This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
, over such a sample i s g i v e n as exp(-UVKT)
= S
where S i s t h e m a g n i t u d e o f t h e s a m p l e . The Monte C a r l o a p p r o a c h assumes t h a t f o r l a r g e S,w o u l d c o n v e r g e t o q . For systems i n v o l v i n g s t r o n g i n t e r a c t i o n s , sampling procedures b a s e d on p u r e l y random c o l l e c t i o n o f c o n f i g u r a t i o n s w i l l n o t be s a t i s f a c t o r y a s t o a c h i e v i n g c o n v e r g e n c e t h a t w i l l p r o d u c e estimates w i t h i n reasonable l i m i t s of u n c e r t a i n t y . The way t o o b t a i n samples w i t h a c c e p t a b l e c o n v e r g e n c e i n such c a s e s i s t o u t i l i s e a s a m p l i n g scheme w h i c h f a v o u r s t h e h i g h d e n s i t y r e g i o n s o f the p h a s e s p a c e . I n a p r e v i o u s p u b l i c a t i o n we p r e s e n t e d a scheme s u i t a b l e f o r t a c k l i n g c h a i n m o l e c u l a r models i n v o l v i n g i n t e r - s e g m e n t a l i n t e r a c t i o n s ( 1 2 ) . This scheme c a n be m o d i f i e d so a s t o be c o n g e n i a l t o t h e m o d e l under the p r e s e n t c o n s i d e r a t i o n . The p r e s e n t method i n v o l v e s g e n e r a t i n g a homogeneous markov s e q u e n c e o f c o n f i g u r a t i o n s w i t h o n e - s t e p t r a n s i t i o n p r o b a b i l i t i e s ( p . .) g i v e n s u c h t h a t t h e c o n f i g u r a t i o n s a m p l e thus o b t a i n e d assumes Boltzmann d i s t r i b u t i o n i n t h e l i m i t of a l o n g sequence. Hence t h e s i m p l e means o v e r s u c h a s a m p l e c a n be i d e n t i f i e d w i t h t h e c a n o n i c a l e n s e m b l e a v e r a g e s . The d e s i r e d c o n f i g u r a t i o n s e q u e n c e s c a n be g e n e r a t e d f o l l o w i n g t h e commonly u s e d a s y m m e t r i c p r o c e d u r e a c c o r d i n g t o w h i c h t h e t r a n s i t i o n p r o b a b i l i t i e s a r e g i v e n as (13)
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
18
ADSORPTION
1 f o r U. J
x
INTERFACES
<: U ι
exp(-U /KT)/exp(-U /KT) f o r j
AT
i
υ
>
V
±
1-P
The s e q u e n c e c a n s t a r t f r o m any a l l o w e d c o n f i g u r a t i o n c h o s e n arbitrarily. L e t the e n e r g y c o r r e s p o n d i n g t o t h i s c o n f i g u r a t i o n be U. Consider another c o n f i g u r a t i o n , with e n e r g y 'U, w h i c h c a n be d e r i v e d f r o m t h e p r e v i o u s one by some random p r o c e s s . I f 1J i s l e s s t h a n o r e q u a l t o U, a c c e p t t h e new c o n f i g u r a t i o n i n t h e s e q u e n c e . E l s e , c h o o s e a random number, x, b e t w e e n 0 and 1 and compare i t w i t h r = [exp(-U/KT)/exp(-U/KT)] . I f r > x, a l s o t h e n t h e new c o n f i g u r a t i o n assume O t h e r w i s e , r e j e c t th r e t u r n t o t h e p r e c e d i n g one, w h i c h means t h a t t h e same c o n f i g u r a t i o n i s counted a g a i n i n the sequence. Repeat the above p r o c e s s t o a c q u i r e f u r t h e r moves. I n t h i s way t h e s e q u e n c e c a n be e x t e n d e d t o any l e n g t h . I n t h e p r e v i o u s scheme t h e mechanism by w h i c h t h e s y s t e m moved f r o m one c o n f i g u r a t i o n t o a n o t h e r i n v o l v e d t h e r o t a t i o n of a s i n g l e bond i n t h e c h a i n . T h i s r e s u l t e d i n the changes i n t h e p o s i t i o n s of a l l the segments s u c c e e d i n g t h e r o t a t i n g bond. T h i s scheme, a l t h o u g h s u c c e s s f u l i n c a s e of f r e e chains, i s u n s u i t a b l e i n the p r e s e n c e of an i n t e r f a c e . F o r t h e p r e s e n t m o d e l we d e v e l o p e d a mechanism b a s e d on t h e c o n s i d e r a t i o n t h a t t r a n s i t i o n f r o m one c o n f i g u r a t i o n t o a n o t h e r o c c u r s as a c o n s e q u e n c e o f c h a n g e s i n t h e r o t a t i o n a l p o s i t i o n s o f o n l y a few c o n s e c u t i v e b o n d s . L e t us t e r m s u c h a s e q u e n c e o f b o n d s a s t h e t r a n s i t i o n r e g i o n (figure 1). The p o s i t i o n o f t h e t r a n s i t i o n r e g i o n i n t h e m o l e c u l e i s assumed t o be s t o c h a s t i c i n n a t u r e . In the p r e s e n t scheme t h e number o f bonds c o n s t i t u t i n g t h e t r a n s i t i o n region is four. T h i s i s t h e minimum s i z e o f t h e r e g i o n w h i c h must be c o n s i d e r e d i n o r d e r t o g e n e r a t e a l l t h e p o s s i b l e c o n f i g u r a t i o n s w h i c h c a n be assumed by a l i n e a r c h a i n m o l e c u l e confined to a tetrahedral l a t t i c e . We f u r t h e r assume t h a t b e y o n d t h e t r a n s i t i o n r e g i o n no c h a n g e s i n t h e p o s i t i o n s o f t h e segments w i l l o c c u r . In o r d e r t h a t the samples a c h i e v e the r e q u i r e d convergence, i t i s n e c e s s a r y t h a t t h e e r g o d i c i t y and s t e a d y s t a t e c o n d i t i o n s a r e met. In simple terms, the e r g o d i c i t y c o n d i t i o n s t i p u l a t e s t h a t s t a r t i n g f r o m a c o n f i g u r a t i o n i t i s p o s s i b l e t o r e a c h any p e r m i s s i b l e c o n f i g u r a t i o n i n a f i n i t e number o f s t e p s , and t h a t t h e sample c o n t a i n s no p e r i o d i c i t i e s . The s t e a d y s t a t e c o n d i t i o n states that
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
2.
LAL E T AL.
Isolated Chain Molecules
ZJ i
u. p.. ι J
=
u. J
a
19
for a l l j
where u . a n d u . a r e t h e a b s o l u t e p r o b a b i l i t i e s o f t h e o c c u r r e n c e o f s t a t e s i and j i n t h e sample. We r e c k o n t h a t t h e s a m p l e s g e n e r a t e d by o u r scheme a r e i n r e a s o n a b l e a c c o r d w i t h t h e above c r i t e r i a . J
The
Model
The g e o m e t r y c o r r e s p o n d i n g t o t h e f o u r v a l e n c e bonds o f t h e c a r b o n atom i m p l i e s t h a t p o l y m e r m o l e c u l e s w i t h -C-C-C"back-bone" can be a d e q u a t e l y r e p r e s e n t e d by t h e t e t r a h e d r a l chains. Our model i s t h u s b a s e d o n a t e t r a h e d r a l l a t t i c e i n which t h e l a t t i c e s i t e o r by s o l v e n t m o l e c u l e s C-C^" bond a n g l e s i n such c h a i n s i s 109.28°, a n d t h e v a l u e s o f t h e r o t a t i o n a l a n g l e s w h i c h t h e bonds c a n assume a r e 0 ( t r a n s ) , 120° ( g a u c h e ) and 240° (gauche"). The l a t t i c e m o d e l assumes t h a t t h e a b o v e v a l u e s o f t h e bond a n g l e s a n d t h e bond r o t a t i o n a l a n g l e s a r e i n v a r i a n t . This approximation seems n o t u n r e a s o n a b l e . I t i s necessary t o s t i p u l a t e that t h e c h a i n s w i l l assume o n l y t h o s e c o n f i g u r a t i o n s w h i c h do n o t c o n t a i n m u l t i p l e occupancies (the excluded-volume c o n d i t i o n ) . The a d s o r b e n t i s r e p r e s e n t e d by a t w o - d i m e n s i o n a l s u r f a c e i n the l a t t i c e with t h e a d s o r p t i o n s i t e s l o c a t e d a t the l a t t i c e points. +
In s o l u t i o n s t h e r e e x i s t t h r e e k i n d s of i n t e r a c t i o n s : ( 1 ) segment/segment i n t e r a c t i o n s , ( 2 ) s o l v e n t / s o l v e n t i n t e r a c t i o n s and (3) segment/solvent interactions. Let ^22' with
^12
d e n c r t e
>
respectively,
t h e segment/segment,
pairs.
The e n e r g y
segment/segment
segment/solvent
change a c c o m p a n y i n g t h e f o r m a t i o n
pair,
Δ € = € 1
the energies associated
s o l v e n t / s o l v e n t and
Δ β^,
11
+ €
of a
w i l l be
22
- 2 €
12
Δ^ serves as t h e s o l v e n t parameter i n t h e model. Good s o l v e n t s o p p o s e t h e f o r m a t i o n of segment/segment p a i r s , w h i c h i m p l i e s t h a t f o r such s o l v e n t s Δ ^ assumes p o s i t i v e v a l u e s . I n b a d s o l v e n t s t h e f o r m a t i o n o f segment/segment p a i r s w i l l be f a v o u r e d , hence Δ ^ w i l l be n e g a t i v e . Δ ^ = 0 corresponds t o athermal s o l u t i o n s . The s e c o n d e n e r g y p a r a m e t e r c h a r a c t e r i s i n g o u r m o d e l i s the segment/surface b i n d i n g energy Δ C » which i s d e f i n e d as
a
2
IS
2S
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
20
ADSORPTION
where and
£ ^ *
i s the ^ ^ s
AT
INTERFACES
energy a s s o c i a t e d with a segment/surface a s s o c i a t e d w i t h a s o l v e n t / s u r f a c e bond.
n a
bond
s
Thus * t h e e n e r g y c h a n g e due t o t h e f o r m a t i o n o f a s e g m e n t / s u r f a c e bond a t t h e e x p e n s e o f a s o l v e n t / s u r f a c e b o n d . The a d s o r p t i o n c a n o n l y t a k e p l a c e i f Δ ^ i s negative. Computation A c o m p u t e r p r o g r a m was d e v e l o p e d f o r g e n e r a t i n g c o n f i g u r a t i o n s e q u e n c e s f o l l o w i n g o u r scheme a s s u m i n g t h e m o d e l d e s c r i b e d i n s e c t i o n 3. The p r o g r a m p r o c e e d e d a s follows : 1.
Read t h e Ν
following
= total
of
data:
segment
M L
= l e n g t h of th = l e n g t h of i n t e r v a l i n the sequence c o r r e s p o n d i n g the output of data i n i n t e r m e d i a t e stages Δ€^Δ€ : the energy parameters.
to
2
2.
G e n e r a t e an
i>y f
x
±
initial
x
configuration
;
z ±
; *N> N> V
N]
[_ l ;
(
n
±
, y
i
, z
Χ
l>
>y * ±
z
±
2'^2^2'
····
)
define
the
p o s i t i o n of
3.
Define
the
adsorbent
4.
D e t e r m i n e t h e v a r i o u s q u a n t i t i e s o f i n t e r e s t ( e . g . number o f s e g m e n t s on t h e s u r f a c e , s q u a r e o f t h e e n d - t o - e n d d i s t a n c e , s q u a r e o f t h e r a d i u s of g y r a t i o n , e t c . ) .
5.
G e n e r a t e a new c o n f i g u r a t i o n by r a n d o m l y s e l e c t i n g f o u r c o n s e c u t i v e bonds i n any p a r t of t h e c h a i n and m o v i n g t h e s e bonds t o an a l t e r n a t i v e c o n f i g u r a t i o n , w h i l s t t h e remainder of the molecule i s u n a l t e r e d .
6.
Check t h e new c o n f i g u r a t i o n f o r e x c l u d e d - v o l u m e . c o n f i g u r a t i o n i n v o l v e s m u l t i p l e o c c u p a n c y of any s i t e , go t o 14.
7.
C a l c u l a t e Δϋ, the d i f f e r e n c e between the p r e v i o u s and t h e new configuration.
8.
I f Δυ
9.
Calculate r =
10.
Generate a
11.
I f r > x,
12.
Go
13.
Calculate
to
i s p o s i t i v e or
a
Z
plane such t h a t
zero,
go
to
y = x+
constant.
energies
I f the lattice
of
the
13.
exp(AU/KT).
random number go
segment i .
to
( x ) b e t w e e n 0 and
1.
13.
14. the
desired
q u a n t i t i e s f o r the
new
configuration.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
2.
LAL E T AL.
21
Isolated Chain Molecules
14.
Accumulate the
calculated
15.
I f the i s any
16.
17.
I f the t o 5.
18.
C a l c u l a t e the simple over the sample.
19.
P r i n t the
number of integer), the
quantities.
configurations go t o 5.
desired
number o f
g e n e r a t e d Φ AL
(where
A
information. configurations
a v e r a g e s of
computed a v e r a g e s and
g e n e r a t e d <M,
the
various
other relevant
go
quantities
information.
The c a l c u l a t i o n s were c a r r i e d o u t on a CDC 7600 c o m p u t e r . C o n v e r g e n c e was assume a v e r a g e s of the v a r i o u s e t l i m i t s as the sampl sampl r e q u i r e d f o r r e a s o n a b l e c o n v e r g e n c e e x c e e d e d 500,000 c o n figurations. I t took a p p r o x i m a t e l y ten minutes to generate a s a m p l e of s u c h a m a g n i t u d e on t h e a b o v e m a c h i n e . If a s a m p l e d i d n o t show s a t i s f a c t o r y c o n v e r g e n c e , t h e c a l c u l a t i o n was r e s t a r t e d f r o m t h e l a s t c o n f i g u r a t i o n g e n e r a t e d and i t s s i z e g r a d u a l l y i n c r e a s e d t i l l t h e r e q u i r e d c o n v e r g e n c e was attained. Results
and
Discussion
An o u t s t a n d i n g f e a t u r e o f t h e c o n f i g u r a t i o n a l s t a t e o f a polymer m o l e c u l e i n t e r a c t i n g w i t h a s u r f a c e i s t h a t , except f o r v e r y h i g h -Δ t h e segments a r e f o u n d t o be i n the adsorbed s t a t e . This state i s p i c t o r i a l l y represented i n f i g u r e 2, where i t i s shown t h a t t h e c o n f i g u r a t i o n i s c o n s t i t u t e d o f " t r a i n s " ( s e q u e n c e s of c o n s e c u t i v e segments i n the a d s o r b e d s t a t e ) , " l o o p s " (sequences of c o n s e c u t i v e segments i n t h e u n a d s o r b e d s t a t e ) and " t a i l s " ( u n a d s o r b e d a r r a y s o f segments a t t h e e n d s ) . Basic quantities r e l a t i n g t o the above c o n f i g u r a t i o n a l s t a t e a r e the f r a c t i o n of segments i n t h e a d s o r b e d - s t a t e (V) and t h i c k n e s s o f a d s o r b e d l a y e r ( T ) . A d d i t i o n a l p a r a m e t e r s such as t h o s e p e r t a i n i n g t o the " t r a i n " , " l o o p " and " t a i l " s i z e s and t h e h e i g h t d i s t r i b u t i o n o f segments a b o v e t h e s u r f a c e w o u l d p r o v i d e a more d e t a i l e d knowledge of the c o n f i g u r a t i o n a l s t a t e . n
o
t
a
1
1
The p r e s e n t c a l c u l a t i o n s h a v e b e e n d i r e c t e d t o w a r d s t h e e v a l u a t i o n of the v a r i o u s c o n f i g u r a t i o n a l p a r a m e t e r s n o t e d above. I n t h i s s t u d y we h a v e c o n s i d e r e d a m o d e l c o n s t i t u t e d o f a l i n e a r c h a i n m o l e c u l e of 100- segment l e n g t h a d s o r b e d from a s o l v e n t f o r which Δ ^ = 0, w h i c h i m p l i e s t h a t f o r t h e p r e s e n t system the s o l v e n t / s o l u t e i n t e r a c t i o n s a r e i n v a r i a n t w i t h r e s p e c t to the i n t r a m o l e c u l a r c o n f i g u r a t i o n a l changes. S u c h s o l u t i o n s a r e known a s a t h e r m a l s o l u t i o n s .
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
22
ADSORPTION
A T INTERFACES
TRANSITION
Figure 1. A transition region is constituted of four consecutive bonds (i, i + 1, i + 2, iΐ + 3) in any part of the chain
LOOP
TAIL
t TRAIN
•
////////////////////////////////// Figure 2.
The train-loop-tail
model for an adsorbed polymer molecule
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
2.
LAL E T AL.
23
Isolated Chain Molecules
The mean f r a c t i o n s o f segments b o u n d t o t h e s u r f a c e c a l c u l a t e d assuming various values o f segment/surface b i n d i n g e n e r g y a r e p r e s e n t e d i n f i g u r e 3. We o b s e r v e t h a t < V> increases r a p i d l y with the increase i n ( - Δ ^ 2 ^ ^ -Δ € / K T = 0.5, l e s s t h a n 1 0 % o f t h e s e g m e n t s a r e a d s o r b e d , while a t -Δ62/ΚΤ 1·4, a p p r o x i m a t e l y 7 5 % o f t h e segments w o u l d be o n t h e s u r f a c e . The < V> v e r s u s - Δ ^ 2 ^ e x t r a p o l a t e d t o d e t e r m i n e t h e p o i n t b e l o w w h i c h < V> i s z e r o . S u c h a p o i n t i s known a s t h e c r i t i c a l p o i n t , and t h e c o r r e s p o n d ing energy i s the c r i t i c a l energy of a d s o r p t i o n . For the p r e s e n t s y s t e m (-à € /KT^ f o u n d t o b e ~0.45. To o u r k n o w l e d g e no c a l c u l a t i o n s h a v e h e r e t o f o r e b e e n r e p o r t e d o n a model i d e n t i c a l t o t h e o n e u n d e r t h e p r e s e n t consideration. However, M c C r a c k i n c a r r i e d o u t Monte C a r l o c a l c u l a t i o n s on t h e s y s t e m chains constrained t o f <))> w i t h r e g a r d t e n e r g y o f a d s o r p t i o n f o u n d by M c C r a c k i n i s q u a l i t a t i v e l y s i m i l a r t o t h a t g i v e n by f i g u r e 3. T h e r e i s , however, a p p r e c i a b l e q u a n t i t a t i v e d i f f e r e n c e i n t h e two r e s u l t s : t h e c r i t i c a l energy f o r the t e r m i n a l l y anchored chains c o n s i d e r e d by M c C r a c k i n was f o u n d t o b e a p p r o x i m a t e l y 0.25 KT, w h i c h i s c o n s i d e r a b l y lower than t h a t o b t a i n e d f o r t h e p r e s e n t system; a l s o , o u r v a l u e s of < V > tend t o be lower than those which would b e o b t a i n e d by e x t r a p o l a t i n g M c C r a c k i n s r e s u l t s t o t h e corresponding adsorption energies and t h e chain length. This may b e due t o t h e r e a s o n t h a t a " t r a i n " i n t e t r a h e d r a l c h a i n / / κ τ
:
a
2
=
K T
i
D
l
o
t
c
a
n
D
e
s
2
1
can e x i s t o n l y i n a s i n g l e c o n f i g u r a t i o n tttt . Hence i t i s i n t h e s t a t e of zero c o n f i g u r a t i o n a l entropy. This means t h a t o n a d s o r p t i o n a s e q u e n c e o f s e g m e n t s w i l l h a v e t o l o s e whole c o n f i g u r a t i o n a l e n t r o p y a s s o c i a t e d w i t h i t i n the s o l u t i o n phase. The a d s o r p t i o n i s , thus, o n l y p o s s i b l e i f t h e segment/surface i n t e r a c t i o n energy i s so l a r g e t h a t i t would more t h a n c o m p e n s a t e t h e e n t r o p y l o s s . Secondly, s y s t e m s s u c h a s t h o s e s t u d i e d by M c C r a c k i n h a v e a l r e a d y l o s t some e n t r o p y o n a c c o u n t o f t h e a d d i t i o n a l c o n s t r a i n t o f one chain-end permanently anchoring t o the s u r f a c e . Thus t h e segment/surface energy r e q u i r e d f o r a d s o r p t i o n t o take p l a c e would be lower, a s i t has lower e n t r o p y t o overcome. F i g u r e 4 g i v e s t h e mean f r a c t i o n s o f segments i n t h e s u c c e s s i v e l a y e r s a b o v e t h e s u r f a c e computed f o r v a r i o u s v a l u e s o f -Δ We n o t e t h a t i n t h e c a s e o f Δ € = -0.5 KT the d i s t r i b u t i o n i s markedly d i f f e r e n t from those o b t a i n e d for higher segment/surface b i n d i n g energies. For Δ β = -0.5 KT, t h e segment d e n s i t y v a r i e s l i t t l e i n t h e f i r s t f e w l a y e r s adjacent t o t h e s u r f a c e , and then d e c l i n e s s l o w l y as the d i s t a n c e from t h e s u r f a c e i n c r e a s e s . For higher i n t e r a c t i o n e n e r g i e s , o n t h e o t h e r hand, t h e i n i t i a l d e c r e a s e i n t h e d e n s i t y with d i s t a n c e i s very r a p i d , which subsequently slows down a s t h e d e n s i t y a p p r o a c h e s z e r o . The t h i c k n e s s o f a d s o r b e d 2
2
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
24
ADSORPTION
A T INTERFACES
Figure 3. Mean fraction of segments bound to the surface () vs. energy of adsorp tion per segment (—Ae /kT) 2
-*e / 2
kT
—^ Ο·70η
0-60 -fl
0-50 Η
j Figure 4. Mean fraction of segments () vs. height above the surface (h). 1: —Ae /KT = 0.5. 2: -A* /KT = 0.7. 3: -Ae /KT = 0.9. 4: -Ae /KT = 1.2. 2
2
2
0-40-
4* 0·δΟ -ft
2
Ο
2
4
6
6
10
12
14
h
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
16
18
20
LAL E TAL.
25
Isolated Chain Molecules
l a y e r ( * G ) c a n be d e f i n e d a s t h e d i s t a n c e f r o m t h e s u r f a c e a t which the segment-density vanishes, v i z . the d i s t a n c e a t which a d i s t r i b u t i o n c u r v e i n f i g u r e 4 meets t h e a b s c i s s a . The v a l u e s of<.X>thus d e t e r m i n e d a r e p l o t t e d a g a i n s t - Δ £ / K T i n f i g u r e 5. T h i c k n e s s o f a d s o r b e d l a y e r i s f o u n d t o b e a r a p i d l y decreasing f u n c t i o n of the segment/surface i n t e r a c t i o n energy. The m a g n i t u d e o f C O a t -Δ € = 0.5 (~20 u n i t s ) 2
2
KT s u g g e s t s t h a t when t h e i n t e r a c t i o n e n e r g y i s s m a l l , t h e m o l e c u l e i n t h e a d s o r b e d s t a t e w o u l d assume d i m e n s i o n s s i m i l a r t o t h o s e i n s o l u t i o n . B u t a t e n e r g i e s e x c e e d i n g -1.0 KT t h e a d s o r b e d m o l e c u l e w o u l d be c o n s i d e r a b l y f l a t t e n e d , a s i s i n d i c a t e d by t h e s m a l l v a l u e s of4"£7. A n a l y s i s of the s i z e d i s t r i b u t i o n s of " t r a i n s " , "loops" and " t a i l s " r e v e a l s t h a narrow d i s t r i b u t i o n s wherea e x t r e m e l y w i d e s h o w i n g l a r g e f l u c t u a t i o n s . The mean s i z e s o f " t r a i n s " ( < L > ) , " l o o p s " (), a n d " t a i l s " ( < L > ) c a l c u l a t e d at s e v e r a l values of Δ ^ a r e p l o t t e d i n f i g u r e 6. The mean " t r a i n " s i z e v a r i e s between t h r e e and s i x i n t h e e n e r g y r a n g e considered. At Δ € = -0.5 KT, t h e mean " l o o p " s i z e i s a s l a r g e a s about 20 u n i t s b u t f o l l o w s a s h a r p d e c r e a s e a s - Δ β increases. As e x p e c t e d , t h e mean " t a i l " l e n g t h d e c r e a s e s w i t h the i n c r e a s e i n -Δ C . i n t e r e s t i n g f e a t u r e which our a n a l y s i s brings out i s that, except a t very high - Δ € , a large p r o p o r t i o n o f u n a d s o r b e d segments c o n s t i t u t e " t a i l s " , and t h a t t h e " t a i l s " c o n t r i b u t e most s i g n i f i c a n t l y t o t h e t h i c k n e s s o f adsorbed layer. t
e
2
2
T
n
e
2
2
P i c t u r e of an i s o l a t e d adsorbed molecule emerging from t h e p r e s e n t s t u d y i s t h a t a t low s u r f a c e / s e g m e n t i n t e r a c t i o n e n e r g i e s o n l y a s m a l l f r a c t i o n o f t h e segments i s bound t o t h e s u r f a c e , and t h e shape and d i m e n s i o n s o f t h e a d s o r b e d m o l e c u l e a r e c o m p a r a b l e t o t h o s e assumed i n s o l u t i o n . A t i n c r e a s e d v a l u e s o f t h e i n t e r a c t i o n e n e r g y , however, t h e number o f s e g m e n t s on t h e s u r f a c e i s s i g n i f i c a n t , a n d t h e c o n f i g u r a t i o n a l s t a t e assumed i s s u c h t h a t s m a l l " t r a i n s " a n d s m a l l " l o o p s " are favoured while " t a i l " lengths are r e l a t i v e l y l a r g e . Most important c o n t r i b u t i o n t o the thickness of adsorbed l a y e r d e r i v e s from " t a i l s " . Concluding
Remarks
I n t h i s s t u d y we h a v e d e l i b e r a t e l y assumed a n e x t r e m e l y s i m p l e m o d e l , f o r o u r m a i n p u r p o s e h e r e was t o a s c e r t a i n t h e v i a b i l i t y o f t h e M e t r o p o l i s s a m p l i n g method i n t h e c a s e o f c h a i n m o l e c u l a r systems i n t e r a c t i n g with a s u r f a c e . Notwithstanding the l a r g e magnitude o f the samples r e q u i r e d f o r s a t i s f a c t o r y c o n v e r g e n c e , t h e Monte C a r l o a p p r o a c h c o n s i d e r e d may b e r e g a r d e d a s s u c c e s s f u l i n t a c k l i n g t h e p r e s e n t s y s t e m s . We hope t h a t t h i s method p r o v e s e q u a l l y s u c c e s s f u l when
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
ADSORPTION
Δ
ι °·β € /kj 2
, ι·ο
ι ι·2
Figure 5. Mean thickness of adsorbed layer () as a function of the energy °f
I 1-4.
—
0 4
0*6
A T INTERFACES
O ô
Ι Ό
1-2
Figure 6. Mean values of "train' (), "loop" ( ), and "tail" ( ) lengths correspond ing to various values of the adsorption energy per segment t
e
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
2.
LAL ET AL.
Isolated Chain Molecules
27
m o d i f i c a t i o n s such as the trans/gauche bond conformational energy d i f f e r e n c e and non-athermal solvents a r e introduced i n the model. We s h a l l deal with such models i n f u r t h e r studies. An important extension of t h i s work that we envisage concerns the i n v e s t i g a t i o n of the c o n f i g u r a t i o n a l behaviour of adsorbed polymer molecules as the s u r f a c e coverage v a r i e s . This can be achieved by i n t r o d u c i n g p e r i o d i c boundaries i n the system (14). Literature Cited 1.
F r i s c h , H.L., Simha, R., and E i r i c h , F.R., J . Chem. Phys., (1953), 21, 365.
2.
Hoeve, C.A.J., DiMarzio Phys., (1965), 42
3.
Rubin, R.J., J . Chem. Phys.,
4.
Roe, R.J., Proc. N a t l . Acad. Sci., (1965), 53, 5 0 .
5.
Motomura, K., and Matuura, R., J . Chem. Phys., (1969), 50, 1281.
6.
S i l b e r b e r g , Α., J . Chem. Phys., (1968), 48, 2835.
(1965), 43, 2392.
7. Lal, M., R.I.C. Rev., (1971), 4, 97. 8.
L a l ,Μ.,and Spencer, D., J . Chem. Soc. Faraday Trans. I I , (1973), 69, 1502.
9.
L a l ,M.,and Spencer, D., J . Chem. Soc. Faraday Trans. I I , (1974), 70, 910.
10.
Bluestone, S., and Cronan,
J . Phys. Chem., (1966), 70, 306.
11.
McCrackin, F.L., J . Chem. Phys., (1967), 47, 1980.
12. 13.
L a l , M., Mol. Phys., (1969), 17, 57. Wood, W.W., i n "Physics of Simple L i q u i d s " , pp 117-230, North Holland P u b l i s h i n g Co., Amsterdam, 1968.
14.
C l a r k , A.T., and Lal, Μ., t o be p u b l i s h e d .
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
3 Equilibrium Film Pressure on a Flat, Low-Energy Solid R O B E R T J. G O O D Department of Chemical Engineering, State University of New York at Buffalo, Buffalo, Ν. Y. 14214
Introduction The equilibrium f i l m pressure of an adsorbate, πe, i s defined as πe
=
Y
S -
Y
SV
(1)
where ΥS i s the surface free energy of the s o l i d i n vacuum, and YSV i s the surface free energy of the s o l i d i n contact with the saturated vapor of the ad sorbate. The value of this property for an adsorbate which, as a l i q u i d , forms a non-zero contact angle on the s o l i d , has been a matter of uncertainty for some time (1-9). This fact has detracted from the use fulness of measurements of contact angle, θ, for the estimation of s o l i d surface free energies (2,3). See r e f s . (5) and (6) for an important discussion of the problem as it has existed in recent years. The measurement of πe i s not p a r t i c u l a r l y easy; and up to very recently (8) the only determinations that had been reported for low-energy s o l i d s were made on powders (4,5,6), while reported contact angle measurements were made on e s s e n t i a l l y f l a t surfaces. Fox and Zisman (1) found reason to conclude that πe, i s probably n e g l i g i b l e ; and this assumption i s basic to t h e i r "Yc" method of t r e a t i n g contact angle data. Adamson (3) has pointed out that the existence of a t h i c k adsorbed f i l m , and consequent nonn e g l i g i b l e value of πe, are compatible with the e x i s tence of a non-zero contact angle, provided the ma terial in the adsorbed f i l m has a structure that i s s i g n i f i c a n t l y d i f f e r e n t from the bulk l i q u i d . He hypothesizes a degree of "structure" i n a m u l t i l a y e r f i l m , which decays with distance from the surface. If such t h i c k , structured multilayers e x i s t , the low 28
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
3.
GOOD
Equilibrium
29
Film Pressure
entropy associated with such a structure could account for the existence of a non-zero contact angle. But of course, one cannot argue that the existence of a non zero contact angle proves the presence of a thick, structured f i l m . And indeed, i t i s hard to imagine that a m u l t i l a y e r f i l m of, say, CCl^ on Teflon could have a "structure that would meet the requirements noted i n Ref. 3. Whalen (6) pointed out that the Hill-deBoer equation (11,12,13), with empirical con stants obtained from measurements with hexane and octane on Teflon TFE i n the low-coverage region, pre d i c t s a submonolayer l i m i t i n g adsorption at saturation. The purpose of this paper i s to develop a method of estimating 7r , a p r i o r i , on a molecularly f l a t , homogeneous, low-energy surface f o r adsorbates of l i q u i d s f o r which θ physical i n t e r a c t i o n quantitative expressions are a v a i l a b l e i n well-known physical theory (10). As a f i r s t step i n this a n a l y s i s , an attempt was made to compute, by methods which w i l l be described below, the constants for a BET m u l t i l a y e r adsorption isotherm for CCI/, on a homogeneous, molecularly smooth fluorocaroon surface. I t was found that the BET "c" constant was very small. I f the adsorbent were a powder instead of a f l a t surface, a very low value of c would indicate a BET type I I I isotherm, the f i n a l up-turn of which (near ρ = p ) was due to enhanced adsorbate-solid i n t e r a c t i o n s at points of s o l i d - s o l i d contacts, e.g. as pendular r i n g s , which Wade and Whalen (.5,(5) have discussed. Such s t r u c t u r a l features are, by d e f i n i t i o n , absent from a molecularly smooth surface. These preliminary r e s u l t s led us to turn to a Langmuir model, as being f a r easier to treat than a BET model. It was a n t i c i p a t e d that a s t r i c t l y Langmuirian model might break down when some possible values of molecular parameters were assumed — for example, the model might p r e d i c t high enough coverage that l a t e r a l i n t e r a c t i o n s would be important. For such a regime, a Hill-deBoer isotherm would be more s u i t a b l e . However, i n the present computations, we confined that aspect of the study to the estimation of the conditions under which the Langmuir postulates break down. To a n t i c i p a t e some of our r e s u l t s , a breakdown of the Langmuir assumptions was i n f a c t found, and i n a very i n t e r e s t i n g region of the range of chain-length for n-alkanes, on Teflon. 11
e
Q
ff
11
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
30
ADSORPTION
AT
INTERFACES
Theory Consider the low-coverage sub-monolayer region of an adsorption isotherm on a uniform s o l i d . We w i l l estimate the energy and entropy of adsorption, with the bulk l i q u i d as the reference state. The p a r t i a l molal entropy of the adsorbed molecules, i n a Langmuir adsorbed f i l m on a s o l i d , i s given by (14). S - - Rln [ x / ( l - x ) l a
(2)
a
where x i s the "θ" of the Langmuir adsorption equa t i o n , i . e . the mole f r a c t i o n of surface s i t e s that are occupied. This entropy term i s c o n f i g u r a t i o n a l ; i t arises from the p o s s i b i l i t y of permuting the molecules among the occupied molal entropy of transfer, liqui sorbed f i l m , i s given by, X W AS = - Rln τ — + Rln ^r- + AS. . - S (3) l-x W internal ql ' The l a s t two terms i n Equation 3 can probably be neglected. These correspond, r e s p e c t i v e l y , to the changes i n i n t e r n a l , molecular degrees of freedom, and to the configurational entropy of the l i q u i d , considered as a q u a s i - l a t t i c e with occupied and vacant s i t e s . The l a t t e r term i s small, probably less than 0.5 entropy unit (15). The second term on the r i g h t involves the number of angular configurations accessible to a molecule i n the l i q u i d (W^) and i n the adsorbed state (W ). For a quasi-spherical molecule such as C C I 4 , this term i s zero. For an elongated molecule, such as an n-alkane longer than propane or η-butane, we may estimate this term as follows: The molecule i s treated as a r i g i d c y l i n d e r , of length I and diameter d. In the l i q u i d , i t s axis may be at any angle, r e l a t i v e to a fixed coordinate system; i n e f f e c t , i t has a volume 0.75ΤΓ(Ί/2)3 accessible to i t . In the adsorbed state, the energy of a t t r a c t i o n between the s o l i d and the extended molecule renders i t improbable that the molecule w i l l have i t s axis i n any plane that i s at an appreciable angle to the surface. So i t may be r e garded as having, accessible to i t , a volume 2ir(l/2)^d. This entropy term, then, i s approximately Rln(3d/4^). A further refinement on t h i s term can be made by counting the numbers of bent configurations e x p l i c i t l y . These are tedious to enumerate, but t h e i r e f f e c t on the equilibrium w i l l be to predict even lower coverage than that estimated with t h e i r neglect. a
Q
Q
Ί
Ί
v
a
L
a
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
3.
Equilibrium
GOOD
31
Film Pressure
Thus, we can write as a reasonable approximation, f o r the entropy of transfer per mole between l i q u i d and adsorbed state: N k t l n ^ J - - ln(ff)] (4) a where Ν i s the Avogadro number. For symmetrical ad sorbate molecules, the l a s t term i n the brackets i s omitted. Volume changes are small, i n transfer from l i q u i d to adsorbed state, so we may estimate the enthalpy change as follows: The p a r t i a l molal energy change, i n transfer from the pure l i q u i d to the adsorbed state, i s : AS = -
Δϋ « AU
V
- ÂÏÏ
V
Here, AU i s the molar energy of vaporization, and AU the p a r t i a l molal energy of adsorption from the vapor. For the purpose of a s t r i c t l y Langmuir-type computation, we assume A U to be constant. Estimates of A U have not been b r i l l i a n t l y successful i n the past; but we are not d i r e c t l y interested i n the heat of adsorption from the gas. Rather, we are interested i n the energy of transfer from the l i q u i d . Thus, i f we use a model that i s moderately reasonable to estimate AU , and the same model to estimate AU * , we w i l l have a good probab i l i t y of making a better estimate of the difference between these two terms. It w i l l develop that we use the macrospic heat of vaporization of the pure l i q u i d as our experimental parameter i n p r e d i c t i n g coverage. Molecular considerations w i l l enter only i n regard to estimating the energy of i n t e r a c t i o n between unlike molecules or segments, and to taking molecular shape into account. Thus, we can write, for substance i , taking the l i q u i d as the reference state, a d s
a d s
acis
V
ac
A
U
N
€
z
/
s
2
( 6 )
i " ii iL Here, ζΐχ i s the coordination number for substance i i n the l i q u i d , and €±± i s the energy at the minimum of the pair p o t e n t i a l function, f o r substance i . Let the molecules of the l i q u i d be designated 1, and those of the s o l i d 2. Then the energy change per mole, on transfer of molecules of type 1 from the l i q u i d to the adsorbed state, i s : Δϋ ^ N < *
1 L
€ /2 u
- «
l a
€
1 2
/2)
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
(7)
ADSORPTION
32
AT
INTERFACES
Here €^2 i s the energy at the minimum of the p o t e n t i a l function, f o r 1-2 bimolecular i n t e r a c t i o n , and z ^ i s the number of nearest neighbor surface molecules, or groups, that can i n t e r a c t with a molecule of adsorbate, The l a s t term the brackets i n Equation 7 corresponds to the energy of adsorption from the vapor, estimated according to the same model used f o r Equation 6· Equating Δϋ and TAS, we obtain a
-
NkTUn^-H
ln(|f)] = N ( N Z
1L
Z l L
€ n
z
l a
€
flafl2
11
1 2
)/2
(8)
I f the dominant types of a t t r a c t i v e forces f o r the two species are the same, i t has been shown that 6^2 *- given, approximately, by ( 1 0 ) : s
(9)
'12
The r i g h t side of Equation 8 then becomes: Ν
ζ
η Λ ι
(10)
τ
I f the coordination number of a molecule (or group) of type 1, i n the l i q u i d , z ^ , i s the same as that of a molecule (or group) of type 2 i n i t s l i q u i d state, ζοτ, and i f there i s the same degree of v a l i d i t y f o r trie assumption of pairwise a d d i t i v i t y of energies f o r substances 1 and 2, and the same f r a c t i o n a l contribution due to neighbors outside the f i r s t coordination s h e l l , then, L
€
ll
/ €
22
Ξ
(ID
AUJf/AUj
Combining Equations 6, 10 and 11 with Equation 8, we obtain: log1-x.
2.3RT
^la
1 Z
(12)
1 L VAUj
A simple case, to which we can apply Equation 12, i s C C I 4 on polytetrafluorethylene (Teflon TFE). We estimate the r a t i o of energies, ^22^11 > a
s
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
3.
A U
Equilibrium
GOOD
£C1//
a u
$FO
β
Film Pressure
F
o
r
t
h
i
s
P
33
u r
P°se,
A U
ÏFo
2
i
s
estimated
z
from ^heat of vaporization data for CF4 (16). Using the experimental energy of vaporization f o r CCI4, i t i s found that χ = 3 χ 10"^. The f i l m pressure f o r a d i l u t e monolayer can be computed from s,™ x 7Γ (13) e l-x o
σ
a
where a i s the area per molecule i n a close-packed monolayer. For CCIA on Teflon, assuming σ = 30A , the r e s u l t i s ir = 4 χ 10"^ ergs/cm . Thus we obtain a f i r s t , important conclusion: For one l i q u i d that forms a non-zero contact angle on a low-energy s o l i d (!) > ^e should be n e g l i g i b l e , provided the s o l i d i s homogeneous and molecularl An important syste applied i s the series of homologous n-alkanes on polytetrafluoroethylene. For t h i s purpose, we must modify Equations 8 to 12. We may assume the T e f l o n surface to consist of extended chains. The zigzag structure of the fluorocarbon chain j u s t matches the period of zigzag i n a saturated hydrocarbon chain. We may neglect the h e l i c a l configuration of the f l u o r o carbon, because the p i t c h i s small, about 14 carbons for a turn of the h e l i x . The fact that the l a t e r a l spacing between ( C F 2 ) n chains i s wider than between ( C H o ) chains does not a f f e c t t h i s computation. For an n-alkane, the methyl groups must be treated separately from the methylenes, because the p o l a r i z a b i l i t y of a C H 3 i s considerably greater, and a terminal C H 3 w i l l have more nearest neighbors i n the l i q u i d than w i l l a mid-chain C H 2 . For a long-chain hydrocarbon, most of the neighbors of a C H 3 i n the l i q u i d state are C H 2 groups, so the energy of i n t e r a c t i o n between C H 3 groups i n the l i q u i d may be neglected. Then Z - Q ^ H , Equation 7, may be replaced with the expression Z
n
^ LCH2
and z
l a
( n
€
"
1 2
2 ) z
CH2 9
L
C
H
^
L
C
H
^
,
^
^
, by €
aCH CH ,CF 2
2
+ 2
2z
G
aCH CH ,CF 3
3
With t h i s model, the expression i n Equation 10, becomes
2
for AU,
(15) employed
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
34
ADSORPTION
Δϋ - f
+ 2z
^
^ LCH^ CH^CH^
LCH,
CH2CH2
CH^CH^
1 -
'aClk
"CF CF
'LCH.
•CH C
2
0
2
C
H
'aCH.-
-CF CF
'LCH,
:
2
A T INTERFACES
2
2
2
(16)
CH2 CH„
We can estimate the 6's for methylene and methyl groups i n terms o f energies of vaporization, as was done f o r use i n Equation 1 2 . As before, we approximate the r a t i o s under the square roots by the r a t i o o f energies of vaporizatio the r e s u l t with the /Δυ
'aCR-, log-
1-x
1
(η-2)Δυ;
2.3RT
'LCH,,
«2
2 y
A
U J
,
AU,
CH,
1
CH„
A U
CH
4
i
/Δυ,
'aCH, +
CF.
-
CF.
- log(|f) ( 1 7 )
-
Δϋ,CH.
'LCH-
We have c a r r i e d out computations f o r n-alkanes on Teflon, using A U C H 3 2 5 0 joules/mole and ΔΗ^Ηβ = 8 2 0 0 joules/mole, from vapor pressure data ( 1 6 ) , and 2
Z
/ z
2
/
4
=
z
/ z
1
,
1
T
h
e
r
a
t
i
o
d
/
l w
a
s
aCH LCH " ' aCH LCH = ' estimated assuming the van der Waals diameter of a n-alkane to be 4.8A, and the projection of the C-C distance on the chain axis to be 1.252A. Table I shows the r e s u l t s of this c a l c u l a t i o n . Values f o r pentane and butane are i n parentheses because the assumptions that most of the neighbors of a C H 3 group are C H 2 groups, and that the molecule l i e s f l a t on the surface, break down f o r short-chain alkanes. We note at once, from Table I, that x and are e s s e n t i a l l y zero f o r the higher hydrocarbons. Below hexane, χ increases r a p i d l y ; and the assumption of no l a t e r a l interactions quickly becomes inapplicable. So this computation leads d i r e c t l y to a p r e d i c t i o n of the region where the method of computation should break down. Thus, i t 2
2
3
3
a
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
3.
Equilibrium
GOOD
Film Pressure
35
Table I. n-alkane
2
X
octadecane
1.4 χ
a 10~
hexadecane
4.2 χ
decane
1.1 χ
TT ,ergs/cm e
6
4.4 χ
10~
5
10"
6
1.5 χ
10"
4
10~
4
5.6 χ
10"
3
10"
2
octane
4.0 χ
10"
4
hexane
1.7 χ
10"
3
pentane
(2.9 χ
2.3 χ 0.12
(0.23)
3
10" )
butane i s as expected, that the computed values f o r butane and pentane are much below those observed (4). It i s possible that the estimates of z çHo d aCH3 used above may, f o r c e r t a i n kinds of s i t e s , be too Small. For a r e a l surface, i t i s highly probable that step or ledge s i t e s e x i s t , for which z cHo y ke 3 and z Q^ may be as 5. Such s i t e s could w e l l constitute 5 or 10% of an experimental surface. Examination of models shows that, for elongated molecules, i t i s u n l i k e l y that z cH2 l d be as large as 3 f o r the e n t i r e chain, together with z çH2 s large as 5 for every terminal C H 3 . Indeed the values of these two z's w i l l depend on chain length, and on the l a t e r a l spacing of fluorocarbon chains. I t i s only for convenience that we approximate them by constants, and we w i l l assume average values of 2.5 f o r z çjj2 * 4 for z ç7io. An aiicane molecule i n a s i t e such as j u s t described w i l l not have freedom to take up any angular o r i e n t a t i o n p a r a l l e l to the plane of the surface; indeed there w i l l be just two orientations which have the same energy. So the term, log (3d/4t), i n Equation 17 must be replaced by log (3d2/£ ) Table II shows the r e s u l t computations of this type: The f r a c t i o n x ( tep}°f step s i t e s on Teflon TFE covered by n-alkane molecules, and the contribut i o n to the f i l m pressure due to t h i s coverage, assuming 5% of the surface i s accounted for as step sites. a n
a
z
m a
a
a
c o u
a
a
a
a n c
a
a
2
e
a
s
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
36
ADSORPTION
AT
INTERFACES
Table I I : Estimate of f r a c t i o n a l coverage of step s i t e s on t e f l o n TFE by n-alkane molecules, and c o n t r i b u t i o n of t h i s coverage to equilibrium f i l m pressure, assuming 5% of surface i s accounted f o r as step s i t e s . Table II n-alkane octadecane
χ , a(step) 8.5 χ 10
hexadecane
1.8 χ 10
fc
0.05ττ , ergs/cm e' 1*3 χ ΙΟ"
N
4
3
3.2 χ 10
decane
2.2 χ 10~
2
octane
5.2 χ 10"
2
hexane
1.5 χ
(pentane)
(2.0 χ 10" )
(butane)
2
&
2
5.8 χ 10"
1.5 χ 10 " 1
(0.8)
1
(1.3)
(3.0 χ 10" )
1
The values f o r pentane and butane are given i n paren theses because of the breakdown of an assumption ( i n addition to those noted regarding Table I) that was made i n the s t e p - s i t e model. This i s , that the aver age values of ζ , τ τ and z ~ are less than 3 and 5, respectively. 2 3 We note at once, from Table I I , that the comput ed contributions to ir f o r the higher n-alkanes i s not a p p r e c i a b l e — j u s t as was seen i n Table I. And for the lower alkanes, f o r which the model breaks down, the computed contribution to ir i s s t i l l r e l a t i v e l y small — only 1.9 erg/cm2 for butane, for which i t i s computed that about 30% of the step-sites are occupied. F i n a l l y , we w i l l treat water on Teflon and on polyethylene, using Equation 12 with omission of the term, log(3d/4£). To evaluate ^^_2 * relations : ο Γ
u
a C H
a C H
e
y w
€
d
+
"
+
6
μ
e
u
s
=
e
t
le
" C " )
Κ
1
+
B
«A
+
1
~TET
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
3.
GOOD
Equilibrium
e
2 2
Film Pressure
= ^22
fc
12
Here
37
*12
(
J4l
€
2
0
)
21
22
< >
i s computed by the equation
*
d
22
- -r+M-
< >
where I i s i o n i z a t i o n energy. These r e l a t i o n s are discussed i n d e t a i l i n Ref. (10). The superscripts d, i and μ,, i n Equations 18 - T 2 r e f e r r e s p e c t i v e l y to dispersion, inductio components of intermolecula energy polariz a b i l i t y , I i s i o n i z a t i o n energy, μ i s dipole moment, and Β i s a constant which, f o r molecules c o n s i s t i n g of atoms i n the second and t h i r d rows of the periodic table, i s close to 0.66 (10). For water, the r a t i o computed by Equation 19 i s close to 0.20 (10). Equations 18 and 19, are i m p l i c i t i n the discussion of Fowler and Guggenheim (17,18). Equation 21 can be put i n the form, e
"- "fe-% €
€
- 11
° '
2
(23>
v
< > 24
The reduction i n average coordination number, ùz , f o r water, on going from bulk l i q u i d to adsorbed state, i s probably about 1, i . e . from something near 4, to about 3. Polyethylene i s treated as extended (CH2) chains. The r e s u l t s are given i n Table I I I . It should be emphasized that these computations are f o r water on i d e a l Teflon TFE and polymethylene surfaces, i . e . assuming the s o l i d s to be smooth and homogeneous* n
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
38
ADSORPTION
AT
INTERFACES
Table I I I . Estimates of f r a c t i o n a l coverage and of equilibrium f i l m pressure f o r water on a fluorocarbon s o l i d and on a polymetheylene surface, both assumed to be smooth and homogeneous. Solid
χ a
7Γ , ergs/cm e 7-
Teflon TFE
6 χ 10
2.5 χ 10
Polyethylene Discussion
7 χ 1θ"
6
3 χ 1θ"
5
(a) The Approximations. We must now make a c a r e f u l examination of the important approximations that we have introduced The f i r s t and possibly the most important, approximatio Langmuir equation i t s e l f y computed show that these systems (except for the lower hydrocarbons) should be within the coverage region where the Langmuir equation can s a f e l y be used. We have, of course, neglected l a t e r a l interactions so far; and we now examine the v a l i d i t y of that neglect. For a quasi-spherical molecule such as CCl^, the energy term — i . e . the r i g h t side of Equation 12 — becomes ΔΙΙν
^la
lia
273RT
5
IL
AU;
5
(25)
1L
where z"£ i s the average number of " l a t e r a l " nearest neighbors of an adsorbed molecule. ^ In a perfect 2-dimensional, hexagonal l a t t i c e , z'i would be 6. For CH2 groups i n an n-alkane, z £ i s at most 2 . The entropy of adsorption w i l l be less than the Langmuir entropy (14), so to use the expression ,(25) instead of the corresponding term i n Equation 1 2 w i l l y i e l d the maximum value of x : a
v
a
a
a
l-x-
exp
ΔΙΙ JL RT
'ΔΙΚ
1 - 'la 1L
'la S
5
(26)
1L
For C C I 4 on Teflon TFE, with zî /ziL =0.5, this treatment y i e l d s x < 10" . Thus, the refinement of computing x^ with allowance f o r l a t e r a l i n t e r a c t i o n s does not bring the estimated coverage s e r i o u s l y outside the region of the isotherm where l i n e a r i t y i s a
2
a
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
3.
GOOD
Equilibrium
Film Pressure
39
expected. Hence, the use of the Langmuir isotherm as an acceptable approximation, f o r molecules such as C C I 4 , appears to be j u s t i f i e d . (For step s i t e s , the s i t e s themselves w i l l be i s o l a t e d from each other, and so there i s no l a t e r a l i n t e r a c t i o n of adsorbate molecules even when most of the step s i t e s are covered). For l i q u i d s having much lower b o i l i n g points than CCl^, however, i t i s to be expected that l a t e r a l interactions and two-dimensional condensation w i l l be important, and hence that larger values of ττ w i l l be found. A second approximation i s the assumption of chemical uniformity of the s o l i d surface. It has been established (19) that hydrophilic s i t e s e x i s t on at l e a s t some, ancT possibly a l l samples of Teflon TFE Such s i t e s are, no doubt the majority of s i t e s containing groups are l i k e l y to be present at the surface; and on other low-energy surfaces, i t i s to be expected that high-energy heterogeneities should commonly be present i n a f i n i t e concentration. Such s i t e s would i n t e r a c t with water molecules, and could contribute to a large value of ττ as computed from water adsorption, yet not make an excess c o n t r i b u t i o n to hydrocarbon adsorption. Heterogeneity w i l l also be present for geometric reasons, such as microscopic roughness or microporosity beyond the l e v e l of the step-sites considered above. So some adsorbed molecules w i l l have more nearest neighbors, i n terms of groups such as C F 2 , C F 3 etc. on Teflon, than w i l l others. But i n general, i t i s very u n l i k e l y that z-^ w i l l be larger than 5 or 6. So the r a t i o z^ /z-n w i l l be, at most, about 0.5; and the large values or this r a t i o w i l l pertain to only a very small f r a c t i o n of surface s i t e s , on a surface which i s smooth enough for contact angle measurements to be made. The r a t i o , ^ 2 2 ^ 1 1 ' ^ l° " §y s o l i d , 2, i n contact with any l i q u i d , 1, w i l l seldom be very large; for a hydrocarbon on a fluorocarbon, i n the computations given above, i t turned out to be at most 1.25. There w i l l be no more than a small f r a c t i o n of the s i t e s for which the energy term i n Equation 12 or 17 i s , for geometric reasons, very much larger than that computed above. And f o r elongated molecules on such s i t e s , i t has already been noted that the angular entropie term (the l a s t term i n Equations 12 and 17) w i l l be much more negative, because to occupy such a high-energy s i t e , an extended molecule w i l l have at most two configurations access i b l e to i t . Hence, the coverage of an e s s e n t i a l l y Β
Θ
a
a
o r
a
w
e n e r
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
40
ADSORPTION
AT
INTERFACES
f l a t surface w i l l not be s e r i o u s l y l a r g e r than that c a l c u l a t e d here. Of course, surfaces can be prepared which are very much more heterogeneous, f o r geometric reasons, than j u s t indicated, e.g. by abrasion. But as pointed out by Neumann and Good (20), such surfaces are not suitable for contact angle measurements ; and the r e p r o d u c i b i l i t y of data obtained would be very poor, and the hysteresis extremely large. Also, the heterogeneity of a surface that has been modified, by p a r t i a l oxidation or by g r a f t i n g short hydrophilic chains onto i t , w i l l be much more serious than that of an unmodified surface. The f i l m pressure on such surfaces i s a very d i f f e r e n t problem from that on an e s s e n t i a l l y homogeneous low-energy surface and i t w i l l not be discusse The term Rln(W /WL) rigorou expressio the change i n entropy associated with angular conf i g u r a t i o n s . The approximation of evaluating i t as Rln(3d/4£) has already been discussed. The error thus introduced r e s u l t s i n p r e d i c t i o n of too high an adsorption; so the conclusion as to the n e g l i g i b l e value of ir f o r higher hydrocarbons i s not weakened by i t . Regarding the expressions containing the €'s, e.g. Equation 10, i t may be seen at once that € ^ i s by f a r the most important parameter, because the r a t i o , la/ 1L generally small, e.g. 3/12, or r a r e l y larger than perhaps, 5/11. Since i s evaluated from AUÏ, i t i s c l e a r that the dominant energetic component of the computation i s the heat of vapori z a t i o n of the l i q u i d . There i s considerably less energy than A U "recovered , on adsorption, because the coordination number i s so much lower, f o r the adsorbed molecule with the groups i n the adsorbent surface. The estimation of €^2 from >/€^^Z2 3 i ° 9, i s i f anything, on the high side, even f o r systems where the cohesion of the bulk l i q u i d and of the s o l i d are both dominated by the London force. A more exact expression, replacing Equation 9, i s a
e
Z
Z
i s
V
11
9
€
1 2 = * - ^ Λ 2 "
E <
u a t
n
27
< >
where Φ can be computed a p r i o r i , from molecular properties (10), e.g., by Equation 22 f o r nonpolar molecules. The fact that we express the €'s i n terms of A U s (e.g. Equations 11 to 17) i s , i n a p r a c t i c a l V f
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
3.
GOOD
Equilibrium
Film Pressure
41
sense, a strong point of this theory. We have already noted the assumptions m a d e — s e e the paragraph preceding Equation 11. The main factor leading to inequality of z^j and (see above) i s , differences i n decree of expansion or the l i q u i d s , considered as f r a c t i o n of q u a s i - l a t t i c e s i t e s that are vacant, at the temperatures where the heats of vaporization are measured. Since the b o i l i n g point i s , to a f a i r approximation, a "corresponding temperature within the meaning of the theory of corresponding states, we can conclude the equality of coordination numbers i s a good approximation. Even i f these errors do not cancel t o t a l l y , they should do so p a r t i a l l y . And since this r a t i o appears under a square root sign Equation 12 and then i s m u l t i p l i e d by a facto the s e n s i t i v i t y of y i s small. Equations 16 and 17 introduce approximations needed to treat highly asymmetric molecules. The asymmetry cannot be handled i n terms of any e x i s t i n g , macroscopic treatments which use heats of vaporization d i r e c t l y . These assumptions are, however, a p r i o r i , reasonable, and so can be counted on as leading to a v a l i d p r e d i c t i o n of the trends. Equations 18 to 22 are based on Good and Elbing (10) and (as already noted) on the e a r l i e r treatments of Good and G i r i f a l c o (2.,Z>18) and Fowler and Guggen heim (17). A notation basecPon that of Fowkes (21) has been employed; but the quantities are not obtain able from empirical treatment of surface tension data, as i s the case with Fowkes Y '. Indeed, the dispersion component of the t o t a l surface energy can not i n general be evaluated from contact angle data, because of the lack of thermodynamic uniqueness of the U function, i n a binary system. (It i s only when there i s no i n t e r f a c i a l excess mass of e i t h e r . component that U i s unique. In general, U ( '£ U ( ), where the superscript designates the Gibbs d i v i d i n g surface: (1) r e f e r s to the surface located such that Γ\ = 0, and (2), to the Γο = 0 surface.) Thus, i s a function which has physical meaning only i n terms of the components of intermolecular a t t r a c t i o n constants as computed from molecular properties, e.g. by Equation 18 and 19. The c o e f f i c i e n t , 0.2, i n Equation 24, arises from t h i s treatment of the energy components f o r i n t e r a c t i o n of water and a nonpolar s o l i d . I t s use i n the theory for water depends f o r accuracy, not so much on the v a l i d i t y of Equation 18 or 19, as on the assumptions 11
1
lf
df
s
s
S
L
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
s
2
42
ADSORPTION
AT
INTERFACES
about coordination number and second-nearestneighbors, which j u s t i f y the use of the r a t i o of^ energies of vaporization i n Equation 24. We estimate the uncertainty here, as no worse than 50% i n ^i\l^22 which means an uncertainty that i s less than 25% a f t e r the square root i s extracted. The q u a l i t a t i v e conclusion that x and rr are n e g l i g i b l e , f o r H2O on Teflon and polyethylene, are not s e r i o u s l y changed by allowance for such uncertainty, because A U i s so large, f o r water, and as a consequence, the computed values of x and ΊΤ are so small. In summary, the approximations of t h i s theory are probably not serious; and indeed, the majority of the approximations contribute errors i n the d i r e c t i o n of too high an estimate of x and ττ · It would take very much greater c o r r e c t i o l i k e l y to appear, i the q u a l i t a t i v e conclusion that x and ττ are generally small for l i q u i d s that b o i l above room temperature. It must be emphasized, however, that these compu tations are not intended as quantitative predictions of x arri 7r for these systems. The approximations made above, including those about structure of the s o l i d surface, are s u f f i c i e n t l y serious that quanti tative agreement cannot be expected. But for the p r e d i c t i o n of trends, as with the n-alkanes, and for the conclusion that ττ i s small for high b o i l i n g l i q u i d s , the approximations should not detract from the v a l i d i t y of this theory. (b) Comparison with Experiments: i r for Organic Compounds on Teflon. Graham (4) has found ir to be much smaller, f o r η-octane on powdered Teflon TFE, than for alkanes having surface tension below Y , e.g. butane. ir has been reported to be large f o r low-boiling gases such as N on Teflon. Graham (4) noted a d i f f i c u l t y a r i s i n g from bulk s o l u b i l i t y of an alkane i n the substrate, such that the quantity sorbed could not be uniquely assigned as between adsorption and absorption. (This trouble was not encountered by Whalen and Wade (5,6.)). Graham concluded that his value of ir for octane on Teflon, about 1.7 erg/cm^, was an upper l i m i t ; he could not estimate the r e a l value. Wade and Whalen (5,j5) also used a powder form of Teflon, and also oBtained a small value for i r : 3.3 f o r hexane and 2,9 for octane. They e x p l i c i t l y corrected for pendular r i n g condensation, and i n so doing, they obtained estimates of ir i n t h e i r systems that were very probably more v a l i d than Graham's were f o r h i s . Our computations are lower than these experimental r e s u l t s y
a
e
V
a
θ
a
a
e
e
e
c
e
2
e
e
e
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
3.
Equilibrium
GOOD
Film Pressure
43
e.g. ττ =0.1 f o r hexane i n the absence of step s i t e s . The r e s u l t , 7 r =0.5 for Teflon with step s i t e s accounting for 5% of the area, shows the d i r e c t i o n of change i n the computed r e s u l t s when a more complex surface i s postulated. The preliminary computations made f o r CCl^ indicate that the e x p l i c i t employment of a two-dimensional van der Waals equation (11,12) would be worthwhile with the lower hydrocarbons. We w i l l investigate such two-dimensional condensation i n another communication. We note, however, that our equations have successfully predicted the observed trend of ir with chain length. As has already been noted, water adsorption measurements at Lehigh (19) have shown that the surface of Teflon powder i s heterogeneous and about 0.757 of the surface of the sampl which adsorbed wate t i o n of water, reported i n Table I I I , i s f o r the 99% of the surface exclusive of the hydrophilic s i t e s . The Lehigh measurements (19) could not q u a n t i t a t i v e l y d i s t i n g u i s h the increment of water adsorption due to t h i s f r a c t i o n of the surface. The water isotherm was described as resembling a type II isotherm, with surface area less than 1% of the nitrogen area, superimposed on a type I I I isotherm. We have not attempted to analyse the contribution to the adsorption of hydrocarbons or other nonpolar molecules, due to the hydrophilic s i t e s on Teflon. Wade (6) has discussed the evidence f o r interactions of high-energy s i t e s on Teflon with hydrocarbon molecules. Whalen (22) has recently measured the adsorption of water on Teflon powder, and estimated a value of 1.9 ergs/cm for ?r . He estimates the hydrophilic s i t e s on this s o l i d to account f o r 3%> of the surface area (6,23). Adsorption measurements on Teflon powders are of l i m i t e d d i r e c t pertinence to the contact angle question because there i s every reason to suspect that the surface of a powder i s quite s i g n i f i c a n t l y d i f f e r e n t from that of a smooth slab that i s suitable for contact angle measurement. This point i s hard to v e r i f y d i r e c t l y , however, because while electron microscopic examination of a grossly smooth s o l i d could reveal pores, i t would not reveal chemical heterogeneity, p a r t i c u l a r l y that i n the form of i s o l a t e d , high-energy s i t e s ; and the p r e c i s i o n measure ment of contact angle on a powder i s not easy. e
e
2
e
(c) Comparison With Adamson's Model, and Results For Water On Polyethylene.
His
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
44
ADSORPTION
AT
INTERFACES
(1) Theory. Our model i s , i n p r i n c i p l e , not incompatible with that of Adamson and Ling (3), i n that t h e i r isotherm graph, i n i t s lower pressure region, resembles a BET type I I isotherm. I t i s w e l l known that, by lowering the value of the " c " constant, a type I I I isotherm i s obtained which, i n i t s lowcoverage region, i s not experimentally d i s t i n g u i s h a b l e from the Henry's law region of a Langmuir isotherm. Figure 1 shows a schematic graph of the isotherm we propose. Since the coverage at saturation i s f a r below a monolayer, there i s no need to make any hypotheses about the structure of the absorbed mater i a l i n the region above monolayer coverage. (2) Experiment Adamson i n 1973 reported (8,9.) a value of 42 ergs/c These r e s u l t s appea I I I . They are also i n apparent c o n f l i c t with the w e l l known conclusion (24) that the Y polyethylene i s i n the neighborhood dF"31 ergs/cm . The use of Equation 28, [Y (cos0+l)- 7Γ 2 ] •Li e Y c
2
T
S
4Λ
\
(28)
Y (cose+i)
2
L
4Φ
2
with Φ about 0.9 to 0.95 (1,10) leads to an estimate of about 36 ergs/cm f o r Yg. I t would be rather anomalous f o r polyethylene i n water vapor to have a negative surface free energy Ygy, which would be obtained by subtracting 42 from"36 as Equation (1) would seem to prescribe. A r e c o n c i l i a t i o n can be achieved by hypothesizing that water on the polyethylene sample that was used (8.,9.) behaved i n a s i m i l a r fashion to water on Teflon TFE, (19) noted above. The water molecules might adsorb i n clusters on i s o l a t e d hydrophilic s i t e s , y i e l d i n g a f i l m with the observed average thickness and the reported ττ^. With respect to water adsorption, the e f f e c t i v e Y g of this s o l i d would then be, not the value derived from contact angles of nonpolar l i q u i d s , but a larger value: 2
Y
S
=
Y
+
S ^e(water) -36+42 , = 78 ergs/cm
(29)
2
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
3.
GOOD
Equilibrium
Film Pressure
45
Figure 1. Schematic: A possible isotherm for adsorption of a liquid such as carbon tetrachloride or hexadecane on a molecularly smooth, homogeneous solid such as Teflon TFE. Extrapohtions shown on log-log plot are speculation, and no physical reality is intended, particularly beyond the region where the curve starts to swing to the left.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
46
ADSORPTION
AT
INTERFACES
1
I f the water c l u s t e r s on Adamson s p o l y e t h y l e n e were i s o l a t e d from each o t h e r , t h e i r p r e s e n c e would not reduce t h e water c o n t a c t a n g l e t o z e r o . And i n the h y d r o p h o b i c r e g i o n s between c l u s t e r s , t h e amount o f water adsorbed p e r u n i t a r e a , and ττ , would be n e g l i g i b l e — a s computed above, f o r T a b l e I I I . β
Conclusions The e q u i l i b r i u m f i l m p r e s s u r e , 7 r , s h o u l d be n e g l i g i b l e on a smooth, homogeneous s u r f a c e o f a lowenergy s o l i d such as T e f l o n , f o r most l i q u i d s t h a t form non-zero c o n t a c t a n g l e s , and p a r t i c u l a r l y f o r those w i t h h i g h h e a t s o f v a p o r i z a t i o n . ir s h o u l d be large f o r l o w - b o i l i n g substances such as N 2 ethane e t c . , on t h e s e s o l i d s d i c t i o n s are i n accor e
e
Acknowledgement T h i s work was s u p p o r t e d by t h e N a t i o n a l S c i e n c e F o u n d a t i o n under Grant GK10602. Literature
Cited
1.
Fox, H.W. and Zisman, W.A., (1950) 5, 514.
2.
Good, R.J. and (1960) 64, 561.
3.
Adamson, A.W., and L i n g , I . , in " C o n t a c t A n g l e , Wettability and A d h e s i o n " , p. 57, Advan. Chem. S e r No. 43, American C h e m i c a l S o c i e t y , Washington, D.C., 1 9 6 4 .
4.
Graham, D.P., J. Phys. Chem., (1965), 69, 4387.
5.
Wade, W.H., and Whalen, J.W., J . Phys. Chem. (1968), 72, 2898.
6.
Whalen, J.W., J . Colloid (1968), 28, 443.
7.
Good, R.J., in " C o n t a c t A n g l e , W e t t a b i l i t y and Adhesion", Advan. Chem. S e r . No. 43, American C h e m i c a l S o c i e t y , p. 74, Washington, D.C., 196 4 .
8.
Adamson, A.W., 4 7 t h N a t i o n a l Ottawa, Canada, June, 1973.
Girifalco,
J.
Colloid
Sci.,
L.A., J. Phys. Chem.,
and
Interface
Colloid
Sci.,
Symposium,
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
3.
9. 10.
GOOD
EquilibriumFilmPressure
47
Adamson, A.W., 167th National Meeting of the American Chemical Society, Los Angeles, April, 1974. Good, R . J . and Elbing, Ε . , Ind. Eng. Chem. (1970), 62, (3), 54.
11.
de Boer, J . H ., "The Dynamical Character of Adsorp tion," Oxford University Press, London, 1953.
12.
Ross, S., and O l i v i e r , J . P . , "0n Physical Adsorp tion," Interscience Publishers, New York, 1964.
13.
Hill, T . L . , "Introduction to S t a t i s t i c a l Thermo dynamics," Addison-Wesley Publishing Co., Reading, Mass., 1960.
14.
Everett, D.H., Proc. Chem. Soc., Feb., 1958, p. 57.
15.
Glasstone, S., L a i d l e r , K.J., and Eyring, Η., "Theory of Rate Processes," McGraw-Hill, N . Y . , 1941.
16.
C.R.C. Handbook, 51st ed., Chemical Rubber Publishing Co., Cleveland, Ohio, 1970.
17.
Fowler, R . H . , and Guggenheim, E . A . , " S t a t i s t i c a l Thermodynamics," Cambridge University Press, London, 1952.
18.
Berghausen, P . E . , Good, R.J., Kraus, G . , Podolsky, Β., and S o l l e r , W., "Fundamental Studies of the Adhesion of Ice to S o l i d s , " WADC Technical Report 55-44, 1955.
19.
Chessick, J.J., Healey, F . H . , and Zettlemoyer, A . C . , J . Phys. Chem. (1956), 60, 1345.
20.
Neumann, A.W. and Good, R.J., J . Colloid and Inter face Sci., (1972), 38, 341.
21.
Fowkes, F . M . , J. Phys. Chem. (1957), 61, 904.
22.
Whalen, J.W., Vacuum Microbalance Techniques, A.W. Czanderna, E d . , v. 8, p. 121, Plenum Press, 1971.
23.
Whalen, J.W., (personal communication,
24.
Zisman, W.A., i n "Contact Angle, Wettability and Adhesion," Advan. Chem. Ser., No. 43, pp. 1-51, American Chemical Society, Washington, D.C., 1964.
1974).
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
4 Binding of Solute and Solvent at the Interface and the Gibbs Surface Excess D. K. C H A T T O R A J and S. P. M O U L I K Department of Food Technology and Biochemical Engineering and Department of Chemistry, Jadavpur University, Calcutta-32, India
Introduction With the help of an imaginary mathematical plane placed at the interfacial region, a liquid-gas system, according to the Gibbs concept, may be divided into two phases. From the thermodynamic analysis of such a system, Gibbs also derived his well -known equation relating the surface excess of solute with the surface tension and bulk activity of the solute in solution. The physical concepts associated with the Gibbs surface excess have been examined more critically by Guggenheim and Adam (1) and also by Defay and Prigogine (2). Guggenheim (3) has also given an alternative derivation of the Gibbs adsorption equation assuming certain arbitrary but finite values for the physical thickness of the interfacial phase. In some cases, the interfacial thickness may be estimated from the experimental data (4). Goodrich (5) has recently analyzed the Gibbs adsorption equation with the help of an algebric method in which no mention is made of the mathematical dividing surfaces. Surface excesses of solute and solvent in a two-component system are, however, relative to each other and their values may be positive or negative. An attempt will be made in this paper to obtain relations between the surface excesses and the absolute amounts of solvent and solute bound to the interfacial layer. It is well-known that the surface tension of water increases with addition of various inorganic electrolytes to its bulk. In the dilute region of electrolyte concentrations, this increase is explained in terms of image forces (6^Z.>jL) * ^ extensive application of the Gibbs adsorption equation for the highly concentrated electrolyte solutions did not attract many workers because interpretation of the negative surface excess of electrolyte in terms of its interfacial adsorption is difficult. An attempt will also be made here to estimate the composition of the interfacial phase of an electrolyte solution from the observed negative value of the solute surface excess. T
48 In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
ie
4.
cHATTORAj A N D MOULiK
Binding of Solute and Solvent
Binding o f Two Components at the L i q u i d I n t e r f a c e Let us imagine t h a t a c e r t a i n amount of a l i q u i d component 1 i s mixed w i t h a d e f i n i t e amount of another l i q u i d or s o l i d component 2 as a r e s u l t o f which a b i n a r y s o l u t i o n i n the shape of a column (Figure 1) i s formed. With the help o f a plane set a r b i t r a r i l y at p o s i t i o n P j p j , t h i s column may be d i v i d e d i n t o two d i s t i n c t regions A and B. The exact nature and the charac t e r i s t i c f e a t u r e of t h i s d i v i d i n g plane w i l l be discussed l a t e r on i n d e t a i l . Region B, composed s o l e l y of the bulk l i q u i d phase, contains ηχ and T12 moles of components 1 and 2 respec t i v e l y . The components i n the bulk phase are s a i d t o remain i n the f r e e s t a t e of mixing. In region A, nj and τΐ2 moles of two components are present as a whole. Out o f these, ηχ and η 2 moles e x i s t i n g i n the f r e e s t a t e of mixing may form the bulk phase. Remaining Δ n with moles of componen 2 because of the existence of the i n t e r f a c i a l energy at the upper extreme top s i d e o f t h i s r e g i o n . They are termed to remain i n the bound s t a t e o f mixing and considered to form one square centimeter of an i n t e r f a c e . ?
