Lecture Notes in Mathematics Edited by A. Dold, Heidelberg and B. Eckmann, ZCirich Series: Tata Institute of Fundamental Research, Bombay Adviser: M. S. Narasimhan
366 Robert Steinberg University of California, Los Angeles, CA/USA
Conjugacy Classes in Algebraic Groups Notes by Vinay V. Deodhar IIIIII
L¢
Springer-Verlag Berlin.Heidelberg. New York 1974
AMS Subject Classifications (1970): 14 Lxx, 20-02, 20-G-xx
ISBN 3-540-06657-8 Springer-Verlag Berlin • Heidelberg • New York ISBN 0-387-06657-8 Springer-Verlag New York • Heidelberg • Berlin This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher. © by Springer-Verlag Berlin • Heidelberg 1974. Library of Congress Catalog Card Number 73-21212. Printed in Germany. Offsetdruck: Julius Beltz, Hemsbach/Bergstr.
INTRODUCTION
T h e f o l l o w i n g i s the s u b s t a n c e of a s e t of l e c t u r e s g i v e n a t the T a r a I n s t i t u t e of F u n d a m e n t a l R e s e a r c h d u r i n g N o v e m b e r and D e c e m b e r of 1972. T h e n o t e s a r e d i v i d e d r o u g h l y into two p a r t s .
T h e f i r s t p a r t a t t e m p t s an a p r i o r i d e v e l o p m e n t
of the b a s i c p r o p e r t i e s of affine a l g e b r a i c g r o u p s with e m p h a s i s on t h o s e n e e d e d in the s t u d y of c o n j u g a c y c l a s s e s of e l e m e n t s of r e d u c t i v e g r o u p s : the s e m i s i m p l e - u n i p o t e n t d e c o m p o s i t i o n , c o n j u g a c y of B o r e l s u b g r o u p s and of m a x i m a l t o r i , c o m p l e t e n e s s of the v a r i e t y of B o r e l s u b g r o u p s , e t c . d e v o t e d to the c l a s s i f i c a t i o n and elements:
c h a r a c t e r i z a t i o n of v a r i o u s
s e m i s i m p l e , unipotent,
regular, subregular, etc.
d e t a i l e d o u t l i n e the r e a d e r m a y c o n s u l t the t a b l e of c o n t e n t s . an a l g e b r a i c a l l y c l o s e d f i e l d .
The second part is s u c h c l a s s e s of For a more A l l of t h i s i s o v e r
I had p l a n n e d to i n c l u d e two t a l k s on r a t i o n a l i t y
q u e s t i o n s , but t h i s a i m was not r e a l i z e d .
B e c a u s e of t i m e l i m i t a t i o n s t h e r e
had to b
In the f i r s t p a r t the m o s t s e r i o u s of
gaps in the a c t u a l d e v e l o p m e n t .
t h e s e i s the o m i s s i o n of a l a r g e p a r t of the p r o o f of the e x i s t e n c e of a q u o t i e n t of a g r o u p by a c l o s e d s u b g r o u p .
A l s o the p r i n c i p a l s t r u c t u r a l and c o n j u g a c y
r e s u l t s about c o n n e c t e d s o l v a b l e g r o u p s a r e u s e d without p r o o f , but t h i s i s n o t s o s e r i o u s s i n c e the L i e - K o l c h i n t h e o r e m is p r o v e d and f r o m t h e r e on the p r o o f s , by i n d u c t i o n , f o l l o w f a i r l y c l a s s i c a l l i n e s .
In the s e c o n d p a r t the B r u h a t l e m m a
f o r r e d u c t i v e g r o u p s i s u s e d without p r o o f (but a f a i r l y c o m p l e t e p r o o f i s i n d i c a t e d f o r the c l a s s i c a l g r o u p s ) a s a r e v a r i o u s p r o p e r t i e s of r o o t s y s t e m s and r e f l e c t i o n g r o u p s (for which a c o m p r e h e n s i v e t r e a t m e n t m a y be found in B o u r b a k i ' s book).
Modulo a f e w o t h e r p o i n t s l e f t to be c h e c k e d by t h e r e a d e r
I have attempted a coherent development.
IV
It i s a p l e a s u r e to thank m y c o l l e a g u e s a t the T a r a I n s t i t u t e , youn~ and old, f o r t h e i r h o s p i t a l i t y and f r i e n d s h i p to m y wife and m e d u r i n g o u r v i s i t and f o r t h e i r s t i m u l a t i n g i n f l u e n c e on m y t a l k s .
It i s a s p e c i a l p l e a s u r e to be
a b l e to thank h e r e S h r i V i n a y V. D e o d h a r who in a d d i t i o n h a s w r i t t e n up these notes.
Robert Steinberg U n i v e r s i t y of C a l i f o r n i a
TABLE
Chapter
OF CONTENTS
Affine algebraic varieties, affine algebraic groups and their orbits
1.1
Affine algebraic varieties
1.2
Morphisms
1.3
Closed subvarietie s
1.4
Principal open affine subsets
1.5
A basic l e m m a
1.6
Product of varieties
1.7
Notion of affine algebraic groups
.............
5
1.8
Comorphisms
.............
5
1.9
Linear algebraic groups
.....................
7
i . I0
Zariski-topology on varieties
I. I I
Noetherian spaces
1.12
Irreducible c o m p o n e n t s of an algebraic group
1.13
Hilbert's second t h e o r e m
Chapter
II
...................
1
......................
2
........................
2
of varieties
................
2
...........................
3
........................
4
in algebraic groups
.................
9
...........................
i0
....
.....................
First Part: Jordan decompositions, dia~onalizable groups
12 14
unipotent and
2.1
Definitions and preliminary results
............
2.2
Jordan decomposition for an e n d o m o r p h i s m
2.3
Jordan decomposition for an e n d o m o r p h i s m (~tinued) .................................
26
2.4
Jordan decomposition for group-elements
29
2.5
Kolchin's ~ h e o r e m
2.6
Diagonalizable groups
2.7
Rigidity t h e o r e m
.....
......
22 24
...........................
33
.......................
36
...........................
43
VI
Chapter II
Second Part: Quotients and solvable groups
2.8
Solvable groups
..............................
2.9
Varieties
in general
2.10
Complete
varieties
2.11
Quotients
....................................
Appendix to
2.11
Borel subgroups
2.13
Density and closure
2.14
Bruhat lemma
Chapter
III
........................... and projective
2.12
46
t
°
,
.
~
.
.
~
.
°
.
.
.
.
°
°
°
°
.
°
°
~
.
.
.
°
°
.
.
varieties
.
°
i
47
~
o
e
O
0
O
l
O
.
.
o
6
*
~
l
.
.
49 54
o
.
......
O
O
O
,
.
O
.
.
.
.
.
.
°
.
~
.
.
.
°
°
.
.
°
.
°
6
.
.
,
58
o
,
61
°
................................
Reductive and sere,simple and subregular elements
algebraic
65 72
groups,
regular
3.1
Definitions and examples
3.2
Main theorem
3.3
Some representation
3.4
Representation
3.5
Regular
elements
............................
93
3.6
Unipotent classes
............................
100
3.7
Regular
elements
3.8
Regular groups
elements in simply connected, ......................................
3.9
Variety
of B o r e l s u b g r o u p s
3.10
Subregular
......................
on s e r n i s i r n p l e g r o u p s theory
...................
theory (continued)
(continued)
elements
............
..............
..................
76 77 79 83
110
sernisirnple
....................
.........................
116 128 140
A p p e n d i x on t h e c o n n e c t i o n w i t h K l e i n , a n singularities ................................
156
References
159
..................................
Chapter I Affine algebraic varieties,
affine algebraic groups
and t h e i r o r b i t s
Throughout this chapter,
1.1.
k w i l l d e n o t e an a l g e b r a i c a l l y
Affine algebraic varieties.
c o p i e s of k.
Classically,
Let
a subset
k n d e n o t e t h e c a r t e s i a n p r o d u c t of n V of k n i s c a l l e d an a l g e b r a i c s e t if it i s
t h e s e t of z e r o s of a s e t of p o l y n o m i a l s in k IX 1 . . . . . x 2 + y2 = 1, a l i n e in s p a c e ,
closed field.
Xn].
kn itself, the circle
e t c . a r e e x a m p l e s of s u c h s e t s .
But this notion is unsatisfactory
s i n c e it is not i n t r i n s i c .
H e n c e we d e f i n e an
( a b s t r a c t ) a f f i n e a l g e b r a i c v a r i e t y in t h e f o l l o w i n g way: It i s a p a i r ( V , A ) , w h e r e w i t h v a l u e s in k.
V i s a s e t and
A is a k-algebra
of f u n c t i o n s on V
This pair satisfies the following properties:
(1) A i s f i n i t e l y g e n e r a t e d a s k - a l g e b r a . (2) A s e p a r a t e s
p o i n t s of V i . e .
given
x ~ y ~V, there exists
f~A
such that
f(x) ~ f(y). (3) E v e r y
x cv
k-algebra homomorphism
i.e.
Remarks.
t h a t p o i n t (to b e d e n o t e d a s
Examples
(I)
; k i s t h e e v a l u a t i o n at a p o i n t
¢(f) -- f(x) V f , A .
B y (2), t h e p o i n t
respondence
~ : A
with the
x EV ex).
k-algebra
i s u n i q u e l y d e t e r m i n e d b y t h e e v a l u a t i o n at T h u s , t h e p o i n t s of V a r e in o n e - o n e c o r -
homomorphisms
of A i n t o
k.
of a f f i n e a l g e b r a i c v a r i e t i e s :
(kn, k Ix I ..... Xn] ). (It is called the affine space of dimension n).
-2-
(2) V ~ k n, a n a l g e b r a i c s e t in e a r l i e r s e n s e , A = k IX1, . . . , X n l / V • (3) Let A be a f i n i t e l y g e n e r a t e d k - a l g e b r a without n i l p o t e n t e l e m e n t s . t h e r e e x i s t s an i n t e g e r n ) 0 Let V = {(a 1 . . . . .
and an exact s e q u e n c e : 0 - - - ~ I - - ~ k [ X l , . . . , X n ] - - ~ A - - p 0 .
an)¢kn/g(al .....
a l g e b r a i c variety.
Then
an) = 0 ~ g ¢ I t
" T h e n (V,A) is a n a f f i n e
(This is a consequence of H i l b e r t ' s Nullstellensatz: see
c o r o l l a r y to lemma 1 of 1.13).
In fact, as we shall prove l a t e r , any affine
a l g e b r a i c v a r i e t y is obtained in this way.
1.2.
M o r p h i s m s of affine a l g e b r a i c v a r i e t i e s .
algebraic varieties.
Let
(U,A), (V, B) be affine
Then a m o r p h i s m f : ( U , A ) - - - ~ ( V , B )
i s a m a p f:U
> V
such that the a s s o c i a t e d m a p f* defined by the c o m p o s i t i o n with f, t a k e s
B
into A. f* is c a l l e d the c o m o r p h i s m a s s o c i a t e d to f.
Remarks.
(1) F o r
u£U,
the point f(u) E V i s given by: e
f(u)
=e
u
o
Thus
f is c o m p l e t e l y d e t e r m i n e d b y f*. (2) If f: (U, A)-----) (V,B) and g : (V,B)-----~ (W, C) a r e m o r p h i s m s of affine a l g e b r a i c v a r i e t i e s then so i s
i. 3.
gof:
(U,A)
v(W,C)
and
( g o f ) * = f * o g *.
Subvarieties of affine algebraic v a r i e t i e s . Let (V,A) be an affine algebraic
v a r i e t y and V ' C V .
If ( V ' , A / v , )
i s an affine a l g e b r a i c v a r i e t y i n i t s own r i g h t ,
then it i s c a l l e d a s u b v a r i e t y of (V,A).
It can be e a s i l y s e e n that
( V ' , A / v , ) is
a s u b v a r i e t y if and only if V' is the s e t of z e r o s of a s e t of e l e m e n t s i n A.
(The
n o v i c e should check this. )
1.4.
Principal open affine subsets.
and f £ A .
Then
Vf = ~ x ~ V l f ( x ) = % I
Let
(V, A) be an affine algebraic variety
ex(f)# 0 ~ is calleda principal open subset j
-3
-
of V. It can be seen that (Vf,Af) is an affine algebraic variety. Here Af= A~].
i . 5.
A basic lemma.
Here,
we p r o v e an i m p o r t a n t l e m m a w h i c h will be u s e d
q u i t e o f t e n l a t e r on.
Lemma.
Let
( U , A ) , (V, B)
be a morphism. then
f(U)
Proof.
Let
f*: B
is an algebraic
Let
0--~I
be affine algebraic varieties J,A
be the associated
s u b v a r i e t y of V a n d f
~B
,*A----~0
(e o f ~ ' ) ( g ) = O.
such that
quotients to
--e v : A - - - ~ k
algebraic variety,
let
v cV
such that
e v = e v o f,~
hence there exists
comorphism.
Then$or
as
B
separates
V.
is onto,
is an i s o m o r p h i s m .
gel, ef(u)(g) =
e v ( g ) = 0 V g ~ I. Now
u ~ U such that
(U,A) g
= e V
v = f(u)
If f*
> (V, B)
be exact.
Let ucU.
Conversely,
f : (U , A ) -
f : U - - ~ f(U)
Claim: f(U)=(v~Vlev(g) =0 Vggl~. U
and
This proves the claim.
Hence
Clearly,
ev
is an affine o f* = e .
V
Hence
U
f(U)
is an algebraic
subvariety of V and B/f(U)---~-~ ~. Hence (f(U), B) is a subvariety of (V, B). Clearly, there exists g~ : A --~ -B such that g'~of~ and f~' o g~ are respective I identities. The morphism g defined by g~ is such that g o f and f o g are
respective identities. Hence the lemma.
Proposition I. Every abstract affine algebraic variety is isomorphic to a sub-
variety of the affine algebraic variety (kn, k [Xl~...,Xnl ) for suitable n. Proof. Let (V,A) be an affine algebraic variety. A is finitely generated say
by fl ..... fn" Define ~ : V
~k n, given by: ~(v) = (fl(v)..... fn(V)). It can be
easily seen that the corresponding map Clearly ~* maps
~* is given by ~*(X i) = fi i~i$ n.
k [X1,...,Xn] onto A. Hence by the above lemma, ~(V) is
-4
a s u b v a r i e t y of k n and ~ : V - - ~
-
~(V) is an i s o m o r p h i s m .
Hence the
proposition.
1.6.
P r o d u c t s of affine a l g e b r a i c v a r i e t i e s .
algebraic varieties. UxV.
Then e l e m e n t s of A ~ B
Let
(U,A), (V, B) be affine
can be t r e a t e d a s f u n c t i o n s on
E x p l i c i t e l y , (a@b)(x,y) = a(x). b ( y ) , x e U, y ~ V .
T h e n (UY, V, A@B)
can be s e e n to be an affine a l g e b r a i c v a r i e t y , c a l l e d the p r o d u c t of iV, B).
H e r e , only p r o p e r t y (3) is to be v a r i f i e d .
k-algebra homomorphism. defined b y : exists
NOW,
~ : A @B----~k be a
T h i s gives r i s e to ~1 : A ~
~l(a) = ~ ( a @ l )
x~U,y~V
Let
suchthat
and ~2(b) = ~(1Ob); a £ A , ~1 = e x '
(U,A) and
k, ~2 : ]3 ~ b e B.
k
Hence t h e r e
~2 = ey.
( a ~ b ) ( x , y ) = a(x). b(y) = ex(a), ey(b) = ~l(a) . ~2(b) = ~ ( a ® b ) .
Thus
~ = e ( x , y ).
A g a i n the m a p s A c - - - ~ A ~ B , UxV
give r i s e to m o r p h i s m s
U~V ~ I
U;
b V which, in fact, a r e the p r o j e c t i o n s .
(UxV, A ~ B ) variety
Bc-~A~B
h a s the following u n i v e r s a l p r o p e r t y :
(W,C) and m o r p h i s m s
p l : (W,C)----~ (U,A) and p2 : (W, C)-----~ (V, B),
t h e r e e x i s t s a u n i q u e m o r p h i s m p : (W,C) 7f1 o p = P l ' ~:2 o p = P2'
Given an affine a l g e b r a i c
~ (U x V , A ~ B) such that
T h i s p r o p e r t y follows i m m e d i a t e l y f r o m a c o r r e s -
ponding u n i v e r s a l p r o p e r t y in t e n s o r p r o d u c t s of c o m m u t a t i v e a l g e b r a s o r e l s e can be v e r i f i e d d i r e c t l y .
As an e x e r c i s e the n o v i c e m a y wish to p r o v e the
i m p o r t a n t fact that each of the m o r p h i s m s
Pl" P2 above i s open (maps open
sets onto o p e n sets , in the Zariski topology defined in l.lO).
- 5
-
N o t i o n of a f f i n e a l g e b r a i c g r o u p s , An a f f i n e a l g e b r a i c g r o u p is a p a i r
1.7. (G,A)
such that
(1)
(G,A)
(2)
G is a group
(3)
The group operations are morphisms i.e.
i s an a f f i n e a l g e b r a i c v a r i e t y
m : GxG
~
G, m ( x , y ) = x . y
and
i: G
v G, i(x) = x
-1
are morphisms.
Examples (1)
Let
of a f f i n e a l g e b r a i c g r o u p s : V b e an n - d i m e n s i o n a l
(GL(V), k [2711 ,...,Tnn]D)
vector space over
where
(2)
Then
D is the determinant
k IT11 , ...,Tnn3:Dis the ring obtained from D -I
k.
of
(Tij)
and
k [TII ) ...,Tnn] by adjoining
(This will be discussed in I. 9).
SL(V)
is an algebraic subvariety of GL(V)
and is an affine algebraic
group in its own right. (3)
The group of diagonal m a t r i c e s in GL(V) as subvariety of GL(V) is an affine algebraic group.
(4)
The invertible elements of any finite dimensional associative k - a l g e b r a .
(The groups in (i), (2) and (3) a r e called l i n e a r algebraic groups. )
A l i n e a r algebraic group is an affine subvariety of GL(V), for some finite dimensional vector space V, which is a subgroup also.
i. 8.
Comorphisms in affine algebraic groups. Let (G, A) be an affine
algebraic group. ations.
Let m : Gx G - - ~ G and i : G----~G be the group o p e r -
These give r i s e to comorphisms m* : A
Consider the m o r p h i s m
: ~x : G -
- G
~ A ~ A and i*: A
~ A.
given by ~ x(y) = v x (= re(y, x)) for
-6
a fixed x ~ G .
-
This gives rise to a comorphism ~ y : A - - - ~ A .
This in fact is
a k-algebra automorphism of A, since {~x is an automorphism of G as a
A l s o , ~xy = ~y Oex , hence ~ *xy = ~*x ° ~y* .
variety.
Thus,
(~* : G - - - - > A u t o -
m o r p h i s m of A, <;$(x)- ~ : is a g r o u p h o m o m o r p h i s m .
~x i s c a l l e d the r i g h t t r a n s l a t i o n of A by x £ G .
Similarly %x' the l e f t
t r a n s l a t i o n of A b y x can b e d e f i n e d .
Lemma.
L e t B be the s u b s p a c e of A s p a n n e d
f gA).
Then
Proof.
If f = 0, t h e r e i s nothing to p r o v e .
by i~'x (f)' x~ G~(for a
fixed
B is finite dimensional,
So l e t f ~ 0.
n
Let m*f = ~ gicghDgi, hiEA i=l
such that n is m i n i m a l .
Claim. { il is a basis of B. g- I ~ i ~ n Firstly,
giI s a r e l i n e a r l y i n d e p e n d e n t ( f r o m m i n i r n a l i t y of n).
reason,
h'ls a r e a l s o l i n e a r l y i n d e p e n d e n t .
G such that
(hi(xj))(i '
,
n
J)
Hence t h e r e e x i s t ~xjl 1 ~- j ~n in
has a non-zero determinant.
( f y f)(x) = f ( x . y ) = ~ gi(x) . hi(Y). i=l n ~ H e n c e ~y* f = i~= l hi(Y)" gi
F o r the s a m e
A g a i n , f o r a n y y ~G,
I.
n
In p a r t i c u l a r ,
~xj f = ~ hi(xj).g i i=l
1 ~ j _~n.
Hence f o r e a c h i, gi i s a l i n e a r c o m b i n a t i o n of ( ~ j f ) l _<_j~n" Thus~
g i ~ B V l~-i~n.
From I above,
B is s p a n n e d by ~ g i l 1_~ i&n
H e n c e the c l a i m and the l e m m a .
Remarks.
In the a b o v e l e m m a , one can t a k e the l e f t - t r a n s l a t i o n s
)%G
x eG
l
o r the l e f t and r i g h t t r a n s l a t i o n s
fo° o )&G*
i n s t e a d of the
-7-
right-translations ~ G "
1. 9,
For
Linear algebraic groups. v£V
Let V be an n - d i m e n s i o n a l v e c t o r - s p a c e / k .
and aS£ V ~, c o n s i d e r the m a t r i x c o e f f i c i e n t m
V, a S
: GL(V)
~ k
defined by : mv, a , ( T ) = a*(T(v)).
Clearly,
v,
mv+v,, a S = mv, a, + m v , , a , ~
!
a,b
m y , a S +b* = m y , a S + m y , b S J
L e t A' b e t h e k - a l g e b r a g e n e r a t e d b y be the f u n c t i o n : GL(V) well-defined).
V!
~V ~
~ VS
{mv, as/VEV,
a*~V*J.
Let D ~ A '
* k given by D(T) = d e t e r m i n a n t of T (which is
Let A be the r i n g o b t a i n e d f r o m A ' by a d j o i n i n g D " l .
(GL(V), A) is an affine a l g e b r a i c group.
Then
Any s u b v a r i e t y of (GL(V), A) which
i s a l s o a s u b g r o u p is c a l l e d a l i n e a r a l g e b r a i c group.
Lemma.
Let
(G,A) be an affine a l g e b r a i c group,
subspace invariant under ~G.
Define
~: G
B ~A
be a f i n i t e d i m e n s i o n a l S
) GL(B) by ~<(x) = ~ x / B . Then
c< is a m o r p h i s m of affine a l g e b r a i c g r o u p s and the m a t r i x c o e f f i c i e n t s on G (pulled b a c k v i a ~ ) g e n e r a t e the s a m e l i n e a r s p a c e a s
Proof.
Let v t B ,
a~
BS.
Then m v,a* : G L ( B ) ~
B .
k is g i v e n by:
mv, aS (T) = a*(T(v)). n
Let
mSv = ~ gi ~ hi (n m i n i m a l ) . i=l
T h e n as p r o v e d e a r l i e r ,
gi 1 ~ i ~ n - _
a b a s i s of the l i n e a r s p a c e s p a n n e d by the r i g h t - t r a n s l a t e s of v and ~hil 1 ~_ i _~n i s a b a s i s of the l i n e a r s p a c e s p a n n e d by the l e f t - t r a n s l a t e s of v.
-8-
,
Now
#
(mv, a , o ~)(y) = a (Q((y) (f)) = a * ( ~ y f) n
n
= a*( ~[~ hi(Y), gi ) = ~__a (gi). hi(Y) i 1 n
or
Again,
m y , a* o 0 ( =
1 (D oo0(y)
1 o0( =Doo(oi. D
_
1 det. ( ~ ( y ) )
#
I
7" a (gi). h i i=l
I.
= det. ~ ( y - 1 ) = det. ( ~ o i ) ( y ) . G is a morphism.
and i : G - - - ~
Hence
Hence f r o m I a b o v e ,
I__ o ~ £A. D Thus:
(i) ~
is a morphism.
Next, ~' s are linearly independent. shown to be in the subspace
Hence choosing a
W s p a n n e d by the m a t r i x c o e f f i c i e n t s .
space generated by left-translates of v space spannedby
properly,
G_W.
From
I, clearly,
W
h i can be T h u s the C linear
{ ~ k G B ~ . Hencethe lemma.
We now p r o v e a f u n d a m e n t a l p r o p o s i t i o n : Proposition.
A n y ( a b s t r a c t ) affine a l g e b r a i c g r o u p i s i s o m o r p h i c to a l i n e a r
algebraic group.
Proof.
Let
(G, A) be an affine algebraic group.
g e n e r a t e d , s a y by fl = 1 ..... f k 6 A .
Then A i s f i n i t e l y
L e t B be the l i n e a r s p a c e s p a n n e d by:
l~i_-n~. Then by an earlier lemma, under o( : G
~G"
B
is finite dimensional and obviously invariant
Hence the previous l e m m a applied to B
• GL(B) such that the linear space W
as the one spanned by matrix coefficients of G. is a k-subalgebra which contains Hence
A = Image ~*.
W
gives a m o r p h i s m
spanned by ~ G B is the s a m e But then the image of
which, in turn, contains ~fiI 1 ~ i~ n"
The proposition now follows from the l e m m a in'1,5.
-9-
A final r e m a r k .
J u s t as in the c a s e of a b s t r a c t a l g e b r a i c v a r i e t i e s , so in the
c a s e of a l g e b r a i c g r o u p s
(G,A) e v e r y t h i n g can be r e t r a c t e d into A.
p o i n t s of G a r e the k - a l g e b r a h o m o m o r p h i s m s x : G - - ~ in G is r e f l e c t e d by the c o m u l t i p l i c a t i o n m earlier);
x and y a r e m u l t i p l i e d by:
: A-
k.
• A ~A
The
The m u l t i p l i c a t i o n (f " ~ ' g i
(xy)(f) = ~gi(x).hi(Y).
~ hi
A thus b e c o m e s
a c o a l g e b r a a s well a s a n a l g e b r a with c o m p a ~ t i b l e c o m u l t i p l i c a t i o n and m u l t i p l i c a t i o n (Hopf a l g e b r a ) and o t h e r c o n d i t i o n s to r e f l e c t the group l a w s .
1.10.
Z a r i s k i - t o p o l o g y on v a r i e t i e s .
variety.
Let"~={FC_V/F
Let
(V,A) be an affine a l g e b r a i c
is the s e t of z e r o s of a s e t of f u n c t i ~ n s in A ~ i . e .
E l e m e n t s of "~ a r e j u s t the a l g e b r a i c s u b s e t s of V.
Now the following s t a t e -
m e n t s can be e a s i l y v e r i f i e d :
(1)
~, v ~
(2)
Let F~ g'~ V ~ ( A . Then
(3)
t~ F~
Let F~, be the set of zeros of
f~,l~ ~ E ~
i s the s e t of z e r o s of { f ; ~ p t ~ , / ~ , ~ , . ~ .
Let F 1 , F 2 £ t ' ~ .
Let F i be the s e t of z e r o s of
Then F l U F 2 is the set of z e r o s of
{
fl 1
{f:l~,Ai;
i = 1,2,
]
2 ;~1 E /~1 ~2 E A 2
H e n c e ~ d e f i n e s a topology on V. of "~ ).
(The c l o s e d s e t s a r e j u s t the e l e m e n t s
T h i s topology is c a l l e d the Z a r i s k i - t o p o l o g y on V.
It can be v e r i f i e d
that a m o r p h i s m of v a r i e t i e s i s c o n t i n u o u s with r e s p e c t to this topology.
We s t a t e h e r e an i m p o r t a n t r e s u l t , which follows f r o m the ' H i l b e r t b a s i s theorem'.
The r e s u l t is: A f i n i t e l y g e n e r a t e d k - a l g e b r a is n o e t h e r i a n , i . e .
s a t i s f i e s the m a x i m a l c o n d i t i o n on i d e a l s .
-
1. t 1.
Let (1)
10
-
W e n o w d e f i n e t h e n o t i o n s of n o e t h e r i a n s p a c e a n d i r r e d u c i b l e
(X,"J) b e a t o p o l o g i c a l s p a c e .
space.
We have the following definitions:
(X, ~ ) is s a i d to be n o e t h e r i a n if it s a t i s f i e s t h e m i n i m a l c o n d i t i o n on
closed sets i.e. element.
e v e r y n o n - e m p t y f a m i l y of c l o s e d s e t s c o n t a i n s a m i n i m a l
(It f o l l o w s i m m e d i a t e l y
t h a t a s p a c e is n o e t h e r i a n iff a n y d e c r e a s i n g
s e q u e n c e of c l o s e d s e t s t e r m i n a t e s terminates
iff a n y i n c r e a s i n g
s e q u e n c e of o p e n s e t s
iff a n o n - e m p t y f a m i l y of o p e n s e t s h a s a m a x i m a l e l e m e n t ) .
(2)
(X, ~ )
(3)
A
is called irreducible
if it i s n o t a u n i o n of t w o p r o p e r c l o s e d s u b s e t s .
s u b s e t of a s p a c e i s i r r e d u c i b l e
topology.
if it i s i r r e d u c i b l e
(It c a n be e a s i l y s e e n t h a t a s u b s e t
iff f o r e v e r y
U,V
U t% V t% A fi ~.
open in X, s u c h t h a t
T h u s in a n i r r e d u c i b l e
A
UnA space,
in t h e s u b s p a c e
of a s p a c e
X is irreducible
~ ~, V t%A fi @, we h a v e every non-empty open set is
dense).
Lemma.
Let
(V,A)
b e an a f f i n e a l g e b r a i c v a r i e t y .
Then
(V,A)
is irredu-
c i b l e i f f A i s an i n t e g r a l d o m a i n .
Proof. S=
Let
(V,A)
{x~V[f(x)
be i r r e d u c i b l e
= 01
and
T=
and
f . g = 0, f o r
{xEV/g(x)
= 0J.
Then
in V and
V = S%J T .
Since V is irreducible,
or
Conversly,
l e t A b e an i n t e g r a l d o m a i n .
g = 0.
open sets Further,
Vf a n d
Vg; f ~ 0, g ~ 0.
any o p e n s e t
V is i r r e d u c i b l e .
Consider
S and
V = S orV
T
= T.
are closed Hence f = 0
Consider the principal
f . g ~ 0, it f o l l o w s t h a t
S c o n t a i n s a p r i n c i p a l open s e t
Now it follows immediately Hence
Since
f,g EA.
Vf, f ~ A
V f C ~ V g ~ #. and
f ~ 0.
that every two non-empty open sets intersect.
-11
Remarks.
(a)
A m o r p h i c i m a g e of a n i r r e d u c i b l e
(b) If ( U , A ) (UxV,
-
a n d (V, B) a r e i r r e d u c i b l e
variety is irreducible.
algebraic varieties,
then so is
A@B).
(Exercise:
P r o v e t h i s u s i n g (1), (2), (3) in t h e d e f i n i t i o n of a v a r i e t y ) .
We now prove a basic theorem for noetherian spaces.
Theorem.
E v e r y n o e t h e r i a n s p a c e c a n be e x p r e s s e d
closed irreducible
subsets.
If s u c h an e x p r e s s i o n
subset may be omitted, then the irreducible determined
as the maximal irreducible
called irreducible
Proof.
Let
such that
c i b l e s u b s e t s of F ] .
F 1 and
and
(Such s u b s e t s a r e
w h i c h a r e c l o s e d and
a s a u n i o n of f i n i t e l y m a n y c l o s e d i r r e d u -
If p o s s i b l e ,
Now F
l e t ~ ~ ~.
So l e t
F ~ "~ w h i c h i s m i n i m a l
itself cannot be irreducible.
F 2 are expressible
s u b s e t s ; but t h e n s o i s = ~
if no
subsets involved are uniquely
Let ~ = IF ~V
F 1 I F 2 a r e p r o p e r c l o s e d s u b s e t s of V. that both
i.e.
c o m p o n e n t s of V).
c a n n o t be e x p r e s s e d
(V i s n o e t h e r i a n ) .
is irredundant,
s u b s e t s of V.
V be a noetherian space.
F
a s a f i n i t e u n i o n of
T h e m i n i m a l i t y of F
F = F 1 U F2; in ~
shows
a s f i n i t e u n i o n s of c l o s e d i r r e d u c i b l e
F , w h i c h is a c o n t r a d i c t i o n s i n c e
V, in p a r t i c u l a r ,
Hence
is expressed
F ~ ~.
Hence
a s a f i n i t e u n i o n of c l o s e d i r r e d u -
cible subsets.
C o n s i d e r an i r r e d u n d a n t irreducible
subset
irreducible
subset.
Then
F =F/1V=
expression
1 $ i -~ r .
(F~F1)U...
Now F F I F i i s c l o s e d
V = FIU...UF r.
If p o s s i b l e ,
U(F ~F
(i >_.2) a n d
F
let
r
F 1 C
) =F ItJ
irreducible.
F i is a closed F, F
is a c l o s e d
(F f ~ F 2) U . . . Hence
U(F
,~Fr).
F 1 ~ F C_F i f o r
-
some
i~2.
12
-
T h i s c o n t r a d i c t s t h e i r r e d u n d a n c y of V = F l U . . . U F r .
F 1 i s a m a x i m a l c l o s e d i r r e d u c i b l e s u b s e t of V. has the above property.
A g a i n , if F
then F -- (F ~ F 1 ) V . . . l ] ( F implies
F = F.. 1
f~ F r)
is a m a x i m a l closed i r r e d u c i b l e subset,
gives F ~ F. for some 1
i, w h i c h in t u r n
(V,A)
H e n c e the t h e o r e m ,
Corollary.
Let
is true for
V, e n d o w e d with the Z a r i s k i - t o p o l o g y .
Proof.
also
H e n c e a l l the m a x i m a l c l o s e d i r r e d u c i b l e s u b s e t s of V o c c u r
e x a c t l y once in F I ~ . . . U F r ,
Zariski)
Similarly Fi(i~2)
Hence
be an affine a l g e b r a i c v a r i e t y .
T h e n the a b o v e t h e o r e m
(In f a c t , we p r o v e : (V,
is n o e t h e r i a n ) .
A s a c o n s e q u e n c e of H i l b e r t ' s b a s i s t h e o r e m , we h a v e : E v e r y f i n i t e l y
generated k - a l g e b r a is noetherian.
H e n c e A is n o e t h e r i a n i . e . e v e r y i d e a l
of A is f i n i t e l y g e n e r a t e d (which is e q u i v a l e n t to s a y i n g : A s a t i s f i e s the m a x i m u m c o n d i t i o n on i d e a l s ) . With e v e r y c l o s e d s u b s e t
by: A
U of V, we a s s o c i a t e an i d e a l I(U) of A d e f i n e d
I(U) = {f ~ A/f(x) = 0 V x
vanishing on U.
EU~i.e.
Since U is closed, it follows that U
set of zeros of I(U). Thus, U ~ U', U I(U) ~ I(U'). Hence the m a x i m u m minimum
I(U) is the idealofall elements of is precisely the
and U' closed)imply that
condition on ideals of A
condition on the closed sets of V.
Thus
implies the
(V, Zariski) is noetherian.
Hence the previous theorem is applicable.
I. 12.
Irreducible components of an affine alogebraic group.
an affine algebraic group,
Let (G,A) be
Since G has a group s t r u c t u r e on it and the group
operations a r e m o r p h i s m s , the i r r e d u c i b l e components of G have a special
-13
nature which is described
Proposition
1.
Let
in t h e f o l l o w i n g p r o p o s i t i o n :
(G,A)
be an affine algebraic group.
c o m p o n e n t s of G a r e d i s j o i n t . containing i n d e x in
e, t h e n
G.
G°
Further,
-
If G °
is the irreducible
is a (closed)normal the irreducible
Then the irreducible c o m p o n e n t of G
s u b g r o u p of G havir~g a f i n i t e
c o m p o n e n t s of G a r e p r e c i s e l y t h e
c o s e t s of G° .
Proof.
L e t , if p o s s i b l e ,
two components intersect.
x b e l o n g s to two d i s t i n c t i r r e d u c i b l e G
as a variety permutes
components.
the irreducible
s l a t i o n b y a n e l e m e n t of G
component than
V.
V.
Since an a u t o m o r p h i s m
components.
This clearly contradicts the irredundancy
G are disjoint.
Let
components.
x 6G ° ; then
xG °
of
it f o l l o w s that e v e r y e l e m e n t Take an irreducible
E a c h of i t s e l e m e n t s b e l o n g s t o a n i r r e d u c i b l e
a u n i o n of i t s i r r e d u c i b l e
such that
components and since the left-tran-
is an automorphism,
of G b e l o n g s to two d i s t i n c t i r r e d u c i b l e
Hence 3 x ~G
component other
of t h e e x p r e s s i o n
Hence the irreducible
of G
as
c o m p o n e n t s of
is a l s o a c o m p o n e n t and it c o n t a i n s
x.
Hence by disjointness, xG ° = G ° . H e n c e G ° . G ° d G ° . F o r a s i m i l a r a r g u m e n t , -1 G° = G° , and for yEG arbitrary, y G ° y -1 = G ° . H e n c e G ° i s a n o r m a l s u b g r o u p o f G. Conversly,
let
x-lF
or
= G°
Remark
1.
G°
Clearly, F
its cosets are also irreducible
be an irreducible
F = xG ° .
c o m p o n e n t of G.
c o m p o n e n t s o f G.
Choose
x ~F,
then
Hence the result.
is the smallest
c l o s e d s u b g r o u p of G h a v i n g f i n i t e i n d e x in
(Any c l o s e d s u b g r o u p of f i n i t e i n d e x i s o p e n a l s o ) .
Remark
2.
(exercise).
If S i s a c l o s e d s u b s e m i g r o u p ,
t h e n it i s , in f a c t , a s u b g r o u p
G.
-
Remark
3.
e
Remark
4.
-
F o r an a l g e b r a i c g r o u p , the i r r e d u c i b l e
components are the same. identity
14
and call
G
We call
G°
components and connected
t h e ( c o n n e c t e d ) c o m p o n e n t of t h e
c o n n e c t e d if G = G ° .
A s an e x a m p l e , w e c o n s i d e r
c o n s i s t s of t w o c o m p o n e n t s .
The groups
G = On .
Here
G ° = SO n
G L n , S L n , SP2 n , D i a g ,
so that
G
Superdiag ....
on t h e o t h e r h a n d a r e a l l c o n n e c t e d .
1.13.
Hilbert's second theorem.
a finite one.
The assumption that
Until now k
k
could have been any field, even
is algebraically
closed will now be brought
into play.
Notation. algebra
Henceforth, A
we d e n o t e an a f f i n e a l g e b r a i c v a r i e t y
of f u n c t i o n s on V
times also written
k IV] .
(V,A)
is not mentioned unless required,
Similarly,
by a v a r i e t y
V
by V.
The
and is some-
we m e a n an affine
algebraic variety.
We
start with a definition. Let V
in V
be a variety and U C V.
Then
U
is epals
if (I) U
is irreducible
(2) U
contains a dense open subset of U'.
The main proposition is :
Proposition I. Let
U,V
be varieties } ~ : U ~
V
U' C U be an 6pats. T h e n o((U') is an ~pais in V.
be a m o r p h i s m .
Let
-15-
Proof.
l~' i s a v a r i e t y in i t s own r i g h t and
a~/U' i s a m o r p h i s m .
Hence,
without l o s s of g e n e r a l i t y , one m a y a s s u m e t h a t U' is d e n s e in U. U ' c o n t a i n s an open d e n s e s e t which i s p r i n c i p a l . any open s e t i s e m p t y o r d e n s e ) . U'
itself may
H e n c e , without l o s s of g e n e r a l i t y ,
0J
forsome
fgk[U].
Again, ~(U)
own r i g h t , and h e n c e one m a y a s s u m e that f o l l o w s that
,
$
(Since U' = U i s i r r e d u c i b l e ,
be a s s u m e d to b e a p r i n c i p a l open d e n s e s e t .
U' = { x ~ U / f ( x ) ~
: k IV]
are integral domains.
,
Further,
~(U)
k [U] i s i n j e c t i v e .
Let
i s a v a r i e t y in i t s
i s in f a c t d e n s e in V.
A l s o , both of k [V]
(U and V a r e both i r r e d u c i b l e ) .
It
and k [U]
We now s t a t e a l e m m a
which w i l l b e p r o v e d l a t e r .
L e m m a 1.
L e t A and B be i n t e g r a l d o m a i n s , A ~_ B, and A f i n i t e l y
generated over
B.
L e t f ~ 0, f ( A .
fer any algebraically with
Then t h e r e e x i s t s
c l o s e d f i e l d F and a h o m o m o r p h i s m
o<(g) ~ O, ~ e x t e n d s
toahomomorphism
We p r o v e the p r o p o s i t i o n u s i n g t h i s l e m m a . Since U' = I x ~ U / f ( x ) ~ 0 ~ * ( g ) ~ 0, ~ ( g ) ~ B W = ~y~'q/g(y) ~ 01. Claim.
Consider
i n j e c t i v e onto B. lemma,]~ =e
P
p~U'.
~: A ~ F
e
such that
o4: B ~
F
s u c h t h a t ~ ( f ) ~ 0.
T a k e A = k [ U ] , B = ~ * ( k ~V] ).
i s d e n s e in U, f ~ 0.
Hence b y t h e l e m m a ,
(g t k IV] ) h a v i n g the s a i d p r o p e r t i e s .
q
Also,
o ~
,-1
: B --~k
Let
eq o ~ * - l ( ~ * ( g ) )
So l e t q 5 W .
which i s w e l l - d e f i n e d s i n c e = eq(g) = g(q) ~ 0.
: A - - - ~ k s u c h that ~ / B = eq o ~ *-1
and ~(f) ~ 0.
~
Also, for h~k[V],
Then ,.
But then Hence
h(oc(p)) = e (p)(h) = ep o ~ e ' ( h ) = ~ (~*(h)) =
eq o o~':"l(o<~(h)) = eq(h) = h(q).
is
H e n c e b y the
f o r s o m e p ~ U b y p r o p e r t y (3) of v a r i e t i e s and ~(f) = f(p) ~ 0.
Hence q = ~(p).
3
T h e n W i s open in V , W ~ ~, h e n c e d e n s e in V.
W C_~ ( U ' ) , which c l e a r l y p r o v e s the p r o p o s i t i o n .
g(q) ~ 0.
g ~ 0, g ~ B
-16-
!
Hence
W ¢ ~ (U).
P r o o f of L e m m a 1. The l e m m a is p r o v e d in s e v e r a l steps: Step 1.
Let F b e a field,
R be a s u b r i n g o f F
and x ~ 0 ~ F .
Then e v e r y
h o m o m o r p h i s m of R into an a l g e b r a i c a l l y c l o s e d field K can be extended to
R [xj or R [ x ' l j . Proof.
Let o(: R
~, K be a h o m o m o r p h i s m .
Let
P = k e r n a l of a( .
P i s a p r i m e i d e a l . C o n s i d e r R p , the l o c a l i s a t i o n of R at P. ,-,~ ~ (a) gives r i s e t o a : R p , K d e f i n e d b y : , ~ ( a ~ ) = o ( ( s ) , a ¢ R , s e E - P.
Then
clearly
If
can be extended to R p [ x ] o r R p [x - 1 ] , then c l e a r l y o( is extended to R [ x ] or R [ x - 1 ] .
Also, ~ ( R p )
is a field.
Hence, without l o s s of g e n e r a l i t y ,
we m a y a s s u m e that o((R) i t s e l f if a field, say IT. F o r a p o l y n o m i a l g(X) with c o e f f i c i e n t s in R, let g(X) denote the p o l y n o m i a l ~ R [ X ] obtained via ~ .
Olearly, a P.I.D.
Hence I i s g e n e r a t e d by s o m e
sanidoalin
{ ]w ichis
~o(X).
(i) If ~o(X) i s not a n o n - z e r o c o n s t a n t , then choose ~tCK such that ~o(:k) = 0 (K is a l g e b r a i c a l l y closed). and ~ ( x ) = ~ .
Define ~ : R [ x ] - - ~ K
C l e a r l y , ~ e x t e n d s u n i q u e l y to the whole of
the step.
by ~ = R [x].
~on
R
Hence
(I)
(ii) If ~o(X) is a n o n - z e r o c o n s t a n t , it can be a s s u m e d to be 1. e l e m e n t b of R such that o((b) # 0 is i n v e r t i b l e .
Again, every
Hence t h e r e e x i s t s
go(X) ~ R [ X ~ s u c h that go(X) = 0 and go i s of the f o r m : go(X) = 1 + a l X + . . . + a m X Now c o n s i d e r x °1 i n s t e a d of x. to R [x " l ] o r t h e r e e x i s t s
Either
m
II , a F...~a m E P .
I holds in which case
~
is extended
fo(Y)~ R [Y~ such that
to(Y) = 1 + b l Y + . - . + bn Yn, blr...IbnEP and fo (1) = 0.
III
-
17
-
A g a i n , both go and fo can be a s s u m e d to be of m i n i m a l d e g r e e a m o n g s t the p o l y n o m i a l s s a t i s f y i n g above m e n t i o n e d c o n d i t i o n s (II and III).
A s s u m e , with-
out l o s s of g e n e r a l i t y , n ~ m . b1
bn
Now
0 = 1 +-~-+..
Thus
0 -- x m + b l x m ' l
and
0 = 1 + alx +...+am.lX
m-I
and t h i s c o n t r a d i c t s the minimality
+~ff
.
+ . . . + bn.X m - n
+ a m (I-. b
of m.
x
m-I
-..-b
n
x
m-n
)
T h i s c o n t r a d i c t i o n p r o v e s the step.
Note that if x E R and o<(x) ~ 0, then f r o m III, it follows that ~ e x t e n d s to R [x-l~.
F o r , if not, (III) holds.
Hence
fo(Y) = 1 + b l Y + - + b n y n ,
But then 0 = x n + b I x n'l +...+
b n.
b l , . . . , b n g P, fo (1) = 0. Hence
~(x) n = 0 which
contradicts
,((x) ¢ 0. Step 2.
Let
that
R o D R
xEF,
x~0
Proof. of,<
Let I . On
~" =
~
lemma, now
~
Let
be as in Step I.
and ~
o¢ extends x~R
"~ = ~,
'/R"-
follows
Step 3.
F,R
°
every
R o
R o Then
R o
subring
is a valuation
of F, R' ~ R
by : (R' , ~<')~(R"
chain in
~
element,
say
is a valuation
be as in Step i.
T h e n ~ e x t e n d s to 0<: S - - ~ K .
be amaximal
of F
ring,
such
i.e.
o.
' subring
define an order
has a maximal
F,R
R o.
x-l~R
(R', ~')
Then
that
or
to
Let
is bounded
and
, ~
" ) if R' D R " and
above.
(Ro, ~o)'
is an extension
Clearly,
Hence
by Zorn's
from
Step I, it
ring.
Let
(F _~) S 2 R
be an integral
extension.
-18-
Proof.
Let 0 # x ~ S .
Then
n x
x satisfies:
n-I +
alx
+
. . .+
a2 x+al+-~--+...+
io e°
a n
al~..~an £ R
= 0
an n-H-j1 - =0 X
x £R
Hence
[x-Ij.
Now, let R o be a s in Step 2.
C_R ° a n d h e n c e
then R [ x - 1 3 Hence
x ~ R o or x -1 £ R o.
Then e i t h e r x e R o.
Inany case,
xERo,
If x -1 ~ R o,
sothat
S C_R o.
~ extends to ~ : S - - ~ K.
Step 4.
D e d u c t i o n of the l e m m a f r o m s t e p s 1 to 3.
domains.
