Platinum
Group
Metals
and Compounds
A symposium sponsored by Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0...
241 downloads
886 Views
3MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Platinum
Group
Metals
and Compounds
A symposium sponsored by Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.fw001
the Division of Inorganic Chemistry at the 158th Meeting of the American Chemical Society, New York, Ν. Y . , Sept. 8-9, 1969. U. V. Rao Symposium Chairman
ADVANCES
IN
CHEMISTRY
SERIES
AMERICAN CHEMICAL SOCIETY WASHINGTON, D. C.
1971
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
98
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.fw001
Coden:
ADCSHA
Copyright © 1971 American Chemical Society All Rights Reserved
Library of Congress Catalog Card 76-152,755 ISBN 8412-0135-8 PRINTED IN THE UNITED STATES OF AMERICA In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
A d v a n c e s in C h e m i s t r y Series
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.fw001
Robert F. Gould, Editor
Advisory Board Paul N. Craig Thomas H. Donnelly Gunther Eichhorn Frederick M. Fowkes Fred W. McLafferty William E. Parham Aaron A. Rosen Charles N. Satterfield Jack Weiner
AMERICAN CHEMICAL SOCIETY PUBLICATIONS
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.fw001
FOREWORD
ADVANCES
IN CHEMISTRY
SERIES
w a s f o u n d e d i n 1949 b y the
A m e r i c a n C h e m i c a l S o c i e t y as a n outlet for s y m p o s i a a n d c o l lections of d a t a in s p e c i a l areas of t o p i c a l interest that c o u l d n o t b e a c c o m m o d a t e d in the Society's journals. m e d i u m for s y m p o s i a that w o u l d o t h e r w i s e b e
It p r o v i d e s a fragmented,
t h e i r papers d i s t r i b u t e d a m o n g several journals or not
pub-
l i s h e d at all. P a p e r s are refereed c r i t i c a l l y a c c o r d i n g to ACS e d i t o r i a l standards a n d receive the c a r e f u l a t t e n t i o n a n d p r o c essing c h a r a c t e r i s t i c of ACS p u b l i c a t i o n s . in
ADVANCES
IN CHEMISTRY
SERIES
Papers p u b l i s h e d
are o r i g i n a l c o n t r i b u t i o n s
not p u b l i s h e d elsewhere i n w h o l e o r m a j o r p a r t a n d i n c l u d e reports of research as well as r e v i e w s since s y m p o s i a m a y e m b r a c e b o t h types of
presentation.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.pr001
PREFACE
lmost every chemist is aware of the fact that platinum group metal chemistry usually centers around the phenomenon of catalysis. Other interesting phases of the chemistry of the platinum group metals which could be of interest to inorganic chemists are usually obscured by this singular though significant application. When I approached Eugene Rachow, Chairman of the Symposium Planning Committee of the Inor ganic Division of ACS, I had every intention of covering all facets of the platinum group metal chemistry. Because of the limitations of time, I was obliged to limit the symposium to four sessions. The material to be presented at the symposium was divided into four categories: (1) Synthe sis, Structure, Determination, and Study of Magnetic and Thermodynamic Properties of Platinum Group Metal Compounds, (2) Recent Chemistry of σ- and ττ-Bonded Complexes of Platinum Group Metals, (3) Spec troscopic Properties of Platinum Group Metal Compounds, (4) Newer Industrial Aspects of Platinum Group Metals and Their Compounds. Each category, by itself, can be a topic for a separate symposium, and it is hoped that in the future such symposia will be forthcoming. The topics chosen were such that they would cover a broad area of the chemistry of platinum group metals. The session on industrial aspects was included to enable scientists in industry to present their views on the problems that are facing the industry and perhaps stimulate sufficient interest so that newer applications could be developed in the future. It is also hoped that such a forum would enable scientists in industry to summarize broadly the work carried out by them without worry about violation of proprietary nature of the work. I would like to take this opportunity to extend my thanks to all the speakers at the symposium and to all the authors who contributed articles to this volume. I would also wish to express my gratitude to the manage ment of Matthey Bishop, Inc., who kindly permitted me to utilize their time and facilities to arrange this symposium. My special thanks to G. Cohn of Engelhard Industries and L. B. Hunt of Johnson Matthey & Co. for their cooperation and help rendered to find suitable speakers. U. V. RAO
Matthey Bishop, Inc. Malvern, Pa. 19355 December 1970 vii In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
1
M a g n e t i c Properties o f the P l a t i n u m Metals a n d T h e i r A l l o y s H. J. ALBERT and L. R. RUBIN
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
Engelhard Minerals and Chemicals Corp., Newark, N. J. 07105 Although they are paramagnetic, the platinum metals, especially platinum, palladium, and rhodium, are capable of interacting in alloys with other metals to form ferromagnetic or very nearly ferromagnetic materials. Dilute additions of elements of the iron group and its neighbors with platinum and palladium take on enhanced moments which are interpreted as arising from an interaction of the solute moment with the 4d or 5d host electrons. Ferromagnetic and anti-ferromagnetic structures may result from greater additions of the iron group to the platinum metals. Examples are FeRh, Pt Fe, Pd Fe, and PtCo. Compounds of the rare earths with the platinum metals also form magnetic structures with unusual properties. 3
3
*Tphe platinum metals—ruthenium, rhodium, and palladium in the 2nd long row of the periodic system and osmium, iridium, and platinum in the 3rd long row—are all paramagnetic. That is, none of these elements have a permanent magnetic moment associated with it. However, as shown in Table I, the mass susceptibility of these elements varies widely over two orders of magnitude. Further, the "nonmagnetic" platinum metals are the elements immediately beneath the "magnetic" series iron-cobalt-nickel and, of course, are all in the transition group. Platinum, palladium, and rhodium form a number of ferromagnetic alloys with the iron group metals and with manganese. The present paper is not an exhaustive review but presents some of the more interesting magnetic work on the platinum metals which has appeared in the last 10-20 years. Palladium has the highest magnetic susceptibility of the platinum group, and because it is so high it has been termed an "incipient ferromagnet." The implication is that palladium could be induced to become A
1 In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
2
P L A T I N U M
Table I.
GROUP
M E T A L S
A N D
C O M P O U N D S
Mass Susceptibility of the Platinum Metals (Χ
Ru(+0.427)»
10
- 6
cgs U n i t s )
Rh(+0.9903)
0
Pd(+5.231)
c
c
Os(+0.052) Ir(+0.133) Pt(+0.9712) ° Reprinted from Engelhard Industries Technical Bulletin. Determinations made at 25°C. Determinations made at 20°C. b
6
c
6
e
ferromagnetic.
I n a w e a k l y p a r a m a g n e t i c m a t e r i a l , t h e s u s c e p t i b i l i t y of
the m a t e r i a l is i n d e p e n d e n t of t e m p e r a t u r e .
F i g u r e 1 ( 3 9 ) shows this
to b e q u i t e true f o r r h o d i u m . P a l l a d i u m , o n t h e other h a n d , exhibits a s t r o n g t e m p e r a t u r e d e p e n d e n c e of s u s c e p t i b i l i t y w i t h a p e a k at about Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
7 0 ° K . T h i s has b e e n t a k e n i n the past as évidence f o r a n a n t i f e r r o m a g n e t i c t r a n s i t i o n . H o w e v e r , n e u t r o n d i f f r a c t i o n has s h o w n n o e v i d e n c e of a n t i f e r r o m a g n e t i s m , a n d i t n o w seems l i k e l y that this effect is c a u s e d b y the F e r m i surface of p a l l a d i u m b e i n g associated w i t h a n extremely sharp p e a k i n t h e density-of-states.
T h e s u s c e p t i b i l i t y vs. t e m p e r a t u r e
curve
f o r t h e p a l l a d i u m - 5 % r h o d i u m a l l o y i n d i c a t e s t h e s e n s i t i v i t y of p a l l a d i u m - b a s e d alloys to electron c o n c e n t r a t i o n a n d t h e density-of-states i n r e l a t i o n to the F e r m i l e v e l
(13).
I r o n i m p u r i t i e s g r e a t l y c o m p l i c a t e t h e s u s c e p t i b i l i t y measurements o n p a l l a d i u m . A s n o t e d a b o v e , p a l l a d i u m is close to b e i n g f e r r o m a g n e t i c ,
I200xl0"
6
1000
800
600 mol 400
200
0.
100
200
Temperature,
300
°K
Weiss, J . R. "Solid State Physics for Metallurgists," Pergamon f
Figure 1. The susceptibility (10~ ergs/gauss?/mole) for palladium, rhodium, and paUadium-5% rhodium as a function of temperature (39) e
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
1.
A L B E R T
Magnetic
A N D R U B I N
50
' ' ΊΟο' '
3
Properties
'
Ι5θ' ' ' T(°K)
ZOO' ' ' 250'
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
Journal of Applied Physics
Figure 2. Susceptibility vs. temperature for several "pure" palladium samples (17) φ 3 ppm iron, Ο 2 ppm iron, Δ zone refined, solid line less than 1 ppm iron
TCK)
Journal of Applied
Physics
Figure 3. Susceptibility vs. temperature for phtinum with approximately 3 ppm of iron (17)
a n d s m a l l a d d i t i o n s of i r o n w i l l f o r m f e r r o m a g n e t i c alloys w i t h
Curie
temperatures i n t h e c r y o g e n i c range. T h u s , as s h o w n i n F i g u r e 2 ( 1 7 ) , e v e n parts p e r m i l l i o n of i r o n i n p a l l a d i u m m a y b e n o t i c e d r e a d i l y i n s u s c e p t i b i l i t y measurements
at l o w temperatures.
N e u t r o n scattering
measurements h a v e s h o w n that i r o n i m p u r i t i e s h a v e a n effect f a r b e y o n d the n e a r e s t - n e i g h b o r p a l l a d i u m atoms, e x t e n d i n g p e r h a p s to t h e nearest 100 p a l l a d i u m atoms, a c c o u n t i n g f o r the extreme s e n s i t i v i t y of p a l l a d i u m to i r o n i m p u r i t i e s
(28).
P l a t i n u m , F i g u r e 3 (17), shows b e h a v i o r s i m i l a r t o t h a t of p a l l a d i u m b u t its s u s c e p t i b i l i t y a n d the effect of i r o n i m p u r i t i e s are m u c h s m a l l e r . T h e s m a l l p e a k at 100°Κ is analogous to that f o r p a l l a d i u m .
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
4
P L A T I N U M
GROUP
M E T A L S
A N D
C O M P O U N D S
Local Moments C o n s i d e r a b l e research i n recent years has b e e n c a r r i e d o u t o n the m a g n e t i c properties of alloys of elements of the s e c o n d a n d t h i r d l o n g r o w s of the p e r i o d i c table w i t h s m a l l amounts of elements i n the
first
l o n g r o w . S o m e of the most i n t e r e s t i n g results of this w o r k are c e n t e r e d o n t h e p l a t i n u m metals. O n e aspect of the results is g i v e n i n F i g u r e 4
(11),
s h o w i n g the m a g n e t i c m o m e n t of a n i r o n a t o m d i s s o l v e d i n the s e c o n d r o w t r a n s i t i o n metals. A n e n h a n c e m e n t of the i r o n m o m e n t is a p p a r e n t for alloys w i t h electron concentrations of a b o u t 5.5 to 7 a n d 8.25 to 9. F o r electron concentrations f r o m 9 to 10.25 there is a v e r y l a r g e e n h a n c e m e n t , the m o m e n t e x c e e d i n g t h a t of i r o n i n its b u l k state ( a b o u t 2.2
μ ). Β
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
A l l o y s s h o w i n g this large e n h a n c e m e n t are r e g a r d e d as h a v i n g " g i a n t moments."
E n h a n c e m e n t effects of the solute m o m e n t h a v e b e e n f o u n d
i n m a n y a l l o y systems, i n c l u d i n g C r (2), C o (9, 10, 38)
M n (2),
F e (10,
11, 18),
and
i n p a l l a d i u m a n d alloys of p a l l a d i u m a n d r h o d i u m . T h e
e x p e r i m e n t a l t e c h n i q u e w i d e l y u s e d to s h o w the existence of s u c h l o c a l m o m e n t s is the m e a s u r e m e n t of s u s c e p t i b i l i t y . T h e s u s c e p t i b i l i t y is m e a s u r e d as a f u n c t i o n of t e m p e r a t u r e , u s u a l l y f r o m 1.4° Κ to r o o m t e m p e r a ture or higher.
T h e d a t a f r o m alloys w i t h
a
temperature-dependent
s u s c e p t i b i l i t y are fitted to a C u r i e - W e i s s t y p e of c u r v e w h i c h leads to 14
3
4
Y
Zr
5
6
Nb
7
Mo
Re
ELECTRON
8
9
10
11
Ru
Rh
Pd
Ag
Ν
CONCENTRATION
Physical Review
Figure 4. iron atom metals and and alloy)
Magnetic moment in Bohr magnetons of an dissolved in various second row transition alloys {one atomic per cent iron in each metal as a function of electron concentration (11)
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
1.
A L B E R T
A N D RUBIN
Os . I o.e 0
4
r
Magnetic
I
5
Properties
r
COMPOSITION
p
(ATOMIC
P E R
t
C E N T )
Journal of Applied
Physics
Figure 5. Susceptibility per mole for alloys containing one atomic per cent iron at 3 different temperatures (18) the i n t e r p r e t a t i o n that a l o c a l m o m e n t exists o n the solute a t o m a n d p e r mits the c a l c u l a t i o n of the m o m e n t associated w i t h the a l l o y . A l l o y s of i r i d i u m a n d p l a t i n u m w i t h s i m i l a r s m a l l amounts of i r o n also e x h i b i t e n h a n c e m e n t effects a n d a giant m o m e n t i n the case of i r o n i n p l a t i n u m a n d p l a t i n u m - r i c h alloys as s h o w n i n F i g u r e 5
(18).
It is o b v i o u s that, i n v i e w of the l a r g e m e a s u r e d m o m e n t s o n the solute atoms, there is m o r e i n v o l v e d t h a n s i m p l y the m a g n e t i c
moment
of the solute a t o m . T h e postulate most w i d e l y u s e d suggests a m o d e l i n w h i c h the m o m e n t o n the solute atoms interacts w i t h the m a g n e t i c m o ments o n the i t i n e r a n t 4d or 5d electrons of the host m e t a l . T h i s i n t e r a c t i o n p r o d u c e s a p o l a r i z a t i o n of the spins i n the 4d or 5d b a n d , at t h e same t i m e a l i g n i n g the l o c a l i z e d m o m e n t s on the solute atoms i n the same d i r e c t i o n as the p o l a r i z e d d-electrons.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
6
P L A T I N U M
GROUP
M E T A L S
A N D
C O M P O U N D S
U s i n g this l o c a l m o m e n t m o d e l , a n d u s i n g b a n d t h e o r y or its v a r i a tions, a n u m b e r of w o r k e r s h a v e b e e n a b l e to f o r m u l a t e expressions w h i c h represent the m e a s u r e d m a g n e t i c d a t a r e a s o n a b l y w e l l , at least for the case w h e r e w e l l - l o c a l i z e d m o m e n t s are d e v e l o p e d o n the solute atoms (11,
18).
H o w e v e r , c o n s i d e r a b l y m o r e d a t a has b e c o m e a v a i l a b l e o n
o t h e r properties of d i l u t e a l l o y s , i n c l u d i n g d a t a o n resistivity a n d specific heat, n e u t r o n scattering, v a r i o u s m a g n e t i c resonance experiments, M o s s b a u e r measurements, K o n d o effect,
a n d the l i k e .
Measurements have
b e e n e x t e n d e d also to alloys of m a n y other systems besides those i n v o l v -
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
i n g the p l a t i n u m metals.
Journal of Applied Physics
Figure 6. ceptibility,
(a) Magnetization (at 5 KOe) and inverse initial sus(b) Electrical resistivity of ordered FeRh for increasing (%) and decreasing (O) temperature (25)
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
1.
A L B E R T
A N D
R U B I N
Magnetic
7
Properties
T h e scope of this r e v i e w p r e c l u d e s a d e s c r i p t i o n of these d a t a , b u t the results of some of these experiments h a v e s h o w n weaknesses i n t h e o r i g i n a l b a n d m o d e l a p p r o a c h (9, 20, 34). ments (21,
22, 26)
H o w e v e r , n e w e r t h e o r e t i c a l treat-
are p r o v i d i n g m o r e i n s i g h t i n t o the p r o b l e m .
The
subject of l o c a l i z e d m a g n e t i c states i n d i l u t e m a g n e t i c alloys is s t i l l i n a state of v e r y a c t i v e r e s e a r c h a n d t h e o r e t i c a l d e v e l o p m e n t , as s h o w n b y the p r o g r a m s of e v e n the most recent m a g n e t i c conferences, s u c h as the Fifteenth A n n u a l Conference
on Magnetism and Magnetic Materials,
P h i l a d e l p h i a , P a . , N o v e m b e r 1969.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
Ordered Alloys I n a d d i t i o n to the d i l u t e alloys a l r e a d y discussed, there are a n u m b e r of alloys of the metals of the p l a t i n u m g r o u p w i t h manganese,
iron,
cobalt, a n d n i c k e l w h i c h have m a g n e t i c properties b a s e d o n t h e f o r m a t i o n of o r d e r e d structures at some p a r t i c u l a r c o m p o s i t i o n . C o n s i d e r i n g i r o n alloys first, the i r o n - r h o d i u m system is a n interesti n g e x a m p l e of m a g n e t i c o r d e r i n g . E a r l y m a g n e t i c measurements i n the system (16)
established that alloys of a b o u t 50 a t o m i c %
rhodium in-
creased i n m a g n e t i z a t i o n as t h e i r t e m p e r a t u r e was r a i s e d t h r o u g h a c r i t i c a l v a l u e . Since 1960, a n u m b e r of w o r k e r s (23, 25, 36) change is o w i n g to a
first-order
h a v e s h o w n t h a t this
a n t i f e r r o m a g n e t i c ( A F M ) to f e r r o m a g -
n e t i c ( F M ) t r a n s i t i o n w i t h i n c r e a s i n g t e m p e r a t u r e , the t r a n s i t i o n t e m p e r a t u r e for a 52 a t o m i c % Figure 6 (25).
r h o d i u m b e i n g a b o u t 350°K, as s h o w n i n
X - r a y d i f f r a c t i o n studies h a v e s h o w n that the c r y s t a l
structure a b o v e a n d b e l o w the t r a n s i t i o n t e m p e r a t u r e is a n o r d e r e d C s C l type, the t r a n s i t i o n b e i n g a u n i f o r m r a p i d v o l u m e e x p a n s i o n of about 1 % w i t h increasing temperature.
C h a n g e s i n l a t t i c e d i m e n s i o n s i n this t y p e
of t r a n s f o r m a t i o n r e s u l t f r o m the differences b e t w e e n the magnetoelastic expansion of the f e r r o m a g n e t i c a l l y o r d e r e d lattice a n d the c o n t r a c t i o n o w i n g to the a n t i f e r r o m a g n e t i c lattice. M e a s u r e m e n t s of the l o w - t e m p e r a t u r e specific heat of i r o n - r h o d i u m alloys a n d i r o n - r h o d i u m - p a l l a d i u m alloys a n d of e n t r o p y changes of the t r a n s i t i o n h a v e s h o w n that the difference i n t h e energies of the F M a n d A F M state is r e l a t i v e l y s m a l l . T h i s suggests a m o d e l i n w h i c h b e l o w the t r a n s i t i o n t e m p e r a t u r e i n the A F M state, r h o d i u m atoms, b y s y m m e t r y , h a v e no net field
exchange
exerted b y the i r o n atoms a n d the energy is d o m i n a t e d b y
iron-
i r o n interactions. A b o v e the t r a n s i t i o n t e m p e r a t u r e , i n the F M state, the r h o d i u m atoms are p o l a r i z e d b y a n exchange field w h i c h i n d u c e s a s i g nificant l o c a l m o m e n t o n the r h o d i u m atoms.
This introduces
another
e n e r g y t e r m w h i c h , i f the s u s c e p t i b i l i t y of the r h o d i u m atoms is l a r g e e n o u g h , w i l l a c c o u n t for the c h a n g e to the F M state (-23).
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
P L A T I N U M
300
GROUP
M E T A L S
A N D
C O M P O U N D S
400 Τ (°K) Journal of Applied
Figure
7.
Magnetization in a 12.5 KOe field of FeRh line is for the bulk alloys (27).
filings.
Physics
The dashed
A n i n t e r e s t i n g effect i n i r o n - r h o d i u m alloys is n o t e d i n c o l d - w o r k i n g the a l l o y . F i l i n g a n a l l o y to m a k e p o w d e r is a c o n v e n i e n t w a y of c o l d w o r k i n g . M a g n e t i c measurements o n filings are s h o w n i n F i g u r e 7
(27).
S t a r t i n g at p o i n t A , the a l l o y is c o o l e d o 7 0 ° K a n d t h e n h e a t e d to 500°K. l
I t is e v i d e n t t h a t i n the c o l d - w o r k e d a l l o y there is no trace of the A F M to F M t r a n s i t i o n i n this range. B e t w e e n 500° to 700 ° C , a n o r m a l C u r i e p o i n t b e h a v i o r emerges a n d , o n c o o l i n g , the reappears.
first-order
transformation
X - r a y d i f f r a c t i o n measurements o n the filings i n d i c a t e d t h a t
i n the as-filed c o n d i t i o n the filings h a v e a d i s o r d e r e d fee structure, b u t q u e n c h i n g f r o m temperatures as h i g h as 1 4 0 0 ° C d i d not result i n the a p p e a r a n c e of the fee structure. F i r s t - o r d e r transitions also exist for the compositions P t F e , b a s e d o n the C u A u - t y p e structure. 3
3
P d F e and 3
I n the o r d e r e d state, the
f o r m e r a l l o y is f e r r o m a g n e t i c a n d the latter is a n t i f e r r o m a g n e t i c .
Inter
m e d i a t e compositions b a s e d o n F e ( P d , P t ) h a v e s h o w n the existence of 3
a state at l o w temperatures i n w h i c h , s t i l l b a s e d o n the o r d e r e d C u A u 3
structure, the i r o n m o m e n t s m o v e i n t o a " c a n t e d " s t r u c t u r e as s h o w n i n F i g u r e 8 (24).
F o r the c o m p o s i t i o n F e P d i . P t i . , the t r a n s i t i o n f r o m a 6
4
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
1.
A L B E R T
Magnetic
A N D R U B I N
9
Properties
s i m p l e f e r r o m a g n e t i c state to this f e r r i m a g n e t i c state w i t h c a n t e d i r o n m o m e n t s occurs at a b o u t 140 °K. T h e a l l o y P t F e w i t h a d d e d i r o n is a n i n t e r e s t i n g case b y itself ( 1 ). 3
T h e o r d e r e d a l l o y is a n t i f e r r o m a g n e t i c w i t h f e r r o m a g n e t i c sheets of i r o n atoms a r r a n g e d o n ( 1 1 0 )
planes a n t i f e r r o m a g n e t i c a l l y a l o n g the
[001]
axis. A s the i r o n content is i n c r e a s e d over the s t o i c h i o m e t r i c 25 a t o m i c % , a different A F M structure appears w i t h the sheets a r r a n g e d o n ( 100 ) planes. A t 30 a t o m i c % i r o n , this structure p r e d o m i n a t e s . B e t w e e n these t w o extremes, b o t h types of s t r u c t u r e coexist.
F r o m neutron diffraction
e x p e r i m e n t s , i t is c o n c l u d e d t h a t phase coherence of the t w o structures occurs o v e r m a n y u n i t cells a n d t h a t there is a n i n t e r t w i n i n g of t h e t w o structures r a t h e r t h a n s e p a r a t i o n i n t o d o m a i n s
of
one
or
the
other
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
structure. T h e platinum—cobalt system is e s p e c i a l l y i m p o r t a n t i n that i t has the o n l y p r e c i o u s m e t a l a l l o y ever to b e d e v e l o p e d f o r p r a c t i c a l use of its m a g n e t i c p r o p e r t i e s . stoichiometric P t C o .
T h i s a l l o y is b a s e d o n s t o i c h i o m e t r i c or n e a r -
It is d i s t i n g u i s h e d b y a v e r y h i g h - e n e r g y p r o d u c t ,
a r e l a t i v e l y l o w r e m a n e n c e , a n d h i g h c o e r c i v i t y . F i e l d s of 30,000 oersteds or h i g h e r are r e q u i r e d for s a t u r a t i o n a n d P t C o magnets are r e g u l a r l y p r o d u c e d w i t h e n e r g y p r o d u c t s greater t h a n 9 m i l l i o n
gauss-oersteds,
coercive forces of 4300 oersteds, a n d r e m a n e n c e near 6400 gauss.
•
Fe
°Pd,Pt Journal of Applied
Figure
8.
Low-temperature canted-ferrimagnetic ofFePd^Pt^ (24)
Physics
structure
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
FePt
10
P L A T I N U M
DISORDERED
CUBIC
GROUP
M E T A L S
ORDERED
{ll0}
c
A N D
C O M P O U N D S
TETRAGONAL
II ( I O I ) t
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
C
Figure
9.
Crystallographic relationships disordered and ordered PtCo
between
is i s o m o r p h o u s to P t C o a n d p r e s u m a b l y shares m a g n e t i c h a r d e n i n g m e c h anisms. It has never b e e n u s e d p r a c t i c a l l y because
its c o e r c i v i t y a n d
e n e r g y p r o d u c t s are l o w e r t h a n those of P t C o . P t C o is a n o r d e r i n g a l l o y , f o r m i n g a f a c e - c e n t e r e d - t e t r a g o n a l t y p e structure (c/a tice (31).
CuAu-
— 0.98) f r o m a d i s o r d e r e d face-centered c u b i c l a t -
M a x i m u m c o e r c i v e force a n d m a x i m u m energy p r o d u c t are
a c h i e v e d at less t h a n c o m p l e t e o r d e r , a n d at different stages i n the a p p r o a c h to c o m p l e t e order.
O r d e r i n g starts i n the d i s o r d e r e d a l l o y w i t h
the f o r m a t i o n of a system of o r d e r e d platelets, e a c h c o n t a i n i n g a tetrag o n a l c-axis p a r a l l e l to one of the o r i g i n a l o r t h o g o n a l c u b e axes. are (110)
These
platelets; that is, they are not p a r a l l e l to the " c u b e faces" i n
the d i s o r d e r e d m a t e r i a l . I n a n y g i v e n r e g i o n , p r i m a r i l y as a n a c c o m m o d a t i o n to s t r a i n , o n l y t w o of the three possible p l a t e l e t orientations o c c u r F i g u r e 9 s u m m a r i z e s the c r y s t a l l o g r a p h i c aspects of t h i s system.
(8).
E l e c t r o n m i c r o s c o p i c a n d field i o n m i c r o s c o p i c w o r k has s h o w n t h a t m a x i m u m c o e r c i v i t y is a c h i e v e d i n the t e t r a g o n a l phase w i t h p l a t e l e t w i d t h of 2 0 0 - 5 0 0 angstroms a n d w i t h p l a t e l e t thickness of a b o u t 20 angstroms (30, 33).
T h e d i r e c t i o n of easy m a g n e t i z a t i o n ( c - a x i s ) is n o t i n the p l a n e of
the platelet. T h e degree of t r a n s f o r m a t i o n is f a r f r o m c o m p l e t e at m a x i m u m p r o p e r t i e s , p e r h a p s as little as 5 0 % t r a n s f o r m a t i o n b y v o l u m e
(32).
T h e s a t u r a t i o n m a g n e t i z a t i o n of the d i s o r d e r e d a l l o y is 43.5 gauss c m / g m at 30,000 oersteds (14). 3
T h e m a x i m u m internal magnetization
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
1.
A L B E R T
320
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
Magnetic
A N D R U B I N
220
11
Properties
340
0
20
40
200
180
160
f+0
Engelhard Industries Technical Bulletin
Figure 10.
Magnetic anisotropy in a PtCo single crystal (37)
Journal
of Applied
Physics
Figure 11. Crystallite distribution in ordered PtCo (8)
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
12
P L A T I N U M
GROUP
M E T A L S
A N D
C O M P O U N D S
of the o r d e r e d phase has b e e n estimated as 3 5 - 4 0 % l o w e r t h a n t h a t of the d i s o r d e r e d phase (14).
T h e average m a g n e t i c m o m e n t o f d i s o r d e r e d
P t C o at r o o m t e m p e r a t u r e is 1.04 b o h r magnetons w i t h a s p h e r i c a l d i s t r i b u t i o n of m o m e n t ( 8 ) .
T h e easy m a g n e t i z a t i o n d i r e c t i o n i n the or-
d e r e d phase corresponds
to its c-axis a n d the a n i s o t r o p y constant is
a p p r o x i m a t e l y 50 m i l l i o n e r g / c m
3
(8).
S i n g l e - c r y s t a l w o r k b y W a l m e r (37)
(on a fully-ordered crystal)
s h o w e d a m a x i m u m of the coercive force i n the 111 d i r e c t i o n a n d m i n i m a i n the 110 a n d 100 d i r e c t i o n s , the 100 m i n i m u m b e i n g the l o w e r of t h e t w o (Figure 10).
W o r k b y Brissonneau a n d coworkers (8)
o n the d i s t r i b u -
t i o n of platelets i n c o m p l e t e l y - o r d e r e d P t C o has l e d to a m o d e l s h o w n i n F i g u r e 11, w h e r e i n e a c h z o n e s h o w n i n the figure contains a f u l l y Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
d e v e l o p e d n e t w o r k of ( 110) platelets o r i e n t e d i n t w o of the three p o s s i b l e orthogonal directions. T h e z o n e m o d e l p r o p o s e d b y B r i s s o n n e a u is consistent n o t o n l y w i t h his o w n field i o n m i c r o s c o p i c observations, b u t also w i t h l a r g e r scale a n d often p u z z l i n g p h e n o m e n a observed.