Let Γ ι and Γ 2 be the r e l a t i v e excesses of components 1 and 2 r e s p e c t i v e l y i n r e g i o n A which may be d e f i n e d by the r e l a t i o n s (2) ,
1 *2
= n{ - n^
Τ
= n2 - ni jh_
2
...
χ
Γ^
...
(1) (2)
*i where and X2 are bulk mole f r a c t i o n s of the r e s p e c t i v e com ponents i n r e g i o n B. The concentrations o f s o l u t e and solvent i n the gas phase are neglected i n w r i t i n g Equations (1) and (2). Γ j and Τ2 w i l l be zero when the composition n^Av? of r e g i o n A becomes equal to the bulk composition X1/X2 of region B. Combining r e l a t i o n s (1) and (2), Equation (3) w i l l be obtained. f
Χ
χ
Τ2
+ X
Γ 2
1
= 0
...
(3)
For given values o f X^ and X2, the values o f ^ \ and Γ 2 are thus r e l a t e d t o each other according to Equation (3) and o b v i o u s l y the two excesses a r e o p p o s i t e i n s i g n . F u r t h e r , a t d e f i n t e values o f X^ and X2, n^ and n2 i n Equations (1) and (2) are not f i x e d but are s i g n i f i c a n t l y dependent on the a r b i t r a r y p o s i t i o n o f the d i v i d i n g plane. The absolute composition of the surface cannot t h e r e f o r e be expressed i n terms o f Γι, f
Γ2,
ni
f
a n c
* 2· η
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
50
ADSORPTION
AT
INTERFACES
Let us now assume f u r t h e r t h a t the d i v i d i n g plane at p-^p^ behaves as a semi-permeable membrane which allows o n l y the com ponents i n t h e i r f r e e s t a t e o f mixing t o pass from r e g i o n A to r e g i o n Β and v i c e v e r s a . However, the components i n t h e i r bound s t a t e o f mixing i n r e g i o n A are not allowed t o permeate through t h i s membrane. The chemical p o t e n t i a l M 2 °f component 2 i n r e g i o n A, remaining i n the f r e e s t a t e may be given by the r e lation, If
=
β 2
μ
2
+
R
T
l
n
f
2
n
2
Π n
=
M°
If +
l
n
2
+
(nj
-
&n{)+in
2
-
Δη ) 2
(4)
a r e
t n e
Here f and μ. r a t i o n a l a c t i v i t y c o e f f i c i e n t and standard chemical p o t e n t i a l o f component 2 i n the f r e e phase r e s p e c t i v e l y . The chemical p o t e n t i a l o f the same component i n r e g i o n Β i s s i m i l a r l y given by Equation ( 5 ) . 2
2
μ
=
2
μ
+
2
RT l n f X 2
...
2
(5)
From^the p r i n c i p l e o f membrane e q u i l i b r i u m , JLt i s equal t o U>2 t h a t combining Equations (4) and ( 5 ) , one w i l l o b t a i n 2
s o
n
2
nj
-
Δη
-
Δη*
X
2
...
2
(6)
X
1
Rearranging t h i s , n
2
-
n{
x
2
=
Δη
2
-
X
2
An[
...
(7)
Equation (7) i s s i m i l a r i n form to t h a t used by B u l l and Breese (9) f o r the c a l c u l a t i o n s o f the extents, o f s o l u t e and.solvent b i n d i n g on the p r o t e i n boundary. I n s e r t i n g Equation (7) i n Equation ( 2 ) ,
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
4.
CHATTORAJ
AND
Γ
=
2
Binding, of Solute and Solvent
MOULiK
Δη
2
-
An
x
x
2
51
...
(8)
I t may s i m i l a r l y be shovm t h a t
Γι
=
AnJ
-
Δη
*1_
2
...
(9)
X2 For given values o f and X , Δ η | and Δη? (and hence 1^ and Γ ) are not dependent on the p o s i t i o n o f the d i v i d i n g membrane. Absolute composition o f the bound phase a t the i n t e r face may be obtained i experimental data. Equation (2) may a l s o be w r i t t e n i n the form, 2
2
Γ
2
=
(Δη^ -
Δη[
X
2 x
}
l
+ (n' 2
X
2 j
..
(10)
X
From the comparison r e l a t i o n s (8) and (10), one w i l l a t once f i n d , X
η'' 2
η" 1
2
...
(10a)
X. 1
This means t h a t the mole r a t i o n o f the components i n the f r e e phases o f regions A and Β are i d e n t i c a l . I n the r i g h t s i d e o f Equation ( 2 ) , two equal and opposite v a r i a b l e s η and η Xo/Xj become i m p l i c i t l y i n c l u d e d owing t o the a r b i t r a r y placement o f the d i v i d i n g plane i n c l u d i n g a p a r t o f the bulk region. The numerical values o f these v a r i a b l e s then depend upon the p o s i t i o n o f t h i s d i v i d i n g plane. The terms i n r e l a t i o n s (8) and (9) are independent o f the p o s i t i o n o f the d i v i d i n g membrane. The Gibbs Adsorption Equation Let us now imagine t h a t the d i v i d i n g plane i s r a i s e d from p o s i t i o n p-jP-[ t o P P s l o w l y and r e v e r s i b l y , so t h a t a l l the f r e e components from r e g i o n A permeate t o region B. Region Β i s now occupying the t o t a l bulk o f the l i q u i d system whereas r e g i o n A, s o l e l y composed o f Δ η ^ and Δ η ^ moles o f the bound components, may be regarded t o form the surface phase o f one square centimeter i n t e r f a c i a l area. The s p e c i a l mixing o f the components a t the i n t e r f a c e i s o b v i o u s l y due t o the e x i s t e n c e 2
2
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
52
ADSORPTION
AT
INTERFACES
o f the i n t e r f a c i a l energy. In the absence of the imaginary membrane a l s o , the bound s t a t e should remain as a p h y s i c a l r e a l i t y because the i n t e r f a c i a l f r e e energy does not disappear under t h i s c o n d i t i o n . The surface bound phase may thus be imagined t o be separated e n t i r e l y from the l i q u i d i n b u l k , by an imaginary p h a s e - d i v i d i n g plane placed at the p o s i t i o n P P 2 Applying the Gibbs-Duhem r e l a t i o n s f o r the surface (bound) and bulk phases separated w i t h such a plane set a p p r o p r i a t e l y , we can o b t a i n the f a m i l i a r expressions f o r the Gibbs adsorption equation which at constant temperature and pressure w i l l read (3), ?
2
Γ
2
=
( Δη
=
f
-
2
x
Δη|
2
)
2
RT
d f X 2
2
and (
Δ
Δη.
Π ι
X
=
- f x x
RT
2
dy
x
d
... X £ 1
(12)
1
Here y stands f o r the s u r f a c e t e n s i o n o f the l i q u i d mixture corresponding t o a given bulk mole f r a c t i o n X o f the s o l u t e , f l and f , the r a t i o n a l a c t i v i t y c o e f f i c i e n t s of the s o l v e n t and s o l u t e r e s p e c t i v e l y , R the gas constant and Τ the absolute temperature. In the conventional forms of the Gibbs equation, Γι and Γ are r e l a t e d to n j and n according to Equations (1) and (2) r e s p e c t i v e l y which on t h e i r t u r n depend s i g n i f i c a n t l y on the p o s i t i o n of an a r b i t r a r y d i v i d i n g plane P i P i . Δηj and Δη are, however, independent of the p o s i t i o n o f the d i v i d i n g plane. 2
2
2
2
1
2
Evaluations of
^2
The surface t e n s i o n , y , o f water u s u a l l y increases w i t h increase i n c o n c e n t r a t i o n o f an i n o r g a n i c e l e c t r o l y t e provided the s o l u t e content i n the aqueous s o l u t i o n i s high. For the present a n a l y s i s , the data on the surface t e n s i o n o f water f o r d i f f e r e n t high concentrations of an e l e c t r o l y t e have been c o l l e cted form the l i t e r a t u r e . These e l e c t r o l y t e s are the f o l l o w ing: L i C l (10) 25°C; NaCl (11) 25°C; KC1 (12) 25°C; NaBr (10)
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
4.
CHATTORAJ
AND
53
Binding of Solute and Solvent
MOULiK
25°C; NaN0 (10) 20°C; K S 0 (12) 25°C; M g C l (10) 20°C; MgS0 (13) 25°C and A l (S04)3 (10) 25°C The surface t e n s i o n data of n o n - i o n i c sucrose (10) s o l u t i o n s have a l s o been considered here s i n c e t h i s s o l u t e i s observed t o increase the boundary t e n s i o n o f water. The p r a c t i c a l a c t i v i t y c o e f f i c i e n t s (on the m o l a l i t y s c a l e ) f o r v a r i o u s concentrations o f these e l e c t r o l y t e s and sucrose can be obtained from the l i t e r a t u r e (14). The values o f t h e corresponding r a t i o n a l a c t i v i t y c o e f f i c i e n t s ( f ) of these s o l u t i o n s may e a s i l y be c a l c u l a t e d u s i n g a p p r o p r i a t e conversion f a c t o r s (14). Here water and s o l u t e stand f o r com ponents 1 and 2 r e s p e c t i v e l y . For each s o l u t e , y has been p l o t t e d against f X and t h e slopes d y /d (f2X2) o f curve f o r v a r i o u s v a l u e s o f f2X2 have been c a l c u l a t e d u s i n g the chordarea method o f slope a n a l y s i s (15). The negative surface excesses - Γ 2 , o f the e l e c t r o l y t e s f o r v a r i o u s values o f X have been c a l c u l a t e d w i t h t h e hel and 5, - Γ 2 f o r v a r i o u against the mole r a t i o X / X i . The open and c l o s e d signs i n the f i g u r e s represent data obtained from experiments and from i n t e r p o l a t i o n o f 7-f2X2 curves, r e s p e c t i v e l y . 3
2
4
2
4
2
2
t
2
n
e
2
2
Solute-Solvent Binding C h a r a c t e r i s t i c s I t i s o f i n t e r e s t t o note t h a t i n a l l these p l o t s i n Figures 2, 3, 4 and 5 increases l i n e a r l y w i t h i n c r e a s i n g mole r a t i o , X 2 / X 1 , provided the s o l u t e content i n the s o l u t i o n i s not too high. The slope and i n t e r c e p t o f such l i n e a r p l o t s may e v i d e n t l y represent the r e s p e c t i v e values o f Δ η ι and Δ 2 according t o Equations (8) o r (11). The l e a s t square values o f Δηχ and Δ η f o r v a r i o u s systems are presented i n Table I along w i t h t h e i r r e s p e c t i v e s t a n d a r d d e v i a t i o n s . From t h e values o f Δ η ^ i n Table I , i t may be observed t h a t one square centimeter o f a s o l u t i o n i n t e r f a c e may bind s i g n i f i cant amount o f water whose magnitude may be o f t h e order 1 0 " ° t o 10" moles. Δη{ f o r a l k a l i c h l o r i d e s f o l l o w the order: L i C l < NaCl < KCl. The water b i n d i n g c a p a c i t i e s o f the i n t e r face i n the presence o f u n i - u n i v a l e n t sodium s a l t s (NaCl, NaBr and NaN03) do d i f f e r from each other widely. The magnitudes of Δ η ^ f o r u n i - u n i v a l e n t and u n i - b i v a l e n t s a l t s ( K S 0 , M g C l ) are a l s o comparable t o each other. However, Δ η ^ f o r p o l y v a l e n t e l e c t r o l y t e s , A l ( S 0 ) 3 and MgS0 , are s i g n i f i c a n t l y high. The agreement o f t h e order o f Δ η ! f o r v a r i o u s e l e c t r o l y t e s w i t h that t o be expected from the t y o t r o p i c s e r i e s i s o n l y p a r t i a l . From Figures 2, 3, 4 and 5, i t may a l s o be noted t h a t the p l o t o f - Γ against Χ /Χχ d e v i a t e s from l i n e a r i t y f o r L i C l , NaBr (not shown i n f i g u r e ) , NaNU3, K S 0 (not shown), and A l (S0 )3 when t h e mole r a t i o n r e l a t i v e l y high. This may i n d i c a t e t h a t t h e surface bound components Δη^ and Δ η are not constant but become v a r i a b l e f u n c t i o n s o f X A i a t r e l a t i v e l y higher s o l u t e c o n c e n t r a t i o n s . When X A l f o r NaNU3, K S 0 , K C l , η
2
f
n
o
t
2
2
2
4
4
2
4
2
2
a
r
4
2
e
4
2
2
2
2
4
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
5.57
KC1 (cone)
(b)
3.74
K2SO4 (cone)
155
MgSÛ4 (cone)
00
52.7
MgS0 ( d i l )
8 (a)
4
MgCl
7
(b)
6.66
4.71
K2SO4 ( d i l )
6 (a)
2
8.36
NaNU3 (cone)
00
3.28
NaN0 ( d i l )
5 (a)
3.06
NaBr
4
3
5.05
KC1 ( d i l )
3 (a)
3.70
NaCl
2
2.95
+
+
+
+
+
+
+
+
+
+
+
+
9
0.83
0.90
0.29
0.04
0.96
0.70
0.07
0.05
0.18
0.01
0.07
0.31
2
A n j χ 10 moles/cm
LiCl
Electrolytes
1
Serial No.
-0.05
0.10
0.51
-0.01
-0.08
57.7
-0.39
0.01
-1.51
-1.31
-0.15
0.34
+
+
+
+
+
+
+
+
+
+
+
+
0.61
0.35
0.23
0.03
0.12
9.24
0.08
0.08
0.79
0.39
0.12
1.04
2
1 1
A n j x 10 moles/cm s
Δη
93.0
31.6
3.99
2.24
2.82
3.45
1.97
1.83
3.33
3.02
2.21
1.77
L
Table I . Least Square Values o f Δ η { and
0.069
^ J L Δ ηj
2
s
3.90
m
S
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
s
2.60 9.00
2.62 +_ 1.70 18.8 + 1.86
15.1 +_ 0.89
Sucrose
19.2
L
4.34 +_ 1.73
1 1
Sucrose ( d i l )
(cone)
(cone)
*not l e a s t square v a l u e s .
(b)
10(a)
0
2
χ 10
moles/cm
2
10.5
32.0
2
Δη
4.66 + 4.23
3
Al2(S04)
(b)
*(dil)
9
mo l e s / c m
Δ n{ χ 1 0
17.6 +_ 2.92
3
4
A1 (S0 )
2
Electrolytes
9(a)
No.
Serial
Table I . (Contd.)
1
2
s
0.33 0.69
0.0124
0.14
m
0.0060
0.0026
Δη 1
Δ n
ο
a
Si"
IT
56
ADSORPTION
P
2
AT
INTERFACES
y///////7777}\ P2
p; θ
Figure 1. Hypothetical binary solution in the shape of a column
5 10
10 20
15 50
20 40
( X /X|> X I 0 2
25 SO
90 60
I Π
3
Figure 2. Surface excess of solute as a function of mole ratio. 1: KCl (Scale I-I). 2: KCl (Scale I-II). 3: MgSO (Scale II-II). 4: MgSO (Scale I-I). h
/f
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
CHATTORAJ
AND
Binding of Solute and Solvent
MOULiK
CM
(X /X,
Figure 3.
) Χ ΙΟ
Surface excess of solute as a function of mole ratio. 1-4: LiCl, NaBr, NaCl, MgCl . 2
I
π
m
-3 -60 L
Figure 4. Surface excess of solute as a function of mole ratio. 1: NaN0 (Scale II-II). 2: NaNO, (Scale I-I). 3: K SO (Scale III-III). 4:K,SO,,(ScaleUl-l). 3
2
h
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
58
ADSORPTION
AT
Figure 5. Surface excess of solute as a function of mole ratio. 1: Sucrose (Scale I-I). 2: Sucrose (Scale II-I). 3 and 4: Al (SO., ), (Scale I-I). 2
t
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
INTERFACES
4.
CHATTORAJ
AND
MOULiK
Binding of Solute and Solvent
59
MgSU4, A l (S04)3 and sucrose are very h i g h , - Γ v s X / X i p l o t s become again l i n e a r having d i f f e r e n t slopes and i n t e r cepts. The l e a s t square values o f Δ I L and Δ η , c a l c u l a t e d again from Equation (11) a t these regions o f h i g h s o l u t e con t e n t , are a l s o i n c l u d e d i n Table I . Compared t o Δ η | , values o f Δ η f o r d i f f e r e n t e l e c t r o l y t e s are indeed q u i t e s m a l l . Δ η o f NaNC3 (concentrated) i s very h i g h and the s u r f a c e m o l a l i t y (m ) i n t h i s case i s as h i g h as 4 molal compared t o i t s bulk m o l a l i t y v a r y i n g between 5 t o 10. For A l (SU4)3 and sucrose, Δ η i s s i g n i f i c a n t and m l i e s between 0.10 t o 0.70. For a l l other cases, Δ η and m are l e s s than 1 0 " and 1 0 ~ r e s p e c t i v e l y . The observed experimental e r r o r f o r the e v a l u a t i o n o f Δ η are q u i t e high so t h a t the signs and magnitudes o f Δ η f o r these e l e c t r o l y t e s have no p h y s i c a l meaning. For these e l e c t r o l y t e s one may e a s i l y neg l e c t Δ η i n Equatio i n the e v a l u a t i o n o f Δ η ^ . £ni i s o f the order 10 and i t s signs are p o s i t i v e both i n the nigh and low ranges o f mole r a t i o . Δ η | f o r low and high KCl concentrations are found t o be 5.0 χ 10"" and 5.6x10 moles per u n i t area r e s p e c t i v e l y . Since negative values f o r Δη do not bear any p h y s i c a l meaning, probably Δ η i n Equation (11) f o r KCl i s a l s o n e g l i g i b l e but Δ η | instead of remaining constant s l o w l y i n c r e a s e s w i t h gradual increase o f X / X j . The i n i t i a l slope r e p r e s e n t i n g Δ n-^ o f KCl i n a short range o f e l e c t r o l y t e c o n c e n t r a t i o n w i l l not be, however, t o o f a r o f f from the observed v a l u e 5.0 χ 10"^. In g e n e r a l , we conclude t h a t o n l y a small amount o f e l e c t r o l y t e i s a s s o c i a t e d w i t h the surface-bound water even when a l a r g e amount o f the same e l e c t r o l y t e remains d i s s o l v e d i n the bulk water phase. I n t e r f a c i a l water f o r these cases i s h i g h l y s u r f a c e - a c t i v e and i t has a strong d i s l i k e f o r i n o r g a n i c e l e c t r o l y t e s and sucrose. The r e l a t i v e p o s i t i v e surface excess o f water i n the con v e n t i o n a l i n t e r p r e t a t i o n o f the Gibbs equation may be i d e n t i f i e d w i t h the amount o f water adsorbed on one square centimeter o f the l i q u i d i n t e r f a c e when the adsorbed s o l u t e i s a r b i t r a r i l y taken as zero. In many o f the cases considered here, Δ η i s i n f a c t n e g l i g i b l y small so t h a t according t o Equations ( 3 ) , (8) and ( 9 ) , Γι i s v e r y c l o s e t o Δ η | . R e s u l t s i n Table I f o r NaN03 and a few e l e c t r o l y t e s a l s o i n d i c a t e t h a t Δ η ^ may be s i g n i f i c a n t l y g r e a t e r thann i f Δ η i s not n e g l i g i b l y s m a l l . F u r t h e r , the r e l a t i v e excess r which i s negative i s observed t o increase c o n s i d e r a b l y w i t h increase o f Χ?/Χχ. Under these c o n d i t i o n s , e l e c t r o l y t e a c t u a l l y bound, Δ η , i s e i t h e r n e g l i g i b l y small o r s i g n i f i c a n t l y p o s i t i v e and at c e r t a i n range o f e l e c t r o l y t e c o n c e n t r a t i o n , i t becomes independent o f the mole r a t i o X /X^. Assuming the e f f e c t i v e c r o s s - s e c t i o n a l area o f a water molecule t o be 1 nm a t the i n t e r f a c e , the moles ( Δη·^) o f water r e q u i r e d t o form one square centimeter (6) o f an i n t e r 2
2
2
2
2
2
s
2
2
s
2
11
s
2
2
2
2
9
2
2
2
2
2
2
2
2
2
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
60
ADSORPTION
AT
INTERFACES
9
f a c i a l monolayer i s 1.7 χ 10" . Neglecting the c o n t r i b u t i o n o f Δ η , the number ( L ) o f water l a y e r s i n the bound i n t e r f a c i a l region may be estimated from the r a t i o Δη·[/ Δ η ^ . L f o r v a r i o u s e l e c t r o l y t e s and sucrose are a l s o included i n Table I . The r e s u l t s i n d i c a t e that the surface bound water i s m u l t i molecular f o r a l l s o l u t e s . For u n i - u n i v a l e n t and u n i - b i v a l e n t e l e c t r o l y t e s , as w e l l as f o r non-ionic sucrose, the number o f such surface bound l a y e r s may l i e between the values 2 t o 6. Values o f L , f o r A l ^ 0 4 ) 3 and sucrose (concentrated) are moderately high whereas those f o r MgS0 i n both high and low concentration ranges are u n u s u a l l y l a r g e . Higher values o f L f o r p o l y v a l e n t e l e c t r o l y t e s may be r e a l . I t may a l t e r n a t i v e l y be p o s s i b l e that these p o l y v a l e n t e l e c t r o l y t e s undergo consider able h y d r o l y s i s o r i o n - a s s o c i a t i o n a t high s o l u t e concentrations. Under these c o n d i t i o n s , s e v e r a l types o f s o l u t e components w i l l e x i s t i n the system s needed f o r the c a l c u l a t i o o f the Gibbs adsorption equation (16). 2
s
s
s
2
4
s
Conclusions I t i s evident from a l l these d i s c u s s i o n s t h a t a l i q u i d column i n Figure 1 may be d i v i d e d by a phase demarcating plane 2 2 every part o f the bulk phase below t h i s plane has the mole r a t i o composition Χ /Χι· Above t h i s plane, t h e mole r a t i o o f any part o f the surface-bound l i q u i c i phase mav deviate from Χ /Χχ because o f the b i n d i n g o f Δ η ^ and Δ η moles o f the components. S i m i l a r r e a l concept f o r the surface phase has a l s o been discussed by others (_2, 3 ) . With the help of the Gibbs Equations (11) and (12), the a c t u a l composition o f the surface region i n terms o f Δ η * and Δ η may be evaluated from the surface t e n s i o n - c o n c e n t r a t i o n data. This e v a l u a t i o n i s only p o s s i b l e when the composition o f the surface bound l i q u i d phase becomes independent o f the bulk mole r a t i o so that - Γ becomes a l i n e a r f u n c t i o n o f Χ /Χι· The l i q u i d column i n Figure 1 may f u r t h e r be d i v i d e d by p l a c i n g a semipermeable membrane a t an a r b i t r a r y p o s i t i o n P^Pj so that region A now contains the bulk and the surface-bound phases r e s p e c t i v e l y below and above the phase d i v i d i n g plane P P . The r e l a t i v e surface excesss Γ y thus be shown t o be equal t o e i t h e r o f the expressions o c c u r r i n g on the l e f t or r i g h t s i d e o f Equation (7). The magnitudes o f the terms n j and n^ i n t h i s equation depend s i g n i f i c a n t l y on the a r b i t r a r y p o s i t i o n o f P-^Pjwhereas those o f Δ η | and Δ η are i n v a r i a n t t o ΡχΡχ. In the conventional d e r i v a t i o n o f the Gibbs adsorption equation, sometimes the p h a s e - d i v i d i n g plane i s a r b i t r a r i l y s h i f t e d from i t s f i x e d p o s i t i o n P P t o a v a r i a b l e p o s i t i o n 1 1* r e g i o n o f A i s then a r b i t r a r i l y imagined t o be the surface phase composed o f n j and n moles o f the components. P
P
s u c n
t n a t
2
2
2
2
2
2
m
2
a
2
2
2
2
P
P
T
n
e
2
w n o l e
2
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
4.
CHATTORAJ
AND
MOULiK
Binding of Solute and Solvent
61
The i n d i v i d u a l values o f n] and n^ w i l l not bear any p h y s i c a l s i g n i f a n c e . However, the r e l a t i v e surface excess Γ2 defined i n terms o f n^ and n^ according t o Equation (2) may be c o r r e c t l y c a l c u l a t e d from the 7-X2 data s i n c e the r e l a t i v e surface ex cess does not depend on the p o s i t i o n o f Ρ ι Ρ χ . The i n v a r i a n t character o f the r e l a t i v e excess may be c l e a r from the c l o s e s c r u t i n y o f Equations ( 7 ) , (10) and (10a). U n l i k e t h e long-chain i o n s , the c a t i o n s and anions o f the i n o r g a n i c e l e c t r o l y t e s are not s p e c i a l l y adsorbed and o r i e n t e d at the i n t e r f a c e o f water. Both surface and bulk phases d i v i d e d by the plane P2P2 should be i n d i v i d u a l l y e l e c t r o n e u t r a l (2) i n terms o f the net charge o f c a t i o n s and anions. With the help o f the Gibbs Equation (11), one can o n l y c a l c u l a t e the macroscopic composition o f the surface phase i n terms o f the water and e l e c t r o l y t e components bound t o each other The m i c r o s c o p i c f e a t u r e of the i o n i c double l a y e i n the i n t e r f a c i a l r e g i o analysis. From the values o f L i n Table 1, i t may be concluded that the i n t e r f a c e s o f d i f f e r e n t e l e c t r o l y t e s o l u t i o n s u s u a l l y poss ess p h y s i c a l t h i c k n e s s o f the order 1 t o 10 nm. This order i s i n agreement w i t h t h a t suggested by Guggenheim (17) f o r the t h i c k n e s s o f the p h y s i c a l l y defined surface phase. In c o n t r a s t to the uniform composition o f the bulk r e g i o n , the s o l u t e and solvent bound s u r f a c e r e g i o n should be p h y s i c a l l y inhomogeneous (17, 18). Assuming t h i s p h y s i c a l p i c t u r e o f the surface and bulk phases, Guggenheim (17, _18) has deduced the Gibbs a d s o r p t i o n equation which i s s i m i l a r i n form t o Equations (11) and (12). However, the i n d i v i d u a l amounts o f the s o l u t e and s o l v e n t com ponents bound a t the i n t e r f a c e i n h i s treatment remain a r b i t r a r y and u n c e r t a i n s i n c e the bulk phase i s separated from surface phase by a r b i t r a r y placement o f a d i v i d i n g plane. From the d i s cussions presented above, i t i s noted t h a t Δ η } and Δ η ^ a r e independent o f the imaginary placement o f the d i v i d i n g plane. T h e i r values are absolute and under c e r t a i n c o n d i t i o n s may be evaluated w i t h i n the l i m i t s o f experimental e r r o r . In a separate paper i t w i l l be shown t h a t t h e present approach can a l s o be use f u l t o c a l c u l a t e the i n t e r f a c i a l b i n d i n g o f components r e s u l t i n g from the mixing o f an organic l i q u i d w i t h water. s
Acknowledgement The authors a r e g r a t e f u l t o Dr. Κ. K. Kundu f o r many h e l p f u l discussions. Literature Cited 1.
Guggenheim, E.A. and Adam, N.K., Proc. Roy. Soc. London, Ser. A, (1933) 139, 231.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
62
2.
3. 4. 5. 6.
7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.
ADSORPTION AT INTERFACES
Defay, R., P r i g o g i n e , I . , Belleman, A. and E v e r e t t , D.H., "Surface Tension and A d s o r p t i o n " , John Wiley and Sons, Inc., New York, 1966. Guggenheim, E.A., Trans. Faraday Soc., (1940), 36, 397. C h a t t o r a j , D.K. and C h a t t e r j e e , A.K., J . C o l l o i d I n t e r f a c e Sci., (1966) 21, 159. Goodrich, F.C., Trans. Faraday Soc., (1968) 64, 3403. Randles, J.E.B., i n "Advances in E l e c t r o c h e m i s t r y and E l e c t r o c h e m i c a l E n g i n e e r i n g " , P. Delahay, Ed., V o l . 3, p.1, I n t e r s c i e n c e , New York 1963. Onsager, L. and Samaras, N.N.T., J. Chem. Phys., (1934) 2, 528. Buff, F.P. and Stilbinger, F.H., Jr., Chem. Phys., (1956) 25, 312. B u l l , H.B. and Breese Arch Biophys Biochem. (1970) 137, 299. "Hand Book o f Chemistry and P h y s i c s " , 47t ed., F25, The Chemical Rubber Company, C l e v e l a n d , Ohio, 1966-67. Jones, G. and Ray, W.A., J . Amer. Chem. Soc., (1941) 63, 3262. Jones, G. and Ray, W.A., J . Amer. Chem. Soc., (1937) 59, 187. Jones, G. and Ray, W.A., J . Amer. Chem. Soc., (1942) 64 2744. Robinson, R.A. and Stokes, R.H., " E l e c t r o l y t e S o l u t i o n s " , 2nd ed. ( r e v i s e d ) , B u t t e r w o r t s , London, 1959. C h a t t e r j e e , A.K. and C h a t t o r a j , D.K., J . C o l l o i d I n t e r f a c e Sci., (1968) 26, 140. C h a t t o r a j , D.K. and P a l , R.P., Indian J. Chem., (1970) 10, 417. Guggenheim, E.A., "Thermodynamics", North H o l l a n d , Amsterdam, 1961. Adam, N.K., "The P h y s i c s and Chemistry o f S u r f a c e s " , Dover P u b l i c a t i o n s , New York, 1968.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
5 Mechanism o f Sulfonate A d s o r p t i o n at the Silver Iodide-Solution Interface K. OSSEO-ASARE, D. W. F U E R S T E N A U , and
R. H . O T T E W I L L *
Department of Materials Science and Engineering, University of California, Berkeley, Calif. 94720
Introduction The e a r l y work on silver i o d i d e d i s p e r s i o n s (1) showed that the s o l s prepared in the presence of an excess of i o d i d e ions were more s t a b l e than those prepared w i t h silver ions present in ex cess. This was found to be due to the f a c t that the p o i n t of zero charge d i d not c o i n c i d e w i t h the equivalence p o i n t , i.e. in the presence of potential determining ions only, the equivalence p o i n t was found to be at pAg 8 whereas the net charge on the s u r f a c e became zero at pAg 5.5. Historically silver i o d i d e has been clas sified as a hydrophobic sol, a definition l a r g e l y based on the f a c t that silver i o d i d e s o l s are not r e v e r s i b l e , i.e. coagulated s o l s cannot be redispersed by diluting w i t h water (see Frens and Overbeek (2)). R e c e n t l y , s t u d i e s of the a d s o r p t i o n of water vapor on silver i o d i d e powders have shown t h a t the s u r f a c e is a l s o hydrophobic in terms of the u s u a l definition of wettability. Zettlemoyer et al. (3) found that the s u r f a c e area r a t i o s water/ argon and water/nitrogen were much l e s s than u n i t y and concluded that approximately three out of five s u r f a c e s i t e s were hydro phobic; they a t t r i b u t e d the h y d r o p h i l i c - h y d r o p h o b i c balance to oxide i m p u r i t i e s . The r e s u l t s of P r a v d i c and M i r n i k (4) showed that at pI 5 (pAg 11) and pH 5 hexylamine can reverse the charge of a silver iodide particle. This behavior i s in marked c o n t r a s t to the e f f e c t of alkylamine on q u a r t z , a h y d r o p h i l i c s u b s t r a t e , where as far as a d s o r p t i o n is concerned the octylammonium i o n appears to behave in the same way as an ammonium i o n ( 5 ) . Long chain alkyl sulfates, even at low c o n c e n t r a t i o n s , a l s o a f f e c t the z e t a p o t e n t i a l of the silver i o d i d e s u r f a c e ( 6 ) . Moreover, according to B i j s t e r b o s c h and Lyklema (7) even short c h a i n a l c o h o l s , e.g. η-butyl, adsorb w i t h t h e i r hydrophobic p a r t s towards the silver i o d i d e . Recently measurements of the contact angle of silver i o d i d e surfaces in water have shown that values of ca. 23° can be obtained (8,9). These f a c t o r s all suggest t h a t there i s strong hydrophobic i n t e r a c t i o n between hydrocarbon chains and 63
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
64
ADSORPTION
AT
INTERFACES
s i l v e r i o d i d e surfaces which can play an important r o l e i n s i l v e r i o d i d e - s u r f a c e a c t i v e agent s o l u t i o n i n t e r a c t i o n s . In a d d i t i o n , recent s t u d i e s u s i n g e l e c t r o n microscopy have shown that a l k y l p y r i d i n i u m compounds appear t o undergo a chem i c a l r e a c t i o n w i t h s i l v e r i o d i d e surfaces at s u r f a c t a n t concen t r a t i o n s approaching the c r i t i c a l m i c e l l e c o n c e n t r a t i o n (10). I t appears t h e r e f o r e that the a d s o r p t i o n of surface a c t i v e agents at a s i l v e r i o d i d e s u r f a c e may i n v o l v e a complex i n t e r p l a y of e l e c t r i c a l , hydrophobic ( d i s p e r s i o n f o r c e s ) and chemical i n t e r actions . The purpose of the present paper i s t o e l u c i d a t e a d s o r p t i o n mechanisms i n the a l k y l s u l f o n a t e - s i l v e r i o d i d e system through e l e c t r o p h o r e t i c m o b i l i t y measurements. The s u l f o n a t e s used i n t h i s study ranged from p e n t y l to t e t r a d e c y l . Further i n f o r m a t i o n on the nature of the A g i s u r f a c e and s u l f o n a t e a d s o r p t i o n was obtained through study systems. Experimental
- M a t e r i a l s and Methods
M a t e r i a l s . T r i p l y d i s t i l l e d water used f o r a l l s o l u t i o n s was prepared by f i r s t passing tap water through a Barnstead Laboratory s t i l l followed by a two-stage Haraeus quartz s t i l l . The f i n a l d i s t i l l a t e was kept under p u r i f i e d n i t r o g e n u n t i l used. S i l v e r n i t r a t e and potassium i o d i d e of A.R. grade were used to prepare the s i l v e r i o d i d e s o l . Iodine was obtained as resublimed c r y s t a l s from M a l l i n c k r o d t and s i l v e r w i r e of 99.5 to 99.8% p u r i t y was obtained from Sargent-Welch. The sodium s a l t s of C m , 12> 10> 8 s u l f o n i c a c i d s were s u p p l i e d by A l d r i c h Chemical Company w h i l e the C 5 was from Κ & Κ L a b o r a t o r i e s . c
c
a n d
c
P r e p a r a t i o n of S i l v e r Iodide S o l . A stock s o l was prepared by adding 50 ml of 1 0 " Μ ΚΙ s o l u t i o n to an equal volume of 1 0 ~ M AgNÛ3 s o l u t i o n w i t h s t i r r i n g . A f t e r aging f o r 12 - 18 hours, t h i s was d i l u t e d to a s o l c o n c e n t r a t i o n of 10~** M Agi f o r e l e c t r o phoresis measurements. The i o n i c s t r e n g t h was c o n t r o l l e d w i t h 10~ M KNO3 and a p p r o p r i a t e volumes of AgNU3 and s u r f a c t a n t s o l u t i o n s were added to g i v e t h e r e q u i r e d pAg and s u r f a c t a n t concen tration. z
2
3
E l e c t r o p h o r e s i s . The e l e c t r o p h o r e t i c measurements were con ducted w i t h the R i d d i c k Zetameter (11), a product o f Zetameter I n c . , New York. Room temperature was maintained a t 20 ± 2°C f o r most of these experiments. I n g e n e r a l , twenty m o b i l i t y readings were taken f o r each system and averaged; the p o l a r i t y of t h e a p p l i e d v o l t a g e was reversed f o r a l t e r n a t e measurements. U s u a l l y 100 V was used; however, f o r slower p a r t i c l e s i t was o f t e n neces sary to go to v o l t a g e s as high as 300 V to observe any a p p r e c i able motion. Care was taken not to keep the s o l too long before use s i n c e on standing f o r extended periods of time, the s o l
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
5.
OSSEO-ASARE
ET
Sulfonate Adsorption
AL.
65
p a r t i c l e s have been found to decrease i n m o b i l i t y - probably a r e s u l t of the desorption which accompanies c o a g u l a t i o n ( 6 ) . The average diameter of the s o l p a r t i c l e s , 2a, was found by e l e c t r o n microscopy (12) to be 20 nm. The i o n i c s t r e n g t h was c o n t r o l l e d u s i n g ΙΟ" M KNO3; t h i s gave a Debye-Huckel r e c i p r o c a l l e n g t h 1/K of 9.5 nm. Based on the f a c t that under these c o n d i t i o n s the product Ka has a v a l u e of 1.05, the r e s u l t s of Wiersema et a l . (13) can be used to convert the measured e l e c t r o p h o r e t i c m o b i l i t i e s to z e t a p o t e n t i a l s . Below a m o b i l i t y , u , of 2 urn/ sec per volt/cm, as a good f i t to the c a l c u l a t i o n s of Wiersema et a l . , the m o b i l i t y can be converted i n t o zeta p o t e n t i a l by 3
ζ = 20u
(1)
Q
e
where ζ i s the z e t a p o t e n t i a l i n m i l l i v o l t s b i l i t y v a l u e s , however zeta p o t e n t i a l becomes Wetting
At the higher
mo
Behavior.
P r e p a r a t i o n of t h i n A g i f i l m s . F o l l o w i n g the method of B i l l e t t and O t t e w i l l ( 8 ) , g l a s s microscope s l i d e s , cut i n t o pieces approximately 1 cm χ 2.5 cm χ 0.1 cm, were cleaned w i t h aqua r e g i a and stored under t r i p l y d i s t i l l e d water. To p l a t e the g l a s s w i t h s i l v e r , a watch g l a s s w i t h the s l i d e s i n i t , was p o s i t i o n e d 3 cm v e r t i c a l l y below a s i l v e r source (approximately 6 cm s i l v e r w i r e ) held i n a tungsten basket. The vacuum u n i t was pumped down to about 666.6 yPa through a l i q u i d n i t r o g e n t r a p . The s i l v e r m i r r o r s were t r a n s f e r r e d q u i c k l y from the vacuum evap o r a t o r and immersed i n a 0.0025 Ν s o l u t i o n of i o d i n e i n 0.01 Μ ΚΙ s o l u t i o n f o r 20 - 30 seconds. The f i l m s were then aged i n 10" * Μ ΚΙ s o l u t i o n f o r 1.5 hours and kept under d i s t i l l e d water u n t i l used. I t was found that l e a v i n g a t h i n l a y e r of s i l v e r between the g l a s s p l a t e and the Agi f i l m improved the adhesion of the f i l m to the s u b s t r a t e . This procedure was t h e r e f o r e followed i n the p r e p a r a t i o n of the f i l m s . 1
Measurement of contact angle. The c a p t i v e bubble technique (8) was used to determine the contact angles. For making the measurement, the s o l u t i o n to be s t u d i e d was f i r s t added to a c e l l made of o p t i c a l g l a s s and then the s l i d e w i t h the A g i f i l m was placed i n t o the d e s i r e d s o l u t i o n f o r about 15 minutes before t a k i n g measurements. A g l a s s c y l i n d r i c a l tube of 3 mm i n t e r n a l diameter was placed above the f i l m s u r f a c e and the a i r pressure i n the bubble was regulated by means of a screw arrangement at the upper end of the tube. A telescope supplied w i t h an o c u l a r p r o t r a c t o r was used to observe the bubble p r o f i l e . The bubble was allowed to touch the f i l m surface by g e n t l y i n c r e a s i n g the pressure, then a f t e r s i t t i n g on the f i l m f o r about 15 seconds, the pressure was increased by a s m a l l amount. This
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
ADSORPTION
A T INTERFACES
Figure 1. The effect of pAg on the electro phoretic mobility of silver iodide in the pres ence of sodium pentyl sulfonate at millimolar ionic strength with potassium nitrate
3
4
5
6
7
8
ρ Ag
Figure 2. The effect of pAg on the electro phoretic mobility of silver iodide in the pres ence of sodium octyl sulfonate at millimolar ionic strength with potassium nitrate
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
5.
ossEOASARE E T A L .
Sulfonate Adsorption
67
s i t u a t i o n y i e l d s the receding angle θ^. The pressure was then r e l e a s e d u n t i l the contact boundary on the p l a t e j u s t moved. The r e s u l t i n g angle i s the advancing angle, θ^. S u r f a c t a n t s o l u t i o n s of a given c o n c e n t r a t i o n were prepared and the contact angles were measured as a f u n c t i o n of pAg f o r C I Q and C ^ . In a l l cases, i n c l u d i n g the experiments i n the absence of s u r f a c t a n t , the i o n i c s t r e n g t h was c o n t r o l l e d w i t h ΙΟ" M KNO3. The contact angles reported here are the average of s i x or more values ob tained by p l a c i n g the bubbles on d i f f e r e n t samples or on d i f f e r ent p o s i t i o n s on the same sample. 3
Results E l e c t r o p h o r e s i s . Figures 1 to 5 present the e l e c t r o p h o r e t i c m o b i l i t y of Agi as a f u n c t i o f pA f o v a r i o u a l k y l s u l f o n a t concentrations and d i f f e r e n s u r f a c t a n t , the p o i n t o charg Ag at pAg 5.6, i n agreement w i t h previous values reported i n the l i t e r a t u r e ( 1) . I n a l l cases, w i t h i n c r e a s i n g concentrations of s u r f a c t a n t at any pAg values below the pzc, the p o s i t i v e m o b i l i t y of the s o l p a r t i c l e s decreased, passed through z e r o , and then became i n c r e a s i n g l y negative. The most i n t e r e s t i n g f e a t u r e s of these r e s u l t s are (1) The short c h a i n s u l f o n a t e s are able to reverse the z e t a p o t e n t i a l on A g i although much higher concentrations are r e q u i r e d than f o r longer chain s u l f o n a t e s . (2) A l l the curves appear to c o i n c i d e i n the neighborhood of pAg 7 independent of chain l e n g t h or s u r f a c t a n t c o n c e n t r a t i o n . (3) The zeta p o t e n t i a l goes through a maximum at higher concentrations of s u r f a c t a n t , an e f f e c t which increases w i t h chain l e n g t h . Wetting Behavior. The magnitude of the contact angles ob t a i n e d both i n the absence of s u r f a c t a n t and i n the presence of v a r i o u s concentrations of and C\q have been p l o t t e d as a f u n c t i o n of pAg i n Figures 6 to 8. In the absence of s u r f a c t a n t , both the receding and advanc ing contact angles go through a maximum at about pAg 5.4. The curves shown i n F i g u r e 6 are drawn through the weighted average of the experimentally determined contact angle values f o r each pAg. The spread i n the θ values f o r a given pAg i s l a r g e l y the r e s u l t of the inherent d i f f i c u l t y of o b t a i n i n g p e r f e c t l y r e p r o d u c i b l e s u r f a c e s . These r e s u l t s are i n good agreement w i t h those reported by B i l l e t t and O t t e w i l l (14) who a l s o observed a maximum at about pAg 5.4, which i s c l o s e to the pzc. Figures 7 and 8 show that when the b u l k c o n c e n t r a t i o n of the s u r f a c t a n t i s low, the w e t t i n g behavior i s very s i m i l a r to that of the s u r f a c t a n t - f r e e system except at higher p o s i t i v e s u r f a c e charge (low pAg) where a s i g n i f i c a n t r i s e i n contact angle i s observed. In other words, i n F i g u r e 8, the receding contact
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
ADSORPTION
3
4
5
6
7
A T INTERFACES
8
Ρ Ag
Figure 3. The effect of pAg on the electrophoretic mobility of silver iodide in the pres ence of sodium decyl sulfonate at millimolar ionic strength with potassium nitrate
3
4
5
6
7
PAg
Figure 4. The effect of pAg on the electrophoretic mobility of silver iodide in the pres ence of sodium dodecyl sulfonate at millimolar ionic strength with potassium nitrate
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
5.
OSSEO-ASARE
ET AL.
Sulfonate Adsorption
Figure 5. The effect of pAg on the electrophoretic mobility of silver iodide in the presence of sodium tetradecyl sulfonate at millimolar ionic strength with potassium nitrate
Figure 6. The contact angle on silver iodide in the absence of surfactant as a function of pAg at millimolar ionic strength with potassium nitrate
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
69
ADSORPTION
120
AT
Γ
—ι C S0 No 0
3
( Ι 0 " Μ KNO3) 3
100 h
0 Δ
Ι«Ι0" Μ 4
ο 801
60|
ο
ο < 40|
2 Ο
5
pAg
6
Figure 7. The contact angle on silver iodide in the presence of sodium decyl sulfonate as a func tion of pAg at millimolar ionic strength with potassium nitrate
120
100 Ul UJ
ο ω 80(-
ζ <
60
Ι Ο t< 4 Οί
ο ο
20
5
pAg
6
Figure 8. The contact angle on silver iodide in the presence of sodium tetradecyl sulfonate as a function of pAg at millimolar ionic strength with potassium nitrate
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
INTERFACES
5.
OSSEO-ASARE
Sulfonate
ET AL.
Adsorption
71
6
angles i n the presence of 1 0 ~ M C s u l f o n a t e show the same v a r i a t i o n w i t h pAg as t h a t found f o r the s u r f a c t a n t - f r e e system. However, a t pAg values lower than pAg 4, there i s a r i s e i n the contact angle v a l u e s ; e.g. f o r pAg 3 i n 1 0 " M sulfonate, 6 = 27° compared w i t h a value of 18° f o r the s u r f a c t a n t - f r e e system. As the c o n c e n t r a t i o n of s u r f a c t a n t i n the bulk s o l u t i o n i n c r e a s e s , a corresponding i n c r e a s e i n the contact angle i s a l s o observed, e.g. f o r pAg 3 i n 3 χ ΙΟ" Μ 0 s u l f o n a t e , θ = 47° w h i l e i t i s 27° i n ΙΟ" M s o l u t i o n . However, a t a l l s u r f a c t a n t c o n c e n t r a t i o n s , i t appears that f o r pAg values above the pzc, there i s very l i t t l e i n f l u e n c e of s u r f a c t a n t on the contact angles, i . e . there i s r e l a t i v e l y l e s s s u l f o n a t e a d s o r p t i o n . li+
6
R
5
1 4
6
Discussion The r e s u l t s obtaine workers, that a l k y l s u l f o n a t e strongly i o d i d e surfaces when the l a t t e r are p o s i t i v e l y charged. Adsorp t i o n a l s o appears to occur a t the p o i n t of zero charge and a t low negative charge d e n s i t i e s on the s u r f a c e . As the magnitude of the negative charge i n c r e a s e s , however, the e l e c t r o k i n e t i c r e s u l t s obtained become i n d i s t i n g u i s h a b l e from those obtained i n the absence of the s u r f a c t a n t , suggesting t h a t i f a d s o r p t i o n does occur, i t i s only i n s m a l l q u a n t i t i e s and i t occurs i n such a way as not t o i n f l u e n c e the z e t a - p o t e n t i a l . The contact angle meas urements c l e a r l y s u b s t a n t i a t e the f a c t that s i l v e r i o d i d e i s a hydrophobic s o l i d and that t h i s must be taken i n t o c o n s i d e r a t i o n i n a n a l y z i n g a d s o r p t i o n behavior i n these systems. I n t e r p r e t a t i o n of these r e s u l t s can be achieved through a p p l i c a t i o n of the Stern-Grahame theory f o r a d s o r p t i o n i n the S t e r n l a y e r (15,16). The a d s o r p t i o n d e n s i t y of s u r f a c t a n t ions i n the Stern l a y e r , Γ^, i n moles per cm i s g i v e n by 2
Γ.
=
j — - = 1 + - exp^/RT)
(2)
where Γ i s the a d s o r p t i o n d e n s i t y a t monolayer coverage, χ i s the mole f r a c t i o n of the s u r f a c e - a c t i v e agent i n s o l u t i o n , and ^*ads * * e l e c t r o c h e m i c a l standard f r e e energy of a d s o r p t i o n . A p p l i c a t i o n o f t h i s expression i n v o l v e s the i m p l i c i t assumption t h a t the s i z e of the adsorbing species i s very much s m a l l e r than the r a d i u s of the adsorbent p a r t i c l e and that l a t e r a l i n t e r a c t i o n between the adsorbing species i s n e g l i g i b l e . A t low s u r f a c e coverage, Equation (2) s i m p l i f i e s to the Grahame equation s t
ie
Γ where
r
δ
=
2rc exp(-AG /RT) adg
(3)
i s the e f f e c t i v e r a d i u s of the i o n i c head and c i s
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
72
ADSORPTION
A T INTERFACES
3
the bulk c o n c e n t r a t i o n of the adsorbed ions i n mol/cm . In g e n e r a l , A G j can be considered as t h e sum of e l e c t r o s t a t i c and n o n - e l e c t r o s t a t i c terms, a(
s
AG = ads s
AG _ + AG el sp
(4)
t n e
where A G ^ i f r e e energy change due to e l e c t r o s t a t i c i n t e r a c t i o n s experienced by the adsorbing species a t the Stern plane (=zF ψβ i f ζ i s the valence and F the Faraday c o n s t a n t ) , A G i s the f r e e energy change due t o s p e c i f i c i n t e r a c t i o n s a t the surface and i n t h i s system may i n c l u d e the f o l l o w i n g terms: CH **> C H * chenT C H ** represents the f r e e energy change due t o van der Waals a s s o c i a t i o n of the hydrocarbon chains w i t h each other formin hemimicelles AG*^ i th f r e gp
AG
A G
2
a n c i
AG
AG
2
a s s o c i a t e d w i t h the va chains w i t h the s o l i d s u r f a c e ; and A G i s the f r e e energy change c o n t r i b u t e d by chemical bonding of the adsorbing species w i t h the s o l i d s u r f a c e . The process of a d s o r p t i o n i s termed " p h y s i c a l i f the e l e c t r o s t a t i c and van der Waals i n t e r a c t i o n s c o n s t i t u t e the d r i v i n g f o r c e f o r a d s o r p t i o n . When on the other hand, the adsorbing species form chemical bonds w i t h ions o r atoms i n the s o l i d s u r f a c e , the process i s termed "chemisorption" (17,18). In order t o a s c e r t a i n the r o l e which s p e c i f i c processes p l a y i n the adsorption of a l k y l s u l f o n a t e s on s i l v e r i o d i d e , the mag nitude of the s p e c i f i c a d s o r p t i o n f r e e energy must be evaluated. Two methods can be used (18) , based r e s p e c t i v e l y on c o n s i d e r a t i o n s of the p r o p e r t i e s of the Stern l a y e r : (1) a t the c o n d i t i o n where the s u r f a c t a n t reverses the e l e c t r o p h o r e t i c m o b i l i t y ( i . e . the p o i n t of zeta p o t e n t i a l r e v e r s a l , or the p z r ) and (2) a t the con d i t i o n where the m o b i l i t y -pAg curve f o r the s u r f a c t a n t system meets the i n d i f f e r e n t e l e c t r o l y t e curve. ch
11
E v a l u a t i o n of A G a t the p z r . The c o n d i t i o n f o r charge balance i n the e l e c t r i c a l double l a y e r i s given by, a d s
O
where
σ οι σ Rewriting
0
2
q
+ αχ + σ
2
= 0
(5)
= surface charge d e n s i t y = charge d e n s i t y of the S t e r n l a y e r = charge d e n s i t y of the d i f f u s e double l a y e r Equation 3 i n the form of s u r f a c e charge d e n s i t y g i v e s , σχ = 2rczF exp( -
A G a d s
/
R T
)
6
<)
Moreover, the s u r f a c e charge d e n s i t y i n the d i f f u s e double l a y e r can be w r i t t e n a s ,
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
5.
OSSEO-ASARE
ET
Sulfonate Adsorption
AL.
σ
2ceRT = \ —7—
2
73
s irn\ hh
01
•
1
•
(7) where ε i s the d i e l e c t r i c constant i n the s o l u t i o n . i t y of the S t e r n l a y e r , , i s g i v e n by
d
g
o
(8)
where ψ i s t h e t o t a l double l a y e r p o t e n t i a l . that = 0, then = 0, g i v i n g , 0
σ
=
ο
1
The capac
δ
ψ r
o
F o r the c o n d i t i o n
ψ o r
i f the S t e r n l a y e r c a p a c i t y i s constant. Furthermore A G must be zero and the t o t a l f r e e energy of a d s o r p t i o n w i l l be made up s o l e l y of t h e A G terms. Hence, e l
sp
Φ 0 ο
δ
=
- σχ = -2rc zFexp(-AG /RT) o
(10)
gp
-3
where c i s the b u l k c o n c e n t r a t i o n of s u r f a c t a n t i n mol c m a t which becomes equal to zero. In S t e r n s theory of the e l e c t r i c a l double l a y e r , C$ i s assumed to be constant. By u s i n g t h i s assumption, Grahame c a l c u l a t e d values f o r t h e d i f f e r e n t i a l c a p a c i t y of the double l a y e r between mercury and aqueous s o l u t i o n s of s a l t s f o r v a r i o u s con c e n t r a t i o n s of e l e c t r o l y t e which were i n reasonably good agree ment w i t h experimental r e s u l t s . Thus, f o r t h e present c a l c u l a t i o n s , the constancy of C<$ w i l l be assumed and the v a l u e of 15μ F/cm s h a l l be used (19). The e f f e c t i v e r a d i u s of the s u l f o n a t e ion i s taken as 0.29 nm and ψ i s evaluated u s i n g the Nernst equation Q
f
2
0
• . - ^ - f e ) - - " ^ )
<">
where a£g and a°^- are the a c t i v i t i e s of Ag+ and I r e s p e c t i v e l y at the pzc. Table I summarizes the r e s u l t s obtained f o r AG p u s i n g Equation (10) f o r pAg 3, 4, and 5, r e s p e c t i v e l y . There i s a strong dependence on c h a i n l e n g t h , the values o f AG p i n c r e a s i n g from 4.7 RT f o r C to 10.9 RT f o r C ^ . The e f f e c t o f pAg does not seem to be s i g n i f i c a n t f o r the s h o r t c h a i n s u l f o n a t e s , e.g. +
S
S
5
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
74
ADSORPTION
Table I.
C a l c u l a t i o n of A G
g p
AT
INTERFACES
w i t h Equation (10)
f o r t h e A d s o r p t i o n of A l k y l Sulfonates on S i l v e r Iodide (C m
=
2
15yF/cm ,
r
=
0.29 nm)
3 pAg
A l k y l Sulfonate
cm
Q
3 3
c 0
C
1 Q
1.3x10
C
1 2
3.2xl0~
C
17
C
C
32.5x10 .5xl0" -4
5 8
C
12 14
C C
5
Q
C C C
4.7 RT
1.5xl0"
5.0 RT
7.5xl0"
5
8.0 RT
2.0xl0"
5
9.4 RT
5.6xl0"
6
10.6 RT
8.0xl0"
4
4.6 RT
1.5xl0"
4
6.2 RT
D
8.1 RT 5
3.4xl0""
1 4
4.7 RT RT 5.0
3
l.lxlO"
1 2
gp
3
2.3x10
1 Q
-AG _
8.0 RT
7.0xl0" 2.2xl0~
10
C
5
c x ! 0 mol
C
C
4
-3
8.9 RT
6
10.0 RT
C5 has a constant v a l u e of 4.7 RT f o r the three pAg values con sidered. C maintains the same v a l u e of A G = 8.0 RT f o r pAg 3 to 5. The values f o r the longer c h a i n s u l f o n a t e s , however, ap pear to show some pAg dependency. Thus a t pAg 3 and 4, A G f o r C i s 9.4 RT, but t h i s decreases to 8.9 RT a t pAg 5. This i s i n reasonable agreement w i t h the r e s u l t s of O t t e w i l l and Watanabe (6) who found A G = 8.8 RT a t pAg 3 f o r C12 s u l f o n a t e . S i m i l a r l y f o r C , AG p decreases from pAg 3 to 5 i n the order 10.9 RT, 10.6 RT, and 10.0 RT. 1 0
g p
s p
1 2
s p
li+
s
E v a l u a t i o n of A G at the p o i n t of coincidence of m o b i l i t y pAg curves. The second c o n d i t i o n f o r e v a l u a t i n g the s p e c i f i c ad s o r p t i o n f r e e energy, i . e . u t i l i z i n g the pAg a t which a l l the m o b i l i t y - pAg curves c o i n c i d e , provides a d i f f e r e n t means of a n a l y z i n g a d s o r p t i o n phenomena. At t h i s p o i n t , i t seems t h a t the A g i s u r f a c e charge i s so h i g h l y negative that the consequent a d g
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
5.
OSSEO-ASARE E T
AL.
Sulfonate Adsorption
Table I I . C a l c u l a t i o n of AG Surface A c t i v e c Agent C
C
C
5 8 10
C
12
C
14
χ 10
3
0
75
f o r Hydrophobic I n t e r a c t i o n (pAg 5)
-AG from -AG Equation (10) S
- 3.1
Chainlength
R T
sp
8.0xl0~
4
4.6 RT
1.5 RT
2.5
1.5xl0~
4
6.2 RT
3.1 RT
4
2.3xl0~
5
1.1x10
c
D
3.4x10"°
8.1 RT
5.0 RT
5
8.9 RT
5.8 RT
6
10.0 RT
6.9 RT
7
l a r g e AG ^ almost completely opposes s p e c i f i c a d s o r p t i o n This means that a t t h i s p o i n t should j u s t be counterbalance to the a d s o r p t i o n f r e e energy. Thus, under t h i s c o n d i t i o n , e
AG
sp
«
(12)
-AG , - - zFiK el 6
Since a l l the curves come together by pAg 7 , independent of c h a i n length and c o n c e n t r a t i o n of s u r f a c t a n t , ψβ * - 7 8 mV when spe c i f i c a d s o r p t i o n ceases. This y i e l d s a v a l u e of 3 . 1 RT f o r the s p e c i f i c a d s o r p t i o n f r e e energy. I n a d d i t i o n , because t h i s ad s o r p t i o n phenomenon does not e x h i b i t any c h a i n l e n g t h dependency, i t cannot be a t t r i b u t e d to the c h a i n - c h a i n and c h a i n - s o l i d i n t e r a c t i o n s . I t i s t h e r e f o r e suggested that t h i s behavior i s caused by the s p e c i f i c i t y of the p o l a r head of the s u r f a c t a n t . I n par t i c u l a r , the i n t e r a c t i o n of the s u l f o n a t e head w i t h Ag+ i n the l a t t i c e gives r i s e to a chemisorption bond and t h i s l a t t e r c a l c u l a t i o n estimates i t s magnitude, i . e . , A G = - 3 . 1 RT. Beekley and Taylor ( 2 0 ) have reported a marked s p e c i f i c i n f l u e n c e of c e r t a i n anions, i n c l u d i n g C10H7O3", i n the a d s o r p t i o n of Ag+ on A g i . The recent work of O t t e w i l l and co-workers ( 1 0 ) a l s o i m p l i e s t h a t there might be chemisorption i n the a d s o r p t i o n of dodecyl p y r i d inium bromide on A g i . Therefore, t a k i n g t h e AG value calcu l a t e d w i t h Equation ( 1 2 ) as A G - - 3 . 1 RT, t h e hydrophobic c o n t r i b u t i o n to the t o t a l s p e c i f i c a d s o r p t i o n f r e e energy can be c a l c u l a t e d by s u b t r a c t i n g A G = - 3 . 1 RT from the A G values given by Equation ( 1 0 ) . These have been t a b u l a t e d i n Table I I . There i s a s t r i k i n g s i m i l a r i t y between the values of (-AG p - 3 . 1 RT) and the numbers obtained by d i v i d i n g the r e s p e c t i v e c h a i n lengths by 2 , e s p e c i a l l y f o r the longer c h a i n surfactants. The f r e e energy decrease accompanying the complete removal of a hydrocarbon c h a i n from water i s about 1 RT per mole of CH2 groups ( 1 7 ) . Thus, on t h i s b a s i s , i f a l l the chains are removed from water, the decrease i n f r e e energy w i l l be 5 RT, 8 RT, 1 0 RT, 1 2 RT, and 1 4 RT r e s p e c t i v e l y f o r C5, Ce, C I Q , C , and C . c n e m
c h e m
c h
sp
s
1 2
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
1 4
76
ADSORPTION
AT
INTERFACES
I f on the other hand, the adsorbed s u r f a c t a n t c o n s i s t s of h o r i z o n t a l l y o r i e n t e d c h a i n s , then the accompanying decrease i n f r e e energy might be 1/2 RT per mole of CH groups ( i n s t e a d of 1 RT) s i n c e even though h a l f of the c h a i n surface i s next to the s o l i d s u r f a c e , the other h a l f i s s t i l l exposed to the water. On t h i s b a s i s t h e r e f o r e , the f r e e energy a s s o c i a t e d w i t h complete h o r i z o n t a l o r i e n t a t i o n of the chains w i l l be 2.5 RT, 4 RT, 5 RT, 2
and
7 RT
respectively
for C , 5
C I Q , 0χ2>
Ce,
a n c l
c
l*f
0 n
compar
ing these values w i t h the corresponding (-AG - 3.1 RT) values (Table I I ) v i z . 1.5 RT, 3.1 RT, 5.0 RT, 5.8 RT, 6.9 RT respec t i v e l y f o r C5, CQ CIQ, Ci2> and C^, i t seems reasonable to con clude t h a t the adsorbed s u l f o n a t e ions o r i e n t t h e i r chains p a r a l l e l to the s o l i d s u r f a c e i n d i c a t i n g the presence of c h a i n - s o l i d hydrophobic i n t e r a c t i o n s ( A G * = A G + 3.1 RT). The f a c t sp
9
C H 2
s p
t h a t i n comparison w i t v a l u e s of AG^^ which ar i s the number of carbon atoms i n the chain) values shows t h a t C5, and Ce are l e s s surface a c t i v e than t h e i r longer c h a i n counter parts . At higher s u l f o n a t e concentrations and e s p e c i a l l y w i t h the Cm s u l f o n a t e (Figure 5 ) , the slope of the m o b i l i t y - pAg curves i s reversed as the pAg i s reduced. T h i s r e v e r s a l probably i n d i c a t e s the onset of hemimicelle f o r m a t i o n , which i s the c o n d i t i o n where the a d s o r p t i o n f r e e energy becomes more negative because of the a s s o c i a t i o n of the hydrocarbon chains of the adsorbed s u l f o n a t e i o n s . Contact angle behavior. In view of the f a c t that water seems to be only weakly bonded to the A g i surface (3,21,22), there w i l l be a strong tendency f o r incoming s u l f o n a t e ions to d i s l o d g e water molecules at the s u r f a c e . The r e s u l t w i l l be an i n t e r f a c e c o n s i s t i n g of CH groups w i t h a consequent i n c r e a s e i n the hydrophobic nature of the s o l i d - s o l u t i o n i n t e r f a c e . T h i s means t h a t i n the presence of adsorbed s u l f o n a t e s the contact angle at the s o l i d - l i q u i d - a i r i n t e r f a c e should i n c r e a s e w i t h the number of CH2 groups at the s o l i d s u r f a c e , i . e . w i t h both c h a i n l e n g t h and amount of adsorbed i o n s . F i g u r e s 7 and 8 c l e a r l y support the above a n a l y s i s . A comparison of the contact angles f o r C I Q and shows t h a t at pAg 3 a receding angle of about 50 degrees i s achieved i n 5 χ ΙΟ" M C I Q s u l f o n a t e but only 3 χ 10~ M i s necessary to a t t a i n the same contact angle w i t h Cii+ s u l f o n a t e . Again, f o r each s u r f a c t a n t c o n c e n t r a t i o n , the angles i n c r e a s e w i t h decreasing pAg, showing t h a t the amount of s u r f a c t a n t adsorbed increases w i t h higher p o s i t i v e surface charge. When the pAg i s low, the s o l i d surface has a h i g h p o s i t i v e charge and t h i s leads to an i n c r e a s e i n e l e c t r o s t a t i c a t t r a c t i o n of the a n i o n i c s u r f a c t a n t s to the A g i s u r f a c e . This means that more s u r f a c t a n t i o n s w i l l be drawn towards the s u r f a c e and consequently the c o n t r i b u t i o n s of c h a i n - s o l i d i n t e r a c t i o n s to 2
4
5
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
5.
OSSEO-ASARE E T A L .
Sulfonate Adsorption
77
the f r e e energy of a d s o r p t i o n w i l l be expected t o i n c r e a s e w i t h increased surface charge, and the longer the chain l e n g t h , the more t h i s i n c r e a s e w i l l be apparent, both i n e l e c t r o k i n e t i c be h a v i o r and i n contact angle behavior. Summary The e f f e c t of n - a l k y l s u l f o n a t e s on the e l e c t r o p h o r e t i c and w e t t i n g behavior of s i l v e r i o d i d e has been s t u d i e d . The r e s u l t s show that i n the r e g i o n of negative charge, a l l the s u r f a c t a n t s cease to be surface a c t i v e a t the same pAg, i n the neighborhood of pAg 7. This f a c t has been used to p o s t u l a t e a chemical con t r i b u t i o n of the p o l a r head to the t o t a l s p e c i f i c f r e e energy of a d s o r p t i o n . I t i s demonstrated by means of the Stern-Grahame theory of s p e c i f i c a d s o r p t i o th doubl l a y e tha th s u l fonates adsorb a t lowe o r i e n t e d to the A g i s u r f a c e energy chang c i a t e d w i t h t h i s s p e c i f i c c h a i n - s o l i d i n t e r a c t i o n i s found to be 0.5 RT per mole of CH2 group. At higher a d s o r p t i o n d e n s i t i e s , and e s p e c i a l l y f o r longer chain l e n g t h s , a s s o c i a t i o n c o n t r i b u t e s to the a d s o r p t i o n process. Acknowledgements The support of t h i s research by the N a t i o n a l Science Founda t i o n i s g r a t e f u l l y acknowledged. Literature Cited
1. Kruyt, H. R., Ed., "Colloid Science", Vol. I, Elsevier, Amsterdam, 1952. 2. Frens, G., Overbeek, J . Th. G., J . Colloid Interface Sci., (1971), 36, 286 3. Zettlemoyer, A. C., Tcheurekdjian, Ν., Chessick, J . J., Nature (London), (1961), 192, 653 4. Pravdic, V., Mirnik, Μ., Croat. Chem. Acta, (1960), 32, p. 1. 5. Fuerstenau, D. W., J . Phys. Chem., (1956), 60, 981 6. Ottewill, R. H., Watanabe, Α., Kolloid-Z., (1960), 170, 132 7. Bijsterbosch, B. H., Lyklema, J., J. Colloid Sci., (1965), 20, 665 8. Billett, D. F . , Ottewill, R. H., in "Wetting", S. C. I. Mono graph No. 25, p. 253, Society of Chemical Industry, London, 1967. 9. Billett, D. F . , Hough, D. B., Lovell, V., Ottewill, R. H., (1973), unpublished data. 10. Billett, D. F . , Ottewill, R. H., Thompson, D. W., in "Parti cle Growth in Suspensions", S. C. I. Monograph No. 38, p. 195, Academic Press, London, 1973. 11. Zeta-Meter Manual, Zeta-Meter Inc., New York, N.Y.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
78
12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22.
ADSORPTION AT INTERFACES
Horne, R. W., Ottewill, R. H . , J. Photo. S c i . , (1958), 6, 39 Wiersema, P., Loeb, Α . , Overbeek, J . Th. G . , J. Colloid Interface S c i . , (1966), 22, 78 Billett, D. F., Ottewill, R.H., (1971), 161st A. C. S. Na tional Meeting, Los Angeles, Ca. Stern, O., Z. Elektrochem., (1924), 30, 508 Grahame, D. C . , Chem. Rev. (1947), 41, 441 Fuerstenau, D. W., Journal of the International Union of Pure and Applied Chemistry, (1970), 24, 135 Osseo-Asare, Κ., Fuerstenau, D. W., Croat. Chem. Acta, (1973), 45, 149 Mackor, E., L., Recl. Trav. Chim., (1951), 70, 763 Beekley, J . S., Taylor, H. S., J . Phys. Chem., (1925), 29, 942 Tcheurekdjian, N. Phys. Chem., (1964), 68, 773 Hall, P. G . , Tomkins, F. C . , Trans. Farad. Soc., (1962), 58, 1734
*Visiting Professor, Department of Materials Science and Engineering, University of California, Berkeley; Permanent address: School of Chemistry, University of Bristol, Bristol BS8 1TS, England
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
6 Adsorption of Dyes on Water-Swollen and Non-Swelling Solid Substrates S. R. SIVARAJA I Y E R and A. S. C H A N E K A R Bombay University, Department of Chemical Technology, Bombay, India G. S R I N I V A S A N Hindustan Lever Research Centre, Bombay, India
Introduction Extensive investigations carried out by Sivaraja Iyer and coworkers (1,2,3) on adsorption of anionic dyes on cellulose surfaces revealed that the extent of dye uptake was strongly influenced by the concentration and nature of theelectrolyte ionic species added to the dyebath. An important effect observed (3) was a marked influence of the nature of the electrolyte cation on dye uptake in the presence of equivalent concentrations (0.1M) of different alkali metal chlorides, the order of increasing dye adsorption being Li < Na < K < Rb < Cs. An examination of the usual factors in the cellulose - aqueous dye solution system which are influenced by the addition of electrolytes such as the Donnan potential (4,5,6,7), Donnan distribution of ions (8,9,10), increase in chemical potential of the dye anion (11,12) and changes in solubility of the dye (3) shows that these factors for the series of the cations studied cannot explain the marked difference in dye adsorption in the presence of Li and Na on one hand and K Rb and Cs on the other. This additional influence of the nature of the cations however, finds a reasonable explanation in terms of their varying abilities to disrupt the structure of ordered water molecules surrounding the cellulose surface and the adsorbing dye anions (3). In the present work, these studies have been extended to cover a wider range of concentrations of KCl and NaCl and also the influence of different halide anions on the extent of dye adsorption. It is well known that cellulose is a hydrophilic material having a negative surface charge due to ionization of intrinsic carboxyl groups and when immersed in water,swells up considerably, exposing a large internal surface, also hydrophilic in nature. The influence of this opening up of its structure on dye and electrolyte sorption, water uptake etc. has been extensively reviewed (12,13,14). The question arises whether the above mentioned effect of electrolyte cations on the adsorption of dyes is confined to a swelling hydrophilic textile fiber such as vis+
+
+
+
+
79 In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
80
ADSORPTION
A T INTERFACES
c o s e , o r i s a phenomenon a s s o c i a t e d w i t h h y d r o p h i l i c s u r f a c e s i n general. Hence s t u d i e s o n t h e a d s o r p t i o n o f t h e a n i o n i c d y e C h l o r a z o l Sky B l u e F F on o t h e r h y d r o p h i l i c s u b s t r a t e s s u c h as r i g i d amorphous t i t a n i u m d i o x i d e a n d amorphous s i l i c a h a v i n g t h i c k e n i n g and t h i x o t r o p i c c h a r a c t e r have been u n d e r t a k e n . I t was a l s o c o n s i d e r e d i m p o r t a n t t o compare t h e dye a d s o r p t i o n c h a r a c t e r i s t i c s o f a completely hydrophobic surface l i k e that o f G r a p h o n and a s u r f a c e e x h i b i t i n g d u a l c h a r a c t e r i s t i c s s u c h a s activated charcoal. The s p e c t r u m o f s u r f a c e s i n v e s t i g a t e d i n t h i s work was f o u n d t o e x h i b i t i n t e r e s t i n g c h a r a c t e r i s t i c s and r e s p o n s e s t o t h e p r e sence o f e l e c t r o l y t e s i n t h e aqueous d y e b a t h . The r e s u l t s o f these comparative i n v e s t i g a t i o n s a r e discussed i n t h i s paper. Experimental Preparation, Purificatio a n i o n i c d i r e c t d y e C h l o r a z o l S k y B l u e F F ( C . I . D i r e c t B l u e 1, s o d i u m s a l t ) u s e d i n t h e s e s t u d i e s , was o b t a i n e d i n a h i g h l y p u r e f o r m ( p u r i t y > 9 9 · 2 # ) f r o m a c o m m e r i c a l sample u s i n g t h e s t a n d a r d s a l t i n g o u t method o f R o b i n s o n a n d M i l l s (15) f o r p u r i f i c a t i o n . T h i s dye w i l l be r e f e r r e d t o i n t h e subsequent p o r t i o n s o f t h i s p a p e r a s CSBFF. The v i s c o s e r a y o n sample u s e d i n t h e p r e s e n t i n v e s t i g a t i o n s was a G w a l i o r R a y o n s a m p l e h a v i n g a d e n i e r o f 1.5 a n d was p u r i f i e d u s i n g s t a n d a r d m e t h o d s (l6). The s p e c i f i c s u r f a c e a r e a o f t h i s v i s c o s e sample a s d e t e r m i n e d f r o m a B.E.T. n i t r o g e n a d s o r p t i o n i s o t h e r m f o r a w a t e r s w o l l e n u n c o l l a p s e d sample (2) a s w e l l a s b y n e g a t i v e s o r p t i o n o f c h l o r i d e i o n s i n a v i s c o s e - a q u e o u s KC1 s o l u t i o n s y s t e m (17) was f o u n d t o b e 205 m /g. The amorphous t i t a n i u m d i o x i d e (Ti02T~sample o b t a i n e d t h r o u g h t h e c o u r t e s y o f P r o f e s s o r R.D. V o i d , U n i v e r s i t y o f S o u t h e r n C a l i f o r n i a , was a N a t i o n a l L e a d sample h a v i n g c o d e No. MP 1391-1 and a s p e c i f i c s u r f a c e a r e a o f 100 m^/g. The G r a p h o n was a p u r e sample o b t a i n e d t h r o u g h t h e c o u r t e s y o f P r o f e s s o r A.C. Z e t t l e m o y e r , L e h i g h U n i v e r s i t y B e t h l e h e m P a , a n d h a s a c o r r e c t e d s p e c i f i c s u r f a c e a r e a o f 120 m2/g (l8). G r a p h o n p r o v i d e s a homogeneous a n d h y d r o p h o b i c n o n p o r o u s s u r f a c e a n d i s t h e r e f o r e w i d e l y u s e d i n a d s o r p t i o n s t u d i e s . The s i l i c a (S1O2) sample u n d e r t h e t r a d e name A e r o s i l 200 was o b t a i n e d a s a g i f t f r o m M/S. D e g u s s a , F r a n k f u r t , West Germany and h a s a s p e c i f i c s u r f a c e a r e a o f a b o u t 200 m2/g. The a c t i v a t e d c h a r c o a l was m i c r o p o r o u s E . M e r c k CNo. 2184) s a m p l e a n d was f u r t h e r p u r i f i e d b y t r e a t i n g i t w i t h d i l u t e h y d r o c h l o r i c a c i d a t 70 C f o r 1 h r . t o remove a c i d s o l u b l e i m p u r i t i e s f o l l o w e d b y r e p e a t e d washings with c o n d u c t i v i t y water. T h i s sample was t h e n d r i e d a t 100°C. The s p e c i f i c s u r f a c e a r e a o f t h e sample was 800 m /g. The a c i d i t y o f s u r f a c e g r o u p s was a b o u t 0.8 e q u i v . p e r k g . 2
2
The s u r f a c e a r e a s o f a l l t h e s e a d s o r b e n t s were o b t a i n e d B.E.T. n i t r o g e n a d s o r p t i o n isotherms.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
from
6.