A = B [Xl, . , X n ] .
i n d u c t i o n on n.
0 ~ f 6A
be given.
Let A ~ B be i n t e g r a l
We p r o v e the l e m m a by
A s s u m e the l e m m a p r o v e d f o r n = 1.
so that A = B 1 [ X n ] .
T h e n ~ 0 ~ g' ~ B '
L e t B 1 = B[x 1 . . . . x _ ~ ,
with the r e q u i r e d p r o p e r t y .
Now
given this
g' ~ 0, by i n d u c t i o n h y p o t h e s i s , ~ 0 ~ g ~ B with the r e q u i r e d
property.
Solet
n = 1, A = B I x ] ; 0 ~ f ~ A
Case (i). x is t r a n s c e n d e n t a l o v e r
B.
given.
Let f = bo+ blX + . . . + bmX
m
with
b m ~ 0. Choose g = b m (In fact a n y b i ~ 0 will do). If ~ : B - - - ~ K , ~ ) ~ 0 m then ~ ~ ( b i) X i is not i d e n t i c a l I y z e r o . Hence choose ~ 6 K with i=0 m ~i ,~ ~ ~(bi). ¢ 0. Define ~ by •(x) = ~ . T h e n ~ i s the r e q u i r e d e x t e n s i o n . i=0 C a s e (ii), x s a t i s f i e s a p o l y n o m i a l in B [ X ] . C o n s i d e r F = q u o t i e n t field of A.
It follows that
a l g e b r a i c o v e r B. integral over
B [ x J is a l g e b r a i c o v e r
Now choose
g ¢ 0, g ~ B
B (such g e x i s t s ) .
such that ,<(g) ~ 0.
Let
(f) ~ 0.
Hence f-1
is a l s o
such that gx and gf-1 a r e
~ : B-----~K be a h o m o m o r p h i s m
It follows f r o m Step 1 that c< e x t e n d s to B [ g - 1 3 .
f r o m Step 3, ~ e x t e n d s to B [ g - l , gx, g f - l ~ . B Ix "I = A.
B.
Hence ¢< e x t e n d s to A. T h i s p r o v e s the l e m m a .
Now
But then B [ g - 1 gx, g f - 1 3 ~
Further, f-16 B [g-l,gx,
gf-13.
Hence
-19
The lemma
-
mentioned above has s o m e fine applications.
C o r o l l a r y to l e m m a
1. E v e r y p r o p e r i d e a l
I of k [ X I ~ . . . , X n ]
has a zero
in k n, Proof,
I can be assumed
x m o d I, B = k, f = t .
to b e m a x i m a l .
Then
Consider
A .= k I X l r . . , X n ] / I ,
~ g ~ 0 with required properties.
xi =
Consider
1
k
~
Id
k and
Id(g) ~ 0.
T h i s e x t e n d s to A ~ k .
Let ~(~)
= a i . ( a l . . . , a n)
i s c l e a r l y a z e r o of I.
Corollary
1 to t h e P r o p o s i t i o n
a c t i n g on a v a r i e t y
V.
Proof.
Consider
Fix
morphism, Now that
v eV.
1.
Let G
T h e n e v e r y o r b i t i s o p e n in i t s c l o s u r e .
G --~-~V g i v e n by ~ ( g ) = g . v .
G itself is an dpais.
Hence
~ ( G } -- G . v = t h e o r b i t t h r o u g h go'V EU C G.v
follows that
of a s m a l l e r
Proof.
for some
-1 g.v E ggo U CG.v.
C o r o l l a r y 2.
The closure dimension.
Since
G.-v
e q u a l to
G.v
go ~ G " Hence
~
is a
~ (G) c o n t a i n s a o p e n s e t in ~ ( G ) . Let
U be a o p e n s e t in G . v
Since
G.v
G.v =
is invariantunder
such G, it
U gU, w h i c h i s o p e n i n G . v. g~G
of a n o r b i t i s a u n i o n of G . v
and o t h e r o r b i t s
(We s h a l l d e f i n e t h i s t e r m p r e s e n t l y ) .
G. v i s o n e .
Clearly,
W e d e f i n e , f o r an i r r e d u c i b l e
tr. deg. k k IV].
t h e u n i o n of t h e o t h e r o r b i t s i s variety
For a reducible variety,
d i m e n s i o n of a n y i r r e d u c i b l e V irreducible,
v.
Then
i s i n v a r i a n t u n d e r t h e a c t i o n of G, i t f o l l o w s t h a t i t i s a
u n i o n of o r b i t s of w h i c h c l o s e d in G . v .
be a c o n n e c t e d a l g e b r a i c g r o u p
component.
W closed, then
tion, as well as the minimum
V, t h e d i m e n s i o n to b e
we t a k e the m a x i m u m
It c a n b e p r o v e d t h a t if V ~ W;
d i m V ~ d i m W.
(Thus the maximum
c o n d i t i o n , on c l o s e d i r r e d u c i b l e
condi-
sets is satisfied).
-
It n o w f o l l o w s t h a t smaller
G. v
20
-
i s a u n i o n of G . v
a n d o t h e r o r b i t s of a s t r i c t l y
dimension.
Corollary
3.
O r b i t s of m i n i m a l
dimension
are closed.
Hence closed orbits
exist.
The proof is obvious from corollary
Remarks.
(1) T h e c o r o l l a r i e s
of c o n n e c t e d n e s s Consider i.e.
on
1, 2, 3 r e m a i n
G
(exercise).
the particular
case when
x(y) = Xy = x y x - 1
2.
t r u e if we r e m o v e
the assumption
G a c t s on i t s e l f b y c o n j u g a t i o n ,
Then the orbits are the conjugacy classes.
Thus we
have:
Corollary
4.
E v e r y c o n j u g a c y c l a s s of a n a l g e b r a i c
group is open in its closure
and its closure
i s a u n i o n of t h e c l a s s a n d c l a s s e s
of s t r i c t l y
Proposition
Let
of a l g e b r a i c
2.
o~ : G ~
(a)
~ (G) i s c l o s e d i n G ' .
(b)
o<(G °) = ~ ( G ) °
(c)
dimG
G
= dimKer~+dim
be a rnorphism
(a)
Let
are the various each other. minimum cular,
G act on G c o s e t s of o ( ( G )
groups.
!
v i a o( i . e . in G'.
x(g') = ~(x).g.
Hence by corollary
o<(G) = ~ (G). 1 i s c l o s e d .
Then the orbits
Hence the orbits are all isomorphic
Hence the orbits have the same dimension,
dimension.
dimensions.
Im ~. !
Proof.
smaller
to
which is obviously the
3, t h e o r b i t s a r e c l o s e d .
In p a r t i -
-21
(b) C o n s i d e r ~ : G - - - ~ ( G ) .
~(G)
(G°} b e i n g i r r e d u c i b l e ~ ~ (G) ° . having f i n i t e index in ~ ( G ) .
-
i s a n a l g e b r a i c g r o u p in its own r i g h t . But then ~ (G°) is a c l o s e d s u b g r o u p
Hence ~ (G°)_~ ~ (G) °.
(c) T h i s follows at once f r o m a g e n e r a l e l e m e n t a r y fact about m o r p h i s m s , whose p r o o f we s h a l l o m i t , v i z .
L e m m a 2.
Let f : U - - ~
V be a m o r p h i s m of a l g e b r a i c v a r i e t i e s with U
i r r e d u c i b l e and f(U) d e n s e in V (such a m o r p h i s m is c a l l e d a d o m i n a n t morphism).
T h e n d i m f - l ( w ) ~ d i m U - d i m V Vw EV.
The e q u a l i t y holds
for w in s o m e open d e n s e s u b s e t of f(U). (The p a r t d e a l i n g with e q u a l i t y i s p r o v e d in the Appendix to 2.11 below}.
Remark.
Let
A n a l t e r n a t e proof f o r (a) (without u s i n g c o r o l l a r y 3) is as follows:
G ° act on
its closure. x~-S,
xS -I
G'
as before.
But then and
S
S
Then
S = o((G°),
is irreducible,
intersect. n
Hence
hence
being
so is S.
x CS. S c S.
Thus n
orbit of Hence S
= S.
I, is open
in
for any Hence
o<(G °)
is c l o s e d .
Now ~ ( G ) = U ~(hi)" ~ ( G ° ) , w h e r e G = U hi G ° is the c o s e t i=l i=l decomposition. H e n c e ~ (G) is closed also.
Remark.
If k above is not a l g e b r a i c a l l y c l o s e d , then e s s e n t i a l l y a l l of the
r e s u l t s above do not hold, a s the e x a m p l e f : ]R,
~ H~• , f(x) = x 2 ' shows.
Chapter II
F i r s t Part:
2. i .
Jordan decompositions, unipotent and dia~onalizable groups
Definitions and preliminary r e s u l t s . Let V be a finite dimensional
vector space over k.
(k will be algebraically closed unless stated o t h e r -
wise).
D e f i n i t i o n . An e n d o m o r p h i s m
X on V is s a i d to be s e m i s i m p l e if it i s
d i a g o n a l i z a b l e ( i . e . the e i g e n v e c t o r s of X span V).
It can be seen that X is semisimple iff the minimal polynomial of X has
distinct roots iff k IX] as a k-algebra is semisimple.
Definition. An endomorphism X on V is said to be nilpotent if Xn = 0 for some integer n >~1.
It can be seen that X is nilpotent iff all the eigenvalues of X are equal to zero.
Definition.
An e n d o m o r p h i s m
X on V is s a i d to be u n i p o t e n t if X - I
is
nilpotent.
It can be seen that X
From
is unipotent iff all the eigenvalues of X
are equal to I.
the above, it follows immediately that the restriction of a semisimple
(respectively nilpotent, unipotent) e n d o m o r p h i s m
to an invariant subspace is
-23
-
again semisimple (respectively nilpotent, unipotent) and similarly for quotients.
It c a n a l s o be s e e n t h a t an e n d o m o r p h i s m w h i c h i s s e m i s i m p l e and n i l p o t e n t m u s t be i d e n t i c a l l y z e r o .
Lemma. space
Any c o m m u t i n g s e t of e n d o m o r p h i s m s of a f i n i t e d i m e n s i o n a l v e c t o r
V can be put s i m u l t a n e o u s l y in an u p p e r - t r i a n g u l a r f o r m in s u c h a way
that the s e m i s i m p l e e l e m e n t s a r e d i a g o n a l .
Proof.
Let ~
be a c o m m u t i n g s e t of e n d o m o r p h i s m s .
the d i m e n s i o n of V.
If d i m V ~ 1, e v e r y e n d o m o r p h i s m i s s c a l a r and the
lemma is trivially true. C a s e (i) ~ V =
Z ~(k
We u s e induction on
A s s u m e the l e m m a f o r s p a c e s
W with d i m W < d i m V.
contains a non-scalar semi-simple endomorphism
Va:, w h e r e
follows mat for
Vc<
Let
is the e i g e n s p a c e of A c o r r e s p o n d i n g to ~ Gk.
dim
S and A c o m m u t e .
A.
< dim V
Also, S(V ) C_ V
VS
H e n c e by i n d u c t i o n , the l e m m a is t r u e f o r
It
5 ; since V~ V ~ @ k .
C l e a r l y , the l e m m a is p r o v e d f o r V in this c a s e .
Case (ii) ~
does not have a non-scalar semisimple element,
if ~
consists
of scalar elements only, then the l e m m a is obvious. If not, choose A ~ that A
is not a scalar-element.
Since k is algebraically closed, A
eigenvalues in k. Let ~ be one such value. Let V ~ eigenspaee; then ~0~ ~ V ~ acts on V / V~
~V.
Also,
S(Vo( )C
V
such
has
be the corresponding V SC$.
Hence S E ~
also. Now, by induction, the l e m m a is true for V ~
and V / V
Clearly, the l e m m a is true for V also. Hence by induction, the l e m m a is true for all vector spaces (finitedimensional).
Corollary.
For a set ~
of semi-simple endomorphisms, the elements of S
commute iff they can be simultaneously diagonalized.
-
2.2.
24
-
Jordan decomposition for an end omor~hism.
Proposition
I.
Let V
be an n-dimensional vector space over an
algebraically closed field k.
Let X t e n d V
T h e n there exist e n d o m o r p h i s m s
S, N ~ E n d
X = S + N ; S is semi-simple, Further, S, N
(the set of e n d o m o r p h i s m s V
with the properties:
N is nilpotent and S and N c o m m u t e ,
are uniquely determined by the above conditions.
uniquely determined e n d o m o r p h i s m s
of V).
These
are polynomials (without constant term)
in X (and are called the semisimple and nilpotent parts of X).
Proof.
Consider the m i n i m a l polynomial
f(T) of X, f(T) = - ~ (T-~) n ~ o<~k follows that oK, involved above, is an eigenvalue of X. Let
It
V Q¢= {v E V / ( X - o()m(v) = 0 for s o m e integer rn~. T h e n it can be proved n no< e a s i l y that: V = V ~ ; V ~ = K e r ( ~ - ~ ) ~ ; and ( T - ~ ) is the m i n i m a l
p o l y n o m i a l of X on V ~
Hence ~
is the only e i g e n v a l u e of X on V a~
Define S on V o¢ to be the s c a l a r - m u l t i p l i c a t i o n by ~ . V.
Clearly, S is s e m i s i m p l e ,
on each V ¢ ~ a n d h e n c e on V. required properties.
T h i s d e f i n e s S on
S and X c o m m u t e and (X-S) i s n i l p o t e n t T h u s X = S + (X-S) = S + N s a t i s f i e s the Hence by the C h i n e s e
Again, { ( T - ~)n~e-I a r e c o p r i m e .
R e m a i n d e r ' l ~ h e o r e m , t h e r e e x i s t s a p o l y n o m i a l p(T) s u c h that p(W) - o ( ( m o d ( T - ~ ) n ¢ ) On
V c<, ( X - ~ ) n¢( = 0. Hence
and p(T) - 0 ( m o d T ) p(X) = ~
on V ~
follows that p(T) does not have constant t e r m
if V ° = ~ 0 1
. Hence
•
p(X) = S.
It clearly
(p(T) - 0 Inod T n for s o m e !
n ~I).
Hence
S, N
are polynomials without constant t e r m in X.
If X = S + N
is another decomposition with the said properties, then S' c o m m u t e s
with X
!
and hence with S and with S and
N.
N (being polynomials in X).
Also, X = S + N = S'+ N'.
Hence
Similarly
N
S'- S = N - N'.
commutes N o w sums,
!
-25
products
of c o m m u t i n g
semisimple
are semisimple
(respectively
S - S = N - N
is semisimple
S = S , N =
Remark.
N I
.
-
(respectively
nilpotent),
e.g.
nilpotent) endomorphisms
by the above lemma.
a n d n i l p o t e n t a n d h e n c e e q u a l to
Hence
0.
Thus
Hence the proposition.
If X
is invertible,
so is
S (having the same eigenvalues).
And
S -1
is a polynomial in X. For.
nor
Let p(T) be the polynomial such that p(T) - o((mod (T- p<)
eigenvalue of X.
Then
p ( X ) = S.
But for X
invertible, c< ~ 0.
); o( an
Hence
p(T)
no< and f(T) ---[[(T - o()
are coprime.
1 = p(T). q(T) + r(T) . f(T). H e n c e S -I = q(X).
Thus
Proposition
2.
Hence
~ q(T), r(T) such that
ld = p(X).q(X);
Any automorphism
x
of a f i n i t e d i m e n s i o n a l
a s a p r o d u c t of a s e m i s i m p l e
phism which commute
with each other.
i.e.
x = s.u ; s
semisimple,
commute. the uniquely determined
(without constant term) parts
Hence
S "I is a polynomial in X.
be uniquely expressed
Further,
since f(X) = 0.
in
X.
Such
s
u and
vector-space
and a unipotent
unipotent; u
automorphisms
s
and
can
automor-
u
are unique. s
and
u
are polynomials
These are called the semisimple
and unipotent
of x .
Proof.
Let
invertible, commute
so is and
proposition position
x = S + N be the decomposition
u
S.
s = S and
is unipotent.
1 since given
x = S + N.
polynomials
Let
From
n = I+S'IN.
Further,
x = s.u,
in
Then
the uniqueness
S = s
the remark
(without constant term)
as in proposition
and
N = s.
to p r o p o s i t i o n X.
1,
x = s.u,
Since s
x
is
and u
follows from that in
(u - I )
give the decom-
1, i t f o l l o w s t h a t
s,u
are
-26
-
Note.
T h e a b o v e n o t i o n s c a n b e d e f i n e d , w i t h a m o d i f i c a t i o n , f o r an a r b i t r a r y
field
K (not n e c e s s a r i l y
in
algebraically
E n d V to be s e m i s i m p l e
semisimple.
ever,
if K is p e r f e c t ,
For.
Let ~'~Gal
if t h e c o r r e s p o n d i n g
~ - N = N.
we d e f i n e an e n d o m o r p h i s m
endomorphism
(~/K)"
= a-N.o'S. Since
K
Let
X = S + N be t h e d e c o m p o s i t i o n of X E E n d V . semisimple,
Also, o- X = X,
is perfect, S £ E n d V
rN
nilpotent and
H e n c e by uniqueness, r S = S and as a- S = S Vo- ~ G a l (K/K). Similarly
N
e x a m p l e brings out this fact. Let
Let
be transcendental over
V ; k p.
Let
Consider the endomorphism
Then the semisimple
T h e following
k o be any field of characteristic
k o.
(This
~ E n d V.
This is not true in the case of a field which is not perfect.
T
How-
t h e n t h e s e p a r t s do b e l o n g to E n d V.
follows immediately f r o m Galois theory).
Let
on V ~)K ~ i s
and n i l p o t e n t (or u n i p o t e n t ) p a r t s a r e in E n d V.
~" X = r S + a- N, with a- S
r S . rN
e.g.
T h e a b o v e t w o p r o p o s i t i o n s w i l l go t h r o u g h , b u t we c a n n o t a s s e r t
whether the semisimple
Then
closed),
k = ko(T ). T h e n
k
on V g i v e n b y : X =
p ~ 0.
is not perfect,
0
1 0
. 1
a n d n i l p o t e n t p a r t s do n o t b e l o n g to E n d V, a s t h e reade~r ~
may check.
2.3.
Jordan decomposition for a n e n d o m o r p h i s m
partially extend this idea
(continued).
of d e c o m p o s i t i o n in the c a s e of i n f i n i t e d i m e n s i o n a l
spaces.
Let
V
We now
be a vector space (not necessarily finite dimensional).
-
Definition.
X E End V
27
-
is called locally finite if V =
~ V ~ where each V A AEA. is a finite dimensional subspace invariant under X; or, in other words, if e a c h v ~ V i s c o n t a i n e d in a f i n i t e d i m e n s i o n a l s u b s p a c e i n v a r i a n t u n d e r
X.
We know that f o r an i n f i n i t e d i m e n s i o n a l s p a c e , an e n d o m o r p h i s m m a y be i n j e c t i v e without b e i n g s u r j e c t i v e .
Lernma.
Let
H o w e v e r , we h a v e :
X C E n d V be l o c a l l y f i n i t e .
T h e n the f o l l o w i n g s t a t e m e n t s
are equivalent. (1)
X is an a u t o m o r p h i s m
(2)
A l l the e i g e n v a l u e s of X a r e n o n - z e r o ( i . e . X is i n j e c t i v e ) .
Proof.
(1) ~
(2) i s c l e a r .
(2) :::~(]). Let X X(V;~) _C V A
(i. e. X is i n j e c t i v e and s u r j e c t i v e ) .
for each ~
be injective. Consider
with each V ~
injective and hence surjective.
Note.
Thus
X
finite dimensional.
V'
S, N E End
is
Y of X p r e s e r v e s the
Then t h e r e e x i s t e n d o m o r -
V, s u c h that (1) X = S + N ( 2 )
is a f i n i t e d i m e n s i o n a l s u b s p a c e i n v a r i a n t u n d e r
N(V') ~ V' and X/V, = S/V, + N/V,
X/v A
X and h e n c e is l o c a l l y f i n i t e .
P r o p o s i t i o n 1. L e t X E E n d V be l o c a l l y f i n i t e . phisms
Now
itself is surjective.
It f o l l o w s that in the a b o v e c a s e , the i n v e r s e
s a m e finite dimensional subspaces as
V = A~E V;% such that
S and
N c o m m u t e (3) If
X, then
is the decomposition of
S(V') ~ V ' ,
X/V,
defined in
the previous section.
Proof. Let {V A , ~ A . } spaces of V.
Since X
be the set of allfinite-dimensional X-invariant subis locally finite, V =
7--- V~.
Consider X;k = X / V ~ .
-
28
-
Then by proposition I of the previous section, X)~ = Sg~ + Ng~ ; S~, N g ~ E n d S~
semisimple, N A nilpotent; S Aand
S/V ~ = S ~ Claim: Consider
V~(/~
Define N E E n d V
N~
commute.
by N / V ~ = N ~
Define S ~ E n d V by
Vle/k.
S and N are well-defined. V~
and V~. X/W
On V~/~ V~ = W, which is invariant under X,
= S~/W
X/W
+ N~/W
S~/W + N~/W
~
are decompositions into sernisimple
3
and nilpotent parts.
Hence by uniqueness of such a decomposition~ B[~/W = N~,/W . Hence S. N = N.S.
S)~/W = S~,/W and
S,N are well-defined.
Also X = S + N.
Note that S and N
Since S ; v N 9 = N ~ . S ~ V A E A ,
This proves the proposition.
defined above are locally finite. Further, S is semi-
simple (i.e. V has a basis consisting of eigenvectors of S). N nilpotent (i.e. N
Proposition 2. phisms
V~;
is locally
is nilpotent on every finite-dimensional invariant space).
Let x EAut V
s, u EAut V
be locally finite. Then there exist automor=
such that (I) x = s.u, (2) s is semisimple, u is
locally unipotent (see (4)), (3) s and u commute,
(4) If V' is a finite f
dimensional subspace of V x/v, = S/v , . U/v,
v
!
with x(V') C V' then s(V') ~ V , u(V ) C V and
is the decomposition for x/v,.
The proposition is deduced from the previous proposition just as proposition 2 of 2.2 is deduced from proposition I of 2.2.
(The only thing to be noted is
that s has all of its eigenvalues non-zero and hence, in view of the l e m m a above, is an automorphism).
-29
Remark.
The decompositions
-
h e r e and in t h e p r e v i o u s s e c t i o n s w i l l be c a l l e d
Jordan decompositions.
2.4.
J o r d a n d e c o m p o s i t i o n of an e l e m e n t
b e an a l g e b r a i c g r o u p a n d
A= k [G].
x of an a l g e b r a i c g r o u p
In v i e w of t h e l e m m a
G.
of 1 . 8 ,
~:
Let and
N* are locally finite V x~G. x Definitions.
(i) An e l e m e n t
s EG
i s s a i d to b e s e m i s i m p l e
if ~s :A
~ A
is SO. (ii) A n element
s £G
l o c a l l y a l l t h e e i g e n v a l u e s of
Note.
s
is semisimple
X = i 0 Px_l oi. iff ~
x
rA
is said to be unipotent if ~s : A ~s
a r e e q u a l to
1).
( r e s p e c t i v e l y u n i p o t e n t ) iff s
Hence
is so. (i.e.
-!
is so.
~ x = i o fx-i o i . Thus, ~ x
Again,
is semisimple
is so.
Also,
f x is unipotent iff
In o t h e r w o r d s ,
x is semisimple
x is so.
iff
~k* is semisimple. x
x is unipotent if ~ * x
Proposition
1.
x = y.z = z.y;
Let
x E G.
is unipotent.
Then there exist elements
y is semisimple,
z is u n i p o t e n t .
y, z ~ G
such that
Such e l e m e n t s a r e u n i q u e
and a r e c a l l e d t h e s e m i s i m p l e
and u n i p o t e n t p a r t s of x.
b y x s and
x = x s.x u is called the Jordan decomposition
xu
respectively,
They are denoted
of No
Proof.
Consider
~x : A - - - ' ~ A .
H e n c e by p r o p o s i t i o n 2 of 2 . 3 , t h e r e e x i s t
G
-
automorphisms
s and
p
u
-
of A a s a l i n e a r s p a c e s u c h t h a i
= s.u = u. s ; s
%
30
semisimple,
u
unipotent.
X
It follows that w h e n e v e r
u(a" ~ E n d V).
o- corn.mutes with
This is so since any
X-invariant s p a c e a n d ~- s(v) = s . o - ( v ) .
~ x ' o- c o m m u t e s
v EV
with
s and
b e l o n g s to a f i n i t e d i m e n s i o n a l
s is a p o l y n o m i a l of
~x
on s u c h a space.
Similarly,
Q-" c o m m u t e s
w i t h u.
commute with ~* for every t
t ~G, since
~x
Hence
In p a r t i c u l a r ,
clearly does so.
s and ~
u (1)
W e n o w p r o v e a l e m m a u n d e r a g e n e r a l s e t up.
Lemma
1. L e t
A b e an a l g e b r a o v e r
or associative. finite.
Let
Proof.
L e t 0" be a k - a l g e b r a
0- = s . u
also k-algebra
k which is not necessarily automorphism
of A
be t h e J o r d a n d e c o m p o s i t i o n of ~ - .
automorphisms
commutative
which is locally Then
s
and
u are
of A .
One n e e d o n l y p r o v e t h a t
s i s an a l g e b r a h o m o m o r p h i s m .
Since
o-
is locally finite, integer nJ.
/k = ~ A~ ; w h e r e A ~ = ~ f ~ A / ( c r - - ~)n(f) = 0 f o r s o m e ~k We a l s o h a v e : s i s j u s t m u l t i p l i c a t i o n by ~ on A ~ .
Claim:
A ~.
A 0 C A~ ' ~
g6A ~
and hence V f,g t~A.
This clearly shows that For
f,g ('A,
s(f.g) = s(f).s(g)V lEA ~,
t h e f o l l o w i n g i d e n t i t y c a n be
p r o v e d b y induction:n
(~__ ~.~)n(fg) If f ~ A ~ , g ~ A ~ , f. g E A ~ ' ~ .
= ~ (i~ . ( ~ r - ~ ) 1 i=O
•
( ~
n-i
then for large enough
f) .
o_i
(¢r--]3)
n, ( ~ ' - ~ . ~ ) n
n-i
(g).
(fg) = 0 t h u s
H e n c e t h e c l a i m and t h e l e m m a .
The lemma immediately
g i v e s : If
k-algebra automorphisms
of A.
~: = s.u
(as a b o v e } , t h e n
s and
------------ (2)
u are
-
31
-
Next we prove : Any k-algebra automorphism (or endomorphism) of A which
c o m m u t e s with Consider
G is of the f o r m
x~G,
f~A.
~w f o r unique w @G.
Then ¢ ' o ~*
=
X
~*
~- . Hence
O
el(~'(~
(3)
0"( ~ * (f)) = ~k* (~(f)).
X
X
C o n s i d e r the evaluation e 1 at the identity of We have
-
X
G.
f)) = (e I o )%*)(~r'(f)) X
i.e.
(e I o r ) (
Now,
e I o ~r- : A ~
f) = (e I o
X
k, a k - a l g e b r a h o m o m o r p h i s m .
that e 1 o~" = e w by p r o p e r t y (3) of v a r i e t i e s . since
e I O2~x = ex.
ex(O-(f)).
Now,
ew o
For:
Hence 3 w C-G such
Thus,
e w ( N f) = ex(~" (f))'
x = exw = e x o ~w.
Since x EG and f ~ A a r e a r b i t r a r y ,
of w follows i m m e d i a t e l y . ~fEA.
)(0-(f)).
~w =
Hence e w ( f ) = e w , ( f ) ~ f ~ A
T h u s ex(
~: = o'.
fw' implies
implies
(f)) --
Now u n i q u e n e s s
e l ( ¢ w ( f ) ) = el(~w,(f) )
w = w'.
It follows immediately, f r o m (i), (2) and (3), that ~x
=
~y o ~z for unique
y,
semisimple in G and z, unipotent in G. H e n c e x = y. z by (3) again, since @ @ #()y o 8z , = ~yz , " Clearly y and z c o m m u t e . This proves the proposition.
Note.
(1) It follows i m m e d i a t e l y that f o r ; k : , which is a l s o l o c a l l y finite,
- ~
/~*
X
(2) F o r
o
~*
X s
is the Jordan decomposition.
Xu
gEG,
~'g c o m m u t e s with
since these a r e p o l y n o m i a l s in ~ :
~x
iff it does so with
locally.
~x s and ~ x u
Hence ZG(X) = ZG(Xs)~ ZG(Xu).
To c o m p l e t e the development, two m o r e points r e m a i n to be p r o v e d .
Proposition 2.
If G is a closed subgroup of GL(V) and x EG, then the two
Jordan decompositions of x, one as automorphism of V and the other as an
-
32
-
e l e m e n t of G, a r e one and the s a m e . P r o p o s i t i o n 3. The J o r d a n d e c o m p o s i t i o n is p r e s e r v e d by m o r p h i s m s of algebraic groups.
Both t h e s e p r o p o s i t i o n s follow f r o m :
L e m m a 2.
Let ~: G - - - ~ G L ( V )
s o m e GL(V)) and x ~ G .
be a r e p r e s e n t a t i o n ( i . e . a m o r p h i s m into
T h e n ~(x) = ~(Xs). ~(x u) i s the J o r d a n d e c o m -
p o s i t i o n of ~ (x) a s an a u t o m o r p h i s m of V.
T o get p r o p o s i t i o n 2, we apply this l e m m a to the i n j e c t i o n : Ge---~GL(V). p r o p o s i t i o n 3, a s s u m i n g ~ :G ~ some
G'
T o get
is the given m o r p h i s m , we i m b e d G' in
GL(V) and then apply p r o p o s i t i o n 2 to the r e s u l t i n g r e p r e s e n t a t i o n s of
G and of G ' .
L e m m a 2 i t s e l f follows f r o m :
L e m m a 3. E v e r y r e p r e s e n t a t i o n of G is i s o m o r p h i c to one in which G a c t s v i a r i g h t - t r a n s l a t i o n s on a s u b s p a c e of A n f o r s o m e
n, A = k [ G ] .
F o r : In view of the d e f i n i t i o n s and the fact that the J o r d a n d e c o m p o s i t i o n on v e c t o r s p a c e s i s p r e s e r v e d by d i r e c t s u m s and r e s t r i c t i o n s to s u b s p a c e s , l e m m a 3 c l e a r l y i m p l i e s l e m m a 2.
P r o o f of l e m m a 3. L e t ~ : G - - ~ GL(V) be the g i v e n r e p r e s e n t a t i o n . f v 1 ' v *2 ~ ' " 'y*n ~ be a b a s i s of the dual s p a c e of V. : V--~A
n given b y : ~(V) = (Cvlv,~ . . . . .
s t a n d s for the m a t r i x c o e f f i c i e n t x ~ v * ( v e r i f i e d that
Let
C o n s i d e r the m a p
C v l v ~n ); w h e r e , as u s u a l , C v t v , ~ (x)(vl)).
Now, it can be e a s i l y
~ y i e l d s a G - m o d u l e i s o m o r p h i s m of V with ~(V).
This proves
the l e m m a . Remark.
The J o r d a n d e c o m p o s i t i o n m a y be c a r r i e d o v e r f r o m e l e m e n t s to
-
33
-
Abelian groups: If G i s an A b e l i a n a f f i n e g r o u p , then
G = G s . G u , a d i r e c t p r o d u c t (in the
s e n s e of a l g e b r a i c g r o u p s ) of c l o s e d s u b g r o u p s . T h e r e a d e r m a y w i s h to p r o v e this u s i n g the l e m m a of 2. I.
2.5.
Kolchin's Theorem.
We c o n t i n u e with an i m p o r t a n t t h e o r e m about u n i -
potent groups.
T h e o r e m (Kolchin). L e t G be a s u b g r o u p of Aut V (for a f i n i t e d i m e n s i o n a l space
V) c o n s i s t i n g of u n i p o t e n t e l e m e n t s .
s i m u l t a n e o u s l y put in u p p e r t r i a n g u l a r f o r m 0 = V°
~
V 1 C...C
v
=v
such that V.
T h e n the e l e m e n t s of G can be ( i . e . G f i x e s a flag: is of c o d i m e n s i o n l
in
Vi+l, 0 ,~i,~n-1).
Proof.
F o r the p r o o f , we m a k e u s e of l e m m a :
Lemma 1 (Burnside). dim.)
s u c h that ¥
irreducible).
Let
S be a s e m i g r o u p of e n d o m o r p h i s m s of V (finite
is a simple
Then
S - m o d u l e ( i . e . the a c t i o n of S on V is
S c o n t a i n s a b a s i s of E n d V.
F r o m t h i s l e m m a , the f o l l o w i n g l e r n m a f o l l o w s :
L e m m a 2 (Burnside).
Let
V be an n - d i m e n s i o n a l s p a c e / k , S be a s e m i -
g r o u p of e n d o m o r p h i s m s of V s u c h that e l e m e n t s of S h a v e only r set: { t r s, s E S t be e l e m e n t s ~ r n2.
r).
V is s i m p l e S - m o d u l e .
L e t the
d i f f e r e n t t r a c e s (i. e. l e t the c a r d i n a l i t y of the
Then
S i t s e l f i s f i n i t e and the n u m b e r of
-
Proof.
34
-
B y L e m m a 1, S c o n t a i n s e l e m e n t s
of E n d V.
C o n s i d e r the m a p
S --~
Yl' " " " 'Yn 2 which form a basis
k n2 g i v e n by :
~(S) = (tr x . y 1 . . . . . S i n c e Yl . . . . .
tr x.y 2) n
Yn2 is a b a s i s of E n d V, it f o l l o w s t h a t
t h e n xYiE S , 1 - ~ i ~ n 2.
Hence
t r xy i h a s
f i n i t e a n d IS~ = n u m b e r of e l e m e n t s in S
r
possible values. 2 ~r n .
From this, Kolchin's theorem follows immediately. series
V r . 1 ~~ . . .
V = Vr
G(Vi) C - Vi and Vi/vi.1 ~i : G --->End Vi/vi.1 are unipotent°
H e n c e ~i(G) = I d e n t i t y . Vi/vi.1
is
S is
Consider a composition
G-module V1 ~i~ r.
is the corresponding representation.
on ~i(G).
Hence
But
V with r e s p e c t to G, i . e .
H e n c e the a c t i o n of G on V i / v i . 1
i s o n l y one t r a c e - v a l u e
Since
~ V o = (0) f o r
is a s i m p l e
~ is i n j e c t i v e .
Let E l e m e n t s of G
is a l s o u n i p o t e n t a n d t h e r e
H e n c e by l e m m a 2 a b o v e , l ~ i ( G ) ~ ~ i -
H e n c e e v e r y s u b s p a c e of V i / V i . l
s i m p l e , it f o l l o w s t h a t
Vi/vi.1
is G-invariant.
i s of d i m e n s i o n 1.
This
proves the required result.
Remarks.
(1) T h e a b o v e t h e o r e m h o l d s f o r a r b i t r a r y f i e l d s (not n e c e s s a r i l y
a l g e b r a i c a l l y c l o s e d ) (check t h i s ) . (2) A r g u i n g a s i n L e m m a 2 one s e e s t h a t a s u b g r o u p of GLn(k} with j u s t c o n j u g a c y c l a s s e s is f i n i t e , of o r d e r at m o s t
r n2.
r
By m o d i f y i n g the p r o o f
s o m e w h a t , one c a n p r o v e t h a t if c h a r k = 0, S i s a s u b g r o u p of A u t V w i t h o u t u n i p o t e n t e l e m e n t s a n d with r
t r a c e s o n l y , t h e n IS~ ~ r n 2 , n = d i m e n s i o n of V.
One c a n t h e n e a s i l y d e d u c e t h a t o v e r f i e l d s of c h a r a c t e r i s t i c
0, e v e r y t o r s i o n
s u b g r o u p of A u t V with the e l e m e n t s of b o u n d e d o r d e r s i s f i n i t e a n d t h a t e v e r y t o r s i o n s u b g r o u p of GLn(Z~) (i. e. m a t r i c e s with i n t e g r a l c o e f f i c i e n t s a n d h a v i n g i n v e r s e s with i n t e g r a l c o e f f i c i e n t s a l s o )
i s f i n i t e , of o r d e r ~(2n+1) n 2 .
-
35
-
T h e s e r e s u l t s a l l go b a c k to B u r n s i d e . (3) K o l c h i n ' s t h e o r e m i n c i d e n t l y p r o v e s that e v e r y u n i p o t e n t group i s n i l p o t e n t s i n c e the group of u p p e r t r i a n g u l a r u n i p o t e n t m a t r i c e s is so (check this).
T h i s r e s u l t has an i n t e r e s t i n g c o n s e q u e n c e :
Proposition.
L e t G be a u n i p o t e n t a l g e b r a i c g r o u p ( i . e . an a l g e b r a i c group
c o n s i s t i n g of u n i p o t e n t e l e m e n t s ) .
Let G act on an affine v a r i e t y V.
Then
every orbit is closed.
Proof.
Let ~ : G x V - - ~ V be the a c t i o n .
W r i t e o<(x,v) = x . v .
o<* :k[V]--~ k [GJ~) k IV] be the co-morphism. x* : k[VJ
Let
For x eG, define
> k [VJ by : (x*f)(v) = f ( ~ ( x -1, v)) = f(x - 1 . v ) .
Thus x
i s a k - a l g e b r a h o m o m o r p h i s m of k [%r] . A l s o , x*o y* = (xy)*.
we get a m a p : G ~ f £ k [V~ . space
Aut k [¥]
which is a g r o u p - h o m o m o r p h i s m .
Let.
Then a n a r g u m e n t s i m i l a r to the one in the l e m m a of 1.7 gives: The
W(f) s p a n n e d by {x~'f, x ~ G t
G* = {x'~,x EG 1 .
is f i n i t e d i m e n s i o n a l and i n v a r i a n t u n d e r
Hence it follows that G a c t s l o c a l l y f i n i t e l y .
F u r t h e r , it
can be s e e n , as in the proof of the l e m m a of 1.9, that the m a p ~:G given by
~(x) = X*/w(f ) is a m o r p h i s m of a l g e b r a i c g r o u p s .
p r o p o s i t i o n 2 of 2 . 4 , we get: X*/w(f ) is u n i p o t e n t Vx e G . it follows that x* is l o c a l l y u n i p o t e n t V x ~ G. u n d e r G.
Thus
If p o s s i b l e , l e t O be not c l o s e d .
> GL(W(f))
Hence by Since k[V]= ~..W(f),
f~k[V]
C o n s i d e r a n o r b i t O of V
Consider O.
T h e n by
c o r o l l a r i e s I and 2 to p r o p o s i t i o n 1 of 1 . 2 , it follows that O is open in O and - O is a u n i o n of o r b i t s (of s m a l l e r d i m e n s i o n s ) .
Since ~)- O
is a p r o p e r
-
c l o s e d s u b s e t of O , t h e r e e x i s t s
36
-
f ~ k [~)] such that f ~ 0 on ~)-'~) and
f ~ 0 on O. Since O - 0 perties.
(*) is a union of orbits, it follows that xSf(x ~ G) has similar pro-
N o w {x ~/w(f), x ~ G ~
theorem, it has a c o m m o n
is a unipotent group.
Hence by Kolchin's
eigenvector fo" Since fo ~ 0 and every element
of W(f) is zero on O - O, it follows that f also has the above mentioned o property ($). Now, x$(fo) = fo ~ x E G . being fixed.
Hence fo i n c o n s t a n t and c o n t a i n s
i s c l o s e d in O.
But f
is already
o
O.
Hence
~ on O.
fo(x'l.v) = fo(V) V x
B u t t h e n the s e t {Xlfo(X) =• t
Hence it is the whole of (~.
Corollary.
Thus
f
o
-- A on
0 on ~ ) - O and O - O i s n o n - e m p t y by a s s u m p t i o n .
H e n c e fo = 0, a c o n t r a d i c t i o n to the f a c t : fo ~ 0. O is closed.
~G,v
H e n c e ~ ) - O i s e m p t y i , e.
T h i s p r o v e s the p r o p o s i t i o n .
E v e r y c o n j u g a c y c l a s s of a u n i p o t e n t a l g e b r a i c g r o u p i s c l o s e d .
T h e m o s t i m p o r t a n t e x a m p l e of a u n i p o t e n t a l g e b r a i c g r o u p , i n c i d e n t a l l y , i s the a d d i t i v e g r o u p G a d e f i n e d b y Ga(k) = (k, k IX] ) with a d d i t i o n the g r o u p operation. t 4--~[:
T h i s g r o u p m a y be s e e n to be u n i p o t e n t e i t h e r f r o m the i s o m o r p h i s m :]
(t~k)
t e r m s of the b a s i s
2.6.
orelse
d i r e c t l y f r o m the f o r m of the r i g h t t r a n s l a t i o n s in
1,X,X 2....
of k I X ] .
Diagonalizable Groups.
Definition. A n (affine) algebraic group is said to be diagonalizable if it is commutative and consists of semisimple elements.
-
37
-
The m o s t i m p o r t a n t e x a m p l e i s the m u l t i p l i c a t i v e group Gin(k) of k, e q u a l to
(GL(k), k I X , X - I ~ ) .
P r o p o s i t i o n 1. F o r a n a l g e b r a i c g r o u p G, the following s t a t e m e n t s a r e equivalent: (a)
G is d i a g o n a l i z a b l e .
(b)
G i s i s o m o r p h i c to a c l o s e d s u b g r o u p of s o m e
D n ( i . e . of the group of
d i a g o n a l m a t r i c e s in GL n) o r , e q u i v a l e n t l y , of s o m e (c) k [G~
n GL 1 .
i s s p a n n e d , as a v e c t o r s p a c e , by the c h a r a c t e r s .
(A c h a r a c t e r is
a m o r p h i s m of G into GL 1.)
Proof.
(a)
~
(b).
T h i s i s obvious f r o m the p r o p o s i t i o n of 1.9, p r o p o s i t i o n 2
of 1.13 and p r o p o s i t i o n 3 of 2 . 4 . F o r a c l o s e d s u b g r o u p of Dn, X m ll l...
(b) ==~ (c}.
m i £ Z , 1 ~ i ~ n. of D n t o / h e
X nmnn
is a character,
(By Xii, we m e a n the c a n o n i c a l f u n c t i o n taking an e l e m e n t
i th (diagonal} entry}.
Obviously,
k [G] c o n s i s t s of p o l y n o m i a l s
which a r e l i n e a r c o m b i n a t i o n s of such c h a r a c t e r s .
Hence the c h a r a c t e r s
span k [G 1 . (c) ~
(a).
Let
f be a character
Hence
~y f = f(y).f VY
vector for
~y* ,y ~ G.
semisimple
and any two
Definition.
The
pointwise
by
X(G)
Then
In other words,
Since characters ~y ,
characters
multiplication.
and is denoted
~G.
of G.
group
(or simply
character
group
G
G
Clearly
X(G)
By*
is
is diagonalizable.
form
is called the character X).
EG.
is an eigen-
k [G] , it follows that
Hence
of an algebraic The
every
span
commute.
f(xy) = f(x).f(y) ~x,y
a group under group
is abelian.
of G
and
-
The
character
groups.
We
now
group
for arbitrary
Proposition
algebraic
role in the theory of diagonalizable
clear as we proceed
a proposition
2. For
-
plays an important
This will become
prove
38
for diagonalizable
with the development.
groups.
(This proposition
holds
groups).
a diagonalizable
group
G, X(G)
is finitely generated.
Proof. Since G is diagonalizable, k [G] is spanned by X(G). But then k [G] is finitely generated as k-algebra. which g e n e r a t e s
k [G 7
Hence there exist characters
as k-algebra.
Let
XI,...,Xn
H be the s u b g r o u p g e n e r a t e d by
r1 C l e a r l y e l e m e n t s of H a r e of the f o r m : X 1 . . . X r n with r. E77'.
X 1, . . . . X n.
n
Also, any f 6 k [G]
1
is a l i n e a r c o m b i n a t i o n of e l e m e n t s of H.
r T h e n X = ~_. ~ j . % ~ j )~j@H. We m a y j=l ! a s s u m e that the ~Tj s a r e all d i s t i n c t . The p r o p o s i t i o n now follows f r o m the Claim.
H=X(G).
Let
XEX(G).
following g e n e r a l l e m m a :
Lemma
I. Distinct characters
independent
Proof.
as k-valued
Let, if possible,
functions
~ o + i__~_l~i~i.= = O, w h e r e
and r
on
into
k
are linearly
distinct characters.
i
~ i s a r e d i s t i n c t c h a r a c t e r s of H into k*
is m i n i m a l with this p r o p e r t y ( r ~ l ) .
~o(ho) ~ O(l(ho). Consider
H
H.
there exist relations between
r
Let
of an (abstract) group
Choose h t~ H such that o
-39-
r 0-- ~ o ( h o . h) + ~- ~ i ~ i ( h o . h ) ) V i=l r
hEH
= °(o(ho)" ~ o ( h ) + ~ ~ i " °(i(ho)" °(i(h)" i=l r Also,
0 = ~o(ho) + ~ i ~ i ( h o ). i=l r 0 =~ (~i(ho) - ¢
Hence
and ~ l ( h o ) ~ ~ o ( h o ) .
T h i s c o n t r a d i c t s the m i n i m a l i t y of r .
This proves
the l e m m a .
Note. F r o m t h i s , it follows that f o r a d i a g o n a l i z a b l e group G, X(G) is a b a s i s of k [ G ] .
It a l s o follows, a s s u m i n g H to be a c l o s e d s u b g r o u p of G,
both d i a g o n a l i z a b l e , that e v e r y c h a r a c t e r of H can be extended to one of G, and that H is j u s t the k e r n e l of a s e t of c h a r a c t e r s on G.
(Exercise: Prove
these a s s e r t i o n s . )
It can be e a s i l y v e r i f i e d that X ( G I ~ G2) = X(G1)X X(G 2) f o r d i a g o n a l i z a b l e groups
G 1 and G 2.
char, k Notation:
if c h a r . k ~ 0
Denote p = p(k) = if not.
Note. F o r an a l g e b r a i c group G, X(G) does not have p - t o r s i o n (p = p(k)
as
d e f i n e d above). For:
L e t X p = 1. ::~
Thus we have:
T h e n xP(x) = I ~ V x E G
(X(x) = 1) p = 0
V xEG ~
X = 1.
F o r a d i a g o n a l i z a b l e group G, X(G) is a f i n i t e l y g e n e r a t e d
a b e l i a n g r o u p with t o r s i o n p r i m e to p.
-40
The
converse
Proposition
-
is also true, viz.
If X is a finitely generated
3.
abelian group with torsion prime
to p(= p(k)), then there exists a diagonalizable Proof.
A finitely generated
groups.
Since
X(GIX
following cases
only.
C a s e (a). X = ZZ.
abelian group
G2) = X(G~ xX(G2),
group
G
such that X(G) = X.
is a (finite) direct product
of cyclic
it follows that we need consider
the
In this c a s e , c l e a r l y G = GL(1) i s such that X(G} = X.
C a s e (b). X = 7Z/nZE with (n,p) = 1.
