Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C000 Final Proof page i 10.12.2008 10...
71 downloads
606 Views
7MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C000 Final Proof page i 10.12.2008 10:36am Compositor Name: MSubramanian
Functionally Graded Materials Nonlinear Analysis of Plates and Shells
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C000 Final Proof page ii 10.12.2008 10:36am Compositor Name: MSubramanian
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C000 Final Proof page iii 10.12.2008 10:36am Compositor Name: MSubramanian
Functionally Graded Materials Nonlinear Analysis of Plates and Shells
Hui-Shen Shen
Boca Raton London New York
CRC Press is an imprint of the Taylor & Francis Group, an informa business
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C000 Final Proof page iv
10.12.2008 10:36am Compositor Name: MSubramanian
CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2009 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-13: 978-1-4200-9256-1 (Hardcover) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Shen, Hui-Shen. Functionally graded materials : nonlinear analysis of plates and shells / Hui-Shen Shen. p. cm. Includes bibliographical references and index. ISBN 978-1-4200-9256-1 (alk. paper) 1. Functionally gradient materials. 2. Shells (Engineering)--Thermal properties. 3. Plates (Engineering)--Thermal properties. I. Title. TA418.9.F85S54 2009 624.1’776--dc22 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com
2008036386
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C000 Final Proof page v 10.12.2008 10:36am Compositor Name: MSubramanian
Contents Preface................................................................................................................... vii Author..................................................................................................................... ix
Chapter 1
Modeling of Functionally Graded Materials and Structures ....................................................................... 1 1.1 Introduction ................................................................................................... 1 1.2 Effective Material Properties of FGMs ....................................................... 3 1.3 Reddy’s Higher Order Shear Deformation Plate Theory........................ 9 1.4 Generalized Kármán-Type Nonlinear Equations ................................... 14 References.............................................................................................................. 17 Chapter 2 Nonlinear Bending of Shear Deformable FGM Plates ... 21 2.1 Introduction ................................................................................................. 21 2.2 Nonlinear Bending of FGM Plates under Mechanical Loads in Thermal Environments .............................................................. 22 2.3 Nonlinear Thermal Bending of FGM Plates due to Heat Conduction............................................................................. 36 References.............................................................................................................. 42 Chapter 3 Postbuckling of Shear Deformable FGM Plates ............. 45 3.1 Introduction ................................................................................................. 45 3.2 Postbuckling of FGM Plates with Piezoelectric Actuators under Thermoelectromechanical Loads................................................... 47 3.3 Thermal Postbuckling Behavior of FGM Plates with Piezoelectric Actuators ...................................................................... 66 3.4 Postbuckling of Sandwich Plates with FGM Face Sheets in Thermal Environments .......................................................................... 82 References.............................................................................................................. 96 Chapter 4
Nonlinear Vibration of Shear Deformable FGM Plates .......................................................................... 99 4.1 Introduction ................................................................................................. 99 4.2 Nonlinear Vibration of FGM Plates in Thermal Environments ......... 100 4.2.1 Free Vibration ................................................................................ 108 4.2.2 Forced Vibration............................................................................ 108 4.3 Nonlinear Vibration of FGM Plates with Piezoelectric Actuators in Thermal Environments ........................................................................ 118 4.4 Vibration of Postbuckled Sandwich Plates with FGM Face Sheets in Thermal Environments ................................................... 132 References............................................................................................................ 143 v
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C000 Final Proof page vi
vi
10.12.2008 10:36am Compositor Name: MSubramanian
Contents
Chapter 5 Postbuckling of Shear Deformable FGM Shells ........... 147 5.1 Introduction ............................................................................................... 147 5.2 Boundary Layer Theory for the Buckling of FGM Cylindrical Shells....................................................................................... 149 5.2.1 Donnell Theory.............................................................................. 149 5.2.2 Generalized Kármán–Donnell-Type Nonlinear Equations ..... 150 5.2.3 Boundary Layer-Type Equations ................................................ 152 5.3 Postbuckling Behavior of FGM Cylindrical Shells under Axial Compression ........................................................................ 153 5.4 Postbuckling Behavior of FGM Cylindrical Shells under External Pressure ........................................................................... 169 5.5 Postbuckling Behavior of FGM Cylindrical Shells under Torsion ............................................................................................ 183 5.6 Thermal Postbuckling Behavior of FGM Cylindrical Shells....................................................................................... 199 References............................................................................................................ 208 Appendix A............................................................................................ 211 Appendix B ............................................................................................ 213 Appendix C ............................................................................................ 215 Appendix D ........................................................................................... 221 Appendix E ............................................................................................ 225 Appendix F ............................................................................................ 227 Appendix G ........................................................................................... 229 Appendix H ........................................................................................... 231 Appendix I ............................................................................................. 233 Appendix J ............................................................................................. 235 Appendix K............................................................................................ 239 Appendix L ............................................................................................ 241 Appendix M ........................................................................................... 245 Appendix N ........................................................................................... 247 Appendix O ........................................................................................... 257 Index....................................................................................................... 259
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C000 Final Proof page vii 10.12.2008 10:36am Compositor Name: MSubramanian
Preface With the development of new industries and modern processes, many structures serve in thermal environments, resulting in a new class of composite materials called functionally graded materials (FGMs). FGMs were initially designed as thermal barrier materials for aerospace structural applications and fusion reactors. They are now developed for general use as structural components in extremely high-temperature environments. The ability to predict the response of FGM plates and shells when subjected to thermal and mechanical loads is of prime interest to structural analysis. In fact, many structures are subjected to high levels of load that may result in nonlinear load–deflection relationships due to large deformations. One of the important problems deserving special attention is the study of their nonlinear response to large deflection, postbuckling, and nonlinear vibration. This book consists of five chapters. The chapter and section titles are significant indicators of the content matter. Each chapter contains adequate introductory material to enable engineering graduates who are familiar with the basic understanding of plates and shells to follow the text. The modeling of FGMs and structures is introduced and the derivation of the governing equations of FGM plates in the von Kármán sense is presented in Chapter 1. In Chapter 2, the geometrically nonlinear bending of FGM plates due to transverse static loads or heat conduction is presented. Chapter 3 furnishes a detailed treatment of the postbuckling problems of FGM plates subjected to thermal, electrical, and mechanical loads. Chapter 4 deals with the nonlinear vibration of FGM plates with or without piezoelectric actuators. Finally, Chapter 5 presents postbuckling solutions for FGM cylindrical shells under various loading conditions. Most of the solutions presented in these chapters are the results of investigations conducted by the author and his collaborators since 2001. The results presented herein may be treated as a benchmark for checking the validity and accuracy of other numerical solutions. Despite a number of existing texts on the theory and analysis of plates and=or shells, there is not a single book that is devoted entirely to the geometrically nonlinear problems of inhomogeneous isotropic and functionally graded plates and shells. It is hoped that this book will fill the gap to some extent and be used as a valuable reference source for postgraduate students, engineers, scientists, and applied mathematicians in this field. I wish to record my appreciation to the National Natural Science Foundation of China (grant nos. 59975058 and 50375091) for partially funding this work, and I also wish to thank my wife for her encouragement and forbearance. Hui-Shen Shen
vii
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C000 Final Proof page viii 10.12.2008 10:36am Compositor Name: MSubramanian
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C000 Final Proof page ix
10.12.2008 10:36am Compositor Name: MSubramanian
Author Hui-Shen Shen is a professor of applied mechanics at Shanghai Jiao Tong University. He graduated from Tsinghua University in 1970, and received his MSc in solid mechanics and his PhD in structural mechanics from Shanghai Jiao Tong University in 1982 and 1986, respectively. In 1991–1992, he was a visiting research fellow at the University of Wales (Cardiff) and the University of Liverpool in the United Kingdom. Dr. Shen became a full professor of applied mechanics at Shanghai Jiao Tong University at the end of 1992. In 1995, he was invited again as a visiting professor at the University of Cardiff and in 1998–1999, as a visiting research fellow at the Hong Kong Polytechnic University, and in 2002–2003 as a visiting professor at the City University of Hong Kong. Also in 2002, he was a Tan Chin Tuan exchange fellow at the Nanyang Technological University in Singapore and in 2004, he was a Japan Society for the Promotion of Science (JSPS) invitation fellow at the Shizuoka University in Japan. In 2007, Dr. Shen was a visiting professor at the University of Western Sydney in Australia. Dr. Shen’s research interests include stability theory and, in general, nonlinear response of plate and shell structures. He has published over 190 journal papers, of which 123 are international journal papers. His research publications have been widely cited in the areas of computational mechanics and structural engineering (more than 1500 times by papers published in 387 international archival journals, and 220 local journals, excluding self-citations). He is the coauthor of the books Buckling of Structures (with T.-Y. Chen) and Postbuckling Behavior of Plates and Shells. He won the second Science and Technology Progress Awards of Shanghai in 1998 and 2003, respectively. Currently, Dr. Shen serves on the editorial boards of the journal Applied Mathematics and Mechanics (ISSN: 0253-4827) and the International Journal of Structural Stability and Dynamics (ISSN: 0219-4554). He is a member of the American Society of Civil Engineers.
ix
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C000 Final Proof page x 10.12.2008 10:36am Compositor Name: MSubramanian
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C001 Final Proof page 1 9.12.2008 6:48pm Compositor Name: VBalamugundan
1 Modeling of Functionally Graded Materials and Structures
1.1
Introduction
The most lightweight composite materials with high strength=weight and stiffness=weight ratios have been used successfully in aircraft industry and other engineering applications. However, the traditional composite material is incapable to employ under the high-temperature environments. In general, the metals have been used in engineering field for many years on account of their excellent strength and toughness. In the high-temperature condition, the strength of the metal is reduced similar to the traditional composite material. The ceramic materials have excellent characteristics in heat resistance. However, the applications of ceramic are usually limited due to their low toughness. Recently, a new class of composite materials known as functionally graded materials (FGMs) has drawn considerable attention. A typical FGM, with a high bending–stretching coupling effect, is an inhomogeneous composite made from different phases of material constituents (usually ceramic and metal). An example of such material is shown in Figure 1.1 (Yin et al. 2004) where spherical or nearly spherical particles are embedded within an isotropic matrix. Within FGMs the different microstructural phases have different functions, and the overall FGMs attain the multistructural status from their property gradation. By gradually varying the volume fraction of constituent materials, their material properties exhibit a smooth and continuous change from one surface to another, thus eliminating interface problems and mitigating thermal stress concentrations. This is due to the fact that the ceramic constituents of FGMs are able to withstand high-temperature environments due to their better thermal resistance characteristics, while the metal constituents provide stronger mechanical performance and reduce the possibility of catastrophic fracture. The term FGMs was originated in the mid-1980s by a group of scientists in Japan (Yamanoushi et al. 1990, Koizumi 1993). Since then, an effort to develop high-resistant materials using FGMs had been continued. FGMs were initially designed as thermal barrier materials for aerospace structures and fusion reactors (Hirai and Chen 1999, Chan 2001, Uemura 2003). They 1
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C001 Final Proof page 2 9.12.2008 6:48pm Compositor Name: VBalamugundan
2
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
Phase B particles with phase A matrix
Transition zone
FIGURE 1.1 An FGM with the volume fractions of constituent phases graded in one (vertical) direction. (From Yin, H.M., Sun, L.Z., and Paulino, G.H., Acta Mater., 52, 3535, 2004. With permission.)
Phase A particles with phase B matrix
are now developed for the general use as structural components in hightemperature environments. An example is FGM thin-walled rotating blades as shown in Figure 1.2 (Librescu and Song 2005). Potential applications of FGM are both diverse and numerous. Applications of FGMs have recently been reported in the open literature, e.g., FGM sensors (Müller et al. 2003) and actuators (Qiu et al. 2003), FGM metal=ceramic armor (Liu et al. 2003), FGM photodetectors (Paszkiewicz et al. 2008), and FGM dental implant (Watari et al. 2004, see Figure 1.3). A number of reviews dealing with various
Y Ω Ro
g
y
X
xp
r1 d L
yD
g +b o x z, Z
FIGURE 1.2 An FGM thin-walled tapered pretwisted turbine blade. (From Librescu, L. and Song, S.-Y., J. Therm. Stresses, 28, 649, 2005. With permission.)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C001 Final Proof page 3 9.12.2008 6:48pm Compositor Name: VBalamugundan
Modeling of Functionally Graded Materials and Structures
2 mm
3
FIGURE 1.3 Ti=20HAP FGM dental implant. External appearance (left) and cross-section (right). (From Watari, F., Yokoyama, A., Omori, M., Hirai, T., Kondo, H., Uo, M., and Kawasaki, T., Compos. Sci. Technol., 64, 893, 2004. With permission.)
aspects of FGMs have been published in the past few decades (Fuchiyama and Noda 1995, Markworth et al. 1995, Tanigawa 1995, Noda 1999, Paulino et al. 2003). They show that most of early research studies in FGMs had more focused on thermal stress analysis and fracture mechanics. A comprehensive survey for bending, buckling, and vibration analysis of plate and shell structures made of FGMs was presented by Shen (2004). Recently, Birman and Byrd (2007) presented a review of the principal developments in FGMs that includes heat transfer issues, stress, stability and dynamic analyses, testing, manufacturing and design, applications, and fracture.
1.2
Effective Material Properties of FGMs
Several FGMs are manufactured by two phases of materials with different properties. A detailed description of actual graded microstructures is usually not available, except perhaps for information on volume fraction distribution. Since the volume fraction of each phase gradually varies in the gradation direction, the effective properties of FGMs change along this direction. Therefore, we have two possible approaches to model FGMs. For the first choice, a piecewise variation of the volume fraction of ceramic or metal is assumed, and the FGM is taken to be layered with the same volume fraction in each region, i.e., quasihomogeneous ceramic–metal layers (Figure 1.4a). For the second choice, a continuous variation of the volume fraction of ceramic or metal is assumed (Figure 1.4b), and the metal volume fraction can be represented as the following function of the thickness coordinate Z. 2Z þ h N Vm ¼ 2h
(1:1)
where h is the thickness of the structure, and N (0 N 1) is a volume fraction exponent, which dictates the material variation profile through the
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C001 Final Proof page 4 9.12.2008 6:48pm Compositor Name: VBalamugundan
4
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
(a)
(b)
FIGURE 1.4 Analytical model for an FGM layer.
FGM layer thickness. As is presented in Figure 1.5, changing the value of N generates an infinite number of composition distributions. In order to accurately model the material properties of FGMs, the properties must be temperature- and position-dependent. This is achieved by using
1.00 N = 0.1 0.75
N = 0.2
Vm
N = 0.5 0.50
N = 1.0 N = 2.0 N = 3.0 N = 5.0
0.25
N = 10.0 N = 100 0.00 −0.50
−0.25
0.00 Z/h
FIGURE 1.5 Volume fraction of metal along the thickness.
0.25
0.50
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C001 Final Proof page 5 9.12.2008 6:48pm Compositor Name: VBalamugundan
Modeling of Functionally Graded Materials and Structures
5
a simple rule of mixture of composite materials (Voigt model). The effective material properties Pf of the FGM layer, like Young’s modulus Ef, and thermal expansion coefficient af, can then be expressed as X Pf ¼ Pj Vfj (1:2) j¼1
where Pj and Vfj are the material properties and volume fraction of the constituent material j, and the sum of the volume fractions of all the constituent materials makes 1, i.e., X Vfj ¼ 1 (1:3) j¼1
Since functionally graded structures are most commonly used in hightemperature environment where significant changes in mechanical properties of the constituent materials are to be expected (Reddy and Chin 1998), it is essential to take into consideration this temperature-dependency for accurate prediction of the mechanical response. Thus, the effective Young’s modulus Ef, Poisson’s ratio nf, thermal expansion coefficient af, and thermal conductivity kf are assumed to be temperature dependent and can be expressed as a nonlinear function of temperature (Touloukian 1967): Pj ¼ P0 (P1 T 1 þ 1 þ P1 T þ P2 T 2 þ P3 T 3 )
(1:4)
where P0, P1, P1, P2, and P3 are the coefficients of temperature T (in K) and are unique to the constituent materials. Typical values for Young’s modulus Ef (in Pa), Poisson’s ratio nf, thermal expansion coefficient af (in K1), and the thermal conductivity kf (in W mK1) of ceramics and metals are listed in Tables 1.1 through 1.4 (from Reddy and Chin 1998). From Equations 1.1 through 1.3, one has (Gibson et al. 1995): Ef (Z, T) ¼ [Em (T) Ec (T)]
2Z þ h N þ Ec (T) 2h
(1:5a)
TABLE 1.1 Modulus of Elasticity of Ceramics and Metals in Pa for Ef P0
P1
P1
Zirconia
244.27e þ 9
0
1.371e 3
1.214e 6
3.681e 10
Aluminum oxide
349.55e þ 9
0
3.853e 4
4.027e 7
1.673e 10
Silicon nitride
348.43e þ 9
0
3.070e 4
2.160e 7
8.946e 11
Ti-6Al-4V Stainless steel
122.56e þ 9 201.04e þ 9
0 0
4.586e 4 3.079e 4
0 6.534e 7
0 0
Nickel
223.95e þ 9
0
2.794e 4
3.998e 9
0
Materials
P2
P3
Source: Reddy, J.N. and Chin, C.D., J. Therm. Stresses, 21, 593, 1998. With permission.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C001 Final Proof page 6 9.12.2008 6:48pm Compositor Name: VBalamugundan
6
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
TABLE 1.2 Coefficient of Thermal Expansion of Ceramics and Metals in K1 for af Materials Zirconia
P0
P1
P1
12.766e 6
0
1.491e 3
P2
P3
1.006e 5
6.778e 11
Aluminum oxide
6.8269e 6
0
1.838e 4
0
0
Silicon nitride
5.8723e 6
0
9.095e 4
0
0
Ti-6Al-4V
7.5788e 6
0
6.638e 4
12.330e 6 9.9209e 6
0 0
8.086e 4 8.705e 4
Stainless steel Nickel
3.147e 6
0
0 0
0 0
Source: Reddy, J.N. and Chin, C.D., J. Therm. Stresses, 21, 593, 1998. With permission.
TABLE 1.3 Thermal Conductivity of Ceramics and Metals in W mK1 for kf Materials Zirconia Aluminum oxide Silicon nitride Ti-6Al-4V Stainless steel Nickela Nickelb
P0 1.7000 14.087 13.723 1.0000 15.379 187.66 58.754
P1
P1 1.276e 4
0 1123.6 0
P2
P3
6.648e 8
6.227e 3
0
1.032e 3
5.466e 7
0
1.704e 2
0
1.264e 3
0 0 7.876e 11
0
0
2.092e 6
7.223e 10
0
2.869e 3
4.005e 6
1.983e 9
0
4.614e 4
6.670e 7
1.523e 10
Source: Reddy, J.N. and Chin, C.D., J. Therm. Stresses, 21, 593, 1998. With permission. For 300 K T 635 K. b For 635 K T. a
TABLE 1.4 Poisson’s Ratio of Ceramics and Metals for nf P0
P1
Zirconia
0.2882
0
1.133e 4
0
0
Aluminum oxide
0.2600
0
0
0
0 0
Materials
P1
P2
P3
Silicon nitride
0.2400
0
0
0
Ti-6Al-4V
0.2884
0
1.121e 4
0
0
Stainless steel
0.3262
0
2.002e 4
3.797e 7
0
Nickel
0.3100
0
0
0
0
Source: Reddy, J.N. and Chin, C.D., J. Therm. Stresses, 21, 593, 1998. With permission.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C001 Final Proof page 7 9.12.2008 6:48pm Compositor Name: VBalamugundan
Modeling of Functionally Graded Materials and Structures 2Z þ h N þ ac (T) 2h 2Z þ h N þ kc (T) kf (Z, T) ¼ [km (T) kc (T)] 2h 2Z þ h N þ nc (T) nf (Z, T) ¼ [nm (T) nc (T)] 2h
7
af (Z, T) ¼ [am (T) ac (T)]
(1:5b) (1:5c) (1:5d)
It is evident that Ef, nf, af, and kf are both temperature- and position-dependent. This method is simple and convenient to apply for predicting the overall material properties and responses; however, owing to the assumed simplifications the validity is affected by the detailed graded microstructure. As argued before, precise information about the size, the shape, and the distribution of particles is not available and the effective elastic moduli of the graded microstructures must be evaluated based on the volume fraction distribution and the approximate shape of the dispersed phase. Several micromechanics models have also been developed over the years to infer the effective properties of FGMs. The Mori–Tanaka scheme (Mori and Tanaka 1973, Benveniste 1987) for estimating the effective moduli is applicable to regions of the graded microstructure which have a well-defined continuous matrix and a discontinuous particulate phase as depicted in Figure 1.1. It takes into account the interaction of the elastic fields among neighboring inclusions. It is assumed that the matrix phase, denoted by the subscript 1, is reinforced by spherical particles of a particulate phase, denoted by the subscript 2. In this notation, K1, G1, and V1 denote, respectively, the bulk modulus, the shear modulus, and the volume fraction of the matrix phase; K2, G2, and V2 denote the corresponding material properties and the volume fraction of the particulate phase. It should be noted that V1 þ V2 ¼ 1. The effective local bulk modulus Kf, the shear modulus Gf, thermal expansion coefficient af, and thermal conductivity kf obtained by the Mori–Tanaka scheme for a random distribution of isotropic particles in an isotropic matrix are given by Kf K1 V2 ¼ K2 K1 1 þ (1 V2 )ð3(K2 K1 )=(3K1 þ 4G1 )Þ
(1:6a)
Gf G1 V2 ¼ G2 G1 1 þ (1 V2 )ð(G2 G1 )=(G1 þ f1 )Þ
(1:6b)
af a1 (1=Kf ) (1=K1 ) ¼ a2 a1 (1=K2 ) (1=K1 )
(1:6c)
kf k1 V2 ¼ k2 k1 1 þ (1 V2 )ð(k2 k1 )=3k1 Þ
(1:6d)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C001 Final Proof page 8 9.12.2008 6:48pm Compositor Name: VBalamugundan
8
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
where f1 ¼
G1 (9K1 þ 8G1 ) 6(K1 þ 2G1 )
(1:7)
The self-consistent method (Hill 1965) assumes that each reinforcement inclusion is embedded in a continuum material whose effective properties are those of the composite. This method does not distinguish between matrix and reinforcement phases and the same overall moduli are predicted in another composite in which the roles of the phases are interchanged. This makes it particularly suitable for determining the effective moduli in those regions which have an interconnected skeletal microstructure as depicted in Figure 1.6. The locally effective elastic moduli by the self-consistent method are given by d V1 V2 ¼ þ Kf Kf K2 Kf K1
(1:8a)
h V1 V2 ¼ þ Gf Gf G2 Gf G1
(1:8b)
where d ¼ 3 5h ¼
Kf Kf þ (4=3)Gf
(1:9)
FIGURE 1.6 Skeletal microstructure of FGM material. (From Vel, S.S. and Batra, R.C., AIAA J., 40, 1421, 2002. With permission.)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C001 Final Proof page 9 9.12.2008 6:48pm Compositor Name: VBalamugundan
Modeling of Functionally Graded Materials and Structures
9
From Equation 1.8a, one has Kf ¼
1 4 Gf ðV1 =(K1 þ (4=3)Gf )Þ þ ðV2 =(K2 þ (4=3)Gf )Þ 3
(1:10)
and Gf is obtained by solving the following quartic equation: ½V1 K1 =(K1 þ 4Gf =3) þ V2 K2 =(K2 þ 4Gf =3) þ 5½V1 G2 =(Gf G2 ) þ V2 G1 =(Gf G1 ) þ 2 ¼ 0
(1:11)
Then, the effective Young’s modulus Ef and Poisson’s ratio nf can be found from Ef ¼ 9KfGf=3Kf þ Gf and nf ¼ (3Kf 2Gf)=2(3Kf þ Gf), respectively. A comparison between the Mori–Tanaka and self-consistent models and the finite element simulation of FGM was presented in Reuter et al. (1997) and Reuter and Dvorak (1998). The Mori–Tanaka model was shown to yield accurate prediction of the properties with a well-defined continuous matrix and discontinuous inclusions, while the self-consistent model was better in skeletal microstructures characterized by a wide transition zone between the regions with predominance of one of the constituent phases.
1.3
Reddy’s Higher Order Shear Deformation Plate Theory
Reddy (1984a,b) developed a simple higher order shear deformation plate theory (HSDPT), in which the transverse shear strains are assumed to be parabolically distributed across the plate thickness. The theory is simple in the sense that it contains the same dependent unknowns as in the first-order shear deformation plate theory (FSDPT), and no shear correction factors are required. Consider a rectangular plate made of FGMs. The length, width, and total thickness of the plate are a, b, and h. As usual, the coordinate system has its origin at the corner of the plate on the midplane. Let U, V, and W be the plate displacements parallel to a right-hand set of axes (X, Y, Z), where X is longitudinal and Z is perpendicular to the plate. Cx and Cy are the midplane rotations of the normal about the Y and X axes, respectively. The displacement components are assumed to be of the following form: U1 ¼ U(X, Y, t) þ ZCx (X, Y, t) þ Z2 jx (X, Y, t) þ Z3 zx (X, Y, t)
(1:12a)
U2 ¼ V(X, Y, t) þ ZCy (X, Y, t) þ Z jy (X, Y, t) þ Z zy (X, Y, t)
(1:12b)
U3 ¼ W(X, Y, t)
(1:12c)
2
3
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C001 Final Proof page 10
10
9.12.2008 6:48pm Compositor Name: VBalamugundan
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
where t represents time, U, V, W, Cx, Cy, jx, jy, zx, and zy are unknowns. If the transverse shear stresses s4 and s5 are to vanish at the bounding planes of the plate (at Z ¼ h=2), the transverse shear strains «4 and «5 should also vanish there. That is h «5 X, Y, , t ¼ 0, 2
«4
h X, Y, , t 2
¼0
(1:13)
which imply the following conditions jx ¼ 0
(1:14a)
jy ¼ 0 4 @W zx ¼ 2 þ Cx 3h @X 4 @W zy ¼ 2 þ Cy 3h @Y
(1:14b) (1:14c) (1:14d)
Putting the above conditions in Equation 1.12 leads to the following displacement field "
# 4 2 2 @W U1 ¼ U þ 2 Cx x Cx þ 3 h @X " 2 # 4 2 @W Cy þ U2 ¼ V þ 2 Cy x 3 h @Y U3 ¼ W
(1:15a) (1:15b) (1:15c)
in which x is a tracer. If x ¼ 1, Equation 1.15 is for the case of the HSDPT, which contains the same dependent unknowns (U, V, W, Cx, and Cy) as in the FSDPT. If x ¼ 0, Equation 1.15 is reduced to the case of the FSDPT. The strains of the plate associated with the displacement field given in Equation 1.15 are «1 ¼ «01 þ Z k01 þ Z2 k21 «2 ¼ «02 þ Z k02 þ Z2 k22 «3 ¼ 0 «4 ¼ «04 þ Z2 k24 «5 ¼ «05 þ Z2 k25 «6 ¼ «06 þ Z k06 þ Z2 k26
(1:16)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C001 Final Proof page 11
9.12.2008 6:48pm Compositor Name: VBalamugundan
Modeling of Functionally Graded Materials and Structures
11
where 2 @U 1 @W @Cx 4 @Cx @ 2 W 0 2 , k1 ¼ x 2 þ ¼ , k1 ¼ þ @X @X @X 2 @X 3h @X2 ! 2 @Cy @V 1 @W 4 @Cy @ 2 W 0 0 2 þ , k2 ¼ x 2 þ «2 ¼ , k2 ¼ @Y 2 @Y 3h @Y2 @Y @Y @W 4 @W , k24 ¼ x 2 Cy þ «04 ¼ Cy þ @Y h @Y @W 4 @W 0 2 «5 ¼ C x þ , k5 ¼ x 2 Cx þ @X h @X «01
(1:17)
@U @V @W @W þ þ @Y @X @X @Y @Cx @Cy þ k06 ¼ @Y @X ! 4 @Cx @Cy @2W 2 þ þ2 k6 ¼ x 2 @Y @X 3h @X@Y «06 ¼
The plane stress constitutive equations may then be written in the form: 2 3 2 32 3 Q11 Q12 0 «1 s1 4 s2 5 ¼ 4 Q21 Q22 (1:18a) 0 54 «2 5 s6 «6 0 0 Q66 0 Q44 «4 s4 ¼ (1:18b) 0 Q55 «5 s5 where Qij are the transformed reduced stiffnesses defined by Q11 ¼ Q22 ¼
Ef (Z, T) , 1 n2f
Q16 ¼ Q26 ¼ 0,
nf Ef (Z, T) , 1 n2f Ef (Z, T) ¼ Q66 ¼ 2(1 þ nf )
Q12 ¼
Q44 ¼ Q55
(1:19)
As in the classical plate theory, the stress resultants and couples are defined by h=2 ð
(N i , Mi , Pi ) ¼
si (1, Z, Z3 )dZ,
i ¼ 1, 2, 6
(1:20a)
h=2 h=2 ð
(Q2 , R2 ) ¼
s4 (1, Z2 )dZ h=2
(1:20b)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C001 Final Proof page 12
12
9.12.2008 6:48pm Compositor Name: VBalamugundan
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells ðh (Q1 , R1 ) ¼
s5 (1, Z2 )dZ
(1:20c)
h
where N i and Qi are the membrane and transverse shear forces Mi is the bending moment per unit length Pi and Ri are the higher order bending moment and shear force, respectively Substituting Equation 1.18 into Equation 1.20, and taking Equation 1.16 into account, yields the constitutive relations of the plate 2 3 2 32 0 3 A B E « N 4 M 5 ¼ 4 B D F 54 k0 5 (1:21a) E F H k2 P A D «0 Q (1:21b) ¼ D F k2 R where Aij, Bij, etc. are the plate stiffnesses, defined by þh=2 ð
(Aij , Bij , Dij , Eij , Fij , Hij ) ¼
(Qij )(1, Z, Z2 , Z3 , Z4 , Z6 )dZ, i, j ¼ 1, 2, 6 (1:22a) h=2 þh=2 ð
(Aij , Dij , Fij ) ¼
(Qij )(1, Z2 , Z4 )dZ,
i, j ¼ 4, 5
(1:22b)
h=2
The Hamilton principle for an elastic body is ðt2 (dU þ dV dK)dt ¼ 0
(1:23)
t1
where dU is the virtual strain energy dV is the virtual work done by external forces dK is the virtual kinetic energy ð ð h=2 dU ¼
(si d«i )dZ dX dY V h=2
ð
¼
(N i d«0i þ Mi dk0i þ Pi dk2i )dZ dX dY, V
i ¼ 1, 2, 6
(1:24a)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C001 Final Proof page 13
9.12.2008 6:48pm Compositor Name: VBalamugundan
Modeling of Functionally Graded Materials and Structures
13
ð dV ¼ [q(X, Y)dU3 ]dX dY
(1:24b)
V
ð h=2 ð dK ¼
_ j dU _ j )dZ dX dY, r(U
j ¼ 1, 2, 3
(1:24c)
V h=2
In Equation 1.24c, the superposed dots indicate differentiation with respect to time. Integrating Equation 1.23, and collecting the coefficients of dU, dV, dW, dCx, and dCy, we obtain the following equations of motion dU:
@N 1 @N 6 @2U @ 2 Cx @3W c I þ ¼ I1 2 þ I 2 1 4 @X @Y @t2 @t @X@t2
@ 2 Cy @N 6 @N 2 @2V @3W c I þ ¼ I1 2 þ I 2 1 4 @X @Y @t2 @t @Y@t2 @Q1 @Q2 @ @W @W @ @W @W þ þ þ N6 þ þ N2 dW: N1 N6 @X @Y @X @X @Y @Y @X @Y 2 @R1 @R2 @ P1 @ 2 P6 @ 2 P2 þ c1 þ q c2 þ2 þ þ 2 @X @Y @X @X@Y @Y2 ! @2W @2 @2W @2W @ 2 @U @V @ 2 @Cx @Cy 2 þ þ þ c1 I 5 2 ¼ I1 2 c1 I7 2 þ c1 I4 2 þ @t @X2 @t @X @Y @t @X @Y @t @Y2 @M1 @M6 @P1 @P6 @2U @ 2 Cx @3W þ Q 1 þ C2 R1 C1 þ ¼ I2 2 þ I3 dCx : c1 I 5 2 @X @Y @X @Y @t @t @X@t2 @ 2 Cy @M6 @M2 @P6 @P2 @2V @3W þ Q2 þ c2 R2 c1 þ ¼ I2 2 þ I3 dCy : c1 I 5 2 @X @Y @X @Y @t @t @Y@t2 dV:
(1:25)
where c1 ¼ 4=3h2, c2 ¼ 3c1, and I 2 ¼ I2 c1 I4 ,
I 5 ¼ I5 c1 I7 ,
I 3 ¼ I3 2c1 I5 þ c21 I7 ,
I8 ¼ I3 þ I5
(1:26a)
and the inertias Ii (i ¼ 1, 2, 3, 4, 5, 7) are defined by h=2 ð
(I1 , I2 , I3 , I4 , I5 , I7 ) ¼
r(Z)(1, Z, Z2 , Z3 , Z4 , Z6 )dZ
(1:26b)
h=2
where r is the mass density of the plate, which may also be position dependent.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C001 Final Proof page 14
14
1.4
9.12.2008 6:48pm Compositor Name: VBalamugundan
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
Generalized Kármán-Type Nonlinear Equations
Based on Reddy’s HSDPT with a von Kármán-type of kinematic nonlinearity (Reddy 1984b) and including thermal effects, Shen (1997) derived a set of general von Kármán-type equations which can be expressed in terms of a stress function F, two rotations Cx and Cy, and a transverse displacement W, along with the initial geometric imperfection W*. These equations are then extended to the case of shear deformable FGM plates. Let F (X, Y) be the stress function for the stress resultants defined by N x ¼ F,yy, N y ¼ F,xx, and N xy ¼ F,xy, where a comma denotes partial differentiation with respect to the corresponding coordinates. If thermal effect is taken into account, we assume T
N* ¼ N N ,
T
T
M* ¼ M M , P* ¼ P P
(1:27)
where N T, MT, ST, and PT are the forces, moments, and higher order moments caused by elevated temperature, and are defined by 2
T
Nx
6 T 6 6 Ny 4 T N xy
3
3 2 Ax þh=2 ð 7 T 7 6A 7 Py 7 ¼ 4 y 5(1, Z, Z3 )DT(X, Y, Z)dZ 5 T h=2 Axy Pxy 2 T3 2 T3 2 T3 Sx Mx Px 6 T7 6 T7 7 4 6 6 7 6 7 6 T7 6 Sy 7 ¼ 6 My 7 2 6 Py 7 4 5 4 5 3h 4 5 T T T Mxy Pxy Sxy
T
T
Mx
Px
T
My
T Mxy
(1:28a)
(1:28b)
where DT(X, Y, Z) ¼ T(X, Y, Z) T0 is temperature rise from the reference temperature T0 at which there are no thermal strains, and 2
3 2 Ax Q11 4 Ay 5 ¼ 4 Q12 Axy Q16
Q12 Q22 Q26
32 1 Q16 Q26 54 0 0 Q66
3 0 a11 5 1 a22 0
(1:29)
where a11 and a22 are the thermal expansion coefficients measured in the longitudinal and transverse directions, respectively. The partial inverse of Equation 1.21a yields 3 2 A* «0 4 M* 5 ¼ 4 (B*)T (E*)T P* 2
32 3 B* E* N* T 54 0 5 D* (F*) k F* H* k2
(1:30)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C001 Final Proof page 15
9.12.2008 6:48pm Compositor Name: VBalamugundan
Modeling of Functionally Graded Materials and Structures
15
where the superscript ‘‘T’’ represents the matrix transpose and in which the reduced stiffness matrices [A*ij], [Bij*], [Dij*], [Eij*], [Fij*], and [Hij*] (i,j ¼ 1, 2, 6) are functions of temperature and position, determined through relationships (Shen 1997): A* ¼ A1 ,
B* ¼ A1 B,
D* ¼ D BA1 B,
F* ¼ F EA1 B,
E* ¼ A1 E,
H* ¼ H EA1 E
(1:31)
From Equation 1.30, the bending moments, higher order moments, and transverse shear forces can be written in the form: * F,yy B21 * F,xx þ D11 * Cx ,x þ D12 * Cy ,y Mx ¼ M1 ¼ B11 T
* (Cx ,x þ W,xx ) þ F21 * (Cy ,y þ W,yy )] þ Mx c1 [F11
(1:32a)
* F,yy B22 * F,xx þ D12 * Cx ,x þ D22 * C y ,y My ¼ M2 ¼ B12 T
* (Cx ,x þ W,xx ) þ F22 * (Cy ,y þ W,yy )] þ My c1 [F12
(1:32b)
* F,xy þ D66 * (Cx ,y þ Cy ,x ) Mxy ¼ M6 ¼ B66 T
* (Cx ,y þ Cy ,x þ 2W,xy ) þ Mxy c1 F66
(1:32c)
* F,yy E21 * F,xx þ F11 * Cx ,x þ F12 * Cy ,y Px ¼ P1 ¼ E11 T
* (Cx ,x þ W,xx ) þ H12 * (Cy ,y þ W,yy )] þ Px c1 [H11
(1:32d)
* F,yy E22 * F,xx þ F21 * Cx ,x þ D22 * C y ,y Py ¼ P2 ¼ E12 T
* (Cx ,x þ W,xx ) þ H22 * (Cy ,y þ W,yy )] þ Py c1 [H12
(1:32e)
Q1 ¼ (A55 c2 D55 )(Cx þ W,x )
(1:32f)
R1 ¼ (D55 c2 F55 )(Cx þ W,x )
(1:32g)
Q2 ¼ (A44 c2 D44 )(Cy þ W,y )
(1:32h)
R2 ¼ (D44 c2 F44 )(Cy þ W,y )
(1:32i)
Substituting Equation 1.32 into Equation 1.25, and considering the condition of compatibility, which is also expressed in terms of F, Cx, Cy, W, and W*, the equations of motion are obtained in the following ~11 (W) L ~12 (Cx ) L ~13 (Cy ) þ L ~14 (F) L ~15 (N T ) L ~16 (MT ) L € , þC € , )þq € I (C ~ ~17 (W) ¼ L(W þ W*, F) þ L 8 x x y y
(1:33)
~ ~ 21 (F) þ L ~22 (Cx ) þ L ~23 (Cy ) L ~24 (W) L ~25 (N T ) ¼ 1 L(W L þ 2W*, W) (1:34) 2
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C001 Final Proof page 16
16
9.12.2008 6:48pm Compositor Name: VBalamugundan
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells ~31 (W) þ L ~32 (Cx ) L ~33 (Cy ) þ L ~34 (F) L ~35 (N T ) L ~36 (ST ) L € € I C ¼ I 5 W, 3 x x
(1:35)
~42 (Cx ) þ L ~43 (Cy ) þ L ~44 (F) L ~45 (N T ) L ~46 (ST ) ~41 (W) L L € € I C ¼ I 5 W, 3 y y
(1:36)
~ij() and the nonlinear operator L() ~ are defined by where all linear operators L @4 @4 @4 ~ * * þ F21 * þ 4F66 * Þ 2 2 þ F22 * þ ðF12 L11 () ¼ c1 F11 @X4 @X @Y @Y4 @3 @3 ~12 () ¼ ðD11 * c1 F11 * Þ 3 þ ½ðD12 * þ 2D66 * Þ c1 ðF12 * þ 2F66 * Þ L @X @X@Y2 3 @ @3 ~13 () ¼ ½ðD12 * þ 2D66 * Þ c1 ðF21 * þ 2F66 * Þ 2 * c1 F22 *Þ 3 þ ðD22 L @X @Y @Y 4 4 4 @ @ @ ~14 () ¼ B21 * * þ B22 * 2B66 *Þ * L þ ðB11 þ B12 @X4 @X2 @Y2 @Y4 2 @2 @2 T T T T T ~15 (N T ) ¼ @ * * * * * B L B N þ B N N B N þ B N þ 2 þ 11 21 66 12 22 x y xy x y @X2 @X@Y @Y2 T 2 2 2 @ @ T T T ~16 M ¼ @ L Mx þ 2 Mxy þ 2 My @X2 @X@Y @Y 2 I4 I2 @ @2 ~ I1 þ L17 () ¼ c1 I5 I1 @X2 @Y2 @4 @4 @4 ~21 () ¼ A22 * * * * ð þ A Þ L þ 2A þ A 12 66 11 @X4 @X2 @Y2 @Y4 3 @ @3 ~22 () ¼ ðB21 * c1 E21 *Þ * B66 * Þ c1 ðE11 * E66 * Þ ½ ð L þ B 11 @X3 @X@Y2 3 @ @3 ~23 () ¼ ½ðB22 * B66 * Þ c1 ðE22 * E66 * Þ 2 * c1 E12 *Þ 3 þ ðB12 L @X @Y @Y 4 4 4 @ @ @ ~24 () ¼ c1 E21 * * þ E22 * 2E66 * Þ 2 2 þ E12 * L þ ðE11 @X4 @X @Y @Y4 2 2 @ @2 T T T T T ~25 (N T ) ¼ @ * * * * * L A A N þ A N N A N þ A N þ 12 22 66 11 12 x y xy x y @X2 @X@Y @Y2 3 @ ~31 () ¼ A55 2c2 D55 þ c2 F55 @ þ c1 ðF11 * c1 H11 *Þ 3 L 2 @X @X @3 * þ 2F66 * Þ c1 ðH12 * þ 2H66 * Þ þ c1 ½ðF21 @X@Y2 @2 ~32 () ¼ A55 2c2 D55 þ c2 F55 D11 * 2c1 F11 * þ c21 H11 * L 2 @X2 2 @ * 2c1 F66 * þ c21 H66 * D66 @Y2
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C001 Final Proof page 17
9.12.2008 6:48pm Compositor Name: VBalamugundan
Modeling of Functionally Graded Materials and Structures
17
@2 ~33 () ¼ ðD12 * þ D66 * Þ c1 ðF12 * þ F21 * þ 2F66 * Þ þ c21 ðH12 * þ H66 *Þ L @X@Y ~ ~ L34 () ¼ L22 () h i i @ h T T T ~35 (N T ) ¼ @ ðB11 * c1 E11 * ÞN x þ ðB21 * c1 E21 * ÞN y þ * c1 E66 * ÞN xy ðB66 L @X @Y T T @ @ T ~36 (S ) ¼ S þ S L @X x @Y xy ~41 () ¼ A44 2c2 D44 þ c2 F44 @ þ c1 ½ðF12 * þ 2F66 *Þ L 2 @Y @3 @3 * þ 2H66 * Þ 2 * c1 H22 *Þ 3 c1 ðH12 þ c1 ðF22 @X @Y @Y ~42 () ¼ L ~33 () L @2 2 * ~43 () ¼ A44 2c2 D44 þ c2 F44 D66 * * 2c þ c L F H 1 66 66 2 1 @X2 2 @ * 2c1 F22 * þ c21 H22 * D22 @Y2 ~44 () ¼ L ~23 () L h i i @ h T T T ~45 (N T ) ¼ @ ðB66 * c1 E66 * ÞN xy þ * c1 E12 * ÞN x þ ðB22 * c1 E22 * ÞN y L ðB12 @X @Y @ @ T T T ~46 (S ) ¼ (S ) þ (S ) L @X xy @Y y 2 2 2 @2 @2 @2 ~ ¼ @ @ 2 @ þ L() (1:37) @X2 @Y2 @X@Y @X@Y @Y2 @X2 It is worthy to note that the governing differential equations (Equations 1.33 through 1.37) for an FGM plate are identical in form to those of unsymmetric cross-ply laminated plates. These general von Kármán-type equations will be used in solving many nonlinear problems, e.g., nonlinear bending, postbuckling, and nonlinear vibration of shear deformable FGM plates.
References Benveniste Y. (1987), A new approach to the application of Mori–Tanaka’s theory of composite materials, Mechanics of Materials, 6, 147–157. Birman V. and Byrd L.W. (2007), Modeling and analysis of functionally graded materials and structures, Applied Mechanics Reviews, 60, 195–216. Chan S.H. (2001), Performance and emissions characteristics of a partially insulated gasoline engine, International Journal of Thermal Science, 40, 255–261. Fuchiyama T. and Noda N. (1995), Analysis of thermal stress in a plate of functionally gradient material, JSAE Review, 16, 263–268.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C001 Final Proof page 18
18
9.12.2008 6:48pm Compositor Name: VBalamugundan
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
Gibson L.J., Ashby M.F., Karam G.N., Wegst U., and Shercliff H.R. (1995), Mechanical properties of natural materials. II. Microstructures for mechanical efficiency, Proceedings of the Royal Society of London Series A, 450, 141–162. Hill R. (1965), A self-consistent mechanics of composite materials, Journal of the Mechanics and Physics of Solids, 13, 213–222. Hirai T. and Chen L. (1999), Recent and prospective development of functionally graded materials in Japan, Materials Science Forum, 308–311, 509–514. Koizumi M. (1993), The concept of FGM, Ceramic Transactions, Functionally Gradient Materials, 34, 3–10. Librescu L. and Song S.-Y. (2005), Thin-walled beams made of functionally graded materials and operating in a high temperature environment: vibration and stability, Journal of Thermal Stresses, 28, 649–712. Liu L.-S., Zhang Q.-J., and Zhai P.-C. (2003), The optimization design of metal= ceramic FGM armor with neural net and conjugate gradient method, Materials Science Forum, 423–425, 791–796. Markworth A.J., Ramesh K.S., and Parks W.P. (1995), Review: modeling studies applied to functionally graded materials, Journal of Material Sciences, 30, 2183–2193. Mori T. and Tanaka K. (1973), Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica, 2, 1571–574. Müller E., Drašar C., Schilz J., and Kaysser W.A. (2003), Functionally graded materials for sensor and energy applications, Materials Science and Engineering, A362, 17–39. Noda N. (1999), Thermal stresses in functionally graded material, Journal of Thermal Stresses, 22, 477–512. Paszkiewicz B., Paszkiewicz R., Wosko M., Radziewicz D., Sciana B., Szyszka A., Macherzynski W., and Tlaczala M. (2008), Functionally graded semiconductor layers for devices application, Vacuum, 82, 389–394. Paulino G.H., Jin Z.H., and Dodds Jr. R.H. (2003), Failure of functionally graded Materials, in Comprehensive Structural Integrity, Vol. 2 (eds. B. Karihallo and W.G. Knauss), Elsevier Science, New York, pp. 607–644. Qiu J., Tani J., Ueno T., Morita T., Takahashi H., and Du H. (2003), Fabrication and high durability of functionally graded piezoelectric bending actuators, Smart Materials and Structures, 12, 115–121. Reddy J.N. (1984a), A simple high-order theory for laminated composite plates, Journal of Applied Mechanics ASME, 51, 745–752. Reddy J.N. (1984b), A refined nonlinear theory of plates with transverse shear deformation, International Journal of Solids and Structure, 20, 881–896. Reddy J.N. and Chin C.D. (1998), Thermoelastical analysis of functionally graded cylinders and plates, Journal of Thermal Stresses, 21, 593–626. Reuter T. and Dvorak G.J. (1998), Micromechanical models for graded composite Materials: II. Thermomechanical loading, Journal of Mechanics and Physics of Solids, 46, 1655–1673. Reuter T., Dvorak G.J., and Tvergaard V. (1997), Micromechanical models for graded composite materials, Journal of Mechanics and Physics of Solids, 45, 1281–1302. Shen H.-S. (1997), Kármán-type equations for a higher-order shear deformation plate theory and its use in the thermal postbuckling analysis, Applied Mathematics and Mechanics, 18, 1137–1152. Shen H.-S. (2004), Bending, buckling and vibration of functionally graded plates and shells (in Chinese), Advances in Mechanics, 34, 53–60.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C001 Final Proof page 19
9.12.2008 6:48pm Compositor Name: VBalamugundan
Modeling of Functionally Graded Materials and Structures
19
Tanigawa Y. (1995), Some basic thermoelastic problems for nonhomogeneous structural materials, Applied Mechanics Reviews, 48, 287–300. Touloukian Y.S. (1967), Thermophysical Properties of High Temperature Solid Materials, McMillan, New York. Uemura S. (2003), The activities of FGM on new applications, Materials Science Forum, 423–425, 1–10. Vel S.S. and Batra R.C. (2002), Exact solution for thermoelastic deformations of functionally graded thick rectangular plates, AIAA Journal, 40, 1421–1433. Watari F., Yokoyama A., Omori M., Hirai T., Kondo H., Uo M., and Kawasaki T. (2004), Biocompatibility of materials and development to functionally graded implant for bio-medical application, Composites Science and Technology, 64, 893–908. Yamanoushi M., Koizumi M., Hiraii T., and Shiota I. (eds.) (1990), Proceedings of the First International Symposium on Functionally Gradient Materials, Japan. Yin H.M., Sun L.Z., and Paulino G.H. (2004), Micromechanics-based elastic model for functionally graded materials with particle interactions, Acta Materialia, 52, 3535–3543.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C001 Final Proof page 20
9.12.2008 6:48pm Compositor Name: VBalamugundan
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C002 Final Proof page 21 8.12.2008 9:38am Compositor Name: DeShanthi
2 Nonlinear Bending of Shear Deformable FGM Plates
2.1
Introduction
The nonlinear bending response of FGM plates subjected to transverse mechanical loads and thermal loading was the subject of recent investigations. Previous works for the linear bending of FGM rectangular, circular, and annular plates can be found in Reddy et al. (1999), Cheng and Batra (2000), Reddy and Cheng (2001), Vel and Batra (2002), Croce and Venini (2004), Kashtalyan (2004), and Chung and Chen (2007). Mizuguchi and Ohnabe (1996) employed the Poincare method to examine the large deflection of heated FGM thin plates with Young’s modulus varying symmetrically to the middle plane in thickness direction. Suresh and Mortensen (1997) presented the large deformation problem of graded multilayered composites under thermomechanical loads. When the thermomechanical load reaches a high level, nonlinear strain–displacement relations have to be employed. As a result, a set of nonlinear equations will appear no matter what kind of analysis method is used. Based on the FSDPT, Praveen and Reddy (1998) analyzed nonlinear static and dynamic response of functionally graded ceramic–metal plates subjected to transverse mechanical loads and a onedimensional (1D) steady heat conduction by using finite element method (FEM). This work was then extended to the case of FGM square plates and shallow shell panels by Woo and Meguid (2001) using Fourier series technique, and to the case of FGM circular plates by Ma and Wang (2003) and Gunes and Reddy (2008), and to the case of FGM rectangular plates by GhannadPour and Alinia (2006) and Ovesy and GhannadPour (2007) using Ritz method and finite strip method, respectively. However, in their studies the formulations were based on the classical plate=shell theory, i.e., the theory based on the Kirchhoff–Love hypothesis and therefore the transverse shear deformations were not accounted for, and the material properties were assumed to be independent of temperature. Reddy (2000) developed theoretical formulations for thick FGM plates according to the HSDPT. In his study, both Navier solutions for linear bending of simply supported rectangular FGM plates and finite element models for nonlinear static and dynamic response were presented. The paper of Cheng (2001) also contains the 21
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C002 Final Proof page 22 8.12.2008 9:38am Compositor Name: DeShanthi
22
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
solution for nonlinear bending of transversely isotropic symmetric shear deformable FGM plates. Moreover, Shen (2002) provided a nonlinear bending analysis of simply supported shear deformable FGM rectangular plates subjected to a transverse uniform or sinusoidal load and in thermal environments. In his study, the material properties were considered to be temperature dependent and the effect of temperature rise on the nonlinear bending response was reported. Subsequently, Yang and Shen (2003a,b) developed a semianalytical-numerical method to examine the large deflection of thin and shear deformable FGM rectangular plates subjected to combined mechanical and thermal loads and under various boundary conditions. This method was then extended to the case of FGM hybrid plates with surface-bonded piezoelectric layers by Yang et al. (2004). In these studies, the material properties were assumed to be temperature independent and temperature dependent, respectively. Recently, Na and Kim (2006) studied nonlinear bending of clamped FGM rectangular plates subjected to a transverse uniform pressure and thermal loads by using a 3D FEM. In their study, the thermal loads were assumed as uniform, linear, and sinusoidal temperature rises across the thickness direction, whereas the material properties were assumed to be temperature independent. On the other hand, ceramics and the metals used in FGMs do store different amounts of heat, and therefore the heat conduction usually occurs (Tanigawa et al. 1996, Kim and Noda 2002). This leads to a nonuniform distribution of temperature through the plate thickness, but it is not accounted for in the above studies. This is because when the material properties are assumed to be functions of temperature and position, and the temperature is also assumed to be a function of position, the problem becomes very complicated. More recently, Shen (2007) provided a nonlinear thermal bending analysis of simply supported shear deformable FGM rectangular plates due to heat conduction. In his study, both heat conduction and temperature-dependent material properties were taken into account.
2.2
Nonlinear Bending of FGM Plates under Mechanical Loads in Thermal Environments
Here, we consider an FGM plate of length a, width b, and thickness h, which is made from a mixture of ceramics and metals. We assume that the composition is varied from the top to the bottom surface, i.e., the top surface (Z ¼ h=2) of the plate is ceramic-rich whereas the bottom surface (Z ¼ h=2) is metal-rich. The plate is subjected to a transverse uniform load q ¼ q0 or a sinusoidal load q ¼ q0 sin(pX=a)sin(pY=b) combined with thermal loads. It is assumed that Ec, Em, ac, and am are functions of temperature, but Poisson’s ratio nf depends weakly on temperature change and is assumed to be a constant. We assume the volume fraction Vm follows a simple power law as expressed by Equation 1.1. According to mixture rules, the effective
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C002 Final Proof page 23 8.12.2008 9:38am Compositor Name: DeShanthi
Nonlinear Bending of Shear Deformable FGM Plates
23
Young’s modulus Ef and thermal expansion coefficient af of an FGM plate can be written as 2Z þ h N þ Ec (T) 2h 2Z þ h N þ ac (T) af (Z, T) ¼ [am (T) ac (T)] 2h Ef (Z, T) ¼ [Em (T) Ec (T)]
(2:1a) (2:1b)
It is evident that when Z ¼ h=2, Ef ¼ Ec and af ¼ ac, and when Z ¼ h=2, Ef ¼ Em and af ¼ am. In the case of a transverse static load applied at the top surface of an FGM plate, the general von Kármán-type equations (Equations 1.33 through 1.36) can be written in the simple form as ~12 (Cx ) L ~13 (Cy ) þ L ~14 (F) L ~15 (N T ) L ~16 (MT ) ¼ L(W,F) ~ ~11 (W) L þ q (2:2) L ~22 (Cx ) þ L ~23 (Cy ) L ~24 (W) L ~25 (N T ) ¼ 1 L(W,W) ~21 (F) þ L ~ L 2
(2:3)
~32 (Cx ) L ~33 (Cy ) þ L ~34 (F) L ~35 (N T ) L ~36 (ST ) ¼ 0 ~31 (W) þ L L
(2:4)
~41 (W) L ~42 (Cx ) þ L ~43 (Cy ) þ L ~44 (F) L ~45 (N T ) L ~46 (ST ) ¼ 0 L
(2:5)
Note that the geometric nonlinearity in the von Kármán sense is given in ~ in Equations 2.2 and 2.3, and the other linear operators L ~ ij() are terms of L() defined by Equation 1.37, and the forces, moments, and higher order moments caused by elevated temperature are defined by Equation 1.28. All the edges are assumed to be simply supported. Depending upon the in-plane behavior at the edges, two cases, case 1 (referred to herein as movable edges) and case 2 (referred to herein as immovable edges), will be considered. Case 1. The edges are simply supported and freely movable in both the X- and Y-directions, respectively. Case 2. All four edges are simply supported with no in-plane displacements, i.e., prevented from moving in the X- and Y-directions. For these two cases the associated boundary conditions are X ¼ 0, a: W ¼ Cy ¼ 0
(2:6a)
ðb N x dY ¼ 0 (movable edges)
(2:6b)
U ¼ 0 (immovable edges)
(2:6c)
0
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C002 Final Proof page 24 8.12.2008 9:38am Compositor Name: DeShanthi
24
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
Y ¼ 0, b: W ¼ Cx ¼ 0
(2:6d)
ða N y dX ¼ 0 (movable edges)
(2:6e)
V ¼ 0 (immovable edges)
(2:6f)
0
It is noted that the presence of stretching–bending coupling gives rise to bending curvatures under the action of in-plane loading, no matter how small these loads may be. In this situation, the boundary condition of zero bending moment cannot be incorporated accurately. Because immovable edges are considered in the present analysis, Mx ¼ 0 (at X ¼ 0, a) and My ¼ 0 (at Y ¼ 0, b) are not included in Equation 2.6, as previously shown in Kuppusamy and Reddy (1984) and Singh et al. (1994). The unit end-shortening relationships are Dx 1 ¼ a ab
ðb ða 0 0
@U dX dY @X
ðb ða ("
@2F @2F 4 @Cx * * * þ A12 þ B11 2 E11 @X @Y2 @X2 3h 0 0 # @Cy 4 4 @2W @2W * * * þ B12 2 E11 E12 þ E*12 @Y 3h2 3h @X2 @Y2 ) 2 1 @W T T * Ny A*11 N x þ A12 dX dY 2 @X
1 ¼ ab
Dy 1 ¼ b ab
A*11
ða ðb 0 0
1 ¼ ab
@V dYdX @Y
ða ðb (" 0 0
@2F @2F 4 @Cx * * * 2 E21 * A22 þ A12 þ B21 @X @X2 @Y2 3h
# @Cy 4 4 @2W @2W * 2 E22 * * 2 E21 þ B22 þ E*22 @Y 3h 3h @X2 @Y2 ) 2 1 @W T T A*12 N x þ A*22 N y dY dX 2 @Y
(2:7a)
(2:7b)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C002 Final Proof page 25 8.12.2008 9:38am Compositor Name: DeShanthi
Nonlinear Bending of Shear Deformable FGM Plates
25
where Dx and Dy are plate end-shortening displacements in the X- and Y-directions. Having developed the theory, we are now in a position to solve Equations 2.2 through 2.5 with boundary condition (Equation 2.6). Before proceeding, it is convenient to first define the following dimensionless quantities for such plates (with gijk in Equations 2.14 and 2.16 below are defined as in Appendix A): x ¼ pX=a,
y ¼ pY=b,
b ¼ a=b,
* D*22 A*11 A*22 ]1=4 W ¼ W=[D11
F ¼ F=[D*11 D*22 ]1=2 , (Cx ,Cy ) ¼ (Cx ,Cy )a=p[D*11 D*22 A*11 A*22 ]1=4 g 14 ¼ [D*22 =D*11 ]1=2 , g 24 ¼ [A*11 =A*22 ]1=2 , g 5 ¼ A*12 =A*22 (g T1 ,g T2 ) ¼ (ATx ,ATy )a2 =p2 [D*11 D*22 ]1=2 , (gT3 ,g T4 ,g T6 ,g T7 ) ¼ (DTx ,DTy ,FTx ,FTy )a2 =p2 h2 D*11 , (Mx ,My ,Px ,Py ,MTx ,MTy ,PTx ,PTy ) T
T
T
T
* A*11A*22]1=4 ¼ (Mx ,My ,4Px =3h2 ,4Py =3h2 ,Mx ,My ,4Px =3h2 ,4Py =3h2 )a2 =p2 D*11 [D*11 D22
lq ¼ q0 a4 =p4 D*11 [D*11 D*22 A*11 A*22 ]1=4 , (dx ,dy ) ¼ (Dx =a,Dy =b)b2 =4p2 [D*11 D*22 A*11 A*22 ]1=2
(2:8)
where ATx (¼ATy ), DTx (¼DTy ), and FTx (¼FTy ) are defined by "
ATx
DTx
FTx
ATy
DTy
FTy
#
h=2 ð
¼ h=2
"
Ax Ay
# (1,Z,Z3 )dZ
(2:9)
and the details of which can be found in Appendix B. The nonlinear governing equations (Equations 2.2 through 2.5) can then be written in dimensionless form as L11 (W) L12 (Cx ) L13 (Cy ) þ g14 L14 (F) L16 (MT ) ¼ g14 b2 L(W,F) þ lq (2:10) 1 L21 (F) þ g 24 L22 (Cx ) þ g24 L23 (Cy ) g24 L24 (W) ¼ g24 b2 L(W,W) 2
(2:11)
L31 (W) þ L32 (Cx ) L33 (Cy ) þ g 14 L34 (F) L36 (ST ) ¼ 0
(2:12)
L41 (W) L42 (Cx ) þ L43 (Cy ) þ g 14 L44 (F) L46 (ST ) ¼ 0
(2:13)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C002 Final Proof page 26 8.12.2008 9:39am Compositor Name: DeShanthi
26
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
where 4 @4 @4 2 4 @ þ 2g b þ g b 112 114 @x4 @x2 @y2 @y4 3 3 @ @ L12 () ¼ g120 3 þ g 122 b2 @x @x@y2 @3 @3 L13 () ¼ g131 b 2 þ g133 b3 3 @x @y @y 4 @4 @ @4 L14 () ¼ g140 4 þ g 142 b2 2 2 þ g 144 b4 4 @x @x @y @y 2 2 2 @ @ @ (MT ) þ b2 2 (MTy ) L16 (MT ) ¼ 2 (MTx ) þ 2b @x @x@y xy @y @4 @4 @4 L21 () ¼ 4 þ 2g212 b2 2 2 þ g214 b4 4 @x @x @y @y 3 3 @ @ L22 () ¼ g220 3 þ g 222 b2 @x @x@y2 @3 @3 L23 () ¼ g231 b 2 þ g233 b3 3 @x @y @y 4 4 @ @ @4 L24 () ¼ g240 4 þ g 242 b2 2 2 þ g 244 b4 4 @x @x @y @y 3 3 @ @ @ þ g 310 3 þ g 312 b2 L31 () ¼ g31 @x @x@y2 @x @2 @2 L32 () ¼ g31 g 320 2 g 322 b2 2 @x @y 2 @ L33 () ¼ g331 b @x@y L34 () ¼ L22 () @ T @ (S ) þ b (STxy ) L36 (ST ) ¼ @x x @y @ @3 @3 L41 () ¼ g41 b þ g 411 b 2 þ g 413 b3 3 @x @y @y @y L42 () ¼ L33 ()
L11 () ¼ g110
L43 () ¼ g41 g 430
@2 @2 g 432 b2 2 2 @x @y
L44 () ¼ L23 () @ T @ (Sxy ) þ b (STy ) L46 (ST ) ¼ @x @y @2 @2 @2 @2 @2 @2 þ 2 2 L() ¼ 2 2 2 @x @y @x@y @x@y @y @x
(2:14)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C002 Final Proof page 27 8.12.2008 9:39am Compositor Name: DeShanthi
Nonlinear Bending of Shear Deformable FGM Plates
27
The boundary conditions of Equation 2.6 become x ¼ 0, p: W ¼ Cy ¼ 0 ðp b2 0
(2:15a)
@2F dy ¼ 0 (movable edges) @y2
(2:15b)
dx ¼ 0 (immovable edges)
(2:15c)
W ¼ Cx ¼ 0
(2:15d)
y ¼ 0, p: ðp 0
@2F dx ¼ 0 (movable edges) @x2
(2:15e)
dy ¼ 0 (immovable edges)
(2:15f)
and the unit end-shortening relationships become dx ¼
1 2 4p b2 g24
g 24
dy ¼
g 24
0 0
@2W @2W g611 2 þ g 244 b2 2 @x @y
1 4p2 b2 g24
ðp ðp @Cy @2F @2F @Cx g 224 b2 2 g 5 2 þ g 24 g511 þ g 233 b @x @y @y @x
) 1 @W 2 2 þ(g 24 g T1 g 5 g T2 )DT dxdy (2:16a) g 24 2 @x
ðp ðp 2 2 @Cy @ F @Cx 2@ F g b þ g g b þ g 5 24 220 522 @x2 @y2 @x @y 0 0
@2W @2W g240 2 þ g 622 b2 2 @x @y
) 1 @W 2 þ(g T2 g 5 g T1 )DT dy dx (2:16b) g 24 b2 2 @y
Applying Equations 2.10 through 2.16, the nonlinear bending response of a simply supported FGM plate subjected to a transverse uniform or sinusoidal load and in thermal environments is now determined by means of a two-step perturbation technique, for which the small perturbation parameter has no physical meaning at the first step, and is then replaced by a dimensionless central deflection at the second step. The essence of this procedure, in the present case, is to assume that X X «j wj (x, y), F(x, y, «) ¼ «j fj (x, y) W(x, y, «) ¼ j¼1
Cx (x, y, «) ¼
X j¼1
j¼0 j
« cxj (x, y),
Cy (x, y, «) ¼
X j¼1
«j cyj (x, y),
lq ¼
X
«j lj
j¼1
(2:17)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C002 Final Proof page 28 8.12.2008 9:39am Compositor Name: DeShanthi
28
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
where « is a small perturbation parameter and the first term of wj(x, y) is assumed to have the form: w1 (x, y) ¼ A(1) 11 sin mx sin ny
(2:18)
Then, we expand the thermal bending moments in the double Fourier sine series as "
MTx
STx
MTy
STy
#
" ¼ «
M(1) x
S(1) x
M(1) y
S(1) y
#
X i¼1,3,...
X 1 sin ix sin jy ij j¼1,3,...
(2:19)
(1) (1) (1) where M(1) x , My , Sx , and Sy and all coefficients in Equations 2.32 through 2.34 below are given in detail in Appendix C. Substituting Equation 2.17 into Equations 2.10 through 2.13, collecting the terms of the same order of «, we obtain a set of perturbation equations which can be written, for example, as
O(«0): L14 ( f0 ) ¼ 0
(2:20a)
L21 ( f0 ) ¼ 0
(2:20b)
L34 ( f0 ) ¼ 0
(2:20c)
L44 ( f0 ) ¼ 0
(2:20d)
O(«1): L11 (w1 ) L12 (cx1 ) L13 (cy1 ) þ g 14 L14 ( f1 ) ¼ g 14 b2 L(w1 , f0 ) þ l1
(2:21a)
L21 ( f1 ) þ g 24 L22 (cx1 ) þ g24 L23 (cy1 ) g 24 L24 (w1 ) ¼ 0
(2:21b)
L31 (w1 ) þ L32 (cx1 ) L33 (cy1 ) þ g14 L34 ( f1 ) ¼ 0
(2:21c)
L41 (w1 ) L42 (cx1 ) þ L43 (cy1 ) þ g14 L44 ( f1 ) ¼ 0
(2:21d)
O(«2): L11 (w2 ) L12 (cx2 ) L13 (cy2 ) þ g14 L14 ( f2 ) ¼ g14 b2 [L(w2 , f0 ) þ L(w1 , f1 )] þ l2 (2:22a) 1 L21 ( f2 ) þ g24 L22 (cx2 ) þ g 24 L23 (cy2 ) g24 L24 (w2 ) ¼ g24 b2 L(w1 , w1 ) (2:22b) 2 L31 (w2 ) þ L32 (cx2 ) L33 (cy2 ) þ g14 L34 ( f2 ) ¼ 0
(2:22c)
L41 (w2 ) L42 (cx2 ) þ L43 (cy2 ) þ g14 L44 ( f2 ) ¼ 0
(2:22d)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C002 Final Proof page 29 8.12.2008 9:39am Compositor Name: DeShanthi
Nonlinear Bending of Shear Deformable FGM Plates
29
O(«3): L11 (w3 ) L12 (cx3 ) L13 (cy3 ) þ g14 L14 ( f3 ) ¼ g 14 b2 [L(w3 , f0 ) þ L(w2 , f1 ) þ L(w1 , f2 )] þ l3
(2:23a)
1 L21 ( f3 ) þ g 24 L22 (cx3 ) þ g24 L23 (cy3 ) g 24 L24 (w3 ) ¼ g 24 b2 L(w1 , w2 ) (2:23b) 2 L31 (w3 ) þ L32 (cx3 ) L33 (cy3 ) þ g 14 L34 ( f3 ) ¼ 0
(2:23c)
L41 (w3 ) L42 (cx3 ) þ L43 (cy3 ) þ g 14 L44 ( f3 ) ¼ 0
(2:23d)
To solve these perturbation equations of each order, the amplitudes of the terms wj(x, y), fj(x, y), cxj(x, y), and cyj(x, y) can be determined step by step, and lj can be determined by the Galerkin procedure. As a result, up to thirdorder asymptotic solutions can be obtained as h i h i (3) (3) 3 4 W ¼ « A(1) 11 sin mx sin ny þ « A13 sin mx sin 3ny þ A31 sin 3mx sin ny þ O(« ) h
i
h i (2) 2 Cx ¼ « C(1) 11 cos mx sin ny þ « C20 sin 2mx h i (3) þ «3 C(3) cos mx sin 3ny þ C cos 3mx sin ny þ O(«4 ) 13 31 h i h i (2) 2 Cy ¼ « D(1) 11 sin mx cos ny þ « D02 sin 2ny h i (3) þ «3 D(3) sin mx cos 3ny þ D sin 3mx cos ny þ O(«4 ) 13 31 h i 2 y2 (0) x (1) b þ « B sin mx sin ny F ¼ B(0) 00 00 11 2 2 2 2 (2) y (2) x (2) (2) 2 þ « B00 b00 þ B20 cos 2mx þ B02 cos 2ny 2 2 h i (3) þ «3 B(3) sin mx sin 3ny þ B sin 3mx sin ny þ O(«4 ) 13 31
(2:24)
(2:25)
(2:26)
(2:27)
Note that for boundary condition case 1, it is just necessary to take (i) B(i) 00 ¼ b00 ¼ 0 (i ¼ 0, 2) in Equation 2.27, so that the asymptotic solutions have a similar form, and lq ¼ «l1 þ «2 l2 þ «3 l3 þ O(«4 )
(2:28)
All coefficients in Equations 2.24 through 2.27 are related and can be written as functions of A(1) 11 , for example
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C002 Final Proof page 30 8.12.2008 9:39am Compositor Name: DeShanthi
30
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
g05 (1) g24 n2 b2 (1) 2 g24 m2 (1) 2 A11 , B(2) A11 , B(2) A 20 ¼ 02 ¼ 2 g06 32m g 6 32n2 b2 g7 11 2 g04 g02 g05 mn2 b2 (2) A(1) C(1) g14 g 24 A(1) 11 ¼ m 11 , C20 ¼ g 14 g 24 g 220 11 2 g00 g00 g06 4ðg31 þ g320 4m Þg6 2 g03 g01 g05 m2 nb (2)
A(1) D(1) g14 g24 A(1) 11 ¼ nb 11 , D02 ¼ g 14 g 24 g 233 11 2 2 g00 g00 g06 4 g41 þ g432 4n b g 7 B(1) 11 ¼ g 24
(2:29) All symbols used in Equation 2.29 are also described in detail in Appendix C. Hence Equations 2.24 and 2.28 can be rewritten as 3 (1) (3) « þ W (x,y) A « þ W ¼ W (1) (x, y) A(1) 11 11
(2:30)
2 3 (2) A(1) A(1) þ l(3) A(1) þ lq ¼ l(1) q q 11 « þ lq 11 « 11 «
(2:31)
and
From Equations 2.30 and 2.31 the load–central deflection relationship can be written as 2 3 q 0 a4 (1) W (2) W (3) W þ A þ A þ þ A ¼ A(0) W W W W *h D11 h h h
(2:32)
Similarly, the bending moment–central deflection relationships can be written as 2 3 M x a2 W W W (1) (2) (3) þ A þ A þ ¼ A(0) þ A MX MX MX MX *h D11 h h h 2 3 M y a2 W W W (0) (1) (2) (3) ¼ AMY þ AMY þ AMY þ AMY þ * D11 h h h h
(2:33)
(2:34)
Equations 2.32 through 2.34 can be employed to obtain numerical results for the load–deflection and load–bending moment curves of an FGM plate subjected to a transverse uniform or sinusoidal load and in thermal environments. Zirconia and titanium alloys were selected for the two constituent materials of the plate in the present examples, referred to as ZrO2=Ti-6Al-4V. The material properties of these two constituents are assumed to be nonlinear function of temperature of Equation 1.4 (Touloukian 1967), and typical values for Young’s modulus Ef (in Pa) and thermal expansion coefficient af
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C002 Final Proof page 31 8.12.2008 9:39am Compositor Name: DeShanthi
Nonlinear Bending of Shear Deformable FGM Plates
31
(in K1) of Zirconia and Ti-6Al-4V can be found in Tables 1.1 and 1.2 (from Reddy and Chin 1998). Poisson’s ratio nf is assumed to be a constant, and nf ¼ 0.28. The results presented herein are for ‘‘movable’’ in-plane boundary conditions, unless it is stated otherwise. The load–center deflection curves for a zirconia=aluminum square plate with different values of the volume fraction index subjected to a uniform transverse load are compared in Figure 2.1 with numerical results of Praveen and Reddy (1998), using their material properties, i.e., for aluminum E ¼ 70 GPa, n ¼ 0.3, a ¼ 23.0 106 8C1, and for zirconia E ¼ 151 GPa, n ¼ 0.3, and a ¼ 10.0 106 8C1. Note that in Figure 2.1 the volume fraction index N is defined for Vc, and E0 is a referenced value of Young’s modulus, and E0 ¼ 70 GPa. Clearly, the comparison is reasonably well. Figure 2.2 gives the load–deflection and load–bending moment curves of ZrO2=Ti-6Al-4V square plate with different values of volume fraction index N ( ¼ 0, 0.5, 1.0, 2.0, 5.0, and 1) subjected to a uniform pressure and under thermal environmental condition DT ¼ 0 K. The results show that a fully titanium alloy plate (N ¼ 0) has highest deflection and lowest bending moment. It can also be seen that the plate has higher deflection and lower bending moment when it has lower volume fraction. This is expected because the metallic plate is the one with the lower stiffness than the ceramic plate. Figure 2.3 gives the load–deflection and load–bending moment curves of ZrO2=Ti-6Al-4V square plates subjected to a uniform pressure and under three sets of thermal environmental conditions, referred to as I, II, and III. For environmental condition I, DT ¼ 0 K; for environmental condition II, 0.6 Uniform load Zirconia/aluminum b =1.0, b/h = 20 0.4
1 2
W/h
1: Aluminum 2: N = 2.0
3
3: N = 1.0
4
4: N = 0.5
5
5: Zirconia
0.2
Present Praveen and Reddy (1998) 0.0
0
5
10 4
4
q0b /E0h
FIGURE 2.1 Comparisons of load–central deflection curves for a zirconia=aluminum square plate.
