*Ae*w. 630
369
DIE POINCARf-GRUPPE
Q Der Operator -r-r bedeutet hier Differentiation der Koeffidx* zienten des u darstellenden äußeren Polynoms nach xl. Im Falle der Metrik (2) ergibt sich so: Α j du , dt L dxu = dau = — +-—/^w
dx . —/\etu
j j du dt , dy . d2u = dyu = — -f. — heyu — -j-f\etu
(5)
j j dzu = dau =
du dt A —— -—/\e,u dz t
. j du 1 d^u = dtu = -^ + — -yu
dz A τ-A^tU V
wobei die Bezeichnungen
(6)
exu — e-^u,
evu =
e^u,
et u — e3 u,
etu =
e0u
verwendet worden sind. Der allgemein durch (7)
du =
dxWdiU
definierte Dirac-Operator 0, die innere Differentiation, hat im Falle der Metrik (2) die Wirkung (8)
Su = d x v j ^
+
dyvj^
+
dzvj^
+
d
tV^-^-a--y)etu.
Auf ein inneres Produkt wirkt der Dirac-Operator nach dem Gesetz (9)
d{u\fv)
= 6u\/v + ηη\/δν +
Z-tfuS/diV
das mit der Regel d(uf\v)
=
duf\v +
yuf\dv
zu vergleichen ist. Wenn ein Differential ν in dem Sinne k o n s t a n t ist, daß (10)
diV = 0
für alle i
gilt, so ist (11)
d{u\/v)
= 631
6u\Jv.
370
Ε. KAHLER
Alle Differentiale, die aus 1 und dem Volumen-Differential τ linear kombiniert werden können, sind konstant. Im Falle der Poincarl-Metrik 7(2) ist C -f C-r die Gesamtheit der konstanten Differentiale. 8
Ein Lie-Operator X, der auf Funktionen u die Wirkung ν
λ 9M
hat, wirkt auf die Differentiale u nach dem Gesetz (1)
Xu =
+
d(nAeiU.
Hier ist unter d ( f ) das totale Differential der Funktion /' zu verstehen, wobei die Beklammerung vermeiden soll, daß man an (dfy = dxh/\dh p, die i — te Komponente des äußerne Differentials des Tensors mit den Komponenten f denkt. Stehen die Lie-Operatoren Χ, Υ, Ζ als auf Funktionen wirkend in der Beziehung XY — YX = Z, so gilt diese Gleichung auch, wenn die Operatoren auf Differentiale angewandt werden. Wenn eine Riemannsche Metrik vorliegt, kann (2)
U = 9irP
gebildet werden. Die Lie-Operatoren, die eine Gruppe von Isometrien der Metrik erzeugen, sind durch das Bestehen der Killing sehen Geichungen dt fk -f- dk = 0 gekennzeichnet. Nur wenn diese Gleichungen erfüllt sind, gilt (3)
Xöu = SXu
während (4)
Xdu = dXu
für alle Lie-Operatoren richtig ist. Ähnlich steht es mit der Relation (5)
X(u\/v)
= Xu\Jv + u\/Xv 632
371
DIE POINCARlS-GRUPPE
die nur für Operatoren, die Isometrien erzeugen, behauptet werden kann, während (6)
X(u/\v)
= Xu/\v +
u/\Xv
ausnahmslos gilt. 9 Jedem Paare u, ν von Differentiatialen eines n-dimensionalen Raumes wird durch die Formel (1)
(u,v) =
(CuVv) A r ,
in der τ das Volumen-Differential bezeichnet, ein Differential n-ten Grades zugeordnet, das als das Skalar-Produkt von u und ν bezeichnet werde, obwohl es dem üblichen Gebrauche dieses Wortes besser entspräche, das Integral dieses Differentials so zu nennen. Deutet der Index ο am Zeichen eines Differentials an, daß der Anteil 0-ten Grades in der Darstellung dieses Differentials als Summe seiner homogenen Bestandteile gemeint ist, so kann die Definition (1) auch so formuliert werdne: (2)
(u,v) t= (CuVv)o-r. Das Skalar-Produkt hat die Eigenschaften:
(3)
(11, ν) = (ν, u) =
(4) (5) (6) (7)
(u,v) =
(φι, ην) =
(ζν,, ζν)
(wVt,vVT)
(u, ν) ist 0, wenn u, ν homogen von verschiedenem Grade sind (u, v) ist 0, wenn U\/T = u, ν\/τ = — ν sind {u\Jw, v) =
(u,v\/Cw)
(w\Ju, ν) =
(ίί, ζτυ\/ν)
u, ν, w bezeichnen dabei beliebige Differentiale. 10 Das erste abgeleitete Skalar-Produkt von u und ν ist definiert durch (1)
(u, v)x t= (CuS/d&yv)0>e{T = 633
e^dxW^v)
372
Ε. KAHLER
Es hat die Eigenschaften: (2)
(U, v)x == (V, u)t = — {φι, ην)χ
(3)
(«V t , W t ) i
(u\/wtv)!
(4)
=
(U,v)!
=
vVCw)i.
Seine Bedeutung erhellt aus der als Greensche Formel zu bezeichnenden Gleichung (5)
d(u, v)i = (<5w, ν) + (w, <5r) 11 Im Falle der Poincare-Metrik
m+(tr+(*r+(fr ist das Volumen-Differential dx s
(2)
dv s
dz dt V s s
r = — V— V—
idempotent: (3)
rVr =
l.
Darum sind auch 1+ r =
1— τ β
2
2
idempotent: e+V e+ =
e~\J e~ = e-
und es gilt e+Ve- = e - y e + = 0 Jedes Differential u des Raum-Zeit-Kontinuums kann deshalb als Summe u — u+ + u~
(4) von Eigen-Differentialen (5)
u+ = u\/e+
ir = u\Je~
des Operators Vτ zerlegt werden; denn u+\/t = u+, w _ Vt = — u~. 634
DIE POINCARfi-GRUPPE
373
Wenn auch v ~ v + -\-v~ so zerlegt wird, gilt nach 9(4) und 10(3) (u, v) = (u+, v+) + (w-, ν-) (6)
(u, v)x = (u+, v+)x +
(uV-)!
Die Zerlegung (4) hat auch den Vorteil, daß sie im Sinne der Gleichungen (<5u)+ = du*
(du)~ = öu-
mit dem Dirac-Operator vertauschbar ist, wie aus der Konstanz von e+, e~ nach 7(11) folgt. Die Relationen
(7)
dy\jdz\J?
=
dt\/dx
dz\!dx\Jx
=
dt\Jdy
dx\/dy\Jx
=
dtydz
8*.dx\J τ =
dy\/dz\/dt
s2'dyVr
=
dz\/dx\Jdt
s2.d«Vr
=
dx\/dy\/dt
— s2.diVr
=
dx\/dy\fdz
dtydxye*
=
±
dy\fdz\Je±
dt\/dy\/e±
=
±
dz\/dx\/e±
dtydzye±
= ±
dx\/dy\Je±
(8)
die
(9)
(10)
dt\/dyydzye±
=
dtS/dzVdxS/e*
=
dt\fdxVdyVe±
=
±
dxydyVdzVe±
=
+ s 2 .diN/e ±
635
±
s2.dx\Je± ±s*-dy\Je± s^.dz\/e±
374
Ε. KAHLER
zur Folge haben, zeigen, daß jedes Differential u auf genau eine Weise in der Form (11)
u = ν + wN/τ
dargestellt werden kann, wo ν und w in dem Sinne Raum-Differentiale sind, daß sie der Bedingung etv — e%w — 0 genügen. Wegen u= (v + w)\/e+ + (v — w)\/e~ kann u auch in der Form u = v+Ve+ +
(12)
v-\/e-
mit Raum-Differentialen v+, v~ dargestellt werden, die notwendig gleich ν w, bzw. ν — w sein müssen, weil aus (12) wiederum u =
· (v+ + v-) + - ^ - · ( v + - r ) V r
folgt. Da nach (12) du = öv+ \/e+ + Sv~ \/e~ ist, wird die Wirkung des Dirac-Operators völlig bekannt sein, wenn όν \ / β ± für alle Raum-Differentiale ν berechnet ist. Mit zwei Skalaren a, h und zwei Vektorfeldern b = (bi,b2,
b3)
c =
(ci, c 2 , c3)
kann ein Raum-Differential gleich ν = a + bi'dx -f b2-dy + bz-dz (18)
+ cx-dy\/dz
-f- c2-dz\/dx + -f-
c3-dx\/dy
h-dx\/dy\/dz
gesetzt werden. Nach den vorausgeschickten Bemerkungen gilt (14)
dvye*
=
v*\Je±
mit einem Raum-Differential v*. Wird dieses gleich v* — v* + b*-dx + b*-dy -f- b*>dz (15)
+ c*-dy\/dz -f c*>dz\/dx -f c*>dx\/dy h*
-dxydyydz 636
375
DIE p o i n c a r S - g r u p p e
gesetzt, so ergibt sich a*
=
s2.div
h* = (16)
& +
3 h
s*'
τ
Bt
+ div c
b* =
3c grada ± s 2 · -57 dt
C* =
s^.grad h ± - | j r + rot b
s^rot c
12 Vektoralgebraische Formulierung ist auch nützlich, wenn es gilt, Skalar-Produkte auszurechnen. Um (u, u') zu berechnen, wird man nach dem Vorbild 11(12) die Raum-Differentiale v, w, v', w' so wählen, daß (1)
u
e=
v\/e+
+
w\/e-t
u'
=
v'\/e
+
+
w'\Je~
und demnach (u, u')
(2)
=
( v \ / e \ v'\Je+) +
(wN/e-,
w'\/e-)
gilt. Da für Raum-Differentiale v, v' stets besagt (2): (3)
{u,
u ' ) = ~ - . (ν,
V)
+
\
· (w,
(v, v'Vr) = 0 ist, 10O.
Es genügt also, (ν, ν') für Raum-Differentiale v, v' zu berechnen. Beachtet man auch die Erleichterung, die die Tatsache 9(5) dieser Rechnung verschafft, so findet man, wenn a, h, b , c und α', h\ b't C' die den Raum-Differentialen v, v' zugeordneten Skalare und Vektorfelder sind, für (ν, ν') den Wert (5)
(v,t>') =
mit s ~ ~ y
+ s*. (b, b') + $ M c , c') +
{a.a'
und τ
=
dx 8
. dy
V
8 637
V
dz 8
V
dt 8
s*.h.h').x
376
Ε. KAHLER
13 Das abgeleitete Skalar-Produkt (u, v)x kann im Falle der Poincare-Metrik als homogenes Differential 3-ten Grades mit einem Differential (1)
o(u, v) — ii(u, v)-dy\Jdz 4- iz(u, v).dz\/dx
+ i3(u, v)>dx\/dy
und einem Skalar Q(U, v) in der Form (2)
(u, ν)χ — c{u,v)\/dt
—
Q{u,v)-dx\/dy\/dz
dargestellt werden. (u, v)i bestimmt damit ein Vektorfeld (h(u, v), i2(u, v), i3(u, ν)), die Stromdichte zu (u,v)lt und einen Skalar Q(U, V), der zu der Stromdichte in der Beziehung (3)
d{u,
= (div i +
· d x \ / d y y dz\J dt
steht und darum die Ladungsdichte zu (u,v)x genannt zu werden verdient. Die Relation 10(3) garantiert, daß auch im Fale des abgeleiteten Skalar-Produkts aus u\fz — u, ν\/τ — — ν stets (u, v)x — 0 folgt. Wenn also wie in 11(12) (4)
u = v\/e+ + w\fe~t
vf — v'\/e+ + w'\Je~
mit Raum-Differentialen v, w, v*, w' gesetzt wird, so gilt (5)
(u,uT)! =
{vye\
ν' V e+)x + {wye~,
w'ye~),
Die Berechnung des abgeleiteten Skalar-Produkts kann sich darum auf den Fall («Ve* i>V e± )i beschränken, wo u und ν RaumDifferentiale sind. Nach 10(2) ist (6)
(uVe±,v\/e±)1
=
v)x ± 638
tiVr)i.
DIE POINCARf-GRUPPB
877
Werden die Skalare und Vektorfelder von u und ν mit a,h, b,C und α', h', b', c ' bezeichnet, so findet man: (ζν,\/άχ\/ν)ο = =
s2 · (a ·
+ α' · δχ) + s*. (b 2 · c'3 — b3 · c'z) + s 4 · (b'2 · c 3 — δ'3 · c 2 ) + + s«.{h.c\ + h'-Cj)
(7)
{£u\J dt\J v)o =
0
(CiiV^VvVrJo = ( i ^ V ^ V v V r)o =
0 =
s 4 -((b, C') -f- (b', C) — d-bf — a'.h).
Es gilt also (8)
{uye±i vVe^t =
=
(ii>dy\/dz -f- i^-dzydx + iz.dx\J dy)\/ dt — g-dx\/dyzp/\
mit e = (9)
± ((b, C) + (b', c) — a.h' — a'.h) i =
=
(^,^,13)
=
(b X C + b ' X C ) + s - 2 · (α· b' + α'-b) + sMÄ-C' + Ä'-c) 14
Wenn in einem n-dimensionalen Räume ein Differential a gegeben ist, zu dem ein Differential u in der Beziehung (1)
du =
ay«
steht, so heiße w eine Lösung der Dirac-Gleichung (1). Ist in einer zweiten Dirac-Gleichung
(2)
dv =
b\/v
das Differential b aus α in der Weise (3)
b =
— ζα
herstellbar, so gelte (2) als die zu (1) a d j u n g i e r t e Dirac-Gleichung, 639
378
Ε. KAHLER
was gerechtfertigt wird durch die Tatsache, daß dann aus (1) und (2) stets (4)
d(u, ν
=
0
folgt. Beweis: Wegen (du, v ) = (ζδπ\/ν)ο·τ= i s t (u, dv) — (ζιι\/δν)ο-τ—
(Cu\/b\/v)0·τ
(ζη\/ζα\/ν)0-τ = — (ζιι\/ζα\/ν)0.τ,
und (3) was
nach (1) gleich —(du, ν) ist. Die so bewiesene Relation (du, ν) + + (u,dv) = 0 besagt nach der Greenschen Formel 10(5) dasselbe wie (4). 15 Ist / eine Funktion, also ein Differential 0-ten Grades, so gilt (nach 7(8)) (1)
d(f-u)
=
ö f y u +
f.du
Wenn also u die Gleichung du =
a\/u
löst, so ist d(f-u)
=
(α +
-^·)ν/·~
und darum v = f - u eine Lösung der Gleichung dv
=
(a + -^pj Vv .
16 Integral einer Dirac-Gleichung du = a\/u heiße ein in der Gesamtheit der Differentiale wirkender linearer Operator genau dann, wenn er jede Lösung dieser Dirac-Gleichung wieder in eine Lösung derselben Dirac-Gleichung verwandelt. Σ Ε - ist innere Rechts-Multiplikation mit einem Konstanten Differential, wie \fe + t \fe~, V*r, stets Integral der Dirac-Gleichungen. Wenn ein Lie-Operator X eine Isometrie erzeugt, also den Killingschen Gleichungen genügt wie die 10 die Poincare-Gruppe erzeugenden Operatoren 5(8), so ist nach 8(3) und (5) der Operator X dann und nur dann Integral der Dirac-Gleichung du — a\/u, wenn Xa = 0 ist. 640
379
DIE POINCARi-GBUPPE
17 Im Falle der Metrik
+
+
+
verdient
zunächst die Dirac-Gleichung du = a\Ju, in der a eine im ganzen Raum-Zeit-Kontinuum konstante Funktion bezeichnet, besondere Aufmerksamkeit. Ihre Lösungen sind die E i g e n - D i f f e r e n t i a l e des Dirac-Operators δ. Die Frage nach den Lösungen u, die nur von t und dt abhängen, die also die Form dt u = ν -f- w V — ν
haben, wo ν und w nur Funktionen der Zeit t sind, führt nach 7 (8) und (9) auf die Gleichung • « · dt (dt\ ν-dt + w-dt\/-j- + w-δ
i — β·^ v +
dt \ '~t~)
w
die mit den beiden Aussagen (1)
t-w — 3w = a v-T2
t-v = a-w,
gleichbedeutend ist. Punktierung bedeute dabei Ableitung nach t. Die erste dieser Gleichungen zeigt, daß im Falle a 0 (2)
u
'
=
ν
+ — .
a
dv
gesetzt werden kann. Da hiernach δη = δν + — ·δδν = α-ίν 4- — a \ a
/
ist, kann die zweite Gleichung durch δδν = a?.v
(3)
ersetzt werden, die d{v.dt) = v.dt\/dt
+ v^dt
= (v.t2 — 2t.v).T~2 = a2-v
aussagt. Wenn also mit einer durch (4)
m2 —3m = a^T 2 641
380
E. KAHLER
bestimmten Zahl m _
(5)
!
m
dt\
=
^
gesetzt wird, so ist u =
g-
3_m
mit unbestimmt gelassenen Konstanten g, k die allgemeine Lösung von du = a,.u unter der Nebenbedingung, daß u nur von t und dt abhänge. Ist α = 0, so fogt aus (1) daß unter denselben Bedingungen u — g + h-t2'
dt
die allgemeine Lösung von du = 0 ist. Wegen der Invarianz des inneren Kalküls bei allen Isometrien verwandelt jedes Element q \->M(q) der Poincare-Gruppe die Lösung (5) der Gleichung Mi = a-u wieder in eine Lösung derselben Gleichung. Ist Μ — | ® ^ j, so wird t bei jener Isometrie (nach 2(9)) in t-\c-q
+ d\~*
verwandelt. Bei Poincare-Matrizen ist c~x-d stets von der Form α + ß-i + wobei α, β, γ beliebige reelle Werte annehmen können. Es gibt also Isometrien die t in t>f~x verwandeln, unter / die Funktion f { x , y, z, t) = (χ—α)2 + (y—ß)2 + (z—y)2 + t2 = r ' + t2 verstanden. Aus (5) entsteht durch die Substitution 1 t - f - 1 das Differential Vm =
(r 2 + *2)-w· ( f f . — - j - -fr.dOogir* + «*)))
das wie (5) Eigen-Differential des Dirac-Operators <3 zu dem Eigenwert a ist. 17 Bei der Suche nach Eigen-Differentialen des Operators <3 kann folgende Bemerkung nützlich sein: Aus du = a-u mit kontantem a folgt 60u — a-6u = a?-u. 642
381
DIE poincar£-gruppe
Ist umgekehrt eine Lösung ν der Gleichung δδν = α2· ν
(1)
gegeben und α ^ 0, so genügt (2)
u = ν + — -δν a
der Gleichung δη = δν + — .δδν = α,-ν + δν — α,Ίΐ
18 Der Operator δδ wirkt auf Funktionen wie der L a p l a c e - B e l t r a m i sehe Operator. Als ein auf Differentiale wirkender Operator ist er von besonderer Bedeutung in der Theorie von H o d g e . Er ist h o m o g e n e r O p e r a t o r , insofern er homogene Differentiale in homogene verwandelt, und dabei ändert er den Grad des Differentials nicht. Nach 7(11) gilt stets «MCvVe*) =
(MtOVe*
weshalb es nach den in 11 erklärten Zerlegungen der Differentiale genügt δδν f ü r Raum-Differentiale zu berechnen. Au bezeichne allgemein das Differential, das aus dem als äußeres Polynom geschriebenen Differential u entsteht, wenn auf dessen Koeffizienten der 4-dimensionale L a p l a c e - O p e r a t o r <· + ( i f + (i)2 + ( i i angewandt wird. Wie die Formel 7(8) zeigt, entstehen aus dem Differential ν im Falle ν = α vom Grade 0 das Differential δδν = 8*.Δα
.
im Falle v = bx>dx -f b2-dy -f bz>dz vom Grade 1 das Differential <5<3r = s 2 .Av + ~.div 643
b-di mit b = (6i, b2, b3)
382
Ε. KAHLER
Im Falle v — cx-dy\J dz + c2-dz\Jdx
-f- c3-dx\/dy
das Differential όδν — s 2 . Δ ν +
·
j.
ot
vom Grade 2
1
m i t w = rX'dx + r2-dy + r3-dz,
dtyw
(ru r2f r3) = r o t c
im Falle ν = h-dx\J dy\J dz vom Grade 3 4s 2s das Differential Mv = s2.Av + ~γ ' "Jjf + mit w = gx-dy\/dz
-f g2-dz\Jdx
+ g3-dx\Jdy,
(,gx, g2,g3)
= gr&d h.
Wird also in Analogie zu 11(13) bis (16) ν = (2)
a -f bi-dx + b2-dy + b3>dz
+ cx-dy\/dz
-j- c2>dz\/dx -+-
-f-
c3-dx\/dy
h-dx\/dy\/dz
und (3)
ödvye*
v**Ve±
=
gesetzt, wo ν** ein Raum-Differential bezeichne, dessen Koeffizienten ähnlich wie in (2), jedoch mit der Indizierung ** bezeichnet werden, so findet man mittels der Formeln 11 (9) und (10): ** •= -asP-Aa,— >4 a**
28
3a
Τ
dt
b** = s 2 - J b ^ - ^ - g r a d Ä (4)
C** =
C+
·
+ - y - rot c
19 Ein Differential des Raum-Zeit-Kontinuums gelte genau dann als kugelsymmetrisch (bezüglich des Punktes (0, 0, 0)), wenn es durch die in 5(8) definierten Lie-Operatoren Alt A2, A3 annulliert 644
383
DIE POINCARi-GRUPPE
wird. Auf ein Differential u haben diese Operatoren die Wirkung Axu er Ζ. ^ . ^ y . ^ L (1)
dz/\eyu — dyAe,u
A2u <= x.^t — ζ· -f- dxf\Ggv, — dzf\emu dz dx A3u = y-~
dx
— X'^- -f- dy/\eyu— dy
dx/\eyu.
Die Kugelsymmetrie eines Raum-Differentials ersten Grades u — bX'dx -f- b2-dy -\-b3-dz bedeutet demnach dasselbe wie Aj &! = Ai b2 = A3 b3 bi = A2 b3 = — A3b2,
b2 = — A3 bx = — Αχ 6 3 , b3 = Axb2 — — A2 &i,
woraus zu schließen ist, daß u die Form u = b(r, t)>rdr haben muß, wo r durch r 2 = :r2 + j/2 + z2, rdr durch rdr = x-dx + -f 2/ · dy + ζ · dz definiert sind und b nur von r und t abhängt. Das Volumen-Differential τ ist bei allen Isometrien invariant und darum auch kugelsymmetrisch. Ist u = v w\/r die Darstellung eines kugelsymmetrischen Differentials u mit Hilfe von Raum-Differentialen v, w, so folgt aus 0 = At(u) = AM
+ A<(w)V r
und der Tatsache, daß auch Ai(v) und At(w) Raum-Differentiale sind, das Verschwinden von At(v) und A{(w). Nach 11 (7) und (8) kann jedes Raum-Differential mittels zweier Raum-Differentiale ersten Grades u und ν und zweier Funktionen α und h in der Form (2)
a + u + dt\/v\/T
+ h.dty τ
dargestellt werden. Soll dieses kugelsymmetrisch sein, so müssen auch alle seine homogenen Bestandteile kugelsymmetrisch sein, da Ai wie ale Lie-Operatoren homogen operiert. Es muß also Α< ο = 0, 645
884
Ε. KAHLER
Aih — 0, Ai(u) = Ai{v) = Ο sein, was, wie vorher bemerkt, u-b-rdr, ν = c-rdr verlangt, wobei a,b,c,h Funktionen von r und t allein sind. Aus der Darstellung (2) der kugelsymmetrischen Raum-Differentiale folgt, daß alle kugelsymmetrischen Differentiale des Raum-Zeit-Kontinuums mit Funktionen g, b, c, h und g', b', c', h', die nur von r und t abhängen, in der Form g.rdr\/dt + b·rdr + c dt -f h + + (g'.rdrydt
-f b'-rdr + c'.dt + ä ' ) V t
dargestellt werden können. 20 Der in 5(8) definierte Lie-Operator A0 hat auf Differentiale u die Wirkung /ι\
λ
dw
du ,
du
du
wo γ den in 7(3) definierten Operator bezeichnet. Die von A0 annulierten Funktionen sind die nur von V
χ y t ' f
abhängigen Funktionen, und für homogene Differentiale p-ten
Grades u gilt A0u<= 0 genau dann, wenn u als äußeres homogenes dx dv dz Polynom in - τ - , — geschrieben werden kann, dessen Koeft r i X 1/ SS fizienten nur von — , -J-, — abhängen. r ν t Zu jeder komplexen Zahl λ gibt es Eigen-Differentiale von A0 mit dem Eigenwert λ, also Differentiale u, die der Gleichung A0u = X'U genügen. Neben u = tk sind das genau die Differentiale u, die mit einem durch A0 annulierten Differential ν in der Form u = tx -v dargestellt werden können. 646
885
DIB POINCAR6-CRUPPE
21 Wenn ein Raum-Polynom f(x,y,z) der Laplace-Gleichung A u ~ 0 genügt, so gilt nach 18 (3) und (4) auch (1)
<5(5/ =
0.
Alle der Gleichung Af — 0 genügenden homogenen Polynome f(%,V,z) vom Grade k können mittels der L e g e n d r e - P o l y n o m e (2)
K
(x)
= ITH'(1 -
1)1
^
in folgender Weise hergestellt werden: Nach Einführung von Polarkoordinaten mittels der Formeln x = (3)
r-cos0
y = r-sinfl-cosp ζ = r-sin θ sin φ
wird für ganzzahlige m, deren Betrag < k ist, (4)
P ? (cos 0) ·
= ΓΓ
V, z)
gesetzt. Die 2k + 1 Funktionen (5)
r*.Y?=
f?
(x,y,z)
bilden dann eine G-Basis der Moduls der harmonischen Formen vom Grade k. Aus den K u g e l f u n k t i o n e n ΥΓ, die im Sinne der Gleichung (6)
A0 ΓΓ = 0 .
Eigenfunktionen des Operators A0 sind, entstehen in der Weise (7)
ST <= r^-df?
=
k-YT-dr
die K u g e l - D i f f e r e n t i a l e S , für die (8)
A0 S? =
gilt. 647
5Γ
+
r-dY?
Ε. KAHLER
386
Bei der Anwendung der allgemeinen Regel 7(9) auf den Fall, daß u ein kugelsymmetrisches Differential der Form u =
R =
g.rdrydt -{- b-rdr -f c-dt -f h
sei, tritt wegen r-eeR
=
erR>x,
r-eyR =
erR.y,
r.ezR =
erR-z
(9) mit erR =
g-r-dt -\-b-r
die radiale kovariante Ableitung dr ν auf, die durch (10)
T-drV =
x-dgV + y.dv ν + z-dsv
definiert ist. Die Gleichung (11)
r^ . - . ( „ . - g j + „ . . _ + . . _ . ) +
dt
A
,
+
ν + V-evv + z-eev)
rdr — Λ
zeigt, daß (12)
drY?
=
0,
drS?=
k-YT ·
+
r^-id/r
ν
sind. Aus (7) folgt <5ST =
was nach (1) auf (18)
=
schließen läßt. Nach (10) ist ef R\/dmv + &Rydvv
+ e*R\/d,v =
sP.erR\/
Für das kugelsymmetrische ü? und S = S? gilt also <5(ÄVS) =
0R\/S -f- VR\/S + 2s?.erR\/drS + 2 s2.etR\/dtS, 648
387
DIE POINCAK^-GRUPPE
was nach 7(5), (12) und (13) bedeutet (14)
δ(RVS?) = (<5Ä + l ^ A . r j R v d r + ψ + Einfacher ist 0(R\/Y?) 0(R\/Y?)
VS?
+
2k.^--erR\fdt\/Y?.
zu berechnen: = dR\/Y?
+
nR\/dYΓ,
was nach (7) die Gleichung (15)
Ö(R\/YT) = -y .VR\JS? + (öR — k.vRV ^
νΓΓ
beweist. 22 Ob die hier vertretene Auffassung des Raum-Zeit-Kontinuums richtig ist oder nicht, muß sich zunächst beim Vergleich der klassischen Diracschen Theorie des Elektrons mit der auf die neue Metrik (1) bezogenen Fassung dieser Theorie prüfen lassen. In der (in 7 zitierten) Abhandlung über den inneren Differential-Kalkül ist bereits festgestellt worden, daß dieser Kalkül bei der Metrik (dxf + (dyY + (dzY + (ic-dtf der klassischen Diracschen Theorie gerecht wird, wenn sie auf die Dirac-Gleichung <5u = a \ / u mit (2)
gegründet wird. 649
S88
Ε. KAHLER
Die Prüfung des Wahrheitsgehalts der neuen PoincarS-Gruppe wird deshalb gut vorbereitet, wenn allgemein die Dirac-Gleichung (3)
du =
α V«
mit (4)
a =
g0-rdr/\dt
-+- b0-rdr + c0-dt + ho
und nur von r und t abhängigen Funktionen g0, b0, c0, Κ zu lösen versucht wird. Die in 21 gewonnenen Ergebnisse legen den Ansatz nahe, mit kugelsymmetrischen Differentialen R =
g.rdr\/dt
+ b>rdr + c-dt + h
g'.rdr\/dt
-f b'.rdr + c'.dt -f h'
(5) R' =
(6)
«^Ävsr+Ä'vy*
zu setzen. Es wird dann (3) gelöst, wenn R und R' den Gleichungen δR Η
1— k Τ
2s ηR\/dr + -£r.etR
1
+ — -φ' I T
=
a\R
(7) —
k
2ς
R'Vdr + -jr-k.erR\/dt
=
a\/R'
genügen. Da 6R = g* · rdr \/dt -f b* · rdr + e* · dt -f h* sich aus den Koeffizienten von R in der Weise »
9*
=
1
r
9c 9r
r
dr
db dt
dt
(8)
« M ' - f + ^ W f
Η s
Ύ 650
*=
τ )
DIE POINCAWS-GRUPPE
389
berechnet, bedeuten die Gleichungen (7) ein System von 8 partiellen Differential-Gleichungen für die 8 Funktionen g, b, c, h, g', b', c', h'. In der klassischen Diracschen Theorie ist der Lie-Operator ff
2 πι
J -
St
Integral der Dirac-Gleichung, (Vgl. 16), weil
Ο ot
Isometrien der
Metrik (idxf + (dy)2 + (dzf +
(ic-dtf
erzeugt. Unter den Lie-Operatoren der neuen PoincarS-Metrik (1) findet sich Η nicht mehr. Statt Lösungen von 6 u ^ = a \ J u zu suchen, die Eigen-Differentiale von Η sind, wird man bei der neuen Auffassung von Raum und Zeit nach den Differentialen u fragen, die neben der Gleichung bu = a \ J u der Bedingung AQU
=
X-u
mit konstantem λ genügen, weil im Falle (2) A 0 α = 0, also A 0 Integral der Dirac-Gleichung des Elektrons ist. Die in 20 gewonnenen Einsichten zeigen, daß das System du =
a\fu,
AQU
— X-u
jene 8 partiellen Differential-Gleichungen in 8 gewöhnliche Differential-Gleichungen zu verwandeln erlaubt. Daß bei dem Grenzübergang Τ ι-»· oo, s η» 1 sich die klassische Theorie einstellt, ist zu erwarten. Sollte die neue Poincare-Gruppe Raum und Zeit richtig erfassen, so wäre die sehr kleine Zahl J^ Τ eine Naturkonstante, deren Beziehung zu den bisher bekannten 651
390
Ε. KAHLER
erforscht werden könnte, wenn man in dem Ansatz (6) zunächst R' = 0 setzte und die Gleichungen (7) durch Potenzreihen R =
R0 + - y
Rx + ( j - J .R2
+
zu lösen versuchte, wie Wentzel und Brillouin die klassische Physik als Grenzfall der Quantenphysik zu begreifen gelehrt haben.
Summary. — The relativity of Einstem-Minkoweki shall be substituted by another relativity, which knows an absolute origin of time. This origin being a long time ago, the new relativity will be a good approximation of the classical relativity.
652
The Poincare group [43] Clifford Algebras and their Applications in Mathematical Physics (J. S. R. Chisholm and A. K. Common, eds.), Proc. Workshop, Canterbury, U.K., 1985, NATO Adv. Sei. Inst. Ser. C Math. Phys. Sei. 183, 265-272 [Zbl. Math. 596.53063; MR 88b:58007]
ABSTRACT: The r e l a t i v i t y o f Einstein-Minkcwski should be s u b s t i t u t e d by another r e l a t i v i t y which p o s t u l a t e s an a b s o l u t e o r i g i n of time. This being a t a g r e a t d i s t a n c e i n the p a s t , the new r e l a t i v i t y w i l l be a g o o d a p p r o x i m a t i o n of t h e c l a s s i c a l o n e . 1 . THE INNER DIFFERENTIAL CALCULUS An n - d i m e n s i o n a l m a n i f o l d V w i t h d i f f e r e n t i a l s t r u c t u r e o f i n f i n i t e o r d e r d e t e r m i n e s by i t s d i f f e r e n t i a l f o r m s a r i n g D a i n w h i c h t h e m u l t i p l i c a t i o n o f two f o r m s u a n d ν h a s t h e effect u Av and t h e a d d i t i o n
is
realized
by a d m i t t i n g
the
summation
of d i f f e r e n t i a l forms u o f d i f f e r e n t d e g r e e s m. The e l e m e n t s o f t h i s R i n g D A s h a l l Be c a l l e d s i m p l y t h e d i f f e r e n t i a l s o f t h e M a n i f o l d V. Given a Riemannian m e t r i c g ^ . d x 1 . dx^ i n V, o n e c a n d e f i n e a n o t h e r m u l t i p l i c a t i o n
designated
u χ/ν which s u p p l i e s t h e t o t a l i t y DA of t h e a s e c o n d manner w i t h t h e c o n s t i t u t i o n Dv. In o r d e r t o d e s c r i b e t h e r e l a t i o n m u l t i p l i c a t i o n UAV t o the " i Η Η e r " i t w i l l be n e c e s s a r y t o i n t r o d u c e t h e
653
d i f f e r e n t i a l s of V i n of an a s s o c i a t i v e r i n g of the "o u t e r " m u l t i p l i c a t i o n UVV linear operators ίι, T ,
Ε. KAHLER
266
γ , e.. Their effect is η IjU =
(-l)P.u,
"£u =
(-1)
.u,
yu
=
p.u
where u is an (outer) differential form of degree p, whereas k \k e^ is defined by e^dx
= <5^
and the postulate that generally
e^(u/vv) = e^u/s.v + 1|UAe^v . The formula uvv =
~n
(g) / p wi e.
e. u λ . . e"^ ν '· "p expresses the inner multiplication as a sequence of outer multiplications, showing for instance that ji j k = d,xi/\ djxk .+ g ik dx ν dx —,.(-1)
p7op !
and therefore D y
is a
1
C l i f f o r d -
ring-bundle.
Covariant differentiation d. of a differential u can be defined in such a manner that the d-u become the components of a covariant vector, and therefore du
=
dx1A. d^u,
= dx1v
5u
d^u
are definitions of two invariant linear operators d and <5~. The operators d is known as the o u t e r d i f f e r e n t i a 1, and as the i n n e r d i f f e r e n t i a l ; they have proved their importance in the D i r a c - T h e o r y of the electron. The formula £ ( u v v ) = c 5 u v v + vjuvcJv + 2.e3'u ν d. ν corresponds to the classical rule d(UAV)
= du/SV
+ VJUAdV.
The covariant derivatives of the volume-differential τ = V ^ij' .dx1/\ . . Λ dx11 being zero, one finds (J(u v t
the
) = cTu V Τ
.
For physical applications it is important to introduce s c a l a r p r o d u c t s (u,v), (u,v)^ defined by (u,v) = ( ^ u v v ) a T ,
654
(ϋ,ν)^ = e i (dx 1 V u, v),
267
THE POINCARß GROUP
G r e e n
r e l a t e d by the
f o r m u l a
= (u,<3v) + (v,«5u)
d(u,v)ι 2.
xs
.
D I R A C - E Q U A T I O N S
Let a = ( a . .) be a (rax m)-matrix and u = ( u . ) a ( m x - 1 ) matrix, the elements of which a r e d i f f e r e n t i a l s 1 i n V. I f these matrices are r e l a t e d by the equation 2 .1
<5u = a ν u ,
we s h a l l say t h a t u i s a s o l u t i o n of t i ο η with the p o t e n t i a l of f o r c e
a
a
D i r a c - e q u a and the f i e l d
T r ( d a + i| a λ a ) . is 2.2
The
a d j o i n t 5v
-
D i r a c - e q u a t i o n
- 3fca ν ν
of
2.1
,
where ^a means the transpose of the matrix a . Both equations are r e l a t e d by the f a c t , that from them f o l l o w s the c o n s e r v a t i o n - t h e o r e m 2.3
οΚΤΓ^ιι,ν^)
= 0
with m Tr(tu,v)1
(ui,vi)1 · ' =H I f the elements f. . of the (mxm)-matrix f = ( f . .) have degree 0, that is to say that f . ^ a r e functions, the inner differentiation of f . u 1simplifies to c5(f v u )
=
=
+
f v
.
When u satisfies the Dirac-equation 2.1 and f is invertible the matrix ν = f ν u proves to be a solution of the Dirac-equation 2.4
c)v = bv ν
with the potential 2.5
b =
df v f " 1 + f v a v f " 1 ,
and the relation
655
268
2.6
Ε. KAHLER
db + >jbA b = f ν (da + ijaA a) ν f
1
shows that 2.4 has the same field of force as the equation 2.1 . 3. T H E
P O I N C A R E - G R O U P
The notion of elementary particle has no philosophic fundament. A better way to start understanding nature is to conceive the unity behind all phenomena as a monad endowed with an infinity of syrimetries, and to derive the manifold of physical phenomena by the mathematical tactics of " s y m m e t r y b r e a k i n g " . This presupposes a mathematical monadology offered by a philosophic transposition of the local algebra, about which I have reported elsewhere. A philosophical mobilization of mathematics cannot ignore that geometry is only one aspect of this science and that immersion of reality in a space is not the finest use of mathematical art. Dynamics of mcnads find their best representation in arithmetic and purely algebraic relations. Therefore it must be esteemed as a case of "prestabillzed harmony" (in the sense of Leibniz), that Hamilton's invention of the quaternion leads one immediately to consider time and space in the algebraic alliance of a quaternion. 3.1
q = χ + y.i + z.i.j + t.j ,
the real linear ccmbination of 4 units 1, i, j, i. j bound by the relations i = j = -1, i.j + j.i = 0 . The 4-dimensional totality Η of the quaternions obtains a topology by the provisional introduction of a metric, which defines the norm |q-rl of the difference of two quaternions as the distance of q and r. Reproducing the classical passage fron the Gaussian plane to the Riemannian sphere one can define a compact space Η υοο containing the space Η and the point at i n f i n i t y oo. The topology of H o o o is such, that each union of oo with the set of quaternions q satisfying a condition lq I
^ (a fixed real number)
is to be considered as a neighbourhood of infinity. Given four constant quaternions a,b,c,d satisfying only the condition that the right-columnrank of the matrix
must be 2, one can define a topological map q into -1 M(q) = (a.q + b).(c.q + d)
Η <_>oo — > H v o o
changing
The totality of such maps is a group to be named: the syrrmetry of the cell Huco.
656
THE POINCARfi GROUP
269
A matrix Τ = ("
h
formed by r e a l numbers κ , > a r e a l function
and an a r b i t r a r y quaternion fb, determines
T(q) = iX.q.q + y i . q +
+ ^
= (q,l).T.
Jhe quotient 3.2
^ f T(q)
changes by the action of an element the cell into
q h-> M(q) = q
of t h e symmetry of
3.3
Τ($Γ
T(q)
with Τ = *"M.T.M and |M| = 1 a . c _ 1 . d . c - b . c | when c φ 0, 1M| = l a . d l when c = 0. The r e l a t i o n 3.3 shews t h a t only i n t h e case Τ = v( - c° j· 0 ' with c e C a r e a l l s u b s t i t u t i o n s q i—? M(q) with Μ e Sl^iC) i s a n e t r i e s of t h e met r i c 3.2. If the Universe i s supposed t o be measurable with such metric, the passage frcm the c e l l Ho oo t o the Universe w i l l have t h e character of a c e l l - d i v i s i o n : The symmetry of t h a t c e l l i s broken t o beccme t h e subgroup of those maps, which map the two " p a r t i a l c e l l s " T(q) >
0 and
T(q) <
0
i n t o themselves. The f a c t t h a t the proper homogeneous L o r e n t z g r o isomorphic t o SL2(C) and t h a t a B i g B a n g a t t h e o r i g i n i s imaginable inauces me t o r i s k proposing t h e Hypothesis: A g e n e r a l t h e o r y of m a t t e r m u s t f o u n d e d on a P o i n c a r e - g r o u p w h i c h t o t a l i t y of t h e i s o m e t r i e s of t h e 3.4
4
-dct·^ ( q . j - j-q)
=
φ
2
+ (f)2 + φ
2
+
φ
u p is of time be is t h e m e t r i c
2
with 3.1
q = χ + y.i + z.i.j + t . j
This new Poincare-group contains the 10-dimensional Lie group of the substitutions
657
270
Ε. KAHLER q= χ + i.y + i.j.z + j.t
with
q = M(q) = χ + i.y + i.j.z + j.^:
2)·"-es
As in classical relativity, time t and space (x,y,z) are relative. Time must be measured as purely imaginary number, and the relation
t = 1.1c.q + d f 2 ,
M
=
d} '
shows this condition to be invariant against change of coordinates. Let t = Τ be the time of any fixed historical event. Then for all normal physical observations the coordinate.t will be such that IK 3.5
t =s ^
is a real number in the neighbourhood of s = 1, whereas ^ is an extremely minute real constant. Τ being constant, the Poincare group can also be conceived as the totality of the isanetries of the metric 3.6
(dX)2 + {dz}2 + (dz,2 + (dt}2
s
s
s
s
which is nearly the same as (dx)2 + (dy)2 + (dz)2 + (dt)2, the metric responsible for comparison of theory and observation. Therefore 3.6 will be the metric destined to govern the inner differential calculus in the new relativity. Each binary inner product of differentials dx, dy, dz, dt other than 2
dx ν dx = dy ν dy = dz ν dz = dt ν dt = s equals then the corresponding outer product, and the volume differential _ L dz. dt τ = dx —s ν dy. —' s v —sν s— is idempotent: t v l = 1. If a differential uis s p a t i a l in the sense that it can be written in the form u = a + b-^.dx + b2»dy + b^.dz + c-^.dyAdz + C2.dz/\dx + c^.dx^vdy + h.dxAdy/\ dz , it determines two scalers a and h and two vector fields (b^,b2,b^) and C = (c^c-zC^). For every differential u one can write u and its differentials in m e form u = u"v-e+ + uve , cXi = vve + + Vv e , JcTu = w+ve+ + wve with spatial differentials ιί^,ν^,ν/*· and e~ = ·|·. (1 ± χ,). If a,h, -6-, c- are the scalars and vector fields of ^ , the corresponding a*, h*, £ * of v"S a**, h**, c~** of w~ will be
658
THE POINCARFI GROUP
271
* 2 P — 4 OH A* = S . D I V O - + S H* =
DIV C
Τ
= GRAD A C*
+ S2.
= S2.GRAD H
-
±
ROT C )
ROT BR
3.7 A** = S
. 4 A
2
-
H** = S 2 . D H
+
=
WHERE Δ
F . | F Τ
+
^Γ
^
.DIV&
-GRAD H
MEANS THE EUCLIDEAN
L A P L A C E - O P E R A T O R
THE POINCARE GROUP CONTAINS A 1 0 - D I M E N S I O N A L BY THE OPERATORS
A
A 3.8 B
1
A
Ο
Ζ
1
1
X
"
· £
,
T-FE
+
A
3
-
=
*
OX'
C^ = 2 X . A Q WITH
2
L I E GROUP GENERATED
-
Q.Q = X
2
+ Y
C^ ~ 2 Γ · Α 0
Q.Q.B^,
2
+ Ζ
2
+ T
~ <3·3·Β2'
C
3
=
2 Z
'AO
~
<3·<3·Β3»
2
AND THE RELATIONS { A (
3.9
I ' V
=
"
E
IKJ'
A
J
Λ )
=
~
E
IKJ'
B
J'
Α
(B
I I C K
(I
)
Φ 0,
(BI,BK) (
V
V
(E^J
= 2 . ^ . Α K ^
0,
Ο
'
-
(
2.
= 1,
( A
-1,
Λ >
E I K J
.
A J
"
=
0
O ' V
I K J
X
J
'
1,2,3)
, =
" *K'
I A
ACCORDING A S I K J
PERMUTATION OF 1 , 2 , 3 )
E
F
SUMMATION OF J OVER
= 0 = (C.FCK) =
Α
.
659
O ' V
= °K
'
IS
AN EVEN,
OR ODD, OR NO
272
Ε. KAHLER
The conditions A^u = ^ u = A^u = Ο are equivalent to u = v^ ν e + + V2 ν e~ where v^ and v 2 have the form 3.10
R = g.rdr vdt + b.rdr + c.dt + h
and the functions g,b,c,h depend only on t and r = V x + y ^ + z ^ . Fran 3.10 it follows that 3.11 with
6R = g*.rdr + b*.rdr + c*.dt + h* s = t/T and g*
3.12
=
1 o c _ -ab _ r'ör Zt
* • ff"
c* = (r.|2 + 3g).s2 +
h* = (r.|£ + 3b + | f ) . s 2 - 2c.f . Each homogeneous and harmonic polynomial f = f(x,y,z) of degree k determines three differentials 3.13
Y = r" k .f (x,y,z), S = r 1 - k . d f (x,y,z), S* = S - (2k+l) .Y.dr
satisfying the relations 1 dr dY = -.S - 21. Y r r
1 dr i. * + (k+1).—. Y r s r
dS = ^ . d r v S , Zs* = ^ . d r v S * 3.14
e)(RvYj = e)RνY + -JjRvdY = p-vjRvS + (<^R - p*|Rvdr)vY S ( R v S ) =fcjfc+ i j R v ^ . d r + p e t R ) v S + 2k.s 2 .e r R v ^ ν Y
where R is defined by 3.10 and 3.15
efcR = - g.rdr + c,
e r R = g.r.dt + b.r .
These formulae prepare for the separation of variables in the physically inportant case of Dirac equations with Potential of the Form 3.10.
660
Raum-Zeit-Individuum (**) [46] Rend. Accad. Naz. Sei. XL Mem. Mat. Appl. (5) 16 (1992), 115-177 [Zbl. Math. 837.53077, 895.53073; MR 94a:00002]
— Die vorliegende Abhandlung verdient schärfste Kritik, weil sie es wagt, der in der Physik des 20. Jahrhunderts bewährten Metrik ZUSAMMENFASSUNG.
dx2 + dy2 +
dz2-c2-dt2
eine neue Metrik dx2 + dy2 + dz2 + dt2
aufzudrängen. Daß —c 2 'dt 2 durch dt2 ersetzt ist, kann ertrangen werden, da das Minuszeichen schon oft den Gedanken eingegeben hat, daß die Zeit als rein imaginäre Variable zu messen sei. Aber t2 im Nenner stört die in der Relativitätstheorie erstrebte Harmonie von Raum und Zeit. Gäbe es nicht die Hypothese von einem Urknall, so wäre eine Singularität t — 0 der Metrik einfach abzulehnen. Hintergrundstrahlung und Urknall fordern feinste Mathematik heraus, und so sind es nur Quaternionen und das um die Riemannsche Vermutung kreisende Denken, das jener einfachen, ganz ohne empirische Konstanten auskommenden Metrik die Ehre gibt, als Naturgesetz anerkannt zu werden, dem auch die Quantentheorie hörig zu sein hat. «Vom Relativen zum Absoluten» war das Thema eines Vertrags, in dem Max Planck im Jahre 1924 von einer möglichen Arithmetisierung der Physik gesprochen hat. Genau dies könnte die Uberschrift zu dieser Abhandlung sein, da sie Individuen sucht, wo nur Quanten vermutet werden.
Spazio-Tempo-Individuo RIASSUNTO.
— La presente Memoria merita le piü aspre critiche, in quanto essa contrappo-
ne alia metrica dx2 + dy2 + dz2 — c2'dt2
,
(**) Memoria presentata il 23 aprile 1992 da Luigi Amerio, uno dei XL.
661
—
116
—
solidamente affermatasi nella fisica del ventesimo secolo, una nuova metrica:
dx2 + dy2 + dz2 + dt2 ?
'
II fatto che — c 2 - d t 2 venga sostituito con dt2 puo ancora esser tollerato, dal momento che giä altre volte la presenza del segno meno aveva suggerito l'idea di considerare il tempo alia stregua di una variabile puramente immaginaria. Ma la presenza di t2 al denominatore va a turbare quell'armonia tra spazio e tempo alia quale aspira la teoria della relativita. Se non ci fosse l'ipotesi di una «esplosione primordiale», l'idea di una singolaritä t = 0 per la metrica sarebbe semplicemente da respingere. La radiazione di fondo e l'esplosione primordiale chiamano in causa la matematica piü raffinata, e cosi soltanto i quaternioni e le idee legate all'ipotesi di Riemann conferiscono a quella semplice metrica, esente da qualsiasi costante empirica, l'onore di esser riconosciuta come legge naturale, estendente il suo dominio fin sulla teoria dei quanti. «Dal relativo all'assoluto» era il tema di una conferenza tenuta da Max Planck nel 1924, nella quale si parlava di una possibile aritmetizzazione della fisica. Esattamente questo potrebbe essere il titolo della presente Memoria, giacche essa cerca individui, lä dove s'immaginano solo quanti.
EINLEITUNG
Die Quantentheorie kann als Versuch gedeutet werden, die Individuen, mit denen es die Physik zu tun hat, aus einem principium individuationis abzuleiten. Daß es bisher nicht gelungen ist, die Quantentheorie mit der Wissenschaft von Raum und Zeit, also der Relativitätstheorie, befriedigend zu vereinen, kann daran liegen, daß die Metrik (1)
dx1 + dy2 + dz2 — c2,
dt2
auf die sich die Theorie von Einstein-Minkowski-Poincare gründet, zu wenig Information über die Natur vermittelt. Es hat darum Sinn, die am Beginn dieses Jahrhunderts zur Neubegründung der Physik führende Fragestellung noch einmal zu bedenken, zumal, da die mit der speziellen Relativitätstheorie getroffene Entscheidung nicht zwingend war, weil sie die konforme Invarianz der Maxwellschen Gleichungen nicht ausgenutzt hatte. Eine 10-dimensionale, die Maxwellschen Gleichungen respektierende Freiheit in der Wahl der Raum-Zeit-Koordinaten, wie sie die von Poincare erweiterte spezielle Relativitätstheorie gewährt, hätte auch die Metrik dx2 + dy2 + dz2 — c2· dt2
(2)
r
garantieren können. Daß eine solche Metrik bei aller Relativität von Raum und Zeit einen absoluten 662
— 117 — Anfang / = 0 der Zeit postulieren muß, kann heute nicht mehr erschrecken, seitdem Spekulationen über einen Urknall ernst genommen werden. Die Gruppe der Isometrien der neuen Metrik (2) zeichnet sich durch einen solchen Reichtum an arithmetisch definierbaren Untergruppen aus, daß eine Arithmetisierung der Physik auf dem in dieser Abhandlung geschilderten Wege versucht werden sollte.
1.
- R E L A T I V I T Ä T NACH
GALILEI
Bis zum Ende des 19. Jahrhunderst konnte der Raum, in dem wir leben, trotz der Denkbarkeit einer nicht-euklidischen Geometries als euklidisch und darum als erforscht gelten. Seit Descartes war der erfolgreichste Stil, von Gestalten und vom Geschehen in diesem Raum zu reden, die Verwendung eines orthogonalen normierten Koordinatensystems. Mit drei sich in einem Punkte rechtwinklig schneidenden Koordinatenachsen wird nach Wahl einer Längeneinheit die Lage eines Punktes so durch drei Koordinaten x, y, ζ beschrieben, daß der Abstand zweier Punkte ?:*=*!, Q : χ=χ2,
y =yx , ζ = zi , y=y2>
z = z2,
nach der Formel d2 = (xl-x2)2
+ (y1-y2)2
+
(z1-z2)2
berechnet werden kann. Die Beziehung zwischen zwei solchen Koordinatensystemen x, y, ζ
und
x, y, ζ
wird durch Gleichungen χ = α 'χ + β ' y + γ · ζ + a , y = α' · χ + β'' y + γ'' ζ + b, ~ " ι ο " I " I Ζ = α · χ + β ' y + γ · ζ + c, beschrieben, in denen a, b, c völlig beliebige Konstante sind, während die griechisch benannten Zeichen Konstante bezeichnen, die durch die 6 Orthogonalitäts-Relationen 1 = α2 +ß2
+ γ2 = α'2 + β'2 + γ'2 = α"2 + β"2 + γ"2,
0 = α · α' + β · β' + γ · γ' - α · α" + β · β!' + γ · / = α' · α" + β' · β" + γ' • γ", aber auch nur durch diese, gebunden sind. Hiernach kann man sagen, daß die Freiheit in der Wahl der Raum-Koordinaten 6-dimensional ist; denn 6 jener 12 Parameter können beliebig gewählt werden,
663
— 118 —
wenn es gilt, von einem gegebenen Koordinatensystem x, y, ζ aus ein anderes zu konstruieren. Was die Zeit betrifft, so war ihre mathematische Formulierung als reelle Variable dank der Existenz periodischer Vorgänge in der Natur seit jeher gut eingeübt, und eine Zeitmessung, die den Abstand zweier Zeitpunkte P:t = t1,
Q : t = t2
durch die Differenz tx —12 erklärte, war selbstverständlich. Daß zwischen Raum und Zeit mathematische Bezeiehungen bestehen, lehrten zwar bereits die Himmelserscheinungen, doch bis zum Range einer Dynamik erhoben sich jene Beziehungen erst mit Galileis kühnem Entschluß, die ursprünglich 6-dimensionale Freiheit in der Wahl der Raum-Koordinaten-Systeme zu einer 9-dimensionalen zu erweitern. Indem Galilei erlaubte, in jenen Formeln die Größen a, b, c als beliebige lineare Funktionen α = ρ · t + σ,
b = ρ' · t + σ',
c = ρ" · t + σ"
der Zeit zu wählen und auch den Anfang der Zeitrechnung unbestimmt zu lassen, also t =t + T zu setzen, behauptete er eine 10-dimensionale Symmetrie der Natur, die durch eine 10gliedrige Gruppe von Koordinaten-Transformationen χ—>x = α ' χ + β ' y + γ · ζ + ρ ' t + σ, y -^y = a'' χ + β' · y + γ' · ζ + ρ'' t + σ', Ζ^>Ζ = α"-χ + ß"-y + γ-ζ
+ ρ"· t + σ",
t^>t = t + τ, beschrieben wird. Die Newtonsche Theorie der Gravitation hat diese Symmetrie in großartiger Weise bestätigt; denn in jedem dieser o°10 von Galilei ausgezeichneten Koordinatensysteme haben die Differentialgleichungen der Himmelsmechanik diesselbe Gestalt. Zweifel an der von Galilei vermuteten Symmetrie entstanden erst am Ende des 19. Jahrhunderts, als die Maxwellsche Theorie des elektro-magnetischen Feldes auf eine andere Symmetrie der Natur hinzuweisen schien. Da diese Theorie sich auf bedeutende experimentelle Erfahrungen stützen konnte, war ein Prinzip der Koordinatenwahl als eine Symmetrie der Natur nur denkbar, wenn die Maxwellschen Gleichungen für die elektro-magnetischen Vorgänge im Vakuum bei jeder von jenem Prinzip zugelassenen Wahl der Koordinaten x, y, z, t die gleiche Gestalt annehmen. In dieser Lage entstand die spezielle Relativitätstheorie. Die mit dieser Theorie getroffene Entscheidung war nicht zwingend, weshalb es ratsam ist, eine am Anfang dieses Jahrhunderts nicht ausgenutzte Freiheit daraufhin zu prüfen, ob sie neue Erkenntnisse bei anderer Entscheidung möglich macht. 664
— 119 — 2.
- D I E MAXWELLSCHEN
GLEICHUNGEN
Die Maxwellschen Gleichungen für die elektromagnetischen Vorgänge im Vakuum werden am besten in der Sprache der Differentialformen geschrieben. In einem der von Galilei zugelassenen Koordinatensysteme seien E1,E2, E} die Komponenten des elektrischen Feldes, Hi,H2, H 3 die Komponenten des magnetischen Feldes und c0 bezeichnet die Lichtgeschwindigkeit. Nach Maxwell genügen dann die Differentialformen θ = ^ · dy Α dz + Η2· dz Α dx + Η3· dx Α dy + c0- {E^dx + E2dy + E^dz) Α dt, θ = Ei- dy Adz + Ε2· dz Adx + £3- dx Ady - c0- {Hydx + H2dy + H}dz) Α dt, den Gleichungen dd = 0,
dB = 0.
Die offensichtliche Verwandtschaft der beiden Formen θ und θ kann als Dualität gedeutet werden. Sobald in einem «-dimensionalen Räume eine Riemannsche Metrik eingeführt ist, kann man (nach Volterra) eine vom Koordinatensystem unabhängige Abbildung * definieren, die Differentialformen ω pten Grades in Differentialformen *ω («-ρ)ten Grades verwandelt und die im Sinne der Gleichung *(*ω) = (— 1; · ω involutorisch ist. Wählt man im Falle des 4-dimensionalen Raum-Zeit-Kontinuums eine zu dx2 +
dy2+dz2-ct-dt2
konform verwandte Metrik, also eine mit einem willkürlich wählbaren Faktor φ = = φ(χ, y, ζ, t) versehene Metrik φ· (dx2 + dy2 +
(1)
dz2-ci-dt2),
so gelten folgende Dualitäts-Relationen *(dy Adz) = — i' Cq' dx Α dt,
*(dx Α dt) =c —· dy Adz, o
*{dzAdx) = - i · c0· dy Adt,
*(dy Adt) =
*(dx Ady) = - t · cQ' dz Adt,
*(dz Adt) = — c · dx Α dy , o
c
o
-jr-dzAdx,
an denen auffällt, daß die Wahl von φ gar keine Rolle spielt. Da * eine lineare Abbildung ist, gilt *0 = i · 0, weshalb die Maxwellschen Gleichungen durch die Aussage (2)
de = 0,
d{*Q) = 0
ersetzt werden können. 665
Liegt nun eine Koordinaten-Transformation
z-+z
= /i(x,
y,z,t),
= f){x,
y,z,t),
t^>t=
/ 4 (x, y, z, t)
vor und bezeichnet man die aus einer Differentialform ω nach der Substitution / entstehende Differentialform mit ω / , so gilt allgemein (3)
{dv)f=d{
und die vorher behauptete Invarianz der Dualität besagt (*ω)/=5(ω/), wenn * die durch die Metrik φ(χ, y, z, t) · (dx2 + dy2 + dz2 - c$· dt2) bestimmte Dualität bezeichnet. Ist insbesondere / eine Isometrie der Metrik (1), gilt also
· dt2) = φ{χ, y, z, t) · {dx2 + dy2 + dz2 ~ c02·
dt2),
so bedeutet * dasselbe wie *, weshalb in diesem Fall (4)
(*ω)/=*(ω/)
behauptet werden kann. Aus d{*S) = 0 folgt dann nach (3) and (4) 0 =
{d{*d))f=d{{*B)f)=d{*{Qf)),
während aus dd — 0 auf 0 = (dd) /=
d{6f)
geschlossen werden kann. Damit ist erkannt, daß jede Isometrie / der Metrik (1) jede Lösung θ der Maxwellschen Gleichungen (2) wegen (def)
= 0,
d(*(6f))
= 0
wieder in eine Lösung der Maxwellschen Gleichungen verwandelt. 666
— 121 — 3 . - RELATIVITÄT NACH E I N S T E I N U N D
POINCAR£
Die spezielle Relativitätstheorie hat entschieden, daß die Isometrien der Metrik dx2 + dy2 + dz2 ~
dt2
die Rolle der Galilei-Transformationen übernehmen sollten. Die Tatsche, daß die Gleichungen dx2 + dy2 + dl2 - et •dt2 = dx2 + dy2 + dz2 - c02 · dt2 durch lineare Funktionen χ = α ·χ + β ·γ + γ ·ζ + ρ 't + σ, y = a · χ + β' · y + γ' · ζ + ρ' · t + σ', Ζ = α" · χ + β" · y + γ" · ζ + ρ" · t + σ", t = am-x+ßT'y
+ γ'"-ζ + ρ"' t + σ'",
gelöst und dabei 10 der griechisch geschriebenen Konstanten willkürlich gewählt werden können, ließ erwarten, daß die 10-gliedrige Gruppe dieser sogenannten Lorentz-Transformationen die wahre Symmetrie der Natur darstelle. Die durch σ = σ' = σ" = σ" = 0 gekennzeichneten Transformationen bilden die eigentliche Lorentz-Gruppe, die 6-gliedrig ist. Ihre Erweiterung zu jener 10-gliedrigen Gruppe, die als inhomogene Lorentz-Gruppe oder Poincare-Gruppe bezeichnet wird, ist experimentell nicht so zwingend wie jene homogene Lorentz-Gruppe. Dennoch ist die Poincare-Gruppe die Basis aller Überlegungen, die in der Theorie der Elementarteilchen aus den Symmetrien des Raum-Zeit-Kontinuums Schlüsse ziehen wollen.
4 . - D I E NEUE
POINCARE-GRUPPE
Die Frage nach einer Symmetrie der Natur ist trotz bedeutender Erfolge der speziellen Relativitätstheorie noch offen zu halten. Sie ist wegen der Rolle, die die Maxwellschen Gleichungen dabei spielen, reduziert auf die Frage, welcher Faktor
φ(χ, y, z, t) · (dx2 + dy2 + dz2 - c02· dt2)
zu wählen ist, wenn konstantes φ noch nicht die rechte Antwort ist. Da die Symmetrie der Natur zu verstehen ist als die Gruppe der Isometrien jener Metrik und da allgemein Metriken, die sich nur um einen konstanten Faktor unterscheiden, dieselbe Isometriegruppe haben, so kann φ bis auf einen konstanten Faxtor unbestimmt bleiben. Gewichtige mathematische Gründe lassen vermuten, daß. (2)
φ(χ, y, z, t) = konstant' t~2 667
— 122 —
ist, wenn man annimmt, daß t = 0 eine den Urknall verbergende natürliche Grenze aller raum-zeitlichen Erscheinungen sei und t > 0 die seit dem Urkall verflossene Zeit messe. Rein empirisch ist dagegen nichts einzuwenden; denn der Urknall liegt weit zurück, und wenn t = Τ die Zeit eines historischen Ereignisses bezeichnet, ist T2-t~2 für alle irdischen Experimente nahezu konstant gleich 1. Die Erfolge der speziellen Relativitätstheorie können darum auch als Rechtfertigung des neuen Ansatzes (2) angesehen werden. Die vorliegende Abhandlung ist ganz der Hypothese gewidmet, daß die Gruppe der Isometrien der Metrik (3)
(dx2+dy2
dz2-ci-dt2)'^2
+
die wahre Symmetrie der Natur sei. Die mathematischen Eigenschaften dieser Gruppe werden zeigen, daß der Name Poincare in diesem Zusammenhang mit viel größerem Recht genannt zu werden verdient als bei der inhomogenen Lorentz-Gruppe. Ich nenne deshalb die in der Sprache von Quaternionen-Matrizen sogleich zu formulierende Gruppe der Isometrien der Metrik (3) die neue Poincare-Gruppe.
5. - Uber dem Körper R der reellen Zahlen wird der Ring Η der Quaternionen von den durch i2 = j2 — — 1,
i' j + /· / = 0
gebundenen «Quaternionen-Einheiten» i j erzeugt, der als R-Modul
den Rang 4 hat. Die imaginäre Einheit des Körpers C der komplexen Zahlen werde hier nicht mit i sondern mit y — 1 bezeichnet, um sie von jener Quaternionen-Einheit i zu unterscheiden. Das Kronecker-Produkt C χ H = C + C - / + C - / v ' + Cv' = H + V ^ T - H von C mit Η heißt der Biquaternionen-Ring. Über R hat er den Rang 8, über C = R + yj^l' R den Rang 4. 668
— 123 —
Die durch q = cx - c2· i ~ cy · i-j - c4-j
(ck e C ) ,
q = cl + c2' i + iy i· j — c4· j definierten Ubergänge von einer Biquaternion q = q + c2' i + cy i' j + c4' j zu q und q sind Anti-Involutionen des Ringes Η + V — 1' H , die in der Beziehung j-q = q ' j ,
q-j=j'q
stehen. Das Produkt q'q = q'q = c2 + c2 + c2 + c4 ist als Element von C mit allen Biquaternionen vertauschbar, wie übrigens auch q-j-j-q
= 2- c4 .
Für Quaternionen q ist der Betrag \q\ als die nicht-negative Quadratwurzel von q· q definiert, während für Biquaternionen nur
eindeutig ist und der Regel ki ·
12 =
I2 k i \ 2
genügt. Die Beziehung der Metrik (dx2 +
dy2+dz2~ci'dt2)-t-2
zu den Quaternionen besteht darin, daß diese Differentialform nach der Substitution χ + y · i + χ' i - j + V— 1 * co' t • j — ω wegen ω·/ — j' ω = 2 · γ— 1 ' cQ' t, d(o- άω = dx2 + dy2 + dz2 - c£· dt2 , bis auf einen konstanten Faktor gleich da>· döj _ \do>\2 (ω·/ — j· ω)2 |ω — ώ|2 gesetzt werden kann.
— 124 — 6. - Für das Transponieren von Matrizen A, B, deren Elemente Biquaternionen sind, gelten die Regeln
'(Α·Β) = 'Β·'Α, Darum bilden die Matrizen Μ = ( ä
\c
dj
'(Α·Β)='Β·Ά. die den mit
'Μ-1· Μ = I
(1)
gleichbedeutenden Relationen
(2)
ä'c = c'a,
amd — c'b=l
d-b=b'd,
genügen, eine multiplikative Gruppe. Die Folgerung
(3)
M x=
~ [~~c
i )
von (1) zeigt, daß neben (2) auch gilt:
(4)
a'b = b'a,
Die Matrizen Μ = \
\c
amd — bmc=\.
d'c = cd,
J , die der Gleichung (1) genügen und deren Ele-
d)
ment a, b, c, d Quaternionen (also nicht nur Biquaternionen) sind, mögen künftig Poincare-Matrizen heißen und durch diesen Namen gekennzeichnet werden. 7. - Mittels einer Poincare-Matrix
Η5 kann aus einer mit reellen x, y, z, t gebildeten Biquaternion
ω = x+ yt+Z't'j
+V
-
1' co' t'j
in der Weise 1
ω = Μ(ω) = {ä' ω + b) · (c · ω + d) ~
eine Biquaternion ω gebildet werden, wenn | c · ω + d | 2 ^ 0 ist. Mit
Z = (α' ω + b)' (ω · c + d) = a· C' ω'ω+b'd
+ a- ω · d + b· ω · c,
N = (c^ω + d)'(ω•c + d) = C'C'M,70 + d'd + C'oj'd + d'(i)'c 670
— 125 — gilt ω = Μ(ω) = Ζ · Ν
.
Der Nenner Ν erweist sich hier als Quaternion, d.h. als eine in Η gelegene Biquaternion, weil die imaginäre Einheit γ — 1 nur vermöge des Summanden c0- y f - l ' t ' J von ω auftreten kann, und zwar in der Weise -
V
1· t· c0· {cj·
d — d-J - c) = y—1 · t· c0' {c-d — d· c)· j ,
die nach 6 (4) Verschwinden bedeutet. Wegen Ν = Ν und Ν e Η = R + R · i + R - i-j + R-y ist Ν = \c-ω + d\2 eine reelle Zahl. Der in γ — 1 · Η gelegene Anteil des Zählers Ζ = a· c' {χ2 +y2 +z2 ~ c02· t2) + b- d + α· ω- d + b- ω· c kann nur V
-
1" t · c0' (a - j · d — b' j · c) = \ —l' t' c0' (a - d — b' c)'j = V—T · / · c0-j
sein, wie 6 (4) lehrt. Mit ω0 = x + y' i + ζ' i · j gilt also Ζ = α· c (χ2 + y2 + ζ2 - c02· t2) + b- d + α· ω 0 · d + b- ω 0 · c + V ~ 1' c0· t Darum kann ω = — = i + y · / + ζ · / · y + V — 1' co' t ' j mit reellen x, y, z, t gesetzt werden*, wobei mit den Quaternionen (1)
ω0 = χ + y ί + z ' i ' j ,
ω0 = χ + y · i + z' i' j
gilt (2)
(3)
ώο =
/ =
a - c · (x2 + y2 + z2 ~
CQ
' t2) + α' ω0· d + b • ω0· c + b • d
C'C· (x2 +y2 +z2 -
CQ·
t2) + c ω 0 · d + d- ω 0 · c + d-d t
2
2
2
2
c c- {x + y + z — ci' t ) + c· ω0· d + d· ω0· c + d· d 671
—
126
—
Dabei ist zu beachten, daß der Nenner reell und gleich (4)
\c· ω + d\2 = \c· ω0 + d\2 - c02· c·
c-12
ist. Nach 6 (4) hat c ~ 1 · d = q im Falle c ^ 0 die Eigenschaft q = q, weshalb dann — c ~1 · d = α + β · i + γ' i· j mit reellen α,,β,γ gesetzt werden kann. Wenn c ^ 0 ist, gilt also (5)
\c- ω + d\2 = k l 2 · ((χ - α)2 + (y - β)2 + (ζ + γ)2 ~
c02-t2),
was zeigt, daß | c · ω + d \2 nur auf dem Lichtkegel (χ - α)2 + (y- ß)2 + (z ~ γ)2 ~cZ't2
= 0
verschwindet, der vom Punkte χ — a, y = β, ζ — γ beim Urknall t = 0 ausgestrahlt wird. Die Gleichung (3) kann wegen ω — ώ = 2 V — 1' c0· t· j,
ω — ω = 2 V-Πί · c 0 ·
in der Form (6)
ω — ω = (ω — ώ)* \ε·ω + ά\~2
geschrieben werden, die sogleich zum Nachweis, daß ω —» ω = (a · ω + b) · {εω + d) ~1 bei konstanten a, b, c, d eine Isometrie der Metrik \da)\2 \ω~ω\2 darstellt, gebraucht wird.
8. - Werden in der Biquaternion ω = Μ(ω) = (a · ω + b) · {c · ω + d) ~1 die reellen Zahlen delt, so folgt aus
y, ζ, t als variabel, die Quaternionen a, b, c, d als konstant behanω · (c· ω + d) = w ω + b 672
— 127 — die Gleichung (1)
άω' {c - ω + d) = (a — ω · c) · άω.
Im Falle c ^ 0 kann aus a· c ~1 · {.c ω + d) = α· ω'+ α' c~l
m
d,
ω' (c ω + d) = α· ω + b auf {a — ώ' c)' c ~1 · (c · ω + d) = a · c ~1 · d — b
(2)
geschlossen werden, wobei (a'c~1'd-b)'c=a'd-b-d=
(3)
1
gilt, wenn die Gleichungen 6 (4), die Μ als Poincare-Matrix kennzeichnen, vorausgesetzt werden. Aus (1) folgt nunmehr dä>' (c· ω + d) =c~1'
(4)
{c ω + d)~l' c- d
was nach Anwendung von | | 2 die Gleichung \dS>\2· \c ω + d\A = \άω |2 ergibt. Die Formel 7 (6) zeigt andererseits |2 Iω — ωI - = 1 ω — |2ω·
1
· \c + ω d |4,
so daß \άω\2 |ώ - ώ| 2
0)
,
\άω\ -.2 |ω-ω|2
behauptet werden kann. Bewiesen ist dies zunächst nur, wenn c ^ 0 ist und natürlich ω der Bedingung |c ω + d\2 * 0 genügt. Im Falle c = 0 muß nach 6 (4) und 6 (2) ä' d = 1,
b'ä = a'b 673
sein, was d ^ 0 und damit |c'
ω
+
d\2
*
0
garantiert. Es gilt also ω
=
α ·
ω ·
ä
+
b '
ä ,
—
ω
— α ·
{ω
— ω ) ·
α ,
doj
— a · ά ω ·
a
,
was wiederum (5) ergibt.
9. - Die Metrik
neue
ist definiert als die Gesamtheit der Isometrien der
Poincare-Gruppe
(1)
( d x
2
+ d y
+
2
d z
2
- c $ - d t
2
) - t ~
2
die mittels der Biquaternionen ω=
χ
+
ω
χ
+ y '
=
y
und der Poincare-Matrix
i
+
Z'
i * j
+ γ—1'
c
i
+
z '
i - j
+
1*
^o*
( c
ω
V
-
o'
t ' J > t ' j
(: 3-
in der Form (2)
ω
ω
=
Μ(ω)
—
(α·
ω
+
b ) ·
+
d ) ~
l
dargestellt werden können. Da, wie eben bewiesen, jede der durch (3)
a ' b
=
b
M
ä ,
d ' c
=
c d ,
a ' d ~ b ' C
=
1
gekennzeichneten Quaternionen-Matrizen
Η3
ein Element ω —> ω = Μ(ω) der Poincare-Gruppe bestimmt, liegt hier wie im Falle der klassischen Poincare-Gruppe und der Gruppe der Galilei-Transformationen eine 10-gliedrige Gruppe vot. 674
— 129 —
Zu ihrer näheren Beschreibung mögen die Quaternionen q = rj + r2· i + r$ · i ' j
(mit rk ε R ) ,
die der Bedingung q = q genügen, als räumliche Quaternionen bezeichnet werden. Bei der Diskussion der Gleichungen (3) sind folgende 3 Fälle zu unterscheiden: I) ώ / O , c / 0 ;
Π) c = 0, a / 0 ;
ΙΠ) Ä = 0, c * 0.
I) Im Falle a ^ 0, c 5* 0 können b = — a· a, d — — c β gesetzt werden, so daß (3) mit der Festellung öc = α, β = β, c (α — β) · ä = 1 gleichbedeutend ist. Im Falle a ^ 0, c ^ 0 ist also (4)
Μ{ω) = α· (ω — α)· (ω — /3)~1 · {a — β)· a
mit beliebiger von 0 verschiedener Quaternion a und beliebigen, voneinander verschiedenen räumlichen Quaternionen α und ß. Π) Ist c = 0 so kann a nicht 0 sein. Durch b = — α · α wird also eine Quaternion α bestimmt, die wegen a'b = b'ü räumlich sein muß. Im Falle c = 0 ist (3) mit der Aussage (5)
Μ(ω) = α · {ω — a)'a
gleichbedeutend, wobei a eine beliebige von 0 verschiedene Quaternion und α eine beliebige räumliche Quaternion bezeichnen. EU) Ist a = 0, so kann nicht c — 0 sein. Der Ansatz d = — c · β bestimmt also eine Quaternion β, die sich wegen d'c = c%d als räumlich erweist. Im Falle a = 0 ist demnach (6)
Μ(ω) = — b· {ω — ß)~l · b ,
wobei die Quaternion b beliebig, aber von 0 verschieden ist, während β eine beliebige räumliche Quaternion bezeichnet. Die Abzählung der in diesen Darstellungen von Μ(ω) enthaltenen reellen Parameter zeigt, daß die neue Poincare-Gruppe 10-dimensional ist. 10. - In der klassischen Physik und der speziellen Relativitätstheorie wird das Raum-Zeit-Kontinuum dadurch zu einem topologischen Raum, daß alle Inertialsysteme als topologische Abbildungen des Raum-Zeit-Kontinuums auf den vier-dimensionalen euklidischen Raum anerkannt werden. Relativität in neuer Sicht, wie sie das mit der Metrik (1)
(dx2 + dy2 + dz2 ~ c02·
dt2)-Γ2
vermessene Raum-Zeit-Kontinuum bestimmen würde, sollte als Inertialsysteme alle 675
— 130 — und nur die Koordinatensysteme y, z, t gelten lassen, die aus dem System x,y,z,t trix
in dem (1) gilt, mittels einer Poincare-Ma-
M:
b
ä
in der Weise χ + y· i + z' t ' j + c0· V
-
1' t ' j
=
M(x + y ι + z' i ' j + c0' y—1·
t'j)
gewonnen werden können. Da solche Koordinaten-Transformationen aber in einer Punktmenge | c · ω + d | = 0 versagen, die im allgemeinen ein Lichtkegel ist, so ist kein Teil des Raum-Zeit-Kontinuums angebbar, als dessen Symmetrien die Koordinaten-Transformationen neuen Stils gedeutet werden können. Schon in der klassischen Relativitätstheorie hat das Minuszeichen in der Metrik dx2 + dy2 + dz2 ~ c02' dt2 die Vermutung entstehen lassen, daß die Zeit in Wahrheit als rein imaginäre Variable zu verstehen sei. Wenn man aber bei klassischer Relativität bei einem Inertialsystem die Zeit rein imaginär gewählt hat, können die Raum-Koordinaten in einem anderen Inertialsystem komplex werden. Das ist anders, wenn {dx2 + dy2 + dz2 ~ c02' dt2)· t - 2 die herrschende Metrik ist, denn da ist es dank der Formel 7 (3) möglich, der Zeitmessung in allen Inertialsystemen den Faktor V^T aufzubürden, ohne die Realität der Raum-Koordinaten einzubüßen. Werden in jenen Formeln yj — 1 · c0 -1
durch t
yj—I-cQ'
t
durch/
ersetzt, so stellen die resultierenden Gleichungen Γ
ώ0· (c-c· (x2 +y2 +Ζ2 + t2)+d-d
+ c- ω0· d + d· ω0· c) =
= a · c (x2 + y2 + z2 + t2) + b· d + α· ω0· d + b· ω0· c,
(2)
t- (c- c< (χ2 +y2 +Z2 + t2) + d-d + c ω0· d + d- ω0· c) = t, die nichts anderes als ω = {α' ω + b) · {c' ω + d) - ι 676
— 131 —
aussagen, wenn χ + y · i + ζ · t ' j + t ' j = ω0 + t' j , χ + y i + z' i ' j + t' j = ω0 + t ' j , gesetzt wird, eine Isometrie ω —> ω der Metrik (dx 2 + dy2 + dz2 +
(3)
dt2)-t~2
dar, d.h., es gilt Cix2 + dy2 + dl2 + dt2) -r2
= (dx2 + dy2 + dz2 + dt2) · t ~2 .
Da c-c-{x2+y2+z2+t2)+d-d
+ c-(o0'd
+ d-~ä0-c=\c-co
+ d\2
bei reellen x, y, z, t nur für c · ω + d = 0 verschwindet und dies nach 7 (3) nur für t = = 0 denkbar ist, sind jene Formeln für den Übergang ω —*• ω nur in dem Bereiche t = 0 unstetig, der der Metrik (3) ohnehin unerreichbar ist.
11.
- ZELLE U N D
ZELLTEILUNG
Die Gesamtheit Η der Quaternionen wird durch die Erklärung, daß der Abstand zweier Quaternionen q, r gleich dem Betrage \q — r\ ihrer Differenz sei, ein metrischer und darum ein topologischer Raum, der durch Hinzufügung eines in Η nicht vorkommenden Zeichens oo zu einem der vierdimensionalen Kugel S 4 topologisch äquivalenten Kompaktum e u oo wird. Jede reelle Zahl ρ bestimmt in der Weise \q\ > ρ einen Teil von Η der mit °° zusammen als eine Umgebung von oo anzuerkennen ist. Eine aus vier konstanten Quaternionen a, b, c, d gebildete Matrix
M: 5
vermittelt gemäß der Formel (1)
M(q) = (a-q +
b)-(c-q+qr1
eine nicht-konstante Funktion M(q) der variablen Quaternion q genau dann, wenn der rechte Spaltenrang von M, der auch der linke Zeilenrang von Μ ist, den Wert 2 hat. 677
— 132 — Wird in diesem Falle für c / O : M( — c~l · d) = »
M( oo) = a- c~l ,
(
für c = 0: M(oo) = oo gesetzt, so kann der Ubergang (2)
q —*• M(q)
als topologische Abbildung von Η U °o auf Η U oo gedeutet werden. Da das Produkt von Matrizen Ml> M2, die den rechten Spaltenrang 2 haben, ebenfalls diesen Rang 2 hat und
M, (M2(q)) = (Mr
M2)(q)
gilt, bilden die in der Weise (2) herstellbaren Abbildungen eine Gruppe. Der vierdimensionale, der Kugel S 4 topologisch gleiche Raum S 4 = Η U oo heiße in der vorliegenden Untersuchung die Ur-Zelle. Die eben erfolgte Beschreibung der Urzelle setzt eine variable Quaternion
q = χ + y i + Ζ' i ' j + t' j voraus, die in einem Teile Η der Urzelle vier reelle Koordinaten x, y, z, t einführt und dem in Η nicht gelegenen Punkte der Urzelle das Zeichen oo gibt. Jede Quaternion
q = χ +)>·/+
z' i ' j + t ' j ,
die aus jener Quaternion q mittels einer Funktion
M{q) = (a-q +b)·
(c-q +
dr1
in der vorher beschriebenen Weise hergestellt werden kann, bestimmt ebenfalls eine Zerlegung Η U όο der Urzelle S 4 . Jedes aus einer Quaternion in der Weise
q
=
M(q)
herstellbare Koordinatensystem
x, y, z, t, 678
— 133 — und nichts anderes gilt als eine Karte der Urzelle, während die Quaternion q selbst die Kartographie der Urzelle heiße.
