14.12 Game Theory, Fall 2001
14.12 Game Theory Fall 2001 Announcement The final exam is on Friday, Dec. 21, 9:00-12:00 in Walker. The conflict exam will be on Thursday, December 20, 9:00-12:00 in E51-085.
Faculty Professor: Muhamet Yildiz
[email protected] (Office hours: M 4:00-5:30, E52-251a, 253-5331) TA: Kenichi Amaya
[email protected] (Office hours: T 4:00-6:00, E52-303, 253-3591) TA: Astrid Dick
[email protected]
Schedule Class: Room E51-372 Recitation: F10 or F3, Room E51-085
Handouts ●
syllabus
●
Lecture notes 1
●
Lecture notes 2
●
Lecture notes 3
●
Lecture notes 4
●
Lecture notes 5
●
Lecture notes 6
●
Review notes 1
●
Review notes 2
●
Review notes 3 (11/30)
http://web.mit.edu/14.12/www/ (1 of 4) [2002-05-11 23:27:55]
14.12 Game Theory, Fall 2001
Lecture Slides Some of the slides for lectures 1,2, and 6 are not included, as they are made by another program. ● Slides 1 ●
Slides 2
●
Slides 3
●
Slides 4
●
Slides 5
●
Slides 6
●
Slides for lecture 8
●
Slides for lecture 9
●
Slides for lecture 10
●
Slides for lecture 12
●
Slides for lecture 13
●
Slides for lecture 15-18
●
Slides for lecture 19-21
Homeworks ●
Homework 1 (due 9/26)
●
Solutions for homework 1
●
Homework 2 (due 10/3)
●
Solutions for homework 2
●
Homework 3 (due 10/29)
●
Solutions for homework 3 Revised
●
Homework 4 (due 11/7)
●
Solutions for homework 4
●
Homework 5 (due 12/7)
●
Solutions for homework 5 Revised
Homework Grading Policies ●
You may turn in assignments during the lecture on the day they are due. After the lecture, assignments may be placed in a designated box that will be set out outside E52-303 until 5:30 p.
http://web.mit.edu/14.12/www/ (2 of 4) [2002-05-11 23:27:55]
14.12 Game Theory, Fall 2001
●
●
m. Do not leave assignments in the professor or T. A.'s office or mailbox. You are permitted to discuss course material, including homework, with other students in the class. However, you must turn in your own individual solutions to each homework set. You need to explain how you come up with the answers.Correct answers without proper explanations will receive no credit.
Exams ●
Midterm 1 (10/10)
●
Midterm 1 solutions
●
Midterm 1 Grade Distribution
●
Midterm 2
●
Midterm 2 Solutions New!
●
Midterm 2 Grade Distribution New!
●
Grade distribution of the average of midterm 1 and 2 New!
●
Mock Final New!
●
Mock Final solutions New!
●
Final exam solutions New!
●
Final exam grade distribution New!
●
Final grade+quiz distribution New!
●
Final grade distribution New!
Past years' exams Midterm 1 ●
1995
●
1995 (Solutions)
●
1997
●
1999
●
2000
●
2000 (Solutions)
Midterm 2 http://web.mit.edu/14.12/www/ (3 of 4) [2002-05-11 23:27:55]
14.12 Game Theory, Fall 2001
●
1996
●
1997
●
1999 Mock Midterm
●
2000 (11/16)
●
2000 (11/17)
●
Some previous midterm questions (including some questions from files above)
●
Solutions for Question 7 (or 8)
Final ●
2000
●
2000 solutions
●
2000 make-up
http://web.mit.edu/14.12/www/ (4 of 4) [2002-05-11 23:27:55]
47145 Jdph Wkhru|
Surihvvru= Pxkdphw \logl} +r!fh krxuv= P 7=3308=63, WD= Nhqlfkl Dpd|d +r!fh krxuv= WEG, Sodfh= 70486 ^WKH FODVV URRP ZLOO EH FKDQJHG LQ WKH IXWXUH> FKHFN WKH KRPH0SDJH` Wlph= PZ 5=6307=331 Uhflwdwlrq= I 43 ru I 6/ dw H8403;81 Krph0sdjh= kwws=22zhe1plw1hgx2471452zzz2lqgh{1kwpo Jdph Wkhru| lv d plvqrphu iru Pxowlshuvrq Ghflvlrq Wkhru|/ wkh dqdo|0 vlv ri vlwxdwlrqv lq zklfk sd|rv wr djhqwv ghshqg rq wkh ehkdylru ri rwkhu djhqwv1 Lw lqyroyhv wkh dqdo|vlv ri frq lfw/ frrshudwlrq/ dqg +wdflw, frppx0 qlfdwlrq1 Jdph wkhru| kdv dssolfdwlrqv lq vhyhudo hogv/ vxfk dv hfrqrplfv/ srolwlfv/ odz/ elrorj|/ dqg frpsxwhu vflhqfh1 Lq wklv frxuvh/ L zloo lqwurgxfh wkh edvlf wrrov ri jdph wkhruhwlf dqdo|vlv1 Lq wkh surfhvv/ L zloo rxwolqh vrph ri wkh pdq| dssolfdwlrqv ri jdph wkhru|/ sulpdulo| lq hfrqrplfv dqg srolwlfdo vflhqfh1 Jdph Wkhru| kdv hphujhg dv d eudqfk ri pdwkhpdwlfv dqg lv vwloo txlwh pdwkhpdwlfdo1 Rxu hpskdvlv zloo eh rq wkh frqfhswxdo dqdo|vlv/ nhhslqj wkh ohyho ri pdwk wr d plqlpxp/ hvshfldoo| dw d ohyho wkdw vkrxog eh txlwh df0 fhswdeoh wr wkh dyhudjh PLW vwxghqw1 \hw ehdu lq plqg wkdw wklv vwloo lpsolhv wkdw |rx vkrxog eh dw hdvh zlwk edvlf suredelolw| wkhru| dqg fdofxoxv/ dqg pruh lpsruwdqwo|/ |rx vkrxog eh xvhg wr wklqnlqj lq pdwkhpdwlfdo whupv1 Lqwhuphgldwh Plfurhfrqrplfv lv dovr d suhuhtxlvlwh +vlpxowdqhrxv dwwhqgdqfh wr rqh ri wkh lqwhuphgldwh frxuvhv lv dovr dffhswdeoh,1 Lq dq| fdvh/ li |rx duh 4
wdnlqj wklv frxuvh/ |rx vkrxog eh suhsduhg wr zrun kdug1
Wh{werrn Wkh pdlq wh{werrn zloo eh Urehuw Jleerqv/ Jdph Wkhru| Iru Dssolhg Hfrqrplvwv/ Sulqfh0 wrq Xqlyhuvlw| Suhvv/ 4<<51 Wklv lv wkh rqo| uhtxluhg wh{werrn dqg fryhuv wkh pdmrulw| ri wklv frxuvh*v wrslfv1 L uhfrpphqg wkdw |rx ex| lw1 Wkh errn Sudmlw Gxwwd/ Vwudwhjlhv dqg Jdphv/ 4<<< zloo dovr eh yhu| xvhixo/ hvshfldoo| iru wkh h{huflvhv1 +\rx qhhg wr vroyh d orw ri sureohpv wr ohduq Jdph Wkhru|1, L zloo dovr uhihu wr Gdylg Nuhsv/ D Frxuvh lq Plfurhfrqrplf Wkhru|/ 4<<3/ Kdu0 yhvwhu1 Wkh odvw wzr errnv zloo eh rq uhvhuyh dw Ghzh|> |rx duh qrw uhtxluhg wr ex| lw1 Doo wkh ohfwxuhv zloo eh vxssohphqwhg zlwk ghwdlohg qrwhv dv zhoo1 Wkrvh zkr zdqw pruh dgydqfhg wuhdwphqw vkrxog orrn dw Guhz Ixghqehuj dqg Mhdq Wluroh/ Jdph Wkhru|/ PLW Suhvv/ 4<<4 ru Pduwlq Rveruqh dqg Dulho Uxelqvwhlq/ D Frxuvh lq Jdph Wkhru|/ PLW Suhvv/ 4<<71 Wkhvh wzr errnv duh yhu| jrrg exw kdughu wkdq wkh ohyho dw zklfk wkh frxuvh lv slwfkhg1 Wkrvh zkr qhhg dq hdvlhu dqg orqjhu h{srvlwlrq ri wkh wrslfv fdq uhdg Dylqdvk Gl{lw dqg Vxvdq Vhnhdwk/ Jdphv ri Vwudwhj|/ 53331 Judglqj Wkhuh zloo eh wzr plgwhupv dqg d frpsuhkhqvlyh qdo h{dp1 DOO H[DPV ZLOO EH RSHQ ERRN1 Dovr dssur{lpdwho| 9 sureohp vhwv wr eh kdqghg lq1 Hdfk plgwhup lv zruwk 58(/ wkh qdo lv zruwk 73(/ dqg wkh sureohp vhwv zloo pdnh xs wkh uhpdlqlqj 43( ri wkh qdo judgh1 Wkh uvw plgwhup zloo eh rq Rfwrehu 43wk dqg wkh vhfrqg rqh rq Qryhpehu 47wk1 5
Wkh qdo h{dp zloo eh lq wkh zhhn ri qdov1 D sruwlrq ri wkh odvw fodvv ehiruh hdfk h{dp zloo eh ghyrwhg wr sureohp vroylqj dqg wkh uhylhz ri wkh pdwhuldo1 +Wkh gdwhv iru wkhvh uhylhz vhvvlrqv duh Rfwrehu 6ug/ Qryhpehu :wk/ dqg Ghfhpehu 45wk1, Lq dgglwlrq/ wkhuh zloo eh lq0fodvv txl}}hv1 Lq wkhvh txl}}hv |rx zloo eh dvnhg wr sod| ydulrxv jdphv1 Lq prvw ri wkhvh jdphv |rx zloo qrw nqrz zkr wkh rwkhu sod|huv duh1 Wkh srlqwv +qrupdol}hg wr 8(, |rx jhw lq wkhvh jdphv zloo eh erqxvhv1 Wkh| zloo eh dgghg wr |rxu qdo judgh diwhu wkh fxw r ydoxhv iru wkh ohwwhu judghv duh ghwhuplqhg1 +Lq wklv zd|/ |rx zloo qrw eh jlyhq dq| lqfhqwlyh wr fduh derxw wkh rwkhu sod|huv* sd|rv lq wkh jdph1, Frxuvh Rxwolqh Wkh iroorzlqj lv d urxjk rxwolqh1 Ghshqglqj rq wkh lq0 whuhvwv dqg wkh lqfolqdwlrqv ri wkh jurxs/ wkh wrslfv dqg wkhlu zhljkw pd| fkdqjh d olwwoh1 Wkh qxpehu lq vtxduh eudfnhwv ghqrwhv wkh h{shfwhg wlph wr eh ghyrwhg wr hdfk wrslf1 J1 uhihuv wr Jleerqv* wh{werrn1 41 Lqwurgxfwlrq wr jdph wkhru| ^4 ohfwxuh` 51 Sd|rv lq jdphv= Udwlrqdo Fkrlfh Xqghu Xqfhuwdlqw| ^4 ohfwxuh` +d, H{shfwhg Xwlolw| Wkhru|> Ulvn dyhuvlrq/ Nuhsv/ Fkdswhuv 6140616 +e, Dssolfdwlrqv> ulvn vkdulqj/ lqvxudqfh/ rswlrq ydoxh1 61 D Pruh Irupdo Lqwurgxfwlrq wr Jdphv ^6 ohfwxuhv` +d, H{whqvlyh Irupv dqg Qrupdo Irupv/ J1/ Fk1 414D dqg 514D +e, Vwudwhjlhv/ Grplqdqw Vwudwhjlhv dqg Lwhudwlyh holplqdwlrq ri vwulfwo| grplqdwhg vwudwhjlhv/ J1 414E +f, Qdvk Htxloleulxp/ J1 414F +g, Dssolfdwlrqv ri Qdvk Htxloleulxp/ J1 415 71 Edfnzdug Lqgxfwlrq/ Vxejdph Shuihfwlrq/ dqg Iruzdug Lqgxfwlrq ^6 ohfwxuhv` 6
+d, Dqdo|vlv ri H{whqvlyh0Irup Jdphv/ J1 514D +e, Edfnzdug lqgxfwlrq +f, Vxejdph Shuihfwlrq/ J1 515D +g, Dssolfdwlrqv/ J1 515E/F/G dqg 514E/F1 +h, Edujdlqlqj dqg qhjrwldwlrqv/ J1 514G +i, Iruzdug lqgxfwlrq1 +j, Dssolfdwlrqv1 81 Hyroxwlrqdu| irxqgdwlrqv ri htxloleulxp> hyroxwlrqdulo| vwdeoh vwudwh0 jlhv dqg uhsolfdwru g|qdplfv1 ^4 ohfwxuh` 91 Prudo Kd}dug ^5 ohfwxuhv` +d, Wkh sulqflsdo0djhqw irupxodwlrq/ Nuhsv fkdswhuv 4914 dqg 4915 +e, Dssolfdwlrqv> lqvxudqfh/ h!flhqf| zdjhv :1 Uhshdwhg Jdphv dqg Frrshudwlrq ^5 ohfwxuhv` J1 516 ;1 Lqfrpsohwh Lqirupdwlrq ^5 ohfwxuhv` +d, Ed|hvldq Qdvk Htxloleulxp/ J1/ 614D/F +e, Dxfwlrqv +f, Dssolfdwlrqv/ J1 615 <1 G|qdplf Jdphv ri Lqfrpsohwh Lqirupdwlrq ^6 ohfwxuhv` +d, Shuihfw Ed|hvldq Htxloleulxp/ J1 714 +e, Vhtxhqwldo Edujdlqlqj Xqghu Dv|pphwulf Lqirupdwlrq/ J1 716E +f, Uhsxwdwlrq/ J1 716F 431 Sureohpv ri Dv|pphwulf Lqirupdwlrq lq Hfrqrplfv ^6 ohfwxuhv` 7
+d, Vljqdolqj dqg wkh Lqwxlwlyh Fulwhulrq/ J1 715D dqg 717 +e, Dssolfdwlrqv ri Vljqdolqj/ J1 715E/F +f, Wkh sulqflsdo0djhqw sureohp/ Nuhsv Fkdswhu 4: +g, Dssolfdwlrqv> ohprqv/ h!flhqf| zdjhv/ fuhglw0udwlrqlqj/ sulfh0glvfulplqdwlrq1
8
47145 Jdph Wkhru| Ohfwxuh Qrwhv Lqwurgxfwlrq Pxkdphw \logl} +Ohfwxuh 4, Jdph Wkhru| lv d plvqrphu iru Pxowlshuvrq Ghflvlrq Wkhru|/ dqdo|}lqj wkh ghflvlrq0 pdnlqj surfhvv zkhq wkhuh duh pruh wkdq rqh ghflvlrq0pdnhuv zkhuh hdfk djhqw*v sd|r srvvleo| ghshqgv rq wkh dfwlrqv wdnhq e| wkh rwkhu djhqwv1 Vlqfh dq djhqw*v suhihuhqfhv rq klv dfwlrqv ghshqg rq zklfk dfwlrqv wkh rwkhu sduwlhv wdnh/ klv dfwlrq ghshqgv rq klv eholhiv derxw zkdw wkh rwkhuv gr1 Ri frxuvh/ zkdw wkh rwkhuv gr ghshqgv rq wkhlu eholhiv derxw zkdw hdfk djhqw grhv1 Lq wklv zd|/ d sod|hu*v dfwlrq/ lq sulqflsoh/ ghshqgv rq wkh dfwlrqv dydlodeoh wr hdfk djhqw/ hdfk djhqw*v suhihuhqfhv rq wkh rxwfrphv/ hdfk sod|hu*v eholhiv derxw zklfk dfwlrqv duh dydlodeoh wr hdfk sod|hu dqg krz hdfk sod|hu udqnv wkh rxwfrphv/ dqg ixuwkhu klv eholhiv derxw hdfk sod|hu*v eholhiv/ dg lqqlwxp1 Xqghu shuihfw frpshwlwlrq/ wkhuh duh dovr pruh wkdq rqh +lq idfw/ lqqlwho| pdq|, ghflvlrq pdnhuv1 \hw/ wkhlu ghflvlrqv duh dvvxphg wr eh ghfhqwudol}hg1 D frqvxphu wulhv wr fkrrvh wkh ehvw frqvxpswlrq exqgoh wkdw kh fdq drug/ jlyhq wkh sulfhv zlwkrxw sd|lqj dwwhqwlrq zkdw wkh rwkhu frqvxphuv gr1 Lq uhdolw|/ wkh ixwxuh sulfhv duh qrw nqrzq1 Frqvxphuv* ghflvlrqv ghshqg rq wkhlu h{shfwdwlrqv derxw wkh ixwxuh sulfhv1 Dqg wkh ixwxuh sulfhv ghshqg rq frqvxphuv* ghflvlrqv wrgd|1 Rqfh djdlq/ hyhq lq shuihfwo| frpshwlwlyh hqylurqphqwv/ d frqvxphu*v ghflvlrqv duh dhfwhg e| wkhlu eholhiv derxw zkdw rwkhu frqvxphuv gr lq dq djjuhjdwh ohyho1 Zkhq djhqwv wklqn wkurxjk zkdw wkh rwkhu sod|huv zloo gr/ wdnlqj zkdw wkh rwkhu sod|huv wklqn derxw wkhp lqwr dffrxw/ wkh| pd| qg d fohdu zd| wr sod| wkh jdph1 Frqvlghu wkh iroorzlqj jdph=
4
4
q5
O
p
U
W
Ec
Efc 2
E2c
P
E2c 2
Ec
Efc f
E
Ec f
Efc f Ec
Khuh/ Sod|hu 4 kdv vwudwhjlhv/ W/ P/ E dqg Sod|hu 5 kdv vwudwhjlhv O/ p/ U1 +Wkh| slfn wkhlu vwudwhjlhv vlpxowdqhrxvo|1, Wkh sd|rv iru sod|huv 4 dqg 5 duh lqglfdwhg e| wkh qxpehuv lq sduhqwkhvhv/ wkh uvw rqh iru sod|hu 4 dqg wkh vhfrqg rqh iru sod|hu 51 Iru lqvwdqfh/ li Sod|hu 4 sod|v W dqg Sod|hu 5 sod|v U/ wkhq Sod|hu 4 jhwv d sd|r ri 5 dqg Sod|hu 5 jhwv 41 Ohw*v dvvxph wkdw hdfk sod|hu nqrzv wkdw wkhvh duh wkh vwudwhjlhv dqg wkh sd|rv/ hdfk sod|hu nqrzv wkdw hdfk sod|hu nqrzv wklv/ hdfk sod|hu nqrzv wkdw hdfk sod|hu nqrzv wkdw hdfk sod|hu nqrzv wklv/111 dg lqqlwxp1 ^Lq wkdw fdvh/ zh irupdoo| vd| wkdw wkh vwudwhjlhv dqg wkh sd|rv duh frpprq nqrzohgjh1` Qrz/ sod|hu 4 orrnv dw klv sd|rv/ dqg uhdol}hv wkdw/ qr pdwwhu zkdw wkh rwkhu sod|hu sod|v/ lw lv ehwwhu iru klp wr sod| P udwkhu wkdq E1 Wkdw lv/ li 5 sod|v O/ P jlyhv 5 dqg E jlyhv 4> li 5 sod|v p/ P jlyhv 4/ E jlyhv 3> dqg li 5 sod|v U/ P jlyhv 3/ E jlyhv 041 Wkhuhiruh/ kh uhdol}hv wkdw kh vkrxog qrw sod| E14 Qrz kh frpsduhv W dqg P1 Kh uhdol}hv wkdw/ li Sod|hu 5 sod|v O ru p/ P lv ehwwhu wkdq W/ exw li vkh sod|v U/ W lv ghqlwho| ehwwhu wkdq P1 Zrxog Sod|hu 5 sod| UB Zkdw zrxog vkh sod|B Wr qg dq dqvzhu wr wkhvh txhvwlrqv/ Sod|hu 4 orrnv dw wkh jdph iurp Sod|hu 5*v srlqw ri ylhz1 Kh uhdol}hv wkdw/ iru Sod|hu 5/ wkhuh lv qr vwudwhj| wkdw lv rxwuljkw ehwwhu wkdq dq| rwkhu vwudwhj|1 Iru lqvwdqfh/ U lv wkh ehvw vwudwhj| li 4 sod|v E/ exw rwkhuzlvh lw lv vwulfwo| zruvh wkdq p1 Zrxog Sod|hu 5 wklqn wkdw Sod|hu 4 zrxog sod| EB Zhoo/ vkh nqrzv wkdw Sod|hu 4 lv wu|lqj wr pd{lpl}h klv h{shfwhg sd|r/ jlyhq e| wkh uvw hqwulhv dv hyhu|rqh nqrzv1 Vkh pxvw wkhq ghgxfh wkdw Sod|hu 4 zloo qrw sod| E1 Wkhuhiruh/ Sod|hu 4 frqfoxghv/ vkh zloo qrw sod| U +dv lw lv zruvh wkdq p lq wklv fdvh,1 Uxolqj rxw wkh srvvlelolw| wkdw Sod|hu 5 sod|v U/ Sod|hu 4 orrnv dw klv sd|rv/ dqg vhhv wkdw P lv qrz ehwwhu wkdq W/ qr pdwwhu zkdw1 Rq wkh rwkhu vlgh/ Sod|hu 5 jrhv wkurxjk vlplodu uhdvrqlqj/ dqg frqfoxghv wkdw 4 pxvw sod| P/ dqg wkhuhiruh sod|v O1 Wklv nlqg ri uhdvrqlqj grhv qrw dozd|v |lhog vxfk d fohdu suhglfwlrq1 Lpdjlqh wkdw |rx zdqw wr phhw zlwk d iulhqg lq rqh ri wzr sodfhv/ derxw zklfk |rx erwk duh lqglhuhqw1 4
Diwhu doo/ kh fdqqrw kdyh dq| eholhi derxw zkdw Sod|hu 5 sod|v wkdw zrxog ohdg klp wr sod| E zkhq
P lv dydlodeoh1
5
Xqiruwxqdwho|/ |rx fdqqrw frppxqlfdwh zlwk hdfk rwkhu xqwlo |rx phhw1 Wklv vlwxdwlrq lv irupdol}hg lq wkh iroorzlqj jdph/ zklfk lv fdoohg sxuh frruglqdwlrq jdph= 4
q
5 Ohiw
Uljkw
Wrs
+4/4, +3/3,
Erwwrp
+3/3, +4/4,
Khuh/ Sod|hu 4 fkrrvhv ehwzhhq Wrs dqg Erwwrp urzv/ zkloh Sod|hu 5 fkrrvhv ehwzhhq Ohiw dqg Uljkw froxpqv1 Lq hdfk er{/ wkh uvw dqg wkh vhfrqg qxpehuv ghqrwh wkh yrq Qhxpdqq0Prujhqvwhuq xwlolwlhv ri sod|huv 4 dqg 5/ uhvshfwlyho|1 Qrwh wkdw Sod|hu 4 suhihuv Wrs wr Erwwrp li kh nqrzv wkdw Sod|hu 5 sod|v Ohiw> kh suhihuv Erwwrp li kh nqrzv wkdw Sod|hu 5 sod|v Uljkw1 Kh lv lqglhuhqw li kh nqrzv wklqnv wkdw wkh rwkhu sod|hu lv olnho| wr sod| hlwkhu vwudwhj| zlwk htxdo suredelolwlhv1 Vlploduo|/ Sod|hu 5 suhihuv Ohiw li vkh nqrzv wkdw sod|hu 4 sod|v Wrs1 Wkhuh lv qr fohdu suhglfwlrq derxw wkh rxwfrph ri wklv jdph1 Rqh pd| orrn iru wkh vwdeoh rxwfrphv +vwudwhj| surohv, lq wkh vhqvh wkdw qr sod|hu kdv lqfhqwlyh wr ghyldwh li kh nqrzv wkdw wkh rwkhu sod|huv sod| wkh suhvfulehg vwudwhjlhv1 Khuh/ Wrs0Ohiw dqg Erwwrp0Uljkw duh vxfk rxwfrphv1 Exw Erwwrp0Ohiw dqg Wrs0Uljkw duh qrw vwdeoh lq wklv vhqvh1 Iru lqvwdqfh/ li Erwwrp0Ohiw lv nqrzq wr eh sod|hg/ hdfk sod|hu zrxog olnh wr ghyldwh dv lw lv vkrzq lq wkh iroorzlqj jxuh= 4
q
5
Wrs
Ohiw
Uljkw
+4/4,
+.+3/3,
Erwwrp +3/3,-', +4/4, +Khuh/ - phdqv sod|hu 4 ghyldwhv wr Wrs/ hwf1, Xqolnh lq wklv jdph/ prvwo| sod|huv kdyh glhuhqw suhihuhqfhv rq wkh rxwfrphv/ lq0 gxflqj frq lfw1 Lq wkh iroorzlqj jdph/ zklfk lv nqrzq dv wkh Edwwoh ri wkh Vh{hv/ frq lfw dqg wkh qhhg iru frruglqdwlrq duh suhvhqw wrjhwkhu1 4
q
Wrs
5 Ohiw
Uljkw
+5/4, +3/3,
Erwwrp +3/3, +4/5, Khuh/ rqfh djdlq sod|huv zrxog olnh wr frruglqdwh rq Wrs0Ohiw ru Erwwrp0Uljkw/ exw qrz Sod|hu 4 suhihuv wr frruglqdwh rq Wrs0Ohiw/ zkloh Sod|hu 5 suhihuv wr frruglqdwh rq Erwwrp0Uljkw1 Wkh vwdeoh rxwfrphv duh djdlq Wrs0Ohiw dqg Erwwrp0 Uljkw1 6
T
B
2 L
(2,1)
2 R
L
(0,0)
(0,0)
R
(1,2)
Iljxuh 4= Qrz/ lq wkh Edwwoh ri wkh Vh{hv/ lpdjlqh wkdw Sod|hu 5 nqrzv zkdw Sod|hu 4 grhv zkhq vkh wdnhv khu dfwlrq1 Wklv fdq eh irupdol}hg yld wkh iroorzlqj wuhh= Khuh/ Sod|hu 4 fkrrvhv ehwzhhq Wrs dqg Erwwrp/ wkhq +nqrzlqj zkdw Sod|hu 4 kdv fkrvhq, Sod|hu 5 fkrrvhv ehwzhhq Ohiw dqg Uljkw1 Fohduo|/ qrz Sod|hu 5 zrxog fkrrvh Ohiw li Sod|hu 4 sod|v Wrs/ dqg fkrrvh Uljkw li Sod|hu 4 sod|v Erwwrp1 Nqrzlqj wklv/ Sod|hu 4 zrxog sod| Wrs1 Wkhuhiruh/ rqh fdq dujxh wkdw wkh rqo| uhdvrqdeoh rxwfrph ri wklv jdph lv Wrs0Ohiw1 +Wklv nlqg ri uhdvrqlqj lv fdoohg edfnzdug lqgxfwlrq1, Zkhq Sod|hu 5 lv wr fkhfn zkdw wkh rwkhu sod|hu grhv/ kh jhwv rqo| 4/ zkloh Sod|hu 4 jhwv 51 +Lq wkh suhylrxv jdph/ wzr rxwfrphv zhuh vwdeoh/ lq zklfk Sod|hu 5 zrxog jhw 4 ru 51, Wkdw lv/ Sod|hu 5 suhihuv wkdw Sod|hu 4 kdv lqirupdwlrq derxw zkdw Sod|hu 5 grhv/ udwkhu wkdq vkh khuvhoi kdv lqirupdwlrq derxw zkdw sod|hu 4 grhv1 Zkhq lw lv frpprq nqrzohgjh wkdw d sod|hu kdv vrph lqirupdwlrq ru qrw/ wkh sod|hu pd| suhihu qrw wr kdyh wkdw lqirupdwlrq d urexvw idfw wkdw zh zloo vhh lq ydulrxv frqwh{wv1 H{huflvh 4 Fohduo|/ wklv lv jhqhudwhg e| wkh idfw wkdw Sod|hu 4 nqrzv wkdw Sod|hu 5 zloo nqrz zkdw Sod|hu 4 grhv zkhq vkh pryhv1 Frqvlghu wkh vlwxdwlrq wkdw Sod|hu 4 wklqnv wkdw Sod|hu 5 zloo nqrz zkdw Sod|hu 4 grhv rqo| zlwk suredelolw| Z / dqg wklv suredelolw| grhv qrw ghshqg rq zkdw Sod|hu 4 grhv1 Zkdw zloo kdsshq lq d uhdvrqdeoh htxloleulxpB ^E| wkh hqg ri wklv frxuvh/ krshixoo|/ |rx zloo eh deoh wr irupdol}h wklv 7
vlwxdwlrq/ dqg frpsxwh wkh htxloleuld1` Dqrwkhu lqwhusuhwdwlrq lv wkdw Sod|hu 4 fdq frppxqlfdwh wr Sod|hu 5/ zkr fdqqrw frppxqlfdwh wr sod|hu 41 Wklv hqdeohv sod|hu 4 wr frpplw wr klv dfwlrqv/ surylglqj d vwurqj srvlwlrq lq wkh uhodwlrq1 H{huflvh 5 Frqvlghu wkh iroorzlqj yhuvlrq ri wkh odvw jdph= diwhu nqrzlqj zkdw Sod|hu 5 grhv/ Sod|hu 4 jhwv d fkdqfh wr fkdqjh klv dfwlrq> wkhq/ wkh jdph hqgv1 Lq rwkhu zrugv/ Sod|hu 4 fkrrvhv ehwzhhq Wrs dqg Erwwrp> nqrzlqj Sod|hu 4*v fkrlfh/ Sod|hu 5 fkrrvhv ehwzhhq Ohiw dqg Uljkw> nqrzlqj 5*v fkrlfh/ Sod|hu 4 ghflghv zkhwkhu wr vwd| zkhuh kh lv ru wr fkdqjh klv srvlwlrq1 Zkdw lv wkh uhdvrqdeoh rxwfrphB Zkdw zrxog kdsshq li fkdqjlqj klv dfwlrq zrxog frvw sod|hu 4 S xwlohvB Lpdjlqh wkdw/ ehiruh sod|lqj wkh Edwwoh ri wkh Vh{hv/ Sod|hu 4 kdv wkh rswlrq ri h{lwlqj/ lq zklfk fdvh hdfk sod|hu zloo jhw 625/ ru sod|lqj wkh Edwwoh ri wkh Vh{hv1 Zkhq dvnhg wr sod|/ Sod|hu 5 zloo nqrz wkdw Sod|hu 4 fkrvh wr sod| wkh Edwwoh ri wkh Vh{hv1 Wkhuh duh wzr uhdvrqdeoh htxloleuld +ru vwdeoh rxwfrphv,1 Rqh lv wkdw Sod|hu 4 h{lwv/ wklqnlqj wkdw/ li kh sod|v wkh Edwwoh ri wkh Vh{hv/ wkh| zloo sod| wkh Erwwrp0Uljkw htxloleulxp ri wkh Edwwoh ri wkh Vh{hv/ |lhoglqj rqo| 4 iru sod|hu 41 Wkh vhfrqg rqh lv wkdw Sod|hu 4 fkrrvhv wr Sod| wkh Edwwoh ri wkh Vh{hv/ dqg lq wkh Edwwoh ri wkh Vh{hv wkh| sod| Wrs0Ohiw htxloleulxp1 1 Play
2
Exit
1
Left
Right
Top Bottom
(2,1) (0,0)
(0,0) (1,2)
(3/2,3/2)
Vrph zrxog dujxh wkdw wkh uvw rxwfrph lv qrw uhdoo| uhdvrqdeoh1 Ehfdxvh/ zkhq dvnhg wr sod|/ Sod|hu 5 zloo nqrz wkdw Sod|hu 4 kdv fkrvhq wr sod| wkh Edwwoh ri wkh Vh{hv/ irujrlqj wkh sd|r ri 6251 Vkh pxvw wkhuhiruh uhdol}h wkdw Sod|hu 4 fdqqrw srvvleo| eh 8
sodqqlqj wr sod| Erwwrp/ zklfk |lhogv wkh sd|r ri 4 pd{1 Wkdw lv/ zkhq dvnhg wr sod|/ Sod|hu 5 vkrxog xqghuvwdqg wkdw Sod|hu 4 lv sodqqlqj wr sod| Wrs/ dqg wkxv vkh vkrxog sod| Ohiw1 Dqwlflsdwlqj wklv/ Sod|hu 4 vkrxog fkrrvh wr sod| wkh Edwwoh ri wkh Vh{hv jdph/ lq zklfk wkh| sod| Wrs0Ohiw1 Wkhuhiruh/ wkh vhfrqg rxwfrph lv wkh rqo| uhdvrqdeoh rqh1 +Wklv nlqg ri uhdvrqlqj lv fdoohg Iruzdug Lqgxfwlrq1, Khuh duh vrph pruh h{psohv ri jdphv= 41 Sulvrqhuv* Glohppd=
q
4
Frqihvv
5
Frqihvv Qrw Frqihvv +04/ 04,
Qrw Frqihvv +043/ 4,
+4/ 043, +5/ 5,
Wklv lv d zhoo nqrzq jdph wkdw prvw ri |rx nqrz1 ^Lw lv dovr glvfxvvhg lq Jleerqv1` Lq wklv jdph qr pdwwhu zkdw wkh rwkhu sod|hu grhv/ hdfk sod|hu zrxog olnh wr frqihvv/ |lhoglqj +04/04,/ zklfk lv grplqdwhg e| +5/5,1 51 Kdzn0Gryh jdph 4
q
5 Kdzn Gryh T 3 T 3 Kdzn +T / f, 2 c 2 Gryh +f/T , +T /T , 2 2
Wklv lv d jhqhulf elrorjlfdo jdph/ exw lv dovr txlwh vlplodu wr pdq| jdphv lq hfrqrplfv dqg srolwlfdo vflhqfh1 T lv wkh ydoxh ri d uhvrxufh wkdw rqh ri wkh sod|huv zloo hqmr|1
Li wkh| vkduhg wkh uhvrxufh/ wkhlu ydoxhv duh T *21
Kdzn vwdqgv iru
d wrxjk vwudwhj|/ zkhuhe| wkh sod|hu grhv qrw jlyh xs wkh uhvrxufh1 Krzhyhu/ li wkh rwkhu sod|hu lv dovr sod|lqj kdzn/ wkh| hqg xs jkwlqj/ dqg lqfxu wkh frvw *2 hdfk1 Rq wkh rwkhu kdqg/ d Kdzn sod|hu jhwv wkh zkroh uhvrxufh iru lwvhoi zkhq sod|lqj d Gryh1 Zkhq T : / zh kdyh d Sulvrqhuv* Glohppd jdph/ zkhuh zh zrxog revhuyh jkw1 Zkhq zh kdyh T / vr wkdw jkwlqj lv frvwo|/ wklv jdph lv vlplodu wr dqrwkhu zhoo0nqrzq jdph/ lqvsluhg e| wkh prylh Uheho Zlwkrxw d Fdxvh/ qdphg Fklfnhq/ zkhuh wzr sod|huv gulylqj wrzdugv d fol kdyh wr ghflgh zkhwkhu wr vwrs ru frqwlqxh1 Wkh rqh zkr vwrsv uvw orvhv idfh/ exw pd| vdyh klv olih1 Pruh jhqhudoo|/ dv fodvv ri jdphv fdoohg zduv ri dwwulwlrq duh xvhg wr prgho wklv w|sh ri vlwxdwlrqv1 Lq
9
wklv fdvh/ d sod|hu zrxog olnh wr sod| Kdzn li klv rssrqhqw sod|v Gryh/ dqg sod| Gryh li klv rssrqhqw sod|hv Kdzn1
:
47145 Jdph Wkhru| Ohfwxuh Qrwhv Wkhru| ri Fkrlfh Pxkdphw \logl} +Ohfwxuh 5,
4
Wkh edvlf wkhru| ri fkrlfh
Zh frqvlghu d vhw f ri dowhuqdwlyhv1 Dowhuqdwlyhv duh pxwxdoo| h{foxvlyh lq wkh vhqvh wkdw rqh fdqqrw fkrrvh wzr glvwlqfw dowhuqdwlyhv dw wkh vdph wlph1 Zh dovr wdnh wkh vhw ri ihdvleoh dowhuqdwlyhv h{kdxvwlyh vr wkdw d sod|hu*v fkrlfhv zloo dozd|v eh ghqhg1 Qrwh wkdw wklv lv d pdwwhu ri prgholqj1 Iru lqvwdqfh/ li zh kdyh rswlrqv Frhh dqg Whd/ zh ghqh dowhuqdwlyhv dv ' Frhh exw qr Whd/ A ' Whd exw qr Frhh/ A ' Frhh dqg Whd/ dqg A ' qr Frhh dqg qr Whd1 Wdnh d uhodwlrq rq f1 Qrwh wkdw d uhodwlrq rq f lv d vxevhw ri f f1 D uhodwlrq lv vdlg wr eh frpsohwh li dqg rqo| li/ jlyhq dq| %c + 5 f/ hlwkhu % + ru + %1 D uhodwlrq lv vdlg wr eh wudqvlwlyh li dqg rqo| li/ jlyhq dq| %c +c 5 5 f/ d% + dqg + 5o , % 51 D uhodwlrq lv d suhihuhqfh uhodwlrq li dqg rqo| li lw lv frpsohwh dqg wudqvlwlyh1 Jlyhq dq| suhihuhqfh uhodwlrq / zh fdq ghqh vwulfw suhihuhqfh " e| % " + +, d% + dqg + 9 %oc dqg wkh lqglhuhqfh q e| % q + +, d% + dqg + %o D suhihuhqfh uhodwlrq fdq eh uhsuhvhqwhg e| d xwlolw| ixqfwlrq G f $ U lq wkh iroorzlqj vhqvh= % + +, E% E+ 4
;%c + 5 f
Wkh iroorzlqj wkhruhp vwdwhv ixuwkhu wkdw d uhodwlrq qhhgv wr eh d suhihuhqfh uhodwlrq lq rughu wr eh uhsuhvhqwhg e| d xwlolw| ixqfwlrq1 Wkhruhp 4 Ohw f eh qlwh1 D uhodwlrq fdq eh suhvhqwhg e| d xwlolw| ixqfwlrq li dqg rqo| li lw lv frpsohwh dqg wudqvlwlyh1 Pruhryhu/ li G f $ U uhsuhvhqwv / dqg li s G U $ U lv d vwulfwo| lqfuhdvlqj ixqfwlrq/ wkhq s dovr uhsuhvhqwv 1 E| wkh odvw vwdwhphqw/ zh fdoo vxfk xwlolw| ixqfwlrqv ruglqdo1 Lq rughu wr xvh wklv ruglqdo wkhru| ri fkrlfh/ zh vkrxog nqrz wkh djhqw*v suhihuhqfhv rq wkh dowhuqdwlyhv1 Dv zh kdyh vhhq lq wkh suhylrxv ohfwxuh/ lq jdph wkhru|/ d sod|hu fkrrvhv ehwzhhq klv vwudwhjlhv/ dqg klv suhihuhqfhv rq klv vwudwhjlhv ghshqg rq wkh vwudwhjlhv sod|hg e| wkh rwkhu sod|huv1 W|slfdoo|/ d sod|hu grhv qrw nqrz zklfk vwudwhjlhv wkh rwkhu sod|huv sod|1 Wkhuhiruh/ zh qhhg d wkhru| ri ghflvlrq0pdnlqj xqghu xqfhuwdlqw|1
5
Ghflvlrq0pdnlqj xqghu xqfhuwdlqw|
Zh frqvlghu d qlwh vhw ~ ri sul}hv/ dqg wkh vhw ri doo suredelolw| glvwulexwlrqv R G ~ $ S dfc o rq ~/ zkhuh 5M~ RE5 ' 1 Zh fdoo wkhvh suredelolw| glvwulexwlrqv orwwhulhv1 D orwwhu| fdq eh ghslfwhg e| d wuhh1 Iru h{dpsoh/ lq Iljxuh 4/ Orwwhu| 4 ghslfwv d vlwxdwlrq lq zklfk li khdg wkh sod|hu jhwv '43/ dqg li wdlo/ kh jhwv '31
10 1/2 Lottery 1 1/2
0
Iljxuh 4= Xqolnh wkh vlwxdwlrq zh mxvw ghvfulehg/ lq jdph wkhru| dqg pruh eurdgo| zkhq djhqwv pdnh wkhlu ghflvlrq xqghu xqfhuwdlqw|/ zh gr qrw kdyh wkh orwwhulhv dv lq fdvlqrv zkhuh wkh suredelolwlhv duh jhqhudwhg e| vrph pdfklqhv ru jlyhq1 Iruwxqdwho|/ lw kdv ehhq vkrzq e| Vdydjh +4<87, xqghu fhuwdlq frqglwlrqv wkdw d sod|hu*v eholhiv fdq eh uhsuhvhqwhg e| 5
d +xqltxh, suredelolw| glvwulexwlrq1 Xvlqj wkhvh suredelolwlhv/ zh fdq uhsuhvhqw rxu dfwv e| orwwhulhv1 Zh zrxog olnh wr kdyh d wkhru| wkdw frqvwuxfwv d sod|hu*v suhihuhqfhv rq wkh orwwhulhv iurp klv suhihuhqfhv rq wkh sul}hv1 Wkh prvw zhoo0nqrzq vxfk wkhru| lv wkh wkhru| ri h{shfwhg xwlolw| pd{lpl}dwlrq e| Yrq Qhxpdqq dqg Prujhqvwhuq1 D suhihuhqfh uhodwlrq rq lv vdlg wr eh uhsuhvhqwhg e| d yrq Qhxpdqq0Prujhqvwhuq xwlolw| ixqfwlrq G ~ $ U li dqg rqo| li R ^ +, L ER
[ 5 M~
E5RE5
[ 5 M~
E5^E5 L E^
+4,
iru hdfk Rc ^ 5 1 Qrwh wkdw L G $ U uhsuhvhqwv lq ruglqdo vhqvh1 Wkdw lv/ wkh djhqw dfwv dv li kh zdqwv wr pd{lpl}h wkh h{shfwhg ydoxh ri 1 Iru lqvwdqfh/ wkh h{shfwhg xwlolw| ri Orwwhu| 4 iru rxu djhqw lv .EEOrwwhu| 4 ' 2 Ef n 2 Ef14 Wkh qhfhvvdu| dqg vx!flhqw frqglwlrqv iru d uhsuhvhqwdwlrq dv lq +4, duh dv iroorzv= D{lrp 4 lv frpsohwh dqg wudqvlwlyh1 Wklv lv qhfhvvdu| e| Wkhruhp 4/ iru L uhsuhvhqwv lq ruglqdo vhqvh1 Wkh vhfrqg frqglwlrq lv fdoohg lqghshqghqfh d{lrp/ vwdwlqj wkdw d sod|hu*v suhihuhqfh ehwzhhq wzr orwwhulhv R dqg ^ grhv qrw fkdqjh li zh wrvv d frlq dqg jlyh klp d {hg orwwhu| o li wdlo frphv xs1 D{lrp 5 Iru dq| Rc ^c o 5 / dqg dq| @ 5 Efc o/ @R n E @o " @^ n E @o +, R " ^1 Ohw R dqg ^ eh wkh orwwhulhv ghslfwhg lq Iljxuh 51 Wkhq/ wkh orwwhulhv @R n E @o dqg @^ n E @o fdq eh ghslfwhg dv lq Iljxuh 6/ zkhuh zh wrvv d frlq ehwzhhq d {hg orwwhu| o dqg rxu orwwhulhv R dqg ^1 D{lrp 5 vwlsxodwhv wkdw wkh djhqw zrxog qrw fkdqjh klv plqg diwhu wkh frlq wrvv1 Wkhuhiruh/ rxu d{lrp fdq eh wdnhq dv dq d{lrp ri g|qdplf frqvlvwhqf| lq wklv vhqvh1 Wkh wklug frqglwlrq lv sxuho| whfkqlfdo/ dqg fdoohg frqwlqxlw| d{lrp1 Lw vwdwhv wkdw wkhuh duh qr lqqlwho| jrrg ru lqqlwho| edg sul}hv1 D{lrp 6 Iru dq| Rc ^c o 5 / li R " o/ wkhq wkhuh h{lvw @c K 5 Efc vxfk wkdw @R n E @o " ^ " KR n E oo1 4
Li ] zhuh d frqwlqxxp/ olnh U/ zh zrxog frpsxwh wkh h{shfwhg xwlolw| ri s e|
6
U
x+},s+},g}1
( ^
( R
Iljxuh 5= Wzr orwwhulhv
( R a a a @ a a ( % % @ % % %o
@R n E @o
^ ( a a a @ a
( a %
% @ % % %o
@^ n E @o Iljxuh 6= Wzr frpsrxqg orwwhulhv
7
RE52
% % % % q R % , % % k R % % ^ , % a% a % a ^ % a % a % a % a % a % a % a %
B 5f
! RE5
Iljxuh 7= Lqglhuhqfh fxuyhv rq wkh vsdfh ri orwwhulhv D{lrpv 5 dqg 6 lpso| wkdw/ jlyhq dq| Rc ^c o 5 dqg dq| @ 5 dfc o/ li R q ^/ wkhq @R n E @ o q @^ n E @o
+5,
Wklv kdv wzr lpsolfdwlrqv= 41 Wkh lqglhuhqfh fxuyhv rq wkh orwwhulhv duh vwudljkw olqhv1 51 Wkh lqglhuhqfh fxuyhv/ zklfk duh vwudljkw olqhv/ duh sdudooho wr hdfk rwkhu1 Wr looxvwudwh wkhvh idfwv/ frqvlghu wkuhh sul}hv 5f c 5 / dqg 52 / zkhuh 52 " 5 " 5f 1 D orwwhu| R fdq eh ghslfwhg rq d sodqh e| wdnlqj R E5 dv wkh uvw frruglqdwh +rq wkh krul}rqwdo d{lv,/ dqg R E52 dv wkh vhfrqg frruglqdwh +rq wkh yhuwlfdo d{lv,1 R E5f lv R E5 R E52 1
^Vhh Iljxuh 7 iru wkh looxvwudwlrq1` Jlyhq dq| wzr orwwhulhv R
dqg ^/ wkh frqyh{ frpelqdwlrqv @R n E @ ^ zlwk @ 5 dfc o irup wkh olqh vhjphqw frqqhfwlqj R wr ^1 Qrz/ wdnlqj o ' ^/ zh fdq ghgxfh iurp +5, wkdw/ li R q ^/ wkhq 8
@R n E @ ^ q @^ n E @^ ' ^ iru hdfk @ 5 dfc o1 Wkdw wklv/ wkh olqh vhjphqw frqqhfwlqj R wr ^ lv dq lqglhuhqfh fxuyh1 Pruhryhu/ li wkh olqhv , dqg , duh sdudooho/
wkhq k*q ' m^ m * m^m/ zkhuh m^m dqg m^ m duh wkh glvwdqfhv ri ^ dqg ^ wr wkh ruljlq/
uhvshfwlyho|1 Khqfh/ wdnlqj @ ' k*q/ zh frpsxwh wkdw R ' @R n E @ B 5f dqg ^ '
@^ n E @ B 5f / zkhuh B 5f lv wkh orwwhu| dw wkh ruljlq/ dqg jlyhv 5f zlwk suredelolw| 41 Wkhuhiruh/ e| +5,/ li , lv dq lqglhuhqfh fxuyh/ , lv dovr dq lqglhuhqfh fxuyh/ vkrzlqj
wkdw wkh lqglhuhqfh fxuyhv duh sdudooho1 Olqh , fdq eh ghqhg e| htxdwlrq R E5 n 2 R E52 ' S iru vrph c 2 c S 5 U1 Vlqfh , lv sdudooho wr ,/ wkhq , fdq dovr eh ghqhg e| htxdwlrq R E5 n 2 R E52 ' S iru vrph
S 1 Vlqfh wkh lqglhuhqfh fxuyhv duh ghqhg e| htxdolw| R E5 n 2 R E52 ' S iru ydulrxv
ydoxhv ri S/ wkh suhihuhqfhv duh uhsuhvhqwhg e| L ER ' f n R E5 n 2 R E52 E5f RE5f n E5 R E5 n E52 RE52 c zkhuh E5f ' fc E5 ' c E52 ' 2 c jlylqj wkh ghvluhg uhsuhvhqwdwlrq1 Wklv lv wuxh lq jhqhudo/ dv vwdwhg lq wkh qh{w wkhruhp= Wkhruhp 5 D uhodwlrq rq fdq eh uhsuhvhqwhg e| d yrq Qhxpdqq0Prujhqvwhuq xwlolw| ixqfwlrq G ~ $ - dv lq +4, li dqg rqo| li vdwlvhv D{lrpv 4061 Pruhryhu/ dqg uhsuhvhqw wkh vdph suhihuhqfh uhodwlrq li dqg rqo| li ' @ n K iru vrph @ : f dqg K 5 U1 E| wkh odvw vwdwhphqw lq rxu wkhruhp/ wklv uhsuhvhqwdwlrq lv xqltxh xs wr d!qh wudqvirupdwlrqv1 Wkdw lv/ dq djhqw*v suhihuhqfhv gr qrw fkdqjh zkhq zh fkdqjh klv yrq Qhxpdqq0Prujhqvwhuq +YQP, xwlolw| ixqfwlrq e| pxowlso|lqj lw zlwk d srvlwlyh qxpehu/ ru dgglqj d frqvwdqw wr lw> exw wkh| gr fkdqjh zkhq zh wudqvirup lw wkurxjk d qrq0olqhdu wudqvirupdwlrq1 Lq wklv vhqvh/ wklv uhsuhvhqwdwlrq lv fduglqdo1 Uhfdoo wkdw/ lq ruglqdo uhsuhvhqwdwlrq/ wkh suhihuhqfhv zrxogq*w fkdqjh hyhq li wkh wudqvirupdwlrq 9
zhuh qrq0olqhdu/ vr orqj dv lw zdv lqfuhdvlqj1 Iru lqvwdqfh/ xqghu fhuwdlqw|/ '
s
dqg
zrxog uhsuhvhqw wkh vdph suhihuhqfh uhodwlrq/ zkloh +zkhq wkhuh lv xqfhuwdlqw|, wkh s YQP xwlolw| ixqfwlrq ' uhsuhvhqwv d yhu| glhuhqw vhw ri suhihuhqfhv rq wkh orwwhulhv wkdq wkrvh duh uhsuhvhqwhg e| 1 Ehfdxvh/ lq fduglqdo uhsuhvhqwdwlrq/ wkh fxuydwxuh ri wkh ixqfwlrq dovr pdwwhuv/ phdvxulqj wkh djhqw*v dwwlwxghv wrzdugv ulvn1
6
Dwwlwxghv Wrzdugv Ulvn
Vxssrvh lqglylgxdo D kdv xwlolw| ixqfwlrq 1 Krz gr zh ghwhuplqh zkhwkhu kh glvolnhv ulvn ru qrwB Wkh dqvzhu olhv lq wkh fduglqdolw| ri wkh ixqfwlrq Ohw xv uvw ghqh d idlu jdpeoh/ dv d orwwhu| wkdw kdv h{shfwhg ydoxh htxdo wr 31 Iru lqvwdqfh/ orwwhu| 5 ehorz lv d idlu jdpeoh li dqg rqo| li R% n E R+ ' f
x p Lottery 2 1-p
y
Zh ghqh dq djhqw dv Ulvn0Qhxwudo li dqg rqo| li kh lv lqglhuhqw ehwzhhq dffhswlqj dqg uhmhfwlqj doo idlu jdpeohv1 Wkxv/ dq djhqw zlwk xwlolw| ixqfwlrq lv ulvn qhxwudo li dqg rqo| li .EEorwwhu| 5 ' RE% n E RE+ ' Ef iru doo R/ %/ dqg +1 Wklv fdq rqo| eh wuxh iru doo R/ %/ dqg + li dqg rqo| li wkh djhqw lv pd{lpl}lqj wkh h{shfwhg ydoxh/ wkdw lv/ E% ' @% n K1 Wkhuhiruh/ zh qhhg wkh xwlolw| ixqfwlrq wr eh olqhdu1 Wkhuhiruh/ dq djhqw lv ulvn0qhxwudo li dqg rqo| li kh kdv d olqhdu Yrq0Qhxpdqq0 Prujhqvwhuq xwlolw| ixqfwlrq1 :
Dq djhqw lv vwulfwo| ulvn0dyhuvh li dqg rqo| li kh uhmhfwv doo idlu jdpeohv= .EEorwwhu| 5 Ef RE% n E RE+ ER% n E R+ Ef Qrz/ uhfdoo wkdw d ixqfwlrq }E lv vwulfwo| frqfdyh li dqg rqo| li zh kdyh }Eb% n E b+ : b}E% n E b}E+ iru doo b 5 Efc 1 Wkhuhiruh/ vwulfw ulvn0dyhuvlrq lv htxlydohqw wr kdylqj d vwulfwo| frqfdyh xwlolw| ixqfwlrq1 Zh zloo fdoo dq djhqw ulvn0dyhuvh l kh kdv d frqfdyh xwlolw| ixqfwlrq/ l1h1/ Eb% n E b+ : bE% n E bE+ iru hdfk %/ +/ dqg b1 Vlploduo|/ dq djhqw lv vdlg wr eh +vwulfwo|, ulvn vhhnlqj l kh kdv d +vwulfwo|, frqyh{ xwlolw| ixqfwlrq1 Frqvlghu Iljxuh 81 Wkh frug DE lv wkh xwlolw| glhuhqfh wkdw wklv ulvn0dyhuvh djhqw zrxog orvh e| wdnlqj wkh jdpeoh wkdw jlyhv ` zlwk suredelolw| R dqg `2 zlwk suredelolw| R1 EF lv wkh pd{lpxp dprxqw wkdw vkh zrxog sd| lq rughu wr dyrlg wr wdnh wkh jdpeoh1 Vxssrvh `2 lv khu zhdowk ohyho dqg `2 ` lv wkh ydoxh ri khu krxvh dqg s lv wkh suredelolw| wkdw wkh krxvh exuqv grzq1 Wkxv lq wkh devhqvh ri uh lqvxudqfh wklv lqglylgxdo zloo kdyh xwlolw| jlyhq e| .L +jdpeoh,/ zklfk lv orzhu wkdq wkh xwlolw| ri wkh h{shfwhg ydoxh ri wkh jdpeoh1
614
Ulvn vkdulqj
Frqvlghu dq djhqw zlwk xwlolw| ixqfwlrq G % :$
s
%1 Kh kdv d +ulvn|, dvvhw wkdw jlyhv
'433 zlwk suredelolw| 425 dqg jlyhv '3 zlwk suredelolw| 4251 Wkh h{shfwhg xwlolw| ri s s rxu djhqw iurp wklv dvvhw lv .Lf ' 2 f n 2 ff ' D1 Qrz frqvlghu dqrwkhu djhqw zkr lv lghqwlfdo wr rxu djhqw/ lq wkh vhqvh wkdw kh kdv wkh vdph xwlolw| ixqfwlrq dqg dq dvvhw wkdw sd|v '433 zlwk suredelolw| 425 dqg jlyhv '3 zlwk suredelolw| 4251 Zh dvvxph wkurxjkrxw wkdw zkdw dq dvvhw sd|v lv vwdwlvwlfdoo| lqghshqghqw iurp zkdw wkh rwkhu dvvhw sd|v1 Lpdjlqh wkdw rxu djhqwv irup d pxwxdo ixqg e| srrolqj wkhlu dvvhwv/ hdfk djhqw rzqlqj kdoi ri wkh pxwxdo ixqg1 Wklv pxwxdo ixqg jlyhv '533 wkh suredelolw| 427 +zkhq erwk dvvhwv |lhog kljk glylghqgv,/ '433 zlwk suredelolw| 425 +zkhq rqo| rqh rq wkh dvvhwv jlyhv kljk glylghqg,/ dqg jlyhv '3 zlwk suredelolw| 427 +zkhq erwk dvvhwv |lhog orz glylghqgv,1 Wkxv/ hdfk djhqw*v vkduh lq wkh pxwxdo ixqg |lhogv '433 zlwk suredelolw| ;
EU u
A u(pW1+(1- p)W2) C EU(Gamble)
B
W1
pW1+(1-p)W2
Iljxuh 8=
<
W2
427/ '83 zlwk suredelolw| 425/ dqg '3 zlwk suredelolw| 4271 Wkhuhiruh/ klv h{shfwhg s s s xwlolw| iurp wkh vkduh lq wklv pxwxdo ixqg lv .L7 ' e ff n 2 Df n e f ' Sf DD1 Wklv lv fohduo| odujhu wkdq klv h{shfwhg xwlolw| iurp klv rzq dvvhw/ wkhuhiruh rxu djhqwv jdlq iurp vkdulqj wkh ulvn lq wkhlu dvvhwv1
615
Lqvxudqfh
Lpdjlqh d zruog zkhuh lq dgglwlrq wr rqh ri wkh djhqwv deryh +zlwk xwlolw| ixqfwlrq s G % :$ % dqg d ulvn| dvvhw wkdw jlyhv '433 zlwk suredelolw| 425 dqg jlyhv '3 zlwk suredelolw| 425,/ zh kdyh d ulvn0qhxwudo djhqw zlwk orwv ri prqh|1 Zh fdoo wklv qhz djhqw wkh lqvxudqfh frpsdq|1 Wkh lqvxudqfh frpsdq| fdq lqvxuh wkh djhqw*v dvvhw/ e| jlylqj klp '433 li klv dvvhw kdsshqv wr |lhog '31 Krz pxfk suhplxp/ / rxu ulvn dyhuvh djhqw zrxog eh zloolqj wr sd| wr jhw wklv lqvxudqfhB ^D suhplxp lv dq dprxqw wkdw lv wr eh sdlg wr lqvxudqfh frpsdq| uhjdugohvv ri wkh rxwfrph1` Li wkh ulvn0dyhuvh djhqw sd|v suhplxp dqg ex|v wkh lqvxudqfh klv zhdowk zloo eh mff iru vxuh1 Li kh grhv qrw/ wkhq klv zhdowk zloo eh '433 zlwk suredelolw| 425 dqg '3 zlwk suredelolw| 4251 Wkhuhiruh/ kh zloo eh zloolqj wr sd| lq rughu wr jhw wkh lqvxudqfh l l1h1/ l
Eff Ef n Eff 2 2 s
ff
s s fn ff 2 2
l ff 2D ' .D Rq wkh rwkhu kdqg/ li wkh lqvxudqfh frpsdq| vhoov wkh lqvxudqfh iru suhplxp / lw zloo jhw iru vxuh dqg sd| '433 zlwk suredelolw| 4251 Wkhuhiruh lw lv zloolqj wr wdnh wkh ghdo l
ff ' Df 2 Wkhuhiruh/ erwk sduwlhv zrxog jdlq/ li wkh lqvxudqfh frpsdq| lqvxuhv wkh dvvhw iru d suhplxp 5 EDfc .D/ d ghdo erwk sduwlhv duh zloolqj wr dffhsw1 H{huflvh 6 Qrz frqvlghu wkh fdvh wkdw zh kdyh wzr lghqwlfdo ulvn0dyhuvh djhqwv dv deryh/ dqg wkh lqvxudqfh frpsdq|1 Lqvxudqfh frpsdq| lv wr fkdujh wkh vdph suhplxp 43
iru hdfk djhqw/ dqg wkh ulvn0dyhuvh djhqwv kdyh dq rswlrq ri iruplqj d pxwxdo ixqg1 Zkdw lv wkh udqjh ri suhplxpv wkdw duh dffhswdeoh wr doo sduwlhvB
44
47145 Jdph Wkhru| Ohfwxuh Qrwhv Ohfwxuhv 609 Pxkdphw \logl}| Lq wkhvh ohfwxuhv/ zh zloo irupdoo| ghqh wkh jdphv dqg vroxwlrq frqfhswv/ dqg glvfxvv wkh dvvxpswlrqv ehklqg wkhvh vroxwlrq frqfhswv1 Lq suhylrxv ohfwxuhv zh ghvfulehg d wkhru| ri ghflvlrq0pdnlqj xqghu xqfhuwdlqw|1 Wkh vhfrqg lqjuhglhqw ri wkh jdphv lv zkdw hdfk sod|hu nqrzv1 Wkh nqrzohgjh lv ghqhg dv dq rshudwru rq wkh sursrvlwlrqv vdwlvi|lqj wkh iroorzlqj surshuwlhv= 41 li L nqrz [/ [ pxvw eh wuxh> 51 li L nqrz [/ L nqrz wkdw L nqrz [> 61 li L grq*w nqrz [/ L nqrz wkdw L grq*w nqrz [> 71 li L nqrz vrphwklqj/ L nqrz doo lwv orjlfdo lpsolfdwlrqv1 Zh vd| wkdw [ lv frpprq nqrzohgjh li hyhu|rqh nqrzv [/ dqg hyhu|rqh nqrzv wkdw hyhu|rqh nqrzv [/ dqg hyhu|rqh nqrzv wkdw hyhu|rqh nqrzv wkdw hyhu|rqh nqrzv [/ dg lqqlwxp1
4
Uhsuhvhqwdwlrqv ri jdphv
Wkh jdphv fdq eh uhsuhvhqwhg lq wzr irupv= Wkhvh
qrwhv duh vrphzkdw lqfrpsohwh wkh| gr qrw lqfoxgh vrph ri wkh wrslfv fryhuhg lq wkh
fodvv1 L zloo dgg wkh qrwhv iru wkhvh wrslfv vrrq1 | Vrph sduwv ri wkhvh qrwhv duh edvhg rq wkh qrwhv e| Surihvvru Gdurq Dfhprjox/ zkr wdxjkw wklv frxuvh ehiruh1
4
41 Wkh qrupdo +vwudwhjlf, irup/ 51 Wkh h{whqvlyh irup1
414
Qrupdo irup
Ghqlwlrq 4 +Qrupdo irup, Dq q0sod|hu jdph lv dq| olvw C ' E7 c c 7? ( c c ? / zkhuh/ iru hdfk 5 ' ic c ?j/ 7 lv wkh vhw ri doo vwudwhjlhv wkdw duh dydlodeoh wr sod|hu / dqg G 7 7? $ U lv sod|hu *v yrq Qhxpdqq0Prujhqvwhuq xwlolw| ixqfwlrq1 Qrwlfh wkdw d sod|hu*v xwlolw| ghshqgv qrw rqo| rq klv rzq vwudwhj| exw dovr rq wkh vwudwhjlhv sod|hg e| rwkhu sod|huv1 Pruhryhu/ lv d yrq Qhxpdqq0Prujhqvwhuq xwlolw| ixqfwlrq vr wkdw sod|hu wulhv wr pd{lpl}h wkh h{shfwhg ydoxh ri +zkhuh wkh h{shfwhg ydoxhv duh frpsxwhg zlwk uhvshfw wr klv rzq eholhiv,1 Zh zloo vd| wkdw sod|hu lv udwlrqdo l kh wulhv wr pd{lpl}h wkh h{shfwhg ydoxh ri +jlyhq klv eholhiv,14 Lw lv dovr dvvxphg wkdw lw lv frpprq nqrzohgjh wkdw wkh sod|huv duh ' ic c ?j/ wkdw wkh vhw ri vwudwhjlhv dydlodeoh wr hdfk sod|hu lv 7 / dqg wkdw hdfk wulhv wr pd{lpl}h h{shfwhg ydoxh ri jlyhq klv eholhiv1 Zkhq wkhuh duh rqo| 5 sod|huv/ zh fdq uhsuhvhqw wkh +qrupdo irup, jdph e| d elpdwul{ +l1h1/ e| wzr pdwulfhv,= 4q5
ohiw uljkw
xs
3/5
4/4
grzq 7/4
6/5
Khuh/ Sod|hu 4 kdv vwudwhjlhv xs dqg grzq/ dqg 5 kdv wkh vwudwhjlhv ohiw dqg uljkw1 Lq hdfk er{ wkh uvw qxpehu lv 4*v sd|r dqg wkh vhfrqg rqh lv 5*v +h1j1/ Exs/ohiw ' f/ 2 Exs/ohiw ' 21,
415
H{whqvlyh irup
Wkh h{whqvlyh irup frqwdlqv doo wkh lqirupdwlrq derxw d jdph/ e| ghqlqj zkr pryhv zkhq/ zkdw hdfk sod|hu nqrzv zkhq kh pryhv/ zkdw pryhv duh dydlodeoh wr klp/ dqg 4
Zh kdyh dovr pdgh dqrwkhu yhu| vwurqj udwlrqdolw| dvvxpswlrq lq ghqlqj nqrzohgjh/ e| dvvxplqj
wkdw/ li L nqrz vrphwklqj/ wkhq L nqrz doo lwv orjlfdo frqvhtxhqfhv1
5
zkhuh hdfk pryh ohdgv wr/ hwf1/ +zkhuhdv wkh qrupdo irup lv pruh ri d cvxppdu|* uhsuh0 vhqwdwlrq,1 Zh uvw lqwurgxfh vrph irupdolvpv1 Ghqlwlrq 5 D wuhh lv d vhw ri qrghv dqg gluhfwhg hgjhv frqqhfwlqj wkhvh qrghv vxfk wkdw 41 iru hdfk qrgh/ wkhuh lv dw prvw rqh lqfrplqj hgjh> 51 iru dq| wzr qrghv/ wkhuh lv d xqltxh sdwk wkdw frqqhfw wkhvh wzr qrghv1 Lpdjlqh wkh eudqfkhv ri d wuhh dulvlqj iurp wkh wuxqn1 Iru h{dpsoh/
.