15
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C002 Final Proof page 32 8.12.2008 9:39am Compositor Name: DeShanthi
32
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 2.0 Uniform load T0 = 300 K ZrO2/Ti-6Al-4V b = 1.0, b/h = 20
W/h
1.5
1.0
ZrO2 N = 5.0 N = 2.0 N = 1.0 N = 0.5 Ti-6Al-4V
0.5
0.0
50
0
100 4
(a)
150
4
q0b /E0h
3
2
ZrO2/Ti-6Al-4V b =1.0, b/h = 20
2
Mxb /E0h
4
Uniform load T0 = 300 K
ZrO2 N = 5.0 N = 2.0 N = 1.0 N = 0.5 Ti-6Al-4V
1
0
0
(b)
50
q0b4/E0h4
100
150
FIGURE 2.2 Effect of volume fraction index N on the nonlinear bending behavior of ZrO2=Ti-6Al-4V square plates under uniform pressure: (a) load–central deflection; (b) load–bending moment.
DT ¼ 200 K; and for environmental condition III, DT ¼ 300 K. Because the thermal expansion at the top surface is higher than that at the bottom surface, this expansion results in an upward deflection. It is seen that the deflections are reduced, but the bending moments are increased with increases in temperature. Note that for environmental conditions II and III the deflections are close to each other when W=h > 1.5.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C002 Final Proof page 33 8.12.2008 9:39am Compositor Name: DeShanthi
Nonlinear Bending of Shear Deformable FGM Plates 2.0
Uniform load T0 = 300 K ZrO2/Ti-6Al-4V b = 1.0, b/h = 20
W/h
1.5
1.0
N = 5.0 (III) N = 0.5 (III) N = 5.0 (II) N = 0.5 (II) N = 5.0 (I) N = 0.5 (I)
I: ∆T = 0 K II: ∆T = 200 K III: ∆T = 300 K
0.5
0.0
33
0
50
100
150
4 4 q0b /E0h
(a)
3 Uniform load T0 = 300 K ZrO2/Ti-6Al-4V b = 1.0, b/h = 20
2
0
Mxb /E h
4
2
N = 5.0 (III) N = 0.5 (III) N = 5.0 (II) N = 0.5 (II) N = 5.0 (I) N = 0.5 (I)
1 I: ∆T = 0 K II: ∆T = 200 K III: ∆T = 300 K
0 (b)
0
50
100 4
150
4
q0b /E0h
FIGURE 2.3 Effect of temperature rise on the nonlinear bending behavior of ZrO2=Ti-6Al-4V square plates under uniform pressure: (a) load–central deflection; (b) load–bending moment.
Figure 2.4 shows the effect of in-plane boundary conditions on the nonlinear bending behavior of ZrO2=Ti-6Al-4V square plates under two environmental conditions. To this end, the load–deflection and load–bending moment curves of ZrO2=Ti-6Al-4V square plates under ‘‘movable’’ and ‘‘immovable’’ in-plane boundary conditions are displayed. The results
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C002 Final Proof page 34 8.12.2008 9:39am Compositor Name: DeShanthi
34
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 3
N = 5.0 (II & 2) N = 0.5 (II & 2) N = 5.0 (I & 2) N = 0.5 (I & 2) N = 5.0 (II & 1) N = 0.5 (II & 1) N = 5.0 (I & 1) N = 0.5 (I & 1)
W/h
2
Uniform load T0 = 300 K
1: Movable edges 2: Immovable edges
ZrO2/Ti-6Al-4V b =1.0, b/h = 20
1 I: ∆T = 0 K II: ∆T = 200 K 0
50
0
(a)
N = 5.0 (II & 2) N = 0.5 (II & 2) N = 5.0 (I & 2) N = 0.5 (I & 2) N = 5.0 (II & 1) N = 0.5 (II & 1) N = 5.0 (I & 1) N = 0.5 (I & 1)
4
3
2
150
4
q0b /E0h
4
Mxb /E0h
100 4
2
Uniform load T0 = 300 K
1: Movable edges 2: Immovable edges
ZrO2/Ti-6Al-4V b = 1.0, b/h = 20
I: ∆T = 0 K II: ∆T = 200 K
1
0 (b)
0
50
100
150
q b4/E0h4 0
FIGURE 2.4 Effect of in-plane boundary conditions on the nonlinear bending behavior of ZrO2=Ti-6Al-4V square plates under uniform pressure: (a) load–central deflection; (b) load–bending moment.
show that the plate with immovable edges will undergo less deflection with smaller bending moments. Figure 2.5 compares the load–deflection and load–bending moment curves of ZrO2=Ti-6Al-4V square plates under two cases of transverse loading conditions along with two environmental conditions. It can be seen that both
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C002 Final Proof page 35 8.12.2008 9:39am Compositor Name: DeShanthi
Nonlinear Bending of Shear Deformable FGM Plates
35
2.0 ZrO2/Ti-6Al-4V b = 1.0, b/h = 20 T0 = 300 K
W/h
1.5
N = 5.0 (II & 2) N = 0.5 (II & 2) N = 5.0 (I & 2) N = 0.5 (I & 2) N = 5.0 (II & 1) N = 0.5 (II & 1) N = 5.0 (I & 1) N = 0.5 (I & 1)
1.0 1: Uniform load 2: Sinusoidal load
0.5
0.0
I: ∆T = 0 K II: ∆T = 200 K 50
0
(a)
q b4/E h4 0 0
100
150
2.5 ZrO2/Ti-6Al-4V b = 1.0, b/h = 20 T0 = 300 K
Mx b2/E0h4
2.0
1.5
1.0 1: Uniform load 2: Sinusoidal load
0.5
0.0 (b)
N = 5.0 (II & 2) N = 0.5 (II & 2) N = 5.0 (I & 2) N = 0.5 (I & 2) N = 5.0 (II & 1) N = 0.5 (II & 1) N = 5.0 (I & 1) N = 0.5 (I & 1)
I: ∆T = 0 K II: ∆T = 200 K 0
50
4 4 q0b /E0h
100
150
FIGURE 2.5 Comparisons of nonlinear responses of ZrO2=Ti-6Al-4V square plates subjected to a uniform or sinusoidal load and in thermal environments: (a) load–central deflection; (b) load–bending moment.
load–deflection and load–bending moment curves of the plate subjected to a sinusoidal load are lower than those of the plate subjected to a uniform load. It is appreciated that in Figures 2.2 through 2.5, W=h, Mxb2=E0h4, and q0b4=E0h4 denote the dimensionless central deflection of the plate, central bending moment, and lateral pressure, respectively, where E0 ¼ Young’s modulus of Ti-6Al-4V at T ¼ 300 K.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C002 Final Proof page 36 8.12.2008 9:39am Compositor Name: DeShanthi
36
2.3
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
Nonlinear Thermal Bending of FGM Plates due to Heat Conduction
In the case of a temperature field applied at the top and bottom surfaces of an FGM plate, thermal bending usually occurs due to heat conduction. In the present case, we assume that the effective Young’s modulus Ef, thermal expansion coefficient af, and thermal conductivity kf are functions of temperature, so that Ef, af, and kf are both temperature- and position-dependent. The Poisson ratio nf depends weakly on temperature change and is assumed to be a constant. According to mixture rules, we have 2Z þ h N þ Ec (T) Ef (Z, T) ¼ [Em (T) Ec (T)] 2h 2Z þ h N þ ac (T) af (Z, T) ¼ [am (T) ac (T)] 2h 2Z þ h N þ kc (T) kf (Z, T) ¼ [km (T) kc (T)] 2h
(2:35a) (2:35b) (2:35c)
We assume that the temperature variation occurs in the thickness direction only and 1D temperature field is assumed to be constant in the XY plane of the plate. In such a case, the temperature distribution along the thickness can be obtained by solving a steady-state heat transfer equation: d dT k ¼0 dZ dZ
(2:36)
Equation 2.36 is solved by imposing the boundary conditions T ¼ TU at Z ¼ h=2 and T ¼ TL at Z ¼ h=2. The solution of this equation, by means of polynomial series, is (Javaheri and Eslami 2002): T(Z) ¼ TU þ (TL TU )h(Z)
(2:37)
where TU and TL are the temperatures at top and bottom surfaces of the plate, and " 1 2Z þ h kmc 2Z þ h Nþ1 k2mc 2Z þ h 2Nþ1 þ h(Z) ¼ (N þ 1)kc (2N þ 1)k2c C 2h 2h 2h k3mc 2Z þ h 3Nþ1 k4mc 2Z þ h 4Nþ1 þ (3N þ 1)k3c (4N þ 1)k4c 2h 2h # 5Nþ1 k5mc 2Z þ h (2:38a) (5N þ 1)k5c 2h
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C002 Final Proof page 37 8.12.2008 9:39am Compositor Name: DeShanthi
Nonlinear Bending of Shear Deformable FGM Plates C¼1
37
kmc k2mc k3mc k4mc k5mc þ þ (N þ 1)kc (2N þ 1)k2c (3N þ 1)k3c (4N þ 1)k4c (5N þ 1)k5c (2:38b)
where kmc ¼ km kc. In particular, for an isotropic material, Equation 2.37 may then be expressed as T(Z) ¼
TU þ TL TU TL þ Z 2 h
(2:39)
In the present case, since there is no transverse static load applied, the nonlinear governing equations can be written in dimensionless form as L11 (W) L12 (Cx ) L13 (Cy ) þ g14 L14 (F) ¼ g14 b2 L(W,F) þ L16 (MT )
(2:40)
1 L21 (F) þ g 24 L22 (Cx ) þ g24 L23 (Cy ) g24 L24 (W) ¼ g24 b2 L(W,W) 2
(2:41)
L31 (W) þ L32 (Cx ) L33 (Cy ) þ g 14 L34 (F) ¼ L36 (ST )
(2:42)
L41 (W) L42 (Cx ) þ L43 (Cy ) þ g 14 L44 (F) ¼ L46 (ST )
(2:43)
where all nondimensional linear operators Lij() and nonlinear operator L() are defined as expressed by Equation 2.14. Note that Equation 2.9 is now redefined by "
ATx
DTx
FTx
ATy
DTy
FTy
#
þh=2 ð "
DT ¼ h=2
Ax Ay
# (1, Z, Z3 )DT(X, Y, Z)dZ
(2:44)
where DT is a constant and is defined by DT ¼ TU TL. When DT ¼ 0, ATx ¼ (ATy ), DTx ¼ (DTy ), and FTx ¼ (FTy ) can be found in Appendix B, and if DT 6¼ 0, then ATx , DTx , and FTx can be found in Appendix D. L16(Mp), L36(Sp), and L46(Sp) in Equations 2.40, 2.42, and 2.43 are now treated as ‘‘pseudoloads,’’ and we expand the thermal bending moments in the double Fourier sine series as "
MTx
STx
MTy
STy
#
" ¼
M0x
S0x
M0y
S0y
#
X i¼1,3,...
X 1 sin ix sin jy ij j¼1,3,...
where M0x , M0y , S0x , and S0y are given in detail in Appendix E.
(2:45)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C002 Final Proof page 38 8.12.2008 9:39am Compositor Name: DeShanthi
38
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
By using a two-step perturbation technique, we obtain up to third-order asymptotic solutions in the same form as expressed by Equations 2.24 through 2.27, from which we have 3 W (1) (3) (1) ¼ A(1) A « A A « þ 11 11 W W t
(2:46)
and the bending moments can be written as 2 3 M x a2 þ A(1) A(1) « þ A(2) A(1) « þA(3) A(1) « þ ¼ A(0) MX MX 11 MX 11 MX 11 * t D11
(2:47)
2 3 M y a2 (1) (1) (2) (1) (3) (1) ¼ A(0) þ A A « þ A A « þA A « þ 11 11 11 MY MY MY MY D*11 t
(2:48)
in Equations 2.46 through 2.48, A(2) « is taken as the second perturbation 11 parameter relating to the temperature variation, i.e., 2 3 A(2) 11 « ¼ l þ Q2 (l) þ Q3 (l) þ
(2:49)
All symbols used in Equations 2.46 through 2.49 are also described in detail in Appendix E. Equations 2.46 through 2.49 can be employed to obtain numerical results for the thermal load–deflection and thermal load–bending moment curves of an FGM plate under heat conduction. Silicon nitride and stainless steel were selected for the two constituent materials of the substrate FGM layer, referred to as Si3N4=SUS304, in the present examples. The material properties of these two constituents are assumed to be nonlinear function of temperature of Equation 1.4, and typical values for Young’s modulus Ef (in Pa), thermal expansion coefficient af (in K1), and the thermal conductivity kf (in W mK1) of silicon nitride and stainless steel can be found in Tables 1.1 through 1.3. Poisson’s ratio nf is assumed to be a constant, and nf ¼ 0.28. For these examples, the lower surface is hold at a prescribed temperature of 300 K, so that DTL ¼ 0 and DT ¼ DTU. Figure 2.6 presents the thermal load–deflection and thermal load–bending moment curves for square FGM plates with different values of volume fraction index N ( ¼ 0, 0.2, 0.5, 1.0, 2.0, 5.0, and 1) under temperature variation DTU at upper surface. It can be seen that the deflection of FGM plates with lower values of volume fraction index N is positive (downward), whereas for the plate with higher values of N the deflection becomes negative. This is due to the fact that the thermal expansion coefficient at the lower surface is larger than that experienced by the upper surface. The results show that the plate has higher bending moment (except for N ¼ 0 and N ¼ 0.2)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C002 Final Proof page 39 8.12.2008 9:39am Compositor Name: DeShanthi
Nonlinear Bending of Shear Deformable FGM Plates
39
1.0 Si3N4/SUS304
b = 1.0, b/h = 20 T0 = TL = 300 K
W (mm)
0.5
0.0 Si3N4 N = 5.0 N = 2.0 N = 1.0
−0.5
−1.0
N = 0.5 N = 0.2 SUS304 200
0
400
600
∆TU (K)
(a)
100 Si3N4/SUS304 b = 1.0, b/h = 20 T0 = TL = 300 K
Mx (N m/m)
50
0
Si3N4 N = 5.0 N = 2.0 N = 1.0
−50
−100 (b)
0
N = 0.5 N = 0.2 SUS304 200
∆TU (K)
400
600
FIGURE 2.6 Effect of volume fraction index N on the nonlinear bending behavior of Si3N4=SUS304 square plates due to heat conduction: (a) load–central deflection; (b) load–bending moment.
when it has lower volume fraction. It can also be seen that the bending moment for a fully stainless steel plate (N ¼ 0) changes from positive to negative when the temperature variation DTU > 150 K. The results reveal that the nonlinear bending responses of an FGM plate due to heat conduction are quite different to those of an FGM plate subjected to transverse mechanical loads.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C002 Final Proof page 40 8.12.2008 9:39am Compositor Name: DeShanthi
40
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 0.75 Si3N4/SUS304 b =1.0, b/h = 20 T0 = TL = 300 K
W (mm)
0.50
II & N = 2.0 II & N = 0.5
I: TD II: TID
I & N = 2.0 I & N = 0.5
0.25
0.00
− 0.25
200
0
400
600
∆TU (K)
(a)
100 Si3N4/SUS304 b =1.0, b/h = 20 T0 = TL = 300 K
Mx (N m)
75
II & N = 2.0 II & N = 0.5 I & N = 2.0
I: TD II: TID
I & N = 0.5
50
25
0
−25 (b)
0
200
400
600
∆TU (K)
FIGURE 2.7 Effect of temperature-dependency on the nonlinear bending behavior of Si3N4=SUS304 square plates due to heat conduction: (a) load–central deflection; (b) load–bending moment.
Figure 2.7 presents the thermal load–deflection and thermal load–bending moment curves for square FGM plates with two values of volume fraction index N ¼ 0.5 and 2.0 under two cases of thermoelastic properties TD and TID. Here, TD and TID represent, respectively, the material properties are temperature dependent and temperature independent, i.e., in a fixed temperature T0 ¼ 300 K. Great differences could be seen in these two cases and
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C002 Final Proof page 41 8.12.2008 9:39am Compositor Name: DeShanthi
Nonlinear Bending of Shear Deformable FGM Plates
41
0.50 Si3N4/SUS304 b =1.0, b/h = 20 T0 = TL = 300 K
W (mm)
0.25
I: Immovable edges II: Movable edges
0.00
II & N = 2.0 II & N = 0.5 I & N = 2.0 I & N = 0.5
−0.25
−0.50
200
0
400
600
∆TU (K)
(a)
100 Si3N4/SUS304 b = 1.0, b/h = 20 T0 = TL = 300 K
Mx (N m)
50
I: Immovable edges II: Movable edges
0
II & N = 2.0 II & N = 0.5 I & N = 2.0 I & N = 0.5
−50
−100 (b)
0
200
400
600
∆TU (K)
FIGURE 2.8 Effect of in-plane boundary conditions on the nonlinear bending behavior of Si3N4=SUS304 plates due to heat conduction: (a) load–central deflection; (b) load–bending moment.
we believe that the temperature dependency of FGMs could not be neglected in the thermal bending analysis. Figure 2.8 shows the effect of in-plane boundary conditions on the nonlinear thermal bending behavior of FGM plates with N ¼ 0.5 and 2.0. The thermal load–deflection and thermal load–bending moment curves of square FGM plates under ‘‘movable’’ and ‘‘immovable’’ in-plane boundary
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C002 Final Proof page 42 8.12.2008 9:39am Compositor Name: DeShanthi
42
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
conditions are displayed. The results show that the plate with immovable edges will undergo less deflection with larger bending moments. It can also be seen that for the plate with ‘‘movable’’ edges both deflection and bending moment are decreased by increasing the volume fraction index N.
References Cheng Z.-Q. (2001), Nonlinear bending of inhomogeneous plates, Engineering Structures, 23, 1359–1363. Cheng Z.-Q. and Batra R.C. (2000), Three-dimensional thermoelastic deformations of a functionally graded elliptic plate, Composites Part B, 31, 97–106. Chung Y.-L. and Chen W.-T. (2007), Bending behavior of FGM-coated and FGMundercoated plates with two simply supported opposite edges and two free edges, Composite Structures, 81, 157–167. Croce L.D. and Venini P. (2004), Finite elements for functionally graded Reissner-Mindlin plates, Computer Methods in Applied Mechanics and Engineering, 193, 705–725. GhannadPour S.A.M. and Alinia M.M. (2006), Large deflection behavior of functionally graded plates under pressure loads, Composite Structures, 75, 67–71. Gunes R. and Reddy J.N. (2008), Nonlinear analysis of functionally graded circular plates under different loads and boundary conditions, International Journal of Structural Stability and Dynamics, 8, 131–159. Javaheri R. and Eslami M.R. (2002), Thermal buckling of functionally graded plates, AIAA Journal, 40, 162–169. Kashtalyan M. (2004), Three dimensional elasticity solution for bending of functionally graded rectangular plates, European Journal of Mechanics A=Solids, 23, 853–864. Kim K.-S. and Noda N. (2002), A Green’s function approach to the deflection of a FGM plate under transient thermal loading, Archive of Applied Mechanics, 72, 127–137. Kuppusamy T. and Reddy J.N. (1984), A three-dimensional nonlinear analysis of cross-ply rectangular composite plates, Computers and Structures, 18, 263–272. Ma L.S. and Wang T.J. (2003), Nonlinear bending and post-buckling of a functionally graded circular plate under mechanical and thermal loadings, International Journal of Solids and Structures, 40, 3311–3330. Mizuguchi F. and Ohnabe H. (1996), Large deflections of heated functionally graded simply supported rectangular plates with varying rigidity in thickness direction, in Proceedings of the 11th Technical Conference of the American Society for Composites, October 7–9, Atlanta, Georgia, Technomic Publ. Co., Inc., Lancaster, PA, pp. 957–966. Na K.-S. and Kim J.-H. (2006), Nonlinear bending response of functionally graded plates under thermal loads, Journal of Thermal Stresses, 29, 245–261. Ovesy H.R. and GhannadPour S.A.M. (2007), Large deflection finite strip analysis of functionally graded plates under pressure loads, International Journal of Structural Stability and Dynamics, 7, 193–211. Praveen G.N. and Reddy J.N. (1998), Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates, International Journal of Solids and Structures, 35, 4457–4476.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C002 Final Proof page 43 8.12.2008 9:39am Compositor Name: DeShanthi
Nonlinear Bending of Shear Deformable FGM Plates
43
Reddy J.N. (2000), Analysis of functionally graded plates, International Journal for Numerical Methods in Engineering, 47, 663–684. Reddy J.N. and Cheng Z.-Q. (2001), Three-dimensional thermomechanical deformations of functionally graded rectangular plates, European Journal of Mechanics A=Solids, 20, 841–855. Reddy J.N. and Chin C.D. (1998), Thermoelastical analysis of functionally graded cylinders and plates, Journal of Thermal Stresses, 21, 593–626. Reddy J.N., Wang C.M., and Kitipornchai S. (1999), Axisymmetric bending of functionally grade circular and annular plates, European Journal of Mechanics A=Solids, 18, 185–199. Shen H.-S. (2002), Nonlinear bending response of functionally graded plates subjected to transverse loads and in thermal environments, International Journal of Mechanical Sciences, 44, 561–584. Shen H.-S. (2007), Nonlinear thermal bending response of FGM plates due to heat conduction, Composites Part B, 38, 201–215. Singh G., Rao G.V., and Iyengar N.G.R. (1994), Geometrically nonlinear flexural response characteristics of shear deformable unsymmetrically laminated plates, Computers and Structures, 53, 69–81. Suresh S. and Mortensen A. (1997), Functionally graded metals and metal-ceramic composites: Part 2. Thermomechanical behaviour, International Materials Reviews, 42, 85–116. Tanigawa Y., Akai T., Kawamura R., and Oka N. (1996), Transient heat conduction and thermal stress problems of a nonhomogeneous plate with temperaturedependent material properties, Journal of Thermal Stresses, 19, 77–102. Touloukian Y.S. (1967), Thermophysical Properties of High Temperature Solid Materials, Macmillan, New York. Vel S.S. and Batra R.C. (2002), Exact solution for thermoelastic deformations of functionally graded thick rectangular plates, AIAA Journal, 40, 1421–1433. Woo J. and Meguid S.A. (2001), Nonlinear analysis of functionally graded plates and shallow shells, International Journal of Solids and Structures, 38, 7409–7421. Yang J. and Shen H.-S. (2003a), Nonlinear analysis of functionally graded plates under transverse and in-plane loads, International Journal of Non-Linear Mechanics, 38, 467–482. Yang J. and Shen H.-S. (2003b), Nonlinear bending analysis of shear deformable functionally graded plates subjected to thermo-mechanical loads under various boundary conditions, Composites Part B, 34, 103–115. Yang J., Kitipornchai S., and Liew K.M. (2004), Non-linear analysis of the thermoelectro-mechanical behaviour of shear deformable FGM plates with piezoelectric actuators, International Journal for Numerical Methods in Engineering, 59, 1605–1632.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C002 Final Proof page 44 8.12.2008 9:39am Compositor Name: DeShanthi
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 45
8.12.2008 11:45am Compositor Name: DeShanthi
3 Postbuckling of Shear Deformable FGM Plates
3.1
Introduction
When a flat plate is under the action of edge compression in its middle plane, the plate is deformed but remains completely flat when the edge forces are sufficiently small unless there is an initial geometric imperfection. By increasing the load, a state is reached when the plate bends slightly. The in-plane compressive load which is just sufficient to keep the plate in a slightly bent form is called the critical load or buckling load. Once the buckling load is exceeded, the load–deflection relationship exhibits a stable character due to membrane forces which come into play. Actually, the buckling mode will change in the postbuckling range. These changes occur when the energy stored in the plate is sufficient to carry the plate from one buckled form to the other. To obtain an accurate analysis of FGM plates in a wide postbuckling range, the changes in buckling mode must be taken into account. In the usual postbuckling analysis, the buckling mode of the plate is assumed to remain unchanged. This is reasonable assumption in the immediate postbuckling range, e.g., the postbuckling load less than about three times the buckling load. Many studies have been reported on the buckling and postbuckling analysis of FGM plates subjected to mechanical or thermal loading. Among those, thermal and mechanical buckling of simply supported FGM rectangular plates was studied by Javaheri and Eslami (2002a–c) based on the classical and higher order shear deformation plate theories. Na and Kim (2004, 2006a,b) used solid finite elements to calculate buckling temperature of FGM plates with fully clamped edges. Najafizadeh and Eslami (2002a,b) and Najafizadeh and Heydari (2004a,b, 2008) considered axisymmetric buckling of simply supported and clamped circular FGM plates under a uniform temperature rise or a radial compression based on the first order and higher order shear deformation theory, respectively. Ma and Wang (2003a,b) did the postbuckling analysis of simply supported and clamped FGM circular plates under a radial compression or nonlinear temperature change across the plate thickness based on the classical von Kármán plate theory. Subsequently, they gave the relationships between axisymmetric buckling solutions of FGM circular 45
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 46
46
8.12.2008 11:45am Compositor Name: DeShanthi
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
plates based on third-order plate theory and classical plate theory (Ma and Wang 2004). The effect of initial geometric imperfections on the postbuckling behavior of FGM circular plates subjected to mechanical edge loads and heat conduction was then studied by Li et al. (2007). Naei et al. (2007) calculated buckling loads of radially loaded FGM circular thin plates with variable thickness by using finite element method (FEM). Buckling of FGM plates without or with piezoelectric layers subjected to various nonuniform in-plane loads, along with heat and applied voltage, was considered by Chen and Liew (2004) and Chen et al. (2008) using the first-order shear deformation theory. Ganapathi et al. (2006) and Ganapathi and Prakash (2006) presented the buckling loads for simply supported FGM skew plates subjected to in-plane mechanical loads and heat conduction. In their analysis, the material properties were based on the Mori–Tanaka scheme and rule of mixture, respectively. This work was then extended to the case of thermal postbuckling of FGM skew plates by Prakash et al. (2008). Furthermore, Yang and Shen (2003) studied the postbuckling behavior of FGM thin plates under fully clamped boundary conditions. This work was then extended to the case of shear deformable FGM plates with various boundary conditions and various possible initial geometric imperfections by Yang et al. (2006). Woo et al. (2005) studied the postbuckling behavior of FGM plates and shallow shells under edge compressive loads and a temperature field based on the higher order shear deformation theory. Wu (2004) studied the thermal buckling behavior of simply supported FGM rectangular plates under uniform temperature rise and gradient through the thickness based on the first-order shear deformation plate theory. Shariat and Eslami (2005, 2006) performed the thermal buckling of imperfect FGM rectangular plates under three types of thermal loading as uniform temperature rise, nonlinear temperature rise through the thickness, and axial temperature rise, based on the first-order shear deformation plate theory and the classical thin plate theory, respectively. Wu et al. (2007) studied the postbuckling of FGM rectangular plates under various boundary conditions subjected to uniaxial compression or uniform temperature rise based on the first-order shear deformation plate theory. In the above studies, however, the materials properties were virtually assumed to be temperature-independent (T-ID). Park and Kim (2006) presented thermal postbuckling and vibration of simply supported FGM plates with temperature-dependent (T-D) materials properties by using FEM. Shukla et al. (2007) studied the postbuckling of clamped FGM rectangular plates subjected to thermomechanical loads. In their analysis, the temperature-dependent materials properties were considered and the analytical approach was based on fast-converging Chebyshev polynomials. It has been pointed out by Shen (2002) that the governing differential equations for an FGM plate are identical in form to those of unsymmetric cross-ply laminated plates, and applying in-plane compressive edge loads to such plates will cause bending curvature to appear. Consequently, the bifurcation buckling did not exist due to the stretching=bending coupling effect, as previously
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 47
8.12.2008 11:45am Compositor Name: DeShanthi
Postbuckling of Shear Deformable FGM Plates
47
proved by Leissa (1986) and Qatu and Leissa (1993), and the solutions are physically incorrect for simply supported FGM rectangular plates subjected to in-plane compressive edge loads and=or temperature variation. Moreover, Liew et al. (2003, 2004) studied thermal postbuckling behavior of FGM hybrid plates with different kinds of boundary conditions. In their analysis, the material properties were assumed to be temperatureindependent and temperature-dependent, respectively, but their results were only for the simple thermal loading case of uniform temperature rise. They confirmed that the FGM plates with all four edges simply supported (SSSS) have no bifurcation buckling temperature, even for the loading case of uniform temperature change. Obviously, when the FGM plate is geometrically midplane symmetric, as reported in Birman (1995) and Feldman and Aboudi (1997), a bifurcation buckling load under in-plane compressive edge loads and=or temperature variation does exist. Recently, Shen (2005) provided a postbuckling analysis for simply supported, midplane symmetric FGM plates with fully covered or embedded piezoelectric actuators subjected to the combined action of mechanical, thermal, and electronic loads. In his study, the material properties were considered to be temperature-dependent and the effect of temperature rise and applied voltage on the postbuckling response was reported. This work was then extended to the case of postbuckling analysis of sandwich plates with FGM face sheets subjected to mechanical and thermal loads (Shen and Li 2008). On the other hand, due to the temperature gradient the plate is subjected to additional moments along with the membrane forces and the problem cannot be posed as an eigenvalue problem, when the four edges of the plate are simply supported. Therefore, the bifurcation solutions for FGM plates subjected to transverse temperature variation, i.e., linear and=or nonlinear gradient through the thickness, may also be physically incorrect. More recently, Shen (2007b) provided a thermal postbuckling analysis for simply supported, midplane symmetric FGM plates under in-plane nonuniform parabolic temperature distribution and heat conduction, and concluded that for the case of heat conduction, the postbuckling path for geometrically perfect plates is no longer of the bifurcation type.
3.2
Postbuckling of FGM Plates with Piezoelectric Actuators under Thermoelectromechanical Loads
Here we consider two types of hybrid laminated plate, referred to as (P=FGM)S and (FGM=P)S, which consists of four plies and is midplane symmetric, as shown in Figure 3.1. The length, width, and total thickness of the hybrid laminated plate are a, b, and h. The thickness of the FGM layer is hf, whereas the thickness of the piezoelectric layer is hp. The substrate FGM
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 48
48
8.12.2008 11:45am Compositor Name: DeShanthi
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells a t0 t1
b
h
hp
Piezoelectric layer
hf
FGM
X
t3 t4
FGM Y
(a)
t2
Piezoelectric layer
Z a t0
b hf hp
h
FGM Piezoelectric layer Piezoelectric piezoelectric layer layer FGM
Y
(b)
X
t1 t2 t3 t4
Z
FIGURE 3.1 Configurations of two types of hybrid laminated plates: (a) (P=FGM)S plate; (b) (FGM=P)S plate.
layer is made from a mixture of ceramics and metals, the mixing ratio of which is varied continuously and smoothly in the Z-direction. It is assumed that the effective Young’s modulus Ef and thermal expansion coefficient af of the FGM layer are temperature-dependent, whereas Poisson’s ratio nf depends weakly on temperature change and is assumed to be a constant. We assume the volume fraction Vm follows a simple power law. According to rule of mixture, we have Z t1 N þ Ec (T) Ef (Z, T) ¼ [Em (T) Ec (T)] t2 t1 Z t1 N þ ac (T) af (Z, T) ¼ [am (T) ac (T)] t2 t1
(3:1a) (3:1b)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 49
8.12.2008 11:45am Compositor Name: DeShanthi
Postbuckling of Shear Deformable FGM Plates
49
It is evident that when Z ¼ t1, Ef ¼ Ec and af ¼ ac, and when Z ¼ t2, Ef ¼ Em and af ¼ am. The plate is assumed to be geometrically imperfect, and is subjected to a compressive edge load in the X-direction combined with thermal and electric loads. Hence the general von Kármán-type equations (Equations 1.33 through 1.36) can be written in the simple form as ~12 (Cx ) L ~13 (Cy ) þ L ~14 (F) L ~15 (N p ) L ~16 (Mp ) ¼ L(W ~ þ W*, F) (3:2) ~11 (W) L L ~21 (F) þ L ~ ~22 (Cx ) þ L ~23 (Cy ) L ~24 (W) L ~25 (N p ) ¼ 1 L(W L þ 2W*, W) 2
(3:3)
~32 (Cx ) L ~33 (Cy ) þ L ~34 (F) L ~35 (N p ) L ~36 (Sp ) ¼ 0 ~31 (W) þ L L
(3:4)
~41 (W) L ~42 (Cx ) þ L ~43 (Cy ) þ L ~44 (F) L ~45 (N p ) L ~46 (Sp ) ¼ 0 L
(3:5)
~ are defined by ~ij() and nonlinear operator L() where all linear operators L Equation 1.37. In the above equations, the equivalent thermopiezoelectric loads are defined by 2
2 T3 2 E3 P 3 N N N 6 P7 6 T7 6 E7 6M 7 6M 7 6M 7 6 P 7¼6 T 7þ6 E 7 4P 5 4P 5 4P 5 p T E S S S
(3:6)
where N T, M T, S T, P T and N E, ME, SE, PE are the forces, moments, and higher order moments caused by the elevated temperature and electric field, respectively. The temperature field is assumed to be uniformly distributed over the plate surface and through the plate thickness. For the plate-type piezoelectric material, only the transverse direction electric field component EZ is dominant, and EZ is defined as EZ ¼ F,Z, where F is the potential field. If the voltage applied to the actuator is in the thickness only, then EZ ¼
Vk hp
(3:7)
where Vk is the applied voltage across the kth ply. The forces and moments caused by elevated temperature or electric field are defined by 2
T
Nx
6 T 6 Ny 4 T N xy
T
Mx
T
My
T Mxy
3
2 3 Ax ðtk X T 7 6A 7 Py 7 4 y 5 (1, Z, Z3 )DT dZ 5¼ k¼1 T Axy k tk1 Pxy T
Px
(3:8a)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 50
50
8.12.2008 11:45am Compositor Name: DeShanthi
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 2
3
2 T3 2 T3 M Px 6 T 7 6 xT 7 6 T7 4 6 7 6 6 7 6 Sy 7 ¼ 4 My 7 5 3h2 4 Py 5 4 5 T T T Mxy Pxy Sxy T
Sx
(3:8b)
and 2
E
Nx
6 E 6 Ny 4 E N xy
3
2 3 tk B ð x X Vk E E 7 6B 7 My Py 7 4 y 5 (1, Z, Z3 ) dZ 5¼ hp k¼1 E E Bxy k tk1 Mxy Pxy 2 3 2 2 E3 E E 3 Sx M Px 6 E 7 6 xE 7 6 E7 4 6 7 6 6 7 6 Sy 7 ¼ 4 My 7 5 3h2 4 Py 5 4 5 E E E Mxy Pxy Sxy E
Mx
E
Px
(3:8c)
(3:8d)
in which 2
3 2 Ax Q11 6A 7 6 4 y 5 ¼ 4 Q12 Axy Q16 2 3 2 Bx Q11 6B 7 6 4 y 5 ¼ 4 Q12 Bxy Q16
Q12
Q16
32
1
Q12 Q22
76 Q26 54 0 0 Q66 32 1 Q16 76 Q26 54 0
Q26
Q66
Q22 Q26
0
3 0 7 a11 15 a22 0 3 0 7 d31 15 d32 0
(3:9a)
(3:9b)
where a11 and a22 are the thermal expansion coefficients measured in the longitudinal and transverse directions, respectively, d31 and d32 are the piezoelectric strain constants of a single ply, and Qij are the transformed elastic constants, defined by 2
3 2 c4 Q11 6 7 6 2 2 6 Q12 7 6 c s 6 7 6 Q22 7 6 s4 6 7¼6 6 6 Q 7 6 c3 s 6 16 7 6 6 7 4 Q 5 4 cs3 26
Q66
c 2 s2
2c2 s2 s4 c 4 þ s4 c 2 s2 2 2 2c s c4 cs3 c3 s cs3 c3 s cs3 c3 s 2c2 s2 c 2 s2
3 4c2 s2 2 3 7 Q11 4c2 s2 7 76 Q 7 4c2 s2 76 12 7 76 7 2cs(c2 s2 ) 74 Q22 5 7 2cs(c2 s2 ) 5 Q66 (c2 s2 )2
(3:10a)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 51
8.12.2008 11:45am Compositor Name: DeShanthi
Postbuckling of Shear Deformable FGM Plates 2
3 2 c2 Q44 6 7 6 4 Q45 5 ¼ 4 cs s2 Q55
3 s2 7 Q44 cs 5 Q55 c2
51
(3:10b)
where Q11 ¼
E11 E22 n21 E11 , Q22 ¼ , Q12 ¼ , (1 n12 n21 ) (1 n12 n21 ) (1 n12 n21 ) Q44 ¼ G23 , Q55 ¼ G13 , Q66 ¼ G12
(3:10c)
E11, E22, G12, G13, G23, n12 and n21 have their usual meanings, and c ¼ cos u, s ¼ sin u
(3:10d)
where u is the lamination angle with respect to the plate X-axis. Note that for an FGM layer, a11 ¼ a22 ¼ af is given in detail in Equation 3.1b, and Qij ¼ Qij, which is expressed in Equation 1.19. All four edges are assumed to be simply supported. Depending upon the in-plane behavior at the edges, two cases, case 1 (referred to herein as movable edges) and case 2 (referred to herein as immovable edges), will be considered. These correspond to the case when the motion of the unloaded edges in the plane tangent to the plate structure’s midsurface, normal to the respective edge is either unrestrained or completely restrained, respectively. As a result, we have Case 1: The edges are simply supported and freely movable in the in-plane directions. In addition the plate is subjected to uniaxial compressive edge loads. Case 2: All four edges are simply supported. Uniaxial edge loads are acting in the X-direction. The edges X ¼ 0, a are considered freely movable (in the in-plane direction), the remaining two edges being unloaded and immovable (i.e., prevented from moving in the Y-direction). For both cases, the associated boundary conditions are X ¼ 0, a: W ¼ Cy ¼ 0 N xy ¼ 0,
Mx ¼ Px ¼ 0
(3:11a) (3:11b)
ðb N x dY þ P ¼ 0 0
(3:11c)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 52
52
8.12.2008 11:45am Compositor Name: DeShanthi
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
Y ¼ 0, b: W ¼ Cx ¼ 0 N xy ¼ 0,
(3:11d)
My ¼ P y ¼ 0
(3:11e)
(movable edges)
(3:11f)
ða N y dX ¼ 0 0
V¼0
(immovable edges)
(3:11g)
where P is a compressive edge load in the X-direction, Mx and My are the bending moments, and Px and Py are the higher order moments, defined by * F,yy B21 * F,xx þ B61 * F,xy þ D11 * Cx ,x þ D12 * Cy ,y þ D16 * (Cx ,y þ Cy ,x ) Mx ¼ B11 T
* (Cx ,x þ W,xx ) þ F21 * (Cy ,y þ W,yy ) þ F61 * (Cx ,y þ Cy ,x þ 2W,xy )] þ Mx c1 [F11
(3:12a) * F,yy B22 * F,xx þ B62 * F,xy þ D12 * Cx ,x þ D22 * Cy ,y þ D26 * (Cx ,y þ Cy ,x ) My ¼ B12 T
* (Cx ,x þ W,xx ) þ F22 * (Cy ,y þ W,yy ) þ F62 * (Cx ,y þ Cy ,x þ 2W,xy )] þ My c1 [F12
(3:12b) * F,yy E21 * F,xx þ E61 * F,xy þ F11 * Cx ,x þ F12 * Cy ,y þ F16 * (Cx ,y þ Cy ,x ) Px ¼ E11 T
* (Cx ,x þ W,xx ) þ H12 * (Cy ,y þ W,yy ) þ H16 * (Cx ,y þ Cy ,x þ 2W,xy )] þ Px c1 [H11
(3:12c) * F,yy E22 * F,xx þ E62 * F,xy þ F21 * Cx ,x þ F22 * Cy ,y þ F26 * (Cx ,y þ Cy ,x ) Py ¼ E12 T
* (Cx ,x þ W,xx ) þ H22 * (Cy ,y þ W,yy ) þ H26 * (Cx ,y þ Cy ,x þ 2W,xy )] þ Py c1 [H12
(3:12d)
The condition expressing the immovability condition V ¼ 0 (on Y ¼ 0, b) is fulfilled on the average sense as ða ðb 0 0
@V dY dX ¼ 0 @Y
(3:13)
This condition in conjunction with Equation 3.14b below provides the compressive stresses acting on the edges Y ¼ 0, b.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 53
Postbuckling of Shear Deformable FGM Plates
8.12.2008 11:45am Compositor Name: DeShanthi
53
The average end-shortening relationships are Dx 1 ¼ a ab
ðb ða 0 0
@U dX dY @X
ðb ða 1 @2F @2F @2F 4 @Cx * *12 *16 *11 *11 A11 þ A A E þ B ¼ @X ab @Y2 @X2 @X@Y 3h2 0 0 ! @Cy 4 4 @Cx @Cy * * * * þ B16 2 E16 þ þ B12 2 E12 @Y @Y @X 3h 3h 4 @2W @2W @2W * * * þ E þ 2E 2 E11 12 16 3h @X2 @Y2 @X@Y ) 2 1 @W @W @W* * p p p * N y þ A16 * Nxy dX dY (3:14a) A11 N x þ A12 2 @X @X @X Dy 1 ¼ b ab
ða ðb 0 0
@V dY dX @Y
ða ðb 1 @2F @2F @2F 4 @Cx * * * * * ¼ þ B A22 þ A A E 12 26 21 21 @X ab @X2 @Y2 @X@Y 3h2 0 0 ! @Cy 4 4 @Cx @Cy * * * * þ B26 2 E26 þ þ B22 2 E22 @Y @Y @X 3h 3h 2 2 4 @2W * @ W þ 2E * @ W * þ E 2 E21 26 22 3h @X2 @Y2 @X@Y ) 2 1 @W @W @W* p p p * N x þ A22 * N y þ A26 * Nxy A12 dY dX (3:14b) 2 @Y @Y @Y where Dx and Dy are plate end-shortening displacements in the X- and Y-directions. It is evident that the above equations involve the stretching=bending coupling, as predicted by Bij and Eij. As argued previously, even for an FGM plate with all four edges simply supported, no bifurcation buckling could occur. For this reason, we consider here geometrically midplane symmetric FGM plates with fully covered or embedded piezoelectric actuators. In such a case, the stretching=bending coupling is zero-valued, i.e., Bij ¼ Eij ¼ 0. As ~14 ¼ L ~15 ¼ L ~22 ¼ L ~23 ¼ L ~24 ¼ L ~34 ¼ L ~35 ¼ L ~44 ¼ L ~45 ¼ 0 in Equations 3.2 a result, L through 3.5.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 54
54
8.12.2008 11:45am Compositor Name: DeShanthi
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells Introducing dimensionless quantities of Equation 2.8, and * D22 * ]1=2 , (g T1 , gT2 , gP1 , g P2 ) ¼ ATx , ATy , BPx , BPy a2 =p2 [D11 * D22 * ]1=2 lx ¼ Pb=4p2 [D11
(3:15)
in which "
ATx
#
"
BPx
DT dZ
(3:16a)
# tk " X ð Bx Vk dZ DV ¼ B y hp k¼1
(3:16b)
DT ¼
ATy
# tk " X ð Ax k¼1
#
BPy
tk1
Ay
tk1
k
k
The nonlinear equations (Equations 3.2 through 3.5) may then be written in dimensionless form as L11 (W) L12 (Cx ) L13 (Cy ) ¼ g 14 b2 L(W þ W*, F)
(3:17)
1 L21 (F) ¼ g24 b2 L(W þ 2W*, W) 2
(3:18)
L31 (W) þ L32 (Cx ) L33 (Cy ) ¼ 0
(3:19)
L41 (W) L42 (Cx ) þ L43 (Cy ) ¼ 0
(3:20)
where all nondimensional linear operators Lij() and nonlinear operator L() are defined by Equation 2.14. The boundary conditions expressed by Equation 3.11 become x ¼ 0, p:
1 p
W ¼ Cy ¼ 0
(3:21a)
F,xy ¼ Mx ¼ Px ¼ 0
(3:21b)
ðp
@2F dy þ 4lx b2 ¼ 0 @y2
(3:21c)
W ¼ Cx ¼ 0
(3:21d)
F,xy ¼ My ¼ Py ¼ 0
(3:21e)
b2 0
y ¼ 0, p:
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 55
8.12.2008 11:45am Compositor Name: DeShanthi
Postbuckling of Shear Deformable FGM Plates ðp 0
55
@2F dx ¼ 0 (movable edges) @x2
(3:21f)
dy ¼ 0 (immovable edges)
(3:21g)
and the unit end-shortening relationships become ðp ðp (
@2F @2F 1 @W 2 @W @W* g 5 2 g 24 g 24 2 @y @x 2 @x @x @x 0 0 )
(3:22a) þ g224 gT1 g5 gT2 DT þ g 224 gP1 g5 gP2 DV dx dy
1 dx ¼ 2 2 4p b g24
g224 b2
ðp ðp (
2 2 @2F 1 @W @W* 2@ F 2 @W g b b g 24 b2 g 5 @x2 @y2 2 24 @y @y @y 0 0 þ(gT2 g5 gT1 )DT þ (g P2 g 5 g P1 )DV dy dx (3:22b)
1 dy ¼ 2 2 4p b g24
By virtue of the fact that DV and DT are assumed to be uniform, the thermopiezoelectric coupling in Equations 3.2 through 3.5 vanishes, but terms in DV and DT intervene in Equation 3.22. Applying Equations 3.17 through 3.22, the compressive postbuckling behavior of perfect and imperfect, FGM hybrid plates with piezoelectric actuators under thermoelectromechanical loads is now determined by means of a two-step perturbation technique. The essence of this procedure, in the present case, is to assume that W(x, y, «) ¼
X
«j wj (x, y),
F(x, y, «) ¼
X
j¼1
Cx (x, y, «) ¼
X
«j fj (x, y),
j¼0 j
« cxj (x, y),
Cy (x, y, «) ¼
j¼1
X
«j cyj (x, y)
(3:23)
j¼1
where « is a small perturbation parameter and the first term of wj(x, y) is assumed to have the form w1 (x, y) ¼ A(1) 11 sin mx sin ny
(3:24)
and the initial geometric imperfection is assumed to have a similar form * sin mx sin ny ¼ «mA(1) W*(x, y, «) ¼ «a11 11 sin mx sin ny * =A(1) where m ¼ a11 11 is the imperfection parameter.
(3:25)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 56
56
8.12.2008 11:45am Compositor Name: DeShanthi
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
Substituting Equation 3.23 into Equations 3.15 through 3.20, collecting the terms of the same order of «, we obtain a set of perturbation equations which can be written, for example, as O(«1 ): L11 (w1 ) L12 (cx1 ) L13 (cy1 ) ¼ g 14 b2 L(w1 þ W*, f0 )
(3:26a)
L21 (f1 ) ¼ 0
(3:26b)
L31 (w1 ) þ L32 (cx1 ) L33 (cy1 ) ¼ 0
(3:26c)
L41 (w1 ) L42 (cx1 ) þ L43 (cy1 ) ¼ 0
(3:26d)
O(«2 ): L11 (w2 ) L12 (cx2 ) L13 (cy2 ) ¼ g 14 b2 [L(w2 , f0 ) þ L(w1 þ W*, f1 )] (3:27a) 1 L21 ( f2 ) ¼ g24 b2 L(w1 þ 2W*, w1 ) 2
(3:27b)
L31 (w2 ) þ L32 (cx2 ) L33 (cy2 ) ¼ 0
(3:27c)
L41 (w2 ) L42 (cx2 ) þ L43 (cy2 ) ¼ 0
(3:27d)
By using Equations 3.24 and 3.25 to solve these perturbation equations of each order, the amplitudes of the terms wj(x, y), fj(x, y), cxj(x, y), and cyj(x, y) are determined step by step. As a result, up to fourth-order asymptotic solutions can be obtained. h i W ¼ « A(1) 11 sin mx sin ny h i (3) þ «3 A(3) sin mx sin 3ny þ A sin 3mx sin ny þ O(«5 ) (3:28) 13 31 2 2 2 y2 (0) x (2) y (2) x (2) (2) 2 F ¼ B(0) b þ « b þ B B cos 2mx þ B cos 2ny 00 00 00 00 20 02 2 2 2 2 y2 x2 (4) (4) b(4) þ B(4) þ «4 B(4) 00 00 20 cos 2mx þ B02 cos 2ny þ B22 cos 2mxcos 2ny 2 2 (4) (4) þ B(4) 40 cos 4mx þ B04 cos 4ny þ B24 cos 2mx cos 4ny 5 þ B(4) 42 cos 4mx cos 2ny þ O(« )
h i cos mx sin ny Cx ¼ « C(1) 11 h i (3) 3 5 þ « C(3) 13 cos mx sin 3ny þ C31 cos 3mx sin ny þ O(« ) h i Cy ¼ « D(1) sin mx cos ny 11 h i (3) 3 þ « D(3) sin mx cos 3ny þ D sin 3mx cos ny þ O(«5 ) 13 31
(3:29)
(3:30)
(3:31)
It is mentioned that all coefficients in Equations 3.28 through 3.31 are related and can be expressed in terms of A(1) 11 , for example
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 57
8.12.2008 11:45am Compositor Name: DeShanthi
Postbuckling of Shear Deformable FGM Plates C(1) 11 ¼ m B(2) 20 ¼
g04 (1) A , g00 11
D(1) 11 ¼ nb
2 g 24 n2 b2 (1) (1 þ 2m) A , 11 32m2
g03 (1) A g00 11 B(2) 02 ¼
57
2 m2 (1) (1 þ 2m) A 11 32g24 n2 b2
(3:32)
Next, upon substitution of Equations 3.28 through 3.31 into the boundary conditions (Equations 3.21c and 3.22a), the postbuckling equilibrium path can be written as (2) 2 (4) 4 lx ¼ l(0) x þ lx Wm þ lx Wm þ
(3:33)
(2) 2 (4) 4 dx ¼ d(0) x þ dx W m þ dx W m þ
(3:34)
and
in which Wm is the dimensionless form of maximum deflection, which (i) is assumed to be at the point (x, y) ¼ (p=2m, p=2n) and l(i) x and dx (i ¼ 0, 2, 4, . . . ) are all temperature-dependent and given in detail in Appendix F. Equations 3.33 and 3.34 can be employed to obtain numerical results for the postbuckling load–deflection or load–end-shortening curves of simply supported shear deformable FGM plates with piezoelectric actuators subjected to uniaxial compression combined with thermal and electric loads. From Appendix F, the buckling load of a perfect plate can readily be obtained numerically, by setting m = 0 (or W*=h ¼ 0), while taking Wm ¼ 0 (or W=h ¼ 0). In such a case, the minimum buckling load is determined by applying Equation 3.33 for various values of the buckling mode (m, n), which determine the number of half-waves in the X- and Y-directions, respectively. For numerical illustrations, the thickness of the FGM layer hf ¼ 1 mm whereas the thickness of piezoelectric layers hp ¼ 0.1 mm, so that the total thickness of the plate h ¼ 2.2 mm. Two sets of material mixture for FGMs are considered. One is silicon nitride and stainless steel, referred to as Si3N4=SUS304, and the other is zirconium oxide and titanium alloy, referred to as ZrO2=Ti-6Al-4V. The material properties of these constituents are assumed to be nonlinear function of temperature of Equation 1.4, and typical values for Young’s modulus Ef (in Pa) and thermal expansion coefficient af (in K1) of them can be found in Tables 1.1 and 1.2. Poisson’s ratio nf is assumed to be a constant, and nf ¼ 0.28. PZT-5A is selected for the piezoelectric layers. The material properties of which are assumed to be linear functions of temperature change, i.e., E11 (T) ¼ E110 (1 þ E111 DT), E22 (T) ¼ E220 (1 þ E221 DT) G12 (T) ¼ G120 (1 þ G121 DT), G13 (T) ¼ G130 (1 þ G131 DT), a11 (T) ¼ a110 (1 þ a111 DT), a22 (T) ¼ a220 (1 þ a221 DT)
G23 (T) ¼ G230 (1 þ G231 DT)
(3:35)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 58
58
8.12.2008 11:46am Compositor Name: DeShanthi
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 2.5
Px/Pcr
2.0
Isotropic thin plate (n = 0.326) b =1.0, (m, n) = (1, 1)
1.5 1.0
Present, W ∗/h = 0 Present, W ∗/h = 0.1 Theoritical (Dym 1974) Experiments (Yamaki 1961)
0.5 0.0 0.0
0.5
1.0
1.5
2.0
W/h FIGURE 3.2 Comparisons of postbuckling load–deflection curves for isotropic thin plates under uniaxial compression.
where E110, E220, G120, G130, G230, a110, a220, E111, E221, G121, G131, G231, a111, a221 are constants. Typical values adopted, as given in Oh et al. (2000), E110 ¼ E220 ¼ 61 GPa, G120 ¼ G130 ¼ G230 ¼ 24.2 GPa, n12 ¼ 0.3, a110 ¼ a220 ¼ 0.9 106 K1 and d31 ¼ d32 ¼ 2.54 1010 m V1; and E111 ¼ 0.0005, E221 ¼ G121 ¼ G131 ¼ G231 ¼ 0.0002, a111 ¼ a221 ¼ 0.0005. The postbuckling load–deflection curves for perfect and imperfect, isotropic thin square plates (n ¼ 0.326) subjected to uniaxial compression are compared in Figure 3.2 with the analytical solutions of Dym (1974) and the experimental results of Yamaki (1961). These comparisons show that the results from the present method are in good agreement with the existing results. Tables 3.1 through 3.4 present the buckling loads Pcr (in kN) for perfect, moderately thick (b=h ¼ 20), (P=FGM)S and (FGM=P)S hybrid laminated plates with unloaded edges immovable and with different values of the volume fraction index N ( ¼ 0.0, 0.2, 0.5, 1.0, 2.0, and 5.0) subjected to uniaxial compression under three sets of temperature rise (DT ¼ 0, 100, 200 K). Here, TD represents material properties for both substrate FGM layer and piezoelectric layers are temperature-dependent. TD-F represents material properties of substrate FGM layer are temperature-dependent but material properties of piezoelectric layers are temperature-independent, i.e., E111 ¼ E221 ¼ G121 ¼ G131 ¼ G231 ¼ a111 ¼ a221 ¼ 0 in Equation 3.35. TID represents material properties for both piezoelectric layers and substrate FGM layer are temperature-independent, i.e., in a fixed temperature T0 ¼ 300 K for FGM layer, as previously used in Yang and Shen (2003). The control voltages with the same sign are also applied to the upper, lower, or middle piezoelectric layers, and are referred to as VU, VL, and VM. Three electrical
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 59
8.12.2008 11:46am Compositor Name: DeShanthi
Postbuckling of Shear Deformable FGM Plates
59
TABLE 3.1 Comparisons of Buckling Loads Pcr (kN) for Uniaxial Compressed, (P=FGM)S Plates with a Substrate Made of Si3N4=SUS304 and with Unloaded Edges Immovable under Uniform Temperature Rise and Three Sets of Electrical Loading Conditions (b=h ¼ 20, a=b ¼ 1.0, T0 ¼ 300 K) DT (in K)
VU ¼ VL ¼ (in V)
N¼0
N ¼ 0.2
N ¼ 0.5
N ¼ 1.0
N ¼ 2.0
N ¼ 5.0
131.6953 131.1302
146.1075 145.5423
157.9360 157.3708
166.5642 165.9990
171.3940 170.8288
(P=FGM)S, TID, (m, n) ¼ (1, 1) 0
500 0
115.2026 114.6376
þ500
114.0725
130.5651
144.9771
156.8056
165.4337
170.2635
100
500
93.3042
109.9468
124.9499
137.6636
147.3829
153.4537
0
92.7391
109.3817
124.3848
137.0984
146.8177
152.8885
þ500
92.1741
108.8166
123.8196
136.5332
146.2524
152.3232
500
71.4058
88.1983
103.7924
117.3912
128.2016
135.5134
0
70.8407
87.6332
103.2272
116.8260
127.6364
134.9482
þ500
70.2757
87.0681
102.6621
116.2608
127.0711
134.3829
(P=FGM)S, TD-F, (m, n) ¼ (1, 1) 100 500 90.7119
106.8642
121.4538
133.8422
143.3414
149.3148
0
90.1468
106.2991
120.8886
133.2770
142.7762
148.7495
þ500 500
89.5818 63.4408
105.7340 79.6302
120.3235 94.7616
132.7118 108.0310
142.2110 118.6513
148.1842 125.9229
200
200
0
62.8758
79.0652
94.1965
107.4658
118.0861
125.3576
þ500
62.3107
78.5001
93.6314
106.9006
117.5209
124.7924
(P=FGM)S, TD, (m, n) ¼ (1, 1) 100 500 90.4283
106.5790
121.1672
133.5544
143.0529
149.0257
0
89.8680
106.0187
120.6067
132.9939
142.4923
148.4651
þ500
89.3077
105.4583
120.0463
132.4334
141.9318
147.9045
500
62.8991
79.0828
94.2088
107.4735
118.0899
125.3583
0
62.3435
78.5270
93.6530
106.9176
117.5339
124.8023
þ500
61.7878
77.9712
93.0971
106.3616
116.9779
124.2462
200
loading cases are considered. Here VU ¼ VL ¼ 0 V (or VM ¼ 0 V) implies that the buckling occurs under a grounding condition. Two kinds of substrate FGM layers, i.e., Si3N4=SUS304 and ZrO2=Ti-6Al-4V are considered. It can be found that the buckling load of (P=FGM)S plate is lower than that of (FGM=P)S plate. It can be seen that, for the hybrid plates with Si3N4=SUS304 substrate, a fully metallic plate (N ¼ 0) has lowest buckling load and that the buckling load increases as the volume fraction index N increases. This is expected because the metallic plate has a lower stiffness than the ceramic plate. It is found that the increase is about þ65% for the (P=FGM)S plate, and about þ67% for the (FGM=P)S one, from N ¼ 0 to N ¼ 5, under temperature change DT ¼ 100 K. It can also be seen that the temperature reduces the
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 60
60
8.12.2008 11:46am Compositor Name: DeShanthi
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
TABLE 3.2 Comparisons of Buckling Loads Pcr (kN) for Uniaxial Compressed, (FGM=P)S Plates with a Substrate Made of Si3N4=SUS304 and with Unloaded Edges Immovable under Uniform Temperature Rise and Three Sets of Electrical Loading Conditions (b=h ¼ 20, a=b ¼ 1.0, T0 ¼ 300 K) DT (in K)
VM (in V)
N¼0
N ¼ 0.2
N ¼ 0.5
N ¼ 1.0
N ¼ 2.0
N ¼ 5.0 212.0199
(FGM=P)S, TID, (m, n) ¼ (1, 1) 0
100
500
138.5191
159.3017
177.6971
193.1219
204.8333
0
137.9540
158.7366
177.1320
192.5568
204.2680
211.4547
þ500 500
137.3889 116.6206
158.1714 137.5532
176.5668 156.5396
191.9915 172.8495
203.7028 185.6520
210.8894 194.0796
0
116.0556
136.9881
155.9744
172.2843
185.0867
193.5144
þ500
115.4905
136.4229
155.4093
171.7191
184.5215
192.9491
500
94.7222
115.8047
135.3821
152.5771
166.4707
176.1393
0
94.1571
115.2396
134.8169
152.0119
165.9054
175.5741
þ500
93.5921
114.6745
134.2518
151.4467
165.3402
175.0088
(FGM=P)S, TD-F, (m, n) ¼ (1, 1) 100 500 113.5414
133.8505
152.2997
168.1724
180.6583
188.9140
0
112.9764
133.2854
151.7345
167.6072
180.0931
188.3488
þ500
112.4113
132.7203
151.1694
167.0420
179.5278
187.7835
500
85.3580
105.6978
124.6823
141.4299
155.0314
164.5812
0 þ500
84.7929 84.2279
105.1327 104.5676
124.1171 123.5520
140.8647 140.2995
154.4662 153.9010
164.0159 163.4507
(FGM=P)S, TD, (m, n) ¼ (1, 1) 100 500 113.5180 0 112.9577
133.8241 133.2637
152.2709 151.7105
168.1422 167.5817
180.6273 180.0668
188.8832 188.3226
þ500
112.3974
132.7033
151.1500
167.0212
179.5062
187.7620
500
85.3354
105.6667
124.6441
141.3861
154.9840
164.5320
0
84.7797
105.1109
124.0882
140.8302
154.4280
163.9759
þ500
84.2241
104.5552
123.5323
140.2742
153.8719
163.4198
200
200
200
buckling load when the temperature dependency is put into consideration. The percentage decrease is about 14% for the (P=FGM)S plate and about 12% for the (FGM=P)S one from temperature changes from DT ¼ 0 K to DT ¼ 100 K under the same volume fraction distribution N ¼ 2. Also the buckling loads under TD-F and TD cases are very close under the same volume fraction distribution and the same temperature change. In contrast, for the ZrO2=Ti-6Al-4V hybrid laminated plate, the buckling load is lower than that of the Si3N4=SUS304 hybrid laminated plate and erratic behavior can be observed in thermal loading conditions DT ¼ 100 and 200 K. It can also be seen that the control voltage has a very small effect on the buckling loads for hybrid laminated plates; this is because the piezoelectric layer is much thinner than the FGM substrate. Very high voltages will be able to influence
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 61
8.12.2008 11:46am Compositor Name: DeShanthi
Postbuckling of Shear Deformable FGM Plates
61
TABLE 3.3 Comparisons of Buckling Loads Pcr (kN) for Uniaxial Compressed, (P=FGM)S Plates with a Substrate Made of ZrO2=Ti-6Al-4V and with Unloaded Edges Immovable under Uniform Temperature Rise and Three Sets of Electrical Loading Conditions (b=h ¼ 20, a=b ¼ 1.0, T0 ¼ 300 K) DT (in K)
VU ¼ VL ¼ (in V)
N¼0
N ¼ 0.2
N ¼ 0.5
N ¼ 1.0
N ¼ 2.0
N ¼ 5.0
500 0
64.0000 63.4356
72.9739 72.4094
80.8184 80.2538
87.2604 86.6957
91.9643 91.3996
94.6043 94.0395
þ500
62.8712
71.8449
79.6892
86.1310
90.8348
93.4747
500
57.5279
64.4956
70.0364
73.9762
76.0389
75.9364
0
56.9635
63.9311
69.4718
73.4115
75.4741
75.3716
þ500
56.3991
63.3666
68.9072
72.8468
74.9094
74.8068
500
51.0557
56.0172
59.2544
60.6920
60.1135
57.2686
0
50.4913
55.4527
58.6898
60.1273
59.5487
56.7037
þ500
49.9269
54.8882
58.1252
59.5626
58.9839
56.1389
(P=FGM)S, TD-F, (m, n) ¼ (1, 1) 100 500 54.8204
(P=FGM)S, TID, (m, n) ¼ (1, 1) 0
100
200
200
59.5851
62.9913
64.9500
65.2654
63.7199
0
54.2561
59.0207
62.4268
64.3854
64.7007
63.1551
þ500 500
53.6917 45.9786
58.4563 45.1848
61.8623 42.4283
63.8208 37.8905
64.1360 31.5562
62.5904 23.3350
0
45.4144
44.6205
41.8639
37.3260
30.9916
22.7704
þ500
44.8502
44.0561
41.2995
36.7615
30.4270
22.2057
(P=FGM)S, TD, (m, n) ¼ (1, 1) 100 500 54.5302
200
59.2967
62.7049
64.6657
64.9834
63.4404
0
53.9709
58.7372
62.1453
64.1060
64.4237
62.8805
þ500
53.4117
58.1778
61.5857
63.5464
63.8639
62.3206
500
45.4104
44.6291
41.8861
37.3619
31.0410
22.8328
0
44.8561
44.0746
41.3314
36.8071
30.4860
22.2777
þ500
44.3018
43.5201
40.7768
36.2523
29.9311
21.7227
the buckling response of the hybrid laminated plate. However, such high voltages cannot be applied, because they lead to a breakdown in the material properties. Then Tables 3.5 and 3.6 present the buckling loads Pcr for the same two types of hybrid plates with unloaded edges movable subjected to uniaxial compression under three sets of temperature rise (DT ¼ 0, 100, 200 K). The results show that the buckling load is decreased with increase in temperature, but is increased as volume fraction index N increases at the same temperature. The numerical results also confirm that the control voltage has no effect on the buckling loads of hybrid laminated plates when the unloaded edges are movable.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 62
62
8.12.2008 11:46am Compositor Name: DeShanthi
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
TABLE 3.4 Comparisons of Buckling Loads Pcr (kN) for Uniaxial Compressed, (FGM=P)S Plates with a Substrate Made of ZrO2=Ti-6Al-4V and with Unloaded Edges Immovable under Uniform Temperature Rise and Three Sets of Electrical Loading Conditions (b=h ¼ 20, a=b ¼ 1.0, T0 ¼ 300 K) DT (in K)
VM (in V)
N¼0
N ¼ 0.2
N ¼ 0.5
N ¼ 1.0
N ¼ 2.0
N ¼ 5.0 110.8339
(FGM=P)S, TID, (m, n) ¼ (1, 1) 0
100
500
70.7813
82.1124
92.1400
100.5459
106.9247
0
70.2169
81.5479
91.5754
99.9812
106.3599
110.2691
þ500 500
69.6525 64.3091
80.9834 73.6340
91.0108 81.3580
99.4165 87.2617
105.7951 90.9992
109.7042 92.1660
0
63.7448
73.0695
80.7934
86.6970
90.4345
91.6012
þ500
63.1804
72.5050
80.2288
86.1323
89.8697
91.0364
500
57.8370
65.1557
70.5760
73.9775
75.0738
73.4981
0
57.2726
64.5912
70.0113
73.4128
74.5090
72.9333
þ500
56.7082
64.0267
69.4467
72.8481
73.9443
72.3685
(FGM=P)S, TD-F, (m, n) ¼ (1, 1) 100 500 60.6917
77.4619
200
67.4217
72.6482
76.2438
77.9534
0
60.1274
66.8572
72.0837
75.6792
77.3888
76.8972
þ500
59.5631
66.2928
71.5192
75.1146
76.8241
76.3325
500
50.9401
51.8613
50.6936
47.5837
42.4644
35.1598
0 þ500
50.3759 49.8116
51.2970 50.7327
50.1292 49.5647
47.0192 46.4547
41.8998 41.3352
34.5951 34.0305
(FGM=P)S, TD, (m, n) ¼ (1, 1) 100 500 60.6634 0 60.1041
67.3937 66.8343
72.6214 72.0618
76.2187 75.6590
77.9306 77.3708
77.4421 76.8822
200
200
þ500
59.5448
66.2749
71.5022
75.0993
76.8111
76.3223
500
50.8947
51.8260
50.6700
47.5728
42.4668
35.1762
0
50.3404
51.2715
50.1153
47.0180
41.9118
34.6211
þ500
49.7861
50.7170
49.5606
46.4632
41.3569
34.0661
Figures 3.3 and 3.4 give, respectively, the postbuckling load–deflection and load–shortening curves for (P=FGM)S and (FGM=P)S hybrid laminated plates (b=h ¼ 40, N ¼ 0.2) with unloaded edges immovable subjected to uniaxial compression and three sets of electrical loading, VU ¼ VL (or VM) ¼ 500, 0, þ500 V, and under DT ¼ 0 and 100 K. It is evident that the buckling loads reduce as the temperature increases, and the postbuckling path becomes lower. It can be found that the control voltage has a small effect on the postbuckling behavior of the plate. It can be seen that minus control voltages increase the buckling load and decrease the postbuckled deflection at the same temperature rise, whereas the plus control voltages decrease the buckling load and induce more large postbuckled deflections.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 63
8.12.2008 11:46am Compositor Name: DeShanthi
Postbuckling of Shear Deformable FGM Plates
63
TABLE 3.5 Comparisons of Buckling Loads Pcr (kN) for Uniaxial Compressed, Si3N4=SUS304 Plates with Piezoelectric Actuators and with Unloaded Edges Movable Subjected to Temperature Rise (b=h ¼ 20, a=b ¼ 1.0, T0 ¼ 300 K) DT (in K)
N ¼ 0.0
N ¼ 0.2
N ¼ 0.5
N ¼ 1.0
N ¼ 2.0
N ¼ 5.0
100
146.8044 144.8755
167.9184 165.3297
186.3678 183.2028
201.5086 197.8707
212.5516 208.5686
218.7312 214.5550
200
141.2601
161.6779
179.5191
194.1613
204.8411
210.8181
100
144.5326
164.9874
182.8609
197.5289
208.2266
214.2126
200
140.5758
160.9947
178.8367
193.4790
204.1585
210.1347
(P=FGM)S, (m, n) ¼ (1, 1) TID TD-FGM TD
(FGM=P)S, (m, n) ¼ (1, 1) TID 176.6633 TD-FGM TD
203.2696
226.8185
246.5632
261.5528
270.7491
100
174.1111
199.8871
222.7014
241.8298
256.3509
265.2588
200
169.3277
195.0592
217.8333
236.9282
251.4242
260.3173
100
174.1070
199.8824
222.6962
341.8245
256.3456
265.2538
200
169.3195
195.0497
217.8229
236.9173
251.4135
260.3075
Figures 3.5 and 3.6 show the effect of the volume fraction index N ( ¼ 0.2, 1.0, and 5.0) on the postbuckling behavior of (P=FGM)S and (FGM=P)S hybrid laminated plates (b=h ¼ 40) with unloaded edges immovable subjected to uniaxial compression and three sets of electrical loading, and under
TABLE 3.6 Comparisons of Buckling Loads Pcr (kN) for Uniaxial Compressed, ZrO2=Ti-6Al-4V Plates with Piezoelectric Actuators and with Unloaded Edges Movable Subjected to Temperature Rise Temperature Rise (b=h ¼ 20, a=b ¼ 1.0, T0 ¼ 300 K) DT (in K)
N ¼ 0.0
N ¼ 0.2
N ¼ 0.5
N ¼ 1.0
N ¼ 2.0
N ¼ 5.0
(P=FGM)S, (m, n) ¼ (1, 1) TID TD-FGM TD
81.2698
92.7595
102.8020
111.0477
117.0674
120.4437
100
77.6612
87.2275
95.5896
102.4555
107.4673
110.2784
200
74.0524
82.3901
89.6789
95.6635
100.0321
102.4828
100 200
77.3189 73.3692
86.8857 81.7080
95.2482 88.9973
102.1141 94.9821
107.1257 99.3503
109.9364 101.8001
(FGM=P)S, (m, n) ¼ (1, 1) TID
89.9576
104.4662
117.3045
128.0650
136.2290
141.2302
TD-FGM
100 200
85.1835 80.4093
97.2669 90.9440
107.9604 100.2675
116.9225 108.0808
123.7195 114.0052
127.8799 117.6293
TD
100
85.1797
97.2626
107.9557
116.9175
123.7146
127.8754
200
80.4018
90.9355
100.2582
108.0712
113.9956
117.6204
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 64
64
8.12.2008 11:46am Compositor Name: DeShanthi
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 150
(P/FGM)S T0 = 300 K, N = 0.2 b = 1.0, b/h = 40 (m, n) = (1, 1)
100 Px (kN)
I: ∆T = 0 K II: ∆T = 100 K
I
50 2
3
2
3
1
1: VU = VL = −500 V 2: VU = VL= 0 V 3: VU = VL = +500 V
II
1
Immovable edges W ∗/h = 0.0 W ∗/h = 0.1
(a)
0 0.0
150
0.5
1.0
(P/FGM)S T0 = 300 K, N = 0.2 b = 1.0, b/h = 40 (m, n) = (1, 1)
100
W (mm)
2.0
2.5
I II 1: VU = VL = −500 V
Px (kN)
I: ∆T = 0 K II: ∆T = 100 K
2: VU = VL = 0 V 3: VU = VL = +500 V Immovable edges
50 2 3 0 −0.2 (b)
1.5
W ∗/h = 0.0
1
W ∗/h = 0.1
0.0
0.2 ∆x (mm)
0.4
0.6
FIGURE 3.3 Thermopiezoelectric effects on the postbuckling behavior of (P=FGM)S plates with unload edges immovable: (a) load deflection; (b) load shortening.
DT ¼ 100 K. It can be seen that the increase of the volume fraction index N yields an increase of the buckling load and postbuckling strength. Figures 3.7 and 3.8 show the effect of temperature rise DT ( ¼ 0, 100, and 200 K) on the postbuckling behavior of (P=FGM)S and (FGM=P)S hybrid laminated plates (b=h ¼ 40) with unloaded edges movable and with N ¼ 0.2 and 2.0 subjected to uniaxial compression. It can be seen that both buckling load and postbuckling strength are decreased with increase in temperature. It can also be seen that the buckling load of hybrid laminated plates with immovable unloaded edges is lower than that of the plate with movable
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 65
8.12.2008 11:46am Compositor Name: DeShanthi
Postbuckling of Shear Deformable FGM Plates 150
(FGM/P)S T0 = 300 K, N = 0.2 b = 1.0, b/h = 40 (m, n) = (1, 1) 1 3 2
I
I: ∆T = 0 K II: ∆T = 100 K
II
1: VM = −500 V
Px (kN)
100
65
2: VM = 0 V 50
3
2
3: VM = +500 V
1 Immovable edges
W ∗/h = 0.0 W ∗/h = 0.1 0 0.0
0.5
1.0
(a) 150
(FGM/P)S T0 = 300 K, N = 0.2 b = 1.0, b/h = 40 (m, n) = (1, 1)
100
1.5 W (mm)
II
2.5
I
Px (kN)
I: ∆T = 0 K II: ∆T = 100 K
1: VM = −500 V 2: VM = 0 V 3: VM = +500 V Immovable edges
50
3 0 −0.2 (b)
2.0
2
W ∗/h = 0.0
1
W ∗/h = 0.1 0.0
0.2 ∆x (mm)
0.4
0.6
FIGURE 3.4 Thermopiezoelectric effects on the postbuckling behavior of (FGM=P)S plates with unload edges immovable: (a) load deflection; (b) load shortening.
unloaded edges under the same loading conditions, compare Figures 3.3 and 3.7, and Figures 3.4 and 3.8. In contrast, the postbuckling load-carrying capacity of the plate with immovable unloaded edges is larger than that of the plate with movable unloaded edges when the deflection W is sufficiently large. It is appreciated that in Figures 3.3 through 3.8 W*=h ¼ 0.1 denotes the dimensionless maximum initial geometric imperfection of the plate, and results only for Si3N4=SUS304 hybrid laminated plate under TD case.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 66
66
8.12.2008 11:46am Compositor Name: DeShanthi
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 100
Px (kN)
80 60
(P/FGM)S I: N = 0.2 T0 = 300 K, ∆T = 100 K II: N = 1.0 b = 1.0, b/h = 40 III: N = 5.0 (m, n) = (1, 1) 1 3 2
III
II
I
1: VU = VL = −500 V 2: VU = VL = 0 V 3: VU = VL = +500 V
40 Immovable edges 20
W ∗/h = 0.0 W ∗/h = 0.1
0 0.0
0.5
1.0
(a)
1.5
2.0
2.5
W (mm) 100 (P/FGM)S T0 = 300 K, ∆T = 100 K b = 1.0, b/h = 40 (m, n) = (1, 1)
Px (kN)
80 60
II
III
I
1: VU = VL = −500 V
I: N = 0.2 II: N = 1.0 III: N = 5.0
40
2: VU = VL = 0 V 3: VU = VL = +500 V Immovable edges
20
3 0 −0.2 (b)
2
1
W ∗/h = 0.0 W ∗/h = 0.1
−0.1
0.0 ∆x (mm)
0.1
0.2
FIGURE 3.5 Effects of volume fraction index N on the postbuckling behavior of (P=FGM)S plates with unload edges immovable: (a) load deflection; (b) load shortening.