12. - Aus der mit konstanten Quaternionen α, β, γ, $ gebildeten Relation q' (γ' q +
= α· q +β
zwischen zwei Kartographien der Urzelle folgt durch Differenzieren (1)
dq> {γ-q + S) =
{a-q-γ)-dq
und damit \dq\2· \r-q + S\2=\dq\2'
(2)
\z-~q-Y\2.
Dies zeigt, daß unabhängig von der Kartographie eine Winkelmessung in der Urzelle möglich ist, wenn man die Winkel in der euklidischen Metrik dx2+dy2
+ dz2 + dt2
berechnet.
13. - Wenn eine Quaternionen-Matrix
9
T
-t
in dem Sinne hermitesch ist, daß 'Τ = Τ gilt, hat die Funktion T(q) = {q, 1)·
<·
= a- q-q + b· q +q-b
+c
im Falle a· c — b' b > 0, a > 0 nur positive Werte, während für a · c — b· b < 0 die Nullstellen von T(q) die Urzelle in zwei Teile zerlegen. Bei einer Änderung q-*j
= M(q) = (a-q+ß)·
+
der Kartographie verwandelt sich T(q) in (1)
T(q) = T(M(q)) - T(q)· \Yq + $\~2 ,
wo (2)
'Μ- Τ- Μ = Τ
gesetzt ist. 679
— 134 — Da nach 12 (2) \dq\2 = \dq\2- |
* + *l"2·
r
W~q'r\
2
ist und im Falle γ ^ 0 nach 8 (2) 1
{oL—q'j)'j
· ( y q + <5) = α· γ ι·$ — β
gilt, ist (3) wobei | M | eine Konstante bezeichnet, die (4)
im Falle γ ^ 0
gleich |α· γ"1' δ' γ — β· y|
im Falle y = 0
gleich | α · ί |
ist und darum so etwas wie eine Determinante der Matrix Μ darstellt. Die Zahl a· c — b· b heiße die Diskriminante der (hermiteschen) Matrix
Da der Fall negativer Diskriminante die Bedeutung der in 10 (3) eingeführten Metrik (dx2 + dy2 + dz2 + dt2)-1 - 2 zu erklären vermag, seien ihm noch folgende Bemerkungen gewidmet. Wird mit positivem ρ b' b — a* c = ρ,2 gesetzt, so ist T(q) — 0 die 3-dimensionale Kugel
T(q) > 0
T(q) < 0
zerlegt. In diesem Falle empfiehlt es sich, die Kartographie q durch
680
— 135 —
zu ersetzen, weil dann f
Τ = 'Μ> Τ· Μ = 2· ρ2- a-
0
-Λ
iJ
ol·
\M\2 = 4· p2· a2 wird und sich darum nach 13 (3) (5)
dg T(q)
bei q —> #
in ρ'
dq q·] -J'
q
verwandelt. Dieses gilt nur für a * 0. Ist. a = 0 also T(q) = b· q + q· b + c,
b~b = p ,
so gelten mit q = j' b' q + -j ·>' c die Gleichungen q-j-j-q
\dq\2 = p2' \<%\2
= T{q),
die auch in diesem Falle den Ubergang (5) ermöglichen.
14. - Auf die Frage nach dem, «was die Welt im Innersten zusammenhält», antwortet die Physik mit der Erforschung der Elementarteilchen. Die vorliegende Untersuchung verläßt diesen Weg, indem sie versucht, vom Ganzen auf die Teile statt von den Teilen auf das Ganze zu schließen. Dieses Ganze hat man in der Idee der Urzelle zu sehen, die mit einem mathematisch formulierten Begriff der Zellteilung die Natur als ein Zwei-Zellen-Stadium zu verstehen sucht. Die Urzelle ist ein topologischer Raum mit Winkelmessung und jede (2,2)-Quaternionen-Matrix vom rechten Spaltenrang 2 bestimmt eine topologische Abbildung q —> M(q) der Urzelle auf sich selbst. Die Symmetrie der Urzelle, als welche man die Gesamtheit jener Abbildungen zu sehen hat, wird reduziert durch Zellteilung, worunter die Zerlegung der Urzelle mittels einer Funktion T(q) = a'q'q+b'q
+ q'b + c
von negativer Diskriminante a· c — b· b in die beiden Teile T(q) > 0
und
zu verstehen ist. 681
T(q) < 0
— 136 — Erst diese Zweiheit von Zellen verdient den Namen «Natur». Als Symmetrien der Natur sind nur die Abbildungen q —> q = M(q) der Urzelle anzuerkennen, die den «Urknall» T(q) = 0 in sich und darum die beiden Zellen T(q) > 0, T(q) < 0 entweder auf sich selbst oder aufeinander abbilden. Da Τ negative Diskriminante hat, kann die Kartographie q der Urzelle nach 13 (5) so gewählt werden, daß die Gleichung q-j - j ' q = 0 den Urknall darstellt. Werden die reellen Koordinaten x, y, z, t durch (1)
q = x + y i + Z'i'j
+ t'j
definiert, so ist t = 0 die Gleichung des Urknalls und t > 0 sowie t < 0 sind die Ungleichungen für die beiden durch Teilung entstandenen Zellen. Wenn eine Symmetrie q —* M(q) der Urzelle den Teil l 0
j\ o)
2t = q ' j - j - q = {qA)'\
lq\ \l/
°
in sich abbilden soll, wie bei Symmetrien der Natur gefordert wird, muß t
(2)
M{q)'j~j'M{q)
=0
eine Folge von t = 0 sein. Nach 13 (1) und (2) besagt (2) dasselbe wie
M
=
o)* " (l) °'
(3) was eine Gleichung von der Form a'q'q
+ b-q+q'b
+ c = 0 d.h.,
a- (x2 +y2 +z2 + t2) + α·χ + β· y + γ-ζ + ί· t + c = 0 mit rellen α, <x, β, γ, S, c ist. Nur a = tx=ß = y = c = 0 ist deshalb denkbar, was zeigt, daß in (3)
οΐ-Η-; a mit reellem r sein muß. 682
— 137 — Hier kann r = ± 1 gewählt werden, weil die Matrix Μ ohne Änderung der Abbildung q —> M(q) mit einer beliebigen von 0 verschiedenen reellen Zahl multipliziert werden kann. Die Gleichung
•H:
o)
ergibt nach Links-Multiplikation mit j die Bedingung
,
.,
ίο 1
Μ = ±
-1 0
die mit der Kennzeichnung 6 (1) der Poincare-Matrizen zu vergleichen ist. Hieraus ist zu erkennen: Jede Poincare-Matrix Μ bestimmt eine Symmetrie q —> M(q) der Natur. Alle übrigen Symmetrien der Natur lassen sich mit einer Poincare-Matrix in der Weise q —» M(q ~1) darstellen, da aus
tJi
' (l
~o)'
M =
~o)stets
" (ι
folgt
'
daß
M
' (l
o)
eine Poincare-Matrix ist. Wenn eine Quaternionen-Matrix
einer der beiden Gleichungen
*•(!
"
3
—
"
3
genügt, so folgt ähnlich wie in 6 (5)
ämc = c'a,
d'b = b'd,
ä'd —
c'b=±l.
Die Differenz M(q) - M{q) = {aq + b)' (cq + d)"1 - {cqTdy1·
(a^Tb)
=
(cq~+~d) ~1 · {(cqlTd) · (aq + b) - {äqTb)
· (cq + d)) · (cq + d) ~1
vereinfacht sich wegen (5) zu M(q) - m j ) = ± (cjTd)-1' 683
(q-q)'
(cq + d)~l ,
— 138 — was (6)
M(q)-j-j-M(q)
\c-q + d\2
= ± {q-j-j-q)'
bedeutet, weil für jede Quaternion q die Differenz q'j—j'q reell ist. Wird also wie in (1) q=x+yi + z· i-j + t ' j und überdies M(q) = χ + y · i + Z' t ' j + t ' j gesetzt, so gilt t = ± /· \c-q + d\~2 .
(7)
Hiernach ist klar: Ist Μ eine Poincare-Matrix, so bildet q —*M(q) jede der beiden Zellent t > 0 und t < 0 in sich ab, während q —»M(q _ 1 ) jene beiden Zellen vertauscht.
15. - Jeder Teilung T(q) = a'q'q
+ b'q+q'b
+c=0
der Urzelle ist eindeutig eine Klasse von Metriken zugeordnet, die sich alle von dq· dq
dq
CT(q))2
T{q)
nur um einen konstanten Faktor unterscheiden. Diese Metriken haben allesamt dieselben Isometrien, deren Gesamtheit als die Symmetrie der durch jene Teilung geschaffenen Natur anzuerkennen ist. Um deren Beziehung zur neuen Poincare-Gruppe zu erkennen, ist es notwendig, die Kartographie q=x+yi
+ Z'i'j
+t'j
zu wählen, in der T(q) = 0 mit q'j—j'q = 2t = 0 gleichbedeutend ist. Da erscheint die Symmetrie der Natur als die Gesamtheit der Isometrien der Metrik (1)
(dx2 + dy2 + dz2 + dt2)· Γ2 ,
woraus zu ersehen ist, daß jede Poincare-Matrix
eine Symmetrie q —> q = M(q) = (
1
— 139 — Ob es noch andere Symmetrien q —> M(q) der Urzelle gibt, die Isometrien der Metrik (1) sind, kann mit der in 13 bewiesenen Gleichung 13 (3) d g
dg
=
\ M \ -
T Q )
T ( q )
geprüft werden. Daß 2
d q
d q
T ( q )
T ( q )
sein soll, ist nach 13 (3) mit 2
\ T ( q ) \
=
2
\ M \
·
\ T ( q ) \
2
gleichbedeutend. Da T(q) und T(q) reell sind, besagt dies T ( q ) = ±
| M |
·
T ( q ) ,
d.h. ' M ·
wegen 13 (2). In der durch Situation
T ( q )
= q
m
T
M
=
±
\
M
\
-
T
gekennzeichneten Karte
j — j ' q
'«• L °
-
±
ο · " -
ι « ι ·
-J
q
fuhrt dies auf dieselbe
o ·
die schon in 14 vorlag und dort gezeigt hat, daß entweder Μ selbst oder 1 0
Μ -
V
0
Ι
Poincare-Matrix sein muß. Um das Ergebnis 14 und 15 zusammenzufassen, werde vorausgesetzt, daß q
=
x
+
y
z
+
Z
'
i
'
j
+
t ' j
die Karte der Urzelle sei, in der die Zellteilung T(q) = 0 durch q
=
q
beschrieben wird. 685
— 140 — Dann sind folgende drei Aussagen gleichbedeutend: 1) Eine der beiden Matrizen Μ und Μ- \ U
^ 0
ist Poincare-Matrix. 2) q-+M(q)
ist Isometrie der Metrik (dx2 + dy2 + dz2 + dt2)- Γ2 .
3) q —» M(q) ist Symmetrie der Urzelle und bildet die Teilzellen T(q) > 0 und T(q) < 0 entweder auf sich selbst oder eine auf die andere ab.
1 6 . - INDIVIDUEN
Nach diesen Vorbereitungen kann es nicht mehr überraschen, wenn die Metrik (dx2 + dy2 + dz2 +
dt2)-Γ2
als das Naturgesetz bezeichnet wird. Mit der Zusammenfassung ω = χ + y i + Z' i ' j + t ' j der vier Koordinaten zu einer Quaternion wird das Zwei-Zellen-Stadium Natur als Ergebnis einer Teilung der Orzelle e υ oo in die Zellen t > 0 und / < 0 gedeutet, die beide mit jener Metrik vermessen werden können, während der Teil t = 0 der Urzelle, der künftig einfact der Spiegel heiße, nur der Winkelmessung der Urzelle erreichbar ist. Die vierte Koordinate t heiße die Zeit, obwohl sie erst durch die Substitution
zu der von der Physik gemeinten reellen Variablen wird. Die Zeit ist relativ, denn bei anderer Wahl y, z, t, des Koordinatensystems ist nach 14 (7) t = ± \c- ω + 686
d\~2-1,
— 141 —
wenn ω ^ ω = (a ' ω + b) · (c' ω + d)~l die Koordinaten-Transformation beschreibt. Zeit-Umkehr liegt genau dann vor, wenn
keine Poincare-Matrix ist. Der Spiegel, der Anfang der Zeit, ist absolut.
17. - Die Natur wird erlebt als eine Gesellschaft von Individuen. Wie weit der Begriff «Individuum» reicht, muß als unbekannt gelten. Schon die Vielfat der biologischen Erscheinungen erweckt den Verdacht, daß sie wie eine spektrale Zerlegung der Natur zu bewerten sei und daß es Individuen gibt, die von der Wissenschaft noch nicht entdeckt sind. Der Reichtum an Symmetrien der Natur, den die neue PoincareGruppe zu verkünden scheint, bietet eine Möglichkeit, den Begriff des Individuums zu präzisieren, was folgende Axiome versuchen: I) Jedes Individuum hat Identität, die eine Untergruppe der Gruppe aller Poincare-Matrizen ist. Π) Unter allen Karten ω = χ + y i + z' i' j + t· j der Urzelle, in denen das Naturgesetz die Gestalt (dx2 + dy2 + dz2 + dt2)· t2 annimmt, ist eine Quaternion ω ausgezeichnet als das Tao der Natur. ΠΙ) Jede Poincare-Matrix M, die zur Identität eines Individuums gehört, bestimmt mit dem Tao ω der Natur zusammen eine Symmetrie ω —> Μ(ω) des Individuums, und andere Symmetrien hat das Individuum nicht. IV) Ein Individuum lebt dann und nur dann in einem anderen Individuum, wenn seine Identität Untergruppe der Identität des anderen Individuums ist.
18. - Die Gesamtheit aller Poincare-Matrizen werde mit SL2( H) bezeichnet, wobei der Anteil S des Zeichens auf das Bestehen der Relationen 6(2)
ä'c = c'a,
d'b=b'd, 687
ä· d — c· b — l
— 142 — hinweise, die a c
b d
als Poincare-Matrftc unter allen Quaternionen-Matrizen kennzeichnen. Es ist üblich, die Gruppe der Matrizen
e 3· deren Element a, b, c, d einem kommutativen Ringe r angehören und nur der Bedingung a· d — b· c = 1 unterworfen sind, mit SL2(r) zu bezeichnen. Da alle räumlichen, d.h. zu R + R · / + R · i' j gehörigen Quaternionen q bei «Zeit-Umkehr» q-*q invariant bleiben und R + R · i kommutativ ist, sind im Falle eines Unterringes r von R + R · i alle Gruppen SL2(r) auch Untergruppen von SL2 (H). Der hier vorgetragenen Auffassung des Begriffs «Identität eines Individuums» stehen also alle Erfahrungen der Theorie der automorphen Funktionen zur Verfügung, und es sei hier schon auf die Notwendigkeit hingewiesen, bei folgenden Gruppen zu prüfen, ob sie auf Individuen hinweisen, deren Erkenntnis für die Erfoschung der Natur wesentlich ist: SL2( Z) und ihre Untergruppen SLAZ mit natürlichen Zahlen m,
+ tn'
d +
y/\d\-iA
\d\, SL2(Q + Q'i·
VRT),
wo d die Diskriminante eines quadratischen Zahlkörpers bezeichnet. Denkbar ist auch, daß das Paar 1 0
0 1
allein die Identität eines Individuums ist und damit etwa aussagt: «Ich bin, der ich bin». Von diesem Individuum könnte man sagen, daß es in jedem anderen Individuum lebt. 688
— 143 — 1 9 . - INNERER DIFFERENTIAL-KALKÜL
Sobald in einem «-dimensionalen Räume eine Riemannsche Metrik gik- dxi-dxk gegeben ist, wird der Grassmann-Kalkül der äußeren Differentialformen überlagert durch den Clifford-Kalkül, der zu der äußeren mit Λ bezeichneten Multiplikation eine innere Multiplikation, die V geschrieben wird, hinzufügt. Die Gesamtheit der aus äußeren Differentialformen up vom Grade ρ herstellbaren Summen U0
+ U!+
li
2
+ ...
+ U„
wird dadurch auf zwei Weisen zu einem Ring, dessen Elemente einfach Differentiale genannt werden mögen. Neben der durch du = dx' A dtu definierten äußeren Differentiation d, die trotz der hier verwendeten kovarianten Differentiation d{ nur scheinbar von der Metrik abhängt, gibt es eine innere Differentiation Su = dx' V d^, deren große Bedeutung erst durch die Diracsche Theorie des Elektrons offenbar geworden ist. Im Ringe D der Differentiale sind lineare Operatoren ri, ζ, γ, erklärt durch ihre Wirkungen auf äußere homogene Differentialformen u vom Grade p:
ö wenn u = dx' Α ν +w ist und dabei v, w als reduzierte Differentialformen vom Grade ρ — 1 bzw. ρ das Differential dx' nicht enthalten. Als Gegenstück zu der bekannten Regel d(u Α ν) = du Α ν + rju A dv sei die Formel (1)
* ( « V W ) = <&VT> + I J K V Ä / + 2 - F F , ' « V 4 I >
689
— 144 — erwähnt, wo e'u durch e'u = g'k· e^u definiert ist. Mittels schiefsymmetrischer Tensoren aix . kann jedes Differential u auf genau eine Weise als Summe (2)
« = Σ
jf'
.
;/>
· dx'1 Λ ... Λ dx'' = a + a;' dx' + ~ αΑ · dx' Λ dxk + ...
geschrieben werden. Die partiellen Ableitungen du 3xk eines Differentials u sind nicht die Komponenten eines einstufigen kovarianten Tensors, sondern durch du dxk
ρ-op!
6bc*
definiert. Mit kovarianten Ableitungen d^u stehen sie in der Beziehung (3)
dku =
- a4 Λ e,u,
dx
wo die aus den Christoffel-Symbolen
gebildeten Pfaffschen Formen
4 = riidx 1 zu den Krümmungstensoren 'kjl in der Beziehung (4)
ak = doJk + ω) Λ ω£ =
- dxJ A dx1
steht. Der Einstein-Tensor =
RJki
kann durch innere Multiplikation aus ü lk gewonnen werden: fay dxk = dxk V Üik = -ütVdx", ik i k i [R=g 'Rül=dx Vdx \/üik=üiiydx Vdxk= Jedem Paare u, ν von Differentialen wird durch die Formel (6)
(u,v)
= (ζμ V V ) A T ,
690
-dx'\/ÜilkVdxk
— 145 — in der τ das Volumen-Differential bezeichnet, ein Differential «-ten Grades zugeordnet, das als das Skalar-Produkt von u und ν bezeichnet werde, obwohl es dem üblichen Gebrauche dieses Wortes besser entspräche, das Integral dieses Differentials so zu nennen. Deutet der Index 0 am Zeichen eines Differentials an, daß der Anteil 0-ten Grades in der Darstellung dieses Differentials als Summe seiner äußeren homogenen Bestandteile gemeint ist, so kann die Definition (6) auch so formuliert werden: (7)
(u,v) = (&Vv)o'
τ.
Das Skalar-Prodvikt hat die Eigenschaften: (8)
(«, ν) = (ν, u) = {γμ, ψ) = (ζμ, ζρ) = (u V τ, ν V τ).
(9)
(«, ν) ist 0, wenn u, ν homogen von verschiedenem Grade sind.
(10)
(u V ιν, ν) = («, ν V ζιυ), (w Vu,v)
= («, ζμ>\ίν).
u, ν, w bezeichnen dabei beliebige Differenatiable. Homogen heiße ein Differential genau dann, wenn es als äußeres Polynom homogen ist. Das erste abgeleitete Skalar-Produkt von u und ν ist definert durch (11)
{u,v)l =
dx* V v)0- etx = e^dx* V
u,v).
Es hat die Eigenschaften v)i = (v, «>! = - {ψ, ψ)λ = (uV T,vV τ)ι ,
(12)
(«,
(13)
(uVw,v)1
=
(u,v\/Zw)1.
Seine Bedeutung erhält es aus der als Greensche Formel zu bezeichnenden Relation (14)
d{u,v)x = {8u,v) + (u,to).
«Der innere Differentialkalkül» ist in einer Abhandlung gleichen Namens in den Rendiconti di Matematica, 21 (1962), pp. 425-523 ausführlich entwickelt worden, und von der dortigen Formelsammlung wird hier laufend Gebrauch gemacht. Eine kürzere Darstellung des Kalküls findet sich in den Hamburger Abhandlungen, 25 (1962), pp. 192-205.
20. - Im Falle des Naturgesetzes (dx2 + dy2 + dz2 + dt2)-1~2 sind (1)
dx V dx = dy V dy = dz V dz = dt \J dt — t2
Jedes aus Differentialen, dx, dy, dz, dt gebildete innere Produkt, wo keines dieser Dif691
— 146 — ferentiale mehr als ein Mal als Faktor auftritt, ist gleich dem entsprechenden äußeren Produkte. Es sind also z.B. dx
V
dyV
dy — dx Α dy,
dx\J dt = dx Α
dt,
dz = dy Adz,
dyV
dt = dy Α
dt,
dz V dt = dz Α
dt.
dz V dx = dz Α dx,
Das Volumen-Differential τ =
dx Α dy Α dz Α dt
dx
V
V
dy
t4
dz
V
dt
/4
genügt der Gleichung TVT= 1 welche Anlaß gibt, die Differentiale e
+
1+τ
= —-— 2
, '
e
_
=
1- τ 2
zu bilden, die wegen (2)
r V e " = i ' ,
e+Ve+=e+,
e+V
e~ = e~ V e+
= 0
zur Zerlegung D = D+
+D~
des Ringes D aller Differentiale in die durch ueD+**u
Ve+ *+uV
=u,
u\/e~
e~ =u,
uVe+=
= 0, 0
definierten Teilmoduln D + ,D~ einladen. Zuweilen ist es nützlich, die Variablen x, y, z, t durchzunummerieren, was dann stets in der Reihenfolge χ = χ1 ,
y = χ2 ,
z=x}
,
t=x4
geschehe. Umgekehrt sei erlaubt, dA x,d , t*y y,d,z, ΙΛ
,
e , x,e' y,ezy ^X
j et
x
Ζ
dt
statt
dl,d2,di,
statt
el}e2,e},
zu schreiben. 692
d4 eA
— 147 —
Aus den Formeln du , dt dx dxu = — + — Aexu - — dx t t J
(3)
A
A
Aetu,
j du , dt * d u = — Η Aeu
dy - — Λ etu,
ι du , dt A azu = ——h — Ae za
dz κ Λ ,«,
j
dz
ί
du
, 1
/
für die kovariante Differentiation folgt, daß der Dirac-Operator S, die innere Differentiation, die Wirkung (4)
Su = dxV
dx
+ dy\/
dy
+ dzW
dz
+ dtV
dt
+ 2ί· (γ -
l)etu
hat, während die äußere Differentiation bekanntlich durch du = dx A ^r- + dy A — + dz Α ηϊτ + dt / \ 4pdx dy dz dt
beschrieben werden kann.
21. - D i r a c - G l e i c h u n g e n
Seit dem Erfolg der Dirac-Gleichung des Elektrons haben allgemein Dirac-Gleichungen Aufmerksamkeit gefunden. Zum inneren Differentialkalkül gehörig, setzen sie eine Riemannsche Metrik voraus und verlangen, bei gegebenem Differential a die durch Su = a V u
definierten Differentiale u zu bestimmen. Vorbild ist dabei die Diracsche Theorie des Elektrons, die im Falle der Metrik dx2 + dy2 + dz2 ~ c2' dt2
verlangt, die Gleichung $u =
h
(i · c' m + e' ω) V u
zu lösen. Dabei bezeichnen c die Lichtgeschwindigkeit, e, m Ladung und Ruhmasse des Elektrons, und die Plaffsche Form ω ist das Potential des elektro-magnetischen Feldes, also 693
148 — ω = Ο im Vakuum, ω -— -Ζ'r g
Jt at
im Zentralfeld mit der Ladung Ζ · e.
22. - Allgemein werde bei einer Dirac-Gleichung (1)
Su=a\/u
das gegebene Differential α das Potential der Gleichung genannt und (2)
Α=άα
+
ψ/\α
gelte als das Kraftfeld der Dirac-Gleichung. Wenn das Potential b einer Dirac-Gleichung (3)
8v = b\J ν
zu dem Potential α von 8u = a V u in der Beziehung b — — ζα steht, werde die Gleichung (3) zur Gleichung (1) adjungiert genannt. Das Kraftfeld zu (3) ist dann B=d(-ζα)
+ η(-ζα)Α(~
ζα),
was wegen der Operator-Regeln (4)
dZ+VZd
= 0,
ηζ=ζη,
dV + Vd = 0
sich zu Β = ηζΑ vereinfacht. Die Bedeutung der Adjunktion von Dirac-Gleichungen zeigt folgende Überlegung: Aus Su = α \/ u,
Sv ~~ - Oi\J ν
folgt mittels der (in 19 (14) mitgeteilten) Greenschen Formel d{u, ν)λ = [Su, ν) + («, Sv) = [a V «, ν) - («, ^ V ν), was nach 19 (10) gleich 0 ist. Damit ist erkannt, daß eine aus Lösungen u, ν adjungierter Dirac-Gleichungen
694
— 149 — hergestellte homogene Differentialform (« —l)ten Grades (u,v)1 Gleichung (5)
im Sinne der
d(u, vh = 0
geschlossen ist, wenn η die Dimension des Raumes bezeichnet.
23. - Konstant mag ein Differential ν genau dann heißen wenn, seine kovarianten Ableitlangen d{v sämtlich gleich 0 sind. Z.B. ist in jeder Metrik das Volumen-Differential konstant. Die Folgerung
der Regel 19 (1) aus der Annahme d{v = 0 zeigt, daß Rechts-Multiplikation mit einem konstanten Differential eine Lösung einer Dirac-Gleichung stets wieder in eine Lösung derselben Dirac-Gleichung verwandelt. Die im Falle der Metrik idx2 + dy2 + dz2 + dt2)· t~2 (in 20) eingeführten Differentiale
sind konstant. Jedes Differential u ist Summe u =v+ V+ +v~Ve~
,
in der ν + und ν ~ in dem Sinne Raum-Differentiale sind, daß sie als äußere Polynome geschrieben werden können, in denen dt nicht vorkommt. Ein Raum-Differential ν = α + bx' dx + b2' dy + b}· dz + +Cx · dy Λ dz + c2' dz Λ dx + c3· dx Λ dy + h · dx Λ dy Λ dz bestimmt zwei Skalare a, b und zwei Vektor-Felder ( h , b 2 , b y ) = 6,
( d , c 2 , c 3 ) = C.
Wegen der Konstanz von e ± gilt S[vy e±) = Svy e± =v*\/e± SSiv\J e±)^SSv\/
,
e± =v"i<\J e± , 695
— 150 — wobei ν* und ν** zufolge der Regeln e±Ve*=0
r V r = r , als Raum-Differentiale gewählt werden können. Bezeichnen
a * ,b*, b*, C* die Skalare und Vektorfelder zu ν* , a** ,h** ,b**, C** die Skalare und Vektorfelder zu ν** , so gilt ,*
= t2·
d i v i ) Τ t4·
,
dt b*
=divC +
Γ
E>*
= g r a d ö - t2-
C*
= t2'
2
· ^ ,
dt
|rotC +
gradÄ + r o t b ± ~ ~ ,
dt
2
a** = t · Aa-2t~ h**
dt
,
= t2· Ah + ^ - - d i v b + 4
t
2
3
6** =t · Ab±2t · C**
j ,
=t2Ac + 2i-
dt
gradb , |rotC +
Unter Α ist dabei der 4-dimensionale Laplace-Operator zu verstehen. 24. - Wie es zu Heisenbergs Zeiten sinnvoll erschien, nach einer universellen Wellengleichung der Materie zu trachten, so wird man hier, wo der Begriff «Individuum» die Aufmerksamkeit fesselt, eine für alle Individuen gültige Wellengleichung suchen. Dafür dürfte es kaum eine andere Wahl geben als die in der Metrik (1)
{dx2 + dy2 + dz2 + dt2 )' t~2
zu verstehende Dirac-Gleichung Su = X-u
(2)
mit konstantem Potential λ. Wenn allgemein uM das bei einer Substitution ω —* Μ(ω) aus einem Differential u entstehende Differential bezeichnet, so gilt SiuM) = (Su)M, (uVv)M
= (uM)V
(vM),
wenn Μ eine Poincare-Matrix bezeichnet, weil dann ω —»Μ(ω) eine Isometrie der 696
— 151 — den inneren Kalkül begründenden Metrik darstellt. In diesem Falle folgt aus $u = λ · •u stets, daß auch ν = uM der Dirac-Gleichung dv = λ · ν genügt. Zu den Bedingungen, unter denen die Wellengleichung Su = λ · u zu lösen ist, wird immer die gehören, daß u in der Zelle / > 0 analytisch regulär sei und bei Annäherung an den Spiegel t = 0 ein bestimmtes Verhalten zeige. Die Identität I eines Individuums kann Anlaß geben, als Invariante des Inividuums diejenigen Differentiale auszuzeichnen, die bei allen Symmetrien des Individuums invariant sind, d.h. für die uM = u für alle M e / gilt. Die Herstellung solcher Invarianten kann sich in vielen Fällen darauf berufen, daß aus einer beliebigen Lösung von Sv = λ · ν durch Summation Σ vM Mel — wenn diese konvergent ist — eine Invariante des Individuums entsteht.
25. - Die Dirac-Gleichung Su = λ · u kann unter der Nebenbedingung, daß u nur von t und dt abhänge, gelöst werden. Da stets / > 0 bleiben soll, kann , dt U=V+w — t gesetzt werden, wobei ν und w Funktionen von t sind. Nach 20 (3) ist
was gleich
gesetzt, die Gleichungen w · t — 3w = λ' ν,
t· ν — λ' w
ergibt. (Punktierung bedeute Ableitung nach t.) Im Falle λ = 0 sind u —\
und u = t2' dt
Lösungen von Su = 0 und für λ * 0 ist t · w ——'ν 697
— 152 — und darum ν durch ν-t2
- 2v· t - λ2-ν = 0
bestimmt. Bezeichnet σ eine der beiden Wurzeln der Gleichung σ· (σ — 3) = λ2 so ist ,σ I ι σ dt u = t ' 1+ —· — \ λ t Lösung von &u = λ' u, und mit beliebigen Konstanten g,h erweist sich u=g-t°·
als die allgemeine Lösung von du = λ · u unter den genannten Bedingungen.
26. - Die Lösung der Dirac-Gleichung (1)
Su = λ· u
kann nach 23 unter einer der beiden Nebenbedingungen uVτ=u
oder
uVτ = —u
erfolgen, die hier unter der Schreibweise u V τ = ±u
zusammengefaßt werden mögen. Es gilt dann notwendig (2)
mit einem Raum-Differential v, dessen Skalare a, h und Vektor-Felder b, c nach 23 den Bedingungen I) / 2 - d i v £ > + / 4 ~ = λ · * , dt
Π) div (3)
C
+ t~2-
dt
=X-h,
ΠΙ) g r a d a - t 2 ' |rot c + IV) t2· grad h + rot b ± zu unterwerfen sind. 698
= λ- b,
dt
= λ· c
— 153 — Diese 4 Gleichungen sind mit dem Bestehen von (1) und (2) gleichbedeutend. Aus (1) folgt auch SSu = λ2, u, was nach 23 die Aussagen I) t2-Aa-2t~
(4)
=
dt
λ2-α,
Π) t2-Ah + -'0ivb t
+ 4 t ~ =λ2·Α, dt
t2' Ab ±2t}'
λ2'b,
m)
grad h =
IV) t2· Ac + 2f |rot C +
= λ2· C
zur Folge hat. Im Falle λ ^ 0, der zunächst behandelt werden soll, genügt es, um (1) und (2) zu erfüllen, α und C den Bedingungen I) t2-Aa-2t~ (4)
dt
-λ2·α
= 0,
IV) t2>Ac + 2t- |rot c +
-λ2· c= 0
zu unterwerfen und h und b aus den Gleichungen
Π) A-Ä = div C + (3)
m)
t~2-ψ-, dt
λ · b = grad a - t2' |rot C +
zu entnehmen, wie folgende Rechnung zeigt:
λ · t2· div b = t2·
_
,4
+ λ-Γ-
d2a , 32a + 2 dx dy
, d2c dz4
±t4·
dt
|-(dwc),
dh — ,4 d , „ v . .2 d2a da — = + / · — (div C) +r· — - It- — dt dt dt °t
woraus das Bestehen von (3) I) zu erkennen ist, wenn man (4) I) und λ τ* 0 beachtet. 699
— 154 — Um auch (3) IV) zu bestätigen, hat man zu beachten: λ · i2' grad h = + grad
dt
+ t2- grad(div c),
3b + d / j χ - o, / . , - 3c \ _ ,2 / 9 , „ _ d2c ±λ· — = ± — (grad a) + 2/· rot C •+· — + r· — rot C -+- — dt dt ^ \ dt } \ dt dt2 + ,
λ· rot b = - i 2 · rot (rote) ± t2· — (rot C) dt
und die Formel rot (rot C) = grad (div C) -
d2C
32C
d2C
dx2
dy2
dz2
anzuwenden, was λ|ί 2 * grad h ± ^
+ rotb)=/2-|
d2c
t
dx2
d2c dy'
|
d2c
t
dz'
d2c , , + 2t4r + 2t-rot C dt2 / St
ergibt. Da dies nach (4) IV) gleich λ 2 · C und λ * 0 ist, erweist sich auch (3) IV) als Folge von (3) Π) und ΙΠ), (4) I) und IV),. Um das Ergebnis dieser Überlegung knapp formulieren zu können, werde für Raum-Differentiale die Bezeichnung a + b - dx + C - da + h· w
mit Skalaren a, h und w = dx Λ dy
Adz,
dt = (dx, dy, dz), (5)
da = (dy Λ dz, dz Λ dx, dx Λ dy), b • dx = bi' dx + b2' dy +
· dz,
C · da — q · dy Λ dz + c2' dz Λ dx + c3 · dx Λ dy verwendet. Dann kann behauptet werden: Die Gleichung <Su = λ· u mit konstantem λ ^ 0 wird unter der Nebenbedingung u V τ = ±u
allgemein gelöst durch u = ν V e± ,
wo das Raum-Differential (6)
ν — a + b · dx + C · da + h' w
700
— 155 — allein den Bedingungen (7)
dt -λ2 c = 0,
t2-ÄC + 2t- |rot C + λ-h =div c +
(8)
dt
λ - h = grad a - t2 • |rot C +
J
unterworfen ist. Die Gleichung (7) sagt nur aus SSa =λ2-α,
(9) denn nach 23 ist
SSaV e± = \tz-^a-2t~\y
e± ,
dt
woraus wegen e + + e = 1 jene Gleichung folgt. Die erste der Gleichungen (8) kann nach 23 durch SSi V r = λ 2 · C V e ±
(10)
ersetzt werden (wobei die Rechts-Multiplikation mit e± unvermeidlich ist).
27. - Das innere Differential δγ eines Raum-Differentials, das homogen vom Grade 2, also von der Form γ = C · άσ = q · dy Λ dz + c2' dz Λ dx + c3 · dx Λ dy ist, genügt nach 23 der Gleichung srye± =
t2-l
rotc^-^ dt
dx. + (div c)-w Ve
und für das totale Differential da = Sa einer Funktion a gilt nach 23: SaVe*
= (grad a) · dt •+• t
2
· dt
· w V± .
Da nun, wie in 26 bewiesen, die Lösung u = v\J e± von Su = λ' u ,
#Vτ= ±u 701
— 156 — durch das Raum-Differential ν
=
a
(_
de
rot C +
+
dt
—
da
+ C·
+
γ
A
div C + t 2' da_ dt
w
bestimmt ist, kann sie auch in der einfachen Form (1)
dargestellt werden, wobei a und γ nur den Bedingungen 88a = λ2 α ,
(2)
(88c ~ λ2
C)
Ve± =0
unterworfen sind.
28. - Im Falle λ = 0 wo die beiden Gleichungen 8u =
(1)
u
0,
V t =
±u
zu erfüllen sind, hat man das durch u = «V e± = v\! e bestimmte Raum-Differential ν = a + 5 · dt
+ C·
da
+
h' w
nach 26 (3) den Bedingungen dh dt
de1 dt
= grad(/~ 2 ·
rot b ± ^
= - grad (t2· h),
rot C + —
divb =
±t2-^-, dt
divC = ± t - 2 ' ^ - ,
(2)
dt
zu unterwerfen. Die sich hier ankündigende Ähnlichkeit mit den Maxwellschen Gleichungen wird deutlich, wenn {i = V — D (3)
fc + b = /·
\t2· h + Γ2-α
c - b = φ,
= ρ,
t2· h - t~2-a = i - σ , 702
— 157 — gesetzt werden. Die Gleichungen (2) verwandeln sich dann in die folgenden (/ = V ^ T )
(4)
rot (£ = ± -τ — grad σ, t dt
rot S& = •+• 4" ι at
+ grad ρ,
j · re * 1 dP - 2 div 15 = ± - — + — · σ, ι dt t
j· λ ^ 1 3σ , 2 div§=±- — ±-·ρ. ι dt t
29. - Eine Begegnung von Theorie und Beobachtung ist erst von den Aussagen zu erwarten, die Skalar-Produkte einsetzen, von denen in 19 die Rede war. Wenn zwei Differentiale u, u' in der Zerlegung u=vVe+
(1)
+wVe~
mit Raum-Differentialen v,w,v',tv'
(«, «') = j (2)
u' = v'Ve+
,
+ w'V
gegeben sind, so findet man
' (t>, v') + j ' (w, w'),
(«,«'), = (vye+>v'Ve
+
)1 +
(wVe~,w'\/e-)l.
Es genügt also, (v,vf),
( f V r ^ ' V r ) ,
für den Fall zweier Raum-Differentiale \v=a
(3)
+ b'dv+ί'da+
h'W,
\v' =a' + b'-dv + c'-da + b'-w
zu berechnen: (ν,ν') = (a-a' +t2-b'
(4)
b' + 1 4 · C - C'
+t6'b-h')'τ
mit τ =
dx A dy Adz Α dt
und (vVe±
,v' Ve±)1
= (i(v,v')' da) Adt - p(v,v')· dx Ady
Adz
mit i{v, v') · da = ix· dy Α dz + i2' dz Α dx + *3 · dx Α dy, (5)
i{v,v') = {iXii2,h)
= (b x c' + b' x c) + / ~ 2 · (a· b' + * ' · b) + + i 2 · (h-c' +h'·
±p{v,v')
= b · c' + b ' · C -a- h' 703
-a'-h.
c),
— 158 — (Vgl. «Die Poincare-Gruppe», in Rendiconti del Seminario Matematico e Fisico di Milano, LIE (1983), pp. 359-390). Die eben gewonnenen Formeln für p(v, v') und i{v, v') verwandeln sich nach der (mit 28 (3) zu vergleichenden) Substitution (i = V ~ D (6)
ic + b = /· \t2'h+t
2'
c - b = £>, a = p,
t2' h — t
2'
a = t' σ,
in Γ + 2p(v, ν') = @· @ + £>· + p> ρ' + σ· σ', { 2i(v, ν') = Χ & + <£' Χ £ + ρ· @ + ρ' · ® + σ·
+ σ' · φ)
und die mit Su = λ' u, « V τ = ± « gleichbedeutenden Bedingungen 26 (3), denen das Differential
r
^
unterworfen ist, nehmen die folgende Gestalt an (/ = γ — 1 ) : rot (£ = ± t^· / dt
—
rot®=+
+grad ρ - ^ 2
div(£ = div£> =
tat l Ol
-
grad σ + 4 ( £ + ''' ®) + 2 2
Δ
+
+i - +
(Φ"'·®),
2
-
i - ,
~σ + t Δ
- |(ρ + ισ)±
+ | / - 2 · ( ρ + /σ).
30. - Aus dem negativen Ausgang des Michelson-Versuchs hätte man schließen können, daß trotz allen kopernikanischen Erwartungen die Erde doch in gewissem Sinne eine Mitte der Natur ist, wie alle großen Kulturen bisher geglaubt hatten und nur mit mathematischer Gewalt hatte bestritten werden können. Ein Denken, das hinter der Vielfalt der Individuen ein Gesetz sucht, wird der Vermutung nicht ausweichen können, daß das Kraftfeld der Erde ein Individuum sei, in dem alle uns bekannten Individuen leben. Wenn ich diese Vermutung sogleich präzisiere durch die These, die Identität dieses Individuums sei die Gruppe SL2(R + R* ·/), so kann ich die Gründe dafür zunächst nur in der Tatsache suchen, daß diese Gruppe der eigentlichen homogenen Lorentz-Gruppe isomorph ist und darum an das Geozentrische des Michelson-Versuchs erinnert. Alle anderen in 18 genannten Gruppen aus Poincare-Matrizen müßten nach dieser Hypothese die Identitäten von Individuen sein, die im Kraftfeld der Erde leben, wenn sie überhaupt als Identitäten anerkannt werden können. Um die Aufmerksamkeit auf diese Hypothese hinzulenken, werde eine Matrix Μ 704
— 159 — oder eine Symmetrie ω —> Λί(ω) dann nur dann geozentrisch genannt, wenn
Element .der Gruppe SL2{R + R · t) ist. Im Falle einer geozentrischen Symmetrie ω—» (α· ω + b)· (c ω + d)~l wird die mit ν — χ + y i,
w = t + i' ζ
gebildete Zerlegung ω =ν +w j des Tao sinnvoll, weil dann (Λ· ω + b)· (ω· c + d) = (α· ν + b)· (v' c + d) + a' c· w w + w' j
ist und daher (α - ω + b)' (c · ω + d) ~1 = ν + w · / mit ν — [{α · ν + b) · [v'C + d)+a'C'ww]'
\c ω + d \ ~2 ,
w = w \c ω + d\~2 gesetzt werden kann. Wegen \c ω + d\2 — \c· ν + d\2 + cmc·
ww
transformiert jede geozentrische Symmetrie die Variablen x, y und t2 + z2 nur unter sich und läßt das Argument von w = t + ζ · / ungeändert.
31. - Die Tatsache, daß das Tao ω = χ + y i + z' i ' j + t' j als Quaternion die Anwendung aller vier Grundrechnungsarten erlaubt, also z.B. Anlaß gibt, den von dem einen Element ω erzeugten (und notwendig kommutativen) Körper (ω) = Q M zu bilden, lädt ein, die abstrakte Algebra am Aufbau der Physik zu beteiligen. Daß von dieser Seite einiges zu erwarten ist, zeigt die philosophische Transparenz der lokalen Algebra, von der sogleich die Rede sein soll. 705
— 160 — 32. - MONADEN
Die wichtigste Vorarbeit für einen dialektischen Individualismus hat Leibniz geleistet. Was er in seiner Monadologie über das Prinzip der Individuation zu sagen vermag, wirkt wie ein intuitives Präludium aller algebraischen Geometrie. Denn algebraische Geometrie kann verstanden werden als Theorie der endlich erzeugbaren algebraischen Körper unter der Herrschaft des Begriffs Stellenring, und insofern ist sie die Kernenergie allen mathematischen Denkens. Um die philosophische Sprachgewalt der lokalen Algebra zu vernehmen, bedarf es eines Vokabulariums, dessen wichtigste Zeilen die folgenden sind: Jeder kommutative Stellenring S ist eine Monade, und seine Elemente sind Züge dieser Monade. Jede nichtleere Menge Ε von Element eines Stellenrings S ist eine Eigenschaft der Monade S, und wenn zwei solche Mengen Ex, E2 in der Beziehung El c C E2 stehen, so folgt die Eigenschaft E2 aus der Eigenschaft EY. Ein Zug χ einer Monade S hat die Eigenschaft Ε bedeute: Das Element χ des Stellenringes S gehört zu der Menge Ε von Elementen des Ringes S. Einer Monade S sind alle Züge von S unbewußt, die dem maximalen Ideal p von S angehören. Alle übrigen Züge von S sind der Monade S bewußt. Darum heiße p auch das Unbewußte von S und 5 \ p , die Gesamtheit der bewußten Züge von S, das Bewußtsein der Monade S. Das Ich einer Monade S ist der Restklassenkörper S/p des Stellenringes S nach seinem maximalen Ideal p und darum selbst eine Monade. Die Null eines Stellenringes S heiße auch der Ursprung der Monade. Eine Monade gelte genau dann als offenbar, wenn sie im Sinne der Algebra Körper ist wenn ihr also nur ihr Ursprung unbewußt ist. Eine Eigenschaft Ε einer Monade S offenbart diese Monade genau dann, wenn alle Züge von S aus Zügen mit der Eigenschaft Ε durch Anwendung der vier Grundrechnungsarten Addition, Subtraktion, Multiplikation, Division durch Züge, die der Monade bewußt sind, berechnet werden können. Eine Monade s lebt in einer Monade S genau dann, wenn s Unterring von S ist. Eine Monade S entfaltet eine Monade s genau dann, wenn s in S lebt und alle der Monade s unbewußten Züge von s auch der Monade S unbewußt sind. Die Empfindungen einer Monade S sind die Restklassen-Ringe S/Q, bei denen das Ideal Q eine Potenz p" des maximalen Ideals p von S umfaßt. Q ist dabei die Gesamtheit der in jener Empfindung ausgelöschten Züge der Monade S. Die Umwelt einer Monade S ist eine Monade S* die aus der unendlichen Folge
s/p+-s/p2^s/p}^-... von Empfindungen der Monade S auf folgende Weise abgeleitet werden kann: Der Ring S* kann auf jeden der Ring S/p" homomorph abgebildet werden, und die auf solche Weise aus einem Zuge x* von S* entstehenden Restklassen x„ + p" stehen in der Beziehung x„ + p" cx„ + pm , wenn n> m ist. Die Züge der Umwelt S* von S sind eindeutig bestimmt durch jene Restklassen, auf die sie abgebildet werden. 706
— 161 — 33. - Zum Verständnis der weiteren Überlegungen ist es ratsam, an einen Vortrag zu erinnern, den Planck im Jahre 1924 dem Thema «Vom Relativen zum Absoluten» gewidmet hat. Relativität bedeutet nichts anderes als Freiheit in der Wahl der Koordinatensysteme. Sie wäre nichtssagend, wenn sie diese Freiheit nicht auch wieder begrenzte. Sowohl in der klassischen Relativitätstheorie von Einstein-Minkowski-Poincare als auch in der hier vorgetragenen Auffassung von Raum und Zeit bestimmt eine 10-dimensionale Symmetrie der Natur die Freiheit in der Wahl der Koordinatensysteme. Doch zeigt sich ein wesentlicher Unterschied der neuen Relativität gegenüber der speziellen Relativitätstheorie bereits in der Tatsache, daß in der neuen Auffassung ein absoluter Anfang t = 0 der Natur eingeplant ist, weil die Relativität der Zeit dem Gesetz t = t· \c ω + d\~2 gehorcht. Planck hatte in seinem Wirkungsquantum h das Eindringen des Absoluten in die Physik beobachtet. Seit der Entdeckung dieser Konstanten ist dieses Absolute immer am Werke, wenn es gilt, die in Ganzzahligkeiten sich offenbarende Feinstruktur der Natur zu erklären. In dem Naturgesetz (1)
(dx2+dy2+dz2
+
dt2)-t~2
ist überhaupt kein Parameter verfügbar und in seiner Anwendung ist nur das Alter Τ der Welt als empirische Konstante am Werke. Entwicklungen nach Potenzen von 1/T müssen bei dem vorliegenden Versuch einer Physik die Rolle übernehmen, die beim Vergleich von klassischer und quantentheoretischer Physik bisher die nach Potenzen von h fortschreitenden Entwicklungen gespielt hatten. Wenn es angemessen ist, in dem Naturgesetz (1) eine neue Relativität begründet zu sehen, so erscheint es auch sinnvoll, die Ernennung der allgemeinen Quarternion üi=x+yi + z ' i ' j + t%j zum Tao als eine Quantentheorie zu bewerten. Die Diskontinuitäten, die damit erklärt werden sollen, sind die als Individuen beobachtbaren Elementar-Teile der Wirklichkeit. Die Identität I eines Individuums bestimmt als Untergruppe von 5L 2 (H) die Karten Μ(ω)
(Μ e I)
in denen das Individuum «verzeichnet» werden kann, und da solche Untergruppen, wie in 18 bereits erwähnt, mit arithmetischer Feinheit definiert werden können, wird die von Planck in dem zitierten Vortrag vorausgesehene Arithmetisierung der Physik in unerwartetem Maße denkbar.
34. - Es ist gut, beizeiten zu erkennen, daß die vorliegende Untersuchung das Ziel hat, Raum und Zeit als einen Vorhang zu deuten, hinter dem sich eine höhere Realität, die man Reich und Ewigkeit nennen sollte, verbirgt. 707
— 162 — Die Tatsache, daß jede von 0 verschiedene Zahl m in der Weise χ —>m· χ,
y—*wy,
z—*m· ζ,
t^*m't
eine Isometrie der Metrik (dx2 + dy2 + dz2 + dt2)- f
2
bestimmt, zeigt, daß es bei der Herrschaft dieses Naturgesetzes keinen Unterschied zwischen Mikrokosmos und Makrokosmos geben kann, und daß das Elementare nicht nur in den kleinsten Teilen zu suchen ist. Als Elementarteile sind hier die Individuen anerkannt, zu denen die in der Biologie untersuchten in erster Linie gehören. Die mathematische Monadologie erlaubt, von Zügen der Individuen zu sprechen und damit den Eindruck zu erwecken, als ob der die Biologie beherrschende Begriff «Gen» einen a priori erkennbaren Vorläufer in der reinen Mathematik aufzuweisen hätte. Die Geschichte der Mathematik wäre danach zu deuten als das Heranreifen dessen, was Piaton als Reich der Ideen geahnt hat. Diese Annahme ernst nehmend, wird in der vorliegenden Abhandlung den Monaden, deren Erlesenheit darin besteht, daß sie von endlich vielen ihrer Züge offenbart werden können, der Rang von platonischen Ideen zuerkannt mit der Erwartung, das Reich der Individuen als von solchen Ideen geführt zu erkennen. Da mathematisches Denken im Ringen um die Erkenntnis von Raum und Zeit groß geworden ist, hat die Physik das erste Wort, wenn es gilt, die Züge der Natur aufzufinden, in denen sie am deutlichsten zum Menschen redet. Nach allem, was hier über Raum und Zeit gesagt worden ist, hat man in dem Tao ω = χ + y i + Z' i ' j + t· j einen die Naturerscheinungen beherrschenden Zug zu vermuten. Da ω als Quaternion auch Gegenstand der vier Grundrechnungsarten ist, kann das Wort «Zug» im monadologischen Sinne verstanden werden und damit die Frage herausfordern, welche Monade von diesem Zug ω offenbart wird. Unter den Zügen dieser Monade, die wegen ihrer Herkunft aus ω mit (ω) bezeichnet werde, finden sich alle Polynome a0 + a1' ω + α2· ω2 + ... + am· of , deren Koeffizienten a 0 , a i , a 2 , ganze rationale Zahlen sind, und keines dieser Polynome ist 0 außer dem, wo alle Koeffizienten gleich 0 sind. Da die Multiplikation solcher Polynome kommutativ ist, sind alle Züge der Monade (ω) als Quotienten von Polynomen der erwähnten Art darstellbar. In der Sprache der Algebra würde man sagen: (ω) ist der von ω erzeugte Körper vom Transzendenzgrad 1 und der Charakteristik 0. Diese Monade (ω) ist Idee im vorher erklärten Sinne und dank ihrer Selbstherrlichkeit hervorragend geeignet, die Idee mathematisch zu verwirklichen, die der deutsche Idealismus das absolute Ich genannt hatte. Selbstherrlich ist sie durch ihren Reichtum an Automorphismen: 708
— 163 — Jede Symmetrie ω —» (a' ω + b) · (c · ω + d) ~1 der Natur, bei der ^J e SL2 ( 0 )
( 0 = Körper der rationalen Zahlen)
gilt, bestimmt eine genaue und getreue Abbildung des absoluten Ichs auf sich selbst, also eine Art Selbsterkenntnis. Nur wenn es gelingt, das absolute Ich zu den in der Biologie beobachteten IchZentren in Beziehung zu bringen, indem etwa das empirische Ich sich als das Ich S/p einer Monade S erweist, die im strengen monadologischen Sinne eine Seite des absoluten Ichs ist, hat es Sinn, den in der Romantik unternommenen Versuch eines Weltbildes wieder aufzunehmen.
3 5 . - MATERIE
Bedeutende mathematische Erfahrungen, die schon im vorigen Jahrhundert auf dem Gebiet der elliptischen Funktionen und der Modulfunktion gewonnen waren, laden zu folgendem Einsatz der Monadologie ein: Das Tao ω = (χ + y' i) + (/ + ζ' i) · j gibt Anlaß zur Bildung, von zwei komplexen Variablen ν
=
χ
+
y'
i,
w = t + z' i, auf die schon bei der Definition der geozentrischen Symmetrien (in 30) hingewiesen worden ist. Die Gesamtheit der Funktionen f{v, w), die in dem durch ζ > 0 beschriebenen Teil des 4-dimensionalen Raumes der zwei komplexen Variablen v, w meromorph sind, ist im algebraischen Sinne ein Körper und darum geeignet, als die Gesamtheit der Züge einer Monade gedeutet zu werden, die einfach die Materie genannt werde. Es ist ratsam, sogleich auch die in ζ < 0 definierten, zu den Zügen/(y, w) der Materie konjugiert komplexen Funktionen /(y, w) als die Züge einer Monade anzuerkennen und diese Monade die Antimaterie zu nennen. Der Umstand, daß auf solche Weise die Züge der Materie zu Funktionen in einem vierdimensionalen Kontinuum werden, möge an die Feld-Theorie der Materie erinnern. Der atomare Charakter der Materie ist bei dieser Sicht darin zu suchen, daß einige 709
— 164 — Züge der Materie die Naturerscheinungen in besonderem Maße bestimmen, und hier ist die Stelle, wo elliptische Funktionen und Modulfunktionen zum Zuge kommen, unter denen sogleich auf folgende in ζ > 0 meromorphe Funktionen hingewiesen werde. Aus den in der Theorie der elliptischen Funktionen grundlegenden Funktionen p(u,wuw2),
p'{u,wuw2),
g2(u>lfw2) = 60- Y,'{mwy + nw2)~4 , ^'(mwi & (u>!,w2) = 140· m, η
+ nw2)
6
,
A(w1, w2) = g l - 27g* , werden durch die Substitution ν
u w2 '
=
w =
W2
die Funktionen ä~1/6(wuw2),
x(v, w) = 12· p(u, wuw2)· Δ~1/4
y{v,w) = ρ '(«, wuw2)· (1)
γ2 (w) = 12 · g2 {wx ,w2)- Δ'φ 73 (w) = 6 3 · g3 (wx,
*
(wuw2), (w1, ,
>
(wi,
>
1/2
= 123 · gl (w1, u>2)'
w2),
z(v, w) = - γ2 (w) · γ3 (w) - x(v, w) gebildet, die trotz des Auftretens gebrochener Exponenten bei A(wuW2) in dem ganzen durch > 0
ι beschriebenen Gebiete der vierdimensionalen Raumes meromorphe Funktionnen sind, weil für jede rationale Zahl r mit dem Nenner 24 tf(wu
w2)
12r -
m
rf
(w)
mit (2)
v(w)=e™/
·
12
Π (1 η=1 710
-e2™™)
— 165 — zu setzen ist. Diese Funktionen (1) und (2) sind also Züge der Materie. Jeder Unterring der Monade Materie, der im Sinne der lokalen Algebra Stellenring ist, kann als eine in der Materie lebende Monade anerkannt werden. Die Variablen ν und w sind als überall meromorphe Funktionen selbst Züge der Materie. Ihre fuhrende Rolle werde dadurch hervor gehoben, daß ν das Soma, w das Pneuma genannt werden. Das durch w —w . A ζ = —Γ— > ο 2/ eingeschränkte Gebiet des reell 4-dimensionalen, komplex 2-dimensionalen Raumes der Variablen v, w heiße der Phasenraum der Materie. 36. - Wenn a, b, c, d, m, η reelle Zahlen bezeichnen, die der Bedingung a - d — b· c — 1 genügen, so bestimmen sie eine Substitution (1)
v+m'w+n t>->t>= ——, c· w + d
w-*w=
a'W+b — , c w+ d
die jede im ganzen Phasenraum meromorphe Funktion F(v, w) in eine Funktion p( v+m'W+n \ c w + d
a· w + b\ ' c w + d J'
verwandelt, die ebenfals überall im Phasenraum meromorph ist. (1) bewirkt also einen Automorphismus der Monade Materie und verdient darum den Namen Symmetrie der Materie. Die als Symmetriegruppe der Materie zu bezeichnende Gesamtheit solcher Abbildungen (1) wird homomorph auf die Gruppe SL2( R ) abgebildet, wenn jeder Abbildung (1) die Matrix 'a c
b d
zugeordnet wird. Die Abbildung w —» w =
a'W+b c w + d
heiße der zu der Symmetrie (1) gehörige Willensakt. 37. - Die Funktionen (1)
H{w, v) = — ' vv, w —w
S(w, v) — 711
w —w
— 166 — zeigen bei a' w + b —7 , c w + d
w^w=
(2)
v—>v=
ν — c w + d
das Verhalten H(w, ν) = H(w, ν), S(w, v) = S(w, ν) +
2?
c·
c
v . , + α
woraus zu entnehmen ist, daß die reelle und positive Funktion F(w, v)=
- i'
(ν w
ν) 2 ι _ — - —
1 v) + — S(w, ν) +H{w, ν)
—
die Eigenschaft (3)
F(w, v) = F{w, ν) +
1
c
v
2
1
c w + a
·
-
v
~2
c· w + a
hat. Bei der Substitution (4)
to —* iv = w,
v—^v—
v+ww+n
wird F(w, ν) zu (5)
F{w, ν) = F{w, ν) — 2i· w
(v —v) — i· m2· {w - w)
Da alle Symmetrien der Materie durch Substitutionen der Art (2) und (4) erzeugt werden können, kann aus den Gleichungen (3) und (5) geschlossen werden, daß ddF(w, ν) = (6)
(
2t _ (dv - pdw) Λ (S W—w
pdw),
V—V
mit ρ --- w — =r w
eine bei allen Symmetrien der Materie invariante Differentialform ist. Unter d und d sind dabei die im äußeren Differentialkalkül zu lesenden Operatoren
d = SA
dv
aw
4= +däA dv
4 : aw
zu verstehen. Das Verhalten log — — — —>log —— 2i 21 712
2 · log |c' w + d|
— 167 — des reellen Logarithmus von w —w - ζ 2i zeigt, daß auch (7)
aa log
w —w 2i
dw Λ dw (w - w )2
bei allen Symmetrien der Materie invariant ist. Es sei daran erinnert, daß n-dimensionale Hermitesche Metriken 2&T· dzk-dz1
,
für die d(&T'dzkAdi1)
= 0
ist, sich durch die Existenz eines Potentials U auszeichnen, für das _
d2U
=
gÜt. Die Gleichungen (6) und (7) zeigen, daß für beliebige positive Zahlen λ, μ (8)
-Λ
+ (w -wf
-^='(dv-p-dw)-(S-p'dü), W-W
I mitν ρ^ = V -V w —w eine positiv definite Hermitesche Metrik mit dem Potential (a\ (9)
τι λ , w-w U = - - · log — 2 2t
. μττί
iv-v)2 w —w
darstellt, für die alle Symmetrien der Materie Isometrien sind. (Die Bezeichnung der Konstanten λ, μ ist so gewählt, daß der Fall λ = μ bei einer später auszuführenden Integration ein einfaches Ergebnis liefert.)
38. - Als Koordinaten im Phasenraum der Materie können statt ν neben w die durch (1)
ν = p· w + q
definierten reellen Koordinaten p, q neben w verwendet werden. 713
— 168 — Aus ν = ρ· w + q, ν = p' w + q folgt dann ρ =
(2)
(3)
ν —ν , w —w
wv
q=
=
2πι
—w ν =— , w —w
4m
w —w
und die Hermitesche Metrik 36 (8) wird zu (4)
μ-
w -W
2
\w-dp+dq\
- X ' - ^ ~2 . (w - iv)
Um auch die Symmetrie der Materie ν —>v =
ν + nt' w + η :— , c w +ä
a-w + b w —>w = r c· w + d
in den Koordinaten p, q, w darzustellen, hat man ν = p· w + q zu setzen und dabei p , p als reelle Zahlen zu behandeln. Es ergibt sich (5)
j) = *+*)>
woraus insbesondere (6)
dp l\dq=
dp Adq
folgt.
39. - Die Symmetrien ν —>
ν + m· w + η :— , c w +d
w —>
a' w + b τ c w +d
der Materie, bei denen unter der einzigen Nebenbedingung a' d — b' c — 1 alle Parameter a, b, c, d, m, η ganze rationale Zahlen sind, bilden eine Untergruppe der Symmetriegruppe der Materie, die hier einfach die erweiterte Modulgruppe genannt werde. Die (in 35 erwähnten) Züge (1)
j{w),
z(v,w)
der Materie sind invariant bei dieser Gruppe. 714
— 169 —
Da die Substitutionen I)
—>t> + 1,
Π)
ν —> ν + w,
ΠΙ) TT
ν
T\
w —> w, w —* w,
,
w —>w 4- 1,
ν
IV)
1
die erweiterte Modulgruppe erzeugen, genügen die folgenden Angaben zur Berechnung des Verhaltens der übrigen in 34 aufgezählten Züge der Materie: I)
x(v + 1, w) = x(v, w),
y(v + 1, w) = y(v, w),
Π)
x(v + w, w) = x{v, w),
y{v + ιν,ιν) = y{v, w),
x{v, w + 1) = — p' x{ν, w),
y{v, w + 1) = — /· y(v, w),
Y2(w + 1) =p~1r2(w),
yM
m)
x
IV)
(w>
~w)
=
-*<«'»«')»
+ 1) = - γ, (ut),
y(%>--k)
=
-imylv>">)>
(ρ bezeichnet dabei die Einheitswurzel ρ = exp (2τπ/}>)). Obwohl in diesem Zusammenhang kein Anlaß besteht, das Verhalten bei ν —> — ν, w —* w zu erwähnen, seien noch die Tatsachen (2)
x{- v, w) =x(v, w),
y( —v, w) = —y(v, w)
genannt. 40. - Um unter den in der Materie lebenden Monaden diejenigen namhaft zu machen, die verdächtig sind, für die Analyse lebendiger Individuen bedeutsam zu sein, werden folgende Bezeichnungen verabredet. Wenn Ε eine Eigenschaft der Monade S bezeichnet und alle Züge von S aus denen mit der Eigenschaft Ε mittels der (in 32 genannten) vier Grundrechnungsarten berechnet werden können, werde dies durch (1)
S={E)
ausgesagt. (Besteht die Menge Ε nur aus einem Element, etwa x, so werde nicht {x}, wie üblich, sondern χ statt Ε geschrieben. Bezeichnen , E2 Eigenschaften einer Monade S, so besagt χ e E^ U E2: x hat die Eigenschaft oder die Eigenschaft E2, und χ e Et Π Π E2: χ hat die Eigenschaft E} und die Eigenschaft E2.) Das Zeichen s —< S besage: Die Monade S entfaltet die Monade s (in dem in 32 erklärten Sinne). 715
— 170 —
Es empfiehlt sich, durch Verwendung des Buchstabens S in verschiedenen Fassungen z.B. s, S',sQ, Si, S" usw. anzudeuten, daß Monaden gemeint sind, wenn Stellenringe zu solchem philosophischen Range erhoben werden. In diesem Falle sei der entsprechende Buchstabe p, also z.B. p, p 0 , ^ , ^S" usw. in den genannten Fällen, das Zeichen für das maximale Ideal des Stellenrings. Allgemein bedeute das Zeichen einer Monade auch die Eigenschaft, Zug dieser Monade zu sein. Sind also s, S Zeichen für Monaden, so besagt s C S, daß die Eigenschaft «Zug von s zu sein» zur Folge hat, «Zug von S zu sein», was nicht unbedingt bedeutet, daß s in S lebt (vgl. 32). Wird aber
geschrieben, so besage dies nicht nur s C S sondern genauer: Die Monade s lebt in S und es gilt Cr) = 5, d.h. die Aussage (1) mit s an Stelle von E. Die durch und
bezeichneten Beziehungen zwischen Monaden sind transitiv, d.h. sind Sl}S2, S} Monaden, so folgt aus Si < S2, S2 ^ , daß Si $ S} gilt, und aus S ι —< S2,
S2
S}
kann auf 5! —c geschlossen werden. Homomorphe Abbildungen werden zuweilen getreue Abbildungen genannt, und als genau gelten sie dann, wenn sie verschiedene Züge verschieden abbilden. Wesensgleich sind zwei Monaden genau dann, wenn die eine getreu und genau auf die andere abgebildet werden kann. Sie sind dann Ebenbilder voneinander.
41.
- PSYCHOANALYSE
Das absolute Ich (ω) hat als der von dem Tao ω = χ + y i + z' i ' j + t ' j erzeugte Körper unendlich viele Automorphismen. Diese sind eindeutig bestimmt durch die Verwandlungen Ω - >
a· ω +b c ω 7+ 7a
»
die ω bei ihnen erfährt. Die rationalen Zahlen a, b, c, d sind dabei der Bedingung a-d-b-c*
0
unterworfen, welche garantiert, daß (ω)
=
α· ω + b c ω+d 716
— 171 —
ist, d.h. daß auch α' ω + b c· ω + d wie ω die Monade (ω) offenbart. Das absolute Ich ist in der Materie erkennbar als das Es, worunter die von dem Zuge w der Materie offenbarte zu verstehen ist. Das soll heißen: Das Es ist eine in der Materie lebende Monade, die Ebenbild des absoluten Ichs ist vermöge einer getreuen und genauen Abbildung, die das Tao ω in den Zug w der Materie verwandelt. Wegen der Isomorphic zwischen den Körpern (ω) und (w) bestimmt jede aus rationalen Zahlen a, b, c, d gebildete Matrix *)
mka-d-b-c*0
einen Automorphismus des Es, der w in {w w + b)· (c w + d)'1 verwandelt, und andere getreue und genaue Abbildungen des Es auf sich selbst gibt es nicht. Diese mit α' ω + b ω —> τ c ω +d zu bezeichnenden Automorphismen von (ω) mögen künftig die absoluten Willensakte genannt werden, und die Gesamtheit dieser Akte, also die Gruppe der Automorphismen von (ω), gelte als der absolute Wille.
42. - Der absolute Wille wird erst schöpferisch durch Vermittlung des Über-Ichs. Das Über-Ich ist zu verstehen durch sein in der Materie lebendes Ebenbild ijito)) des absoluten Ichs, das von dem Zuge j(u>), der klassischen Modulfunktion, offenbart wird. Aus dem absoluten Ich (ω) entsteht es vermöge einer getreuen und genauen Abbildung, die das Tao ω in _/(ω) verwandelt. Jeder absolute Willensakt α· ω + b c ω IT +b ' bei dem a' d — b· c positiv ausfällt, bewegt das Uber-Ich, indem er es in die von ./ α · ω + b \ \c-
J
717
— 172 — offenbarte Monade
U^^Tl
(l)
\ \c· ω + a
verwandelt. Daß a' d — b' c > 0 dabei gefordert wurde, hat seinen Grund in der Relation α-ω + b7 c ω +a
α'ω + b-= /\a' αj —l b· \c)' t \w — —\ w)'ι \c· w ^ji-2 + d\ c ω +α
und der Tatsache, daß /(ω) zunächst nur für ÜLZ^ ι
> 0
erklärt ist. Es ist jedoch sinnvoll, die Funktion /(ω) auch für iüH" ι
< 0
zu definieren, indem man für reelle Werte von t und ζ allgemein das Bestehen der Gleichung (2)
jit-z-i)=J(t+z-i)
fordert, was erreicht wird, wenn /(ω) auch für i ü n i ü ο geschehen ist. Die Darstellung σ: ω—>Μ(ω)ν = α · ω +—b c ω +b eines absoluten Willensaktes σ kann stets so gewählt werden, daß die Elemente der Matrix
-6 3
ganze Zahlen sind, die keinen von ± 1 verschiedene Teiler haben, der allen vier Zahlen a, b, c, d gemein ist. Μ ist dann zweideutig und die Determinante \M| = a' d — 718
— 173 — —b'c eindeutig durch den Willensakt σ bestimmt. Diese ganze Zahl | M | ist gemeint, wenn von der Determinante eines absoluten Willensaktes σ die Rede ist. Sie werde mit D(a) bezeichnet. Die Determinante Ό(στ) eines Willensaktes στ: ω —» Μ 1 (Λί 2 (ω)), der durch die Zusammensetzung zweier Willensakte σ: ω—*· JVfj (ω),
τ: ω—* Μ2 (ω)
entsteht, ist nicht notwendig Ό(σ) · D(T), aber auf jeden Fall ein Teiler dieses Produkts. Ist die Determinante Ό(σ) eine Potenz der Primzahl p, so ist auch die Determinante des umgekehrten Willensaktes σ'1 eine Potenz vonp. Daraus folgt, daß jede Primzahl ρ eine Untergruppe des absoluten Willens bestimmt, die aus allen Willensakten besteht, deren Determinante eine Potenz von ρ order 1 ist. Das Über-Ich (/(ω)) bildet mit dem absoluten Ich zusammen einen Dipol, der die dionysische Vielfalt der absoluten Willensakte zu ordnen erlaubt. Dies liegt an der Tatsache, daß das Uber-Ich insofern apollinische Ruhe bewahrt, als es bei allen Willensakten der Determinate 1 unbewegt bleibt. Sind p,q, ..., r die Primteiler der natürlichen Zahl n, so ist die Anzahl ψ(η) der Stellungen
in die das Über-Ich bei Willensakten mit der Determinante η bewegt werden kann, durch
gegeben. Dies ist auch die Anzahl der Züge
(
α· ω + b \ c ω +dJ
selbst.
43. - Ob die mathematische Fassung der von Sigmund Freud mit den Namen «Es» und «Uber-Ich» bedachten «Provinzen der Psyche» die Wahrheit trifft, kann erst durch den Versuch, auch das «Ich» mathematisch zu begreifen, geprüft werden. Dazu ist es nötig, zunächst die reine Vernunft als ein mathematisches Phänomen anzuerkennen, was mit folgendem Satze geschieht: Die rationalen Zahlen sind die Züge der reinen Vernunft, die vermöge der klassischen vier Grundrechnungsarten als offenbare Monade zu verstehen ist. Die Zahl 1 gilt als die Einheit der reinen Vernunft; und die Zahl 0 ist der einzige Zug der reinen Vernunft, der ihr unbewußt ist. Da alle 719
— 174 — Züge der reinen Vernunft aus dem Zug 1 mittels der vier Grundrechnungsarten gewonnen werden können, offenbart 1 die Monade «reine Vernunft», weshalb gemäß der in 40 getroffenen Verabredung auch (1) als Zeichen der reinen Vernunft-statt des üblichen Q-gelten kann. Die so aufgefaßte reine Vernunft hätte zu Kants Zeiten kaum philosophisches Fragen auslösen können. Heute jedoch, da die Primzahlen höchste Aufmerksamkeit der Mathematiker herausfordern, muß es auffallen, daß jede Primzahl ρ Anlaß gibt, die reine Vernunft von einer besonderen Seite zu sehen. Wenn zwei Monaden s, S in der (in 40 definierten) Beziehung
stehen, so möge dies mit dem Satze «die Monade s ist eine Seite der Monade S» gleichbedeutend sein. Bezeichnet S die reine Vernunft und ρ eine Primzahl, so erweist sich die Gesamtheit der Zahlen a/b, die mit ganzen Zahlen a, b und einem durch ρ nicht teilbaren Nenner dargestellt werden können, als ein Stellenring, der als Monade eine Seite von S ist. Das maximale Ideal p dieses Stellenringes s ist p = ρ · s, also die Gesamtheit der Zahlen a f b , die mit ganzem durch ρ teilbaren Zähler α und ganzem durch ρ nicht teilbaren Nenner b dargestellt werden können. Das Ich i/p dieser Seite der reinen Vernunft hat also nur ρ Züge. So entspricht jeder Primzahl eine Seite der reinen Vernunft, und andere Seiten außer diesen und der Vernunft selbst hat die reine Vernunft nicht. Die ganzen rationalen Zahlen sind die einzigen Züge der reinen Vernunft, die in allen Seiten der reinen Vernunft erscheinen, d.h. Züge dieser Seiten sind. Die Tatsache, daß im Ich der durch die Primzahl ρ bestimmten Seite der reinen Vernunft alle durch ρ teilbaren ganzen Zahlen gleichsam ausgelöscht sind, läßt erwarten, daß mit jeder Primzahl ein Trieb der Natur gekennzeichnet ist. Triebhaft mögen deshalb die Seiten der reinen Vernunft heißen, die nicht die ganze Vernunft sind. Die reine Vernunft lebt sowohl im absoluten Ich als auch im Es und Uber-Ich, die alle drei als Entfaltungen der reinen Vernunft gelten können; aber keine dieser Großmonaden kann aus einer triebhaften Seite der reinen Vernunft durch Entfaltung erreicht werden. Wenn in einer Seite s des absoluten Ichs die reine Vernunft lebt, so ist sie entweder das absolute Ich selbst oder ihr Unbewußtes p ist von der Form p = (of +α}· ω ' " 1 + ...
+a„)-s,
wenn es nicht 1 — ω ·ί ist. Dabei bezeichnen aua2, ••·,α„ Züge der reinen Vernunft, die durch s eindeutig bestimmt sind. Die unendliche Mannigfaltigkeit solcher Seiten des absoluten Ichs wird hier zum Anlaß genommen, die Entstehung der Arten und die Vielfalt der lebendigen Individuen durch folgende Hypothese zu erklären: Jedem lebendigen Wesen ist eine Seite s 720
— 175 — des absoluten Ichs zugewandt, deren Unbewußtes p durch ein Polynom 2. Grades in der Weise p = (ω2 + αλ · ω + a2)' s bestimmt ist. Die durch d\'
ωό +
ω0 + a 2 = 0
definierte komplexe Zahl ω0 ist nicht reell, sie heiße das Pneuma des in s erscheinenden Wesens, und der von ω0 erzeugte imaginär-quadratische Zahlkörper (ω0) gelte als der Verstand dieses Wesens. Er ist eine dem Ich s/p der Monade s wesensgleiche Entfaltung zweiten Grades der reinen Vernunft.
44. - Warum gerade Polynomen 2. Grades eine so schöpferische Rolle zugedacht wird, liegt vor allem an der Bedeutung der imaginär-quadratischen Zahlkörper in der Theorie der elliptischen Funktionen. Nahegelegt wird diese Idee der Individuation durch folgende Überlegung: Fragt man, wie erreicht werden kann, daß zwei absolute Willensakte ω —»
α- ω + b
r
,
und ω
c ω+ ä
α· ω + β γ· ω + δ
dasselbe Ziel bekommen, daß also α· ω + b c ω+ d
. .. ω+ β gleich γ· w + $ werde, so zeigt diese Gleichsetzung, daß dies nur scheinbar geschehen kann, nämlich als Kongruenz (α· ω + b)· (γ- ω + 8) = (α· α + β) - (c-ω + d)
(mod p)
in einer Seite s des absoluten Ichs (ω). 45. - Wenn nun auf Grund solcher Überlegung die Verabredung getroffen wird, jede imaginär-quadratische Zahl ω0 als das Pneuma eines möglichen Individuums zu deuten, so ist zunächst nötig, die Identität dieses Individuums anzugeben (vgl. 17). Die ω0 definierende Gleichung <ζ·ωο + &·ω 0 + ίτ = 0 kann mit ganzen rationalen Zahlen a, b, c geschrieben werden, die keinen gemeinsamen Teiler außer ± 1 haben. Wenn noch a > 0 vorausgesetzt wird, sind a, b, c durch ω0 eindeutig bestimmt. Die Gesamtheit 0 = Ζ + Ζ · a · ω0 der aus 1 und α · ω0 mit den ersten drei Grundrechnungsarten herstellbaren komplexen Zahlen ist ein Unter721
— 176 — ring von R + R · /. Die Gesamtheir der Matrizen
(;:)• deren Elemente dem Ringe 0 angehören und der Bedingung α· δ-β-
γ =1
genügen, ist eine Untergruppe SL2{0) der Poincare-Gruppe SL2(H), und darum (nach 17) geeignet, als Identität eines Individuums anerkannt zu werden. Von diesem Individuum wird behauptet, daß es in der durch p = (α · ω2 + b · ω + c) · s bestimmten Seite s des absoluten Ichs (ω) geschaffen werde, daß α' ω0 + £'O) 0 + c = 0 das Pneuma o>0 dieses Individuums bestimme, und daß das Ich s/p der Monade s das Ich des in s geschaffenen Individuums sei. Mit diesen Aussagen bekommt die klassische Vorstellung, daß die in der Natur beobachteten Individuen Geschöpfe seien, scharfen Umriß. Sie laden ein, die mit dem Darwinismus vorläufig beantwortete Frage nach der Herkunft der Mannigfaltigkeit der Naturerscheinungen neu zu stellen.
46. - Wenn ein absoluter Willensakt α· ω + β ω —> — γ- ω + ί das Pneuma ω0 eines Individuums im Sinne der Gleichung α>ω0 + β = ω0· (γ· ω0 + S) unbewegt läßt, kann jener Willensakt dem Individuum zugerechnet werden. In der Materie ist dieser Willensakt erkennbar als der durch α· w + β w —> w = y w +S bestimmte Automorphismus des Es, der auch durch eine Gleichung w —=ω- 0 = ρ w — ω0 722
w— — ojq u> — ω0
— 177 — beschrieben werden kann, in der ρ eine komplexe Zahl vom Betrage 1 sei. Jede Zahl r des von ω 0 erzeugten Körpers (ω0), der als der Verstand des Individuums gedeutet worden ist, bestimmt auf die Weise ω — ω0 _ r ω — ω0 r
ω — ω0 ω — ω0
einen dem Individuum zuzurechnenden Willensakt.
723
Topology of Hypersurface Singularities Walter D. Neumann*
Abstract. Kähler's paper Über die Verzweigung einer algebraischen Funktion zweier Veränderlichen in der Umgebung einer singulären Stelle" offered a more perceptual view of the link of a complex plane curve singularity than that provided shortly before by Brauner. Kähler's innovation of using a "square sphere" became standard in the toolkit of later researchers on singularities. We describe his contribution and survey developments since then, including a brief discussion of the topology of isolated hypersurface singularities in higher dimension.
1 Topology of Plane Curve Singularities The Riemann surface of an algebraic function on the plane represents a complex curve (real dimension 2) as a covering of the Riemann sphere, ramified over some finite collection of points. At the start of the 20th century, the study of complex surfaces (real dimension 4) was rapidly developing, and they too were often studied as "Riemann surfaces," — now of algebraic functions on the complex plane. The branching of such a "Riemann surface" is along a complex curve, and the only difficult case in understanding the local topology of this branching is at a singularity of the curve. The problem therefore arose, to understand the topology of a complex plane curve C near a singular point. The first discussion of this appears to be in Heergaard's 1898 thesis [16] (seeEpple [13, 14]). A small ball Β around the singular point will intersect the curve C in a set that is homeomorphic to the cone onCOdB. This set C Π dB, which is a link (disjoint union of embedded circles) in the 3-sphere dB, therefore determines the local topology completely. It thus suffices to understand the links that arise this way: links of plane curve singularities, as they are now called. To understand the local branching of the "Riemann surface" one also needs the fundamental group of the complement of the link in the 3-sphere. The first comprehensive article on this topic is the 1928 paper [3] by Karl Brauner, who writes that he learned the problem from Wirtinger, who had spoken on it to the Mathematikervereinigung in * Supported under NSF grant no. DMS-0083097. The hospitality of the Math. Research Institute in Bordeaux during the writing of this paper is gratefully acknowledged, as are comments by P. CassouNogu£s and A. Durfee on an early version. Durfee's article [ 10] in "History of Topology" is a recommended complement to this one.
727
728
Walter D. Neumann
Meran in 1905 and subsequently held a seminar on the topic in Vienna. In his paper Brauner follows Heergaard in using stereographic projection to move the link from S 3 to M3. He then describes the topology of the link in terms of repeated cabling, and gives an explicit presentation of the fundamental group of the complement of the link. Brauner's exposition is complicated by the stereographic projection, and Erich Kähler revisits the question in the article " Ü b e r die Verzweigung einer algebraischen Funktion
zweier
Veränderlichen
in der
Umgebung
einer
singulären
Stelle"
[20], pro-
mising and providing a more perceptual view than Brauner's. After choosing local coordinates centered at the singular point, he replaces the round sphere dB by a "rectangular sphere" {(*,
y)G
C
2
: \x\
=
ε , \y\
< 8 or
| * | < ε , \y\
= 8} =
d(D2(e)
χ
D2(8)).
