~ " o According to 2.5 the section of the polynomial ~ on the edge ~ f O / ~ - ~ - ~ 3 , {~T/ ~~3 ] has two real factors ~ ~ 55~ ~ , ~ e ~ 5~ ~ ° Therefore the curve
-~-~
with Newton triangle is of the type ~ s
% = ~ . ~ <6~ - ~ ' - + ( ~
~ {0]1411 -~.-2-), 6~. ~x" ~-~'*)., EL:); ~il-~,3J O ) 0.) . Now put ~'~-O. . . . . c ~ - ~ , +:z~J + "iJ >
where ~ 2 ~ ,~-~-4 (, ~.~15__~7-,~'~W.q ) is the section of the polynomial ~ on the edge [ { ~ ] ~ - - $ ] , {~+~j ~l-~.-fJ]. Gluing curves ~ ## ~#y ~mi ~s and a curve of type ~i-{~-~ -~gl) O) ~ we obtain a curve with Newton polygon 11{O/O).. 60/ ~4-~)~ (¢k;~-~), {~4,.o) ], According to 1.1.5(I) a section of a polynomial ~i, on the edge {O/~-~) , {~ ," ~ - ~ 3 ] is, evidently, a product of linear real factors. Hence a curve ~ ~ ~ I ~, d ) can be obtained by gluing ~ ~i with a relevant curve ~ % ~ ~ - * from proof of lemma 2o3. Analogously one has to construct the desired curve ~ ~ 1 ~# ~) in cases and 3. ,,,Construction,, ,,o,,<,,,cuspidal ,,, curves. The number ~ of ordinary cusps (i.e. of type S2#-DKJ--O ) of a complex curve of degree V~ does not exceed 5 - ~ z //~6 [5, 6]. On the other side there are curves of degree ~ " ~ with ~ a l z / cusps ~6~. Namely, let ~ f ~ l ~ , ;"~L'Z.) be the sextic curve dual to a non-singular cubic. It has 9 cusps. Then the curve ~ ~ ) 5 ~ ) .,~d'Z~") has ~ : 2 = ~'2//~/ cusps. However in this case at most ~ cusps are real, and also
397
it is unknown what numbers
~E
~'0 .;
~2/z/)
of cusps can be
realized,
We consider the problem to find the number = ~ ] /~ I for each /VE KO/ ~ ] there is a real curve of degree ~ with /V real cusps as only its singularities 3, It is well-knovm that ~('4)= ~(~)-O~ ~ ( . 3 ) = ~) ~ ( Y ) =
"~(~)
= 3, ~ ( 5 ) =
5- [4].
3. I. Theorem.
If
~
~
&
then
Proof. We'll use below the construction 1.1.4, therefore, according to 1.1.5(2), it is enough to construct a curve of degree V~
with P ~ real cusps. 3.3. Lemma. There exists a curve ~D
<'r=.l(o,.o).. (o,.3),(3,.o.).,
(3;33 ~
with Newton quadrangle and s ( ~ . ) consis-
ting of 4 real cusps. Proof. Let C q be a quartic with 3 real cusps. Let the points (O: ~: O) ,~ ( 0 : 0 : ~) lie on Cg ,and the straight line Xo = 0 touch C 4 at a real point. Then (see ~14~) ~ is a transformation (2.7) image of C ~ • 3.4. Lemma. There exists a real cuspidal cubic with Newton triangle { (O~'O~) ~3] ~ ~ (O) 3) 3 and with prescribed sections on edges
[(o;o)~
(3;o)] 2
C{o;o.~.,(o,.~)].
Proof. It is enough to show that anhsmmonic relation of origin and intersection points of C 3 on coordinate axes ~K and are arbitrary. This can be got by means of a suitable choice of axes ~
and
~
Suppose that
V~=
~ ~
. The q~adrangles
~ . : ~ ( 3 ~ 3d'), C3~;3j-,-D~ (3~.3;3j), ~3~.3; 3j'+3.)3, and the triangles
L = o~ . . . , ~ - / ,
(O,'OJ, (I,l,4"OJ) i'o)i~,,JJ.
form the regular subdivision of the triangle ~ Orient all arcs of the adjoining graph [- upwards or to the right. Define the following transformations of polynomials ~ ( ~ / ~ with Newton polygon ~ -
:
398
Then the desired curve with ing of curves ~ f 3 6 Bj ~ i H j
~2__
~(~j~)~
~ ~/0~
real cusps is a glu~'~0/
('kj~ ~ - 2 ~
and also suitable cuspidal cubics with Newton triangles ~ , ' O_< i ~ ~- ~ . Here conditions of theorem 1.1.4 are satisfied, because ~ = ~ for any ordinary cusp. If ~ = 3 ~ + 4 or 3 ~ ~ ~ , it is necessary to add to the above gluing some curves ~ with S(~) = ~ and Newton triangles {~0]~)) {3~ j B@-3£) 2 {'3Le3 ~ 3~.-3~-3) ~
(3¢,.o)9.
7,-¢)
4. Oonstruct,i, on of cu~v,es,, with arbi,trar y s i r ~ u ! a r i t i e s 4.1. Theorem. For any collection ~ D~; . . . ) 5 ~ ~ al singularities and for integer iS9 ~ O satisfying
of re-
where ~ is a Milnor number, there exists a real irreducible curve of degree DI with S~;...~ 5 ~ as only its singularities. 4.3. Remarks. (1) The left hand side of (4.2) cannot be increased, because a singularities number of a degree ~4 curve is at most M 4 2 / 2 [14]. The left hand sides of known estimates [3, 10] are linear functions of the curve degree. At the same time, probably, the singularities invariants in (4.2) can be decreased. (2) The getting of the type (4.2) estimate in the ~ y of the formal comparison of a curve coefficients number with a number of conditions imposed by singularities is hardly possible, because it is very difficult to prove the system of these conditions gives a curve without additional degenerations. Proof of theorem 4. I. If ~{Dg, ~ ) = ~ defines the singularity S at { 6 )] (9) then the equation ~ ( o d j ~ ) ----0 with the same {~{~)+ 43 -jet defines the same singularity at ( ~ # ' O) (see [I]). Therefore, according to 1.2.3, it is enough to construct a reduced curve of degree ~/I , satisfying (4.2), with points ~ £ of orders ~ Z d { ~ ) ~{S~)~ 3 # 4-.<~ < ~ 4.4. Lemma. For any integers K ~ >I _._ >~ ~ ~ u/ there exists a reduced curve of degree
~) with points
~
of orders
(4.~)
399 (4.6) Proof.
Put
~TC(L) = { I . - I ) ( L ~ - 2 ) / 2
,
;. ~_. 9__.