.
.
. .
. lv d wuhh1 Rq wkh rwkhu kdqg/
B
A
C
lv qrw d wuhh ehfdxvh wkhuh duh wzr dowhuqdwlyh sdwkv wkurxjk zklfk srlqw D fdq eh uhdfkhg +yld E dqg yld F,1 6
B
D C
lv qrw d wuhh hlwkhu vlqfh D dqg E duh qrw frqqhfwhg wr F dqg G1 Ghqlwlrq 6 +H{whqvlyh irup, D Jdph frqvlvwv ri d vhw ri sod|huv/ d wuhh/ dq do0 orfdwlrq ri hdfk qrgh ri wkh wuhh +h{fhsw wkh hqg qrghv, wr d sod|hu/ dq lqirupdwlrqdo sduwlwlrq/ dqg sd|rv iru hdfk sod|hu dw hdfk hqg qrgh1 Wkh vhw ri sod|huv zloo lqfoxgh wkh djhqwv wdnlqj sduw lq wkh jdph1 Krzhyhu/ lq pdq| jdphv wkhuh lv urrp iru fkdqfh/ h1j1 wkh wkurz ri glfh lq edfnjdpprq ru wkh fdug gudzv lq srnhu1 Pruh eurdgo|/ zh qhhg wr frqvlghu wkh fkdqfh zkhqhyhu wkhuh lv xqfhuwdlqw| derxw vrph uhohydqw idfw1 Wr uhsuhvhqw wkhvh srvvlelolwlhv zh lqwurgxfh d fwlrqdo sod|hu= Qdwxuh1 Wkhuh lv qr sd|r iru Qdwxuh dw hqg qrghv/ dqg hyhu| wlph d qrgh lv doorfdwhg wr Qdwxuh/ d suredelolw| glvwulexwlrq ryhu wkh eudqfkhv wkdw iroorz qhhgv wr eh vshflhg/ h1j1/ Wdlo zlwk suredelolw| ri 425 dqg Khdg zlwk suredelolw| ri 4251 Dq lqirupdwlrq vhw lv d froohfwlrq ri srlqwv +qrghv, i? c c ?& j vxfk wkdw 41 wkh vdph sod|hu lv wr pryh dw hdfk ri wkhvh qrghv> 51 wkh vdph pryhv duh dydlodeoh dw hdfk ri wkhvh qrghv1 Khuh wkh sod|hu / zkr lv wr pryh dw wkh lqirupdwlrq vhw/ lv dvxvxphg wr eh xqdeoh wr glvwlqjxlvk ehwzhhq wkh srlqwv lq wkh lqirupdwlrq vhw/ exw deoh wr glvwlqjxlvk ehwzhhq wkh srlqwv rxwvlgh wkh lqirupdwlrq vhw iurp wkrvh lq lw1 Iru lqvwdqfh/ frqvlghu wkh iroorzlqj jdph= Khuh/ Sod|hu 5 nqrzv wkdw Sod|hu 4 kdv wdnhq dfwlrq W ru E dqg qrw dfwlrq [> exw Sod|hu 5 fdqqrw nqrz iru vxuh zkhwkhu 4 kdv wdnhq W ru E1 Wkh iroorzlqj slfwxuh phdqv wkh vdph wklqj= Dq lqirupdwlrq sduwlwlrq lv dq doorfdwlrq ri hdfk qrgh ri wkh wuhh +h{fhsw wkh vwduwlqj dqg hqg0qrghv, wr dq lqirupdwlrq vhw1 7
1
x
T
B
2 L
R
L
R
Iljxuh 4=
1
x
T
B
2 L
R
L
R
Iljxuh 5= Wr vxp xs= dw dq| qrgh/ zh nqrz= zklfk sod|hu lv wr pryh/ zklfk pryhv duh dydlodeoh wr wkh sod|hu/ dqg zklfk lqirupdwlrq vhw frqwdlqv wkh qrgh/ vxppdul}lqj wkh sod|hu*v lqirupdwlrq dw wkh qrgh1 Ri frxuvh/ li wzr qrghv duh lq wkh vdph lqirupdwlrq vhw/ wkh dydlodeoh pryhv lq wkhvh qrghv pxvw eh wkh vdph/ iru rwkhuzlvh wkh sod|hu frxog glvwlqjxlvk wkh qrghv e| wkh dydlodeoh fkrlfhv1 Djdlq/ doo wkhvh duh dvvxphg wr eh frpprq nqrzohgjh1 Iru lqvwdqfh/ lq wkh jdph deryh/ sod|hu 4 nqrzv wkdw/ li sod|hu 4 wdnhv [/ sod|hu 5 zloo nqrz wklv/ exw li kh wdnhv W ru E/ sod|hu 5 zloo qrw nqrz zklfk ri wkhvh wzr dfwlrqv kdv ehhq wdnhq1 Ghqlwlrq 7 D vwudwhj| ri d sod|hu lv d frpsohwh frqwlqjhqw0sodq ghwhuplqlqj zklfk dfwlrq kh zloo wdnh dw hdfk lqirupdwlrq vhw kh lv wr pryh +lqfoxglqj wkh lqirupdwlrq vhwv 8
wkdw zloo qrw eh uhdfkhg dffruglqj wr wklv vwudwhj|,1 Ohw xv qrz frqvlghu vrph h{dpsohv= Jdph 4= Pdwfklqj Shqqlhv zlwk Shuihfw Lqirupdwlrq (-1, 1) Head
2
O
Tail
(1, -1)
Head
1 Tail
2
(1, -1)
Head
O Tail (-1, 1)
Wkh wuhh frqvlvwv ri : qrghv1
Wkh uvw rqh lv doorfdwhg wr sod|hu 4/ dqg wkh qh{w
wzr wr sod|hu 51 Wkh irxu hqg0qrghv kdyh sd|rv dwwdfkhg wr wkhp1 Vlqfh wkhuh duh wzr sod|huv/ sd|r yhfwruv kdyh wzr hohphqwv1 Wkh uvw qxpehu lv wkh sd|r ri sod|hu 4 dqg wkh vhfrqg lv wkh sd|r ri sod|hu 51 Wkhvh sd|rv duh yrq Qhxpdqq0Prujhqvwhuq xwlolwlhv vr wkdw zh fdq wdnh h{shfwdwlrqv ryhu wkhp dqg fdofxodwh h{shfwhg xwlolwlhv1 Wkh lqirupdwlrqdo sduwlwlrq lv yhu| vlpsoh> doo qrghv duh lq wkhlu rzq lqirupdwlrq vhw1 Lq rwkhu zrugv/ doo lqirupdwlrq vhwv duh vlqjohwrqv +kdyh rqo| 4 hohphqw,1 Wklv lpsolhv wkdw wkhuh lv qr xqfhuwdlqw| uhjduglqj wkh suhylrxv sod| +klvwru|, lq wkh jdph1 Dw wklv srlqw uhfdoo wkdw lq d wuhh/ hdfk qrgh lv uhdfkhg wkurxjk d xqltxh sdwk1 Wkhuhiruh/ li doo lqirupdwlrq vhwv duh vlqjohwrqv/ d sod|hu fdq frqvwuxfw wkh klvwru| ri wkh jdph shuihfwo|1 Iru lqvwdqfh lq wklv jdph/ sod|hu 5 nqrzv zkhwkhu sod|hu 4 fkrvh Khdg ru Wdlo1 Dqg sod|hu 4 nqrzv wkdw zkhq kh sod|v Khdg ru Wdlo/ Sod|hu 5 zloo nqrz zkdw sod|hu 4 kdv sod|hg1 +Jdphv lq zklfk doo lqirupdwlrq vhwv duh vlqjohwrqv duh fdoohg jdphv ri shuihfw lqirupdwlrq1, Lq wklv jdph/ wkh vhw ri vwudwhjlhv iru sod|hu 4 lv ~Khdg/ Wdlo1 D vwudwhj| ri sod|hu 5 ghwhuplqhv zkdw wr gr ghshqglqj rq zkdw sod|hu 4 grhv1 Vr/ klv vwudwhjlhv duh= 9
KK @ Khdg li 4 sod|v Khdg/ dqg Khdg li 4 sod|v Wdlo> KW @ Khdg li 4 sod|v Khdg/ dqg Wdlo li 4 sod|v Wdlo> WK @ Wdlo li 4 sod|v Khdg/ dqg Khdg li 4 sod|v Wdlo> WW @ Wdlo li 4 sod|v Khdg/ dqg Wdlo li 4 sod|v Wdlo1 Zkdw duh wkh sd|rv jhqhudwhg e| hdfk vwudwhj| sdluB Li sod|hu 4 sod|v Khdg dqg 5 sod|v KK/ wkhq wkh rxwfrph lv ^4 fkrrvhv Khdg dqg 5 fkrrvhv Khdg` dqg wkxv wkh sd|rv duh +04/4,1 Li sod|hu 4 sod|v Khdg dqg 5 sod|v KW/ wkh rxwfrph lv wkh vdph/ khqfh wkh sd|rv duh +04/4,1 Li 4 sod|v Wdlo dqg 5 sod|v KW/ wkhq wkh rxwfrph lv ^4 fkrrvhv Wdlo dqg 5 fkrrvhv Wdlo` dqg wkxv wkh sd|rv duh rqfh djdlq +04/4,1 Krzhyhu/ li 4 sod|v Wdlo dqg 5 sod|v KK/ wkhq wkh rxwfrph lv ^4 fkrrvhv Wdlo dqg 5 fkrrvhv Khdg` dqg wkxv wkh sd|rv duh +4/04,1 Rqh fdq frpsxwh wkh sd|rv iru wkh rwkhu vwudwhj| sdluv vlploduo|1 Wkhuhiruh/ wkh qrupdo ru wkh vwudwhjlf irup jdph fruuhvsrqglqj wr wklv jdph lv KK
KW
WK
WW
Khdg 04/4 04/4 4/04 4/04 Wdlo
4/04 04/4 4/04 04/4
Lqirupdwlrq vhwv duh yhu| lpsruwdqw$ Wr vhh wklv/ frqvlghu wkh iroorzlqj jdph1
Jdph 5= Pdwfklqj Shqqlhv zlwk Lpshuihfw Lqirupdwlrq (-1, 1) Head
(1, -1)
Tail
Head
1 (1, -1) Head
Tail
2 Tail
(-1, 1)
:
Jdphv 4 dqg 5 dsshdu yhu| vlplodu exw lq idfw wkh| fruuhvsrqg wr wzr yhu| glhuhqw vlwxdwlrqv1 Lq Jdph 5/ zkhq vkh pryhv/ sod|hu 5 grhv qrw nqrz zkhwkhu 4 fkrvh Khdg ru Wdlo1 Wklv lv d jdph ri lpshuihfw lqirupdwlrq +Wkdw lv/ vrph ri wkh lqirupdwlrq vhwv frqwdlq pruh wkdq rqh qrgh1, Wkh vwudwhjlhv iru sod|hu 4 duh djdlq Khdg dqg Wdlo1 Wklv wlph sod|hu 5 kdv dovr rqo| wzr vwudwhjlhv= Khdg dqg Wdlo +dv kh grhv qrw nqrz zkdw 4 kdv sod|hg,1 Wkh qrupdo irup uhsuhvhqwdwlrq iru wklv jdph zloo eh= 4q5
Khdg Wdlo
Khdg 04/4
4/04
Wdlo
04/4
4/04
Jdph 6= D Jdph zlwk Qdwxuh= (5, 0) Left 1
O Head 1/2
Right
(2, 2)
Nature (3, 3) Left Tail 1/2
2
O Right (0, -5)
Khuh/ zh wrvv d idlu frlq/ zkhuh wkh suredelolw| ri Khdg lv 4251 Li Khdg frphv xs/ Sod|hu 4 fkrrvhv ehwzhhq Ohiw dqg Uljkw> li Wdlo frphv xs/ Sod|hu 5 fkrrvhv ehwzhhq Ohiw dqg Uljkw1 H{huflvh 8 Zkdw lv wkh qrupdo0irup uhsuhvhqwdwlrq iru wkh iroorzlqj jdph=
1
A
2
D
1 d
(4,4)
(5,2)
(3,3) ;
a
(1,-5)
Fdq |rx qg dqrwkhu h{whqvlyh0irup jdph wkdw kdv wkh vdph qrupdo0irup uhsuhvhq0 wdwlrqB ^Klqw= Iru hdfk h{whqvlyh0irup jdph/ wkhuh lv rqo| rqh qrupdo0irup uhsuhvhqwdwlrq +xs wr d uhqdplqj ri wkh vwudwhjlhv,/ exw d qrupdo0irup jdph w|slfdoo| kdv pruh wkdq rqh h{whqvlyh0irup uhsuhvhqwdwlrq1` Lq pdq| fdvhv d sod|hu pd| qrw eh deoh wr jxhvv h{dfwo| zklfk vwudwhjlhv wkh rwkhu sod|huv sod|1 Lq rughu wr fryhu wkhvh vlwxdwlrqv zh lqwurgxfh wkh pl{hg vwudwhjlhv= Ghqlwlrq 9 D pl{hg vwudwhj| ri d sod|hu lv d suredelolw| glvwulexwlrq ryhu wkh vhw ri klv vwudwhjlhv1 Li sod|hu kdv vwudwhjlhv 7 ' ir c r2 c c r& j/ wkhq d pl{hg vwudwhj| j iru sod|hu lv d ixqfwlrq rq 7 vxfk wkdw f j Er dqg j Er n j Er2 n n j Er& ' 1 Khuh j uhsuhvhqwv rwkhu sod|huv* eholhiv derxw zklfk vwudwhj| zrxog sod|1
5
Krz wr sod|B
Zh zloo qrz ghvfuleh wkh prvw frpprq vroxwlrq frqfhswv iru qrupdo0irup jdphv1 Zh zloo uvw ghvfuleh wkh frqfhsw ri grplqdqw vwudwhj| htxloleulxp/ zklfk lv lpsolhg e| wkh udwlrqdolw| ri wkh sod|huv1 Zh wkhq glvfxvv udwlrqdol}delolw| zklfk fruuhvsrqgv wr wkh frpprq nqrzohgjh ri udwlrqdolw|/ dqg qdoo| zh glvfxvv Qdvk Htxloleulxp/ zklfk lv uhodwhg wr wkh pxwxdo nqrzohgjh ri sod|huv* frqmhfwxuhv derxw wkh rwkhu sod|huv* dfwlrqv1
514
Grplqdqw0vwudwhj| htxloleulxp
Ohw xv xvh wkh qrwdwlrq r wr phdq wkh olvw ri vwudwhjlhv r sod|hg e| doo wkh sod|huv rwkhu wkdq / l1h1/ 3
r ' Er c r c rn c r? 3
3
Ghqlwlrq : D vwudwhj| r vwulfwo| grplqdwhv r li dqg rqo| li W
Er c r : Er c r c ;r 5 7 W
3
3
<
3
3
Wkdw lv/ qr pdwwhu zkdw wkh rwkhu sod|huv sod|/ sod|lqj r lv vwulfwo| ehwwhu wkdq W
sod|lqj r iru sod|hu 1 Lq wkdw fdvh/ li lv udwlrqdo/ kh zrxog qhyhu sod| wkh vwulfwo| grplqdwhg vwudwhj| r 15 D pl{hg vwudwhj| j grplqdwhv d vwudwhj| r lq d vlplodu zd|= j vwulfwo| grplqdwhv r li dqg rqo| li j Er Er c r n j Er2 Er2 c r n j Er& Er& c r : Er c r c ;r 5 7 3
3
3
3
3
3
D udwlrqdo sod|hu zloo qhyhu sod| d vwudwhj| r l r lv grplqdwhg e| d +pl{hg ru sxuh, vwudwhj|1 Vlploduo|/ zh fdq ghqh zhdn grplqdqfh1 Ghqlwlrq ; D vwudwhj| r zhdno| grplqdwhv r li dqg rqo| li W
Er c r Er c r c ;r 5 7 W
3
3
3
3
dqg Er c r : Er c r W
3
3
iru vrph r 5 7 1 3
3
Wkdw lv/ qr pdwwhu zkdw wkh rwkhu sod|huv sod|/ sod|lqj r lv dw ohdvw dv jrrg dv sod|lqj r / dqg wkhuh duh vrph frqwlqjhqflhv lq zklfk sod|lqj r lv vwulfwo| ehwwhu wkdq W
W
r 1 Lq wkdw fdvh/ li udwlrqdo/ zrxog sod| r rqo| li kh eholhyhv wkdw wkhvh frqwlqjhqflhv
zloo qhyhu rffxu1 Li kh lv fdxwlrxv lq wkh vhqvh wkdw kh dvvljqv vrph srvlwlyh suredelolw| iru hdfk frqwlqjhqf|/ kh zloo qrw sod| r 1 Ghqlwlrq < D vwudwhj| r_ lv d +zhdno|, grplqdqw vwudwhj| iru sod|hu l li dqg rqo| li r_
zhdno| grplqdwhv doo wkh rwkhu vwudwhjlhv ri sod|hu 1 D vwudwhj| r_ lv d vwulfwo| grplqdqw
vwudwhj| iru sod|hu li dqg rqo| li r_ vwulfwo| grplqdwhv doo wkh rwkhu vwudwhjlhv ri sod|hu 1
Li lv udwlrqdo/ dqg kdv d vwulfwo| grplqdqw vwudwhj| r_ / wkhq kh zloo qrw sod| dq| rwkhu vwudwhj|1 Li kh kdv d zhdno| grplqdqw vwudwhj| dqg fdxwlrxv/ wkhq kh zloo qrw sod| rwkhu vwudwhjlhv1 5
Wkdw lv/ wkhuh lv qr eholhi xqghu zklfk kh zrxog sod| vl 1 Fdq |rx suryh wklvB
43
H{dpsoh= 4q5
zrun kdug vklun
kluh
5/5
4/6
grq*w kluh
3/3
3/3
Lq wklv jdph/ sod|hu 4 +up, kdv d vwulfwo| grplqdqw vwudwhj| zklfk lv wr kluh1 Sod|hu 5 kdv rqo| d zhdno| grplqdwhg vwudwhj|1 Li sod|huv duh udwlrqdo/ dqg lq dgglwlrq sod|hu 5 lv fdxwlrxv/ wkhq zh h{shfw sod|hu 4 wr kluh/ dqg sod|hu 5 wr vklun=6 4q5
zrun kdug vklun
kluh
5/5 ',
4/6
grq*w kluh 3/3 -
3/3 -
Ghqlwlrq 43 D vwudwhj| suroh r_ ' Er_ c r_2 c r_ lv d grplqdqw vwudwhj| htxloleulxp/ li dqg rqo| li r_ lv d grplqdqw vwudwhj| iru hdfk sod|hu 1 Dv dq h{dpsoh frqvlghu wkh Sulvrqhu*v Glohppd1 4q5
frqihvv grq*w frqihvv
frqihvv
08/08
3/09
grq*w frqihvv
09/3
04/04
Frqihvv lv d vwulfwo| grplqdqw vwudwhj| iru erwk sod|huv/ wkhuhiruh +frqihvv/ frq0 ihvv, lv d grplqdqw vwudwhj| htxloleulxp1 4q5
frqihvv grq*w frqihvv
frqihvv
08/08
grq*w frqihvv 09/3 -
+' 3/09 +'04/04 -
^Q1E1= Dq htxloleulxp lv d vwudwhj| frpelqdwlrq/ qrw wkh rxwfrph +08/08,/ wklv lv vlpso| wkh htxloleulxp rxwfrph`1 Wklv jdph dovr looxvwudwhv dqrwkhu lpsruwdqw srlqw1 Dowkrxjk wkhuh lv dq rxwfrph wkdw lv ehwwhu iru erwk sod|huv/ grq*w frqihvv/ grq*w frqihvv/ wkh| erwk hqg xs frqihvvlqj1 Wkdw lv/ lqglylgxdov* pd{lpl}dwlrq pd| |lhog d Sduhwr grplqdwhg rxwfrph/ 08/ 08/ udwkhu 6
Wklv lv wkh rqo| rxwfrph/ surylghg wkdw hdfk sod|hu lv udwlrqdo dqg sod|hu 5 nqrzv wkdw sod|hu 4 lv
udwlrqdo1 Fdq |rx vkrz wklvB
44
wkdq 04/041 Wkdw lv zk| wklv w|sh ri dqdo|vlv lv riwhq fdoohg qrq0frrshudwlyh jdph wkh0 ru| dv rssrvhg wr fr0rshudwlyh jdph wkhru|/ zklfk zrxog slfn wkh pxwxdoo| ehqhfldo rxwfrph khuh1 Jhqhudoo|/ wkhuh lv qr suhvxpswlrq wkdw wkh htxloleulxp rxwfrph zloo fruuhvsrqg wr zkdw lv ehvw iru wkh vrflhw| +ru wkh sod|huv,1 Wkhuh zloo eh pdq| pdunhw idloxuhv lq vlwxdwlrqv ri frq lfw/ dqg vlwxdwlrqv ri frq lfw duh wkh rqhv jdph wkhru| irfxvhv rq1 H{dpsoh= +vhfrqg0sulfh dxfwlrq, Zh kdyh dq remhfw wr eh vrog wkurxjk dq dxfwlrq1 Wkhuh duh wzr ex|huv1 Wkh ydoxh ri wkh remhfw iru dq| ex|hu lv / zklfk lv nqrzq e| wkh ex|hu 1 Hdfk ex|hu vxeplwv d elg K lq d vhdohg hqyhorsh/ vlpxowdqhrxvo|1 Wkhq/ zh rshq wkh hqyhorshv/ wkh djhqw zkr vxeplwv wkh kljkhvw elg W
KW ' 4@ iK c K2 j jhwv wkh remhfw dqg sd|v wkh vhfrqg kljkhvw elg +zklfk lv K zlwk 9' ,1 +Li wzr ru pruh ex|huv vxeplw wkh kljkhvw elg/ zh vhohfw rqh ri wkhp e| d frlq wrvv1, W
Irupdoo| wkh jdph lv ghqhg e| wkh sod|hu vhw ' ic 2j/ wkh vwudwhjlhv K / dqg wkh sd|rv EK c K2 '
; A A ? A A =
K
li K : K
E K *2 li K ' K f li K K
zkhuh 9' 1 Lq wklv jdph/ elgglqj klv wuxh ydoxdwlrq lv d grplqdqw vwudwhj| iru hdfk sod|hu 1 Wr vhh wklv/ frqvlghu vwudwhj| ri elgglqj vrph rwkhu ydoxh K 9' iru dq| 1 Zh zdqw wr
vkrz wkdw K lv zhdno| grplqdwhg e| elgglqj 1 Frqvlghu wkh fdvh K 1 Li wkh rwkhu
sod|hu elgv vrph K K / sod|hu zrxog jhw K xqghu erwk vwudwhjlhv K dqg 1 Li wkh rwkhu sod|hu elgv vrph K / sod|hu zrxog jhw f xqghu erwk vwudwhjlhv K dqg 1
Exw li K ' K / elgglqj |lhogv K : f/ zkloh K |lhogv rqo| E K *21 Olnhzlvh/ li
K K / elgglqj |lhogv K : f/ zkloh K |lhogv rqo| f1 Wkhuhiruh/ elgglqj grplqdwhv K 1 Wkh fdvh K : lv vlplodu/ h{fhsw iru zkhq K : K : / elgglqj |lhogv f/ zkloh K |lhogv qhjdwlyh sd|r K f1 Wkhuhiruh/ elgglqj lv grplqdqw vwudwhj|
iru hdfk sod|hu 1
H{huflvh 44 H{whqg wklv wr wkh ?0ex|hu fdvh1 45
Zkhq lw h{lvwv/ wkh grplqdqw vwudwhj| htxloleulxp kdv dq reylrxv dwwudfwlrq1
Lq
wkdw fdvh/ wkh udwlrqdolw| ri sod|huv lpsolhv wkdw wkh grplqdqw vwudwhj| htxloleulxp zloo eh sod|hg1 Krzhyhu/ lw grhv qrw h{lvw lq jhqhudo1 Wkh iroorzlqj jdph/ wkh Edwwoh ri wkh Vh{hv/ lv vxssrvhg wr uhsuhvhqw d wlplg uvw gdwh +wkrxjk wkhuh duh rwkhu jdphv iurp dqlpdo ehkdylru wkdw ghvhuyh wklv wlwoh pxfk pruh,1
Erwk wkh pdq dqg wkh zrpdq
zdqw wr eh wrjhwkhu udwkhu wkdq jr dorqh1 Krzhyhu/ ehlqj wlplg/ wkh| gr qrw pdnh d up gdwh1 Hdfk lv krslqj wr qg wkh rwkhu hlwkhu dw wkh rshud ru wkh edoohw1 Zkloh wkh zrpdq suhihuv wkh edoohw/ wkh pdq suhihuv wkh rshud1 PdqqZrpdq rshud edoohw rshud
4/7
3/3
edoohw
3/3
7/4
Fohduo|/ qr sod|hu kdv d grplqdqw vwudwhj|=
515
PdqqZrpdq rshud
edoohw
rshud
4/7
+' . 3/3
edoohw
3/3 - ',
7/4
Udwlrqdol}delolw| ru Lwhudwlyh holplqdwlrq ri vwulfwo| grpl0 qdwhg vwudwhjlhv
Frqvlghu wkh iroorzlqj H{whqghg Sulvrqhu*v Glohppd jdph= 4q5
frqihvv grq*w frqihvv uxq dzd|
frqihvv
08/08
3/09
08/043
grq*w frqihvv
09/3
04/04
3/043
043/09
043/3
043/043
uxq dzd|
Lq wklv jdph/ qr djhqw kdv dq| grplqdqw vwudwhj|/ exw wkhuh h{lvwv d grplqdwhg vwudwhj|= uxq dzd| lv vwulfwo| grplqdwhg e| frqihvv +erwk iru 4 dqg 5,1
Qrz
frqvlghu 5*v sureohp1 Vkh nqrzv 4 lv udwlrqdo/ wkhuhiruh vkh fdq suhglfw wkdw 4 zloo qrw fkrrvh uxq dzd|/ wkxv vkh fdq holplqdwh uxq dzd| dqg frqvlghu wkh vpdoohu jdph
46
4q5
frqihvv grq*w frqihvv uxq dzd|
frqihvv
08/08
3/09
08/043
grq*w frqihvv
09/3
04/04
3/043
zkhuh zh kdyh holplqdwhg uxq dzd| ehfdxvh lw zdv vwulfwo| grplqdwhg> wkh froxpq sod|hu uhdvrqv wkdw wkh urz sod|hu zrxog qhyhu fkrrvh lw1 Lq wklv vpdoohu jdph/ 5 kdv d grplqdqw vwudwhj| zklfk lv wr frqihvv1 Wkdw lv/ li 5 lv udwlrqdo dqg nqrzv wkdw 4 lv udwlrqdo/ vkh zloo sod| frqihvv1 Lq wkh ruljlqdo jdph grq*w frqihvv glg ehwwhu djdlqvw uxq dzd|/ wkxv frqihvv zdv qrw d grplqdqw vwudwhj|1
Krzhyhu/ 4 sod|lqj uxq dzd| fdqqrw eh udwlrqdol}hg
ehfdxvh lw lv d grplqdwhg vwudwhj|1 Wklv ohdgv wr wkh Holplqdwlrq ri Vwulfwo| Grplqdwhg Vwudwhjlhv1 Zkdw kdsshqv li zh Lwhudwlyho| Holplqdwh Vwulfwo| Grplqdwhg vwudwhjlhvB Wkdw lv/ zh holplqdwh d vwulfwo| grplqdwhg vwudwhj|/ dqg wkhq orrn iru dqrwkhu vwulfwo| grplqdwhg vwudwhj| lq wkh uhgxfhg jdph1 Zh vwrs zkhq zh fdq qr orqjhu qg d vwulfwo| grplqdwhg vwudwhj|1 Fohduo|/ li lw lv frpprq nqrzohgjh wkdw sod|huv duh udwlrqdo/ wkh| zloo sod| rqo| wkh vwudwhjlhv wkdw vxuylyh wklv lwhudwlyho| holplqdwlrq ri vwulfwo| grplqdwhg vwudwhjlhv1 Wkhuhiruh/ zh fdoo vxfk vwudwhjlhv udwlrqdol}deoh1 Fdxwlrq= zh gr holplqdwh wkh vwudwhjlhv wkdw duh grplqdwhg e| vrph pl{hg vwudwhjlhv$ Lq wkh deryh h{dpsoh/ wkh vhw ri udwlrqdol}deoh vwudwhjlhv lv rqfh djdlq frqihvv/ frqihvv1 Dw wklv srlqw |rx vkrxog vwrs dqg dsso| wklv phwkrg wr wkh Frxuqrw gxrsro|$$ +Vhh Jleerqv1, Dovr/ pdnh vxuh wkdw |rx fdq jhqhudwh wkh udwlrqdolw| dv0 vxpswlrq dw hdfk holplqdwlrq1 Iru lqvwdqfh/ lq wkh jdph deryh/ sod|hu 5 nqrzv wkdw sod|hu 4 lv udwlrqdo dqg khqfh kh zloo qrw uxq dzd|> dqg vlqfh vkh lv dovr udwlrqdo/ vkh zloo sod| rqo| frqihvv/ iru wkh frqihvv lv wkh rqo| ehvw uhvsrqvh iru dq| eholhi ri sod|hu 5 wkdw dvvljqv 3 suredelolw| wr wkdw sod|hu 4 uxqv dzd|1 Wkh sureohp lv wkhuh pd| eh wrr pdq| udwlrqdol}deoh vwudwhjlhv1 Frqvlghu wkh Pdwfk0 lqj Sdqqlhv jdph= 4q5
Khdg Wdlo
Khdg
04/4
4/04
Wdlo
4/04
04/4
47
Khuh/ wkh vhw ri udwlrqdol}deoh vwudwhjlhv frqwdlqv ~Khdg/Wdlo iru erwk sod|huv1 Li 4 eholhyhv wkdw 5 zloo sod| Khdg/ kh zloo sod| Wdlo dqg li 5 eholhyhv wkdw 4 zloo sod| Wdlo/ kh zloo sod| Wdlo1 Wkxv/ wkh vwudwhj|0sdlu +Khdg/Wdlo, lv udwlrqdol}deoh1 Exw qrwh wkdw wkh eholhiv ri 4 dqg 5 duh qrw frqjuxhqw1 Wkh vhw ri udwlrqdol}deoh vwudwhjlhv lv lq jhqhudo yhu| odujh1 Lq frqwudvw/ wkh frqfhsw ri grplqdqw vwudwhj| htxloleulxp lv wrr uhvwulfwlyh= xvxdoo| lw grhv qrw h{lvw1 Wkh uhdvrq iru h{lvwhqfh ri wrr pdq| udwlrqdol}deoh vwudwhjlhv lv wkdw zh gr qrw uh0 vwulfw sod|huv* frqmhfwxuhv wr eh cfrqvlvwhqw* zlwk zkdw wkh rwkhuv duh dfwxdoo| grlqj1 Iru lqvwdqfh/ lq wkh udwlrqdol}deoh vwudwhj| +Khdg/ Wdlo,/ sod|hu 5 sod|v Wdlo e| frqmhfwxulqj wkdw Sod|hu 4 zloo sod| Wdlo/ zkloh Sod|hu 4 dfwxdoo| sod|v Khdg1 Zh frqvlghu dqrwkhu frqfhsw Qdvk Htxloleulxp +khqfhiruwk QH,/ zklfk dvvxphv pxwxdo nqrzohgjh ri frq0 mhfwxuhv/ |lhoglqj frqvlvwhqf|1
516
Qdvk Htxloleulxp
Frqvlghu wkh edwwoh ri wkh vh{hv PdqqZrpdq rshud edoohw rshud
4/7
3/3
edoohw
3/3
7/4
Lq wklv jdph/ wkhuh lv qr grplqdqw vwudwhj|1 Exw vxssrvh Z lv sod|lqj rshud1 Wkhq/ Wkxv rshud lv d ehvw0uhvsrqvh iru P
wkh ehvw wklqj P fdq gr lv wr sod| rshud/ wrr1
djdlqvw rshud1 Vlploduo|/ rshud lv d ehvw0uhvsrqvh iru Z djdlqvw rshud1 Wkxv/ dw +rshud/ rshud,/ qhlwkhu sduw| zdqwv wr wdnh d glhuhqw dfwlrq1 Wklv lv d Qdvk Htxloleulxp1 Pruh irupdoo|= Ghqlwlrq 45 Iru dq| sod|hu / d vwudwhj| r lv d ehvw uhvsrqvh wr r li dqg rqo| li 3
Er c r Er c r c ;r 5 7 3
3
Wklv ghqlwlrq lv lghqwlfdo wr wkdw ri d grplqdqw vwudwhj| h{fhsw wkdw lw lv qrw iru
doo r 5 7 exw iru d vshflf vwudwhj| r 1 Li lw zhuh wuxh iru doo r / wkhq 7- zrxog dovr eh d grplqdqw vwudwhj|/ zklfk lv d vwurqjhu uhtxluhphqw wkdq ehlqj d ehvw uhvsrqvh 3
3
3
3
djdlqvw vrph vwudwhj| r 1 3
48
. . Ghqlwlrq 46 D vwudwhj| suroh Er. c r lv d Qdvk Htxloleulxp li dqg rqo| li r
. . . . lv d ehvw0uhvsrqvh wr r. ' Er c r c rn c r iru hdfk 1 Wkdw lv/ iru doo / zh 3
kdyh wkdw
3
. . L Er. c r L Er c r 3
3
;r 5 7
Lq rwkhu zrugv/ qr sod|hu zrxog kdyh dq lqfhqwlyh wr ghyldwh/ li kh nqhz zklfk vwudwhjlhv wkh rwkhu sod|huv sod|1 Li d vwudwhj| suroh lv d grplqdqw vwudwhj| htxloleulxp/ wkhq lw lv dovr d QH/ exw wkh uhyhuvh lv qrw wuxh1 Iru lqvwdqfh/ lq wkh Edwwoh ri wkh Vh{hv/ +R/R, lv d QH dqg E0E lv dq QH exw qhlwkhu duh grplqdqw vwudwhj| htxloleuld1 Ixuwkhupruh/ d grplqdqw vwudwhj| htxloleulxp lv xqltxh/ exw dv wkh Edwwoh ri wkh Vh{hv vkrzv/ QH lv qrw xqltxh lq jhqhudo1 Dw wklv srlqw |rx vkrxog vwrs/ dqg frpsxwh wkh Qdvk htxloleulxp lq Frxuqrw Gxrsro| jdph$$ Zk| grhv Qdvk htxloleulxp frlqflgh zlwk wkh udwlrqdo0 l}deoh vwudwhjlhv1 Lq jhqhudo= Duh doo udwlrqdol}deoh vwudwhjlhv Qdvk htxloleuldB Duh doo Qdvk htxloleuld udwlrqdol}deohB
\rx vkrxog dovr frpsxwh wkh Qdvk htxloleulxp lq
Frxuqrw roljrsro|/ Ehuwudqg gxrsro| dqg lq wkh frpprqv sureohp1 Wkh ghqlwlrq deryh fryhuv rqo| wkh sxuh vwudwhjlhv1 Zh fdq ghqh wkh Qdvk htxl0 oleulxp iru pl{hg vwudwhjlhv e| fkdqjlqj wkh sxuh vwudwhjlhv zlwk wkh pl{hg vwudwhjlhv1 Djdlq jlyhq wkh pl{hg vwudwhj| ri wkh rwkhuv/ hdfk djhqw pd{lpl}hv klv h{shfwhg sd|r ryhu klv rzq +pl{hg, vwudwhjlhv17 H{dpsoh Frqvlghu wkh Edwwoh ri wkh Vh{hv djdlq zkhuh zh orfdwhg wzr sxuh vwudw0 hj| htxloleuld1 Lq dgglwlrq wr wkh sxuh vwudwhj| htxloleuld/ wkhuh lv d pl{hg vwudwhj| htxloleulxp1 PdqqZrpdq rshud edoohw rshud
4/7
3/3
edoohw
3/3
7/4
Ohw*v zulwh ^ iru wkh suredelolw| wkdw P jrhv wr rshud> zlwk suredelolw| ^c kh jrhv wr edoohw1 Li zh zulwh R iru wkh suredelolw| wkdw Z jrhv wr rshud/ zh fdq frpsxwh khu 7
Lq whupv ri eholhiv/ wklv fruuhvsrqghv wr wkh uhtxluhphqw wkdw/ li l dvvljqv srvlwlyh suredelolw| wr wkh
hyhqw wkdw m pd| sod| d sduwlfxodu sxuh vwudwhj| vm / wkhq vm pxvw eh d ehvw uhvsrqvh jlyhq m*v eholhiv1
49
h{shfwhg xwlolw| iurp wklv dv L2 ER( ^ ' R^2 Ershud/rshud n R E ^ 2 Eedoohw/rshud n E R ^2 Ershud/edoohw n E R E ^ 2 Eedoohw/edoohw ' R d^2 Ershud/rshud n E ^ 2 Eedoohw/rshudo n E R d^2 Ershud/edoohw n E ^ 2 Eedoohw/edoohwo ' R d^e n E ^ fo n E R df^ n E ^o ' Rde^o n E R d ^o Qrwh wkdw wkh whup de^o pxowlsolhg zlwk R lv khu h{shfwhg xwlolw| iurp jrlqj wr rshud/ dqg wkh whup pxowlsolhg zlwk E R lv khu h{shfwhg xwlolw| iurp jrlqj wr edoohw1 L2 ER( ^ lv vwulfwo| lqfuhdvlqj zlwk R li e^ : ^ +l1h1/ ^ : *D,> lw lv vwulfwo| ghfuhdvlqj zlwk R li e^ ^/ dqg lv frqvwdqw li e^ ' ^1 Lq wkdw fdvh/ Z*v ehvw uhvsrqvh lv R ' ri ^ : *D/ R ' f li ^ *D/ dqg R lv dq| qxpehu lq dfc o li ^ ' *D1 Lq rwkhu zrugv/ Z zrxog fkrrvh rshud li khu h{shfwhg xwlolw| iurp rshud lv kljkhu/ edoohw li khu h{shfwhg xwlolw| iurp edoohw lv kljkhu/ dqg fdq fkrrvh dq| ri rshud ru edoohw li vkh lv lqglhuhqw ehwzhhq wkhvh wzr1 Vlploduo| zh frpsxwh wkdw ^ ' lv ehvw uhvsrqvh li R : e*D> ^ ' f lv ehvw uhvsrqvh li R e*D> dqg dq| ^ fdq eh ehvw uhvsrqvh li R ' e*D1 Zh sorw wkh ehvw uhvsrqvhv lq wkh iroorzlqj judsk1 q 1 A (A, B, C) are all equilibria
B
1/5
0
C
4/5
1
p
Wkh Qdvk htxloleuld duh zkhuh wkhvh ehvw uhvsrqvhv lqwhuvhfw1 Wkhuh lv rqh dw +3/3,/ zkhq wkh| erwk jr wr edoohw/ rqh dw +4/4,/ zkhq wkh| erwk jr wr rshud/ dqg wkhuh lv rqh 4:
dw +728/428,/ zkhq Z jrhv wr rshud zlwk suredelolw| 728/ dqg P jrhv wr rshud zlwk suredelolw| 4281 Qrwh krz zh frpsxwh wkh pl{hg vwudwhj| htxloleulxp +iru 5 {5 jdphv,1 Zh fkrrvh 4*v suredelolwlhv vr wkdw 5 lv lqglhuhqw ehwzhhq klv vwudwhjlhv/ dqg zh fkrrvh 5*v suredelolwlhv vr wkdw 4 lv lqglhuhqw1
4;
47145 Jdph Wkhru| Ohfwxuh Qrwhv Ohfwxuhv 90; Pxkdphw \logl} Lq wkhvh ohfwxuhv zh dqdo|}h g|qdplf jdphv +zlwk frpsohwh lqirupdwlrq,1 Zh uvw dqdo|}h wkh shuihfw lqirupdwlrq jdphv/ zkhuh hdfk lqirupdwlrq vhw lv vlqjohwrq/ dqg ghyhors wkh qrwlrq ri edfnzdug lqgxfwlrq1 Wkhq/ frqvlghulqj pruh jhqhudo g|qdplf jdphv/ zh zloo lqwurgxfh wkh frqfhsw ri wkh vxejdph shuihfwlrq1 Zh h{sodlq wkhvh frqfhswv rq hfrqrplf sureohpv/ prvw ri zklfk fdq eh irxqg lq Jleerqv1
4
Edfnzdug lqgxfwlrq
Wkh frqfhsw ri edfnzdug lqgxfwlrq fruuhvsrqgv wr wkh dvvxpswlrq wkdw lw lv frpprq nqrzohgjh wkdw hdfk sod|hu zloo dfw udwlrqdoo| dw hdfk qrgh zkhuh kh pryhv hyhq li klv udwlrqdolw| zrxog lpso| wkdw vxfk d qrgh zloo qrw eh uhdfkhg1 Phfkdqlfdoo|/ lw lv frpsxwhg dv iroorzv1 Frqvlghu d qlwh krul}rq shuihfw lqirupdwlrq jdph1 Frqvlghu dq| qrgh wkdw frphv mxvw ehiruh whuplqdo qrghv/ wkdw lv/ diwhu hdfk pryh vwhpplqj iurp wklv qrgh/ wkh jdph hqgv1 Li wkh sod|hu zkr pryhv dw wklv qrgh dfwv udwlrqdoo|/ kh zloo fkrrvh wkh ehvw pryh iru klpvhoi1 Khqfh/ zh vhohfw rqh ri wkh pryhv wkdw jlyh wklv sod|hu wkh kljkhvw sd|r1 Dvvljqlqj wkh sd|r yhfwru dvvrfldwhg zlwk wklv pryh wr wkh qrgh dw kdqg/ zh ghohwh doo wkh pryhv vwhpplqj iurp wklv qrgh vr wkdw zh kdyh d vkruwhu jdph/ zkhuh rxu qrgh lv d whuplqdo qrgh1 Uhshdw wklv surfhgxuh xqwlo zh uhdfk wkh ruljlq1 H{dpsoh= frqvlghu wkh iroorzlqj zhoo0nqrzq jdph/ fdoohg dv wkh fhqwlshghv jdph1 Wklv jdph looxvwudwhv wkh vlwxdwlrq zkhuh lw lv pxwxdoo| ehqhfldo iru doo sod|huv wr vwd| Wkhvh
qrwhv gr qrw lqfoxgh doo wkh wrslfv wkdw zloo eh fryhuhg lq wkh fodvv1 L zloo dgg wkrvh wrslfv
odwhu1
4
lq d uhodwlrq/ zkloh d sod|hu zrxog olnh wr h{lw wkh uhodwlrq/ li vkh nqrzv wkdw wkh rwkhu sod|hu zloo h{lw lq wkh qh{w gd|1 4
5
D
4
d
k
G
g
B
+4/4,
+3/7,
+6/6,
+5/8,
Lq wkh wklug gd|/ sod|hu 4 pryhv/ fkrrvlqj ehwzhhq jrlqj dfurvv +k, ru grzq +B,1 Li kh jrhv dfurvv/ kh zrxog jhw 5> li kh jrhv grzq/ kh zloo jhw 61 Khqfh/ zh uhfnrq wkdw kh zloo jr grzq1 Wkhuhiruh/ zh uhgxfh wkh jdph dv iroorzv= 4
D
5
G
g
+4/4,
+3/7,
d
+6/6,
Lq wkh vhfrqg gd|/ sod|hu 5 pryhv/ fkrrvlqj ehwzhhq jrlqj dfurvv +@, ru grzq +_,1 Li vkh jrhv dfurvv/ vkh zloo jhw 6> li vkh jrhv grzq/ vkh zloo jhw 71 Khqfh/ zh uhfnrq wkdw vkh zloo jr grzq1 Wkhuhiruh/ zh uhgxfh wkh jdph ixuwkhu dv iroorzv=
5
4
D
+3/7,
G
+4/4, Qrz/ sod|hu 4 jhwv 3 li kh jrhv dfurvv +,/ dqg jhwv 4 li kh jrhv grzq +(,1 Wkhuhiruh/ kh jrhv grzq1 Wkh htxloleulxp wkdw zh kdyh frqvwuxfwhg lv dv iroorzv= 4
D
5
d
4
G
g
B
+4/4,
+3/7,
+6/6,
k
+5/8,
Wkdw lv/ dw hdfk qrgh/ wkh sod|hu zkr lv wr pryh jrhv grzq/ h{lwlqj wkh uhodwlrq1 Ohw*v jr ryhu wkh dvvxpswlrqv wkdw zh kdyh pdgh lq frqvwuxfwlqj rxu htxloleulxp1 Zh dvvxphg wkdw sod|hu 4 zloo dfw udwlrqdoo| dw wkh odvw gdwh/ zkhq zh uhfnrqhg wkdw kh jrhv grzq1 Zkhq zh uhfnrqhg wkdw sod|hu 5 jrhv grzq lq wkh vhfrqg gd|/ zh dvvxphg wkdw sod|hu 5 dvvxphv wkdw sod|hu 4 zloo dfw udwlrqdoo| rq wkh wklug gd|/ dqg dovr dvvxphg wkdw vkh lv udwlrqdo/ wrr1 Rq wkh uvw gd|/ sod|hu 4 dqwlflsdwhv doo wkhvh1 Wkdw lv/ kh lv dvvxphg wr nqrz wkdw sod|hu 5 lv udwlrqdo/ dqg wkdw vkh zloo nhhs eholhylqj wkdw sod|hu 4 zloo dfw udwlrqdoo| rq wkh wklug gd|1 Wklv h{dpsoh dovr looxvwudwhv dqrwkhu qrwlrq dvvrfldwhg zlwk edfnzdug lqgxfwlrq frpplwphqw +ru wkh odfn ri frpplwphqw,1 Qrwh wkdw wkh rxwfrphv rq wkh wklug gd| +l1h1/ +6/6, dqg +5/8,, duh erwk vwulfwo| ehwwhu wkdq wkh htxloleulxp rxwfrph +4/3,1 Exw wkh| fdqqrw uhdfk wkhvh rxwfrphv/ ehfdxvh sod|hu 5 fdqqrw frpplw wr jr dfurvv/ zkhqfh sod|hu 4 h{lwv wkh uhodwlrq lq wkh uvw gd|1 Wkhuh lv dovr d ixuwkhu frpplwphqw sureohp lq wklv h{dpsoh1 Li sod|hu 4 zkhuh deoh wr frpplw wr jr dfurvv rq wkh wklug gd|/ sod|hu 6
5 zrxog ghqlwho| jr dfurvv rq wkh vhfrqg gd|/ zkhqfh sod|hu 4 zrxog jr dfurvv rq wkh uvw1 Ri frxuvh/ sod|hu 4 fdqqrw frpplw wr jr dfurvv rq wkh wklug gd|/ dqg wkh jdph hqgv lq wkh uvw gd|/ |lhoglqj wkh orz sd|rv +4/3,1 Dv dqrwkhu h{dpsoh/ ohw xv dsso| edfnzdug lqgxfwlrq wr wkh Pdwfklqj Shqqlhv zlwk Shuihfw Lqirupdwlrq= (-1, 1) Head
2
O
Tail
(1, -1)
Head
1 Tail
2
(1, -1)
Head
O Tail (-1, 1)
Li sod|hu 4 fkrrvhv Khdg/ sod|hu 5 zloo Khdg> dqg li 4 fkrrvhv Wdlo/ sod|hu 5 zloo suhihu Wdlo/ wrr1 Khqfh/ wkh jdph lv uhgxfhg wr
(-1,1) Head
Tail
(-1,1)
Lq wkdw fdvh/ Sod|hu 4 zloo eh lqglhuhqw ehwzhhq Khdg dqg Wdlo/ fkrrvlqj dq| ri wkhvh wzr rswlrq ru dq| udqgrpl}dwlrq ehwzhhq wkhvh wzr dfwv zloo jlyh xv dq htxloleulxp zlwk edfnzdug lqgxfwlrq1 Dw wklv srlqw/ |rx vkrxog vwrs dqg vwxg| wkh Vwdfnhoehuj gxrsro| lq Jle0 erqv1 \rx vkrxog dovr fkhfn wkdw wkhuh lv dovr d Qdvk htxloleulxp ri wklv jdph lq zklfk 7
wkh iroorzhu surgxfhv wkh Frxuqrw txdqwlw| luuhvshfwlyh ri zkdw wkh ohdghu surgxfhv/ dqg wkh ohdghu surgxfhv wkh Frxuqrw txdqwlw|1 Ri frxuvh/ wklv lv qrw frqvlvwhqw zlwk edfnzdug lqgxfwlrq= zkhq wkh iroorzhu nqrzv wkdw wkh ohdghu kdv surgxfhg wkh Vwdfnho0 ehuj txdqwlw|/ kh zloo fkdqjh klv plqg dqg surgxfh d orzhu txdqwlw|/ wkh txdqwlw| wkdw lv frpsxwhg gxulqj wkh edfnzdug lqgxfwlrq1 Iru wklv uhdvrq/ zh vd| wkdw wklv Qdvk htxloleulxp lv edvhg rq d qrq0fuhgleoh wkuhdw +ri wkh iroorzhu,1 Edfnzdug lqgxfwlrq lv d srzhuixo vroxwlrq frqfhsw zlwk vrph lqwxlwlyh dsshdo1 Xq0 iruwxqdwho|/ zh fdqqrw dsso| lw eh|rqg shuihfw lqirupdwlrq jdphv zlwk d qlwh krul}rq1 Lwv lqwxlwlrq/ krzhyhu/ fdq eh h{whqghg eh|rqg wkhvh jdphv wkurxjk vxejdph shuihfwlrq1
5
Vxejdph shuihfwlrq
D pdlq surshuw| ri edfnzdug lqgxfwlrq lv wkdw/ zkhq zh frqqh rxuvhoyhv wr d vxejdph ri wkh jdph/ wkh htxloleulxp frpsxwhg xvlqj edfnzdug lqgxfwlrq uhpdlqv wr eh dq htxl0 oleulxp +frpsxwhg djdlq yld edfnzdug lqgxfwlrq, ri wkh vxejdph1 Vxejdph shuihfwlrq jhqhudol}hv wklv qrwlrq wr jhqhudo g|qdplf jdphv= Ghqlwlrq 4 D Qdvk htxloleulxp lv vdlg wr eh vxejdph shuihfw li dq rqo| li lw lv d Qdvk htxloleulxp lq hyhu| vxejdph ri wkh jdph1 Zkdw lv d vxejdphB Lq dq| jlyhq jdph/ wkhuh pd| eh vrph vpdoohu jdphv hpehgghg> zh fdoo hdfk vxfk hpehgghg jdph d vxejdph1 Frqvlghu/ iru lqvwdqfh/ wkh fhqwlshghv jdph +zkhuh wkh htxloleulxp lv gudzq lq wklfn olqhv,=
4
D
5
d
4
G
g
B
+4/4,
+3/7,
+6/6,
k
Wklv jdph kdv wkuhh vxejdphv1 Khuh lv rqh vxejdph= 8
+5/8,
4
k
+5/8,
B
+6/6, Wklv lv dqrwkhu vxejdph= 5
d
4
g
B
+3/7,
+6/6,
k
+5/8,
Dqg wkh wklug vxejdph lv wkh jdph lwvhoi1 Zh fdoo wkh uvw wzr vxejdphv +h{foxglqj wkh jdph lwvhoi, surshu1 Qrwh wkdw/ lq hdfk vxejdph/ wkh htxloleulxp frpsxwhg yld edfnzdug lqgxfwlrq uhpdlqv wr eh dq htxloleulxp ri wkh vxejdph1 Qrz frqvlghu wkh pdwfklqj shqq| jdph zlwk shuihfw lqirupdwlrq1 Lq wklv jdph/ zh kdyh wkuhh vxejdphv= rqh diwhu sod|hu 4 fkrrvhv Khdg/ rqh diwhu sod|hu 4 fkrrvhv Wdlo/ dqg wkh jdph lwvhoi1 Djdlq/ wkh htxloleulxp frpsxwhg wkurxjk edfnzdug lqgxfwlrq lv d Qdvk htxloleulxp dw hdfk vxejdph1 Qrz frqvlghu wkh iroorzlqj jdph1
9
1 E
X
1
(2,6)
T
B
2 L
R
(0,1)
L
(3,2)
R
(-1,3)
(1,5)
Zh fdqqrw dsso| edfnzdug lqgxfwlrq lq wklv jdph/ ehfdxvh lw lv qrw d shuihfw lqiru0 pdwlrq jdph1 Exw zh fdq frpsxwh wkh vxejdph shuihfw htxloleulxp1 Wklv jdph kdv wzr vxejdphv= rqh vwduwv diwhu sod|hu 4 sod|v H> wkh vhfrqg rqh lv wkh jdph lwvhoi1 Zh frpsxwh wkh vxejdph shuihfw htxloleuld dv iroorzv1 Zh uvw frpsxwh d Qdvk htxloleulxp ri wkh vxejdph/ wkhq {lqj wkh htxloleulxp dfwlrqv dv wkh| duh +lq wklv vxejdph,/ dqg wdnlqj wkh htxloleulxp sd|rv lq wklv vxejdph dv wkh sd|rv iru hqwhulqj lq wkh vxejdph/ zh frpsxwh d Qdvk htxloleulxp lq wkh uhpdlqlqj jdph1 Wkh vxejdph kdv rqo| rqh Qdvk htxloleulxp/ dv W grplqdwhv E= Sod|hu 4 sod|v W dqg 5 sod|v U/ |lhoglqj wkh sd|r yhfwru +6/5,1