By choosing the coordinates suitably he also arranges that the curve meets this rectangular sphere only in the portion \x\ = ε. Since this portion is a solid torus that can be identified with a standard solid torus in M3, this makes the topology easier to visualize. Nowadays his technique is used routinely, but it is reasonable to guess that the timespan between Wirtinger's seminar and a general description of the topology was in part due to the lack of an easy visualization technique. To be more specific about Kähler's approach, suppose our curve is given in local coordinates by an equation f ( x , y ) = 0 . Newton had already pointed out long before that one can give approximate solutions to this equation, giving y in terms of fractional powers of x. Assuming the y-axis is not tangent to the curve at (0, 0), Newton's successive approximations have the form y =
iL αιχρι
IL y = xpt £]_ y = χΡΐ(αι
92 {a\
a2XPiP2)
+ +x
12 ι 2 (a2
ρ ρ
12 + a j x Pinn
))
with pi and relatively prime positive integers. There may be several solutions of this type near (x, y) = (0, 0), corresponding to different branches of the curve at (0, 0). The fact that the curve is not tangent to the y-axis implies that q\ > p\ for each branch, and by choosing 8 and ε suitably (they should be small, and 8/ε should exceed the absolute value of the coefficient a\ for each branch with q\ = p\), one arranges that the curve intersects only the solid torus χ = ε of Kähler's rectangular sphere. It is now easy to see that the first Newton approximation gives a link that is a (P\. qi) torus knot, represented by a closed braid with p\ strands in this solid torus. The next approximation replaces this by the (p2, <72)-cable1 on this knot, represented 1
When talking of a (p, q) cable on a knot, q is only well defined after choosing a framing of the knot, that is, a choice of a parallel copy to call the (1,0) cable. The framing we are using here is the "naive"
728
Topology of Hypersurface Singularities
729
by a pi p2-strand braid, and so on. Thus each branch of the curve leads to a component of the link that is an iterated cabling on a torus knot. Such a link is called an iterated torus link. Kähler actually used the more familiar expression of Newton's approximations as the partial sums of a fractional power series solution LL
y = b\xpi
+bsxP\nn
η
to f(x,y) = 0, which had been introduced by Puiseux in the mid-nineteenth century. The pairs (p,·, r, ) occurring in the exponents of the Puiseux series are called Puiseux pairs. They of course determine and are determined by the Newton pairs (p, ,, ). The precise inductive relationship is q\ =r\, qi = r, — /?,·/•,·_i. Not all Puiseux pairs are topologically significant2: a pair with ρ, = 1 does not contribute to the topology of its link component, since it represents a (1, q) cabling for some q, which simply replaces a knot by a parallel copy of itself. However this pair may, nevertheless, be topologically significant, in that it can contribute to the linking of different link components with each other. Thus care must be taken in attempting to retain only the topologically significant data. Kähler satisfies himself with describing typical cases that must be considered in an iterative understanding of the topology and fundamental group of any given example, but he gave no general solution to this issue, writing: "Es soll uns jedoch genügen, an den vorstehenden bereits sehr allgemeinen Beispielen die merkwürdigen Verzweigungsverhältnisse der Funktionen mehrerer Variablen dargetan zu haben" (It should suffice to have presented the remarkable branching behavior of functions of several variables by these already very general examples). Although Kähler's presentation indeed provides the techniques to deal with any particular example, it gives no explicit closed form encapsulation of the topology. A question that was therefore addressed by many later authors was: Question. What invariant or collection of invariants completely determines the topology of a plane curve singularity? The implicit answer of Kähler's paper is simply to retain relevant parts of the Puiseux expansions for each branch, where "relevant" can be taken to mean: whenever two branches have identical Puiseux expansions up to some point, include the final term where they agree, and otherwise include only those terms that are topologically relevant to a branch. A classical notion of equivalence of plane curve singularities, which, with hindsight, is the same as topological equivalence, is based on the tree of infinitely near points, or, what is essentially equivalent, the resolution diagram (see [12]). Various framing of a cable knot, determined by choosing the parallel copy on the same torus that the cable knot naturally lies on. We return to the framing issue later. 2 The terminology characteristic pair is often used to single out the topologically significant Puiseux pairs, although this is with hindsight; the characteristic pairs were originally singled out for geometric reasons.
729
730
Walter D. Neumann
characterizations of this equivalence are given in Zariski's investigation of equisingularity [34]. A classical characterization, according to Reeve [26], is that an equivalence class is determined by the sequence of characteristic Puiseux pairs for each branch and the pairwise intersection numbers of the branches (for a proof see [35] or [22]). Reeve shows that these intersection numbers are the linking numbers of the corresponding components of the link of the singularity. Thus: Theorem 1.1. The link of a plane curve singularity is determined by the sequences of characteristic Puiseux pairs of the individual components, and their pairwise linking numbers. This presupposes agreement of classical and topological equivalence, first proved for one branch in 1932 by Burau [5] and Zariski [33] independently, and then for two branches in 1934 by Burau [6], who points out that the general case follows. The connection with classical equivalence is not explicit in [6], but was presumably understood. It is explicit in Reeve's exposition. Both Burau and Zariski recover the Puiseux data for the link from its Alexander polynomial, and they use that the link is the link of a plane curve singularity. In 1953 H. Schubert showed that one can unravel the cabling numbers from the topology of any cabled link [27]. Generalizing the work of Burau and Zariski, Evers [15] and Yamamoto [32] independently showed: Theorem 1.2. The multi-variable Alexander polynomial of the link of a plane curve singularity is a complete invariant for its topology. R. Waldi, in his Regensburg dissertation [31] showed: Theorem 1.3. The value semigroup of a plane curve singularity is a complete invariant for its topology. Attractive as the above results are, they are not entirely satisfactory as an encoding of the topology: each does so in terms of a redundant set of data from which other useful invariants are not necessarily easy to compute. In the 1970's there was a revolution in 3-manifold topology, brought in part3 by the JSJ decomposition theorem for 3-manifolds (foreseen by Waldhausen [30] in a little-noticed paper, and proved by Jaco-Shalen [18] and Johannson [19]). In particular, this canonical decomposition of any 3-manifold provides a general framework for (and radical generalization of) Schubert's results for links mentioned above, and hence a new view of the fact that classical and topological equivalence of plane curve singularities are the same. In the early 1980's Eisenbud and the author used JSJ decomposition to provide a new combinatorial encoding of the topology of a plane curve singularity: the splice 3
The other part was Thurston's geometrization conjecture, which is, however, irrelevant to the 3manifolds that arise in algebraic geometry.
730
731
Topology of Hypersurface Singularities
of [11] (adapted4 from a concept due to Siebenmann [28]). On a superficial level, the splice diagram is just another way of encoding the cabling information, i.e., the Puiseux data. The Puiseux pairs are replaced by new pairs that have global topological meaning. For instance a single branch with Puiseux pairs (Pi, n)> (P2, ri), • • ·, (Pk, n) is encoded by a splice diagram
diagrams
•51ρ 1
S2
Ο1
PI
Sic
—ο
1
>-
Pk
PI
with si = r\ and, for i > 1, s i + \ = r,+i - ηρι+ι + /?,·/?,·+is,·. The pairs (/?,·, j,·) describe the repeated cabling in terms of the natural topological framings of knots 5 . In particular, they do not change under coordinate change or when topologically irrelevant pairs are omitted. In this splice diagram the arrowhead represents the component of the link and the weights along and adjacent to the path to this arrowhead give the sequence of cabling pairs. To understand the placement issue for more than one branch, suppose, for example, that k = 3 above, so there are just three characteristic pairs. Suppose also that our curve has a second branch whose first pair is also (p\, si) but whose later pairs are /
/
different, say (p'2, s'2), (pj, s3). Assume also that ψ is the larger of ^ and splice diagram may then be J1
Ο
1
4
p'l
Q
S2
Q
1
P2
PI
i3
Q
1
>
P3
or
4
Actually, a case of convergent evolution.
5
This is the framing in which a parallel copy of a knot has zero linking number with the knot.
731
The
732
Walter D. Neumann
or •η
ι
ν
ι
S3 ι
or
or
There are conditions on splice diagrams that are necessary and sufficient for a diagram to occur for the link of some plane curve singularity (and be the unique smallest diagram representing its topology). The edge weights around any node (vertex of valence > 1) are pairwise coprime. Modification procedures on a splice diagram can sometimes create an edge weight adjacent to a leaf (vertex of valence 1), but if this happens the weight should just be deleted. The other conditions are: • all edge weights are positive; • each edge determinant is positive (the edge determinant, defined for each edge connecting two nodes, is the product of the two weights on the edge minus the product of the weights directly adjacent to the edge); • An edge to a leaf should not have weight 1 (if it does, remove the edge); • no vertex should have valence 2 (eliminate such a vertex by replacing it and its two adjacent edges by a single edge);
732
Topology of Hypersurface Singularities
733
• if all arrowheads are replaced by vertices, the diagram should collapse to a single vertex or single edge using the moves just described. The linking number of two link components is particularly easy to compute in terms of the splice diagram: it is the product of the weights adjacent to but not on the path that connects the corresponding arrowheads. For example, in the first of the above diagrams it is s'2p2 p i ρ3. The positive edge determinant condition implies immediately that this linking number is strictly decreasing as one runs through the five possible placements of the two branches in the above example. It is easy to turn this into a quick general splice diagram proof of Theorem 1.1. With different conditions, splice diagrams can encode many other objects of interest. For example, the last condition above just assures that we are looking at a point of a curve at a non-singular point of a surface. One advantage of splice diagrams is that invariants such as fundamental group, Alexander polynomial (single-variable and multi-variable), Milnor fiber, value semigroup, etc., can be computed quite easily and uniformly from the splice diagram in any situation where the invariant makes sense. Such situations include the study of the global topology of plane curves (work of Neumann, Neumann and Norbury, Pierrette Cassou-Nogues, and others; here the role of Milnor fiber is played by the generic fiber of the defining polynomial of the curve), and the study of surface singularities with homology sphere links. Recently, splice diagrams in which the coprimality condition is relaxed have been used in the study of universal abelian covers of surface singularities (Neumann and Wahl). We have surveyed here the topology of plane curve singularities and intentionally not ventured into the large and active literature on algebraic/analytic aspects such as deformation and moduli spaces, curves over fields of finite characteristic, etc. Even with this restriction we have had to leave much out. The 1981 book [4] of Brieskorn and Knörrer is a delightful and readable survey from ancient times to 1980. But the subject has not stopped there. Very recent papers include A'Campo's beautiful construction of the Milnor fibration from a real modification [1], and an intriguing and surprising geometric formula for the Alexander polynomial in [17],
2 Topology of Hypersurface Singularities in Higher Dimension The study of the topology of isolated singularities of complex hypersurfaces in higher dimensions received a considerable boost in the late 1960's from Brieskorn's construction of exotic spheres as singularity links (of what are now known as Brieskorn-Pham singularities), and from Milnor's monograph [24]. Durfee [10] gives an excellent history of this period. Milnor's fibration theorem is now a fundamental tool in the subject. It says that the link of an isolated hypersurface singularity is a fibered link (that is, the complement of the link can be fibered over S 1 with fibers which are the interiors of submanifolds of the sphere with the link as boundary). Milnor proved that on the standard sphere 3D 2 n (e) the fibration of the complement of the link is given
733
734
Walter D. Neumann
by / / | / I , but this is rarely needed, so we will sketch a version of Milnor's proof that omits this fact, but has some of the spirit of Kähler's paper. Suppose / : C" -> C is such that / ( 0 ) = 0 and / has an isolated singularity at 0 e C". Then for 8 and ε sufficiently small, and 8 < < ε, a vector field argument shows that D := f~\D2(8)) η D2n(e) is isotopically equivalent to the ball Dln(s). We can thus consider the link of the singularity in the boundary of this (somewhat twisted) "rectangular ball" D. The function / restricted to 3D makes the desired fibered structure evident. The fiber of Milnor's fibration is highly connected, with homology only in its middle dimension. It is a Seifert surface for the link, and the Seifert linking form with respect to it is a natural algebraic invariant. (The Seifert form evaluates linking numbers of cycles in the Seifert surface with cycles in a parallel copy of the surface; it is a non-singular integral bilinear form.) Durfee observed in [8] that work of Levine [23] implies that the Seifert form is a complete invariant for the topology of a link of an isolated hypersurface in C" if η > 3. In [11] it was asked if the Seifert form is a complete topological invariant for plane curve singularities (η = 2). Counterexamples were found by Du Bois and Michel [7], and used by Artal-Bartolo [2] to give a counterexample also for η = 3. Isolated hypersurface singularities in C 3 thus remain the topologically least well understood. The link is a 3-manifold in S5. Although one knows what 3-manifolds can be links of isolated surface singularities (by the work of Grauert combined with standard 3-manifold theory - see, e.g., [25]), it is not known which of them occur for hypersurface singularities, and the possible embeddings in S5 as links of hypersurface singularities are even less understood. If the 3-manifold is S 3 then there is no singularity and the embedding is standard, but other 3-manifolds may have several embeddings as singularity links. This is not to say that the topology is understood in dimensions η > 3. TheDurfeeLevine theorem says that the Seifert form tells all, but it is unknown what forms L actually occur as Seifert forms of singularity links in dimension n. Some restrictions are known. For example, there is a basis that makes the form L upper triangular n(n — 1) f _ι — with diagonal entries (— 1) ( D u r f e e [8]). The eigenvalues of V L 1 are roots of unity with maximal Jordan block size η by the monodromy theorem of Grothendieck and Deligne (see [29] for a slight sharpening). It is conjectured (problem 3.31 of n(n-l) [21], attributed to Durfee [9]) that (—1 {L + U) always has positive signature. Durfee's original conjecture was only for η = 2, but even this is unknown. Since "suspending" a singularity (replacing the hypersurface f(x\,..., xn) = 0 by f(x ι , . . . , xn) + Xn+i = 0) just multiplies the Seifert form by (—1)", if we adjust n(n-l) sign of the Seifert form by replacing L by (—1) 2 L, then the set of realized forms grows with dimension. This graded set of forms is closed, in a graded sense, under tensor product. It fully describes the topology of all isolated hypersurface singularities in ambient dimensions > 3, but it remains mysterious.
734
Topology of Hypersurface Singularities
735
References [1]
A' Campo, Ν., Real deformations and complex topology of plane curve singularities. Ann. Fac. Sei Toulouse Math. (6) 8 (1999), 5-23; erratum ibid. 343.
[2]
Artal-Bartolo, E., Forme de Seifert des singularites de surface. C. R. Acad. Sei. Paris Sir. I Math. 313 (1991), 689-692.
[3]
Brauner, Κ., Zur Geometrie der Funktionen zweier Veränderlichen: II—IV. Abh. Math. Sem. Hamburg 6 (1928), 1-54.
[4]
Brieskorn, E., Knörrer, H., Ebene algebraische Kurven. Birkhäuser Verlag, Basel, Boston, MA., 1981.
[5]
Burau, W., Kennzeichnung der Schlauchknoten. Abh. Math. Sem. Hamburg 9 (1932), 125-133
[6]
Burau, W., Kennzeichnung der Schlauchverkettungen. Abh. Math. Sem. Hamburg 10 (1934), 285-297
[7]
Dubois, P., Michel, F., The integral Seifert form does not determine the topology of plane curve germs. J. Algebraic Geometry 3 (1994), 1-38.
[8]
Durfee, A. H., Fibered knots and algebraic singularities. Topology 13 (1974), 47-59.
[9]
Durfee, A. H., The signature of smoothings of complex surface singularities. Math. Ann. 232 (1978), 85-98.
[10] Durfee, A. H., Singularities. History of Topology (I. James, ed.), North Holland, Amsterdam 1999, 417-434. [11] Eisenbud, D., Neumann, W. D., Three-dimensional link theory and invariants of plane curve singularities. Ann. Math. Stud. 110, Princeton Univ. Press, Princeton 1985. [12] Enriques, F., Chisini, Ο., Lezione sulla teoria geometrica delle equazioni e delle funzioni algebriche (3 volumes). Bologna 1915-1924. [13] Epple, M., Die Entstehung der Knotentheorie. Friedr. Vieweg & Sohn, Braunschweig 1999. [14] Epple, Μ., Geometrie aspects in the development of knot theory. In History of topology (I. James, ed.), North-Holland, Amsterdam 1999, 301-357. [15] Evers, M., Algebraische Verkettungen. Dissertation, Köln 1979. [16] Heergaard, P., Forstudier til en topologisk teorifor de algebraiske fladers sammenhceng, Dissertation (Det Nordiske Forlag, Kopenhagen 1898); French translation: Sur Γ Analysis situs, Bull. Soc. Math. France 44 (1916), 161-242. [17] Gusein-Zade, S. M., Delgado, F., Campillo, Α., The Alexander polynomial of a plane curve singularity and the ring of functions on the curve. Russian Math. Surveys 54 (1999), 634-635. [18] Jaco, W. H., Shalen, P. B., Seifert fibered spaces in 3-manifoIds. Mem. Amer. Math. Soc. 21 no. 220 (1979). [19] Johannson, K. Homotopy equivalences of3-manifolds with boundaries. Lecture Notes in Math. 761, Springer-Verlag, Berlin 1979.
735
736
Walter D. Neumann
[20] Kahler, Ε., Über die Verzweigung einer algebraischen Funktion zweier Veränderlichen in der Umgebung einer singulären Stelle. Math. Z. 30 (1929), 188-204 (= [5] in Kähler's Bibliography at the end of this volume). [21] Kirby, R., Problems in low-dimensional topology. Geometric topology (Athens, GA, 1993), AMS/IP Stud. Adv. Math. 2.2, Amer. Math. Soc., Providence, RI, 1997, 35^73, [22] Lejeune-Jalabert, M., Sur I'equivalence des courbes algebroi'des planes. Coefficient de Newton. Thesis, Universite de Paris VII, 1973. [23] Levine, J., An algebraic classification of some knots of codimension two. Comment. Math. Helv. 45 (1970), 185-198. [24] Milnor, J. Singular points of complex hypersurfaces. Ann. of Math. Stud. 61, Princeton University Press, Princeton, NJ, 1968. [25] Neumann, W. D., A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves. Trans. Amer. Math. Soc. 268(1981), 299-343. [26] Reeve, J. E., A summary of results in the topological classification of plane algebroid singularities. Rend. Sem. Math. Torino 14 (1954), 159-187. [27] Schubert,H., Knoten und Vollringe. Acta Math. 90 (1953), 131-286. [28] Siebenmann, L., On vanishing of the Rohlin invariant and nonfinitely amphicheiral homology 3-spheres. In Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979), Lecture Notes in Math. 788, Springer-Verlag, Berlin, 1980, 172-222. [29] van Doom, M. G. M., Steenbrink, J. Η. M., A supplement to the monodromy theorem. Abh. Math. Sem. Univ. Hamburg 59 (1989), 225-233. [30] Waldhausen, F., On the determination of some 3-manifolds by their fundamental groups alone. Proc. of International Symposium in Topology, Hercy-Novi, Yugoslavia, 1968, Beograd 1969,331-332. [31] Waldi, R., Wertehalbgruppe und Singularität einer ebenen algebroiden Kurve. Dissertation, Universität Regensburg, Regensburg 1972. [32] Yamamoto, M., Classification of isolated algebraic singularities by their Alexander polynomials. Topology 23 (1984), 277-287. [33] Zariski, O., On the topology of algebraic singularities. Amer. J. Math 54 (1932), 453-465. [34] Zariski, O., Studies in equisingularity I, Equivalent singularities of plane algebroid curves. Amer. J. Math. 87 (1965), 507-536. [35] Zariski, O., General theory of saturtion and saturated local rings II. Amer. J. Math. 93 (1971), 573-648.
736
The Unabated Vitality of Kählerian Geometry Jean-Pierre
Bourguignon*
Erich Kähler's seminal article "Über eine bemerkenswerte Hermitesche Metrik" [77], Kählerian Geometry1 has grown into a domain in itself. What is even more striking concerning this article is that more or less every half page, Erich Kähler opens a new path that has later turned out to be crucial for the development of the subject. Through major contributions, several dominant figures of the mathematical scene of the XXth century have, step after step along a 50 year period, transformed the subject into a major area of Mathematics that has influenced the evolution of the discipline much further than could have conceivably been anticipated by anyone. In fact several outstanding problems of Mathematics have found their solutions thanks to Kählerian Geometry techniques. Let me name, more or less in chronological order, some of the major contributors: Salomon Bochner, Shiing Shen Chern, Sir William Hodge, Andre Weil, Eugenio Calabi, Andre Lichnerowicz, Friedrich Hirzebruch, Kunehiko Kodaira, Yozo Matsushima, Thierry Aubin, Shing Tung Yau, Yum Tong Siu, Akito Futaki, Toshiki Mabuchi, Gang Tian, Jean-Pierre Demailly, Simon Donaldson, Xiu Xiong Chen. It is difficult to pinpoint what made the domain so fruitful. It must also be acknowlegded that it exerted an exceptional power of attraction on many mathematicians much beyond Differential Geometry, the domain to which it a priori belongs. As Eugenio Calabi once told me, he studied Kähler manifolds because "elles sont vraiment simples". I personally feel that the key to this exceptional success lies in that the subject, based on the interplay on a manifold between a (Riemannian) metric and a complex structure, now lies at the crossroads of many active branches of Mathematics (and of Theoretical Physics). More needs to be said on that matter, and we will come back to this later when we glance through the most recent developments. Here is a list of domains concerned with progress made in Kählerian Geometry: *The author is grateful to members of the Mathematischen Seminar der Universität Hamburg, in particular Professor Rolf Beradt and Professor Oswald Riemenschneider, for the invitation to present this material at the memorial conference for Erich Kähler in January 2001, and to include this note in the volume dedicated to his Mathematical Works. 'On the subject matter of this note, I am indebted to many mathematicians for useful conversations that took place over some 30 years. I would like to especially thank Marcel Berger, Eugenio Calabi, Huai-Dong Cao, Xiu Xiong Chen, Shiing Shen Chern, Simon Donaldson, Paul Gauduchon, Nigel Hitchin, Yum Tong Siu, Gang Tian, and Shing Tung Yau.
737
738
Jean-Pierre Bourguignon - Differential Geometry, since the basic objects on which the theory is based are differential geometric in nature; - Complex Analysis, since holomorphic maps and holomorphic bundles play an important role in Kählerian Geometry, and since geometric tools from Kählerian Geometry prove useful in tackling purely complex analytic questions; - Algebraic Geometry, since, via Hodge Theory, Kählerian Geometry gives insight into the cohomological structure of algebraic manifolds (and even more), and helps to give important guidelines for the study of number theoretic problems through Arakelov Geometry; - Global Analysis, since it is thanks to the very substantial progress made in this area that major conjectures in the field have been settled; in some sense Erich Kahler provided some of the most challenging problems that forced the discipline to develop, and to grow stronger; - and finally, but this will be covered in more details by Hermann Nicolai in his contribution to this volume, Theoretical Physics, since from the 1990's on many challenges in Kählerian Geometry, such as understanding the so-called mirror symmetries, have their origin in physical models, something that has not been anticipated earlier.
In this article, we try and give an idea of this intricate interplay by basing our analysis on a detailed study of the original article by Erich Kähler in Section 1. We then review the most important developments in the other Sections, concentrating our efforts on two of the most challenging problems that have accompanied the development of Kählerian Geometry and have had important consequences outside the field itself, namely the solution of the Calabi conjecture and the search for Kähler-Einstein metrics. We devote a special section to hyper-Kähler metrics, i.e. metrics that are simultaneously Kähler for a 2-sphere of complex structures. The material presented here, and the same holds true for the bibliography given at the end of the text, is very far from giving a comprehensive view of all currently active subareas in Kählerian Geometry. It only represents a personal selection of articles and monographs relevant for the guided tour that we propose. In particular we concentrated our attention on the case of compact manifolds, an assumption which can definitely be challenged. To give an idea of the extent to which the subject has grown, the bibliographical database Zentralblatt-MATH identifies 1874 articles whose title contains the word "Kähler" or "Kählerian", and 4217 for the categories 53B35,53C55 and 53C26 which correspond to Kählerian Geometry in the Mathematical Science Classification (MSC), organizing the whole discipline of Mathematics into some 2000 items. The acceleration of the process of development of Kählerian Geometry is attested through the same means by the percentage of quotes among the preceding ones which appeared in articles published in the period 1995-2000. It is respectively 27 % and 26 % according
738
The Unabated Vitality of Kählerian Geometry
739
to the category used. These figures signify the vibrant current actuality of Kählerian Geometry. There is no sign that this will change in the near future, in spite of the fact that major conjectures in the subject have been solved in the last 30 years.
1 Erich Kähler's Visionary Article As noted before, the 1933 article [77] by Erich Kähler is the real birthplace of Kählerian Geometry. The condition that lies at the heart of Kählerian Geometry (see later for the precise definition) had actually been introduced earlier (see [110] and [111]), but these attempts were merely listing this case as a possibility from a technical point of view. None of these authors had envisaged the fact that the compatibility condition introduced would lead to such fruitful developments in Geometry at large. l.i) The context. In [77], Erich Kähler considers a complex manifold Μ of complex dimension m endowed with a Hermitian metric g, i.e. a Riemannian metric which, in a (holomorphic) coordinate system (za) around some point p, can be written as g = Σ™ß=\ gaß dza dzP where (gaß) is a Hermitian matrix. He then introduces the exterior 2-form2 ω (1.1)
ω = ν=ϊ
m Σ Sa'ßdza
Α dzß.
oc,ß= 1
(His notation is actually d(za, ζand he adds a note to make what he means precise, showing that, at this time, Exterior Calculus was not as standard as it has now become.) To speak in real terms (and using more intrinsic notations), something which is usual today, one must introduce the almost complex structure J that holomorphic charts determine on each tangent space as follows. The field of linear maps J is determined at a point ρ as the differential of the map which, to a point q close to ρ with coordinates (za(q)) in a system centered at p, associates the point with coordinates za(q)). It follows straightforwardly from the definition that J^ = —IdTpM· It is therefore clear that Jp introduces a complex structure3 on the real vector space TPM. This complex structure can only be diagonalized after one complexifies TPM. Then one has TPM<S)RC = Γ^ 1 0 ) ΜφΓ ( 0 '^M,namelyadecompositionofthe space into the V—T- and the — V-T-eigenspaces of J, called respectively the holomorphic and the antiholomorphic tangent bundles to Μ. In a local holomorphic chart (z a ), a typical local section of Γ ( 1 ' 0 ) Μ (resp. of Γ ( 0 · 1 } Μ) can be written Xa d/dza (resp. Σβ=ι ^ d/dz^). This decomposition leads to a decomposition of the (complexified) 2
This is his very notation and it has since been used in the field almost without exception.
3
T h e question whether an almost complex structure J comes from a complex structure on M, i.e. a coherent system of holomorphic charts on the manifold as in our case, is an integrability problem, which was fully settled in 1957 by A. Newlander and Louis Nirenberg, cf. [104],
739
740
Jean-Pierre Bourguignon
exterior algebra into homogeneous forms of types (p, q) where ρ counts the number of differentials of holomorphic local coordinates, and q the number of differentials of antiholomorphic ones. By inspection the Kähler form is a form of type (1,1). The Kähler form ω can then be deduced from the Hermitian scalar product g and the almost complex structure J, for ρ e Μ and Χ, Y e TPM, by the formula (1.2)
a>(X,Y) =
g(JX,Y).
Erich Kähler's main motivation in introducing an exterior form seems to have been to derive new invariants using Elie Cartan's "eleganten Kalkül der symbolischen Differentialformen". The first invariant of course is da>, the (exterior) differential of ω (which Erich Kähler denotes by ω', a notation that has now become obsolete). Quoting his terms, the case dco = 0 presents itself as "a remarkable exception". This is the condition that he supposes fulfilled throughout the paper whose purpose is to describe a long list of miracles occurring then. Following Erich Kähler we enter the realm of Kählerian Geometry. Note that, although this remark did not play much of a role in itself for quite a while, the Kähler condition puts Kählerian Geometry at the crossroads between Riemannian, symplectic and complex geometry. l.ii) Bringing metric data back to functions: Kähler potentials. The first result with far reaching consequences stated already in the first page of the article says that the metric can be expressed from a function u (now often called a Kähler potential) by the local formula (1.3)
m g = Σ a,ß=l
(d2u/dzad-zß)dzadiß.
The full proof occupies Section 2 of Erich Kähler's article. In more intrinsic terms, this can be formulated as follows: the Kähler form ω can be written as ω = V—I 33m where 3 (resp. 3) denotes the holomorphic (resp. antiholomorphic) derivation. Erich Kähler gives a proof of the so-called local Ϊdd-lemma, to the effect that, in a fixed coordinate system, any closed form of type (ρ, ρ) lies in fact in the image of the operator —1 33, i.e., can be integrated twice (and not only once as the local Poincare lemma suggests). Since the time of the article, Georges de Rham, cf. [108], developed a theory allowing the representation of cohomology classes by smooth differential forms. On a compact manifold this theory makes it possible to compare globally Kähler forms, and more generally closed forms of type (1, 1), thanks to a global i33-lemma that we now state. Global V—Ϊ 3 3 -Lemma. I f , on a compact manifold, σ and σ are smooth closed forms of type (1,1) which are cohomologous (i.e. σ = σ + dX for a globally defined smooth 1 -form λ), then there exists a globally defined smooth function u so that σ = σ + y/—l 33u.
740
The Unabated Vitality of Kählerian Geometry
741
Of course, if Μ is contractible or has no two-dimensional cohomology, any Kahler form can be written ω = y f - i d d u for a Kahler potential u, as Erich Kähler does in his examples (cf. next Subsection). We come back to this later because it has consequences for the kind of manifolds that can support Kahler metrics, hence limits the domain of applicability of the theory. l.iii) First examples. The first example of a metric satisfying the closedness condition that Erich Kähler gives is defined on a contractible space. This allows him to define globally a Kähler potential. Erich Kähler takes m u = —k log(l - Σ za za) for k > 0, and goes on to notice that on the hyperball the metric associated to this potential is invariant under hyper-Fuchsian transformations that fix the boundary of the hyperball. He also considers another extreme case, which he calls the hyper-Abelian one, where the potential is defined in the polydisk by m u = ~ Y ^ k a log(l - z a z a ) a—l
where the ka are some positive constants. He then notices that one can mix these two metrics to study intermediate cases, and hopes that these metrics can be used for the algebraic study of automorphic forms. It is quite remarkable that these are all the examples he mentions. (For that purpose, he gives himself only half a page!). All applications he seems to contemplate deal with negatively curved manifolds. He never envisages that the most natural (and the most symmetric) metric on the complex projective space C P m , the so-called Fubini-Study metric, is indeed a Kähler metric. This will be later the major link between Kählerian Geometry and Algebraic Geometry in the hands of Sir William Hodge, who introduced for that purpose his famous transcendental methods (cf. [75]). (The book [70] allows one to take this approach even further.) l.iv) Kähler-Einstein metrics. Erich Kähler closes Section 1 by mentioning the case where the Kähler metric g is an Einstein metric, i.e. one for which the Ricci curvature Ric g is a multiple of g. He does then mention the occurrence of such metrics in the context of General Relativity, thus showing his interest in a physical theory which does indeed involve sophisticated Mathematics. He does that even before he has given any hint of how the curvature can be calculated (see next Subsection). This confirms that Section 1 is some kind of an introduction to the article, although it does not carry any title to that effect. For this special (but extremely important) case, he states a non-homogeneous Monge-Ampere equation that the Kähler potential must then satisfy C-4)
741
742
Jean-Pierre Bourguignon
where λ is the Einstein constant, but to see why it is indeed so one has to use the formula given two pages later, that we present in Subsection vi). Later in the article, he derives this equation characteristic of Kähler-Einstein metrics from a Variational Principle. l.v) Special formulas for the Riemann curvature tensor. He goes on in Section 3 with the computation of the Riemann curvature tensor Rw of the Kahler metric ω using its Christoffel symbols. He gets them very efficiently from the Euler-Lagrange formulation of the geodesic equation, taking advantage of the fact that the coefficients of type (2,0) and of type (0,2) of the metric vanish. As a result, for the components of the curvature that do not vanish, he gets the formula (l·5)
αβγδ
=
34m ~ dzad-zßdzrsis
^λ + L·
σβ 8
σ,ρ= 1
3 3w diPdzadzY
3 3M dzadzW
which has the advantage of exhibiting directly, and at once, all the extra symmetries that the Riemann curvature tensor of a Kähler metric enjoys. This is a very good example of an instance where a calculation conducted cleverly in local coordinates leads very quickly to all the information one looks for. Of course the fact that the metric information could be encoded in the Kähler potential is the key to the simplification. At this point, it is interesting to notice that there is no mention in the article of the role played by the almost complex structure J , whose consideration leads also quickly to the curvature identities (through the fact that J is parallel vis-ä-vis the Levi-Civita covariant derivative D8 attached to the metric g). This more tensorial point of view does not seem to have attracted Erich Kähler's attention. He does not mention either the interesting geometric characterisation of Kähler metrics as having at each point a holomorphic coordinate system in which the local expression of the metric is osculating to the standard Hermitian metric in C m . 1 .vi) The special role played by the Ricci curvature in Kählerian Geometry. He then closes Section 3 of the article by establishing that the Ricci curvature Ricw can be expressed in a "sehr eleganten " manner, namely4 (1.6)
Ric = -
^ a 2 iog(flOO) ^ — — — d z a,ß=l
dzp,
where (1.7)
D(u) = det(3
4
2
u/dzYdzs).
The formula given here is consistent with the currently favoured convention for which the round sphere has positive Ricci curvature. Notice that Erich Kähler has the opposite sign convention, according to an earlier convention followed by Luther P. Eisenhart and later by Solomon Bochner, leading to the paradoxical remark in [16].
742
The Unabated Vitality of Kählerian Geometry
743
It is of course this formula that allowed Erich Kähler to state the equation for a KählerEinstein metric. Moreover, the exterior 2-form ρω associated to the Ricci curvature Ric w as the Kähler form ω is associated to the Hermitian metric g, i.e., defined, for Χ, Y e TpM, by (1.8)
p(X, Y) = Ric(JX,
Y),
is therefore closed. This very fact, namely that the Ricci form is universally closed on α Kählerian manifold, lies at the heart of Kählerian Geometry, and is of course a major discovery. It is interesting to note that Erich Kähler does it the hard way, namely by exhibiting not only a local primitive for ρ but actually a potential for this form of type (1, 1). Indeed he gives an explicit solution of the V—133-lemma in this case. One can actually recover the mere fact that ρ is closed from the Bianchi identities that the curvature tensor of any Riemannian metric satisfies and the compatibility conditions between the almost complex structure J and the metric g, namely that D8 J = 0. It is interesting to note that actually Kählerian Geometry is the only subdomain of Riemannian Geometry in which the Ricci curvature is a true curvature. Indeed, in Kählerian Geometry, the Ricci form appears as the curvature form of the natural connection on the so-called canonical bundle, i.e. the complex line bundle —• M. The function D given in (1.7) is nothing but the natural Hermitian metric induced on this bundle by the Kähler metric ω. This links directly the Ricci form to the holomorphic geometry of Μ because it forces the 2-cohomology class it defines to be independent of the metric. As we will see later in this survey, this fact is completely central to the development of the whole theory. l.vii) En route towards characteristic numbers: global Kählerian invariants. Section 4 is probably one of the most remarkable of the whole article. In it, Erich Kähler combines the Kähler form ω and the Ricci form pw to define m + 1 different closed forms ΩΓ of type (m, m), namely ΩΓ = (pw)r a a) m ~ r for 0 < r < m. One has Ωο = ml vg, where vg denotes the volume form of the metric g. He shows in particular that Ω ι ( = / ) % / " ' ) = (m - l ) ! S c a r vg, where Scalw denotes the scalar curvature of the Kähler metric ω. He then gives a primitive for the volume form in terms of the potential u, taking advantage of the fact that he is working on a contractible space. He also makes the point that for an arbitrary metric (i.e., a non necessarily Kähler one) the functional given by the integral of the scalar curvature cannot be expressed as a boundary integral. (For that purpose, he mentions that its Euler-Lagrange equations are the Einstein field equations, hence cannot be universally satisfied.) Erich Kähler notices an analogy with the Gauß-Bonnet formula, and, analyzing how these forms are affected by holomorphic changes of coordinates, he then suggests looking for primitives of the forms ΩΓ as a problem with possible far-reaching conse-
743
744
Jean-Pierre Bourguignon
quences in the theory of automorphic forms. He succeeds in doing so for r = 1 and m = 1, and obtains the transgression formula for the Gaussian curvature on surfaces, transforming the surface integral of the curvature into a line integral of the geodesic curvature on the boundary of the domain of integration. He in particular anticipates the transgression calculations (cf. [44]) of which Shiing Shen Chern says that they were instrumental in assuring him that he was on the right track for generalizing the Gauß-Bonnet Theorem to higher dimensions and lead him to his discovery of Chern classes (cf. [45]). Although the full theory of the representation of the so-called characteristic classes by differential forms involving polynomial expressions of the curvature of a connection (the so-called Chern-Weil theory which plays such an important role in bringing together Geometry and Analysis, e.g. in the most recent approaches to the AtiyahSinger Index Theorem) was to be developed only later, it is very remarkable that Erich Kähler turns his attention precisely to some of the "characteristic" forms 5 in relation with Kählerian Geometry. Using modern terminology, the cohomology class of Μ that the Ricci form pw defines, which we denote by [ρ ω ], satisfies [ρω\ = 2π c\(Μ), where c\(M) denotes the first Chern class of the holomorphic tangent bundle of the complex manifold M, often called the canonical class of M. This makes it explicit that [ρω] depends only on the underlying holomorphic structure of Μ and not on the particular Kähler metric ω chosen. The integrals considered by Erich Kähler are precisely the cohomological invariants [c\ υΩ η _ Γ ](Μ), if one denotes the cohomology class determined by the Kähler metric ω by Ω, the so-called Kähler class. 1 .viii) Special Lagrangians leading to the Kähler-Einstein equations. The full derivation of the Kähler-Einstein equation is given in Section 5, together with a direct, and again amazingly efficient, verification of the fact that the examples that he gave in Section 2 are actually Kähler-Einstein metrics. The metric on the hyperball appears with the coefficient η + 1 in front of the exponent, and the one that he calls hyperabelian with a factor 2. This confirms that these metrics are negatively curved6. Section 6 is devoted to proving that Kähler-Einstein metrics satisfy a variational principle thanks to Erich Kähler's discovery that the left-hand side of the MongeAmpere equation (1.4) is the Euler-Lagrange expression of an integrand that involves both the first and second derivatives of the potential u. The right hand side is then 5
It may be interesting here to point out another instance that could have lead to an earlier discovery of the generalisation of the Gauß-Bonnet theorem to higher dimensions. It can be found in the article [88] by Cornelius Lanczos, a specialist of General Relativity, published ironically in the same issue of the Annals of Mathematics as an article by Shiing Shen Chern, who published his main result some years later in the same journal ([44]). Cornelius Lanczos was investigating Lagrangians quadratic in the curvature of metrics on a 4-dimensional space-time, and noticed that one of these Lagrangians did not lead to any Euler-Lagrange equations. Keeping in line with the purpose of his investigation, he discarded it as non-relevant. Of course the degeneracy of the variational equations meant that, when integrated over a manifold, this Lagrangian was actually producing an invariant of the metric. It was the Lagrangian later discovered by Shiing Shen Chem as giving the integrand for the Euler characteristic in 4 dimensions! ^Notice though that these constants are immaterial since the Ricci curvature remains unchanged when one scales the metric as shown by Formula (1.6).
744
The Unabated Vitality of Kählerian Geometry
745
generated through "minimal coupling" as physicists would say, namely by adding the exponential function to the integrand with the appropriate constant. Erich Kahler concludes the article by pointing out the analogy with the harmonic and the Liouville equations in one complex variable, and promises to come back to this point in a later publication. We did not find any trace that he worked on this question in his later published works. l.ix) The immediate and later impact of Erich Kähler's article. It seems that Erich Kähler's article did not get immediately all the attention it deserved. In his tribute to Erich Kahler included in this volume, Shiing Shen Chern does acknowledge the influence that Erich Kähler exerted on him by introducing him to the theory of exterior differential systems, that later became one of his main domains of expertise. He also testifies to the depth that Erich Kahler demonstrates in his founding article on Kählerian Geometry but he falls short of speaking of an immediate influence that this article had on his work. In the early 1940's, according to Shiing Shen Chern, it was well known among experts that the Fubini-Study metric is Kähler and the connection with Algebraic Geometry is made explicit in Chapter V of the celebrated work of Hodge ([75]) published in 1941. It should also be pointed out that the article [17] by Salomon Bochner 7 submitted in 1946 does not quote Kähler's article explicitly, although he freely uses the notion of a Kähler metric by referring to it as the "Kähler restriction". It is significant that Andre Weil devoted one of the volumes ([149]) of the series "Les Publications de l'Universite de Nancago8 " to Erich Kähler. This series was very typical of his view on how the Bourbaki group should develop. To conclude this Section, we propose another measure of the depth, and extraordinary historical weight, of this article of a somewhat different nature. Many of the specialists in the field of Kählerian Geometry living in the last third of the XXth century did not even imagine that Erich Kähler was still alive in the 80s, and... the author of this note is one of them. We should of course feel ashamed for our lack of curiosity for looking for the true source. For us, Kählerian Geometry appeared almost as classical as Riemannian Geometry, and for this reason we all believed that Erich Kähler was active in the early part of the XXth century, and established Kählerian Geometry back then. The truth is that it was not at all the case. This influential article is exceptional for the fact that it was produced by its author at age 27, basically the only one he wrote in a theory that he undoubtedly shaped through his far reaching insights. This makes Erich Kähler's achievement the more remarkable, and fully justifies that the theory bears his name.
7
who, by the way, was Eugenio Calabi's adviser, an interesting fact to recall. At that time, Andrd Weil was a Professor at the University of Chicago, but some other members of the Bourbaki group such as Jean Delsarte, Jean Dieudonnö and Laurent Schwartz held positions in Nancy, hence the name of the series. 8
745
746
Jean-Pierre Bourguignon
2 Prescribing the Ricci Curvature for Kahler Metrics In this section we present the results connected to a problem that has been instrumental to the development of Kählerian Geometry, and comes out directly from the special role that the Ricci curvature plays there. This development as such was not anticipated by Erich Kahler but from his article one has all the necessary ingredients to pose the problem. The surprise lies in the fact that this geometric problem picks up a critical case from the analytical point of view, a situation which is far from being unique. 2.i) The Calabi conjecture. We saw in Section 1 that the Ricci form ρω of a Kahler form ω is closed, and that its cohomology class is determined by the holomorphic structure of M. Therefore the following comes up as a natural question. Calabi's Conjecture. On α Kählerian manifold Μ any closed form of type (1,1) whose cohomology class lies in 2π c ι (Μ) is the Ricci form of α Kühler metric. In this form, the conjecture seems rather optimistic since it says that the cohomology constraint on the Ricci curvature that was found by Erich Kähler is the only one. The key point is to elaborate on the way the Ricci form ρω depends on the Kähler form ω by refining Formula 1.6. Indeed, if ώ is another Kähler metric, one has Z/n w
(2.1)
p " = p - ^ \ d ~ d l o g —1 . ω" Of course, not every cohomology class of type (1, 1) on a complex manifold Μ contains a form which is positive definite. Any such class is called a Kähler class (or, in an older terminology, principal class). It turns out to be convenient to work in a fixed Kähler class, an assumption we make systematically later on. In [24], [25], [26], Eugenio Calabi proposes the setting in which the problem can be solved by reducing it to a Monge-Ampere equation, a (highly) non-linear partial differential equation. Indeed, if ρ is a form of type (1,1) which is cohomologous to ρω, then, by the global ^T33-lemma, there exists a smooth function / so that ρ = ρω + λ/—Τ 3 3 / . Together with Formula (2.1), this gives a geometric formulation of the Calabi Conjecture which amounts to stating that any (positive) volume element v, such that fM ν = fM vg, can be realized as the volume element of α Kähler metric belonging to the class [ω] of ω, as Eugenio Calabi notices in a footnote to be found in [26]. This makes the conjecture look much nicer, since in particular it reduces it to solving a scalar equation. Indeed, given a function u so that ώ = ω + v^T39m is a Kähler form, then ώ satisfies [ώ] = [ω]. One then has to solve the global MongeAmpere equation whose local expression is (2 2)
-
det
( d2u \ [Saß + g^gJJ)
f
·
In [25], Calabi proves uniqueness of the solution to this equation by a nice argument involving the intermediate positive forms ώ Γ Λω' η_Γ for 0 < r <m. To prove existence
746
The Unabated Vitality of Kählerian Geometry
747
of solutions, he proposes to use the continuity method, i.e., to imbed Equation (2.2) in a one-parameter family of equations (2.3?) defined as follows w
+
j
com
JM e'f ω"1
Equation (2.2) is nothing but Equation (2.3i). In [5], Thierry Aubin gave a partial solution of the Calabi conjecture in the case of Kählerian manifolds with positive bisectional curvature. In 1976, the full solution of the conjecture was found by Shing Tung Yau (cf. [152]). A somewhat simpler argument for the crucial C°-estimate on solutions (on which the continuity method relies) can be found in [78]. (For an overview, one can consult [18] and, for a pedagogical and somewhat more leisurely presentation of the solution, [112] and Chapters 2 and 11 of [15].) 2.ii) Some interesting geometric consequences. Some consequences of the conjecture were drawn by Eugenio Calabi himself (before it was even proved). Let us begin by one consequence in Analytic Geometry that one finds explained in [25]. Proposition. Any compact complex Kählerian manifold Μ with vanishing canonical class and irregularity q has a finite covering which is the product of a complex torus of dimension q and a simply connected compact manifold with vanishing canonical class. For that purpose, one uses the solution of the Calabi conjecture which produces a Ricci-flat Kahler metric on Μ since the form 0 is a particular form in the cohomology class of c\(M) assumed to vanish. With respect to this metric, holomorphic 1-forms are parallel. In the universal cover, the metric splits and the factor along these directions is flat. The other factor must be compact, hence simply connected. Proposition. Any compact complex manifold with vanishing first and second Chern classes which admits α Kühler metric admits a flat metric, hence has a torus as finite covering. The proof relies on expressing the integrand of the Kählerian characteristic number (C2 U [w] m_2 )[A/] in terms of the curvature (cf. [2] and [68]). It coincides with the integrand of the Euler characteristic for 4-dimensional manifolds. (Indeed, for complex surfaces the second Chern class coincides with the Euler class.) When the metric is Einstein, this quadratic polynomial reduces to a sum of squares of irreducible components of the curvature. On a manifold with vanishing first Chern class such metrics exist as explained before and are necessarily Ricci-flat. This proposition still retains some mystery. It shows that Kählerian manifolds are very special among general complex manifolds. Indeed, on a general complex manifold, one does not expect so strict limitations by specifying only two Chern classes (cf. Problem 19 in [69]). The study of special properties that Kählerian manifolds enjoy as Riemannian manifolds is currently a subject of great interest (cf. the panoramic vision proposed on this topic by Mikhael Gromov in [67]). The fundamental group of
747
748
Jean-Pierre Bourguignon
a Kahler manifold is also very special (cf. [1], [145]) whereas, as shown by Clifford Taubes in [123], any finitely presented group is the fundamental group of a compact complex 3-dimensional manifold.
3 Kähler-Einstein Metrics In the preceding paragraph, we already met some examples of Kähler-Einstein metrics, but, because of their importance, we give them more attention, as Erich Kähler himself did in [77], 3.i) The compact case: general discussion. Since we are interested in Kähler-Einstein metrics ω on M, i.e., metrics such that ρω = λ ω, it means that the first Chern class c\{M) must, according to the sign of the Einstein constant λ, either vanish or have a Dolbeault representative which is negative definite or positive definite. (One then says that c\ is negative or positive.) This latter case of course puts strong restrictions on the holomorphic structure on M, and also fixes the Kähler class up to homotheties. It is traditional to normalize λ by taking it to be either 0, + 1 or — 1, something made possible by Formula (1.6). The situation turns out to be quite different in these three cases. Therefore, we discuss the results and problems for them in different subsections. Several methods have also been used, e.g., the non-homogeneous Monge-Ampere equation by Thierry Aubin and Shing Tung Yau, the Ricci-flow method by Huai Dong Cao (cf. [32]) or more geometric constructions by Norihito Koiso and Yusuke Sakane (cf. [109], [83], [84]). Recall that irreducible Hermitian symmetric metrics are automatically KählerEinstein. 3.ii) The case c\{M) = 0: Calabi-Yau manifolds and mirror symmetry. Notice that the case λ = 0 is already covered by the solution of the Calabi conjecture per se. Indeed, in this case, for each Kähler class ω on M, a Ricci-flat metric is obtained by taking 0 as particular form in the cohomology class 0 = c\(M) € Hl,l(M) and solving the associated Monge-Ampere equation. Corollary. Any Kählerian compact manifold with vanishing Chern class admits a unique Ricci-flat metric in each Kähler class. Typical examples of m-dimensional complex manifolds Μ with c\ (M) = 0 are hypersurfaces of degree m + 2 in CPm+l. Note that, since they are simply connected, they give examples of Ricci-flat metrics which have no infinitesimal isometries since, on such manifolds, Killing vector fields would be parallel by a formula due to Salomon Bochner (cf. [16]), hence give rise to non trivial harmonic 1-forms, a contradiction. Among them, one finds the quartic surfaces, which are examples of algebraic K3 surfaces. Recall that by definition a K3 surface is a complex surface with vanishing canonical class and no holomorphic 1-forms. The deformation space of such complex
748
The Unabated Vitality of Kählerian Geometry
749
structures is 20-dimensional, and the algebraic structures form a very intricate subset inside. It is the union of countably many subvarieties of complex dimension 19, which form nevertheless an everywhere dense subset. Among them, one finds the Kummer surfaces which are traditionally obtained from a complex torus by blowing up the 16 fixed points of the inversion involution. (Note that, in [146], another approach to getting Ricci-flat metrics on a Kummer surface is given.) One of the challenges concerning K3 surfaces was to prove that they are all Kähler. This was proved by Yum Tong Siu in [116]. On all of them, therefore, one can find Ricci-flat Kähler metrics. The deformation theory of Einstein metrics on these surfaces is very interesting (cf. [113] for a systematic account, [80] and [144]). The Ricci-flat Kähler metrics on K3 surfaces have holonomy SU2, since both a complex volume form and the Kähler form are parallel. Since SU2 = Spj, they can also be viewed as hyper-Kähler metrics, i.e., metrics with holonomy Sp m /2. We discuss these metrics in more detail in Section 4. Compact 3-dimensional manifolds with holonomy SU3 and vanishing first Betti number are nowadays called Calabi-Yau manifolds. The necessity of naming them came from their widespread use by theoretical physicists as target manifolds for nonlinear σ-models. These 6-dimensional spaces occur as possible compactifications by dimensional reduction from 10 to 4 dimensions in Ν = 2 supersymmetric Conformal Field Theories. The necessity of having at hand as many of these spaces as possible led to a systematic search of those. For example, a lot of integral invariants of hypersurfaces in weighted projective spaces which are Calabi-Yau manifolds and of certain natural bundles on them have been computed in order to find cases where these invariants are small enough. Physicists want these to be compatible with their present knowledge of elementary particles, in particular the fact that they seem to appear in only 3 families, hence bounding dimensions of some spaces of holomorphic sections. This hunt led to the discovery of an unexpected "symmetry" between certain of these Calabi-Yau manifolds, the so-called mirror symmetry. This correspondence was given this name because it pairs together two different Calabi-Yau manifolds Μ and Ν whose Hodge diamonds (i.e., the display of dimensions of the cohomology spaces of type ( ρ , q) in the (p, g)-plane) are symmetric with respect to the parallel to the <7-axis around the value | on the p-axis. This has the effect of putting into correspondence the space of infinitesimal deformations of the complex structure of Μ and the (complexification of the) space of infinitesimal deformations of the Kähler class of Ν, spaces which have a priori not much in common. Besides numerical evidence in many explicit examples of algebraic manifolds, what led to believe in such a symmetry is the fact that one can pass very simply from a Conformal Field Theory defined on Μ to one defined on Ν without encountering any drastic change in the physical aspects of the theory (cf. [3]). The form degenerates when a wall is reached in the cone of Kähler metrics, the so-called Kähler cone, of one. Passing to the other manifold is achieved by penetrating in the deformation space of the other (after modifying the topology in resolving the singularity). Any time a mirror symmetry can be established between two Calabi-Yau manifolds, this leads to interesting formulas
749
750
Jean-Pierre Bourguignon
counting the number of rational curves of a given degree on the manifold since these can be viewed as particular expectation values of correlation functions attached to some Conformal Field Theories (cf. [150]). Rigorous proofs are by now available for a number of important cases. The first cases that were dealt with are hypersurfaces in the so-called toroidal varieties (on which a complex torus acts almost transitively). The general case requires a detailed geometric analysis of some Lagrangian submanifolds, i.e. to consider the problem in a really symplectic context, a point of view we have not yet met so far 9 (For more details on these developments branching out in the direction of Theoretical Physics as well as in the direction of Algebraic Geometry, one may nowadays consult very many articles. As useful sources, we suggest [3], [13], [150], [65], [85], [120], [148], [154] and the survey [100].) 3.iii) The negative case. In Analytic Geometry, it is traditional to call (complex) manifolds with negative first Chern class manifolds with ample canonical bundle. The Monge-Ampere equation for the case c \ (M) < 0 was solved independently by Thierry Aubin and Shing Tung Yau. Theorem (cf. [6] and [152]). On a compact manifold Μ with negative first Chern class there exists a unique Kähler-Einstein metric, up to homotheties. Again in this case, the most natural way of solving the problem is by applying the continuity method. In this case, the C°-estimate is easy because it follows directly from the maximum principle applied to the unknown Kahler potential u. Uniqueness was obtained by Eugenio Calabi using the same argument as the one for the Conjecture. Therefore, on a compact complex manifold with negative canonical class, the Kähler-Einstein metric is a very distinguished metric. In particular the group of holomorphic transformations, known to be finite, acts by isometries. Among m-dimensional manifolds with ample canonical bundle, one finds hypersurfaces of degree at least m + 3 on C P m + 1 for m > 1. They are simply connected, hence give examples of Einstein metrics with λ = — 1 having no infinitesimal isometries (again by Solomon Bochner's argument). Corollary (cf. [151]). For any compact complex surface with ample canonical bundle M, one has c\{M) < 3 C2(M). Moreover, equality occurs if and only if Μ is covered by the ball. Again, this inequality relies on obvious inequalities between integrands of the characteristic numbers expressed as quadratic polynomials in the curvature, taking advantage of the absence of any Ricci-trace free part of the curvature that was giving the only negative contribution. Corollary (cf. [151]). Any complex surface which has the homotopy type of CP2 is biholomorphically equivalent to it. 9
We shall see later that this point of view also plays an important role in the understanding of the positive case of the Kähler-Einstein problem.
750
The Unabated Vitality of Kählerian Geometry
751
The only case left open in [71] to prove the Corollary concerns complex structures on the candidate fake C P 2 with ample canonical bundle. Equality in the previous Corollary allows one to finish the proof since it implies that the fake CP2 would be covered by the ball, hence could not be simply connected, a contradiction. 3.iv) The positive case: obstructions and existence. The case c\(M) > 0 is more subtle. Constructing explicit examples is very cumbersome outside a few homogeneous cases. One cannot get these as induced metrics on submanifolds of projective spaces, cf. [76]. Many things come together to make the analysis harder. First, there is the possibility that a non trivial continuous group of holomorphic transformations exists. This may introduce some degeneracies. Second, when one tries to apply the continuity method, one encounters several difficulties, in particular in the presence of holomorphic vector fields, as shown by Andre Lichnerowicz in [91] (cf. also [92]). In fact two obstructions to solving the problem are now known. The first one is due to Yozo Matsushima and, in the version we give, to Andre Lichnerowicz. Theorem (cf. [95], [92], and [96]). On a compact complex manifold with positive first Chern class admitting α Kähler metric with constant scalar curvature, the Lie algebra of holomorphic vector fields is reductive. Typical manifolds whose Lie algebras of holomorphic vector fields are not reductive are projective spaces with a few points blown up in generic position. The second family of obstructions is more complicated to state, and has a more refined structure. It is also related in some sense to the Lie algebra of holomorphic vector fields. We formulate it first as it was given by its discoverer, Akito Futaki. Theorem (cf. [57] and [58]). Let X be any holomorphic vector field on a compact m-dimensional Kähler manifold (Μ, ω) and ρω the function defined by
where Scalw denotes the scalar curvature and Αω the Laplace-Beltrami operator of the metric ω. Then, fM X • ρω com is independent of the Kähler metric ω in its Kähler class [ω]. This identity, developed fully in [59], gives an obstruction, naturally called the Futaki obstruction, to the existence of a Kähler metric with constant scalar curvature in a given Kähler class (for another approach, cf. [19]). A fortiori the vanishing of the Futaki invariant is required for the existence of a Kähler-Einstein metric. There are examples of Kähler metrics which satisfy the Matsushima obstruction and not the Futaki one, such as the total space of the projective bundle obtained from the direct sum of the hyperplane bundles over CP2 χ C P 2 (cf. [58] and [59]), showing that these two obstructions are independent from one another. The Futaki invariant has been generalized in different directions. It can be integrated from the Lie algebra of holomorphic vector fields to the group of holomorphic
751
752
Jean-Pierre Bourguignon
transformations (cf. [60]), or as is done in work on the so-called K-energy by Toshiki Mabuchi (cf. [94], [9]). This notion led to the proof of the uniqueness of KählerEinstein metrics modulo connected group actions by Shigefumi Bando and Toshiki Mabuchi (cf. [12]). It can also be constructed for more general functions of the metric than the scalar curvature as suggested by the construction in [19], and used in a vast generalization in [54], Another important generalization of the Futaki obstruction is also due to Weiyue Ding and Gang Tian (cf. [51]). It goes as follows. First, embed Μ by powers of sections of the anticanonical bundle in a complex projective space CPN. (Recall that c\(M) > 0 ensures that the anticanonical bundle is ample.) By deforming the image of Μ by a family of holomorphic transformations going to infinity in the group of holomorphic transformations of C P N , one forms a possibly singular subvariety of CPN, say Moo· If ^oo is normal and if Μ admits a Kähler-Einstein metric, then the real part of the generalized Futaki invariant of M ^ is non-negative. To establish this, a generalization of the Futaki invariant to normal varieties is needed. In this way, some Kahler orbifolds that are cubic hypersurfaces in C P 3 can be shown to be obstructed (cf. [51]). As we suggested earlier, the existence theory requires some more subtle estimates. Possible rephrasing of the analytic estimates needed are given in [7], [8], [124] and [50]. Various low dimensional cases have first been worked out. Theorem (cf. [125] and [136]). On a compact complex surface with positive first Chern class, there exists α Kähler-Einstein metric as soon as the Lie algebra of its group of holomorphic transformations is reductive. In higher dimensions, Gang Tian also obtained a number of cases in which he can prove existence of Kähler-Einstein metrics, refining the existence theory for the Monge-Ampere equation (see [124].) In particular he has a sharp estimate on an analytic invariant a(M) attached to the Kähler manifold M. Here is a result he obtained jointly with Weiyue Ding (for a previous result of this author, cf. [50]). Proposition (cf. [51]). Ifa(M)
> η f{n + \), then Μ admits α Kähler-Einstein metric.
This allows for example to prove the existence of Kähler-Einstein metrics on the Fermat surface of equation v4 + w4 + x4 + y4 + z4 = 0 in C P 5 . During the same period, Yum Tong Siu extended ideas of Jürgen Moser on the prescribed curvature problem on the real projective 2-plane to the Kählerian context. He showed that the isometric action of a finite symmetry group gives the required analytic estimate (cf. [118] and [119]). He deduced from this the existence of KählerEinstein metrics on the Fermat cubic in C P 3 . Alan Nadel gave a criterion to check whether a(M) > n/(n + 1). In fact he studied in what way the required estimate may fail. By localizing this on the manifold (cf. [102] and [103]), he introduces the notion of a multiplier sheaf ideal. This enables him to give fairly general criteria for
752
The Unabated Vitality of Kählerian Geometry
753
solving the problem (cf. also [46], [47]). Just to give a specific example of cases that can be covered by his method, let us mention he can prove that Fermat hypersurfaces in C P m of degree greater than or equal to (m + l ) / 2 admit Kähler-Einstein metrics. Before discussing the new connection with Algebraic Geometry which developed after this initial fruitful period, let us briefly introduce the notion of Kähler-Ricci soliton which, from an analytic point of view, appears as a measure of the obstruction to solving the Monge-Ampere equation. The Kähler metric ω is such a soliton if its Ricci form ρω and its Lie derivative Χχω with respect to a holomorphic vector field X are tied by the identity ρω — ω =
Χχω.
(Such an identity only makes sense in the case under present study, namely on Fano manifolds when the Kähler class is taken to be c\(M)). Several important results regarding this notion have been recently obtained by Gang Tian and his collaborators (cf. [35], [139], [140], [155] and [142]). They in particular prove uniqueness of such special metrics, and show how it relates to new holomorphic invariants generalizing the Futaki invariant. In fact the right perspective to tackle the existence question for Kähler-Einstein metrics on Fano manifolds seems to be to tie the problem with the whole circle of ideas and constructions around the notion of stable bundles (for the first appearances of the notion in a differential geometric context, see [81], [93], and for introductions to this very active area of research from the differential point of view, one can consult [82] and [117]; in the framework of Yang-Mills theory a correspondence between HermiteYang-Mills connections and stable bundles has been established, cf. [147]). What seems to be the right necessary and sufficient condition for the existence of a KählerEinstein metric on a complex manifold with positive Chern class is a certain "stability of the underlying manifold", i.e., a strengthening of a certain indecomposability of its holomorphic tangent bundle. (For first steps in this direction by Gang Tian, cf. [126], [127] and [129], and for another approach due to Jean-Pierre Demailly, cf. [48].) For that, one has to view the manifold Μ as embedded projectively in the space of sections of a positive bundle, such that the anticanonical bundle, as Weiyue Ding and Gang Tian do for their generalization of the Futaki invariant. Several recent results have been obtained in this direction using different techniques: new estimates for the Monge-Ampere equation by Xiu Xiong Chen, Gang Tian (cf. [37]); use of the evolution equation determined by the Ricci flow in the space of Kähler potentials (cf. [33], [34], [41], [42]); a symplectic approach introduced by Simon Donaldson (cf. [53]) that we summarize briefly. The key idea is to try and recast the whole discussion in the context of momentum maps on symplectic manifolds, so that finding a Kähler potential leading to a Kähler-Einstein metric is equivalent to looking at the zero set of a momentum mapping connected to the action of the group of symplectomorphisms. The paradigm of geometric invariant theory is that one can establish a correspondence between the space of stable bundles and the zero set of the momentum mapping. In [53], Simon
753
754
Jean-Pierre Bourguignon
Donaldson describes the transposition of the strategy that he developed successfully in [52] in the context of Yang-Mills theory to the case at hand. There are very substantial difficulties in order to pursue this programme. Many can be translated into geometric properties of the space of Kähler potentials on a Kählerian manifold, cf. [38]. This space has a wealth of geometric structures: a family of very distinctive differential 1-forms (cf. [19]) which provide another approach to the Κ -energy introduced originally by Toshiki Mabuchi; a natural Riemannian metric whose geodesic equation has many facets (cf. [114], [53], [38]); a natural symplectic structure, etc. It is by interpreting properly estimates related to holomorphic constraints that Gang Tian and Xiu Xiong Chen have been able to prove existence of solutions for related Monge-Ampere equations (the set of notes [132] by Gang Tian is a good reference for that). This requires one to reinterpret the A'-energy in several different ways, and to give new formulas for it (cf. [130], [141] and [133]). The most advanced results by Gang Tian can be found in [134] (see also [42]). Simon Donaldson has announced in [55] that the programme can be pushed towards a positive conclusion. 3.v) The non-compact case. This is a very active area of research. Already in [152], Shing Tung Yau considers a version of the Calabi Conjecture in a non compact setting, namely the case of complements of divisors with peculiar growth conditions on the Kähler metric. Many more contributions have been made in this direction, with in mind the search for a canonical metric on the complement of analytic sets of interest to algebraic geometers in order to be able to apply transcendental methods. To give a sample of important contributions, we just quote [43], [97], [10], [11], [98], [79], [128], [135], [137], [138], [153]. The aim is to obtain extensions of the uniformization theorem for Riemann surfaces to higher dimensions via these normalized metrics (for more recent results in this direction, cf. [115] and [36]).
4 Extremal Kähler Metrics 4.i) The notion of an extremal metric. As we explained before, looking for KählerEinstein metrics makes sense only for very special complex manifolds since c\{M) must be either zero or definite. On a general compact Kähler manifold, there is therefore room for another category of "special" Kähler metrics. With the development of Global Analysis, one of the natural conditions to impose on a Kähler metric is that it extremizes a functional involving the curvature. The simplest one is of course the total scalar curvature, but in Kählerian Geometry this functional is constant in a fixed Kähler class. It is therefore natural to turn to the quadratic functionals of the curvature. This brings us in the realm of Yang-Mills theory, though we should notice that the space of parameters will be metrics (or even Kähler potentials) and not connections. This difference will be reflected in the kind of PDEs that will occur later when we discuss the Euler-Lagrange equations and the Second Variation Formula.
754
The Unabated Vitality of Kählerian Geometry
755
The space of curvature tensors of Kähler metrics at any point splits into three irreducible components under the action of the unitary group on the tangent space. Therefore, there are a priori three quadratic local functionals to be considered. It turns out that the three integrands ( S c a P ) 2 , ||Ricw||2 and ||ROJII2 are independent as algebraic entities, hence can be used as a basis of the space of U m -invariant quadratic forms on the space of Kählerian curvature tensors. But the three functionals on the space of Kähler metrics to which they give rise are related when the Kähler class is fixed since (c2(M)unm~2)[M]=
[ (||/?ω||2 — 4 ||Ricw||2 + (Scal w ) 2 ) of", Jm
and (cJ(Af) U ΏΤ~2)[Μ]
=
I (||Ricw||2 — (Seal 6 ") 2 )
and since the left hand sides are constant when ω varies in the Kähler class Ω. For simplicity, one works with the functional S(a>) = fM (Scal w ) 2 of1. This is indeed the functional that Eugenio Calabi uses in [30] and [31]. He calls the critical points of S extremal Kähler metrics. Proposition (cf. [30]). Α Kähler metric ω is extremal if and only if the (1, 0 )-part the gradient of its scalar curvature is a holomorphic vector field.
of
A priori the variational formula for S gives a fourth-order equation in the curvature (because the dependence of the scalar curvature on the Kähler potential is second order) but, by repeated integrations by parts, one comes to this nice geometric statement. Kähler metrics with constant scalar curvature (and among them Kähler-Einstein metrics) are special cases of extremal metrics. Extremal metrics have constant scalar curvature on complex manifolds with no holomorphic vector fields. This is in particular the case of manifolds with negative first Chern class. Notice that for those the existence problem for Kähler-Einstein metrics is non obstructed. (A link with the Ray-Singer analytic torsion, or equivalently the Quillen metric, was pointed out by Gang Tian in [129], and also in the work of Werner Müller and Katrin Wendland [101].) 4.ii) Using the second variational formula. As usual, when one considers a variational problem, it is very important to consider the second variational formula at a critical point, and Eugenio Calabi establishes the relevant formula for S in [30]. From this formula, and further arguments he obtains the following theorem. Theorem (cf. [30] and [31]). Any extremal metric on Μ is a local minimum of S, a global minimum if the scalar curvature is constant. Any orbit under the group of holomorphic transformations of Μ is a critical level of S. Moreover, any critical point always has the largest possible invariance group. In [30], Eugenio Calabi gives examples of extremal metrics on manifolds admitting no metrics with constant scalar curvature, proving the usefulness of the concept of
755
756
Jean-Pierre Bourguignon
extremal metrics. These metrics are constructed on total spaces of complex projective line bundles over compact symmetric (m — l)-dimensional complex spaces, typically, C P m ~ l . The metrics can be found by taking advantage of the large symmetry group which reduces the search of the metric to solving an ordinary differential equation. The main point is to have precise enough information in order to show that the solution explicitly expressible in terms of an affine variable does behave properly at infinity. Eugenio Calabi also obtains information on the group of holomorphic transformations of a manifold admitting an extremal metric. If its Lie algebra is of positive dimension, then the group must contain a compact real Lie subgroup of positive dimension as well. Other examples can be found in [40]. Kähler metrics with zero scalar curvature are also examples of extremal Kahler metrics. A systematic study of (complex) surfaces admitting such metrics is given in [89], 4.iii) Some non existence results. These results do give the impression that the variational theory of the functional S will be a universal tool to obtain especially interesting Kähler metrics on compact complex manifolds. Unfortunately, one cannot always find extremal metrics on a compact complex manifold as was shown by Mark Levine in [90]. He indeed exhibits complex manifolds whose group of holomorphic transformations does not have any nontrivial compact Lie subgroup, contradicting the property mentioned above. Mark Levine shows for example that the connected component of the identity of Hirzebruch surfaces (i.e., complex surfaces obtained as projective bundles of the rank 2 vector bundles 0 C P i(—k) 0 O C P i over C P 1 ) is a group of matrices isomorphic to the Abelian group Ck. He also gives an example of a surface obtained by appropriately blowing up points on C P 2 so that the connected component of the group of holomorphic transformations is the Heisenberg group, hence another Lie group containing no compact Lie subgroup. In [23] Dan Burns and Paolo de Bartolomeis describe a class of non singular compact surfaces which are non trivially ruled over curves of genus 2 admitting no holomorphic vector fields. Hence, any extremal metric would have to have zero scalar curvature. The existence of such metrics on these manifolds is excluded by a theorem of Andrzej Derdzinski (cf. [49]).
5 Hyper-Kähler Metrics The expression quaternionic-Kähler is now used for metrics with holonomy Spi .Sp 9 . The name hyper-Kähler metrics is reserved to designate metrics with holonomy Sp^, and this denomination is due to Eugenio Calabi. Both topics have had several very interesting developments in recent years, mixing in a very intricate way arguments from Algebraic Geometry, Differential Geometry, the theory of Nonlinear Partial Differential Equations and Integrable Systems. (To get
756
The Unabated Vitality of Kählerian Geometry
757
an idea of this interplay, one can consult the survey articles [4] or [73], or the more systematic introduction given in Chapter 14 of [15].) Taking advantage of the fact that quaternionic-Kähler metrics are not Kähler, in this Section we concentrate on hyper-Kähler metrics, referring only to [20] and [21] for quaternionic-Kähler manifolds. The first example of hyper-Kähler metrics on compact manifolds arose with the solution of the Calabi conjecture on K3 surfaces. This case cannot be considered as completely decisive because of the Lie group isomorphism between SU2 and Spi. In fact, shortly after this discovery, a proof of the non existence of compact manifolds with holonomy Sp 9 for q > 2 circulated. This did affect the discussion by Eugenio Calabi in [29] in which he concentrates on non compact examples. It is interesting to discuss briefly the various geometrical aspects of hyper-Kähler metrics. Depending on which geometric object is taken as fundamental, one gets one or the other. A first possible approach takes the metric as fundamental object. This point of view is in accordance with the name chosen by Eugenio Calabi. It stresses the fact that the metric is Kähler for more than one complex structure, in fact for a whole 2-sphere of complex structures, as in H, the field of quaternions. (Recall that elements of HI are sometimes called hypercomplex numbers.) The 2-sphere of complex structures is obtained as the sphere of radius one in a 3-dimensional subspace of the space of almost complex structures, admitting orthogonal endomorphisms / , J and Κ as an orthonormal basis verifying I J = Κ. The differential condition imposed on the fields / , J and Κ is that they are all parallel, enforcing the reduction of the holonomy group. If the complex structure is taken as primary object, then one needs to introduce a Kähler metric ω and a holomorphic form of type (2,0) φ which is nowhere singular. Of course, this forces the real dimension to be a multiple of 4. Furthermore, φ is assumed to be parallel with respect to the Kähler metric. Because of this, these structures are sometimes called complex symplectic. The connection with the other definition requires some technicalities and is detailed in [29]. In [28], Eugenio Calabi gives a construction of hyper-Kähler metrics on the total space Μ of a holomorphic bundle π : Μ Β with a Kählerian base. This can be considered as an extension to the holomorphic context of the Kaluza-Klein Ansatz connecting Einstein metrics on a 5-dimensional extended space-time to Einstein metrics coupled with some other fields in a 4-dimensional space-time. In a Riemannian context, the data are a metric on the base of a G-bundle, a G-invariant metric on the fibre and a G-connection. These allow to define a metric on the total space. Here, it is tempting to try and get the metric via its Kähler potential keeping in mind the bundle structure. On a holomorphic vector bundle endowed with a Hermitian inner product t, if b is a local Kähler potential around some point in Β, then the Kähler potential on the total space of the bundle is taken to be Μ = b ο π + t. Such a formula gives a Kähler metric on Μ in a neighbourhood of the zero section, or globally if the curvature form of the bundle is non negative.
757
758
Jean-Pierre Bourguignon
Eugenio Calabi only considers bundles which are obtained from vector bundles by taking, in each fibre, a domain defined purely in terms of the distance induced by the Hermitian form t on the underlying vector bundle. Conditions which ensure that the metric is complete are discussed in detail in [28] (cf. also [27]). Theorem (cf. [28]). The Kähler metric determined by the potential b ο π + ζ ο t on the total space ofthe holomorphic cotangent bundle π : T*CPm —• C Pm of complex projective space with f (r) = 7 Γ Τ 4 Γ - log(l + V T + 4 ? ) is hyper-Kähler and complete. In the case m = 1, the Einstein metric found by Eugenio Calabi had already been introduced in General Relativity by Tohru Eguchi and Andrew J. Hanson (cf. [56]) because of its asymptotically Euclidean behaviour at infinity. (In this context, it is rather called a gravitational instanton.) As a consequence, it still bears their name. Generalizations to more than one center were given by Gary Gibbons and Stephen Hawking in [64], The Eguchi-Hanson metric has a companion, the Taub-NUT metric which is asymptotically locally flat (for a definition of this metric, see [15]). This metric has also a generalization with k centers. All these metrics are defined on the minimal resolution of the singularity resulting from the action of Z/&Z on C 2 . In [28], Eugenio Calabi is pessimistic about getting compact manifolds admitting hyper-Kähler metrics. The first example of this type goes back to Akira Fujiki, and consists of a desingularization of the symmetric product of two K3 surfaces, i.e., the quotient of the product by the involution exchanging the factors. In [14], Arnaud Beauville gives wide generalizations of this example by considering higher symmetric products of K3 surfaces or of complex tori. The desingularization is much harder and requires one to look at objects from a different point of view. (For still other points of view on getting explicit hyper-Kähler metrics on K3 surfaces, cf. [22] and [146].) Somewhat later, the connection was made with classical constructions in Symplectic Geometry using momentum mappings (for substantial contributions, see [63], [61], [74], [107], [105], [106], [121], and [122]). This lead to many more examples of hyper-Kähler metrics. For example, using this construction, Peter Kronheimer constructs (cf. [86] and [87]) asymptotically locally Euclidean metrics for all quotient singularities of C 2 by a discrete subgroup of SU2. Metrics on moduli spaces of hyperKähler metrics enjoy special properties which are investigated in [72] and [143]. (For more examples, one can consult [62].)
References [1]
Amorös, J., Burger, M., Corlette, K., Kotschick, D., Toledo, D., Fundamental Groups of Compact Kähler Manifolds. Math. Surveys Monogr. 44, Amer. Math. Soc., Providence, RI, 1996.
758
The Unabated Vitality of Kählerian Geometry
759
[2]
Apte, M., Sur certaines classes caracteristiques des varietes kähleriennes compactes. C. R. Acad. Sei. Paris 240 (1955), 149-151.
[3]
Aspinwall, P. S., Greene, B. R., Morrison, D. R., Spacetime Topology Change: the Physics of Calabi-Yau Moduli Space. In Strings '93, Proc. Conference Berkeley (Halpern, Μ. B. et al., eds.), World Scientific, Singapore 1995, 241-262.
[4]
Atiyah, M. F., Hyperkähler Manifolds. In Complex Geometry and Analysis, Proc. Pisa 1988 (Villani, V., ed.), Lecture Notes in Math. 1422, Springer-Verlag, Berlin-HeidelbergNew York 1990, 1-13.
[5]
Aubin, T., Metriques riemanniennes et courbure, J. Differential Geom. 4 (1970), 363-424.
[6]
Aubin, T., Equations du type de Monge-Ampere sur les varietes kähleriennes compactes. C. R. Acad. Sei. Paris 283 (1976), 119-121.
[7]
Aubin, T., Reduction du cas positif de 1'equation de Monge-Ampere sur les varietes kähleriennes compactes ä la demonstration d'une inegalite. J. Functional Anal. 57 (1984), 143-153.
[8]
Aubin, T., Metriques d'Einstein-Kähler et exponentielles des fonctions admissibles. J. Functional Anal. 88 (1990), 385-394.
[9]
Bando, S., The K-Energy Map, Almost Kähler-Einstein Metrics and an Inequality of the Miyaoka-Yau Type. Töhoku Math. J. 39 (1987), 231-235.
[10] Bando, S., Kobayashi, R., Ricci-Fiat Kähler Metrics on Affine Algebraic Manifolds. In Geometry and Analysis on Manifolds (Proc. Katata-Kyoto 1987), Lecture Notes in Math. 1339, Springer-Verlag, Berlin-Heidelberg-New York 1988, 20-31. [11] Bando, S., Kobayashi, R., Ricci-Fiat Kähler Metrics on Affine Algebraic Manifolds, II. Math. Ann. 287 (1990), 175-180. [12] Bando, S., Mabuchi, T., Uniqueness of Kähler-Einstein Metrics Modulo Connected Group Actions. In Algebraic Geometry (Sendai 1985), Adv. Stud. Pure Math. 10, Kinokuniya, Tokyo 1987, 1 1 ^ 0 . [13] Batyrev, V. V., Mirror symmetry and toric geometry. In Proc. Internat. Congress Math. Berlin 1998, Doc. Math., special vol. II, 1998, 239-248. [14] Beauville, Α., Varietes kähleriennes dont la premiere classe de Chern est nulle. J. Differential Geom. 18 (1983), 755-782. [15] Besse, A. L., Einstein manifolds. Ergeb. Math. Grenzgeb. 10, Springer-Verlag, BerlinHeidelberg 1987. [16] Bochner, S., Vector Fields and Ricci Curvature. Bull. Amer. Math. Soc. 52 (1946), 776-797. [17] Bochner, S., Curvature in Hermitian Metrics. Bull. Amer. Math. Soc. 53 (1947), 179-195. [18] Bourguignon, J.-P., Premieres formes de Chern des varietes kähleriennes compactes. In Seminaire Bourbaki 1977-78, Expose 507, Lecture Notes in Math. 710, Springer-Verlag, Berlin-Heidelberg 1978, 1-21. [19] Bourguignon, J.-P, Invariants intdgraux fonctionnels pour des equations aux d6riv6es partielles d'origine geometrique. In Differential Geometry, Peniscola 1985, Lecture Notes in Math. 1209, Springer-Verlag, Berlin-Heidelberg-New York 1986, 100-108.
759
760
Jean-Pierre Bourguignon
[20] Boyer, C. P., Galicki, K., Mann, Β. M., Quaternionic reduction and Einstein manifolds. Commun. Anal. Geom. 1 (1993), 229-279. [21] Boyer, C. P., Galicki, K., Mann, Β. M., Quaternionic geometry and 3-Sasakian manifolds. In Quaternionic structures in mathematics and physics (Gentiii, G. et al., eds.), Proc. Internat. School Adv. Studies (SISSA), 1998, 7-24. [22] Braam, P. J., Maciocia, Α., Todorov, Α., Instanton Moduli as a Novel Map from Tori to K3 Surfaces. Invent. Math. 108 (1992), 419-451. [23] Burns, D., de Bartolomeis, P., Stability of Vector Bundles and Extremal Metrics. Invent. Math. 92 (1988), 4 0 3 ^ 0 7 . [24] Calabi, E., The Variation of Kahler Metrics. Bull. Amer. Math. Soc. 60 (1954), 167-168. [25] Calabi, E., On Kahler Manifolds with Vanishing Canonical Class. In A Symposium in Honor ofS. Lefschetz, Princeton University Press, Princeton 1955, 78-89. [26] Calabi, E., The Space of Kähler Metrics. In Proc. International Congress of Mathematicians, Amsterdam 1954, Vol. II, Groningen-Amsterdam 1954, 206-207. [27] Calabi, E., Construction de metriques de Kähler-Einstein. In Premiere classe de Chern et courbure de Ricci: Solution de la conjecture de Calabi, Asterisque 58 (1978), 129-136. [28] Calabi, E., Metriques kähleriennes et fibres holomorphes. Ann. Sei. £c. Norm. Sup. Paris 12 (1979). 269-294. [29] Calabi, E., Isometric Families of Kähler Structures. In The Chern Symposium, Berkeley 1979, Springer-Verlag, New York 1980, 23-39. [30] Calabi, E., Extremal Kähler Metrics. In Seminar on Differential Geometry (S. T. Yau, ed.), Ann. Math. Studies 102, Princeton Univ. Press, Princeton 1982, 259-290. [31] Calabi, E., Extremal Kähler Metrics, II. In Differential Geometry and Complex Analysis, Rauch Memorial Volume (Chavel, I., Farkas, Η. M., eds.), Springer-Verlag, New York 1985, 95-114. [32] Cao, H. D., Deformation of Kähler Metrics to Kähler-Einstein Metrics on Compact Kähler Manifolds. Invent. Math. 81 (1985), 359-372. [33] Cao, H. D„ On Hamack's Inequalities for the Kähler-Ricci Flow. Invent. Math. 109 (1992), 247-263. [34] Cao, H. D., Limits of Solutions to the Kähler-Ricci Flow. J. Differential Geom. 45 (1997), 257-272. [35] Cao, H. D., Tian, G., Zhu, X. H., Kähler-Ricci solitons on compact Kähler manifolds with c\ > 0. Preprint, Beijing Univ., 2002. [36] Chen, B. L., Tang, S. H., Zhu, X. P., A Uniformization Theorem for Complete Noncompact Kähler Surfaces with Positive Bisectional Curvature. Prepublication, 2001. [37] Chen, Χ. X., On the lower bound of the Mabuchi Energy and its Application. Internat. Math. Res. Notes 12 (2000), 607-623. [38] Chen, Χ. X., The space of Kähler metrics. J. Differential Geom. 56 (2000), 189-234. [39] Chen, Χ. X., Calabi Flow in Riemann Surfaces Revisited: A New Point of View. Internat. Math. Res. Notes 6 (2001), 275-297.