P t C o magnets, for instance, f o r m
B i t t e r patterns o n a scale q u i t e easily v i s i b l e u n d e r a l i g h t m i c r o s c o p e . B i t t e r patterns d o not fit the p i c t u r e of a " f i n e - p a r t i c l e " h a r d e n i n g m e c h a n i s m unless t h e y also d e s c r i b e a l a r g e r scale p h e n o m e n o n , s u c h as B r i s sonneau zone boundaries. B e c a u s e of the s e n s i t i v i t y of the platelets to strain energy, t h e i r n u c l e a t i o n s h o u l d be sensitive to the w o r k i n g h i s t o r y of the b i l l e t s f r o m w h i c h the a l l o y s p e c i m e n is m a d e , a n d , n o t s u r p r i s i n g l y , P t C o responds w e l l to c o l d w o r k i n g b e f o r e heat t r e a t i n g . W o r k b y S h i m i z u a n d H a s h i m o t o (35),
w h o t e m p e r e d P t C o u n d e r elastic stress f a r b e l o w its elastic
l i m i t , has s h o w n that the a l l o y develops
considerably lower coercivity
Journal of Applied
Physics
Figure 12. Effects of compressive and tensile stresses on PtCo hysteresis curves (35)
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
1.
A L B E R T
Magnetic
A N D RUBIN
Δ
MRu
2
RARE-EARTH
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
13
Properties
ELEMENT
I NM R U
2
, M 0S2t Μ ΐ Γ
2
Physical Review
Figure
13. Curie temperatures for MX compounds (M = rare earth, X = Ru, Os, or Ir) (7) 2
( a n d higher remanence)
i n the direction of the a p p l i e d
compressive
stress t h a n at r i g h t angles to i t ( F i g u r e 1 2 ) . T h e y also r e p o r t t h e c o n verse to b e true w h e n tensile stress is a p p l i e d .
Platinum Metal—Rare Earth Alloys T h e m a g n e t i c m o m e n t s o f rare e a r t h elements a r e c a u s e d b y t h e u n p a i r e d electrons i n t h e i r 4f shells. T h e s e shells" are s h i e l d e d b y t h e outer shells so t h a t c h e m i c a l b o n d i n g h a s r e l a t i v e l y l i t t l e effect o n t h e m a g n e t i c m o m e n t s o f these elements. L a v e s phases o f c o m p o s i t i o n M B
2
T h e rare earths f o r m a series o f
( M = rare e a r t h , Β == p r e c i o u s m e t a l )
w h i c h share t h e c h a r a c t e r i s t i c of f e r r o m a g n e t i c c o u p l i n g a t l o w t e m p e r a tures ( 7 ) . F i g u r e 13 shows t h e C u r i e t e m p e r a t u r e s o f a series o f corn-
Table II.
Θ, °K
Compound PrRu PrRh PrOs Prlr PrPt GdRh Gdlr GdPt
40 8.6 >35 18.5 7.9 >77 >77 >77
2 2
2
2
2
2
2
2
° Reprinted from
Ferromagnetic Curie Points
Acta
Crystallographica
a
Compound
Θ, °K
NdRu NdRh Ndlr NdPt
35 8.1 11.8 6.7
2 2
2
2
{12).
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
14
P L A T I N U M
-12
-8 -4 H, MAGNETIC
GROUP
0 F I E L D IN
M E T A L S
A N D
4 8 KILO-OERSTEDS
C O M P O U N D S
12
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
(a)
-8
-4
0
4
H, MAGNETIC FIELD IN
8
ΚILO - OERSTEDS
(b) Journal of Applied Physics
Figure 14. Hysteresis loops for 2 GdRu -CeRu ing (a) superconductivity and ferromagnetism, ductivity alone (4) 2
pounds where Β = MgCu
2
2
alloys show (b) supercon
R u , O s , a n d I r . T h e s e c o m p o u n d s f o r m i n the c u b i c
( C 1 5 ) o r the h e x a g o n a l M g Z n
2
( C 1 4 ) structures ( 7 ) .
The Curie
p o i n t is h i g h e s t w i t h c o m p o u n d s c o n t a i n i n g G d a n d decreases w i t h l a r g e r o r s m a l l e r a t o m i c n u m b e r s of the r a r e earths ( F i g u r e 1 3 ) . S i m i l a r results have been obtained w i t h Β =
R h or P t (12)
(Table II).
The variation
i n C u r i e temperatures results p r i n c i p a l l y f r o m the i n t e r a c t i o n b e t w e e n the spins of the 4f shells of the rare earths a n d the c o n d u c t i o n electrons. P s e u d o b i n a r y alloys of ( C e R u - G d R u ) (4), 2
(GdRu^ThRujî)
(6),
(GdOs -LaOs ) 2
2
2
(5),
(YOs -GdOs ) 2
2
(29),
a n d p e r h a p s some others
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
1.
A L B E R T
A N D
Magnetic
R U B I N
15
Properties
s h o w s i m u l t a n e o u s f e r r o m a g n e t i c a n d s u p e r c o n d u c t i n g p r o p e r t i e s over a l i m i t e d range of c o m p o s i t i o n .
T h e system G d R u
2
in CeRu
2
has
been
s t u d i e d extensively. T h i s system shows a s u p e r c o n d u c t i n g t r a n s i t i o n w h e n the c o n c e n t r a t i o n of G d R u more than 6 %
GdRu
2
2
is less t h a n 10 a t o m i c % .
c r e a s i n g w i t h c o n c e n t r a t i o n (4). 8 and 4 % G d R u
2
Alloys containing
are f e r r o m a g n e t i c w i t h C u r i e t e m p e r a t u r e s i n F i g u r e 14 shows hysteresis loops
for
a l l o y s , the latter b e i n g s u p e r c o n d u c t i n g a n d the f o r m e r
being simultaneously superconducting and ferromagnetic.
Both
loops
s h o w the e x c l u s i o n of field c h a r a c t e r i s t i c of s u p e r c o n d u c t i n g m a t e r i a l s ,
Table III.
Curie Temperature and Coercive Force of R s P d Compounds (3)
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
2
Θ, °K
Compound Gd Pd 6
Hc(at
4.2°K)oe
335
2
Tb5.10Pd1.90
~30
12,800
Dy5.07Pd1.93
~25
9,700
H o . o P d i •96
~10
1,300
5
4
i.e., n e g a t i v e slope o n i n i t i a l m a g n e t i z a t i o n a n d n e g a t i v e s l o p e n e a r r e m a nence i n the first q u a d r a n t . T h e n o r m a l or n o n f e r r o m a g n e t i c s u p e r c o n d u c t o r exhibits a " r e m a n e n c e " a t t r i b u t e d to " f r o z e n - i n " flux. T h e m a g n e t i z a t i o n c u r v e for the f e r r o m a g n e t i c ( 8 % )
a l l o y lies w e l l a b o v e that
c a l c u l a t e d for a p a r a m a g n e t i c m a t e r i a l of the same G d content, a n d the r e m a n e n c e is also w e l l a b o v e that e x p e c t e d for a p a r a m a g n e t i c s u p e r conductor.
I t is q u e s t i o n a b l e w h e t h e r s u p e r c o n d u c t i v i t y a n d f e r r o m a g -
n e t i s m exist i n the same d o m a i n s i n a g i v e n s p e c i m e n .
T h e minor loop
P Q R S shows t h a t some s u p e r c o n d u c t i v i t y s t i l l exists i n parts of the a l l o y after s u p e r c o n d u c t i v i t y as a w h o l e has b e e n d e s t r o y e d . C o m p o u n d s of n o m i n a l c o m p o s i t i o n Μ Β , w h e r e M is a g a i n a r a r e δ
2
earth ( G d , T b , H o , D y ) a n d Β a precious m e t a l (Pt, P d ) , show m a g netizations close to those c a l c u l a t e d f r o m t h e m o m e n t s of the r a r e e a r t h atoms
(3).
Gd Pd 5
2
is a soft m a g n e t i c m a t e r i a l w i t h a c o e r c i v e
force
less t h a n 100 oersteds b u t w i t h a h i g h s a t u r a t i o n associated w i t h the h i g h m o m e n t of G d ( 3 ) .
T a b l e I I I s u m m a r i z e s the p e r m a n e n t m a g n e t i c p r o p
erties of the p a l l a d i u m alloys. T h e p l a t i n u m alloys are i s o s t r u c t u r a l a n d h a v e t h e same C u r i e t e m p e r a t u r e s ( 19).
E n e r g y p r o d u c t s for T b P d a n d
D y P d at 4.2°K are 20 X
1 0 gauss-oersteds, r e s p e c t i v e l y
5
(3).
1 0 a n d 26 X 6
5
6
W h i l e these e n e r g y p r o d u c t s are h i g h e r t h a n p l a t i n u m - c o b a l t , the
l o w C u r i e t e m p e r a t u r e s p r e c l u d e use of these c o m p o u n d s
i n the u s u a l
platinum-cobalt applications.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
16
PLATINUM GROUP METALS AND COMPOUNDS
Literature Cited (1) Bacon, G. E., Crangle, J., Proc. Roy. Soc. 1963, A272, 387. (2) Barton, E. E., Claus, H., private communication. (3) Berkowitz, A. E., Holtzberg, F., Methfessel, S.,J.Appl. Phys. 1964, 35, 1030. (4) Bozorth, R. M., Davis, D. D., J. Appl. Phys. 1960, 31, 321S. (5) Bozorth, R. M., Davis, D. D., Williams, A. J., Phys. Rev. 1960, 119, 1570. (6) Bozorth, R. M., Matthias, B. T., Davis, D. D., Proc. Intern. Conf. Low Temp. Phys., 7th, Toronto, Canada, 1960, 1961, p. 385. (7) Bozorth, R. M., Matthias, B. T., Suhl, H., Corenzwit, E., Davis, D. D., Phys. Rev. 1959, 115, 1595. (8) Brissonneau, P., Blanchard, Α., Schlenker, M., Laugier, J., J. Appl. Phys. 1969, 39, 1266. (9) Brog, K.C.,Jones, W. H., Booth, J. G.,J.Appl.Phys. 1967, 38, 1151. (10) Cape, J. Α., Hake, R. R., Phys. Rev. 1965, 139, A142. (11) Clogston, A. M.,etal.,Phys. Rev. 1962, 125, 541. (12) Compton, V. B., Matthias, B. T., Acta Cryst. 1959, 12, 651. (13) Doclo, R., Foner, S., Narath, Α.,J.Appl.Phys. 1969, 40, 1206. (14) Dunaev, F. N., Kalinin, V. M., Kryokov, I. P., Maisinovich, V. I., Fiz. Metal i Metaloved. 1965, 20, 460. (15) Engelhard Ind. Tech.Bull.VI, No. 3, December, 1965. (16) Fallot, M., Hocart, R., Rev. Sci. 1939, 77, 498. (17) Foner, S., Doclo, R., McNiff, E. J., Jr.,J.Appl.Phys. 1968, 39, 551. (18) Geballe, T. H.,etal.,J.Appl.Phys. 1965, 37, 1181. (19) Holtzberg, F., Methfessel, S. J., U. S. Patent 3,326,637 (1967). (20) Knapp, G. S.,J.Appl.Phys. 1967, 38, 1267. (21) Knapp, G. S., Phys. Letters 1967, 25A, 114. (22) Kondo, J., Phys. Rev. 1968, 169, 437. (23) Kouvel, J. S.,J.Appl.Phys. 1966, 37, 1257. (24) Kouvel, J. S., Forsyth, J. B.,J.Appl.Phys. 1969, 40, 1359. (25) Kouvel, J. S., Hartelius, C.C.,J.Appl.Phys. 1962, 33, 1343. (26) Lederer, P., Mills, D. L., Phys. Rev. 1968, 165, 837. (27) Lommel, J. M., Kouvel, J. S.,J.Appl. Phys. 1967, 38, 1263. (28) Low, G. G., Holden, T. M., Proc. Phys. Soc. 1966, 89, 119. (29) Matthias, B. T., U. S. Patent 2,970,961 (1961). (30) Mishin, D. D., Greshishkin, R. M., Phys. Status Solidi 1967, 19, K1-K3. (31) Newkirk, J. B., Geisler, A. H., Martin, D. L., Smoluchowski, R.,J.Metals 1950, 188, 1249. (32) Rabinkin, A. G., Tyapkin, Yu. D., Yamaleev, Κ. M., Fiz. Metal i Metaloved. 1965, 19, 360. (33) Ralph, B., Brandon, D. G., Proc. European Conf. Electron Microsco 3rd, Prague 1964 (A) 303. (34) Sarachik, M. P., Phys. Rev. 1968, 170, 679. (35) Shimizu, S., Hashimoto, E.,J.Appl. Phys. 1968, 39, 2369. (36) Tu, P.,etal.,J. Appl. Phys. 1969, 40, 1368. (37) Walmer, M. L., Engelhard Ind. Tech.Bull.1962, 2, 117. (38) Walstedt, R. E., Sherwood, R.C.,Wernicke, J. H., J. Appl. Phys. 1968, 39, 555. (39) Weiss, R. J., "Solid State Physics for Metallurgists," p. 323, Pergamon, New York, 1963. RECEIVED January 16, 1970.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
2
Platinum Metal Chalcogenides
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch002
AARON WOLD Brown University, Providence, R. I. 02912
A number of binary platinum metal chalcogenides show interesting electrical and magnetic properties. These are classified according to structure types and their properties related to the formal valence of the platinum metal. A simple one-electron model proposed by Goodenough to explain the properties of the first row transition metal chal cogenides can be applied to the corresponding platinum metal compounds. This theory is successful in correlating new experimental data on these compounds—e.g., crysta structure, resistivity, Seebeck coefficient, and magnetic susceptibility. *"phe electrical and magnetic properties of simple binary platinum metal oxides (15, 19), as well as a number of ternary compounds (4), have shown that these materials can be of considerable interest to both solid state chemists and physicists. A number of the platinum metal oxides are remarkably good electrical conductors and, in addition, magnetic ordering has been observed (4) for several perovskites containing ruthenium. Many of these compounds can be prepared in the form of single crystals (IS), making them suitable for both transport and magnetic measurements. The platinum metal chalcogenides in general are easier to prepare than the corresponding oxides. Whereas special conditions of temperature and pressure are required to prepare many of the oxides, the platinum metals react most readily with S, Se, and Te. A number of additional differences concerning the chemistry of the chalcogenides and the oxides are summarized as follows: The metal-sulfur (selenium, tellurium) bond has considerably more covalent character than the metal-oxygen bond and, therefore, there are important differences in the structure types of the compounds formed. Whereas there may be considerable similarity between oxides andfluorides,the structural chemistry of the sulfides tends to be more closely related to that of the chlorides. The latter compounds 17 In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
18
P L A T I N U M
GROUP
M E T A L S
A N D
C O M P O U N D S
f o r m as p r i m a r i l y l a y e r - t y p e structures, a n d a n u m b e r of i m p o r t a n t s t r u c t u r e types are f o u n d i n sulfides that h a v e n o c o u n t e r p a r t a m o n g the o x i d e structures—e.g., p y r i t e , m a r c a s i t e , n i c k e l arsenide. F i n a l l y , m a n y of t h e p l a t i n u m m e t a l c h a l c o g e n i d e s b e h a v e l i k e a l l o y s ; t h e elements d o a p p e a r to h a v e t h e i r n o r m a l valencies a n d , i n a d d i t i o n , the
not
compounds
h a v e a w i d e r a n g e of c o m p o s i t i o n a n d s h o w m e t a l l i c luster, r e f l e c t i v i t y , and conductivity. Goodenough
(10)
has a c c o u n t e d for the m e t a l l i c p r o p e r t i e s of
a
n u m b e r of first r o w t r a n s i t i o n m e t a l c h a l c o g e n i d e s , a n d these ideas are also a p p l i c a b l e to the p l a t i n u m m e t a l chalcogenides.
H e has s h o w n that
t h e f o r m a t i o n of c o n d u c t i o n b a n d s is p o s s i b l e as a result of strong covalent m i x i n g between the cation e
9
a n d a n i o n s,p
a
orbitals. T h i s m i x i n g
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch002
a l l o w s sufficient i n t e r a c t i o n b e t w e e n o c t a h e d r a l l y c o o r d i n a t e d cations o n opposite sides of a n a n i o n so that the c o n d i t i o n s for l o c a l i z e d d-electrons break down.
T h e r e s u l t i n g d - l i k e c o l l e c t i v e - e l e c t r o n b a n d s , w h i c h are
a n t i b o n d i n g w i t h respect to the a n i o n array, are d e s i g n a t e d σ * b a n d s . M e t a l l i c b e h a v i o r c a n o c c u r w h e n these b a n d s exist a n d are p a r t i a l l y o c c u p i e d b y electrons. M e t a l l i c c o n d u c t i o n m a y o c c u r also i f c o n d u c t i o n b a n d s are f o r m e d b y the d i r e c t o v e r l a p of t r a n s i t i o n m e t a l t
2g
orbitals.
H e r e a g a i n , these b a n d s m u s t b e p a r t i a l l y o c c u p i e d .
et al. (19)
—
t
2g
Rogers
h a v e a p p l i e d the G o o d e n o u g h m o d e l to a c c o u n t for the elec
t r i c a l b e h a v i o r of a n u m b e r of p l a t i n u m m e t a l oxides.
T h e s e concepts
m a y also b e a p p l i e d to t h e p l a t i n u m m e t a l chalcogenides. It w i l l not b e possible, i n this p a p e r , to d e a l w i t h a l l of the p l a t i n u m m e t a l chalcogenides.
I n s t e a d , a n u m b e r of examples w i l l be c h o s e n a n d
t h e i r e l e c t r i c a l as w e l l as m a g n e t i c p r o p e r t i e s c o r r e l a t e d w i t h the a t o m i c positions i n the v a r i o u s structures f o r m e d . T h e first g r o u p of c o m p o u n d s to b e d i s c u s s e d c r y s t a l l i z e w i t h the p y r i t e structure, w h i c h is s h o w n i n F i g u r e 1.
T h i s s t r u c t u r e is s i m i l a r to the N a C l structure i f w e r e p l a c e
N a b y F e a n d each C I b y an S group. H o w e v e r , the S - S distance w i t h i n 2
R.
Figure 1.
W.
Pyrite structure
G. Wyckoff,
"Crystal Structures," Wiley
(20)
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
2.
Phtinum
W O L D
Table I.
Metal
19
Chalcogenides
Platinum Metal Compounds with the Pyrite Structure Compounds
Properties
Low Spin RuS , OsS , RhPS, RhPSe,
RuSe , OsSe , RhAsS, RhAsSe, RhAsTe, IrPS, IrAsS, IrPSe, IrAsSe, IrAsTe, N i o . P d o .eAsa, PtAs , PtP„ PtBi RhSe~ , RhS~ , IrS^ , IrSe^ IrTe~ 2
2
2
2
2
2
rf
S =
6
0 Semiconductor Semiconductor Semiconductor Semiconductor Semiconductor Semiconductor Semiconductor Semiconductor Metallic Semiconductor Metallic Semiconductor Semiconductor Metallic
RuTe OsTe RhSbS, RhBiS RhSbSe, RhBiSe RhSbTe, RhBiTe IrSbS, IrBiS IrSbSe, IrBiSe IrSbTe, IrBiTe PdAs , PdSb PtSb 2
2
2
2
2
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch002
2
3
3
3
RhTe~
3
3
3
RhTe
0
2
2
the S
2
PdSbS, PdBiTe, PtSbTe,
PdAsSe, PtAsS, PtBiTe
Metallic Metallic Metallic
PdBiSe PtSbSe
PdSbSe, PtSbS,
g r o u p is s u c h that e a c h i r o n is s u r r o u n d e d b y a d e f o r m e d a n i o n
o c t a h e d r o n , a n d the anions h a v e three c a t i o n a n d one a n i o n n e i g h b o r s , w h i c h together f o r m a d i s t o r t e d t e t r a h e d r o n . A n u m b e r of
compounds
that c r y s t a l l i z e w i t h the p y r i t e s t r u c t u r e are l i s t e d i n T a b l e I. F o r m a n y of t h e m , the t r a n s i t i o n m e t a l has t h e l o w - s p i n d
state. T h e s e
G
compounds
are s e m i c o n d u c t o r s
because the c o n d u c t i o n b a n d
o r b i t a l s ) is e m p t y .
A n a p p a r e n t e x c e p t i o n is I r T e ~ , w h i c h is r e p o r t e d
(17)
to b e a s u p e r c o n d u c t o r .
( σ * , f o r m e d via
e
g
3
A s one proceeds f r o m s u l f u r to s e l e n i u m
to t e l l u r i u m (as anions i n a n i s o s t r u c t u r a l series of c o m p o u n d s ) there is a n a r r o w i n g of t h e b a n d gap, a n d f o r some series of c o m p o u n d s , t h i s is a c c o m p a n i e d b y a m a r k e d c h a n g e i n the t r a n s p o r t properties. T h e m e t a l l i c properties o b s e r v e d for the d
7
compounds
listed i n
T a b l e I a r e also consistent w i t h t h e G o o d e n o u g h m o d e l . T h e r h o d i u m s e l e n i u m system is of p a r t i c u l a r interest a n d demonstrates c l e a r l y the important
relationships between
structure
and
transport
properties.
C a t i o n s m a y b e r e m o v e d f r o m the s u p e r c o n d u c t i n g c o m p o u n d 6 ° K ) , R h S e . T h e p y r i t e s t r u c t u r e is m a i n t a i n e d as the e
g
2
a l l y e m p t i e d , a n d at t h e c o m p o s i t i o n R h / S e 2
t r i v a l e n t — L e . , h a v e t h e c o n f i g u r a t i o n 4d . 6
3
2
(T
c
=
b a n d is g r a d u
( R h S e ) , a l l cations are 3
It is not k n o w n yet i f t h e i d e a l
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
20
P L A T I N U M
composition, R h S e , can be obtained.
GROUP
M E T A L S
A N D
C O M P O U N D S
A h o m o g e n e i t y r a n g e is r e p o r t e d
3
(9) f r o m R h S e i . s t o R h S e . , a n d w e k n o w o n l y t h a t R h S e m u s t b e the 2
7
upper limit. However, R h S
3
and IrSe
3
conducting, a n d stoichiometric R h S e
3
3
are d i a m a g n e t i c (12)
and semi-
should show semiconducting
be-
h a v i o r also. A n o t h e r i n t e r e s t i n g c o m p o u n d is I r S e , w h i c h s h o u l d s h o w m e t a l l i c 2
b e h a v i o r since the I r appears to h a v e a d
7
configuration. H o w e v e r , the
I r S e - t y p e c o m p o u n d s are d i a m a g n e t i c s e m i c o n d u c t o r s , a n d t h e i r s t r u c 2
tures r e s e m b l e t h a t of marcasite. shows h e x a g o n a l c l o s e - p a c k e d o c t a h e d r a l holes
filled.
T h e marcasite s t r u c t u r e i n F i g u r e 2
a n i o n layers w i t h h a l f the layers of the
T h e I r S e structure is s h o w n i n F i g u r e 3, a n d t h e 2
r e l a t i o n s h i p to t h e m a r c a s i t e structure is seen r e a d i l y b y c o m p a r i n g the Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch002
o c t a h e d r a l chains. ABABACAC.
The IrSe
2
structure evolves f r o m a n a n i o n s t a c k i n g
U n i t s of the m a r c a s i t e structure are s t a c k e d together i n
s u c h a w a y t h a t o n l y h a l f t h e anions f o r m p a i r s , a n d t h e cations are indeed trivalent I r ( I I I ) S e • ( S e ) i 2
/ 2
2
~.
T h e c a t i o n , therefore, a c t u a l l y
F. Hulliger, "Structure and Bonding," Springer-Verlag
Figure 2.
Marcasite
structure (13, p. 94)
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch002
2.
Phtinum
W O L D
Metal
21
Chalcogenides
c F. Hulliger, "Structure and Bonding," Springer-Verlag
Figure 3. has a d
IrSe structure (13, p. 100) 2
configuration consistent w i t h the s e m i c o n d u c t i n g ,
G
diamagnetic
properties o b s e r v e d . T h e structure of P d S e , a n e l o n g a t e d p y r i t e , is s h o w n i n F i g u r e 4. 2
T h e s q u a r e - p l a n a r c o o r d i n a t i o n is a c h i e v e d b y e l o n g a t i n g t h e a n i o n o c t a hedron. levels (d
T h i s decrease i n s y m m e t r y results i n a strong s p l i t t i n g of t h e s t a b i l i z e d r e l a t i v e to d . ),
2
2
g
x
y
2
PdS , PdSSe,
e
2
2
are t h e o n l y k n o w n c o m p o u n d s of this structure t y p e a n d are
diamagnetic
(11)
octahedra i n P d S
2
semiconductors.
When
the d i s t o r t i o n of
is r e d u c e d b y pressure, the s e m i c o n d u c t o r
i n t o a m e t a l b e f o r e a c h a n g e to the p y r i t e structure occurs A number
the
anion
transforms (I).
of p l a t i n u m m e t a l c h a l c o g e n i d e s ( P t S , P t S e , P t S e T e ,
P t T e ) c r y s t a l l i z e i n the C d l 2
9
a n d the 8 d-electrons of p a l l a d i u m
just fill a l l a v a i l a b l e d-levels t h r o u g h the l o w e r d * l e v e l . and PdSe
e
2
2
structure ( F i g u r e 5 ) .
h a l f t h e holes of a h e x a g o n a l c l o s e - p a c k e d
2
T h e cations o c c u p y
a r r a y , s u c h that
e m p t y layers alternate to g i v e a s a n d w i c h - l i k e structure.
filled
The
and
cadmium
atoms are s y m m e t r i c a l l y s u r r o u n d e d b y six h a l o g e n atoms at the corners
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
22
PLATINUM
GROUP
METALS
AND
COMPOUNDS
of a n o c t a h e d r o n , whereas the three c a d m i u m n e i g h b o r s of e a c h h a l o g e n a t o m a l l l i e o n one side of i t . S i n c e there are no b o n d s b e t w e e n l i k e atoms, a tetravalent c a t i o n is n e e d e d to m a k e a C d l - t y p e c h a l c o g e n i d e n o n m e t a l 2
lic—e.g., P t S . N a r r o w i n g of the b a n d g a p is o b s e r v e d f o r this series of 2
p l a t i n u m m e t a l chalcogenides Whereas
PtS
2
and PtSe
2
as one
proceeds f r o m
are s e m i c o n d u c t o r s ,
PtS
2
to
PtTe .
PtSeTe and P t T e
2
2
are
metallic. S e v e r a l p l a t i n u m m e t a l chalcogenides of the t y p e M X c r y s t a l l i z e w i t h the N i A s structure. T h e y i n c l u d e R h S e , R h T e , a n d P d T e . T h i s s t r u c t u r e
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch002
is s h o w n i n F i g u r e 6. E a c h c a t i o n is c o o r d i n a t e d b y six a n i o n n e i g h b o r s
F. Hulliger, "Structure and Bonding,"
Figure 4.
PdSe
2
Springer-Verlag
structure (13, p. 108)
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
2.
Platinum
W O L D
Metal
23
Chalcogenides
WL
o
m
χ #:Cd;
Q:I
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch002
R. C. Evans, "Crystal Chemistry," Cambridge University Press
Figure 5.
Ni As
C d l structure s
(7)
STRUCTURE
Figure 6. Nickel structure
arsenide
at t h e corners o f a d i s t o r t e d o c t a h e d r o n , b u t the six c a t i o n n e i g h b o r s o f a n a n i o n are l o c a t e d at the corners of a t r i g o n a l p r i s m . E a c h c a t i o n also has t w o other c a t i o n n e i g h b o r s o n l y s l i g h t l y m o r e r e m o t e t h a n its a n i o n n e i g h bors.
T h e structure m a y be c o n s i d e r e d a filled C d l
2
structure, w i t h a l l
of the o c t a h e d r a l sites i n the c l o s e - p a c k e d h e x a g o n a l a n i o n s u b l a t t i c e n o w o c c u p i e d b y cations.
A n i n t e r e s t i n g g r o u p of t e r n a r y
compounds
m a y b e f o r m e d i n w h i c h o n e - f o u r t h of the sites are e m p t y .
T h i s latter
structure t y p e w a s s t u d i e d first b y J e l l i n e k (14) as the C r S 3
4
a n d u s u a l l y is d e s i g n a t e d
structure.
J e l l i n e k has p o i n t e d out also t h a t the t e t r a g o n a l structure of c o o p erite, P t S , is r e l a t e d to N i A s . I n d i a m a g n e t i c P t S ( c Z ) , f o u r d-orbitals are 8
d o u b l y o c c u p i e d a n d one is e m p t y . T h e r e f o r e , t w o anions f r o m a h y p o t h e t i c a l o c t a h e d r o n h a v e b e e n r e m o v e d , a n d the c a t i o n is i n a s q u a r e p l a n a r c o o r d i n a t i o n ; the a n i o n is c o o r d i n a t e d b y f o u r cations that f o r m a d e f o r m e d t e t r a h e d r o n . T h e cooperite structure is s h o w n i n F i g u r e 7. T h e r e l a t i o n s h i p b e t w e e n the N i S a n d P t S s t r u c t u r e is s i m i l a r to t h a t b e t w e e n
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
24
PLATINUM
Table II.