1 T
B
2 L (0,1)
R
L
(3,2)
(-1,3)
Jlyhq wklv/ wkh uhpdlqlqj jdph lv
:
R (1,5)
1 E
X
(3,2)
(2,6)
zkhuh sod|hu 4 fkrrvhv H1 Wkxv/ wkh vxejdph0shuihfw htxloleulxp lv dv iroorzv1
1 E
X
1
(2,6)
T
B
2 L
R
(0,1)
L
(3,2)
R
(-1,3)
(1,5)
Qrwh wkdw wkhuh duh rwkhu Qdvk Htxloleuld> rqh ri wkhp lv ghslfwhg ehorz1
1 E
X
1
(2,6)
T
B
2 L (0,1)
R
L
(3,2)
(-1,3)
R (1,5)
\rx vkrxog eh deoh wr fkhfn wkdw wklv lv d Qdvk htxloleulxp1 Exw lw lv qrw vxejdph shuihfw/ iru/ lq wkh surshu vxejdph/ 5 sod|v d vwulfwo| grplqdwhg vwudwhj|1 ;
Qrz/ frqvlghu wkh iroorzlqj jdph/ zklfk lv hvvhqwldoo| wkh vdph jdph dv deryh/ zlwk d voljkw glhuhqfh wkdw khuh sod|hu 4 pdnhv klv fkrlfhv dw rqfh=
X 1
(2,6)
T
B
2 L
R
(0,1)
L
(3,2)
R
(-1,3)
(1,5)
Qrwh wkdw wkh rqo| vxejdph ri wklv jdph lv lwvhoi/ khqfh dq| Qdvk htxloleulxp lv vxejdph shuihfw1 Lq sduwlfxodu/ wkh qrq0vxejdph0shuihfw Qdvk htxloleulxp ri wkh jdph deryh lv vxejdph shuihfw1 Lq wkh qhz jdph lw wdnhv wkh iroorzlqj irup=
X 1
(2,6)
T
B
2 L (0,1)
R
L
(3,2)
(-1,3)
R (1,5)
Dw wklv srlqw |rx vkrxog vwrs uhdglqj dqg vwxg| wdulv dqg lpshuihfw lqwhuqdwlrqdo frpshwlwlrq1
6
Vhtxhqwldo Edujdlqlqj
Lpdjlqh wkdw wzr sod|huv rzq d groodu/ zklfk wkh| fdq xvh rqo| diwhu wkh| ghflgh krz wr glylgh lw1 Hdfk sod|hu lv ulvn0qhxwudo dqg glvfrxqwv wkh ixwxuh h{srqhqwldoo|1 Wkdw lv/ li <
d sod|hu jhwv % groodu dw gd| |/ klv sd|r lv B | % iru vrph B 5 Efc 1 Wkh vhw ri doo ihdvleoh glylvlrqv lv ( ' E%c + 5 dfc o2 m% n + 1 Frqvlghu wkh iroorzlqj vfhqdulr1 Lq wkh uvw gd| sod|hu rqh pdnhv dq rhu E% c + 5 (1 Wkhq/ nqrzlqj zkdw kdv ehhq rhuhg/ sod|hu 5 dffhswv ru uhmhfwv wkh rhu1 Li kh dffhswv wkh rhu/ wkh rhu lv lpsohphqwhg/ |lhoglqj sd|rv E% c + 1 Li kh uhmhfwv wkh rhu/ wkhq wkh| zdlw xqwlo wkh qh{w gd|/ zkhq sod|hu 5 pdnhv dq rhu E%2 c +2 5 (1 Qrz/ nqrzlqj zkdw sod|hu 5 kdv rhuhg/ sod|hu 4 dffhswv ru uhmhfwv wkh rhu1 Li sod|hu 4 dffhswv wkh rhu/ wkh rhu lv lpsohphqwhg/ |lhoglqj sd|rv EB%2 c B+2 1 Li sod|hu wzr uhmhfwv wkh rhu/ wkhq wkh jdph hqgv/ zkhq wkh| orvh wkh groodu dqg jhw sd|rv +3/3,1 Ohw xv dqdo|}h wklv jdph1 Rq wkh vhfrqg gd|/ li sod|hu 4 uhmhfwv wkh rhu/ kh jhwv 31 Khqfh/ kh dffhswv dq| rhu wkdw jlyhv klp pruh wkdq 3/ dqg kh lv lqglhuhqw ehwzhhq dffhswlqj dqg uhmhfwlqj dq| rhu wkdw jlyhv klp 31 Dvvxph wkdw kh dffhswv wkh rhu +3/4,14 Wkhq/ sod|hu 5 zrxog rhu +3/4,/ zklfk lv wkh ehvw sod|hu 5 fdq jhw1 Wkhuhiruh/ li wkh| gr qrw djuhh rq wkh uvw gd|/ rq wkh vhfrqg gd|/ sod|hu 5 wdnhv wkh hqwluh groodu/ ohdylqj sod|hu 4 qrwklqj1 Wkh ydoxh ri wdnlqj wkh groodu rq wkh qh{w gd| iru sod|hu 5 lv B1 Khqfh/ rq wkh uvw gd|/ sod|hu 5 zloo dffhsw dq| rhu wkdw jlyhv klp pruh wkdq B/ zloo uhmhfw dq| rhu wkdw jlyhv klp ohvv wkdq B/ dqg kh lv lqglhuhqw ehwzhhq dffhswlqj dqg uhmhfwlqj dq| rhu wkdw jlyhv klp B1 Dv deryh/ dvvxph wkdw sod|hu 5 dffhswv wkh rhu E Bc B1 Lq wkdw fdvh/ sod|hu 4 zloo rhu E Bc B/ zklfk zloo eh dffhswhg1 Iru dq| glylvlrq wkdw jlyhv sod|hu 4 pruh wkdq B zloo jlyh sod|hu 5 ohvv wkdq B/ dqg zloo eh uhmhfwhg1 Qrz/ frqvlghu wkh jdph lq zklfk wkh jdph deryh lv uhshdwhg ? wlphv1 Wkdw lv/ li wkh| kdyh qrw |hw uhdfkhg dq djuhhphqw e| wkh hqg ri wkh vhfrqg gd|/ rq wkh wklug gd|/ sod|hu 4 pdnhv dq rhu E% c + 5 (1 Wkhq/ nqrzlqj zkdw kdv ehhq rhuhg/ sod|hu 5 dffhswv ru uhmhfwv wkh rhu1 Li kh dffhswv wkh rhu/ wkh rhu lv lpsohphqwhg/ |lhoglqj sd|rv 2 B % c B 2 + 1 Li kh uhmhfwv wkh rhu/ wkhq wkh| zdlw xqwlo wkh qh{w gd|/ zkhq sod|hu 5 pdnhv dq rhu E%e c +e 5 (1 Qrz/ nqrzlqj zkdw sod|hu 5 kdv rhuhg/ sod|hu 4 dffhswv ru uhmhfwv wkh rhu1 Li sod|hu 4 dffhswv wkh rhu/ wkh rhu lv lpsohphqwhg/ |lhoglqj sd|rv B %e c B +e 1 Li sod|hu wzr uhmhfwv wkh rhu/ wkhq wkh| jr wr wkh 8wk gd|111 Dqg wklv jrhv rq olnh wklv xqwlo wkh hqg ri gd| 5?1 Li wkh| kdyh qrw |hw djuhhg dw wkh hqg ri wkdw gd|/ 4
Lq idfw/ sod|hu 4 pxvw dffhsw +3/4, lq htxloleulxp1 Iru/ li kh grhvq*w dffhsw +3/4,/ wkh ehvw uhvsrqvh
ri sod|hu 5 zloo eh hpsw|/ lqfrqvlvwhqw zlwk dq htxloleulxp1 +Dq| rhu +> 4 , ri sod|hu 5 zloo eh dffhswhg1 Exw iru dq| rhu +> 4 ,/ wkhuh lv d ehwwhu rhu +@5> 4 @5,/ zklfk zloo dovr eh dffhswhg1,
43
wkh jdph hqgv/ zkhq wkh| orvh wkh groodu dqg jhw sd|rv +3/3,1 Wkh vxejdph shuihfw htxloleulxp zloo eh dv iroorzv1 Dw dq| gd| | ' 2? 2& +& lv d qrq0qhjdwlyh lqwhjhu,/ sod|hu 4 dffhswv dq| rhu E%c + zlwk B B 2& % nB dqg zloo uhmhfw dq| rhu E%c + zlwk B B 2& % ( nB dqg sod|hu 5 rhuv # $ $ # B B 2& B B 2& B B 2& n B 2&n E%| c +| ' c c nB nB nB nB Dqg dw dq| gd| | ' 2? 2& / sod|hu 5 dffhswv dq rhu E%c + l B n B 2&n ( + nB dqg Sod|hu 4 zloo rhu # $ # $ B n B 2&n B n B 2&n B 2&n2 B n B 2&n E%|3 c +|3 ' c c 1 nB nB nB nB Zh fdq suryh wklv lv wkh htxloleulxp jlyhq e| edfnzdug lqgxfwlrq xvlqj pdwkhpdwlfdo lqgxfwlrq rq &1 +Wkdw lv/ zh uvw suryh wkdw lw lv wuxh iru & ' f> wkhq dvvxplqj wkdw lw lv wuxh iru vrph & / zh suryh wkdw lw lv wuxh iru &, Surri1 Qrwh wkdw iru & ' f/ zh kdyh wkh odvw wzr shulrgv/ lghqwlfdo wr wkh 50shulrg h{dpsoh zh dqdo|}hg deryh1 Sxwwlqj & ' f/ zh fdq hdvlo| fkhfn wkdw wkh ehkdylru ghvfulehg khuh lv wkh vdph dv wkh htxloleulxp ehkdylru lq wkh 50shulrg jdph1 Qrz/ dvvxph wkdw/ iru vrph & wkh htxloleulxp lv dv ghvfulehg deryh1 Wkdw lv/ dw wkh ehjlqqlqj ri gdwh | n G' 2? 2 E& ' 2? 2& n / sod|hu 4 rhuv 4 # 3 $ 2E&3n 2E&3n2 B n B 2& B n B 2&3 B B D' c c > E%|n c +|n ' C nB nB nB nB dqg klv rhu lv dffhswhg1 Dw gdwh | ' 2? 2&/ sod|hu rqh dffhswv dq rhu l wkh rhu lv 3B2& lq wkh qh{w gd|/ zklfk lv zruwk BE3B2& 1 Wkhuhiruh/ kh dw ohdvw dv jrrg dv kdylqj n B nB zloo dffhsw dq rhu E%c + l
B B 2& % ( nB 44
dv zh kdyh ghvfulehg deryh1 Lq wkdw fdvh/ wkh ehvw sod|hu 5 fdq gr lv wr rhu # $ $ # B B 2& B B 2& B B 2& n B 2&n E%| c +| ' c ' c nB nB nB nB Iru dq| rhu wkdw jlyhv 5 pruh wkdq +| zloo eh uhmhfwhg lq zklfk fdvh sod|hu 5 zloo jhw B 2 n B 2& 3 B+|n ' +| 1 nB Wkdw lv/ dw | sod|hu 5 rhuv E%| c +| ( dqg lw lv dffhswhg1 Lq wkdw fdvh/ dw | / sod|hu 5 zloo dffhsw dq rhu E%c + l B n B 2&n + B+| ' nB Lq wkdw fdvh/ dw | / sod|hu 4 zloo rhu # E%|3 c +|3 E B+| c B+| '
$ B 2&n2 B n B 2&n c c nB nB
frpsohwlqj wkh surri1 Qrz/ ohw ? $ 41 Dw dq| rgg gdwh |/ sod|hu 4 zloo rhu # $ 2&n 2&n2 B n B B B " " c c ( ' E%| c +| ' *4 &<" nB nB nB nB dqg dq| hyhq gdwh | sod|hu 5 zloo rhu # $ 2& 2&n B B n B B " " E%| c +| ' *4 c ' c ( &<" nB nB nB nB dqg wkh rhuv duh eduho| dffhswhg1
45
47145 Jdph Wkhru| Ohfwxuh Qrwhv Ohfwxuhv46047 Pxkdphw \logl}
4
Uhshdwhg Jdphv
Lq wkhvh qrwhv/ zh*oo glvfxvv wkh uhshdwhg jdphv/ wkh jdphv zkhuh d sduwlfxodu vpdoohu jdph lv uhshdwhg> wkh vpdoo jdph lv fdoohg wkh vwdjh jdph1 Wkh vwdjh jdph lv uhshdwhg uhjdugohvv ri zkdw kdv ehhq sod|hg lq wkh suhylrxv jdphv1
Iru rxu dqdo|vlv/ lw lv lpsruwdqw zkhwkhu wkh
jdph lv uhshdwhg qlwho| ru lqqlwho| pdq| wlphv/ dqg zkhwkhu wkh sod|huv revhuyh zkdw hdfk sod|hu kdv sod|hg lq hdfk suhylrxv jdph1
414
Ilqlwho| uhshdwhg jdphv zlwk revhuydeoh dfwlrqv
Zh zloo uvw frqvlghu wkh jdphv zkhuh d vwdjh jdph lv uhshdwhg qlwho| pdq| wlphv/ dqg dw wkh ehjlqqlqj ri hdfk uhshwlwlrq hdfk sod|hu uhfdoov zkdw hdfk sod|hu kdv sod|hg lq hdfk suhylrxv sod|1 Frqvlghu wkh iroorzlqj hqwu| ghwhuuhqfh jdph/ zkhuh dq hqwudqw +4, ghflghv zkhwkhu wr hqwhu d pdunhw ru qrw/ dqg wkh lqfxpehqw +5, ghflghv zkhwkhu wr jkw ru dffrpprgdwh wkh hqwudqw li kh hqwhuv1
1 X
Enter
2 Acc.
(1,1)
Fight (0,2)
(-1,-1)
Frqvlghu wkh jdph zkhuh wklv hqwu| ghwhuuhqfh jdph lv uhshdwhg wzlfh/ dqg doo wkh suhylrxv dfwlrqv duh revhuyhg1 Dvvxph wkdw d sod|hu vlpso| fduhv derxw wkh vxp ri klv sd|rv dw wkh vwdjh jdphv1 Wklv jdph lv ghslfwhg lq wkh iroorzlqj jxuh1
4
1
Enter
2 Acc.
X 1,3)
Acc.
2 Enter
Fight
Fight
1
X
(-1,1)
(1,3) 2 Acc.
Enter
(2,2)
Fight
X
(0,4)
2 Acc.
X
1 1
Enter
(0,0) (0,0)
Fight (-1,1)
(-2,-2)
Qrwh wkdw diwhu wkh hdfk rxwfrph ri wkh uvw sod|/ wkh hqwu| ghwhuuhqfh jdph lv sod|hg djdlq zkhuh wkh sd|r iurp wkh uvw sod| lv dgghg wr hdfk rxwfrph1 Vlqfh d sod|hu*v suhihuhqfhv ryhu wkh orwwhulhv gr qrw fkdqjh zkhq zh dgg d qxpehu wr klv xwlolw| ixqfwlrq/ hdfk ri wkh wkuhh jdphv sod|hg rq wkh vhfrqg gd| lv wkh vdph dv wkh vwdjh jdph + qdpho|/ wkh hqwu| ghwhuuhqfh jdph deryh,1
Wkh vwdjh jdph kdv d xqltxh vxejdph shuihfw htxloleulxp/ zkhuh
wkh lqfxpehqw dffrpprgdwhv wkh hqwudqw/ dqwlflsdwlqj wklv/ wkh hqwudqw hqwhuv wkh pdunhw1
1
Enter
2 Acc.
X
(1,1)
Fight (0,2)
(-1,-1)
Lq wkdw fdvh/ hdfk ri wkh wkuhh jdphv sod|hg rq wkh vhfrqg gd| kdv rqo| wklv htxloleulxp dv lwv vxejdph shuihfw htxloleulxp1 Wklv lv ghslfwhg lq wkh iroorzlqj1 1
Enter
2 Acc.
X 1,3)
Acc.
2 Enter
Fight (-1,1)
Fight 1
(0,4)
Enter
X
2 Acc.
X
Fight
(1,3) Enter 2 Acc.
1
X
1
(0,0) (0,0)
Fight (-1,1)
(-2,-2)
Xvlqj edfnzdug lqgxfwlrq/ zh wkhuhiruh uhgxfh wkh jdph wr wkh iroorzlqj1
5
(2,2)
1
Enter
2 Acc.
X
(2,2)
Fight (1,3)
(0,0)
Qrwlfh wkdw zh vlpso| dgghg wkh xqltxh vxejdph shuihfw htxloleulxp sd|r ri 4 iurp wkh vhfrqg gd| wr hdfk sd|r lq wkh vwdjh jdph1
Djdlq/ dgglqj d frqvwdqw wr d sod|hu*v
sd|rv grhv qrw fkdqjh wkh jdph/ dqg khqfh wkh uhgxfhg jdph srvvhvvhv wkh vxejdph shuihfw htxloleulxp ri wkh vwdjh jdph dv lwv xqltxh vxejdph shuihfw htxloleulxp1
Wkhuhiruh/ wkh
xqltxh vxejdph shuihfw htxloleulxp lv dv ghslfwhg ehorz1 1
Enter
2 Acc.
X 1,3)
Acc.
2 Enter
Fight (-1,1)
Fight 1 1
X (0,4)
Enter
X
1
Enter
2 Acc.
X
(2,2)
Fight (1,3) 2 Acc.
(0,0) (0,0)
Fight (-1,1)
(-2,-2)
Wklv fdq eh jhqhudol}hg1 Wkdw lv/ jlyhq dq| qlwho| uhshdwhg jdph zlwk revhuydeoh dfwlrqv/ li wkh vwdjh jdph kdv d xqltxh vxejdph shuihfw htxloleulxp/ wkhq wkh uhshdwhg jdph kdv d xqltxh vxejdph shuihfw htxloleulxp/ zkhuh wkh vxejdph shuihfw htxloleulxp ri wkh vwdjh jdph lv sod|hu dw hdfk gd|1 Li wkh vwdjh jdph kdv pruh wkdq rqh htxloleulxp/ wkhq lq wkh uhshdwhg jdph zh pd| kdyh vrph vxejdph shuihfw htxloleuld zkhuh/ lq vrph vwdjhv/ sod|huv sod| vrph dfwlrqv wkdw duh qrw sod|hg lq dq| vxejdph shuihfw htxloleuld ri wkh vwdjh jdph1 Iru wkh htxloleulxp wr eh sod|hg rq wkh vhfrqg gd| fdq eh frqglwlrqhg wr wkh sod| rq wkh uvw gd|/ lq zklfk fdvh wkh uhgxfhg jdph iru wkh uvw gd| lv qr orqjhu wkh vdph dv wkh vwdjh jdph/ dqg wkxv pd| rewdlq vrph glhuhqw htxloleuld1 Wr vhh wklv/ vhh Jleerqv1
415
Lqqlwho| uhshdwhg jdphv zlwk revhuyhg dfwlrqv
Qrz zh frqvlghu wkh lqqlwho| uhshdwhg jdphv zkhuh doo wkh suhylrxv pryhv duh frpprq nqrzohgjh dw wkh ehjlqqlqj ri hdfk vwdjh1 Lq dq lqqlwho| uhshdwhg jdph/ zh fdqqrw vlpso| dgg wkh sd|rv ri hdfk vwdjh/ dv wkh vxp ehfrphv lqqlwh1 Iru wkhvh jdphv/ zh zloo frqqh 6
rxuvhoyhv wr wkh fdvh zkhuh sod|huv pd{lpl}h wkh glvfrxqwhg vxp ri wkh sd|rv iurp wkh vwdjh jdphv1 Wkh suhvhqw ydoxh ri dq| jlyhq sd|r vwuhdp @ + f > > = = = > | > = = = , lv frpsxwhg e| S Y +> , @
" [
|'f
| | @ f . . . | | . >
zkhuh 5 +3> 4, lv wkh glvfrxqw idfwru1
E| wkh dyhudjh ydoxh/ zh vlpso| phdq
+4 , S Y +> , +4 ,
" [
|'f
| |=
Qrwh wkdw/ zkhq zh kdyh d frqvwdqw sd|r vwuhdp +l1h1/ f @ @ @ | @ ,/ wkh dyhudjh ydoxh lv vlpso| wkh vwdjh sd|r +qdpho|/ f ,1 Qrwh wkdw wkh suhvhqw dqg wkh dyhudjh ydoxhv fdq eh frpsxwhg zlwk uhvshfw wr wkh fxuuhqw gdwh1 Wkdw lv/ jlyhq dq| w/ wkh suhvhqw ydoxh dw w lv S Y| +> , @
" [
r'|
r3| r @ | . |n . . & |n& . =
Fohduo|/ S Y +> , @ f . . . |3 |3 . | S Y| +> , = Khqfh/ wkh dqdo|vlv grhv qrw fkdqjh zkhwkhu rqh xvhv S Y ru S Y| / exw xvlqj S Y| lv vlpsohu1 Wkh pdlq surshuw| ri lqqlwho| uhshdwhg jdphv lv wkdw wkh vhw ri htxloleuld ehfrphv yhu| odujh dv sod|huv jhw pruh sdwlhqwv/ l1h1/ $ 41 jlyhq dq| sd|r yhfwru wkdw jlyhv hdfk sod|hu pruh wkdq vrph Qdvk htxloleulxp rxwfrph ri wkh vwdjh jdph/ iru vx!flhqwo| odujh ydoxhv ri / wkhuh h{lvwv vrph vxejdph shuihfw htxloleulxp wkdw |lhogv wkh sd|r yhfwru dw kdqg dv wkh dyhudjh ydoxh ri wkh sd|r vwuhdp1 Wklv idfw lv fdoohg wkh iron wkhruhp1
Vhh Jleerqv
iru ghwdlov1 Lq wkhvh jdphv/ wr fkhfn zkhwkhu d vwudwhj| suroh v @ +v > v2 > = = = > v? , lv d vxejdph shuihfw
htxloleulxp/ zh xvh wkh vlqjoh0ghyldwlrq sulqflsoh/ ghqhg dv iroorzv14 Wdnh dq| irupdwlrq vhw/ zkhuh vrph sod|hu l lv wr pryh/ dqg sod| d vwudwhj| dW ri wkh vwdjh jdph dffruglqj wr wkh vwudwhj| suroh v1 Dvvxph wkdw wkh lqirupdwlrq vhw lv uhdfkhg/ hdfk sod|hu m 9@ l vwlfnv wr klv vwudwhj| v lq wkh uhpdlqlqj jdph/ dqg sod|hu l zloo vwlfn wr klv vwudwhj| v lq wkh uhpdlqlqj jdph h{fhsw iru wkh lqirupdwlrq vhw dw kdqg1 jlyhq doo wkhvh/ zh fkhfn zkhwkhu wkh sod|hu kdv dq lqfhqwlyh wr ghyldwh wr vrph dfwlrq d dw wkh lqirupdwlrq vhw +udwkhu wkdq sod|lqj dW ,1 4
Qrwh wkdw d vwudwhj| suroh r lv dq lqqlwh vhtxhqfh r ' E@f c @ c c @| c ri ixqfwlrqv @| ghwhuplqlqj
zklfk vwudwhj| ri wkh vwdjh jdph wr eh sod|hg dw | ghshqglqj rq zklfk dfwlrqv hdfk sod|hu kdv wdnhq lq wkh suhylrxv sod|v ri wkh vwdjh jdph1
7
^Qrwh wkdw doo sod|huv/ lqfoxglqj sod|hu l/ duh dvvxphg wr vwlfn wr wklv vwudwhj| suroh lq wkh uhpdlqlqj jdph1` Wkh vlqjoh0ghyldwlrq sulqflsoh vwdwhv wkdw li wkhuh lv qr lqirupdwlrq vhw wkh sod|hu kdv dq lqfhqwlyh wr ghyldwh lq wklv vhqvh/ wkhq wkh vwudwhj| suroh lv d vxejdph shuihfw htxloleulxp1 Ohw xv dqdo|}h wkh lqqlwho| uhshdwhg yhuvlrq ri wkh hqwu| ghwhuuhqfh jdph1 Frqvlghu wkh iroorzlqj vwudwhj| suroh1
Dw dq| jlyhq vwdjh/ wkh hqwudqw hqwhuv wkh pdunhw li dq rqo|
li wkh lqfxpehqw kdv dffrpprgdwhg wkh hqwudqw vrphwlphv lq wkh sdvw1
Wkh lqfxpehqw
dffrpprgdwhv wkh hqwudqw li dq rqo| li kh kdv dffrpprgdwhg wkh hqwudqw ehiruh1 +Wklv lv d vzlwfklqj vwudwhj|/ zkhuh lqlwldoo| lqfxpehqw jkwv zkhqhyhu wkhuh lv dq hqwu| dqg wkh hqwudqw qhyhu hqwhuv1 Li wkh lqfxpehqw kdsshqv wr dffrpprgdwh dq hqwudqw/ wkh| vzlwfk wr wkh qhz uhjlph zkhuh wkh hqwudqw hqwhuv wkh pdunhw qr pdwwhu zkdw wkh lqfxpehqw grhv diwhu wkh vzlwfklqj/ dqg lqfxpehqw dozd|v dffrpprgdwhv wkh hqwudqw1, Iru odujh ydoxhv ri / wklv dq htxloleulxp1 Wr fkhfn zkhwkhu wklv lv dq htxloleulxp/ zh xvh wkh vlqjoh0ghyldwlrq sulqflsoh1 Zh uvw wdnh d gdwh w dqg dq| klvwru| +dw w, zkhuh lqfxpehqw kdv dffrpprgdwhg wkh hqwudqwv1 Dffruglqj wr wkh vwudwhj| ri wkh lqfxpehqw/ kh zloo dozd|v dffrpprgdwh wkh hqwudqw lq wkh uhpdlqlqj jdph> dqg wkh hqwudqw zloo dozd|v hqwhu wkh pdunhw +djdlq dffruglqj wr klv rzq vwudwhj|,1 Wkxv/ wkh frqwlqxdwlrq ydoxh ri lqfxpehqw +l1h1/ wkh suhvhqw ydoxh ri wkh htxloleulxp sd|r0vwuhdp ri wkh lqfxpehqw, dw w . 4 lv Y @ 4 . . 2 . @ 4@ +4 , = Li kh dffrprgdwhv dw w/ klv suhvhqw ydoxh +dw w, zloo eh 4 .Y > dqg li kh jkwv klv suhvhqw ydoxh zloo eh 4.Y 1 Wkhuhiruh/ wkh lqfxpehqw kdv qr lqfhqwlyh wr jkw/ udwkhu wkdq dffrprgdwlqj dv vwlsxodwhg e| klv vwudwhj|1 Wkh hqwudqwv frqwlqxdwlrq ydoxh dw w . 4 zloo dovr eh lqghshqghqw ri zkdw kdsshqv dw w/ khqfh wkh hqwudqw zloo hqwhu +zkhqfh kh jhwv 4 . ^Klv suhvhqw ydoxh dw w . 4`, udwkhu wkdq ghyldwlqj +zkhqfh kh jhwv 3 . ^Klv suhvhqw ydoxh dw w . 4`,1 Qrz frqvlghu d klvwru| dw vrph gdwh w zkhuh wkh lqfxpehqw kdv qhyhu dffrpprgdwhg wkh hqwudqw ehiruh1 Frqvlghu wkh lqfxpehqw*v lqirupdwlrq vhw1 Li kh dffrpprgdwhv wkh hqwudqw/ klv frqwlqxdwlrq ydoxh dw w . 4 zloo eh Y @ 4@ +4 ,/ zkhqfh klv frqwlqxdwlrq ydoxh dw w zloo eh 4 . Y @ 4 . @ +4 ,1 Li kh jkwv/ krzhyhu/ dffruglqj wr wkh vwudwhj| suroh/ kh zloo qhyhu dffrpprgdwh dq| hqwudqwv lq wkh ixwxuh/ dqg wkh hqwudqw zloo qhyhu hqwhu/ lq zklfk fdvh wkh lqfxpehqw zloo jhw wkh frqvwdqw sd|r vwuhdp ri 5/ zkrvh suhvhqw ydoxh dw w. 4 lv 5@ +4 ,1 khqfh/ lq wklv fdvh/ klv frqwlqxdwlrq ydoxh dw w zloo eh 4 . 5@ +4 ,1 wkhuhiruh/ wkh lqfxpehqw zloo qrw kdyh dq| lqfhqwlyh wr ghyldwh +dqg dffrpprgdwh wkh hqwudqw, li dqg
8
rqo| li 4 . 5@ +4 , 4 . @ +4 , > zklfk lv wuxh li dqg rqo| li 5@6= Zkhq wklv frqglwlrq krogv/ wkh lqfxpehqw gr qrw kdyh dq lqfhqwlyh wr ghyldwh lq vxfk klvwrulhv1 qrz/ li wkh hqwudqw hqwhuv wkh pdunhw/ lqfxpehqw zloo jkw/ dqg wkh hqwudqw zloo qhyhu hqwhu lq wkh ixwxuh/ lq zklfk fdvh klv frqwlqxdwlrq ydoxh zloo eh 41 Li kh grhv qrw hqwhu/ klv frqwlqxdwlrq ydoxh lv 31 Wkhuhiruh/ kh zloo qrw kdyh dq| lqfhqwlyh wr hqwhu/ hlwkhu1 Vlqfh zh kdyh fryhuhg/ doo srvvleoh klvwrulhv/ e| wkh vlqjoh0ghyldwlrq sulqflsoh/ wklv vwudwhj| suroh lv d vxejdph shuihfw htxloleulxp li dqg rqo| li 5@61 Qrz/ vwxg| wkh frrshudwlrq lq wkh sulvrqhuv* glohppd/ lpsolflw frooxvlrq lq d Frxuqrw gxrsro|/ dqg rwkhu h{dpsohv lq Jleerqv1 Lq wkh hqwu| ghwhuuhqfh h{dpsoh deryh/ wkh htxloleulxp wkdw zh kdyh ghvfulehg zloo uhpdlq wr eh d vxejdph shuihfw htxloleulxp li wkh lqfxpehqw zkhuh idflqj d glhuhqw hqwudqw dw hdfk gdwh/ vr orqj dv wkh suhylrxv sod| ri wkh jdph lv dozd|v frpprq nqrzohgjh1
Wklv nlqg ri
jdphv fdq eh xwlol}hg lq rughu wr xqghuvwdqg wkh sureohp ri uhsxwdwlrq ri d orqj0uxq sod|hu1 Iru wkh ghwdlov/ vwxg| Nuhsv +D frxuvh lq Plfurhfrqrplf Wkhru|/ ss 8640868,1
9
47145 Jdph Wkhru| Ohfwxuh Qrwhv Ohfwxuhv 4804; Pxkdphw \logl}
4
W
Vwdwlf Jdphv zlwk Lqfrpsohwh Lqirupdwlrq
Dq lqfrpsohwh lqirupdwlrq jdph lv d jdph zkhuh d sduw| nqrzv vrphwklqj wkdw vrph rwkhu sduw| grhv qrw nqrz1 Iru lqvwdqfh/ d sod|hu pd| qrw nqrz dqrwkhu sod|hu*v xwlolw| ixqfwlrq/ zkloh wkh sod|hu klpvhoi nqrzv klv xwlolw| ixqfwlrq1 Vxfk vlwxdwlrqv duh prghohg wkurxjk jdphv zkhuh Qdwxuh pryhv dqg vrph sod|huv fdq glvwlqjxlvk fhuwdlq pryhv ri qdwxuh zkloh vrph rwkhuv fdqqrw1 H{dpsoh= Ilup klulqj d zrunhu/ wkh zrunhu fdq eh kljk ru orz delolw| dqg wkh up grhv qrw nqrz zklfk1
Work
(1, 2)
W Firm
Hire Shirk (0, 1)
High p Do not (0, 0) hire
Nature
Low 1-p
Hire
W
Work Shirk
Do not hire
(1, 1)
(-1, 2)
(0, 0)
W Wkhvh qrwhv duh edvhg rq wkh qrwhv e| Surihvvru Gdurq Dfhprjox/ zkr wdxjkw wklv frxuvh lq suhylrxv |hduv1
4
Lq wklv jdph Z nqrzv zkhwkhu kh lv ri kljk +zkr zloo zrun, ru orz +zkr zloo vklun, delolw| zrunhu/ zkloh wkh Ilup grhv qrw nqrz wklv> wkh Ilup eholhyhv wkdw wkh zrunhu lv ri kljk delolw| zlwk suredelolw| s1 Dqg doo wkhvh duh frpprq nqrzohgjh1 Zh fdoo d sod|hu*v sulydwh lqirupdwlrq dv klv w|sh1 Iru lqvwdqfh/ khuh Z kdv wzr w|shv kljk dqg orz zkloh Ilup kdv rqo| rqh w|sh +dv hyhu|wklqj up nqrzv lv frpprq nqrzohgjh,1 Qrwh wkdw zh uhsuhvhqw wkh lqfrpsohwh lqirupdwlrq jdph lq dq h{whqvlyh irup yhu| vlplodu wr lpshuihfw lqirupdwlrq jdphv1 Irupdoo|/ d vwdwlf jdph zlwk lqfrpsohwh lqirupdwlrq lv dv iroorzv1 Iluvw/ Qdwxuh fkrrvhv vrph w @ +w > w2 > = = = > w? , 5 W / zkhuh hdfk w 5 W lv vhohfwhg zlwk suredelolw| s +w,1 Khuh/ w 5 W lv wkh w|sh ri sod|hu l 5 Q @ i4> 5> = = = > qj1 Wkhq/ hdfk sod|hu revhuyhv klv rzq w|sh/ exw qrw wkh rwkhuv*1 qdoo|/ sod|huv vlpxowdqhrxvo| fkrrvh wkhlu dfwlrqv/ hdfk sod|hu nqrzlqj klv rzq w|sh1 Zh zulwh d @ +d > d2 > = = = > d2 , 5 D iru dq| olvw ri dfwlrqv wdnhq e| doo wkh sod|huv/ zkhuh d 5 D lv wkh dfwlrq wdnhq e| sod|hu l1 Vxfk d vwdwlf jdphzlwk lqfrpsohwh lqirupdwlrq lv ghqrwhg e| +Q> W> D> s,1 Qrwlfh wkdw d vwudwhj| ri wkdw sod|hu ghwhuplqhv zklfk dfwlrq kh zloo wdnh dw hdfk lqiru0 pdwlrq vhw ri klv/ uhsuhvhqwhg e| vrph w 5 W 1 Wkdw lv/ d vwudwhj| ri d sod|hu l lv d ixqfwlrq v = W $ D iurp klv w|shv wr klv dfwlrqv1 iru lqvwdqfh/ lq h{dpsoh deryh/ Z kdv irxu vwudwh0 jlhv/ vxfk dv +Zrun/Zrun, phdqlqj wkdw kh zloo zrun uhjdugohvv qdwxuh fkrrvhv kljk ru orz +Zrun/ Vklun,/ +Vklun/ Zrun,/ dqg +Vklun/ Vklun,1 Dq| Qdvk htxloleulxp ri vxfk d jdph lv fdoohg Ed|hvldq Qdvk htxloleulxp1 Iru lqvwdqfh/ iru s A 4@5/ d Ed|hvldq Qdvk htxloleulxp ri wkh jdph deryh lv dv iroorzv1 Zrunhu fkrrvhv wr Zrun li kh lv ri kljk delolw|/ dqg fkrrvhv wr Vklun li kh lv ri orz delolw|> dqg wkh up Kluhv klp1 Qrwlfh wkdw wkhuh lv dqrwkhu Qdvk htxloleulxp/ zkhuh wkh zrunhu fkrrvhv wr Vklun uhjdugohvv ri klv w|sh dqg wkh up grhvq*w kluh klp1 Vlqfh wkh jdph kdv qr surshu vxejdph/ wkh odwwhu htxloleulxp lv vxejdph shuihfw/ hyhq wkrxjk lw fohduo| uholhv rq dq lqfuhgleoh wkuhdw1 wklv lv d yhu| frpprq sureohp lq jdphv zlwk lqfrpsohwh lqirupdwlrq/ prwlydwlqj d pruh uhqhg htxloleulxp frqfhsw zh*oo glvfxvv lq rxu qh{w ohfwxuhv1 Lw*v yhu| lpsruwdqw wr qrwh wkdw sod|huv* w|shv pd| eh fruuhodwhg/ phdqlqj wkdw d sod|hu xsgdwhv klv eholhiv derxw wkh rwkhu sod|huv* w|sh zkhq kh ohduqv klv rzq w|sh1 Vlqfh kh nqrzv klv w|sh zkhq kh wdnhv klv dfwlrq/ kh pd{lpl}hv klv h{shfwhg xwlolw| zlwk uhvshfw wr wkh qhz eholhiv kh fdph wr diwhu xsgdwlqj klv eholhiv1 Zh dvvxph wkdw kh xsgdwhv klv eholhiv xvlqj Ed|hv* Uxoh1 Ed|hv* Uxoh Ohw D dqg E eh wzr hyhqwv/ wkhq suredelolw| wkdw D rffxuv frqglwlrqdo rq E rffxuulqj lv
5
S +D m E, @
S +D _ E, > S +E,
zkhuh S +D _ E, lv wkh suredelolw| wkdw D dqg E rffxu vlpxowdqhrxvo| dqg S +E,= wkh +xqfrq0 glwlrqdo, suredelolw| wkdw E rffxuv1 Lq vwdwlf jdphv ri lqfrpsohwh lqirupdwlrq/ wkh dssolfdwlrq ri Ed|hv* Uxoh zloo riwhq eh wulyldo/ exw dv zh pryh wr vwxg| g|qdplf jdphv ri lqfrpsohwh lqirupdwlrq/ wkh lpsruwdqfh ri Ed|hv* Uxoh zloo lqfuhdvh1 Ohw s +w3 mw , ghqrwh l*v eholhi wkdw wkh w|shv ri doo rwkhu sod|huv lv w3 @ +w > w2 > ===> w3 > wn > = = = > w? ,
jlyhq wkdw klv w|sh lv w1 ^Zh pd| qhhg wr xvh Ed|hv* Uxoh li w|shv dfurvv sod|huv duh cfruuhodwhg*1 Exw li wkh| duh lqghshqghqw/ wkhq olih lv vlpsohu> sod|huv gr qrw xsgdwh wkhlu eholhiv1`
Zlwk wklv irupdolvp/ d vwudwhj| surohv vW @ +vW > ===> vW? , lv d Ed|hvldq Qdvk Htxloleulxp
lq dq q0shuvrq vwdwlf jdph ri lqfrpsohwh lqirupdwlrq li dqg rqo| li iru hdfk sod|hu l dqg w|sh w 5 W > vW +w , 5 duj pd{
@
[
x ^vW +w ,> ===> d > ===> vW +w ,` s +w3 mw ,
zkhuh x lv wkh xwlolw| ri sod|hu l dqg d ghqrwhv dfwlrq1 Wkdw lv/ iru hdfk sod|hu l hdfk srvvleoh w|sh/ wkh dfwlrq fkrvhq lv rswlpdo jlyhq wkh frqglwlrqdo eholhiv ri wkdw w|sh djdlqvw wkh rswlpdo vwudwhjlhv ri doo rwkhu sod|huv1 Wkh uhpdlqlqj qrwhv duh derxw wkh dssolfdwlrqv dqg yhu| vnhwfk|> iru wkh ghwdlov vhh Jle0 erqv1 H{dpsoh= Frxuqrw zlwk Lqfrpsohwh Lqirupdwlrq1 Zh kdyh d olqhdu ghpdqg ixqfwlrq= S +T, @ d T zkhuh T @ t . t2 lv wkh wrwdo ghpdqg/ dqg frqvwdqw pdujlqdo frvwv1 Wkh pdujlqdo frvw ri Ilup 4 lv f dqg frpprq nqrzohgjh/ zkloh Ilup 5*v pdujlqdo frvw lv lwv sulydwh lqirupdwlrq1 Lwv pdujlqdo frvw +w|sh, fdq eh hlwkhu fM zlwk suredlolw| / ru fu zlwk suredelolw| 4 1 Hdfk up pd{lpl}hv lwv h{shfwhg surw1 Krz wr qg wkh Ed|hvldq Qdvk HtxloleulxpB Ilup 5 kdv wzr srvvleoh w|shv> dqg glhuhqw dfwlrqv zloo eh fkrvhq iru wkh wzr glhuhqw w|shv1 6
it2 +fu ,> t2 +fM ,j Vxssrvh up 5 lv w|sh kljk1 Wkhq/ jlyhq wkh txdqwlw| tW fkrvhq e| sod|hu/ lwv sureohp lv pd{+S fM ,t2 @ ^d t t2 fM ` t2 =
^2
Khqfh/
t2W +fM , @
d tW fM 5
+-,
Vlploduo|/ vxssrvh up 5 lv orz w|sh=
pd{ ^d tW t2 fu ` t2 /
^2
khqfh
t2W +fu , @
d tW fu = 5
+--,
Lpsruwdqw Uhpdun= Wkh vdph ohyho ri t lq erwk fdvhv1 Zk|BB Ilup 4*v sureohp=
pd{ ^d t t2W +fM , f` t . +4 , ^d t t2W +fu , f` t
^
tW @
^d t2W +fM , f` . +4 , ^d t2W +fu , f` 5
Vroyh -/ --/ dqg --- iru tW > t2W +fu ,> t2W +fM ,1
t2W +fM , @
d 5fM . f +4 ,+fM fu , . 6 9
t2W +fu , @
tW @
d 5fu . f +fM fu , 6 9
d 5f . fM . +4 ,fu 6 7
+---,
Kduvdu|l*v Mxvwlfdwlrq iru Pl{hg Vwudwhjlhv Frqvlghu wkh jdph R
I
R
5 . w > 4
3> 3
I
3> 3
4> 5 . w2
zkhuh w > w2 sulydwh lqirupdwlrq ri sod|huv 4 dqg 5/ uhvshfwlyho|/ dqg duh lqghshqghqw gudzq iurp xqlirup glvwulexwlrq ryhu ^> 5`1 Fkhfn wkdw + R li w 3 vW +w , @ I rwkhuzlvh/ dqg
+ v2 +w2 , @ W
I li w2 3 R rwkhuzlvh
irup d Ed|hvldq Qdvk htxloleulxp1 Qrwh wkdw sod|hu 4 sod|v 3 zlwk suredelolw| 526 dqg sod|hu 5 sod|v I zlwk suredelolw| 5261 Dv $ 3 +l1h1/ dv xqfhuwdlqw| glvdsshduv,/ wklv vwudwhj| suroh frqyhujhv wr d pl{hg vwudwhj| htxloleulxp lq zklfk sod|hu 4 sod|v 3 zlwk suredelolw| 526 dqg sod|hu 5 sod|v I zlwk suredelolw| 5261 Vhh Jleerqv iru ghwdlov1
Dxfwlrqv Wzr elgghuv iru d xqltxh jrrg1 y = ydoxdwlrq ri elgghu l1 Ohw xv dvvxph wkdw y *v duh gudzq lqghshqghqwo| iurp d xqlirup glvwulexwlrq ryhu ^3> 4`1 y lv sod|hu l*v sulydwh lqirupdwlrq1 Wkh jdph wdnhv wkh irup ri erwk elgghuv vxeplwwlqj d elg/ wkhq wkh kljkhvw elgghu zlqv dqg sd|v khu elg1 Ohw e eh sod|hu l*v elg1 y +e > e2 > y > y2 , @ y e li e A e
K li e @ e 2 3 li e ? e 3
4 pd{+y e ,S ureie A e +y ,mjlyhq eholhiv ri sod|hu l, . +y e ,S ureie @ e +y ,m===, K 5 Ohw xv uvw frqmhfwxuh wkh irup ri wkh htxloleulxp= Frqmhfwxuh= V|pphwulf dqg olqhdu htxloleulxp
8
e @ d . fy= Wkhq/ 2 +y e ,S ureie @ e +y ,m===, @ 31 Khqfh/
pd{+y e ,S ureie d . fy j @
K
+y e ,S ureiy
e d +e d, j @ +y e , f f
IRF= y . d li y d 5 @d li y ? d
e @
+4,
Wkh ehvw uhvsrqvh e fdq eh d olqhdu vwudwhj| rqo| li d @ 31 Wkxv/ 4 e @ y = 5 Grxeoh Dxfwlrq Vlpxowdqhrxvo|/ Vhoohu qdphv Sr dqg Ex|hu qdphv SK 1 Li SK ? Sr / wkhq qr wudgh> li SK Sr
wudgh dw sulfh s @
n 1 2 K
r
Ydoxdwlrqv duh sulydwh lqirupdwlrq= YK xqlirup ryhu +3> 4, Yr xqlirup ryhu +3> 4, dqg lqghshqghqw iurp YK Vwudwhjlhv SK +YK , dqg Sr +Yr ,1 Wkh ex|hu*v sureohp lv SK . Sr +Yr , = SK Sr +Yr , @ pd{H YK K 5 SK . H^Sr +Yr ,mSK Sr +Yr ,` pd{ YK S ureiSK Sr +Yr ,j K 5 zkhuh H^Sr +Yr ,mSK Sr +Yr ,` lv wkh h{shfwhg vhoohu elg frqglwlrqdo rq SK ehlqj juhdwhu wkdq
Sr +Yr ,=
Vlploduo|/ wkh vhoohu*v sureohp lv 9
Sr . SK +YK , pd{H Yr = SK +YK , Sr ` @ r 5 Sr . H^SK +YK ,mSK +YK , Sr Yr ` S ureiSK +YK , Sr j pd{ r 5
Htxloleulxp lv zkhuh Sr +Y , lv d ehvw uhvsrqvh wr SK +YK , zkloh SK +YK , lv d ehvw uhvsrqvh wr Sr +Yr ,1 Wkhuh duh pdq| Ed|hvldq Qdvk Htxloleuld1 Khuh lv rqh1 Sr @ [
li
Yr [
SK @ [
li
YK [=
Dq htxloleulxp zlwk {hg sulfh1 Zk| lv wklv dq htxloleulxpB Ehfdxvh jlyhq Sr @ [ li Yr [> wkh ex|hu grhv qrw zdqw wr wudgh zlwk YK ? [ dqg zlwk YK A [> SK @ [ lv rswlpdo1
vb v b /v s Trade Efficient
X
not to trade
0
vS Inefficient lack of trade
Qrz frqvwuxfw dq htxloleulxp zlwk olqhdu vwudwhjlhv= sK @ dK . fK yK sr @ dr . fr yr > zkhuh dK / dr / fK / dqg fr duh wr eh ghwhuplqhg1 Qrwh wkdw sK sr +yr , @ dr . fr yr l yr
sK dr = fr :
Olnhzlvh/ sr sK +yK , @ dK . fK yK l yK
sr dK = fK
Wkhq/ wkh ex|hu*v sureohp lv4 sK . sr +yr , pd{H yK = sK sr +yr , RK 5 ] RK 3@r Sr sK . sr +yr , @ pd{ yK gyr RK f 5 ] RK 3@r Sr sK . dr . fr yr gyr yK @ pd{ RK f 5 ] RK 3@r Sr sK dr sK . dr fr @ pd{ yr gyr yK RK fr 5 5 f sK dr sK . dr fr sK dr 2 @ pd{ yK RK fr 5 7 fr sK dr sK . dr sK dr yK @ pd{ RK fr 5 7 sK dr 6sK . dr = yK @ pd{ RK fr 7 I1R1F1= 4 fr
6sK . dr 6+sK dr , yK @3 7 7fr
l1h1/ 5 4 sK @ yK . dr = 6 6 Vlploduo|/ wkh vhoohu*v sureohp lv 4
Wkhuh lv vrphzkdw vlpsohu zd| lq wr jhw wkh vdph rxwfrph> vhh Jleerqv1
;
+5,
] sr . sK +yK , sr . dK . fK yK pd{H yr = sK +yK , sr @ pd{ R 3@ yr gyK Rr Rr rS K 5 5 K ] sr dK sr . dK fK @ pd{ 4 yK gyK yr . Rr fK 5 5 RrS3@K K # $ sr dK sr . dK fK sr dK 2 @ pd{ 4 yr . 4 Rr fK 5 7 fK fK sr dK sr dK sr . dK yr . . @ pd{ 4 Rr fK 5 7 7 sr dK 6sr . dK fK yr . @ pd{ 4 Rr fK 7 7 I1R1F1
4 6 sr dK 4 6sr . dK yr . . 4 @3 fK 7 7 7 fK
l1h1/ 6 fK 6sr . dK yr . . +fK +sr dK ,, @ 3> 7 7 7
l1h1/ 6sr fK 6 dK . fK dK @ . yr . +fK . dK , @ yr . 5 7 7 7 5 l1h1/ 5 dK . fK sr @ yr . = 6 6 E| +5,/ dK @ dr @6/ dqg e| +6,/ dr @ dK @ 4@451 Wkh htxloleulxp lv
+6,
@ . 2 1 Khqfh/
5 4 yK . 6 45 5 4 @ yr . = 6 7
sK @
+7,
sr
+8,
<
14.12 Review Notes 1 Kenichi Amaya∗ September 14, 2001
1
Why do we learn game theory?
Economic agents’ (e.g., consumers, firms, government) behavior is described as a maximization problem (utility maximization, profit maximization). For example, consider a firm’s profit maximization problem. Perfect competition Under perfect competition, a firm takes the price as given, and choose the quantity to sell. max pq − c(q) q
⇒ FOC p = c0 (q) = M C. Monopoly A monopolist choose the price, and the quantity to sell is determined by the demand curve D(p). max pD(p) − c(D(p)) p
⇒ FOC pD0 (p) + D(p) = c0 (D(p))D(p). In the examples above, the firm is the only decision maker and everything other than the choice variables (q in perfect competition and q in monopoly) are exogenously given. Therefore we can solve for the optimal value of the choice variable. Consider the Cournot Duopoly. Firm 1 chooses the quantity to sell q1 , and Firm 2 chooses q2 . Let P (q) be the inverse demand curve, where q = q1 + q2 . Firm 1 maximizes its profit: max P (q1 + q2 )q1 − c1 (q1 ). q1
∗ E52-303,
[email protected]
1
Firm 2 maximizes its profit: max P (q1 + q2 )q2 − c2 (q2 ). q2
To solve for the optimal q1 , we need to know what q2 is. But to know the optimal q2 , we need to know what q1 is. This goes forever and we can never solve it mathematically. We need some theory to solve it: Game theory. Game theory is a tool to analyze people’s behavior under strategic environment: An agent’s payoff depends not only on his decisions but also other agents’ decisions. Other examples includes: • Employer — Employee (Wage scheme — Effort) • Government — Firm (Regulation — Business strategy) • U.S. Government — Japanese government (Trade policy)
2
Decision making under uncertainty
In the environment of games, economic agents often faces uncertainty. They must choose among alternatives which gives different probability distribution over outcomes. We often call outcomes of lotteries prizes We call these alternatives lotteries. For example: Lottery 1 gives you beer with probability
1 2
and chocolate with probability 12 .