In t h i s c a s e , we can take for G
the
c l o s e d s u b g r o u p of GL(1), i . e . of k*, c o n s i s t i n g of the n th r o o t s of 1. Since
(n,p) = 1, this group is i s o m o r p h i c to ZS/n2Z.
i s o m o r p h i c to Z~/n ~
a s can be v e r i f i e d at once.
Hence X(G) is a l s o
T h i s p r o v e s the p r o p o s i -
tion.
We note that the group ZE/nZ~ of c a s e (b) is d i s c r e t e .
!
P r o p o s i t i o n 4. L e t G , G ~* : X(G') ~
Proof.
be d i a g o n a l i z a b l e g r o u p s . T h e n e v e r y h o m o m o r p h i s m
X(G) c o m e s n a t u r a l l y f r o m a m o r p h i s m ~ : G ~
Since G' is d i a g o n a l i z a b l e ,
X(G') i s a b a s i s of k ~ G ' J .
e x t e n d s to a k - a l g e b r a h o m o m o r p h i s m of k [ G ' J to a m a p
o(: G - - - ~ G '
of v a r i e t i e s .
For
G'.
into k [ G ] .
given by: e o((u) = eu 0 ~
Hence
~*
This gives rise
C l e a r l y ¢~ is a m o r p h i s m
x , y ~ G and f 6 X ( G ' ) ,
f(~(xy)) = (o< f)(xy) = (o¢~*f)(x). ( ~ * f ) ( y ) , (since o¢ f EX(G)) = f ( ~ ( x ) ) . f(a~(y)) = f ( ~ ( x ) . ~ ( y ) ) . S i n c e X(G') s p a n s k [ G ' 3 , ~ ( x y ) = ~ ( x ) . ~ ( y ) . m o r p h i s m and h e n c e a m o r p h i s m .
Hence ~
is a group h o m o -
T h i s p r o v e s the p r o p o s i t i o n .
-
41
-
P r o p o s i t i o n s 3 and 4 p r o v e the following t h e o r e m .
Theorem.
The c o r r e s p o n d e n c e G ~ X ( G )
b e t w e e n d i a g o n a l i z a b l e g r o u p s and
f i n i t e l y g e n e r a t e d a b e l i a n g r o u p s with t o r s i o n p r i m e to p i n d u c e s a f u l l y f a i t h ful c o n t r a v a r i a n t f u n e t o r of c a t e g o r i e s .
Proposition 5.
Let G
be a diagonalizable group.
T h e n the following state-
m e n t s are equivalent: (a) G
is connected.
(b) G
is isomorphic to s o m e
n G L I.
(e) X(G) is f r e e , i . e . h a s no t o r s i o n .
Proof.
B e c a u s e of the t h e o r e m above,
G is i s o m o r p h i c to a group of the f o r m :
n
GLIX ~/nlZZ ~-.. and then X(O) = ~ n x n=Go" Clearly G L 1
~ Z E / n r Z Z with (ni,P) = I V l ~ i
Z~/nl2 z X... ~ 2 Z / n r ~
Hence
G
~r.
"
n is connected iff r = 0 iff X(G) = 77, . This
p r o v e s the p r o p o s i t i o n .
Definition.
A diagonalizable group
G
is said to ~e a torus if the above set of
equivalent conditions holds for G.
A s an i m m e d i a t e corollary, w e get:
Corollary.
E v e r y d i a g o n a l i z a b l e group G is a d i r e c t p r o d u c t of a t o r u s and
a f i n i t e a b e l i a n g r o u p (with t o r s i o n p r i m e to p). m i n e d as the i d e n t i t y c o m p o n e n t of G.
T h e t o r u s is u n i q u e l y d e t e r -
-
Proposilion
6.
are dense.
For
with order
n.
(b)
If k
(a) The
elements
then there
-
of finite order
a given integer
is not the algebraic
42
n, there
closure
exists an element
x ~G
of a diagonalizable
group
exists only a finite number
of a finite field and
whose
powers
are dense
G
G
of elements
is a torus
over
k,
in G.
P r o o f of p a r t (a) follows i m m e d i a t e l y f r o m the d e c o m p o s i t i o n G ---~ GL 1 ~ 2Z/n Z ~ X ' ' " ~ Z ~ / n 7-/.1
(The Zariski
topology
infinitely many
r
GL 1 is the cofinite topology
on
and roots
of unity are
in number).
The proof of p a r t (b} (which we s h a l l not use) m a y be found on page 208 of B o r e l ' s book.
We
now
prove
Proposition
7.
X(T)(X(T) Then
~
a proposition
Let
T
is a free t~T
which
is very
useful in later discussions.
be a torus and ~l ..... ~r ZE-module).
suchthat
Let
be linearly independent
C 1 ..... C r E k*
be arbitrarily
in
given.
~i(t) = C i ~l~i~r. r
Proof. Since
Consider
o(1 . . . . .
the morphism
~r
T.
It follows
on
T.
Hence
GL[.
But
is closed
f*
of X(T)
and hence
that ~i ..... ~r is injective
f is a morphism in GL[.
GL
1
, given by: f(x} = (~:l(X) ..... ~
r
(x)).
a r e l i n e a r l y i n d e p e n d e n t in X(T), m o n o m i a l s in ~ 1 ' " ' " ~ r
are distinct elements on
f : T --~
The
are algebraically
so that of groups
proposition
are linearly independent
now
f is dominant and hence follows.
independent i.e.
f(T)
by proposition
as functions as functions is dense
in
2 of i. 13, f(T)
-
2.7.
Rigidity Theorem.
43
-
We p r o c e e d to p r o v e an i m p o r t a n t t h e o r e m .
!
Theorem. Let M: V~ H - - ~ H
be a rnorphisrn such that:
(I) II is an algebraic group in which the elements of finite order are dense. (2) II
I
is an algebraic group which contains only finitely many elements of
a given finite order. (3) V is a connected variety. I
(4) F o r a fixed v E V , the map o(v : H ~ a rnorphism of groups.
H , given by O(v(h) =o((v,h), is
Then ~ v : H - - ~ H' is the same rnorphism Vv ~ v
(i. e. ¢~ factors through P2 : Vx H ~
Proof. Let h ~H be of finite order.
H).
Consider o<(Vx h) which consists of
elernents having orders which divide the order of h. is a finite set.
Hence by (2), o((V x h)
But it is connected also, since V is connected.
(V x h) consists of a single element. order, O((v,h) = o((v',h) V v , 'polynomial' condition on H
v' ~SV.
Hence
Thus, whenever h ~H is of finite For fixed v,v'~ V, the above is a
and hence defines a closed subset F
closed subset contains the set of all elements with finite orders.
of H.
This
Hence by (I),
!
F = H, i.e. z~(v,h) = o((v',h) ~ h follows that o((v,h) = o((v ,h)
E H.
Since v,v ~ V
v,v @ V , h @H.
are arbitrary, it
Thus O(v = O(v, v,v e V.
This proves the proposition.
Corollary i . Since conditions (1), (2) are satisfied in the case of diagonalizable groups
I
H, H , the above proposition holds for these groups.
Corollary 2. Let H be a diagonalizable subgroup of an algebraic group G, Then we have the following:
-
(a}
NG(H)°
normal
(b)
= ZG(H)°.
subgroup
then
NG(It}/ZG(H)
Hence H
H = H and
~:
-
is connected
H
In o t h e r w o r d s ,
1
to be the m o r p h i s m c ~ t ( v , h )
(Since
corollary
1.
Taking
NG(H)° ~ ZG(H).
Hence
= vhv - 1 .
group
Take
Hence
v = e, vhv -1 = e . h . e -1 = N G(H) o C ZG(H) °
ZG(H) ° C_ NG(H) ° i s a l w a y s t r u e . )
NG(H)/ZG(H ) is a homomorphic The last mentioned
is a diagonalizable
1, l e t V = NG(H} °, w h i c h i s a c o n n e c t e d v a r i e t y .
VxH--~
NG(H) ° = ZG(H) °.
H
is central.
vhv "1 i s i n d e p e n d e n t of v, by c o r o l l a r y h Vv ~V.
and
is finite.
P r o o f . I n the c o r o l l a r y !
if G
44
Thus
Further,
i m a g e of N G ( H ) / Z G ( H ) O = N G ( H ) / N G ( H ) o .
is finite by proposition
1 of 1.12.
Hence
the
is proved.
Proposition.
(a) L e t G be a d i a g o n a l i z a b l e a l g e b r a i c g r o u p , a c t i n g on an
affine variety
V.
T h e n o n l y f i n i t e l y m a n y f i x e d p o i n t s e t s u n d e r the a c t i o n of
s u b s e t s of G o c c u r in V. as stabilizers
A l s o , o n l y f i n i t e l y m a n y s u b g r o u p s of G o c c u r
of s u b s e t s of V.
(b} If G is a l s o c o n n e c t e d ( i . e . if G i s a t o r u s ) , t h e n t h e r e e x i s t s an e l e m e n t xEG
such that
most
x£G
Proof.
x.v = v implies
( i . e . V G = Vx); in f a c t , f o r
this is so.
G a c t s on k [VJ
morphically,
Choose a finite set {fl ..... generates
y.v = v VYEG
h e n c e via s e m i - s i m p l e
f n t of e i g e n v e c t o r s
k [VJ a s k - a l g e b r a .
Since
endomorphisms.
of the a c t i o n of G w h i c h
fi i s an e i g e n v e c t o r f o r e a c h
x ~G,
there exists a character
X i E X(G)
s u c h that: f i ( x . v ) = X i ( x ) . f i ( v ) V x E G , v
Now, x . v o v iff qIx.v
o qIv/Vi
<since { f t . . . . .
k ~V])
iff fi(v) (Xi(x) - 1) = 0 V l ~ i
_~ n.
generates I
£V.
-
(a) L e t W C V
45
-
be the s e t of f i x e d p o i n t s of a s u b s e t S of G.
Let
J= {i/Xi/S ~ I} . Then W = [vCV/fi(v) = 0 V iCJ~. For:
From I, x . v = v Vx ¢ S
fi(v) = 0 ~ i ~ J . i, 2 ..... n~ The
Thus
. Thus
statement
about
iff fi(v)(Xi(x)- 1)-- 0 V x C S , V i
iff
W d e p e n d s e n t i r e l y on J which is a s u b s e t of such
W's
occurence
are finitely many of finitely many
in number.
stabilizers
can be proved
in a s i m i l a r way.
(b) If G i s a t o r u s , then G i s i r r e d u c i b l e a s a v a r i e t y . G i = ~xCG/Xi(x)
~ i~
X i ~ 1 on G.
Let J=
. Then
each
G i is an open
~i ~ G i ~ ~ .
Consider
set and
G i ~ ~ whenever
Since G i s i r r e d u c i b l e ,
• Gi~ # i~J
So l e t x g /~ G.. 1 iEJ C l a i m : V G = V x. Now V G C V x i s a l w a y s t r u e . fi(v)(Xi(x) - 1) ; 0 V i .
Solet
Now f o r i E J ,
a n y y t ~ G , fi(v) (Xi(Y) - 1) = 0 ~ i t~J. f i ( v ) ( N ( y ) - 1)-- 0 V i ~ J .
Corollary.
Thus
y.v:v
v~V
suchthat
x.v=v.
Hence
Xi(x) ~ 1 s o t h a t fi(v) = 0. But then f o r i ~ J , o r v £ V G.
Hence for
Xi(Y) = 1.
Hence
T h i s p r o v e s the p a r t (b).
L e t H be a d i a g o n a l i z a b l e s u b g r o u p of G.
(a) Only f i n i t e l y m a n y c e n t r a l i z e r s in G of s u b s e t s of H o c c u r .
A l s o , only
f i n i t e l y m a n y c e n t r a l i z e r s in H of s u b s e t s of G o c c u r . (b) If tt i s c o n n e c t e d , then Z G ( H ) = ZG(X ) f o r s o m e
x ~H; in f a c t , f o r m o s t
X.
Proof.
Make H a c t s on G by c o n j u g a t i o n ( i . e . h(g) = h g h - l V h
The C o r o l l a r y now f o l l o w s .
CH, g £ G ) .
Second P a r t : Q u o t i e n t s and s o l v a b l e ~ r o u p s
2.8.
Solvable G r o u p s .
The b a s i c r e s u l t h e r e i s a s follows:
Theorem 1 (Lie-Kolchin).
A c o n n e c t e d , s o l v a b l e l i n e a r a l g e b r a i c group fixes
a flag (of the u n d e r l y i n g space) i . e . can be put into an u p p e r - t r i a n g u l a r f o r m .
A proof of this t h e o r e m will be given l a t e r (see 2.11).
F o r an a l t e r n a t e proof,
which could be given now, see S e r r e ' s b o o k ' L i e A l g e b r a s and Lie G r o u p s : I
L . A 5.11 o r e l s e the a u t h o r ' s l e c t u r e s on C h e v a l l e y g r o u p s .
T h e o r e m 2. (a)
L e t G be a c o n n e c t e d s o l v a b l e a l g e b r a i c group.
Gu= ~g~GIg
unipotent~
isaelosed,
c o n n e c t e d n o r m a l s u b g r o u p of
G c o n t a i n i n g DG = ~G, G 3 ; and h e n c e the l a t t e r is n i l p o t e n t . (b) If G is n i l p o t e n t , then G s = {g e G / g
s e m i s i m p l e t is a (closed) t o r u s
and the d i r e c t p r o d u c t d e c o m p o s i t i o n G = G s. Gu holds (i. e. the c a n o n i c a l map
m : GsX G u
* G ; m ( s , u ) -- s . u
i s an i s o m o r p h i s m of a l g e b r a i c g r o u p s ) .
(c) The m a x i m a l t o r t of G a r e c o n j u g a t e . is a s e m i - d i r e c t product.
If T i s one of t h e m , then G = T . G u
(The g e o m e t r i c r e q u i r e m e n t is that T ×
Gu-"-"~G
is an i s o m o r p h i s m of v a r i e t i e s ) . (d) If S is a s u b g r o u p of G, c o n s i s t i n g of s e m i s i m p l e e l e m e n t s , then S can be i m b e d d e d in a t o r u s .
(Hence S is a b e l i a n ) .
(e) NG(S) i s c o n n e c t e d (S a s in (d)) and h e n c e i s equal to ZG(S) (by the Rigidity Theorem).
°
47
°
H e r e the r e s u l t s i m p o r t a n t f o r o u r p u r p o s e s h a v e been u n d e r l i n e d . m a y be found in B o r e l ' s book (page 244).
/k p r o o f
It u s e s t h e o r e m 1, i n d u c t i o n on the
l e n g t h of the d e r i v e d s e r i e s , and the t i m e - h o n o u r e d m e t h o d of a v e r a g i n g o v e r f i n i t e g r o u p s which t u r n s out to be a p p l i c a b l e b e c a u s e the e l e m e n t s of f i n i t e o r d e r in a t o r u s a r e d e n s e .
Corollary.
(a) E v e r y u n i p o t e n t e l e m e n t (in f a c t , subgroup) can be i m b e d d e d
in a c o n n e c t e d u n i p o t e n t g r o u p . (b) E v e r y s e m i s i m p l e e l e m e n t (in f a c t , c o m m u t a t i v e s u b g r o u p of s u c h e l e m e n t s ) can be i m b e d d e d in a c o n n e c t e d such g r o u p .
Remark.
For
nonsolvable
connected
groups
(a) continues
to hold, but (b) fails,
as will be seen later.
2.9. Varieties
in general.
general
than the affine ones.
number
of affine varieties,
To continue, Roughly,
we have to consider
varieties,
a variety is a collection
suitably patched
together.
More
more
of a finite
precisely,
we
have: Definition.
A variety is a topological
space
V
with a finite cover
~Uil i~_n
1 of open subsets (ii Each (2)
satisfying the following properties:
U i is an affine variety.
U i f% Uj
is a principal
the identity map
of Uit% Uj
Ui•U
j (obtained from
(3)
The set of points
open set in both the affine varieties is an isomorphism
U i and
of the two affine
U i and
structures
Uj).
(x,x) •U iXUj
(x •U i ~Uj)
Uj and
is closed there.
on
-48-
Note that an affine variety is a variety. V
iff
U ~U.
is so in
U.
l
Further
U
is open (resp. closed) in
(in the Zariski topology) for every
i.
A closed
1
subset of a variety is a variety in a natural way, and so is an open one since an open subset of an affine variety is the union of a finite number of principal affine open subsets. For a variety V
(Check all of this.) V,
we write
that are defined everywhere.
k[V]
for the algebra of rational functions on
A function
Ux
sense) and
h(x) ~ 0.
itself is affine, then
with
in the old sense (by 1.13, cot. to lemm~ 1).
k[V]
Definition. (1)
f
Let
V, W
be varieties.
is continuous,
f(S) ~ T ,
the map
V
(2)
f : S -~T
x,
is said to be defined at
for some affine neighborhood If
of
f
f = g/h
A map
with
for all affine open sets
if
g,h C k[UxJ (in the old
k[V]
f : V-~W
x
as just defined agrees
is called a morphism if S~V,
T~W
with
is a morphism of affine varieties
We can construct the product of two varieties by taking the products of the constituent affine varieties and then patching them together suitably.
It and the
resulting projections satisfy the universal property mentioned in 1.6 in the affine case.
(3')
In
The condition (3) above can then be restated (check this):
V X V
the diagonal is closed.
If we were using the product topology on say that the topology on
V
V XV
(which we aren't), this would
is Hausdorff (which it isn't).
Various of the properties of an affine variety continue to hold for an arbitrary variety, e.g. the decomposition into irreducible components. see Mumford's book.
For further details
- 4 9
2. I0.
Complete
varieties
-
and Projective
varieties.
D e f i n i t i o n . A v a r i e t y V is said to be c o m p l e t e if f o r e v e r y v a r i e t y W, the p r o j e c t i o n m a p P2 : V ~ W
Remarks.
~ W is c l o s e d .
T h e affine l i n e ~
= (k, k I X ] )
is not c o m p l e t e .
In fact, a s we
s h a l l see p r e s e n t l y , a n y c o m p l e t e affine v a r i e t y c o n s i s t s of f i n i t e l y m a n y points.
P r o p o s i t i o n 1. (1) A c l o s e d s u b v a r i e t y of a c o m p l e t e v a r i e t y is c o m p l e t e . The i m a g e of a c o m p l e t e v a r i e t y u n d e r a m o r p h i s m i s c l o s e d and c o m p l e t e . P r o d u c t s of c o m p l e t e v a r i e t i e s a r e c o m p l e t e . (2) A c o m p l e t e affine v a r i e t y c o n s i s t s of f i n i t e l y m a n y p o i n t s . (3) A m o r p h i s m f r o m a c o n n e c t e d c o m p l e t e v a r i e t y to an affine v a r i e t y is constant.
Proof.
(1) C l e a r l y a c l o s e d s u b v a r i e t y of a c o m p l e t e v a r i e t y is c o m p l e t e .
Let f : V-
Claim:
> W be a m o r p h i s m of v a r i e t i e s with V c o m p l e t e .
f(V) is a c l o s e d s u b v a r i e t y of W.
Consider F
= f(v, f(v)); v e V t
If we now p r o v e that F
C V xW,
f.
is c l o s e d , then f(V) will be c l o s e d in W, b e i n g the
i m a g e of j-7 u n d e r the m a p
P2 : V x W ~ W .
that r 7 i s c l o s e d , holds f o r a n y m o r p h i s m complete).
the g r a p h of
F o r : The diagonal
is the inverse image of
~
of
(V is c o m p l e t e ) . f : V ~
W ~ W
W ( i . e . V m a y not be
is closed by
"% under the morphism
The fact
(3')
of 2.9 and
f X Id : V ~ ( W . @ W X W .
-
50
-
R e t u r n i n g to the p r o o f of the fact that f(V) i s c o m p l e t e , we see that f(V) is a $ u b v a r i e t y in its own r i g h t (being c l o s e d in W). themaps:
V~T
f n Id ~ f(V)×T-
P2
;T.
F o r a n y v a r i e t y T, c o n s i d e r
For a closed set SCf(V)~T,
P2 (S) = P2 o (f ~Id)((f x I d ) ' l ( s ) ) which is c l o s e d in T
since ¥
is c o m p l e t e .
T h i s p r o v e s the r e q u i r e d r e s u l t .
(2) L e t W be a c o m p l e t e affine v a r i e t y .
L e t A be i t s a l g e b r a of f u n c t i o n s .
C l a i m : The s e t f(W) is finite for e v e r y f ~ A . C o n s i d e r the affine l i n e
~%1 and the m a p Wm ~
s:
--~2~ .
s
P2(S) c a n n o t be the whole set A
( s i n c e 0 ~P2(S)).
and h e n c e P2(S) i s c l o s e d i n ~ 1 .
Let
,vx,,,,,. But then W is c o m p l e t e
Hence P2(S) is a finite s e t in ~k1.
It now
follows that f(W) is a l s o f i n i t e .
F r o m this c l a i m , it follows i m m e d i a t e l y that W c o n s i s t s of f i n i t e l y m a n y points.
(One can c o n s i d e r W as a s u b v a r i e t y of s o m e
k n and then c o n s i d e r
the c o o r d i n a t e f u n c t i o n s X i ,1 ~ i & n).
Note.
A s a n i m m e d i a t e d e d u c t i o n , one gets: A c o n n e c t e d , c o m p l e t e , affine
v a r i e t y c o n s i s t s of a s i n g l e e l e m e n t .
(3) Since the i m a g e of a c o n n e c t e d v a r i e t y is c o n n e c t e d (as a set), (3) i m m e d i a t e l y follows f r o m (1) and (2) above.
We now c o n s i d e r a v e r y i m p o r t a n t c l a s s of c o m p l e t e v a r i e t i e s , viz. the projective varieties.
Projective Spaces. 0 in kn + l .
We b e g i n with:
C o n s i d e r kn + l .
Let IPn be the set of all l i n e s t h r o u g h
One can e a s i l y see that IPn i s the s e t of e q u i v a l e n c e c l a s s e s
-
Ix o.....
Xn] , x i • k
iff 3 ) ~ k *
51
-
with a t l e a s t one x i ~ 0, (x ° . . . . .
Xn)~'~(Yo . . . . .
Yn )
such that xi = lYi}"
Let IPni =
{IXo . . . . .
#i : IPin-
> kn given by
and bijective.
Xn~
with x i ~ 0 } . It can be s e e n that the m a p A x0 xi xn @i ( Ix 0 ..... Xn] ) = ( - - , . , - - . , - ) xi xi xi
Thus, ion can be given the structure of an affine variety. i
fact, of /A n, the affine n-space).
k I ~ ° . . . . . . .~. .i
is well-defined (In
T h e algebra of functions is
~ ]
n ]Pn It i s e a s y to s e e that Ipn = ~J A l s o , Ip.nt'~ ]pn i= 0 i" z j i s a p r i n c i p a l open s e t in IPn a s w e l l a s in ]pn. Define U C]P n to be open 1
iff U Cl IP n i s open V 0 _~ i An. i
j
It f o l l o w s that IP n i s a v a r i e t y .
This variety
i$ c a l l e d the p r o j e c t i v e s p a c e of d i m e n s i o n n.
O n e can define, for a vector space manner, by choosing a basis.
V
of dimension
n+l, IP(V) in a similar
It is easy to check that the structure defined
on IP(V) is independent of the basis chosen.
A closed subvariety of a projective space is called a projective variety.
Our basic proposition is :
P r o p o s i t i o n 2. A p r o j e c t i v e v a r i e t y i s c o m p l e t e .
Proof. In view of the proposition I, it is enough to prove that a projective space i °n is complete. complete.
One proceeds by induction. ]pO being a point, is
Now let W be any variety and S C_IPn~(W be closed. We have
to show that P2(S) is closed, where P2 : ipn X W - - ~ W is the projection map. It is clear that one may assume the following: (1) W is affine, (2) S is irreducible. Let B be the function-algebra of the affine variety W. Let B be the function-algebra of the irreducible subvariety P2(S)
of W .
(~ is an integral domain).
Consider
S/% Ipnx W = S i, i
O,
-
If S. i s e m p t y f o r
some
52
-
i, then S ~ ( I P n - I p n ) ~ w . .
1
It is e a s y to s e e that
1
IP n - IPn
can be c a n o n i c a l l y i d e n t i f i e d with IPn - 1 .
Hence b y i n d u c t i o n , it
i
follows that P2(S) is c l o s e d .
Xi T h u s the f u n c t i o n X--j
So let Si ~ @ y o ,~ i ~ n .
is no___~ti d e n t i c a l l y z e r o V i, j (hence not i d e n t i c a l l y o0 V i, j).
C o n s i d e r the
e l e m e n t s of B a s f u n c t i o n s on S. in the obvious way and l e t Xk denote Xk 1 Xj Xj r e s t r i c t e d to Si.
B
Xo
.. •
Since
Xi --,.. "' x i
Xn
Xo
=k
""-~i
Xi .. __ ,.. '"
algebra of Ipnxw, it follows that B I Siisirreducible. Claim:
'xi
B is the function "" x i A
~ o ..... Xq __ ..... X n Xi
is that of S.. Also, I
Hence BI~'''''-Xi'''''Xi ~[~in]= C'I isanintegraldomain.
The quotient field F i of C i is independent of i. This is easy to see, -
s i n c e the f u n c t i o n
Xk
xj ¢cj
=
T h u s we have the following:
Xi/x i EF i A
B ----~, B
- - ,
P2
Let q E P2(S).
Hence eq : B ~ k
.
.
~ : R
.
.
is a k - a l g e b r a h o m o m o r p h i s m .
I e m m a i n p r o p o s i t i o n 1 of 1 . 1 3 , it follows that e algebra homomorphism
.
Xi
.....
q
e k, w h e r e R C F
By the
can be e x t e n d e d to a k is a v a l u a t i o n r i n g of F
(as obtained in the proof of the lemma). Claim:
R _D Cio f o r some
i o.
Let i o be an index (O-
n
-- ~ ~_~ Xi o
R
Xi° then -~j ~ R.
e
(R is a valuation ring). Also, k ~Jio ~
k Eft, T h u s
i0 ~ Jj - Jio which contradicts the fact that Jio has the maximal cardinal. This proves that Jio = {0, I ...n~ . Hence R ~ Cio . Hence we get ~ : Cio---~ Hence J P ~ S i o
= S /~<X
W
such that @ = ep. It follows from the
k.
-
53
-
c o m p a t i b i l i t y of ep and eq that p 2 ( p ) = q f a c t t h a t P2(S) i s c l o s e d .
or q~p2(S).
This proves
the
Hence IP n i s c o m p l e t e .
We n e x t p r o v e :
P r o p o s i t i o n 3. P r o d u c t s of p r o j e c t i v e v a r i e t i e s a r e a g a i n p r o j e c t i v e v a r i e t i e s .
Proof.
C l e a r l y , it i s enough to p r o v e that the p r o d u c t of two p r o j e c t i v e s p a c e s
is a projective variety.
So c o n s i d e r two p r o j e c t i v e s p a c e s
IPn and IP m.
C o n s i d e r the m a p : ipnx ipm
([Xo
. . . . .
IP
(n+l)(m+l)-I
Xn]'[Yo .....
given by :
= [XoYo . . . . X J m ' X l Y o
.....
XnYm].
It can be e a s i l y s e e n t h a t ~ i s a m o r p h i s m , in f a c t , a n i s o m o r p h i s m onto the image.
Hence the p r o p o s i t i o n f o l l o w s .
We now g e n e r a l i s e t h e c o n c e p t of p r o j e c t i v e s p a c e s :
We define:
G r a s s m a n n i a n V a r i e t i e s . L e t V be an n+l - d i m e n s i o n a l v e c t o r s p a c e . Gd(V) be the s e t of a l l d - d i m e n s i o n a l s u b s p a c e s of V(0 ~ d &n+l). Gd(V) i s c a l l e d a G r a s s m a n n i a n - v a r i e t y . given by: ~ (W) = (Vl~ v2 ^ . . . d-dimensional subspace
Let
Then
C o n s i d e r t h e m a p ~ : G d ( V ) - - ~ IP(]~V)
^Vd), where {vl,...,Vdt is a basis for'the
W of V.
It can e a s i l y be c h e c k e d t h a t
~ is well-
defined.
Proposition 4.
If Gd(V), @ a r e as above, then @ is injective and ~(Gd(V))
is closed in IP(tkdv).
Thus Gd (V) can be given the structure of a projective
variety (which is complete by proposition 2). Its dimension is d(n+1 - d).
-
Proof.
The proof may
54
-
be found in Borel's book
W e d e f i n e a n o t h e r t y p e of p r o j e c t i v e v a r i e t i e s
Flag-varieties.
Let
vi z.
V b e an ( n + l ) - d i m e n s i o n a l
t h e s e t of a l l f l a g s of V. of s u b s p a c e s
(page 239).
(To r e c a l l ,
of V s u c h t h a t
space over
a f l a g is a s e q u e n c e
k.
Let
~(V)
be
0 = V o C V I ~ - . . ~Vn= V
d i m V. = i V1 ~ i ~ n ) . 1
Prcposition 5. If V, "~(V) are as above, the natural map :~(V)
~ Go(V)X ...XGn(V) is injective. Also,~(~(V)) is closed. T h u s
'~ iV) can be given the structure of a (complete) projective variety.
The
proof is easy but it will be omitted
Let
2.11. Quotients.
G
(See Borel's
be an affine algebraic
book,
page 241).
group and
H C G
be closed
subgroup.
Definition.
A pair
(T~,V), w h e r e
is called a quotient for
G/H
V i s a v a r i e t y and 7f : G
1, V is a m o r p h i s m ,
if the f o l l o w i n g c o n d i t i o n s hold:
(1) T h e f i b r e s of 7l" a r e j u s t t h e c o s e t s of H in G.
( h e n c e 7~:is s u r j e c t i v e ) .
(2) "/i- is o p e n . (3)
If U C V i s o p e n , t h e n
= k
, t h e a l g e b r a of a l l
-1 f u n c t i o n s on 7 r
Example. quotient for
(U), c o n s t a n t on t h e c o s e t s of H, i . e .
C o n s i d e r two a f f i n e a l g e b r a i c g r o u p s U X V / U (P2: U x V ~
It c a n be s e e n t h a t if a q u o t i e n t
t h e f i b r e s of 7t-.
U and
V.
Then
(P2'V)
is a
V is the projection).
(TF,V) f o r
G/H
exists,
then it is unique.
The
-
morphism ~:
G ~
55
-
V is universal among all the morphisms
from
G which
a r e c o n s t a n t on c o s e t s of H.
Orbit maps. variety
V.
Let
G b e an a f f i n e a l g e b r a i c g r o u p a c t i n g t r a n s i t i v e l y
Let
vEV,
H=G v
:{
gEG/g.v=v
t h e r e e x i s t s a n a t u r a l m a p 7[-: G - - - ~ V morphism
a n d (1) a b o v e h o l d s .
below (see appendix). holds.
1.
Let
G/H, i.e.
G,V,
b e t h e s t a b i l i z e r of v.
t
g i v e n b y "W(g} = g . v .
Then
C l e a r l y , 71-is a
T h e o p e n n e s s of "~, (2) a b o v e , wiI1 b e p r o v e d
("~, V) i s a q u o t i e n t f o r
When does this condition hold ?
Proposition for
Then
on a
G / G v if the c o n d i t i o n (3)
We have:
v, H, 71" be a s a b o v e .
Then
(71",V) i s a q u o t i e n t
(3) h o l d s , i f f t h e d i f f e r e n t i a l m a p (dTIJ 1 : T(G)I-----~ T(V) v i s
surjective.
T h i s m a p i s a l w a y s s u r j e c t i v e if p(k) = 1 (Thus
quotient for
G/H
(71", V) i s a
if p ( k ) = 1).
T h e p r o o f of t h i s p r o p o s i t i o n m a y b e found in B o r e l ' s b o o k (page 180).
A s h o r t d e s c r i p t i o n of t a n g e n t s p a c e s and d i f f e r e n t i a l s i s a s f o l l o w s :
Let
V b e an a f f i n e v a r i e t y and
dual numbers ~:
A
k [ 6 J w i t h E 2 = 0.
• k[63.
a k-algebra
A b e i t s a l g e b r a of f u n c t i o n s . Consider a k-algebra
T h i s i s of t h e f o r m
homomorphism
~=
~+~.
¢
Introduce the
homomorphism
where ]3: A ~
k is
and ~ : A ~
k is a linear map satisfying:
r(a.b) --~{a}.r(b} +/5 {b).r(a) Va, b E A .
Now, ~ = ev for some v ~ V .
r ( a . b ) = a ( v ) . r(b) + b(v). r ( a ) , s o t h a t
v a k-algebra
satisfies the rules for differentiation
o, s.o
homomorphism~
t a n g e n t s p a c e to V at
r
v.
Then
ev
) is a vector space over It i s d e n o t e d by
T(V) v .
r/o.+
k and is called the
T h e s e t of a l l ~ ' s
i.e.
-
t h e u n i o n of a l l
T(V)v'S
then
~ T(W)f(v)
e l ( v ) + (r o f*). E
in a n a t u r a l w a y :
Then
In t h e c a s e of an a r b i t r a r y b y u s i n g an a r b i t r a r y
Remark.
the map
~1
Let
is a mor-
map
r ET(V) v, then (ev+r.6)o f =
homomorphism,
h e n c e r o f* ~ T(W)f(v).
df i s c a l l e d t h e d i f f e r e n t i a l of f.
v a r i e t y one can d e f i n e t h e t a n g e n t s p a c e a t a p o i n t
o p e n a f f i n e n e i g h b o u r h o o d of t h a t p o i n t .
The eondition
"71" is s e p a r a b l e " .
If f : V - - - ~ W
f g i v e s r i s e to a k - l i n e a r
is again a k-algebra
D e f i n e (df)v(r) = r o f*.
-
is j u s t t h e t a n g e n t b u n d l e .
p h i s m of a f f i n e v a r i e t i e s , (df} v : T(V) v
56
" d~I" i s s u r j e c t i v e "
in P r o p o s i t i o n
It r u l e s out u n w a n t e d i n s e p a r a b i l i t y ,
1 is often stated
which, e.g.,
prevents
/ ~ 1 , x ~ - - ~ xP(p = c h a r k ~ 0) f r o m b e i n g an i s o m o r p h i s m
even
though it is bijective.
Theorem then
1.
G/H
variety).
If G i s an a f f i n e a l g e b r a i c g r o u p and
exists as a quasi-projective
H ~G
v a r i e t y (i. e . o p e n s u b s e t of a p r o j e c t i v e
It c a n be r e a l i z e d v i a an o r b i t m a p in t h e p r o j e c t i v e s p a c e
c o m i n g f r o m a l i n e a r a c t i o n of G on V ( f o r s o m e V). then
is a closed subgroup,
G/H
IP(V),
If H i s a l s o n o r m a l ,
i s a f f i n e and b e c o m e s an a f f i n e a l g e b r a i c g r o u p .
T h e p r o o f c o n s i s t s of c o n s t r u c t i n g an o r b i t m a p f o r w h i c h t h e c o n d i t i o n s of proposition 1 hold.
(See p a g e 181 of B o r e l ' s
After these preparations,
we c o m e to a b a s i c t o o l in t h e s t u d y of a f f i n e g r o u p s .
Borel's fixed point theorem. a non-empty complete variety
Proof.
book).
A connected,
solvable affine group
G a c t i n g on
V always has a fixed point.
W e p r o v e t h e t h e o r e m b y i n d u c t i o n on d i m G.
If d i m G = 0, G = { e l
-
a n d t h e n t h e r e i s n o t h i n g to p r o v e . and
~ te],
DG C G.
57
-
So l e t
dim G 70.
Since
G is solvable
Now DG i s c l o s e d and h e n c e i s of s m a l l e r
T h u s , by t h e i n d u c t i o n h y p o t h e s i s ,
DG h a s a f i x e d p o i n t in V.
s e t of f i x e d p o i n t s of DG (W ~ ~).
Clearly,
of G.
(DG i s n o r m a l in G).
of V) t h a t
Thus,
one c a n a s s u m e
(by t a k i n g
DG a c t s a s i d e n t i t y on t h e w h o l e of V.
of v in G.
Then
G--~V
i s c o n s t a n t on t h e c o s e t s of G v. there exists a morphism bijective.
Also, Gv ~
;~(x)
W be the
= x.v
W instead
We now have a homoLet
v ~V, G v =
is a morphism
of G w h i c h
H e n c e , by t h e u n i v e r s a l p r o p e r t y of G --9, G / G v ,
~ : G/G v
-'- V g i v e n by
DG a n d h e n c e
an a f f i n e a l g e b r a i c g r o u p .
Let
W is invariant under the action
g e n e o u s s i t u a t i o n (taking a c l o s e d o r b i t of G, w h i c h e x i s t s ) . stabilizer
dimension.
~(g) = g . v .
G v i s n o r m a l in G.
~ is clearly
Thus,
G/G v
is
Now t h e t h e o r e m f o l l o w s f r o m t h e f o l l o w i n g p r o -
position.
Proposition
2.
Let
f : V1-----~V 2 be a G - m o r p h i s m
of h o m o g e n e o u s G - v a r i e t i e s
(G i s a c o n n e c t e d , a f f i n e a l g e b r a i c g r o u p and a c t s t r a n s i t i v e l y with finite fibres.
If V 2 i s c o m p l e t e t h e n s o i s
A p p l y i n g t h e p r o p o s i t i o n to t h e m o r p h i s m is complete group. fixes
(since
V is complete).
V 1.
~ : G/G v
But t h e n
on V 1 and V 2)
";. V, we g e t t h a t
G/G v
H e n c e b y p r o p o s i t i o n 1 of 2 . 1 0 , G / G v = ~ e t
or
G/G v
is a connected, affine G = G v.
Thus
G
v.
T h e p r o o f of the p r o p o s i t i o n 2 i s c o n t a i n e d in t h e a p p e n d i x .
A s a c o r o l l a r y to t h e a b o v e t h e o r e m ,
(Lie-Kolchin) Theorem.
we h a v e :
(as s t a t e d in 2 . 8 ) .
( c l o s e d } s u b g r o u p of G L ( V ) .
Then
Let
G be a connected,
G a c t s on ~ ( V )
solvable,
in a n a t u r a l w a y .
By
-58-
p r o p o s i t i o n 5 a b o v e , ¢~ (V) i s c o m p l e t e .
H e n c e the t h e o r e m f o l l o w s i m m e d i a t e l y
f r o m the f i x e d p o i n t t h e o r e m .
A p p e n d i x to 2 . 1 1 .
T h i s a p p e n d i x b r i n g s s e v e r a l c o m p l e m e n t s to the d e v e l o p -
ment so far.
P r o p o s i t i o n 1. L e t G be an affine a l g e b r a i c group; V1, V 2 h o m o g e n e o u s s p a c e s f o r G; a n d - / I ' : V 1 - - - ~ V 2 a G - m o r p h i s m
( i . e . 7 r ( g . v 1) = g . T T ( v l ) V g ~ G ,
v I ~ VI). (a) 71- i s open. (b)
If 71"has f i n i t e f i b r e s and V 2 is c o m p l e t e , then V 1 i s a l s o c o m p l e t e .
P a r t (b) i s the m i s s i n g s t e p (viz. p r o p o s i t i o n 2) of the p r o o f of the f i x e d p o i n t t h e o r e m , while p a r t (a) s h o w s , a s m e n t i o n e d a b o v e , t h a t o r b i t m a p s a r e a l w a y s open, so that in p a r t i c u l a r ,
s u r j e c t i v e m o r p h i s m s of a l g e b r a i c g r o u p s a r e
a l w a y s open.
W e s h a l l g i v e the p r o o f , a s s u m i n g
G to be c o n n e c t e d , in s e v e r a l s t e p s .
(1) We define a m o r p h i s m (of affine v a r i e t i e s ) f(U 1) i s d e n s e i n
U 2 and k [ U 1 ]
e v e r y h o m o m o r p h i s m : f*(k [U2] ) ~
f : U1-----~ U 2 to be f i n i t e if
isintegralover
f*(k[U2]).
T h e f a c t that
k e x t e n d s to k [U1] t r a n s l a t e s g e o m e t r i -
c a l l y to : f(U 1) i s c l o s e d , and s i m i l a r l y f o r any c l o s e d s u b s e t of U1; i . e . is a closed map. subset
f
T a k i n g c o m p l e m e n t s , we s e e that f(U) i s open f o r a n y open
U (of U 1) which i s m a d e up of c o m p l e t e f i b r e s .
(2) L e t f : V1-----~ V 2 be a m o r p h i s m of i r r e d u c i b l e v a r i e t i e s with f(V1) d e n s e in V 2.
Then f o r s u i t a b l e open affine s u b s e t s
1 V 21 of V 1 , V 2 r e s p e c t i v e l y , V1,
-59
we have: f(V ) C_ V 21 and f l : f / v with g f i n i t e and a r e affine.
P2 a s u s u a l .
Identify B = k
~
-
_r 1 1 can be factored: Vll ----------~/~xV g 2-------r~_ ~'2 V ,
C l e a r l y , we m a y a s s u r r e that V 1 and V 2
i v ]2
with a p a r t of A = k
[vii
via f° . W o r k i n g
in the q u o t i e n t f i e l d Q(A) of A, we see by N o e t h e r ' s l e m m a (page 4, M u m f o r d ' s book) that t h e r e e x i s t e l e m e n t s X l , . . , x r ~ Q ( B ) [ A ] , i n d e e d in A, a l g e b r a i c a l l y i n d e p e n d e n t o v e r Q(B), such that Q(B) [ A ] Q(B) Ix 1 . . . . .
Xr].
is integral over
In the e q u a t i o n s e x p r e s s i n g the i n t e g r a l i t y o v e r q(B)[Xl,...,Xr]
A/B, the
for a f i n i t e g e n e r a t i n g s e t f o r
c o e f f i c i e n t s a r e p o l y n o m i a l s in
x 1 . . . . Xr, with c o e f f i c i e n t s in Q(B), finite in n u m b e r . d e n o m i n a t o r f o r a l l of t h e s e l a t t e r c o e f f i c i e n t s . B[bl--] [Xl . . . . ,Xr] which is p u r e o v e r B I l l . we have o u r r e s u l t with
(3) We o b s e r v e that f l
L e t b E B be a c o m m o n
Then A l l
]is integral over
G e o m e t r i c a l l y , this m e a n s that
V1 V1 1 =(VI)b ; 2 = (V2)b" in (2) is open on s e t s m a d e up of f i b r e s s i n c e g is
by (1) and P2 c e r t a i n l y i s .
(4) To p r o v e (a), we m a y a s s u m e that V the obvious way; viz. g(g') For:
_
1
= G, c o n s i d e r e d as a G - s p a c e in
!
g. g . f
L e t v 1 E V1, then
V 1 ......
> V2
~NG/~ is a c o m m u t a t i v e d i a g r a m m e .
#(g) -- g . v 1 ~ (g)-- g ' f ( v l
Hence f i s open if ~ and ~
a r e open.
~ and
a r e both G - m o r p h i s m s . L e t S be an open s e t in V 1 = G.
We m u s t show that f(S) is open.
If H is
the s t a b i l i z e r of v = f(1) in G, then SH = c o m p l e t e f i b r e s , and f(SH) = f(S).
U Sh is a l s o open, c o n s i s t s of hEH T h u s we m a y a s s u m e that S i s m a d e up
1 V 21 as in (2), and V1,
I xit
of c o m p l e t e f i b r e s .
Now choose
f i n i t e in G, such
that U x i V1 = v 1 1 i
T h e n by (3), f(S/% xiV1) is open V i, whence f(S) is
-
60
-
open, as required.
(5) A s s u m e n o w a s in (b). c l o s e d f o r a n y W, s i n c e V 1i ' V 21
a s in (2) a n d
d i m V 2 and 1
It is e n o u g h to s h o w t h a t V
2
is complete
~ x i t a s in (4).
r = 0 above, so that
V1x
W -----~V 2 x W is also finite
integral over
B~)C),
1
~ V 2xW
W a f f i n e in f a c t ) .
is Choose
Since the fibres are finite, dim V 1 = ~ V12
is finite.
(if A i s i n t e g r a l o v e r
s o t h a t it i s c l o s e d .
Hence B, t h e n
A~C
is
The same holds for every
1
xiV 1XW-
Proposition Then
(for a n y
f t : Vll
1
V lxW
dim f
~xiV2)cW
2. -1
Let
so that
f : U~ V
(v) = d i m U
e.g.,
"~V2~W
is closed as required.
be a d o m i n a n t m o r p h i s m
- dimV
T h i s i s a w e a k v e r s i o n of L e m m a of o u r p u r p o s e s ,
V lx W
of i r r e d u c i b l e
f o r a d e n s e o p e n s e t of v ' s
varieties.
in V.
2 n e a r t h e end of 1. t3 t h a t i s e n o u g h f o r m o s t
f o r t h e p r o o f of P r o p o s i t i o n
2(c) of 1 . 1 3 .
For the
p r e s e n t p r o o f we m a y a s s u m e b y s t e p (2) a b o v e t h a t
f has the factorization
U
Now p21
g ~rXv
-~2
V with
g a finite morphism.
d i m e n s i o n s of c l o s e d s e t s by e x a c t l y
r
and
g-1
b r a i c e x t e n s i o n s do n o t c h a n g e t r a n s c e n d e n c e p o i n t , and to V3 we g e t
Proposition
3. L e t
preserves
degrees.
clearly raises
them since alge-
A p p l y i n g t h i s to
v, a
d i m f - l ( v ) = r = d i m U - d i m V.
V b e an i r r e d u c i b l e
variety.
>_,dim V, w i t h e q u a l i t y f o r a d e n s e o p e n s e t of v ' s
Then
d i m T(V) v i s f i n i t e ,
in V.
(Such
v's
are
called simple or nonsing~lar. )
This result,
needed later,
also uses Noether's
theorem,
refi~d as follows: A
(~) If A i s a f i n i t e l y g e n e r a t e d i n t e g r a l d o m a i n o v e r a p e r f e c t f i e l d k t h e n there exists a generating set IXl,X2 ..... some
d) i s a l g e b r a i c a l l y
Xnt s u c h t h a t [ X l , X 2 . . . . .
independent over
k and f o r e a c h
i •d,
X d l (for xi i s
-
separable algebraic over say
Fi(x 1.....
k(x 1 . . . . .
refinement as well.
To prove o
] v
t. = 0 f o r a t l J
equations for
with (monic) minimal polynomial, k Ix 1 . . . .
Proposition (and
i • d.
n unknowns,
,xi.1].
3, we m a y a s s u m e
d = dimV).
Let
t : xi
is nonzero,
V to b e a f f i n e .
v : x.~ 1
v. be a p o i n t 1
~-t i i s a t a n g e n t v e c t o r a t
v
S i n c e t h i s i s a h o m o g e n e o u s s y s t e m of
we g e t
n >,,dim T(V) v >r d = d i m V w i t h
e q u a l i t y on t h e r i g h t on t h e s e t of p o i n t s w h e r e s o m e /~Fi~ "$xj l
T h e u s u a l p r o o f of
in M u m f o r d ' s b o o k , t a k e s c a r e of t h i s
It r e a d i l y f o l l o w s ( s e e 2 . 1 1 ) t h a t
J~'Sxj
n-d
Xi_l)
as given, e.g.,
W e a p p l y ($) w i t h A = k [ V 3
iff
-
x i ) , w i t h c o e f f i c i e n t s in
Noether's theorem,
of V.