3.3
Thermal Postbuckling Behavior of FGM Plates with Piezoelectric Actuators
We now consider thermal buckling problem of these two types of hybrid laminated plate. The temperature field is assumed to be a parabolic distribution in the XY-plane of the plate, but uniform through the plate thickness, i.e.,
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 67
8.12.2008 11:46am Compositor Name: DeShanthi
Postbuckling of Shear Deformable FGM Plates 150
100
67
III
(FGM/P)S I: N = 0.2 T0 = 300 K, ∆T = 100 K II: N = 1.0 b = 1.0, b/h = 40 III: N= 5.0 (m, n) = (1, 1) 2
Px (kN)
3
II I
1
1: VM = −500 V 2: VM = 0 V 3: VM = +500 V
50
Immovable edges W ∗/h = 0.0 W ∗/h = 0.1
0 0.0
0.5
1.0
1.5
2.0
150
Px (kN)
100
(FGM/P)S T0 = 300 K, ∆T = 100 K b = 1.0, b/h = 40 (m, n) = (1, 1)
III II I
I: N = 0.2 II: N = 1.0 III: N= 5.0
50
2 0 −0.2
1: VM = −500 V 2: VM = 0 V 3: VM = +500 V
Immovable edges
1
W ∗/h = 0.0
3
(b)
2.5
W (mm)
(a)
W ∗/h = 0.1
−0.1
0.0 ∆x (mm)
0.1
0.2
FIGURE 3.6 Effects of volume fraction index N on the postbuckling behavior of (FGM=P)S plates with unload edges immovable: (a) load deflection; (b) load shortening.
"
#" # 2X a 2 2Y b 2 T(X, Y) ¼ T1 þ T2 1 1 a b
(3:36)
where T1 is the uniform temperature rise T2 is the temperature gradient All four edges of the plate are assumed to be simply supported with no in-plane displacements. The boundary conditions become
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 68
68
8.12.2008 11:46am Compositor Name: DeShanthi
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 250
(P/FGM)S T0 = 300 K b = 1.0, b/h = 40 (m, n) = (1, 1)
Px (kN)
200
I: N = 0.2 II: N = 2.0
150
1
II 2
1: ∆T = 0 K 2: ∆T = 100 K 3: ∆T = 200 K
I
3
100 Movable edges
50
W ∗/h = 0.0 W ∗/h = 0.1
0 (a)
250
200
Px (kN)
1
0
150
3
2
W (mm)
(P/FGM)S T0 = 300 K b = 1.0, b/h = 40 (m, n) = (1, 1)
II
I: N = 0.2 II: N = 2.0
I
II
II
I
I 1: ∆T = 0 K 2: ∆T = 100 K 3: ∆T = 200 K
100
0 −0.4 (b)
Movable edges
1
50
3
W ∗/h = 0.0 W ∗/h = 0.1
2 −0.2
0.0
∆x (mm)
0.2
0.4
0.6
FIGURE 3.7 Effects of temperature rise on the postbuckling behavior of (P=FGM)S plates with unload edges movable: (a) load deflection; (b) load shortening.
X ¼ 0, a: W ¼ Cy ¼ 0
(3:37a)
U¼0
(3:37b)
N xy ¼ 0,
Mx ¼ P x ¼ 0
(3:37c)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 69
8.12.2008 11:46am Compositor Name: DeShanthi
Postbuckling of Shear Deformable FGM Plates
69
250
Px (kN)
200
150
(FGM/P)S T0 = 300 K b = 1.0, b/h = 40 (m, n) = (1, 1) 1
2
I: N = 0.2 II: N = 2.0
II I
3
1: ∆T= 0 K 2: ∆T= 100 K 3: ∆T= 200 K
100 Movable edges W ∗/h = 0.0
50
W ∗/h = 0.1
0 0
(a)
250
Px (kN)
200
150
1
3
2
W (mm)
(FGM/P)S T0 = 300 K b = 1.0, b/h = 40 (m, n) = (1, 1)
II
II
I
I
I: N = 0.2 II: N = 2.0
0 − 0.4 (b)
2: ∆T = 100 K 3: ∆T = 200 K 1
3
Movable edges W ∗/h = 0.0 W ∗/h = 0.1
2 −0.2
I 1: ∆T = 0 K
100
50
II
0.0
0.2
0.4
0.6
∆x (mm)
FIGURE 3.8 Effects of temperature rise on the postbuckling behavior of (FGM=P)S plates with unload edges movable: (a) load deflection; (b) load shortening.
Y ¼ 0, b: W ¼ Cx ¼ 0
(3:37d)
V¼0
(3:37e)
N xy ¼ 0,
My ¼ Py ¼ 0
(3:37f)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 70
70
8.12.2008 11:46am Compositor Name: DeShanthi
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
Introducing dimensionless quantities of Equation 2.8, and * D22 * ]1=2 , lT ¼ a0 DT (gT1 , g T2 , gP1 , g P2 ) ¼ ATx , ATy , BPx , BPy a2 =p2 [D11
(3:38)
where a0 is an arbitrary reference value, and a11 ¼ a11 a0 ,
a22 ¼ a22 a0
(3:39)
In Equation 3.39, ATx ( ¼ ATy ) and BEx ( ¼ BEy ) are defined by "
ATx
# DT ¼
ATy "
# tk " X ð Ax k
#
Ay
tk1
X BEx DV ¼ BEy k
ðtk tk1
DT(X, Y)dZ
(3:40a)
k
Bx By
Vk dZ h k p
(3:40b)
where DT ¼ T2 T0 for the in-plane parabolic temperature variation. The nonlinear Equations 3.2 through 3.5 may then be written in dimensionless form as L11 (W) L12 (Cx ) L13 (Cy ) ¼ g 14 b2 L(W þ W*, F) L21 (F)
32 1 lT C1 ¼ g24 b2 L(W þ 2W*, W) 2 p 2
(3:41) (3:42)
L31 (W) þ L32 (Cx ) L33 (Cy ) ¼ 0
(3:43)
L41 (W) L42 (Cx ) þ L43 (Cy ) ¼ 0
(3:44)
where all nondimensional linear operators Lij() and nonlinear operator L() are defined by Equation 2.14. The boundary conditions expressed by Equation 3.37 become x ¼ 0, p: W ¼ Cy ¼ 0
(3:45a)
dx ¼ 0
(3:45b)
F,xy ¼ Mx ¼ Px ¼ 0
(3:45c)
W ¼ Cx ¼ 0
(3:45d)
dy ¼ 0
(3:45e)
y ¼ 0, p:
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 71
8.12.2008 11:46am Compositor Name: DeShanthi
Postbuckling of Shear Deformable FGM Plates
71
F,xy ¼ My ¼ Py ¼ 0
(3:45f)
in which 1 dx ¼ 2 2 4p b g24
ðp ðp ( g224 b2 0 0
@2F @2F 1 @W 2 @W @W* g g g 24 5 24 2 2 @y @x 2 @x @x @x
þ g224 gT1 g5 gT2 lT C3 þ g 224 gP1 g5 gP2 DV dx dy 1 dy ¼ 2 2 4p b g24
ðp ðp ( 0 0
(3:46a)
2 2 @2F 1 @W @W* 2@ F 2 @W g g b b g 24 b2 5 @x2 @y2 2 24 @y @y @y
þ (gT2 g5 gT1 ) lT C3 þ ðgP2 g 5 gP1 ÞDV dy dx
(3:46b)
Note that in Equations 3.42 and 3.46, for the in-plane nonuniform parabolic temperature loading case,
C1 ¼ b2 g224 g T1 g 5 gT2 (x=p x2 =p2 ) þ (gT2 g 5 g T1 )(y=p y2 =p2 ), C3 ¼ T1 =T2 þ 16(x=p x2 =p2 )(y=p y2 =p2 ), and for the uniform temperature loading case, C1 ¼ 0,
C3 ¼ 1:0
By using a two-step perturbation technique, we obtain up to fourth-order asymptotic solutions h i W ¼ « A(1) 11 sin mx sin ny h i (3) þ «3 A(3) sin mx sin 3ny þ A sin 3mx sin ny þ O(«5 ) 13 31
(3:47)
2 2 y y5 y6 x5 x5 (0) x C þ C b C þ C F ¼ B(0) 5 5 6 6 00 00 2 120 360p 2 120 360p 2 2 5 6 y y x5 x5 (2) y (2) x 2 þ « B00 C5 þ C5 b00 C6 þ C6 2 120 360p 2 120 360p (2) þ B(2) 20 cos 2mx þ B02 cos 2ny 2 2 y y5 y6 x5 x5 (4) x þ «4 B(4) C þ C b C þ C 5 5 6 6 00 00 2 120 360p 2 120 360p (4) (4) (4) þ B(4) 20 cos 2mx þ B02 cos 2ny þ B22 cos 2mx cos 2ny þ B40 cos 4mx (4) (4) þ B(4) cos 4ny þ B cos 2mx cos 4ny þ B cos 4mx cos 2ny þ O(«5 ) 04 24 42
(3:48)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 72
72
8.12.2008 11:46am Compositor Name: DeShanthi
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells h i Cx ¼ « C(1) cos mx sin ny 11 h i (3) 3 þ « C(3) cos mx sin 3ny þ C cos 3mx sin ny þ O(«5 ) 13 31 h i Cy ¼ « D(1) 11 sin mx cos ny h i (3) þ «3 D(3) sin mx cos 3ny þ D sin 3mx cos ny þ O(«5 ) 13 31
(3:49)
(3:50)
Note that for the uniform temperature loading case, it is just necessary to take C5 ¼ C6 ¼ 0 in Equation 3.48, so that the asymptotic solutions have a similar form as expressed by Equations 3.28 through 3.31. Next, upon substitution of Equations 3.47 through 3.50 into the boundary conditions dx ¼ 0 and dy ¼ 0, one has 2 2 (2) 4 2 (4) b2 B(0) 00 þ « b B00 þ « b B00 þ ¼ lT C7
2 (2) 4 (4) b(0) 00 þ « b00 þ « b00 þ ¼ lT C8 (j)
2 1 m2 þ g5 n2 b2 (1 þ 2m) A(1) (3:51a) 11 « 2 2 8 g24 g5
2 1 g5 m2 þ g 224 n2 b2 (1) (1 þ 2m) A « (3:51b) 11 8 g 224 g25
(j)
By adding B00 and b00 (i ¼ 0, 2, 4, . . . ), one has h i (0) 2 2 (2) 4 2 (4) 2 2 (2) 4 (4) 2 2 b2 B(0) 00 þ « b B00 þ « b B00 þ m C9 þ b00 þ « b00 þ « b00 þ n b C10 2 1 4 S11 1 (3:52) Q22 A(1) C11 C44 A(1) ¼ 11 « 11 « þ (1 þ m) 16(1 þ m) 256
g14
From Equations 3.51 and 3.52, the thermal postbuckling equilibrium path can be written as (2) 2 (4) 4 lT ¼ l(0) T þ lT Wm þ lT Wm þ
(3:53)
in which Wm is the dimensionless form of maximum deflection, which is assumed to be at the point (x, y) ¼ (p=2m, p=2n). It is noted that l(i)T (i ¼ 0, 2, 4, . . . ) are all functions of temperature and position and given in detail in Appendix G. To obtain numerical results, it is necessary to solve Equation 3.53 by an iterative numerical procedure with the following steps: 1. Begin with W=h ¼ 0. 2. Assume elastic constants and the thermal expansion coefficients are constant, i.e., at T0 ¼ 300 K. The thermal buckling load for the plate of temperature-independent material is obtained. 3. Use the temperature determined in the previous step, the temperature-dependent material properties may be decided from Equations 1.4 and 3.35, and the thermal buckling load is obtained again.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 73
8.12.2008 11:46am Compositor Name: DeShanthi
Postbuckling of Shear Deformable FGM Plates
73
3
∆T/∆Tcr
2
Isotropic plate b = 1.0, b/h = 10 (m, n) = (1, 1) Present W ∗/h = 0.0 W ∗/h = 0.1 Bhimaraddi and Chandrashekhara (1993)
1
W ∗/h = 0.0
0 0.0
W ∗/h = 0.1
0.2
0.4
0.6
0.8
1.0
1.2
W/h FIGURE 3.9 Comparisons of thermal postbuckling load–deflection curves for isotropic plates subjected to uniform temperature rise.
4. Repeat step (3) until the thermal buckling temperature converges. 5. Specify the new value of W=h, and repeat steps (2)–(4) until the thermal postbuckling temperature converges. The thermal postbuckling load–deflection curves for perfect and imperfect, isotropic square plates (b=h ¼ 10, n ¼ 0.3) subjected to a uniform temperature rise are compared in Figure 3.9 with the analytical solutions of Bhimaraddi and Chandrashekhara (1993). The dimensionless critical temperature l*T ¼ a22 DT 104 for these two theories are identical and l*T ¼ 119.783. In addition, the thermal postbuckling load–deflection curves for an isotropic square plate (b=h ¼ 40) subjected to nonuniform parabolic temperature loading with T0=T1 ¼ 1.0 are compared in Figure 3.10 with the finite difference method solutions of Kamiya and Fukui (1982). These two comparisons show that the results from the present method are in good agreement with the existing results, thus verifying the reliability and accuracy of the present method. Tables 3.7 through 3.12 give thermal buckling loads DTcr (in K) for perfect, (P=FGM)S and (FGM=P)S hybrid laminated plates with different values of the volume fraction index N ( ¼ 0.0, 0.2, 0.5, 1.0, 2.0, and 5.0) subjected to a uniform temperature rise (T2 ¼ 0) and nonuniform parabolic temperature variation with three thermal load ratio T1=T2 ( ¼ 0.0, 0.5, and 1.0). It can be found that the buckling temperature of (P=FGM)S plate is lower than that of (FGM=P)S plate under the same loading condition. As in the case of axial compression, for the hybrid plates with Si3N4=SUS304 substrate, a fully metallic plate (N ¼ 0) has lowest buckling temperature and that the buckling temperature increases as the volume fraction index N increases. It can be seen
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 74
74
8.12.2008 11:46am Compositor Name: DeShanthi
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 60 Parabolic temperature field isotropic plate T0/T1 = 1.0
T (⬚C)
40
b =1.0, b/h = 40 (m, n) = (1, 1)
20 Present (HSDPT) Kamiya and Fukui (CPT) (1982) 0 0.0
0.2
0.4
0.6
0.8
1.0
W/h FIGURE 3.10 Comparisons of thermal postbuckling load–deflection curves for an isotropic plate subjected to nonuniform parabolic temperature loading.
TABLE 3.7 Comparisons of Buckling Temperature DT (K) for FGM Hybrid Plates with Si3N4=SUS304 Substrate under Uniform Temperature Rise and Three Sets of Electrical Loading Conditions (b=h ¼ 20, a=b ¼ 1.0, T0 ¼ 300 K) VU( ¼ VL) (in V)
N ¼ 0.0
N ¼ 0.2
N ¼ 0.5
N ¼ 1.0
N ¼ 2.0
N ¼ 5.0
500 0
190.8831 188.3028
219.4916 216.8932
250.1407 247.4695
282.0667 279.2786
314.3084 311.3615
345.7490 342.5981
þ500
185.7225
214.2948
244.7983
276.4905
308.4147
339.4472
(P=FGM)S, TD-F 500
172.2518
195.3290
219.4843
244.0116
267.8233
289.8148
0
170.0603
193.1553
217.2865
241.7598
265.4975
287.3994
þ500
167.8666
190.9797
215.0868
239.5061
263.1693
284.9810
(P=FGM)S, TD 500
171.4933
194.4750
218.5124
242.9146
266.5796
288.4171
0
169.4166
192.4294
216.4595
240.8252
264.4368
286.2063
þ500
167.3354
190.3797
214.4023
238.7315
262.2893
283.9898
N ¼ 0.0
N ¼ 0.2
N ¼ 0.5
N ¼ 1.0
N ¼ 2.0
N ¼ 5.0
500
229.1825
265.1534
303.8535
344.5095
386.0890
427.2245
0
226.6022
262.5550
301.1823
341.7214
383.1422
424.0736
þ500
224.0218
259.9565
298.5111
338.9334
380.1953
420.9227
(P=FGM)S, TID
VM (FGM=P)S, TID`
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 75
8.12.2008 11:46am Compositor Name: DeShanthi
Postbuckling of Shear Deformable FGM Plates
75
TABLE 3.7 (continued) Comparisons of Buckling Temperature DT (K) for FGM Hybrid Plates with Si3N4=SUS304 Substrate under Uniform Temperature Rise and Three Sets of Electrical Loading Conditions (b=h ¼ 20, a=b ¼ 1.0, T0 ¼ 300 K) VM
N ¼ 0.0
N ¼ 0.2
N ¼ 0.5
N ¼ 1.0
N ¼ 2.0
N ¼ 5.0
(FGM=P)S, TD-F 500 0
202.5830 200.4486
230.7437 228.6269
260.2219 258.0835
290.1927 288.0067
319.4639 317.2147
346.4602 344.1400
þ500
198.3126
226.5088
255.9439
285.8196
314.9637
341.8174
(FGM=P)S, TD 500 0
202.4387 200.4283
230.5792 228.6011
260.0317 258.0510
289.9734 287.9671
319.2144 317.1681
346.1820 344.0878
þ500
198.4141
226.6195
256.0670
285.9752
315.1177
341.9890
TABLE 3.8 Comparisons of Buckling Temperature DT (K) for FGM Hybrid Plates with ZrO2=Ti-6Al-4V Substrate under Uniform Temperature Rise and Three Sets of Electrical Loading Conditions (b=h ¼ 20, a=b ¼ 1.0, T0 ¼ 300 K) VU( ¼ VL) (in V)
N ¼ 0.0
N ¼ 0.2
N ¼ 0.5
N ¼ 1.0
N ¼ 2.0
N ¼ 5.0
500
361.0100
313.6715
272.8378
238.9043
209.9199
184.1798
0
352.2897
307.0133
267.6012
234.6535
206.3736
181.1541
þ500
343.5695
300.3551
262.3647
230.4026
202.8273
178.1284
500
339.2903
230.5015
187.5004
161.2948
142.2591
126.8038
0
329.9423
226.2742
184.5547
158.9790
140.3220
125.1165
þ500
320.6644
222.0210
181.5875
156.6469
138.3721
123.4188
500
332.9886
228.5898
186.3837
160.5363
141.7007
126.3721
0
324.7029
224.6504
183.6053
158.3339
139.8469
124.7491
þ500
316.4470
220.6800
180.8029
156.1134
137.9791
123.1148
N ¼ 0.0
N ¼ 0.2
N ¼ 0.5
N ¼ 1.0
N ¼ 2.0
N ¼ 5.0
500
398.6698
352.4184
310.5889
274.8633
243.6992
215.4438
0 þ500
389.9496 381.2293
345.7601 339.1019
305.3524 300.1158
270.6125 266.3616
240.1529 236.6066
212.4182 209.3925
500
360.4985
246.6464
202.8977
175.8595
156.4976
140.4670
0 þ500
351.4150 342.4201
242.6464 238.6230
200.1012 197.2875
173.8893 171.6830
154.6699 152.8321
138.8813 137.2873
500
359.3701
246.3116
202.7124
175.7311
156.4056
140.3956
0 þ500
351.2241 343.1091
242.5951 238.8494
200.0737 197.4161
173.8714 171.7710
154.6572 152.8982
138.8722 137.3400
(P=FGM)S, TID
(P=FGM)S, TD-F
(P=FGM)S, TD
VM (FGM=P)S, TID
(FGM=P)S, TD-F
(FGM=P)S, TD
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 76
76
8.12.2008 11:46am Compositor Name: DeShanthi
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
TABLE 3.9 Comparisons of Buckling Temperature DT (K) for (P=FGM)S Plates with Si3N4=SUS304 Substrate under Nonuniform Parabolic Temperature Variation and Three Sets of Electrical Loading Conditions (b=h ¼ 20, a=b ¼ 1.0, T0 ¼ 300 K) T1=T2
VU( ¼ VL) (in V)
N ¼ 0.0
N ¼ 0.2
N ¼ 1.0
N ¼ 2.0
N ¼ 5.0
334.1945 329.6768
384.2758 379.7267
493.8177 488.9366
550.2584 545.0994
605.2963 599.7801
(P=FGM)S, TID 0.0
500 0 þ500
325.1593
375.1775
484.0555
539.9403
594.2639
0.5
500
178.2000
204.9059
263.3194
293.4167
322.7661
0
175.7911
202.4802
260.7166
290.6657
319.8246
þ500
173.3822
200.0544
258.1139
287.9147
316.8832
500
121.4908
139.6983
179.5235
200.0434
220.0532
0
119.8485
138.0446
177.7491
198.1678
218.0478
þ500
118.2062
136.3908
175.9746
196.2923
216.0424
(P=FGM)S, TD-F 0.0 500
284.4204
321.6889
399.2022
435.4759
466.3745
0 þ500
280.8110 277.2018
318.0988 314.5095
395.4951 391.7880
431.6948 427.9120
462.5440 458.7091
500
161.7491
183.5069
229.4070
252.0241
272.9636
0
159.6876
181.4618
227.2878
249.8317
270.6824
þ500
157.6241
179.4149
225.1668
247.9120
268.3984
500
113.3601
128.9681
162.1571
178.6939
194.3458
0
111.8991
127.5158
160.6434
177.1206
192.6956
þ500
110.4367
126.0622
159.1284
175.5458
191.0437
(P=FGM)S, TD 0.0 500
462.8696
1.0
0.5
1.0
282.4131
319.4363
396.3263
432.2831
0
279.1118
316.1897
393.0523
428.9790
459.5585
þ500
275.8039
312.9370
389.7715
425.6670
456.2370
0.5
500 0
161.0838 159.1237
182.7577 180.8258
228.5001 226.5236
250.9276 248.8976
271.7272 269.6281
þ500
157.1594
178.8899
224.4809
246.8633
267.5240
1.0
500
113.0288
128.5932
161.6644
178.1279
193.6974
0
111.6182
127.1975
160.2241
176.6385
192.1429
þ500
110.2051
125.7995
158.7813
175.1463
190.5851
that an increase is about þ69% for the (P=FGM)S plate, and about þ72% for the (FGM=P)S one under uniform temperature rise, and about þ65% for the (P=FGM)S plate, and about þ68% for the (FGM=P)S one under nonuniform parabolic temperature variation with T1=T2 ¼ 0.0, from N ¼ 0 to N ¼ 5 under TD case. It can also be seen that the buckling temperature decreases when the temperature dependency is put into consideration. The percentage decrease is about 15% for the (P=FGM)S plate and about 17% for the (FGM=P)S one from TID case to TD case under uniform temperature
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 77
8.12.2008 11:46am Compositor Name: DeShanthi
Postbuckling of Shear Deformable FGM Plates
77
TABLE 3.10 Comparisons of Buckling Temperature DT (K) for (FGM=P)S Plates with Si3N4=SUS304 Substrate under Nonuniform Parabolic Temperature Variation and Three Sets of Electrical Loading Conditions (b=h ¼ 20, a=b ¼ 1.0, T0 ¼ 300 K) T1=T2
VM (in V)
N ¼ 0.0
N ¼ 0.2
N ¼ 1.0
N ¼ 2.0
N ¼ 5.0
401.2482 396.7307
464.2183 459.6692
603.1371 598.2560
675.9244 670.7654
747.9340 742.4178
(FGM=P)S, TID 0.0
500 0 þ500
392.2130
455.1200
593.3749
665.6063
736.9016
0.5
500
213.9545
247.5333
321.6120
360.4261
398.8257 395.8842
1.0
0
211.5456
245.1076
319.0093
357.6752
þ500
209.1367
242.6819
316.4065
354.9242
392.9428
500
145.8671
168.7604
219.2658
245.7285
271.9086
0
144.2248
176.1066
217.4913
243.8530
269.9032
þ500
142.5825
165.4528
215.7168
241.9774
267.8978
(FGM=P)S, TD-F 0.0 500
330.7502
376.1384
471.0853
515.2603
552.2033
0 þ500
327.2496 323.7512
372.6424 369.1491
467.4599 463.8368
511.5790 507.8985
548.5238 544.8420
500
190.4493
216.9529
273.1703
300.9339
326.7027
0
188.4398
214.9614
271.1117
298.8130
324.5098
þ500
186.4289
212.9685
269.0516
296.6906
322.3148
500
134.1980
153.3095
194.0825
214.5766
234.1622
0.5
1.0
0
132.7667
151.8893
192.6086
213.0498
232.5667
þ500
131.3342
150.4680
191.1337
211.5216
230.9696
(FGM=P)S, TD 0.0 500
330.4118
375.7495
470.5706
514.6824
551.5844
0
327.2365
372.6227
467.4229
511.5351
548.4777
þ500
324.0568
369.4919
464.2708
508.3820
545.3630
0.5
500 0
190.3281 188.4281
216.8136 214.9458
272.9858 271.0864
300.7233 298.7827
326.4663 324.4752
þ500
186.5247
213.0748
269.1836
296.8385
322.4798
1.0
500
134.1359
153.2376
193.9849
214.4635
234.0341
0
132.7595
151.8797
192.5931
213.0307
232.5446
þ500
131.3808
150.5197
191.1989
211.5955
231.0524
rise and the same volume fraction distribution N ¼ 2. Also the thermal buckling loads under TD-F and TD cases are very close under the same volume fraction distribution and the same thermal loading condition. In contrast, it is seen that the buckling temperature of hybrid plates with ZrO2=Ti-6Al-4V substrate is decreased as the volume fraction index N increases. It can also be seen that the control voltage has a small effect on the thermal buckling loads for these hybrid laminated plates.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 78
78
8.12.2008 11:46am Compositor Name: DeShanthi
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
TABLE 3.11 Comparisons of Buckling Temperature DT (K) for (P=FGM)S Plates with ZrO2=Ti-6Al-4V Substrate under Nonuniform Parabolic Temperature Variation and Three Sets of Electrical Loading Conditions (b=h ¼ 20, a=b ¼ 1.0, T0 ¼ 300 K) T1=T2
VU( ¼ VL) (in V)
N ¼ 0.0
N ¼ 0.2
N ¼ 1.0
N ¼ 2.0
N ¼ 5.0
632.1551 616.8853
549.2456 537.5869
418.3071 410.8641
367.5503 361.3410
322.4765 317.1789
(P=FGM)S, TID 0.0
500 0 þ500
601.6155
525.9282
403.4211
355.1317
311.8813
0.5
500
337.0529
292.8512
223.0412
195.9794
171.9472
0
328.9113
286.6349
219.0726
192.6686
169.1224
þ500
320.7697
280.4187
215.1040
189.3578
166.2977
500
229.7849
199.6515
152.0597
133.6106
117.2267
0
224.2344
195.4136
149.3541
131.3534
115.3009
þ500
218.6839
191.1756
146.6485
129.0962
113.3752
(P=FGM)S, TD-F 0.0 500
598.0353
343.6654
235.8257
208.3855
186.4033
0 þ500
577.4709 557.6385
337.7048 331.6966
232.6350 229.4191
205.7157 203.0257
184.0908 181.7600
500
317.2877
218.7738
153.5554
135.3958
120.7423
0
308.6649
214.7361
151.3301
133.5351
119.1132
þ500
300.0934
210.6746
149.0898
131.6627
117.4751
500
218.7285
161.5482
115.1498
101.4113
90.0399
0
213.0890
158.4637
113.4055
99.9548
88.7771
þ500
207.4749
155.3648
111.6517
98.4907
87.5082
(P=FGM)S, TD 0.0 500
185.5407
1.0
0.5
1.0
574.8693
339.7483
234.0814
207.3249
0
558.7789
334.3736
231.4190
204.8110
183.3573
þ500
542.9512
328.9448
228.4113
202.2762
181.1540
0.5
500 0
311.8759 304.1632
217.0459 213.2708
152.8709 150.7486
134.8918 133.1068
120.3626 118.7900
þ500
296.4737
209.4670
148.6098
131.3090
117.2077
1.0
500
216.2538
160.5520
114.7444
101.1136
89.8113
0
211.0199
157.6210
113.0615
99.7021
88.5831
þ500
205.7910
154.6718
111.3681
98.2823
87.3481
Figure 3.11 shows the effect of material properties on the thermal postbuckling load–deflection curves for (P=FGM)S and (FGM=P)S hybrid laminated plates (N ¼ 2.0) subjected to a uniform temperature rise (T2 ¼ 0) and nonuniform parabolic temperature variation (T1=T2 ¼ 0.0), respectively, and with three sets of electrical loading, VU ¼ VL (or VM) ¼ 500, 0, þ500 V, and under two cases of thermoelastic material properties, i.e., TID and TD. It can be seen that the thermal postbuckling equilibrium path becomes lower
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 79
8.12.2008 11:46am Compositor Name: DeShanthi
Postbuckling of Shear Deformable FGM Plates
79
TABLE 3.12 Comparisons of Buckling Temperature DT (K) for (FGM=P)S Plates with ZrO2= Ti-6Al-4V Substrate under Nonuniform Parabolic Temperature Distribution and Three Sets of Electrical Loading Conditions (b=h ¼ 20, a=b ¼ 1.0, T0 ¼ 300 K) T1=T2
VM (in V)
N ¼ 0.0
N ¼ 0.2
N ¼ 1.0
N ¼ 2.0
N ¼ 5.0
698.1001 682.8303
617.0921 605.4334
481.2691 473.8261
426.6948 420.4855
377.2160 371.9184
(FGM=P)S, TID 0.0
500 0 þ500
667.5605
593.7747
466.3831
414.2762
366.6208
0.5
500
372.2135
329.0262
256.6125
227.5155
201.1348 198.3100
1.0
0
364.0719
322.8099
252.6440
224.2047
þ500
355.9304
316.5936
248.6754
220.8939
195.4853
500
253.7555
224.3138
174.9472
155.1106
137.1256
0
248.2050
220.0759
172.2415
152.8534
135.1999
þ500
242.6546
215.8379
169.5359
150.5962
133.2741
(FGM=P)S, TD-F 0.0 500
614.2082
362.4850
253.1466
225.7529
203.2276
0 þ500
595.3040 576.9683
356.8670 351.2095
250.2042 247.2384
223.2697 220.7703
201.0907 198.9386
500
337.9622
234.5947
167.8398
149.1455
133.6344
0
329.5637
230.7643
165.7353
147.3920
132.1239
þ500
321.2380
226.9125
163.6189
145.6291
130.6051
500
235.5359
175.0072
127.0871
112.8256
100.9174
0.5
1.0
0
229.9974
172.0518
125.4258
111.4420
99.7203
þ500
224.4839
169.0833
123.7565
110.0521
98.4001
(FGM=P)S, TD 0.0 500
610.6959
361.8958
252.9243
225.5958
203.0985
0
595.0753
356.8408
250.1978
223.2656
201.0885
þ500
579.6954
351.7393
247.4456
220.9188
199.0620
0.5
500 0
337.0280 329.4402
234.3057 230.7321
167.7308 165.7247
149.0652 147.3848
133.5706 132.1188
þ500
321.8768
227.1318
163.7057
145.6942
130.6580
1.0
500
235.0930
174.8349
127.0197
112.7761
100.8794
0
229.9281
172.0281
125.4175
111.4363
99.7164
þ500
224.7690
169.2046
123.8067
110.0897
98.4306
when the temperature-dependent properties are taken into account. It can also be seen that the FGM hybrid laminated plate under a uniform temperature rise has a lower postbuckling temperature than does a plate under a nonuniform parabolic temperature variation. It is found that minus control voltages increase the buckling temperature and decrease the postbuckled deflection, whereas the plus control voltages decrease the buckling temperature and induce more large postbuckled deflections. Since the effect of the
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 80
80
8.12.2008 11:46am Compositor Name: DeShanthi
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 1500
I: uniform temperature (T2 = 0) II: parabolic temperature (T1/T2 = 0.0) (P/FGM)S, N = 2.0 T0 = 300 K b = 1.0, b/h = 20 (m, n) = (1, 1)
∆T (K)
1000
II: T-ID (1, 2, 3)
II: T-D (1, 2, 3) 1: VU = VL = −500 V I: T-ID (1, 2, 3) 2: VU = VL = 0 V 3: VU = VL = +500 V I: T-D (1, 2, 3)
500
W ∗/h = 0.0
(a)
0 0.0
W ∗/h = 0.05
0.5
1.0
1.5 W (mm)
1500 I: uniform temperature (T2 = 0) II: parabolic temperature (T1/T2 = 0.0)
∆T (K)
1000
(P/FGM)S, N = 2.0 T0 = 300 K b = 1.0, b/h = 20 (m, n) = (1, 1)
2.0
2.5
II: T-ID (1, 2, 3)
II: T-D (1, 2, 3) 1: VU = VL = −500 V I: T-ID (1, 2, 3) 2: VU = VL = 0 V 3: VU = VL = +500 V
500
I: T-D (1, 2, 3)
W ∗/h = 0.0 W ∗/h = 0.05 0 0.0 (b)
0.5
1.0
1.5
2.0
2.5
W (mm)
FIGURE 3.11 Effect of material properties on the thermal postbuckling behavior of FGM hybrid laminated plates under in-plane temperature variation: (a) (P=FGM)S plate; (b) (FGM=P)S plate.
control voltages is small, these three curves, referred to as 1, 2, and 3 in the figure, are very close. Figure 3.12 shows the effect of the volume fraction index N ( ¼ 0.2, 1.0, and 5.0) on the thermal postbuckling behavior of (P=FGM)S and (FGM=P)S hybrid laminated plates subjected to a nonuniform parabolic temperature variation with T1=T2 ¼ 0.5 and three sets of electrical loading. It can be seen that the increase of the volume fraction index N yields an increase of the buckling temperature and thermal postbuckling strength. Figure 3.13 shows the effect of different values of the thermal load ratio T1=T2 ( ¼ 0.0, 0.5, 1.0) on the postbuckling behavior of (P=FGM)S and
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 81
8.12.2008 11:46am Compositor Name: DeShanthi
Postbuckling of Shear Deformable FGM Plates
81
1000 Parabolic temperature I: N = 0.2 (P/FGM)S II: N = 1.0 T0 = 300 K, T1/T2 = 0.5 III: N = 5.0 b = 1.0, b/h = 20 (m, n) = (1, 1)
∆T (K)
800 600
III (1, 2, 3) 1: VU = VL = −500 V II (1, 2, 3) 2: VU = VL = 0 V 3: VU = VL = +500 V I (1, 2, 3)
400 200
W ∗/h = 0.0
0 0.0
W ∗/h = 0.05
0.5
1.0
(a)
1.5
2.0
2.5
W (mm) 1000 Parabolic temperature (FGM/P)S T0 = 300 K, T1/T2 = 0.5 b = 1.0, b/h = 20 (m, n) = (1, 1)
800
∆T (K)
600
I: N = 0.2 II: N = 1.0 III: N = 5.0
III (1, 2, 3) II (1, 2, 3)
1: VM = −500 V
I (1, 2, 3) 2: VM = 0 V 3: VM = +500 V
400
200
W ∗/h = 0.0 W ∗/h = 0.05
0 (b)
0
1
W (mm)
2
3
FIGURE 3.12 Effect of volume fraction index N on the thermal postbuckling behavior of FGM hybrid laminated plates under nonuniform parabolic temperature variation: (a) (P=FGM)S plate; (b) (FGM=P)S palte.
(FGM=P)S hybrid laminated plates subjected to a nonuniform parabolic temperature variation and three sets of electrical loading. It can be found that the postbuckling strength is decreased by increasing T1=T2, when the volume fraction index N ¼ 2.0. As mentioned in Section 3.2, in Figures 3.11 through 3.13, W*=h ¼ 0.05 denotes the dimensionless maximum initial geometric imperfection of the plate.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 82
82
8.12.2008 11:46am Compositor Name: DeShanthi
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 1200
Parabolic temperature I: T /T = 0.0 1 2 (P/FGM)S II: T1/T2 = 0.5 T0 = 300 K, N = 2.0 III: T1/T2 = 1.0 b = 1.0, b/h = 20 (m, n) = (1, 1)
800
I (1, 2, 3)
∆T (K)
II (1, 2, 3) 1: VU = VL = −500 V 2: VU = VL = 0 V 3: VU = VL = +500 V
III (1, 2, 3)
400
W ∗/h = 0.0
(a)
0 0.0
W ∗/h = 0.05 0.5
1.0
1.5
2.0
2.5
W (mm)
1200 Parabolic temperature I: T /T = 0.0 1 2 (FGM/P)S II: T1/T2 = 0.5 T0 = 300 K, N = 2.0 III: T1/T2 = 1.0 b = 1.0, b/h = 20 (m, n) = (1, 1)
II (1, 2, 3) 1: VM = −500 V 2: VM = 0 V
∆T (K)
800
I (1, 2, 3)
III (1, 2, 3)
3: VM = +500 V
400
W ∗/h = 0.0 0 (b)
W ∗/h = 0.05 0.0
0.5
1.0
1.5
2.0
2.5
W (mm)
FIGURE 3.13 Effect of thermal load ratio T1=T2 on the postbuckling of FGM hybrid laminated plates under nonuniform parabolic temperature variation: (a) (P=FGM)S plate; (b) (FGM=P)S plate.
3.4
Postbuckling of Sandwich Plates with FGM Face Sheets in Thermal Environments
Finally, we consider a rectangular sandwich plate which consists of one homogeneous substrate and two face sheets made of functionally graded materials and is midplane symmetric, as shown in Figure 3.14. The length, width, and total thickness of the sandwich plate are a, b, and h. The thickness
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 83
8.12.2008 11:46am Compositor Name: DeShanthi
Postbuckling of Shear Deformable FGM Plates
83
a t0 t1
b
h
hF
FGM
hH
Homogeneous
X t2 t3
FGM Y Z FIGURE 3.14 Configuration of a sandwich plate.
of each FGM face sheet is hF, while the thickness of the homogeneous substrate is hH. The FGM face sheet is made from a mixture of ceramics and metals, the mixing ratio of which is varied continuously and smoothly in the Z-direction. It is assumed that the effective Young’s modulus Ef, thermal expansion coefficient af, and thermal conductivity kf of FGM face sheets are functions of temperature, so that Ef, af, and kf are both temperature- and position-dependent. The Poisson ratio nf depends weakly on temperature change and is assumed to be a constant. We assume the volume fraction Vm follows a simple power law. According to rule of mixture, we have
Z t0 N þ Ec (T) t1 t0 Z t0 N þ ac (T) af (Z, T) ¼ [am (T) ac (T)] t1 t0 Z t0 N þ kc (T) kf (Z, T) ¼ [km (T) kc (T)] t1 t0 Ef (Z, T) ¼ [Em (T) Ec (T)]
(3:54a) (3:54b) (3:54c)
It is evident that when Z ¼ t0, Ef ¼ Ec, af ¼ ac and kf ¼ kc, and when Z ¼ t1, Ef ¼ Em, af ¼ am, and kf ¼ km. The temperature field is assumed to be uniform over the plate surface but varying along the thickness direction due to heat conduction which can be determined by solving a steady-state heat transfer equation d dT k ¼0 dZ dZ
(3:55)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 84
84
8.12.2008 11:46am Compositor Name: DeShanthi
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
where 8 < kf k ¼ kH : kf 8 < TF T ¼ TH : ~F T
(t0 Z < t1 ) (t1 Z t2 ) (t2 < Z t3 )
(3:56a)
(t0 Z t1 ) (t1 Z t2 ) (t2 Z t3 )
(3:56b)
where kH is the thermal conductivity of the homogeneous substrate. Equation 3.55 is solved by imposing the boundary conditions T ¼ TU at Z ¼ t0 and T ¼ TL at Z ¼ t3, and the continuity conditions ~ F (t2 ) ¼ Tm2 TF (t1 ) ¼ TH (t1 ) ¼ Tm1 , TH (t2 ) ¼ T ~F dTF dTH dTH dT km ¼ k , k ¼ k H H m dZ Z¼t1 dZ Z¼t1 dZ Z¼t2 dZ Z¼t2
(3:57a) (3:57b)
where TU and TL are the temperatures at top and bottom surfaces of the plate Tm1 and Tm2 are the temperatures at Z ¼ t1 and t2 interfaces, respectively The solutions of Equations 3.55 through 3.57, by means of polynomial series, are TF ¼ TU þ (Tm1 TU )h(Z) TH ¼
(3:58a)
1 ½(Tm1 t2 Tm2 t1 ) þ (Tm2 Tm1 )Z hH
(3:58b)
~ F (Z) ¼ TL þ (Tm2 TL )~ T h(Z)
(3:58c)
in which "
kmc Z t0 Nþ1 k2mc Z t0 2Nþ1 þ (N þ 1)kc t1 t0 (2N þ 1)k2c t1 t0 # k3mc Z t0 3Nþ1 k4mc Z t0 4Nþ1 k5mc Z t0 5Nþ1 þ (3N þ 1)k3c t1 t0 (4N þ 1)k4c t1 t0 (5N þ 1)k5c t1 t0
h(Z) ¼
1 C
Z t0 t1 t0
(3:59a) "
Nþ1
2Nþ1
Z t3 kmc Z t3 k2mc Z t3 þ t2 t3 (N þ 1)kc t2 t3 (2N þ 1)k2c t2 t3 # k3mc Z t3 3Nþ1 k4mc Z t3 4Nþ1 k5mc Z t3 5Nþ1 þ (3N þ 1)k3c t2 t3 (4N þ 1)k4c t2 t3 (5N þ 1)k5c t2 t3
h ~(Z) ¼
1 C
(3:59b)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 85
8.12.2008 11:46am Compositor Name: DeShanthi
Postbuckling of Shear Deformable FGM Plates C¼1
85
kmc k2mc k3mc k4mc þ þ (N þ 1)kc (2N þ 1)k2c (3N þ 1)k3c (4N þ 1)k4c
k5mc (5N þ 1)k5c G¼1
(3:59c) kmc k2mc k3mc k4mc k5mc þ 2 3 þ 4 5 kc kc kc kc kc
(3:59d)
where kmc ¼ km kc, and ((kH =hH ) þ (km G=hF C))TU þ (kH =hH )TL , (km G=hF C) þ (2kH =hH ) ((kH =hH ) þ (km G=hF C))TL þ (kH =hH )TU ¼ (km G=hF C) þ (2kH =hH )
Tm1 ¼ Tm2
(3:60)
The plate is assumed to be geometrically imperfect, and is subjected to a compressive edge load in the X-direction and=or heat conduction. Two cases of compressive postbuckling under thermal environments and of thermal postbuckling due to heat conduction are considered. Since the heat conduction is considered in the present case, the general von Kármán-type equations (Equations 1.33 through 1.36) can be written in the simple form as ~12 (Cx ) L ~13 (Cy )þ L ~14 (F) L ~15 (N T ) L ~16 (MT ) ¼ L(W ~ þ W*,F) (3:61) ~11 (W) L L ~ ~21 (F) þ L ~22 (Cx ) þ L ~23 (Cy ) L ~24 (W) L ~25 (N T ) ¼ 1 L(W L þ 2W*, W) (3:62) 2 ~31 (W) þ L ~32 (Cx ) L ~33 (Cy ) þ L ~34 (F) L ~35 (N T ) L ~36 (ST ) ¼ 0 L
(3:63)
~41 (W) L ~42 (Cx ) þ L ~43 (Cy ) þ L ~44 (F) L ~45 (N T ) L ~46 (ST ) ¼ 0 L
(3:64)
~ij() and nonlinear operator L() ~ are defined by where all linear operators L Equation 1.37. The forces and moments caused by elevated temperature are defined by Equations 3.8 and 3.9. All four edges of the plate are assumed to be simply supported. Depending upon the in-plane behavior at the edges, two cases, case 1 (for the compressive buckling problem) and case 2 (for the thermal buckling problem), will be considered. They are Case 1: The edges are simply supported and freely movable in the in-plane directions. In addition, the plate is subjected to uniaxial compressive edge loads. Case 2: All four edges are simply supported with no in-plane displacements, i.e., prevented from moving in the X- and Y-directions.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 86
86
8.12.2008 11:46am Compositor Name: DeShanthi
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells For both cases the associated boundary conditions can be expressed by
X ¼ 0, a: W ¼ Cy ¼ 0
(3:65a)
Mx ¼ P x ¼ 0
(3:65b)
ðb N x dY þ P ¼ 0 (for compressive buckling problem)
(3:65c)
0
U ¼ 0 (for thermal buckling problem)
(3:65d)
W ¼ Cx ¼ 0
(3:65e)
My ¼ P y ¼ 0
(3:65f)
Y ¼ 0, b:
ða N y dX ¼ 0 (for compressive buckling problem)
(3:65g)
0
V ¼ 0 (for thermal buckling problem)
(3:65h)
where P is a compressive edge load in the X-direction Mx and My are the bending moments Px and Py are the higher order moments, defined by Equation 3.12 The condition expressing the immovability condition, U ¼ 0 (on X ¼ 0, a) and V ¼ 0 (on Y ¼ 0, b), is fulfilled on the average sense as ðb ða 0 0
@U dX dY ¼ 0, @X
ða ðb 0 0
@V dY dX ¼ 0 @Y
(3:66)
This condition in conjunction with Equation 3.67 below provides thermally induced compressive stresses acting on the edges X ¼ 0, a and Y ¼ 0, b. The average end-shortening relationships are Dx 1 ¼ a ab
ðb ða 0 0
¼
1 ab
@U dX dY @X
ðb ða (" * A11 0 0
@Cy @2 F @2F 4 @Cx 4 * * * * * þ B12 þ A12 þ B11 E11 E12 2 2 2 2 @X @Y @Y @X 3h 3h
) 2 # 4 @2W @2W 1 @W @W @W* T T * * * N x þ A12 * Ny 2 E11 þ E12 A11 dX dY 3h @X2 @Y2 2 @X @X @X
(3:67a)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 87
8.12.2008 11:46am Compositor Name: DeShanthi
Postbuckling of Shear Deformable FGM Plates Dy 1 ¼ b ab
ða ðb 0 0
87
@V dY dX @Y
ða ðb (" @Cy 1 @2F @2F 4 @Cx 4 * *12 *21 *21 *22 *22 þ B ¼ A22 þ A þ B E E @X @Y ab @X2 @Y2 3h2 3h2 0 0
) 2 # 4 @2 W @2W 1 @W @W @W* T T * * * * 2 E21 þ E22 A12 N x þ A22 N y dY dX 3h @X2 @Y2 2 @Y @Y @Y
(3:67b)
where Dx and Dy are plate end-shortening displacements in the X- and Y-directions. Introducing dimensionless quantities of Equation 2.8, and * D22 * ]1=2 (g T1 , g T2 ) ¼ ATx , ATy a2 =p2 [D11 * (gT3 , g T4 , gT6 , gT7 ) ¼ DTx , DTy , FTx , FTy a2 =p2 h2 D11 * D22 * ]1=2 , lx ¼ Pb=4p2 [D11
(3:68)
lT ¼ a0 DT
where a0 is an arbitrary reference value, defined by Equation 3.39. Also we let "
ATx
DTx
FTx
ATy
DTy
FTy
# DT ¼
# tk " X ð Ax k
tk1
Ay
(1, Z, Z3 )DT(Z)dZ
(3:69)
k
where DT is a constant and is defined by DT ¼ TU T0 for the heat conduction. The nonlinear equations (Equations 3.61 through 3.64) may then be written in dimensionless form as L11 (W) L12 (Cx ) L13 (Cy ) þ g 14 L14 (F) L16 (MT ) ¼ g14 b2 L(W þ W*,F) (3:70) L21 (F) þ g24 L22 (Cx ) þ g24 L23 (Cy ) g 24 L24 (W) 1 ¼ g 24 b2 L(W þ 2W*, W) 2
(3:71)
L31 (W) þ L32 (Cx ) L33 (Cy ) þ g 14 L34 (F) L36 (ST ) ¼ 0
(3:72)
L41 (W) L42 (Cx ) þ L43 (Cy ) þ g 14 L44 (F) L46 (ST ) ¼ 0
(3:73)
where all nondimensional linear operators Lij() and nonlinear operator L() are defined by Equation 2.14.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 88
88
8.12.2008 11:46am Compositor Name: DeShanthi
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells The boundary conditions expressed by Equation 3.65 become
x ¼ 0, p:
1 p
ðp b2 0
W ¼ Cy ¼ 0
(3:74a)
Mx ¼ P x ¼ 0
(3:74b)
@2F dy þ 4lx b2 ¼ 0 (for compressive buckling problem) @y2
(3:74c)
dx ¼ 0 (for thermal buckling problem)
(3:74d)
W ¼ Cx ¼ 0
(3:74e)
My ¼ P y ¼ 0
(3:74f)
y ¼ 0, p:
ðp 0
@2F dx ¼ 0 (for compressive buckling problem) @x2 dy ¼ 0 (for thermal buckling problem)
(3:74g) (3:74h)
and the unit end-shortening relationships become ðp ðp @Cy 1 @2F @2F @Cx þ g233 b dx ¼ 2 2 g224 b2 2 g 5 2 þ g24 g511 @y @x @x @y 4p b g 24 0 0 2 @2W 1 @W 2 @W @W* 2@ W g g24 g611 þ g b g24 244 24 2 2 @x @y 2 @x @x @x 2
(3:75a) þ g24 g T1 g 5 gT2 lT dx dy ðp ðp 2 2 @Cy 1 @ F @Cx 2@ F þ g g b þ g g b 5 24 220 522 @x @y @x2 @y2 4p2 b2 g 24 0 0 2 2 @2W 1 2@ W 2 @W g24 b þ g 622 b g 24 g 240 @x2 @y2 2 @y @W @W* þ ðgT2 g5 gT1 ÞlT dy dx g 24 b2 (3:75b) @y @y
dy ¼
Since the material properties are assumed to be functions of T and Z, and the temperature is also assumed to be function of Z, even for the midplane symmetric plate the coupling between transverse bending and in-plane
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 89
8.12.2008 11:46am Compositor Name: DeShanthi
Postbuckling of Shear Deformable FGM Plates
89
stretching which is given in terms of Bij* and Eij* (i, j ¼ 1, 2, 6) is still existed when the plate is subjected to heat conduction. In contrast, when the plate is subjected to a uniform temperature rise, all Bij* and Eij* are zero-valued. Hence, for the heat conduction case, a nonlinear static problem must be first solved to determine the prebuckling deflection Wi caused by temperature field (Shen 2007a), and then replaced W* with WT* ¼ W * þ Wi in Equations 3.70 and 3.71. Note that for uniform temperature loading case, that is, TU ¼ TL, Wi ¼ 0 and WT* ¼ W * . By using a two-step perturbation technique, the asymptotic solutions are obtained in the same form of Equations 3.28 through 3.31. Upon substitution of these solutions into the boundary conditions (Equations 3.74c and 3.75a), or into the boundary conditions (Equations 3.74d and 3.74h), the compressive postbuckling equilibrium path can be written as (2) 2 (4) 4 lp ¼ l(0) p þ lp Wm þ lp Wm þ
(3:76a)
(2) 2 (4) 4 dx ¼ d(0) x þ dx W m þ dx W m þ
(3:76b)
and the thermal postbuckling equilibrium path can be written as (2) 2 (4) 4 lT ¼ l(0) T þ lT Wm þ lT Wm þ
(3:77)
in which Wm is the dimensionless form of maximum deflection, and (i) (i) l(i) p , dp , and lT (i ¼ 0, 2, 4, . . . ) are all functions of temperature and position and given in detail in Appendix H. For numerical illustrations, two sets of material mixture, as shown in Section 3.2, for FGM face sheets are considered. The material properties are assumed to be nonlinear function of temperature of Equation 1.4, and typical values, in the present case, can be found in Tables 1.1 through 1.3. The same metal is selected for the homogeneous substrate, and the material properties of which are also assumed to be nonlinear function of temperature of Equation 1.4. Poisson’s ratio is assumed to be a constant, that is, nf ¼ 0.28 for (Si3N4=SUS304) face sheets and nH ¼ 0.3 for (SUS304) substrate, also nf ¼ nH ¼ 0.29 for both (ZrO2=Ti-6Al-4V) face sheets and (Ti-6Al-4V) substrate. For these examples, the plate geometric parameter a=b ¼ 1, b=h ¼ 20, and the thickness of the FGM face sheet hF ¼ 1 mm whereas the thickness of the homogeneous substrate is taken to be hH ¼ 4, 6, and 8 mm, so that the substrate-to-face sheet thickness ratio hH=hF ¼ 4, 6, and 8, respectively. It should be appreciated that in all figures W*=h ¼ 0.1 (for the compressive postbuckling) or 0.05 (for the thermal postbuckling) denotes the dimensionless maximum initial geometric imperfection of the plate. Tables 3.13 and 3.14 present the compressive buckling loads Pcr (in kN) for perfect, sandwich plates with different values of the substrate-to-face sheet thickness ratio hH=hF ( ¼ 4, 6, and 8) and with different values of the volume fraction index N ( ¼ 0.0, 0.2, 0.5, 1.0, 2.0, and 5.0) of FGM face sheets subjected to uniaxial compression under three sets of uniform
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 90
90
8.12.2008 11:46am Compositor Name: DeShanthi
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
TABLE 3.13 Comparisons of Buckling Loads Pcr (kN) for Uniaxial Compressed, (FGM=SUS304=FGM) Sandwich Plates under Uniform Temperature Rise (b=h ¼ 20, a=b ¼ 1.0, T0 ¼ 300 K) hH=hF
DT (in K)
N¼0
N ¼ 0.2
N ¼ 0.5
N ¼ 1.0
N ¼ 2.0
N ¼ 5.0
8.0 6.0
3681.317 2353.399
3859.934 2492.362
4034.281 2627.142
4203.058 2756.482
4364.358 2878.550
4515.310 2990.619
4.0
1321.721
1421.209
1516.661
1606.887
1690.181
1764.056
TID, (m, n) ¼ (1, 1)
TD, (m, n) ¼ (1, 1) 8.0 100
6.0
4.0
3628.076
3801.115
3970.019
4133.529
4289.799
4436.045
200
3528.290
3701.026
3869.631
4032.846
4188.832
4334.807
300
3381.958
3559.376
3732.538
3900.154
4060.333
4210.224
100
2319.363
2453.986
2584.559
2709.864
2828.126
2936.704
200
2255.571
2389.958
2520.300
2645.377
2763.422
2871.797
300
2162.024
2300.053
2433.914
2562.358
2683.572
2794.848
100
1302.606
1398.987
1491.460
1578.872
1659.571
1731.144
200 300
1266.779 1214.241
1362.991 1313.058
1455.298 1407.855
1542.551 1497.453
1623.099 1580.159
1694.538 1663.508
TABLE 3.14 Comparisons of Buckling Loads Pcr (kN) for Uniaxial Compressed, (FGM=Ti-6Al-4V=FGM) Sandwich Plates under Uniform Temperature Rise (b=h ¼ 20, a=b ¼ 1.0, T0 ¼ 300 K) hH=hF
DT (in K)
N¼0
N ¼ 0.2
N ¼ 0.5
N ¼ 1.0
N ¼ 2.0
N ¼ 5.0
8.0
1872.292
1970.214
2065.789
2158.303
2246.714
2329.446
6.0
1198.267
1274.447
1348.327
1419.219
1486.120
1547.536
TID, (m, n) ¼ (1, 1)
4.0
674.0251
728.5607
780.8779
830.3261
875.9709
916.4501
TD, (m, n) ¼ (1, 1) 8.0
6.0
4.0
100
1772.731
1854.270
1933.864
2010.920
2084.566
2153.490
200
1673.170
1744.246
1813.632
1880.810
1945.019
2005.116
300 100
1573.609 1134.548
1639.296 1197.983
1703.425 1259.513
1765.512 1318.563
1824.857 1374.296
1880.401 1425.467
200
1070.829
1126.125
1179.764
1231.246
1279.841
1324.460
300
1007.110
1058.214
1107.789
1155.370
1200.284
1241.523
100
638.1832
683.5961
727.1699
768.3617
806.3907
840.1191
200
602.3412
641.9277
679.9152
715.8294
748.9890
778.4004
300
566.4993
603.0850
638.1940
617.3875
702.0355
729.2194
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 91
8.12.2008 11:46am Compositor Name: DeShanthi
Postbuckling of Shear Deformable FGM Plates
91
temperature rise (DT ¼ 100, 200, 300 K). Two kinds of sandwich plates, (FGM=SUS304=FGM) and (FGM=Ti-6Al-4V=FGM), are considered. It can be found that the buckling load of (FGM=Ti-6Al-4V=FGM) sandwich plate is lower than that of (FGM=SUS304=FGM) one. It can be seen that a fully metallic plate (N ¼ 0) has lowest buckling load and that the buckling load increases as the volume fraction index N increases. It is found that the increase is about þ36% for the (FGM=SUS304=FGM) sandwich plate, and about þ29% for the (FGM=Ti-6Al-4V=FGM) one with hH=hF ¼ 4, from N ¼ 0 to N ¼ 5, under temperature change DT ¼ 300 K. It can also be seen that the temperature reduces the buckling load when the temperature dependency is put into consideration. The percentage decrease is about 6.5% for the (FGM=SUS304=FGM) sandwich plate and about 20% for the (FGM= Ti-6Al-4V=FGM) one with hH=hF ¼ 4 from temperature changes from DT ¼ 100 K to DT ¼ 300 K under the same volume fraction distribution N ¼ 2. Then Tables 3.15 and 3.16 present thermal buckling temperature DTcr (in K) for the same two kinds of sandwich plates with different values of the volume fraction index N ( ¼ 0.0, 0.2, 0.5, 1.0, 2.0, and 5.0) subjected to a uniform temperature rise. Note that, for the thermal buckling problem, it is necessary to solve Equation 3.77 by an iterative numerical procedure, as previously shown in Section 3.3. The results confirm that the buckling temperature is reduced when the TD properties are taken into account. Now the buckling TABLE 3.15 Comparisons of Buckling Temperature DT (K) for (FGM=SUS304=FGM) Sandwich Plates under Uniform Temperature Rise (b=h ¼ 20, a=b ¼ 1.0, T0 ¼ 300 K) hH=hF
N¼0
N ¼ 0.2
N ¼ 0.5
N ¼ 1.0
N ¼ 2.0
N ¼ 5.0
TID
503.4949
513.6594
524.5022
535.7767
547.2765
558.7750
TD
481.9259
490.0950
498.7635
507.7332
516.8405
525.9066
6.0
TID
503.5508
515.9382
529.1391
542.8510
556.8042
570.6840
TD
481.9711
491.9193
502.4538
513.3313
524.3387
535.2285
4.0
TID
503.7081
519.5416
536.3883
553.8568
571.5649
589.0330
TD
482.0982
494.7982
508.2006
521.9910
535.8672
549.4501
8.0
TABLE 3.16 Comparisons of Buckling Temperature DT (K) for (FGM=Ti-6Al-4V=FGM) Sandwich Plates under Uniform Temperature Rise (b=h ¼ 20, a=b ¼ 1.0, T0 ¼ 300 K) hH=hF
N¼0
N ¼ 0.2
N ¼ 0.5
N ¼ 1.0
N ¼ 2.0
N ¼ 5.0
TID
654.3356
650.9921
644.7942
637.1305
628.6901
619.7468
TD
621.3503
591.1686
567.3193
548.8891
533.7027
521.1356
6.0
TID
654.3357
649.6246
641.5507
631.8915
621.4725
610.5759
TD
621.3504
585.1382
558.8517
538.8232
523.0273
510.2279
4.0
TID TD
654.3357 621.3504
646.9642 576.1403
635.6199 546.6052
622.7022 525.0375
609.1954 508.7258
595.3411 495.3070
8.0
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 92
92
8.12.2008 11:46am Compositor Name: DeShanthi
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
temperature of (FGM=Ti-6Al-4V=FGM) sandwich plate is larger than that of (FGM=SUS304=FGM) one. It is found that the increase is about þ14% for the (FGM=SUS304=FGM) sandwich plate, and about 20% for the (FGM=Ti- 6Al4V=FGM) one with hH=hF ¼ 4, from N ¼ 0 to N ¼ 5, under TD case. Figure 3.15 shows the effect of material properties on the postbuckling behavior of the (FGM=SUS304=FGM) sandwich plate with hH=hF ¼ 4 5000 (FGM/SUS304/FGM) T0 = 300 K, N = 2.0, hH/hF = 4.0 b = 1.0, b/h = 20, (m, n) = (1, 1) ∆TU = ∆TL = 200 K
Px (kN)
4000 3000
I II
I: TID II: TD
2000 1000
W ∗/h = 0.0 W ∗/h = 0.1
0
2
0
4
(a)
6
8
10
12
W (mm) 5000
Px (kN)
4000
3000
(FGM/SUS304/FGM) T0 = 300 K, N = 2.0, hH/hF = 4.0 b = 1.0, b/h = 20, (m, n) = (1, 1) ∆TU = ∆TL= 200 K
I
2000
W ∗/h = 0.0 W ∗/h = 0.1
1000
0 -1 (b)
II
I: TID II: TID
0
1
2 ∆x (mm)
3
4
5
FIGURE 3.15 Effects of material properties on the postbuckling behavior of (FGM=SUS304=FGM) sandwich plates subjected to uniaxial compression under uniform temperature field: (a) load deflection; (b) load shortening.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 93
8.12.2008 11:46am Compositor Name: DeShanthi
Postbuckling of Shear Deformable FGM Plates
93
and N ¼ 2.0 subjected to uniaxial compression under uniform temperature field DTU ¼ DTL ¼ 200 K, and under two cases of thermoelastic material properties, i.e., TID and TD. It can be seen that the postbuckling equilibrium path becomes lower when the TD properties are taken into account. Figure 3.16 shows temperature changes on the postbuckling behavior of the same plate subjected to uniaxial compression under heat conduction 5000
4000
(FGM/SUS304/FGM) T0 = 300 K, N = 2.0, hH/hF = 4.0 β = 1.0, b/h = 20, (m, n) = (1, 1) 1: ∆TU = ∆TL= 100 K
Px (kN)
3000
2000
1000
0 0
2: ∆TU = 200 K, ∆TL= 100 K 3: ∆TU = 300 K, ∆TL= 100 K 1 2 3
W ∗/h = 0.0 W ∗/h = 0.1
2
4
(a)
5000
4000
6 W (mm)
8
10
12
(FGM/SUS304/FGM) T0 =300 K, N = 2.0, hH/hF = 4.0 β = 1.0, b/h = 20, (m, n) = (1, 1)
Px (kN)
1: ∆TU = ∆TL = 100 K 3000
2: ∆TU = 200 K, ∆TL = 100 K 3: ∆TU = 300 K, ∆TL = 100 K
2000
1000
0 −1 (b)
32 0
W ∗/h = 0.0 W ∗/h = 0.1
1 1
2 ∆x (mm)
3
4
5
FIGURE 3.16 Thermal effects on the postbuckling behavior of (FGM=SUS304=FGM) sandwich plates subjected to uniaxial compression: (a) load deflection; (b) load shortening.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 94
94
8.12.2008 11:46am Compositor Name: DeShanthi
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
and TD case. It can be seen that the postbuckling strength is decreased with increase in temperature. It can be seen that the initial deflection is not zerovalued and an initial extension occurs (curves 2 and 3 in the figure) when the heat conduction is put into consideration. The results confirm that no buckling loads exist and the plate will buckle at the onset of edge compression when under heat conduction, and the shape of the load–deflection curves for perfect plates appears similar to that for plates with an initial geometric imperfection. Note that DTU ¼ DTL ¼ 100 K means uniform temperature field, so that the buckling load still exists (curve 1 in the figure). Figure 3.17 shows the effect of the volume fraction index N ( ¼ 0.2, 2.0, and 5.0) on the postbuckling behavior of the (FGM=SUS304=FGM) sandwich plate with hH=hF ¼ 4 subjected to uniaxial compression under heat conduction DTU ¼ 200 K, DTL ¼ 100 K and TD case. It can be seen that the initial deflection is decreased, but the initial extension is almost the same when the volume fraction index N is increased. It is found that the increase of the volume fraction index N yields an increase of postbuckling strength. Figures 3.18 and 3.19 are thermal postbuckling results for the (FGM= SUS304=FGM) sandwich plate analogous to the compressive postbuckling results of Figures 3.15 and 3.17, which are for the thermal loading case of heat conduction with TL ¼ 300 K. The results confirm that for the case of heat conduction, the thermal postbuckling path is no longer of the bifurcation type.
5000
(FGM/SUS304/FGM) T0 = 300 K, hH/hF = 4.0
4000
β = 1.0, b/h= 20, (m, n) = (1, 1)
1
∆TU = 200 K, ∆TL =100 K
Px (kN)
2
1: N = 5.0
3000
3
2: N = 2.0 3: N = 0.2 2000
1000
W ∗/h = 0.0 W ∗/h = 0.1
0 (a)
0
2
4
6
8
10
12
W (mm)
FIGURE 3.17 Effects of volume fraction index N on the postbuckling behavior of (FGM=SUS304=FGM) sandwich plates subjected to uniaxial compression under heat conduction: (a) load deflection;
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 95
8.12.2008 11:46am Compositor Name: DeShanthi
Postbuckling of Shear Deformable FGM Plates 5000
4000
95
(FGM/SUS304/FGM) T0 = 300 K, hH/hF = 4.0 β = 1.0, b/h= 20, (m, n) = (1, 1)
1 2 3
∆TU = 200 K, ∆TL =100 K
Px (kN)
3000
1: N = 5.0 2: N = 2.0 3: N = 0.2
2000 W ∗/h = 0.0
1000
W ∗/h = 0.1
0 –1
0
1
(b)
2 ∆x (mm)
3
4
5
FIGURE 3.17 (continued) (b) load shortening.
2000 Heat conduction (FGM/SUS304/FGM) TL = 300 K, N = 2.0, hH/hF = 4.0
1500
∆T (K)
β = 1.0, b/h = 20, (m, n) = (1, 1)
TID TD
1000
500
W ∗/h = 0.0 W ∗/h = 0.05
0
0
2
4 W (mm)
6
8
FIGURE 3.18 Effects of material properties on the thermal postbuckling behavior of (FGM=SUS304=FGM) sandwich plates under heat conduction.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 96
96
8.12.2008 11:46am Compositor Name: DeShanthi
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 2000 Heat conduction (FGM/SUS304/FGM) TL = 300 K, hH/hF = 4.0 β = 1.0, b/h= 20, (m, n) = (1, 1)
∆T (K)
1500
1: N = 0.2 2: N = 2.0 3: N = 5.0
1000
3
500
0
2 1
W ∗/h = 0.0 W ∗/h = 0.05 0
2
4
6
8
W (mm)
FIGURE 3.19 Effects of volume fraction index N on the thermal postbuckling behavior of (FGM=SUS304=FGM) sandwich plates under heat conduction.
References Bhimaraddi A. and Chandrashekhara K. (1993), Nonlinear vibrations of heated antisymmetric angle-ply laminated plates, International Journal of Solids and Structures, 30, 1255–1268. Birman V. (1995), Stability of functionally graded hybrid composite plates, Composites Engineering, 5, 913–921. Chen X.L. and Liew K.M. (2004), Buckling of rectangular functionally graded material plates subjected to nonlinearly distributed in-plane edge loads, Smart Materials and Structures, 13, 1430–1437. Chen X.L., Zhao Z.Y., and Liew K.M. (2008), Stability of piezoelectric FGM rectangular plates subjected to non-uniformly distributed load, heat and voltage, Advances in Engineering Software, 39, 121–131. Dym C.L. (1974), Stability Theory and its Applications to Structural Mechanics, Noordhoff, Leyden. Feldman E. and Aboudi J. (1997), Buckling analysis of functionally graded plates subjected to uniaxial loading, Composite Structures, 38, 29–36. Ganapathi M. and Prakash T. (2006), Thermal buckling of simply supported functionally graded skew plates, Composite Structures, 74, 247–250. Ganapathi M., Prakash T., and Sundararajan N. (2006), Influence of functionally graded material on buckling of skew plates under mechanical loads, Journal of Engineering Mechanics ASCE, 132, 902–905. Javaheri R. and Eslami M.R. (2002a), Buckling of functionally graded plates under in-plane compressive loading, ZAMM, 82, 277–283.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 97
Postbuckling of Shear Deformable FGM Plates
8.12.2008 11:46am Compositor Name: DeShanthi
97
Javaheri R. and Eslami M.R. (2002b), Thermal buckling of functionally graded plates, AIAA Journal, 40, 162–169. Javaheri R. and Eslami M.R. (2002c), Thermal buckling of functionally graded plates based on higher order theory, Journal of Thermal Stresses, 25, 603–625. Kamiya N. and Fukui A. (1982), Finite deflection and postbuckling behavior of heated rectangular plates with temperature-dependent properties, Nuclear Engineering and Design, 72, 415–420. Leissa A.W. (1986), Conditions for laminated plates to remain flat under inplane loading, Composite Structures, 6, 261–270. Li S.-R., Zhang J.-H., and Zhao Y.-G. (2007), Nonlinear thermomechanical postbuckling of circular FGM plate with geometric imperfection, Thin-Walled Structures, 45, 528–536. Liew K.M., Yang J., and Kitipornchai S. (2003), Postbuckling of piezoelectric FGM plates subject to thermo-electro-mechanical loading, International Journal of Solids and Structures, 40, 3869–3892. Liew K.M., Yang J., and Kitipornchai S. (2004), Thermal post-buckling of laminated plates comprising functionally graded materials with temperature-dependent properties, Journal of Applied Mechanics ASME, 71, 839–850. Ma L.S. and Wang T.J. (2003a), Axisymmetric post-buckling of a functionally graded circular plate subjected to uniformly distributed radial compression, Materials Science Forum, 423–425, 719–724. Ma L.S. and Wang T.J. (2003b), Nonlinear bending and post-buckling of a functionally graded circular plate under mechanical and thermal loadings, International Journal of Solids and Structures, 40, 3311–3330. Ma L.S. and Wang T.J. (2004), Relationships between axisymmetric bending and buckling solutions of FGM circular plates based on third-order plate theory and classical plate theory, International Journal of Solids and Structures, 41, 85–101. Na K.-S. and Kim J.-H. (2004), Three-dimensional thermal buckling analysis of functionally graded materials, Composites Part B, 35, 429–437. Na K.-S. and Kim J.-H. (2006a), Thermal postbuckling investigations of functionally graded plates using 3-D finite element method, Finite Elements in Analysis and Design, 42, 749–756. Na K.-S. and Kim J.-H. (2006b), Three-dimensional thermomechanical buckling analysis of functionally graded composite plates, Composite Structures, 73, 413–422. Naei M.H., Masoumi A., and Shamekhi A. (2007), Buckling analysis of circular functionally graded material plate having variable thickness under uniform compression by finite-element method, Proceedings of the Institution of Mechanical Engineers Part C—Journal of Mechanical Engineering Science, 221, 1241–1247. Najafizadeh M.M. and Eslami M.R. (2002a), Buckling analysis of circular plates of functionally graded materials under uniform radial compression, International Journal of Mechanical Sciences, 44, 2479–2493. Najafizadeh M.M. and Eslami M.R. (2002b), First-order-theory-based thermoelastic stability of functionally graded material circular plates, AIAA Journal, 40, 1444–1450. Najafizadeh M.M. and Heydari H.R. (2004a), Refined theory for thermoelastic stability of functionally graded circular plates, Journal of Thermal Stresses, 27, 857–880. Najafizadeh M.M. and Heydari H.R. (2004b), Thermal buckling of functionally graded circular plates based on higher order shear deformation plate theory, European Journal of Mechanics A=Solids, 23, 1085–1100.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C003 Final Proof page 98
98
8.12.2008 11:46am Compositor Name: DeShanthi
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
Najafizadeh M.M. and Heydari H.R. (2008), An exact solution for buckling of functionally graded circular plates based on higher order shear deformation plate theory under uniform radial compression, International Journal of Mechanical Sciences, 50, 603–612. Oh I.K., Han J.H., and Lee I. (2000), Postbuckling and vibration characteristics of piezolaminated composite plate subjected to thermo-piezoelectric loads, Journal of Sound and Vibration, 233, 19–40. Park J.S. and Kim J.-H. (2006), Thermal postbuckling and vibration analyses of functionally graded plates, Journal of Sound and Vibration, 289, 77–93. Prakash T., Singha M.K., and Ganapathi M. (2008), Thermal postbuckling analysis of FGM skew plates, Engineering Structures, 30, 22–32. Qatu M.S. and Leissa A.W. (1993), Buckling or transverse deflections of unsymmetrically laminated plates subjected to in-plane loads, AIAA Journal, 31, 189–194. Shariat B.A.S. and Eslami M.R. (2005), Effect of initial imperfections on thermal buckling of functionally graded plates, Journal of Thermal Stresses, 28, 1183–1198. Shariat B.A.S. and Eslami M.R. (2006), Thermal buckling of imperfect functionally graded plates, International Journal of Solids and Structures, 43, 4082–4096. Shen H.-S. (2002), Nonlinear bending response of functionally graded plates subjected to transverse loads and in thermal environments, International Journal of Mechanical Sciences, 44, 561–584. Shen H.-S. (2005), Postbuckling of FGM plates with piezoelectric actuators under thermo-electro-mechanical loadings, International Journal of Solids and Structures, 42, 6101–6121. Shen H.-S. (2007a), Nonlinear thermal bending response of FGM plates due to heat conduction, Composites Part B, 38, 201–215. Shen H.-S. (2007b), Thermal postbuckling behavior of shear deformable FGM plates with temperature-dependent properties, International Journal of Mechanical Sciences, 49, 466–478. Shen H.-S. and Li S.-R. (2008), Postbuckling of sandwich plates with FGM face sheets and temperature-dependent properties, Composites Part B, 39, 332–344. Shukla K.K., Kumar K.V.R., Pandey R., and Nath Y. (2007), Postbuckling response of functionally graded rectangular plates subjected to thermo-mechanical loading, International Journal of Structural Stability and Dynamics, 7, 519–541. Woo J., Meguid S.A., Stranart J.C., and Liew K.M. (2005), Thermomechanical postbuckling analysis of moderately thick functionally graded plates and shallow shells, International Journal of Mechanical Sciences, 47, 1147–1171. Wu L. (2004), Thermal buckling of simply supported moderately thick rectangular FGM plate, Composite Structures, 64, 211–218. Wu T.-L., Shukla K.K., and Huang J.H. (2007), Post-buckling analysis of functionally graded rectangular plates, Composite Structures, 81, 1–10. Yamaki N. (1961), Experiments on the postbuckling behavior of square plates loaded in edge compression, Journal of Applied Mechanics ASME, 28, 238–244. Yang J., Liew K.M., and Kitipornchai S. (2006), Imperfection sensitivity of the postbuckling behavior of higher-order shear deformable functionally graded plates, International Journal of Solids and Structures, 43, 5247–5266. Yang J. and Shen H.-S. (2003), Nonlinear analysis of functionally graded plates under transverse and in-plane loads, International Journal of Non-Linear Mechanics, 38, 467–482.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 99
9.12.2008 4:38pm Compositor Name: VBalamugundan
4 Nonlinear Vibration of Shear Deformable FGM Plates
4.1
Introduction
The external loads applied to a plate invariably change with time. If the variations in time are small and occur over an extended interval, the inertial effects may be neglected and the behavior of the plate can be approximately determined from considerations of equilibrium and material properties. However, in some modern engineering constructions, like aircraft, missiles, and launch vehicles, rapid time variations of loadings occur that must be considered in formulating structural design. In such cases, inertial effects must be taken into account and the dynamic behavior of the plate must be treated as a function of time. Many studies have been reported on the free and forced vibration of FGM plates, for example, Yang and Shen (2001, 2002), Cheng and Reddy (2003), Vel and Batra (2004), Kim (2005), Elishakoff et al. (2005), Prakash and Ganapathi (2006), Efraim and Eisenberger (2007), and Li et al. (2008). According to mixture rules, Abrate (2006) found that the natural frequencies of FGM plates are proportional to those of the corresponding homogeneous plate and concluded that only one case is needed to determine the proportionality constant, and direct analysis is unnecessary. In most conditions of severe environments, when the plate deflection-tothickness ratio is greater than 0.4, the nonlinearity is very important and the nonlinear dynamic equations of plates are required to perform the analysis. Praveen and Reddy (1998) analyzed the nonlinear static and dynamic response of functionally graded ceramic–metal plates in a steady temperature field and subjected to dynamic transverse loads by finite element method (FEM). Reddy (2000) developed both theoretical and finite element formulations for thick FGM plates according to the HSDPT, and studied the nonlinear dynamic response of FGM plates subjected to suddenly applied uniform pressure. Yang et al. (2003) presented a large amplitude vibration analysis of an initially stressed FGM plate with surface-bonded piezoelectric layers by using a semianalytical method based on 1D differential quadrature and Galerkin technique. Chen (2005), Chen et al. (2006), Fung and Chen (2006), and Chen and Tan (2007) studied the large amplitude vibration of 99
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 100 9.12.2008 4:38pm Compositor Name: VBalamugundan
100
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
an initially stressed FGM plate with or without initial geometric imperfections. In their studies, the initial stress was taken to be a combination of pure bending stress and an extensional stress in the plane of the plate, and the formulations were based on the FSDPT and classical plate theory (CPT), respectively. Also, Allahverdizadeh et al. (2008a–c) studied the nonlinear free and forced vibration of FGM circular thin plates based on the CPT. However, in the references cited above (Praveen and Reddy 1998, Reddy 2000, Yang et al. 2003, Chen 2005, Chen et al. 2006, Chen and Tan 2007, Allahverdizadeh et al. 2008a–c), the material properties were either assumed to be independent of temperature or considered in a constant temperature environment (T ¼ 300 K). Since FGMs always serve in the high-temperature environments, the materials properties of FGM plates must be temperatureand position-dependent. Kitipornchai et al. (2004) and Yang and Huang (2007) studied nonlinear free and forced vibration of imperfect FGM laminated plates with various boundary conditions and with temperature-dependent material properties, respectively. On the other hand, ceramics and the metals used in FGM do store different amounts of heat, and therefore the heat conduction usually occurs. This leads to a nonuniform distribution of temperature through the plate thickness, but it is not accounted for in the above study. Also recently, Huang and Shen (2004, 2006) provided nonlinear free and forced vibration analysis of shear deformable FGM plates without or with surface-bonded piezoelectric layers in thermal environments. Xia and Shen (2008) provided small- and large-amplitude vibration analysis of compressively and thermally postbuckled sandwich plates with FGM face sheets in thermal environments. In these studies, heat conduction and temperaturedependent material properties were both taken into account. Sundararajan et al. (2005) calculated frequencies for nonlinear free flexural vibration of functionally graded rectangular and skew plates under thermal environments. In their studies, the material properties were based on the Mori– Tanaka scheme, and a remarkable synergism between the Mori–Tanaka scheme and the rule of mixture was found.