IYER
E T AL.
Adsorption of Dyes
81
Measurement o f Dye A d s o r p t i o n . Known w e i g h t s o f t h e s o l i d s (0.1 t o 0.35 g d e p e n d i n g on t h e s p e c i f i c s u r f a c e a r e a o f s a m p l e ) were p l a c e d i n C o r n i n g g l a s s "bulbs w h i c h were d e g a s s e d u n d e r a vacuum o f 10""°mm o f Hg f o r a f e w h o u r s a t 100°C a n d t h e n s e a l e d . T h e s e s e a l e d b u l b s c o n t a i n i n g t h e s o l i d s were b r o k e n u n d e r known volumes o f dye s o l u t i o n s i n s t a n d a r d ground j o i n t s t o p p e r e d Corning glass c o n i c a l f l a s k s . The f l a s k s a n d t h e i r c o n t e n t s were e q u i l i b r a t e d i n a thermosated water b a t h having an accuracy o f + 0.1°C. A s u i t a b l e a r r a n g e m e n t was made f o r a g i t a t i n g t h e f l a s k s during the p e r i o d r e q u i r e d f o r e q u i l i b m m . The e q u i l i b r i u m t i m e s o f a d s o r p t i o n f o r t h e d i f f e r e n t s y s t e m s w e r e f o u n d t o be a b o u t 150 n r . f o r v i s c o s e , 100 n r . f o r T1O2 a n d S i 0 2 , 60 h r s . f o r G r a p h o n a n d a b o u t 120 n r . f o r a c t i v a t e d c h a r c o a l . Stock s o l u t i o n s o f d y e a n d e l e c t r o l y t e were p r e p a r e d i n d o u b l e d i s t i l l e d c o n d u c t i v i t y w a t e r a n d s t o r e d i n t h o r o u g h l y c l e a n e d , steamed a n d d r i e d Corning c o n i c a l f l a s k s the o r i g i n a l and e q u i l i b r i u b a t h were made s p e c t r o p h o t o m e t r i c a l l y w i t h a H i l g e r S p e k k e r i n strument u s i n g B e e r ' s law. The c o l o r i m e t r i c measurements were c a r r i e d o u t a t a w a v e l e n g t h o f 625 nm w h i c h i s t h e w a v e l e n g t h o f maxiumum a b s o r p t i o n . Results
and D i s c u s s i o n
A d s o r p t i o n o f CSBFF on V i s c o s e . The a d s o r p t i o n isotherms d e t e r m i n e d a t 50°C i n t h e p r e s e n c e o f i n c r e a s i n g c o n c e n t r a t i o n s of NaCl and K C l are i l l u s t r a t e d i n F i g u r e 1. Increase i n t h e e x t e n t o f dye u p t a k e w i t h i n c r e a s i n g e l e c t r o l y t e c o n c e n t r a t i o n c l e a r l y n o t i c e d i n t h i s f i g u r e i s an expected and p r e v i o u s l y r e ported behaviour (2.,3_,12.) · More i n t e r e s t i n g i s t h e o b s e r v a t i o n t h a t a t any given e q u i v a l e n t e l e c t r o l y t e c o n c e n t r a t i o n i n t h e r a n g e 0.045-0.2M t h e p r e s e n c e o f KT i o n s i n d u c e s much g r e a t e r d y e a d s o r p t i o n on v i s c o s e t h a n N a i o n s . T h e s e r e s u l t s amply c o n f i r m and e x t e n d t h e r e s u l t s on d y e u p t a k e r e p o r t e d p r e v i o u s l y (3.) a t one e q u i v a l e n t c o n c e n t r a t i o n , n a m e l y , 0.1M. Whereas c a t i o n s a r e seen t o s t r o n g l y i n f l u e n c e t h e dye uptake by v i s c o s e , a n i o n s a r e r e p o r t e d t o h a v e v e r y l i t t l e i n f l u e n c e (12). E q u i l i b r i u m adsorpt i o n o f CSBFF on v i s c o s e a t 50°C c a r r i e d o u t i n t h e p r e s e n c e o f 0.1M c o n c e n t r a t i o n o f K C l , K B r a n d K I a r e a l l f o u n d t o f a l l o n one i s o t h e r m , a s shown i n F i g u r e 2. These d a t a i n d i c a t e c l e a r l y t h a t a n i o n s h a v e no i n f l u e n c e . 1-
+
A number o f p o i n t s o f c l a r i f i c a t i o n a r e now r e q u i r e d t o e x plain the specific d i f f e r e n t i a l effect of cations. The s p e c i f i c a d s o r p t i o n o f c a t i o n s on t h e n e g a t i v e l y c h a r g e d c e l l o s e s u r f a c e i s u n l i k e l y t o be a c o n t r o l l i n g f e a t u r e f o r a d s o r p t i o n , s i n c e t h e c a t i o n s o f t h e a l k a l i m e t a l h a l i d e s a r e known t o b e o n l y d i f f u s e l y a d s o r b e d i n the s w o l l e n aqueous f i b e r phase. Evidence f o r d i f f u s e adsorption o f c a t i o n s i n t h e e l e c t r i c a l double l a y e r present i n c e l l u l o s e - a q u e o u s dye + e l e c t r o l y t e s o l u t i o n i n t e r f a c e s h a s b e e n o b t a i n e d f r o m t h e e x t e n s i v e i n v e s t i g a t i o n s on Donnan p o t e n t i a l s
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
Figure 1. Adsorption isotherms for CSBFF on viscose at different concentrations of NaCl and KCl,at50°C
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
6.
IYER
E T AL.
Adsorption of Dyes
83
and Donnan d i s t r i b u t i o n o f e l e c t r o l y t e i o n s i n s u c h s y s t e m s u s i n g d i f f e r e n t a l k a l i h a l i d e s (^,5.,6,7,8,9,10), s t u d i e s o n n e g a t i v e a d s o r p t i o n o f c h l o r i d e i o n s on c e l l u l o s e f i b r e s u r f a c e s ( 1 7 ) , e l e c t r o k i n e t i c p o t e n t i a l s a t c e l l u l o s e - a q u e o u s KC1 and N a C l s o l t i o n s y s t e m s (l£) a n d a c o r r e l a t i o n b e t w e e n t h e o r y and e x p e r i ment f o r t h e a d s o r p t i o n o f d i r e c t d y e s on c e l l u l o s e ( 1 , 2 , 3 , 1 1 , 2 0 , 21,22). Hence s p e c i f i c a d s o r p t i o n o f t h e c a t i o n s t o d i f f e r e n t e x t e n t s c a n n o t e x p l a i n t h e d i f f e r e n c e s i n dye a n i o n u p t a k e . The o b s e r v e d d i f f e r e n c e s i n t h e p r e s e n c e o f N a C l a n d KC1 c a n n o t a l s o b e a t t r i b u t e d t o d i f f e r e n c e s i n s o l u b i l i t y o f t h i s dye since i t has b e e n shown (3_) t h a t t h e r e a r e n o s i g n i f i c a n t c h a n g e s i n s o l u b i l i t y o f the dye a t a g i v e n e l e c t r o l y t e c o n c e n t r a t i o n . However, a s a t i s f a c t o r y e x p l a n a t i o n f o r t h e i n f l u e n c e o f t h e t y p e o f e l e c t r o l y t e c a t i o n o n dye a d s o r p t i o n b y c e l l u l o s e a t equivalent concentration f NaCl d KC1 b obtained fro c o n s i d e r a t i o n o f the i n t e r a c t i o n species i n v o l v e d i n the i t s e l f i n i t i a l l y a d s o r b s w a t e r f o r m i n g a l a y e r o f s t r o n g l y bound water molecules. E x i s t e n c e o f s t r u c t u r e d water i n t h e immediate v i c i n i t y o f the c e l l u l o s e s u r f a c e due t o i n t e r a c t i o n s between t h e p o l a r g r o u p s o f t h e s o l i d ( v i s c o s e ) and w a t e r i s e v i d e n t f r o m t h e work o f Ramiah and G o r i n g (23) a n d D r o s t - H a n s e n (2*0. Adsorption o f any other s p e c i e s w i l l be hindered by the presence o f t h i s v i c i n a l water. I n the s o l u t i o n phase, d i s s o l v e d i o n s c a r r y around e a c h o f them a number o f r i g i d l y bound w a t e r m o l e c u l e s . These hydrated ions by v i r t u e o f t h e i r strong e l e c t r o s t a t i c f i e l d tend t o d i s r u p t the s t r u c t u r e o f water and i n c r e a s e the o r i e n t a t i o n a l d i s o r d e r o f water surrounding t h e i r hydrated envelope. F r a n k and E v a n s (25) c a l l e d t h i s e f f e c t t h e w a t e r s t r u c t u r e b r e a k i n g e f f e c t . T h i s e f f e c t i n c r e a s e s with i n c r e a s i n g i o n i c r a d i u s i n the case o f c a t i o n s (26), (27). When s u c h h y d r a t e d i o n s a r e d i f f u s e l y a d sorbed i n the e l e c t r i c a l double l a y e r adjacent t o c e l l u l o s e , they can b r e a k the w a t e r - c e l l u l o s e s u r f a c e bonds o r i n o t h e r words, c a n d i s r u p t the adsorbed l a y e r o f water. I n a s i m i l a r manner t h e s e c a t i o n s can a l s o b r e a k the o r d e r e d s t r u c t u r e o f w a t e r ("icebergs") around n o n - p o l a r p a r t s o f the dye anions (28,29,30,31,32,33). Such d i s t u r b a n c e s o f the a d s o r b e d water m o l e c u l e s on the c e l l u l o s e s u r f a c e a n d t h e b r e a k d o w n o f " i c e b e r g s " a r o u n d t h e dye m o l e c u l e w i l l increase with increasing i o n i c strength. I n e f f e c t , the dye anions w i l l approach the c e l l u l o s e s u r f a c e very c l o s e l y thereby e n a b l i n g a n i n c r e a s e i n t h e i n t e r m o l e c u l a r f o r c e s b e t w e e n them. The g r e a t e r w a t e r s t r u c t u r e b r e a k i n g e f f e c t o f K a s compared t o Na t h u s l e a d s t o t h e e n h a n c e d dye u p t a k e i n t h e p r e s e n c e o f K as shown i n F i g u r e 1. +
+
+
T h e r m o d y n a m i c s o f A d s o r p t i o n o f CSBFF o n V i s c o s e . I s o t h e r m s , a f t e r c o r r e c t i n g f o r a Donnan e q u i l i b r u m a c c o r d i n g t o methods r e f e r r e d t o e a r l i e r (2,3.), were f o u n d t o g i v e good l i n e a r r e c i p r o c a l Langmuir p l o t s . From t h e s l o p e s a n d i n t e r c e p t s o f t h e s e p l o t s , s a t u r a t i o n v a l u e s a s w e l l a s s t a n d a r d t h e r m o d y n a m i c param-
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
ADSORPTION
Δ—Δ
Κ Br
0-1 M
• - •
ΚΙ
0-1M
A T INTERFACES
1*
U
6
8
10
Dfj- [ M O L E S / LITER ) Χ 10
4
Figure 2. Adsorption isotherms for CSBFF on viscose in the presence of 0.1M concentrations of KCl, KBr and Kl at 50°C y
100
200
300
400
500
600
700
8 00
9 00 1000
1100
1200
LIMITING C O - A R E A (/? /mol ecu le) 2
Figure 3. Variation of —ΔΗ° with limiting coarea of the adsorbed dye molecule on viscose
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
6.
IYER
E T AL.
Adsorption of Dyes
85
m e t e r s were c a l c u l a t e d i n t h e u s u a l manner. F i g u r e 3 w h i c h shows t h e v a r i a t i o n o f e n t h a l p y c h a n g e s - Δ H° w i t h l i m i t i n g c o a r e a p e r a d s o r b e d d y e m o l e c u l e was c o n s t r u c t e d u s i n g t h e p r e s e n t a s w e l l a s p r e v i o u s d a t a (3). These r e s u l t s i n d i c a t e t h a t ~ Δ Η ° indepen d e n t o f t h e l i m i t i n g c o a r e a o f t h e a d s o r b e d dye m o l e c u l e u n t i l a b o u t 6nm^. A g r a d u a l c h a n g e i s now s e e n t o o c c u r i n t h e r a n g e o f c o a r e a s b e t w e e n 6-3.5 n m i n d i c a t i n g i n c r e a s i n g l a t e r a l d y e - d y e interactions. A t a b o u t a c o a r e a o f 3.66 n m f o r t h e a d s o r b e d dye molecule, i t s o r i e n t a t i o n w i l l correspond t o a molecule l y i n g f l a t on t h e s u r f a c e w i t h t h e p l a n e o f t h e b e n z e n e r i n g s p a r a l l e l t o t h e surface. T h i s l i m i t i n g c o a r e a f o r f l a t o r i e n t a t i o n was c a l c u l a t e d from a C o u r t a u l d ' s atomic model o f t h e dye. The f u r t h e r s h a r p r i s e i n - Δ Η ° shown i n F i g u r e 3 i n t h e r e g i o n f r o m 3.5-2.0 n m i n d i c a t e s i n c r e a s e d s t r o n g e r l a t e r a l dye-dye i n t e r a c t i o n s . The c h a n g e s i n l i m i t i n g c o a r e a o f t h e d y e m o l e c u l e f r o m 3.5-2.0 n m can be a t t r i b u t e d t o a s o r b e d d y e t o one i n w h i c perpendicular t o the surface. This l a t t e r o r i e n t a t i o n corresponds t o a p r o j e c t e d c o a r e a o f 2 nm a s d e t e r m i n e d from a C o u r t a l d s atomic model o f t h e d y e . i
s
2
2
2
2
2
!
A d s o r p t i o n o f CSBFF o n T i O p . The a d s o r p t i o n i s o t h e r m s o f CSBFF o n T1O2 i n t h e p r e s e n c e o f N a C l a n d K C l a t 35°C a n d a t 3 5 ° and i+5°C i n t h e p r e s e n c e o f K C l a r e g i v e n i n F i g u r e s h a n d 5 respectively. I t i s i n t e r e s t i n g t o note that the a d s o r p t i o n be h a v i o u r e x h i b i t e d b y c e l l u l o s e i s r e f l e c t e d s t r o n g l y b y T1O2 a l s o . I n t h e a b s e n c e o f a n y e l e c t r o l y t e , T1O2 d o e s n o t a d s o r b CSBFF j u s t as i n t h e c a s e o f v i s c o s e . B y i n c l u d i n g some N a C l i n t h e d y e b a t h slight adsorption takes place. However, t h e amount o f d y e u p t a k e e v e n a t t h e h i g h c o n c e n t r a t i o n o f 0.2M N a C l i s v e r y s m a l l u n l i k e i n t h e c a s e o f v i s c o s e , where a d s o r p t i o n i s c o n s i d e r a b l e e v e n a t 0.0^5M N a C l . I n c o n t r a s t t o t h i s s l i g h t a d s o r p t i o n when N a C l i s p r e s e n t , c o n s i d e r a b l e dye a d s o r p t i o n t a k e s p l a c e even i n t h e p r e s e n c e o f 0.1M K C l . J u s t a s i n t h e c a s e o f v i s c o s e , e l e c t r o l y t e a n i o n s C I " , B r " o r I " were f o u n d t o h a v e no e f f e c t o n d y e a d s o r p tion. The d y e a d s o r p t i o n i s o t h e r m a t 0.2M K C l i s f o u n d t o o b e y t h e Langmuir t y p e e q u a t i o n and t h e a d s o r p t i o n p r o c e s s i s m a r k e d l y e x o t h e r m i c a s c a n b e n o t i c e d f r o m t h e i s o t h e r m s a t 3 5 ° a n d U5°C shown i n F i g u r e 5· From t h e r e c i p r o c a l L a n g m u i r p l o t f o r t h e i s o t h e r m a t 35°C i n t h e p r e s e n c e o f 0.2M K C l t h e c o a r e a o f t h e a d s o r b e d d y e m o l e c u l e was c a l c u l a t e d t o b e a b o u t 3.5nm . This c o r r e s p o n d s t o a f l a t o r i e n t a t i o n o f adsorbed dye m o l e c u l e s on t h e Ti0 surface indicating saturation adsorption. T h e same s a t u r a t i o n on t h e v i s c o s e f i b e r s u r f a c e i s reached a t a K C l concen t r a t i o n o f 0.1M. T h e s e r e s u l t s show t h a t T1O2 w h i c h i s a h y d r o p h i l i c r i g i d s u r f a c e , e x h i b i t s a s i n t h e c a s e o f v i s c o s e , t h e same c h a r a c t e r i s t i c behaviour towards dye a d s o r p t i o n i n the presence o f electrolytes. Hence t h e m o d e l s u g g e s t e d f o r e x p l a i n i n g t h e d y e a d s o r p t i o n behaviour on v i s c o s e i n t h e presence o f d i f f e r e n t 2
2
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
ADSORPTION
AT
Figure 5. Adsorption isotherms for CSBFF on Ti0 in the presence of 0.1M and 0.2M KCl at 35 and45°C 2
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
INTERFACES
6.
IYER
ET
AL.
Adsorption of Dyes
87
e l e c t r o l y t e s c a n be e x t e n d e d t o T1O2 also. The d i f f e r e n c e s i n t h e m a g n i t u d e o f t h e c a t i o n e f f e c t s on t h e a d s o r p t i o n o f dye on. T1O2 as compared t o v i s c o s e c a n now be e x p l a i n e d a s f o l l o w s : T1O2 has a s t r o n g a f f i n i t y f o r w a t e r . From t h e h e a t o f immersion s t u d i e s c a r r i e d out by Z e t t l e m o y e r et a l . ( 3 M the i n t e r a c t i o n o f v a t e r w i t h T1O2 was f o u n d t o h a v e an e n e r g y o f t h e o r d e r o f a b o u t 8-9 kcal/mole. T h i s i s much more t h a n t h e e n e r g y o f i n t e r a c t i o n o f water w i t h c e l l u l o s i c m a t e r i a l which f a l l s w i t h i n the r a n g e 1+.9-6 k c a l / m o l e ( l U ,35.). B e c a u s e o f t h e s t r o n g e r T1O2 - H2O bonding, stronger f o r c e s are r e q u i r e d t o d i s r u p t the s t r u c t u r e a r o u n d T1O2 a s compared t o v i s c o s e . In view of the o b s e r v a t i o n t h a t t h e a d s o r p t i o n o f t h e dye b y T1O2 i s o n l y o f s m a l l magnitude i n t h e p r e s e n c e o f e v e n 0.2M NaCl i t i s surmised t h a t the water structure breaking e f f e c t of Na i o n s i s somewhat d e f i c i e n t t o e n c o u r a g e dye a d s o r p t i o n and t h e i r e f f e c t i s r e f l e c t e on T1O2. Evidence i n suppor argumen s t u d i e s b y B e r u b e and D e B r u y n (36) on t h e c a p a c i t y o f t h e e l e c t r i c c a l d o u b l e l a y e r i n a T1O2 - aqueous e l e c t r o l y t e s o l u t i o n system, u s i n g KC1 and N a C l a s t h e e l e c t r o l y t e s . These a u t h o r s have r e a c h e d t h e same c o n c l u s i o n s , n a m e l y , N a w i l l have l i t t l e i n f l u e n c e on w a t e r s t r u c t u r e s u r r o u n d i n g t h e T1O2 s u r f a c e whereas K+ i o n s d i s r u p t i t . +
+
A d s o r p t i o n o f CSBFF on S i O p . Dye a d s o r p t i o n e x p e r i m e n t s were c a r r i e d o u t a t e l e c t r o l y t e c o n c e n t r a t i o n s i n t h e r a n g e 0 t o 3.5 M N a C l and KC1 r e s p e c t i v e l y . T h e s e e x p e r i m e n t s i n d i c a t e t h a t no a d s o r p t i o n o f t h e dye t a k e p l a c e a t any e l e c t r o l y t e c o n c e n t r a t i o n . T h i s i s a s i g n i f i c a n t o b s e r v a t i o n d i f f e r e n t from the observations made i n t h e c a s e o f v i s c o s e o r T1O2. S i l i c a i s known t o b i n d w a t e r more s t r o n g l y w i t h an e n e r g y o f t h e o r d e r o f 9 t o 20 kcal/ m o l e a s c a l c u l a t e d f r o m h e a t o f i m m e r s i o n s t u d i e s (3^_3T_). T h e s e b i n d i n g e n e r g y v a l u e s a r e o f much g r e a t e r m a g n i t u d e t h a n f o r t h e b i n d i n g o f w a t e r w i t h c e l l u l o s e and T1O2. From a NMR study of w a t e r on s i l i c a , P i c k e t t and R o g e r s (38) observed very high surface coverage. The p o l a r i z a t i o n and o r i e n t a t i o n o f t h e f i r s t few l a y e r s o f w a t e r i n t u r n c a u s e s f u r t h e r l a y e r s t o be b u i l t up w i t h a l a t t i c e l i k e order. Above 50 l a y e r s t h e o r d e r e d s t r u c t u r e b r e a k s down l e a d i n g t o a more m o b i l e g e l - l i k e s t r u c t u r e . In view o f t h i s v e r y s t r o n g i n t e r a c t i o n o f water w i t h s i l i c a s u b s t r a t e s and t h e p r e s e n c e o f a t h i c k e n v e l o p e o f s t r u c t u r e d w a t e r l a y e r s s u r r o u n d i n g s i l i c a , t h e i n a b i l i t y o f t h e a n i o n i c dye t o a d s o r b i s e a s i l y understandable. E v i d e n t l y , the e l e c t r o l y t e c a t i o n cannot i n f l u e n c e t h i s s t r o n g l y bound water envelope s u r r o u n d i n g silica e v e n a t t h e h i g h e s t c o n c e n t r a t i o n s t u d i e d and h e n c e c a n n o t p l a y i t s u s u a l r o l e i n f a v o u r i n g dye a d s o r p t i o n . 5
A d s o r p t i o n o f CSBFF on G r a p h o n . I t c a n be n o t i c e d f r o m F i g u r e 6 t h a t t h e s a t u r a t i o n v a l u e o f dye u p t a k e i s t h e same b o t h i n t h e a b s e n c e and p r e s e n c e o f e l e c t r o l y t e . Furthermore,
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
the
88
ADSORPTION
AT
INTERFACES
+
type of e l e c t r o l y t e c a t i o n K+ or N a has no i n f l u e n c e on the s a t u r a t i o n v a l u e or on the extent o f e q u i l i b r i u m dye a d s o r p t i o n at any stage of the isotherm, since the isotherms i n the case of KCl and NaCl o v e r l a p each o t h e r . The i n f l u e n c e o f e l e c t r o l y t e i s n o t i c e d o n l y i n the i n i t i a l stages of the a d s o r p t i o n isotherm and i s understandable from the point of view of r e d u c t i o n , by the e l e c t r o l y t e c a t i o n , of the e l e c t r o s t a t i c r e p u l s i o n due t o adsorbed dye anions f o r other dye anions approaching the adsorbent s u r f a c e . As i n the systems d i s c u s s e d e a r l i e r , anions d i d not i n f l u e n c e dye adsorption. Figure 7 shows a d s o r p t i o n isotherms of CSBFF on Graphon i n the temperature range 30° t o 50°C and 0.13 M NaCl. Here i t can be observed t h a t the s a t u r a t i o n v a l u e i s u n a f f e c t e d by temperature, but d u r i n g the e a r l i e r stages of the dye a d s o r p t i o n isotherms t h a t t h e r e i s a s l i g h t increase i n e q u i l i b r i u m a d s o r p t i o n w i t h tempera t u r e i . e . the a d s o r p t i o are o f the Langmuir typ l i t e r a t u r e f o r a n i o n i c dye a d s o r p t i o n on Graphon (39_ h0). The r e c i p r o c a l Langmuir p l o t s f o r these isotherms are shown i n F i g u r e 8 and the c a l c u l a t e d s a t u r a t i o n v a l u e i n the temperature range 30° - 50°C again corresponds t o a closepacked monolayer w i t h a l i m i t ing coarea of 3.67 nm per adsorbed dye molecule. This coarea as d i s c u s s e d e a r l i e r , i n d i c a t e s an o r i e n t a t i o n of the adsorbed dye molecule i n a f l a t c o n f i g u r a t i o n w i t h the benzene r i n g s p a r a l l e l to the Graphon s u r f a c e . 9
2
Thermodynamics of A d s o r p t i o n of CSBFF on Graphon. From these r e c i p r o c a l Langmuir p l o t s the standard thermodynamic parameters shown i n Table I have been c a l c u l a t e d i n the u s u a l way. In t h i s Table, ^ H ° i s seen t o be a s m a l l p o s i t i v e v a l u e and the entropy of a d s o r p t i o n i s a l a r g e p o s i t i v e q u a n t i t y . S i m i l a r p o s i t i v e entropy values have been observed by Schneider et a l . (kl) f o r a d s o r p t i o n of a l i p h a t i c a c i d s and a l c o h o l s on p o l y s t y r e n e . These r e s u l t s i n d i c a t e t h a t strong hydrophobic i n t e r a c t i o n s are i n v o l v e d i n the a d s o r p t i o n of the a n i o n i c dye CSBFF on graphon. An impor t a n t f e a t u r e o f hydrophobic bond formation d i s c u s s e d by Nemethy and Scheraga (k2) Kauzmann (k3) and Schneider et a l . (kl) is t h a t the enthalpy of formation of the hydrophobic bond i s p o s i t i v e at low temperatures and becomes more negative p a s s i n g through zero as the temperature i n c r e a s e s . This behaviour i s l o g i c a l since the enthalpy o f hydrophobic bond formation i s a net e f f e c t of two f a c t o r s namely, the enthalpy of " i c e b e r g " d e s t r u c t i o n and the enthalpy o f the bonding between the i n t e r a c t i n g species. The f i r s t f a c t o r which i s p o s i t i v e , predominates at low temperatures and decreases w i t h i n c r e a s i n g temperature. The second f a c t o r i s negative and remains more or l e s s u n a f f e c t e d i n the narrow temp erature ranges u s u a l l y s t u d i e d . Experimental evidence f o r these enthalpy changes w i t h i n c r e a s i n g temperature has been provided by Schneider et a l . (kl), who observed a decrease i n a d s o r p t i o n at higher temperatures in- the case o f p o l y s t y r e n e - hydrocarbon 9
9
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
IYER
ET AL.
Adsorption of Dyes
ol 0
1 2
U Ο
σ
6
8
10
12
14
(MOLES/LITER]X 10*
Figure 6. Adsorption isotherms for CSBFF on graphon in the absence and presence of electrolyte at 30°C
6
0-0
30 C
Δ - Δ 4.0°C • - •
U 0
ι 2
ι
ι
50°C
ι
ι
L
6 8 10 Ο [MOLES/LI TER] Χ 10 σ
ι 12
k %
4
Figure 7. Adsorption isotherms for CSBFF on graphon at different temperatures in the presence of 0.13M NaCl
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
90
ADSORPTION
A T INTERFACES
h y d r o p h o b i c i n t e r a c t i o n s . Some p r e l i m i n a r y o b s e r v a t i o n s o n t h e a d s o r p t i o n o f d y e on G r a p h o n , c a r r i e d o u t a t t e m p e r a t u r e s h i g h e r t h a n 50°C, i n d i c a t e a s i m i l a r d e c r e a s e i n a d s o r p t i o n . These r e s u l t s give f u r t h e r evidence f o r hydrophobic i n t e r a c t i o n s i n t h e Graphon-dye system. T a b l e I Thermodynamic P a r a m e t e r s f o r t h e A d s o r p t i o n o f C h l o r a z o l Sky B l u e F F o n G r a p h o n i n P r e s e n c e o f 0.13M N a C l . #
Temperature (°C)
Free Energy o f Adsorption
Heat o f Adsorption
Entropy o f Adsorption
ΔΗ°
As°
(kcal/mole
30 1+0 50
-6.26 -6.62 -6.98
+U.65
+36
A d s o r p t i o n o f CSBFF on A c t i v a t e d C h a r c o a l . Adsorption o f CSBFF on a c t i v a t e d c h a r c o a l p r e s e n t s a v e r y i n t e r e s t i n g s t u d y . F i g u r e 9 i l l u s t r a t e s a d s o r p t i o n i s o t h e r m s a t 30°C o n a c t i v a t e d c h a r c o a l i n t h e p r e s e n c e and absence o f e l e c t r o l y t e s i n t h e d y e bath. Two i n t e r e s t i n g f e a t u r e s c a n b e n o t i c e d f r o m t h i s f i g u r e . I n t h e a b s e n c e o f e l e c t r o l y t e s , a c t i v a t e d c h a r c o a l shows c o n s i d e r a b l e a d s o r p t i o n o f CSBFF j u s t a s i n t h e c a s e o f G r a p h o n a n d i n c o n t r a s t t o t h e behaviour observed f o r h y d r o p h i l i c surfaces l i k e v i s c o s e a n d T1O2. T h e p r e s e n c e o f e l e c t r o l y t e h o w e v e r , e n h a n c e s t h e t e n d e n c y f o r a c t i v a t e d c h a r c o a l t o a d s o r b t h e dye t o a considerable extent. This behaviour i s s i m i l a r t o that observed i n t h e case o f h y d r o p h i l i c s u b s t r a t e s b u t i n c o n t r a s t t o t h a t o f Graphon. Thus a c t i v a t e d c h a r c o a l e x h i b i t s a d u a l b e h a v i o u r with r e s p e c t t o dye a d s o r p t i o n . I n t h e absence o f e l e c t r o l y t e s , t h e L a n g m u i r t y p e a d s o r p t i o n t e n d s t o a l i m i t i n g v a l u e o f 3.5 x 10"^ moles/kg. M a k i n g t h e a s s u m p t i o n t h a t t h e a d s o r b e d dye m o l e c u l e o c c u p i e s a l i m i t i n g c o a r e a o f 3.67 nm p e r m o l e c u l e a s i n t h e case o f Graphon, dye a d s o r p t i o n w i l l c o r r e s p o n d t o a coverage o f 80 m /g. T h i s a r e a i s o n l y 10$ o f t h e t o t a l s u r f a c e a n d p e r h a p s represents t h e t o t a l l y hydrophobic surface o f c h a r c o a l which i s a v a i l a b l e f o r adsorption o f l a r g e molecules. I t i salso reason able t o c o n s i d e r t h a t t h i s i n t e r a c t i o n i s o f t h e hydrophobic type as i n t h e c a s e o f G r a p h o n s i n c e a f e w e x p e r i m e n t s ( n o t r e p o r t e d h e r e ) , i n d i c a t e a s l i g h t endothermic a d s o r p t i o n p r o c e s s . The dye u p t a k e was f o u n d t o i n c r e a s e e n o r m o u s l y o n a d d i n g e l e c t r o l y t e s t o t h e d y e b a t h a s shown i n F i g u r e 9· The p r e s e n c e o f n e g a t i v e l y 2
2
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
91
Adsorption of Dyes
Figure 8. Reciprocal Langmuir plots. l/ϋφ vs. 1/D for the adsorption of CSBFF on graphon at different tempera tures. NaCl 0.13M. and D refer to the amount of dye adsorbed and the a
a
0-005
0-0
[LITERS/MOLE ]
Figure 9. Adsorption isotherms for CSBFF on activated charcoal in the presence and absence of electrolyte at 30°C
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
92
ADSORPTION
A T INTERFACES
charged a c i d i c s i t e s on a c t i v a t e d carbons i n c l u d i n g c h a r c o a l i s v e i l known (39,*^»]+5.). The e l e c t r o l y t e c a t i o n s screen the e l e c t r o s t a t i c r e p u l s i o n between the approaching dye anion and the n e g a t i v e l y charged a c i d i c s i t e s and hence enable a g r e a t e r ad s o r p t i o n o f dye anions. The d i f f e r e n t i a l e f f e c t s o f the e l e c t r o l y t e c a t i o n s K** and N a are a l s o c l e a r l y n o t i c e d , the adsor p t i o n i n the presence o f KT*" being always g r e a t e r than t h a t i n the presence o f N a . The observed increase i n dye a d s o r p t i o n i n the presence o f KT" as compared t o N a can be explained as being due t o a greater d i s r u p t i o n o f t h e water s t r u c t u r e on t h e h y d r o p h i l i c p a r t s o f the c h a r c o a l surface by K i o n s and p a r a l l e l s the behav i o u r f o r dye a d s o r p t i o n on h y d r o p h i l i c v i s c o s e and T1O2 s u r f a c e s . The h y d r o p h i l i c c h a r a c t e r o f c h a r c o a l surfaces a r i s e s from the o r d e r i n g o f water molecules i n the v i c i n i t y o f the a c i d i c surface groups (U6 hj_,1*8). Fo t h c h a r c o a l sampl d i th t study, the a c i d i c group +
+
1
+
+
9
The present i n v e s t i g a t i o n s u s i n g the dye a d s o r p t i o n t e c h nique, b r i n g t o l i g h t not o n l y the v a r i a t i o n s i n the i n t e r f a c i a l "behaviour of d i f f e r e n t h y d r o p h i l i c s u b s t r a t e s , but a l s o the d i f ferences between t h e a d s o r p t i o n f e a t u r e s o f h y d r o p h i l i c and hydro phobic s u r f a c e s . The b i n d i n g o f water w i t h the surface and i t s f u r t h e r s t r u c t u r i n g i n the v i c i n i t y o f the surface are charac t e r i s t i c features of hydrophilic substrates. Disruption of t h i s s t r u c t u r e of v i c i n a l water t o d i f f e r e n t extents by d i f f e r e n t e l e c t r o l y t e c a t i o n s seems t o p l a y an important r o l e i n r e g u l a t i n g dye adsorption on h y d r o p h i l i c s u r f a c e s . The hydrophobic surface i s p r a c t i c a l l y u n a f f e c t e d by the presence o f e l e c t r o l y t e s i n t h e aqueous medium, dye a d s o r p t i o n being promoted by hydrophobic i n t e r a c t i o n s t h a t i n v o l v e entropy d r i v e n d i s r u p t i o n o f " i c e b e r g " water. Literature Cited 1.
S i v a r a j a I y e r , S.R., S r i n i v a s a n , G., Baddi, N.T., and R a v i k r i s h n a n , M.R., Text. Res. J., (1964), 34, 807.
2.
S i v a r a j a I y e r , S.R., and Baddi, Ν.Τ.,in Proc. Symp. "Con tributions t o Chemistry o f S y n t h e t i c s Dyes and Mechanism o f Dyeing", p. 36, Univ. Dept. Chem. Tech., Bombay, I n d i a (1967)
3.
S i v a r a j a I y e r , S.R., S r i n i v a s a n , G. and Baddi, N.T., Text. Res. J., (1968), 38, 693.
4.
Neale,S.M.,Trans. Faraday Soc.,
(1947), 43, 325.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
6.
IYER
ET AL.
Adsorption of Dyes
93
5·
N e a l e , S.M., a n d
6.
N e a l e , S.M., a n d S a n a , P.K., J. S o c . D y e r s
7.
Sivaraja
Standring,
P.T.,
P r o c . Roy. S o c . L o n d o n ,
S e r . A, (1952), 213, 530. (1957),
Colour.,
73, 381. I y e r , S.R., a n d J a y a r a m , R., J. S o c . D y e r s
Colour.,
(1970), 86, 398. 8.
U s h e r , F . L . , a n d Wahbi, A.K., J. S o c . D y e r s 58, 221.
9.
N e a l e , S.M., a n d
10.
Sivaraja
11.
H a n s o n , J., N e a l e F a r a d a y S o c . , (1935),
Farrar,
I y e r , S.R.
J.,
J.
d Kalbag
Colloid
Colour.,
Sci.,
(1942),
(1952), 7, 186.
V.N., U n p u b l i s h e d
results.
31, 1738.
12.
Vickerstaff, T., "The Physical and B o y d , L o n d o n , 1954.
13.
S i v a r a j a I y e r , S.R. in "The C h e m i s t r y of Synthetic D y e s , " K. V e n k a t a r a m a n , E d . , Vol. VII, Chap. I V , A c a d e m i c P r e s s , New Y o r k , in press.
14.
Stamm, A . J . , "Wood a n d Cellulose S c i e n c e " , p . 248, hold P r e s s C o . , New Y o r k , (1964).
15.
R o b i n s o n , C., a n d
Mills,
C h e m i s t r y of D y e i n g " ,
Oliver
The R e i n
H.A.T., P r o c . Roy. S o c . L o n d o n , S e r .
A, (1931), 131, 596. 16.
17.
W h i s t l e r , R.L., E d . , "Methods in C a r b o h y d r a t e Vol. 3, p . 3 A c a d e m i c P r e s s , New Y o r k , 1963. Nemade,
B.I.,
Sivaraja
Chemistry",
I y e r , S.R. a n d J a y a r a m , R., T e x t . R e s .
J., (1970), 40, 1050.
18.
Z e t t l e m o y e r , A.C., in " H y d r o p h o b i c S u r f a c e s " , F.M. F o w k e s , E d . , p . 1, A c a d e m i c P r e s s , New Y o r k , 1969.
19.
S i v a r a j a I y e r , S.R., a n d J a y a r a m ,
R., J. S o c . D y e r s C o l o u r . ,
(1971), 87, 338. 20. 21.
C r a n k , J., J. S o c . D y e r s P e t e r s , R.H. a n d
Colour,
Vickerstaff,
(1947), 63, 293.
T., P r o c . Roy. S o c . London S e r .
A, (1948), 192, 292.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
ADSORPTION
22. 23.
S t a n d i n g ,H.A.,a n d W a r w i c k e r , 40, T175. Ramiah, M.B. a n d
J.O.,
J.
Text.
A T INTERFACES
(1949),
Inst.,
D.A.I., J. Poly. Sci. Part C, 2,
Goring,
(1965), 27. (1969),
24.
D r o s t - H a n s e n , W., I n d . E n g . Chem.,
25.
F r a n k , H.S., a n d E v a n s , M.W., J. Chem. P h y s . ,
61(11),10 (1945), 13,
507. 26.
F r a n k , H.S., a n d Wen, W.Y.,
27.
W i c k e , Ε., Angew. Chem
28.
Sivaraja
29.
Nemethy, G., Angew. Chem.
30.
M u k e r j e e , P., a n d G h o s h ,
F a r a d a y Soc., (1957),
Disc.
24, 133.
Iyer,
Internat.
(1966), 5, 106.
Edit.,
S.R.
(1970), 242, 1196. Internat.
Edit.,
(1967), 6, 195. (1963), 67,
A.K., J. P h y s . Chem.,
193. 31.
R o h a t g i , K.K., a n d Singhal, G.S., J. P h y s .
Chem.,
70, 1695. 32.
K a t a y a m a , A.
Sivaraja
T.,
Konishi,
Κ . , a n d Kuroki, Ν.,
P o l y m , (1965), 206, l62.
Kolloid-Z.Z. 33.
Takagishi,
(1966),
I y e r , S.R., a n d S i n g h , G.S., J. S o c . D y e r s
Colour,
(1973), 89, 128. 34.
Z e t t l e m o y e r , A.C., a n d C h e s s i c k , J.J., Advan.
Catalysis,
(1959), 11, 263. 35.
B a d d i , N.T.,
36.
B e r u b e , Y.G., a n d D e B r u y n ,
37.
M a c k r i d e s , A.C., a n d Hackerman, Ν . ,J.P h y s .
Cell.
Chem. T e c h . ,
(1969), 3, 56l.
P.L., J. Colloid a n d
Interface
Sci., (1968), 28, 92. Chem.,
(1959),
63, 594. 38.
Pickett,
J.H., a n d R o g e r s , L.B.,
Anal.
Chem.,
1892.
39.
Graham, D., J. P h y s .
40.
N a n d i , S.P. a n d W a l k e r , Jr. P . L . ,
Chem.,
(1967), 39,
(1955), 59, 896. Fuel,
(1971), 50, 345.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
6.
41.
IYER
Adsorption of Dyes
ET AL.
95
S c h n e i d e r , H., K r e s h e c k , G.C., a n d S c h e r a g a , H.A., J. P h y s .
Chem. (1965), 69, 1310.
42.
Nemethy, G., a n d S c h e r a g a , H.A., J. P h y s .
43.
Kauzmann, W., Adv.
44.
C o u g h l i n , R.W., E z r a , F . S . , a n d T a n , R.N., in " H y d r o p h o b i c Surfaces", F.M. Fowkes, E d . , p . 44. A c a d e m i c P r e s s , New York, 1969.
45.
Boehm, H.P., Chem.
46.
47.
Chem.,
(1962),
in 14,
1.
66, 1773.
Diehl,
Internat.
Protein
Ε.,
Edit.,
W a l k e r , Jr. P . L . F.M. Fowkes, E d . , p
(1959),
Chem.,
Heck., W., a n d S a p p o c k ,
R., Angew.
(1964), 3, 669. 107,
1969.
,
D u b i n i n , M.M. in " C h e m i s t r y a n d
Physics
W a l k e r , Jr., E d . , Vol. 2,
M a r c e l - Dekker,
p . 51,
o f C a r b o n " , P.L. New Y o r k
1965. 48.
M a t t s o n , J . S . , a n d Mark Jr., H.B., f a c e C h e m i s t r y and Adsorption from New Y o r k , 1971.
"Activated Solution",
Carbon - Sur Marcel-Dekker,
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
7 Adsorption of Polystyrene on Graphon from Toluene VICTOR K. D U N N * and ROBERT D. V O L D Department of Chemistry, University of Southern California, Los Angeles, Calif. 90007
Introduction Recently many investigators have been concerned with the stability of non-aqueous suspensions, and a number of alternative hypotheses have been proposed to account for the observed facts (1,2,3). All involve consideration of the overlap region of the adsorbed stabilizer surrounding the suspended particle, and predict an increase in stability with increasing molecular weight of an adsorbed macromolecule. In connection with a project to determine quantitatively the effect of the molecular weight of adsorbed polystyrene on the stability of Graphon suspensions in toluene, it therefore became necessary to obtain data on the extent of adsorption and the thickness of the adsorbed layer under the same identical conditions under which subsequent determinations of the rate of flocculation of the suspension could be carried out. Such data are also useful for comparison with the predictions of computer simulations of adsorption of macromolecules (4). Determination of adsorption on Graphon in suspension is greatly complicated by the fact that the material is present as aggregates rather than primary particles. Hence the amount of polystyrene adsorbed will depend on the degree of dispersion of the Graphon, which in turn is a function of the level of mechanical agitation, and also dependent on whether the agitation takes place in the presence or absence of the polystyrene. Since it was desired to compare stabilities at saturation adsorption of a number of polystyrene samples of different molecular weights, it was first necessary to determine adsorption isotherms for each of the polystyrenes so as to insure use of an initial concentration which would result in saturation adsorption. Since flocculation measurements were to be carried out in Graphon suspensions it was also necessary to study the rate of adsorption and *Present address: Xerox Corporation, Webster Research Center, W130, Rochester, New York 14644. 96 In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
7.
DUNN
AND
VOLD
Adsorption of
Polystyrene
97
determine the time r e q u i r e d to reach a t l e a s t a p p r o x i m a t e l y the equi1ibrlum value. The r e s u l t s o b t a i n e d y i e l d i n t e r e s t i n g i n f o r m a t i o n c o n c e r n ing t h e p r o b a b l e c o n f o r m a t i o n o f t h e a d s o r b e d m o l e c u l e s and t h e dependence o f t h e t h i c k n e s s o f t h e a d s o r b e d l a y e r on the m o l e c u l a r weight of the p o l y s t y r e n e . M a t e r i a l s and
Methods
Materials. G r a p h i t i z e d c a r b o n b l a c k (Spheron 6 ) , p r e p a r e d by h e a t i n g i n t h e a b s e n c e o f a i r t o 2700°C, o r h i g h e r , was o b t a i n e d f r o m t h e Cabot C o r p o r a t i o n . Samples were e x t r a c t e d c o n t i n u o u s l y f o r 48 h o u r s i n a S o x h l e t e x t r a c t o r w i t h c y c l o h e x a n e and t o l u e n e successively. A f t e r t h i s p u r i f i c a t i o n n e i t h e r w a t e r nor t o l u e n e e q u i l i b r a t e d w i t h the e x t r a c t e d Grapho showed absorptio f r o m 340 t o 800 nm i n d i c a t i n ing i n the v i s i b l e r e g i o spectru s u r f a c e a r e a o f t h e e x t r a c t e d Graphon was f o u n d t o be 95.4 m /g by low t e m p e r a t u r e a d s o r p t i o n o f n i t r o g e n by t h e B.E.T. method, u s i n g 16.2Â as t h e a r e a p e r n i t r o g e n m o l e c u l e . T o l u e n e ( A n a l y t i c a l R e a g e n t , M a l l i n c k r o d t Co.) was distilled t h r o u g h a 1-1/2 f o o t column ( A l l i n n c o n d e n s e r ) and c o l l e c t e d between 110.0 t o 110.6°C. S i n c e i t had been shown (5_) t h a t non aqueous d i s p e r s i o n s o f powdered q u a r t z were d e s t a b i l i z e d by t r a c e s o f w a t e r , i t was n e c e s s a r y t o work under s t r i c t l y anhy d r o u s c o n d i t i o n s . A c c o r d i n g l y , a b o u t t h r e e f e e t o f sodium w i r e o f 2 mm d i a m e t e r was p r e s s e d i n t o a g a l l o n o f f r e s h l y d i s t i l l e d t o l u e n e and l e f t f o r 24 h o u r s , and t h e t o l u e n e t h e r e a f t e r s t o r e d o v e r sodium w i r e . G l a s s w a r e used i n t h e e x p e r i m e n t s was d r i e d a t 160°C and used i m m e d i a t e l y a f t e r d r y i n g . P r e c a u t i o n s to main t a i n a b s o l u t e d r y n e s s were n e c e s s a r y , not o n l y b e c a u s e o f t h e d e s t a b i 1 i z a t i o n p o s s i b l e b e c a u s e o f c a p i l l a r i t y e f f e c t s between w a t e r f i l m s on the p a r t i c l e s , but a l s o b e c a u s e any s u c h f i l m c o u l d make p o s s i b l e i o n i z a t i o n o f s u r f a c e i m p u r i t i e s i n t h e G r a p h o n , s u c h as c a r b o x y l g r o u p s , and r e s u l t i n e l e c t r o s t a t i c c h a r g e s on t h e Graphon p a r t i c l e s . P o l y s t y r e n e was o b t a i n e d f r o m t h e P r e s s u r e C h e m i c a l Company. F i v e s a m p l e s o f n o m i n a l m o l e c u l a r w e i g h t s * 20,400, 110,000, 200,000, 498,000 and 1,800,000 were u s e d . For t h e f i r s t t h r e e s a m p l e s t h e r a t i o o f w e i g h t a v e r a g e t o number a v e r a g e m o l e c u l a r w e i g h t i s g i v e n as l e s s t h a n 1.06, and l e s s t h a n 1.20 f o r the l a s t two s a m p l e s . S e v e r a l o f the p r e l i m i n a r y e x p e r i m e n t s were c a r r i e d o u t w i t h Dow R e s i n P-65, a p o l y s t y r e n e o f b r o a d m o l e c u l a r w e i g h t d i s t r i b u t i o n and n o m i n a l m o l e c u l a r w e i g h t 2.3x10^ as d e t e r m i n e d f r o m v i s c o s i t y measurements. Samples were used d i r e c t l y f r o m t h e b o t t l e s i n c e t h e r e was no d e t e c t a b l e change i n w e i g h t ( w i t h i n 0.00002 g) a f t e r d r y i n g two h o u r s a t 112°C and 10"3 torr. "Weight a v e r a g e m o l e c u l a r w e i g h t s o f t h e s e s a m p l e s a r e to be 20,400; 111,000; 200,000; 507,000; and 1 . 9 x 1 0 .
reported
6
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
98
ADSORPTION
A T INTERFACES
Determination of A d s o r p t i o n Isotherms. The amount o f a d s o r p t i o n was d e t e r m i n e d f r o m t h e change i n c o n c e n t r a t i o n o f p o l y s t y r e n e in t h e Graphon s u s p e n s i o n s i n t o l u e n e p r e p a r e d by u l t r a s o n i c a g i t a t i o n a f t e r e q u i l i b r a t i o n i n the presence o f v a r y i n g concen t r a t i o n s o f p o l y s t y r e n e . S i n c e t h e amount a d s o r b e d i s dependent on t h e d e g r e e o f d i s p e r s i o n o f t h e G r a p h o n , t h e t i m e a l l o w e d f o r a t t a i n m e n t o f e q u i l i b r i u m , and t h e amount o f a g i t a t i o n d u r i n g t h i s p e r i o d , e x t e n s i v e p r e l i m i n a r y e x p e r i m e n t s were n e c e s s a r y t o e s t a b l i s h a s a t i s f a c t o r y p r o c e d u r e w h i c h c o u l d be used i n s u b s e q u e n t e x p e r i m e n t s on t h e s t a b i l i t y o f t h e s u s p e n s i o n s . The p r o c e d u r e a d o p t e d f o r the f i n a l d e t e r m i n a t i o n s was a s follows. The Graphon sample was o u t g a s s e d f o r 2h hours a t 160 C, at 10"^ t o r r . A 0.5000 g sample was then w e i g h e d i n t o a 125 ml E r l e n m e y e r f l a s k , f o l l o w e d by 25.0 ml o f t o l u e n e . Each f l a s k was i n d i v i d u a l l y i r r a d i a t e d f o 20 m i n u t e i 100 w a t t 15 KH Delta Sonic u l t r a s o n i intensity. A 25.0 ml a l i q u o t i o n o f p o l y s t y r e n e i n t o l u e n e was added t o e a c h f l a s k i m m e d i a t e l y f o l l o w i n g i r r a d i a t i o n , and t h e f l a s k s t h e n r o t a t e d t h r e e m i n u t e s a t 56 r.p.m. a t an a n g l e o f 30° t o t h e v e r t i c a l by a Borg Equipment D i v i s i o n model 1007-4N r o t o r . They were t h e n l e f t un d i s t u r b e d i n a c o n s t a n t t e m p e r a t u r e room {2k° ±1°C) f o r 14 d a y s . The s u p e r n a t a n t l i q u i d was then d e c a n t e d , and a b o u t 30 ml c e n t r i f u g e d f o r t e n m i n u t e s a t 4800 r.p.m. i n an I n t e r n a t i o n a l C l i n i c a l C e n t r i f u g e , model CL, t o remove r e s i d u a l Graphon R a r t i c l e s . The c e n t r l f u g e d l i q u i d was c l e a r and c o l o r l e s s and had z e r o a b s o r bance a t 710 nm u s i n g t o l u e n e as a r e f e r e n c e l i q u i d . The c o n c e n t r a t i o n o f p o l y s t y r e n e a f t e r a d s o r p t i o n was d e t e r m i n e d by p l a c i n g 25.0 ml o f t h e c e n t r i f u g e d l i q u i d r e c o v e r e d from t h e d i s p e r s i o n i n w e i g h e d " b o a t s " made f r o m aluminum f o i l , and d r y i n g to c o n s t a n t w e i g h t (±0.05 mg) a t 112°C. The " b o a t s " , made by f o l d i n g t h e f o i l , were about 1" h i g h and 3" by 3" s q u a r e a t t h e base. About f o u r t o f i v e hours were r e q u i r e d t o r e a c h c o n s t a n t weight. D u r i n g t h e e q u i l i b r a t i o n the f l a s k s were c l o s e d w i t h two l a y e r s o f S a r a n wrap and a l a y e r o f aluminum f o i l h e l d i n p l a c e by a r u b b e r band a r o u n d t h e n e c k . S i n c e s i m i l a r l y c l o s e d f l a s k s containing i n i t i a l l y 50 ml o f t o l u e n e l o s t an a v e r a g e o f o n l y 0.2523 g w e i g h t In f o u r t e e n d a y s , i t i s a p p a r e n t t h a t any change in c o n c e n t r a t i o n o f t h e p o l y s t y r e n e due t o e v a p o r a t i o n o f t o l u e n e i s n e g l i g i b l e under t h e s e c o n d i t i o n s . The r e s u l t s o f the p r e l i m i n a r y e x p e r i m e n t s c a r r i e d o u t t o e s t a b l i s h t h i s f i n a l procedure are of value i n themselves f o r t h e i n s i g h t t h e y a f f o r d i n t o t h e e f f e c t on a d s o r p t i o n o f macrom o l e c u l e s on d i s p e r s e d p a r t i c l e s o f t h e t i m e a l l o w e d f o r e q u i l i b r a t i o n , o r d e r of a d d i t i o n of r e a g e n t s , degree of a g i t a t i o n of t h e s u s p e n s i o n s , and d e g r e e o f d i s p e r s i o n o f t h e G r a p h o n . Figure 1 shows t h e e f f e c t o f t h e d e g r e e o f d i s p e r s i o n o f Graphon a t 23 ±1°C In a s y s t e m p r e p a r e d by i r r a d i a t i o n o f 0.5000 g o f Graphon In 25.0 ml o f t o l u e n e f o r v a r y i n g l e n g t h s o f t i m e , f o l l o w e d by
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
7.
DUNN
AND
VOLD
Adsorption of Polystyrene
99
addition of 25.0 ml of a 4.00 mg/ml toluene solution of Dow Resin P-65. The suspension was swirled gently for three minutes and l e f t to equilibrate undisturbed for seven days. Each point shown in Figure 1 is the average from three separate experiments. Up to 15 minutes the amount adsorbed increases s i g n i f i c a n t l y with increasing time of i r r a d i a t i o n , as might be expected from the presumed decrease in average aggregate size. Further i r r a d i ation beyond 15 minutes had l i t t l e effect, the amount adsorbed remaining f a i r l y constant at 45.3 to 46.5 mg polystyrene per gram of carbon. It can therefore be assumed that after 15 min utes no additional subdivision of aggregates occurs with further irradiation, analogous to e a r l i e r results (6) showing attainment of a reversible equilibirum particle size distribution of carbon and f e r r i c oxide in aqueous suspensions dependent on the inten sity of agitation. Accordingly i t concluded that 20 minute period of irradiatio to insure reaching the g adsorption The f u l l c i r c l e represents the amount of adsorption found when the solutions were swirled three minutes daily during the equilibration period rather than being left undisturbed. The increase in adsorption shows that even under these mild condi tions some additional deflocculation occurred as a result of the agitation in the presence of the polystyrene, as was also found by other workers (j) who reported increases in adsorption of polymer with agitation. It is significant that even with no ultrasonic irradiation of the suspension 39.4 mg of polystyrene were adsorbed per gram of Graphon. This is about 85 % of the limiting adsorption reached after 20 minutes of irradiation, and demonstrates that poly styrene can reach most of surface area of the Graphon in suspen sion even though most of the particles are present in aggregates. The precision of the measurements improved with longer peri ods of irradiation up to 20 minutes as shown in Table I . This Table gives the relative error (defined in terms of the average deviation from the average value) in the weight of polystyrene adsorbed per gram of Graphon at each time of irradiation for a suspension containing i n i t i a l l y 2 mg of polystyrene (Dow Resin P-65) per ml of toluene. After irradiation the samples were left seven days without agitation before determination of the amount adsorbed, except for one set which were swirled for three minutes daily. Apparently i t is more d i f f i c u l t to reproduce a given degree of dispersion at short periods of irradiation than at longer. The reproducibility was much poorer for samples which were agitated after addition of the polystyrene solution to the Graphon suspension, presumably because the polystyrene could coat and s t a b i l i z e any fresh surface resulting from the agitation, thus increasing the surface area of Graphon available for adsorp tion .
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
ADSORPTION
10
20
A T INTERFACES
30
TIME OF IRRADIATION (minutes )
Figure 1. Adsorption of polystyrene (2 mg/ml, M.W. = 2.3 X 10 ) onto Graphon from toluene as a function of time of ultrasonic irradiation. Time of equilibrium, 7 days. Q, agitation; Φ, 3 minutes of agitation daily. s
1X0
A
0
I I
I 2
I 3
I I I I I I 4 5 6 7 8 9 EQUILIBRATION ,(days)
I 10
1 II
1 12
1 13
1 14
Figure 2. Adsorption of polystyrene (1 mg/ml) onto Graphon from toluene, O, M.W. = 1,800,000; •, M.W. = 498,000; A, M.W. = 250,000, broad distribution
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
7.
DUNN
A N D VOLD
Adsorption of Polystyrene
101
T a b l e I . P r e c i s i o n as a F u n c t i o n o f I r r a d i a t i o n Time I r r a d i a t i o n Time ( m i n u t e s ) 0 10 15 20 30 Average % d e v i a t i o n 1.6 4.5 3-0 1.4 2.2 *These s a m p l e s were s w i r l e d 3 m i n u t e s d a i l y a f t e r
20* 8.0 irradiation
E x p e r i m e n t s such as t h e s e l e d t o t h e a d o p t i o n o f a s t a n d a r d p r o c e d u r e i n v o l v i n g i r r a d i a t i o n o f t h e s u s p e n s i o n f o r 20 m i n u t e s , and no f u r t h e r a g i t a t i o n a f t e r m i x i n g t h e p o l y s t y r e n e s o l u t i o n w i t h t h e Graphon s u s p e n s i o n . I t s h o u l d be n o t e d t h a t i r r a d i a t i o n must be c a r r i e d o u t p r i o r t o a d d i t i o n o f p o l y s t y r e n e . When G r a phon s u s p e n s i o n s c o n t a i n i n g p o l y s t y r e n e were i r r a d i a t e d f o r h a l f a m i n u t e i t was f o u n d t h a t t h o s e c o n t a i n i n g p o l y s t y r e n e o f h i g h e r m o l e c u l a r w e i g h t had a much h i g h e r a b s o r b a n c e , i n d i c a t i v e o f a s m a l l e r average aggregate s i z e . C o n s e q u e n t l y no d i r e c t d e t e r m i n a t i o n o f t h e dependenc lar weight o f the polystyren so p r e p a r e d b e c a u s e o f t h e d i f f e r e n c e s i n t h e i r i n i t i a l s t a t e . U s i n g t h e s t a n d a r d method o f p r e p a r a t i o n o f s u s p e n s i o n s and d e t e r m i n a t i o n o f amount a d s o r b e d a l r e a d y d e s c r i b e d , s e v e r a l e x p e r i m e n t s were p e r f o r m e d t o d e t e r m i n e t h e amount o f a d s o r p t i o n as a f u n c t i o n o f t i m e o f e q u i l i b r a t i o n and o f t h e m o l e c u l a r weight of the polystyrene. These d a t a showed how much t i m e had to be a l l o w e d t o r e a c h t h e s a t u r a t i o n v a l u e o f t h e a d s o r p t i o n . On t h e b a s i s o f a l l t h e s e p r e l i m i n a r y e x p e r i m e n t s i t was t h e n p o s s i b l e t o s p e c i f y f o r t h e p o l y s t y r e n e samples o f d i f f e r e n t m o l e c u l a r w e i g h t s an i n i t i a l c o n c e n t r a t i o n s u c h t h a t t h e e q u i l i b r i u m c o n c e n t r a t i o n r e m a i n i n g i n t h e s o l u t i o n w o u l d be s u f f i c i e n t to m a i n t a i n m o n o l a y e r c o v e r a g e o f t h e Graphon. R e s u l t s and D i s c u s s i o n Data on t h e r a t e o f a d s o r p t i o n f o r p o l y s t y r e n e o f h i g h , low and i n t e r m e d i a t e m o l e c u l a r w e i g h t a r e shown i n F i g u r e 2. Few mea s u r e m e n t s were made a t s h o r t p e r i o d s o f e q u i l i b r a t i o n s i n c e t h e p r i m a r y p u r p o s e o f t h e s e e x p e r i m e n t s was t o e s t a b l i s h t h e l e n g t h of time necessary t o reach apparent a d s o r p t i o n e q u i l i b r i u m . Where s t u d i e d , a d s o r p t i o n was r e l a t i v e l y r a p i d d u r i n g t h e f i r s t two d a y s , a m o u n t i n g t o a b o u t 70% o f t h e q u a n t i t y a d s o r b e d a f t e r f o u r t e e n d a y s . The l i m i t i n g v a l u e o f t h e amount a d s o r b e d a p p e a r s to have been r e a c h e d a f t e r t e n days e q u i l i b r a t i o n w i t h a l l t h r e e polystyrenes. The a d s o r p t i o n i s o t h e r m s o f p o l y s t y r e n e s o f d i f f e r i n g m o l e c u l a r w e i g h t s as d e t e r m i n e d by o u r s t a n d a r d p r o c e d u r e a r e shown i n F i g u r e 3. The amount a d s o r b e d a t f i r s t i n c r e a s e s r a p i d l y w i t h c o n c e n t r a t i o n , and t h e n l e v e l s t o a p l a t e a u a t an e q u i l i b r i u m c o n c e n t r a t i o n o f p o l y s t y r e n e o f 1 mg/ml. The shape o f t h e s e i s o t h e r m s i s s u g g e s t i v e o f m o n o l a y e r a d s o r p t i o n , and r e s e m b l e s t h a t f o u n d by S c h i c k and H a r v e y ( 8 ) . They s t u d i e d t h e a d s o r p t i o n o f a p o l y s t y r e n e o f M 292,000 o n t o Graphon f r o m s e v e r a l s o l v e n t s ,
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
102
ADSORPTION
A T INTERFACES
Figure 3. Adsorption of polystyrene from toluene onto Graphon. ·, M.W. = 110,000; A, M.W. = 200,000; O, M . W . = 498,000; • , M.W. = 1,800,000.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
7.
DUNN
A N D VOLD
Adsorption of Polystyrene
103
i n c l u d i n g t o l u e n e , and a l s o f o u n d t h a t a l i m i t i n g a d s o r p t i o n c h a r a c t e r i s t i c o f m o n o l a y e r a d s o r p t i o n was r e a c h e d . The p r e s e n t work shows t h a t t h e maximum amount o f p o l y s t y r e n e a d s o r b e d on Graphon i n c r e a s e s f r o m 39 t o 69 mg/g as t h e m o l e c u l a r w e i g h t i n c r e a s e s f r o m 110,000 t o 1,800,000. In F i g u r e k t h e s a t u r a t i o n a d s o r p t i o n i s p l o t t e d a g a i n s t t h e square root o f the molecular weight o f the adsorbed p o l y s t y r e n e . The amount a d s o r b e d v a r i e s l i n e a r l y w i t h t h e s q u a r e r o o t o f t h e molecular weight according t o the equation, (1) where W Is mg o f p o l y s t y r e n e a d s o r b e d p e r gram o f Graphon and M i s the molecular weight of the p o l y s t y r e n e . The l i n e e x t r a p o l a t e s t o a n o n - z e r o i n t e r c e p t a n o t uncommon r e s u l t i n t h e a d s o r p t i o n o f polymers The f a c t t h a t t h E q u a t i o n (1) l e a d s t o some i n t e r e s t i n g c o n c l u s i o n s c o n c e r n i n g the c o n f o r m a t i o n o f t h e a d s o r b e d p o l y s t y r e n e . As e x t r e m e l i m i t i n g c a s e s t h e p o l y m e r m o l e c u l e c o u l d be h e l d c o m p l e t e l y f l a t on t h e s u r f a c e , o r i t c o u l d be p r e s e n t as e s s e n t i a l l y r i g i d rods in c l o s e packing o r i e n t e d p e r p e n d i c u l a r l y t o the s u r f a c e . If the m o l e c u l e s a r e f l a t t h e w e i g h t a d s o r b e d a t s a t u r a t i o n s h o u l d be v e r y n e a r l y i n d e p e n d e n t o f t h e m o l e c u l a r w e i g h t , whereas i n a p e r p e n d i c u l a r o r i e n t a t i o n I t w o u l d be d i r e c t l y p r o p o r t i o n a l t o the molecular weight. S i n c e t h e d a t a g i v e n i n F i g u r e k show t h a t n e i t h e r o f t h e s e p r e d i c t i o n s i s c o r r e c t , i t c a n be c o n c l u d e d t h a t t h e c o n f o r m a t i o n o f t h e a d s o r b e d m o l e c u l e must be somewhere In between t h e two e x t r e m e s i t u a t i o n s . Another p o s s i b i l i t y would be f o r t h e m o l e c u l e t o be a n c h o r e d t e r m i n a l l y b u t t o have a r a n dom c o i l c o n f i g u r a t i o n i n s o l u t i o n . T h i s would r e q u i r e t h a t t h e amount a d s o r b e d be d i r e c t l y p r o p o r t i o n a l t o t h e s q u a r e r o o t o f t h e m o l e c u l a r w e i g h t , w h i c h i s c o n t r a d i c t e d by t h e n o n - z e r o i n t e r c e p t i n d i c a t e d by E q u a t i o n ( 1 ) . A model c l o s e l y r e s e m b l i n g t h o s e I l l u s t r a t e d by Eîrich e t a l (10), which i s i n accord w i t h the e m p i r i c a l e q u a t i o n r e p r e s e n t i n g t h e d a t a , i s shown i n F i g u r e 5. The a d s o r b e d l a y e r may be d i v i d e d i n t o two r e g i o n s . In r e g i o n (1) t h e monomer segments a r e a n c h o r e d f l a t d i r e c t l y on t h e s u r f a c e , t h e w e i g h t o f segments a d s o r b e d i n t h i s f a s h i o n b e i n g I n d i c a t e d as W . In r e g i o n (2) t h e segments a r e p r e s e n t as l o o p s o r t a i l s i n t h e s o l u t i o n n o t i n a c t u a l c o n t a c t w i t h t h e s u r f a c e , t h e w e i g h t so a d s o r b e d b e i n g i n d i c a t e d as W. Accordingly, i f W i s the t o t a l weight o f poly mer a d s o r b e d , i t f o l l o w s t h a t t
Q
t
= w + w (2) t <ο By c o m p a r i s o n w i t h E q u a t i o n (1) Is seen t h a t W = 28 mg/g and W = 3.0 χ Ι Ο " M. T h e r e f o r e , t h e f r a c t i o n o f a d s o r b e d w e i g h t independent o f the m o l e c u l a r weight o f the p o l y s t y r e n e i s V/
Q
2
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
ADSORPTION
A T INTERFACES
Figure 4. The square root of the molecular weight of polystyrene vs. the maximum amount of polystyrene adsorbed from toluene onto l g of Graphon
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
7.
DUNN
A N D VOLD
Adsorption of Polystyrene
105
p r o b a b l y due t o a c o n s t a n t amount o f c l o s e l y packed p o l y m e r s e g ments t h a t l i e d i r e c t l y on t h e s u r f a c e . The o t h e r f r a c t i o n o f a d s o r b e d w e i g h t c o n s i s t s o f p o l y m e r segments i n t h e f o r m o f l o o p s and t a i l s e x t e n d i n g i n t o t h e s o l u t i o n . The number and s i z e o f the l o o p s and t a i l s i n c r e a s e w i t h i n c r e a s i n g m o l e c u l a r w e i g h t . Further v e r i f i c a t i o n o f the conformation o f t h e adsorbed m o l e c u l e s , and t h e t h i c k n e s s o f t h e a d s o r b e d l a y e r , c a n be o b t a i n e d f r o m t h e dependence o f t h e e f f e c t i v e s u r f a c e a r e a o f t h e a d s o r b e d p o l y s t y r e n e on i t s m o l e c u l a r w e i g h t . Since the surface a r e a o f t h e Graphon i s 95.4 m /g, a d s o r p t i o n o f 28 mg o f p o l y Y §g P gram c o r r e s p o n d s t o an e f f e c t i v e s u r f a c e a r e a o f 58.8À p e r monomer u n i t . S i n c e i t was known (11) f r o m a d s o r p t i o n s t u d i e s o f t e t r a d e c y l b e n z e n e on Graphon f r o m h e p t a n e t h a t t h e e f f e c t i v e s u r f a c e a r e a o f a benzene r i n g and one m g t h y l e n e g r o u p f l a t on t h e s u r f a c e i d monolaye i 50A thi indi cates that the polystyren surface a r e present i y packe layer weigh o f p o l y s t y r e n e a d s o r b e d as u n a n c h o r e d segments i n r e g i o n (2) v a r i e s as t h e s q u a r e r o o t o f t h e m o l e c u l a r w e i g h t s u g g e s t s t h a t the number o f l o o p s and t h e i r e x t e n s i o n i n t o t h e s o l u t i o n , and hence t h e t h i c k n e s s o f t h e a d s o r b e d f i l m , i n c r e a s e w i t h i n c r e a s ing m o l e c u l a r w e i g h t . 2
s t
r
e
e
r
2
Table
I I . F r a c t i o n o f Adsorbed Surface
M o l . Wt.
* 110,000 200,000 498,000 1,800,000
F b l y s t y r e n e N o t Bound t o t h e
Wt. o f F b l y s t y r e n e Adsorbed a t S a t u r a t i o n Apparent Area mg/g o f Carbon p e r Monomer,A
28.0 39.0 42.5 50.0 69.8
2
W t . F r a c t i o n Not D i r e c t l y Bound on S u r f a c e
58.8 42.2 38.8 32.9 23.6
* E x t r a p o l a t e d a d s o r p t i o n o f 28 mg/g a t z e r o m o l e c u l a r F i g u r e 4.
0.00 0.28 0.34 0.44 0.60 weight from
T h i s c o n c l u s i o n i s f u r t h e r s u p p o r t e d by t h e c a l c u l a t i o n s shown i n T a b l e I I . A t s a t u r a t i o n a d s o r p t i o n t h e a p p a r e n t a r e a a v a i l a b l e p e r a d s o r b e d monomer u n i t d e c r e a s e d f r o m 42.2A t o 23.6A as t h e m o l e c u l a r w e i g h t i n c r e a s e d from 110,000 t o 1,800,000. S i n c e t h e a c t u a l a r e a p e r a d s o r b e d segment w o u l d remain c o n s t a n t i n a s a t u r a t e d m o n o l a y e r , t h i s r e s u l t shows t h a t an i n c r e a s i n g number o f segments no l o n g e r l i e f l a t on t h e s u r f a c e as t h e p o l y s t y r e n e m o l e c u l e becomes b i g g e r . A c c o r d i n g t o E q u a t i o n s (1) and (2) and t h e model o f F i g u r e 5, 28 mg o f p o l y s t y r e n e p e r gram o f Graphon a r e f l a t on t h e s u r f a c e w i t h t h e r e m a i n d e r p r e s e n t a s unbound segments. S u b t r a c t i o n o f 28 mg f r o m t h e s a t u r a t i o n a d s o r p t i o n i n mg/g i n d i c a t e d by t h e i s o t h e r m s o f 2
2
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
106
ADSORPTION
A T INTERFACES
F i g u r e 3 g i v e s t h e w e i g h t o f a d s o r b e d p o l y s t y r e n e segments n o t f l a t on t h e s u r f a c e , and s o p e r m i t s c a l c u l a t i o n o f t h e w e i g h t f r a c t i o n o f unbound segments a s shown i n T a b l e 2 . The i n c r e a s e in v a l u e w i t h i n c r e a s i n g m o l e c u l a r weight from 28X t o 1 1 0 , 0 0 0 t o 6 0 % a t 1,800,000 i s f u r t h e r i n d i c a t i o n o f the i n c r e a s i n g t h i c k ness o f t h e a d s o r b e d l a y e r w i t h i n c r e a s i n g m o l e c u l a r w e i g h t . Summary The r e s u l t s r e p o r t e d show t h a t f o u r t e e n days a r e s u f f i c i e n t to r e a c h a d s o r p t i o n e q u i l i b r i u m between Graphon and a s o l u t i o n o f p o l y s t y r e n e i n t o l u e n e , and t h a t an e q u i l i b r i u m c o n c e n t r a t i o n o f 1 mg/ml i s s u f f i c i e n t t o a t t a i n s a t u r a t i o n a d s o r p t i o n . The de pendence o f t h e s a t u r a t i o n a d s o r p t i o n on t h e m o l e c u l a r w e i g h t o f the p o l y s t y r e n e i n d i c a t e t h a t t lo m o l e c u l a weight th poly styrene i s mostly presen ing p r o g r e s s i v e l y f u r t h e weight increases.