Let ~YC(~) ~ ~ < ~f-{9. 4) and points 2 ~ ) , , , ; general position in a plane. Note that ~ T U [ ~ 4.) of the space of the degree ~ curves. Since there are different irreducible curves
~ be in is a dimension
,/_.< ( of degree
~
, which pass through ~ i)---) ~, . For any is a dimension of the , since ~i-[~-j+ ¢) space of the degree ( ~ - j ) curves, there are different irreducible curves
j = 4, ---,9 - ~
,
/
of degree $ - j At last let
4_~i , which pass through ~ Z/ 4 ~< Z ~¢7%-~9-#'+ 4)- /.
be different straight lines through 2 I • Consider the reduced curve ~--- Q)~/J) point ~ Z ~ ~'V[(~,)~ Z ~ ~ , belongs to ~p/o") Since~_
.,.
.j
~'I~'(9~
~,
then
o"zd~(~,z.) ~ K..:,.cc,],)~ / ( z
,, ,-v'c(~.) ~ z __~ e t .
(4.7)
Analogously, any point ~ z~ ~ ~/'C'(~,-~.) ~ ~. < ~/'C($ - ~ -e- { ) > ~< ~-< ~ - 2 , belongs to ~¢(J)) 0 ~ < ~ , therefore
>~ K ~z )
~T~-C$ - ~ ) <_ Z
< "TC [ ~/ - ~ + {.) .
(4.8)
-4d
(4.9)
At last
-(J)
,~-,/}
K.~
Inequalities (4.7), (4.8), (4.9) imply (4.6). Now we'll give an upper bound for ~ ~
,4= a,
1, =
+
:
%-0+...÷
400
-- K,rC(~ j f
K,ri.(~_f ) -l- -.. 4- K~_cC~) -~- K, I = ~
~L = K,~r-~L) ,,
where
K z ~K.rc~ )
,,
~
C ~< ~ )
-h
Z~.?"~-...+ "~Z -l- "~f/
"Z'# ----- ~ - Z
. Since
~---~'C($_) ~ Z ~ : I T ( 3 ) ~
then 3,
Kt 3
3
=
@ i---3
z l3 + z ~ + .s
_3
..
3
.
/<
-L
#
3
---
~
The ginkovski inequality implies
m=~._
m2 ~
~ /~z~ (1+ I+ ~ / ~ - -
N~ ~ ~
~-jH(eD
~
¢TS/3.
-<
+
Since
+ Z~
(4. lO
then
~ ~ (r.~-l)~ ~ 9 ~ ~ ~A:~/2.
Therefore (4.10) implies
what is equivalent to (4.5) i Now for any degree satisfying (4.2), we have to add to the curve from lemma 4.4 a suitable set of straight lines in general position. References 1. Arnol'd V.I., Gusein-zade S.N., Varchenko A.N. Singularities of differentiable maps, vol. I. Boston, Basel, Stuttgart: Birkhauser Verlag, 1985. 2. Brusotti L. Sulla "piccola variazione" di una curva piana algebrica reali. Rend. Rom. ACo Lincei (5), 30, 375-379 (1921) 3. Gradolato N., Mezzetti E. Curves with nodes, cusps and ordinary triple points. Ann. Univ. Ferrara, sez. 7, vol. 31, 23-47
401
(1985) 4, Gudkov D,A. On the curve of 5th order with 5 cusps. Function. anal. Pril. 16, no. 3, 54-55 (1982) (Russian) 5. Hirzebruch ~. Singularities of algebraic surfaces and characteristic numbers. Contemp. Math. 58, 141-155 (1986) 6. Ivinskis K. Normale Flachen und die Miyaoka-Kobayashi Ungleichung. Diplomarbeit, Bonn, 1985. 7. Severi F. Vorlesungen uber algebraische Geometrie (~nhang F). Leipzig, Teubner, 1921. 8. Shustin E.I. Gluing of singular algebraic curves. In: Methods of Qualitative Theory, Gorky Univ. Press, Gorky, 1985, pp. 116-128 (Russian) 9. Shustin E.I. On manifolds of singular algebraic curves. Selecta Math. Soy. 10, no. I, 27-37 (1991) 10. Vainstein A.D., Shapiro B.Z. Singularities of Hyperbolic Polynomials and Boundary of Hyperbolicity Domain. Uspekhi Math. Nauk 40, no. 5, 305 (1985) (Russian) 11. Viro O.Ya. Real varieties with prescribed topological properties. Doct. thesis, Leningrad Univ., Leningrad, 1983 (Russian) 12. Viro 0.Ya. Gluing of algebraic hypersurfaces, smoothing of singularities and construction of curves. In: Proc. Leningrad Intern. Topological Conf., Leningrad, Nauka, 1983, pp. 149-197 (Russian) 13. Viro O.Ya. Gluing of plane real algebraic curves and construction of curves of degrees 6 and 7. In: Lect. Notes Math., vol. 1060, Springer, 1984, pp. 187-200. 14. Walker R. Algebraic curves. New York, Dover, 1950. 15. Zeuthen H.G. Sum les differentes formes des courbes planes du quadrieme ordre. Math. Annalen, 408-432 (1893)
Effective stratification o f regadar real algebraic varieties Nicolai N. Vorobjov st. Petersburg Dept. of Mathematical Steklov Institute of Academy of Sci. 27, Fontanka, St. Petersburg, 191011 Russia A b s t r a c t . An algorithm is proposed, producing a W h i t n e y stratification for a real algebraic v a r i e t y which is a union of t r a n s v e r s a l l y intersecting smooth varieties. The complexity of the algorithm and the estimates on the p a r a m e t e r s of the produced s t r a t a are single exponential in the n u m b e r of variables of the i n p u t polynomials. IntroductionLet us define a regular real algebraic variety to be the union k ) W i of a l_
(-~
Wje ~ ~ t h e n this i n t e r s e c t i o n is
l_<e_<S1
transversal. I n t h i s p a p e r a n a l g o r i t h m is p r e s e n t e d for c o n s t r u c t i n g in s u b e x p o n e n t i a l time (see below) a W h i t n e y stratification (see e.g. [I]) of a regular real algebraic variety given by an a r b i t r a r y formula of the kind
k]
&
1~/~ l_<j~r where polynomial flj e Z [ X 1.... ,Xn].
( f ij = 0)
(I)
L e t us a s s u m e t h a t t h e i n p u t f o r m u l a (I) s a t i s f i e s t h e following e s t i m a t e s : degx1,...~n (fij) < d, the absolute value of every (integer) coefficient a p p e a r i n g in fij does not exceed 2 M (hence bit-length g(flj) of every coefficient does not exceed M) and t+r = K for some natural d, M. T h e o r e m : There is an algorithm that produces for a n y formula of the form (I), defining a r e g u l a r real algebraic variety V c IR~ and satisfying t h e mentioned estimates, a W h i t n e y stratification of V. This stratification is r e p r e s e n t e d by a family of s t r a t a - semialgebraic sets V o = {0 0}..... Vm = {Om} c IR~ (m < n), where Oj (0 -<j < m) are quantifier-free formulas. E v e r y Oj containes (Kd) n°(1) atomic subformulas of the kind (g > 0) where polynomial g e Z [ X 1..... X~] satisfies the bounds :
403
degx t .....x, (g) < (Kd)n°(1),
e(g) < M °(1) ( K d ) n°(1) .