4.2
Nonlinear Vibration of FGM Plates in Thermal Environments
Here, we consider an FGM plate of length a, width b, and thickness h, which is made from a mixture of ceramics and metals. We assume that the composition is varied from the top to the bottom surface, i.e., the top surface (Z ¼ h=2) of the plate is ceramic-rich, whereas the bottom surface (Z ¼ h=2) is metal-rich. Note that in Sections 4.2 and 4.3 the Z is in the direction of the upward normal to the middle surface. A simple power law exponent of the volume fraction distribution is used to provide a measure of the amount
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 101 9.12.2008 4:38pm Compositor Name: VBalamugundan
Nonlinear Vibration of Shear Deformable FGM Plates
101
of ceramic and metal in the FGM. In the present case, the volume fraction of ceramic, instead of Vm, is defined by Vc (Z) ¼
2Z þ h N 2h
(4:1)
It is assumed that the effective Young’s modulus Ef and thermal expansion coefficient af of the FGM plate are temperature dependent, whereas the mass density rf and thermal conductivity kf are independent of the temperature. Poisson’s ratio nf depends weakly on temperature change and is assumed to be a constant. As long as the volume fraction is known, the effective material properties can be obtained easily using the rule of mixture
2Z þ h N þ Em (T) 2h 2Z þ h N þ am (T) af (Z, T) ¼ [ac (T) am (T)] 2h 2Z þ h N þ rc rf (Z) ¼ (rc rm ) 2h 2Z þ h N þ km k(Z) ¼ (kc km ) 2h Ef (Z, T) ¼ [Ec (T) Em (T)]
(4:2a) (4:2b) (4:2c) (4:2d)
We assume that the temperature variation occurs in the thickness direction only and 1D temperature field is assumed to be constant in the XY plane of the plate. In such a case, the temperature distribution along the thickness can be obtained by solving a steady-state heat transfer equation: d dT k(Z) ¼0 dZ dZ
(4:3)
This equation is solved by imposing boundary condition of T ¼ TU at Z ¼ h=2 and T ¼ TL at Z ¼ h=2. The solution of this equation, by means of polynomial series, is T(Z) ¼ TL þ (TU TL )h(Z)
(4:4)
where TU and TL are the temperatures at top and bottom surfaces of the plate, and
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 102 9.12.2008 4:38pm Compositor Name: VBalamugundan
102
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
1 h(Z) ¼ C
" 2Z þ h kcm 2Z þ h Nþ1 k2cm 2Z þ h 2Nþ1 þ (N þ 1)km (2N þ 1)k2m 2h 2h 2h k3cm 2Z þ h 3Nþ1 k4cm 2Z þ h 4Nþ1 þ (3N þ 1)k3m (4N þ 1)k4m 2h 2h # 5Nþ1 k5cm 2Z þ h (4:5a) (5N þ 1)k5m 2h C¼1 þ
kcm k2cm k3cm þ 2 (N þ 1)km (2N þ 1)km (3N þ 1)k3m
k4cm k5cm 4 (4N þ 1)km (5N þ 1)k5m
(4:5b)
where kcm ¼ kc km. The plate is assumed to be geometrically perfect, and is subjected to a transverse dynamic load q(X, Y, t) in thermal environments. Hence, the general von Kármán-type equations can be expressed by Equations 1.33 through 1.36, and the forces, moments, and higher order moments caused by elevated temperature are defined by Equation 1.28. It is assumed that all four edges are simply supported with no in-plane displacements. In such a case, the boundary conditions can be expressed by Equation 2.6 for immovable edges. Introducing dimensionless quantities Equation 2.8, and sffiffiffiffiffi pt E0 I1 E0 a2 4E0 (I5 I1 I4 I2 ) , g170 ¼ 2 , g171 ¼ , t¼ * * r0 p r0 D11 a 3r0 h2 I1 D11 (g 80 , g 90 , g10 ) ¼ (I 8 , I 5 , I 3 )
E0 * r0 D11
(4:6)
where E0 and r0 are the reference values of Em and rm, respectively, at room temperature (T0 ¼ 300 K) and ATx (¼ATy ), DTx (¼DTy ), and FTx (¼FTy ) are redefined by "
ATx
DTx
FTx
ATy
DTy
FTy
#
h=2 ð
T1 ¼ h=2
Ax Ay
(1, Z, Z3 )DT(Z)dZ
(4:7)
where T1 ¼ (TU þ TL 2T0)=2. The nonlinear motion equations can then be written in dimensionless form as L11 (W) L12 (Cx ) L13 (Cy ) þ g 14 L14 (F) L16 (MT ) ! €y €x @ C @ C 2 € þg þb ¼ g14 b L(W, F) þ L17 (W) þ lq 80 @x @y
(4:8)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 103 9.12.2008 4:38pm Compositor Name: VBalamugundan
Nonlinear Vibration of Shear Deformable FGM Plates
103
1 L21 (F) þ g 24 L22 (Cx ) þ g24 L23 (Cy ) g 24 L24 (W) ¼ g 24 b2 L(W, W) (4:9) 2 € @W € x (4:10) þ g10 C L31 (W) þ L32 (Cx ) L33 (Cy ) þ g14 L34 (F) L36 (ST ) ¼ g90 @x € @W € y (4:11) þ g 10 C L41 (W) L42 (Cx ) þ L43 (Cy ) þ g14 L44 (F) L46 (ST ) ¼ g90 b @y where L17 () ¼ g 170 þ g 171
2 @2 2 @ þ g b 171 @x2 @y2
(4:12)
and all other nondimensional linear operators Lij() and nonlinear operator L() are defined by Equation 2.14. The boundary conditions can be written in dimensionless form as x ¼ 0, p: W ¼ Cy ¼ 0
(4:13a)
ðp ðp
2 @Cy @2F @2F @Cx @2W 2@ W g þ g g b g þ g b þ g g 5 24 511 233 24 611 244 @x @y @y2 @x2 @x2 @y2 0 # 1 @W 2 þ (g 224 gT1 g5 gT2 )T1 dx dy ¼ 0 (4:13b) g24 2 @x g224 b2
0
y ¼ 0, p: W ¼ Cx ¼ 0 ðp ðp 0 0
(4:13c)
2 2 @Cy @2F @Cx @2W 2@ F 2@ W g b þ g g b g þ g b þ g g 5 24 220 522 24 240 622 @x @y @x2 @y2 @x2 @y2
1 @W 2 g24 b2 þ (gT2 g 5 gT1 )T1 dy dx ¼ 0 2 @y
(4:13d)
We assume that the solutions of Equations 4.8 through 4.11 can be expressed as ~ x (x, y, t) W(x, y, t) ¼ W*(x, y) þ W ~ x (x, y, t) Cx (x, y, t) ¼ Cx* (x, y) þ C ~ y (x, y, t) Cy (x, y, t) ¼ C*y (x, y) þ C ~ y, t) F(x, y, t) ¼ F*(x, y) þ F(x,
(4:14)
where W*(x, y) is an initial deflection due to initial thermal bending moment ~ W(x, y, t) is an additional deflection
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 104 9.12.2008 4:38pm Compositor Name: VBalamugundan
104
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
Cx*(x, y), Cy*(x, y), and F*(x, y) are the midplane rotations and stress function ~ y(x, y, t), and F(x, ~ x(x, y, t), C ~ y, t) are defined corresponding to W*(x, y). C ~ analogously to Cx*(x, y), Cy*(x, y), and F*(x, y), but is for W(x, y, t). Due to the bending–stretching coupling effect in the FGM plate, the thermal preload will bring about deflections and bending curvatures which have significant influences on the plate vibration characteristics. To account for this effect, the previbration solutions W*(x, y), Cx*(x, y), Cy*(x, y), and F*(x, y) are sought at the first step from the following nonlinear equations: L11 (W*) L12 (C*x ) L13 (C*y ) þ g14 L14 (F*) L16 (MT ) @ 2 W* @ 2 W* 2 ¼ g 14 b2 L(W*, F*) þ py þ g 14 b px @x2 @y2
(4:15)
1 L21 (F*) þ g24 L22 (Cx* ) þ g 24 L23 (Cy* ) g24 L24 (W*) ¼ g24 b2 L(W*, W*) 2 (4:16) L31 (W*) þ L32 (C*x ) L33 (C*y ) þ g 14 L34 (F*) L36 (ST ) ¼ 0
(4:17)
L41 (W*) L42 (C*x ) þ L43 (C*y ) þ g 14 L44 (F*) L46 (ST ) ¼ 0
(4:18)
In Equation 4.15, px and py are edge compressive stresses induced by temperature rise with edge restraints. The solutions of Equations 4.15 through 4.18 can be assumed to be as X
W*(x, y) ¼
X
wkl sin kx sin ly
k¼1,3,... l¼1,3,...
X
C*x (x, y) ¼
X
(cx )kl cos kx sin ly
k¼1,3,... l¼1,3,...
X
C*y (x, y) ¼
X
(cy )kl sin kx cos ly
(4:19)
k¼1,3,... l¼1,3,...
F*(x, y) ¼
X X 1 (0) 2 2 B00 y þ b(0) x fkl sin kx sin ly þ 00 2 k¼1,3,... l¼1,3,...
We then expand the constant thermal bending moments in the double Fourier sine series as "
MTx
STx
MTy
STy
#
" ¼
M(0) x
S(0) x
M(0) y
S(0) y
#
X k¼1,3,...
X 1 sin kx sin ly kl l¼1,3,...
(4:20)
Substituting Equations 4.19 and 4.20 into Equations 4.15 through 4.18 and applying Galerkin procedure to Equations 4.15 and 4.16, Wkl, (cx)kl, (cy)kl, and fkl can easily be determined. The detailed expressions are given in Appendix I.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 105 9.12.2008 4:38pm Compositor Name: VBalamugundan
Nonlinear Vibration of Shear Deformable FGM Plates
105
~ y, t), Then an initially stressed FGM plate is under consideration and W(x, ~ ~ ~ Cx(x, y, t), Cy(x, y, t), and F(x, y, t) satisfy the nonlinear equations: ~ x ) L13 (C ~ y ) þ g L14 (F) ~ L12 (C ~ þ W*, F) ~ F*)] ~ ¼ g14 b2 [L(W ~ þ L(W, L11 (W) 14 ! € € ~y ~x @C @C € ~ þg þb þ lq (4:21) þ L17 W 80 @x @y ~ x ) þ g L23 (C ~ y ) g L24 (W) ~ ¼ 1 g24 b2 L(W ~ þ 2W*, W) ~ (4:22) ~ þ g 24 L22 (C L21 (F) 24 24 2
€~ @W €~ þ g 10 C x @x €~ €~ ~ x ) þ L43 (C ~ y ) þ g L44 (F) ~ L42 (C ~ ¼ g 90 b @ W þ g 10 C L41 (W) y 14 @y ~ x ) L33 (C ~ y ) þ g L34 (F) ~ þ L32 (C ~ ¼ g 90 L31 (W) 14
(4:23) (4:24)
The initial conditions are assumed to be ~ @W ¼ ¼0 t¼0 @t t¼0 ~ ~ x ¼ @ Cx ¼ 0 C t¼0 @t t¼0 ~ ~ y ¼ @ Cy ¼ 0 C t¼0 @t ~ W
(4:25a)
(4:25b)
(4:25c)
t¼0
A perturbation technique is now used to solve Equations 4.21 through 4.24. The essence of this procedure, in the present case, is to assume that X ~ y, t~, «) ¼ «j Wj (x, y, t~) W(x, j¼1
~ y, t~, «) ¼ F(x,
X
«i Fj (x, y, t~)
j¼1
~ x (x, y, t~, «) ¼ C
X
«j Cxj (x, y, t~)
j¼1
~ y (x, y, t~, «) ¼ C
X
(4:26)
«j Cyj (x, y, t~)
j¼1
lq (x, y, t~, «) ¼
X
«j lj (x, y, t~)
j¼1
where « is a small perturbation parameter. Here, we introduce an important parameter t~ ¼ «t to improve perturbation procedure for solving nonlinear dynamic problem.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 106 9.12.2008 4:38pm Compositor Name: VBalamugundan
106
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
Substituting Equation 4.26 into Equations 4.21 through 4.24 and collecting the terms of the same order of «, we obtain a set of perturbation equations which can be written, for example, as O(«0): L14 ( f0 ) ¼ 0
(4:27a)
L21 ( f0 ) ¼ 0
(4:27b)
L34 ( f0 ) ¼ 0
(4:27c)
L44 ( f0 ) ¼ 0
(4:27d)
O(«1): L11 (w1 ) L12 (cx1 ) L13 (cy1 ) þ g 14 L14 ( f1 ) ¼ g14 b2 [L(w1 þ W*, f0 ) þ L(w1 , F*)] þ l1
(4:28a)
L21 ( f1 ) þ g 24 L22 (cx1 ) þ g24 L23 (cy1 ) g 24 L24 (w1 ) ¼ 0
(4:28b)
L31 (w1 ) þ L32 (cx1 ) L33 (cy1 ) þ g14 L34 ( f1 ) ¼ 0
(4:28c)
L41 (w1 ) L42 (cx1 ) þ L43 (cy1 ) þ g14 L44 ( f1 ) ¼ 0
(4:28d)
O(«2): L11 (w2 ) L12 (cx2 ) L13 (cy2 ) þ g 14 L14 ( f2 ) ¼ g14 b2 [L(w2 , f0 þ F*) þ L(w1 þ W*, f1 )] þ l2
(4:29a)
L21 ( f2 ) þ g 24 L22 (cx2 ) þ g24 L23 (cy2 ) g 24 L24 (w2 ) 1 ¼ g24 b2 L(w1 þ 2W*, w1 ) 2
(4:29b)
L31 (w2 ) þ L32 (cx2 ) L33 (cy2 ) þ g14 L34 ( f2 ) ¼ 0
(4:29c)
L41 (w2 ) L42 (cx2 ) þ L43 (cy2 ) þ g14 L44 ( f2 ) ¼ 0
(4:29d)
O(«3): L11 (w3 ) L12 (cx3 ) L13 (cy3 ) þ g14 L14 ( f3 ) ¼ g 14 b2 [Lðw3 , f0 þ F*Þ þ L(w2 , f1 ) þ Lðw1 þ W*, f2 Þ] þ l3
(4:30a)
L21 ( f3 ) þ g 24 L22 (cx3 ) þ g24 L23 (cy3 ) g 24 L24 (w3 ) 1 ¼ g24 b2 Lðw1 þ 2W*, w2 Þ 2
(4:30b)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 107 9.12.2008 4:38pm Compositor Name: VBalamugundan
Nonlinear Vibration of Shear Deformable FGM Plates
107
€1 @w þ g10 c€x1 @x €1 @w þ g10 c€y1 L41 (w3 ) L42 (cx3 ) þ L43 (cy3 ) þ g 14 L44 ( f3 ) ¼ g90 b @y L31 (w3 ) þ L32 (cx3 ) L33 (cy3 ) þ g 14 L34 ( f3 ) ¼ g 90
(4:30c) (4:30d)
To solve these perturbation equations of each order, the amplitudes of the terms wj(x, y), fj(x, y), cxj(x, y), and cyj(x, y) can be determined step by step. As a result, we obtain asymptotic solutions, up to third order, as ~ y, t) ¼ «[w1 (t) þ g1 w € 1 (t)] sin mx sin ny þ («w1 (t))3 [ag311 sin mx sin ny W(x, (4:31) þ g331 sin 3mx sin ny þ g313 sin mx sin 3ny] þ O(«4 ) h i ~ x (x, y, t) ¼ « g(1,1) w1 (t) þ g2 w € 1 (t) cos mx sin ny þ g12 («w1 (t))2 sin 2mx C 11 h (3,1) þ («w1 (t))3 ag(1,1) 11 g311 cos mx sin ny þ g11 g331 cos 3mx sin ny i þ g(1,3) g cos mx sin 3ny þ O(«4 ) (4:32) 313 11 h i ~ y (x, y, t) ¼ « g(1,1) w1 (t) þ g3 w € 1 (t) sin mx cos ny þ g22 («w1 (t))2 sin 2ny C 21 h (3,1) þ («w1 (t))3 ag(1,1) 21 g311 sin mx cos ny þ g21 g331 sin 3mx cos ny i 4 þ g(1,3) (4:33) 21 g313 sin mx cos 3ny þ O(« ) h i ~ y, t) ¼ « g(1,1) w1 (t) þ g4 w € F(x, (t) sin mx sin ny («w1 (t))2 1 31 (2) 2 2 B(2) y =2 þ b x =2 g cos 2ny g cos 2mx 402 420 00 00 h (1,1) (3,1) þ («w1 (t))3 ag31 g311 sin mx sin ny þ g31 g331 sin 3mx sin ny i þ g(1,3) g sin mx sin 3ny þ O(«4 ) (4:34) 313 31 € 1 (t)] sin mx sin ny lq (x, y, t) ¼ «[g41 w1 (t) þ g43 w þ («w1 (t))2 (g441 cos 2mx þ g442 cos 2ny) g14 b2 («w1 (t))2
XX k
wkl
l
(2) 2 2 2 2 2 2 B(2) k þ b l 4k n g cos 2ny 4l m g cos 2mx sin kx sin ly 402 420 00 00 þ ag42 («w1 (t))3 sin mx sin ny þ O(«4 )
(4:35)
Note that in Equations 4.31 through 4.35 t~ is replaced by t, and for the case of free vibration a ¼ 0, a ¼ 1, otherwise a ¼ 1, a ¼ 0. Coefficients (i,j) (i,j) (i,j) g11 , g21 , g31 (i, j ¼ 1, 3), etc. are given in detail in Appendix J. Multiplying Equation 4.34 by (sin mx sin ny) and integrating over the entire plate area, one has
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 108 9.12.2008 4:38pm Compositor Name: VBalamugundan
108
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
g43
d2 («w1 ) þ g41 («w1 ) þ g44 («w1 )2 þ ag42 («w1 )3 ¼ lq (t) dt 2
(4:36)
where 4 lq (t) ¼ 2 p
4.2.1
ðp ðp lq (x, y, t) sin mx sin ny dx dy
(4:37)
0 0
Free Vibration
When a ¼ 1, lq (t) ¼ 0, Equation 4.36 becomes the free vibration equation of the plate. The nonlinear frequency of the plates can be expressed as 1=2 9g42 g41 10g244 2 A vNL ¼ vL 1 þ 12g241
(4:38)
where A ¼ W max =h is the amplitude to thickness ratio, and vL ¼ [g41 =g43 ]1=2 is the dimensionless linear frequency, from which the corresponding linear frequency can be expressed as vL ¼ vL (p=a)(E0 =r0 )1=2 , where E0 and r0 are defined as in Equation 4.6. 4.2.2
Forced Vibration
When the forced vibration is under consideration, we take a ¼ 0. In such a case, Equation 4.36 can be rewritten as € 1 (t) þ «w1 (t)v2L þ «w
lq (t) g44 («w1 (t))2 þ O «4 ¼ g43 g43
(4:39)
If zero-valued initial conditions prevail, i.e., w1(0) ¼ w_ 1(0) ¼ 0, Equation 4.39 may then be solved by using the Runge–Kutta iteration scheme (Pearson 1986): («w1 )iþ1 ¼ («w1 )i þ Dt(«w_ 1 )i þ («w_ 1 )iþ1
(Dt)2 (L1 þ L2 þ L3 ) 6
Dt (L1 þ 2L2 þ 2L3 þ L4 ) ¼ («w_ 1 )i þ 6
where Dt is the time step, and
(4:40)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 109 9.12.2008 4:38pm Compositor Name: VBalamugundan
Nonlinear Vibration of Shear Deformable FGM Plates
109
L1 ¼ f (t i , («w1 )) Dt Dt(«w_ 1 )i , («w1 )i þ L2 ¼ f t i þ 2 2
! Dt Dt(«w_ 1 )i (Dt)2 , («w1 )i þ þ L1 L3 ¼ f t i þ 2 2 4 ! (Dt)2 L2 L4 ¼ f t i þ Dt, («w1 )i þ Dt(«w_ 1 )i þ 2
(4:41)
where f (t, x) ¼ v2L x
g44 2 lq (t) x þ g43 g43
(4:42)
As a result, the solution of Equation 4.39 is obtained numerically. Resubstituting it into Equations 4.31 through 4.35, both displacement and stress function are determined. Next, substituting Equation 4.14 into boundary (0) (2) (2) conditions (Equation 4.13), the coefficients B(0) 00 , b00 , B00 , and b00 are then determined as given in Appendix J. For numerical illustrations, two sets of material mixture are considered. One is zirconium oxide and titanium alloy, referred to as ZrO2=Ti-6Al-4V, and the other is silicon nitride and stainless steel, referred to as Si3N4=SUS304. The upper surface of these two FGM plates is ceramic-rich and the lower surface is metal-rich. The thickness and side of the square plate are h ¼ 0.025 m and a ¼ 0.2 m, respectively. The mass density and thermal conductivity are r ¼ 3000 kg m3, k ¼ 1.80 W mK1 for ZrO2; r ¼ 4429 kg m3, k ¼ 7.82 W mK1 for Ti-6Al-4V; r ¼ 2370 kg m3, k ¼ 9.19 W mK1 for Si3N4; and r ¼ 8166 kg m3, k ¼ 12.04 W mK1 for SUS304. Young’s modulus and thermal expansion coefficient of these materials are assumed to be nonlinear function of temperature of Equation 1.4, and typical values are listed in Tables 1.1 and 1.2. Poisson’s ratio nf is assumed to be a constant, for ZrO2=Ti-6Al-4V plate n ¼ 0.3, and for Si3N4=SUS304 one n ¼ 0.28. For the first example, we consider the nonlinear free vibration of an isotropic square plate (a=b ¼ 1.0, b=h ¼ 10, and n ¼ 0.3) under different thermal loading conditions DT=Tcr ¼ 0, 0.25, 0.5, and 0.75, where Tcr ¼ 119.783= (a104) is the critical temperature of the plate (Bhimaraddi and Chandrashekhara 1993). The frequency parameter V ¼ vL (a2 =h)[r(1 n2 )=E]1=2 and nonlinear to linear frequency ratio vNL=vL are calculated and compared in Table 4.1 with the results of Bhimaraddi and Chandrashekhara (1993) based on the CPT, FSDPT, and HSDPT. For the second example, we consider the free vibration of an FGM square plate made of aluminum oxide and Ti-6Al-4V. The top surface is ceramicrich, whereas the bottom surface is metal-rich. The material properties, as given in He et al. (2001), are Em ¼ 105.7 GPa, nm ¼ 0.2981, rm ¼ 4429 kg m3
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 110 9.12.2008 4:38pm Compositor Name: VBalamugundan
110
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
TABLE 4.1 Comparison of Natural Frequency V and Nonlinear to Linear Frequency Ratios for an Isotropic Square Plate under Different Thermal Loading Conditions (a=b ¼ 1.0, b=h ¼ 10, and n ¼ 0.3) W max=h DT=Tcr 0.25
0.5
0.75
a
Sources a
V
0.0
0.2
0.4
0.6
0.8
1.0
HSDPT
4.7624
1.000
1.027
1.105
1.222
1.368
1.535
FSDPTa
4.7232
0.922
1.019
1.097
1.215
1.362
1.529
CPTa
4.9380
1.037
1.063
1.138
1.252
1.395
1.559
Present
4.7636
1.000
1.027
1.105
1.225
1.374
1.546
HSDPT
3.8884
1.000
1.041
1.153
1.318
1.517
1.739
FSDPT
3.8405
0.988
1.029
1.143
1.309
1.509
1.732
CPT Present
4.1017 3.8891
1.055 1.000
1.094 1.040
1.201 1.155
1.360 1.323
1.554 1.528
1.772 1.757
HSDPT
2.7495
1.000
1.080
1.287
1.569
1.893
2.242
FSDPT
2.6813
0.975
1.057
1.267
1.553
1.880
2.230
CPT
3.0437
1.107
1.180
1.372
1.640
1.953
2.293
Present
2.7492
1.000
1.080
1.291
1.582
1.916
2.275
HSDPT, FSDPT, and CPT results all from Bhimaraddi and Chandrashekhara (1993).
for Ti-6Al-4V; and Ec ¼ 320.24 GPa, nc ¼ 0.26, rc ¼ 3750 kg m3 for aluminum oxide. The FGM plate has a ¼ b ¼ 0.4 m and h ¼ 5 mm. Table 4.2 gives the comparison of natural frequency v L (in Hz) for the two special cases of isotropy, i.e., volume fraction index N ¼ 0 and 2000. The FEM results of He et al. (2001) based on the CPT and seminumerical results of Yang and Shen (2002) based on HSDPT are given for direct comparison. TABLE 4.2 Comparison of Natural Frequency vL (Hz) for Simply Supported FGM Plates for the Two Special Cases of Isotropy N¼0 Mode Sequence
N ¼ 2000
He et al. (2001)
Yang and Shen (2002)
Huang and Shen (2004)
He et al. (2001)
Yang and Shen (2002)
Huang and Shen (2004)
1
144.66
143.96
144.94
268.92
261.46
271.03
2
360.53
360.07
362.04
669.40
653.14
677.04
3
360.53
360.07
362.04
669.40
653.14
677.04
4 5
569.89 720.57
568.88 718.22
578.78 723.06
1052.49 1338.52
1044.31 1304.79
1082.38 1352.24
6
720.57
718.22
723.06
1338.52
1304.79
1352.24
7
919.74
916.40
939.19
1695.23
1694.98
1756.49
8
919.74
916.40
939.19
1695.23
1694.98
1756.49
9
1225.72
1207.09
1226.19
2280.95
2214.34
2294.47
10
1225.72
1207.09
1226.19
2280.95
2214.34
2294.47
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 111 9.12.2008 4:38pm Compositor Name: VBalamugundan
Nonlinear Vibration of Shear Deformable FGM Plates
111
We then examine the dynamic response of an FGM square plate subjected to a uniform sudden load with q0 ¼ 1.0 MPa in thermal environments. The FGM plate is made of aluminum and alumina. The side and thickness of the square plate are 200 and 10 mm, respectively. The top surface is ceramic-rich, whereas the bottom surface is metal-rich. The temperature is varied only in the thickness direction and determined by the steady-state heat conduction equation with the boundary conditions. A stress-free temperature T0 ¼ 08C was taken. The material properties adopted are Eb ¼ 70 GPa, nb ¼ 0.3, rb ¼ 2707 kg m3, ab ¼ 23.0 106 8C1, kb ¼ 204 W mK1, for aluminum; and Et ¼ 380 GPa, nt ¼ 0.3, rt ¼ 3800 kg m3, at ¼ 7.4 106 8C1, kt ¼ 10.4 W mK1, for alumina. The curves of central deflection as functions of time are plotted and compared in Figure 4.1 with the FEM results of Praveen and Reddy (1998) based on FSDPT. In Figure 4.1, dimensionless central deflection and time are defined by W ¼ (Em h=q0 a2 ) and ~t ¼ t[Em =a2 rm ]1=2 , respectively. Note that in these three examples the material properties are assumed to be independent of temperature. Table 4.3 gives comparisons of frequency parameter for Si3N4=SUS304 square plates with temperature-dependent material properties under heat conduction. The results of Huang and Shen (2004) based on HSDPT, the FEM results of Sundararajan et al. (2005) based on the Mori–Tanaka scheme, and the differential quadrature method (DQM) results of Wu et al. (2007) are also given for direct comparison. These four comparisons show that the present results agree well with existing results, and can be used as benchmark for other numerical studies.
Dimensionless deflection
30 Ceramic, present Ceramic, Praveen and Reddy (1998) N = 0.5, present N = 0.5, Praveen and Reddy (1998)
25
20
15
10 0.0
b /h = 20 Tb = 20⬚C Tt = 300⬚C
2.5
5.0
7.5
10.0
12.5
Dimensionless time FIGURE 4.1 Comparison of central deflection versus time curves for an FGM square plate subjected to a suddenly applied uniform load and in thermal environments.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 112 9.12.2008 4:38pm Compositor Name: VBalamugundan
112
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells TABLE 4.3 Comparisons of Frequency Parameter for Si3N4=SUS304 Square Plates under Heat Conduction Mode
N ¼ 0.0
N ¼ 0.5
N ¼ 1.0
N ¼ 2.0
(1, 1)
12.397
8.615
7.474
6.639
(1, 2)
29.083
20.215
17.607
15.762 23.786
TU ¼ 400 K, TL ¼ 300 K Huang and Shen (2004)
Sundararajan et al. (2005)
Wu et al. (2007)
TU ¼ 600 K, TL ¼ 300 K Huang and Shen (2004)
Sundararajan et al. (2005)
Wu et al. (2007)
(2, 2)
43.835
30.530
26.590
(1, 1)
12.311
8.276
7.302
6.572
(1, 2)
29.016
19.772
17.369
15.599
(2, 2) (1, 1)
44.094 12.353
30.184 8.513
26.506 7.439
23.787 6.678
(1, 2)
29.033
20.115
17.578
15.717
(2, 2)
43.775
30.226
26.510
23.699
(1, 1)
11.984
8.269
7.171
6.398
(1, 2)
28.504
19.783
17.213
15.384 23.327
(2, 2)
43.107
29.998
26.109
(1, 1)
11.888
7.943
6.989
6.269
(1, 2)
28.421
19.327
16.959
15.207
(2, 2)
43.343
29.629
25.997
23.303
(1, 1) (1, 2)
11.958 28.433
8.253 19.468
7.144 17.116
6.378 15.375
(2, 2)
43.003
29.886
25.994
23.315
Tables 4.4 and 4.5 show the effect of volume fraction index N on the natural frequency parameter of ZrO2=Ti-6Al-4V and Si3N4=SUS304 plates under three thermal loading conditions: case 1, TL ¼ 300 K, TU ¼ 300 K; case 2, TL ¼ 300 K, TU ¼ 400 K; and case 3, TL ¼ 300 K, TU ¼ 600 K. Temperature-dependent
TABLE 4.4
1=2 for ZrO2=Ti-6Al-4V Natural Frequency Parameter V ¼ v L (a2 =h) r0 (1 n2 )=E0 Square Plates in Thermal Environments Mode (1, 1)
(1, 2)
(2, 2)
(1, 3)
(2, 3)
ZrO2
8.273
19.261
28.962
34.873
43.070
0.5
7.139
16.643
25.048
30.174
37.288
1.0
6.657
15.514
23.345
28.120
34.747
2.0
6.286
14.625
21.978
26.454
32.659
Ti-6Al-4V
5.400
12.571
18.903
22.762
28.111
TL ¼ 300 K, TU ¼ 300 K
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 113 9.12.2008 4:38pm Compositor Name: VBalamugundan
Nonlinear Vibration of Shear Deformable FGM Plates
113
TABLE 4.4 (continued)
1=2 for ZrO2=Ti-6Al-4V Natural Frequency Parameter V ¼ v L (a2 =h) r0 (1 n2 )=E0 Square Plates in Thermal Environments Mode (1, 1)
(1, 2)
(2, 2)
(1, 3)
(2, 3)
TL ¼ 300 K, TU ¼ 400 K, temperature dependent ZrO2
7.868
18.659
28.203
34.015
42.045
0.5
6.876
16.264
24.578
29.651
36.664
1.0 2.0
6.437 6.101
15.202 14.372
22.956 21.653
27.696 26.113
34.236 32.239
Ti-6Al-4V
5.322
12.455
18.766
22.603
27.921
TL ¼ 300 K, TU ¼ 400 K, temperature independent ZrO2 0.5
8.122 7.154
19.193 16.644
28.986 25.136
34.958 30.136
43.190 37.476
1.0
6.592
15.531
23.442
28.273
34.936
2.0
6.238
14.655
22.078
26.605
32.840
Ti-6Al-4V
5.389
12.620
19.104
22.905
28.261
TL ¼ 300 K, TU ¼ 600 K, temperature dependent 6.685 16.986
26.073
31.567
39.212
0.5
6.123
15.169
23.166
28.041
34.789
1.0
5.819
14.287
21.768
26.342
32.660
2.0
5.612
13.611
20.652
24.961
30.904
Ti-6Al-4V
5.118
12.059
18.175
21.898
27.045
ZrO2
TL ¼ 300 K, TU ¼ 600 K, temperature independent ZrO2
7.686
18.749
28.527
34.472
42.713
0.5
6.776
16.367
24.859
30.044
37.201
1.0
6.362
15.308
23.216
28.036
34.714
2.0 Ti-6Al-4V
6.056 5.284
14.474 12.511
21.896 18.902
26.435 22.784
32.664 28.168
TABLE 4.5
1=2 Natural Frequency Parameter V ¼ v L (a2 =h) r0 (1 n2 )=E0 for Si3N4=SUS304 Square Plates in Thermal Environments Mode (1, 1)
(1, 2)
(2, 2)
(1, 3)
(2, 3)
TL ¼ 300 K, TU ¼ 300 K Si3N4
12.495
29.131
43.845
52.822
65.281
0.5
8.675
20.262
30.359
36.819
45.546
1.0
7.555
17.649
26.606
32.081
39.692
2.0
6.777
15.809
23.806
28.687
35.466
SUS304
5.405
12.602
18.967
22.850
28.239 (continued)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 114 9.12.2008 4:38pm Compositor Name: VBalamugundan
114
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
TABLE 4.5 (continued)
1=2 for Si3N4=SUS304 Natural Frequency Parameter V ¼ v L (a2 =h) r0 (1 n2 )=E0 Square Plates in Thermal Environments Mode (1, 1)
(1, 2)
(2, 2)
(1, 3)
(2, 3)
TL ¼ 300 K, TU ¼ 400 K, temperature dependent Si3N4
12.397
29.083
43.835
52.822
65.310
0.5
8.615
20.215
30.530
36.824
45.575
1.0 2.0
7.474 6.693
17.607 15.762
26.590 23.786
32.088 28.686
39.721 35.491
SUS304
5.311
12.539
18.959
22.828
28.246
TL ¼ 300 K, TU ¼ 400 K, temperature independent Si3N4 0.5
12.382 8.641
29.243 20.316
44.072 30.682
53.105 37.007
65.559 45.802
1.0
7.514
17.694
26.717
32.242
39.908
2.0
6.728
15.836
23.893
28.816
35.648
SUS304
5.335
12.587
19.008
22.908
28.344
TL ¼ 300 K, TU ¼ 600 K, temperature dependent 11.984 28.504
43.107
51.998
64.358
0.5
8.269
19.783
29.998
36.239
44.901
1.0
7.171
17.213
26.109
31.557
39.114
2.0
6.398
15.384
23.327
28.185
34.918
SUS304
4.971
12.089
18.392
22.221
27.557
Si3N4
TL ¼ 300 K, TU ¼ 600 K, temperature independent Si3N4
12.213
28.976
43.797
52.821
65.365
0.5
8.425
20.099
30.458
36.781
45.572
1.0
7.305
17.486
26.506
31.970
39.692
2.0 SUS304
6.523 5.104
15.632 12.342
23.685 18.763
28.609 22.658
35.436 28.084
and temperature-independent material properties (values at fixed temperature 300 K) are both taken into account. In these two tables V ¼ vL (a2 =h)[r0 (1 n2 )=E0 ]1=2 , where E0 and r0 are the reference values of Em and rm at T0 ¼ 300 K. Then Tables 4.6 and 4.7 show, respectively, the effects of volume fraction index N and temperature field on the nonlinear to linear frequency ratios vNL=vL of the same two FGM plates. It can be seen that the natural frequency of the FGM plate decreases with the increase of volume fraction index N, but it has a small effect on the nonlinear to linear frequency ratios. On the other hand, the temperature rise decreases the natural frequencies but increases the nonlinear to linear frequency ratios. The results show that the FGM plate will have lower natural frequency and slightly higher nonlinear to linear frequency ratios when the temperaturedependent material properties are taken into account.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 115 9.12.2008 4:38pm Compositor Name: VBalamugundan
Nonlinear Vibration of Shear Deformable FGM Plates
115
TABLE 4.6 Effect of Volume Fraction Index N on the Nonlinear to Linear Frequency Ratio vNL=vL of FGM Square Plates in Thermal Environments (TL ¼ 300 K, TU ¼ 400 K) W max=h 0.0
0.2
0.4
0.6
0.8
1.0
ZrO2
1.000
1.023
1.087
1.186
1.312
1.461
0.5
1.000
1.023
1.087
1.186
1.312
1.460
1.0 2.0
1.000 1.000
1.022 1.022
1.086 1.084
1.183 1.179
1.310 1.302
1.455 1.444
Ti-6Al-4V
1.000
1.022
1.083
1.177
1.300
1.440
Si3N4 0.5
1.000 1.000
1.022 1.022
1.084 1.084
1.181 1.181
1.303 1.302
1.446 1.444
1.0
1.000
1.022
1.084
1.180
1.301
1.442
2.0
1.000
1.022
1.082
1.176
1.299
1.440
SUS304
1.000
1.022
1.082
1.172
1.296
1.438
ZrO2=Ti-6Al-4V
Si3N4=SUS304
TABLE 4.7 Effect of Temperature Field on the Nonlinear to Linear Frequency Ratio vNL=vL of FGM Square Plates (N ¼ 2.0) W max=h 0.0
0.2
0.4
0.6
0.8
1.0
TL ¼ 300 K, TU ¼ 300 K
1.000
1.021
1.082
1.176
1.296
1.436
TL ¼ 300 K, TU ¼ 400 K Temperature dependent
1.000
1.022
1.084
1.179
1.302
1.444
Temperature independent
1.000
1.022
1.083
1.178
1.300
1.441
TL ¼ 300 K, TU ¼ 600 K Temperature dependent
1.000
1.024
1.091
1.194
1.325
1.477
Temperature independent
1.000
1.023
1.087
1.183
1.314
1.462
1.000
1.021
1.081
1.174
1.293
1.432
Temperature dependent
1.000
1.022
1.082
1.176
1.299
1.440
Temperature independent
1.000
1.021
1.082
1.175
1.255
1.437
Temperature dependent
1.000
1.023
1.088
1.188
1.315
1.463
Temperature independent
1.000
1.023
1.087
1.187
1.313
1.460
ZrO2=Ti-6Al-4V
Si3N4=SUS304 TL ¼ 300 K, TU ¼ 300 K TL ¼ 300 K, TU ¼ 400 K
TL ¼ 300 K, TU ¼ 600 K
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 116 9.12.2008 4:38pm Compositor Name: VBalamugundan
116
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
Figures 4.2 and 4.3 show, respectively, the effect of volume fraction index N on the dynamic response of ZrO2=Ti-6Al-4V and Si3N4=SUS304 plates under thermal environmental condition TL ¼ 300 K and TU ¼ 400 K. It can 2 TL = 300 K, TU = 400 K
Central deflection (mm)
0
−2
−4
−6
0.0
ZrO2;
N = 0.5;
N = 2.0;
Ti-6Al-4V
0.2
(a)
Central bending moment (kN m m–1)
0.6
0.8
Time (ms) 0
TL = 300 K, TU = 400 K
−10
−20
−30
−40
−50 0.0 (b)
0.4
N = 1.0;
ZrO2;
N =0.5;
N =2.0;
Ti-6Al-4V
0.2
0.4
N =1.0;
0.6
0.8
Time (ms)
FIGURE 4.2 Effect of volume fraction index N on the dynamic response of ZrO2=Ti-6Al-4V square plate subjected to a suddenly applied uniform load and in thermal environments: (a) central deflection versus time; (b) bending moment versus time.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 117 9.12.2008 4:38pm Compositor Name: VBalamugundan
Nonlinear Vibration of Shear Deformable FGM Plates
117
2 N =0.5;
Si3N4; N =1.0;
Central deflection (mm)
1
N =2.0;
SUS304
0
−1
−2 TL = 300 K, TU = 400 K −3 0.0
0.2
(a)
0.4
0.6
0.8
0.6
0.8
Time (ms)
Central bending moment (kN m m−1)
−10 Si3N4;
N =0.5;
N =1.0;
N =2.0;
SUS304 −20
−30
TL = 300 K, TU = 400 K −40 0.0 (b)
0.2
0.4 Time (ms)
FIGURE 4.3 Effect of volume fraction index N on the dynamic response of Si3N4=SUS304 square plate subjected to a suddenly applied uniform load and in thermal environments: (a) central deflection versus time; (b) bending moment versus time.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 118 9.12.2008 4:38pm Compositor Name: VBalamugundan
118
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
be seen that the plate deflections are increased by increasing the volume fraction index N. The bending moment is decreased for the ZrO2=Ti-6Al-4V plate, but it is increased for the Si3N4=SUS304 plate when the volume fraction index N is increased. Figures 4.4 and 4.5 show, respectively, the effect of thermal environmental conditions on the dynamic response of ZrO2=Ti-6Al-4V and Si3N4=SUS304 plates with N ¼ 2.0. The results show that both central deflections and bending moments are increased with the increase in temperature. It is also seen that the greater the temperature rise is, the greater will be the thermally induced initial bending moments. It is appreciated that in Figures 4.2 through 4.5 the deflection mode (m, n) ¼ (1, 1) was used and in Equation 4.19 k and l are taken as 1, 3, and 5, and in Equations 4.41 and 4.42 Dt ¼ 2 ms is taken as the time step for Runge– Kutta iteration method. The dynamic load is assumed to be a suddenly applied uniform load with q0 ¼ 50 MPa.
4.3
Nonlinear Vibration of FGM Plates with Piezoelectric Actuators in Thermal Environments
We now consider the nonlinear free and forced vibration of FGM hybrid laminated plates. The plate is assumed to be made of a substrate FGM layer with surface-bonded piezoelectric layers. The substrate FGM layer is made of the combined ceramic and metallic materials with continuously varying mix-ratios comprising ceramic and metal. The length, width, and total thickness of the hybrid laminated plate are a, b, and h. The thickness of the FGM layer is hf, while the thickness of the piezoelectric layer is hp. We assume that the material composition varies smoothly from the upper to the lower surface of the FGM layer, such that the upper surface (Z ¼ h2) of the FGM layer is ceramic-rich, and the lower surface (Z ¼ h1) is metal-rich. As in the case of Section 4.2, we assume the effective Young’s modulus Ef and thermal expansion coefficient af of the FGM layer are temperature dependent, whereas the thermal conductivity kf and mass density rf are independent to the temperature. Poisson’s ratio nf depends weakly on temperature change and is assumed to be a constant. We assume that the volume fraction Vc follows a simple power law. Now Equation 4.2 may be rewritten as Ef (Z, T) ¼ [Ec (T) Em (T)]
Z h1 h2 h1
N þ Em (T)
(4:43a)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 119 9.12.2008 4:38pm Compositor Name: VBalamugundan
Nonlinear Vibration of Shear Deformable FGM Plates
119
4 TL = 300 K, TU = 300 K
N = 2.0
TL = 300 K, TU = 400 K TL = 300 K, TU = 600 K
Central deflection (mm)
2
0
−2
−4
0.0
0.2
(a)
0.4 Time (ms)
0.6
0.8
20
Central bending moment (kN m m−1)
0 –20 –40 TL = 300 K, TU = 300 K –60 –80
TL = 300 K, TU = 400 K TL = 300 K, TU = 600 K
–100 –120 0.0 (b)
0.2
0.4
0.6
0.8
Time (ms)
FIGURE 4.4 Effect of temperature field on the dynamic response of ZrO2=Ti-6Al-4V square plate subjected to a suddenly applied uniform load: (a) central deflection versus time; (b) bending moment versus time.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 120 9.12.2008 4:38pm Compositor Name: VBalamugundan
120
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 3 TL = 300 K, TU = 300 K
N =2.0
2
TL = 300 K, TU = 400 K
Central deflection (mm)
TL = 300 K, TU = 600 K 1
0
−1
−2
−3 0.0
0.2
(a)
0.4
0.6
0.8
Time (ms) 20
Central bending moment (kN m m–1)
N =2.0 0
−20
−40
TL = 300 K, TU = 400 K −60
−80 0.0 (b)
TL = 300 K, TU = 300 K
TL = 300 K, TU = 600 K
0.2
0.4
0.6
0.8
Time (ms)
FIGURE 4.5 Effect of temperature field on the dynamic response of Si3N4=SUS304 square plate subjected to a suddenly applied uniform load: (a) central deflection versus time; (b) bending moment versus time.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 121 9.12.2008 4:38pm Compositor Name: VBalamugundan
Nonlinear Vibration of Shear Deformable FGM Plates Z h1 N af (Z, T) ¼ [ac (T) am (T)] þ am (T) h2 h1 Z h1 N þ rm rf (Z) ¼ (rc rm ) h2 h1 Z h1 N þ km kf (Z) ¼ (kc km ) h 2 h1
121
(4:43b) (4:43c) (4:43d)
It is evident that when Z ¼ h1, Ef ¼ Em(Tm) and af ¼ am(Tm), and when Z ¼ h2, Ef ¼ Ec(Tc) and af ¼ ac(Tc). Furthermore, Ef and af are both temperature- and position-dependent. The temperature field is assumed to be the same as in Section 4.2. Then the temperature distribution along the thickness can be obtained by solving a steady-state heat transfer equation:
d dT k(Z) ¼0 dZ dZ
(4:44)
where 8 > < kp k(Z) ¼ kf (Z) > : kp 8 ~ > < Tp (Z) T(Z) ¼ Tf (Z) > : Tp (Z)
(h0 < Z < h1 ) (h1 < Z < h2 ) (h2 < Z < h3 )
(4:45a)
(h0 Z h1 ) (h1 Z h2 ) (h2 Z h3 )
(4:45b)
where kp is the thermal conductivity of the piezoelectric layer. Equation 4.44 is solved by imposing the boundary conditions T ¼ TU at Z ¼ h3 and T ¼ TL at Z ¼ h0, and the continuity conditions
~ p (Z) dT kp dZ
~ p (h1 ) ¼ Tf (h1 ) ¼ Tm , Tp (h2 ) ¼ Tf (h2 ) ¼ Tc T dTp (Z) dTf (Z) dTf (Z) ¼ km , kp ¼ kc dZ Z¼h2 dZ Z¼h1 dZ Z¼h2
(4:46a) (4:46b)
Z¼h1
The solution of Equations 4.44 through 4.46, by means of polynomial series, is ~ p (Z) ¼ 1 [(TL h1 Tm h0 ) þ (Tm TL )Z] T hp
(4:47a)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 122 9.12.2008 4:38pm Compositor Name: VBalamugundan
122
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells Tf (Z) ¼ Tm þ (Tc Tm )h(Z) Tp (Z) ¼
1 [(Tc h3 TU h2 ) þ (TU Tc )Z] hp
(4:47b) (4:47c)
where 1 h(Z) ¼ C
"
Z h1 h2 h1
kmc Z h1 Nþ1 k2mc Z h1 2Nþ1 þ (N þ 1)kc h2 h1 (2N þ 1)k2c h2 h1
k3mc Z h1 3Nþ1 k4mc Z h1 4Nþ1 þ (3N þ 1)k3c h2 h1 (4N þ 1)k4c h2 h1 # k5mc Z h1 5Nþ1 (5N þ 1)k5c h2 h1
C¼1
kmc k2mc k3mc k4mc k5mc þ þ 2 3 4 (N þ 1)kc (2N þ 1)kc (3N þ 1)kc (4N þ 1)kc (5N þ 1)k5c G¼1
kmc k2mc k3mc k4mc k5mc þ 2 3 þ 4 5 kc kc kc kc kc
(4:48a)
(4:48b) (4:48c)
where kmc ¼ km kc, and Tc ¼
(1=hf C)(kc GTL þ km TU ) þ (kp =hp )TU (1=hf C)(kc G þ km ) þ (1=hp )kp
(4:49a)
Tm ¼
(1=hf C)(kc GTL þ km TU ) þ (kp =hp )TL (1=hf C)(kc G þ km ) þ (1=hp )kp
(4:49b)
The plate is assumed to be geometrically perfect, and is subjected to a transverse dynamic load q(X, Y, t) in thermal environments. Hence, the general von Kármán-type equations can be written in a similar form as expressed by Equations 1.33 through 1.36, just necessary to replace N T, MT, ST, PT with N p, Mp, Sp, Pp, and these equivalent thermopiezoelectric loads are defined by Equations 3.6 through 3.9. Introducing dimensionless quantities (Equations 2.8 and 4.6), and * D22 * ]1=2 , (g T1 , gT2 ) ¼ (ATx , ATy )a2 =p2 [D11
* D22 * ]1=2 (gP1 , g P2 ) ¼ (BEx , BEy )a2 =p2 [D11
* (g T3 , g T4 , gT6 , gT7 ) ¼ (DTx , DTy , FTx , FTy )a2 =p2 h2 D11 (gP3 , g P4 , g P6 , gP7 ) ¼
* (DEx , DEy , FEx , FEy )a2 =p2 h2 D11
(4:50)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 123 9.12.2008 4:38pm Compositor Name: VBalamugundan
Nonlinear Vibration of Shear Deformable FGM Plates
123
where BEx ¼BEy , DEx ¼DEy , and FEx ¼FEy are defined by "
BEx
DEx
FEx
BEy
DEy
FEy
# DV ¼
# hk " X ð Bx
k
hk1
By
k
1, Z, Z3
Vk dZ hk
(4:51)
The nonlinear motion equations can then be written in similar form as L11 (W) L12 (Cx ) L13 (Cy ) þ g 14 L14 (F) L16 (MP ) ! €y €x @ C @ C 2 € þg þb ¼ g14 b L(W, F) þ L17 (W) þ lq 80 @x @y
(4:52)
1 L21 (F) þ g 24 L22 (Cx ) þ g24 L23 (Cy ) g 24 L24 (W) ¼ g 24 b2 L(W, W) (4:53) 2 € @W € x (4:54) þ g 10 C L31 (W) þ L32 (Cx ) L33 (Cy ) þ g 14 L34 (F) L36 (SP ) ¼ g 90 @x € @W € y (4:55) þ g 10 C L41 (W) L42 (Cx ) þ L43 (Cy ) þ g 14 L44 (F) L46 (SP ) ¼ g 90 b @y and the boundary conditions can be written in dimensionless form as x ¼ 0, p: W ¼ Cy ¼ 0 ðp ðp g224 b2 0 0
(4:56a)
@Cy @2F @2F @Cx þ g 233 b g5 2 þ g 24 g 511 @x @y @y2 @x
2 @2W 1 @W 2 2@ W g 24 þ g244 b g24 g 611 @x2 @y2 2 @x 2 2 þ (g 24 gT1 g5 gT2 )T1 þ (g24 g P1 g5 gP2 )DV dx dy ¼ 0
(4:56b)
y ¼ 0, p: W ¼ Cx ¼ 0
(4:56c)
ðp ðp 2 2 @Cy @ F @Cx 2@ F þ g 522 b g5 b þ g 24 g 220 @x @y @x2 @y2 0 0
2 2 @2W 1 2@ W 2 @W g24 b þ g 622 b g 24 g 240 @x2 @y2 2 @y þ (g T2 g 5 g T1 )T1 þ (g P2 g5 g P1 )DV dx dy ¼ 0
(4:56d)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 124 9.12.2008 4:38pm Compositor Name: VBalamugundan
124
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
All the necessary steps of the solution methodology are described in Section 4.2, and the solutions are not repeated herein for convenience. We first examine the free vibration of an FGM square plate with symmetrically fully covered G-1195N piezoelectric layers. The substrate FGM plate is made of aluminum oxide and Ti-6Al-4V. The material properties adopted are Ec ¼ 320.24 GPa, nc ¼ 0.26, rc ¼ 3750 kg m3, for aluminum oxide; Em ¼ 105.70 GPa, nm ¼ 0.2981, rm ¼ 4429 kg m3, for Ti-6Al-4V; Ep ¼ 63.0 GPa, np ¼ 0.3, rp ¼ 7600 kg m3, d31 ¼ d32 ¼ 254 1012 mV1. The side and thickness of the substrate FGM square plate are 400 and 5 mm, and the thickness of each piezoelectric layer is 0.1 mm. The initial 10 frequencies of the plate as a function of the volume fraction index N are listed in Table 4.8 and compared with the FEM results of He et al. (2001) based on classical laminated plate theory (CLPT). Again, good agreement can be seen. Note that in this example the material properties are assumed to be independent of temperature. In this section, two types of the hybrid FGM plate are considered. The first hybrid FGM plate has fully covered piezoelectric actuators on the top surface (referred to as P=FGM), and the second has two piezoelectric layers symmetrically bonded to the top and bottom surfaces (referred to as P=FGM=P). Silicon nitride (Si3N4) and stainless steel (SUS304) are chosen to be the TABLE 4.8 Comparison of Natural Frequency vL (Hz) for FGM Plates with Piezoelectric Actuator Bonded on the Top and Bottom Surfaces Mode 1 2 3 4 5 6 7 8 9 10
Method
N¼0
N ¼ 0.5
N¼1
N¼5
N ¼ 15
N ¼ 100
N ¼ 1000 261.73
He et al. (2001)
144.25
185.45
198.92
230.46
247.30
259.35
Present
143.25
184.73
198.78
229.47
246.86
258.78
260.84
He et al. (2001)
359.00
462.65
495.62
573.82
615.58
645.55
651.49
Present
358.87
461.02
494.65
571.87
613.95
643.92
649.83
He et al. (2001) Present
359.00 358.87
462.47 461.02
495.62 494.65
573.82 571.87
615.58 613.95
645.55 643.92
651.49 649.83 1024.28
He et al. (2001)
564.10
731.12
778.94
902.04
967.78
1014.94
Present
563.42
727.98
778.61
899.91
964.31
1012.54
1023.72
He et al. (2001)
717.80
925.45
993.11
1148.12
1231.00
1290.78
1302.64
Present
717.65
922.83
992.87
1146.87
1229.44
1288.73
1301.34
He et al. (2001)
717.80
925.45
993.11
1148.12
1231.00
1290.78
1302.64
Present
717.65
922.83
992.87
1146.87
1229.44
1288.73
1301.34
He et al. (2001) Present
908.25 907.87
1180.93 1177.34
1255.98 1223.36
1453.32 1451.66
1558.77 1557.12
1634.65 1632.18
1649.70 1648.56
He et al. (2001)
908.25
1180.93
1255.98
1453.32
1558.77
1634.65
1649.70
Present
907.87
1177.34
1223.36
1451.66
1557.12
1632.18
1648.56
1223.14
1576.91
1697.15
1958.17
2097.91
2199.46
2219.67
He et al. (2001) Present
1219.32
1571.65
1695.17
1956.79
2095.67
2197.47
2217.94
He et al. (2001)
1223.14
1576.91
1697.15
1958.17
2097.91
2199.46
2219.67
Present
1219.32
1571.65
1695.17
1956.79
2095.67
2197.47
2217.94
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 125 9.12.2008 4:38pm Compositor Name: VBalamugundan
Nonlinear Vibration of Shear Deformable FGM Plates
125
constituent materials of the substrate FGM layer. The mass density rf, Poisson’s ratio nf, and thermal conductivity kf are 2370 kg m3, 0.24, 9.19 W mK1 for Si3N4, and 8166 kg m3, 0.33, 12.04 W mK1 for SUS304. Young’s modulus Ef and thermal expansion coefficient af for these two constituent materials are listed in Tables 1.1 and 1.2. PZT-5A is selected for the piezoelectric layers. The material properties of which, as linear functions of temperature of Equation 3.35, are E110 ¼ E220 ¼ 63 GPa, G120 ¼ G130 ¼ G230 ¼ 24.2 GPa, a110 ¼ a220 ¼ 0.9 106 K1, rp ¼ 7600 kg m3, np ¼ 0.3, kp ¼ 2.1 W mK1, and d31 ¼ d32 ¼ 2.54 1010 mV1, and E111 ¼ 0.0005, E221 ¼ G121 ¼ G131 ¼ G231 ¼ 0.0002, a111 ¼ a221 ¼ 0.0005. The side of the hybrid FGM plate is a ¼ b ¼ 24 mm. The thickness of the substrate FGM 1layer hf ¼ 1.0 mm, whereas the thickness of each piezoelectric layer hp ¼ 0.1 mm. Tables 4.9 and 4.10 present the natural frequency parameter V ¼ vL (a2 =hf )[r0 =E0 ]1=2 of these two types of the FGM hybrid plate with different TABLE 4.9 Natural Frequency Parameter V ¼ v L (a2 =hf )[r0 =E0 ]1=2 for the Hybrid (P=FGM) Plates under Different Sets of Thermal and Electric Loading Conditions VU ¼ VL ¼
Si3N4 (N ¼ 0)
N ¼ 0.5
N ¼ 2.0
N ¼ 4.0
SUS304 (N ¼ 1)
200 V 0V
10.726 10.704
7.885 7.868
6.334 6.320
5.920 5.906
5.194 5.179
þ200 V
10.682
7.852
6.306
5.892
5.164
200 V
10.149
7.380
5.852
5.427
4.668
0V
10.134
7.371
5.846
5.422
4.665
þ200 V
10.119
7.363
5.841
5.418
4.663
200 V
9.237
6.667
5.277
4.903
4.324
0V
9.248
6.685
5.299
4.926
4.352
þ200 V
9.260
6.704
5.322
4.950
4.378
(P=FGM), TID TU ¼ 300 K, TL ¼ 300 K TU ¼ 400 K, TL ¼ 300 K TU ¼ 600 K, TL ¼ 300 K (P=FGM), TD-F TU ¼ 400 K, TL ¼ 300 K
200 V
10.099
7.346
5.824
5.402
4.649
0V
10.084
7.336
5.819
5.397
4.646 4.645
þ200 V
10.070
7.328
5.814
5.393
TU ¼ 600 K,
200 V
9.093
6.592
5.242
4.882
3.432
TL ¼ 300 K
0V 200 V
9.109 9.125
6.614 6.636
5.266 5.291
4.907 4.932
3.277 3.159
(P=FGM), TD TU ¼ 400 K, TL ¼ 300 K TU ¼ 600 K, TL ¼ 300 K
200 V
10.080
7.331
5.812
5.390
4.635
0V
10.066
7.322
5.807
5.385
4.633
200 V
10.052
7.315
5.803
5.382
4.632
200 V 0V
9.042 9.055
6.557 6.576
5.216 5.238
4.858 4.881
3.183 3.089
200 V
9.070
6.595
5.259
4.902
3.010
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 126 9.12.2008 4:38pm Compositor Name: VBalamugundan
126
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
TABLE 4.10 Natural Frequency Parameter V ¼ v L (a2 =hf )[r0 =E0 ]1=2 for the Hybrid (P=FGM=P) Plates under Different Sets of Thermal and Electric Loading Conditions Si3N4 (N ¼ 0)
N ¼ 0.5
N ¼ 2.0
N ¼ 4.0
SUS304 (N ¼ 1)
200 V
9.121
7.032
5.794
5.446
4.810
0V
9.085
7.000
5.766
5.418
4.782
þ200 V
9.050
6.969
5.738
5.391
4.755
TU ¼ 400 K, TL ¼ 300 K
200 V 0V
8.435 8.397
6.344 6.310
5.102 5.070
4.740 4.709
4.058 4.026
þ200 V
8.358
6.276
5.038
4.678
3.995
TU ¼ 600 K,
200 V
7.124
5.004
3.886
3.622
1.521
VU ¼ VL ¼ (P=FGM=P), TID TU ¼ 300 K, TL ¼ 300 K
TL ¼ 300 K
0V
7.085
4.971
3.860
3.601
1.424
þ200 V
7.046
4.938
3.837
3.581
1.323
200 V
8.372
6.295
5.059
4.698
4.022
0V
8.333
6.260
5.027
4.668
3.990
þ200 V
8.294
6.226
4.996
4.636
3.959
200 V
6.900
4.854
3.816
2.511
1.287
0V
6.863
4.825
3.797
2.370
1.172
200 V
6.826
4.795
3.778
2.246
1.045
(P=FGM=P), TD-F TU ¼ 400 K, TL ¼ 300 K TU ¼ 600 K, TL ¼ 300 K
(P=FGM=P), TD TU ¼ 400 K,
200 V
8.340
6.266
5.033
4.673
3.996
TL ¼ 300 K
0V 200 V
8.303 8.266
6.233 6.200
5.002 4.972
4.643 4.613
3.966 3.936
TU ¼ 600 K,
200 V
6.806
4.777
3.763
2.190
0.976
0V
6.775
4.752
3.747
2.094
0.847
200 V
6.744
4.729
3.731
2.003
0.695
TL ¼ 300 K
values of the volume fraction index N ( ¼ 0.0, 0.5, 2.0, 4.0, and 1) under different sets of thermal and electric loading conditions. Here, E0 and r0 are the reference values of SUS304 at the room temperature (T0 ¼ 300 K). TD represents material properties for both substrate FGM layer and piezoelectric layers are temperature dependent. TD-F represents material properties of substrate FGM layer are temperature dependent but material properties of piezoelectric layers are temperature independent, i.e., E111 ¼ E221 ¼ G121 ¼ G131 ¼ G231 ¼ a111 ¼ a221 ¼ 0 in Equation 3.35. TID represents material properties for both piezoelectric layers and substrate FGM layer are temperature independent, i.e., in a fixed temperature T0 ¼ 300 K for FGM layer, as previously used in Yang and Shen (2001). Six different applied voltages: VU ¼ 200 V, VU ¼ 0 V, VU ¼ 200 V, and VL ¼ VU ¼ 200 V, VL ¼ VU ¼ 0 V, VL ¼ VU ¼ 200 V are used, where subscripts ‘‘L’’ and ‘‘U’’ imply the low and
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 127 9.12.2008 4:38pm Compositor Name: VBalamugundan
Nonlinear Vibration of Shear Deformable FGM Plates
127
upper piezoelectric layer. It can be seen that the natural frequency of these two plates is decreased by increasing temperature and volume fraction index N. The plus voltage decreases, but the minus voltage increases the plate natural frequency. Tables 4.11 through 4.13 show, respectively, the effect of volume fraction index N, control voltage, and temperature field on the nonlinear to linear TABLE 4.11 Effect of Volume Fraction Index N on Nonlinear to Linear Frequency Ratio vNL =vL for the Hybrid FGM Plates in Thermal Environments (TL ¼ 300 K, TU ¼ 400 K) W max =h 0.2
0.4
0.6
0.8
1.0
(P=FGM) (VU ¼ þ200 V), TID 1.000 Si3N4
0.0
1.021
1.081
1.175
1.294
1.434
0.5
1.000
1.022
1.084
1.182
1.305
1.449
2.0
1.000
1.022
1.084
1.180
1.303
1.446
4.0
1.000
1.021
1.082
1.178
1.299
1.440
SUS304
1.000
1.022
1.087
1.188
1.315
1.463
(P=FGM) (VU ¼ þ200 V), TD-F 1.000 1.021 Si3N4
1.081
1.175
1.296
1.435
0.5
1.000
1.022
1.085
1.182
1.307
1.451
2.0
1.000
1.022
1.084
1.181
1.305
1.448
4.0
1.000
1.021
1.083
1.179
1.301
1.442
SUS304
1.000
1.023
1.088
1.189
1.317
1.466
(P=FGM) (VU ¼ þ200 V), TD 1.000 Si3N4
1.021
1.082
1.176
1.296
1.436
0.5
1.000
1.022
1.085
1.183
1.307
1.452
2.0
1.000
1.022
1.084
1.182
1.306
1.449
4.0
1.000
1.021
1.083
1.179
1.301
1.444
SUS304
1.000
1.023
1.088
1.190
1.318
1.467
(P=FGM=P) (VL ¼ VU ¼ þ200 V), TID Si3N4
1.000
1.021
1.082
1.177
1.298
1.439
0.5 2.0
1.000 1.000
1.022 1.022
1.087 1.088
1.186 1.188
1.313 1.315
1.460 1.463
4.0
1.000
1.022
1.087
1.187
1.314
1.460
SUS304
1.000
1.025
1.096
1.205
1.343
1.502
(P=FGM=P) (VL ¼ VU ¼ þ200 V), TD-F 1.000 1.021 Si3N4
1.082
1.177
1.299
1.439
0.5
1.000
1.023
1.087
1.187
1.315
1.462
2.0
1.000
1.023
1.088
1.189
1.318
1.467
4.0
1.000
1.023
1.088
1.188
1.316
1.465
SUS304
1.000
1.025
1.096
1.205
1.343
1.502 (continued)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 128 9.12.2008 4:38pm Compositor Name: VBalamugundan
128
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
TABLE 4.11 (continued) Effect of Volume Fraction Index N on Nonlinear to Linear Frequency Ratio vNL =vL for the Hybrid FGM Plates in Thermal Environments (TL ¼ 300 K, TU ¼ 400 K) W max =h 0.0
0.2
0.4
0.6
0.8
1.0
(P=FGM=P) (VL ¼ VU ¼ þ200 V), TD Si3N4
1.000
1.021
1.083
1.178
1.300
1.441
0.5
1.000
1.023
1.088
1.188
1.316
1.464
2.0 4.0
1.000 1.000
1.023 1.023
1.089 1.088
1.190 1.190
1.320 1.318
1.470 1.468
SUS304
1.000
1.025
1.097
1.207
1.346
1.506
TABLE 4.12 Effect of Temperature Field on Nonlinear to Linear Frequency Ratio vNL =vL for the Hybrid FGM Plates (N ¼ 0.5) W max =h 0.2
0.4
0.6
0.8
1.0
(P=FGM) (VU ¼ þ200 V), TID 1.000 TL ¼ 300 K, TU ¼ 300 K
0.0
1.019
1.075
1.161
1.272
1.402
TL ¼ 300 K, TU ¼ 400 K
1.000
1.022
1.084
1.182
1.306
1.450
TL ¼ 300 K, TU ¼ 600 K
1.000
1.026
1.099
1.211
1.352
1.515
(P=FGM) (VU ¼ þ200 V), TD-F 1.000 TL ¼ 300 K, TU ¼ 400 K
1.022
1.085
1.182
1.307
1.451
TL ¼ 300 K, TU ¼ 600 K
1.000
1.025
1.096
1.205
1.343
1.502
(P=FGM) (VU ¼ þ200 V), TD 1.000 TL ¼ 300 K, TU ¼ 400 K
1.022
1.085
1.183
1.307
1.452
TL ¼ 300 K, TU ¼ 600 K
1.025
1.096
1.206
1.345
1.504
1.000
(P=FGM==P) (VU ¼ VL ¼ þ200 V), TID TL ¼ 300 K, TU ¼ 300 K
1.000
1.018
1.071
1.153
1.259
1.384
TL ¼ 300 K, TU ¼ 400 K
1.000
1.022
1.087
1.186
1.313
1.460
TL ¼ 300 K, TU ¼ 600 K
1.000
1.035
1.134
1.282
1.464
1.670
(P=FGM==P) (VU ¼ VL ¼ þ200 V), TD-F TL ¼ 300 K, TU ¼ 400 K
1.000
1.023
1.087
1.187
1.315
1.462
TL ¼ 300 K, TU ¼ 600 K
1.000
1.034
1.128
1.271
1.447
1.645
(P=FGM==P) (VU ¼ VL ¼ þ200 V), TD TL ¼ 300 K, TU ¼ 400 K
1.000
1.023
1.088
1.188
1.316
1.464
TL ¼ 300 K, TU ¼ 600 K
1.000
1.033
1.128
1.270
1.445
1.643
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 129 9.12.2008 4:38pm Compositor Name: VBalamugundan
Nonlinear Vibration of Shear Deformable FGM Plates
129
TABLE 4.13 Effect of Applied Voltage on Nonlinear to Linear Frequency Ratio vNL =vL for the Hybrid FGM Plates in Thermal Environments (TL ¼ 300 K, TU ¼ 400 K, N ¼ 2.0) W max =h 0.0
0.2
0.4
0.6
0.8
1.0
VU ¼ 200 V
1.000
1.022
1.084
1.180
1.302
1.445
VU ¼ 0 V
1.000
1.022
1.084
1.180
1.303
1.446
VU ¼ þ200 V
1.000
1.022
1.084
1.180
1.304
1.447
VU ¼ 200 V VU ¼ 0 V
1.000 1.000
1.022 1.022
1.084 1.084
1.180 1.181
1.304 1.304
1.446 1.447
VU ¼ þ200 V
1.000
1.022
1.084
1.181
1.305
1.448
(P=FGM), TD VU ¼ 200 V
1.000
1.022
1.084
1.181
1.304
1.448
VU ¼ 0 V
1.000
1.022
1.084
1.181
1.305
1.448
VU ¼ þ200 V
1.000
1.022
1.084
1.182
1.306
1.450
VU ¼ VL ¼ 200 V
1.000
1.022
1.085
1.183
1.308
1.454
VU ¼ V L ¼ 0 V
1.000
1.022
1.086
1.186
1.312
1.458
VU ¼ VL ¼ þ200 V
1.000
1.022
1.087
1.188
1.315
1.463
VU ¼ VL ¼ 200 V
1.000
1.022
1.086
1.185
1.311
1.457
VU ¼ V L ¼ 0 V VU ¼ VL ¼ þ200 V
1.000 1.000
1.022 1.023
1.087 1.088
1.187 1.189
1.314 1.318
1.462 1.467
VU ¼ VL ¼ 200 V
1.000
1.022
1.087
1.186
1.313
1.460
VU ¼ V L ¼ 0 V VU ¼ VL ¼ þ200 V
1.000 1.000
1.023 1.023
1.088 1.089
1.188 1.190
1.316 1.320
1.465 1.470
(P=FGM), TID
(P=FGM), TD-F
(P=FGM=P), TID
(P=FGM=P), TD-F
(P=FGM=P), TD
frequency ratios vNL=vL of these two types of FGM hybrid plates. It can be seen that the ratios vNL=vL increase as the volume fraction index N or temperature increases. It is noted that the control voltage only has a small effect on the frequency ratios. It is found that the decrease of natural frequency is about 46% for the P=FGM plate, and about 43% for the P=FGM=P one, from N ¼ 0 to N ¼ 4, in thermal environmental condition TL ¼ 300 K, TU ¼ 400 K under TD-F and TD cases. It can also be seen that the natural frequency and the nonlinear to linear frequency ratio under TD-F and TD cases are very close. Figures 4.6 and 4.7 show the effect of temperature dependency and volume fraction index N ( ¼ 0, 0.5, 2.0, and 1) on the dynamic response of P=FGM
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 130 9.12.2008 4:38pm Compositor Name: VBalamugundan
130
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 0.4
Central deflection, W (mm)
0.3
VU = 200 V
N = 2.0 (TD)
N = 0.5 (TD)
TU = 400 K
N = 2.0 (TID)
N = 0.5 (TID)
TL = 300 K
0.2
0.1
0.0 0.0
0.1
0.2
0.3
Time, t (ms)
(a)
Bending moment, M (kN m m−1)
−15 N = 2.0 (TD)
N = 0.5 (TD)
TU = 400 K
N= 2.0 (TID)
N = 0.5 (TID)
TL = 300 K
−20
−25 0.0 (b)
VU = 200 V
0.1
0.2
0.3
Time, t (ms)
FIGURE 4.6 Effect of temperature dependency on the dynamic response of P=FGM plate subjected to a sudden load, control voltage and in thermal environments: (a) central deflection versus time; (b) central bending moment versus time.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 131 9.12.2008 4:38pm Compositor Name: VBalamugundan
Nonlinear Vibration of Shear Deformable FGM Plates
131
Central deflection, W (mm)
0.6 VU = 200 V
Si3N4
N = 0.5
TU = 400 K
N = 2.0
SUS304
TL = 300 K 0.4
0.2
0.0 0.0
0.1
(a)
0.2
0.3
Time, t (ms)
Bending moment, Mx (kN m m–1)
−20
−22
−24
−26
VU = 200 V
Si3N4
N = 0.5
TU = 400 K
N = 2.0
SUS304
TL = 300 K −28 (b) −30
(b)
0.0
0.1
0.2
0.3
Time, t (ms)
FIGURE 4.7 Effect of volume fraction index N on the dynamic response of P=FGM plate subjected to a suddenly applied uniform load, control voltage and in thermal environments: (a) central deflection versus time; (b) central bending moment versus time.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 132 9.12.2008 4:38pm Compositor Name: VBalamugundan
132
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
plates subjected to a sudden applied load with q0 ¼ 2.0 MPa, under electric loading condition VU ¼ 200 V and in thermal environmental condition TL ¼ 300 K, TU ¼ 400 K. The results show that the dynamic deflections of the P=FGM plate are increased by increasing volume fraction index N; this is because the stiffness of the plate becomes weaker when the volume fraction index N is increased. It can also be seen that the dynamic response becomes greater when the temperature-dependent properties are taken into account.