System
CrRh Se CoRh Se NiRh Se CrRh Te Rh Te CoRh Te NiRh Te
Monoclinic Monoclinic Monoclinic Monoclinic Monoclinic Trigonal Trigonal
4
2
2
4
4
2
3
4
4
2
4 4
AND
COMPOUNDS
a (±
0.005), A
b (±
6.278 6.269 6.280 6.841 6.812 3.953 3.966
0.005), A 3.612 3.644 3.648 3.951 3.954
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch002
2
METALS
Room-Temperature Structural and Electrical
Compound 2
GROUP
F. Hulliger, "Structure and Bonding," Springer-Verlag
Figure 7.
Cooperite (PtS) structure (13, p. 166)
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
2.
Phtinum
W O L D
Metal
Data for Ternary Rhodium
c (±
Electrical Resistivity, Ohm-Cm
11.25 10.81 10.82 11.40 11.23 5.429 5.457 NiS
2
Chalcogenides
A
000.5),
1 x
92.47 92.15 92.22 91.61 92.55
io-
3
— 5 X IO" 1 χ io1 x io-
— —
and PdS .
25
Chalcogenides
4 3 4
— 3 X IO"
4
T h e r e is a n e l o n g a t i o n of the a n i o n o c t a h e d r a
2
c h a n g e f r o m a h i g h - s p i n to a d i a m a g n e t i c l o w - s p i n state for the d Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch002
8
and a cations.
I n a d d i t i o n to t h e s i m p l e b i n a r y p l a t i n u m m e t a l c h a l c o g e n i d e s , w h i c h w e have chosen only a few
ternary compounds have been prepared.
B l a s s e ( 2 , 3 ) has r e p o r t e d t h e
p r e p a r a t i o n a n d properties of several r h o d i u m thiospinels. compound,
CuRh S , 2
shows a w e a k ,
4
p a r a m a g n e t i s m of 320 Χ
10"
6
of
examples, a n u m b e r of i n t e r e s t i n g
nearly
emu/g-mole.
t o r t e d c u b i c s p i n e l , i n d i c a t i n g t h a t the C u
2 +
The copper
temperature-independent
T h e structure is a n u n d i s o n t h e t e t r a h e d r a l site does
not s h o w its u s u a l t e n d e n c y to distort to l o w e r s y m m e t r y via a J a h n - T e l l e r mechanism.
A c c o r d i n g to the G o o d e n o u g h
e x p e c t e d for C u R h S 2
4
m o d e l , these p r o p e r t i e s
i f the u n p a i r e d 3d electrons f r o m t h e C u
are are
2 +
d e l o c a l i z e d a n d o c c u p y a σ* c o n d u c t i o n b a n d f o r m e d as a r e s u l t of v a l e n t m i x i n g b e t w e e n the Cu(t ) 2g
Blasse r e p o r t e d
that magnetic
a n d s u l f u r (ρ ) π
2
susceptibility showed
Curie-Weiss
h a v i o r b e t w e e n 4 5 0 ° - 8 0 0 ° K . T h e effective m o m e n t w a s 4.3μ
Β
o n l y m o m e n t for C o w a s observed.
2 +
is 3 . 9 / ^ ) .
co-
orbitals. F o r C o R h S , 4
be
(the spin
A t 400°K, antiferromagnetic
ordering
T h e o t h e r t h i o s p i n e l s w e r e a p p a r e n t l y too difficult to p r e
p a r e as single-phase m a t e r i a l s . P l o v n i c k a n d W o l d
—^—O^— *
Figure 8.
Cr S s
Â
reported
(16)
^ »*2
Ο
A"
Ο
Β*
•
vacancy
3
structure
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
the
26
PLATINUM GROUP METALS AND COMPOUNDS
preparation of the compounds MRI12X4 (M = Cr, Co, Ni; X = Se, Te) and Rh Te , which have the Cr S -type structure (space group 12/m), except for CoRh Te and NiRh Te , which are trigonal (space group Ρ 3 m 1). The monoclinic structure shown in Figure 8 is intermediate between the NiAs and Cdl types. The transition metal cations, A and B, occupy three-fourths of the octahedral sites between the layers of hexago nal close-packed anions. The packing sequence is such that B layers alternate with layers containing the A cations and vacancies. Ideally, the A cations are ordered with respect to the vacancies. When the vacancies are randomly arranged in A layers, trigonal symmetry results. The crystal class to which a given AB X compound belongs is indicative of the vacancy arrangement in that compound. The properties of a number of ternary rhodium chalcogenides are given in Table II. CoRh Se and NiRh Se are monoclinic, while CoRh Te and NiRh Te are trigonal. Co Se and Ni Te are also trigonal. The monoclinic structures observed for CrRh Se and CrRh Te are con sistent with reports (5, 6) that both Cr Se and Cr Te are monoclinic. In chalcogenides of this type, both the size and cZ-electron configuration of the cations, as well as the size and polarizability of the anion, are important in determining the relative stability of the ordered vs. random vacancy structure for a given composition. Rh Te also has the monoclinic Cr S -type structure (15). Geller (8) determined the crystal structure of RhTe and RhTe but did not investi gate intermediate compositions. Plovnick and Wold (16) have shown that in the rhodium-tellurium system at the composition Rh Te , order ing of the vacancies occurs with a consequent lowering of the symmetry to monoclinic. The Goodenough model (10) can account for the electrical proper ties of ternary rhodium chalcogenides of the type ARh X . The octahedrally coordinated Rh (4cZ ) has the low-spin configuration, and no contribution to the conductivity is made either by direct interaction of the cation t orbitals or by indirect e^-anion s,p interaction. This is not the case, however, for the M cations in the MRh X compounds. For example, Ni (t e ) may contribute to metallic conductivity via forma tion of partially-filled σ* bands as a result of nickel e^-anion s,p inter actions. Similar considerations apply to the other ternary rhodium chalcogenides. 3
4
3
2
4
2
4
4
2
3+
2+
2+
2+
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch002
2
2
2
4
2
4
4
2
4
3
4
4
3
2
3
3
4
3
4
4
2
4
3
4
4
4
2
3
2
3+
2g
4
4
6
a
2
2+
6
2g
4
2
g
v
Literature Cited (1) Bither, Τ. Α., private communication. (2) Blasse, G., Phys. Letters 1965, 19 No. 2, 110. (3) Blasse, G., Schipper, D. J., Phys. Letters 1963, 5 No. 5, 300.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch002
2.
WOLD
Phtinum Metal Chalcogenides
27
(4) Callaghan, Α., Moeller, C. W., Ward, R., Inorg. Chem. 1966, 5 No. 9, 1572. (5) Chevreton, M., Berodias, G., Compt. Rend. 1965, 261, 1251. (6) Chevreton, M., Bertaut, F., Compt. Rend. 1961, 253, 145. (7) Evans, R.C.,"Crystal Chemistry," 2nd ed., p. 151, Cambridge University Press, London, 1964. (8) Geller, S.,J.Am. Chem. Soc. 1955, 77, 2641. (9) Geller, S., Cetlin, Β.B.,Acta Cryst. 1955, 8, 272. (10) Goodenough, J. B., Proc. Colloq. Intern. Orsay 1965; C.N.R.S.1967,157 263. (11) Hulliger, F.,J.Phys. Chem. Solids 1965, 26, 639. (12) Hulliger, F., Nature 1964, 204, 644. (13) Hulliger, F., "Structure and Bonding," Vol. 4, Springer-Verlag, New York, 1968. (14) Jellinek, F. K., Acta Cryst. 1957, 10, 620. (15) Marcus, S. M., Butler, S. R., Phys. Rev. Letters 1968, 26A, 518. (16) Plovnick, R. H., Wold, Α., Inorg. Chem. 1968, 7, 2596. (17) Raub, C. J., Compton, V. B., Geballe, T. H., Matthias, B. T., Maita, J. P., Hull, G. W., J. Phys. Chem. Solids 1965, 26, 2051. (18) Rogers, D. B., Butler, S. R., Shannon, R. D., Inorg. Syn. 13, to be pub lished. (19) Rogers, D. B., Shannon, R. D., Sleight, A. W., Gillson, J. L., Inorg. Chem. 1969, 8, 841. (20) Wyckoff, R. W. G., "Crystal Structures," Vol. 1, 2nd ed., Wiley, New York, 1963. RECEIVED December 16, 1969. This work has been supported by ARPA and the U. S. Army Research Office, Durham, N. C.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
3
Synthesis and Crystal Chemistry of Some
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch003
N e w Complex Palladium Oxides OLAF MULLER and RUSTUM ROY Materials Research Laboratory, The Pennsylvania State University, University Park, Pa. 16802
The synthesis and crystal chemistry of six new complex pa ladium oxides are described. The blackPbPdO has been tentatively indexed on a hexagonal basis witha = 10.902A andc = 4.654A. Sr PdO is body-centered orthorhombic witha = 3.970A,b = 3.544A, and c = 12.84A; the structure proposed for this compound is closely related to the KNiF structure. Three new black compounds of the MePdO type have been synthesized. All three have the cubic NaPtO structure with unit cell constants a = 5.826A for SrPdO, a = 5.747A for CaPdO, anda = 5.742A for CdPd O . In the system Mg-Pd-O, a spinel phase is formed(a = 8.501A) whose stoichiometry is believed to be MgPdO. 2
0
0
2
0
2
3
0
0
4
3
4
x
3
4
0
3
4
0
3
3
4
0
4
0
2
4
Tn our recent work on the systems Rh-O, Pt-O (5,7), and Au-O (5,6) -*· at high oxygen pressures, we prepared new compounds in all three systems. We conducted a similar study in the system Pd-O, but were not able to synthesize any new binary oxides of palladium. The divalent oxide, PdO, appears to be stable even at high oxygen pressures. Our work on the platinum oxides was recently extended to some ternary systems, and we have already reported on the inverse spinels Mg Pt0 , Zn Pt0 (10), on Cd Pt0 with the Sr Pb0 structure (9), on the tetragonal Cui_ Pt O, and the orthorhombic CuPt 0 (8). Compounds of the type MePt O with Me = Cd, Zn, Mg, Ni were synthesized at 800°-900°C and oxygen pressures near 200 arm. These phases are described in greater detail by Hoekstra, Siegel, and Gallagher (2). We encountered some difficulty in preparing these compounds in a pure state. Apparently, the maximum temperatures attainable with our equip2
4
2
4
2
x
4
x
2
4
3
3
6
e
28 In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
3.
M U L L E R
A N D
R O Y
New
Palladium
29
Oxides
m e n t ( . — 9 0 0 ° C ) are s t i l l too l o w for these reactions.
W e felt t h a t i t
m i g h t b e i n t e r e s t i n g to c o n d u c t a s i m i l a r s t u d y of some M e O - p a l l a d i u m o x i d e systems.
T h e present w o r k is c o n c e r n e d w i t h o u r s t u d y of
systems M e - P d - O , w h e r e M e =
the
P b , Sr, C a , C d , a n d M g .
R e l a t i v e l y l i t t l e is k n o w n a b o u t a n h y d r o u s oxides of p a l l a d i u m . T h e o n l y w e l l - c h a r a c t e r i z e d s i m p l e o x i d e is P d O , w h i c h has the P t S structure w i t h f o u r c o p l a n a r P d - O distances of 2.01 A (4,21).
Recently, G u i o t ( J )
p r e s e n t e d x - r a y e v i d e n c e s u g g e s t i n g t h a t a n e w p a l l a d i u m o x i d e surface c o m p o u n d is f o r m e d as a n i n t e r m e d i a t e step w h e n p a l l a d i u m m e t a l is o x i d i z e d i n a i r to P d O . H o w e v e r , the s t o i c h i o m e t r y of this c o m p o u n d is u n k n o w n , since i t c a n be o b t a i n e d o n l y as a m i n o r constituent, w i t h m a j o r amounts of P d m e t a l a n d P d O . H i g h e r a n h y d r o u s oxides
(e.g.,
Pd0 )
firmly
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch003
2
h a v e b e e n r e p o r t e d , b u t t h e i r existence has n e v e r b e e n
established. R e l a t i v e l y f e w t e r n a r y p a l l a d i u m oxides h a v e b e e n r e p o r t e d i n the literature. V a r i o u s a l k a l i m e t a l - p a l l a d i u m oxides are k n o w n Intermediate compounds tems w i t h L n =
2
L a , N d , Sm, E u , G d , and D y (3).
p y r o c h l o r e s of the t y p e L n P d 0 2
delafossite-like c o m p o u n d s studied
(14,15,16).
h a v e b e e n f o u n d i n s e v e r a l L n 0 - P d O sys-
2
7
A t h i g h pressures,
c a n b e p r e p a r e d (19).
Recently, the
P d C o 0 , P d C r 0 , and P d R h 0 2
3
2
2
have
been
(18).
Experimental Techniques C o l d - s e a l stellite b o m b s a n d h i g h o x y g e n pressures w e r e u s e d as d e s c r i b e d p r e v i o u s l y (6, 7, 8, 9, 10). A n o r d i n a r y p o t f u r n a c e was u s e d for heat treatments c a r r i e d out i n air. A s s t a r t i n g m a t e r i a l s , p u r i f i e d p a l l a d i u m b l a c k ( F i s h e r Scientific C o . ) was m i x e d i n t i m a t e l y w i t h the other oxides o r h y d r o x i d e s [ P b O , S r ( O H ) · 8 H 0 , C a O , C d O , M g ( O H ) ] . T h e m i x t u r e s g e n e r a l l y w e r e i n s e r t e d i n t o g o l d foils a n d heat t r e a t e d u n d e r v a r i o u s c o n d i t i o n s of t e m p e r a t u r e a n d o x y g e n p r e s sure. T h e runs w e r e q u e n c h e d a n d the p r o d u c t s e x a m i n e d b y x - r a y diffraction. T h e x - r a y d i f f r a c t i o n patterns w e r e m a d e w i t h a P i c k e r diffractometer, u s i n g N i - f i l t e r e d C u K r a d i a t i o n a n d glass-slide m o u n t s . T o d e r i v e accurate u n i t c e l l constants, s l o w - s c a n x - r a y patterns w e r e i n t e r n a l l y s t a n d a r d i z e d w i t h N a C l , K C 1 , or S i . T h e i n t e g r a t e d intensities w e r e o b t a i n e d b y m e a s u r i n g the area u n d e r e a c h p e a k w i t h a p l a n i m e t e r . T h e c a t i o n analyses w e r e p e r f o r m e d b y c o n v e n t i o n a l w e t - c h e m i c a l t e c h n i q u e s . T h e o x y g e n content was d e t e r m i n e d b y a r e d u c t i o n m e t h o d a n d b y n e u t r o n a c t i v a t i o n analysis. 2
2
2
Results PbPd0 . 2
The black P b P d 0
2
is p r e p a r e d c o n v e n i e n t l y b y h e a t i n g a
1:1 P b O - P d b l a c k m i x t u r e i n a i r at a b o u t 6 0 0 ° - 7 0 0 ° C for s e v e r a l days.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
P L A T I N U M
Table I.
M E T A L S
A N D
C O M P O U N D S
X - R a y Diffraction Powder D a t a for PbPdQj Hexagonal: a = 0
10.902A, c
0
— 4.654A
d obs. A
d cale, A
I obs.
hkl
4.72 3.544 2.833 2.727 2.607 2.360 2.327 2.282 2.087 1.964 1.784 1.769 1.693 1.657 1.593 1.573 1.531 1.492 1.438
4.72 3.539 2.832 2.726 2.607 2.360 2.327 2.282 2.087 1.964 1.784 1.770 1.693 1.657 1.593 1.574 1.531 1.492 1.438
2.0 5.1 100.0 19.7 2.8 17.0 12.0 1.7 4.1 4.0 18.4 20.3 1.5 15.1 22.8 1.8 1.3 0.4 16.6
200 111 211 220 301 400 002 311 202 321 420 222 331 402 511 600 103 113 521
1.392 1.375 1.363 1.334
1.391 1.375 1.363 1.335 (1.309 1.308 [1.304 1.261 1.239 1.2077 1.1987 (1.1802 U.1798 [1.1759 1.1635 1.1525 1.1446 1.1297 1.1196 1.0973
0.6 1.4 4.5 0.7
303 611 440 313 (620 441 [602 323 413 711 503 (800 333 [442 004 631 513 204 721 433
y
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch003
GROUP
1.305B 1.261 1.239 1.2075 1.1984 1.1779 1.1634 1.1523 1.1444 1.1296 1.1195 1.0972
1.0701 1.0527 1.0435 1.0358
{!S
1.0701 1.0526 1.0436 1.0356
1.0 0.6 1.2 0.2 0.6 12.4 2.8 8.0 9.5 1.4 0.4 0.7 9 8
3.7 10.7 3.1 6.8
{£
224 802 404 731
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
3.
M U L L E R
New
A N D R O Y
FaUadium
31
Oxides
A n analysis f o r o x y g e n b y n e u t r o n a c t i v a t i o n y i e l d e d 9 . 2 % lated: 9.26% Ο b y w e i g h t ) . P b P d 0
Ο
(calcu
is a p p a r e n t l y u n s t a b l e at t e m p e r a
2
tures a b o v e *—820 ° C , w h e r e a m i x t u r e of P b O a n d P b P d
is o b t a i n e d i n
3
p l a c e of P b P d 0 . 2
T h e x - r a y p o w d e r p a t t e r n of P b P d 0
2
( T a b l e I ) has b e e n t e n t a t i v e l y
i n d e x e d o n the basis of a h e x a g o n a l u n i t c e l l w i t h a = 0
4.654A.
T h i s m a y represent o n l y a p s e u d o c e l l .
10.902A a n d c
=
Q
N o single crystal data
are a v a i l a b l e , since the p r o d u c t c o u l d o n l y b e o b t a i n e d as a fine p o w d e r . T a b l e I i n d i c a t e s t h a t s e v e r a l extinctions o c c u r w h i c h are n o t c h a r a c t e r i s t i c f o r a n y h e x a g o n a l space g r o u p ; e.g., f o r KkO, h = Sr PdC>3. 2
2n and k =
2n.
A y e l l o w - b r o w n c o m p o u n d , S r P d 0 , is f o r m e d w h e n t h e 2
3
a p p r o p r i a t e s t a r t i n g m i x t u r e ( i n p e l l e t f o r m ) is fired at 9 5 0 ° C i n a i r for
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch003
s e v e r a l days. T h e c o m p o u n d is t h e r m a l l y q u i t e stable, e v e n at 1 2 0 0 ° C . It dissolves r a p i d l y i n d i l u t e a c i d s , a n d w h e n b r o u g h t i n contact w a t e r , i t alters to a n u n i d e n t i f i e d h y d r a t e d p r o d u c t . the f o r m u l a .—Sri. Pdi. o0 . 93
0
w i t h χ as h i g h as 0.6.
3+a
an i d e a l f o r m u l a of S r P d 0 2
with
A n a l y s e s l e a d to W e have assumed
for reasons d i s c u s s e d b e l o w .
3
R o t a t i o n a n d W e i s s e n b e r g patterns w e r e t a k e n of a s i n g l e c r y s t a l of S r P d 0 . T h e s i n g l e - c r y s t a l d a t a l e a d to a b o d y - c e n t e r e d o r t h o r h o m b i c 2
3
u n i t c e l l . P o w d e r d a t a (a
=
Q
3.970A, b
=
Q
3.544A, c
0
=
1 2 . 8 4 A ) are i n
g o o d a g r e e m e n t w i t h the s i n g l e - c r y s t a l d a t a . T h e o n l y e x t i n c t i o n s f o u n d w e r e those f o r b o d y - c e n t e r i n g ; t h u s , the f o u r p o s s i b l e space g r o u p s a r e D
2 h
2 5
- J m m m , ό2*-Ι222,
ώ2 -Ι2 2 2 , 9
1
1
and c
1
2 v
2 0
-Irara2.
B o t h s y m m e t r y a n d u n i t c e l l constants are s i m i l a r to t h e c o r r e s p o n d i n g v a l u e s of K N i F 2
4
t y p e c o m p o u n d s , as is s h o w n i n T a b l e I I .
w e h a v e f o u n d t h a t a reasonable s t r u c t u r e c a n b e d e r i v e d for w h i c h is closely r e l a t e d to the K N i F 2
t u r e , t h e space g r o u p D
2 h
2 5
Indeed, Sr Pd0 2
3
s t r u c t u r e . I n this p r o p o s e d s t r u c
4
- Z r a r a r a is a s s u m e d a n d t h e atoms are p l a c e d
as f o l l o w s : 4 S r i n (4i) : OOz, OOF + 2 P d i n (2a) : 000 + 2 Ο i n (26)-: O H +
b.c. w i t h ζ =
0.355
b.c. w i t h ζ =
0.16
b.c. b.c.
4 Ο i n (4i) : 00z, OOz +
W i t h this a s s u m p t i o n , intensities for the p o w d e r p a t t e r n w e r e c a l c u l a t e d i n t h e same m a n n e r as d e s c r i b e d p r e v i o u s l y (8).
A l l tempera
t u r e coefficients w e r e a s s u m e d to b e zero. T h e c a l c u l a t e d intensities are l i s t e d i n T a b l e I I I a n d c o m p a r e q u i t e f a v o r a b l y w i t h the o b s e r v e d i n tensities. T h e i n t e n s i t y d i s c r e p a n c y f a c t o r R = w a s c a l c u l a t e d as 6.6.
100 ( 2 | I
0
—
I | c
h)
I n c a l c u l a t i n g the R - f a c t o r , t h e intensities w h i c h
w e r e too w e a k to b e o b s e r v e d w e r e a s s i g n e d J obs. v a l u e s of zero.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
The
32
P L A T I N U M
Table II.
G R O U P
M E T A L S
Compound
a , A
Sr Ir0 Sr Rh0 Sr Ru0
4
2
4
3.89 3.85 3.870
3
3.970
2
b , A
0
2
4
Sr Pd0
Table III.
0
3.544
Co, A
Ref.
12.92 12.90 12.74
(12) (13) (13)
12.84
present work
Symmetry Space Group Structure Type Tetragonal K NiF 2
4
Orthorhombic
2
0
Space group:
=
Q
D
2 2
h
5
—
Immm;
3.544A, a n d c
Q
=
12.84A
n.o. = n o t o b s e r v e d .
d obs., A
d cale, A
I obs.
I calc.
hkl
6.44 n.o. 3.419 3.217 2.912 2.730 2.643 2.447
6.42 3.793 3.416 3.210 2.911 2.730 2.644 2.445
10.2 n.o. 3.2 2.6 64.0 73.9 100.0 1.8
22.4 0.1 3.3 2.4 67.6 76.2 98.9 2.2 J 10.2 \22.2 14.0 6.4 25.2 1.9 17.2 / 0.6
002 101 011 004 103 013 110 112 105 006 015 114 200 202 020 211 022 204 107 116 017 213 008 024 123 206 215 118 125 026 109 019 220
2.141
g;}»
33.3
2.079 2.041 1.985 1.896 1.772 1 711 '
2.079 2.041 1.985 1.896 1.772 fl-716 \1.708 1.688 1.665 [1.663 1.629
12.8 6.4 25.8 1.5 18.9
1
/
1.663 n.o.
1.605
n.o. 1.513 1.455 1.436 1.368 1.342 1.322
structure
X - R a y Diffraction Powder D a t a for S r P d 0
O r t h o r h o m b i c : a — 3.970A, b Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch003
C O M P O U N D S
Structural D a t a for Some Strontium-Noble Metal Oxides Unit Cell Constants
2
A N D
1
7
1A
35.2 n.o.
{;5jg 36.8 :
1.551 1.514 1.455 1.436 (1.372 1.369 [1.365 1.343
{}fg
1 0.6
n.o. 20.4 14.3 6.2
21.8 2.9 14.7
0.9 [30.3 0.2 /30.0
1 0.4 5.1 19.7 11.8 7.8 f 9.2 4.6 [ 9.3 2.2 / 3.0 112.2
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
3
3.
M U L L E R
A N D
New
R O Y
Palladium
Table III.
33
Oxides
(Continued)
O r t h o r h o m b i c : a = 3.970A, b — 3.544A, a n d c = 0
Q
Space g r o u p :
2 2
5
h
—
Immm;
n.o.
12.84A
not observed.
d cale, A
I obs.
I calc.
hkl
1.295 1.284
n.o. n.o.
1.264
j}|<*
6.7
1.241
(Jig
n.o. n.o. n.o. 1.189
1.222 1.217 1.213 1.190
n.o. n.o. n.o. 3.0
1.176
|J;gJ
1.0
1.155
|; J»
1.1 0.2 5.4 0.2 4.3 8.3 0.4 0.4 0.6 3.8 0.1 1.5 0.7
2.3
222 0-0-10 303 217 208 310 224 312 127 028 031 305 314 1110 033 130 226 1-0-11 132 0-1-11 219
d obs. A y
n.o. n.o.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch003
D
0
:
1.136 1.124 1.108 1.101
/ 1 J \
1 L 5
/ 1 /
1 / 4.9 ΙΛ
\ 6.4 10.0 4.3
10.1 1.125 1.120 [1.115 1.109 1.101
17.7
14.90.3
4.6 4.2
3.5
002 reflection w a s e x c l u d e d , since this l o w - a n g l e reflection d i d n o t r e ceive t h e f u l l i n t e n s i t y of t h e x - r a y b e a m . W i t h t h e a s s u m e d a t o m i c coordinates, d i v a l e n t p a l l a d i u m is s u r r o u n d e d b y f o u r c o p l a n a r ( r e c t a n g u l a r ) oxygens, t w o at 1.985A a n d t w o at 2.054A. T h e s t r o n t i u m atoms a r e s u r r o u n d e d b y seven nearest o x y g e n n e i g h b o r s , f o u r at 2.67A, t w o at 2.57A, a n d o n e at 2.50A. T h i s leads to a n average S r - O s e p a r a t i o n of 2.62A, w h i c h is i n v e r y g o o d agreement w i t h the s u m o f t h e i o n i c r a d i i , 2.61A ( 1 7 ) . T h e a b o v e distances are b a s e d o n the t w o a p p r o x i m a t e ζ parameters (ζ = 0.355 f o r S r a n d ζ = 0.16 f o r Ο i n 4 i ) w h i c h are b e l i e v e d to b e a c c u r a t e w i t h i n =b0.01A. T h e s e t w o v a r i a b l e z-parameters w e r e chosen o n t h e basis o f a f e w t r i a l c a l c u l a t i o n s . W e h a v e n o t b o t h e r e d to d o a refinement w i t h t h e p o w d e r d a t a . A n y f u t u r e refinement is best
carried out w i t h
s i n g l e - c r y s t a l d a t a , since
single
crystals are easily o b t a i n a b l e . T h e structure c a n - b e c o n s i d e r e d as a n o r t h o r h o m b i c a l l y d i s t o r t e d K NiF 2
4
t y p e , f r o m w h i c h £ o f t h e oxygens h a v e b e e n r e m o v e d i n a n
o r d e r e d w a y . I f these m i s s i n g oxygens are i n s e r t e d — 2 Ο i n (2d), £0% + b.c. i n space g r o u p Immm—the
stoichiometry S r P d 0 2
4
is o b t a i n e d . A s
has a l r e a d y b e e n i n d i c a t e d , o u r attempts to d e t e r m i n e t h e o x y g e n c o n -
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
34
P L A T I N U M
G R O U P
M E T A L S
A N D
C O M P O U N D S
tent i n S r P d 0 h a v e f a i l e d to y i e l d a v a l u e consistent w i t h the a s s u m e d 2
formula.
3
Somewhat
higher oxygen
contents
are o b t a i n e d , u p to
S r P d 0 . 6 s t o i c h i o m e t r y . A f t e r c o n s i d e r i n g the p o s s i b i l i t y t h a t the 2
3
the (2d)
positions i n the s t r u c t u r e are o c c u p i e d b y significant amounts of o x y g e n , w e rejected this h y p o t h e s i s f o r t w o reasons: (f) W i t h i n c r e a s i n g a m o u n t s of o x y g e n i n (2d), the i n t e n s i t y agreem e n t b e c o m e s s i g n i f i c a n t l y p o o r e r , e.g., the 101 reflection b e c o m e s c o m p a r a b l e i n i n t e n s i t y to the O i l a n d the 103 reflection becomes m o r e intense t h a n the 013, i n c o n t r a d i c t i o n to o u r observations. (it) A b n o r m a l l y short P d - O distances ( 1 . 7 7 2 A ) w o u l d b e at least 0.2A shorter t h a n the e x p e c t e d b o n d l e n g t h .
formed,
W e b e l i e v e that the h i g h o x y g e n content m a y p o s s i b l y b e c a u s e d b y s o r p t i o n of H 0 or C 0 Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch003
2
a n d absorbs C 0
p r i o r to analysis since S r O is h i g h l y h y g r o s c o p i c
2
f r o m the air.
2
Addendum. W h i l e this a r t i c l e w a s b e i n g refereed, a p a p e r a p p e a r e d d e s c r i b i n g the c r y s t a l s t r u c t u r e of S r C u 0 2
Sr Pd0 2
and S r C u 0
3
2
3
It is a p p a r e n t that
(20).
are i s o t y p i c , a l t h o u g h the G e r m a n authors
3
h a v e chosen for S r C u 0 2
3
(20)
a different o r i g i n w i t h the a,b, a n d c-axes i n t e r -
c h a n g e d , c o m p a r e d w i t h those selected for S r P d 0 . T h i s difference i n 2
3
c h o i c e c a n b e a t t r i b u t e d to the fact that w e h a v e d e r i v e d the structure of S r P d 0 f r o m the K N i F 2
3
2
t y p e a n d therefore h a v e chosen s i m i l a r set-
4
tings. T h e structure of S r C u 0 2
3
was d e r i v e d f r o m P a t t e r s o n a n d F o u r i e r
syntheses w i t h o u t d r a w i n g a n y a n a l o g y to the K N i F 2
S r P d 0 , C a P d 0 , and C d P d 0 . 3
4
3
4
3
4
4
structure.