61
a n o p e n s u b s e t of V.
(n-d) th
o r d e r m i n o r of
As may be checked, the minor
f a r t h e s t to t h e r i g h t w o r k s out to
(it i s l o w e r t r i a n g u l a r ) w h i c h i s
i>dk~Xi J not identically 0 because of the~separability in (*) so that the above open set is nonempty,
2.12.
hence dense, as asserted.
Borel subgroups.
Throughout this section, G will denote a connected,
affine algebraic group.
Definition.
A m a x i m a l c o n n e c t e d s o l v a b l e s u b g r o u p of G i s c a l l e d a B o r e l
subgroup.
Remarks.
(1) B o r e l s u b g r o u p s e x i s t f o r d i m e n s i o n r e a s o n s .
(2) A B o r e l s u b g r o u p i s a l w a y s c l o s e d ,
s i n c e t h e c l o s u r e of a c o n n e c t e d
s o l v a b l e s u b g r o u p i s a g a i n a c o n n e c t e d s o l v a b l e s u b g r o u p of G.
Example.
Let
G = GL(V)
all upper triangular
for some vector space
e l e m e n t s of G L ( V ) .
Then
V.
Let
B be t h e s e t of
B i s a B o r e l s u b g r o u p of G.
-
62
-
T h e b a s i c r e s u l t is a s f o l l o w s :
T h e o r e m 1.
T h e B o r e l s u b g r o u p s of G a r e c o n j u g a t e to e a c h o t h e r .
one of t h e m , then G / B
Proof.
Let
is complete.
B be a B o r e l s u b g r o u p of m a x i m u m d i m e n s i o n .
t h e o r e m 1 of 2 . 1 1 , we h a v e : a r e p r e s e n t a t i o n W 1 E IP(V) w h o s e s t a b i l i z e r is G/B ~
If B i s
~: G
F r o m the
> GL(V) and a point
B and s u c h that the r e s u l t i n g o r b i t m a p
G . W 1, xB ,,---~x.W 1 is an i s o m o r p h i s m .
Note that
K e r ~ C_ B,
h e n c e is a l s o s o l v a b l e .
Using Borel's fixed point t h e o r e m repeatedly, one has a flag w : 0 =
W ° OWl ..... C
Wn=VE~(V
) suchthat
is now clear that such a g necessarily
e(g)(Wi)CW.1
G w = B and h e n c e a m a p
It
belongs to B (i.e. B = ~g ~G/~(g)(Wi)
C__Wi V 0 -~ i ~ n)). In o t h e r w o r d s , one h a s a m a p s u c h that
V°~i~n'VgEB"
G/B ~Gw.
G -T-~(V),'~(g)
= g. w
Since this map dominates
the e a r l i e r one (the map: e a c h f l a g g o e s to i t s v e r t e x : w , , - - ~ W l , ) and v i c e v e r s a s i n c e the e a r l i e r one was an i s o m o r p h i s m , we s e e that t h i s m a p i s a l s o an i s o m o r p h i s m .
Let
@ be the o r b i t Gw.
C l a i m : F o r any o t h e r o r b i t Let
w'E~'.
Then
Gw, f i x e s the f l a g w ' .
in u p p e r t r i a n g u l a r f o r m ) . s o l v a b l e and h e n c e so is G.
8' (for the a c t i o n of G on ' ~ ( V ) ) , d i m @'~ d i m 8.
Since Gw ° I"
H e n c e ~(Gw,)
k e r ~ is solwable, it f o l l o w s t h a t Gw,
Thus
v
(all the fibres of the rnorphism
dimension)
orbits.
G ~
6'
and similarly, d i m @ = d i m G - d i m B.
proving the claim.
is
G vfrl ° is a c o n n e c t e d s o l v a b l e s u b g r o u p of
H e n c e by m a x i m a l i t y of d i m B, d i m G w' ° ~ d i m B.
d i m G w°
is s o l v a b l e (being
This proves that 8
Also, d i m 8' = d i m G
, g ~
g.w
Hence
is of m i n i m u m
I
are of the s a m e
d i m 8' ~ d i m ~ ,
dimension a m o n g the
H e n c e by corollary 3 to proposition 1 of 1.13, @ is closed.
Thus
@
-
63
-
i s a c l o s e d , c o m p l e t e (in f a c t , p r o j e c t i v e ) v a r i e t y . proves that G/B
But then G / B ~ 9 .
This
is complete projective whenever B has maximal dimension
a m o n g the d i m e n s i o n s of the B o r e l s u b g r o u p s .
Now, l e t B' be a n y o t h e r B o r e l s u b g r o u p . variety G/B
in a n a t u r a l way; ( i . e . b ' .
(gB) = b ' g B , b ' E
b y B o r e l ' s f i x e d p o i n t t h e o r e m , ~ xB E G / B This shows that x-lB'x is x'lB'x.
C B.
Hence x ' l B ' x
But then B'
= B.
L e t B ' a c t on the c o m p l e t e B', g £G).
Then
such t h a t b ' x B = xB V b ' ~ B ' . i s a B o r e l s u b g r o u p and h e n c e , s o
This proves that all Borel subgroups are
c o n j u g a t e and in p a r t i c u l a r , have the s a m e d i m e n s i o n .
This proves that G/B
is complete projective for all Borel subgroups.
C o r o l l a r y 1.
If P i s a c l o s e d s u b g r o u p of G, then the f o l l o w i n g c o n d i t i o n s
are equivalent:
(a) G/p (b) P
Proof.
is complete. contains a Borel
(a) ~
translations. theorem)
(b).
subgroup.
L e t B be a B o r e l s u b g r o u p .
Then b y B . F . P . T . ,
B has a fixed point xP.
L e t B a c t on G / p
by left
( a b b r e v i a t i o n f o r B o r e l ' s fixed p o i n t T h i s c l e a r l y g i v e s (b) b e c a u s e
P then
c o n t a i n s the B o r e l s u b g r o u p x - l B x . (b) ~
(a) .
Let
P _~ B, a B o r e l s u b g r o u p .
Then the map 7:
G---~G/p
i s c o n s t a n t on c o s e t s of B and h e n c e g i v e s r i s e to a ( s u r j e c t i v e ) m o r p h i s m : : G/B
r~ G / p .
This shows that G/p
is complete, because
G/B
is.
Thus: B o r e l s u b g r o u p s a r e the ' s m a l l e s t ' a m o n g t h e s e t of c l o s e d s u b g r o u p s P with G / p
complete,
i . e . a m o n g the " p a r a b o l i c s u b g r o u p s " .
-
C o r o l l a r y 2.
64
-
T h e m a x i m a l t o r i of G a r e a l l c o n j u g a t e to e a c h o t h e r and so a r e
the m a x i m a l , c o n n e c t e d u n i p o t e n t s u b g r o u p s .
Proof.
Let
T,T'
be two m a x i m a l t o r i .
a Borel subgroup. each other.
B.
B and B '
a r e c o n j u g a t e to
T and T ~ a r e c o n t a i n e d in s o m e
It now f o l l o w s f r o m the t h e o r e m 2 of 2 , 8 , t h a t T and T '
a r e c o n j u g a t e in B.
A g a i n , if U is m a x i m a l c o n n e c t e d u n i p o t e n t s u b g r o u p ,
U ~ B for some Borel subgroup
in 2 . 3 ) .
T is c o n n e c t e d s o l v a b l e , T C B,
S i m i l a r l y , T ~C B ~. But then
H e n c e we m a y a s s u m e that
Borel subgroup
then
Since
B
(B i s n i l p o t e n t by K o t c h i n ' s T h e o r e m
Now, by t h e o r e m 2 of 2 . 8 , U C Bu"
T h i s s h o w s that
U = B u.
Now
!
the c o n j u g a c y of s u c h
U s f o l l o w s f r o m the c o n j u g a c y of B o r e l s u b g r o u p s .
C o r o l l a r y 3. (a) If 04 is an a u t o m o r p h i s m ( e n d o m o r p h i s m ) of G, i d e n t i t y on B, then (b)
04 i s the i d e n t i t y of G. ZG(B) C ZG(G).
Proof. Then
(a) C o n s i d e r the m o r p h i s m
~ : G - - ~ G g i v e n by ~(x) = o< ( x ) . x -1
~ is c o n s t a n t on the c o s e t s of B.
quotient morphism, Now G / B of 2 . 1 0 , ~
H e n c e by the u n i v e r s a l p r o p e r t y of the
~ f a c t o r s to ~ : G / B - - - ~ G g i v e n by ~(gB) = ~(g) = ~ ( g ) . g - 1
is c o m p l e t e and i r r e d u c i b l e w h i l e G is a f f i n e .
H e n c e by p r o p o s i t i o n 1
is c o n s t a n t and c l e a r l y this c o n s t a n t = e, the i d e n t i f y e l e m e n t .
This
p r o v e s that ~ = I d e n t i f y on G.
(b) T h i s f o l l o w s by a p p l y i n g (a) to the i n n e r a u t o m o r p h i s m s by e l e m e n t s of
ZG(B). R e m a r k . In the s a m e way, one can p r o v e that if G a c t s on an affine v a r i e t y , then any point f i x e d by B i s f i x e d by G.
-
65
-
C o r o l l a r y 4. If B, a B o r e l s u b g r o u p , is n i l p o t e n t , then so is G.
In fact, we
p r o v e G = B.
Proof. G/B -~
We p r o c e e d by i n d u c t i o n on d i m B. G.
If d i m B = 0, then B = l e ~
Now G i s affine, c o n n e c t e d and G / B
G = ~ e t = B.
is complete.
Hence
So l e t d i m B >_,1. Since B is n i l p o t e n t , t h e r e e x i s t s a c l o s e d
s u b g r o u p C C_ ZB(B ) s u c h that d i m C ~,,1.
By c o r o l l a r y 3 above, C C ZG(G)-
Hence G / C i s an affine (connected) a l g e b r a i e group.
( T h e o r e m 1 of 2.11).
C l a i m . B / C , which i s a s u b g r o u p of
G/C, i s
Consider: G ~
, the c a n o n i c a l m o r p h i s m .
G/C~
G/C/B/c !
i n fact a B o r e l s u b g r o u p . T h e n ~ is
c o n s t a n t on c o s e t s of B and h e n c e f a c t o r s t h r o u g h G / B .
T h u s , we have
G]B -~G/c/B]C; ~ issurjeetive. T h u s
iscompletesince
G/B
is so.
B/C
G/c/B/c
i s a l r e a d y c o n n e c t e d and s o l v a b l e .
follows that B/C i s a B o r e l s u b g r o u p of G / C . B/C
and
is a g a i n n i l p o t e n t .
Hence by c o r o l l a r y 1, it
Now d i m B / C < dim B and
Hence by i n d u c t i o n h y p o t h e s i s , G / C = B / C .
This
shows G = B and c o m p l e t e s the p r o o f of the c o r o l l a r y .
2.13.
Density and Closure.
D e f i n i t i o n . A s u b g r o u p C of G is c a l l e d a C a r t a n s u b g r o u p if C = Z(T) ° for some m a x i m a l torus
T in G.
(We l a t e r p r o v e that
Z(T) i s c o n n e c t e d ,
so that C = Z(T)).
All C a r t a n s u b g r o u p s a r e conjugate s i n c e a l l m a x i m a l t o r i a r e .
-
Proposition
1.
If T , C
66
-
are as above, then
T
is the unique maximal
t o r u s of
C.
Proof.
Clearly,
corollary
T
is maximal
2 of 2.12,
in
all maximal
C.
Also,
tori in
C
T
is normal
in
are conjugate.
C
and by
Hence
the pro-
position follows.
Corollary
Proof. B
1.
Let
of C
theorem
All Cartan subgroups
C = Z(T) °, T
such that 2 of 2 . 8 ,
are nilpotent.
a maximal
C_~ B 2 T . B = T.B u .
Now Also,
a direct product decomposition.
torus in T T
isa
G.
maximaltorus
is normal
It follows that B
B u are so). Hence by corollary 4 of 2.12, C = B
We
now
Lemma
prove
an important
1 (Density).
Choose a Borel subgroup
in
B.
in
B.
Hence by
Hence the above is
is nilpotent (since T and C
and
is nilpotent.
lemma.
T h e u n i o n of t h e C a r t a n
subgroups
of G
contains a dense
o p e n s u b s e t of G .
Proof.
Fix a Cartan
j u g a c y of C a f t a n
subgroup
subgroups,
C = Z(T) °, T
a maximal
one has to prove that
K =
torus.
By the con-
U g C g-1 g~G
contains
a d e n s e o p e n s u b s e t of G.
Let
¢ So=~(x,y)~GXG/x'Iyx
EC~
7
irreducible, being the image of G X C @(x,y) = (x, xyx-l). since
. Clearly S O is closed. under the m a p
@ : GxG
S O isalso ~
GxG,
Again, S o is m a d e up of cosets of C)~II ~ in G X G,
(x,y)~S o implies that (xc, y) C S o ~ c ~C.
B y using a theorem on
compatibility of quotients and products (Borel's book, page 179), one has
-
G3CG/cxII~-~G/cXG.
67
-
Hence 7 : G x G ~
G/C•
G, given by ~ (g,g')=
(gC, g'), is just a quotient map. ~ is open and h e n c e the i m a g e of a c l o s e d s u b s e t c o n s i s t i n g of c o m p l e t e c o s e t s of C x [11 is c l o s e d . isclosed.
T h u s S = ~ (S o)
It is i r r e d u c i b l e as well since S O is. I S = ~(xC, y ) / x - l y x ~ C ~ J .
Now c o n s i d e r Pl : G / c X G - - - ~ G / c
and P2 : G / c X G
Pl(S) = G / C and the f i b r e of xC is x c x ' l .
---~G.
Clearly,
It now follows that the f i b r e s of
Pl have the s a m e dimension. Hence,
dim C = d i m e n s i o n of a fibre = dim S - dim Pl(S) = dim S - d i m G / c
.
Hence dim S = dim C + dim G / C = dim G.
Again, c o n s i d e r P2:S - - ~ P2(S).
is an etpais in S, hence P2(S) is an e~pais, i . e . of P2(S).
Note that P2(S) = K(=
S
P2(S) contains an open subset
U g c g ' l ) . Hence the l e m m a is p r o v e d if gEG
we p r o v e P2(S) = G. Claim:
d i m P2(S) = d i m G,
This c l e a r l y shows dim P2(S) = dim G and hence
P2(S) = G, both being i r r e d u c i b l e and of the s a m e d i m e n s i o n . W e observe that C has the following property:
(,)
suchthat xC/x'ltx C
There exists
isfi°ite.
F o r : By the c o r o l l a r y to the p r o p o s i t i o n in 2.7 t h e r e e x i s t s t { T C_C, such that ZG(t) = ZG(T).
If C' is any C a f t a n subgroup containing t, then
t CC' : Z G ( T ' ) ° ~
T'C_ ZG(t ) = ZG(T ).
by p r o p o s i t i o n 1 above. Thus:
Hence W ' C Zo(W)° : C = >
Hence C' = C.
C is the unique C a r t a n s u b g r o u p containing t.
x-ltx~C
~
texCx'l
T = T'
~--~ xCx -1 = C ~
is the unique m a x i m a l t o r u s of C.
Also,
XENG(C) ~
Now, X £ N G ( T ) , since
W
NG(T)° = ZG(T) ° = C (by c o r o l l a r y 2
-
of the t h e o r e m of 2 . 7 ) .
68
-
It now follows that the n u m b e r of d i s t i n c t c o s e t s
with x "1 tx ~ C ~ o r d e r of N(T)/N(T) o which is f i n i t e .
xC
Hence C s a t i s f i e s
the p r o p e r t y (*).
C o m i n g b a c k to the c l a i m , we s e e that f o r the m o r p h i s m P2/s: S o v e r t EC
), P2(S) ( P 2 : G / C w G is f i n i t e .
~- G ; S = {(xC, y ) / x ' l y x ~ C ~ ) , the f i b r e
Hence d i m S = d i m P2(S) = d i m G.
This p r o v e s the
c l a i m and h e n c e the l e m m a .
(Note that we have u s e d L e m m a 2 of 1.13 which gives: (*~) F o r a d o m h l a n t m o r p h i s m f : U - - - ~ V , d i m U = d i m V it s o m e f i b r e is f i n i t e , n o n - e m p t y . we have not p r o v e d this l e m m a in t h e s e n o t e s .
But
We have, h o w e v e r , p r o v e d
P r o p o s i t i o n 3, Appendix to 2 . 1 1 , which y i e l d s (**) with s o m e r e p l a c e d by most.
T h i s is enough f o r o u r proof h e r e s i n c e f r o m P r o p o s i t i o n (b) of 2 . 7 ,
it r e a d i l y follows that m o s t f i b r e s of P2/s_ above a r e f i n i t e .
A similar remark
a p p l i e s to o u r l a t e r a p p l i c a t i o n s of L e m m a 2 of 1 . 1 3 . ) Remark.
Let D be a n y s u b g r o u p of G s a t i s f y i n g the p r o p e r t y (*).
f r o m the proof of the above l e m m a , it c l e a r l y follows that
Then
~) g Dg "1 c o n g~G
r a i n s a d e n s e open s u b s e t of G.
L e m m a 2. ( C l o s u r e ) .
Let G act on a v a r i e t y V.
Let H be a c l o s e d s u b -
g r o u p of G and U C V be a c l o s e d s u b s e t of V, i n v a r i a n t u n d e r the a c t i o n of H.
Assume
G / H to be c o m p l e t e .
Proof.
Let S = f ( x H , v ) / x ' l v ~ u ~ ,
it follows that S is w e l l defined.
Then G.U
S
~G/H~,V.
is c l o s e d .
Since h(U)C_ U V h ~ H ,
Since U is c l o s e d , S i s c l o s e d in G / H X V.
Hence P2(S) is c l o s e d in V, s i n c e G / H is c o m p l e t e . which p r o v e s this l e m m a .
But then P2(S)= G . U ,
-
Theorem
1.
element
x
69-
(a) T h e u n i o n of t h e B o r e l s u b g r o u p s
of G i s a l l of G
of G i s c o n t a i n e d i n a B o r e l s u b g r o u p
i.e.
every
(i. e. i n a c o n n e c t e d s o l v a b l e
subgroup). (h}
Every semisimple
element
is contained in a connected
Proof.
is contained in a torus.
unipotent group.
(a) Since every Cartan subgroup is contained in a Borel subgroup, it
follows from the Density lemma that
G.
Every unipotent element
U B' all Bore1 B'
contains a dense open subset of
Now let G act on itself by conjugation. Choosea Borel subgroup B.
Take
V--G, H= B, U - - B in the closure lemma. T h e n G.B = ~ gBg "I = U B' g~ G all Borel B' is closed. This clearly proves (a).
(b) S i n c e e v e r y e l e m e n t and solvable,
(b)
is contained in a Borel subgroup,
immediately
follows from theorem
which is connected
2 of 2 . 8 .
Remark. F o r an arbitrary algebraic group G (connected), it is not true that each of its elements is contained in a connected abelian subgroup.
Consider one
G to be the group of upper triangular 2 x 2 matrices of determinant
(k of c h a r .
0).
Let
x =
.
Then it can be easily checked that
-1 the only connected
subgroup containing
x
is
G
itself and
G is not abelian.
W e s t a t e h e r e a n e x t e n s i o n of t h e a b o v e t h e o r e m .
Theorem
2.
Every surjective
Borel subgroup invariant.
endomorphism
In p a r t i c u l a r ,
F o r t h e p r o o f of t h i s a n d r e l a t e d m a t t e r s ,
of a n a f f i n e g r o u p k e e p s s o m e
every automorphism
see A. M .S. Memoir
does so.
No. 80.
(In
particular, for an inner automorphism ix, ix(B) = B for some B. Hence x ~B
-70
-
(since every Borel subgroup is its own normalizer)).
Corollary
0.
If B i s a B o r e l s u b g r o u p of G, a c o n n e c t e d g r o u p ,
then
Z(B) = Z(G).
Proof.
We have
Z(B) C Z(G)
x E B', some Borel,
Corollary
Proof.
Let
B = Bu.T
by Theorem
1. ( F u r t h e r
be such that
closure).
Gv ~ a maximal
Gv ~
by Theorem
Let
torus.
T, a maximal
(by t h e o r e m
2, h e n c e
1, C o r o l l a r y
3(b).
x E B since
B'
If x {~Z(G), t h e n is conjugate to
G act on an affine variety Then
torus.
G.v,
V.
Let
B.
v~V
t h e o r b i t of v , i s c l o s e d .
Let
T ~ B, a Borel subgroup.
2 of 2 . 8 ) ; S = B . v = B u . T . v
= Bu.v,
since
T.v
Then
= v.
Thus
S is closed, being the orbit under th~ action of a unipotent group (by the proposition of 2.5). Hence by the closure lemma, as S is invariant under B, G. v= G. S is closed. Corollary 2.
Let G
be an affine group.
(a) A n y semisimple conjugacy class,
or m o r e generally (b) any conjugacy class meeting a Cartan subgroup is closed.
Proof.
By theorem
1 above,
every semisimple
and hence in a Cartan subgroup. Now t o p r o v e (b), l e t torus.
Let
1 above,
Corollary
3.
Let
T h u s (b) c l e a r l y
a Caftan subgroup.
G act on G by conjugation.
corollary
Proof.
x ~C,
t h e o r b i t of x, i . e .
a Borel subgroup, it follows that
x
and
be arbitrary. B'
a c t i n g on
implies Let
Then
(a).
C = ZG(T)
ZG(S)
, T
a maximal
Hence by
is closed.
is connected.
Fix a Borel subgroup G/B
o
G x = ZG(X)_~ T.
the conjugacy class,
If S i s a t o r u s in G , t h e n
x EZG(S)
element is contained is a torus
B.
Since
x (B',
h a s a f i x e d p o i n t (by B . F . P . T .
has a fixed point in G/B.
Let
),
W b e t h e s e t of a l l f i x e d
-
p o i n t s of
x
Then
complete also.
71
-
W i s a n o n - e m p t y c l o s e d s u b s e t of G / B .
A g a i n , x E ZG(S)
and hence
h a s a f i x e d p o i n t in W (by B . F . P . T . ) . that
S. g B - - g B
and
Borel subgroup
x. gB = gB.
W invariant.
In o t h e r w o r d s ,
Hence both
g B g "1 = B ' , s a y .
theorem 2 of 2.8.
S keeps
Now
S and
x @ZB,(S)
Thus
W is
Hence
~ gB~G/B
S
such
x b e l o n g to t h e s a m e w h i c h i s c o n n e c t e d by
T h u s ZB,(S) C ZG(S)° and hence x ~ ZG(S)°. This shows
that ZG(S) = ZG(S)°. This proves the corollary.
Remarks.
(1)
T h e f i r s t p a r t of t h e a r g u m e n t
shows that any connected
solvable group and any element in its centralizer can be put in a Borel subgroup. (2) A C a r t a n s u b g r o u p (3)
C = ZG(T) °
i s , in f a c t , = Z G ( T ) .
T h e a b o v e c o r o l l a r y i s n o t t r u e in c a s e
sistingofsemisimple
[0 :]
can be seen that form:
.a.1
C o r o l l a r y 4.
Let
S is a c o m m u t a t i v e
Consider G = PSL2(~), x = [:
elements.
ZG(X) -- s e t of d i a g o n a l m a t r i c e s with
a ~ C .
Thus
t EG be semisimple.
Then
elements,
i.e.
Proof.
u E ZG(t)
be an u n i p o t e n t e l e m e n t .
It f o l l o w s t h a t B.
t
t,u
I
C B.
G as well.
U s e t of m a t r i c e s
ZG(t)/ZG(t)o
e v e r y u n i p o t e n t e l e m e n t in
i s t h e J o r d a n d e c o m p o s i t i o n of x. t,u ~ B also.
(Let
Let
T
x = t .u
!
1 of 2, 8.
T h i s p r o v e s the c o r o l l a r y .
t = t', u = u').
Hence
It
of t h e
c o n s i s t s of is in
x = t.u.
o ZG(t ) .
Clearly,
this
B containing
x.
be t h e J o r d a n d e c o m p o s i t i o n in !
c o n n e c t e d by t h e o r e m
ZG(t)
Choose a Borel subgroup
T h e n b y p r o p o s i t i o n 3 of 2 . 4 , x = t . u H e n c e by u n i q u e n e s s ,
0~.
ZG(X) is not c o n n e c t e d .
semisimple
Let
group con-
I
is the decomposition
Now u ~ Z B ( t ) , w h i c h is
ZB(t) C ZG(t) ° , s o t h a t
u E ZG(t)°.
in
-72 -
2.14
Bruhat Lemma.
(a) Let G be a c o n n e c t e d a l g e b r a i c group.
a m a x i m a l t o r u s in G.
Let
Let T be
B be a B o r e l s u b g r o u p of G s u c h that B D Z(T)~_T.
T h e n the c a n o n i c a l m a p i :
Z(T~X~kN(T)~T)_, • ,--,
>
B'~G/B is a b i j e c t i o n .
( i (Z(T) . n. Z(T)) = B . n . B , n 6 N ( W ) ) .
T h i s l e m m a i s s o m e t i m e s e x p r e s s e d in a d i f f e r e n t f o r m , viz. (a') Any two B o r e l s u b g r o u p s of a c o n n e c t e d a l g e b r a i c group have a m a x i m a l t o r u s in c o m m o n .
It can be s e e n that (a)<~--~2 (a'). For:
(a) ~
that g B l g ' l
(a'). = B 2.
by(a),~nEN(T)
Let
B 1 , B 2 be two B o r e l s u b g r o u p s .
Choose a m a x i m a l t o r u s
C o n v e r s e l y , (a')
~
(a).
T c C c B, x £ G .
and B c o n t a i n s a m a x i m a l t o r u s bx B t q B ~ T f o r s o m e b E B . fore
~) Bn B. wE W w
Now T , T '
Hence
b ' . (bx)-I T = T for s o m e
xEB. N.B =
T'.
b ' ~ B.
' 1.
g=bl.n.b
( n b '1 . g "1) C g B l g ' l
Pick
such
T such that T C Z(T) C B1. T h e n
and b l , b ~ E B 1 s u c h t h a t
A l s o , b l T b l 1 = ( g b1" l . n - 1 ) . T
Then ~ g E G
= B 2.
Now, b l . T . b ~ I c B 1 T h i s p r o v e s (a').
T h e n by (a'), XB = xBx -1 a r e conjugate in B.
Hence
( b x ) - l T , T a r e c o n j u g a t e in B.
There-
T h u s b'(bx) -1 C N = N(T).
F o r u n i q u e n e s s , let Bn B = Bn B. w w'
T h i s shows:
Then I
bn w = n w , b ' with b , b ' E B.
Assume
t 6T, arbitrary.
Hence bnw t = n w ' b t .
T h e left side e q u a l s nwt. v (v ~ B~) s i n c e B = Bu . T ( s e m i d i r e c t ) a n d T is Abelian.
The right side is thus in B and e q u a l s n w ' t . n w ' v' ( v ' ~ Bu).
n w ' v ' E B u.
Hence
nwt =
n
t
w t , and w = w
t
as r e q u i r e d .
Thus
It would be n i c e
if s o m e o n e could supply at this stage of the d e v e l o p m e n t a s i m p l e proof of (a) o r (a'), and a l s o for the m i r a c u l o u s fact that W a c t i n ~ on X i s a l w a y s a g r o u p g e n e r a t e d by r e f l e c t i o n s .
We s h a l l have to u s e t h e s e r e s u l t s without proof.
We p r o v e the l e m m a for the c l a s s i c a l g r o u p s .
-73
-
(i) G = S L n . Let
B
be the group of upper triangular matrices.
diagonal matrices.
Let
T
be the group of
T h e n the following can easily be verified: Z(T) = T; N(T)
is the group of m o n o m i a l
matrices (i. e. each r o w and c o l u m n contains exactly
one non-zero element).
N ( T ) / z ( T ) is isomorphic to the permutation group~ I
S n.
We
b,b'EB
n o w prove that any element and
wEN(T).
Choose
gEG
b~B
can be written as
such that the total n u m b e r
appearing at the beginning of the r o w s of b. g is m a x i m a l . seen that in this case, the n u m b e r s
b.w.b
with
of zeros
It can be easily
of zeros at the beginning of the various
r o w s of b. g are all distinct (since otherwise w e could add a multiple of one r o w to a higher one, i.e. multiply on the left by s o m e element of B, and increase the n u m b e r
of zeros) and hence are
0, 1 ..... n-1 (in s o m e order).
Again by suitably multiplying on the left by an element order can be m a d e
0, 1 . . . . .
n-l.
!
w
It is clear that w . b . g
of N(T), the above is in B.
I
that g = b l W l . b I for s o m e
i : Z(T)\N(T)/z(T)-.-- ~
bl,b 1 ~ B; w 1 ~ N(T).
B\G/B
is s u r j e c t i v e .
that b . w . b' = w' for b, b' E B. i . e . define Supp x = ~ ( i , j ) / x i j ~ 0 t ; x t
b
I
T h u s the m a p
Next, let w, w ' e N(T) such
= w'l.b'l.w
= (xij).
I
.
F o r a m a t r i x x,
In the above c a s e , it c a n be e a s i l y
#
c h e c k e d that Supp b ' = Supp ( w ' l b - l w ') ~ Supp ( w - l w ') (since b -1 diagonal).
This proves
But then b'
a t e l y follows that w - l w
is s u p e r diagonal and w - l w ' is m o n o m i a l . !
is d i a g o n a l i . e . g T.
is s u p e r It i m m e d i -
This p r o v e s the i n j e c t i v i t y of i.
This c o m p l e t e l y p r o v e s the l e m m a for SL n.
(ii) G = SP2 n
Let
J denote the n X n m a t r i x
I° l 0
.
1
0
L SP2n = I A C S L 2 n / A M A t
=MI.
In o t h e r w o r d s ,
Let M =
I°:I
. Define
SP2 n i s t h e set of fixed points
-
in SL2n of the a u t o m o r p h i s m
74
-
o - : SL2n
~ SL2n, given by ~" (A) -- M. (At) -1.
M -1" Now, in SL2n, the B r u h a t l e m m a can be r e f i n e d to: E v e r y e l e m e n t of BnwB is u n i q u e l y e x p r e s s i b l e in the f o r m U~-I(u, Uw
B,N,T
M. ( x - l ) t. M -1.
I
W
. b with b G B and u E U w = Uf~n w-
respectively the unipotent upper triangular, lower triangular groups).
Now ~" k e e p s
(of SL2n) i n v a r i a n t , e . g . l e t x ~ B .
Now x - l ~
j Zt.J
I~'(x) .~
u.n
B again, so let x =
Then .
0-(x) =
Then
_j. yt Jl jxtj
0
~ B again.
S i m i l a r l y f o r N and T.
T h u s if
xESP2n, x =U. nw.b in SL2n .. ($)~ ~hen x -- ~"(x) = cr'(u). ~'(nw). ~(b).
Now f r o m u n i q u e n e s s of ~, we get : f ( n w) 6 Tn w, Gr-(u) = u, a"(b) = b (rood T). T h u s the B r u h a t d e c o m p o s i t i o n in SL2n l e a d s to one in SP2n.
If we l a b e l the
b a s i s e l e m e n t s of the s p a c e on which SP2 n i s a c t i n g by i n d i c e s n , n - 1 . . . . l , -1 . . . . .
-n, then the W e y l g r o u p of SP2 n w o r k s out to be the g r o u p of t h o s e
p e r m u t a t i o n s "/l'(on 2n s y m b o l s )
such that-K(-i) = -~'(i) Vi,
i . e . the
octahedral group.
(iii) If we r e p I a c e
- J by J in M a b o v e , we obtain a p r o o f f o r SO2n, and
with a s l i g h t m o d i f i c a t i o n , one f o r SO2n+l
as well.
Hence the B r u h a t l e m m a
i s p r o v e d f o r the c l a s s i c a l g r o u p s .
Remarks.
SL
n
a c t s on IP n - I
sional vector space).
and ~ ( V )
A s i m p l e x ~ - i s an o r d e r e d s e q u e n c e
l i n e a r l y i n d e p e n d e n t p o i n t s in IPn - 1 . a simplex fpl..,
in a n a t u r a l way.
(V i s an n - d i m e n f p 1. . . . .
pnt
of
A f l a g 0 = W o C _ W l _ C . . . C W n = V and
pn 1 a r e s a i d to be i n c i d e n t if t h e r e e x i s t s a p e r m u t a t i o n -)T of
n symbols such that Wi is generated by Ip~T(1),..,pT~(i)}V l - ~ i ~ n. Now the Bruhat decomposition in form (a') for SLn can be stated geometrically as follows: Any two flags are incident with some simplex.
In fact, this is the
-75
f o r m in w h i c h t h e B r u h a t 1 e m m a w a s o r i g i n a l l y p r o v e d . to c o n s t r u c t a p u r e l y g e o m e t r i c
p r o o f of t h i s s t a t e m e n t .
The reader may wish
C h a p t e r III R e d u c t i v e and s e m i s i m p l e
algebraic grouPs,
r e g u l a r and s u b r e g u l a r
Let
G be a c o n n e c t e d a l g e b r a i c g r o u p .
s o l v a b l e , n o r m a l s u b g r o u p of G. clearly unique).
R
3.1. Definitions.
elements
Let
R denote the maximal,
connected,
(R e x i s t s f o r d i m e n s i o n r e a s o n s a n d is
is c a l l e d t h e r a d i c a l of G.
(1) G is s a i d to be r e d u c t i v e if R u = {1 I
not contain a non-trivial unipotent element), ¢
(2) G i s s a i d to be s e m i s i m p l e
or, equivalently,
(i.e.
R
does
if R
is a t o r u s .
9
if R = ~ 1 ) , o r , e q u i v a l e n t l y ,
if G d o e s n o t
c o n t a i n an a b e l i a n , n o r m a l s u b g r o u p of p o s i t i v e d i m e n s i o n .
Remarks.
(1) If G i s r e d u c t i v e ,
t h e c e n t r e of G.
(Since
to t h e o r e m of 2 . 7 ,
then the radical
R is n o r m a l ,
a decomposition
Examples. spaces these
G = R . G 1, w h e r e
(1) G L
n
V i on t h e u n d e r l y i n g s p a c e
G is reductive.
vidual
I
In f a c t , s i n c e
R
V.
R
R
V i s , h e n c e t h e r e is o n l y one s u c h
V i.
of it h a s e i g e n -
is normal, Since
G permutes G acts irredu-
is d i a g o n a l i z a b l e ,
G is connected, Thus
G has
(Levi decomposition).
Vo invariant. Thus
By c o r o l l a r y 2
(this is c l e a r ) and
The radical
Since R
is in
is central.)
G 1 is semisimple.
V.' s a n d h e n c e k e e p s t h e i r s u m 1 V o = V.
Hence
is s e m i s i m p l e
is a reductive group.
c i b l y on V, it f o l l o w s t h a t and
NG(R) = G (= N G ( R ) ° ) .
Z G ( R ) ° = N G ( R ) ° = G.
(2) F o r a n y ( c o n n e c t e d ) g r o u p G, G / R
R , w h i c h is a t o r u s ,
hence a torus,
G m u s t fix t h e i n d i R
c o n s i s t s of s c a l a r
-
matrices.
It is easy to see that
as in remark
(2)
GL
77
n
-
= R.SL n
In t h e n e x t 3 s e c t i o n s ,
Let
Main Theorem
T
be a maximal
Definition.
on s e m i s i m p t e
x~
t.x
(2)
R
a maximal
relative
to
W.
T. T.
groups
xM : Ga(k) ~
to
G (Ga(k)
T)
if
is the
(~ (t)r)Vt ET,
Hence
X~,
which is an unipotent
T.
X(T)
W
Clearly,
r Ek.
additively (till 3.4).
Let
= dim T.
For a semisimple
of a u t o m o r p h i s m s . under
by
of d i m e n s i o n
torus
i s c a l l e d a r o o t of G ( w i t h r e s p e c t
onto the image
b e t h e s e t of r o o t s of G .
W = N(T)/T.
of G
normalised
~
group.
such that the following conditions are satisfied:
we s h a l l w r i t e
space over
algebraic
groups.
of a l g e b r a i c
( r ) . t -1 = x
Henceforth,
Let
~ of T
is an isomorphism
group,
to that above works.)
torus in G.
A character
a d d i t i v e g r o u p of k)
(A p r o o f s i m i l a r
G will denote a connected semisimple
there exists a morphism
(1)
of G L n
(2) a b o v e .
SL n, SP2n, SOn are semisimple,
3.2.
is the decomposition
group
V =X(T)~)2Z Identify G,
X(T)
~"
Then
with
V is a vector
X ( T ) ~} 1.
it can be proved that
Let
Z(T) = T
for
is a finite group and is called the Weyl group W a c t s on X ( T )
a n d h e n c e on
V as a group
Choose a positive definite inner product on V, invariant
(Such an inner product exists,
since
W
is finite}.
Denote it by
-
( ,
).
78
-
T h e n the f o l l o w i n g r e s u l t s a r e t r u e :
Theorem.
R C V forms a root-system
w h i c h is r e d u c e d . X ~ < a n d X _ ~
a s u b g r o u p w h i c h is i s o m o r p h i c to SL 2 o r element w
.~).
The Weylgroup
Choose a basis for the root system {X,,~>0,
~R I
B = T.U,
maximal,
This subgroup contains an
wo( of N(T) w h i c h a c t s on V a s t h e r e f l e c t i o n r e l a t i v e to ~ ( i . e .
. x = x -(~,~)
Let
P S L 2.
Let
B-=
T.U-
R.
W i s g e n e r a t e d by
Let
wE,~t~R
(Note t h a t
.
U b e the g r o u p g e n e r a t e d b y
U" b e the g r o u p g e n e r a t e d b y I X ~ , , < 0 , T normalises
U, U ' . }
ER ~ .
Then
U is a
c o n n e c t e d , u n i p o t e n t s u b g r o u p of G, B is a B o r e l s u b g r o u p a n d the
c a n o n i c a l m o r p h i s m : -[]-- X o ( - - ~
U is a n i s o m o r p h i s m
of v a r i e t i e s .
p r o d u c t is t a k e n in a n y o r d e r . ) T h e c a n o n i c a l m o r p h i s m s : U-x B -
generate
-Uq B are also isomorphisms
s u b s e t of G a n d is c a l l e d t h e Big C e l l .
of v a r i e t i e s .
T XU
U-B
(The
~ B and
i s a d e n s e open
(Clearly, analogous statements are
t r u e in c a s e of U ' } .
We o m i t t h e p r o o f s (which a r e q u i t e l o n g a n d m a y be found in § 13-14 of B o r e l ' s book}, b u t s h a l l u s e t h e s e r e s u l t s in w h a t f o l l o w s .
A s a n e x a m p l e , the r e a d e r m a y w i s h to v e r i f y t h e s e f a c t s f o r the g r o u p G = SL n . Take
T a s the d i a g o n a l g r o u p .
¢ < ( i , j ) ( d i a g (t 1 . . . . .
For each
-1 tn}} = t i . t j
is a r o o t .
corresponding morphism. ) A root W(i,j)
i,j, i ~ j, ~(i,j} : T---~k (xc<(i,j } (r) = I + i s p o s i t i v e if j m i .
r. Eij
given by is the
Here, U-B
c o n s i s t s of the p r o d u c t s of s u b d i a g o n a l , u n i p o t e n t e l e m e n t s a n d u p p e r d i a g o n a l elements.
A n y s u c h p r o d u c t h a s the
n o t e q u a l to z e r o ~
(1 ,~i ,~ n).
i xi
m i n o r in the u p p e r l e f t - h a n d c o r n e r
Conversely, any such matrix may be uniquely so
f a c t o r e d , t h e f a c t o r s b e i n g p o l y n o m i a l s in t h e c o - o r d i n a t e s a n d the r e c i p r o c a l s
-79
of t h e s e m i n o r s .
( T h e s e f a c t s m a y be v e r i f i e d by i n d u c t i o n on n. )
A s h o r t d e s c r i p t i o n of r o o t - s y s t e m s dimensional vector-space.
o( to
- @C• A r o o t s y s t e m
(2)
so< (R) C_ R
system
If (
,
{s
so( w i t h r e s p e c t to a v e c t o r
in V is a f i n i t e s e t of n o n - z e r o
so( f o r e a c h @( £ R
f~-s
,~ER~
so<
(~)
such that
if ~ ,
t~CR
~
t = +- 1.
The group
i s a f i n i t e g r o u p and is c a l l e d the W e y l g r o u p
R
is a s u b s e t S of R
2(~,x).e(,
(~,~)
x EV.
s u c h t h a t (1} S i s a b a s i s
for the vector space
V and (2) a n y ~ E R = ~L
with the same sign.
A b a s i s a l w a y s e x i s t s and f o r a n y two b a s e s
such that
m
are integers S,S'
of
w(S) = S ' .
A c o m p l e t e d e s c r i p t i o n m a y be f o u n d in J - P . semisimples
gener-
is an i n t e g r a l m u l t i p l e of o( .
i s g i v e n by : s o((x) = x -
for a root system
R, 3 wEW
~ ~ 0
) i s a p o s i t i v e d e f i n i t e i n n e r p r o d u c t on V, i n v a r i a n t u n d e r
then the symmetry
Abasis
R
R i s s a i d to be r e d u c e d
W g e n e r a t e d by of R .
V be a finite
V.(ER,
For each ~, ~CR,
Aroot
Let
of V w h i c h k e e p s a h y p e r p l a n e p o i n t w i s e f i x e d and
ators along with a symmetry
(i)
is a s f o l l o w s :
A symmetry
in V i s an a u t o m o r p h i s m takes
-
complexes
( C h a p i t r e V).
found in B o u r b a k i ' s b o o k .
Serre's
b o o k : A l g e b r a de L i e
A comprehensive
treatment
S e e a l s o t h e a p p e n d i x of L e c t u r e s
m a y be
on C h e v a l l e y
groups.
3.3
Some Representation
Let G - ~
Theory.
GL(V) be a representation of G (V finitedimensional). For a
W,
- 80
-
characterAE X(T), define V) -{v£V~(t).v- ~(t).v V t C T I . c a l l e d a weight of the r e p r e s e n t a t i o n zable,
V = ~--
V~
~ if V ~
~ is
~ { 0 } . Since T is d i a g o n a l i -
(in f a c t , a d i r e c t s u m ) .
X ~ X(T) P r o p o s i t i o n 1. E v e r y c h a r a c t e r of T i s a weight f o r s o m e r e p r e s e n t a t i o n of G.
Proof.
Given
~£X(T),
choose fEk[GJ
s u c h that f / T = 0 4 .
Since T a c t s
s e m i s i m p l y on k [ G ] , t h e r e e x i s t f i ( l ~ < i ~ r ) ~ k [ G ] and 0(i, ( l ~ i ~ r ) r such t h a t f = ~ fi and t*f i ; ~ i ( t } . f i V t ~T, l~i~r. Now i=l r r T ~ ( t ) = f ( t ) = ( t ' f ) ( 1 ) = i~'=l
(t*fi)(1) = i~1 =l fi(1)'~i(t)"
6 X(T)
Hence o ( = i=l ~ fi(1)~i"
By the l i n e a r i n d e p e n d e n c e of d i s t i n c t c h a r a c t e r s , ~ = ~ . f o r s o m e 1
i.
This
Let ~
be a
p r o v e s the p r o p o s i t i o n .
P r o p o s i t i o n 2.
Let G - ~
GL(V) be a r e p r e s e n t a t i o n of G.
w e i g h t of ~ and v E V ~ . L e t ~ be a r o o t of G (as d e f i n e d in 3 . 2 a b o v e ) . oo i Then X o ( ( r ) . v = ~--- r . v i, the s u m b e i n g f i n i t e , v i I~ V;~ + i ~ i n d e p e n d e n t of i;O r E k , and v = v. o Proof.
Since x ~ ( r ) . v
is a p o l y n o m i a l in r , with c o e f f i c i e n t s in V, we have:
oo i x ~ ( r ) , v = ~" r . v i , a f i n i t e s u m . i=0 We h a v e to show t h a t v i e V ~ +i¢( co i t . ( x ~ ( r ) , v) = ~ r . i v i. A l s o , i=0
(Vr~k).
and vo = v. L e t t ~ T .
Then
t. (xe~(r). v) = (t. xo((r), t "1) (iv)
= x~t). GO = ~o((t)
Hence
r) ~ (t). v a s i
i
,r,2%(t).v
v £V)~ i .
i=0 co (]o i i i ~ ( t ) . ~ o((t) . r . v i = ~ r . ( t v i ) . V r E k ,
i=O
i=O
t~T.
It f o l l o w s t h a t
-
%(t).0((t)i.v i = t . v i V t ~ T ,
Lemma. o(~R Proof.
Let G --~
v=w =
Hence by definition,
. Setting r = 0, we get V = V o .
GL(V) be a r e p r e s e n t a t i o n of G.
(W~1 t w w
-
i.e. viEV~+i
( i . e . o( be a root of G . ) t.w
81
Then w
. V£Vw~ (~).
).V=Wo(.~(w-1.
(A) (t). w
V V
wo( . v ~ V w
L e t v (V~k and
t. we().v
t ET.
(A)"
As an i m m e d i a t e c o n s e q u e n c e of this l e m m a , we have:
Vg~ and Vw(A) have
the s a m e d i m e n s i o n f o r w ~ W.
P r o p o s i t i o n 3. L e t ~ E X ( T ) Proof.
and o ( ~ R .
Choose a r e p r e s e n t a t i o n
~: G
e " (This e x i s t s by p r o p o s i t i o n 1). under
Xo( and X
Then
2(A,~) (w,.<)
~- GL(V) such that ~k is a weight for
By p r o p o s i t i o n 2,
and hence under
is an i n t e g e r .
~ V, is i n v a r i a n t i ~ 77, ,~*i¢(
wo( by the t h e o r e m of 3.2.
to the group generated by X 0< and X . 0( " ) In particular,
(w~
w~. vEL
belongs ~+io(
i6zz for v ~ 0 ~ V follows that w w
()l) = A
(Such v exists.) But w (A) is of the f o r m
- 2(A,~)
.~
= ~+io(
.v ~ V w
A + i~for some (for s o m e
If we denote the lattice
f ~/
position 3 s i m p l y says:
X = X(T) C L~(R).
2(/~,~)
(A) by above l e m m a . i ~77.. H e n c e
i~ZZ).
~ 77. V~E
d
It
This proves the result.
*
by L (R), then p r o -
If L(R) denotes the lattice
g e n e r a t e d by R i . e . the set I ~" n .o(, n 6 2ZI then we have: L(R)C_XC_L~(R). m(£R Definitions. (I) G (2) G
is said to be simply connected if L*(R) = X. is said to be ad~oint if L(R) = X.
-
L e t tI~t
.....
82
-
Ofn} be a b a s i s f o r the r o o t - s y s t e m
2(~i,0(j) (~j,0(j) = ~ i j
t~( i ~ n ,
l _ < j ~ n.