The r u n n i n g time of the algorithm is polynomial in M, ( K d ) ~°(1) . L e t us a d m i t t h a t the n a t u r a l idea of c o n s t r u c t i n g a s t r a t i f i c a t i o n by recursion (roughly speaking : defining firstly singular points with the help of a formula of the first-order theory of reals h a v i n g small n u m b e r of quantifiers, after t h a t defining the singular points of the l a t t e r set a n d so on) will give the a l g o r i t h m w i t h the complexity double exponential in n u m b e r of variables (more precisely - in the "depth" of the singularities). This idea can be applied to an arbitrary (not necessary regular) algebraic variety [9]. The set V admits a certain s t a n d a r d stratification. Namely, suppose t h a t the stratification for the set W (e) = k.J W j (1 < e < s) is a l r e a d y defined. T h e n l<_i<_e define the stratification for W(e+t) = L3 W j whose s t r a t a are : l
~ , J~ij . Let f = 1-I f i . It is easy to l <_j
check t h a t the variety V = {f=-0}.
I. I n f i n i t e s i m a l s . Let F be a n y formally real field, denote by P its real closure (see e.g. [4]). Introduce an element e > 0 infinitesimal relative to F (i.e. for every 0 < a e F the inequality e < a is valid). The elements o f F ( c ) are P u i s e u x series in s i.e. for a e F(e) holds : a = ~ a i £ i>O
vii #
where 0 ~ a i ~ F for all i > O, integers vo < v 1 < ...
increase a n d the n a t u r a l n u m b e r # > 1. If v o < O, t h e n a e F(e) is infinitely large, if v o > 0 t h e n a is infinitesimal relative to F. If v o > 0 t h e n the s t a n d a r d p a r t st~(a) ~ i s
defined : 0 if vo>0 stc(a) =
a o if vo=O
404
The s t a n d a r d p a r t of a vector (/31..... /3,) is defined component-wise. By stl,2(.) we shall denote the s u p e r p o s i t i o n st~,(st~2(.)) in case the several extensions are involved. The following "transfer principle" is valid : i f F 1 c F 2 are two real closed fields, F 1 is a subfield of F 2 t h e n every proposition expressed by a formula of f i r s t - o r d e r t h e o r y of real closed fields w i t h coefficients (of the atomic polynomials) in F : is true over F 1 if and only if it is true over F 2 . Let A c ~ ) n be a semialgebraic set defined by a formula with coefficients in F . T h e n by A (e) we shall denote the set defined in (F(~.)) n by the same f o r m u l a . Analogous n o t a t i o n we shall use i f several i n f i n i t e s i m a l s are involved.
2. Auxiliary propositions. I n t r o d u c e tree i n f i n i t e s i m a l s 0
<
E2 < C1 < t:0 S0 t h a t Q (i = 0,1,2) is
infinitesimal relative to the field Q(c 0..... Q_I ) and the v a r i e t y ~ = {f-e2=0} c (Q(eo,Q,e2)) n . Note t h a t :g is a smooth hypersurface. The m a i n idea of the algorithm is t h a t close to any point of p-dimension s t r a t u m Vp (of the s t a n d a r d s t r a t i f i c a t i o n of V) the h y p e r s u r f a c e ~r looks like a cylinder over ( n - p - 1 ) d i m e n s i o n m a n i f o l d h a v i n g i n f i n i t e l y large a b s o l u t e v a l u e s of principal curvatures. This property one can express in the language of first-order theory of real closed fields and t h u s "define" the s t r a t u m Vp. The role of the base of the mentioned cylinder plays a section of ~ with a ( n - p ) - p l a n e which is orthogonal to Vp at some point from Vp. The idea of studying a stratification of a zero-level set of a function via the behaviour of a close-level smooth set was introduced (in much more abstract setting)) in [10] (see also [11]). Choose x e Vp. Note t h a t the intersection M = V(e°'el'C2)r~ ~ x(eO) is p connected since Vp n ~x(5) is connected for all sufficiently small 0 < 6 • Q and according to t r a n s f e r principle. Here ~z(R) denotes a n open ball of r a d i u s R about z. Let = U
yeM
(gnU(q)).
Let L, L : : (Q(~o,sl,~2)) n be r-and m-planes correspondingly, r > m > 0. We shall say t h a t L a n d L 1 are eo-collinear if for every u n i t vector v I e L 1 there exists such a vector v • L t h a t v:=v+w w h e r e all c o m p o n e n t s of w are infinitesimals relative to Q.
405
Denote by Pz the (n-p)-plane orthogonal to M a t the point z e M a n d by ~£ c J/ a subset of points of J/ a t each of which the n o r m a l to ~ / i s n o t Eocollinear to (n-p)-plane Px" L e t us r e m a r k t h a t ~ is open in :g in the topology with the base of all open disks i n ~ . Note t h a t the set £e is n o t s e m i a l g e b r a i c (its d e f i n i t i o n i n c l u d e s t h e indication on unspecified element infinitesimal relative to Q). Nevertheless we shall consider the connected components of ~, namely, the l i n e a r l y connected components. The subset LPo c ~¢ will be called l i n e a r l y connected i f for every pair of points x~y • ~o there exists a connected semialgebraic curve belonging to
"~0 C (Q(e0,E 1,£2)) n a n d containing x, y. L e t us prove prove t h a t ~ h a s a finite n u m b e r of l i n e a r l y connected components. Recall a t first t h a t if a semialgebraic set is defined by a quantifierfree f o r m u l a of t h e first-order t h e o r y of real closed field w i t h K atomic polynomials h a v i n g n variables and degrees not exceeding d t h e n the n u m b e r of its connected components is less t h e n a value of a certain function a in K, n, (as such a function one can t a k e (K d )0(~) b u t this is not essential here). Suppose t h a t ~ has as infinite n u m b e r of (linearly) connected components. Choose a finite n u m b e r t of them. Then there exists an element 0 < a • ~ s u c h t h a t in each of the chosen components there is a point z for which the u n i t vector v 1 normal to ~ at z a n d every vector v • Px the n o r m [ v-v 11 > a. Indeed, c o n s i d e r t h e f u n c t i o n z : ~ .....