T h e three n e w phases, S r P d 0 , 3
4
C a P d 0 , a n d C d P d 0 , c a n b e p r e p a r e d easily b y h e a t i n g the reagent 3
4
3
4
g r a d e m i x t u r e s at 9 0 0 ° C a n d 200 a r m of oxygen.
H o w e v e r , h i g h oxygen
pressures are not r e q u i r e d , a n d a l l t h r e e phases c a n b e m a d e b y h e a t i n g the s t a r t i n g m i x t u r e s i n a i r . I f the synthesis is c a r r i e d out i n a i r , the p r o d u c t s are g e n e r a l l y not p u r e a n d c o n t a i n significant amounts of e n d component
oxides
and/or
palladium metal.
To
help eliminate
these
i m p u r i t i e s , the f o l l o w i n g p o i n t s s h o u l d b e n o t e d : (i) T h e s t a r t i n g m i x t u r e s h o u l d c o n t a i n some excess M e O o x i d e or h y d r o x i d e a b o v e the s t o i c h i o m e t r i c 1:3 r a t i o . T h i s results i n the f o r m a t i o n of some excess S r P d 0 , C a O , or C d O . A l l three of these i m p u r i t i e s c a n b e d i s s o l v e d a w a y w i t h d i l u t e n i t r i c a c i d , l e a v i n g the i n s o l u b l e M e P d 0 behind. 2
3
3
4
(it) P a l l a d i u m m e t a l i m p u r i t i e s c a n b e r e m o v e d w i t h a q u a r e g i a . H o w e v e r , S r P d 0 , C a P d 0 , a n d C d P d 0 w i l l dissolve s l o w l y i n a q u a r e g i a , at least to some extent. T h u s , a n y t r e a t m e n t w i t h a q u a r e g i a s h o u l d not b e p r o l o n g e d . (Hi) R e g r i n d i n g , r e m i x i n g , a n d r e h e a t i n g the c o m p r e s s e d pellets m a y h e l p r e d u c e the i m p u r i t i e s . (iv) T h e synthesis of C d P d 0 i n air is best c a r r i e d out at 8 0 0 ° 8 2 0 ° C , w h i l e f o r S r P d Q a n d C a P d 0 ~ 9 5 0 ° C is r e c o m m e n d e d . L o w e r 3
4
3
4
3
3
3
4
4
4
3
4
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
3.
M U L L E R
New Palladium
A N D R O Y
Table I V .
35
Oxides
X - R a y Diffraction Powder D a t a for S r P d 0 3
Primitive Cubic: a =
5.826A. S . G . : o -Pm3n
( N a P t 0 structure)
3
0
4
h
x
3
4
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch003
(n.o. = n o t o b s e r v e d ) d obs., A
d cale, A
I obs.
I calc.
hkl
4.13 2.913 2.606 2.379 2.060 1.842 1.682 1.616 1.557 1.456
4.12 2.913 2.605 2.378 2.060 1.842 1.682 1.616 1.557 1.456
1.4 12.0 100.0 61.6 1.0 0.4 17.2 27.1 36.4 21.9
1.7 12.2 105.6 65.8 1.0 0.4 17.1 24.1 34.0 19.2
110 200 210 211 220 310 222 320 321 400
1" 374 ' A
d
4
1.303 1.271 1.242 n.o.
1142 l
e
l
4
1
1.0637 1.0302 °n Q71 η ' 0.9576
n ,
y
/
i
1
O S '
373
U
n.o. n.o. 0.8782 n « A « *
°0.8589 0.8409 8 6 8 5
/
Ό ό
5.6 22.9 8.3 n.o.
OS
ί11.143 ·
J
ι n«90
u
I"
11.373 1.303 1.271 1.242 1.189 143
°'
/1.0819 \1.0819 1.0637 1.0299 /0.9991 \0.9991 J 0.9710 \0.9710 0.9578
2
L
1
10.8 13.7 ·°·
η
Q
Q
* 6.2
d
{SS
y
"·
8
0.9212 0.8990 0.8783 /0.8685 \0.8685 0.8590 0.8409
n.o. n.o. 11.1 1
Q
0
4 3 1
2
\ 0.1 J 7.0 \13.8 10.5 13.7 / 0.1 \ 0.1 / 0.7 \ 2.9 5.9
510 520 432 521 440 530 433 600 442 610
{îî
%ι
0.0 0.2 11.1 / 6.8 \13.4 10.9 10.9
Q
· 10.1 10.2
1 9
3 3 0
411 420 421 332 422
I '
ό
,
9 1
0 Λ
1 0.2 5.2 21.4 7.9 0.1
9
620 541 622 630 542 631 444
t e m p e r a t u r e s g i v e l o w e r c o n v e r s i o n rates, w h i l e significantly h i g h e r t e m peratures result i n t h e d e c o m p o s i t i o n of the p r o d u c t s . T y p i c a l analyses of t h e p r o d u c t s y i e l d e d t h e f o l l o w i n g
formulas:
Sri.oiPd .oo0 .22, Cao.99Pd .oo0 .o5> a n d C d o . 5 P d . o o 0 . . T h e s t r o n t i u m 3
4
3
4
9
3
4
03
c o m p o u n d gives h i g h e r t h a n e x p e c t e d o x y g e n contents, e s p e c i a l l y w h e n the samples are p r e p a r e d at h i g h o x y g e n pressures.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
36
P L A T I N U M
T h e x - r a y p o w d e r d a t a for S r P d 0 3
4
GROUP
M E T A L S
A N D
C O M P O U N D S
are g i v e n i n T a b l e I V . C a P d 0 3
4
a n d C d P d 0 g i v e v e r y s i m i l a r p o w d e r patterns. A l l three patterns c a n b e 3
4
i n d e x e d o n t h e basis of a p r i m i t i v e c u b i c u n i t c e l l w i t h c e l l constants of 5.826, 5.747, a n d 5.742A for S r P d 0 , C a P d 0 , a n d C d P d 0 , respec 3
4
3
4
3
4
t i v e l y . I n t e n s i t y c a l c u l a t i o n s w e r e c a r r i e d out i n a s i m i l a r m a n n e r as for S r P d 0 , a s s u m i n g the N a P t 0 2
3
x
3
4
structure (22,
p l a c e d as f o l l o w s i n space g r o u p
T h e atoms
23).
were
o -Pm3n: 3
h
2 S r ( C a or C d ) i n (2a) : (ΟΟΟ,ΗΙ) 6 P d i n (6c) : ±
(10*, O )
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch003
8 Ο i n (8e) : ± (ΙΗ,ΗΪΟ) Table V .
Structural D a t a for Compounds with the N a P t 0 x
Cubic, S.G.: o
h
Interatomic
3
-
3
4
Structure
Pm3n
Distances,
A
a
Composition
a, A
Pt-0 or Pd-O, square planar
Pt 0 Mg Pt 0 Na Pt 0
5.585 5.621 5.69
1.974 1.987 2.01
2.418 2.434 2.46
2.792 2.810 2.84
(7) (ID (22,23)
5.64 5.742 5.747 5.826
1.99 2.030 2.032 2.059
2.44 2.486 2.488 2.523
2.82 2.871 2.873 2.913
(16) Present work Present work Present work
3
4
x
3
x
3
Na Pd 0 CdPd 0 CaPd 0 SrPd 0 x
3
3
4
4
4
3
3
4
4
4
0
Me-O, 8-fold, cubic
Shortest, Pt-Pt or Pd-Pd
Reference
The interatomic distances for C d P d s O * , CaPd C>4, and S r P d 0 4 are believed to be accurate to within db 0.002A. This small error is a function only of the accuracy of the do cell edge measurements, since there are no variable positional parameters in the a
3
3
N a x P t 0 * structure. 3
T a b l e I V shows t h a t the i n t e n s i t y a g r e e m e n t is q u i t e g o o d . i n t e n s i t y d i s c r e p a n c y factors R =
100 (%\I
The
— 7 |)/2(J ) were calcu
Q
C
0
l a t e d as 5.8, 7.8, a n d 8.4 for S r P d 0 , C a P d 0 , a n d C d P d 0 , respec 3
tively.
4
3
4
3
4
I n T a b l e V , the i n t e r a t o m i c distances for these c o m p o u n d s
c o m p a r e d w i t h the distances f o u n d for other N a P t 0 - t y p e phases. x
s q u a r e p l a n a r P d - O b o n d lengths a n d t h e c u b i c Sr-O,
3
4
are The
(eight-coordinated)
C a - O , a n d C d - O distances are i n g o o d agreement w i t h the ex
p e c t e d values. S q u a r e p l a n a r c o o r d i n a t i o n is c o m m o n for d i v a l e n t p a l l a d i u m c o m p o u n d s , a n d the e i g h t - f o l d ( c u b i c ) e n v i r o n m e n t for S r , C a , 2 +
and C d
2 +
2 +
is e x p e c t e d f o r these ions. T h e r e l a t i v e l y short P d - P d distances
m a y i n d i c a t e the presence of some i n t e r - m e t a l l i c b o n d i n g . I n these c o m -
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
3. MULLER AND ROY
New Palladium Oxides
37
pounds, the palladium atoms are apparently completely ordered in the (6c) sites. We have found no x-ray evidence for any noticeable disorder between the two different cations in CaPd 0 . Because of the strong preference of Pd for square planar coordination, it can be assumed that no such disorder exists in SrPd 0 and CdPd 0 , although this could not be proved easily by x-ray methods since the atomic scattering factors for Sr, Cd, and Pd are very similar. Mg Pd0 . When Mg(OH) -Pd black mixtures are heated at high oxygen pressures—e.g., at 900 °C and 200 atm of oxygen—a poorly crystallized spinel phase is formed with a = 8.501A. We have not yet succeeded in preparing this spinel in a pure state, since this phase is always accompanied by some unreacted MgO and PdO. From crystal-chemical considerations and from the x-ray intensities, we have tentatively assigned the stoichiometry Mg Pd0 to this phase. Mg Pd0 is apparently an inverse spinel with Pd occupying octahedral sites. The unit cell constant for Mg Pd0 , a = 8.501A, is slightly smaller than the corresponding value for Mg Pt0 , a = 8.521 A (10), owing to the slightly smaller ionic radius for Pd (17). 3
4
2+
3
2
4
4
3
4
2
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch003
0
2 4+
2
4
4
2
4
0
2 4+
4
0
Acknowledgment We thank W. A. Jester for the neutron activation analyses. This work was supported by the Advanced Research Projects Agency, Contract No. DA-49-083 OSA-3140, and by the U. S. Army Electronics Command, Contract DA28-043 AMC-01304 (E). Literature Cited (1) Guiot, J. M., J. Appl. Phys. 1968, 39, 3509. (2) Hoekstra, Henry R., Siegel, Stanley, Gallagher, Francis X., ADVAN. CHEM. SER. 1970, 98, 39. (3) McDaniel, C. M., Schneider, S. J.,J.Res. Natl. Bur. Std. 1968, 72A, 27. (4) Moore, W. J., Pauling, L,J.Am. Chem. Soc. 1941, 63, 1392. (5) Muller, O., Roy, R., Am. Ceram. Soc.Bull.1967, 46, 881. (6) Muller, O., Roy, R.,J.Inorg.Nucl.Chem. 1969, 31, 2966. (7) Muller, O., Roy, R.,J.Less-Common Metals 1968, 16, 129. (8) Ibid., 1969, 19, 209. (9) Ibid., 1970, 20, 161. (10) Muller, O., Roy, R., Mater. Res. Bull. 1969, 4, 39. (11) Muller, O., Roy, R., unpublished data. (12) Randall, J. J., Katz, L., Ward, R.,J.Am. Chem. Soc. 1957, 79, 266. (13) Randall, J. J., Ward, R.,J.Am. Chem. Soc. 1959, 81, 2629. (14) Sabrowsky, H., Hoppe, R., Naturwissenschaften 1966, 53, 501. (15) Scheer, J. J., Dissertation, Leiden, Netherlands, 1956. (16) Scheer, J. J., van Arkel, A. E., Heyding, R. D., Can. J. Chem. 1955, 33, 683.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
38
PLATINUM GROUP METALS AND COMPOUNDS
Shannon, R. D., Prewitt, C. T., Acta Cryst. 1969, B25, 925. Shannon, R. D., Rogers, D. B., Prewitt, C. T., in press. Sleight, A. W., Mater. Res. Bull. 1968, 3, 699. Teske, C. L., Muller-Buschbaum, H., Z. Anorg. Allgem. Chem. 1969, 371, 325. Waser, J., Levy, Η. Α., Peterson, S. W., Acta Cryst. 1953, 6, 661. Waser, J., McClanahan, E. D.,J.Chem. Phys. 1951, 19, 199. Ibid., 1951, 19, 413. RECEIVED February 2, 1970.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch003
(17) (18) (19) (20) (21) (22) (23)
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
4
Reaction of Platinum Dioxide with Some Metal Oxides
HENRY R. HOEKSTRA, STANLEY SIEGEL, and FRANCIS X. GALLAGHER
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch004
Argonne National Laboratory, Argonne, Ill. 60439 The structure of platinum dioxide and its reactions with some di, tri, and tetravalent metal oxides have been investigated. Ternary platinum oxides were synthesized at high pressure (40 kilobars) and temperature (to 1600°C). Properties of the systems were studied by x-ray, thermal analysis, and infrared methods. Complete miscibility is observed in most PtO -rutile-type oxide systems, but no miscibility or compound formation is found with fluorite dioxides. Lead dioxide reacts with PtO to form cubic Pb Pt O . Several corundum-type sesquioxides exhibit measurable solubility in PtO . Two series of compounds are formed with metal monoxides: M PtO (where M is Mg, Zn, Cd) and MPt O (where M is Mg, Co, Ni, Cu, Zn, Cd, and Hg). 2
2
2
2
7
2
2
4
3
6
'Tphe literature on anhydrous binary or ternary platinum oxides is relatively limited. Muller and Roy (6) have reviewed the simple platinum oxides and were able to confirm the existence of only two oxides, P t 0 and Pt0 , with the dioxide existing in two crystal modifications. Shannon (13) has discussed the preparation and properties of orthorhombic Pt0 . Ternary oxides of platinum include several with the alkali metals (NaJPtsO^ Na Pt0 , L i P t 0 ) (12) and with the alkaline earths [Ba Pt 0 (18), Sr Pt 0 , and Sr PtO (10)]. More recent work has been reported on T l P t 0 (4) and the rare earth-platinum pyrochlores (3, 17), as well as the spinels Z n P t 0 and M g P t 0 (5). The investigations of platinum pyrochlores have demonstrated the effectiveness of high pressure techniques in the synthesis of anhydrous oxides when one or both reactants have limited thermal stability. The bulk of the work reported here represents a continuation of an exploration of metal oxide-platinum oxide systems at high pressure. 3
4
2
2
2
3
2
7
3
3
2
7
2
2
7
2
3
4
2
e
4
2
4
39 In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
40
P L A T I N U M
G R O U P
M E T A L S
A N D
C O M P O U N D S
Equipment and Procedure T h e h i g h pressure a p p a r a t u s u s e d i n this w o r k is a t e t r a h e d r a l a n v i l apparatus. D e t a i l s of the e q u i p m e n t , the o p e r a t i n g p r o c e d u r e , a n d the sample assembly have been described previously (2) r e p e a t e d here.
B r i e f l y , the p o w d e r e d
and w i l l not
be
o x i d e samples are w r a p p e d i n
p l a t i n u m or i n g o l d f o i l to isolate t h e m , as m u c h as possible, f r o m r e a c t i o n w i t h m a t e r i a l s other t h a n the reactant m i x t u r e . W e s h a l l see t h a t o n occasion the o x i d e samples w i l l react w i t h the p l a t i n u m f o i l c o n t a i n e r to g i v e l o w e r v a l e n c e p l a t i n u m oxides. A s a r u l e , three o x i d e samples, w h i c h h a v e b e e n w r a p p e d i n f o i l a n d pressed i n t o pellets, are l o a d e d i n t o the s a m p l e c a v i t y (•—1
cc v o l u m e ) of a p y r o p h y l l i t e t e t r a h e d r o n for e a c h
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch004
h i g h pressure r u n . I n a t y p i c a l e x p e r i m e n t , the t e t r a h e d r o n w i t h its three samples is c o m pressed to 40 k b pressure; the s a m p l e c a v i t y is h e a t e d to 1200 ° C a n d m a i n t a i n e d at that t e m p e r a t u r e for a n h o u r b e f o r e b e i n g q u e n c h e d room temperature.
F i n a l l y , pressure is released s l o w l y .
to
A l t h o u g h the
b u l k of o u r experiments h a v e b e e n r u n at 40 k b pressure, the range i n pressure a p p l i e d has v a r i e d f r o m 20 to 60 k b ; e x p e r i m e n t a l temperatures v a r i e d f r o m 500° to 1600 ° C . W e find that u n d e r these e x p e r i m e n t a l c o n d i t i o n s loss of a n a p p r e c i a b l e a m o u n t of o x y g e n f r o m the s a m p l e p e l l e t occurs v e r y r a r e l y , e v e n t h o u g h the oxides are h e a t e d to several h u n d r e d degrees a b o v e t h e i r d e c o m p o s i t i o n t e m p e r a t u r e at a t m o s p h e r i c pressure.
E x c e p t i o n s to this
r u l e o c c u r w i t h the f o r m a t i o n of a n y stable oxide phase w h i c h does not u t i l i z e a l l of the oxygen present i n the i n i t i a l reactant m i x t u r e . T h i s "excess" o x y g e n is lost r a t h e r r a p i d l y f r o m the s a m p l e enclosure. O u r i n v e s t i g a t i o n of the properties of the p l a t i n u m oxides i n c l u d e s x-ray, i n f r a r e d , a n d t h e r m a l analysis. P o w d e r x - r a y d a t a w e r e o b t a i n e d w i t h a P h i l i p s 114.59 m m c a m e r a , u s i n g either N i - f i l t e r e d C u r a d i a t i o n or V - f i l t e r e d C r r a d i a t i o n . C e l l parameters w e r e o b t a i n e d u s i n g a least squares refinement, a n d are b a s e d o n C u Κα = 2.2909. T h e dta-tga
1.5418 A a n d C r Κα —-
results w e r e o b t a i n e d o n a M e t t l e r r e c o r d i n g t h e r m o -
a n a l y z e r over the t e m p e r a t u r e i n t e r v a l 2 5 ° - 1 4 0 0 ° C , w i t h a h e a t i n g rate of 6 ° / m i n u t e a n d a s e n s i t i v i t y of 100 μΥ.
I n f r a r e d spectra to 200 c m "
w e r e t a k e n w i t h a B e c k m a n I R - 1 2 spectrophotometer.
1
N u j o l mulls were
s p r e a d o n p o l y e t h y l e n e disks for the l o w f r e q u e n c y p o r t i o n of the spec t r u m a n d o n K B r plates for the frequencies a b o v e 400 c m " .
Platinum
1
d i o x i d e w a s p r e p a r e d b y the r e a c t i o n of K P t C l 2
purity) with molten K N 0 s o l u t i o n of the K N 0 for several hours. than 0.2%
3
3
at 4 0 0 ° C .
4
or K P t C l 2
6
(99.9%
T h e dioxide was recovered
by
i n water and purified by heating i n aqua regia
S p e c t r o c h e m i c a l analysis of the p r o d u c t s h o w e d less
of a l k a l i metals, a n d no w a t e r or h y d r o x y l i o n w a s
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
detect-
4.
H O E K S T R A
E T
Reaction
A L .
Table I.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch004
41
Dioxide
X - r a y Powder Data for a - P t 0 a = 3.100(2)
Hexagonal
a
of Platinum
hkl
d
001 100 101 002 102 110 111 003 200 201 112 103 202 113 210 211 203 212 300 301 114 302
4.107 2.664 2.241 2.065 1.637 1.543 1.448 1.381 1.337 1.2734 1.2388 1.2287 1.1255 1.0309 1.0126 0.9841 0.9628 0.9111 0.8945 0.8752 0.8629 0.8218
c = 4.161(3)
2
A
I calcd
I obsd
a
100 100 170 15 100 50 70 10 25 50 40 50 50 40 40 90 45 115 30 60 80 75
60 100 90 10 60 90 70 1 45 50 30 15 35 5 55 55 20 60 35 40 20 100
Based on C d l - t y p e structure. 2
able b y i n f r a r e d analysis. M e t a l oxides u s e d i n the reactions w i t h P t 0
2
w e r e u s u a l l y reagent grade c h e m i c a l s ; exceptions i n c l u d e d oxides s u c h as F e O , C r 0 , M n O , M n 0 , V 0 , a n d M o 0 , w h i c h w e r e p r e p a r e d b y 2
accepted
2
procedures
3
2
2
f r o m reagent grade s t a r t i n g m a t e r i a l s . P u r i t y
of
these p r o d u c t s w a s c o n f i r m e d b y x-ray, t h e r m a l , a n d c h e m i c a l analysis.
Results «-Pt0 . 2
S e v e r a l proposals c o n c e r n i n g t h e structure of the a m b i e n t
pressure f o r m of P t 0
2
h a v e b e e n r e v i e w e d b y M u l l e r a n d R o y (6).
Diffi-
culties arise p r i n c i p a l l y f r o m the p o o r c r y s t a l l i n i t y w h i c h characterizes this phase, regardless of the h e a t i n g t i m e e m p l o y e d i n its p r e p a r a t i o n . D i s o r d e r is p a r t i c u l a r l y t r o u b l e s o m e i n the o d i r e e t i o n of the h e x a g o n a l structure since hkl lines w i t h 1 ^ 0
b e c o m e i n c r e a s i n g l y w e a k a n d diffuse
w i t h increase i n 1. O u r experience w i t h the synthesis of <*-Pt0
2
confirms p r e v i o u s r e -
ports o n the c h a r a c t e r i s t i c d i s o r d e r e d s t r u c t u r e of the oxide.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Vaughn
42
P L A T I N U M
G R O U P
M E T A L S
A N D
C O M P O U N D S
L e i g h , one of o u r student aides, n o t e d t h a t the t h i n film of P t 0 forms o n t h e surface of the m o l t e n K N 0
3
2
which
shows m u c h less d i s o r d e r a n d
gives a m u c h i m p r o v e d p o w d e r p a t t e r n over the b u l k d i o x i d e i n the n i t r a t e m e l t . T a b l e I gives the x - r a y p o w d e r d a t a o b t a i n e d f r o m s u c h a Pt0
2
surface layer. T h e c a l c u l a t e d h e x a g o n a l c e l l parameters are a
=
3.100(2) a n d c — 4 . 1 6 1 ( 3 ) A ; the x - r a y d e n s i t y is 10.90 g r a m s / c m . 3
W e p r e f e r the l a y e r e d C d l - t y p e s t r u c t u r e ( s p a c e g r o u p P 3 m l — 2
D
3 d
3
) for « - P t 0 . 2
E v e n t h o u g h the i n t e n s i t y agreement is o n l y f a i r i n
o u r " o r d e r e d " phase, i t is m u c h s u p e r i o r to that of the b u l k m a t e r i a l , a n d w o u l d b e e x p e c t e d to s h o w f u r t h e r i m p r o v e m e n t as o r d e r i n g is i n c r e a s e d i n the c-direction.
I f one assigns o x y g e n atoms to t h e ( l / 3 , 2 / 3 , z )
( 2 / 3 , 1 / 3 , 5 ) positions w i t h ζ =
and
0.25, the c a l c u l a t e d p l a t i n u m - o x y g e n
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch004
b o n d l e n g t h is 2.07 A . T h i s is 0.08 A l o n g e r t h a n is o b s e r v e d i n / ? - P t 0 ( 1 6 ) , or d e r i v e d f r o m S h a n n o n - P r e w i t t r a d i i (14)
2
(note: a l l radii used
i n this d i s c u s s i o n are t a k e n f r o m t h e S h a n n o n - P r e w i t t t a b l e s ) , b u t is reasonable for the m o r e o p e n structure of the a m b i e n t pressure phase. T h e o x y g e n - o x y g e n distances are 2.74 A b e t w e e n layers a n d 3.10 A w i t h i n e a c h layer. F u r t h e r s u p p o r t for the C d l - t y p e structure i n « - P t 0 2
the recent synthesis of t w o a d d i t i o n a l forms of P t 0
2
2
is afforded b y
i n sealed t u b e ex
p e r i m e n t s via t h e r e a c t i o n K PtCl 2
4
+ KN0
3
-* Pt0
2
+ 3KC1 + NOC1
(1)
H e a t i n g times at 425 ° C w e r e 5 to 25 days. O n e m o d i f i c a t i o n appears to h a v e a u n i t c e l l 3 times the « - P t 0
ο
£-Pt0
Ι Ο.
2
c e l l i n the c - d i r e c t i o n , w i t h a =
2
ο to m <
1000
900
800
700 600 500 400 WAVENUMBER C M '
300
200
1
Figure
1.
Infrared
spectra of Pt0
2
phases
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
3.11
4.
H O E K S T R A
E T
(1) A and c =
Reaction
A L .
of Platinum
1 2 . 6 0 ( 6 ) A . T h i s f o r m seems to b e r e l a t e d to t h e C d l 2
type III reported by Pinsker (9).
T h e second m o d i f i c a t i o n c a n b e i n d e x e d
o n t h e basis of C d l - t y p e I I w i t h a =
3.10(1) A a n d c =
2
«-Pt0
2
43
Dioxide
8 . 3 2 ( 6 ) A ; the
c e l l is d o u b l e d i n the c - d i r e c t i o n . T h e space g r o u p for this f o r m is
C , - P 6 m c . W i t h c o o r d i n a t e values b a s e d u p o n C d a n d I positions, the 4
6 t
3
P t - O b o n d lengths are a b o u t 2.07 A i n b o t h modifications. s i m p l e a n d m u l t i p l e h e x a g o n a l cells are k n o w n for b o t h C d l
2
T h u s , the
and ambient
pressure P t 0 . 2
/?-Pt0 .
W e h a v e not s u c c e e d e d i n p r e p a r i n g samples of the h i g h
2
pressure f o r m of P t 0
2
s u i t a b l e for single c r y s t a l studies.
analysis of o r t h o r h o m b i c / ? - P t 0
based
u p o n the intensities of d i f f r a c t i o n lines f r o m p o w d e r samples (16).
The
c e l l parameters are a =
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch004
A structural
has b e e n c a r r i e d out, h o w e v e r ,
2
4.488(3), b =
4.533(3), c =
3.138(2) A .
i n t e n s i t y d a t a c o n f i r m the t e n t a t i v e C a C l - t y p e structure w i t h coordinates χ =
0.281 a n d y =
The
oxygen
2
0.348 to g i v e t w o l o n g P t - O b o n d s of
2.02 A a n d f o u r shorter b o n d s of 1.98 A . T h e i n f r a r e d spectra of a a n d / ? - P t 0
2
are s h o w n i n F i g u r e 1.
The
s i n g l e a b s o r p t i o n m a x i m u m i n a - P t 0 is analogous to that o b s e r v e d w i t h 2
Cdl
T h e strong peaks of / ? - P t 0 are assigned to P t - O a s y m m e t r i c
(11).
2
2
s t r e t c h i n g modes, a n d the w e a k l o w e r f r e q u e n c y b a n d s are a t t r i b u t e d to b e n d i n g m o d e s i n the P t 0
2
lattice. T h e h i g h e r frequencies o b s e r v e d i n
the 0 - P t O s t r e t c h i n g v i b r a t i o n s (750, 720 c m " ) over t h a t i n a - P t 0 1
2
cm )
are consistent w i t h the ^
- 1
lengths i n the β-form.
2
0.1 A shorter platinum—oxygen
The «-Pt0
2
s t r u c t u r e p r o p o s e d b y B u s c h et al. (1)
(580 bond
s p e c t r u m is inconsistent w i t h
the
since the extremely short (1.47 A )
Pt—Ο distance i n the B u s c h s t r u c t u r e w o u l d r e q u i r e a m u c h
higher
s t r e t c h i n g f r e q u e n c y t h a n w e observe for this phase. B o t h modifications of P t 0
are i n s o l u b l e i n hot c o n c e n t r a t e d
2
HN0 , 3
H S 0 , a n d a q u a r e g i a . « - P t 0 , h o w e v e r , dissolves s l o w l y i n hot c o n c e n 2
4
2
t r a t e d H C 1 , m o r e r e a d i l y i n H B r ; / ? - P t 0 is s o l u b l e o n l y i n H B r . 2
T h e r m a l analysis of « - P t 0 at 575 ° C .
2
indicates that o x y g e n e v o l u t i o n
begins
D e c o m p o s i t i o n to the m e t a l occurs i n a single step, a n d is
c o m p l e t e at — 6 0 0 ° C . T h e β-form is s o m e w h a t m o r e stable, w i t h d e c o m p o s i t i o n b e g i n n i n g at 6 0 0 ° C . T h e dta-tga
trace f r e q u e n t l y gives a n i n d i
c a t i o n of a two-step process, b u t a l l attempts to isolate or i d e n t i f y a n i n t e r m e d i a t e p r o d u c t h a v e b e e n unsuccessful.
A l l x - r a y p o w d e r patterns
of p a r t i a l l y d e c o m p o s e d samples s h o w e d o n l y t w o phases: P t 0
M0
2
+
2
and Pt.
Pt0
2
T h e r e a c t i o n of p l a t i n u m d i o x i d e w i t h other m e t a l dioxides c a n b e separated into three groups—i.e., c o m p o u n d s w i t h m e t a l - o x y g e n n a t i o n n u m b e r s of 4:2, 6:3, a n d 8:4.
coordi
W e h a v e i n v e s t i g a t e d o n l y a single
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch004
44
P L A T I N U M
m/0
G R O U P
Figure 2.