R.
Define ~i E V by
It can be e a s i l y checked that { ~ t . .". .
is a b a s i s of V and L*(R) is just the lattice g e n e r a t e d by it.
~n}_
~1 . . . . . ~ n a r e
called the f u n d a m e n t a l weights with r e s p e c t to the b a s i s fO
(To p r o v e that )~.E L (R), we have to u s e the fact that a b a s i s of the dual r o o t - s y s t e m
(
R ~ of R).
7
P r o p o s i t i o n 4. If G, R , V , tj~Ai}
(~., ~<
3
, 1.< j ~
is
3
a r e as above, then the following 1 ~
conditions are equivalent: (I) G is simply connected. (2))~i~X,
l~
(3) There exist ~I . . . . . ~n in X such that wc~j(~i)= ~i" ~'ji~j 1~ i, j,
F~rther ~*i = ~ i
±~ (3).
The proof is clear. Remark. The following condition is equivalent to the above 3 conditions: If : G' ~
G is an isogeny (i. e. having a finite kernel) with G
connected
such that 71- is an isomorphism on connected unipotent subgroups, then TC itself is an isomorphism.
P r o p o s i t i o n 5. Proof.
SL n is s i m p l y connected.
We choose R, ~Mi } as given in 3.2 above.
is of the f o r m o<(i,j) with i < j ) . ti . . . . ti 1 ~ i ~ n - 1 .
~t i E x ( w )
by ~i (diag ( t t ~ . . . , t n) =
(~i is indeed c h a r a c t e r , ) It is e a s i l y checked that
w°f(J,J +1)" (~i) = ~i " ~J i ~ ( j ' j + l ) connected.
Define
(To r e c a l l , a positive r o o t
V j • Hence by p r o p o s i t i o n 4, SL n is s i m p l y
-
Remarks.
The g r o u p s
83
-
SP2n, Spin n a r e a l s o s i m p l y c o n n e c t e d .
SO2n+l, PSL n a r e a d j o i n t , while the g r o u p s
The g r o u p s
SO2n a r e n e i t h e r .
The g r o u p s
G 2, F 4, E 8 a r e s i m u l t a n e o u s l y s i m p l y c o n n e c t e d and a d j o i n t .
We now s t a t e the f u n d a m e n t a l r e s u l t on the c l a s s i f i c a t i o n of s e m i s i m p l e g r o u p s .
Theorem.
G i v e n an a b s t r a c t root s y s t e m
R and any l a t t i c e X b e t w e e n L(R)
and L*(R), t h e r e e x i s t s , up to i s o m o r p h i s m , a u n i q u e s e m i s i m p l e group o v e r a n y a l g e b r a i c a l l y c l o s e d field k s u c h that R and X a r e r e a l i z e d a s above ( r e l a t i v e to a n y m a x i m a l t o r u s . )
3.4.
Representation Theory (vontinued).
D o m i n a n t Weights.
Let G , X , R ,
V be a s in 3 . 3 .
An e l e m e n t AEV i s s a i d to be d o m i n a n t if (A , ~ ) r o o t s ~ (o(* = 2 ~ )). (,~ ,0( ;k 1 . . . . .
~
~EC =
~" a i A i , a i >" 0).
n
It follows that such ~ ' s
Choose a b a s i s
S to R.
>~ 0 f o r a l l p o s i t i v e f o r m a cone C with
(the f u n d a m e n t a l weights) a s a b a s i s . (i. e. e v e r y e l e m e n t
Define an o r d e r >~ on V by : A ~
iff A - ~
can b e c h e c k e d that >~ i s a p a r t i a l o r d e r .
is a s u m of p o s i t i v e r o o t s .
M o r e o v e r , given AE C ~ L (R),
,
t h e r e e x i s t only f i n i t e l y m a n y ( F o r : If ~ > ~ t h e n
It
$
~ s, a l s o in C Pt L (R), s u c h that 9~>~.
(A,~) - ( ~ , ~ ) = ( A + ~ t , A - ~ x ) > ~ 0 .
T h u s ~ is confined
to a bounded p a r t of s p a c e as well as to a l a t t i c e . )
We now p r o v e a b a s i c r e s u l t -
F u n d a m e n t a l T h e o r e m of R e p r e s e n t a t i o n T h e o r y . Let G be a s e m i s i m p l e
-
84
-
group, T a m a x i m a l t o r u s and B the B o r e l s u b g r o u p c o r r e s p o n d i n g to the p o s i t i v e r o o t s (with r e s p e c t to a b a s i s ) .
T h e n we have:
(a) If (7~, V) is an i r r e d u c i b l e r e p r e s e n t a t i o n of G, then t h e r e e x i s t s a unique l i n e D which is fixed by B, the c o r r e s p o n d i n g c h a r a c t e r A is u n i q u e l y d e t e r m i n e d and is d o m i n a n t , and a l l o t h e r weights of this r e p r e s e n t a t i o n a r e of s t r i c t l y l o w e r o r d e r ( r e l a t i v e to the above p a r t i a l o r d e r ) .
(b) Two i r r e d u c i b l e r e p r e s e n t a t i o n s a r e i s o m o r p h i c iff the c o r r e s p o n d i n g dominant characters,
called highest weights, are equal.
(c) G i v e n a d o m i n a n t c h a r a c t e r A on T, t h e r e e x i s t s an i r r e d u c i b l e r e p r e s e n t a t i o n (which is unique up to i s o m o r p h i s m b e c a s e of (b)) (71, V) such that /% the c o r r e s p o n d i n g highest weight i s
Proof.
(a) L e t
~t.
(~, V) be a n i r r e d u c i b l e r e p r e s e n t a t i o n .
By B . F . P . T . ,
fixes a flag.
Hence t h e r e e x i s t s a line D which is kept i n v a r i a n t by B.
v E D , v ~ 0.
Let ;% be the c o r r e s p o n d i n g c h a r a c t e r on T. ( i . e . t . v
Since V is i r r e d u c i b l e , it follows that V is s p a n n e d by G . v . cell' U - B U - . v (as
is dense in G, it follows that V B a c t s a s s c a l a r s on v).
By p r o p o s i t i o n 2,
x
~((C~). v = v +
Since the 'big
is spanned by U ' B . v
C i~ . v i with v i ( V
Choose
= A(t).v~t£T).
i.e. by
C o n s i d e r a n e l e m e n t x_ ( C ~ ) ~
B
of U ' .
_io ( .
It now
i>~i
-
follows that f o r a n y u ' E U ' ,
u-.v = v+w
where
V = k . v . (~)( ~
0 n < . ~ , Note that V A = k . v = D.
w ~ ~)V, .
n
~ 0).
Thus, -
(*)
If D' is a n y o t h e r line fixed by B, then a r g u i n g in
the s a m e way a s h e f o r e , we get a d e c o m p o s i t i o n (*) of V, with s o m e weight ~' i n s t e a d of ~ . It now follows that ~ k ' ~ k
and ~ > ~ ' .
Since V ~
i s one d i m e n -
t
sional,
V~, = D = D .
T h u s D i s the u n i q u e l i n e kept i n v a r i a n t by B.
f o r a n y o( s i m p l e , wof (1) i s a l s o a weight o f / l ' . ~ t
~
Again,
= ~ - (A,,~*)~.
-
Hence
()k,~*)~
(b) L e t
0 and
~
-
is dominant.
V 1, V 2 b e t w o i r r e d u c i b l e
weight
85
A . Let V = V I ~ V
2.
representations
with the same highest
Choose non-zero vectors
v.1 6 V.z (i = 1,2)
corresponding to the dominant character 4.
Let v = V l + V 2 E V.
the G-subspace generated by v. W e have, W
= <~G.v>
= ~U[
Let W B.v>
be
=
= k.v + lower weight spaces, since v = Vl+V 2 corresponds to the weight A . W/~ V 2 is a G - s u b m o d u l e of the irreducible m o d u l e v 2 (v 2 ~ W
by above).
It f o l l o w s t h a t
is i n j e c t i v e .
Since
also.
W is isomorphic
Hence
Hence
(c)
V 1 and
W / ~ V 2 = {0 t .
Pl'V = v 1 f 0 and to V 1.
V 2 and does not contain
V 1 is i r r e d u c i b l e , Similarly
is surjective
"Lectures
to
V 2.
on C h e v a l l e y
It i s s o v i t a l f o r o u r f u r t h e r d e v e l o p m e n t t h a t we s h a l l i n d i c a t e
In A = k [ G ] , l e t A ~ be t h e s p a c e of f u n c t i o n s
f(b-x) = ~(b-).f(x)
forall
on B - = U . T
is n o n - z e r o .
Pl
> V1
V2 are isomorphic.
group" (p.210).
character
Pl:W
W is isomorphic
T h e p r o o f of t h i s p a r t m a y b e found in t h e a u t h o r ' s
a proof:
Hence
b'EB-, as
T
x~G.
()kEX(T)
normalizes
submodule.
(Vl
canbe
e x t e n d e d to a
U . ) S u p p o s e we know t h a t
G a c t s on A ~k v i a r i g h t t r a n s l a t i o n s ,
V A b e an i r r e d u c i b l e
f w h i c h s a t i s f y (*):
locally finitely.
is finite dimensional).
A)~
Let
By (a), t h e r e T
~ .
exists a highest weight vector f corresponding to s o m e highest weight the big cell U U B
= U-.T.U, w e have : f(U'.tu) = A (t). f(u) by (*). In particular,
f(U'.t) = ~(t).f(1). f ( u - ) = ~ ( t ) . f(1). has
~
Also, since f is a highest weight vector, f(u-.t) = ~(t). Now f(1) f 0, s i n c e o t h e r w i s e
as its highest weight.
that the function polynomial,
The proof that
AA
f = 0.
Hence ~ = A'
is not zero,
and
V
or equivalently,
f d e f i n e d on t h e b i g c e l l by f ( u " tu) = ~ (t) e x i s t s on G a s a
requires
mentioned book.
On
further argument,
w h i c h m a y be f o u n d in t h e a b o v e
We s e e , i n c i d e n t l y , t h a t t h e i r r e d u c i b l e
representations
of
-
G are all induced representations,
86
-
i n d u c e d f r o m one d i m e n s i o n a l r e p r e s e n t a -
t i o n s of B.
This p r o v e s the t h e o r e m c o m p l e t e l y .
H e n c e f o r t h , we w r i t e
X(T) m u l t i p l i c a t i v e l y and r e s e r v e the a d d i t i o n s i g n f o r
functions (in k [G] o r k IT] }. T h e W e y l g r o u p W d e f i n e s an e q u i v a l e n c e r e l a t i o n a m o n g the c h a r a c t e r s on T(~-,,w(~),
~EX(T) ,w 6W).
It can be e a s i l y s e e n t h a t e a c h e q u i v a l e n c e c l a s s
c o n t a i n s e x a c t l y one d o m i n a n t c h a r a c t e r .
F o r the c l a s s [ ~ ] ,
define Symm[~]
to be the s u m (as f u n c t i o n s on T) of a l l c h a r a c t e r s b e l o n g i n g to it. representation
G--~GL(V),
C l e a r l y X~ E k [ G ] . characters,
V~
we define X~: G ~
Consider
X ~ on T.
For a
k by X ~(g) = T r a c e (~(g)).
For each class [~]of
(equivalent)
h a s a c o n s t a n t d i m e n s i o n , ~ ~ [~t]. It f o l l o w s t h a t on T, X e v
i s j u s t a s u m of S y m m ['~] s. weight.
L e t & b e i r r e d u c i b l e with ~
S i n c e a n y w e i g h t of ~
l o w e r than A
a s the
highest
o t h e r than A i t s e l f , i s of o r d e r s t r i c t l y
and ~ h a s m u l t i p l i c i t y 1, it f o l l o w s f r o m the a b o v e t h a t X % on
T is given by X~
= Symm
['~] +
~__
Symm
[~]
~
(*)
~t d o m i n a n t We denote X ~a
by j u s t X A and S y m m [ ~ 3 by j u s t S y m m ~ .
F r o m (*), it
immediately follows that Symm ~ = X
+~<,~
+x
-
(**).
~t d o m i n a n t A s an e x a m p l e , we c o n s i d e r
G = SL n.
Let ~.£X(T)
be a s d e f i n e d in p r o -
1
p o s i t i o n 4 of 3 . 3 .
We can r e a l i z e
~i
in A i (kn) with the u s u a l a c t i o n
-
g . ( v l A . . . A v i) = g v l A . . . then e l A . . .
Agv i.
87
-
If {e I . . . . .
en}
^ e i i s a h i g h e s t weight v e c t o r and the o t h e r s t a n d a r d b a s i s
v e c t o r s of Al(kn) a r e o b t a i n e d by p e r m u t a t i o n s . Symm ~.
is the s t a n d a r d b a s i s of kn ,
on T and hence X A (g) is j u s t the
1
Hence, in this c a s e , X A i =
ith e l e m e n t a r y s y m m e t r i c p o l y -
• 1
n o m i a l in the e i g e n v a l u e s of g.
(This is c l e a r if g E T
and hence a l s o if g £Gr
arbitrary. )
D e f i n i t i o n . f E k [ G ] i s s a i d to be a c l a s s - f u n c t i o n if it i s c o n s t a n t on the c o n j u g a c y classes.
The set of a l l c l a s s f u n c t i o n s is denoted by C [ G ] . e . g . Any c h a r a c t e r
X ~ , c o r r e s p o n d i n g to a r e p r e s e n t a t i o n ~ , is a c l a s s - f u n c t i o n (being a t r a c e function).
T h e o r e m 2.
Let G be a s e m i s i m p l e a l g e b r a i c group, T, a m a x i m a l t o r u s and
W, the c o r r e s p o n d i n g Weyl g r o u p . t
(a) The r e s t r i c t i o n to T of the X ~ s (for d o m i n a n t c h a r a c t e r s ~ ) f o r m a
linear basis of k [9?] w • w h e r e a s the X l s t h e m s e l v e s f o r m a l i n e a r b a s i s of C[G]. ( ? (b) If G is simply connected and l~i~
then {X ;ki/TI
are the fundamental weights, l~i.~n W (respectively{X;~il 1.i.~n ) freely generate k IT]
iSi~n (respectively C6G3) as k-algebra. P r o o f . We f i r s t p r o v e the s t a t e m e n t s c o n c e r n i n g T and then deduce the c o r r e s p o n d i n g r e s u l t s f o r G.
(a) Since S y m m ~ and X A
are interrelated, by the equations (*). (**)above,
iris sufficientto prove that ISymm
isabasis of kiT3 w
Let f ¢ k [T 3 w
Since T is diagonalizable, the characters of T span k [9?], So let
-
f =
~-"
Cx.X.
Hencefor
88
-
wCW, f=wf
= ~" C x . W X = > - C w . l ( x ) .
X E X(T) X X characters are linearly independent, hence C X = Cw_I(x) ~ X, ~ w .
X.
Now
This means
that the elements of an equivalence class (of characters under action of W) occur with the same coefficient. Hence f = ~ C x. S y m m X X
and the S y m m s
span
k[T]W.
F u r t h e r , let ~- a N . S y m m X = 0. Now, c h a r a c t e r s o c c u r i n g in X S y m m X a r e d i s t i n c t f r o m t h o s e o c c u r i n g in S y m m X'(X ~ X ' ) . Since c h a r a c t e r s a r e l i n e a r l y i n d e p e n d e n t , it follows that a X = 0 ~ X.
{ S y m m ~} is a basis of k i T ] W.
The r e l a t i o n s ( * ) a n d ( * * ) t h e n i m p l y t h a t
is simply connected, the fundamental weights f ~ i t
(b) If G cters.
T h i s p r o v e s that
Let X i denote X A . .
Now, for any ~
are in fact chara-
dominant, ~ =-~T~n.i with i
l
n.>10. 1
X
Since
= Symm ~ +
~__
Symm
dominant
~ +
~-
w.~ +
w6 W
ni ,~A can be e a s i l y s e e n that X ) ~ - - [ r E i
~
Symm
~,
~. d o m i n a n t
is a s u m of X ' ~ s
with ~ ~ l .
Since
t h e r e e x i s t only f i n i t e l y m a n y c h a r a c t e r s (dominant) which a r e l e s s than ~ , it follows, by r e p e a t e d a p p l i c a t i o n of the above a r g u m e n t , that X A is a p o l y !
n o m i a l in X i s. = 0.
We w r i t e
A g a i n , l e t p be a p o l y n o m i a l in n v a r i a b l e s with P ( X 1 , . . ~Xn) r1 p in the f o r m p = a . X 1 . . . .
the t e r m of h i g h e s t o r d e r .
Xr n
+Pl'
(We u s e a l a x i c o g r a p h i c o r d e r ) .
m e n t s i m i l a r to the one above, it follows that a = 0. p is i d e n t i c a l l y z e r o .
~
k[r]W
isomorphism.
Xrl... 1
Xrn n
is
T h e n by a n a r g u -
T h u s it can be p r o v e d that
Thus X 1 , . . . , X n g e n e r a t e f r e e l y k [ T ] W a s k - a l g e b r a .
We now p r o v e s i m i l a r s t a t e m e n t s f o r
C[G]
where
C [G] .
C o n s i d e r the r e s t r i c t i o n map :
, which is well defined. W e claim that it is in fact, an
Since X • ,
for ~ a dominant character, is in C [ G ] , sur-
jectivity is obvious from the above results for k IT] w.
Further, let f~C [G]
-
s u c h that f / T = 0. gEG.
-
Now for a n y x s e m i s i m p l e C G, g x g - l £ T f o r s o m e
Hence f(x) = f(gxg -1) = 0 (f is a c l a s s - f u n c t i o n ) .
the s e t of s e m i s i m p l e e l e m e n t s , i . e . T
89
-- Z(T)) and
U C is d e n s e C cartan
that f = 0 on G.
Hence
in
Thus f is z e r o on
f = 0 on
U gTg -1 = ~,) C {since g EG C cartan G (Density l e m m a of 2.13). It now follows
~ is i n j e c t i v e .
Now the s t a t e m e n t s for
C [G] are
obvious f r o m those for k [ T ] w .
T h i s p r o v e s the t h e o r e m c o m p l e t e l y .
Note.
Taking G
=
SL n and c h o o s i n g c o - o r d i n a t e s p r o p e r l y on T = the group
of d i a g o n a l m a t r i c e s , we see that the above t h e o r e m is j u s t the f u n d a m e n t a l t h e o r e m on s y m m e t r i c p o l y n o m i a l s .
In fact, the above m e t h o d of proof is
c o m p l e t e l y p a r a l l e l to one of the s t a n d a r d p r o o f s of that t h e o r e m .
T h i s t h e o r e m has s o m e i n t e r e s t i n g c o r o l l a r i e s :
C o r o l l a r y 1.
If f C C [ G ]
and x E G , then f(x) = f(Xs).
P r o o f . F o r a n y r e p r e s e n t a t i o n ~ , we m a y w r i t e ~ (x) i n s u p e r d i a g o n a l f o r m with ~ (Xs) a s i t s d i a g o n a l (by the l e m m a of 2 . 1 ) .
T h u s X ~ ( x ; = X~(Xs).
Now
the c o r o l l a r y (1) follows f r o m (a) of the t h e o r e m .
C o r o l l a r y 2.
(a) The s e m i s i m p l e c l a s s e s a r e in o n e - o n e c o r r e s p o n d e n c e with
e l e m e n t s of T / W ( i . e . s e t of o r b i t s of T u n d e r the a c t i o n of W. ) (b) If G is s i m p l y c o n n e c t e d , then T / W /~r
is i s o m o r p h i c to the a f f i n e - s p a c e
u n d e r the map:
¢ : T/w
~/A r ; ~(t-) = (Xl(t) . . . . .
Xr(t)),t-~ T/W •
w
Proof.
(a) C o n s i d e r the m a p ~
: T / W - ~ (Conjugacy c l a s s e s of s e m i s i m p l e
e l e m e n t s ) given by : ~ (t-) = I t ] . Let t , t ' E W gTg.1
=[t'3.
suchthat It]
90
Clearly, ~ i.e.
~ g~G
is well defined and s u r j e c t i v e . suchthat
gtg "1 = t ' .
, o and T a r e c o n t a i n e d in ZG(t ) and a r e m a x i m a l t o r i t h e r e .
hEZG(t') ht,h -1 = t ~.
such that h g T g ' l h -1 = T. In o t h e r w o r d s ,
t ~- t
Thus hgffN(T).
Now, Hence
A l s o , h g t g - l h -1 =
u n d e r the a c t i o n of W.
T h i s p r o v e s the
i n j e c t i v i t y of ~ and h e n c e (a).
(b) C o n s i d e r the m a p
We p r o v e : (1) (2)
~ ." T - - ~ / ~ r, given by:
O*(k [ ~ r 2 )
~(t) : (Xl(t), . . . , X r ( t ) ) .
= k IT3 w.
F i b r e s of ~ a r e j u s t the o r b i t s u n d e r W.
F r o m the t h e o r e m above, (1) is c l e a r . T o p r o v e (2), we o b s e r v e the following fact: If x , y a r e two e l e m e n t s of T which lie in d i f f e r e n t o r b i t s , then t h e r e e x i s t s a f u n c t i o n f E k I T ] W such that f(x) = 0, f(y) f 0. s e t s of T,
For:
Hence the c o r r e s p o n d i n g i d e a l s
so t h e i r s u m i s k i T ] of x and
The o r b i t s of x and y a r e f i n i t e , h e n c e c l o s e d s u b -
. Write
1 = i+j, i ~ I ,
I and J have no c o m m o n z e r o and j gJ.
Then i is
0 on the o r b i t
1 on the o r b i t of y.
the r e q u i r e d p r o p e r t i e s . b e l o n g to the s a m e o r b i t .
Let f = ~ w.i. Then f clearly satisfies wEW T h i s p r o v e s that w h e n e v e r $(t) = O(t'), t and t ' The c o n v e r s e is c l e a r l y t r u e .
F u r t h e r , k I T ] is
integral over kiWI w. (gek IT] satisfies
- ~ - {X-w.g) : 0, which is a m o n i c wEW p o l y n o m i a l in X with c o e f f i c i e n t s in k I T ] W). T h u s a h o m o m o r p h i s m of k IT] w
into k c a n be lifted to a h o m o m o r p h i s m of k I T ] into k.
it i s now e a s y to see that corollary.
~ is onto.
Thus
U s i n g (1),
(b) is p r o v e d and h e n c e so is the
-
91
-
Corollary 3. Let x, y be semisimple elements in G.
Then the following
statements are equivalent: (i) x and y are conjugate. (2) X f(x) = X~(y) for every irreducible representation ~. (3) ~ (x) is conjugate to ~(y) in GL(V~) f o r e v e r y i r r e d u c i b l e r e p r e s e n tation ~. If G is s i m p l y connected, then (2) and (3) a r e r e p l a c e d by :
(2') Xi(x)=Xi(y) V l.'isr. (3')
~Ai(x) is conjugate to
Proof. (i) --~ ( 3 ) ~ (2) ~
(1).
~Ai(y) in GL(V{3 ~ i ) V 1,< i .,Jr.
(2) is clear.
C l e a r l y , one m a y a s s u m e that x, y G T.
Since Xe(x) = X{)(y) f o r
e v e r y i r r e d u c i b l e r e p r e s e n t a t i o n ~ , the t h e o r e m shows that f(x) = f(y)VfEk[T] W. As seen in the p r o o f of c o r o l l a r y (2), k I T 3 w
s e p a r a t e s o r b i t s of W.
follows that x and y belong to the s a m e o r b i t of W i . e .
It now
x and y a r e c o n -
jugate. In c a s e of G being s i m p l y connected, ( 1 ) < ~
(2')~
(3') is p r o v e d in e x a c t l y
the s a m e way. Remark.
It is, h o w e v e r , not known whether a s i m i l a r r e s u l t holds f o r o t h e r
e l e m e n t s of G.
Corollary 4. x C O
is unipotent iff XA(x) = X A (i) V
dominant character
i.e. the variety of unipotent elements is closed and is defined by equations {XA(x) = XA(1); )% a dominant c h a r a c t e r ~ . )
A s i m i l a r r e s u l t follows, in c a s e of s i m p l y connected g r o u p s , with X ~ s
-
replaced by
Proof.
iff
x
X~x)
92
-
X' s.
Ai
is unipotent if
xs = 1
= X~l) Vdominant
iff
characters
For a semisimple group
Corolla~g 5.
X~(Xs)
G,
~.
= X ~ l ) Vdominant
characters
(We use corollary (1) and (3)
above).
a conjugacy class is closed iff it is
semisimple.
Proof.~___.
This is already proved in corollary 2 to theorem 1 of 2.13.
proof is given as follows:
Fix
a faithful representation of
polynomial of
x0
and
x0
G.
(semisimple) in the conjugacy class. Consider
Let
S = (x C Glx
X~(x) = X~(x0)
contains the conjugacy class of
Another
x 0.
satisfies the minimal
for all dominant ~ .
Conversely, if
x 6 S
S
then
is closed and
x
is semi-
simple since its minimal polynomial has distinct roots, hence is conjugate to
x0
by corollary 3.
~.
This implication follows from a general lemma:
Lemma.
The closure of every conjugacy class of
element, its semisimple part.
(G
G
contains, along with each
reductive).
Granting this fact, our result follows.
For:
a closed conjugacy class will con-
tain the semisimple part of one of its elements and hence will be semisimple
itself.
Proof of lemma.
Let
S
be a conJugacy class)
x G S.
We can assume, after
- 93
conjugation, that -~-
x
x~B=T.U
(Co<), Co(E k.
and
Choose
e v e r y s i m p l e r o o t v( .
-
XsET , xu EU.
t ET
Now x u is o f t h e f o r m :
s u c h t h a t ¢< (t) = C, p r e g i v e n in k*, f o r
(Such t e x i s t s by p r o p o s i t i o n 7 of 2 . 6 ) .
Now t x t "1 = t. Xs. X u . t ' l
= X s . t Xut-1 : x . - [ 1 - xa ( C htc< oC¢.-) . w h e r e
ht 0(=
s ¢~>0
~ni'
¢~ = ~-" ni~i' (¢~i..... O
x -i . clS
=
el
s
x-i s
S.
Thus, "[I- x((cht~co() E ~>0 C ~ k . Take any f E k [ G ] such
This is true for every
that f(cl x -I S) = 0. The m a p s
map, which is zero for every In particular, f(e) = 0, also.
C ",,-~f(-[]- x ¢(cht°(co()) is a polynomial ~>0 C E k $. This m e a n s that it is identically zero. It now follows that e Ecl(x "I S) = x "I cl S. s
Hence
3.5.
x s E cl S.
Let
This proves the l e m m a and hence the corollary.
Regular elements.
algebraic
s
In t h i s s e c t i o n
G will denote a connected,
reductive
g r o u p w h i c h m a y o r m a y n o t be s e m i s i m p l e .
G be a (reductive) group.
w h i c h i s c e n t r a l in G.
Let
R
We also have, G = R.S,
group uniquely determined
as the commutator
t h e r o o t s y s t e m of G ( v i z . t h a t of S). R.T ' where
be i t s r a d i c a l .
Then
where
R
is a torus
S is the semisimple
subgroup.
One c a n n o w t a l k of
A m a x i m a l t o r u s of G is of t h e f o r m
T ' i s a m a x i m a l t o r u s of S.
It f o l l o w s t h a t
ZG(RT') = R. T ' .
N o w , t h e r e s u l t s p r o v e d in t h e p r e v i o u s s e c t i o n s c a n b e u s e d h e r e (with s l i g h t modifications,
if r e q u i r e d ) .
Definition. x EG
i s c a l l e d a r e g u l a r e l e m e n t if ZG(X ) h a s t h e m i n i m u m d i -
mension (among the centralizers
of e l e m e n t s of G)
t h e c o n j u g a c y c l a s s of x, h a s t h e m a x i m u m
or, equivalently,
dimension.
if C(x),
-
Clearly,
94
-
regular elements exist for dimension reasons.
Proposition
1.
T h e m i n i m a l d i m e n s i o n a b o v e is j u s t
r , t h e r a n k of G i . e .
t h e d i m e n s i o n of a m a x i m a l t o r u s .
Proof.
Fix a maximal torus
T.
Choose
t gT
s u c h t h a t Z G ( T ) = ZG(t)(= T ) .
{Such an e l e m e n t e x i s t s by c o r o l l a r y to p r o p o s i t i o n o f 2 . 7 ) . (1) T h e n
d i m T -- r = d i m ZG(t) >~ m i n i m a l d i m . For any
sition.)
aBoretsubgroup.
Let
torus and dim
xEB,
x
6:G, d i m
(2) N e x t we p r o v e :
ZG(x) ~ r . Wehave,
U i s t h e u n i p o t e n t p a r t of B.
B / [ B , B~ ~ d i m T = r .
CB(X) in
B >~r, s i n c e
Since
(This proves the propo-
B =T.U,
T
isamaximal
( B , B ) C_ U, it f o l l o w s t h a t
Now, d i m ZG(X) >~ d i m ZB(X ) = c o d i m e n s i o n of
C(x).x'lC_
[B, B J .
This proves the required result.
T o p r o v e (2), we g i v e an a l t e r n a t e m e t h o d : D e f i n e
xG/x,y
lie
~G~G,
given
S2 = f(x,y)6G %.
in a c o m m o n t o r u s ~ Then by
.
Fix a torus
T.
S 2 is t h e i m a g e of G ~ T x T
@(x,t,t')=(xtx'l,xt'x'l).
Hence
of S 2 in G k G .
Then
Pl:GXG
Since semisimple
~
G.
under the map
S2 is irreducible.
G 2 is a l s o i r r e d u c i b l e .
x is s e m i s i m p l e ,
fEk[G],
f(x.y) = f(y.x) V(x,Y) E S
Since words,
for
2
such that x£G,
at
d i m f i b r e at
Consider the projection G and
(x, 1)E S 2
For any function
x.y =y.x).
Now t h e f u n c t i o n
i s z e r o on S 2 a n d h e n c e on G 2.
x . y - - y . x V ( x , y ) 6 G 2.
x i s c o n t a i n e d in
ZG(X).
t = d i m G 2 - d i m G.
d i m Zg(X) > ~ d i m f i b r e
G 2 be t h e c l o s u r e
P l ( G 2 ) = G.
(since
it f o l l o w s t h a t
x E G , t h e f i b r e of P l
t semisimple Now f o r a n y
it f o l l o w s t h a t
d e f i n e d by f ' ( x , y ) = f(xy) - f ( y . x )
f•k[G]isarbitrary,
Let
e l e m e n t s a r e d e n s e in
whenever
f'E k [GgG]
~:GxTxT
at
In o t h e r
Further,
choose
(Such t e x i s t s ) .
x mzdimG 2- dimG
= d i m f i b r e at
-
95
T ~_ f i b r e at t.
-
t ~dimT
= r, since
T h i s p r o v e s (2).
Remark.
By the a b o v e m e t h o d of p r o o f , one c a n show:
c o n t a i n s a n a b e l i a n s u b g r o u p of d i m e n s i o n ~ r . Define
Si, Gi(i = 3, 4 . . . )
ZG(X)
The proof runs as follows:
as above. (e.g. define
b e l o n g to the s a m e t o r u s } ) .
For any x gG,
S3 =I(x,y,z}EG~G~G/x,y,z
T h e n (1) the c o m p o n e n t s of a n y e l e m e n t of S i,
h e n c e a l s o of G i , c o m m u t e w i t h e a c h o t h e r , a n d (2) the m a p
f i : G i + l - - - - - ~ G i,
fi(xl .....
xi+ 1) = (x 1 . . . . .
~ Si+l'gi(xl
= (x 1 . . . . .
xi,1), then fi°gi
x i) is s u r j e c t i v e .
( F o r : if gi: S i
= 1 on Si, h e n c e on G1 s o t h a t
f i ( G i + l ) ) . It f o l l o w s t h a t the m a p
P l °'f2 o . . . o fi : G i + l
finite subsets
(x,y 1.....
(Yl . . . . .
a subset such that noetherian).
yi ) with
ZG(y 1.....
Let
z6G
(x,y 1.....
yi}.
y i ) is m i n i m a l .
suchthat
fi+l
at
i.e.
z E c e n t r e of Z G ( y I . . . . .
(x,y 1.
. . . .
y i ).
Also, z 6ZG(X).
one gets:
:~ G is onto.
Consider
Gi+ 2 i . e .
let
G is
zEfibreof
yi } = ZG(y 1. . . . .
y i , z).
In o t h e r w o r d s , z r a n g e s
T h i s s u b g r o u p , b e i n g a f i b r e of f i + l ' h a s
by our earlier argument,
As an immediate corollary,
G i = fi(giGi) ~
(This is possible since
yi, z)6
xi)
Choose an i and such
By c h o i c e of y ' s , Z G ( y 1 . . . . .
o v e r a n a b e l i a n s u b g r o u p of ZG(X). dimension ~ r
yi)~Gi+l.
. . . .
whence our assertion.
If x i s r e g u l a r ,
then
ZG(X) ° i s a b e l i a n .
H o w e v e r it is n o t k n o w n w h e t h e r t h e c o n v e r s e i s t r u e o r n o t .
P r o p o s i t i o n 2. F o r
G = SL n o r
GLn,
(a) A s e m i s i m p l e eleme,,is r e g u l a r iff a l l of i t s e i g e n v a l u e s a r e d i s t i n c t f r o m each other,
(b) A u n i p o t e n t e l e m e n t i s r e g u l a r iff it i s a ' s i n g l e b l o c k ~ i n the J o r d a n - H o l d e r form.
(c) T h e f o l l o w i n g a r e e q u i v a l e n t :
-
96
-
(1) x is r e g u l a r . (2) T h e m i n i m a l p o l y n o m i a l of x is of d e g r e e n ( i . e . the m i n i m a l p o l y n o m i a l = characteristic polynomial). (3) Z(x) is a b e l i a n . (4) k n is c y c l i c a s
k IX]-module.
T h e proof of t h i s p r o p o s i t i o n is s t r a i g h t f o r w a r d and so i s o m i t t e d .
We now c h a r a c t e r i z e r e g u l a r s e m i s i m p l e e l e m e n t s .
P r o p o s i t i o n 3.
F o r a s e m i s i m p l e t £ G , the following s t a t e m e n t s a r e e q u i v a l e n t :
(a) t is r e g u l a r .
(b) ZG(t)° is a t o r u s , n e c e s s a r i l y m a x i m a l . (c) t b e l o n g s to a unique m a x i m a l t o r u s . (d)
ZG(t) c o n s i s t s of s e m i s i m p t e e l e m e n t s .
(e)
0< (t) ~ 1 for e v e r y root ¢< r e l a t i v e to e v e r y , o r to s o m e , m a x i m a l t o r u s
c o n t a i n i n g t.
Proof. B = T.U
We choose a t o r u s
T and a B o r e l s u b g r o u p B such that t E T , and
is the d e c o m p o s i t i o n as given in 3 . 2 .
(a) ~-> (b).
Since T C ZG(t)° and d i m T = r = d i m ZG(t) °, it follows that
Z G ( t ) ° : T.
(b) ~-~
(c).
Let tET',
a (maximal) torus.
a maximal torus.
Hence T' = ZG(t) o .
T h e n T C ZG(t) °, which i t s e l f is
T h u s t b e l o n g s to a unique m a x i m a l
t o r u s v i z . ZG(t)°.
(c) ~
(b).
c o n t a i n s t.
T C ZG(t) °.
F o r a n y g g ZG(t) ° , gtg "1 = t, h e n c e gTg -1
Hence by u n i q u e n e s s ,
gTg -1 = T.
Thus
T is n o r m a l in ZG(t) °
- 97 -
O
which is connected. Hence T is central in ZG(T) ° so that Z G ( t ) C
ZG(T ) =T.
This proves (b}. (b) ~
(d).
By c o r o l l a r y 4 to t h e o r e m 1 of 2.13, all the unipotent e l e m e n t s
in ZG(t) belong to ZG(t) °. ZG(t)° being a t o r u s .
Hence
But then e l e m e n t s of ZG(t) ° a r e s e m i s i m p l e , ZG(t) does not contain any unipotent e l e m e n t .
If x EZG(t), then Xs, XuC ZG(t) as well. is s e m i s i m p l e . (d) ~
(e).
F o r a r o o t s y s t e m R of G with r e s p e c t to T, let ~ ( t ) -- 1 for Since t . x ( ( c ) . t -1 = x
X o< C ZG(t ).
This c l e a r l y c o n t r a d i c t s (d).
(b).
x
This p r o v e s (d).
some e(ER.
(e) ~
Hence x u -- 1 and x = x s i . e .
We f i r s t prove:
(a<(t).c) = 0<x-(c)~c ~ k, it follows that Hence ~ (t) ~ 1 f o r e v e r y root o(
Z G ( t ) ° / ~ U.-B C_T.
Let x E Z G ( t ) ° ~
U:B.
Now x is of the f o r m : "17-~Y0x . ~ ( c ~ ) . t ' . ' ~ - ~ > 0 xa~(d ), with c ~ , d 0 ( E k , Since, x EZG(t), x = txt - I = t( ~ - x o<(c~)).t'. ('71-- x
#
t'~T.
(do()).t'l
='~- x (0((t)-Ic).t', " ~ X (¢<(t).d). a~p0 - 0~ o~;*0 ~ Hence by uniqueness, o~(t)'l.cee = c and o((t).da( = do< ~ ] ~ 0 . Since
o((t} ~ 1 for anyo~ER, it follows that co(= d ~ = 0 V ~
. Thus x = t'~ T. O
N o w U.=B is open in G (by theorem of 3.2). Hence ZG(t) /~ U: B is open in ZG(t)°. Since T C ZG(t)°f~ U : B and ZG(t)° irreducible, it follows that ZG(t)°f~ U.'B --T is the whole of ZG(t)°. This proves (b)o (b) ~
(a) is obvious.
This proves the proposition completely.
We now give a c o m p l e t e p i c t u r e of ZG(t) f o r a s e m i s i m p l e e l e m e n t t E G.
-
P r o p o s i t i o n 4.
98
-
Let t ~T, a maximal torus.
with respect to T.
Then
L e t R be the r o o t s y s t e m of G
ZG(t) is the group G 1 generated by T, by those !
XI s
such that
o((t) = 1 and by t h o s e
n s (w ~ W - - N ( T ) / T )
s u c h that w(t) = t
W
(i.e.
nw tn'lw = t).
The identity component
ZG(t) °
is g e n e r a t e d by T and the
?
X
s
(such t h a t D((t) = 1) and is r e d u c t i v e .
Proof.
By B r u h a t l e m m a , G =
Uw : U f l n suchthat
W
. U ' . n "1.
It is known that
W
o(>0
and
[J Bn B, a d i s j o i n t union. n w 6 N(T) w
w-l~<0.
U
W
(Notethat
Define
is the g r o u p g e n e r a t e d by X ( s n w . X o ( n -wl = Xw(~ .
~ e m a k e u s e of
a l e m m a w h i c h w i l l be v e r y u s e f u l l a t e r on.
Lemma.
The map
~ : U w X B - - - ~ BnwB g i v e n by
an i s o m o r p h i s m of v a r i e t i e s . uniquely written as
P r o o f of t h e l e m m a . Further,
W
.b
with u E U w , b E B .
Since n
W
.T.n
U = -~"
= T, it f o l l o w s that Hence, whenever ~0,
It now f o l l o w s that s u c h
( R e c a l l that
is in f a c t
H e n c e , in p a r t i c u l a r , any e l e m e n t of BnwB is
X <.n w =nw. Xw_l(~).
C nw.U. in B.
u.n
~(u,b) = u . n w . b
X
X'~
s
Bn w . B = U . n w . B . w ' l ( o < ) ;> 0, X o < . n w
can be ' p a s s e d ' o v e r n w and a b s o r b e d
f o r e v e r y o r d e r of p o s i t i v e r o o t s . )
Thus
>0
Bn B = U . n w . B = U w . n w . B . W
=
-1 nw'U - "nw
for some
T h i s p r o v e s the s u r j e c t i v i t y of ~.
u- E U-
"
Thus
~(u2,b2), u i £ U w , b i E B, i = 1 , 2 . i . e .
nwU
h 2 for s o m e
( u - , b ) -- u ' . b sequently
u;, u2
.
is an i s o m o r p h i s m ,
u I = u 2.
Hence
u . n w = n w .u .
Now, l e t
U l n w . b 1 = u 2 . n w b 2.
Thus u ; b I it f o l l o w s that
~ is i n j e c t i v e .
.b 2
W
W
u EUw,U
~(Ul,b 1) =
H e n c e nw.U [ . b 1 =
S nce
.B,
u i = u~ and b 1 ° b 2.
It is e a s y to s e e that
an i s o m o r p h i s m of v a r i e t i e s s i n c e the n a t u r a l map: U ' X B - - ~ U - B / G = ~ U . n . B , a d i s j o i n t union. nw
For
Con-
~ is in f a c t is.
Thus,
-
99
-
C o m i n g to t h e p r o o f of t h e p r o p o s i t i o n , we o b s e r v e t h a t the g r o u p G 1 i s c o n t a i n e d in Z G ( t ) . suchthat x =u.n
Now l e t x ~ Z G ( t )
X~Uw.nw.B. .b.
be arbitrary.
Hence there exists
H e n c e t h e r e e x i s t u n i q u e u ~ U w, b ~ B
Since X~ZG(t),
x = t x t -1
suchthat
=tut'l.tn
W
nw
t - l . t h t -1. W
Now t n wt -1 ' = n w . n w" l t n w t ' l
=nw't
' . t -I
, t' = n w1 t n w E T ,
A l s o , u is of the
~(%<).
form: "TV oc>O
w-l(d)~.O
Hence
rut "1 =o41T->0
x°((°( (t)' co() C U w a g a i n .
w'l(0()< 0 Thus
x = ( t u t ' l ) . n w. ( t ' . t - l . t b t ' l ) .
Thus
v<(t) = 1 w h e n e v e r
H e n c e b y u n i q u e n e s s , rut -1 = u , t ' . b t -1 = b. )T
c0( ~ 0.
Further,
t ,,. u o = t ,. t ,,. u .t-I = t',t".t'l(tuot'l). O
let b =t
. u o , u o E U.
Again, by uniqueness, t
Then
= t and
u ° = tUot - 1 " d o ( ~ 0.
W r i t i n g u ° = - [ i - x ~ (do<)" o n e s e e s t h a t oK(t) = 1 w h e n e v e r Q(>0 A l s o , t ' = t g i v e s n w . t . n w 1 = t . It i s n o w c l e a r t h a t x ~ G 1. H e n c e
ZG(t ) = G 1. Further,
whenever
o((t) = 1, ( w ' l ~ ) ( t ) = ~ ( n w . t . nw1) = o((t) = 1.
a n y e l e m e n t of G 1 i s of t h e f o r m by T and X~
g2" nw" w h e r e
s a l o n e a n d n w s u c h that
s u b g r o u p of f i n i t e i n d e x i n G 1. immediately follows that
nw.t,n
Hence
g2 ~ G 2 ' t h e g r o u p g e n e r a t e d w
= t.
Clearly, G 2 is a
S i n c e G 2 is c l o s e d a n d c o n n e c t e d , it
G 2 = G o1 = ZG(t)o. !
F o r t h e r e d u c t i v i t y , one m a y s e e ' S e m i n a i r e C h e v a l l e y , Vol. 2 .
T h e r e i t is
I
a l s o s h o w n t h a t t h e ~ s , f o r w h i c h o((t) = 1, f o r m a r o o t s y s t e m f o r G 2 a n d T
that
T a n d t h e Xo¢ s w i t h ~ >0, ~ ( t ) = 1 g e n e r a t e a B o r e l s u b g r o u p (of G2).
We o b s e r v e t h a t
Remark.
ZG(t) ° a n d G h a v e the s a m e r a n k s i n c e
t is regular
iff ZG(t)
O
= T.
of (a) a n d (e) i n t h e e a r l i e r p r o p o s i t i o n .
T C_ Z G ( t ) ° .
This clearly shows the equivalence
-
Corollary.
100
-
R e g u l a r s e m i s i m p l e e l e m e n t s in a r e d u c t i v e g r o u p f o r m a n open
set whose c o m p l e m e n t has c o d i m e n s i o n 1.
Proof.
Choose a m a x i m a l t o r u s
T.
Let R be the r o o t - s u s t e m r e l a t i v e to T.
Let fo = - ~ - (C<-l). Since w EW p e r m u t e s R, it f o l l o w s t h a t f o E k [ T ] w . o<ER Now by t h e o r e m 2 of 3 . 4 , f e x t e n d s to a unique c l a s s f u n c t i o n f £ C [ G ] . We o
claim: S -- fx/f(x
p 01 is the set of regular semisimple e l e m e n t s
Clearly
f r o m (e) of p r o p o s i t i o n 3, S c o n t a i n s the s e t of a l l r e g u l a r s e m i s i m p l e e l e m e n t s . Let x £S.
We can a s s u m e
x £ B (= T . U
in u s u a l n o t a t i o n ) .
g a t i n g by a s u i t a b l e e I e m e n t of B, one can a s s u m e the J o r d a n d e c o m p o s i t i o n of x.
Since x ~ ZG(s) , x
x = s.u,s~T,
Since f £ C [G] , f(x) = f(s).
to t h e o r e m 2 of 3 . 4 . ) i . e . ~ ( ~ - l ) ( s ) ~<ER p r o p o s i t i o n 3, s is r e g u l a r . Hence
A g a i n , by conj u u~U
is
(See c o r o l l a r y 1
~ 0, i . e . o((s) ~ 1 k/~ER.
Hence by
ZG(s) c o n s i s t s of s e m i s i m p l e e l e m e n t s .
is s e m i s i I n p l e and h e n c e r e g u l a r (since u = 1).
Thus S
is an open d e n s e s e t of G, whose c o m p l e m e n t has c o d i m e n s i o n 1 s i n c e it i s defined by a s i n g l e equation.
(Check the l a s t i m p l i c a t i o n . )
P r o p o s i t i o n 5. x E G is r e g u l a r iff x u £ Z G(Xs) o is r e g u l a r .
Proof.
Let
ZG(Xs )° = G 1.
Then ZGl(Xu) = Z G ( X ) ~ G 1 ~ ZG(X) ° ( s i n c e o
ZG(X ) C_ ZG(Xs)), Also, ZGI(Xu )° C_ ZG(X ) /'%G 1 ZG(X) ° .
=Z
o
G(x) . Hence
ZGI(X u)
o
=
F u r t h e r , w h e n e v e r x E T , a m a x i m a l t o r u s , T ~ZG~(Xu )O ( c G1). t
Hence T is a m a x i m a l t o r u s in G 1 as well.
The p r o p o s i t i o n now follows
immediately.
3.6 Unipotent classes, To continue, we must know'that regular unipotent elements exist. In case of characteristic 0, this was proved by Dynkin and Kostant,
-
using Lie algebras.
101
-
For arbitrary characteristic,
in P u b l i . Math. I . H . E . S .
# 25 (1965) (§4).
t h i s w a s p r o v e d by the a u t h o r
U s i n g e x p l i c i t c a l c u l a t i o n in the
Lie algebra, Springer proved this result for 'almost all' characteristics.