> ~
which to every p o i n t z • ~¢ p u t s in
correspondence t h e e l e m e n t 0 < fl • ~ equal to t h e m i n i m u m of the v a l u e Sto,l,2(Iv'-v ~ [) where v~ is the u n i t vector normal to r a t z a n d v" r u n s t h r o u g h all vectors v' • Px- For every connected component LP0 of L¢ the image z(~eo) = (0,~) c ~
where 1 > X • Q . Therefore for chosen c o m p o n e n t s of ~ t h e
intersection of z-images is also an interval of the kind (0,~) c ~ t h u s for a one can t a k e a n y element from (0,X). Now consider a semialgebraic set £2 of all point z from J~ such t h a t for a u n i t vector v 1 normal to ~ at z and every vector v • Px the n o r m [ v-v 1 [ > a. The set ~ can be given by a formula of the first order t h e o r y w i t h pl.k atomic polynomials of degrees less t h e n P2.d a n d h a v i n g P3.n v a r i a b l e s for some n a t u r a l n u m b e r s Pl,P2,Pa" Therefore the n u m b e r of the connected components of ~ is less t h e n a(plk,P2d,p3n). Obviously ~ c ~. T h u s the n u m b e r of the connected components of ~ is not less then t. We can choose t > a(Plk,P2d,p3n)contradiction.
406
We shall call a s u b s e t J/1 c J / p - l o n g i f p is the maximal n a t u r a l n u m b e r such t h a t for every point z from some p-dimension s u b s e t M 1 of M holds : P~ r~ J/1 ¢ ~#-It is clear t h a t J/1 is p-long iff dim(stl,2(J/1)) = p . L e m m a 1. The set ~ is not p-long. P r o o f . Suppose t h a t ~ is p-long. Choose in ~ (correspondingly - in M ) a pdimensional smooth connected semialgebraic s u b s e t ~1 (correspondingly - M 1) such t h a t for every z e M 1 the intersection P= r~ ~fl ¢ ~ consists of a unique point and this correspondence is bijective. The sets ~1 and M 1 can really be chosen. Indeed, since the n u m b e r of the c o n n e c t e d c o m p o n e n t s of ~f is finite, a m o n g t h e m t h e r e will be a p - l o n g c o m p o n e n t ~'. Choose in the set ~ ' which is open in 7z a p - d i m e n s i o n connected semialgebraic s u b s e t ~" which is a smooth manifold. According to the definition of p-long set there exists a p-dimension open subset M" of M such that for every y e M" the intersection Py c~ ~ " ~ ~. Besides, from the transfer principle follows t h a t for all pairs Y l , Y 2 • M " c M holds : Pyl ¢'~ Py2 ('~ fl.t = d). Therefore we have t h e smooth m a p of smooth manifolds 92 : CA~''
) M", if
z e ~ " c~ Py then 92(z) = y. By Sard's theorem, t h e r e exists a connected p-
dimension semialgebraic s u b s e t M 1 c M" such that for every point y e M 1 the fibre 921(y) consists of the noncritical points of the m a p 92 and t h u s - of finite n u m b e r of points. Let ~1 be such a smooth semialgebraic subset of 921(M1) t h a t 92(~.~1 ) = M 1 a n d the restriction of 92 on -~1 is injective. Therefore we h a d constructed the sets M p ~1 having the necessary properties. Choose a point x 0 • M 1 and denote by L the p-plane t a n g e n t to manifold M at x o. Since the smooth manifolds Vp can be given by a formula of first-order theory of the field Q for every point z e M the intersection Pz n L ~ ~ consists of the unique point and this correspondence 91 "L
> M is bijective.
L e t L 1 = ~0~1(M1). Denote by ~1 : L1 > Q(eo,~l,e 2) a smooth function taking the value of the euclidean distance b e t w e e n a point from L 1 and its image in M 1 in force of the smooth map 91. Denote by V2 : L1 " Q(~o,Q,~2) a smooth function which for y e L 1 is taking the value equal to the s u m of ~I(Y) and the distance between 91(Y) and 921(9](y)). Let us prove t h a t there exists a point a • 5g1 such t h a t euclidean distance form a to M is an element from Q(eo). This will contradict with the definition of J/.
407
According to Lagrange's t h e o r e m on finite i n c r e m e n t s , for every point y e L 1 there exist points $1 e L 1 and 02 e L1 such t h a t ~I(Y) = < grado~(~), (y-x o) > , ~2(Y) - ~2(Xo) = < grade2(~'2), (Y-Xo) > , therefore ~2(Y) -- ~I(Y) -- ~2(X0) = < grado2(tg2) - gradel(V1), (Y-Xo) >Choose a point y 0 e L 1 such t h a t lYo-Xol = e~ for some 0 < 7 e Q, grad=o(~ 2) is c011inear to (yo-Xo) and W2(Yo) _>~2(Xo). Then by definition of the set ~ D ~1 for c o r r e s p o n d i n g O 2 the scalar product < grade2(~g2), (Yo-Xo) > ~ a e~ w h e r e 0 < a e Q. Besides, [ g r a d o , ( ~ l ) [ < e~o for a certain 0 < fl e Q a n d t h u s < grade,(Wl) , (Yo-Xo) > Igrade,(wl)[. l yo-xo I <e~o+r . Let a = ~21(~1(yo)). Then the distance from a e A1 to M 1
v'2(Yo) - ~(Yo) > ~(a-~o) + ~(Xo) > e~. This contradicts the inclusion Stl,2(a) e M 1 which is valid by definition of the set A1 c ~q. The l e m m a is proved. Let us r e m a r k t h a t the l e m m a r e m a i n e s t r u e if we take i n s t e a d of ~ a n a r b i t r a r y s m o o t h algebraic h y p e r s u r f a c e t h e s t a n d a r d p a r t st 2 of which coinsides with V. The property to be algebraic is i m p o r t a n t : consider for example a line on a plane for V and an infinitely close sinusoid h a v i n g an infinitesimal period for the smooth hypersurface. Denote by -¢ : ~ ) S n-1 the Gauss map (see e.g. [5]) o f ~ , here
s--*= { x
Ixl = 1 }
Corollary. Fix a point x e fie°). p For almost all point y e Cep O) c~ ~=(e o) (i.e. for all points with the exception, maybe, of the points of a semialgebraic subset of the dimension less t h e n p) holds : d i m ( s t o & 2 ( J ( ~ • ~y(Q)))) < n - p - 1 . Moreover, the set Sto,l,2(J(~ n ~y(el))) belongs to the intersection of the (n-1)sphere S "-1 with (n-p)-plane, passing through 0. P r o o f . According to l e m m a I, stl,2(5~) c
fie°) p (where ~ appears from x as in
l e m m a I) is a semialgebraic subset of the dimension less t h e n p. Let the point y belong to the complement to stl,2(5~) in 1fiE°) p . Then, by definition of £P, for any point z e (Tz ¢~ ~y(~l)) the normal to ~r at this point is %-collinear to (n-p)-plane which is passing through 0 and is collinear to P=. The corollary is proved.