2
2
(Ge0
2
A N D
C O M P O U N D S
Pt02
Cell dimensions of M0
4:2 c o o r d i n a t e d o x i d e , S i 0
M E T A L S
· Pt0
solid solutions
2
also exists i n t h e α-quartz structure
b u t not at h i g h p r e s s u r e ) . W e find n o e v i d e n c e f o r c o m p o u n d f o r m a t i o n or s o l i d s o l u t i o n i n t h e S i 0 - P t 0 2
2
system at 40 k b a n d 1200°C. T h e s i l i c a
p o r t i o n of t h e s a m p l e is c o n v e r t e d to coesite a n d the / ? - P t 0 d i f f r a c t i o n 2
p a t t e r n shows n o m e a s u r a b l e shift i n l i n e positions. M i x t u r e s of P t 0
2
w i t h 10 oxides h a v i n g t h e r u t i l e or a d i s t o r t e d r u t i l e
structure h a v e b e e n i n v e s t i g a t e d . T w o of the 10, M o 0 , a n d W 0 , r e 2
duce P t 0
2
2
to t h e m e t a l a n d are themselves o x i d i z e d to the t r i o x i d e s . N o
e v i d e n c e for f u r t h e r r e a c t i o n b e t w e e n
M0O3
or W 0
3
a n d excess P t 0
2
c o u l d be d e t e c t e d f r o m a n x - r a y i n v e s t i g a t i o n of the p r o d u c t s . S e v e n 6:3 c o o r d i n a t e d d i o x i d e s
(Ti0 , V 0 , Cr0 , Mn0 , 2
2
2
Ge0 ,
2
2
R u 0 , a n d S n 0 ) s h o w r a t h e r s i m i l a r r e a c t i o n t o w a r d s P t 0 , i n that ex 2
2
2
tensive s o l i d s o l u t i o n occurs at 40 k b pressure ( 7 5 0 ° to 1 2 0 0 ° C ) w i t h o u t e v i d e n c e of c o m p o u n d f o r m a t i o n . S o m e of the systems w e r e i n v e s t i g a t e d at 25 m / o intervals, others at 12.5 m / o intervals. I n c o m p l e t e m i s c i b i l i t y w a s d e t e c t e d i n o n l y one of the seven, the C r 0 - P t 0 2
2
system. A s i n g l e
p h a s e r e g i o n is f o u n d f r o m — 5 0 to 100 m / o P t 0 , b u t P t 0 2
shows little
2
s o l u b i l i t y i n C r 0 . I t is p o s s i b l e t h a t m o r e d e t a i l e d studies w i l l disclose a 2
s i m i l a r , b u t n a r r o w e r , t w o - p h a s e r e g i o n b e t w e e n 0 a n d 25 m / o P t 0 the M n 0 - P t 0 2
2
2
in
system.
I n e a c h of the seven systems s t u d i e d , the a d d i t i o n of M 0
2
to P t 0
t i a l l y causes a n increase i n the b/a r a t i o of the o r t h o r h o m b i c P t 0
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
2
2
ini
phase.
4.
H O E K S T R A
E T
Reaction
A L .
Table II.
2
a
2
2
2
2
2
2
2
2
Sn0 3Sn0 Sn0 3Sn0 Sn0 Sn0 V0 3V0 V0 V0 Ti0 3Ti0 Ti0 Ti0 Ru0 3Ru0 Ru0 Ru0 Mn0 3Mn0 2Mn0 Mn0 3Mn0 Mn0 Mn0 Cr0 3Cr0 Cr0 Cr0
· · · · · ·
Pt0 Pt0 3Pt0 Pt0 5Pt0 3Pt0 7Pt0 Pt0
2
2
2
2
2
2
2
2
2
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch004
2
2
2
2
2
· Pt0 · Pt0 · 5Pt0 - 3Pt0 · 7Pt0
2
2
2
2
2
&
2
· Pt0 · Pt0 · 3Pt0
2
2
2
2
2
2
2
· Pt0 · Pt0 · 3Pt0
2
2
2
2
2
2
2
· Pt0 · Pt0 · 3Pt0
2
2
2
2
2
2
2
2
2
2
2
2
2
· Pt0 · Pt0 · Pt0 · 5Pt0 · 3Pt0 · 7Pt0
2
2
2
2
2
2
2
2
2
2
a b
45
Dioxide
M o 2 - P t 0 Cell Dimensions i n Angstroms"
Composition Ge0 7Ge0 3Ge0 5Ge0 Ge0 3Ge0 Ge0 Ge0
of Platinum
· Pt0 · Pt0 · 3Pt0
2
2
2
c
b
— 2.859 4.390 — 2.891(3) 4.410(5) — 2.932 4.432 — 2.969 4.444 — 3.009 4.465 4.514 3.033 4.437 3.069 4.546 4.437 3.102 4.549 4.448 3.138 4.533 4.488 — 3.186 4.737 — 3.182 4.682 — 3.176 4.630 3.172 4.625 4.571 3.162 4.603 4.531 4.574 3.151 4.506 — 2.872 4.517 Tetragonal not measured — 3.051(3) 4.503(5) 3.092 4.553 4.455 — 2.958 4.594 — 3.007(5) 4.585(5) 3.065(5) 4.600(5) 4.506(5) 3.113 4.580 4.479 — 3.105 4.491 — 3.119 4.498 3.129 4.539 4.475 3.137 4.559 4.469 — 2.871 4.396 2.941(5) 4.519(5) 4.368(5) 2.956(3) 4.547(5) 4.377(5) 4.557(5) 3.006(3) 4.382(5) 3.047 4.402 4.571 3.083 4.561 4.428 3.188 4.549 4.459 — 2.918 4.422 2 phases 3.109(3) 4.438(5) 4.564(5) 4.554 3.157 4.465
Error limits are ± 0.002 A except as indicated, e.g., (5). Based on rutile-type cell.
Further M 0
2
a d d i t i o n s e v e n t u a l l y reverse this t r e n d as t h e b/a
ratio
decreases to u n i t y a n d the s o l i d a c q u i r e s the t e t r a g o n a l r u t i l e structure. F i g u r e 2 illustrates t h r e e of the systems: (a) S n 0 - P t 0 2
2
exhibits t e t r a g o n a l
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
46
P L A T I N U M
symmetry over — 5 0 %
2
of the T i C > 2 - P t 0
2
(b)
A N D
and V 0
2
2
systems, a n d ( c )
2
in P t 0
little if or
2
M0 -Pt0 2
mixtures investigated. T h e symmetry relationships i n M 0 - P t 0 2
a r e different f r o m those o b s e r v e d
show
2
mixtures w i t h C r 0
2
T a b l e I I lists the c e l l parameters m e a s u r e d for t h e
2
C O M P O U N D S
T e t r a g o n a l s y m m e t r y is f o u n d
and R u 0 - P t 0
any tetragonal range can be observed Mn0 .
M E T A L S
of t h e c o m p o s i t i o n r a n g e ; G e 0
s i m i l a r s y m m e t r y patterns w i t h P t 0 . over ~ 2 5 %
G R O U P
2
systems
2
b y M a g n e l i a n d coworkers
in
(19)
m i x t u r e s of o t h e r d i s t o r t e d r u t i l e - t y p e structures. I n these systems, tetr a g o n a l structures w e r e o b s e r v e d over the m a j o r p o r t i o n of t h e c o m p o s i t i o n range, w h e r e a s the m a x i m u m extent of t e t r a g o n a l s y m m e t r y is o n l y — 5 0 % i n t h e seven M o - P t 0 u n d e r i n v e s t i g a t i o n h e r e . 2
2
T h e r m a l analysis of M 0 - P t 0 2
s o l i d solutions r e v e a l n o m a r k e d sta-
2
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch004
b i l i z a t i o n effect i n those m i x t u r e s c o n t a i n i n g d i o x i d e s of l i m i t e d t h e r m a l s t a b i l i t y , s u c h as C r 0
or M n 0 .
2
2
T h e stable m o r e r e f r a c t o r y
h o w e v e r , i n c r e a s e the s t a b i l i t y of t h e P t 0 tion.
Thus, only 1/3
75Sn0
2
· 25Pt0
2
of the o x y g e n
2
dioxides,
c o m p o n e n t of t h e s o l i d s o l u -
associated
w i t h p l a t i n u m i n the
m i x t u r e is e v o l v e d as the s o l i d s o l u t i o n is h e a t e d
to
1 2 5 0 ° C at 6 ° / m i n u t e . Pb0 .
L e a d dioxide crystallizes i n a rutile structure a n d c o u l d
2
be
e x p e c t e d to s h o w at least p a r t i a l s o l u b i l i t y i n / 3 - P t 0 . U n d e r pressure, 2
however, P b 0
2
converts to a n o r t h o r h o m b i c m o d i f i c a t i o n w h i c h is v i r -
t u a l l y i n s o l u b l e i n P t 0 , a n d represents a n o t a b l e e x c e p t i o n to t h e exten2
sive s o l i d s o l u t i o n r a n g e o b s e r v e d i n r e l a t e d systems f r o m G e 0 - P t 0 2
2
to
Sn0 -Pt0 . 2
2
O f f u r t h e r interest i n t h e l e a d - p l a t i n u m - o x y g e n system is the
ob-
s e r v a t i o n that a 1:1 m i x t u r e of the d i o x i d e s w i l l react at 40 k b pressure a n d at temperatures a b o v e 750 ° C to f o r m a phase i n d e x i b l e as a facecentered cubic structure w i t h a =
5.15(1) A . V e r y little solid solution
occurs o n either side of the 1:1 m e t a l r a t i o since d e v i a t i o n f r o m this r a t i o gives a d i p h a s i c m i x t u r e of t h e c u b i c phase p a r a m e t e r c h a n g e ) a n d either P t 0
2
( w i t h no discernible cell
or P b 0 . 2
T h e r m a l analysis of
the
c u b i c phase has e s t a b l i s h e d t h a t d e c o m p o s i t i o n to P b O a n d P t o c c u r s at 7 4 0 ° C , a n d that 2.5 atoms of o x y g e n are e v o l v e d for e a c h l e a d or p l a t i n u m a t o m . T h e s e d a t a s t r o n g l y suggest t h a t the n e w c o m p o u n d is P b P t 0 , 2
h a v i n g a cubic pyrochlore-type structure w i t h a =
2
7
10.30 A , t w i c e the
apparent unit cell dimension, rather than a disordered
fluorite
structure.
T h i s i n t e r p r e t a t i o n r e q u i r e s the presence of t r i v a l e n t l e a d i n t h e t e r n a r y oxide. A c o m p a r i s o n of its u n i t c e l l d i m e n s i o n w i t h t h a t of the r a r e e a r t h p l a t i n u m pyrochlores
i n d i c a t e s that the p r e s u m e d
Pb(III)
i o n has a
r a d i u s of 1.08 A for a c o o r d i n a t i o n n u m b e r of 8. T h i s is reasonable w h e n compared
w i t h its t r i v a l e n t n e i g h b o r s , T l ( I I I )
at 1.00 A a n d
at 1.11 A .
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Bi(III)
4.
H O E K S T H A
E T
Reaction
A L .
1
of Phtinum
1
1
47
Dioxide
1
1
1
4 1 1 li 1 I ι
II 1
ι 11
\
(
J J Sm Pt20 2
7
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch004
/
VA
1
900
800
2
ι
1
700
Pb Pt 0
ι
600
ι
500
CM"
300
2
2
200
1
Infrared spectra of Pb Pt 0 Sm Pt 0 2
7
ι
400
WAVENUMBER
Figure 3.
2
2
7
and
7
T h e i n f r a r e d s p e c t r u m of P b P t 0 shows a single s t r o n g a b s o r p t i o n 2
2
7
p e a k at 633 c m " w h i c h is assigned to the a s y m m e t r i c s t r e t c h i n g m o d e i n 1
the o c t a h e d r a l o x y g e n c o n f i g u r a t i o n a b o u t p l a t i n u m . T h e peak i n S m P t 0 2
2
7
(a =
comparable
10.31 A ) is f o u n d ( F i g u r e 3 ) at 635 c m " . 1
The
r e m a i n d e r of the P b P t 0 s p e c t r u m consists of three w e a k m a x i m a at 530, 2
2
7
480, a n d 350 c m " . T h e p e a k locations c o r r e s p o n d r e a s o n a b l y w e l l w i t h 1
m a x i m a i n the S m P t 0 2
weaker.
2
7
s p e c t r u m , b u t the p e a k intensities are m u c h
T h e reason f o r this difference is not u n d e r s t o o d at present.
Fluorite Structures.
T h e r e a c t i o n of P t 0
n a t e d m e t a l d i o x i d e s has b e e n i n v e s t i g a t e d . gives a n y i n d i c a t i o n of r e a c t i o n w i t h P t 0 b y w a y of s o l i d s o l u t i o n or c o m p o u n d
2
2
w i t h several 8:4 Neither C e 0
2
coordi
nor
Th0
formation.
U r a n i u m d i o x i d e is
o x i d i z e d b y P t O o u n d e r these c o n d i t i o n s to t h e h i g h pressure f o r m U0
( 1 5 ) , w i t h n o i n d i c a t i o n of r e a c t i o n b e t w e e n P t 0
3
2
at 40 k b a n d 1 2 0 0 ° C , either
2
and U 0 . 3
of Zir
c o n i u m d i o x i d e , a d i s t o r t e d fluorite phase, does not react w i t h P t O o u n d e r these e x p e r i m e n t a l c o n d i t i o n s .
M0 2
3
+
Pt0
2
Rare E a r t h Sesquioxides. react ( 3 , 17)
with P t 0
2
O x i d e s of t h e larger t r i v a l e n t m e t a l ions
at h i g h pressure to f o r m a ftnTOnfefefle CfoeffiÎCal
Society Library 1155 16th St. N . W . Washinaton. D. C. In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
20036
48
P L A T I N U M
G R O U P
M E T A L S
A N D C O M P O U N D S
A P t 0 , s i m i l a r to those r e p o r t e d f o r t i n , r u t h e n i u m , t i t a n i u m , a n d sev 2
2
7
e r a l o t h e r t e t r a v a l e n t ions.
T r i v a l e n t ions w h i c h f o r m c u b i c p l a t i n u m
p y r o c h l o r e s r a n g e f r o m S c ( I I I ) a t 0.87 A to P r ( I I I ) a t 1.14 A . D i s t o r t e d p y r o c h l o r e structures are f o r m e d b y l a n t h a n u m (1.18 A ) a n d b y b i s m u t h (1.11 A ) . P l a t i n u m d i o x i d e oxidizes S b 0 2
to S b 0
3
2
a t h i g h pressure.
4
T h e i n f r a r e d spectra a n d t h e r m a l s t a b i l i t y o f t h e r a r e e a r t h p l a t i n a t e s h a v e b e e n r e p o r t e d p r e v i o u s l y a n d w i l l n o t b e r e p e a t e d here, e x c e p t t o p o i n t o u t t h e r a t h e r r e m a r k a b l e t h e r m a l s t a b i l i t y o f these
compounds;
d e c o m p o s i t i o n t o t h e r a r e e a r t h sesquioxide a n d p l a t i n u m r e q u i r e s t e m peratures i n excess of 1 2 0 0 ° C . S m a l l e r T r i v a l e n t Ions. M i x t u r e s o f a l u m i n u m , v a n a d i u m , c h r o m i u m , manganese, i r o n , a n d g a l l i u m sesquioxide w i t h P t 0
were investigated
2
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch004
f o r possible c o m p o u n d f o r m a t i o n — n o n e w a s f o u n d .
T h e t r i v a l e n t ions
w h i c h h a v e stable tetravalent o x i d a t i o n states—Le., v a n a d i u m , m a n g a nese, a n d c h r o m i u m — a r e o x i d i z e d b y P t 0
to f o r m M 0 - P t 0
2
2
solutions w h i c h h a v e b e e n d i s c u s s e d p r e v i o u s l y .
2
solid
A l u m i n u m , iron, a n d
g a l l i u m sesquioxides s h o w a p a r t i a l s o l u b i l i t y i n t h e 0 - P t O p h a s e to f o r m 2
oxygen-deficient s o l i d solutions. F i g u r e 4 illustrates t h e c h a n g e i n P t 0 u n i t c e l l v o l u m e as a f u n c t i o n of m o l e f r a c t i o n P t . T h e A 1 0 2
3
is less t h a n 3 m / o ( t h e l o w e s t c o n c e n t r a t i o n i n v e s t i g a t e d ) , b u t t h e F e 0 2
s o l u b i l i t y is a p p r o x i m a t e l y 15 m / o . T h e G a 0 2
3
2
solubility 3
s o l u b i l i t y is difficult to
d e t e r m i n e f r o m x - r a y d a t a since v e r y l i t t l e c h a n g e i n c e l l parameters is 65
Fe 0 . 6 4 5
St
6
Go 0.62
4
Al
Ε ο >
0.53
63
ο
Ο) Ο
Cr
**
0.615^-^
c
Μη 0.65
ID
/
62
0.50
0.60
0.70
Figure 4.
Volume change in Pt0
2
1.00
0.90
0.80 Pt/M
+ Pt
unit cell with M O 2
s
addition
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Dioxide
49
observed, b u t the s o l u b i l i t y is e s t i m a t e d to b e 10 m / o .
T h e s o l i d solutions
4.
H O E K S T R A
E T
Reaction
A L .
are a s s u m e d to b e
of Platinum
oxygen-deficient
rather than a c q u i r i n g interstitial
cations since F e ( I I I ) w i t h a n i o n i c r a d i u s (0.645 A ) greater t h a n P t ( I V ) (0.63 A ) b r i n g s a b o u t a n increase i n c e l l v o l u m e , w h i l e G a ( I I I ) (0.62 A ) p r o d u c e s v i r t u a l l y n o change, a n d A l ( I I I ) at 0.53 causes a s h a r p decrease i n c e l l v o l u m e . T h e anomalous effect o b s e r v e d i n the C r 0 2
3
and M n 0 2
3
m i x t u r e s is a t t r i b u t e d to a c o m b i n e d o x i d a t i o n p l u s s o l i d s o l u t i o n r e a c t i o n . O u r x - r a y d a t a i n d i c a t e t h a t c o m p l e t e o x i d a t i o n to C r 0 o c c u r since c e l l parameters o b t a i n e d f r o m C r 0 c o i n c i d e w i t h those d e r i v e d f r o m C r 0 2
ing for P t 0 Mn0
2
+
3
+
2
Pt0
Pt0
2
does not
2
m i x t u r e s d o not
reactants (after correct-
2
u s e d i n o x i d a t i o n of c h r o m i u m ) .
O x i d a t i o n of M n 0 2
3
to
is c o m p l e t e , since c o m p a r a b l e c e l l d i m e n s i o n s are o b t a i n e d f r o m
2
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch004
the t w o r e a c t a n t m i x t u r e s .
MO +
Pt0
2
T h e present d i s c u s s i o n w i l l not i n c l u d e results o n reactions of
Pt0
2
w i t h C a O , S r O , or B a O . T h i s p o r t i o n of o u r i n v e s t i g a t i o n has not b e e n c o m p l e t e d a n d w i l l b e r e p o r t e d later. S e v e r a l of the r e m a i n i n g systems n e e d b e m e n t i o n e d o n l y b r i e f l y : P d O shows n o e v i d e n c e of r e a c t i o n w i t h Pt0
2
at h i g h pressure, a n d the r e a d i l y o x i d i z a b l e m o n o x i d e s of manganese,
iron, and t i n reduce P t 0 M Pt0 2
4
to t h e m e t a l .
2
Compounds.
M u l l e r and R o y (5)
h a v e d e s c r i b e d the s y n -
thesis of spinels i n t h e Z n O - P t 0 a n d M g O - P t 0 systems. W e h a v e p r e 2
p a r e d these c o m p o u n d s
2
at h i g h pressure; the u n i t c e l l d i m e n s i o n s are
8 . 5 5 0 ( 2 ) A for Z n P t 0 a n d 8 . 5 2 1 ( 2 ) A for M g P t 0 , i n excellent agree2
4
2
ment w i t h M u l l e r and Roy.
4
A n e x p e r i m e n t at 1 5 5 0 ° C has
produced
b r i g h t y e l l o w o c t a h e d r a of the z i n c s p i n e l w h i c h are s u i t a b l e for single c r y s t a l studies. T h e r m a l analysis of this c r y s t a l l i n e m a t e r i a l indicates that e n d o t h e r m i c d e c o m p o s i t i o n to Z n O a n d P t occurs at 830 ° C . T h e i n f r a r e d spectra of Z n P t 0 2
4
(Figure 5) and M g P t 0 2
4
are c h a r -
acteristic of spinels w i t h three strong a b s o r p t i o n m a x i m a to 200 c m " ; t h e 1
s i n g l e w e a k b a n d n e a r 250 c m "
1
in Z n P t 0 2
4
and M g P t 0 2
4
200 c m " i n most other spinels. W h i t e a n d D e A n g e l i s (20) 1
occurs
below
have shown
that, c o n t r a r y to some p r e d i c t i o n s , inverse spinels s h o u l d not a n d d o n o t h a v e m o r e c o m p l e x spectra t h a n the n o r m a l spinels. Since the t w o types of ions i n the o c t a h e d r a l sites are r a n d o m l y d i s t r i b u t e d , the o n l y result w i l l b e a shift i n the p e a k frequencies r a t h e r t h a n a r e m o v a l of eracy.
degen-
T a b l e I I I lists tentative assignments g i v e n to the m a x i m a i n the
z i n c a n d m a g n e s i u m spinels. T h e y are i n agreement w i t h the conclusions r e a c h e d b y W h i t e a n d D e A n g e l i s i n i n t e r p r e t i n g s p i n e l spectra since i n t e r n a l s t r e t c h i n g frequencies of M g 0 1
t e t r a h e d r a i n a n u m b e r of spinels
4
r a n g e f r o m 690 to 565 c m " , a n d i n Z n 0
4
t e t r a h e d r a f r o m 667 to 555 c m " .
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
1
50
P L A T I N U M
Table III. Mg Pt04 655 c m
612 c m
- 1
575 490 240
A N D
C O M P O U N D S
Assignment M e t a l - o x y g e n stretch i n tetrahedron
- 1
565 465 252
Lattice-stretching mode i n v o l v i n g octahedron B e n d i n g mode i n tetrahedron Lattice bending mode τ
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch004
M E T A L S
Absorption Bands in Platinum Spinels
ZniPtOi
2
G R O U P
900
1
800
700
1
1
600
500
WAVENUMBER
Figure 5.
1
Γ
400 CM
300
200
- 1
Infrared spectra of Zn Pt0 Cd ?tO 2
%
T h e h i g h f r e q u e n c y v i b r a t i o n is not assigned to a P t 0 i n g m o d e because the m i x e d ( M P t ) 0
and
ll
k
6
6
octahedral stretch
g r o u p i n g is expected to shift the
v i b r a t i o n to a l o w e r f r e q u e n c y . M u l l e r and Roy (8) h a v e assigned t h e S r P b 0 2
h a v e r e p o r t e d the synthesis of C d P t 0 2
4
structure to this n e w c o m p o u n d .
We
and
4
have
p r e p a r e d this c o m p o u n d a n d o b t a i n e d orange l a t h - l i k e crystals at 1550 ° C a n d 40 k b pressure. O u r p o w d e r d a t a o n C d P t 0 are i n agreement w i t h 2
4
the S r P b 0 structure assignment; w e h o p e to r e p o r t a d e t a i l e d s t r u c t u r e 2
4
analysis later. T h e i n f r a r e d s p e c t r u m is presented i n F i g u r e 5. P e a k as signments h a v e n o t b e e n a t t e m p t e d since insufficient s t r u c t u r a l d a t a are a v a i l a b l e . T h e r m a l analysis i n d i c a t e s d e c o m p o s i t i o n of C d P t 0 to C d O 2
4
a n d P t at 8 4 0 ° C , f o l l o w e d b y d e c o m p o s i t i o n of C d O a b o v e 1 0 0 0 ° C .
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
4.
H O E K S T R A
E T
A L .
Reaction
of Platinum
51
Dioxide
O u r attempts to p r e p a r e c o m p a r a b l e p l a t i n u m spinels of the r e m a i n i n g d i v a l e n t t r a n s i t i o n m e t a l ions h a v e not s u c c e e d e d . W e h a v e i n d i c a t e d that M n O a n d F e O are o x i d i z e d b y P t 0 , b u t n o s p i n e l f o r m a t i o n w i t h 2
C o O , N i O , or C u O c o u l d b e c o n f i r m e d . A p p a r e n t l y these d i v a l e n t ions c a n n o t b e f o r c e d i n t o t e t r a h e d r a l sites against t h e i r o c t a h e d r a l site p r e f e r ence energy.
T h e m i x e d spinels Z n C o P t 0 , Z n N i P t 0 , a n d M g C o P t 0 4
have, however, been prepared.
4
4
I n these c o m p o u n d s , c o b a l t a n d n i c k e l
c a n r e p l a c e the o c t a h e d r a l l y c o o r d i n a t e d z i n c a n d m a g n e s i u m of
the
s i m p l e spinels. MPt 0 3
with P t 0
2
Compounds.
6
A l t h o u g h C o O , N i O , a n d C u O d o n o t react
to f o r m spinels, t h e y d o p a r t i c i p a t e i n reactions w i t h the d i -
o x i d e to f o r m t e r n a r y oxides h a v i n g the g e n e r a l f o r m u l a M P t 0 ; Z n O , 3
6
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch004
M g O , C d O , a n d H g O also f o r m m e m b e r s of this series. It is a p p a r e n t f r o m the f o r m u l a t h a t not a l l o f the p l a t i n u m is present i n the t e t r a v a l e n t state, a n d t h e reactions i n v o l v e d represent a d e p a r t u r e f r o m those e n c o u n t e r e d i n t h e systems discussed p r e v i o u s l y . A t y p i c a l e q u a t i o n m a y be w r i t t e n 2HgO + 5 P t 0
2
+ P t -> 2 H g P t 0 3
I n o u r i n i t i a l experiments, H g O a n d P t 0
2
(2)
6
w e r e m i x e d i n a 1:1 m o l a r
ratio a n d h e a t e d u n d e r 40 k b pressure to 8 0 0 ° C for 1 h o u r .
A single
phase c r y s t a l l i n e p r o d u c t w a s r e c o v e r e d , p u r i f i e d i n a q u a r e g i a , a n d f o u n d to b e i n d e x i b l e as a h e x a g o n a l c e l l w i t h a =
7.25 A a n d c =
m e a s u r e d p y c n o m e t r i c d e n s i t y is 12.33 g r a m s / c m . i n d i c a t e d that the c o m p o u n d is not H g P t 0
3
5.16 A . T h e
T h e r m a l analysis
3
since d e c o m p o s i t i o n at 650 ° C
is a c c o m p a n i e d b y o n l y a 3 3 . 5 % w e i g h t loss. A c o m p l e t e analysis of the n e w c o m p o u n d gives the f o l l o w i n g percentages: o x y g e n 1 0 . 8 % , m e r c u r y 22.6%, and platinum 66.6%.
T h e c a l c u l a t e d percentages f o r
are: oxygen 1 0 . 9 % , mercury 2 2 . 7 % , a n d p l a t i n u m 6 6 . 4 % .
HgPt 0 3
6
I n this i n -
stance, the P t f o i l e n v e l o p e is n o t i n e r t to the reactants a n d p a r t i c i p a t e s i n the r e a c t i o n . S u b s e q u e n t experiments w i t h g o l d envelopes a n d w i t h p o w d e r e d p l a t i n u m i n the r e a c t i o n m i x t u r e h a v e c o n f i r m e d t h e s t o i c h i o m e t r y g i v e n i n the e q u a t i o n a b o v e . A s i m i l a r c o m p o u n d is f o r m e d i n the C d O - P t 0 s y m m e t r y is p s e u d o h e x a g o n a l o r t h o r h o m b i c .
system, b u t the
2
I n addition, certain weak
lines d i s c e r n i b l e i n the p o w d e r p a t t e r n i n d i c a t e that a l a r g e r c e l l m u s t b e chosen. A tentative i n d e x i n g of H g P t 0 3
6
and C d P t 0 3
6
w h i c h gives r e a -
sonable agreement i n intensities places these c o m p o u n d s i n space g r o u p Immm
— D
25
2h
w i t h H g or C d i n positions 2a a n d 2c, d i v a l e n t p l a t i n u m
i n positions 2b a n d 2d, tetravalent P t i n 8k, 0 / i n 8m, a n d O
n
and
O
i n
i n 8n. A l t h o u g h w e h a v e chosen a r b i t r a r y values for the o x y g e n c o o r d i nates b a s e d o n a k n o w l e d g e of c a t i o n r a d i i , w e h a v e not a t t e m p t e d to v e r i f y the structure.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
52
P L A T I N U M
3
Dimensions Compound HgPt 0 CdPtsO ZnPtsOe MgPtsOe NiPt 0 CoPtaOe 3
6
e
6
Table V .
6
A N D C O M P O U N D S
Compounds
in A ( ± 0.005)
a
b
c
10.334 10.189 9.953 9.928 9.919 9.925
7.264 7.215 7.131 7.115 7.109 7.084
6.286 6.327 6.287 6.304 6.234 6.234
Powder D a t a for M g P t O ( C r Radiation)
orthorhombic Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch004
M E T A L S
U n i t Cell Dimensions of M P t 0
Table I V .