Lottery 2 gives you beer with probability
1 3
and coffee with probability 23 .
We want to have a utility function U (·) such that U (lottery 1) ≥ U (lottery 2) if and only if the agent prefers lottery 1 to lottery 2, i.e., lottery 1 lottery 2. The basic theory of choice implies there exists such a utility function if is a preference relationship, i.e., it is complete and transitive Completeness For all p, q ∈ P , p q or q p. Transitivity If p q and q r, then p r.
2
But thinking directly about this function U is too messy! It is more convenient if we have a function u such that 1 1 u(beer) + u(chocolate), 2 2 2 1 U (lottery 2) = u(beer) + u(cof f ee). 3 3
U (lottery 1) =
But can we really find such an convenient function u? Actually, it is known that we can find u if the agent’s preference over lotteries satisfies the following condition, in addition to completeness and transitivity. Independence For any p, q, r ∈ P , and any a ∈ (0, 1], ap + (1 − a)r aq + (1 − a)r ⇔ p q. Continuity For any p, q, r ∈ P , if p r, then there exist a, b ∈ (0, 1) such that ap + (1 − p)r q bp + (1 − b)r. Furthermore, if a von-Neuman Morgenstern utility function u represents , then its affine transformation u0 = au + b where a > 0 also represents .
3
Attitudes toward risk
Suppose now the prizes of lotteries are money. Lottery A gives you 50 dollars for sure (a degenerated lottery). Lottery B gives you 100 dollars with probability 1 1 2 and 0 with probability 2 . Which do you prefer? The two lotteries give you the same expected amount of money, 50 dollars, so your choice reflects whether you like risk or not. If you prefer Lottery A, then we can say you are risk averse. Your vNM utility function satisfies u(50) >
1 1 u(0) + u(100). 2 2
This is true if your vNM utility function is concave (u00 < 0 if u is twice differentiable). In general, if your vNM utility function is concave, you always prefer getting the avarage for sure to getting some risky lottery. In contrast, if your vNM utility function is concave, you always prefer getting some risky lottery to getting the avarage for sure. In this case, you are called risk loving. If your vNM utility function is linear, you are indifferent between getting some risky lottery and getting the avarage for sure. In this case, you are called risk neutral. 3
4
Modelling games
When we write down a game which represents some economic environment, the payoffs of the game are vNM utilities of the players, not the actual money amount received. In this way, we can assume the players maximize their expected payoffs. The only case where the payoffs of a player is equal to the actual money amount received is the case where the player is risk neutral. Actually, in many textbook modelling we find the players are assumed to be risk neutral and therefore maximize expected revenue.
4
14.12 Review Notes Dynamic games with incomplete information Kenichi Amaya∗ November 30, 2001
1
Perfect Bayesian equilibrium • s = (s1 , · · · , sn ): strategy profile. • A belief at an information set is a probability distribution over decision nodes in the information set. • A belief system µ is the collection of beliefs at all information sets.
Definition A pair of strategy profile and a belief system (s, µ) is a Perfect Bayesian (Nash) equilibrium (PBE) if 1. Given their beliefs, the players’ strategies must be sequentially rational. That is, at each information set the action taken by the player with the move (and the player’s subsequent strategy) must be optimal given the player’s belief at that information set and the other players’ subsequent strategies. 2. Beliefs are determined by Bayes’ rule and the players’ equilibrium strategies wherever possible. Note 1: When you are asked to describe a PBE, you need to show not only the strategy profile but also the belief system. (However, you usually don’t need to describe the belief at a singleton information set because it is obvious). Note 2: PBE is a stronger concept than subgame perfect Nash equilibrium. Therefore, the strayegy profile of a PBE is a subgame perfect Nash equilibrium. ∗ E52-303,
[email protected]
1
2
How do we find PBE?
Here is an abstract procedure of looking for PBE. 1. Using sequential rationality and Bayes rule, determine strategies and beliefs wherever possible. If you can determine strategies and beliefs everywhere, that’s it. 2. When you can’t do more, make an assumption about a strategy at any information set. Then, using sequential rationality and Bayes rule, determine strategies and beliefs wherever possible. 3. You may be able to determine strategies and beliefs everywhere, i.e., to find an equilibrium. Then, change your assumption and look for another equilibrium. 4. You may reach a contradiction. In this case, the assumption was wrong. Change your assumption. 5. When you can’t do more only with the assumption you made, make a further assumption. The idea we use in finding a mixed strategy Nash equilibrium applies here too: The mixing probability must be such that the other player is indifferent between the strategies he is mixing.
2
14.12 Economic Applications of Game Theory Professor: Muhamet Yildiz Lecture: MW 2:30-4:00 @4-153? Office Hours: M 4-5:30 @E52-251a TA: Kenichi Amaya F 10,3 @E51-85 Office Hours:TBA Web: http://web.mit.edu/14.12/www/
Name of the game Game Theory = Multi-person decision theory • The outcome is determined by the actions independently taken by multiple decision makers. • Strategic interaction. – Need to understand what the others will do – … what the others think that you will do – …
1
Hawk-Dove game
V − c V − c , 2 2
(V,0)
(0,V)
(V/2,V/2)
Chicken
(-1,-1)
(1,0)
(0,1)
(1/2,1/2)
2
Stag Hunt
(2,2)
(4,0)
(0,4)
(6,6)
Quiz Problem • Without discussing with anyone, each student is to write down a real number xi between 0 and 100 on a paper and submit it to the TA. • The TA will then compute the average x=
x1 + x2 + + xn . n
• The students who submit the number that is closest to x / 3 will share 100 points equally; the others will get 0.
3
14.12 Game Theory Lecture 2: Decision Theory Muhamet Yildiz
Road Map 1. Basic Concepts (Alternatives, preferences,…) 2. Ordinal representation of preferences 3. Cardinal representation – Expected utility theory 4. Applications: Risk sharing and Insurance
5. Quiz
1
Basic Concepts: Alternatives • Agent chooses between the alternatives • X = The set of all alternatives • Alternatives are – Mutually exclusive, and – Exhaustive • Example: Options = {Tea, Coffee} X = {T, C, TC, NT} where T= Tea, C = Coffee, TC = Tea and Coffee, NT = Neither Tea nor Coffee
Basic Concepts: Preferences • TeX • TeX –ordinal representation
2
Examples • Define a relation among the students in this class by – x T y iff x is at least as tall as y; – x M y iff x’s final grade in 14.04 is at least as high as y’s final grade; – x H y iff x and y went to the same high school; – X Y y iff x is strictly younger than y; – x S y iff x is as old as y;
Exercises • Imagine a group of students sitting around a round table. Define a relation R, by writing x R y iff x sits to the right of y. Can you represent R by a utility function? • Consider a relation } among positive real 2 numbers represented by u with u ( x ) = x . Can this relation be represented byu * ( x ) = x ? What about u **( x) = 1/ x ?
3
• • • •
TeX – OR Theorem TeX – Cardinal representation VNM Axioms Theorem
A Lottery
4
Two Lotteries $1000 .3 .3
$1M .00001
$10 .99999
.4 $0
$0
Exercise • Consider an agent with VNM utility 2 function u with u ( x ) = x . Can his preferences be represented by VNM utility function u * ( x ) = x ? What about u **( x) = 1/ x ?
5
Attitudes towards Risk p
x
1-p
y
• A fair gamble:
px+(1-p)y = 0.
• An agent is said to be risk neutral iff he is indifferent towards all fair gambles. He is said to be (strictly) risk averse iff he never wants to take any fair gamble, and (strictly) risk seeking iff he always wants to take fair gambles.
A utility function EU u
A u(pW1+(1- p)W2) C EU(Gamble)
B
W1
pW1+(1-p)W2
W2
6
• An agent is risk-neutral iff he has a linear utility function, i.e., u(x) = ax + b. • An agent is risk-averse iff his utility function is concave. • An agent is risk-seeking iff his utility function is convex.
Risk Sharing • Two agents, each having a utility function u with u ( x ) = x and an “asset:” .5 $100
.5
$0
• For each agent, the value of the asset is • Assume that the value of assets are independently distributed.
7
• If they form a mutual fund so that each agent owns half of each asset, each gets $100 1/4 1/2
$50
1/4 $0
Insurance • We have an agent with u(x ) = x and .5
$1M
.5
$0
• And a risk-neutral insurance company with lots of money, selling full insurance for “premium” P.
8
Lecture 3 Decision Theory/Game Theory 14.12 Game Theory Muhamet Yildiz
Road Map 1. 2.
Basic Concepts (Alternatives, preferences,…) Ordinal representation of preferences
3. Cardinal representation – Expected utility theory
4. Applications: Risk sharing and Insurance
5. Quiz 6. Representation of games in strategic and extensive forms 7. Quiz?
1
A Lottery
Two Lotteries $1000 .3 .3
.4
$1M .00001
$10 .99999 $0
$0
2
Exercise • Consider an agent with VNM utility 2 function u with u ( x ) = x . Can his preferences be represented by VNM utility function u * ( x ) = x ? What about u **( x) = 1/ x ?
Attitudes towards Risk • A fair gamble:
p
x
1-p
y
px+(1-p)y = 0.
• An agent is said to be risk neutral iff he is indifferent towards all fair gambles. He is said to be (strictly) risk averse iff he never wants to take any fair gamble, and (strictly) risk seeking iff he always wants to take fair gambles.
3
A utility function EU u
A u(pW1+(1- p)W2) C EU(Gamble)
B
W1
pW1+(1-p)W2
W2
• An agent is risk-neutral iff he has a linear utility function, i.e., u(x) = ax + b. • An agent is risk-averse iff his utility function is concave. • An agent is risk-seeking iff his utility function is convex.
4
Risk Sharing • Two agents, each having a utility function u with u ( x ) = x and an “asset:” .5 $100
.5
$0
• For each agent, the value of the asset is • Assume that the value of assets are independently distributed.
• If they form a mutual fund so that each agent owns half of each asset, each gets $100 1/4 1/2
$50
1/4 $0
5
Insurance • We have an agent with u(x ) = x and .5
$1M
.5
$0
• And a risk-neutral insurance company with lots of money, selling full insurance for “premium” P.
Quiz Problem • Without discussing with anyone, each student is to write down a real number xi between 0 and 100 on a paper and submit it to the TA. • The TA will then compute the average x=
x1 + x2 + + xn . n
• The students who submit the number that is closest to x / 3 will share 100 points equally; the others will get 0.
6
Multi-person Decision Theory • • • •
Who are the players? Who has which options? Who knows what? Who gets how much?
Knowledge 1. 2. 3. 4.
If I know something, it must be true. If I know x, then I know that I know x. If I don’t know x, then I know that I don’t know x. If I know something, I know all its logical implications.
Common Knowledge: x is common knowledge iff •Each player knows x •Each player knows that each player knows x • Each player knows that each player knows that each player knows x •Each player knows that each player knows that each player knows that each player knows x •… ad infinitum
7
Representations of games
Normal-form representation Definition (Normal form): A game is any list G = (S1 , l , S n ; u1 , l , u n )
where, for each i ∈ N = {1,2,l, n}, • Si is the set of all strategies available to i, • ui : S1 × m × Sn → ℜ is the VNM utility function of player i.
Assumption: G is common knowledge. Definition: A player i is rational iff he tries to maximize the expected value of ui given his beliefs.
8
Chicken
(-1,-1)
(1,0)
(0,1)
(1/2,1/2)
Extensive-form representation Definition: A tree is a set of nodes connected with directed arcs such that 1. For each node, there is at most one incoming arc; 2. each node can be reached through a unique path;
9
A tree?
A tree?? B
B A
A C
D C
10
A tree Non-terminal nodes
Terminal Nodes
Extensive form – definition Definition: A game consists of – a set of players – a tree – an allocation of each non-terminal node to a player – an informational partition (to be made precise) – a payoff for each player at each terminal node.
11
Information set An information set is a collection of nodes such that 1. The same player is to move at each of these nodes; 2. The same moves are available at each of these nodes. An informational partition is an allocation of each non-terminal node of the tree to an information set.
A game 1 L
R 2
(2,2)
r
l
1
1 λ (1,3)
ρ (3,1)
Λ (3,3)
u
(0,0)
Ρ (1,1)
12
Another Game x
1 T
B
2 L
R
L
R
The same game 1
x
T
B
2 L
R
L
R
13
Strategy A strategy of a player is a complete contingent-plan, determining which action he will take at each information set he is to move (including the information sets that will not be reached according to this strategy).
Matching pennies with perfect information 1 Head
Tail
2
2
head
tail
(-1,1)
(1,-1)
head (1,-1)
tail
2’s Strategies: HH = Head if 1 plays Head, Head if 1 plays Tail; HT = Head if 1 plays Head, Tail if 1 plays Tail; TH = Tail if 1 plays Head, Head if 1 plays Tail; TT = Tail if 1 plays Head, Tail if 1 plays Tail.
(-1,1)
14
Matching pennies with perfect information 2
1
HH
HT
TH
TT
Head
Tail
Matching pennies with Imperfect information 1
1
Head
2
Head
Tail
Head
(-1,1)
(1,-1)
Tail
(1,-1)
(-1,1)
Tail
2 head
tail
(-1,1)
(1,-1)
head (1,-1)
tail (-1,1)
15
A game with nature (5, 0)
Left 1 Head 1/2
Right
1/2
Left
(2, 2)
Nature 2
Tail
(3, 3)
Right (0, -5)
A centipede game 1 D (4,4)
A
2
α δ
(5,2)
1
a
(1,-5)
d (3,3)
16
Lecture 4 Representation of Games & Rationalizability 14.12 Game Theory Muhamet Yildiz
Road Map 1. Representation of games in strategic and extensive forms 2. Dominance 3. Dominant-strategy equilibrium 4. Rationalizability
1
Normal-form representation Definition (Normal form): A game is any list G = (S1 , l , S n ; u1 , l , u n )
where, for each i ∈ N = {1,2,l, n}, • Si is the set of all strategies available to i, • ui : S1 × m × Sn → ℜ is the VNM utility function of player i.
Assumption: G is common knowledge. Definition: A player i is rational iff he tries to maximize the expected value of ui given his beliefs.
Chicken
(-1,-1)
(1,0)
(0,1)
(1/2,1/2)
2
Extensive-form representation Definition: A tree is a set of nodes connected with directed arcs such that 1. For each node, there is at most one incoming arc; 2. each node can be reached through a unique path;
A tree Non-terminal nodes
Terminal Nodes
3
Extensive form – definition Definition: A game consists of – a set of players – a tree – an allocation of each non-terminal node to a player – an informational partition (to be made precise) – a payoff for each player at each terminal node.
Information set An information set is a collection of nodes such that 1. The same player is to move at each of these nodes; 2. The same moves are available at each of these nodes. An informational partition is an allocation of each non-terminal node of the tree to an information set.
4
A game 1 L
R 2
(2,2)
r
l
u
1
1 λ
ρ
(1,3)
Ρ
Λ
(3,1)
(0,0)
(1,1)
(3,3)
Another Game x
1
T
B
2 L
R
L
R
5
The same game 1
x
T
B
2 L
R
L
R
Strategy A strategy of a player is a complete contingent-plan, determining which action he will take at each information set he is to move (including the information sets that will not be reached according to this strategy).
6
Matching pennies with perfect information 2’s Strategies: HH = Head if 1 plays Head, Head if 1 plays Tail; HT = Head if 1 plays Head, Tail if 1 plays Tail; TH = Tail if 1 plays Head, Head if 1 plays Tail; TT = Tail if 1 plays Head, Tail if 1 plays Tail.
1 Head
Tail
2
2
head
tail
(-1,1)
(1,-1)
head (1,-1)
tail (-1,1)
Matching pennies with perfect information 2 1
HH
HT
TH
TT
Head
Tail
7
Matching pennies with Imperfect information 1 1 Head
(-1,1)
Head
Tail
Head
(-1,1)
(1,-1)
Tail
(1,-1)
(-1,1)
Tail
2 head
2
tail (1,-1)
head
tail
(1,-1)
(-1,1)
A game with nature Left
(5, 0)
1 Head 1/2
Right
1/2
Left
(2, 2)
Nature Tail
(3, 3)
2 Right (0, -5)
8
Mixed Strategy Definition: A mixed strategy of a player is a probability distribution over the set of his strategies. Pure strategies: Si = {si1,si2,…,sik} A mixed strategy: σi: S → [0,1] s.t. σi(si1) + σi(si2) + … + σi(sik) = 1. If the other players play s-i =(s1,…, si-1,si+1,…,sn), then the expected utility of playing σi is σi(si1)ui(si1,s-i) + σi(si2) ui(si2,s-i) + … + σi(sik) ui(sik,s-i).
How to play
9
Dominance s-i =(s1,…, si-1,si+1,…,sn) Definition: A pure strategy si* strictly dominates si if and only if
u i ( si* , s − i ) > u i ( si , s − i )
∀ s−i .
A mixed strategy σi* strictly dominates si iff σ i ( si1 )ui ( si1 , s−i ) + m + σ i ( sik )ui ( sik , s−i ) > ui ( si , s−i ) ∀si
A rational player never plays a strictly dominated strategy.
Prisoners’ Dilemma 2
Cooperate
Defect
Cooperate
(5,5)
(0,6)
Defect
(6,0)
(1,1)
1
10
A game 1
2
L
m
R
T
(3,0)
(1,1)
(0,3)
M
(1,0)
(0,10)
(1,0)
B
(0,3)
(1,1)
(3,0)
Weak Dominance Definition: A pure strategy si* weakly dominates si if and only if
u i ( si* , s − i ) ≥ u i ( si , s − i )
∀ s−i .
and at least one of the inequalities is strict. A mixed strategy σi* weakly dominates si iff
σ i ( si1 )ui ( si1 , s−i ) + + σ i ( sik )ui ( sik , s−i ) > ui ( si , s−i ) ∀si and at least one of the inequalities is strict. If a player is rational and cautious (i.e., he assigns positive probability to each of his opponents’ strategies), then he will not play a weakly dominated strategy.
11
Dominant-strategy equilibrium Definition: A strategy si* is a dominant strategy iff si* weakly dominates every other strategy si. Definition: A strategy profile s* is a dominant-strategy equilibrium iff si* is a dominant strategy for each player i. If there is a dominant strategy, then it will be played, so long as the players are …
Prisoners’ Dilemma 2
Cooperate
Defect
Cooperate
(5,5)
(0,6)
Defect
(6,0)
(1,1)
1
12
Second-price auction • N = {1,2} buyers; • The value of the house for buyer i is vi; • Each buyer i simultaneously bids bi; • i* with bi* = max bi gets the house and pays the second highest bid p = maxj≠ibj.
Question What is the probability that an nxn game has a dominant strategy equilibrium given that the payoffs are independently drawn from the same (continuous) distribution on [0,1]?
13
(2n-2)
(1/n) 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
1
2
3
4
5
6
7
8
9
10
Assume: Players are rational and player 2 knows that 1 is rational.
A game
1 is rational and 2 knows this: 2 1
L
m
L
R
T
(3,0)
(1,1)
(0,3)
M
(1,0)
(0,10)
(1,0)
B
(0,3)
(1,1)
(3,0)
m
R
T
(3,0) (1,1) (0,3)
B
(0,3) (1,1) (3,0)
And 2 is rational:
L
R
T
(3,0) (0,3)
B
(0,3) (3,0)
14
Rationalizability Eliminate all the strictly dominated strategies.
Yes
Any dominated strategy In the new game? No Rationalizable strategies
The play is rationalizable, provided that …
Simplified price-competition Firm 2 Firm 1
High
Medium
Low
High
6,6
0,10
0,8
Medium
10,0
5,5
0,8
Low
8,0
8,0
4,4
Dutta
15
A strategy profile is rationalizable when … • Each player’s strategy is consistent with his rationality, i.e., maximizes his payoff with respect to a conjecture about other players’ strategies; • These conjectures are consistent with the other players’ rationality, i.e., if i conjectures that j will play sj with positive probability, then sj maximizes j’s payoff with respect to a conjecture of j about other players’ strategies; • These conjectures are also consistent with the other players’ rationality, i.e., … • Ad infinitum
16
Lecture 5 Nash equilibrium & Applications 14.12 Game Theory Muhamet Yildiz
Road Map 1. Rationalizability – summary 2. Nash Equilibrium 3. Cournot Competition 1. Rationalizability in Cournot Duopoly
4. 5. 6. 7.
Bertrand Competition Commons Problem Quiz Mixed-strategy Nash equilibrium
1
Dominant-strategy equilibrium s-i =(s1,…, si-1,si+1,…,sn) Definition: si* strictly dominates si iff u i ( si* , s − i ) > u i ( si , s − i )
∀ s−i ;
si* weakly dominates si iff u i ( s , s − i ) ≥ u i ( si , s − i ) ∀s−i and at least one of the inequalities is strict. Definition: A strategy si* is a dominant strategy iff si* weakly dominates every other strategy si. Definition: A strategy profile s* is a dominantstrategy equilibrium iff si* is a dominant strategy for each player i. Examples: Prisoners’ Dilemma; Second-Price auction. * i
Question What is the probability that an nxn game has a dominant strategy equilibrium given that the payoffs are independently drawn from the same (continuous) distribution on [0,1]?
2
(2n-2)
(1/n) 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
1
2
3
4
5
6
7
8
9
10
Rationalizability Eliminate all the strictly dominated strategies.
Yes
Any dominated strategy In the new game? No Rationalizable strategies
The play is rationalizable, provided that …
3
Simplified price-competition Firm 2 Firm 1
High
Medium
Low
High
6,6
0,10
0,8
Medium
10,0
5,5
0,8
Low
8,0
8,0
4,4
Dutta
A strategy profile is rationalizable when … • Each player’s strategy is consistent with his rationality, i.e., maximizes his payoff with respect to a conjecture about other players’ strategies; • These conjectures are consistent with the other players’ rationality, i.e., if i conjectures that j will play sj with positive probability, then sj maximizes j’s payoff with respect to a conjecture of j about other players’ strategies; • These conjectures are also consistent with the other players’ rationality, i.e., … • Ad infinitum
4
Stag Hunt
(2,2)
(4,0)
(0,4)
(6,6)
A summary • If players are rational (and cautious), then they play the dominant-strategy equilibrium whenever it exists – But, typically, it does not exist
• If it is common knowledge that players are rational, then they will play a rationalizable strategy-profile – Typically, there are too many rationalizable strategies
• Now, a stronger assumption: The players are rational and their conjectures are mutually known.
5
Nash Equilibrium Definition: A strategy-profile s* =(s1*,…,sn*) is a Nash Equilibrium iff, for each player i, and for each strategy si, we have
u i ( s1* , l , si*−1 , si* , si*+1 , l , s n* ) ≥ u i ( s1* , l , si*−1 , si , si*+1 , l , s n* ), i.e., no player has any incentive to deviate if he knows what the others play. ??If players are rational, and their conjectures about what the others play are mutually known, then they must be playing a Nash equilibrium.
Stag Hunt
(2,2)
(4,0)
(0,4)
(6,6)
6
Economic Applications 1. Cournot (quantity) Competition 1. Nash Equilibrium in Cournot duopoly 2. Nash Equilibrium in Cournot oligopoly 3. Rationalizability in Cournot duopoly
2. Bertrand (price) Competition 3. Commons Problem
Cournot Oligopoly • N = {1,2,…,n} firms; • Simultaneously, each firm i produces qi units of a good at marginal cost c, • and sells the good at price P = max{0,1-Q} where Q = q1+…+qn. • Game = (S1,…,Sn; π1,…,πn) where Si = [0,∞ ∞),
P 1
πi(q1,…,qn) = qi[1-(q1+…+qn)-c] if q1+…+qn < 1, -qic otherwise.
Q 1
7
Cournot Duopoly -- profit qj=0.2 Profit
c=0.2
0 qi(1-qj-c) -cqi
-0.2
0
(1-qj-c)/2
1
1-qj-c
C-D – best responses • qiB(qj) = max{(1-qj-c)/2,0};
• Nash Equilibrium q*: q1* = (1-q2*-c)/2; q2* = (1-q1*-c)/2; • q1* = q2* = (1-c)/3
q2 q1=q1B(q2)
q* 1− c 2
q2=q2B(q1) q1
1-c
8
Cournot Oligopoly --Equilibrium • q>1-c is strictly dominated, so q ≤ 1-c. • πi(q1,…,qn) = qi[1-(q1+…+qn)-c] for each i. • FOC: ∂π ( q , , q ) ∂[ qi (1 − q1 − − qn − c )] 1 i n
=
∂qi
q=q
∂qi
*
q = q*
= (1 − q1* − − qn* − c ) − qi* = 0.
2q1* + q2* + + qn* = 1 − c
• That is,
q1* + 2q2* + + qn* = 1 − c q1* + q2* + + nqn* = 1 − c • Therefore, q1*=…=qn*=(1-c)/(n+1).
Cournot oligopoly – comparative statics P
1
n=1 n=2 n=3 n=4 Q c 1
9
Rationalizability in Cournot Duopoly q2 1-c Assume that players are rational.
1− c 2
q1 1− c 2
1-c
Players are rational: q2 1-c Assume that players know this.
1− c 2
q1 1− c 2
1-c
10
Players are rational and know that players are rational q2 1-c Assume that players know this.
1− c 2
q1 1− c 2
1-c
Players are rational; players know that players are rational; players know that players know that players are rational q 2
1-c Assume that players know this.
1− c 2
q1 1− c 2
1-c
11
Rationalizability in Cournot duopoly If i knows that qj ≤ q, then qi ≥ (1-c-q)/2. If i knows that qj ≥ q, then qi ≤ (1-c-q)/2. We know that qj ≥ q0 = 0. Then, qi ≤ q1 = (1-c-q0)/2 = (1-c)/2 for each i; Then, qi ≥ q2 = (1-c-q1)/2 = (1-c)(1-1/2)/2 for each i; … Then, qn ≤ qi ≤ qn+1 or qn+1 ≤ qi ≤ qn where qn+1 = (1-c-qn)/2 = (1-c)(1-1/2+1/4-…+(-1/2)n)/2. • As n→∞, qn → (1-c)/3. • • • • • • •
Bertrand (price) competition • N = {1,2} firms. • Simultaneously, each firm i sets a price pi; • If pi < pj, firm i sells Q = max{1 – pi,0} unit at price pi; the other firm gets 0. • If p1 = p2, each firm sells Q/2 units at price p1, where Q = max{1 – p1,0}. • The marginal cost is 0. if p1 < p2 p1 (1 − p1 ) π 1 ( p1 , p2 ) = p1 (1 − p1 ) / 2 if p1 = p2 0 otherwise.
12
Bertrand duopoly -- Equilibrium Theorem: The only Nash equilibrium in the “Bertrand game” is p* = (0,0). Proof: 1. p*=(0,0) is an equilibrium. 2. If p = (p1,p2) is an equilibrium, then p = p*. 1. If p = (p1,p2) is an equilibrium, then p1 = p2... •
If pi > pj= 0, for sufficiently small ε>0, pj’ = ε is a better response to pi for j. If pi > pj> 0, pi’ = pj is a better response for i.
2. Given any equilibrium p = (p1,p2) with p1 = p2, p = p*. •
If p1 = p2>0, for sufficiently small ε>0, pj’ = pj - ε is a better response to pj for i.
Commons Problem • N = {1,2,…,n} players, each with unlimited money; • Simultaneously, each player i contributes xi ≥ 0 to produce y = x1+…xn unit of some public good, yielding payoff Ui(xi,y) = y1/2 – xi.
13
Quiz Each student i is to submit a real number xi. We will pair the students randomly. For each pair (i,j), if xi ≠ xj, the student who submits the number that is closer to (xi+xj)/4 gets 100; the other student gets 20. If xi = xj, then each of i and j gets 50.
14
Lectures 6-7 Nash Equilibrium & Backward Induction 14.12 Game Theory Muhamet Yildiz
Road Map 1. 2. 3. 4. 5. 6. 7.
Bertrand Competition Commons Problem Mixed-strategy Nash equilibrium Bertrand competition with costly search Backward Induction Stackelberg Competition Sequential Bargaining
1
Bertrand (price) competition • N = {1,2} firms. • Simultaneously, each firm i sets a price pi; • If pi < pj, firm i sells Q = max{1 – pi,0} unit at price pi; the other firm gets 0. • If p1 = p2, each firm sells Q/2 units at price p1, where Q = max{1 – p1,0}. • The marginal cost is 0. if p1 < p2 p1 (1 − p1 ) π 1 ( p1 , p2 ) = p1 (1 − p1 ) / 2 if p1 = p2 0 otherwise.
Bertrand duopoly -- Equilibrium Theorem: The only Nash equilibrium in the “Bertrand game” is p* = (0,0). Proof: 1. p*=(0,0) is an equilibrium. 2. If p = (p1,p2) is an equilibrium, then p = p*. 1. If p = (p1,p2) is an equilibrium, then p1 = p2... •
If pi > pj= 0, for sufficiently small ε>0, pj’ = ε is a better response to pi for j. If pi > pj> 0, pi’ = pj is a better response for i.
2. Given any equilibrium p = (p1,p2) with p1 = p2, p = p*. •
If p1 = p2>0, for sufficiently small ε>0, pj’ = pj - ε is a better response to pj for i.
2
Commons Problem • N = {1,2,…,n} players, each with unlimited money; • Simultaneously, each player i contributes xi ≥ 0 to produce y = x1+…xn unit of some public good, yielding payoff Ui(xi,y) = y1/2 – xi.
Stag Hunt
(2,2)
(4,0)
(0,4)
(5,5)
3
Equilibrium in Mixed Strategies What is a strategy? – A complete contingent-plan of a player. – What the others think the player might do under various contingency.
What do we mean by a mixed strategy? – The player is randomly choosing his pure strategies. – The other players are not certain about what he will do.
Stag Hunt
(2,2)
(4,0)
(0,4)
(5,5)
4
Mixed-strategy equilibrium in Stag-Hunt game • Assume: Player 2 thinks that, with probability p, Player 1 targets for Rabbit. What is the best probability q she wants to play Rabbit? • His payoff from targeting Rabbit: U2(R;p) = 2p + 4(1-p) = 4-2p. • From Stag: U2(R;p) = 5(1-p) • She is indifferent iff 4-2p = 5(1-p) iff p = 1/3.
5 4.5 4 3.5 3 2.5
4 - 2p
2 1.5 1
5(1-p)
0.5 0
0
0.2
0.4
0.6
0.8
1
if p < 1/3 0 q ( p ) = q ∈ [0,1] if p = 1/3 1 if p > 1/3 BR
Best responses in Stag-Hunt game q
1/3 p 1/3
5
Bertrand Competition with costly search •
N = {F1,F2,B}; F1, F2 are firms; B is buyer B needs 1 unit of good, worth 6; Firms sell the good; Marginal cost = 0. Possible prices P = {1,5}. Buyer can check the prices with a small cost c > 0.
• • • •
Game: 1. Each firm i chooses price p i; 2. B decides whether to check the prices; 3. (Given) If he checks the prices, and p1≠p2, he buys the cheaper one; otherwise, he buys from any of the firm with probability ½.
Bertrand Competition with costly search F2 F1
F2 High
Low
F1
High
High
Low
Low
Check
High
Low
Don’t Check
6
Mixed-strategy equilibrium • Symmetric equilibrium: Each firm charges “High” with probability q; • Buyer Checks with probability r. • U(check;q) = q21 + (1-q2)5 – c = 5 - 4 q2 – c; • U(Don’t;q) = q1 + (1-q)5 = 5 - 4 q; • Indifference: 4q(1-q) = c; i.e., • U(high;q,r) = 0.5(1-r(1-q))5; • U(low;q,r) = qr1 + 0.5(1-qr) • Indifference = r = 4/(5-4q).
Dynamic Games of Perfect Information & Backward Induction
7
Definitions Perfect-Information game is a game in which all the information sets are singleton. Sequential Rationality: A player is sequentially rational iff, at each node he is to move, he maximizes his expected utility conditional on that he is at the node – even if this node is precluded by his own strategy. In a finite game of perfect information, the common knowledge of sequential rationality gives “Backward Induction” outcome.
A centipede game 1 D (4,4)
A
2
α δ
(5,2)
1
a
(1,-5)
d (3,3)
8
Backward Induction Take any pen-terminal node Pick one of the payoff vectors (moves) that gives ‘the mover’ at the node the highest payoff Assign this payoff to the node at the hand; Eliminate all the moves and the terminal nodes following the node Yes
Any non-terminal node No The picked moves
Battle of The Sexes with perfect information 1
T
B
2 L
(2,1)
2 R
(0,0)
L
(0,0)
R
(1,2)
9
Note • There are Nash equilibria that are different from the Backward Induction outcome. • Backward Induction always yields a Nash Equilibrium. • That is, Sequential rationality is stronger than rationality.
Matching Pennies (wpi) 1 Head
Tail
2
2
head
tail
(-1,1)
(1,-1)
head (1,-1)
tail (-1,1)
10
Stackelberg Duopoly Game: P N = {1,2} firms w MC = 0; 1. Firm 1 produces q1 units 1 2. Observing q1, Firm 2 produces q2 units 3. Each sells the good at price P = max{0,1-(q1+q2)}.
Q 1
πi(q1, q2) = qi[1-(q1+q2)] if q1+ q2 < 1, 0 otherwise.
“Stackelberg equilibrium” • If q1 > 1, q2*(q1) = 0. • If q1 ≤ 1, q2*(q1) = (1-q1)/2. • Given the function q2*, if q1 ≤ 1
P 1
π1(q1;q2*(q1)) = q1[1-(q1+ (1-q1)/2)] = q1 (1-q1)/2; 0 otherwise. • q1* = ½. • q2*(q1*) = ¼.
1
11
Sequential Bargaining • N = {1,2} • X = feasible expected-utility pairs (x,y ∈X ) • Ui(x,t) = δitxi • d = (0,0) ∈ D disagreement payoffs
D
1
1
Timeline – 2 period At t = 2,
At t = 1, – – – –
– Player 2 offers some (x2,y2), – Player 1 Accept or Rejects the offer – If the offer is Accepted, the game ends yielding payoff δ(x2,y2). – Otherwise, the game end yielding d = (0,0).
Player 1 offers some (x1,y1), Player 2 Accept or Rejects the offer If the offer is Accepted, the game ends yielding (x1,y1), Otherwise, we proceed to date 2.
1
(x1,y1)
2
(x2,y2)
2 Reject
Accept
1
(0,0) Reject
Accept
(δx2,δy2)
(x1,y1)
12
1
(x1,y1)
2
(x2,y2)
2 Reject
Accept
1
(0,0) Reject
Accept
(δx2,δy2)
(x1,y1)
At t = 2, •Accept iff y2 ≥ 0. •Offer (0,1). At t = 1, •Accept iff x2 ≥ δ. •Offer (1−δ,δ).
Timeline – 2n period T = {1,2,…,2n-1,2n} If t is odd, – – –
–
Player 1 offers some (xt,yt), Player 2 Accept or Rejects the offer If the offer is Accepted, the game ends yielding δt(xt,yt), Otherwise, we proceed to date t+1.
If t is even – Player 2 offers some (xt,yt), – Player 1 Accept or Rejects the offer – If the offer is Accepted, the game ends yielding payoff (xt,yt), – Otherwise, we proceed to date t+1, except at t = 2n, when the game end yielding d = (0,0).
13
Equilibrium • Scientific Word
14
Lectures 8 Subgame-perfect Equilibrium & Applications 14.12 Game Theory Muhamet Yildiz
Road Map 1. Subgame-perfect Equilibrium 1. 2. 3. 4.
Motivation What is a subgame? Definition Example
2. Applications 1. Bank Runs 2. Tariffs & Intra-industry trade
3. Quiz
1
A game 1 E
X
1
(2,6)
T
B
2 L
R
(0,1)
L
(3,2)
(-1,3)
R (1,5)
Sequential Bargaining 1
• N = {1,2} • X = feasible expected-utility pairs (x,y ∈X ) • Ui(x,t) = δitxi • d = (0,0) ∈ D disagreement payoffs
D
1
2
Timeline – ∞ period T = {1,2,…, n-1,n,…} If t is odd, – – –
–
Player 1 offers some (xt,yt), Player 2 Accept or Rejects the offer If the offer is Accepted, the game ends yielding δt(xt,yt), Otherwise, we proceed to date t+1.
If t is even – Player 2 offers some (xt,yt), – Player 1 Accept or Rejects the offer – If the offer is Accepted, the game ends yielding payoff (xt,yt), – Otherwise, we proceed to date t+1.
Backward induction • Can be applied only in perfect information games of finite horizon. How can we extend this notion to infinite horizon games, or to games with imperfect information?
3
A subgame A subgame is part of a game that can be considered as a game itself. • It must have a unique starting point; • It must contain all the nodes that follow the starting node; • If a node is in a subgame, the entire information set that contains the node must be in the subgame.
A game 1 D (4,4)
A
2
α δ
(5,2)
1
a
(1,-5)
d (3,3)
4
And its subgames 1 a
2
(1,-5)
d
α δ
(3,3)
1 a
(1,-5)
d
(5,2)
(3,3)
A game 1 E
X
1
(2,6)
T
B
2 L (0,1)
R (3,2)
L (-1,3)
R (1,5)
5
Definitions A substrategy is the restriction of a strategy to a subgame. A subgame-perfect Nash equilibrium is a Nash equilibrium whose substrategy profile is a Nash equilibrium at each subgame.
Example 1 E
X
1
(2,6)
T
B
2 L (0,1)
R (3,2)
L (-1,3)
R (1,5)
6
A “Backward-Induction-like” method Take any subgame with no proper subgame Compute a Nash equilibrium for this subgame Assign the payoff of the Nash equilibrium to the starting node of the subgame Eliminate the subgame Yes
Any non-terminal node No The moves computed as a part of any (subgame) Nash equilibrium
Theorem In a finite, perfect-information game, the set of subgame-perfect equilibria is the set of strategy profiles that are computed via backward induction.
7
A subgame-perfect equilibrium? X 1
(2,6)
T
B
2 L
R
(0,1)
L
(3,2)
R
(-1,3)
(1,5)
Bank Run 1
R > D > r > D/2
DW
W 2 W (r,r)
DW
DW
W
(D,2r-D) (2r-D,D)
1 W
DW
2 W (R,R)
DW
W
(2R-D,D) (D,2R-D)
DW (R,R)
8
Lectures 9 Applications of Subgame-perfect Equilibrium & Forward Induction 14.12 Game Theory Muhamet Yildiz
Road Map 1. Applications 1. Tariffs & Intra-industry trade 2. Infinite horizon bargaining – Singledeviation principle
2. Forward Induction – Examples 3. Finitely Repeated Games 4. Quiz
1
Single-Deviation principle Definition: An extensive-form game is continuous at infinity iff, given any ε > 0, there exists some t such that, for any two path whose first t arcs are the same, the payoff difference of each player is less than ε. Theorem: Let G be a game that is continuous at infinity. A strategy profile s = (s1,s2,…,sn) is a subgame-perfect equilibrium of G iff, at any information set, where a player i moves, given the other players strategies and given i’s moves at the other information sets, player i cannot increase his conditional payoff at the information set by deviating from his strategy at the information set.
Sequential Bargaining 1
• N = {1,2} • D = feasible expected-utility pairs (x,y ∈D ) • Ui(x,t) = δitxi • d = (0,0) ∈ D disagreement payoffs
D
1
2
Timeline – ∞ period T = {1,2,…, n-1,n,…} If t is odd, – – –
–
Player 1 offers some (xt,yt), Player 2 Accept or Rejects the offer If the offer is Accepted, the game ends yielding δt(xt,yt), Otherwise, we proceed to date t+1.
If t is even – Player 2 offers some (xt,yt), – Player 1 Accept or Rejects the offer – If the offer is Accepted, the game ends yielding payoff δt(xt,yt), – Otherwise, we proceed to date t+1.
SPE of ∞-period bargaining Theorem: At any t, proposer offers the other player δ/(1+δ), keeping himself 1/(1+δ), while the other player accept an offer iff he gets δ/(1+δ). “Proof:” Single-deviation principle: Take any date t, at which i offers, j accepts/rejects. According to the strategies in the continuation game, at t+1, j will get 1/(1+δ). Hence, j accepts an offer iff she gets at least δ/(1+δ). i must offer δ/(1+δ).
3
Forward Induction Strong belief in rationality: At any history of the game, each agent is assumed to be rational if possible. (That is, if there are two strategies s and s’ of a player i that are consistent with a history of play, and if s is strictly dominated but s’ is not, at this history no player j believes that i plays s.)
Table for the bidding game Ui = 20(2+2minjbidj – bidi)
min
1
2
3
1
60
-
-
2
40
80
-
3
20
60
100
bid
4
Nash equilibria of bidding game • 3 equilibria: s1 = everybody plays 1; s2 = everybody plays 2; s3 = everybody plays 3. • Assume each player trembles with probability ε < 1/2, and plays each unintended strategy w.p. ε/2, e.g., w.p. ε/2, he thinks that such other equilibrium is to be played. – s3 is an equilibrium iff – s2 is an equilibrium iff – s1 is an equilibrium iff
1 0.8 0.6 0.4 0.2 0.047
0 -0.2
n
(1-ε/2) -1/2 -0.4 -0.6 n
-0.8 -1
n
(1-ε) +(1-ε/2) -1 0
0.032 0.05
0.1
0.15
0.2
5
Bidding game with entry fee Each player is first to decide whether to play the bidding game (E or X); if he plays, he is to pay a fee p > 60.
1
2
3
60 40 20
80 60
100
min Bid
1 2 3
For each m =1,2,3, ∃SPE: (m,m,m) is played in the bidding game, and players play the game iff 20(2+m) ≥ p. Forward induction: when 20(2+m) < p, (Em) is strictly dominated by (Xk). After E, no player will assign positive probability to min bid ≤ m. FI-Equilibria: (Em,Em,Em) where 20(2+m) ≥ p. What if an auction before the bidding game?
Burning Money 0
B
B 3,1
S 0,0
S
0,0
1,3
1
D
BB
B
B 2,1
S -1,0
S
-1,0
0,3
BS
SB
SS
0B 0S DB DS
O T
H E
R
6
Repeated Games
Entry deterrence 1 X
Enter
2
Acc.
(1,1)
Fight (0,2)
(-1,-1)
7
Entry deterrence, repeated twice 1
(1,3)
2 Acc.
Enter
X 2 Enter 1
Acc. Fight
(-1,1)
X (0,4)
Fight
1 X (-1,1)
1
Enter
2 Acc.
(2,2)
Fight
X
(1,3) (0,0) Enter 2 Acc.
(0,0)
Fight (-2,-2)
8
Lectures 10 -11 Repeated Games
14.12 Game Theory Muhamet Yildiz
Road Map 1.
Forward Induction – Examples
2. Finitely Repeated Games with observable actions 1. Entry-Deterrence/Chain-store paradox 2. Repeated Prisoners’ Dilemma 3. A general result 4. When there are multiple equilibria
3. Infinitely repeated games with observable actions 1. 2. 3. 4. 5.
Discounting / Present value Examples The Folk Theorem Repeated Prisoners’ Dilemma, revisited –tit for tat Repeated Cournot oligopoly
4. Infinitely repeated games with unobservable actions
Forward Induction Strong belief in rationality: At any history of the game, each agent is assumed to be rational if possible. (That is, if there are two strategies s and s’ of a player i that are consistent with a history of play, and if s is strictly dominated but s’ is not, at this history no player j believes that i plays s.)
Bidding game with entry fee Each player is first to decide whether to play the bidding game (E or X); if he plays, he is to pay a fee p > 60.
min
1
2
3
1 2 3
60 40 20
80 60
100
Bid
For each m =1,2,3, ∃SPE: (m,m,m) is played in the bidding game, and players play the game iff 20(2+m) ≥ p. Forward induction: when 20(2+m) < p, (Em) is strictly dominated by (Xk). After E, no player will assign positive probability to min bid ≤ m. FI-Equilibria: (Em,Em,Em) where 20(2+m) ≥ p. What if an auction before the bidding game?
Burning Money 0
B
B 3,1
S 0,0
S
0,0
1,3
1
D
BB
B
B 2,1
S -1,0
S
-1,0
0,3
BS
SB
SS
0B 0S DB DS
O T
H E
R
Repeated Games
Entry deterrence 1 X
Enter
2 Acc. Fight
(0,2)
(-1,-1)
(1,1)
Entry deterrence, repeated twice, many times 1
(1,3)
Enter
2 Acc.
X 2 Enter 1
Acc. Fight
(-1,1)
X (0,4)
Fight
1 X (-1,1)
1
Enter
2 Acc.
X
Fight
(1,3) (0,0) Enter 2 Acc.
Fight (-2,-2)
What would happen if repeated n times?
(0,0)
(2,2)
Prisoners’ Dilemma, repeated twice, many times • Two dates T = {0,1}; • At each date the prisoners’ dilemma is played:
C C 5,5
D 0,6
D 6,0
1,1
• At the beginning of 1 players observe the strategies at 0. Payoffs= sum of stage payoffs.
Twice-repeated PD 1
C
D 2
D
C 1
C 10 10
1 D 2
C
D C
5 11
6 6
11 5
5 11
1 C
D
C
D C
1 D
2
6 6
1 7
C
D 2
2 D
D C 0 12
D
C
C 11 5
D
C
D
C
D C
D
6 6
12 0
7 1
6 6
1 7
2 2
What would happen if T = {0,1,2,…,n}?
7 1
A general result • G = “stage game” = a finite game • T = {0,1,…,n} • At each t in T, G is played, and players remember which actions taken before t; • Payoffs = Sum of payoffs in the stage game. • Call this game G(T). Theorem: If G has a unique subgame-perfect equilibrium s*, G(T) has a unique subgameperfect equilibrium, in which s* is played at each stage.
With multiple equilibria T = {0,1} 2
L
M2
R
T
1,1
5,0
0,0
M1
0,5
4,4
0,0
B
0,0
0,0
3,3
1
s* = •At t = 0, each i play Mi; •At t = 1, play (B,R) if (M1,M2) at t = 0, play (T,L) otherwise.
L
M2
R
T
2,2
6,1
1,1
M1
1,6
7,7
1,1
B
1,1
1,1
4,4
Infinitely repeated Games with observable actions • T = {0,1,2,…,t,…} • G = “stage game” = a finite game • At each t in T, G is played, and players remember which actions taken before t; • Payoffs = Discounted sum of payoffs in the stage game. • Call this game G(T).
Definitions The Present Value of a given payoff stream π = (π0,π1,…,πt,…) is PV(π;δ) = Σ∞t=1 δtπt = π0 + δπ1 + … + δtπt +… The Average Value of a given payoff stream π is (1−δ)PV(π;δ) = (1−δ)Σ∞t=1 δtπt The Present Value of a given payoff stream π at t is PVt(π;δ) = Σ∞s=t δs-t πs = πt + δπt+1 + … + δsπt+s +…
Infinite-period entry deterrence 1 X (0,2)
Enter
2 Acc. Fight (-1,-1)
(1,1)
Strategy of Entrant: Enter iff Accomodated before. Strategy of Incumbent: Accommodate iff accomodated before.
Incumbent: • V(Acc.) = VA = 1/(1−δ); • V(Fight) = VF = 2/(1−δ); • Case 1: Accommodated before. – Fight => -1 + δVA – Acc. => 1 + δVA.
• Case 2: Not Accommodated – Fight => -1 + δVF – Acc. => 1 + δVA – Fight Ù -1 + δVF ≥ 1 + δVA ÙVF − VA = 1/(1−δ) ≥ 2/δ Ùδ ≥ 2/3.
Entrant: • Accommodated – Enter => 1+VAE – X => 0 +VAE
• Not Acc. – Enter =>-1+VFE – X => 0 +VFE
Infinitely-repeated PD C C 5,5
D 0,6
D 6,0
1,1
A Grimm Strategy: Defect iff someone defected before.
• • • •
VD = 1/(1−δ); VC = 5/(1−δ) = 5VD; Defected before (easy) Not defected – D => – C => –CÙ
Tit for Tat • Start with C; thereafter, play what the other player played in the previous round. • Is (Tit-for-tat,Tit-for-tat) a SPE? • Modified: Start with C; if any player plays D when the previous play is (C,C), play D in the next period, then switch back to C.
Folk Theorem Definition: A payoff vector v = (v1,v2,…,vn) is feasible iff v is a convex combination of some pure-strategy payoff-vectors, i.e., v = p1u(a1) + p2u(a2) +…+ pku(ak), where p1 + p2 +…+ pk = 1, and u(aj) is the payoff vector at strategy profile aj of the stage game. Theorem: Let x = (x1,x2,…,xn) be s feasible payoff vector, and e = (e1,e2,…,en) be a payoff vector at some equilibrium of the stage game such that xi > ei for each i. Then, there exist δ < 1 and a strategy profile s such that s yields x as the expected average-payoff vector and is a SPE whenever δ > δ.
Folk Theorem in PD C C 5,5
D 0,6
D 6,0
1,1
• A SPE with PV (1.1,1.1)? – With PV (1.1,5)? – With PV (6,0)? – With PV (5.9,0.1)?
Infinitely-repeated Cournot oligopoly • N firms, MC = 0; P = max{1-Q,0}; • Strategy: Each is to produce q = 1/(2n); if any firm defects produce q = 1/(1+n) forever. • VC = • VD = • V(D|C) = • Equilibrium Ù
1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5
0
20
40
60
80
100
1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5
0
200
400
600
800
1000
IRCD (n=2) • Strategy: Each firm is to produce q*; if any one deviates, each produce 1/(n+1) thereafter. • VC = q*(1-2q*)/(1-δ); • VD = 1/(9(1-δ)); δ 2 • VD|C = max q(1-q*-q) +δVD = (1 − q *) / 4 + 9(1 − δ ) • Equilibrium iff 2 q * (1 − 2q *) ≥ (1 − δ )(1 − q *) / 4 + δ / 9 • Ù
9 − 5δ q* ≥ 3(9 − δ )
x = δ, y = (3-5/3 δ)/(9-δ )
0.4 0.3
y
0.2 0.1 0 0
0.2
0.4
0.6 x
0.8
1
Carrot and Stick Produce ¼ at the beginning; at ant t > 0, produce ¼ if both produced ¼ or both produced x at t-1; otherwise, produce x. Two Phase: Cartel & Punishment VC = 1/8(1-δ). Vx = x(1-2x) + δVC. VD|C = max q(1-1/4-q) + δVX = (3/8)2 + δVX VD|x = max q(1-x-q) + δVX = (1-x)2/4 + δVX VC ≥ VD|C Ù VC ≥ (3/8)2 + δ2VC + δ x(1-2x) Ù (1-δ2) VC - (3/8)2 ≥ δ x(1-2x) Ù(1+δ)/8 - (3/8)2 ≥ δ x(1-2x) VX ≥ VD|C Ù (1-δ)Vx ≥ (1-x)2/4 Ù (1-δ)(x(1-2x) + δ/8(1-δ)) ≥ (1-x)2/4 Ù (1-δ)x(1-2x) + δ/8 ≥ (1-x)2/4 2x2 – x + 1/8 – 9/64δ ≥ 0 (9/4-2δ)x2 – (3-2δ)x +δ/8(1-δ) ≤ 0
Lectures 12-13 Incomplete Information Static Case 14.12 Game Theory Muhamet Yildiz
Road Map 1. Examples 2. Bayes’ rule 3. Definitions 1. Bayesian Game 2. Bayesian Nash Equilibrium
4. Mixed strategies, revisited 5. Economic Applications 1. Cournot Duopoly 2. Auctions 3. Double Auction
1
Incomplete information We have incomplete (or asymmetric) information if one player knows something (relevant) that some other player does not know.
An Example W ork
(1, 2)
W Firm
H ire Shirk (0, 1)
H igh p D o not hire
N ature
Low 1-p
H ire
(0, 0) W
W ork Shirk
D o not hire
(1, 1)
(-1, 2)
(0, 0)
2
The same example Work
(1, 2)
Shirk
(0, 1)
W Nature
High p
Hire
hire
Firm
Work
Low 1-p
(1, 1)
W Shirk
Do not
(-1, 2) (0, 0)
Another Example Buy
(p, 2-p)
B Seller
p
Don’t
p’
Buy
High 0.5
B
Nature
Low .5
What would you ask if you were to choose p from [0,4]?
B
Don’t
Buy
(0, 0) (p’,2-p’)
(0, 0) (p, 1-p)
p Don’t p’
B
(0,0)
Buy
(p’, 1-p’)
Don’t
(0, 0)
3
Same “Another Example” Buy
(p, 2-p)
B High 0.5 Don’t
Nature
Buy p
Low .5
B
Don’t
Seller p’
Nature High 0.5
What would you ask if you were to choose p from [0,4]?
B
Buy Don’t
Low .5
B
(0, 0) (p’,2-p’)
(0, 0) (p, 1-p)
(0,0)
Buy
(p’, 1-p’)
Don’t
(0, 0)
Bayes’ Rule Prob(A and B) • Prob(A|B) = Prob(B) • Prob(A and B) = Prob(A|B)Prob(B) = Prob(B|A)Prob(A)
Prob(B|A)Prob(A) • Prob(A|B) = Prob(B)
4
Example p Work µ
Success 1-p
• Prob(Work|Success) = µp/[µp + (1−µ)(1-p)] • Prob(Work|Failure) = (1-µ)p/[µ(1−p) + (1−µ)p]
1-p Failure
Shirk 1−µ
p
1 0.9
P(W|S)
0.8
P (w|S ),P (W|F)
0.7 0.6 0.5
P(W|F)
0.4 0.3 0.2 0.1 0
0
0.2
0.4
0.6
0.8
1
µ
5
Bayesian Game (Normal Form) A Bayesian game is a list G = {A1,…,An;T1,…,Tn;p1,…,pn;u1,…,un} where • Ai is the action space of i (ai in Ai) • Ti is the type space of i (ti) • pi(t-i|ti) is i’s belief about the other players • ui(a1,…,an;t1,…,tn) is i’s payoff.
An Example Work
(1, 2)
W Firm
Hire Shirk (0, 1)
High p Do not (0, 0) hire
Nature
Low 1-p
Hire
W
Work Shirk
Do not hire
TFirm={tf}; TW = {High,Low} AFirm = {Hire, Don’t} AW = {Work,Shirk} pF(High) = p pF(Low) = 1-p
(1, 1)
(-1, 2)
(0, 0)
6
Bayesian Nash equilibrium A Bayesian Nash equilibrium is a Nash equilibrium of a Bayesian game. Given any Bayesian game G = {A1,…,An;T1,…,Tn;p1,…,pn;u1,…,un} a strategy of a player i in a is any function si:Ti → Ai; A strategy profile s* = (s1*,…, s1*) is a Bayesian Nash equilibrium iff si*(ti) solves
max ∑ u (s (t ),..., s (t ), a , s (t ),..., s (t ); t )p (t ai ∈Ai
t− i ∈T− i
i
* 1
* i −1
1
i −1
i
* i +1
i +1
* n
n
i
−i
| ti )
i.e., si* is a best response to s-i*.
An Example Work
(1, 2)
W Firm
Hire Shirk (0, 1)
High p Do not (0, 0) hire
Nature
Low 1-p
Hire
W
Work Shirk
Do not hire
(0, 0)
TFirm={tf}; TW = {High,Low} AFirm = {Hire, Don’t} AW = {Work,Shirk} pF(High) = p >1/2 pF(Low) = 1-p
(1, 1)
(-1, 2)
sF* = Hire, sF* (High) = Work sF* (Low) = Shirk Another equilibrium?
7
Stag Hunt, Mixed Strategy
(2,2)
(4,0)
(0,4)
(6,6)
Mixed Strategies • t and v are iid with uniform distribution on [−ε,ε]. • t and v are privately known by 1 and 2, respectively, i.e., are types of 1 and 2, respectively. • Pure strategy: 2+t,2+v 4+t,0 – s1(t) = Rabbit iff t > 0; – s2(v) = Rabbit iff t > 0. 0,4+v 6,6 • p = Prob(s1(t)=Rabbit|v) = Prob(t > 0) = 1/2. U1(R|t) = t +2q+4(1-q) = t + 4 – 2q • q = Prob(s2(v)=Rabbit|t) = U1(S|t) = 6(1-q); 1/2. U1(R|t) > U1(S|t) t+4–2q > 6(1-q) t > 6-6q+2q-4 = 2 – 4q = 0.
8
Economic Applications with Incomplete Information 14.12 Game Theory Muhamet Yildiz
Road Map 1. Cournot duopoly with Incomplete Information 2. A ¿rst price auction 3. A double auction 4. Quiz
1
1 Cournot duopoly with Incomplete Information Demand:
E' ' @ ' where ' ' ^ n ^2. The marginal cost of Firm 1 = S common knowledge. Firm 2’s marginal cost: SM with probaility w, Su with probaility w its private information. Each ¿rm maximizes its expected pro¿t.