4.4
Vibration of Postbuckled Sandwich Plates with FGM Face Sheets in Thermal Environments
Finally, we consider the small- and large-amplitude vibrations of compressively and thermally postbuckled sandwich plates with FGM face sheets in thermal environments. The length, width, and total thickness of the sandwich plate are a, b, and h. The thickness of each FGM face sheet is hF, while the thickness of the homogeneous substrate is hH (see Figure 3.14). Note that in this section the Z is in the direction of the downward normal to the middle surface. The FGM face sheet is made from a mixture of ceramics and metals, the mixing ratio of which is varied continuously and smoothly in the Z-direction. As in the case of Section 3.4, we assume the effective Young’s modulus Ef, thermal expansion coefficient af, and thermal conductivity kf of FGM face sheets are functions of temperature, so that Ef, af, and kf are both temperature- and position-dependent. The Poisson ratio nf depends weakly on temperature change and is assumed to be a constant. Note that in this section, we assume the volume fraction Vm follows a simple power law. According to rule of mixture, we have
Z t0 N þ Ec (T) t1 t0 Z t0 N þ ac (T) af (Z, T) ¼ [am (T) ac (T)] t1 t0 Z t0 N þ kc (T) kf (Z, T) ¼ [km (T) kc (T)] t1 t0 Z t0 N þ rc rf (Z) ¼ (rm rc ) t1 t0 Ef (Z, T) ¼ [Em (T) Ec (T)]
(4:57a) (4:57b) (4:57c) (4:57d)
The temperature field is assumed to be the same as in Section 4.2. The 1D steady-state heat transfer equation (Equation 3.55) will be solved and solutions are the same as Equations 3.56 through 3.60.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 133 9.12.2008 4:38pm Compositor Name: VBalamugundan
Nonlinear Vibration of Shear Deformable FGM Plates
133
The plate is assumed to be geometrically perfect, and is subjected to a compressive edge load in the X-direction and=or thermal loading. Two cases of compressively postbuckled plates and of thermally postbuckled plates are considered. All four edges of the plate are assumed to be simply supported. Depending upon the in-plane behavior at the edges, two cases, case 1 (for the compressively buckled plate) and case 2 (for the thermally buckled plate), will be considered. The boundary conditions can be expressed by Equation 3.65 for these two cases. Introducing dimensionless quantities of Equations 2.8 and 4.6, and * (gT3 , gT4 , g T6 , gT7 ) ¼ (DTx , DTy , FTx , FTy )a2 =p2 h2 D11 * D22 * ]1=2 , lx ¼ Pb=4p2 [D11
lT ¼ a0 DT1
(4:58)
where a0 is an arbitrary reference value, defined by Equation 3.39. As mentioned in Section 3.4 the stretching–bending coupling, which is given in terms of Bij* and Eij* (i, j ¼ 1, 2, 6), is still existed even for the midplane symmetric plate, when the plate is subjected to heat conduction. Hence the general von Kármán-type equations can be written in a similar form as expressed by Equations 1.33 through 1.36, just necessary to delete transverse applied load q, and the nonlinear motion equations can then be written in dimensionless form as L11 (W) L12 (Cx ) L13 (Cy ) þ g 14 L14 (F) L16 (MT ) ! €y €x @ C @ C 2 € þg þb ¼ g 14 b L(W, F) þ L17 (W) 80 @x @y 1 L21 (F) þ g 24 L22 (Cx ) þ g24 L23 (Cy ) g 24 L24 (W) ¼ g 24 b2 L(W, W) 2 € @W €x þ g10 C L31 (W) þ L32 (Cx ) L33 (Cy ) þ g14 L34 (F) L36 (ST ) ¼ g90 @x L41 (W) L42 (Cx ) þ L43 (Cy ) þ g14 L44 (F) L46 (ST ) ¼ g90 b
(4:59) (4:60) (4:61)
€ @W € y (4:62) þ g 10 C @y
where nondimensional linear operators Lij() and nonlinear operator L() are defined by Equations 2.14 and 4.12, and the boundary conditions can be written in dimensionless form as x ¼ 0, p: W ¼ Cy ¼ 0
(4:63a)
Mx ¼ Px ¼ 0
(4:63b)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 134 9.12.2008 4:38pm Compositor Name: VBalamugundan
134
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells ðp
1 p
b2 0
@2F dy þ 4lx b2 ¼ 0 @y2
ðp ðp g 224 b2 0 0
(for compressively buckled plate)
(4:63c)
@Cy @2F @2F @Cx þ g233 b g5 2 þ g24 g511 @x @y @y2 @x
2 @2W 1 @W 2 2@ W g24 þ g 244 b g 24 g611 @x2 @y2 2 @x þ g 224 gT1 g 5 g T2 )lT dx dy ¼ 0 (for thermally buckled plate)
(4:63d)
y ¼ 0, p:
ðp 0
ðp ðp 0 0
@2F dx ¼ 0 @x2
W ¼ Cx ¼ 0
(4:63e)
My ¼ P y ¼ 0
(4:63f)
(for compressively buckled plate)
(4:63g)
2 @Cy @2F @Cx 2@ F þ g g b þ g g b 5 24 220 522 @x @y @x2 @y2 2 2 @2W 1 2@ W 2 @W þ g b b g g24 g240 622 @x2 @y2 2 24 @y þ (gT2 g5 gT1 )lT dy dx ¼ 0 (for thermally buckled plate)
(4:63h)
We assume that the solution of Equations 4.59 through 4.62 can be expressed as ~ y, t) W(x, y, t) ¼ W*(x, y) þ W(x, ~ x (x, y, t) Cx (x, y, t) ¼ C*x (x, y) þ C ~ y (x, y, t) Cy (x, y, t) ¼ C*y (x, y) þ C ~ y, t) F(x, y, t) ¼ F*(x, y) þ F(x,
(4:64)
where W*(x, y) is an initial time-independent deflection due to pre- and postbuckling equilibrium states of sandwich plates subjected to uniaxial compression and=or thermal loading. C*x (x, y), C*y (x, y), and F*(x, y) are the midplane rotations and stress function corresponding to W*(x, y). ~ y, t) is an additional time-dependent displacement which is considered W(x,
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 135 9.12.2008 4:39pm Compositor Name: VBalamugundan
Nonlinear Vibration of Shear Deformable FGM Plates
135
to originate from the linear or nonlinear vibration of sandwich plates. ~ y (x, y, t), and F~(x, y, t) are defined analogously to Cx*(x, y), ~ x (x, y, t), C C ~ y, t). Cy*(x, y), and F*(x, y), but is for W(x, Substituting Equation 4.64 into Equations 4.59 through 4.62, we obtain two sets of equations and can be solved in sequence. The first set of equations yields the particular solution of static postbuckling or thermal postbuckling deflection, and the second set of equations gives the homogeneous solution of vibration characteristics on the buckled plate. As has been shown in Section 3.4, the prebuckling deflection caused by temperature field (Shen 2007) should be included, when the plate is subjected to heat conduction. Solutions W*(x, y), Cx*(x, y), Cy*(x, y), and F*(x, y) may be expressed as h i h i
5 (3) (3) 3 W* ¼ « A(1) 11 sin kx sin ly þ « A13 sin kx sin 3ly þ A31 sin 3k sin ly þ O «
(4:65)
y2 x2 y2 x2 (2) b(0) þ «2 B(2) b(2) þ B(2) F* ¼ B(0) 00 00 00 00 20 cos 2kx þ B02 cos 2ly 2 2 2 2 2 2 y x (4) (4) (4) þ «4 B(4) b(4) þ B(4) 00 00 20 cos 2kx þ B02 cos 2ly þ B22 cos 2kx cos 2ly þ B40 cos 4kx 2 2 i (4) (4) 5 þ B(4) (4:66) 04 cos 4ly þ B24 cos 2kx cos 4ly þ B42 cos 4kx cos 2ly þ O(« )
h i h i (3) (3) 3 5 Cx* ¼ « C(1) 11 cos kx sin ly þ « C13 cos kx sin 3ly þ C31 cos 3kx sin ly þ O(« ) (4:67) h i h i (3) (3) 3 5 Cy* ¼ « D(1) 11 sin kx cos ly þ « D13 sin kx cos 3ly þ D31 sin 3kx cos ly þ O(« ) (4:68)
As is mentioned before, all coefficients in Equations 4.65 through 4.68 are related and can be expressed in terms of A(1) 11 . ~ y (x, y, t), and F(x, ~ x (x, y, t), C ~ y, t), C ~ y, t) satisfy the nonlinear Then, W(x, motion equations:
~ x ) L13 (C ~ y ) þ g L14 (F) ~ L12 (C ~ þ W*, F ~ F* ~ ¼ g14 b2 L W ~ þ L W, L11 (W) 14 ! € € ~y ~ @C @C x € ~ þ L17 (W) þ g80 þb (4:69) @x @y
~ x ) þ g L23 (C ~ y ) g L24 (W) ~ ¼ 1 g24 b2 L W ~ þ 2W*, W ~ (4:70) ~ þ g24 L22 (C L21 (F) 24 24 2
€~ @W €~ þ g 10 C x @x ~€ €~ ~ x ) þ L43 (C ~ y ) þ g L44 (F) ~ L42 (C ~ ¼ g 90 b @ W þ g 10 C L41 (W) y 14 @y ~ x ) L33 (C ~ y ) þ g L34 (F) ~ þ L32 (C ~ ¼ g 90 L31 (W) 14
(4:71) (4:72)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 136 9.12.2008 4:39pm Compositor Name: VBalamugundan
136
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
Using the perturbation procedure as described in Section 4.2, we obtain asymptotic solutions, up to third order, as ~ y, t) ¼ «[w1 (t) þ g1 w € 1 (t)] sin mx sin ny W(x, þ («w1 (t))3 [g331 sin 3mx sin ny þ g313 sin mx sin 3ny] þ O(«4 ) (4:73) h i ~ y, t) ¼ « g(1,1) w1 (t) þ g4 w € (t) sin mx sin ny F(x, 1 31 þ («w1 (t))2 (g402 cos 2ny þ g420 cos 2mx) þ («w1 (t))3 h i (1,3) 4 g(3,1) 31 g331 sin 3mx sin ny þ g31 g313 sin mx sin 3ny þ O(« ) (4:74) h i ~ x (x, y, t) ¼ « g(1,1) w1 (t) þ g2 w € C (t) cos mx sin ny 1 11 þ («w1 (t))2 g12 sin 2mx þ («w1 (t))3 h i (1,3) 4 g(3,1) 11 g331 cos 3mx sin ny þ g11 g313 cos mx sin 3ny þ O(« ) (4:75) h i ~ y (x, y, t) ¼ « g(1,1) w1 (t) þ g3 w € C (t) sin mx cos ny 1 21 þ («w1 (t))2 g22 sin 2ny þ («w1 (t))3 h i (1,3) 4 g(3,1) 21 g331 sin 3mx cos ny þ g21 g313 sin mx cos 3ny þ O(« ) (4:76) (i,j)
(i,j)
(i,j)
Note that in Equations 4.73 through 4.76 coefficients g11 , g21 , g31 (i, j ¼ 1, 3), etc. are given in detail in Appendix K. Also we have € 1 (t)] sin mx sin ny þ («w1 (t))2 (g441 cos 2mx þ g442 cos 2ny) «[g41 w1 (t) þ g43 w
þ g14 b2 («w1 (t))2 «A(1) 4k2 n2 g402 cos 2ny þ 4l2 m2 g420 cos 2mx sin kx sin ly 11
4k2 n2 g402 cos 2ny þ 36l2 m2 g420 cos 2mx sin kx sin 3ly þ g14 b2 («w1 (t))2 «3 A(3) 13
36k2 n2 g402 cos 2ny þ 4l2 m2 g420 cos 2mx sin 3kx sin ly þ g14 b2 («w1 (t))2 «3 A(3) 31 þ g42 («w1 (t))3 sin mx sin ny ¼ 0
(4:77)
Multiplying Equation 4.77 by (sin mx sin ny) and integrating over the plate area, we obtain g43
d2 («w1 ) þ g41 («w1 ) þ g44 («w1 )2 þ g42 («w1 )3 ¼ 0 dt 2
(4:78)
From Equation 4.78, the nonlinear frequency of the plates can be expressed as
vNL
9g42 g41 10g244 2 ¼ vL 1 þ A 12g241
1=2 (Px 6¼ Pcr or DT 6¼ DTcr )
(4:79a)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 137 9.12.2008 4:39pm Compositor Name: VBalamugundan
Nonlinear Vibration of Shear Deformable FGM Plates
vNL ¼
3 g42 1=2 A 4 g43
137
(Px ¼ Pcr or DT ¼ DTcr )
(4:79b)
From Equation 4.79b, it can be seen that the nonlinear frequency varies linearly with the amplitude W max=h, when Px=Pcr (or DT=DTcr) ¼ 1. We first examine the relationship between natural frequency ratio (v=v0) and in-plane compressive load ratio P=Pcr for an isotropic rectangular plate with aspect ratio of 3, where v0 is the lowest linear natural frequency of the plate and Pcr is the buckling load of the same plate under the uniaxial compression. The curves are plotted in Figure 4.8 and compared with the FEM result of Yang and Han (1983) based on high-order triangular membrane finite element combined with a fully conforming triangular plate bending element. We then examine the relationship between fundamental frequencies vL (in Hz) and temperature rise T (in K) for a simply supported Si3N4=SUS304 plate under the two special cases of isotropy, i.e., volume fraction index N ¼ 0 and 2000. The top surface is ceramic-rich, whereas the bottom surface is metal-rich. The material properties are the same as listed in Tables 1.1 through 1.3. The FGM plate has a ¼ b ¼ 0.3 m and a=h ¼ 100. The curves are plotted in Figure 4.9 and compared with the FEM result of Park and Kim (2006) based on the FSDPT.
4
3
Yang and Han (1983) Present 1: (m, n) = (5, 1)
1
2: (m, n) = (3, 1)
w /w 0
3: (m, n) = (2, 1) 2 2 1
0 0.0
3
0.5
1.0
1.5
2.0
Px/Pcr FIGURE 4.8 Comparisons of natural frequencies for the compressively postbuckled isotropic rectangular plate with aspect ratio of 3 (n ¼ 0.3).
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 138 9.12.2008 4:39pm Compositor Name: VBalamugundan
138
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 800 Park and Kim (2006) Present
w L (Hz)
600
I: N = 0 II: N = 2000
400 II
200 I 0 300
310
320
330
340
350
T (K) FIGURE 4.9 Comparisons of natural frequencies for the thermally buckled Si3N4=SUS304 square plate.
These two comparisons show that the present results agree well with existing results for both compressively and thermally buckled plates. In this section, the material mixture for FGM face sheets is considered to be silicon nitride and stainless steel, referred to as Si3N4=SUS304. The material properties are the same as those adopted in Section 3.4. The plate geometric parameter a=b ¼ 1, b=h ¼ 20, and the thickness of the FGM face sheets hF ¼ 1 mm, whereas the thickness of the homogeneous substrate is taken to be hH ¼ 4, 6, and 8 mm, so that the substrate-to-face sheet thickness ratio hH=hF ¼ 4, 6, 8, respectively. Figure 4.10 shows the effects of volume fraction index N on the linear fundamental frequencies vL of the pre- and postbuckled sandwich plate with hH=hF ¼ 4 under uniform or nonuniform temperature field. It can be seen that as the volume fraction index increases, the fundamental frequency increases in the prebuckling region, but decreases in the initial postbuckling region (Px < 3500 kN), and in the deep postbuckling region the fundamental frequency becomes greater, when increasing in N. This is due to the fact that the plate stiffness is increased in the prebuckling region, when increasing in N, but in the initial postbuckling region the initial deflection is an important issue and the plate will have a small deflection when it has a great stiffness, further in the deep postbuckling region the effect of plate stiffness becomes more pronounced again. Figure 4.11 shows temperature changes on the fundamental frequencies of the pre- and postbuckled sandwich plate with hH=hF ¼ 4 and N ¼ 2 under uniform or nonuniform temperature field. It can be seen that, for uniform temperature field, as the temperature is increased, fundamental frequencies
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 139 9.12.2008 4:39pm Compositor Name: VBalamugundan
Nonlinear Vibration of Shear Deformable FGM Plates
139
12,000 TU = TL = 300 K, hH /hF = 4.0 10,000
1: N = 2000 2: N = 2.0 3: N = 0.5
w L (Hz)
8000
4: N = 0 6000 4000 1
2000 0
0
2
3 4 1000
2000
3000
4000
5000
6000
4000
5000
6000
Px (kN)
(a)
12,000 TU = 500 K, TL = 400 K hH /hF = 4.0
10,000
1: N = 2000 w L (Hz)
8000
2: N = 2.0 3: N = 0.5 4: N = 0
6000
4 3 2 1
4000 2000 0 (b)
0
1000
2000
3000 Px (kN)
FIGURE 4.10 Effects of volume fraction index N on the fundamental frequencies of the pre- and postbuckled sandwich plate in thermal environments: (a) uniform temperature field; (b) heat conduction.
have decreased in the prebuckling region, but increased in the postbuckling region. It can also be seen that the effect of nonuniform temperature field is larger than that of uniform temperature field. When heat conduction is put into consideration, the larger top-bottom temperature difference leads to larger fundamental frequency rise.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 140 9.12.2008 4:39pm Compositor Name: VBalamugundan
140
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 10,000
w L (Hz)
8000
6000
4000
2
1
hH/hF = 4.0, N = 2.0
2000
1: TU = TL = 300 K 2: TU = TL = 600 K
0 0
1000
2000
(a)
3000
4000
5000
Px (kN)
10000
8000
w L (Hz)
6000
4000
hH/hF = 4.0, N = 2.0
1 2 3
2000
1: TU = 600 K, TL = 400 K 2: TU = 500 K, TL = 400 K 3: TU = 400 K, TL = 400 K
0 (b)
0
1000
2000
3000
4000
5000
Px (kN)
FIGURE 4.11 Effects of temperature changes on the fundamental frequencies of the pre- and postbuckled sandwich plate: (a) uniform temperature field; (b) heat conduction.
From Figures 4.10 and 4.11, it can be seen that, as the compressive load reaches the buckling load, the fundamental frequencies will drop to zero under uniform temperature field. In contrast, the fundamental frequencies do not go to zero, because no bifurcation-type buckling could occur when heat conduction is taken into account. Figures 4.12 and 4.13 show, respectively, the effects of volume fraction index N, and temperature changes on the nonlinear frequency ratio of
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 141 9.12.2008 4:39pm Compositor Name: VBalamugundan
Nonlinear Vibration of Shear Deformable FGM Plates 3.0 1: N = 2.0 2.5
Wmax/h
2.0
3
2: N = 0.5
1 2
141
1 2 3
1 2 3
3: N = 0 I
II
III
1.5 1.0
TU = TL = 300 K, hH/hF = 4.0 I: Px/Pcr = 2 II: Px/Pcr = 1 III: Px/Pcr = 0
0.5 0.0 0.0
0.5
1.0
1.5
2.0
w NL/ω 0 FIGURE 4.12 Effects of volume fraction index N on the nonlinear frequency ratio of the pre- and postbuckled sandwich plate.
3.0 2.5
hH/hF = 4.0, N = 2.0 I II
Wmax/h
2.0
III
I: Px/P0 = 2 II: Px/P0 = 1 III: Px/P0 = 0
1.5
TU = 300 K,
1.0
TL = 300 K 0.5
TU = 600 K, TL = 300 K
0.0 0.0
0.5
1.0 w NL/w 0
1.5
2.0
FIGURE 4.13 Effects of temperature changes on the nonlinear frequency ratio of the pre- and postbuckled sandwich plate.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 142 9.12.2008 4:39pm Compositor Name: VBalamugundan
142
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 3000 2500
hH/hF = 4.0 1: N = 2000 1
2: N = 2.0
2
3: N = 0.5
3
4: N = 0
w L (Hz)
2000
4
1500 1000 500 0 300
350
400
450
T (K)
500
550
600
650
FIGURE 4.14 Effects of volume fraction index N on the fundamental frequencies of the thermally pre- and postbuckled sandwich plate.
the pre- and postbuckled sandwich plate in thermal environments. Three cases, i.e., Px=Pcr ¼ 0, 1, and 2, are considered. Px=Pcr ¼ 0 denotes no in-plane loads, Px=Pcr ¼ 1 denotes bifurcation buckling case, and Px=Pcr ¼ 2 represents a large-amplitude free vibration about a postbuckled equilibrium state. Note that in Figure 4.13 Px=Pcr is replaced by Px=P0, where P0 is a reference value of buckling load of the plate at TU ¼ TL ¼ 300 K. It can be seen that the nonlinear frequency ratio is decreased, when the volume fraction index N is increased. The temperature changes only have small effects on the nonlinear frequency ratio of the plate. Note that, in the present study, the solution is based on the assumption that the vibration of the plate is symmetric about the flat position. Another type of motion is possible in which the plate vibrates about a static buckled position on one side of the flat position. Such motion is however not considered in the present study. Figures 4.14 and 4.15 are thermally postbuckled vibration results for the same plate analogous to the compressively postbuckled vibration results of Figures 4.10 and 4.12, which are for the thermal loading case of uniform temperature field. They lead to broadly the same conclusions as do Figures 4.10 and 4.12.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 143 9.12.2008 4:39pm Compositor Name: VBalamugundan
Nonlinear Vibration of Shear Deformable FGM Plates
143
3.0 hH/hF = 4.0 2.5
I: T/Tcr = 2 II: T/Tcr = 1
Wmax/h
2.0
I
III: T/Tcr = 0
II
1.5
III
1.0
N = 2.0 N = 0.5
0.5 0.0 0.0
N=0
0.5
1.0
1.5
2.0
2.5
3.0
w NL/w 0 FIGURE 4.15 Effects of volume fraction index N on the nonlinear frequency ratio of the thermally pre- and postbuckled sandwich plate.
References Abrate S. (2006), Free vibration, buckling, and static deflections of functionally graded plates, Composites Science and Technology, 66, 2383–2394. Allahverdizadeh A., Naei M.H., and Bahrami M.N. (2008a), Nonlinear free and forced vibration analysis of thin circular functionally graded plates, Journal of Sound and Vibration, 310, 966–984. Allahverdizadeh A., Naei M.H., and Bahrami M.N. (2008b), Vibration amplitude and thermal effects on the nonlinear behavior of thin circular functionally graded plates, International Journal of Mechanical Sciences, 50, 445–454. Allahverdizadeh A., Rastgo A., and Naei M.H. (2008c), Nonlinear analysis of a thin circular functionally graded plate and large deflection effects on the forces and moments, Journal of Engineering Materials and Technology-ASME, 130, Article Number: 011009. Bhimaraddi A. and Chandrashekhara K. (1993), Nonlinear vibrations of heated antisymmetric angle-ply laminated plates, International Journal of Solids and Structures, 30, 1255–1268. Chen C.-S. (2005), Nonlinear vibration of a shear deformable functionally graded plate, Composite Structures, 68, 295–302. Chen C.-S. and Tan A.-H. (2007), Imperfection sensitivity in the nonlinear vibration of initially stresses functionally graded plates, Composite Structures, 78, 529–536. Chen C.-S., Chen T.J., and Chien R.-D. (2006), Nonlinear vibration of initially stressed functionally graded plates, Thin-Walled Structures, 44, 844–851.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 144 9.12.2008 4:39pm Compositor Name: VBalamugundan
144
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
Cheng Z.-Q. and Reddy J.N. (2003), Frequency of functionally graded plates with three-dimensional asymptotic approach, Journal of Engineering Mechanics ASCE, 129, 896–900. Efraim E. and Eisenberger M. (2007), Exact vibration analysis of variable thickness thick annular isotropic and FGM plates, Journal of Sound and Vibration, 299, 720–738. Elishakoff I., Gentilini C., and Viola E. (2005), Forced vibrations of functionally graded plates in the three-dimensional setting, AIAA Journal, 43, 2000–2007. Fung C.-P. and Chen C.-S. (2006), Imperfection sensitivity in the nonlinear vibration of functionally graded plates, European Journal of Mechanics—A=Solids, 25, 425–436. He X.Q., Ng T.Y., Sivashanker S., and Liew K.M. (2001), Active control of FGM plates with integrated piezoelectric sensors and actuators, International Journal of Solids and Structures, 38, 1641–1655. Huang X.-L. and Shen H.-S. (2004), Nonlinear vibration and dynamic response of functionally graded plates in thermal environments, International Journal of Solids and Structures, 41, 2403–2427. Huang X.-L. and Shen H.-S. (2006), Vibration and dynamic response of functionally graded plates with piezoelectric actuators in thermal environments, Journal of Sound and Vibration, 289, 25–53. Kim Y.-W. (2005), Temperature dependent vibration analysis of functionally graded rectangular plates, Journal of Sound and Vibration, 284, 531–549. Kitipornchai S., Yang J., and Liew K.M. (2004), Semi-analytical solution for nonlinear vibration of laminated FGM plates with geometric imperfections, International Journal of Solids and Structures, 41, 2235–2257. Li Q., Iu V.P., and Kou K.P. (2008), Three-dimensional vibration analysis of functionally graded material sandwich plates, Journal of Sound and Vibration, 311, 498–515. Park J.S. and Kim J.-H. (2006), Thermal postbuckling and vibration analyses of functionally graded plates, Journal of Sound and Vibration, 289, 77–93. Pearson C.E. (1986), Numerical Methods in Engineering and Science, Van Nostrand Reinhold Company, Inc., New York, NY. Prakash T. and Ganapathi M. (2006), Asymmetric flexural vibration and thermoelastic stability of FGM circular plates using finite element method, Composites Part B, 37, 642–649. Praveen G.N. and Reddy J.N. (1998), Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates, International Journal of Solids and Structures, 35, 4457–4476. Reddy J.N. (2000), Analysis of functionally graded plates, International Journal for Numerical Methods in Engineering, 47, 663–684. Shen H.-S. (2007), Nonlinear thermal bending response of FGM plates due to heat conduction, Composites Part B, 38, 201–215. Sundararajan N., Prakash T., and Ganapathi M. (2005), Nonlinear free flexural vibrations of functionally graded rectangular and skew plates under thermal environments, Finite Element in Analysis and Design, 42, 152–168. Vel S.S. and Batra R.C. (2004), Three dimensional exact solution for the vibration of functionally graded rectangular plates, Journal of Sound and Vibration, 272, 703–730. Wu L., Wang H., and Wang D. (2007), Dynamic stability analysis of FGM plates by the moving least squares differential quadrature method, Composite Structures, 77, 383–394.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 145 9.12.2008 4:39pm Compositor Name: VBalamugundan
Nonlinear Vibration of Shear Deformable FGM Plates
145
Xia X.-K. and Shen H.-S. (2008), Vibration of post-buckled sandwich plates with FGM face sheets in a thermal environment, Journal of Sound and Vibration, 314, 254–274. Yang T.Y. and Han A.D. (1983), Buckled plate vibrations and large amplitude vibrations using high-order triangular elements, AIAA Journal, 21, 758–766. Yang J. and Huang, X.-L. (2007), Nonlinear transient response of functionally graded plates with general imperfections in thermal environments, Computer Methods in Applied Mechanics and Engineering, 196, 2619–2630. Yang J. and Shen H.-S. (2001), Dynamic response of initially stressed functionally graded rectangular thin plates, Composite Structures, 54, 497–508. Yang J. and Shen H.-S. (2002), Vibration characteristics and transient response of shear deformable functionally graded plates in thermal environment, Journal of Sound and Vibration, 255, 579–602. Yang J., Kitipornchai S. and Liew K.M. (2003), Large amplitude vibration of thermoelectric-mechanically stressed FGM laminated plates, Computational Methods in Applied Mechanics and Engineering, 192, 3861–3885.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C004 Final Proof page 146 9.12.2008 4:39pm Compositor Name: VBalamugundan
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 147 9.12.2008 4:42pm Compositor Name: VBalamugundan
5 Postbuckling of Shear Deformable FGM Shells
5.1
Introduction
Buckling of circular cylindrical shells has posed baffling problems to engineering for many years. This is due to the fact that large discrepancies between theoretical prediction and experimental results had been the focus of long debate in the case of compressive buckling of cylindrical shells. As von Kármán and Tsien (1941) argued at the time, geometrical nonlinearity must play an important part in the phenomenon of thin shell buckling. Donnell and Wan (1950) reported that the initial geometric imperfection has a significant effect on the buckling and postbuckling behavior of cylindrical shells subjected to axial compression. In their analysis, however, the membrane prebuckling state was assumed, like von Kármán and Tsien (1941) did and, therefore, the boundary conditions cannot be incorporated accurately. The importance of the nonlinear prebuckling deformations and its role in the buckling analysis of cylindrical shells has been discussed by Stein (1962, 1964). On the other hand, Koiter (1945) provided a general theory of the initial postbuckling behavior of elastic bodies under static conservative load. Following the pioneer works of Kármán and Tsien (1941), Donnell and Wan (1950), Stein (1962, 1964), and Koiter (1945, 1963), numerous researches have been made on this topic. The problem may be considered to be solved completely in the domain of homogeneous, isotropic elastic materials. In the design of an FGM shell as well as a homogeneous, isotropic shell, it is of technical importance to examine its resistance to buckling under expected loading conditions. For that purpose, the determination of the buckling load alone is not sufficient in general, but it is further required to clarify the postbuckling behavior, that is, the behavior of the shell after passing through the buckling load. One of the reasons is to estimate the effect of practically unavoidable imperfections on the buckling load and the second is to evaluate the ultimate strength to exploit the load-carrying capacity of the shell structure. Shen (2002, 2003) provided, respectively, the postbuckling solutions of FGM cylindrical shells under axial compression and external pressure in thermal environments. In his studies, a boundary layer theory for the shell 147
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 148 9.12.2008 4:42pm Compositor Name: VBalamugundan
148
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
buckling suggested by Shen and Chen (1988, 1990) was adopted. However, because the shells were considered as being relatively thin and therefore the transverse shear deformation was not accounted for. These works were then extended to the case of FGM hybrid cylindrical shells under axial compression, external pressure, or their combination in thermal environments by Shen (2005), and Shen and Noda (2005, 2007) based on a higher order shear deformation shell theory. Furthermore, Shahsiah and Eslami (2003a,b) performed the thermal buckling of FGM cylindrical shells under three types of thermal loading as uniform temperature rise, linear and nonlinear temperature variation through the thickness, based on the first-order shear deformation shell theory. Similar work was then done by Wu et al. (2005) based on classical shell theory of Donnell-type. Subsequently, the effect of initial geometric imperfections and applied actuator voltage on thermal buckling of FGM cylindrical shells was discussed by Mirzavand et al. (2005) and Mirzavand and Eslami (2006, 2007). As we all know, the imperfect cylindrical shell only has limit point load, which could be obtained by solving nonlinear governing equations as initial postbuckling or full postbuckling analysis. Based on a higher order shear deformation shell theory, Woo et al. (2005) presented Fourier series solutions for the thermomechanical postbuckling of FGM plates and shallow shells, from which the results for an initially heated cylindrical shell were obtained as a limiting case. Sofiyev (2007) studied linear free vibration and buckling of FGM laminated cylindrical shells by using Galerkin method. Sheng and Wang (2008) performed the linear vibration, buckling and dynamic stability of FGM cylindrical shells embedded in an elastic medium and subjected to mechanical and thermal loads based on the first-order shear deformation shell theory. In the above studies, however, the materials properties were virtually assumed to be temperature-independent (T-ID). Moreover, Shen (2004, 2007) provided a thermal postbuckling analysis for FGM cylindrical shells under uniform temperature field or heat conduction based on classical shell theory and higher order shear deformation shell theory, respectively. In his study, the material properties were considered to be temperature-dependent (T-D) and the effect of imperfections on the thermal postbuckling response was reported. Recently, Kadoli and Ganesan (2006) presented linear thermal buckling and free vibration analysis for FGM cylindrical shells with clamped boundary conditions. In their analysis, the material properties were assumed to be temperature-dependent, and finite element equations based on the first-order shear deformation shell theory were formulated. On the other hand, due to the temperature gradient the shell is subjected to additional moments along with the membrane forces and the problem cannot be posed as an eigenvalue problem, i.e., no buckling temperature is evident, when the edges of the shell are simply supported. Therefore, the existing solutions for simply supported FGM shells subjected to transverse temperature variation, i.e., linear and=or nonlinear gradient through the thickness, may be physically incorrect.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 149 9.12.2008 4:42pm Compositor Name: VBalamugundan
Postbuckling of Shear Deformable FGM Shells
5.2
149
Boundary Layer Theory for the Buckling of FGM Cylindrical Shells
It has been shown in Shen and Chen (1988, 1990) that in shell buckling, there exists a boundary layer phenomenon where prebuckling and buckling displacements vary rapidly. Consider a circular cylindrical shell with mean radius R, length L, and thickness h. The shell is referred to a coordinate system (X, Y, Z) in which X and Y are in the axial and circumferential directions of the shell and Z is in the direction of the inward normal to the middle surface (see Figure 5.1). The corresponding displacements are designated by U, V, and W. Cx and Cy are the rotations of normals to the middle surface with respect to the Y- and X-axes, respectively. The origin of the coordinate system is located at the end of the shell on the middle plane. The shell is assumed to be relatively thick, geometrically imperfect. Denoting the initial geometric imperfection by W*(X, Y), let W(X, Y) be the additional deflection and F(X, Y) be the stress function for the stress resultants defined by N x ¼ F,yy, N y ¼ F,xx, and N xy ¼ F,xy, where a comma denotes partial differentiation with respect to the corresponding coordinates. 5.2.1
Donnell Theory
In 1933, Donnell established his nonlinear theory of circular cylindrical shells, in connection with the analysis of torsional buckling of thin-walled tubes. Owing to its relative simplicity and practical accuracy, this theory has been the most widely used for analyzing both buckling and postbuckling problems, despite criticism concerning its applicability. h
L X Z Y
2R
FIGURE 5.1 Geometry and coordinate system of a cylindrical shell.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 150 9.12.2008 4:42pm Compositor Name: VBalamugundan
150
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
The Donnell theory is based on the following assumptions (see Yamaki 1984): 1. The shell is sufficiently thin, i.e., h=R 1 and h=L 1. 2. The strains « are sufficiently small, i.e., « 1, and, therefore, Hooke’s law holds. 3. Straight lines normal to the undeformed middle surface remain straight and normal to the deformed middle surface with their length unchanged. 4. The normal stress acting in the direction normal to the middle surface may be neglected in comparison with the stresses acting in the direction parallel to the middle surface. 5. In-plane displacements U and V are infinitesimal, while normal displacement W is of the same order as the shell thickness, i.e., jUj h, jVj h, and jWj ¼ O(h). 6. The derivatives of W are small, but their squares and products are of the same order as the strain « considered. As a result " 2 2 # @W @W @W @W @W @W , , ¼ O(«): @X , @Y 1, @X @X @Y @Y 7. Curvature changes are small and the influence of U and V are negligible so that they can be represented by linear function of W only. The assumptions (3) and (4) constitute the so-called Kirchhoff–Love hypotheses while those from (5) to (7) correspond to the shallow shell approximations applicable for deformations dominated by the normal displacement W. 5.2.2
Generalized Kármán–Donnell-Type Nonlinear Equations
The classical nonlinear shell theory suggested by Donnell (1933) does not include the transverse shear and normal stresses and strains, which will play an important role in the analysis of composite shell structures. Reddy and Liu (1985) developed a simple higher order shear deformation shell theory, in which the transverse shear strains are assumed to be parabolically distributed across the shell thickness and which contains the same number of dependent unknowns as in the first-order shear deformation theory, and no shear correction factors are required. The governing equations of motion were derived by means of the principle of virtual work and can be expressed as
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 151 9.12.2008 4:42pm Compositor Name: VBalamugundan
Postbuckling of Shear Deformable FGM Shells
151
@N 1 @N 6 @2U @ 2 Cx @3W þ ¼ I1 2 þ I 2 c1 I4 2 @X @Y @t @t @X@t2 @ 2 Cy @N 6 @N 2 @2V @3W c 1 I4 þ ¼ I1 2 þ I 2 2 @X @Y @t @t @Y@t2 @Q1 @Q2 @ @W @W @ @W @W N2 N1 N6 þ þ þ N6 þ þ N2 @X @Y @X R @X @Y @Y @X @Y 2 2 2 @R1 @R2 @ P1 @ P6 @ P2 þ2 þ þ c1 þ þ q c2 @X @Y @X2 @X@Y @Y2 ! @2W 2 @2 @2W @2W @ 2 @U @V @ 2 @Cx @Cy þ þ ¼ I1 2 c1 I7 2 þ c 1 I4 2 þ þ c1 I 5 2 @t @X2 @Y2 @t @X @Y @t @X @Y @t @M1 @M6 @P1 @P6 @2U @ 2 Cx @3W þ Q1 þ C2 R1 C1 þ ¼ I2 2 þ I3 c I 1 5 @X @Y @X @Y @t2 @t @X@t2 @ 2 Cy @M6 @M2 @P6 @P2 @2V @3W c1 I 5 (5:1) þ Q2 þ c2 R2 c1 þ ¼ I2 2 þ I3 2 @X @Y @X @Y @t @t @Y@t2
All symbols used in Equation 5.1 are defined as in Equation 1.26. * , B*ij , D*ij , E*ij , F*ij , Introducing the reduced stiffness matrices A ij and H*ij (i, j ¼ 1, 2, 6) and by using the same manner described in Section 1.4, we derive the generalized Kármán–Donnell-type nonlinear equations of motion, which can be expressed in terms of a stress function F, two rotations Cx and Cy, and a transverse displacement W, along with the initial geometric imperfection W*. These equations are then extended to the case of shear deformable FGM cylindrical shells including thermal effects. ~12 (Cx ) L ~13 (Cy ) þ L ~14 (F) L ~15 (N T ) L ~16 (MT ) 1 F,xx ~11 (W) L L R € € € ~ ~ ¼ L(W þ W*, F) þ L (W) I (C , þ C , ) þ q 17
8
x x
y y
(5:2)
~21 (F) þ L ~22 (Cx ) þ L ~23 (Cy ) L ~24 (W) L ~25 (N T ) þ 1 W,xx ¼ 1 L(W ~ L þ 2W*, W) (5:3) R 2 € € I C ~31 (W) þ L ~32 (Cx ) L ~33 (Cy ) þ L ~34 (F) L ~35 (N T ) L ~36 (ST ) ¼ I 5 W, L 3 x x
(5:4)
€ € I C ~41 (W) L ~42 (Cx ) þ L ~43 (Cy ) þ L ~44 (F) L ~45 (N T ) L ~46 (ST ) ¼ I 5 W, L 3 y y
(5:5)
Note that the geometric nonlinearity in the von Kármán sense is given ~ in Equations 5.2 and 5.3, and the other linear operators in terms of L() ~ij() are defined by Equation 1.37, and the forces, moments and higher L order moments caused by elevated temperature are defined by Equation 1.28.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 152 9.12.2008 4:42pm Compositor Name: VBalamugundan
152
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
5.2.3
Boundary Layer-Type Equations
Introducing the following dimensionless quantities x ¼ pX=L,
y ¼ Y=R,
b ¼ L=pR, Z ¼ L2 =Rh,
* D22 * A11 * A22 * ]1=4 « ¼ (p2 R=L2 )[D11 * D22 * A11 * A22 * ]1=4 , (W, W*) ¼ «(W, W*)=[D11
* D22 * ]1=2 F ¼ «2 F=[D11
* D22 * A11 * A22 * ]1=4 (Cx , Cy ) ¼ «2 (Cx , Cy )(L=p)=[D11 * =D11 * ]1=2 , g14 ¼ [D22
* =A22 * ]1=2 , g24 ¼ [A11
* =A22 * g5 ¼ A12
* , (Mx , Px ) ¼ « (Mx , 4Px =3h2 )L2=p2 D11 * [D11 * D22 * A11 * A22 * ]1=4 Nx ¼ « N k L =p D11 * A22 * =D11 * D22 * ]1=4 (gT1 , gT2 ) ¼ ATx , ATy R[A11 sffiffiffiffiffi pt E0 I1 E0 L2 c1 E0 (I5 I1 I4 I2 ) , g170 ¼ 2 t¼ , g171 ¼ * * p r0 D11 L r0 r0 I1 D11 2
2
2
(g80 , g90 , g10 ) ¼ (I 8 , I 5 , I 3 )
2
E0 , * r0 D11
* A22 * ]1=8 =4p[D11 * D22 * ]3=8 lq ¼ q(3)3=4 LR3=2 [A11
(5:6)
in which E0 and r0 are the reference values. The nonlinear equations (Equations 5.11 through 5.14) may then be written in dimensionless form as «2 L11 (W) «L12 (Cx ) «L13 (Cy ) þ «g 14 L14 (F) «L15 (N T ) «L16 (MT ) g14 F,xx ! € € € þ «g80 @ Cx þ b @ Cy þ g 14 4 (3)1=4 lq «3=2 ¼ g14 b2 L(W þ W*, F) þ «2 L17 (W) @x @y 3
L21 (F) þ g24 L22 (Cx ) þ g 24 L23 (Cy ) «g24 L24 (W) L25 (N T ) þ g24 W,xx 1 ¼ g 24 b2 L(W þ 2W*,W) 2 «L31 (W) þ L32 (Cx ) L33 (Cy ) þ g 14 L34 (F) L35 (N T ) L36 (ST ) € @W €x þ g10 C ¼ «g90 @x «L41 (W) L42 (Cx ) þ L43 (Cy ) þ g 14 L44 (F) L45 (N T ) L46 (ST ) € @W €y þ g 10 C ¼ «g90 b @y
(5:7)
(5:8)
(5:9)
(5:10)
where all the dimensionless operators Lij() and L() are defined by Equations 2.14 and 4.12. In Equation 5.6, we introduce an important parameter «. For most FGMs * D22 * A11 * A22 * 1=4 ffi 0.3h. Furthermore, when Z ¼ (L2=Rh) > 2.96, then from ½D11 Equation 5.6 « < 1. In particular, for homogeneous isotropic cylindrical shells,
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 153 9.12.2008 4:42pm Compositor Name: VBalamugundan
Postbuckling of Shear Deformable FGM Shells
153
pffiffiffiffiffi « ¼ p2 =ZB 12, where ZB ¼ (L2 =Rh)[1 n2 ]1=2 is the Batdorf shell parameter, which should be greater than 2.85 in the case of classical linear buckling analysis (Batdorf 1947). In practice, the shell structure will have Z > 10, so that we always have « 1. When « < 1, Equations 5.7 through 5.10 are of the boundary layer type. We will show that, in Section 5.3, (1) the nonlinear prebuckling deformations, large deflections in the postbuckling range and initial geometric imperfections of the shell could be considered simultaneously; (2) the full postbuckling and imperfection sensitivity analysis could be performed; and (3) it is no longer to guess the forms of solutions which will be obtained step by step, and such solutions satisfy both governing equations and boundary conditions accurately in the asymptotic sense.
5.3
Postbuckling Behavior of FGM Cylindrical Shells under Axial Compression
The buckling and postbuckling behavior of axially compressed FGM cylindrical shells is a major concern for structural instability and it represents one of the best known examples of the very complicated stability behavior of shell structures. It is assumed that the effective Young’s modulus Ef, thermal expansion coefficient af, and thermal conductivity kf are assumed to be functions of temperature, so that Ef, af, and kf are both temperature- and position-dependent. The Poisson ratio nf depends weakly on temperature change and is assumed to be a constant. We assume the volume fraction Vm follows a simple power law. According to rule of mixture, we have
Z t1 N þEc (T) t2 t1 Z t1 N þac (T) af (Z, T) ¼ [am (T) ac (T)] t2 t1 Z t1 N þkc (T) kf (Z, T) ¼ [km (T) kc (T)] t2 t1 Ef (Z, T) ¼ [Em (T) Ec (T)]
(5:11a) (5:11b) (5:11c)
It is evident that when Z ¼ t1 , Ef ¼ Ec , af ¼ ac , and kf ¼ kc , and when Z ¼ t2 , Ef ¼ Em , af ¼ am , and kf ¼ km . We assume that the temperature variation occurs in the thickness direction only and one-dimensional temperature field is assumed to be constant in the XY plane of the shell. In such a case, the temperature distribution along the thickness can be obtained by solving a steady-state heat transfer equation
d dT k ¼0 dZ dZ
(5:12)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 154 9.12.2008 4:42pm Compositor Name: VBalamugundan
154
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
Equation 5.12 is solved by imposing the boundary conditions T ¼ TU at Z ¼ t1 and T ¼ TL at Z ¼ t2, and the solution, by means of polynomial series, is Tf ¼ TU þ (TL TU )h(Z)
(5:13)
in which 1 h(Z) ¼ C
"
kmc Z t1 Nþ1 k2mc Z t1 2Nþ1 þ (N þ 1)kc t2 t1 (2N þ 1)k2c t2 t1 k3mc Z t1 3Nþ1 k4mc Z t1 4Nþ1 þ (3N þ 1)k3c t2 t1 (4N þ 1)k4c t2 t1 # k5mc Z t1 5Nþ1 (5:14a) (5N þ 1)k5c t2 t1 Z t1 t2 t1
C¼1
kmc k2mc k3mc k4mc þ þ (N þ 1)kc (2N þ 1)k2c (3N þ 1)k3c (4N þ 1)k4c
k5mc (5N þ 1)k5c
(5:14b)
where kmc ¼ km kc . In the case of axial compression, since there is no transverse dynamic load applied, the nonlinear governing Equations 5.2 through 5.5 can be written in simple forms as ~12 (Cx ) L ~13 (Cy ) þ L ~14 (F) L ~15 (N T ) L ~16 (MT ) 1 F,xx ~ 11 (W) L L R ~ ¼ L(W þ W*, F) ~21 (F) þ L ~22 (Cx ) þ L ~23 (Cy ) L ~24 (W) L ~25 (N T ) þ 1 W,xx L R 1~ ¼ L(W þ 2W*, W) 2
(5:15)
(5:16)
~32 (Cx ) L ~33 (Cy ) þ L ~34 (F) L ~35 (N T ) L ~36 (ST ) ¼ 0 ~31 (W) þ L L
(5:17)
~41 (W) L ~42 (Cx ) þ L ~43 (Cy ) þ L ~44 (F) L ~45 (N T ) L ~46 (ST ) ¼ 0 L
(5:18)
The two end edges of the shell are assumed to be simply supported or clamped, so that the boundary conditions are X ¼ 0, L: W ¼ Cy ¼ 0,
Mx ¼ Px ¼ 0 (simply supported)
(5:19a)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 155 9.12.2008 4:42pm Compositor Name: VBalamugundan
Postbuckling of Shear Deformable FGM Shells
155
W ¼ Cx ¼ Cy ¼ 0 (clamped)
(5:19b)
2pR ð
N x dY þ 2pRhsx ¼ 0
(5:19c)
0
where sx is the average axial compressive stress Mx is the bending moment Px is the higher order moment as defined by Equation 1.32 Also, we have the closed (or periodicity) condition 2pR ð
0
@V dY ¼ 0 @Y
(5:20a)
or 2pR ð "
0
@2F @2F * * A22 þ A 12 @X2 @Y2
@Cy 4 @Cx 4 * 2 E21 * * 2 E22 * þ B22 þ B21 @X @Y 3h 3h
2 4 @2W @2W W 1 @W @W @W* * * þ E þ E 21 22 3h2 @X2 @Y2 R 2 @Y @Y @Y # T T * N x þ A22 * N y dY ¼ 0 A12
(5:20b)
Because of Equation 5.20, the in-plane boundary condition V ¼ 0 (at X ¼ 0, L) is not needed in Equation 5.19. The average end-shortening relationship is defined by x 1 ¼ L 2pRL
2pR ð ðL
0
0
@U 1 dXdY ¼ @X 2pRL
2pR ð ðL "
* A11 0
0
@2F @2F * þ A 12 @Y2 @X2
@Cy 4 @Cx 4 4 @2W @2W * 2 E11 * * 2 E12 * * * þ B12 2 E11 þ E þ B11 12 @X @Y 3h 3h 3h @X2 @Y2 # 2 1 @W @W @W* T T * N x þ A12 * N y dXdY (5:21) A11 2 @X @X @X where Dx is the shell end-shortening displacements in the X-direction. Introducing dimensionless quantities of Equation 5.6, and * D22 * =A11 * A22 * ]1=4 , lp ¼ sx =(2=Rh)[D11 * D22 * A11 * A22 * ]1=4 dp ¼ (x =L)=(2=R)[D11
(5:22)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 156 9.12.2008 4:42pm Compositor Name: VBalamugundan
156
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
Also let "
ATx
#
ATy
ðt2 " T ¼ t1
Ax Ay
# T(Z)dZ
(5:23)
where T ¼ (TU þ TL 2T0 )=2. When T ¼ 0, ATx ( ¼ ATy ) can be found in Appendix B, and if DT 6¼ 0, then ATx can be found in Appendix D. The nonlinear equations (Equations 5.15 through 5.18) may then be written in dimensionless form (boundary layer type) as «2 L11 (W) «L12 (Cx ) «L13 (Cy ) þ «g 14 L14 (F) g14 F,xx ¼ g14 b2 L(W þ W*, F) (5:24)
L21 (F) þ g 24 L22 (Cx ) þ g24 L23 (Cy ) «g24 L24 (W) þ g 24 W,xx 1 ¼ g24 b2 L(W þ 2W*, W) 2
(5:25)
«L31 (W) þ L32 (Cx ) L33 (Cy ) þ g 14 L34 (F) ¼ 0
(5:26)
«L41 (W) L42 (Cx ) þ L43 (Cy ) þ g 14 L44 (F) ¼ 0
(5:27)
As mentioned in Section 5.2.3, all the dimensionless operators Lij() and L() are defined by Equation 2.14. The boundary conditions expressed by Equation 5.19 become x ¼ 0, p: W ¼ Cy ¼ 0,
Mx ¼ Px ¼ 0 (simply supported)
W ¼ Cx ¼ Cy ¼ 0 (clamped) 1 2p
2p ð
b2 0
@2F dy þ 2 lp « ¼ 0 @y2
(5:28a) (5:28b) (5:28c)
and the closed condition becomes 2p ð
0
2 @Cy @2F @Cx 2@ F þ g522 b þ g 24 g220 g5 b @x @y @x2 @y2
2 2 @2W 1 2@ W 2 @W þ g þ g b W b g «g 24 g 240 622 24 @x2 @y2 2 24 @y @W @W* þ «(gT2 g5 g T1 )T dy ¼ 0 g 24 b2 @y @y
(5:29)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 157 9.12.2008 4:42pm Compositor Name: VBalamugundan
Postbuckling of Shear Deformable FGM Shells
157
It has been shown (Shen 2008a) that the effect of the boundary layer on the solution of a shell in compression is of the order «1, hence the unit endshortening relationship may be written in dimensionless form as 2p ð ðp " 2 1 @2F 1 2 2@ F dp ¼ 2 « g5 2 g24 b 4p g24 @y2 @x 0 0 2 @Cy @Cx @2W 2@ W þ g233 b «g 24 g 611 þ g 244 b þ g24 g511 @x2 @y2 @x @y # 2
1 @W @W @W* g 24 þ « g 224 gT1 g5 g T2 T dx dy g 24 2 @x @x @x
(5:30)
By virtue of the fact that T ½¼ ðTU þ TL 2T0 Þ=2 ¼ ðTU þ TL Þ=2 is assumed to be uniform, the thermal effects in Equations 5.15 through 5.18 vanish, but terms in DT intervene in Equations 5.29 and 5.30. From Equations 5.15 through 5.30, one can determine the postbuckling behavior of perfect and imperfect FGM cylindrical shells subjected to axial compression in thermal environments by means of a singular perturbation technique. The essence of this procedure, in the present case, is to assume that ~ j, y, «) þ W(x, ^ z, y, «) W ¼ w(x, y, «) þ W(x, ~ j, y, «) þ F(x, ^ z, y, «) F ¼ f (x, y, «) þ F(x, ~ x (x, j, y, «) þ C ^ x (x, z, y, «) Cx ¼ cx (x, y, «) þ C ~ y (x, j, y, «) þ C ^ y (x, z, y, «) Cy ¼ c (x, y, «) þ C
(5:31)
y
where « is a small perturbation parameter (provided Z > 2.96) as defined in Equation 5.6 and w(x, y, «), f (x, y, «), cx (x, y, «), cy (x, y, «) are called outer solu~ x (x, , y, «), ~ , y, «), F(x, ~ , y, «), C tions or regular solutions of the shell, W(x, ^ ^ ~ ^ ^ Cy (x, j, y, «), and W(x, z, y, «), F(x, z, y, «), Cx (x, z, y, «), Cy (x, z, y, «) are the boundary layer solutions near the x ¼ 0 and x ¼ p edges, respectively, and j and z are the boundary layer variables, defined by pffiffiffi pffiffiffi j ¼ x= «, z ¼ (p x)= «
(5:32)
This means for homogeneous pffiffiffiffiffi isotropic cylindrical shells the width of the boundary layers is of order Rt. In Equation 5.31, the regular and boundary layer solutions are expressed in the form of perturbation expansions as w(x, y, «) ¼
X
«j wj (x, y),
j¼1
cx (x, y, «) ¼
X j¼1
f (x, y, «) ¼
X j¼0
«j (cx )j (x, y),
cy (x, y, «) ¼
«j fj (x, y) X j¼1
«j (cy )j (x, y)
(5:33a)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 158 9.12.2008 4:42pm Compositor Name: VBalamugundan
158
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
~ j, y, «) ¼ W(x,
X
~ jþ1 (x, j, y), F(x, ~ j, y, «) ¼ «jþ1 W
j¼0
~ x (x, j, y, «) ¼ C
X
X
~jþ2 (x, j, y) «jþ2 F
j¼0
«
jþ3=2
~ x) ~ (C jþ3=2 (x, j, y), Cy (x, j, y, «) ¼
X
j¼0
^ z, y, «) ¼ W(x,
X
j¼0
^ jþ1 (x, z, y), F(x, ^ z, y, «) ¼ «jþ1 W
j¼0
^ x (x, z, y, «) ¼ C
X
~ y ) (x, j, y) «jþ2 (C jþ2
X
(5:33b) ^jþ2 (x, z, y) «jþ2 F
j¼0
^ x) ^ «jþ3=2 (C jþ3=2 (x, z, y), Cy (x, z, y, «) ¼
X
j¼0
^ y ) (x, z, y) «jþ2 (C jþ2
j¼0
(5:33c) Substituting Equation 5.31 into Equations 5.24 through 5.27 and collecting the terms of the same order of «, we can obtain three sets of perturbation equations for the regular and boundary layer solutions, respectively, e.g., the regular solutions w(x, y), f(x, y) cx(x, y), and cy(x, y) should satisfy O(«0 ): g14 (f0 ),xx ¼ g 14 b2 L(w0 , f0 )
(5:34a)
1 L21 ( f0 ) þ g 24 L22 (cx0 ) þ g24 L23 (cy0 ) þ g 24 (w0 ),xx ¼ g 24 b2 L(w0 , w0 ) (5:34b) 2 L32 (cx0 ) L33 (cy0 ) þ g14 L34 ( f0 ) ¼ 0
(5:34c)
L42 (cx0 ) þ L43 (cy0 ) þ g14 L44 ( f0 ) ¼ 0
(5:34d)
O(«1 ): L12 (cx0 ) L13 (cy0 ) þ g 14 L14 ( f0 ) g14 ( f1 ),xx ¼ g 14 b2 ½Lðw1 , f0 Þ þ Lðw0 , f1 Þ
(5:35a)
L21 ( f1 ) þ g24 L22 (cx1 ) þ g 24 L23 (cy1 ) g24 L24 (w0 ) þ g24 (w1 ),xx 1 ¼ g 24 b2 L(w0 , w1 ) 2
(5:35b)
L31 (w0 ) þ L32 (cx1 ) L33 (cy1 ) þ g14 L34 ( f1 ) ¼ 0
(5:35c)
L41 (w0 ) L42 (cx1 ) þ L43 (cy1 ) þ g14 L44 ( f1 ) ¼ 0
(5:35d)
O(«2 ): L11 (w0 ) L12 (cx1 ) L13 (cy1 ) þ g14 L12 ( f1 ) g 14 ( f2 ),xx ¼ g 14 b2 ½Lðw2 þ W*, f0 Þ þ L(w1 , f1 ) þ L(w0 , f2 )
(5:36a)
L21 ( f2 ) þ g24 L22 (cx2 ) þ g 24 L23 (cy2 ) g24 L24 (w1 ) þ g24 (w2 ),xx 1 ¼ g24 b2 ½Lðw1 , w1 Þ þ Lðw2 þ 2W*, w0 Þ 2
(5:36b)
L31 (w1 ) þ L32 (cx2 ) L33 (cy2 ) þ g14 L34 ( f2 ) ¼ 0
(5:36c)
L41 (w1 ) L42 (cx2 ) þ L43 (cy2 ) þ g14 L44 ( f2 ) ¼ 0
(5:36c)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 159 9.12.2008 4:42pm Compositor Name: VBalamugundan
Postbuckling of Shear Deformable FGM Shells
159
Because of the definition of W given in Equation 5.6, we assume that w0 ¼ 0 (0) 2 and w1 ¼ A(1) 00 , along with cx0 ¼ cy0 ¼ cx1 ¼ cy1 ¼ 0, f0 ¼ B00 y =2, and (1) 2 f1 ¼ B00 y =2. The initial buckling mode is assumed to have the form (2) w2 (x, y) ¼ A(2) 11 sin mx sin ny þ A02 cos 2ny
(5:37)
and the initial geometric imperfection is assumed to have the form * sin mx sin ny ¼ «2 mA(2) W*(x, y, «) ¼ «2 a11 11 sin mx sin ny
(5:38)
* =A(2) where m ¼ a11 11 is the imperfection parameter. From Equation 5.36 one has y2 þ B(2) 11 sin mx sin ny 2 ¼ C(2) 11 cos mx sin ny
f2 ¼ B(2) 00 cx2
cy2 ¼
D(2) 11
(5:39)
sin mx cos ny
and B(2) 11 ¼
g24 m2 (2) A11 , g06
C(2) 11 ¼ g 14 m b2 B(0) 00
g01 (2) B , g00 11
D(2) 11 ¼ g 14 nb
g02 (2) B , g00 11
g24 m2 ¼ (1 þ m)g06
(5:40)
where gij are given in detail in Appendix L. ~ j, y) and Now we turn our attention to the boundary layer solutions W(x, ~ F(x, j, y) which should satisfy boundary layer equations of each order, for example O(«2 ): g 110
~ x(3=2) ~1 ~2 ~2 @3C @4W @4F @2F g þ g g g ¼0 120 14 140 14 4 3 4 @j @j @j @j2
~ x(3=2) ~1 ~1 ~2 @3C @4F @4W @2W þ g 24 g220 g24 g 240 þ g24 ¼0 4 3 4 @j @j @j @j2 g310
~ x(3=2) ~1 ~2 @2C @3W @3F g þ g g ¼0 320 14 220 3 2 @j @j @j3 g 430
~ y2 @2C @j2
¼0
(5:41a) (5:41b) (5:41c) (5:41d)
which leads to ~1 ~1 @4W @2W ~1 ¼ 0 þ 2c þ b2 W 4 @j @j2
(5:42)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 160 9.12.2008 4:42pm Compositor Name: VBalamugundan
160
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
where c¼
g14 g 24 g320 g15 , 2g16
b¼
1=2 g 14 g24 g 2320 g16
(5:43)
where g15 and g16 are also given in detail in Appendix L. The solution of Equation 5.42 can be written as ~ 1 ¼ a(1) sin fj þ a(1) cos fj eqj (5:44a) W 10 01 and ~2 ¼ b(2) sin fj þ b(2) cos fj eqj F 10 01 ~ x(3=2) ¼ c(3=2) sin fj þ c(3=2) cos fj eqj C 10 01 ~ y2 ¼ 0 C
(5:44b) (5:44c) (5:44d)
where
bc q¼ 2
1=2 ,
b þ c 1=2 f¼ 2
(5:45)
^ ^ Similarly, the boundary layer solutions W(x, z, y) and F(x, z, y) can be obtained in the same manner. Then matching the regular solutions with the boundary layer solutions at ~ 1 ) ¼ (w1 þ W ~ 1 ),x ¼ 0 and the each end of the shell, e.g., let (w1 þ W ^ ^ (w1 þ W1 ) ¼ (w1 þ W1 ),x ¼ 0 at x ¼ 0 and x ¼ p edges, respectively, so that the asymptotic solutions satisfying the clamped boundary conditions are constructed as
x x x (1) (1) (1) p ffiffi ffi p ffiffi ffi p ffiffi ffi þ a exp q W ¼ « A(1) A a cos f sin f 00 00 01 10 « « « p x p x p x (1) (1) (1) A00 a01 cos f pffiffiffi þ a10 sin f pffiffiffi exp q pffiffiffi « « « h (2) (2) (2) þ «2 A11 sin mx sin ny þ A02 cos 2ny A02 cos 2ny x x x (1) p ffiffi ffi p ffiffi ffi p ffiffi ffi cos f sin f þ a exp q a(1) 01 10 « « « p x px px (1) A(2) a(1) exp q pffiffiffi 02 cos 2ny 01 cos f pffiffiffi þ a10 sin f pffiffiffi « « « h i h (3) (4) (4) 4 þ «3 A(3) 11 sin mx sin ny þ A02 cos 2ny þ « A00 þ A11 sin mx sin ny i (4) (4) (4) 5 þ A(4) 20 cos 2mx þ A02 cos 2ny þ A13 sin mx sin 3ny þ A04 cos 4ny þ O(« )
(5:46)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 161 9.12.2008 4:42pm Compositor Name: VBalamugundan
Postbuckling of Shear Deformable FGM Shells
161
y2 y2 y2 2 þ « B(1) þ « þ B(2) B(2) 00 00 11 sin mx sin ny 2 2 2 x x x (2) (2) p ffiffi ffi p ffiffi ffi p ffiffi ffi þ A(1) þ b exp q b cos f sin f 00 01 10 « « « px px px (1) (2) (2) þ A00 b01 cos f pffiffiffi þ b10 sin f pffiffiffi exp q pffiffiffi « « «
2 y x x x (3) (2) (3) (3) p ffiffi ffi p ffiffi ffi p ffiffi ffi þ «3 B(3) þ B þ b exp q cos 2ny þ A cos 2ny b cos f sin f 00 02 02 01 10 « « « 2 px px px (2) (3) (3) þ A02 cos 2ny b01 cos f pffiffiffi þ b10 sin f pffiffiffi exp q pffiffiffi « « «
2 y (4) (4) 5 þ «4 B(4) þ B(4) (5:47) 00 20 cos 2mx þ B02 cos 2ny þ B13 sin mx sin 3ny þ O(« ) 2
F ¼ B(0) 00
x x px px (3=2) (1) (3=2) p ffiffi ffi p ffiffi ffi p ffiffi ffi p ffiffi ffi exp q þ A exp q Cx ¼ «3=2 A(1) c sin f c sin f 00 10 00 10 « « « «
h i x x (5=2) (2) (2) þ «2 C11 cos mx sin ny þ «5=2 A02 cos 2ny c10 sin f pffiffiffi exp q pffiffiffi « « h i p x p x (5=2) þ A(2) þ «3 C(3) 02 cos 2ny c10 sin f pffiffiffi exp q pffiffiffi 11 cos mx sin ny « « h i (4) (4) (4) 4 (5:48) þ « C11 cos mx sin ny þ C20 sin mx þ C13 cos mx sin 3ny þ O(«5 ) h i h i (3) (3) 3 Cy ¼ «2 D(2) 11 sin mx cos ny þ « D11 sin mx cos ny þ D02 sin 2ny h i (4) (4) 5 þ «4 D(4) 11 sin mx cos ny þ D02 sin 2ny þ D13 sin mx cos 3ny þ O(« )
(5:49)
Note that all of the coefficients in Equations 5.46 through 5.49 are related (2) and can be expressed in terms of A(2) 11 , as shown in Equation 5.40 for B11 , (j) except for A00 (j ¼ 1–4) which may be determined by substituting Equations 5.46 through 5.49 into closed condition (Equation 5.29), and then we obtain A(1) 00 ¼ 2
g5 1 lp [g g5 g T1 ]DT g 24 g 24 T2
(3) A(2) 00 ¼ A00 ¼ 0 2 2 1 2 2 (2) (2) 2 2 ¼ b (1 þ 2m) A þn b A A(4) n 00 11 02 8
(5:50)
Next, upon substitution of Equations 5.46 through 5.49 into the boundary condition (Equation 5.28c) and into Equation 5.30, the postbuckling equilibrium paths can be written as 2 4 (2) (2) (2) (4) lp ¼ l(0) p lp A11 « þlp A11 « þ
(5:51)
2 4 (T) (2) (4) A(2) A(2) dp ¼ d(0) x dx þ d x 11 « þdx 11 « þ
(5:52)
and
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 162 9.12.2008 4:42pm Compositor Name: VBalamugundan
162
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
In Equations 5.51 and 5.52, A(2) « is taken as the second perturbation 11 parameter relating to the dimensionless maximum deflection. From Equation 5.46, by taking (x, y) ¼ (p=2m, p=2n), one has 2 A(2) 11 « ¼ Wm 2 Wm þ
(5:53)
where Wm is the dimensionless form of maximum deflection of the shell that can be written as " # 1 h W þ 1 Wm ¼ C3 ½D11 * D22 * A11 * A22 * 1=4 h
(5:54)
All symbols used in Equations 5.51 through 5.54 are also described in detail in Appendix L. The perturbation scheme described here is quite different from that of traditional one (Koiter 1963, Dym and Hoff 1968). In the present analysis, « is definitely a small perturbation parameter, but in the second step (A(2) 11 «) may be large. In contrast, the perturbation parameter « is defined as a characteristic amplitude nondimensionalized with respect to the shell thickness (Dym and Hoff 1968), which is no longer a small perturbation parameter in the deep postbuckling range when the shell deflection is sufficiently large, e.g., W=h > 1, and in such a case the solution is questionable. Equations 5.51 through 5.54 can be employed to obtain numerical results for full nonlinear postbuckling load–shortening or load–deflection curves of FGM cylindrical shells subjected to axial compression. The initial buckling load of a perfect shell can readily be obtained numerically, by setting W*=h ¼ 0 (or m ¼ 0), while taking W=h ¼ 0 (note that Wm 6¼ 0). In this case, the minimum buckling load is determined by considering Equation 5.51 for various values of the buckling mode (m, n), which determine the number of half-waves in the X-direction and of full waves in the Y-direction. Note that because of Equation 5.46, the prebuckling deformation of the shell is nonlinear. For numerical illustrations, two sets of material mixture are considered for an FGM cylindrical shell. One is silicon nitride and stainless steel (referred to as Si3N4=SUS304) and the other is zirconium oxide and titanium alloy (referred to as ZrO2=Ti-6Al-4V). The material properties are assumed to be nonlinear function of temperature of Equation 1.4, and typical values, in the present case, can be found in Tables 1.1 through 1.3. Poisson’s ratio is assumed to be a constant, that is, nf ¼ 0.28 for the Si3N4=SUS304 cylindrical shell, and nf ¼ 0.29 for the ZrO2=Ti-6Al-4V one. For these examples, the shell geometric parameter R=h ¼ 30, h ¼ 10 mm, and T0 ¼ 300 K (room temperature). It should be appreciated that in all figures W*=h ¼ 0:1 denotes the dimensionless maximum initial geometric imperfection of the shell. We first examine the postbuckling load–shortening curves for an isotropic cylindrical shell with a local geometric imperfection subjected to axial compression. The results are compared in Figure 5.2 with the experimental
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 163 9.12.2008 4:42pm Compositor Name: VBalamugundan
Postbuckling of Shear Deformable FGM Shells
163
100
Nx (N mm−1)
80
Shell A1a L = 340.0 mm, R = 199.9 mm, h = 0.509 mm (m, n) = (9, 17)
60
40
20
EXP: Hautala (1998) Present: W ∗/h = 0.25
0 0.0
0.2
0.4
0.6
0.8
1.0
∆x (mm)
FIGURE 5.2 Comparisons of postbuckling load– shortening curves for an isotropic cylindrical shell with a local geometric imperfection under axial compression.
results of Hautala (1998). The computing data adopted here are L ¼ 340 mm, R ¼ 199.9 mm, h ¼ 0.509 mm, E ¼ 190 GPa, and n ¼ 0.3. The results calculated show that when an initial geometric imperfection was present (W*=h ¼ 0:25), the limit point load Nx ¼ 71.63 N mm1, then the present results are in reasonable agreement with the experimental results. Tables 5.1 and 5.2 present buckling load P (in kN) for perfect, Si3N4=SUS304 and ZrO2=Ti-6Al-4V cylindrical shells with different values
TABLE 5.1 Comparisons of Buckling Loads Pcr (kN) for Perfect, Si3N4=SUS304 Cylindrical Shells Subjected to Axial Compression and under Thermal Environments (R=h ¼ 30, h ¼ 10 mm, T0 ¼ 300 K) Z
N¼0
N ¼ 0.2
N ¼ 1.0
N ¼ 2.0
N ¼ 5.0
300
74942.67a
82424.49a
94842.38a
100394.40a
106562.10a
500
b
b
b
b
100443.90b
c
96739.29c
a
105298.20a
T-ID TU ¼ 300 K TL ¼ 300 K
800 TU ¼ 500 K
300
70484.06
c
68067.06
a
73175.55
77472.75
c
74876.27
a
80711.32
89258.90
c
86125.56
a
93379.08
94590.73 91151.51 99057.63
TL ¼ 300 K
500 800
67156.96 68185.81c
74226.40 74912.29c
86428.66 85843.08c
91970.67 90738.77c
97961.20b 96262.37c
TU ¼ 700 K
300
71132.21a
78753.39a
91745.87a
97575.29a
103913.40a
500
b
b
b
b
95442.02b
c
96743.75c
TL ¼ 300 K
800
b
b
b
b
63881.80
d
66541.07
71002.34
d
74116.27
83574.78
d
86708.57
89317.30 91453.34
(continued)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 164 9.12.2008 4:42pm Compositor Name: VBalamugundan
164
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
TABLE 5.1 (continued) Comparisons of Buckling Loads Pcr (kN) for Perfect, Si3N4=SUS304 Cylindrical Shells Subjected to Axial Compression and under Thermal Environments (R=h ¼ 30, h ¼ 10 mm, T0 ¼ 300 K) Z
N¼0
N ¼ 0.2
N ¼ 1.0
N ¼ 2.0
N ¼ 5.0
300 500
73175.55a 67156.96b
79927.86a 73504.35b
91263.13a 84416.09b
96301.30a 89316.01b
101806.70a 94572.83b
800
68185.81c
74188.52c
83967.88c
88318.46c
93208.09c
300
a
a
a
a
97348.63a
b
88957.43b
d
91594.48c
T-D (TU ¼ 500 K, TL ¼ 300 K) (TU ¼ 700 K, TL ¼ 300 K)
500 800
a b c d
71132.21
b
63881.80
d
66541.07
77422.60
b
69838.80
d
72870.63
87873.71
b
79904.80
d
82973.04
92449.94 84338.26 87234.89
Buckling mode (m, n) ¼ (4, 5). Buckling mode (m, n) ¼ (6, 5). Buckling mode (m, n) ¼ (8, 5). Buckling mode (m, n) ¼ (9, 6).