3
G R O U P
3
e
a = 9.928, b = 7.115, c = 6.804 A
hkl
d(A)
lobtd
hkl
d
/
110 200 020 002 310 220 112 202 400 022 130 312 222 420 402 330 510 132 040 422 240 332 512
5.733 4.916 3.527 3.132 2.984 2.878 2.754 2.651 2.470 2.350 2.298 2.168 2.123 2.025 1.945 1.921 1.907 1.855 1.774 1.706 1.669 1.639 1.631
20 10 5 1 15 100 15 65 50 55 1 5 10 5 5 10 5 5 60 85 5 5 5
004 042 114 620 242 602 440 150 314 224 532 622 404 442 152 712 424 800 334 352 044 820 260
1.573 1.544 1.518 1.4969 1.4760 1.4626 1.4433 1.4065 1.3949 1.3817 1.3681 1.3528 1.3286 1.3127 1.2842 1.2718 1.2459 1.2402 1.2188 1.2061 1.1796 1.1708 1.1532
45 5 10 70 85 65 70 5 5 80 10 10 60 5 30 30 5 80 35 20 100 20 100
A n a l o g o u s c o m p o u n d s are o b t a i n e d w i t h t h e t r a n s i t i o n m e t a l m o n oxides. H e r e a g a i n , o u r e a r l y results suggested a l o w e r p l a t i n u m content f o r t h e o r t h o r h o m b i c phases, b u t a r e c o g n i t i o n o f t h e p a r t i c i p a t i o n of P t m e t a l i n t h e r e a c t i o n l e d t o a r e v i s i o n of t h e c o m p o s i t i o n .
Subsequent
experiments at t h e s t o i c h i o m e t r y g i v e n b y E q u a t i o n 2, together
with
c h e m i c a l analyses of t h e p u r i f i e d p r o d u c t s , h a v e c o n f i r m e d t h e M P t 0 3
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
6
4.
HOEKSTRA ET AL.
Reaction of Platinum Dioxide
53
formulation for the entire series. Cell dimensions for the six compounds are given in Table IV and powder data for the magnesium compound in Table V. The copper compound is not listed since it is not isostructural with the other members of the series, presumably owing to a Jahn-Teller distortion. Muller and Roy (7) have reported some structural data on CuPt O . Thermal analysis of the MPt 0 series indicates a somewhat dimin ished stability relative to the M Pt0 compounds; decomposition to MO and Pt occurs at 650°-700°C, which is about 150° lower than the spinel decomposition temperature. 3
e
3
2
6
4
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch004
Acknowledgment We are indebted to B. S. Tani for assistance in acquiring the x-ray daita, and to Vaughn Leigh, Fleet Rust, and John Beres for their help with some of the experiments at high pressure.
Literature Cited (1) Busch, R. H., Galloni, E. E., Raskovan, J., Cairo, A. E., Anais Acad. Brasil. Cienc. 1952, 24, 185. (2) Hoekstra, H. R., Inorg. Chem. 1966, 5, 754. (3) Hoekstra, H. R., Gallagher, F., Inorg. Chem. 1968, 7, 2553. (4) Hoekstra, H. R., Siegel, S., Inorg. Chem. 1968, 7, 141. (5) Muller, O., Roy, R., Mater. Res. Bull. 1969, 4, 39. (6) Muller, O., Roy, R.,J.Less Common Metals 1968, 16, 129. (7) Muller, O., Roy, R.,J.Less Common Metals 1969, 19, 209. (8) Muller, O., Roy, R.,J.Less Common Metals 1970, 20, 161. (9) Pinsker, Z. G.,J.Phys. Chem. USSR 1941, 15, 559. (10) Randall, J. J., Ward, R.,J.Am. Chem. Soc. 1959, 81, 2629. (11) Randi, G., Atti Accad. Naz. Lincei, Rend., Classe Sci. Fis.Mat.Nat 1966, 41, 197. (12) Scheer, J. J., Van Arkel, A. E., Hayding, R. D., Can. J. Chem. 1955, 33, 683. (13) Shannon, R. D., Solid State Comm. 1968, 6, 139. (14) Shannon, R. D., Prewitt, C. T., Acta Cryst. 1969, B25, 925. (15) Siegel, S., Hoekstra, H., Sherry, E., Acta Cryst. 1966, 20, 292. (16) Siegel, S., Hoekstra, H. R., Tani, B. S.,J.Inorg. Nucl. Chem. 1969, 31, 3803. (17) Sleight, A. W., Mater. Res. Bull. 1968, 3, 699. (18) Statton, W. O.,J.Chem. Phys. 1951, 19, 40. (19) Sundholm, Α., Anderson, S., Magneli, Α., Marinder, B., Acta Chem. Scand. 1958, 12, 1343; Marinder, B., Magneli, Α., ibid., 1958, 12, 1345. (20) White, W. B., De Angelis, Β. Α., Spectrochim. Acta 1967, 23A, 985. RECEIVED December 16, 1969. Work performed under the auspices of the U. S. Atomic Energy Commission.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
5
Nitrido Complexes of the Platinum G r o u p Metals
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch005
M. J. CLEARE and F. M. LEVER Johnson, Matthey & Co., Ltd., Research Laboratories, Wembley, Middlesex, England W. P. GRIFFITH Inorganic Research Laboratories, Imperial College of Science & Technology, London, S.W. 7, England
A new class of binuclear nitrido complexes of tetravalent osmium and ruthenium is described in which the metal atoms are symmetrically bridged by a nitride ligand to give a linear M—N—M unit. They have the stoichiometries [MNX(HO)] and [MN(NH)Y] (M = Os, Ru; X = Cl, Br; Y = Cl, Br, etc.). Studies are reported on their vibrational spectra, structures, and bonding. Preliminary studies are reported also on trinuclear complexes of osmium and iridium. Finally, the use of vibrational spectroscopy in the study of metal-nitrido and metal—oxo complexes i discussed briefly. 3-
2
8
1
2
3+
2
2
38
2
3
'"J" he nitride ion, N ", is a strong 7r-donor ligand and, as such, one expects tofindit complexed with a metal in a relatively high oxidation state, similar to oxide andfluoridein their complexes. Of the six platinum group metals, nitrido complexes are known at present only for osmium, ruthenium, and iridium. These are shown in Table I. The terminal complexes of osmium have been known for many years, and we intend in this paper to discuss them only briefly, concentrating in more detail on the binuclear species of osmium and ruthenium, which we have been studying recently. The trinuclear complexes of iridium and osmium are discussed in the light of recent spectroscopic data. A heterometallic species, (PEt Ph) Cl ReNPtCl (PEt3), with a nitrogen bridge between a platinum and a rhenium atom has been described recently by Chart and Heaton (2), but will not be discussed here. A
2
2
2
54 In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
3
5.
C L E A R E
E T
Nitrido
A L .
55
Complexes
Terminal Osmium Nitrido Complexes T h e s e c o m p o u n d s h a v e b e e n k n o w n for m a n y years a n d the p r e p a r a t i v e m e t h o d s are i n d i c a t e d i n T a b l e I I . P o t a s s i u m o s m i a m a t e , K [ O s ( V I I I ) 0 N ] , is p r e p a r e d b y the a d d i t i o n 3
of aqueous a m m o n i a to a s o l u t i o n of o s m i u m tetroxide, O s 0 , i n c a u s t i c 4
potash solution (6). Table I.
X - r a y studies s h o w t h e m o l e c u l e to b e b a s i c a l l y
N i t r i d o Complexes of the Platinum Metals Osmium
Terminal
Os(VIII) [Os0 N]Os(VI) [ O s N X ] - [ O s N X H 0 ] (X = Cl,Br,CN,l/2 X ) 3
5
2
5
4
2
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch005
0
Bridging
Os(IV) [ O s N X ( H 0 ) ] - ( X = Cl,Br) [Os N(NH )8X ] (X = Cl,Br,I,NCS,N ,N0 ) 2
8
2
2
3
2
3
2
3 +
3
Trinuclear
3
Os N 0 H i 3
7
9
2
Ruthenium Bridging only
[Ru(IV),N X (H 0) ] -(X = Cl,Br,NCS) [Ru(IV) N(N0 ) (OH) (H 0) ] " [ R u ( I V ) N ( N H ) X ] + ( X = Cl,Br,NOa) [ R u ( I V ) N ( N H ) (H O) X ] ( X = C1,NCS,N ) 8
2
2
2
2
3
2
3
2
6
2
8
3
2
2
3
3
2
6
a
3
2 +
3
Iridium Trinuclear only:
[Ι^Ν^Ο,ΜΗ,Ο);,] [Ir N(S0 ) (OH) ] [Ir N C1 (H 0) ] " 4
3
4
3
6
3
1 2
Table II.
2
3
7
4
Terminal Osmium N i t r i d o Complexes Os(VIII)
Os0
4
+
O H
9
+
N H -> [ O s 0 N ] " + 3
3
2H 0 2
P o t a s s i u m o s m i a m a t e forms pale y e l l o w c r y s t a l s . Molecular structure : distorted tetrahedral ν Os = Ν 1021 c m - . 1
Os(VI) [Os0 N]- + Χ " + 3
6 H X -> [Os Ν X ] - + X 2
5
(X =
2
+
3H 0 2
Cl,Br)
T h e s e complexes t e n d t o lose t h e l i g a n d t r a n s t o the n i t r i d e t o give (Os N X H 0 ) ~ ( X = B r , C N , y ox) i n aqueous s o l u t i o n ; ν O s = N ~ 1080 cm . 4
2
2
- 1
M o l e c u l a r s t r u c t u r e : d i s t o r t e d o c t a h e d r a l ( C ) w i t h the o s m i u m a t o m s l i g h t l y o u t of the X p l a n e t o w a r d s t h e n i t r i d e (in the case of [ O s N C l ] ) . 4r
4
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
5
3 -
56
P L A T I N U M
G R O U P
M E T A L S
t e t r a h e d r a l , a l t h o u g h s o m e w h a t d i s t o r t e d (12). frequency
1
(X =
complexes
of t y p e
1 5
N substitution
[ O s ( V I ) N X ] - or 5
C O M P O U N D S
T h e Os==N s t r e t c h i n g
is at 1021 c m " , w h i c h shifts to 993 o n
Os(VI)
A N D
(16).
[Os(VI)NX4H 0]"
2
2
C l , B r , C N , ^ox) are m a d e b y t h e a c t i o n of t h e a p p r o p r i a t e a c i d
H X o n p o t a s s i u m o s m i a m a t e (6, 11).
T h e t e n d e n c y to lose the l i g a n d
trans to t h e n i t r i d e a n d to substitute a w a t e r m o l e c u l e is s o m e e v i d e n c e of a trans l a b i l i z i n g effect of n~donor l i g a n d s . X - r a y studies s h o w a d i s t o r t e d o c t a h e d r a l s t r u c t u r e w i t h the o s m i u m a t o m s l i g h t l y out of the p l a n e of t h e e q u a t o r i a l X atoms t o w a r d s the n i t r i d e ( I ) . stretching
frequency
is a r o u n d 1080 c m "
T h e Os==N
i n s u c h complexes.
(11)
1
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch005
Binuclear Nitrides of Osmium and Ruthenium I n g e n e r a l , t h e r e is a s i m i l a r r a n g e of complexes
for each metal,
b o t h b e i n g i n t h e o x i d a t i o n state ( I V ) . Anionic Complexes.
T h e p r e p a r a t i o n of these c o m p o u n d s
is i n d i
c a t e d i n T a b l e I I I . T h e p r o d u c t of t h e r e a c t i o n of ( N H ) [ O s C l ] w i t h 4
2
6
c h l o r i n e gas at 4 0 0 ° C w i l l dissolve i n d i l u t e h y d r o c h l o r i c a c i d ; f r o m this Table III.
Binuclear Osmium and Ruthenium N i t r i d o Complexes Anionic
Complexes
Cli
(NH ) 4
2
[Os CI,]
+ [Os NCl (H 0) ] 400°C then H C 1 2
8
2
3
2
[Ru N C1 (H 0) ] 2
8
2
2
3
[RuN(OH) · nH 0] 6
NH
3
2
Aq./OHQ
[Ru0 ] 4
2
HBr [Ru N(OH) 2
6
5
2
2
[Ru N(OH) · n H 0 2
[Ru N Br (H 0) ] -
· nH 0]
2
8
2
3
2
HC1 + [Ru N C1 (H 0) ] 2
8
2
3
2
NC93 Ν0 θ 2
[Ru N(N0 ) (OH) (H 0) ] 2
2
6
2
2
2
3
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
5.
C L E A R E
E T
ΝUndo
A L .
57
Complexes
s o l u t i o n , salts of the t y p e M ( I ) [ O s ( I V ) 2 N C l ( H 0 ) 2 ] 3
tated ( 5 ) .
8
can be p r e c i p i
2
T h e analogous r u t h e n i u m complexes
m a y be prepared
by
r e a c t i o n of K [ R u ( N O ) C l ] w i t h stannous c h l o r i d e i n h y d r o c h l o r i c a c i d 2
solution (4).
5
O t h e r p r o d u c t s are f o r m e d i n this r e a c t i o n , i n p a r t i c u l a r a
n i t r o s y l c o m p l e x c o n t a i n i n g c o o r d i n a t e d S n C l " , w h i c h is s t i l l u n d e r i n 3
vestigation. A d d i t i o n of a l k a l i to a n aqueous s o l u t i o n of [ R u ( I V ) N C l ( H 0 ) ] ~ 2
y i e l d s a b r o w n gelatinous p r e c i p i t a t e of R u N ( O H ) 2
8
2
2
3
· n H 0 which will
5
2
redissolve i n h y d r o c h l o r i c a c i d to regenerate the o r i g i n a l c o m p l e x . h y d r o x y species m a y b e p r e p a r e d d i r e c t l y b y the a c t i o n of
This
formaldehyde
w i t h K [ R u ( N O ) C l ] i n a l k a l i n e s o l u t i o n , or b y r e a c t i o n of p o t a s s i u m 2
5
r u t h e n a t e , K [ R u 0 ] w i t h excess aqueous a m m o n i a . H y d r o b r o m i c a c i d 2
4
o n t h e h y d r o x y c o m p l e x y i e l d s [ R u N B r ( H 0 ) ] ~ , w h i l e the a c t i o n of Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch005
2
8
2
3
2
excess t h i o c y a n a t e o n a h y d r o c h l o r i c a c i d s o l u t i o n of the h y d r o x i d e gives [Ru N(NCS) (H 0) ] ". 2
8
2
P o t a s s i u m n i t r i t e reacts w i t h a n aqueous s o l u
3
2
t i o n of [ R u N C l ( H 0 ) ] - t o give [ R u N ( N 0 ) ( O H ) ( H 0 ) ] - . 2
8
2
3
2
2
2
6
2
2
f r a r e d s p e c t r a i n d i c a t e that b o t h of t h e l a t t e r l i g a n d s ( N 0
In
3
2
and N C S )
2
are N - b o n d e d to the m e t a l ( 5 ) . M o l a r conductances of these a n i o n i c complexes i n aqueous s o l u t i o n are i n i t i a l l y close to the values e x p e c t e d for 3:1 electrolytes, b u t o n l o n g s t a n d i n g or o n h e a t i n g t h e conductances increase g r e a t l y , a n d there is a p a r a l l e l decrease i n the p H of t h e s o l u t i o n . W e assume t h a t this results f r o m r e p l a c e m e n t of the h a l o l i g a n d s b y a q u o groups a n d loss of a p r o t o n f r o m the w a t e r l i g a n d s . T h e effect is less m a r k e d for the o s m i u m c o m plexes t h a n for r u t h e n i u m , p r e s u m a b l y because of the greater inertness of t h i r d - r o w elements t o w a r d s s u b s t i t u t i o n ( 5 ) . C a t i o n i c C o m p l e x e s . O n e series of a m m i n e complexes has b e e n f o u n d for o s m i u m ( [ O s N ( N H ) V ] 2
X ] 2
3 +
and
3
8
2
3 +
) a n d two for r u t h e n i u m ( [ R u N ( N H ) 2
[Ru N(NH ) (H 0)X ] 2
3
6
2
3
2 +
).
3
T h e preparative methods
8
are
indicated i n Table I V . R e a c t i o n of s o d i u m chloroosmate
Na [OsCl ] 2
w i t h aqueous
6
am
m o n i a at ~ 1 0 0 ° C i n a C a r i u s t u b e y i e l d s [ O s N ( N H ) C l ] C l . A n o t h e r 2
3
8
2
3
m e t h o d is the r e a c t i o n of a m m o n i a w i t h K [ O s N C l ( H 0 ) ] . T h e p r o d 3
2
u c t w i l l react w i t h excess X " i o n to g i v e
8
2
2
[Os N(NH ) X ]X 2
3
8
2
(X
3
=
B r " , I " , N C S " , N " , N 0 " ) after short r e f l u x i n g i n aqueous s o l u t i o n . Salts of 3
3
the f o r m [ O s N ( N H ) X ] Y m a y b e p r e p a r e d m e t a t h e t i c a l l y w i t h Y " i o n 2
3
8
2
3
i n the c o l d , suggesting t h a t o n l y t w o of the five X groups are c o o r d i n a t e d . T h e r e a c t i o n of aqueous a m m o n i a o n K [ R u N X ( H 0 ) ] gives a 3
m i x t u r e of Cl,Br).
[Ru N(NH ) X ]X 2
3
8
2
3
2
8
2
2
and [ R u N ( N H ) ( H 0 ) X ] X 2
3
6
2
3
(X
2
T h e f o r m e r y i e l d s species of the f o r m [ R u N ( N H ) X ] Y 2
metathesis i n the c o l d w i t h Y " i o n ( Y =
3
8
2
3
— on
B r , I , N C S , N , N 0 " ) , while boiling 3
3
w i t h a n excess of c e r t a i n l i g a n d s results i n a m m i n e r e p l a c e m e n t c o n v e r s i o n to a h e x a m m i n e species—i.e., [ R u N ( N H ) ( H 0 ) Y ] Y 2
3
6
2
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
3
and 2
(Y
58
P L A T I N U M
Table IV.
M E T A L S
A N D
C O M P O U N D S
Binuclear Osmium and Ruthenium Nitrido Complexes Cationic NH
[Os X ] " 6
Aq.
3
2
NH 2
Complexes
> [Os N(NH ) X J X 100°C,Carius (X = Cl,Br) tube
2
[Os NCl (H 0) ] 8
2
[Os N(NH ) 2
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch005
G R O U P
3
3
2
2
8
3
Aq.
3
> [Os N(NH ) 100°C, C a r i u s tube
Cl ] +
8
3
3
2
3
Excess X ~ > [Os N(NH ) Reflux i n a q . soin 2
3
C1 ]C1
8
2
3
X ] +
8
2
3
(X = Br,I,NCS,N ,N0 ) 3
[Ru N(NH ) 2
NH [Ru N 2
3
3
3
C1 ]C1
8
2
2
Aq.
X (H 0) ] ~ 8
2
2
3
Heat [Ru N(NH ) (H 0)Cl ]Cl 2
Figure
1.
Structure
of the anion in
3
6
2
3
2
K [Ru NCl (HgO) ] 3
2
8
2
= N " , N C S " , N 0 " ) . I t appears t h a t other ligands—e.g., N 0 " — w i l l l e a v e t h e c o m p o u n d as a n o c t a m m i n e . Species of t h e t y p e [ R u N ( N H ) ( H 0 ) Y ] Z m a y b e m a d e b y metathesis w i t h Z " i n t h e c o l d ( Z = C 1 , I ) . 3
2
3
2
2
3
2
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
3
6
5.
C L E A R E
E T
Nitrido
A L .
59
Complexes
M o l a r c o n d u c t a n c e s for the o s m i u m a n d r u t h e n i u m o c t a m m i n e s i n aqueous s o l u t i o n w e r e close to the values e x p e c t e d f o r 3:1 (.—360 m h o s c m )
electrolytes
b u t rose o n s t a n d i n g or h e a t i n g to g i v e final values
2
nearer that e x p e c t e d for a 5:1 electrolyte ( ^ 6 0 0 m h o s c m ) .
T h i s is p r e
2
s u m a b l y because of trans a q u a t i o n ; the effect w a s a g a i n less m a r k e d for o s m i u m . S i g n i f i c a n t l y , a l l the h a l o g e n i n the h a l o species [ R u N ( N H ) 2
3
Χ 2 ] Χ δ c o u l d be p r e c i p i t a t e d w i t h silver n i t r a t e f r o m h e a t e d
8
solutions.
C o n d u c t i v i t i e s for the h e x a m m i n e s also v a r i e d s o m e w h a t w i t h t i m e , b u t i n i t i a l values w e r e l o w e r t h a n for the o c t a m m i n e s presence of a 2:1 electrolyte (240 m h o s c m )
and indicated
the
(5)
2
A n x-ray s t r u c t u r a l d e t e r m i n a t i o n has b e e n c a r r i e d out
Structure.
on K [ R u 2 N C l ( H 0 ) 2 ] 3
8
(3)
2
a n d the results are d e p i c t e d i n F i g u r e 1.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch005
T h e a n i o n has a l i n e a r skeleton w i t h the e i g h t e q u a t o r i a l c h l o r i n e atoms e c l i p s e d so that the o v e r - a l l i d e a l i z e d s y m m e t r y of the a n i o n is D .
Each
4h
r u t h e n i u m a t o m is d i s p l a c e d 0.19 A out of the C l n i t r o g e n atom.
4
plane toward
the
S u c h a d i s p l a c e m e n t of m e t a l atoms t o w a r d s a 7r-donor
l i g a n d has b e e n o b s e r v e d i n other complexes, s u c h as K [ R e O C l i ] 4
2
(18)
0
a n d (Ph^As) [ M o O B r H 0 ] ( 7 ) , as w e l l as K [ O s N C l ] ( I ) , w h i c h has 4
2
2
5
b e e n m e n t i o n e d p r e v i o u s l y . I t has b e e n suggested that this arises m a i n l y f r o m the r e p u l s i o n b e t w e e n the n i t r o g e n a n d c h l o r i n e l i g a n d s w i t h i n t h e molecule. S p e c t r a of
Vibrational Spectra.
t y p i c a l complexes are l i s t e d i n
T a b l e s V a n d V I . T h e c o m p o u n d s e x h i b i t s i m i l a r spectra,
suggesting
that t h e y a l l h a v e the same b a s i c structure. T h e m a i n features a r e : ( a ) T h e presence of a strong sharp b a n d i n the i n f r a r e d i n the r a n g e 1 0 5 0 - 1 1 3 0 c m " , not o b s e r v e d i n t h e R a m a n . T h i s b a n d is l i t t l e c h a n g e d i n f r e q u e n c y o n d e u t e r i a t i o n , b u t shifts d o w n w a r d b y s o m e 30 c m " o n 1
1
Table V .
Vibrational Spectra of Bridging Nitrido Complexes—Anionic Species
(M NX (H 0) y2
s
K (Os N 3
2
VM N
2
2
C1 (H 0) )
2
8
2
R
2
aS
—
2
8
267(10)
J315(4) /295(2) 303s b r
185w
329(4)
J301(10) (294(4)
200w
I R 1137 v s ° I R 1135 v s K (Ru N 3
C1 (H 0) )
2
8
2
R
2
—
R — I R 1078 v s a
a
K (Ru 3
a
2
1 5
N
C1 (H 0) ) 8
2
2
%X-M-X
V MN
330(4)p (315s /289m
I R 1080 v s I R 1046 vs
—
{315s /289m
Indicates aqueous solution measurement.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
60
P L A T I N U M
Table V I .
3 s
2
3
2
2
8
3
(Os N(ND ) C1 )C1 2
3
2
8
3
(Ru N(NH ) C1 )C1 2
3
2
8
a
R — I R 1104 v s
299(10)
2
3
R — I R 1101 v s
286(10)
8
3
267(1) 260s b r
286(3) 282m
430w 440w
254(1) 240s b r
278m 281m
J496(3) 1475(1) 465w
265w b r
280w
258m br
2 8 0 m sh
440vw 430w
250(1) 245s b r
273w 2 7 7 m sh
— 354(1)
R
—
IR
1055
—
R — I R 1054 v s
339(10)
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch005
2
C O M P O U N D S
455w 465w
—
3
(Ru N(ND ) C1 )C1
A N D
%M—NH
VM-NH
VM N *
2
(Os N(NH ) C1 )C1
M E T A L S
Vibrational Spectra of Bridging N i t r i d o Complexes—Cationic Species
(M N(NH ) X y+ 2
GROUP
—
Figure 2. Bonding in Ο—Ru and Ru—Ν—Ru tems
Ru— sys
Diagram shows 4 d « - 2 p - 4 c L overlap. There will be a sim ilar 4 d x y - 2 p y - 4 d x y ΟΌβ^Ρ ΰ ί right angles to the plane of the paper. e
B
—
-4d =4d
x
z
y 2
EMPTY PAIRED METAL ELECTRONS PAIRED LIGAND ELECTRONS
•U
Figure
3.
Bonding
in bridging
nitride
complexes
The M.O. diagram indicates the formation of two sets of 3-center molecular orbitals with the metal d electrons paired in the nonbonding orbitals
N substitution i n [ O s N ( N H ) B r ] B r and K [ R u NCl (H 0) ]. T h i s b a n d w e h a v e assigned to v M N> the a s y m m e t r i c M — Ν — M stretch. T h i s m o d e consists almost e n t i r e l y of n i t r o g e n m o v e m e n t a n d is expected to o c c u r i n the same r e g i o n as t h e t e r m i n a l m e t a l n i t r i d e stretches. ( b ) T h e presence of a s t r o n g , s h a r p , p o l a r i z e d R a m a n b a n d near 350 c m " f o r the r u t h e n i u m complexes a n d 280 c m " for the o s m i u m c o m 1 5
2
1 5
1 5
3
as
1
8
2
3
3
2
1 5
8
2
1
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
2
2
5.
C L E A R E
E T
Nitrido
A L .
61
Complexes
plexes, w h i c h w e assign to t h e s y m m e t r i c M — Ν — M s t r e t c h , V M N - T h e s e bands are n o t o b s e r v e d i n t h e i n f r a r e d spectra. T h e y shift d o w n w a r d some 13 c m " o n d e u t e r i a t i o n of t h e a m m i n e complexes, b u t this is l i k e l y to b e c a u s e d b y strong c o u p l i n g of V N ( a totally symmetric m o d e ) w i t h the s y m m e t r i c m e t a l a m m i n e stretches a n d deformations h a v i n g t h e same s y m m e t r y species (A ), together w i t h a slight effect a r i s i n g f r o m t h e greater mass of d e u t e r i u m . H e r e t h e m o d e consists m a i n l y of m e t a l m o v e m e n t ; this is c l e a r l y s h o w n b y t h e effect of t h e extra mass of o s m i u m . T h e g e n e r a l l a c k of c o i n c i d e n c e b e t w e e n R a m a n a n d i n f r a r e d bands a n d , i n p a r t i c u l a r , t h e fact that t h e R a m a n - a c t i v e V M N a n d i n f r a r e d - a c t i v e v M N a r e i n a c t i v e i n the i n f r a r e d a n d R a m a n , respectively, strongly s u g gest t h e presence of a center of s y m m e t r y . T h u s , as i n [ R u N C l ( H 0 ) 2 ] ~ t h e a q u o groups l i e trans to the n i t r i d e g r o u p , i t is l i k e l y t h a t the X groups i n [ M N ( N H ) X ] w i l l b e p l a c e d s i m i l a r l y ( 5 ) . S
2
1
S
M
2
lg
S
as
2
2
2
8
3
2
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch005
2
3
8
2
3 +
E l e c t r o n i c S p e c t r a . A l l these complexes are d i a m a g n e t i c as a result of t h e 7r-bonding, w h i c h is s h o w n i n F i g u r e 2. O f t h e f o u r m e t a l d electrons o n e a c h r u t h e n i u m a t o m ( R u ( I V ) d ) , t w o {d ,d ) w i l l p a i r u p i n t h e n o n b o n d i n g m o l e c u l a r o r b i t a l of t h e set p r o d u c e d b y t h e 3-center o v e r l a p b e t w e e n t h e d a n d d orbitals o n e a c h m e t a l a t o m , a n d t h e 2p a n d 2p orbitals o n t h e n i t r i d e . T h e l o w e r energy n i t r i d e electrons w i l l p a i r i n the b o n d i n g m o l e c u l a r orbitals ( F i g ure 3 ) . T h e r e m a i n i n g t w o electrons p e r r u t h e n i u m a t o m are p a i r e d i n t h e 4 dy o r b i t a l w h i c h remains essentially n o n b o n d i n g . I t is a consequence of this b o n d i n g scheme that t h e M — Ν — M g r o u p s h o u l d b e l i n e a r a n d that t h e e q u a t o r i a l ligands s h o u l d b e i n t h e e c l i p s e d (D ) rather than the staggered ( D ) positions. 4
xy
xz
xy
y
xz
z
Z
4h
4 d
Figure
4.
Electronic
spectra of some bridging complexes
nitrido
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
62
P L A T I N U M
G R O U P
5 0 s 0 + 7NH (llq) I l ^ L ^ 4
M E T A L S
A N D
C O M P O U N D S
Os N 0 H |
3
3
7
9
2
ORIGINAL FORMULATION HN 3
\/
OH
HO
—Os
/\
IR. BANDS
HN
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch005
NH
\/
3
= O s = 0
/\
OH
2
OH
NH
3
AT 1087, 1025, 970cm SHIFT
1053,997, 935cm
NEW
Ν
/\
OH
3
HO
\/
0 = O s = N HN
OH
, 5
ON
N
TO
SUBSTITUTION
FORMULATION HO
OH
v
\/
H O — Os = H^N
Figure
H^l
\/
HOI
Ν — Os
\>H
5.