Literature Cited 1. 2. 3.
C l a y f i e l d , E . J . , and Lumb, E . C . , J. Colloid Interface Sci., (1966), 22, 269, 285. O t t e w i l l , R . H . , Kolloid-Z.Z. Polym. (1967), 227, 108. Bagchi, P. and Vold, R.D., J. Colloid Interface Sci. (1970), 33, 405.
4. 5.
C l a y f i e l d , E . J . and Lumb, E.C., J. Colloid Interface Sci., (1974), 47, 6, 16. Kruyt, H.R., and van Selms, F . G . , Rec. Trav. Chim. (1943), 62,
407, 415.
Reich, I . , and Vold, R.D., J. Phys. Chem. (1959), 63, 1497. 7. LaMer, V.K. and Healy, T.W., Rev. Pure Applied Chem. (Aus t r a l i a ) (1963), 13, 112. 8. Schick, M.J. and Harvey, E.N., in "Interaction of Liquids at Solid Substrates," Adv. Chem. Ser., No. 87, p. 63, American Chemical Society, Washington, D.C., 1968. 9. Fontana, B . J . in "The Chemistry of Biosurfaces", M. Hair, Ed., Vol. I, p. 83, Marcel Dekker, Inc., New York, 1971. 10. Eirich, F . R . , Bulas, R., Rothstein, Ε., and Rowland, F . , in Chemistry and Physics of Interfaces, D. E. Gushee, Ed., p.109, American Chemical Society, Washington, D.C., 1965. 11. Parfitt, G.D., and Willis, E., J. Phys. Chem. (1964) 68, 1780. 6.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
8 Adsorption of Ionic Surfactants to Porous Glass: The Exclusion of Micelles and Other Solutes from Adsorbed Layers and the Problem of Adsorption Maxima P A S U P A T I M U K E R J E E and A R O O N S R I A N A V I L School of Pharmacy, University of Wisconsin, Madison, Wis. 53706
Introduction Porous glass, containing a rigid, interconnecting network of pores (1), is used extensively for chromatographic separations of polymers (2), proteins (3), polysaccharides (4), and viruses (1,5). Because of the presence of pores, these glasses have high surface areas per unit weight (6,7). The adsorption of surfactants to glass (8) is of interest for a variety of reasons. The present work is concerned with the adsorption of cationic and anionic surfactants to porous glass with special attention to concentrations above the critical micellization concentration (c.m.c). The work is expected to provide background information for chromatographic studies on micellar systems. Ionic micelles are surrounded by electrical double layers, the effective extent of which depends mainly upon the surface charge density and the ionic strength. The dimensions of the electrical double layers around charged surfaces are also similarly determined. It was hoped that a study of the adsorption to porous glass containing pores that are rigid and large compared to molecular dimensions, the interactions of micelles with adsorbed layers could be critically studied. The interpretation of adsorption isotherms of ionic surfactants to solid or liquid substrates as also "binding" isotherms to macromolecules involves a variety of factors. These include adsorbate-adsorbent interactions as also adsorbate-adsorbate interactions in the adsorbed layers. The range of an interaction may vary with its type. The nonpolar moiety of the adsorbed molecule is expected to show mostly short-range interactions. The charge interactions, however, can be of short-range as also long range. For short-range interactions, the existence of narrow pores and/or surface nonuniformities of the order of molecular dimensions can produce important curvature effects even in an otherwise homogeneous solid. The characteristic distance of the long-range electrical double layer (approximately 0.3/ nm where C is the bulk concentration of a 1:1 electrolyte). Since this Debye thickness can be much greater than molecular dimensions, the presence 107 In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
108
ADSORPTION
AT
INTERFACES
o f f a i r l y wide pores and/or r e l a t i v e l y g r o s s n o n u n i f o r m i t i e s a t t h e s u r f a c e o f nonporous s o l i d s can produce c u r v a t u r e e f f e c t s f o r e l e c t r i c a l d o u b l e l a y e r s , and t h u s a f f e c t a d s o r p t i o n . A s e c o n d s e t o f p r o b l e m s we w o u l d l i k e t o draw a t t e n t i o n t o i n t h i s study a r i s e s from the i n t e r a c t i o n s o f b u l k s o l u t e s p e c i e s w i t h the adsorbed l a y e r . These problems a r e p a r t i c u l a r l y import a n t when t h e amount a d s o r b e d i s c a l c u l a t e d f r o m t h e c h a n g e i n s o l u t e c o n c e n t r a t i o n o f b u l k s o l u t i o n s f a r from adsorbed l a y e r s . F o r e x a m p l e , i t i s w e l l known t h a t c o - i o n s a r e e x c l u d e d f r o m t h e e l e c t r i c a l d o u b l e l a y e r (9., 10). I t s importance i n the c a l c u l a t i o n o f t h e t r u e amount a d s o r b e d , i . e . , t h e amount a t t h e s u r f a c e where t h e a d s o r b e d m o l e c u l e s a r e w i t h i n t h e f i e l d o f s h o r t - r a n g e i n t e r a c t i o n s w i t h t h e s u r f a c e , h a s b e e n i n d i c a t e d b y Van D o l s e n and V o i d ( l l ) . I n a t y p i c a l c a s e o f t h e a d s o r p t i o n o f an i o n i c s u r f a c t a n t t o an i n i t i a l l y u n c h a r g e d s u r f a c e , t h e c o n c e n t r a t i o n o f the surfactant i o n i n th i n c r e a s e d because o f i t l a y e r adjacent t o the adsorbed l a y e r . T h i s r e s u l t s i n an u n d e r e s t i m a t e o f t h e t r u e amount a d s o r b e d a t t h e s u r f a c e . The c l a s s i c a l Donnan t y p e c o r r e c t i o n s f o r c o l l o i d a l s y s t e m s a r e b a s e d o n t h i s p r i n c i p l e but use i d e a l i z a t i o n s o f the system which are not acceptable f o r h i g h l y charged surfaces (12). I f t h e a d s o r p t i o n experiment i s so c o n d u c t e d t h a t a f i n e l y d i v i d e d phase i s a l l o w e d t o sediment o r i s c e n t r i f u g e d out b e f o r e c o n c e n t r a t i o n m e a s u r e m e n t s a r e p e r f o r m e d on t h e c o n t i n u o u s p h a s e , t h e p r o b l e m becomes more c o m p l e x b e c a u s e t h e i n t e r p a r t i c l e s e p a r a t i o n s b e t w e e n t h e p a r t i c l e s o f t h e s e p a r a t e d p h a s e may b e c o n t r o l l e d i n p a r t b y g e o m e t r i c a l f a c t o r s such as a s p e r i t i e s , l o n g range van der Waals forces, g r a v i t a t i o n a l forces f o r coarse p a r t i c l e s , as a l s o t h e r e p u l s i v e i n t e r a c t i o n s o f t h e e l e c t r i c a l d o u b l e layers. To c a l c u l a t e t h e t r u e amount a d s o r b e d a t t h e s u r f a c e , i t i s necessary t o take i n t o account the n e g a t i v e a d s o r p t i o n o f coi o n s f r o m an i n t e r a c t i n g d o u b l e l a y e r s y s t e m under t h e i n f l u e n c e o f the other f o r c e s mentioned. I f t h e adsorbent phase i s s e p a r a ted too r a p i d l y , nonequilibriurn s i t u a t i o n s could also a r i s e . 1
In m i c e l l e - f o r m i n g systems, f u r t h e r c o m p l i c a t i o n s a r i s e from the i n t e r a c t i o n o f i o n i c m i c e l l e s with adsorbed l a y e r s . Ionic m i c e l l e s w i t h t h e i r e l e c t r i c a l d o u b l e l a y e r s a r e u n l i k e l y t o show p o s i t i v e a d s o r p t i o n t o uncharged or s i m i l a r l y charged s u r f a c e s . On t h e o t h e r h a n d , r e p u l s i v e i n t e r a c t i o n s b e t w e e n s i m i l a r l y c h a r g e d s u r f a c e s and t h e h i g h l y c h a r g e d s u r f a c t a n t m i c e l l e s a r e e x p e c t e d f r o m d o u b l e l a y e r t h e o r y a n d may be p r o n o u n c e d i n v i e w o f the pronounced r e p u l s i v e i n t e r a c t i o n s e x h i b i t e d by the m i c e l l e s t h e m s e l v e s ( 1 3 ) . As i n t h e c a s e o f s m a l l c o - i o n s , s u c h i n t e r a c t i o n s s h o u l d r e s u l t i n an e x c l u d e d v o l u m e t y p e i n t e r a c t i o n w h i c h i s expected t o g i v e h i g h e r c o n c e n t r a t i o n s o f m i c e l l e s f a r from t h e a d s o r b e d l a y e r s t h a n c l o s e t o i t , t h u s r e s u l t i n g i n an u n d e r e s t i mate o f t h e t r u e a d s o r p t i o n o f t h e s u r f a c t a n t . When a f i n e l y d i v i d e d adsorbent phase i s s e p a r a t e d from t h e s o l u t i o n phase, t h e i n t e r a c t i o n s o f the i o n i c m i c e l l e s with the p a r t i c l e s of the
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
8.
MUKERjEE
AND
ANAviL
Adsorption of Ionic Surfactants
109
adsorbent phase m u t u a l l y i n t e r a c t i n g w i t h each o t h e r i s expected t o produce a m u l t i p l i c i t y o f e f f e c t s i n v o l v i n g changes i n t h e i n t e r p a r t i c l e separations a t equilibrium, the negative adsorption o f b o t h co-ions and m i c e l l e s , as a l s o t h e e l e c t r i c a l i n t e r a c t i o n s i n t h e a d s o r b e d l a y e r s , a n d p o s s i b l e c h a n g e s i n t h e monomermicelle equilibrium. One p u r p o s e o f t h e p r e s e n t work was t o i n v e s t i g a t e t h e n a t u r e o f t h e a d s o r p t i o n i s o t h e r m s o f m i c e l l e f o r m i n g s u r f a c t a n t s above t h e c.m.c. i n some s u i t a b l y c h o s e n s y s t e m s d e s i g n e d , i n p a r t i c u l a r , t o examine t h e s i g n i f i c a n c e o f m i c e l l a r e x c l u s i o n f r o m s i m i l a r l y c h a r g e d s u r f a c e s , a n d t o what e x t e n t t h e s e e x c l u s i o n e f f e c t s may b e i n v o l v e d i n t h e i n t e r p r e t a t i o n o f t h e p r o b l e m o f a d s o r p t i o n i s o t h e r m s s h o w i n g maxima a b o v e t h e c.m.c. (ΐί,15). The a d s o r p t i o n s u b s t r a t e u s e d was p o r o u s g l a s s ( B i o - G l a s ) c o n t a i n i n g p o r e s o f a v e r a g e d i a m e t e r s o f a b o u t l6 nm a n d 35 nm Because o f t h e presence o f an e x t e n s i v e g l a s s e s have h i g h s u r f a c coarse p a r t i c l e s . E l e c t r o n micrographs (l6_) i n d i c a t e h i g h l y u n even, p i t t e d s u r f a c e s , so t h a t a s i g n i f i c a n t f r a c t i o n o f t h e s u r f a c e may b e e x t e r n a l . B e c a u s e o f t h e r i g i d i t y o f g l a s s , a n d l a r g e d i s t a n c e s between e x t e r n a l s u r f a c e s , a l l i n t e r a c t i o n s between a d s o r p t i o n s u r f a c e s c o u l d b e assumed t o o c c u r a t c o n s t a n t g e o m e t r y , independent o f the composition o f the s o l u t i o n . Experimental Materials. B i o - G l a s samples were o b t a i n e d from B i o - R a d X a b o r atories. Two d i f f e r e n t s a m p l e s o f B i o - G l a s 200, numbered I a n d I I ( T a b l e I ) w i t h a n o m i n a l e x c l u s i o n l i m i t o f 20 nm a n d B i o - G l a s 500, w i t h a n o m i n a l e x c l u s i o n l i m i t o f 50 nm w e r e u s e d . The g l a s s powders were o f 50-100 mesh s i z e , c o r r e s p o n d i n g t o c o a r s e p a r t i c l e s o f r o u g h l y 150-300 pm i n d i a m e t e r . The p a r t i c l e s were i r r e g u l a r i n shape, and s e t t l e d r a p i d l y from suspensions. The m a n u f a c t u r e r ^ f i g u r e s s h o w i n g t h e p e n e t r a t i o n o f m e r c u r y i n t o a powder a s a f u n c t i o n o f p r e s s u r e i n d i c a t e d i n a l l c a s e s o n e d i s t r i b u t i o n o f p o r e s i z e s f r o m r o u g h l y 20-70 ym c o r r e s p o n d i n g t o the e x t e r n a l s u r f a c e . A second pore s i z e d i s t r i b u t i o n c e n t e r e d a r o u n d r o u g h l y l6 nm f o r B i o - G l a s 200 a n d 35 nm f o r B i o - G l a s 500 c o r r e s p o n d i n g t o t h e i n t e r n a l s u r f a c e . T a b l e I i n d i c a t e s some pore s i z e parameters f o r t h e i n t e r n a l pores from the mercury pene t r a t i o n data. A d s o r p t i o n measurements w i t h c a t i o n i c s u r f a c t a n t s i n d i c a t e d t h a t d i f f e r e n t l o t numbers h a d d i f f e r e n t s u r f a c e a r e a s ( T a b l e I ) . D i f f e r e n t b o t t l e s o f t h e same l o t number u s u a l l y g a v e concordant r e s u l t s i n t h e a d s o r p t i o n experiments excepting i n t h e case o f sodium t e t r a d e c y l s u l f a t e f o r which d i f f e r e n t b o t t l e s o f B i o - G l a s 200 ( i ) w i t h t h e same l o t number s o m e t i m e s g a v e c o n s i s t e n t d i f f e r e n c e s i n t h e a d s o r p t i o n , t h e maximum d i f f e r e n c e b e i n g a b o u t 9 x 10~6 e q u i v . / g , o r a b o u t 15$ o f t h e maximum a d s o r p t i o n . A l l t h e experimental data r e p o r t e d i n a p a r t i c u l a r f i g u r e are based on B i o - G l a s f r o m t h e same b o t t l e , s o t h a t i n t e r n a l c o n s i s t e n c y o f
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
(I)
(ID
Bio-Glas 500
Bio-Glas 500
2
2.25
4.2 χ 1 0 " 8.2 χ 1 0 "
0.40 0.50 0.51
15 34 36
13-25
20-50
25-55
4
4
15 30 5
81
140
2
Surface area (m /g)
5
χ ΙΟ""
3.9 χ 1 0 "
0.67
18.5
14-25
Adsorption^ at the c.m.c. (mole/g)
From mercury p e n e t r a t i o n data. E l e c t r o n miscroscopy (16) i n d i c a t e s wider d i s t r i b u t i o n s . From mercury p e n e t r a t i o n data, estimated a t h a l f p e n e t r a t i o n i n the i n t e r n a l pores. From mercury p e n e t r a t i o n data. TDPB f o r Bio-Glas 200 ( I ) , and HDPB f o r the o t h e r s . Assuming 0.60 nm /ion.
(ID
Bio-Glas 200
a. b. c. d. e.
(I)
0
Internal pore volume (ml/g)
5
Average* pore diameter (nm)
Range o f pore diameters (nm)
a
C h a r a c t e r i s t i c s of Porous Glass Samples Used
Bio-Glas 200
Table 1. e
8.
the
MUKERJEE
A N D ANA VIL
Adsorption of Ionic Surfactants
111
data i s maintained.
Sodium d o d e c y l s u l f a t e (SDS) a n d s o d i u m t e t r a d e c y l s u l f a t e (STDS) w e r e u s e d a s r e c e i v e d f r o m Mann R e s e a r c h L a b o r a t o r i e s . H e x a d e c y l p y r i d i n i u m b r o m i d e (HDPB) o b t a i n e d f r o m E a s t m a n O r g a n i c c h e m i c a l s was r e c r y s t a l l i z e d t w i c e f r o m e t h y l e t h e r a n d t h e n s e v e r a l times from d i s t i l l e d water. Tetradecyl pyridinium bro m i d e (TDPB) was s y n t h e s i z e d f r o m 1 - b r o m o t e t r a d e c a n e ( E a s t m a n W h i t e L a b e l ) and p y r i d i n e (Eastman S p e c t r o grade) b y t h e method o f A n a c k e r a n d Ghose ( ΐ χ ) b y D r . J . R. C a r d i n a l o f t h i s l a b o r a t o r y . The c.m.c. v a l u e s o f t h e s u r f a c t a n t s u s e d a t 3 0 - 3 5 ° C i n w a t e r a r e e s t i m a t e d t o b e 7-8 χ 1 0 " ^ M f o r HDPB, 3.0 χ 1 0 " M f o r TDPB, 2.1 χ Ι Ο M f o r STDS a n d 8.3 x 1 0 ~ M f o r SDS (l8). In the p r e s e n c e o f a d d e d s a l t s t h e c.m.c. v a l u e s a r e much l o w e r (l8). 3
- 3
3
Adsorption Experiments d i s t i l l e d water by weight maintaining i n hot d i s t i l l e Adsorp t i o n e x p e r i m e n t s were p e r f o r m e d i n c o n s t a n t t e m p e r a t u r e b a t h s b y a d d i n g 10-15 m l o f s u r f a c t a n t s o l u t i o n s o f known c o n c e n t r a t i o n b y weight t o small Erlenmeyer f l a s k s o r Teflon-capped v i a l s c o n t a i n ing u s u a l l y 1 g o f B i o - G l a s and o c c a s i o n a l l y 2 g o f B i o - G l a s a t high surfactant concentrations. T h e B i o - G l a s t o l i q u i d r a t i o was u s u a l l y m a i n t a i n e d c o n s t a n t i n a p a r t i c u l a r s e r i e s o f measure ments. G e n t l e s h a k i n g was e m p l o y e d t o p r e v e n t f o a m i n g . The a n i o n i c s u r f a c t a n t s were a n a l y z e d a f t e r s u i t a b l e d i l u t i o n s b y w e i g h t b y u s i n g t h e m e t h o d o f e x t r a c t i o n i n t o c h l o r o f o r m a s methy l e n e b l u e s a l t s ( 1 9 ) f o l l o w e d b y a b s o r b a n c e measurements w i t h a Cary s p e c t r o p h o t o m e t e r , Model l6. The c a t i o n i c s u r f a c t a n t s were a n a l y z e d b y a b s o r b a n c e measurements o f t h e p y r i d i n i u m c h r o m o p h o r i c s y s t e m a t 259 nm, a f t e r s u i t a b l e d i l u t i o n b y w e i g h t . The a d s o r p t i o n e x p e r i m e n t s were r u n o v e r p e r i o d s o f one t o s e v e r a l days t o f o l l o w t h e t i m e dependence. U s u a l l y t h e changes i n a d s o r p t i o n o b s e r v e d a f t e r 1-2 days b e l o w t h e c.m.c. a n d 2-4 d a y s a b o v e t h e c.m.c. were w i t h i n t h e e s t i m a t e d e x p e r i m e n t a l errors. The amount o f s u r f a c t a n t a d s o r b e d was c a l c u l a t e d f r o m t h e amount l o s t f r o m s o l u t i o n i n t h e u s u a l manner. A l l a d s o r p t i o n data reported are thus apparent a d s o r p t i o n s not c o r r e c t e d f o r coion or micellar exclusions. The a v e r a g e r e p r o d u c i b i l i t y a n d s e l f - c o n s i s t e n c y o f t h e d a t a i n a p a r t i c u l a r s e r i e s o f m e a s u r e m e n t s was o f t h e o r d e r e x p e c t e d f r o m u n c e r t a i n t i e s o f a b o u t 1-2$ o f t h e a n a l y t i c a l c o n c e n t r a t i o n determination of the surfactant. Results F i g u r e 1 shows t h e a d s o r p t i o n i s o t h e r m s o f HDPB t o two s a m p l e s o f B i o - G l a s 500 b e l o w t h e c.m.c. T h e i s o t h e r m s show t h e t w o - s t e p c h a r a c t e r i s t i c o f t e n o b s e r v e d f o r s u r f a c t a n t a d s o r p t i o n (8_,20). The i s o t h e r m s f o r s a m p l e s I a n d I I show r o u g h l y t h e same s h a p e a n d
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
112
ADSORPTION
EQUIL.
CONC.
OF
HDPB
(mole/i
χ
A T INTERFACES
I0 ) 3
Figure 1. Adsorption of HDPB to Bio-Ghs 500, samples I and II, at low concentrations and 35°C
6U
Figure 2. Adsorption of STDS to Bio-Glas 200 (I) at low concentrations and 30°C. Δ = 1 day, Q) = 2 days, and V = 3 days shaking.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
8.
MUKERJEE
AND
ANAviL
Adsorption of Ionic Surfactants
113
i n d i c a t e t h a t t h e two s a m p l e s h a v e d i f f e r e n t s u r f a c e a r e a s . The i s o t h e r m f o r sample I I shows a s t e e p i n c r e a s e i m m e d i a t e l y "below t h e c.m.c. r e g i o n . T h e d a t a a t h i g h e r c o n c e n t r a t i o n s shows g e n t l e i n c r e a s e a b o v e t h e c.m.c. F i g u r e 2 shows t h e a d s o r p t i o n i s o t h e r m o f STDS b e l o w t h e c.m.c. T h e i s o t h e r m e x h i b i t s a p l a t e a u , o r a s l i g h t maximum, w e l l b e l o w t h e c.m.c. ( 2 . 1 χ Î C T ^ M i n w a t e r ) . F i g u r e 3 compares t h e a d s o r p t i o n i s o t h e r m s o f HDPB a n d TDPB a b o v e t h e c.m.c. f o r B i o - G l a s 500 ( i l ) . The d i f f e r e n c e s a r e s m a l l i n t h e absence o f added s a l t : for both surfactants the adsorption i n c r e a s e s s l o w l y a b o v e t h e c.m.c. I n presence o f h i g h s a l t conc e n t r a t i o n , t h e a p p a r e n t a d s o r p t i o n f o r HDPB d e c r e a s e s w i t h c o n c e n t r a t i o n above t h e c.m.c. F i g u r e h shows t h e a d s o r p t i o n i s o t h e r m s f o r TDPB f o r B i o - G l a s 200 ( i ) , a b o v e t h e c.m.c from d i s t i l l e d water and i n presence o f 0.05M N a B r . I t a l s o show (II). The a d s o r p t i o n i e x p e r i m e n t a l e r r o r a b o v e t h e c.m.c. 0.05M NaBr i n c r e a s e s t h e a d s o r p t i o n a b o v e t h e c.m.c. b y a b o u t 25$ f o r TDPB a s compared t o the a d s o r p t i o n i n t h e absence o f s a l t . F i g u r e 5 shows t h e a d s o r p t i o n i s o t h e r m o f STDS f o r B i o - G l a s 200 ( i ) a t h i g h c o n c e n t r a t i o n s . The a d s o r p t i o n a p p e a r s t o dec r e a s e r a p i d l y a b o v e t h e c.m.c. T h e e f f e c t o f a 5°C c h a n g e i n temperature appears t o be w i t h i n experimental e r r o r . F i g u r e 6 compares t h e a d s o r p t i o n o f STDS f r o m w a t e r a n d f r o m 0.01M a n d 0.03M N a C l f o r B i o - G l a s 200 ( i ) , o b t a i n e d f r o m t h e same bottle. The i s o t h e r m i n t h e absence o f s a l t i s s i m i l a r i n shape t o t h e 30° i s o t h e r m o f F i g u r e 5 and appears t o be s h i f t e d upward b y a c o n s t a n t amount o f r o u g h l y 9 x 1 0 ~ " e q u i v . / g . In presence o f s a l t , t h e apparent a d s o r p t i o n remains n e a r l y constant u n t i l t h e e q u i l i b r i u m STDS c o n c e n t r a t i o n r e a c h e s a v a l u e o f a b o u t 10~^M, above w h i c h i t d e c r e a s e s . F i g u r e 6 a l s o shows some a d s o r p t i o n d a t a f o r SDS o n B i o - G l a s 200 ( i ) a b o v e t h e c.m.c. r e g i o n . The apparent a d s o r p t i o n appears t o be n e g a t i v e a t h i g h c o n c e n t r a t i o n s . Discussion pH M e a s u r e m e n t s . I t i s w e l l known t h a t g l a s s i s n e g a t i v e l y c h a r g e d a t n e a r n e u t r a l v a l u e s o f pH, a n d t h a t H a n d 0H~ i o n s a c t as p o t e n t i a l d e t e r m i n i n g i o n s ( 2 l ) . T h e e l e c t r o s t a t i c f a c t o r s i n v o l v e d i n the adsorption o f i o n i c s u r f a c t a n t s are thus expected t o be d e p e n d e n t u p o n t h e s o l u t i o n pH. T h e s u r f a c t a n t s u s e d i n t h i s work w e r e s a l t s o f s t r o n g a c i d s w h i c h t h e m s e l v e s do n o t a f f e c t t h e pH o f t h e s o l u t i o n , a s was c h e c k e d b y m e a s u r e m e n t s o n o u r s a m p l e s . In general, the adsorption o f i o n i c surfactants t o o p p o s i t e l y c h a r g e d s u r f a c e s i s e x p e c t e d t o i n v o l v e some i o n e x c h a n g e a s p a r t o f t h e t o t a l u p t a k e o f s u r f a c t a n t s (δ.,15.,22). For cationic sur f a c t a n t s , t h i s i o n exchange w i t h t h e g l a s s s u r f a c e i s e x p e c t e d t o r e l e a s e some H i o n s i n t o t h e s o l u t i o n (8_,22). T h e i n t e r p r e t a t i o n +
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
ADSORPTION
AT
INTERFACES
Figure 3. Adsorption of HDPB and TDPB to Bio-Glas 500 (II) at high concentrations and 35°C. A = TDPB, φ = TDPB in 0.05M NaBr, Ο = HDPB, Δ = HDPB in 0.03M NaBr, V = HDPB on 0.05M NaBr, • = HDPB in 0.13M NaBr, and • = HDPB in 0.2M NaNQ . Dashed line indicates an exclusion volume of 0.5 ml/g. 3
/ I
I EQUIL.
CONC.
2 (mole/f
3 χ ΙΟ ) 2
Figure 4. Adsorption of TDPB to Bio-Glas 200 (I) and HDPB to Bio-Glas 200 (II) at high concentrations and 35°C. V = TDPB 4 days, Δ = TDPB 7 days, • = TDPB in 0.05U NaBr, and Q = HDPB.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
MUKERJEE
AND
ANAviL
Adsorption of Ionic Surfactants
2 3 I EQUIL. CONC. OF STDS (mole/i χ ΙΟ) 2
Figure 5. Adsorption of STDS to Bio-Glas 200 (I) at high concentrations. Ç) = 4 days, 30°C; Δ = β days, 30°C; • = 7 days,35°C.
0 1 2 3 4 5 EQUIL. CONC. OF SURFACTANT (mole/i χ ΙΟ) 2
Figure 6. Adsorption of STDS and SDS to BioGlas 200 (I) at high concentrations and 35°C. Ο = STDS, A = STDS in 0.01M NaCl, V = STDS in 0.03M NaCl, and • = SDS.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
116
ADSORPTION
o f a d s o r p t i o n i s o t h e r m s b e l o w t h e c.m.c. must t a k e t h i s i n t o account.
AT
INTERFACES
factor
Some pH m e a s u r e m e n t s w e r e c a r r i e d o u t t o examine t h e n a t u r e o f t h e c h a n g e s i n s o l u t i o n pH b r o u g h t a b o u t b y t h e i n t e r a c t i o n s o f the s u r f a c t a n t s w i t h Bio-Glas under t h e c o n d i t i o n s o f t h e adsorp t i o n experiments a f t e r e q u i l i b r i u m i s a t t a i n e d . F i g u r e 7 shows some t y p i c a l pH v a l u e o f t h e s u p e r n a t a n t l i q u i d . The e q u i l i b r i u m l i q u i d was u s e d t o a v o i d t h e p r o b l e m o f t h e s u s p e n s i o n e f f e c t o n pH (9,12,21). B i o - G l a s i t s e l f , i n t h e a b s e n c e o f a n y s u r f a c t a n t , makes t h e medium s l i g h t l y b a s i c , i n d i c a t i n g t h e r e l e a s e o f s m a l l amounts o f b a s i c e l e c t r o l y t e s . Somewhat more p r o n o u n c e d e f f e c t i s o b t a i n e d w i t h B i o - G l a s 200 t h a n B i o - B i a s 500. T h i s i s c o n s i s t e n t with t h e greater surface area o f t h e former. When TDPB, a c a t i o n i c s u r f a c t a n t , i s a d d e d t o B i o - G l a s 500, some p r o t o n s a r e r e l e a s e d , a s e x p e c t e d , a n d t h e s o l u t i o n pH becomes a c i d i c . With i n creasing concentration o above t h e c . m . c , t h e p 0.1 u n i t as t h e e q u i l i b r i u m c o n c e n t r a t i o n c h a n g e s f r o m t h e c.m.c. t o more t h a n 15 x c.m.c. I n t h e case o f a n i o n i c s u r f a c t a n t s which are s a l t s o f s t r o n g a c i d s , e x t e n s i v e i o n exchanges a r e n o t ex pected. F i g u r e 7 shows t h a t i n t h e S T D S - B i o - G l a s 200 s y s t e m t h e pH r i s e s somewhat a t l o w c o n c e n t r a t i o n s . The change i s q u i t e s m a l l , h o w e v e r , a n d a b o v e t h e c . m . c , i n p a r t i c u l a r , t h e pH c h a n g e s v e r y l i t t l e a g a i n , d e c r e a s i n g b y a b o u t 0.1 u n i t a s t h e c o n c e n t r a t i o n i n c r e a s e s t o Τ x c . m . c , t o a b o u t 1.5 x 1 0 ~ M. A f u r t h e r d e c r e a s e o f 0.2 u n i t s was o b s e r v e d when t h e e q u i l i b r i u m c o n c e n t r a t i o n was k χ 10~^M, i . e . a b o u t 18 χ c . m . c The pH v a r i a t i o n r e s u l t s a r e c o n s i s t e n t w i t h t h e t h e o r e t i c a l argument t h a t t h e a c t i v i t y o f t h e p r i m a r y a d s o r b i n g s p e c i e s , t h e monomer, c h a n g e s l i t t l e a b o v e t h e c.m.c. o f l o n g - c h a i n surfactants and, t h e r e f o r e , t h e i o n e x c h a n g e a n d t h e r e s u l t a n t c h a n g e i n t h e pH o f t h e e q u i l i b r i u m a r e a f f e c t e d l i t t l e a b o v e t h e c . m . c The r e p r o d u c i b i l i t y and s e l f - c o n s i s t e n c y o f t h e a d s o r p t i o n measure ments b e l o w t h e c.m.c. ( F i g u r e s 1 a n d 2) i n d i c a t e t h a t a n y c h a n g e i n s o l u t i o n pH was s u f f i c i e n t l y r e p r o d u c i b l e t o n o t a l t e r t h e e n e r g e t i c s o f t h e a d s o r p t i o n p r o c e s s i n a random f a s h i o n . The c . m . c v a l u e s e s t i m a t e d f r o m t h e a d s o r p t i o n i s o t h e r m s ( F i g u r e s 1 a n d 6) do n o t d i f f e r much f r o m e x p e c t e d b u l k v a l u e s , showing t h a t t h e i o n i c s t r e n g t h o f t h e s o l u t i o n s i s n o t a f f e c t e d much a t t h e c . m . c b y t h e p r e s e n c e o f B i o - G l a s . F o r comparisons w i t h o t h e r s y s t e m s , i t s h o u l d b e n o t e d t h a t when s u r f a c t a n t s a r e weak e l e c t r o l y t e s , pH e f f e c t s c a n b e c o m p l e x b e c a u s e o f c o m p o s i t i o n c h a n g e s i n t h e e q u i l i b r i u m s o l u t i o n (23) a n d b e c a u s e t h e pH may b e v e r y d i f f e r e n t a t a c h a r g e d s u r f a c e when c o m p a r e d t o t h e s o l u t i o n v a l u e (2k). When i o n e x c h a n g e i s l i k e l y t o o c c u r , ini t i a l pH v a l u e s may b e q u i t e m i s l e a d i n g , a s i n d i c a t e d b y t h e pH v a r i a t i o n s b r o u g h t a b o u t b y TDPB ( F i g u r e 7). T h e pH may, i n d e e d , be d i f f i c u l t t o c o n t r o l w i t h o u t b u f f e r s o f r e a s o n a b l e c a p a c i t y . The measurement o f t h e pH s h o u l d b e c a r r i e d o u t o n t h e e q u i l i b r i u m f l u i d t o a v o i d t h e s u s p e n s i o n e f f e c t w h i c h c a n b e s e r i o u s (9,12,
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
8.
MUKERJEE AND
ANAviL
Adsorption of Ionic Surfactants
117
21). For the i n t e r p r e t a t i o n o f t h e a d s o r p t i o n data above the c.m.c, our reference p o i n t i s always an i n t e r n a l one, namely t h e a d s o r p t i o n a t the c.m.c. o f the same system. The above r e s u l t s and t h e supporting arguments suggest t h a t pH v a r i a t i o n s i n s o l u t i o n s above the c.m.c. w i t h respect t o t h e s o l u t i o n a t t h e c.m.c, and the e f f e c t s o f these changes on the a d s o r p t i o n , can be ignored t o a good approximation. Tadros (25,), i n a recent paper, has r e p o r t e d t h a t the adsorp t i o n s o f a c a t i o n i c and an i o n i c s u r f a c t a n t on s i l i c a a t h i g h c o n c e n t r a t i o n s , but w e l l below the c.m.c, change by l e s s than a f a c t o r o f f i v e as t h e pH changes from 3.6 t o 9.1 f o r t h e c a t i o n i c system, and 3.6 t o 10.1 f o r t h e a n i o n i c system. This e f f e c t appears t o be r a t h e r s m a l l but supports our neglect o f pH-variat i o n e f f e c t s above t h e Surface Areas. Tamamushi and Tamaki (8^,26) found t h a t t h e l i m i t i n g a d s o r p t i o n o f dodecyl p y r i d i n i u m bromide on alumina was much l e s s than t h a t o f dodecyl and higher alkylammonium c h l o r i d e s , t h e l i m i t i n g area being 0.90 nm^/molecule. I n our case, t h e e f f e c t o f e l e c t r o l y t e s (Figure 3) i n d i c a t e s t h a t the a d s o r p t i o n a t the c.m.c. on Bio-Glas i n t h e absence o f e l e c t r o l y t e s i s much l e s s than t h e maximum p o s s i b l e v a l u e . F o r an approximate estimate o f the e f f e c t i v e surface area o f B i o - G l a s , we have used t h e value o f 0.60 nm /molecule and t h e a d s o r p t i o n o f the c a t i o n i c s u r f a c t a n t s at the c.m.c i n t h e absence o f added s a l t , which occurs from an e q u i l i b r i u m pH o f about 6. Table I r e p o r t s these estimated s u r face areas. 2
A d s o r p t i o n a t and Below t h e C.m.c. C a t i o n i c S u r f a c t a n t s . The a d s o r p t i o n isotherms f o r c a t i o n i c s u r f a c t a n t s below t h e c.m.c (Figure l ) are s i m i l a r i n shape t o those recorded f o r a v a r i e t y o f s u b s t r a t e s (8_»20 26_). The net uptake o f t h e s u r f a c t a n t i n v o l v e s i o n exchange t o some e x t e n t , as r e v e a l e d by t h e lowering o f t h e pH (Figure 7 ) · The shape o f the isotherms i n d i c a t e s c o n t r i b u t i o n s from m u l t i l a y e r formation (8,26,27) and/or a t t r a c t i v e l a t e r a l i n t e r a c t i o n s i n t h e adsorbed l a y e r between the hydrocarbon groups (28). F i g u r e 3 shows t h a t HDPB and TDPB appear t o be q u i t e s i m i l a r i n t h e i r a b i l i t y t o adsorb a t t h e i r r e s p e c t i v e c.m.c v a l u e s . I t has been noted before t h a t t h e a d s o r p t i o n isotherms o f homologous long-chain i o n i c s u r f a c t a n t s are o f t e n very s i m i l a r i f a reduced c o n c e n t r a t i o n s c a l e i s used, i . e . i f t h e concentrations a r e ex pressed as f r a c t i o n s o f the c.m.c (8,26,29). This corresponding s t a t e type o f c o r r e l a t i o n i s o f great i n t e r e s t but i t poses a problem w i t h respect t o surface coverage s i n c e d i f f e r e n t homo logues are expected t o occupy d i f f e r e n t surface areas, a t l e a s t f o r t h e f r a c t i o n of t h e adsorbed molecules which l i e p a r a l l e l t o the s u r f a c e . Shorter c h a i n homologues should thus adsorb more on 5
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
118
ADSORPTION
AT
INTERFACES
the b a s i s of smaller molecular surface areas. On t h e other hand, l a t e r a l i n t e r a c t i o n s may increase n o n l i n e a r l y -with chain l e n g t h . For i o n i c s u r f a c t a n t s , however, two c o r r e c t i o n s may be o f some importance. From previous e l e c t r o k i n e t i c s t u d i e s (21,28,29,30), i t i s extremely l i k e l y t h a t there i s a charge r e v e r s a l w e l l below the c.m.c. For t h e d i f f u s e double l a y e r , t h e r e f o r e , t h e s u r f a c t a n t i s u s u a l l y a co-ion when the e q u i l i b r i u m c o n c e n t r a t i o n i s near t h e c.m.c. and t h e negative a d s o r p t i o n o f t h e s u r f a c t a n t coi o n s , which i s a f u n c t i o n o f the i o n i c s t r e n g t h o f the system, me be somewhat greater f o r s h o r t e r - c h a i n homologues w i t h higher c.m.c. s. The second f a c t o r i n v o l v e s t h e i n t e r a c t i o n (overlap) between d i f f u s e double l a y e r s surrounding adsorbed s u r f a c e s . Near the c.m.c, t h i s would r e s u l t i n an i n c r e a s e i n t h e e l e c t r i c a l work opposing the adsorption of i o n i c species t o s i m i l a r l y charged s u i faces and the a d s o r p t i o n be a s m a l l r e d u c t i o n o our case, f o r Bio-Glas 500 ( I I ) , the r a t i o o f t h e average pore r a d i u s t o t h e double l a y e r t h i c k n e s s , 6, a t t h e c.m.c i s about 1.8 f o r HDPB and 3.6 f o r TDPB. These r a t i o s are such t h a t con s i d e r a b l e i n t e r a c t i o n s between t h e double l a y e r s i n s i d e t h e pores are expected a t t h e c.m.c, p a r t i c u l a r l y f o r HDPB. I t i s d i f f i c u l t , however, t o make any q u a n t i t a t i v e c a l c u l a t i o n s o f t h e effect. I n presence o f n e u t r a l e l e c t r o l y t e s a t high c o n c e n t r a t i o n , the adsorption of t h e c a t i o n i c s u r f a c t a n t s a t the c.m.c increases a p p r e c i a b l y , i n accord w i t h t h e expected r e d u c t i o n o f the r e p u l s i v e e l e c t r o s t a t i c i n t e r a c t i o n s i n v o l v e d and t h e removal o f double l a y e r overlaps. When the i o n i c s t r e n g t h i s 0.05, f o r example, 6 i s only about l.k nm. Figures 3 and h show a d s o r p t i o n data a t high i o n i c strengths f o r TDPB on Bio-Glas 500 ( i l ) and Bio-Glas 200 ( I I ) and HDPB on Bio-Glas 500 ( i l ) . At these h i g h i o n i c strengths t h e c.m.c values are very low, l e s s than 1 χ 1 0 ~ % f o r HDPB, and the adsorptions a t t h e c.m.c. i n Figures 3 and k can be obtained by e x t r a p o l a t i o n o f t h e p o s t - c m . c l i n e s t o e f f e c t i v e l y zero c o n c e n t r a t i o n . Figure 3 shows t h a t t h e a d s o r p t i o n o f HDPB i n presence o f added NaBr increases w i t h t h e c o n c e n t r a t i o n o f NaBr. The highest a d s o r p t i o n was observed f o r 0.2M NaNOg s o l u t i o n . f
A n i o n i c S u r f a c t a n t s . U n l i k e the case o f c a t i o n i c s u r f a c t a n t s (Figure l ) , t h e adsorption o f STDS t o Bio-Glas 200 ( i ) below t h e c.m.c appears t o a t t a i n a p l a t e a u value (or a very shallow maxi mum) w e l l below t h e c.m.c (Figure 2 ) . The maximum a d s o r p t i o n i s only about lk% o f t h a t r e g i s t e r e d by t h e c a t i o n i c TDPB, c o n t a i n i n g t h e same chain l e n g t h as STDS. This i s probably due p r i m a r i l y t o the unfavorable e l e c t r i c a l i n t e r a c t i o n s o f a n i o n i c s u r f a c t a n t s on n e g a t i v e l y charted s u r f a c e s . For an estimate o f t h e c o r r e c t i o n f o r c o - i o n e x c l u s i o n f o r STDS, i t i s t o be noted t h a t as t h e s o l u t i o n pH remains high i n presence o f STDS (Figure 7 ) , t h e g l a s s surface should have a high
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
8.
MUKERjEE
AND
ANAviL
Adsorption of Ionic Surfactants
119
negative surface p o t e n t i a l i r r e s p e c t i v e o f the amount o f STDS ab sorbed, and t h e s u r f a c t a n t anions a r e l i k e l y t o be t h e predominant co-ions o f t h e e l e c t r i c a l double l a y e r . Co-ion e x c l u s i o n can be represented by an equivalent average d i s t a n c e , d, from the surface up t o which a l l co-ions a r e assumed t o be excluded and beyond which there i s no e x c l u s i o n (31). For p l a n a r n o n i n t e r a c t i n g double l a y e r s , when t h e surface p o t e n t i a l i s h i g h and a l l mobile ions are monovalent, t h i s e x c l u s i o n d i s t a n c e i s represented very w e l l by t h e simple formula 26 (31). The amount o f e x c l u s i o n per cm o f surface i s given by 26C χ 10"3 where C i s t h e bulk concen t r a t i o n o f t h e c o - i o n i n e q u i v a l e n t s p e r l i t e r . The amount i s thus approximately 6 χ 10"^ν^δ i n water. I f t h e surface area o f lUO m /g f o r Bio-Glas 200 ( i ) (Table I ) i s used, t h e e x c l u s i o n i s c a l c u l a t e d t o be 8 χ 10"?, 2 Λ χ 10" and 3.7 x 10"° equiv/g f o r e q u i l i b r i u m concentrations o f 1 0 , 10"^ and 2 χ 10"^ equiv/1. These c a l c u l a t i o n s are double l a y e r overlap e f f e c t t i o n s may be s i g n i f i c a n t . I n c o n t r a s t t o t h e comparable a d s o r p t i o n o f HDPB and TDPB a t the c.m.c. o f each, SDS, i n t h e neighborhood o f i t s c.m.c, seems t o adsorb much l e s s than STDS. This may be due i n p a r t t o reduced chain-chain i n t e r a c t i o n s i n the adsorbed l a y e r s f o r the a n i o n i c systems. The a d s o r p t i o n o f STDS i n presence o f 0.01M and 0.03M NaCl was s t u d i e d mainly above t h e c.m.c (Figure 6). The e x t r a p o l a t e d values a t the c.m.c i n presence o f s a l t appears t o be somewhat l e s s than the a d s o r p t i o n a t c.m.c i n the absence o f added s a l t . Here a l s o , t h e behavior o f t h e a n i o n i c systems i s a t variance w i t h t h a t observed f o r c a t i o n i c systems (Figures 3 and h). I t i s l i k e l y t h a t the e f f e c t i v e negative surface p o t e n t i a l opposing anion a d s o r p t i o n i s c o n t r o l l e d p r i m a r i l y by t h e s o l u t i o n pH, and does not change much w i t h c o n c e n t r a t i o n o f NaCl. 2
_i+
A d s o r p t i o n Isotherms above the C.m.c The complete i n t e r p r e t a t i o n o f a d s o r p t i o n o f i o n i c s u r f a c t a n t s above t h e c.m.c. must i n c l u d e (a) t h e e f f e c t o f i n c r e a s i n g monomer a c t i v i t y above t h e c.m.c (32,33,3*0 , (b) t h e c o n t r i b u t i o n o f t h e m i c e l l e s t o the i o n i c s t r e n g t h (2*0, (c) t h e e f f e c t o f t h e chang i n g composition o f the s o l u t i o n on t h e e l e c t r i c a l double l a y e r s adjacent t o t h e s o l i d surface and t h e i r mutual i n t e r a c t i o n , as a l s o (d) the i n t e r a c t i o n o f t h e m i c e l l e s w i t h t h e charged s u r f a c e s . Q u a n t i t a t i v e c a l c u l a t i o n s o f any o f these f a c t o r s appear t o be extremely d i f f i c u l t , and indeed, t h e f a c t o r s may not be i n dependent. I n c o n t r a s t t o many s t u d i e s o f a d s o r p t i o n t o f i n e l y d i v i d e d systems, t h e s e p a r a t i o n between a d s o r p t i o n surfaces i n our systems i s independent o f s o l u t i o n composition. In the case o f the a n i o n i c s u r f a c t a n t s , p a r t i c u l a r l y STDS (Figure 2 ) , t h e apparent a d s o r p t i o n , below t h e c.m.c, even a f t e r reasonable c o r r e c t i o n s f o r c o - i o n e x c l u s i o n s , appears t o change
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
120
ADSORPTION
A T INTERFACES
r e l a t i v e l y l i t t l e over a c o n c e n t r a t i o n range o f about a f a c t o r o f 2. The e f f e c t o f i o n i c s t r e n g t h v a r i a t i o n on t h e a d s o r p t i o n a t t h e c.m.c. i s a l s o q u i t e s m a l l ( F i g u r e 6). I t seems, t h e r e f o r e , t h a t t h e e f f e c t s o f a n y f u r t h e r i n c r e a s e i n monomer a c t i v i t y a b o v e t h e c.m.c. a n d a n y i n c r e a s e i n i o n i c s t r e n g t h a n d c o u n t e r i o n c o n c e n t r a t i o n on t h e t r u e a d s o r p t i o n can be i g n o r e d t o a reasonable approximation. The s t r i k i n g d e c r e a s e i n t h e a p p a r e n t a d s o r p t i o n o f STDS a n d SDS ( F i g u r e s 5 a n d 6) above t h e c.m.c. c a n b e q u a l i t a t i v e l y r a t i o n a l i z e d i n terms o f e x c l u s i o n o f m i c e l l e s from t h e s u r f a c e . The h i g h l y c h a r g e d m i c e l l e s c a n b e r e a s o n a b l y e x p e c t e d t o b e r e p e l l e d b y t h e n e g a t i v e l y c h a r g e d g l a s s s u r f a c e more e x t e n s i v e l y than monovalent c o - i o n s . Quantitative calculations are d i f f i c u l t b u t some o r d e r s o f m a g n i t u d e c a n b e e s t i m a t e d . As mentioned b e f o r e , t h e e q u i v a l e n t e x c l u s i o n d i s t a n c e f o r monovalent co-ions from p l a n a r surfaces a mobile ions a r e a l l monovalen d o u b l e l a y e r s i s n e g l i g i b l e , de Haan (3l) h a s shown t h a t when b i v a l e n t a n d t r i v a l e n t c o - i o n s a r e i n t r o d u c e d i n t r a c e r amounts i n s u c h s y s t e m s , t h e e x c l u s i o n d i s t a n c e becomes 2.6676 a n d 3.0676 respectively. F o r t h e h i g h l y charged m i c e l l e s , any reasonable e x t r a p o l a t i o n w o u l d i n d i c a t e a much h i g h e r v a l u e . A v a l u e o f 6δ i s used below f o r e x p l o r a t o r y purposes. The e x c l u s i o n v o l u m e f o r n o n i n t e r a c t i n g d o u b l e l a y e r s i s g i v e n by t h e s u r f a c e a r e a t i m e s t h e e x c l u s i o n d i s t a n c e . For Bio-Glas 200 ( i ) , w i t h t h e e s t i m a t e d s u r f a c e a r e a o f ihO m /g t h e e x c l u d e d v o l u m e f o r SDS (6*3.3 nm a t t h e c . m . c ) , f o r e x a m p l e , u s i n g 6δ as t h e e x c l u s i o n d i s t a n c e , i s c a l c u l a t e d t o b e 2.8 m l / g . F o r o u r p o r o u s g l a s s s y s t e m s , most o f t h e s u r f a c e i s a s s o c i a t e d w i t h t h e p o r e s a n d , t h e r e f o r e , t h e e x c l u s i o n e f f e c t s s h o u l d b e l o w e r when compared t o n o n p o r o u s s y s t e m s f o r w h i c h a l l a d s o r p t i o n s u r f a c e i s externally located. A n e s t i m a t e o f t h e e x c l u s i o n volume c a n b e o b t a i n e d from t h e e x p e r i m e n t a l data b y assuming t h a t t h e apparent d e c r e a s e i n t h e a d s o r p t i o n a b o v e t h e c.m.c. i s e n t i r e l y due t o m i c e l l a r e x c l u s i o n , and c a l c u l a t i n g t h i s e x c l u s i o n from t h e de crease i n a d s o r p t i o n from t h a t a t t h e c.m.c f o r a given equiva lent concentration o f micelles i n the equilibrium solution. F i g u r e 5 i n d i c a t e s t h a t f o r STDS t h e e x c l u s i o n v o l u m e i s b e t w e e n 1.5 t o 1 m l / g . F r o m t h e d i m e n s i o n s o f t h e p o r e s a n d t h e e x c l u s i o n d i s t a n c e s (6 = 6.6 nm a t t h e c . m . c ) , t h e minimum v a l u e f o r t h e e x c l u d e d v o l u m e s h o u l d b e o f t h e o r d e r o f t h e p o r e v o l u m e , 0.7 ml/g. The experimental values a l l appear t o be h i g h e r . F o r SDS, a l s o , about 1 m l / g o f e x c l u d e d volume i s i n d i c a t e d b y t h e d a t a ( F i g u r e 6). 2
I n p r e s e n c e o f N a C l , t h e e x c l u s i o n e f f e c t f o r t h e STDS s y s t e m n e a r t h e c.m.c. seems t o b e r a t h e r l o w a l t h o u g h t h e a p p a r e n t a d s o r p t i o n does a p p e a r t o d e c r e a s e f r o m a b o u t 10"" e q u i v / l o f t h e e q u i l i b r i u m c o n c e n t r a t i o n o f STDS. T h e r e a s o n s f o r t h i s c o m p l i cated behavior are notc l e a r . I t should be noted t h a t the surface o f g l a s s i s p r o b a b l y c o v e r e d b y a g e l - l i k e l a y e r (35.), t h e e f f e c t 2
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
8.
MUKERJEE
AND
ANAviL
Adsorption of Ionic Surfactants
121
of which i s d i f f i c u l t t o estimate. In the case o f the c a t i o n i c s u r f a c t a n t s , the m i c e l l a r e x c l u s i o n e f f e c t i s e x p e c t e d t o b e r e l a t i v e l y much s m a l l e r when com p a r e d t o a n i o n i c systems because o f t h e f a r g r e a t e r s u r f a c e c o v e r age a n d p o s s i b l y l o w e r s u r f a c e p o t e n t i a l s o f t h e p o s i t i v e l y c h a r g e d s u r f a c e a t t h e c.m.c. Thus, f o r example, t h e d e c r e a s e i n t h e a p p a r e n t a d s o r p t i o n o b s e r v e d f o r STDS o n B i o - G l a s 200 ( i ) over t h e c o n c e n t r a t i o n r a n g e o f t h e c.m.c. t o 3 x 10 e q u i v / l i s about 3 x 10~5 equiv/g. F o r TDPB ( F i g u r e k) t h i s would correspond t o a d e c r e a s e o f o n l y a b o u t Q% i n t h e a p p a r e n t a d s o r p t i o n . The a p p a r ent constancy o f t h e a d s o r p t i o n o f t h e c a t i o n i c s f o r B i o - G l a s 200 ( F i g u r e k) c o u l d t h u s b e due t o a s m a l l i n c r e a s e i n t h e t r u e a d s o r p t i o n a b o v e t h e c.m.c. t o c o m p e n s a t e f o r t h e m i c e l l a r e x c l u sion. 9
The i n c r e a s e i n t h e t r u e a d s o r p t i o n h a s t o b e f a i r l y a p p r e c i a b l e f o r B i o - G l a s 500 ( i l absence o f added e l e c t r o l y t e s e l f seems t o i n c r e a s e above t h e c.m.c. I n t h e absence o f de t a i l e d i n f o r m a t i o n about t h e e x t e r n a l and i n t e r n a l s u r f a c e , i t i s d i f f i c u l t t o e s t i m a t e t h e p r o p e r e x c l u d e d v o l u m e b u t f o r HDPB, b e c a u s e o f i t s l o w c . m . c , a n d h i g h δ, t h i s s h o u l d b e o f t h e o r d e r o f t h e p o r e v o l u m e , 0.5 m l / g . I n f a c t t h e HDPB a d s o r p t i o n a p p e a r s t o i n c r e a s e above t h e c.m.c w i t h an average s l o p e o f about 0.9 ml/g. F o r t h i s s y s t e m , h o w e v e r , somewhat b e l o w t h e c.m.c. r e g i o n ( F i g u r e l ) , t h e a d s o r p t i o n t o B i o - G l a s 500 ( I I ) seems t o i n c r e a s e v e r y r a p i d l y , w i t h a s l o p e o f a b o u t 15 m l / g , u n l i k e t h e c a s e o f STDS ( F i g u r e 2). A r o u g h l y t e n - f o l d r e d u c t i o n i n t h e s l o p e above t h e c.m.c. w o u l d a c c o u n t f o r t h e o b s e r v e d i s o t h e r m above t h e c.m.c. S e v e r a l f a c t o r s s u c h as t h e i n c r e a s e i n t h e a c t i v i t y o f monomers above t h e c.m.c. as t h e c o n c e n t r a t i o n i n c r e a s e s t o more t h a n 60 χ c . m . c (33,36), a s a l s o t h e p o s s i b l e c o n t r i b u t i o n o f t h e m i c e l l e s t o t h e i o n i c s t r e n g t h o f t h e s o l u t i o n (2^), could c o n t r i b u t e t o t h i s apparent i n c r e a s e , and t h e magnitude o f t h i s e f f e c t does n o t seem t o b e e x c e s s i v e . I n p r e s e n c e o f 0.05M N a B r , t h e a p p a r e n t a d s o r p t i o n o f TDPB t o B i o - G l a s 500 ( i l ) seems t o b e n e a r l y c o n s t a n t a b o v e t h e c . m . c ( F i g u r e 3). A t t h i s h i g h i o n i c s t r e n g t h , t h e e x c l u d e d volume i n t e r a c t i o n s f r o m t h e p o s i t i v e l y c h a r g e d s u r f a c e s s h o u l d b e much reduced. F o r t h e h i g h e r h o m o l o g u e , HDPB, h o w e v e r , t h e a p p a r e n t a d s o r p t i o n a p p e a r s t o d e c r e a s e w i t h c o n c e n t r a t i o n a b o v e t h e c.m.c. i n presence o f high concentrations o f e l e c t r o l y t e s . M i c e l l a r ex c l u s i o n i n these systems cannot be a s c r i b e d t o double l a y e r effects. S t e r i c e x c l u s i o n a p p e a r s t o b e more l i k e l y . Anacker a n d Ghose ( I T ) h a v e shown t h a t v e r y l a r g e a s y m m e t r i c m i c e l l e s form i n such systems. I t seems t h a t some o f t h e s e g i a n t m i c e l l e s , w h i c h a r e p r o b a b l y r o d - s h a p e d (37), a n d w h i c h show p r o n o u n c e d e x c l u d e d v o l u m e i n t e r a c t i o n s i n s o l u t i o n (38), a r e e x c l u d e d f r o m t h e pores because o f s t e r i c reasons. The e x c l u d e d volumes a r e o f t h e o r d e r o f t h e p o r e v o l u m e o f 0.5 m l / g , a s c a n b e s e e n b y c o m p a r i s o n o f t h e i s o t h e r m s w i t h t h e l i n e drawn t o show t h i s p o r e v o l u m e .
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
122
ADSORPTION
A T INTERFACES
A r e c e n t l y proposed t h e o r e t i c a l treatment i n d i c a t e s that these very l a r g e m i c e l l e s a r e p o l y d i s p e r s e and t h e i r average degree o f a g g r e g a t i o n i n c r e a s e s r a p i d l y w i t h c o n c e n t r a t i o n (38.). C h r o m a t o g r a p h i c s t u d i e s o f such systems employing porous g l a s s s h o u l d be o f some i n t e r e s t . Adsorption
Maxima a n d t h e E x c l u s i o n o f M i c e l l e s
The e x i s t e n c e o f maxima i n a d s o r p t i o n i s o t h e r m s o f s u r f a c t a n t s a b o v e t h e c.m.c. a p p e a r s t o b e a n o m a l o u s f r o m a t h e r m o d y n a m i c p o i n t o f v i e w b e c a u s e b e y o n d t h e maximum t h e a d s o r p t i o n d e c r e a s e s w i t h i n c r e a s i n g s o l u t e a c t i v i t y (1^,15.). V a r i o u s a t t e m p t s h a v e b e e n made t o r a t i o n a l i z e t h e s e o b s e r v e d maxima i n t e r m s o f i m p u r i t i e s i n t h e s y s t e m jlk) o r p o s s i b l e r e d u c t i o n o f t h e s u r f a c t a n t u p t a k e b y s o l i d s u r f a c e s b y i o n e x c h a n g e a b o v e t h e c.m.c. (15.)· The maxima o b s e r v e d i t a n t s have been a s c r i b e charged surfaces causing a lower estimate o f t h e apparent adsorp tion. The pronounced e f f e c t s observed, r e s u l t i n g even i n appar e n t l y n e g a t i v e a d s o r p t i o n s a t h i g h c o n c e n t r a t i o n s ( F i g u r e 6), a r e u n d o u b t e d l y due t o t h e r e l a t i v e l y l o w s u r f a c e c o v e r a g e o f t h e a n i o n i c s u r f a c t a n t s , and t h e presence o f an i n i t i a l l y charged sur face. N e v e r t h e l e s s , m i c e l l a r e x c l u s i o n a b o v e t h e c.m.c. i s e x p e c t e d t o b e a g e n e r a l phenomenon a n d t h e i n t e r p r e t a t i o n o f a l l a d s o r p t i o n i s o t h e r m s a b o v e t h e c.m.c. must t a k e t h i s i n t o a c c o u n t . The q u e s t i o n a r i s e s a s t o w h e t h e r t h i s phenomenon c a n p r o v i d e a g e n e r a l e x p l a n a t i o n f o r a d s o r p t i o n maxima o b s e r v e d i n o t h e r systems. F o r s o l i d s u b s t r a t e s , a d s o r p t i o n maxima h a v e o f t e n b e e n o b s e r v e d i n s y s t e m s where t h e a d s o r p t i o n i m m e d i a t e l y a b o v e t h e c.m.c. i n c r e a s e d r a p i d l y w i t h c o n c e n t r a t i o n , i . e . , w i t h r o u g h l y t h e same s l o p e a s b e l o w t h e c.m.c. (l4,15,39) b e f o r e d e c r e a s i n g at higher concentrations. No e v i d e n c e f o r s u c h a r a p i d i n c r e a s e a b o v e t h e c.m.c. h a s b e e n o b s e r v e d i n o u r work. Whether such i n c r e a s e s a r e p o s s i b l e when f i n e l y d i v i d e d s o l i d s h a v e i n t e r a c t i n g d o u b l e l a y e r s w i t h v a r i a b l e s p a c i n g s a n d s e p a r a t i o n s i s n o t known. The a p p a r e n t r e d u c t i o n i n t h e a d s o r p t i o n i n s e v e r a l s u c h s y s t e m s b e y o n d t h e maximum seems t o o c c u r t o o r a p i d l y a l s o t o b e e x p l a i n e d i n terms o f a simple p i c t u r e o f m i c e l l a r e x c l u s i o n . Thus, f o r e x a m p l e , i n t h e o r i g i n a l work o f V o i d a n d P h a n s a l k a r (39), w h i c h drew a t t e n t i o n t o t h e p r o b l e m o f a d s o r p t i o n maxima, t h e a d s o r p t i o n i s o t h e r m o f SDS o n c a r b o n d e c r e a s e s a b o v e t h e maximum w i t h a s l o p e o f a b o u t 10"^ ml/cm w h e r e a s a r o u g h e s t i m a t e b a s e d on t h e 66 e x c l u s i o n d i s t a n c e e m p l o y e d e a r l i e r , u s i n g 3.3 nm f o r δ a t t h e c.m.c. o f SDS, w o u l d b e 2 χ 10 ml/cm . A g a i n , t h e pos s i b l e complications o f i n t e r a c t i n g s o l i d p a r t i c l e s a t variable d i s t a n c e s o f s e p a r a t i o n remain t o be examined. 2
F o r some s o l i d s y s t e m s a g e n t l e d e c r e a s e i n t h e a p p a r e n t a d s o r p t i o n o c c u r s o v e r e x t e n d e d c o n c e n t r a t i o n r a n g e s , 10 t o 100 t i m e s t h e c.m.c. (15.). The m i c e l l a r e x c l u s i o n e f f e c t appears t o
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
8.
MUKERJEE AND
ANAviL
Adsorption
of Ionic Surfactants
123
be adequate f o r such systems, although other f a c t o r s may be i n volved also. Of c o n s i d e r a b l e i n t e r e s t i n t h i s connection are some b i n d i n g s t u d i e s o f i o n i c s u r f a c t a n t s w i t h h y d r o p h i l i c polymers (40,Ul) and non-ionic s u r f a c t a n t s (ho). The apparent b i n d i n g isotherms, ob t a i n e d from d i a l y s i s e q u i l i b r i u m s t u d i e s , appear t o show maxima at concentrations c l o s e t o o r somewhat above t h e c.m.c. f o r t h e d i a l y s a t e , when t h e r e t e n t a t e contains the nonpermeable polymer. The i n t e r p r e t a t i o n o f even such s o l u b l e systems i s d i f f i c u l t f o r t h e case o f polymers because of u n c e r t a i n t i e s about the p o l y mer dimensions. Some data (ko) on the b i n d i n g o f hexadecyl p y r i dinium c h l o r i d e (HDPC) t o Tween 80, a non-ionic s u r f a c t a n t w i t h a b u l k y s o r b i t a n p o l y o x y e t h y l e n e head group and having a low c.m.c. of about 0.0013$ (k2), are thus o f p a r t i c u l a r i n t e r e s t because compact m i c e l l e s are i n v o l v e d The data were obtained from d i a l y s i s s t u d i e s u s i n g nylo 80 but are permeable t 8 therm, the data p o i n t s f o r which were read from a l a r g e s c a l e graph p u b l i s h e d by Deluca and Kostenbauder (ho). The b i n d i n g r e s u l t s i n t h e formation o f mixed m i c e l l e s . I t appears t o i n c r e a s e beyond the c.m.c. o f HDPC, which was estimated t o be 1.0 χ 10~% (ho), before decreasing at higher c o n c e n t r a t i o n s . The i n c r e a s e i n b i n d i n g immediately above t h e c.m.c. may be caused i n p a r t by the presence of homologous i m p u r i t i e s . The lower homologues are ex pected t o b i n d l e s s t o the mixed m i c e l l e s . Since about 70% o f the HDPC added i s bound t o Tween 80 a t the c.m.c, t h e f r a c t i o n o f the lower homologues may be c o n s i d e r a b l y higher i n the d i a l y s a t e than i n t h e o r i g i n a l s u r f a c t a n t , r e s u l t i n g i n a h i g h e r apparent c.m.c. The mean slope above the maximum i n d i c a t e s t h e h i g h excluded volume o f about l60 ml/g o f Tween 80. The mixed m i c e l l e s have a mole f r a c t i o n o f about 0.75 o f HDPC a t the maximum as estimated from the uptake o f HDPC, and u s i n g t h e estimated molecular weight of ikOO f o r Tween 80, and a r e , t h e r e f o r e , h i g h l y charged. The excluded volume has a value o f about 91 ml/g o f mixed m i c e l l e , and about 2^0 ml/g o f hydrocarbon core i n the mixed m i c e l l e . To examine i f these extremely h i g h excluded volumes are reasonable i n terms o f the e x c l u s i o n o f m i c e l l e s o f HDPC from the e l e c t r i c a l double l a y e r s of the mixed m i c e l l e s o f HDPC and Tween 80, some comparisons w i t h mutual e x c l u s i o n s o f m i c e l l e s i n i n t e r m i c e l l a r i n t e r a c t i o n s are r e v e a l i n g . The second v i r i a l c o e f f i c i e n t s o f a s e r i e s o f a l k y l s u l f a t e m i c e l l e s have been i n v e s t i gated (13). The v i r i a l c o e f f i c i e n t s have h i g h v a l u e s , t h a t f o r SDS, f o r example, being k3 times the value expected i f t h e mi c e l l e s , without t h e i r double l a y e r s , are t r e a t e d as hard spheres. The m i c e l l e s w i t h t h e i r e l e c t r i c a l double l a y e r s thus behave l i k e e q u i v a l e n t hard spheres o f much l a r g e r r a d i i than those o f t h e m i c e l l e s themselves. I f these r a d i i are c a l c u l a t e d from the appropriate molecular weights, d e n s i t i e s and the second v i r i a l c o e f f i c i e n t s , and expressed as r + ko where r i s t h e r a d i u s o f the m i c e l l e , δ i s t h e double l a y e r t h i c k n e s s , and k i s a propor-
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
ADSORPTION
A T INTERFACES
10,
ο
jo-o
. Ο —
£
7
Χ
.
Λ
Λ —
t
••crac.
0
I
1
1
J
EQUIL. CONC
Figure 7. Variation of equilibrium solution pH with equilibrium concentrations at 30° C. Q = STDS with Bio-Gfos 200 (I), Δ = TDPB with Bio-Gkis 500 (II).
0
2 FREE
4
6
8
HDPC (mole/i χ Ι Ο ) 3
Figure 8. Adsorption (binding) isotherm of hexadecyl pyridinium chloride to 0.2% Tween 80 from dialysis equilibrium at 30°C. Data from reference (40).
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
8.
MUKERJEE
AND
ANAviL
Adsorption of Ionic Surfactants
125
t i o n a l i t y constant, so t h a t the average equivalent distance be tween the m i c e l l e centers i s 2(r + kô), the value o f k i s 1.0 for o c t y l s u l f a t e s , 1.25 f o r d e c y l s u l f a t e s and 1.3^ f o r dodecyl s u l f a t e s at t h e i r r e s p e c t i v e c.m.c. s. Thus the double l a y e r con t r i b u t i o n t o the e f f e c t i v e radius i s of the order of δ or g r e a t e r . For an approximate c a l c u l a t i o n of the e x c l u s i o n o f HDPC m i c e l l e s from the mixed m i c e l l e s of HDPC and Tween 80 u s i n g an equivalent hard sphere treatment, we assume t h a t both m i c e l l e s have the same r a d i i of the hydrocarbon core, 2 nm, and the double l a y e r c o n t r i b u t i o n t o the e f f e c t i v e r a d i u s , d' i n nm, i s a l s o the same. The volume around each mixed m i c e l l e excluded t o HDPC mi c e l l e centers i s given by t h a t of a sphere of r a d i u s 2(2 + d")nm. Assuming the d e n s i t y of the m i c e l l a r cores t o be u n i t y , the ex cluded volume of 2k0 ml/g of hydrocarbon core i n d i c a t e s t h a t the r a t i o of 2(2 +
173
E x c l u s i o n of Polymers. The pronounced e x c l u s i o n s of co-ions and i o n i c m i c e l l e s from charged surfaces discussed above are c l e a r l y the r e s u l t of the long range of e l e c t r i c a l i n t e r a c t i o n s . For s m a l l uncharged s o l u t e s , such i n t e r a c t i o n s are expected t o be much weaker. For p o l y e l e c t r o l y t e s and even uncharged polymers, however, s o l u t e e x c l u s i o n from adsorbed surfaces may be expected t o be h i g h , i n view of the pronounced excluded volume i n t e r a c t i o n s they e x h i b i t i n s o l u t i o n . The i n t e r p r e t a t i o n of t h e i r a b s o r p t i o n isotherms would r e q u i r e an e v a l u a t i o n of t h i s f a c t o r . Acknowledgment s P a r t i a l f i n a n c i a l support of t h i s work by the General Research Support Grant by the P u b l i c Health S e r v i c e s i s g r a t e f u l l y acknow ledged. The authors thank Mr. Y. S. Yang f o r h e l p w i t h some of the experiments. Summary The problems a s s o c i a t e d w i t h the i n t e r p r e t a t i o n o f the adsorp t i o n and b i n d i n g of i o n i c s u r f a c t a n t s are reviewed and a t t e n t i o n i s drawn t o the p o s s i b l y important r o l e s of co-ion e x c l u s i o n s and e x c l u s i o n s of m i c e l l e s from s i m i l a r l y charged s u r f a c e s . The ad s o r p t i o n of two homologous c a t i o n i c and a n i o n i c s u r f a c t a n t s t o porous g l a s s (Bio-Glas) w i t h average pore diameters of about l6 nm and 35 nm have been s t u d i e d w i t h s p e c i a l a t t e n t i o n t o e q u i l i b r i u m
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
126
ADSORPTION AT INTERFACES
concentrations above the c.m.c. The adsorption of the cationic surfactants below the c.m.c. is associated with some ion exchange. The adsorption of the anionic surfactants is considerably lower than that of the cationics as expected from the negative charge on the glass surface. Above the c.m.c. the apparent adsorption of the cationics remains constant or increased slightly but that for the anionics decreases and sometimes becomes negative at high con centrations. This decrease, and the associated adsorption maxima, are attributed to the micellar exclusion effect and the plausibi l i t y of its magnitude is examined. The increase in the adsorption of the cationics above the c.m.c. is shown to require small con tributions from other factors such as increasing monomer activity above the c.m.c. to compensate for the micellar exclusion effect. The adsorption of the cationics is increased in presence of added electrolytes. In systems in which large asymmetric micelles form an apparent reduction i served in presence of hig to the exclusion of large micelles for steric reasons. The role of micellar exclusion in the interpretation of adsorption iso therms of surfactants on solids as also binding isotherms to poly mers and micelles, obtained from dialysis equilibrium studies, is discussed. It is shown that the exclusion of micelles gives an adequate explanation of the maxima observed in a binding isotherm of cetyl pyridinium chloride above its c.m.c. to an impermeable non-ionic detergent, Tween 80, in the micellar form. The possible importance of solute exclusion effects for adsorption studies with polymers and polyelectrolytes is indicated. Literature Cited 1. 2.
Haller, W., Nature (1965), 206, 693. Cantow, M. J . R., and Johnson, J . F . , J . Polym. Sci., A-l (1967), 5, 2835. 3. van Oss, J., in "Progress in Separation and Purification," E. S. Perry, Ed., Vol. 1, John Wiley, New York, 1968. 4. Jones, J. Κ. Ν., and Stoddart, J. F . , Carbohyd. Res. (1968), 8, 29. 5. Haller, W., J. Chromatog. (1968), 32, 676. 6. Cooper, A. R., and Johnson, J . F . , J. Appl. Polym. Sci. (1969) 13, 1487. 7. Hair, M. L. and Filbert, Α. Μ., Research/Development (1969), 20, 31. 8. Ginn, M. E . , in "Cationic Surfactants," E. Jungermann, Ed., Surfactant Science Series, Vol. 4, Marcel Dekker, New York, 1970. 9. van Olphen, Η., "An Introduction to Clay Colloid Chemistry," John Wiley, New York, 1963. 10. Loeb, A. L . , Overbeek, J . Th. G., and Wiersema, P. Η., "The Electrical Double Layer Around a Spherical Particle," M. I. T. Press, Cambridge, Mass., 1961.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
8. MUKERJEE AND ANAVIL
Adsorption of Ionic Surfactants
11.