760
The Unabated Vitality of Kählerian Geometry
761
[40] Chen, Χ. X., Guan, D., Existence of Extremal Metrics on Almost Homogeneous Manifolds of Cohomogeneity One. Asian J. Math. 4 (2000), 817-830. [41] Chen, Χ. X., Tian, G„ Ricci Flow on Kahler Manifolds. C. R. Acad. Sei. Paris 332 (2001), 245-248. [42] Chen, Χ. X., Tian, G., Ricci Flow on Kähler-Einstein Surfaces. Invent. Math. 147 (2002), 487-544. [43] Cheng, S. Y., Yau, S. T., On the Existence of a Complete Kähler Metric on Noncompact Complex Manifolds and the Regularity of Fefferman's Equation. Commun. Pure Appl. Math. 33 (1980), 507-544. [44] Chern, S. S., A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds. Ann. Math. 45 (1944), 747-752. [45] Chern, S. S., Characteristic Classes of Hermitian Manifolds. Ann. Math. 47 (1946), 85-121. [46] Demailly, J.-R, Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds. Ann. Sei. £c. Norm. Sup. Paris 34 (2001), 525-556. [47] Demailly, J.-R, Ein, L., Lazarsfeld, R., A subadditivity property of multiplier ideals. Michigan Math. J. 48 (special vol.) (2000), 137-156. [48] Demailly, J.-R, Peterneil, T., Schneider, M., Compact Kähler manifolds with Hermitian semipositive anticanonical bundle. Compositio Math. 101 (1996), 217-224. [49] Derdzinski, Α., Self-Dual Kähler Manifolds and Einstein Manifolds of Dimension Four. Compositio Math. 49 (1983), 4 0 5 ^ 3 3 . [50] Ding, W., Remarks on the Existence Problem of Positive Kähler-Einstein Metrics. Math. Ann. 282 (1988), 463-471. [51] Ding, W, Tian, G., Kähler-Einstein Metrics and the Generalized Futaki Invariant. Invent. Math. 110 (1992), 315-335. [52] Donaldson, S. K., Anti-Self-Dual Yang-Mills Connections over Complex Algebraic Surfaces and Stable Vector Bundles. Proc. London Math. Soc. 50 (1985), 1-26. [53] Donaldson, S. K., Symmetric spaces, Kähler geometry and Hamiltonian dynamics. In Northern California Symplectic Geometry Seminar (Eliashberg et al., eds.), Amer. Math. Soc., Providence, RI, 1999, 13-33. [54] Donaldson, S. K., Scalar curvature and projective embeddings, I. J. Differential Geom. 59 (2001), 479-522. [55] Donaldson, S. K., Symmetry, Hamiltonian Dynamics. Preprint, Imperial College, London, 2002. [56] Eguchi, T., Hanson, A. J., Asymptotically Flat Solutions to Euclidean Gravity. Phys. Lett. Β 54(1978), 249-251. [57] Futaki, Α., On Compact Kähler Manifolds of Constant Scalar Curvature. Proc. Japan Acad. Sei. 59 (1983), 4 0 1 ^ 0 2 . [58] Futaki, Α., An Obstruction to the Existence of Kähler-Einstein Metrics. Invent. Math. 73 (1983), 437-443. [59] Futaki, Α., Kähler-Einstein Metrics and Integral Invariants. Lecture Notes in Math. 1314, Springer, Berlin-Heidelberg-New York, 1988.
761
762
Jean-Pierre Bourguignon
[60] Futaki, Α., On a Character of the Automorphism Group of a Compact Complex Manifold. Invent. Math. 87 (1987), 655-660. [61] Galicki, K., A Generalization of the Momentum Mapping Construction for Quatemionic Kahler Manifolds. Commun. Math. Phys. 108 (1987), 117-138. [62] Galicki, K., Multi-Centre Metrics with Negative Cosmological Constant. Class. Quantum Grav. 8 (1991), 1529-1543. [63] Galicki, K., Lawson, Η. B., Quatemionic Reduction and Quatemionic Orbifolds. Math. Ann. 282(1989), 1-21. [64] Gibbons, G. W., Hawking, S. W., Gravitational Multi-Instantons. Phys. Lett. Β 78 (1978), 430-434. [65] Greene, Β. R., Mirror symmetry: A Brief Review of the First 10 Years. In Current Developments in Mathematics, 1998 (Mazur, B., et al., eds.), International Press, Somerville 1999,1-34 [66] Greene, B. R., Kirklin, Κ. H., Miron, P. J., Topology and Geometry in SuperstringInspired Phenomenology. In String Theory (Yau, S. T., ed.), World Scientific, Singapore 1988, 441-487. [67] Gromov, M, Metric Properties of Kahler Manifolds, Prepublication, Inst. Hautes Etudes Sei., Bures-sur-Yvette 1993. [68] Guggenheimer, Η., Über vierdimensionale Einsteinräume. Experientia 8 (1952), 420-421. [69] Hirzebruch, F., Some Problems on Differentiable and Complex Manifolds. Ann. Math. 60 (1954), 210-236. [70] Hirzebruch, F., Neue topologische Methoden in der algebraischen Geometrie. Grundlehren Math. Wiss. Grenzgeb. 9, Springer-Verlag, Heidelberg 1962. [71] Hirzebruch, F., Kodaira, K., On the Complex Projective Spaces. J. Math. Pures Appl. 36 (1957), 201-216. [72] Hitchin, N. J., Metrics on Moduli Spaces. In Proc. Lefschetz Centennial Conference, Contemp. Math. 58, Birkhäuser, Basel 1986. [73] Hitchin, N. J., Hyper-Kähler Manifolds. In Seminaire Bourbaki, Expose 748, Asterisque 206(1992), 137-166. [74] Hitchin, N. J., Karlhede, Α., Lindström, U., Rocek, M., Hyper-Kähler Metrics and Supersymmetry. Commun. Math. Phys. 108 (1987), 535-589. [75] Hodge, W., Theory and Applications of Harmonic Integrals. Cambridge University Press, New York 1941. [76] Hulin, D., Kähler-Einstein metrics and projective embeddings. J. Geom. Anal. 10 (2000), 525-528. [77] Kahler, Ε., Über eine bemerkenswerte Hermitesche Metrik. Abh. Math. Sem. Hamburg Univ. 9 (1933), 173-186 (= [12] in Kähler's Bibliography at the end of this volume). [78] Kazdan, J. L., Remark on the Preceding Paper by S. T. Yau. Commun. Pure Appl. Math. 31 (1978), 412-413.
762
The Unabated Vitality of Kählerian Geometry
763
[79] Kobayashi, R., Ricci-Fiat Kahler Metrics on Affine Algebraic Manifolds and Degeneration of Kähler-Einstein K3 Surfaces. In Adv. Stud. Pure Math. 18-11, Kinokuniya and Academic Press, Tokyo and New York 1990. [80] Kobayashi, R., Todorov, Α., Polarized Period Map for Generalized K3-Surfaces and the Moduli of Einstein Metrics. Töhoku Math. J. 39 (1987), 145-151. [81] Kobayashi, S., Curvature and Stability of Vector Bundles. Proc. Japan Acad. Sei. 58 (1982), 158-162. [82] Kobayashi, S., Differential Geometry of Complex Vector Bundles. Publ. Math. Soc. Japan 15, Princeton University Press, Princeton, and Iwanami Shoten, Tokyo 1987. [83] Koiso, N., Sakane, Y., Non-Homogeneous Kähler-Einstein Metrics on Compact Complex Manifolds. In Curvature and Topology ofRiemannian Manifolds, Lecture Notes in Math. 1201, Springer-Verlag, Berlin 1986, 166-179. [84] Koiso, N., Sakane, Y., Non-Homogeneous Kähler-Einstein Metrics on Compact Complex Manifolds. Osaka J. Math. 25 (1988), 933-959. [85] Kontsevich, M., Mirror Symmetry in Dimension 3. In Seminaire Bourbaki, Exp. 801, Vol. 1994/95, Soc. Math. France, Asterisque 237 (1996), 275-293. [86] Kronheimer, P. B., Instantons gravitationnels et singularites de Klein. C. R. Acad. Sei. Paris 303 (1986), 53-55. [87] Kronheimer, P. B., The Construction of ALE Spaces as Hyper-Kähler Quotients. J. Differential Geom. 29 (1986), 665-683. [88] Lanczos, C, A Remarkable Property of the Riemann-Christoffel Tensor in Four Dimensions. Ann. Math. 39 (1938), 842-850. [89] LeBrun, C., Singer, M, Existence and Deformation Theory for Scalar Flat Kahler Metrics on Compact Complex Surfaces. Invent. Math. 112 (1993), 273-313. [90] Levine, M., A Remark on Extremal Kahler Metrics. J. Differential Geom. 21 (1985), 73-77. [91] Lichnerowicz, Α., Sur les transformations analytiques des varietes kähleriennes. C. R. Acad. Sei. Paris 244 (1957), 3011-3014. [92] Lichnerowicz, Α., Geometrie des groupes de transformations. Dunod, Paris 1958. [93] Ltibke, M., Stability of Einstein-Kähler Vector Bundles. Manuscripta Math. 42 (1983), 245-257. [94] Mabuchi, T. K-energy Maps Integrating Futaki Invariants. Töhoku Math. J. 38 (1986), 245-257. [95] Matsushima, Y., Sur les espaces homogenes kähleriens d'un groupe reductif. Nagoya Math. J. 11 (1957), 53-60. [96] Matsushima, Y., Sur la structure du groupe d'homeomorphismes d'une certaine variete kählerienne. Nagoya Math. J. 11 (1957), 145-150. [97] Mok, N., Yau, S. T., Completeness of the Kähler-Einstein Metric on Bounded Domains and the Characterization of Domains of Holomorphy by Curvature Conditions. In The Mathematical Heritage of Henri Poincare, Proc. Symp. Pure Math. 39 Part 1, Amer. Math. Soc. Providence, RI, 1983, 41-59.
763
764
Jean-Pierre Bourguignon
98] Mok, N., Zhong, J. Q., Compactifying Complete Kähler-Einstein Manifolds of Finite Topological Type and Bounded Curvature. Ann. Math. 129 (1989), 427-470. 99] Mori, S., Projective Manifolds with Ample Tangent Bundles. Ann. Math. 110 (1979), 593-606. 100] Morrison, D. R., Geometric Aspects of Mirror Symmetry. In Mathematics unlimited2001 and beyond (Engquist, Björn et al., eds.), Springer-Verlag, Berlin 2001, 899-918. 101] Müller, W., Wendland, Κ., Extremal Kähler Metrics and Ray-Singer Analytic Torsion. Contemp. Math. 242 (1999), 135-160. 102] Nadel, A. M., Multiplier Ideal Sheaves and Existence of Kähler-Einstein Metrics of Positive Scalar Curvature. Proc. Nat. Acad. Sei. U.S.A. 86 (1989), 7299-7300. 103] Nadel, A. M., Multiplier Ideal Sheaves and Kähler-Einstein Metrics of Positive Scalar Curvature. Ann. Math. 132 (1990), 549-596. 104] Newlander, Α., Nirenberg, L., Complex Analytic Coordinates in Almost Complex Manifolds. Ann. Math. 65 (1957), 391^104. 105] Pedersen, H., Hamiltonian Constructions of Kähler-Einstein Metrics and Kähler Metrics of Constant Scalar Curvature. Commun. Math. Phys. 136 (1991), 309-326 . 106] Pedersen, H., Hyperkähler Metrics and Monopoles. In The Mathematical Heritage ofC. F. Gauss, World Publ., River Edge 1991, 573-584. 107] Pedersen, Η., Poon, Y. S., Hyperkähler Metrics and a Generalization of the Bogomolny Equations. Commun. Math. Phys. 117 (1988), 569-580. 108] de Rham, G., Varietes differentiables. Formes, Courants, Formes Harmoniques. 3^ me ed., Publ. Inst. Math. Univ. Nancago III, Act. Sei. Indust. 1222, Hermann, Paris 1973. 109] Sakane, Υ., Examples of Compact Einstein-Kähler Manifolds with Positive Ricci Tensor. Osaka J. Math. 23 (1986), 585-616. 110] Schouten, J. Α., Über unitäre Geometrie. Nederl. Akad. Wetensch. Indagationes Math. 32 (1929), 457—465. 111] Schouten, J. Α., Van Dantzig, D., Über unitäre Geometrie. Math. Ann. 103 (1930), 319-346. 112] Seminaire Palaiseau, Premiere classe de Chern et courbure de Ricci: Solution de la conjecture de Calabi. Asterisque 58 (1978). 113] Seminaire Palaiseau, Geometrie des surfaces K3. Asterisque 126 (1985). 114] Semmes, S., Complex Monge-Ampere and Symplectic Manifolds. Amer. J. Math. 114 (1992), 495-550. 115] Shi, W. X., Ricci flow and the Uniformization on Complete Non-compact Kähler Manifolds. J. Differential Geom. 45 (1997), 94-220. 116] Siu, Y. T„ Every K3-surface is Kähler. Invent. Math. 73 (1983), 139-150. 117] Siu, Υ. T., Lectures on Hermite-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics. Deutsche Mathematiker Verein. Seminar 8, Birkhäuser, Basel 1987. [118] Siu, Υ. T., Kähler-Einstein Metrics for the Case of Positive First Chern Class. In Complex Analysis III (Berenstein, C. Α., ed.), Lecture Notes in Math. 1277, Springer-Verlag, Berlin-Heidelberg-New York 1987, 120-130.
764
The Unabated Vitality of Kählerian Geometry
765
119] Siu, Υ. T., The Existence of Kähler-Einstein Metrics on Manifolds with Positive Anticanonical Line Bundle and a Suitable Finite Symmetry Group. Ann. Math. 127 (1988), 585-627. 120] Strominger, Α., Yau, S. T., Zaslow, E., Mirror Symmetry is T-Duality. In Winter school on Mirror Symmetry: Vector Bundles and Lagrangian Submanifolds (Vafa, C., et al., eds.), Amer. Math. Sei., Providence, Amer. Math. Soc. /Int. Press Stud. Adv. Math. 23, 2001, 333-347. 121] Swann, A. E, Aspects symplectiques de la geometrie quatemionique. C. R. Acad. Sei. Paris 308 (1989), 225-228. 122] Swann, A. F., Hyperkähler and Quaternionic Kähler Geometry. Math. Ann. 289 (1991), 421-450. 123] Taubes, C. E., The Existence of Anti-Self-Dual Conformal Structures. J. Differential Geom. 36 (1992), 163-253. 124] Tian, G., On Kähler-Einstein Metrics on Certain Kähler Manifolds with c\{M) > 0. Invent. Math. 89 (1987), 225-246. 125] Tian, G., On Calabi's Conjecture for Complex Surfaces with Positive First Chern Class. Invent. Math. 101 (1990), 101-172. 126] Tian, G., Kähler-Einstein Metrics on Algebraic Manifolds. In Proc. Int. Congress Math. Kyoto 1990, Springer-Verlag, Tokyo 1991, 587-598. 127] Tian, G., On Stability of the Tangent Bundles of Fano Varieties. Internat. J. Math. 3 (1992), 401-413. 128] Tian, G., Degeneration of Kähler-Einstein Manifolds, I. Proc. Amer. Math. Soc. Symposia Pure Math. 54 2 (1993), 595-609. 129] Tian, G., The K-Energy on Hypersurfaces and Stability. Commun. Geom. Anal. 2 (1994), 239-265. 130] Tian, G., Kähler-Einstein Metrics with Positive Scalar Curvature. Invent. Math. 130 (1997), 1-39. 131] Tian, G., Kähler-Einstein Manifolds of Positive Scalar Curvature. In Essays on Einstein manifolds, Surv. Differential Geom. VI, Int. Press, Boston 1999, 67-82. 132] Tian, G., Canonical Metrics in Kähler Geometry. Notes taken by M. Akveld, Lectures in Math. ΕΤΗ Zürich, Birkhäuser, Basel 2000. 133] Tian, G., Bott-Chern forms and Geometric Stability. Discrete Contin. Dynamical Systems 6 (2000), 211-220. 134] Tian, G., Extremal Metrics and Geometric Stability (Special issue for Prof. Chern, S. S.). Houston J. Math. 28 (2002), 411-432. 135] Tian, G., Yau, S. T., Existence of Kähler-Einstein Metrics on Complete Kähler Manifolds and their Applications to Algebraic Geometry. In Mathematical Aspects of String Theory (San Diego, California, 1986), Adv. Series Math. Phys. 1, World Sei. Publ., Singapore, 1987, 574-628. [136] Tian, G., Yau, S. T., Kähler-Einstein Metrics on Complex Surfaces with c\(M) Positive. Commun. Math. Phys. 112 (1987), 175-203.
765
766
Jean-Pierre Bourguignon
[137] Tian, G., Yau, S. T., Complete Kähler Manifolds with Zero Ricci Curvature, I. J. Amer. Math. Soc. 3 (1990), 579-609. 138] Tian, G., Yau, S. T., Complete Kähler Manifolds with Zero Ricci Curvature, II. Invent. Math. 106 (1991), 27-60. 139] Tian, G., Zhu, X. H., Uniqueness of Kähler-Ricci solitons on Compact Kähler Manifolds. C. R. Acad. Sei. Paris 329 (1999), 991-995. 140] Tian, G., Zhu, X. H., Uniqueness of Kähler-Ricci solitons. Acta Math. 184 (2000), 271-305. 141] Tian, G., Zhu, X. H., A Nonlinear Inequality of Moser-TrudingerType. Calc. Var. Partial Differential Equations 10 (2000), 349-354. 142] Tian, G., Zhu, X. H., A New Holomorphic Invariant and Uniqueness of Kähler-Ricci Solitons. Comment. Math. Helv. 77 (2002), 297-325. 143] Todorov, Α., Applications of the Kähler-Einstein-Calabi-Yau Metric to Moduli of K3 Surfaces. Invent. Math. 61 (1980), 251-265. 144] Todorov, Α., Spinors and Moduli of Einstein Metrics on Kähler Simply Connected Manifolds with a Canonical Class Κ = 0. In Lect. on Supermanifolds, Geometrical Methods and Conformal Groups, World Sei. Publ., Singapore 1989, 38—43. 145] Toledo, D., Projective Varieties with non-Residually Finite Fundamental Group. Publ. Math. Inst. Hautes Etudes Sei. 77 (1993), 103-119. 146] Topiwala, P., A New Proof of the Existence of Kähler-Einstein Metrics on K3,1. Invent. Math. 89 (1987), 425-448 ; idem, II, ibidem, 449-454. 147] Uhlenbeck, Κ. K., Yau, S. T., On the Existence of Hermite-Yang-Mills Connections in Stable Vector Bundles. Commun. Pure Appl. Math. 39 (1986), 257-293. 148] Voisin, C., Symetrie miroir. Panoramas et Syntheses 2, Soc. Math. France, Paris 1996. 149] Weil, Α., Introduction ä l'etude des varietes kähleriennes. Publ. Inst. Math. Univ. Nancago VI, Act. Sei. Indust. 1267, Hermann, Paris 1958. 150] Witten, Ε., Holomorphic Curves on Manifolds of SU3 Holonomy. In String Theory (Yau, S. T., ed.), World Scientific, Singapore 1988, 145-149. 151] Yau, S. T., On Calabi's Conjecture and some New Results in Algebraic Geometry. Proc. Nat. Acad. Sei. U.S.A. 74 (1977), 1798-1799. 152] Yau, S. T., On the Ricci-Curvature of a Complex Kähler Manifold and the Complex Monge-Ampere Equation, I. Commun. Pure Appl. Math. 31 (1978), 339—411. 153] Yau, S. T., Metriques de Kähler-Einstein sur les varietes ouvertes. In Premiere classe de Chern et courbure de Ricci: Solution de la conjecture de Calabi, Asterisque 58 (1978), 163-167. 154] Yau, S. T., Essay on Mirror Manifolds. Int. Press, Hong Kong, 1993. 155] Zhu, Χ. Η., Kähler-Ricci Soliton Typed Equations on Compact Complex Manifolds with ci > 0. J. Geometric Anal. 10 (2000), 759-774.
766
Some Applications of the Cartan-Kähler Theorem to Economic Theory Ivar Ekeland
1 The Economic Problem The purpose of this short paper is to show how a fundamental problem of economic theory gives rise to a system of nonlinear PDEs of the first order which - up to now - can only be solved by applying the celebrated Cartan-Kähler theorem on integral manifolds of exterior differential systems (see [3], [2]). Following standard definitions in microeconomics (see [8] for an exhaustive review of the theory), an economy is described by Ν agents and Κ goods. Agents trade and consume, not individual goods, but bundles, each bundle being described by a point χ = (jc1,...,xK) e Κ*", where xk denotes the quantity of goodfc;for instance, we do not eat or buy bread and butter separately, but sandwiches, which are certain bundles of bread and butter. There will also be a set of prices ρ = (p\,..., ρ κ) £ Μ*. If the k prevailing price system is p, the cost of bundle χ is p'x = ^ PkX Agent η is fully described by his utility function Un: M^ - * Μ and by his initial endowment', the latter can be given - either in real terms, namely a goods bundle ωη e at market prices,
, which the agent will trade
- or in monetary terms, namely a wealth wn e Μ which the agent will spend. The utility function determines the preferences, and hence the behaviour, of the consumers: agent η prefers the bundle χ to the bundle y iff Un (x) > Un (>>). Given his initial endowment, agent η chooses the bundle he prefers among all those he can afford. This leads to an optimization problem. - In the case of real endowments, ωη e R ^ , the agent's problem is n
max U (JC) , X
p'x < ρ'ωη,
leading to a solution xn (p) which is the agent's response to the set of prices p. The map
Zn (Ρ) = Xn (Ρ) - ω„ is called the excess demand of agent n.
767
768
Ivar Ekeland - In the case of monetary endowments, wn e M, the agent's problem is max Un (λ:) , χ
ρ'χ < wn,
leading to a solution xn (p) which is called the market demand of agent n. Suitable assumptions, mainly strict concavity of the utility functions, will ensure that the excess demand or market demand functions are well-defined, smooth, and satisfy the so-called Walras law, which simply expresses the fact that all available resources are spent towards acquiring the consumption bundle: p'Zn (Ρ) =0
Or p'xn (p) = Wn.
Typically, it will be assumed that Un is C 2 , and that its second derivative is positive definite, so that the solutions x„ (p) or xn (p) are unique, depend smoothly on the data, and activate the budget constraint. In practice, the utility function of an individual cannot be observed, but his demand can. This leads to a very interesting question: suppose one observes the (excess or market) demand of an individual; does it arise from a maximization procedure similar to the one I just described, and if so, can one recover the utility function Un from the data? In the case of market demand, the answer has been known very early on, since the work of Antonelli [1], later rediscovered by Slutsky [11]. It turns out that, to arise from a maximization procedure, the market demand of an individual must satisfy a stringent set of conditions, and if it does so, then the corresponding preferences are fully determined. However, individual demand is hard to observe. It is much easier to observe the aggregate demand of a large number of consumers, for instance by sifting through macroeconomic data. With the above notations, we define aggregate excess demand by Ν
Ζ(ρ) =
Σζί(ρ), n=1
and aggregate market demand by Ν χ (p) = £ > ( / > ) , n= 1 so that both satisfy the Walras law: p'Z(p)=
0,
and
p'X (p) = ] T u ; n .
In a celebrated series of papers, around 1975, Sonnenschein, Mantel and Debreu treated the case of excess demand. They proved that, if there are more agents than goods, Ν > K, then any function Ζ (ρ) satisfying the Walras law can be written as Ζ (ρ) = Σ z> where the ζι (p) are individual excess demands (see [8], [10] and
768
Some Applications of the Cartan-Kähler Theorem to Economic Theory
769
the references therein), and this result has been very influential in the development of economic theory. Surprisingly, the corresponding problem for market demand remained open until very recently; it is only in 1995 that Chiappori and Ekeland [4] proved a similar result. Their proof uses the Cartan theory of exterior differential systems, and the Cartan-Kähler theorem.
2 The Mathematical Problem Define, for 1 > η > Ν, the indirect utility function Vn by V" (p) = max [Un (χ) \ p'x < wn) = Un (χ (ρ)),
with p'xn (p) = wn.
There is a one-to-one correspondence between V" and Un, and we can recover one from the other. If Un is quasi-concave, then Vn is quasi-convex, and conversely. By the Lagrange multiplier rule, there exists some λ" (ρ) > 0 such that Vn (p) = max { U n (χ) + λ" (ρ) (wn -
p'x)}
= UH (x (p)) + λ" (ρ) (w n - p'x η (ρ)) · Differentiating this identity with respect to p, most terms cancel, and we are left with DVn (ρ) = -λη
(p)xn
(p).
So the vector field xn = —DVn/Xn must be collinear to a gradient, a very strong condition. Unfortunately, we do not observe the individual demands xn, only their aggregate. Summing up, we get: X(p)
DVn
A = - Y S
λ
(p)
(1)
" (Ρ)
In addition, we adjoin the condition p'xn (p) = wn, which yields p'DV"(p)
= -Xn(p)wn.
(2)
We now state the mathematical problem to be solved: given X (p), satisfying p'X (ρ) = Σ w n, find convex functions V 1 , . . . , VN and positive functions λ 1 , . . . , λ Ν satisfying (1) and (2). Computing the λ" from (2) and writing the result in (1), we get Λ DVn (p) > - w n=1
769
n
= -X(p)
(3)
Ivar Ekeland
770
which is a system of Κ nonlinear equations of the first order for Ν functions of Κ variables. The following result, which is due to Chiappori and Ekeland (see [4]), states that this system can be solved locally, provided the right-hand side X (ρ) is real analytic Theorem 1. Assume Ν > K. Consider some open set V. in ~RK \ {0}, some n-uple (u>i,..., w^) with wn > 0, and some analytic map X: V. K^ such that NK p'X (p) = £ wn. For all ρ €U and for all (χ\,..., xN) 6 R and (λ1,..., λΝ) € that satisfy Σ xn = X (p) and λ" > 0, there exists real-analytic functions Vn and λη, 1 < η < Ν, defined on some neighourhood Μ of p, such that: 1. for all n, DpVn (ρ) = -ληχη,
λ η (ρ) = λη;
Vn (ρ) is positive definite;
2. for all η,
3. (Vn, λ"), 1 < η < Ν, solve (1) and (2). As a consequence, we extend the Mantel-Sonnenschein-Debreu result to market demand: Corollary 2. Assume Ν > Κ. Consider some open set U in R*· \ {0}, some n-uple (w\,..., w^) with wn > 0, and some analytic map X: V. WK such that p'X (ρ) = Σ wn. For all ρ eU and for all (xi,...,xN)e RNK and (λ1,..., λΝ) e that satisfy Σ = Χ (ρ) > ρ'χη (ρ) = wn andkn > 0, there exists real-valued functions Un and λ", 1 < η < Ν, such that: 1. Un is defined on some convex neighbourhood V„ of χn where it is analytic and strictly quasi-concave; 2. the λη are all defined on some neighourhood <Sf of p, where there are analytic and positive; 3. for all n, xn(p) = xn, λ" (ρ) = λ"; 4. for all ρ € Μ, we have: p'xn(p)
= U)
n for all η, Ν
Χ(Ρ) = ΣΧ" η—1
(Ρ)'
dun ö^f Un
(ρ)) =
λ
(ρ) Pk for all η, k,
(ρ)) = max [Un (χ) \ χ e V„, ρ'χ < wn}
770
for all η.
Some Applications of the Cartan-Kähler Theorem to Economic Theory
771
The proof of the theorem will be described in the next section. Note that it is not known whether one can solve the system (1), (2) when the right-hand side X (ρ) is C 0 0 instead of analytic. A simple case is the system vx
ΙΙχ — ι Uz
—
=
f ( * , y , z )
=
g ( x , y , z ) ,
Vz
Uy — ι
Vy —
"z
vz
to be solved for two functions u ( x , y , z ) and ν ( x , y , z ) of three variables, with / and g given and C°°. We have been investigating this system for some time without success.
3 Proof Introduce the space Ε
= RK
χ
R
n
χ R
n k
=
{ ( p
k
, ß
n
, A % ) I 1 < k,k'
< Κ , 1 < n,n
<
N } .
In this space, consider the submanifold Μ defined by the equations ^
Xk
=
Tpk^kn = \ '
for all
(p)
k,
for all n.
μη
(4) (5)
Sums are carried over repeated indices. The equations are independent, so that Μ is a submanifold of codimension (N + L) An Μ (and not in Ε) we consider the exterior differential system (EDS): Σ dpi a
dA
n
Λ
· · ·
λ
dPk
= 0
d
φ
P K
for all
0.
n,
(6) (7)
This EDS is equivalent to the system (1), (2). An integral manifold of (6),(7) is the graph of a map (Δ^ (ρ), μη (ρ)) , 1 < η < Ν; relations (6) mean that Δ^ (ρ) = for some function Vn, and setting λη = —1/μη we get (1) and (2) from (4) and (5). We now apply the Cartan-Kähler theorem, bearing in mind that we seek convex Vn and negative μη . The system is obviously closed. The next step is to find integral elements. This is done in the standard fashion, by writing άμη
=
Σ
mnkd
dAkn
=
J^8
k
771
Pk
k n
'd
(8)
P k
,
(9)
772
Ivar Ekeland
and substituting in (4),(5) and (6). The latter gives d
n
=
d
n >
and the other two give ο yk Σ
nk
+ Σ
μ»ή*
ΣΔ*+Σ(^n)2p^n'
=
"ξ-
f o r all * , k'
= ~mnk
(10)
fora11 k n >-
dD
This is a system of Κ 2 + Κ Ν equations for the Ν Κ + Ν Κ (Κ + 1) / 2 variables mnk, 8kk . We seek a solution such that the Ν matrices 8kk are symmetric, of course, but also positive definite: once the integral manifold is found, we will have Δ* ( p ) = and (9) then gives 8kk> =
(
dPkdPk'
Having 8kk' positive definite ensures that Vn is convex in a neighbourhood of p. Back to the equations (10) and (11). Substituting the second into the first, we eliminate mnk and get an equation for Skk only:
Σ
- Σ (^n)2 ρ*"8™'Δ« = rhs for a11 k'>
(12>
where rhs stands for some right-hand side which we do not care to write down. This is now a system of K 2 linear equations in Λ^ AT (/«Γ -f-1) / 2 unknowns (bearing in mind that 8kk = Skk), and we want a solution which makes all the matrices Sn positive definite. To do this, we will show that the kernel of this system contains a family δ„, 1 < η < /V, where all the Sn are positive definite. If the family <5® is any solution of (12), then the family Sn = + αδ„, is also a solution, and for α > 0 large enough it will be positive definite. So our next step is investigate the homogeneous system
Σ
~Σ
PK'
f0r
Μ k> k'>
and to show that it has a solution 8n, 1 < n < Ν, with all the <5„ positive definite. Let us rewrite this system as a relation between matrices. Call 8n the matrix > η 2 k kk> k> and set y = ^ Pk'8 . Call yn and ζ„ the vectors with components y and ( μ ) Ak. Equation (13) then can be rewritten as
where γη ζη must be understood as a rank one matrix. Since the 8n are symmetric, so is the first term in this equation, and therefore the sum ]Γ η γηζ„ must also be symmetric. By a celebrated lemma of Elie Cartan, this means that there is a symmetric (Ν χ Ν) matrix A such that yn = Αζη for every n.
Ill
(13)
Some Applications of the Cartan-Kähler Theorem to Economic Theory
In conclusion, there is a symmetric matrix A =
773
') such that
= ( μ η ' ) 2 Σ α η η ' Α η ' for all Λ, η,
(15)
and writing this back into (13), we get =
all*.*'·
(16)
Let us rewrite this system in matrix terms again. The family Sn, 1 < η < Ν, of symmetric matrices, solves (13) if and only if it satisfies the system Snp =
for all η
Σ β η * η = Σ " ™ ' W f (μ"') 2 Δ„ (Δ„/)'
(17) (18)
for some symmetric matrix A = (ann). One can check that the last equation is compatible with the preceding ones. Indeed, the first Ν equations give
and the last one =
(μ») 2 (μη')2Αη
(An>p) ,
but since Δη>ρ = 1/μ π ' by (5), and a n n > = a n n , the two relations coincide. We end up with an interesting mathematical question: given (N + 1) vectors x\,..., XN and y in K ^ , given a positive definite matrix Q, does there exist Ν positive definite matrices Μ ι,..., ΜΝ such that Μη y — χη and Σ Μ„ = ζ)Ί Note that there χ are obvious necessary conditions, namely that Σ η = Qy and (x n , y) > 0 for all n. In our case, xn is the right-hand side of (17), y = ρ and Q is the right-hand side of (18); in the paper [4] we solved that particular case, but since then, Professor Inchtchakov ([7]) and Professor SanMartin ([9]), independently of each other, have solved the general case. Let us state and prove Inchtchakov's result. Without loss of generality, assume Q = /, and consider the quadratic form: Z
(Cz, z) = V]
\
- (ζ, z)
which vanishes on y = z. Lemma 3. Assume (xn, y) Φ 0 for all n. Then a necessary and sufficient condition for the existence of positive definite matrices Mn such that Mny = xn for all η and Σ Mn = / is that Σχη = y< (χη» y) > 0 for all n, and (Cz, z) < 0 for all z not collinear with y.
773
Ivar Ekeland
IIA
Proof. Let us first prove necessity. Consider the quadratic form ν _ (Mny,z)2 \\-nZ, Ζ) — (Mny,y)
_ —
( r
{χη,ζ)2 (xn,y)
·
By Cauchy-Schwarz, since M„ is positive definite, we have (Cnz, z) < (Mnz, z) unless ζ is collinear to y. Adding up, we find Σ (C n z, z) < (z, z) ,as announced. Conversely, assume ^ xn — y, y) > 0 for all n, and (Cz, ζ) < 0 for all ζ not collinear with y. Define Bnz =
-Xn, (χη, y)
Βο =
Ι~ΣΒ"
Then Bny — xn and Boy = y — Σχη (CnZ, z) =
(xn, y)
(Cz, ζ) = Σ
1
<,n
= 0 · Note also that = (Bnz, z) > 0
(Bnz, z) - (z, z) = - (Boz,
z).
Now set Mn = Bn + jjB0. We have 1 Mny = Bny + — B0y = xn + 0 ΣΜη
= ΣΒη-Β0
(Mnz, z) = (Bnz, z) +
= Ι (-Boz,
z).
In the last equation, both terms on the right-hand side are positive semi-definite, and the second one vanishes only when ζ is collinear to y. The Mn have the desired properties, and the proof is concluded. • Once a positive definite family ( δ ι , . . . , δ ν ) is found in the kernel, we take any solution (δ®,..., δθ)οί(12) and we consider 8n = + αδη for large a > 0. This will then also be positive definite, and provides us with the integral element we are looking for. There remains the last step of the Cartan-Kähler procedure, and this is to prove that every point ρ is ordinary in the sense of Elie Cartan. This, as always, is very delicate, and we refer the reader to the paper [4] for the computations. Let me just mention the conclusions, for the case Κ = N. The manifold Μ has dimension N 2 + 1. The codimension of the bundle of integral elements in the corresponding Grassmannian is Ν 2 (Ν - 1) /2. The Cartan characters are cn = nN for η < Ν, so that CO
+ • • · + c,v_i = AT (0 + 1 + · · · + (N - 1)) = NN (Ν - 1) /2,
and the Cartan criterion is satisfied, so that the Cartan-Kähler theorem applies. 774
Some Applications of the Cartan-Kähler Theorem to Economic Theory
775
4 More Examples The reader interested in more examples is referred to [5] and ([6]; revised version available on my website); The mathematical situation is always the same: a certain system of nonlinear PDEs of the first order is given, and for economic reasons convex solutions are sought. The system is solved by using the Cartan-Kähler theorem, and the convexity requirement is met by appropriately choosing the integral elements; we then end up by showing that certain (possibly nonlinear; e.g. [6]) equations where the unknowns are matrices have positive definite solutions. To conclude, let me state the main result of [6]; the economic motivation lies in the theory of incomplete markets. Denote by GK,L the Grassmannian of A'-planes in Theorem 4. Let V. be some neighbourhood of π in M.T, with Τ < L, and let there be given analytic maps Φ:U^Gkl
and
Z:U^UL
such that Ζ (π) € Φ (π) for all π e V.. Let (Z\,... ,ΖΝ) be a family of Ν vectors in WL with rank at least Κ and such that Σ,Ζη = Ζ (π) and zn £ Φ (π) for every η. Then there exist 1. Ν maps zn (π)> defined and analytic in some neighbourhood of π, 2. Ν functions Un, defined, analytic and concave in some neighbourhood of π such that: Ζη(π) = Ζη for all η, (π) = Ζ (π)
for all π,
Un (Zn (π)) = max {£/„ (ζ) | ζ € Φ (π)}
for all π.
References [1]
Antonelli, G., Sulla teoria matematica della economia politica. Pisa, 1886; translated in Preferences, utility and demand (J. Chipman, L. Hurwicz, M. Richter, and H. Sonnenschein, eds.), Harcourt Brace Jovanovich, 1971.
[2]
Bryant, R. L., Chern, S. S., Gardner, R. B., Goldschmidt, Η. L., Griffiths, P. A. Exterior differential systems, Math. Sei. Res. Inst. Publ. 18 Springer-Verlag, New York 1991.
[3]
Cartan, E., Les systemes differentiels exterieurs et leurs applications geometriques. Hermann, Paris 1945.
[4]
Chiappori, P. Α., Ekeland, I., Aggregation and market demand: an exterior differential calculus viewpoint. Econometrica 67 (1999), 1435-1458.
775
776
Ivar Ekeland
[5]
Chiappori, P. Α., Ekeland, I., Problemes d'agregation en theorie du consommateur et calcul differentiel exterieur. C. R. Acad. Sei. Paris 323 (1996), 565-570.
[6]
Chiappori, P. Α., Ekeland, I., Disaggregation of collective excess demand functions in incomplete markets. J. Mathematical Economics 31 (1998), 111-130; see also Corrigendum to the preceding, ibid 33 (2000), 531-532.
[7]
Inchakov, Α. V., personal communication.
[8]
Mas-Colell, Α., Whinston, M., Green, J., Microeconomic theory. Oxford University Press, 1995.
[9]
SanMartin, personal communication.
[10] Shafer, W., Sonnenschein, Η., Market demand and excess demand functions. In Handbook of mathematical economics (K. Arrow and M. Intriligator, eds.), chapter 14, vol. 2, North Holland, 1982. [11] Slutsky, E., Sulla teoria del bilancio del consumatore. Giornale degli Economisti e Rivista di Statistica 3,51 (1915), 1-26; English translation in Readings in price theory (G. Stigler and K. Boulding, eds.), Richard D. Irwin, 1952.
776
Kahler Differentials and Some Applications in Arithmetic Geometry Rolf Berndt
Distinguendo come aritmetici i corpi generabili con un numero finito di elementi, definiamo l'aritmetica quale teoria dei corpi aritmetici, e il semplice problema di trovare gli elementi di un corpo aritmetico osservabili in tutte le sue prospettive abbastanza ampie, conduce ai numeri interi, i quali pertanto rispondono a una questione fondamentale che sipone, qualora si voglia ascendere dalla moltitudine degli aspetti di un oggetto alia conoscenza dell'oggetto in se. La stessa questione, resa piu efficace coi mezzi del calcolo differenziale, diventa allora l'origine dell 'aritmetica infinitesimale. Erich Kahler [K7], p. 1 (Distinguishing as arithmetic the fields generated by a finite number of elements, we define as arithmetic the theory of arithmetic fields. And the basic problem to find the elements of an arithmetic field observable in all sufficiently wide perspectives leads to the integers and thus answers a fundamental question which comes up if one wants to ascend from the multitude of aspects of an object to the cognizance of the object itself. The same question, made more effective by the means of differential calculus, becomes the origin of infinitesimal arithmetic.)
Erich Kähler had an intimate knowledge of Cartan's calculus of differential forms which he enriched and developed further to give precise definitions for the notions of genera and plurigenera of algebraic varieties in [Kl] and [K2]. Moreover, he used this calculus to lay the foundation of a general theory of partial differential equations (in the book Einführung in die Theorie der Systeme von Differentialgleichungen [K3]). As starting about 1938, his research got more and more involved with arithmetic, he felt the necessity to give a purely algebraic definition of a differential module
777
778
Rolf Berndt
resp. of a differential algebra associated to any ring by giving a precise meaning to the notion of infinitesimally small, often used successfully but not very precisely by physicists. Kähler's concept of a differential module of a ring had a great impact on commutative algebra and algebraic geometry and, "like the differentials of analysis, differential modules "linearize" problems, i.e. reduce questions about algebras (nonlinear problems) to questions of linear algebra" (Kunz [Ku], p. V). In Grothendieck's Elements de la Geometrie Algebrique [EGA], Oiv, §20-22, the required formalism is elaborated without using the name Kahler differentials, which nowadays seems to be standard, as can be seen, for instance, in Hartshorne's Algebraic Geometry [Ha]. E. Kunz, who still more enriched the system of Kähler's definitions and gave many applications in algebraic geometry and commutative algebra ([Ku], [KW1 ]), reports on the history of the name Kühler differentials in [Ku6] in this volume. Kahler used differentials to clarify the notion of inseparable field extensions and to introduce a different associated to a ring finitely generated over a subring, the Kühler different, that appears under this name already in Schmidt's review [SAD]. As I see it, this different found its most important application within the work of Kahler in a criterium for the regularity of a local ring (Lemma di Mehner) which extends another criterium valid only over a ground field (Lemma di Zariski). And finally, the different is essential for Kähler's discussion of his arithmetically integral differentials associated to a field finitely generated over Q (or a Galois field), which he introduced as a common generalization of integral elements of a number field and abelian differentials of the first kind from function theory. It is natural to ask about relations between these integral differentials associated to a field or field extension and integral differentials belonging to models of the field, i.e. varieties or schemes having this field as their field of rational functions. This theme has been pursued by Kähler and led to some further developments (see [Be3] and [KW1]). Moreover, it is natural to compare these arithmetically distinguished differentials with otherwise distinguished differentials, as for instance the Neron differentials in the case of abelian function fields and the differentials with integral Fourier expansion in the case of modular function fields. Throughout this text, Kähler's definitions and main results will be reported as they appear in his Geometria Aritmetica ([K7]) from 1958 and, in sometimes more preliminary version, in his papers [K4] and [K5] from 1951 and 1952, respectively, as well as in the book [K6] from 1953. Some later developments are outlined which concern the topics mentioned above. For further information about Kähler's impact on commutative algebra and algebraic geometry, we refer to the books [Ku] and [KW1] and to the text [Bo] by J.-B. Bost. Finally, we briefly look at new developments in global algebraic and arithmetical geometry concerning arithmetic Gauss-Manin connections and an arithmetic Hodge theory, where differentials over (Q> and its algebraic closure come into play. We only mention here applications of the calculus of differentials coming up in non-commutative geometry (as, for instance, in the book by A. Connes [Co]), but do not venture to go into these.
778
Kähler Differentials and Some Applications in Arithmetic Geometry
779
With the exception of the theme of Zeta functions which will be treated apart, this text is also meant to give a survey of Kähler's work in Algebraic and Arithmetic Geometry. While the topic of differentials is pursued in the main part of the article, other topics are assembled in two Appendices, namely his terminology for local and commutative algebra, and his system to describe and study algebraic and arithmetic varieties, their spaces and subvarieties, as well as other nowadays standard tools. For an excellent overview the reader may also consult Kähler's Infinitesimal-Arithmetik [K8], It's a pleasure to thank H. Knorr, E. Kunz, Η. J. Nastold and P. Slodowy for numerous hints concerning the substance and the style of this article.
Contents
1 Kähler Differentials
780
1.1 The Differential Module
780
1.2 Modules and Algebras of Infinitesimal Elements 1.3 Differential Modules and Universal Derivations
781 784
2 Kähler Differents and the Comparison with Other Differents
786
2.1 Kähler Differents
786
2.2 Comparison with Other Differents
789
2.3 The Different of a Differential
791
3 Locally Integral Differentials 3.1 Integral Differentials via the Different 3.2 Integral and Regular Differentials ä la Kunz-Waldi
793 793 794
4 Globally Integral Differentials
798
4.1 Absolutely Integral Differentials of a Field
799
4.2 Integral Differentials Relative to a Divisor for a Field
803
4.3 Integral Differentials of a Variety
803
4.4 Relations Between Integral Differentials for a Variety and for Its Function Field 4.5 Absolutely Integral Differentials and Arithmetic Modular Forms 4.6 Topologically Integral Differentials, Periods and Birational Invariants
804 809 812
779
780
Rolf Berndt
5 Kahler Differentials and Arithmetic Hodge Theory
818
5.1 Arithmetic Gauss-Manin Connections and Absolute Hodge Cycles
819
5.2 M. Green's Arithmetic Hodge Structure
820
5.3 Arithmetic (Mixed) Hodge Structures by Asakura and Saito
821
Appendix Α Kähler's Perspectivism as His Version of Local Algebra
822
A.l Fundamental Notions: Homomorphisms as Perspectives
822
A.2 Local Algebra: Local Rings as Aspects of an Object
823
A.3 p-adic Completion as Environment of a Perception
825
Appendix Β Kähler's Arithmetic and Algebraic Varieties
826
B.l Varieties
827
B.2 The Space of a Variety
830
B.3 Kähler's Notion of a Figure
833
B.4 Kähler's Extension of a Variety
839
1 Kahler Differentials Kähler formulated his definitions in various ways. We will reproduce here two of them and later compare these to the now usual ones.
1.1 The Differential Module Aiming at the study of purely algebraical fields he looks, in the paper [K4] from 1951, at purely algebraic rings R, i.e. those generated as a ring by a finite number of elements. For these he gives on p. 71 Definition 1. The differentiation d of R is a homomorphism of R as an additive group into an /^-module RdR consisting of the elements adb + a'db' Η
with a, a',...,
b, b',...
e R,
where da means the image (=: differential) of the element a € R and where the differentiation rules d(a + b) — da — db = 0, d{a • b) — a • db — b • da = 0
for all a, b € R
are the defining relations of the Ä-module. In the differential module RdR there are no other relations (differential equations) than those which can be obtained from the differentiation above by linear combination
780
Kahler Differentials and Some Applications in Arithmetic Geometry
781
with coefficients from R. This differential module is uniquely determined by R up to /?-isomorphy. Using several copies RdiR,
Rd2R,
Rd3R,...
of this module, Kähler defines by a sort of direct multiplication R -modules of higher degree RdiRd2R,
RdiRd2Rd3R
which again are uniquely determined by R.
1.2 Modules and Algebras of Infinitesimal Elements In principle, this definition above contains everything to be said. Nevertheless in 1958, in his Calcolo differenziale in [K7], 1-13, the definition looks a bit more formal (and has - in my opinion - a nice visual touch), so that we reproduce it here as well. Doing this, we try to stick to Kähler's original notation as far as possible, but we have to face the frequently arising problem that Kähler sometimes uses different symbols (and even names) for the same objects in different papers, so that we have to change some symbols to get a consistent treatment here. If R is a commutative ring, an element χ e R will be called infinitesimal of degree η if we have xn = 0 and no power of smaller degree is zero. If R is not necessarily commutative, χ e R is called infinitesimal if the bilateral ideal generated by χ consists of nilpotent elements only. A subring R of a commutative ring R is called infinitesimally near to another V
ν
V
V
' V
V
'*>•'
V
subring R of R if there is an isomorphism σ of R onto R such that in R we have the relations (χσ - x)(ya - y) = 0
for all x, y e R.
Here Kähler uses the notation χσ — σ(χ), {χσ)τ the condition above simplifies to (xa-x)2=0
= χστ, etc. If 2 is invertible in R,
for all χ € R,
saying that the differentials χσ — χ are infinitesimal of degree < 2. Definition 2. An h-th infinitesimal correspondence of R is a ring generated by R and h infinitesimal near copies Ra' (i = 1,..., h) of R [R,Rffl
Rahl
Remark. Such a ring can be constructed as [R,dlR,...,dnR]t
781
782
Rolf Beradt
generated by R and the elements d[X (thought of as diχ = χσ· — χ), i = 1 , . . . , h, satisfying the relations di (x + y) — diX — diy = 0 di(x • y) — x • djy — y • dix = 0
for all x,y e R.
(*)
d[X · diy = 0 More precisely, we take the free ^-algebra generated by R and all d^x, i = 1,... ,h, χ e R and divide out the ideal generated by the left sides of the relations given. This ring is generic in the sense that any other /i-th infinitesimal correspondence [/?, RTl,..., /?ΤΛ] is simply a homomorphic image of the generic one constructed above. Each h-th generic infinitesimal correspondence of R can be interpreted as a subring of an infinite generic infinitesimal correspondence IR of R. Each permutation of the indices of this correspondence induces an automorphism π of this ring. Definition 3. A differential form of degree η of R is an element ω=
^ meZ.a
md\a...
dnb +
beR
e-dif...dng e,f,...,geR
of Ir (the first part will not appear if R has a unit element). An important special case is given when all rings Ra', Ra' in the correspondence are mutually infinitesimally near. We then have to add the relations diX • djy + diy · djx = 0
for all x,y e R,
and we call the rings arising this way generic differential correspondences £Ir. The reader can verify (or extract from [K7], 8-12) that the elements of Ωr are sums of exterior differential forms of degree η subject to the rules (*) above and d{X • djy + diy · djx = 0, Φ(Σ
mdia
· · · dnb + ^
e · d\f ... dng) = ^ di(djX)=
die · d\f ... dng,
0
with x, y, a,..., b, e, / , . . . , g € R, m eZ,X e £2R. In [K7], 12, Kahler compares this with the usual calculus of exterior forms for rings of C°°-functions and also introduces the symbol Λ for the multiplication in Ω R SO that for the multiplication of exterior differential forms ξ and η of degree h resp. h', we obtain ξ Α η = ( - 1 )hh'n Λ ξ, d(i= Λ η) = d% Λ η + ( - 1 ) Λ £ Λ άη, dd$ = 0.
782
Kahler Differentials and Some Applications in Arithmetic Geometry Finally, in [K7], 13, it is stated that following equations:
783
is defined as a ring extension of R by the
(1)
di(x + y) — dix -diy
(2)
di(x · y) — χ · diy — y · d^x = 0,
(3)
diX-diy=
(4)
dix · djy + diy · djx = 0
= 0,
0, for all x, y € R.
(In [K7], 348 ff., in the chapter "la totale integritä di un corpo" which will be discussed later, the notation dix · djy is replaced by dx A dy and the differential ring of a field Κ is written as [K, dK] = Κ + KdK + KdK a dK + KdK a dK a dK +
•••).
A Pfaffian equation nd a Σ i ntZ.aeR
+ Σ e-dif eJeR
= 0
is called a differential equation of R if it is a consequence of the differentiation rules (1) and (2) (by ideal operations). The expression the differential equations of R is used for any system of differential equations such that the differentiation rules in turn can be derived from them (even though, as Kähler remarks, this expression is not well defined). As examples we have for each ring R with unit 1 the differential equations d1=0
and
dx — 1 dx = 0
for all χ 6 R.
Moreover, for any polynomial Σ ^'i-'m·*!1 · • · * « Ί > •••i'm
f(xu...,xm)=
using the notation fXv for the partial fxv =
^
witha (1 ..., m e
derivative
*>/!...<m · ·*/ · · ·χ'νν
1
· • · xm
and 8f for the variation of /
Ί ι···ι'ηι we obtain the differential equation d
f - Σ
λ» •dXv
783
-
s
f = °·
784
Rolf Berndt
If / and g are polynomials as above, and if the quotient ^ " *m}) exists in R (that is, g is not zero or zero divisor in R), we have the differential equations
-ο-
^-.({)-.
?
with / A
_
\ g ) x
v
gfxv
~
fSxy
2
8
5
f f \
_
gtf
~
f&g 2
'
g
If R0 is a subring of R, Kähler defines the relative differentiation ofR with respect to R0 in [K7], 14, by simply adjoining to the (absolute) differential equations the equations dxο = 0
for all XQ € RQ.
1.3 Differential Modules and Universal Derivations In his address to the reunion of the Deutsche Mathematiker-Vereinigung (DMV) in 1953 which appeared as the book [K6], Kähler gave constructions similar to those reproduced here from Geometria Aritmetica [K7]. F. K. Schmidt prepared a carefully written review [SAD] of this text [K6] in the Zentralblatt MATH which became very important for the later development of the algebraic theory of differentials. F. K. Schmidt points out a note by A. Weil from 1943 which shows that several ideas were independently pursued by Weil and Kähler (as mentioned, Kähler had already formulated most of his concepts before the war). F. K. Schmidt presents Kähler's notion in the following way (which is already very close to later formulations, as in the exposes of Cartier and Godement in the Seminaire Cartan-Chevalley in 1955-56 [CC], in Grothendieck [EGA], Oiv, 20.5, in Hartshorne [Ha], p. 172, or in Kunz [Ku], p. 13): Let R be a unitary commutative ring with a unitary subring RQ and D a derivation of R/RQ into an Ä-module M, i.e. D is a /?o-linear map from R to Μ with D(x • y) = xDy + yDx
for all x, y e R,
and thus Dx =0
for all χ € R0.
If we compose D with a linear map Λ from Μ to another Ä-module Mf, we get a derivation D' = A • D from R to M' called a specialization of D. A derivation d of R/R0 into an R-module is called universal if each derivation D of R/Ro into an R-module is uniquely a specialization of d. Then d is uniquely determined up to linear isomorphism. The Ä-module R j ^ R belonging to this universal derivation is called the module of differential forms of degree 1 (nowadays usually written as Ω l R/R ).
784
Kahler Differentials and Some Applications in Arithmetic Geometry
785
The existence of is clear for a free polynomial ring R = Ä o [ X i , . . . , Xm], as the universal derivation is simply given by the formal differentiation of the polynomials. For an arbitrary ring extension of RQ one reduces to this case by a Lemma (Kähler [K7], 287) stating that for residue rings R' = R/a and R'0 = (/? 0 + α)/α one has
, d' , d tid R'—R' = R—R la—R + R'o Ro / V Ro
d \ R—a). Ro J
In contemporary language one would say that Ω ^ Λ ο is the representing object of the functor Der/; 0 (Ä, —). We have a canonical isomorphism
DerRo(R) := D e r ^ t f , R) ~ H o m * ^ ^ , R). Here we mention also that the dual Der/?0 (/?)* of the derivation module is called ([Ku], p. 137) the module of Zariski differentials. As mentioned in [Ku], its general relation to the module of Kähler differentials is still an interesting object of study. Moreover, we mention the following characterization of the module of Kähler differentials ([EGA], 0 i v , 20.4.3)
Ω^ο = 7 / / 2 where I is the kernel of the map
R ®Rq R R, a b ι—> ab. Obviously this description is not far from Kähler's original formulation via infinitesimal elements. To come back to F. K. Schmidt's review of Kähler's algebraic introduction of differentials, he also remarks that, starting from the module Ω 1 , one obtains the modules of differential forms of degree h resp. exterior differential forms by taking h-th tensor resp. exterior powers
resp.
Ah Ω 1 = : Q h
(as is clear now, we can also take other symmetrizations to get more generalized modules). By summation over h we get the algebras of differentials resp. exterior differentials QR/R = (with : = R). In [Ku], p. 39, we also find an introduction of this algebra by a universal property similar to the one described above defining the module Ω ^ ^ . Some of the many applications of differentials as assembled in particular in Kunz's book will be mentioned later. Here we will only point to Kähler's exposition in [K6], § 18-21, resp. [K7], 19-37, where he studies the differential modules of field extensions Κ/ KQ in characteristic ρ > 0. He defines the inseparability degree 0
inseptfo Κ = rank Ω^ /ΑΓ() - trdeg* 0 Κ
785
786
Rolf Berndt
and elaborates that differentials of the elements of a family of elements of Κ are a basis of exactly if this family constitutes a ρ-basis of K/Kq.
2 Kahler Differents and the Comparison With Other Differents We now follow again the presentation in Kähler's Geometria Aritmetica and deal with his first application of differential modules.
2.1 Kähler Differents The Kähler differents Dn(R/Ro) of a ring extension R/Rq (with erated as an Ä-module) are the Fitting determinantal ideals of defined as follows.
finitely genand thus are
Definition. For Ω
Λ/Λο
=
Σ i=l
R(üi
and η e No with η < m the n-th different Dn(R/Ro)) is defined as the ideal in R generated by the determinants 1} «ί<1
• ··
(m—n)
Ö;Ί
«Ρ lm-n (m—n)
...
a;
'm-n '
which can be built out of the matrices (a- ) belonging to any m — n relations m Ytaf^a>i i—l
=0,
k = I,...
,m — η
between the (ω,·). For η > m one defines t>n(R/Ro)
= R-
It is clear that these ideals form an ascending chain MR/Ro)
c D„+I(Ä/ÄO)
and by a theorem of Fitting the differents are well defined, i.e. independently of the choice of the basis (ω,·). In [K7], 15, we find a proof of the fact that the formation of differents as well as the formation of differential modules is consistent with localization.
786
Kahler Differentials and Some Applications in Arithmetic Geometry
787
Proposition 1. Under the assumption that the rings RQ C R and RQ C R are subrings of a ring R and that each element of RQ resp. R can be represented in the form x/y with x,y € Ro resp. x,y € R where y φ 0 and not a zero-divisor in R, we have *n(R/Rö) = T>n(R/Ro)R. Another very useful result is found in [K6], p. 126, and also in [K7], 288. Proposition 2. For an ideal ο in R we have MR/Ro)
+ a" = Dv((R/an+l)/(Ro
+ an+1/an+1)) + a \
Kahler applies this result to determine or at least to establish estimates for differents in the following situation. Let Κ/KQ be algebraic in the sense used by Kahler, i.e. Κ is finitely generated as a field over a subfield KQ, and let S be a discrete valuation ring with quotient field (S) = Κ and maximal ideal φ , a principal ideal. Moreover, assume SO = S Π KO with maximal ideal φο> k = S / φ algebraic over ko = 5ο/φο> trdegfco k = v, rank
= ν+h
(h > 0),
char/: = ρ > 0 (and similar assumptions for s/p over so/po). In [K6], p. 138-139, Kähler arrives at his final result tying the different to the ramification index e which is for ψο φ 0 defined by φ öS =
r
(if φο = 0 or e = 1, then Κ/Ko is called unramified):
Theorem. Under the assumptions above we have M5/5o) =0 D,(5/S0)=0
for μ < ν, if φ 0 = 0,
c ye~l+h = r
if φ 0 Φ 0,
_ 1
if Ψο Φ 0, ei φ , h = 0,
e r ö v+ x(S/So) c φ Λ _ λ T>v+h+\(S / SQ) = S. Nothing is said about dv+h(S/So). following
if Ή) Φ0, β eφ,
h = 0,
for 0 < λ < h,
A slight extension of the previous result is the
787
788
Rolf Bemdt
Corollary. For η = trdeg Kq Κ, i = insep Κο Κ we have Dß(K/Ko)
= 0
for μ < n + i,
= Κ
for μ = η + ί,
and ν <η+i
if φο = 0,
v=n+i
φ0 φ 0, h = 0,
ν+ h+ 1>η+ i
always.
In Geometria Aritmetica we find results for the following more general situation. Let again Κ /Kq be algebraic, 5 be a noetherian local ring with quotient field Κ and ίο :— s ΓΊ Kq such that the maximal ideals p and po have finite bases and s/p is algebraic over so + P/P- Then, in [K7], 290, we find, for the smallest ν with D„(s/s 0 ) = s, the relation dim j / p (poJ + P2/P) + trdeg ( i 0 + p ) / p s/p < ν < dim j/p (po5 + p2/p) + trdeg ( i 0 + p ) / p s/p + insep ( J o + p ) / p s/p. Maintaining the assumption made above, in [K7], 294, we find the following compatibility statement as a refinement of Proposition 2. Proposition 3. If s* is the p-adic completion ofs and if the different on the right-hand side exists, we have K(S/S o) =
*n(s/s0)s*.
Here Ö*(s/so) denotes the n-th individual different (n-esimo differente individuale di s relativo a so) defined in [K7], 292, as the n-th Fitting ideal of the individual differential module associated to the differential module Ω]* = s*ds* by s* —s* := Ω ^ / u , u = f](s*dso so
+ P*lds*)
if this module is finitely generated (which is the case in the situation above). A systematic treatment of the procedure to associate a universally finite differential module Ω]*^ to the completion s* of s is given in §12 of [Ku]. If Ω]^ ο is finite, s * ^ s * above is replaced by
In this approach, the compatibility statement above for the different calculated from ( s e e Example 2 in [Ku], p. 192).
788
Kahler Differentials and Some Applications in Arithmetic Geometry
789
The most important application of the different within the work of Kähler is the following regularity criterium (a result of the thesis by Mehner, reproduced in [K7], 303). Lemma di Mehner. Let s be a local ring essentially of finite type over TL with quotient field K, trdeg Κ = n. Then s is regular exactly if D n + i ( j ) = s for c h a r £ φ chars/p € p 2 , Ö„(s) = s
else.
As another consequence of the calculus of the different Kähler states the following classical result in [K7], 304. Lemma di Zariski. For a local ring s, essentially of finite type over Κο with quotient field Κ and s/p separable over KQ + p/p, the first different Or(s/Ko) which is equal to s has index r > trdeg ^
K.
We have equality exactly if s is regular. One may be interested to compare this with the formulation of the Lemma in [EGA], Oiv, 22.6. Numerous results on regularity and smoothness criteria are to be found in [Ku], pp. 138-164. A direct geometric application of the higher differents is elaborated in the thesis by Gerhard Quarg [Q] where the different t)v is used to define a tangential subscheme of a projective variety X c P " with respect to a linear subspace Η C P". 2.2 Comparison with Other Differents In his historical remarks at the end of [K6], Kähler mentions that E. Noether had also defined differents by differential methods. F. K. Schmidt, in his review, points out that differents had also been introduced by Dedekind and A. Weil. In the sequel, there has been a lot of work by Berger([Ber]), Kunz, Nastold, and others comparing and generalizing these notions. We adopt part of the material collected in [Ku], §10 and Appendix G. The Noether different Definition. For an arbitrary ring extension R/RQ the Noether different D^ is defined by DN(R/R0)
:=
where I : = ker Φ for Ψ : R <S>R0 R -»· R defined by a ® b ι-» ab.
789
790
Rolf Berndt
Remark. D^ is an ideal in R compatible with localization. The most elementary example is the case when R/Ro is a finite complete intersection, i.e. R = Ä0[*i,
·.• ·,*„,]
= Ro[Xi,
· · ·, Xm]/ο.
α= (/i,...,
fm).
Then one has *n(R/RO)
=
d ( f l
---'
f m )
. . . , XM)
R,
where abbreviates the class of the functional determinant immediately that, in this case, we have =
:=
mod o. We see
MR/Ro)·
More generally we have ([Ku], Proposition 10.18): Let R/RQ be an algebra of finite type and let r := be the minimal number of generators over R. Then we have DN(R/R0)R
C (ΑηηΩ^/ C
K(R/RQ)
C
V
N
(R/R
0
)C
ΑηηΩ^.
The Dedekind Different In the classical number-theoretic situation we have a ring extension R/Rq with quotient fields Κ and Κο such that K/Kq is of finite degree with trace map σκ/κ0· Κ Kq. Definition. The complementary
module <£R/Ro is given by
£R/R0 '·= {x € K, aK/Ko(rx) and the Dedekind
e R0 for all r € /?}
different by its dual (*)
dD(R/RO)
•= [X € K, x€R/Ro
C R}.
In [Ku], App. G, this notion is generalized for R/RO satisfying: a) Ro is noetherian, and any non-zero divisor of Ro is also one of R. b) There is a subalgebra RI/RO conditions hold:
of R/RO such that R\/RQ
is finite and the following
a) For each c e Spec/?, letci := cP\R\. Then the canonical homomorphism Rici Rc is bijective. Β) The canonical homomorphisms Q(RO) <8>/?0 ~~* Q{R\) and Q(R\) Q(R) are bijective (Q(R) denotes the full quotient ring of R). If moreover there is a map σ : Κ := Q(R) properties of a trace map, one may write R-nomRo(Rl,Ro)
=
790
Ko := Q(Ro) with the usual
Kähler Differentials and Some Applications in Arithmetic Geometry
791
with a fractional R-ideal (which can be proved to be independent of Ri) and a the Dedekind different U D(R/Ro) with respect to σ can be defined as above by (*). In [Ku], G. 10, G. 11 and G. 12, the following results are proved: i) If, under the assumptions above, R/RO is finite and flat, the following assertions are equivalent: a) R/R0 is a Gorenstein algebra. b)
is an invertible ideal.
ii) Let R/RQ be finite, assume that RO is noetherian and that each non-zero divisor of Ro is a non-zero divisor of R. If Κ = Q(R) is etale over KQ = Q(Ro), then D£>(/?//?o) is defined as above and we have: a) HN(R/R0)
CVD(R/RO)·
b) If R/Ro is projective, then both differents are equal. (This is a theorem going back to E. Noether [No].) iii) If R/RQ has a presentation R = RoiXi
XmV(Fu
...,Fm)
= R0[xi,
...,xm]
as a complete intersection, then
A more general statement is [Ku], Proposition 10. 22: Let R/Ro be an algebra of finite type such that Κ = Q(R) is etale over KQ = Q(RQ). Then *K(R/RO) C
DD(R/RO)-
The differents ϋκ and öd are equal if R/Ro is a finite Gorenstein algebra where Ro is noetherian, Κ = Q(R) is etale over Ko = Q(Ro) and R/Ro is locally a complete intersection ([Ku], p. 170). In general, both differents are not equal (see the example by Waldi [Wa] for the case of an almost complete intersection).
2.3 The Different of a Differential The notion of the Kähler different has been extended in [Bel] by associating an Rmodule to a differential ω e £ZR/R0 in the following way. Let R be of finite type over RQ with a presentation R
B/b,
where Β is a free polynomial ring over RQ B =
R0[Xl,...,Xm]
791
792
Rolf Berndt
and b an ideal in Β ι j=1
Then, with m 1
Ω = Σ
RdXi, Ω = φ Λ ί Ω
1
ι=1
and N = Y R W jJ',
WjJ = y ^ - d X 3 x
;=1
f=l
i
,
dx
.
=
d X
+^ b
we obtain the presentations ω
res
Λ//?0 =
P·
Λ
=
")·
Let now r be the smallest index h such that the Kähler different Dh(R/Ro) is non-zero, i.e. such that there is a non-zero exterior product of m — r factors Wj € Ν and all products of greater length are zero. Definition. <3(a}\R/Ro)
With the notation above for a differential ω e QR/R0 its different is defined as the ideal in R generated by the coefficients of all products ÖJA Wh A •••A Wjm_r,
Wj € N,
where ω is a representative of ω in Ω. In [Bel] there is a proof that ϊ)(ω|/?//?ο) is well defined (which for ω = 1 includes Kähler's proof of the well-definedness of his differents and which is only a slight extension of his proof). Moreover, the construction of this different is compatible with localization. For this we have to slightly generalize the definition above. If R' is a localization of R, one has an exact sequence 0 -» Ν' = Ν ®R R' - > Ω
where Ω' 1 = JJ=l R'dXt, remarked in 2.1, one has
Ν' = Σ]=ι
dn(R'/R0)
1
: = Ω 1 ®R R'
R'wj
&RI/Ro
0
with Wj = Wj ®R 1. Thus, as already
= MR/Ro)
R',
and moreover the construction of D(a)\R/Ro) works as well by associating an Rmodule Q(a)'\R/Ro) to a differential ω' € QR'/R0 (= if R'Q is the localization of Rq corresponding to R'). Finally one gets
792
Kahler Differentials and Some Applications in Arithmetic Geometry
793
Proposition. If R' is a localization of R, we have for ω' £ Qr'/rq D(a>'\R'/R0) = V(Q>'\R/R0) ®R R'.
3 Locally Integral Differentials The notions of Kähler differentials, Kahler different and different of a differential are compatible with localization and thus apt to define sheaves and birational invariants of finitely generated field extensions. This will be discussed later. Here we will first prepare the ground by further studying the following local situation. Let R be an algebra essentially of finite type over Rq (i.e. localization of a finitely generated algebra) and R' = Rj localization of R in the multiplicatively closed system Τ c R. Then we have a canonical map QR/Ro
ψ
&R'/Ro =
R
/
Ω
/?//?0 = Τ
—ι &R/Ro-
Following Kähler, we introduce the notation [R,
:=
At least for Kähler, the most interesting case is where R is an integral domain and R' = Q(R) its quotient field. In this, but also in the more general case above, it is possible to distinguish in Qr>/r0 a bigger module than [/?, j-R]·
3.1 Integral Differentials via the Different The following notion, using the different of a differential from 2.3, was proposed in [Be5], 4. It is inspired by Neron [Ne]. Definition. Given a domain R of finite type over Rq with quotient field Q(R) = Κ a differential ω' e Ω k / r 0 is called integral in R if V(co'\R/R0) C R. We will write Ar/r0 for the /^-module of these integral differentials for R/Rq. It can be shown ([Be5] 5.) that Δä//?0 is a finitely generated /^-module. This notion has been used in [Be2] to give another formulation of a criterium of Neron characterizing an arithmetic minimal model of a finitely generated field of transcendence degree one. Moreover, this notion will reappear below in the discussion of Kähler's globally integral differentials of a field.
793
794
Rolf Berndt
3.2 Integral and Regular Differentials ä la Kunz-Waldi Pursuing previous work by Kunz on generalized complementary modules and differential forms on singular varieties ([Kul]-[Ku5]) and preparing the way to get a dualizing sheaf for varieties X/Y, Kunz and Waldi [KW1] give another (essentially equivalent) definition of integral differentials for R/RO and, moreover, a still more refined definition of regular differentials. Not striving for the high generality attained in [KW1], we will only sketch here some of this. Let Κ be again the quotient field of R, let R/Rq be essentially of finite type, M
= Ωί?/Λ0 a n d Mk = K <8> n)j / Ä 0 = n l K / R o
with presentations a
rr
0 —> Ν
7>m ß Μ —• 0
F = R
resp. 0 —>· Nk — F K = K m
MK —> 0.
When D r (M) = Dr(R/Ro) is the first non-zero different, i.e. Am q e Ν there is a canonical commutative diagram AqM —YiornR{Am-rN,
oc = 0, for each
Am~r+qF)
q Ψκ Aq Μ κ — ^
r+1
>' HomK(Am~r
ξ"
Ν κ , Am~r+q
FK)
where
Am~r Ν
—•
Am~r+qF,
u
ι—•
(Am~ra)(u)
Α ω.
Here ω € AqF is a preimage of ω e AqM = with respect to Aq β;
/\m~r
Ν
>
Am~r+qF
to its extension id^r <8>λ. Using this diagram and following [KW1], 1.14, we give the
Definition. The /?-module
AR/R0
of integral differentials of R/Ro is defined as
€N0 with Δ«(Αί) :=
(
794
Kähler Differentials and Some Applications in Arithmetic Geometry
795
In [KW1], pp. 7-23, this notion is studied from different angles. For instance, we have (partially repeating facts already stated in 3.1): a) There is a canonical /Minear map YR/Ro '· ΩΛ//?0
which is bijective if b) Ar/r0
*
&r/R0
is a projective /?-module.
is compatible with localization.
c) Ar/r0 is a graded module over the graded ring S2r/r0 finitely generated. d
)
δ
λ/λ0
=
R
:
e) If Ν c and
MR/Ro)
•= {* e K-,xMR/Ro)
c
an£
^as
an
/^-module it is
R).
is a projective /?-module with Ν κ = Ω^,ΛβηΟοίΩ^/ΛΟ φ {0} *R/*o
Ar N.
= (R • M^r/N))
The fractional R-ideals R : Dq(Q1r/N), belong to the same ideal class of R.
with Ν a free R-module as above,
f) A rational g-form ω € ®-\/r0 belongs to Ar/r0 for any η €
if and only if η Α ω G
^r/r0
. The canonical map
ω
ι—>
(η ι-* η α ω)
is bijective, and the /?-module
is reflexive.
g) (Theorem 1.19 in [KW1]). Suppose R is a (reduced) normal ring and QlR is a free Rc module for each c G Spec/? with h{c) = 1. Then, in a canonical manner, Δλ//?ο = ( Ω Λ/Λ 0 )**' and Yr/r0 : &r/r0 -> Ar/r0 is the canonical map of & r / r 0 into its bidual (the module of Zariski differentials). h) If e) is specialized to Kq = Ro and R = K0[XU
·••, XmV(Fu
...,Fh)
= K0[xi,...,
xm],
i.e. r = trdeg^ 0 Κ = m — h, and JCI, . . . , xr are chosen with Q
K/K0
= Kdxl+.-.
+
Kdxr,
then we have A
R/K0
= (R
:
MR/K0[XI,
= A~lRdxι
. . . , xr]))dxι
Λ · • · Λ dxr
795
Λ · · · Λ dxr
796
Rolf Bemdt with a(Fi,...,FÄ)
Δ :=
9(*r+l. · · · . Xm) In [KW1], p. 22, there is an example showing that, in the general situation, AR/R0 may not be a subcomplex of the complex £IK/R0 contrary to what can be proved for regular differential forms. To describe this, we follow [KW1], p. 44 ff.
Assumption. a) R0 noetherian, R/RQ essentially of finite type with a presentation R = Ρ/7,
Ρ =
· · ·»
Τ a multiplicative system,
I with a prime basis F = { F i , . . . , F/,}, i.e. F is a quasiregular sequence and 7C = ( F i , . . . , Fh)c for each minimal prime divisor c of / , b) AssR = MinR, c) Κ =
Q(R),
d) Ω is an exterior differential algebra of Ro where Ω 1 is a finite projective module of rank ro, and Ω^ is a free A!"-module of rank r := ro + m — h. Then we introduce PF : = / 7 ( F ) , IF •=
I/(F)
and AP := image of A n n P F ( I F ) IN R-
One has the canonical exact sequence (*)
0 - » K®R
I/I2
Ω^
K®P
Ωικ
0
and the associated canonical isomorphism <pr: torK ^
HomK(Ah(K
®R I / I 2 ) , Κ ®P
ΩΓβ+ηι).
The map PF
— >
R
" — •
Κ
=
Q(R)
induces a map $ r F : Hom P f ( a a ( F ) / ( F ) 2 , PF<2>PTFß+M)
HomA:(A A (/i:<8) Ä /// 2 ),
Κ®ΡΏΓΒ+ΗΙ).
Let i : Ω/f -> Ω κ be the functorial map. Then one can show that the following definition is independent of the choice of the presentation of R and the prime basis F oil.
796
Kahler Differentials and Some Applications in Arithmetic Geometry
797
Definition. We write := AF ·
(φΓΓι(ιτη^).
For arbitrary ρ e No let (*>r/*o>p
: = {ω e
W
Α ω €
W
f o r
a11
*
€
and "R/Ro ••= Σ <» p€N0
W '
the module of regular differential forms of R/Ro with respect to Ω. The elements of ( ω ^ R q ) p are called regular ρ-forms. In the case when ΩΓ° is a free /?o-module (of rank 1), i.e. ΩΓ° = Rocoo (a case which for ro = 0 induces the special situation of the trivial presentation that was used here to describe the integral differentials above), a more explicit description of (ωΛ/Λ0)* c a n gi y e n · We have Κ ®p ΩΓρ+ηι = Κω0dXi
λ · · · Λ dXm
where the tilde denotes images in Κ ®/> Ω/>. The canonical exact sequence (*) shows that there is an equation (D*dF\ Λ · · · Λ dFm = a>odX{ A···
A dXm
with some ω* e Κ ρ Ωρ. Let ωρ be the image of ω* in Ω^. Then we have ω
/?/Λο = AFCOF.
If we take here the trivial differential algebra Ω = Ro and the case when R/Ro is generically 6tale, we have Ω ^ ^ = {0} and cor/r0 turns out to be the fractional ideal COR/Ro = AF I — " \3(JC1 , . . . , * „ ) / Again one can show that the definition of the regular differentials is compatible with localization. Moreover, in [KW1] numerous results are obtained relating regular to integral differentials and to generalized complementary modules. For instance, if R0 is regular and R locally a complete intersection or normal, one has ([KW1], Corollary 3.10, Theorem 3.17) &R/R0 = (dr/R0, and if R/Ro is smooth and Ω = Ro, then ωκ/Λο = ΔΛ/Λο = ω Λ/Λ 0 ·
797
798
Rolf Berndt
In general, under the assumptions given above, the regular differentials are always integral (*>R/R0 C &r/R 0 , but ([KW1], p. 91) there is a simple example showing that the image of the canonical map i : Ω/? -»· Ω κ need not be contained in If this happens, however, the map „Ω
C
. ο
.
Ω
* a)R/Ro
R/R0 ·
is called the fundamental class. In Lipman ([Li], p. 39) one finds a justification of the name and, moreover, an extensive study leading to residues and duality in this context. We will close here the description of these far-reaching developments by just mentioning that the approach from [KW1] to get a dualizing sheaf as sketched above has been successful: The above notions can easily be globalized and lead to sheaves Αχ/γ of integral and ωχ/γ oi regular differential forms for morphisms / : X —> Y of schemes. For rather broad classes of morphisms / : X —> Y the work of Hübl— Kunz [HK], Hübl-Sastry [HS] and Lipman-Sastry [LS] shows that ίθχ/γ is a dualizing sheaf. Now we go back to another topic from Kähler's research.
4 Globally Integral Differentials In Chapters III—VIII of Geometria Aritmetica, Kähler develops and collects material from what is now called commutative and local algebra and he constructs a system of notions for algebraic geometry which is now covered by the theory of schemes ä la Grothendieck-Dieudonne. We will use here more or less freely the modern language to introduce and to present the central notion of Geometria Aritmetica from Chapter IX ([K7], 345 ff.) La totale integritä di un corpo which perhaps can best be translated as The ring of integral differentials of afield. We give a description of Kähler's system in Appendix Β to this paper. Serre told Grothendieck in a letter dated November 13, 1959 ([CS], p. 101) about A. Weil's review of [K7]. Serre points just to this notion as the only thing new to him. Weil estimates in his review [WGA] of Geometria Aritmetica this chapter as the most interesting of the book and translates its opening statement: The major problem of arithmetic geometry is to describe the structure of a field, i.e. take cognizance of its essence starting from the multiplicity of its aspects. This Chapter IX is devoted to the
798
Kahler Differentials and Some Applications in Arithmetic Geometry
799
study of the author's simultaneous generalization of differentials of the first kind in classical geometry and of integers of a number field: The ring ο (= / (k) in Kähler's notation) of integers of an algebraic number field k can be characterized as the intersection I(k) = f]S of all discrete valuation rings S of k. And the C-vector space D\{K/£) of all differentials of the first kind of a Riemann surface X/C (or a non-singular algebraic curve) with a field Κ of rational functions can be characterized as consisting of those rational 1-forms ω e KdΚ which are holomorphic at each point χ € X and thus integral for each local ring Θ χ χ , χ e X, in the sense described in Section 3 above. Both notions are special cases of the following.
4.1 Absolutely Integral Differentials of a Field Let Κ be a field finitely generated over the quotient field (A) of a ring A, and denote by W(K/A) the family of all discrete valuation rings S of Κ (i.e. regular with monogeneous maximal ideal φ), essentially of finite type over A. Definition. The ring of integral differentials of Κ over A is defined as the intersection D(K/A)
:= f W ( W
5
' ^ ·
As explained in Section 3, [5, dS] is the subring of &K/A generated by all gdh ι a - · • A d h q , g,h\,... ,hq € S. Kähler describes a ring of integral infinitesimals analogously, and it is clear that one can also look at notions, where certain symmetry conditions are imposed on the differentials (which then lead to the plurigenera). But we will restrict ourselves here to the case above. D(K/A) is graded, 0 = Θ;=Ο %
= trdeg(A) Κ,
D 0 (K/A) = r)seW(K/A)S·
The case A = Ζ will be called the arithmetic case, and for A = Q or C we are in the realm of algebraic geometry and function theory. In the arithmetic case D itself and each homogeneous part of D is an I (fc)-module, where k denotes the largest number field contained in AT. In [K7], 400, one has the theorem (which will be commented upon again in Section 4.4) D(K/k)=kD(K). In [K6], p. 150-160, [K7], 359-380, and (in a somewhat more modern language) [Be3] the following crucial fact is shown:
799
800
Rolf Berndt
Theorem. D(K) is an I (k)-module of finite type. Obviously D{K) and D(K/k) as well as all variants using other symmetry conditions are birational invariants of Κ resp. Κ/k. As for many applications (for instance related to periods) one needs arithmetically distinguished differentials, this notion is very important. We will describe here more of this topic which at first looks merely field-theoretic, but has modifications reaching into algebraic and arithmetic geometry. The central point of the proof of the theorem above ([K7], 369, [Be3], 4.) is the following statement (based on the analysis of the Kahler different ΐ>ο). Let be Co = [A, x i , . . . , xr] a subring of Κ such that trdeg^ Kq = r for its quotient field Ko = (Α,χi,... ,xr), y e Κ generating Κ over Kq with defining equation f ( y ) = ym+
aiym~l
+ · · · + am = 0,
a; € C 0 (i = 1 , . . . , m),
50 a discrete valuation ring of Ko and a localization of Co, and 51 (i = 1 , . . . , g) discrete valuation rings of Κ dominating Sq (i.e. with So Π φ,· = φ ο for the maximal ideals φ , of Si and φ ο of So). Then there exists b € So such that (using the notation from Section 1.2) bfyco e J ^ [ S o , y]dxix λ · · · λ dxih holds for each ^eflLit^S,]. One can take b = 1 if all S, /
Xi=UiUJ"1
(i =2,...,
r),
y =
vujl,
we get ([K7], 378-380, [Be3], 7.) quite explicitly TL- resp. /(£)-modules containing D(K) (and /c-modules containing D(K/k)). Kähler illustrated his constructions by two specific examples where K = k(x,y) Example 1 (the Fermatfield,
with f ( x , y) = 0.