408
Consider the s t r a t u m Vp for a certain 0 _
j< s, for almost every point y e ~/;0) n ~x(Co) holds : dim(sto, l,2(J(~v c~ ~y(Q)))) < n - p f f l
(2)
L e m m a 2. Let for almost every point y e ~%) pj c~ ~x(Co) the equality t a k e place in (2). T h e n dim(sto&2(J(Tz c~ ~x(Q)))) = n - p - 1 .
P r o o f . According to the corollary to l e m m a I (being applied to Vp) t h e inequality holds : dim(st0j,2(J(~" c~ ~x(Q)))) = l < n - p - 1 . Assume t h a t the strict inequality takes place. Let tl= max {/, n - p 1 - 1 . . . . . n - p s 1}. T h e n there exists an element 6 : ~0 > 6 > 0 of the field Q(E o) such t h a t for all Ce 0) points y e c~ ~ ( 6 ) the following holds : dim(sto,l,2(Y(~ n ~y(el)))) < t 1 (in the opposite case on can find Yo e
Ce )
c~ ~x(6o), w h e r e 5 o is infinitesimal
relative to Q(e o) such t h a t dim(sto, l,2(J(r c~ ~yo(60)))) > t l + l therefore the last inequality is also valid if one changes So by Q a n d Yo by x). Let W = ~ c~ ~ x(6). Thus dim(sto,l,2(J(W))) = t 1 < n - p - 2 . There exists a n element 0 < v e Q(e o) infinitesimal relative to Q such t h a t
L3
~w(v) D .¢(Z).
W e (Sto,1,2(J(,~f)))(eO'eI'e2)
For each point w e (Sto,l,2(J(Ar))) (eO,el,e2) denote by Aw the fibre J-l(~w(v) c~ J(W)). Obviously W=
LJ Aw . w e (Sto,l,2(J(]~))) (eO,el,e2)
409
Since all normals to ~ at points of the set A w are eo-collinear, every point from A w is situated in an infinitesimal relative to Q distance from a certain (the same for all points) hyperplane, besides the normal to this h y p e r p l a n e is eo-collinear to every normal to ~ at the points from A w. We shall say t h a t a set P c (Q(Eo,E1,E2)) n at a point z e P has dimension r is for all sufficiently small elements 0 < a • Q(CO,El,e 2) the intersection P n ~z(a) h a s dimension r. Denote by T the s u b s e t of all points from the set Sto,l,2(J(X)) c S n-1 at which this set has dimension t < t 1 . F u r t h e r we shall use considerations very similar to those which occur in the theory of the developable surfaces. One can prove t h a t in fact every point from Aw where w • T (•0'el'e2) lies in infinitesimal relative to Q distance from a certain (the same for all points) ( n - t - 1 ) - p l a n e , herewith the orthogonal (t+l)plane is ~o-collinear to each normal to ~ at the points from A w. Indeed, consider t + l points wj • (st o 1,2(J(fl/')))(e°'cl'c2)(1 < t + l < n - p - l ) such t h a t w h e n J l ~ J2, firstly ~ h ( v ) ~ ~ w i 2 ( v ) = ~ and, secondly, t h e d i s t a n c e t wjl-wj21 i s i n f i n i t e s i m a l r e l a t i v e to Q o B e s i d e s , a s s u m e t h a t t h e h y p e r p l a n e s corresponding (see above) to the points wj are in the general position. Then the fibres A ~ i over the points wj which "do n o t d e v i a t e much" from t h e corresponding h y p e r p l a n e s and from each other, also "do not deviate much" from the intersection of the hyperplanes i.e. from ( n - t - 1 ) - p l a n e . Every fibre A w where w • T (e°'~1'c2) can not be bounded by a set of points y such t h a t
dim(sto,l,2(J(~ n ~y(el)))) > t since this would contradict the definition of T and is a ( n - t - 1 ) - l o n g set. Let us prove t h a t T belongs to the union of finite family of ( t + l ) - p l a n e s p a s s i n g t h r o u g h 0. Indeed, in the opposite case t h e r e exists a t - d i m e n s i o n s u b s e t L CSto, l,2(J(X))) (~0'~1,~2) such that none of its t-dimension s u b s e t L 1 c L lies in (t+l)-plane passing through 0. C o n s i d e r two p o i n t s w 1 a n d w 2 • L s u c h t h a t ( n - t - 1 ) - p l a n e s corresponding to fibres Awl and Aw2 are not So-collinear. E v e r y fibre Aw~ a n d Aw2iS an ( n - t - 1 ) - l o n g set and an argumentation similar to the one in the proof of l e m m a I shows t h a t t h e r e exists a point a • Aw~ (~ ~=(5) such t h a t t h e n e a r e s t to a point ]3 • Aw2 belongs to ~x(5) and the distance I a-fl [ > 0 is not infinitesimal relative to Q(So ). It follows that the intersection J - I ( L ) n ~ ( S ) is a ( n - 1 ) - l o n g set.
410
In case when there does not exist a s t r a t u m Vpjof dimension pj > n - t - 1 which is adjacent to Vp this contradicts the corollary to l e m m a 1 a n d in the opposite case the inequality (2) (applied to Vpj). Therefore we have proved that Sto, l,2(~c(JV)) ~ S n-1 belongs to the union of a finite family of some planes (of maybe different dimensions) passing through 0, note also t h a t for each pair Wl, W2 e T (%'c1'~2) the ( n - t - 1 ) - p l a n e s corresponding to Aw~, Aw2 are eo-collinear. Now let us prove t h a t this family consists of not less then two members. Moreover, there exists a connected component X 1 of X such that the same is true for W 1 Suppose the opposite : let it consist of unique t = tl-dimensional member. Since n - t - 1 > p, there exists a s t r a t u m Vpi ( l < j < s) such t h a t the intersection (~o) ¢ ~ for every w e T (%'c1'c2). Denote by B w the ( n - t - 1 ) - p l a n e stl,2(A ~) n Vpj corresponding to Aw. From the transversality condition it follows t h a t Bw is s 0(E0) n ~ ( 5 ) . C o n s i d e r two collinear to one of the connected components of _Vpj connected components V'
c
.(eo)r~ ~ x ( 5 ) of some s t r a t a Vpj, (E0) ('~ ~x(5), Y" C Ypj,,
~Eo) V'pi,, ~o) (possibly j ' =j") such that Y' ~ V", V" a: V,, ~r, (~ ~r,, ¢ $ (here the b a r V'pj,, denotes the closure in the topology with the base of all open disks). Choose a point z e Vp (~ V' r~ V" (~Qn and consider a tangent pj,-plane L ' (correspondingly pj,-plane L") to V' (correspondingly - to ~r,,) at z. Note that B
is defined over
Q ( s o) while L ' ,L "- o v e r Q- . Let us suppose t h a t B w is So-collinear to both L' and L " (we shall s a y t h a t in this case B w is eo-collinear to V' a n d V"). T h e n
Sto(B w) c L" r~ L". Therefore
min{dim(L'), dim(L")} > d i m ( L ' r~ L") > n - t - 1
and B~ is eo-collinear to ~r, n V" = ~(3) where V(3) is the intersection of ~ ( 5 ) with a connected component of a certain s t r a t u m among --Vtp~°) . R e p e a t i n g this a r g u m e n t a t i o n if necessary we can a s s u m e t h a t t h e r e does not exist a n o t h e r s t r a t u m among --Y~:.°) ( l < j < s) such t h a t for an intersection V(4) of its connected component with ~x(5) holds : V(4) ~ 3 ) , a n d V (4). The inequality
~(3) cET~4) and B~ is So-collinear to V(3)
dim(Vp) < n - t - 1 a n d the t r a n s v e r s a l i t y condition
imply t h a t there exists a connected component of some s t r a t u m a m o n g --V~°) d
whose intersection with ~x(5) is transversal to V(3). F r o m our a s s u m p t i o n it
411
follows t h a t B w is So-collinear to this intersection. T h u s t h e r e is a point S t o , l , 2 ( J ( X 1 ) ) not belonging to the ( t + l ) - p l a n e u n d e r c o n s i d e r a t i o n . This contradiction implies that there exist two points w 1, w 2 • Sto,l,2(.c(X1)) such t h a t fibres Awl, A~2 intersect transversally at a point from X. This contradicts the smoothness of X. The l e m m a is proved.