Here,
we s h a l l give an a c c o u n t of R i c h a r d s o n ' s m e t h o d ; he p r o v e d that u n d e r s o m e c o n d i t i o n s , a r e d u c t i v e g r o u p G c o n t a i n s only f i n i t e l y m a n y u n i p o t e n t c l a s s e s . ( F r o m t h i s the e x i s t a n c e of r e g u l a r u n i p o t e n t e l e m e n t s w i l l follow).
We s t a r t with s o m e p r e l i m i n a r i e s :
L i e a l g e b r a of an a l g e b r a i c g r o u p G.
We r e c a l l that the t a n g e n t s p a c e a t a p o i n t
p• G i s d e f i n e d to be t h e s e t of a l l k - a l g e b r a h o m o m o r p h i s m s into the a l g e b r a of d u a l n u m b e r s
k [ C ~ E 2 = 0).
In s h o r t , ( W G ) p = { r : k [ G ] - - * - k / r
i s k - l i n e a r and r(f. g) = r(f). g(p) + f(p). r(g), f, g C k [ G J t . L i e a l g e b r a of G, to be the t a n g e n t s p a c e
ep+ e . l " of k[G]
We d e f i n e ~ , the
(TG) 1 of G at the i d e n t i f y e . ~ can
b e c a n o n i c a l l y given the s t r u c t u r e of a ' L i e a l g e b r a ' (i. e. a b r a c k e t o p e r a t i o n with s o m e p r o p e r t i e s ) .
F o r u s , ~ w i l l be r e g a r d e d a s a k - l i n e a r s p a c e only.
Since k [GJ i s f i n i t e l y g e n e r a t e d , it f o l l o w s that oj i s f i n i t e d i m e n s i o n a l . fl .....
fn g e n e r a t e
k [G]
as k-algebra.
(r) = (r(fl)~.,~r(fn) ). Then A s an e x a m p l e , c o n s i d e r [1],
D = determinant.
)~ij = T(Xij) E k.
~ : ~ - - - - ~ k n by
~ is k-linear aud injecfive.)
G = G L n. For
Define
(Let
We h a v e ,
k[G 3 = k[Xll,X12 .....
TC(TG)I, definea matrix
Xnn~ -
T--(~kij) g i v e n b y
It i s e a s y to s e e that t h i s s e t s up a o n e - o n e c o r r e s p o n d e n c e
between
(TG) 1 and Mn(k) , the a l g e b r a of a l l n x n m a t r i c e s .
algebra
~1 n of G L n i s i d e n t i f i e d with Mn(k).
Hence the L i e
Now, t h e L i e a l g e b r a of a p r i n c i p a l open s u b g r o u p G 1 of G can be i d e n t i f i e d with that of G i t s e l f .
T h e L i e a l g e b r a of a c l o s e d s u b g r o u p i s a s u b s p a c e of
-
t h e L i e a l g e b r a of G.
A surjective morphism
G,G'
braic groups
-
We h a v e a n a t u r a l a c t i o n of G on ~ ,
in a n y r e p r e s e n t a t i o n , c o m i n g f r o m
Isogenies.
102
(Adx)(X) = xXx -1
x(1 + ~.X)x "1 = 1 + ~ . x X x "1.
f: G ~
G'
of c o n n e c t e d , r e d u c t i v e a l g e -
is said to be an i s o g e n y if it h a s a f i n i t e k e r n e l .
It is e a s y to s e e that in this c a s e , G is s e m i s i m p l e iff G'
is so.
Further,
we
h a v e t h e following: (a) G i v e n a s e m i s i m p l e g r o u p G ' , t h e r e e x i s t s a s i m p l y c o n n e c t e d ( s e m i s i m p l e ) a l g e b r a i c group
G and an i s o g e n y f:G ~
G'.
(b) T h e k e r n e l of any i s o g e n y f i s d i s c r e t e (finite, in f~ct) and n o r m a l . S i n c e G i s c o n n e c t e d , t h e k e r n e l of f i s c e n t r a l . (c) f s e t s up a b i j e c t i n n of c o n j u g a c y c l a s s e s of u n i p o t e n t e l e m e n t s . because
(This is
the k e r n e l of f c o n s i s t s of s e m i s i m p l e e l e m e n t s . )
We now p r o v e an i m p o r t a n t r e s u l t :
Theorem (Richardson).
L e t G be a c o n n e c t e d a l g e b r a i c s u b g r o u p of G L n. L e t
be i t s L i e a l g e b r a ( ~ ~ of
~ln).
A s s u m e that t h e r e e x i s t s a s u b s p a c e
~1 n s u c h that
(i)
no
}
(2) ~tt
is stable under Ad(G)
Then every conjugacy class of GLn meets G in finitely many conjugacy classes of G.
Proof.
L e t G 1 = GL n and ~1
Consider
C 1 f~ G.
gi n .
Let
C 1 be a c o n j u g a c y c l a s s of G 1.
E v e r y c o n j u g a c y c l a s s of CII3 G, b e i n g i r r e d u c i b l e , is
c o n t a i n e d in s o m e i r r e d u c i b l e c o m p o n e n t of Clt~ G and c l e a r l y e a c h c o m p o n e n t
-
is a union of c l a s s e s .
Since C 1/% G
103
-
has finitely m a n y c o m p o n e n t s , the t h e o r e m
is p r o v e d if we p r o v e that each c o m p o n e n t Z of C 1/% G is a single c l a s s of G.
So let Z be s u c h a component.
Let g EC. Claim:
L e t C be a c l a s s of G such that C C Z .
C o n s i d e r the m a p f : G 1 - - ~ C l g ' l
(a)
given by f(x) = x g x - l g -1.
(df)1 = 1 - Adg.
(b) (dr)1 is surjective. W e have, (df)1 : (GI) 1
~ (Clg-l)l.
(a) can be verified in a straight forward
m a n n e r (One m a y use: (I + ~ X ) .
g.(l + E x ) - l . g -I -- 1 + 6 ( I - (Adg)(~)).
Also, dim (df)l ( ~i ) = dim = dim
~i " dim ker (df)1 ¢~i " dim Z
l(g) by (a).
Since ZGI(g) is an open s u b s e t of Z ~ l(g), c o n s i s t i n g of the invertible e l e m e n t s , it has the s a m e dimension. Hence dim ( d f ) l ( ~ l ) = dim G 1 - dim ZGI(g) = dim C 1 = dim C l g
-1 = d i m T ( C 1g.1)l.
F r o m this (b) follows. Hence
T(Cg "1} 1
C._ T ( Z g - 1 ) I C T ( C l g ' l ) l f %T(G)I = (1-Adg)(a~l)/~ ~ (by c l a i m (b) above) = (1-Adg) (~)
by (*)
C T ( C g - 1 ) l " s i n c e f(G) = Cg -1 It follows that T ( C g ' I ) 1 = T ( Z g ' I ) I . Now f o r a v a r i e t y V, d i m (TV) all v ~ V
dim Z.
>~ d i m V V v @V.
v
(see the appendix to 2.11).
holds f o r all e l e m e n t s .
Hence T(C)g = T(Z) . g The equality holds f o r a l m o s t
Since C is h o m o g e n e o u s , the equality
Hence dim C = dim T(C)g ~ g @C. A l s o , dim T(Z)g>~
Thus dim C >~ dim Z, which gives dim C = dim Z.
a dense open s u b s e t of Z.
If C
I
Thus
C contains
w e r e any o t h e r c l a s s C Z, then by a s i m i l a r
a r g u m e n t as above, C' ~ dense open s u b s e t of Z ~
C' and C i n t e r s e c t ,
-
g i v i n g C' - C.
Thus
104
-
C is the unique c l a s s d_. Z and h e n c e
C ~ Z.
This
p r o v e s the t h e o r e m .
C l e a r l y , c o n d i t i o n (*) p l a y s an i m p o r t a n t r o l e in the p r o o f of the a b o v e t h e o r e m . H e n c e we t r y to find out g r o u p s f o r which (*) h o l d s .
P r o p o s i t i o n 1. L e t G be a g r o u p . a group G' isogenous
Then in the following c a s e s , t h e r e e x i s t s
to G and a f a i t h f u l r e p r e s e n t a t i o n
G ' e - - - ~ G L n of it
T
such that (*) h o l d s f o r
~,
the L i e a l g e b r a of G .
dition (•*) h o l d s : (**) T h e t r a c e f o r m of (a)
In f a c t , the s t r o n g e r c o n -
~1 n i s n o n - d e g e n e r a t e on ~ ' .
c h a r k - 0, G a n y s i m p l e g r o u p .
(b) G = G L n (c)
c h a r k ~ 2, G a n y s i m p l e g r o u p of t y p e Bn, Cn, D n.
(d)
c h a r k ~ 2, 3, G any s i m p l e g r o u p of t y p e G2,F4,E6, E 7.
(e)
chark
Proof.
~ 2,3,5,
G any s i m p l e g r o u p of t y p e E 8.
(a) c h a r k = 0.
a l g e b r a of G. Also, ~'
Then
C h o o s e G' = Ad(G) c G L ( ~ ) ,
G' i s i s o g e n o u s to G.
is just the Lie algebra
ad ~ ,
w h e r e ~ i s the L i e
(The c e n t r e of G i s d i s c r e t e ) .
h e n c e the t r a c e f o r m of ~ 1 n on ~ '
i s j u s t the K i l l i n g f o r m of ~ and it i s n o n - d e g e n e r a t e s i n c e ~ i s s i m p l e .
(b)
G = GLn;
the statement i s c l e a r .
(c) C h o o s e the n a t u r a l r e p r e s e n t a t i o n of G a s a c l a s s i c a l g r o u p (SOn o r Sp2~)
Consider SOn . W e claim that its Lie algebra 7 = { X E ~inIX =- xt}. For: O n
is given by functions (~ xij .Xkj- ;ik)i,kE k[Xll,...~n9 [I]. J Hence the Lie algebra ~ consists of derivations at I which vanish on these functions.
- i05
Hence
iff T( ~ x i j . J
T~°~
-
Xkj - ~ i k ) = 0 ~ i , k
(T(xij) .Ski + g i j " T(~kj)) : 0 V i , k
iff X
J iff T(Xik ) + T(Xki ) : 0 7 i , k . i.e.
The Lie a l g e b r a of On
is the set of all skew s y m m e t r i c m a t r i c e s . Since
SOn is the identity component of On, its Lie a l g e b r a is a l s o the s a m e . Let Tf~ = I X ¢ ~ l n / X = X t ~
x¢~}l n
( x + x t) =
2
(x-x +
F u r t h e r , for A C T ,
t) with x + x
2
'
2
t
xt ~TI~,
Thenany
£~.
X-2
BETTY, tr(AB) ffi t r ((AB) t) ffi tr(-BA) ffi - t r (AB). This
shows that tr(AB) = 0. d e g e n e r a t e on
, the s p a c e s o f s y m m e t r i c m a t r i c e s .
Hence ~ i n = 7 ( ~ T { "
Since the t r a c e f o r m is non-
7 In and 7 ,-n~ a r e orthogonal, (**) follows. 0
,ell .
Consider SP2 n
+1
-1 -1
W e claim that its Lie a l g e b r a
~
" -1
2n ( is given by: ~ = / X ~ 1 2 n / X M + MXt = 07 •
(This c l a i m is easily proved in the s a m e way as in the case of SOn. ) that X £ ~ i f f
XM is s y m m e t r i c .
Let Tt~ =
It i m m e d i a t e l y follows that ~ 12n = ~ +
I
We note
X 6 ~ 12n/XM is s k e w - s y m m e t r i c ~ .
Again, for A E ~ , B ~ T ~ ,
A =
MAtM; B = -MBtM.
Also, tr(AB) = tr(MAt. M. (-MBtM)) = tr(M. AtBtM) as M 2 = -I ~-%~AtBt) as can easily be verified = -tr (BA)t = -tr(BA) = -tr(AB).
Hence tr(AB) = 0 since char k ~ 2. Hence
~ 12n = ~e~¢l and the result
follows. F o r (d) and (e), we again choose the adjoint r e p r e s e n t a t i o n .
We o b s e r v e that
the Lie a l g e b r a of a simple group p o s s e s s e s a special b a s i s , called ~ h e v a l l e y
-
basis'.
106
-
We calculate the discriminant of the Killing form with respect to this.
This is a number (integer) which is divisible only by 2, 3 for th~ groups in (d) and by 2, 3, 5 for the group in (e).
Hence (d) and (e) hold if we put the suitable
restrictions on char k.
Definition.
Given a r o o t s y s t e m (of a r e d u c t i v e g r o u p G), a p r i m e
p is said
to be 'good' with r e s p e c t to it if p satisfies: (1) Root s y s t e m s i m p l e , and of type: An : p a r b i t r a r y Bn, Cn, D n : p ~ 2 G 2 , F 4 , E6, E 7 : p ~ 2 , 3 , E 8 : p ~ 2,3,5. (2) Root s y s t e m is no__~tsimple.
Let R = R 1U . . . IJ R k be the simple componentsj !
then p is good with r e s p e c t to each of I~ s (as defined in (I)). 1
Remark.
The p r o p e r t y
T h e o r e m 2.
'p good' is inherited by i n t e g r a l l y c l o s e d s u b s y s t e m s .
If G is r e d u c t i v e and c h a r G (-- c h a r k) is good (with r e s p e c t to
the r o o t s y s t e m of G), then the n u m b e r of unipoteut c o n j u g a c y c l a s s e s is finite. Proof• Let G = GL n (or SLn).
w h e r e A is of the type:
Ii
E v e r y unipotent e l e m e n t is of the f o r m : g . A . g - l ,
0 . . .0~
w h e r e each A. is of the f o r m :
A2. . •0 L
1o ::I 0
1
i
•
•
....
•~.
•
I
. .
Ak ]
0. . . .
l~i~k.
(The J o r d a n n o r m a l f o r m ) .
Let r l , . . . , r
k
-
be the ' b l o c k - s i z e s ' .
Then
r 1.
107
-
r k c o m p l e t e l y d e t e r m i n e the c o n j u g a c y
. . . .
c l a s s (of u n i p o t e n t e l e m e n t s ) to which A b e l o n g s .
In o t h e r w o r d s , the n u m b e r
of d i s t i n c t c o n j u g a c y c l a s s e s = the n u m b e r of c o l l e c t i o n s of i n t e g e r s (r 1 . . . . . such that
r i ~ 0 and
~- r i = n (= p(n), the n u m b e r of p a r t i t i o n s of n into n
non-negative integers}. p e c t i v e of c h a r
r n)
H e n c e the t h e o r e m is t r u e f o r G L n o r
SL n ( i r r e s -
G).
L e t G be any a r b i t r a r y s e m i s i m p l e g r o u p .
T h e n t h e r e e x i s t s an i s o g e n y
!
f : G ~
G, w h e r e G '
is s i m p l y c o n n e c t e d .
Now, the n u m b e r of u n i p o t e n t
,
!
c o n j u g a c y c l a s s e s of G = t h a t of G . In o t h e r w o r d s , we m a y a s s u m e
H e n c e we m a y p r o v e t h e t h e o r e m f o r G .
G to be s i m p l y c o n n e c t e d .
G, b e i n g s e m i -
s i m p l e and s i m p l y c o n n e c t e d , i s a f i n i t e d i r e c t p r o d u c t of s i m p l e g r o u p s H e n c e the t h e o r e m n e e d b e p r o v e d only f o r s i m p l e g r o u p s a b o v e m a y b e a s s u m e d to be d i f f e r e n t f r o m f o l l o w s that c h a r
G i is a l s o good.
c l o s e d s u b s y s t e m of that of G).
G L n i ' ( ~ t : Gi classes.
) GLni
Since GLni
f o l l o w s that
G i , which by the
Since c h a r
G is good, it
(The r o o t s y s t e m of G i is an i n t e g r a l l y
Now the p r o o f of the p r o p o s i t i o n 1 s h o w s that
the c{,ndition (*) is s a t i s f i e d f o r G i. s u i t a b l e i s o g e n o u s group).
A r.
G i.
(In f a c t , (**) i s s a t i s f i e d , by taking a
H e n c e by R i c h a r d s o n ' s t h e o r e m , a n y c l a s s of
is a f a i t h f u l r e p r e s e n t a t i o n ) m e e t s
G i in f i n i t e l y m a n y
i t s e l f h a s f i n i t e l y m a n y u n i p o t e n t c o n j u g a c y c l a s s e s , it
G also has this p r o p e r t y .
T h i s p r o v e s the t h e o r e m .
Remark.
It i s not known w h e t h e r the h y p o t h e s i s on c h a r G i s n e c e s s a r y o r not.
C o r o l l a r y 1.
In a r e d u c t i v e g r o u p
G, with c h a r
G good, the n u m b e r of c o n -
j u g a c y c l a s s e s of c e n t r a l i z e r s of e l e m e n t s of G is f i n i t e .
-
Proof.
Let
108
-
T be a m a x i m a l t o r u s of G.
T h e n the n u m b e r of c e n t r a l i z e r s ,
in G, of e l e m e n t s of T i s fiDite (by c o r o l l a r y to p r o p o s i t i o n of 2 . 7 ) .
Since
any s e m i s i m p l e e l e m e n t is c o n j u g a t e to an e l e m e n t in T, it f o l l o w s that the n u m b e r of c o n j u g a c y c l a s s e s of c e n t r a l i z e r s of s e m i s i m p l e e l e m e n t s i s f i n i t e . Let
x 6G, x = s.u
be the J o r d a n d e c o m p o s i t i o n .
Then
ZG(X) = Z G ( S ) / ~ ZG(U).
CUp to c o n j u g a c y , t h e r e a r e f i n i t e l y m a n y p o s s i b i l i t i e s f o r
ZG(S). ) A g a i n ,
u ~ Z G ( S ) ° (by c o r o l l a r y 4 to t h e o r e m 1 of 2 . 1 3 ) . ZG(S)° i s r e d u c t i v e (by p r o p o s i t i o n 4 of 3.5) and c h a r (ZG(S)° } c a n b e s e e n to be good.
H e n c e up to c o n -
j u g a c y , u has f i n i t e l y m a n y p o s s i b i l i t i e s in ZG(s) ° .
ZG{X) i t s e l f
h a s f i n i t e l y m a n y p o s s i b i l i t i e s in G.
Remark.
Hence
T h i s p r o v e s the c o r o l l a r y .
By u s i n g a s i m i l a r m e t h o d , one can p r o v e the following:
c o n n e c t e d , r e d u c t i v e g r o u p with c h a r G - 0 o r s u f f i c i e n t l y l a r g e . on an a f f i n e v a r i e t y V. p o n e n t s of G v (v ~ V )
Let G act
T h e n the n u m b e r of c o n j u g a c y c l a s s e s of L e v i c o m is f i n i t e .
(If we w r i t e
the u n i p o t e n t r a d i c a l and M r e d u c t i v e , then
T h e o r e m 3.
L e t G be a
G v = M . U , s e m i d i r e c t , with U M is c a l l e d a L e v i c o m p o n e n t . )
L e t G be a r e d u c t i v e g r o u p with c h a r
G good (or with the
property: G has finitely many unipotent conjugacy classes). s e t of a l l u n i p o t e n t e l e m e n t s in G.
L e t V b e the
Then,
(a) V is a c l o s e d , i r r e d u c i b l e s u b v a r i e t y of G and it has c o d i m e n s i o n
r
in
G (r = r a n k of G).
(b) V c o n t a i n s a unique c l a s s of r e g u l a r e l e m e n t s .
(Thus, in p a r t i c u l a r ,
r e g u l a r u n i p o t e n t e l e m e n t s e x i s t in c a s e c h a r G i s good).
T h i s c l a s s i s open
d e n s e in V and i t s c o m p l e m e n t has c o d i m e n s i o n / > 2 in V.
109
-
Proof.
Take a faithful representation
-
in G L n of G.
in G L n f o r m a c l o s e d s e t (A i s u n i p o t e n t It f o l l o w s t h a t group).
V i s a l s o c l o s e d in G.
Fix a Borel
Define
S C G/B~G
subgroup
: G ~U--~G/B×G
( T h i s , of c o u r s e ,
Pl
is t r u e if G i s a n y
B in G. EUt
, U = B u.
It i s c l e a r t h a t
S
A l s o , S i s t h e i m a g e of G x U u n d e r t h e m o r p h i s m
g i v e n by : ~ ( g , x ) -- (gB, g x g ' l ) .
Consider the projection Pl(S) = G/B.
iff ( A - I ) n = 0, a p o l y n o m i a l c o n d i t i o n ) .
by : S = { (gB, x ) / g ' l x g
i s w e l l d e f i n e d and c l o s e d .
Now t h e u n i p o t e n t m a t r i c e s
Hence
S is irreducible.
of G / B X G o n t o t h e f i r s t f a c t o r .
A l s o , the f i b r e s of Pl
Clearly
a r e c o n j u g a t e s of U, h e n c e a r e of t h e
same dimension. Hence
dim S = dim
S = dim G/B + dim U
= dim G - dim B + dim U = dimG
- r (since dimB
Consider the projection
P2
- dimU
o n t o the s e c o n d f a c t o r .
we s h o w t h a t s o m e f i b r e of P2 i s f i n i t e . d i m V. that
Hence
= r).
V has codimension
r
c l e a r l y p r o v e t h a t t h e f i b r e of P2
in G.
over
P2(S) = V.
Now
T h i s p r o v e s t h a t d i m S = d i m P2(S) = Choose
We s h o w : g ' l x g
c~ ~ 0 for all simple roots.
Clearly
x = ~ x
6U~
gEB.
(c~)EU
such
This will
x is f i n i t e , in f a c t c o n s i s t s of o n l y one
e l e m e n t v i z . (B, x). A s s e e n in p r o p o s i t i o n 4 of 3 . 5 , g - 1 = U . n w . b " u ~ U w.
One c a n a s s u m e
Nowwehave:
n xn
n
g-1 xg~U
.x.n "IE'~-X w
w
o( >0
, , also.
i.e.
Hence
i.e.
W
-1 W
E U.
Now
w(~) > 0 whenever
ctK ~ 0.
In p a r t i c u l a r ,
This clearly means
w = Id.
(w t a k e s t h e
wloc;
w(~) > 0 f o r a l l s i m p l e r o o t s fundamental chamber T h i s 0 r o v e s (a).
Unw.x.n-lu-lEu w
b = 1.
~.
into itself).
(The a r g u m e n t
Hence
n
W
E T,
above proves,
so that
g £B.
incidently, that
gBg " 1 ; B @ g ~ B
(for r e d u c t i v e g r o u p s ) ) .
(b) S i n c e
G has only finitely many unipotent conjugacy classes,
V is a finite
-
u n i o n of c o n j u g a c y c l a s s e s .
Since
class in V also has dimension Also,
closure,
its closure
it follows that
Remarks.
dim G - r.
(corollary (b).
Hence this class
Now a n y o t h e r c l a s s i n V
4 to proposition
The statement
is the existance
unipotent elements
1 of 1 . 1 3 ) a n d h e n c e
about codlin is proved later.
(a) a n d (b) h o l d in a r b i t r a r y
(All we r e q u i r e
C o is
Since any class is open in its
C o i s o p e n ( d e n s e ) in V .
(1) T h e c o n c l u s i o n s
(2) T h e s e t of i r r e g u l a r
dim V = dim G - r, it follows that some
equal to
This proves
we shall use them.
of V i s e q u a l t o t h e d i m e n s i o n
i s t h e w h o l e of V .
i s of s t r i c t l y l o w e r d i m e n s i o n cannot be regular.
-
Hence dimension
of a t l e a s t o n e of t h e c l a s s e s .
regular.
110
characteristics
of r e g u l a r
and
unipotent elements).
is closed in G (and has codimension
>/2).
3.7
Regular
elements
We now characterize
Theorem
1.
Let
(continued).
the regular unipotent elements.
G be a reductive
group,
B = T. U, a Borel subgroup containing G.
T.
T
a maximal
Let
x
torus and
be a unipotent element in
Then the following statements are equivalent.
(a) x
is regular.
(b) x b e l o n g s t o a u n i q u e B o r e l s u b g r o u p . (c)
x belongs to finitely many Borel subgroups.
(d) If x E U ,
x =~-~ ~>0
x¢<(c~), t h e n
G = To.S , where
co< ~ 0 f o r e v e r y s i m p l e r o o t ~ .
Proof.
Let
T o is the radicatand
group.
T o is a torus and it is central.
S = [G,G],
a semisimple
T O is contained in every Borel subgroup.
-
Iii
-
!
If y = t o . Y in S.
with t o e T o , y ' & S , then y i s r e g u l a r in G iff y '
is regular
It i s now c l e a r t h a t in p r o v i n g the e q u i v a l e n c e of the a b o v e s t a t e m e n t s ,
one m a y a s s u m e
G i t s e l f to b e s e m i s i m p l e .
(b) ~
(c) i s o b v i o u s .
(c) ~
(d).
r o o t o( o.
L e t x = - ] ' [ - x (c~). if p o s s i b l e , l e t c = 0 for some simple o~ >'0 °Co Now { c<>0, ~ o(° t O {- e~° 1 i s a g a i n a s e t ° f p ° s i t i v e r ° ° t s (with
r e s p e c t to s o m e
ordering,
Hence X.~ ° normalizes
s i n c e wc< ° p e r m u t e s p o s i t i v e r o o t s Uc( ° =-[~-
X
o~>0
~
° ).
It f o l l o w s t h a t x ~ Y B ( y E U ) , a("
-
o
O
which a r e i n f i n i t e l y m a n y in n u m b e r .
( F o r d ~ 0, X_~b(d) ~ B . )
This contra-
d i c t s o u r a s s u m p t i o n in (c) and h e n c e p r o v e s (d).
(d) ~
(a).
C l e a r l y , the e l e m e n t s s a t i s f y i n g the c o n d i t i o n (d) a r e d e n s e in V.
By t h e o r e m 3, r e g u l a r u n i p o t e n t e l e m e n t s a r e a l s o d e n s e in V. such t h a t x ° i s r e g u l a r and s a t i s f i e s (d).
Hence ~ XoE U
O u r c l a i m i s t h a t x and x ° a r e
c o n j u g a t e (in B) and t h i s p r o v e s the i m p l i c a t i o n .
F o r the p r o o f we d e v e l o p e h e r e s o m e m a c h i n e r y which w i l l b e u s e f u l in l a t e r discussions also.
(1) C o m m u t a t i o n F o r m u l a e : For positive roots ~,/3, p o l y n o m i a l in t , u .
(Xc<(t), x•(u)) = -~-- X r ( P r ( t , u ) ) , w h e r e P r ( t , u ) r>0 T h i s p o l y n o m i a l is i d e n t i c a l l y z e r o if r ~ io( + j ~ ( i , j
is a
integers~> 1) and P i c ( + j / ~ (t,u) = c ( i , j ) t i . u J, c ( i , j ) E k. T h i s can be e a s i l y p r o v e d in the s a m e m a n n e r a s the p r o o f of p r o p o s i t i o n 2 of 3 . 3 .
(2) For
a simple root o~i, let U i =-[[¢~>0
X
Let U' = e("
./~ U i. Then the l.
-
above formulae show: U'~ EU,U] abelian.
A l s o , we n o t e t h a t
C o m i n g b a c k to the c l a i m , c~
112
-
, hence U' is normal in U and U/U'
is
c o d i m U (in U) = r .
"TT-
xo = I| xo((c~) and x = ] | x (d) with ~0 ,~ 0 0, d ~ ~ 0 f o r e v e r y s i m p l e r o o t ~ . By p r o p o s i t i o n 7 of 2 . 6 , c h o o s e
t~T
such that ~(t).d~
let
= c~
for all simple roots ~ .
Hence
x ' = txt "1 = 7 ] - x o ( ( ~ ( t ) . d ), ~>0 , Now i t i s e n o u g h to s h o w t h a t x and
x
are conjugate.
O
,
Clearly
I
Since C (Xo).X: I C_ U', dim Cu(Xo). xo-l-'~ dim U = dim U - r.
x x
-I
O
'
~ U .
Also,
dim ZU(Xo) ~ dim ZG(Xo) = r, since xo is regular. Thus dim Cu(Xo) ~ d i m U - r .
Thus
d i m Cu(Xo) . xo 1 = d i m U ' .
A l s o , C u ( x o)
i s c l o s e d , b e i n g a c l a s s in u n i p o t e n t g r o u p (by c o r o l l a r y to p r o p o s i t i o n of 2 . 5 ) . Since
U'
is irreducible
and
-1 CU(Xo). x °
as U' , it follows that Cu(Xo) "x-lo = U' '
We h a v e : 1
x = UXoU
(a) ~
X'xol e U . -1
.
Co).
Hence
~ ueU
i s c l o s e d and h a s t h e s a m e d i m e n s i o n
i
such that
UXoU
-i
-1
x°
= X'Xol
or
This proves the claim.
Let
x be regular.
c o n d i t i o n (d).
Hence
of 3 . 6 , x and
x
O
Choose a
xo is regular
are conjugate.
XoE U s u c h t h a t
(as p r o v e d e a r l i e r ) .
xo satisfies the
However, by theorem
A l s o , t h e p r o o f of t h i s t h e o r e m
x ° i s c o n t a i n e d in a u n i q u e B o r e l s u b g r o u p .
It f o l l o w s t h a t
3 shows that
x is also contained
in a u n i q u e B o r e l s u b g r o u p .
T h i s p r o v e s the t h e o r e m c o m p l e t e l y .
Corollary. (For."
If x i s r e g u l a r ,
x E U, t h e n
ZG(X)° ~_ U a n d h e n c e i s u n i p o t e n t .
In t h e p r o o f of (d) = ~ (a), t h e i n e q u a l i t i e s a l l b e c o m e e q u a l i t i e s a n d h e n c e
d i m ZG(Xo )° = d i m Z u ( x o )°. )
3
-
113
-
We a g a i n c o n s i d e r U i a s d e f i n e d e a r l i e r . where
(<Xxi, X
L e t P i = (T. < X , e i, X . ~ . > ). U i, 1 < > ) i s the g r o u p g e n e r a t e d b y X ~ . I and X . ~ ¢ i . Both T
and <X~I,. X . ~ i >
normalize
U.1 {because of the c o m m u t a t i o n f o r m u l a e ) .
Here, Pi is a rank 1 - parabolic subgroup,
U i i s i t s u n i p o t e n t r a d i c a l and
T.<X~.,
X ~> i s a L e v i c o m p o n e n t ~f P i o 1 1 NOW, d i m T . < X ~ i , X_~i"2. = r + 2 . (The o v e r l a p of T a n d ~ X ~ i , X
h a s d i m e n s i o n 1) .
(i>
H e n c e d i m P i - d i m U i = r + 2.
Now, P. 2 B and h e n c e G / p i i s c o m p l e t e . 1
C o n s i d e r the s e t S i ~ _ G / P i × G,
givenby: S i = {(gPi. x)/g'ixgEUil (whichis welldefined). Then Si is c l o s e d and i r r e d u c i b l e (being i m a g e of the m o r p h i s m ~(g,x) = (gPi" g x g ' l ) ) '
GXU i
~ > G / P i ;< G,
By p r o j e c t i n g onto the f i r s t f a c t o r ,
d i m S i = d i m G / P i + d i m U i (by an a r g u m e n t s i m i l a r to one in t h e o r e m 3) = d i m G - (r+2). By t a k i n g p r o j e c t i o n onto the s e c o n d f a c t o r , P2(Si) = Vi = U g u i g gt~G d i m V . ~ d i m S. = d i m G - (r+2). 1 1 Now, b y the p r o p o s i t i o n a b o v e , for some
i.
-1
and
an u n i p o t e n t e l e m e n t x i s i r r e g u l a r iff x EV.1
Hence, from above,
d i m (V - r e g u l a r unl. e l e m e n t s ) = sup d i m V i <~ d i m G - (,'+2). i T h i s p r o v e s the u n p r o v e d p a r t of s t a t e m e n t (b) of t h e o r e m 3. I n c i d e n t l y , e a c h V i d e f i n e d a b o v e is c l o s e d , s i n c e G / P i i s c o m p l e t e .
This
s h o w s once a g a i n t h a t the s e t of i r r e g u l a r u n i p o t e n t e l e m e n t s i s c l o s e d .
T h i s a r g u m e n t can b e c a r r i e d out in c a s e of a r b i t r a r y i r r e g u l a r e l e m e n t s of G. We s t a r t with a l e m m a :
L e m m a 1. F o r e a c h
o
B i = T i . U i ( B i h a s c o d i m e n s i o n 2 in B).
L e t Ui, P.1 be a s b e f o r e ,
T h e n e v e r y i r r e g u l a r e l e m e n t of G
-
114
i s c o n t a i n e d in a c o n j u g a t e of s o m e
For the proof,
From
see I.H.E.S.
-
B i.
C o n v e r s e is a l s o t r u e .
# 25 (§ 5).
this, w e get: The irregular elements of G
f o r m a closed subset of G,
each of whose components has codimension 3. In particular, regular elements f o r m a dense open subset of G.
T h e proof of this statement is like that just
given, but with B i inplace of U i. W e have c o d i m p i
Lemma
2.
Among the irregular
Proof.
For each
i, s e t
elements,
Ji = ker ~i
B. = 3. i
the s e m i s i m p l e
- U k e r c~
.
ones are dense.
Consider
J i . Ui, w h i c h
I
is open in B..
O u r claim is that J..U.
1
i
consists of semisimple elements. So
1
let x = t.u E Ji'Ui" t E Ji o u E U i. N o w by conjugating b y a b o of Bi, w e h a v e : easy to see that Since
x ' --b ° xb o"I = t.u' with u' E U i and
u' = 1 so that
x'
is semisimple.
the s e t of i r r e g u l a r
elements.
W e now c h a r a c t e r i z e
Theorem
2.
Let
t . u ' - - u .'t .
Hence
(J J .1U 1 is d e n s e in L ] B i , (J U g. J i . U i . g - 1 1 g
suitable element Itisnow
x is also semisimple.
i s d e n s e in
U gBig g,i
-1
= Ir,
This proves the lemma.
the r e g u l a r e l e m e n t s
of G
in a n o t h e r w a y .
x b e a n y e l e m e n t of G (G r e d u c t i v e ) .
t h e n u m b e r of B o r e l s u b g r o u p s c o n t a i n i n g
x is f i n i t e .
Then
x i s r e g u l a r iff
( T h i s n u m b e r is 1 if
x i s u n i p o t e n t and e q u a l to [WI if x s e m i s i m p l e ) .
F o r t h e p r o o f , we r e q u i r e a l e m m a .
Lemma
3.
Let
t E G be s e m i s i m p t e .
s u b g r o u p of G, c o n t a i n i n g
Set
GO = ZG(t)°.
Then each Borel
t, c o n t a i n s a u n i q u e B o r e l s u b g r o u p of G o.
-
Conversely,
each Borel
115
s u b g r o u p of G
-
contains
O
t and is contained in finitely
m a n y Borel subgroups of G.
Proof.
Let
of p r o p o s i t i o n X~ s
4 of 3 . 5 ,
we s e e t h a t
t
Then from the proof
B/~G ° (the group generated
B.
Conversely,
let
s i n c e t i s i n t h e c e n t r e of G
c o n t a i n e d in
B o.
by
T
and all
g r o u p s of G
B o b e a B o r e l s u b g r o u p of G o .
Iwl
can thus contain
Let
O"
It i s a l s o m a x i m a l
it is contained in exactly
in G
t i o n of x.
B.
the lemma.
This proves
let
At most
As such
IW~Borel
sub-
x = t. u b e t h e J o r d a n d e c o m p o s i -
subgroup 5 of 3 . 5 ,
It c o n -
t o r u s of G o ,
since rank G = rank G o .
B o.
Also, by proposition
ZG(t) ° = G o say.
be a maximal
O
of G .
It follows that for aBorel
u are in
T
Borel subgroups
C o m i n g b a c k t o t h e p r o o f of t h e t h e o r e m ,
in
t.
s u c h t h a t ~ > 0 , ~ ( t ) = 1) i s a B o r e l s u b g r o u p of G o , c l e a r l y t h e u n i q u e
o n e c o n t a i n e d in tains
G, c o n t a i n i n g
B b e a B o r e l s u b g r o u p of
B
of G , x E B
x is regular
The proof is now immediate
iffboth
in G t f f u
t and is regular
from the above lemma
and the
theorem.
Remark.
If W o d e n o t e s t h e W e y l g r o u p of G o , t h e n a c l o s e r a n a l y s i s
that the finite number with
in the lemma
IWl /IWo I (and accordingly
in the theorem
t = Xs).
Theorem
3.
If G i s a r e d u c t i v e
b i j e c t i o n of t h e r e g u l a r
Pronf.
is
shows
(i)
Surjectivity,
s i t i o n 4 of 3 . 5 , which is regular,
ZG(S) °
classes
Let
group,
onto the semisimple
s
be a semisimple
is reductive.
unipotent.
then the map
Now
classes.
element.
Hence by theorem
x = s.u
x ~,--~x s yields a
Then by propo-
3 a b o v e , "~ u ~ Z G ( S ) °
is the Jordan decomposition
to
x
-
116
-
a n d b y p r o p o s i t i o n 5 of 3 . 5 , x i s r e g u l a r s i n c e x
= s.
u i s s o in
ZG(S)°.
Also,
This proves the surjectivity.
S
(2) I n j e c t i v i t y . conjugate.
Let
x,y
be regular elements
By c o n j u g a t i n g
So l e t Now
ZG(S) ° , it f o l l o w s t h a t
g. Xu.g gxg
w i t h o u t l o s s of g e n e r a l i t y ,
ZG(S)°, which is reductive.
e l e m e n t s in
-I
-1
-- Yu" g ~ Z G ( S )
= g. x s. Xu.g
-i
Xs and
x by a s u i t a b l e e l e m e n t (in f a c t by
g X s g ' l ~ y s ), one m a y a s s u m e , Consider
such that
o
Since
that
Ys a r e
g, w h e r e x s = Ys = s.
Xu, Yu a r e r e g u l a r ,
Xu,Y u a r e c o n j u g a t e in
unipotent
ZG(S) ° ( T h e o r e m
3).
'
= g. sxffg
-i
= s° g,Xug
-i
= s. Yu -- y"
This proves the injectivity.
3.8.
Regular elements
in s i m p l y c o n n e c t e d ,
In t h i s s e c t i o n , G i s a s s u m e d
semisimple
groups.
to b e a s i m p l y c o n n e c t e d s e m i s i m p l e
algebraic
group.
Let
T
be a f i x e d m a x i m a l t o r u s and
R be t h e r o o t s y s t e m r e l a t i v e to it.
recall that the fundamental weights I~il
1 _~ i ~ n
characters
(by d e f i n i t i o n of s i m p l y c o n n e c t e d n e s s ) .
characters
on G b y X i (X i = X X . ) .
in t h i s c a s e ,
We
a r e in f a c t
We d e n o t e t h e c o r r e s p o n d i n g
Consider the map
p : G-->/A r
given by
1
p(g) = (X 1 (g) .
. . . .
Xr(g)).
Theorem
Let
F
I.
T h e n we h a v e :
b e a n y f i b r e of p.
(a) F
is a closed, irreducible
(b) F
i s a u n i o n of c o n j u g a c y c l a s s e s ,
cteristics.
s u b v a r i e t y (of G)
which has codimension
r
in G.
f i n i t e in n u m b e r in c a s e of g o o d c h a r a -
-
(c) F
117
-
c o n t a i n s a u n i q u e c l a s s of r e g u l a r e l e m e n t s .
d e n s e in F (d) F
and i t s c o m p l e m e n t h a s c o d i m e n s i o n
c o n t a i n s a u n i q u e c l a s s of s e m i s i m p l e
in F , a n d i s c h a r a c t e r i z e d
Proof.
Since there always exists
r-tuple
(el
contains a semisimple
this class is unique. corresponds
to
S.
class
S.
in F , i s in t h e c l o s u r e of a n y of
F
such that
X.(t} = C. ~ i , f o r a p r e g i v e n 1
1
is always non-empty.
c l o s e d and i s a u n i o n of c o n j u g a c y c l a s s e s F
This class is closed,
b y a n y of t h e s e p r o p e r t i e s .
t ET
C r ), it f o l l o w s t h a t
. . . . .
>~ 2 (in F ).
elements.
has the minimal dimension among the classes the classes
T h i s c l a s s i s o p e n and
(since
Clearly
is
c X s are class functions}. i
B e c a u s e of c o r o l l a r y
3 to t h e o r e m
B y p r o p o s i t i o n 4 of 3 . 6 , p i c k t h e r e g u l a r c l a s s Since
F
Xi(x} = Xi(Xs), it f o l l o w s t h a t
C q F
Also,
2 of 3 . 4 , C which
a s w e l l and i s
unique. We claim that contain
y.
C i s d e n s e in F .
Let
yEF
H ' , o p e n in G, be s u c h t h a t
N o w , Yu £ Y -1 s " H'/% V, w h e r e reductive group
So l e t
O
ZG(Ys) ,
u n i p o t e n t e l e m e n t s in
Now b y t h e o r e m
Xi(x) = Xi(Ys) ~{ i, it f o l l o w s t h a t
Z
o
x~G.
Hence
H, o p e n in F ,
Consider
x EC
ZG(Ys )°. of t h e
3 of 3 . 6 , t h e c l a s s of a l l r e g u l a r
ZG(Ys )° i s d e n s e in V.
Since
is
H ' / ~ F = H.
and
V i s the s e t of a l l u n i p o t e n t e l e m e n t s
ZG(Ys )°, w h i c h i s a l s o in y - 1 H'(% V. s
G(Ys} , s o
be a r b i t r a r y
H e n c e ~ u, r e g u l a r u n i p o t e r t
Hence x ~F.
x = Since
Ys" u x
£H'
and
x u = u.
= u i s r e g u l a r in
a n d a l s o in H /% F = H.
This proves the
claim.
Now
C is irreducible
g----~gxog
-1
, x o E C fixed}.
of C a n d o t h e r c l a s s e s i s o p e n in F s i o n -- r .
( b e i n g i m a g e of G u n d e r t h e c o n j u g a t i o n m a p
F
F
itself is irreducible.
of s t r i c t l y l o w e r d i m e n s i o n .
as well, since
Hence
Hence
C = F.
But then
also has codimension
r.
Hence
Now F
is union
d i m F = d i m C. C
C i s r e g u l a r and h a s c o d i m e n T h e f a c t t h a t c o m p l e m e n t of C
-
has
codlin ~2,
3.6.
118
-
i s d e r i v e d e a s i l y f r o m a s i m i l a r s t a t e m e n t in t h e o r e m 3 of
This proves (a), (b) and (c).
(d) F o r a n y c l a s s
S 1 ~ F , we p r o v e the e q u i v a l e n c e of the f o l l o w i n g s t a t e -
ments: (i) S~ is the (unique) (ii)
S
1
semisimple class
S.
is closed.
(iii) S 1 h a s m i n i m a l d i m e n s i o n a m o n g c l a s s e s in F . (iv) S 1 b e l o n g s to the c l o s u r e of any of the c l a s s e s of F .
(iv) ~
(iii) ~
(ii).
s i t i o n 1 of 1 . 1 3 .
(ii) ~ ' ( i )
(i) ~
T h e s e follow i m m e d i a t e l y f r o m c o r o l l a r y 4 to p r o p o -
(Note that F i s c l o s e d . )
i s a l r e a d y p r o v e d in c o r o l l a r y 5 to t h e o r e m 2 of 3 . 4 .
(iv) f o l l o w s f r o m L e m m a in 3.4 and u n i q u e n e s s of S.
in F , t a k e x E K ,
then X s E S
also, XsEClK
(Take a n y c l a s s E
~SficlK).
T h i s p r o v e s the t h e o r e m c o m p l e t e l y .
T h e o r e m 2.
T h e r e g u l a r c l a s s e s have a n a t u r a l s t r u c t u r e of a v a r i e t y , i s o -
morphic to/~r
u n d e r the m a p p : G r e ~ - - ~ r
where
Gr e g
i s the open
v a r i e t y of G of r e g u l a r e l e m e n t s .
T h e p o i n t s to b e p r o v e d are: (1)
p i s a m o r p h i s m and i t s f i b r e s a r e j u s t the ( r e g u l a r ) c l a s s e s .
(2)
p ~ ( k [ ~ r l ) = k ~Greg~ Int G
(3)
If f ~ k [ / ~ r j , x E G r e g , then f i s d e f i n e d at p(x) iff p*(f) is d e f i n e d
a t x.
-
119
-
T h e p r o o f of t h e s e p o i n t s i s s t r a i g h t f o r w a r d and i s o m m i t t e d f r o m h e r e . (e. g. x,y
r e g u l a r and p(x) = p(y)~v_--~P(Xs) = p ( y s ) ~ = ~ x s c o n j u g a t e to y s ~
x
c o n j u g a t e to y}.
We now g i v e a f i n a l i m p o r t a n t c h a r a c t e r i z a t i o n of r e e-ular e l e m e n t s (in c a s e of s i m p l y c o n n e c t e d g r o u p , of c o u r s e } .
T h e a r e m 3.
Let x ~G, p : G--~/~r
surjective, i.e.
as before.
Then
x i s r e g u l a r iff (dp) x i s
iff (dXi) x (1 • i ~r} a r e l i n e a r l y i n d e p e n d e n t .
We p o s t p o n e the p r o o f of t h i s t h e o r e m f o r a while and g i v e a d e v e l o p m e n t which w i l l e v e n t u a l l y p r o v e i t and at the s a m e t i m e w i l l p r o d u c e a c r o s s - s e c t i o n to the c o l l e c t i o n of r e g u l a r c l a s s e s .
Cross-Sections.
L e t G , T , ~ 1 ' . . . . g r " X1 . . . . .
Xr be as before.
Pick
n i 6 N(T}, a r e p r e s e n t a t i v e f o r w i = r e f l e c t i o n r e l a t i n g to ~ i " Consider X_, .n.X , n_.X . n r = C. ~'I 1 ~2" z" g r
We s h a l l show t h a t C i s a c r o s s -
s e c t i o n of the r e g u l a r c l a s s e s . We h a v e , n l X ¢ ~ 2 = X W ~ ( v f 2 ) . n 1 ,• n l n 2 X ~ 3 P r o c e e d i n g in t h i s way, we get, C = X ~ I ' X ~ 2 ' ' "
= Xwlw2(~3). nln 2 etc. X~r "nl .... nr
where
~ i = (Wl . . . . w i . 1 ) ' ( ~ i) i 1 , < i ~ r . !
Now the following f a c t s a b o u t t h e s e (1)
~1'" "'~r
P i s can be v e r i f i e d e a s i l y :
a r e j u s t the p o s i t i v e r o o t s which a r e m a d e n e g a t i v e by
w_ 1 = w -r I " " " Wl-1 "
(This f o l l o w s e a s i l y f r o m the fact: w i p e r r ~ u t e s a l l the
p o s i t i v e r o o t s o t h e r than a~.. ) 1
(2) /~1 . . . . .
~r
are linearly independent
a c o n s e q u e n c e of (1), s ~ i + t ~ j
(for ~ i = Hi+ e a r l i e r ~ . s ) . H e n c e , a s 3 i s not a r o o t f o r i ~ j, s and t i n t e g e r s ~ 1 .