[K7], 370, 394). For k = Q
f(x,y)=xm
+ ym - 1 = 0
(m > 2),
one has Σ i+j<m-3
800
Z ^ d x .
Kähler Differentials and Some Applications in Arithmetic Geometry
801
Example 2 (an elliptic function field, [K7], 397). For k = Q(ß), β2 = - 2 3 and /(*, y) = y2-x3
+ β,
one has with I(k) = Z[a], a — -Up, i.e. with a2 — a + 6 = 0, D1(K) = 3ßI(k) — . y Similar examples were studied by Kahler's students: Citing from a letter by Horst Schumann of November 2001 ([Schu]), we reproduce results obtained in Leipzig in 1958 and later: All concern elliptic function fields Κ over the same ground field k = Q(a), a2 - a + 6 = 0 as in Kähler's Example 2. Example 3 (H. Schumann). For /(*, y) = y2 - 2((3 + 2a)x4 + 9x2 + (3 + 2a)) one has 2c ι dx y with the ideal ci = (3 + 2α)(31, α + 7)(127, a - 28) C I{k) = Z[a]. Example 4 (W. Reutter). For /(*, y) = y2-2(x3-3x+a-
12)
one has 6c2 dx Di(K) = —— y
with c2 = (47, a - 14).
Example 5 (C.-P. Helmholz). For f(x,y)
= y2-
6(* 3 + 3 ( 2 α - 1 ) + 1)
one has Di(K) = ^ ^ y
with c3 = (3, a)(64891, α - 31388).
Remark. The ideals q(i = 1,2) appearing in Examples 3 and 4 are not in the principal class and thus carry additional information about the field K. Taking this into account, Kähler refined his notions further by defining, in [K7], 407 and 411, the birational invariants rank and class of the modules DJl := Dn(K):
801
802
Rolf Berndt
Let m m
=
and let r be the rank of ÜJl as an I(k)-module. Then each system of m — r relations Yaijü)j
=0
(i =
... ,m — r)
j=ι
determines an ideal α in I (k) generated by the determinants of the (m — r )-submatrices of (aij) resp. α = I (k) for m = r. By the usual Fitting process this ideal belongs to a well-defined class of fractional ideals which is called the class of Dn(K). In [K7], 406 and 408, it is shown that ffll can be generated by r or r + 1 elements depending on whether α is the principal class or not. Another point of view to utilize the modules of integral differentials was proposed by Kähler around 1974: Let AT be a field of modular functions. Then one can compare its integral differentials with those having an integral Fourier development. This will be discussed further below in Section 4.4. Here we will state only two examples from Berndt-Schramm [BS]. Example 6 and 7 (the field of elliptic modular functions of level Ν = 6 and 7 [BS]). For k = Q C V ^ ) and f(x,y)
=
y
2
- x
3
- l = 0 ,
we have Di(K)
= J-3
y
—I(k),
and for k = Q and f(x,y)
=x3
+xy3
+ y = 0,
we have 3
Σ« = 1
WiZ,
dx wi = —, w2 = xwi, Sy
W3 =
ywi.
As a starting point for the determination of the absolutely integral differentials of a field Κ, one looks at the conditions arising from the localizations of a ring C with quotient field K, i.e. coming from an affine variety with function field K. In general (i.e. for r > 1) this will not be sufficient, so one looks at projective varieties and in all these examples one has to manage a sometimes rather involved route of blow-up procedures. All this motivates, as already hinted at in Section 3, not only to associate integral differentials to the field Κ but also to varieties being models of the field. Kahler dealt with this. Moreover he introduced integral differentials relative to divisors. We will
802
Kähler Differentials and Some Applications in Arithmetic Geometry
803
follow these constructions here. Later we will indicate a certain refinement of his notions.
4.2 Integral Differentials Relative to a Divisor for a Field Generalizing the usual notion of a divisor from number theory and Chevalley's concept of generalized Riemann surface, Kähler proposes in [K7], 324, the following notion: Definition. A divisor α of a field K/A is a map associating to each discrete valuation ring S of Κ (essentially of finite type over A) an S-module a(S) = where φ is the maximal ideal of S, i.e. α is given by a map a: W(K/A) S
—> •
Z, a(S).
The examples of divisors from number theory show that one usually imposes a finiteness condition. Kähler does this (in [K7], 333-345), but here we will leave aside these concepts of finite divisors and mention only two types of examples, namely the principal divisors a = (x)
with a(S) = xS for x e Κ
and the different divisor a = t>r with o(5) = Vr(S/A),
r = trdeg(A) K.
Using this notion of a divisor ο of a field ÄT, it is natural to introduce (as done in [K7], 412) the following associated birational invariant of Κ. Definition. The Α-module of integral differentials of Κ/ A relative to the divisor α is given by
In particular for the arithmetic case A = Ζ and a = Dr, we have here an object with a nice geometric interpretation which will become clearer after extending these purely field-theoretic notions into the region of algebraic geometry.
4.3 Integral Differentials of a Variety As explained in more detail in Appendix Β of this paper, the set V of stalks Θχ χ, χ 6 X, of a reduced irreducible scheme X of finite type over A with function field Κ is a variety in the sense of [K7], Chap. III. We will call, here and in the sequel, V a model of Κ/A. Using Kähler's notation V(C) for the set of localizations s = C c of
803
804
Rolf Berndt
the ring C, we also write ι V = U V (Ci), /=ι
Ci of finite type over A.
The model V is called complete (= chiuse in [K7]) if the scheme X/A is proper in the sense of [EGA], Then, each discrete valuation ring 5 e W(K/A) of Κ containing A dominates an s e V, i.e. we have S D s and, for the maximal ideals φ resp. p, the equality Π s = p holds. The model V is called regular if all local rings s = Θχ>χ g V are regular. If Κ is the quotient field of a ring R containing A, we have a canonical map φ: £Ir/a Ωκ/α = ^R/a ®R K. In Section 3 we have already introduced the notation [R,dR] :=φ(ΩΚ/Α) (here we abbreviate d := j). associated varieties.
C QK/A
Using this, we extend the objects from 4.1 to the
Definition. For a model V/ A of Κ we put D°(V/A)
:= P| [s,ds] seV
(s running over all local rings ί 6 V) and D(V/A)
:=
(5 running here over the discrete valuation rings S € V.) Remark. We have the natural identification D°(V/A)
~ Γ(Χ,
Ωχ/α).
4.4 Relations between Integral Differentials for a Variety and for Its Function Field Kähler relates the different notions of integrality on a variety and for a function field by proving the following statements. Here, for simplicity, we always assume A = Ζ or A = k, d := j , and that V/A is a model of the field Κ with char Κ = 0 and trdeg (A) Κ = r. Proposition 1 ([K7], 384). If V is complete over A, we have D°(V/A)
c
804
D(K/A).
Kähler Differentials and Some Applications in Arithmetic Geometry
805
This derives simply from the fact that each valuation ring S e W{K/A) dominates a local ring s e V if V is complete over A. This fact is nowadays called the valuative Criterium ofProperness for the scheme X belonging to V (as in [Ha], Theorem 4.7)). Proposition 2 ([K7], 389,390). Let s be a local ring with maximal ideal p and quotient field Κ and essentially of finite type over A. In the case A = TL we have D(K)c[s,ds]
if Or(s) = s,
and in the case A = k we have c [s, ds]
D{K/k)
if Ms/k)
= s.
In both cases, s is regular (by Lemma di Mehner resp. di Zariski reproduced here in Section 2.1), and the statements result from the fact that, given the condition for the different, one may choose c = 1 in the following statement (a special case of [K7], 388): For c, x, e s (i = 1 , . . . , r) such that r
cds C y ^ sdxj, (=1 the following relation holds r
c" p | [ S ,
C A"(J^sdxi)
S
i= l
where the intersection is running over all S € W(K/A) which are localizations of J (supposed here to be integrally closed in Κ = (s)). This statement, in turn, follows from the fact that an integrally closed ring C is the intersection of all the valuation rings S localizing C. Both propositions together immediately lead to the following Theorem 1 ([K7], 391). If V is a complete non-singular model of Κ over k with char Κ = 0 , we have D(K/k)
= D{V/k)
=
D°(V/k).
As Kähler remarks in [K7], 392, this theorem reduces the determination of the integral differentials in the case A = k to the resolution of singularities. As a consequence of this theorem (and analogous ones for other types of symmetry of the differentials) we obtain the birational invariance of the ranks of the homogeneous parts of D(V/k), i.e. of the genera resp. plurigenera as presented nowadays for instance in [Ha], p. 181, Theorem 8.19. For the case Κ = C Kähler had already clarified these notions of birationally invariant genera in 1932 (see [Kl], [K2]). In the arithmetic case A = Z, Proposition 2 is not sufficient to fix D(K) because there will be ramified local rings. In this case we get a bit farther by the following sharpening of Proposition 2.
805
806
Rolf Berndt
Proposition 3 ([K7], 393). Iffor a regular local ring s of Κ the different Dr(s) is a principal ideal, we have D(K)c[sds)=
P|
[SdS],
SeV(s)
where the intersection is running overall localizations S e W(K)
ofs.
The final results of Kähler in this direction are the following two (obtained by again using the calculus of his differents and some more facts from ideal theory). Proposition 4 ([K7], 399). If V is a complete model of Κ over Ζ such that all local rings s € V containing Q are regular, then there exists a rational number c > 0 with D°(V) c D(K) c (1 /c)D°(V). Theorem 2 ([K7], 400). We have D(K/Q) = Q · D(K). The problems in comparing D(K) and D(V) which arise from the ramification mentioned above can be avoided by the use of the notion of relatively integral differentials introduced in Section 3, where the different (and thus the arithmetic nature) is built in from the beginning. On the scheme X corresponding to the model V, we introduce the subsheaf of the constant sheaf Ω^ with stalks Ωχ,* consisting of the differentials ω e Ω a- integral in s = i.e.
Ωχ,χ = As/z in the notation of Section 3. Using moreover the language from 4.2, we can also write Γ(Χ, Ω) = {ω g [Κ, dK], 0(<φ) C J for all s G V) = D° ^ ^
.
Again we arrive at a birationally invariant notion: Theorem 3 ([Be5], 7.). If V is a complete regular model of Κ over Ζ we have
Because of its importance we will reformulate and slightly augment this statement. Let X be an integral scheme of finite type over Y = Spec Ζ with function field Κ of transcendence degree r over Q. Then, from the local description in 3.1 and 3.2, we have the sheaves Αχ/γ and ωχ/γ of integral resp. regular differentials. The general relation Αχ /γ c ωχ/γ is an equality if X is regular. If X/Y is proper, the highest degree part af X j Y is a dualizing sheaf (by [HS]) in the sense of duality theory of Grothendieck-Serre. For Χ/ Y proper and X regular one has the equality of finitely
806
Kähler Differentials and Some Applications in Arithmetic Geometry
807
generated Z-modules Γ(Χ, Αχ/γ)
= Γ(Χ, ωχ/γ)
= D0
= D
,
describing a birational invariant of Χ. Unfortunately, the usefulness of this statement is strongly limited by the hypothesis of the existence of a regular model. At least, for the case of arithmetical dimension two we have such models and we can use our notions in the following independent formulation of Neron's minimality criterium ([Ne], Proposition 1, p. 89). Proposition 5 ([Be2], 10.). Let be A = 1j or¥p , ρ prime φ 2, 3, Κ a field finitely generated over (A) with t r d e g ^ Κ — r, r = 1 for A = Z, r = 2 for A = F p , and V a complete regular model of Κ over A. Then V is minimal if there is an r-form ω with £>(co|S) = S for all valuation rings S eV. Neron's notions translate here as follows: For a local ring 5 of Κ with maximal ideal p, we have equivalences ω g Ωκ/α
is p-morph
·<=>·
Ö(cu|s) c s,
is zero at ρ
ö(a>|s) c p,
is non-zero at ρ
0(ω|ί) = s.
In the thesis of Radtke ([Ra]) Neron's construction of the minimal models of elliptic curves is redone in Kähler's language and it is shown: Let Κ = Q(x, y) be an elliptic function field with minimal equation f ( x , y) = y2 + aixy + a-sy - (*3 + «2*2 + CHX + as) = 0, where α, € Ζ, with minimal we have
-order of the discriminant of / for all primes p. Then
z>,(f)=z» J
with the Νiron differential ω = In the meantime the topic of Neron models has found a thorough treatment in the book [BLR] by Bosch, Lütkebohmert and Raynaud, which is independent of the one above. As to be seen in the article [Bo] by Bost there is another variant of Kähler's integral differentials related to Neron differentials. As recently proposed by Nastold and elaborated upon by Kunz and Waldi, the finiteness of D ( y ) can (again by Grothendieck's theorem) already be deduced from
807
808
Rolf Berndt
the existence of a complete normal model V (resp. scheme X) of Κ as we have (essentially by [Be2], 4.) 0°(£)-Γ(
Χ
. A,) : > ! > ( £ )
Kunz and Waldi discussed this in an addendum to [KW1] (see [KW2] or Kunz's homepage www-nw.uni-regensburg.de/~kue22107.mathematik.uni-regens b u r g . de). They determined the following examples showing that the implication above is strict and that for normal models Γ(Χ, Αχ) is in general not a birational invariant: As in Section 4.1 we take the function field K =
with f(x,y)
= 0.
Example 1. We look again at the Fermat field given by
f(x,y) =xm + ym - 1,
m > 2.
and take the complete normal model X = Spec R U Spec R',
R = Z[x, y], R' = Z[l/x,
y/x].
Then we get y
m—3>i+j,i,j>0
i.e. (compare Kähler's Example 1 in Section 4.1)
r(X,Ax/z)
=
m
-D(K).
Example 2. We look at elliptic function fields with
fix, y) = y2- (x3 + ax2 + bx+ c),
a, b, c € Q,
and the analogue normal model X as in Example 1. Then we get after some calculation
For m = 3 Example 1 is also elliptic and we see r(x, Δ | / Ζ ) ψ r ( x , Δ° χ / ζ ) = i z . Moreover, Kunz and Waldi show
Γ(Χ, Α\!Ί)
Φ Γ(Χ,
808
Αιχ/Ζ).
Kahler Differentials and Some Applications in Arithmetic Geometry
809
4.5 Absolutely Integral Differentials and Arithmetic Modular Forms Around 1970 Kähler proposed to compare arithmetically distinguished differentials of the fields of modular functions with modular functions and forms with integer qexpansion. Some results in this direction obtained by Bemdt and Schramm ([Sch], [BS], [Be4]) will be sketched here. An elliptic modularform of weight I and level Ν (more precisely for Γ := Γ (Ν) = {Μ € SL(2, Ζ), Μ = Ε mod Ν}) is a meromorphic function f -.f) = {τ = χ+ iyeC,y>0}^
C
with: (cz+d)~e
a) f\t [Μ](τ) := f
= / ( r ) for all Μ =
^
e Γ(Λ0·
b) There is a number C > 0 such that / has no singularity for Im τ > C. c) / has a non-essential singularity at ioo. We write / ( τ ) = ^c{n)qnN,
qN := e{x/N),
e(u) := exp(27rw)
for the Fourier expansion at the cusp ioo of such a form. As usual, forms of weight I = 0 are called modular functions. Definition 6. For a subring A and a subfield k of C we denote by Κ = $N(k) the field of elliptic modular functions / of level Ν with Fourier coefficients c(n) e k and by DiffAAT resp. the Α-module of differential forms ω e
Diff^ with Fourier expansion
ω = Σ c(n)4Nd(lN' η
c n
( )
e
i.e. with A-coefficients at ioo resp. with Fourier expansion a> ο Μ = Σ cM(n)qnNdqN,
cM(η) e A for all Μ G Γ(1),
i.e. with Α-coefficients at all cusps. The most interesting cases are k = Q,
809
A =Z
(easel)
Rolf Berndt
810 and k = qN
= Q(^),
ζΝ =
e(l/N),
A = on the maximal order of
(case 2)
or A = o'N =
(case 2')
on[1/N].
In the following we restrict to these cases and abbreviate Kn:=3N(®n),
K°n'-=$N(
Q).
Remark. By the ^-expansion principle (as in [DR], p. 313) one has Diff 0 ' KN = Diff*, °N
0N
KN.
Using the results about the explicit description of the most general statement to be made here is
Theorem 1 ([Sch]; [BS], Satz 1).
1, 2, and 2', one
In all cases
DI($N(k))
a
C Diff Aid ν
s in Shimura [Sh], 6.2,
has
(k))·
A certain sharpening of this inclusion is given if we allow for denumerators N:
Theorem 2 ([Sch], Satz 4.11).
We
D^KN/UHN])
have
= Z[\/N]Oifi0NKN
=
Diff*0N,/^.
More precise results come up if we look at the differentials on Igusa's Kroneckerian models Vν of Κ ν ([Ig]). If J is the usual modular invariant generating the field K\ of elliptic modular functions for Γ(1) = SL(2, Z), we put VN
:=
V { I { K
N
/ n m
U
V(I(KN/Z[J~1]))
where we use Kähler's notation I(R/Rq) for the integral closure of a subring RO contained in a ring R and V(R) for the set of localizations of R (in its prime ideals). This model is obviously complete and normal. Moreover, it is even regular (this is as stated by Deligne - a consequence of [DR] and [Dr]). Then we can use Theorem 3 from Section 4. 4 which tells us that we have
By an explicit analysis of the series appearing in the description of V^ one proves
Theorem 3 ([Sch], Satz 4.5).
We
have
Dl(VN)
=
810
Oiff*0NKN
Kahler Differentials and Some Applications in Arithmetic Geometry
811
and (J^=MoNrlDiff*NKN.
Di
Together with the last statement above we obtain Corollary. We have I =D0(ON)_1Diff+ON^.
Di ( ^
As already used in 4.1, explicit calculations for Ν = 6 and 7 are done in [BS]. Namely we can deduce from Klein-Fricke [KF], Vol. I, p. 682 if. and Vol. II, p. 391 resp. [KF], Vol. II, p. 277 ff. the descriptions K = $N(k) =
k(x,y)
with = y2-x3-1=0
f(x,y)
forW
= xy 3 + y + x 3 = 0
O'\^AK = W\A,
dx W\ = — Jy
3
= 6, for Ν = 7,
f o r / / = 6, d x
= ^^ uii A, i=i
W[ = —-, xv2 = xwi,
if3 = yw\
for Ν = 7.
fy
Then we have for JV = 6 ([BS], Satz 3) Di(K) = Ν Di ^ ^
= 6w\Z
in easel,
=
in case 2,
2CCON
where
k = Q6 = Q( a),
a =
on = Ζ[σ6],
σ6 =
ζ6-1,
and for Ν = 7 ([BS], Satz 4) Di(K) = Ν Di
W
J = Haii
=
811
Wi
'
812
Rolf Bemdt
with in case 1,
(an) = 7 E3 σ3 2σ2 9σ
0 0 σ
0 σ2 — 4σ
in case 2,
where k =
Q
7
=
Q(<77),
0N
=
Ζ[σ 7 ],
σ =
ση =
ζη -
1.
It is tempting to pursue the theme proposed by Kahler and try to relate these arithmetically distinguished differentials to Shimura's construction of arithmetically distinguished automorphic forms and his canonical models - and moreover, via the Shimura varieties to the arithmetic automorphic representations discussed nowadays by Clozel, M. Harris and others. It may seem rather hypothetical, but I have the feeling that even these developments fit into Kähler's basic intuition to create an arithmetic geometry subtle enough for future questions: For instance, some automorphic representations of the symplectic group Sp(n, R) have models spanned by differential forms on Siegel modular varieties. Then the arithmeticity of the representation may be reflected in a model consisting of differentials with integral Fourier expansions....
4.6 Topologically Integral Differentials, Periods and Birational Invariants Another nowadays rather familiar approach to define arithmetically distinguished differentials as those having integral periods was pursued in the first three paragraphs of the Chapter X, the last one of Geometria Aritmetica [K7]. The idea for this and the construction of birationally invariant functions associated to an arithmetical function field Κ is already announced in the last section of [K4]. Moreover, these differentials are used to construct a Kähler metric on a complex r-dimensional manifold whose field of meromorphic functions is Κ C. Apparently Kähler was very familiar with more or less simultaneous work by de Rham and Hodge (see [dR] and [Ho]) which he often alludes to, but without precise citations. Their work forms a background for the following. In [K7], 445, Kähler calls a connected r-dimensional holomorphic manifold R a 2r-dimensional Riemanniana and in 446 he introduces Ω 0 (/?) as the subring of real (300-differentials with compact support in the ring Q(R) of exterior (300-differentials on R. In 447, we find the notion which is central for this approach. Definition. A form ω e QP(R) is topologically integral if and only if ω is closed, i.e. άω = 0, and if there is an integral (2r — p)-cycle γ such that
812
Kähler Differentials and Some Applications in Arithmetic Geometry
813
2r r p Qc ~ (R).
holds for each closed θ g
In this case Kähler calls ω homologous to γ and writes ω ~ γ. Moreover, if ω' e QP(R) and ω ~ ω' stands for ω — ω' e dQ(R), one can see that ω ~ α/,
ω~ γ
implies
ω' ~ γ.
The topologically integral differentials of degree ρ form an additive group. Here we follow the notation from [K8] and do not write IP(R) for this group as in [K7] but TP(R). The direct sum 2r
T(R) := 0 Tp(R), p=0
T°(R) = Ζ
is a ring, the ring of topologically integral differentials on R. Obviously, via the usual isomorphisms, TP{R) induces a submodule of H^R(R) isomorphic to HJR-PIR, Z) mod torsion. The complex structure on R allows for the introduction of the Hodge types (R) rs resp. H ' (R), r + s = p. In [K7], 450, Kähler mentions the problem to determine T(r's)(R)
n{r's)(R)DT(R).
:=
Following Kähler, we write bq T (R) = Υ^Ίω] i=l q
where for compact R the basis Ω = (ω ( ?) ί=1 q Φ r we have J ύή Λ ω*'* — 8ij, and for q = r with ρ \=br/2
+dWl(R) b
can and will be chosen such that for
i, j — 1,...,
bq
odd, we have
(/->-;)•(-I Ϊ ) - ' · while for ρ = br/1 even, we still have det ( / ω\ Α ω j) φ. 0. In the special case r = 1, where R is a usual compact Riemann surface with genus ρ, we have a canonical system (y,·),·^ ^ °f retrosections, and equivalent bases ω and ω' are related by ω' = ω Μ
with Μ e Sp(2r, Ζ).
In Geometria Aritmetica, from 451 on, the manifolds R are "coming" from a model V of a field Κ finitely generated over Q with trdegQ Κ = r in the following sense:
813
814
Rolf Berndt
R := R(V) is, as a set, the set of complex points of V, i.e. the set of homomorphisms Ρ :s —• C
with ker Ρ = ρ
for local rings s € V with maximal ideal p. In Chapter V of [K7], Spazio di una Varietä, this set R is equipped with the structure of a (Hausdorff-)topological space which is compact if V is a complete model of its function field K. Remembering that the model V is associated to a scheme X, this notion is analogous to the notion of the complex analytic space associated to X as in [Ha], p. 438 ff. Now if V is algebraically regular, i.e. all s e V containing Q are regular local rings, R(V) carries the structure of a complex analytic manifold, as shown in [K7], 438. By [K7], 453, for deg Κ = g, i.e. the degree of the maximal number field k contained in Κ is g, R(V) is a disjoint union of g connected conjugate manifolds Rv 8
*(V) = | J / ? which will be thought of as lying over the g complex embeddings οι '. k c—> C. As to be expected, the arithmetically distinguished differentials come in here too: By [K7], 456 and 457, Θ e Dq(K/Q) induces on each Rv(V) and hence on R a holomorphic differential form, and this association is consistent with the differentiation d. From 458 on Kähler combines the notions of arithmetically and topologically integral differentials in the following manner: For a holomorphic r-form θ on a compact Riemanniana R, its periods relative to a basis (ω,·) of Tr(R) are defined by
By decomposing θ ~ ]Γλ,·ω(· (λ,· e C) in [K7], 458, Kähler easily deduces the Theorem of Hodge from the fact that the matrix
is hermitian with determinant φ 0: If all periods of a holomorphic r-form θ on a compact 2r-Riemanniana vanish, the form θ is zero. In the sequel, the arithmetically distinguished differentials are used to define moduli and functions which are birational invariants of the field Κ. Let 9 = (ßj),
j =
814
\,...,iq=gpq,
Kahler Differentials and Some Applications in Arithmetic Geometry
815
be a basis of the additive group DQ{K) and ω = (cojv)), a basis of T2r~q(R).
i = l,...,
b2r-q,
ν = 1,...,
g
Then there is the period matrix Π : - ( I «{"a β,).
Kahler discusses the following special cases: 1. For q = 0 we have Dq{K) = ο it, the ring of integers in the maximal number field k contained in Κ, generated as a Z-module by 9j = aj e k , j = 1 , . . . , g. And the topologically integral 2r-cohomology classes are represented by 2r-differentials τν with rv = 0 on Rß for μ φ ν and f^ τν = 1. Here the period matrix is simply Π = (συα;·) for the points σν : k <-» C, ν = 1 , . . . , g. The square of the determinant of Π is the discriminant of k and thus a birational invariant of Κ. 2. For r = 1, i.e. the case of a field Κ of algebraic functions in one variable, all spaces R belonging to complete algebraically regular arithmetic models V of Κ are homeomorphic and decompose into g = deg Κ conjugate Riemannian surfaces Rv of genus ρ = rank of D\{K) as a fc-module. Here the basis ω of Τl(R) is chosen such that (v)
(v)
o>i+p(v-1) = ω. , ω
ü)pg+i+p(V-1) = ωρ+.,
Ιν)="ρΙί=°
j ω\ν) Λ a>yij = δij,
on Rß for μ Φ ν,
i, j = I,...,
ρ, ν = 1 , . . . , g.
Such a basis is called canonical. Two such bases ω and ω are equivalent if there are matrices Α (υ) = € MP(L) with det Α (υ) = ± 1 and ρ S,· (v) = ^ a j f , j=ι For a basis θ = (θγ,...,
i = 1,...,
p.
θρ) of Di (Κ), Kähler defines (in [K7], 463-^465) for m € Ν Σ(detQ)~2m
gm(ß) := and for t e C ψ(θ,ί)
:=£|detnr',
815
816
Rolf Berndt
where the sum is extended over all non-equivalent canonical bases of T l ( R ) and Ω is the square period matrix formed with the first half of the base ω, i.e. with o)i,i — 1 , . . . , pg. These series converge by a result of Hei Braun [Br] for 2m > p +1 resp. t € C with Re t > ρ + 1. Extending this result obtained at first by Kähler for g = 1, G. Häuslein [Hä] showed in his thesis that gm and ψ κ are birational invariants which decompose as products into factors of the type obtained in the case g = 1. 3. Another procedure to construct birational invariants suitable also in the cases r > 1 is proposed in [K7], 466-471. Here again one takes a complete regular model V of Κ algebraic over Q with trdegQ Κ = r, deg Κ = g, char Κ = 0 and space R = R(V) = |_|J=1 Rv. Then Kähler shows that, for a differential Θ e Dr(K/Q), the non-negative numbers • • "JR 7V
ΘΛΘ,
v = 1,...,S
do not depend on the choice of the model V for Κ. Abbreviating g
Ι Θ αΘ JR
:=J2
Ι
j J Rv
ΘΛΘ,
one thus gets, for Re / > gpr, a differential depending only on Κ and t _
^
ΘΛΘ
and a function Φ*(ί):= f Ω ( 0 =
θ
Σ
([ θΛθ]
' .
These notions can be related to the periods in the following way: For a basis — (θ\,..., θι), ί = prg, we get non-negative hermitian forms Fv(xi,.--,xe):=in2
(Σ*/?/)
λ
,
v = l
,...,g
which do not depend on the choice of V. To study the dependence of these forms on the moduli of the field Κ, one goes back to the topologically integral differentials and puts
μ=\
816
Kahler Differentials and Some Applications in Arithmetic Geometry
817
Here the complex coefficients b^J can be expressed in terms of the periods: Using the matrix ^f ω ^ λ α>μ ^ =: ( e ^ ) , via bv
r -
L J Κυ
ω
j -
λ
l ^ V ß j
1
we get = Σ (1=1
* 2 . det(m^) = ±1,
and thus λ,μ
In the case that η is odd, one can assume « and therefore then
Η
J
ο ) - ' * * *
= —7. The coefficients of >) _
c
jk
_
bv/2 1
y
L·^ λ=1
-
0
"^/2+λ,*
0
(Z)
in the form
"Α,,^+λ,^^λ;
. . . , x t ) are
—(v)\
) ·
In [Κ7], 470, it is shown that F(xι,
:=
is positive definite. In the classical case r = g = 1 of a curve over Q, if the period matrix is normalized to π = ' ( Ζ , Ε ) ,
where Ζ is an element of the Siegel upper half space S)p, we get Ψ*(ί)= Ε
C χ ( Ζ - Ζ ) Χ ) - ' .
xeZ ρ
Remark. Moreover, the differential form Ω(ί) defined above can be used to define a Kählerian metric ds2 on the Riemanniana Rv: If x\,..., xr are complex coordinates for Rv in an open domain U, one writes Ω(0
=
Φ(ί)άχι
Λ dxι
817
Λ · · · Λ dxr
A
dxr
818
Rolf Berndt
and then defines ds2 := i
—dx; • dxe,
resp. the Kähler form ω = ι'33Φ. As stated at the end of [K8], for geometric genus big enough, this comes out as a metric which is positive definite up to (2r — 2)-dimensional subspaces, where the discriminant of the metric may vanish. In [K7], 473, the last section of this paragraph, Kähler raises the question whether in general the Riemannianae for a given field Κ are homeomorphic and he proposes to look also at the period matrix π for q = 1, r > 1, and to put this together with its complex conjugate to get a square matrix with non-vanishing determinant which up to a factor ± 1 is determined by Κ alone. Concerning Kähler's question, D. Reed states in his article on the topology of conjugate varieties [Re], p. 287, that there has been little published in this area since Serre [Se] and Abelson [Ab] have produced examples of conjugate varieties whose complex points constitute non-homeomorphic topological spaces. It is worthwile to note that part of Kähler's ideas independently reapppear in the framework of Arakelov geometry. In particular, the notion of the Faltings height has a precursor in the notions described above. The interested reader can learn more about this from the work of J.-B. Bost ([Bo]).
5 Kähler Differentials and Arithmetic Hodge Theory The standard conjectures in algebraic geometry and number theory concern periods, regulators and special values of L-functions as transcendental numbers which are essentially fixed up to equivalence given by rational or algebraic factors. Perhaps it is allowed to see a kind of reflex of this in the fact that one of the tools to associate invariants to schemes or algebraic varieties are the differential modules ^ a subfield of C or even ^c/Q'
^ the algebraic closure of Q,
where the differentials of all rational resp. algebraic numbers are zero. Though Kähler was using only singular and de Rham cohomology and not the other cohomology theories used simultaneously in the recent developments in algebraic geometry there is not too large a gap between the things described in the last chapters of
818
Kahler Differentials and Some Applications in Arithmetic Geometry
819
GeometriaAritmetica and some of the modern developments using these differentials. Some hints will be given as a coda to this text on Kähler differentials, even if it is not possible to account for all the subtle definitions coming in. D. Zagier put me on this track, and I have to thank him as well as U. Jannsen, who led me to the right sources and helped me with valuable hints.
5.1 Arithmetic Gauss-Manin Connections and Absolute Hodge Cycles It is very natural that the algebraic Kähler differentials are used to replace Cartan's old differential forms if one tries to develop algebraic or arithmetic geometry parallel to analytic geometry. So one of the most fundamental technical tools is the algebraic or arithmetic Gauss-Manin connection going back to early work by Grothendieck, Oda-Katz, Katz, Deligne, Hartshorne and others. In the following we will reproduce part of Deligne's presentation in [De], p. 30, on his way to develop a theory of absolute Hodge cycles: Let kο be a field of characteristic 0 and 5 a smooth ko-scheme (or the spectrum of a finitely generated field over ko). A ko-connection on a coherent <9 s-module 8 is a homomorphism of sheaves of abelian groups V : 8 —> Ω\/Ιΐ0 ®0s 8 such that V(fe)
=
fV(e)+df®e
for sections / of &s and e of 8. Such a V can be extended to a homomorphism of abelian sheaves V« :
tf^
ί —• ω e ι—•
β, da>®e + ( - 1 ) " ω Λ V()
and V is said to be integrable if Vi ο V = 0. If π: X morphism, then HnDR(X/S)
:=
S is a proper smooth
Μ"π+(Ω·χ/5)
is a locally free sheaf of ö^-modules and has a canonical ^-connection, the GaussManin connection which is integrable. An example of the use of this appears in [De], p. 27 ff.: Let k be an algebraically closed field of finite transcendence degree over Q and let X be variety over k. For η e No and m € Ζ Deligne introduces H^(X)(m) as the free kxA^-module consisting of pairs of elements in HQR (X/ k) and in the twisted adelic etale cohomology A / ( m ) ) = Q ® UH?t(X, Zi(m)). If σ : k ^ C is an embedding, there is a canonical comparison isomorphism σ*: Ηβ(σΧ, Q(2ni)n)
Q (k χ Af)
819
^
H£(X)(m)
820
Rolf Bemdt
where Ηβ(σΧ,—) denotes the singular cohomology of the complex manifold σΧ = (X Xk,a C)(C). An element in H^(X, m) is called a Hodge cycle relative to σ if it is rational relative to σ, i.e., the image of an element t e Hg(aX, Q(2ni)m), and if t is a Hodge cycle. If this holds for all embeddings σ, the element is called an absolute Hodge cycle. The Q-vector space of these cycles is denoted CnAH(X). The usefulness of V is exemplified by the Proposition 2.5 from [De]: Let J t 0 c € have finite transcendence degree over Q, let k be a field which is finitely generated over ko, let X be a variety over k, and let V be the Gauss-Manin connection on HQR(X) relative to X —> Spec k —> Spec fco· If t G H»DR(X) is rational relative to all embeddings of k into C, then Vi = 0. Using some more work, Deligne shows that one can define the notion of an absolute Hodge cycle on any (complete smooth) variety X over a field k (of characteristic zero), namely as an absolute Hodge cycle on X <S>k k that is fixed under Gal (jk/k), k an algebraic closure of k. Finally when k = C a Hodge cycle is defined to be a cycle that is Hodge relative to σ = id: C i-> C. Deligne states on p. 36 as the Main Theorem of his article: If X is an abelian variety over an algebraically closed field and t is a Hodge cycle on X relative to one embedding σ : k i-»· C, then it is an absolute Hodge cycle.
5.2 M. Green's Arithmetic Hodge Structure In the framework of his study of higher Abel-Jacobi maps and referring to joint work in preparation with P. Griffiths, M. Green takes in his 1998 ICM-Berlin address ([Gr], p. 271) the arithmetic Gauss-Manin connection V x / Q : Hk(X, C) —* Qlc/Q <8>c Hk(X, C) for a smooth projective variety X defined over C as starting point for the definition of an arithmetic Hodge structure (AHS). This is a complex vector space V with a finite descending filtration F' V and a Q-linear connection V: v — > n f c / Q ® c v satisfying V 2 = 0 (flatness) and V F ' V c n i / Q <S>c FP~lV (Griffiths transversality) for all p. Green points out that in contrast to the usual mixed Hodge structures (MHS), AHS have non-trivial higher extension groups with a geometric meaning. And the extension class theory fits in well with the arithmetic cycle class map η: CHP(X) z Q — • Η 2 ' ( Ω ! ? 0 ) ,
820
Kahler Differentials and Some Applications in Arithmetic Geometry
821
considered previously by Η. Esnault, Κ. Paranjape and V. Srinivas, where C H P ( X ) is the Chow group representing codimension ρ algebraic cycles modulo rational equivalence. More about this is elaborated in a parallel development by M. Asakura, S. Saito and M. Saito which now will be briefly discussed.
5.3 Arithmetic (Mixed) Hodge Structures by Asakura and Saito Let X be a quasi-projective non-singular variety over C. Following the aim to associate to X a Hodge theory where higher extension groups do not necessarily vanish, Asakura proposes in [AS] the following notion of an arithmetic Hodge structure: X is defined by finitely many equations which have finitely many coefficients. By considering the coefficients as parameters of a space S, we obtain the smooth family / : X$ —» S, S a non-singular variety over Q. By M. Saito [Sa] we get a category MHM(S) of mixed Hodge modules on S and objects Hn(Xs/S) in it. The usual mixed Hodge structure n H (X, Q) appears as the fiber over a point of S. The category of Asakura's arithmetic Hodge structures is defined as the limit category M(C) = lim MHM(S) s
where the limit is over all S as above and embeddings of the function fields Q(S) into C. The various models Xs/S and the mixed Hodge modules H n ( X / S ) define a "limit object" H n ( X ) in M(C). An important ingredient of this theory is the arithmetic Gauss-Manin connection on algebraic deRham cohomology V:
HqdR{X/C)
—»
H H X / C ) ®c
Olc/Q.
This connection induces a complex
The cohomology at the middle term of this complex is the space of Mumford's infinitesimal invariants (r). In Proposition 3.6 Asakura shows that we have a natural map from the extension groups in M(C) to the space of these invariants ExtM(C)<W)'
H H X ) { r ) ) —•
Ar-p'q-
r + p
(
P
).
Moreover, he defines higher Abel-Jacobi maps from Bloch's higher Chow groups of X to the extension groups on the left-hand side. Asakura expresses the hope that his higher Abel Jacobi invariants capture all cycles Φ 0, even though the infinitesimal invariants are zero, and he announces examples of this phenomenon. In this context we also have the more recent paper by M. Saito [Sal], in which he develops a formalism of arithmetic mixed sheaves which extends Asakura's theory. Saito proves that under suitable conditions the higher extension groups of such mixed
821
822
Rolf Berndt
sheaves are non-trivial and he points out that the category of arithmetic mixed Hodge structures is closer to a conjectural category of mixed motives than the standard category of graded-polarized mixed Hodge structures, as the extension groups of the latter are always trivial. Again higher Abel-Jacobi maps play a central role as in [Gr] by M. Green.
Appendix Α Kähler's Perspectivism as His Version of Local Algebra Inspired by Leibniz's Monadologie, Kahler developed a vocabulary to visualize the notions and relations from local algebra. This terminology is displayed in German in the article [K4] and the book [K6], in French in the article [K5], and in Italian in Chapters III and (partially) VII of Geometria Aritmetica [K7]. Some of Kähler's notation is already translated into English by Andre Weil in his review [WGA]. We will reproduce this here and try to find appropriate translations for the remaining notions. Doing this, we will try to sketch that part of Kähler's system which seems relevant for the comprehension of the development of his mathematical work. Most of this emerges in Kähler's later work intended to reach into Natural Sciences, Philosophy and even Theology. The reader who is interested to get an impression of this, will find material assembled in the Appendix to this Volume.
A.l Fundamental Notions: Homomorphisms as Perspectives Starting from the fundamental fact that a field allows only two types of homomorphic images, namely the isomorphic image and the reduction of all elements to zero, Kahler is led to reproduce in mathematical terms the situation that in general one observes the objects of reality in a certain perspective, i.e. by means of the aspects which they present from different perspectives. Following this idea, in [K7], 63, Kähler arrives at a collection of definitions translating the usual mathematical expressions. - Let A be a ring. Then a homomorphism Λ —• Α/αφ
{0}
determined by an ideal α is a perception with origin a. - The element χ + a of A/a φ {0} with representative χ e A is the perception of χ in A/a. - If χ € Α φ {0} and χα Φ 0 for each element α Φ 0 of Α, Λ: is active in A. And if χ e Α φ {0} and αχ φ 0 for each α φ 0 of A, χ is reactive in A.
822
Kahler Differentials and Some Applications in Arithmetic Geometry
823
- If Λ is a commutative ring and has active elements, A is objective (= ogettivo in Italian). - If R is the full quotient ring of the objective ring A, i.e. the set of quotients a/b, R is the object of A, in signs R = (A). For A = (A), A is called a (mathematical) reality ([K6], p. 62). - If the origin α of the perception A —• A/a contains the origin of each perception, i.e. α is a unique maximal ideal, the perception is central. - If the ring S has a unit 1 and allows for a central perception 5 —• S / φ , S is an aspect presented by the perspective of the subject S / φ . - For R = (5), i.e. R is the object of the aspect S (and of the perspective φ ) , S is an aspect of R and φ a perspective of R (and of no other ring). Kähler convenes to denote the aspects by S, s, S',
etc.
while the corresponding symbols
φ,
ρ,
φ',
pi, etc.
indicate the related perspectives presented by the aspects as well as the origins of the perceptions, i.e. the kernels of the homomorphisms 5
S/%
s
s/p, S'
S'/ψ,
Sl
si/pi.
- The subject S/ty of a perspective φ is individual in the sense that it has a unit element and has no other perception than the identity. If S is commutative, the subject S/9ß is a field. - An aspect S is an extension of an aspect s, and the perspective φ is an extension of ρ if and only if s is contained as a subring in S and φ Π s = ρ holds, i.e. in the language of local algebra, if 5 dominates s. Hence one has an embedding s/p ^
s/φ.
A.2 Local Algebra: Local Rings as Aspects of an Object From now on everything is restricted to commutative rings. In [K7], 68, Kähler presents the usual criterium for local rings: Let A be a commutative ring. Then A is an aspect exactly if A has an ideal α such that from χ e A, χ g a one can conclude x~l e A. This α is then the origin of a perspective presenting the object A. Kähler presents in [K7], 71, the generation of a local ring by localization of another ring as follows.
823
824
Rolf Berndt - A commutative ring A is base of the aspect S or the perspective φ if and only if
1.) A is a subring of S, and 2.) each element of 5 is a quotient a/b of a, b e A, b g φ. The intersection φ Π A is called the ideal creating (= individuante in Italian) S resp. φ in A. For an ideal c in A to create a perspective with base A it is necessary and sufficient that c is a prime ideal Φ A containing all in A non-active elements of A. Then, we have φ ΠA = c
and
φ = cS.
for the perspective created by c. - A perspective ψ (an aspect s) is extended with elements x, y,... of a ring A containing s means that there is an aspect S extending s and containing x, y, In sections 77-90 of [K7], this notion is discussed and related to the notion of integrality: - The integrity ( = integrita in Italian) of a ring extension R/A is defined in the following way: An element * of a primary ring R (i.e. all zero divisors are nilpotent) containing A is called integral in R if and only if each aspect intermediate between A and R can be extended with x. The set I (R/A) of these elements is a ring which Kähler calls the integrity. It is shown in [K7], 86, that I (R/A) consists of the elements integral over A in the usual sense, namely that they annihilate a normed polynomial with coefficients in A. To get a kind of geometric interpretation of this algebraic notion, Kähler refines the term aspect in two steps. 1.) An aspect s resp. a perspective ρ is called closed if it has no inner extension. Here, an inner extension is an extension which has the same object, i.e. quotient ring, as the extended ring. There are equivalent characterizations if the rings are noetherian. (In Italian, Kähler uses this term as usual in algebraic language. In the German text of [K6], he selects the - to my opinion - in this context meaningful expression ergründlich which might be translated as explorable.) In [K7], 93 resp. 95, we have a proof that a noetherian aspect s is closed if and only if - the origin ρ of s is a principal ideal or, for the case (s) = k a field, - from χ E k\s
follows x~l G S.
824
Kahler Differentials and Some Applications in Arithmetic Geometry
825
2.) Kahler calls an aspect s perfect if s is closed and noetherian with (s) = Κ a field and s φ k. Thus a perfect aspect of Κ is a discrete valuation ring of Κ (see for instance [Ha] Theorem 6.2 A). Sections 98-108 of [K7] include a proof of the fact that the integrity of a finitely generated field Κ is a finite Z-module and a discussion of methods for its determination. In this, several results by F. K. Schmidt are involved and reproduced. Here, we will only state the already announced geometric characterization of the integrity I(K) of a finitely generated field with char Κ = 0 ([K7], 346): I (Κ) is the intersection I(K) = C]S of all discrete valuation rings S which are arithmetical in the sense that they are essentially of finite type over Z. This can be read as the set of elements of Κ which are contained in all perfect aspects S having a finitely generated base over Z, or, more loosely, as the elements visible in all these special perspectives φ of K. In [K5], Kähler calls these elements les traits eternels of K.
A.3 p-adic Completion as Environment of a Perception Kähler uses the terms of his perspectivism in the following chapters of his Geometria Aritmetica for his formalism to describe Algebraic, Arithmetic and Analytical Geometry. We will report on these in Appendix Β to this article and continue here immediately with the part of the perspectivism describing the process of p-adic completion, as to be found in [K7], 269 ff., under the heading Anelli individuali. - Every perception A/c of a ring A creates (= έ il principio di in Italian) an infinitely ascending sequence A/c, A/c 2 , A / c 3 , . . . of perceptions of precision η G N. This sequence leads to (sbocca in Italian) a ring A/c 0 0 created by the perception (individuale alia perceptione) A/c defined in the following manner. - Every infinite sequence of the type ao + c C a\ + c2 C a2 + c3 C · · ·
(an e A)
determines an element a of A/c 0 0 and vice versa. The (n + l)-th term of the sequence determined by a and of precision η is denoted by (of)»
825
826
Rolf Berndt and is called the n-th approximation of α. operations.
Λ/c 0 0 is a ring with the usual
- Every element a e A approximates one and only one element α of A/c°° with infinite precision, namely the one given by the sequence a + cCa
+ c2Ca
+
c3C···
which is called the idea of a in A/c 00 . Obviously, these ideas form a subring of A/c°° isomorphic to A exactly if case PlneN c " = Φ}· This i s if a noetherian aspect S with base A exists which satisfies φ D c. - In [K6], p. 127, Kähler calls the ring Λ/c 0 0 die Umwelt der Anschauung Λ/c which might be translated as the environment of the perception. And in [K7], 270, he specializes to the situation s/p°° for 5 an aspect, i.e. a local ring, and calls s* := s/p°° the individuality (individualitä) of s/p resp. of p or s. In the sequel he proves that s* is again a local ring and he shows the usual facts about completed rings. For instance, [K7], 273, s* is regular (perfect) if s is regular (perfect), where regular is meant in the usual sense while perfect is meant as explained at the end of A.2. Moreover, in [K7], 276-282, facts are proved about norms, traces and lengths of ideal chains in relative situations which are then used in Kähler's proof of the finiteness of the module of integral differentials.
Β Kähler's Arithmetic and Algebraic Varieties As Kähler often affirmed, his notions were already conceived of before 1939. But they got published only starting in 1951 ([K4], [K5], [K7], and the resume in [K8]). Nowadays they seem to disappear behind the larger system of Elements de la Geometrie Algebrique [EGA] by Grothendieck and Dieudonne, the publication of which began in 1960, and the numerous texts in the sequel. At the time of their appearance and several years after however, they were competing with and related to the works of the Italian School (see [Sev]), the work of A. Weil [WAG], Zariski, Samuel [ZS], Chevalley [Ch], Nagata [Na], Lang [La], van der Waerden [vdW] and Godement [Go] (here only books are cited and the choice of the enumeration is certainly influenced by a personal touch). In the following sketch of Kähler's system, we will try to find a compromise between Kähler's terminology, as displayed partly in Appendix A and the usual notions from local and commutative algebra. Mostly, we follow Geometria Aritmetica [K7],
826
Kahler Differentials and Some Applications in Arithmetic Geometry
827
but sometimes we also use Infinitesimal-Arithmetik [K8], which is the text of a lecture given in 1961 in Torino and which gives a kind of overview about the content of Geometria Aritmetica.
B.l Varieties We take over from [K7], 110. Definition. A variety is a set of local rings fulfilling the following conditions: I. Any two local rings belonging to the same variety have a common base, i.e. are localizations of a common subring. II. If a local ring s belongs to the variety, every local ring which is a localization of s also belongs to the variety. Varieties are usually denoted by V,
V',...
- s e V means s is a local ring belonging to V. - s > A is used as a sign that the local ring 5 is a localization of the ring A, or the aspect s has A as a base. - For two local rings s and s',s' —> s signifies that s' dominates (extends) s, i.e. s Cs' and ρ' Π s = p. Using these agreements, a collection V of local rings is a variety if and only if I. s, s' G V
3A such that s > A and s' > A,
II. s G V, s' > s (i.e. s' localization of S)
s' e V.
- From I., we conclude that all local rings s of V have the same total quotient ring (5) which Kähler calls the object of the variety. Thus, all local rings belonging to the variety are aspects of the same object. - A variety is called prime, primary resp. non-primary if its object is a field, a primary ring or a non-primary ring. As will become clearer later, a prime variety V with object Κ in this sense is simply the collection of local rings appearing as stalks in a scheme having the field Κ as field of rational functions. It is even more evident that the variety V is what is nowadays called a model of the field Κ. From his definition Kähler can easily conclude the following facts:
827
Rolf Berndt
828
- Two perspectives belonging to the same variety and having a common extension are equal, i.e. if a local ring s dominates sι and S2 € V, we have si = 52 ([K7], 111).
- For S\,S2 € V, from p2 Π si c pi, we can conclude si c $2 and vice versa ([K7], 112). - Each ring A consisting not only of zero divisors is the base of a variety V(A), namely the set of all local rings s with base A ([K7], 114). Obviously, here we see that V(A) = [s = Θχ χ , χ e X = Spec A] is the usual affine variety. - A variety V is called arithmetic if it is obtained as a collection of a finite number of affine varieties Ν V = \JV(Ai), 1=1
where the rings A,· are arithmetic, i.e. of finite type over Ζ and have the same quotient field. And V is called algebraic over the field k if similarly the A, are of finite type over k.
Synthesis of Varieties The notion of a product of varieties appears in the following manner: A subring Ao in a ring A is called active if it has at least one non-zero-divisor and if every non-zero-divisor from Ao stays non-zero-divisor in A. We take two subrings Ri, R2, active in this sense in a ring R, and call the ring Ro generated by these rings Rl and R2 in R the synthesis of Ri and R2· Definition. Let V\ and V2 be varieties with objects /?i and R2· Then the synthesis (Vi, V2) of V\ and V2 is the set of local rings s coming up as localizations of the bases [si, 52], the subrings in R generated by all s 1 e V\ and si € V2· This definition produces again a variety. If V\ and V2 are generated as Vi=(JV(Ai)' '
^2 = U i
V
W'
where the rings A, and Bj are active in the same object R and contain the same unit element as R, we have ([K7], 117) (Vi,V 2 ) = U v ( [ A i f Ä,·]). i,k
828
Kähler Differentials and Some Applications in Arithmetic Geometry
829
This shows that Kähler's synthesis of varieties in certain cases corresponds to the product of schemes (fibered over Z).
Closed Varieties The usual notion of a complete variety or model appears in [K7], 118, under the name of a closed variety: - Rings A, A',... ring.
are called compatible if they are subrings of the same primary
Definition. A variety V is called closed if each local ring so compatible with the object Κ of the primary variety V has a common extension si together with a local ring s belonging to V. A variety V is called closed over a ring A if each local ring containing A and compatible with the primary object of V has a common extension together with a local ring belonging to V: si
Κ d so
s eV
Kähler's choice of the term closed is partly understandable by the relation to the special cases of integrally closed rings (it will be more understandable later by the fact that its space is compact). - If Ai = I(R/A) denotes the ring of elements of a primary ring R which are integral over A, the variety V(Ai) is closed over A ([K7], 119). - If the object R of a variety V which is closed over A contains the ring A, the elements of the intersection of all local rings s € V are integral over A ([K7], 120) f|jC/(Ä/A) A very useful construction of projective models is given by the following Proposition ([K7], 122). If χ
ι,...,
xm are non-infinitesimal elements of a primary ring A (i.e. non-nilpotent elements) and if A ,· = [x\/xi,..., *„/•*;],1 = 1,... ,m, denotes the ring generated by the quotients xj/xi in the total quotient ring of A, the variety m is a closed variety.
i=l
829
830
Rolf Bemdt
In ([K7], 124) this is a bit more refined to the following statement: If a ring A has a unit and is active in a primary ring, which contains the non-zero divisors x\,..., xm, the variety m
is a closed algebraic variety over Λ, called the projective variety generated by x\,... ,xm over A.
B.2 The Space of a Variety In the world of schemes, we have the notion of a complex analytic space associated to a scheme (over C). Kähler's way to associate a space to his variety is essentially the same as in the scheme-theoretic context. It appears in Chapter V of Geometria Aritmetica under the title Lo spazio di una varietä: Definition. A point of an object R (i.e. a primary ring) is a homomorphism of an aspect s of this object (i.e. a local ring s with total quotient ring (s) = R) into the field C of complex numbers. This homomorphism factors via the perspective s s/p and an isomorphism of the subject s/p into C. Each such homomorphism Ρ of S into C is called a point of the object (s) supported by the perspective p (or by the aspect s). The image P(x) of an element χ e s by the homomorphism Ρ is called the value of χ at Ρ and written as x(P). A is a base of a point Ρ is used as an abbreviation for A is base of an aspect s supporting P, and A(P) signifies that Ρ has Λ as a base in this sense. Aspects s with residue characteristic ρ φ 0 do not support points. An algebraic number field k with deg k = η has exactly η points, all supported by the aspect s = k. The space of all the points supported by the local rings s e V is called S(V), the space of the variety V. This space is equipped with a topology in the following way: Definition 2. Let Ρ be a point with base A, where 1 e A and V(A) c V. Then, a neighbourhood of Ρ is given by the set of points Q having Λ as a base and fulfilling the finite system of inequalities (*)
\x>(Q) - Xi(P)\ < η
i = 1,...
,m
formed by arbitrary elements x\,..., xm e A and any positive numbers r\,..., rm. In particular, a neighbourhood is called arithmetic if its base A is an arithmetic ring, i.e. of finite type over Z. It is then natural to take for the χ,· in condition (*) above the elements generating Λ. In [K7], 134, Kahler gives a proof that the space 5(V) of an arithmetic variety is thus a Hausdorff topological space.
830
Kahler Differentials and Some Applications in Arithmetic Geometry
831
Definition 3. A point Ρ lies over a point ρ if the perspective φ supporting Ρ is extension of the perspective ρ supporting ρ (i.e. the local ring S supporting Ρ dominates the local ring s supporting p) and x(P) = x(p) holds for all Χ g S. The main result in this context is the following Proposition ([K7], 136). Let S be an extension ofs with finitely many elements such that ,A
S/Φ 8
Η
7+φ/φ
J
=
S/Φ
T f w * - " ·
Then, over each point ρ supported by s lie exactly η points Ρ supported by S. Each aspect supporting a point contains the prime field Q. Thus, for the determination of the space of a variety V, it is sufficient to take the subset (V, Q) of V consisting of the local rings s with o Q . The explanation of the term closed variety is given by the following Theorem ([K7], 139). Let V be algebraic and closed over the field k. Then, the space of all points which are lying over the same point ρ supported by k is a compact Hausdorffspace ifthe neighbourhoods are chosen by bases which are algebraic over k. The proof of this statement takes four pages. Weil remarks in his review [WGA] that he does not know about any other written proof of this fact. In [K7], 140-147, Kähler studies the spaces for varieties V having as an object a field Κ finitely generated over a subfield k with trdeg k K = n
and
degfc Κ := deg* I(K/k)
=g
(here the field I(K/k) of elements of Κ which are algebraic over k is the maximal algebraic extension field of k in K). Moreover, he uses the following terms ([K7], 146): If (C, Κσ) is the composition of the field C with K, the isomorphism σ is (or better determines) a position of Κ with respect to C. Two such positions σ and τ are equal if and only if there is an isomorphism ρ over C of the composition (C, Κ σ ) onto the composition (C, K T ) with χσρ = χτ
for all χ
G
K.
We reproduce here [K7], 147, restricted to the case of characteristic zero and C = C. Proposition. For Κ algebraic over k with trdeg* Κ =n,
degk Κ = g,
there are exactly g positions of Κ with respect to C such that in every composition of C with Κ over k which has transcendence degree η over C the field Κ has one of these positions.
831
832
Rolf Berndt
Sections 148-167 in [K7] are dedicated to attaching an analytic structure to the arithmetic spaces, i.e. the spaces of an arithmetic variety having as its object a field Κ (finitely generated over Q). The following notions are fixed in [K7], 148: Definition 4. A variety V is called analytic if every s € V contains C. A point Ρ is analytic if Ρ is a point of an analytic variety with c(P) = c for all c e C. An analytic space A(V) is the set of analytic points of an analytic variety V. An n-dimensional analytic field is a field containing C with transcendence degree η over C. An analytic realization of a field Κ with trdeg Κ = η is a composition (C, Κσ), n-dimensional over C. Two such realizations (C, Κσ) and (C, Κτ) are equal if the positions σ and r of Κ with respect to C are equal. These definitions lead to the main result. Theorem ([K7], 164). The space S(V) of an arithmetic variety V of a field Κ with trdeg Κ = n and deg Κ = g decomposes g S(V) = \JA«C,
V*))
ί= 1
into g real 2n-dimensional connected parts which identify with the analytic spaces Rj := A((C, VT·)) corresponding to the different analytic realizations (C, Κτ') of Κ. This identification is given by mapping the point Ρ € S(V) supported by S e V to the point Pi e /?,· if and only if x(P)=xTi(Pi) holds for all χ € S. In [K7], 166, Kähler explains that the g parts /?, into which the space S(V) decomposes can have points in common. But they are disjoint if the arithmetic variety is integral, if its object is a field Κ and if each s € V contains the ring I{K) of integral elements of K. In this case the space of the variety V{I(K)) consists of the g points Pi > · · ·' Pg given by the g isomorphisms of k = (/ (Κ)) into C, and each /?, is the set of points of S(V) lying over /?, in the sense of the Definition 3 above. As to be expected, Kähler's proof of the Theorem uses power series methods. As I see it, the corner stone is the discussion of a polynomial Φ introduced in [K7], 151, as follows: Let be Κ the field generated by x\,..., KQ the field generated by x\,...,
xm, xn, deg^ Κ = h,
832
Kahler Differentials and Some Applications in Arithmetic Geometry
833
Κ* the Galois extension over Kq determined by K, Gd\(K*/Kq)
=
^Gd\{K*/K)ai,
Κ the field generated by K* and variables with trdeg^* Κ = 2(m — η).
, . . . , ym and un+\,...
,um, i.e.
Then Φ is defined as the product Φ(*ι, ...,xn,yn+i, h
...,ym\un+i,
'=
-
Xn+\)
...,um) + · · · + um(ym - x%)).
1=1
The importance of this polynomial becomes clear from the following intermediate results: Proposition ([K7], 152). There is a point Ρ of the variety V := V(Z[xi,..., with Xi(P) — Ci (i = I,..., m) exactly if the c,· e C fulfill the equation · · · . cn, Cn+l, • ..,Cm\un+l, Proposition ([K7], 159). The complete
xm])
..., Um) = 0.
decomposition
g Φ(*,>|κ) = J ^ Φ,·(*,>!«) i=1 of the polynomial Φ in the polynomial ring C[.x, _y, u] leads to a decomposition of the space S(V) of the variety V = V(L[x\,..., *m]) in g = deg Κ 2n-dimensional connected parts which are defined by Ρ € Ri <—>
=0.
If (C, Κr< ) is the analytic realization of Κ satisfying Φ ( · ( * ί ' , . . . , x%\un+i,...,
um) = 0
the part Ri can be interpreted as the analytic space A (Vi) of the variety V,· = V(€[*['',.. of (C, Κτ<) by identifying the points Ρ e A(V/) and P' e Ri if and only if = l,...,m.
xf(P)=Xj(P')J
B.3 Kähler's Notion of a Figure A subvariety Vo of a given variety V is in the context of Kähler's work simply a subset (varietä parziale). For instance, in [K7], 170, he introduces the term V(s) as the star
833
834
Rolf Berndt
(= Stella) of s e V (or of ρ), designating those S e V which are localizations of s. Subvarieties in the usual more restricted sense appear in [K7], 169, as figure in una varietä resp. in [K8], p. 18, as arithmetische Gebilde in the following manner: Definition. A figure ο in a variety V is a prescription assigning an ideal α (s) to each s € V such that a(S) = a(s)S holds for each s c S e V. Related notions are: - A figure α passes through a perspective ρ and has s/a(s) as its aspect if s € V with a(s) φ s. In this case p is called a perspective of a. The calculus of ideals translates into a calculus of figures, in which Kähler uses a terminology reflecting the geometric background. Let a, b , . . . , c be figures in V. - Their intersection is defined by the figure a + bΗ
he
with ideals (a + b + · · · + c)(s) = a(j) + b(s) + •·• + c(s)
for s e F .
- Their union is the figure ο π bη · · ·η c defined by (a η b η · · · η c ) 0 ) = a(s) η bO) η · · · η φ ) . - Their product is the figure ο · b ... c defined by (a · b . . . c ) 0 ) = a(i) · b(s)...
c(j).
- The division of figures o, b in V defines via (o : b)(s) : = a(s) : b(.s) = { c € i , c · b(i) C aO)} a figure if V is noetherian, i.e. all s e V are noetherian.
834
Kähler Differentials and Some Applications in Arithmetic Geometry
835
- A figure ο contains a figure b α > b if and only if 0(5) C b(s) holds for all s € V. - A figure ο is called a primary or a ^-primary ideal Q C S with
primary figure if there is an 5 € V and a
0(5) = £3Π5 = s
f o r i c S, for s <£_ S.
Such a figure is called prime if and only if φ = Ο . We write 0 = O. resp. α = Vß. - The figure t defined by t(j) = {0} for all 5 € V is called the total figure (figura totale). Each ideal ao of so € V generates a figure (ao) defined by (αο)(ί) := [αοΠί] -s ([K7], 181). The figure (q) defined by a ( φ Π s)-primary ideal q in s e V coincides with the φ-primary figure Ο defined above (with Q(S) = q · S). Let ρ be a perspective of o, i.e. a(s) Φ s. Then in [K7], 186, the figure (p) generated by p is called a prime figure of a. Moreover, p is an essential perspective of ο if a(s) is a genuine subset of
^Π S>s
and p is an extremal perspective of 0 if α(ί) Φ 5,
o(5) = S
for 5 € V ( j ) with
S^s.
In [K7], 188, 189 and 193, we find the following criterion translating these notions into the usual ideal theory. A necessary and sufficient condition for a primary noetherian local ring s to be essential for a figure α is that its maximal ideal ρ is a prime divisor of the ideal α(s). And s is extremal exactly if a(s) is p-primary, i.e. if there is an I e Ν with p* C a(s) c p.
835
836
Rolf Berndt
In [K7], 195-249, tools from local and commutative algebra are assembled under the titles Cono tangente, Funzione caratteristica di una figura, Subordinazione di prospettive and Prospettive regolari. We will reproduce here only some of this. - The width (= ampiezza) of a perspective ρ is the minimal number of elements needed to generate the maximal ideal ρ of the local ring s. Let p\, ρh be such elements generating p. They are then called a minimal basis of ρ ([K7], 195). - A homogeneous form φ (mi, . . . , m/,) e i / p [ « ] of degree m is tangential to χ e s ([K7], 196) if one has, writing
Uh) = /(mi,
...,uh)+
p [ M i , . . . , uh]
with / g ^[mi, . . . , Uh] of degree m , the relation ex+pm+l.
f(pi,...,ph)
- Let a(j) be an ideal in s. The ideal 0(5) generated in s/p[u] by the forms tangential to elements of 0(5) is homogeneous in the sense that the homogeneous components / ( w ) (m) of each polynomial f ( u ) = Σ / ( m ) ( " ) belonging to the ideal are themselves elements of the ideal. It generates a figure a(s) in the affine variety V = V(A), A = j / p [ M i , . . . , m/,] which is called the tangent cone of the figure a in φ ([K7], 197). - The characteristic function of a figure α in a variety V is defined for m e No by ([K7], 207) X(o(i),m) :=
x(a(s),m),
where on the right-hand side we have the classical characteristic function of the homogeneous ideal ah '.= a(s) in A, i.e.
:= dimj/p Mt{ah),
Mi(ah)
the space of £-forms in a/,.
By Hilbert's famous theorem, reproduced in [K7], 206, the characteristic function of the homogeneous ideal a/, is asymptotically a polynomial in m of degree dim a/,. Here and in the sequel the following notions and symbols are used. - The dimension dim α of a figure in a variety V (algebraic over a field k) is given by ([K7], 202) dim u := max trdeg^+φ/φ S / φ
836
for all S 6 V, o(5) φ S.
Kahler Differentials and Some Applications in Arithmetic Geometry
837
- The dimension of the tangent cone a(s) in ρ is denoted by ([K7], 227) dim Ρ and the order of a figure α in p, ord - , Ρ is defined by Φ max ord — Ρ
for all S e V(s), φ
where the order of subordination ord— = t denotes the maximal number of perspectives in an ascending chain ([K7], 213) ρ = po < pi < · · · < pi = φ . - For two ideals α and b in s with α c b,
(sH denotes the length of a maximal non-refinable ascending chain of ideals ([K7], 208) a = aogaiC...c
a £
=
b
if such a chain exists; otherwise it is oo. Here we have the fundamental criterium ([K7], 209) — - — ) = 1 for χ € s \ a, *p c a. a + xsj For local rings s c S, Kähler uses ([K7], 259) the abbreviations
deg
7:=(?)
=
5/φ
'
mult5 := ( - )
\SJs
and r a n k
7
:
= © , ·
where the index s or 5 indicates that one takes chains of s-resp. S-modules. The main results in this context relating these symbols are the following:
837
838
Rolf Berndt
Proposition ([K7], 210). The characteristic function of a figure α is X(a(j), m) =
^
t
Proposition ([K7], 229 and 230). If s is noetherian and~xthepolynomial χ (α(ί), m) for large m, we obtain for its degree o o deg χ = dim - = ord - . Ρ Ρ
representing
A local ring 5 of width h, regular in the usual sense, is characterized by ([K7], 234) m+1\ / p,m+l
/m + h\
Here 0(s) denotes the ideal {0} in s. As an example of the results obtained in the section about regular local rings we cite: Proposition ([K7], 242). If A = k[xlt..., xm ] generates a field Κ with trdeg^ Κ = m, each local ring s with base A (i.e. localization of A) is regular with 0 ord - = m - trdegjt+p/p s/p. In [K7], 246, Kahler introduces the notion of arithmetic dimension of a finitely generated field Κ. Definition. dima Κ : = trdeg^ Κ
if char Κ = ρ φ 0,
K + 1
if char Κ = 0.
Then the proposition above has as its arithmetic counterpart: Proposition ([K7], 247). If A = Z[xu ..., xm] generates a field Κ of arithmetic dimension m, each local ring s with base A is regular with 0 ord - = dima Κ — dima s/p. And more generally, we have Proposition ([K7], 248). In an arithmetic variety V, we have for s C S e V φ ord — = dima 5 / φ — dima s/p. Ρ
838
Kahler Differentials and Some Applications in Arithmetic Geometry
839
B.4 Kähler's Extension of a Variety Chapter VII of Geometria Aritmetica has the title Varietä extensioni. In the French text [K5] Kähler chose the term amplification and in the German text [K8] he used Überlagerung. We will stick here to this and use the word covering. But, as Weil remarks in his review [WGA], the following concept corresponds to that of a proper morphism in modern algebraic geometry: In [K7], 250, V\ is a primary variety. Definition. V\ is a covering of a variety Vo if it fulfills the following two conditions: I. Every si e V\ extends (i.e. dominates) an sq e Vo. II. Every local ring s which is an extension of an SO e VQ and is compatible with the object of V\ has a common extension s' together with an s\ € V\. Or, as Weil puts it: Let V/(i = 0, 1) be two varieties such that their objects Ri = R(Vi) (i.e. the full quotient rings of the local rings of the varieties Vo resp. Vi) are primary rings with RI D Rq. Assume that to every si e V\ there is so € Vo (which is then necessarily unique) such that si extends (= dominates) so and write so = / ( ^ i ) · Assume also that, whenever a local ring s c R\ extends a ring so € Vo, there is also a local ring si e V\ and a local ring s' c R\ that extends both s and si. Then V\ is said to extend Vo or - as we will say here - V\ covers Vo. Moreover, we will also use the following terminology: so is the projection of si, po is the perspective under pi as well as Vj lies over Vo, and denote this by s\
ίο, Pi -> Po.
resp.
Vi
V0.
In [K7], 256, Kähler extends these terms also to a more general situation: he calls V\ a complete extension of Vo if V\ and Vo are not necessarily varieties but simply collections of local rings fulfilling the conditions I and II from the last definition and, additionally, the condition that each si e V\ extends only one so € Vo. The complete extension | J s,· of so € Vo consisting of those s, € V\ which extend (= dominate) so appears here as an example. The most important fact about coverings is
839
840
Rolf Berndt
Proposition 1 ([K7], 252). The covering of a closed variety Vo (over the ring A) is closed (over A). Every figure ο in a variety Vo extends uniquely to a figure in a covering variety Vi, again named a, defined by a(si) = α(^ο) ·
for Ji ->· so·
In sections 259-268 of [K7], Kähler discusses intensely facts about the coverings to be obtained for the symbols rank, deg and mult, already presented here in Section Β 3. In a sense these are generalizations of the famous Hurwitz formula for the covering of a curve by another. The starting point is the relation ([K7], 259) S S rank — = deg — mult S s s
for S —> s.
The following results are obtained by some substantial work with ideal lengths. Proposition 2 ([K7], 261). Let so be a local ring contained in a primary ring A with finite chain length • Then one has
N
'JO
s
where the sum is running over all extensions s —• so with base A. Proposition 3 ([K7], 266, 267). Let (J?=i si complete extension of a perfect local ring jo ('·£• regular of dimension one), contained in a variety V, algebraic over so with object S which is primary of finite rank over the field (so). Let τ: S -> S/φ be the residue homomorphism and SQ arithmetic (i.e. essentially of finite type over TL) or ST separable over (jq). Then there exists a ring A in S with finite basis over ίο such that the variety V(A) contains a complete extension of [J· st and thus of so. And one has the relation f h
= rank V * A„
or equivalently
deg Si/l =
deg
E(v) ^ " G) ^· j=1 As a corollary to the proof of this proposition in [K7], 268, Kähler mentions the following Nakayama-type statement.
840
Kahler Differentials and Some Applications in Arithmetic Geometry
841
Lemma. Let sq be a perfect (i.e. regular of dimension one) local ring, A an SQ-module with finite SQ-basis such that η A = ^soa; i=ι
+ Po-Α with a, € A (i = 1,...,
n).
Then one concludes η
A=
Σ°' s a
i'=l
and in case that A is a primary ring, moreover, A = A • (s0). Results of the section Anelli individuali ([K7], 269-282) are already reported on in Section A 3. The section Dijferenti relativi ([K7], 283-304) culminates in the criteria for the regularity of a local ring which are reproduced in Section 2.1 of the main part of this text. The section Molteplicitä di una figura ([K7], 305-323) centers around the definition of a (relative) multiplicity and finishes with a theorem sharpening the Proposition 3 above: Let α be a figure in a variety V containing the noetherian ring s, i.e. a(s) φ s, and let s extend a regular local ring so· Definition ([K7], 314). The multiplicity of ο in ρ over po is defined by
This multiplicity is a natural number or zero. It is additive in the following sense. Proposition 4 ([K7], 315). For a primary η a = P i q(, i=l
decomposition
q,· pi-primary with ρ,· φ pj for i φ j,
we have h — = y^ — Po Po The multiplicity is simply a length of an ideal chain in the following special case:
841
842
Rolf Berndt
Proposition 5 ([K7], 321). Ifa(s) is ty{s)-primary and po perfect (i.e. so regular and one-dimensional), then • Po
Μ Ο + ΡοΛ \ s J for ρ = φΟ).
= 0
As the final result on this topic in [K7], 322, Kähler proves the following: Theorem. Let V be a primary variety covering the arithmetic variety Vo and so € Vo a perfect local ring contained in a local ring So e Vo. Then one has for a figure α in V the relation Σ P-^POpo
Σ
( • ^ Γ 7)
v
degs
0+wq?
provided that the terms of the sum on the left-hand side are finite. The sums are running here over the complete extensions in V ofso resp. So. As Kähler remarks at the end of his (rather long) proof, on the right-hand side of the formula the term can be replaced by the multiplicity ^ ( S ) . In [K7], 323, there is also an analogous version for the case of varieties algebraic over a ground field. But unfortunately, as Weil justly complains in his review, Kähler gives no indication of the application he had in mind in deriving these results. At least, some light is shed on this by comparing with the nowadays usual introduction of the multiplicity of a local ring as initiated in 1960 in Chapter VIII of the second volume of Commutative Algebra by Zariski and Samuel [ZS]: Taking the notation used here, the following terms are attached to a local ring s with maximal ideal ρ - the characteristic function P p defined by
- the Hilbert-Samuel polynomial Pp defined Pp(m) = Pp(m)
for large m
and of degree deg Pp = dim s = n, - the multiplicity e(p) of 5 defined as e(p) = η ! • leading coefficient of Pp. In [ZS], Vol II, p. 297, the treatment of the multiplicity culminates in a result comparable to Proposition 3 above and the Theorem above. As is stated in [ZS],
842
Kähler Differentials and Some Applications in Arithmetic Geometry
843
this theorem is the algebraic counterpart of the projection formula for the intersection cycles in Algebraic Geometry. Theorem ([ZS], Theorem 24). Let s be a local ring, p its maximal ideal, q an ideal in s which is primary for p, and Β an overring of s which is a finite s-module. Then Β is a semi-local ring, and Βq is an open ideal in B, i.e. containing a power of the intersection of the maximal ideals p,·, i = 1 , . . . ,h of Β. Let q, be the primary component of Β q relative to p,. If no element ^ 0 ins is a zero divisor in B, then the polynomials [B : s]Pq(m)
and
£
[B/pt :
s/p]Pq.(m)
have the same degree and the same leading term. Here [B : s] denotes the maximum number of elements of Β which are linearly independent over s. The resemblance to Kähler's results becomes even more apparent by the Corollary 1 which Zariski and Samuel add: Under the same hypothesis and notation as in the Theorem above, suppose furthermore that all local rings BPi have the same dimension as s. Then [B : s]e(q) = £
[B/p, : s/p]e(q ( ).
In particular, this applies to the case where s is a local domain of dimension 1 and Β is also a domain. Then, in the special case q = ρ with e(c\i) = ei,
[ß/p,· : s/p] = η,·,
[B : s] = n,
the formula above reduces to the famous relation
The remaining chapters of Geometria Aritmetica Ch VIII
Divisori
Ch IX
La totale integritä di un corpo
Ch X
Funzioni modulari ed il calcolo zeta
have been covered here to some extent in the main text about differentials, and the Zeta Calculus will be dealt with in a separate exposition in [Be6],
843
844
Rolf Berndt
References [Ab]
Abelson, H., Topologically Distinct Conjugate Varieties with Finite Fundamental Group. Topology 13 (1974), 162-177.
[As]
Asakura, M., Motives and Algebraic deRham Cohomology. In The Arithmetic and Geometry of Algebraic Cycles (Banff), CRM Proc. Lecture Notes 24, Amer. Math. Soc., Providence, RI, 2000, 133-154.
[Ber]
Berger, R., Differentialmoduln eindimensionaler lokaler Ringe. Math. Ζ. 81 (1963), 326-354.
[Bel]
Berndt, R., Der Differentenmodul eines Differentials. Abh. Math. Sem. Univ. Hamburg 41(1974), 110-114.
[Be2]
Berndt, R., Kennzeichnung minimaler Modelle mit Hilfe der Differente eines Differentials. Abh. Math. Sem. Univ. Hamburg 42 (1974), 78-89.
[Be3]
Berndt, R., Über Differentialintegritäten endlich erzeugbarer Körper. Math. Ann. 212 (1975), 249-270.
[Be4]
Berndt, R., Diff6rentielles arithmetiquement entieres des corps de fonctions modulaires. Asterisque 41-42 (1977), 153-164.
[Be5]
Berndt, R., Arithmetisch ganze Differentiale. Abh. Math. Sem. Univ. Hamburg 47 (1978), 186-200.
[Be6]
Berndt, R., Kähler's Zeta Function. This volume, pp. 870-879.
[BS]
Berndt, R,, Schramm, K., Arithmetisch ganze Differentiale der Modulfunktionenkörper 6. und 7. Stufe. Acta Arithmetica 33 (1977), 151-168.
[BLR]
Bosch, S., Lütkebohmert, W., Raynaud, M., Neron Models. Springer-Verlag, Berlin 1990.
[Bo]
Bost, J.-B., A Neglected Aspect of Kähler's Work on Arithmetic Geometry: Birational Invariants of Algebraic Varieties over Number Fields. This volume, pp. 854-869.
[Br]
Braun, Η., Konvergenz verallgemeinerter Eisensteinscher Reihen. Math. Z. 44 (1938), 387-397.
[CC]
Cartan, H.; Chevalley, C., Geometrie Algebrique. Seminaire Cartan-Chevalley, Paris 1955/56.
[Ch]
Chevalley, C., Introduction to the Theory of Algebraic Functions of One Variable. Math. Surveys VI, Amer. Math. Soc., Providence, RI, 1951.
[CS]
Colmez, P., Serre, J.-P, Correspondance Grothendieck-Serre. Documents Mathematiques 2, Soci6t£ Mathematique de France, Paris 2001.
[Co]
Connes, Α., Noncommutative Geometry. Academic Press, San Diego 1994.
[De]
Deligne, P., Hodge Cycles on Abelian Varieties. In Hodge Cycles, Motives, and Shimura Varieties, Lecture Notes in Math. 900, Springer-Verlag, Berlin 1982,9-100.
[DR]
Deligne, P., Rapoport, M., Les schemas de modules de courbes elliptiques. Lecture Notes in Math. 349, Springer-Verlag, Berlin 1973, 143-316.
[dR]
deRham, G., Varietes differentiables, Hermann, Paris 1960.
844
Kahler Differentials and Some Applications in Arithmetic Geometry
845
[Dr]
Drinfeld, V. G., Elliptic Modules. Math. USSR Sbornik 23 (1974), 561-592.
[Go]
Godement, R., Topologie Algebrique et Theorie des Faisceaux. Hermann, Paris 1958.
[EGA]
Grothendieck, Α., Dieudonne, J., Elements de Geometrie Algebrique. Inst. Hautes ßtudes Sei. Publ. Math. 4 (1960); 8 (1961); 11 (1961); 17 (1963); 20 (1964); 24 (1965); 28 (1966); 32 (1967).
[Gr]
Green, M. L. , Higher Abel-Jacobi Maps. In Proceedings of the ICM Berlin, Vol II, Doc. Math. J. DMV 1998, Extra Vol. II, 267-276 (electronically)
[Ha]
Hartshorne, R., Algebraic Geometry. Graduate Texts in Math. 52, Springer-Verlag, New York-Heidelberg-Berlin 1977.
[Hä]
Häuslein, G., Über die Modulformen arithmetischer Köprer höheren Grades. Math. Nachr. 16 (1957), 73-78.
[HK]
Hübl, R., Kunz, E., Regular Differential forms and Duality for Projective Morphisms. J. Reine Angew. Math. 410 (1990), 84-108.
[HS]
Hübl, R., Sastry, P., Regular Differentials and Relative Duality. Amer. J. Math. 115 (1993), 749-787.
[Ho]
Hodge, W., V. D., The Theory and Applications of Harmonic Integrals. Cambridge University Press, 1952.
[Ig]
Igusa, J. I., Kroneckerian Model of Fields of Elliptic Modular Functions. Amer. J. Math. 81 (1959), 561-577.
[Kl]
Kahler, Ε., Sui periodi degli integrali multipli sopra una varietä algebrica. Rend. Circ. Mat. Palermo 56 (1932), 69-74.
[K2]
Kahler, Ε., Forme differenziali e funzioni algebriche. Mem. Accad. Italia 3 (3) (1932), 1-19.
[K3]
Kähler, Ε., Einführung in die Theorie der Systeme von Differentialgleichungen. Hamburger Mathematische Einzelschriften 16, Teubner, Leipzig-Berlin 1934.
[K4]
Kähler, E., Über rein algebraische Körper. Math. Nachr. 5 (1951), 69-92.
[K5]
Kähler, E., Sur la theorie des corps purement algebriques. In Deuxieme Colloque de Geometrie Algebrique, Centre Beige Rech. Math., Liege, 1952, 69-82.
[K6]
Kähler, E., Algebra und Differentialrechnung. In Bericht über die MathematikerTagung in Berlin vom 14. bis 18. Januar 1953, pp. 58-163, Deutscher Verlag der Wissenschaften, Berlin 1953; also published as vol. 1 of Mathematische Monographien, Deutscher Verlag der Wissenschaften, Berlin 1958.
[K7]
Kähler, E„ Geometria aritmetica. Ann. Mat. Pura Appl. Ser. IV 45 (1958), 1-399.
[K8]
Kähler, E., Infinitesimal-Arithmetik. Rend. Sem. Mat. Univ. Politec. Torino 21 (1961/62), 5-29.
[KF]
Klein, F., Fricke, R., Vorlesungen über die Theorie der elliptischen Modulfunktionen. Bd. I und II, Teubner, Stuttgart 1890-92.