127
van Dolsen, Κ. Μ., and Vold, M. J., in "Adsorption from Aqueous Solution," Advances in Chemistry, Series No. 79, American Chemical Society, Washington, D. C., 1968. 12. Overbeek, J . Th. G., Prog. Biophys. Biophys. Chem. (1956), 6, 58. 13. Huisman, H. F . , Proc. Konink. Ned. Akad. Wetenschap. (1964), B67, 407. 14. Moilliet, J. L . , Collie, B., and Black, W., "Surface Activ ity," 2nd ed., van Nostrand, Princeton, N. J., 1961. 15. White, H. J., J r . , in "Cationic Surfactants," E. Jungermann, Ed., Surfactant Science Series, Vol. 4, Marcel Dekker, New York, Ν. Υ., 1970. 16. Barrall, Ε. Μ., and Cain, J. H., J. Polym. Sci., Part C (1968), 21, 253. 17. Anacker, E. W., and Ghose H M. J Am Chem Soc (1968) 21, 253. 18. Mukerjee, P. andMysels tions of Aqueous Surfactant Systems," NSRDS-NBS 36, Superin tendent of Documents, Washington, D. C., 1971. 19. Mukerjee, P., Anal. Chem. (1956), 28, 870. 20. Tamamushi, Β., in "Colloidal Surfactants," K. Shinoda, T. Nakagawa, B. Tamamushi, and T. Isemura, Eds., Academic Press, New York, Ν. Υ., 1963. 21. Overbeek, J. Th. G., in "Colloid Science," H. R. Kruyt, Ed., Vol. I, Elsevier, New York, Ν. Υ., 1952. 22. Ter Minassian-Saraga, L . , J. Chim. Phys. (1960), 57, 10. 23. Smith, R. W., Trans AIME (1963), 226, 427. 24. Mukerjee, P. and Banerjee, K., J. Phys. Chem. (1964), 68, 3567. 25. Tadros, Th. F . , J. Colloid Interface Sci. (1974), 46, 528. 26. Tamamushi, B. and Tamaki, Κ., Proc. Intern. Cong. Surf. Activity, 2nd, London, Vol. 3, p. 449, Academic Press, New York, Ν. Y., 1957. 27. Ter Minassian-Saraga, L . , J. Chim. Phys. (1966), 2, 1278. 28. Somasundaran, P., Healy, T. W., and Fuerstenau, D. W., J. Phys. Chem. (1964), 68, 3562. 29. Benton, D. P., and Sparks, B. D., Trans. Faraday Soc. (1966). 30. Powney, J . and Wood, L. J., Trans. Faraday Soc. (l941), 37, 220. 31. de Haan, F. A. M., J. Phys. Chem. (1964), 68, 2970. 32. Mukerjee, P., Adv. Colloid Interface Sci. (1967), 1, 241. 33. Elworthy, P. Η., andMysels,K. J., J . Colloid Sci. (1966), 21, 331. 34. Abu-Hamdiyyah, M. andMysels,K. J., J. Phys. Chem. (1967), 71, 418. 35. Tadros, Th. F . , and Lyklema, J., J. Electroanal. Chem. (1969), 22, 9. 36. Mysels, K. J., J. Colloid. Sci. (1955), 10, 507. 37. Debye, P. and Anacker, E. W., J . Phys. Coll. Chem. (1951), 55, 644.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
128
ADSORPTION AT INTERFACES
38. 39.
Mukerjee, P . , J. Phys. Chem. (1972), 76, 565. Vold, R. D. and Phansalkar, Α. Κ., Rec. Trav. Chim. (1955), 74, 41. 40. Deluca, P. P. and Kostenbauder, H. B . , J. Amer. Pharm. Assn., Scientific Edition (1960), 49, 430. 41. Lewis, K. L. and Robinson, C. P . , J. Colloid Interface S c i . (1970), 32, 539. 42. Becher, P . , i n "Nonionic Surfactants," M. J . Schick, Ed., Surfactant Science Series, Vol. 1, p. 481, Marcel Dekker, New York, Ν. Υ., 1967.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
9 DTA Study of Water in Porous Glass CHAUR-SUN LING and W. DROST-HANSEN Laboratory for Water Research, Department of Chemistry, University of Miami, Coral Gables, Fla. 33124
Introduction The properties of water near many interfaces are notably different from the properties of bulk water (or bulk aqueous solutions). Examples of unusual properties in interfacial behavior have been reviewed by various authors (1-4) and a few specific examples will be reviewed briefly in this paper together with some recent calorimetric measurements on water near silica surfaces. The problem of the structure of bulk water remains unsolved; several excellent reviews of water structure have been presented recently (5-7). In view of the gap in our fundamental knowledge about water, it is hardly surprising that far less is known about the structure of water near interfaces. Nonetheless, some information is beginning to accumulate, suggesting various possible features of vicinal water structuring (3, 8-11). Specifically, it appears that more than one type of structure may be stabilized preferentially near an interface over a certain temperature interval, while other types of structures may prevail in other temperature intervals. Thus, relatively abrupt changes in properties of vicinal water have frequently been observed near the following temperature ranges: 14-16°; 29-32°; 44-46°; and 59-62°C. A review of the thermal anomalies and specifically, the role of this phenomenon in biological systems is given in (12). The occurrence of no less than four different transition regions suggests that there exists at least five different types of structures which may be stabilized adjacent to various interfaces. For this reason, it has been suggested previously (3, 9, 13) that the anomalies represent higher-order phase transitions in vicinally ordered structures. The purpose of the present study was to test this suggestion through a calorimetric study of the properties of water adjacent to silica surfaces. Before proceeding, attention is called to the fact that water - especially in the solid state - may indeed occur in a 129 In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
ADSORPTION
Β
A T INTERFACES
M
Zeitschrift fur Physikalische Chemie
Figure 1. Highly schematized drawing of disjoining pressure apparatus by Peschel (17). B, Balance beam; M, magnet; C, coil; A - A ' , optically polished quartz plates, submersed in liquid under study.
Naturwissenschaften
Figure 2. Arrhenius plot of viscosity of water between quartz plates (18) for various plate separations. 0> 30 nm; A, 50 nm; V, 70 nm; {j, 90 nm.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
9.
LING
AND DROST-HANSEN
Water in Porous Glass
131
l a r g e v a r i e t y of s t r u c t u r e s . Thus, at l e a s t e i g h t d i f f e r e n t , s t a b l e h i g h - p r e s s u r e p o l y m o r p h s e x i s t i n a d d i t i o n t o an i m p r e s s i v e a r r a y o f p o l y h e d r a l c l a t h r a t e s ( s e e p a r t i c u l a r l y 12_ pp. 55-60). I t w o u l d h a r d l y be s u r p r i s i n g i f somewhat s i m i l a r s t r u c t u r e d e l e m e n t s m i g h t e x i s t a d j a c e n t t o an i n t e r f a c e a n d b e t r a n s f o r m e d , a t s p e c i f i c c r i t i c a l t e m p e r a t u r e s , f r o m one t y p e o f s t r u c t u r e to another. The i m p o r t a n t q u e s t i o n h e r e i s w h e t h e r the changes r e p r e s e n t h i g h e r - o r d e r phase t r a n s i t i o n s o r f i r s t order phase t r a n s i t i o n s . O b v i o u s l y , a change f r o m , s a y , I c e I t o I c e I I , i s a f i r s t - o r d e r phase t r a n s i t i o n , c h a r a c t e r i z e d by a latent heat. I f , instead, v i c i n a l l y stabilized structures t r a n s f o r m f r o m one s t r u c t u r e t o a n o t h e r w i t h o u t a s p e c i f i c l a t e n t h e a t , t h e t r a n s i t i o n s w i l l be s e c o n d o r h i g h e r - o r d e r ( s e e 1 4 - 1 6 ) . 9
M e a s u r e m e n t s a r e r e p o r t e d i n t h i s p a p e r on t h e t h e r m a l e f f e c t s o b s e r v e d i n a DT to s i l i c a surfaces. Th d i s c r e t e (and r e l a t i v e l y i n v a r i a n t ) t e m p e r a t u r e s a r e r e a s o n a b l y w e l l c o n f i r m e d by t h e o b s e r v e d changes i n s l o p e s and b a s e l i n e s h i f t s o f t h e thermograms. I n a number o f c a s e s , s m a l l e n d o t h e r m i c p e a k s w e r e o b s e r v e d i n t h e thermograms ( p r i m a r i l y s e e n d u r i n g h e a t i n g ) , s u g g e s t i n g the o c c u r r e n c e of a l a t e n t heat of transition. However, t h e s e peaks w e r e by no means i n v a r i a b l y o b t a i n e d (and i n a few c a s e s , a p p a r e n t e x o t h e r m i c p e a k s w e r e , i n f a c t , encountered). The u t i l i t y o f a c a l o r i m e t r y a p p r o a c h t o the problem of the n a t u r e of the t h e r m a l t r a n s i t i o n s i n v i c i n a l water has been c l e a r l y demonstrated i n t h i s s t u d y , but the e x p e r i m e n t a l d i f f i c u l t i e s which were encountered p r e v e n t any f i r m c o n c l u s i o n s t o b e r e a c h e d r e g a r d i n g t h e s p e c i f i c n a t u r e of the t r a n s i t i o n s , i . e . , whether t r a n s i t i o n s a r e of f i r s t or h i g h e r - o r d e r . Background Before describing some p e r t i n e n t e a r l i e r w i l l be r e v i e w e d .
the r e s u l t s of the p r e s e n t i n v e s t i g a t i o n , r e s u l t s from s t u d i e s of v i c i n a l water
P e s c h e l ( 1 7 ) a n d P e s c h e l and A d l f i n g e r ( 1 8 , J.9) h a v e s t u d i e d the p r o p e r t i e s of l i q u i d s a t i n t e r f a c e s u s i n g a h i g h l y s e n s i t i v e e l e c t r i c b a l a n c e f o r m e a s u r i n g f o r c e s and d i s p l a c e ments o f two e x t r e m e l y c a r e f u l l y p o l i s h e d q u a r t z p l a c e s imm e r s e d i n t h e l i q u i d t o be s t u d i e d . F i g u r e 1 shows a h i g h l y s c h e m a t i z e d d r a w i n g o f t h e d e v i c e u s e d by P e s c h e l and A d l f i n g e r . With t h i s instrument, i t i s p o s s i b l e to determine the e f f e c t i v e , a v e r a g e v i s c o s i t y o f t h e w a t e r b e t w e e n t h e p l a t e s , as t h e ( e x c e e d i n g l y smooth) t o p p l a t e " s e t t l e s " o n t o t h e b o t t o m plate. O b v i o u s l y , t h e r a t e o f s e t t l i n g w i l l d e p e n d on t h e v i s c o s i t y o f t h e l i q u i d b e t w e e n t h e two p l a t e s . (Note t h a t the t o p p l a t e i s s l i g h t l y c u r v e d ; r a d i u s o f c u r v a t u r e , one m e t e r ; w h i l e the bottom p l a t e i s o p t i c a l l y f l a t ) . The r e s u l t s o f s u c h measurements a r e shown i n F i g u r e 2. Here the l o g a r i t h m o f the
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
ADSORPTION
,
A T INTERFACES
,
TnO' Wynt/cm j
10
20
30
40
50
SO
70
Figure 3. Disjoining pressure for various plate separations: a) 50 nm; b) 30 nm; and c) 10 nm
h*10 tcml 6
10
20
30
AO
50
60
70
Figure 4. Distance (h ) for which the disjoining pressure is 10 dynes/cm as a function of temperature +
4
2
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
9.
LING
A N D DROST-HANSEN
133
Water in Porous Glass
(apparent) v i s c o s i t y i s p l o t t e d as a f u n c t i o n of temperature f o r v a r i o u s p l a t e s e p a r a t i o n s . Note that d i s t i n c t maxima and minima are observed f o r a l l p l a t e separations s t u d i e d . This unusual Arrhenius p l o t i s one of the most astounding pieces of evidence f o r the existence of abrupt changes i n s t r u c t u r e of aqueous i n t e r f a c i a l l a y e r s , as discussed i n the I n t r o d u c t i o n . The apparatus has a l s o been used by P e s c h e l and A d l f i n g e r to measure the d i s j o i n i n g pressure between the two p l a t e s (19). Some r e s u l t s from t h i s study are shown i n Figure 3. The ob served d i s j o i n i n g pressure i s seen t o go through very sharp maxima at a number of temperatures, namely, near 13, 32, 45 and 61°C ( f o r a p l a t e s e p a r a t i o n of 50 nm). From the d i s j o i n i n g pressure data, Peschel and A d l f i n g e r c a l c u l a t e d the distance at which the d i s j o i n i n g pressure a t t a i n e d an a r b i t r a r i l y se l e c t e d value ( 1 0 dyne centimeter) Th r e s u l t i shown i n Figure 4, fro tures o f the thermal anomalies, j o i n i n g pressure reaches t h i s p a r t i c u l a r v a l u e , approaches 0.1 x H T cm ( O . l ^ m ) . The s t u d i e s by P e s c h e l and A d l f i n g e r have added s i g n i f i cant evidence f o r the e x i s t e n c e of h i g h l y anomalous tempera ture-dependent p r o p e r t i e s of water near a quartz s u r f a c e . Note a l s o that the d i s t a n c e over which the e f f e c t s are observed i s of the order of 0.1^//m - a distance which i s extremely l a r g e compared t o " c l a s s i c a l views" regarding s t r u c t u r a l e f f e c t s near an i n t e r f a c e (such as i m p l i e d i n statements about "adsorbed water", "surface m o d i f i e d water", "non-solvent water", e t c . ) . Distances of the order of 300 water molecule diameters are ob v i o u s l y of s i g n a l importance t o such d i v e r s e aspects o f aqueous surface and c o l l o i d chemistry as n u c l e a t i o n r a t e s , membrane phenomena, and c e l l p h y s i o l o g y , to mention but a few. The measurements reported by P e s c h e l and A d l f i n g e r were c a r r i e d out only w i t h pure water. However, thermal anomalies near q u a r t z i n t e r f a c e s have a l s o been observed f o r both pure water and aqueous s o l u t i o n s of e l e c t r o l y t e s by K e r r and Drost-Hansen (20). The instrument constructed by K e r r i s a long, t h i n - w a l l e d c a p i l l a r y , v i b r a t i n g i n an evacuated g l a s s c y l i n d e r . This device was o r i g i n a l l y developed by Thurn (21) for measurements of v i s c o s i t i e s (and more r e c e n t l y used f o r measurements of d e n s i t i e s ( 2 2 ) J The method was employed by F o r s l i n d (23) t o study the r h e o l o g i c a l p r o p e r t i e s of water. H i s r e s u l t s are shown i n Figure 5; the ordinate i n t h i s graph i s the h a l f - l i f e of the v i b r a t i o n times (t-^iy) Î a b s c i s s a i s the tem perature. I t i s seen that a notable maximum i n the h a l f - l i f e o f the v i b r a t i o n s occurs near 30°C. The measurements by K e r r have confirmed the r e s u l t s ob t a i n e d by F o r s l i n d . Figure 6 shows a t y p i c a l run obtained by K e r r , demonstrating an abrupt increase i n the h a l f - l i f e o f the v i b r a t i o n s near 30°C. S i m i l a r r e s u l t s have a l s o been obtained w i t h sodium c h l o r i d e s o l u t i o n s i n v a r i o u s concentrations (0.01; 4
4
t
n
e
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
ADSORPTION
Figure 6.
AT
INTERFACES
Half-life (T ),in seconds, of vibrations of water-filled, "hairpin" capillary as a function of temperature ( 20) 1/2
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
9.
LING
AND
Water in Porous Glass
DROST-HANSEN
135
0.05: 0.2,molar). However, f o r a 2 molar s o l u t i o n , the thermal anomalies disappeared. Figure 7 shows the r e s i s t a n c e of the c a p i l l a r y ( i n the v i b r a t i n g h a i r p i n c a p i l l a r y viscometer) as a f u n c t i o n of tempera t u r e . I t i s seen that near 30°C the temperature c o e f f i c i e n t of the r e s i s t a n c e changes s i g n . The change i n the r e s i s t a n c e curve i s remarkably abrupt, s i m i l a r to the changes i n the h a l f - l i f e of the v i b r a t i o n s . In a separate paper (10), one of us (W. D r o s t Hansen) has speculated on v a r i o u s molecular models to account f o r the r e s u l t s obtained i n t h i s study and has compared these f i n d i n g s to other s t u d i e s of temperature-dependent s u r f a c e p r o perties . As a f i n a l example of thermal anomalies, some recent data by Wiggins (24) w i l l be reviewed. Wiggins measured the adsorp t i o n of equimolar s o l u t i o n s i l i c a g e l . Equimola dium c h l o r i d e and potassium c h l o r i d e , or Na and Κ i o d i d e , or Na and Κ s u l f a t e were e q u i l i b r a t e d w i t h Davison s i l i c a g e l , type 950. Samples were "incubated" (with shaking) a t v a r i o u s temperatures o v e r n i g h t ; a f t e r e q u i l i b r a t i o n the supernatant l i q u i d was decanted from the s i l i c a g e l . Analyses were then made, u s i n g a flame photometer, of the c o n c e n t r a t i o n s of the Na and Κ i n the supernatant l i q u i d and the l i q u i d contained i n the pores of the s i l i c a g e l . For each i o n (sodium and potassium), a p a r t i t i o n c o e f f i c i e n t , A , was defined by the e x p r e s s i o n s :
[κΊο A
N a
+
.
(ι)
+
[Na ]i +
[Na ]o
(2)
where the s u b s c r i p t s i and o, r e s p e c t i v e l y , r e f e r to pore s o l u t i o n and b u l k s o l u t i o n . Using the two p a r t i t i o n c o e f f i c i e n t s , a s e l e c t i v i t y c o e f f i c i e n t , K|L was formed as the r a t i o of the two p a r t i t i o n c o e f f i c i e n t s (Equation 3 ) .
F i g u r e 8 shows the temperature v a r i a t i o n of the s e l e c t i v i t y c o e f f i c i e n t f o r the three s a l t combinations s t u d i e d . I t i s obvious that h i g h l y anomalous temperature dependencies e x i s t . For each p a i r of s a l t s , maxima are obtained near 15, 30, 45 and 60°C, i n amazingly good agreement w i t h the tempera tures proposed f o r thermal anomalies almost 20 years ago by one of us (W. Drost-Hansen) (13) and the temperatures r e p o r t e d by Peschel and A d l f i n g e r (19). The curves shown i n F i g u r e 8 are a l s o seen to be almost superimposable ( w i t h i n experimental
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
136
ADSORPTION
A T INTERFACES
Biophysical Journal
Figure 8. Selectivity coefficient, K for potassium-sodium ion distribution near silica gel surface as a function of temperature ( 24 ) K
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
Naj
9.
LING
AND
DROST-HANSEN
Water in Porous Glass
137
e r r o r s ) f o r the c h l o r i d e s and i o d i d e s and q u a l i t a t i v e l y s i m i l a r r e s u l t s are found f o r s u l f a t e s . This degree of consistency i n the three s e t s of data, together w i t h the r a t h e r s m a l l d e v i a t i o n s f o r each p o i n t , makes i t u n l i k e l y i n the extreme that the observed temperature dependence i s caused by some random e x p e r i mental e r r o r . Note a l s o that the values f o r the s e l e c t i v i t y c o e f f i c i e n t are a l l greater than one - no doubt a p o i n t of c r u c i a l importance i n c e l l u l a r b i o l o g y where p r e v i o u s l y " a c t i v e t r a n s p o r t " was i n v a r i a b l y invoked to e x p l a i n the unusual d i s t r i b u t i o n of potassium and sodium. Experimental Procedures A. M a t e r i a l s and Procedures. The s i l i c a used i n the pre sent study was obtaine of a s i l i c a t e g l a s s w i t ("Bioglas"). The m a t e r i a l i s f r e q u e n t l y used f o r g e l permeation chromatography; v a r i o u s p r o p e r t i e s of the " B i o g l a s " porous ma t e r i a l has been reported by Cooper, £t JUL. (26). Samples were a v a i l a b l e w i t h average pore diameters of 20, 100, 200 and 250 nm. The water used was obtained from a M i l l i p o r e Super-Q i o n ex change system. Several methods were employed f o r studying the e f f e c t s of the p r o x i m i t y of the water t o the s i l i c a s u r f a c e . A p a r t i c u l a r l y u s e f u l approach c o n s i s t e d i n comparing two samples w i t h i d e n t i c a l amounts of water and i d e n t i c a l amounts of porous g l a s s , but d i f f e r i n g i n pore diameters. This method w i l l be r e f e r r e d to as the "double d i f f e r e n t i a l method". The various techniques used i n these experiments (to en hance any p o s s i b l e e f f e c t of the water near i n t e r f a c e s ) are summarized below. I.a) Equal amounts of porous g l a s s (of i d e n t i c a l l y same pore diameter) were weighed out i n aluminum l i n e r s f o r the c a l o r i m e t e r cups, but d i f f e r e n t amounts of water were added ( u s u a l l y 4 m i c r o l i t e r t o one cup and 5 m i c r o l i t e r to the other cup) on top of the dry m a t e r i a l s (by means of a m i c r o p i p e t ) . I.b) Samples of i d e n t i c a l amounts and type of porous g l a s s were placed i n d e s s i c a t o r s w i t h d i f f e r e n t r e l a t i v e humi d i t i e s ( f o r at l e a s t two days). A f t e r an e q u i l i b r i u m s t a t e was reached (determined by successive weighings), samples of i d e n t i c a l pore diameters were s e l e c t e d and compared w i t h samples from d e s s i c a t o r s w i t h d i f f e r e n t r e l a t i v e h u m i d i t i e s . I. c) To the samples taken from the d e s s i c a t o r s w i t h d i f f e r e n t r e l a t i v e h u m i d i t i e s , an a d d i t i o n a l amount of water ( u s u a l l y 3 m i c r o l i t e r ) was added to both sample and reference material. I I . The double d i f f e r e n t i a l method used employed i d e n t i c a l amounts of porous Vycor m a t e r i a l , but w i t h d i f f e r e n t average pore diameters f o r sample and references. Normally the reference would be the l a r g e s t diameter m a t e r i a l ( u s u a l l y 250 nm). I n
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
ADSORPTION
AT
INTERFACES
Figure 10. Thermogram (Run #208) of water in porous glass beads. Pore diameter: 20 nm. Reference: 5 μΐ water; sample, 4 μΙ water; solid, 10 mg in each cup.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
9.
LING AND DROST-HANSEN
Water in Porous Glass
139
these cases, the f o l l o w i n g separate c o n d i t i o n s were u t i l i z e d : I I . a ) I d e n t i c a l amounts of water were added to the samples ( u s u a l l y 5 m i c r o l i t e r s ) . This gives a s t r a i g h t f o r w a r d "double d i f f e r e n t i a l " run. II.b) Samples were p l a c e d i n d e s s i c a t o r s w i t h the same r e l a t i v e humidity f o r a t l e a s t two days. A f t e r an e q u i l i b r i u m s t a t e had been reached, d i f f e r e n t average pore diameter samples were s e l e c t e d . This gives a "double d i f f e r e n t i a l " s e t of data w i t h v a r y i n g s m a l l amounts of (mostly adsorbed) water (due t o adsorption and, i n p a r t , c a p i l l a r y condensation). I I . c ) Samples were used w i t h d i f f e r e n t average pore d i a meters, maintained i n a d e s s i c a t o r a t i d e n t i c a l r e l a t i v e , humi d i t i e s . To these samples an a d d i t i o n a l amount ( u s u a l l y 5 micro l i t e r ) of water was added t o the sample and r e f e r e n c e m a t e r i a l . B. Instrumentation used w i t h a c a l o r i m e t e r c e l l (DuPont, Model 900350). Various h e a t i n g r a t e s and s e n s i t i v i t i e s have been employed. Generally, the h e a t i n g r a t e s were of the order o f 2° per minute ( r e l a t i v e l y slow); the s e n s i t i v i t i e s were u s u a l l y (0.1 or) 0.2° per i n c h (near maximum s e n s i t i v i t y ) . One p a r t i c u l a r experimental d i f f i c u l t y has made q u a n t i t a t i v e estimates d i f f i c u l t o r f r e q u e n t l y i m p o s s i b l e , namely, s l i g h t asymmetric e v a p o r a t i o n from the samples. To minimize the evaporation, some runs were made using a " l i q u i d - l i d " : a p p r o x i mately 5 m i c r o l i t e r of dodecane was c a r e f u l l y p i p e t t e d i n t o each cup on top of the porous g l a s s plus water samples. The a d d i t i o n of dodecane i s not expected to a f f e c t the o v e r a l l thermal p r o p e r t i e s , although experimentally the s i t u a t i o n has been compli cated by the i n t r o d u c t i o n o f both a s i l i c a / d o d e c a n e and water/ dodecane i n t e r f a c e . However, comparisons of experiments w i t h and without the organic l i q u i d s t r o n g l y suggest that the e f f e c t of the dodecane i s merely the ( p a r t i a l ) suppression o f evapora t i o n e f f e c t s , as intended. R e s u l t s and D i s c u s s i o n The t y p i c a l thermograms are shown i n Figures 9 and 10. Ex perimental d e t a i l s and summary remarks of f i n d i n g s from represen t a t i v e runs are l i s t e d i n Table I . Some a d d i t i o n a l comments are a p p r o p r i a t e : i n runs i n which d i f f e r e n t amounts of water have been used, i t i s to be expected that a d e f i n i t e b a s e l i n e slope should be observed; however, the " b a s e l i n e " i s not s t r a i g h t , but curved. This i s probably due to d i f f e r e n t r a t e s of evapora t i o n of water from sample and reference cups; such evaporation may p o s s i b l y r e s u l t i n an exponential c o n t r i b u t i o n t o the base line. (The i n i t i a l p a r t of the c u r v e , approximately over a 3-5° i n t e r v a l , r e f l e c t s an i n s t a b i l i t y c h a r a c t e r i s t i c of the be ginning o f each thermogram, and t h i s p a r t of each curve was d i s regarded) .
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
(d
ùl
4
5 5
100
250 250
100
100 20
216
218 145
/(I
Lil
4
20
20
208
5 5
5
5
5
al
4
20
20
184
Cd
Yd
til
id
id
95% RH + 3 Kl
52% RH + 3,til
20
20
289
95% RH + 3 Ul
52% RH + 3/(1
20
20
Ref.
Sample
Loading
299
Run #
Pore diameter (nm) Sample Ref.
0.1 0.2
0.1
2
2 2
0.1
2
0.1
0.1
2
0.5
0.1
°C/in.
Sensitivity
2
Heating Rate °C/min.
Table I . Data from Thermograms; Water i n Porous Glass Beads.
abrupt o f f s e t i n baseline change i n s l o p e offset i n baseline; change i n s l o p e s i . change i n s l o p e . offset i n baseline; change i n s l o p e change i n s l o p e large offset i n b a s e l i n e ( o r exo thermic p e a k ? ) ; change i n s l o p e
43 58 47
59 52 63
41
32
43
s i . endothermic peak; change i n slope s i . endothermic peak; change i n slope s i . endothermic peak; change i n slope
48
Temp. °C
Features
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
98% RH
250
100
306
95% RH
100
262
pX JUX
//X
20
20
261
5
95% RH
20 20
148 151
250
5 jul
1UÔ
20
162
250
98% RH
95% RH
95% RH
2
2
2
2 2
2
5 jui 3 /tl 3 'JUX
2
2
Heating Rate °C/min.
/a
5
/u\
5
5/ c l
3 3
20
150
250
Ref.
Sample
Loading
250 250
20
146
Run #
Pore diameter (nm) Sample Ref.
0.1
0.5
0.5
0.2 0.2
0.2
0.2
0.2
°C/in.
47;50
43-47 49
62
65
63
Temp. °C
45
large offset i n baseline large offset i n baseline large offset i n baseline offset i n baseline abrupt o f f s e t i n baseline abrupt changes i n slope abrupt changes i n slope i n f l e c t i o n point
Features
46;49
(Continued)
Sensitivity
Table I . Data from Thermograms; Water i n Porous Glass Beads.
142
ADSORPTION
AT
INTERFACES
The occurrence of s m a l l (apparent) endothermic peaks, and p a r t i c u l a r l y changes i n s l o p e are c h a r a c t e r i s t i c of the r e s u l t s p e r s i s t e n t l y obtained i n the present study. Because of non l i n e a r b a s e l i n e s l o p e , some of the data from these experiments have been r e p l o t t e d on a l o g a r i t h m i c scale, log(Z\T)vs. Τ . No t h e o r e t i c a l j u s t i f i c a t i o n can be made f o r t h i s procedure. How ever, i f indeed the curvature i s r e l a t e d to an e x p o n e n t i a l term i n temperature, i t i s reasonable that t a k i n g l o g a r i t h m of AT may remove some of the i n c u r v a t i o n . This has been observed i n many ins tances. Sometimes very abrupt decreases occurred i n ΔΊ near 70° to 80°C; t h i s e f f e c t i s probably an a r t i f a c t due to r a p i d , asymmetric e v a p o r a t i o n . In a l l , more than 350 runs have been made. The r e s u l t s of some of these are summarize Table I I a r e l i s t e d th and/or o f f s e t s i n b a s e l i n e and/or endothermic peaks have been observed. The m a t e r i a l used i n a l l of these runs had an average pore diameter of 20 nm. Table I I I shows s i m i l a r r e s u l t s obtained on i d e n t i c a l amounts of porous g l a s s w i t h an average pore diameter of 100 nm. A g a i n , the temperatures l i s t e d are those at which thermal anoma l i e s were observed, such as changes i n s l o p e , o f f s e t i n base l i n e , or endothermic peaks. Table IV shows s i m i l a r data f o r m a t e r i a l w i t h a 250 nm average pore diameter. Table V l i s t s r e s u l t s obtained by the double d i f f e r e n t i a l method, using 250 nm average pore diameter m a t e r i a l as r e f e r ence and 20 nm m a t e r i a l as sample. Table VI i s s i m i l a r to Table V, but f o r 100 nm v s . 20 nm. Table V I I i s s i m i l a r to t a b l e V, but f o r 250 nm vs. 100 nm. Table V I I I summarizes the r e s u l t s from the combined runs shown i n Tables I through V. The average temperatures of t r a n s i t i o n s f o r " r e g i o n s " I I , I I I and IV agree w e l l w i t h the tempera tures p r e v i o u s l y proposed f o r the t r a n s i t i o n s i n v i c i n a l water by one of us (W. Drost-Hansen). An anomaly near 74°C (Region V) appears not t o have been reported b e f o r e . Note that a number of anomalies were observed at temperatures where thermal anomalies have not p r e v i o u s l y been reported. The o r i g i n of these apparent anomalies i s by no means c l e a r , but i t i s c o n c e i v a b l e that the "spurious anomalies" (at temperatures other than those g e n e r a l l y encountered) may be r e l a t e d to the anomalies shown i n the study by P e s c h e l and A d l f i n g e r (19) f o r very t h i n f i l m s of water (10 nm p l a t e s e p a r a t i o n ) . I t i s unfortunate that l a r g e , and f r e q u e n t l y asymmetric, evaporation e f f e c t s are encountered, as these appear to i n f l u ence s i g n i f i c a n t l y a l l the thermograms obtained. However, i n s p i t e of the obvious experimental d i f f i c u l t i e s , i t i s c e r t a i n from these measurements that r a t h e r abrupt changes occur i n the thermal p r o p e r t i e s of the w a t e r / s i l i c a systems. The observed
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
378 379
95% RH (reference) 278 52% RH (sample) 288 289 (3 jjl i n both) 299 300 321 322 323 337
5 JjCl (reference) 4 JUl (sample)
7
Run Number 5 ul (reference) 177 4 ill (sample) 180 183 184 208 210 211 340 295 298 5 ici ( r e f e r e n c e ) 179 4 jUI (sample) 212
System
31 -
-
-
k
k
k
k
47 43 k
k
s
43
42
s
k
k
59 -
-
-
-
s
k
k
k
Region I I Region I I I Region IV 27-34°C 42-48°C 57-64°C 33^ 6p 57 32 42 47 64 43 57 33 -
-
-
-
-
Region I 12-18°C -
k
-
75
s
71.5
74
k
Region V 71-77°C -
k
k
56 67 50
38
-
s
s
s
k
49s
4 1 ^ 57k 56
5 6
53s
53k
Others (°C) -
Table I I . Data from Thermograms o f I d e n t i c a l Amount o f Porous Glass M a t e r i a l (with an average pore diameter o f 20 nm i n r e f e r e n c e and sample h o l d e r s ) . Various Water Contents.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
/Τ
(SontÎnS)
Footnote:
k: s:
S
n
1
r
e
f
r
R e
e
£
n
e
l o n
c
a
n
d
S II 27-34°C ^ 34k
e
P l e
64
" s
7
7 1
71.5
7 7
s
C
Revion V i_; " ° 3 7
Others Cfi) *
Various Water Contents
Region IV 57-fiA°n
holders).
Region III 42-48°C
s a m
small endothermic (or, rarely, exothermic) peak, change in slope or offset of baseline.
100% RH (reference) 340 98% RH (sample)
± &
8 ±
±
^ °? 12-18°C T ^
™
Data from Thermograms of Identical Amount of Porous Glass Material (with an average
Number 98% RH (reference) 292 78% RH (sample) 293
S y S t a n
Table II.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975. s
s
28
310
335 328
100% RH (reference) 95% RH (sample)
100% RH (reference) 52% RH (sample)
279
95% RH (reference) 52% RH (sample) (3 Ml i n both)
0
s
s
s
46 45
42
2
s
s
46 42 4 s
2
4 s
s
s
s
Region I I Region I I I Revion IV 27-34 Ç 42-48°C 57-64°C 59 62 45
33
245 246 272
100% RH (reference) 78% RH (sample)
Region I 12-18°C
294 297
220
10 ul (reference) 9 '/
Run Number 216 217 237 296 235 74
s
Region V 71-77°C
s
s
s
s
52 38
79
70
Others (°C)
Data from Thermograms of I d e n t i c a l Amount o f Porous Vycor M a t e r i a l (with an average pore diameter of 100 nm i n sample and r e f e r e n c e cup). Various Water Contents.
5 / 1 (reference) 4 / ' l (sample)
System
Table I I I .
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
190 301
273
309 325 133
5 /<1 (reference) 4 'jUl (sample)
95% RH (reference) 52% RH (sample)
98% RH (reference) 78% RH (sample)
Run Number
-
-
-
Region I 12-18°C
32 -
-
-
s
Region I I 27-34°C
s
s
s
45's
42
42 44
Region I I I 42-48°C
-
Region IV 57-64°C
-
Region V 71-77°C
38
s
Others (°C)
Data from Thermograms of I d e n t i c a l Amount of Porous Vycor M a t e r i a l (with an average pore diameter of 250 nm i n sample and r e f e r e n c e cup). Various Water Contents.
Sample
Table IV.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
139 140 143 145 146 150 156 158 160 161 162 163 164 215
148 149 151 138
of water i n both
of water i n both
Run Number
-
46
-
-_
k
43.5
_
-
-
_
—
-
s
Region I I I 42-48°C
-
-_ -
Region I I 27-34°C
-_ -
-
Region I 12-18°C
s
s
s
s
-
-
_
6-4
s
61β
60 64 60 64 64
s
Region IV 57-64°C
-
-
—
-
-
74 75
_
7-5 k
k
s
Region V 71-77°C
-
k
s
s
k
s
s
38 49
-
67
68 70
66
Others CO
Data from Thermograms of I d e n t i c a l Amounts but D i f f e r i n g Average Pore Diameters of Samples (Reference, 250 nm; Sample, 20 nm).
System
Table V.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
219 232 233
261 262
265
95% RH (reference) 95% RH (sample)
100% RH (reference) 100% RH (sample)
Run Number
al of water i n both
5
System
-
-
Region I 12-18°C
Region I I 27-34°C
s
45.5
47
s
Region I I I 42-48°C
-
-
Region IV 57-64°C
-
Region V 71-77°C
k
54S
53 ,66 55s 66
s
Others (°C)
Table V I . Data from Thermograms of I d e n t i c a l Amounts b u t D i f f e r i n g Average Pore Diameters o f Samples (Reference, 100 nm; Sample, 20 nm).
k
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
218 221
257 256
306
5 Jul of water i n both
95% RH (reference) 95% RH (sample)
98% RH (reference) 98% RH (sample)
Run Number
Region I 12-18°C
Region I I 27-34°C
46
s
Region I I I 27-34°C
-
-
Region IV 42-48°C
-
Region V 57-64°C
38
52 52
s
s
s
Others (°C)
Data from Thermograms of I d e n t i c a l Amounts but D i f f e r i n g Average Pore Diameters of Samples (Reference, 250 nm; Sample, 100 nm).
System
Table V I I .
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
32.0
43.8
61.5
73.8
III
IV
V
Average Temperature (°C)
+1.5
+2.5
+2.2
+ 1.8
Standard D e v i a t i o n ( c5" )
8
15
25
8
Number of P o i n t s
6
13
19
6
Number of P o i n t s i n ~ 6*
Average Temperatures of Thermal Anomalies O c c u r r i n g i n Regions I I - V .
II
Region
Table V I I I .
9.
LING
AND
DROST-HANSEN
Water in Porous Glass
151
anomalies are mainly changes i n s l o p e , displacements of base l i n e , or ( l e s s f r e q u e n t l y ) s m a l l endothermic peaks ( i n heating curves). The changes i n slope and the changes i n b a s e l i n e w i l l be discussed f i r s t . As a l l the r e s u l t s were obtained w i t h a c a l o r i m e t e r c e l l , the changes r e f l e c t v a r i a t i o n s i n s p e c i f i c heat and/or heat c o n d u c t i v i t y . I n e i t h e r case, such changes are most l i k e l y a s s o c i a t e d w i t h changes i n the s t a t e of water at the s i l i c a / w a t e r i n t e r f a c e . Most l i k e l y , the changes are due p r i m a r i l y to v a r i a t i o n s i n heat c a p a c i t y . However, whether the changes are i n the heat c a p a c i t y or due to changes i n thermal c o n d u c t i v i t y , these changes must r e f l e c t s t r u c t u r a l phenomena. Unusual changes i n thermal c o n d u c t i v i t y of b u l k water have been reported by Frontasev (27). However, those changes are l i k e l y spurious e f f e c t s due to i n t e r f a c i a l phenomena, as discussed by one of us (9, 2J3, 29) r a t h e r than m a n i f e s t a t i o n s of a b u l k pro p e r t y . Metzik and Aidanov thermal c o n d u c t i v i t i e b r i e f survey a r t i c l e by M e t z i k , et a l . , (31). F i n a l l y , note t h a t any change i n s t r u c t u r e i s l i k e l y to r e s u l t i n changes i n both the s p e c i f i c heat and the thermal c o n d u c t i v i t y . DTA has f r e q u e n t l y been used f o r the study of anhydrous l i p i d s , aqueous l i p i d systems and various b i o l o g i c a l l y important membrane systems (32). Extremely complicated thermograms have been reported f o r human e r y t h r o c y t e membranes (33) and an i n t e r e s t i n g c l i n i c a l a p p l i c a t i o n of DTA has been reported by Heyd i n g e r , et a l . (34). Only r a r e l y has d i f f e r e n t i a l thermal a n a l y s i s been used s p e c i f i c a l l y to study the p r o p e r t i e s of i n t e r f a c i a l water (see, however, B u l g i n and Vinson) (35). We observe i n passing that thermal anomalies are found at or near the same temperature regions i n i n t e r f a c i a l p r o p e r t i e s of water adjacent to a l a r g e v a r i e t y of m a t e r i a l s , i n c l u d i n g i o n i c , p o l a r and non-polar s o l i d s . This s u r p r i s i n g observation has been r e f e r r e d to as the " p a r a d o x i a l e f f e c t " (12, 36). The r o l e of adsorbed water on v a r i o u s h y d r o p h i l i c surfaces has been s t u d i e d by Bernett and Zisman (37), who conclude t h a t "the c r i t i c a l s u r f a c e t e n s i o n , as w e l l as the s u r f a c e energy of c l e a n , high-energy h y d r o p h i l i c s o l i d s ( l i k e b o r o s i l i c a t e g l a s s , fused quartz and c r y s t a l l i n e ctf-alumina) a f t e r exposure to a humid atmosphere i s dependent upon the s u r f a c e concentration of water adsorbed on that s u r f a c e , but that i t i s independent of the chemical nature of the underlying s o l i d " . They f u r t h e r conclude that t h i s observation may l i k e l y be extended to any other h i g h energy h y d r o p h i l i c s u r f a c e (metals and metal o x i d e ) . An i n t e r e s t i n g review of the p r o p e r t i e s of water near surfaces has been reported by Hartkopf and Karger (38), who have s t u d i e d aqueous i n t e r f a c i a l p r o p e r t i e s by gas chromatography. This study - w h i l e not n e c e s s a r i l y g e n e r a l l y c o n s i s t e n t w i t h the f i n d i n g s by Drost-Hansen [compare p a r t i c u l a r l y w i t h Ref. (3)] - i s i g n i f i c a n t , as i t provides an experimental approach to the im p o r t a n t , but f r e q u e n t l y neglected, area of study of l a y e r s of s
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
152
ADSORPTION
AT
INTERFACES
water w i t h thicknesses ranging from 3 nm to about 200 nm. Other techniques f o r the study of l a y e r thicknesses i n t h i s r e g i o n have been reported by Tschapek and N a t a l e (39); see a l s o the a r t i c l e by Adamson regarding s t u d i e s of f i l m thicknesses w e l l exceeding monolayers (40). The s m a l l endothermic peaks observed i n some thermograms during h e a t i n g present a problem i n i n t e r p r e t a t i o n . Such peaks were f r e q u e n t l y , but not i n v a r i a b l y , observed. I t i s impossible to determine i f these peaks are " r e a l " or a r t i f a c t s . Assuming the peaks are indeed r e a l , and i f a l l the water i n the sample undergoes a f i r s t - o r d e r phase t r a n s i t i o n , the apparent heat of t r a n s i t i o n i s between 10 to 100 c a l / g mole water. While extremely s m a l l , such values are not e n t i r e l y unreasonable. R e c a l l that the l a t t i c e f r e e energies between Ice I and Ice I I i s only 19 c a l / g mole and that th hea f transitio adjacen high-pressure polymorph most, by 550 c a l / g mole and f r e q u e n t l y by only 200-300 c a l / g mole (6, 12) . One of us has already suggested that i n view of the ease w i t h which water molecules may be packed i n v a s t l y d i f f e r e n t s t r u c t u r e s , at r e l a t i v e l y minor e n e r g e t i c expenses, i t i s r e a sonable to assume that many d i f f e r e n t types of v i c i n a l water s t r u c t u r e may a l s o e x i s t - each w i t h i t s own thermal s t a b i l i t y domain. On the other hand, the f a c t that the endothermic peaks are not i n v a r i a b l y observed, as w e l l as the general behavior of the (thermal) p r o p e r t i e s of v i c i n a l water, suggest that the changes observed at the " c r i t i c a l temperature r e g i o n s " may r e f l e c t h i g h e r - o r d e r phase t r a n s i t i o n s (and t h u s , not be expected to be a s s o c i a t e d w i t h a heat of t r a n s i t i o n ) . A l a r g e change i n s p e c i f i c heat may p o s s i b l y g i v e r i s e to the "apparent" heat of t r a n s i t i o n . Furthermore, although i n p r i n c i p l e s t r a i g h t f o r w a r d , there appears to be some u n c e r t a i n t y as to the d i s t i n c t i o n be tween f i r s t and second-order phase t r a n s i t i o n s . See, f o r i n stance, the comments by Lieb (41) and by Mayer (42). While thermal anomalies are reported f r e q u e n t l y i n the l i t erature - where s u f f i c i e n t l y c l o s e l y - s p a c e d measurements have been made on i n t e r f a c i a l systems - n o t a b l e exceptions have been encountered. See, f o r i n s t a n c e , the u l t r a s o n i c study reported by Younger, et_ a l . (43). I t i s of i n t e r e s t to note that i n the p r e sent experiments, anomalous thermograms have been obtained under very w i d e l y d i f f e r i n g c o n d i t i o n s . Thus, comparisons of samples of porous glass exposed merely to d i f f e r e n t r e l a t i v e h u m i d i t i e s (say, 52% v s . 95%) have produced unmistakeable changes i n s l o p e . Q u a l i t a t i v e l y s i m i l a r r e s u l t s are a l s o obtained i n s t u d i e s where l a r g e amounts of water have been present ( f o r i n s t a n c e , 5 micro l i t e r s per 5 mg of s o l i d ) . This suggests that the phenomenon i s indeed an i n t e r f a c i a l phenomenon ( 9 ) , although the anomalies are c e r t a i n l y not p r i m a r i l y c h a r a c t e r i s t i c of a mono-molecular l a y e r or pauci-molecular l a y e r ; compare the d i s c u s s i o n of the depth of the v i c i n a l water as estimated on the b a s i s of the measurements by P e s c h e l and A d l f i n g e r (19). The study of the nature of the
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
9.
LING AND DROST-HANSEN
Water in Porous Glass
153
thermal anomalies is continuing in our laboratory by Differential Scanning Calorimetry (using sealed "cups" to eliminate the spur ious evaporation effects). Summary The data obtained from a DTA calorimeter study of water in samples of porous glass beads ("Bioglas", average pore diameters 20, 100, 200 or 250 nm) suggest that the water in these systems undergoes relatively sharp transitions over certain narrow tem perature intervals (notably near 30 to 33°C, 44 to 46°C and 59 to 52°C) in good agreement with earlier observations by DrostHansen C3, 8, 9, 10, Π ) , Peschel and Adlfinger (JU3, 19) and others (23, 24). Because of experimental difficulties (notably evaporation effects), i tainty i f the observed first-order phase transitions or higher-order phase transitions, as proposed earlier by one of us (9, 12). However, the data do confirm the existence of anomalous temperature dependencies in the thermal properties of interfacial water. Acknow1edgement One of us (W. Drost-Hansen) wishes to thank Dr. S. A. Bach for introducing him to the use of DTA (calorimetric) measure ments for the study of thermal properties of aqueous systems. The authors also wish to thank Professor Curtis R. Hare for helpful discussions; Mr. Lawrence Korson for his assistance in solving various experimental problems, and Ms. Lynda Weller for preparing the manuscript. Literature Cited 1.
Henniker, J . C.
Rev. Mod. Phys., (1949), 21(2), 322.
2.
Low, P. F.
3.
Drost-Hansen, W.
4.
Deryagin, Β. V., Ed. "Research i n Surface Forces", Vol. 3, Consultants Bureau, New York, 1971.
5.
Franks, F e l i x , Ed. "Water, A Comprehensive Treatise", Vols. 1,2,3,4,5, Plenum Press, New York, 1972, 1973, 1974.
6.
Eisenberg, D. and Kauzmann. "The Structure and Properties of Water", Oxford University Press, New York, 1969.
7.
Home, R. Α., Ed. "Water and Aqueous Solutions: Structure, Thermodynamics and Transport Processes", Wiley-Interscience, New York, 1972.
Advan. i n Agronomy, (1961), 13, 269. Ind. Eng. Chem., (1969), 61(11), 10.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
154
ADSORPTION AT INTERFACES
8.
Drost-Hansen, W. Ind. Eng. Chem., (1965), 57(4). (Also published in "Chemistry and Physics of Interfaces". Sympo sium Proceedings, Sidney Ross, Ed., Am. Chem. S o c ., Washing ton, D. C., (1965).
9.
Drost-Hansen, W. Chem. Phys. Lett., (1969), 2, 647.
10. Drost-Hansen, W. J . Geophys. Res., (1972), 77(27), 5132. 11. Drost-Hansen, W. Soc. Exp. Biology, Symposium Proceedings, (1972), XXVI, 61. 12. Drost-Hansen, W. in "Chemistry of the Cell Interface", B, H. D. Brown, Ed., Chapter 6, pp. 1-184, Academic Press, New York, 1969. 13. Drost-Hansen, W. Naturwissen., (1956), 43, 512. 14. Temperley, Η. Ν. V . , "Changes of State", Cleaver-Hume Press Ltd., London, 1956. 15. Ubbelohde, A. R., "Melting and Crystal Structure", Clarendon Press, Oxford, 1965. 16. Stanley, H. E. "Introduction to Phase Transitions and Critical Phenomena", Oxford University Press, 1971. 17. Peschel, G. Zeit. Phys. Chemie, Neue Folge, (1968), 59, 27. 18. Peschel, G. and Adlfinger, Κ. H. Naturwissen., (1971), 56, 558. 19. Peschel, G. and Adlfinger. Zeit. F. Naturforsch., (1971), 26a, 707. 20. Kerr, J . E. D., "Relaxation Studies on Vicinal Water", un published Ph.D. Dissertation, University of Miami, Coral Gables, Florida, 1970. 21. Thurn, Η., Materialprűf., (1963), 5(3), 114. 22. Kratky, O., Leopold, H. and Stabinger, H. Zeit. Angew. Physik., (1969), 27, 273. 23. Forslind, E. Svensk Naturv., (1966), 2, 9. 24. Wiggins, P. Μ., "Thermal Anomalies in Ion Distribution". Submitted for publication, 1974; see also Biophys. J., (1973), 13, 385.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
9.
LING AND DROST-HANSEN
Water in Porous Glass
155
25.
Wiggins, P. M. In press, J. Theoret. Biol., (1974).
26.
Cooper, A. R., Cain, J. H., Barrall, Ε. M., II and Johnson, J. F., Separ. Sci., (1970), 5, 787.
27.
Frontas'ev, V. P., Dokl. Akad. Nauk SSSR, (1956), III(5), 1014.
28.
Drost-Hansen, W. in equilibrium Concepts in Natural Water Systems", Adv. Chem. Ser., No. 67, pp. 70-120, American Chemical Society, Washington, D. C., 1967.
29.
Drost-Hansen, W. Proceedings First International Symposium on Water Desalination, Vol. I, pp. 382-406, U. S. Govern ment Printing Office
30.
Metzik, M. S. and Aidanova, 0. S. in "Research in Surface Forces", Vol. 2, Β. V. Deryagin, Ed., pp. 169-180, Consul tants Bureau, New York, 1966. See also ibid., Vol. 3, pp. 34-35, 1971.
31.
Metzik, M. S., Perevertaev, V. D., Liopo, V. Α., Timoschtchenko, G. T. and Kiselev, A. B. J . Colloid Interface Sci., (1973), 43, 662.
32.
Oldfield, E. and Chapman, D. Fed. Am. Soc. Exp. Biol. Letters, (1972), 23(3), 285.
33.
Jackson, W. Μ., Kostyla, J., Nordin, J. H. and Brandts, J. F. Biochem., (1973), 12(19), 3662.
34.
Heydinger, D. Κ., Hammer, E. J., Pgeil, R. W. and Taylor, P. H. J. Lab. Clin. Med., (1971), 77(3), 451.
35.
Bulgin, J . J . and Vinson, L. J. Biochimica Biophysica Acta, (1967), 136, 551.
36.
Drost-Hansen, W. Ann. Ν. Y. Acad. Sci., (1973), 204, 100.
37.
Bernett, K. and Zisman, W. A. J . Colloid Interface Sci., (1969), 29(3), 413.
38.
Hartkopf, A. and Karger, B. L. Accounts Chem. Res., (1973), 6, 209.
39.
Tschapek, M., Natale, I. and Santamaria, R. Kolloid-Z., Z. Polym., (1965), 211, 143.
40.
Adamson, A. J . Colloid Interface Sci., (1973), 44, 273.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
156
ADSORPTION AT INTERFACES
41.
Lieb, E. in "Phase Transitions", Solvay Institute, Proceedings XIV, Conference on Chemistry at University of Brussels, pp. 14-15, Interscience Publishers, London, 1971.
42.
Mayer, J. E. in "Phase Transitions", Solvay Institute, Proceedings XIV, Conference on Chemistry at University of Brussels, p. 15, Interscience Publishers, London, 1971.
43.
Younger, P. R., Zimmerman, G. O., Chase, C. E. and DrostHansen, W. J. Chem. Phys., (1973), 58(7), 2675.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
10 Monolayer Studies V . Styrene-Acrylic Acid Films on Aqueous Substrates ERWIN SHEPPARD and NOUBAR TCHEUREKDJIAN Chemical Research Department, S. C. Johnson and Son, Inc., Racine, Wis. 54303
Introduction Low molecular weight styrene-acrylic acid copolymers of varying degrees of polymerization were spread as monolayers on water and various salt solutions at neutral and alkaline pH's. The monolayer properties of high molecular weight styreneacrylic acid systems were studied by Müller (1), who could not attain complete spreading and consequently monolayers were not formed. Monomolecular film behavior of other high molecular weight copolymers have been studied successfully. For example, Fowkes et al. (2) have reported on C8-C18 α-olefins-vinyl acetate systems, Labbauf and Zack (3) have reported on methyl methacrylate-styrene systems, and Hironaka et al. (4) have discussed films of methyl acrylate and n-butyl acrylate copoly mers. Glazer (5) has reported on the spreading properties of ethoxylin resins with molecular weights from 400-2500 prepared by the reaction of epichlorohydrin and 4,4-dihydroxydiphenylpropane. The adhesive properties of these resins were corre lated with their interfacial spreading properties. Experimental Table I lists the styrene-acrylic acid, S/AA, copolymers studied, the number average molecular weights, Mn, and the acid numbers or neutralization values defined as milli-equivalents of base needed to neutralize one gram of the copolymer. The theoretical neutralization value was 4.5 meq. The starting monomer mole ratio for the polymerization was 0.41 for acrylic acid and 0.59 for styrene. The initiator used was benzoyl peroxide. The molecular weights were determined by vapor phase osmometry using ethanol as the solvent. Pressure-area isotherms at 22°C were determined by the Wilhelmy platinum hanging plate method with automatic recording of both the film pressure and the area (6). Minor modifications were incorporated in the design of Mauer's (7) analytical 157 In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
158
ADSORPTION A T INTERFACES
Table i . Sample 1 2 3 4 5 β 7
Description of Styrene/Acrylic Acid Copolymers Initiator Level (mole %) 0.5 1 2 3 5 6 7
Meq. of base/g of copolymer 4.89 4.32 4.18 4.12 3.96 3.96 3.80
M
n
2540 2400 2250 1750 1500 1280
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
10.
SHEPPARD
AND
TCHEUREKDjiAN
Styrene-Acrylic Acid Films
159
balance for recording changes in weight keeping the sensing plate nearly stationary. International Rectifier Type CS120V6 photocells were used in the Wheatstone bridge c i r c u i t , miniatur ized equivalent tubes in the amplifier c i r c u i t , and a 75 V D.C. power supply. The film trough and barriers used to clean the substrate surface and compress the monolayers were FEP Teflon-coated tool aluminum. The trough was rinsed with deionized water before each determination. Deionized d i s t i l l e d water and materials of highest purity available were used throughout. The mono layers were spread from 10% ethanol and 90% benzene (w/w) solu tions and were formed on deionized d i s t i l l e d water, on sub strates adjusted to pH=9, on dilute solutions containing various cations and on their hydroxides. About 15 minutes were allowed for the spread films to equilibrate before compression was started at a constant rat Gaines (8) has summarized most of the pertinent experi mental techniques and precautions to be used in measuring mono layer properties. Results and Discussion Terminology. Monolayers of styrene/acrylic acid low molec ular weight copolymers were studied i n order to determine the interfacial properties among the several samples of different molecular weights and acid values and to determine the effect of pH and of various cations on their spreading behavior at air/aqueous solution interfaces. The specific area, Ao> at zero film pressure was obtained by extrapolating the linear portion of pressure-area isotherm to the area axis as shown in Figure IB. In this study atypical 7Γ-Α curves as represented i n Figure 1A were obtained for the S/AA films under certain conditions. The pressures at which the isotherms deviated from linearity in the direction of higher compressibilities, - A " (dA/d7r)-r, were designated as 7 T , collapse pressure for the expanded region, and TTçç, collapse pressure for the condensed region. The former represented the i n i t i a l collapse point and the maximum film pressure in going from the higher areas to the transition region while the latter represented the f i n a l collapse pressure and the highest pressure attained prior to f i n a l collapse of the spread f i l m . The designations for the various regions of the isotherm were made purely for convenience i n this discussion and to describe the high and low area regions, and the transition area regions (areas between AQE and AQC)· Here AQE represents the extrapolated limiting value of the high area region and AQC represents the extrapolated limiting value of the low area region. 1
CE
Spreading of S/AA Copolymers on Water. Hydrocarbon homopolymers such as polyethylene and polystyrene do not spread
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
160
ADSORPTION A T INTERFACES
completely on water and water soluble polymers such as polyacrylic acid give unstable films on neutral substrates (8). Thus a proper balance of water soluble and water insoluble groups i s required in order to obtain stable, completely spread monolayers of copolymers. In Figure 2 are shown three typical pressurearea isotherms for the S/AA copolymers spread as monolayers at the air-water interface. Each of the seven copolymers exhibited the three distinct monolayer regions which are shown schematical ly i n Figure 1A. They have a highly compressible intermediate transition region as characterized by the A A Q = A O E - A O C value which i s the magnitude of the transition region. Monolayer film areas, collapse pressures, and A A Q ' S for the copolymers spread on water are recorded in Table II. A plot of A A Q VS. copolymer acid number i s given in Figure 3. When the linear region of the A A Q vs. copolymer acid number curve was extrapolated t o A A g ^ O was found to be about 4.5. In other words, a copolymer of this series with an acid number of at least 4.5 i s required i n order to enhance spreading without intermediate collapse pressure and transition regions. Copolymers with acid numbers less than 4.5 would have their characteristic p a r t i a l l y collapsed transition regions which divide the high and low film area regions of the isotherms. It i s fortuitous that the polymerization process u t i l i z e d a starting monomer composition with a theoretical neu tralization value of 4.5 meq. which i s numerically identical to the extrapolated limiting value of 4.5 meq. for the spread films when ΔΑο=0. In spite of the hydrophilic nature of the S/AA copolymers, collapse of the monolayers started at r e l a t i v e l y high film areas. The region over which collapse occurred i s controlled by the copolymer composition as stated above and shown in Figure 3. Therefore, the interfacial film properties of the copolymers may be altered at w i l l to give any desired surface intermolecular cohesion and film-substrate adhesional properties. The transition region, A A Q , extended over larger monolayer areas when the copolymer acid number was decreased. The lower molecular weight S/AA copolymers were relatively more hydrophobic when compared to the higher molecular weight samples as indicated in Table I. As the surface film pressure i s increased the nonfilm forming, hydrophobic portions of the copolymers are assumed to be squeezed out of the film carrying along some of their film forming neighbors. Depending upon the structure of the copoly mers, i t appears that more of a polymer chain could be squeezed out of the surface film with increasing polystyrene concentra tion i n the copolymer. At high pressures, the composition and structure of the copolymers appeared to dominate the AQC values while at lower pressures the strongly hydrophilic nature of the acrylic acid groups appeared to control the spreading character i s t i c s of the films without regard to the polystyrene content as indicated by the almost constant AQE values except for Sample 1 which appears to be a special case. These data are shown in
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
SHEPPARD
AND
TCHEUREKDjiAN
Styrene-Acrylic Acid Films
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
162
ADSORPTION AT INTERFACES
i9 g
W O
H
CM ^ -
^
^
ΙΛ
Ο
Ο
Ο
Ο
Ο
' Q <
U
Ο
Ο
C
ο «Λ g
υ
ο α, ο u
u
•Η
υ
bû Χ U υ
< ο
ε g
Ο
Η
Η
Ο
· rH
· p-J
· · »-=| ι Η
« ο «—« ι - ί
to
to
to
to
to
to
to
Ν Ν
Ο d
Ο 00
W Ν
<ί Ν
Κ) Ν
\Û 1/5
·
·
β
00
W
ο
Η
Ν
Η
C
ο •Μ CO
be
G
•Η
·§ υ
u ο*
CO Ο V) Ο
α: g Η
'
ω
β
·
·
C
ο © ο ο ο ο ο
Η
•a Eh
g*
Η
CM
to
^
ΙΟ Ο
Ν
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
10.
SHEPPARD
AND
TCHEUREKDjiAN
Styrene-Acrylic
Acid
Films
163
Table II. Thus, the structure of the high area film region may be considerably different from the structure of the low area region where the film exists in a p a r t i a l l y collapsed state. Be cause of the high r i g i d i t y of the copolymers, rearrangement of the surface films to different orientations at high pressures may not be probable. In the absence of a transition region ( A A Q ^ O ) , the struc ture of the film in the low pressure region could change gradu a l l y to the structure of the high pressure region. With further compression the film undergoes packing changes to minimize the surface film pressure. As a consequence, the film area decreases by the elimination from the spread film of portions of the chain not contributing significantly to film cohesion, substrate adhe sion, and total energy of the system. Therefore, the number of substrate contact points would be reduced without causing major structural changes such Detailed information such as copolymer configuration, end group contributions, and s o l u b i l i t y data are needed in order to explain the small transition region exhibited by Sample 1 and the variation of the individual AQC values observed for each f i l m . Glazer (5) found that for low molecular weight ethoxylin resins the chain terminating group had a pronounced effect on the monolayer properties and that isotherms of monolayers of poly-^-methyl-L-Glutamate spread on water had either CL-helix or /j-extended chain structure depending upon the polypeptide con figuration in the spreading solution and the composition of the spreading solution (10). Regardless of which copolymer was examined, the isotherms showed hysteresis once they passed the transition region and i n i t i a l collapse point, T^CE* The hyster esis loop was largest for Sample 7 and smallest for Sample 1; however, they were not reproducible from one determination to another. The uniform compression rate even though probably too fast for the formation of truly stable and f u l l y extended struc tures nevertheless was s u f f i c i e n t l y slow to give reversible isotherms u n t i l TTQE reached. w
a
s
Effect of Salts. Monolayers of copolymers 2 and 7 were formed on various aqueous salt solutions whose ionic strength was adjusted to 8xl0~4. Monolayer film areas and collapse pres sures are tabulated in Table III. The effect of adding soluble salts to the substrate was to shift the low area region of the 7Γ-Α curves to higher areas probably because of film-substrate interactions and thereby reduce the magnitude of the transition region. These changes in the film properties were independent of the size and shape of the cations. Moreover, the contribu tion of the various anions was indistinguishable from each other. As expected, the changes in the monolayer properties were due mainly to the cation charge. In the presence of aluminum and iron ions the transition region was eliminated. The complexing between the copolymer films and the trivalent cations and hydrated cations apparently was strong enough to form a r i g i d structure
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
ADSORPTION A T INTERFACES
164
a?
6
^ rH
5t ι—I Ο
H H ι—« r-H
Ν Ο
Ο
Ο
Ο
Ο
Ο
Ο
Tfr
LO tO ΙΛ Μ ^ ^ • • • • Ο Ο Ο Ο
^ Μ • Ο
CM I •
I
I ι
Ο
•a P. CO
G
<J
CO 10 Ο .
ce
se
tOvDrtCNvDvOTtr^
ν—J
ι — » t - l r H » - t » - l r H C M C M
t - H r H r H i — I r H i — ( C M C M
•^•OOlOOOvOvOrttO O O O O O O O O
O O O L O t O O O O O O O O f - H r H r H r H f - i r H O O
ω *,8 CO π
ι
«4-1 Ο
Ο rH
(Λ <υ
00 ιι
Χ
m bo to c
α> U Ou
bo CM
6 CM
in
Q>
ιο
υ
•H i-H Ο
Ο ·Η ^
Φ r-t
i—t
i
&
Ctf CO
CO
10
u ιο
CM σ » t o t o CM t o
e υ
rt
to
ο to
to
CM to
Ο to
L O CM V O Ι Ο to to to to
σ>
νΟ
to
Η
I ι
ctf
«H 10 Oj
U
b
C
Q>
bû G
C •H
Ο -H 4-> 3
e ^ •H i-3
Ο CO
bO
6
"îr •
H
Ο ο
^ cr>
Η ο
cr>
ΙΛ CT>
Ο
Ο
i-l
ο
ο
ο
Ο
ι ο οο ο
ο
Tj-
νΟ
οο ο
ο
ο
ο
·Η
<
•8
(0
1
0
f - l CM C M CM CM t O tO + + + + + + +
S 2 S U U N < f e
f - l CM CM CM CM t O
Mrt
birt
Ο tî Η
tO
fl)
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
10.
SHEPPARD
AND
TCHEUREKDjiAN
Styrene-Acrylic
Acid Films
165
u n t i l f i n a l collapse. In the case of univalent and divalent cations, because of somewhat weaker interactions once again par t i a l collapse, TTQJ:, occurred at relatively high areas. However, film folding was somewhat less than in the absence of cations as mentioned above. Effect of pH. Monolayers of Samples 2, 4, 6, and 7 were formed on water whose pH was adjusted to 9. Table IV contains the data for film areas, collapse pressures, and A A Q values. Monolayers of Samples 2 and 7 were formed on aqueous substrates adjusted to pH 9 which contained sodium, calcium, or zinc salts at an ionic strength of 8 x l 0 " . The limiting areas and collapse pressures of Samples 2 and 7 spread on salt solutions are shown in Table V. The pH adjustments were made with sodium hydroxide. Monolayers on aqueous solutions of pH 9. The copolymers 2, 4, 6, and 7 are ionized ues, the S/AA monolayers w i l l be a mixture of S/AA and S/AA". The most significant effect on the monolayer properties was the increase of the high pressure limiting area when compared to films spread on neutral water. The electrostatic repulsion of the ionized acrylic acid groups apparently caused the increase of the film area at low area regions. At high area regions, the ionization of the acrylic acid did not effect significantly the spreading characteristics of the polymers probably because the S/AA copolymers are relatively hydrophilic. On complete ionization, the expansion at low areas would be expected to be related to acrylic acid concentration in the spread f i l m . Such a relationship i s shown in Figure 4. On the average the films increased about 0.16 m /mg. of the copolymer or 0.54 m /mg. of acrylic acid. The s t a b i l i t y of the ionized films as indicated by the c o l lapse pressures was comparable to the unionized films. Apparent l y the decrease of the cohesiveness of the film due to ionization was balanced by the increase i n the interaction with the sub strate. Monolayers on aqueous salt solutions of pH 9. Monolayers of Samples 2 and 7 were formed on aqueous substrates at pH 9 con taining N a , C a , or Z n ions. For fatty acid molecules spread on salt solutions, the role of the cations has been known for a long time. The formation of r i g i d salt structures at the air-aqueous interface was considered to be the reason for the changes in the 7Γ-Α isotherms (8). The effect of sodium salts on the 7Γ-Α curves of S/AA" mono layers was n i l when compared to monolayers on pH 9 water and con sequently the isotherm was unaffected. With calcium and zinc ions in the substrate, the transition region was eliminated. The formation of diacrylates and condensation of the spread film ap pear to be distinct p o s s i b i l i t i e s in the light of existing e v i dence of solution interaction between ionized acrylates and cations to form various salts (11). Apparently, when the com pletely ionized spread films interact with divalent ions, collapse 4
2
2
+ 1
+ 2
+2
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
166
ADSORPTION A T INTERFACES
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
0.69 0.70 0.70 0.89
Na Ca Zn
+ 2
+ 2
+A
+ 2
+ 2
+
1.03 1.03 0.98 0.92
2
H0 Na 1 Ca Zn
2
AQQ (m /mg)
Substrate
TT (dynes) cm Sample 2 32 32 36 36 Sample 7 32 33 36 34
c c
1.11 1.09
1.06 1.06
E
2
A Q (m /mg) C
14 14
18 16
7 T E (dynes) cm
T a b l e v. Limiting Areas and Collapse Pressures of Samples 2 and 7 Spread at Air/pH=9 Aqueous Solution Interfaces (ionic strength=8xl0"4)
ADSORPTION A T INTERFACES
0.6
-
0.5
-
0.4l-
0.3l-
0.21-
0 . 1 k
o I
3.5
I
LI
4.0
4.5
I
1
5.0
5.5
Figure 3. The dependence of the transition region magnitude on the copolymer acid num ber. Abscissa = copolymer acid number, ordi nate = A (m /mg). 2
0
1.1
i.oL
ο.οί
ο.sU
0.7k
o. l 6
3.5
1
1
4.0
4.5
Figure 4. Limiting film areas as a function of acid number at pH = 9. Abscissa = acid num ber, ordinate = A c (m /mg). 2
0
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
10. SHEPPARD AND TCHEUREKDjiAN
Styrene-Acrylic Acid Films
169
at higher areas does not occur and only one structure dominates throughout. This situation was similar to the films spread on aqueous F e and A l salt solutions where the spread film was not completely ionized. The effect of the charge of trivalent cations apparently was strong enough to dominate the entire pres sure range. +3
+ 3
Conclusions In spite of the acrylic acid content of the copolymers the monolayers of many of the styrene-acrylic acid copolymers spread somewhat poorly on deionized water. Ionization of the acrylic acid groups aided in the spreading and stability of the spread films. Trivalent cations promoted the spreading of the films at neutral pH. Divalent cations promote spreading ionized at pH 9.0. A minimum copolymer acid level for complete spreading may be determined using copolymers of varying compositions and extrapolating the linear region of theAAg vs. copolymer acid concentration to zeroZiAg; and, As expected, the interfacial film properties of the copoly mers may be altered to give any desired ΤΓ-Α curves or surface properties. Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.
Müller, F. H., Ζ. Elektrochem. (1955), 59, 312 Fowkes, F. M., Schick, M. J., and Bond, Α., J. Colloid Sci. (1960), 15, 531 Labbauf, A. and Zack, J. R., J. Colloid Interface Sci. (1971), 35, 569 Hironaka, S., Kubota, T., and Meguro, K., Bull. Chem. Soc. Jap. (1972), 45, (11), 3267 Glazer, J. J., J. Polym. Sci. (1954), 13, 355 Sheppard, E. and Tcheurekdjian, N . , J. Colloid Interface Sci. (1968), 28, 481 Mauer, F. Α., Rev. Sci. Instrum. (1954), 25, 589 Gaines, G. L . , Jr., "Insoluble Monolayers at Liquid-Gas Interfaces," Interscience, New York, 1966 Crisp, D. J., J. Colloid Interface Sci. (1946), 1, 161 Loeb, G. I. and Baier, R. E . , J. Colloid Interface Sci. (1968), 27, 38 Davidson, R. L. and S i t t i g , M., Ed., "Water Soluble Resins," 2nd ed., Reinhold Book Corp., New York, 1968.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
11 Interaction of Calcium Ions with the Mixed Monolayers of Stearic Acid and Stearyl Alcohol at pH 8.8 D. O. SHAH Departments of Anesthesiology and Chemical Engineering, University of Florida, Gainesville, Fla. 32611
Introduction Molecular interactions in mixed monolayers are of impor tance in understanding the phenomena such as stability of foams and emulsions, retardation of evaporation by films, and reactions occuring at the cell-surface (1-12). Earlier studies on mixed monolayers of acids, amines, alcohols, ethers, and triglycerides were reported by Schulman and his coworkers (13-15). Similar studies were also reported by Harkins and his group (16-18). Various investigators (19-29) have studied the effect of di- and trivalent cations as well as the effect of pH of the subsolution on the ionic structure of fatty acid mono layers. The present paper reports our studies on the ion-dipole interaction between stearic acid and stearyl alcohol at pH 8.8, as well as the interaction of calcium ions with these mixed monolayers.
Materials and Methods Highly purifies (>99%) stearic acid and stearyl alcohol were purchased from Applied Science Laboratories, Inc., (State College, Penn. 16801). Lipid solutions of 0.8 to 1.0mg/ml concentration were prepared in methanol-chloroform-hexane (l/l/3v/v/v) mixture, where all solvents were of spectroscopic grade. Inorganic chemicals of reagent grade, and distilled— deionized water of electrical resistance 1.2 x 10 ohms/cm were used in all experiments. 6
The surface pressure was measured by a m o d i f i e d Wilhelmy p l a t e method, and the surface p o t e n t i a l was determined by using a r a d i o a c t i v e e l e c t r o d e , as described p r e v i o u s l y (30). The s t a t e of the monolayer was i n f e r r e d from the m o b i l i t y o f t a l c p a r t i c l e s s p r i n k l e d on the monolayers when a gentle stream of a i r was blown a t the p a r t i c l e s by means o f a dropper (31). Various s t a t e s of monolayers were q u a l i t a t i v e l y d i s t i n g u i s h e d on the b a s i s o f movement of t a l c p a r t i c l e s and designated as 170
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
11.