-
(3)
120
-
A s a c o n s e q u e n c e of the c o m m u t a t i o n f o r m u l a e in p r o p o s i t i o n 2 of 3 . 6 , it
follows that Thus
X/~ i and X/~j
C may be written
commute elementwise.
U w . n w with w = w 1 . . .
of an a f f i n e r - d i m e n s i o n a l
w r , the t r a n s l a t i o n b y n w
space.
W e now a i m to p r o v e : r
Theorem
4.
Let
C =-[]- X
n. be a s a b o v e .
i=l ~ i 1 (a) C is a closed subset of G and isomorphic, as a variety, to /~r the co-ordinates
c o m i n g f r o m t h o s e of X '
(b) C is a c r o s s - s e c t i o n
s.
0( i
of the c o l l e c t i o n of r e g u l a r c l a s s e s .
H e r e (a) f o l l o w s f r o m the a b o v e d i s c u s s i o n . T o p r o v e (b) we r e q u i r e :
Theorem
5. p : C
is an i s o m o r p h i s m
Before proving this theorem,
of v a r i e t i e s .
we c o n s i d e r the e x a m p l e
r o o t s a r e ~o((i, i+l)~,
and the c o r r e s p o n d i n g
G = S L n. T h e s i m p l e
unipotent groups are
1 <~ i.
Ei, i+llti ~k]"
If n = 2, then an e l e m e n t
For
hi, w e c h o o s e a m o n o m i a l m a t r i x a s b e l o w .
It i s now c l e a r t h a t f o r a r b i t r a r y
n, a n e l e m e n t
JI
t 2 -I
I
=
| tl
t
-t2... In-~
[ 0:1 10] [ :]
g of C is of the f o r m :
1
t1 .. u w
.
--
1
.
g of C i s of the f o r m :
]
0
o
]
-t 2 .... )
Ivt-~
0 "'" 0
"
|
t..
{ (-l)n-I
I 0
I~_,_ --
-n w
/
,J
,i.e.
-
121-
it is in J o r d a n n o r m a l f o r m (one b l o c k - see p r o p o s i t i o n 2(c) of 3.5)).
Also,
f o r a n y k(1 _~ k , < n - 1 ) , SL - - - ~ E n d (Ak (kn)) is the i r r e d u c i b l e r e p r e s e n t a t i o n n
f o r the f u n d a m e n t a l weight ;% . k k-minors.
For
It is e a s y to s e e that Xk(g) -- ~ p r i n c i p a l
g 6 C , the only n o n z e r o p r i n c i p a l k - m i n o r that a p p e a r s i s that
in the u p p e r left c o r n e r and in this c a s e the c o n t r i b u t i o n is t k. a n d T h e o r e m 5 is v e r i f i e d in t h i s e a s e .
H e n c e X k = t k,
T h e proof in the g e n e r a l c a s e i s
s i m i l a r , a s we now show.
To p r o v e t h e o r e m 5, we r e q u i r e the following d e v e l o p m e n t :
Definition.
Let ~1 . . . . .
~ r be the f u n d a m e n t a l weights.
Define 4 . ~A. if 1 j
t h e r e e x i s t s a d o m i n a n t weight ~ such that ~i>,,~ ( i . e . A i - A is a s u m of p o s i t i v e roots) and ;k. is in the s u p p o r t of ~ .
(Supp ~k = t~ k
such that
J
~k= Z n i ~ i i
with n k ~ Ot).
It can e a s i l y be checked that this is indeed a w e l l - d e f i n e d ( s t r i c t ) p a r t i a l o r d e r . S o m e t i m e s , e . g . for type A r , it is v a c u o u s .
Main l e m m a .
Let y E C ,
y = Yl . . . . Yr'Yi = X o ( i ( t i ) ' n i "
T h e n for each I
i, Xi(Y ) = c i.ti + polynomial in earlier (with respect to 2/ ) t js, where is a non-zero constant, independent of
Proof.
t s. i
pace be the i r r e d u c i b l e r e p r e s e n t a t i o n of G with ~ . a s the A 1
L e t V = V.~i 1
highest weight.
Ci
Then
Xi(g) = Trv(g) , g E G.
Now, by the fundamental theorem of representation theory, V --~ ) V A , where each ~ is of the f o r m • i
-
n ko< k with n k ~ 0.
Also,
VA. is of d i m e n s i o n 1. 1
Let
0 ~ vCV%, where
~ = ~ J
mj~j,
rnjEZ~.
By the l e m m a of 3 . 3 ,
-
m~0
m
.v
m
-
Hence by proposition 2 of 3.3, x~j(c),n..] v =
n j , v E V wj.;%= V% -m.c(j'] c
122
(finite sum) with v m £V)~.mjo(j + m@(j • independent of c and
v o = nj. v. It follows that if y = Y l ' ' " Y r ' Y j = % ( t j ) ' n j ' then k1
y,v = Zt
I
... t
kr
where k i > 1 0 V i , V(kl~ ' ' k r ) E V ~ Consider and n ~
(* * )
.v
r
(k I ..... kr)
with
Trv(Y) = A~ T r ~ 76A. y . n ~ : VA~-~V
is the injection.
~--~+~(kj-mj)~j. J
, where
From
71"A:V----~ V A
($~) above, y.v
is the projection
contributes to the
t r a c e only if kj " mj ~ j . Hence: (i) The contribution is zero if m. < 0 for some j i . e . if ~ is not a dominant 3
weight:
for the right side of
(2) If ~ is dominant ~ A the contribution,
(~-~) has no term back in
V k.
and mj = 0 for some j, then t. does not occur in
In other words, only those t[s m a y o c c u r w h e r e J
But then in that case ~ i >~j"
m. ~ 0. J
Hence the contribution is a polynomial in e a r l i e r
t'. S. (3)
If
~ =Ai'
then
m@ = O V j ~ i)
Hence the contribution is A
ci
independent of the
observe that each nonzero since also
xq i %v_ . ~i : ~ i _ ~ i ,
cj's, by
yj, j ~ i, wj~i = ~i
niV~i_~ i = V~i_Q i
slnce
V,
i l
We claim that
ci ~ O.
acts as a nonzero scalar on and
thus Z %[
~i+~(iis not a weight on
(**).
c.t. with
dim
V~i = 1).
:
neither is
n i ~ <X~i,X_~i>.
~
X
wi(~i + ~ i ) = ~ i This gives
<scalar by
i c.i = 0
Hence
But also
For this we
V - 2~).
(**),
gives
-% =X)% i<since Hence
-
123
-
a c o n t r a d i c t i o n s i n c e ni(V~i } = V~ i" ~i"
T h i s c l e a r l y p r o v e s the r e s u l t .
!
Remark.
By c h o o s i n g n j s p r o p e r l y , it is possible to p r o v e :
Xi(Y) -- t i + p o l y n o m i a l / 7A in e a r l i e r
t's. J
P r o o f of t h e o r e m 5. F r o m the above i e m m a , it follows that each ti c a n w r i t t e n in the f o r m : Xi(Y) + p o l y n o m i a l in e a r l i e r
I
Xj(y) s.
In view of the p a r t (a) of
of t h e o r e m 4, it follows i m m e d i a t e l y that p:C . . . ~ r
is an i s o m o r p h i s m of
varieties.
We now p r o v e t h e o r e m 3 and p a r t (b) of t h e o r e m 4 s i m u l t a n e o u s l y b y p r o v i n g :
T h e o r e m 6.
L e t x C G, C c G a s above.
T h e n the following c o n d i t i o n s a r e
equivalent: (1) x is r e g u l a r (2) (dp)
is surjective, X
(3) x is c o n j u g a t e to s o m e e l e m e n t in C.
(1) ~ v ~ (2) i s the t h e o r e m 3 and by (3), C c o n s i s t s of r e g u l a r e l e m e n t s , one f r o m each c l a s s ( T h e o r e m 1 and 5).
Proof.
(3) ~
(2).
C l e a r l y , one m a y a s s u m e x E C .
(dp) x : (TC) x
~ iT/A
(TG} x.
(dp}
Hence
r) p(x)
is s u r j e c t i v e .
Now by t h e o r e m 5,
A l s o , (TC) x is a s u b s p a c e of
is surjective. X
(2) ~
(1).
We prove:
x i s i r r e g u l a r = ~ dX 1 . . . . .
dX r
are linearly inde-
p e n d e n t at x ( i . e . e q u i v a l e n t l y (dp) x is not s u r j e c t i v e ) .
Step I. We need p r o v e the above s t a t e m e n t for s e m i s i m p l e e l e m e n t s only.
-
124
-
F o r : By l e m m a 2 of 3 . 7 , the s e t of s e m i s i m p l e , i r r e g u l a r e l e m e n t s is d e n s e in the s e t of a l l i r r e g u l a r e l e m e n t s . e l e m e n t s at which dX 1 . . . . .
dX r
a r e l i n e a r l y d e p e n d e n t is c l o s e d .
a b a s i s to the t a n g e n t s p a c e a t e. to the t a n g e n t s p a c e at y. of the b a s i s e l e m e n t s .
Hence o u r c l a i m is c l e a r if the s e t of i r r e g u l a r Now choose
T h e n the left t r a n s l a t i o n by y g i v e s a b a s i s
C o n s i d e r the dual b a s e . dX i is a l i n e a r c o m b i n a t i o n
Now f r o m the choice of the b a s i s , it is c l e a r that dX i
is a v e c t o r field on G ( i , e . the c o e f f i c i e n t s p o l y n o m i a l f u n c t i o n s ) . m a t r i x f o r m e d by t h e s e c o e f f i c i e n t s .
T h e n dX 1. . . . .
dX r
C o n s i d e r the
are linearly dependent
at a point y iff a l l the r - m i n o r s of this m a t r i x v a n i s h at that point.
This is
c l e a r l y a p o l y n o m i a l c o n d i t i o n and the set of points at which it is s a t i s f i e d is a c l o s e d set.
T h i s p r o v e s I.
H e n c e we m a y a s s u m e that x is s e m i s i m p l e .
We m a y f u r t h e r a s s u m e that x
b e l o n g s to T .
Step If. F o r a class function X E k [ G ] , the
tangent space to T
at x.
(dX)x = 0 iff d X x / [ = 0, w h e r e
Consider the big cell U .T.U.
Clearly, the
tangent space to it at x is the s a m e as the tangent space to G .
w e m a y consider of roots.
r
U .T. U
instead of G.
Consider the m a p
~ :K ---~U'.T. U
=~4-,,~nx <(u~).T[__ t:.l -[]-~)0x.(v~).p [" of 3 . 2 .
Let K = (Gin(k))
We m a y c o n s i d e r X
t_ is
at x,
Hence
s
x ~
, s = number
given by: ~((ti), (u0(), (v•))
T h i s is an i s o m o r p h i s m of v a r i e t i e s by t h e o r e m to be a f u n c t i o n on K (via ~).
Since ~ is an
i s o m o r p h i s m , we m a y p r o v e II f o r K.
Any t a n g e n t Y to K (at a p o i n t y) c a n
be u n i q u e l y written as
Y1 is the t a n g e n t to
YI + Y2' w h e r e
(Gin(k))
r
and Y2
is a t a n g e n t to ~ s . Claim. For:
(dX) x (Y) = (dX) x (Y1).
(We identify ~(y) with y. )
X i s a p o l y n o m i a l of the f o r m
P1 + P 2 ' w h e r e
P1 is a p o l y n o m i a l , each
t e r m of which c o n t a i n s a t l e a s t o__ne of {u~t,(40 U { v ~ t ~ > 0 and P2 is a p o l y n o m i a l m tI s alone.
Since X is a c l a s s f u n c t i o n , X(tyt "1) = X(y) f o r each t ET.
-
125
-
If y = ((tl), (u~), (%)), then tyt -I = ((tl), (o((t).u~),(#(t) .v~ )). It is now easy to see that every term of P1 :uKt
must contain at least two of
. T h u s , e v e r y t e r m of Y ' P 1
eontainsatleastoneof
to>0 :U,I U
:% 1
Since x is givenby
F u r t h e r , it is c l e a r that
((tl), (0),(0)), it follows that (Y. PI)x=O.
(Y2" P2) x = 0, s i n c e
P2 is a p o l y n o m i a l in t'ls alone.
Hence, (Y.X) x = (Y(P1 + P2))x = (Y' P2}x = ((Y1 + Y2 )" P2)x = (YI" P2)x"
Also,
(Yl.X)x = (YI.(PI + P2)) x = (YI.P2)x, since (Y1.PI)x = 0. Hence
(dX) x (Y) = (Y.X) x = (YI.X)x = (dXx) (YI).
II follows immediately.
II Shows that it is sufficient to p r o v e that dX 1 l i n e a r l y dependent.
Now, dXi/t = d(Xi/T).
. . . . .
dXr, r e s t r i c t e d to t , a r e
In o t h e r w o r d s , we a r e c o n c e r n e d
with the functions X i r e s t r i c t e d to T only. On T,
X. -- • :
+ ( t e r m s which a r e s m a l l e r than ~ i)
(*)
i
(See t h e o r e m 2 of 3.4). r
r
L e m m a . q - [ dX. = f, -~" (~-1 dA ) ( e x t e r i o r product) : i i i=l i=l where, f = ~" wCW
(det w) . (w~) (= ~kew ~ , by definition) !
with
r
~ = ( ]To( }2 = ~ hi" ~> 0 i=l
P r o o f of the l e m m a .
We o b s e r v e f i r s t that ~ - A "I d ~ is not z e r o . i i i F o r : the h t s a r e a l g e b r a i c a l l y independent g e n e r a t o r s of k [ T J , so that t h e r e exist v e c t o r fields vj with vj(~i~ = ~ j i ' i . e . ,
with (d~i)(vj) = ~ij"
(a) f is s k e w i , e. w . f = det w . f f o r w E W . For:
w. dX i = d(w.Xi) = dXi, since X i is a c l a s s function.
Hence w. "[]-dX. =-~-w. dX, = -[i- dX . . . . . . i I i : : Let w. ~ = ]T~.nij (written multiplieatively. ) i j J
-
(A)
126
-
-i Then w( )%i
-
d ~ i) = ~ l ) d ( w A i )
d(]..[ ~niJ)
~-1,
W
j
J
= ('~fnij).j j ( Zj {kZ ~. :ik}.nij~j'nij-1, d~k.), =
Z
n...
j ij
~ -ldA
•
j
j
Now, w.(f.'[]-A-I. dA) = wf,'[]-w(A-ldA) i i i i i i = wf.~-i ( ~
n... ~:1 .dA )
j
~
j
j
= (wf) . d e t w. - ~ - ~ - 1 k k This is so since follows that (b) F r o m
d e t w -- d e t e r m i n a n t
f = ( w f ) . d e t w.
of
k T h u s f r o m CA) and (B), it
(nij).
In o t h e r w o r d s ,
(B)
dA
w~ = d e t w . f (det w = :~ 1).
*, dX. = d A + ~_, d ~ 1 i A~ i = A (~
-1
.dA) + Z
A . ( ~mij
r
~:
1 dA
.}, w h e r e ~ = ' ~ , ~
rn.. 13.
1
It f o l l o w s t h a t
f = " ~ - ~. + l o w e r t e r m s , i . e . f = ~ + l o w e r t e r m s . J=l 1 S i n c e f i s s k e w , a n a r g u m e n t s i m i l a r to one in the p r o o f of t h e o r e m g i v e s : f = s k e w ~ + ~-
skew
$'<~-
.
Consider such a
~
2 of 3 . 4 ,
Since
~' d o m i n a n t -
itf o l l o w s
= s u m of p o s i t i v e r o o t s , T
suchthat (~°, ~
i
(~-~,
#
~.
1
I
} > 0.
} i s an i n t e g e r .
that det w.w
~_!
Wennwhave
Hence
(~,~
+ d e t (w. w i ) ° w . w i ~
c a n c e l out in p a i r s , lemma.
that there exists a simple root ~.
(This argument
giving skew
!
1
: 1 = (~',~*}>(~,~)~0 i 1
} ~ 0i.e.
= 0 (det
wi
-- 0.
Thus
w.(~-') = ~-'. i =
-1}.
1
#
and
It, n o w f o l l o w s
Hence terms
in s k e w -
f -- s k e w ~ , p r o v i n g the
h o l d s in c a s e of c h a r k ~ 2.
But the lemma considered
m a y b e v i e w e d a s a f o r m a l i d e n t i t y to b e p r o v e d in t h e g r o u p a l g e b r a of X ( T ) over
~
f r o m t h e h y p o t h e s i s (*).
H e n c e i t c o n t i n u e s to h o l d e v e n if c h a r k = 2).
-
127
-
We now u s e an i d e n t i t y due to Weyl viz. f = skew ~ = ~ .'~-(1- ~<-1).
Since x
is s e m i s i m p l e and i r r e g u l a r , ¢K(x) = 1 f o r s o m e ~¢ >0 ( p r o p o s i t i o n 3 of 3.5). Hence f(x) -- 0 so that - ~ d X i = 0.
It now follows i m m e d i a t e l y that
1
(dX1) x . . . . , (dXi) x . . . . , (dXr) x a r e l i n e a r l y d e p e n d e n t . i m p l i c a t i o n (2) ~
(1) ~
(3).
(1).
Let x ~ G
be r e g u l a r .
(This is p o s s i b l e b y t h e o r e m 5. ) ~egular
((3) ~
T h i s p r o v e s the
(2) ~
the s a m e f i b r e of p.
(1)).
Pick
y~C
such that Xi(Y) = Xi(x) ~ i.
A s a l r e a d y p r o v e d , a n y e l e m e n t of C is
T h u s , x and y a r e both r e g u l a r and b e l o n g to
Hence by t h e o r e m 1 above,
x and y a r e c o n j u g a t e .
T h i s p r o v e s the i m p l i c a t i o n and the d e v e l o p m e n t in t h e o r e m s 1 to 5.
Problem
(Open)
Can we find a n o r m a l f o r m f o r n o n - r e g u l a r e l e m e n t s i n
a r b i t r a r y s i m p l e g r o u p s c o r r e s p o n d i n g to the one c o n s i s t i n g of s e v e r a l J o r d a n b l o c k s in SL n ?
T h e o r e m 7.
Let F
be a f i b r e of the map p:G
~r
.
(See t h e o r e m 1 a b o v e . )
(a) T h e r e g u l a r e l e m e n t s of F a r e j u s t the s i m p l e o n e s .
(An e l e m e n t in F
is s i m p l e o r n o n - s i n g u l a r if the d i m e n s i o n of the t a n g e n t s p a c e to F a t that point e q u a l s the d i m e n s i o n of F . (b) F
Such e l e m e n t s f o r m a d e n s e open set in F . )
i s n o n - s i n g u l a r in c o d i m e n s i o n 1.
(c) The i d e a l of F
in k [GJ ( i . e . the ideal of f u n c t i o n s in k [G]
on F ) i s g e n e r a t e d by I X i - Cit
if F -- p ' l ( c 1 . . . . Cr). l~
Proof.
which v a n i s h T h u s the
is n o r m a l . F o r a n y v a r i e t y , the s e t of s i m p l e p o i n t s is d e n s e in it.
this holds f o r F .
In p a r t i c u l a r ,
But by t h e o r e m 3 of 3, 6, the s e t of r e g u l a r e l e m e n t s i s open
-
and d e n s e in F .
128
-
Hence t h e r e e x i s t s a r e g u l a r e l e m e n t which is s i m p l e .
Since
a n y two r e g u l a r e l e m e n t s in F a r e c o n j u g a t e , it follows that a l l the r e g u l a r e l e m e n t s in F a r e s i m p l e .
We s h a l l p r o v e l a t e r that the c o n v e r s e of the
a b o v e s t a t e m e n t is a l s o t r u e .
T h i s p r o v e s (a).
(b) follows i m m e d i a t e l y f r o m t h e o r e m 3 (b) of 3.6.
(c) and (d) : Choose a r e g u l a r e l e m e n t x C F .
By t h e o r e m 3, (dX1) x .
are linearly independent.
Hence
(X1-C 1) . . . . .
( X r - C r) f o r m a p a r t of a l o c a l
c o - o r d i n a t e s y s t e m at x.
Also,
F has c o d i m e n s i o n r.
in a l g e b r a i c g e o m e t r y shows that the i d e a l of F {(X 1- C 1) . . . .
(X r - Cr) t .
Since F
. . . .
(dXr) x
Now, a g e n e r a l r e s u l t
i s , in fact, g e n e r a t e d by
is i r r e d u c i b l e , the i d e a l of F is p r i m e .
F r o m this it can be s e e n that F
is a c o m p l e t e i n t e r s e c t i o n and n o r m a l .
Since I ( X 1 - C 1) . . . . .
g e n e r a t e the i d e a l of F , it follows that the
(Xr - Cr) ~
t a n g e n t s p a c e to F at a p o i n t
x(CF)
is given by : { Y£(TG) x / _(dX i) x (Y)= 0 V i ] .
Hence d i m (TF) x = C o d i m e n s i o n of the s p a c e
L g e n e r a t e d b y ~ ( d X i) ~ X)l
T h i s p r o v e s that !{(dXi) x J~
Hence by t h e o r e m 3, x is r e g u l a r .
Remark.
3.9.
are linearly independent. l.~i .
The above a p p l i e s , in p a r t i c u l a r , to the v a r i e t y of u n i p o t e n t e l e m e n t s .
V a r i e t y of B o r e l S u b g r o u p s .
In view of T h e o r e m 7 -(a) of 3 . 8 , o u r
a t t e n t i o n is f o c u s s e d on the i r r e g u l a r u n i p o t e n t e l e m e n t s i . e . on the s i n g u l a r i t i e s of the v a r i e t y V.
The g e n e r a l p r o b l e m , to which we now t u r n , i s to study
t h e s e s i n g u l a r i t i e s , e s p e c i a l l y the one at
1.
-
129
-
As a simple example, consider the group G = SL 2. A~ unipotent element is
oftheform
[:
V= { I :
bl d
with a + d - - 2 a n d ,
2-bal/(a-l)2 = - b c ~ .
of c o u r s e , a d - b c = 1.
In o t h e r w o r d s ,
This is clearly a cone in k 3 with vertex at
(I, 0, 01, It is now clear that this is the only non-simple point of V.
Thus V
has e x a c t l y one s i n g u l a r point, the v e r t e x of a q u a d r a t i c cone.
It is pleasant to be able to start with a nice desingularization of V.
Let ~
denote the set of all Borel subgroups of a group G.
variety-structure on ~
We introduce a
in the following way: Let G act transitively on a
variety V such that (i) the stabilizers are just the Borel subgroups of G. ( It is enough to assume that one stabilizer is a Borel subgroup) and (2) for any v @V, the orbit map G
~ G . v ~ V is separable (i.e. the differential map is
surjective). It now follows that the elements of 0~ and V are in one-one correspondence (Gv = Gv, ::~ v -- v', since a Borel subgroup is its own n o r malizer).
We introduce a structure of a variety on ~ via this correspondence.
We note that V = G/B ,B is a fixed Borel subgroup, satisfies the above conditions.
It is easy to see that any V with above conditions is isomorphic to
one such variety (and hence to any such variety).
T h e o r e m 1.
Thus, we may write
Let V be the v a r i e t y of unipotent e l e m e n t s in G.
(closed) subset of ~ x V ,
defined by: W = { ( B ' , x ) / x C B ' }
.
Let W be the
(If B is a fixed
B o r e l s u b g r o u p and we have identified tT~ with G / B , then W --f(gt3, x ) / g - l x g ~ U ~ . ) Then W is a d e s i n g u l a r i z a t i o n f o r V.
(We shall define this t e r m p r e s e n t l y . )
Proof. A desingularization of a variety VI is a pair (V2,~) where V2 is a variety and ~ : V2---~V 1 is a morphism such that (I) each of the points of V2
-
s is simple and (2) ~ : ~-1 (VI)
1 3 0
-
:~ V s1 is a n i s o m o r p h i s m
(V s1 is t h e s e t of
simple points in VI). Consider the projection P2 : W
> V°
Our claim is that (W, P2 ) is a desin-
gularization of V. (I) W
is irreducible.
0: G ~ U - - - > G / B ~ V ; (2) W
(It is the image of G ~ U under the m o r p h i s m 0(g,u) = (gB, gug'l).)
is non-singular (i.e. each of its points is simple).
cell U ' . B
which is open in O.
is openin W.
Let W ' = {(gB, x ) ~ W / g
Consider t h e m a p
~ : U-K U
m W'
Consider the big ~U- I . Then W'
given by~(u', u) =
-I (u-B,u-.u. (u') ). It is easy to see that ~) is a m o r p h i s m and in fact ~Ln isomorphism of varieties.
The product of non-singular varieties
It now follows that W'
is non-singular.
Since W'
is open,
I
a point which is non-singular in W lates of W'
cover W.
remains so in W
as well. Also, trans-
It follows immediately that W
itself is non-singular.
(3) As seen in theorem 7 of 3.8, the simple points of V ones.
-I Let V r be the set of these points. Let W r = P2 (Vr)" W e must prove:
P2 : w r - ' ~ V r
is an isomorphism.
characteristics.
W e give the proof only in case of good
Fix an element x E vrf~ B.
t h e - ~ r e m s h o w s t h a t the m a p 7I: G ~ V map.
are just the regular
(The d i f f e r e n t i a l i s s u r j e c t i v e ,
G/ZG(X)
r
Then the proof of Richardson's
g i v e n byTi'(g) = gxg -1
is a q u o t i e n t
s i n c e T ( C g -1) = (1-Ad(g)) ~ . ) H e n c e
is i s o m o r p h i c to V r v i a T ' .
C o n s i d e r the m o r p h i s m
~ : G
) Wr 1
g i v e n b y : ~ ( g ) = (gB, g x g - 1 ) . = g'B.
(Since x is r e g u l a r ,
If g = g ' g o
with g o E ZG(X) , t h e n gB = g , g o . B
it b e l o n g s to a u n i q u e B o r e l s u b g r o u p a n d h e r e we
i~ave x = go" x. gol~ goBgo I. ) Hence the m o r p h i s m ~ is constant on cosets of ZG(X) and gives rise to a m o r p h i s m
O : G/ZG(X)
• W r. Since G/ZG(x)
131
-
-
is i s o m o r p h i c to V r , we have an i n v e r s e V r .... r~W r isomorphism.
of P2' which is thus an
T h i s p r o v e s the t h e o r e m ,
R e m a r k s . (1) F o r
G = SL2, the d e s i n g u l a r i z a t i o n of V (the v a r i e t y of u n i -
potent e l e m e n t s ) i s i s o m o r p h i c to
/AI×Ip1.
The picture is
~-,----~
the s i n g u l a r p o i n t b e i n g blown up to a p r o j e c t i v e line (G/B).
(2) A g e n e r a l i z a t i o n of the above t h e o r e m i s given by the following t h e o r e m of G r o t h e n d i c k : T h e following d i a g r a m is a r e s o l u t i o n of the s i n g u l a r i t i e s of all the fibres of the m a p X
q~G
p:G
>/~r.
where, X =
I(Bl,X)@~×
GIBl~X 1
y
!
and the m a p s q, p , q Let
(BI,X)~X
Define
a r e o b t a i n e d as follows: q((Bl,X)) = x ; q ' ( ( B , t ) ) = p(t).
then B 1 = gBg -1 f o r s o m e
that g ' l x s g g B . = B 1.
!
Hence ~ b E B
In o t h e r w o r d s , ~ h ~ G !
p ((Bl,X)) = (B,t).
morphism.
g EG.
suchthat b suchthat
Since x s EB 1, it follows
-1 -1 ~ .xsgbET.
A l s o , gb. B b - l g "1
B 1 = h B h "1 and h - l x h = t C T . s
It i~ e a s y to check that p
!
is w e l l - d e f i n e d and is a
A l s o , p(x) = p(x s) = p ( h ' l x s h) which gives the c o m m u t a t i v i t y of the
above d i a g r a m .
We turn to the study of the fibres of the above desingularization of Over a fixed U,
or,
u
in
V
we have the variety ~u
on r e p l a c i n g ~
of fixed points of
u
by
G/B,
the variety
V.
of all Borel subgroups containing (G/B)u : (gB g G/BIu " gB = gB}
acting on the "flag variety", hence a projective variety.
P r o p o s i t i o n 1. (G/B)u is c o n n e c t e d .
(u is an u n i p o t e n t e l e m e n t , )
-
Proof.
132
Recall that for a simple root ~,
b y B and X
.
It can b e s e e n t h a t
is a projective line,
F o r : If Go< = ~ X
-
P ~ d e n o t e s the s u b g r o u p g e n e r a t e d
P~ = (T.<X , X_~>
,X
and B ~ = B t ~ G
P ~ / B ~ G ~ / B - ~ S L 2 / S u p e r d i a g o n a l ~- p r o j e c t i v e l i n e . {xP~ /B, x ~G fixed) CG/B
> ).U~ .
P~/B
, then
A set
i s c a l l e d a l i n e of t y p e ~ .
It i s a c o n n e c t e d s e t .
It i s e a s y to s e e t h a t two l i n e s of the s a m e t y p e a r e e i t h e r i d e n t i c a l o r d i s j o i n t ( s i n c e c o s e t s a r e so).
We s h a l l m a k e ue~ of t h e s e f a c t s while p r o v i n g the
p r o p o s i t i on. L e t u 6 B t 3 B 1.
We show that B and B 1 can b e c o n n e c t e d in ~ u
s e q u e n c e of a r c s of ( p r o j e c t i v e ) l i n e s of v a r i o u s t y p e s (*).
bya
This clearly proves
the p r o p o s i t i o n . Let B 1 --~B, g~G.
ByBruhatlemma,
gEBnwB.
Let w = Wl...
w. i s the r e f l e c t i o n with r e s p e c t to the s i m p l e r o o t ~ ' . 1
1
w k, w h e r e
and k i s m i n i m a l with
r e s p e c t to t h i s p r o p e r t y .
( i . e . w = w 1. . . w k i s a ' r e d u c e d ' e x p r e s s i o n f o r w . )
We p r o v e (*) b y ~ d u c t i o n
on k,
prove. b EB.
Let k>~l.
If k = O, then g t ~ B and t h e r e i s nothing to
W i t h o u t l o s s of g e n e r a l i t y , we m a y a s s u m e
L e t g l = b n w l ' " " nWk-l"
T h i s l i n e c o n t a i n s gB and t a i n e d in ~ u "
gll!l.
C o n s i d e r the l i n e gl" P ~ k / B
j o i n e d b y a l i n e in ~ u
of t y p e ~ k "
can be j o i n e d by l i n e s in ~ u "
Since
Hence by induction ~rl]~ and
W e now p r o v e the c l a i m : (1) By a s t a n d a r d p r o p e r t y of r e d u c e d e x p r e s s i o n s , w 1. . . W k . l ( ~ k ) > 0. ucgB.
Hence ~ u'~U
Write u'-- -N-x Ic ). ~>0 w(~)<0
gB a r e
of t y p e ~ k (viz. the l i n e g l P ~ k / B ), the r e s u l t f o l l o w s
immediately.
(2) W e h a v e ,
.nwk,
O u r c l a i m i s that t h i s l i n e i s e n t i r e l y c o n -
G r a n t i n g the c l a i m , we s e e t h a t u ~ B ~ g l L .
h y p o t h e s i s , B and g l ~
g = b.nwl
x ld/ /~>0 w~)>0
suchthat
u =gu'.
133
-
nwu' = - ~
Hence
) . 77-
(c'
~>o
-
x
Xw(~) w(~) /~>o
w(~) <0
w(/~)
(d'w(~))suchthat
w(~ >0
!
c = Oiff co( = 0 (and also w(a) Also, nwu' ,, b 'ul 6 U . w(v(k) = w I.
**
' ~ = 0 iff d ~ = 0). (Here nw = nwl • .nwk). dw
Hence Cw(a)
0Vw(o(),f0, o(>0.
Wk_ l . w k ( ~ k ) < 0 , it follows that C ~ k
normalizes
u'
P~k u'EUo(
k"
=
0.
Since
Since
T h u s u E V O
Hence P°(kg~lu
=
P~k g-I
U
=
P~k , u ' C U ~ k C B "
Hence u Cgl" P ~ k B.
General problem.
Study the o t h e r p r o p e r t i e s of the f i b r e s , e . g . t h e i r d i m e n -
This p r o v e s the p r o p o s i t i o n c o m p l e t e l y .
sions, n u m b e r of c o m p o n e n t s etc.
We now p r o v e a p r o p o s i t i o n which links the d i m e n s i o n s of ZG(X) and ~x" More p r e c i s e l y , we have: P r o p o s i t i o n 2. L e t x ~ G
Proo For
be unipotent.
Le, C be the
o, x
Then d i m ZG(X)>~r+2.dim (5 x.
Lo, S
{'BI B2
w E W , define S w = {(gB, gnwB, y ) ~ S } .
We claim:
U S w, a disjoint union. C o n s i d e r (B1,B 2 , y } 6 S. Then t h e r e wE W gi -I , exist g l ' g 2 ~ G such that B.1-- B, i : 1, 2. B y B r u h a t l e m m a , gl g 2 ; b n w ' b "
w EW. S = -i
S =
Let g = gl.b.
~J S . W wEW
nw " g
-I
,
Then gB = g l B , gnwB = g2B.
It now follows that
Next, let (gB, gn WB• y) = (g , B, g , n w ' B , y } .
" g "nw' 6 B.
,
Hence nw, = b . n w . b
l e m m a , ~ z, z ' £ Z(T) such that n Z(T) = T so that w = w'. follows that dim S ~ dim S
w
f o r s o m e b , b EB.
. z . In our c a s e (G reductive), W
This p r o v e s that S w/~ W
Now b y B r u h a t
!
= z.n W'
Then g - l g g B and
Sw!
= ~ for w ~
!
w
.
It now
f o r all w 6 W and the equality holds f o r at l e a s t
134
-
one
w ~
(I).
Considering lemma
the projection
1 of 2 . 1 3 ,
(The image is Fix
wEW,
S
identification
C~U
t~
Hence
dim
of
~xC
C and arguing in the same way as
we get: dim S = dim C + 2.dim ~
can be regarded
w
~B
x
.
~
i s ~3x ~ x .
)
x
a s a s u b s e t of G / ( B
( g B , gnWB, y ) ~ - ( g ( B
nw
onto
C, w h i l e t h e f i b r e a b o v e
d i m S w = d i m (G is
-
n
f~ W B ) , y ) .
/~ n w B ) + d i m (C f l U f l
{II)
~nwB)
Projecting
nwU).
onto the first factor, B flnwB
U.)
S w = dim
G
T h e e q u a l i t y h o l d s iff I, II a n d I I I ,
Hence
via the
(The fibre above
- dim
(B t~nwB) + dim
(C /% U t~nwu)
~< d i m G - d i m (B /% n w B ) + d i m (U t%nwu)
From
X C
C f% U f ~ n w u
dim C + 2.dim ~
i s d e n s e in x
U /% n w u .
= dim S = dim S
d i m ZG(X) = d i m G - d i m C ~ r + 2 . d i m
= dim G - r.
w
-(III)
for some
w ~dim
G- r.
1~ . x
This proves the proposition.
Corollary.
T h e e q u a l i t y h o l d s in p r o p o s i t i o n nW U /% U.
in s o m e
(i.e.
The proof is clear from
C r~ u f ~ n w u
For each
U (~ n w u
and for elements
Conjecture
The conjecture
1.
i s d e n s e in s o m e
w, t h e r e a l w a y s e x i s t s s o m e in this class
This gives rise to a problem: G).
C, t h e c l a s s of x, i s d e n s e U fl
nw
U.)
(III) in t h e p r o p o s i t i o n .
Remark.
x and
2 iff
C with
Ct~U
t%nwu
C, t h e e q u a l i t y of d i m e n s i o n s
Whether the above equality always holds?
is that it happens i.e.
d i m ZG(X ) = r + 2 . d i m { ~ x ~ x C G .
dense in
above holds.
(for any
-
1 3 5
-
We n o t e t h a t t h e a b o v e f a c t is e a s i l y v e r i f i e d f o r r e g u l a r e l e m e n t s , element.
It i s a l s o k n o w n to b e t r u e in c a s e of c l a s s i c a l g r o u p s .
the identity It w o u l d be
e n o u g h to p r o v e it f o r u n i p o t e n t e l e m e n t s .
C o n j e c t u r e 2. C/~U Anwu
For a unipotent class i s d e n s e in
U ~
n w
C, t h e r e e x i s t s a
Since
dense class,
U /% n w u
is irreducible
these conjectures
is finite, at most
such that
U.
A s s e e n in t h e c o r o l l a r y a b o v e , c o n j e c t u r e s elements,
w£W
1 and 2 a r e e q u i v a l e n t f o r u n i p o t e n t and h e n c e c a n c o n t a i n at m o s t one
w o u l d i m p l y t h a t t h e n u m b e r of u n i p o t e n t c l a s s e s
IWl.
A r e l a t e d c o n j e c t u r e is: Conjecture
3. F o r a n y c l a s s ,
dim C
is even.
T h i s f o l l o w s f r o m c o n j e c t u * ' e 1,
s i n c e we h a v e t h e f o l l o w i n g : d i m C = d i m G - d i m ZG(X ) = d i m G - r - 2 . d i m
X
= d i m U - . U - 2 . d i m {B
X
and this
is even. However,
c o n j e c t u r e 3 i s k n o w n to b e s e p a r a t e l y t r u e f o r g o o d c h a r a c t e r i s t i c s .
A s an e x a m p l e ,
we c o n s i d e r
true since by writing a s in t h e c o r o l l a r y . as follows:
For 1
for
thena
write i>j.
V = [
Let
of Vj
V. w i t h 1
Vi cyclic for
x and
n i = d i m V..1 If y E ZG(X), t h e n
Bij
T h e s p a c e of s u c h h o m o m o r p h i s m s generator
Here all the conjectures
are a w
( E x e r c i s e : do t h i s . ) We m a y v e r i f y C o n j e c t u r e 3 d i r e c t l y
with
V i.
S L n.
u ( u n i p o t e n t ) in n o r m a l f o r m we c a n e a s i l y p r o d u c e
xEG,
a q u o t i e n t of V.
G = GL n or
y has the
an x - m o d u l e h o m o m o r p h i s m
has dimension
rain (ni, nj),
m a y go to a n y e l e m e n t of V i w h i l e if i ~ j
Vj a
of Vj i n t o
(If i > j , t h e n we
-
136
-
apply this to the dual. ) Hence d i m ZG(X) = .~'-. m i n ( n i , nj) = n+2 .~_, m i n ( n i , nj) (one l e s s f o r SLn).
T h u s d i m C(x) = n 2- n - 2 . ~ • m i n ( n i , nj), an e v e n n u m b e r . 1 $ If t h e r e is a s i n g l e block, then in SLn, d i m ZG(X) = n - 1 -- r so that x is r e g u l a r as a s s e r t e d e a r l i e r .
(See p r o p o s i t i o n 2 of 3 . 5 . ) If t h e r e a r e two b l o c k s
of size n - I and i, then dim ZG(X) -- r+2 and x is in the c l a s s of " s u b r e g u l a r e l e m e n t s " which we shall study p r e s e n t l y .
Henceforth, we a s s u m e G to be a simple algebraic group.
T h e o r e m 2 ( R i c h a r d s o n ) . Let
P be a p a r a b o l i c s u b g r o u p of G.
Let U p be
the u n i p o t e n t r a d i c a l of P. (a) T h e r e e x i s t s in U p a d e n s e open s u b s e t of e l e m e n t s , each of which is c o n t a i n e d in a finite n u m b e r of c o n j u g a t e s of U p (in G).
(b)
GUp =
LJ gUpg -1 is a c l o s e d , i r r e d u c i b l e s u b s e t of d i m e n s i o n = d i m G gEG
dim P / U p . (e) If G has a f i n i t e n u m b e r of u n i p o t e n t c l a s s e s ( e . g . in e a s e of good c h a r a cteristics), then G U p c o n t a i n s a u n i q u e d e n s e e t a s s as its own. under
In this case, C /% U p
is dense in U p
C of the s a m e d i m e n s i o n
and f o r m s a single class
P.
We o b s e r v e that t h e s e facts have a l r e a d y b e e n p r o v e d f o r P = B.
(See t h e o r e m 3
of 3 . 6 , )
Proof. We m a y a s s u m e that P c o n t a i n s B, a fixed B o r e l s u b g r o u p .
We u s e
h e r e s o m e of the s t a n d a r d facts about such p a r a b o l i c group.= T h e s e f a c t s a r e : P has the following d e c o m p o s i t i o n :
P = ?rip. Up, w h e r e
group and the p r o d u c t is s e m i - d i r e c t . fied with a s u b s y s t e m R p
Mp
is a r e d u c t i v e
The root s y s t e m of M p
can be i d e n t i -
of R g e n e r a t e d by s i m p l e r o o t s , M p i s g e n e r a t e d
-137 -
!
by T and those Xo(s such that o ( E R p .
t
U p is g e n e r a t e d by those Xc<s such
that ¢<ER + - R +p" We give the proof in s e v e r a l steps: (1) Let W p be the Weyl group a s s o c i a t e d to R p (i.e. the group g e n e r a t e d by wE , o<E
p).
Let W
be the s u b s e t of W defined by :
weW/w(Rp)> 0
Then: (a) If w E w P , w ' g W p , then l(ww') = l(w) + l(w'). ( H e r e
.
l(w) denotes
the m i n i m a l length of an e x p r e s s i o n of w as a p r o d u c t of s i m p l e reflections~ (b) W = W P . W P
with u n i q u e n e s s of e x p r e s s i o n .
This is a s t a n d a r d l e m m a and
we a s s u m e it.
(2)
G = U Uw. n w . P . w•W P
For:
By the r e f o r m u l a t i o n of B r u h a t l e m m a , G =
it is sufficient to p r o v e that f o r WoE W, Uwo. nwo. w E wP.
~) "~/ Uwo. nwo. B.
Thus,
U w. n w. P f o r a suitable
By (1) above, w ° = w . w ' with w E w P , w'C Wp.
Since l ( w . w ' ) =
l(w) + l(w'), it can be e a s i l y checked that Uwo = Uw.w, = Uw. nWUw' . Hence Uwo. nwo. B = Uw. (3) F o r For:
w~W
P
nw
. U w , . n w.nw, .B = Uw. nw. Uw, . n w , . B Cn w U .wP.. -
, d i m (Up/% WUp)~< dim U p - l(w).
U p t% WUp is g e n e r a t e d by those Xc¢ s such that (1) o(C R +-
(2) w(0<)~ R + - R+p
.
L e t K w denote this set.
and
Since W(Rp) > 0, R w ~ R +-
p,
R +
w h e r e R w = fo¢>0/w(,C) < 0 ] so that l(w) =]Rw~ Hence ( R + - R p ) - K w _ ~ R w. + (We note that R + - R p - K w contains /~ such that w ( ~ ) ~ R p , so that equality m a y or m a y not hold above). dim Up
Hence dim (Up C%TM UID) = I K w [ ~ I R + - R p I -IRw[ =
- l(w).
(4) L e t w E W P
be fixed.
given by : fw(X,y) = xyx "I
C o n s i d e r the m o r p h i s m
fw: U
w
X (U
to
~
w
Up)----> U p
Then U p contains a dense open set U'P, w such
-
that f ' l ( z )
is finite V z ~ U '
W
Proof.
138
-
. P,w
Case (i).
fw is dominant.
By l e m m a 2 of 1.13, U p contains a dense
' w such that dim f w ' l ( z ) : dim (Uw×(U P (~ Wup)) - dim Up, open s u b s e t Up, !
!
V z ~ U p , w. f-l(z) W
By (3), it follows that dimf-l(z)w : 0 ~ z EUp, w.
In o t h e r w o r d s ,
is finite.
Case (ii). f is not dominant. In this case, let Up,_ = U - Image of fw' w w p which is dense open in Up. Also, f-1 (z) is empty V z ~ U' This w P, w" p r o v e s (4).
We a r e now in a position to p r o v e the t h e o r e m . !
!
(a) Let U'P : w[~ £ w P U p , w' a finite i n t e r s e c t i o n (Up, w is as in (4)). Then P . By choice of U'p, w , Z ~ U p ~ U'p is dense open in Up, Let z E U p', w E W X.W
Up
for finitely m a n y
x EUw.
Since G =
U _ ] m u w.w.p, it follows w E w--
that z belongs to a finite n u m b e r of conjugates of U p (in G,) (b) Consider S C G / p x G ,
definedby: S :
well-defined since P normalizes subset of G / P K G.
Up.
lf(gP, x)/g'lxg6UpI. " S
is
Also, S is a closed irreducible
(S is the image of G X U p
under the m o r p h i s m
(x,y) " - * " (xP, xyx-1). ) By p r o j e c t i n g onto the f i r s t f a c t o r , d i m S = dim G / p + dim U p (fibres a r e conjugates of Up). By p r o j e c t i n g onto the second f a c t o r , d i m S -- dim GUp, since the f i b r e above any z 6 U'P is finite. Hence dim G U p -- dim G / p +
dim U p = dim G - dim P / U p .
A l s o , G U p is c l o s e d since S is c l o s e d and G / p
(b).
is complete. This p r o v e s
-
139
-
(c) If G has f i n i t e l y m a n y u n i p o t e n t c l a s s e s , then G U p is m a d e up of finitely many classes.
Hence it c o n t a i n s a c l a s s
C such that d i m C = d i m G U p .
C l e a r l y C is d e n s e open in G u p a n d h e n c e is u n i q u e . Consider x£Cf%Up. d i m Cp(x) = dim P - d i m Zp(X) ~> d i m P - d i m ZG(X) = dim P - d i m G +
dim C
= dim P - dim G + dim G - dim P / U p = dim Up. A l s o , Cp{X) C _ U p ~ C
CUp.
It follows that C t3 U
P
d i m Cp(X) = d i m C ~ U p
Hence d i m Cp(X) = d i m C F % U p V X 6 C ~ U p .
is a s i n g l e c l a s s u n d e r = dim Up.
Thus
P.
A l s o , by above,
C /% U p is d e n s e in U p .
This
proves theorem completely.
C o r o l l a r y 1.
If x EC (C is the c l a s s m e n t i o n e d in (c) above), then
d i m ZG(X) = r + 2 . d i m 03 . X _
Proof.
P i c k w ' ~ W p such that w ' ( R $
ufiWu For:
) =
P
Rp
!
(such w
exists).
Then
=Up. U i%W'u is g e n e r a t e d by t h o s e
X I
I
o( s such that o~>0 and w (~() > 0. + , + +P C _ R and w (Rp) C R"P = R p .
+ Since w ' E W p , w'(R + - Rp) = R + -R + + Hence R - R p is p r e c i s e l y the set d e s c r i b e d above.
A l s o , C I% U p
is d e n s e in U p .
= r+ 2.dim ~
Hence U/%w U = U p .
Hence by c o r o l l a r y to p r o p o s i t i o n 2, d i m ZG(X)
o X
Alternate proof. PB ~ ~
S i n c e x E U p and P n o r m a l i s e s
V P ~P.
Hence
U p , it follows that
dim ~ x >~ dim P / B •
X
Now, dim P / B = dim P - dim B.