2
1.1 Bayesian Nash Equilibrium Firm 2 of high type: 4@ E SM ^2 ' 4@ d@ ^ ^2 SM o ^2 ^5
^5
@ ^ SM ' 2 Firm 2 of low type: ^2ESM
(*)
4@ d@ ^ ^2 Suo ^2, ^5
^2ESu Firm 1:
@ ^ Su ' 2
(**)
4@ w d@ ^ ^2ESM So ^ ^4
^
n E w d@ ^ ^2ESu So ^
w d@ ^2ESM So n E w d@ ^2ESu So ' 2 (***)
3
Solve *, **, and *** for ^c ^2ESuc ^2ESM .
3
^
4
6 3
5
2 w w C ^2ESM D ' 7 2 f 8 f 2 ^2ESu
4
@S C @ SM D ( @ Su
@ 2SM n S E wESM Su n ' S @ 2Su n S wESM Su ^2 ESu ' S @ 2S n wSM n E wSu ^ '
^2ESM
4
2 A First-price Auction One object, two bidders ' Valuation of bidder i iid with uniform distribution over dfc o. Simultaneously, each bidder submits a bid K, then the highest bidder wins the object and pays her bid. The payoffs: ; ? K if K : K c l EKc K2c c 2 ' lK if K ' K c 2 = f if K K Objective of : 4@ . dEKc K2c c 2o Kl
where . do ' E K hiK : K E j n E K hiK ' K E j 2
5
2.1 Symmetric, linear equilibrium K ' @ n S Then,
hiK ' K E j ' f Equilibrium condition: @ K . Hence, . do ' E K hiK @ n S j K @ ' E K hi j S K @ ' E K S FOC: ln@ if @ 2 K ' (1) @ if @ Therefore, K ' 2 6
2.2 Any symmetric equilibrium K ' K E Hence,
. do ' E K hiK KE j ' E K hi K EKj ' E KK EK FOC (Y*YK ' f): EK _K K EK n E K ' f _K ' f n E K E 3 K E K3 E n K E ' _ dK E o ' _ K E ' 2*2 n SJ?r| K E ' *2 n SJ?r|* K Ef ' f, =: cons = 0. K E ' *2 7
3 Double Auction 1. Simultaneously, Seller names Rr and Buyer names RK. a. If RK Rr, then no trade b. if RK Rr, trade at price R '
Re nRv . 2
2. Valuations are private information: K, r iid w/ uniform on dfc o. 3. Payoffs: v if RK Rr K RenR 2 K ' f otherwise RenRv r if RK Rr 2 r ' f otherwise 4. The buyer’s problem: RK n RrEr G RK RrEr 4@ . K Re 2 5. The seller’s problem: Rr n RKEK r G RKEK Rr 4@ . Rv 2
8
An Equilibrium: f RK ' f f Rr '
if K f c otherwise if r f otherwise
vb v b /v s Trade Efficient
X
not to trade
vS
0 Inefficient lack of trade
9
Equilibrium with linear strategies: RK ' @K n SKK Rr ' @r n Srr
RK @r RK Rr Er ' @r n Srr +, r Sr Rr RK EK ' @K n SKK +, K
10
Rr @K SK
RK n RrEr G RK RrEr . dKo ' . K 2 s d ] e v fv RK n RrEr K _r ' 2 f s d ] e vk fv RK n @r n Srr l K _r ' 2 f ] sedv fv Sr RK @r RK n @r K ' r_r Sr 2 2 f 2 RK @r RK n @r Sr RK @r K ' Sr 2 e Sr RK @r RK n @r RK @r K ' Sr 2 e RK @r RK n @r ' K Sr e F.O.C. (4@ Re . dKo): ERK @r RK n @r K 'f Sr e eSr i.e., 2 RK ' K n @r (2) 11
Similarly, Rr n RKEK r G RKEK Rr . dro ' . 2 ] k l Rr n @K n SKK ' r _K sv de 2 k fe ] l SK Rr n @K Rr @K r n ' K_K s d v SK 2 2 f e e k l Rr n @K Rr @K r ' 2 $ # SK 2 Rr @K SK n e SK Rr n @K Rr @K SK Rr @K r n n ' SK 2 e e Rr n @K SK Rr @K r n ' SK e e
12
F.O.C. (4@ Rv . dro): Rr @K Rr n @K 'f r n n SK e e e SK
Rr n @K SK r n n ESK ERr @K ' fc e e e Rr @K SK @K n SK ' n r n ESK n @K ' r n 2 e e e 2 i.e.,
2 @K n SK Rr ' r n
@K ' @r* @r ' @K* n 2*b Hence, b@r ' @r n 2, @r ' *e @K ' *2. 2 RK ' K n 2 2 Rr ' r n e 13
(3)
(4) (5)
We have trade iff RK Rr iff
2 2 K n r n 2 e iff ' ' K r 2 e 2 2S e
3/4
ps
1/4 1/12
pb
14
Lectures 15-18 Dynamic Games with Incomplete Information 14.12 Game Theory Muhamet Yildiz
Road Map 1. 2. 3. 4.
Examples Sequential Rationality Perfect Bayesian Nash Equilibrium Economic Applications 1. Sequential Bargaining with incomplete information 2. Reputation
1
An Example Firm
W
Work
Hire Shirk
High 0.7 Do not hire
Nature
Hire
Low 0.3
(1, 2)
(0, 1)
(0, 0) W
Work Shirk
Do not hire
(1, 1)
(-1, 2)
(0, 0)
What is wrong with this equilibrium? Firm
W
Work
Hire Shirk
High .7 Do not hire
Nature
Low .3
(1, 2)
Hire
(0, 0) W
Work Shirk
Do not hire
(0, 1)
(1, 1)
(-1, 2)
(0, 0)
2
What is wrong with this equilibrium? X 1
(2,6)
T
B
2 L (0,1)
R (3,2)
L (-1,3)
R (1,5)
Beliefs X • Beliefs of an agent at a given 1 (2,6) information set is a probability distribution on T B the information set. • For each information set, we µ 1−µ must specify the beliefs of 2 the agent who moves at that L R L R information set. (0,1) (3,2) (-1,3) (1,5)
3
Sequential Rationality A player is said to be sequentially rational iff, at each information set he is to move, he maximizes his expected utility given his beliefs at the information set (and given that he is at the information set) – even if this information set is precluded by his own strategy.
An Example Firm
W
Work
Hire Shirk
High 0.7 Do not hire
Nature
Low 0.3
(1, 2)
Hire
(0, 0) W
Work Shirk
Do not hire
(0, 1)
(1, 1)
(-1, 2)
(0, 0)
4
Another example X 1
(2,6)
T
B
2 L
R
(0,1)
L
(3,2)
R
(-1,3)
(1,5)
Example 1 T
2 L (0,10)
B .9
.1
R (3,2)
L (-1,3)
R (1,5)
5
“Consistency” Definition: Given any (possibly mixed) strategy profile s, an information set is said to be on the path of play iff the information set is reached with positive probability if players stick to s. Definition: Given any strategy profile s and any information set I on the path of play of s, a player’s beliefs at I is said to be consistent with s iff the beliefs are derived using the Bayes’ rule and s.
Example 1 T
B
2 L (0,10)
R (3,2)
L (-1,3)
R (1,5)
6
Example 1 E
X
2 T
B
2 0 0
3 L
R 1 2 1
3 3 3
L
R 0 1 2
0 1 1
“Consistency” • Given s and an information set I, even if I is off the path of play, the beliefs must be derived using the Bayes’ rule and s “whenever possible,” e.g., if players tremble with very small probability so that I is on the path, the beliefs must be very close to the ones derived using the Bayes’ rule and s.
7
Example 1 E
X
2 T
B
2 0 0
3 L
R 1 2 1
3 3 3
L
R 0 1 2
0 1 1
Perfect Bayesian Nash Equilibrium A Perfect Bayesian Nash Equilibrium is a pair (s,b) of strategy profile and a set of beliefs such that 1. Strategy profile s is sequentially rational given beliefs b, and 2. Beliefs b are consistent with s. Nash Bayesian Nash
Subgame-perfect Perfect Bayesian
8
Example 1 E
X
2 T
B
2 0 0
3 L
R
L
R
3 3 3
1 2 1
0 1 2
0 1 1
Beer – Quiche
2 0
3 1
’ don
’t don
quiche
beer
{.1}
t
el du
1 0
du el
tw ts beer {.9}
quiche
e du
1 1
l
don
3 0
’t
0 0
du el
0 1
don ’
t
2 1
9
Example 2
1
1
(1,-5)
.9
.1
(4,4)
(3,3)
(5,2) 1
(-1,4)
2
(0,2)
1
(0,-5)
(-1,3)
Sequential Bargaining 1. 2. 3. 4.
1-period bargaining – 2 types 2-period bargaining – 2 types 1-period bargaining – continuum 2-period bargaining – continuum
10
Sequential bargaining 1-p • A seller S with valuation 0 • A buyer B with valuation v;
H S
– B knows v, S does not – v = 2 with probability π – = 1 with probability 1-π
p
• S sets a price p ≥ 0; • B either
Y
– buys, yielding (p,v-p) – or does not, yielding (0,0).
L
p 2-p
p N 0 0
N
Y
0 0
p 1-p
Solution 1. B buys iff v ≥ p; 1. If p ≤ 1, both types buy: 1 S gets p. 2. If 1 < p ≤ 2, only H-type buys: S gets πp. 3. If p > 2, no one buys.
1
2
2. S offers • 1 if π < ½, • 2 if π > ½.
11
Sequential bargaining 2-period • A seller S with valuation 0 • A buyer B with valuation v; – B knows v, S does not – v = 2 with probability π – = 1 with probability 1-π
1. At t = 0, S sets a price p0 ≥ 0; 2. B either – –
buys, yielding (p0,v-p0) or does not, then
3. At t = 1, S sets a price p0 ≥ 0; 4. B either – –
buys, yielding (δp0,δ(v-p0)) or does not, yielding (0,0)
Solution, 2-period 1. 2. 3. 4. 5. 6. 7.
Let µ = Pr(v = 2|history at t=1). At t = 1, buy iff v ≥ p; If µ > ½, p1 = 2 If µ < ½, p1 = 1. If µ = ½, mix between 1 and 2. B with v=1 buys at t=0 if p0 ≤ 1. If p0 > 1, µ = Pr(v = 2|p0,t=1) ≤ π.
12
Solution, cont. π <1/2 1. 2. 3. 4.
µ = Pr(v = 2|p0,t=1) ≤ π <1/2. At t = 1, buy iff v ≥ p; p1 = 1. B with v=2 buys at t=0 if (2-p0) ≥ δ(2−1) = δ Ù p0 ≤ 2−δ. 5. p0 = 1: π(2−δ) + (1−π)δ = 2π(1−δ) + δ < 1−δ+δ = 1.
Solution, cont. π >1/2 • If v=2 is buying at p0 > 2−δ, then – µ = Pr(v = 2|p0 > 2−δ,t=1) = 0; – p1 = 1; – v = 2 should not buy at p0 > 2−δ.
• If v=2 is not buying at 2> p0 > 2−δ, then – µ = Pr(v = 2|p0 > 2−δ,t=1) = π > 1/2; – p1 = 2; – v = 2 should buy at 2 > p0 > 2−δ.
• No pure-strategy equilibrium.
13
Mixed-strategy equilibrium, π >1/2 1. For p0 > 2−δ, µ(p0) = ½; 2. β(p0) = 1- Pr(v=2 buys at p0) µ=
β ( p0 )π 1 1−π = ⇔ β ( p0 )π = 1 − π ⇔ β ( p0 ) = . π β ( p0 )π + (1 − π ) 2
3. v = 2 is indifferent towards buying at p0: 2- p0 = δγ(p0) Ù γ(p0) = (2- p0)/δ where γ(p0) = Pr(p1=1|p0).
Sequential bargaining, v in [0,1] • 1 period: – – – –
B buys at p iff v ≥ p; S gets U(p) = p Pr(v ≥ p); v in [0,a] => U(p) = p(a-p)/a; p = a/2.
14
Sequential bargaining, v in [0,1] • 2 periods: (p0,p1) – At t = 0, B buys at p0 iff v ≥ a(p0); – p1 = a(p0)/2; – Type a(p0) is indifferent: a(p0) – p0 = δ(a(p0) – p1 ) = δa(p0)/2 Ùa(p0) = p0/(1-δ/2) 2 • S gets p p 0 p0 + 0 1 − 1 δ / 2 − 2 −δ
• FOC:
1−
(1 − δ / 2 ) 2 p0 2 p0 + = 0 ⇒ p0 = 1−δ / 2 2 −δ 2(1 − 3δ / 4 ) 2
Reputation
15
Centipede Game 1
2
1
1
2
1
2
98 98
97 100
99 99
98 101
100 100
… 1 1
0 3
2 2
Centipede Game – with doubt
197
{.999} 1
5 2
2
4 1
µ5
3
2
2
1
=n
1 2
100 100
µ1
µ3
… 1 1 {.001}
96 99
0 3 1
2
98 98
97 100
99 99
98 101
2
1
2
1
2
0 99
-1 98
0 100
-1 99
0 101
0 100
… -1 1
0 3
16
Facts about the Centipede • Every information set of 2 is reached with positive probability. • 2 always goes across with positive probability. • If 2 strictly prefers to go across at n, then – she must strictly prefer to go across at n+1, – her posterior at n is her prior.
• For any n > 2, 1 goes across with positive probability. If 1 goes across w/p 1 at n, then 2’s posterior at n-1 is her prior.
If 2’s payoff at any n is x and 2 is mixing, then x = µn(x+1) + (1- µn)[(x-1)pn +(1-pn)(x+1)] = µn(x+1) + (1- µn)[ (x+1) -2pn] = x+1 - 2pn(1- µn) Ù(1- µn) pn= 1/2 µn −1 =
µn µn = = 2 µn µn + (1 − µn )(1 − pn ) µn + (1 − µn ) − pn (1 − µn ) µn =
µn −1 2
17
0.5 0.45 0.4 0.35 0.3 0.25
Go Across
0.2 0.15 0.1 0.05 0
Mix 0
20
40
60
80
100
18
Lecture 19-21 14.12 Game Theory Muhamet Yildiz
Road Map • • • •
Market for Lemons (Adverse Selection) Insurance Market (Screening) Signaling – theory Job Market Signaling
1
Example for Adverse selection • A buyer and a seller, who owns an object. • The value of the object is – v for the seller, – v+b for the buyer.
• v is uniformly distributed on [0,1]. Seller knows v. b > 0 is a known constant. • Buyers offers a price p; seller decides on whether to sell.
Solution • Seller sells at p iff p ≥ v; • Buyer’s payoff: p 1 p U ( p ) = ∫ (v + b − p )dv = p 2 + p (b − p ) = p b − 2 2 0 • Buyer offers p = 2b.
2
Example for Adverse selection • A buyer and a seller, who owns an object. • The value of the object is – v for the seller, – 3v/2 for the buyer.
• v is uniformly distributed on [0,1]. Seller knows v. • Buyers offers a price p; seller decides on whether to sell.
Solution • Seller sells at p iff p ≥ v; • Buyer’s payoff: p 3 3 p U ( p ) = ∫ v − p dv = p − p = − p2 / 4 2 2 2 0 • Buyer offers p = 0.
3
Market for Lemons • Two types of cars: Lemons and Peaches. – A Peach is worth $2500 to seller, $3000 to buyer; – A lemon is worth $1000 to seller, $2000 to buyer;
• Each seller knows whether his car is a Peach or Lemon; buyers cannot tell. • There are 200 Lemons and 100 Peaches. • Equilibrium: a market clearing price p.
Demand/Supply – Market for Lemons Supply
P
2000
1000
200
300
Q
4
Quiz • The students are grouped in pairs; • In each pair, one is assigned to be seller, the other one is buyer. The buyer is given a valuation v, an integer between 20 and 40 with uniform distribution. – Buyer offers a price p; – seller accepts or rejects; – If seller accepts, seller gets p, buyer gets 20+v-p. – If seller rejects, w/probability 0.1 each gets 20; w/p 0.95 we proceed to next date, and – Seller offers a price p; – If buyer accepts, seller gets p, buyer gets 20+v-p; otherwise each gets 20.
Insurance with adverse selection • Two states: s1, s2. • A risk averse agent with – risky endowment (Y1,Y2) where Y1 > Y2, and – Utility function u.
• Two types: – High risk: U(y1,y2) = (1−πH)u(y1) + πHu(y2) – Low risk: U(y1,y2) = (1−πL)u(y1) + πLu(y2), where πH > πL.
• A risk neutral insurance company offers a menu ((y1H,y2H), (y1L,y2L)) of insurance policies, and the risk averse agent either chooses one of the policies in the menu or rejects the offer. • Agent knows his type, the company does not.
5
High-risk Agent
Y2
Y1
Low-risk Agent
Y2
Y1
6
High- and Low-risk Agent
Y2
Y1
Optimal menu
Y2
Y1
7
Signaling Games
Beer – Quiche
2 0
3 1
’ don
’t don
quiche
beer
{.1}
t
el du
1 0
du el
tw ts beer {.9}
quiche
e du
1 1
l
don
3 0
’t
0 0
du el
0 1
don ’
t
2 1
8
Signaling Game -- Definition • Two Players: (S)ender, (R)eceiver 1. Nature selects a type ti from T = {t1,…,tI} with probability p(ti); 2. Sender observes ti, and then chooses a message mj from M = {m1,…,mI}; 3. Receiver observes mj (but not ti), and then chooses an action ak from A = {a1,…,aK}; 4. Payoffs are US(ti,mj,ak) and US(ti,mj,ak).
Beer – Quiche
2 0
3 1
’ don
’t don
quiche
beer
{.1}
t
el du
1 0
du el
tw ts beer {.9}
quiche
e du
1 1
l
don
3 0
’t
0 0
du el
0 1
don ’
t
2 1
9
Types of Equilibria • A pooling equilibrium is an equilibrium in which all types of sender send the same message. • A separating equilibrium is an equilibrium in which all types of sender send different messages. • A partially separating/pooling equilibrium is an equilibrium in which some types of sender send the same message, while some others sends some other messages.
A Pooling equilibrium
2 0
3 1
’ don
’t don
quiche
beer
{.1}
t
el du
1 0
du el
tw ts beer {.9}
quiche
e du
1 1
l
don
3 0
’t
0 0
du el
0 1
don ’
t
2 1
10
A Separating equilibrium
0.5 0
3 1
’ don
quiche
beer
{.1}
t
tw
el du
1 0
du el
ts beer {.9}
quiche
e du
1 1
l
don
don ’
’t don
3 0
’t
0 0
du el
0 1
2 1
t
A Mixed equilibrium du el
’ don
2 0
3 1
{.1}
t
el du
1 0
’t don
quiche
beer tw ts beer {.9}
quiche
e du
1 1
l
don
3 0
’t
0 0
du el
0 1
don ’
t
2 1
11
Job Market Signaling
Model • A worker – with ability t = H or t = L (his private information) – Pr(t = H) = q, – obtains an observable education level e, – incurring cost c(t,e) where c(H,e) < c(L,e), and – finds a job with wage w(e), where he – produces y(t,e).
• Firms compete for the worker: in equilibrium, w(e) = µ(H|e)y(H,e) + (1– µ(H|e))y(L,e).
12
Equilibrium (eH, eL, w(e), µ(H|e)) where • et = argmaxe w(e) – c(t,e) for each t; • w(e) = µ(H|e)y(H,e) + (1– µ(H|e))y(L,e); qPr(eH = e)
• µ(H|e) =
qPr(eH = e) + (1-q)Pr(eL = e) whenever well-defined.
If t were common knowledge w
w (e
e*(t)
)
) (t,e y =
e
13
No need to imitate e) , y (H
w
,e) L ( y
e*(L)
e*(H)
No need to imitate
e
w(.)
, e) H ( y
w
,e) L ( y
e*(L)
e*(H)
e
14
want to imitate w
e) , y (H
,e) L ( y
e
e*(L) e*(H)
A pooling equilibrium
, e) H y(
w qy
e)+ (H ,
(1-
(L q) y
,e)
,e) L ( y
e*(L) e*(H)
e
15
A separating equilibrium w
e) , y (H
,e) L ( y
eL=e*(L)
e*(H)
e
eH
An intuitive separating equilibrium w
, e) H ( y
,e) L ( y
eL=e*(L)
eH
e
16
47145 Jdph Wkhru| Suri1 Pxkdphw \logl} WD= Nhqlfkl Dpd|d Idoo 5334
Krphzrun 4
Gxh rq <25925334 +lq fodvv, 41 Wdnh f ' U/ wkh vhw ri uhdo qxpehuv/ dv wkh vhw ri dowhuqdwlyhv1 Ghqh d uhodwlrq rq f e| % + +, % + *2 iru doo %c + 5 f1 +d, Lv d suhihuhqfh uhodwlrqB +Surylgh d surri1, +e, Ghqh wkh uhodwlrqv " dqg e| % " + +, d% + dqg + 9 %o dqg
% + +, d% + dqg + %o c
uhvshfwlyho|1 Lv " wudqvlwlyhB Lv wudqvlwlyhB Suryh |rxu fodlpv1 +f, Zrxog eh d suhihuhqfh uhodwlrq li zh kdg f ' Q/ zkhuh Q ' ifc c 2c j lv wkh vhw ri doo qdwxudo qxpehuvB 51 Zh kdyh wzr gdwhv= 3 dqg 41 Zh kdyh d vhfxulw| wkdw sd|v d vlqjoh glylghqg/ dw gdwh 41 Wkh glylghqg pd| eh hlwkhu '433/ ru '83/ ru '3/ hdfk zlwk suredelolw| 4261 Ilqdoo|/ zh kdyh d ulvn0qhxwudo djhqw zlwk d orw ri prqh|1 +Wkh djhqw zloo ohduq wkh dprxqw ri wkh glylghqg dw wkh ehjlqqlqj ri gdwh 41, +d, Dq djhqw lv dvnhg wr ghflgh zkhwkhu wr ex| wkh vhfxulw| ru qrw dw gdwh 31 Li kh ghflghv wr ex|/ kh qhhgv wr sd| iru wkh vhfxulw| rqo| dw gdwh 4 +qrw lpphgldwho| dw gdwh 3,1 Zkdw lv wkh kljkhvw sulfh Z7 dw zklfk wkh ulvn0qhxwudo djhqw lv zloolqj wr ex| wklv vhfxulw|B +e, Qrz frqvlghu dq rswlrq wkdw jlyhv wkh kroghu wkh uljkw +exw qrw reoljdwlrq, wr ex| wklv vhfxulw| dw d vwulnh sulfh g dw gdwh 4 diwhu wkh djhqw ohduqv wkh dprxqw ri wkh glylghqg1 Li wkh djhqw ex|v wklv rswlrq/ zkdw zrxog eh wkh djhqw*v xwlolw| dv d ixqfwlrq ri wkh dprxqw ri wkh glylghqgB +f, Dq djhqw lv dvnhg wr ghflgh zkhwkhu wr ex| wklv rswlrq ru qrw dw gdwh 31 Li kh ghflghv wr ex|/ kh qhhgv wr sd| iru wkh rswlrq rqo| dw gdwh 4 +qrw lpphgldwho| dw gdwh 3,1 Zkdw lv wkh kljkhvw sulfh Z dw zklfk wkh ulvn0qhxwudo djhqw lv zloolqj wr ex| wklv rswlrqB 61 Frqvwuxfw d 50sod|hu jdph zlwk wkh iroorzlqj surshuw|1 Sod|hu 4 kdv vwudwhjlhv r/ r / dqg r vxfk wkdw qhlwkhu r qru r vwulfwo| grplqdwhv r / exw wkh pl{hg vwudwhj| wkdw dvvljqv suredelolw| 425 wr hdfk ri wkh vwudwhjlhv r dqg r vwulfwo| grplqdwhv r 1
4
71 Frpsxwh wkh vhw ri udwlrqdol}deoh vwudwhjlhv lq wkh iroorzlqj jdph wkdw lv sod|hg lq d fodvv ri ? vwxghqwv zkhuh ? 2= Zlwkrxw glvfxvvlqj zlwk dq|rqh/ hdfk vwxghqw lv wr zulwh grzq d uhdo qxpehu % 5 dfc ffo rq d sdshu dqg vxeplw lw wr wkh WD1 Wkh WD zloo wkhq frpsxwh wkh dyhudjh % 7'
% n %2 n n %? ?
ri wkhvh qxpehuv1 Wkh vwxghqwv zkr vxeplw wkh qxpehu wkdw lv forvhvw wr % 7* zloo vkduh wkh wrwdo sd|r ri 433/ zkloh wkh rwkhu vwxghqwv jhw 31 Hyhu|wklqj ghvfulehg deryh lv frpprq nqrzohgjh1 +Erqxv= zrxog wkh dqvzhu fkdqjh li wkh vwxghqwv glg qrw nqrz ?/ exw lw zhuh frpprq nqrzohgjh wkdw ? 2B, 81 Frqvlghu wkh iroorzlqj jdph lq h{whqvlyh irup1 1
L R
(2,2) 2
r
l
(0,0)
u 1 1
λ
(1,3)
ρ
(3,1)
Λ
(3,3)
Ρ
(1,1)
+d, Zulwh wklv jdph lq wkh vwudwhjlf irup1 +e, Zkdw duh wkh vwudwhjlhv wkdw vxuylyh wkh lwhudwlyh holplqdwlrq ri zhdno|0grplqdwhg vwudwhjlhv lq wkh iroorzlqj rughu= uvw holplqdwh doo zhdno|0grplqdwhg vwudwhjlhv ri sod|hu 4> wkhq/ holplqdwh doo wkh vwudwhjlhv ri sod|hu 5 wkdw duh zhdno| grplqdwhg lq wkh uhpdlqlqj jdph> wkhq/ holplqdwh doo wkh vwudwhjlhv ri sod|hu 4 wkdw duh zhdno| grplqdwhg lq wkh uhpdlqlqj jdph/ dqg vr rqB
5
14.12 Solutions for Homework 1 Kenichi Amaya1 September 28, 2001 Question 1 (a) Remember that a binary relation is a preference relation if it is complete and transitive Completeness For all x, y ∈ X, x y or y x. Transitivity If x y and y z, then x z. The relation defined here is complete, but it is not transitive. We can show this by a counterexample. Suppose x = 0, y = .5, and z = 1. Then, x y because x = 0 = y − 12 , and y z because y = 12 = z − 12 , but we don’t have x z because x = 0 < 12 = z − 12 . Therefore, is not a preference relation. (b)
xy ⇔ x ≥ y − 1/2 and y < x − 1/2 ⇔ x > y + 1/2 Suppose x y and y z. Then, x > y + 1/2 and y > z + 1/2. This implies that x > y + 1/2 > (z + 1/2) + 1/2 > z + 1/2. Therefore is transitive. We can show that ∼ is not transitive by using the same counterexample used in (a). Suppose x = 0, y = .5, and z = 1. Since x = 0 = y − 12 , x y and y x, therefore x ∼ y. Since y = 12 = z − 12 , y z and z y, therefore y ∼ z. However, we don’t have x z because x = 0 < 12 = z − 12 . Therefore x ∼ z is not satisfied. (c) If we had x, y ∈ X = {0, 1, 2, · · ·}, x y ⇔ x ≥ y − 1/2 ⇔ x ≥ y. Then both completeness and transitivity are satisfied, so is a preference relation. 1 E52-303,
[email protected], 253-3591
1
Question 2 Since the agent is risk neutral, his von-Neuman Morgenstern utility function is represented by the amount of money he receives (or any affine transformation of it). (a) If he doesn’t buy the security, the amount of money he has at date 1 is 0 for sure, so the expected utility is 0. If he buys the security at price p, the amount of money he has at date 1 is 100 − p, 50 − p, or −p, each with probability 1/3, and thus the expected utility is 1 1 1 (100 − p) + (50 − p) + (−p). 3 3 3 He wants to buy this security if and only if this expected utility is higher than or equal to 0, the expected utility from not buying. 1 1 1 (100 − p) + (50 − p) + (−p) ≥ 0 ⇔ p ≤ 50. 3 3 3 Therefore πS = 50. (b) If the agent exercises the option, he will pay K and receive the dividend d, so he will receive net payment of d − K. If he doesn’t exercise the option, he receives 0. Therefore he will excercise if and only if d − K ≥ 0. His utility is represented by u(d) = max{0, d − K} − p, where p is the price of the option. (c) Case 1 K > 100 In this case, the agent will never exercise the option, so he ends up with receiving 0 no matter what the dividend is. Therefore he wants to pay for this option no more than 0. Case 2 50 < K ≤ 100 If d = 100, the agent will exercise the option and receive net payment of 100 − K. However, if d = 0 or 50, he won’t exercise the option and receive 0. Therefore, he wants to buy this option if 1 2 (100 − K − p) + (−p) ≥ 0 3 3 1 ⇔ p ≤ (100 − K). 3 2
Case 3 0 ≤ K ≤ 50 If d = 50 or 100, the agent will exercise the option and receive net payment of d − K. However, if d = 0, he won’t exercise the option and receive 0. Therefore, he wants to buy this option if 1 1 1 (100 − K − p) + (50 − K − p) + (−p) ≥ 0 3 3 3 2 ⇔ p ≤ 50 − K. 3 To summarise, πO =
0
if if if
1 3 (100 − K) 50 − 23 K
K > 100 50 < K ≤ 100 0 ≤ K ≤ 50
Question 3 Here is an example. s s’ s”
L 4,0 0,0 1,1
R 0,0 6,0 1,1
The mixed strategy 12 s + 12 s0 gives player 1 expected utility of 2 if player 2 plays l and expected utility of 3 if player 2 plays r. Question 4 The intuition tells us only 0 would be selected, but actually, all strategies except 100 are rationalizable! The reason is that a player’s objective is just to win the game, i.e., to name closer number to one third of the average than everyone else, and not to name exactly one third of the average. For example, if everybody else is naming 100, you can win by naming any number below 100, even 99 wins. The proof is given in the answer 1. But if, not like this game, a player’s objective is to name exactly one third of the average, our first intuition works. The proof for this case is given in the answer 2. Answer 1 If 0 ≤ x < 100, x is the best response to all other players’ playing x0 , where x < x0 < 100 and x0 is close enough to x. To see this, if a player plays x and all others plays x0 , x ¯/3 < x (because x0 is close enough to x), therefore she is the
3
only winner. Since she can do no better than being the only winner, x is the best response. For any 0 ≤ x < 100, we can find a sequence x < x1 < x2 < · · · < 100 such that x is a best response to everyone else’s playing x1 , x1 is a best response to everyone else’s playing x2 , and so on. Naming 100 is not a best response to anything. The only case a player wins is when everyone is naming 100, but even in this case, she can be the only winner by naming a smaller number. To conclude, x is rationalizable if and only if 0 ≤ x < 100. Answer 2 Suppose the award is 100 − |x − x3¯ |, so that a player always want to name exactly x3¯ . Given that 0 ≤ xi ≤ 100 for all i, x3¯ always lies between 0 and 33.33 · · ·. So x > 33.33 · · · is never best response, i.e., it is not rationalizable. As long as everyone is naming 0 ≤ xi ≤ 33.33 · · ·, x3¯ always lies between 0 and 11.11 · · ·. So x > 11.11 · · · is never best response, i.e., it is not rationalizable. Repeating this procedure forever, any number greater than 0 is not rationalizable. If everyone else is naming 0, the best response is to name 0 as well. Therefore 0 is rationalizable. To conclude, x = 0 is the only rationalizable strategy. Bonus: In the discussion above, the number of players played no role at all. Question 5 (a)
LλΛ LλP Lλu LρΛ LρP Lρu RλΛ RλP Rλu RρΛ RρP Rρu
l 2,2 2,2 2,2 2,2 2,2 2,2 1,3 1,3 1,3 3,1 3,1 3,1
(b)
4
r 2,2 2,2 2,2 2,2 2,2 2,2 3,3 1,1 0,0 3,3 1,1 0,0
First, RρΛ weakly dominates all other strategies of player 1. We eliminate them and then we have the following game. RρΛ
l 3,1
r 3,3
Now, l is weakly dominated by r, so we eliminate l and we have r 3,3
RρΛ
5
47145 Jdph Wkhru| Suri1 Pxkdphw \logl} WD= Nhqlfkl Dpd|d Idoo 5334
Krphzrun 5
Gxh rq 432625334 +lq fodvv, 41 Frqvlghu wkh iroorzlqj jdph= 4q5 O U W Ec Ec f E Efc Efc ffff +d, Frpsxwh wkh udwlrqdol}deoh vwudwhjlhv1 +e, Qrz dvvxph wkdw sod|huv fdq wuhpeoh= zkhq d sod|hu lqwhqgv wr sod| d vwudwhj| r/ zlwk suredelolw| " ' fff/ qdwxuh vzlwfk wr wkh rwkhu vwudwhj| r / zkhq r lv sod|hg1 Iru lqvwdqfh/ li sod|hu 5 sod|v O +ru lqwhqgv wr sod| O,/ zlwk suredelolw| " O lv sod|hg/ zlwk suredelolw| "/ U lv sod|hg1 Frpsxwh wkh udwlrqdol}deoh vwudwhjlhv iru wklv qhz jdph1
+f, Glvfxvv |rxu uhvxowv +eulh |,1 51 Frpsxwh doo wkh Qdvk htxloleuld ri wkh iroorzlqj jdph1 O P D E c Efc f E Efc f Ec F Ec Efc
U Ec f Ec Efc f
61 Frpsxwh wkh sxuh0vwudwhj| Qdvk htxloleuld lq wkh iroorzlqj olqhdu Frxuqrw roljrsro| iru duelwudu| ? upv= hdfk up kdv pdujlqdo frvw S : f dqg d {hg frvw 8 : f/ zklfk lw qhhgv wr lqfxu rqo| li lw surgxfhv d srvlwlyh dprxqw> wkh lqyhuvh0ghpdqg ixqfwlrq lv jlyhq e| E' ' 4@ i 'c fj/ zkhuh ' lv wkh wrwdo vxsso|1 71 D jurxs ri ? vwxghqwv jr wr d uhvwdxudqw1 Lw lv frpprq nqrzohgjh wkdw hdfk vwxghqw zloo vlpxowdqhrxvo| fkrrvh klv rzq phdo/ exw doo vwxghqwv zloo vkduh wkh wrwdo eloo htxdoo|1 Li d vwxghqw jhwv d phdo ri sulfh R dqg frqwulexwhv % wrzdugv sd|lqj wkh eloo/ klv sd|r s zloo eh R %1 Frpsxwh wkh Qdvk htxloleulxp1 Glvfxvv wkh olplwlqj fdvhv ? ' dqg ? $ 41
4
14.12 Solutions for Homework 2 Kenichi Amaya1 October 5, 2001 Question 1 (a) L 1,1 0,1
T B
R 1,0 0,10000
Fact: The set of rationalizable strategies is same as the set of strategies which survives iterated elimination of strictly dominated strategies. Step 1: For player 1, B is strictly dominated by T. Now we have T
L 1,1
R 1,0
Step 2: For player 2, R is strictly dominated by L. Now we have L 1,1
T
Therefore, the rationalizable strategies are T for player 1 and L for player 2. (b) There was a typo in the problem. If player 2 intends to play L, L is played with probability 1 − , and R is played with probability . Of course, if you interpreted the problem differently, you will get credit as long as you are solving the problem consistently with your interpretation. We can write a new game which represents this situation as following: We look for the players’ expected payoffs as functions of the intended play. If player 1 intends to play T and player intends to play L, what are the expected payoffs? (T,L) is realized with probability (1 − )2 , (T,R) and (B,L) are realized each with probability (1 − ), and (B,R) is realized with probability 2 . Therefore, the expected payoff of player 1 is (1 − )2 · 1 + (1 − ) · 1 + (1 − ) · 0 + 2 · 0 = 1 − = .999. In the same way, player 2’s expected payoff is (1 − )2 · 1 + (1 − ) · 0 + (1 − ) · 1 + 2 · 10000 = (1 − ) + 2 · 10000 = 1.009 Therefore we must have 1 E52-303,
[email protected], 253-3591
1
L .999, 1.009
T B
R
In the same way, we can calculate expected payoffs for the remaining of the payoff matrix and we have T B
L .999, 1.009 .001, 10.999
R .999, 9.991 .001, 9980.01
For player 1, B is strictly dominated by T, and for player 2, L is strictly dominated by R. Now we have T
R .999, 9.991
Therefore, the rationalizable strategies are T for player 1 and R for player 2. (c) For player 1, the possibility that opponent trembles doesn’t affect her optimal choice because T gives higher payoff than B no matter what the opponent is doing. For player 2, in the case of (a), the large payoff differnce between (B,L) and (B,R) didn’t matter because he was sure B is never played. However, when we introduce trembles, this large payoff difference matters with positive probability even though player 2 knows that player 1 never intends to play B. In this situation, the payoff difference between (T,L) and (T,R) is so small that it is outweighed by the payoff differnce between (B,L) and (B,R). Question 2 Fact All the Nash equilibrium strategies are rationalizable, and therefore survives iterated elimination of strictly dominated strategies. When we look for Nash equilibria, we can first eliminate strictly dominated strategies and then find Nash equilibria of the game left. A B C
L 3,1 0,0 1,1
M 0,0 1,3 0,1
R 1,0 1,1 0,10
Step 1 For player 1, C is strictly dominated by 12 A + 12 B. Now we have A B
L 3,1 0,0
M 0,0 1,3 2
R 1,0 1,1
Step 2 For player 2, R is stricly dominated by 12 L + 12 M . Now we have A B
L 3,1 0,0
M 0,0 1,3
Step 3 In the game left, (A,L) and (B,M) are pure strategy Nash equilibria, because players are taking best response to each other. Step 4 We want to find the mixed strategy equilibrium. Let (pA + (1 − p)B, qL + (1 − q)M ) be the equilibrium. First, player 1 must be indifferent between playing A and B, which implies 3q = 1(1 − q), where the LHS is the expected payoff of playing A and the RHS is that of B, when player 2 is playing the equilibrium strategy. This implies q=
1 . 4
Next, player 2 must be indifferent between playing L and M, implying 1p = (1 − p)3 3 p= . 4 To conclude, the Nash equilibria are; (A,L), (B,M), and ( 34 A+ 14 B, 14 L+ 34 M ). Question 3 This question is hard! Notice that in the Cournot model with fixed cost, there can be equilibria where not every firm is producing. For example, if there are two firms, there can be an equilibrium where one firm is producing the monopoly quiantity and the other firm is producing nothing. (Of course, whether this is actually a Nash equilibrium or not depends on the cost and demand structure.) To see why this can be an equilibium, consider each firm’s best response. If the opponent firm is producing the monopoly quantity, the revenue from selling some amount can not cover the fixed cost, if the fixed cost is large enough, and thus producing nothing is the best response. On the other hand, if the opponent is producing nothing, you can get a revenue equal to the monopoly profit, which is higher than the fixed cost. It is hard to characterize all the equilibria, so we limit attention to pure strategy equilibria which are symmetric in the sense that all the producing firms are choosing the same quantity. (Keep in mind that there might be other equilibria! Actually, it is not very hard to show that all pure strategy equilibria are symmetric. This would be a good exercise.) 3
First, consider the equilibrium where all firms are producing q ∗ . What we need is that q ∗ is a best response to all other firms choosing q ∗ . The profit of firm i when it is producing qi and all other firms are producing q ∗ is πi (qi , q ∗ ) = (max{1 − (qi + (1 − n)q ∗ ), 0} − c)qi − F.
(1)
In the equilibrium all firms must be getting positive revenue (because there is fixed cost), so it must be 1 − (qi + (n − 1)q ∗ ) > 0. Therefore πi (qi , q ∗ ) = (1 − (qi + (n − 1)q ∗ ) − c)qi − F.
(2)
Taking first order condition, qi =
1 − (n − 1)q ∗ − c . 2
(3)
In the symmetric equilibium, we must have qi = q ∗ , thus q∗ =
1−c . n+1
(4)
For this quantity to be actually construct equilibrium, each firm must be getting nonnegative profit. Plugging this into (2), πi =
1 − c 2 n+1
− F.
(5)
1−c Therefore there exists an equilibrium where all firms are producing q ∗ = n+1 if 1−c 2 and only if ( n+1 ) ≥ F and c ≤ 1. Next consider an equilibrium where only k < n firms are producing q ∗ . We need to check incentives of firms which are producing and incentives of firms which are not producing. For a firm which is producing, qi = q ∗ must be a best response to k − 1 of other firms producing q ∗ and the rest producing zero. The firm’s profit when producing qi is
πi (qi , q ∗ ) = (max{1 − (qi + (1 − k)q ∗ ), 0} − c)qi − F.
(6)
Notice this is same as equation (1), n being replaced by k. Therefore the same argument as above holds. 1−c q∗ = , (7) k+1 1−c 2 For this to be an equilibrium, we need ( k+1 ) ≥ F and c ≤ 1. However, this is not a sufficient condition. It must also be true that for nonproducing firms, not producing is actually the best response. From the point
4
of view of a non-producing firm i, k other firms are producing q ∗ . By the same argument above, if this firm does choose to produce, the optimal amount is qi∗ = and the payoff is
1 − kq ∗ − c , 2
(8)
1 − kq ∗ − c 2
− F. (9) 2 ∗ If this profit is positive, the firm wants to produce qi rather than producing 2 ∗ nothing. Therefore, we need 1−kq2 −c ≤ F , i.e., πi =
1 − c 2 ≤ F. 2(k + 1)
(10)
Finally, consider an equilibrium where no firm produces. This is the case where c ≥ 1 or where even the monopoly profit is less than the fixed cost. That is, 1 − c 2 ≤ F. (11) 2 Question 4 Each player i = 1, · · · , n chooses his price of meal pi . The payoff of player i is ui = =
√
√
pi −
pi pi − − n
Pn
j=1
P n
j6=i
n
pj
pj
.
Taking first order condition, 1 1 √ = 2 pi n pi =
n2 . 4
This gives the best response, but actually this optimum does not depend on what other players are doing, which means that it is the dominant strategy. To conclude, the Nash equilibrium is pi =
n2 ∀i. 4
Notice if n = 1 then p = 12 . This is the efficient choice, because there is no externality. If n → ∞, then pi → ∞. This is because every marginal increase in the price of the meal will splitted by all the people and the marginal increase of the payment of the player herself converges to 0. 5
47145 Jdph Wkhru| Idoo 5334 Sureohp Vhw 6 Gxh rq 4325< 41 Frpsxwh wkh sxuh0vwudwhj| vxejdph0shuihfw htxloleuld lq wkh iroorzlqj olqhdu Frxuqrw roljrsro| iru duelwudu| ? upv= +4, hdfk up vlpxowdqhrxvo| ghflghg zkhwkhu wr hqwhu wkh pdunhw> li d up hqwhuv wkh pdunhw/ lw sd|v d {hg frvw 8 : f> +5, revhuylqj zklfk upv hqwhuhg wkh pdunhw/ hdfk up surgxfhv txdqwlw| ^ dw }hur pdujlqdo frvw> wkh lqyhuvh0ghpdqg ixqfwlrq lv jlyhq e| E' ' 4@ i 'c fj/ zkhuh ' lv wkh wrwdo vxsso|1 51 Frqvlghu wkh iroorzlqj wzr0shuvrq jdph=
1 2 2 2 1
2 2
2
3 3
0 0
0 0
1 1
+d, Frpsxwh doo sxuh0vwudwhj| vxejdph0shuihfw htxloleulxdB +e, Zklfk ri wkhvh htxloleuld duh frqvlvwhqw zlwk wkh frpprp nqrzohgjh ri vwurqj eholhi lq udwlrqdolw|B 61 Frqvlghu dq lqqlwo| uhshdwhg yhuvlrq ri wkh Ehuwdqg gxrsor| jdph1 Pdunhw ghpdqg lv jlyhq e| ' ' c dqg hdfk up kdv frqvwdqw pdujlqdo frvw htxdo wr f Frqvxphuv ex| iurp wkh up zlwk wkh orzhvw sulfh> dqg li wkhuh duh pruh wkdq rqh up fkdujlqj wkh orzhvw sulfh/ ghpdqg lv vkduhg e| vxfk upv htxdoo|1
4
+d, Zkdw lv wkh plqlpxp B iru zklfk wkh prqrsro| sulfh fdq eh vxssruwhg dv d vxejdph shuihfw htxloleulxpB +e, Zkdw lv wkh plqlpxp B zkhq wkhuh duh q upvB 71 Frqvlghu wkh iroorzlqj uhshdwhg Vwdfnhoehuj gxrsro|/ zkhuh d orqj0uxq up sod|v djdlqvw pdq| vkruw0uxq upv/ hdfk ri zklfk lv lq wkh pdunhw rqo| iru rqh gdwh/ zkloh wkh orqj0uxq up uhpdlqv lq wkh pdunhw wkurxjkrxw wkh jdph1 Dw hdfk gdwh |/ uvw/ wkh vkruw uxq up vhwv lwv txdqwlw| %| > wkhq/ nqrzlqj %| / wkh orqj0uxq up vhwv lwv txdqwlw| +| > dqg hdfk vhoov klv jrrg dw sulfh R| ' E%| n +| 1 Wkh pdujlqdo frvwv duh doo 31 Wkh vkruw0uxq up pd{lpl}hv lwv surw/ zklfk lqfxuv dw |1 Wkh orqj0uxq up pd{lpl}hv wkh suhvhqw ydoxh ri lwv surw vwuhdp zkhuh wkh glvfrxqw udwh lv B ' fbb1 Dw wkh ehjlqqlqj ri hdfk gdwh/ wkh dfwlrqv wdnhq suhylrxvo| duh doo frpprq nqrzohgjh1 +d, Zkdw lv wkh vxejdph shuihfw htxloleulxp li wkhuh duh rqo| qlwho| pdq| gdwhv/ l1h1/ | 5 ifc c c A j1 +e, Qrz frqvlghu wkh lqqlwho| uhshdwhg jdph1 Ilqg d vxejdph shuihfw htxloleulxp/ zkhuh %| ' *e dqg +| ' *2 dw hdfk | rq wkh sdwk ri htxloleulxp sod|/ qdpho| lq wkh frqwlqjhqflhv wkdw kdsshq zlwk srvlwlyh suredelolw| jlyhq wkh vwudwhjlhv1 +f, Fdq |rx qg d vxejdph shuihfw htxloleulxp/ zkhuh %| ' +| ' *e iru hdfk | rq wkh sdwk ri htxloleulxp sod|B
5
14.12 Solutions for Homework 3 Kenichi Amaya1 November 2, 2001 Question 1 We solve this problem by backward induction. First, we solve for the quantity choice (stage 2) given the entrance decision, and then we solve for the entrance decision (stage 1). Stage 2 Suppose m firms has entered in stage 1. Assuming 1 − Q ≥ 0 in equilibrium (we check this is actually true later), each firm i maximizes πi = qi (1 − Q) X = qi (1 − qj − qi ). j6=i
Notice, since the fixed cost F was payed in stage 1 already, i.e., it is already sunk, the firm doesn’t care about it any more. Taking first order condition, P 1 − j6=i qj . qi = 2 Assuming the equilibrium is symmetric (qi is same for all i), qi =
1 − (m − 1)qi , 2
implying 1 . m+1 (It is not hard to prove the equilibrium is actually symmetric.) Now we can confirm that our assumption 1 − Q ≥ 0 is actually satisfied because m < 1. Q = mqi = m+1 qi =
The equilibrium payoff of each firm is π=
1 . (m + 1)2
Stage 1 Let π(m) be the profit (gained in stage 2) of each firm when m firms are entering. As we solved above, π(m) =
1 . (m + 1)2
There are three possible classes of equilibria: 1 E52-303,
[email protected], 253-3591
1
1. All n firms enter. 2. No firm enters 3. k firms enter, where 0 < k < n. The first class of equilibrium exists if it is better to enter and gain π(n)−F than to exit and gain 0. That is, π(n) − F ≥ 0, 1 ≥ F. (n + 1)2 The second class of equilibrium exists if it is better to exit and get 0 than to enter to be the only entering firm and gain π(1) − F . That is, π(1) − F < 0, 1 ≤ F. 4 To see when the third class of equilibrium exists, we need to check the incentives of the firms which are entering and the firms which are not entering. Let’s consider the incentive of an entering firm first. It gets π(k) − F if it enters, and gets 0 if it exits. Therefore, there is no incentive to deviate if π(k) − F ≥ 0, 1 ≥ F. (k + 1)2 Next consider the incentive of an exiting firm. It gets 0 if it exits. If it enters, it gets π(k + 1) − F because k other firms are also entering. Therefore, there is no incentive to deviate if π(k + 1) − F ≤ 0, 1 ≤ F. (k + 2)2 Notice, the argument above says nothing about which k firms enter. If the condition above is satisfied, any selection of k firms constitutes an equilibrium. To summarize, let’s formally describe the equilibrium strategies. Remember, we need to describe all the contingent plans for stage 2, even for the information sets which are not achieved on the equilibrium path. The equilibrium strategies are as the following. 2
1.
• All firms enter in stage 1. • If m firms enter in stage 1, each entering firm produces 2.
1 m+1
in stage
1 The equilibrium payoff is (n+1) 2 −F for every firm. This equilibrium exists 1 if and only if (n+1)2 ≥ F .
2.
• No firm enter in stage 1. • If m firms enter in stage 1, each entering firm produces 2.
1 m+1
in stage
The equilibrium payoff is 0 for every firm. This equilibrium exists if and only if 14 ≤ F . 3.
• k firms enter in stage 1, where 0 < k < n. • If m firms enter in stage 1, each entering firm produces 2.
1 m+1
in stage
1 The equilibrium payoff is (k+1) 2 − F for every entering firm, and 0 for 1 every exiting firm. This equilibrium exists if and only if (k+1) 2 ≥ F and 1 ≤ F . (k+2)2
Question 2 (a) 1 A X A N A U2 A (2,2) @ x @ n @ R1 @ (2,2) @ L @ R @ R2 @ A A l A r l A r A A U A AU (3,3) (0,0) (0,0) (1,1)
We can solve for subgame perfect equilibria by backward induction. This game has three subgames: the whole game itself, a subgame starting from player 3
2’s first decision node, and a subgame starting from player 1’s second decision node. First we look at the subgame starting from player 1’s second decision node. This subgame is equivalent to the following nomal form game: L R
l 3,3 0,0
r 0,0 1,1
Obviously, pure strategy equilibria are (L,l) and (R,r). If (L,l) is played in this subgame, player 2 chooses n at his first decision node, because he gets payoff of 2 by playing x and 3 by playing n. Given this, player 1 chooses N at her first decision node because she gets payoff of 2 by playing X and 3 by playing N. Therefore, player 1’s strategy (N,L) and player 2’s strategy (n,l) constitute a subgame perfect Nash equilibrium. If (R,r) is played in the subgame starting from player 1’s second decision node, player 2 chooses x at his first decision node, because he gets payoff of 2 by playing x and 1 by playing n. Given this, player 1 is indifferent between X and N at her first decision node because she gets payoff of 2. Therefore, player 1’s strategy (X,R) and player 2’s strategy (x,r) constitute a subgame perfect Nash equilibrium, and player 1’s strategy (N,r) and player 2’s strategy (x,r) constitute another subgame perfect Nash equilibrium. To conclude, there are three subgame perfect Nash equilibria: 1. Player 1: (N,L), Player 2: (n,l) 2. Player 1: (X,R), Player 2: (x,r) 3. Player 1: (N,R), Player 2: (x,r) (b) Let’s apply the forward induction argument here. Suppose player 1’s second decision node is reached. This means that player 2 has chosen N at his first decision node, i.e., his strategy is either (n,l) or (n,r) (or any mixture of them). Should player 1 think that player 2 is choosing (n,r)? Player 2 can get payoff of 0 or 1 by playing (n,r), whereas he can get 2 for sure by playing (x,l) or (x,r). In other words, (n,r) is a strictly dominated strategy. If player 1 knows player 2 is rational, she must know that there is no reason player 2 play (n,r). Therefore, given player 2 has played N at his first decision node, player 1 must conclude player 2 is choosing (X,l), and choose the best response to it, namely L. To conclude, in any subgame perfect equilibrium which is consistent with common knowlegde of rationality, player 1’s choice at his second decision node must be L. Therefore, only the first equilibrium (N,L), (n,l) is consistent.
4
Question 3 (a) The monopoly price is pm = 21 . Construct the following “trigger strategy”. • Start with playing pm , and play pm if everybody has played pm all the time. • Play 0 if anybody has played something different from pm at least once. By the single deviation principle, it is sufficient to check incentives to deviate only once, in order to check when this is actually a subgabe perfect Nash equilibrium. Firstly, check the incentive when nobody has deviated from pm before. If a firm plays pm , as suggested by the strategy, then everyone will be playing pm all the time in future, and a firm’s profit per period is pm (1 − pm ) 1 = , 2 8 and the present discounted sum of the profit sequence from today is 1 1 1 1 1 + δ + δ2 + · · · = . 8 8 8 1−δ8 If the firm is to deviate, the best it can do today is to set a price slightly less than pm and get the whole monopoly profit pm (1 − pm ) =
1 . 4
If the firm does deviate, everyone will be playing 0 from the next period, yielding per period payoff of zero. Therefore, the present discounted sum of the profit sequence from today is 1 1 + δ0 + δ 2 0 + · · · = . 4 4 The firm has no incentive to deviate if and only if 1 1 1 ≥ 1−δ8 4 1 δ≥ . 2 Secondly, check the incentive when somebody has ever deviated from pm before. In this case, a firm’s action today doesn’t affect it’s future payoff because everyone will be playing 0 in future no matter what happens today. Therefore it is sufficient to check if the firm can increase the present period profit by deviating. If it plays p = 0, as suggested by the strategy, it gets a payoff of 0. 5
If it deviates and plays p > 0, it gets a payoff of 0 again because all consumers buy from the other firm which is choosing p = 0. Therefore it can’t benefit from deviating. To conclude, the trigger strategy constitutes a subgame perfect Nash equilibrium if δ ≥ 21 . (b) When there are n firms, we can use the trigger strategy constructed in part (a) again. As we did in part (a), we check incentives to deviate before and after any deviation. Firstly, check the incentive when nobody has deviated from pm before. If a firm plays pm , as suggested by the strategy, then everyone will be playing pm all the time in future, and a firm’s profit per period is 1 pm (1 − pm ) = , n 4n and the present discounted sum of the profit sequence from today is 1 1 1 1 1 +δ + δ2 + ··· = . 4n 4n 4n 1 − δ 4n If the firm is to deviate, the best it can do today is to set a price slightly less than pm and get the whole monopoly profit pm (1 − pm ) =
1 . 4
If the firm does deviate, everyone will be playing 0 from the next period, yielding per period payoff of zero. Therefore, the present discounted sum of the profit sequence from today is 1 1 + δ0 + δ 2 0 + · · · = . 4 4 The firm has no incentive to deviate if and only if 1 1 1 ≥ 1 − δ 4n 4 n−1 δ≥ . n To check the incentive when somebody has ever deviated from pm before, the same argument as in part (a) holds. To conclude, the trigger strategy constitutes a subgame perfect Nash equilibrium if δ ≥ n−1 n . Question 4 (a) 6
To begin with, let’s find the subgame perfect Nash equilibrium of the stage game. We do this by backward induction. The long run firm, observing the short run firm’s quantity xt , chooses its quantity yt to maximize its profit πtL = yt (1 − (xt + yt )). Solving first order condition, the optimum is yt∗ (xt ) =
1 − xt . 2
The short run firm chooses its quantity xt to maximize its profit πtS = xt (1 − (xt + yt )), knowing that if it choose xt , the long run firm reacts with yt∗ (xt ) =
1 − xt . 2
Therefore, the short run firm’s objective function can be rewritten as a function of xt ; 1 − xt πtS = xt (1 − (xt + )). 2 Solving first order condition, the optimum is x∗t =
1 . 2
Therefore, the subgame perfect Nash equilibrium of the stage game is x∗t =
1 1 − xt , yt∗ (xt ) = . 2 2
Now let’s solve for the subgame perfect Nash equilibrium of the finitely repeated game. Since it is finite, we can use backward induction. At the last period, t = T , the players don’t care about future and they concern only about the payoff of that period. Therefore they must play the subgame perfect Nash equilibrium of the stage game, regardless of what happened in the past. At time t = T − 1, the players know that the actions today doesn’t affect tomorrow’s outcome, so they concern only about the payoff of that period. Therefore they must play the subgame perfect Nash equilibrium of the stage game, regardless of what happened in the past. We can repeat the same argument until we reach the very first period. Therefore, the subgame perfect Nash equilibrium of the repeated game is x∗t =
1 1 − xt , yt∗ (xt ) = for all t, 2 2
regardless of the history. 7
(b) Construct the following trigger strategy. Long rum firm
• Start with playing the following strategy: 1/2 if xt ≤ 1/2 (∗) yt (xt ) = 1 − xt if xt ≥ 1/2
Keep playing this strategy as long it has not deviated from it. • Play yt∗ (xt ) =
1−xt 2
if it has deviated from (*) at least once.