OH
\/
Ν =
N^^NH
3
Os
HO^
NH
3
OH ^OH
Trinuclear Os(VI) nitndo plex
com
T h e electronic spectra (350-190 τημ) of three of these complexes are s h o w n i n F i g u r e 4. Jorgensen a n d O r g e l (14)
h a v e suggested that s i m i l a r
bands observed i n K [ R u O C l i ] arise f r o m transitions f r o m the h a l o g e n 4
2
0
l i g a n d s to the a n t i b o n d i n g m o l e c u l a r o r b i t a l f r o m the 3-center b o n d . f o l l o w this assignment for the
[M NX Y2]
system, a l t h o u g h i t is n o t
8
2
We
s t r i c t l y isolectronic w i t h [ R u O X i ] " . T h e R u — O — R u a n d R u — N — R u 2
groupings
are, h o w e v e r ,
4
0
isolectronic.
The
energy
of t h e a n t i b o n d i n g
m o l e c u l a r o r b i t a l is d e t e r m i n e d l a r g e l y b y the extent of the R u — Ο — R u or R u — Ν — R u π-bonding.
T h e b a n d s are seen near 400 τημ for
O C l i o ] " a n d at 397 a n d 330 m ^ ^ ^ H ) [ O s O C l i o ] . 4
4
2
are h i g h e r i n energy (e.g., K [ O s N C l ( H 0 ) ] , 273 τημ; 3
( H 0 ) ] , 294 τημ), 2
2
2
8
2
[Ru 2
In nitride they
2
2
K [Ru NCl 3
2
8
i n d i c a t i n g that M - N ττ-bonding is stronger t h a n for
M - O i n these b i n u c l e a r systems.
Trinuclear Osmium Complex T h e final p r o d u c t of the r e a c t i o n of l i q u i d a m m o n i a w i t h O s 0 the e m p i r i c a l f o r m u l a O s N 0 H i (17,20). 3
r e d s p e c t r u m of the
15
7
9
2
4
has
W e h a v e s t u d i e d the i n f r a
N - s u b s t i t u t e d c o m p o u n d a n d p r o p o s e structure I I
( F i g u r e 5) rather t h a n structure I, w h i c h was suggested o r i g i n a l l y . B a n d s at 1087, 1025, a n d 970 c m " shift to 1053, 997, a n d 935 o n N - s u b s t i t u t i o n 1
15
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
5.
C L E A R E
E T
Nitrido
A L .
63
Complexes
a n d m a y b e assigned to O s — Ν — O s o r O s — Ν s t r e t c h i n g modes. T h e n e w f o r m u l a t i o n accounts f o r t h e o b s e r v a t i o n t h a t o n l y t w o molecules of a m m o n i a are released o n h e a t i n g w i t h a l k a l i , since t w o of the a m m i n e groups are i n a different e n v i r o n m e n t f r o m the other t w o (5), a n d thus p r e s u m a b l y h a v e different stabilities i n respect to m e t a l - n i t r o g e n b o n d strengths.
Trinuclear Iridium Complexes T h e reaction of ( N H ) [ I r C l ] w i t h b o i l i n g sulfuric acid yields a s o l u t i o n f r o m w h i c h green salts o f the f o r m M [ I r N ( S 0 ) e ( H 2 0 ) 3 ] c a n be p r e c i p i t a t e d ( 8 , J 5 ) . I t has b e e n suggested that t h e a n i o n has t h e structure s h o w n o n F i g u r e 6 w i t h a c o p l a n a r I r N u n i t a n d ττ-bonding b e t w e e n t h e 2 p o r b i t a l ( p e r p e n d i c u l a r to t h e I r N t r i a n g l e ) a n d t h e i r i d i u m atoms ( 1 3 , 19). T h e o x i d i z i n g p o w e r o f the species is consistent w i t h it's c o n t a i n i n g o n e I r ( I I I ) a n d t w o I r ( I V ) atoms p e r m o l e c u l e (8, 13). R e d u c t i o n w i t h v a n a d o u s i o n gives a s t r a w - y e l l o w species c o n t a i n i n g three I r ( I I I ) atoms p e r m o l e c u l e . X - r a y studies o n the s o m e w h a t s i m i l a r [ C r 3 0 ( C H C O O ) ( H 2 0 ) ] C l · 5 H 2 0 h a v e s h o w n that t h e C r O u n i t is p l a n a r w i t h a t r i a n g u l a r a r r a n g e m e n t of m e t a l atoms ( 9 ) . 4
3
6
4
3
4
3
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch005
z
3
3
6
3
s
m
Figure 6. Proposed struc ture for indium trinuclear nitrides The Ir N unit is believed to be coplanar with the iridium atoms at the corners of an equilateral triangle. A related structure has been found for [Cr 0(Aces
3
Table VII.
Trinuclear Iridium Nitrido Complexes H
S0
2
3(NH ) [Ir Cl ] 4
3
4
> (NH )4[Ir3N(S0 )6(H 0)3]
6
4
2
4
H 0 2
[Ir N(S0 ) (H 0) ] 3
4
6
2
4
3
[Ir N(S0 ) (H 0) ] ~ 3
4
6
2
3
KOH > K [Ir N(S0 ) (OH) ] Cold 7
3
4
Caustic alkali
6
Ir N(OH)
4
3
3
u
· nH 0 2
Boiling / HC1 + C s CI Cs [Ir NCl (H 0) ] 4
3
1 2
2
3
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
64
P L A T I N U M
G R O U P
M E T A L S
A N D
C O M P O U N D S
O t h e r reactions of [ I r a N i S O ^ e i H k O ^ ] " are s h o w n o n T a b l e V I I . 4
Cold
c a u s t i c a l k a l i e s react to r e p l a c e
the a q u o g r o u p s ,
giving
[Ir 3
N ( S 0 ) 6 ( O H ) ] " , w h i l e h o t a l k a l i appears to r e p l a c e t h e sulfate l i g a n d s 7
3
4
to g i v e
a hydroxy
precipitate w h i c h probably
Ir N(OH)u · nH 0. 3
m a y be
described
as
T h e I r N g r o u p is s t i l l i n t a c t as r e a c t i o n w i t h s u l -
2
3
f u r i c a c i d regenerates the o r i g i n a l c o m p l e x .
The hydroxy complex
dis-
solves i n H C 1 to g i v e a species w h i c h appears to b e [ I r N C l i ( H 0 ) ] ~ . 3
2
2
3
4
W e h a v e m e a s u r e d t h e i n f r a r e d s p e c t r a of these species c o n t a i n i n g both
N and
1 4
N , a n d i n e a c h case a b a n d n e a r 780 c m " shifts d o w n w a r d
1 5
1
i n f r e q u e n c y b y some 20 c m "
1
on
to t h e a s y m m e t r i c I r N s t r e t c h . 3
1
5
N s u b s t i t u t i o n . W e assign this b a n d
T h e R a m a n s p e c t r a of the c o m p l e x e s
w e r e p o o r , o w i n g to t h e i r u n f a v o r a b l e colors, b u t w e a k b a n d s n e a r 230
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch005
cm"
m a y b e c a u s e d b y t h e s y m m e t r i c I r N stretch ( 5 ) .
1
3
s p l i t t i n g of the sulfate m o d e s is s i m i l a r to that o b s e r v e d ( S 0 ) ] (10), 4
S0
4
The
complex
in K i [ I r O 0
3
a n d p r e s u m a b l y arises f r o m the l o w site s y m m e t r y of the
9
groups w h i c h f u n c t i o n h e r e as b i d e n t a t e l i g a n d s .
Table VIII.
Vibrational Spectra of O x y and N i t r i d o Complexes X =
X = 0, cmr TERMINAL M-X 900-1060 300-400
VMX $mx
BRIDGING
N, cmr 1
1
950-1180 ca. 350
MmXn
Linear M - X - M V ¥
2
J
A
760-880 200-270
I
Linear VM x VM x 3
3
2
2
M - X - M - X - M
e
Triangular M v x* Mz
a
ca. 820 ca. 220
a e
3
1000-1160 260-370 ca. 1000
X 500-650 180-240
700-800 ca. 230
Comparison of the Vibrational Spectra of Oxy and Nitrido Complexes T a b l e V I I I shows the c h a r a c t e r i s t i c ranges of frequencies f o r s t r e t c h i n g a n d deformation modes for terminal a n d b r i d g i n g oxy a n d nitrido systems. I n e a c h case, t h e frequencies for the s t r e t c h i n g m o d e s are h i g h e r f o r n i t r i d e s t h a n f o r oxides. A l t h o u g h the n i t r o g e n a t o m is l i g h t e r t h a n o x y g e n , i t is l i k e l y t h a t this effect is c a u s e d i n l a r g e p a r t b y t h e f a c t t h a t
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
5. CLÉ ARE ET AL.
Nitrido Complexes
65
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch005
the nitride ligand is a more efficient ττ-donor than oxide—it is less electro negative and has more negative charge to impart to the metal atom (5).
Literature Cited (1) Bright, D., Ibers, J. Α., Inorg. Chem. 1969, 8, 709. (2) Chatt, J., Heaton, B. T., Chem. Commun. 1968, 274. (3) Ciechanowicz, M., Skapski, A.C.,Chem. Commun. 1969, 574. (4) Cleare, M. J., Griffith, W. P., Chem. Commun. 1968, 1302. (5) Cleare, M. J., Griffith, W. P.,J.Chem. Soc. 1970, A, 1117. (6) Clifford, A. F., Kobayashi, C. S., Inorg. Syn. 1960, 6, 204. (7) Cotton, F. Α., Lippard, S. J., Inorg. Chem. 1965, 4, 1621. (8) Delepine, M., Ann. Chim. (Paris) 1959, 1115, 1131. (9) Figgis, Β. N., Robertson, Ε. B., Nature 1965, 205, 695. (10) Griffith, W. P.,J.Chem. Soc. 1969, A, 2270. (11) Griffith, W. P.,J.Chem. Soc. 1965, 3694. (12) Jaeger, F. M., Zanstra, J. E., Proc. Acad. Sci. Amsterdam1932,35, 610 (13) Jorgensen, C. K., Acta Chem. Scand. 1959, 13, 196. (14) Jorgensen, C. K., Orgel, L. E., Mol. Phys. 1961, 4, 215. (15) Lecoq de Boisbaudran, Compt. Rend. 1883, 96, 1336, 1406, 1551. (16) Lewis, J., Wilkinson, G., J. Inorg. Nucl. Chem. 1958, 6, 12. (17) McCordie, W.C.,Watt, G. W., J. Inorg. Nucl. Chem. 1965, 27, 1130, 2013. (18) Morrow, J.C.,Acta Cryst. 1962, 15, 851. (19) Orgel, L. E., Nature 1960, 187, 505. (20) Potrafke, E. M., Watt, G. W., J. Inorg. Nucl. Chem. 1961, 17, 248. RECEIVED December 16, 1969.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
6
Hydrido Group
Complexes of Platinum Metals
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch006
L. M. VENANZI State University of New York at Albany, Albany, Ν. Y. 12203
The preparation and properties of hydrido complexes of platinum group metals are reviewed briefly. The reactions of the more common hydrido complexes of iridium are sche matically shown. The reactions of complexes [IrHX (PhP)] (X = Cl, Br, and I), I, with the quadridentate ligand (o-Ph P · C H ) P, QP, are described and rationalized on the basis of the following reaction sequence: 2
3
3
2
6
4
3
I—HX [IrX(Ph P) ] heat [IrHX(0-C H PPh )(Ph P) ] 3
3
6
4
2
3
2
QP [IrH(0-C H PPh )(QP)]X +HX [IrHX(Ph P)(QP)]X Complexes of the latter two types have been assigned seven -coordinate structures on the basis of their proton and phos phorus-31 NMR spectra even though the oxidation number of the iridium atom is 3+. 6
4
2
3
A11 platinum group metals give hydrido complexes of general formula M H XpL (X = anionic ligand and L = uncharged ligand). Al though this field of chemistry is relatively new, its main development occurring over the last 10 years, the number of papers describing new compounds, their properties, and their reactions is very large and is growing at an increasing rate. Hydrido complexes also have been the subject of several reviews (9,11, 23, 24, 25,39), and the present one, like its predecessors, will be sadly out of date by the time it appears in print. As its title implies, this review restricts itself to describing and discuss ing compounds of platinum group metals—i.e., of ruthenium, rhodium, palladium, osmium, iridium, and platinum—although the compounds of the other transition elements and even some post-transition elements are either fully analogous or closely related to those of the platinum metals. n
m
q
66 In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
6.
Hydrido
V E N A N Z I
Table I.
67
Complexes
Some Better Known Types of H y d r i d o Complex of the Platinum Metals' 1
Square
Planar
[PtH L ] [Ir-HX(LL)]
trans-[MBXL ] [IrH.(LL)] [M'(LL),]X
2
2
Five-Coordinate
[IrH L ] [IrH(CO) L ]
[IrH L ]X [M'H(CO)L,] 2
3
3
Octahedral 2
!
n
2
n
2
2
2
2
2
2
[IrH L 'L ]X [IrH L'L ]X [M'H X _ L ]
2
2
2
2
[PtH X L ] [M HX (CO)L ] [M"H X . (LL) [M"HX(CO)L ] 2
2
3
m
2
3
m
3
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch006
3
° M M L m
1
"
M ' = R h or Ir L = monodentate phosphine L L = bidentate phosphine η = 1 or 2
= P d or Pt = R u or Os = C O or monodentate phosphine = 1, 2, or 3
E v e n w i t h i n this l i m i t a t i o n , the subject is vast a n d , therefore, no a t t e m p t is m a d e to give a c o m p r e h e n s i v e d e s c r i p t i o n of the
field.
A s u r v e y of the c o m p o u n d s r e p o r t e d i n the l i t e r a t u r e shows t h a t the f o r m a t i o n of stable h y d r i d o complexes g e n e r a l l y is l i n k e d w i t h the p r e s ence i n the m o l e c u l e of one or m o r e of c e r t a i n types of l i g a n d s , the m o s t frequently occurring being carbon monoxide, phosphorus ( I I I ) senic ( I I I ) d e r i v a t i v e s , a n d the c y c l o p e n t a d i e n e
and ar
group.
I t is u s e f u l to classify the complexes b y t h e i r c o o r d i n a t i o n n u m b e r . T h e m a j o r i t y of t h e m are six-coordinate w i t h o c t a h e d r a l s t r u c t u r e , a l though four- and seven-coordinate
five-coordinate
species are n u m e r o u s , a n d e v e n some
species are k n o w n .
T a b l e I shows a list of the m a i n
types of c o m p o u n d s r e p o r t e d i n the l i t e r a t u r e . P r e p a r a t i v e m e t h o d s for h y d r i d o complexes
vary widely.
Some
the m o r e f r e q u e n t l y u s e d of t h e m a r e : (1)
A c t i o n of c o m p l e x h y d r i d e s ,
e.g., LiAlH
4
as-[RuCl (Me PCH CH PMe ) ] 2
2
2
2
2
>
2
imns-[RuHCl(Me PCH CH PMe ),] 2
(2)
2
2
2
A c t i o n of alcohols i n the presence of a base,
(16)
e.g.,
Ph P 3
(NH ) [OsBr ]< 4
2
6
• [ O s H B r ( C O ) ( P h P ) ] (41) MeOCH CH OH 3
2
(3)
P r o t o n a t i o n of complexes,
3
2
e.g., H+
[Ru (x-C H ) (CO) ] 2
5
5
2
6
> [Ru H(x-C H ) (CO) ]+ 2
5
5
2
6
(20)
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
of
68 (4)
P L A T I N U M
G R O U P
M E T A L S
A N D
C O M P O U N D S
A c t i o n of h y d r a z i n e , e.g., N H 2
· H 0 > i r a r c s - [ P t H C l ( E t P ) ] (17)
4
2
cie-[PrCl,(Et«P)J
3
2
H y d r i d o complexes are also f o r m e d i n some u n u s u a l r e a c t i o n s : MeOCH CH OH > [ P h A s ] [ P d H C l ( C O ) ] (27) at r o o m t e m p . 2
(1) P d C l + C O + [ P h A s ] C l 2
4
2
4
H 0 > [PtHI (Pr P) ]
2
2
(2) [ P t I ( M g I ) ( P r P ) ] 3
2
3
(19)
2
Some of the p r e p a r a t i v e m e t h o d s are best d e s c r i b e d , at least f o r m a l l y , as i n v o l v i n g a n " o x i d a t i v e a d d i t i o n " of a m o l e c u l e to a c o m p l e x of a m e t a l Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch006
i o n or a t o m i n a l o w o x i d a t i o n state. E x a m p l e s of this t y p e of r e a c t i o n are shown below. (1)
A d d i t i o n of m o l e c u l a r h y d r o g e n , H
[Rh(Me PCH CH PMe ) ]Cl 2
(2)
2
2
2
e.g.,
2
•aV[RhH (Me PCH CH PMe ) ]Cl
2
2
A d d i t i o n of h y d r o g e n h a l i d e ,
2
2
2
2
2
(12)
e.g.,
HC1 [Rh(Ph PCH CH PPh ) ]Cl 2
(3)
2
2
2
• a s - [ R h H C l ( P h P C H C H P P h ) ] C l (38)
2
2
A d d i t i o n of other h y d r i d e s ,
2
2
2
2
e.g.,
H S [Pt(Ph P) ] — U 3
* m n s - [ P t H ( S H ) ( P h P ) ] (35)
3
3
2
A p a r t i c u l a r l y i n t e r e s t i n g t y p e of o x i d a t i v e a d d i t i o n r e a c t i o n is the " h y d r o g e n a b s t r a c t i o n " r e a c t i o n , some examples of w h i c h are g i v e n b e l o w . (1) [ R u ( M e P C H C H P M e ) ] <=> [ R u H ( C H P ( M e ) C H C H P M e ) 2
2
2
2
2
2
(Me PCH CH PMe )] 2
2
2
2
2
2
2
(U)
heat (2) [ I r C l ( P h P ) ] 3
• [ I r H C l ( o - C H P P h ) ( P h P ) ] (7)
3
6
(3) i m n s - [ P t C l ( E t P ) ] + L i C B 2
3
2
1 0
H
1 0
4
2
3
2
C M e -> [ P t ( C B H C M e ) 1 0
1 0
( C H C H P E t ) ( E t P ) ] (8) 2
2
2
3
T h e s e reactions are of p a r t i c u l a r interest as t h e y c o u l d p r o v i d e the basis f o r a n u m b e r of c a t a l y t i c processes i n v o l v i n g s a t u r a t e d h y d r o carbons. T h e p r o p e r t i e s of h y d r i d o complexes v a r y w i d e l y , r a n g i n g f r o m those w h i c h c a n b e d e t e c t e d o n l y s p e c t r o s c o p i c a l l y to those that s h o w r e m a r k a b l e g e n e r a l c h e m i c a l s t a b i l i t y . S t a b i l i t y g e n e r a l l y tends to b e at a m a x i m u m i n c o m p o u n d s of the t h i r d t r a n s i t i o n series. F u r t h e r m o r e , f o r a g i v e n m e t a l a n d t y p e of c o m p l e x , s t a b i l i t y appears to b e at its h i g h e s t w h e n
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
6.
Hydrido
V E N A N Z I
69
Complexes
p h o s p h i n e l i g a n d s are present i n the m o l e c u l e .
Naturally, it w o u l d
be
f o o l h a r d y to take the a b o v e k i n d of s t a b i l i t y as a g u i d e to t h e r m o d y n a m i c s t a b i l i t y of the m e t a l - h y d r o g e n b o n d , as one w o u l d d r a w a c o r r e l a t i o n b e t w e e n a s t a b i l i t y w h i c h is a c o m p o s i t e of a n u m b e r of t h e r m o d y n a m i c a n d k i n e t i c factors a n d a r e l a t i v e l y s m a l l energy t e r m s u c h as the M - H b o n d energy. I t is regrettable that t h e r m o d y n a m i c d a t a o n h y d r i d o c o m plexes are t o t a l l y l a c k i n g b u t t h e y are almost i m p o s s i b l e to o b t a i n . T h e most c o m m o n l y
quoted physical data on hydrido
are the v i b r a t i o n a l spectra a n d p r o t o n m a g n e t i c resonance
complexes parameters.
H y d r i d o complexes e x h i b i t M - H s t r e t c h i n g v i b r a t i o n s i n the r e g i o n 1 7 0 0 2250 c m
- 1
a n d M - H b e n d i n g m o d e s i n the r e g i o n 6 6 0 - 8 5 0
cm . - 1
The
absence of a b s o r p t i o n i n the a b o v e regions, h o w e v e r , is not to b e t a k e n Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch006
as a n i n d i c a t i o n t h a t the m o l e c u l e u n d e r e x a m i n a t i o n does not c o n t a i n M - H bonds.
S e v e r a l h y d r i d o complexes are k n o w n w h e r e M - H b o n d s
w e r e not detectable b y i n f r a r e d spectroscopy
(28, 34, 37).
Proton mag
n e t i c resonance, o n the other h a n d , is a m o r e g e n e r a l l y u s e f u l t e c h n i q u e . P r o t o n resonances i n h y d r i d o complexes h a v e v e r y c h a r a c t e r i s t i c τ-values r a n g i n g f r o m 11 to 42 p p m r e l a t i v e to T M S . T h e l i m i t a t i o n here is i n t r o d u c e d b y s o l u b i l i t y a n d b y fast exchange p h e n o m e n a a l t h o u g h , i n m a n y cases, the f o r m e r difficulty c a n be o v e r c o m e b y s p e c t r u m a c c u m u l a t i o n a n d the latter b y l o w e r i n g the s a m p l e t e m p e r a t u r e . H y d r i d o l i g a n d s e x h i b i t a v e r y strong trans effect w h i c h appears to operate m a i n l y b y a l a b i l i z a t i o n of the b o n d i n trans p o s i t i o n to the M - H b o n d . T h i s l a b i l i z a t i o n g e n e r a l l y is associated w i t h a l e n g t h e n i n g of the b o n d w h i c h has b e e n l a b i l i z e d , a n effect o p e r a t i n g m a i n l y b y trans i n fluence
(36)
c a u s e d b y a selective r e h y b r i d i z a t i o n of the m e t a l σ orbitals
l e a d i n g to the M - H b o n d h a v i n g a large d a n d s c o m p o n e n t .
S u c h effects
are most e v i d e n t i n square p l a n a r complexes, b u t t h e y also h a v e observed i n octahedral
been
complexes.
T h e g e n e r a l r e a c t i v i t y of h y d r i d o complexes is h i g h , a n d i t is r e l a t e d m a i n l y to the c o o r d i n a t i o n n u m b e r of the c e n t r a l m e t a l a t o m . four- a n d
five-coordinate
six-coordinate species.
Thus,
complexes u s u a l l y are m o r e r e a c t i v e t h a n r e l a t e d T h e latter, h o w e v e r , o r d i n a r i l y are m o r e r e a c t i v e
t h a n the c o r r e s p o n d i n g complexes
w h i c h d o not c o n t a i n M - H b o n d s .
S u c h r e a c t i v i t y m a y b e i n d u c e d either b y o p e r a t i o n of the trans effect or, w h e r e possible, b y the r e d u c t i v e e l i m i n a t i o n of a m o l e c u l e of h y d r o g e n h a l i d e w i t h or w i t h o u t assistance of a base. T h e c h e m i c a l b e h a v i o r of M - H b o n d s varies f r o m t h a t of a n a c t i v e h y d r i d e to that of a strong a c i d . T h i s w i d e v a r i a t i o n i n p r o p e r t i e s , h o w ever, m a y be a c h i e v e d w i t h a r e l a t i v e l y s m a l l v a r i a t i o n of c h a r g e d i s t r i b u t i o n (4).
A t t e m p t s to correlate c h e m i c a l shifts a n d c o u p l i n g constants
w i t h b o n d distances a n d electron d i s t r i b u t i o n i n M - H b o n d s h a v e l e d
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
70
P L A T I N U M
G R O U P
M E T A L S
A N D
C O M P O U N D S
t o t h e c o n c l u s i o n that s u c h correlations m a y b e v a l i d o n l y w h e n v e r y s m a l l changes are m a d e to the l i g a n d s
(3).
T h e f e v e r i s h interest i n h y d r i d o complexes
has, as its m a i n cause,
the t r e m e n d o u s p o t e n t i a l of these reactions i n c a t a l y t i c systems.
In a
r e l a t i v e l y short s p a n of t i m e , h y d r i d o complexes h a v e b e e n f o u n d to p l a y a r o l e i n a significant n u m b e r of c a t a l y t i c processes ( 6 , 9)—e.g., o l i g o m e r i z a t i o n of olefins ( r h o d i u m ) , d e c a r b o x y l a t i o n reactions
(rhodium),
a n d hydrogénation reactions ( r u t h e n i u m , o s m i u m , r h o d i u m , i r i d i u m , a n d p l a t i n u m ) . D i s c u s s i o n of these a p p l i c a t i o n s w o u l d go b e y o n d the scope of the present treatment. T h e r e m a i n d e r of this r e v i e w is d e v o t e d to g i v i n g a closer l o o k at the h y d r i d o complexes of i r i d i u m a n d t h e i r reactions. I r i d i u m gives the Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch006
most extensive a n d versatile range of h y d r i d o complexes of a n y p l a t i n u m metal (29).
T h e m a i n types of c o m p o u n d s
k n o w n a n d some of t h e i r
reactions are s h o w n i n T a b l e I I . T o this, one m u s t a d d the
hydrogen
a b s t r a c t i o n r e a c t i o n m e n t i o n e d earlier. T h e w i d e r a n g e of h y d r i d o complexes f o r m e d b y i r i d i u m is a c l e a r i n d i c a t i o n t h a t this m e t a l has a p a r t i c u l a r l y strong t e n d e n c y to f o r m I r - H bonds.
T h e reason for this affinity is n o t a p p a r e n t as yet, b u t this c o n -
c l u s i o n is r e i n f o r c e d constantly b y n e w d a t a . T h u s , one c a n isolate stable seven-coordinate
complexes
of i r i d i u m ( I I I ) .
T h e quadridentate ligand
( o - P h P · C H ) P , Q P , reacts w i t h [ I r H X ( P h P ) ] ( X = 2
6
4
3
2
3
CI, Br, and
8
I ) i n r e f l u x i n g c h l o r o b e n z e n e to give [ I r H X ( P h P ) ( Q P ) ] X , I , w h i c h is 3
a seven-coordinate h y d r i d o c o m p l e x of i r i d i u m ( I I I ) .
(21)
The infrared
s p e c t r u m does n o t s h o w a n I r - H s t r e t c h i n g v i b r a t i o n , b u t t h e presence of a h y d r i d o l i g a n d is c l e a r l y v i s i b l e i n the p r o t o n m a g n e t i c
resonance
spectrum. T h e f o r m a t i o n of these c o m p o u n d s is p r e c e d e d b y that of a species of c o m p o s i t i o n
[ I r ( P h P ) ( Q P ) ] X , I I , w h i c h reacts w i t h N a [ B P h ] 3
to
4
g i v e the same c o m p l e x i r r e s p e c t i v e of the n a t u r e of the a n i o n X i n the s t a r t i n g m a t e r i a l , [ I r H X ( P h P ) ] . T h e i r N M R s p e c t r a (22) 2
3
[IrHX(Ph P)(QP)]X. 3
indicate
3
the presence of I r - H b o n d s a n d t h e i r r e a c t i o n w i t h H X gives
compounds
C o m p l e x e s I I are, therefore, t e n t a t i v e l y f o r m u -
l a t e d as [ I r H ( o - C H P P h ) ( Q P ) ] X . 6
4
2
I n a n a t t e m p t to g a i n a better u n d e r s t a n d i n g of the factors c a u s i n g t h e f o r m a t i o n of the a b o v e seven-coordinate h y d r i d o complexes, the r e a c t i o n of [ I r H C l ( P h P ) ] w i t h r e f l u x i n g c h l o r o b e n z e n e 2
3
3
was e x a m i n e d .
P r e l i m i n a r y experiments suggest that the p r i m a r y step is t h e e v o l u t i o n of
hydrogen
chloride
and
formation
of
the
unstable
intermediate
[ I r C l ( P h P ) ] , w h i c h reacts f u r t h e r to g i v e a n u m b e r of p r o d u c t s . 3
3
has the c o m p o s i t i o n I r C l ( P h P )
3
III,
compound
3
of
Bennett
and
Milners
One
a n d is l i k e l y to b e a n i s o m e r i c f o r m , (7),
[IrHCl(o-C H PPh )6
4
2
( P h P ) ] . T h e others, s o m e p u r e l y o r g a n i c a n d some i r i d i u m - c o n t a i n i n g , 3
2
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
6.
Hydrido
V E N A N Z I
Table II.
Y
Some Iridium H y d r i d o Complexes and T h e i r Reactions
2
3
(44)
HX
->
[IrH L ](C10<)
-[IrHX L ] 2
71
Complexes
(1)
HCIO4
3
KOH
(30)
H X (2) [IrH XL ] 2
* 3
4
K O H (2)
vie- and. raer-[IrH L ] (31)
3
[IrH,L ](C10«)
{2,10)
3
(82)
[IrH L ]
<
3
2
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch006
LiBH
(14)
4
[IrHCl(SnCI )(CO)L ] 3
2
NaBH
4
wc-[IrH (CO)L ] 3
2
« MeOCH CH OH/KOH < > MeOCH CH OH/H 0/L s
2
2
2
2
are s t i l l u n d e r i n v e s t i g a t i o n (33).