L e m m a 3. For almost every point x • Vp (with the exception of a semialgebraic subset of a dimension less then p) holds : dim(stl,2(.¢(V n ~x(Q)))) = e = n - p - 1 . P r o o f . From the transfer principle it follows t h a t it is sufficient to prove the proposition for ~/~e0)instead of Vp and sto,1,2 instead of stl, 2 . P
Proceed by induction. As a base of the induction consider the case w h e n the s t r a t u m Vp is maximal i.e. it is not incident to a n y s t r a t u m of g r e a t e r dimension. Then for almost every point x •
pe°) t h e intersection P x (~ 7r is
obviously diffeomorphic to ( n - p - 1 ) - s p h e r e , therefore e > n - p - 1 . On the other hand, according to the corollary to l e m m a I, e < n - p - 1 .
S u p p o s e t h a t the
l e m m a is proved for s t r a t a of the dimension g r e a t e r t h e n p. Consider nonmaximal s t r a t u m V (e°) and apply to it lemma 2 (the hypothesis of l e m m a 2 is P
valid by the inductive hypothesis). The lemma is proved.
3. R e p r e s e n t a t i o n s o f s o m e s e m i a l g e b r a i c sets. Consider a semialgebraic set R given by a formula of first-order theory of Q. Let the dimension of R at every point (see the proof of l e m m a 2) be the same and equal to ra. The fact that z • R is a smooth point in R (that is the fact that for a n y two pairs of distinct points in the neighbourhood of z in R, the lines passing through the first and second pair are almost collinear to the same mplan) can be expressed by a first order formula. Note t h a t in R = Vp every point is smooth ; if Vp+i is incident to Vp then the point z • Vp c (Vp+ i u Vp) = R is not smooth. It is hence clear t h a t the s u b s e t S m ( R ) of all smooth points of R is semialgebraic and can be w r i t t e n as a formula of first-order with a c o n s t a n t (i.e. not depending on R) n u m b e r of quantifier alternations. In the algorithm described below an i m p o r t a n t role is playing the set of the form :
412
Kp = stl,2( {x e//" : dim(stl,2(~¢(~ f r~ ~x(el)))) = n-p-l} ), where the external st is taken for all points of the set for which it is defined. L e t us prove t h a t Kp is a semialgebraic set which can be given b y a formula with
a constant
number
(not d e p e n d i n g
on ~ ) of q u a n t i f i e r
alternations. Indeed, the image of a semialgebraic set u n d e r the G a u s s m a p is obviously semialgebraic. The s t a n d a r d p a r t of a semialgebraic set A in the representation of which atomic polynomials belong to Q[Sl,~ 2] [X1..... X n] is, as it was noted in [3], also semialgebraic (consider ~l,S2 as n e w variables, t h e n stl,2(A) coinsides with the intersection of n-planes {Q = £2 = 0} and the closure in euclidean topology of the set A (~ {Q > 0 & E2 > 0}. The proposition dim(.) = t can be w r i t t e n in the following w a y : there exists a linear transformation of coordinates L : (X 1..... Xn) ' > (Y1 ..... Yn) with the matrix
I
I ~'2 1 "'" ... ~'n 0 1
0
0
0
0
(3)
1
such t h a t the projection of the set on the subspace of coordinates Y1 .... ,Yt containes a t-ball and for every linear m a p of the kind (3) the projection on the (t+l)-subspace does not contain a (t+l)-ball.
4. The algorithm and its m, nning ~me. As a n a u x i l i a r y p r o c e d u r e s our a l g o r i t h m
e s s e n t i a l l y involves t h e
effective algorithms for quantifier elimination in first-order t h e o r y of real closed fields proposed in [6] (see also [7]) a n d for finding all c o n n e c t e d components of a semialgebraic set from [2] or [3]. The algorithm works recursively in p. Let p = m = dim(V). The algorithm defines the set Sm({x e V/dim(V) in x equals m}) by a formula (with quantifiers) O~ ) of the first-order theory ofQ(e~,E 2) as it was explaned a t the beginning of section 3. After t h a t using several times the quantifier elimination procedure from [6] t h e a l g o r i t h m p r o d u c e s q u a n t i f i e r - f r e e f o r m u l a (~(2) w h i c h is equivalent to O ~ ). Obviously Vm = {O~)}. A s s u m e t h a t s t r a t a Vm, .... Vp+t a r e a l r e a d y c o n s t r u c t e d a n d given by formulas O m ..... ep+ 1 correspondingly. The algorithm defines the set Sm(Kp) by a formula (with quantifiers) O(p1) as it was explaned in section 3, and then, with the help of procedure from [6] produces an equivalent quantifier-free formula
413
O(p2). Using [2] the algorithm finds all connected components of {@(p2)}and after t h a t with the help of the procedure from [8] for solving systems of polynomial inequalities selects those which have empty intersections with every Vm..... Vp+1. Let the selected components be given by formulas O(p2'1)..... O(p2'sp). For every l < i <sp the algorithm writes a formula (with quantifiers) O(p3'/) defining the closure (in the topology in (Q(Q,~2)) n with the base of all open balls) of the set Op(2,/) and then, eliminating quantifiers in Op(3,/) finds an equivalent quantifierfree formula O(p4'/) . Let o(pb) =
V
O(p4J) and O(p6) be the formula defining Sm({O(pb)}).
l<-i<-sp
E l i m i n a t i n g quantifiers in O(p6) the algorithm obtaines the quantifier-free formula Op. Let us prove that Vp = {Op}. We m u s t show that if U 1..... U t are all connected components of Sm(Kp) which have empty intersections with each of the strata V m ..... Vp+1 and V~ = t.9 ~rj is the union of the closures of U 1..... U t then Vp = l <j
k.)