Short run firms • Play xt = 1/4 if the long run firm has not deviated from (*) before. • Play xt =
1 2
if the long run firm has deviated from (*) at least once.
To see this is actually a subgame perfect Nash equilibrium, let’s check incentives to deviate. Firstly, consider the long run firm’s incentive when it has never deviated from (*) before. Case 1: xt ≤ 1/2 If it follows the strategy and choose yt = 1/2, the present period profit of the long run firm is 1 1 (1 − ( + xt )). 2 2 Starting from the next period, the outcome will be xt = 1/4 and yt = 1/2 every period, and the long run firm’s per period profit is 1/8 and therefore the present discounted value of the profit sequence is 1 1 δ (1 − ( + xt )) + . 2 2 8(1 − δ) If it is to deviate, the best it can do today is to play yt =
1 − xt 2
and get payoff of (1 − xt )2 . 4 However, starting from next period, the outcome will be xt = 1/2 and yt = 1/4 and the long run firm’s per period profit is 1/16. Therefore the present discounted value of the profit sequence is (1 − xt )2 δ + . 4 16(1 − δ) 8
If δ = 0.99, 1 1 δ (1 − xt )2 δ (1 − ( + xt )) + > + , 2 2 8(1 − δ) 4 16(1 − δ) (check it!), and therefore it is better to follow the equilibrium strategy than to deviate. Case 2: xt ≥ 1/2 If it follows the strategy, pt = 0 and today’s payoff is 0, and the outcome will be xt = 1/4 and yt = 1/2 every period, starting the next period. The long run firm’s per period profit is 1/8 and therefore the present discounted value of the profit sequence is δ . 8(1 − δ) 1−xt and get 2 (1−xt )2 . However, starting from next period, the outcome will be 4 and yt = 1/4 and the long run firm’s per period profit is 1/16.
If it is to deviate, the best it can do today is to play yt =
payoff of xt = 1/2 Therefore the present discounted value of the profit sequence is δ (1 − xt )2 + . 4 16(1 − δ) This value is the largest when xt = 1/2 and is equal to 1 δ + . 16 16(1 − δ)
If δ = 0.99, it is better to follow the equilibrium strategy than to deviate (check it!). Secondly, consider the long run firm’s incentive when it has deviated from (*) before. According to the strategy strategy profile, future outcomes don’t depend on today’s behavior. Therefore the long run firm cares only about its payoff today. Actually, by following the strategy, it is taking best response to the short run firm. Finally, consider the short run firm’s incentives. Since they never care about future payoff, it must be playing a best response to the long run firm’s strategy, which is actually true. (Check it!) (c) In the equilibrium we saw in part (b), the per period profit on the equilibrium path were 1/8 for the long run firm and 1/16 for the short run firms.
9
If there is a subgame perfect Nash equilibrium where xt = yt − 1/4 on th eequilibrium path, then the per period profit on the equilibrium path are 1/8 for the long run firm and 1/8 for the short run firms. Construct the following trigger strategy, which is different from (b) only in (*) where xt = 1/4: Long rum firm
• Start with playing the if 1/4 1/2 if (∗) yt (xt ) = 1 − xt if
following strategy: xt = 1/4 xt ≤ 1/2 and xt 6= 1/4 xt ≥ 1/2
Keep playing this strategy as long it has not deviated from it. • Play yt∗ (xt ) =
1−xt 2
if it has deviated from (*) at least once.
Short run firms • Play xt = 1/4 if the long run firm has not deviated from (*) before. • Play xt =
1 2
if the long run firm has deviated from (*) at least once.
The incentive of the long run firm when it is supposed to play (*) and xt = 1/4 is satisfied because it gets current payoff of 1/8, which is same as part (b), and what it can get by deviating is same as in part (b). The incentive problem of the long run firm is same as in (b). The incentives of the short run firms are also satisfied because the payoff from following the strategy is larger than part (b) and payoff when deviating is same as in (b).
10
47145 Jdph Wkhru| Idoo 5334 Sureohp Vhw 7 Gxh rq 442: 41 Frqvlghu wkh iroorzlqj yduldqw ri wkh Edwwoh ri wkh Vh{hv= sod|hu 4 lv xqvxuh zkhwkhu sod|hu 5 suhihuv wr jr rxw zlwk khu ru suhihuv wr dyrlg khu/ zkloh sod|hu 5 nqrzv sod|hu 4*v suhihuhqfhv1 Vshflfdoo|/ vxssrvh sod|hu 4 wklqnv wkdw zlwk suredelolw| 2 wkh jdph lv 7 2c fc f 7 fc f c 2 dqg zlwk suredelolw|
2
lw lv
7 2c f fc 2 7 fc c f
Sod|hu 5 nqrzv zklfk jdph lv ehlqj sod|hg1 +d, Prgho wklv dv d Ed|hvldq jdph> wkdw lv/ zulwh grzq wkh dfwlrq vsdfhv/ w|sh vsdfhv/ sulru eholhiv/ dqg yrq Qhxpdq0Prujhqvwhuq xwlolwlhv1 +e, Vkrz wkdw sod|hu 4 sod|lqj E dqg sod|hu 5 sod|lqj E lq wkh wrs jdph dqg V lq wkh erwwrp jdph lv d Ed|hvldq Qdvk Htxloleulxp1 51 Jleerqv sure1 616 61 Jleerqv sure1 618 71 Jleerqv sure1 619
4
14.12 Solutions for Homework 4 Kenichi Amaya1 November 9, 2001 Question 1 (a) Action spaces A1 = A2 = {B, S}. Type spaces T1 = {α}, T2 = {β1 , β2 }. Since player 1 has no private information, we can model it so that her type can take only one value. Player 2 knows that the game above is played when his type is β1 and he knows that the game below is played when his type is β2 . Belief Player i’s belief µi (tj |ti ) is the probability that player j’s type is tj conditional on that player i’s type is ti . In this model, since it is assumed that the types are independent, 1 , 2 µ2 (α|β1 ) = µ2 (α|β2 ) = 1.
µ1 (β1 |α) = µ1 (β2 |α) =
vNM utility function ui (a1 , a2 , t1 , t2 ) is the vNM utility when player 1’s action is a1 , player 2’s action is a2 , player 1’s type is t1 and player 2’s type is t2 . u1 (B, B, α, β1 ) = 2, u2 (B, B, α, β1 ) = 1, u1 (B, S, α, β1 ) = 0, u2 (B, S, α, β1 ) = 0, u1 (S, B, α, β1 ) = 0, u2 (S, B, α, β1 ) = 0, u1 (S, S, α, β1 ) = 1, u2 (S, S, α, β1 ) = 2, u1 (B, B, α, β2 ) = 2, u2 (B, B, α, β2 ) = 0, u1 (B, S, α, β2 ) = 0, u2 (B, S, α, β2 ) = 2, u1 (S, B, α, β2 ) = 0, u2 (S, B, α, β2 ) = 1, u1 (S, S, α, β2 ) = 1, u2 (S, S, α, β2 ) = 0. (b) First consider player 1’s incentive. Since she doesn’t know the game which is being played, she maximizes her expected payoff. If she plays B, with probability 1/2 the top game is being played and player 2 chooses B and thus she gets a payoff of 2, and with probability 1/2 the bottom game is being played and player 2 chooses S and thus she gets a payoff of 0. 1 E52-303,
[email protected], 253-3591
1
Therefore her expected payoff is 1. If she plays S, with probability 1/2 the top game is being played and player 2 chooses B and thus she gets a payoff of 0, and with probability 1/2 the bottom game is being played and player 2 chooses S and thus she gets a payoff of 1. Therefore her expected payoff is 1/2. Therefore B is actually player 1’s best response against player 2’s strategy. Next consider player 2’s incentive. When he knows that the top game is being played, B is the best response given player 1 is choosing B. When he knows that the bottom game is being played, S is the best response given player 1 is choosing B. Therefore choosing B when the top game is being played and choosing S when the bottom game is being played is actually player 2’s best response against player 1’s strategy. Since both players are taking a best response to each other, the strategy profile constitutes a Bayesian Nash equilibrium. Question 2 Each player’s action is the choice of price. A price can take any nonnegative real number. Therefore the action space is R+ for both players. Player i’s type is her private information. In this model, bi is player i’s type. bi is either bH or bL . Therefore, the type space of each player is {bH , bL }. Player i’s belief µi (bj |bi ) is the probability that player j’s type is bj conditional on that player i’s type is bi . In this model, since it is assumed that the types are independent, θ if bj = bH µi (bj |bi ) = . 1 − θ if bj = bL (von Neuman Morgenstern) utility in this model is the profit of each player (assuming the firms are risk neutral) as a function of the actions and types of both players: ui (pi , pj , bi , bj ) = pi (a − pi − bi pj ). Player i’s strategy specifies what action to take for any realization of her type. In this model, it is a two dimensional vector (pi (bH ), pi (bL )), where pi (bH ) is the price when its type is bH and pi (bL ) is the price when its type is bL . The 2 for each i. strategy space is R+ A strategy profile {(p∗1 (bH ), p∗1 (bL )), (p∗2 (bH ), p∗2 (bL ))} constitutes a Bayesian Nash equilibrium if each p∗i (bi ) is a best response, i.e., a maximizer of player i’s expected payoff, conditional on that her type is bi and the opponent is choosing strategy (p∗j (bH ), p∗j (bL )). That is: p∗1 (bH ) = argmaxp1 θp1 (a − p1 − bH p∗2 (bH )) + (1 − θ)p1 (a − p1 − bH p∗2 (bL )), p∗1 (bL ) = argmaxp1 θp1 (a − p1 − bL p∗2 (bH )) + (1 − θ)p1 (a − p1 − bL p∗2 (bL )), p∗2 (bH ) = argmaxp2 θp2 (a − p2 − bH p∗1 (bH )) + (1 − θ)p2 (a − p2 − bH p∗1 (bL )), p∗2 (bL ) = argmaxp2 θp2 (a − p2 − bL p∗1 (bH )) + (1 − θ)p2 (a − p2 − bL p∗1 (bL )). 2
Taking first order conditions, a − bH (θp∗2 (bH ) + (1 − θ)p∗2 (bL )) , 2 a − bL (θp∗2 (bH ) + (1 − θ)p∗2 (bL )) p∗1 (bL ) = , 2 a − bH (θp∗1 (bH ) + (1 − θ)p∗1 (bL )) p∗2 (bH ) = , 2 ∗ ∗ a − bL (θp1 (bH ) + (1 − θ)p1 (bL )) p∗2 (bL ) = . 2 p∗1 (bH ) =
Since the game is symmetric, let’s look for a symmetric equilibrium where p∗1 (bH ) = p∗2 (bH ) = p∗H and p∗1 (bL ) = p∗2 (bL ) = p∗L . Then the conditions are reduced to a − bH (θp∗H + (1 − θ)p∗L ) , 2 a − bL (θp∗H + (1 − θ)p∗L ) . p∗L = 2
p∗H =
Solving these, we get a bH (1 − ), 2 2 + θbH + (1 − θ)bL a bL ). p∗L = (1 − 2 2 + θbH + (1 − θ)bL
p∗H =
Question 3 Consider the following incomplete information game. H T
H 1 + α, −1 + β −1, 1 + β
T −1 + α, 1 1, −1
Here, α is player 1’s type, β is player 2’s type, α and β are independent draw from uniform distribution in the interval [0, 1], and > 0 is a constant. The interpretation is like this: Player 1 (2) can get an extra payoff of α (β) by playing head, in addition to the payoff generated from the original game. This extra payoff is her private information. Notice, as we converge to 0, the game converges to the original game. From the construction, player 1 (2) is more tempted to play H if she has a higher value of α (β). Observing this, try to find the pure strategy Bayesian Nash equilibrium of the following form. • Player 1 chooses H if α ≥ α ¯ and chooses L if α ≤ α ¯ , where α ¯ ∈ [0, 1] is a constant. 3
¯ where β¯ ∈ [0, 1] is a • Player 2 chooses H if β ≥ β¯ and chooses L if β ≤ β, constant. This strategy profile is actually a Bayesian Nash equilibrium if player 1 with cutoff type α ¯ and player 2 with cutoff type β¯ are indifferent between choosing H and T. ¯ and According to the strategy, the probability that player 2 plays H is 1 − β, ¯ the probability that player 2 plays L is β. Therefore, if player 1 of type α ¯ plays H, her expected payoff is ¯ + (−1)β¯ + ¯ 1(1 − β) α, and if she plays T, she gets ¯ + 1β. ¯ (−1)(1 − β) Therefore, we need ¯ + (−1)β¯ + ¯ ¯ + 1β. ¯ 1(1 − β) α = (−1)(1 − β)
(1)
¯ According to the strategy, We do the same thing for player 2 with type β. the probability that player 1 plays H is 1 − α ¯ , and the probability that player 1 plays L is α ¯ . Therefore, if player 2 of type β¯ plays H, his expected payoff is ¯ (−1)(1 − α ¯ ) + 1α ¯ + β, and if she plays T, she gets 1(1 − α ¯ ) + (−1)¯ α. Therefore, we need (−1)(1 − α ¯ ) + 1¯ α + β¯ = 1(1 − α ¯ ) + (−1)¯ α.
(2)
Solving (1) and (2), we get 8 − 2 , 16 + 2 8 + 2 β¯ = . 16 + 2
α ¯=
(3) (4)
Now, as we converge to 0, i.e., as we converge the game to the complete information game, both α ¯ and β¯ converge to 1/2. Therefore, in the limit, both players are choosing H and T with probability 1/2, which is equivalent to the mixed strategy equilibrium of the complete information game. Question 4 4
Let i = 1, · · · , n be the index of bidders, vi be bidder i’s valuation of the good, and bi be player i’s bid. We denote player i’s strategy by a function xi (vi ), meaning that player i bids bi = xi (vi ) when her valuation is vi . We want to show that the strategy profile xi (vi ) =
(n − 1)vi for all i n
constitutes a Bayesian Nash equilibrium. Since the game is symmetric and strategy profile is symmetric, it is sufficient to check one player’s incentive because every player is facing the same incentive problem. We are going to show that if player i’s valuation is vi and all other players are taking the strategy (n − 1)vj xj (vj ) = , n then the bid which maximizes her expected payoff is bi = xi (vi ) =
(n − 1)vi . n
First consider the probability of winning the auction by bidding bi . She wins if and only if all other players’ bids are less than bi , i.e., xj (vj ) =
(n − 1)vj ≤ bi for all j 6= i. n
This is equivalent to vj ≤
nbi for all j 6= i. n−1
Since P rob(vj ≤
nbi nbi )= n−1 n−1
for all j because vj is uniformly distributed in [0.1], nbi for all j 6= i) n−1 nbi n−1 = P rob(vj ≤ ) n−1 nbi n−1 = . n−1
P rob(win) = P rob(vj ≤
Therefore, the expected payoff from bidding bi is Ui = (vi − bi )P rob(win) = (vi − bi )
5
nbi n−1 . n−1
Taking first order condition, nbi n−2 n nbi n−1 ∂Ui = (vi − bi )(n − 1) − = 0, ∂bi n−1 n−1 n−1 nbi (vi − bi )n = , n−1 (n − 1)vi bi = . n Therefore, the strategy of player i bi = xi (vi ) =
(n − 1)vi n
is actually the best response to other player’s playing xj (vj ) =
(n − 1)vj . n
Q.E.D.
6
47145 Jdph Wkhru| Idoo 5334 Sureohp Vhw 8 Gxh rq 452: Wklv lv dq rswlrqdo krphzrun1 Wkhuhiruh/ li |rx uhwxuq wklv/ wzr ri wkh zruvw krphzrunv zloo eh gursshg/ rwkhuzlvh rqo| rqh1 Gxh wr wkh PLW uhjxodwlrq/ wklv lv gxh rq Iulgd|/ exw dv xvxdo odwhu vxeplvvlrqv fdq eh dffhswhg ghshqglqj rq krz odwh wkh| duh1 41 Frpsxwh doo wkh shuihfw Ed|hvldq htxloleuld ri wkh iroorzlqj jdph1 1 0.5
Nature
A
2
a
D
0.1
(1,-5)
d (4,4)
(5,2) 1
(3,3)
A
2
a
D
(1,-5)
d
0.4 (-1,4)
(0,2) 1
A
(-1,3) 2
D
a
(-2,-5)
d (0,4)
(-1,2)
(-1,3)
51 Frqvlghu wkh hqwu| ghwhuuhqfh jdph/ zkhuh dq Hqwudqw ghflghv zkhwkhu wr hqwhu wkh pdunhw> li kh hqwhuv wkh Lqfxpehqw ghflghv zkhwkhu wr Iljkw ru Dffrpprgdwh1 Zh frqvlghu d jdph zkhuh Lqfxpehqw*v sd|r iurp wkh Iljkw lv sulydwh lqirupdwlrq/ wkh hqwu| ghwhuuhqfh jdph lv uhshdwhg wzlfh dqg wkh glvfrxqw udwh lv B ' fb1 Wkh sd|r yhfwruv iru wkh vwdjh jdph duh +3/5, li wkh Hqwudqw grhv qrw hqwhu/ Ec @ li kh hqwhuv dqg wkh Lqfxpehqw Iljkwv> dqg +4/4, li kh hqwhuv dqg wkh Lqfxpehqw dffrpprgdwhv/ zkhuh wkh uvw hqwu| lq hdfk sduhqwkhvlv lv wkh sd|r iru wkh hqwudqw1 Khuh/ @ fdq eh hlwkhu 04 ru 5/ dqg lv sulydwho| nqrzq e| wkh Lqfxpehqw1 Hqwudqwv eholhyhv wkdw @ ' zlwk suredelolw| Z( dqg hyhu|wklqj ghvfulehg xs wr khuh lv frpprq nqrzohgjh1 +d, Ilqg wkh shuihfw Ed|hvldq Htxloleulxp zkhq Z ' fe1 +e, Ilqg wkh shuihfw Ed|hvldq Htxloleulxp zkhq Z ' fb1 +f, Zkdw zrxog kdsshq li wkh jdph lv uhshdwhg 433 wlphvB 61 Frqvlghu d ex|hu dqg d vhoohu1 Wkh vhoohu rzqv dq remhfw/ zkrvh ydoxh iru klpvhoi lv 31 Wkh ydoxh ri wkh remhfw iru wkh ex|hu lv 5 ic 2j1 Wkh vhoohu eholhyhv wkdw ' 2 zlwk 4
suredelolw| Z/ zkloh wkh ex|hu nqrzv zkdw lv1 Zh kdyh wzr gdwhv/ | ' fc 1 Dw | ' f/ wkh ex|hu rhuv d sulfh Rf 1 Li wkh vhoohu dffhswv/ wudgh rffxuv dw sulfh Rf / zkhq wkh sd|rv ri wkh ex|hu dqg wkh vhoohu duh Rf dqg Rf / uhvshfwlyho|1 Li wkh vhoohu uhmhfwv/ dw | ' / wkh vhoohu vhwv dqrwkhu sulfh R 1 Li wkh ex|hu dffhswv wkh sulfh/ wkh wudgh rffxuv dw sulfh R / zkhq wkh sd|rv ri wkh ex|hu dqg wkh vhoohu duh fb E R dqg fbR / uhvshfwlyho|1 Rwkhuzlvh/ wkhuh zloo eh qr wudgh/ zkhq erwk jhw 31 Hyhu|wklqj ghvfulehg xs wr khuh lv frpprq nqrzohgjh1 +d, Frpsxwh wkh shuihfw Ed|hvldq Qdvk htxloleulxp iru Z ' fe1 +e, Frpsxwh wkh shuihfw Ed|hvldq Qdvk htxloleulxp iru Z ' fS1 71 Jleerqv 7161d1 81 Jleerqv 7171
5
14.12 Game Theory Fall 2001 Problem Set 5 Solutions
December 14, 2001 1. The possibilities are: Pooling on A, pooling on D, and hybrid equilibria (since there are only two possible actions for player 1, but three possible types of player 1). Let us write the strategies in the form (t11 , t21 , t31 ; t12 , t22 , t32 ) for player 1, where ti j indicates the action taken by type i at the jth move, and (a) for the strategy of player 2, which gets to move only once and has only one information set. The only equilibrium here is (A, A, D; d, a, d) and (δ). Player 2 moves δ since u2 (α) = 5/6(3) + 1/6(−5) = 5/3 < 2 = u2 (δ) – note how beliefs are updated. Finally, each type of player 1 does not have an incentive to deviate: top type is getting 5 as opposed to 4 (if deviates and plays D); middle type is getting 0 as opposed to -1 (if deviates and plays D); bottom type is getting 0 as opposed to -1 (if deviates and plays A). 2. In the second stage of the game, it is clear that each type will always play the static best response: a = 2 type will fight and a = −1 type will accomodate. The possibilities for the first stage are: (a) Pooling on Fight: If π = 0.4, then at t = 2, given no updating of beliefs (so that µ(a = 2|F ) = π), the entrant stays out since EU (Enter) = 2π − 1 = −0.2 < 0 = EU (Out). Then, in t = 1, incumbents pool on fight. The PBE equilibrium is [(F, F ; F, A), (O, O, E)], where we write the strategy for player 1 as (t11 , t21 ; t12 , t22 ) where ti j is the action taken by type i in stage j and for player 2 as (a1 , a21 , a22 where a1 refers to the first information set in t = 1, and the other two refer to the information sets in t = 2: a21 being the information set after the incumbent fights in the first period, and a22 being the information set after the incumbent fights in the first period. Beliefs are not updated on a21 and off the equilibrium belief on a22 is µ(a = −1|accomodate) = 1. (b) Separating equilibrium: If π = 0.9, then entrant always enters since EU (Enter) = 2π − 1 = 0.8 > 0 = EU (Out), a=2 type fights and a=1 type accomodates. The PBE is [(F, A; F, A), (E, O, E)]. Beliefs are updated such that at a22 we have µ(a = −1|accomodate) = 1 and at a21 we have µ(a = 2|f ight) = 1. 1
If the game is repeated 100 times a similar structure applies. 3. In t = 1, buyer of type 1 will accept if and only if: 0.9(1 − p1 ) ≥ 0, that is p1 ≤ 1 0.9(2 − p1 ) ≥ 0, that is p1 ≤ 2 and seller will offer p1 ≥ 0. If seller offers 1 ≤ p1 ≤ 2, then type 1 rejects the offer and type 2 accepts it: EU (seller) = (1 − π)(0) + p1 π = p1 π or simply 2π, which is the value that maximizes the seller’s utility. If seller offers 0 ≤ p1 ≤ 1 then both types accept the offer: EU (seller) = p1 (1 − π) + p1 π = p1 or simply 1, which is the value that maximizes the seller’s utility. If π > 1/2, then seller offers p1 = 2 in t = 1 and she accepts offers in t = 0 p0 ≥ 0.9 since if she waits until t = 1 she can get 0.9(1)=0.9 . If π < 1/2, then seller offers p1 = 1 and she accepts offers in t = 0 p0 ≥ 1.8 since in t = 1 she can get 0.9(2)=1.8. 4.
• Proposed pooling strategy of Sender: Suppose there is an equilibrium in which the Sender’s strategy is (R, R), where (m0 , m00 ) means that type t1 chooses m0 and type t2 chooses m00 . • Receiver’s belief at R: Then the Receiver’s information set corresponding corresponding to R is on the equilibrium path, so the Receiver’s belief (p, 1 − p) at this information set is determined by Bayes’rule and the Sender’s strategy: p = .5, the prior distribution (since there is no updating of belief in pooling). • Receiver’s best response at R: Given this belief, the Receiver’s best response following R is to play d since u2 (u|R) = 1(.5) + 0(.5) = .5 < u2 (d|R) = 0(.5) + 2(.5) = 1 • Receiver’s belief and best response at information set for L: To determine whether both Sender types are willing to choose R, we need to specify how the Receiver would react to L. In particular, we need to pin down the beliefs such that u2 (u|L) > u2 (d|L) in order for the Sender’s willingness to choose R. The Receiver’s belief at the information set corresponding to L needs to be, in order for u to be the best response, q ≥ 1/3. Thus, if there is an equilibrium in which the Sender’s strategy is (R, R) then the Receiver’s strategy must be (d, u) where (a0 , a00 ) means that the Receiver plays a0 following R and a00 following L. • Pooling perfect Bayesian equilibrium: [(R, R), (d, u), p = .5, q] for q ≥ 1/3.
5. Part a.
2
• Pooling on R: Beliefs on the equilibrium path: µ(t1 |R) = .5 Receiver’s best response: u2 (u|R) = .5(2) = 1 > u2 (d|R) = .5(1) = .5 Sender’s payoff: ut1 (R) = 2,ut2 (R) = 1. Any play by Receiver after observing L sustains (R, R). PBE: [(R, R), (u, u), q > 1/2], [(R, R), (u, d), q < 1/2], [(R, R), (u, αu + (1 − α)d), q = 1/2] • Pooling on L: Not an equilibrium, since t2 will always want to play R. • t1 plays R, t2 plays L: Then both of the Receiver’s information sets are on the equilibrium path, so both beliefs are determined by Bayes’ rule and the Sender’s strategy: µ(t1 |R) = 1, µ(t2 |L) = 1. Receiver’s best response: (u, d) t2 , however, will always play R. • t1 plays L, t2 plays R: µ(t1 |L) = 1, µ(t2 |R) = 1. Receiver’s best response: (u, d) Sender’s payoff: ut1 (L) = 1,ut2 (R) = 1. PBE: [(L, R), (u, d)] Part b. • Pooling on R: Beliefs on the equilibrium path: µ(t1 |R) = .5 Receiver’s best response: u2 (u|R) = .5(2) = 1 > u2 (d|R) = .5(1) = .5 Sender’s payoff: ut1 (R) = 0,ut2 (R) = 1. However, this is not an equilibrium since t1 would always play L. • Pooling on L: Beliefs on the equilibrium path: µ(t1 |R) = .5 Receiver’s best response: u2 (u|L) = .5(3) = 1.5 > u2 (d|L) = .5(1) + .5(1) = 1 Sender’s payoff: ut1 (L) = 3,ut2 (L) = 3. Receiver’s belief and best response at information set for R: u2 (u|R) = 2(1 − p) > u2 (d|R) = p when p < 2/3. PBE: [(L, L), (u, u), p < 2/3] • t1 plays R, t2 plays L: Then both of the Receiver’s information sets are on the equilibrium path, so both beliefs are determined by Bayes’ rule and the Sender’s strategy: µ(t1 |R) = 1, µ(t2 |L) = 1. Receiver’s best response: (d, u) No deviations are profitable. PBE: [(R, L), (d, u)] • t1 plays L, t2 plays R: µ(t1 |L) = 1, µ(t2 |R) = 1. Receiver’s best response: (d, u) No deviations are profitable. PBE: [(L, R), (d, u)]
3
47145 Jdph Wkhru| Plgwhup L 4324325334 Suri1 Pxkdphw \logl} Lqvwuxfwlrqv1 Wklv lv dq rshq errn h{dp> |rx fdq xvh dq| zulwwhq pdwhuldo1 \rx kdyh rqh krxu dqg 53 plqxwhv1 Hdfk txhvwlrq lv 58 srlqwv1 Jrrg oxfn$ 41 Ilqg doo wkh Qdvk htxloleuld lq wkh iroorzlqj jdph= 4q5 O P U W 4/3 3/4 8/3 E 3/5 5/4 4/3 51 Ilqg doo wkh sxuh vwudwhjlhv wkdw duh frqvlvwhqw zlwk wkh frpprq nqrzohgjh ri udwlrqdo0 lw| lq wkh iroorzlqj jdph1 +Vwdwh wkh udwlrqdolw|2nqrzohgjh dvvxpswlrqv fruuhvsrqglqj wr hdfk rshudwlrq1, 4q5 O P U W 4/4 3/7 5/5 P 5/7 5/4 4/5 E 4/3 3/4 3/5 61 Frqvlghu wkh iroorzlqj h{whqvlyh irup jdph1 1 X
E 2
2,1)
L
R M
(1,2)
1
1 l (3,1)
r
λ
(1,3)
(1,3)
ρ (3,1)
+d, Xvlqj Edfnzdug Lqgxfwlrq/ frpsxwh dq htxloleulxp ri wklv jdph1 +e, Ilqg wkh qrupdo irup uhsuhvhqwdwlrq ri wklv jdph1 +f, Ilqg doo sxuh vwudwhj| Qdvk htxloleuld1 71 Lq wklv txhvwlrq |rx duh dvnhg wr frpsxwh wkh udwlrqdol}deoh vwudwhjlhv lq olqhdu Ehuwudqg0 gxrsro| zlwk glvfuhwh sulfhv1 Zh frqvlghu d zruog zkhuh wkh sulfhv pxvw eh wkh srvlwlyh pxowlsohv ri fhqwv/ l1h1/ ' iffc ff2c c ff?c j lv wkh vhw ri doo ihdvleoh sulfhv1 Iru hdfk sulfh R 5 / wkh ghpdqg lv ' ER ' 4@ i Rc fj 4
Zh kdyh wzr upv ' ic 2j/ hdfk zlwk }hur pdujlqdo frvw1 Vlpxowdqhrxvo|/ hdfk up vhwv d sulfh R 5 1 Revhuylqj wkh sulfhv R dqg R / frqvxphuv ex| iurp wkh up zlwk wkh orzhvw sulfh> zkhq wkh sulfhv duh htxdo/ wkh| glylgh wkhlu ghpdqg htxdoo| ehwzhhq wkh upv1 Hdfk up pd{lpl}hv lwv rzq surw ; li R R ? R ' ER R ' ER *2 li R ' R Z ER c R ' = f rwkhuzlvh/
2
2
zkhuh 9' 1 +d, Vkrz wkdw dq| sulfh R juhdwhu wkdq wkh prqrsro| sulfh R6J? ' fD lv vwulfwo| grplqdwhg e| vrph vwudwhj| wkdw dvvljqv vrph suredelolw| " : f wr wkh sulfh R ' ff dqg suredelolw| " wr wkh sulfh R6J? ' fD1 4?
+e, Lwhudwlyho| holplqdwlqj doo wkh vwulfwo| grplqdwhg vwudwhjlhv/ vkrz wkdw wkh rqo| udwlrqdol}deoh vwudwhj| iru d up lv R ' ff 4?
+f, Zkdw duh wkh Qdvk htxloleuld ri wklv jdphB
5
47145 Jdph Wkhru| Plgwhup L DQVZHUV 4324325334 Suri1 Pxkdphw \logl} Lqvwuxfwlrqv1 Wklv lv dq rshq errn h{dp> |rx fdq xvh dq| zulwwhq pdwhuldo1 \rx kdyh rqh krxu dqg 53 plqxwhv1 Hdfk txhvwlrq lv 58 srlqwv1 Jrrg oxfn$ 41 Ilqg doo wkh Qdvk htxloleuld lq wkh iroorzlqj jdph= 4q5 O P U W 4/3 3/4 8/3 E 3/5 5/4 4/3 Dqvzhu= E| lqvshfwlrq/ wkhuh lv qr sxuh0vwudwhj| htxloleulxp lq wklv jdph1 Wkhuh lv rqh pl{hg vwudwhj| htxloleulxp1 Vlqfh U lv vwulfwo| grplqdwhg/ sod|hu 5 zloo dvvljq 3 suredelolw| wr U1 Ohw R dqg ^ eh wkh htxloleulxp suredelolwlhv iru vwudwhjlhv W dqg O/ uhvshfwlyho|> wkh suredelolwlhv iru E dqg U duh R dqg ^/ uhvshfwlyho|1 Li 4 sod|v W/ klv h{shfwhg sd|r lv ^ n E ^ f ' ^1 Li kh sod|v E/ klv h{shfwhg sd|r lv 2 E ^1 Vlqfh kh dvvljqv srvlwlyh suredelolwlhv wr erwk W dqg E/ kh pxvw eh lqglhuhqw ehwzhhq W dqg E1 Khqfh/ ^ ' 2 E ^/ l1h1/ ^ ' 2* 1 Vlploduo|/ iru sod|hu 5/ wkh h{shfwhg sd|rv iurp sod|lqj O dqg P duh 2 E R dqg 4/ uhvshfwlyho|1 Khqfh/ 2 E R ' / l1h1/ R ' *21 51 Ilqg doo wkh sxuh vwudwhjlhv wkdw duh frqvlvwhqw zlwk wkh frpprq nqrzohgjh ri udwlrqdo0 lw| lq wkh iroorzlqj jdph1 +Vwdwh wkh udwlrqdolw|2nqrzohgjh dvvxpswlrqv fruuhvsrqglqj wr hdfk rshudwlrq1, 4q5 O P U W 4/4 3/7 5/5 P 5/7 5/4 4/5 E 4/3 3/4 3/5 Dqvzhu= +d,
41 Iru sod|hu 4/ P vwulfwo| grplqdwhv E1 Vlqfh Sod|hu 4 lv udwlrqdo/ kh zloo qrw sod| E/ dqg zh holplqdwh wklv vwudwhj|= 4q5 O P U W 4/4 3/7 5/5 P 5/7 5/4 4/5 51 Vlqfh Sod|hu 5 nqrzv wkdw Sod|hu 4 lv udwlrqdo/ kh zloo nqrz wkdw 4 zloo qrw sod| E1 Jlyhq wklv/ wkh pl{hg vwudwhj| wkdw dvvljqv suredelolw| 425 wr hdfk ri wkh vwudwhjlhv O dqg P vwulfwo| grplqdwhv U1 Vlqfh Sod|hu 5 lv udwlrqdo/ lq wkdw fdvh/ kh zloo qrw sod| U1 Zh holplqdwh wklv vwudwhj|= 4q5 O P W 4/4 3/7 P 5/7 5/4 4
61 Vlqfh Sod|hu 4 nqrzv wkdw Sod|hu 5 lv udwlrqdo dqg wkdw Sod|hu 5 nqrzv wkdw Sod|hu 4 lv udwlrqdo/ kh zloo nqrz wkdw 5 zloo qrw sod| U1 Jlyhq wklv/ P vwulfwo| grplqdwhv W1 Vlqfh Sod|hu 4 lv udwlrqdo/ kh zloo qrw sod| W/ hlwkhu1 Zh duh ohiw zlwk 4q5 O P P 5/7 5/4 71 Vlqfh Sod|hu 5 nqrzv wkdw Sod|hu 4 lv udwlrqdo/ dqg wkdw Sod|hu 4 nqrzv wkdw Sod|hu 5 lv udwlrqdo/ dqg wkdw Sod|hu 4 nqrzv wkdw Sod|hu 5 nqrzv wkdw Sod|hu 4 lv udwlrqdo/ kh zloo nqrz wkdw Sod|hu 4 zloo qrw sod| W ru E1 Jlyhq wklv/ O vwulfwo| grplqdwhv P1 Vlqfh Sod|hu 5 lv udwlrqdo/ kh zloo qrw sod| P/ hlwkhu1 Kh zloo sod| O1 4q5 O P 5/7 Wkxv/ wkh rqo| vwudwhjlhv wkdw duh frqvlvwhqw zlwk wkh frpprq nqrzohgjh ri udwlrqdolw| duh P iru sod|hu 4 dqg O iru sod|hu 51 61 Frqvlghu wkh iroorzlqj h{whqvlyh irup jdph1 1 X
E 2
2,1)
L
R M
(1,2)
1
1 l (3,1)
r
λ
(1,3)
(1,3)
ρ (3,1)
+d, Xvlqj Edfnzdug Lqgxfwlrq/ frpsxwh dq htxloleulxp ri wklv jdph1
5
1 X
E 2
(2,1)
L
R M
(1,2)
1
1 r
λ
(1,3)
(1,3)
l (3,1)
ρ (3,1)
+e, Ilqg wkh qrupdo irup uhsuhvhqwdwlrq ri wklv jdph1 4q5 [ob [o4 [ub [u4 Hob Ho4 Hub Hu4
O 5/4 5/4 5/4 5/4 4/5 4/5 4/5 4/5
P 5/4 5/4 5/4 5/4 6/4 6/4 4/6 4/6
U 5/4 5/4 5/4 5/4 4/6 6/4 4/6 6/4
Wkh srlqwv zloo eh wdnhq r iurp wkh shrsoh zkr glg qrw glvwlqjxlvk wkh vwudwhjlhv wkdw vwduw zlwk [ iurp hdfk rwkhu1 +f, Ilqg doo sxuh vwudwhj| Qdvk htxloleuld1 4q5 [ob [o4 [ub [u4 Hob Ho4 Hub Hu4
O 5/4 5/4 5/4 5/4 4/5 4/5 4/5 4/5
P 5/4 5/4 5/4 5/4 6/4 6/4 4/6 4/6
U 5/4 5/4 5/4 5/4 4/6 6/4 4/6 6/4
Wkh Qdvk htxloleuld duh +[ob/O,/ +[o4/O,/ +[ub/O,/ +[u4/O,1
6
71 Lq wklv txhvwlrq |rx duh dvnhg wr frpsxwh wkh udwlrqdol}deoh vwudwhjlhv lq olqhdu Ehuwudqg0 gxrsro| zlwk glvfuhwh sulfhv1 Zh frqvlghu d zruog zkhuh wkh sulfhv pxvw eh wkh srvlwlyh pxowlsohv ri fhqwv/ l1h1/ ' iffc ff2c c ff?c j lv wkh vhw ri doo ihdvleoh sulfhv1 Iru hdfk sulfh R 5 / wkh ghpdqg lv ' ER ' 4@ i Rc fj Zh kdyh wzr upv ' ic 2j/ hdfk zlwk }hur pdujlqdo frvw1 Vlpxowdqhrxvo|/ hdfk up vhwv d sulfh R 5 1 Revhuylqj wkh sulfhv R dqg R / frqvxphuv ex| iurp wkh up zlwk wkh orzhvw sulfh> zkhq wkh sulfhv duh htxdo/ wkh| glylgh wkhlu ghpdqg htxdoo| ehwzhhq wkh upv1 Hdfk up pd{lpl}hv lwv rzq surw ; li R R ? R ' ER R ' ER *2 li R ' R Z ER c R ' = f rwkhuzlvh/
2
2
zkhuh 9' 1 +d, Vkrz wkdw dq| sulfh R juhdwhu wkdq wkh prqrsro| sulfh R6J? ' fD lv vwulfwo| grplqdwhg e| vrph vwudwhj| wkdw dvvljqv vrph suredelolw| " : f wr wkh sulfh R ' ff dqg suredelolw| " wr wkh sulfh R6J? ' fD1 4?
Dqvzhu= Wdnh dq| sod|hu dqg dq| sulfh R : R6J? 1 Zh zdqw wr vkrz wkdw wkh pl{hg vwudwhj| j " zlwk j" ER6J? ' " dqg j" R ' " vwulfwo| grplqdwhv R iru vrph " : f1 Wdnh dq| vwudwhj| R : R6J? ri wkh rwkhu sod|hu 1 Zh kdyh 4?
Z ER c R R ' ER ' R E R fD feb ' f2ebbc zkhuh wkh uvw lqhtxdolw| lv e| ghqlwlrq dqg wkh odvw lqhtxdolw| lv gxh wr wkh idfw wkdw R fD1 Rq wkh rwkhu kdqg/ Z Ej " c R ' E " R6J? E R6J? n "R R : E " R6J? E R6J? ' f2D E " 4?
4?
Wkxv/ Z Ej" c R : f2ebb Z ER c R zkhqhyhu f " ffffe1 Fkrrvh " ' ffffe1 Qrz/ slfn dq| R R6J? 1 Vlqfh R : R6J? / zh qrz kdyh Z ER c R ' f1 Exw Z Ej" c R ' E " R6J? E R6J? n "R R "R R : f 4?
4?
4?
Wkdw lv/ Z Ej " c R : Z ER c R 1 Wkhuhiruh/ j " vwulfwo| grplqdwhv R 1
7
4?
+e, Lwhudwlyho| holplqdwlqj doo wkh vwulfwo| grplqdwhg vwudwhjlhv/ vkrz wkdw wkh rqo| udwlrqdol}deoh vwudwhj| iru d up lv R ' ff 4?
Dqvzhu= Zh kdyh douhdg| holplqdwhg wkh vwudwhjlhv wkdw duh odujhu wkdq R6J? 1 Dw dq| lwhudwlrq | dvvxph wkdw/ iru hdfk sod|hu/ wkh vhw ri doo uhpdlqlqj vwudwhjlhv duh | ' iffc ff2c c R7j zkhuh R R7 R6J? 1 Zh zdqw wr vkrz wkdw R7 lv vwulfwo| R ff ' " dqg j"R R grplqdwhg e| wkh pl{hg vwudwhj| j "R zlwk j"R E7 ' "/ r dqg holplqdwh wkh vwudwhj| R71 Wklv surfhvv zloo hqg zkhq ' iffj/ frpsohwlqj wkh surri1 Qrz/ iru sod|hu / R7 E R7 *2 li R ' R7c Rc R ' Z E7 f rwkhuzlvh1 4?
4?
7
7
7
Rq wkh rwkhu kdqg/ R ff E R7 n ff n "R Z j"R c R7 ' E " E7 : E " E7 R ff E R7 n ff ' E " d7 R E R7 ff E 27 Ro Wkhq/ Z j"R c R7 : Z E7 Rc R zkhqhyhu
4?
7
R
4?
7
"
R7 E R7 *2 R7 E R7 ff E 27 R
Exw R7 ff2/ khqfh ff E 27 R R7 E R7 *2/ wkxv wkh uljkw kdqg vlgh lv juhdwhu wkdq 31 Fkrrvh R7 E R7 *2 :f "' R7 E R7 ff E 27 R vr wkdw Z j "R c R7 : Z E7 Rc R 1 Pruhryhu/ iru dq| R R7/ 7
Z j"R c R ' E " E7 R ff E R7 n ff n "R Rc R c "R R : f ' Z E7
4?
7
4?
R
4?
4?
vkrzlqj wkdw j "R vwulfwo| grplqdwhv R7/ dqg frpsohwlqj wkh surri1 7
+f, Zkdw duh wkh Qdvk htxloleuld ri wklv jdphB Dqvzhu= Vlqfh dq| Qdvk htxloleulxp lv udwlrqdol}deoh/ dqg vlqfh wkh rqo| udwlr0 qdol}deoh vwudwhj| suroh lv R c R / wkh rqo| Qdvk htxloleulxp lv R c R 1 +Vlqfh wklv lv d qlwh jdph/ wkhuh lv dozd|v d Qdvk htxloleulxp srvvleo| lq pl{hg vwudwhjlhv1, 4?
4?
8
4?
4?
Grade Distribution For Midterm 1 Average = 67.96 Std.Dev.= 18.05 100
Assuming that you will exhibit similar performance in the future, if you got above 70, you will probably get A(+/-); if you got above 50, you will probably get B(+/-) or above; if you got below 40, you should reconsider ...
90
80
70
grade
60
50
40
30
20
10
0 1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 rank
14.12 Game Theory — Midterm II 10/10/2001 Prof. Muhamet Yildiz Instructions. This is an open book exam; you can use any written material. You have one hour and 20 minutes. Each question is 25 points. Good luck! 1. Consider the following game: 2 X
E 1
5/2 5/2
L
2 l
3 3
R
r
l
0 2
2 0
r 2 2
Compute all the pure-strategy subgame-perfect equilibria. Use a forward induction argument to eliminate one of these equilibria. 2. Below, there are pairs of stage games and strategy profiles. For each pair, check whether the strategy profile is a subgame-perfect equilibrium of the game in which the stage game is repeated infinitely many times. Each agent tries to maximize the discounted sum of his expected payoffs in the stage game, and the discount rate is δ = 0.99. (a) Stage Game: 1\2 L M R T 2,-1 0,0 -1,2 M 0,0 0,0 0,0 B -1,2 0,0 2,-1 Strategy profile: Until some player deviates, player 1 plays T and player 2 alternates between L and R. If anyone devites, then each play M thereafter. (b) Stage Game: 1\2 A B A 2,2 1,3 B 3,1 0,0 Strategy profile: The play depends on three states. In state S0 , each player plays A; in states S1 and S2 , each player plays B. The game start at state S0 . In state S0 , if each player plays A or if each player plays B, we stay at S0 , but if a player i plays B while the other is playing A, then we switch to state Si . At any Si , if player i plays B, we switch to state S0 ; otherwise we state at state Si .
1
3. Consider the following first-price, sealed-bid auction where an indivisible good is sold.There are n ≥ 2 buyers indexed by i = 1, 2, . . . , n. Simultaneously, each buyer i submits a bid bi ≥ 0. The agent who submits the highest bid wins. If there are k > 1 players submitting the highest bid, then the winner is determined randomly among these players – each has probability 1/k of winning. The winner i gets the object and pays his bid bi , obtaining payoff vi − bi , while the other buyers get 0, where v1 , . . . , vn are independently and identically distributed with probability density function f where ½ 2 3x x ∈ [0, 1] f (x) = 0 otherwise. (a) Compute the symmetric, linear Bayesian Nash equilibrium. (b) What happens as n → ∞? [Hint: Since v1 , v2 , . . . , vn is independently distributed, for any w1 , w2 , . . . , wk , we have Pr(v1 ≤ w1 , v2 ≤ w2 , . . . , vk ≤ wk ) = Pr(v1 ≤ w1 ) Pr(v2 ≤ w2 ) . . . Pr(vk ≤ wk ).] 4. This question is about a thief and a policeman. The thief has stolen an object. He can either hide the object INSIDE his car on in the TRUNK. The policeman stops the thief. He can either check INSIDE the car or the TRUNK, but not both. (He cannot let the thief go without checking, either.) If the policeman checks the place where the thief hides the object, he catches the thief, in which case the thief gets -1 and the police gets 1; otherwise, he cannot catch the thief, and the thief gets 1, the police gets -1. (a) Compute all the Nash equilibria. (b) Now imagine that we have 100 thieves and 100 policemen, indexed by i = 1, . . . , 100, and j = 1, . . . , 100. In addition to their payoffs above, each thief i gets extra payoff bi form hiding the object in the TRUNK, and each policeman j gets extra payoff di from checking the TRUNK. We have b1 < b2 < · · · < b50 < 0 < b51 < · · · < b100 , d1 < d2 < · · · < d50 < 0 < d51 < · · · < d100 . Policemen cannot distinguish the thieves from each other, nor can the thieves distinguish the policemen from each other. Each thief has stolen an object, hiding it either in the TRUNK or INSIDE the car. Then, each of them is randomly matched to a policeman. Each matching is equally likely. Again, a policeman can either check INSIDE the car or the TRUNK, but not both. Compute a pure-strategy Bayesian Nash equilibrium of this game.
2
The game for problem 1.
2 X
E 1
5/2 5/2
L
R 2
l 3 3
r
l
0 2
2 0
r 2 2
2 X
E 1
5/2 5/2
L
2 l
3 3
R
r
l
0 2
2 0
3
r 2 2
14.12 Game Theory — Midterm II 10/10/2001 Prof. Muhamet Yildiz Instructions. This is an open book exam; you can use any written material. You have one hour and 20 minutes. Each question is 25 points. Good luck! 1. Consider the following game: 2 X
E 1
5/2 5/2
L
R 2
l 3 3
r
l
0 2
2 0
r 2 2
Compute all the pure-strategy subgame-perfect equilibria. Use a forward induction argument to eliminate one of these equilibria. Answer: There are two pure strategy Nash equilibria in the proper subgame, yielding subgame-perfect equilibria:
2
2
X
E
X
E
1 5/2 5/2
L
5/2 5/2
R 2
l 3 3
1
r
l
0 2
2 0
r
L
2 l
2 2
3 3
R
r
l
0 2
2 0
For player 2, Er is strictly dominated by Xr, while El is not dominated. Hence, if player 1 keeps believing that 2 is rational whenever it is possible, then when he sees that 2 played E, he ought to believe that 2 plays strategy El – not the dominated strategy Ex. In that case, 1 would play L, and 2 would play E. Therefore, the equilibrium on the left is eliminated. 1
r 2 2
2. Below, there are pairs of stage games and strategy profiles. For each pair, check whether the strategy profile is a subgame-perfect equilibrium of the game in which the stage game is repeated infinitely many times. Each agent tries to maximize the discounted sum of his expected payoffs in the stage game, and the discount rate is δ = 0.99. (a) Stage Game: 1\2 L M R T 2,-1 0,0 -1,2 M 0,0 0,0 0,0 B -1,2 0,0 2,-1 Strategy profile: Until some player deviates, player 1 plays T and player 2 alternates between L and R. If anyone deviates, then each play M thereafter. Answer: It is subgame perfect. Since (M,M) is a Nash equilibrium of the stage game, we only need to check if any player wants to deviate when player 1 plays T and player 2 alternates between L and R. In this regime, the present value of player 1’s payoffs is V1L =
2 δ 2−δ − = >0 1−δ 1−δ 1−δ
when 2 is to play L and V1R =
2δ 1 2δ − 1 − = = 98 1−δ 1−δ 1−δ
when 2 is to play R. When 2 plays L, 1 cannot gain by deviating. When 2 plays R, the best 1 gets by deviating is 2 + 0 < 98 (when he plays B). The only possible profitable deviation for player 2 is to play R when he is supposed to play left. In that contingency, if he follows the strategy he gets V1R = 98; if he deviates, he gets 2 + 0 < V1R . (b) Stage Game: 1\2 A B A 2,2 1,3 B 3,1 0,0 Strategy profile: The play depends on three states. In state S0 , each player plays A; in states S1 and S2 , each player plays B. The game start at state S0 . In state S0 , if each player plays A or if each player plays B, we stay at S0 , but if a player i plays B while the other is playing A, then we switch to state Si . At any Si , if player i plays B, we switch to state S0 ; otherwise we state at state Si . Answer: It is not subgame-perfect. At state S2 , player 2 is to play B, and we will switch to state S0 no matter what 1 plays. In that case, 1 would gain by deviating and playing A (in state S2 ).
2
3. Consider the following first-price, sealed-bid auction where an indivisible good is sold. There are n ≥ 2 buyers indexed by i = 1, 2, . . . , n. Simultaneously, each buyer i submits a bid bi ≥ 0. The agent who submits the highest bid wins. If there are k > 1 players submitting the highest bid, then the winner is determined randomly among these players – each has probability 1/k of winning. The winner i gets the object and pays his bid bi , obtaining payoff vi − bi , while the other buyers get 0, where v1 , . . . , vn are independently and identically distributed with probability density function f where ½ 2 3x x ∈ [0, 1] f (x) = 0 otherwise. (a) Compute the symmetric, linear Bayesian Nash equilibrium. Answer: We look for an equilibrium of the form bi = a + cvi where c > 0. Then, the expected payoff from bidding bi with type vi is U (bi ; vi ) = (vi − bi ) Pr (bi > a + cvj ∀j 6= i) Y Pr (bi > a + cvj ) = (vi − bi ) j6=i
¶ µ bi − a Pr vj < = (vi − bi ) c j6=i Y µ bi − a ¶3 = (vi − bi ) c j6=i µ ¶3(n−1) bi − a = (vi − bi ) c Y
for bi ∈ [a, a + c]. The first order condition is ¶3(n−1) ¶3(n−1)−1 µ µ bi − a 1 bi − a ∂U (bi ; vi ) =− + 3 (n − 1) (vi − bi ) = 0; ∂bi c c c i.e.,
µ
bi − a − c i.e.,
¶
+ 3 (n − 1)
1 (vi − bi ) = 0; c
a + 3 (n − 1) vi . 3 (n − 1) + 1 Since this is an identity, we must have bi =
a=
a =⇒ a = 0, 3 (n − 1) + 1
and c= 3
3 (n − 1) . 3 (n − 1) + 1
(b) What happens as n → ∞? Answer: As n → ∞,
bi → vi .
In the limit, each bidder bids his valuation, and the seller extracts all the gains from trade. [Hint: Since v1 , v2 , . . . , vn is independently distributed, for any w1 , w2 , . . . , wk , we have Pr(v1 ≤ w1 , v2 ≤ w2 , . . . , vk ≤ wk ) = Pr(v1 ≤ w1 ) Pr(v2 ≤ w2 ) . . . Pr(vk ≤ wk ).] 4. This question is about a thief and a policeman. The thief has stolen an object. He can either hide the object INSIDE his car on in the TRUNK. The policeman stops the thief. He can either check INSIDE the car or the TRUNK, but not both. (He cannot let the thief go without checking, either.) If the policeman checks the place where the thief hides the object, he catches the thief, in which case the thief gets -1 and the police gets 1; otherwise, he cannot catch the thief, and the thief gets 1, the police gets -1. (a) Compute all the Nash equilibria. Answer: This is a matching-pennies game. There is a unique Nash equilibrium, in which Thief hides the object INSIDE or the TRUNK with equal probabilities, and the Policeman checks INSIDE or the TRUNK with equal probabilities. (b) Now imagine that we have 100 thieves and 100 policemen, indexed by i = 1, . . . , 100, and j = 1, . . . , 100. In addition to their payoffs above, each thief i gets extra payoff bi form hiding the object in the TRUNK, and each policeman j gets extra payoff dj from checking the TRUNK. We have b1 < b2 < · · · < b50 < 0 < b51 < · · · < b100 , d1 < d2 < · · · < d50 < 0 < d51 < · · · < d100 . Policemen cannot distinguish the thieves from each other, nor can the thieves distinguish the policemen from each other. Each thief has stolen an object, hiding it either in the TRUNK or INSIDE the car. Then, each of them is randomly matched to a policeman. Each matching is equally likely. Again, a policeman can either check INSIDE the car or the TRUNK, but not both. Compute a pure-strategy Bayesian Nash equilibrium of this game. Answer: A Bayesian Nash equilibrium: A thief i hides the object in INSIDE if bi < 0 TRUNK if bi > 0; a policeman j checks INSIDE if dj < 0 TRUNK if dj > 0. This is a Bayesian Nash equilibrium, because, from the thief’s point of view the policeman is equally likely to to check TRUNK or INSIDE the car, hence it is the best response for him to hide in the trunk iff the extra benefit from hiding in the trunk is positive. Similar for the policemen.
4
14.12 Midterm 2 Grade Distribution 100 90 80 70
50 40 30 20 10
Rank
45
43
41
39
37
35
33
31
29
27
25
23
21
19
17
15
13
11
9
7
5
3
0 1
grade
60
14.12 Grade Distribution (Midterm 1 + Midterm 2)/2 100
90
80
60
50
40
30
rank
45
43
41
39
37
35
33
31
29
27
25
23
21
19
17
15
13
11
9
7
5
3
20 1
grade
70
14.12 Game Theory — Final 12/10/2001 Prof. Muhamet Yildiz Instructions. This is an open book exam; you can use any written material. You have 2 hours 50 minutes. Each question is 20 points. Good luck! 1. Consider the following extensive form game. 1 O
I
2
2 2
L
R 1
L
3 1
R
L
0 0
R
0 0
1 3
(a) Find the normal form representation of this game. (b) Find all rationalizable pure strategies. (c) Find all pure strategy Nash equilibria. (d) Which strategies are consistent with all of the following assumptions? (i) (ii) (iii) (iv)
1 is rational. 2 is sequentially rational. at the node she moves, 2 knows (i). 1 knows (ii) and (iii).
2. This question is about a milkman and a customer. At any day, with the given order, • Milkman puts m ∈ [0, 1] liter of milk and 1 − m liter of water in a container and closes the container, incurring cost cm for some c > 0; • Customer, without knowing m, decides on whether or not to buy the liquid at some price p. If she buys, her payoff is vm − p and the milkman’s payoff is p − cm. If she does not buy, she gets 0, and the milkman gets −cm. If she buys, then she learns m.
1
(a) Assume that this is repeated for 100 days, and each player tries to maximize the sum of his or her stage payoffs. Find all subgame-perfect equilibria of this game. (b) Now assume that this is repeated infinitely many times and each player tries to maximize the discounted sum of his or her stage payoffs, where discount rate is δ ∈ (0, 1). What is the range of prices p for which there exists a subgame perfect equilibrium such that, everyday, the milkman chooses m = 1, and the customer buys on the path of equilibrium play? 3. For the game in question 3.a, assume that with probability 0.001, milkman strongly believes that there is some entity who knows what the milkman does and will punish him severely on the day 101 for each day the milkman dilutes the milk (by choosing m < 1). Call this type irrational. Assume that this is common knowledge. For v > p > c, find a perfect Bayesian equilibrium of this game. Bonus: [10 points] Discuss what would happen if the irrational type were known to dilute the milk by accident with some small but positive probability. 4. Find a perfect Bayesian equilibrium of the following game.