SHAH
Interaction of Calcium Ions
171
the s o l i d , g e l , v i s c o u s l i q u i d , o r the l i q u i d s t a t e . I n the s o l i d s t a t e , the t a l c p a r t i c l e s do not move a t a l l ; i n the g e l s t a t e they move very l i t t l e and stop; i n the v i s c o u s l i q u i d s t a t e they move but not f r e e l y ; whereas i n the l i q u i d s t a t e of monolayers the p a r t i c l e s move f r e e l y when the a i r c u r r e n t i s blown a t them. The s u r f a c e measurements were taken on the f o l l o w i n g subs o l u t i o n s : 0.05M t r i s b u f f e r + 0.02M NaCl, and 0.05M t r i s b u f f e r + 0.01M C a C l a t pH 8.8. The b u f f e r s o l u t i o n s were prepared according t o Biochemists' Handbook (32). 2
Theory The average area per molecule i n a mixed monolayer i s c a l c u a l t e d by d i v i d i n th t o t a l b th t o t a l numbe f molecules o f both component molecules o f both component occupy i n t h e i r i n d i v i d u a l monolayers, the p o i n t s f o r the average area per molecule o f the mixed monolayers would l i e on a s t r a i g h t l i n e j o i n i n g the two end p o i n t s f o r the pure components a t the same s t a t e of compression. A d e v i a t i o n from t h i s ' a d d i t i v i t y r u l e ' i n d i c a t e s condensation of the mixed monolayers e i t h e r due to an i n t e r a c t i o n o r i n t e r m o l e c u l a r c a v i t y e f f e c t i n the mixed monolayers (12,33). Surface p o t e n t i a l (AV) of a monolayer can be expressed as AV = Κημ, where Κ i s a constant, J ^ i s the number o f molecules per cm o f the f i l m ( i . e . , η = 10 /area per molecule i n 8 ) , and μ i s the r e s u l t a n t v e r t i c a l component of the d i p o l e moment of the molecule. Thus, AV/n = Κμ, where the term on the l e f t hand s i d e of the equation, r e p r e s e n t i n g the average p o t e n t i a l per molecule (mv/molecule), i s p r o p o r t i o n a l to the surfaçg d i p o l e moment μ o f the^molecule. Hence, AV/n = AV χ 10 χ area per molecule i n X , where the term on the r i g h t - h a n d s i d e can be used f o r c a l c u l a t i o n s . The advantages o f u s i n g AV/n i n s t e a d o f AV alone a r e the f o l l o w i n g : f i r s t l y , the average p o t e n t i a l per molecule (AV/n) i s a parameter which i s a c h a r a c t e r i s t i c o f the molecule, and i s analogous to average area per molecule; and secondly, i t e l i m i n a t e s changes i n s u r f a c e p o t e n t i a l s caused by expansion or condensation o f the mixed monolayers. C o n c l u s i v e evidence f o r i o n i c i n t e r a c t i o n can o n l y be obtained from s u r f a c e p o t e n t i a l measurements when AV/n i s p l o t t e d a g a i n s t mole f r a c t i o n o f the components i n mixed monolayers a t the same s t a t e o f compression. In t h i s case a d e v i a t i o n from the a d d i t i v i t y l i n e i n d i c a t e s i o n - i o n , o r i o n - d i p o l e i n t e r a c t i o n between the two components i n mixed monolayers (12,33). Results Average molecular areas and p o t e n t i a l s o f the mixed
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
ADSORPTION A T INTERFACES
Figure 1. Average area per molecule of stearic acid-stearyl alcohol monohyers at different surface pressures on subsolutions of 0.05M tris buffer + 0.02M NaCl, pH 8.8, at 22°C. The broken line indicates the additivity rule of molecular areas. The optimum condensation of mixed monohyers occurs at 9:1 and 1:3 molar ratios.
Figure 2. Average potential per molecule of stearic acidr-stearyl alcohol monolayers at different surface pressures on subsolutions of 0.05M tris buffer + 0.02M NaCl, pH 8.8 22°C. The broken lines indicate the additivity rule of average potentials. 9
MOLE FRACTION
(I ALCOHOL)
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
11.
SHAH
Interaction of Calcium Ions
173
monolayers of stearic acid and stearyl alcohol on subsolutions of 0.05M t r i s buffer + 0.02M NaCl at pH 8.8 are shown i n Figures 1 and 2. Average molecular areas i n the mixed monolayers show optimum condensation at molar ratios 9:1 and 1:3 between stearic acid and stearyl alcohol (Figure 1). The average potentials show deviations from the additivity rule at a l l surface pressures (Figure 2). The deviation i s less prominent when stearyl alcohol i s the major fraction i n the mixed monolayers. Figures 3 and 4 show average molecular areas and potentials on subsolutions of t r i s buffer + 0.01M CaCl at pH 8.8. The average areas follow the additivity rule (Figure 3), whereas average potentials show deviation from i t (Figure 4). However, in contrast to the nonlinear decrease i n the absence of CaCl^ (Figure 2), there i s a linear increase i n average potential i n the presence of CaCl i n subsolutions Figure 5 shows th mixed monolayers near g It should be noted that surface potentials of mixed monolayers on t r i s buffer + NaCl subsolutions show distinct kinks at 9:1, 3:1, and 1:3 molar ratios of stearic acid to stearyl alcohol. Table I summarizes the state of the monolayers near their collapse pressures (~40dynes/cm) on various subsolutions. The mixed monolayers did not show significant differences i n their collapse pressure values. The stearic acid monolayer was i n the solid state i n the presence of CaCl^. However, the presence of 10 mole % of stearyl alcohol converted the monolayer to the gel state, suggesting a disording of solid l a t t i c e structure of calcium stéarate by stearyl alcohol. 2
2
Discussion At pH 8.8, the average molecular areas show two minimia at molar ratios 9:1 and 1:3 between stearic acid and stearyl alcohol i n mixed monolayers (Figure 1). We have shown (11) previously that the rate of evaporation through these mixed monolayers also show a minimum at the 1:3 molar ratio between stearic acid and stearyl alcohol. However, there was no such minimum i n the evaporation through mixed monolayers at the 9:1 molar ratio i s presumably due to structural alterations (e.g., aggregation or micelle formation) i n the mixed monolayer. Using various mixed surfactant systems such as mixed monolayers, foams and emulsions, we have proposed (11) that the striking change i n the properties of these systems at the 1:3 molar ratio i s due to a hexagonal arrangement of molecules of the two components such that one component occupies the corners and the other component occupies the center of a hexagon. The mechanism of structural alteration at the 9:1 molar ratio i n the mixed monolayers may be as follows. At pH 9, i t i s expected that there w i l l be ionic repulsion between stearic acid molecules i n the monolayer. Perhaps a small number of stearyl
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
ADSORPTION A T INTERFACES
2
"
0
20 dynes/cm
19 -
G
(
^
18 17 16
tf^ G
cm
<
22
ω 21 _i §20 _i Ο 5 19
< 17
Lu
23
h
Λ ."6 5 dynes/cm
I ACID (0)
.75
.50 MOLE FRACTION
/
.25
Figure 3. Average area per molecule of stearic acid-stearyl alcohol monohyers at different surface pressures on subsoluHons of 0.05M tris buffer + 0.01M CaCl pH 8.8, 22°C. The broken lines indicate the additivity rule of molecular areas. u
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
11.
Interaction of Calcium Ions
SHAH
175
Figure 4. Average potential per molecule of stearic acid-stearyl alcohol monohyers at different surface pressures on subsolutions of 0.05M tris buffer + 0.01M CaCl pH 8.8, 22°C. The broken lines indicate the additivity rule of average potential abruptly changes at a 9:1 molar ratio. 2
.75
.50 MOLE FRACTION
.25 (I ALCOHOL)
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
176
ADSORPTION AT INTERFACES
alcohol molecules act as "condensation nuclei" around which ionized molecules gather to cause maximum interaction among molecules. This may result into formation of three dimensional micelles or aggregates within the mixed monolayer and a subsequent decrease i n the average area per molecule at this r a t i o . The minimum observed i n the surface potential at 9:1 molar ratio also supports this concept (Figure 5). The average potentials of the mixed monolayers at pH 8.8 in the presence of NaCl are shown in Figure 2. The decrease in the average potentials from the a d i t i v i t y rule suggests an ion-dipole interaction between components of the mixed monolayers (33). Similar decrease in the average potential due to an ion-dipole interaction has been reported for monolayers of dicetyl phosphate and cholesterol (12). Figure 3 shows average molecular areas which follo the additivity rule for th presence of CaC^. Thi suggest tion between stearic acid and stearyl alcohol at the 1:3 molar ratio does not occur in the presence of CaCl i n the subsolution, and that the structural alteration that occurs at the molar ratio of 9:1 also does not take place i n the presence of CaCl . The average potentials show a deviation from the additivity rule (Figure 4). It i s interesting that on both subsolutions, the average potential showed a deviation from the additivity rule (Figures 2 and 4). However, the deviation i s non-linear i n the absence of CaCl^ whereas linear i n the presence of CaCl . Moreover, i n the absence of CaCl , the iqn-dipole interaction between the fatty acid and the alcohol decreases the average potentials whereas interestingly the average potential increases i n the presence of CaCl with respect to the additivity rule (Figures 2 and 4). I t i s presumably the ionic structure of calcium distearate that i s responsible for the increase i n the average potentials. Our proposed explanation for the interaction of calcium ions with the mixed monolayer of stearic acid and stearyl alcohol i s shown schemetically i n Figure 6. It has been suggested (34>35) that in stearic acid monolayers each calcium ion coordinates with four carboxyl ions to produce a copolymeric soap l a t t i c e which i s shown i n two dimensions i n Figure 6(a). The copolymeric structure composed of ionized carboxyl groups and calcium ions permits a maximum charge interaction i n stearic acid monolayers, and hence, gives a very low (negative) value of average potential per molecule (Figures 4 and 5). However, the presence of about 10 mole % or more of stearyl alcohol i n stearic acid monolayer causes considerable disruption of the copolymeric structure, and hence, converts the copolymeric structure into a calcium distearate form. Any further increase i n the fraction of mole % of stearyl alcohol simply dilutes the calcium distearate units i n the mixed monolayer. This interpertation i s supported by the results shown i n Figure 4. 2
2
2
2
2
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
11.
177
Interaction of Calcium Ions
SHAH
/TRIS + NaCl
Figure 5. The maximum surface potential of stearic acid-stearyl alcohol mixed monohyers on various subsolutions at pH 8.8 in the presence (A) and absence (Q) of CaCl . For subsolutions of 0.05M tris + 0.02M NaCl at pH 8.8, the kinks in the surface potentials occur at molar ratios 9:1,3:1, and 1:3. 2
I ACID (0)
.75 .50 25 0 MOLE FRACTION (I ALCOHOL)
Figure 6. Schematic of stearic acidr-stearyl alcohol —I 1 1 1 1—^—monohyers on subsolutions of 0.05M tris buffer +
(a)
2
c
0
0H 0
0
1 5
ocat
0H 0 N
m
xe
(c
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
J78
ADSORPTION AT
INTERFACES
I t shows that the average p o t e n t i a l v a r i e s l i n e a r l y from pure s t e a r y l a l c o h o l to mixed monolayers c o n t a i n i n g s t e a r i c a c i d and s t e a r y l a l c o h o l i n the 9:1 molar r a t i o . This l i n e a r v a r i a t i o n between the r a t i o s 9:1 and 0:1 of s t e a r i c a c i d and s t e a r y l a l c o h o l suggests that the two u n i t s t r u c t u r e s a t each end are simply changing the r e l a t i v e p r o p o r t i o n s i n the mixed mono l a y e r s . However, the average p o t e n t i a l f o r pure s t e a r i c a c i d monolayer on C a C ^ i s c o n s i d e r a b l y below the value obtained by the e x t r a p o l a t i o n of t h i s experimental s t r a i g h t l i n e . This r e d u c t i o n i n average p o t e n t i a l f o r s t e a r i c a c i d monolayer i n the presence of CaCl~ i s presumably due to the s t r o n g copoly meric s t r u c t u r e i n s t e a r i c a c i d monolayer. In other words, we propose that the copolymeric s t r u c t u r e may e x i s t i n the pure s t e a r i c a c i d monolayers, but that upon a d d i t i o n of more than 10 mole % of s t e a r y l a l c o h o l the mixed monolayer c o n s i s t s of calcium d i s t e a r a t e and that the calcium d i s t e a r a t that none of the four oxygens of d i s t e a r a t e are f r e e to i n t e r a c t w i t h the adjacent s t e a r y l a l c o h o l molecules. T h i s c o n d i t i o n i s r e q u i r e d f o r the l i n e a r v a r i a t i o n of average p o t e n t i a l s i n the presence of CaCl^. I f the carboxyl groups were i n t e r a c t i n g w i t h the hydroxy! groups of the s t e a r y l a l c o h o l , then one would expect a n o n - l i n e a r decrease i n average p o t e n t i a l s from the a d d i t i v i t y r u l e as shown i n the presence of NaCl (Figure 2). Our proposed s t r u c t u r e of calcium d i s t e a r a t e i s shown i n Figure 6(c) which s c h e m e t i c a l l y shows t h a t a l l four oxygens of the two carboxyl groups probably i n t e r a c t w i t h a calcium i o n making a u n i t s t r u c t u r e w i t h no i n t e r a c t i o n w i t h adjacent s t e a r y l a l c o h o l molecules. I t i s a l s o i n t e r e s t i n g to note from Table I that the s o l i d s t a t e of the s t e a r i c a c i d monolayer on s u b s o l u t i o n s c o n t a i n i n g CaCl^ i s converted i n t o the g e l s t a t e by the presence of 10 mole % of s t e a r y l a l c o h o l i n the mixed monolayer. This observation supports the con c l u s i o n that a minimum of about 10 mole % s t e a r y l a l c o h o l d i s r u p t s the copolymeric s t r u c t u r e . I t i s a l s o evident from F i g u r e 5 t h a t the s t r u c t u r a l arrangement of s t e a r i c a c i d and s t e a r y l a l c o h o l i n the 3:1 and 1:3 molar r a t i o s show k i n k s i n the maximum v a l u e of the surface p o t e n t i a l a t the c o l l a p s e pressure. The hexagonal packing seems to be occuring both i n the 3:1 and 1:3 molar r a t i o s when the mixed monolayers are compressed up to t h e i r c o l l a p s e pressure (Figure 5 ) . However, we d i d not see the s t r i k i n g change i n foam s t a b i l i t y or r e t a r d a t i o n of evapora t i o n a t 3:1 molar r a t i o s i n c e the average area per molecule a t the 3:1 molar r a t i o i s much greater and hence, the i n t e r a c t i o n between the components considerably weaker as compared to that i n the 1:3 mixed monolayer. In summary, the r e s u l t s presented i n t h i s paper i n d i c a t e the a s s o c i a t i o n and a c l o s e r molecular packing of s t e a r i c a c i d and s t e a r y l a l c o h o l a t the 1:3 molar r a t i o and a s t r u c t u r a l
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
11.
Interaction of Calcium Ions
SHAH
179
Table I . The S t a t e o f Various Monolayers near t h e i r C o l l a p s e Pressures (-40 dynes/cm) Monolayers Stearic acid
pH 8.8
Stearyl alcohol
t r i s buffer + 0.02 M NaCl
t r i s buffer + 0.01 M C a C l
100
0
gel
solid
90
10
gel
gel
75
25
l
l
67
33
ge
ge
50
50
gel
gel
33
67
gel
gel
25
75
gel
gel
10
90
viscous liquid
viscous liquid
0
100
viscous liquid
viscous liquid
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
n
180
ADSORPTION AT
INTERFACES
a l t e r a t i o n of the mixed monolayers a t the 9:1 molar r a t i o . At pH 8.8, the s t e a r i c a c i d monolayer forms a copolymeric s t r u c t u r e i n the presence of calcium i o n s . This monolayer i s i n the s o l i d s t a t e . I f 10 or more mole % of s t e a r y l a l c o h o l i s added, the mixed monolayers are i n the g e l s t a t e presumably due to d i s r u p t i o n of the copolymeric s t r u c t u r e . The proposed s t r u c t u r e of calcium d i s t e a r a t e does not a l l o w any i o n - d i p o l e i n t e r a c t i o n w i t h the neighbouring s t e a r y l a l c o h o l molecules. Summary Surface pressures, surface p o t e n t i a l s , and the changes i n the s t a t e of mixed monolayers of s t e a r i c a c i d and s t e a r y l a l c o h o l were determined on t r i s b u f f e r + NaCl or t r i s b u f f e r + C a C l a t pH 8.8. For s u b s o l u t i o n f t r i b u f f e + NaCl th average area per molecul 1:3 molar r a t i o s of s t e a r i steary condensation a t the 9:1 r a t i o appeared to be due to s t r u c t u r a l a l t e r a t i o n s i n the mixed monolayer whereas that a t the 1:3 molar r a t i o was shown to be due to a c l o s e r packing of mole c u l e s . In the presence of C a C l i n the s u b s o l u t i o n , the aver age area per molecule f o l l o w e d the a d d i t i v i t y r u l e of mole c u l a r areas. For s u b s o l u t i o n s of t r i s b u f f e r + NaCl, the average p o t e n t i a l per molecule showed a n o n l i n e a r d e v i a t i o n from the a d d i t i v i t y r u l e , presumably due to i o n - d i p o l e i n t e r a c t i o n between the i o n i z e d s t e a r i c a c i d and s t e a r y l a l c o h o l mole c u l e s . However, i n the presence of CaCl„ i n the s u b s o l u t i o n , the average p o t e n t i a l per molecule showed a l i n e a r v a r i a t i o n which was above the l i n e r e p r e s e n t i n g the a d d i t i v i t y r u l e . Two dimensional l a t t i c e s t r u c t u r e of these mixed monolayers as w e l l as the i o n i c s t r u c t u r e of calcium d i s t e a r a t e are proposed to account f o r the experimental r e s u l t s . 2
9
Literature Cited 1. Ross, J., J. Phys. Chem., (1958), 62, 531. 2. Shah, D. O., J. Colloid Interface Sci., (1970), 32, 570. 3. Shah, D. O., J. Colloid Interface Sci., (1970), 32, 577. 4. Goddard, E. D., and J. H. Schulman, J. Colloid Sci., (1953), 8, 309. 5. Goddard, E. D., and Schulman, J. H., J. Colloid Sci., (1953), 8, 329. 6. Barnes, G. T., and LaMer, V. Κ., in "Retardation of Evaporation by Monolayers," V.K. LaMer, Ed., (1962), Academic Press, New York, 9-33. 7. Rosano, H., and LaMer, V. Κ., J. Phys. Chem., (1956), 60, 348. 8. Dervichian, D. G., in "Surface Phenomena in Chemistry and Biology," J.F. Danielli, Ed., Κ.G.A. Pankhurst,
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
11.
9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32.
SHAH
Interaction of Calcium Ions
181
and A.C. Riddiford, Eds., pp. 70-87, Pergamon Press, New York, 1958. Shah, D. O., Dysleski, C. Α., J. Am. Oil Chem. Soc., (1969), 46, 645. Shah, D. O., and Schulman, J. H., J. Colloid Interface Sci., (1967), 25, 107. Shah, D. O., J. Colloid Interface Sci., (1971), 37, 744. Shah, D. O., and Schulman, H. J., J. Lipid Res., (1967), 8, 215. Marsden, J., and Schulman, J. Η., Trans. Faraday Soc., (1938), 34, 748. Schulman, J. Η., and Hughes, Α. Η., Biochem. J., (1935), 29, 1243. Cockbain, E. G., (1939), 35, 716 Harkins, W. D., and R. T. Florence, J. Chem. Phys., (1938), 6, 847. Florence, R. T., and Harkins, W. D., J . Chem. Phys., (1938), 6, 856. Myers, R. J. and Harkins, W. D., J . Phys. Chem., (1936), 40, 959. Sanders, J . V., and Spink, J . Α., J. Colloid Sci., (1955), 175, 644. Matsubara, Α., Matuura, R., and Kimizuka, H., Bull. Chem. Soc. (Japan), (1965), 38, 369. Kimizuka, Η., Bull. Chem. Soc. (Japan), (1956), 29, 123. Goddard, E. D., and Ackilli, J . Α., J. Colloid Sci., (1963), 18, 585. Goddard, E. D., Smith, S. R., and Kao, O., J. Colloid Sci., (1966), 21, 320. Rogeness, G., and Abood, L. G., Arch. Biochem. Biophys., (1964), 106, 483. Sears, D. F., and Schulman, J . H., J. Phys. Chem., (1964), 68, 3529. Wolstenholme, G. Α., and Schulman, J . Ή., Trans. Faraday Soc, (1951), 47, 788. Schulman, J. H., and Dogan, M. Z., Disc. Faraday Soc., (1954), 16, 158. Wolstenholme G. Α., and Schulman, J. Η., Trans. Faraday Soc., (1950), 46, 475. Sasaki, T., and Muramatsu, Μ., Bull. Chem. Soc. (Japan), (1956), 29, 35. Shah, D. O., and Schulman, J. H., J . Lipid Res., (1965), 6, 341. Shah, D. O., and Schulman, J . Η., Lipids, (1967), 2, 21. Long, C., Ed. "Biochemists' Handbook," p. 30, Van Nostrand, Princeton, 1961.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
182
33. 34. 35.
ADSORPTION AT INTERFACES
Shah, D.O., and Schulman, J.H., in "Molecular Association in Bilogical and Related Systems," Adv. Chem. Ser. No. 84, p.189, American Chemical Society, Washington, D.C., 1968. Deamer, D.W., and Cornwell, D.G., Biochem. Biophys. Acta, (1966), 116, 555. Deamer, D.W., Meek, D.W., and Cornwell, D.G., J. Lipid Res., (1967), 8, 255.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
12 Contact Angles i n N e w t o n - B l a c k Soap Films D r a w n f r o m Solutions C o n t a i n i n g S o d i u m D o d e c y l Sulphate and Electrolyte J. A. DE FEIJTER and A. VRIJ
van't Hoff Laboratory for Physical and Colloid Chemistry, Padualaan 8, Utrecht, The Netherlands Introduction
In this symposium in which we honor the Professors R.D. and M.J. Void for their many and significant contributions to Colloid and Surface Science, we will call the attention to a subject positioned somewhere between these two disciplines, i.e. to soap films. Soap films, those very thin liquid lamellae as found in soap bubbles, can serve as model systems for studying forces that are important for the understanding of colloids in general. Moreover, in a more direct way, soap films are model systems for the thin, liquid lamellae as found in foams, emulsions and biological membranes. Here we will review some recent results (1) of contact angle measurements in very thin, so-called Newton Black (NB) soap films having a thickness of about 5 nm. The full details will be published elsewhere (2). Contact Angles When a soap film is drawn in a frame from a soap (detergent) solution it often occurs that after sufficient thinning of the film by drainage a contact angle appears at the transition between film and bulk solution. This necessarily means that the surface tension of the film surface, σ , is less than the surface tension of the bulk surface, σ , and that both are interconnected by the relation, f
α
f
α
σ = σ cos θ
(1)
where θ is the contact angle. At equilibrium the difference between σ and σ can be ascribed to a lowering of the film free energy, ∆F , due to the proximity of the film surfaces (3-6) f
α
e
f
∆F = 2σ - 2σ
α
(2)
e
183 In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
184
ADSORPTION AT INTERFACES
In many cases A F i s caused by double l a y e r r e p u l s i o n and van der Waals a t t r a c t i o n f o r c es i n the f i l m . Thus contact angle measurements can be used f o r the study of these f o r c e s . From the Equations (1) and (2) i t f o l l o w s that e
AF
a
e
= 2 a ( c o s θ » 1)
(3)
In our study the contact angles were measured by the d i f f r a c t i o n technique of P r i n c e n and F r a n k e l (7). R e s u l t s . A F as obtained from Θ, w i t h the help of Equation (3), f o r f i l m s drawn from sodium dodecyl sulphate s o l u t i o n s as a f u n c t i o n of the c o n c e n t r a t i o n of added NaCl at s e v e r a l temperatures, i s given i n Figure 1. The f i l m t h i c k n e s s was obtained from the r e f l e c t i o n c o e f f i c i e n t of l i g h t and expressed as the t h i c k n e s s of a pur water t h i c k n e s s " , t ^ , (6) equal to 4.4 nm. The (bulk) surface t e n s i o n , σ , at 23°C v a r i e d between 33.1 31-1 mJm" f o r NaCl-concentrations ranging between 0.19 0.50 mol dm" . The v a r i a t i o n of σ w i t h temperature was s m a l l and of minor importance i n the c a l c u l a t i o n of A F from Equation (3). e
α
2
3
α
e
Discussion Figure 1 shows some s t r i k i n g f e a t u r e s . In the f i r s t p l a c e below a c e r t a i n NaCl-concentration A F i s very s m a l l as i n d i c a t e d by the drawn h o r i z o n t a l l i n e . Above t h i s c o n c e n t r a t i o n the contact angle, Θ, and thus a l s o A F i n c r e a s e s s t e e p l y . Apparently, there i s some k i n d of t r a n s i t i o n between two s t a t e s . The f i l m i n the f i r s t s t a t e i s c a l l e d "common b l a c k " (CB) f i l m , the f i l m i n the second s t a t e i s c a l l e d "Newton b l a c k " (NB) f i l m (8). In the second p l a c e one observes t h a t the t r a n s i t i o n i s very dependent on temperature. Already Huisman and Mysels (6) showed that the great v a r i a t i o n of A F w i t h N a C l - c o n c e n t r a t i o n ( C 3 ( N a C l ) ) cannot be e x p l a i n e d by the c l a s s i c a l p i c t u r e where A F i s composed of d i f f u s e double l a y e r and van der Waals i n t e r a c t i o n s . I t w i l l be c l e a r t h a t a l s o the l a r g e temperature dependence of A F , which we have measured s y s t e m a t i c a l l y f o r the f i r s t time, as f a r as we know, i s t o t a l l y unexplainable by the c l a s s i c a l p i c t u r e . We, t h e r e f o r e , turned our a t t e n t i o n to a coherent thermodynamic d e s c r i p t i o n of such f i l m s i n order to i n v e s t i g a t e what k i n d of i n f o r m a t i o n could be e x t r a c t e d from the slopes of A F vs. C 3 , which are r a t h e r independent of temperature. e
e
e
e
e
e
Gibbs A d s o r p t i o n Isotherm f o r F i l m s . I t can be shown (\_ 2) t h a t the Gibbs a d s o r p t i o n equation f o r a f i l m c o n t a i n i n g η components, and which i s i n e q u i l i b r i u m w i t h the bulk s o l u t i o n and the surrounding vapor phase, can be put i n the f o l l o w i n g form, 9
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
12.
DE
FEijTER
Figure 1.
AND
vRij
Newton-Bhck
Soap Films
185
Interaction free energies, AF , for films drawn from an aqueous solution containing 0.05% Na-dodecyl sulphate and NaCl at several temperatures. e
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
186
ADSORPTION AT
s
t
dy = - 2 s d T + hdH - £
2r?dy
INTERFACES
(4)
i
Here, γ i s the f i l m t e n s i o n and Γ? i s the surface excess of component i i n the f i l m per u n i t surface area, chosen w i t h respect to a Gibbs d i v i d i n g surface i n which the surface excess of the s o l v e n t , Γ? ( i = l i s s o l v e n t ) , i s zero. The Gibbs d i v i d i n g surfaces i n the f i l m are separated by a d i s t a n c e , h, from each other. The composition of the f i l m i s then completely d e f i n e d w i t h respect to the composition of the outer vapor phase and of an i n n e r f i l m reference phase (bulk phase) taken as continuous up to the d i v i d i n g s u r f a c e s . F u r t h e r , s i s the surface excess entropy per u n i t area, Π i s the pressure d i f f e r e n c e between the vapor phase and the b u l k phase (at the f i l m border) which i s c a l l e d d i s j o i n i n g p r e s s u r e and Τ and y^ are the temperature an respectively. s
The
f i l m t e n s i o n , γ, i s connected w i t h A F h
= - / e
A F
n ( h
)
t
as f o l l o w s (3-J>)>
e
()
d h
5
00
e
Upon i n t e g r a t i o n of Equation then f o l l o w s that γ = 2σ
α
+ AF
+ IIh
e
(4) at constant Τ and y£
( i > 2) i t
(6)
e
The Gibbs a d s o r p t i o n equation f o r the b u l k s u r f a c e reads ά σ
α
=
_ s a s
g
.
d T
Γ
α
ά μ
^
( 7 )
which s u b s t r a c t e d from Equation d(AF
(4) gives
+ IIh ) = - 2A sdT + hdll - 2$ s
e
s
s
Ar dy
2
e
f
s
i
(8)
i
a
where A s = s - s and ΔΙ\ = Γ? - Γ? are excess q u a n t i t i e s of the f i l m surface over that of the bulk s u r f a c e . In our case i = l i s the s o l v e n t , i=2 i s sodium dodecyl sulphate and i=3 i s NaCl. Surface Excess of S a l t and Detergent. I t w i l l be apparent from Equation (8) that ΔΓ = A fl DDS ^ salt obtained from 9 A F / 8 y 2 and 3 A F / 8 y , r e s p e c t i v e l y . From the graphs i n Figure 1 and known mean a c t i v i t y c o e f f i c i e n t s ΔΓ3 can be c a l c u l a t e d . (The term Ilh i s négligeable i n our case and a s l i g h t c o r r e c t i o n f o r the change of \iz w i t h y was taken i n t o account.) The r e s u l t s are given i n Table I . r
2
a n d
Δ 1 ? 3
=
r
c a n
b e
a
3
3
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
12.
DE
FEijTER
AND
VRij
187
Ή ewton-Black Soap Films
Table I . C a l c u l a t e d Values o f the Adsorption o f E l e c t r o l y t e i n NB-soap-films drawn from an Aqueous S o l u t i o n c o n t a i n i n g 0.05% Na-dodecyl Sulphate and NaCl r e s p e c t i v e l y Na2S0if.
ΔΓ V
3
χ 10
1 1
2
( e q u i v a l e n t cm" )
Τ °C 20.5
22.0
23.5
25.0
26.5
29.5
1.39
1.35
1.34
1.33
1.29
1.22
1.72
1.71
salt NaCl NazSOi»
Δ Γ was found t o be s m a l surface Γ = 42 χ 1 0 " u n i t area at a f i l m surface minus t h a t a t the b u l k s u r f a c e . I t w i l l be c l e a r from Table I t h a t Δ Γ i s p o s i t i v e and o n l y s l i g h t l y dependent on temperature. F u r t h e r , Δ Γ 3 i s f o r NaaSOi* l a r g e r than f o r NaCl. We f i r s t i n v e s t i g a t e d what the d i f f u s e e l e c t r i c a l double l a y e r p r e d i c t s about Δ Γ . At s i n g l e e l e c t r i c a l double l a y e r s counterions are a t t r a c t e d and co-ions are e x p e l l e d from the s u r f a c e . The o v e r a l l e f f e c t i s an e x p u l s i o n o f the ( n e u t r a l ) e l e c t r o l y t e ( s o - c a l l e d negative a d s o r p t i o n ) . For h i g h s u r f a c e potentials Γ ^ -2C3K" , where κ" i s the d i f f u s e double l a y e r t h i c k n e s s . I n a f i l m the e l e c t r i c a l double l a y e r s overlap and Γ3^ w i l l be s m a l l e r i n magnitude, i . e . Δ Γ i s p o s i t i v e i n accordance w i t h the experimental r e s u l t s i n Table I . The p r e c i s e c a l c u l a t i o n o f Δ Γ f o r d i f f u s e , o v e r l a p p i n g double l a y e r s i s complicated and i n v o l v e s e l l i p t i c a l i n t e g r a l s (1_, 2). We made an attempt t o i n t e r p r e t the numbers i n Table I (at 23.5°C) i n the f o l l o w i n g way. I n our system the d i f f u s e p a r t of the double l a y e r s i s probably s m a l l . Moreover i n the f i l m we expect a n e a r l y t o t a l overlap o f these d i f f u s e double l a y e r s , so t h a t T ^ 0 and Δ Γ * 0 - (-Γ ) - Γ . Thus t h i s would mean t h a t we can ( i n an i n d i r e c t way) o b t a i n i n f o r m a t i o n about the d i f f u s e double l a y e r at the s i n g l e (bulk) s u r f a c e . The d i s t a n c e between the Outer Helmholz (OH)-planes i n the f i l m , 2 d , i s d i f f i c u l t t o estimate. From the e q u i v a l e n t water t h i c k n e s s , r ^ , of the f i l m and an assessed d e n s i t y and r e f r a c t i v e index of the hydrocarbon chains we obtained a t h i c k n e s s h = 1.6 nm f o r the aqueous core o f the f i l m . S u b s t r a c t i n g from £h the diameter o f the hydrated SOi* -group (say, 0.48 nm) and the r a d i u s o f the c o - i o n (Cl' ) (say, 0.24 nm) gives f o r d a value i n the order of one o r a few tenths o f nm. For our f u r t h e r c a l c u l a t i o n s we took two c h o i c e s , i . e . d = 0.1 nm and d = 0.4 nm. From the Δ Γ value of Table I , the p o t e n t i a l , ψ °°, at the OH-plane o f the bulk surface was c a l c u l a t e d , e i t h e r by assuming that the p o t e n t i a l , 2
α
2
3
3
α
1
1
3
3
3
f
3
α
3
3
α
3
2
2
3
0
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
188
ADSORPTION AT INTERFACES
ψο, at the OH-planes i n the f i l m was equal to ψο* or equal to The r e s u l t s are given i n Table I I . Table I I . C a l c u l a t e d i ^ - v a l u e s of the Bulk S u r f a c e , f o r the System NaDS + NaCl at 23.5°C. The Last Column gives the ζ-potentials of the NaDS-micelles.
C (NaCl)
d = 0.1
3
(mol
3
dm"
ψ =-οο
nm
Ψο=Ψο°°
0
d = 0.4 ψ =-οο 0
nm
ψο=Ψο°°
ζ
0.2
-41mV
-40mV
-75mV
-70mV
-73mV
0.3
-34
-32
-70
-64
-70
0.4
-30
0.5
-28
-25
-71
-62
-66
I t w i l l be apparent from t h i s t a b l e t h a t the choice of ψο i s not c r i t i c a l which indeed means that there i s n e a r l y t o t a l o v e r l a p p i n g of double l a y e r s . The obtained values f o r ψο°° seem reasonable i n magnitude but are s t i l l very s e n s i t i v e to the choice of d. The values f o r d = 0.4 nm conform r a t h e r w e l l w i t h ζ-potentials c a l c u l a t e d from m i c e l l e m o b i l i t i e s (9). S i m i l a r c a l c u l a t i o n s were performed f o r a ( l - 2 ) e l e c t r o l y t e (NaaSOiJ. These p r e d i c t a r a t i o of 1.42 between the A r - v a l u e s of the two systems; the experimental value f o r t h i s r a t i o from Table I i s found to be 1.28. 3
s
Excess F i l m Entropy. From Equation (8) i t f o l l o w s t h a t A s can be d e r i v e d from the v a r i a t i o n of A F , and thus of Θ, w i t h temperature. In p r a c t i c e , however, A s i s not a very convenient q u a n t i t y , as i t i s q u i t e d i f f i c u l t to keep the y^'s constant when Τ i s v a r i e d . Instead of A s we s h a l l t h e r e f o r e use the i n t e r a c t i o n entropy, AS , d e f i n e d by e
s
s
e
AS
e
= -dAF /dT
(9)
e
From Figure 1, A F vs T-plots can be obtained which are almost s t r a i g h t l i n e s w i t h slopes t h a t are independent of C ^ ^. From t h i s i t f o l l o w s t h a t AS * - 0.066 HH 0.003 mJm" Κ" , i n a l l cases. For the CB-films the absolute value of AS i s at l e a s t a f a c t o r of 50 s m a l l e r . From A F and AS one can f i n d the i n t e r a c t i o n energy, AU i n the f i l m e
N
2
e
AU
e
C
1
e
=AF + TAS e
e
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
e
(10)
12.
DE
FEijTER
AND
vRij
Newton-Black Soap Films
189
Because A F v a r i e s from -0.01 t o -1 mJm~ , the value o f Δ υ i s approximately -20 mJm~ . Thus the formation o f an N B - f i l m from a C B - f i l m i s e n e r g e t i c a l l y a h i g h l y f a v o r a b l e but e n t r o p i c a l l y a h i g h l y unfavorable process, w i t h the q u a n t i t i e s Δ υ and ~TAS tending to compensate each other. The l a r g e (negative) value of A S i m p l i e s t h a t the NB-films have a r a t h e r organized s t r u c t u r e , d i f f e r e n t from t h a t i n CB-films. This was a l s o found by Jones and Mysels (10) and by den Engelsen and Frens (11). I t i s u n l i k e l y that the l a r g e (negative) value o f Δ ϋ can be due t o the van der Waals f o r c e s . We surmise that i t i s caused by s p e c i f i c e l e c t r o s t a t i c i n t e r a c t i o n s between ions of d i f f e r e n t charge signs juxtaposed w i t h respect t o each other. No model i s however a v a i l a b l e t o d e s c r i b e t h i s i n q u a n t i t a t i v e terms a t present. 2
β
e
2
β
e
e
β
Summary Contact angles were measured w i t h the l i g h t d i f f r a c t i o n technique o f P r i n c e n and F r a n k e l . The dependence o f contact angles on e l e c t r o l y t e c o n c e n t r a t i o n was i n t e r p r e t e d i n terms o f adsorption d i f f e r e n c e s o f e l e c t r o l y t e between f i l m and bulk s u r f a c e s . The contact angles were very temperature dependent which d i r e c t s to a k i n d o f "phase t r a n s i t i o n " between the Newton Black and the common b l a c k f i l m s as found p r e v i o u s l y . The l a r g e e n t r o p i e s and energies o f i n t e r a c t i o n imply t h a t the Newton Black f i l m i s an organized s t r u c t u r e d w i t h s p e c i f i c i n t e r a c t i o n s other than d i f f u s e double l a y e r and van der Waals forces. Literature Cited 1. de Feijter, J.Α., "Contact Angles in Soap Films", Ph.D. thesis, University of Utrecht, 1973. 2. J. Colloid Interface Sci., to be published. Princen, H.M., "Shape of Fluid Drops at Fluid-Liquid Interfaces and Permeability of Soap Films to Gases", Ph.D. thesis, University of Utrecht, 1965. 4. Princen, H.M., J. Colloid Sci., (1965) 20, 156. 5. Derjaguin, B.V., Acta Physico Chim., (1940) 12, 181. 6. Huisman, F. and Mysels, K.J., J. Phys. Chem., (1969) 73, 489. 7. Princen, H.M. and Frankel, S., J. Colloid Interface Sci., (1971) 35, 386. 8. Everett, D.H., Pure Appl. Chem., (1972) 31 (4), 614.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
190
ADSORPTION
AT
INTERFACES
9. Stigter, D. and Mysels, K.J,, J. Phys. Chem., (1955) 59, 45. 10· Jones, M.N., Mysels, K.J. and Scholten, P.C., Trans. Faraday Soc., (1966) 62, 1336. 11. den Engelsen, D. and Frens, G., J. Chem. Soc. Faraday Trans. I, (1974) 70, 193.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
13 Stratification in Free Liquid Films J. W. KEUSKAMP and J. LYKLEMA Laboratory for Physical and Colloid Chemistry of the Agricultural University, De Dreijen 6, Wageningen, The Netherlands
Introduction Stratification is layer-lik In concentrated surfactant solutions it is a familiar phenomenon. The smectic liquid crystalline phase is a characteristic example. It is less known that under the proper conditions stratification occurs also in free surfactant films. Long ago this has been established by Johonnott (1) and Perrin (2) for aqueous films in air, drawn from concentrated Na-oleate solutions. Later, Bruil and Lyklema (3) observed the same for free aqueous films from concentrated solutions of Na- or Li-dodecylsulphate (NaDS or LiDS respectively). They inferred the occurrence of stratification from some peculiarities in the drainage behavior. The normal drainage behavior, as observed from the intensity of reflected monochromatic light, is a continuous thinning till the first or common black film is formed, in some cases followed by a step-wise formation of the second black or Newton film. The thickness of the common black is sensitive to the electrolyte concentration. It can vary between 10 and 80 nm and is mainly determined by van der Waals compression and double layer repulsion. On the other hand, Newton films are essentially bilayers. Their thicknesses are not very sensitive to the electrolyte concentration but they form only if special electrolytes are present in sufficient amounts. For example, Na -ions promote but Li -ions inhibit the formation of Newton films of Na-dodecylsulphate films. The nature of the transition between the common and Newton film is still not clear, but there are many indications that specific structural effects, induced by ions, play a role (4). See also (5, 6) for such inference from contact angle measurements. Under conditions conducive to stratification, the film initially drains gradually. However, once a thickness of the or+
+
For paper 1 in this series, see ref. (3.). Detailed information obtainable on request from first author.
191 In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
192
ADSORPTION A T INTERFACES
der of a few tens of nm has been reached (the precise value de pending on the composition of the film) the further thinning pro ceeds step-wise. Several steps after each other can be observed, denoted as the . . . . t h i r d , second, f i r s t order, the highest order pertaining to the thickest f i l m . Bruil and Lyklema (3>) observed that the thickness difference between consecutive steps was larger than, but nevertheless comparable with the thickness of the Newton films. This suggests that s t r a t i f i e d films are built up of repeating units of pseudo-Newton films, v i z . aqueous slabs flanked by a surfactant layer. Hence, the study of s t r a t i f i c a t i o n can be informative with respect to the factors determining the Newton film formation. The study to be described i s an extension of ( 3 , ) . The main emphasis i s on the effects of the nature and concentration of added electrolytes. Materials and Methods Surfactants. NaDS, LiDS and NH^DS have been ing Dreger et a l . (J). These chemicals contained dodecanol (DOH) as judged from shallow minima in curves of 2 . U , 3 . 3 and 2 . U mN m" respectively. v e r i f i e d that DOH does not affect s t r a t i f i c a t i o n trations up to 3% of the surfactant. The CMC's, 1
prepared follow small amounts of the γ - l o g c However, i t was even in concen as determined
conductometrically are 8 . 3 * 1 0 ~ 3 , 8 . 8 x 1 0 " ^ and Τ · 1 1 0 ~ 3 mol dm~3 χ
respectively. The f i r s t value agrees well with general experience ( 8 J . CMC's of the other two compounds are not available i n l i t e r ature as far as we are aware. Comparison between these values suggests that NHj^ binds stronger to the DS~-anion, whereas L i binds weaker than the Na -ion. +
+
+
Electrolytes, obtained from Merck were of analytical grade and used without further p u r i f i c a t i o n . Thickness Measurements have been made on v e r t i c a l films with an area of a few cm2 using a light reflection method essentially identical to that used by Lyklema et a l . ( £ ) . The measuring site in the film was 5 mm above the meniscus. The wavelength of the monochromatic l i g h t was 5^6 nm and the temperature was kept at 2 5 . 0 0 ± 0.01°C. In order to derive the real thickness d from the equivalent water thickness the procedure by Frankel and Mysels ( H)) was adopted to correct for the differing optical properties of the surfactant surface layers. For a three-layer f i l m , consisting of an aqueous core, flanked by two dodecylsulphate layers of thicknesses 1 . 0 6 nm and index of refraction 1.U3 the correction (d - d^) i s - 0 . U nm. In order to arrive at this figure, the index of refraction of the aqueous core ( 1 . 3 6 ) was assumed to be identical to that of a 2 M solution of NaHSO^, NH^HSO^ or LiHSO^. For a film with ρ of such units repeating, we applied a correction of - 0 . U ρ nm. Here, ρ i s the order of the stratification.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
13.
KEUSKAMP
AND
LYKLEMA
Free Liquid Films
193
I n order t o prevent e v a p o r a t i o n , the vapor pressure i n the box has been c a r e f u l l y adjusted and always s u f f i c i e n t time was allowed f o r a c c l i m a t i s a t i o n . The r e p o r t e d t h i c k n e s s e s are a l l the average o f s e v e r a l measurements and are independent o f d e t a i l s i n the a c t u a l drainage p a t t e r n . R e s u l t s and D i s c u s s i o n Drainage Behavior. P l a t e s 1 and 2 are photographs of s t r a t i f y i n g NaDS-films i n an advanced s t a t e o f drainage. The b r i g h t s i l v e r r e g i o n i s the λ A maximum, w i t h d^. above 100 nm. Above t h i s s i l v e r band s e v e r a l r e g i o n s o f d i f f e r i n g t h i c k n e s s can be observed, d i s t i n g u i s h a b l e as d i f f e r e n t shades o f grey. T h e i r t h i c k n e s s can be p r o p e r l y measured i f t h e i r area i s l a r g e enough, which i s o n l y the case f o r the lower ( i . e . b l a c k e r ) o r d e r s . Up t o f i v e orders have been thu presence o f more o f them I t i s important t o r e a l i z e t h a t the p** order develops o f t e n spontaneously i n the middle o f the (p+1)*" order. T h i s shows t h a t the drainage i s not a " g l i d i n g o f f " of one r e p e a t i n g u n i t from the remainder (or from between the remainder) but due t o a spon taneous d i s p r o p o r t i o n a t i o n . The f l u i d e x p e l l e d by t h i s process flows downward. I n some cases i t i s v i s i b l e as a b r i g h t e r r i m around a dark spot, i n other cases as b r i g h t spots. From t h i s o b s e r v a t i o n we conclude t h a t upon drainage the f i l m passes through a number o f metastable s t a t e s , the Gibbs energy as a f u n c t i o n of t h i c k n e s s being o f the shape of F i g u r e 1. The hump between the consecutive minima, e.g. the t r a n s i t i o n a c t i v a t i o n Gibbs energy i n c r e a s e s w i t h decreasing o r d e r , as judged from the i n c r e a s i n g s t a b i l i t y o f the lower o r d e r s . The t r e n d i s (see below) t h a t l e s s orders can be observed and t h a t the t h i c k n e s s e s o f the minima are g r e a t e r i f the s u r f a c t a n t c o n c e n t r a t i o n i s lower. The dashed l i n e i n F i g u r e 1 g i v e s the probable shape o f G(d) f o r a lower s u r f a c t a n t c o n c e n t r a t i o n . S t r a t i f i c a t i o n occurs at s u r f a c t a n t c o n c e n t r a t i o n s lower than those at which i n bulk not yet elongated f l a t or c y l i n d r i c a l m i c e l l e s develop (JJ_). I n view of t h i s , we conclude from the f a c t t h a t laminar s t r u c t u r e s do develop as soon as a c e r t a i n c r i t i c a l t h i c k n e s s i s reached upon drainage, t h a t t h i s s t r a t i f i c a t i o n i s induced by the s u r f a c t a n t l a y e r s on the s u r f a c e s , and more so, the c l o s e r these surface l a y e r s are ( i . e . the t h i n n e r the f i l m ) . Consequently, f o r a thermodynamic d e s c r i p t i o n of the s t r a t i f i c a t i o n , the mutual i n t e r a c t i o n between the l a y e r s must be taken i n t o account, t h i s i n c o n t r a d i s t i n c t i o n t o the m i c e l l i z a t i o n i n b u l k which can be adequately t r e a t e d as a monomer-micelle e q u i l i b r i u m without accounting f o r the presence of other m i c e l l e s . 1
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
Plate 2. Stratified film of a NaDS solution in a different stage of drainage than the film of Phte 1
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
13.
KEUSKAMP
AND
Free Liquid
LYKLEMA
Films
195
E f f e c t o f Nature and Concentration o f S u r f a c t a n t . F i g u r e 2 c o l l e c t s data f o r f i l m s o f LiDS, NaDS and NH^DS i n the absence o f e l e c t r o l y t e . The general trends agree w i t h those o f Ref. (3.)» a l though t h e r e are some minor d i s c r e p a n c i e s i n t h a t i n our case the t h i c k n e s s f o r NaDS i s a few percent lower and t h a t now s m a l l but systematic d i f f e r e n c e s between the s u r f a c t a n t s w i t h d i f f e r e n t c a t i o n are observed: d (NH^DS) > d (LiDS) > d (NaDS). A l s o common ( n o n - s t r a t i f i e d ) f i l m s are s l i g h t l y t h i c k e r w i t h L i than w i t h N a (22). T h i s can be explained by the l e s s e r s p e c i f i c ad s o r p t i o n o f L i on the s u r f a c t a n t surface w i t h the ensuing stronger e l e c t r o s t a t i c r e p u l s i o n . T h i s e x p l a n a t i o n agrees w i t h the observed CMC-order o f LiDS and NaDS, but not f o r NH^DS (see above). The i n f l u e n c e o f the s u r f a c t a n t c o n c e n t r a t i o n ( c p ) i s two f o l d . I n the f i r s t p l a c observable.This i s probabl cooperative s t r u c t u r e formation. The second e f f e c t , the decrease of d w i t h i n c r e a s i n g c p i s more d i f f i c u l t t o e x p l a i n . B r u i l and Lyklema (3.) found a dependence on c ' ^ f NaDS-films. We found the same dependence f o r NH^DS. The v a r i o u s orders are roughly e q u i d i s t a n t . The d i f f e r e n c e s d - d j = Ad decrease w i t h i n c r e a s i n g c p . At the highest s o a p s t u d i e d ( 0 . 3 0 M f o r LiDS, 0 . 6 0 f o r NaDS and 0 . 5 0 f o r NH^DS) they are 6 . 6 , 5.5 and 6 . 3 nm r e s p e c t i v e l y . The mutual d i f f e r e n c e s are not s i g n i f i c a n t . These increments decrease f u r t h e r w i t h c p and upon e x t r a p o l a t i o n c _ « a t t a i n l i m i t i n g values of 5 . 2 ± 0 . 6 nm. T h i s tends t o the t h i c k n e s s o f a Newton f i l m . Under these c o n d i t i o n s the s t r a t i f i e d f i l m i s apparently b u i l t as r e p e a t i n g Newton-like l a y e r s . +
+
+
s o a
g o a
1
o r
s o a
c
s o a
g o a
E f f e c t o f E l e c t r o l y t e s . The i n f l u e n c e o f added e l e c t r o l y t e s ( c o n c e n t r a t i o n c ) can be summarized i n t o two p o i n t s : ( i ) For a given o r d e r , d decreases somewhat w i t h c . For example, i n a f i l m drawn from a 0.2U M LiDS s o l u t i o n d-j decreases from 8 . 8 t o 7 . 8 nm and dg from 15-9 t o 1 5 · 5 nm i f L i C l i s added up t o 0.12 M. I n a f i l m , drawn from 0.2k M NH^DS, d^ decreases from 9 . 3 t o 8 . 0 nm i f NH^Cl i s added up t o 0 . 3 M. The decrease i s roughly l i n e a r . The measurements are not accurate enough t o say whether the steepness o f t h i s f a l l - o f f i s d i f f e r e n t f o r the d i f f e r e n t o r d e r s . A p o s s i b l e e x p l a n a t i o n i s sought i n terms o f e l e c t r o s t a t i c s h i e l d i n g . Note t h a t the c o n c e n t r a t i o n s are s o h i g h t h a t the Debye-Huckel l i m i t i n g law, which would p r e d i c t a c | de pendency, i s no longer v a l i d . ( i i ) E l e c t r o l y t e s i n h i b i t s t r a t i f i c a t i o n , but the i n h i b i t i n g e f f e c t i s s t r o n g l y dependent on thé nature of the c a t i o n . Con s i d e r i n g the occurrence o f the second order above the f i r s t , i t appears t h a t o n l y 0 . 0 0 8 M o f added NaCl s u f f i c e s t o subdue i t s occurrence i n NaDS-films, whereas as much as 0.1k M L i C l i s need ed t o suppress the occurrence o f more than one l a y e r i n LiDSs t a b i l i z e d f i l m s . For the NH^ -case t h i s f i g u r e i s 0.16 M. g
s
n
+
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
196
ADSORPTION A T INTERFACES
Figure 1. Probable thickness dependency of the Gibbs . . . etc. represent 2nd . . . order. high surfactant concen tration, low surfactant concentration. d/nm 40
5th order
•
NaDS
*
Li DS
ο
NH DS 4
30
20h
^- —
- A
4th
order
3rd
order
2nd order
10 Γ·
0
0.2
0.A*
1st
0.6 Surfactant
order
cone/M
Figure 2. Metastable equilibrium thicknesses of stratified films, stabilized by LiDS, NaDS, or NH^DS. No electrolyte added, Τ = 25°C.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
13.
KEUSKAMP AND LYKLEMA
Free Liquid Films
197
There i s a certain parallelism with the influence of elec trolytes on common (not-stratified) black films: salts decrease d, and L i - and NH^ -films are s l i g h t l y thicker than Na -films, but i t depends c r i t i c a l l y on the nature of the cation whether or not a jumpwise t r a n s i t i o n to the Newton film occurs. The d i f f e r ence i s that i n t h i s case Na promotes Newton film formation, whereas Na i n h i b i t s s t r a t i f i c a t i o n . The nature of t h i s contra diction i s not c l e a r , but phenomenologically i t can be i n t e r preted as a blunting of the activation energy humps i n Figure 1, and more strongly so i n Na than i n L i , so that for common films with L i s t i l l one high barrier remains, preventing the Newton f i l m formation. The behavior of NH^ compares better with that of L i than that of N a . The dramatic differences between L i and Na point out to a very specific ionic effect I t i s not known to us whether these occur also i n concentrate these phenomena deserv +
+
+
+
+
+
+
+
+
+
+
S t r a t i f i c a t i o n of free l i q u i d films i s the occurrence i n i t of l a y e r - l i k e structures. I t can be observed i f free f i l m s , drawn from concentrated surfactant solutions, are drained. In such films after some time several regions can then be seen, d i s t i n guishable i n reflected l i g h t as different shades of gray. These regions are denoted as orders, the lowest order being the t h i n nest f i l m . The thicknesses of the various orders have been o p t i c a l l y determined for films drawn from NaDS, LiDS or NH^DS, both i n the absence and presence of added electrolytes. The orders differ between each other by an increment ΔςΙ that i s roughly constant at given surfactant concentration. For extremely high surfactant concentrations Ad (as well as the thickness of the f i r s t order film) approach that of a Newton (also known as a Perrin or second black) f i l m . Electrolytes i n h i b i t the s t r a t i f i c a t i o n , but Na -ions do so far more effectively than L i - or NH^ -ions. +
+
+
Ac knowledgement The authors acknowledge the s k i l l f u l technical assistance of Mr. R . A . J . Wegh.
Literature Cited 1. Johonnott, E.S., Phil. Mag. (6) (1906) 11, 746 2. Perrin, J., Ann. Phys. (1918) 10, 160 3. Bruil, H.G. and Lyklema, J., Nature Phys. Sci. (1971) 233, 19 4. Jones, M.N., Mysels, K.J. and Scholten, P.C., Trans. Faraday Soc. (1966), 62, 1336 5. Ingram, B.T., J . Chem. Soc. Faraday Trans. I (1972) 68, 2230
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
198
ADSORPTION AT INTERFACES
6. De Feijter, J.A., Ph.D. Thesis, State Univ. Utrecht (1973) 7. Dreger, E.E., Keim, G.I., Miles, G.D., Shedlovsky, L. and Ross, J., Ind. Eng. Chem. (1944) 36, 610 8. Mukerjee, P. and Mysels, K.J. "Critical Micelle Concentrations of Aqueous Surfactant Systems," NSRDS-NBS 36, p.51 Superintendent of Documents, Washington, D.C., 1971 9· Lyklema, J., Scholten, P.C. and Mysels, K.J., J . Phys. Chem. (1965) 69, 116 10. Frankel, S.P. and Mysels, K.J., J . Appl. Phys. (1966) 37, 3725 11. Reiss-Husson, F. and Luzzati, V., J . Phys. Chem. (1964) 68, 3504 12. Lyklema, J., Recl. Trav. Chim. Pays-Bas (1962) 81, 890
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
14 Surface Chemical Properties o f H i g h l y Fluorinated Polymers MARIANNE K. BERNETT and W. A. ZISMAN Laboratory for Chemical Physics, Naval Research Laboratory, Washington, D.C. 20375
Introduction Highly fluorinated linear polymers are characterized by a low free surface energy and concomitant low wettability, as evidenced by the large contact angles of drops of organic and aqueous liquids. A comprehensive set of workable principles had been built up by Zisman and co-workers relating the chemical and spatial constitution in the outermost surface of a polymer with its surface energy (1, 2). During the last few years Wall, Brown, and Lowry of the National Bureau of Standards synthesized several new highly fluorinated ethylene polymers and copolymers (3-8) and established (4) that according to Wunderlichs "bead" theory and "rule of constant heat increment" (9, 10), the ethylenic polymers with fluorinated side groups generally contribute two carbon atoms to the backbone chain. This 2-carbon moiety plus the sub stituent constitute the smallest unit whose oscillations affect surface lattice equilibrium in a polymeric material, which repre sents the lowest free energy configuration. This paper discusses the critical surface tensions of several of these radiation-induced polymers and copolymers, and compares them to those of polymers with related structures and surface constitutions. '
Critical Surface Tensions of Wetting Table I lists the experimental fluoropolymers and the data on their structural formulae, intrinsic viscosities [η] in hexafluorobenzene, and glass transition temperatures Tg (3-8), along with the code numbers used for this report. By casting a polymer from solution in hexafluorobenzene as a film on a clean glass slide, a smooth surface is obtained which is characterizable for wetting properties by contact angle (θ) measurements with freshly percolated liquids. Table II shows the average values of the advancing contact angles (± 1°) obtained from such liquids of two homologous series, the n-alkanes and the 199 In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
3
2
3
n
2
61
4 2
6
i n hexafluorobenzene;
2
6
5
5
n
+ [-CF^CF,,-]^
b e i n acetone; i n benzene
n
n
[-CF -CF(C F )-]
2
XIV
1 1
[-CF -CF(C H )-]
5
XIII
2
[-CH -CH(C F )-] 2 6 ρ η
a
3
[-CF -CF(n-C F )-]
3
XII
XI
n
[-CHF-CH(CF )-]
X
3
n
2
[-CH -CF(CF )-]
2
IX
2
3
+ [-CF^CF^]^
16.5 16.5 18.8 17.5
29 21 49 87
1.63 1.30
e
0.27
1.0
4.0
α 25000
0.23
25
2
2
194
25.4
202
17.8
22.5
14.1 105
235
16.2
45
[-CH -CH(CF CF CF )-]
n
15.5
58
VIII
2
3
3
52
2
2
2
[-CH -CH(CF CF CF )-]
2
2
VII
2
2
0.74
VI
V 79
Μ
16.3
41
0.33
18.0
9
2.10
21.1
19
21.5
5.00
[-CH -CH(CF CF CF )-]
+ [-CFg-CFg-]^
2
2
0.63
[-CH -CH(CF CF CF )-]
2
2
[-CF -CF -]
+ C-CF -CF -]
[-CH -CH(CF CF )-]
2
+
c
7 , dyn/cm 27
a
1.10
[η], d l / g
n
IV
39
[-CH -CH(CF )-]
III
3
5Ô
2
[-CH -CH(CF )-]
n
II
3
[-CH -CH(CF )-]
2
Polymer and Composition. mol%
I
Code
Table I . P h y s i c a l P r o p e r t i e s of E t n y l e n i c Fluoropolymers
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
n-ALkanes Hexadecane Tetradecane Trideoane Dodecane Undecane Decane Nonane Octane .methylsiloxanes DC200 3.0 c S t DC200 2.0 c S t DC200 1.5 c S t 12 (DM3) 10 (OMS) 9 (DMS) 8 (DMS) 7 (DMS) 6 (DMS) 5 (DMS)
Liquids
19.4 18.9 18.1 19.7 19.5 19.3 19.1 19.0 18.6 18.2
27.8 26.7 26.0 25.4 24.6 23-9 23.1 21.8
(dyn/cm)
56
42 35 29
45
36 29
50 47
63
III
51
II
50
I
41 40 39 38 37 33 32
50 46 42
55
61 58
IV
54 51
44 40 36
43 40 36
59
64
VI
55 51
61
67
V
Code
48 44
37 33 29
37 33 28
53
59
48 45
55
61
VII VIII
19 16 14 10 7 6 5
39 36 30
45
52 49
IX
30 29 28 26 24 22 18
44 41 36
49
56 53
Χ
51 50 49 48 47 45 43
55 53 49
60
66 64
XI
< 5
22 13 9
31
41 37
XII
Table I I . Advancing Contact Angles (Deg) of L i q u i d s on Fluoropolymers (25°C)
< 5
< 5
14 10
XIII
40 38 36 34 33 29 27
32 28 25
46
52 50
XIV
202
ADSORPTION A T INTERFACES
d i m e t h y l s i l o x a n e s , where the l a t t e r were e i t h e r the Dow Corning 200 s e r i e s o r the w e l l - c h a r a c t e r i z e d s e r i e s c o n t a i n i n g from 6 t o 12 d i m e t h y l s i l o x a n e (DMS) -units. (11, 12). When the cos θ of each member of such a homologous s e r i e s of l i q u i d s on a smooth, c l e a n , s o l i d , low-energy surface i s p l o t t e d a g a i n s t the s u r f a c e t e n s i o n (ïjJ) f o r each of those l i q u i d s , a s t r a i g h t l i n e r e s u l t s ; the i n t e r c e p t a t cos θ = 1 (θ = 0°) i s r e f e r r e d t o as the c r i t i c a l s u r f a c e t e n s i o n of w e t t i n g (7 ) f o r t h a t p a r t i c u l a r s u r f a c e (13). Figure 1 shows such a grapn f o r polymer IV, [-CHp-CHiCpF^)-] , and i s r e p r e s e n t a t i v e o f the graphs f o r t h e other polymers w i t h the e x c e p t i o n of the p e r f l u o r o p h e n y l s u b s t i t u t e d polymers X I I and XIV. Here the s t r a i g h t l i n e f o r the n-alkanes d i s p l a y s a marked d i s c o n t i n u i t y i n the r e g i o n of 7 = 24-25 dyn/cm, r e s u l t i n g i n two values of 7 , d i f f e r i n g by 1 dyn/cm. Experimental phenomena suggest t h a t tne s m a l l e r mole c u l e s a r e capable of s l i p p i n adlineated structures o and b u l k i e r molecules are r e t a i n e d on the s u r f a c e , thus b e i n g more r e l i a b l e r e p r e s e n t a t i v e s f o r the t r u e value of 7 . Values of 7 thus obtained f o r each polymer f i l m are given i n Table I . Wettability f o r low-energy s u r f a c e s , as d e f i n e d by 7 , i s determined e s s e n t i a l l y by the nature and packing of the exposed surface atoms of t h e s o l i d and i s otherwise independent o f the nature and arrangement of the u n d e r l y i n g atoms and molecules ( l , 2). The arrangement o f the s u r f a c e atoms, of course, must represent the lowest f r e e energy c o n f i g u r a t i o n f o r a given s e t of r e s t r a i n i n g c o n d i t i o n s such as the nature, s i z e of the u n d e r l y i n g atoms, l e n g t h of the c h a i n , e t c . I n p a r t i c u l a r , f o r polymeric m a t e r i a l s i t depends on d e f i n i t i o n of the s m a l l e s t u n i t , which f o r ethylenic polymers c o n s i s t s o f 2 carbons i n the backbone (Sb IQ) p l u s the s u b s t i t u e n t . Table I I I l i s t s 7 values of f l u o r i n e - c o n t a i n i n g e t h y l e n i c homopolymers, wherS the formulae shown are the r e p e a t i n g u n i t s i n the polymer s t r u c t u r e , as they would appear i f a l l c o n s t i t u e n t s were present i n the s u r f a c e . The order o f s t r u c t u r e s i s arranged t o show p r o g r e s s i v e s u b s t i t u t i o n s of e i t h e r a hydrogen o r a f l u o r i n e atom i n the backbone c h a i n by e i t h e r a f l u o r i n e atom or a p e r f l u o r o group. S e v e r a l observations can be made from i n s p e c t i o n of values of 7 : (a) When the ethylene c h a i n i s f u l l y hydrogenated, replacement of one hydrogen by a - C F group lowers 7 a p p r o x i mately 10 dyn/cm. (Compare XV and i f XVI and IX, and XVI and X.) (b) When one carbon atom i n the 2-carbon moiety of the ethylene c h a i n i s f u l l y f l u o r i n a t e d , replacement of a hydrogen by a -CF^ group on the other carbon atom lowers 7 o n l y about 5 dyn/cm. (Compare XVII and XIX.) (c) Nearly equSl y values a r e observed on s e v e r a l p a i r s of monomers of u n l i k e molecular c o n s t i t u t i o n s , such as I and X V I I , I X and X V I I I , and X and XIX. I n s p e c t i o n o f S t u a r t - B r i e g l e b molecular models shows t h a t , i n c e r t a i n s t e r i c arrangements, the 7 -determining packing of f l u o r i n e atoms a t the s u r f a c e o f these paîrs could be v e r y s i m i l a r , s i n c e the pendant ?
Q
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
14.
BERNETT
AND
Highly Fluorinated Polymers
zisMAN
203
Table I I I . E f f e c t on C r i t i c a l Surface Tensions of Wetting by Replacement of Hydrogen w i t h F l u o r i n e and/or Pendant Group Code
7 (dyVcm)
Polymer
31
XV
[CH -CH -]
I
[CH -CH(CF )-]
IV
[-CH -CH(CF -CF )-]
V
[-CH -CH ( C F ^ C F ^ C F ^ ) -]
15.5
XVI
[-CH -CFH-]
28
IX
[-CH
X
[-CH(CF )-CFH-]
XVII
[-CF -CFH-]
n
22
XVIII
C-CF -CF -]
n
18.5
XIX
[-CF -CF(CF )-]
XI
[-CF -GF(nC F
XX
[-CH -CH(C H )-]
XII
[-CH -CH(C F )-]
XIII
[-CF -CF(C H )-]
n
25.4
XIV
C-CF -CF(C F )-]
n
17.8
2
2
2
n
3
2
21.5
n
2
3
2
n
b
2
3
2
2
2
2
3
2
2
2
2
2
Reference 14;
16.3
n
n
2
a
5
6
6
6
6
i:L
17.5
n
17
n
)-]
5
5
5
5
n
n
n
b
C
d
14.1 33-35
e
22.5
Reference 15; °Reference 13; Reference 16;
References 17, 18
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
Macromolecules
Figure 2. Various configurations of polymer [—CHz—CHtCeFs)—']». (a) (top left) syndiotactic, exposure of flat side; (b) (top right) syndiotactic, exposure of edge; (c) (bottom left) isotactic (12).
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
14.
BERNETT
AND
Highly Fluorinated
zisMAN
205
Polymers
-CF^ groups may be so l o c a t e d as t o p a r t i a l l y obscure the hydro gen atoms . The t o t a l e f f e c t achieves a balance between the hydrogen and the -CF- c o n t r i b u t i o n s which approximates the s u r face c o n s t i t u t i o n of the l i n e a r unbranched c o n f i g u r a t i o n . (d) Polymers IX and X demonstrate a c o n f i r m a t i o n of the c o n c l u s i o n of Pittman and co-workers ( 1 £ ) , t h a t i n a p a r t i c u l a r f l u o r i n a t e d polymer y i s not n e c e s s a r i l y dependent on the t o t a l f l u o r i n e content: deSpite the i d e n t i c a l f l u o r i n e content, the molecular s t r u c t u r e s d i f f e r s u f f i c i e n t l y t o r e s t r i c t f r e e r o t a t i o n of the -CF~ groups i n polymer X w i t h the n e t r e s u l t of c l o s e r surface packing of the f l u o r i n e atoms and thus a lower y . (e) As a n t i c i p a t e d , the lowest y , 14-1 dyn/cm, i s obtained f o r polymer X I which i s not only fulîy f l u o r i n a t e d but a l s o d i s p l a y s the l o n g e s t pendant p e r f l u o r i n a t e d group. The i n c r e a s e i n l e n g t h from 1 carbon t o 5 carbons decreases 7 about 3 dyn/cm (XIX and XI) because of b e t t e r a d l i n e a t i o longer c h a i n , ( f ) Fo hydrogen w i t h f l u o r i n e i n e i t h e r the phenyl group, X I I , or the backbone c h a i n , X I I I , lowers 7 about 10 dyn/cm from the 33-35 dyn/cm of p o l y s t y r e n e . V a r i a t i o n s o r spread of y values f o r a given polymer can be now explained by the v a r i o u s o r i e n t a t i o n s of the phenyl group i n the s u r f a c e , such as exposure of the f l a t s i d e o r the edge, or the t a c t i c i t y of the arrangement (Figure 2 a, b, c ) . T o t a l f l u o r i n a t i o n , as i n polymer XIV of course r e s u l t s i n even lower 7 , s i n c e only f l u o r i n e atoms a r e exposed i n the s u r f a c e . An i n t e r e s t i n g p a r a l l e l can be observed and i s demonstrated i n F i g u r e 3: When the hydrogen atoms i n the e t h y l e n i c backbone are r e p l a c e d by f l u o r i n e atoms, r e g a r d l e s s of whether the pendant group i s the a l k y l -CF~ or the aromatic -CvF , 7 i s lowered by about 4 · 5 dyn/cm. When, on the other hand, ?he S l k y l -CFo group i s r e p l a c e d by the aromatic -C,F group, whether on a f u l l y hydrogenated or f u l l y fluorinaïed backbone, 7 i s r a i s e d by approximately 1 dyn/cm. Q
c
5
6
0
S t e r i c Configurations The problem o f determining the arrangement of the atoms and s u b s t i t u e n t s of the f i r s t l a y e r of the s o l i d s u r f a c e of a polymer or copolymer needs t o be s o l v e d before we can r e l a t e the observed value of 7 t o the most probable surface composition of the polymeric s o l i d . F o r simple u n s u b s t i t u t e d polymers such as [-CF -CF -] o r [-CH ~CH -] the surface conformation can be r a t i o n a l i z e d by S t u a r t - B r i e g l e b molecular models arranged i n p o s s i b l e conformations on a f l a t t a b l e . However, where s i d e chains a r e introduced i n t o the model, s t e r i c hindrances are a l s o i n t r o d u c e d . I t i s obvious from Figure 4, where only some of the p o s s i b l e arrangements of the atoms and s u b s t i t u e n t s i n the f i r s t l a y e r of the s o l i d [-CH -CH(C F^)-] polymer surface a r e shown, t h a t i n a three-dimensional a r r a y a m u l t i t u d e of a l t e r n a t e 2
2
2
2
2
n
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
ADSORPTION A T INTERFACES
206
- CH, - CH(CF ) -
- CF - CF(CF,) -
}
2
21-5
l+l.O
4.5 17.0
+0.8 I
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
14.
BERNETT AND
zisMAN
Highly Fluorinated Polymers
207
conformations are p o s s i b l e , l i m i t e d o n l y by s t e r i c considerations. Lacking s p e c i f i c i n f o r m a t i o n on the t a c t i c i t y of the r a d i a t i o n induced polymer, we assumed them t o be a t a c t i c , i . e . , randomly o r i e n t e d . Any p r e d i c t i o n of surface p a c k i n g i s thus p r o b l e m a t i c . In a d d i t i o n t o the s p a t i a l arrangements, polymers such as X a l s o e x h i b i t c i s and trans isomerism w i t h respect t o the o r i e n t a t i o n of the -F and -CF^ s u b s t i t u e n t s on the backbone, f u r t h e r compli c a t i n g and expanding the number of p o s s i b l e c o n f i g u r a t i o n s . Electrostatic
Dipoles
A t the juncture of the -CH CH< backbone and the - ( C F j F s i d e group there exists an uncompensated e l e c t r o s t a t i c d i p o l e . I f one assumes t h a t the s i d e group i s d i r e c t e d away from the polymer s o l i d surface i n t closer t o the interfac have shown t h a t as χ becomes s m a l l e r , θ a l s o becomes s m a l l e r . Thus, when χ changes from 1 t o 3, 7 i s lowered from 21.5 t o 15.5 dyn/cm (Figure 5), w i t h the l a r g e r Secrease of 5.2 dyn/cm when 1 < χ < 2 and the s m a l l e r decrease of 0.8 dyn/cm when 2 < χ < 3· I n t h e i r study of adsorbed monolayers of p r o g r e s s i v e l y f l u o r i n ated f a t t y a c i d s of the general formula F ( C F ) ( C H j ^ C O O H and 2
p
F
C F
C H
C 0 Q H
&
Γ
Γ
Ϊ
η
z
i
s
m
a
n
^ 2^ 2^10 ' ^ · ^ (20)/sSowed TOat the uncompensated d i p o l e has a l a r g e e f f e c t on w e t t i n g when χ < 7, but becomes l e s s s i g n i f i c a n t when χ ^ 7. Measurements of e l e c t r i c a l and mechanical p r o p e r t i e s of i n s o l u b l e monolayers on water by Bernett and Zisman (21), supported t h e i r view a l s o . S h a f r i n and Zisman a l s o n o t i c e d an abrupt r e v e r s a l of the e f f e c t of homology a t 2 < χ < 3 where the d i f f e r e n c e i n y was only 0.8 dyn/cm because of random t i l t i n g , of the fluoroSarbon group. A s i m i l a r abrupt d i s c o n t i n u i t y a t 2 < χ < 3 f o r the e t h y l e n i c polymers can be explained by r e s t r i c t i o n of r o t a t i o n of the s u b s t i t u e n t and the subsequent s h i e l d i n g of the e l e c t r o s t a t i c d i p o l e . The l a t t e r i s accentuated by the f a c t t h a t the e t h y l e n i c hydrocarbon, t o which the p e r f l u o r o a l k y l s i d e groups are connected, imposes r e s t r i c t i o n s on the p a c k i n g of these s u b s t i t u e n t groups, n e c e s s i t a t i n g p r o g r e s s i v e l y l a r g e r i n t r a molecular r o t a t i o n s and bending w i t h i n the c h a i n . This r e s u l t s i n exposure of the -CF - atomic grouping i n an outermost surface of randomly o r i e n t e d perfluoroethyl o r -propyl groups. I t would be i n t e r e s t i n g t o study polymers w i t h p r o g r e s s i v e l y longer p e r f l u o r o a l k y l s i d e groups t o a s c e r t a i n whether r e g u l a r decreases i n y can be observed or whether a l i m i t i n g value has been approacheS. When the ethylene backbone i s f u l l y f l u o r i n a t e d , no l a r g e uncompensated d i p o l e s are present, and a gradual and u n i n t e r r u p t e d decrease i n y i s observed w i t h i n c r e a s e i n χ (Figure 5 ) . The shape o f tne two curves i n Figure 5 seems t o p o i n t t o an eventual asymptotic approach t o the y -vs-x curve obtained from adsorbed monolayers o f f u l l y f l u o r i n a t e d c a r b o x y l i c ?