Hence
r+2.dim ~5 >~ r+2.(dim P - dim B) X
= dim P - dim Up.
(This can easily be checked).
-
Hence
r + 2 . d i m (~x>~dim ZG(X ).
Hence
d i m ZG(X) = r + 2 . d i m ~5 • Th's eventually proves
C o r o l l a r y 2.
If x , C
c o n j u g a t e s of U p
Proof.
But d i m ZG(X) >,, r + 2 . d i m ~ x
is always true.
P.
c o n t a i n i n g x.
Hence ~ p E P as
d i m ~5x = d i m P / B .
a r e a s in c o r o l l a r y 1, then ZG(X) i s t r a n s i t i v e on the
Let x gUp/'lgUp.
gPup-- g u p
3.10.
-
X
Remark.
under
140
(The l a t t e r s e t i s f i n i t e . )
Then
g-1 x, x E U p t % C , which is a s i n g l e c l a s s
s u c h that
P normalizes
P'8:~x-- x .
Up.
Thus
gp e Z G ( X ) .
Also,
T h i s p r o v e s the c o r o l l a r y .
Subregular Elements.
A f t e r t h e s e g e n e r a l i t i e s , we s h a l l now c o n s i d e r the (unipotent} e l e m e n t s which d i m ZG(X) = r+2 (r = r a n k G). elements.
x for
Such e l e m e n t s a r e c a l l e d s u b r e g u l a r
In what f o l l o w s , we s h a l l p r o v e the e x i s t e n c e of s u b r e ~ u l a r (uni-
potent) e l e m e n t s , show that t h e y f o r m a d e n s e c l a s s in the v a r i e t y of a l l i r r e g u l a r u n i p o t e n t e l e m e n t s and then d i s c u s s s o m e of t h e i r c h a r a c t e r i z a t i o n s . We s t a r t with the f o l l o w i n g i m p o r t a n t l e m m a s .
Lemma
I.
Let
maximal torus
(1)
G
be simple
and
B a fixed
subgroup
of
G.
Fix
a
T and a s i m p l e r o o t ~ .
F o r any s i m p l e ~ ~ o< s u c h that
(2) F o r a n y s i m p l e ~ ~
(*)~
(~,o() #
0 and a n y x c U ~ , ~ y B g P ~ / B
(*).
suoh that y-lxy
satisfying
Borel
, define
V
"/5
=
f xC U / ~ p r e c i s e l y
n !~,
yBI s¢ lB
-
C ~
where n'~.~
=I(1 ~,~)
141
-
if this integer is 0 or different from char G. otherwise.
Then Vo(,~ is open and dense in U o<"
(3) If x EU~ - V ¢ ~
then one of the following possibilities occurs:
(i) Every yB~Po
Y zB6P~/B, is a complete set of r e p r e -
Let ]~ simple (~ o() such that (~,¢,) = 0. ((1) is not applicable).Le~ x='~-Xr(Cr)EUa(. r~
r~
In this case,
n~
= 0. Hence x CV: ~ iff ~ no y B ~ Po
Since (~,cx) = 0, Wc4(~) -- ~ and hence the only positive roots which have support in { ~ ' ~ 1
are ~ and ~ .
It follows that G , and X~ commute elementwise.
It is now easy to see that for y ~ P ~ , y "lxy~U/$ iff x eU~
above, x e v
Hence from
iff x Su~ i. e ~f o~ ~ 0 This show~ that V~. ~ is open
and dense in U . Further, if x ~ V ~ , ~ , then (i) of (3} holds. We now consider a simple root /5 ~ o~ such that (~, c<) ~ 0. Let U< ~ , ~ ; = ~ r>O
X r.
This is a subgroup and is invariant under the conjugation
s~pp r ~ { , . ~ }
by elements of P~ and % . we may consider U~
Since our interest lies in actions of P~ and 9 ,
/U<,~,~ > instead of
product extension of % ~ , ~ > . ) supportin
{e4,~}.
Uo< . (Note that U~is a semidirect
Let R ,/5 be the system of roots having
We may assume U~ = 'X ~ r > 0 r'
rCR~ mayboma0eaboo,
Also
Similar assumptions
_
i
arootsyotemwi,h
-
{~,~
142
-
as b a s i s .
~ a s e (i).
Rc~
' Here, no< ~
is of type A 2.
I, U~ = X/~.
=
X
+
.
By commutation formulae, -i xo4(t)-l,x ~ (a).x/$+~<(b}. x~(t),n no4= x ~5(b+at). x~+o~ ( m o . a ) ; A l s o , x = x~s(a).x~+~(b)CU~5
m O : a c o n s t a n t depending on no( .
iff a = O. Hence if a = 0, 1. B £ P ~ / B
fies (*) w h e r e a s in c a s e a ~ 0, y = xo~(- b~ ).no~ s a t i s f i e s (*). T o p r o v e (2), we claim:
x EV
iff a ~ 0 o r b ~ 0.
satis-
Hence (1) follows.
(This c l e a r l y defines
an open n o n - e m p t y and hence dense subset of Uo(. ) L e t x be such that a ~ 0 o r b ~ 0.
tf a ~ 0, then yB = x o ( ( - b ) . n
.B
is the unique solution of (*).
a = 0 then b ~ 0 and yB = 1,B is the unique solution of (*). Conversely
If
Hence x e V ~ ,
if a = b = 0, then e v e r y yB EPo
This p r o v e s the claim and a l s o the s t a t e m e n t (i) of (3). c a s e (ii). !
Here, n~,~
RQ<,~ is of type B 2 and o( is the l o n g e r toot. =
1, U¢<
In this c a s e , P
=
Xf~.X#+oc . X 2 ~ + o < .
keeps X 2 ~ + o < i n v a r i a n t .
Hence this c a s e r e d u c e s to c a s e (i)
and is p r o v e d in a s i m i l a r fashion.
case (iii). Ro~,~ is of type B 2 and o4 is the shorter root Here, n~
=2
if c h a r G ~ 2 a n d =
1 otherwise.
Uo~= X/b.X~+0~.X~+2¢ ~.
B e f o r e p r o c e e d i n g to the p r o o f , we take a c l o s e r look at the c o m m u t a t i o n formulae. L e t x (t) "l.x~(a).xc~(t) = x (a). x +o (mat). x~+20 < { r e ' a t 2)
and x ~{t) "1 .x~b+oe(b). x (t) = x +~(b).x +2 (m"b t).
.
-
143
-
T h e n it can be p r o v e d b y i t e r a t i o n that m m " = 2 m '
and m ~ 0, m " ~ 0.
(A
d e t a i l e d a c c o u n t of such r e l a t i o n s m a y be found in the a u t h o r ' s ' L e c t u r e s on C h e v a l l e y g r o u p s , Yale U n i v e r s i t y ' . ) By c h a n g i n g the p a r a m e t r i z a t i o n s of %+~/
x(~+2~ , we m a y a r r a n g e
m = 1, m ' = 1, so that m " = 2.
Hence c h o o s i n g na~ p r o p e r l y ,
n
-1
-1
x (t)
~'~
x (a).x
~+~
"~
(b) x
" ~+2~
(c) x (t). n
"
= x0(at2 + 2bt + c). % + ~ ( a t + b). % + 2 0 ¢ (a) !
= x , say
I.
Since w (~) = o4 + ~ it follows that
n~l.X
(s)'lo X ' . x (S). n
= x.~(at2+ 2bt+ c). xo4(at + b). x ~ +2 (a) ._----- (II).
We now t u r n to the proof of c a s e (iii).
Let x -- x ~ (a).x~+ m).x ~+2 (c)c u~ If a = 0, then I.B where
satisfies (*). If a ~ 0, then x x(to).n .B satisfies (~),
to is a root of at2 + 2bt+ c = 0 (which exists.) Hence (I) is satisfied.
Next, we c l a i m :
x ~L,~
if, ~ = b 2 - a c ~ 0.
(This c l e a r l y p r o v e s (2).)
We f i r s t c o n s i d e r the c a s e when c h a r G ~ 2. Let a = 0.
Now A ~ 0 if, b ¢ 0.
Hence we have to show:
x C V 0 < / 5 i f f b ~ 0. /
It is e a s y enough to s e e : l . B and x .(-c ) . n o ( . B
a r e the two s o l u t i o n s of (*).
2~ Also,
x~V~,~----~b = (9 and (•)has
i n f i n i t e l y m a n y s o l u t i o n s o r only one
solution according as
c = C) o r
c ~ 0.
In the f i r s t c a s e , (i) of (3) h o l d s .
the s e c o n d c a s e , 1 . B
i s the u n i q u e s o l u t i o n and y
-1
. x . y = x.
In
Since x ~ X ~ + 2 ~ !
and 10+
+. 0 a r e not roo*s,
x/s)'l
x x0(s) n0
u0 for all s
so that (ii) of (3) holds. Let a ~ 0. Then
at2 + 2bt + c = 0 has two distinct solutions if, /k~ 0. It now
-
x eL,~
f o l l o w s that
h a s a unique s o l u t i o n t
= _b a
-
Further, x~V~,~__ ~ = 0 and at2+ 2bt+ c =0
iff A ~ 0. O
144
Since a t ° + b = 0, (tI) shows t h a t (ii) of (3)
h o l d s in t h i s c a s e .
C o n s i d e r the c a s e when c h a r G = 2.
T h e d i s c u s s i o n i s s i m i l a r to one in c a s e
' '/5 = 1 and the equation at 2 + 2 b t + c (a ~ 0) h a s c h a r G ~ 2 e x c e p t that no¢ j u s t one r o o t ,
c a s e (iv).
This proves this case completely.
R ~ , / 5 i s of t y p e G 2 and o( i s the l o n g e r r o o t .
I
Here, n~,~ Also,
w(
versa.
= 1, U04 = X . X ] 3 + o 4 . X 2 / 3 + ~ . X 3 / 3 + o d
X3~+20(.
k e e p s X 2 ~ + ~ i n v a r i a n t , t a k e s X 3 ~ + o 4 into X3 /5 +2o< and v i c e -
Hence t h i s c a s e i s s i m i l a r to c a s e (i) and is p r o v e d in a s i m i l a r
fashion.
c a s e (v).
Ro( "/3 i s of t y p e G 2 and o4 is t h e s h o r t e r r o o t .
He~e~ no4,/3 = 3 if c h a r G ~ 3 and 1 o t h e r w i s e . X
Uo(
.Xfl+o(.X~+2a ( .
.X
T h i s c a s e i n v o l v e s c a l c u l a t i o n s which a r e of the s a m e n a t u r e a s c a s e (iii). T h e method used there is applicable here also.
We l e a v e the d e t a i l s to the r e a d e r .
T h i s p r o v e s the l e m m a c o m p l e t e l y .
Corollary.
If ~ i s a n y s i m p l e r o o t , then GU~ = U g U g-1 ggG a l l i r r e g u l a r u n i p o t e n t e l e m e n t s . (G s i m p l e ) .
Proof. root ~.
By t h e o r e m 1 of 3 . 7 , x 6 U
i s i r r e g u l a r iff xCUf5
i s the s e t of
for some simple
Since G is s i m p l e , t h e r e e x i s t s a chain of s i m p l e r o o t s
o( = ~ o , ~ 1 . . . . .
~
(o(i,o~i+1) ¢ 0 ~ 0 ~ < i 5 k - 1 .
a b o v e l e m m a r e p e a t e d l y , x c a n b e c o n j u g a t e d into U .
B y a p p l y i n g the
Since a n y u n i p o t e n t
-
145
-
e l e m e n t i n G c a n b e c o n j u g a t e d i n t o U, it f o l l o w s t h a t i r r e g u l a r u n i p o t e n t e l e m e n t s in G.
L e m m a 2.
Let G,B
Define W ~ ~_ L
GU¢~ i s t h e s e t of a l l
T h i s p r o v e s the c o r o l l a r y .
b e a s a b o v e , o( b e a s i m p l e r o o t .
by the following: x ~ L
(i) x ev~,p V~ simple ~ o(
iff
.
(ii) For each yB EP~
T
t
are simple roots adjoining o( and yB,y B ~P~/B such that
y-lxy~%t%U~,y'-Ix.y'~%/%U , , _ _
then yB ~ y'B.
Then W ~ is an open dense subset of Uo<. Proof.
We g i v e t h e p r o o f f o r t h e c a s e
c a s e s to t h e r e a d e r .
A r a n d l e a v e the d e t a i l s of t h e o t h e r
U s i n g t h e s a m e n o t a t i o n a s in l e m m a 1, l e t x -- x~(a).xjKe~(b),,. /
w h e r e ~ i s a n a d j o i n i n g r o o t of ~ .
/
T h e n c o n d i t i o n (ii) c a n b e s e e n to be e q u i !
v a l e n t to b ~ 0, w h i c h o b v i o u s l y g i v e s a n open s u b s e t of Uo<. two a d j o i n i n g r o o t s of o ( , t h e n x g L !
x~,(a
may be writtenas:
If ~ ~ ~
x = x/5(a).x
are
+¢<(b).-
!
). x ,+
(b)...Then
#
and ab' ~ a'b.
the c o n d i t i o n (iii) i s e q u i v a l e n t to : (a ~ 0 o r a ' ~ 0)
T h i s a g a i n g i v e s a n o p e n s u b s e t of U(X .
W E i s a n open n o n - e m p t y s e t of U
Theorem
1.
Let G,B
It n o w f o l l o w s t h a t
(and h e n c e i s d e n s e ) .
be a s a b o v e .
(a) T h e s e t of i r r e g u l a r u n i p o t e n t e l e m e n t s in G i s a c l o s e d , i r r e d u c i b l e s e t of c o d i m
r+2
in G.
(b) T h i s s e t c o n t a i n s a u n i q u e d e n s e c l a s s Further,
f o r a n y s i m p l e r o o t v<, C A U
class under
Proof.
c<
C of the s a m e d i m e n s i o n a s i t s e l f . i s d e n s e in U
0(
and forms a single
P~ .
F i x a n y s i m p l e r o o t c<.
We a p p l y R i c h a r d s o n ' s T h e o r e m
(of 3 . 9 - to b e
-
146
-
r e f e r r e d to as "the t h e o r e m " in this proof) to the p a r a b o l i c s u b g r o u p P ~ G.
In this c a s e , U p = U~ .
to l e m m a 1 above give (a).
of
T h e p a r t (b) of "the t h e o r e m " and the c o r o l l a r y (We note that d i m P~/U0( = r+2. ) A s s u m i n g G
to have only a finite n u m b e r u n i p o t e n t c l a s s e s (e. g. i n good c h a r a c t e r i s t i c s ) , p a r t (c) of "the t h e o r e m " g i v e s (b) above.
H o w e v e r , one can a p r i o r i p r o v e
that GUo( c o n t a i n s a c l a s s of codlin r + 2, by a proof to be given e l s e w h e r e . Now in the p r o o f of "the t h e o r e m " , the f i n i t e n e s s of the n u m b e r of u n i p o t e n t c l a s s e s is u s e d only to p r o v e the e x i s t e n c e of such a c l a s s . follows even if G has i n f i n i t e l y m a n y u n i p o t e n t c l a s s e s .
Hence (b) above
T h i s p r o v e s the
theorem,
Remarks.
(1) The c l a s s
C above is the s e t of a l l s u b r e g u l a r u n i p o t e n t e l e -
ments. (2) T h e two c o r o l l a r i e s to R i c h a r d s o n ' s T h e o r e m hold in the s e t - u p of t h e o r e m 1 above.
We now give a d e v e l o p m e n t which h e l p s us to give a f i n a l c h a r a c t e r i z a t i o n of subregular elements.
We r e c a l l that a ( p r o j e c t i v e ) l i n e of type ~ (¢<simple) is a set
g P ~ / B , g ~.G.
(See P r o p o s i t i o n 1 of 3 . 9 . )
P r o p o s i t i o n 1. (a) T h r o u g h any point of G / B p a s s e s a u n i q u e line of type ~ .
(b) If u is an u n i p o t e n t e l e m e n t , then the following s t a t e m e n t s a r e e q u i v a l e n t : (1) u fixes (2) u ~ U
P~/BPointwise. .
-
(c) If ~ , ~
147
-
a r e d i s t i n c t s i m p l e r o o t s , then the i n t e r s e c t i o n of a l i n e of t y p e
~ and a l i n e of t y p e ~ c o n s i s t s of a t m o s t one e l e m e n t of
G/B.
T h u s a line
of t y p e ~ i s d i s t i n c t f r o m a n y l i n e of t y p e / ~ .
(d) If u i s a s u b r e g u l a r u n i p o t e n t e l e m e n t , then
ZG(U) a c t s t r a n s i t i v e l y on
the l i n e s of t y p e 0<, f i x e d p o i n t w i s e b y u.
Proof.
(b)
(a) i s c l e a r .
(2) ~ ( I ) (1) ~
is obvious since Po( normalises U< .
(2). It is given that u.pB = pB Vp EPa( . In particular,
u.no(B = no(B i.e. n (c) L e t ~ , ~ Y)/B"
-i
.u.n
~B.
be two d i s t i n c t s i m p l e r o o t s .
This clearly shows u EUo(. C o n s i d e r the l i n e s
xPo(/B
and
L e t XPlB , x P 2 B ( P l , P 2 e P ) be two p o i n t s in t h e i r i n t e r s e c t i o n . !
fhen there exist
!
P l ' P 2 ~ P/5
-1 P2 P l ¢ P f~ P/3 '
s u c h that xPiB -- yp:B,1 i = 1, 2.
Hence
U s i n g B r u h a t l e m m a , it can be p r o v e d t h a t
P f~ P
•-1
-- B.
/5
Hence P2 P; E B which s h o w s that XPlB = xP2B.
T h i s p r o v e s the r e q u i r e d
result.
(d) T h i s f o l l o w s f r o m T h e o r e m 1 (b) of 3 . 1 0 and T h e o r e m 2, Cor. 2 o f
3-9.
T h i s p r o v e s the p r o p o s i t i o n c o m p l e t e l y .
Let
u b e an i r r e g u l a r u n i p o t e n t e l e m e n t in G.
of 3 . 9 , (G/B)
T h e n a s s e e n in P r o p o s i t i o n 1
i s a c o n n e c t e d union of l i n e s of v a r i o u s t y p e s .
The subregular
U
unipotent element
u w i l l now b e c h a r a c t e r i z e d b y the s t r u c t u r e of (G/B} • U
Definition.
A Dynkin c u r v e i s a n o n - e m p t y union of l i n e s of v a r i o u s t y p e s s u c h
t h a t a l i n e of t y p e c~ m e e t s e x a c t l y n'~ , ~
l i n e s of t y p e 8 "
(~, ~
are any
-
d i s t i n c t s i m p l e r o o t s and n ~' , ~
Remarks.
148
-
is as d e f i n e d in l e m m a I).
(a) T h i s notion and a n u m b e r of i t s b a s i c p r o p e r t i e s a r e due to
J . Tit,~ (unpublished). (b) It is e a s y to s e e that the a b o v e s p e c i f i c a t i o n s d e t e r m i n e , f o r e a c h o<, the 2 t o t a l n u m b e r of l i n e s of type v< v i z . [5 I , w h e r e ~ m i n is a r o o t of
12
[¢<min m i n i m u m length.
T h e r e a d e r m a y wish to d r a w p i c t u r e s of the Dynkin c u r v e s of
type A r , B r , C r (r = 3 is t y p i c a l ) , D r ( r = 4 o r 5), E 6 , F 4 , G 2.
If he d o e s so, he
wiLl find that, e x c e p t f o r the l a b e l i n g of the l i n e s , the p i c t u r e s f o r G 2 and D 4 a r e the s a m e , as a r e t h o s e f o r F 4 and E6, and s i m i l a r l y f o r the o t h e r c a s e s w h e r e r o o t s of d i f f e r e n t l e n g t h s o c c u r .
P r o p o s i t i o n 2. L e t u be a s u b r e g u l a r u n i p o t e n t e l e m e n t .
Then
(G/B)
is a U
Dynkin c u r v e .
Remark.
T h u s , Dynkin c u r v e s e x i s t .
T h i s i s t h e d i r e c t a n a l o g u e of o u r e a r l i e r r e s u l t (see 3.7) t h a t
(G/B) u
i s a p o i n t if u is r e g u l a r .
P r o o f of p r o p o s i t i o n 2.
It can be c h e c k e d that
(G/B)gug.1
= g.(G/R)
•
Hence
U
one i s a Dynkin c u r v e iff the o t h e r one i s .
F i x a s i m p l e r o o t o< .
Then
G
c o r o l l a r y to l e m m a 1 a b o v e ) .
Uo< = Set of i r r e g u l a r u n i p o t e n t e l e m e n t s (see the
Further,
s u b r e g u l a r e l e m e n t s in U ~ f o r m a
single class under
Pe¢ and this c l a s s is d e n s e in 1 ~ .
of l e m m a 1 a b o v e .
Since V¢~,#
contains a subregular element. u itself.
T h u s we h a v e :
other simple root ~,
We u s e the n o t a t i o n
is open and d e n s e in U , it f o l l o w s that it One m a y f u r t h e r a s s u m e that t h i s e l e m e n t is
u is a s u b r e g u l a r e l e m e n t ~ Uo< s u c h that f o r a n y !
there exist exactly n ~ ~ -many points
yB C P ~ / B
with
-
y'luyg~U~,
in (G/B) u i n t e r s e c t this line in a point pB,
P'C P(5 such that pB = g p ' B .
p,-1
-
Since u ~ U ~ • P ~ / B C_ (G/B) u by (b} of p r o p o s i t i o n 1 above.
Let gP~/B exists
149
Hence y = g p ' g P
up (Note
u g
p E P~.
Now t h e r e
and ( g p ' ) ' l . u ( g p ' ) --
gPetB
his
s e t s up a o n e - o n e c o r r e s p o n d e n c e between lines of type /5 in (G/B) u which intersect
P~/B
that P ~ / B
and y B ~ P o f / B
suchthat
meets exactly n'~,~
y'luyEU
~ U~.
lines of type ~ in (G/B) u.
It now follows L e t gP¢~ /B be
any o t h e r line of type ¢(6(G/B} • By p a r t (d) of the p r o p o s i t i o n 1 above, we m a y U
assume
geZG(u}.
intersects
P~/B"
Aline
hP~/B
of type ~
intersects
It now follows that gP~ /B a l s o m e e t s e x a c t l y n , , p
meets exactly n v( is a r b i t r a r y ,
!
if g - l h p ~ / B
Since geZG(U), h P ~ / B g (G/B) u iff g - l h p ~ / B 6 !
p r o v e s that f o r all
gPa(/B
(G/B) u.
lines of type ] 5 .
This
u s u b r e g u l a r unipotent, e v e r y line of type o( in (G/B) u lines of type /5 in (G/B) u ( ~ any s i m p l e root ~ v().
Since
our p r o p o s i t i o n is p r o v e d .
We will p r o v e l a t e r that the c o n v e r s e of the above p r o p o s i t i o n is a l s o true. c h a r a c t e r i z e s the s u b r e g u l a r
This
unipotent e l e m e n t s in G.
P r o p o s i t i o n 3. Any two Dynkin c u r v e s a r e t r a n s l a t e s of each o t h e r by e l e m e n t s of G. Proof.
The idea of the p r o o f is as follows:
We f i r s t give a s t a n d a r d Dynkin c u r v e
and then show that any other Dynkin c u r v e is a t r a n s l a t e of this c u r v e . c l e a r l y p r o v e s the p r o p o s i t i o n .
We give the proof in c a s e G is of type A r.
Using it, p r o o f s in o t h e r c a s e s m a y be given. p r o o f in c a s e case (i).
G is of type D r o r E r.
L e t G be of type A r.
This
As an i l l u s t r a t i o n ,
we give a
-
Let
m(1 . . . . .
150
-
oft be the s i m p l e r o o t s such t h a t
C o n s i d e r the following s u b s e t
of G / B :
P~3/B U...~n~l...nc(r.l.P~r/B," Dynkin c u r v e .
(~(i,¢
S = P~I/B
U no( 1- Po<2/B On0(1.no( 2-
It i s e a s y to c h e c k t h a t S i s i n d e e d a
L e t S 1 be a n y o t h e r Dynkin c u r v e .
Since S 1 is a non-empty
union of l i n e s of v a r i o u s t y p e s , it f o l l o w s that S 1 c o n t a i n s e x a c t l y o n e l i n e of t y p e c~ 1, s a y g P ¢ ~ l / B . T r a n s l a t i n g the l i n e
P¢~1/B,
S 1 by g-t
T h u s we m a y a s s u m e t h a t S 1 i t s e l f c o n t a i n s
t h e r e e x i s t s p r e c i s e l y one l i n e of type ~ 2 its points.
we find t h a t g - l s 1 c o n t a i n s P~I/B"
Now
which i n t e r s e c t s t h i s l i n e at one of
By a s u i t a b l e e l e m e n t of P ~ I " the p o i n t of i n t e r s e c t i o n m a y be
t r a n s l a t e d to n ~ i B
and t h i s e l e m e n t d o e s not c h a n g e the line
P¢~l/B .
Hence,
a g a i n , we m a y a s s u m e that the line of t y p e o(2 o c e u r i n g in S 1 i s n ~ ] . P o f 2 / B . T h i s m e e t s a unique l i n e of t y p e 0< 3 in a p o i n t n ~ l . X ~ 2 that t h i s p o i n t c a n n o t b e n ~ l B .
) T r a n s l a t i n g by b --
t h i s point i s m o v e d to n ~ l . n ~ 2 B . kept invariant.
A l s o , the l i n e s
(t). n ~ 2 B.
n~l"
P~I/B
(We note
x~2(t)-l.n
~
1
,
and no(1Pm~2/B
are
H e n c e we m a y a s s u m e t h a t the unique l i n e of type °(3 o c c u r i n g
in S t i s nM~ n ~ P ~ 3 / B .
P r o c e e d i n g in t h i s way, we s e e t h a t S 1 can be
t r a n s l a t e d to the s t a n d a r d Dynkin c u r v e S.
T h i s p r o v e s the p r o p o s i t i o n in
this case. case(ii).
L e t G b e of t y p e E r
o r Dr . I
Let ~o
be the (unique} b r a n c h point.
!
|I
tl
ofk, o(1 . . . . . e
....
s t a n d a r d Dynkin c u r v e f o r defined curves for the f o l l o w i n g s u b s e t ndo.S , where
,
Io( 1 . . . . .
....
'I
~k'
L e t o( 1 . . . . .
and o( k and
l
. . . . . ( s e e c a s e (i)).
L 1
.....
S O of G / B : S o = P ~ o / B U n ~ o S
0 ~ t l , t 2 and t 1 ~ t 2.
i s i n d e e d a Dynkin c u r v e .
"}
~k"
L e t S be the Let S ,S "
be s i m i l a r l y
respectively.
Consider
U Xo(o(tl).n~o s'UX~o(t2).
It i s now f a i r l y e a s y to c h e c k that S o
L e t S 1 be a n y o t h e r Dynkin c u r v e .
We m a y a s s u m e
-
151
-
that the line of type o{ o o c c u r i n g in S 1 is P ~ o / B .
C o n s i d e r the points of !
TI
i n t e r s e c t i o n of this line with the lines of type ~ 1 ' ~'1' ~1
(occuring in S1).
C l e a r l y , these a r e t h r e e distinct points and hence can be t r a n s l a t e d onto any other t r i p l e t of t h r e e distinct points, by an e l e m e n t of P~o" Pc~o/U~ ° on Pc(o/B
is just that of the p r o j e c t i v e group on the p r o j e c t i v e line. )
T h u s we m a y a s s u m e that t h e s e t h r e e points a r e n ~ o B , n [ o. B ~ ( * ) .
(The action of
x ~ , o ( t l ) . n ~ o B , X~o(t2).
Now by c a s e (i), the p a r t of S 1, c o n s i s t i n g of lines of type
a( 1 . . . . . ~(k is of the f o r m g. S, g ~; G.
Also, no(oB ~ g n l B .
(A line of type o( 2
does not m e e t a line of type c< ° in S 1.) Again, the line of type ~ 1 P~o/S
is n o ( o P ~ l / B -- gPo(1/B.
It can n o w b e p r o v e d that g = no( .b with k
b~B.
L e t b = b l . b 2, w h e r e
meeting
o
b 1 =i=~lxo(i(di)
and b 2 = -~-r>0Xr(Cr)" Then
r¢~ n~o.bl
-1
-1 "nc
i = 1,2 i n v a r i a n t .
1
T r a n s l a t i o n by this e l e m e n t k e e p s
P ~ o / B , n o B , X~o(ti)n~oB
(e.g. n~o.b;1.n-I .Xofo(tl),na(oB = n0(o.no(o. -i Xo( (tl).n o.b %
as n~lo.xa(o(tl).n0( ° c o m m u t e s with
o
b l) Also, %b;ln C¢o1 gSo%b 1 !
b l . b 2.S -- n~ob2S. b2S = S.
Since b 2 does not involve any of the xo(.s, it follows that 1 T h u s by a suitable t r a n s l a t i o n , the Dynkin c u r v e c o r r e s p o n d i n g to
I~l .....
~ k t is n ~ o . S
and the condition ( * ) i s unchanged.
f o r the p a r t s c o r r e s p o n d i n g to
{-: i} ....
,
and
{<
Similar arguments
....
show that
the whole c u r v e m a y be t r a n s l a t e d onto S o . T h i s p r o v e s this c a s e . c a s e (iii).
G is of type B r. !
L e t o(o,O
o(i+1 =
to Io(1 . . . . .
O(r. 1 be the s i m p l e r o o t s such that
1 V 1 ,< i ~ r - 2 . ~r.11
. Let So= Pc~o/BVno(o.S~x
G is of type C r.
= 2 and
L e t S be the s t a n d a r d Dynkin c u r v e c o r r e s p o n d i n g
S O is the s t a n d a r d Dynkin c u r v e in this c a s e . c a s e (iv).
n~o~l
o(to).no(oS, t o ~ 0 .
Then
1B
-
152
-
Let O(o, ~1 . . . . . O(r, I be the simple r o o t s such that n ~ i , ~ , + . = 1 V 0 , < i , < r - 2 . 1
L e t S be the standard Dynkin curve c o r r e s p o n d i n g to f 4 1 So = x ~ 1 (tl).no( 1 PO(o/BD XC(l(t2).no( 1 P ~ o / B U S
1
. . . .
=(r-1 t " T h e n
where t 1 ~ t 2 , 0 ~ t l , t 2,
is the standard Dynkin c u r v e . c a s e (v). G is of type G 2. !
L e t o<,~ be the simple r o o t s such that nc~,/5 = 1 (i.e. o< is the l o n g e r r o o t ) . T h e n S o = P ~ / B t) n{%PO(/B U x ~ ( t l ) . n ~ • P~X/B U x ~ ( t 2 ) . n ~ Pe
case (vi). G is of type F 4. Let V~l,0(2,% , v44 be the s,:raple roots such that t
nv41,o< 2
=
!
I, ne<2, o< 3
=
!
2, ne43,c:<4
-_
1. Then
So = n~ 2 P~I/B U P~2/BUXc~2(tl)n~ 2 P~3/BUX~2(t2).n~iPo<3/B
U -
xo(2(tI ).n~2. no(3.Pc<4/B U x~2(t2), n~2. n~3 P~4/B , where tI ~ t2, is the standard Dynkin curve.
Exercise:
Work out the p r o o f s f o r the c a s e s ( i i i ) - (vi).
We a r e now in a position to give a final c h a r a c t e r i z a t i o n of s u b r e g u l a r elements.
Let G be a simple group.
Choose a simple root o< as follows:
(i) arbitrary if G is of type A r(2) the short branch point otherwise.
(Omit "short" if all roots have the
-
153
-
s a m e length. )
Theorem 2.
Let G,B be as above and u be an irregular unipotent element.
Then the following s t a t e m e n t s a r e equivalent: (a) u is subregular i . e .
dim ZG(U) = r + 2.
(b) (G/B)u (i. e. the variety of Borel subgroups containing u) is a Dynkin curve.
~f~2
(c) (G/B) u consists of a union of lines, ( ~min
(c') u belongs to the unipotent radical of
simple.
1/512
parabolic subgroups of
fPminJ2
type /~, ~ ~ s i m p l e . u
~
i mlnl
is a r o o t of m i n i m u m length. )
(~) (G/B)
of type
is a finite union of lines of v a r i o u s types.
(d') u is contained in the unipotent r a d i c a l of a finite n u m b e r of r a n k 1 p a r a bolic subgroups. (e) (G/B)u has dimension 1. (f) If ~ is chosen as above and u E U , then u @Wo( (i.e. the conditions (i) - (iii) in Lemma 2 hold.)
Proof. (a) ~
(b) ~
(c) ~
(b) is precisely proved in Proposition 2 above.
(d) ~
(e) are trivial.
(c') and (d') are reformulations of (c) and (d) respectively.
(e) => (f). Let, if possible, condition (i) of L e m m a simple ~ ~ ~ .
2 fail. Let x # v
If (~,0() = 0, then u fixes Po(" P~/B
"~ for some
which has dimension 2.
This contradicts (e). If (~,o() ~ 0 i.e. ~ is adjacent to ~', then by lemma I, either y-luy~ U ~ f ~ %
V yE~
or ~ Y 4 ~
suchthat z'ly'luyzEU~/~ U#
k]z ~P~ . In either case, (G/B) u contains a subset of dim 2, which is again
-
a c o n t r a d i c t i o n to (e).
(a).
c a s e (i).
-
T h u s (i) does not f a i l .
(ii) and (iii) a l s o do not f a i l .
(f) ~
154
It can be s e e n s i m i l a r l y that
T h i s p r o v e s the i m p l i c a t i o n .
T h e p r o o f i s g i v e n e a s e by c a s e .
G is of type D r o r E r .
H e r e , ~ i s the b r a n c h point.
Let ~ , r , ~ ' - be the a d j a c e n t s i m p l e r o o t s .
L e t u = x ~--( a ) , x ~ + ~ ( b ) . x r ( a ' ) . x r + ~ ( b ' ) . x $ ( a
. ).x~.+ . . .
( b ) . u ' w h e r e u' does
not i n v o l v e a n y of the above r o o t s . Now condition (i) is t r a n s l a t e d as: If u' =Vx@(c{}) then c@ ~ 0 for a l l s i m p l e g (not a d j e c e n t to ~ ).
!
!
tt
1~
A l s o , ( a , b ) , (a , b ), (a , b ) a r e p o i n t s of the p r o j e c t i v e
l i n e IP' ( i . e . (a,b) ~ (0, 0) etc. ) on which G a c t s .
Condition (iii) is t r a n s l a t e d
as: The above t h r e e p o i n t s of p r o j e c t i v e s p a c e a r e d i s t i n c t . Since a n y t r i p l e t of d i s t i n c t p o i n t s of IF' c a n be t a k e n onto a n y o t h e r t r i p l e t !
of d i s t i n c t p o i n t s by an e l e m e n t of SL 2, it follows that we m a y a s s u m e b=0 = a , a ~ t b" ~ 0 and a ~ 0, b'~ 0. F u r t h e r , by c o n j u g a t i n g by a s u i t a b l e e l e m e n t t ~ T , we m a y a s s u m e that a = 1 - - b ' = a
= b ,c@
1~8
simple,
o u r e l e m e n t u looks like: x~ (1). Xr+~(1). x ~ ( 1 ) . x g + ~ ( 1 ) . u ' with cg = 1 f o r
0
. Thus
where u ' = J'~xtt (c e ) g
{} s i m p l e , (@,~) = 0 ~ ( * ) .
Now by l e m m a 2, WE i s d e n s e in Uo(. e l e m e n t s a r e d e n s e in Uo(. b e l o n g s to WE
(@,~)=
A l s o , by T h e o r e m 1, the s u b r e g u l a r
Hence t h e r e e x i s t s a s u b r e g u l a r e l e m e n t v which
i . e . s a t i s f i e s c o n d i t i o n s (i) - ( i i i ) .
v has the s a m e a p p e a r a n c e a s g i v e n in (~).
Now one m a y a s s u m e that
We c l a i m that u is c o n j u g a t e to v
which p r o v e s that u i t s e l f i s s u b r e g u l a r . Let
U' = @>0 "~- Xg,
where
I e x c l u d e s a l l the s i m p l e r o o t s and ~ + ~ , r + ¢ , ~ + ~
@EI It follows that U~/U'
[U¢~, UM] C U' (by c o m m u t a t i o n f o r m u l a e ) .
is abelian.
T h i s shows that
A l s o , s i n c e u and v has the a p p e a r a n c e as given in (*4
-
uv-16 U'.
155
-
Consider CU (v).v "I which contains e and is clearly contained
in U'. Since v is subregular, we have: codimu~ Cuo((v) = dim ZU (v) dim ZG(V) = r + 2. Also, codimu~ U' = r+2. CUa((v) is closed, being an orbit of an unipotent group (see proposition of 2.5). irreducible).
It now follows that CU (v).v "I = U' (U' is
This gives: uv -1 = xvx"1v -I for s o m e x ~ U .
are conjugate.
T h i s p r o v e s the i m p l i c a t i o n (f) ~
O t h e r c a s e s a r e s i m i l a r l y d e a l t with.
Remark.
In the c a s e of D r
b e an e q u a l i t y so that
Henceu
(a) in this c a s e .
We o m i t the d e t a i l s ,
and E r j u s t d e a l t with, the l a s t i n e q u a l i t y m u s t o
ZG(U) C U~ , u s u b r e g u l a r .
T h i s r e s u l t is t r u e f o r a l l o t h e r c a s e s except A r
Hence
and B r .
ZG(U)
o
is unipotent.
In t h e s e e a s e s ,
ZG(U)° p i c k s up a o n e - d i m e n s i o n a l t o r u s along with the u n i p o t e n t p a r t . a l w a y s has
ZG(U}°C - P~ (u s u b r e g u l a r in t ~ )
o( is s h o r t .
andv
and even
ZG(U ) C ~ (
In the l a t t e r c a s e , for e x a m p l e , ZG(U} n o r m a l i z e s
P
One in c a s e
, hence
is p a r t of it.
Final remark.
The reader wishing to study conjugacy classes further should
consult (2) of the bibliography below, especially Part E.
-
Appendix.
156
-
The connection with Kleinia n singularities.
s u b g r o u p of SU 2 ( c o m p a c t f o r m ) a c t i n g on (~2/F, a surface
¢ 2.
Let
F
be a f i n i t e
We f o r m the q u o t i e n t v a r i e t y
S with an isolated, "Kleinian", singularity at the origin 0,
coordinatized by the algebra of F-invariant polynomials on
(E 2 .
In each ease
there is a generating set of three polynomials subject to a single relation.
The
possibilities, up to i s o m o r p h i s m , are as follows :
F
C y c l i c of o r d e r
a s SO
x r + l + xy2 + z2 = 0
2r
x4+y3+
Binary octahedral
x3y+y3+ z 2
= 0
Binary icosahedral
x 5 + y3 + z 2
= 0
¢3
z 2 --0
A r
Dr+2 E6 E7 E8
2 e l e m e n t s of d e g r e e 2 on (~ ,
t h e s p a c e of s y m m e t r i c
on ~t 3, t h e k e r n e l b e i n g ± id, t h e f i r s t c o l u m n m a y be d e d u c e d f r o m
the c o r r e s p o n d i n g book "Symmetry". t h e n be f o u n d . ( r + l = 1)
u,v
if F
in W e y l ' s
i s c y c l i c , g e n e r a t e d by d i a g (~, 6 "1)
are the coordinates, satisfy
then
xy = z r+l.
The third column comes about thus.
desingularization,
, as given, e.g.,
In e a c h c a s e the b a s i c i n v a r i a n t s and t h e r e l a t i o n m a y
For example,
and
~3
c l a s s i f i c a t i o n of SO 3 on
g e n e r a t e a l l i n v a r i a n t s and harder.
= 0
Binary tetrahedra!
SU 2 a c t s on 3
r+l
xy+z
r +1
D i h e d r a l of o r d e r
Since
Name
S
t h e n the f i b r e
p'l(0)
of a union of "lines" (i.e. curves) exactly that of the Dynkin curve
x = u r+l • y=
If p : S ' - - - - ~ S i s a m i n i m a l
above the singular point consists
w h o s e intersection pattern is
A r,
z=uv
The other cases are somewhat
with the s a m e fable.
this desingularization for the type
vr+l,
Here
S'
W e illustrate is the surface
-
in ¢ 3 ~ { I p 1 ) r
157
-
g i v e n b y x - - u l z , u 1 = u 2 z . . . . . Ur_ 1 = UrZ, Ur y = z (which i m p l y
xy = z r + i ) , and p i s the p r o j e c t i o n into the s p a c e of the c o o r d i n a t e s x , y , z. T h a t S' i s n o n s i n g u l a r and i r r e d u c i b l e m a y be e a s i l y p r o v e d .
We m a y r e v e r s e
p on the n o n s i n g u l a r p a r t S - {01 of S, e . g . on x ~ 0 b y s o l v i n g s u c c e s s i v e l y for Ul,U 2 ...... so that p: S' - Ip'l(o)I---~Sw e have a desingularization.
{0}
is an i s o m o r p h i s m and
W h a t does p-l(o) look like ? If u I ~ 0, we can
solve successively for u2,u3,.. (all values co), so that we have a line, say LI, joining (a~,co ..... (30), or briefly oor, to (0, oor-l). then u3,u4,.., in succession all have to be
L 2 from
(0, co r - l ) to
(02 , cor - 2 ) to of type A r .
(02, c o r ' 2 ) .
If u I = 0 and u 2 # O,
oo, so that w e have a second line
S i m i l a r l y we pick up a l i n e L 3 f r o m
(03, oor-3), and so on u n t i l we have for p ' l ( 0 ) a Dynkin c u r v e E x p l i c i t d e s i n g u l a r i z a t i o n s f o r the o t h e r t y p e s , e s p e c i a l l y f o r E8,
a r e c o n s i d e r a b l y m o r e c.omplicated, and quite ad hoc.
What P r o p o s i t i o n 2
above (in c o n j u n c t i o n with T h e o r e m 1 of 3.9) m e a n s is that this need not be so. Each K l e i n i a n s i n g u l a r i t y and its d e s i n g u l a r i z a t i o n is r e a l i z e d n a t u r a l l y in the c o r r e s p o n d i n g a l g e b r a i c group, via a " r i d g e " of s i n g u l a r i t i e s on the unipote~t variety along its s u b r e g u l a r subvariety.
T h e r e i s a f i n a l c h a r a c t e r i z a t i o n of
s u b r e g u l a r e l e m e n t s , a n a l o g o u s to
T h e o r e m 3 of 3 . 8 f o r r e g u l a r e l e m e n t s , which we s h a l l m e n t i o n . on the n o t i o n of a d e f o r m a t i o n of a s u r f a c e
S and a s i n g u l a r point 0 on it.
T h i s is a m o r p h i s m (in s o m e c a t e g o r y ) of p o i n t e d s p a c e s such that the f i b r e
This depends
p: (V, v o) ~
( p - l ( t o ) , V o) above t o i s i s o m o r p h i c to
f i b r e s r e p r e s e n t s t a g e s of the d e f o r m a t i o n a s
(S,0).
(T, t o) The o t h e r
t v a r i e s in the b a s e s p a c e .
notion of u n i v e r s a l d e f o r m a t i o n can then be defined in an obvious way.
The
Brieskorn
has p r o v e d the following within the c a t e g o r y of g e r m s of a n a l y t i c s p a c e s (see his talk at Nice, 1970).
Let G be s i m p l e , s i m p l y c o n n e c t e d / ( ~ , hence a Lie
-
158
-
g r o u p , u a s u b r e g u l a r u n i p o t e n t e l e m e n t of G , V a s u b v a r i e t y of G (of d i m r+2) t h r o u g h u t r a n s v e r s to C(u), so that l o c a l l y G i s the p r o d u c t of C(u) and V.
F i n a l l y , let p:G - - - ~ T / W (T m a x . t o r u s , W Weyl group) be defined by
p(x) =
s e t of e l e m e n t s of T c o n j u g a t e to x s.
Theorem.
L e t e v e r y t h i n g be a s j u s t s t a t e d .
(a) p : (V,u)
~ ( T / W , 1) is a (the) u n i v e r s a l d e f o r m a t i o n f o r the c o r r e s -
ponding K l e i n i a n s i n g u l a r i t y . (b) C o n v e r s e l y ,
u is s u b r e g u l a r u n i p o t e n t if t h e r e e x i s t s a f a c t o r i z a t i o n
(G,u)~ Pl ~/Jx'x°) ( T / W , 1) with q r e g u l a r and r
the j u s t m e n t i o n e d u n i v e r s a l d e f o r m a t i o n .
T h u s we s e e that the u n i v e r s a l d e f o r m a t i o n t a k e s p l a c e n a t u r a l l y within the c o r r e s p o n d i n g a l g e b r a i c group with the b a s e j u s t the s e t of s e m i s i m p l e c l a s s e s b y C o r o l l a r y 2 (a) to T h e o r e m 2 of 2 . 4 .
Consider. for example, the group SL 2.
Here u = I, V is SL 2 itself, and
p(x) is b a s i c a l l y j u s t the t r a c e of x. If x = [ : d ] , then ad - b c = 1 s o t h a t p(x) 2 ~,~2 - b c = (a - - - ) + (1-~). At x = 1, p(x) = 2, we h a v e a cone with the 2 s i n g u l a r i t y of type A 1 at the v e r t e x .
N e a r b y p(x) ~ 2, the s u r f a c e is an
e l l i p s o i d , and the s i n g u l a r i t y has d i s a p p e a r e d .
-
159
-
REFERENCES (1)
Armand Borel
(2)
: Linear Algebraic Groups. (W.A. Benjamin Inc. 1969.) et al. : S e m i n a r on A l g e b r a i c G r o u p s and R e l a t e d Finite Groups. (Springer-Verlag Series No. 131. )
(3)
Nicolas B o u r b a k i
(4)
Claude Chevalley
: S e m i n a i r e C h e v a l l e y Vol. 1, 2.
(5)
David Mumford
: I n t r o d u c t i o n to A l g e b r a i c G e o m e t r y . (Harvard University Notes. )
(6)
Jean-Pierre
: L i e A l g e b r a s and L i e G r o u p s . ( H a r v a r d U n i v e r s i t y N o t e s , W . A . B e n j a m i n Inc. 1965. )
Serre
(7) (8)
(9)
(10)
G r o u p e s e t A ~ g e b r e s de L i e - C h a p i t r e 4, 5 e t 6. ( H e r m a n n , P a r i s 1968. )
: A l g e b r e s de L i e S e m i s i m p l e s C o m p l e x e s ( W . A . B e n j a m i n Inc. 1966. ) Robert Steinberg
: R e g u l a r e l e m e n t s of S e m i s i m p l e A l g e b r a i c G r o u p s . ( I . H . E . S . P u b l i . M a t h e . No. 2 5 , 1 9 6 5 . ) : L e c t u r e s on C h e v a l l e y G r o u p s . U n i v e r s i t y N o t e s , 1967.)
(Yale
: E n d o m o r p h i s m s of L i n e a r A l g e b r a i c G r o u p s . (A. M . S . M e m o i r s No. 80, 1968. )