0 0
3 1
quiche
beer
{.1}
’t don
el du
1 0
du el
tw ts beer {.9}
quiche
el du
don ’t
don ’
’t don
1 1 3 0 0 0
du el
-1 1
t
2 1
5. A risk-neutral entrepreneur has a project that requires $100,000 as an investment, and will yield $300,000 with probability 1/2, $0 with probability 1/2. There are two types of entrepreneurs: rich who has a wealth of $1,000,000, and poor who has $0. For some reason, the wealthy entrepreneur cannot use his wealth as an investment towards this project. There is also a bank that can lend money with interest rate π. That is, if the entrepreneur borrows $100,000 to invest, after the project is completed he will pay back $100, 000 (1 + π) – if he has that much money. If his wealth is less than this amount at the end of the project, he will pay all he has. The order of the events is as follows: • First, bank posts π. 2
• Then, entrepreneur decides whether to borrow ($100,000) and invest. • Then, uncertainty is resolved.
(a) Compute the subgame perfect equilibrium for the case when the wealth is common knowledge. (b) Now assume that the bank does not know the wealth of the entrepreneur. The probability that the entrepreneur is rich is 1/4. Compute the perfect Bayesian equilibrium.
3
14.12 Game Theory — Final 12/10/2001 Prof. Muhamet Yildiz Instructions. This is an open book exam; you can use any written material. You have 2 hours 50 minutes. Each question is 20 points. Good luck! 1. Consider the following extensive form game. 1 O
I
2
2 2
L
R 1
L
3 1
R
L
0 0
R
0 0
(a) Find the normal form representation of this game. A: L R OL 2,2 2,2 OR 2,2 2,2 IL 3,1 0,0 IR 0,0 1,3 (b) Find all rationalizable pure strategies. L R OL 2,2 2,2 OR 2,2 2,2 IL 3,1 0,0 (c) Find all pure strategy Nash equilibria. L R OL 2,2 2,2 OR 2,2 2,2 IL 3,1 0,0 1
1 3
(d) Which strategies are consistent with all of the following assumptions? (i) (ii) (iii) (iv)
1 is rational. 2 is sequentially rational. at the node she moves, 2 knows (i). 1 knows (ii) and (iii).
ANSWER: By (i) 1 does not play IR. Hence, by (iii), at the node she moves, 2 knows that 1 does not play IR, hence he knows IL. Then, by (ii), 2 must play L. Therefore, by (i) and (iv), 1 must play IL. The answer is (IL,L). 2. This question is about a milkman and a customer. At any day, with the given order, • Milkman puts m ∈ [0, 1] liter of milk and 1 − m liter of water in a container and closes the container, incurring cost cm for some c > 0; • Customer, without knowing m, decides on whether or not to buy the liquid at some price p. If she buys, her payoff is vm − p and the milkman’s payoff is p − cm. If she does not buy, she gets 0, and the milkman gets −cm. If she buys, then she learns m. (a) Assume that this is repeated for 100 days, and each player tries to maximize the sum of his or her stage payoffs. Find all subgame-perfect equilibria of this game. ANSWER: The stage game has a unique Nash equilibrium, in which m = 0 and the customer does not buy. Therefore, this finitely repeated game has a unique subgame-perfect equilibrium, in which the stage equilibrium is repeated. (b) Now assume that this is repeated infinitely many times and each player tries to maximize the discounted sum of his or her stage payoffs, where discount rate is δ ∈ (0, 1). What is the range of prices p for which there exists a subgame perfect equilibrium such that, everyday, the milkman chooses m = 1, and the customer buys on the path of equilibrium play? ANSWER: The milkman can guarantee himself 0 by always choosing m = 0. Hence, his continuation value at any history must be at least 0. Hence, in the worst equilibrium, if he deviates customer should not buy milk forever, giving the milkman exactly 0 as the continuation value. Hence, the SPE we are looking for is the milkman always chooses m=1 and the customer buys until anyone deviates, and the milkman chooses m=0 and the customer does not buy thereafter. If the milkman does not deviate, his continuation value will be V =
p−c . 1−δ
The best deviation for him (at any history on the path of equilibrium play) is to choose m = 0 (and not being able to sell thereafter). In that case, he will get Vd = p + δ0 = p. In order this to be an equilibrium, we must have V ≥ Vd ; i.e., p−c ≥ p, 1−δ
2
i.e.,
c p≥ . δ In order that the customer buy on the equilibrium path, we must also have p ≤ v. Therefore, c v≥p≥ . δ
3. For the game in question 2.a, assume that with probability 0.001, milkman strongly believes that there is some entity who knows what the milkman does and will punish him severely on the day 101 for each day the milkman dilutes the milk (by choosing m < 1). Call this type irrational. Assume that this is common knowledge. For some v > p > c, find a perfect Bayesian equilibrium of this game. [If you find it easier, take the customers at different dates different, but assume that each customer knows whatever the previous customers knew.] ANSWER: [It is very difficult to give a rigorous answer to this question, so you would get a big partial grade for an informal answer that shows that you understand the reputation from an incomplete-information point of view.] Irrational type always sets m = 1. Since he will be detected whenever he sets m < 1 and the customer buys, the rational type will set either m = 1 or m = 0. We are looking for an equilibrium in which early in the relation the rational milkman will always set m = 1 and the customer will always buy, but near the end of the relation the rational milkman will mix between m = 1 and m = 0, and the customer will mix between buy and not buy. In this equilibrium, if the milkman sets m < 1 or the customer does not buy at any t, then the rational milkman sets m = 0 at each s > t. In that case, if in addition the costumer buys at some dates in the period {t + 1, t + 2, . . . , s − 1} and if the milkman chooses m = 1 at each of those days, then the costumer will assign probability 1 to that the milkman is irrational and buy the milk at s; otherwise, he will not buy the milk. On the path of such play, if the milkman sets m < 1 or the customer does not buy at any t, then the rational milkman sets m = 0 and the costumer does not buy at each s > t. In order this to be an equilibrium, the probability µt that the milkman is irrational at such history must satisfy µt (100 − t) (v − p) − (1 − µt ) p ≤ 0, where the first term is the expected benefit from experimenting (if the milkman happens to be irrational) and the second term is the cost (if he is rational). That is, µt ≤
p . p + (100 − t) (v − p)
Now we determine what happens if the milkman has always been setting m = 1, and the customer has been buying. In the last date, the rational type will set m = 0, and the rational type will set m = 1; hence, the buyer will buy iff µ100 (v − p) − (1 − µ100 ) p ≥ 0, 3
i.e.,
p µ100 ≥ . v
Since we want him to mix, we set
p µ100 = . v We derive µt for previous dates using the Bayes’ rule and the indifference condition necessary for the customer’s mixing. Let’s write αt for the probability that the rational milkman sets m = 1 at t, and at = µt + (1 − µt ) αt for the total probability that m = 1 at date t. Since the customer will be indifferent between buying and not buying at t + 1, his expected payoff at t + 1 will be 0. Hence, his expected payoff from buying at t is at (v − p) + (1 − at ) (−p) . For indifference, this must be equal to zero, thus p at = . v On the other hand, by Bayes’ rule, µt+1 = Therefore,
µt . at
p µt = at µt+1 = µt+1 . v
That is, µ100 = µ99 = µ98 =
p v ³ p ´2 v ³ p ´3 v
.. . Note that
p − µt p v . at = = µt + (1 − µt ) αt ⇒ αt = v 1 − µt
Assume that (p/v)100 < 0.001. Then, we will have a date t∗ such that ³ p ´101−t∗ v
< 0.001 <
³ p ´100−t∗ v
.
At each date t > t∗ , we will have µt = (p/v)101−t and the players will mix so that at = vp . At each date t < t∗ , the milkman will set m = 1 and the customer will buy. At date t∗ , the rational milkman will mix so that ³ p ´100−t∗ µ∗ 0.001 = µt∗ +1 = t = , v at∗ at∗ 4
hence
0.001 at∗ = ¡ p ¢100−t∗ . v
Note that at∗ > p/v, hence the customer will certainly buy at t∗ . Let’s write β t for the probability that the customer will buy at day t. In the day 99, if the rational milkman sets m = 1, he will get U = β 99 (p − c) + β 99 β 100 p + (1 − β 99 ) (−c) , where the first term is the profit from selling at day 99, the second term is the profit from day 100 (when he will set m = 0), and the last term is the loss if the customer does not buy at day 99. If he sets m = 0, he will get β 99 p (from the sale at 99, and will get zero thereafter). Hence, he will set m = 1 iff β 99 (p − c) + β 99 β 100 p + (1 − β 99 ) (−c) ≥ β 99 p i.e.,
c β 99 β 100 ≥ . p We are looking for an indifference, hence we set c β 99 β 100 = . p Similarly, at day 98 the rational milkman will set m = 1 iff β 98 (p − c) + β 98 β 99 p + (1 − β 98 ) (−c) ≥ β 98 p, where the second term is due to the fact that at date 99 he will be indifferent between choosing m = 0 and m = 1. For indifference, we set c β 98 β 99 = . p We will continue on like this as long as we need the milkman to mix. That is, we will have c , p c , = p .. . c = , p c = . p
β t∗ β t∗ +1 = β t∗ +1 β t∗ +2
β 98 β 99 β 99 β 100
5
As we noted before, β t∗ = 1. Hence, β t∗ +1 = pc . Hence, β t∗ +2 = 1, ... That is, β t∗ = 1, c β t∗ +1 = , p β t∗ +2 = 1, c β t∗ +3 = , p .. . Bonus: [10 points] Discuss what would happen if the irrational type were known to dilute the milk by accident with some small but positive probability. 4. Find a perfect Bayesian equilibrium of the following game.
0 0
3 1
quiche
beer
{.1}
’t don
el du
1 0
du el
tw ts beer {.9}
quiche
el u d
don ’t
don ’
’t don
ANSWER:
6
1 1 3 0 0 0
du el
-1 1
t
2 1
0 0
3 1
beer t {0} ’ n do
el du
1 0
du el
quiche {.1}
tw
el u d
{1} d on’ t
ts quiche {0}
{1}beer {.9}
don ’
’t don
1 1 3 0 0 0
du el
-1 1
t
2 1
5. A risk-neutral entrepreneur has a project that requires $100,000 as an investment, and will yield $300,000 with probability 1/2, $0 with probability 1/2. There are two types of entrepreneurs: rich who has a wealth of $1,000,000, and poor who has $0. For some reason, the wealthy entrepreneur cannot use his wealth as an investment towards this project. There is also a bank that can lend money with interest rate π. That is, if the entrepreneur borrows $100,000 to invest, after the project is completed he will pay back $100, 000 (1 + π) – if he has that much money. If his wealth is less than this amount at the end of the project, he will pay all he has. The order of the events is as follows: • First, bank posts π.
• Then, entrepreneur decides whether to borrow ($100,000) and invest. • Then, uncertainty is resolved.
(a) Compute the subgame perfect equilibrium for the case when the wealth is common knowledge. ANSWER: The rich entrepreneur is always going to pay back the loan in full amount, hence his expected payoff from investing (as a change from not investing) is (0.5)(300, 000) − 100, 000 (1 + π) . Hence, he will invest iff this amount is non-negative, i.e., π ≤ 1/2. Thus, the bank will set the interest rate at π R = 1/2. 7
The poor entrepreneur is going to pay back the loan only when the project succeeds. Hence, his expected payoff from investing is (0.5)(300, 000 − 100, 000 (1 + π)). He will invest iff this amount is non-negative, i.e., π ≤ 2. Thus, the bank will set the interest rate at π P = 2. (b) Now assume that the bank does not know the wealth of the entrepreneur. The probability that the entrepreneur is rich is 1/4. Compute the perfect Bayesian equilibrium. ANSWER: As in part (a), the rich type will invest iff π ≤ π R = .5, and the poor type will invest iff π ≤ π P = 2. Now, if π ≤ πR , the bank’s payoff is · ¸ 3 1 1 1 100, 000 (1 + π) + 100, 000 (1 + π) + 0 − 100, 000 U (π) = 4 4 2 2 5 100, 000 (1 + π) − 100, 000 = 8 5 ≤ 100, 000 (1 + π R ) − 100, 000 8 5 1 = 100, 000 (1 + 1/2) − 100, 000 = − 100, 000 < 0. 8 16 If π R < π ≤ π P , the bank’s payoff is · ¸ 1 3 1 100, 000 (1 + π) + 0 − 100, 000 U (π) = 4 2 2 3 = 100, 000 (π − 1) , 8 which is maximized at πP , yielding 38 100, 000. If π > π P , U (π) = 0. Hence, the bank will choose π = πP .
8
14.12 Game Theory — Final 12/21/2001 Prof. Muhamet Yildiz Instructions. This is an open book exam; you can use any written material. You have 2 hours 50 minutes. Each question is 20 points. Good luck! 1. Consider the following extensive form game.
1
A
2
D
α
1
δ (1,1)
a
(1,4)
d
(0,3)
(2,2)
(a) Find the normal form representation of this game. 1\2 Aa Ad Da Dd
α 1,4 2,2 1,1 1,1
δ 0,3 0,3 1,1 1,1
(b) Find all rationalizable pure strategies. 1\2 α δ Ad 2,2 0,3 Da 1,1 1,1 Dd 1,1 1,1 (c) Find all pure strategy Nash equilibria. 1\2 α δ Ad 2,2 0,3 Da 1,1 1,1 Dd 1,1 1,1 (d) Which strategies are consistent with all of the following assumptions? (i) (ii) (iii) (iv)
1 is rational. 2 is sequentially rational. at the node she moves, 2 knows (i). 1 knows (ii) and (iii).
1
ANSWER: By (i) 1 does not play Aa. Hence, by (iii), at the node she moves, 2 knows that 1 does not play Aa, hence he knows that 1 plays Ad. Then, by (ii), 2 must play δ. Therefore, by (i) and (iv), 1 must play Ad or Aa. The answer is 1 plays A, given chance 2 would play δ. 2. This question is about a game between a possible applicant (henceforth student) to a Ph.D. program in Economics and the Admission Committee. Ex-ante, Admission Committee believes that with probability .9 the student hates economics and with probability .1 he loves economics. After Nature decides whether student loves or hates economics with the above probabilities and reveals it to the student, the student decides whether or not to apply to the Ph.D. program. If the student does not apply, both the student and the committee get 0. If student applies, then the committee is to decide whether to accept or reject the student. If the committee rejects, then committee gets 0, and student gets -1. If the committee accepts the student, the payoffs depend on whether the student loves or hates economics. If the student loves economics, he will be successful and the payoffs will be 20 for each player. If he hates economics, the payoffs for both the committee and the student will be -10. Find a separating equilibrium and a pooling equilibrium of this game. ANSWER: A separating equilibrium:
(-10,-10) Accept
Apply {0}
Reject (-1,0)
Don’t
.9
Hate (0,0) .1
Love
Apply
{1}
(20,20) Accept Reject (-1,0)
Don’t (0,0)
A pooling equilibrium:
2
(-10,-10) Accept
Apply {.9}
Reject (-1,0)
Don’t
.9
Hate (0,0) .1
Love
Apply
{.1}
(20,20) Accept
Reject (-1,0)
Don’t (0,0)
3. Consider a bargaining problem where two risk-neutral players are trying to divide a dollar they own, which they cannot use until they reach an agreement. The players do not discount the future, but at the end of each rejection of an offer the bargaining breaks down with probability 1 − δ ∈ (0, 1) and each player gets 0. (a) Consider the following bargaining procedure. Player 1 makes an offer (x, 1 − x), where x is player 1’s share. Then, player 2 decides whether or not to accept the offer. If she accepts, they implement the offer, yielding division (x, 1 − x). If she rejects the offer, then with probability 1 − δ, the bargaining breaks down an each gets 0; with probability δ, player 1 makes another offer, which will be accepted or rejected by player 2 as above. (If player 2 rejects the offer, bargaining will break down with probability 1 − δ again.) If the offer is rejected and the bargaining did not break down, now player 2 makes a counter offer, and player 1 accepts or rejects this counter offer as above. If the offer is rejected, this time the game will end, and each will get 0. Find the subgame-perfect Nash equilibrium of this game. Compute the expected payoff of each player at the beginning of the game in this equilibrium. ANSWER: On the last day, 1 accepts any offer, so 2 offers (0,1). Hence, on the previous day, 2 accepts an offer iff she gets at least δ. Hence, 1 offers (1 − δ, δ) – accepted. in¢ the first day, 2 accepts an offer iff she gets at least¢ δ 2 . Hence, ¡ Thus, ¡ 1 offers 1 − δ 2 , δ 2 – accepted. The expected payoffs are 1 − δ 2 , δ 2 .
(b) Compute the subgame-perfect equilibrium of the game in which the procedure in part (a) is repeated 2 times. (The probability of bargaining breakdown after each rejection is 1 − δ, except for the end of the game.) ANSWER: The last period as above. Let’s look at the first period. ¡ ¢On the last 2 day of the first period, 1 accepts an offer iff he gets at least δ 1 − δ , so 2 offers 3
¡ ¡ ¢ ¡ ¢¢ 2 δ 1 − δ2 , 1 − δ 1 − δ . ¢¢ Hence, on the previous day, 2 accepts an offer iff she ¡ ¡ 2 gets at least δ 1 − δ 1 − δ . Hence, 1 offers ¢¢ ¡ ¡ ¢¢¢ ¡ ¡ ¢ ¡ ¡ ¢¢¢ ¡ ¡ ¡ = 1 − δ + δ2 1 − δ2 , δ 1 − δ 1 − δ2 1 − δ 1 − δ 1 − δ2 , δ 1 − δ 1 − δ2
–¡accepted. Thus, in the first day, 2 accepts an offer iff she gets at least ¡ ¢¢ 2 2 δ 1 − δ 1 − δ . Hence, 1 offers ¡ ¡ ¢¢ ¡ ¡ ¢¢¢ ¡ ¡ ¢ ¡ ¡ ¢¢¢ ¡ = 1 − δ2 + δ3 1 − δ2 , δ2 1 − δ 1 − δ2 1 − δ2 1 − δ 1 − δ2 , δ 1 − δ 1 − δ2 – accepted.
(c) Find the subgame-perfect equilibrium of the game in which this procedure is repeated until they reach an agreement. Note that player 1 makes two offers, then 2 makes one offer, then 1 makes two offers, and so on. You need to show that the proposed strategy profile is in fact a subgame-perfect equilibrium. (The probability of bargaining breakdown after each rejection is 1 − δ.) [Hint: One way is to compute the SPE for the game in which the procedure is repeated n times and let n → ∞. A somewhat easier way is to consider an alternating offer bargaining procedure with some effective discount rates – different for a different player.] ANSWER: If you compare the calculations above with the calculations with the alternating offer case with asymmetric discount rates, you should realize that the first offer player 1 makes and the offer player 2 makes are identical to the offers players 1 and 2 make, respectively, if the discount rates were δ1 = δ and δ 2 = δ 2 . Intuitively, in his second offer player 1 makes player 2 indifferent between accepting 1’s second offer and making an offer next day, and in his first offer he makes her indifferent between accepting the offer and waiting for the second offer. Therefore, 2 is indifferent between accepting 1’s first offer and waiting two days two make an offer, as in the the alternating offer case when her discount rate is δ 2 . Now conjecture that the subgame-perfect equilibrium would be as in the alternating offer game with above discount rates. That is, • in his first offer, player 1 offers ¶ µ ¶ µ ¶ µ 1 − δ 2 δ 2 (1 − δ 1 ) 1 − δ 2 δ2 (1 − δ) 1 − δ2 1 − δ2 ≡ ≡ ,1 − , , 1 − δ1δ2 1 − δ1δ2 1 − δ1 δ2 1 − δ1 δ2 1 − δ3 1 − δ3 µ ¶ 1+δ δ2 ≡ ; , 1 + δ + δ2 1 + δ + δ2 • in his secon offer, he will offer µ ¶ µ ¶ δ (1 − δ 1 ) δ (1 − δ1 ) δ 1 + δ2 1− ≡ ; , , 1 − δ1δ2 1 − δ1δ2 1 + δ + δ2 1 + δ + δ2 • player 2 will offer µ ¶ µ ¶ µ ¶ 1 − δ1 δ 1 (1 − δ 2 ) 1 − δ 1 δ + δ2 1 − δ1 1 1− ≡ ≡ . , , , 1 − δ1 δ2 1 − δ1 δ2 1 − δ1δ2 1 − δ1δ2 1 + δ + δ2 1 + δ + δ2 4
Player 1’s first offer and player 2’s offer are by formula for alternating offer, player 1’s second offer is calculated by backward induction using the player 2’s offer in the next period. Using single deviation property, you need to check that this is an equilibrium. 4. We have an employer and a worker, who will work as a salesman. The worker may be a good salesman or a bad one. In expectation, if he is a good salesman, he will make $200,000 worth of sales, and if he is bad, he will make only $100,000. The employer gets 10% of the sales as profit. The employer offers a wage w. Then, the worker accepts or rejects the offer. If he accepts, he will be hired at wage w. If he rejects the offer, he will not be hired. In that case, the employer will get 0, the worker will get his outside option, which will pay $15,000 if he is good, $8,000 if he is bad. Assume that all players are risk-neutral. (a) Assume that the worker’s type is common knowledge, and compute the subgameperfect equilibrium. ANSWER: A worker will accept a wage iff it is at least as high as his outside option, and the employer will offer the outside option – as he still makes profit. That is, 15,000 for the good worker 8,000 for the bad. (b) Assume that the worker knows his type, but the employer does not. Employer believes that the worker is good with probability 1/4. Find the perfect Bayesian Nash equilibrium. ANSWER: Again a worker will accepts an offer iff his wage at least as high as his outside option. Hence if w ≥ 15, 000 the offer will be accepted by both types, yielding U (w) = (1/4) (.1) 200, 000 + (3/4) (.1) 100, 000 − w = 12, 500 − w < 0 as the profit for the employer. If 8, 000 ≤ w < 15, 000, then only the bad worker will accept the offer, yielding U (w) = (3/4) [(.1) 100, 000 − w] = (3/4) [10, 000 − w] as profit. If w < 0, no worker will accept the offer, and the employer will get 0. In that case, the employer will offer w = 8, 000, hiring the bad worker at his outside option. (c) Under the information structure in part (b), now consider the case that the employer offers a share s in the sales rather than the fixed wage w. Compute the perfect Bayesian Nash equilibrium. ANSWER: Again a worker will accept the share s iff his income is at least as high as his outside option. That is, a bad worker will accept s iff 100, 000s ≥ 8, 000 5
i.e., s ≥ sB =
8, 000 = 8%. 100, 000
A good worker will accept s iff s ≥ sG =
15, 000 = 7.5%. 200, 000
In that case, if s < sG no one will accept the offer, and the employer will get 0; if sG ≤ s < sB , the good worker will accept the offer and the employer will get (1/4) (10% − s) 200, 000 = 50, 000 (10% − s) , and if s ≥ sB , each type will accept the offer and the employer will get (10% − s) [(1/4) 200, 000 + (3/4) 100, 000] = 125, 000 (10% − s) . Since 125, 000 (10% − sB ) = 2%125, 000 = 2, 500 is larger than 50, 000 (10% − sG ) = 2.5%50, 000 = 1, 250, he will offer s = sB , hiring both types. 5. As in question 4, We have an employer and a worker, who will work as a salesman. Now the market might be good or bad. In expectation, if the market is good, the worker will make $200,000 worth of sales, and if the market is bad, he will make only $100,000 worth of sales. The employer gets 10% of the sales as profit. The employer offers a wage w. Then, the worker accepts or rejects the offer. If he accepts, he will be hired at wage w. If he rejects the offer, he will not be hired. In that case, the employer will get 0, the worker will get his outside option, which will pay $12,000. Assume that all players are risk-neutral. (a) Assume that whether the market is good or bad is common knowledge, and compute the subgame-perfect equilibrium. ANSWER: A worker will accept a wage iff it is at least as high as his outside option 12,000. If the market is good, the employer will offer the outside option w = 12, 000, and make 20, 000 − 12, 000 = 8, 000 profit. If the market is bad, the return 10,000 is lower than the worker’s outside option, and the worker will not be hired. (b) Assume that the employer knows whether the market is good or bad, but the worker does not. The worker believes that the market is good with probability 1/4. Find the perfect Bayesian Nash equilibrium. ANSWER: As in part (a). [We will have a separating equilibrium.] (c) Under the information structure in part (b), now consider the case that the employer offers a share s in the sales rather than the fixed wage w. Compute a perfect Bayesian Nash equilibrium. ANSWER: Note that, since the return is 10% independent of whether the market is good or bad, the employer will make positive profit iff s < 10%. Hence, except 6
for s = 10%, we must have a pooling equilibrium. Hence, at any s, the worker’s income is [(1/4) 200, 000 + (3/4) 100, 000] s = 125, 000s. This will be at least as high as his outside option iff s ≥ s∗ =
12, 000 = 9.6% < 10%. 125, 000
Hence an equilibrium: the worker will accept an offer s iff s ≥ s∗ , and the employer will offer s∗ . The worker’s beliefs at any offer s is that the market is good with probability 1/4. [Note that this is an inefficient equilibrium. When the market is bad, the gains from trade is less than the outside option.] There are other inefficient equilibria where there is no trade (i.e., worker is never hired). In any such equilibrium, worker take any high offer as a sign that the market is bad, and does not accept an offer s unless s ≥ 12, 000/100, 000 = 12%, and the employer offers less than 12%. When the market is good, in any such pure strategy equilibrium, he must in fact be offering less than s∗ . (why?) For instance, employer offers s = 0 independent of the market, and the worker accept s iff s > 12%.
7
14.12 Final Exam Grade Distribution Average = 73.82
Std. Dev = 20.74
120
100
60
40
20
rank
45
43
41
39
37
35
33
31
29
27
25
23
21
19
17
15
13
11
9
7
5
3
0 1
grade
80
Final Grade, Final Grade + Quiz 100
A+ 90 88
A
80 76 70
A-
60 B+ 52 50
B
45
B-
40 C 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 Series1
Series2
Final Grade (.25M1+.25M2+.4F+.1PS) 100
A+ 90 88
A
80 76 70
A-
60 B+ 52 50
B
45
B-
40 C 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 rank
e2 5Th?} bbD
hLuittLh #@hL? Ui4L}* _|ih4 W
L?t_ih |i uL**L?} }@4i |hiiG
d| @?) i |i?tiuLh4 }@4i ihi 4)*_3o E h|i |i ULhhitTL?_?} ?Lh4@* uLh4 E ?_ @** |i @t ,^*Mh@ E @hi @** Lu |iti hi@tL?@M*iq ) Lh ) ?L|q E ?_ |i 5M}@4i ihuiU| ,^*Mh4 2 AL h4t UL4Ti|i uLh @ ?4Mih Lu Lh!iht Ai h4t t4*|@?iLt*) ti| @}it Aihi t @ ThLTLh|L? b Lu ?uLh4i_ Lh!iht |@| ** }L L?*) |L |i }it| @}i h4 Ai hi4@??} E b @hi ??uLh4i_ @?_ }L | i^@* ThLM@M*|) |L i|ih h4 ** Lh!iht @hi Lu i^@* @*i |L |i h4t + E h|i _L? ThL|t @t @ u?U|L? Lu @}it E ?_ |i i^*Mh4 @}it E c 2 i? b ' f E ?_ |i i^*Mh4 @}it E c 2 i? b ' E tL |@| |ihi t ?L Thi t|h@|i}) i^*Mh4 i? f b L?t_ih |i uL**L?} }@4iG ,@U T*@)ih t@)t @? ?|i}ih Mi|ii? f @?_ ff wi| ? _i?L|i |i ?4Mih t@_ M) T*@)ih @?_ ?2 |@| M) T*@)ih 2 Ai T*@)ih | ? U*Ltih |L ?n ?2 }i|t fc |i L|ih }i|t f Wu |i) t@) |i t@4i ?4Mih |i) t@hi |i Th3i E Uc u @?)c @hi t|hU|*) _L4?@|i_ t|h@|i}itc uLh i@U T*@)ihq E @| L|UL4it thi @u|ih |ih@|i_ i*4?@|L? Lu t|hU|*) _L4?@|i_ t|h@|i}itq E @| @hi |i h@|L?@*3@M*i L|UL4it Lu |t }@4iq E t@) @ , Lu |t }@4i E U@? )L ?_ @ , uLh @ t4*@h ?T*@)ih }@4iq
e2 Ui4L}* 5Th?} bbD
hLu #@hL?
?tiht |L _|ih4 , @4 E ?Lh4@* uLh4G ,, ,o o, oo u EDc D EDc D E c E c - Efc f Efc f Efc f Efc f E , @hi E-c ,, | T@)Lgt Efc f( E-c o, | T@)Lgt Efc f( @?_ Euc ,o | T@)Lgt EDc D E Euc ,o t ?L| hi@tL?@M*i MiU@ti T*@)ih 2 U@??L| Uhi_M*) UL??Ui T*@)ih |@| i L*_ T*@) o ? t *Lih ?L_ic t?Ui , t U*i@h*) Mi||ih Ef t Mi||ih |@? f 54*@h*) E-c o, t ?L| UL??U?} MiU@ti T*@)ih 2 U*i@h*) Thiuiht , |L o ? t TTih ?L_i E 5, t E-c ,, Aihi t @ tM}@4i t|@h|?} @| i@U Lu T*@)ih 2
EDc D
-
Efc f
?L |i ULUi uLh T*@)ih t U*i@h i Thiuiht - 2 E L| h4t @i |L ULLti @}it @MLi - @?_G ' E+ E b 2 n b s : 2
' E+ 2
s ' 2
' E+ E b 2 s 2 @?_ t4*@h*) uLh h4 2 E i? b ' f ' E+ 2 s : 2
' E+ 2
s ' 2
' E+ 2 s 2 A@| tc |i ThL| _Lit ?L| U@?}i u @ h4 *Liht |i @}ic tL i@U h4 ** Lgih |i *Lit| TLttM*i @}i U t - E i? b ' ' E+ E s : 2 ' E+ 2 s ' 2 ' E+ Ef s 2 Ai h4 | |i *Lit| @}i }i|t 3ihL ThL| L h4 ** Mi @| i^*M h4 Lgih?} *Lih @}i |@? |i L|ih At 4i@?t |@| @}it Lgihi_ @hi i^@* | @| @?) @}i i@U h4 @?|t |L h@ti |t @}i t| i?L} |L Mi @MLi |i L|ih
' E+ 2
s ' 2
' E+ 2 b 2 s 2 t *L?} @t @}it @hi Mi*L )c i@U h4 Thiuiht |L ?Uhi@ti @}it h@|ih |@? Lgih?} |i t@4i @}i Wu @}it @hi i^@* |L ) EThL|t @hi 3ihLc |i? h4t Thiuih |L *Lih @}i @** |i @) _L? |L - | ML| h4t @| |t @}i t @*tL ?L| @? i^*Mh4c MiU@ti i@U t **?} |L ?Uhi@ti | @ *||*i E ff t t|hU|*) _L4?@|i_ M) fc uLh ML| T*@)iht `i U@? _i*i|i ff uLh ML| `i U@??L| _i*i|i @?) 4Lhi t|h@|i}it L|i |@|c uLh i @4T*ic bbc t ?L| t|hU|*) _L4?@|i_ M) f u |i L|ih T*@)ih t@)t ffc bb @?_ f }i i @U|*) |i t@4i T@)Lg Ebb t i@!*) _L4?@|i_ M| ?L| t|hU|*) _L4?@|i_ L| t|hU|*) _L4?@|i_ @hi dfcbbo
2
f 2 Dc D fc f fc f fc f Dc D fc f fc f fc f Dc D
f 2 bH fc f fc f fc f bb fc f fc f fc f ff fc f fc f fc f
bH bb ff fc f fc f fc f fc f fc f fc f fc f fc f fc f
Dc D fc f fc f fc f Dc D fc f fc f fc f Dc D
E Lc L?Ui i @i _i*i|i_ ff uLh ML| T*@)ihtc bb t t|hU|*) _L4 ?@|i_ M) f A@|
f 2 bH fc f fc f fc f bb fc f fc f fc f
bH bb fc f fc f fc f fc f fc f fc f
Dc D fc f fc f Dc D
W? i@U |ih@|L? i U@? i*4?@|i |i }it| ?4Mih `i @hi *iu| | L?*) dfo @u|ih ff |ih@|L?t E Ai h@|L?@*3@M*i tL*|L?t ? @ 2T*@)ih }@4i @hi |Lti |@| hi4@? @u|ih t|hU| _L4?@?Ui i*4?@|L? ? |t U@ti |
47145 Hfrqrplf Dssolfdwlrqv ri Jdph Wkhru| Plgwhup H{dplqdwlrqRfwrehu 49wk/ 4<<: \rx kdyh rqh dqg d kdoi krxuv1 Dqvzhu doo wkuhh txhvwlrqv1 Wkh qxpehu ri srlqwv iru hdfk sduw lv jlyhq1 Wkh| dgg xs wr 4331 4, Frqvlghu dq lqglylgxdo zlwk yrq Qhxpdqq0Prujhqvwhuq xwlolw| ixqfwlrq nk ES ' Snk 1 Wkh lqglylgxdo kdv vrph zhdowk htxdo wr ` dw wkh ehjlqqlqj ri wkh shulrg dqg grhv qrw frqvxph xqwlo wkh hqg1 Kh fdq hlwkhu vwruh klv zhdowk/ frqvxphv lw iru fhuwdlq dw wkh hqg ri wkh shulrg/ ru kh fdq lqyhvw sduw ri lw lq wkh vwrfn pdunhw1 Wkh lqglylgxdo nqrzv wkdw wkh vwrfn pdunhw sd|v d jurvv udwh ri uhwxuq - : +wkdw lv hyhu| m lqyhvwhg ehfrphv m-, zlwk suredelolw| R ru froodsvhv dqg sd|v qrwklqj zlwk suredelolw| R1 41 Ilqg wkh vkduh ri zhdowk % wkdw wkh lqglylgxdo sxwv lq wkh vwrfn pdunhw1 ^< srlqwv` 51 Zkdw kdsshqv wr % dv ` lqfuhdvhvB Zk| lv wklvB ^8 srlqwv` 61 Zkdw kdsshqv wr % dv k lqfuhdvhvB Zk| lv wklvB ^8 srlqwv` 71 Qrz vxssrvh wkdw wkhuh lv d qdqfldo dqdo|vw zkr fdq jlyh dgylfh1 Kh hlwkhu uhsruwv wkdw wkh pdunhw zloo errp/ lq zklfk fdvh wkh uhwxuq lv - zlwk suredelolw| ^ : R/ ru kh uhsruwv wkdw wkh pdunhw zloo fudvk lq zklfk fdvh wkh uhwxuq lv - zlwk suredelolw| ^1 H{sodlq zk| d udwlrqdo lqyhvwru vkrxog h{shfw wkh dqdo|vw wr uhsruw wkdw wkh pdunhw zloo errp zlwk suredelolw| R1 ^8 srlqwv` 81 Ilqg wkh rswlpdo lqyhvwphqw vwudwhj| ri wkh lqglylgxdo diwhu olvwhqlqj wr wkh dgylfh ri wkh dqdo|vw ^Klqw= |rx kdyh wr qg wzr qxpehuv %} dqg %K wkh uhvshfwlyh sursruwlrqv ri zhdowk lqyhvwhg diwhu d jrrg dqg d edg uhsruw`1 H{sodlq fduhixoo| zk| wkh lqglylgxdo zrxog sd| prqh| wr olvwhq wr wkh dqd0 o|vw*v dgylfh1 ^: srlqwv` 5, Wkhuh duh wzr ulvn0qhxwudo zrunhuv dqg wzr mrev1 Rqh mre rhuv zdjh dqg wkh rwkhu zdjh 2 1 Zrunhu D uvw ghflghv zklfk mre wr dsso| wr1 Wkhq Zrunhu E revhuyhv zrunhu D*v fkrlfh dqg pdnhv klv ghflvlrq1 Li wkhuh lv rqh dssolfdqw iru d mre/ kh lv hpsor|hg dqg uhfhlyhv wkh dvvrfldwhg zdjh1 Li erwk zrunhuv dsso| wr wkh vdph mre/ wkhq wkh up udqgrpo| fkrrvhv ehwzhhq wkh wzr dssolfdqwv/ dqg wkh rwkhu lv xqhpsor|hg dw zdjh f1
41 Gudz wkh h{whqvlyh irup ri wklv jdph1 ^8 srlqwv` 51 Zulwh grzq wkh qrupdo irup dqg qg doo wkh sxuh vwudwhj| htxloleuld1 ^Li |rx qg lw xvhixo/ |rx fdq glvwlqjxlvk ehwzhhq wzr fdvhv ghshqglqj rq zkhwkhu : 2 2 `1 ^43 srlqwv` 61 Qrz qg wkh Vxejdph Shuihfw Htxloleuld1 H{sodlq fduhixoo| zk| vrph ri wkh Qdvk Htxloleuld duh qrw vxejdph shuihfw1 ^43 srlqwv` 71 Qrz dvvxph wkdw Zrunhu E grhv qrw revhuyh D*v fkrlfh1 Zulwh grzq wkh h{whqvlyh dqg wkh qrupdo irupv ri wkh jdph/ dqg qg doo Qdvk Htxloleuld +lqfoxglqj pl{hg vwudwhj| htxloleuld,1 ^< srlqwv` 6, Wkhuh duh wzr frhh vkrsv hdfk zlwk frqvwdqw pdujlqdo frvw ri d fxs ri frhh htxdo wr S1 Wkhvh wzr vwruhv frpshwh e| vhwwlqj sulfhv1 Wkhuh duh frqvxphuv zkhuh lv d odujh qxpehu1 Hdfk frqvxphu sxufkdvhv rqh fxs ri frhh dv orqj dv wkh sulfh lv ohvv wkdq ru htxdo wr -1 D iudfwlrq b ri wkhvh frqvxphuv vhh erwk sulfhv dqg sxufkdvh dw wkh orzhvw sulfh +dv orqj dv -,1 Wkh uhpdlqlqj iudfwlrq b udqgrpo| zdon lqwr rqh ri wkh wzr vwruhv dqg ex| d fxs dv orqj dv wkh sulfh lv ohvv wkdq ru htxdo wr -1 Li wkh sulfh lv juhdwhu wkdq -/ wkh| gr qrw ex| dq| frhh1 41 Zulwh grzq wkh surwv ri wkh wzr upv dv ixqfwlrqv ri wkh wzr sulfhv1 ^8 srlqwv` 51 Ilqg wkh Qdvk Htxloleuld zkhq b ' f dqg wkhq zkhq b ' 1 ^; srlqwv` 61 Vkrz wkdw wkhuh h{lvwv qr sxuh vwudwhj| Qdvk Htxloleuld1 ^53 srlqwv` 71 Vkrz wkdw wkhuh h{lvwv qr pl{hg vwudwhj| Qdvk Htxloleuld zkhuh rqh ri wkh upv udqgrpl}hv ehwzhhq d qlwh qxpehu ri vwudwhjlhv1 ^Gl!fxow1 Rqo| iru erqxv srlqwv1 Gr qrw zdvwh wlph rq wklv`
Plgwhup H{dp 47145 Dqvzhu doo wkuhh txhvwlrqv1 \rx kdyh rqh dqg kdoi krxuv1 Hdfk txhvwlrq lv zruwk d 66 shufhqw ri wkh judgh1 Jrrg oxfn1 4, Frqvlghu dq lqglylgxdo zlwk yrq Qhxpdqq0Prujhqvwhuq xwlolw| ixqfwlrq x+f, @ 4h{sifj zlwk A 31 Wkh lqglylgxdo kdv vrph zhdowk htxdo wr Z dw wkh ehjlqqlqj ri wkh shulrg dqg grhv qrw frqvxph xqwlo wkh hqg1 Kh fdq hlwkhu vwruh klv zhdowk/ frqvxphv lw iru fhuwdlq dw wkh hqg ri wkh shulrg/ ru kh fdq lqyhvw sduw ri lw lq wkh vwrfn pdunhw1 Wkh lqglylgxdo nqrzv wkdw wkh vwrfn pdunhw sd|v d jurvv udwh ri uhwxuq U A 4 +wkdw lv hyhu| ' lqyhvwhg ehfrphv 'U, zlwk suredelolw| s ru froodsvhv dqg sd|v qrwklqj zlwk suredelolw| 4 s1 41 Ilqg wkh dprxqw L wkdw wkh lqglylgxdo sxwv lq wkh vwrfn pdunhw1 51 Zkdw kdsshqv wr L dv Z lqfuhdvhvB Zkdw kdsshqv wr wkh vkduh ri zhdowk lqyhvwhgB Zk| lv wklvB 61 Zkdw kdsshqv wr L dv lqfuhdvhvB Zk| lv wklvB 71 Qrz vxssrvh wkdw wkhuh lv d qdqfldo dqdo|vw zkr fdq jlyh dgylfh1 Kh hlwkhu uhsruwv wkdw wkh pdunhw zloo errp/ lq zklfk fdvh wkh uhwxuq lv U zlwk suredelolw| t A s/ ru kh uhsruwv wkdw wkh pdunhw zloo fudvk lq zklfk fdvh wkh uhwxuq lv U zlwk suredelolw| 4t1 Ilqg wkh rswlpdo lqyhvwphqw vwudwhj| ri wkh lqglylgxdo diwhu olvwhqlqj wr wkh dgylfh ri wkh dqdo|vw ^Klqw= |rx kdyh wr qg wzr qxpehuv Lj dqg Le wkh uhvshfwlyh dprxqwv ri zhdowk lqyhvwhg diwhu d jrrg dqg d edg uhsruw`1 H{sodlq fduhixoo| zk| wkh lqglylgxdo zrxog sd| prqh| wr olvwhq wr wkh dqdo|vw*v dgylfh1 81 Glvfxvv lqirupdoo| zk| wkh lqglylgxdo pd| qrw zdqw wr olvwhq wr wkh dgylfh ri wkh dqdo|vw li wkh dqdo|vw*v sd| lv d iudfwlrq ri wkh lqyhvwphqw lq wkh ulvn| dvvhw1 5, Wkhuh duh P frhh vkrsv/ hdfk zlwk frvw ri d fxs ri frhh htxdo wr f+{, @ f{5 iru { fxsv ri frhh1 Wkhvh vwruhv frpshwh e| vhwwlqj sulfhv1 Wkhuh duh Q frqvxphuv zkhuh Q lv d odujh qxpehu1 Hdfk frqvxphu sxufkdvhv rqh fxs ri frhh dv orqj dv wkh sulfh lv ohvv wkdq ru htxdo wr U1 D iudfwlrq 4 ri wkhvh frqvxphuv vhh doo sulfhv dqg sxufkdvh dw wkh orzhvw sulfh +dv orqj dv U,1 Wkh uhpdlqlqj iudfwlrq udqgrpo| zdon lqwr rqh ri wkh vwruhv dqg ex| d fxs dv orqj dv wkh sulfh lv ohvv wkdq ru htxdo wr U1 Li wkh sulfh lv juhdwhu wkdq U/ wkh| gr qrw ex| dq| frhh1 41 Zulwh grzq wkh surwv ri hdfk up dv d ixqfwlrq ri wkh sulfhv ri rwkhuv1 51 Ilqg wkh Qdvk Htxloleuld zkhq @ 3 dqg wkhq zkhq @ 41 61 Vkrz wkdw wkhuh h{lvwv qr Qdvk Htxloleuld zlwk doo upv fkdujlqj wkh vdph sulfh zkhq 5 +3> 4,1 4
6, Frqvlghu wkh iroorzlqj wzr0shulrg srolwlfdo jdph zlwk wzr sod|huv/ wkh zrunlqj fodvv dqg wkh holwh1 Lq wkh uvw0shulrg/ wkh holwh ghflgh zkhwkhu wr uhglvwulexwh ru qrw/ dqg wkhq wkh zrunlqj fodvv ghflghv zkhwkhu wr fduu| rxw d uhyroxwlrq1 Uhglvwulexwlrq dqg qr uhyroxwlrq jlyhv d xwlolw| 43 wr wkh zrunlqj fodvv dqg 48 wr wkh holwh1 Li wkhuh lv qr uhglvwulexwlrq dqg qr uhyroxwlrq/ wkh zrunlqj fodvv jhwv 3 dqg wkh holwh jhw 581 Dqg li wkhuh lv d uhyroxwlrq +luuhvshfwlyh ri uhglvwulexwlrq,/ wkh zrunlqj fodvv jhw 48 dqg wkh holwh jhw 31 Li wkhuh lv d uhyroxwlrq/ wkdw lv wkh hqg ri wkh jdph/ dqg wkh sd|rv duh qdo1 Li wkhuh lv qr uhyroxwlrq/ wkh jdph surfhhgv wr wkh vhfrqg shulrg/ zkhuh erwk sduwlhv jhw dgglwlrqdo sd|rv1 Exw uvw/ qdwxuh ghwhuplqhv zkhwkhu wkh zrunlqj fodvv kdv wkh rssruwxqlw| wr fduu| rxw d uhyroxwlrq1 Wkh suredelolw| wkdw wklv rssruwxqlw| h{lvwv iru wkh zrunlqj fodvv lv t1 Revhuylqj zkhwkhu wkh zrunlqj fodvv kdv wkh rssruwxqlw| wr fduu| rxw d uhyroxwlrq/ wkh holwh djdlq ghflgh zkhwkhu wr uhglvwulexwh1 Rqfh djdlq/ zlwkrxw uhglvwulexwlrq/ wkh| jhw dq dgglwlrqdo 58 dqg wkh zrunlqj fodvv jhw 31 Zlwk uhglvwulexwlrq/ wkh zrunlqj fodvv jhw dq dgglwlrqdo 43 dqg wkh holwh 48= Dovr/ djdlq d uhyroxwlrq jlyhv 48 wr wkh zrunlqj fodvv dqg qrwklqj wr wkh holwh +luuhvshfwlyh ri zkhwkhu wkhuh lv uhglvwulexwlrq lq wkh vhfrqg shulrg ru qrw,1 Wkhuh lv qr glvfrxqwlqj ehwzhhq wkh wzr shulrgv1 41 Gudz wkh jdph wuhh1 51 Ilqg wkh xqltxh vxejdph shuihfw htxloleulxp ri wklv jdph1 61 H{sodlq zk| d kljk ydoxh ri t/ suredelolw| ri uhyroxwlrq rssruwxqlw| lq wkh vhfrqg shulrg/ suhyhqwv d uhyroxwlrq1
5
14.12 Game Theory – Midterm I 10/19/2000 Prof. Muhamet Yildiz Instructions. This is an open book exam; you can use any written material. You have one hour and 20 minutes. Each question is 33 points. Good luck! 1. Consider the following game. 1\2 T
L
M
R
3,2 4,0 1,1
M 2,0 3,3 0,0 B
1,1 0,2 2,3
a. Iteratively eliminate all the strictly dominated strategies. b. State the rationality/knowledge assumptions corresponding to each elimination. c. What are the rationalizable strategies? d. Find all the Nash equilibria. (Don’t forget the mixed-strategy equilibrium!) 2. Consider the following extensive form game.
X 1
(2,2)
T
B 2
2 L (3,1)
R (0,0)
L (5,0)
R (0,1)
a. Find the normal form representation of this game. b. Find all pure strategy Nash equilibria. c. Which of these equilibria are subgame perfect? 3. Consider two agents £1, 2¤ owning one dollar which they can use only after they divide it. Each player’s utility of getting x dollar at t is - t x for - 0, 1 . Given any n 0, consider the following n-period symmetric, random bargaining model. Given any date t £0, 1, T , n " 1¤, we toss a fair coin; if it comes Head (which comes with probability 1/2), we select player 1; if it comes Tail, we select player 2. The selected player makes an offer x, y ¡0, 1¢ 2 such that x y t 1. Knowing what has been offered, the other player accepts or rejects the offer. If the offer x, y is accepted, the game ends, yielding payoff vector - t x, - t y . If the offer is rejected, we proceed to the next date, when the same procedure is repeated, except for t n " 1, after which the game ends, yielding (0,0). The coin tosses at different dates are stochastically independent. And everything described up to here is common knowledge. a. Compute the subgame perfect equilibrium for n 1. What is the value of playing this game for a player? (That is, compute the expected utility of each player before the coin-toss, given that they will play the subgame-perfect equilibrium.) b. Compute the subgame perfect equilibrium for n 2. Compute the expected utility of each
player before the first coin-toss, given that they will play the subgame-perfect equilibrium. c. What is the subgame perfect equilibrium for n u 3.