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
ADSORPTION AT
208
INTERFACES
a c i d s , as shown i n Figure 6 (20). Since t o date no curve of anyother f a m i l y or s e r i e s of r e l a t e d compounds (22), i n c l u d i n g the two present ones, has crossed or gone beyond the curve of the p e r f l u o r o a c i d s , i t i s suggested t h a t the l a t t e r represents an envelope of l i m i t i n g v a l u e s . Copolymers
I n t h e i r study on copolymers, Hu and Zisman (11) p l o t t e d y f o r each polymer a g a i n s t the mole % of [-CF -CF -] i n the copolymer (Figure 7 ) . The three graphs show the comparative case of p r e d i c t i n g the e f f e c t on y of c o p o l y m e r i z a t i o n of [ C F - C F - ] w i t h [-CH -CH -] (upper curve) (22) and the greater d i f f i c u l t y (middle graph predictin y c o p o l y m e r i z a t i o n w i t h [-CH c
2
2
C
2
2
n
2
2
n
F
e f f e c t w i t h [ - C H - C H ( C o ) - ] ("bottom c u r v e ) . I t should be evident t h a t we are d e a l i n g w i t h s e v e r a l e f f e c t s of adding f l u o r i n a t e d carbon atoms: (a) those due t o London d i s p e r s i o n f o r c e changes (upper graph) and (b) those combining e l e c t r o s t a t i c e f f e c t s and s t e r i c hindrance e f f e c t s (lower two graphs). I t i s obvious from the multitude of p o s s i b l e s t e r i c c o n f i g u r a t i o n s and d i p o l e c o n t r i b u t i o n s t h a t we face the d i f f i c u l t problem of r a t i o n a l i z i n g how t o compute the c o r r e c t molecular conformation t o a r r i v e a t a minimum s u r f a c e energy f o r s u b s t i t u t e d ethylene f luoropolymers and copolymers. 2
7
n
Summary
Wetting p r o p e r t i e s of new, w e l l - c h a r a c t e r i z e d , h i g h l y f l u o r i n a t e d l i n e a r e t h y l e n i c polymers and copolymers w i t h t e t r a f l u o r o e t h y l e n e were i n v e s t i g a t e d . F l u o r i n a t i o n i n the p o l y ethylene backbone was v a r i e d by degree of f l u o r i n e atom s u b s t i t u t i o n ; n - a l k y l s i d e chains of i n c r e a s i n g number were f u l l y f l u o r i n a t e d , whereas phenyl s i d e groups were e i t h e r f u l l y or nonf l u o r i n a t e d . C r i t i c a l s u r f a c e tensions of w e t t i n g obtained on t h i n c a s t f i l m s of these fluoropolymers were compared t o those of polymers w i t h r e l a t e d s t r u c t u r e s and surface c o n s t i t u t i o n s . Because of the presence of the b u l k y f l u o r i n e atoms and aromatic s i d e groups, some of these molecules are extremely s t e r i c a l l y blocked, which makes the p r e d i c t i o n of an e q u i l i b r i u m surface conformation very d i f f i c u l t . The r e s u l t s are discussed i n terms of s o l i d s u r f a c e c o n s t i t u t i o n , s t e r i c hindrance, and e l e c t r o s t a t i c dipole contribution. Literature Cited
1.
Zisman, W. Α., in "Contact Angle Wettability and Adhesion," Adv. Chem. Ser., No. 43, p. 1, Am. Chem. Soc., Wash., D.C., 1964.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
14.
BERNETT
0
J
AND ZISMAN
I 2
L
4
Highly Fluorinated Polymers
J 6
1
ι 8
209
Ο
F(CF ) C00H
Δ
F ( C F ) ( C H ) C 0 0 H (FROM SOLUTION)]
•
F ( C F ) ( C H 2 ) C 0 0 H (FROM MELT)
•
H(CH ) C00H
ι
2
2
x
2
2
X
2
I 10
(FROM SOLUTION)
X
| 6
|6
(FROM SOLUTION)
| 7
I
l 12
L
X=NUMBER OF FLUORINATED CARBON ATOMS PER
14
I
I 16
I
18
MOLECULE Journal of Physical Chemistry
Figure 6.
Effect of fluorination of the adsorbed acid monolayer on y ( 20 )
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
c
ADSORPTION A T INTERFACES
Macromolecules
Figure 7. Effect of copolymerization with [—CF -CF —] on y { 11) ?r
2
n
c
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
14.
Highly Fluorinated Polymers
BERNETT AND ZISMAN
211
2. Zisman, W. Α., J. Paint Tech., (1972), 44, 42. 3. Brown, D.W., Wall, L. Α., J . Polym. Sci. A-1, (1968), 6, 1367. 4. Brown, D. W., Wall, L. Α., J . Polym. Sci. A-2, (1969), 7, 601. 5. Brown, D. W., Lowry, R. E . , Wall, L. Α., J . Polym. Sci. A-1, (1970), 8, 2441. 6. Brown, D. W., Lowry, R. E . , Wall, L. Α., J. Polym. Sci. A-1, (1970), 8, 3483. 7. Brown, D. W., Lowry, R. E . , Wall, L. Α., J . Polym. Sci. A-1, (1971), 9, 1993. 8. Brown, D. W., Lowry, R. E . , Wall, L. Α., J. Polym. Sci. (Polym. Chem. Ed.) (1973), 11, 1973. 9. Wunderlich, B., J. Phys. Chem., (1960), 64, 1052. 10. Wunderlich, B., Bodily, D. M., Kaplan, H. M., J . Appl. Phys., (1964), 35, 95. 11. Hu, W. Κ. H., Zisman 12. Bernett, M. K., Macromolecules (In Press) (Sep 1974), 7. 13. Fox, H. W., Zisman, W. Α., J. Colloid Sci., (1950), 5, 514. 14. Fox, H. W., Zisman, W. Α., J. Colloid Sci., (1952), 7, 428. 15. Ellison, A. H., Zisman, W. Α., J . Phys. Chem., (1954), 58, 260. 16. Bernett, M. K., Zisman, W. Α., J . Phys. Chem., (1961), 65, 2266. 17. Ellison, A. H., Zisman, W. Α., J. Phys. Chem., (1954), 58, 503. 18. Fox, R. F., Jarvis, N. L . , Zisman, W. Α., in "Contact Angle Wettability and Adhesion," Adv. Chem. Ser., No. 43, p. 317, Am. Chem. Soc., Wash., D.C., 1964. 19. Pittman, A. G., Sharp, D. L . , Ludwig, Β. Α., J. Polym. Sci. A-1, (1968), 6, 1729. 20. Shafrin, E. G., Zisman, W. Α., J . Phys. Chem., (1962), 66, 740. 21. Bernett, M. K., Zisman, W. Α., J . Phys. Chem., (1963), 67, 1534. 222. Pittman, A. G. "Fluoropolymers," p. 419, Wiley Interscience Press, N.Y., 1972. 23. Fox, H. W., Zisman, W. Α., J . Colloid Sci., (1952), 7, 109. ;
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
15 Effect o f Surface O x y g e n Complexes o n Surface Behavior o f Carbons BALWANT RAI PURI Department of Chemistry, Panjab University, Chandigarh, 160014, India
Introduction It is now well know that microcrystalline carbons contain appreciable amounts of combined oxygen which gives rise to stable carbon-oxygen surface complexes (1). The work reported from our laboratories (2,3) and from elsewhere (4,5) indicates that there are definite surface groups or complexes which evolve carbon dioxide and, similarly, there are distinct surface entities which evolve carbon monoxide on evacuation at increasing temperatures. The effect of combined oxygen on various surface properties, such as wettability (6), heats of immersion in various liquids (7-9), adsorbability of water and other polar vapours (10-12), selectivity in adsorption from binary mixtures (13,14) has been reported. However, the effect of the individual oxygen complexes such as acidic CO2-complex (15), nonacidic CO2-complex (16) and CO-complex (3) on some of the surface properties mentioned above has not received adequate attention. An attempt has been made in the present paper to spell out the effect of each complex on (i) selective adsorption from mixtures of methanol and benzene, and (ii) adsorption of (a) benzene vapour, (b) dry ammonia, and (c) phenol from dilute aqueous solutions. Experimental Mogul (a colour black), Spheron-6 (a channel black) and a charcoal prepared by the carbonisation of recrystallised cane sugar (17) were used as such as well as after (i) outgassing at different temperature upto 1000°C, and (ii) treatment with aqueous hydrogen peroxide or potassium persulphate (l6) so as to get materials associated with different amounts of surface oxygen complexes. The amount of combined oxygen and the form of its disposition was obtained by evacuating 0.5 g portion in a resistance tube furnace, raising the temperature to 1200°C and analysing the gases evolved in the usual manner (17). 212 In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
15.
puRi
Surface Oxygen Complexes
213
The base a d s o r p t i o n c a p a c i t y , estimated by t i t r a t i n g against aqueous barium hadroxide (17), f i x e d the amount o f a c i d i c CO2complex. This when subtracted from the amount o f carbon d i o x i d e evolved on evacuation gave the amount o f n o n - a c i d i c C0 -complex (l6) which a r i s e s through the f i x a t i o n o f oxygen at unsaturated s i t e s (17). The amount o f CO-complex was obtained from the amount o f carbon monoxide evolved on evacuation. The n i t r o g e n surface areas and the t h r e e main types o f surface oxygen com plexes of the v a r i o u s samples are recorded i n Table I . S e l e c t i v e a d s o r p t i o n from methanol-benezene s o l u t i o n s was s t u d i e d by mixing 0.25 g carbon w i t h a known weight (5-6 g) o f the s o l u t i o n i n a s m a l l g l a s s tube drawn out a t one end. The l a t t e r was s e a l e d , a f t e r c o o l i n g i n a f r e e z i n g m i x t u r e , t o min imise evaporation. Several such tubes c o n t a i n i n g 0.25 g carbon mixed w i t h s o l u t i o n s o f d i f f e r e n t c o n c e n t r a t i o n placed i a shaker (12 rev/min) h e l 0.05°C f o r ho hours. Th chang compositio liqui was determined i n t e r f e r o m e t r i c a l l y . Adsorption isotherms o f benzene as w e l l as d r y ammonia were determined at 35 + 0.05°C by u s i n g McBain's t o r s i o n balance technique. A d s o r p t i o n isotherms of phenol from aqueous s o l u t i o n s were determined by mixing 0.5 g p o r t i o n s w i t h a known weight ( ~ 5 g) o f s o l u t i o n s of v a r i o u s c o n c e n t r a t i o n s , shaking the suspensions i n a r e v o l v i n g wheel h e l d i n a thermostat a t 35 + 0.05°C f o r 2k hours. The change i n c o n c e n t r a t i o n o f the s o l u t i o n was determined i n t e r f e r o m e t r i c a l l y . The experiments were conducted i n the low c o n c e n t r a t i o n range upto 20 m m o l e s / l i t r e . 2
R e s u l t s and D i s c u s s i o n The composite a d s o r p t i o n isotherms, reproduced i n F i g u r e 1 from a recent r e p o r t from the author's l a b o r a t o r y (l8), show how the preference o f Mogul f o r a d s o r p t i o n from methanol-benzene mix t u r e s of v a r i o u s c o n c e n t r a t i o n s i s a l t e r e d i n the presence o f v a r i o u s surface oxygen complexes. I t i s seen t h a t 1000°-outgassed Mogul, which i s e s s e n t i a l l y f r e e o f combined oxygen, shows strong preference f o r benzene at a l l c o n c e n t r a t i o n s , g i v i n g a t y p i c a l l y U-shaped isotherm (marked A ) . The 7 0 0 ° - outgassed Mogul, which i s f r e e o f COg-complex but r e t a i n s over 2.5 per cent oxygen capable o f e v o l v i n g carbon monoxide (C0-complex), shows, s u r p r i s i n g l y enough, even g r e a t e r preference f o r benzene, the l e s s p o l a r component of the m i x t u r e , a l l along the c o n c e n t r a t i o n range. This i s c o n t r a r y t o the view g e n e r a l l y h e l d (l3 lh) t h a t combined oxygen imparts g r e a t e r preference f o r the more p o l a r component o f the mixture. I t appears t h a t the presence o f q u i nonic groups which form a p a r t of the C0-complex (l£) promotes preference f o r benzene due t o p o s s i b i l i t y of i n t e r a c t i o n o f e l e c t r o n s of benzene r i n g w i t h the p a r t i a l p o s i t i v e charge on the carbonyl carbon atom (20). The l*00°-outgassed and the o r i g i n a l samples of Mogul, which c o n t a i n i n c r e a s i n g amounts o f CO2 com9
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
ADSORPTION A T INTERFACES
214
Table I . Surface Area and Surface Oxygen Complexes o f the Carbons used i n t h e Present Work.
D e s c r i p t i o n o f the sample
Surface area m /g 2
Acidic CO2complex moles/ 100 g
NonC0acidic complex CO2mmoles/ complex 100 g mmoles/ 100g
Mogul Original 30 30 Outgassed a t 1*00°C 3lk Outgassed at 600°C 325 Outgassed at T00°C 318 Outgassed at 850°C Outgassed a t 1000°C 326 Original, treated 310 w i t h aq.H 02 Original, treated with K S 08 312 Outgassed at 1000°, t r e a t e d w i t h aq. H 02328 2
2
2
2
269 198 163 52
1 nil nil nil nil
nil nil nil nil
nil
1*5
nil
281*
189
nil
315
nil
120
20
15.5
nil nil nil nil
122.5 108 nil
nil
135
Spheron-6 Original Outgassed at 600°C Outgassed at 850°C Outgassed a t 1000°C Original, treated w i t h aq.H202 Outgassed a t 1000°, t r e a t e d w i t h aq.H202
110 112 109
116 11^
2.5 nil nil
61
51
106
nil
10
1*
1*12 51* 502
355 51 nil
nil nil nil
1*91
1*1*3
*53
nil
56Ο
488
nil
165
20
Sugar Charcoal Original Outgassed a t 600°C Outgassed a t 1000°C Original, treated w i t h aq.H202 Outgassed a t 1000° t r e a t e d w i t h aq.H 02 2
531 nil
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
15.
puRi
Surface Oxygen Complexes
215
p l e x , though n e a r l y equal amounts o f CO-complex ( c f . Table I ) , show, on the other hand, p r e f e r e n t i a l a d s o r p t i o n o f methanol over a p p r e c i a b l e range o f c o n c e n t r a t i o n ( c f . isotherms marked C and D). This remarkable change i n the preference may be a s c r i b e d t o the presence o f a c i d i c C02-complex. This view r e c e i v e s support from the f a c t t h a t when the amount of the a c i d i c complex i s r a i s e d from 6 8 . 5 mmoles t o 1*5 mmoles on treatment w i t h aqueous hydrogen peroxide and 189 mmoles on treatment w i t h potassium per s u l p h a t e , the preference o f the s u r f a c e i s s h i f t e d i n c r e a s i n g l y i n favour of methanol ( c f . isotherms Ε and F ) . The comparison o f the isotherms Β and F shows c l e a r l y how the presence o f a l a r g e amount o f a c i d i c C02-complex has brought about almost complete r e v e r s a l of the preference o f the carbon s u r f a c e . I t i s a l s o i n t e r e s t i n g t o note t h a t the 1000°-outgassed Mogul y i e l d s almost i d e n t i c a l isother a f t e f i x a t i o f about * per cent o f oxygen, a aqueous hydrogen p e r o x i d e , y oxyge (cf. isotherms marked G and A ) . The presence of n o n - a c i d i c com p l e x , e v i d e n t l y , produces l i t t l e o r no e f f e c t on the preference o f the s u r f a c e . Thus the view h e l d by p r e v i o u s workers ( 1 3 » 1 * ) t h a t the e n t i r e combined oxygen imparts p o l a r i t y t o the surface and p r o motes preference f o r the more p o l a r component o f a b i n a r y mixture needs r e v i s i o n i n the l i g h t o f the observations d i s c u s s e d above. A d s o r p t i o n o f Benzene Vapour. The above c o n c l u s i o n s were checked by s t u d i n g a d s o r p t i o n of benzene vapour d i r e c t l y on a number o f carbon b l a c k s (21). The s o r p t i o n - d e s o r p t i o n isotherms (35±0.05°C) on some of the samples o f Mogul ( F i g u r e 2 ) almost superimpose showing almost complete r e v e r s i b i l i t y o f the process. The amount o f s o r p t i o n a t each r e l a t i v e vapour pressure i s seen to i n c r e a s e a p p r e c i a b l y as Mogul i s outgassed at i n c r e a s i n g tem p e r a t u r e s . The maximum e f f e c t i s produced when the b l a c k i s out gassed at 600°C. I t appears t h a t w i t h the e l i m i n a t i o n o f the p o l a r C02-complex and the emergence o f CO-complex as the o n l y predominant s u r f a c e oxygen complex, the s o r p t i o n o f benzene i n creases a p p r e c i a b l y on account of reasons advanced i n the p r e v i o u s paragraph. The outgassing o f Mogul a t 850°C lowers the amount o f CO-complex c o n s i d e r a b l y and t h e r e i s s i g n i f i c a n t f a l l i n the s o r p t i o n v a l u e at a l l r e l a t i v e vapour pressures. With the complete e l i m i n a t i o n o f the complex at 1000°C, t h e r e i s a f u r t h e r f a l l i n the s o r p t i o n of benzene. A d s o r p t i o n of Dry Ammonia. A d s o r p t i o n o f dry ammonia on m i c r o c r y s t a l l i n e carbons at d i f f e r e n t temperatures has been i n v e s t i g a t e d by a number o f workers amongst which mention may be made of the work o f Anderson and Emmett ( 2 2 ) , V o s k r e s e n s k i i (23.), Holmes and Beebe ( 2 * ) , Studebaker ( 2 5 ) and Dupupet e t a l ( 2 6 . There i s a g e n e r a l agreement t h a t a d s o r p t i o n i s enhanced appre c i a b l y i n the presence o f combined oxygen. However, the exact
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
216
ADSORPTION A T INTERFACES
1-2
0·8
OA
Ε
OO
•fraction
Methanol->-
8
c° - 0 - 4
-1-2
Figure 1. Composite adsorption isotherms of methanolbenzene mixtures on Mogul before and after various treat ments. A = Mogul outgassed at 1000° C, Β = Mogul out gassed at 700°C, C = Mogul outgassed at 400°C, D = Mogul original, Ε = Mogul original, treated with aq. H 0 , F = Mogul original treated with acidified K S 0 , G = Mogul outgassed at 1000°C, treated with aq. H 0 . 2
2
2
8
2
~ΟΛ
0·2 0·3 0 4 0 5 0 6 0·7 Ο θ 0·9 Relative vapour pressure—*:
2
PÔ"
Figure 2. Adsorption isotherms of benzene on Mogul. The solid points denote desorption data. Ο = original, Δ = outgassed at 600°C, • = outgassed at 850°C, · = oxygen-free.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
2
15.
puRi
Surface Oxygen Complexes
217
r o l e o f the v a r i o u s surface oxygen complexes, which c o n s t i t u t e t h i s oxygen, has not "been e l u c i d a t e d . Adsorption isotherms o f ammonia on sugar c h a r c o a l , Mogul and Spheron-6 "before and a f t e r v a r i o u s treatments are shown i n Figures 3» h and 5, r e s p e c t i v e l y . I t i s seen t h a t , i n each case, there i s a considerable f a l l i n the s o r p t i o n o f ammonia a t each pressure on outgassing and t h a t the e f f e c t i s r e l a t i v e l y more when a carbon i s outgassed a t 600°C, causing e l i m i n a t i o n o f most of C02-complex ( c f . Table I ) , than t h a t when i t i s outgassed i n 600-1000° temperature range, causing e l i m i n a t i o n o f CO-complex. This shows t h a t the s o r p t i o n o f ammonia i s i n f l u e n c e d more by the former than by the l a t t e r s u r f a c e oxygen complex. The treatment of o r i g i n a l samples w i t h aqueous hydrogen peroxide which r e s u l t s i n an a p p r e c i a b l e r i s e i n the amount o f the a c i d i c complex w i t h out a f f e c t i n g much the valu f C0-comple ( c f Tabl I ) i t o cause increase i n th sure, as can be seen o compariso of the F i g u r e s . The treatment o f 1000° - outgassed carbons w i t h aqueous hydrogen peroxide r e s u l t s i n a p p r e c i a b l e f i x a t i o n o f oxygen which, however, gives r i s e mostly t o non-acidic C02-comp l e x ( c f . Table I ) . The isotherm on t h i s sample i s seen t o be almost i d e n t i c a l w i t h t h a t on the corresponding oxygen-free sam p l e . These observations show c l e a r l y t h a t the e n t i r e combined oxygen does not have a uniform e f f e c t on the s o r p t i o n o f dry ammonia by carbon. The oxygen present as a c i d i c C02-complex i n f l u e n c e s the s o r p t i o n o f ammonia t o a r e l a t i v e l y l a r g e r extent than t h a t present as C0-complex w h i l e the oxygen-present as nona c i d i c C02-complex has h a r d l y any e f f e c t a t a l l . Adsorption isotherms on sugar c h a r c o a l , Mogul and Spheron-6, a l l p r e v i o u s l y outgassed a t 1000° and t h e r e f o r e e s s e n t i a l l y f r e e of oxygen, are p l o t t e d i n F i g u r e 6. I t i s seen t h a t the v a r i o u s p o i n t s f i t around a s i n g l e curve showing t h a t the extent o f sorpt i o n / m o f carbon surface when f r e e o f oxygen i s about the same i n every case i r r e s p e c t i v e o f d i f f e r e n c e s i n p o r o s i t y o f these m a t e r i a l s . I t appears t h a t ammonia, being a s m a l l molecule w i t h t h i c k n e s s equal t o 2.36 A, becomes e a s i l y a c c e s s i b l e t o the inner surface o f carbons as w e l l . 2
Adsorption o f Phenol from Aqueous S o l u t i o n s . Adsorption o f phenol from aqueous s o l u t i o n , b e i n g o f i n t e r e s t from the standpoint o f water treatment,was s t u d i e d u s i n g Mogul,Spheron-6,Graphon(ahighl y g r a p h i t i s e d carbon b l a c k ) and sugar c h a r c o a l . The isotherms (35° C) p l o t t e d on the b a s i s o f amounts adsorbed ( μ moles)per m o f surface i n the v a r i o u s carbons i n the o r i g i n a l s t a t e are pre sented i n Figure 7. I t i s seen t h a t the extent o f a d s o r p t i o n a t a given c o n c e n t r a t i o n i s maximum i n the case o f Graphon which i s f r e e o f oxygen and decreases i n the order Graphon>Spheron-6 > Mogul > Sugar c h a r c o a l . This i s a l s o the order o f decreasing oxy gen content o f these m a t e r i a l s . The r o l e o f chemisorbed oxygen i n adversely a f f e c t i n g the amount o f a d s o r p t i o n i s , t h e r e f o r e , q u i t e evident. 2
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
ADSORPTION A T INTERFACES
Figure 3. Adsorption isotherms of ammonia on various samples of sugar charcoal. Ο = original, Δ = 600°-out gassed, • = 1000°-outgassed, · = original, treated with aq. H 0 , A = 1000°-outgassed, treated with aq. H 0 . 2
2
2
2
Figure 4. Adsorption isotherms of ammonia on various samples of Mogul. Ο = original, Δ = 600°-outgassed, • = 1000°-outgassed, · = original, treated with aq. H 0 , A = 1000°-outgassed, treated with aq. H 0 . 2
2
2
2
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
15. puni
Surface Oxygen Complexes
219
Figure 5. Adsorption isotherms of ammonia on vanous samples of Spheron-6. Q = original, Δ = 600°outgassed, • = 1000°-outgassed, · = original, treated with aq. H O , A = 1000°-outgassed, treated with aq. H O . 2
z
2
g
Pressure ^ T o r r ) — • ·
Figure 6. Adsorption isotherms of ammonia on oxy gen-free (1000°-outgassed) samples of sugar charcoal, Mogul and Spheron-6. Q = 1000°-outgassed sugar charcoal, Δ = 1000°-outgassed Mogul, • = 1000°outgassed Spheron-6.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
220
ADSORPTION A T INTERFACES
I n order t o study the e f f e c t of CO2- and CO-complexes, sep a r a t e l y , the isotherms were a l s o determined on 6 0 0 ° - and 1 0 0 0 ° outgassed samples. The r e s u l t s are p l o t t e d i n F i g u r e s 8, 9 and 10 f o r Spheron-6, Mogul and Sugar Charcoal. I t i s h i g h l y s i g n i f i c a n t t o note t h a t when the a c i d i c CO2- complex i s e l i m i n a t e d s u b s t a n t i a l l y on outgassing a t 600° and CO-complex becomes the predominant surface complex, the extent of a d s o r p t i o n a t each c o n c e n t r a t i o n i n c r e a s e s a p p r e c i a b l y i n the case o f each carbon and even surpasses the corresponding values f o r the oxygen-free ( i . e . , 1000°-outgassed) samples. This shows t h a t the adverse e f f e c t o f combined oxygen, as r e p o r t e d by previous workers (27, 28), can not be t r u e f o r the whole o f the oxygen. A p a r t o f the oxygen disposed o f as carbon monoxide, i n f a c t , enhances adsorb a b i l i t y o f phenol t o an a p p r e c i a b l e extent. The p o s i t i v e e f f e c t of a p a r t o f the combine i enhancin sorptio phenol i s being r e p o r t e d s u l t s c l e a r l y i n d i c a t e t h a t when the a c i d i c C02~complex i s pre dominant, the surface p r e f e r s the s t r o n g l y p o l a r molecule o f water (the s o l v e n t ) , which a d v e r s e l y a f f e c t s the a d s o r b a b i l i t y o f phenol. However, w i t h the e l i m i n a t i o n o f t h i s complex and w i t h the emergence o f CO-complex, as the predominant surface complex, the preference o f the surface f o r phenol r i s e s a p p r e c i a b l y . This appears t o be due t o i n t e r a c t i o n o f OH groups o f phenol w i t h p h e n o l i c and quinonic oxygens a s s o c i a t e d w i t h CO-complex. Summary The e f f e c t o f carbon-oxygen surface complexes on s e l e c t i v e a d s o r p t i o n from methanol-benzene mixtures as w e l l as adsorb a b i l i t y of benzene vapour, dry ammonia and phenol from d i l u t e aqueous s o l u t i o n s by a few samples o f m a c r o c r y s t a l l i n e carbons has been i n v e s t i g a t e d . The view o f previous workers t h a t the combined oxygen a f f e c t s these p r o p e r t i e s more or l e s s u n i f o r m l y has not been s u b s t a n t i a t e d . Thus, w h i l e the presence o f a c i d i c C02-complex enhances preference of the surface f o r methanol, the more p o l a r component o f methanol-benzene s o l u t i o n s , t h a t o f COcomplex enhances preference f o r benzene, the l e s s p o l a r component of these s o l u t i o n s . The presence o f non a c i d i c C02-complex has h a r d l y any e f f e c t . Again, w h i l e the a c i d i c C02-complex supresses the s o r p t i o n o f pure benzene from vapour phase, t h a t of CO-com p l e x enhances i t a p p r e c i a b l y and t h a t o f non a c i d i c complex has h a r d l y any e f f e c t at a l l . Adsorption o f d r y ammonia, which f o r oxygen-free carbons i s l a r g e l y a f u n c t i o n o f surface a r e a , i s enhanced c o n s i d e r a b l y by a c i d i c C02-complex, t o a much smaller extent by CO-complex and not a l a l l by non a c i d i c C02-complex. Adsorption o f phenol from d i l u t e aqueous s o l u t i o n s i s i n f l u e n c e d a d v e r s e l y by a c i d i c C02-complex, f a v o u r a b l y by CO-complex but not by non a c i d i c complex. S u i t a b l e explanations have been o f f e r e d f o r the apparent anamolies.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
15. puRi
Surface Oxygen Complexes
Equilibrium concentration^ moles/litre J —>-
Figure 7. Adsorption isotherms of phenol on Graphon, sugar charcoal, Mogul, and Spheron-6. X = Graphon, • = sugar charcoal, Δ = Mogul, • = Spheron-6.
Equilibrium concentration (m moles/litre) —
Figure 8. Adsorption isotherms of phenol on Spheron-6 before and after outgassing at 600 and 1000° C. · = original Spheron-6, Δ = 600°-outgassed Spheron-6, • = 1000°-outgassed Spheron-6.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
221
ADSORPTION A T INTERFACES
Figure 9. Adsorption isotherms of phenol on Mogul before and after outgassing at 600 and 1000°C. · = original Mogul, Δ = 600°-outgassed Mogul, • = 1000°-outgassed Mogul.
τ <Ç I Ο
I
ΟΘ
Ec^ilibrium concentration^ moles/litre) —
Figure 10. Adsorption isotherms of phenol on sugar charcoal before and after outgassing at 600 and 1000°C. Φ = original sugar charcoal, Δ = 600°-outgassed sugar charcoal, Π = 1000°-outgassed sugar charcoal.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
15.
PURI
Surface Oxygen Complexes
223
Literature Cited 1. 2. 3. k. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26.
Puri, B.R., in "Chemistry and Physics of Carbon", P.L. Walker, Jr., Ed., Vol. VI, pp. 191-282, Marcel Dekker Inc., New York, 1970. Puri, B.R., Myer, Y.P. and Sharma, L.R. Res. Bull. Panjab Univ., (1956) No. 88, 53. Puri, B.R. and Bansal, R.C., Carbon, (1964) 1, 451. Lobenstein, W.R. and Deitz, V.R., J . Phys. Chem., (1955) 59, 481. Rivin, D., Rubber Chem. Tech., (1971) 44, 307. Studebaker, M.L. and Snow, C.W., J . Phys. Chem., (1955) 59, 973. Healey, F.H., Chessick, J.J., Zettlemoyer, A.C. and Young C.J., J . Phys. Chem., (1954) 58, 887. Puri, B.R., Singh (1958) 62, 756. Wade, W.H., J . Colloid Interface Sci., (1969) 31, 111. Dubinin, M.M., Zaverina, E. D. and Serpinski, V.V., J. Chem. Soc., (1955) 1760. Kiselev, A.V. and Kovaleva, H.V., Izvest Akad. Nauk. SSSR, Otdel Khim. Nauk, (1959) 989. Puri, B.R., Murari, K. and Singh, D.D., J . Phys. Chem., (1961) 65, 37. Gasser, C.G. and Kipling, J.J., J. Phys. Chem., (1960) 64, 710. Coltharp, M.T. and Hackerman, N., J . Colloid Interface Sci., (1973) 43, 176; (1973) 43, 185. Puri, B.R., Carbon, (1966) 4, 391. Puri, B.R., Sharma, G.K. and Sharma, S.K., J . Indian Chem. Soc., (1967) 44, 64. Puri, B.R., Sandle, N.K. and Mahajan, O.P., J . Chem. Soc., (1963) 4880. Puri, B.R., Singh, D.D. and Kaistha, B.C., Carbon, (1972) 10, 481. Studebaker, M.L., Huffman, E.W.D., Wolfe, A.C. and Nabors, L.G., Ind. Eng. Chem., (1956) 48, l62. Bhacca, N.S., Tetrahedron Lett., (1964)41,3124. Puri, B.R., Kaistha, B.C., Yasho Vardhan and Mahajan, O.P., Carbon, (1973) 11, 329. Anderson, R.B. and Emmett, P.H., J . Phys. Chem., (1952) 56, 756. Voskressenskii, A.A., Kolloid Zhur., (1961) 23, 3. Holmes, J.M. and Beebe, R.A., J . Phys. Chem., (1957) 61, 1684. Studebaker, M.L., Rubber Age, (1957)80,661. Dupupet, G., and Bastick, Μ., C.R. Acad. Sci. Ser., (1969) 269, 437.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
224
ADSORPTION AT INTERFACES
27. Clauss, A., Boehm, H.P. and Hoffman, U . , Z. Anorg. Allgem. Chem., (1957) 290, 33. 28. Coughlin, R.W., Ezra, F.S. and Tan, R.N., J. Colloid Interface S c i . , (1968) 28, 386.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
16 Surface Properties o f N i c k e l H y d r o x i d e Before and After Dehydration to N i c k e l O x i d e M.TOPIC,*F. J. MICALE, C. L. CRONAN, H. LEIDHEISER, JR., and A. C. ZETTLEMOYER Center for Surface and Coatings Research, Lehigh University, Bethlehem, Penn. 18015 Introduction It is a pleasure for us to take part in this symposium honoring Professors Marjorie and Robert Vold. They have done much for colloid science in teaching and in research through almost forty years of service; they have developed leaders in their field on several continents. As they come to well deserved retirement, we note their many contributions which will stand as a monument to their efforts. The technique of thermal decomposition of precipitated Ni(OH)2 for the preparation of NiO is often employed in studies (1-4) of this useful oxide. During surface characterization studies of Ni(OH) and NiO a relationship has been found between the specific surface areas of the product and precursor. This relationship has allowed the proposal of a mechanism describing the process of thermal decomposition of Ni(OH)2 at moderate temperatures. Nickel hydroxide has the CdI crystal structure (5) with the basic repeating layer structure. Each hexagonally packed layer of Ni(OH)2 is made up of a hexagonal layer of N i sandwiched between two hexagonal layers of OH-. Nickel oxide has the NaCl structure. 2
2
++
Experimental Nickel hydroxide samples were prepared using various techniques and are designated 1 through 4. Samples 1 and 2 were precipitated with NH3 gas from solutions of Ni(NO3) at 80°C for sample 1 and at 25°C for sample 2. These samples were repeatedly washed with deionized distilled water and centrifuged until the wash water attained a constant conductivity of approximately 3 x 10 mho/cm. Samples 3 and 4 were obtained from Dr. Velimir Pravdic (Rudjer Boskovic Institute, Zagreb, Yugoslavia) and were 2
-6
* Current address - Rudjer Boskovic Institute, Zagreb, Yugoslavia. 225 In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
ADSORPTION A T INTERFACES
Time of Heating at 200°C, Hours
Figure 1. Percent weight loss of Ήΐ(ΟΗ) vs. time at 200°C in vacuum ζ
Heating Time @200°C, Hours
Figure 2. Specific surface area of sample vs. time of activation at 200°C in vacuum
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
16.
TOPIC
ET AL.
Nickel Hydroxide
227
prepared by a m o d i f i e d s o l - g e l process (6). S p e c i f i c s u r f a c e area values were obtained u s i n g argon gas and a c l a s s i c a l v o l u m e t r i c BET apparatus. Gas pressures were measured w i t h a c a p a c i t i v e e l e c t r o n i c manometer equipped w i t h a 1000 t o r r d i f f e r e n t i a l p r e s sure head (Datametrics, I n c . ) . A l l isotherms were determined w i t h the samples immersed i n a l i q u i d n i t r o g e n bath. Weight l o s s values were obtained through the use o f a quartz s p r i n g m i c r o balance (Worden) w i t h a d e f l e c t i o n s e n s i t i v i t y o f approximately 1 mg/cm and sample c a p a c i t y o f about 30 mg. R e s u l t s and D i s c u s s i o n Studies o f the t r a n s i t i o n between N i ( 0 H ) and NiO i n v o l v e d the d i r e c t observations o f weight l o s s and s u r f a c e areas. F i g u r e 1 i l l u s t r a t e s a t y p i c a l weight l o s tim fo sampl f Ni(OH)2 a t 200°C under p e r i o d o f i n d u c t i o n , passing throug 1-1/2 hours and l e v e l i n g o f f a t &5% completion, corresponding t o a s t o i c h i o m e t r y Ni0-0.15H 0. This l i m i t compares w e l l w i t h p r e v i o u s l y r e p o r t e d values o f NiO-0.l6H 0 (j) and Ni0-0.l8H 0 (13). The s u r f a c e areas o f a sample o f N i ( 0 H ) d u r i n g the 200°C thermal treatment were measured a t v a r i o u s a c t i v a t i o n times and are i l l u s t r a t e d i n F i g u r e 2. As demonstrated i n F i g u r e 1, t h e decomposition i s v i r t u a l l y complete a f t e r 3 hours o f 200°C a c t i v a t i o n . On the b a s i s o f t h i s work the thermal decomposition c o n d i t i o n s f o r a l l samples were 200°C f o r 8 hours i n vacuum. The BET argon s u r f a c e a r e a s , assuming 1 3 . 8 2 f o r the c r o s s s e c t i o n a l area o f argon, o f the f o u r N i ( 0 H ) samples and the r e s u l t a n t NiO samples prepared under the above c o n d i t i o n s a r e g i v e n i n Table I . F i g u r e 3 i s a p l o t o f the r a t i o o f the s p e c i f i c s u r f a c e areas o f NiO o t those o f the corresponding p r e c u r s o r Ni(OH)2 vs. the r e c i p r o c a l o f the s p e c i f i c s u r f a c e area o f the Ni(OH)2 sample. The s t r a i g h t l i n e drawn through the f o u r sample p o i n t s has a l e a s t squares slope and i n t e r c e p t o f 73-9 m /g and 0.72, r e s p e c t i v e l y . The s u r f a c e area r e l a t i o n s h i p presented i n F i g u r e 3 and e l e c t r o n micrograph r e s u l t s , which show s p l i t t i n g Ni(0H)2 hexa gonal c r y s t a l s i n t o hexagonal l a y e r s , suggests a model o f the thermal decomposition process. F i g u r e h i l l u s t r a t e s the proposed p h y s i c a l process f o r the decomposition. I n the f o l l o w i n g d e r i v a t i o n the s u b s c r i p t 1 r e f e r s t o N i ( 0 H ) and 2 r e f e r s t o NiO. E l e c t r o n micrographs showed t h a t the p r e c i p i t a t e d N i ( 0 H ) occurs as hexagonal p l a t e l e t s which can be represented as having a r a d i u s R^, and a t h i c k n e s s H j ( g r e a t l y exaggerated i n F i g u r e h). The process o f 200°C a c t i v a t i o n r e s u l t s i n the N i ( 0 H ) c r y s t a l e x f o l i a t i n g i n t o η i d e n t i c a l l a y e r s o f NiO, each o f r a d i u s R and t h i c k n e s s H . The s p e c i f i c s u r f a c e a r e a , Σ, o f a m a t e r i a l con s i s t i n g e n t i r e l y o f i d e n t i c a l hexagonal p l a t e s and d e n s i t y ρ can be shown t o be equal t o : 2
2
2
2
2
2
2
2
2
2
2
2
2
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
ADSORPTION AT INTERFACES
Table I . S p e c i f i c Surface Areas o f Ni(OH)2 and NiO Prepared a t 200°C Sample
Ni(0H)
NiO
2
1
1*
8*
2
28
96
3
k9
102
h
128
177
Table I I . P h y s i c a l and X-ray P r o p e r t i e s Ni(0H) M.W. (g/mole) pX-ray (g/cc) V (cc/mole) c a
Q
Q
NiO
2
92.71
7*.69 6.809
3.950
10.97
23.*7 ο U.605A 3.126A
ο = 4.1769 A = 2.1*10 A
a ά
1 1 λ
220
d
=
1-^76 A
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
16.
TOPIC E T A L .
Figure
Nickel Hydroxide
4. Schematic
229
diagram Ni(OH)
of the exfoliation
of
2
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
230
ADSORPTION
L
AT
INTERFACES
U
RHp
;
4/3 where C = ^ = 2.309, and R and H a r e the c r y s t a l r a d i u s and t h i c k n e s s . Table I I con t a i n s v a r i o u s p h y s i c a l and X-ray p r o p e r t i e s (£) N i ( 0 H ) and NiO. Most n o t a b l e , the molar volume decreases by 53% d u r i n g the decomposition process. A n a l y s i s o f X-ray data and e l e c t r o n micro graphs i n d i c a t e t h a t t h e broad hexagonal face o f Ni(0H)2 i s the (001) plane. A f t e r thermal decomposition, t h e broad hexagonal face becomes the ( i l l ) plane o f NiO. I t can be shown t h a t the f o l lowing r e l a t i o n s h i p s e x i s t between t h e c r y s t a l dimensions o f N i ( 0 H ) and NiO: o f
2
2
H
2
=
J
and
R
where
r = ^
and
h=
2
%
(2)
=
(3)
d-i
C
= |^|| =
0.9UU3
(U)
= 2.1*10=
0.5233
(5)
τη o
k.605
Expressions f o r N i ( 0 H ) and NiO, u s i n g the form o f Equation ( l ) , can be combined i f both and Σ a r e w r i t t e n as f u n c t i o n s o f Rj_ and H". E l i m i n a t i o n o f R]_ r e s u l t s i n t h e equation: 2
2
2
where
r = 0.9*1+3 h = 0.5233
Equation (6) represents a s t r a i g h t l i n e w i t h an i n t e r c e p t o f P l / r p and slope o f fe/H2P2) ( l - [h/rn]) i f the s u r f a c e areas are p l o t t e d as i n F i g u r e 3. E v i d e n t l y t h e slope i s a constant over the range o f s u r f a c e areas s t u d i e d , even through i t i s a f u n c t i o n of two p o s s i b l e v a r i a b l e s , H2 and n. Given t h a t the experimental v a l u e o f the slope i n F i g u r e 3 i s 73-9 m /g and as shown i n Equation (6): 2
2
S = slope = * H P2 2
(1 - — ) rn
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
(7)
16. TOPIC ET AL.
Nickel Hydroxide
231
Replacing η by 2
and rearranging
L
2
=
r
H
l Spgi^ + 2
(8)
_ 1.889 % " O.Oi+752 E + 2 ±
where and H2 are expressed i n 2 u n i t s . Figure 5 i s a plot of the thickness of an NiO c r y s t a l , H , v s . the thickness of i t s parent Ni(0H) hexagonal plate, Ητ_, as calculated from Equation (8). The distance H i s the ( i l l ) directional thickness of the NiO hexagonal plate. The experimental intercep c a l value of 0.6li* calculated from Equation (6). The difference i n the intercept value may he due to a r e a l value of p lower than the X-ray value presented i n Table I I , especially since the activation was only 85$ complete. Other author's (2,10) have measured the NiO density as 6.0 g/cc. I f t h i s density applies to these samples the theoretical intercept should be 0.70, which i s i n excellent agreement with the experimental intercept. Analysis of Equation (6) indicates that polydisperse Ni(0H) samples yields a scatter of data i f plotted as i n Figure 3. Since the scatter i s not severe i n Figure 3 i t can be concluded that either there i s l i t t l e polydispersity or the four samples are approximately equally polydispersed. 2
2
2
2
2
Literature Cited 1. 2.
Richardson, J.T., Milligan, W.O., Phys. Rev. (1956), 102, 1289. Larkins, F . P . , Fensham, P.J., Sanders, J . V . , Trans. Faraday Soc., (1970), 66, 1748.
3.
Nicolaon, G.A., Teichner, S . J . , J . Colloid Interface S c i . , (1972), 38, 172.
4.
Fahim, R.B., Abu-Shady, A.I., J. Catal., (1970), 17, 10.
5.
Huckel,W.,"Structural Chemistry of Inorganic Compounds", Vol. I I , p. 547ff, Elsevier Publishing Co., Amsterdam, 1951.
6.
Bonacci, Ν., Novak, D.M., Croat. Chem. Acta, (1973), 45, 531. Teichner, J., Morrison, J . A . , Trans. Faraday Soc., (1955), 51, 961. K l i e r , Κ., Kinet. Katal. (Eng. trans.), (1962), 3, 51.
7· 8.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
232
ADSORPTION A T INTERFACES
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
16. TOPIC ET AL. Nickel Hydroxide 9. 10.
Smith, J . V . , Ed., "X-ray Powder Data F i l e , " ASTM Phila delphia, 1967. Helms, W.R., Mullen, J . G . , Phys. Rev. Β, (1971), 4, 750.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
233
17 The Measurement o f L ow Interfacial T e n s i o n via the Spinning D r o p Technique J. L. CAYIAS, R. S. SCHECHTER, and W. H . WADE Departments of Chemistry and Chemical Engineering, The University of Texas at Austin, Austin, Tex. 78712
Introduction A method for obtaining interfacial and surface tensions by measuring the shape of a drop of liquid or bubble of gas in a more dense liquid contained in a rotating horizontal tube was first suggested by Plateau's (1) experiments. Beer (2) in 1855 considered the problem of the shape of the drop in some detail, as did Lord Rayleigh (3) in 1914. It was not until 1942, however, that Vonnegut (4) suggested the method be used for measuring surface and interfacial tensions. Vonnegut's method rested on the approximation that the drop could be treated as a cylinder with hemispherical ends and thus avoided having to solve exactly for the drop shape. The diameter of the cylinder was the sole dimension of interest used to calculate the tension. Silberberg (5) improved Vonnegut's method by calculating correction factors for low speeds or small volumes. Rosenthal (6) in 1962 considered the stability of such a rotating drop determining a minimum length stability requirement. He also used Rayleigh's approach and solved for the shape exactly by using elliptic integrals. However, the shape solution was not solved explicitly for the tension. Princen, Zia, and Mason (7) in 1967 also solved the shape problem exactly by using elliptic integrals but more importantly solved explicitly for the tension. Their treatment focused on developing a method for measuring the length of the drop rather than the diameter to determine the surface or interfacial tension, and necessitated measuring the drop volume as well. They were able to show that for an infinitely long drop the exact solution reduced to Vonnegut's solution. Both Princen et al. and Rosenthal found the cylinder with hemispherical ends approximation to the shape to be adequate when the length to diameter ratio of the drop was greater than 3.5. This was also in general agreement with the correction terms Silberberg has calculated. However, all authors point out that this approximation is dependent upon the accuracy desired, the accuracy increasing as the ratio increases. 234 In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
CAYIAS
17.
ET AL.
Low Interfacial Tension
235
Patterson, Hu, and Grindstaff (8) in 1971 used both the Princen et a l . and the Vonnegut methods for measuring tensions of polymers, and pointed out that the advantage of measuring the diameter rather than the length of the drop is that i t is not necessary to establish the volume of the drop in the i n f i n i t e length case. The cited disadvantages are the d i f f i c u l t i e s in measuring precisely small diameters and optical correction ef fects. In this paper i t will be shown that in measuring low interfacial tensions the disadvantages of measuring the diameter are small in comparison to establishing the volume precisely. Ryden and Albertsson [9) in 1971 also used the Princen et a l . method for measuring the interfacial tensions of polymer twophase systems. They obtained tensions down to 5 χ 10" dyne/cm for three component systems close to the m i s c i b i l i t y limit. Measurements were obtained at speeds between 200 and 450 RPM The high viscosities an mitted these low speed drop volumes. Such phase properties are not usually encountered. 4
Theory and Calculations The authors' method using the spinning drop technique, d i f fers from the methods of Princen et a l . and Vonnegut. Its theory is based upon measuring both the length and width of the drop rather than just one or the other and has the advantage that the measurement of the volume is not necessary but can readily be calculated. The formulation of the problem is primarily that of Beer [2) and the solution primarily that of Princen et a l . (7). The assumptions involved are: the angular velocity of rotation, ω, of the drop is sufficiently large that the buoyancy effect due to gravity is negligible; the axis of the drop is aligned on the horizontal axis of rotation; the surface of the drop is described by a surface of revolution; and the surface or interfacial ten sion, γ, is not a function of curvature. Rectangular cartesian coordinates x, y, ζ are chosen (Figure 1) with the origin at the left-hand end of the drop. The semiaxes of the drop are x and y . The densities of the drop and the outer phase are d and d (d > di) respectively. The radius of curvature of the drop sur face at the origin is p . The pressure difference ΔΡ across the interface of the drop is given by 9
0
0
x
2
2
Q
Δ Ρ
=
γ
μ _
+
J
_
)
i
=
0
O
0
^
_
^
( 1 )
L
χγ yz ο where Ad = d - d i , and p y and py are the radii of curvature in the xy and yz planes, respectively. The radii of curvature are given as: μ
2
H
X
μ
Z
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
236
ADSORPTION A T INTERFACES
1 P
p
- d y/dx 2
=
2
xy
[1 + (dy/dx) ]3*
1
1
(2)
2
yz
(3)
y[l + (dy/dz) ]^ 2
Combining Equations (1), (2), and (3) with some mathematical manipulation yields _ 2
1 d_
Ad(o y 2γ 2
y dy [[1 + ( d y / d x ) ] J 2
/2
2
(4)
which can be written in the dimensionless form d_ dY
= 2Y - oY
3
(5)
[1 + (dY/dX) p 2
where Y - y/p , X = χ/ρ , and ο ο Ad p JL 2γ 2
3
w
C =
2Cp
(6)
3
0
Adio 4γ
2
(7)
upon integrating Equation [5] one has Y [1 + (dY/dX) ]" " 2
2
(8) =
Y
2
4
T
which can be reformulated to y i e l d
dl . Γ dX
]
L γ2(ΐ- |Y ) 2
! 1*
(9)
J
2
For 0 <_ α <. -Jf- Equation (9) can be integrated to obtain
Y(l - |Y )dY 2
0
[1 - Y d 2
(10)
- fY ) ]*" 2
2
To establish the bounds on α for the validity of Equation (10) one needs to consider Equation (8) evaluated at Y = Y . At this Q
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
17.
CAYIAS ET A L .
point
HV
237
Low Interfacial Tension
= 0 and one has
γ3 . 4γ + = ο (11) ο One root of this equation gives a physically acceptable value of Y as a function of a. Next, consider Equation (5) at Y = Y - For a very long drop (i.e. i n f i n i t e length case) _ J _ = 0 and dY = 0 so Equation (5) reduces to: ρ dX xy 4
α
0
Q
Q
α
- 2Y
γ3 ο
0
+ 1 = 0
(12)
Hence for a long cylindrica (12) one has Y
0
= 3/2
(13)
and the largest possible value for α of α = 16/27 (14) Combining Equations (6), (13), and (14) leads to Vonnegut*s equation Ada) Y 2
Y-
3
(15)
-J-*
Convenient numerical integration of Equation (10) requires the following substitution:
which gives
X
=
0
q - l - S ?
(16)
q i - 1 - !l£ 4
(17)
qdq
—
&
2
[q* - q +
fl*
(18)
qi If qi>q2>q3 are the three roots of the cubic term in the denominator then ««ι-i - t o Y
q
2
=
2
= !
c
o
s
t
+
i
4 COS (| + |2L)+ 1
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
(
1
9
)
(20)
238
ADSORPTION AT INTERFACES
ν ! where
+
(21)
^t
(22)
c o s
cos ψ = 1 -
2
and the solution of Equation (18) as given by Grohner and Hofreiter (10) for q^iq^l is q i F ( M ) - (q! - q )E(k,) 3
'a(qi - q3)'
0
+
(qi - q3)(tan Φ)
/l - k
s i n ψ"
2
2
(23)
where F and Ε are e l l i p t i defined by: de
F(k,4>) and
ο Λ - k Φ
, A - k
E(M)
2
2
(24)
sin e' 2
sin
2
, θ de
(25)
where k
=
2
and
q2 - ^3
Π - qi [1 - q
Φ = Arcsin
(26)
qi - q3 0 < ψ < ϊ
(27)
2
The volume of the drop is obtained by taking Equation (8) in the form . 1 = Y[l - f Y ] (28) [1 + (dY/dX) ]* 2
2
4
If one differentiates this equation with respect to Y and inte grates with respect to X one has
_d ο dY
1
Y dX 2
[l+(dY/dX) ]2 2
The l e f t hand side of Equation (29) can be integrated i f the substitution dY = tan τ is made. This yields dX
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
(29)
17. CAYIAS ET AL.
Low Interfacial Tension
239
cos τ dT = 1
(30)
and V "P
2π
3
Y dX = 2
ψ fr
y
(31)
where r is the radius of a sphere of the same volume as the drop. Then combining Equations (29),(30), and (31) yields
r(r)
ο
£
( x
o-i>
(«)
r\
v
This can be reduced to
3 =
J
Combining Equations (6) and (33) yields Cr
Ύ Ϊ3
3
1
(34)
which will be an important equation in computing γ. With the aid of a high speed computor (CDC 6600), one can construct a table of values for r/p , C r , x^/r, yg/r, and x / y with α as the independent variable by the r o l l owing scheme: 3
Q
0
1.
Assign value to a.
2.
Calculate Y for 0 < Y
by Equation (11) or Equation (19)
0
< \
0
3.
Calculate X Q by Equation (23).
4.
Calculate —
by Equation (33).
o
p
5.
Calculate Cr
6.
Calculate x / r by X t (r/p ).
7.
by Equation (34)
3
q
Q
0
Calculate y /r by Y * ( r / p ) Calculate xjy„ by X * Υ ο ο 0 0 n
8.
0
A
n
Λ
This produces Princen s table except the authors have expanded and extended i t to x / y = 4.0 (a = .592589328), and because of the ease of extracting f u l l accuracy from a computer, 1
0
0
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
240
ADSORPTION AT INTERFACES
the values are recorded to ten significant figures, this accuracy however is not necessary.* The authors method of using the table to obtain a value of γ is to take the ratio of the length to width (2x /2y = ο/^ο) P determine the parameter C by using the table; then calculate γ from Equation (7). A flow diagram of the procedure is as follows: 1
0
χ
o
f
t
h
e
d r o
a
n
0
d
When the ratio of the length to width is greater than 4.0, the authors assumed that the shape can be adequately described by assuming a cylindrical tube with hemispherical ends. This is Vonneguts method and equation (15) can be used to determine γ with less than 0.05% error. The error in calculating the volume is less than 0.1%, using this geometry. Experimental The apparatus used (Figure 2) is a refined version of that employed by Princen et a l . A hysteresis synchronous motor was used. Its speed was controlled by varying the frequency from a frequency generator. The rotational s t a b i l i t y was 1 part in 10 as determined by a period averaging counter stable to 1 part in 10 . The range of speeds used was from 1,200 RPM to 24,000 RPM. A Gaertner traveling microscope with a f i l a r eyepiece was used to measure the length and width of the drop and to calibrate the glass tubes for their magnification of the drop diameter. This effect was determined to be a constant for the experiment of y measured/y true=1.332 for a l l aqueous phases studied. The tube housing and assembley (Figure 3) was designed to accept a precision ground .245"0.D. pyrex glass tube (C) rounded on one end and sealed against a rubber septum (G) on the other. A glass cell enclosed the apparatus to permit temperature studies. Thermostating of the system to + 0.5C° was obtained. The procedure for loading the cell is to f i l l the glass tube and metal cap (H) completely with the more dense phase. Holding the tube upside down (capillary pressure retains the more dense phase in the tube), the less dense phase is then injected with a microliter syringe, the tube is then placed in the cap and the 5
8
*
A copy of the program is available from the authors on request
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
Low Interfacial Tension
CAYiAS E T A L .
TUBE
WALL
MOTOR
POWER
CONTROL
AMPLIFIER
BOX
H
y
SCOPE
ROTOR FREQUENCY
TEMPERATURE
COUNTER
CONTROLLER
SIGNAL
ASS'Y
STROBE
GENERATOR
SUPPLY
SPINNING-DROP
Figure 2.
APPARATUS
Schematic of spinning-drop apparatus
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
242
ADSORPTION A T INTERFACES
Figure 3. A = less dense phase (drop), Β = more dense phase, C = glass tube, D = shaft O-rings, Ε = shaft, F = cap O-ring, G = silicone rubber septum, H = cap, I = ball bearings, J = outer support housing, Κ = O-ring for loading bearings, L = load adjusting cap, M = Bakélite plate, Ν = aluminum box tubing, Ο = non-slip positive drive belt, Ρ = pully, R = motor shaft adaptor, and S = threads for heater wire windings
PLOT OF G vs H FOR BENZENE vs. WATER
0
1
2
3 H= Δ < 1 ω / 4 2
Figure 4.
xlO"
AT 27 C e
4 4
Plot for obtaining a using the alternate Princen et al. method
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
17.
CAYIAS ET A L .
Low Interfacial Tension
243
whole assembly placed in the shaft and secured by screwing the cap onto the shaft. A small hypodermic needle is inserted into the cell through the septum to release any pressure buildup caused by screwing the cap on. This method, though d i f f i c u l t at f i r s t , is easily mastered after a few attempts. In a test of the equipment using the benzene/water system with a literature value (11) for the interfacial tension of 35.0 dynes/cm at 20°C the authors obtained at 27°C 34.50 dynes/cm using the principal Princen et a l . method of length and volume measure ment and 34.65 dynes/cm using the alternate Princen et a l . method of frequency differences (Figure 4). Figure 5 is a photograph of the drop. The slightly lower values could possibly be due to im purities in the system or the higher temperature or both. As a final test of the system, the butanol/water system was measured and a tension of 1.80+.0 pares very well with th at 20°C To check the applicability of the system for measuring low interfacial tensions a commercial surfactant, Petronate TRS 10-80 obtained from Witco Chemical Company, was used. A stock solution was made up with the following components in water: 0.2 wt. % Petronate and 1.0 wt. % NaCl. This solution was then compared against several hydrocarbons at 27°C The results of this exper iment are in Figure 6. A picture of one of these drops is included in Figure 7. The octane/surfactant system verified the capability of the apparatus to measure low tensions. The reproducibility of the measurements was 2% but a confidence l i m i t of 10% is probably more r e a l i s t i c for tensions in this range. Using the 10% confidence limit, tensions of 10" dyne/cm could be measured with the Gaertner f i l a r eyepiece (accurate to 5 Χ 10" cm) with some d i f f i c u l t y . This is not a lower limit of the method, only of the optical equipment used. The limit could possibly be extended by choosing a different measuring system. The main d i f f i c u l t y encountered was to deliver small volumes of 10" cc or less. The discharge as a single drop of such small volumes from a syringe was found to be very d i f f i c u l t . The drop has a tendency to stay attached to the needle and quick removal of the needle from the more dense phase caused the drop to detach i t s e l f from the needle partially. This partial detachment made accurate volume measurements almost impossible. A further complication of the problem was that as the needle was retracted from the liquid, some small drops of the less dense phase would be l e f t behind and after starting the rotation these small drops could coalesce with the large drop changing its volume. Another d i f f i c u l t y with the measured volume method is i f the drop breaks up after injection then the experiment would have to be term inated. The last d i f f i c u l t y with measuring the volume of the drop was volume change due to solubilization. For low interfacial 6
5
3
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
ADSORPTION A T INTERFACES
SURFACE
TENSION OF HYDROCARBONS
vs. 0.2% PETRONATE / 1.0% Να CI AT 27 °C AFTER
24 HOURS OF STIRRING
NUMBER OF CARBON ATOMS Figure 6.
Results of hydrocarbon studies against the surfactant
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
Figure 7.
Octane surfactant system at 6,000 RPM
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
246
ADSORPTION AT INTERFACES
tensions, where the drop was composed of several components, solubilization could result in indeterminate drop composition. For example the volume of the drop in the octane/surfactant system when the two phases were not pre-equilibrated, initially increased and then slowly decreased from the initial volume making the measured volume method useless and the frequency difference method inaccurate since the volume was not constant. For these reasons it was necessary to abandon the Princen et al. methods and use the authors' method described previously of measuring both the length and diameter of the drop and from this calculating.the tension. Both Vonnegut and Princen et al. observed a rippled surface for an air buble in water. Princen et al. suggested it was probably due to the vibration from the motor drive, however the authors in examining thi t found distortion f th surface but had vibration possible explanation of the lack of these ripples is the small size of the authors' system in comparison to that of Princen et al. Conclusions The spinning drop method for measuring low surface and interfacial tensions using the methods described in this paper is one of simplicity and ease of operation as compared to other methods. The method does not involve a third (solid) phase in contact with the interface of the drop as Ryden and Albertsson (9) pointed out. The Princen et al. method works well in systems where accurate determination of the volume is possible but for systems the authors examined where accurate determination of the volume is a difficult task, the method of measuring both the length and width of the drop is more accurate. Acknow!edgement The authors wish to express their appreciation to the Robert A. Welch Foundation and the National Science Foundation for sponsoring this research and their special thanks and apprécia* tion to H.M. Princen for valuable discussions and furnishing the authors with some of his original data. The authors also wish to express their gratitude to James Gardner for the drawings which appear in the text.
Literature Cited 1.
Plateau, J.A.F., "Statique Experimentale et Theorique des Liquides, etc.", Gauthier-Villars, Paris, 1873.
2.
Beer, Α., Annalen der Physik und Chemie von Poggendorff, (1855) 96, 210.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
17. CAYIAS ET AL.
Low Interfacial Tension
247
3.
Raleigh, Lord, Phil. Mag., (1914) 28, 161.
4.
Vonnegut, Β., Rev. Sci. Instrum. (1942) 13, 6.
5.
Silberberg, Α., Ph.D. Thesis, Basel University, Switzerland, 1952.
6.
Rosenthal, D.K., J. Fluid. Mech., (1962) 12, 358.
7.
Princen, H.M., Zia, I.Y.Z., and Mason, S.G., J. Colloid Interface Sci., (1967) 23, 99.
8.
Patterson, H.T., Hu, K.H., and Grindstaff, T.H., J. Polymer Sci., (1971) 34, 31.
9.
Ryden, Jan and Albertsson Sci. (1971) 37, 219.
10.
Grobner, W. and Hofreiter, N., "Integraltafel," 3rd ed., Vol. I, p. 78, Springer Verlag, Vienna, 1961.
11.
Adamson, Arthur W., "Physical Chemistry of Surfaces," 2nd ed., pp. 44-45, Wiley, New York, 1967.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
18 Adhesion of Ice Frozen from Dilute Electrolyte Solutions H. H. G. JELLINEK Department of Chemistry, Clarkson College of Technology, Potsdam, Ν. Y. 13676
Introduction The adhesion of ice has long been studied but a satisfactory solution, from the practical standpoint of decreasing adhesion or increasing abhesion, has not yet been found. Complete abhesion can be achieved un der laboratory conditions but in practice any surface becomes rapidly contaminated after a few abhesions have taken place and the adhesion of ice continually i n creases with further abhesions. Experimental Data by Smith-Johannsen and Discussion Smith-Johannsen (1) studied the effect of impuri ties in water on the adhesion of ice by freezing such solutions to various substrates. He ascertained that small i n i t i a l concentrations (1 X 10 mole/liter(M) or less) of electrolytes (salts) decrease ice adhesion considerably. The adhesive strength was measured by the force per square centimeter needed to shear the ice off the substrate. The experiments were carried out at -10°C. The freezing point lowering of water by elec trolytes of such concentrations is only about 0.005°C. The ice was frozen rapidly enough so that the electro lyte remained homogeneously distributed throughout the frozen system, and did not have sufficient time to dif fuse away from the substrate/solution interface. Air bubbles appeared during the freezing process. Table I gives relevant data (S = salinity of i n i t i a l solution; p = salinity of grain boundary solution). The effectiveness of decreasing adhesion, or i n creasing abhesion, varies considerably with the partic ular electrolyte in solution. Thus 1 Χ 1 0 Μ Th(NO ) decreases adhesion by 97% on a wax-treated aluminum -3
-3
3 4
248 In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
3
h
2
2
2
3
3
3
3
s
2.91 3.08 1.95 4.00 1.93 2.99 1.17 1.40 1.15 0.88 1.54 1.20 1.27 2.17
10 2,45 2.20 0.85 0.65 0.76 2.78 0.39 1.38 1.30 0.11 <0.10 <0.10 <0.10 <0.10
3
2
(10
0
1/ cm/sec/2)
-
2.79 3.15 2.36 2.78 2.57 3.15 2.63 2.62
3
O *{0°C)*
l
m=d(T
)/d(%
-
0.67 0.90 0.94 0.29(?) 0.98 0.66 1.27 0.65
a b s
M E l e c t r o l y t e Solutions Frozen to
Adhesive strength A (10"" g/cm )
3
a
*The d i f f u s i o n c o e f f i c i e n t s Do were c a l c u l a t e d from t h e N e r n s t e q u a t i o n u s i n g d a t a from t h e Handbook o f P h y s i c s and C h e m i s t r y , 48th E d i t i o n , C h e m i c a l Rubber P u b l i s h i n g Co. The l i q u i d u s s l o p e s and ρ v a l u e s were d e r i v e d from d a t a i n A . Seidall, Solubil i t i e s o f I n o r g a n i c and M e t a l O r g a n i c Compounds, 3rd E d i t i o n , D. van N o s t r a n d C o . , I n c . , T940. m i s t h e s l o p e o f t h e l i q u i d u s c u r v e i n t h e r e s p e c t i v e phase d i a g r a m i.e. m = d(T , ) / d % ( C o m p o s i t i o n ) .
2
2
3
3.44 3.24 5.13 2.50 5.17 3.34 8.54 7.13 8.66 11.14 6.48 8.32 7.86 4.62
NaCl KC1 Na-acetate NaN0 K-acetate NH^Cl CaCl Ca(N0 )2 MgCl Th(N0 ) Ca(N0 ) Ni(N0 ) Be(N0 ) KCNS
1
ιο ** P
Electrolyte
3
_ P
Table I. R e l e v a n t Data f o r A d h e s i o n o f 1 0 " W a x - t r e a t e d Aluminum S u r f a c e a t - 1 0 ° C .
250
ADSORPTION
AT
INTERFACES
s u r f a c e , whereas the same molar c o n c e n t r a t i o n o f NaCl causes a decrease o f o n l y 42%. The term a d h e s i o n i s n o t used here i n i t s s t r i c t s e n s e , i . e . , a breaK i n the s u b s t r a t e / i c e i n t e r f a c e ; any b r e a k s v e r y near the i n t e r f a c e are i n c l u d e d i n t h i s t e r m . With a few e x c e p t i o n s , the t o t a l s a l t c o n c e n t r a t i o n e v e n t u a l l y has t o accumulate i n g r a i n b o u n d a r i e s when such a s o l u t i o n f r e e z e s ; the c o n c e n t r a t i o n o f the e l e c t r o l y t e i s p r a c t i c a l l y z e r o i n the l a t t i c e o f the ice grains. The g r a i n boundary c o n s i s t s o f a s a t u r a t e d s o l u t i o n i n accordance w i t h the phase diagram o f the r e s p e c t i v e e l e c t r o l y t e , p r o v i d e d the temperature i s above the e u t e c t i c t e m p e r a t u r e . The w i d t h o f the g r a i n boundary can be c a l c u l a t e d i f t h e phase diagram i s known; t h i s has been done, f o r i n s t a n c e , by C h a t t e r j e e and J e l l i n e k {2) f o Smith-Johannsen (1) p o i n t e d out t h a t e f f e c t i v e e l e c t r o l y t e s s h o u l d have endothermic h e a t s o f s o l u t i o n , low e u t e c t i c t e m p e r a t u r e s and a p p r e c i a b l e s o l u b i l i t y a t 0°C. I f the s o l u t i o n i s f r o z e n below the e u t e c t i c tem p e r a t u r e , then the a d h e s i o n i n c r e a s e s c o n s i d e r a b l y . I t i s o f i n t e r e s t t o c o n s i d e r the p o s s i b l e c o n d i t i o n s a t o r near the s u b s t r a t e / i c e i n t e r f a c e . T h i s may g i v e a c l u e as t o the mechanism o f t h e r e d u c t i o n o f a d h e s i o n by e l e c t r o l y t e s i n i t i a l l y p r e s e n t i n d i l u t e s o lutions. I f i t i s assumed t h a t a t h i n l i q u i d s o l u t i o n l a y e r i s formed between the i c e and s u b s t r a t e , t h e n t h e i c e c o u l d be r e l a t i v e l y e a s i l y sheared o f f the s u b strate. The shear f o r c e p e r s q u a r e c e n t i m e t e r o r t h e a d h e s i v e s t r e n g t h would depend on the t h i c k n e s s and v i s c o s i t y o f the l a y e r and the r a t e o f s h e a r . The f o r m a t i o n o f such a l a y e r i s assumed t o be s u b j e c t t o the same laws as the f o r m a t i o n o f g r a i n b o u n d a r i e s b u t the l a y e r would n o t n e c e s s a r i l y be o f s i m i l a r t h i c k ness. The l a t t e r may a l s o be a f u n c t i o n o f the n a t u r e o f the s u b s t r a t e . The w i d t h o r t h i c k n e s s 6 o f a g r a i n boundary f o r prismatic i c e grains of quadratic cross s e c t i o n i s g i v e n by (2) #
6 =
S
P
2
where
b
i
^
b
(δ «
b)
(1)
P gb,T p
i s the average w i d t h o f the g r a i n s ,
i.e.,
the
* I t i s d o u b t f u l t h a t t h i s i s n e c e s s a r y ; the a d h e s i o n v a l u e f o r F e C l , which has an exothermic heat o f s o l u t i o n , f i t s the v a l u e f o r HCl w e l l . FeCl is practically completely hydrolyzed. 3
3
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
18. jELLiNEK
Adhesion of
Ice
251
l e n g t h o f the edge o f the q u a d r a t i c c r o s s s e c t i o n , s and ρ a r e the s a l i n i t i e s ( i n g/1000g o f s o l u t i o n ) o f the i n i t i a l s o l u t i o n and the s a t u r a t e d g r a i n boundary s o l u t i o n , r e s p e c t i v e l y , a t Τ Κ, and Ρ ^ and P τ
g b y T
a
r
e
the d e n s i t i e s o f i c e and the g r a i n boundary a t Τ K respectively. The w i d t h f o r an i n t e r f a c i a l s o l u t i o n l a y e r can be m u l t i p l e d by a f a c t o r t o t a k e c a r e o f the c h a r a c t e r i s t i c s o f the s u b s t r a t e . The r i g h t s i d e o f E q u a t i o n (1) has t o be m u l t i p l e d b y / i f the g r a i n s are s p h e r i c a l . The a d h e s i v e s t r e n g t h A f o r t h i s c a s e i s g i v e n by f
2
A =
3
(2)
δ
where Π i s the v i s c o s i t shear v e l o c i t y . The l a y e r i s assumed t o behave i n a Newtonian f a s h i o n ; t h e r e i s no e v i d e n c e t h a t such s o l u t i o n l a y e r s behave o t h e r w i s e . I n t r o d u c i n g E q u a t i o n (1) i n t o E q u a t i o n (2) y i e l d s 2
nvpqb,T
^LlL
A = P
i / T
- Ρ .
b
(3)
s
The r a t i o ρ , / P i T viscosity vary r e l a t i v e l y l i t t l e wx€ft t h e ' n a t u r e o f the e l e c t r o l y t e s and t h e i r c o n c e n t r a t i o n s ; b depends m a i n l y on t h e r a t e o f f r e e z i n g , and V and Τ a r e k e p t c o n s t a n t . Hence, t h e a d h e s i v e s t r e n g t h w i l l be p r e d o m i n a n t l y i n f l u e n c e d by the r a t i o p / s . E q u a t i o n (3) can then be s i m p l i f i e d t o T
f
a
n
d
t
h
e
A = Κ Ε s
(4)
where Κ i s a c o n s t a n t . F i g u r e 1 shows A p l o t t e d v e r s u s p / s u s i n g d a t a from T a b l e I . E q u a t i o n (4) i s as w e l l obeyed as can be expected under the c i r c u m s t a n c e s . All s o l u t i o n s were i n i t i a l l y 1 X 1 0 " M . Hence, i n o r d e r t o o b t a i n s i n g/1000 g o f s o l u t i o n , the m o l a r i t y has t o be m u l t i p l i e d by the m o l e c u l a r weight o f t h e r e s p e c t i v e electrolyte. The s t r a i g h t l i n e s and a l l subsequent ones have been drawn by t h e method o f l e a s t s q u a r e s . However, t h i s s i t u a t i o n a t the i n t e r f a c e c o n s i d e r e d above i s not the o n l y one which can be v i s u a l i z e d . The i c e p r i s m s c o u l d be d i r e c t l y f r o z e n w i t h t h e i r q u a d r a t i c c r o s s s e c t i o n s t o the s u b s t r a t e . These p r i s m s would then be s e p a r a t e d from each o t h e r by g r a i n b o u n d a r i e s o f w i d t h a c c o r d i n g t o E q u a t i o n (1). The 3
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
252
ADSORPTION A T INTERFACES
a d h e s i v e s t r e n g t h i n t h i s c a s e can be assumed t o be g i v e n by t h e f o r c e p e r square c e n t i m e t e r neede^ t o r u p t u r e by shear t h e i c e p r i s m s c o n t a i n e d i n 1 cm o f i n t e r f a c e , hence A
=
A Q
(aY)
(5)
2
where A Q i s t h e f o r c e n e c e s s a r y t o r u p t u r e i c e w i t h an a c t u a l c r o s s s e c t i o n o f 1 c m , a i s the number o f p r i s m a t i c g r a i n s a l o n g 1 cm i n the f r o z e n s y s t e m , and Y i s the c r o s s - s e c t i o n a l a r e a o f one p r i s m , i t has t o be n o t e d t h a t a l l d i m e n s i o n s a r e average q u a n t i t i e s i n t h i s context. The term ( a Y ) i s equal to the f r a c t i o n o f 1 cm o c c u p i e d by the p r i s m s , i - e . i t i s a pure number. Y can e a s i l y be r e l a t e d t o 6, the w i d t h o f t h e g r a i n boundary: 2
2
2
2
aY + ( a - l ) 6 = a(Y +δ ) = 1 . Hence, gives
i n t r o d u c i n g δ from E q u a t i o n (6) A
(6) into
Equation(5)
= Α (1-3δ) .