[Ku]
Kunz, E., Kähler Differentials. Vieweg, Braunschweig 1986.
845
846
Rolf Berndt
[Ku 1 ]
Kunz, E., Die Primidealteiler der Differenten in allgemeinen Ringen. J. Reine Angew. Math. 204 (1960), 165-182.
[Ku2]
Kunz, Ε., Über die kanonische Klasse eines vollständigen Modells eines algebraischen Funktionenkörpers. J. Reine Angew. Math. 209 (1962), 17-28.
[Ku3]
Kunz, E„ Vollständige Durchschnitte und Differenten. Arch. Math. 19 (1968), 47-58.
[Ku4]
Kunz, E., Differentialformen auf algebraischen Varietäten mit Singularitäten I. Manuscripta Math. 15 (1975), 91-108.
[Ku5]
Kunz, E., Differentialformen auf algebraischen Varietäten mit Singularitäten II. Abh. Math. Sem. Univ. Hamburg 47 (1978), 42-70.
[Ku6]
Kunz, E„ Why 'Kähler' Differentials? This volume, pp. 848-853.
[KWl]
Kunz, Ε., Waldi, R., Regular Differential Forms. Contemp. Math. 79, Amer. Math. Soc, Providence, RI, 1988.
[KW2]
Kunz, E., Waldi, R., On Kähler's integral differential forms of arithmetic function fields. Abh. Math. Sem. Univ. Hamburg 73 (2003).
[La]
Lang, S., Abelian Varieties. Interscience Pub., New York 1959.
[Li]
Lipman, J., Dualizing Sheaves, Differentials and Residues on Algebraic Varieties. Asterisque 117 (1984).
[LS]
Lipman, J., Sastry, P., Regular Differentials and Equidimensional Scheme Maps. J. Algebraic Geom. 1 (1992), 101-130.
[Na]
Nagata, M., Local Rings. Wiley, New York 1962.
[Ne]
Neron, A., Modeies minimaux des varietes abeliennes sur les corps locaux et globaux. Inst. Hautes ttudes Sei. Publ. Math. 21 (1964).
[No]
Noether, E., Idealdifferentiation und Differente. J. Reine Angew. Math. 188 (1950), 1-21.
[Q]
Quarg, G., Über Durchmesser, Mittelpunkte und Krümmung projektiver algebraischer Varietäten. Dissertation, Regensburg 2001.
[Ra]
Radtke-Harder, R., Arithmetisch ganze Differentiale eines elliptischen Funktionenkörpers. Dissertation Hamburg 1982.
[Re]
Reed, D., The Topology of Conjugate Varieties. Math. Ann. 305 (1996), 287-309.
[Sa]
Saito, Μ., Mixed Hodge Modules. Publ. Res. Inst. Math. Sei. 26 (1990), 221-333.
[Sal]
Saito, M., Arithmetic Mixed Sheaves. Invent. Math. 144 (2001), 533-569.
[SAD]
Schmidt, F. K., Review of Kähler, Ε.: Algebra und Differentialrechnung, Zentralblatt MATH S3 (1961), 20-23.
[Sch]
Schramm, Κ., Abelsche Differentiale mit ganzen Fourierkoeffizienten als arithmetisch ganze Differentiale von Körpern, die von Modulfunktionen N-ter Stufe erzeugt werden. Dissertation Hamburg 1976.
[Se]
Serre, J.-P., Exemples de Varietes Conjugees Non-homeomorphes. In Oeuvres - Collected Papers, Vol. II, pp. 246-249, Springer-Verlag, Berlin 1986.
[Sev]
Severi, F., Vorlesungen über algebraische Geometrie. Leipzig 1921.
846
Kahler Differentials and Some Applications in Arithmetic Geometry
847
[Schu]
Schumann, H., Letter to the Author. November 2001.
[Sh]
Shimura, G., Introduction to the Arithmetic Theory of Automorphic Functions. Iwanami Shoten Publishers and Princeton University Press, Princeton, NJ, 1971.
[vdW]
van der Waerden, B. L., Einfiihrung in die algebraische Geometrie. Springer-Verlag, Berlin 1939.
[Wa]
Waldi, R., Zur Konstruktion von Weierstraßpunkten mit vorgegebener Halbgruppe. Manuscripta Math. 30 (1980), 257-278.
[WAG]
Weil, Α., Foundation of Algebraic Geometry. Amer. Math. Soc. Colloq. Publ. 29, Amer. Math. Soc., Providence, RI, 1946, revised and enlarged edition 1962.
[WGA]
Weil, Α., Review of Kahler, E„ Geometria aritmetica. Math. Rev. 21 # 4155 (1960).
[ZS]
Zariski, O., Samuel, P., Commutative Algebra, Vol I, II, Van Nostrand, Princeton 1958, 1960.
847
Why 'Kähler' Differentials? Ernst Kunz
Rolf Berndt has asked me how the designation 'Kahler differentials' came into being. In what follows I want to report what I remember about this question and what I have found in the literature. For interesting hints I have to thank many colleagues. I became acquainted with Kähler's algebraic differential calculus in the seminars of F. K. Schmidt as a student at the University of Heidelberg. Our sources at that time were Kähler's 'Algebra und Differentialrechnung' in the 'Bericht über die Mathematikertagung in Berlin 1953' and the detailed review of it by F. K. Schmidt in Zentralblatt der Mathematik [Sch], but also the ideas of F. K. Schmidt about this subject, which he did not publish but which were absorbed in the early publications of his students. Right from the start F. K. Schmidt taught us the 'universal' module of differentials which we soon called in our discussions 'Kähler's' module of differentials. Kähler had constructed the differentials of a commutative algebra R/K as it is now sometimes done, when one proves the existence of the universal derivation: In case R/K is a polynomial algebra it is clear what the module of differentials has to be, the general case is obtained by representing R/K as a homomorphic image of a polynomial algebra. Having so constructed the differentials and having remarked that they are well defined Kähler began to work with them as one can of course work with fractions without using the universal property of quotient rings. For more details about Kähler's introduction of differentials see the preceding article by R. Berndt in this collection. A different approach to the universal module of differentials of an algebra R/K was used by Cartier [C] in Seminaire Cartan-Chevalley 1955/56: If one takes in R <8>κ R the 'diagonal ideal' / , i.e. the kernel of R R -» R (a <S> b ab), 2 2 then I / I with the derivation d given by da = a 1 — 1 ® a + I for a 6 R is the universal module of differentials of R/K. Also later the French school prefers this construction of differentials. Without referring to Kähler, Cartier and (in another expose) Godement study the differential modules of field extensions and prove in a certain case the differential criterion of regularity (Jacobian criterion). In his 1957 talk in Seminaire Bourbaki, Grothendieck [Gl] speaks of Kähler differential forms ('les modules de differentielles de Kähler', see Cor. 1 to Prop. 4). But later in [G2] as well as in EGA IV differentials are introduced without mentioning Kähler's name. The goal of the group in Heidelberg was to understand and to advance Kähler's ideas. At the beginning we investigated, as did Kähler, Cartier and Godement, the structure of differential modules of field extensions and of local algebras, in particular
848
Why 'Kahler' Differentials?
849
of discrete valuation rings, over arbitrary base rings ([Bl], [B4], [BK], [Kul]). Kähler's differential forms were for us the elements of the exterior algebra of the differential module, and we began - as Kähler had done - to study their role for algebraic function fields and algebraic varieties ([Ku2], [Ku3], [Na]). Being interested in problems about inseparability, we restricted ourselves when discussing global questions to varieties over arbitrary ground fields, whereas Kähler's investigations more generally aimed also at schemes of finite type over Z, i.e. the case of arithmetic geometry. For this aspect of Kähler's work I refer to other articles of this collection. Kähler had called the Fitting ideals of the module of differentials 'differents'. Already in his review F. K. Schmidt speaks of the 'Kähler differents'. He set his students the task to clarify the exact relations between these differents and those of Dedekind (what Kähler had begun) and of Emmy Noether (which was rediscovered as 'homological different' by Auslander and Buchsbaum [AB]). These studies led to the publications [B2], [B3], [B5], [Kul] and [Ku5]. I am not in the position to trace back the sequence of ideas which may have led Kähler to his algebraic differential calculus. Again the preceding contribution of R. Berndt contains more about this. The desire for such a calculus, constructed purely in algebraic terms, but allowing to transfer differentiation processes of analysis to algebra, has a long history and has led to many approaches in various degrees of generality, see for instance Hasse [Η] (1934) and Hasse-Schmidt [HS] (1937). Derivations as analogous to the first derivative were already studied extensively. A. Weil [Wl] (1943) had proposed to consider also derivations with values in modules, a step towards the construction of the universal module of differentials. In the book [Ch] (1951) by Chevalley, differentials were introduced as elements in the dual of the space of repartitions, an approach which could be used in algebraic function fields of one variable over an arbitrary (not necessarily perfect) base field. Zariski - in his Harvard lectures of 1957/58 about algebraic surfaces - had defined differentials of an algebra R/K as the elements of the dual (Der# R)* of the derivation module of R/K, as is also sometimes done in analysis and as can already be found in Weil's Foundations of algebraic geometry ([W2], 1946) and in Bourbaki's Algebre, Chap. IV, in the 1950 edition. These differentials are nowadays known as 'Zariski differentials'. A derivation d: R —• (Der^R)* is given by α ι-»· (ί η 8(a)), which can be extended to the exterior algebra and gives rise to an exterior differential calculus. (Der A: R)* is the bidual of the module of differentials and d the composition of the universal derivation oi R/K with the canonical map into the bidual. At smooth points of algebraic varieties Zariski differentials and Kähler differentials agree, since the universal differential module is free. At singular points Kähler differentials are easier to handle, and it is a project of research to clarify the relations of the two types of differentials (Platte [P2]). Japanese mathematicians such as Nakai [N] base their research in the 1950s about differential forms on algebraic varieties on the Weil-Zariski differentials. But in the 1962 edition of Weil's 'Foundations' the earlier construction of differentials is already replaced by that of the universal differential module via the tensor product. This construction can also be applied to subcategories of the category
849
850
Emst Kunz
of algebras in which fiber sums exist. It leads to differential modules which are adapted to the category under consideration, for instance the category of (complex-) analytic algebras ([BKKN], [SS2]) or of algebras of (germs of) C 00 -functions. A construction of differential forms ('Pfaffsche Formen') on complex-analytic spaces right in the spirit of Kähler was given in [GK]. The mimeographed notes of Zariski's lecture about algebraic surfaces (later published in [Z2]) were used in Heidelberg as a text for a seminar. When Zariski gave a talk in Frankfurt in 1961 a delegation of F. K. Schmidt's students travelled to this colloquium. After the lecture we had the opportunity for a discussion with Zariski about algebraic differential calculus. At that time Zariski apparently was not familiar with Kähler's standpoint which we had adopted and defended. Zariski - using his differentials - had finished a joint paper with his student P. Falb, which had a considerable overlap with the paper [Na] by H. J. Nastold and my paper [Ku2]. He mentioned this and the encounter with R. Berger, H. J. Nastold and myself in a note added in galley proofs of the publication of that work [ZF]. Joe Lipman once told me that Zariski, after coming back from Germany, had proposed to him as a subject for his dissertation to prove that for a point of an algebraic variety over a field of characteristic 0 the differential criterion of regularity also holds true for the derivation module instead of the differential module, i.e. that free derivation module implies the regularity of the point [LI], now known as Zariski-Lipman problem. It has been solved in many cases, where essentially only the two-dimensional case seems still to be open (see [Fl], [Ho], [K], [PI] and [SS2] for results about the Zariski-Lipman problem). In their early papers the students of F. K. Schmidt always speak of the (universal) module of differentials, but R. Berger in [Bl], after having introduced the universal derivation, writes: 'Dieser Begriff wurde von Kähler eingeführt. Die Existenz und ein Konstruktionsprinzip wurden von Kähler gezeigt' (This notion was introduced by Kähler. Its existence and a construction principle were shown by Kähler). The introduction of [B4] begins with the words: 'Seit der Einführung der Differentialmoduln durch E. Kähler hat sich dieser Begriff in vielen Teilen der kommutativen Algebra und algebraischen Geometrie als außerordentlich nützlich erwiesen' (Since Ε. Kähler has introduced the modules of differentials this notion has proved to be extremely useful in many parts of commutative algebra and algebraic geometry). The explicit designation 'Kähler differentials' to the best of my knowledge was used in English mathematical literature for the first time in Zariski's note [Zl] (1966), who might have been influenced by our discussions in Frankfurt or maybe by another encounter with R. Berger at Purdue University, whose paper [B4] is mentioned in Zariski's note. In 1967 H. Osborn introduced 'Kähler modules' and 'Kähler derivations'. Apparently he was not familiar with Kähler's 'Algebra und Differentialrechnung' and some later publications on the subject, because he calls Kähler's construction 'folklore until its appearance in [C]' (see remark 1.10). Later more and more authors use the notion 'module of Kähler differentials', e.g. G. Scheja and U. Storch [SSI] (1970), S. Suzuki [S] (1971), M. Andre [A] (1974, 'differentielles de Kaehler'), R. Berndt [Be] (1975), R. Hartshorne [H] (1977),
850
Why 'Kahler' Differentials?
851
J. Lipman [L2] (1978, 'Kahler differential forms'), J. Fogarty [F] (1980) and H. Matsumura [M], whose book appeared in Japanese in 1980. Meanwhile it seems to be a standard notion which I have also adopted in my book 'Kähler differentials'. There is now a wealth of publications in which Kähler differential forms play a role. A twenty page bibliography, in which completeness is not intended, is contained in a manuscript 'Algebraic differential calculus' which can be found on my web-page (www-nw. u n i regensburg.de/~kue22107.mathematik.uni-regensburg.de).
References [A]
Andre, M., Homologie des algebres commutatives. Springer-Verlag, BerlinHeidelberg-New York, 1974.
[AB]
Auslander, Μ., Buchsbaum, D., On ramification theory in Noetherian rings. Amer. J. Math. 81 (1959), 749-765.
[Β 1]
Berger, R., Über den Modul der bei einer diskreten Bewertung ganzen Differentiale in einem Körper von Primzahlcharakteristik. J. Reine Angew. Math. 204 (1960), 188-204.
[B2]
—, Über verschiedene Differentenbegriffe. Sitzungsber. Akad. (1960), 3-44.
[B3]
—, Ausdehnung von Derivationen und Schachtelung der Differente. Math. Z. 78 (1962), 97-115.
[B4]
—, Differentialmoduln eindimensionaler lokaler Ringe. Math. Z. 81 (1963), 326-354.
[B5]
—, Differenten regulärer Ringe.
[BK]
Berger, R., Kunz, E., Über die Struktur des Differentialmoduls von diskreten Bewertungsringen. Math. Z. 77 (1961), 314-338.
[BKKN]
Berger, R., Kiehl, R., Kunz, E., Nastold, H. J., Differentialrechnung in der analytischen Geometrie. Lecture Notes in Math. 38, Springer-Verlag, Berlin-HeidelbergNew York 1967.
[Be]
Bemdt, R., Über Differentialintegritäten endlich erzeugbarer Körper. Math. Ann. 212 (1975), 249-275.
[C]
Cartier, R, Derivations dans les corps. Seminaire Cartan-Chevalley 1955/56, expose 13.
[Ch]
Chevalley, C., Introduction to the theory of algebraic functions of one variable. Amer. Math. Soc. Surveys, New York 1951.
[Fl]
Flenner, Η., Extendability of differential forms on non-isolated singularities. Invent. Math. 94 (1988), 317-328.
[Fo]
Fogarty, J., Kähler differentials and Hilbert's fourteenth problem for finite groups. Amer. J. Math. 102 (1980), 1159-1175.
Heidelberg 1
Reine Angew. Math. 214/215 (1964), 441^142.
851
852
Ernst Kunz
[GK]
Grauert, H., Kerner, H., Deformation von Singularitäten komplexer Räume. Math. Ann. 153 (1964), 236-260.
[Gl]
Grothendieck, Α., Theorömes de dualite pour les faisceaux algebriques coherent. Sem. Bourbaki 1957, exposö 149.
[G2]
—, Local Cohomology (Notes by R. Hartshorne). Lecture Notes in Math. 41, Springer-Verlag, Berlin-Heidelberg-New York 1967.
[H]
Hartshorne, R., Algebraic Geometry. Springer-Verlag, Heidelberg 1977.
[Ha]
Hasse, H., Theorie der Differentiale in algebraischen Funktionenkörpern mit vollkommenen Konstantenkörpern. J. Reine Angew. Math. 172 (1934), 55-64.
[HS]
Hasse, H., Schmidt, F. K., Noch eine Begründung der höheren Differentialquotienten in einem algebraischen Funktionenkörper einer Unbestimmenten. J. Reine Angew. Math. 177 (1937), 215-237.
[Ho]
Höchster, M., The Zariski-Lipman conjecture in the graded case. J. Algebra 47 (1977), 421-424.
[Κ]
Kersken, Μ., Ein Regularitätskriterium für analytische Algebren. Arch. Math. 51 (1988), 434-439.
[Kul]
Kunz, E., Die Primidealteiler der Differenten in allgemeinen Ringen. J. Reine Angew. Math. 204 (1960), 165-182.
[Ku2]
—, Differentialformen inseparabler algebraischer Funktionenkörper. Math. Z. 76 (1961), 56-74.
[Ku3]
—, Über die kanonische Klasse eines vollständigen Modells eines algebraischen Funktionenkörpers. J. Reine Angew. Math. 209 (1962), 17-28.
[Ku4]
—, Vollständige Durchschnitte und Differenten. Arch. Math. 19 (1968), 47-58.
[L1 ]
Lipman, J., Free derivation modules on algebraic varieties. Amer. J. Math. 87 (1964), 874-898.
[L2]
—, Desingularization of two-dimensional schemes. Ann. of Math. 107 (1978), 151-207.
[M]
Matsumura, H., Commutative ring theory. Cambridge Stud. Adv. Math. 8, Cambridge University Press, Cambridge 1986.
[N]
Nakai, Y., On the divisors of differential forms on algebraic varieties. J. Math. Soc. Japan 5 (1953), 184-199.
[Na]
Nastold, H. J., Zum Dualitätssatz in inseparablen Funktionenkörpern der Dimension 1. Math. Z. 76 (1961), 75-84.
[O]
Osborn, H., Modules of differentials, I. Math. Ann. 170 (1967), 221-244.
[PI]
Platte, E., Ein elementarer Beweis des Zariski-Lipman -Problems für graduierte analytische Algebren. Arch. Math. 31 (1978), 143-145.
[P2]
—, Differentielle Methoden in der lokalen Algebra. Osnabrücker Schriften zur Mathematik 10 (1988).
852
Why 'Kühler' Differentials?
853
[Sch]
Schmidt, F. Κ., Review of: E. Kahler. Algebra und Differentialrechnung. Zentralblatt d. Math. 53 (1953), 20-23.
[S]
Suzuki, S., Differentials on commutative rings. Queen's Papers in Pure and Appl. Math. 29, Queen's University, Kingston, ON, 1971.
[551]
Scheja, G., Storch, U. , Über differentielle Abhängigkeit bei Idealen analytischer Algebren. Math. Z. 114 (1970), 101-112.
[552]
—, Differentielle Eigenschaften der Lokalisierungen analytischer Algebren. Math. Ann. 197 (1972), 137-170.
[Wl]
Weil, Α., Differentiation in algebraic numberfields.Bull. Amer. Math. Soc. 49(1943), 41.
[W2]
—, Foundations of Algebraic Geometry. Amer. Math. Soc. Colloq. Publ. 29, Amer. Math. Soc., Providence, RI, 1946, revised and enlarged edition 1962.
[ZI]
Zariski, O., Characterization of plane algebroid curves whose module of differentials has maximum torsion. Proc. Nat. Acad. Sei. 56 (1966), 781-786.
[Z2]
—, An Introduction to the Theory of Algebraic Surfaces. Second edition. Lecture Notes in Math. 83, Springer-Verlag, Berlin-Heidelberg-New York 1972.
[ZF]
Zariski, O., Falb, P., On differentials in function fields. Amer. J. Math. 58 (1961), 542-556.
853
A Neglected Aspect of Kähler's Work on Arithmetic Geometry: Birational Invariants of Algebraic Varieties Over Number Fields Jean-Benoit Bost
Erich Kähler's contribution to complex differential geometry is widely recognized: in the fifties already, the terminology of Kähler metric and of Kähler manifold was largely used, the eponymous concepts were the subjects of deep papers and were largely popularized as soon as 1958 by Weil's famous monograph [Wei58]. The role of Kähler in establishing the theory of differential forms and of differential systems on firm bases is also well known, as demonstrated by the denomination of Cartan-Kähler Theorem for one of the central results in the latter theory. The name of Kähler is also attached to some fundamental concept in commutative algebra, namely the one of Kähler differential. In spite of this denomination which is quite fortunate considering the central role of differential forms in his whole mathematical work, notably in its contribution to algebraic and arithmetic geometry the multifaceted contributions of Erich Kähler to these fields are somewhat forgotten today. Kähler's pre-war papers on algebraic geometry provided important clarifications and extensions of basic results on periods of differentials forms ([Käh32b]) and on birational invariants of algebraic varieties defined by regular covariant tensors ([Käh32a]): the lack of explicit reference to Kähler when today's algebraic geometer uses some of these results only testifies to the classical character they have acquired. At the beginning of the 1950s, various mathematicians proposed generalizations of the concept of algebraic variety which would allow them to deal with arithmetic situations, in the spirit of the later concept of a scheme. Kähler's long memoirs Algebra und Differentialrechnung ([Käh53]) and Geometria aritmetica ([Käh58]) belong to the first systematic developments of these ideas, as duly recognized in the introduction of the Elements de geometrie algebrique ([GD60], p. 8; see also the "historical sketch" by Shafarevich, [Sha77], p. 430). The unconventional language used by Kähler, together with the success of the theory of schemes - which recovered most of Kähler's results, and moreover incorporated cohomological and sheaf theoretic techniques - probably explain the relative oblivion in which fell Kähler's pionneering work. However, a particularly remarkable discovery of Kähler, namely the construction of natural modules of integral differentials of finite type over Z, attached to any finitely generated extension field of Q, went not unnoticed by contemporaries (see for instance Weil's review
854
A Neglected Aspect of Kähler's Work on Arithmetic Geometry
855
of Geometria aritmetica [Wei60], and Serre's letter to Grothendieck, [CS01], p. 101). This construction now appears as a forerunner of the theory of Neron differentials, although it is formulated in a general setting not limited to abelian varieties. Kähler elaborated on these constructions in the last chapter of Geometria aritmetica, by showing in particular how to endow his modules of integral differentials with natural euclidean or hermitian structures. In this way, to any finitely generated extension field of Q - or equivalently to any algebraic variety over a number field K, up to birational equivalence - he attaches what would be now called, after the recent development of Arakelov geometry, an hermitian vector bundle over Spec Ζ or Spec&κ· (Actually, Kähler introduces analytic invariants of this hermitian vector bundle, such as its Epstein zeta function. From the latter, a natural Arakelov type invariant such as the Arakelov degree may be easily recovered, in terms of its residue at its unique pole.) This construction, which Kähler had already sketched in a short paper Über rein algebraische Körper published in 1951 ([Käh51]), did unfortunately not receive the attention it deserved. It turns out that, as observed by R. Berndt, the Faltings height of an abelian variety A over a number field - which played a crucial role in Faltings' epoch-making proof of the Tate conjecture for abelian varieties over number fields in 1983 ([Fal83]; see also [Szp85], [FWG+92], [Maz86]) - is essentially the Arakelov degree of Kähler's hermitian vector bundle of integral differentials attached to (the function field of) A. The next pages are devoted to a short presentation of Kähler's construction of hermitian vector bundles of integral differentials and of its relation to the Faltings height, using the usual scheme theoretic language and constructions of contemporary arithmetic geometry. In particular, to compare Kähler's constructions with subsequent works concerning abelian varieties, formulated in terms of their Neron models, we shall introduce some variant of Kähler's original construction, based on the basic results of the theory of weak Neron models ([BLR90], Chapter 3), in which smooth discrete valuation rings and models play a special role. For other results and examples concerning Kähler's modules of "arithmetic integral differentials", the reader should consult the work of R. Berndt (see notably [Ber77], [Ber78] and its references). Discussions with R. Berndt have been the starting point of this note. It would not have been written without his gentle insistence, his help and his comments, for which I thank him heartily.
1 Preliminaries 1.1 Regular differential forms on algebraic varieties Let V be a smooth projective scheme of dimension d over a field k. For any i e { 0 , . . . , d}, we shall denote Ω' (V/k) the space Γ( V, of regular sections of the locally free sheaf Q'v/k of Kähler differentials of degree i on V.
855
856
Jean-Benoit Bost
The spaces Ω' (V/k) are finite dimensional vector spaces and depend contravariantly on V. Moreover, when V is irreducible, they admit the following description in terms of the function field k(V) of V and its space of Kahler differentials Ω1 ( k ( V ) / k ) (observe that the latter may be identified with the fiber of the sheaf at the generic point SpecfciV) of V, or to the space of meromorphic sections of over V): An ring
element
R such
ω of Ω1 (k(V)/k)
belongs
to Ω ' ( V / k ) iff, for
discrete
valuation
that k e R e
admitting
every
k(V)
as fraction
field,
ω belongs
Q ! ( R / k )
k(V) to the
—•
image
of the
natural
map
& ( k ( V ) / k ) .
This description makes conspicuous the birational invariance of Ω' (V/k). Let us recall that this birational invariance, which in the case of Ω'1"11 v ( V / k ) goes back to Clebsch ([Cle68]) when V is a surface and to M. Noether ([Noe70]) for higher dimensional algebraic varieties, was clarified and extended to spaces of regular sections of general covariant tensors in one of Kähler's earliest contribution to algebraic geometry ([Käh32a]). Observe that the definition of Ω' (V/k) is trivially compatible with extensions of the base field k. Namely, for any field k' containing k, V^ := V χ spec λ Spec k' is a smooth projective scheme over k!, and we have canonical base change isomorphisms Si1 ( V / k ) ®k
k'
tfiVv/k').
Let us now assume that k = C. Then the complex vector space a natural L 2 -hermitian scalar product (·, -)L2 defined by ((01,C02)L2
=
y ^ if (2π)ά
_ J
r / J V Jv
(
ο
ω\
_ Λ (Ü2.
Q
d
( V / C )
admits
(1.1)
In this formula, the insertion of the factor 1 / ( 2 n ) d is a matter of convention. It is natural if one considers the compatibility between algebraic and analytic Serre duality, and leads to a normalization of the Faltings height of abelian varieties in agreement with the one used by Deligne in [Del85b]. If V V' is a birational equivalence between two smooth projective complex varieties, the induced isomorphism Q .
d
( V / € )
Q
d
( V ' / C )
is easily checked to preserve the L 2 -scalar products. When 0 < i < d, some additional data are needed to define L 2 -scalar products on Ω ' ( ν / € ) . A natural choice is to choose some polarization on V, namely the class in the Neron-Severi group of V of some ample line bundle Μ. Indeed, if ω is a closed 2-form on V representing the Chern class c\ (Μ) in de Rham cohomology - it may be chosen of type (1, 1), and positive since Μ is ample - one defines a L 2 -hermitian
856
A Neglected Aspect of Kähler's Work on Arithmetic Geometry
857
scalar product (·, ·)ι2 Μ on Ω' (V/C) depending only on the polarization defined by Μ by letting V^T'· 2 f
(27r)' Jv(C)
_
(a — i)\
1.2 Hermitian vector bundles over Spec Ok We now recall some elementary concepts from Arakelov geometry. More details could be found in [Szp85], Chapter 1, or in [Neu99], Let AT be a number field, and O k its ring of integers. Recall that an hermitian vector bundle Ε over Spec Ok is defined as a pair (E, || · ||) formed by a vector bundle Ε over Spec DA: - or equivalently a finitely generated projective D κ -module - and a family || · || = (|| · || σ)σ:Κ·^·£ of hermitian norms on the finite dimensional complex vector spaces Εσ := Ε <8>σ C, indexed by the field embeddings σ : Κ C. The family || · || is also required to be invariant under complex conjugation (namely, for any embedding σ : Κ <—>• C, the natural C-antilinear isomorphism Εσ E-g is isometric when Εσ and E„ are equipped with || · || σ and || · ||σ respectively). _ Equivalently, the hermitian vector bundle Ε may be seen as the data of the finite dimensional Κ-vector space Εκ .= Ε ® q k Κ, equipped with the "integral structure" defined by the O k -lattice Ε in Εκ and the "hermitian structures" defined by the norms II · IIcr · Usual tensorial operations, such as tensor products and exterior powers, make sense on vector bundles over Spec DA: and over finite dimensional complex vector spaces equipped with hermitian norms. Consequently, they also make sense on hermitian vector bundles over Spec OkFor instance, if Ε = (Ε, (|| · ||σ)σ:κ_>.(:) is an hermitian vector bundle of rank r over Spec DA: and if (·, ·)σ denotes the hermitian scalar product on Εσ defining || · || σ , its maximal exterior power is the hermitian vector bundle of rank 1 ArE:=
(ΛΓΕ,(||·||Λ',σ)α:Μ),
where Λ r Ε denotes the r-th exterior power of the DA:-module Ε - it is an invertible DA:-module - and where the hermitian norm || · ||ΛΓ,σ on (ArΕ)σ - which may be identified with the maximal exterior power Ar Εσ of the complex vector space Ea is defined by ||υι A · • · λ v r ||\ Γ
σ
:= det({u,·, ν;·)σ)ι<,·ι;·<Γ
for any υ ι , . . . , vr in Εσ. With the above notation, the Arakelov degree deg £ of £ is the real number defined as follows: for any r-tuple ( u i , . . . , vr) of elements in Ε which constitutes a basis of
857
858
Jean-Benoit Bost
Ε κ , the £)tf-submodule fegE
is a subgroup of finite index in E, and
:=log\E/®ri=lOKVi\-
lo
Σ
g ΙΙυι
Λ
"" ·
Λ
ΙΙΛ',<Τ·
It is easily seen not to depend on the choice of ( υ ι , . . . , vr) and to coincide with degAr£. When Κ = Q (hence D κ = Ζ), then Ε may be identified with a euclidean lattice of rank r - namely a free abelian group Ε of rank r equipped with a euclidean norm || · || on Ε® := Ε Μ - and its Arakelov degree may be expressed simply in terms of the covolume covol(£, | ||) of this euclidean lattice: d e g £ = — logcovol(£\ || · ||). If K' is a finite degree extension of K, then we may deduce an hermitian vector bundle Ε over Spec Dk' from Ε by extending the scalars from £>κ to £>κ'· Namely, E' := (E\ || · II') where E ' denotes the Ο κ' -module E<S>oK O k ' and || · ||' = (|| · κ'^+c the family of hermitian norms defined as follows: for any embedding σ : Κ' C the complex vector space Ε'σ may be identified with Εσ]Κ, and || · coincides with || · ||σ|Α:. If φ: Spec D κ' Spec Ο a: denotes the scheme morphism defined by the inclusion morphism O k ^ O ^ s the hermitian vector bundle Ε will also be denoted φ*Ε. One easily checks the following relation between the Arakelov degrees of Ε and φ*Έ: deg
is invariant by extension of scalars. Finally, if Ε = (Ε, (|| · || σ ) σ: κ->€:) i s 011 hermitian vector bundle of positive rank r over Spec Οχ-, its normalized slope is defined as μ(Ε) := d S * r
E
,
and its minimum slope μπάη(Ε) is the infimum (actually the minimum) of the slopes of the hermitian vector bundles F = (F, (|| · | fa )σ ·κ^0 where F denotes a quotient of positive rank of £ by a saturated D^-submodule and || · | pa the quotient norm of the norm || · || σ (observe that, by construction, Fa :— F ® σ C may be seen as quotient of Εσ := Ε ®σ C).
858
A Neglected Aspect of Kähler's Work on Arithmetic Geometry
859
2 Integral Kähler differentials 2.1 Kähler's original construction Let V be an irreducible smooth projective scheme over a number field Κ, of dimension d. For any i e { 0 , . . . , d) the integral Kähler differentials of degree i on V (relatively to K) are defined as the elements ω € Ω' (K(V)/K) such that, for every discrete valuation ring essentially of finite type1 R such that Ok CRC
K(V)
admitting K(V) as fraction field, ω belongs to the image of the natural map
Clearly, they constitute an D^-submodule Ω? η 1 (ν/£) of Q'(V/K). To investigate it, we follow an approach described by Serre in a letter to Grothendieck, dated November 13, 1959, commenting on Kähler's Geometria aritmetica ([CS01], p. 101). Let us introduce a normal projective model of V over OK, namely a normal projective flat scheme π: V Spec DA-, whose generic fibre VK is identified with V. (For instance, if V is embedded in some projective space IP^, we may choose as V the normalization of the closure of V in ). Let Ω^ be the coherent sheaf on V defined by the relative Kähler differentials of degree i. Its torsion subsheaf Ω^ tor and its bidual Ω^ ν ν also are coherent sheaves on V. Moreover one has a canonical injective morphism of sheaves: Ω^/Ω^0Γ—>Ωίνν.
(2.1)
The set of points of V where π is smooth defines an open subscheme Vs of V on which Ω^ is locally free of rank and (2.1) is an isomorphism. Observe that, since V is smooth, Vs contains the generic fiber VK — V of π. Proposition 2.1. The following inclusions hold:
Γ(ν, Ω'π/Ω^ tor) c njrtCV/tf) C Γ(ν, Ω^νν).
(2.2)
In particular, Ω·η{( V / Κ) is an Ο κ-lattice in Ω1 (V / K), and coincides with Γ ( ν , Ω^) when V is smooth over OKThe first inclusion in (2.2) follows from the valuative criterion of properness. The second one is obtained by considering the discrete valuation rings R associated to divisors on V. 1
Namely, discrete valuation rings which are localizations of finitely generated Z-algebras. This condition on the d.v.r. R does not appear explicitly in the definition of integral differentials in [Käh51] and [Käh58], but is introduced in [Käh62]. It eliminates the consideration of "bizarre" discrete valuation rings.
859
860
Jean-Benoit Bost
Clearly, the construction of Ω · η 1 ( ν / Κ ) is birationally invariant: if φ\ V
V' 'V
is a birational equivalence of varieties, the induced isomorphism Ql(V/K) &(V'/K) maps bijectively Ω ^ ν / Α " ) onto Q^t(V'/K). As emphasized by Kähler, the definition of Ω·η1( V/K) and its basic properties may be generalized by replacing differential forms by any "covariant tensor", e.g., by the tensor powers (Ω1)®* or the "pluricanonical forms" (Qd)®k, k € N. Similar generalizations would also make sense in the setting considered in the next subsections and will be left to the reader. 2.2 A variant We now introduce a variant of the lattices Ω( η 1 (ν/ίΓ) which shall be important to compare them with lattices of Neron differentials when V is a curve or an abelian variety. Namely, let Ω|η1tS(V/K) be the sub-Oκ-module of Q'(V/K) defined by the elements ω in Ω' ( V / K ) satisfying the same condition as the one defining Ω|ηι( V//C), where we now restrict to discrete valuation rings R which moreover are smooth over Ok (i.e., which are localizations of smooth Ok-schemes). The construction of Ω·η1 S ( V / K ) also is birationally invariant. However there is no reason in general for the D κ-module Ω|η( f (V / K) to be a lattice in £2l(V/K), even to befinitelygenerated. To deal with this issue, let us introduce some definitions. For any non-zero prime ideal ρ of Ok, let F p : = Οκ/Ρ be its residue field, Kp the p-adic completion of K, Kp an algebraic closure of Kp, and Kpm the maximal unramified extension of Kp in Kp. We shall say that V satisfies Condition (SM) when for every non-zero prime ideal Ρ of Ok the set V(KP ) of Kp -rational points of V is not empty. (Since, for some finite extension K' of K, V(K') is not empty, this could fail only for afinitenumber of primes p.) Clearly, Condition (SM) is satisfied if V(K) is not empty, for instance when V is an abelian variety. Smoothening techniques ä la Neron-Artin and the related construction of weak Neron models ([BLR90], Chapter 3) show that condition (SM) is equivalent to the following Condition (SM'): there exists a smooth quasi-projective model V of V over Ok - in other terms, a smooth quasi-projective scheme π : V Spec Ο a:, whose generic fiber Vk is identified with V - such that, for any non-zero prime ideal ρ of Ok, the scheme-theoretic fiber Vfp V <8>Da- Fp is not empty. Actually, when the equivalent conditions (SM) and (SM') are satisfied, one may construct such a model V which is a weak ΝέΓοη model of V, and then Ω|η1 S(V/K) gets identified with the D#-submodule Γ ( ν , Ω^) of Q'(V/K). Moreover, the nonvacuity of the fibers Vfp implies that Γ ( ν , Ω^) is a finitely generated £)a:-module. It is easily seen to generate the Κ-vector space Ω' ( V / K ) , whichfinallyshows:
860
A Neglected Aspect of Kähler's Work on Arithmetic Geometry
861
Proposition 2.2. When V satisfies the equivalent conditions (SM) and (SM'), for any i € { 0 , . . . , d) the D κ-module Ω|η1 S(V/K) is an Οκ-lattice in Q'(V/K). When V admits a regular projective model π: V Spec Da - , then the open subscheme Vs of smooth points of π is a weak N6ron model of V, and Ω·ηι S ( V/K) coincides with Γ ( ν 5 , Ω^), or equivalently, with r ( V , j^j*Ql7l), where j: Vs <=-> V denotes the inclusion morphism. When moreover the closed subset Δ := V \ Vs of V has codimension > 2 - that is, when Δ does not contain any component of a closed fiber Vpp - then is canonically isomorphic with Ω^ ν ν , and when i = d, with the dualizing sheaf ω π . Therefore, under the above hypotheses, the lattice Q\nt S ( V / K ) coincides with ΓΟν,Ω^). Let us finally observe that in general the formation of Ω·η( S(V/K) is not compatible with extensions of the base field Κ. More precisely, if K' is a number field containing Κ, the base change morphism 0}(νκ>/Κ')
ti(V/K)
®K K'.
is easily seen to restrict to (injective) morphisms of Ωίηus^K'/K')
Ok'-modules
— • Ω[ηι 5 ( V / K ) ®oK Ok>.
However these morphisms are not isomorphisms in general (counterexamples are provided by elliptic curves over Κ = Q admitting complex multiplication over K').
2.3 Hermitian vector bundles of integral Kahler differentials We define an hermitian vector bundle Ω ? η ι ( ν / / 0 := (Ω? η 1 (ν//0, (II · \ \ a ) a : K ^ c ) , where || · ||σ denotes the canonical L 2 -norm on Qfnt(V/K) <8>σ C ~ Q.d(V <8>σ C/C). It is a birational invariant of V (over K): in other words, it depends only on the "purely algebraic" field extension Κ (V) of Κ. One deduces other birational invariants of V by considering the Arakelov degree deg £ldmi(V/K), or the associated Epstein zeta function. Similarly, we may introduce ΩiUs(V/K)
:= (Ω^,
(II ·
\\a)a:K^c)
- which again is a birational invariant of V over Κ - and, when V is equipped with a polarization defined by some ample line bundle Μ (defined over K), we may consider for every i e { 0 , . . . , d}: KuMtV/Κ)
-
(Ωίη^/Κ).
861
(II ·
\\a)a:K^c)
862
Jean-Benoit Bost
and
Kus,m(V/K) ·•= (VLjV/K)' (II · lla)a:*-c), where || · ||σ denotes the norm on n ^ i V / K ) ®σ C ~ Ω ^ χ ( ν / Κ )
C ~ Ω'(V
C/C)
attached to the hermitian scalar product {·> ' ) l 2 M O defined by (the polarization given by) the ample line bundle Ma on V <8>σ C deduced from Μ by the field extension σ: Κ C.
3 Relation to Faltings heights of abelian varieties and curves 3.1 Abelian varieties When A is an abelian variety over a number field Κ , the lattice Ω·ηι S ( A / K ) may be described in terms of the Ν iron model Λ of A and of the so called Neron differentials (see [Ner64], [Art86], and [BLR90]). Recall that the Neron model π : «Α—• Spec DK
(3.1)
of A over Spec is a smooth quasi-projective group scheme, extending A over Spec Κ, characterized by the following universal property: for any scheme X smooth over Spec Ο κ and any morphism fx '• Χκ Ά>κ — A of ^-schemes, there exists a (unique) morphism f : X A extending fx • If ε: Spec D ^ —• A denotes the zero section of the Neron model (3.1), the Neron differentials of A (over Κ ) are defined as the elements of the D κ-lattice
in the AT-vector space Ω ι ( Α / Κ ) ~ ε*κΩ\/κ
~ Γ(Α, Ω ^ )
of rank g := dim A. Proposition 3.1. For any i € { 0 , . . . , g}, the Ο κ-lattice Ω|η( s ( A / K ) coincides with the lattice
in ΑικΩι(Α/Κ) ~ 0!{A/K). The inclusion Ω[η, S ( A / K ) '—>• π*Ωιπ follows from the smoothness over Spec Οχ of the Neron model. The converse inclusion A l 0 Ω^ (Α/Κ) Ω·η, s (A/Κ) follows
862
A Neglected Aspect of Kähler's Work on Arithmetic Geometry
863
from its universal property. The (normalized logarithmic) Faltings height of A (over K) is defined as hF(A/K)
:=ά^ηΩ*Μ<5(Α/Κ).
If K' is a finite extension of K, then the Faltings height of A' := Α χ κ Κ' satisfies the upper bound hF(A')
(3.2)
This follows from the inclusion of lattices
nL,s(A'/K')^^AA/K)®oK
0K,
described in Section 2.2. When A admits semi-stable reduction (i.e., when the connected component r(Q) such that (A, Μ) may be defined over a number field of degree < D and hp,st(A) < Ν is finite. Besides the original paper of Faltings ([Fal83], Sections 2 and 3) which requires some serious expertise from its reader, proofs of this finiteness result are given in [MB85a], [Del85b], [FC90], and [Bos96]. Let us emphasize that, in spite of the simplicity of the statement of Theorem 3.2, its proofs remain quite technical: a major source of difficulty lies in the necessity to control the "bad reduction" of abelian varieties in an arithmetic framework. This is done either by using some relative version of the "reduction to jacobians", leading to the so-called Gabber's lemma (see [Del85a]), or by relying on some constructions of Mumford producing degenerating families of abelian varieties ([Mum72], [FC90]). Artin's algebraization techniques also play a key role in most of these proofs, as well as the deep results of Moret-Bailly ([MB85b]) on families of semi-abelian varieties. By means of the so-called "Zahrin's trick" (see for instance [Del85b] and [Zah85]), one may deduce a similar finiteness principle concerning unpolarized abelian varieties from Theorem 3.2:
863
864
Jean-Benoit Bost
Theorem 3.3. Let Κ be a number field, g a natural number, and Ν a real number. There exists only a finite number of Κ-isomorphism classes ofabelian varieties defined over K, of dimension g, and whose Faltings height is less than Ν. Besides this height property, a crucial property of the Faltings height used in the proof of the Tate conjecture is its invariance under suitable isogenies. We refer to [Ray85] for a detailed study of these invariance properties Finally, let us mention the existence of remarkable formulas expressing the Faltings height of special abelian varieties in terms of values of "classical transcendental functions". Notably, for abelian varieties admitting complex multiplication, the Faltings height is expressed in terms of the values of Euler's Γ function at rational numbers by the some classical formulas of Chowla and Seiberg ([CS49], [Del85b]) in dimension 1, and by some (partly conjectural) formulas of Colmez ([Col93]) in general (see also [RK03]).
3.2 Curves Let C be a smooth projective curve of genus g > 1 over a number field Κ. Let us assume that C admits stable reduction, namely that there exists a projective regular model of C τι: G — • Spec £> fleuch that all its geometric closed fibers Cp are reduced nodal curves. When g = 1, let us also assume that C(K)
φ- 0. (Recall that, after a suitable finite extension of the base
field K , these hypotheses are always satisfied.) Then we may apply the discussion of the end of Section 2.2, and we get the equality of lattices in Ω 1
(C/K):
0 L , s ( C / K ) = r{e,a>jr).
(3.3)
To investigate fiJ^C/TO, let us consider the closed reduced subscheme Δ : = G \ Gs of G, namely the finite set of closed points of G where π is not smooth. If I^ denotes its ideal sheaf, then Ω^. may be identified with Ι λ · and according to the inclusions (2.2) in Proposition 2.1, we have
Γ(G, IA • ωπ) C Q|nt (C/K) C Γ ( C , ωπ). For any Ρ g Δ, we may introduce a sequence of projective regular models of C
GPt ι := G <— eP,2 <
GP
GP
defined as follows: Gp 2 G is the blowing-up of Ρ in G, and, if vpt„ denotes the composite morphism Gp n G and ρ : = π(Ρ), then Gpzfl+1 -» Gp „ is the blowing-up in G p n of the reduced scheme intersection of Vp l n (P) and of the proper transform Vp1n(Gfp
\ { P } ) ~ of (?fp : = π~ι(π(Ρ))
864
in Gptn.
The geometric fiber
A Neglected Aspect of Kähler's Work on Arithmetic Geometry
865
Gp n = Vp^Cjp^) is the union of the proper transform of 2, let us consider the closed integral subscheme Hp
= Γ(6,ΙΑ·ωπ).
(3.4)
Using (3.3) and (3.4), the (finite) quotient Ω/η1 / Κ ) / & m { C / Κ ) may be described in terms of the reduction graphs of G at places of bad reductions. One easily checks that (3.3) and (3.4) still hold when G is any semi-stable model of C over Spec Ο A-· This implies that, when C admits stable reduction over K, the formation of Sl\nl(C/K) and (C/ΛΓ) is compatible with base field extensions. Let Jac(C) be the Jacobian of C: it is an abelian variety of dimension g over Κ, equipped with a canonical principal polarization 0 ( Θ ) . Moreover the theory of Abel-Jacobi provides a canonical isomorphism j: Q}{C/K)
—•
Q}(JdiC(C)/K).
The compatibility between the Picard functor of relative curves and the N£ron model of Jacobians (see [BLR90], Chapter 9, in particular p. 287), together with Grothendieck duality, show that the abelian variety Jac(C) has semi-stable reduction over Κ and that j restricts to an isomorphism of Ok -lattices: T(e, ωπ) ~ Homo* (Hl(G,
Oe), £>K)
~ Homo κ (Lie PiCe /ÖAr , £>κ)
Moreover the morphism j is easily checked to be compatible with hermitian structures. Finally, this establishes Proposition 3.4. If C admits stable reduction, the isomorphism j defines an isomorphism of hermitian vector bundles
In particular, degn Ω ^ S(C/K) Jac(C).
is the {stable) Faltings height of the Jacobian
865
866
Jean-Benoit Bost
4 Some open problems 4.1 Calabi-Yau varieties Recall that a projective Calabi-Yau variety X over a field Κ is a smooth projective (geometrically connected) algebraic variety over Κ such that the dualizing sheaf odimX ωχ/κ •= Ωχ/Κ is trivial. When Κ is a number field, we may define the height of X as the Arakelov degree
When X is an abelian variety, this is exactly the Faltings height of X. Indeed, an analogue of Theorem 3.2 concerning polarized projective Calabi-Yau varieties over number fields seems plausible, considering the description of ample line bundles on moduli spaces of such varieties established by Esnault and Vieh weg ([EV91]; see also [Vie95]). The possibility of finiteness results extending Theorem 3.3, concerning unpolarized projective Calabi-Yau varieties is an intriguing issue: they should deal with birational equivalence classes - instead of isomorphism classes - of Calabi-Yau varieties.
4.2 Special values The Chowla-Selberg formula and its generalization by Colmez suggest to look for "explicit formulas" for the Arakelov degree
when X is a smooth projective variety over a number field Κ admitting "many" symmetries or self-correspondences. The approach of Köhler and Roessler ([RK03]) to Colmez formula for abelian varieties with complex multiplication by cyclotomic fields, based on a Lefschetz fixed point formula in Arakelov geometry, opens a promising approach to that type of question. See also the work of Yoshikawa [YosOO] devoted to K3 surfaces with involution.
4.3 Positivity properties The positivity properties of Hodge bundles attached to families of complex projective varieties (see for instance [Gri70]) leads to wonder about the "arithmetic positivity" of Kähler's hermitian vector bundles. (Note however that such positivity statements do not hold anymore in general in the geometric situation over a field of positive characteristic; see for instance [MB81].)
866
A Neglected Aspect of Kahler's Work on Arithmetic Geometry
867
For instance, if A is abelian variety, equipped with an ample line bundle L, over some number field K, one may ask wether there is a lower bound on the minimal slope Amin(^[nt<s L(A/K)) depending on the dimension g of A and the degree r of the polarization L. In conclusion, let us recall that an upper bound on the Faltings height of A, involving only g, r, the field K, and the places of bad reduction 2 of A, would imply some effective version of the Mordell conjecture (see for instance [MB90], and the included references to earlier works of Parshin and Szpiro).
References [Art86]
M. Artin, Neron models. In Arithmetic geometry (Storrs, Conn., 1984), SpringerVerlag, New York 1986, 213-230.
[Ber77]
R. Berndt, Differentielles arithmetiquement entieres des corps de fonctions modulaires. In Journees Arithmetiques de Caen (Univ. Caen, Caen 1976), Asterisque 41-42, Soc. Math. France, Paris, 1977, 165-172.
[Ber78]
R. Berndt, Arithmetisch ganze Differentiale. Abh. Math. Sem. Univ. Hamburg (Special issue dedicated to the seventieth birthday of Erich Kähler) 47 (1978), 186-200.
[BLR90]
S. Bosch, W. Lütkebohmert, and M. Raynaud, Neron models. Ergebnisse Math. Grenzgeb. (3) 21, Springer-Verlag, Berlin 1990.
[Bos96]
J.-B. Bost, Intrinsic heights of stable varieties and abelian varieties. Duke Math. J. 82 (1996), 21-70.
[Cle68]
A. Clebsch, Sur les surfaces algebriques. C. R. Acad. Sei. Paris 67 (1868), 1238-1239.
[Col93]
R Colmez, Periodes des varietes abeliennes ä multiplication complexe. Ann. of Math. (2) 138 (1993), 625-683.
[CS49]
S. Chowla and A. Selberg, On Epstein's zeta function. I. Proc. Nat. Acad. Sei. U. S. A. 35 (1949), 371-374.
[CS01]
P. Colmez and J.-P. Serre, Correspondance Grothendieck-Serre. Soc. Math. France, 2001.
[Del85a]
P. Deligne, Le Lemme de Gabber. Seminaire sur les pinceaux arithmetiques: la conjecture de Mordell (Paris, 1983/84), Asterisque 127 (1985), 131-150.
[Del85b]
P. Deligne, Preuve des conjectures de Tate et de Shafarevitch (d'apres G. Faltings). Seminar Bourbaki, Vol. 1983/84, Asterisque 121-122 (1985), 2 5 ^ 1 .
[EV91]
H. Esnault and E. Viehweg, Ample sheaves on moduli schemes. In Algebraic geometry and analytic geometry (Tokyo, 1990), ICM-90 Satell. Conf. Proc., Springer, Tokyo 1991, 53-80.
2
One could also allow a continuous dependance on the points in defined by the polarized abelian varieties ( Α σ , La) deduced from (Λ, L) by means of the complex embeddings a : Κ «-»· C.
867
868
Jean-Benoit Bost
[Fal83]
G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math. 73 (1983), 349-366.
[FC90]
G. Faltings and C.-L. Chai, Degeneration ofabelian varieties (with an appendix by David Mumford). Springer-Verlag, Berlin 1990.
[FWG+92]
G. Faltings, G. Wüstholz, F. Grunewald, N. Schappacher, and U. Stuhler, Rational points (with an appendix by G. Wüstholz). Papers from the seminar held at the Max-Planck-Institut für Mathematik, Bonn/Wuppertal, 1983/1984, Aspects Math. E6, Friedr. Vieweg & Sohn, Braunschweig, third edition, 1992.
[GD60]
A. Grothendieck and J. Dieudonne, Elements de geometrie algöbrique. I. Le langage des schemas. Inst. Hautes ttudes Sei. Publ. Math. 4 (1960), 228.
[Gri70]
P. Griffiths, Periods of integrals on algebraic manifolds, III (some global differential properties of the period mapping). Inst. Hautes ttudes Sei. Publ. Math. 38 (1970), 125-180.
[Käh32a]
Ε. Kähler, Forme differenziali e funzioni algebriche. Mem. Accad. Ital. Mat. 3 (3) (1932), 1-19.
[Käh32b]
Ε. Kähler, Sui periodi degli integrali multipli sopra una varieta algebrica. Rend. Circ. Mat. Palermo 56 (1932), 69-74.
[Käh51]
Ε. Kähler, Über rein algebraische Körper. Math. Nachr. 5 (1951), 69-92.
[Käh53]
E. Kähler, Algebra und Differentialrechnung. In Bericht über die MathematikerTagung in Berlin, Januar 1953, Deutscher Verlag der Wissenschaften, Berlin 1953, 58-163.
[Käh58]
E. Kähler, Geometria aritmetica. Ann. Mat. Pura Appl. (4) 45 (1958), ix+399.
[Käh62]
E. Kähler, Infinitesimal-Arithmetik. Rend. Sem. Mat. Univ. Politec. Torino 21 (1961-62), 5-29.
[Maz86]
B. Mazur, Arithmetic on curves. Bull. Amer. Math. Soc. (N.S.) 14 (1986), 207-259.
[MB81 ]
L. Moret-Bailly, Families de courbes et de varietes abeliennes sur Ρ 1 II. Exemples. Astirisque 86 (1981), 125-140.
[MB85a]
L. Moret-Bailly, Compactifications, hauteurs et finitude. Seminaire sur les pinceaux arithmötiques: la conjecture de Mordell (Paris, 1983/84), Asterisque 127(1985), 113-129.
[MB85b]
L. Moret-Bailly, Pinceaux de varietes abeliennes. Asterisque 129 (1985), 266.
[MB90]
L. Moret-Bailly, Hauteurs et classes de Chern sur les surfaces arithmetiques. S6minaire sur les Pinceaux de Courbes Elliptiques (Paris, 198$), Asterisque 183 (1990), 37-58.
[Mum72]
D. Mumford, An analytic construction of degenerating abelian varieties over complete rings. Compositio Math. 24 (1972), 239-272.
[Ner64]
A. Neron, Modeies minimaux des varietes abeliennes sur les corps locaux et globaux. Inst. Hautes ttudes Sei. Publ. Math. 21 (1964), 128.
868
A Neglected Aspect of Kähler's Work on Arithmetic Geometry
869
[Neu99]
J. Neukirch, Algebraic number theory. Grundlehren Math. Wiss. 322, SpringerVerlag, Berlin 1999.
[Noe70]
M. Noether, Zur Theorie des eindeutigen Entsprechens algebraischer Gebilde von beliebig vielen Dimensionen. Math. Ann. 2 (1970), 1238-1239.
[Ray85]
M. Raynaud, Hauteurs et isogenies. Seminaire sur les pinceaux arithmetiques: la conjecture de Mordell (Paris, 1983/84), Asterisque 127 (1985), 199-234.
[RK03]
D. Roessler and K. Koehler, A fixed point formula of Lefschetz type in Arakelov geometry IV. J. Reine Angew. Math. 556 (2003), 127-148.
[Sha77]
I. R. Shafarevich, Basic algebraic geometry. Study edition Springer-Verlag, Berlin 1977. Translated from the Russian by K. A. Hirsch, revised printing of Grundlehren Math. Wiss. 213, Springer-Verlag 1974.
[Szp85]
L. Szpiro (ed.), Seminaire sur les pinceaux arithmetiques: la conjecture de Mordell. Soc. Math. France, Paris 1985, Papers from the seminar held at the Ecole Normale Superieure (Paris 1983-84), Asterisque 127 (1985).
[Vie95]
E. Viehweg, Quasi-projective moduli for polarized manifolds. Ergebnisse Math. Grenzgeb. (3) 30, Springer-Verlag, Berlin 1995.
[Wei58]
A. Weil, Introduction ä I 'etude des varietes kähleriennes. Publications de l'lnstitut de Mathematique de l'Universite de Nancago, VI. Actualites Sei. Ind. 1267. Hermann, Paris 1958.
[Wei60]
A. Weil, Erich Kahler: Geometria aritmetica. Math. Rev. 21 (4155) (1960), 765-767.
[YosOO]
K. Yoshikawa, Analytic torsion and automorphic forms on moduli spaces. Sügaku 52 (2000), 142-158.
[Zah85]
J. G. Zahrin, A finiteness theorem for unpolarized abelian varieties over number fields with prescribed places of bad reduction. Invent. Math. 79 (1985), 309-321.
869
Kähler's Zeta function RolfBerndt
For an algebraic number field k with maximal order ο its Dedekind Zeta function is defined by
a
where the sum goes over all ideals α in ο and Ν a is the number of elements in ο/a. It is very natural to generalize this in the following way. For a ring R, take (at least formally) the sum over all ideals α in R ?*(0
: = Σ
Ν α
~ '
α where Na
:=
#R/a.
Kähler used this notation to develop his "calcolo Zeta" in the hope to come out with an arithmetic counterpart for arithmetic varieties of the usual integration theory for manifolds and varieties.
1 The Zeta Function of a Regular Local Ring of Dimension Two Let s be a regular local ring of dimension two with maximal ideal P = us +
vs
and residue field s/p = ¥q,
q = ρ1, ρ prime.
As done by Lustig in his thesis [Lu] and Kähler in his Geometria Aritmetica [28]*, 486-489 (repeating essentially Lustig's work), the Zeta function of s may be determined in the following way. "•References containing only numbers refer to Erich Kähler's Bibliography at the end of this volume.
870
Kähler's Zeta Function
871
1.1 Some Tools For ideals b C α C s let
G ) - denote the length of a non-refinable chain of ideals b = b0 £ bi £ · · · £ bm = α Then one has te)
-
( T )
and for ideals c C b C a
( H ; ) - © · Moreover, there is the criterion. Remark 1. For b C ο C s, one has {. = 1 exactly if there is an element a € a\b such that ο = as + b and
ap c b.
Proof. [Lu], p. 312-313 or [28], 209. From here, we easily come to Remark 2. For b c α C s we have #(a/b) = and in particular Na=(Np)W. Proof. [Lu], p. 313-314 or [28], 475. Apparently these tools can be used not only for the special 5 from the example but for any local ring s with finite residue field.
871
872
Rolf Berndt 1.2 Characteristic Numbers
We come back to ρ = us + vs (though the following notions also may be extended to more general cases) and denoting ϋ = vs we associate t o a C i characteristic numbers
v = v (0):=
' '
/ a + o' + 1 \
Ut^M
/ a η D' + o' + 1 \
*
J'
Remark. We have υ/(α) > υ;+ι(α) and for Ν α = qx there is an η with vn+\ = vn+2 = · · · = 0 and then qvo+-+v\
Na = Proof. [Lu], p. 314.
As a consequence, one has that the number Na = qk}
gx=#{acs, can be written as the sum
..·,
vn)
(V)
over all partitions of λ with vo > · · · > vM, Σ ν,· = λ and / ( υ ο . . . . v«) = {α C ί, υ,·(α) = ν,·}.
1.3 Determination of the / ( ν ο , . . . , ν„) The following result is the central part of this reasoning. Proposition. We have for vq > • • • > vn with ^ f(vo,...,Vn)
v
i =λ
qVl+-+V"=qk~Vo.
=
This fact comes out from two Lemmata. Lemma 1. For ν € No and an ideal c C t) l+1 one has for an ideal b C s exactly •
1 1
b C o', b n o ' + 1 = c and
872
/ b + t) — V 0'
Kähler's Zeta Function
873
if
+ c,
b = bs Proof.
wV
b =
+
t>'+1z,
ζ e s,
e c.
with bv
[Lu], p. 315-317 or [28], 488.
This Lemma 1 assures the possibility to construct ideals with preassigned characteristic numbers. The next Lemma fixes the number of possible choices. Lemma 2.
For given ideal
c C o' + 1 , c £ t)' +2
# {b, b c .Λ > η Proof.
and ν > ^
one
)
has
^ ' - , , ( ^ ) - . ) = , ( * ? £ ) .
[Lu], p. 317-319 or [28], 488.
1.4 The First Steps of the Construction As an illustration, we just sketch the beginning of the procedure to construct an ideal α with υ,· (α) = ν(·, vo > · · · > vn > v n + i = 0. Step η:
νη+ϊ
= 0 tells that α„+ι = α Π o n + 1 = υ η+1 5.
Thus, we have (in accordance with Lemma 1) α„ = α η ο" =
with an =
ans +
uVnvn
.
Here we have no choices (in accordance with Lemma 2) Step η — 1: As in Lemma 1, we have α„_ι = α Π ϋ" _ 1 =
an + an-\s
,
where an-i
=uVn-lvn~l
+ vnzo,
zo€s
with an-\v
= uVn~'vn
+ υΜ+1Ζ0
€ αΛ = uv"vns
+
vn+1s
As v„_i > vn, we see that this is no condition for the choice of zo- And moreover, we see that we get different possible choices for the ideal α„_ι for each choice of zo = SO + S\u Η
h£v n _iU Vn ~ l ,
where the coefficients ε, are free in a system W of representatives of F^ = s/p. That is, as in Lemma 2, we have qVn possible inequivalent choices.
873
874
Rolf Berndt
Step 11 — 2: We have α«-2 = O/j-i + a n -2S , an-2
= uv"-2vn~2
+ vn~lz,
= uVn~2vn~l
+ vnz
Ζ € 5
with € on_i
i.e. ζ has a form Z = uVn-2~Vn~lZ0
+ uVna+
υσ',
a,a'es,
and things get a bit more complicated.
1.5 Determination of the Zeta Function From the remark in 1.2 and the proposition in 1.3 we have as in [Lu], p. 322,
ί(ο =αΣ>α"' oo
υο
γ^
Σ =
vi
y^
ν0=0νι=0ν2=0 00 v0 vi Σ Σ Σ··· μ0=Ονι=Ον2=0 oo
OO
..
f(vo,
.
Vi, · · · )
H Vl+V2+ ...
/(v 0 + v 1 + ..·) '
With ν,· - v i + i = μ,· i e No
μι+2μ.2+3μ3+...
• μ0=0μΐ=0 ΣΣΣ - i^ί(μο+2μι+3μ,2+···) ' μ2=0 00
OO
(ί0-(ρ+1))μρ =ρ=0Π μ(Σ 4 ' ) =0 ρ
οο
= Π(1-^"(ρ+1)ί)"1· Ρ=0
This series converges absolutely for Re t > 1.
1.6 The Zeta Function of an Ideal It is natural (and important for later global considerations) to look also at the Zeta function associated to a given ideal 21 C s, namely to study co21
874
Kahler's Zeta Function
875
Remark. The calculations from the previous sections show immediately that for 21 = ο = vs we have
p=0 Moreover in [28], 484, Kähler determines for u = us and ü — vs CsCuno.i) =
-q-'+q1-2' -γ · (1 -q Ύ
1
This may be seen by realizing that each ideal α containing uv is either of the form ο = uvs + Ha+1s + vß+1s,
α, β e No
(*)
or α = uvs + ua+ls + vß+ls + (ua + cvß)s,
cep.
(**)
One has Νa = q ι + α + β
for α of type (*) ,
= qa+ß
for ο of type (**),
and there are q — 1 different ideals with fixed α, β of type (**). Thus one has i,(u η ο, ο = ι +
Σ q-a+a+ß)t + Σ > a,ßeN0 a,ßeN
= (l-q-1
- Vi~(a+ß)t
+ql-2t)a-q~tr2.
Alternatively, this result comes out using the formalism from 1.2 - 1.5: Hereby, for α D uvs we have α = vß+ls + uvs + aos,
ao = ua + νβζ, ζ e W ~
i.e., υ,·(α) = 1 for ι = I , . . . , β, = a
for i = 0.
And the number of different ideals α with α, β e Ν is q and one for β = 0, a e No. This leads to the same formula as above. It is a tempting task to determine s be the localization of Z[X] and 21 = 0 ( X ) j ,
t) for instance in the following case. Let
φ(Χ) =aX2 + bX + c,
a,b,c
£ Z.
Though not in a way fitting in here directly, Kähler did this in the framework of determining the Zeta function of an arithmetic curve of degree two (see below).
875
876
Rolf Berndt 1.7 Two More General Results
By a slight extension of this method it is shown in the thesis of Berndt [Bel]: Proposition. £5(ί) converges in a suitable right half plane if s is a local ring of dimension 2. And this result is optimal, as Witt ([Wi], p. 369 resp. [Bel], p. 17) proved that ζ ί (t) diverges for all local rings of dimension d > 2. Witt's result shows that Kähler's intention to use these Zeta functions as a tool to study arithmetic varieties found a barrier in arithmetic dimension two. But as there are even in this region a lot of interesting phenomenae we will give here a brief sketch of his "calcolo Zeta" and the results he obtained.
2 Zeta Functions of Varieties A global Zeta function will be associated to varieties and subvarieties. The notations will be fixed in the sequel.
2.1 Varieties From Figures Let Κ be an (over Q) finitely generated field with trdegQ Κ = η Kähler defines ([28], 110) as a variety V of Κ a collection of local rings with quotient field Κ having the following two properties. (i) Each two local rings s, s' from V are localizations of their intersection 5 Π s'. (ii) Each localization of a local ring from V belongs to V. V is called arithmetic if there are finitely many rings A,· (i = 1 , . . . , m) of finite type over Ζ such that V is the collection of localizations of these rings A,·. This shows that V is in the language of [EGA] the collection of local rings belonging to a scheme of finite type over Ζ having Κ as a field of rational functions. In generalization of the notion of the now so-called Weil divisor Kähler defines ([28], 169) as his notion of a subvariety a "figure" ("figure" in Italian and "Gebilde" in German) an application α associating to each s € V an ideal a(^) with the condition a(j)S = a(S). where s and 5 are local rings belonging to V with s C S
876
Kähler's Zeta Function
877
2.2 The Zeta Function of a Figure Let α be a figure in an arithmetic variety V. Then in [28], 476, Kahler defines as the "norm" of α Na := Y\
Na(s)
s<=V
and as its "measure" m(a) = log Ν a. A figure a is called elementary, if its norm is finite Na < oo. To each figure ο is then (at least formally) associated its Zeta function (by [28], 478) ζ(α\ί)
:= Χ>ίΤ'
,
b
for all s e V.
Moreover, Kähler defines in [28], 489, as the Zeta function of an arithmetic variety V ζν(ί)
:= ζ(<Ό\ί),
where 9? designs the total figure, associating the ideal {0} to each s e V. The thesis of Lustig [Lu] deduces from the local results reproduced in section 1. the following statement:
Theorem.
Let V be a regular arithmetic variety of arithmetic dimension 2 (i.e. belong-
ing to an over Q finitely generated field Κ with trdegQ^f = 1). Then ζγ{ί)
converges
for all complex t with R e t > 2.
2.3 The Zeta Function of an Arithmetic Curve of Degree 2 In his Monadologie ([41], 271.-331.) Kähler determined the Zeta function of an arithmetic curve of degree 2. His calculation is reproduced and translated into the framework of standard local algebra in [Be2]. Using the notation of the previous sections this can be described as follows. Take the arithmetic surface Χ = ΨιΖ=
ProjZUo,*!]
and the associated arithmetic variety V consisting of all localizations s of the two subrings A = Z[x] and Β = Z [ \ / x ] of Κ = Q(x). Then the homogeneous polynomial Φ(χ0, *i) = axj + bxQXi + cxq,
877
a,b,c
G Ζ with (a, b, c) = 1
878
Rolf Bemdt
defines a figure Ol in V by = (αχ2 + bx + c)s
for s a localization of A
= (a + bu + cu )s
for s a localization of Β = Z[u], u =
and l/x.
We put 9
9
D := b — 4ac = m d, d squarefree. Then, Kähler's result is the following. Theorem. We have with Riemann's Zeta function
ρ the Dirichlet series to the Legendre symbol (-)
and an entire function Φ with zeroes only for t with Re t = 1/2 given by
ψ(ο = ψ»(ο = Π
(ρ> (j) - ρ~')
λ
Ρ |m ρλ+ι
\m
with the polynomial ψλ(ρ, ε, χ) := (ΐ - ρ2jc)
1
(l - sjc + ερλχ2λ+1
- ρλ+1χ2λ+2)
.
Remark. Denoting by po the points of the subscheme Xo of X defined by the homogeneous polynomial Φ the "standard Zeta function" associated to Xo is simply ζο(Χο,0=
Π PoeXo
(l-Wpö'r1·
Then we have 11) = ζο(Χο, t)ty(t) where, as Kähler pointed out, the factor Φ fulfills the Riemann hypothesis.
878
Kahler's Zeta Function
879
References [Bel]
Berndt, R., Über die Konvergenz einer Zetareihe eines Stellenrings. Dissertation, Hamburg 1969.
[Be2]
Berndt, R., Kähler's computation of his Zeta function for an arithmetic curve of degree two. Mitt. Math. Ges. Hamburg 15 (1996) 103-122.
[EGA]
Grothendieck, Α., Elements de la G6ometrie algebrique. Inst. Hautes Etudes Sei. Publ. Math. 4 , 1 1 , 20, 32 (1960-1967).
[Lu]
Lustig, G., Über die Zetafunktion einer arithmetischen Mannigfaltigkeit. Math. Nachr. 14 (1955), 309-330.
[Wi]
Witt, E., Gesammelte Abhandlungen - Collected Papers. Springer-Verlag, Berlin 1998.
879
Panorama of Zeta Functions Anton
Deitmar
Introduction In this essay I will give a strictly subjective selection of different types of zeta functions. Instead of providing a complete list, I will rather try to give the central concepts and ideas underlying the theory. Talking about zeta functions in general one inevitably is led to start with the Riemann zeta function ζ(s). It is defined as a Dirichlet series: oo ξ is) = Σ I I - ' . n=1 which converges for each complex number 5 of real part greater than one. In the same region it possesses a representation as a Mellin integral: 1
f°°
1
vdt
f = -F7T / τ—r Γ 0 ) J0 e' - 1 tτ · This integral representation can be used to show that extends to a meromorphic function on the complex plane and satisfies the,functional equation: hs)
= ?(l-j),
where ζ is the completed zeta function Us) = j r - i r ( 0 f ( 5 ) . The zeta function has a simple pole at s = 1 and is regular otherwise. It has zeros at —2, —4,... which are called the trivial zeros. All other zeros lie in the strip 0 < Re (5) < 1 and the famous Riemann Hypothesis states that they should all lie at Re (5) = j . This conjecture was stated in the middle of the 19th century and has not been proved to this day. The Riemann Hypothesis is by no means the only riddle posed by the Riemann zeta function. There is, for example, the question about the spacing distribution of consecutive zeros: Let (pn)neN be the ascending sequence of imaginary parts of the zeros of in {Im(s) > 0}, and let pn = pn ^ p n be the normalized sequence. Let <5„ = Pn+i — Pn be the sequence of normalized spacings. Computations of pair
880
881
Panorama of Zeta Functions
correlation functions [19] and extensive numerical calculations [21] then lead one to expect that for any "nice" function / on (0, oo) 1 Ν
J
f,οο
f(s)P(s)ds,
as Ν
OO.
Here Ρ (s) is the spacing distribution of a large random Hermitian matrix. The function P(s) vanishes to second order at s = 0. So, unlike a Poisson process, the numbers pn "repel" each other. This expectation is known as the "GUE hypothesis", where GUE stands for Gaussian Unitary Ensemble and describes the spacing function P. The GUE hypothesis is widely accepted, but far from proven. Using the uniqueness of the prime decomposition of a natural number the Dirichlet series can be turned into an Euler product: £0s) =
Π*1-'"*)"1·
which is extended over all prime numbers ρ and converges for real part of s greater than one. The Euler product indicates that the zeta function may be viewed as a means to encode the infinite set of data given by the prime numbers into a single object, the meromorphic function ζ. Indeed, the analytic behaviour of the zeta function is exploited in the proof of the prime number theorem [12], which says that the counting function of prime numbers π(χ)
= #[p < χ, ρ prime}
has the asymptotic behaviour π(χ)
~
χ
log*
as χ tends to oo. More generally the term zeta function is used for generating series which encode infinite sets of data such as the numbers of solutions of an algebraic equation over finite fields or the lengths of closed geodesies on a Riemann surface. A zeta function is usually given as a Dirichlet series, an Euler product or a Mellin integral. Erich Kähler was very interested in zeta functions and he even defined a new one himself. To explain this consider the Euler product of the Riemann zeta function. The set of prime numbers can be identified with the set of all nonzero prime ideals of the ring of integers Z, i.e. the set of all closed points of the scheme Spec Z. This is the starting point of a generalization to an arbitrary arithmetic scheme X, whose so called Hasse-Weil zeta function [25] is defined as a product over the closed points of X: Cx(s)
=
Π xe\X\
where for χ a closed point, Ν (x) denotes the order of the residue class field κ (λ) of χ.
881
882
Anton Deitmar
On the other hand, the Dirichlet series of ζ can be interpreted as a sum over all nonzero ideals of Z, i.e., a sum over all nontrivial closed subsets of Spec Z. In general, the Hasse-Weil zeta function of an arithmetic scheme X is also expressible as a Dirichlet series, but not one that runs over all nontrivial closed subsets of X. So Kahler defined a new zeta function in the following way: For every closed subscheme and Y of X he defined N(Y) = ΠY&Y = ΣΥ N(Y)~S, where S N(Y)~ is considered to be zero if N(Y) is infinite. In his thesis [17], Lustig proves that this series converges for real part of s bigger than 2, provided that the dimension of X does not exceed 2. In his Monadologie [14], 271-331, Kahler determined the zeta function of an arithmetic curve of degree 2. His calculation is reproduced in a modern language in [2]. It is shown that the zeta function in this case is a product of the Riemann zeta functions and a Dirichlet L -series with an entire function whose zeros can be given explicitly and lie at Re (5) = j . If the dimension of X exceeds 2, Witt ([30], p. 369) showed that the series diverges for every complex number s. In the sequel, I will discuss three types of zeta, or L-functions. The latter are a slight generalization of zeta functions: they arise, for example by allowing twists by characters in the coefficients of a Dirichlet series. The first section will be on zeta and L-functions of arithmetic origin which also might be called "of algebraic geometric origin", since they are attached to objects of algebraic geometry over the integers. In the second section we will consider automorphic L-functions. They are defined in an analytic setting and look very different from the arithmetic ones of the previous section, however, it is widely believed, and proven in a number of cases, that automorphic L-functions and arithmetic L-functions are basically the same. The third section will be devoted to zeta functions of differential geometric origin. These are attached to objects from differential geometry or global analysis, like closed geodesies in Riemannian manifolds.
1 Zeta and L -Functions of Arithmetic Origin This section will be concerned with zeta functions whose defining data come from number theory. Since the Riemann zeta function has an Euler product over the primes, one may view the prime numbers as defining data for ζ, so the Riemann zeta function falls into this category. Let Κ be a number field, i.e., a finite extension of the field of rational numbers. The Dedekind zeta function of Κ is defined as ζκ(*) = Σ > ( α Γ 5 , α
Re(s) > 1,
where the sum runs over all nontrivial ideals 0 of the ring of integers Θ κ of Κ, and Ν (α) = #(Θκ / ο) is the norm of the ideal 0. The function ζ κ (s) can also be expressed
882
Panorama of Zeta Functions
883
as an Euler product ζκω
=
Πα-^ρΓ*) P
- 1
which runs over all nontrivial prime ideals ρ of Θκ· Further, ζ κ CO extends to a meromorphic function on the entire plane satisfying a functional equation [20]. There are several generalizations of these zeta functions, called L-functions, which mostly are obtained by "twisting by characters". For example L(x,s)
=
[ [ ( Ι - χ ^ - Τ Ρ
1
is the Hecke L-function attached to a character χ of the group IK of all fractional ideals of Κ (see [20]). In his thesis [26], J. Tate used harmonic analysis on the adele ring A = Αχ and the idele group A x = to give quite far reaching generalizations of the theory of L-functions which we will now explain. A rational differential form ω will give a Haar measure on A x , which, by the product formula, being independent of the choice of ω, is called the Tamagawa measure on A x . The continuous homomorphisms of A x / Κ x to C x , also called quasi-characters, are all of the form z C(Z) = x(z)|z| J for a character χ and a complex number s. For such a quasi-character and a sufficiently regular function / on A the general zeta function of Tate is defined by =
f J A*
f(z)c(z)dxz,
the integration being with respect to the Tamagawa measure and convergent if Re 0 ) > 1. Let / be the additive Fourier transform of / . Considered as an analytic function in c the zeta function is regular except for two simple poles at CQ and ci, where CQ(Z) = 1 and ci(z) = |z|, with residues —ac/(0) and Κ/(0) respectively, where κ =
2ri
(2n)r2hR — . w\Jd
Here r\ and rj are the numbers of real embeddings, resp. pairs of complex embeddings of K, h is the class number, R the regulator, w the order of the group of roots of unity in Κ, and d is the absolute value of the discriminant. Furthermore, there is a functional equation C(/,c) =
?(/,c),
where c(z) = |z|c(z) - 1 . One recovers classical zeta and L-functions by restricting c and / to special cases. For example c(z) = |z| J gives, for suitable / , the (completed) Dedekind zeta function of K.
883
Anton Deitmar
884
For / of simple type the integral over A x defining £ ( / , c) can be written as a product of integrals over the completions of K, so £ ( / , c) becomes a product of local zeta functions which themselves satisfy local functional equations and bear other interesting information. J. Igusa [11] replaced the characters in Tate's local zeta functions by characters composed with polynomials and so defined a new rich class of local zeta functions with applications to other areas of number theory. Perhaps the most important generalization of the Riemann zeta function is the class of motivic L-functions [5]. To explain this let us go back to the Hasse-Weil zeta function ζχ (s) = — N ( j t ) ) - 1 of an arithmetic scheme X. If X is proper and flat over Spec Ζ with smooth generic fibre X Q, then it will have good reduction at almost all primes p, we call such primes "good". The Lefschetz trace formula for I-adic cohomology implies that the zeta function equals a finite number of Euler factors multiplied by 2 dim X
Π detQ((l — P~s
Π υ=0
\HV(X <8>
ρ good
The inner product runs over all but finitely many primes. Here I = l p is a prime different from ρ and Fr p is the geometric Frobenius at p. The characteristic polynomial is known to have coefficients in which are independent of I (for ρ good). It has turned out in a number of cases that the individual factors
Π
detQ/d - P~' Κ\RV(<X
® Qp. Q/)) ( _ i r + 1
ρ good
themselves have a meromorphic continuation to C, and indeed satisfy a functional equation if suitably completed at the bad primes. This then is considered to be the L-function attached to the motive HV(X). Motives form a conjectural category in which a scheme X decomposes into H V (X) for ν = 0 , . . . , 2 dim X and all usual cohomology theories factor over this category. This category is supposed to be large enough to contain twists and all L-functions mentioned so far can be realized as motivic L-functions. There are various conjectures which relate vanishing orders or special values of motivic L-functions to other arithmetic quantities. We will here only give one example, the conjecture of Birch and Swinnerton-Dyer. To explain this let £ be an elliptic curve over a number field, i.e., a projective curve of genus one with a fixed rational point. Then there is a natural structure of an abelian algebraic group on E. The group E{K) of rational points is known to be finitely generated, so its rank, which is defined by r = dimQ E{K)(g>Q, is finite. The Birch and Swinnerton-Dyer conjecture states thatr should be equal to the vanishing order of the Hasse-Weil zeta function (.s) at s = 1. There is also a more refined version [27] of this conjecture giving an arithmetical interpretation of the first nontrivial Taylor coefficient of at s = 1.
884
885
Panorama of Zeta Functions
2 Automorphic L -Functions Let / be a cusp form of weight 2k for some natural number k as in [25], i.e., the function / is holomorphic on the upper half plane Η in C, and has a certain invariance property under the action of the modular group SL2 (Z) on H. Then / admits a Fourier expansion 00
/ω
= n=
Σα"β2πίζη·
1
Define its L-function for Re (5) > 1 by 00 L ( f , s )
= ' n= 1
ns
The easily established integral representation jf
roc L ( f , s )
= (2*Γ'Γ(ί)Ι(/,ί) =
/
f ( i t ) t
Jo
s
- , t
implies that L ( f , s ) extends to an entire function satisfying the functional equation L ( f , s) = ( - 1 ) k L ( f , 2k - s). With A(/, s) = L ( f , 2ifcj) this becomes A ( f , s )
=
( - \ )
k
A ( f , l ~ s ) .