V i iff Uj belongs to this union.
p+ l <_i<m
The inclusion Sm(V'p) c Vp can be proved by the reverse argumentation. Let us estimate the running time of the algorithm and the parameters of the produced formulas Op. Recall that the input variety is given by the formula (I) where f ij • Z[X1 ..... Xn], degx, ..... x.(f ij) < d,e(foj) < M and the n u m b e r of the atomic subformulas is K. The image J ( ~ r~ ~x(E1)) is defined by a formula F (1) in the prenex form with one block of existential quantifiers. The polynomials occuring in the quantifier-free p a r t have total degrees less t h e n K d and bitlengths of coefficients not exceeding log(K)M. The application to F (1) of the procedure from [6] requires time M °(1) (Kd) n°(1) and the resulting quantifierfree formula F (2) has (Kd) "°(1) atomic subformulas with polynomials of the degree (Kd) ~°(1) having coefficient lengths not exceeding M °(1) (Kd) ~°(1) . The formula defining the set stl,2({F(2)}) has two quantifier alternations, the result of quantifier elimination is a quantifier-free formula F (3) with the bounds of the same kind as in formula F (2).
414
The formula which defines the value of the dimension has the n u m b e r of variables linearly depending on n and is a conjunction of two formulas in prenex forms the first of which has the prefix of existential quantifiers and the second - of universal quantifiers. As a result of quantifier elimination in both members of the conjunction a formula F(p4) will be obtained having the bounds of the indicated type. Elimnating both quantifier blocks in stl,2({l-(p4)}) the algorithm obtaines a quantifier-free formula F (5) such that Kp = {I'(p5)} again having the estimates of the same kind as in F (2). The total running time for the constructing of F(p5) will be M °(1) (Kd) nO(l) . The formula defining the set Sm({F(pS)}) has a n u m b e r of variables polynomially d e p e n d i n g on n and one block of universal quantifiers. The elimination algorithm outputs quantifier-free formula O(p2) having analogous bounds on the parameteres in the similar time. The algorithm constructs strata Vp by recursion beginning with p = m (in this case V,n = {O~)}). Assume that the formulas O m = O (2) e m - l ' " " V p +•l defining m ' strata Vm..... Vp+1 correspondingly are already obtained. The formula O(p2J) (1 < j < Sp) defining the connected component of {O(p2)} has according to [2,3]
(Kd) n°(1) atomic subformulas with polynomials of the degree (Kd) "°(I) and coefficient lengths not exceeding M °(I) (Kd) n°(1). Besides, sp < (Kd) n°(D. The r u n n i n g time of the decomposition and of the selection of the components is M °(I) (Kd) n°(1) according to [2,3] and [8] (here we use the estimates on the p a r a m e t e r s of formulas O m..... Op+1 which, as we shall see further, are of the same kind as for O(p2) and do not depend on p). The formula O(p3J) defining the closure of {O(p2J)} (1 < j < s.) has three quantifier alternations and the n u m b e r of variables linearly depending on n. The result of quantifier elimination in this formula will be the formula @(p4j) having the bounds similar to j u s t described. The formula Op(5),Op(6) obviously have the same type of bounds. Finally the formula Op defining Vp has the similar e s t i m a t e s on the p a r a m e t e r s a n d the total r u n n i n g time of the algorithm is M °(1) (Kd) n°(1). The theorem is proved. R e m a r k . The problem of deciding for a given formula of the kind (1) whether is defines a regular algebraic variety does not seem to be more simple t h a n the problem of stratification. However using quantifier elimination procedure from [6, 7] one can check whether the produced decomposition of the variety is
415
a Whitney stratification and thus make sure t h a t the algorithm had worked correctly for the given input.
Acknowledgement. I thank K. Bekka and M.-F. Roy for useful discussions and comments.
References I. Goresky M., MacPherson R. : Stratified Morse Theory. Springer-Verlag, Berlin, 1988. 2. C a n n y J., Grigor'ev D. Yu., Vorobjov N.N. Jr. : F i n d i n g connected components of a semialgebraic set in subexponential time, 1990, to appear in AAECC. 3. Heintz J., Roy M.-F., Solerno P. : Description des composantes connexes d'un ensemble semi-algdbrique en temps simplement exponentiel C.R. Acad. Sci. Paris 313,1991, p.167-170. 4. Lang S. : Algebra. Addison-Wesley, New York, 1965. 5. Thorpe J.A. : Elementary Topics in Differential Geometry. Springer-Verlag, Berlin, 1979. 6. Heintz J., Roy M.-F., Solerno P. : Sur la complexitd du principe de TarskiSeidenberg, Bull. Soc. Math. France, 118, 1990, p. 101-126. 7. Renegar J. : On the computational complexity and geometry of the first order theory of t h e reals, P a r t s I, II, III, Tech. Report 856, Cornell University Ithaca, 1989. 8. Grigor'ev D.Yu., Vorobjov N.N. Jr. : Solving s y s t e m s of polynomial inequalities in subexponential time. J. Symbolic Comp., 5, 1988, p. 37-64. 9. Mostowski T., Rannou E.: Canonical Whitney stratification of an algebraic set in C n . AAECC 1991, New Orleans. 10. Kashiwara M. : B-functions and holonomic systems. Inv. Math., 38, 1976, p. 33-53. 11. Henry J.-P., Merle M., Sabbah C. : Sur la condition de Thom stricte pour un m o r p h i s m e analytique complexe. Ann. Scient. Ec. Norm. Sup., 4 sdrie, 17, 1984, p. 227-268.