(7)
2
0
F u r t h e r , i n t r o d u c i n g E q u a t i o n (1) i n t o E q u a t i o n (7), assuming a g a i n t h a t a l l parameters e x c e p t ρ and s vary l i t t l e , y i e l d s A
=
A
0
( l -
K»i ) . Ρ
(8)
2
Hence, A p l o t t e d v e r s u s s/p s h o u l d r e s u l t i n a straight line. T h i s i s as s a t i s f a c t o r i l y t h e c a s e as i n the p r e v i o u s i n s t a n c e (see F i g u r e 2 ) . However, a d i f f i c u l t y a r i s e s h e r e . The g r a i n boundary and t h e i n t e r f a c i a l l a y e r w i d t h s a r e q u i t e s m a l l , hence even d o u b l i n g the g r a i n boundary w i d t h s h o u l d d e c r e a s e the a d h e s i v e s t r e n g t h by o n l y a s m a l l amount. However, i n a c t u a l f a c t t h e d e c r e a s e s i n a d h e s i v e s t r e n g t h are q u i t e l a r g e . Hence, E q u a t i o n (5) o r (7) r e s p e c t i v e l y , cannot be c o r r e c t . E q u a t i o n (7) s h o u l d r a t h e r be o f t h e form f
A
=
A Q
(1 -
a
δ)
11
(9)
2
where the exponent η i s l a r g e r t h a n o n e . This results i n t h e f o l l o w i n g f u n c t i o n a l r e l a t i o n between A and Y : A
= AQ[1 + a " (aY n
1
1)] . 2
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
(10)
18.
jELLiNEK
Adhesion of
Ice
253
10
*
s
p/s
Figure 1. Adhesive strength vs. ratio of salinities in grain boundaries to those in initial solutions (-10°C, 10~ M solutions) 3
0
J
L
5
10
20
I0" e/p 4
Figure 2. Square root of adhesive strength vs. ratio of initial to grain boundary salinity
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
254
ADSORPTION AT INTERFACES
Equation
(9)
A = A
can a l s o be e x p r e s s e d
as
< η V 1 - a ν
2
(10a)
f
where ν i s the volume o f the g r a i n b o u n d a r i e s between prisms of height h . E q u a t i o n (10a) i s one o f the forms f o r the s t r e n g t h o f s a l t i c e (_3) . E q u a t i o n (8), however, i s s t i l l v a l i d w i t h a l a r g e r v a l u e o f Κ . There a r e s t i l l some o t h e r p o s s i b i l i t i e s which have t o be c o n s i d e r e d . I t i s known t h a t d e n d r i t e s a r e formed a t the s o l u t i o n / i c e i n t e r f a c e d u r i n g f r e e z i n g of s a l t s o l u t i o n s . I t c o u l d be assumed that small d e n d r i t e s a l s o grow c o n d i t i o n s . (See i n t h i s c o n n e c t i o n Bascom e t a l . (4^).) Camp {5) has shown t h a t d e n d r i t e s grow from s o l i d s u r f a c e s i f the temperature i s low enough. F r e n c h (6) has deduced the c o n d i t i o n s f o r d e n d r i t e growth a t t h e solution/ice interface. If h i s theory i s a p p l i e d to the s o l i d / i c e i n t e r f a c e (whether t h i s i s p e r m i s s i b l e i s d o u b t f u l ) then the d e n d r i t e s p a c i n g L , i . e . the d i s t a n c e between the c e n t e r s o f two a d j a c e n t d e n d r i t e s , can be c a l c u l a t e d . The r e l e v a n t e x p r e s s i o n i s 1
L =
4AT/p 0 Q
f
c /r
(11)
0
where ΔΤ i s t h e e x t e n t o f s u p e r c o o l i n g ( f o r d e t a i l s see r e f e r e n c e 6 ) , D i s t h e d i f f u s i o n c o e f f i c i e n t o f the e l e c t r o l y t e , θ the f r e e z i n g t i m e , and C Q the i n i t i a l m o l a l i t y or the s o l u t i o n . F u r t h e r , F r e n c h {6) derived that q
ΔΤ
= -mC S/ir" 0
(12)
where m i s t h e s l o p e o f the l i q u i d u s c u r v e i n t h e r e s p e c t i v e phase diagram ( t h i s s l o p e i s n e g a t i v e ) and β i s a constant. Hence, i n t r o d u c i n g E q u a t i o n (12) i n t o E q u a t i o n (11) gives L = -4mB
/D 0 Q
f
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
(13)
18. jELLiNEK
Adhesion of
255
Ice
D Q v a r i e s v e r y l i t t l e compared w i t h m. If den d r i t e s are assumed t o have the shape o f q u a d r a t i c p r i s m s , then the a d h e s i v e s t r e n g t h i s a g a i n g i v e n by E q u a t i o n (10). L i s r e l a t e d t o Y as f o l l o w s : (a-l)L
+ Y = 1.
Hence E q u a t i o n (5)
gives
A = A a [l Q
2
(a-l)L] .
A = A a (l + Κ 2
(15)
2
I n t r o d u c i n g E q u a t i o n (13), constant except L , gives Q
(14)
assuming e v e r y t h i n g t o be m) .
(16)
The same d i f f i c u l t y a r i s e s here as i n the p r e v i ous c a s e . L i s v e r y s m a l l and the d e c r e a s e o f A w i t h L i s much g r e a t e r than i s p o s s i b l e f o r s m a l l v a l u e s o f L. Hence (a-1) can be r a i s e d t o a power n ; t h i s does n o t a f f e c t E q u a t i o n (16) e x c e p t f o r t h e magnitude o f K". E q u a t i o n (15) then becomes A = A a [l Q
2
(a-l) " (l-Y)] n
1
2
#
(
1
7
)
A / p l o t t e d versus m again gives a s a t i s f a c t o r y s t r a i g h t l i n e (see F i g u r e 3 ) . R o h a t g i and Adams (J) made c a l c u l a t i o n s s i m i l a r t o t h o s e o f F r e n c h (^>) . T h e i r r e s u l t s can be e x p r e s s e d by an e q u a t i o n as f o l l o w s : 2
L
2
= 8D
I
11
s dfs
(18)
where d@/dfs i s the r e c i p r o c a l r a t e o f f r e e z i n g ( f s = f r a c t i o n of s o l i d ) . E q u a t i o n (18) l e a d s t o a c o n t r a diction. It indicates that L increases with p/s; i n o t h e r words 6 d e c r e a s e s w i t h i n c r e a s i n g v a l u e s o f p / s , which c o n t r a d i c t s E q u a t i o n (1). E q u a t i o n (18) can o n l y become c o n s i s t e n t w i t h E q u a t i o n (1) i f d0/dfs changes so t h a t the i n c r e a s e i n p / s i s more than com p e n s a t e d . T h i s i n c o n s i s t e n c y has a l r e a d y been p o i n t e d o u t by L o f g r e n and Weeks (B). Thus the above d i s c u s s i o n shows c l e a r l y t h a t the v a r i a t i o n s i n g r a i n boundary o r i n i n t e r f a c i a l s o l u t i o n l a y e r t h i c k n e s s a r e m a i n l y r e s p o n s i b l e f o r the v a r i a t i o n s i n adhesive s t r e n g t h . However, a d e c i s i o n cannot be made on the b a s i s o f the above c o n s i d e r a t i o n s whether i c e ( d e n d r i t e s o r prisms) i s r u p t u r e d
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
ADSORPTION A T INTERFACES
60
0
0.5
1.0
1.5
2.0
m
Figure 3. Square root of adhesive strength vs. slope of liquidus curve of phase diagram
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
18.
jELLiNEK
Adhesion of
257
Ice
o r whether an i n t e r f a c i a l l i q u i d s o l u t i o n l a y e r i s sheared. Smith-Johannsen (1) a l s o performed some e x p e r i ments on the v a r i a t i o n o f a d h e s i v e s t r e n g t h w i t h s o l u t e concentration. The r e s u l t s o f t h e s e experiments g i v e c l u e s t o the mechanism o f the a d h e s i o n p r o c e s s . Table I I g i v e s a d h e s i o n v a l u e s as a f u n c t i o n o f s o l u t e c o n c e n t r a t i o n f o r Τ Μ Ν 0 ) ^ and C a C l s o l u t i o n s . A p l o t t e d v e r s u s c o n c e n t r a t i o n g i v e s c u r v e s which show v e r y r a p i d i n i t i a l d e c r e a s e s i n a d h e s i v e s t r e n g t h w i t h i n c r e a s i n g e l e c t r o l y t e c o n c e n t r a t i o n s , which e v e n t u a l l y slow down, r e s u l t i n g i n s t r a i g h t l i n e s _ w i t h moderate s l o p e s a t c o n c e n t r a t i o n s near 5 X l O ^ M . P l o t s o f A /i v e r s u s c o n c e n t r a t i o n s t i l l show a p p r e c i a b l e c u r v a t u r e s , as do p l o t s o f A v e r s u s r e c i p r o c a l concentration. The p l o t o f A v e r s u s r e c i p r o c a l i n i t i a l c o n c e n t r a t i o n should r e s u l t i n a s t r a i g h t l i n e according to E q u a t i o n (3). N e i t h e r a r e E q u a t i o n s ( 8 ) and (15) obeyed; the l a t t e r s h o u l d be t a k e n i n c o n j u n c t i o n w i t h E q u a t i o n (11). The d e v i a t i o n s from s t r a i g h t l i n e s a c c o r d i n g t o E q u a t i o n (8), which has been d e r i v e d on t h e assumption t h a t i c e p r i s m s a r e r u p t u r e d , c a n , i n p r i n c i p l e , be a c c o u n t e d f o r by t h e known f a c t t h a t t h e number o f d e f e c t s , d i s l o c a t i o n s o r i m p u r i t i e s i n the ice lattice decreases i n an ice prism witn i t s s i z e ( i n t h i s c a s e w i t h the g r a i n s i z e ) . This could r e s u l t i n d e v i a t i o n s from a s t r a i g h t l i n e o f a p l o t o f A v e r s u s c o n c e n t r a t i o n as i n d i c a t e d by t h e e x p e r i m e n t a l data. A l s o t h e e x p e r i m e n t a l r e s u l t s e v a l u a t e d by E q u a t i o n (14) i n c o n j u n c t i o n w i t h E q u a t i o n (11) show d e v i a t i o n s i n the r i g h t d i r e c t i o n . A d h e s i v e s t r e n g t h due t o t h e i n t e r f a c i a l l i q u i d s o l u t i o n l a y e r s h o u l d be a l i n e a r f u n c t i o n o f the r e c i p r o c a l i n i t i a l c o n c e n t r a t i o n ; however, as a l r e a d y i n d i c a t e d above, such p l o t s have a v e r y pronounced c u r vature, especially i n their i n i t i a l parts. The t h i c k ness o f such l a y e r s o v e r the whole range o f c o n c e n t r a tions i s a c t u a l l y very small. Thus, i t i s conceivable t h a t the roughness o f the s u b s t r a t e s u r f a c e w i l l s t r o n g l y i n f l u e n c e t h e s l i d i n g o f the i c e a c r o s s the s u b s t r a t e s u r f a c e due t o shear f o r c e s . T h i s was found t o be the c a s e w i t h t h i n water l a y e r s & ) . S l i d i n g of g l a c i e r s promoted by an i n t e r f a c i a l wacer f i l m i s a l s o o f i n t e r e s t i n t h i s c o n n e c t i o n (10). A c t u a l l y , t h e r e c i p r o c a l s l i d i n g v e l o c i t y as a f u n c t i o n o f water l a y e r t h i c k n e s s between the i c e and the bed o f a g l a c i e r gives curves s i m i l a r to p l o t s of adhesive strength v e r s u s c o n c e n t r a t i o n o b s e r v e d by S m i t h - J o h a n n s e n ( 11) I t i s d i f f i c u l t t o see why the whole base o f the i c e 3
2
l
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
258
ADSORPTION A T INTERFACES
Table I I . E f f e c t o f S a l t C o n c e n t r a t i o n on A d h e s i v e S t r e n g t h ( - 1 0 ° C ) (1) Adhesive strength A (g/cm )
Cone (mol/1)
2
Change i n adhesive strength (%)
ThtNOg)^, w a x - t r e a t e d aluminum s u r f a c e 1 1 4 1
0 X 10~ X 10 " X 10 X 10~
4250 3225 1990 1075 11
5
- i f
3
CaCl2/ 0 1 X 10"£ 7 X 10" 1 X 10" 2.5 X 10" 5 X 10~ 1 Χ 10" 3
2
3
0 25 53 74
c l e a n aluminum s u r f a c e 8000 3300 1800 1600 1100 480 130
0 59 78 81 87 94 98
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
18.
jELLiNEK
Adhesion of
Ice
259
p r i s m s h o u l d be f r o z e n d i r e c t l y t o the s u b s t r a t e . There i s no r e a s o n t o suppose t h a t g r a i n b o u n d a r i e s s h o u l d n o t a l s o e x i s t between the p r i s m and the s u b strate. Thus i t seems more l i k e l y t h a t an i n t e r f a c i a l l i q u i d s o l u t i o n l a y e r i s sheared t h a n t h a t i c e p r i s m s , d i r e c t l y f r o z e n to the s u b s t r a t e , are r u p t u r e d . The o v e r a l l c o n c l u s i o n r e a c h e d i s t h a t the v a r i a t i o n o f a d h e s i v e s t r e n g t h due t o a number o f e l e c t r o l y t e s i n d i l u t e s o l u t i o n s i s i n l a r g e p a r t due t o t h e s h e a r i n g o f an i n t e r f a c i a l l i q u i d s o l u t i o n l a y e r w h i c h i s formed d u r i n g f r e e z i n g . The t h i c k n e s s o f such a l a y e r may be i n f l u e n c e d by the n a t u r e o f the s u b s t r a t e . T h i s t h i c k n e s s i s m a i n l y p r o p o r t i o n a l t o the r a t i o o f the s a l i n i t y o f the i n i t i a l s o l u t i o n t o the s a l i n i t y o f the s a t u r a t e d s o l u t i o n i n t h e g r a i n b o u n d a r y . In a d d i t i o n , equimola i t i a l s a l i n i t i e s i n terms o f g / 1 0 0 0 g o f s o l u t i o n ; t h e m o l a r i t y has t o be m u l t i p l i e d by t h e m o l e c u l a r w e i g h t o f the r e s p e c t i v e e l e c t r o l y t e . I f the t e m p e r a t u r e o f the i c e - s u b s t r a t e system l i e s below the e u t e c t i c p o i n t o f t h e e l e c t r o l y t e , then the a d h e s i v e s t r e n g t h i s a p p r e c i a b l y i n c r e a s e d compared w i t h t h a t f o r a tempera t u r e above the e u t e c t i c o n e . The t h i c k n e s s o f the i n t e r f a c i a l l a y e r s i s so s m a l l f o r t h e range o f 1 0 " t o about 1 0 " m o l / l i t e r o f i n i t i a l e l e c t r o l y t e c o n c e n t r a t i o n s t h a t the roughness o f the s u b s t r a t e s u r f a c e has an a p p r e c i a b l e f r i c t i o n a l e f f e c t on the s l i d i n g v e l o c i t y o f the i c e a c r o s s the substrate surface. A l t h o u g h i t cannot be c o n c l u d e d w i t h c e r t a i n t y t h a t the above mechanism i s the one which i s a c t u a l l y r e a l i z e d , i t appears t o be the most r e a s o n a b l e o f t h e p o s s i b i l i t i e s that present themselves. Confirmation o f t h i s mechanism c o u l d be o b t a i n e d e x p e r i m e n t a l l y by f r e e z i n g d i l u t e e l e c t r o l y t e solutions to o p t i c a l l y f l a t p l a t e s and o b s e r v i n g the s l i d i n g v e l o c i t y as a f u n c t i o n of shear f o r c e . 5
3
T h i s work was s u p p o r t e d by U . S . Army Corps o f e e r s , CRREL, Hanover, New Hampshire.
Engin-
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
260
ADSORPTION AT INTERFACES
Summary Experiments by Smith-Johannsen on the adhesion of i c e frozen from a number of 1 X 10" M e l e c t r o l y t e s o l u tions to a wax-treated aluminum surface at - 1 0 ° C are discussed. I t i s concluded that the adhesive strength measured by the force per square centimeter needed to shear the ice o f f the substrate surface i s mainly due to a l i q u i d i n t e r f a c i a l solution layer between the i c e and the substrate surface. The thickness of such a layer i s l a r g e l y determined by the same considerations as the thickness of grain boundary layers i n ice ob tained from d i l u t e e l e c t r o l y t e s o l u t i o n s . 3
Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.
Smith-Johannsen, R., General Electric Company Re port 5539, Pts. I and II (ATSC Contract W-33-038AC-9151), pp. 149-191, 1946. Chatterjee, A.K. and Jellinek, H.H.G., Journal G l a c i o l . , (1971), 10, 293. Weeks, W.F. and Assur, Α . , in "Ice and Snow", W.D. Kingery, E d . , pp. 258-276, MIT Press, Cambridge, Mass., 1963. Bascom, W.D., Cottington, R . L . , and Singleterry, C.R., J . Adhesion, (1969), 1, 246. Camp, P.R., Ann. N.Y. Acad. S c i . , (1965), 125, 317. French, D.N., Ph.D. Dissertation, Department of Metallurgy, Massachusetts Institute of Technology, Cambridge, Mass., 1962. Rohatgi, P.K. and Adams, C.M., Journal G l a c i o l . , (1967), 6, 663. Lofgren, G. and Weeks, W.F., Journal G l a c i o l . , (1969), 8, 153. Jellinek, H.H.G., U.S. Army Snow, Ice and Perma frost Research Establishment (USA SIPRE) Special Report 37, 1960. Weertman, J., U.S. Army Cold Regions Research and Engineering Laboratory (USA CRREL) Research Re port 162, 1964. Weertman, J., Can. J. Earth S c i . , (1969), 6, 929.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
19 Mechanism of Olfaction Explained Using Interfacial Tension Measurements D. V. RATHNAMMA The Ohio State University, 1680 University Drive, Mansfield, Ohio 44906
Introduction Adsorption of the odorant on the receptor sites of the nerve fiber of the mucous membrane of the nose triggers a biochemical or biophysical mechanism which facilitates exchange of sodium and potassium ions which in turn fires a nerve impulse. If this is true there should be a relation between the threshold value of concentration of the vapor for giving detectable odor and adsorbability on mucous membrane. The physical model of olfactory apparatus used consisted of an interface formed by water and mineral oil. Interfacial tension was measured as a function of concentration of the odorant. The slopes of the curves of interfacial tension versus log concentration at an arbitrarily chosen small concentration of about 5 χ 10 moles per liter seem to be proportional to the intensity of the odour. The concentration required to produce a given lowering in interfacial tension for n-alcohols decreases with increasing molecular cross section. The literature values for olfactory threshold concentrations for producing detectable odor also show decreases with increasing molecular cross section. Adsorption of some flavoring agents at the interface was also studied. This paper contains the results of measurements of interfacial tension between mineral oil and water with various alcohols and odorants distributed between the two phases. -3
Materials All the alcohols used were straight chain alcohols. The data presented in this paper were obtained using Baker Analyzed reagents. The alcohols used were ethanol, n-propanol, n-butanol, n-pentanol (amy! alcohol) and n-hexanol. Lauryl alcohol Givaindan Delawanna, Inc., and n-hexadecanol - Brothers Chemicals, New Jersey, both of "manufacturing use only" quality were distilled before use.
261 In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
262
ADSORPTION A T INTERFACES
Squibb mineral o i l was also d i s t i l l e d and used without any further purification. The flavoring agents v a n i l l i n , cinnamic alcohol, eugenol, isoeugenol, s a f r o l , cinnamic aldenhyde, phenyl propyl aldehyde, and phenyl propyl alcohol were samples supplied by the General Foods Corporation, Tarrytown, N.Y. The flavoring agents were used without any further purification. Double d i s t i l l e d water d i s t i l l e d using quartz d i s t i l l a t i o n unit was used for making up solutions of alcohols in water and also for the aqueous phase of the blank measurements. Procedure Solutions of each η-alcohol in d i s t i l l e d water were made up by dissolving weighed amounts of the alcohol in double d i s t i l l e d water and making up th solutio t th required volume Stock solution was made up an to lower concentrations 100 ml of aqueous solution of η-alcohol formed the lower layer of the system in a beaker. The upper layer was 100 ml of Squibb mineral o i l . Five minutes were allowed for the solute to distribute i t s e l f between the phases. Readings of interfacial tension measurements were constant showing that the time waited was sufficient to attain equilibrium. Lauryl alcohol and n-hexadecanol are insoluble in water. These alcohols were dissolved in the o i l phase and interfacial tension measurements were made by equilibriating the o i l phase with d i s t i l l e d water for 5 minutes. The temperature was controlled and maintained at 26+0.1°C by circulating thermostated water through the outer jacket of the beaker in which the oil/water system was placed. Any change in the mutual s o l u b i l i t i e s of the phases of the s o l u b i l i t y of the alcohol in the phases due to this slight variation in temperature was small and could not have caused more than a few hundreths of a dyne/cm in the interfacial tension values (1). Measurement of Surface and Interfacial Tension The interfacial tension was measured by the wettable blade method which employs the Wilhelmy principle. The simplified Rosano tensiometer (2) used contains a sand blasted platinum blade of 5 cm perimeter. This Wilhelmy blade is dragged into the solution by the force of interfacial tension acting at the interface and the weight in milligrams applied to pull the blade to the surface is measured. This external force is applied from a torsion balance restoring the blade to the original position. If Rw = meter reading for water yw= surface tension of water Rs = meter reading for the solution ys = surface tension of the solution
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
19.
γ s = Rs
263
Mechanism of Olfaction
RATHNAMMA
yw Rw Κ is a constant.
Rw
The constant Κ was evaluated by taking meter readings for water at two different temperatures. Κ was found to be 0.196. There fore the meter reading for any solution i f multiplied by 0.196 gives the value of the surface or interfacial tension. The blade was flamed each time before use and was wetted with double d i s t i l l e d water since aqueous phase was involved. Explanation of the equation y = R χ .196 Π " mg) χ .980 w(perimeter of Y = Surface tensio (dynes/cm) s
s
VA s
R = Meter readings in milligrams = R (in mg) g $
Y s
s
χ
{
9
Q
Q
)
=
A
g
6
( |
5 cm Results and Discussion The interfacial tension of solution of alcohol and Squibb various concentrations of each presented in graphical form in
the interface formed by aqueous mineral o i l was measured for alcohol in water. The data are Figure 1.
Table I · Adsorption Values From the Slopes of Curves of Log c Versus Interfacial Tension Alcohol
Slope at
-2.3
No. of molecules
Molecular cross
(adsorbed) Gibbs
molecular volumes
Ethyl
.225
2.37 χ 1 0
12
26.7
n. Propyl
.163
1.72 χ 1 0
12
32.6
n. Butyl
.143
1.51 χ 1 0
12
38.0
n. Amyl
.122
1.29 χ 1 0
12
43.0
n. Hexyl
.103
1.09 χ 1 0
12
47.8
Lauryl
.204
2.15 χ 1 0
12
77.0
n.texadecanol .275
2.90 χ 1 0
12
97.0
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
264
ADSORPTION A T INTERFACES
Table II. Alcohl
Interfacial Tension Reduction 1 dyne/cm. Alcohol Con centration Required to Produce the Reduction. Equalibriurn cone of Experimental alcohol (aqueous) to olfactory (3) produce Y reduction threshold 1 dyne/cm Μ χ Ι Ο molecules/c.c.air (from graph) 2
Ethyl
2.45
n. Propyl
2.69 χ 10"
n. Butyl
2.44 χ 1 0
15
1
5.00 χ 1 0
13
3.99 χ Η Γ
2
8.20 χ 1 0
12
n. Pentyl
2.51
3
6.80
12
n. Hexyl
4.27 χ 10"
Lauryl
2.20 χ 10"
3
n. Hexadecanol
1.20 χ 1 0 '
2
Table III.
10~
10
6.72 χ 10
Flavoring Agents Cone, to Produce Interfacial Tension Reduction of 2 dyne/cm
Flavoring agent
Equilibrium Concentration (aqueous) Μ χ 10^
Vanillin
3.0 χ 10
Cinnamic alcohol
1.85
Eugenol
9.5 χ 10"
Isoeugenol
4.5
Safrol
3.15
Cinnamic aldehyde
7.0
Phenyl propyl aldehyde
2.0
Phenyl propyl alcohol
1.3 χ 10
1
Olfactory threshold values for flavoring agents not available.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
19.
RATHNAMMA
Mechanism of Olfaction
265
Calculation of Adsorption Using Gibb's Equation d γ
= Γ
RTd In a
γ = Interfacial Tension Γ = Surface excess per square centimeter a = Activity R = 8.31 χ 10
7
ergs/deg/mole
Τ = 26°C = 299°K If the slope = 1 Ρ
1/cm 8.31 χ 107/mole x 299 χ 2.3 = 2
=
molecules/cm
2
=
1-054 χ 1 0
13
1x 8.31 χ 107 χ 299 x2.3
molecules/cm
2
It is believed (3..4,5>6,_7,8)that the process of smelling involves adsorption of the odor producing material on to the surface of the mucous membrane of the nerve c e l l , producing a biochemical or biophysical mechanism to f a c i l i t a t e exchange of ions of sodium and potassium (3.,£,8) to f i r e a nerve impulse. If this is the case then there should be a relation between the threshold value of concentration of the vapor for giving a detectable odor and the adsorbability on mucous membrane. . Human nose is not a reliable instrument for measuring the threshold value, therefore different physical models have been employed by different workers. (£,]O,JU,12,13) The surface excess according to Gibbs equation was c a l culated for each alcohol. The surface excess is highest for ethyl alcohol and decreases up to carbon atom 6. Then again the surface excess increases. Adsorption or surface excess parallels published (3)values for olfactory threshold and the adsorption decreases with increasing molecular cross section up to carbon atom 6 for n-alcohols. The concentration of each alcohol solution in water required to reduce the interfacial tension of oil-water interface by 1 dyne/cm was determined. This concentration also decreased from alcohol with two carbon atoms to six carbon atoms. Thus these concentrations can be used to calculate olfactory threshold values. If the oil-water interface is accepted as a simulated olfactory epithelium, the odorant molecules adsorbed at the interface at low concentration can be a measure of the olfactory threshold. In order to produce the sensation of odor a certain minimum reduction in the interfacial tension has to occur. For
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
266
ADSORPTION AT INTERFACES
purposes of comparing different odorants 1 dyne/cm reduction is used in this investigation. This is equivalent to a decrease in the surface free energy of one erg per square cm. The concentration of certain flavoring agents required to reduce the interfacial tension by about 2 dynes/cm at the o i l / water interface was determined. With the exception of vanillin which was soluble in water, the others were soluble in Squibb mineral o i l . Figure 2. No conclusions could be drawn since olfactory threshold values of flavoring agents are not available. It was found that the extent of adsorption of the n-alcohols at the oil/water interface is related linearly to the published (3) threshold concentrations for the same alcohols. Figure 3. Concentration of η-alcohol in the aqueous phase required to produce a lowering in interfacial tension of 1 dyne/cm also bears a linear relationship to the olfactory threshold values Figure 4. These correlation satisfactory model fo y Summary of Olfaction Mechanism It is generally agreed that a odor can be detected i f the odor carrying substance makes physical contact with the interior part of the nose, namely, the membrane of the nerve cell. The human nose is very sensitive in detecting odorants in low concentrations and at low vapor pressures and the human nose is very selective. Simulated systems lack this kind of sensitivity and selectivity. Interaction between the stimulant and the receptor namely the trigeminal nerve endings takes place as a result of which stimulus is formed. The molecules of the stimulant or the products formed are removed from the inter action zone and the stimulus is transmitted to the olfactory region of the brain and translated into the sensation of odor. The possible mechanism is the odorant molecules interact with the nerve cells in the olfactory epithelium and the molecules are adsorbed on the lipid-water interface of the cell membrane. The odorant molecules penetrate the lipid-cell membrane which results in an exchange between potassium ions in the cell and the sodium ions outside the cell. This process triggers an impulse in the olfactory nerve. The oil/water interface can be likened to the lipid/water interface.
Literature Cited 1.
Bikerman, J.J. "Physical Surfaces" pp.118-121. Academic press, New York, 1970 2. Salzberg, H.W.,Morrow, J . I . , and Cohen, S.R. "Laboratory Course in Physical Chemistry" p. 103-104. Academic Press, New York, 1966. 3. Davies, J.T., Taylor, F.H. 2nd International Symposium on Surface Activity (1957) 4 Butterworth, London, pp.329-340.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
19.
Mechanism of Olfaction
RATHNAMMA
-0.3
.3
-2.3 log c
-3.3
c » m o l e s / I iter
267
-4.3 aqueous
-5.3
-6.3
7.3
phase
Figure 1. Interfacial tension vs. concentration for a variety of ahohoh. Ο = ethanol, Δ = η-propyl alcohol • = n-butanol, ft = amyl alcohol, φ = n-hexyl alcohol, A = lauryl alcohol, • = n-hexadecanol.
-2
log c
-3 c = moles/liter
-4 -5 aqueous phase
-6
Figure 2. Interfacial tension vs. concentration for flavoring agents. Q = vanillin, φ = zinnamic alcohol, Δ = eugenol, • = isoeugenol, • = safrol, ft = phenyl propyl alcohol.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
268
ADSORPTION A T INTERFACES
Figure 3. adsorption vs. threshold concentration
ιο μ ,5
10'1-6
10,-5
Cone,
10"
of η - a l c o h o l
r 3 10"
in aqueous phase
10"
10"
moles/liter
Figure 4. Concentration of alcohol required to produce interfacial tension reduction of 1 dyne/cm vs. olfactory threshold
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
19. RATHNAMMA
4.
5. 6. 7. 8.
9. 10. 11. 12. 13. 14
Mechanism of Olfaction
269
Rosano, H . L . , and Friedman, H . H . , in "Flavor Chemistry," Adv. Chem. Ser. No. 56, pp. 53-63, American Chemical Society, Washington, D . C . , 1966. Beets, M . G . J . , Mol., Pharmacol. (1964) 11, 1. Davies, J.T., J. Theor. B i o l . (1965) 8, 1. Renshaw, E . H . , Aust. J . Dairy Tech. (1964) 19(3), 128. Davies, J.T., "Recent Developments in the Penetra tion and Puncturing Theory of Odour," Reprinted from the Ciba Foundation Symposium of Taste and Smell in Vertebrates, pp. 265-291, J an A Churchill, London, 1970. Dravnieks, Α . Ann N.Y Acad S c i (1964) 116,357 Amoore, J.E., (October 1962) , Dravnieks, Α . , Ann. N.Y. Acad. S c i . (1964)116,429. Hartman, J . D . , Proc. Am. Soc. Hort. S c i . (1954) 64, 335. Wilkens, W.F., Hartman, J . D . , J. Food S c i . (1964) 29(3), 372. Harkins, W.D., "The Physical Chemistry of Surface Films," pp. 209-210, Reinhold Publishing Corpora tion, New York, N.Y., 1952.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
20 Role of Double Interactions and Spreading Pressure in Particulate Soil Removal HERMANN LANGE Henkel and Cie., GmbH, Düsseldorf, Federal Republic Germany
Introduction In the theory of particulate s o i l removal the i n fluence of electric charges and double layers at the surface of s o i l particles and substrates has been discussed for many years (1-3). In analogy to the Derjaguin-Landau-Verwey-Overbeek theory one takes into account the van der Waals-London energy of attraction P and the repulsive energy P due to electrical double layer. By combining both types of interaction energy one obtains diagrams of the type shown in Figure 1. The curves have been calculated for two d i f ferent values of the potential of the diffuse part of the double layer using the tables given by Verwey and Overbeek. (4). The curve of the electrical repulsion ΡR as well as the maximum of the resultant curve is shifted upwards when the potential rises. The poten tial may be increased, for example, by adsorption of surface active ions. This model has sometimes led to the conclusion that not only the deposition of s o i l particles but al -so the removal of adhering particles w i l l be inhibited if the potential of the diffuse layers and, conse quently, the maximum of the resultant curve is high. It w i l l be shown in this paper that this conclusion is not justified because the choice of the common zero point of the scale of potential energy is misleading. Furthermore, the primary step of the removal of adhering particles, namely the beginning of the pene tration of an extremely thin layer of liquid between particle and substrate allowing for the formation of an adsorption layer w i l l be discussed in the second part. A
R
270 In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
20. LANGE
Particulate Soil Removal
0
271
2
4
6
DISTANCE x,nm Figure 1. Potential energies of attraction Ρ and of repulsion P as function of the distance and the resultant Ρ of them, ζ = potential in units of ψ · e/(kT). φ = potential of the diffuse layer. The curves have been calculated for a Hamaker con stant A = 2 · 10~ erg and an electrolyte concentration of 10~ mol/l (univalent ions). A
R
α
α
13
2
PLATE MODEL
SPHERE MODEL
Figure 2. Two models for a particle adhering at a substrate
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
ADSORPTION A T INTERFACES
Figure 4.
Free energy of the double layer per unit area as a function of the distance. Flate model.
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
20.
LANGE
Particulate Soil Removal
273
I n f l u e n c e o f the E l e c t r i c a l Double L a y e r on t h e Removal of S o i l P a r t i c l e s Two models o f a d h e r i n g s o i l p a r t i c l e s w i l l be t a k e n i n t o account as s c h e m a t i c a l l y shown i n F i g u r e 2. With t h e " p l a t e m o d e l " the c o n s i d e r a t i o n s a r e s i m p l e r t h a n w i t h t h e 'tephere model". However, t h e sphere model g i v e s a b e t t e r d e s c r i p t i o n o f most r e a l s o i l p a r t i c l e s . P l a t e M o d e l . The s t a r t p o i n t and the f i n a l s t a t e o f t h e removal o f a p l a t e - l i k e p a r t i c l e i n an e l e c t r o l y t e s o l u t i o n i s shown i n F i g u r e 3. In the b e g i n n i n g t h e r e w i l l be an e l e c t r i c a l d o u b l e l a y e r o n l y a t the o u t e r s u r f a c e o f the system b u t n o t i n t h e c o n t a c t z o n e . A f t e r removal t o a d i s t a n c e l a r g e enough t h a t no i n t e r a c t i o n s between p a r t i c l e and s u b s t r a t e a r e p r e s e n t new d o u b l e l a y e r t a c t a r e a . The f o r m a t i o n o f the d i f f u s e l a y e r s r e s u l t s i n a d e c r e a s e o f the f r e e energy o f the s y s t e m . A t s m a l l e r d i s t a n c e s an i n t e r a c t i o n o f t h e d o u b l e l a y e r s on b o t h s i d e s o c c u r s . C o n s e q u e n t l y , the f r e e energy i s a f u n c t i o n o f the d i s t a n c e as shown i n F i g u r e 4. The d e c r e a s e o f f r e e energy approaches a s y m p t o t i c a l l y t o a l i m i t i n g v a l u e F c o r r e s p o n d i n g t o t h e s t a t e o f no i n t e r a c t i o n between the d o u b l e l a y e r s . The amount o f t h i s v a l u e i n c r e a s e s w i t h r i s i n g p o t e n t i a l of the d i f fuse l a y e r . In o r d e r t o b r i n g a p a r t i c l e from a l a r g e d i s t a n c e i n c o n t a c t w i t h the s u b s t r a t e s u r f a c e one has t o do a work o f Ρ = 2 FQO . The f a c t o r 2 i s caused by the f a c t t h a t the d o u b l e l a y e r i s p r e s e n t a t p a r t i c l e and s u b s t r a t e s u r f a c e . Hence, the v a l u e o f F ^ i s the c o r r e c t r e f e r e n c e l e v e l i f one c o n s i d e r s the a p p r o a c h i n g o f a p a r t i c l e from a l o n g d i s t a n c e t o the s u b s t r a t e s u r f a c e up t o t h e c o n t a c t . C o n s e q u e n t l y , the common z e r o l e v e l o f t h e p o t e n t i a l energy i n t h e f i r s t diagram means two d i f f e r e n t v a l u e s f o r F ^ f o r the lower (z = 2) and f o r the h i g h e r (z = 4) p o t e n t i a l . However, when c o n s i d e r i n g t h e removal o f a d h e r i n g p a r t i c l e s a z e r o l e v e l chosen i n t h i s way i s no l o n g e r a c o r r e c t common r e f e r e n c e l e v e l f o r d i f f e r e n t p o t e n t i a l s , because i n the s t a t e o f a d h e r i n g no d i f f u s e l a y e r i s p r e s e n t between the a d h e r e n t s . C o n s e q u e n t l y , the c o r r e c t r e f e r e n c e l e v e l f o r the removal o f a d h e r i n g p a r t i c l e s i s d e f i n e d by the absence o f any i n t e r a c t i o n energy between p a r t i c l e and s u b s t r a t e as w e l l as o f any f r e e energy o f d o u b l e l a y e r . S o , f o r t h e p o t e n t i a l energy one o b t a i n s c u r v e s as shown i n F i g u r e 5. P* i s the f r e e energy o f a d h e s i o n caused by van der w â a l s w
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
274
ADSORPTION A T INTERFACES
DISTANCE x,nm
Figure 5. Potential energy of attraction P and free energy of double layer 2 F ; and 2 F ) for the potentials ζ = 2 and ζ = 4. The resultant curves are shown by the solid lines. Plate model. A
(2
(i
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
20.
LANGE
Particulate Soil Removal
275
London f o r c e s . The r e s u l t a n t s o f the f r e e e n e r g i e s o f a t t r a c t i o n and o f the d i f f u s e l a y e r s have been c o n structed . From t h i s diagram the i m p o r t a n t c o n c l u s i o n can be drawn t h a t w i t h i n c r e a s i n g p o t e n t i a l t h e energy b a r r i e r s n o t o n l y f o r the d e p o s i t i o n b u t a l s o f o r t h e r e moval o f p a r t i c l e s w i l l be lowered ( 5 ) . Sphere M o d e l . The c o n s i d e r a t i o n s w i t h the sphere model are somewhat more c o m p l i c a t e d t h a n w i t h the p l a t e m o d e l . I n i t i a l l y , t h e r e w i l l be an i n t e r a c t i o n between the d i f f u s e l a y e r s o f p a r t i c l e and s u b s t r a t e i n a c e r t a i n r e g i o n around the p o i n t o f c o n t a c t as i s t o be seen from F i g u r e 6. Hence, the p o t e n t i a l energy o f the system i n t h e s t a t e o f a d h e s i o n i s no l o n g e r i n d e p e n dent o f the p o t e n t i a d o u b l e l a y e r . The b o r d e r o f t h e r e g i o n o f d o u b l e l a y e r i n t e r a c t i o n i s a r b i t r a r y but i t must be chosen t o be l a r g e enough t o i n c l u d e a l l s i g n i f i c a n t i n t e r a c t i o n . F i g u r e 7 shows the f r e e energy o f t h e d i f f u s e l a y e r i n the r e g i o n o f i n t e r a c t i o n . I n d e e d , the f r e e energy F i n the r e g i o n o f i n t e r a c t i o n f o r the s t a t e o f a d h e s i o n i s i n d e f i n i t e and depends on the c h o i c e o f the b o r d e r o f t h i s r e g i o n . However, t h e d i f f e r e n c e o f the f r e e energies P i n the s t a t e o f a d h e r i n g and a t long distance i s d e r l n i t e . A l t h o u g h the term F i s i n d e f i n i t e an a r b i t r a r y a l t e r a t i o n of i t causes o n l y a p a r a l l e l s h i f t i n g along the o r d i n a t e a x i s . T h e r e f o r e , i t i s u s e f u l l t o chose a r b i t r a r i l y a v a l u e o f z e r o f o r F . In t h i s c a s e , a l l curves f o r d i f f e r e n t p o t e n t i a l s and, consequently, f o r d i f f e r e n t v a l u e s o f F have the same o r i g i n on t h e o r d i n a t e a x i s . A t l o n g a i s t a n c e s , they approach asymptot i c a l l y the l e v e l o f - P below the a b s c i s s a a x i s . By c o m b i n i n g w i t h ihie c u r v e f o r t h e van der W a a l s London a t t r a c t i o n one o b t a i n s t h e diagram shown i n F i g u r e 8. The r e s u l t i s , i n p r i n c i p l e , t h e same as t h a t one o b t a i n e d w i t h the p l a t e m o d e l , namely, the h e i g h t o f the energy b a r r i e r t o be surmounted a t the removal of p a r t i c l e s decreases with r i s i n g p o t e n t i a l . In a l l t h e s e c o n s i d e r a t i o n s , however, i t has been assumed t h a t the p o t e n t i a l s a t p a r t i c l e and s u b s t r a t e are e q u a l . As l o n g as t h e d i f f e r e n c e between b o t h p o t e n t i a l s i s n o t t o o l a r g e the c o n s i d e r a t i o n s w i l l remain v a l i d i n a q u a l i t a t i v e s e n s e . I f a n i o n i c s u r f a c t a n t s a r e adsorbed a t the s u r f a c e s o f p a r t i c l e t h e y do not o n l y i n c r e a s e the negative p o t e n t i a l but they w i l l a l s o tend to e q u a l i z e i t to a c e r t a i n degree. R
R
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
276
ADSORPTION A T INTERFACES
Figure 8. Potential energy of attraction P and the difference F-F as function of the distance, and the resultants of them. Sphere model. A
0
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
20.
LANGE
Particuhte Soil Removal
277
Some p r e d i c t i o n s f o l l o w i n g from the assumption that e l e c t r i c a l double l a y e r f o r c e s are r e a l l y e f f e c t i v e i n the washing p r o c e s s have been v e r i f i e d by washing t e s t s w i t h homologous sodium a l k y l s u l f a t e s and v a r i a b l e c o n c e n t r a t i o n o f added e l e c t r o l y t e (5-6.) . The P r i m a r y Step o f the Removal o f A d h e r i n g
Particles
The f o r e g o i n g c o n s i d e r a t i o n s account o n l y f o r the t o t a l h e i g h t o f the energy b a r r i e r t o be surmounted a t the removal o f a d h e r i n g p a r t i c l e s . However, s p e c i a l a t t e n t i o n must be p a i d t o the b e g i n n i n g o f the p e n e t r a t i o n o f an e x t r e m e l y t h i n l a y e r o f l i q u i d between p a r t i c l e and s u b s t r a t e a l l o w i n g f o r the f o r m a t i o n o f an adsorption l a y e r . The s p r e a d i n g p r e s s u r e o f the adsorbed l a y e r s o f surfactants exerts a and s u b s t r a t e . T h i s f o r c e f a v o u r s the p e n e t r a t i o n o f l i q u i d i n t o t h e zone o f c o n t a c t . F i g u r e 9 shows a model o f the system under c o n s i d e r a t i o n f o r a s p h e r i c a l p a r ticle. The d i s j o i n i n g f o r c e may be c a l c u l a t e d i f t h e v a l u e s of the s p r e a d i n g p r e s s u r e s o f the adsorbed l a y e r s a t the s u r f a c e o f p a r t i c l e and s u b s t r a t e are known. From F i g u r e 9 the f o l l o w i n g e q u a t i o n can be d e r i v e d by simple geometrical c o n s i d e r a t i o n s : f
d
= 2irr
(f
p
+ Tg)
fa i s the d i s j o i n i n g f o r c e , Jf™ ^ ITc ^ spread i n g p r e s s u r e s o f the adsorbea l a y e r s a t p a r t i c l e and s u b s t r a t e s u r f a c e r e s p e c t i v e l y , r i s the p a r t i c l e r a dius · The q u e s t i o n a r i s e s wether t h i s d i s j o i n i n g f o r c e i s s u f f i c i e n t f o r p l a y i n g an e s s e n t i a l p a r t i n the r e moval o f a d h e r i n g p a r t i c l e s . F o r n u m e r i c a l c a l c u l a t i o n s , v a l u e s o f the s p r e a d i n g p r e s s u r e s TT and ]j" are n e c e s s a r y f o r the e v a l u a t i o n o f the d i s j o i n i n g f o r c e . F u r t h e r m o r e , e x p e r i m e n t a l d a t a on the f o r c e o f a d h e s i o n a r e r e q u i r e d f o r c o m p a r i s o n . I t i s somewhat d i f f i c u l t t o f i n d o u t s u i t a b l e d a t a i n the l i t e r a t u r e . A c c o r d i n g t o r e s u l t s o b t a i n e d by V i s s e r (7) t h e average f o r c e s o f a d h e s i o n f of carbon b l a c k p a r t i c l e s o f 0.1 yum r a d i u s on a c e l l u l o s e f i l m immersed i n water amount t o a p p r o x i m a t e l y 2 3 . 1 0 " dyn a t pH 3.3 and 2 . 1 0 " dyn a t pH 10. The s p r e a d i n g p r e s s u r e o f the adsorbed l a y e r o f s u r f a c t a n t s on h y d r o p h o b i c p a r t i c l e s i n e q u i l i b r i u m w i t h the s u r f a c t a n t c o n c e n t r a t i o n c may be e v a l u a t e d from a d s o r p t i o n i s o t h e r m s by the f o r m u l a (8) a
n
a
r
e
e
P
g
6
6
1
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
s
ADSORPTION A T INTERFACES
278
Ο where i s the a d s o r p t i o n as a f u n c t i o n o f the c o n c e n t r a t i o n c . For i o n i c s u r f a c t a n t s , t h i s formula i s o n l y v a l i d when the c o u n t e r i o n c o n c e n t r a t i o n i s k e p t constant. The a d s o r p t i o n i s o t h e r m shown i n F i g u r e 10 has been o b t a i n e d f o r sodium d o d e c y l s u l f a t e w i t h added NaCl f o r c o n s t a n t sodium i o n c o n c e n t r a t i o n a t g r a p h i t i z e d carbon b l a c k (Graphon, Cabot C o r p . B o s t o n , Mass.X The shape o f t h e i s o t h e r m i s v e r y s i m i l a r t o t h a t o b t a i n e d by D a y , Greenwood and P a r f i t t (9) f o r the same system w i t h o u t N a C l p / c v s . c a value of = 29 dyn/cm a t c ' = 8.10"" mol/1 ( i . e . a t the c r i t i c a l m i c e l l e c o n c e n t r a t i o n ) has been o b t a i n e d . A l t e r n a t i v e l y , the s p r e a d i n g p r e s s u r e o f the a d s o r b e d s u r f a c t a n t l a y e r may be o b t a i n e d from the d i f f e r e n c e between the w e t t i n g t e n s i o n s f o r pure water and f o r the s u r f a c t a n t s o l u t i o n . A number o f measure ments o f w e t t i n g t e n s i o n s a t p a r a f f i n wax w i t h aqueous s o l u t i o n s o f sodium a l k y l s u l f a t e s (10) has been p e r formed by the G u a s t a l l a method (11) . V a l u e s o f about 20 dyn/cm have been o b t a i n e d a t c o n c e n t r a t i o n s just below the c r i t i c a l m i c e l l e c o n c e n t r a t i o n . I n f o r m a t i o n s on the s p r e a d i n g p r e s s u r e o f the a d s o r b e d l a y e r on t e x t i l e m a t e r i a l s are h a r d l y a v a i l a b l e . Some measurements o f t h e w e t t i n g t e n s i o n on d i f f e r e n t f o i l s o f t e x t i l e - l i k e m a t e r i a l s have shown t h a t t h e v a l u e s are g e n e r a l l y r e l a t i v e l y low (10). By i n s e r t i n g a r a t h e r low v a l u e f o r the sum o f b o t h s p r e a d i n g p r e s s u r e s , namely 20 dyn/cm i n t o t h e e q u a t i o n one o b t a i n s f o r the r a d i u s 0.1 urn f
s
« 125
· 10~
6
dyne
T h i s v a l u e i s much h i g h e r than the range o f the e x p e r i m e n t a l v a l u e s o f the f o r c e o f a d h e s i o n o b t a i n e d by V i s s e r . Hence, one may c o n c l u d e from t h e s e e s t i m a t i o n s , t h a t the d i s j o i n i n g f o r c e caused by the s p r e a d i n g p r e s s u r e o f the adsorbed l a y e r s w i l l be s u f f i c i e n t t o i n i t i a t e the f i r s t s t e p o f the removal o f a d h e r i n g p a r ticles · Summary In the t h e o r y o f the washing p r o c e s s , sometimes the i n f l u e n c e o f e l e c t r i c c h a r g e s and t h e i r i n c r e a s e by
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
20. LANGE
Particulate Soil Removal
279
Figure 9. Adsorption layers at particle Ρ and sub strate S, causing a disjoining force.
Γ
1
Ο
2
1
4
1
6
8
r———Γ10
CONCENTRATION, 10" mol/l 3
Figure 10. Adsorption isotherm of sodium dodecyl sulfate (SDS) at Graphon with added sodium chloride. Sum of con centrations of SDS and sodium chloride constant and equal to 8.10- mol/l Temperature 23±1°C. 3
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
280
ADSORPTION AT INTERFACES
adsorption of ionic surfactants at the surfaces of solid s o i l particles and substrate have been discussed. Whereas the inhibition of the deposition of particles by electric charges may be easily explained, a satisfactory interpretation of the influence of the charge on the elementary step of washing, i . e . the removal of adhering particles, is lacking. This d i f f i culty can be eliminated by choosing the correct reference states for the potential energies both for the process of deposition and for that of removal. This problem is discussed for the models of plate-like as well as spherical particles. It follows that in both cases an increase of the surface charge contributes not only to the removal of particles. For the primary step of the removal f adherin particles th d i s j o i ning force caused b adsorbed layer of surfactants s also o importance. An estimation shows that this force may be sufficient to provoke the primary step of removal. Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.
Durham, K . , J. Appl. Chem. (1956) 6, 153 Lange, H . , Kolloid-Z. (1957) 154, 103 Lange, H . , Kolloid-Z. (1958) 156, 108 Verwey, E.J.W., Overbeek, J . T h . G . , "Theory of the Stability of Lyophobic Colloids", p. 82 and 141, Elsevier Publishing Company, New York, 1948 Lange, H . , in "Solvent Properties of Surfactant Solutions", K. Shinoda, E d . , pp. 144-150, Marcel Dekker, New York, 1967 Lange, H . , Fette, Seifen, Anstrichm. (1963) 65, 231 Visser, J., J. Colloid Interface Sci. (1970)34,26 Fu, Y., Hansen, R . S . , Bartell, F.E., J. Phys. & Colloid Chem. (1949) 53, 1141 Day, R . E . , Greenwood, F . G . , P a r f i t t , G.D., in Proc. 4th Intern. Congr. Surface Activity,Vol.2, p. 1005, Gordon and Breach, London, 1967. Lange, H . , (1956), unpublished data Guastalla, J., Guastalla, L., C.R. Acad. Sci. (1948) 226, 2054
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
INDEX A Abhesion 248 Acid number, copolymer 160 Acidic carbon dioxide complex 212 Acidic sites, negative charged 92 Acrylic acid copolymer (S-AA), styrene157,158 Activated carbons 92 Activated charcoal 90, 91 Activation energy humps 197 Activation time 226 Adamson's model 43 Additivity rule 17 Adhering particles in electrolyte solution 272, 274 particles, removal of 277 soil particles 273 Adhesion of ice 248 Adhesion to substrate, particle 271 Adhesional properties, film-substrate .... 160 Adhesive strength 253, 256, 258 Adsorbed isolated chain molecules 16 layers 107 thickness of the 25, 26, 105 polymer molecule 22 polystyrene 104, 105 Adsorption of benzene vapor 215 calculation 265 at and below the c.m.c 117 of co-ions, negative 108 critical energy of 23 density 71 of dry ammonia 215 dye 79, 81, 83 of electrolyte 7, 12,187 energy per segment 24, 26 equation, Gibbs 48, 51 equation, modified Gibbs 2 equilibrium 2, 98 free energy of 72 of HDPB and TDPB to Bio-Glas .112,114 of ionic surfactants to porous glass ... 107 of ammonia 218, 219 isotherm BET multilayer 29 above the c.m.c 119 for CSBFF on activated charcoal 91 Graphon 86, 89 titanium dioxide 86 Viscose 82,84 determination of 98 Gibbs 4,7,184 of hexadecyl pyridinium chloride .... 124 of liquid on solid 45
Adsorption isotherm (continued) of methanol-benzene of phenol of polystyrenes of differing molecular weights of SDS layers causing a disjoining force of liquid on solid of macromolecules on dispersed particles maxima measurements on Teflon powders
216 221 101 279 279 45 98 107, 122 43
of phenol from aqueous solutions 217 physical 72 of polystyrene 96 segment-surface energy for 23 space, diminishing 3 of STDS 112,115 thermodynamics of 1 on titanium dioxide 85 values 263 on Viscose 83 Air-solution interfaces 164 Alcohol concentration 264 Alcohols, straight chain 261 n-Alkanes on Teflon T F E 33, 36 Ammonia, dry 215 Ammonia, adsorption of 218, 219 Angle, contact (see Contact angle) Anionic surfactants 118 Anomalies, thermal 133 Approximations, evaluation of 38 Aqueous dye solution system 79 interfacial layers 133 solutions 165,217 substrates 157 Argon surface areas, BET 227 Arrhenius plot of viscosity 130 Atactic 207 Athermal solutions 16,21 Attraction, potential energy 271, 275, 276 Β Bead theory 199 Behavior, wetting 65, 66 Benzene 215, 216, 244 BET argon surface areas 227 BET multilayer adsorption isotherm 29 Binary solution, hypothetical 56 Binding of ionic surfactants 123 at the liquid interface 49 solute-solvent 48, 53
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
ADSORPTION A T
284 Bio-Glas adsorption of HDPB and TDPB to adsorption of SDS to adsorption of STDS to Black film, common Blade method, wettable Bond conformational energy difference, trans-gauche consecutive formation, hydrophobic rotational hindrance Bound layers, surface Boundaries, grain Breaking effect, water structure Bubble technique, captive Bulk solute species Bulk surface
109 112,114 115 112,115 191 262 27 22 88 16 60, 105 253 83 65 108 188
C Cadmium iodide crystal structure 225 Calcium ions : 170 Calorimeter cell 151 Calorimetric study 131 Capillary, hairpin 134, 136 Captive bubble technique 65 Carbon activated 92 black graphitized 97 dioxide complex, acidic and nonacidic 212 microcrystalline 212 surface behavior of 212 tetrachloride 32 Cationic surfactants 117,121 Cations 81,83,169 Cavity effect, intermolecular 171 Cell, calorimeter 151 Cellulose-aqueous dye solution system ... 79 Cellulose, dye adsorption by 83 Chain alcohol 261 ethylene 202 homologues, shorter117 ionic surfactants, homologous long- .... 117 isolated excluded-volume 17 molecules in the adsorbed state , 17 molecules,, configurational behavior of 16 -solid hydrophobic interactions 76 terminating group 163 Charcoal, activated 90, 91 Charge densities 71 model, point10 negative surface 79 potential energy, constant 12 Chemisorption 72 Chlorazol Sky Blue F F (CSBFF) 80 Cis and trans isomerism 207 Clathrates of water, polyhedral 131 C.m.c. (critical micellization concentration) 107, 117, 119 Coarea, limiting 85 Coefficients, virial 123 Cohesion properties, surfaces intermolecular 160
INTERFACES
Co-ion exclusion 118 Co-ions, negative adsorption 108 Collapse pressures 164,167,179 Colloid stability 1,7 Common black film 184, 191 Complex, nonacidic and acidic carbon dioxide 212 Complex surface oxygen 212 Component excesses 52 Computer simulation method, Monte Carlo 16 Condensation nuclei 176 Conductivities, thermal151 Configurational behavior of isolated chain molecules .... 16 sequences 20 state of chain molecules 17 state of a polymer 21 Configurations homogeneous Markov sequence of 17 Conformation of adsorbed polystyrene ... 104 Conformational energy difference, trans-gauche bond 27 Constant-charge potential energy 12 Constant heat increment 199 Contact angle behavior 76 of liquids on fluoropolymers 201 measurement of 28, 65 in Newton-Black soap films 183 on silver iodide 69, 70 Contact points, substrate 163 Copolymer acid number 160 Copolymeric structure 178 Copolymers 208 interfacial film properties of 160 monolayers of 157 radiation-induced 199 (S-AA) styrene-acrylic acid 158 on water, spreading S-AA 159,162,166 Coverage, fractional 36, 38 Critical energy of adsorption 23 micellization concentration (c.m.c.) .... 107 surface tensions of wetting 199, 203 temperature regions 152 Crystal structure, cadmium iodide 225 Crystalline phase, smectic liquid 191 CSBFF (Chlorazol Sky Blue FF) 80 adsorption of on activated charcoal 90, 91 on Graphon 86, 87, 88, 90 on silicon dioxide 87 on titanium dioxide 85, 86 on Viscose 81-84 D Decomposition, thermal Dehydration, of nickel hydroxide Dendrites at the solution-ice interface .... Densities, low negative charge Density, adsorption Derjaguin-Landau-Verwey-Overbeek (DLVO) theory
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
225 225 254 71 71 7
285
INDEX
Detergent, surface excess of 186 Differential effect of cations 81,92 Differential method, double 137 Diffuse double layers 118,187 Dilute electrolyte solutions 248 Dilute point-ion electrolyte 13 Diminishing adsorption space 3 Dipole, electrostatic 207 Dipole interaction, ion170 Disjoining pressure 130, 132,279 Dispersed particles 98 Dispersions, silver iodide 63 D L V O theory (Derjaguin-LandauVerwey-Overbeek) 7 Double differential method 137 Double layer diffuse 187 electrical 187,273 free energy of 272, 276 interactions in particulate soil removal 270 noninteracting 12 Drainage behavior 19 Drop, spinning (see Spinning drop) Dry ammonia, adsorption of 215 D T A study of water in porous glass 129 Dye adsorption 79, 81, 83 Dye solution system, cellulose-aqueous 79
Ε Electric balance 131 Electrical double layer 107, 119, 187, 273 Electrolyte adsorption of 7, 12, 187 cations 83, 92 concentrations 52 dilute point-ion 13 negative surface excess of 48, 53 solutions 248, 272, 274 Electrolytes 7, 192, 195 Electron micrographs 227 Electrophoresis 64, 66 Electrophoretic mobility measurements 64, 66, 68, 69 Electrostatic dipoles 207 Energy of adsorption, critical 23, 72, 73 of attraction, potential 271, 275, 276 barriers 275 change from specific surface interactions 72, 74, 75 change of transfer, partial molal 31 curve, calculated potential 5 difference, trans-gauche bond conformational 27 of double layer, free 272, 276 film free 183 film interaction 188 humps, activation 197 interaction free 185 of interaction, potential 6 potential constant-charge 12 of repulsion, potential 271 per segment, adsorption 24, 26 Enthalpy changes with limiting coarea 85 Enthalpy of hydrophobic bond formation 88 Entropy, excess film 188
Entropy of transfer, partial molal 30 Envelope of structured water layers 87 Epitheliom, simulated olfactory 265 Equilibrium adsorption 2, 98 film pressure 28, 38 solutions, p H of 124 thickness of stratified films 196 Equivalent water thickness 184 Ergodicity 18 Ethylene chain 202 Ethylenic fluoropolymers 200 Evaporation effects 142 Excesses, component 52 Excluded-volume chain, isolated 170 Exclusion co-ion 118 of micelles 107, 122 of polymers 125 volume 120, 123
F Fields, intermolecular potential 3 Film areas 160,168 common black 191 entropy 188 folding 165 free energy 183 free liquid 191 Gibbs adsorption isotherm 184 interaction energy 188 Newton 191 Newton-Black soap 183 pressure ' 28, 38 -area isotherms 161 properties, interfacial 160 silver iodide 65 stratified 196 styrene-acrylic acid 157 -substrate adhesional properties 160 tension 186 First-order phase transitions 131 Flavoring agents 264 Fluorinated polymers, highly 199 Fluorine, replacement of hydrogen with 203 Fluoropolymers, of 200, 201 Forces, adsorption and interparticle 1 Forces, repulsive 4 Fractional coverage 36, 38 Free energy of adsorption of 72 change 72,74 of double layer 272, 276 film 183 interaction 185 solid surface 28 Free liquid films 191
G Gas adsorption on parallel plates 2 Generation of configuration sequences .... 20 Gibbs adsorption equation 2, 48, 51 Gibbs adsorption isotherm 4, 7, 184
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
286
ADSORPTION
Gibbs surface excess 48 Glass, porous (see Porous glass) Grain boundaries 253 Graphitized carbon black 97 Graphon 80 adsorption of CSBFF on 87, 88, 90 adsorption isotherm of phenol on 221 adsorption isotherm of SDS 279 adsorption of polystyrene on 96 H Hairpin capillary 134, 136 HDPB (Hexadecyl pyridinium bromide) 111,112,114 Heat increment, rule of constant 199 Hemimicelle formation 76 Hexagonal layers 227 Hexagonal packing 178 Heterogeneities, high-energy 39 Hexadecyl pyridinium bromide (HDPB Hexadecyl pyridinium chloride 12 High-energy heterogeneities 39 Higher-order phase transitions 131 Hindrance, bond rotational 16 Homogeneous Markov sequence of configurations 17 Homologous n-alkanes on Teflon T F E ... 33 Homologous long-chain ionic surfactants 117 Homologues, shorter-chain 117 Hydrocarbon studies against surfactant 244 Hydrogen, replacement of 203 Hydrophilic material 79 polymers 123 sites 39,43 surfaces 151 Hydrophobic bond formation, enthalpy 88 interactions, chain-solid 76 sol 63 Hysteresis loop 163 I Ice frozen from dilute electrolyte solution 248 Ice interface 250,254 Icebergs 83 Ideally non-polarizable plates 12 Ideally polarized plates 7 Initial solutions 253 Instrumentation 139 Interacting solid particles 122 Interaction chain-solid hydrophobic 76 energy, film 188 free energies 185 specific surface 72, 74, 75 particle 6 potential energy 6 of polymer molecule with a surface .... 21 of water with silica substrates 87 Interface air-solution 164 liquid 49 polarizable 8 silver iodide-solution 63
AT
INTERFACES
Interface (continued) solute and solvent at the solution-ice structure of water near substrate-ice thermal conductivities of water near Interfacial film properties of copolymers layers, aqueous liquid solution layer, shearing tension measurements 234, between mineral oil and water reduction 234, thickness Intermolecular cavity effect cohesion properties, surface potential fields Interparticle forces
....
48 254 129 250 151
160 133 259 234,264 261, 262 261 264, 266 48,255 171 160 3 1
-dipole interaction 170 electrolyte, dilute point 13 surfactant 71 Ionic micelles 108 Ionic surfactants 107, 117, 123 Irradiation, ultrasonic 99 Isolated chain molecules 16 Isolated excluded-volume chain 17 Isomerism, cis and trans 207 Isotactic 204,206 Isotherm adsorption (see Adsorption isotherm) film pressure-area 161 water 43
Κ K\ effects of
87, 92
L Lamellae, liquid 183 Langmuir equation 38 model 29 plots 83,91 Lateral interactions 38, 118 Lattice, tetrahedral 19 Layer adsorbed 25, 26, 105, 107 adsorption 279 aqueous interfacial 133 diffuse double 187 double (see Double layer) electrical double 107,119,273 hexagonal 227 interracial liquid solution 259 interfacial solution 255 thin liquid solution 250 Stern 71 structured water 87 surface bound 60 Limiting areas 164, 167, 168 Lippman equation 8
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
287
INDEX
Liquid crystalline phase, smectic 191 films, free 191 on fluoropolymers 201 interface, binding at the 49 lamellae 183 on solid, adsorption of 45 solution layer 250,259 Long-chain ionic surfactants, homologous 117 Low energy solid, flat 28 energy surfaces 202 interfacial tension 234 Lyophobic colloid stability 7 M Macromolecules, adsorption of 98 Markov sequence 17 Maxima, adsorption 107,122 Maxwell relation 9 Metastable equilibrium thicknes stratified films 196 Methanol-benzene, adsorption of 216 Metropolis sampling method 25 Micelles 108,122 Micellization concentration (c.m.c), critical 107 Microcrystalline carbons 212 Micrographs, electron 227 Mineral oil 261 Mixed monolayers average area of 172,174 interaction of calcium ions with 170 maximum surface potential 177 Mobility measurements, electrophoretic 64 Mobility-pAg curves, of 74 Molecular models, Stuart-Briegleb 205 Molecular weights, of polystyrenes of differing 101 Mongul adsorption isotherm of ammonia on..218, 219 adsorption isotherm of methanolbenzene on 216 adsorption isotherms of phenol on 221 Monolayer film areas 160 Monolayers on aqueous solutions 165 near their collapse pressures 179 of copolymers 157 mixed (see Mixed monolayers) on subsolutions 177 Monomer activity 119 Monte Carlo computer simulation method 16 Multilayer adsorption 4, 29 Ν Na , effects of Negative adsorption of co-ions charge densities surface charge surface excess of electrolyte Negatively charged acidic sites Newton-Black soap films Newton films +
87, 92 108 71 79 48, 53 92 183 191
Nickel hydroxide exfoliation of physical and x-ray properties of surface properties of thermal decomposition of weight loss of Nickel oxide nickel hydroxide dehydration to platelets physical and x-ray properties of surface areas of Nonacidic carbon dioxide complex Nonaqueous suspensions Non-athermal solvents Non-electrolyte mixture adsorption Noninteracting double layers Non-ionic surfactants Non-polarizable plates, ideally Non-swelling solid substrates Nuclei, condensation
Octane surfactant system Olfaction, mechanism of Olfactory epithelium, simulated Olfactory threshold Organic compounds on Teflon Oxygen complexes, surface
229 228 225, 228 225 226 225 232 228 228 212 96 27 4 120 123 12 79 176
245 261 265 265, 268 42 212
Ρ pAg curves, mobility74 pAe on electrophoretic mobility, effect of 66, 68, 69 Packing, hexagonal 178 Paradoxial effect 151 Parallel plates 2,4 Partial molal energy change of transfer ... 31 Partial molal entropy of transfer 30 Particle adhering 271, 272, 274, 277 dispersed 98 interaction 6 Particulate soil removal 270 Partition coefficient 135 Pendant group 203 pH 113,124,165 Phenol, adsorption of .217,221 Phase transitions 131 Physical absorption 72 Plane section of rotating drop 241 Plate model 273 Platelets, nickel oxide 232 Plates ideally non-polarizable 12 ideally polarized 7 parallel 2, 4 quartz 130 Point-charge model 10 Point-ion electrolyte 13 Polar head, surfactant 75 Polarizable interface 8 Polarized plates 7 Polydispersity 231 Polyethylene 43 Polyhedral clathrates 131
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
288
ADSORPTION
Polymer configuration 21, 204, 206 exclusion of 125 highly fluorinated 199 hydrophilic 123 molecule, adsorbed 22 radiation-induced 199 wettability of 204 Polymethylene surfaces 37 Polymorphs of water 131 Polystyrene 97 adsorbed 104,105 of differing molecular weights 101 on Graphon from toluene, adsorption of 96 Polytetrafluorethylene (Teflon T F E ) .... 32 Positive surface excess of water, relative 59 Potential energy of attraction 271, 275, 276 constant-charge 12 curve, calculated 5 of interaction 6 of repulsion 271 fields, intermolecular 3 of mixed monolayers 172, 175, 177 surface 171 zeta 65 Powders, Teflon 43 Pressure collapse 164,167 disjoining 130, 132 film 28, 38,161 spreading 270 Q Quartz plates Quinonic groups
130 213
R Radiation-induced polymers and copolymers Rayon, viscose Receptor sites Reciprocal Langmuir plots Replacement of hydrogen Repulsion, potential energy of Repulsive forces Rotating drop, plane section of Rotational hindrance, bond
199 80 261 91 203 271 4 241 16
S S-AA (styrene-acrylic acid copolymers) 158,159,162,166 Salinities 253 Salt concentration 258 solutions, aqueous 165 surface excess of 186 Salts, effect of 163 Sampling, method Metropolis 25 SDS (Sodium dodecyl sulfate) ...111, 115, 279 Segment, adsorption energy per 24, 26 Segment-surfactant energy for adsorption 23 Segments, mean fraction of 24 Selectivity coefficient 136 Sequences, configuration 17, 20
AT
Short-range interactions Shorter-chain homologues Silica substrates, water Silica surfaces, water adjacent to Silicon dioxide Silver iodide contact angle on dispersions electrophoretic mobility of films -solution interface Simulation, Monte Carlo computer Sites acidic hydrophobic receptor step Smetric liquid crystalline phase Soap films, Newton-Black Sodium chloride structure
INTERFACES
107 117 87 131 87 69, 70 63 66, 68, 69 65 63 16 92 43 261 36 191 183 225
Soil particles, adhering 273 Soil removal, particulate 270 Sol, hydrophobic 63 Solid adsorption of liquid on 45 flat low-energy 28 hydrophobic interactions, chain76 particles, interacting 122 substrates 79 surface free energies of 28 Solutes from adsorbed layers 107 solvent binding 48, 53 species, bulk 108 surface excess of 56, 57, 58 Solution aqueous 165, 217 athermal 21 composition on particle interaction, effect of 6 concentrated surfactant 191 electrolyte 248, 272, 274 equilibrium 124 hypothetical binary 56 -ice interface 254 initial 253 interactions 19 interface, air164 interface, silver iodide63 layer 250, 255, 259 silver iodide 64 system, cellulose-aqueous dye 79 Solvent binding, solute48, 53 Solvents, non-athermal 27 Specificity of the surfactant polar head .... 75 Sphere model 275 Spheron-6 219,221,222 Spinning drop apparatus 241, 242 Spreading pressure 270 Stability, colloid 1,7 STDS (sodium tetradecyl sulfate) 111,112,115 Steady state conditions 18 Stearic acid 170 Stearyl alcohol 170
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
INDEX
289
Step sites 36 Steric configurations 205 Stern-Grahame theory 71 Stern layer 71 Straight chain alcohols 261 Stratification in free liquid films 191 Stratified films 196 Strength, adhesive 253,256,258 Structure breaking effect, water 83 Structured water layers 87 Stuart-Briegleb molecular models 205 Styrene-acrylic acid copolymers (S-AA) 158 Styrene-acrylic acid films 157 Subsolutions 177 Substrate adhesional properties, film160 aqueous 157 contact points 163 -ice interface 250 particle adhesion to 271 silica 8 water-swollen and non-swellin Sugar charcoal, adsorption isotherm of ammonia and phenol on 218, 219, 221, 222 Sulfonate adsorption 63 Surface adsorbed polystyrene not bound to ... 105 surface areas 117,227,228 behavior of carbons 212 bound layers 60 bulk 188 charge, negative 79 chemical properties 199 energy, segment23 excess of electrolyte, negative 48, 53 Gibbs 48 of salt and detergent 186 of solute 56, 57, 58 of water 59 free energies, solid 28 ideal Teflon T F E and polymethylene 37 interactions 72, 74, 75 intermolecular cohesion properties 160 low-energy 202 oxygen complexes 212 potential 171,177 properties of nickel hydroxide 225 tension 234 measurement of 262 of water 52 of wetting 199, 203 Surfactant 192 anionic 118 cationic 117, 121 effect of 195 hydrocarbon studies against 244 ionic 107,117,123 ions 71 non-ionic 123 polar head 75 solutions 191 system, octane 245 Suspension effect 116 Suspensions, non-aqueous 96 Syndiotactic 204, 206
Τ TDPB (tetradecyl pyridinium bromide) 111,114 Teflon hydrophilic sites on 43 organic compounds on 42 powders 43 T F E (polytetrafluorethylene) 32 homologous n-alkanes on 33 step sites on 36 surfaces, ideal 37 water on 36 Temperature regions, critical 152 Tension film 186 interfacial (see Interfacial tension) surface (see Surface tension) 234 wetting 278 Terminating group, chain 163 Thermal anomalies 133 conductivities 151 decomposition 225 Thermodynamics of adsorption and interparticle forces 1 Thermodynamics of CSBFF adsorption 83 Thermogram of water in porous glass beads 138 Thickness of adsorbed layer 25, 105 equivalent water 184 interfacial 48 measurements 192 of nickel oxide platelets 232 Thin liquid solution layer 250 Threshold concentration 268 olfactory 265 values, olfactory 268 Time, activation 226 Titanium dioxide 80, 85, 86 Toluene 96,97 Train-loop-tail model 22 Trans-gauche bond conformational energy difference 27 Trans isomerism, cis and 207 Transfer, partial molal energy change of 31 Transfer, partial molal entropy of 30 Transition region 22,160,168 Trivalent cations 169 Tween 80 124 U Ultrasonic irradiation
99
V Vapor, benzene 215 Virial coefficients 123 Viscose, CSBFF 81-84 Viscose rayon 80 Viscosity of water between quartz plates 130
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
290
ADSORPTION
w Water adjacent to silica surfaces 131 near interfaces 129, 151 interfacial tension between mineral oil and 261 isotherm 43 layers 87 on polyethylene 43 polyhedral clathrates of 131 polymorphs of 131 in porous glass 129 beads 138 relative positive surface excess of 59 with silica substrates, interaction of .... 87 spreading S-AA copolymers on 159,162,166 structure 83, 87 surface tension of 52 -swollen solid substrates 7 system, benzene24
AT
Water (continued) on Teflon T F E thickness, equivalent viscosity of Weight loss of nickel hydroxide Wettability for low-energy surfaces Wettability of polymer Wettable blade method Wetting behavior critical surface tensions of tension
INTERFACES
36 184 130 226 202 204 262 65, 66 199, 203 278
X X-ray properties of nickel hydroxide and nickel oxide Ζ
In Adsorption at Interfaces; Mittal, K.; ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
228