This construction can be extended to cusp forms for suitable subgroups of the modular group. These L-functions look like purely analytical objects with no connection to the L-functions of arithmetic origin mentioned earlier. Thus it was particularly daring of A. Weil, G. Shimura, and Y. Taniyama in 1955 to propose the conjecture that the zeta function of any elliptic curve over coincides with a A(/, s) for a suitable cusp form /. This conjecture was proved in part by A. Wiles and R. Taylor [28], [29] providing a proof of Fermat's Last Theorem as a consequence. Subsequently, the conjecture has been proved in full by Breuil, Conrad, Diamond and Taylor [3]. The upper half plane is a homogeneous space of the group SL2(K), and so cusp forms may be viewed as functions on this group, in particular, they are vectors in the natural unitary representation of SL2(M) on the space L 2 ( SL 2 (Z)\SL 2 (K)). Going even further one can extend this quotient space to the quotient of the adele group GL2(A) modulo its discrete subgroup GL2(Q), so cusp forms become vectors in L 2 (GL 2 (Q)\GL 2 (A) 1 ), where GL 2 (A) 1 denotes the set of all matrices in GL2(A) whose determinant has absolute value one. Now GL2 can be replaced by GL„ for η g Ν and one can imitate the methods of Tate's thesis (the case η = 1) to arrive at a much more general
885
886
Anton Deitmar
definition of an automorphic L-function: this is an Euler product L(π, 5) attached to an automorphic representation π of GLn (A)1, i.e. an irreducible subrepresentation π of L 2 ( G L N ( Q ) \ G L „ ( A ) 1 ) . A S in the GLi-case it has an integral representation as a Mellin transform and it extends to a meromorphic representation, which is entire if π is cuspidal and η > 1. Furthermore it satisfies a functional equation L(n,s)
ε(π, s)L(tt,
=
1 — s),
where π is the contragredient representation and ε(π, s) is a constant multiplied by an exponential [7]. Extending the Taniyama-Shimura-Weil conjecture, R. P. Langlands conjectured in the 1960s that any motivic L-function coincides with L(π, s) for some cuspidal π. An affirmative answer to this question would prove many other, older conjectures in number theory. It has local and characteristic ρ analogues, which have been proved [10], [15].
3 Zeta Functions of Differential-Geometric Origin In this section we will be concerned with zeta functions attached to objects arising in differential geometry. These will serve as a measure of complexity of the geometric objects. We start with an oversimplified example: a finite graph X. If it has no closed paths, it is topologically trivial, so the set of primitive closed paths gives a measure of complexity. Primitivity here means that a path (or a walk, as some people say) co is not the power of a shorter one, so you walk each closed path only once. The number of closed paths will in general be infinite, so one considers the following zeta function as a formal power series at first: Ζχ(Τ)
=
[ J O
-
Tl{co)),
CO
where the product runs over all primitive closed paths and / (co) denotes the length of a given path co. Then it turns out [1] that Ζχ(Τ) is in fact a polynomial, for it can be written as det(l — Τ A) for some generalized adjacency operator A for the graph X. If one replaces the graph X by a compact Riemannian surface Y of genus > 2, then one can attach a natural hyperbolic metric to Y and replace the paths by closed geodesies. One ends up with the Ruelle Zeta Function R y ( S )
=
Y l ( l - e - °
1
^ ) ,
c
where the product runs over all primitive closed geodesies in Y and 1(c) > 0 is the length of the geodesic c. The Ruelle Zeta Function RY(s) equals Z y ( s ) / Z y ( s + 1),
886
Panorama of Zeta Functions
887
where Zy(s) is the Selberg Zeta Function attached to Y, defined by ZY(S) = Y\Y\(1 c n>0
-
The Selberg Zeta Function can be studied using harmonic analysis and one can prove that it extends to an entire function having all its zeros in the set Μ U (5 + »M), i.e., Zy(s) satisfies a generalized Riemann Hypothesis [9]. Note that in this section, Euler products often occur without the (— 1) in the exponent. This is more than a matter of taste, since, for example, the Selberg zeta function is entire this way round. The reason why one has to take different exponents becomes transparent when one generalizes the Selberg zeta function to spaces of higher rank [4]: the natural exponents are certain Euler characteristics which can take positive or negative values. The set of closed geodesies on Y is in bijection with the set of closed orbits of the geodesic flow φ on the sphere bundle SY. So Ry(s) = /fyCs) is a special case of a dynamical zeta function, since it counts closed orbits of a dynamical system. Actually D. Ruelle proved the meromorphicity of ^ (s) in a more general setting: he needed φ only to be a smooth flow satisfying a certain hyperbolicity condition. He used the theory of Markov families to express as a quotient of certain transfer operators. For the geodesic flow of the modular curve SL2(Z)\H the eigenvectors of these transfer operators can be identified with modular functions [16]. Also for discrete dynamical systems there is a theory of zeta functions. Let most generally / be an invertible self map of a set X and define its zeta function as the formal power series Zf(T)
= Πα ρ
-
Γ*«).
where the product runs over the set of periodic orbits and l{p) e Ν is the period of p. One has to put restrictions on / in order for Z / to be well defined. For / being a diffeomorphism of a compact manifold satisfying certain natural hyperbolicity conditions A. Manning has shown in [18], that Zf(T) indeed is a rational function. This in particular means that all fixed point data of / can be exhibited from the finite set of poles and zeros of Zf(T). The Hasse-Weil zeta function of a smooth projective variety V over a finite field Fq with q elements can be viewed as a dynamical zeta function too. It coincides with Zpr (q~s), where Fr is the Frobenius acting on V(F 9 ). One feature that makes zeta functions of geometric origin so attractive is that they tend to satisfy Lefschetz formulae. For example, as Artin, Grothendieck and Verdier have shown, the Hasse-Weil zeta function of a smooth projective variety V over satisfies 2 dim V
Mj) =
Π ^et(l — q~s Fr v=0
887
\Hv(V,
888
Anton Deitmar
The Seiberg zeta function satisfies a similar Lefschetz formula involving the Frobenius vector field and the tangential cohomology of the contracting foliation [8], [22], [13], [4]. This fact has given rise to some far reaching conjectures whether these formulae are valid for more general systems and if they even could be part of a cohomological framework which would explain most of the conjectural properties of zeta and Lfunctions of arithmetic schemes [6].
4 Closing Remarks In this brief survey we have missed out many other important classes of zeta functions. It was not our aim to give an exhaustive list but to show some general lines of development. Summarizing we find that zeta functions, given by a Dirichlet series, an Euler product or a Mellin integral, encode infinite sets of data. The first thing one usually asks for, is convergence, next meromorphicity and functional equation. If one is lucky the function turns out to be rational, this then means that the infinite set of data can be recovered from the finitely many poles and zeros. One finally starts to ask in which way the analytic behaviour of the zeta function reflects properties of the encoded objects. Prominent examples of this are the Prime Number Theorem, in which the position of the pole and the zeros of the zeta function give information on the growth of the data, or results or conjectures on special values like the Birch and Swinnerton-Dyer conjecture. Seeking harmony and simplicity the human mind is always tempted to believe that objects of similar behaviour, although of very different origin, should be of the same nature. Remarkably enough this has turned out true in the case of the TaniyamaShimura-Weil conjecture and has shown strong evidence in the case of the Langlands conjecture. Whenever some entities are counted with some mathematical structure on them, it is likely that a zeta function can be set up and often enough it will extend to a meromorphic function. Zeta functions show up in all areas of mathematics and they encode properties of the entities counted which are well hidden and hard to come by otherwise. They easily give fuel for bold new conjectures and thus drive on the progress of mathematics. It is a fairly safe assertion to say that zeta functions of various kinds will stay in the focus of mathematical attention for times to come.
References [1]
Bass, H., The Ihara-Selberg zeta function of a tree lattice. Internat. J. Math. 3 (1992), 717-797.
[2]
Berndt, R., Kähler's computation of his Zeta function for an arithmetic curve of degree two. Mitt. Math. Ges. Hamburg 15 (1996), 103-122.
888
Panorama of Zeta Functions
889
[3]
Breuil, C., Conrad, B., Diamond, F., Taylor, R., On the modularity of elliptic curves over Q: wild 3-adic exercises. J. Amer. Math. Soc. 14 (2001), 843-939.
[4]
Deitmar, Α., Geometric zeta-functions of locally symmetric spaces. Amer. J. Math. 122 (2000), 887-926.
[5]
Deligne, P., Valeurs de fonctions L et periodes d'integrales. With an appendix by N. Koblitz and A. Ogus. In Automorphic forms, representations and L-functions (Oregon State Univ., Corvallis, Ore., 1977), Proc. Sympos. Pure Math. 33,, Part 2, Amer. Math. Soc., Providence, RI, 1979, 313-346.
[6]
Deninger, C., Some analogies between number theory and dynamical systems on foliated spaces. In Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998), Doc. Math., Extra Vol. I, 163-186 (1998).
[7]
Godement, R., Jacquet, H., Zeta functions of simple algebras. Lecture Notes in Math. 260, Springer-Verlag, Berlin-Heidelberg-New York 1972.
[8]
Guillemin, V., Lectures on spectral theory of elliptic operators. Duke Math. J. 44 (1977), 485-517.
[9]
Hejhal, D., The Selberg trace formula for PSL 2 (R), Vol. I. Lecture Notes in Math. 548, Springer-Verlag, Berlin-Heidelberg-New York 1976.
[10] Henniart, G., Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique. Invent. Math. 139 (2000), 439-455. [11] Igusa, J., An introduction to the theory of local zeta functions. AMS/IP Studies in Advanced Mathematics, 14. Amer. Math. Soc., Providence, RI, International Press, Cambridge, MA, 2000. [12] Ingham, A. E., The distribution of prime numbers. Reprint of the 1932 original. With a foreword by R. C. Vaughan, Cambridge Mathematical Library, Cambridge University Press, Cambridge 1990. [13] Juhl, Α., Cohomological theory of dynamical zeta functions. Progr. Math. 194, Birkhäuser Verlag, Basel 2001. [14] Kähler, Ε., Monadologie III. Hamburg 1985 (= [41] in Kähler's Bibliography at the end of this volume). [15] Lafforgue, L., Chtoucas de Drinfeld et correspondance de Langlands. Invent. Math. 147 (2002), 1-241. [16] Lewis, J., Zagier, D., Periodfunctions and the Selberg zeta function for the modular group. In The mathematical beauty of physics (Saclay, 1996), Adv. Ser. Math. Phys. 24, World Sei. Publishing, River Edge, NJ, 1997, 83-97. [17] Lustig, G., Über die Zetafunktion einer arithmetischen Mannigfaltigkeit. Math. Nachr. 14 (1955), 309-330. [18] Manning, Α., Axiom A diffeomorphisms have rational zeta functions. Bull. Lond. Math. Soc. 3 (1971), 215-220. [19] Montgomery, H. L., The pair correlation of zeros of the zeta function. In Analytic number theory (St. Louis, Mo., 1972), Proc. Sympos. Pure Math. XXIV, Amer. Math. Soc., Providence, RI, 1973, 181-193.
889
890
Anton Deitmar
[20] Neukirch, J., Algebraic number theory. Grundlehren Math. Wiss. 322, Springer-Verlag, Berlin 1999. [21] Odlyzko, A. M., On the distribution of spacings between zeros of the zeta function. Math. Comp. 48 (1987), no. 177, 273-308. [22] Patterson, S. J., On Ruelle's zeta-function. In Festschrift in honor of I.1. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part II (Ramat Aviv, 1989), Israel Math. Conf. Proc. 3, Weizmann, Jerusalem 1990, 163-184. [23] Ruelle, D., Zeta functions for Expanding maps and Anosov flows. Invent. Math. 34 (1976), 231-244. [24] Selberg, Α., Harmonic Analysis and Discontinuous Groups in weakly symmetric Riemannian spaces with Applications to Dirichlet Series. J. Indian. Math. Soc. 20 (1956), 47-87. [25] Serre, J.-P., Zeta and L functions. In Arithmetical algebraic Geometry (Proc. Conf. Purdue Univ. 1963), Harper & Row, New York 1965, 82-92. [26] Tate, J., Fourier analysis in number fields, and Hecke's zeta-functions. In Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), Thompson, Washington, DC, 1967,305-347. [27] Tate, J., On the conjectures of Birch and Swinnerton-Dyer and a geometric analog. Seminaire Bourbaki, Vol. 9, Expose No. 306, Soc. Math. France, Paris 1995, 415-440. [28] Wiles, A, Modular elliptic curves and Fermat's last theorem. Ann. of Math. (2) 141 (1995), 443-551. [29] Taylor, R., Wiles, Α., Ring-theoretic properties of certain Hecke algebras. Ann. of Math. (2) 141 (1995), 553-572. [30] Witt, E., Collected papers. Gesammelte Abhandlungen (Ina Kersten, ed.). With an essay by Günter Harder on Witt vectors, Springer-Verlag, Berlin 1998.
890
Eisenstein Series on Kähler's Poincare Group* Aloys
Krieg
In the 1980's Erich Kahler published several papers ([12]-[14]) on the so-called Poincare group, which is the group of orientation preserving isometries of the fourdimensional hyperbolic space. His approach is motivated by mathematical physics. In particular he suggests that the Lorentz group in relativity theory should be replaced by an extension which he calls the Poincare group. Moreover he treats Dirac's equation on the four-dimensional hyperbolic space by extensive use of his so-called interior differential calculus (cf. [11]). In this paper we will concentrate on the mathematics and in particular on the number theory behind Kähler's work. Especially we are going to consider Eisenstein series on the Poincare group as mentioned by Kahler in [12]. Moreover we want to emphasize what is particular about the four-dimensional hyperbolic space, namely the existence of a theta correspondence between the Eisenstein series on the two- and four-dimensional hyperbolic space in the realization of the complex and quaternionic upper half-plane. We will start with a simpler case, which is more familiar and shows the analogy with Kähler's approach.
1 The Hyperbolic Plane In this case we deal with the complex upper half-plane Η := {ζ = χ + iy e C; y = Im(z) > 0}. We obtain the hyperbolic metric on Μ by ds2 =
\(dx2+dy2), y
the associated volume measure dv = —~dx dy yl
* Extended version of a talk at the Colloquium in memory of Professor Erich Kähler, Hamburg, January 19-20, 2001
891
892
Aloys Krieg
and the corresponding
hyperbolic
Laplacian
Δ = y2 f i i ~~ {dx^dy2)1 The group SL2(M) acts on Μ by fractional linear transformation M ^ M ,
ζ ι-» M(z) =
az
4-
b
-,
cz + d
Μ = \" (c
^)eSL2(M),
d)
where y
Im (M{z)) =
\cz +
d\2'
In fact the group of biholomorphic automorphisms and orientation preserving isometries of the hyperbolic space is equal to PSL2(M) = SL 2 (R)/{±£},
Ε = n For later purposes note that we may consider SL 2 (R) as a symplectic group in the description SL 2 (R)
= {M
e
R2x2;
J [ M ' ] :=
M J M * = /},
J = ^
^
,
(1)
where M' stands for the transpose of Μ. We will also study another action of SL2(K), namely on the three-dimensional vector space of real symmetric 2 x 2 matrices 2x2 2x2 -"-sym = {Se R ; S = S'}
equipped with the determinant det5
= 5i52 — s ,
S
< s
A)·
as a quadratic form of signature (1,2). The action is given by . KRτπ)2χ2 X 2 R2X2 sym sy sym m- 5 ^ = MSM^ Μ G SL 2 (R). This yields an isomorphism PSL 2 (R) = SO 0 (l,2), where SOo(l, 2) is the connected component of the identity in the special split orthogonal group det) (cf. [9], 1.4.14, [25], §7). The two actions are compatible. Consider Π SL2(M) = { 5 e M2yxm; s positive definite, det S = 1} =
{Ρζ·, ζ
GM
),
892
Eisenstein Series on Kähler's Poincare Group
893
where
Given Μ e SL2OR) one has Pm(z) = PzW],
Pz
~(CY] _WJ
=
\cz + d\2 y
=
1 Im (Μ (ζ))'
(a V
b\ )'
d
We consider the standard maximal discrete subgroup Γ = SL 2 (Z), the so-called modular group and obtain the standard fundamental domain T\M = [zeM·
\x\<\,
\z\ > 1}
of Μ with respect to the action of Γ with the volume νο1(Γ\M)=[
dy=\. J
JT\3t
It is well-known that the modular group Γ is generated by the matrices J
CD
and
In this context it is quite natural to consider holomorphic elliptic modular forms (cf. [15], [21], Chap. 3, [24], Chap. 3.4). We will not do so, but we will introduce so-called Μααβ waveforms, i.e. / : Μ - » C is real analytic and satisfies: (M.l)
Δ / = λ/,
(M.2)
f(M(z))
(Μ.3)
/ is of polynomial growth as y —• oo.
= f ( z ) for all Μ € Γ,
For any fixed λ the set of Maaß wave forms turns out to be a finite dimensional C-vector space (cf. [21], Chap. 4, [24], Chap. 3.5). Considering the continuous part of the spectrum of the Laplacian there are eigenfunctions given by Eisenstein series. Let r„:=|(J denote the subgroup of translations. Given s e C with Re(5) > 1 the series S
E(z..):=
Σ
Μ:Γ00\Γ
Σ (c,d)eZxZ gcd{c,d)=1
893
( t e h ? ) v 1
4
τ
1
'
894
Aloys Krieg
is absolutely convergent and satisfies A£(z,s) = s ( i - l ) - £ ( z , j ) ,
E(M(z),s)
= E(z,s),
Μ € Γ.
Hence the Eisenstein series is a Maaß wave form (cf. [15], V §5, [21], Chap. 4, [24], Chap. 3.5). In this context it is necessary to consider a multiple of the Eisenstein series, which is a lattice sum. Therefore we need the Riemann zeta function 00
n=1
j
ns
and the related function His) : = 7 r - i / 2 r ( 0 i ( 5 ) = t ( l - ^ ) , which is holomorphic in s € C except for two simple poles at s = 0 and 5 = 1 with residue ± 1. Then note that f<2*>•£(;,*)=
Σ ( i d b j i ) ' = Σ « W ) - · 1 7 (0,0)jt(c,
Thus we deal with a special Epstein zeta function. The Eisenstein series is invariant under translations E(z + 1 , j ) =
E(z,s)
and therefore possesses a Fourier expansion. In the holomorphic case it is well-known that for any integer k > 2 (cf. [15], III.2.1) the Eisenstein series satisfies k Σ
(«+dr
2 k
=
00
+2(2Γ-1)!
Σ
^
'' n= 1
(0,0)^=(c,d)€ZxZ where ar(n):=
σ
^ - ^
2 π ι η ζ
'
z
e
d £ ' rfeN, d\n
is a divisor sum. Moreover note that glninz
^—2nny _ πίηχ
is of exponential decay as y oo. In the case of a Maaß wave form we have a similar result (cf. [15], V.5.4, [24], Chap. 3.5). Theorem 1. The Eisenstein series E(z, s) possesses a meromorphic continuation to the whole s-plane with only one pole, which is simple at s = 1 with residue j . One
894
Eisenstein Series on Kähler's Poincare Group
895
has E(z, s) : = ξ(2s) · E(z, s) = E(z, 1 -
s)
= 2 • %(2s) • ys + 2 • ξ(2 - 2s) • yl~s + 4·
\n\s-l/2a^2s(\n\)-y^2Ks-l/2(2n\n\y).e
Σ
O^neZ Here Κ denotes the Ä"-Bessel function Kr(y)
= l- Γ ι Jo
d t =
K
_
r ( y h
The Fourier coefficients consist of an analytic part yl/2Ks-i/2(2K\n\y),
which are both invariant under s η» 1—5. The proof is based on an appropriate integral representation of E(z, s) arising from the integral representation of the gamma function Γ(^). There are analogous results on the three-dimensional hyperbolic space with SL2 (C) instead of SL2OR) due to Elstrodt, Grunewald and Mennicke [4], [5] as well as on the five-dimensional hyperbolice space with SL2OHI) instead of SL2(M) due to Krafft and Osenberg [16].
2 The Four-Dimensional Hyperbolice Space Here it is useful to work with the skew field Ε of Hamiltonian quaternions (cf. [3], Chap. 7) Η = Μ + Μ/ + Rj + Rk,
i2 = j2 = -1,
i j = - j i = k.
We will always write w = u + ν e H,
where u = R e ( w ) g Μ,
ν = v\i + v2j + ^ e l m i = Mi + Rj + Rk,
with the norm
895
896
Aloys Krieg
There exists a well-known classification of the involutions of H, i.e. of the M-linear automorphisms φ of Η satisfying φ {a · b) =
w — u — ν — u — v\i — v j j — v-$k,
as well as w* = twt~l,
w
O^i
elmi.
This follows for instance immediately from [3], 7.3.3, if one uses the fact that a m>φ(a) is an algebra-automorphism of IHI of order 1 or 2. These two types of involutions are essentially different because of {w g H; w = -w} = ImH, Kähler chose an involution w
{w e i ; w* = -w} = Mi.
w* with t = j, i.e.
w* = u + vii — V2 j + ν-} k.
(2)
This was done in order to embed SL2(C) into his Poincar£ group by inclusion. We will work with the standard involution, where the real component is the only distinguished one. Hence we consider the quaternionic upper half-plane defined by Λ? = {tu = « + !>€ H; u= Re(iü) > 0} with the hyperbolic metric 2 ds2 = Xr(du + dv} + dvl + dvh, l u
the associated volume measure dv = —rdu dvι dv2 dv3 u as well as the associated Laplacian Δ =
, / a2 32 d2 d2\ [ —2 + —2 + — + yaw dv dvj dv2/
d - 2m — . du
Generalizing (1) we define the Poincare group 5> = [M € H2X2;
Q[M'] := MQM' = a],
Q= ^
^
.
Kähler considered the conjugate group
(θ j)
1P
(θ J) = {M G M2X2; MJM" = J]D SL2(C) 896
Eisenstein Series on Kähler's Poincare Group
897
using (2). In fact this conjugate group is a symplectic group associated with an involution of the first kind over Η in the sense of Siegel [23]. Kahler showed that Ρ is a Lie group, where the associated Lie algebra
it
a
c
Μ ; a —a}
G
H, b,c
G
Im Η
c i
2x2
is 10-dimensional instead of 6-dimensional when dealing with SL2(C). A straightforward verification yields the following Lemma 1. Given Μ — ^
^d)
€
H2x2 the following assertions are equivalent:
(i) Μ e P . (ii) Μ'
G
5>.
(iii) ab, cd
G
Im Η, ad + be = 1.
(iv) äc, bd
G
Im H, äd + cb = 1.
In this case one has
Using the Hua-identity (cf. [22], p. 163), and the fact that any quaternion is a product of two elements in Im IHI one easily obtains the Corollary 1. The Poincare group Ρ is generated by the matrices Q
and
^
^
,
ν
G
Im Η.
The group Ρ acts on Η by fractional linear transformation M-+M,
w\-+M(w)
= (aw + b)(cw + d)-\
Μ= ^
G 3>,
where Re(Ai{u>)) =
U
\cw + d\2'
These Möbius transformations in the quaternions can be found in [8], [19] and [27]. In fact P / { ± E } coincides with the group of orientation preserving isometries of the hyperbolic space. Again Ρ is also a split orthogonal group. Therefore consider
897
898
Aloys Krieg
the five-dimensional real vector space V = j s G H 2 x 2 ; S = f , Q[S] = det 5 · β J = [ s e i 2 x 2 ; S = S', trace ( 5 β ) = θ } ^i1
= IS=
; si,s2 eM, s g ImlHlJ
with the quadratic form of signature (1,4) detS = J1S2 - M 2 .
S The action of Ρ on V is given by
S i-> SiM1] := MSMΜ
V,
eP.
The two actions are compatible. Therefore consider VpoS (Ί Ρ = {S € V Π P\ S positive definite} = [Pw·, w e where fu
ö
Given Μ =
0 \ Γ/1
0\~|
1 (\w\2
ιΛ
€ Ρ one easily calculates
- C S \cw + d\:
Pm(w) = Pw[M ], />,w
— (cd + de).
(3)
Note that the last expression vanishes if and only if cd e Im Η, which is one of the conditions in Lemma 1. The isomorphy between the Poincare group and the split orthogonal group can be proved by the associated Lie algebras just as in [10], IX.4.3.B. We prefer to give a direct proof along the lines of [9], 1.4.14. Theorem 2. Ρ/{±E} is isomorphic to SOo(l, 4), the connected component of the identity in the special orthogonal group SO(V, det). Proof. Due to Lemma 1 each Μ =
(c
d)
€ Ρ with α φ 0 possesses a decompo-
sition
?) (0
(0
i)'
Due to [3], 7.3.5, we can write a = \a\ • (cosω + q sinw),
0 < ω < π, q e ImH, \q\ = 1.
898
Eisenstein Series on Kähler's Poincare Group
899
Setting ατ := \a\T · (cos(ro>) + q sin(r&>)) then
Κ '
?)ft
τ
ί ) ( ί
0·
joins Ε and Μ in P . Using a similar argument for α = 0 we conclude that Ρ and therefore also P/{±E} is connected. One easily verifies for the generators Μ of Ρ in Corollary 1 that ΨΜ belongs to SO(V, det). Thus ψ :Ρ
SO(V, det)
is a group homomorphism, whose image is contained in SOo(V, det). The kernel of φ is equal to { ± £ } due to (3). It remains to be proved that φ is suijective. Setting det 5 = a2 - β2 - γ2 - δ2 - ρ2,
S = aE + ßQJ - (γϊ + 8j + gk)J,
we conclude that S O q ( V , det) is generated by s i-> Us, s = (α, β, γ, S, ρ)' for ''cosh 2ω sinh 2ω 0 0 0
\
(\ 0 0 0 V>
sinh 2 ω cosh 2ω 0 0 0
0 cos 2ω 0 — sin 2 ω 0
0 0 1 0 0
0 0 0 0 0 1 0 0 b
0 0 0\ 0 sin 2ω 0 1 0 0 cos 2a> 0 0 0 V
>
/I 0 0 0 \0
0 0 cos 2a> sin 2ω — sin 2ω cos 2ω 0 0 0 0
(\
0 cos 2ω 0 0 — sin 2ω
0 0 0 v0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 0
0\ 0 0 0
\)
0 \ sin 2ω 0 0 cos 2ω y
where 0 < ω < π. These transformations are equal to ψΜ, (εω Μ —[ \ 0
0 λ _ωω), e J
/cosω \q sin ω
yßsin<w\
_ . . . ) € P , q = i , j J, k . cos ω J ^
Hence
•
Moreover there exists an embedding of the Poincare group Ρ into the Hermitian symplectic group Sp 2 (C) := j Μ € C 4 * 4 ; Μ J At' = J ] = U{ 2, 2),
J =
,
given by ^Sp2(C),
M ^ g
899
.0)"',
(4)
900
Aloys Krieg
if one uses the representation of quaternions in terms of complex 2 x 2 matrices (cf. [17], 1.2.1). The latter group acts on the Hermitian half-space of degree two H2(C)
:= I Ζ g C 2 x 2 ; ^ ( z - z ' ) positive definite
The actions are compatible if one considers the embedding ύ Μ
LI H2(
w h>
iw
( I \ - V 3
=
—Vj -
+
V2i
υι
ν2ι
Μ ; 3
An analogous embedding was used by Andrianov [1] for the three-dimensional hyperbolic space in order to obtain the analytic continuation of the spinor zeta function associated with Siegel modular forms of degree 2.
3 The Eisenstein Series Now we choose a special ring A
=
Z
+
of integral quaternions and define the
Z i + Z j
+ Z k
quaternionic
modular
by
group
Γ := Ρ Π Λ 2 χ 2 . Considering (4) the image of Γ is clearly contained in the Hermitian modular group over the Gaussian number field (cf. [17], II §2). A fundamental domain of the discrete group Γ is given by Y \ H
=
w
€ M\
Μ
>
1,
0 <
υι,
υ2
<
j ,
|υ3|
<
i
which has finite volume v o l ( f \ j f ) := f
dv < oo.
Jr\j( 2
Using MAPLE we obtain ^ a s the numerical value of this volume. Since the Euclidean algorithm holds in Im Λ
=
Λ Π Im Η =
Z i + Z j
+
Zk,
the standard procedure (cf. [17], II.2.3) as well as the Hua identity (cf. [22], p. 163) lead to
Lemma 2.
The
quaternionic
modular
-· G 0
ί2.
( η
Γ is
group
I )
and
900
generated
( J
{
by the
matrices
Eisenstein Series on Kähler's Poincarö Group
901
Let
IC i):i€lmAl
Γοο =
be the subgroup of translations. Given s e C, Re(s) > 3, one defines the Eisenstein series by Σ (Re(M(u,)))s. Af :Γοο\Γ
E(w,s):=
as considered independently by Gritsenko [6] and Krieg [18], [19]. This series is absolutely convergent and satisfies AE(w,s)
= s(s - 3) · E(w,s),
E(M{w), s) = E(w, s),
Met.
Hence the Eisenstein series is a Maaß wave form on Μ with respect to Γ. In this context we have to replace the Riemann zeta function by
L
<*> =ΟφλεΑ SΣ
1 1
nT27 =
0
l2 2S
~ )
ζ(5)ζ(5 l) ~
(cf. [15], V.5.6, III.7.7). Again we obtain the meromorphic continuation to the whole s-plane and a functional equation L ( s ) := τ τ - ' Γ ( s ) L ( s ) = L(2 - s). Then we get
«·)•*<».'>= Σ
Σ Vl
17
(Μ©]Γ v
(0,0^(c,i>) and ρ(ω, ω') \= gcd{(o\,(o2, ω3, ω\,ω'2, ω'3) for ω = ωιϊ + ω2] + ω^k, ω' — ω'γΐ + ω'^ΐ + co'3k € Im Λ. Theorem 3. The Eisenstein series E(w, s) possesses α meromorphic continuation to the whole s -plane. One has E(u>, s) := ξ(2s - 2) · L ( s ) · E(w, s) = Ε ( w , 3 - s) with simple poles at most at s = 0, 1, 2, 3. Moreover E(u>, s) = 8 · ξ(2s - 2) · L ( j ) · us + 8 · £(4 - 2j) · L(3 - s) · u3~s + 8·
Σ c5(co) · v3/2Ks-y2(2n\co\u) 0/ω€ΐπι A
901
·
902
Aloys Krieg
where 1/2
.(») -
Σ ( a/elm Λ,|ω|=|α/| Μ=\ω'\ \ a>=w'mod 2Λ
Μ ί—3/2
•ρ
+ ω'), ί ( ω - ω*)^
σ3_2ί
+ ω'), ^(ω - α / ) ^
- 1) for some ζω<ω' € Μ. One easily checks the residue D Res
J=; 3
1W
£(3) s)Λ= ——. Itc
Each Fourier coefficient is invariant under s 3 — 5. Comparing Theorem 1 and 3 we obtain a similar structure. But the arithmetic part of the Fourier coefficients is much more involved, whereas the analytic part is more or less the same. The assertion is proved in [6], [18], section 5, and [19]. In [7] Gritsenko and Schulze-Pillot deal with the more general situation of arbitrary maximal quaternion orders in place of Λ. They give a description of the Fourier coefficients in terms of Cohen-Zagier L-functions. Note that nothing changes if we replace Λ by the (maximal) Hurwitz order Θ = Ze + Id + Zj + Ik = Λ Ü (e + A),
e = i ( l + i + j + k).
It can be proved along the lines of Lemma 2 that the quaternionic modular Γ((9) over the Hurwitz order is an extension of Γ = Γ (A) with index 3 Γ((9) = Γ ύ T{el) Ü Γ (el) and that the attached Eisenstein series only differ by the factor 3.
4 The Theta Correspondence These two types of Eisenstein series on the complex and quaternionic upper half-plane can be obtained from each other by a theta correspondence. Given ζ e Μ, w € let Θ(ζ, tü) = y2 Σ geh 1
eni{xQ)[8]~n{yPw){g].
This turns out to be a specialization of a symplectic theta series on the Siegel half-space of degree 8 (cf. [2], [17]).
902
Eisenstein Series on Kähler's Poincar6 Group
903
Lemma 3. a) One has Θ(ζ, w) = y2&(Z)
= y2 Σ AeZ
where UE
Ε
Ε«*
=
0 0 0\ 1 0 0 0 1 0 0 0 \j
belongs to the Siegel half-space
>
16
ρa
0
0 /l 0 = 0 ^0
"
e iZ[h]
f 0 -v\ V = v = -V2
vi 0 V3 -v2
V2 ~V3 0 VI
V3 V2 -Vi 0
of degree 8.
b) One has Θ(ζ, w) = u 2 Σ
e
^m]-^uPz)[g]
gzA2 c) Θ(Μ(ζ),
Μ(w)) for all Μ € Γ, Μ e Γ.
d) Δ Θ = (Δ - 2 ) 0 i j of exponential
decay as y —> oo.
e) Δ Θ = (Δ + 2) Θ is of exponential
decay as u
—oo.
Proof, a) Using the representation of Η in terms of real 4 x 4 matrices (cf. [17], p. 14) we obtain (xQ)[g]
+ i(yPw)[g]
= (xQ + i y k m
=
Z[h],
where h € Z 8 is the first column of g,g € Λ1. b) &(Z) is a modular form on the theta group and the theta transformation formula in [2], 1.3.10, applied to Μ = ( - £ < 8 ) ) χ yields 2 *
( Z )
=
* - ( j )
2 » W Z » = χ · ( j )
Σ> geA2
jri(vJ)[g]-nuPtlg]
with some eighth root of unity χ depending only on Μ. Now ν = χ = 0 yields χ > 0, hence χ = 1 and the assertion follows. c) One proves the claim for generators of Γ, Γ using a) just as in [19]. d), e) Use straightforward calculations. • In particular it is clear from Lemma 3 that the two theta series appearing in [19], section 3, in fact coincide.
903
904
Aloys Krieg
The final result is Theorem 4. a) Given s e C, Re(j) > 3, w e Μ one has I
E(z, s - 1)(Δ - 2)Θ(ζ, w) dv(z) = s(s - 3) · L(s) • E(w, s).
Jr\M b) Given s e C, R e ( s ) > 2, ζ € Si, one has I
_ E(w, s + 1 ) ( Δ + 2)Θ(ζ,
Jf\x
w) dv(w)
= s(s - 1) · L ( s ) • E{z,
s).
One knows that Δ is self-adjoint and that ( Δ - 2 ) E ( z , s - 1) = s(s - 3) · E(z, ί - 1).
But it is not allowed to switch the differential operator in the integral above to the Eisenstein series because the integral
diverges. The differential operators make the integrals converge. The proof is based on the usual unfolding trick
This integral can be computed explicitly. The proof proceeds in analogy with the method of Maaß [20] and Zagier [26]. The details can be found in [19].
References [1]
Andrianov, A. N., Euler Products corresponding to Siegel Modular Forms of Genus 2. Russian Math. Surveys 29 (1974), 45-116.
[2]
Andrianov, A. N., Quadratic Forms and Hecke Operators. Grundlehren Math. Wiss. 286, Springer-Verlag, Berlin-Heidelberg-New York 1987.
[3]
Ebbinghaus, H.-D., et al, Numbers. Springer-Verlag, Berlin-Heidelberg-New York 1990.
[4]
Elstrodt, J., Grunewald, F., Mennicke, J., Eisenstein series on three-dimensional hyperbolic space and imaginary quadratic number fields. J. Reine Angew. Math. 360 (1985), 160-213.
904
Eisenstein Series on Kähler's Poincari Group
905
[5]
Elstrodt, J., Grunewald, F., Mennicke, J., Groups acting on hyperbolic space. Springer Monogr. Math., Springer-Verlag, Berlin-Heidelberg-New York 1996.
[6]
Gritsenko, V., Arithmetic of quaternions and Eisenstein series. J. Soviet Math. 52 (1990), 3056-3062.
[7]
Gritsenko, V., Schulze-Pillot, R., Eisenstein series on four dimensional hyperbolic space. ActaArith. 67 (1994), 241-268.
[8]
Heidrich, R., Jank, G., On the iteration of quaternionic Moebius transformations. Complex Variables 29 (1996), 313-318.
[9]
Hein, W., Einfiihrung in die Struktur- und Darstellungstheorie der klassischen Gruppen. Springer-Verlag, Berlin-Heidelberg-New York 1990.
[10] Helgason, S., Differential Geometry and Symmetrie Spaces. Academic Press, New YorkLondon 1962. [11] Kahler, E., Der innere Differentialkalkül. Rend. Mat. Appl. 21 (1963), 425-523 (= [33] in Kähler's Bibliography at the end of this volume). [12] Kahler, Ε., Die Poincare-Gruppe. Rend. Semin. Mat. Fis. Milano 53 (1983), 359-390; also in Mathematica ad diem natalem septuagesimum quintum data, Festschrift Ernst Mohr zum 75. Geburtstag, pp. 117-144, Universitätsbibliothek der TU Berlin, Abt. Publikationen, Berlin 1985 (= [42] in Kähler's Bibliography at the end of this volume). [13] Kahler, Ε., The Poincare group. In Clifford algebras and their applications in mathematical physics, Proc. Workshop, Canterbury/UK 1985, NATO ASI Ser. C 183, D. Reidel Publishing Company, 1986, 265-272 (= [43] in Kähler's Bibliography at the end of this volume). [14] Kähler, Ε., Raum-Zeit-Individuum. Rend. Acad. Naz. Sei. XL Mem. Mat. Appl. (5) 16 (1992), 115-177 (= [46] in Kähler's Bibliography at the end of this volume). [15] Koecher, M., Krieg, Α., Elliptische Funktionen und Modulformen. Springer-Verlag, Berlin-Heidelberg-New York 1998. [16] Krafft, V., Osenberg, D., Eisensteinreihen für einige arithmetisch definierte Untergruppen von 5L 2 (H). Math. Z. 204 (1990), 425^49. [17] Krieg, Α., Modular Forms on Half-Spaces of Quaternions. Lecture Notes in Math. 1143, Springer-Verlag, Berlin-Heidelberg-New York 1985. [18] Krieg, Α., Eisenstein-Series on Real, Complex, and Quaternionic Half-Spaces. Pacific. J. Math. 133 (1988), 315-354. [19] Krieg, Α., Eisenstein-Series on the Four-Dimensional Hyperbolic Space. J. Number Theory 30 (1988), 177-197. [20] Maaß, Η., Modulformen zweiten Grades und Dirichletreihen. Math. Ann. 122 (1950), 90-108. [21] Maaß, H., Modular functions of one complex variable. Tata Institute of Fundamental Research, Bombay 1964; Reprint, Springer-Verlag, Berlin-Heidelberg-New York 1983. [22] Maaß, Η., Siegel's Modular Forms and Dirichlet Series. Lectures Notes in Math. 216, Springer-Verlag, Berlin-Heidelberg-New York 1971.
905
906
Aloys Krieg
[23] Siegel, C. L., Die Modulgruppe in einer einfachen involutorischen Algebra. Festschrift Akad. Wiss. Göttingen, 1951,151-167; Ges. Abhandlungen III, 143-153. [24] Terras, Α., Harmonie analysis on symmetric spaces and applications I. Springer-Verlag, New York 1985. [25] van der Waerden, B. L., Gruppen von linearen Transformationen. Reprint, Chelsea, New York 1948. [26] Zagier, D., The Rankin-Selberg method for automorphic functions which are not of rapid decay. J. Fac. Sei. Univ. Tokyo 28 (1981), 4 1 5 ^ 3 7 . [27] Zoll, G., Ein Residuenkalkül in der Clifford-Analysis und die Möbius-Transformationen der Euklidischen Räume. Ph.D. Thesis, Aachen 1987.
906
Supersymmetry, Kähler Geometry and Beyond* Hermann Nicolai
Abstract. This lecture briefly describes E. Kähler's impact on the development of supersymmetric field theories, which play a central role in modern attempts to unify the fundamental laws of physics.
1 Introduction As we review progress in theoretical physics over the past decades, the fundamental importance of symmetries is a striking and persistent feature of successful model building in physics. More than any other notion, the concept of symmetry has enabled us to make progress in our understanding of nature at the smallest and the largest scales. The work of E. Kähler, and especially the theory of Kähler manifolds have come to occupy a central place in recent efforts to unify gravity with the other fundamental forces. In this lecture I will try to explain briefly why this is so. The main message will be that the restrictions that come with introducing more symmetry (in particular, more supersymmetry) are accompanied by similar restrictions on the geometry of the associated models. In this way physicists have been able to recover much of the terrain conquered by pure mathematics since E. Kähler's groundbreaking work on complex manifolds in the early 1930s of the 20th century [12]. In modern physics, symmetries come in different guises. On the one hand, we distinguish between space-time symmetries and internal symmetries. On the other hand, both types of symmetries can appear as global (rigid) or local (gauge) symmetries; in the former, the transformation parameters are constant, whereas for the latter they vary with the space-time coordinates. As every physicist knows, rigid symmetries are associated with conservation laws by Noether's theorem, which states that there is a conserved charge for every exact symmetry (e.g. linear momentum is conserved in translationally invariant theories). By contrast, the presence of local symmetries always indicates a redundancy in the parametrization of a physical system, such that two parametrizations that are related by a gauge transformations must be considered as physically equivalent. *Invited lecture given by Hermann Nicolai at the Kähler Memorial Symposium, 19 and 20 January 2001, Hamburg, Germany.
907
908
Hermann Nicolai
The most fundamental local symmetry of space-time is general covariance or (in more mathematical parlance) invariance under space-time diffeomorphisms. According to Einstein, space-time is a pseudo-Riemannian manifold (Μ, g) whose metric g is determined by Einstein's equations (see e.g. [8]) RßV~
^gßV + AgßV
=κΤμν
(1)
where Τμν is the matter energy momentum tensor, which acts as a source of the gravitational field. A is the cosmological constant, which was considered an embarrassment by Einstein (but is different from zero according to the most recent cosmological measurements). This equation is generally covariant by construction: the laws of physics must not depend on the coordinate system that one chooses to formulate them. The diffeomorphism symmetry of Einstein's equations is broken when one considers special solutions, i.e. any specific space-time metric gßV satisfying (1). We are then left only with a rigid symmetry, namely the isometry group Isom(M) of the manifold Μ under consideration; of course, this group may be trivial (and will be trivial for most solutions). For instance, if the cosmological constant A vanishes and there are no matter sources, the simplest solution to (1) is Minkowski space, and Isom(M) is just the Poincare group. 1 Internal local symmetries play an essential role in the modern description of elementary particles. Namely, the so-called standard model of elementary particle physics is a (spontaneously broken) Yang Mills gauge theory with gauge group SU(3) χ SU(2) χ U (1) and certain fermionic matter multiplets (the quarks and leptons). The symmetry is called "internal" because in contrast to space-time diffeomorphisms these groups do not act on physical space-time, but rather on an abstract internal space. Apart from simplifying the construction and determining the possible interactions of elementary particles, the Yang Mills symmetries are absolutely crucial for the consistency of the standard model. The fact that quantum corrections can be consistently computed and unambiguous predictions be made with a finite number of parameters rests on the renormalizability of these models, which itself is ensured by the gauge symmetry. While renormalizability is a perturbative notion, non-perturbative effects have also been shown to arise in Yang Mills theories. Namely, there exist solitonic solutions of the classical equations of motion (instantons and magnetic monopoles) which are thought to play an essential role not only in explaining various non-perturbative phenomena in particle physics, and are also considered to provide crucial insights into non-perturbative aspects of modern superstring theory.
1
As is well known the simplest solution of Einstein's equations with positive cosmological constant and without matter sources is de Sitter space. This is nothing but the coset space SO(l, 4 ) / S O ( l , 3), whose isometry group is the de Sitter group SO(l, 4). Curiously, the de Sitter group coincides with the "new Poincarö group" considered by E. Kahler in connection with the coset space SO(l, 4 ) / SO(4), which is a generalization of the Poincare upper half plane, and at the same time may be regarded as a Euclideanization of anti-de Sitter space SO(2, 3)/ SO(l, 3).
908
Supersymmetry, Kahler Geometry and Beyond
909
2 Supersymmetry Given the important role of space-time and internal symmetries, already in the late 1960s the question was asked whether it might not be possible to unify them in one simple group (to be sure, at that time physicists were mainly concerned with the rigid Poincard symmetry and the so-called flavor symmetries of strong interaction physics). After several unsuccessful attempts, it was realized that this aim cannot be achieved within the framework of ordinary Lie algebra theory: the famous ColemanMandula No-Go Theorem [6] states that the most general symmetry of the S matrix compatible with the general postulates of relativistic quantum field theory is always a direct product of the space-time Poincare symmetry and some internal symmetry. Of course, an essential ingredient in this proof was the assumption that the S matrix should be non-trivial, as free field theory can admit many more symmetries which are incompatible with non-trivial self-interactions. As with most no-go theorems in physics there was a loophole. This was hidden in the assumption which seemed the most obvious of all, namely the requirement that the symmetry should be realized as an ordinary Lie algebra. At about the same time physicists started "experimenting" with new symmetry concepts (see [13] for the early history). The breakthrough occurred in 1973 when Wess and Zumino discovered the first example of a rigidly supersymmetric quantum field theory in four space-time dimensions [14]. The essential new idea was to admit besides the standard (bosonic) Lie algebra generators fermionic generators obeying anti-commutation relations. The concomitant transformation parameters ε (still space-time independent) must then anticommute, i.e. generate a Grassmann algebra. The associated symmetry "rotations" thus act in some abstract "superspace" with both bosonic (commuting) and fermionic (anti-commuting) coordinates. The analysis of Coleman and Mandula was subsequently generalized and superseded by the work of Haag, Lopuszanski and Sohnius, who were able to classify all possible supersymmetries of the S matrix [11]. This work is still the basis of all the work done nowadays in supersymmetric model building. According to [11], the most general supersymmetry in four space-time dimensions contains the Poincare algebra, which is generated by the momentum operators Ρ μ and the Lorentz generators Μ μ ν , and a number of so-called "central charges" UIJ and VIJ, which commute with all the elements of the Lie algebra, as well as Ν real (Majorana) fermionic charges Q'a (for 7 , 7 = 1,...,TV) transforming as spinors under the Lorentz group in accordance with the spin statistics theorem). In this case (i.e. in the presence of Ν fermionic generators) one speaks of"W-extended supersymmetry". Referring for the full details to ref. [11], let us here record only the crucial relation {Qi,
Qß} = 2(@Υμ)αβΡμ
+ Caß(UIJ
+
5 Y
VIJ)
(2)
showing how two supersymmetry transformations commute to give a translation in space-time plus an action of the central charge generators. Here γμ are the usual /-matrices generating the Clifford algebra, and C is the charge conjugation matrix.
909
910
Hermann Nicolai
Having classified the possible superalgebras, the next task was to construct models realizing the associated supersymmetries. What is important here is that these models should allow non-trivial interactions, as a symmetry that can only be realized on free fields would not be of much interest for the description of the real world. The effort to construct all possible supersymmetric field theories kept theoretical physicists busy for several years. To make a long story short, it turns out that the construction of models becomes more and more difficult as Ν is increased, and at the same time the possibilities become more scarce, such that for the maximum allowed values of Ν there remains (essentially) only one theory. The possibilities are different according to whether one is dealing with rigid or local supersymmetry. In the first case, the maximum helicity appearing in a supermultiplet cannot be greater than one (corresponding to a vector particle), and we have the bound Ν <4. The maximally extended theory in this case is the celebrated Ν = 4 supersymmetric Yang Mills theory [10], and this theory is still being studied by quantum field theorists because of its wondrous finiteness properties (most recently highlighted in the context of the so-called AdS/CFT correspondence). For local supersymmetry, on the other hand, there are more possibilities. As one can immediately see from (2), the commutator of two local supersymmetry transformations gives a local translation, which is nothing but an infinitesimal coordinate transformation. In this way, it is almost obvious that local supersymmetry implies gravity, as this is the only way to accommodate the symmetry under local translations. The resulting locally supersymmetric extension of the Einstein's theory is supergravity [9]; in addition to the graviton field, it requires a fermionic gauge field of spin the gravitino. In order to avoid yet higher massless spin fields (for which we don't know how to construct consistent self-interactions), the helicities in a supermultiplet can only go up to h = 2, which yields the bound Ν <8. The maximally extended theory is Ν = % supergravity [7] which could play some role in the ultimate unification of particle physics and gravitation. A salient feature of locally supersymmetric theories is the presence of a differential geometric structure not only in the gravitational sector (which is still governed by the Einstein-Hilbert Lagrangian), but also in the sector containing the scalar and fermionic matter fields. More specifically, the scalar matter fields appearing in these theories are always governed by a non-linear σ-model based on some Riemannian manifold. This manifold is "internal" in the sense that it has nothing to do with space-time, rather it is attached to every space-time point. The unification of space-time and internal symmetries is thus beautifully realized at the level of differential geometry. (In the context of Kaluza-Klein theories one can view this differential geometric structure of the scalar sector as a remnant of pure gravity in higher dimensions.) Just like the associated supersymmetric models, the possible choices for these manifolds get more restricted as one increases the number Ν of supersymmetries. It is here that E. Kähler's work enters the stage. Namely, as first noticed in [17], Kahler geometry automatically appears when one tries to supersymmetrize non-linear σ-models already in the context of simple Ν = 1 supersymmetry in four dimensions. As shown not
910
Supersymmetry, Kähler Geometry and Beyond
911
much later, going to higher Ν implies further restrictions, so that for Ν = 2 one gets quaternionic manifolds (see [4], and [15] for more recent developments and many further references). For yet higher N, the manifolds are associated with exceptional geometries: the choices of the internal manifolds become restricted to coset spaces involving the exceptional groups. The appearance of geometrical structures in the scalar sector is, of course, not restricted to four space-time dimensions. One of the earliest investigations on the connection between supersymmetry and the theory of Kähler and hyper-Kähler manifolds was in fact done in the context of two-dimensional supersymmetric non-linear σ -models [2]. One feature that sets these models apart from their (non-renormalizable) higher-dimensional analogs is their UV behavior, which is much better than that of the generic (non-supersymmetric) models, and for special examples leads to completely UV finite theories. However, in the remainder I will turn to another example illustrating the interplay between supersymmetry and differential geometry, namely the case of locally supersymmetric models in three space-time dimensions [16].
3 Supersymmetry and Differential Geometry in Three Dimensions The representations of massless supermultiplets relevant for the construction of supersymmetric field theories in three dimensions are particularly simple to classify. The main reason for this is that there is no spin any more because the little group becomes trivial (recall that the little group is the rotation group in the transverse dimensions, which would be SO(l) in three dimensions). As a consequence, the supercharges carry only internal indices I, J = I,..., Ν, and the most general superalgebra in the Lorentz frame appropriate to a massless particle reduces to {QI,QJ}
= 2SIJ
(3)
where the supercharges have been rescaled by an irrelevant factor for convenience. In addition, we have the fermion number operator F satisfying F2 = 1 {Q',F}=
0.
(4) (5)
Thus, the massless supermultiplets of /V-extended supersymmetry in three dimensions are in one-to-one correspondence with the representations of real Clifford algebras in Ν + 1 dimensions. The latter have been given in [3], and obey the famous periodicity 8 property. The centralizer Ζ for each Clifford algebra is one of the three division algebras R, C or Μ (the quaternions): we have Ζ = Μ for Ν = 0, 1, 7 mod 8, Ζ = C for Ν = 2 , 6 mod 8, and Ζ = Μ for Ν = 3, 4, 5 mod 8. Accordingly, one finds that the geometries of the associated σ -models will be Riemannian, Kähler, or quaternionic, respectively. However, just like in higher dimensions, supersymmetric models cannot exist for arbitrary N. Rather one finds the bound Ν < 16, which is derived in [16]
911
912
Hermann Nicolai
by invoking a subtle theorem of [5] according to which the holonomy group of a Riemannian manifold uniquely determines the manifold if it does not act transitively on the unit sphere in tangent space. Of course, physicists had already guessed this bound beforehand because it is directly related to the corresponding bounds in higher dimensions based on the absence of massless higher spin particles. The actual construction of the models is somewhat tedious, and I will therefore be sketchy. As already mentioned, in all cases the scalar sector is governed by a non-linear σ-model. There is thus some internal «-dimensional Riemannian manifold {M, G) with metric Gtj, which is locally coordinatized by the fields φ1 (with i, j = I,... ,n), which are themselves functions of the space-time coordinates. The space Μ is usually called the "target space" of the σ-model. Thus, we have a map φ : Μ —> Μ.
(6)
Ζ = -±Ου(φ)§»ν9μφί9νφί.
(7)
The Lagrangian reads
Remember that gßV is the metric of the space-time manifold M. The equation of motion following from this Lagrangian requires φ1 to be harmonic. In physics the above model first appeared as an effective description of pion selfinteractions: here the internal manifolds is just the three-sphere Μ = S3, with G the standard metric on S 3 (as a function of the three pion fields), and the symmetry of the system is Isom(S 3 ) = SO(4) = SU(2) l χ SU(2)*.
(8)
This model actually does work rather well, even though it is only an approximation. From the point of view of QCD (which is now generally accepted as the correct theory of strong interactions), this success is explained by the fact that the symmetry SU(2)l x SU(2)/? survives as an (approximate) chiral symmetry acting on the quark doublets q = (u,d) for approximately massless quarks. We now want to make this model supersymmetric. For this purpose, we introduce a set of fermionic partners χ ' to the bosonic fields φ 1 . This is always the first step in supersymmetric model building: we must ensure that the number of physical (propagating) bosonic and fermionic degrees of freedom is the same. The (Ν = I) supersymmetric extension of the Lagrangian (7) is X =
Gij(
- \
Gij^rY^D^i xkYßx'·
Here Rijki is the Riemann tensor of (M, G) and the covariant derivative is defined by Ομχ* : = 3 μ χ ' ' + Γ ) k { G ) d ^ X k
(10)
with the affine connection Tj k computed from the internal metric in the usual fashion. The Lagrangian (9) is invariant (i.e. varies into a total derivative) under the
912
Supersymmetry, Kahler Geometry and Beyond
913
Ν = 1 supersymmetry variations ν
= 5βχ''
(11)
«xf = i
- rjA(G)V'X*.
(12)
We conclude that in three dimensions a σ-model can be made Ν = I supersymmetric for any Riemannian manifold ( Μ , G) in this way. A s we increase the number of supersymmetries to TV = 2, the possibilities become more restricted. Let us denote by η the second supersymmetry parameter, and proceed from the ansatz V
= $exi + i l
i
m
(13)
i
+ Vjn)
Sx' = \ yßdß
+ rjt(G)v'x*.
(14)
A calculation completely analogous to the one presented in [2] then shows that supersymmetry requires the tensor I ' j to satisfy the following relations: GikIkj
+ GjkIki=0 /V*;
(15) =
Diljk=
(16) 0
IkmRijml
(17)
= RijkJmi·
(18)
But these are precisely the conditions stating that the tensor I ' j is a complex structure on ( M , G ) , and therefore that ( M , G ) is a Kahler manifold! The conclusion is therefore that Ν = 2 supersymmetry is no longer compatible with any Riemannian manifold. Rather, only those models for which (M,
G) is a Kähler manifold can be
made Ν — 2 supersymmetric. If one wants yet more supersymmetry, one gets further restrictions [2]. Replacing the second supersymmetry parameter η by several parameters ερ
and generalizing
(13)to V
=
+
(19)
<5χ'' = \ γ μ 9 μ φ ] ( ή ε + f
P j
e
p
) + Γjt(G)Vx*
(20)
with summation over the labels P , one finds that the tensors f ' p j must satisfy analogous properties as the complex structure for Ν = 2. In fact, it turns out that Ν = 4 is the only possibility, such that Ρ =
1, 2, 3, and the space ( Μ , G ) must now be hyper-
Kähler [2]. For rigid supersymmetry this exhausts all the possibilities. There are more possibilities for local supersymmetry, for which w e can g o up to Ν = 16, but also more restrictions. The associated models have more complicated Lagrangians since in addition to the matter fields φ1 and χ1, w e need also the dreibein field (the "square root" of the metric gßV introduced earlier), and as many gravitino fields ψ!, as there are supersymmetries. The latter fields carry no local (propagating) degrees of freedom, but are nonetheless indispensable for formulating the theory.
913
914
Hermann Nicolai
The locally supersymmetric Lagrangians then consist of a combination of the above σ -model Lagrangians, the Einstein and Rarita Schwinger Lagrangians in three dimensions and several quartic fermionic terms (usually the most tedious to calculate). The supersymmetry of the model is then entirely encoded into the restrictions that must be imposed on the internal manifold (M, G). The complete table of matter-coupled supergravities in three space-time dimensions is given below, with Ν the number of local supersymmetries, and k the number of matter supermultiplets that can be coupled to the basic supergravity multiplet.
Table 1. or-model target manifolds in three space-time dimensions.
Ν 1 2 3 4 5 6 8 9 10 12 16
k keN ke Ν ke Ν ke Ν ke Ν k€ Ν ke Ν k= 1 k= 1 k= 1 k= 1
Μ Riemannian Kähler quaternionic (quaternionic)2
Sp(2,k)/Sp(2)®Sp(k) SU(4, k)/S(U(4) SO(fc) F 4 (-20)/SO(9) £ 6 (-i4)/SO(10)SO(2) E 7 (-5)/SO(12)<8>SO(3) £ 8 ( 8 )/SO(16)
In conclusion the requirement of local supersymmetry goes hand in hand with the restrictions on the geometry of the internal manifold. For Ν = 1, 2, 3 the target manifolds (Μ, G) must be general Riemannian, Kähler, or quaternionic, respectively, but are otherwise arbitrary; in particular, the number of matter fields (or, more precisely, of matter supermultiplets) can be freely chosen. For Ν = A Μ must be a product of two quaternionic manifolds. Beyond Ν = 4 the target manifolds are completely determined by supersymmetry, with the number of matter supermultiplets still arbitrary for Ν <%. For the values Ν = 9, 10, 12, 16 we obtain unique theories; remarkably, there are no matter coupled supergravities at all for the intermediate values Ν = 7, 11, 13, 14, 15! There have been several attempts to associate the higher Ν theories with some kind of octonionic geometry (recall that the octonions Ο are the last of the division algebras and are both non-commutative as well as non-associative), but so far the only link that has emerged is the fact that the exceptional groups appearing in the coset spaces are themselves linked to the octonions in an as yet not completely understood way. For Ν > 16, only Chern Simons-type theories can be constructed [1], but no theories with propagating matter degrees of freedom (and hence nontrivial internal manifold M) exist any more.
914
Supersymmetry, Kähler Geometry and Beyond
915
In view of the intimate links between supersymmetry and differential geometry it is perhaps not surprising that many results of complex or quaternionic differential geometry have neat, though sometimes only heuristic, derivations based on supersymmetry (this applies in particular to recent developments in quaternionic geometry, see e.g. [15] for further details). The reason is that many arguments that are somewhat involved when phrased in terms of the metric simplify considerably when analyzed in terms of supersymmetry variations involving only first order derivatives. Unfortunately, however, we have no indication so far from experimental physics that any of these beautiful structures are actually realized in nature. At least at our present level of understanding, the most sophisticated models with maximal supersymmetry are too restrictive to match real physics, whereas the models with "little" (in practise Ν = 1) supersymmetry may not be restrictive enough to make falsifiable predictions. Kähler geometry is associated with low supersymmetry, and thus leaves enough room for (semi-)realistic model building. In fact, a glance at any paper dealing with supersymmetric phenomenology (just have a look at the pertinent papers that you can find on the shelves this week) immediately reveals the ubiquity of Kähler potentials in modern elementary particle physics. Indeed, it is quite likely that the real world is not maximally supersymmetric at the energy scales accessible to present day experimental physics, but may still admit some residual supersymmetry at energy scales of (9(1 TeV) which could show up via the production of supersymmetric partners of the known elementary particles in upcoming accelerator experiments. If this were the case, Kähler geometry would have found a beautiful match in the world of elementary particle physics. Acknowledgments. I would like to thank the Mathematisches Seminar of Hamburg University for the invitation to give this lecture, and the Erwin-Schrödinger Institut in Vienna, the Theory Department of the University of Graz, where this lecture was written up, and especially C. B. Lang, for hospitality.
References [1]
Achucarro, Α., Townsend, P. K., A Chern-Simons action for three-dimensional anti-de Sitter supergravity theories. Phys. Lett. B180 (1986), 89.
[2]
Alvarez-Gaume, L., Freedman, D. Z., Geometrical structure and ultraviolet finiteness in the supersymmetric sigma model. Commun. Math. Phys. 80 (1981), 443.
[3]
Atiyah, M„ Bott, R„ Shapero, Α., Topology 3 (1964), 3.
[4]
Bagger, J., Witten, Ε., Matter couplings in Ν = 1 supergravity. Nucl. Phys. B222 (1983), 1.
[5]
Berger, M„ Bull. Soc. Math, de France 83 (1955) 279; Simons, J., Ann. Math. 76 (1962), 21.
915
916
Hermann Nicolai
[6]
Coleman, S., Mandula, J., All possible generators of symmetries of the S-matrix. Phys. Rev. 159 (1967), 1252.
[7]
Cremmer, E., Julia, B„ The 50(8) Supergravity. Nucl. Phys. B159 (1979), 141; de Wit, B., Nicolai, Η., Ν = 8 supergravity. Nucl. Phys. B208 (1982), 322.
[8]
Ellis, G., Hawking, S. W., The large-scale structure of space-time. Cambridge University Press, 1973.
[9]
Ferrara, S., Freedman, D. Z., van Nieuwenhuizen, P., Progress towards a theory of supergravity. Phys. Rev. D13 (1976), 3214; Deser, S., Zumino, B., Consistent supergravity. Phys. Lett. B62 (1976), 335.
[10] Gliozzi, F., Olive, D. I., Scherk, J., Supersymmetry, supergravity theories and the dual spinor model. Nucl. Phys. B122 (1977), 256. [11] Haag, R., Lopuszanski, J., Sohnius, M. F., All possible generators of supersymmetries of the S-matrix. Nucl. Phys. B88 (1975), 61. [12] Kahler, Ε., Über eine bemerkenswerte Hermitesche Metrik. Abh. Math. Sem. Univ. Hamburg 9 (1933), 173-186 (= [12] in Kähler's Bibliography at the end of this volume). [13] Proceedings of the Minnesota Workshop on 30 years of supersymmetry. Nucl. Phys. Ρ roc. Suppl. 101 (2001). [14] Wess, J., Zumino, B., Supergauge transformations in four dimensions. Nucl. Phys. B70 (1974), 39. [15] de Wit, B., Rocek, M., Vandoren, S., Hypermultiplets, hyper-Kähler cones and quaternion Kahler geometry. JHEP 0102 (2001), 039; Van Proeyen, Α., Special geometry, from real to quaternionic. h e p - t h / 0110263. [16] de Wit, B., Nicolai, Η., Tollsten, Α., Locally supersymmetric D = 3 nonlinear sigma models. Nucl. Phys. B392 (1993), 3. [17] Zumino, B., Supersymmetry and Kahler manifolds. Phys. Lett. B87 (1979), 203.
916
Wesen und Erscheinung als mathematische Prinzipien der Philosophie [36] Nova Acta Leopoldina, Neue Folge 30 (173) (1965), 9-21
„Das Wesen m u ß erscheinen" HEGEL
L e b e n tritt uns als eine Vielheit von Individuen entgegen. Sein korpuskularer Aspekt ist so vorherrschend, daß die Wissenschaft ihn als den einzigen anerkennt, wenn man nicht die Lehre von den Umwelten der Lebewesen als Andeutung einer Feldtheorie des Lebens gelten lassen will. M a t e r i e hat jedoch neben dem korpuskularen noch den durch die Wellenmechanik nachgewiesenen Aspekt. Sollte man nicht versuchen, im Nachdenken über die Lebenserscheinungen dadurch zu größerer begrifflichen Schärfe zu gelangen, daß man auch dem Leben eine überindividuelle Erscheinungsweise zugesteht ? Ein solcher Versuch wird hier vorbereitet, indem ein Begriff ,,Wesen" gebildet wird, der auf jeden Fall dahin zielt, den Begriff „Lebewesen" zu umfassen, aber zugleich solche Weite hat, daß er unter die mathematischen Prinzipien der Philosophie gehört. Begriffliche Schärfe wird dadurch erreicht, daß von Wesenszügen die Rede ist und diese zu Stilelementen einer mathematischen Kunst, Wesen abzubilden, gemacht werden. Was Wesen ist, wissen wir nicht, aber wir erleben es an uns selbst und den Lebewesen, die wir beobachten. Indem wir nun sagen: Jedes Wesen hat Züge, haben wir statt einer Erklärung nur einen zweiten unbekannten Begriff „Zug" eingeführt, den wir freilich auch schon erlebt haben, sei es, daß wir die Züge unserer Mitmenschen auf uns wirken lassen oder daß ein Kunstwerk in sicherer Linienführung uns darüber belehrt, daß Wesen durch Wesenszüge mitteilbar werden kann. Die Rolle des von Wesenszügen kündenden Meisters übernimmt bei der vorliegenden Untersuchung die Mathematik.
919
10
Die zweitausendjährige Geschichte der Mathematik zeigt die Vernunft in dem Bemühen, „in ihre eigene Tiefe zu steigen". Da gibt es keine Gewaltsamkeit in der Suche nach Ideen, denen sich die Wirklichkeit zu unterwerfen habe, vielmehr folgt das Denken seiner eigenen Dynamik, nachdem ihm einmal Zahl und Raum als denkenswürdige Gegenstände aufgegangen waren. Darum ist Mathematik wahrhaft „ein aus sich rollendes Rad, eine erste Bewegung". Die Freiheit von denkerischem Eroberungswillen gab der Mathematik den langen Atem in ihrer Entwicklung, doch nun ist sie ausgereift, und in der Schönheit von Ariadne steht sie vor unserem geistigen Auge. Sollte sie nicht geneigt sein, uns den Ariadnefaden einer objektiven Logik zu reichen, der aus dem Labyrinth der modernen Wissenschaften wieder herausführt ? Sein Nicht alle Dinge sind wert, erkannt zu werden, und nicht alle Eigenschaften eines Dinges verdienen, beachtet zu werden. Ein Prinzip der Wertschätzung ist vorauszuschicken, wenn man nicht im Chaos des Möglichen das Wirkliche versäumen will. Seiend sollen die Dinge heißen, die von uns ernst genommen werden, und Züge nennen wir die Eigenschaften eines Seienden, die wir zu beachten gedenken. Ein Ding hat nur Eigenschaften, ein Seiendes hat Züge. Vom Sein eines Seienden erzählen, habe für uns nur den schlichten Sinn: Züge dieses Seienden aufzuzählen. In einer solchen Erzählung dürfen Wiederholungen vorkommen, und stets habe sie ein Ende. Selbst wenn nur ein Zug aufgezählt wird und auch nur ein Mal, ist das Nennen dieses Zuges als Erzählung anzuerkennen. Für alles Reden vom Seienden sei für uns die in folgenden fünf Gesetzen niedergelegte Seinsverfassung verbindlich: I Jede Erzählung vom Sein eines Seienden sagt einen Zug dieses Seienden aus. Wird nur ein Zug und zwar ein Mal genannt, so wird dieser Zug ausgesagt. II Die Aussage einer Erzählung vom Sein eines Seienden ist von der Reihenfolge, in der die Züge erzählt werden, unabhängig. III Zwei Erzählungen vom Sein eines Seienden können zu einer Erzählung vereinigt werden, indem man die eine unmittelbar nach der anderen folgen läßt. Sie sagt dasselbe aus, wie wenn nur die Aussagen jener beiden Erzählungen erzählt würden. IV Unter den Zügen eines Seienden findet sich das bloße Sein des Seienden, dessen Erzählung nur aussagen würde: das Seiende ist. Wird es in einer Erzählung neben anderen Zügen erzählt, so kann es daraus ohne Änderung der Aussage der Erzählung weggelassen werden. V Jeder Zug eines Seienden kann durch einen Zug dieses Seienden widerlegt werden in dem Sinne, daß das Erzählen beider Züge nur das bloße Sein des Seienden aussagen würde. Diese Seinsverfassung soll nicht nur notwendig, sondern auch hinreichend dafür sein, daß von Seiendem und seinen Zügen geredet werden kann: sobald bei einem Ding Eigenschaften aufgefunden werden, die jene fünf Gesetze erfüllen, wenn sie
920
11 Züge und das Ding Seiendes genannt werden, so nehmen wir uns die Freiheit, das Ding als Seiendes und jene Eigenschaften als dessen Züge anzuerkennen. Aus der Seins Verfassung kann erschlossen werden, daß jeder Zug nur von einem Zuge widerlegt werden kann. Das bloße Sein widerlegt sich selbst, aber es braucht nicht der einzige sich selbst widerlegende Zug eines Seienden zu sein. Die Feststellung: das bloße Sein unterscheidet nicht, möge nur die in der Seinsverfassung enthaltene Tatsache wiedergeben, daß die Erzählung eines beliebigen Zuges und ihre Vereinigung mit der Erzählung des bloßen Seins dasselbe aussagen. Von jedem anderen Zuge eines Seienden werden wir dann folgerichtig sagen, daß er unterscheidet, damit meinend, daß seine Nennung zusammen mit einem beliebigen Zuge stets einen von diesem verschiedenen Zug aussagen würde. Das Sein eines Seienden kennt man erst dann, wenn man bei zwei Erzählungen vom Sein des Seienden stets entscheiden kann, ob sie dasselbe aussagen oder nicht. In diesem Sinne ist zu verstehen, wenn wir sagen: Das Sein des Seienden ist der in Erzählungen aussagbare Zusammenhang der Züge des Seienden. Die Seinsverfassung spricht nur das aus, was vom Sein jedes Seienden gesagt werden kann. Aus ihr folgt, daß das Besondere am Sein eines Seienden völlig in den Erzählungen zum Ausdruck kommt, die das bloße Sein des Seienden aussagen. Bei dieser Bemerkung mag man sich des Ausspruches ,,Omnis determinatio est negatio" von SPINOZA erinnern, während die frühere Feststellung, daß das bloße Sein nicht unterscheidet, mit H E G E L S Betrachtungen über das Zusammenfallen des Nichts mit dem ,,reinen Sein" verglichen zu werden verdient. Daß auch L E I B N I Z bei dieser Untersuchung gegenwärtig ist, wird sofort klar, wenn wir uns zur besseren Deutlichkeit und zur Vereinfachung des Redens von Seiendem einer Zeichensprache bedienen. Schreiben wir χ +- y für eine Erzählung, die den Zug χ und den Zug y eines Seienden erzählt, und ähnlich für längere Erzählungen, setzen wir ferner das Zeichen für eine Erzählung in Klammern, wenn wir nur ihre Aussage meinen, so nehmen die fünf Gesetze der Seinsverfassung die Gestalt von wohlvertrauten Regeln der Addition an. Auch die Subtraktion stellt sich dabei ein: dazu braucht nur der eindeutig bestimmte Zug z, der der Gleichung (y + ζ) = (χ) = χ genügt, mit χ
—y
bezeichnet zu werden. Das bloße Sein eines Seienden verhält sich beim Rechnen wie die Null. Es wird sich zuweilen als notwendig erweisen, bei einer Teilgesamtheit Τ von Zügen eines Seienden zu prüfen, ob sie als die Gesamtheit der Züge eines Seienden anerkannt werden kann. Die Seinsverfassung gestattet, zu beweisen, daß solche Anerkennung genau dann zulässig ist, wenn für beliebige Züge χ und y aus Τ auch χ — y zu Τ gehört.
921
12
Wirken Züge sind auch die Stilelemente, dem Wirken in allgemeinster Form Ausdruck zu verleihen. Wir sagen deshalb: Alles Wirken hat Züge und geben diesem Satze Aussagekraft durch seine Verbindung mir vier weiteren Sätzen, die in ähnlicher Weise wie die Seinsverfassung sprachgesetzgebend sein sollen: VI Jede endliche Folge von Zügen eines Wirkens hat eine Wirkung, und diese ist selbst ein Zug des Wirkens. Die Wirkung eines einzelnen Zuges ist dieser selbst. VII Die Wirkung eines Zuges auf einen Zug ist die Wirkung der Folge, die diesen auf jenen folgen läßt. VIII Wird eine Folge von Zügen in zwei Folgen zerlegt, so ist die Wirkung der ersten Folge auf die zweite Folge gleich der Wirkung der ganzen Folge. I X Ist w die Wirkung des Zuges u auf v, so ist u die Ursache der Wirkung w auf v, und ν ist die Ursache der Wirkung w von u. Wie bei der Seinsverfassung steht auch hinter dieser Auffassung der Kausalität mathematische Erfahrung: Schreibt man u ·ν für die Wirkung eines Zuges u auf einen Zug v, und setzt man ein Zeichen in Klammern, wenn es als ein Zug aufgefaßt werden soll, so nehmen jene vier Gesetze des Wirkens die Gestalt von Multiplikatioris-Regeln an.
Einwirken Trifft Wirken auf Seiendes, und verwandelt es dessen Züge gemäß folgenden Gesetzen : 1. Jeder Zug des Wirkens hat auf jeden Zug des Seienden eine Wirkung, und diese ist ein Zug des Seienden 2. Sind u, ν Züge des Wirkens, und ist χ ein Zug des Seienden, so hat die Wirkung von u auf ν auf χ dieselbe Wirkung wie u auf die Wirkung von ν auf χ X Die Wirkung eines Zuges u des Wirkens auf einen durch Erzählen ausgesagten Zug χ des Seienden wird durch Erzählen der Wirkungen von u auf die erzählten Züge ausgesagt, so nennen wir das Wirken ein Einwirken auf das Seiende oder auch Wirken in dem Seienden. B i l d und Wesen Im Begriffe des Bildes vereinigen sich Sein und Wirken zu Einheiten des Denkens und der Anschauung.
922
13
Ein Bild· ist Seiendes und Wirken in sich selbst Dieser Satz sagt aus, daß für die Züge eines Bildes alle bisher aufgestellten Gesetze gelten. Seine Gültigkeit zusammen mit der des folgenden Gesetzes: XI In einem Bilde ist die Wirkung eines Zuges u auf einen Zug ν stets gleich ihrer Gegenwirkung, nämlich der Wirkung von ν auf u, sei uns hinreichend für die Anerkennung eines Seienden als Bild. Höchster Zusammenhang der Züge eines Bildes geben diesem den Rang eines Wesens. Das sagt genauer die folgende Kennzeichnung der Wesen unter den Bildern: XII Ein Wesen ist ein Bild mit unterscheidenden Zügen. XIII Jeder Zug eines Wesens ist Wirkung jedes unterscheidenden Zuges und hat als solche genau eine Ursache. Wenn der Versuch, dem Begriffe „Wesen" mathematisch scharfen Umriß zu geben, überhaupt Sinn hat, so steht fest, daß dieser Begriff keiner mathematischen Randerscheinung entsprechen kann. Die hier gegebene Fassung des Begriffes „Wesen" stattet diesen mit dem Besten aus, was die Mathematik zu bieten hat; denn in mathematischer Schrift wird der Zusammenhang der Züge eines Wesens in Rechnungen sichtbar, die alle vier Grundrechnungsarten ins Spiel bringen und damit jenes zentrale mathematische Wissen der Philosophie zuführen, das den abstrakt-algebraischen Begriff „Körper" zum Gegenstande hat. Bild u n d G l e i c h n i s Beliebige Züge x, y eines Bildes bestimmen (auch wenn sie einander gleich sind) in der früher erklärten Weise Züge χ + y, χ — y, χ · y desselben Bildes. Als Zusammenhang der Züge eines Bildes bezeichnen wir die Gesamtheit der Gleichungen x + y = u, χ — y = ν, χ · y = w, die für beliebige Züge x, y sagen, welche Züge χ + y, χ — y, χ · y sind. Von einem Bilde gelangt man zu einem Gleichnis des Bildes, wenn die den Zusammenhang seiner Züge beschreibenden Gleichungen durch Vergleiche ergänzt werden. Um darüber Genaues sagen zu können, werde neben dem üblichen Gleichheitszeichen ein dem jeweiligen Gleichnis eigentümliches neues Zeichen = eingeführt, das etwa „gleichsam" auszusprechen ist und bedeutet, daß rechte und linke Seite eines solchen Vergleichs nicht gleich zu sein brauchen, aber eben miteinander verglichen werden. Nur gezügeltes Vergleichen führt zu Gleichnissen. Das soll heißen, alle in einem Gleichnisse gültigen Vergleiche müssen folgende Forderungen erfüllen: Aus χ = y folge χ Ξ y. Aus χ Ξ y folge y = x. Aus x = y und y = ζ folge χ = z. Aus χ Ξ u und y = ν folge: x + y = u -f- ν, χ — y
ΞΞ
u — ν,
χ · y = u · v.
Danach bleiben alle den Zusammenhang der Züge des Bildes beschreibenden Gleichungen auch als Vergleiche bestehen.
923
14
Zuweilen möge das Bild selbst als sein Gleichnis gelten. Bei jedem anderen Gleichnisse eines Bildes werden unterscheidende Züge dieses Bildes ausgelöscht in dem Sinne, daß sie gleichsam bloßes Sein werden und damit zu unterscheiden aufhören. Die Gesamtheit dieser im Gleichnis ausgelöschten Züge des Bildes einschließlich des bloßen Seins des Bildes heiße der Ursprung des Gleichnisses, weil die Kenntnis dieser Gesamtheit, wenn der Zusammenhang der Züge des Bildes bekannt ist, alle im Gleichnis möglichen Vergleiche herzustellen gestattet. Jedes Gleichnis eines Bildes ist selbst ein Bild. Um dieser Aussage Inhalt zu geben, müssen die Züge des vermeintlichen Bildes aufgewiesen werden, und dazu diene der Begriff ,,Großzug". Die Gesamtheit der Züge eines Bildes B, die in einem Gleichnis von Β mit dem Zuge χ von Β verglichen werden, heiße der von χ vertretene Großzug. So ist ζ. B. der Ursprung des Gleichnisses der vom bloßen Sein des Bildes vertretene Großzug. Aus den Forderungen, die zuvor an Vergleiche gestellt wurden, folgt, daß jeder Zug des Bildes nur einen Großzug vertritt. Wenn nun X ein von χ vertretener und Y ein von y vertretener Großzug sind, so werde der von χ + y vertretene Großzug mit X + Y, der von χ — y vertretene Großzug mit X — Y und der von x· y vertretene Großzug mit X · Y bezeichnet. Dank den Regeln, denen Vergleichen unterworfen ist, erweisen sich die eben gegebenen Vorschriften, aus Χ, Y weitere Großzüge herzustellen, als nur scheinbar von der Auswahl der X und Y vertretenden Züge χ und y abhängig. Ein Gleichnis ist eine großzügige Vereinfachung eines Bildes, insofern seine Züge Großzüge dieses Bildes sind. Es ist Bild, weil der eben erklärte Zusammenhang dej Großzüge, als Zusammenhang der Züge des Gleichnisses gedeutet, alle den Begriff ,,Bild" kennzeichnenden Bedingungen (nämlich die Gültigkeit der Gesetze I bis XI) erfüllt. Da ein Gleichnis eines Bildes Β völlig bestimmt ist, wenn man seinen Ursprung kennt, so ist es mit dem Zeichen B/u in welchem u jenen Ursprung bedeutet, hinreichend beschrieben. Ein Gleichnis gilt genau dann als großzügiger denn ein anderes Gleichnis desselben Bildes, wenn sein Ursprung umfassender ist als der Ursprung dieses anderen Gleichnisses. Statt zu sagen, ein Gleichnis G ist großzügiger als das Gleichnis G1, kann man auch sagen, G' ist deutlicher als G. Das deutlichste Gleichnis eines Bildes ist das Bild selbst, das undeutlichste, also das großzügigste Gleichnis eines Bildes ist das, wo alle unterscheidenden Züge des Bildes ausgelöscht sind und nur bloßes Sein ausgesagt wird. Gleichnisse desselben Bildes gehen mannigfache Verbindungen miteinander ein. Sie können zu einem Gleichnisse dieses Bildes zusammengeschaut werden, in welchem alle, aber auch nur die Züge ausgelöscht sind, die bereits in allen jenen Gleichnissen ausgelöscht waren. Auch der umgekehrte Vorgang ist von Bedeutung, das Auslegen eines Gleichnisses, d. h. seine Zusammenschau aus Gleichnissen desselben Bildes. Im allgemeinen führt Auslegen auf großzügigere Gleichnisse, Zusammenschau auf ein deutlicheres Gleichnis.
924
15 Liegen zwei oder mehr Gleichnisse desselben Bildes vor, so kann man sie in einem Gleichnisse einigen, das mindestens so großzügig ist, wie jedes einzelne von ihnen. Unter diesen einigenden Gleichnissen gibt es ein deutlichstes, und dieses nennen wir das einigende Gleichnis jener Gleichnisse. Sind in diesem alle Züge des Bildes ausgelöscht, so gelten jene vorgelegten Gleichnisse als unvereinbar, in jedem anderen Falle als vereinbar. Bezeichnen u und t> Ursprünge von Gleichnissen eines Bildes B, so ist unter dem Zeichen u. 0 die Gesamtheit der Züge von Β zu verstehen, die durch Erzählen der Wirkungen von Zügen des einen Ursprungs auf Züge des anderen Ursprungs ausgesagt werden können. Diese Gesamtheit ist selbst Ursprung eines Gleichnisses, das mindestens so deutlich ist wie die Zusammenschau jener Gleichnisse. Von diesem Gleichnisse B/u-t, wollen wir sagen, daß es durch Zusammenwirken von B/u und B/o entstehe. Um über Großzüge einfach reden zu können, verwenden wir das Zeichen χ -(- u für die Gesamtheit der Züge des Bildes B, die im Gleichnis B/u mit dem Zuge χ verglichen werden. Abbild und Ebenbild Ein Bild Β auf ein anderes b (oder sich selbst) abbilden bedeute, jedem Zuge von Β als sein Abbild einen Zug von b in solcher Weise zuordnen, daß der Zusammenhang der Züge des Abbildes in folgendem Sinne den Zusammenhang der Züge des Vorbildes Β getreu wiedergibt: Gilt für die Züge Χ, Υ, Ζ von Β eine der Gleichungen X + Y = Z, X — Y = Z, X · Υ = Z, so gelte auch die entsprechende unter den Gleichungen x + y = z, χ — y = z, x ·y = ζ für die Abbilder x, y, ζ jener Züge. Danach ist jedes Gleichnis von Β Abbild von B. Die Gesamtheit der Züge, die beim Abbilden von Β ausgelöscht, d. h. auf den nicht unterscheidenden Zug von b abgebildet werden, ist auch Ursprung eines Gleichnisses von B, weshalb sie der Ursprung des Abbilds genannt werde. Ist der Ursprung des Abbilds b von Β allein der nicht unterscheidende Zug von B, wird also beim Abbilden kein unterscheidender Zug ausgelöscht, so ist b Ebenbild von B. Nur in diesem Falle kann die Abbildung von Β auf b in eine Abbildung von b auf Β umgekehrt werden, bei der jeder Zug von b wieder der Zug von Β wird, aus dem er bei der ersten Abbildung entstanden ist. Während das Abbilden sonst nur getreu ist, ist es in diesem Falle genau. Jedes Abbild b von Β ist Ebenbild des Gleichnisses von B, das denselben Ursprung hat wie b. Gleichnisse von Β erweisen sich damit als die Typen aller möglichen Abbilder von B.