LIST OF PARTICIPANTS
ACQUISTAPACE Francesca AKBULUT Selman ALONSO Maria-Emilia ANDRADAS Carlos BECKER Eberhard BEKKA Karim BERR Ralph BIERSTONE Edward BOCHNAK Jacek BOROBIA Alberto BOUZOUBAA Taoufik BROCKER Ludwig BUCHNER Michael CANNY John CELLINI Paola COSTE Michel CYGAN Ewa CYNK Slawomir DEDIEU Jean-Pierre DEGTYAREV Alexander DE LA PUENTE Maria Jesus DIOP Mahmadou DRUZKOWSKI Ludwik EFRAT Ido FERRAROTTI Massimo FINASHIN S. FORTUNA Elisabetta FRAN~OISE Jean-Pierre GAMBOA Jose-Manuel GONDARD Danielle GONZALEZ VEGA Laureano GUARALDO Francesco GUERGUEB Ahmed HAJTO Zbigniew HAROUNA Warou HEINZ Joos HUBER Roland HUISMAN Johan ISCHEBECK Friedrich ITENBERG Ilia JAWORSKI Piotr JELONEK Zbigniew
Univ. Pisa (Italy) Michigan State Univ. (USA) Univ. Complutense Madrid (Spain) Univ. Complutense Madrid (Spain) Univ. Dortmund (Germany) Univ. Rennes 1 (France) Univ. Dortmund (Germany) Univ. Toronto (Canada) Vrije Univ. Amsterdam (Netherlands) U.N.E.D., Madrid (Spain) Univ. Rennes 1 (France) Univ. Mtinster (Germany) Univ. New Mexico, Albuquerque (USA) I.C.S.I., Berkeley (USA) Univ. Pisa (Italy) Univ. Rennes 1 (France) Uniw. Jagiellofiski, Krakbw (Poland) Uniw. Jagiellofiski, Krakbw (Poland) Univ. Paul Sabatier, Toulouse (France) Steklov Institute, Leningrad (USSR) Univ. Complutense Madrid (Spain) Univ. Rennes 1 (France) Uniw. Jagiellofiski, Krakbw (Poland) Univ. Konstanz (Germany) Univ. Pisa (Italy) Leningrad Electrotechnical Institute (USSR) Univ. Pisa (Italy) Univ. Paris 6 (France) Univ. Complutense, Madrid (Spain) Univ. Paris 6 (France) Univ. Cantabria, Santander (Spain) Univ. degli Studi, Roma (Italy) Univ. Rennes 1 (France) Uniw. Jagielloriski, Krakbw (Poland) Univ. Rennes 1 (France) Univ. Buenos Aires (Argentina) Univ. Regensburg (Germany) Vrije Univ., Amsterdam (Netherlands) Univ. Mtinster (Germany) Leningrad State Univ. (USSR) Univ. Warszaw (Poland) Uniw. Jagiellorlski, Krakbw (Poland)
417
KING Henry KNEBUSCH Manfred KORCHAGIN Anatolii KRASINSKI Tadeusz KRIEK Teresa KURDIKA Krzysztof KWIECINSKI Michal LAM Tsit Yuen LE SAUX Frederic. LIGATSIKAS Zissis LOJASIEWlCZ Stanislaw LOMBARDI Henri MACRI Patrizia MAHE Louis MARIN Alexis MARINARI Maria Grazia MARSHALL Murray MAZUROVSKII Vladimir MEGUERDITCHIAN Ivan MIKHALKIN Grigory MILMAN Pierre MIODEK Andrzej MONTANA Jose Luis MOSTOWSKI Tadeusz NATANZON Serguey NEUHAUS Ralph ORTEGA Jesus OTERO M. PARDO VASALLO Luis Miguel PARIMALA PAUGAM Anne-Marie PAWLUCKI Wieslaw PECKER Daniel PEDERSEN Paul PFISTER Albrecht POLOTOVSKII G.M. PRESTEL Alexander RAMANAKORAISINA Rodolphe RANDRIAMAHALEO Solo RANNOU Eric REZNICK Bruce RICHARDSON Donald ROBSON Robert O. ROY Marie-Fmngoise
Univ. of Maryland (U.S.A.) Univ. Regensburg (Germany) Nizhny Novgorod Univ. (USSR) Univ. Lrd~ (Poland) Univ. Buenos Aires (Argentina) Uniw. Jagiellofiski, Krakbw (Poland) Univ. Lille 1 (France) Univ. California, Berkeley (USA) Univ. Rennes 1 (France) Univ. Rennes 1 (France) Uniw. Jagiellofiski, Krakbw (Poland) Univ. Franche-Comtr, Besan~on (France) Univ. degli StuN, Roma (Italy) Univ. Rennes 1 (France) E.N.S. Lyon (France) Univ. Genova (Italy) Univ. of Saskatchewan, Saskatoon (Canada) Ivanovo Civil Engineering Institute (USSR) Univ. Rennes 1 (France) Leningrad (USSR) Univ. Toronto (Canada) Univ. Lrd2 (Poland) Univ. Cantabria, Santander (Spain) Univ. Warszaw (Poland) Moskva (USSR) Univ. Dortmund (Germany) Univ. Castilla-La-Mancha (Spain) Univ. Oxford (Great Britain) Univ. Cantabria, Santander (Spain) Tata Institute, Bombay (India) Univ. Rennes 1 (France) Uniw. Jagiellofiski, Krakrw (Poland) Univ. Paris 6 (France) Courant Institute, New York (USA) Univ. Mainz (Germany) Nizhny Novgorod Univ. (USSR) Univ. Konstanz (Germany) Univ. Rennes t (France) Univ. Fianarantsoa (Madagascar) Univ. Rennes 1 (France) Univ. Illinois (USA) Univ. Bath (Great Britain) Oregon State Univ. (USA) Univ. Rennes 1 (France)
418
RUIZ Jesus RUSEK Kamil SANDER Tomas SCHEIDERER Claus SCHMID Joachim SEPPALA Mikka SHUSTIN E.I. SILHOL Robert SIMON Odile SKIBINSKI Przemyslaw SOLERNO Pablo SPODZlEJA Stanislaw STASICA Jacek STENGLE Gilbert STES David SZAFRANIEC Zbigniew TOGNOLI Alberto TOUGERON Jean-Claude TRAVERSO Carlo TROTMAN David VAN GEEL Jan VIRO Oleg Ya. VOM HOFE Giinter VOROBJOV Nicolai N. WORMANN Thorsten ZVONILOV V.I.
Printing: Weihert-Druck GmbH, Darmstadt Binding: Buchbinderei Sch/iffer, Griinstadt
Univ. Complutense, Madrid (Spain) Uniw. Jagiellofiski, Krak6w (Poland) Univ. Dortmund (Germany) Univ. Regensburg (Germany) Univ. Konstanz (Germany) Univ. Helsinki (Finland) Samara State Univ. (USSR) Univ. Montpellier 2 (France) Univ. Rennes 1 (France) Univ. L6d2 (Poland) Univ. Buenos Aires (Argentina) Univ. L6d2 (Poland) Uniw. Jagiellofiski, Krak6w (Poland) Lehigh Univ., Bethlehem (USA) Univ. Gent (Belgium) Univ. Gdansk (Poland) Univ. Trento (Italy) Univ. Rennes 1 (France) Univ. Pisa (Italy) Univ. Provence, Marseille (France) Univ. Gent (Belgium) Steklov Institute, Leningrad (USSR) Univ. Dortmund (Germany) Steklov Institute, Leningrad (USSR) Univ. Dortmund (Germany) Syktyckar (USSR)