TABLE 5.2 Comparisons of Buckling Loads Pcr (kN) for Perfect, ZrO2=Ti-6Al-4V Cylindrical Shells Subjected to Axial Compression and under Thermal Environments (R=h ¼ 30, h ¼ 10 mm, T0 ¼ 300 K) Z
N¼0
N ¼ 0.2
N ¼ 1.0
N ¼ 2.0
N ¼ 5.0
300
38137.02a
42208.14a
48959.04a
51989.80a
55358.61a
500
b
b
b
b
52068.91b
c
50681.81c
a
50900.87e
b
45465.31b
T-ID (TU ¼ 300 K, TL ¼ 300 K)
800 (TU ¼ 500 K, TL ¼ 300 K)
300 500
35788.11
c
34956.13
a
37625.46
b
34831.12
39583.18
c
38702.66
a
41193.16
b
37753.29
45977.06
c
44856.76
a
46802.43
b
42313.59
48877.66 47607.31 49126.52 44165.85
35032.66 37064.95a
c
39161.86 40030.25a
d
44039.69 44018.71e
d
(TU ¼ 700 K,
800 300
c
45793.84 44823.28e
47233.32d 44092.91e
TL ¼ 300 K)
500
33875.69b
35995.33b
39245.23b
40646.90b
42102.80b
800
d
35325.80
d
37744.23
d
41347.57
d
42934.16
45384.85d
300
37625.46a
39069.95a
40717.95a
40924.73a
39109.79a
500
b
b
b
b
36158.93b
d
39316.14d
a
41797.12a
e
14388.71b
b
25829.02b
T-D (TU ¼ 500 K, TL ¼ 300 K)
800 (TU ¼ 700 K, TL ¼ 300 K)
300 500 800
a b c d e
34831.12
c
35032.66
a
37064.95
b
33875.69
d
35325.80
Buckling mode (m, n) ¼ (4, 5). Buckling mode (m, n) ¼ (6, 5). Buckling mode (m, n) ¼ (8, 5). Buckling mode (m, n) ¼ (9, 6). Buckling mode (m, n) ¼ (5, 6).
35575.15
d
37173.96
a
35303.03
b
31333.34
d
33277.44
36249.34
d
38060.16
a
29385.48
b
34159.14
b
31713.80
36340.39 38349.19 26235.67 32257.93 27780.47
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 165 9.12.2008 4:42pm Compositor Name: VBalamugundan
Postbuckling of Shear Deformable FGM Shells
165
of volume fraction index N ( ¼ 0.0, 0.2, 1.0, 2.0, and 5.0) subjected to axial compression. Three thermal environmental conditions, referred to as I, II, and III, are considered. For case I, TU ¼ TL ¼ 300 K, for case II, TU ¼ 500 K, TL ¼ 300 K, and for case III, TU ¼ 700 K, TL ¼ 300 K. Here, T-D represents material properties for FGMs are temperature-dependent. T-ID represents material properties for FGMs are temperature-independent, i.e., in a fixed temperature T0 ¼ 300 K, as previously used in Loy et al. (1999), Pradhan et al. (2000), and Ng et al. (2001). It can be seen that, for the Si3N4=SUS304 cylindrical shell, a fully metallic shell (N ¼ 0) has lowest buckling load and that the buckling load increases as the volume fraction index N increases. It can be seen that an increase is about þ39%, þ41%, and þ37%, respectively, for the Si3N4=SUS304 cylindrical shell with Z ¼ 300, 500, and 800 from N ¼ 0 to N ¼ 5 at the same thermal environmental condition II under T-D case. In contrast, for the ZrO2=Ti-6Al-4V cylindrical shell, the buckling load is lower than that of the Si3N4=SUS304 shell at the same loading conditions and erratic behavior can be observed under T-D case. It can also be seen that the temperature reduces the buckling load when the temperature dependency is put into consideration. The percentage decrease is about 7.9%, 10.8%, and 4.3% for the Si3N4=SUS304 cylindrical shell and about 49%, 34%, and 42% for the ZrO2=Ti-6Al-4V cylindrical shell with Z ¼ 300, 500, and 800 from thermal environmental condition case I to case III under the same volume fraction distribution N ¼ 2. In the following parametric study only T-D case is considered except for Figure 5.3. Typical results are shown in Figures 5.3 through 5.5 for the Si3N4=SUS304 cylindrical shell with z ¼ 500. Figure 5.3 gives the postbuckling load–shortening and load–deflection curves for a Si3N4=SUS304 cylindrical shell with volume fraction index N ¼ 2.0 subjected to axial compression under thermal environmental condition II and two cases of thermoelastic properties T-ID and T-D. It can be seen that the postbuckling equilibrium path becomes lower when the temperature-dependent properties are taken into account. Figure 5.4 presents the postbuckling load–shortening and load–deflection curves for the same cylindrical shell subjected to axial compression and under three thermal environmental conditions I, II, and III. It is found that an initial extension occurs as the temperature increases and the buckling loads are reduced with increases in temperature, and postbuckling path becomes lower. Figure 5.5 shows the effect of the volume fraction index N ( ¼ 0.2, 1.0, and 2.0) on the postbuckling behavior of Si3N4=SUS304 cylindrical shell subjected to axial compression and under thermal environmental condition II. The results show that the slope of the postbuckling load–shortening curve for the shell with N ¼ 2.0 are larger than others, and the shell has considerable postbuckling strength. From Figures 5.3 through 5.5, the well-known snap-through phenomenon could be found. The elastic limit loads for imperfect shells can be achieved and imperfection sensitivity can be predicted. The postbuckling
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 166 9.12.2008 4:42pm Compositor Name: VBalamugundan
166
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 150,000
100,000
Si3N4/SUS304 R/h = 30, Z = 500 T0 = 300 K, TU = 500 K, TL = 300 K N = 2.0, (m, n) = (6, 5) I: T-ID I II: T-D
Px (kN)
II
50,000 W ∗/h = 0.0
0 −5
W ∗/h = 0.1
0
5
10 15 20 ∆x (mm)
(a)
25
30
35
150,000
Si3N4/SUS304 R/h = 30, Z = 500 T0 = 300 K, TU = 500 K, TL = 300 K N = 2.0, (m, n) = (6, 5) I: T-ID 100,000 II: T-D Px (kN)
I II
I II
50,000
W ∗/h = 0.0 W ∗/h = 0.1
0 0.0 (b)
0.1
0.2
0.3
0.4
0.5
0.6
W/h
FIGURE 5.3 Effect of temperature dependency on the postbuckling behavior of a Si3N4=SUS304 cylindrical shell subjected to axial compression: (a) load shortening; (b) load deflection.
load–shortening and load–deflection curves for imperfect Si3N4=SUS304 cylindrical shells have been plotted, along with the perfect shell results, in Figures 5.3 through 5.5. Table 5.3 gives imperfection sensitivity l* for the imperfect Si3N4=SUS304 cylindrical shells with Z ¼ 300, 500, and 800,
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 167 9.12.2008 4:42pm Compositor Name: VBalamugundan
Postbuckling of Shear Deformable FGM Shells
167
150,000
Px (kN)
Si3N4/SUS304 R/h = 30, Z = 500 T0 = 300 K, N = 2.0, (m, n) = (6, 5) I: TU = TL = 300 K II: TU = 500 K, TL = 300 K 100,000 III: TU = 700 K, TL = 300 K I II III
50,000
W ∗/h = 0.0 W ∗/h = 0.1
0 −5
0
5
10
15
20
25
30
35
∆x (mm)
(a)
150,000
Si3N4/SUS304 R/h = 30, Z = 500 T0 = 300 K, N = 2.0, (m, n) = (6, 5)
Px (kN)
100,000
I: TU = TL = 300 K II: TU = 500 K, TL = 300 K III: TU = 700 K, TL = 300 K III
II
I
50,000
W ∗/h = 0.0 W ∗/h = 0.1
0 0.0 (b)
0.1
0.2
0.3
0.4
0.5
0.6
W/h
FIGURE 5.4 Effect of temperature field on the postbuckling behavior of a Si3N4=SUS304 cylindrical shell subjected to axial compression: (a) load shortening; (b) load deflection.
and with different values of volume fraction index N ( ¼ 0.2 and 2.0) subjected to axial compression and under thermal environmental conditions I and III. Here, l* is the maximum value of Px for the imperfect shell, made
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 168 9.12.2008 4:42pm Compositor Name: VBalamugundan
168
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 150,000
Si3N4/SUS304 R/h = 30, Z = 500 T0 = 300 K, TU = 500 K, TL = 300 K (m, n) = (6, 5) 100,000 Px (kN)
I: N = 0.2 II: N = 1.0 III: N = 2.0
III II I
50,000
W ∗/h = 0.0 0
W ∗/h = 0.1 −5
0
(a)
5
10
15
20
25
30
35
∆x (mm)
150,000
Si3N4/SUS304 R/h = 30, Z = 500 T0 = 300 K, TU = 500 K, TL = 300 K (m, n) = (6, 5)
Px (kN)
100,000
I
III II
I: N = 0.2 II: N = 1.0 III: N = 2.0
50,000
W ∗/h = 0.0 W ∗/h = 0.1
0 0.0
(b)
0.1
0.2
0.3
0.4
0.5
0.6
W/h
FIGURE 5.5 Effect of volume fraction index N on the postbuckling behavior of Si3N4=SUS304 cylindrical shells subjected to axial compression: (a) load shortening; (b) load deflection.
dimensionless by dividing by the critical value of Px for the perfect shell as shown in Table 5.1. These results show that the imperfection sensitivity becomes weak when temperature is increased and fiber volume fraction
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 169 9.12.2008 4:42pm Compositor Name: VBalamugundan
Postbuckling of Shear Deformable FGM Shells
169
TABLE 5.3 Imperfection Sensitivity l* for Si3N4=SUS304 Cylindrical Shells Subjected to Axial Compression in Thermal Environments (R=h ¼ 30, h ¼ 10 mm, T0 ¼ 300 K) W*=h
Thermal Environmental Conditions
N
(TU ¼ 300 K,
0.2
TL ¼ 300 K)
0.0
0.05
0.1
0.15
0.20
300
1.0
0.776
0.653
0.564
0.495
500
1.0
0.774
0.641
0.548
0.479
800
1.0
0.777
0.641
0.548
—
300
1.0
0.773
0.649
0.560
0.490
500
1.0
0.770
0.636
0.543
0.475
800
1.0
0.775
0.638
0.545
—
0.2
300 500
1.0 1.0
0.812 0.842
0.683 0.698
0.590 0.597
— —
800
1.0
0.838
0.692
0.584
—
2.0
300
1.0
0.799
0.671
—
—
500
1.0
0.822
0.679
—
—
800
1.0
0.823
0.672
—
—
2.0
(TU ¼ 700 K, TL ¼ 300 K)
Z
only has small effect on the imperfection sensitivity. Note that for larger imperfection amplitudes, e.g., W*=h > 0.2, the postbuckling equilibrium path becomes stable, so that no imperfection sensitivity can be predicted.
5.4
Postbuckling Behavior of FGM Cylindrical Shells under External Pressure
Buckling under external pressure is another basic problem for cylindrical shells. We consider an FGM cylindrical shell subjected to external pressure q. Now the nonlinear differential equations in the Donnell sense are ~12 (Cx ) L ~13 (Cy ) þ L ~14 (F) L ~15 (N T ) L ~16 (MT ) 1 F,xx ~11 (W) L L R ~ ¼ L(W þ W*, F) þ q ~21 (F) þ L ~22 (Cx ) þ L ~23 (Cy ) L ~24 (W) L ~25 (N T ) þ 1 W,xx L R 1~ ¼ L(W þ 2W*, W) 2
(5:55)
(5:56)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 170 9.12.2008 4:42pm Compositor Name: VBalamugundan
170
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells ~31 (W) þ L ~32 (Cx ) L ~33 (Cy ) þ L ~34 (F) L ~35 (N T ) L ~36 (ST ) ¼ 0 L
(5:57)
~41 (W) L ~42 (Cx ) þ L ~43 (Cy ) þ L ~44 (F) L ~45 (N T ) L ~46 (ST ) ¼ 0 L
(5:58)
Note that only Equation 5.55 has a small change with respect to Equation 5.15, whereas Equations 5.56 through 5.58 are identical in forms to those of Equations 5.16 through 5.18. The two end edges of the shell are assumed to be simply supported or clamped, in the present case, the boundary conditions are X ¼ 0, L: W ¼ Cy ¼ 0, Mx ¼ Px ¼ 0 W ¼ Cx ¼ Cy ¼ 0
(simply supported)
(5:59a)
(clamped)
(5:59b)
2pR ð
N x dY þ pR2 qa ¼ 0
(5:59c)
0
where a ¼ 0 and a ¼ 1 for lateral and hydrostatic pressure loading case, respectively. Also the closed (or periodicity) condition is expressed by Equation 5.20, and the average end-shortening relationship is defined by Equation 5.21. Introducing dimensionless quantities of Equation 5.6, and * D22 * A11 * A22 * ]3=8 dq ¼ (Dx =L)(3)3=4 LR1=2 =4p[D11
(5:60)
The nonlinear Equations 5.55 through 5.58 may then be written in dimensionless form (boundary layer type) as «2 L11 (W) «L12 (Cx ) «L13 (Cy ) þ «g 14 L14 (F) g14 F,xx 4 ¼ g14 b2 L(W þ W*, F) þ g 14 (3)1=4 lq «3=2 3
(5:61)
L21 (F) þ g 24 L22 (Cx ) þ g24 L23 (Cy ) «g24 L24 (W) þ g 24 W,xx 1 ¼ g24 b2 L(W þ 2W*, W) 2 «L31 (W) þ L32 (Cx ) L33 (Cy ) þ g 14 L34 (F) ¼ 0 «L41 (W) L42 (Cx ) þ L43 (Cy ) þ g 14 L44 (F) ¼ 0
(5:62) (5:63) (5:64)
The boundary conditions expressed by Equation 5.59 become x ¼ 0, p: W ¼ Cy ¼ 0, Mx ¼ Px ¼ 0
(simply supported)
(5:65a)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 171 9.12.2008 4:42pm Compositor Name: VBalamugundan
Postbuckling of Shear Deformable FGM Shells W ¼ Cx ¼ Cy ¼ 0 1 2p
2p ð
b2 0
171
(clamped)
(5:65b)
@2F 2 dy þ (3)1=4 lq «3=2 a ¼ 0 2 @y 3
(5:65c)
and the closed condition is expressed by Equation 5.29. It has been shown (Shen 2008b) that the effect of the boundary layer on the solution of a shell under external pressure is of the order «3=2, hence the unit end-shortening relationship may be written in dimensionless form as (3)3=4 3=2 « dq ¼ 2 8p g 24
2p ð ðp
g224 b2 0 0
@Cy @2F @2F @Cx þ g 233 b g5 2 þ g 24 g 511 @x @y @y2 @x
2 @2W 1 @W 2 2@ W «g 24 g611 þ g b g 244 @x2 @y2 2 24 @x 2
@W @W* g 24 þ « g 24 gT1 g 5 g T2 DT dx dy @x @x
(5:66)
Having developed the theory, we are now in a position to solve Equations 5.61 through 5.64 with boundary condition (Equation 5.65) by means of a singular perturbation technique. The essence of this procedure, in the present case, is to assume that ~ j, y, «) þ W(x, ^ z, y, «) W ¼ w(x, y, «) þ W(x, ~ j, y, «) þ F(x, ^ z, y, «) F ¼ f (x, y, «) þ F(x, ~ x (x, j, y, «) þ C ^ x (x, z, y, «) Cx ¼ cx (x, y, «) þ C
(5:67)
~ y (x, j, y, «) þ C ^ y (x, z, y, «) Cy ¼ cy (x, y, «) þ C in which the regular and boundary layer solutions are expressed in the forms of perturbation expansions as w(x, y, «) ¼
X
«j=2 wj=2 (x, y),
j¼1
cx (x, y, «) ¼
X
f (x, y, «) ¼
X j¼0
«j=2 (cx )j=2 (x, y),
cy (x, y, «) ¼
j¼1
~ j, y, «) ¼ W(x,
X X j¼0
X
«j=2 (cy )j=2 (x, y)
X
~j=2þ2 (x, j, y) «j=2þ2 F
j¼0 (jþ3)=2
«
(5:68a)
j¼1
~ j=2þ1 (x, j, y), F(x, ~ j, y, «) ¼ «j=2þ1 W
j¼0
~ x (x, j, y, «) ¼ C
«j=2 fj=2 (x, y)
~ x) ~ (C (jþ3)=2 (x, j, y), Cy (x, j, y, «) ¼
X
~ y) «j=2þ2 (C j=2þ2 (x, j, y)
j¼0
(5:68b)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 172 9.12.2008 4:42pm Compositor Name: VBalamugundan
172
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
^ z, y, «) ¼ W(x,
X
^ j=2þ1 (x, z, y), F(x, ^ z, y, «) ¼ «j=2þ1 W
j¼0
^ x (x, z, y, «) ¼ C
X
X
^j=2þ2 (x, z, y) «j=2þ2 F
j¼0
«
(jþ3)=2
^ x) ^ (C (jþ3)=2 (x, z, y), Cy (x, z, y, «) ¼
j¼0
X
^ y) «j=2þ2 (C j=2þ2 (x, z, y)
j¼0
(5:68c)
We also let 4 1=4 3=2 X j (3) lq « ¼ « (ky )j 3 j¼0
(5:69)
Substituting Equation 5.67 into Equations 5.61 through 5.64 and collecting the terms of the same order of «, we can obtain three sets of perturbation equations for the regular and boundary layer solutions, respectively, e.g., the regular solutions w(x, y) and f(x, y) should satisfy O(«0 ): g14 ( f0 ),xx ¼ g14 b2 L(w0 , f0 ) þ ky0
(5:70a)
1 L21 ( f0 ) þ g 24 L22 (cx0 ) þ g24 L23 (cy0 ) þ g 24 (w0 ),xx ¼ g 24 b2 L(w0 , w0 ) (5:70b) 2 L32 (cx0 ) L33 (cy0 ) þ g14 L34 ( f0 ) ¼ 0 (5:70c) L42 (cx0 ) þ L43 (cy0 ) þ g14 L44 ( f0 ) ¼ 0
O(«1=2 ): g 14 ( f1=2 ),xx ¼ g 14 b2 L w1=2 , f0 þ L w0 , f1=2
(5:70d) (5:71a)
L21 ( f1=2 ) þ g24 L22 (cx(1=2) ) þ g 24 L23 (cy(1=2) ) þ g24 (w1=2 ),xx 1 ¼ g 24 b2 L(w0 , w1=2 ) 2 L32 (cx(1=2) ) L33 (cy(1=2) ) þ g 14 L34 ( f1=2 ) ¼ 0 L42 (cx(1=2) ) þ L43 (cy(1=2) ) þ g 14 L44 ( f1=2 ) ¼ 0
(5:71b) (5:71c) (5:71d)
O(«1 ): L12 (cx0 ) L13 (cy0 ) þ g 14 L14 ( f0 ) g14 ( f1 ),xx ¼ g14 b2 [Lðw1 , f0 Þ þ Lðw0 , f1 Þ] þ ky1
(5:72a)
L21 ( f1 ) þ g24 L22 (cx1 ) þ g 24 L23 (cy1 ) g24 L24 (w0 ) þ g24 (w1 ),xx 1 ¼ g 24 b2 L(w0 , w1 ) 2 L31 (w0 ) þ L32 (cx1 ) L33 (cy1 ) þ g14 L34 ( f1 ) ¼ 0 L41 (w0 ) L42 (cx1 ) þ L43 (cy1 ) þ g14 L44 ( f1 ) ¼ 0
(5:72b) (5:72c) (5:72d)
O(«3=2 ): L12 (cx(1=2) ) L13 (cy(1=2) ) þ g14 L12 ( f1=2 ) g 14 ( f3=2 ),xx ¼ g 14 b2 [L(w3=2 , f0 ) þ L(w1 , f1=2 ) þ L(w1=2 , f1 ) þ L(w0 , f3=2 )]
(5:73a)
L21 ( f3=2 ) þ g 24 L22 (cx(3=2) ) þ g24 L23 (cy(3=2) ) g24 L22 (w1=2 ) þ g 24 (w3=2 ),xx 1 ¼ g 24 b2 [L(w1=2 , w1 ) þ L(w3=2 , w0 )] 2
(5:73b)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 173 9.12.2008 4:42pm Compositor Name: VBalamugundan
Postbuckling of Shear Deformable FGM Shells
173
L31 (w1=2 ) þ L32 (cx(3=2) ) L33 (cy(3=2) ) þ g14 L34 ( f3=2 ) ¼ 0
(5:73c)
L41 (w1=2 ) L42 (cx(3=2) ) þ L43 (cy(3=2) ) þ g 14 L44 ( f3=2 ) ¼ 0
(5:73d)
O(«2 ): L11 (w0 ) L12 (cx1 ) L13 (cy1 ) þ g14 L12 ( f1 ) g 14 ( f2 ),xx ¼ g14 b2 [L(w2 þ W*, f0 ) þ L(w3=2 , f1=2 ) þ L(w1 , f1 ) þ L(w1=2 , f3=2 ) þ L(w0 , f2 )] þ ky2
(5:74a)
L21 ( f2 ) þ g 24 L22 (cx2 ) þ g24 L23 (cy2 ) g 24 L24 (w1 ) þ g 24 (w2 ),xx 1 ¼ g24 b2 [L(w1 , w1 ) þ L(w3=2 , w1=2 ) þ Lðw2 þ 2W*, w0 Þ] 2
(5:74b)
L31 (w1 ) þ L32 (cx2 ) L33 (cy2 ) þ g 14 L34 ( f2 ) ¼ 0
(5:74c)
L41 (w1 ) L42 (cx2 ) þ L43 (cy2 ) þ g 14 L44 ( f2 ) ¼ 0
(5:74d) (3=2)
From Equation 5.68a, we assume that w0 ¼ w1=2 ¼ w1 ¼ 0 and w3=2 ¼ A00 , along with cx0 ¼ cx(1=2) ¼ cx1 ¼ cx(3=2) ¼ 0, cy0 ¼ cy(1=2) ¼ cy1 ¼ cy(3=2) ¼ 0, (1) 2 2 2 2 2 2 f1=2 ¼ f3=2 ¼ 0, f0 ¼ B(0) 00 (b x þ ay =2), and f1 ¼ B00 (b x þ ay =2), from 2 (1) Equations 5.70a and 5.72a we have ky0 ¼ b2 B(0) 00 and ky1 ¼ b B00 . The initial buckling mode is assumed to have the form
w2 (x, y) ¼ A(2) 11 sin mx sin ny
(5:75)
and the initial geometric imperfection is assumed to have the similar form * sin mx sin ny ¼ «2 mA(2) W*(x, y, «) ¼ «2 a11 11 sin mx sin ny
(5:76)
* =A(2) where m ¼ a11 11 is the imperfection parameter. From Equation 5.74 one has 1 2 2 2 þ B(2) ay b x þ f2 ¼ B(2) 00 11 sin mx sin ny 2 cx2 ¼ C(2) 11 cos mx sin ny cy2 ¼
D(2) 11
(5:77)
sin mx cos ny
and ky2 ¼ b2 B(2) 00 , D(2) 11 ¼ g 14 nb
B(2) 11 ¼
g02 (2) B , g00 11
g24 m2 (2) A11 , g06 b2 B(0) 00 ¼
C(2) 11 ¼ g 14 m
g01 (2) B , g00 11
g24 m4 (1 þ m)(n2 b2 þ (1=2) am2 )g06
(5:78)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 174 9.12.2008 4:42pm Compositor Name: VBalamugundan
174
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
~ ~ For boundary layer solutions, W(x, j, y) and F(x, j, y) should satisfy boundary layer equations of each order, for example O(«5=2 ): g110 ~5=2 @4F @j4
~ 3=2 @4W @j
g120
4
~5=2 ~5=2 ~ x2 @4F @2F @3C þ g14 g 140 g14 ¼0 3 4 @j @j @j2
~ 3=2 ~ 3=2 ~ x2 @4W @2W @3C g g þ g ¼0 24 240 24 @j3 @j4 @j2 ~ 3=2 ~5=2 ~ x2 @3W @3F @2C g þ g g ¼0 g310 320 14 220 @j3 @j2 @j3 ~ y(5=2) @2C ¼0 g 430 @j2
þ g24 g 220
(5:79a) (5:79b) (5:79c) (5:79d)
which leads to ~ 3=2 @4W @j
4
þ 2c
~ 3=2 @2W @j2
~ 3=2 ¼ 0 þ b2 W
(5:80)
where c and b are defined by Equation 5.43. The solution of Equation 5.80 can be written as ~ 3=2 ¼ a(3=2) sin fj þ a(3=2) cos fj eqj (5:81a) W 10 01 and
~5=2 ¼ b(5=2) sin fj þ b(5=2) cos fj eqj F 10 01 ~ x2 ¼ c(2) sin fj þ c(2) cos fj eqj C 10 01 ~ y(5=2) ¼ 0 C
(5:81b) (5:81c) (5:81d)
where q and f are defined by Equation 5.45. ^ ^ Similarly, the boundary layer solutions W(x, z, y) and F(x, z, y) can be obtained in the same manner. Then matching the regular solutions with the boundary layer solutions at ~ 3=2 ) ¼ (w3=2 þ W ~ 3=2 ),x ¼ 0 and the each end of the shell, e.g., let (w3=2 þ W ^ ^ (w3=2 þ W3=2 ) ¼ (w3=2 þ W3=2 ),x ¼ 0 at x ¼ 0 and x ¼ p edges, respectively, so that the asymptotic solutions satisfying the clamped boundary conditions are constructed as
x x x (3=2) (3=2) (3=2) (3=2) W ¼ «3=2 A00 A00 a01 cos f pffiffiffi þ a10 sin f pffiffiffi exp q pffiffiffi « « « px px px (3=2) (3=2) (3=2) a01 cos f pffiffiffi þ a10 sin f pffiffiffi exp q pffiffiffi A00 « « « h i h i (2) (3) 2 3 þ « A11 sin mx sin ny þ « A11 sin mx sin ny h i (4) (4) (4) þ A sin mx sin ny þ A cos 2mx þ A cos 2ny þ O(«5 ) þ «4 A(4) 00 11 20 02
(5:82)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 175 9.12.2008 4:42pm Compositor Name: VBalamugundan
Postbuckling of Shear Deformable FGM Shells
175
1 (0) 2 2 y2 1 (1) 2 2 y2 þ « B00 b x þ a F ¼ B00 b x þ a 2 2 2 2
2 1 (2) 2 2 y (2) 2 þ B11 sin mx sin ny þ « B00 b x þ a 2 2
x x x (3=2) (5=2) (5=2) b01 cos f pffiffiffi þ b10 sin f pffiffiffi exp q pffiffiffi þ «5=2 A00 « « « p x p x p x (3=2) (5=2) (5=2) þ A00 b01 cos f pffiffiffi þ b10 sin f pffiffiffi exp q pffiffiffi « « «
2 2 1 y 1 y þ «3 B(3) þ «4 B(4) b2 x 2 þ a b2 x 2 þ a 2 2 2 00 2 00 i (4) (4) 5 þ B20 cos 2mx þ B02 cos 2ny þ O(« )
(5:83)
x x x (2) (2) Cx ¼ «2 C(2) 11 cos mx sin ny þ c01 cos f pffiffiffi þ c10 sin f pffiffiffi exp q pffiffiffi « « « p x p x p x (2) exp q pffiffiffi þ c(2) 01 cos f pffiffiffi þ c10 sin f pffiffiffi « « « h i h i (3) (4) 3 4 5 þ « C11 cos mx sin ny þ « C11 cos mx sin ny þ C(4) 20 sin 2mx þ O(« )
(5:84)
h i h i (3) 3 Cy ¼ «2 D(2) 11 sin mx cos ny þ « D11 sin mx cos ny h i (4) þ «4 D(4) sin mx cos ny þ D sin 2ny þ O(«5 ) 11 02
(5:85)
It can be seen that the solutions expressed by Equations 5.82 through 5.85 are quite different from those of the shell subjected to axial compression. As in the case of axial compression, all of the coefficients in Equations 5.82 through 5.85 are related and can be expressed in terms of A(2) 11 , as shown in (j) , except for A (j ¼ 3=2, 2, 3, 4) which may be deterEquation 5.78 for B(2) 00 11 mined by substituting Equations 5.82 through 5.85 into closed condition, and can be written as 1 1 4 1=4 1 (3=2) (3) lq «1=2 1 ag 5 [g g 5 g T1 ]DT, A00 ¼ g24 2 3 g24 T2 (5:86) 2 1 2 2 (3) (4) (2) ¼ A ¼ 0, A ¼ b (1 þ 2m) A A(2) n 00 00 00 11 8 Next, upon substitution of Equations 5.82 through 5.85 into the boundary condition (Equation 5.65c) and into Equation 5.66, the postbuckling equilibrium paths can be written as
2 1 (2) 2 (2) þ l A « þ (5:87) lq ¼ (3)3=4 «3=2 l(0) q q 11 4 and 2 (T) (2) 2 dq ¼ d(0) A(2) þ x dx þ dx 11 «
(5:88)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 176 9.12.2008 4:42pm Compositor Name: VBalamugundan
176
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
2 In Equations 5.87 and 5.88, A(2) « is taken as the second perturbation 11 parameter relating to the dimensionless maximum deflection. From Equation 5.82, by taking (x, y) ¼ (p=2m, p=2n), one has 2 2 A(2) 11 « ¼ Wm Q4 Wm þ
(5:89)
where Wm is the dimensionless form of maximum deflection of the shell that can be written as " # 1 h W þ Q3 « Wm ¼ C3 ½D11 * D22 * A11 * A22 * 1=4 h
(5:90)
All symbols used in Equations 5.87 through 5.90 are described in detail in Appendix M. The perturbation scheme described here is quite different from that of traditional one (Budiansky and Amazigo 1968, Amazigo 1974). As argued before, the traditional asymptotic solutions are only suitable for initial postbuckling analysis and cannot be extended to the deep postbuckling range. Equations 5.87 through 5.90 can be employed to obtain numerical results for full nonlinear postbuckling load–shortening and load–deflection curves of FGM cylindrical shells subjected to external pressure. For numerical illustrations, two sets of material mixture, as shown in Section 5.3, for FGM cylindrical shells are considered. We first examine the buckling loads for simply supported, isotropic cylindrical shells under hydrostatic pressure. The results are calculated and compared in Table 5.4 with classical shell theory results of Hutchinson and Amazigo (1967), and finite element results obtained by Kasagi and Sridharan (1993). The material properties used in this case, as given in Hutchinson and Amazigo (1967), are E ¼ 10 106 psi, and n ¼ 0.33. It can be seen that, for most cases the present results agree well with existing results. In contrast, for very short cylinders (ZB ¼ 10), the present results are lower than those of Hutchinson and Amazigo (1967) and Kasagi and Sridharan (1993). This is because in the present analysis the nonlinear prebuckling deformations are considered, and the effect of the boundary layer is great for very short cylinders. In addition, the postbuckling load–deflection curves for an isotropic interring short cylindrical shell (model no. 7) subjected to lateral pressure are compared in Figure 5.6 with the experimental results of Seleim and Roorda (1987). The computing data adopted here are L ¼ 3.5 in., R ¼ 5.04 in., h ¼ 0.08 in., and n ¼ 0.3. Then the postbuckling load–deflection curves for an isotropic long cylindrical shell subjected to lateral pressure are compared in Figure 5.7 with the experimental and FEM results of Djerroud et al. (1991). The computing data adopted here are L ¼ 150 mm, R ¼ 75 mm, h ¼ 0.16 mm, E ¼ 166.473 GPa, and n ¼ 0.34. The results calculated show that when an initial geometric imperfection was present, e.g., W*=h ¼ 0.01 for Figure 5.6 and W*=h ¼ 0.1 for Figure 5.7, the present results are in reasonable agreement with the experimental results.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 177 9.12.2008 4:42pm Compositor Name: VBalamugundan
Postbuckling of Shear Deformable FGM Shells
177
TABLE 5.4 Comparisons of Buckling Loads qcr (psi) for Perfect Isotropic Cylindrical Shells under Hydrostatic Pressure (E ¼ 10 106 psi, n ¼ 0.33) R=h
ZB
50
200
a
Hutchinson and Amazigo (1967)
Present HSDT
Kasagi and Sridharan FEM (1993)
10
1383.623 (1, 9)a
1425.0 (1, 9)
1390.0 (1, 9)
50
566.085 (1, 7)
570.2 (1, 7)
560.0 (1, 7)
100
389.620 (1, 6)
391.8 (1, 6)
385.6 (1, 6)
500
166.770 (1, 4)
167.3 (1, 4)
165.0 (1, 4)
1,000 5,000
124.984 (1, 3) 56.566 (1, 2)
125.1 (1, 3) 56.6 (1, 2)
123.5 (1, 3) 55.9 (1, 2)
10,000
37.022 (1, 2)
37.1 (1, 2)
36.65 (1, 2)
10
87.077 (1, 17)
89.07 (1, 18)
88.65 (1, 18)
50
35.167 (1, 13)
35.25 (1, 13)
35.09 (1, 13)
100
24.305 (1, 11)
24.35 (1, 11)
24.26 (1, 11)
500
10.436 (1, 8)
10.45 (1, 8)
10.42 (1, 8)
1,000
7.398 (1, 7)
7.412 (1, 7)
7.388 (1, 7)
5,000 10,000
3.416 (1, 5) 2.315 (1, 4)
3.423 (1, 5) 2.319 (1, 4)
3.412 (1, 5) 2.312 (1, 4)
The numbers in brackets indicate the buckling mode (m, n).
Tables 5.5 and 5.6 present buckling pressure qcr (in kPa) for perfect, Si3N4=SUS304 and ZrO2=Ti-6Al-4V cylindrical shells with different values of volume fraction index N ( ¼ 0.0, 0.2, 1.0, 2.0, and 5.0) subjected to lateral pressure. As in the case of axial compression, three thermal 2.0
q/qcr
1.5
Lateral pressure isotropic cylindrical shell R/h = 63, Z = 30.38 (m, n) = (1, 9)
1.0
W ∗/h = 0.0
0.5
W ∗/h = 0.01 EXP: Seleim and Roorda (1987)
0.0 0.0
0.5
1.0 W/h
1.5
FIGURE 5.6 Comparisons of postbuckling load–deflection curves for an isotropic short cylindrical shell under lateral pressure.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 178 9.12.2008 4:42pm Compositor Name: VBalamugundan
178
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 1.6
Lateral pressure isotropic cylindrical shell (n = 0.34) R/h = 468.75, Z = 1875 (m, n) = (1, 9)
1.4 1.2 q/qcr
1.0 0.8
Present
0.6
W ∗/h = 0.1 Djerroud et al. (1991) EXP FEM
0.4 0.2 0.0
2
0
4
6
8
10
W/h FIGURE 5.7 Comparisons of postbuckling load–deflection curves for an isotropic long cylindrical shell under lateral pressure.
TABLE 5.5 Comparisons of Buckling Loads qcr (kPa) for Perfect, Si3N4=SUS304 Cylindrical Shells Subjected to Lateral Pressure and under Thermal Environments (R=h ¼ 30, h ¼ 10 mm, T0 ¼ 300 K) Z
N¼0
N ¼ 0.2
N ¼ 1.0
N ¼ 2.0
N ¼ 5.0
300
13945.96a
15425.75a
17541.49a
18383.41a
19426.02a
500
b
b
b
b
14103.74b
b
11126.91b
a
19425.95a
b
14103.71b
T-ID (TU ¼ 300 K, TL ¼ 300 K)
800 (TU ¼ 500 K, TL ¼ 300 K)
300 500
10026.28
b
7969.70
a
13945.88
b
10026.25
11060.52
b
8809.92
a
15425.66
b
11060.49
12648.07
b
10031.34
a
17541.41
b
12648.04
13318.71 10524.54 18383.33 13318.68
7969.69 13945.90a
b
8809.91 15425.66a
b
10031.33 17541.38a
b
(TU ¼ 700 K,
800 300
b
10524.53 18383.30a
11126.90b 19425.91a
TL ¼ 300 K)
500
10026.28b
11060.51b
12648.04b
13318.67b
14103.70b
800
7969.72b
8809.93b
10031.34b
10524.53b
11126.90b
300
13945.88a
15270.61a
17170.87a
17919.19a
18839.65a
500
b
b
b
b
13666.14b
b
10788.86b
a
18360.08a
b
13308.43b
b
10512.42b
T-D (TU ¼ 500 K, TL ¼ 300 K)
800 (TU ¼ 700 K, TL ¼ 300 K)
300 500 800
a b
10026.25
b
7969.69
a
13945.90
b
10026.28
b
7969.72
Buckling mode (m, n) ¼ (1, 4). Buckling mode (m, n) ¼ (1, 3).
10951.44
b
8721.74
a
15143.17
b
10861.94
b
8649.31
12374.80
b
9818.30
a
16865.60
b
12150.18
b
9642.90
12971.41 10256.76 17538.02 12686.65 10036.95
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 179 9.12.2008 4:42pm Compositor Name: VBalamugundan
Postbuckling of Shear Deformable FGM Shells
179
TABLE 5.6 Comparisons of Buckling Loads qcr (kPa) for Perfect, ZrO2=Ti-6Al-4V Cylindrical Shells Subjected to Lateral Pressure and under Thermal Environments (R=h ¼ 30, h ¼ 10 mm, T0 ¼ 300 K) Z
N¼0
N ¼ 0.2
N ¼ 1.0
N ¼ 2.0
N ¼ 5.0
300 500
7133.13a 5122.51b
7941.64a 5687.28b
9095.10a 6552.62b
9557.11a 6919.87b
10131.67a 7351.27b
800
4075.35b
4534.36b
5200.24b
5470.73b
5802.46b
300
a
a
a
a
10131.70a
b
7351.34b
b
5802.50b
a
10132.36a
b
7351.80b
b
T-ID (TU ¼ 300 K, TL ¼ 300 K) (TU ¼ 500 K, TL ¼ 300 K)
500 800
(TU ¼ 700 K, TL ¼ 300 K)
300 500
7133.10
b
5122.50
b
4075.34
a
7133.09
b
5122.49
b
7941.59
b
5687.27
b
4534.36
a
7941.60
b
5687.29
b
9095.05
b
6552.62
b
5200.24
a
9095.20
b
6552.74
b
9557.07 6919.88 5470.74 9557.36 6920.09
800
4075.34
4534.37
5200.30
5470.85
5802.72b
300
7133.10a
7582.31a
8233.86a
8482.65a
8781.91a
500
b
b
b
b
6345.85b
b
5024.47b
a
8057.13a
b
5805.49b
b
4602.22b
T-D (TU ¼ 500 K, TL ¼ 300 K)
800 (TU ¼ 700 K, TL ¼ 300 K)
300 500 800
a b
5122.50
b
4075.34
a
7133.09
b
5122.49
b
4075.34
5435.24
b
4330.18
a
7381.57
b
5295.18
b
4216.22
5920.03
b
4705.55
a
7747.77
b
5566.09
b
4426.50
6118.53 4851.32 7885.16 5675.56 4506.44
Buckling mode (m, n) ¼ (1, 4). Buckling mode (m, n) ¼ (1, 3).
environmental conditions, referred to as I, II, and III, are considered. It can be found that the buckling pressure of ZrO2=Ti-6Al-4V cylindrical shell is lower than that of Si3N4=SUS304 cylindrical shell at the same loading conditions. It can be seen that a fully metallic shell (N ¼ 0) has lowest buckling load and that the buckling pressure increases as the volume fraction index N increases. It can be seen that an increase is about þ36% for the Si3N4=SUS304 cylindrical shell and about þ24% for the ZrO2=Ti-6Al-4V cylindrical shell from N ¼ 0 to N ¼ 5 at the same thermal environmental condition II under T-D case. It can also be seen that the temperature reduces the buckling pressure when the temperature dependency is put into consideration. The percentage decrease is about 4.7% for the Si3N4=SUS304 cylindrical shell and about 18% for the ZrO2=Ti-6Al-4V cylindrical shell from thermal environmental condition case I to case III under the same volume fraction distribution N ¼ 2. Figures 5.8 through 5.10 are postbuckling results for the same Si3N4=SUS304 cylindrical shell analogous to the compressive postbuckling results of Figures 5.3 through 5.5, which are for the loading case of hydrostatic pressure under environmental conditions. It can be seen that an increase in pressure is usually required to obtain an increase in deformation, and the postbuckling path is stable for both perfect and imperfect shells, and the shell structure is virtually imperfection-insensitive. This conclusion
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 180 9.12.2008 4:42pm Compositor Name: VBalamugundan
180
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 20,000
Si3/N4/SUS304 R/h = 30, Z = 500, N = 2.0 T0 = 300 K, TU = 500 K, TL = 300 K (m, n) = (1, 3) I
15,000
q (kPa)
II 10,000 I: T-ID II: T-D 5,000 W ∗/h = 0.0 W ∗/h = 0.1
0 −4
−2
0
2
4
6
8
∆x (mm)
(a)
20,000
Si3/N4/SUS304 R/h = 30, Z = 500, N = 2.0
T0 = 300 K, TU = 500 K, TL = 300 K
15,000 I
(m, n) = (1, 3)
q (kPa)
II 10,000 I: T-ID II: T-D
5,000
W ∗/h = 0.0 W ∗/h = 0.1
0 (b)
0
2
4
6
8
W/h
FIGURE 5.8 Effect of temperature dependency on the postbuckling behavior of a Si3N4=SUS304 cylindrical shell subjected to hydrostatic pressure: (a) load shortening; (b) load deflection.
was validated recently in molecular dynamics simulation tests for carbon nanotubes subjected to external pressure (Zhang and Shen 2006). To compare Figures 5.5 and 5.10, it can be seen that now the slope of the postbuckling load–shortening curve for the shell with these three values of
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 181 9.12.2008 4:42pm Compositor Name: VBalamugundan
Postbuckling of Shear Deformable FGM Shells
181
20,000 Si3/N4/SUS304 R/h = 30, Z = 500 T0 = 300 K, N = 2.0 (m, n) = (1, 3)
q (kPa)
15,000
10,000
I
II
III
I: TU = TL = 300 K II: TU = 500 K, TL = 300 K III: TU = 700 K, TL = 300 K
5,000 W ∗/h = 0.0 W ∗/h = 0.1
0
−4
−2
0
2
4
6
8
∆x (mm)
(a)
20,000 Si3/N4/SUS304 R/h = 30, Z = 500 T0 = 300 K, N = 2.0 (m, n) = (1, 3)
q (kPa)
15,000
I II III 10,000
I: TU = TL = 300 K II: TU = 500 K, TL = 300 K III: TU = 700 K, TL = 300 K
5,000
W ∗/h = 0.0 W ∗/h = 0.1
0 (b)
0
2
4
6
8
W/h
FIGURE 5.9 Effect of temperature field on the postbuckling behavior of a Si3N4=SUS304 cylindrical shell subjected to hydrostatic pressure: (a) load shortening; (b) load deflection.
volume fraction index N ( ¼ 0.2, 1.0, and 2.0) is almost the same, and the shell with N ¼ 2 has higher buckling pressure and considerable postbuckling strength. Otherwise, they lead to broadly the same conclusions as do Figures 5.3 and 5.4.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 182 9.12.2008 4:42pm Compositor Name: VBalamugundan
182
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 20,000 Si3/N4/SUS304 R/h = 30, Z = 500
T0 = 300 K, TU = 500 K, TL = 300 K
15,000
(m, n) = (1, 3)
q (kPa)
III II I
10,000
I: N = 0.2 II: N = 1.0 III: N = 2.0
5,000
W ∗/h = 0.0 W ∗/h = 0.1
0 −4
−2
0
2
4
6
8
∆x (mm)
(a)
20,000 Si3/N4/SUS304 R/h = 30, Z = 500 T0 = 300 K, TU = 500 K, TL = 300 K
15,000
(m, n) = (1, 3) III
q (kPa)
II I
10,000
I: N = 0.2 II: N = 1.0 III: N = 2.0
5,000
W ∗/h = 0.0 W ∗/h = 0.1
0
(b)
0
2
4
6
8
W/h
FIGURE 5.10 Effect of volume fraction index N on the postbuckling behavior of Si3N4=SUS304 cylindrical shells subjected to hydrostatic pressure: (a) load shortening; (b) load deflection.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 183 9.12.2008 4:42pm Compositor Name: VBalamugundan
Postbuckling of Shear Deformable FGM Shells
5.5
183
Postbuckling Behavior of FGM Cylindrical Shells under Torsion
Torsional buckling is an unsolved basic problem for cylindrical shells. This is due to the fact that the solution becomes more complicated in the case of cylindrical shells under torsion. The key issue is how to model the buckling mode of the shell under torsion. Loo (1954) and Nash (1957) suggested solutions formed as W ¼ W1 sin (pX=L) sin (nY=R þ knX=R)
(5:91)
W ¼ W1 [1 cos (2pX=L)] sin (nY=R þ knX=R)
(5:92)
where the parameter k is determined by minimizing the strain energy. Equation 5.91 was also adopted by Sofiyev and Schnak (2004) for dynamic stability analysis of FGM cylindrical shells under torsional loading. It is worthy to note that both Equations 5.91 and 5.92 cannot satisfy boundary conditions such as simply supported or clamped at the end of the cylindrical shell and can be as approximate solutions. Yamaki and Matsuda (1975) attempted to give more accurate solutions as W¼
XX
Wmn (Cm1,n þ Cmþ1,n )
(5:93a)
m¼1 n¼0
Cmn ¼ cos (mx ny) þ (1)m cos (mx ny)
(5:93b)
Since sufficient numbers of unknown parameters are retained, the solutions of Equation 5.93 could satisfy both compatibility and boundary conditions, but they do not satisfy equilibrium equation, and therefore, the Galerkin method had to be performed. Therefore, we need a clear understanding of the mechanisms of cylindrical shells subjected to torsion. We assume an FGM cylindrical shell subjected to a torque uniformly applied along the edges. Now the nonlinear differential equations in the Donnell sense are the same as in the case of axial compression, i.e., Equations ~ij() and nonlinear operator Lij() 5.15 through 5.18, where all linear operators L are defined by Equation 1.37, and the forces, moments, and higher order moments caused by elevated temperature are defined by Equation 1.28. The two end edges of the shell are assumed to be simply supported or clamped, in the present case the boundary conditions are X ¼ 0, L: W ¼ Cy ¼ 0,
Mx ¼ Px ¼ 0 (simply supported)
W ¼ Cx ¼ Cy ¼ 0
(clamped)
(5:94a) (5:94b)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 184 9.12.2008 4:42pm Compositor Name: VBalamugundan
184
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 2pR ð
N xy dY MS ¼ 0
R
(5:94c)
0
where MS ¼ 2pR2 ht s and t s is the shear stress. Also the closed (or periodicity) condition is expressed by Equation 5.20, and the average end-shortening relationship is defined by Equation 5.21. The angle of twist is defined as 1 ¼ L
! ðL ðL " @U @V 1 @2F 4 @Cx @Cy * * 2 E66 * þ A66 þ dX ¼ B66 @Y @X @Y @X L @X@Y 3h 0
þ
0
4 @2W @W @W @W @W* @W @W* * 2E þ þ þ dX 66 3h2 @X@Y @X @Y @X @Y @Y @X
(5:95)
Introducing dimensionless quantities of Equation 5.6, and * (4=3h2 )E66 * =[D11 * D22 * A11 * A22 * ]1=4 g 566 ¼ B66 * =[D11 * D22 * A11 * A22 * ]1=4 g 666 ¼ (4=3h2 )E66 * D22 * A11 * A22 * ]3=16 =p1=2 [D11 * D22 * ]1=2 ls ¼ t s L1=2 R3=4 h[D11
(5:96)
* D22 * A11 * A22 * ]5=16 (ds , g) ¼ (Dx =L, G)L1=2 R3=4 =p1=2 [D11 The boundary layer-type equations may then be written in the same forms as in the case of axial compression, i.e., «2 L11 (W) «L12 (Cx ) «L13 (Cy ) þ «g 14 L14 (F) g14 F,xx ¼ g14 b2 L(W þ W*, F) (5:97)
L21 (F) þ g 24 L22 (Cx ) þ g24 L23 (Cy ) «g24 L24 (W) þ g 24 W,xx 1 ¼ g24 b2 L(W þ 2W*, W) 2
(5:98)
«L31 (W) þ L32 (Cx ) L33 (Cy ) þ g 14 L34 (F) ¼ 0
(5:99)
«L41 (W) L42 (Cx ) þ L43 (Cy ) þ g 14 L44 (F) ¼ 0
(5:100)
The boundary conditions expressed by Equation 5.91 become x ¼ 0, p: W ¼ Cy ¼ 0, Mx ¼ Px ¼ 0
(simply supported)
W ¼ Cx ¼ Cy ¼ 0
(clamped)
(5:101a) (5:101b)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 185 9.12.2008 4:42pm Compositor Name: VBalamugundan
Postbuckling of Shear Deformable FGM Shells
1 2p
2p ð
b 0
@2F dy þ ls «5=4 ¼ 0 @x@y
185
(5:101c)
and the closed condition is expressed by Equation 5.29. It has been shown (Shen 2008c) that the effect of the boundary layer on the solution of a shell under torsion is of the order «5=4, the unit end-shortening relationship may be written in dimensionless form as 1 «5=4 ds ¼ 2 2p g 24
2p ð ðp
g224 b2 0 0
@Cy @2F @2F @Cx þ g þ g g g b 5 24 511 233 @x @y @y2 @x2
2 @ W 2@ W þ g b «g24 g611 244 @x2 @y2
þ « g224 g T1 g 5 gT2 DT dx dy 2
1 @W 2 @W @W* g 24 g 24 2 @x @x @x (5:102)
and the angle of twist may be written in dimensionless form as 1 5=4 g¼ « pg24
ðp g266 b 0
@2F @Cx @Cy þ g24 g566 b @y @x @x@y
@2W @W @W @W @W* @W @W* þ þ þ «g24 2g666 b þ g24 b dx @x@y @x @y @y @x @x @y
(5:103)
T
Note that N xy is zero-valued for an FGM cylindrical shell, so that no thermal effect remains in Equation 5.103. Having developed the theory, we are now in a position to solve Equations 5.97 through 5.100 with boundary condition (Equation 5.101) by means of a singular perturbation technique. The essence of this procedure, in the present case, is to assume that ~ j, y, «) þ W(x, ^ z, y, «) W ¼ w(x, y, «) þ W(x, ~ j, y, «) þ F(x, ^ z, y, «) F ¼ f (x, y, «) þ F(x, ~ x (x, j, y, «) þ C ^ x (x, z, y, «) Cx ¼ cx (x, y, «) þ C
(5:104)
~ y (x, j, y, «) þ C ^ y (x, z, y, «) Cy ¼ cy (x, y, «) þ C in which the regular and boundary layer solutions are expressed in the forms of perturbation expansions as
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 186 9.12.2008 4:42pm Compositor Name: VBalamugundan
186
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
w(x, y, «) ¼
X
«j=4þ1 wj=4þ1 (x, y),
f (x, y, «) ¼
j¼1
cx (x, y, «) ¼
X
X j¼0
«j=4þ1 (cx )j=4þ1 (x, y), cy (x, y, «) ¼
«j=4 fj=4 (x, y) X
j¼1
«j=4þ1 (cy )j=4þ1 (x, y)
j¼1
(5:105a) ~ j,y,«) ¼ W(x,
X
~ j=4þ1 (x, j,y), F(x,j,y, ~ «j=4þ1 W «) ¼
X
j¼1
~ x (x, j,y,«) ¼ C
X
~j=4þ2 (x,j, y) «j=4þ2 F
j¼1 j=4þ3=2
«
~ x) ~ (C j=4þ3=2 (x, j,y), Cy (x,j,y, «) ¼
X
j¼1
~ y) «j=4þ2 (C j=4þ2 (x, j,y)
j¼1
(5:105b)
^ z, y,«) ¼ W(x,
X
^ j=4þ1 (x,z,y), F(x, ^ z, y,«) ¼ «j=4þ1 W
j¼1
^ x (x, z, y, «) ¼ C
X
X
^j=4þ2 (x, z, y) «j=4þ2 F
j¼1
«
j=4þ3=2
^ x) ^ (C j=4þ3=2 (x,z,y), Cy (x, z, y,«) ¼
j¼1
X
^ y) «j=4þ2 (C j=4þ2 (x, z, y)
j¼1
(5:105c)
Substituting Equation 5.104 into Equations 5.97 and 5.100 and collecting the terms of the same order of «, we can obtain three sets of perturbation equations for the regular and boundary layer solutions, respectively. From Equation 5.105a, we assume that w0 ¼ w1=4 ¼ w1=2 ¼ w3=4 ¼ w1 ¼ 0, cx0 ¼ cx(1=2) ¼ cx(1=2) ¼ cx(3=4) ¼ cx1 ¼ 0, cy0 ¼ cy(1=4) ¼ cy(1=2) ¼ cy(3=4) ¼ cy1 ¼ 0, then the regular solutions w(x, y) and f(x, y) should satisfy O(«0 ): g14 ( f0 ),xx ¼ 0
(5:106a)
L21 ( f0 ) ¼ 0
(5:106b)
g 14 L34 ( f0 ) ¼ 0
(5:106c)
g 14 L44 ( f0 ) ¼ 0
(5:106d)
O(«5=4 ): g 14 ( f5=4 ),xx ¼ g 14 b2 [L(w5=4 , f0 )]
(5:107a)
L21 ( f5=4 ) þ g 24 L22 (cx(5=4) ) þ g24 L23 (cy(5=4) ) þ g24 (w5=4 ),xx ¼ 0
(5:107b)
L32 (cx(5=4) ) L33 (cy(5=4) ) þ g 14 L34 ( f5=4 ) ¼ 0
(5:107c)
L42 (cx(5=4) ) þ L43 (cy(5=4) ) þ g 14 L44 ( f5=4 ) ¼ 0
(5:107d)
O(«2 ): g14 L12 ( f1 ) g 14 ( f2 ),xx ¼ g 14 b2 [L(w2 þ W*, f0 ) þ L(w5=4 , f3=4 )] (5:108a) L21 ( f2 ) þ g 24 L22 (cx2 ) þ g24 L23 (cy2 ) þ g 24 (w2 ),xx ¼ 0
(5:108b)
L32 (cx2 ) L33 (cy2 ) þ g14 L34 ( f2 ) ¼ 0
(5:108c)
L42 (cx2 ) þ L43 (cy2 ) þ g14 L44 ( f2 ) ¼ 0
(5:108d)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 187 9.12.2008 4:42pm Compositor Name: VBalamugundan
Postbuckling of Shear Deformable FGM Shells
187
(5=4)
Furthermore, we assume that w5=4 ¼ A00 , along with cx(5=4) ¼ cy(5=4) ¼ 0, (0) (1) 2 (1) 2 f1=4 ¼ f1=2 ¼ f3=4 ¼ 0, f0 ¼ B(0) 00 y =2 b00 xy, and f1 ¼ B00 y =2 b00 xy. As argued in Shen (2008c), (sin mx sin ny) is no longer the solution of Equation 5.108, hence we assume the initial buckling mode to have the form (2) (2) w2 (x, y) ¼ A(2) 00 þ A11 sin (mx ky) sin ny þ a11 cos (mx ky) cos ny
þ A(2) 02 cos 2ny
(5:109)
in which k is a continuous variable and can be determined later, and the initial geometric imperfection is assumed to have the form h i (2) (5:110) W*(x, y, «) ¼ «2 m A(2) 11 sin (mx ky) sin ny þ a11 cos (mx ky) cos ny where m is the imperfection parameter. From Equation 5.108 one has y2 (2) b(2) 00 xy þ B11 sin (mx ky) sin ny 2 (2) ¼ C(2) 11 cos (mx ky) sin ny þ c11 sin (mx ky) cos ny
f2 ¼ B(2) 00 cx2
(5:111)
(2) cy2 ¼ D(2) 11 sin (mx ky) cos ny þ d11 cos (mx ky) sin ny
and B(2) 11 ¼
g 24 m2 (2) A , g210 11
a(2) 11 ¼
(2) c(2) 11 ¼ g 14 g213 B11 ,
b2 B(0) 00 ¼
g220 (2) A , g210 11
(2) C(2) 11 ¼ g 14 g211 B11
(2) D(2) 11 ¼ g 14 g212 B11 ,
g 24 m (g210 nb þ g220 kb)
, nb g2210 g2220 (1 þ m) 2
(2) d(2) 11 ¼ g 14 g214 B11
bb(0) 00 ¼
(5:112)
3
g m g220 24
2nb g2210 g2220 (1 þ m)
where gijk are given in detail in Appendix N. ~ ~ j, y) should satisfy For the boundary layer solutions, W(x, j, y) and F(x, boundary layer equations of each order, for example,
O(«9=4 ): g 110 ~9=4 @4F @j4
~ 5=4 @4W @j4
þ g24 g 220 g 310
g120
@j3
~ x(7=4) @3C
~ 5=4 @3W @j3
~ x(7=4) @3C
@j3 g 320
þ g14 g 140
g 24 g240
~ x(7=4) @2C @j2 g430
~9=4 @4F @j4
~ 5=4 @4W @j4
þ g24
þ g 14 g220
~ y(9=4) @2C @j2
¼0
g 14
@j2
~ 5=4 @2W
~9=4 @3F @j3
~9=4 @2F
@j2 ¼0
¼ 0 (5:113a)
¼0
(5:113b) (5:113c) (5:113d)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 188 9.12.2008 4:42pm Compositor Name: VBalamugundan
188
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
which leads to ~ 5=4 @4W @j4
þ 2c
~ 5=4 @2W @j2
~ 5=4 ¼ 0 þ b2 W
(5:114)
where c and b are defined by Equation 5.43. The solution of Equation 5.114 can be written as ~ 5=4 ¼ a(5=4) sin fj þ a(5=4) cos fj eqj (5:115a) W 10 01 and ~9=4 ¼ b(9=4) sin fj þ b(9=4) cos fj eqj F 10 01 ~ x(7=4) ¼ c(7=4) sin fj þ c(7=4) cos fj eqj C 10 01 ~ y(9=4) ¼ 0 C
(5:115b) (5:115c) (5:115d)
where q and f are defined by Equation 5.45. ^ ^ Similarly, the boundary layer solutions W(x, z, y) and F(x, z, y) can be obtained in the same manner. Then matching the regular solutions with the boundary layer solutions at ~ 5=4 ) ¼ (w5=4 þ W ~ 5=4 ),x ¼ 0 and the each end of the shell, e.g., let (w5=4 þ W ^ ^ (w5=4 þ W5=4 ) ¼ (w5=4 þ W5=4 ),x ¼ 0 at x ¼ 0 and x ¼ p edges, respectively, so that the asymptotic solutions satisfying the clamped boundary conditions are constructed as
x x x (5=4) (5=4) (5=4) (5=4) W ¼ «5=4 A00 A00 a01 cos f pffiffiffi þ a10 sin f pffiffiffi exp q pffiffiffi « « « px px px (5=4) (5=4) (5=4) a01 cos f pffiffiffi þ a10 sin f pffiffiffi exp q pffiffiffi A00 « « «
(2) (2) (2) þ «2 A(2) 00 þ A11 sin (mx ky) sin ny þ a11 cos (mx ky) cos ny þ A02 cos 2ny (2) (2) (2) A(2) 00 A11 sin ky sin ny þ a11 cos ky cos ny þ A02 cos 2ny x x x (2) m1 (2) ffiffi ffi ffiffi ffi ffiffi ffi p p p cos f sin f A11 sin ky sin ny a(2) þ a exp q A(2) 01 10 00 þ (1) « « « px (2) a(2) þ (1)m a(2) 11 cos ky cos ny þ A02 cos 2ny 01 cos f pffiffiffi « h px px (2) (3) (3) þ a10 sin f pffiffiffi exp q pffiffiffi þ «3 A00 þ A11 sin (mx ky) sin ny « « i h (3) (4) (4) 4 þ a(3) 11 cos (mx ky) cos ny þ A02 cos 2ny þ « A00 þ A11 sin (mx ky) sin ny (4) (4) (4) þ a(4) 11 cos (mx ky) cos ny þ A20 cos 2(mx ky) þ A02 cos 2ny þ A13 sin (mx ky) i (4) 5 (5:116) sin 3ny þ a(4) 13 cos (mx ky) cos 3ny þ A04 cos 4ny þ O(« )
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 189 9.12.2008 4:42pm Compositor Name: VBalamugundan
Postbuckling of Shear Deformable FGM Shells
189
y2 (0) y2 (1) y2 (2) b00 xyþ « B(1) b00 xy þ«2 B(2) b00 xyþB(2) 00 00 11 sin(mx ky)sin ny 2 2 2
x x x (5=4) (9=4) (9=4) þ «9=4 A00 b01 cos f pffiffiffi þb10 sin f pffiffiffi exp q pffiffiffi « « «
p x (9=4) p x px y2 (3) (5=4) (9=4) þ «3 B(3) b01 cos f pffiffiffi þ b10 sin f pffiffiffi exp a pffiffiffi b00 xyþ B(3) þ A00 00 02 cos 2ny « « « 2 (2) (2) (2) þ A(2) 00 A11 sin kysin nyþa11 cos kycos nyþ A02 cos 2ny x x x (3) (2) m1 (2) b(3) A11 sin kysin ny 01 cosf pffiffiffi þb10 sin f pffiffiffi exp a pffiffiffi þ A00 þ(1) « « « p x (3) p x p x (2) þ (1)m a(2) b(3) exp a pffiffiffi 11 cos kycos nyþA02 cos 2ny 01 cos f pffiffiffi þb10 sin f pffiffiffi « « «
2 (4) y (4) (4) (4) (4) 4 þ « B00 b00 xy þB20 cos2(mx ky)þB02 cos 2nyþB13 sin(mx ky)sin 3ny 2 i (4) þb13 cos(mx ky)cos 3ny þ O(«5 ) (5:117)
F ¼ B(0) 00
x x px px (5=4) (7=4) (5=4) (7=4) Cx ¼ « A00 c10 sin f pffiffiffi exp q pffiffiffi þ A00 c10 sin f pffiffiffi exp q pffiffiffi « « « « h i (2) (2) 2 þ « C11 cos (mx ky) sin ny þ c11 sin (mx ky) cos ny h (5=2) (2) (2) (2) þ «5=2 A(2) 00 A11 sin ky sin ny þ a11 cos cos ny þ A02 cos 2ny c10 x x m1 (2) sin f pffiffiffi exp q pffiffiffi þ A(2) A11 sin ky sin ny 00 þ ( 1) « « px px (5=2) (2) þ (1)m a(2) 11 cos ky cos ny þ A02 cos 2ny c10 sin f pffiffiffi exp q pffiffiffi « « h i (3) (3) þ «3 C11 cos (mx ky) sin ny þ c11 sin (mx ky) cos ny h (4) (4) þ «4 C(4) 11 cos (mx ky) sin ny þ c11 sin (mx ky) cos ny þ C20 sin 2(mx ky) i (4) 5 (5:118) þ C(4) 13 cos (mx ky) sin 3ny þ c13 sin (mx ky) cos 3ny þ O(« ) 7=4
h i (2) Cy ¼ «2 D(2) sin (mx ky) cos ny þ d cos (mx ky) sin ny 11 11 h i (3) (3) þ «3 D(3) sin (mx ky) cos ny þ d cos (mx ky) sin ny þ D sin 2ny 11 11 02 h (4) (4) þ «4 D(4) 11 sin (mx ky) cos ny þ d11 cos (mx ky) sin ny þ D02 sin 2ny i (4) þ D(4) sin (mx ky) cos 3ny þ d cos (mx ky) sin 3ny þ O(«5 ) (5:119) 13 13 It can be seen that the solutions expressed by Equations 5.116 through 5.119 are more complicated than those of the shell subjected to axial compression. As mentioned before, all of the coefficients in Equations 5.116 through 5.119 are related and can be expressed in terms of A(2) 11 , as shown (j) in Equation 5.112 for B(2) 11 , except for A00 (j ¼ 5=4, 2, 3, 4) which may be determined by substituting Equ ations 5.116 through 5.119 into closed condition, and can be written as
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 190 9.12.2008 4:42pm Compositor Name: VBalamugundan
190
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells (5=4)
A00
A(4) 00
g5 1 (3) lp «1=4 [g g 5 gT1 ]T, A(2) 00 ¼ A00 ¼ 0, g24 g24 T2 2 2 1 g2 þ g2 ¼ (n2 b2 þ k2 b2 ) 210 2 220 (1 þ 2m) A(2) þ n2 b2 A(2) 11 02 8 g210 ¼ 2
(5:120)
where lp is the nondimensional compressive stress defined by 2 4 (2) (2) (2) (4) lp ¼ lxs þ lxp ¼ l(0) l A « þ l A « þ p p p 11 11
(5:121)
in which lxs is the compressive stress caused by twisting. Since there is no axial load applied, the second term lxp must be zero-valued, from which k may be determined. Next, upon substitution of Equations 5.116 through 5.119 into the boundary condition (Equation 5.101c) and into Equations 5.102 and 5.103, the postbuckling equilibrium paths can be written as 2 4 (2) (4) A(2) A(2) ls ¼ l(0) s ls 11 « þ ls 11 « þ
(5:122)
2 4 (T) (2) (4) A(2) A(2) ds ¼ d(0) x dx þ dx 11 « þ dx 11 « þ
(5:123)
2 4 (4) A(2) g ¼ g(0) þ g(2) A(2) 11 « þ g 11 « þ
(5:124)
and
In Equations 5.121 through 5.124, A(2) 11 « is taken as the second perturbation parameter relating to the dimensionless maximum deflection. From Equation 5.126, by taking (x, y) ¼ (p=2m, p=2n), one has 2 A(2) 11 « ¼ Wm 6 Wm þ
(5:125)
where Wm is the dimensionless form of maximum deflection of the shell that can be written as " # 1 h W þ 5 Wm ¼ C3 ½D11 * D22 * A11 * A22 * 1=4 h
(5:126)
All symbols used in Equations 5.122 through 5.126 are also described in detail in Appendix N. Unlike the traditional perturbation scheme which only suitable for initial postbuckling analysis (Budiansky 1969, Yamaki and Kodama 1980), the present two-step perturbation technique is a powerful tool for full postbuckling analysis and can avoid the weakness of the traditional one.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 191 9.12.2008 4:42pm Compositor Name: VBalamugundan
Postbuckling of Shear Deformable FGM Shells
191
Equations 5.122 through 5.126 can be employed to obtain numerical results for full nonlinear postbuckling load–shortening, load–rotation, and load– deflection curves of FGM cylindrical shells subjected to torsion. Because of Equation 5.116, the prebuckling deformation of the shell is nonlinear. It is evident that, from Equation 5.117, there exists a shear stress along with an associate compressive stress when the shell is subjected to torsion. Such a compressive stress, no matter how small it is, will affect the buckling and postbuckling behavior of the FGM cylindrical shell as shown in Equations 5.122 through 5.124, but is missing in all the previously analyses. As a result, all the results published previously need to be reexamined. We first examine the shear stress ts and torque MS for isotropic cylindrical shell subjected to torsion. The results are calculated and compared in Tables 5.7 and 5.8 with the theoretical and experimental results obtained by Nash (1959), Ekstrom (1963), and Suer and Harris (1959). It can be seen that the present results are in good agreement with experimental results, but lower than theoretical results of Nash (1959), Ekstrom (1963), and Suer and Harris (1959), because the compressive stresses are included in the present analysis. In addition, the postbuckling equilibrium paths for a moderately thick chromium-molybdenum steel tube (specimen J1) subjected to torsion are compared in Figure 5.11 with the experimental results of Ambrose et al. (1937). The computing data adopted here are L ¼ 47.0 in., R=h ¼ 21.283, h ¼ 0.0345 in., E ¼ 30.0 106 psi, and n ¼ 0.3. The results calculated show that when an initial geometric imperfection was present, e.g., W*=h ¼ 0.12, the present results are in reasonable agreement with the experimental results.
TABLE 5.7 Comparisons of Buckling Shear Stress ts (psi) for Isotropic Cylindrical Shells Subjected to Torsion (n ¼ 0.3) E (psi)
L (in.)
R (in.)
h (in.)
Experimental Results
Theoretical Results
28.0e þ 6
38.0
4
0.0172
6590
7493
29.0e þ 6
19.85
3
0.0075
4800
Sources Nash (1959) Present Ekstrom (1963)
6835
Present
5500 4997
TABLE 5.8 Comparisons of Buckling Load MS (in.=lb.) for Isotropic Cylindrical Shells Subjected to Torsion (n ¼ 0.3) Sources Suer and Harris (1959) Present
E (psi)
L (in.)
R (in.)
h (in.)
Experimental Results
Theoretical Results
27.0e þ 6
22.5
8.75
0.0087
9048
9448 9315
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 192 9.12.2008 4:42pm Compositor Name: VBalamugundan
192
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 80 R/h = 21.283, L = 47.0 in.
ts (lb./in.2)⫻103
60
40 Present
W ∗/h = 0.0
W ∗/h = 0.12
20
Test (specimen J1) Ambrose et al. (1937)
FIGURE 5.11 Comparisons of postbuckling equilibrium paths for a chromium-molybdenum steel tube under torsion.
0
0
5 10 15 20 Shear strain e xy (in./in.) ⫻10−4
25
Tables 5.9 and 5.10 give buckling shear stress ts (in MPa) for perfect, thin (R=h ¼ 100) and moderately thick (R=h ¼ 30) Si3N4=SUS304 cylindrical shells with shell parameter Z ¼ 300 and 500 and with different values of volume fraction index N ( ¼ 0.0, 0.2, 0.5, 1.0, 2.0, and 5.0) subjected to torsion. As in TABLE 5.9 Comparisons of Buckling Shear Stress ts (MPa) for Perfect, Si3N4=SUS304 Thin Cylindrical Shells under Torsion in Thermal Environments (R=h ¼ 100, h ¼ 1 mm, T0 ¼ 300 K) Temperature Field
Z
N¼0
N ¼ 0.2
N ¼ 0.5
N ¼ 1.0
N ¼ 2.0
N ¼ 5.0
300
385.331a
426.363a
458.291a
484.561a
507.646a
536.192a
b
b
b
b
b
500
394.983b
a
534.878a
T-ID (TU ¼ 300 K, TL ¼ 300 K) (TU ¼ 600 K, TL ¼ 300 K) (TU ¼ 900 K, TL ¼ 300 K) T-D (TU ¼ 600 K, TL ¼ 300 K) (TU ¼ 900 K, TL ¼ 300 K) a b
300
278.354
a
383.483
305.946
a
424.488
329.687
a
456.849
351.366
a
483.029
372.192 505.997
500 300
b
265.161 381.509a
b
293.171 422.522a
b
319.136 455.183a
b
341.134 481.770a
b
362.272 504.820a
385.870b 533.851a
500
243.525b
273.394b
301.998b
325.142b
348.629b
371.600b
300
383.482a
418.583a
446.032a
468.821a
487.868a
511.325a
500
265.161b
289.493b
310.400b
330.543b
347.712b
366.852b
300
381.509a
412.466a
435.976a
455.119a
471.683a
491.636a
500
243.525b
275.867b
290.927b
307.265b
320.771b
334.817b
Buckling mode (m, n) ¼ (1, 5). Buckling mode (m, n) ¼ (1, 3).