47145 Jdph Wkhru| Plgwhup L Vroxwlrqv 4324<25333 Suri1 Pxkdphw \logl} 41 Frqvlghu wkh iroorzlqj jdph1 4q5 O P U W 6/5 7/3 4/4 P 5/3 6/6 3/3 E 4/4 3/5 5/6 +d, Lwhudwlyho| holplqdwh doo wkh vwulfwo| grplqdwhg vwudwhjlhv1 ^43` Dqvzhu= Iru Sod|hu 4/ W vwulfwo| grplqdwhv P/ khqfh zh holplqdwh P ri Sod|hu 41 4q5 O P U W 6/5 7/3 4/4 E 4/4 3/5 5/6 Qrz/ U vwulfwo| grplqdwhv P iru Sod|hu 5/ khqfh zh holplqdwh P ri Sod|hu 5/ dqg rewdlq 4q5 O U W 6/5 4/4 E 4/4 5/6 +e, Vwdwh wkh udwlrqdolw|2nqrzohgjh dvvxpswlrqv fruuhvsrqglqj wr hdfk holplqdwlrq1 ^43` Dqvzhu= Iru wkh uvw holplqdwlrq/ zh dvvxph wkdw Sod|hu 4 lv udwlrqdo +khqfh kh zrxog qrw sod| d vwulfwo| grplqdwhg vwudwhj|,1 Iru wkh vhfrqg holplqdwlrq/ zh dvvxph wkdw Sod|hu 5 lv udwlrqdo dqg wkdw kh nqrzv wkdw sod|hu 4 lv udwlrqdo1 ^Pdq| ri |rx orvw srlqw iru wklv sduw> wkrvh zkr vwdwhg jhqhudo udwlrqdolw| dvvxpswlrqv glg qrw jhw dq| fuhglw/ lq jhqhudo1` +f, Zkdw duh wkh udwlrqdol}deoh vwudwhjlhvB ^6` Dqvzhu= ~W/E iru Sod|hu 4/ dqg ~O/U iru sod|hu 51 +g, Ilqg doo wkh Qdvk htxloleuld1 +Grq*w irujhw wkh pl{hg0vwudwhj| htxloleulxp$, ^43` Dqvzhu= Sxuh vwudwhj| Qdvk Htxloleuld duh +W/O, dqg +E/U,1 ^8`1 Pl{hg vwudwhj| Qdvk htxloleulxp lv ^j EA ' 2* ( j E ' * ( j2 Eu ' * ( j2 E- ' 2* `1 ^8` 51 Frqvlghu wkh iroorzlqj h{whqvlyh irup jdph1
4
X 1
(2,2)
T
B
2 L (3,1)
2 R
L
(0,0)
(5,0)
R (0,1)
+d, Ilqg wkh qrupdo irup uhsuhvhqwdwlrq ri wklv jdph1 ^44` Dqvzhu= Sod|hu 4 kdv wkuhh vwudwhjlhv= ~[/W/E1 Sod|hu 5 kdv irxu vwudwhjlhv=
OO @ O li Sod|hu 4 fkrrvhv W> O li Sod|hu 4 fkrrvhv E1 OU @ O li Sod|hu 4 fkrrvhv W> U li Sod|hu 4 fkrrvhv E1 UO @ U li Sod|hu 4 fkrrvhv W> O li Sod|hu 4 fkrrvhv E1 UU @ U li Sod|hu 4 fkrrvhv W> U li Sod|hu 4 fkrrvhv E1
Wkhuhiruh/ wkh qrupdo irup lv wkh iroorzlqj1 4q5 OO OU UO UU [ 5/5 5/5 5/5 5/5 W 6/4 6/4 3/3 3/3 E 8/4 3/4 8/4 3/4 ^Wkrvh zkr dvvljqhg rqo| wzr vwudwhjlhv wr sod|hu 5 uhfhlyhg qr fuhglw1 Iru wklv lv wkh
plvwdnh wkdw wkrvh zkr gr qrw nqrz dq| Jdph Wkhru| fdq pdnh1 Pdq| ri |rx zhuh frqixvhg> wkh| dvvljqhg hljkw vwudwhjlhv wr sod|hu 5/ dvvljqlqj 5 wulyldo pryhv diwhu sod|hu 4 sod|v [1 Wklv lv fohduo| zurqj/ iru sod|hu 5 grhv qrw kdyh dq| pryh diwhu sod|hu 4 sod|v [1 Wkh| uhfhlyhg hljkw srlqwv1`
+e, Ilqg doo sxuh vwudwhj| Qdvk htxloleuld1 ^44` Dqvzhu= Wkh sxuh vwudwhj| Qdvk htxloleuld duh +W/ OU,/ dqg +[/UU,1 +f, Zklfk ri wkhvh htxloleuld duh vxejdph shuihfwB ^44` Dqvzhu= +W/OU, lv vxejdph shuihfw1 +[/UU, lv qrw> iru 5 zrxog qrw sod| U li 4 sod|hg W1 61 Frqvlghu wzr djhqwv ic 2j rzqlqj rqh groodu zklfk wkh| fdq xvh rqo| diwhu wkh| glylgh lw1 Hdfk sod|hu*v xwlolw| ri jhwwlqj % groodu dw | lv B | % iru B 5 Efc 1 Jlyhq dq| ? : f/ frqvlghu wkh iroorzlqj ?0shulrg v|pphwulf/ udqgrp edujdlqlqj prgho1 Jlyhq dq| gdwh | 5 ifc c c ? j/ zh wrvv d idlu frlq> li lw frphv Khdg +zklfk frphv zlwk suredelolw| 425,/ zh vhohfw sod|hu 4> li lw frphv Wdlo/ zh vhohfw sod|hu 51 Wkh vhohfwhg sod|hu pdnhv dq rhu E%c + 5 dfc o2 vxfk wkdw % n + 1 Nqrzlqj zkdw kdv ehhq rhuhg/ wkh 5
rwkhu sod|hu dffhswv ru uhmhfwv wkh rhu1 Li wkh rhu E%c + lv dffhswhg/ wkh jdph hqgv/ |lhoglqj sd|r yhfwru B | %c B | + 1 Li wkh rhu lv uhmhfwhg/ zh surfhhg wr wkh qh{w gdwh/ zkhq wkh vdph surfhgxuh lv uhshdwhg/ h{fhsw iru | ' ? / diwhu zklfk wkh jdph hqgv/ |lhoglqj +3/3,1 Wkh frlq wrvvhv dw glhuhqw gdwhv duh vwrfkdvwlfdoo| lqghshqghqw1 Dqg hyhu|wklqj ghvfulehg xs wr khuh lv frpprq nqrzohgjh1 +d, Frpsxwh wkh vxejdph shuihfw htxloleulxp iru ? ' 1 Zkdw lv wkh ydoxh ri sod|lqj wklv jdph iru d sod|huB +Wkdw lv/ frpsxwh wkh h{shfwhg xwlolw| ri hdfk sod|hu ehiruh wkh frlq0wrvv/ jlyhq wkdw wkh| zloo sod| wkh vxejdph0shuihfw htxloleulxp1, ^43` Dqvzhu= Li d sod|hu uhmhfwv dq rhu/ kh zloo jhw 3/ khqfh kh zloo dffhsw dq| rhu wkdw jlyhv klp dw ohdvw 31 +Kh lv lqglhuhqw ehwzhhq dffhswlqj dqg uhmhfwlqj dq rhu wkdw jlyhv klp h{dfwo| 3> exw uhmhfwlqj vxfk dq rhu lv lqfrqvlvwhqw zlwk dq htxloleulxp1, Khqfh/ wkh vhohfwhg sod|hu rhuv 3 wr klv rssrqhqw/ wdnlqj hqwluh groodu iru klpvhoi> dqg klv rhu zloo eh dffhswhg1 Wkhuhiruh/ lq dq| vxejdph shuihfw htxloleulxp/ wkh rxwfrph lv +4/3, li lw frphv Khdg/ dqg +3/ 4, li lw frphv Wdlo1 Wkh h{shfwhg sd|rv duh c T ' Ec f n Efc ' 2 2 2 2 +e, Frpsxwh wkh vxejdph shuihfw htxloleulxp iru ? ' 2 Frpsxwh wkh h{shfwhg xwlolw| ri hdfk sod|hu ehiruh wkh uvw frlq0wrvv/ jlyhq wkdw wkh| zloo sod| wkh vxejdph0 shuihfw htxloleulxp1 ^43` Dqvzhu= Lq htxloleulxp/ rq wkh odvw gd|/ wkh| zloo dfw dv lq sduw +d,1 Khqfh/ rq wkh uvw gd|/ li d sod|hu uhmhfwv wkh rhu/ wkh h{shfwhg sd|r ri hdfk sod|hu zloo eh B *2 ' B*21 Wkxv/ kh zloo dffhsw dq rhu li dq rqo| li lw jlyhv klp dw ohdvw B*21 Wkhuhiruh/ wkh vhohfwhg sod|hu rhuv B*2 wr klv rssrqhqw/ nhhslqj B*2 iru klpvhoi/ zklfk lv pruh wkdq B*2/ klv h{shfwhg sd|r li klv rhu lv uhmhfwhg1 Wkhuhiruh/ lq dq| vxejdph shuihfw htxloleulxp/ wkh rxwfrph lv E B*2c B*2 li lw frphv Khdg/ dqg EB*2c B*2 li lw frphv Wdlo1 Wkh h{shfwhg sd|r ri hdfk sod|hu ehiruh wkh uvw frlq wrvv lv E B*2 n EB*2 ' 2 2 2 +f, Zkdw lv wkh vxejdph shuihfw htxloleulxp iru ? 1 ^46` Dqvzhu= Sduw +e, vxjjhvwv wkdw/ li h{shfwhg sd|r ri hdfk sod|hu dw wkh ehjlqqlqj ri gdwh | n lv B |n *2/ wkh h{shfwhg sd|r ri hdfk sod|hu dw wkh ehjlqqlqj ri | zloo eh B | *21 ^Qrwh wkdw lq whupv ri grooduv wkhvh qxpehuv fruuhvsrqg wr B*2 dqg 425/ uhvshfwlyho|1` Wkhuhiruh/ wkh htxloleulxp lv iroorzv= Dw dq| gdwh | ? / wkh vhohfwhg sod|hu rhuv B*2 wr klv rssrqhqw/ nhhslqj B*2 iru klpvhoi> dqg klv rssrqhqw dffhswv dq rhu l kh jhwv dw ohdvw B*2> dqg dw gdwh ? / d sod|hu dffhswv dq| rhu/ khqfh wkh vhohfwhg sod|hu rhuv f wr klv rssrqhqw/ nhhslqj 4 iru klpvhoi1 ^\rx vkrxog eh deoh wr suryh wklv xvlqj pdwkhpdwlfdo lqgxfwlrq dqg wkh dujxphqw lq sduw +e,1` 6
Hfrqrplf Dssolfdwlrqv ri Jdph Wkhru|= 47145 Vhfrqg Plgwhup Sohdvh Dqvzhu doo wkuhh txhvwlrqv1 \rx kdyh 4163 krxuv1 41 Frqvlghu wkh lqqlwh krul}lrq edujdlqlqj jdph1 Mrkq dqg Ehwk duh wu|lqj wr vsolw d slh ri vl}h 41 Wkh| erwk jhw olqhdu xwlolw| iurp wkh vkduh ri wkh fdnh wkh| rewdlq +{M iru Mrkq dqg {E iru Ehwk,1 Erwk sod|huv glvfrxqw hyhu| shulrg ri edujdlqlqj zlwk glvfrxqw idfwru +wkxv wkh zkroh fdnh qh{w shulrg lv htxlydohqw wr d vkduh ri wkh fdnh wklv shulrg,1 Dovr/ hdfk sod|hu fdq vwrs edujdlqlqj dw dq| srlqw dqg jhw klv ru khu rxwvlgh rswlrq gM dqg gE zkhuh gM . gE ? 4 +wkh rxwvlgh rswlrqv duh dovr glvfrxqwhg/ wkxv uhfhlylqj rxwvlgh rswlrq g qh{w shulrg lv zruwk g wklv shulrg,1 Dw wkh ehjlqqlqj ri hyhu| shulrg Qdwxuh ghflghv zklfk sod|hu zloo pdnh wkh rhu lq wkdw shulrg1 Erwk sod|huv kdyh d suredelolw| 45 ri ehlqj vhohfwhg hyhu| shulrg +gudzv lqghshqghqw ryhu wlph,1 +d, Vnhwfk wkh jdph wuhh1 +e, Ilqg wkh vxejdph shuihfw htxloleulxp dvvxplqj wkdw gM @ gE @ 3= +f, Krz grhv wkh htxloleulxp fkdqjh zkhq gM A 3 dqg gE A 31 51 Frqvlghu wkh iroorzlqj Sulvrqhu*v Glohppd w|sh jdph=
4
Frrshudwh
Fkhdw
Frrshudwh
43/43
04/44
Fkhdw
44/04
3/3
Vxssrvh wkdw wklv jdph lv uhshdwhg ryhu wlph/ dqg zh duh wu|lqj wr pdlq0 wdlq +Frrshudwh/ Frrshudwh, dv d vxejdph shuihfw htxloleulxp1 Dovr dv0 vxph wkdw erwk sod|huv kdyh glvfrxqw idfwru htxdo wr 45 1 +d, Ilqg wkh wuljjhu vwudwhjlhv wkdw zloo vxssruw +Frrshudwh/ Frrshudwh, dv dq htxloleulxp1 +e, Qh{w/ vxssrvh wkdw cqrq0irujlylqj* vwudwhjlhv duh qrw doorzhg1 Lqvwhdg frqvlghu wkh iroorzlqj Wuljjhu vwudwhj|= %Li |rx fkhdw L zloo fkhdw iru wkh qh{w W shulrgv/ dqg wkhq L zloo frrshudwh djdlq xqwlo |rx fkhdw rqh pruh wlph%1 Zulwh wkh sd|r wr fkhdwlqj lq wkh uvw shulrg/ dqg wkhq vwduwlqj wr frrshudwh lq shulrg W.41 Vkrz wkdw li W lv juhdwhu wkdq d fxw0r ohyho W / wkhq frrshudwlqj lv suhihuuhg wr fkhdwlqj1 +f, H{sodlq lq zrugv zk| lw lv RN wr orrn dw wkh vwudwhj| ri fkhdwlqj qrz dqg wkhq frrshudwlqj iurp W.4 rqzdugv udwkhu wkdq fkhdwlqj doo wkh wlphB 61 Frqvlghu wkh iroorzlqj lqfrpsohwh lqirupdwlrq Ehuwudqg jdph1 Hdfk sod|hu fdq eh kljk ru orz w|sh zlwk suredelolw| 45 1 Wkhvh gudzv duh lqghshqghqw1 D kljk w|sh kdv pdujlqdo frvw 4 dqg d orz w|sh kdv pdujlqdo frvw 31 Wkhuh 5
lv rqh xqlw ri ghpdqg lq wkh pdunhw iru doo sulfhv ohvv wkdq U+A 4,1 Wkxv/ wkh surw ri d up zkr fkdujhv sulfh s ? U zkloh wkh rwkhu up fkdujhv d sulfh s3 A s lv htxdo wr s f zkhuh f lv wkh uhohydqw pdujlqdo frvw1 +d, Vkrz wkdw wkhuh h{lvwv qr sxuh vwudwhj| Ed|hvldq Qdvk Htxloleulxp1 +e, +Glfxow0 vr gr qrw jhw vwxfn rq wklv sduw dw wkh h{shqvh ri wkh uhvw, Ohw xv qg wkh pl{hg vwudwhj| htxloleulxp1 Iluvw vkrz wkdw wkh kljk w|shv zloo vhw s @ 41 Vxssrvh wkdw sod|hu 4 sod|v wkh pl{hg vwudwhj| i +s, zkhq kh lv ri orz w|sh/ zkhuh i +s, lv wkh suredelolw| ghqvlw| zlwk zklfk kh fkrrvhv sulfh s1 Ohw I +s, eh wkh fgi1 H{sodlq zk| lq wklv fdvh wkh surw ri wkh sod|hu 5 zkr fkrrvhv sulfh t zkhq kh lv orz w|sh lv jlyhq dv +t, @ 45 t . 45 t ^4 I +t,` +zkhuh wklv lv wkh h{ dqwh surw ehiruh nqrzlqj wkh w|sh ri wkh rwkhu sod|hu,1 Wkhq qrwh wkdw iru d sod|hu ri w|sh orz wr sod| d pl{hg vwudwhj|/ kh qhhgv wr eh lqglhuhqw ehwzhhq glhuhqw sulfhv1 Xvlqj wklv lqirupdwlrq/ vroyh iru I +s, vxfk wkdw sod|hu 5 lv lqglhuhqw ehwzhhq glhuhqw t 3 v1 Xvlqj wkh lqirupdwlrq wkdw I +4, @ 4 fkdudfwhul}h I +s, frpsohwho|1 Wkhq h{sodlq lq zrugv zk| erwk sod|huv sod|lqj I +s, zkhq wkh| duh orz w|sh dqg s @ 4 zkhq wkh| duh kljk w|sh lv d Ed|hvldq Qdvk Htxloleulxp1
6
Hfrqrplf Dssolfdwlrqv ri Jdph Wkhru|1 Vhfrqg Plgwhup H{dp1 Qryhpehu 53wk1 \rx kdyh rqh dqg d kdoi krxuv1 Dqvzhu doo wkuhh txhvwlrqv1 ^Qrwh= wkh txhv0 wlrqv gr qrw kdyh htxdo zhljkw`1 4, ^Wrwdo= 63 srlqwv` Frqvlghu wkh iroorzlqj dowhuqdwlqj rhu edujdlqlqj jdph ehwzhhq wzr sod|huv D dqg E1 D kdv d glvfrxqw idfwru B dqg E kdv B 1 Lqlwldoo|/ wkh| kdyh d fdnh ri vl}h htxdo wr 21 Lq wkh uvw shulrg/ D pdnhv dq rhu1 E fdq hlwkhu dffhsw ru uhmhfw1 Li kh uhmhfwv wklv rhu/ wkhq E jhwv wr pdnh dq rhu lq wkh vhfrqg shulrg1 D fdq dffhsw ru uhmhfw1 Li D uhmhfwv/ krzhyhu/ lq wkh wklug shulrg/ wkh fdnh vkulqnv wr vl}h 4 +wklv vkulqndjh lv dgglwlrqdo wr wkh xvxdo glv0 frxqwlqj ehwzhhq shulrgv,1 Iurp wkhq rq/ wkh fdnh uhpdlqv ri vl}h 4 +exw wkhuh lv vwloo glvfrxqwlqj, dqg wkh wzr sod|huv dowhuqdwh lq pdnlqj rhuv xqwlo dq rhu lv dffhswhg1 Gudz wkh jdph wuhh dqg qg wkh xqltxh vxejdph shuihfw htxloleulxp ^Klqw= uvw vroyh wkh vxejdph zklfk vwduwv lq shulrg 6 xvlqj vwdqgdug whfkqltxhv/ dqg wkhq xvh edfnzdug lqgxfwlrq wr qg wkh htxloleulxp ehkdylru lq wkh uvw wzr shulrgv1` =
5, ^Wrwdo= 73 srlqwv` Frqvlghu wkh iroorzlqj vwdjh jdph ehwzhhq sod|huv dqg q , 6 o u Efc e Efc f Ec Efc f Ec Ec - Eec f Ec E2c 2 41 Ilqg wkh Qdvk Htxloleuld ri wklv jdph1 ^8 srlqwv` 51 Frqvlghu d vxshujdph CA zklfk lv rewdlqhg e| uhshdwlqj wklv vwdjh jdph A wlphv1 Ilqg wkh vxejdph shuihfw htxloleuld ri CA 1 ^8 srlqwv`
61 Qrz frqvlghu C" EB zklfk lv rewdlqhg e| uhshdwlqj wklv vwdjh jdph dq lqqlwh qxpehu ri wlphv zlwk glvfrxqw idfwru B iru erwk sod|huv1 Ilqg dq htxloleulxp zklfk lv suhihuuhg wr sod|lqj wkh Qdvk Htxloleulxp ri wkh vwdjh jdph1 ^63 srlqwv` 6,^Wrwdo= 63 srlqwv` Frqvlghu wkh iroorzlqj lqfrpsohwh lqirupdwlrq Ehuwudqg jdph1 Wkhuh lv rqh fxvwrphu zkr zloo ex| rqh xqlw ri wkh jrrg dv orqj dv wkh
sulfh/ / lv ohvv wkdq -1 Ilup 4 kdv frvw htxdo wr S1 Ilup 5 kdv frvw Su zlwk suredelolw| w dqg frvw SM zlwk suredelolw| wc zkhuh Su S SM -1 Wkh frvw ohyho ri up 5 lv qrw revhuyhg e| up 4/ exw up 5 nqrzv lwv rzq frvw ohyho1 Erwk upv vlpxowdqhrxvo| fkrrvh wkhlu sulfhv1 Wkh up zlwk wkh orzhu sulfh vxssolhv wkh fxvwrphu1 Li wkh| kdyh htxdo sulfh/ rqh ri wkh upv lv udqgrpo| fkrvhq wr vxsso| wkh fxvwrphu1 Erwk upv duh ulvn0qhxwudo1 41 Zulwh wkh sd|r ixqfwlrqv ri wkh wzr upv1 ^8 srlqwv` 51 Ghqh d Ed|hvldq Qdvk Htxloleulxp iru wklv jdph1 ^8 srlqwv` 61 Vkrz wkdw wkhuh h{lvwv qr sxuh vwudwhj| Ed|hvldq Qdvk Htxloleulxp1^53 srlqwv`
5
Hfrqrplf Dssolfdwlrqv ri Jdph Wkhru|= 47145 Prfn Plgwhup 41 Frqvlghu wkh lqqlwh krul}lrq edujdlqlqj jdph1 Mrkq dqg Ehwk duh wu|lqj wr vsolw d slh ri vl}h 41 Wkh| erwk jhw olqhdu xwlolw| iurp wkh vkduh ri wkh fdnh wkh| rewdlq +{M iru Mrkq dqg {E iru Ehwk,1 Erwk sod|huv glvfrxqw hyhu| shulrg ri edujdlqlqj zlwk glvfrxqw idfwru +wkxv wkh zkroh fdnh qh{w shulrg lv htxlydohqw wr d vkduh ri wkh fdnh wklv shulrg,1 Dovr/ hdfk sod|hu fdq vwrs edujdlqlqj dw dq| srlqw dqg jhw klv ru khu rxwvlgh rswlrq gM dqg gE zkhuh gM . gE ? 4 +wkh rxwvlgh rswlrqv duh dovr glvfrxqwhg/ wkxv uhfhlylqj rxwvlgh rswlrq g qh{w shulrg lv zruwk g wklv shulrg,1 Dw wkh ehjlqqlqj ri hyhu| shulrg Qdwxuh ghflghv zklfk sod|hu zloo pdnh wkh rhu lq wkdw shulrg1 Erwk sod|huv kdyh d suredelolw| 45 ri ehlqj vhohfwhg hyhu| shulrg +gudzv lqghshqghqw ryhu wlph,1 +d, Vnhwfk wkh jdph wuhh1 +e, Ilqg wkh vxejdph shuihfw htxloleulxp dvvxplqj wkdw gM @ gE @ 3= +f, Krz grhv wkh htxloleulxp fkdqjh zkhq gM A 3 dqg gE A 31 +g, Frpsduh wklv wr wkh Qdvk Vroxwlrq1 51 Frqvlghu wkh iroorzlqj Sulvrqhu*v Glohppd w|sh jdph=
4
Frrshudwh
Fkhdw
Frrshudwh
43/43
04/44
Fkhdw
44/04
3/3
Vxssrvh wkdw wklv jdph lv uhshdwhg ryhu wlph/ dqg zh duh wu|lqj wr pdlq0 wdlq +Frrshudwh/ Frrshudwh, dv d vxejdph shuihfw htxloleulxp1 Dovr dv0 vxph wkdw erwk sod|huv kdyh glvfrxqw idfwru htxdo wr 45 1 +d, Ilqg wkh wuljjhu vwudwhjlhv wkdw zloo vxssruw +Frrshudwh/ Frrshudwh, dv dq htxloleulxp1 +e, Qh{w/ vxssrvh wkdw cqrq0irujlylqj* vwudwhjlhv duh qrw doorzhg1 Lqvwhdg frqvlghu wkh iroorzlqj Wuljjhu vwudwhj|= %Li |rx fkhdw L zloo fkhdw iru wkh qh{w W shulrgv/ dqg wkhq L zloo frrshudwh djdlq xqwlo |rx fkhdw rqh pruh wlph%1 Zulwh wkh sd|r wr fkhdwlqj lq wkh uvw shulrg/ dqg wkhq vwduwlqj wr frrshudwh lq shulrg W.41 Vkrz wkdw li W lv juhdwhu wkdq d fxw0r ohyho W / wkhq frrshudwlqj lv suhihuuhg wr fkhdwlqj1 +f, H{sodlq lq zrugv zk| lw lv RN wr orrn dw wkh vwudwhj| ri fkhdwlqj qrz dqg wkhq frrshudwlqj iurp W.4 rqzdugv udwkhu wkdq fkhdwlqj doo wkh wlphB
5
47145 Jdph Wkhru| Plgwhup LL 4424925333 Suri1 Pxkdphw \logl} Lqvwuxfwlrqv1 Wklv lv dq rshq errn h{dp> |rx fdq xvh dq| zulwwhq pdwhuldo1 \rx kdyh rqh krxu dqg 53 plqxwhv1 Hdfk txhvwlrq lv 66 srlqwv1 Jrrg oxfn$ 41 Frpsxwh wkh shuihfw Ed|hvldq htxloleulxp ri wkh iroorzlqj jdph1 1 {0.5} Nature
{0.1}
A
2
a
D
(1,-5)
d (5,2)
(4,4) 1
(3,3)
A
2
a
(1,-5)
{0.4} D
d (-1,4)
(0,2) 1
(-1,3)
A
2
D
a
(-1,-5)
d (0,4)
(-1,2)
(-1,3)
51 Frqvlghu wkh iroorzlqj sulydwh0ydoxh dxfwlrq ri d vlqjoh remhfw/ zkrvh ydoxh iru wkh vhoohu lv 31 wkhuh duh wzr ex|huv/ vd| 4 dqg 51 Wkh ydoxh ri wkh remhfw iru hdfk ex|hu 5 ic 2j lv vr wkdw/ li ex|v wkh remhfw sd|lqj wkh sulfh R/ klv sd|r lv R> li kh grhvq*w ex| wkh remhfw/ klv sd|r lv 31 Zh dvvxph wkdw dqg 2 duh lqghshqghqwo| dqg lghqwlfdoo| glvwulexwhg zlwk wkh suredelolw| ghqvlw| ixqfwlrq s G dfc 4 $ dfc 4/ zkhuh % li % 5 dfc 2o s E% ' f rwkhuzlvh1 +d, Zh xvh vhdohg0elg uvw0sulfh dxfwlrq/ zkhuh hdfk ex|hu vlpxowdqhrxvo| elgv K / dqg wkh rqh zkr elgv wkh kljkhvw elg ex|v wkh remhfw sd|lqj klv rzq elg1 Frpsxwh wkh v|pphwulf Ed|hvldq Qdvk htxloleulxp lq olqhdu vwudwhjlhv/ zkhuh K ' @ n S 1 Frpsxwh wkh h{shfwhg xwlolw| ri d ex|hu iru zkrp wkh ydoxh ri wkh remhfw lv 1 +e, Zkdw lv wkh Ed|hvldq Qdvk htxloleulxp iru wkh vhdohg0elg vhfrqg0sulfh dxfwlrq/ zkhuh wkh zlqqhu sd|v rqo| wkh rwkhu ex|hu*v elg1 Zkdw lv wkh h{shfwhg xwlolw| ri d ex|hu iru zkrp wkh ydoxh ri wkh remhfw lv B
4
47145 Jdph Wkhru| Plgwhup LL 4424:25333
Lpsruwdqw Qrwh= Ilqdo H{dp lv rq Ghfhpehu :wk1 Suri1 Pxkdphw \logl} Lqvwuxfwlrqv1 Wklv lv dq rshq errn h{dp> |rx fdq xvh dq| zulwwhq pdwhuldo1 \rx kdyh rqh krxu dqg 53 plqxwhv1 Hdfk txhvwlrq lv 66 srlqwv1 Jrrg oxfn$ 41 Frqvlghu wkh lqqlwho| uhshdwhg jdph zlwk revhuydeoh dfwlrqv zkhuh B ' fbb dqg wkh iroorzlqj Sulvrqhuv* Glohppd jdph lv uhshdwhg1 F G F 8/8 09/; G ;/09 3/3 Fkhfn li dq| ri wkh iroorzlqj vwudwhj| surohv lv d vxejdph0shuihfw Qdvk htxloleulxp1 +d, Hdfk sod|hu*v vwudwhj| lv= Sod| dozd|v F1 +e, Hdfk sod|hu*v vwudwhj| lv= Sod| F lq wkh uvw gdwh> dqg dw wkh vhfrqg gdwh dqg wkhuhdiwhu/ sod| zkdwhyhu wkh rwkhu sod|hu sod|hg lq wkh suhylrxv gdwh1 +f, Wkhuh duh irxu prghv> Frrshudwlrq Prgh/ Sxqlvkphqw Prgh iru sod|hu 4/ Sxq0 lvkphqw Prgh iru sod|hu 5/ dqg Qrq0frrshudwlrq Prgh1 Lq wkh uvw gdwh wkh| duh lq wkh Frrshudwlrq prgh1 Lq wklv prgh/ hdfk sod|hu sod|v F1 Lq wkh sxqlvk0 phqw prgh iru / sod|v F/ zkloh wkh rwkhu sod|hu sod|v G1 Lq qrq0frrshudwlrq prgh hdfk sod|hu sod|v G1 Rqfh wkh| duh lq qrq0frrshudwlrq prgh wkh| vwd| lq qrq0frrshudwlrq prgh iruhyhu1 Lq dq| rwkhu prgh/ li erwk sod|hu vwlfn wr wkhlu vwudwhj|/ wkh| jr wr frrshudwlrq prgh lq wkh qh{w gdwh> li dq| sod|hu ghyldwhv xqlodwhudoo| +zkloh wkh rwkhu sod|hu vwlfnv zlwk klv vwudwhj|,/ wkh| jr wr wkh sxq0 lvkphqw prgh iru lq wkh qh{w gdwh> dqg li erwk sod|hu ghyldwh/ lq wkh qh{w gdwh wkh| jr wr wkh qrq0frrshudwlrq prgh1 51 Frqvlghu wkh iroorzlqj sulydwh0ydoxh dxfwlrq ri d vlqjoh remhfw/ zkrvh ydoxh iru wkh vhoohu lv 31 wkhuh duh wzr ex|huv/ vd| 4 dqg 51 Wkh ydoxh ri wkh remhfw iru hdfk ex|hu 5 ic 2j lv vr wkdw/ li ex|v wkh remhfw sd|lqj wkh sulfh R/ klv sd|r lv R> li kh grhvq*w ex| wkh remhfw/ klv sd|r lv 31 Zh dvvxph wkdw dqg 2 duh lqghshqghqwo| dqg lghqwlfdoo| glvwulexwhg xqlirupo| rq dc o zkhuh f 1 +d, Zh xvh vhdohg0elg uvw0sulfh dxfwlrq/ zkhuh hdfk ex|hu vlpxowdqhrxvo| elgv K / dqg wkh rqh zkr elgv wkh kljkhvw elg ex|v wkh remhfw sd|lqj klv rzq elg1 Frpsxwh wkh v|pphwulf Ed|hvldq Qdvk htxloleulxp lq olqhdu vwudwhjlhv/ zkhuh K ' @ n S 1 Frpsxwh wkh h{shfwhg xwlolw| ri d ex|hu iru zkrp wkh ydoxh ri wkh remhfw lv 1 +e, Qrz dvvxph wkdw dqg 2 duh lqghshqghqwo| dqg lghqwlfdoo| glvwulexwhg xql0 irupo| rq dfc o1 Qrz/ lq rughu wr hqwhu wkh dxfwlrq/ d sod|hu pxvw sd| dq hqwu| ihh 5 Efc 1 Iluvw/ hdfk ex|hu vlpxowdqhrxvo| ghflghv zkhwkhu wr hqwhu wkh dxf0 wlrq1 Wkhq/ zh uxq wkh vhdohg0elg dxfwlrq dv lq sduw +d,> zklfk sod|huv hqwhuhg lv 4
qrz frpprq nqrzohgjh1 Li rqo| rqh sod|hu hqwhuv wkh dxfwlrq dq| elg K f lv dffhswhg1 Frpsxwh wkh v|pphwulf shuihfw Ed|hvldq Qdvk htxloleulxp zkhuh wkh ex|huv xvh wkh olqhdu vwudwhjlhv lq wkh dxfwlrq li erwk ex|hu hqwhu wkh dxfwlrq1 Dqwlflsdwlqj wklv htxloleulxp/ zklfk hqwu| ihh wkh vhoohu pxvw fkrrvhB ^Klqw= Lq wkh hqwu| vwdjh/ wkhuh lv d fxwr ohyho vxfk wkdw d ex|hu hqwhuv wkh dxfwlrq l klv ydoxdwlrq lv dw ohdvw dv kljk dv wkh fxwr ohyho1` 61 Frqvlghu wkh hqwu| ghwhuuhqfh jdph/ zkhuh dq Hqwudqw ghflghv zkhwkhu wr hqwhu wkh pdunhw> li kh hqwhuv wkh Lqfxpehqw ghflghv zkhwkhu wr Iljkw ru Dffrprgdwh1 Zh frqvlghu d jdph zkhuh Lqfxpehqw*v sd|r iurp wkh Iljkw lv sulydwh lqirupdwlrq/ wkh hqwu| ghwhuuhqfh jdph lv uhshdwhg wzlfh dqg wkh glvfrxqw udwh lv B ' fb1 Wkh sd|r yhfwruv iru wkh vwdjh jdph duh +3/5, li wkh Hqwudqw grhv qrw hqwhu/ Ec @ li kh hqwhuv dqg wkh Lqfxpehqw Iljkwv> dqg +4/4, li kh hqwhuv dqg wkh Lqfxpehqw dffrprgdwhv/ zkhuh wkh uvw hqwu| lq hdfk sdudqwkhvlv lv wkh sd|r iru wkh hqwudqw1 Khuh/ @ fdq eh hlwkhu 04 ru 5/ dqg lv sulydwho| nqrzq e| wkh Lqfxpehqw1 Hqwudqwv eholhyhv wkdw @ ' zlwk suredelolw| Z( dqg hyhu|wklqj ghvfulehg xs wr khuh lv frpprq nqrzohgjh1 +d, Ilqg wkh shuihfw Ed|hvldq Htxloleulxp zkhq Z ' fe1 +e, Ilqg wkh shuihfw Ed|hvldq Htxloleulxp zkhq Z ' fb1
5
Vrph suhylrxv h{dp txhvwlrqv 41 Frqvlghu wkh lqqlwho| uhshdwhg jdph zlwk revhuydeoh dfwlrqv zkhuh @ 3=<< dqg wkh iroorzlqj Sulv0 rqhuv* Glohppd jdph lv uhshdwhg1 F G F 8/8 09/; G ;/09 3/3 Fkhfn li dq| ri wkh iroorzlqj vwudwhj| surohv lv d vxejdph0shuihfw Qdvk htxloleulxp1 +d, Hdfk sod|hu*v vwudwhj| lv= Sod| dozd|v F1 +e, Hdfk sod|hu*v vwudwhj| lv= Sod| F lq wkh uvw gdwh> dqg dw wkh vhfrqg gdwh dqg wkhuhdiwhu/ sod| zkdwhyhu wkh rwkhu sod|hu sod|hg lq wkh suhylrxv gdwh1 +f, Wkhuh duh irxu prghv> Frrshudwlrq Prgh/ Sxqlvkphqw Prgh iru sod|hu 4/ Sxqlvkphqw Prgh iru sod|hu 5/ dqg Qrq0frrshudwlrq Prgh1 Lq wkh uvw gdwh wkh| duh lq wkh Frrshudwlrq prgh1 Lq wklv prgh/ hdfk sod|hu sod|v F1 Lq wkh sxqlvkphqw prgh iru l/ l sod|v F/ zkloh wkh rwkhu sod|hu sod|v G1 Lq qrq0frrshudwlrq prgh hdfk sod|hu sod|v G1 Rqfh wkh| duh lq qrq0frrshudwlrq prgh wkh| vwd| lq qrq0frrshudwlrq prgh iruhyhu1 Lq dq| rwkhu prgh/ li erwk sod|hu vwlfn wr wkhlu vwudwhj|/ wkh| jr wr frrshudwlrq prgh lq wkh qh{w gdwh> li dq| sod|hu l ghyldwhv xqlodwhudoo| +zkloh wkh rwkhu sod|hu vwlfnv zlwk klv vwudwhj|,/ wkh| jr wr wkh sxqlvkphqw prgh iru l lq wkh qh{w gdwh> dqg li erwk sod|hu ghyldwh/ lq wkh qh{w gdwh wkh| jr wr wkh qrq0frrshudwlrq prgh1 51 Frqvlghu wkh iroorzlqj sulydwh0ydoxh dxfwlrq ri d vlqjoh remhfw/ zkrvh ydoxh iru wkh vhoohu lv 31 wkhuh duh wzr ex|huv/ vd| 4 dqg 51 Wkh ydoxh ri wkh remhfw iru hdfk ex|hu l 5 i4> 5j lv yl vr wkdw/ li l ex|v wkh remhfw sd|lqj wkh sulfh s/ klv sd|r lv yl s> li kh grhvq*w ex| wkh remhfw/ klv sd|r lv 31 Zh dvvxph wkdw y4 dqg y5 duh lqghshqghqwo| dqg lghqwlfdoo| glvwulexwhg xqlirupo| rq ^y> 4` zkhuh 3 y ? 41 +d, Zh xvh vhdohg0elg uvw0sulfh dxfwlrq/ zkhuh hdfk ex|hu l vlpxowdqhrxvo| elgv el / dqg wkh rqh zkr elgv wkh kljkhvw elg ex|v wkh remhfw sd|lqj klv rzq elg1 Frpsxwh wkh v|pphwulf Ed|hvldq Qdvk htxloleulxp lq olqhdu vwudwhjlhv/ zkhuh el @ d . fyl 1 Frpsxwh wkh h{shfwhg xwlolw| ri d ex|hu iru zkrp wkh ydoxh ri wkh remhfw lv y1 +e, Qrz dvvxph wkdw y4 dqg y5 duh lqghshqghqwo| dqg lghqwlfdoo| glvwulexwhg xqlirupo| rq ^3> 4`1 Qrz/ lq rughu wr hqwhu wkh dxfwlrq/ d sod|hu pxvw sd| dq hqwu| ihh ! 5 +3> 4,1 Iluvw/ hdfk ex|hu vlpxowdqhrxvo| ghflghv zkhwkhu wr hqwhu wkh dxfwlrq1 Wkhq/ zh uxq wkh vhdohg0elg dxfwlrq dv lq sduw +d,> zklfk sod|huv hqwhuhg lv qrz frpprq nqrzohgjh1 Li rqo| rqh sod|hu hqwhuv wkh dxfwlrq dq| elg e 3 lv dffhswhg1 Frpsxwh wkh v|pphwulf shuihfw Ed|hvldq Qdvk htxloleulxp zkhuh wkh ex|huv xvh wkh olqhdu vwudwhjlhv lq wkh dxfwlrq li erwk ex|hu hqwhu wkh dxfwlrq1 Dqwlflsdwlqj wklv htxloleulxp/ zklfk hqwu| ihh wkh vhoohu pxvw fkrrvhB ^Klqw= Lq wkh hqwu| vwdjh/ wkhuh lv d fxwr ohyho vxfk wkdw d ex|hu hqwhuv wkh dxfwlrq l klv ydoxdwlrq lv dw ohdvw dv kljk dv wkh fxwr ohyho1` 61 Frqvlghu wkh iroorzlqj uhshdwhg Vwdfnhoehuj gxrsro|/ zkhuh d orqj0uxq up sod|v djdlqvw pdq| vkruw0uxq upv/ hdfk ri zklfk lv lq wkh pdunhw rqo| iru rqh gdwh/ zkloh wkh orqj0uxq up uhpdlqv lq wkh pdunhw wkurxjkrxw wkh jdph1 Dw hdfk gdwh w/ uvw/ wkh vkruw uxq up vhwv lwv txdqwlw| {w > wkhq/ nqrzlqj {w / wkh orqj0uxq up vhwv lwv txdqwlw| |w > dqg hdfk vhoov klv jrrg dw sulfh sw @ 4 +{w . |w ,1 Wkh pdujlqdo frvwv duh doo 31 Wkh vkruw0uxq up pd{lpl}hv lwv surw/ zklfk lqfxuv dw w1 Wkh orqj0uxq up pd{lpl}hv wkh suhvhqw ydoxh ri lwv surw vwuhdp zkhuh wkh glvfrxqw udwh lv @ 3=<<1 Dw wkh ehjlqqlqj ri hdfk gdwh/ wkh dfwlrqv wdnhq suhylrxvo| duh doo frpprq nqrzohgjh1 +d, Zkdw lv wkh vxejdph shuihfw htxloleulxp li wkhuh duh rqo| qlwho| pdq| gdwhv/ l1h1/ w 5 i3> 4> = = = > W j1 +e, Qrz frqvlghu wkh lqqlwho| uhshdwhg jdph1 Ilqg d vxejdph shuihfw htxloleulxp/ zkhuh {w @ 4@7 dqg |w @ 4@5 dw hdfk w rq wkh sdwk ri htxloleulxp sod|/ qdpho| lq wkh frqwlqjhqflhv wkdw kdsshq zlwk srvlwlyh suredelolw| jlyhq wkh vwudwhjlhv1 +f, Fdq |rx qg d vxejdph shuihfw htxloleulxp/ zkhuh {w @ |w @ 4@7 iru hdfk w rq wkh sdwk ri htxloleulxp sod|B
4
71 Frqvlghu wkh iroorzlqj sulydwh0ydoxh dxfwlrq ri d vlqjoh remhfw/ zkrvh ydoxh iru wkh vhoohu lv 31 Wkhuh duh q ex|huv1 Wkh ydoxh ri wkh remhfw iru hdfk ex|hu l 5 i4> 5> = = = > qj lv yl vr wkdw/ li l ex|v wkh remhfw sd|lqj wkh sulfh s/ klv sd|r lv yl s> li kh grhvq*w ex| wkh remhfw/ klv sd|r lv 31 Zh dvvxph wkdw +y4 > = = = > yq , duh lqghshqghqwo| dqg lghqwlfdoo| glvwulexwhg xqlirupo| rq ^3> 4`1 +d, Zh xvh vhdohg0elg uvw0sulfh dxfwlrq/ zkhuh hdfk ex|hu l vlpxowdqhrxvo| elgv el / dqg wkh rqh zkr elgv wkh kljkhvw elg ex|v wkh remhfw sd|lqj klv rzq elg1 Frpsxwh wkh v|pphwulf Ed|hvldq Qdvk htxloleulxp lq olqhdu vwudwhjlhv/ zkhuh el @ d . fyl 1 +e, Frpsxwh wkh h{shfwhg xwlolw| ri d ex|hu iru zkrp wkh ydoxh ri wkh remhfw lv y1 +f, Zkdw kdsshqv dv q $ 4B Fdq vhoohu kdyh d ehwwhu phfkdqlvp +iru klpvhoi, lq wkh olplw +q @ 4,B 81 Frqvlghu wkh iroorzlqj sulydwh0ydoxh dxfwlrq ri d vlqjoh remhfw/ zkrvh ydoxh iru wkh vhoohu lv 31 wkhuh duh wzr ex|huv/ vd| 4 dqg 51 Wkh ydoxh ri wkh remhfw iru hdfk ex|hu l 5 i4> 5j lv yl vr wkdw/ li l ex|v wkh remhfw sd|lqj wkh sulfh s/ klv sd|r lv yl s> li kh grhvq*w ex| wkh remhfw/ klv sd|r lv 31 Zh dvvxph wkdw y4 dqg y5 duh lqghshqghqwo| dqg lghqwlfdoo| glvwulexwhg zlwk wkh suredelolw| ghqvlw| ixqfwlrq i = ^3> 4, $ ^3> 4,/ zkhuh { li { 5 ^3> 5` i +{, @ 3 rwkhuzlvh1 +d, Zh xvh vhdohg0elg uvw0sulfh dxfwlrq/ zkhuh hdfk ex|hu l vlpxowdqhrxvo| elgv el / dqg wkh rqh zkr elgv wkh kljkhvw elg ex|v wkh remhfw sd|lqj klv rzq elg1 Frpsxwh wkh v|pphwulf Ed|hvldq Qdvk htxloleulxp lq olqhdu vwudwhjlhv/ zkhuh el @ d . fyl 1 Frpsxwh wkh h{shfwhg xwlolw| ri d ex|hu iru zkrp wkh ydoxh ri wkh remhfw lv y1 +e, Zkdw lv wkh Ed|hvldq Qdvk htxloleulxp iru wkh vhdohg0elg vhfrqg0sulfh dxfwlrq/ zkhuh wkh zlqqhu sd|v rqo| wkh rwkhu ex|hu*v elg1 Zkdw lv wkh h{shfwhg xwlolw| ri d ex|hu iru zkrp wkh ydoxh ri wkh remhfw lv yB 91 ^Wrwdo= 73 srlqwv` Frqvlghu wkh iroorzlqj vwdjh jdph ehwzhhq sod|huv D dqg E= DqE o p u O +43> 7, +43> 3, +4> 4, P +3> 43, +4> 4, +4> 4, U +7> 43, +4> 4, +5> 5, +d, Ilqg wkh Qdvk Htxloleuld ri wklv jdph1 ^8 srlqwv`
+e, Frqvlghu d vxshujdph JW zklfk lv rewdlqhg e| uhshdwlqj wklv vwdjh jdph W wlphv1 Ilqg wkh vxejdph shuihfw htxloleuld ri JW 1 ^8 srlqwv`
+f, Qrz frqvlghu J4 +, zklfk lv rewdlqhg e| uhshdwlqj wklv vwdjh jdph dq lqqlwh qxpehu ri wlphv zlwk glvfrxqw idfwru iru erwk sod|huv1 Ilqg dq htxloleulxp zklfk lv suhihuuhg wr sod|lqj wkh Qdvk Htxloleulxp ri wkh vwdjh jdph1 ^63 srlqwv`
:1 ^Wrwdo= 63 srlqwv` Frqvlghu wkh iroorzlqj lqfrpsohwh lqirupdwlrq Ehuwudqg jdph1 Wkhuh lv rqh fxvwrphu zkr zloo ex| rqh xqlw ri wkh jrrg dv orqj dv wkh sulfh/ S / lv ohvv wkdq U1 Ilup 4 kdv frvw htxdo wr f1 Ilup 5 kdv frvw fO zlwk suredelolw| dqg frvw fK zlwk suredelolw| 4 > zkhuh fO ? f ? fK ? U1 Wkh frvw ohyho ri up 5 lv qrw revhuyhg e| up 4/ exw up 5 nqrzv lwv rzq frvw ohyho1 Erwk upv vlpxowdqhrxvo| fkrrvh wkhlu sulfhv1 Wkh up zlwk wkh orzhu sulfh vxssolhv wkh fxvwrphu1 Li wkh| kdyh htxdo sulfh/ rqh ri wkh upv lv udqgrpo| fkrvhq wr vxsso| wkh fxvwrphu1 Erwk upv duh ulvn0qhxwudo1 +d, Zulwh wkh sd|r ixqfwlrqv ri wkh wzr upv1 ^8 srlqwv` +e, Ghqh d Ed|hvldq Qdvk Htxloleulxp iru wklv jdph1 ^8 srlqwv` +f, Vkrz wkdw wkhuh h{lvwv qr sxuh vwudwhj| Ed|hvldq Qdvk Htxloleulxp1^53 srlqwv`
5
14.12 Solutions for Question 7 (or 8) Kenichi Amaya1 November 9, 2001 (a) Let’s denote firm 2’s by c2 , i.e., c2 ∈ {cL , cH }. Let p1 and p2 be each firm’s price (action). Then, each firm’s payoff functions can be written as p1 − c if p1 < p2 p1 −c π1 (p1 , p2 ) = if p1 = p2 , 2 0 if p1 > p2 p2 − c2 if p2 < p1 p2 −c2 π2 (p1 , p2 ; c2 ) = if p2 = p1 2 0 if p2 > p1 (b) A pure strategy profile {p∗1 , (p∗2L , p∗2H )} is a Bayesian Nash equilibrium if p∗1 = argmaxp1 θπ1 (p1 , p∗2L ) + (1 − θ)π1 (p1 , p∗2H ), p∗2L = argmaxp2 π2 (p∗1 , p2 ; cL ), p∗2H = argmaxp2 π2 (p∗1 , p2 ; cH ), (c) If there exists a pure strategy Bayesia Nash equilibrium, it must be true that p∗1 = min{p∗2L , p∗2H }. To see this, if p∗1 < min{p∗2L , p∗2H }, firm 1 is always selling to the whole market. If it increases the price slightly, it still sells the whole market. So it can increase the payoff. If p∗2k < p∗1 , where k is either L or H, firm 2 is selling to the whole market when its type is k. If it increases the price slightly, it still sells the whole market. So it can increase the payoff. Next, if there exists a pure strategy Bayesia Nash equilibrium, it must be true that p∗1 = min{p∗2L , p∗2H } = c. To see this, if p∗1 < c, firm 1 is selling positive amount and losing money. Therefore it’s better to charge a price higher than R and not to sell to get zero profit. On the other hand, if p∗1 < c, firm 1 can increase it’s profit by slightly reducing its price. Finally, p∗1 = min{p∗2L , p∗2H } = c can not be an equilibrium because firm 2 of type L can increase its profit by choosing a price slightly smaller than c. 1 E52-303,
[email protected], 253-3591
1
47145 Jdph Wkhru| Ilqdo 452:25333 Suri1 Pxkdphw \logl} Lqvwuxfwlrqv1 Wklv lv dq rshq errn h{dp> |rx fdq xvh dq| zulwwhq pdwhuldo1 \rx kdyh rqh krxu dqg 53 plqxwhv1 Sohdvh dqvzhu rqo| wkuhh ri wkh iroorzlqj irxu txhvwlrqv1 Hdfk txhvwlrq lv 66 srlqwv1 Jrrg oxfn$ 41 Lq Vshqfh*v Mre0pdunhw vljqdoolqj jdph/ dvvxph wkdw wkhuh duh wkuhh w|shv ri zrunhuv/ | ' c 2c 1 Hdfk zrunhu ri w|sh | kdv sd|r ixqfwlrq e*|c zkhuh lv wkh zdjh dqg e lv wkh hgxfdwlrq ohyho1 Wkh sd|r iru wkh up wkdw kluhv d zrunhu ri w|sh | zlwk zdjh lv | 1 Wkh upv frpshwh iru wkh zrunhuv1 +d, Ilqg d vhsdudwlqj htxloleulxp1 +Grq*w irujhw wkh eholhiv dqg zdjhv1, +e, Dvvxplqj hdfk w|sh lv htxdoo| olnho|/ qg dq htxloleulxp lq zklfk wkh w|shv 5 dqg 6 duh srrolqj zkloh w|sh 4 lv vhsdudwlqj1 51 Frqvlghu wkh iroorzlqj jdph1
(1,0)
(3,1) 1
L (0,1)
R {0.4}
(1,0)
2
2
(0,0)
(2,1)
(1,0)
{0.6} 1
L
R
+d, Ilqg d vhsdudwlqj htxloleulxp1 +e, Ilqg d srrolqj htxloleulxp1 +f, Ilqg dq htxloleulxp lq zklfk d w|sh ri sod|hu rqh sod|v d +frpsohwho|, pl{hg vwudwhj|1 61 Frqvlghu d ohjdo fdvh zkhuh d sodlqwl ohv d vxlw djdlqvw d ghihqgdqw1 Lw lv frpprq nqrzohgjh wkdw/ zkhq wkh| jr wr frxuw/ wkh ghihqgdqw zloo kdyh wr sd| '4333/333 wr wkh sodlqwl/ dqg '433/333 wr wkh frxuw1 Wkh frxuw gdwh lv vhw 43 gd|v iurp qrz1 Ehiruh wkh frxuw gdwh sodlqwl dqg wkh ghihqgdqw fdq vhwwoh sulydwho|/ lq zklfk fdvh wkh| gr qrw kdyh wkh frxuw1 Xqwlo wkh fdvh lv vhwwohg +zkhwkhu lq wkh frxuw ru sulydwho|, iru 4
(3,1)
hdfk gd|/ wkh sodlqwl dqg wkh ghihqgdqw sd| '5333 dqg '4333/ uhvshfwlyho|/ wr wkhlu ohjdo whdp1 Wr dyrlg doo wkhvh frvwv sodlqwl dqg wkh ghihqgdqw duh qhjrwldwlqj lq wkh iroorzlqj zd|1 Lq wkh uvw gd| ghpdqgv dq dprxqw ri prqh| iru wkh vhwwohphqw1 Li wkh ghihqgdqw dffhswv/ wkhq kh sd|v wkh dprxqw dqg wkh| vhwwoh1 Li kh uhmhfwv/ wkhq kh rhuv d qhz dprxqw1 Li wkh sodlqwl dffhswv wkh rhu/ wkh| vhwwoh iru wkdw dprxqw> rwkhuzlvh wkh qh{w gd| wkh sodlqwl ghpdqgv d qhz dprxqw> dqg wkh| pdnh rhuv dowhuqdwlyho| lq wklv idvklrq xqwlo wkh frxuw gd|1 Sod|huv duh ulvn qhxwudo dqg gr qrw glvfrxqw wkh ixwxuh1 Ilqg wkh vxejdph0shuihfw htxloleulxp1 71 Frqvlghu d zrunhu dqg d up1 Zrunhu fdq eh ri wzr w|shv/ Kljk ru Orz1 Wkh zrunhu nqrzv klv w|sh/ zkloh wkh up eholhyhv wkdw hdfk w|sh lv htxdoo| olnho|1 Uhjdugohvv ri klv w|sh/ d zrunhu lv zruwk 43 iru wkh up1 Wkh zrunhu*v uhvhuydwlrq zdjh +wkh plqlpxp zdjh wkdw kh lv zloolqj wr dffhsw, ghshqgv rq klv w|sh1 Li kh lv ri kljk w|sh klv uhvhuydwlrq zdjh lv 8 dqg li kh lv ri orz w|sh klv uhvhuydwlrq zdjh lv 31 Iluvw wkh zrunhu ghpdqgv d zdjh f > li wkh up dffhswv lw/ wkhq kh lv kluhg zlwk zdjh f / zkhq wkh sd|rv ri wkh up dqg wkh zrunhu duh f f dqg f / uhvshfwlyho|1 Li wkh up uhmhfwv lw/ lq wkh qh{w gd|/ wkh up rhuv d qhz zdjh 1 Li wkh zrunhu dffhsw wkh rhu/ kh lv kluhg zlwk wkdw zdjh/ zkhq wkh sd|rv ri wkh up dqg wkh zrunhu duh djdlq f dqg / uhvshfwlyho|1 Li wkh zrunhu uhmhfwv wkh rhu/ wkh jdph hqgv/ zkhq wkh zrunhu jhwv klv uhvhuydwlrq zdjh dqg wkh up jhwv 31 Ilqg d shuihfw Ed|hvldq htxloleulxp ri wklv jdph1
5
14.12 Game Theory Fall 2000 Final Exam Solutions
December 14, 2001
1. (a) Given perfect competition among firms, wages will be w1 = 1,w2 = 2 and w3 = 3 for types t = 1, 2, 3 respectively. The incentive compatibility constraints give us the conditions that the education levels must fulfill in equilibrium: e∗2 ≥ 1 + e∗1 and e∗3 ≥ 2 + e∗1 for t = 1, e∗2 ≤ 2 + e∗1 and e∗3 ≥ 2 + e∗2 for t = 2, and e∗3 ≤ 3 + e∗2 and e∗3 ≤ 6 + e∗1 for t = 3. If we let, for example, e∗1 = 0, then e∗2 = 1 and e∗3 = 3. Beliefs are µ(t = 1|e0 ) = 1, where e0 is in [0, inf), µ(t = 2|e = 1) = 1 and µ(t = 3|e = 3) = 1. (b) Let w1 = 1 as before, since type 1 is separating. Given that types 2 and 3 are pooling, their wage is the expected marginal productivity or 1/2(2) + 1/2(3) = 5/2. Letting e∗1 = 0, the compatibility constraints provide the conditions that the education levels must fulfill in equilibrium: e∗ ≥ 3/2 and e∗ ≤ 3. For instance, we choose e∗ = 2. Beliefs are µ(t = 1|e 6= e∗ ) = 1, µ(t = 2|e∗ ) = 1/2 and µ(t = 3|e∗ ) = 1/2. 2. (a) Let the separating equilibrium be one where top plays R, bottom plays L. The beliefs are µ(top|R) = 1 and µ(bottom|R) = 1. Player 2, the receiver, plays up in the information set on the right-hand side, and down, on the information set on the left-hand side. Now it is easy to check that player 1’s types do not want to deviate: if top type plays L instead, she gets 0 as opposed to 3, while bottom type, if she plays R instead, gets 1 as opposed to 2. (b) Pooling on R: player 2 plays down when sees R since EU (up|R) = 0.4(1) + 0.6(0) = 0.4 < EU (down|R) = 0.4(0) + 0.6(1) = 0.6. Any beliefs about types given L actually support this equilibrium. (c) Mixed strategies equilibrium: Bottom mixes αR + (1 − α)L. Player 2 mixes 1/2up+1/2down when sees R. By applying Bayes’ rule and forcing it to be equal to 1/2, because this is the value that would make the bottom type want to mix, we have µ(top|R) = 0.4(1)/(0.4+0.6(α)) = 1/2. In particular, for player 2, EU (up|R) = P (top|R) and EU (down|R) = 1 − P (top|R). Setting these two equal, because we need player 2 to mix 1
after observing R in order for bottom type to want to mix, we obtain that P (top|R) = 1/2. From the Bayes’ rule equation we solve for α above, such that bottom type’s strategy is 2/3R + 1/3L. Top type always plays R. Player 2 plays 1/2up + 1/2down when sees R and plays down when sees L. Beliefs are µ(bottom|L) = 1 and µ(top|R) = 1/2. 3. Given no discounting, and the fact that the plaintiff gets to make the first offer, the game ends in the first day, with the plaintiff making an offer w and the defendant accepting the offer. In particular, taking into account the legal fees both parties must pay until court day, and the amount the defendant must pay then, which is certain and common knowledge, the plaintiff will offer 1, 110K and the defendant will accept all offers less than or equal to this amount, and reject all others. 4. One pooling equilibrium of this game would be for the firm to reject all offers w0 > 5 and accept all others, for both types of workers to offer w0 = 5, and to offer w1 = 5 in the following period if reached. Beliefs: µ(type = 0|w 6= 5) = 1. Workers do not want to deviate because that would lead to a rejection and a wage of 5 in the following period, which is what they can get now (so they are indifferent).
2
(2,1)
(3,1) 1
L (0,0)
R {0.6}
(1,0)
2
2
(0,0)
(1,1)
(2,0)
{0.4} 1
L
R
(3,1)
Iljxuh 4= 47145 Jdph Wkhru| Ilqdo +Pdnh Xs, 4524825333 Suri1 Pxkdphw \logl} Lqvwuxfwlrqv1 Wklv lv dq rshq errn h{dp> |rx fdq xvh dq| zulwwhq pdwhuldo1 \rx kdyh rqh krxu dqg 53 plqxwhv1 Sohdvh dqvzhu rqo| wkuhh ri wkh iroorzlqj irxu txhvwlrqv1 Hdfk txhvwlrq lv 66 srlqwv1 Jrrg oxfn$ 41 Wzr sod|huv +vd| D dqg E, rzq d frpsdq|/ hdfk ri wkhp rzqlqj d kdoi ri wkh Frpsdq|1 Wkh| zdqw wr glvvroyh wkh sduwqhuvkls lq wkh iroorzlqj zd|1 Sod|hu D vhwv d sulfh R1 Wkhq/ sod|hu E ghflghv zkhwkhu wr ex| D*v vkduh ru wr vhoo klv rzq vkduh wr D/lq hdfk fdvh dw sulfh R1 Wkh ydoxh ri wkh Frpsdq| iru sod|huv D dqg E duh dqg / uhvshfwlyho|1 +d, Dvvxph wkdw wkh ydoxhv dqg duh frpprqo| nqrzq1 Zkdw zrxog eh wkh sulfh lq wkh vxejdph0shuihfw htxloleulxpB +e, Dvvxph wkdw wkh ydoxh ri wkh Frpsdq| iru hdfk sod|hu lv klv rzq sulydwh lqirupd0 wlrq/ dqg wkdw wkhvh ydoxhv duh lqghshqghqwo| gudzq iurp d xqlirup glvwulexwlrq rq ^3/4`1 Frpsxwh wkh shuihfw Ed|hvldq htxloleulxp1 51 Frqvlghu wkh iroorzlqj jdph1 +d, Ilqg d vhsdudwlqj htxloleulxp1 +e, Ilqg d srrolqj htxloleulxp1 +f, Ilqg dq htxloleulxp lq zklfk d w|sh ri sod|hu 4 sod|v d +frpsohwho|, pl{hg vwudw0 hj|1 4
61 Ilqg wkh vxejdph0shuihfw htxloleulxp ri wkh iroorzlqj 50shuvrq jdph1 Iluvw/ sod|hu 4 slfnv dq lqwhjhu %f zlwk %f f1 Wkhq/ sod|hu 5 slfnv dq lqwhjhu + zlwk %f n + %f n f1 Wkhq/ sod|hu 4 slfnv dq lqwhjhu %2 zlwk + n %2 + n f1 Lq wklv idvklrq/ wkh| slfn lqwhjhuv/ dowhuqdwlyho|1 Dw hdfk wlph/ wkh sod|hu pryhv slfnv dq lqwhjhu/ e| dgglqj dq lqwhjhu ehwzhhq 4 dqg 43 wr wkh qxpehu slfnhg e| wkh rwkhu sod|hu odvw wlph1 Zkrhyhu slfnv 433 zlqv wkh jdph dqg jhwv 433> wkh rwkhu orvhv wkh jdph dqg jhwv }hur1 71 Frqvlghu d xvhg0fdu pdunhw zkhuh ex|huv qhhg wr xvh wkhlu fduv lq wzr shulrgv1 Wkhuh duh wzr w|shv ri fduv/ shdfkhv dqg ohprqv1 D shdfk zloo qrw euhdn grzq dqg wkh ex|hu zloo xvh lw wzr shulrgv1 D ohprq fdq euhdn grzq dw wkh hqg ri wkh uvw shulrg zlwk suredelolw| 425/ lq zklfk fdvh ex|hu zloo qrw eh deoh wr xvh lq wkh vhfrqg shulrg1 Wkh ydoxh ri d fdu iru d ex|hu lv '5/333 li kh xvhv lw rqo| lq wkh uvw shulrg/ dqg '7/333 li kh xvhv lw lq erwk shulrgv1 Wkh ydoxh ri d fdu iru wkh vhoohu lv '5/933 li lw lv d ohprq/ dqg '6/933 li lw lv d shdfk1 Iru hdfk fdu wkh vhoohu nqrzv zkhwkhu lw lv d ohprq ru shdfk exw wkh ex|hu grhv qrw nqrz1 Erwk ex|huv dqg wkh vhoohuv duh ulvn qhxwudo/ dqg wkhuh duh htxdo qxpehu ri ex|huv dqg vhoohuv +dqg htxdo qxpehu ri shdfkhv dqg ohprqv,1 +d, Ilqg wkh htxloleulxp sulfh lq wklv pdunhw1 +e, Qrz/ lqwurgxfh d ulvn0qhxwudo ghdohu lq wkh pdunhw1 Kh fdq whoo zkhwkhu d fdu lv d ohprq ru d shdfk zlwk fhuwdlqw|1 Kh vhoov wkh fduv zlwk d zduudqw|/ uhsodflqj wkh fdu zlwk dqrwkhu rqh li lw euhdnv grzq/ lqfxuulqj d frvw ri '4/;331 Qrz hyhu| vhoohu hlwkhu vhoov lq wkh pdunhw ru jrhv wr wkh ghdohu1 Diwhu fkhfnlqj wkh fdu/ ghdohu rhuv klp d sulfh1 Li wkh vhoohu dffhswv/ wkh ghdohu ex|v wkh fdu dw wkdw sulfh/ dqg vhoov lw lq wkh pdunhw zlwk wkh zduudqw|1 Zkdw duh wkh htxloleulxp sulfhv lq wkh pdunhwB ^Wkh sulfh ri d fdu vrog e| wkh rzqhu/ e| wkh ghdohu/ dqg wkh dprxqw wkh ghdohu rhuv wr hdfk vhoohu1`
5