925
16 Im Folgenden bedeute das Zeichen b «— B, daß das Bild b Abbild von Β ist.
Dialektik der Gleichnisse Ein Gleichnis, das kein Ebenbild ist, hat seinen Ursprung in einem anderen Bilde. In ihm sind Züge des Bildes, aus dem es entstand, und zwar gerade solche, denen es seine Entstehung verdankt, ausgelöscht — negiert — würde H E G E L sagen. Schrittweises Aufheben dieser Negation führt zu einem Wiederaufstieg in die Nähe des Bildes, aus dem das Gleichnis stammt. Einer Untersuchung, die ihre Absicht, das Lebendige zu erforschen, bekannt hat, wird man es nicht verübeln, wenn sie jenen Wiederaufstieg so schildert, als ob es sich um die Selbstüberwindung des Gleichnisses handelte. Das Gleichnis G = B/ U erinnere sich seines Ursprungs und versuche, das Ausgelöschtsein der Züge dieses Ursprungs aufzuheben. Das gelinge ihm zunächst nur teilweise, indem es wohl Züge seines Ursprungs unterscheide, jedoch alle Wirkungen von Zügen seines Ursprungs auf Züge seines Ursprungs noch ausgelöscht bleiben. Damit erwächst ihm ein Bild ( = B/u2)
G! = B / u . u
von dem es selbst Abbild ist, und das (im allgemeinen) ein deutlicheres Gleichnis von Β als es selbst ist. Es ist das durch Zusammenwirken von G mit sich entstehende Gleichnis. Vorbild von G wird es dadurch, daß der Zug von Gx, der als Großzug von Β x + u2 ist, auf den Zug von G abgebildet wird, der als Großzug von Β χ + u ist. Nach der mit dem Aufstieg zu Gx erfolgten ersten Aufhellung von G entstehe der Verdacht, daß auch im Ursprung von Gx noch aufhellbare Züge vorhanden seien, und es gelinge darauf, auch Züge von u · u zu unterscheiden, wenn auch alle Züge von u • u · u noch ausgelöscht bleiben. Ein (im allgemeinen) noch deutlicheres Gleichnis als Gx, nämlich G2 = B/ u . u · u
(=
B
/u 3 )
erhebt sich nun über G^ Es ist das aus Gx durch Zusammenwirken mit G, also aus G durch wiederholtes Zusammenwirken mit sich selbst, entstandene Gleichnis. Auch dieses ist Vorbild der früheren Stufen seines Aufstiegs, also von G und von Gj. Der Selbstüberwindung von G in immer deutlicheren Gleichnissen ist keine Grenze gesetzt. Eine Himmelsleiter von Bildern G = B/U-B/U2-B/U3-...
«-B
kann sich über dem Gleichnis G erheben. Das Büd G
n = B/u η +1
für dessen Deutlichkeit die Zahl η + 1 als Maß diene, heiße die aus dem Gleichnis G erweckte Vorstellung (der Deutlichkeit η + 1)-
926
17
Das Gleichnis G wisse nicht seine Herkunft aus dem Bilde B, aber es sei ihm gelungen, sich in der unendlichen Folge G
Gi
G2
G 3 «- · · • - Gn <— Gn + !
der immer deutlicher werdenden Vorstellungen G n zu überwinden. Ohne sich auf Anderes zu stützen als die Tatsache, daß jedes Bild G n das spätere G n + 1 zum Vorbild hat, vermag das Gleichnis G sich eine Umwelt zu schaffen als ein Bild, von dem alle seine Vorstellungen Gn nur Abbilder sind, und das doch ganz „weltlich" ist in dem Sinne, daß alle Züge seiner Umwelt aus den Zügen seiner Vorstellungen erarbeitet werden können, und sei es auch erst in unendlichem Streben. Jeder Zug ξ dieser Umwelt ist Gedanke, insofern er mit beliebiger Deutlichkeit vorgestellt werden kann und seine Vorstellungen ξη, die allein der Bedingung unterworfen sind, sich nicht zu widersprechen, ihn völlig bestimmen. Die Widerspruchslosigkeit der Vorstellungen | n eines Gedankens ξ bedeutet, daß jede dieser Vorstellungen in der nächst deutlicheren | D + 1 „aufgehoben" ist, d. h. bei dem Abstieg G n + 1 —• Gn wieder aus dieser hervorgeht. Der Zusammenhang der Gedanken spiegelt sich getreu in den Vorstellungen wieder: Die Aussagen ξ+ η = ζ,
ξ — η = ζ,
ξ •η = ζ
über die Gedanken ξ, η, ζ sind genau dann richtig, wenn die entsprechende der Aussagen _ _ _ £n "Γ
Tjn
~
(inι
Va
(>n>
' Vn
—
über ihre Vorstellungen ξη, ηη, ζη in jeder Deutlichkeit η + 1 richtig ist. Jeder Zug χ des Bildes B, von dem G Gleichnis ist, erweckt eine Vorstellung x u n + 1 beliebiger Deutlichkeit η + 1, und alle diese Vorstellungen sind die Vorstellungen eines Gedankens, des χ denkenden Zuges der Umwelt von G. Stehen Züge x, y, ζ des Bildes Β in einer der Beziehungen x + y = z, χ — y = z, x - y — ζ, so stehen auch die sie denkenden Züge der Umwelt von G in der entsprechenden Beziehung. Die Umwelt eines Gleichnisses G enthält darum ein gedankliches Abbild des Bildes B, aus dem es stammt. Nur dann, wenn dieses gedankliche Abbild von Β Ebenbild von Β ist, heiße Β für G denkbar. Das Bild, aus dem ein Gleichnis G stammt, kann diesem auch dann verborgen bleiben, wenn es für G denkbar ist; denn die Züge seines gedanklichen Abbildes sind unter den übrigen Zügen der Umwelt von G meist schwer auffindbar.
E r s c h e i n u n g e n eines Wesens Jedes Wesen hat einen Zug, der auf jeden seiner Züge nur bestätigend wirkt, das ist die Einheit des Wesens. Wird diese mit e bezeichnet, so gilt also für jeden Zug χ des Wesens e · χ = x, und diese Eigenschaft kennzeichnet die Einheit unter allen Zügen des Wesens.
927
18 Ein Bild Β heiße genau dann Bild des Wesens W, wenn die Einheit des Wesens auch Zug des Bildes ist, die Züge des Bildes auch Züge des Wesens sind und dabei den gleichen Zusammenhang haben wie im Bilde, und wenn überdies alle Züge des Wesens aus Zügen des Bildes in folgendem Sinne erschlossen werden können: jeder Zug des Wesens ist Ursache eines Zuges des Bildes als Wirkung eines Zuges des Bildes. In einem Bilde eines Wesens erscheint dieses Wesen: jedes Gleichnis dieses Bildes, das die Einheit des Wesens nicht auslöscht, heiße eine von dem Bilde vermittelte Erscheinung des Wesens. Die verschiedenen von einem Bilde vermittelten Erscheinungen eines Wesens sind im allgemeinen nicht miteinander vereinbar. Sind sie es doch, so heiße das Bild eine Seite des Wesens. Jede Seite eines Wesens vermittelt eine wesentliche Erscheinung. Das ist die Erscheinung, die alle von der Seite vermittelten Erscheinungen des Wesens einigt und selbst als Wesen anzuerkennen ist.
Das Wesen als Geschöpf Wenn ein Wesen w in dem eben erklärten Sinne wesentliche Erscheinung eines anderen Wesens W ist, so ist es von diesem geschaffen, es ist sein Geschöpf, und die Seite von W, von der es als ihr großzügigstes Gleichnis vermittelt wird, ist die dem Geschöpf zugewandte Seite seines Schöpfers, des Wesens W. Als Gleichnis der ihm zugewandten Seite eines Wesens hat das Geschöpf eine Umwelt. Kann diese als Bild eines Wesens gedeutet werden, so gelte dieses aus den Zügen der Umwelt des Geschöpfes erschlossene Wesen als die Welt des Geschöpfes.
Wahrnehmung Sind alle Züge eines Bildes b auch Züge des Bildes B, und stehen sie als solche in dem gleichen Zusammenhang wie im Bilde b, so gelte b als in Β enthalten. Wenn ein Wesen ein anderes oder sich selbst wahrnimmt, so vergleicht es eigene Züge mit Zügen des Wahrgenommenen und überträgt auf diese einen Sinnzusammenhang, den es in sich findet. Die an einer Wahrnehmung eines Wesens W durch ein Wesen w beteiligten Züge nehmen wahr oder sie werden wahrgenommen. Die wahrnehmenden Züge sind die Züge eines im wahrnehmenden Wesen w enthaltenen Bildes, des wahrnehmenden Sinnes, die wahrgenommenen Züge sind die Züge eines im wahrgenommenen Wesen W enthaltenen Bildes, des wahrgenommenen Bildes. Der wahrnehmende Sinn hat das erkennende Sinnbild zum Gleichnis, dessen Züge die Großzüge sind, die gleich wahrnehmende Züge zusammenfassen. Das wahrgenommene Bild hat die wahrgenommenene Erscheinung zum Gleichnis, dessen Züge die Großzüge sind, die gleich wahrgenommene Züge zusammenfassen.
928
19 Das Wahrnehmen macht das erkennende Sinnbild zum Ebenbilde der wahrgenommenen Erscheinung: Bezeichnen S den wahrnehmenden Sinn, S/ u das erkennende Sinnbild, Β das wahrgenommene Bild und die wahrgenommene Erscheinung, so wird beim Wahrnehmen jeder Zug aus einem Großzuge χ + u von S mit allen Zügen aus einem wohlbestimmten Großzuge y + ö von Β verglichen. Indem das Wahrnehmen jenem Großzuge χ + u gerade diesen Großzug y + ö als-den von dem Zug χ + u des Sinnbildes erkannten Zug der Erscheinung zuordnet, wird S/ u zum Ebenbilde von
B/„. Das Reich der Ideen Da Bild und Wesen als Prinzipien der Philosophie durch Stilgesetze beschrieben sind, ist es natürlich, daß auch die Schönheit eines Bildes oder eines Wesens zum Begriffe wird, wie ehemals Harmonie durch die Entdeckung der Pythagoräer begriffliches Abbild bekam. Ein Bild ist schön, wenn alle seine Züge schon aus endlich vielen seiner Züge dank dem Zusammenhang der Züge des Bildes folgen. Seine Schönheit beruht also auf dem hohen Anteil des Zusammenhangs der Züge an der Aussagekraft des Bildes, am Reichtum seiner Züge. Ein Wesen ist schön, wenn es ein schönes Bild hat. Mit dieser Wertsetzung bekommt die Endlichkeit, die für die Griechen Merkmal des Schönen und wahrhaft Seienden war, neue Geltung. Lange Zeit schien es, als ob dieses Ideal endgültig überwunden sei, da es jedenfalls in der Naturwissenschaft, die sich gerade die mathematische Indienststellung des Unendlichen zunutze machte, schweigen mußte. Arithmetik heißt der Teil der Mathematik, dessen Gegenstand das Reich der Bilder und Wesen ist, die wir hier als schön gekennzeichnet haben. Seit den Zeiten von GAUSS erhebt die Arithmetik den Anspruch, die Mitte der Mathematik überhaupt zu sein. Obwohl die Rechtsgültigkeit dieses Anspruchs bei hinreichender Kenntnis der Arithmetik offenbar wird, dürfte seine allgemeine Anerkennung erst dann erfolgen, wenn die Arithmetik zum ausführenden Organ der platonischen Reichsidee geworden ist. Die schönen Wesen wollen wir Ideen nennen mit der Absicht, damit das begrifflich zu umreißen, was PLATO mit diesem Namen gemeint und geschaut hat. Diese Ideen stehen in einer Rangordnung, die durch den Begriff der arithmetischen Dimension geschaffen wird. Die Ideen der arithmetischen Dimension 0 sind die einfachsten: sie haben nur endlich viele Züge. Die arithmetisch eindimensionalen Ideen sind neben jenen am besten bekannt, weil sie der Gegenstand der klassischen Arithmetik waren. Von der arithmetischen Dimension 2 an sind die Ideen auch mathematisch wenig erforscht. „Die Ideen als wesentliche Erscheinungen anderer Ideen" ist das vornehmste Thema der Arithmetik, und dank der Ergiebigkeit dieser Fragestellung erweist sich die Gesamtheit der Ideen als so fein gegliedert, daß man mit Recht von einem Reich der Ideen reden kann.
929
20 Nennt man die Gesamtheit der Weisen, wie ein Wesen sich selbst erkennen kann, d. h. wie es sich selbst wahrnehmen und dabei erkennendes Sinnbild und wahrgenommene Erscheinung zugleich sein kann, die innere Beweglichkeit des Wesens, so gewinnt man in diesem Begriffe ein Ausleseprinzip, das besonders dann bedeutsam wird, wenn es gilt, aus dem Ideenreich, diesem wahren Reich der Mitte, hinauszuschauen in Natur und Geist, die beide nur insofern lebendig sind, als sie an den Ideen teilhaben. Die R e i c h s i d e e Raum und Zeit sind trotz aller Kritik durch Relativitätstheorie und Quantentheorie die Grundlage des naturwissenschaftlichen Denkens geblieben. Abgesehen davon, daß das neuzeitliche Denken sich daran gewöhnt hat, alle Wirklichkeit auf Raum und Zeit zu beziehen, hätte ein Verzicht auf solche Grundlagen schon darum zerstörerisch wirken müssen, weil die Mathematik nur dank der Vermittlung durch Raum und Zeit die Sprache der Naturwissenschaft geworden ist. Nachdem jedoch neue Möglichkeiten exakten Denkens durch die mathematische Fassung des Begriffs ,,Wesen" geschaffen worden sind, ist der Versuch, Raum und Zeit zu entthronen, nicht mehr frevelhaft, sondern denkbar wie für LEIBNIZ, der andere Denk- und Anschauungsformen höher stellte als Raum und Zeit. Auch die Erkenntnislage in der Naturwissenschaft selbst rechtfertigt einen Versuch, aus gewohnten Ordnungen auszubrechen, wenn er nur auf den Beistand der Mathematik rechnen kann. So sei es denn erlaubt, die Vermutung auszusprechen, daß nicht Raum und Zeit, sondern Reich und Ewigkeit die obersten Ordnungen der Wissenschaft sein werden. Wir leben nicht so sehr im Räume als in einem Reiche, soll heißen, als Wesen sind wir Wesen über-, unter- und zugeordnet, und nicht die Lageverhältnisse der Dinge, sondern die Herrschaftsverhältnisse der Wesen sind zu erforschen, wenn die Front der Forschung wieder in Bewegung kommen soll. Diese Vermutung wird ergänzt durch die Annahme, daß das Reich der Ideen die Erscheinungsweise des uns umgreifenden Reichs ist, und zwar in dem genauen Sinne, daß jedes das Reich konstituierende Wesen Ideen als wesentliche Erscheinungen hat. Die in dieser Erscheinungsweise sich vollziehende Teilhabe am Reich der Ideen ist das eigentlich Lebendige an den Wesen. Dort ist die Mitte, wo die Werte des Lebens beheimatet sind. Bei solcher Verwegenheit der Aussagen wird es nicht mehr erstaunen, wenn ich sage, daß sie damit stehen und fallen, daß zuerst die Stellung des Menschen in jenem Reiche in der hier entwickelten philosophischen Sprache Ausdruck finde. Da der Begriff „Wesen" so weit gefaßt ist, daß auch keiner der in der Philosophie je unternommenen Versuche, ein höchstes Wesen zu denken, durch solche Begriffsschärfe beengt würde, ist die Annahme, es gebe unter den Ideen eine, die als wesentliche Erscheinung des Menschen anzuerkennen ist, von gleicher Unschuld wie die Darstellung der Assunta in einem Gemälde. In der mathematischen Ordnung des Reichs der Ideen muß es auch liegen, wenn Zeit und Ewigkeit in neuem Lichte gesehen werden können, und bei solcher Suche wird es notwendig sein, zu NIETZSCHES gewaltigem Versuch, Ewigkeit wieder zu denken, Stellung zu nehmen.
930
21
ist ohnehin mit seinem innigsten Anliegen gegenwärtig, wenn dem schönen Scheine solche Bedeutung gegeben wird, wie in der vorliegenden Untersuchung. Die Entscheidung über die in dieser Abhandlung entwickelte Metaphysik kann nur in der Begegnung mit den Problemen der Physik gesucht werden, doch dazu bedarf es noch einiger arithmetischer Untersuchungen. NIETZSCHE
931
II regno delle idee [38] Atti del Convegno Internazionale di Geometria a Celebrazione del Centenario della Nascita di Federigo Enriques, Milano, 31 maggio - 3 guigno 1971, 157-163
La matematica si fonda su algebra e topologia. Mentre nella topologia si nasconde una teoria delle nozioni e delle lingue, si deve interpretare lo sviluppo dell'algebra come la rivelazione del regno delle idee postulato da Platone. Ε ovvio dunque che la matematica, l'intelletto sviluppato dell'umanitä, e la filosofia, il dominio dello spirito, costituiscono un'unitä, un equilibrio fra le forze dell'analisi e della sintesi. Lo stato presente delle scienze non realizza quest'unitä spirituale. La maggior parte della matematica non e che energia potenziale dello spirito mentre un'altra parte della matematica ha quasi soffocato lo spirito, nella misura che il dogma dell'uomo moderno si riduce alle tre umiliazioni dell'umanitä constatate da Sigmund Freud\ La decentralizzazione della terra; L'interpretazione della vita come un fenomeno di vecchiaia della natura; La riduzione dell'ego umano a un centro di aggressione e di sessualitä. Annunzio la mia battaglia contro queste umiliazioni e comincio a mobilitare l'algebra per questo scopo. I. Si considerino gli assiomi di anello commutativo come le leggi dello stile di un'arte matematica: Gli anelli, saranno le immagini prodotte da quest'arte e gli elementi di un anello saranno i tratti dell'immagine che esso significa. La connessione stabilita tra i tratti di un'immagine dall'addizione e Vessere dell'immagine, mentre l'aspetto moltiplicativo di un anello riflette la vivacitä dell'immagine che si manifesta nel fatto che: ogni tratto χ dell'immagine agisce su ogni tratto y dall'immagine producendo cosi Yazione x-y, essa stessa tratta dell'immagine. Diremo causali proprio quei tratti di una immagine che sono ne zero ne divisori dello zero nell'anello costituente l'immagine e definiamo la causalita di uriimmagine come l'insieme dei tratti causali di questa immagine. 932
— 158 — S e χ e tratto causale di una immagine A e se ζ e l'azione di χ sul tratto y di A, non esiste altro tratto che y sul quale χ agisca con lo stesso effetto z. Pertanto y sarä detto la causa di ζ per χ come interpretazione della relazione Jy
=
ζ
— X ·
Un'immagine ha unitä allora e soltanto allora che, come anello, essa ha un elemento unitä diverso dallo zero, e quest'elemento sarä, come tratto, l'unitä dell'immagine. F r a le immagini si distinguano come totalita quelle che come anelli soddisfano agli assiomi seguenti: U n a totalitä ha unitä; L a causalitä di una totalitä e gruppo moltiplicativo; I tratti non causali di una totalitä sono nilpotenti. U n a immagine Α sarä detta immagine della totalita Τ quando l'anello A sia sotto-anello dell'anello T , ogni tratto della totalitä Τ sia causa di un tratto di A per un tratto di A , ed A abbia unitä. S e una totalitä non ha che un solo tratto non causale, essa sarä detta un ente e quel tratto non causale sarä interpretato come Vorigine dell'ente. II. Gli ideali di un anello A sono modi di apparire dell'immagine A : Ogni ideale a = j = A dell'anello A e l'origine di una immagine A la secondo cui appare l'immagine A nel modo a\ a e 1'insieme dei tratti di A estinti
nelV apparizione
A ja.
L'ideale a = A non e modo di una apparizione di A m a l'origine delV estinzione A/A dell'immagine A . II modo a dell'apparizione A/a di una immagine A misura la finezza dell apparizione nel senso, che ogni altro ideale b che comprende a, e modo di un'apparizione A\b dell'immagine A, nella quale la distinzione dei tratti di A e meno precisa di quella che presenta l'apparizione A/a. S e una immagine S ha un'apparizione che e centrale nel senso, che ogni altra apparizione di S sia piu fine di quella, l'immagine S sarä detta accentrata. 933
— 159 — La nozione « aspetto di una totalita » si definisce ormai come equivalente a «immagine accentrata di una totalita ». II modo p dell'apparizione centrale S /ρ di un aspetto sarä detto Vorigine dell'aspetto, e questa apparizione stessa, che e ente, si dica il soggetto dell'aspetto. Ogni totalita e anche aspetto di se stessa, il suo aspetto totale. II soggetto dell'aspetto totale si consideri come Vesseuza della totalita. La nozione importante di « base di un aspetto » si definisce cosi: Una immagine A di una totalita Τ e base dell'aspetto S di Τ se e soltanto se essa ha unitä ed ogni tratto di S e causa di un tratto di A per un tratto di A non estinto nel soggetto S/p di S. Scriveremo A < S
(oppure A < S,
se A =f= S)
per esprimere che A e base di S. Se due aspetti s , S di una totalita stanno nella situazione s < S chiameremo 1'aspetto S superiore all'aspetto s. L'aspetto totale e superiore a ogni altro aspetto della medesima totalita.
III. L 1 evoluzione di una totalita To s'intende come il passaggio dalla To a una totalita Τ che come anello e sopra-anello (proprio ο improprio) di To. All'evoluzione delle totalita corrisponde l'evoluzione degli aspetti. Un aspetto S di una totalita Τ e detto evoluzione delVaspetto So della totalita To quando: 1) la totalita Τ sia evoluzione della To; 2) ogni tratto di So sia tratto di S; 3) l'origine di So sia l'insieme dei tratti dell'origine di S che sono anche tratti di So. Si distinguono evoluzioni interne ed esterne. Interna sarä l'evoluzione S di So se S e aspetto della medesima totalita della quale So e aspetto. Altrimenti l'evoluzione sarä esterna. Un aspetto e compiuto se, e solo se, esso non ammette evoluzione interna. 934
—
160
—
IV. L a moltitudine degli aspetti di una totalitä e in generale immensa. Ε importante percio aver un principio di selezione fra gli aspetti di una totalitä come si presenta nella nozione di varietä. Una varietä di una totalita Τ e un insieme di aspetti di Τ caratterizzato dagli assiomi che seguono: 1) Con ogni aspetto s appartenente alla varietä V appartiene alia V anche ogni aspetto S di Τ superiore a s; 2) Aspetti diversi appartenenti a una medesima varietä non hanno mai la stessa evoluzione. Risulta dal primo assioma che l'aspetto totale si trova sempre fra gli aspetti riuniti in una varietä. Esso sarä detto la veritä della varietä. I due assiomi saranno soddisfatti, se un insieme V di aspetti di una totalitä Τ soddisfa oltre al primo assioma alla condizione seguente: Due aspetti qualsiansi dell'insieme V hanno base comune. Varietä siffatte saranno distinte come varietä connesse. Partendo da una qualunque immagine A di una totalitä Τ si forma una varietä V(A) di questa totalitä come l'insieme di tutti gli aspetti di Τ che hanno la base Α . Essa e connessa e, inquanto derivata da una sola immagine, essa si dica varietä semplice di base Α . Se una varietä V risulta dall'unione finita di varietä semplici: V = V(Ai) U V(A 2 ) υ · · · U V ( A J chiameremo questo modo di generare la varietä una dcgmatica della varietä, considerando le singole immagini A,· come i dogmi costituenti la dogmatica. Fra le dogmatiche di una varietä semplice V ( A ) quella costituita dal solo dogma A e distinta dalla proprietä: A e la piü ampia immagine della veritä della varietä i cui tratti sono comuni a tutti gli aspetti riuniti nella varietä. Una varietä che ammette dogmatica senza essere semplice non permette la distinzione a priori di una sua dogmatica. Siccome le varietä di una totalitä Τ hanno il compito di sostituire l'insieme di tutti gli aspetti di T, e necessario precisare, quando e in qual senso una varietä possa supplire a questa esigenza. Una varietä V sarä chiusa se, e soltanto se, ogni aspetto compiuto della veritä di V risulta dall'evoluzione di un aspetto trovantesi nella varietä. Se una proprietä Ρ della totalitä Τ e rilevata, se cioe e rilevato un insieme Ρ di tratti di T , e se interessano solamente gli aspetti di Τ aventi la proprietä P, si definirä una nozione di chiusura relativa stabilendo che: 935
— 161 — Una varietä V verra. detta chiusa rispetto alla proprieta Ρ quando ogni aspetto compiuto della veritä di V avente la proprieta Ρ sia evoluzione di un aspetto trovantesi in V . V. Due totalitä Τ ι , T2 che sono contenute come sotto-anelli in una totalitä T3, ammettono una sintesi, intesa come il minimo sotto-anello di T3 che sia totalitä e contenga tanto Ti quanto T2. Questa sintesi si designi con (Tj , T2)
in
T3.
Alla sintesi di totalitä corrisponde la sintesi di varietä. L a sintesi di varietä Vi , V2 presuppone una sintesi Τ = (Τι , T2) delle veritä Ti di V i , T2 di V2. Essa sarä l'insieme di tutti gli aspetti di Τ aventi una base del tipo [ji , J2], dove , j 2 ] designi il sotto-anello di Τ generato da un aspetto Ji appartenente a V i e un aspetto s% appartenente a V2. Questa sintesi, che scriveremo (Vi , V 2 )
in
T,
e varietä, e se V i , V2 sono chiuse, anche (Vi , V2) e chiusa, un fatto simile verificandosi nel caso di varietä relativamente chiuse. Notiamo ancora che la sintesi V di varietä m Vi = u V(A,-) »••= 1
,
η V 2 = υ V(B y ) y=1
ammettenti dogmatiche ammette altresi una dogmatica: V = ( V i , V2) =
U V ( [ A , , B y ]) ι= 1 · - •m j=\·· η
i dogmi della quale essendo le immagini [Α,· , B,] generate come sotto-anelli della veritä di V da A,· e By. VI. L a nozione di evoluzione si estende alle varietä. Una varietä V e evoluzione della varieta Vo quando: 1) la veritä Τ di V sia evoluzione della veritä To di Vo; 2) ogni aspetto trovantesi in V sia evoluzione di un aspetto trovantesi in V 0 ; 3) ogni aspetto compiuto della veritä di V , che risulta dall'evoluzione di un aspetto trovantesi in Vo, sia anche evoluzione di un aspetto trovantesi in V . 936
— 162 — L'evoluzione di varietä e transitiva: Se la varietä V i e evoluzione della varietä V o , mentre la varietä V2 e evoluzione della V i , allora V2 e anche evoluzione di Vo. L a sintesi di una varietä qualunque V con una varietä chiusa e sempre evoluzione della V . VII. Le totalitä non hanno in generale che poche apparizioni perche in tale apparizione non possono estinguersi che tratti non—causali. U n ente, per esempio, non ha altro apparizione che l'identitä. M a se una totalitä e divenuta la veritä di una varietä, essa si manifesta in fenomeni assiomaticamente definiti in quel che segue: 1) U n fenomeno f nella varietä V associa a ogni aspetto s trovantesi nella V un ideale
/(*) di maniera che per ogni aspetto S superiore a s /(S)
sia
=/(s)-S,
cioe l'ideale generato da f (s) in S; 2) Se f (s) =\= s, il fenomeno f apparisce in s con Γ aspetto s/f CO; 3) Se f (s) — s, il fenomeno f non apparisce in j; 4) U n fenomeno e l'insieme dei suoi aspetti, se ce ne sono. II caso che f (s) sia = s per ogni aspetto s in V definisce il fenomeno niente della varietä. La fenomenologia di una varietä V e un calcolo dei fenomeni che traduce le operazioni ideali. Se a , ό sono fenomeni in V si definiscono a+ b
,
αΠ b
,
a-b
come fenomeni in V ponendo (a + b) (s) = a (J) + b {s)
,
(α Π b) (s) = a(s) Π b(s)
(a-b) 0) = a(s)-b (s) per ogni aspetto s in V , e si stabilisce una relazione di ordine a
fra fenomeni, postulando che essa significhi a{s) D b(i) per ogni j in V .
937
— 163 —
VIII. C'e una via piü diretta dell'esplorazione di una totalitä di quella che presentano le varietä. Ε la ricerca dei tratti eterni della totalitä definiti come i tratti comuni a tutti gli aspetti compiuti della totalitä. Si verifica in casi importanti e a b b a s t a n z a generali che la ricerca dei tratti eterni di una totalitä puo condurre alia piena conoscenza dell'essenza della totalitä. IX. Le idee platoniche si ritrovano, anzi si realizzano, come gli enti, che, in quanto corpi, sono finitamente generabili.
938
Saggio di una dinamica della vita [39] Atti del Convegno Internazionale sul tema: Storia, Pedagogia e Filosofia della Scienza, Pisa, Bologna e Roma, 7-12 ottobre 1971, Problemi Attuali di Scienza e di Cultura 184, 275-287,
Per Te mi dice il cuore: « Cercate la mia faccia ». 10 cerco la tua faccia, Signore. 11 Tuo volto non volger da me, non respinger con ira il tuo servo, Tu che fosti il mio aiuto. (Salmo 27)
Secondo le scienze attuali la vita sarebbe il risultato di uno sviluppo nel tempo e nello spazio e pertanto un fenomeno di vecchiaia della natura. Questo pensiero mi sembra assurdo, e gli oppongo la tesi del primato della
vita
su
ogni
realtä.
Sono le nuove possibilita di affrontare il problema della vita offerte dalla matematica che m'incoraggiano a saggiare una dinamica della vita basata su quel primato. II concetto algebrico di corpo finitamente generabile realizza quel che Platone postulava parlando di idee preesistenti. Interpretando questi corpi come idee e gli elementi di un corpo come i tratti dell'idea che esso significa. si fonda una fenomenologia, una lingua con un'infinita di sostantivi legati da molte relazioni anche trascendenti, sicche la lingua sembra parlare se stessa. La teoria delle funzioni ellittiche e modulari diventa cosi un cosmo d'idee, un messaggio divino, il quale suppongo insegnare tutto quel che urge sapere nella presente situazione dell'umanitä. Volendo creare una dinamica della vita, enunciero una serie di assiomi. Benche vi entrino delle nozioni teologiche, si tratta di un insieme di pensieri della stessa consistenza logica come la geometria. La tendenza di affrontare il sovrumano non diminuisce la precisione del ragionamento, anzi, essa promette di trovare il punto archimedico dal quale la realtä diventi trasparente. Per non interrompere la lettura del messaggio, che ritengo essere la teoria dei corpi ellittici, premetto qualche osservazione matematica. Le funzioni ellittiche e modulari come p(u I o ^ , ω 2 ) , g ^
, ω 2 ) , ^ 3 ( ω ι , ω 2 ) , Δ ^ , ω 2 ) = g\ — 2ηg\
si considerino come funzioni meromorfe di 3 variabili nel prodotto cartesiano del piano della variabile u e delle due parti connesse, nelle quali si spezza il 939
— 276 — prodotto cartesiano del piano della variabile ωχ e del piano della variabile ω2 dalla postulazione che sia ωι ω2 ωχ ω2
=}= ο
(ζ designa il coniugato complesso di ζ)
L a maggior parte delle funzioni che entrano nella dinamica sono omogenee in u , ω χ , ω2 di grado o, il che permette di considerarle come funzioni di ωχ u — = ω e — = ν. C02 ω2 S e entrano delle radici come yx
4.
e
fK
e sempre sottintesa la loro determinazione come funzioni uniforme di ω χ , ω 2 . L a funzione modulare J ( ) ω
=
ΐ23·^23 5
e normata con un fattore tale che il suo sviluppo j (ω) = q~x + 744 + 196884·^ + 21493760 secondo le potenze di q =
β2π'ω
ha solamente coefficient! interi razionali. 3
L e radici importanti }'/(ω) ', y 7 (ω) — I2 3 sono fissate da (*)
ν^(ω) =
— ΚΔ
,
] j ( < * ) — 123 =
L e funzioni ζ Ι Ν 12·/(μ Ι ωι, ω2) Λ?(«[ω1,ω8)=— VA
,
, , \ I ω ! , ω2) =
Ρ' (κΙ ωχ, ω2) '_ ΚΔ
legate dalla relazione 3.12 2 -y 2 = χ3 — 3 Ό ' ( ω ) · * — 2 - / / ( ω ) — Ι2 3 non dipendono che da ω e v. Distinta dalla sua applicazione nell'aritmetica e la funzione di Weber: — 2 7 · 3 β " ^ - / ( * | ω ι , ω2) = — | / / ( ω ) · ^ · ( ω ) — I 2 3 · * . 940
— 277 — Con kn sarä designate il corpo generate dalle radici (*), da |/ — ι , e da tutte le funzioni
— 3
(λ , μ mod η; ο , ο escluso).
Parentesi rotonde (quadrate) indicano, che si tratta del corpo (dell'anello) generate dalle funzioni incluse. Anelli locali saranno designati con s, S, ecc., e i loro ideali massimali con le lettere p , ecc., corrispondenti. II termine « s e aspetto di Κ » significhi: « j e anello locale col corpo quoziente Κ ». II corpo delle classi dei resti di un anello locale s rispetto al suo ideale massimale p sarä interpretato come « il soggetto dell'aspetto s ». Se A designa un sotto-anello di un aspetto s tale, che 1'elemento uno di s e in A e che ogni elemento di s e quoziente di elementi di A , il cui denominatore non e in p, l'anello A sarä detto « base di s ». L a totalitä V ( A ) degli aspetti di un corpo K , che hanno la base A , e la varietä di base A , e Κ sarä detto « la veritä della varietä ». Quanto alia sintesi di varietä ed altre nozioni della geometria aritmetica devo rimandare alia mia conferenza di Milano sul titolo: « Il regno delle idee ». Per esporre il mio saggio anche alia critica dei filosofi e dei teologi evitero, per quanto sia possibile, il linguaggio matematico, esprimendo i pensieri in quella lingua ingenua, che ho esposto nella conferenza suddetta e nel lavoro «Wesen und Erscheinung als mathematische Prinzipien der Philosophie» «Nova Acta Leopoldina» N. F., 30, n. 173 (1965)). II lettore non-matematico s'immagini, che la parte matematica del ragionamento sia l'anatomia e la fisiologia delle nozioni e pertanto la premessa della chiarezza di nozioni, che pretendono a divenire le pile di un tempio accessible a ogni uomo di buona volontä.
LA
RIVELAZIONE
Ι
Uio del Padre e idea (ω)
941
— 278 — generata da un solo tratto ω =
0>i ω2
che e il nome del Padre. L'io del Padre ha un'infinitä di automorfismi, che costituiscono la volonta divina, mentre i singoli automorfismi sono gli atti di volonta divina.
Ogni tratto dell'io del Padre atto a generare Γ idea dell'io del Padre e un possibile nome del Padre, e non ci sono altri nomi del Padre. 3 Zg, parole divine sono le funzioni ΐ (
(a , b , c ,d interi razionali, a-d —
+
o)
che risultano dalla funzione modulare j (ω), sostituendo tutti i possibili nomi del Padre al home ω. 4 L'ente generato da tutte le parole divine e lo
Spirito.
Ogni atto ω
"" ^ ^
(α , β , γ , δ interi razionali, α · δ — β · γ =f= ο)
di volonta divina muove lo Spirito, inducendo esso una permutazione . ι αω + ό\ J\cu>+d)
. / (aa. + by) ω + (aß + bS) \ (cot. + dy) ω + (φ + d8)
delle parole divine e pertanto un automorfismo del corpo generato da questi elementi. 6 La parola divina /(ω) e il nome del Figlio,
e l'idea (/(ω))
generata dal nome del Figlio e Γιο del
Figlio.
Uio della Madre e idea I ωι > Ο
[^r'ptp 942
— 279 — generata da un solo tratto ζ = — che e il nome della
I ωχ , ω 2 ) ,
Madre. 8
La Madre concepisce
il nome del Figlio e lo incarna (/'(«) >
all'idea
I ω ι . ω 2))
dt\Y Incarnato.
9 Prendendo la Croce p' (u I ωι, ω2) 4 VT l'lncarnato diventa il
Crocifisso 82 'Sz
ί > ( ω ) . Vi (ω) — I2 3 ,
, ι . p'(u | ωι, ω2) ·p(u I ωχ , ω 2 ) , 4 ΓΔ
ΙΟ La Morte del Figlio
e l'aspetto compiuto s del crocifisso, nel quale j
* . ξ ο (ω)
mod ρ ,
mentre il nome della Madre rimane trascendente mod p. 11 II Crocifisso discende alYn-esimo stadio della sua discesa dall'idea (k„ , x(n-u [ ω χ , ω 2 ) , y(n-u \ ω1 , ω 2 ))
rappresentato
12 II Crocifisso risorge. L'idea
e Vn-esimo
stadio della
risurrezione. 13
UAscensione
e una sequenza in finita di stadi della risurrezione.
943
—
280
—
Η
II cielo e la varietä
H=V([i,«])UV([I,«-1]), la verita della quale e l'io del Padre. 15 La terra e la varietä
determinata dal nome ζ della Madre, sicche la verita della terra e l'io della Madre. 16 II cosmo e la varietä ( Η , E), sintesi delle varietä « cielo » e «terra ». La veritä della varietä «cosmo » e il Matrimonio
divino.
17 L'ente generato da tutti gli stadi della risurrezione e la Vita, u e il nome delVAssunta, e gli automorfismi della Vita e degli stadi della risurrezione'indotti dalle sostituzioni u -v u + sono le grazie
ω ->
(«χ , n2 interi razionali)
delV Assunta. 18
Ogni atto (*)
• ω 1 + n2 · ω 2
^ g
(α, β , γ , δ interi razionali)
di volontä divina con αδ — βγ = ι e conservative, in quanto la sostituzione (*) induce soltanto un'applicazione della varietä « cielo » su se stessa e automorfismi degli stadi di risurrezione e della Vita, mantenendo fisso ogni tratto dell'Incarnato. 19
Ogni atto (*)
ω
^ g
(α, β , γ , δ interi razionali, senza divisore comune)
di volontä divina con αδ — βγ =J= ι e creativo, in quanto esso crea una nuova Vita e, se αδ — βγ =|=—ι, un nuovo cielo, effettuando la sostituzione (*). 944
— 281 —
20 dei
L'ente generate dalla Vita e da tutte le nuove Vite possibili e il regno cieli. Esso coincide con l'ente generate da tutti i corpi kn e tutte le funzioni X\
u
—
n
αωι 4- βω 2 , γω. + δω2 r
. . , * u αωχ + βω2 , γω! + οω2 VI — η
J \
, n . . . . . . ( α , β , γ , δ inten razionah, senza divisore comune, αδ — βγ =f= ο).
21 Le idee sovrumane
sono le idee contenute nel regno dei cieli. 22
II nome dello Spirito
e
Sono univocamente definite allora le potenze q11" per ogni numero naturale η. La missione dello Spirito e la rappresentazione di tratti di idee sovrumane come serie infinite, che procedono secondo le potenze crescenti di una potenza qV". La missione dello Spirito presuppone la Morte del Figlio, perche quegli sviluppi risultano dalla rappresentazione dei tratti di idee sovrumane come serie di potenze dell'argomento ι \i/«
(υ "— Τ (ω) J mediante la sostituzione di J Μ
L A VITA UMANA
La vita umana e un insieme di istanti. Ogni istante della vita umana e aspetto di un'idea sovrumana, la quale e la realtä delFistante.
L'io delVuomo e in ogni istante della sua vita il soggetto sjp di un aspetto s dell'io del Padre, e questo aspetto e il volto del Padre diretto all'uomo in quell'istante. 945
— 282 — 3 L'io umano puo variare nel passaggio da un istante a un altro, ma sempre rimane isomorfo a un medesimo corpo (|1 d) quadratico di discriminante d negativa. Questo corpo e il destino dell'uomo. 4 Ogni istante della vita umana ha una situazione celeste definita come uno dei due numeri complessi <x.e(^d) che soddisfano all'equazione ma? + no. + ρ = ο corrispondente alia congruenza ma2 + ηω + ρ = ο
(mod p)
valida nell'io umano s/p in quell'istante. 5 L a vita umana e maschile ο femminile secondo che la parte immaginaria della situazione celeste dei suoi istanti sia positiva ο negativa.
6 Ogni istante S della vita umana e la totalita dei tratti della realta del1'istante, che ammettono la specializzazione ω -> α ( = situazione celeste di S) nelle formule rappresentanti quei tratti come funzioni di u , ω 1 , ω 2 . II risultato di questa specializzazione, che e un corpo isomorfo al soggetto S/2ß dell'aspetto S, e la natura umana all'istante S. 7 Le tre varietä il cielo,
la terra,
il cosmo
determinano Riemanniane di 2, 2, 4 dimensioni, le quali saranno chiamate rispetti vamente il
firmamento,
I punti del mondo II valore di ω per II valore del nome dell'evento. L a parte reale della
il globo terrestre,
il mondo
sono gli eventi. un evento e la coordinata celeste dell'evento. della Madre per un evento e la coordinata terrestre coordinata celeste di un evento e il tempo dell'evento.
946
— 283 — Ii valore assoluto della parte immaginaria della coordinata celeste di un evento e Valtezza dell'evento. La coordinata terrestre e l'altezza di un evento definiscono la situazione spaziale di un evento, e l'insieme delle possibili situazioni spaziali con la topologia del prodotto cartesiano di una sfera e di una semiretta e lo spazio. 8 Lo spazio e dunque una cellula, ma il mondo e la riunione di due cellule e di una parete divisoria. La cellula maschile del mondo e la parte del mondo, dove la coordinata celeste ha parte immaginaria positiva, mentre nella cellula femminile del mondo quella parte immaginaria e negativa. Queste due cellule si toccano nella parete divisoria. 9 Le espressioni trascendenti dei tratti di un medesimo istante sono tutte quante invarianti di fronte a una sostituzione ω -> ω + η
(η un numero naturale).
Ci sono dunque atti di volontä divina, che potrebbero riprodurre eternamente quell'istante. Sono gli istanti benedetti, nei quali l'apertura dell'io umano s/p verso il volto s del Padre sia si perfetta, che il Padre puo donare e dona la visione del ritorno eterno dell'istante.
i L PRIMATO DELLA VITA
1 II tentativo di decifrare un insieme distinto di relazioni matematiche, come se questo fosse un messaggio divino, non e il mero risultato di meditazioni matematiche ο filosofiche. Ε il carattere esplosivo della storia universale dell'ultimo semisecolo, che provoca quel grido d'aiuto come quale si deve interpretare questo saggio di una dinamica della vita. 2
Ii primato della vita su ogni realtä pretende, che la vita sia l'origine di ogni fenomeno. La vita non e legata alia localizzazione in individui biologici, ma ha altresi il carattere di un campo di forza come l'elettromagnetismo. La vita non e subordinata al tempo ο alio spazio, ma Ii crea come ordini di esistenza, mentre la vita stessa e preesistente. 947
— 284 — L a nozione di tempo, che strappazza al presente l'umanitä, e di origine scientifica, e si puo dire, che essa e stata scoperta nel duomo di Pisa, dopo essere stata preparata dalla cronologia cristiana. Questa variabile reale non e pero autonoma, come presuppone la fisica, ma e la parte reale di una variabile complessa di origine vitale e appare nella storia come l'arco appare nelle nubi, e davvero, e anche essa il segno di un patto divino con l'umanitä. L a vita non conosce lo spazio della geometria, ma soltanto lo spazio complementario al corpo della terra, che ha il carattere di una cellula. II fatto che questa cellula si presenta diversamente dalle altre cellule biologiche, cioe nell'inversione, e solamente l'espressione geometrica della situazione singolare della cellula cosmica rispetto alla volontä umana. 3
L'umanitä vive con tutte le galassie in una cellula. L a cellula cosmica ha la struttura di una cellula germinativa umana femminina. 4
Queste due tesi sono il risultato della tragedia tedesca, nel centro della quale sta la persona di FRIEDRICH
NIETZSCHE.
Nella terza fase della sua vita Nietzsche ottenne l'ispirazione dell'opera «Also sprach Zarathustra», la quale vigorosamente predica una dinamica della vita. Tutta astinenza da religiositä, esercitata nella seconda fase della vita di Nietzsche, non poteva impedire, che l'autore dello Zarathustra confesso di aver scritto sotto il dettato dall'altezza e con una necessitä al di lä della sua volontä. L a concezione fondamentale di quella dinamica e il ritorno eterno, e proprio questa idea antica invase nello spirito di Nietzsche con l'intensitä di una visione di Damasco. Data la rettitudine intellettuale di Nietzsche, si deve assumere, che l'istante dell'intuizione del ritorno eterno sia stato del rango di quelli, che ho chiamati benedetti. 5
Nietzsche amava il popolo tedesco con quel contrappunto di amore e disprezzo, che distingue l'amore creatore e rassomiglia all'amore del Padre per il popolo eletto. Come un fenomeno di ritorno eterno, e cioe del ritorno della situazione dell'Antico Testamente, era la dualitä della persona singolare di Nietzsche e di un popolo del quale Zarathustra disse, che esso e « schwanger und schwer von grossen Hoffnungen ». 948
— 285 — Nietzsche era il fulmine, al quale segui la tragedia tedesca con la necessitä di un colpo di tuono. L'atteggiamento del popolo tedesco nella prima guerra mondiale divenne per Hitler quel che per Mose era il roveto ardente, e come «il funambolo, che credeva a lui rivolta la parola », Hitler comincio la sua opera.
6 Nietzsche e la risposta al «segno di contraddizione». Egli ha l'attitudine di un'incarnazione dell'ira del Padre contro la degradazione deH'immagine del Figlio, contro l'occultamento dei tratti signorili ed imperiali del primogenito, contro l'oblio della fondazione di un regno universale. Nietzsche ha compiuto la sua vita nell'umilta di quello che disse: « Lascia fare per ora, poiche e conveniente che adempiamo cosi ogni giustizia». Ma io ho il dovere di confessare quel che un sogno di dimensioni bibliche mi disse nel 1928 e che l'inferno dell'ultima guerra conferma ed approfondisce: che nell'opera di Nietzsche si rivela un atto creativo di volontä divina. L a tragedia tedesca e l'incontro di due nomi del Padre. II tentativo di postulare l'uguaglianza ω =
αω 4- ß -ξγω + ο
del nuovo nome del Padre rivelato nella visione di Sils Maria al nome, che reggeva durante due millenni di storia europea, non poteva che terminare con la riduzione dell'io (ω) del Padre al destino ( i d ) di un uomo. 7 Alia prima vista l'intuizione del ritorno eterno sembra riferirsi alia fisica, e cosi pensava anche talvolta Nietzsche, quando consultava gli scritti di Diihring, Robert Mayer, Boscovich e Helmholtz. II pericolo, che la visione del ritorno eterno si areni nelle vie della fisica, vien superato dall'incontro con un'altra intuizione, con quella del superuomo. I due fondamenti della predica dello Zarathustra, il ritorno eterno e il superuomo, sono legati l'uno all'altro come la parte reale della coordinata celeste ω alia sua parte immaginaria. L'istante di Sils Maria non era la semplice rinäscita di una immagine antica, ma la scoperta, che il ritorno eterno puo effettuarsi gia nella vita umana, essendo i cicli del ritorno di si alta frequenza, che l'uomo puo divenire contemporaneo della sua concezione. Nietzsche, che si chiamava talvolta Dioniso, viveva nella massima tensione accumulata durante due millenni di Rivelazione, e all'Engadine sembra essere divenuto non soltanto contemporaneo della sua concezione, ma anche graziato della facoltä di superare se stesso e di ottenere cosi coscienza del significato di questo istante della sua vita.
949
— 286 — Si legga il discorso « Vor Sonnenaufgang » e si troverä l'inno dello sperma avente raggiunto la cellula germinativa femminina. Nietzsche stesso sembra indicare tale interpretazione del suo destino, dicendo in riguardo al « canto notturno » dello Zarathustra: « L a risposta a tale ditirambo dell'isolamento del sole nella luce sarebbe Arianna. . . Chi oltre di me sa, che e Arianna! » Rispondo: Arianna e la sorella della musica, la matematica dell'avvenire, che custodisce il segreto dell'incarnazione. Invero, nella prima fase della sua vita Nietzsche aspettava « la näscita della tragedia dallo spirito della musica », ma lo Zarathustra annuncia la näscita della tragedia dallo spirito della matematica: Egli adora « il nuziale anello degli anelli, l'anello del ritorno » e racconta nel discorso «Delle tre cose malvage », che precisa la missione moralista di Nietzsche, un sogno accentuante la profezia matematica fino a assegnare l'atto decisivo aH'aritmetica. II ritorno eterno nel senso antico indurrebbe nel caso, che il ciclo si chiudesse gia nella vita di un uomo, il destino di Edipo. M a la dualitä delle intuizioni del ritorno eterno e del superuomo apre quel tragico ciclo, invitando l'uomo a seguire il Figlio e divenire cosi figlio della Madre, che sotto la Croce e rivelata essere il prototipo di ogni madre umana. Difatti, Tunica interpretazione logica della nozione del superuomo e l'ipotesi, che in essa si nasconda la figura del Figlio. 8
II tempo definito come parte reale della coordinata celeste ha misura assoluta, giacche l'intervallo ι e il periodo del ritorno dell'incarnazione. Supposta la vita essere un insieme finito d'istanti, essa avrä lunghezza uguale a un numero naturale, che sarä anche il periodo del ritorno eterno della vita. Questo ritorno pero non si osserva in generale, perche un ritorno identico non presta i mezzi per differenziare i diversi intervalli percorsi periodicamente. M a la fede che gli istanti della vita siano aspetti di idee sovrumane - fede provocata tanto dal Vangelo quanto daH'appello dello Zarathustra apre il ciclo della vita all'accesso di aspetti sovrumani non mai vissuti, sicche la vita cessa di essere chiusa in se, ma diventa un corrente sfociante nel mare di un nuovo io, nell'io del secondo Adamo, nell'io del superuomo.
9 Perche « e giunto il tempo che l'uomo getti il seme della sua piü alta speranza »? Perche le scienze sono abbastanza avanzate per riconoscere, che la storia universale ha un senso preciso unicamente determinato dal fatto della Rivelazione. 950
— 287 — Come un « Ecce homo » grandioso ed esplosivo la Rivelazione mostra in televisione cosmica quel che altrimenti non puo essere osservato che sotto il microscopio: il destino dello sperma penetrante nella cellula dell'uovo. L a nozione misteriosa del figlio d'uomo designa il prototipo dello sperma. Anche questo viene dal Padre e non soltanto dal padre, e proclamando il regno dei cieli, che conosce dal suo soggiorno nel corpo del padre, esso soffre e muore, ma la sua testa vince e prepara il regno. L'infinito dolore della Crocifissione ha dotato il caos della storia universale di un punto trigonometrico destinato alia misura del Tempio d'Iddio. Ma ci vuole un altro punto per rendere possibile tale misura, e quest'altro dolore infinito e la discesa del tedesco, che a Torino crollo per compassione di un cavallo battuto e che firmo le sue ultime lettere con « Dioniso » e « Il Crocifisso ». II fulmine di Sils Maria termino il lungo periodo dello sviluppo della cellula germinativa con l'apparizione del suo nucleo, sicche la situazione presente e caratterizzata dalla dominazione di due nuclei rappresentanti due nomi del Padre, i quali s'incontrano e indicano la presenza dell'eternita nel tempo. Si guardino ormai le illustrazioni della fecondazione e si troverä la configurazione che rende attuali le parole: «Vieni, ti voglio mostrare la Sposa, la consorte dell'Agnello» Finite le guerre e le rivoluzioni! Ha vinto il figlio divino. Egli invita l'umanitä a interpretare la dinamica del progresso come la dinamica della Vita, che illumina la storia di ogni popolo e dota ogni religione della dignitä di una aurora della Rivelazione.
951
Erich Kähler's Vision of Mathematics as a Universal Language RolfBerndt
The accepted mainstream in applications of mathematics consists in proposing mathematical models for systems in physics, astronomy, chemistry and biology. More and more, this is extended to larger regions, for instance to economy (as shown by the article by I. Ekeland in this volume). Following this programme to mathematize sciences, one is tempted to relate mathematical objects also to phenomena appearing in psychology, philosophy and theology, as Kahler did. But here one meets the criticism that giving mathematical rigour to notions makes philosophy loose its essence which consists in the discussion of the interpretation of these notions. C. F. von Weizsäcker ([W], p. 30) said „Nun liegt es im Wesen der Sache, daß philosophische Texte systematisch vieldeutig sind". Anyone who agrees that texts in philosophy are per se ambigous, simply may say that Kähler's texts are not philosophy. But in their essence, they extend physics and try to reach into other sciences and even beyond, using what seemed to him an adequate terminology. In his later years, he had the firm conviction that arithmetic, algebra and geometry would be the medium for a universal language, apt to find and express structures in all natural sciences - and even philosophy and theology. So, on several occasions, he set out to explain his view of what he felt to be the central parts of mathematics, arithmetical geometry and Galois theory of finitely generated fields in a language he hoped to be understandable to all people of good will ("a ogni uomo di buona voluntä" [39]*, p. 277). This volume contains the articles - Wesen und Erscheinung als mathematische Prinzipien der Philosophie [36], 1965 (13 pages), - II regno delle idee [38], 1973 (7 pages), - Saggio di una dinamica della vita [39], 1973 (12 pages). These give a concentrated survey of his intentions. We omitted the longer paper Also sprach Ariadne [45], 1993 (50 pages), which was intended as an answer to Nietzsche's Also sprach Zarathustra, and the texts * References containing only numbers refer to Erich Kähler's Bibliography at the end of this volume.
955
956
Rolf Berndt
Monadologie I, II and III [41], 1975-1980, each of which is about 50 pagers, as well as the unpublished fragment Vom Relativen zum Absoluten [47], 1998. Though I strongly feel that there are certain problems involved in choosing the right words to translate mathematical terminology, I will try to make these texts written in German and Italian more accessible by giving some indications of their contents. It is Kähler's main point that space and time are not the primary notions but appear as a shell associated to more fundamental objects constituted by algebraic structures (in a certain sense as the analytic space associated to a variety). Space and time are interpreted to mean a curtain behind which a higher reality is concealed which he calls realm and eternity ( . . . Raum und Zeit als einen Vorhang zu deuten, hinter dem sich eine höhere Realität, die man Reich und Ewigkeit nennen sollte, verbirgt. [46, p. 161]). These concepts are largely influenced (among others) by Platon, Leibniz and Nietzsche. The Appendix A to the comment on Kähler's work from about 1950-60 [B] recapitulates Kähler's view of Leibniz's Monadology. In this he proposed an identification of objects from local algebra with philosophical terms which he developed further in the later texts: As Kähler continued to search for the ultimate version, his presentation and even notations evolved considerably and sometimes are different in different texts. His starting point is the hypothesis Alles Sein hat Züge ([45], p. 112) resp. Jedes Wesen hat Züge ([36], p. 9). This will be translated here into Every being has traits. This is no more than the statement that a trait is an element of a set, namely of the 'simplest' algebraic object, a semigroup. The zero is seen as the origin of the semigroup. The hierarchy of more complex algebraic structures is reflected in an hierarchy of beings. We quote from the dictionary in Monadologie I, p. 56, resp. [46], p. 160: - a living being is a commutative ring with unit - a monad is a local ring - an apparent monad is a commutative field. As in Leibniz's system, the monads are the fundamental individual substances of which reality consists. For instance, this is expressed by B. Mates [M], p. 36: Reality, according to Leibniz, consists of an infinite number of individual substances which he calls "monads" that is "units". If α is an ideal in the local ring s, Kähler views the residue class ring s / a as meaning an appearance of the monad s. In s/a the elements of a are wiped out (ausgelöscht).
956
Erich Kähler's Vision of Mathematics as a Universal Language
957
In particular, following Kähler, the residue class field s/p, p the maximal ideal of s, is the " / " of the monad. In his (older) perspectivism, Kähler interpreted the situation s is a local ring with quotient field Κ and residue class field s/p = k as s is an aspect of the object Κ presented by the perspective of the subject s/p = k. Moreover, according to Kähler's older terminology, the mathematical situation that a local ring S dominates another one s is described as an aspect S extends an aspect s. Later, this is replaced by the monad S unfolds the monads. We observe that the mathematical term dominate fits well into the language of philosophy: In [A], p. 285 Adams says under the heading Monadic Domination: "In a letter of 16 June 1712 to Des Bosses, Leibniz says: 'The domination, however, and subordination of monads, considered in the monads themselves, consists in nothing but degrees of perfection" ([G] II, 451; [L], 604 f.). Clearly it is the dominant monad that must be more perfect than the monads subordinate to it, and perfection of monads, for Leibniz, is measured by distinctness of perception. So the dominant monad must perceive some things more distinctly than the subordinate monads." Kähler had the conviction that the notion of a finitely generated field is central to mathematics. This is why he proposed these monads revealed by finitely many traits as Platonic ideas for building blocks of his universal view of the world. Besides number fields, he considered the fields of modular and abelian functions. For instance, the field Q of rational numbers is distinguished as the monad of Pure Reason (die reine Vernunft) contained as a subfield in the field of meromorphic functions / in the variables V, W g C χ SJ , i.e. ν = χ + iy e C (called soma)
and
w = t + zi e C, ζ > 0 (called pneuma)
which takes the role of matter. Here, we have many distinguished finitely generated subfields, for instance, those generated by the modular invariant j(w) or the Weber junction
built from Weierstraß' elliptic ^-function and the Eisenstein series gj, gi and Δ := — 27#3· These Jacobi-functions are used to construct models of the periodic
957
958
Rolf Berndt
system of elements (in an unpublished Appendix to the Monadologie) and even the Holy Trinity (in the second part of the Monadology and in [39]). Moreover, the quaternionic variable ω = χ + iy + zij + tj € H,
x, y, z, t e M, t > 0 (the tao)
generates a rational function field Q named the Absolute I. Here, the usual four dimensions come in: The cosmos is defined as the synthesis (Η, Ε) of two varieties, one, called Heaven, Η = V(Z[w]) U
V(Z[uT1])
and the other one, called Earth, Ε = V(Z[v]) U V(Z[v~1]) which have the rational function fields Q(w) resp. Q(v) as function fields (objects). We will outline briefly how to distinguish a specification of individuals and/or temporal developments in this context. In [39], p. 251, we find La vita humana e un insieme di instand, i.e. the temporal development of human life is to be thought of as a sequence of aspects s of the same object, namely the quotient field (s) = K. The I of a human being s / p stays constant during this sequence (i.e. consists of isomorphic copies). On this primary level, each human being is associated to an imaginary quadratic number field s/p ~ Q(Vd),
d <0
(il destino dell'uomo [39], p. 282). And a kind of ranking among the beings is introduced by assigning to each individual as its identity a subgroup G of the Galois group of the Absolute I GK := SL 2 (H) C M 2 (H) (see [46], p. 141 or Section 5.1 of the Survey of Kähler's Mathematical Work in this volume). This leads to Kähler's proposal to search for a philosophical interpretation of the theory of automorphic functions belonging to the groups / d + J\d\i Z \ G = SL 2 (Z), its subgroups and S L 2 ( Z + m " J withm, \d\ e Ν ([46], p. 142). I can only hope that these indications will arouse some interest in Kähler's original texts and entice the reader into exploring the power and poetry of his language that gave a mathematical meaning even to notions coined by Nietzsche and Freud like eternal return and superego.
958
Erich Kähler's Vision of Mathematics as a Universal Language
959
References [A]
Adams, R. M., Leibniz, Determinist, Theist, Idealist. Oxford University Press, New YorkOxford 1994.
[B]
Beradt, R., Kahler Differentials and Some Applications in Arithmetic Geometry. This volume, pp. 777-847.
[G]
Gerhardt, C. I., ed., Die philosophischen Schriften von Gottfried Wilhelm Leibniz. Weidman, Berlin 1875-90; Reprint, Georg Olms, Hildesheim 1965, cited by volume and page.
[L]
Leibniz, G. F., Philosophical Papers and Letters (transl. and ed. by Leroy E. Loemker). 2nd ed., Reidel, Dordrecht-Boston 1969.
[M] Mates, B., The Philosophy of Leibniz, Metaphysics and Language. Oxford University Press, New York-Oxford 1986. [W] von Weizsäcker, C. F., Große Physiker. Carl Hanser Verlag, München-Wien 1999.
959
An Approach to the Philosophy of Erich Kahler* Krzystof
Maurin
Each death gives to the survivors part of the responsibility, taken hitherto by the deceased. J. Gebser Obituary for Ortega Die Mathematik ist ein Organ der Erkenntnis und eine unendliche Verfeinerung der Sprache. In ihrer Entwicklung dürfte sich das zu erkennen geben, was bei jeder Entwicklung einer Sprache am Werke zu sein scheint: Ein lebenswichtiger Inhalt sucht nach Ausdruck und schafft sich die ihm angemessene Sprache. Mathematics is an organ for cognition and a language extremely refined. Its evolution reflects the process of an originating language: An essential look for a representation and develops an appropriate language. E. Kahler
As a mathematician Erich Kähler was greatly admired; some of his conceptions and theories are regarded as classical. In contrast to this colleagues sneer at his philosophy and his theology as being whimseys of a great man. Erich Kähler himself regarded his "monadology" as his most important achievement. He therefore suffered from this discrepancy - up to his death. This article attempts to change this situation: it tries to remove some of the major obstacles preventing the access to Kähler's philosophy and to show the origins of this unique work. "You cannot improve a great philosopher" (C. F. von Weizsäcker), but you can - perhaps - stimulate to study him thoroughly. Language and reality. The most important part of modern philosophy is the philosophy of language. You cannot tell and define what language is, but you can describe its function, its role - you can speak it. Language is commonly regarded as a kind of communication, serving (only) conversation, appointments, understanding, information exchange. "But language is not only and not primarily the acoustic or written expression of what should be communicated. It does not only convey the obvious and the hidden parts of what is meant by words and phrases, it rather brings the being translated from the German by W. Müller-Schauenburg and Marine Gaudefroy-Bergmann
960
An Approach to the Philosophy of Erich Kahler
961
as being into the o p e n — If language nominates the being for the first time, that nomination brings the being to words and to appearance. This nomination nominates the being to be from it." (Heidegger). Heidegger expresses here something weird, something like: No reality without language. Eugen Rosenstock-Huessy comments on this: "But we cannot view without nominating. .. Something that is glimpsed for the first time, becomes viewable through someones act of giving a name. It is in the nature of all discoveries and inventions, that we all eventually see what affected someone in such a manner that the person gave a name to it, thus enforcing our attention. . . . The nomination executes the view. A view which does not proceed to nomination remains vague, an embryo at best." In the same sense Bollnow says "The word is not supplementary, added to something previously existing: the word creates the object." Philology confirms this: Since Wilhelm von Humboldt we have known that every language reflects its peculiar way to view the world. But even more, each language is a peculiar world, not only a way to view it. For different families of languages there are different realities, people live therein and children grow into it by learning the language. Some examples: (a) Laplanders have 20 terms for ice, 41 for all forms of snow, 26 verbs for freezing and thawing. (b) Bedouins have more than 1000 (thousand) terms for camels. (c) North-American Indians have so many terms to describe clouds, that they "cannot be rendered by the lexical stock of any cultural language." The ingenious Benjamin Lee Whorf, impressed by his investigations on the Hopi language, wrote "every language is a vast pattern-system, different from others, in which are culturally ordained the forms and categories by which a personality not only communicates, but also analyzes nature, notices or neglects types of relationship and phenomena, channels his reasoning, and builds the house of his consciousness." Philology also teaches us the following: Languages are changing in time. Since each language is the Apriori in which we perceive and generate the world, it means nothing less than that the Apriori is changing (Scheler, Bollnow): The whole world itself - not only our understanding of it - is thoroughly historical. Language generates reality also in another way as is already insinuated by the myths of the Old Testament: that is the power of language. Language is not only an organ (for cognition) available to be used or not: language is control over man. This is well known from "primitive thinking", the belief in the magic power of words: (a) Controlling someone by knowing his name.
961
962
Krzystof Maurin
(b) In rituals as well as in social life utterances (to forgive or to curse) may set free or bind. We know that this effect is to some extent irreversible, e.g. an offence (H. Lipps "Potenz des Wortes", /"The power of words") Once uttered, words therefore change reality, irreversibly. Bollnow assumes that this power is related to the interdependence of form and formlessness. Utterances change and create reality. The object of an utterance emerges from a diffuse background and only then becomes literally real... Now it is formed and it persists. Writing is perhaps a similar kind of formation, and poetry (as well as mathematics) is not only a process, but a shaping of the reality the process is producing. Those who were fortunate enough to have the opportunity to listen to Kähler's lectures will confirm that their form was perfect and that they were, of course, always offhand. Three forms of a philosophy of symbols. One cannot penetrate to the very centre of a language without understanding what Symbol and Myth are. Symbols, myths, and legends are the only appropriate diction in theology - even more, Ernst Benz says: "Language itself is mythical by its origin. In the beginning of a language is not only the abstract notion but also a mythical image which is not someone's arbitrary phantasmagoria but is related to a generally accepted, intuitively experienceable view." Myths are therefore effluences, fed from the collective unconscious (C. G. Jung). A myth is an icon, a revelation of the transcendent world, a revelation corresponding to the state of consciousness of mankind (or a group) on their path in evolution. In Eastern churches they say that Christ himself emerges from the icon visionary to the mind of especially blessed believers. In his fine study in Wedel Ε. Kahler reserved a corner for the large portraits of C. F. Gauß and H. Poincar6. Kähler commented smilingly: "This is the beautiful corner with my icons!" This study was a wonderful library, in which you could find not only all important mathematical books, the "handbook of physics", but also works of the mystics and the "Theological Investigations" ("Schriften zur Theologie") by the greatest catholic theologian Karl Rahner. From this theologian we have the following two statements on a philosophy of symbols ("Theological Investigations", vol. 4): 1. "The being is by itself necessarily symbolic, because it necessarily expresses itself in order to find its very essence." Comment: By "expressing itself" the being proceeds to itself, as far as it proceeds to itself. The expression as "symbol" is the way of cognition, of proceeding to itself. When a being recognises another being, this does not happen only in the subject of cognition. The object of cognition, the object to be recognised, "wants" to be recognised somehow, because it thus "proceeds to itself', obtaining a more complete, a higher state of being. 2. "The very symbol (real symbol) is the execution of a being itself in another being according to its nature." I would like to add the following statement:
962
An Approach to the Philosophy of Erich Kahler
963
3. The symbol is a process, an event. It arises, it evolves - it evolves related to me, who is touched, deeply affected. Therefore it is absurd to speak of "a symbol for all". A symbol becomes a symbol only by my co-operation: Only through my own act, I receive and help to shape this enormous energy, which is carried and transferred by this symbol event. I think that only this 3rd statement enables us to understand, why a symbol is not univocal, but why it addresses us personally: Properly speaking, "atoms" or "monads" are true symbols. Whole epochs have fought for their understanding. Notions (including mathematical terms and theories) are organs of cognition, not a gift from nature like our senses. They grow and mature slowly, requiring hard inner work. A teacher, a master (a "school") may facilitate and speed up this development. By his personality the master may convince the pupils of the importance of these notions and symbols. He may stimulate their curiosity. As Hermann Weyl put it in his wonderful epitaph on Hilbert: It was important for us what Hilbert taught us mathematically. That holds as well for Erich Kähler and his pupils. Since 1935 Kähler has been a professor in Königsberg and a colleague of the great Hellenist W. Otto. Otto regarded the gods of Greece as real powers in which he deeply believed. Most probably the contact to Otto was important for Kähler and stimulated his affection for Friedrich Nietzsche. Kähler regarded "the philosophy of Nietzsche as the climax of German idealism": "Whoever is familiar with Nietzsche's work will know that Nietzsche thought that only philosophy and art together could have power over man." This art was primarily music, and finally - as admitted somewhat reluctantly mathematics. What he received in Sils Maria, he could not name openly, even if he had a presentiment of it - he therefore retained it as a secret, which he called Ariadne. In "Ecce homo" Nietzsche says: "who other than me knows what Ariadne is!". In his last printed article "Thus spoke Ariadne" Kähler regards "Ariadne as the younger sister of the music, as I had always assumed mathematics to be". Why should "Ariadne" be the (algebraic) geometry?? Johannes Kepler's enthusiastic words in "harmonia mundi" may serve as a hint: "Geometria est archetypus pulcheritudinis mundi", saying: Geometry is the archetype (the essential) of the beauty of the world. In Crete Ariadne-Aphrodite was worshiped as beauty of the world. Perhaps the most important academic mission we have as professors of mathematics is, to show the beauty of mathematics to our students. As Albert Einstein wrote (in the dark year 1943): "The most beautiful thing we can experience is the mystery. That is the basic feeling at the beginning of real art and real science. Whoever is not familiar with that, whoever cannot marvel anymore, is nearly dead, his eyes have ceased to see."
963
Addresses of the Authors Rolf Berndt, Mathematisches Seminar der Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany berndtSmath.uni-hamburg.de Arno Böhm, Department of Physics, University of Texas at Austin, Austin, TX 78712, U.S.A. bohmQphysics.utexas.edu Shiing-Shen Chern, Nankai Institute of Mathematics, Nankai University, Tianjin 300071, P.R. China. Jean-Benoit Bost, Departement de Mathematiques, Universit6 Paris-Sud, Bätiment 425, 91405 Orsay CEDEX, France [email protected] Jean-Pierre Bourguignon, Institut des Hautes Etudes Scientifiques, 35, route de Chartres, 91440 Bures-sur-Yvette, and Centre de Mathematiques, U.M.R. 7640 C.N.R.S./ Ecole Polytechnique, 91128 Palaiseau CEDEX, France jpbOihes.fr Anton Deitmar, Department of Mathematical Sciences, University of Exeter, Exeter EX4 4QE, England [email protected] Ivar Ekeland, The Pacific Institute for the Mathematical Sciences, 1933 West Mall, University of British Columbia, Vancouver, BC V6T 1Z2, Canada ekelandOpims.math.ca Aloys Krieg, Lehrstuhl Α für Mathematik, RWTH Aachen, 52056 Aachen, Germany kriegQmathA.rwth-aachen.de Ernst Kunz, Fachbereich Mathematik, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany ernst.kunzQmathematik.uni-regensburg.de Krzystof Maurin, Gorska 7 m. 35, 00740 Warszawa, Poland. Walter D. Neumann, Department of Mathematics, Barnard College, Columbia University, New York, NY 10027, U.S.A. neumannSmath.Columbia.edu Hermann Nicolai, Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, 14476 Golm, Germany nicolaiOaei-potsdam.mpg.de Oswald Riemenschneider, Mathematisches Seminar der Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany riemenschneiderQmath.uni-hamburg.de
965
Acknowledgements
The editors and the publisher wish to thank the following for granting permission to reprint in this volume the papers as listed below. Abbreviations in brackets refer to the Bibliography of Ernst Kahler. Accademia Nazionale dei Lincei, Roma (11, 25, 38, 39) Accademia Nazionale delle Scienze detta dei XL (46) Akademie-Verlag, Berlin (18, 29, 30) Annali di Matematica Pura ed Applicata (28) Centre Beige de Recherches Mathematiques (19) Deutsche Akademie der Naturforscher Leopoldina (46) Dipartimento di Matematica, Politecnico di Torino (34) Fachbereich Mathematik der Universität Hamburg (7, 8, 9, 12, 14, 31) Kluwer Academic Publishers (43) Rendiconti del Circolo Matematico di Palermo (10) Rendiconti del Seminario Matematico e Fisico di Milano (42) Rendiconti di Matematica e delle sue Applicazione (33) Sächsische Akademie der Wissenschaften zu Leipzig (2, 3) Springer-Verlag (1,4, 5, 6) B.G. Teubner(27) Trudy Seminara po Vektornormu i Tenzornormu Analizu s ikh Prilozheniyami k Geometrii, Mekhanike i Fizike (15)
967
Bibliography
[1]
Transformation der Differentialgleichungen des Dreikörperproblems. Math. Z. 24 (1926), 743-758.
[2]
Die Reduktion des Dreikörperproblems in geometrischer Form dargestellt. Ber. Math.-Phys. Kl. Sächs. Akad. Wiss. Leipzig 78 (1926), 251-255.
[3]
Über ein geometrisches Kennzeichen der analytischen Abbildungen im Gebiete zweier Veränderlichen. Ber. Math.-Phys. Kl. Sächs. Akad. Wiss. Leipzig 80 (1928), 286-290.
[4]
Über die Existenz von Gleichgewichtsfiguren rotierender Flüssigkeiten, die sich aus gewissen Lösungen des η-Körperproblems ableiten (Dissertation). Math. Z. 28 (1928), 220-237.
[5]
Über die Verzweigung einer algebraischen Funktion zweier Veränderlichen in der Umgebung einer singulären Stelle. Math. Z. 30 (1929), 188-204.
[6]
Zur Theorie der algebraischen Funktionen zweier Veränderlichen. I. Math. Z. 31 (1929), 258-269.
[7]
Über den topologischen Sinn der Periodenrelationen bei vierfach-periodischen Funktionen. Abh. Math. Sem. Univ. Hamburg 7 (1929/30), 125-131.
[8]
Über die Integrale algebraischer Differentialgleichungen (Habilitationsschrift). Abh. Math. Sem. Univ. Hamburg 7 (1929/30), 355-385.
[9]
Zur Invariantentheorie von Differentialoperatoren. Abh. Math. Sem. Univ. Hamburg 9 (1932/33), 64-71.
[10] Sui periodi degli integrali multipli sopra una varietä algebrica. Rend. Circ. Mat. Palermo 56 (1932), 69-74. Appendix by F. Severi: Osservazioni a proposito della nota di Erich Kähler: "Sui periodi degl'integrali multipli sopra una varietä algebrica,,. Ibid., 75-81. [11] Forme differenziali e funzioni algebriche. Mem. Accad. Italia 3 (3) (1932), 1-19. [ 12] Über eine bemerkenswerte Hermitesche Metrik. Abh. Math. Sem. Univ. Hamburg 9 (1932/33), 173-186. [13] Einfuhrung in die Theorie der Systeme von Differentialgleichungen. Hamburger Mathematische Einzelschriften 16, Teubner, Leipzig-Berlin 1934. [14] Bemerkungen über die Maxwellschen Gleichungen. Abh. Math. Sem. Hansische Univ. 12 (1937/38), 1-28. [15] Über eine Verallgemeinerung der Theorie der Pfaffschen Systeme. Trudy Sem. Vektor. Tenzor. Anal. 4 (1937), 174-177. [16] Über die Beziehungen der Mathematik zu Astronomie und Physik. Jahresber. Deutsch. Math.-Verein. 51 (1941), Abt. 2, 52-63.
969
970
Bibliography
[17] Die Mathematik als Sprache und Schrift. Mimeographed typescript, pp. 1-113, Leipzig 1950. [18] Über rein algebraische Körper. Math. Nachr. 5 (1951), 69-92. [19] Sur la theorie des corps purement algebriques. In Deuxieme Colloque de Gäometrie Algebrique, Centre Beige Rech. Math., Liege, 9-12 juin 1952, pp. 69-82, Georges Thone, Liege; Masson & Cie, Paris, 1952. [20] Riemanniana. Mimeographed typescript, pp. 1-86 (incomplete), Leipzig 1952. [21] Zahlentheorie und Physik. Undated private printing, 8 pages (ca. 1952). [22] Algebra und Differentialrechnung. In Bericht über die Mathematiker-Tagung in Berlin vom 14. bis 18. Januar 1953, pp. 58-163, Deutscher Verlag der Wissenschaften, Berlin 1953; also published as vol. 1 of Mathematische Monographien, Deutscher Verlag der Wissenschaften, Berlin 1958. [23] Osservazioni a proposito della dinamica. In Convegno Internazionale di Geometria Differenziale, Italia (Venezia, Bologna, Pisa), 20-26 settembre 1953, pp. 82-98, Edizioni Cremonese, Roma 1954. [24] Heinrich Brandt (Obituary). Jahrbuch 1954-1956. Sachs. Akad. Wiss. Leipzig, pp. 246-247, Akademie-Verlag, Berlin 1958. [25] Tensori razionali di la specie sopra una varietä algebrica. AttiAccad. Naz. Lincei, Rend. Cl. Sei. Fis. Mat. Nat. (8) 18 (1955), 151-154. [26] Zum 70. Geburtstag von Wilhelm Blaschke. Forsch. Fortschr. 29 (1955), 286-287. [27] Über die Beziehungen der Mathematik zu Astronomie und Physik. In C. F. Gauß Gedenkband anläßlich des 100. Todestages am 23. Februar 1955 (H. Reichardt, ed.), pp. 1-13, Β. G. Teubner, Leipzig 1957. (Extended version of [16].) [28] Geometria aritmetica. Ann. Mat. Pura Appl. Ser. (4) 45 (1958), ix+399 pages. [29] Innerer und äußerer Differentialkalkül. Abh. Deutsch. Akad. Wiss. Berlin Kl. Math. Phys. Tech. 1960, Nr. 4, 32 pages. [30] Die Dirac-Gleichung. Abh. Deutsch. Akad. Wiss. Berlin Kl. Math. Phys. Tech. 1961, Nr. 1,38 pages. [31] Der innere Differentialkalkül. Abh. Math. Sem. Univ. Hamburg 25 (1962), 192-205. [32] Wilhelm Blaschke (Obituary). Jahrbuch 1960-1962. Sächs. Akad. Wiss. Leipzig, pp. 388-391, Akademie-Verlag, Berlin 1964. [33] Der innere Differentialkalkül. Rend. Mat. Appl. (5) 21 (1962), 425-523; also in Forme differenziali e loro integrali, C.I.M.E., Saltino di Vallombrosa, 23-31 agosto 1960, pp. 160-258, Edizioni Cremonese, Roma 1963.
970
Bibliography
971
[34] Infinitesimal-Arithmetik. Rend. Sem. Mat. Univ. Politec. Torino 21 (1961/62), 5-29. [35] Bericht über einige Vorträge zur Infinitesimal Arithmetik. In Seminari 1962-63 di Analisi, Algebra, Geometria e Topologia, p. 595, Istituto Nazionale di Alta Matematica, Edizioni Cremonese, Roma 1965. [36] Wesen und Erscheinung als mathematische Prinzipien der Philosophie. Nova Acta Leopoldina, Neue Folge 30 (173) (1965), 9-21. [37] Mathematik. A series of single issues, Hamburg 1973, pp. 1-118 (3 issues); Hamburg 1973-1974, pp. 119-346 (5 issues); Hamburg 1974, pp. 347-591 (3 issues); Berlin 1975, pp. 592-719 (2 issues). [38] II regno delle idee. In Atti del Convegno Internazionale di Geometria a Celebrazione del Centenario della Nascita di Federigo Enriques, Milano, 31 maggio 3 guigno 1971, pp. 157-163, Accademia Nazionale dei Lincei, Roma 1973. [39] Saggio di una dinamica della vita. In Atti del Convegno Internazionale sul tema: Storia, Pedagogia e Filosofia della Scienza, Pisa, Bologna e Roma, 7-12 ottobre 1971, Problemi Attuali di Scienza e di Cultura 184, pp. 275-287, Accademia Nazionale dei Lincei, Roma 1973. [40] Mathesis universalis. Mimeographed typescript, Berlin 1975. [41] Monadologie, part I (pp. 1-54) and part II (pp. 56-147) in one volume, Hamburg 1978; Monadologie, part III, pp. 1-47. Hamburg 1980. [42] Die Poincare-Gruppe. Rend. Semin. Mat. Fis. Milano 53 (1983), 359-390; also in Mathematica ad diem natalem septuagesimum quintum data, Festschrift Ernst Mohr zum 75. Geburtstag, pp. 117-144, Universitätsbibliothek der TU Berlin, Abt. Publikationen, Berlin 1985. [43] The Poincare group. In Clifford Algebras and their Applications in Mathematical Physics (J. S. R. Chisholm and A. K. Common, eds.), Proc. Workshop, Canterbury, U.K., 1985, NATO Adv. Sei. Inst. Ser. C Math. Phys. Sei. 183, pp. 265-272, D. Reidel Publishing Company, Dordrecht 1986. [44] Nietzsches Philosophie als höchstes Stadium des deutschen Idealismus. Spectrum 22 (5) (1991), 44-46. [45] Also sprach Ariadne. Istit. Lombardo Accad. Sei. Lett. Rend. A 126 (1992), 105-154. [46] Raum-Zeit-Individuum. Rend. Accad. Naz. Sei. XL Mem. Mat. Appl. (5) 16 (1992), 115-177; also in Mathematik aus Berlin (Heinrich G. W. Begehr, ed.), pp. 41-105, Sammelband von Vortragsausarbeitungen zu "Wissenschaft und Stadt, Publikationen der Freien Universität Berlin aus Anlaß der 750-Jahr-Feier Berlin 1987", Weidler Buchverlag, Berlin 1997. [47] Vom Relativen zum Absoluten. Private printing dated January 16,1998,17 pages.
971