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 193 9.12.2008 4:42pm Compositor Name: VBalamugundan
Postbuckling of Shear Deformable FGM Shells
193
TABLE 5.10 Comparisons of Buckling Shear Stress ts (MPa) for Perfect, Si3N4=SUS304 Moderately Thick Cylindrical Shells under Torsion in Thermal Environments (R=h ¼ 30, h ¼ 1 mm, T0 ¼ 300 K) Temperature Field
Z
N¼0
N ¼ 0.2
N ¼ 0.5
N ¼ 1.0
N ¼ 2.0
N ¼ 5.0
(TU ¼ 300 K, TL ¼ 300 K)
300
1098.005
1214.271
1308.178
1386.625
1452.187
1537.305
500
1119.316
1240.542
1342.356
1401.286
1466.755
1554.256
(TU ¼ 600 K, TL ¼ 300 K)
300
1091.096
1206.660
1300.124
1378.409
1450.407
1534.401
500
1119.366
1238.680
1326.099
1404.326
1466.855
1550.036
(TU ¼ 900 K, TL ¼ 300 K)
300
1078.803
1194.088
1289.553
1371.918
1441.044
1527.409
500
1112.694
1230.576
1326.557
1403.768
1470.904
1556.032
(TU ¼ 600 K, TL ¼ 300 K)
300
1091.096
1186.372
1267.361
1333.170
1389.529
1460.884
500
1119.366
1218.748
1299.363
1359.732
1419.135
1482.154
(TU ¼ 900 K, TL ¼ 300 K)
300 500
1078.803 1112.694
1167.604 1198.552
1240.796 1276.269
1292.551 1329.622
1343.937 1369.840
1405.144 1435.896
T-IDa
T-Da
a
Buckling mode (m, n) ¼ (1, 2).
the case of axial compression, three thermal environmental conditions, referred to as I, II, and III, are considered. For case I, TU ¼ TL ¼ 300 K, for case II, TU ¼ 600 K, TL ¼ 300 K, and for case III TU ¼ 900 K, TL ¼ 300 K. It can be seen that, for the Si3N4=SUS304 cylindrical shell, a fully metallic shell (N ¼ 0) has lowest buckling load and that the buckling load increases as the volume fraction index N increases. The increase is about þ33% and þ38% for thin cylindrical shells and about þ34% and þ32% for moderately thick cylindrical shells, with Z ¼ 300 and 500, respectively, from N ¼ 0 to N ¼ 5 at the same thermal environmental condition II under T-D case. It is found that, for a thin cylindrical shell under condition III, the buckling load under T-ID case is lower than that under T-D case when the shell has lower volume fraction index N ¼ 0.2 (see bold numbers in Table 5.9). On the other hand, for a moderately thick shell under T-ID case, the buckling load under thermal environmental condition case II is higher than that under case I when the volume fraction index N ¼ 1.0 and 2.0, and also the buckling load under case III is higher than that under case II when N ¼ 0.5 and 5.0 (see bold numbers in Table 5.10). As a result, T-ID case may lead to an incorrect solution. It can also be found that the effect of temperature field on the buckling shear stress under T-ID case is small, and it becomes pronounced when the temperature dependency is put into consideration. The temperature increase reduces the buckling load, and the percentage decrease is about 3% and 7% for thin cylindrical shells and about 4% and 7% for moderately thick cylindrical shells with Z ¼ 300 from thermal environmental condition case I to case III under the same volume fraction distribution N ¼ 0.2 and 2.0, respectively.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 194 9.12.2008 4:42pm Compositor Name: VBalamugundan
194
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
Figure 5.12 shows the postbuckling load–shortening and load–rotation curves for Si3N4=SUS304 thin cylindrical shell with volume fraction index N ¼ 2.0 subjected to torsion under thermal environmental condition II and two cases of thermoelastic properties T-ID and T-D. It can be seen that the postbuckling equilibrium path becomes lower when the temperature800 Si3N4/SUS304 R/h = 100, Z = 300 600
N = 2.0, (m, n) = (1, 5)
ts (MPa)
TU = 600 K, TL = 300 K 400
1 2
1: T-ID 2: T-D
200
W ∗/h = 0.0 W ∗/h = 0.1
0 −0.5
0.0
(a)
0.5
∆x (mm)
1.0
1.5
800 Si3N4/SUS304 R/h = 100, Z = 300
600
N = 2.0, (m, n) = (1, 5)
ts (MPa)
TU = 600 K, TL = 300 K 1
1: T-ID
400
2
2: T-D
200
W ∗/h = 0.0 W ∗/h = 0.1
0 0.0 (b)
0.1
0.2
0.3
0.4
Γ (deg)
FIGURE 5.12 Effect of temperature dependency on the postbuckling behavior of a Si3N4=SUS304 thin cylindrical shell subjected to torsion: (a) load shortening; (b) load rotation.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 195 9.12.2008 4:42pm Compositor Name: VBalamugundan
Postbuckling of Shear Deformable FGM Shells
195
dependent properties are taken into account. It can also be seen that only very weak snap-through behavior of shells occurs for perfect shells. In contrast, for imperfect shells, the postbuckling behavior is stable. Figure 5.13 shows the effect of the volume fraction index N ( ¼ 0.2, 2.0, and 5.0) on the postbuckling behavior of Si3N4=SUS304 thin cylindrical shell 800 Si3N4/SUS304 600
R/h = 100, Z = 300 (m, n) = (1, 5)
ts (MPa)
TU = 600 K, TL = 300 K 400
3 2
1: N = 0.2
1
2: N = 2.0 3: N = 5.0
200
W ∗/h = 0.0 W ∗/h = 0.1
0 −0.5
0.0
(a)
0.5 ∆x (mm)
1.0
1.5
800 Si3N4/SUS304 R/h = 100, Z = 300 600
(m, n) = (1, 5)
τs (MPa)
TU = 600 K, TL = 300 K 400
1: N = 0.2
2 1
2: N = 2.0
3
3: N = 5.0 200
W ∗/h = 0.0 W ∗/h = 0.1
(b)
0 0.0
0.1
0.2 Γ (deg)
0.3
0.4
FIGURE 5.13 Effect of volume fraction index N on the postbuckling behavior of a Si3N4=SUS304 thin cylindrical shell subjected to torsion: (a) load shortening; (b) load rotation.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 196 9.12.2008 4:42pm Compositor Name: VBalamugundan
196
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
subjected to torsion under thermal environmental condition II. It can be seen that the initial extension is almost the same when the volume fraction index N is greater than 2. It is found that the increase in the volume fraction index N yields an increase in postbuckling strength. Figure 5.14 gives the postbuckling load–shortening and load–rotation curves for the same cylindrical shell subjected to torsion under three thermal 800 Si3N4/SUS304 R/h = 100, Z = 300 600
N = 2.0, (m, n) = (1, 5)
ts (MPa)
TL = 300 K 1: TU = 300 K
400
2
3
1
2: TU = 600 K 3: TU = 900 K
200
W ∗/h = 0.0 W ∗/h = 0.1
0 −1.0
−0.5
0.0
(a)
0.5
1.0
1.5
2.0
∆x (mm)
800 Si3N4/SUS304 R/h = 100, Z = 300 600
N = 2.0, (m, n) = (1, 5)
ts (MPa)
TL = 300 K 400
1
1: TU = 300 K
2
2: TU = 600 K
3
3: TU = 900 K 200
W ∗/h = 0.0 W ∗/h = 0.1
0 0.0
(b)
0.1
0.2
0.3
0.4
Γ (deg)
FIGURE 5.14 Effect of temperature changes on the postbuckling behavior of a Si3N4=SUS304 thin cylindrical shell subjected to torsion: (a) load shortening; (b) load rotation.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 197 9.12.2008 4:42pm Compositor Name: VBalamugundan
Postbuckling of Shear Deformable FGM Shells
197
environmental conditions I, II, and II. It is evident that buckling loads reduce as the temperature increases, and postbuckling path becomes lower. Note that TU ¼ TL ¼ 300 K means uniform temperature field. The initial deflection is not zero-valued and an initial extension occurs (curves 2 and 3 in the figure) when the heat conduction is put into consideration. Figures 5.15 through 5.17 are torsional postbuckling results for moderately thick, Si3N4=SUS304 cylindrical shells analogous to the results of Figures 5.12 2500 Si3N4/SUS304
ts (MPa)
2000
1500
1000
R/h = 30, Z = 300 N = 2.0, (m, n) = (1, 2) TU = 600 K, TL= 300 K 1
1: T-ID
2
2: T-D
W ∗/h = 0.0
500
W ∗/h = 0.1 0
2
0
(a)
4 ∆x (mm)
6
8
2500 Si3N4/SUS304 2000
R/h = 30, Z = 300 N = 2.0, (m, n) = (1, 2)
ts (MPa)
TU = 600 K, TL= 300 K 1500
1: T-ID
1
2: T-D
2
1000
W ∗/h = 0.0
500
W ∗/h = 0.1 0 0.0
(b)
0.5
1.0 Γ (deg)
1.5
2.0
FIGURE 5.15 Effect of temperature dependency on the postbuckling behavior of a Si3N4=SUS304 moderately thick cylindrical shell subjected to torsion: (a) load shortening; (b) load rotation.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 198 9.12.2008 4:42pm Compositor Name: VBalamugundan
198
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 2500 Si3N4/SUS304 R/h = 30, Z = 300
ts (MPa)
2000
(m, n) = (1, 2) TU = 600 K, TL = 300 K
1500
1: N = 0.2 2: N = 2.0
1000
1
3
2
3: N = 5.0
W ∗/h = 0.0 W ∗/h = 0.1
500
0
0
2
4 ∆x (mm)
(a)
2500
6
8
Si3N4/SUS304 R/h = 30, Z = 300
2000
(m, n) = (1, 2)
ts (MPa)
TU = 600 K, TL = 300 K 1500
1: N = 0.2
3
2: N = 2.0 3: N = 5.0
1000
1
500
0
(b)
2
W ∗/h = 0.0 W ∗/h = 0.1
0
0.5
1.0
1.5
2.0
2.5
Γ (deg)
FIGURE 5.16 Effect of volume fraction index N on the postbuckling behavior of a Si3N4=SUS304 moderately thick cylindrical shell subjected to torsion.
through 5.14. To compare these figures, it can be seen that the initial endshortening and rotation of a moderately thick cylindrical shell are larger than those of a thin cylindrical shell, and no ‘‘snap-through’’ phenomenon could be found for perfect shell. Otherwise, they lead to broadly the same conclusions as do Figures 5.12 through 5.14. In these examples, we chose the shell radius-to-thickness ratio R=h ¼ 100 and 30, Z ¼ 300, and h ¼ 1.0 mm.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 199 9.12.2008 4:42pm Compositor Name: VBalamugundan
Postbuckling of Shear Deformable FGM Shells
199
2500
2000
Si3N4/SUS304
1: TU = 300 K
R/h = 30, Z = 300
2: TU = 600 K
N = 2.0, (m, n) = (1, 2)
3: TU = 900 K
ts (MPa)
TL = 300 K
1500
1
2
3
1000
500
W ∗/h = 0.0 W ∗/h = 0.1
0
0
2
4 ∆x (mm)
(a)
6
8
2500
ts (MPa)
2000
1500
Si3N4/SUS304
1: TU = 300 K
R/h = 30, Z = 300
2: TU = 600 K
N = 2.0, (m, n) = (1, 2)
3: TU = 900 K
TL = 300 K 1
2
1000
3
500
W ∗/h = 0.0 W ∗/h = 0.1
0 0.0
(b)
0.5
1.0
1.5
2.0
2.5
Γ (deg)
FIGURE 5.17 Effect of temperature changes on the postbuckling behavior of a Si3N4=SUS304 moderately thick cylindrical shell subjected to torsion: (a) load shortening; (b) load rotation.
5.6
Thermal Postbuckling Behavior of FGM Cylindrical Shells
Finally, we consider thermal buckling problem for an FGM cylindrical shell. The temperature field considered is assumed to be a uniform distribution
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 200 9.12.2008 4:42pm Compositor Name: VBalamugundan
200
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
over the shell surface and varied in the thickness direction. The material properties of FGMs are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and are assumed to be temperature-dependent. In the present case, the nonlinear differential equations in the Donnell sense are the same as in the case of axial compression, i.e., Equations 5.15 through 5.18 in ~ij() and nonlinear operator Lij() are Section 5.3, where all linear operators L defined by Equation 1.37, and the forces, moments and higher order moments caused by elevated temperature are defined by Equation 1.28. The two end edges of the shell are assumed to be simply supported or clamped, and to be restrained against expansion longitudinally while temperature is increased steadily, so that the boundary conditions are X ¼ 0, L: W ¼ U ¼ Cy ¼ 0,
Mx ¼ Px ¼ 0 (simply supported)
W ¼ U ¼ Cx ¼ Cy ¼ 0 (clamped)
(5:127a) (5:127b)
Also the closed (or periodicity) condition is expressed by Equation 5.20, and the average end-shortening relationship is defined by Equation 5.21. Introducing dimensionless quantities of Equation 5.6, and * A22 * =D11 * D22 * ]1=4 (g T1 , gT2 ) ¼ ATx , ATy R[A11 Dx R dx ¼ , lT ¼ a0 DT (5:128) L 2[D11 * D22 * A11 * A22 * ]1=4 where a0 is an arbitrary reference value, defined by Equation 3.39. Also we let "
ATx ATy
#
ðt2
DT ¼ t1
Ax Ay
DT(Z)dZ
(5:129)
where DT is the temperature rise for a uniform temperature field, and DT ¼ TU TL for the heat conduction and the details of ATx can be found in Appendix B (for DT ¼ 0) and Appendix D (for DT 6¼ 0). T It is noted that from Equation 1.28 the thermal force N xy are zero-valued, and for a uniform temperature field the thermal moments are also zerovalued. In contrast, for the heat conduction, the thermal moments are constants, hence the initial deflection of the shell with simply supported edges is not zero, but the clamped edges can prevent the transverse deflection from occurring. As a result, the uniform temperature field is considered only for simply supported shells and both uniform temperature field and heat conduction are considered for clamped shells. Then the boundary layer-type equations are in the same forms as in the case of axial compression, i.e.,
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 201 9.12.2008 4:42pm Compositor Name: VBalamugundan
Postbuckling of Shear Deformable FGM Shells
201
«2 L11 (W) «L12 (Cx ) «L13 (Cy ) þ «g 14 L14 (F) g 14 F,xx ¼ g14 b2 L(W þ W*, F) (5:130)
L21 (F) þ g24 L22 (Cx ) þ g 24 L23 (Cy ) «g24 L24 (W) þ g24 W,xx 1 ¼ g 24 b2 L(W þ 2W*, W) 2
(5:131)
«L31 (W) þ L32 (Cx ) L33 (Cy ) þ g14 L34 (F) ¼ 0
(5:132)
«L41 (W) L42 (Cx ) þ L43 (Cy ) þ g14 L44 (F) ¼ 0
(5:133)
The boundary conditions of Equation 5.127 become x ¼ 0, p: W ¼ dx ¼ Cy ¼ 0,
Mx ¼ Px ¼ 0
(simply supported)
W ¼ dx ¼ C x ¼ C y ¼ 0
(clamped)
(5:134a) (5:134b)
and the closed condition of Equation 5.20b becomes 2 2 @Cy @2F @Cx @2W 2@ F 2@ W þ g «g þ g g b g b g þ g b 5 24 220 522 24 240 622 @x @y @x2 @y2 @x2 @y2 0 # 1 @W 2 @W @W* g 24 b2 (5:135) þ «(gT2 g5 gT1 )lT dy ¼ 0 þg 24 W g24 b2 2 @y @y @y
2p ð
The unit end-shortening relationship becomes 1 dx ¼ 2 «1 4p g 24
2p ð ðp
g224 b2 0 0
@Cy @2F @2F @Cx þ g233 b g 5 2 þ g 24 g511 @x @y @y2 @x
2 @2W 2@ W þ g b «g24 g611 244 @x2 @y2
þ « g224 g T1 g 5 gT2 lT dx dy
1 @W 2 @W @W* g 24 g 24 2 @x @x @x (5:136)
From Equations 5.130 through 5.136, one can determine the thermal postbuckling behavior of perfect and imperfect FGM cylindrical shells under thermal loading by means of a singular perturbation technique. In the present case, the solutions are assumed to have the same forms as in the case of axial compression, i.e., Equations 5.31 through 5.33. All the necessary steps of the solution methodology are described below, but the solutions are not repeated here for convenience. First, the assumed solution form of Equation 5.31 is substituted into Equations 5.130 through 5.133 and collecting terms of the same order of «, we obtain three sets of perturbation equations for the regular and boundary layer solutions, respectively.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 202 9.12.2008 4:42pm Compositor Name: VBalamugundan
202
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
Then, Equations 5.37 and 5.38 are used to solve these perturbation equations of each order step by step. At each step the amplitudes of the terms wj (x, y), fj (x, y), cxj (x, y), cyj (x, y) for the regular solutions, and of the ~ xj (x, j, y), C ~ yj (x,j,y), and W ^ j (x, z, y), F ~ j (x, j, y), F ~j (x, j, y), C ^j (x,z,y), terms W ^ ^ Cxj (x, z, y), Cyj (x,z, y) for the boundary layer solutions can be determined, respectively. By matching the regular solutions with the boundary layer solutions at each end of the shell, we obtain the asymptotic solutions satisfying the clamped boundary conditions as expressed by Equations 5.46 through 5.49. Next, upon substitution of Equations 5.46 through 5.49 into the boundary condition dx ¼ 0 and into closed condition (Equation 5.135), the thermal postbuckling equilibrium path can be written as
2 4 (0) (2) (2) (4) (2) (5:137) lT ¼ C11 lT lT A11 « þlT A11 « þ In Equation 5.137, (A(2) 11 «) is taken as the second perturbation parameter relating to the dimensionless maximum deflection. From Equation 5.46, by taking (x, y) ¼ (p=2m, p=2n) one has 2 A(2) 11 « ¼ Wm 7 Wm þ
(5:138a)
where Wm is the dimensionless form of the maximum deflection of the shell that can be written as " # 1 h W Wm ¼ þ 8 (5:138b) C3 ½D11 * D22 * A11 * A22 * 1=4 h All symbols used in Equations 5.137 and 5.138 are described in detail in Appendix O. It is noted that lT(i) (i ¼ 0, 2, . . . ) are all functions of temperature and position. Equations 5.137 and 5.138 can be employed to obtain numerical results for full thermal postbuckling load–deflection curves of FGM cylindrical shells. For numerical illustrations, two sets of material mixture, as shown in Section 5.3, for FGM cylindrical shells are considered. It has been shown (Shen and Li 2002) for most moderately thick cylindrical shells that the critical value of temperature rise Tcr is very high, and in such a case the thermal buckling will not occur. For this reason, in the present examples we chose the shell radius-to-thickness ratio R=h ¼ 100 and h ¼ 10 mm. The thermal buckling loads Tcr (in K) for simply supported perfect FGM cylindrical shells with different values of volume fraction index N ( ¼ 0, 0.2, 0.5, 1.0, 2.0, and 5.0) subjected to a uniform temperature rise are calculated and compared in Table 5.11. Note that, for the thermal buckling problem, it is necessary to solve Equation 5.137 by an iterative numerical procedure, as previously shown in Section 3.3. It can be seen that, for the Si3N4=SUS304 cylindrical shells, a fully metallic shell (N ¼ 0) has the lowest buckling temperature, and the buckling temperature increases as the volume fraction index
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 203 9.12.2008 4:42pm Compositor Name: VBalamugundan
Postbuckling of Shear Deformable FGM Shells
203
TABLE 5.11 Comparisons of Buckling Temperatures DTcr (in K) for Simply Supported Perfect FGM Cylindrical Shells under Uniform Temperature Field with Temperature-Independent or Temperature-Dependent Properties (R=h ¼ 100, h ¼ 10 mm, T0 ¼ 300 K) Z
N¼0
N ¼ 0.2
N ¼ 0.5
N ¼ 1.0
N ¼ 2.0
N ¼ 5.0
Si3N4=SUS304, T-ID 300
356.4784a
394.3238a
437.9438a
488.1880a
547.4807a
622.0067a
500
351.0783b
389.0045b
431.6156b
479.9285b
536.6419b
608.9135b
800
348.2981c
385.7825c
428.1321c
476.3186c
532.9545c
604.9021c
Si3N4=SUS304, T-D 300
298.7615a
325.5322a
355.2824a
387.9230a
424.6803a
468.5131a
500
b
b
b
b
b
460.4933b
c
800
295.1862
c
293.3418
322.1722
c
351.3019
c
382.6795
c
417.8137
320.0738
349.1119
380.5313
415.7682
458.4126c
ZrO2=Ti-6Al-4V, T-ID 300
616.5239a
519.5518a
442.9970a
385.1690a
341.8219a
310.7177a
500 800
607.6771b 602.9612c
513.0004b 508.8263c
436.9333b 433.4809c
378.8795b 376.1057c
335.2085b 332.9807c
304.3159b 302.3792c
ZrO2=Ti-6Al-4V, T-D 300
540.9151a
324.5936a
259.1421a
222.1906a
197.3951a
180.4425a
500 800
b
b
b
b
b
178.2761b 177.5914c
a b c
534.2328 530.6597c
322.0919 320.4967c
257.0812 255.8761c
220.1058 219.1405c
195.2136 194.4353c
Buckling mode (m, n) ¼ (2, 7). Buckling mode (m, n) ¼ (3, 8). Buckling mode (m, n) ¼ (4, 8).
N increases. This is expected because the metallic shell has a larger value of thermal expansion coefficient af than the ceramic shell does. It is found that the increase is about þ74% under T-ID case, and about þ56% under T-D case, from N ¼ 0 to N ¼ 5. In contrast, for the ZrO2=Ti-6Al-4V cylindrical shells, the buckling temperature is decreased as the volume fraction index N increases, which confirming the finding in Shen (2004). It can also be seen that the buckling temperature reduces when the temperature dependency is put into consideration. The percentage decrease is about 22% for the Si3N4=SUS304 cylindrical shell and about 42% for the ZrO2=Ti-6Al-4V cylindrical shell under the same volume fraction distribution N ¼ 2. Table 5.12 presents buckling loads Tcr (in K) for clamped perfect FGM cylindrical shells with different values of volume fraction index N ( ¼ 0, 0.2, 0.5, 1.0, 2.0, and 5.0) under heat conduction. The temperature is now set at ambient temperature 300 K on the inner surface of the shell. It is found that, for the Si3N4=SUS304 cylindrical shell, the buckling temperature under T-D case is higher than that under T-ID case when the shell has lower volume fraction index N, and the buckling temperature is no longer increased as the volume fraction index N increases.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 204 9.12.2008 4:42pm Compositor Name: VBalamugundan
204
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
TABLE 5.12 Comparisons of Buckling Temperatures DTcr (in K) for CC Perfect FGM Cylindrical Shells under Heat Conduction with Temperature-Independent or TemperatureDependent Properties (R=h ¼ 100, h ¼ 10 mm, TL ¼ T0 ¼ 300 K) Z
N¼0
N ¼ 0.2
N ¼ 0.5
N ¼ 1.0
N ¼ 2.0
N ¼ 5.0
Si3N4=SUS304, T-ID 300 500
709.5367a 701.0275b
801.1807a 792.2409b
916.3505a 905.2246b
1046.498b 1035.337b
1184.8260b 1174.6604b
1320.546b 1310.380b
800
696.4399c
768.7820c
899.1711c
1028.960c
1168.1630c
1303.484c
Si3N4=SUS304, T-D 300 709.5367a
809.6627a
911.4340a
971.1096a
1049.300b
950.3516b
b
b
b
b
b
943.4778b
c
939.2562c
500 800
701.0276
c
696.0619
ZrO2=Ti-6Al-4V, T-ID 300 1227.975a 500 800
b
1213.289
c
1205.611
799.7127
c
899.4313
c
976.5723
c
1040.993
793.8150
892.8902
981.0917
711.9446a
514.2974a
406.1678b
329.1755b
240.9924b
b
b
b
b
238.7110b
c
704.7034
c
508.4977
c
401.0534
c
1036.795
325.7647
699.9917
505.2125
398.6858
324.0527
237.5206c
ZrO2=Ti-6Al-4V, T-D 300
1227.975a
392.0297a
284.2647a
230.3391b
191.8820b
145.4020b
500
b
b
b
b
b
144.3751b
c
143.8673c
800 a b c d
1213.289
c
1205.611
389.3818
c
387.8687
282.2638
c
281.1219
228.3273
c
227.4204
190.3960 189.6923
Buckling mode (m, n) ¼ (2, 7). Buckling mode (m, n) ¼ (3, 9). Buckling mode (m, n) ¼ (3, 8). Buckling mode (m, n) ¼ (4, 8).
Figure 5.18 shows the thermal postbuckling load–deflection curves for clamped perfect and imperfect, Si3N4=SUS304 and ZrO2=Ti-6Al-4V cylindrical shells with a volume fraction index N ¼ 0.2 under heat conduction and under two cases of thermoelastic material properties, i.e., T-ID and T-D. It can be seen that, for the ZrO2=Ti-6Al-4V shell, the thermal postbuckling equilibrium path becomes lower when the temperature-dependent properties are taken into account. It is found that, for the Si3N4=SUS304 shell, the buckling temperature and postbuckling thermal loads under T-D case are slightly higher than those under T-ID case. Figure 5.19 shows the thermal postbuckling load–deflection curves for the same two FGM cylindrical shells with different values of the volume fraction index N ( ¼ 0.2, 0.5, and 2.0) under heat conduction. It can be seen that the Si3N4=SUS304 shell has lower buckling temperature and postbuckling path when it has lower volume fraction index N. As argued before, this is not a general statement. For the ZrO2=Ti-6Al-4V cylindrical shell, the conclusion is reversed.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 205 9.12.2008 4:42pm Compositor Name: VBalamugundan
Postbuckling of Shear Deformable FGM Shells
205
1500 Si3N4/SUS304 R/h = 30, Z = 500 N = 0.2, (m, n) = (2, 7) TL = T0 = 300 K
1000
T-ID
∆T (K)
T-D
500 W ∗/h = 0.0
0
W ∗/h = 0.1
0.0
0.5
(a)
1.0
1.5
W ∗/h
1500
ZrO2/Ti-6Al-4V R/h = 100, Z = 300 N = 0.2, (m, n) = (2, 7) TL = T0 = 300 K
1000 ∆T (K)
TID
TD
500
W ∗/h = 0.0
0 0.0 (b)
W ∗/h = 0.1
0.5
W ∗/h
1.0
1.5
FIGURE 5.18 Effect of material properties on the thermal postbuckling behavior of FGM cylindrical shells under heat conduction: (a) (Si3N4=SUS304) shells; (b) (ZrO2=Ti-6Al-4V) shells.
Figure 5.20 compares the thermal postbuckling load–deflection curves for the same two FGM cylindrical shells under heat conduction and uniform temperature field. It can be seen that the buckling temperature and postbuckling thermal loads are much lower under uniform temperature field for the Si3N4=SUS304 shell. In contrast, for the ZrO2=Ti-6Al-4V shell, the
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 206 9.12.2008 4:42pm Compositor Name: VBalamugundan
206
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 2000
Si3N4 /SUS304 3
R/h = 100, Z = 300, TL=T0 = 300 K 1: N = 0.2, (m, n = 2, 7) 2: N = 0.5, (m, n = 2, 7) 3: N = 2.0, (m, n = 3, 9)
1500
∆T (K)
2 1000 1 500 W ∗/h = 0.0
0
W ∗/h = 0.1
0.0
0.5
(a)
800
W ∗/h
1.0
1.5
ZrO2 /Ti-6Al-4V
600
R/h = 100, Z = 300, TL=T0 = 300 K 1: N = 0.2, (m, n = 2, 7) 2: N = 0.5, (m, n = 2, 7) 3: N = 2.0, (m, n = 3, 9)
∆T (K)
1 400 2 3 200 W ∗/h = 0.0
0 0.0 (b)
W ∗/h = 0.1
0.5
W ∗/h
1.0
1.5
FIGURE 5.19 Effect of volume fraction index N on the thermal postbuckling behavior of FGM cylindrical shells under heat conduction: (a) (Si3N4=SUS304) shells; (b) (ZrO2=Ti-6Al-4V) shells.
buckling temperature is slightly higher, but the postbuckling thermal loads are lower under uniform temperature field. It is noted that in all these figures W*=h ¼ 0.05 denotes the dimensionless maximum initial geometric imperfection of the shell. Unlike solutions of
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 207 9.12.2008 4:42pm Compositor Name: VBalamugundan
Postbuckling of Shear Deformable FGM Shells 2500
Si3N4/SUS304 R/h = 100, Z = 300 N =2.0, TL=T0 = 300 K 1: Heat conduction, (m, n) = (3, 9) 2: Uniform temperature rise, (m, n) = (2, 7) 1
2000
∆T (K)
207
1500
W ∗/h = 0.0
1000
W ∗/h = 0.05 500
0
2
0.0
0.5
(a)
1.0
1.5
W/h
500
400
ZrO2/Ti-6Al-4V R/h = 100, Z = 300 N = 2.0, TL = T0 = 300 K 1: Heat conduction, (m, n) = (3, 9) 2: Uniform temperature rise, (m, n) = (2, 7) 1
∆T (K)
300 2 200
100
W ∗/h = 0.0 W ∗/h = 0.05
0 0.0 (b)
0.5
1.0
1.5
W/h
FIGURE 5.20 Comparisons of thermal postbuckling behavior of FGM cylindrical shells under heat conduction and uniform temperature field: (a) (Si3N4=SUS304) shells; (b) (ZrO2=Ti-6Al-4V) shells.
Mirzavand et al. (2005) and Mirzavand and Eslami (2006), no buckling temperature could be found for imperfect FGM cylindrical shells. From Figures 5.18 through 5.20, it can be seen that the thermal postbuckling equilibrium path is stable or weakly unstable and the shell structure is virtually imperfection-insensitive for both T-ID and T-D cases.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 208 9.12.2008 4:42pm Compositor Name: VBalamugundan
208
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
References Amazigo J.C. (1974), Asymptotic analysis of the buckling of externally pressurized cylinders with random imperfections, Quarterly of Applied Mathematics, 31, 429–442. Ambrose H.S., Walter, R., and Goldie, B. (1937), Torsion tests of tubes, NACA TR-601. Batdorf S.B. (1947), A simplified method of elastic-stability analysis for thin cylindrical shells, NACA TR-874. Budiansky B. (1969), Post-buckling behavior of cylinders in torsion, in Theory of Thin Shells (ed. F.I. Niordson), Springer, Berlin, pp. 212–233. Budiansky B. and Amazigo J.C. (1968), Initial post-buckling behavior of cylindrical shells under external pressure, Journal of Mathematics and Physics, 47, 223–235. Djerroud M., Chahrour I., and Reynouard J.M. (1991), Buckling of thin cylindrical shells subjected to external pressure, in Buckling of Shell Structures, on Land, in the Sea and in the Air (ed. J.F. Jullien), Elsevier Applied Science, London, pp. 190–200. Donnell L.H. (1933), Stability of thin-walled tubes under torsion, NACA Report No. 479. Donnell L.H. and Wan C.C. (1950), Effect of imperfections on buckling of thin cylinders and columns under axial compression, Journal of Applied Mechanics ASME, 17, 73–83. Dym C.L. and Hoff N.J. (1968), Perturbation solutions for the buckling problems of axially compressed thin cylindrical shells of infinite or finite length, Journal of Applied Mechanics ASME, 35, 754–762. Ekstrom R.E. (1963), Buckling of cylindrical shells under combined torsion and hydrostatic pressure, Experimental Mechanics, 3, 192–197. Hautala K.T. (1998), Buckling of axially compressed cylindrical shells made of austenitic stainless steels at ambient and elevated temperatures, Dr. Ing. thesis, University of Essen, Germany. Hutchinson J.W. and Amazigo J.C. (1967), Imperfection-sensitivity of eccentrically stiffened cylindrical shells, AIAA Journal, 5, 392–401. Kadoli R. and Ganesan N. (2006), Buckling and free vibration analysis of functionally graded cylindrical shells subjected to a temperature-specified boundary condition, Journal of Sound and Vibration, 289, 450–480. von Kármán T. and Tsien H.S. (1941), The buckling of thin cylindrical shells under axial compression, Journal of the Aerospace Sciences, 8, 303–312. Kasagi A. and Sridharan S. (1993), Buckling and postbuckling analysis of thick composite cylindrical shells under hydrostatic pressure, Composites Engineering, 3, 467–487. Koiter W.T. (1945), On the stability of elastic equilibrium (in Dutch), PhD thesis, Delft, H. J. Paris, Amsterdam; also NASA TTF-10, 833, 1967. Koiter W.T. (1963), Elastic stability and postbuckling behavior, in Nonlinear Problems (ed. R.E. Langer), University of Wisconsin Press, Madison, pp. 257–275. Loo T.-T. (1954), Effects of large deflections and imperfections on the elastic buckling of cylinders under torsion and axial compression, Proceedings of the 2nd U.S. National Congress on Applied Mechanics, University of Michigan, Ann Arbor, MI, pp. 345–357.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 209 9.12.2008 4:42pm Compositor Name: VBalamugundan
Postbuckling of Shear Deformable FGM Shells
209
Loy C.T., Lam K.Y., and Reddy J.N. (1999), Vibration of functionally graded cylindrical shells, International Journal of Mechanical Sciences, 41, 309–324. Mirzavand B. and Eslami M.R. (2006), Thermal buckling of imperfect functionally graded cylindrical shells on the Wan–Donnell model, Journal of Thermal Stresses, 29, 37–55. Mirzavand B. and Eslami M.R. (2007), Thermal buckling of simply supported piezoelectric FGM cylindrical shells, Journal of Thermal Stresses, 30, 1117–1135. Mirzavand B., Eslami M.R., and Shahsiah R. (2005), Effect of imperfections on thermal buckling of functionally graded cylindrical shells, AIAA Journal, 43, 2073–2076. Nash W.A. (1957), Buckling of initially imperfect cylindrical shells subjected to torsion, Journal of Applied Mechanics ASME, 24, 125–130. Nash W.A. (1959), An experimental analysis of the buckling of thin initially imperfect cylindrical shells subject to torsion, Proceedings of the Society for Experimental Stress Analysis, 16(2), pp. 55–68. Ng T.Y., Lam K.Y., Liew K.M., and Reddy J.N. (2001), Dynamic stability analysis of functionally graded cylindrical shells under periodic axial loading, International Journal of Solids and Structures, 38, 1295–1309. Pradhan S.C., Loy C.T., Lam K.Y., and Reddy J.N. (2000), Vibration characteristics of functionally graded cylindrical shells under various boundary conditions, Applied Acoustics, 61, 111–129. Reddy J.N. and Liu C.F. (1985), A higher-order shear deformation theory of laminated elastic shells, International Journal of Engineering Science, 23, 319–330. Seleim S.S. and Roorda J. (1987), Theoretical and experimental results on the post-buckling of ring-stiffened cylinders, Mechanics of Structures and Machines, 15, 69–87. Shahsiah R. and Eslami M.R. (2003a), Thermal buckling of functionally graded cylindrical shell, Journal of Thermal Stresses, 26, 277–294. Shahsiah R. and Eslami M.R. (2003b), Functionally graded cylindrical shell thermal instability based on improved Donnell equations, AIAA Journal, 41, 1819–1826. Shen H.-S. (2002), Postbuckling analysis of axially-loaded functionally graded cylindrical shells in thermal environments, Composites Science and Technology, 62, 977–987. Shen H.-S. (2003), Postbuckling analysis of pressure-loaded functionally graded cylindrical shells in thermal environments, Engineering Structures, 25, 487–497. Shen H.-S. (2004), Thermal postbuckling behavior of functionally graded cylindrical shells with temperature-dependent properties, International Journal of Solids and Structures, 41, 1961–1974. Shen H.-S. (2005), Postbuckling of axially-loaded FGM hybrid cylindrical shells in thermal environments, Composites Science and Technology, 65, 1675–1690. Shen H.-S. (2007), Thermal postbuckling of shear deformable FGM cylindrical shells with temperature-dependent properties, Mechanics of Advanced Materials and Structures, 14, 439–452. Shen H.-S. (2008a), Boundary layer theory for the buckling and postbuckling of an anisotropic laminated cylindrical shell, Part I: Prediction under axial compression, Composite Structures, 82, 346–361. Shen H.-S. (2008b), Boundary layer theory for the buckling and postbuckling of an anisotropic laminated cylindrical shell, Part II: Prediction under external pressure, Composite Structures, 82, 362–370.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C005 Final Proof page 210 9.12.2008 4:42pm Compositor Name: VBalamugundan
210
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
Shen H.-S. (2008c), Boundary layer theory for the buckling and postbuckling of an anisotropic laminated cylindrical shell, Part III: Prediction under torsion, Composite Structures, 82, 371–381. Shen H.-S. and Chen T.-Y. (1988), A boundary layer theory for the buckling of thin cylindrical shells under external pressure, Applied Mathematics and Mechanics, 9, 557–571. Shen H.-S. and Chen T.-Y. (1990), A boundary layer theory for the buckling of thin cylindrical shells under axial compression, in Advances in Applied Mathematics and Mechanics in China (eds. W.Z. Chien and Z.Z. Fu), Vol. 2, pp. 155–172, International Academic Publishers, Beijing, China. Shen H.-S. and Li Q.S. (2002), Thermomechanical postbuckling of shear deformable laminated cylindrical shells with local geometric imperfections, International Journal of Solids and Structures, 39, 4525–4542. Shen H.-S. and Noda N. (2005), Postbuckling of FGM cylindrical shells under combined axial and radial mechanical loads in thermal environments, International Journal of Solids and Structures, 42, 4641–4662. Shen H.-S. and Noda N. (2007), Postbuckling of pressure-loaded FGM hybrid cylindrical shells in thermal environments, Composite Structures, 77, 546–560. Sheng G.G. and Wang X. (2008), Thermal vibration, buckling and dynamic stability of functionally graded cylindrical shells embedded in an elastic medium, Journal of Reinforced Plastics and Composites, 27, 117–134. Sofiyev A.H. (2007), Vibration and stability of composite cylindrical shells containing a FG layer subjected to various loads, Structural Engineering and Mechanics, 27, 365–391. Sofiyev A.H. and Schnak, E. (2004), The stability of functionally graded cylindrical shells under linearly increasing dynamic torsional loading, Engineering Structures, 26, 1321–1331. Stein M. (1962), The effect on the buckling of perfect cylinders of prebuckling deformations and stresses induced by edge support, NASA TN D-1510. Stein M. (1964), The influence of prebuckling deformations and stresses in the buckling of perfect cylinders, NASA TRR-190. Suer H.S. and Harris L.A. (1959), The stability of thin-walled cylinders under combined torsion and external lateral or hydrostatic pressure, Journal of Applied Mechanics ASME, 26, 138–140. Woo J., Meguid S.A., Stranart J.C., and Liew K.M. (2005), Thermomechanical postbuckling analysis of moderately thick functionally graded plates and shallow shells, International Journal of Mechanical Sciences, 47, 1147–1171. Wu L., Jiang Z., and Liu J. (2005), Thermoelastic stability of functionally graded cylindrical shells, Composite Structures, 70, 60–68. Yamaki N. (1984), Elastic Stability of Circular Cylindrical Shells. Elsevier Science Publishers, B.V., North Holland, Amsterdam. Yamaki N. and Kodama S. (1980), Perturbation analysis for the postbuckling and imperfection sensitivity of circular cylindrical shells under torsion, in Theory of Shells (eds. W.T. Koiter and G.K. Mikhailov), North Holland Publishing Company, Amsterdam, pp. 635–667. Yamaki N. and Matsuda K. (1975), Postbuckling behavior of circular cylindrical shells under torsion, Ingenieur-Archiv, 45, 79–89. Zhang C.-L. and Shen H.-S. (2006), Buckling and postbuckling analysis of singlewalled carbon nanotubes in thermal environments via molecular dynamics simulation, Carbon, 44, 2608–2616.
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A001 Final Proof page 211 4.12.2008 11:09am Compositor Name: VAmoudavally
Appendix A In Equations 2.14 and 2.16 * , (F12 * þ F21 * þ 4F66 * )=2, F22 * ]=D11 *, (g110 , g112 , g114 ) ¼ (4=3h2 )[F11 * 4F11 * =3h2 , (D12 * þ 2D66 * ) 4(F12 * þ 2F66 * )=3h2 ]=D11 * (g 120 , g122 ) ¼ [D11 2 2 * þ 2D66 * ) 4(F21 * þ 2F66 * )=3h , D22 * 4F22 * =3h =D11 * (g131 , g133 ) ¼ (D12 * , (B11 * þ B22 * 2B66 * ), B12 * ]=[D11 * D22 * A11 * A22 * ]1=4 (g140 , g142 , g144 ) ¼ [B21 * þ A66 * =2, A11 * )=A22 * (g212 , g214 ) ¼ (A12 * 4E21 * =3h2 , (B11 * B66 * ) 4(E11 * -E66 * )=3h2 =[D11 * D22 * A11 * A22 * ]1=4 (g220 , g222 ) ¼ B21 * B66 * ) 4(E22 * E66 * )=3h2 , B12 * 4E12 * =3h2 =[D11 * D22 * A11 * A22 * ]1=4 (g231 , g233 ) ¼ (B22 * , (E11 * þ E22 * 2E66 * ), E12 * ]=[D11 * D22 * A11 * A22 * ]1=4 (g240 , g242 , g244 ) ¼ (4=3h2 )[½E21 *, (g31 , g41 ) ¼ (a2 =p2 ) A55 8D55 =h2 þ 16F55 =h4 , A44 8D44 =h2 þ 16F44 =h4 =D11 2 2 2 * * * * * * * (g310 , g312 ) ¼ (4=3h ) F11 4H11 =3h ,(F21 þ 2F66 ) 4(H12 þ 2H66 )=3h ]=D11 * 8F11 * =3h2 þ 16H11 * =9h4 , D66 * 8F66 * =3h2 þ 16H66 * =9h4 =D11 * (g320 , g322 ) ¼ D11 2 4 * þ D66 * ) 4(F12 * þ F21 * þ 2F66 * )=3h þ 16(H12 * þ H66 * )=9h =D11 * g331 ¼ (D12 2 2 2 * þ 2F66 * ) 4(H12 * þ 2H66 * )=3h , F22 * 4H22 * =3h =D11 * (g411 , g413 ) ¼ (4=3h ) (F12 2 4 2 4 * * * * * * * (g430 , g432 ) ¼ D66 8F66 =3h þ 16H66 =9h , D22 8F22 =3h þ 16H22 =9h =D11 1=4 * 4E11 * =3h2 , B22 * 4E22 * =3h2 =[D11 * D22 * A11 * A22 *] (g511 , g522 ) ¼ B11 * , E22 * )=½D11 * D22 * A11 * A22 * 1=4 (g611 , g622 ) ¼ (4=3h2 )(E11 * , B22 * )=[D11 * D22 * A11 * A22 * ]1=4 (g711 , g722 ) ¼ (B11
* 4F12 * =3h2 , D12 * 4F21 * =3h2 =D11 * (g812 , g821 ) ¼ D12 * , F21 * )=D11 * (g912 , g921 ) ¼ (4=3h2 )(F12
(A:1)
211
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A001 Final Proof page 212 4.12.2008 11:09am Compositor Name: VAmoudavally
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A002 Final Proof page 213 4.12.2008 11:10am Compositor Name: VAmoudavally
Appendix B In Equation 2.9 h 1 1 (am ac )(Em Ec ) þ [ac (Em Ec ) þ (am ac )Ec ] þ ac Ec 1n 2N þ 1 Nþ1 h2 N T Dx ¼ (am ac )(Em Ec ) 1n 2(N þ 1)(2N þ 1) N þ[ac (Em Ec ) þ (am ac )Ec ] 2(N þ 1)(N þ 2) 4 h 1 3 FTx ¼ (am ac )(Em Ec ) 1n 8(2N þ 1) 8(N þ 1)(2N þ 1) 3 3 þ 2(N þ 1)(2N þ 1)(2N þ 3) 2(N þ 1)(N þ 2)(2N þ 1)(2N þ 3) 1 3 þ ½ac (Em Ec ) þ (am ac )Ec 8(N þ 1) 4(N þ 1)(N þ 2) 3 6 (B:1) þ (N þ 1)(N þ 2)(N þ 3) (N þ 1)(N þ 2)(N þ 3)(N þ 4) ATx ¼
213
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A002 Final Proof page 214 4.12.2008 11:10am Compositor Name: VAmoudavally
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A003 Final Proof page 215 4.12.2008 10:40am Compositor Name: VAmoudavally
Appendix C In Equation 2.19 "
M(1) x
S(1) x
M(1) y
S(1) y
# ¼
g T3 16 DT 2 p (W=h) g T4
(g T3 g T6 ) (g T4 g T7 )
A(1) 11
(C:1)
and in Equations 2.32 through 2.34 4 2 2 2 * A(0) W ¼ p DT (g T3 m þ g T4 n b ) Q11 4 A(1) W ¼ p C11 [S11 CW1 ] 4 A(2) W ¼ p QW22
A(3) W
¼ p C11 4
h 1=4
* D22 * A11 * A22 * ½D11
1 (a313 þ a331 )[S11 CW1 ] þ g 14 g24 Q2 16
h2 * D22 * A11 * A22 * ]1=2 [D11
* A(0) MX ¼ 92416DT(g T3 QX11 )=11025 þ CX0 2 A(1) MX ¼ p QX11 2 A(2) MX ¼ p QX22
h * * * A22 * ]1=4 [D11 D22 A11
2 A(3) MX ¼ p [QX11 (a313 þ a331 ) QX33 ]
h2 * D22 * A11 * A22 * ]1=2 [D11
* A(0) MY ¼ 92416DT(g T4 QY11 )=11025 þ CY0 2 A(1) MY ¼ p QY11 2 A(2) MY ¼ p QY22
h * * * A22 * ]1=4 [D11 D22 A11
2 A(3) MY ¼ p [QY11 (a313 þ a331 ) QY33 ]
h2 * D22 * A11 * A22 * ]1=2 [D11
(C:2)
in which Q2 ¼
m4 n4 b4 þ þ C22 , g7 g6
S11 ¼ g08 þ g 14 g24 m2 n2 b2
S13 ¼ g138 þ g 14 g24 9m2 n2 b2
g135 g137 , g136
g05 g07 , g06
S31 ¼ g318 þ g 14 g24 9m2 n2 b2
g315 g317 g316
215
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A003 Final Proof page 216 4.12.2008 10:40am Compositor Name: VAmoudavally
216 QW22
Appendix C 1 g9 g05 2 2 2 g8 , ¼ g g m nb þ þ4 g6 g7 g06 3C11 14 24
* ¼ g08 * þ g 14 g24 Q11
g6 ¼ 1 þ g14 g 24 g2230
4m2 , g 41 þ g 322 4m2
g7 ¼ g224 þ g 14 g24 g 2223
g8 ¼ g140 g120 g220
4m2 , g 31 þ g320 4m2
g9 ¼ g 144 g 133 g 233
g18 ¼ g722 g812 g220
4m2 , g 31 þ g320 4m2
g19 ¼ g711 g821 g233
J13 ¼ S13 C13 , a313 ¼
* g07 g05 , g06
4n2 b2 , g31 þ g322 4n2 b2
4n2 b2 , g41 þ g432 4n2 b2 4n2 b2 , g 41 þ g432 4n2 b2
J31 ¼ S31 C31 ,
1 m2 g 14 g24 , g 7 J13 16
a331 ¼
1 n2 b2 g14 g 24 , g 6 J31 16
g05 QX11 ¼ (g110 m2 þ g921 n2 b2 ) þ g14 g 24 (g140 m2 þ g711 n2 b2 ) g06 g g g g g01 g05 04 02 05 03 þ g 821 n2 b2 þ g120 m2 g 14 g24 g14 g 24 g00 g00 g06 g00 g00 g06 2 2 2 1 m g19 n b g 8 1 þ þ CX2 , QX33 ¼ g14 g 24 (QX13 þ QX31 ) QX22 ¼ g 14 g24 g7 g6 8 16 m2 g120 g132 þ 9n2 b2 g821 g131 g135 m4
2 2 2 g140 m þ g711 9n b QX13 ¼ g14 g 24 g 7 J13 g130 g136 2 4 2 2
m g120 g134 þ 9n b g821 g133 m þ g110 m2 þ g921 9n2 b2 þ g7 J13 g130 2 2 2 n4 b4
9m g 120 g312 þ n b g 821 g311 g315 QX31 ¼ g14 g 24 g140 9m2 þ g711 n2 b2 g 6 J31 g310 g316 4 4
2 2 2 nb 9m g120 g314 þ n b g821 g313 þ g110 9m2 þ g921 n2 b2 þ g6 J31 g310
g05 QY11 ¼ g912 m2 þ g114 n2 b2 þ g14 g 24 g722 m2 þ g144 n2 b2 g06 g02 g05 g01 g05 2 g04 2 2 g03 þ g 133 n b þ g812 m g 14 g24 g14 g 24 g00 g00 g06 g00 g00 g06 2 2 2 1 m g9 n b g18 1 þ þ CY2 , QY33 ¼ g 14 g24 (QY13 þ QY31 ) QY22 ¼ g 14 g24 g7 g6 8 16 2 2 2 m4
m g g 812 132 þ 9n b g 133 g131 g135 g722 m2 þ g144 9n2 b2 QY13 ¼ g14 g 24 g 7 J13 g130 g136 4 2 2 2
m m g812 g134 þ 9n b g133 g133 þ g912 m2 þ g114 9n2 b2 þ g7 J13 g130
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A003 Final Proof page 217 4.12.2008 10:40am Compositor Name: VAmoudavally
Appendix C
217
n4 b4 9m2 g812 g312 þ n2 b2 g133 g311 g315 (g 722 9m2 þ g 144 n2 b2 ) g6 J31 g310 g316 2 2 2 n4 b4 9m g g þ n b g g 812 314 133 313 þ (g 912 9m2 þ g114 n2 b2 ) þ g6 J31 g310 g* g* g* g* * ¼ g120 m2 04 þ g821 n2 b2 03 , QY11 * ¼ g812 m2 04 þ g133 n2 b2 03 QX11 g00 g00 g00 g00 QY31 ¼ g14 g24
g00 ¼ (g31 þ g320 m2 þ g322 n2 b2 )(g41 þ g430 m2 þ g432 n2 b2 ) g2331 m2 n2 b2 g01 ¼ (g31 þ g320 m2 þ g322 n2 b2 )(g231 m2 þ g233 n2 b2 ) g331 n2 b2 (g 220 m2 þ g222 n2 b2 ) g02 ¼ (g41 þ g430 m2 þ g432 n2 b2 )(g220 m2 þ g222 n2 b2 ) g331 m2 (g 231 m2 þ g233 n2 b2 ) g03 ¼ (g31 þ g320 m2 þ g322 n2 b2 )(g41 g411 m2 g413 n2 b2 ) g331 m2 (g 31 g310 m2 g312 n2 b2 ) * ¼ (g31 þ g320 m2 þ g322 n2 b2 )(gT4 gT7 ) g331 m2 (g T3 gT6 ) g03 g04 ¼ (g41 þ g430 m2 þ g432 n2 b2 )(g31 g310 m2 g312 n2 b2 ) g331 n2 b2 (g41 g411 m2 g 413 n2 b2 ) * ¼ (g41 þ g430 m2 þ g432 n2 b2 )(gT3 gT6 ) g331 n2 b2 (g T4 gT7 ) g04 g05 ¼ (g240 m4 þ g 242 m2 n2 b þ g244 n4 b4 ) m2 (g 220 m2 þ g222 n2 b2 )g04 þ n2 b2 (g 231 m2 þ g 233 n2 b2 )g03 , g00 * þ n2 b2 (g 231 m2 þ g233 n2 b2 )g03 * m2 (g 220 m2 þ g 222 n2 b2 )g04 * ¼ , g05 g00 þ
g06 ¼ (m4 þ 2g212 m2 n2 b2 þ g 214 n4 b4 ) þ g14 g24
m2 (g 220 m2 þ g222 n2 b2 )g02 þ n2 b2 (g 231 m2 þ g233 n2 b2 )g01 g00
g07 ¼ (g140 m4 þ g 142 m2 n2 b þ g144 n4 b4 )
m2 (g 120 m2 þ g122 n2 b2 )g02 þ n2 b2 (g 131 m2 þ g 133 n2 b2 )g01 g00
g08 ¼ (g110 m4 þ 2g 112 m2 n2 b2 þ g114 n4 b4 ) m2 (g 120 m2 þ g122 n2 b2 )g04 þ n2 b2 (g 131 m2 þ g 133 n2 b2 )g03 g00 2 2 2 2 * * m (g 120 m þ g 122 n b )g04 þ n2 b2 (g 131 m2 þ g133 n2 b2 )g03 * ¼ g08 g00 þ
g130 ¼ (g31 þ g320 m2 þ g322 9n2 b2 )(g41 þ g430 m2 þ g432 9n2 b2 ) g2331 9m2 n2 b2 g131 ¼ (g31 þ g320 m2 þ g322 9n2 b2 )(g231 m2 þ g233 9n2 b2 ) g331 9n2 b2 (g 220 m2 þ g222 n2 b2 )
g132 ¼ g 41 þ g430 m2 þ g432 9n2 b2 g220 m2 þ g 222 9n2 b2 g331 m2 g231 m2 þ g233 9n2 b2
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A003 Final Proof page 218 4.12.2008 10:40am Compositor Name: VAmoudavally
218
Appendix C
g133 ¼ g31 þ g320 m2 þ g322 9n2 b2 g41 g 411 m2 g413 9n2 b2
g331 m2 g31 g310 m2 g312 9n2 b2
g134 ¼ g41 þ g430 m2 þ g432 9n2 b2 g31 g 310 m2 g312 9n2 b2
g331 9n2 b2 g41 g 411 m2 g413 9n2 b2
g135 ¼ g240 m4 þ 9g242 m2 n2 b þ 81g 244 n4 b4
m2 g220 m2 þ g222 9n2 b2 g134 þ 9n2 b2 g231 m2 þ g 233 9n2 b2 g133 , þ g130
4 g136 ¼ m þ 18g212 m2 n2 b2 þ 81g214 n4 b4
m2 g 220 m2 þ g222 9n2 b2 g132 þ 9n2 b2 g231 m2 þ g233 9n2 b2 g131 þ g14 g24 g130
g137 ¼ g140 m4 þ 9g142 m2 n2 b þ 81g 144 n4 b4
m2 g120 m2 þ g122 9n2 b2 g132 þ 9n2 b2 g131 m2 þ g 133 9n2 b2 g131 g130
4 2 2 2 g138 ¼ g110 m þ 18g112 m n b þ g 114 81n4 b4
m2 g120 m2 þ g122 9n2 b2 g134 þ 9n2 b2 g131 m2 þ g 133 9n2 b2 g133 þ g130
g310 ¼ g31 þ g320 9m2 þ g322 n2 b2 g41 þ g 430 9m2 þ g432 n2 b2 g2331 9m2 n2 b2
g311 ¼ g31 þ g320 9m2 þ g322 n2 b2 g231 9m2 þ g233 n2 b2 g331 n2 b2 g220 9m2 þ g222 n2 b2
g312 ¼ g41 þ g430 9m2 þ g432 n2 b2 g220 9m2 þ g222 n2 b2 g331 9m2 g231 9m2 þ g233 n2 b2
g313 ¼ g31 þ g320 9m2 þ g322 n2 b2 g41 g 411 9m2 g413 n2 b2
g331 9m2 g31 g310 9m2 g312 n2 b2
g314 ¼ g41 þ g430 9m2 þ g432 n2 b2 g31 g 310 9m2 g312 n2 b2
g331 n2 b2 g41 g411 9m2 g413 n2 b2
g315 ¼ 81g 240 m4 þ 9g242 m2 n2 b þ g 244 n4 b4
9m2 g220 m2 þ g222 n2 b2 g314 þ n2 b2 g231 9m2 þ g 233 n2 b2 g313 , þ g310 g316 ¼ (81m4 þ 18g212 m2 n2 b2 þ g214 n4 b4 ) þ g14 g24
9m2 (g 220 9m2 þ g222 n2 b2 )g312 þ n2 b2 (g 231 9m2 þ g233 n2 b2 )g311 , g310
g317 ¼ (81g140 m4 þ 9g142 m2 n2 b þ g144 n4 b4 )
9m2 (g 120 9m2 þ g 122 n2 b2 )g312 þ n2 b2 (g 131 9m2 þ g133 n2 b2 )g311 , g310
g318 ¼ (81g110 m4 þ 18g112 m2 n2 b2 þ g114 n4 b4 ) þ
9m2 (g 120 9m2 þ g 122 n2 b2 )g314 þ n2 b2 (g 131 9m2 þ g133 n2 b2 )g313 g310
(C:3)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A003 Final Proof page 219 4.12.2008 10:40am Compositor Name: VAmoudavally
Appendix C
219
and C11 ¼
p2 mn 16
C11 ¼ 1
(for uniform load)
(for sinusoidal load)
(C:4a) (C:4b)
in the above equations, for the case of movable edges CW1 ¼ CX0 ¼ CY0 ¼ CX2 ¼ CY2 ¼ C22 ¼ C13 ¼ C31 ¼ 0
(C:5a)
and for the case of immovable edges
CW1 ¼ g 14 gT1 m2 þ gT2 n2 b2 DT, * D22 * A11 * A22 * ]1=4 [D11 h * * * A22 * ]1=4 [D D A 11 22 11 ¼ p2 g14 (g 144 g T1 þ g722 gT2 )DT h
4 2 4 4 2 2 2 m þ g 24 n b þ 2g5 m n b ¼2 g224 g25
¼ g 14 gT1 m2 þ 9gT2 n2 b2 DT, C31 ¼ g14 (9g T1 m2 þ gT2 n2 b2 )DT
CX0 ¼ p2 g14 (g 711 g T1 þ g140 gT2 )DT CY0 C22 C13
CX2 ¼ g 711
m2 þ g5 n2 b2 g5 m2 þ g224 n2 b2 þ g , 140 g224 g25 g 224 g 25
CY2 ¼ g 144
m2 þ g5 n2 b2 g m2 þ g2 n2 b2 þ g 722 5 2 24 2 2 2 g24 g5 g 24 g 5
(C:5b)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A003 Final Proof page 220 4.12.2008 10:40am Compositor Name: VAmoudavally
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A004 Final Proof page 221
6.12.2008 3:44pm Compositor Name: DeShanthi
Appendix D In Equation 2.44, when DT 6¼ 0 ATx ¼
h TU T0 1 (am ac )(Em Ec ) 1 nf DT 2N þ 1 1 þ ac Ec þ ½ac (Em Ec ) þ Ec (am ac ) Nþ1 h TL TU 1 kmc (am ac )(Em Ec ) þ 1 nf CDT 2N þ 2 (N þ 1)(3N þ 2)kc k2mc k3mc k4mc þ 2 3 (2N þ 1)(4N þ 2)kc (3N þ 1)(5N þ 2)kc (4N þ 1)(6N þ 2)k4c k5mc 1 þ ½ac (Em Ec ) þ Ec (am ac ) Nþ2 (5N þ 1)(7N þ 2)k5c þ
kmc k2mc k3mc þ (N þ 1)(2N þ 2)kc (2N þ 1)(3N þ 2)k2c (3N þ 1)(4N þ 2)k3c k4mc k5mc þ (4N þ 1)(5N þ 2)k4c (5N þ 1)(6N þ 2)k5c 1 kmc k2mc þ ac E c þ 2 (N þ 1)(N þ 2)kc (2N þ 1)(2N þ 2)k2c
k3mc k4mc k5mc þ 3 4 (3N þ 1)(3N þ 2)kc (4N þ 1)(4N þ 2)kc (5N þ 1)(5N þ 2)k5c
(D:1)
221
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A004 Final Proof page 222
222 DTx
6.12.2008 3:44pm Compositor Name: DeShanthi
Appendix D h2 TU T0 1 1 (am ac )(Em Ec ) ¼ 1 nf DT 2(2N þ 1) (2N þ 1)(2N þ 2) 1 1 þ ½ac (Em Ec ) þ Ec (am ac ) 2(N þ 1) (N þ 1)(N þ 2) h2 TL TU 1 1 þ (am ac )(Em Ec ) 1 nf CDT 2(2N þ 2) (2N þ 2)(2N þ 3) kmc 1 1 (N þ 1)kc 2(3N þ 2) (3N þ 2)(3N þ 3) k2mc 1 1 þ (2N þ 1)k2c 2(4N þ 2) (4N þ 2)(4N þ 3) k3mc 1 1 (3N þ 1)k3c 2(5N þ 2) (5N þ 2)(5N þ 3) k4mc 1 1 þ (4N þ 1)k4c 2(6N þ 2) (6N þ 2)(6N þ 3) k5mc 1 1 (5N þ 1)k5c 2(7N þ 2) (7N þ 2)(7N þ 3) 1 1 þ ½ac (Em Ec ) þ Ec (am ac ) 2(N þ 2) (N þ 2)(N þ 3) kmc 1 1 (N þ 1)kc 2(2N þ 2) (2N þ 2)(2N þ 3) k2mc 1 1 þ (2N þ 1)k2c 2(3N þ 2) (3N þ 2)(3N þ 3) k3mc 1 1 (3N þ 1)k3c 2(4N þ 2) (4N þ 2)(4N þ 3) k4mc 1 1 þ (4N þ 1)k4c 2(5N þ 2) (5N þ 2)(5N þ 3) k5mc 1 1 (5N þ 1)k5c 2(6N þ 2) (6N þ 2)(6N þ 3) 1 kmc 1 1 þ a c Ec 12 (N þ 1)kc 2(N þ 2) (N þ 2)(N þ 3) 2 kmc 1 1 þ (2N þ 1)k2c 2(2N þ 2) (2N þ 2)(2N þ 3) k3mc 1 1 (3N þ 1)k3c 2(3N þ 2) (3N þ 2)(3N þ 3) k4mc 1 1 þ (4N þ 1)k4c 2(4N þ 2) (4N þ 2)(4N þ 3) k5mc 1 1 (D:2) (5N þ 1)k5c 2(5N þ 2) (5N þ 2)(5N þ 3)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A004 Final Proof page 223
Appendix D FTx
6.12.2008 3:44pm Compositor Name: DeShanthi
223
h4 TU T0 1 3 (am ac )(Em Ec ) ¼ 1 nf DT 8(2N þ 1) 4(2N þ 1)(2N þ 2) 3 6 þ (2N þ 1)(2N þ 2)(2N þ 3) (2N þ 1)(2N þ 2)(2N þ 3)(2N þ 4) 1 3 þ ½ac (Em Ec ) þ Ec (am ac ) 8(N þ 1) 4(N þ 1)(N þ 2) 3 6 þ (N þ 1)(N þ 2)(N þ 3) (N þ 1)(N þ 2)(N þ 3)(N þ 4) h4 TL TU 1 (am ac )(Em Ec ) þ 1 nf CDT 8(2N þ 2) 3 3 þ 4(2N þ 2)(2N þ 3) (2N þ 2)(2N þ 3)(2N þ 4) 6 kmc 1 (N þ 1)kc 8(3N þ 2) (2N þ 2)(2N þ 3)(2N þ 4)(2N þ 5) 3 3 þ 4(3N þ 2)(3N þ 3) (3N þ 2)(3N þ 3)(3N þ 4) 6 k2mc þ (2N þ 1)k2c (3N þ 2)(3N þ 3)(3N þ 4)(3N þ 5) 1 3 3 þ 8(4N þ 2) 4(4N þ 2)(4N þ 3) (4N þ 2)(4N þ 3)(4N þ 4) 6 k3mc 1 3 (3N þ 1)kc 8(5N þ 2) (4N þ 2)(4N þ 3)(4N þ 4)(4N þ 5) 3 3 þ 4(5N þ 2)(5N þ 3) (5N þ 2)(5N þ 3)(5N þ 4) 6 k4mc 1 þ 4 (4N þ 1)kc 8(6N þ 2) (5N þ 2)(5N þ 3)(5N þ 4)(5N þ 5) 3 3 þ 4(6N þ 2)(6N þ 3) (6N þ 2)(6N þ 3)(6N þ 4) 6 k5mc 1 5 (5N þ 1)kc 8(7N þ 2) (6N þ 2)(6N þ 3)(6N þ 4)(6N þ 5) 3 3 þ 4(7N þ 2)(7N þ 3) (7N þ 2)(7N þ 3)(7N þ 4) 6 þ ½ac (Em Ec ) þ Ec (am ac ) (7N þ 2)(7N þ 3)(7N þ 4)(7N þ 5)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A004 Final Proof page 224
224
6.12.2008 3:44pm Compositor Name: DeShanthi
Appendix D
1 3 3 6 þ 8(N þ 2) 4(N þ 2)(N þ 3) (N þ 2)(N þ 3)(N þ 4) (N þ 2)(N þ 3)(N þ 4)(N þ 5) kmc 1 3 3 þ (N þ 1)kc 8(2N þ 2) 4(2N þ 2)(2N þ 3) (2N þ 2)(2N þ 3)(2N þ 4) 6 k2mc 1 3 þ (2N þ 1)k2c 8(3N þ 2) 4(3N þ 2)(3N þ 3) (2N þ 2)(2N þ 3)(2N þ 4)(2N þ 5) 3 6 þ (3N þ 2)(3N þ 3)(3N þ 4) (3N þ 2)(3N þ 3)(3N þ 4)(3N þ 5) k3mc 1 3 3 þ (3N þ 1)k3c 8(4N þ 2) 4(4N þ 2)(4N þ 3) (4N þ 2)(4N þ 3)(4N þ 4) 6 k4mc 1 3 þ (4N þ 1)k4c 8(5N þ 2) 4(5N þ 2)(5N þ 3) (4N þ 2)(4N þ 3)(4N þ 4)(4N þ 5) 3 6 þ (5N þ 2)(5N þ 3)(5N þ 4) (5N þ 2)(5N þ 3)(5N þ 4)(5N þ 5) k5mc 1 3 3 þ (5N þ 1)k5c 8(6N þ 2) 4(6N þ 2)(6N þ 3) (6N þ 2)(6N þ 3)(6N þ 4) 6 1 kmc 1 þ ac Ec (6N þ 2)(6N þ 3)(6N þ 4)(6N þ 5) 80 (N þ 1)kc 8(N þ 2) 3 3 6 þ 4(N þ 2)(N þ 3) (N þ 2)(N þ 3)(N þ 4) (N þ 2)(N þ 3)(N þ 4)(N þ 5) k2mc 1 3 3 þ þ (2N þ 1)k2c 8(2N þ 2) 4(2N þ 2)(2N þ 3) (2N þ 2)(2N þ 3)(2N þ 4) 6 k3mc 1 3 (3N þ 1)k3c 8(3N þ 2) 4(3N þ 2)(3N þ 3) (2N þ 2)(2N þ 3)(2N þ 4)(2N þ 5) 3 6 þ (3N þ 2)(3N þ 3)(3N þ 4) (3N þ 2)(3N þ 3)(3N þ 4)(3N þ 5) k4mc 1 3 3 þ þ 4 (4N þ 1)kc 8(4N þ 2) 4(4N þ 2)(4N þ 3) (4N þ 2)(4N þ 3)(4N þ 4) 6 k5mc 1 (5N þ 1)k5c 8(5N þ 2) (4N þ 2)(4N þ 3)(4N þ 4)(4N þ 5) 3 3 þ 4(5N þ 2)(5N þ 3) (5N þ 2)(5N þ 3)(5N þ 4) 6 (D:3) (5N þ 2)(5N þ 3)(5N þ 4)(5N þ 5)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A005 Final Proof page 225
6.12.2008 3:46pm Compositor Name: DeShanthi
Appendix E In Equation 2.45 "
M0x
S0x
M0y
S0y
#
" 16 g T3 ¼ 2 p g T4
(g T3 g T6 ) (g T4 g T7 )
# DT
h * D22 * A11 * A22 * ]1=4 [D11
(E:1)
and in Equations 2.46 through 2.49 * D22 * A11 * A22 * ]1=4 [D11 h 4 * D22 * A11 * A22 * ]1=4 1 m n4 b4 [D11 ¼ g 14 g24 þ J13 g 7 J31 g 6 h 16 5,776 1 (gT3 g T6 )m2 g104 þ (gT4 gT7 )n2 b2 g103 ¼ CX0 16DT g g00 11,025 T3 mn
A(1) W ¼ A(3) W A(0) MX
* D22 * A11 * A22 * ]1=4 [D11 h * * * A22 * ]1=4 D [D 11 22 A11 ¼ p2 QX22 h * * * A22 * ]1=4 D A [D 11 22 11 ¼ p2 QX33 h
2 A(1) MX ¼ p QX11
A(2) MX A(3) MX
* D22 * A11 * A22 * ]1=4 [D11 2 A(0) ¼ p g (g g þ g g )DT 14 144 T1 722 T2 MY h 5,776 1 (g T3 gT6 )m2 g204 þ (g T4 g T7 )n2 b2 g203 gT4 16DT g00 11,025 mn * D22 * A11 * A22 * ]1=4 [D11 h * * * A22 * ]1=4 D A11 [D 11 22 ¼ p2 QY22 h * D22 * A11 * A22 * ]1=4 [D11 ¼ p2 QY33 h
2 A(1) MY ¼ p QY11
A(2) MY A(3) MY
225
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A005 Final Proof page 226
226
6.12.2008 3:46pm Compositor Name: DeShanthi
Appendix E
(gT3 gT6 )m2 g102 þ (gT4 gT7 )n2 b2 g101 16 2 2 2 l¼ 2 DT gT3 m þ gT4 n b g00 p mnG08 h * D22 * A11 * A22 * ]1=4 [D11 4 g g g05 Q2 ¼ 2 g14 g24 m2 n2 b2 8 þ 9 þ 4 g6 g7 g06 3p G08 4 4 4 1 m n b g14 g 24 þ þ C33 Q3 ¼ 2Q22 (E:2) g7 g6 16G08
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A006 Final Proof page 227 4.12.2008 11:11am Compositor Name: VAmoudavally
Appendix F In Equations 3.33 and 3.34 (2) (4) l(0) ¼ x , lx , l x d(2) x d(4) x
1 P (S0 , S2 , S4 ), d(0) x ¼ C00 lx dx , 4b g 14 C11 1 ¼ C11 (1 þ 2m), 32b2 1 m4 n4 b4 2 (1 þ m)2 (1 þ 2m)2 ¼ g14 g 24 C11 þ J31 J13 g224 256b2 2
(F:1)
in which (with g08, g138, g318, etc. are defined as in Appendix C) Q11 1 SP0 , S2 ¼ g 14 g24 Q2 (1 þ 2m), (1 þ m) 16 1 2 2 S4 ¼ g g C11 (C24 C44 ), 256 14 24 Q11 ¼ g08 , Q13 ¼ g138 , Q31 ¼ g318 4 m m4 n4 b4 2 2 4 4 , Q2 ¼ þ n b þ C22 , C24 ¼ 2(1 þ m) (1 þ 2m) Q2 þ J31 g224 J13 g 224 m8 n8 b8 þ C44 ¼ (1 þ m)(1 þ 2m)[2(1 þ m)2 þ (1 þ 2m)] J31 J13 g 424 S0 ¼
J13 ¼ Q13 C11 (1 þ m) Q11 C13 þ J P , J31 ¼ Q31 C11 (1 þ m) Q11 C31 J P (F:2) in the above equations, for the case of four edges movable C00 ¼ g 24 , C11 ¼ C13 ¼ m2 , C31 ¼ 9m2 , C22 ¼ 0, SP0 ¼ J P ¼ 0, 1 2 g 24 gT1 g5 gT2 DT þ g224 g P1 g5 gP2 DV dPx ¼ 2 4b g24
(F:3)
227
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A006 Final Proof page 228 4.12.2008 11:11am Compositor Name: VAmoudavally
228
Appendix F
and for the case of unloaded edges immovable C00 ¼
1 g 2 g25 g24 24
C11 ¼ m2 þ g 5 n2 b2 , C13 ¼ m2 þ 9g 5 n2 b2 , C31 ¼ 9m2 þ g5 n2 b2 , C22 ¼ 2n4 b4 , SP0 ¼ g14 n2 b2 [(g T2 g5 gT1 )DT þ (gP2 g 5 gP1 )DV], C00 dPx ¼ 2 (g T1 DT þ gP1 DV), 4b J P ¼ 8g14 m2 n2 b2 (1 þ m)[(gT2 g5 gT1 )DT þ (gP2 g 5 gP1 )DV]:
(F:4)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A007 Final Proof page 229 4.12.2008 11:11am Compositor Name: VAmoudavally
Appendix G In Equation 3.53 (2) (4) (l(0) T , l T , lT ) ¼
1 (S0 , S2 , S4 ) g 14 C11
(G:1)
in which [with g08, g138, g318, etc. are defined as in Appendix C] S0 ¼
Q11 SP0 , (1 þ m)
S2 ¼
1 g 14 Q2 (1 þ 2m), 16 g 24
S4 ¼
1 g 214 C11 (C24 C44 ) 256 g 224
SP0 ¼ g 14 n2 b2 (gP2 g5 gP1 )DV, Q11 ¼ g08 , Q13 ¼ g138 , Q31 ¼ g318 3g224 g 25 m4 þ g224 n4 b4 þ 4g 5 g 224 m2 n2 b2 Q2 ¼ g224 g 25 4 m g 224 n4 b4 2 2 C24 ¼ 2(1 þ m) (1 þ 2m) Q2 þ J13 J31 8 m g 424 n8 b8 2 þ C44 ¼ (1 þ m)(1 þ 2m)[2(1 þ m) þ (1 þ 2m)] J13 J31 J13 ¼ Q13 C11 (1 þ m) Q11 C13 g14 (1 þ m)[C11 S13 C13 S11 ]DV J31 ¼ Q31 C11 (1 þ m) Q11 C31 g14 (1 þ m)[C11 S31 C31 S11 ]DV S11 ¼ gP1 m2 þ gP2 n2 b2 , S13 ¼ g P1 m2 þ 9g P2 n2 b2 , S31 ¼ 9gP1 m2 þ g P2 n2 b2
(G:2)
in the above equations, for the case of uniform temperature rise C11 ¼ gT1 m2 þ g T2 n2 b2 , C13 ¼ g T1 m2 þ 9g T2 n2 b2 , C31 ¼ 9g T1 m2 þ g T2 n2 b2 C7 ¼ g T1 ,
C8 ¼ g T2 , C9 ¼ C10 ¼ 1:0
(G:3)
and for the case of in-plane parabolic temperature variation C11
T1 4 m2 g T2 g 5 g T1 4 4 þ 2 ¼ gT1 m þ gT2 n b þ þ T2 9 3p2 n2 p4 n4 g224 b 4 4 þ 4 4 þ n2 b2 g224 gT1 g5 gT2 2 2 3p m p m 2
2 2
229
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A007 Final Proof page 230 4.12.2008 11:11am Compositor Name: VAmoudavally
230
Appendix G
T1 4 m2 g T2 g 5 g T1 4 4 C13 ¼ g T1 m þ 9gT2 n b þ þ þ 2 T2 9 27p2 n2 81p4 n4 g224 b 4 4 þ 9n2 b2 g224 g T1 g5 g T2 þ 4 4 2 2 3p m p m 2 T 4 9m g T2 g 5 g T1 4 4 1 2 2 2 C31 ¼ 9gT1 m þ gT2 n b þ 2 þ þ T2 9 3p2 n2 p4 n4 g224 b 4 4 þ þ n2 b2 g224 g T1 g5 g T2 27p2 m2 81p4 m4 T0 4 4 gT2 g5 gT1 þ þ , C7 ¼ gT1 T1 9 5 b2 g224 T0 4 4 þ C8 ¼ gT2 þ b2 g224 g T1 g5 gT2 T1 9 5 C5 3 4 p2 3 C6 3 4 p2 3 (G:4) p 2 4 , C10 ¼ 1 p 2 4 C9 ¼ 1 24p 5 n 24p 5 m n m 2
2 2
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A008 Final Proof page 231 4.12.2008 11:12am Compositor Name: VAmoudavally
Appendix H In Equation 3.76 1 T (S0 , S2 , S4 ), d(0) x ¼ g 24 lp dx , 4b2 g 14 C11 1 ¼ C11 (1 þ 2m), 32b2 4 1 m n4 b4 2 (1 þ m)2 (1 þ 2m)2 ¼ g14 g 24 C11 þ J31 J13 g 224 256b2
(2) (4) (l(0) p , lp , l p ) ¼
d(2) x d(4) x
(H:1)
and in Equation 3.77 (2) (4) (l(0) T , l T , lT ) ¼
1 (S0 , S2 , S4 ) g 14 C11
(H:2)
in which [with g08, g138, g318, etc. are defined as in Appendix C] S0 ¼
Q11 1 g14 1 g214 , S2 ¼ Q2 (1 þ 2m), S4 ¼ C11 (C24 C44 ) (1 þ m) 16 g24 256 g224
Q11 ¼ g08 , C24 C44
Q13 ¼ g138 , Q31 ¼ g318 4 m g224 n4 b4 2 2 ¼ 2(1 þ m) (1 þ 2m) Q2 þ J 13 J31 8 m g4 n8 b8 ¼ (1 þ m)(1 þ 2m)[2(1 þ m)2 þ (1 þ 2m)] þ 24 J 13 J31
J13 ¼ Q13 C11 (1 þ m) Q11 C13 , J31 ¼ Q31 C11 (1 þ m) Q11 C31
(H:3)
in the above equations, for the case of compressive postbuckling Q2 ¼ m4 þ g 224 n4 b4 , C11 ¼ C13 ¼ m2 ,
dTx ¼
1 2 g 24 gT1 g5 gT2 DT , 4b g24 2
C31 ¼ 9m2
(H:4)
and for the case of thermal postbuckling due to heat conduction
231
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A008 Final Proof page 232 4.12.2008 11:12am Compositor Name: VAmoudavally
232
Appendix H Q2 ¼
(3g224 g25 )(m4 þ g 224 n4 b4 ) þ 4g5 g224 m2 n2 b2 g224 g25
C11 ¼ (gT1 m2 þ gT2 n2 b2 ), C31 ¼ (9gT1 m2 þ gT2 n2 b2 )
C13 ¼ (gT1 m2 þ 9gT2 n2 b2 ), (H:5)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A009 Final Proof page 233 4.12.2008 11:12am Compositor Name: VAmoudavally
Appendix I In Equation 4.19 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi v sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi u u u u 2 3 qkl (qkl ) (pkl ) qkl (qkl )2 (pkl )3 t t 3 3 þ þ þ wkl ¼ þ 2 4 27 2 4 27 (k,l) 2 (k,l) (k,l) fkl ¼ c31 wkl þ c32 wkl þ c33 (k,l) (k,l) (k,l) (cx )kl ¼ c11 wkl þ c12 fkl þ c13 ,
(k,l) (k,l) (k,l) (cy )kl ¼ c21 wkl þ c22 fkl þ c23
(I:1)
where (k,l) (k,l) (k,l) , c12 , c13 ¼ c11
1 (k,l) (k,l) b43 b32
(k,l) (k,l) b42 b33
(k,l) (k,l) (k,l) (k,l) (k,l) (k,l) (k,l) (k,l) (k,l) (k,l) b41 b33 b31 b43 , b44 b33 b34 b43 , y3 b43 y4 b33 (k,l) (k,l) (k,l) c21 , c22 , c23 ¼
1 (k,l) (k,l) b42 b33
(k,l) (k,l) b43 b32 (k,l) (k,l) (k,l) (k,l) (k,l) (k,l) (k,l) (k,l) (k,l) (k,l) b41 b32 b31 b42 , b44 b32 b34 b42 , y3 b42 y4 b32
(k,l) (k,l) (k,l) c31 , c32 , c33 ¼
1 (k,l) b24
þ
(k,l) (k,l) b22 c12
(k,l) (k,l) þ b23 c22
16g24 klb2 (k,l) (k,l) (k,l) (k,l) (k,l) (k,l) (k,l) (k,l) (k,l) , b21 þ b22 c11 þ b23 c21 , b22 c13 þ b23 c23 3p2 . (k,l) (k,l) (k,l) (k,l) (k,l) (k,l) (k,l) (k,l) (k,l) (k,l) c12 c31 þ b13 c22 c31 þ b14 c31 s(k,l) c32 d1(k,l) ¼ b12 s(k,l) c31 (k,l) (k,l) (k,l) (k,l) (k,l) (k,l) (k,l) (k,l) (k,l) (k,l) (k,l) d2(k,l) ¼ b11 þ b12 c11 þ b12 c12 c32 þ b13 c21 þ b13 c22 c32 . (k,l) (k,l) (k,l) (k,l) þb14 c32 s(k,l) c33 s(k,l) c31 . (k,l) (k,l) (k,l) (k,l) (k,l) (k,l) (k,l) d3(k,l) ¼ b12 c13 þ b13 c23 þ b14 c33 y1 s(k,l) c31 2 2 (k,l) 2 1 (k,l) (k,l) 3, qkl ¼ d3(k,l) þ d1 d2 d pkl ¼ d2(k,l) þ d1(k,l) 27 1 3
s(k,l) ¼
32g14 klb2 3p2
233
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A009 Final Proof page 234 4.12.2008 11:12am Compositor Name: VAmoudavally
234
Appendix I
(i,j)
b11 ¼ g 110 (im)4 þ 2g112 (im)2 ( jn)2 b2 þ g 114 ( jn)4 b4 g14 b2 (py m2 þ px n2 ) (i,j) b12 ¼ g 120 (im)3 þ g122 im( jn)2 b2 (i,j) (i,j) b13 ¼ g 131 (im)2 jnb þ g133 ( jn)3 b3 b14 ¼ g 14 g 140 (im)4 þ g142 (im)2 ( jn)2 b2 þ g 144 ( jn)4 b4 (i,j) b21 ¼ g24 g240 (im)4 þ g 242 (im)2 ( jn)2 b2 þ g244 ( jn)4 b4 (i,j) b22 ¼ g 24 g 220 (im)3 þ g222 (im)( jn)2 b2 (i,j) b23 ¼ g 24 g 231 (im)2 ( jn)b þ g233 ( jn)3 b3 (i,j)
b24 ¼ m4 þ 2g 212 (im)2 ( jn)2 b2 þ g214 ( jn)4 b4 (i,j)
b31 ¼ g 31 (im) g310 (im)3 g 312 (im)( jn)2 b2 (i,j)
b32 ¼ g 31 þ r320 (im)2 þ g 322 ( jn)2 b2 (i,j)
b33 ¼ g 331 (im)( jn)b (i,j) b34 ¼ g24 g220 (im)3 þ g 222 (im)( jn)2 b2 (i,j)
b41 ¼ g 41 ( jn)b g411 (im)2 ( jn)b g 413 ( jn)3 b3 (i,j)
b42 ¼ g 331 (im)( jn)b (i,j)
b43 ¼ g 41 þ r430 (im)2 þ g 432 ( jn)2 b2 (i,j) b44 ¼ g14 g231 (im)2 ( jn)b þ g 233 ( jn)3 b3 . .
(k,l) 2 (0) y1(k,l) ¼ M(0) ¼ S(0) l, y4(k,l) ¼ bS(0) k x k l þ b My l k, y3 x y
(I:2)
and in Equation 4.20 "
M(0) x
S(0) x
M(0) y
S(0) y
# ¼
"
gT3
(g T3 gT6 )
* D22 * A11 * A22 * 1=4 gT4 p2 ½D11
(g T4 gT7 )
16hT1
# (I:3)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A010 Final Proof page 235 9.12.2008 6:40pm Compositor Name: VBalamugundan
Appendix J In Equations 4.31 through 4.35 (with i, j ¼ 1, 3) ( 2 1 g 24 g T1 g 5 g T2 þ g 5 (g T2 g 5 g T1 ) T1 g 25 g 224 b2 4 X X 1 2 g 5 g 224 n2 b2 fkl g 24 (g 511 þ g 5 g 220 )mckl 2 p k¼1,3,... l¼1,3,... kl
B(0) 00 ¼
g 24 (g 233 þ g 5 g 522 )nbckl þ g 24 g 611 m2 þ g 244 n2 b2 wkl þ g 5 g 24 g 240 m2 þ g 622 n2 b2 wkl b(0) 00
)
( 2 1 g 5 g 24 g T1 g 5 g T2 þ g 224 (g T2 g 5 g T1 ) T1 g 25 g 224 4 X X 1 2 g 5 g 224 m2 fkl g 24 g 5 g 511 þ g 224 g 220 mckl 2 p k¼1,3,... l¼1,3,... kl
¼
) 2 2 2 2 3 2 2 2 g 24 g 5 g 233 þ g 24 g 522 nbckl þ g 5 g 24 g 611 m þ g 244 n b wkl þ g 24 g 240 m þ g 622 n b wkl (i,j)
(i,j) (i,j) (i,j) (i,j) (i,j) (i,j) k k31 k32 k21 (i,j) , g21 ¼ 22 (i,j) (i,j) (i,j) (i,j) (i,j) (i,j) (i,j) (i,j) k22 k33 k32 k23 k23 k32 k33 k22 (i,j) (i,j) (i,j) (i,j) (i,j) ¼ a1 þ b1 g11 þ c1 g21 g 24 m2 n2 b2 , ¼ 2 16g 214 n4 b4 þ 64g 14 g 24 g 2223 n6 b6 = g 41 þ 4g 432 n2 b2 g 24 m2 n2 b2 ¼ 4 2 16m þ 64g 14 g 24 g 2220 m6 = g 31 þ 4g 320 m2 8g 220 g 14 m3 8g 233 g 14 n3 b3 ¼ g420 , g22 ¼ g402 2 g 31 þ 4g 320 m g 41 þ 4g 432 n2 b2 2 2 2 ¼ 8g12 g 120 m3 þ 16g420 g 14 g 140 m4 þ g(1,1) 31 g 14 b m n 2 2 2 ¼ 8g22 g 133 n3 b3 þ 16g420 g 14 g 144 n4 b4 þ g(1,1) 31 g 14 b m n 2 2 2 2 2 2 2 g (m þ g 5 n b ) (2) g 24 g 5 m þ g 24 n b ¼ 24 2 , b00 ¼ 8 g 25 g 224 8 g 5 g 224 b2
g11 ¼ (i,j)
g31
g402 g420 g12 g441 g442 B(2) 00
(i,j) (i,j)
k23 k31 k33 k21
2 2 (2) 2 2 g 14 b2 m2 B(2) 00 þ n b00 2m n g 14 b (g402 þ g420 ) g311 ¼ (1,1) (1,1) (1,1) (1,1) (1,1) 2 (0) (1,1) k11 þ k12 g11 þ k13 g21 g 14 b2 m2 B(0) 00 þ n b00 þ s g331 ¼
2g 14 m2 n2 b2 g420 (3,1) (3,1) (3,1) (3,1) (3,1) 2 (0) (3,1) k11 þ k12 g11 þ k13 g21 g 14 b2 9m2 B(0) 00 þ n b00 þ s
g313 ¼
2g 14 m2 n2 b2 g402 (1,3) (1,3) (1,3) (1,3) (1,3) 2 (0) (1,3) k11 þ k12 g11 þ k13 g21 g 14 b2 m2 B(0) 00 þ 9n b00 þ s
235
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A010 Final Proof page 236 9.12.2008 6:40pm Compositor Name: VBalamugundan
236
Appendix J
(1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) b2 k13 k12 k33 k32 k13 þ b3 k13 k12 k23 k22 k13 g1 ¼ (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) k11 k23 k21 k13 k33 k32 k13 k11 k33 k31 k13 k23 k22 k13 k12 k12 (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) b2 k13 k11 k33 k31 k13 þ b3 k13 k11 k23 k21 k13 g2 ¼ (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) k12 k23 k22 k13 k33 k31 k13 k12 k33 k32 k13 k23 k21 k13 k11 k11 g3 ¼
(1,1) (1,1) k11 g1 þ k12 g2 (1,1) k13
(1,1) (1,1) , g4 ¼ a(1,1) 1 g1 þ b1 g2 þ c1 g3
(1,1) (1,1) (1,1) (1,1) (1,1) 2 (0) (1,1) g41 ¼ k11 þ k12 g11 þ k13 g21 g 14 b2 m2 B(0) 00 þ n b00 þ s h i 2 (2) 2 2 g42 ¼ g 14 b2 m2 B(2) 00 þ n b00 2m n (g402 þ g420 ) (1,1) g43 ¼ g 170 g 171 m2 g 171 n2 b2 g 80 mg(1,1) 11 g 80 nbg21
2 2 1 g441 (1 cos mp) þ cos 3mp cos mp g44 ¼ 2 p mn 3 3 2 1 (2) 2 2 þ g442 (1 cos np) þ cos 3np cos np g 14 b2 B(2) 00 m þ b00 n wmn 3 3
(J:1)
where
2 X X 1 1 1 1 1 1 2 2 2 2 2(k n þ l m ) p2 k¼1,3,... l¼1,3,... k 2k þ 4m 2k 4im l 2l þ 4n 2l 4n 1 1 1 1 (k,l) wkl þ fkl þ þ g13 klmn 2m þ k 2m k 2n þ l 2n l
s(m,n) ¼
b2 ¼ g90 m þ g 10 g(1,1) 11 ,
b3 ¼ g 90 nb þ g 10 g(1,1) 21
( J:2)
In the above equations (i,j) k11 ¼ g110 (im)4 þ 2g112 (im)2 (jn)2 b2 þ g 114 ( jn)4 b4 þ g14 g140 (im)4 þ g142 (im)2 (jn)2 b2 (i,j) (0) 2 2 þg144 ( jn)4 b4 a1 a1 g14 b2 B(0) 00 m þ b00 n (i,j) (i,j) k12 ¼ g120 (im)3 þ g122 im( jn)2 b2 þ g 14 g140 (im)4 þ g142 (im)2 ( jn)2 b2 þ g144 ( jn)4 b4 b1 (i,j) (i,j) k13 ¼ g131 (im)2 jnb þ g133 ( jn)3 b3 þ g14 g140 (im)4 þ g 142 (im)2 ( jn)2 b2 þ g144 ( jn)4 b4 c1 (i,j) (i,j) k21 ¼ g31 im g310 (im)3 g312 im( jn)2 b2 g14 g220 (im)3 þ g222 (im)( jn)2 b2 a1 (i,j) (i,j) k22 ¼ g31 þ r320 (im)2 þ g322 ( jn)2 b2 g14 g220 (im)3 þ g 222 (im)( jn)2 b2 b1 (i,j) (i,j) k23 ¼ g331 (im)( jn)b g 14 g220 (im)3 þ g222 (im)( jn)2 b2 c1 (i,j) (i,j) k31 ¼ g41 jnb g 411 (im)2 jnb g 413 ( jn)3 b3 g14 g231 (im)2 ( jn)b þ g233 ( jn)3 b3 a1 (i,j) (i,j) k32 ¼ g331 (im)( jn)b g 14 g231 (im)2 (jn)b þ g 233 ( jn)3 b3 b1 (i,j) (i,j) k33 ¼ g41 þ r430 (im)2 þ g432 ( jn)2 b2 g14 g231 (im)2 ( jn)b þ g233 ( jn)3 b3 c1 ( J:3)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A010 Final Proof page 237 9.12.2008 6:40pm Compositor Name: VBalamugundan
Appendix J
237
in which, when wkl, cxkl, cykl and fkl are considered, a1 ¼ 1, otherwise a1 ¼ 0, and g24
(i,j)
a1 ¼
m4
(
(i,j)
b1
(i,j)
c1
2
þ 2g 212 (im) ( jn)2 b2 þ g214 ( jn)4 b4
g240 (im)4 þ g 242 (im)2 ( jn)2 b2 þ g244 ( jn)4 b4 þ
2b2 X X p2 k¼1,3... l¼1,3,...
1 1 1 1 1 1 2(k2 n2 þ l2 m2 ) k 2k þ 4m 2k 4m l 2l þ 4n 2l 4n ) 1 1 1 1 þ wkl mnkl 2m þ k 2m k 2n þ l 2n l g 24 g 220 (im)3 þ g222 (im)( jn)2 b2 ¼ m4 þ 2g 212 (im)2 ( jn)2 b2 þ g214 ( jn)4 b4 g24 g231 (im)2 ( jn)b þ g233 ( jn)3 b3 ¼ ( J:4) m4 þ 2g 212 (im)2 ( jn)2 b2 þ g214 ( jn)4 b4
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A010 Final Proof page 238 9.12.2008 6:40pm Compositor Name: VBalamugundan
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A011 Final Proof page 239 4.12.2008 11:14am Compositor Name: VAmoudavally
Appendix K In Equations 4.73 through 4.76 (with other symbols can be found in Appendix J)
g1 ¼ g2 ¼ g41 ¼ g42 ¼
(1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) b3 k12 k23 k22 k13 k33 k13 k32 b2 k12 gxxk3 (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) b2 k11 k33 k13 k31 k23 k13 k21 b3 k11 gxxk3 (1,1) (1,1) (1,1) (1,1) þ k12 g11 þ k13 g21 2g 14 b2 m2 n2 (g402 þ g420 ) (1,1) k11
g14 b2 m2 gxxk1 þ n2 gxxk2 þ s(1,1)
2 2 1 g (1 cos np) þ cos 3mp cos mp 441 p2 mn 3 3 2 1 þ g442 (1 cos mp) þ cos 3np cos np 3 3
g44 ¼
(K:1)
where s
(i,j)
1 1 1 1 1 1 2(k n þ l m ) k 2k þ 4m 2k 4m l 2l þ 4n 2l 4n 1 1 1 1 þ þ «A(1) mnkl 11 2m þ k 2m k 2n þ l 2n l 1 1 1 1 1 1 2 2 2 2 þ 2(k n þ 9l m ) k 2k þ 4m 2k 4m 3l 6l þ 4n 6l 4n 1 1 1 1 þ þ «3A(3) 3mnkl 13 2m þ k 2m k 2n þ 3l 2n 3l 1 1 1 1 1 1 þ 2(9k2 n2 þ l2 m2 ) 3k 6k þ 4m 6k 4m l 2l þ 4n 2l 4n 1 1 1 1 (i,j) g31 þ þ «3A(3) 3mnkl 31 2m þ 3k 2m 3k 2n þ l 2n l
2 ¼ 2 p
2 2
2
2
239
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A011 Final Proof page 240 4.12.2008 11:14am Compositor Name: VAmoudavally
240
Appendix K
(0) 2 (2) 4 (4) 2 (2) 4 (4) gxxk1 ¼ B(0) 00 þ « B00 þ « B00 , gxxk2 ¼ b00 þ « b00 þ « b00 (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) gxxk3 ¼ k11 k22 k33 þ k12 k23 k31 þ k21 k32 k13 k23 k32 k11 (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) k22 k31 k13 k21 k12 k33 g24 gxxk4 ¼ m4 þ 2g212 (im)2 ( jn)2 b2 þ g 214 ( jn)4 b4 (i,j)
k11 ¼ g110 (im)4 þ 2g112 (im)2 ( jn)2 b2 þ g 114 ( jn)4 b4 (i,j)
þ g14 ½g140 (im)4 þ g 142 (im)2 ( jn)2 b2 þ g 144 ( jn)4 b4 a1 (i,j) a1 ¼ gxxk4 g 240 (im)4 þ g 242 (im)2 ( jn)2 b2 þ g 244 ( jn)4 b4 2b2 1 1 1 þ gxxk4 2 2(k2 n2 þ l2 m2 ) p k 2k þ 4m 2k 4m 1 1 1 1 1 1 1 mnkl þ þ «A(1) 11 l 2l þ 4n 2l 4n 2m þ k 2m k 2n þ l 2n l 1 1 1 1 1 1 þ 2(k2 n2 þ 9l2 m2 ) k 2k þ 4m 2k 4m 3l 6l þ 4n 6l 4n 1 1 1 1 3mnkl þ þ «3A(3) 13 2m þ k 2m k 2n þ 3l 2n 3l 1 1 1 1 1 1 þ 2(9k2 n2 þ l2 m2 ) 3k 6k þ 4m 6k 4m l 2l þ 4n 2l 4n 1 1 1 1 3 (3) (K:2) 3mnkl þ þ « A31 2m þ 3k 2m 3k 2n þ l 2n l
and A(1) 11 « may be solved from 2 4 (2) (1) (4) (1) li ¼ l(0) þ l A « þ l A « þ 11 11 i i i
(i ¼ p, T)
in which (with other symbols can be found in Appendices F and G) (2) (4) l(0) ¼ p , lp , lp
1 1 (0) (2) (4) (S , S , S ), l , l , l (S0 , S2 , S4 ) ¼ 0 2 4 T T T 2 g 4b g 14 C11 14 C11 Q11 1 g 14 1 g 214 , S2 ¼ Q2 (1 þ 2m), S4 ¼ C11 C44 S0 ¼ (1 þ m) 16 g 24 256 g 224 3 3 m4 n4 b4 3 (3) «3 A(3) C11 A(1) C11 A(1) (K:3) 13 ¼ 11 « , « A31 ¼ 11 « 16J13 16J31
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A012 Final Proof page 241
6.12.2008 3:49pm Compositor Name: DeShanthi
Appendix L In Equations 5.51 through 5.54 1 m4 (1 þ m) 1 m2 g11 2g5 (2) g g « g24 g14 þ l Q1 ¼ C3 14 24 16n2 b2 g09 g06 32n2 b2 g09 g 24 p Q2 ¼
1 2g ½ðgT2 g5 g T1 ÞDT þ 5 l(0) g24 p g 24
( 1 g24 m2 g05 þ (1 þ m)g07 ¼ «1 þ g 24 2 (1 þ m)g06 (1 þ m)2 g06 1 g05 (1 þ m)g07 m(2 þ m)g05 « g08 þ g14 g 24 þ g06 g 14 (1 þ m)m2 (1 þ m)2 m g05 g05 1þ « 2 g m4 (1 þ m)m2 (1 þ m) 14 g05 (1 þ m)g07 þ g05 g08 þ g14 g 24 (2 þ m) «2 g06 (1 þ m)2 1 m6 (2 þ m) 1 m4 2 g 14 g224 ¼ « þ g g 14 24 2g09 g06 8 2g09 g206 g05 g07 1 g11 þ (1 þ m) þ g12 (1 þ m) g06 g06 1þm 2 1 1 g07 2 2 m g11 g05 g 24 m g13 (1 þ 2m)« þ g14 g 24 g12 « 2g09 g06 1 þ m g06 4 " # m2 g05 2(1 þ m)2 (1 þ 2m) m g05 þ g14 g224 g14 þ 2 2g09 g06 1 þ m g06 2(1 þ m) m2 n4 b4 S2 « (2 þ m)« þ g24 g06 S1
l(0) p
l(2) p
1 2 3 m10 (1 þ m) S3 1 g g « 128 14 24 g209 g306 S13 2 1 2 g 25 (2) g5 b11 1=2 2 1=2 « l lp ¼ g 224 qb01 fb(2) þ « p 10 g24 p g24 2pg224 q 1 2 ¼ g24 gT1 g 5 g T2 DT 2g24
l(4) p ¼ d(0) x d(T) x
241
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A012 Final Proof page 242
6.12.2008 3:49pm Compositor Name: DeShanthi
242 d(2) x d(4) p
Appendix L 1 g205 3 2 2 ¼ m (1 þ 2m)« 2g05 « þ 2 « m 16 ( 2 ) 1 b11 2 2 m8 (1 þ m)2 3=2 2 S4 2 4 4 g g ¼ « þ m n b (1 þ m) «3 S1 128 32pq 14 24 n4 b4 g209 g206
(L:1)
in the above equations S1 ¼ g06 (1 þ m) 4m2 C2 g10 , S13 ¼ g136 C9 g06 (1 þ m) S2 ¼ g06 5 þ 11m þ 4m2 þ 8m4 (1 þ m)(2 þ m)g10 S3 ¼ g136 6 þ 6m þ m2 þ g06 6 m2 (1 þ m) S4 ¼ g06 (1 þ 2m) þ 8m4 (1 þ m)g10 g05 q (1) g17 , b(2) «, a(1) 01 ¼ 1, a10 ¼ 01 ¼ g 24 g19 , 2 m f 4 1 (1) 2 2 (1) 2 2 4 a10 f b þ a10 2qfc þ 2q q f þ f ¼ b
C3 ¼ 1 b11
b(2) 10 ¼ g 24
q g20 f (L:2)
and g00 ¼ g 31 þ g 320 m2 þ g 322 n2 b2 g41 þ g430 m2 þ g432 n2 b2 g2331 m2 n2 b2 g01 ¼ g 41 þ g 430 m2 þ g 432 n2 b2 g220 m2 þ g222 n2 b2 g331 n2 b2 g 231 m2 þ g 233 n2 b2 g02 ¼ g 31 þ g 320 m2 þ g 322 n2 b2 g231 m2 þ g233 n2 b2 g331 m2 g 220 m2 þ g 222 n2 b2 g03 ¼ g 31 þ g 320 m2 þ g 322 n2 b2 g41 g411 m2 g413 n2 b2 g 331 m2 g31 g310 m2 g312 n2 b2 g04 ¼ g 41 þ g 430 m2 þ g 432 n2 b2 g31 g310 m2 g312 n2 b2 g 331 n2 b2 g41 g411 m2 g413 n2 b2 g05 ¼ g 240 m4 þ 2g 242 m2 n2 b2 þ g 244 n4 b4 m2 g 220 m2 þ g 222 n2 b2 g04 þ n2 b2 g231 m2 þ g233 n2 b2 g03 þ g00
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A012 Final Proof page 243
6.12.2008 3:49pm Compositor Name: DeShanthi
Appendix L
243
g06 ¼ m4 þ 2g212 m2 n2 b2 þ g 214 n4 b4 m2 g 220 m2 þ g 222 n2 b2 g01 þ n2 b2 g231 m2 þ g233 n2 b2 g02 þ g 14 g24 g00 4 2 2 2 4 4 g07 ¼ g140 m þ 2g142 m n b þ g 144 n b m2 g 120 m2 þ g 122 n2 b2 g01 þ n2 b2 g 131 m2 þ g 133 n2 b2 g02 g00 4 2 2 2 g08 ¼ g110 m þ 2g112 m n b þ g 114 n4 b4 m2 g 120 m2 þ g 122 n2 b2 g04 þ n2 b2 g 131 m2 þ g 133 n2 b2 g03 þ g00 4m2 g10 ¼ 1 þ g14 g 24 g2220 g 31 þ g320 4m2 g244 g41 þ g 432 4n2 b2 þ g 233 g 41 g413 4n2 b2 g12 ¼ g214 g 41 þ g432 4n2 b2 þ g14 g 24 g2233 4n2 b2 g214 g41 g 413 4n2 b2 g 14 g24 g 233 g 244 4n2 b2 *¼ g12 g214 g41 þ g 432 4n2 b2 þ g 14 g24 g 2233 4n2 b2 * þ g14 g 24 g144 g12 g09 ¼ g114 þ g133 g12 g 41 þ g432 4n2 b2 g214 g41 þ g 432 4n2 b2 þ g 14 g24 g 2233 4n2 b2 g 144 g 41 þ g432 4n2 b2 g133 g233 4n2 b2 ¼ g214 g41 þ g 432 4n2 b2 þ g 14 g24 g 2233 4n2 b2 g05 ¼ g14 (1 þ 2m) þ 2 g06 2 ¼ g31 þ g 320 m þ g 322 9n2 b2 g 41 þ g430 m2 þ g432 9n2 b2 g2331 9m2 n2 b2 ¼ g41 þ g 430 m2 þ g 432 9n2 b2 g 220 m2 þ g 222 9n2 b2 2 g 331 9n2 b2 g 231 m2 þ g 233 9n2 b ¼ g31 þ g 320 m2 þ g 322 9n2 b2 g 231 m2 þ g 233 9n2 b2 g 331 m2 g220 m2 þ g 222 9n2 b2 ¼ m4 þ 18g212 m2 n2 b2 þ g 214 81n4 b4 m2 g 220 m2 þ g 222 9n2 b2 g131 þ 9n2 b2 g 231 m2 þ g 233 9n2 b2 g132 þ g 14 g24 g130
g13 ¼ g14 g11 g130 g131 g132 g136
g15 ¼ g220 ðg310 þ g120 Þ g320 ðg140 þ g240 Þ g16 ¼ g320 þ g14 g 24 g2220 ðg320 g110 g310 g120 Þ þ g 14 g24 ðg320 g 140 g 120 g 220 Þðg 320 g 240 g 310 g 220 Þ g17 ¼
ðg310 þ g14 g 24 g220 g240 Þb g 14 g24 g 220 ðg310 þ g14 g 24 g220 g240 Þb þ g 14 g24 g 220
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A012 Final Proof page 244
244
6.12.2008 3:49pm Compositor Name: DeShanthi
Appendix L
2 2q g17 c g 320 g g g320 g 240 g19 ¼ þ 310 220 2 2 b g 320 þ g14 g 24 g220 g320 þ g14 g24 g2220 2 2f g17 þ c g320 2 g320 g17 g20 ¼ þ b g 320 þ g14 g 24 g2220 b2 g 320 þ g14 g 24 g2220
2g 310 g320 ðg310 g 220 g17 g320 g240 Þ½ðg 310 þ g 14 g24 g 220 g 240 Þb þ g 14 g24 g 220 g 320 þ g14 g 24 g2220 ½ðg 310 þ g14 g24 g220 g 240 Þb þ g 14 g24 g 220 (L:3)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A013 Final Proof page 245 4.12.2008 11:15am Compositor Name: VAmoudavally
Appendix M In Equation 5.87 through 5.90 1 1 1 C2 þ 1 ag 5 l(2) q C3 g24 2 1 1 1 ½ðgT2 g5 g T1 ÞDT« 1 ag 5 l(0) Q4 ¼ q g 24 g24 2 g24 m4 g 24 m2 g05 þ (1 þ m)g07 l(0) þ « q ¼ C1 (1 þ m)g06 C1 (1 þ m)2 g06 1 g05 (1 þ m)g07 mg05 2 g08 þ g 14 g24 þ« g06 g 14 C1 (1 þ m) (1 þ m)2 mg05 mg05 « 1 « 1 (1 þ m)m2 (1 þ m)m2 1 m4 n2 b2 1 g 24 g06 g13 ¼ 4g 24 (1 þ m) þ (1 þ 2m) l(2) q 4 g06 4 n2 b2 C1 g 24 n2 b2 g06 1 am2 2(1 þ m)2 þ (1 þ 2m) 6 C1 (1 þ m)g06 2am g10 2 C1 (1 þ 2m)g06 þ 8m4 g10 (1 þ m) þ2 g06 1 1 2 2 g5 1 (5=2) (5=2) 1=2 þ qb lq d(0) ¼ g 1 fb ag ag « 5 x 01 10 g 24 2 24 p g24 2 5 " 2 # 1 b11 1 1 ag5 « l2q þ 2 p(3)3=4 g 224 q Q3 ¼
(3)3=4 2 g 24 gT1 g5 gT2 DT «1=2 4g24 1 g2 ¼ (3)3=4 m2 (1 þ 2m)«3=2 2g05 «1=2 þ 052 «1=2 m 32
d(T) x ¼ d(2) x
(M:1) in the above equations 1 g05 C1 ¼ n2 b2 þ am2 , C3 ¼ 1 2 « m 2 1 2 2 g06 (1 þ 2m) þ 8m4 (1 þ m)g10 1 C2 ¼ n b (1 þ 2m) þ C1 (1 þ m) C1 (1 þ m)2 C1 (1 þ m)g06 2am6 g10 8 4
245
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A013 Final Proof page 246 4.12.2008 11:15am Compositor Name: VAmoudavally
246
Appendix M (3=2)
a01
b11
q q (3=2) (5=2) (5=2) ¼ 1, a10 ¼ g17 , b01 ¼ g 24 g19 , b10 ¼ g 24 g20 f f
1 (3=2) 2 2 (3=2) a10 ¼ f b þ a10 2qfc þ 2q4 q2 f2 þ f4 b
(M:2)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A014 Final Proof page 247
6.12.2008 6:43pm Compositor Name: DeShanthi
Appendix N In Equations 5.122 through 5.126 1 2g 5 (0) 1=4 [(gT2 g 5 g T1 )DT] þ lp « g 24 g 24 4 1 g 14 g24 m (1 þ m) 1 g14 g 24 m2 g11 Q6 ¼ « C3 16n2 b2 g09 g210 32n2 b2 g09 Q5 ¼
2 2 1 2 2 2g 5 (2) 1=4 2 2 g210 þ g220 « þ (n b þ k b ) (1 þ 2m)« þ l 8 g 24 p g2210 ( m g m2 g g (0) 2 24 2 220 ls ¼ «5=4 þ 24 2 2nb g210 g220 (1 þ m) (1 þ m) g2210 g2220
(N:1)
[(1 þ m)(g210 g32 þ g220 g31 ) þ (g220 g310 þ g210 g320 )]«1=4 1 g120 g24 g31 (g220 g310 þ g210 g320 ) þ g32 (g220 g320 þ g210 g310 ) þ 2 þ m (1 þ m) g14 (1 þ m) g2210 g2220 2 g m 2g210 g310 g320 þ g220 g310 þ g2320 «3=4 24 2 2 g2 g (1 þ m) 210 220 m g110 g320 þ g120 g310 g24 g31 2g210 g310 g320 þ g220 g2310 þ g2320 þ g14 (1 þ m) g2210 g2220 m4 (1 þ m)2 2 g g32 g210 g310 þ g2320 þ 2g220 g310 g320 þ 24 (1 þ m) g2 g2220 2 210 g 24 m g220 g310 g310 þ 3g2320 þ g210 g320 3g2310 þ g2320 «7=4 g2210 g2220 (1 þ m)2 g120 g2310 þ g2320 þ 2g110 g310 g320 m2 þ g14 m6 (1 þ m)3 2 2 g 24 g31 g220 g310 g310 þ 3g320 þ g210 g320 3g2310 þ g2320 þ (1 þ m) g2210 g2220 2 g g32 g220 g320 3g310 þ g2320 þ g210 g310 g2310 þ 3g2320 þ 24 (1 þ m) g2210 g2220 ) 2 g 24 m 4g210 g310 g320 g310 þ g2320 þ g220 g4310 þ 6g2310 g2320 þ g4320 11=4 « g2210 g2220 (1 þ m)2
247
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A014 Final Proof page 248
6.12.2008 6:43pm Compositor Name: DeShanthi
248
Appendix N ( m g 14 g 224 m6 g210 g220 5=4 g 14 g 224 m4 « 2 2nb 2g09 g2 g2 2 8g09 g210 g2210 g2220 210 220
3g2210 þg2220 g220 (g310 g31 þ g2210 þ3g2220 g210 (g320 g32 ) «1=4 g14 g224 m4 g320 g2210 3g2220 1=4 « þ 2 2g09 g2210 g2220 (1þm)
l(2) s ¼
g g 2 m4 g220 14 24 g14 (1þ2m)g302 (1þm)2 «1=4 4g09 g2210 g2220 (1þm) g120 g2210 þg2220 þ2g110 g210 g220 mg 14 g 24 m2 g 14 8g09 g210 g2210 g2220 2 g g220 g310 þg2320 3g2210 þg2220 þ2g210 g310 g320 g2210 þ3g2220 þ 24 1þm g2210 g2220 g g210 g2210 þ3g2220 (g32 g310 þg31 g320 )þg220 (3g2210 þg2220 )(g31 g310 þg32 g320 ) 3=4 « þ 24 1þm g2210 g2220
g24 m2 g220 2g m2 n4 b4 g220 g13 (1þ2m)«3=4 þ 2 24 2 8 g210 g210 g220 (1þm) 2 g g2 [2(1þm)2 þ3(1þ2m)]þg210 g200 (1þm) 3=4 « 210 220 2 4 g210 g2220 (1þm)g210 g200
g14 g224 m2 g220 ½g210 g302 g11 4g310 g14 «3=4 8g09 g2210 g2220 g14 g224 m2 g320 g302 g2210 þg2220 3=4 g 14 g 224 m2 g14 (1þ2m) « þ 4g09 g210 g2210 g2220 8g09 g210 g2210 g2220 (1þm)2
g2210 þg2220 g320 þ2g210 g220 g310 «3=4 2 g 14 g 224 m2 g320 ð3g210 þg2220 Þg220 g320 þ(g2210 þ3g2220 )g210 g310 3=4 2 « g2210 g2220 2g09 g210 g210 g2220 (1þm) g14 g224 m2 3g2210 þg2220 g220 g11 (g31 g310 ) 3=4 « 2 2 16g09 g210 g2220 (1þm) ) g14 g224 m2 g2210 þ3g2220 g210 g11 (g32 g320 ) 3=4 « 2 16g09 g2210 g2220 (1þm)2
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A014 Final Proof page 249
6.12.2008 6:43pm Compositor Name: DeShanthi
Appendix N
l(4) s
249
( g220 g2210 þ 3g2220 m g214 g 324 m10 (1 þ m) g220 4 ¼ 2 2 2 2 2nb 64g209 g2210 g2220 g210 g210 g220
2 (1 þ m) 2 2 g24 g2210 g2220 þ 2g210 g220 g23 3g2210 þ g2220 þ 2 2 2 g210 g220 g23 g24 g210 2g2210 g24 g2210 þ 3g2220 (1 þ m) g220 g23 3g2210 g2220 g210 g24 g2210 þ g2220 þ g2210 g223 g224 g220 g210 g23 g220 g24 g220 R1 þ6 þ2 g210 g210 g223 g224 (1 þ m) g220 g24 3g2210 g2220 g210 g23 g2210 þ g2220 g2210 g223 g224 ) g220 g220 g23 g210 g24 g2210 þ g2220 R2 «5=4 þ (N:2) 2 g210 g223 g224 g2210
in which l(0) p ¼
kb (0) l þ l(0) xp , m s
l(2) p ¼
kb (2) l þ l(2) xp , m s
l(4) p ¼
kb (4) l þ l(4) xp , m s
(N:3)
and k can be determined through equation
2
4 (2) (2) (2) (4) l(0) l A « þ l A « ¼0 xp xp xp 11 11
(N:4)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A014 Final Proof page 250
250
6.12.2008 6:43pm Compositor Name: DeShanthi
Appendix N
where l(0) xp
1 ¼ 2
(
g m2 g g 2 24 2 210 «5=4 þ 24 [(1 þ m)(g210 g31 þ g220 g32 ) g210 g220 (1 þ m) (1 þ m)2 g2210 g2220
þ (g220 g320 þ g210 g310 )]«1=4 1 g110 g g31 (g220 g320 þ g210 g310 ) þ g32 (g220 g310 þ g210 g320 ) þ 2 þ 24 m (1 þ m) g14 (1 þ m) g2210 g2220 2 g m 2g220 g310 g320 þ g210 g310 þ g2320 «3=4 24 2 g2210 g2220 (1 þ m) m g110 g310 þ g120 g320 g24 g31 2g220 g310 g320 þ g210 g2310 þ g2320 þ g 14 (1 þ m) g2210 g2220 m4 (1 þ m)2 g g32 g220 (g2310 þ g2320 ) þ 2g210 g310 g320 þ 24 (1 þ m) g2 g2220 2210 g24 m g210 g310 g310 þ 3g2320 þ g220 g320 3g2310 þ g2320 «7=4 g2210 g2220 (1 þ m)2 g110 g2310 þ g2320 þ 2g120 g310 g320 m2 þ g 14 m6 (1 þ m)3 2 2 g 24 g31 g220 g320 3g310 þ g320 þ g210 g310 g2310 þ 3g2320 þ (1 þ m) g2210 g2220 2 g 24 g32 g220 g310 g310 þ 3g2320 þ g210 g320 3g2310 þ g2320 þ (1 þ m) g2210 g2220 ) 2 g24 m 4g220 g310 g320 g310 þ g2320 þ g210 g4310 þ 6g2310 g2320 þ g4320 11=4 « g2210 g2220 (1 þ m)2
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A014 Final Proof page 251
6.12.2008 6:43pm Compositor Name: DeShanthi
Appendix N
251
(
g14 g224 m6 g2210 þg2220 5=4 2 « 2 4g09 g2210 g2220
1 l(2) xp ¼
þ
2 g14 g224 m4 2 2 2 3g210 þg220 g220 (g320 g32 ) 2 8g09 g210 g210 g220
g2210 þ3g2220
1=4 g 14 g 224 m4 g220 g320 3g2210 þg2220 1=4 « þ g210 (g310 g31 ) « 2 2g09 g210 g2210 g2220 (1þm)
g14 g224 m4 g2210 þg2220 2 g14 (1þ2m)g302 (1þm)2 «1=4 8g09 g210 g210 g2220 (1þm)
g110 g2210 þg2220 þ2g120 g210 g220 mg 14 g24 m2 2 g 14 8g09 g210 g210 g2220
þ
g 24 g210 g2310 þg2320 g2210 þ3g2220 þ2g220 g310 g320 3g2210 þg2220 1þm g2210 g2220
g 24 g210 g2210 þ3g2220 (g31 þg310 þg32 g320 )þg220 (3g2210 þg2220 )(g32 g310 þg31 g320 ) 3=4 « þ 2 2 1þm g210 g220
2 4 4 2 n b g210 þg2220 g 24 m2 g2210 þg2220 3=4 g 24 m g (1þ2m)« þ 13 16 g2210 g210 g2210 g2220 (1þm)
g2210 g2220 [2(1þm)2 þ3(1þ2m)]þg210 g200 (1þm) 3=4 « 4 g2210 g2220 (1þm)g210 g200
g14 g 224 m2 g2210 þg2220 ½ g210 g302 g11 4g310 g14 «3=4 16g09 g210 g2210 g2220 þ
g 14 g 224 m2 g320 g302 g220 3=4 g 14 g 224 m2 g14 (1þ2m) 2 « 2 2g09 g210 g220 8g09 g210 g2210 g2220 (1þm)2
g2210 þg2220 g310 þ2g210 g220 g320 «3=4
2 g 14 g 224 m2 g320 ð3g210 þg2220 Þg220 g310 þ(g2210 þ3g2220 )g210 g320 3=4 2 « g2210 g2220 2g09 g210 g210 g2220 (1þm)
g 14 g 224 m2 3g2210 þg2220 g220 g11 (g32 g320 ) 3=4 « 2 2 16g09 g210 g2220 (1þm)
) g 14 g 224 m2 g2210 þ3g2220 g210 g11 (g31 g310 ) 3=4 « 2 16g09 g2210 g2220 (1þm)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A014 Final Proof page 252
252
6.12.2008 6:43pm Compositor Name: DeShanthi
Appendix N
l(4) xp
( g2220 3g2210 þ g2220 1 g 214 g324 m10 (1 þ m) 4 ¼ 2 1 2 64g209 g210 g2210 g2220 g2 g2 210
220
(1 þ m) þ 2 2 g210 g220 g223 g224 g210
g23 g2210 þ g2220 3g2210 þ g2220 2g24 g210 g220 2g2210 þ g2220 g2 þ g2220 g210 g23 g220 g24 þ (1 þ m) 210 g210 g223 g224 g210 g23 g220 g24 g2210 þ g2220 þ 2g210 R1 þ3 g210 g223 g224 g2 þ g2220 g220 g23 g210 g24 þ (1 þ m) 210 g210 g223 g224 ) g220 g23 g210 g24 2g220 R2 «5=4 þ 2g210 g223 g224
(N:5)
2 1 4 (9=4) (9=4) g 5 1=2 lp , 2g224 « qb01 fb10 g24 g 24 p 1 2 ¼ g 24 gT1 g5 gT2 DT «1=4 2g 24 1 b11 g2210 þ g2220 1=4 g2 þ g2 ¼ « þ m2 (1 þ 2m) 210 2 220 «3=4 2 8 2pq g g210 2 210 2 g310 g210 þ g220 2g320 g210 g220 7=4 2 « g2210 2 3 g þ g2220 g2310 þ g2320 4g210 g220 g310 g320 11=4 þ 2 210 « m g2210 2 g310 g2210 þ g2220 g2310 þ 3g2320 2g320 g210 g220 3g2310 þ g2320 15=4 4 « m g2210 ( 1 b11 g 214 g224 m8 (1 þ m)2 7=4 ¼ « 32 64pq n4 b4 g209 g2210
d(0) x ¼ d(T) x d(2) x
d(4) x
g 14 g24 g221 g222 (1 þ m)2 m4 (m2 g310 «)«3=4 g09 g210 g2210 2 2 g g2 þ 2m2 n4 b4 (1 þ m)2 210 2 220 g210 " #2 ) 2 g2210 g2220 (1 þ 2m) þ g210 g200 (1 þ m) 11=4 « 4 g2210 g2220 (1 þ m) g210 g200 þ
(N:6)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A014 Final Proof page 253
6.12.2008 6:44pm Compositor Name: DeShanthi
Appendix N
g 266 ls g24 " 1 kb g2210 þ g2220 nb 2g220 m2 (1 þ 2m)«3=4 ¼ þ 4 m m g210 g2210 kb g310 g2210 þ g2220 2g320 g210 g220 m g2210 2 nb g320 g210 þ g2220 2g310 g210 g220 7=4 þ « m g2210 kb g2210 þ g2220 g2310 þ g2320 4g210 g220 g310 g320 þ2 m m2 g2210 2 nb g210 þ g2220 g310 g320 g210 g220 g2310 þ g2320 «11=4 þ2 m m2 g2210 kb g310 g2210 þ g2220 g2310 þ 3g2320 2g320 g210 g220 3g2310 þ g2320 m m4 g2210 2 # nb g320 g210 þ g2220 3g2310 þ g2320 2g310 g210 g220 g2310 þ 3g2320 «15=4 þ m m4 g2210 ( 1 kb m6 (1 þ m)2 g2210 g2220 3=4 ¼ « 32 m g09 g210 g2210 g14 g 24 g2210 g2220 nb 2 4 kb (1 þ m) m g310 þ g320 «7=4 g09 g210 m m g2210 2 2 kb g g2 þ 4m2 n4 b4 (1 þ m)2 210 2 220 m g210 " #2 ) 2 g2210 g2220 (1 þ 2m) þ g210 g200 (1 þ m) 11=4 « (N:7) 4 g2210 g2220 (1 þ m) g210 g200
g (0) ¼ g (2)
g (4)
253
in the above equations g210 ¼ m4 þ 2g212 m2 k2 b2 þ n2 b2 þ g 214 k4 b4 þ 6k2 b2 n2 b2 þ n4 b4 e4 D01 þ e1 D03 þ e3 D02 þ e2 D04 þ g 14 g24 D
00 g220 ¼ 4kbnb g222 m2 þ g214 k2 b2 þ n2 b2 e4 D02 þ e1 D04 þ e3 D01 þ e2 D03 g 14 g24 D00
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A014 Final Proof page 254
254
6.12.2008 6:44pm Compositor Name: DeShanthi
Appendix N
g310 ¼ g240 m4 þ 2g242 m2 k2 b2 þ n2 b2 þ g 244 k4 b4 þ 6k2 b2 n2 b2 þ n4 b4 e1 D06 þ e2 D08 þ e3 D07 þ e4 D05 D00
e1 D08 þ e2 D06 þ e3 D05 þ e4 D07 g320 ¼ 4kbnb g 242 m2 þ g244 k2 b2 þ n2 b2 D00
g31 ¼ g140 m4 þ 2g142 m2 k2 b2 þ n2 b2 þ g 144 k4 b4 þ 6k2 b2 n2 b2 þ n4 b4 h4 D01 þ h3 D02 þ h1 D03 þ h2 D04 D00
h4 D02 þ h3 D01 þ h2 D03 þ h1 D04 2 g32 ¼ 4kbnb g 142 m þ g144 k2 b2 þ n2 b2 D00 4 4
4 2 2 2 2 2 2 2 2 2 g110 ¼ g110 m þ 2g112 m k b þ n b þ g 114 k b þ 6k b n b þ n4 b4 h1 D06 þ h2 D08 þ h3 D07 þ h4 D05 D00
h1 D08 þ h2 D06 þ h3 D05 þ h4 D07 g120 ¼ 4kbnb g 112 m2 þ g114 k2 b2 þ n2 b2 D00 2
4 64m2 g220 m2 þ g222 k2 b2 2 2 2 4 4 g200 ¼ 16 m þ 2g212 m k b þ g 214 k b þ g 14 g24 g31 þ g 320 4 m2 þ k2 b2 g 244 g 41 þ g 432 4n2 b2 þ g 233 g 41 g413 4n2 b2 g302 ¼ g214 g41 þ g432 4n2 b2 þ g 14 g24 g 2233 4n2 b2 g 214 g 41 g 413 4n2 b2 g 14 g24 g 233 g244 4n2 b2 g303 ¼ g 214 g 41 þ g 432 4n2 b2 þ g14 g24 g2233 4n2 b2 g09 ¼ g 114 þ g133 g303 þ g14 g 24 g144 g302 g41 þ g432 4n2 b2 g 214 g 41 þ g 432 4n2 b2 þ g 14 g24 g 2233 4n2 b2 g144 g 41 þ g432 4n2 b2 g133 g233 4n2 b2 ¼ g 214 g 41 þ g 432 4n2 b2 þ g 14 g24 g 2233 4n2 b2
g13 ¼ g14
g2210 g2220 g210 g310 g220 g320 (1 þ 2m) þ 2 2 g210 g2210
4 ¼ m þ 2g212 m2 9n2 b2 þ k2 b2 þ g214 k4 b4 þ 54k2 b2 n2 b2 þ 81n4 b4 d1 D131 þ c1 D132 þ a1 D133 þ b1 D134 þ g 14 g24 D
130 ¼ 12kbnb g212 m2 þ g214 k2 b2 þ 9n2 b2 d1 D132 þ c1 D131 þ a1 D134 þ b1 D133 þ g 14 g24 D130
g11 ¼ g14 g23
g24
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A014 Final Proof page 255
6.12.2008 6:44pm Compositor Name: DeShanthi
Appendix N
255 h1 ¼ g210 g223 g224 g23 g2210 g2220 (1 þ m) h2 ¼ 3g220 g223 g224 g24 g2210 g2220 (1 þ m) h3 ¼ g223 g224 þ (g210 g23 g220 g24 )(1 þ m) h4 ¼ (g220 g23 g210 g24 )(1 þ m) h 3 h 1 þ h4 h 2 h h þ h4 h 1 , R2 ¼ 3 22 , 2 2 h 1 h2 h1 h22 g210 g310 g220 g320 kp « cos C3 ¼ 1 m2 g210 2n e1 r12 r13 r14 r11 e1 r12 r13 r14 r e r22 r23 r24 e r r r , D01 ¼ 2 22 23 24 , D02 ¼ 21 2 r e r32 r33 r34 e3 r32 r33 r34 31 3 r41 e4 r42 r43 r44 e4 r42 r43 r44 r11 r12 r13 e1 f1 r12 r12 e1 r14 r21 r22 r23 e2 f r r22 e2 r24 , D04 ¼ , D05 ¼ 2 22 f r r32 e3 r34 r31 r32 r33 e3 3 32 f4 r42 r42 e4 r44 r41 r42 r43 e4 f2 r12 r13 r14 r11 r12 r12 f1 r14 f1 r22 r23 r24 r21 r22 r22 f2 r24 , D07 ¼ , D08 ¼ r32 f3 r34 f4 r32 r33 r34 r31 r32 r41 r42 r42 f4 r44 f3 r42 r43 r44 a1 s12 s13 s14 b1 s12 s12 s13 s14 b1 s22 s23 s24 a s s22 s23 s24 , D131 ¼ , D132 ¼ 1 22 d s s32 s33 s34 c1 s32 s33 s34 1 32 c1 s42 s42 s43 s44 d1 s42 s43 s44 s11 s12 b1 s14 s12 a1 s14 s21 s22 a1 s24 s22 b1 s24 , D134 ¼ s s d s s32 c1 s34 31 32 1 34 s41 s42 c1 s44 s42 d1 s44 R1 ¼
r11 r21 D00 ¼ r31 r41 r11 r21 D03 ¼ r31 r41 r11 r21 D06 ¼ r31 r41 s11 s21 D130 ¼ s31 s41 s11 s21 D133 ¼ s31 s41
r13 r14 r23 r24 r33 r34 r43 r44 r13 r14 r23 r24 r33 r34 r43 r44 f2 r14 f1 r24 f4 r34 f3 r44 s13 s14 s23 s24 s33 s34 s43 s44
r11 ¼ r22 ¼ r34 ¼ r43 ¼ mnbg 331 , r12 ¼ r21 ¼ r33 ¼ r44 ¼ mkbg 331 r13 ¼ r24 ¼ g41 þ g430 m2 þ g432 k2 b2 þ n2 b2 r14 ¼ r23 ¼ 2kbnbg 432 , r31 ¼ r42 ¼ 2kbnbg 322 r32 ¼ r41 ¼ g31 þ g320 m2 þ g322 k2 b2 þ n2 b2
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A014 Final Proof page 256
256
6.12.2008 6:44pm Compositor Name: DeShanthi
Appendix N
e1 ¼ nb g 231 m2 þ g233 3k2 b2 þ n2 b2
e2 ¼ kb g 231 m2 þ g233 k2 b2 þ 3n2 b2
e3 ¼ 2mkbnbg 222 , e4 ¼ m g220 m2 þ g 222 k2 b2 þ n2 b2 ,
f1 ¼ nb g 41 g411 m2 g 413 3k2 b2 þ n2 b2
f2 ¼ kb g41 g 411 m2 g413 k2 b2 þ 3n2 b2
f3 ¼ 2mkbnbg 312 , f4 ¼ m g 31 g310 m2 g 312 k2 b2 þ n2 b2
h1 ¼ nb g 131 m2 þ g133 3k2 b2 þ n2 b2
h2 ¼ kb g 131 m2 þ g133 k2 b2 þ 3n2 b2 h3 ¼ 2mkbnbg 122
h4 ¼ m g120 m2 þ g 122 k2 b2 þ n2 b2 s11 ¼ s22 ¼ s34 ¼ s43 ¼ 3mnbg 331 , s12 ¼ s21 ¼ s33 ¼ s44 ¼ 3mkbg 331 s13 ¼ s24 ¼ g 41 þ g430 m2 þ g 432 k2 b2 þ 9n2 b2 , s14 ¼ s23 ¼ 6kbnbg 431 s31 ¼ s42 ¼ 6kbnbg322 , s32 ¼ s41 ¼ g31 þ g 320 m2 þ g322 k2 b2 þ 9n2 b2
a1 ¼ 3nb g 231 m2 þ g233 3k2 b2 þ 9n2 b2 ,
b1 ¼ kb g231 m2 þ g 233 k2 b2 þ 27n2 b2
c1 ¼ 6mkbnbg 222 , d1 ¼ m g 220 m2 þ g222 k2 b2 þ 9n2 b2 ¼ 1, a10
(9=4)
¼ b(3) 01 ¼ g 24 g19 , b10
b01
(5=4)
q g17 f
(5=4)
a01
b11 ¼
¼
(9=4)
¼ b(3) 10 ¼ g 24
q g20 f
1 (5=4) 2 2 (5=4) f b þ a10 2qfc þ 2q4 q2 f2 þ f4 a10 b
(N:8)
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A015 Final Proof page 257 4.12.2008 11:16am Compositor Name: VAmoudavally
Appendix O In Equations 5.137 and 5.138 1 m4 (1 þ m) 1 m2 g11 g14 g 24 « g g Q7 ¼ 24 14 2 C3 16n2 b g09 g06 32n2 b2 g09 1 g5 g205 3 g 224 g25 gT2 (2) 2 2 þ m (1 þ 2m)« 2g05 « þ 2 « þ l m g24 gT T 8 g8 g224 g 25 g T2 (0) l g 24 gT T
Q8 ¼
(O:1)
and (0) l(0) T ¼ 2lp
1 g 24 g2 m2 (1 þ 2m)« 2g05 «2 þ 052 «3 m 8 g8 ( 2 8 1 g 24 b11 2 2 m (1 þ m) 3=2 g g ¼ 2l(4) « p þ 64 g8 32pq 14 24 n4 b4 g209 g206 2 ) 4 g (1 þ 2m) þ 8m (1 þ m)g 06 10 2 þ m2 n4 b4 (1 þ m) «3 g06 (1 þ m) 4m4 g10
(2) l(2) T ¼ 2lp
l(4) T
(O:2)
(j)
where lp (j ¼ 0, 2, 4) are defined by Equation L.1. In the above equations (with other symbols are defined by Equations L.2 and L.3) 2 g 25 (2) 1=2 qb01 fb(2) 10 « p g 24 2 g 5 (2) 1=2 gT ¼ (g 224 gT1 g5 gT2 ) þ qb01 wb(2) 10 (g T2 g 5 g T1 )« p g24
C11 ¼
g8 , gT
g8 ¼ g224
(O:3)
257
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_A015 Final Proof page 258 4.12.2008 11:16am Compositor Name: VAmoudavally
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C006 Final Proof page 259 8.12.2008 2:47pm Compositor Name: BMani
Index A Asymptotic solutions boundary layer conditions, order 3=2, 174 boundary layer conditions, order 5=4, 188 Average end-shortening relationships, 53, 155
B Batdorf shell parameter, 153 Bending moment and central deflection, 30 Boundary conditions, 27 associated with in-plane behavior, 23–24 Boundary layer asymptotic solutions, 202 effect of, 185 solutions, 174, 186, 187, 201 Boundary layer-type equations, 184 Buckling loads, 58, 176 for sandwich plates, 90 thermal environmental condition, 193 under T-ID case, 193 uniaxial compressed, Si3N4=SUS304 plates, 63 uniaxial compressed, (FGM=P)S plates Si3N4=SUS304, 60 ZrO2=Ti-6Al-4V, 62 uniaxial compressed, (P=FGM)S plates Si3N4=SUS304, 59 ZrO2=Ti-6Al-4V, 61, 63 Buckling loads comparison, 89 Buckling shear stress, 192 Buckling temperature FGM hybrid plates Si3N4=SUS304 substrate, 74–75 ZrO2=Ti-6Al-4V substrate, 75 (FGM=SUS304=FGM) sandwich plates, 91 (FGM=Ti-6Al-4V=FGM) sandwich plates, 91
(FGM=P)S plates Si3N4=SUS304 substrate, 77 ZrO2=Ti-6Al-4V substrate, 79 (P=FGM)S plates Si3N4=SUS304 substrate, 76 ZrO2=Ti-6Al-4V substrate, 78
C Carbon nanotubes, simulation tests, 180 Ceramic materials, applications, 1 Chromium-molybdenum steel tube, 191 buckling shear stress thick cylindrical shells, 193 thin cylindrical shells, 192 Circular cylindrical shells Donnell theory, 149 geometry and coordinate system of, 149 Clamped boundary conditions, asymptotic solutions, 160 Classical laminated plate theory, 124 Classical plate theory, 100 CLPT. See Classical laminated plate theory Compressive and thermal buckling problem, 85, 86, 88 Compressive postbuckling equilibrium path, 89 CPT. See Classical plate theory
D Donnell theory assumptions of, 150 circular cylindrical shells, 149
F FEM. See Finite element method FGM cylindrical shells at ambient temperature, 203 259
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C006 Final Proof page 260 8.12.2008 2:47pm Compositor Name: BMani
260 axial compression, postbuckling behavior of asymptotic solutions, 160 boundary conditions, 154, 156, 161 boundary layer solutions, 157, 158, 159 buckling loads comparison, 164 closed condition, 156 end-shortening relationship, 155 postbuckling load–shortening curves, 165, 166 thermal conductivity, 153 thermal environments, 157 transverse dynamic load, 154 boundary layer theory, 149 boundary layer-type equations, 152–153 Donnell theory, 149–150 Kármán–Donnell-type nonlinear equations, 150–151 buckling loads comparison, 162, 163 buckling temperatures, 203 comparison, 203, 204 volume fraction index, 202 CC perfect, buckling temperatures, 204 dynamic stability analysis of, 183 external pressure, postbuckling behavior average end-shortening relationship, 170 boundary conditions, 170 boundary layer, effect of, 171 end-shortening relationship, 171 nonlinear differential equations, 169 perturbation equations, sets of, 172 nonlinear differential equations, 183 nonlinear postbuckling load– shortening, 162, 241–244, 247–256 Poisson ratio, 153 postbuckling behavior of, 183, 191, 201 postbuckling load–deflection curves, 204, 206 postbuckling solutions of, 147 thermal buckling of, 148 thermal effect, 185 thermal loading, 201
Index thermal postbuckling behavior comparison, 207 material properties, effect of, 205 volume fraction index, effect of, 206 thermal postbuckling behavior of average end-shortening relationship, 200 axial compression, 200 buckling problem for, 199 thermal postbuckling equilibrium path, 207 thermal postbuckling load–deflection curves, 202 numerical results, 257 transverse displacement, 151 volume fraction index, 203 FGM dental implant, 3 FGM face sheets asymptotic solutions, 136 heat transfer, 132 thermally postbuckled sandwich plates thickness of, 132 vibration of, 132 FGM hybrid cylindrical shells, 148 FGM hybrid laminated plates, 118 FGM hybrid plate natural frequency parameter, 125–126 volume fraction index, effect of, 127 FGM layer, 118 FGM plates bending–stretching coupling effect, 104 boundary conditions, 102, 103, 123 buckling analysis of axisymmetric, 45–46 bifurcation, 47 buckling loads, 46 thermal and mechanical, 45 dynamic transverse loads, 99 forced vibration, 108 free vibration equation, 108 geometrically midplane symmetric boundary conditions, 54–55 geometric imperfection, 55 nonlinear equations, 54 perturbation equations, 56–57 postbuckling equilibrium path, 57
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C006 Final Proof page 261 8.12.2008 2:47pm Compositor Name: BMani
Index stretching=bending coupling, 53 unit end-shortening relationships, 55 natural frequency, comparison of, 110 nonlinear bending of deflection, 21 under mechanical loads (see Nonlinear bending, FGM plates under mechanical loads) thermal loads, 22 transverse uniform=sinusoidal load, 22 nonlinear frequency of, 108, 137 nonlinear vibration of, 100 piezoelectric actuators, 118 perturbation technique, 105, 106 with piezoelectric actuator, 124 postbuckling analysis of hybrid laminated plate (see Hybrid laminated plate) thermal, 46, 47 thermomechanical loads, 46 rectangular, 22 shear deformable (See Shear deformable FGM plates) thermal bending, heat conduction bending moments, 38 in double Fourier sine series, 37 effect of temperature variation, 36–37 nonlinear governing equations, 37 thermal load–deflection, load– bending moment curves (see Thermal load-deflection and thermal load-bending moment curves) thermal environments, 102 thermal expansion, 101, 109 Young’s modulus, 109 FGM square plate aluminum oxide, 109 central deflection vs. time curves, 111 dynamic response of, 111 free vibration of, 124 natural frequency parameter comparisons, 112 thermal environments, 112–114
261 nonlinear to linear frequency ratios, 114 temperature field, effect of, 115 volume fraction index effect, 115, 116, 117 FGM=SUS304=FGM sandwich plates buckling loads comparison, 90 buckling temperatures comparison, 91 postbuckling behavior of effect of material properties on, 92 effect of volume fraction index on, 94–95 thermal effects on, 93 thermal postbuckling behavior of effects of material properties on, 95 effects of volume fraction index on, 96 FGM thin-walled tapered pretwisted turbine blade, 2 FGM=Ti-6Al-4V=FGM sandwich plates buckling loads comparison, 90 buckling temperatures comparison, 91 Finite element method, 99 First-order shear deformation plate theory (FSDPT), 9–10 Functionally graded materials (FGMs) applications of, 2 material properties, approaches to model mechanical response, 5 position-dependent, 6–7 simple rule of mixture, 5 temperature-dependent, 5–6 volume fraction variation, 3–4 microstructural phases, 1 nonlinear static and dynamic response of, 21 rectangular plate displacement components, 9 strains associated with displacement field, 10–11 transverse shear strains, 10 research studies in, 3 skeletal microstructure of, 8 as structural components, 2
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C006 Final Proof page 262 8.12.2008 2:47pm Compositor Name: BMani
262
Index (FGM=P)S, temperature effects, 69 temperature field, 49 thermal postbuckling behavior asymptotic solutions, 71–72 boundary conditions, 70–71 edges of plate, 67 estimation procedure, 72–73 material properties effect, 78–79 temperature field, 66 thermal load ratio effect, 80–81, 82 thermal postbuckling equilibrium path, 72 volume fraction index effect, 80, 81 transformed elastic constants, 50–51
as thermal barrier materials, 1 with volume fractions of constituent phases graded in one direction, 2
G Galerkin procedure, 104 General von Kármán-type equations hybrid laminated plate, 49 shear deformable FGM plates bending moments, 15 equations of motion, 15–17 higher order moments, 15 thermal effect, 14 transverse shear forces, 15
I H Hamilton principle, elastic body, 12 Higher order shear deformation plate theory (HSDPT), 9–10 Homogeneous isotropic cylindrical shells, 157 Hybrid FGM plates applied voltage, effect of, 129, 130 temperature field, effect of, 128, 129 types of, 124 volume fraction index, effect of, 127, 128 Hybrid laminated plates components of, 47–48 configurations of, 48 edges, simply supported associated boundary conditions, 51–52 immovability condition, 52 stretching=bending coupling, 53 electric field forces and moments caused by, 49–50 transverse direction component, 49 load applied to, 49 (P=FGM)S, postbuckling behaviour temperature rise effects, 68 thermopiezoelectric effects, 62, 64–65 volume fraction index effect, 63, 66, 67
Isotropic cylindrical shells, 191 buckling loads comparison, 177, 191 buckling shear stress comparison, 191 hydrostatic pressure, 176, 177 postbuckling load–shortening curves, 162, 163 Isotropic rectangular plate, 137 Isotropic square plate, linear frequency ratios, 110
K Kirchhoff–Love hypotheses, 150
L Lightweight composite materials, applications, 1 Load–bending moment curves zirconia=aluminum square plate under in-plane boundary conditions, 33–34 thermal environmental conditions, 33 transverse loading conditions, 34–35 uniform pressure conditions, 31, 33 volume fraction index, 32 Load-central deflection curves relationship, expression for, 30
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C006 Final Proof page 263 8.12.2008 2:47pm Compositor Name: BMani
Index zirconia=aluminum square plate comparisons of, 31 in-plane boundary conditions effect, 34 temperature-dependency effect, 40 temperature rise effect, 33 uniform=sinusoidal load, thermal environments, 35 volume fraction index effect, 32
M Micromechanics models, 8 Mori–Tanaka model, 7, 9
N Nondimensional compressive stress, 190 Nonlinear bending, FGM plates under mechanical loads transverse static load, 23 transverse uniform=sinusoidal loads, 22 Nonlinear dynamic problem, 105 Nonlinear free vibration FGM square plate, 109 isotropic square plate, 109 Nonlinear motion equations, 123 Nonlinear postbuckling load–shortening, 245–246 Nonlinear prebuckling deformations, 176
P Perturbation expansions boundary layer solutions, 185 Perturbation scheme buckling loads comparison, 163–165 description, 162 postbuckling load–deflection curves, 165 postbuckling load–shortening curves, 162–163 volume fraction index effect, 241 P=FGM plate, dynamic response temperature dependency, effect of, 132 volume fraction index effect, 132
263 Piezoelectric layer thermal conductivity, 121 thickness, 124 Plane stress constitutive equations, 11 Poincare method, 21 Poisson’s ratio, 125 Postbuckled isotropic rectangular plate, 137 Postbuckled sandwich plate, 138 fundamental frequencies, 142 nonlinear frequency ratio temperature change effects, 142 volume fraction index effect, 141, 143 temperature change effects, 140 thermal environments, 139 Postbuckling of FGM plates hybrid laminated plate (see Hybrid laminated plate) thermomechanical loads, 46 of FGM=SUS304=FGM sandwich plates material properties effect, 92 thermal effects on, 93 volume fraction index effect, 94–95 sandwich plates in thermal environments average end-shortening relationships, 86–87 boundary conditions, 86, 88 compressive postbuckling equilibrium path, 89 edges, simply supported, 85 FGM=SUS304=FGM plate, 92–96 immovability condition, 86 under uniform temperature, 89 Postbuckling equilibrium paths, 175, 190 Postbuckling load–deflection curves isotropic short cylindrical shell, 177, 178 isotropic thin plates, uniaxial compression, 58 shear deformable FGM plates, 57 Prebuckled sandwich plate nonlinear frequency ratio temperature changes, effects of, 142 volume fraction index, effects of, 141, 143
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C006 Final Proof page 264 8.12.2008 2:47pm Compositor Name: BMani
264 plate stiffness, 138 temperature changes, effects of, 140 volume fraction index effects, 139, 142 Prebuckling deformation, 162
R Runge–Kutta iteration method, 118 Runge–Kutta iteration scheme, 108
S Sandwich plates configuration of, 83 constituents of, 82 FGM face sheet, 83 material properties of, 83 postbuckling equilibrium states of, 135 postbuckling in thermal environments average end-shortening relationships, 86–87 boundary conditions, 86, 88 compressive postbuckling equilibrium path, 89 edges, simply supported, 85 FGM=SUS304=FGM plate, 92–96 immovability condition, 86 under uniform temperature, 89 temperature field measurement, 83–85 Self-consistent models, 8–9 Shear deformable FGM plates general von Kármán-type equations bending moments, 15 equations of motion, 15–17 higher order moments, 15 thermal effect, 14 transverse shear forces, 15 load-bending moment curves, 57 load-end-shortening curves, 57 nonlinear bending under mechanical loads assumptions, 22 dimensionless quantities, 25 inplane behavior, 23–24 load-bending moment curves (see Load-bending moment curves)
Index load-central deflection curves (see Load-central deflection curves) nonlinear governing equations, 25–26 transverse static load, 23 two-step perturbation technique for, 27–30 unit end-shortening relationships, 24–25 postbuckling load–deflection, 57 Si3N4=SUS304 square plates (see Si3N4=SUS304 square plates) zirconia=aluminum square plate (see Zirconia=aluminum square plate) Shell end-shortening displacements, 155 Silicon nitride, 109 Simply supported shear deformable FGM plates nonlinear bending response, 27 thermal bending analysis, 22, 23 Si3N4=SUS304 cylindrical shell buckling shear stress comparison, 192, 193 buckling temperature, 204 imperfection sensitivity l*, 166, 169 postbuckling behavior temperature dependency, effect of, 166, 167 volume fraction index, effect of, 168 postbuckling load–shortening curves, 166 thermal postbuckling load–deflection curves clamped perfect=imperfect, 204 Si3N4=SUS304 moderately thick cylindrical shell postbuckling behavior temperature changes effect, 199 temperature dependency effect, 197 volume fraction, effect of, 198 Si3N4=SUS304 square plate, dynamic response, 120 Si3N4=SUS304 square plates load–bending moment curves for under in-plane boundary conditions, 41
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C006 Final Proof page 265 8.12.2008 2:47pm Compositor Name: BMani
Index temperature-dependency, 40 volume fraction index effect, 39 material properties of, 57 thermal load–bending moment curve for under in-plane boundary conditions, 41 temperature-dependency, 40 volume fraction index effect, 39 thermal load-central deflection curve for effect of in-plane boundary conditions on, 41 effect of volume fraction index, 39 Si3N4=SUS304 thin cylindrical shell postbuckling behavior temperature changes effect, 196 temperature dependency effect, 194, 197 volume fraction index effect, 195 postbuckling load–shortening load–rotation curves, 194 torsional postbuckling, 197 Si3N4=US304 cylindrical shells buckling loads comparison, 178 postbuckling behavior temperature dependency effect, 180, 181 volume fraction index effect, 182 Stainless steel, 109 Steady-state heat conduction, 111 Steady-state heat transfer, 101 Stretching=bending coupling, 53
T Temperature-dependent (T-D), 148 Temperature distribution, 101 Temperature-independent, 148 Thermal buckling load hybrid laminated plates, 73, 77 Thermal buckling problem, 85 boundary conditions, 86, 88 Thermal conductivity piezoelectric layer, 121 Thermal load-deflection and loadbending moment curves FGM plate under heat conduction in-plane boundary conditions and, 41
265 temperature-dependency and, 40 volume fraction index and, 39 Thermally buckled plate, 134 Thermally buckled Si3N4=SUS304 square plate natural frequencies, comparisons of, 138 Thermal postbuckling behavior FGM=SUS304=FGM sandwich plates effects of volume fraction index on, 96 material properties effects, 95 hybrid laminated plates asymptotic solutions, 71–72 boundary conditions, 70–71 edges of plate, 67 material properties effect, 78–79 procedure to estimate, 72–73 temperature field, 66 thermal load ratio effect, 80–81, 82 thermal postbuckling equilibrium path, 72 volume fraction index effect, 80, 81 Thermal postbuckling equilibrium path, 202 Thermal postbuckling load–deflection curves hybrid laminated plates, material properties effect, 78, 80 isotropic plates subjected to nonuniform parabolic temperature loading, 74 uniform temperature rise, 73 Thermomechanical loads, 21 Thermopiezoelectric loads, 122 T-ID. See Temperature-independent Titanium alloy, 109 Transverse shear strains, 150 Two-step perturbation technique nonlinear bending analysis by load–central deflection (see loadcentral deflection) small perturbation parameter, 27–28
V Voigt model, 5 von Kármán-type equations, 122, 133
Shen/Functionally Graded Materials: Nonlinear Analysis of Plates and Shells 92561_C006 Final Proof page 266 8.12.2008 2:47pm Compositor Name: BMani
266 Y Young’s modulus, 101
Z Zirconia=aluminum square plate load–bending moment curves thermal environmental conditions, 31 transverse loading conditions, 34–35 uniform pressure conditions, 31, 33 volume fraction index, 32 load–bending moment curves for ‘‘immovable’’ in-plane boundary conditions, 33–34 ‘‘movable’’ in-plane boundary conditions, 33–34
Index load-central deflection curves for comparisons of, 31 in-plane boundary conditions effect, 34 temperature-dependency effect, 40 temperature rise effect, 33 uniform=sinusoidal load in thermal environments, 35 volume fraction index effect, 32 material properties of, 57 Zirconium oxide, 109 ZrO2=Ti-6Al-4V cylindrical hells buckling loads comparison, 179 thermal postbuckling load-deflection curves clamped perfect=imperfect, 204 ZrO2=Ti-6Al-4V square, plate dynamic response temperature field effect, 119