T h u s , one c a n p r e s u m e t h a t c o m p o u n d
I I I reacts w i t h the l i g a n d Q P to g i v e c o m p o u n d s
of t y p e I , a c c o u n t i n g
f o r the r e t e n t i o n of the elements of one m o l e c u l e of t r i p h e n y l p h o s p h i n e i n compounds
I. T h e interest i n complexes
I arises f r o m the f a c t t h a t
t h e y e x h i b i t c o o r d i n a t i o n n u m b e r seven despite the d e l e c t r o n c o n f i g u r a 6
t i o n of the m e t a l i o n . T h e f o r m a t i o n of s u c h s e v e n - c o o r d i n a t e
species
m a y b e assisted b y the fact t h a t t h e seventh l i g a n d is a h y d r o g e n a t o m , b u t t h e significance of t h e i r i s o l a t i o n is that i t is reasonable to p o s t u l a t e , w h e n necessary, the f o r m a t i o n of a seven-coordinate t r a n s i t i o n state i n t e r -
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
72
PLATINUM GROUP METALS AND COMPOUNDS
mediate even when the formal electron configuration of the metal atom is d . The formation of such a range of hydridic compounds by iridium and the paucity of catalytic processes based on complexes of this element may be linked to the greater inertness of compounds of elements of the third transition series relative to the corresponding species with metals of the second transition series. However, iridium chemistry may provide a very fertilefieldfor the study of homogeneous catalysis. The key to success in this direction may lie in the use of complexes which are coordinatively unsaturated and contain a strong labilizing group (6, 9). Thus, [IrHCl (Ph P) ] in chlorobenzene solution reacts with dimethyl formamide ^t 13jS° with formation of [IrCl(CO) (Ph P) ], IV, which is in equilibrium wifh [IrHCl (CO) (Ph P) ]. Compound IV catalytically decomposes dimethylformamide into carbon monoxide and dimethylamine, but the decomposition rate is proportional to the concentration of IV and amide, indicating that the rate-determining step is the formation of the adduct between IV and dimethylformamide and not the decom position of the adduct which regenerates IV. When [IrHCI (Ph P) ] reacts with dimethylacetamide, however, only a stoichiometric reaction, which is still under investigation, is observed (33). This review has been necessarily brief, but I hope sufficient to show that thefieldof platinum metal hydrides is one of unlimited potential for both the academic and industrial chemist. G
2
3
3
3
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch006
2
3
2
2
2
3
3
Literature Cited (1) Angoletta, M., Gazz. Chim. Ital. 1962, 92, 811. (2) Angoletta, M., Araneo, Α., Gazz. Chim. Ital. 1963, 93, 1343. (3) Atkins, P. W., Green, J. C., Green, M. L. H., J. Chem. Soc. 1968, (A), 2275. (4) Basch, H., Ginsburg, A. P.,J.Phys. Chem. 1968, 73, 854. (5) Bath, S. S., Vaska, L., J. Am. Chem. Soc. 1963, 85, 3500. (6) Bird, C. W., "Transition Metal Intermediates in Organic Synthesis," Logos Press and Academic Press, London, 1967. (7) Bennett, M. J., Milner, D. L.,J.Am. Chem. Soc. 1969, 91, 6983. (8) Bresadola, S., Rigo, P., Turco, Α., Chem. Commun. 1968, 1205. (9) Candin, J. P., Taylor, Κ. Α., Thompson, D. T., "Reactions of Transition Metal Complexes," Elsevier, Amsterdam, 1968. (10) Canziani, F., Zingales, F., Rend.Ist.Lombardo Sci., A. 1962, 96, 513. (11) Chatt, J., Science 1968, 160, 3829. (12) Chatt, J., Butter, S. Α., Chem. Commun. 1967, 501. (13) Chatt, J., Coffey, R. S., Shaw, B. L.,J.Chem. Soc. 1965, 7391. (14) Chatt, J., Davidson, J. M.,J.Chem. Soc. 1965, 843. (15) Chatt, J., Field, A. E., Shaw, B. L., J. Chem. Soc. 1961, 290. (16) Chatt, J., Hayter, R. G.,J.Chem. Soc. 1961, 2605. (17) Chatt, J., Shaw, B. L.,J.Chem. Soc. 1962, 5075. (18) Craig Taylor, R., Young, J. F., Wilkinson, G., Inorg. Chem. 1966, 5, 20. (19) Cross, R. J., Glockling, F.,J.Chem. Soc. 1965, 5422.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch006
6.
VENANZI
Hydrido Complexes
73
(20) Davison, Α., McFarlane, W., Pratt, L., Wilkinson, G., J. Chem. Soc. 1962, 3653. (21) Dawson, J. W., Kerfoot, D. G. E., Preti, C., Venanzi, L. M., Chem. Com mun. 1968, 1689. (22) Dawson, J. W., Venanzi, L. M., unpublished observations. (23) Ginsberg, A. P., Transition Metal Chem. 1965, 1, 111. (24) Green, M. L. H., Jones, D. J., Advan. Inorg. Chem. Radiochem.1965,7, 115. (25) Griffith, W. P., "The Chemistry of the Rarer Platinum Metals," Inter science, London, 1967. (26) Hayter, R. G.,J.Am. Chem. Soc. 1961, 83, 1259. (27) Kingston, J. V., Scollary, G. R., Chem. Commun. 1969, 455. (28) Levison, J. J., Robinson, S. D., Chem. Commun. 1968, 1405. (29) Malatesta, L., Helv. Chim. Acta, Fasciculus Extraordinarius Alfred Werner, 1967, 147. (30) Malatesta, L., "Symposium on Current Trends in Organometallic Chem istry," (Abstracts), Cincinnati, June 12-15, 1963, p. 71A. (31) Malatesta, L., Angoletta, M., Araneo, Α., Canziam, F., Angew. Chem. 1961, 73, 273. (32) Malatesta, L., Caglio, G., Angoletta, M., J. Chem. Soc. 1965, 6974. (33) Martelli, M., Venanzi, L. M., unpublished observations. (34) Misono, Α., Uchida, Y., Hidai, M., Araki, M., Chem. Commun. 1968, 1044. (35) Morelli, D., Segre, Α., Ugo, R., LaMonica, G., Cenini, S., Conti, F., Bonati, F., Chem. Commun. 1967, 524. (36) Pidcock, Α., Richards, R. D., Venanzi, L. M., J. Chem. Soc., A 1966, 1707. (37) Sacco, Α., Rossi, M., Inorg. Chim. Acta 1968, 2, 127. (38) Sacco, Α., Ugo, R.,J.Chem. Soc. 1964, 3274. (39) Shaw, B. L., "Inorganic Hydrides," Pergamon, Oxford, 1967. (40) Shaw, B. L., Chatt, J., Proc. Intern. Congr. Coordination Chem., 7th Stockholm, 1962, Abstracts, p. 293. (41) Vaska, L., DiLuzio, J. W., J. Am. Chem. Soc. 1961, 83, 1262. (42) Vaska, L., DiLuzio, J. W., Ibid., 1961, 83, 2784. (43) Vaska, L., DiLuzio, J. W., Ibid., 1962, 84, 679. (44) Vaska, L., DiLuzio, J. W., Ibid., 1962, 84, 4989. (45) Vaska, L., Rhodes, L. E.,J.Am. Chem. Soc. 1965, 87, 4970. RECEIVED January 28, 1970.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
7
Ultraviolet Spectroscopic Qualities of Platinum G r o u p Compounds
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch007
DON S. MARTIN, JR. Institute for Atomic Research and Department of Chemistry, Iowa State University, Ames, Iowa 50010
Coordination compounds of the platinum group elements have excited states which provide spectral absorptions in the ultraviolet region, extending through the visible into the near IR, which must be classified together from their similarity in origin. Many of the transitions are obscured by the broad bands from their more intense neighboring transitions, so only a few can be identified for a single complex Several analytical and kinetics applications are discussed. In addition, applications of polarized crystal spectra, absorption inlow-temperatureorganic glasses, and the use of magnetic circular dichroism which can be combined with molecular orbital treatments, spin-orbit coupling, vibronic excitation, and metal—metal interactions are described fo the identification of transitions in specific instances. *Tphe bright colors of the coordination complexes of transition metal elements, including the platinum group metals, were of great assistance to pioneer workers with these materials. Thus, chemical changes could be followed visually; it was frequently very easy from their colors to demonstrate the existence of isomers upon which Alfred Werner was able to base his monumental theory of coordination. Such early studies were limited to a simple qualitative visual evaluation of the color. By the mid-twentieth century, dependable spectrophotometers became commercially available and very quickly were recognized as essential laboratory tools for the characterization of the coordination complexes. These new instruments permitted quantitative evaluation of the absorption of light; procurement of the instruments was usually justified by the convenience, versatility, and speed which they introduced into the quantitative analysis and identification of these materials. 74
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
7.
M A R T I N
Ultraviolet
Spectrophotometry
Spectroscopic
75
Qualities
is t o d a y , w i t h o u t q u e s t i o n , the most w i d e l y
used
i n s t r u m e n t a l t e c h n i q u e f o r kinetics studies, w h i c h r e q u i r e the q u a n t i t a t i v e c h a r a c t e r i z a t i o n of c h a n g i n g systems. M o d e r n instruments have extended
the s p e c t r a l r a n g e
from
the
severely l i m i t e d v i s u a l r e g i o n i n t o b o t h the near i n f r a r e d a n d the u l t r a v i o l e t r e g i o n . A r e g i o n e x t e n d i n g f r o m 1200 d o w n to 200 τημ is r i c h w i t h the e l e c t r o n i c spectra i n v o l v i n g the d-orbitals of t r a n s i t i o n m e t a l c o m pounds.
Since strict adherence
to the u l t r a v i o l e t r e g i o n w o u l d b e
i n c o m p l e t e , c o n s i d e r a t i o n here w i l l b e d i r e c t e d to t h e b r o a d e r of the accessible e l e c t r o n i c spectra for t h e p l a t i n u m m e t a l
so
region
complexes.
T h e l i t e r a t u r e contains l i t e r a l l y h u n d r e d s of a b s o r p t i o n spectra for t h e c o o r d i n a t i o n complexes of the p l a t i n u m elements,
spectra
which
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch007
d e p e n d u p o n the n a t u r e of the v a r i o u s l i g a n d s , the o x i d a t i o n state, a n d the electronic configuration. I n the present r e v i e w , a c o m p l e t e c a t a l o g i n g of a l l of these spectra w i l l not b e a t t e m p t e d .
R a t h e r , attention w i l l
be
l i m i t e d to a f e w complexes f o r w h i c h the l i g a n d s are r e l a t i v e l y s i m p l e groups, s u c h as h a l i d e s , a m m o n i a , w a t e r , or s i m p l e amines w h i c h b y themselves d o not possess a h i g h a b s o r p t i o n i n the s p e c t r a l r e g i o n of interest. means
T y p i c a l illustrations of the a n a l y t i c a l possibilities as w e l l as of
chemical characterization w i t h
the systems
are
presented.
H o w e v e r , the a n a l y t i c a l u t i l i t y of the spectra, a l t h o u g h q u i t e i m p r e s s i v e , has b e e n o v e r s h a d o w e d
w i t h i n the past 15 years b y the a p p l i c a t i o n of
c r y s t a l or l i g a n d field theory, a n d s u b s e q u e n t l y b y m o l e c u l a r o r b i t a l treatments, w h i c h h a v e
provided
a n u n d e r s t a n d i n g of
the
observed
a b s o r p t i o n b a n d s a n d t h e i r assignment to p r e d i c t a b l e e l e c t r o n i c t r a n s i tions.
T h e development
of these theories has b e e n one
of t h e
most
e x c i t i n g events i n m o d e r n i n o r g a n i c c h e m i s t r y , for t h e y h a v e p r o v i d e d a means of i d e n t i f y i n g the e l e c t r o n i c states a n d testing v a r i o u s concepts a n d t h e o r e t i c a l calculations of b o n d i n g . O n e of the v e r y active regions of r e s e a r c h i n recent years has i n v o l v e d attempts to e x t e n d e x p e r i m e n t a l m e t h o d s to p r o v i d e a d d i t i o n a l s p e c t r a l i n f o r m a t i o n f o r m o r e definitive e l e c t r o n i c state assignments.
Spectra of Hexahalo-Complexes in Aqueous Solutions The
p l a t i n u m metals
hexahalo-complexes.
i n the heavy
series
form
especially
inert
S p e c t r a for a n u m b e r of these w e r e r e p o r t e d
by
Jorgensen ( 1 4 , 1 5 , 1 6 ) . A f e w of these w h i c h are i l l u s t r a t i v e of the effects of v a r i o u s ligands a n d of the e l e c t r o n i c configurations h a v e b e e n r e p r o d u c e d i n F i g u r e 1. U s u a l l y , the solutions f r o m w h i c h these spectra w e r e o b t a i n e d h a v e c o n t a i n e d excess h a l i d e i o n to r e d u c e a n y s o l v a t i o n effect. A n u m b e r of l i m i t a t i o n s f o r the a n a l y t i c a l a n d s t r u c t u r a l u t i l i t y of the spectra are i m m e d i a t e l y e v i d e n t f r o m the spectra i n F i g u r e 1.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
F i r s t of
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch007
76
P L A T I N U M
Figure
1.
G R O U P
M E T A L S
A N D
Electronic absorption spectra for some halide of the heavy platinum group elements
complexes
a l l , the spectra consist of a l i m i t e d n u m b e r of v e r y b r o a d bands.
C O M P O U N D S
absorption
I t is n o t possible to d e t e r m i n e f r o m the s p e c t r u m of a m i x t u r e
of s e v e r a l complexes the c o m p o s i t i o n of the m i x t u r e , or f r e q u e n t l y even to i d e n t i f y the
components.
N e v e r t h e l e s s , s o m e conclusions
of
con
s i d e r a b l e v a l u e are possible. For PtCl -, 6
cm"
2
the m o l a r a b s o r p t i v i t y at 38,000
cm"
1
is
>
20,000
M ' . F o r a p u r e s o l u t i o n , a 10-cm c e l l w i l l y i e l d a n absorbance
1
1
of
0.1 f o r a 0.5 μΜ s o l u t i o n . H i g h sensitivity i n analysis is therefore p o s sible, p r o v i d e d
interferences
P t C U " at 30,000 c m 2
P t B r ~ is 10,000 c m " 6
2
are absent.
is 600 c m
1
1
- 1
The
m o l a r a b s o r p t i v i t y for
M " , whereas t h e m o l a r a b s o r p t i v i t y for 1
M " . It is possible f r o m the spectra, therefore, to 1
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
7.
Ultraviolet
M A R T I N
Spectroscopic
77
Qualities
p l a c e a f a i r l y s m a l l l i m i t u p o n the c o n t a m i n a t i o n b y the P t B r ' w h i c h 2
6
m a y b e present. W h e r e a s the h e i g h t of a s p e c t r a l p e a k is a g o o d measure for the c o n c e n t r a t i o n of the p r e d o m i n a n t species, the a b s o r b a n c e
at a
s p e c t r a l v a l l e y is v e r y sensitive to the presence of i m p u r i t i e s . F o r s y n thetic p r e p a r a t i o n s , one of the most r e l i a b l e c r i t e r i a of p u r i t y is the peak-to-valley ratio i n an absorption spectrum. A very valuable prepara tive technique involves continued fractional recrystallization u n t i l such a p e a k - t o - v a l l e y r a t i o does n o t increase u p o n e a c h s u b s e q u e n t tallization.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch007
°h
D
4
h
. .η*<σ-) / — e * (σ) α
,
α *
;
I g
19
if
Ι
6s /
6s
b,J(x -y ) 2
/ KJ 5d
2
b (xy) 2g
/ —iU„
«
2g
w
H
ig Γ 'eg"(«,yz)
//,''
α
22—>k-
(ζ ) 2
7Γ
7Γ
t . — ' / _2L
b
u
/ /
/
2 u
°2u
_2L /"
/ Metal
MO
Ligand
Metal
MO
Ligand
Figure 2. Correlation diagram for molecular orbitals in co ordination complexes with O symmmetry and with D sym metry. Only the principal correlation lines are shown and the g states arising from the ligand σ and π orbitah are omitted for simplicity h
A h
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
recrys
78
P L A T I N U M
G R O U P
M E T A L S
A N D
C O M P O U N D S
O n l y a h a n d f u l of b r o a d e l e c t r o n i c t r a n s i t i o n b a n d s , s e v e r a l t h o u s a n d w a v e n u m b e r s i n w i d t h , c a n b e i d e n t i f i e d f r o m the s p e c t r u m of a n y one c o m p l e x . F r e q u e n t l y , n o t m o r e t h a n six s u c h b a n d s are r e s o l v a b l e . gensen has p r o v i d e d i n t e r p r e t a t i o n s of these s p e c t r a a c c o u n t for m a n y of t h e i r o b s e r v e d
features.
(17,
A 1-electron
Jor
which
18)
molecular
o r b i t a l c o r r e l a t i o n d i a g r a m f o r the O s y m m e t r y g r o u p , w h i c h a p p l i e s h
to these systems, has b e e n i n c l u d e d i n F i g u r e 2.
A sigma orbital from
e a c h of the six l i g a n d s interacts w i t h the s, the p, a n d the d-(e )
orbitals
g
to p r o v i d e six s i g m a b o n d i n g orbitals. O n l y the t h r e e a s y m m e t r i c t
orbi
lu
tals of this set are i n d i c a t e d i n F i g u r e 2. T h e t w o π orbitals of e a c h l i g a n d g e n e r a l l y are n o t c o n s i d e r e d to p r o v i d e a strong c o n t r i b u t i o n to
the
b o n d i n g f o r h a l i d e s . T w o sets of t h r e e - f o l d degenerate o r b i t a l s , the t
lu
a n d the t , are s h o w n .
T h e levels for the s y m m e t r i c ( g )
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch007
2u
sigma and π
orbitals h a v e b e e n o m i t t e d f o r s i m p l i c i t y . A set of s y m m e t r i c o r b i t a l s , t h e t
2g
c o m p r i s i n g p r i n c i p a l l y the m e t a l
d-orbitals, are next i n e n e r g y a n d a b o v e t h e m , s e p a r a t e d b y the f a m i l i a r Δ
0
o r 10 Dq,
are the a n t i b o n d i n g e * g
the a n t i b o n d i n g t * a n d the a * lu
lg
p a i r . A t m u c h h i g h e r energies are
orbitals. S i n c e f o r the h e a v y series of
p l a t i n u m metals Δ is of the o r d e r of 30,000 c m " , the complexes are of the 1
0
spin-paired a n d inert type.
U p to six electrons c a n b e i n the t
2g
orbitals, a n d a l l orbitals b e l o w these are filled as w e l l i n the A t r a n s i t i o n of a n e l e c t r o n f r o m the filled o r b i t a l s , t
lu
e i t h e r the t
2g
( π ) or t
2u
or the e * o r b i t a l w i l l b e d i p o l e - a l l o w e d . g
set of
complexes. ( i r ) , to
Since i n these
transitions the electron moves p r i m a r i l y f r o m a n o r b i t a l o n the l i g a n d to one o n the m e t a l , s u c h a t r a n s i t i o n is u s u a l l y d e s i g n a t e d as a L -> M c h a r g e transfer. S u c h transitions are expected to l e a d to b a n d s w i t h the m o l a r a b s o r p t i v i t y ,C.,at the p e a k greater t h a n 1000 c m " M " . T r a n s i t i o n s 1
of electrons f r o m t
2g
1
to t * w o u l d b e a l l o w e d b y s y m m e t r y , a n d the lu
p o s s i b i l i t y of t h e i r presence i n the spectra m u s t b e c o n s i d e r e d as w e l l . H o w e v e r , i n most instances t h e y are b e l i e v e d to o c c u r at h i g h e r energy, f r e q u e n t l y b e y o n d the r a n g e of observations w i t h h a l i d e s . T r a n s i t i o n s of a n e l e c t r o n f r o m a t
2g
bidden.
o r b i t a l to e * are d i p o l e - f o r g
B a n d s w i t h a m o l a r a b s o r p t i v i t y of the order of 100 c m " M " 1
1
u s u a l l y are assigned to s u c h d-d transitions i n w h i c h the spins are u n changed—i.e.,
t h e y are s p i n - a l l o w e d .
Since the h e a v y metals h a v e a
h i g h s p i n - o r b i t c o u p l i n g , a n d the s p i n is n o l o n g e r a g o o d q u a n t u m n u m b e r b y the m i x i n g of different m u l t i p l e t states, b a n d s are
observable
b e t w e e n states w h i c h h a v e m a j o r components w i t h different s p i n m u l t i plicities.
T h e s e are d e s i g n a t e d as the s p i n - f o r b i d d e n b a n d s .
the m i x i n g of states is sufficiently great that there m a y b e
Indeed,
considerable
a m b i g u i t y i n the assignment of transitions. T h e s i t u a t i o n is t r e a t e d b y c o n s i d e r i n g the d o u b l e
r o t a t i o n a l groups
o r b i t a l a n d s p i n w a v e functions.
w h i c h encompass
both
the
F o r e x a m p l e , the electron s p i n f u n c -
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
7.
M A R T I N
Ultraviolet
Spectroscopic
79
Qualities
tions, + 1 / 2 , — 1 / 2 , are b a s i c f u n c t i o n s f o r t h e y*(e ) 2
irreducible repre
sentation f o r the O ' g r o u p . S i n g l e t a n d t r i p l e t f u n c t i o n s h a v e γ ι ( α ι ) a n d 7 (*i)
symmetry, respectively.
4
T h e a c t u a l states m a y b e f o r m e d
from
a l i n e a r c o m b i n a t i o n o f w a v e functions w i t h different m u l t i p l i c i t i e s . T h e c o n t r i b u t i o n o f m i n o r m u l t i p l i c i t i e s m a y b e sufficiently great t h a t " s p i n a l l o w e d " transitions h a v e a n e n h a n c e m e n t f a c t o r o f o n l y 4 t o 10 over " s p i n - f o r b i d d e n " transitions.
A s the wavelength
decreases,
q u e n t l y possible to observe i n a s p e c t r u m first s o m e symmetry-forbidden
i t is f r e
spin-forbidden,
transitions, t h e n t h e s p i n - a l l o w e d b u t s y m m e t r y -
f o r b i d d e n , a n d finally some c h a r g e transfer b a n d s .
However, only a
f r a c t i o n o f the possible transitions are observable, a n d m a n y are " h i d d e n " u n d e r t h e b r o a d peaks o f m o r e intense transitions i n s o l u t i o n spectra o f Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch007
the t y p e i l l u s t r a t e d i n F i g u r e 1. T h e o r y has n o t y e t r e a c h e d a stage w h e r e energies o r e v e n t h e o r d e r i n g o f states c a n b e c a l c u l a t e d r e l i a b l y f o r t r a n s i t i o n e l e m e n t plexes.
Therefore,
complementary
com
contributions a n d cooperation b e
tween experiment a n d theory are needed i n the unravelling of energy states a n d t h e d e s c r i p t i o n o f b o n d i n g f o r these i m p o r t a n t systems. T h e ^ - c o n f i g u r a t i o n , w h i c h occurs for t h e m u l t i t u d e o f i n e r t C o ( I I I ) complexes, is i l l u s t r a t e d b y the complexes o f I r ( I I I ) a n d the P t ( I V ) c o m plexes i n F i g u r e 1. T h e g r o u n d state c o n f i g u r a t i o n is p r i m a r i l y t
G
S i n c e the t
2g
—
o r b i t a l s a r e filled, there is n o p o s s i b i l i t y o f a t r a n s i t i o n
2g
f r o m t h e l i g a n d π-orbital i n t o o n e o f these; therefore, charge transfer b a n d s w i l l i n v o l v e o n l y t r a n s i t i o n to t h e a n t i b o n d i n g e *. g
b a n d p e a k i n g at 38,000 c m "
1
w i t h c o f 24,000 c m "
a t t r i b u t e d to s u c h t r a n s i t i o n b y Jorgensen.
T h e strong
M " for P t C l " was
1
1
6
T h e t r a n s i t i o n ir(t )
2
-> ^*
lu
leads to f o u r energy levels w h o s e p r i n c i p a l c o m p o n e n t s are T \ , *T*2 , T±u? 1
T .
3
2u
M
U
3
B e c a u s e o f the £i c h a r a c t e r o f the t r i p l e t s p i n f u n c t i o n s , transitions
to the p r i m a r i l y T , l
lu
T,
3
lu
states a l l h a v e some d i p o l e - a l l o w e d c h a r
T
3
2u
acter. H o w e v e r , n o r e s o l u t i o n i n t o s u c h i n d i v i d u a l states is possible w i t h the o b s e r v e d b a n d n o r c a n a n y d e c i s i o n b e presented as to w h e t h e r a contribution from ττ(ί ) -> e 2ΐί
g
occurs as w e l l .
T h e r e is t h e p o s s i b i l i t y
of a s y m m e t r y - f o r b i d d e n t r a n s i t i o n o f o n e o f t h e t
2g
e *. g
electrons i n t o t h e
T h e e x c i t e d e l e c t r o n i n e i t h e r o f t w o o r b i t a l s a n d the r e s i d u a l h o l e i n
a n y o f three leads to a t o t a l o f six singlet a n d six t r i p l e t states.
However,
these six states i n e a c h case constitute t w o t h r e e - f o l d degenerate sets; t h e l o w e r i n e n e r g y c a n b e d e s i g n a t e d as T
lg
a l l o w e d b a n d s s h o u l d o c c u r , therefore.
and a higher T .
T w o spin-
A s indicated w i t h
Jorgensens
2g
assignment i n F i g u r e 1, o n l y the first t r a n s i t i o n c a n b e seen as a s h o u l d e r o n the m u c h m o r e intense c h a r g e transfer b a n d . T h e s t i l l l o w e r intensities i n t h e r e g i o n o f 19,000 to 24,000 c m "
1
w i l l correspond then to t h e spin-
forbidden symmetry-forbidden bands.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
80
P L A T I N U M
G R O U P
M E T A L S
A N D
C O M P O U N D S
F o r the h e x a b r o m o p l a t i n a t e ( I V ) , there has b e e n a d e c i d e d shift of a l l b a n d s to l o w e r energies or l o n g e r w a v e l e n g t h s , a n d the b r e a d t h of the c h a r g e transfer b a n d definitely suggests m o r e t h a n a single e x c i t e d state. T h i s e n e r g y shift b e t w e e n c h l o r i d e a n d b r o m i d e l i g a n d s is q u i t e a g e n e r a l phenomenon
r e p r e s e n t i n g the p o s i t i o n of these l i g a n d s i n the
c h e m i c a l (sometimes
c a l l e d the F a j a n s - T s u c h i d a ) series.
spectro-
T h e shift of
t h e c h a r g e transfer b a n d reflects the easier o x i d a t i o n or loss of a n elec t r o n b y b r o m i d e i n c o m p a r i s o n w i t h c h l o r i d e . H o w e v e r , the shift i n the d-d t r a n s i t i o n represents the difference i n the c r y s t a l field s t r e n g t h of these t w o l i g a n d s . T h e I r C l " i o n , w i t h the same e l e c t r o n c o n f i g u r a t i o n as t h e 6
3
t w o p l a t i n u m complexes, h o w e v e r , is i n a l o w e r o x i d a t i o n state. A d d i t i o n a l e n e r g y is r e q u i r e d to a d d a n electron to the i r i d i u m , a n d
consequently
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch007
the charge transfer b a n d has b e e n f o r c e d to m u c h h i g h e r energies. the transitions to the t w o e x c i t e d states, p r i m a r i l y discernable. T h e occurrence
and T , 1
2g
Here,
are c l e a r l y
of the d-d b a n d s at l o w e r energies
corre
sponds to a l o w e r Δ for I r ( I I I ) t h a n for P t ( I V ) , w h i c h is i n a c c o r d a n c e 0
w i t h the u s u a l systematics i n this q u a n t i t y (19). h i g h - i n t e n s i t y b a n d , 31,000-32,000
T h e b r e a d t h of
c m " , p r o b a b l y reflects 1
the
the
higher
s p i n - o r b i t c o u p l i n g of the b r o m i d e l i g a n d s i n c o m p a r i s o n w i t h that of chloride. F o r I r ( I V ) i n I r C l " , there is a h o l e i n the t 6
g r o u n d state, t
5
2g
2
— T . 2
2g
2g
one of t h e l i g a n d ττ-orbitals i n t o a t
2g
proposed
o r b i t a l set for the
T h e r e f o r e , the t r a n s i t i o n of a n e l e c t r o n f r o m o r b i t a l is possible. J o r g e n s e n
(17)
that these c h a r g e transfer b a n d s w e r e the ones seen i n the
v i s i b l e r e g i o n , 20,000-25,000 c m " , w h i c h h a d c's of 2 0 0 0 - 4 0 0 0 c m " M " . 1
1
1
T h e s e b a n d s p r o v i d e the intense color f o r I r C l " so t h a t its presence i n 6
2
m i n u t e amounts c a n b e d e t e c t e d e a s i l y i n solutions of I r C l " . e
T h e pres
3
ence of h y p e r f i n e s t r u c t u r e o n the electron s p i n resonance s p e c t r u m of this ( 8 , 25)
i o n i n d i c a t e d t h a t the t
2g
orbitals were not solely metal
orbitals, b u t that t h e y c o n t a i n e d significant l i g a n d o r b i t a l character. T h i s feature
demonstrated
the
existence
of
some ττ-type
bonding
in
the
complex. F o r O s ( I V ) , there are t w o electrons m i s s i n g f r o m a filled set of orbitals. T h e r e f o r e , t r a n s i t i o n f r o m the l i g a n d ττ-orbitals to the t
2g
s h o u l d a g a i n b e possible.
Since O s ( I V )
t
2g
orbitals
is a m u c h w e a k e r o x i d i z i n g
agent t h a n I r ( I I I ) , i t is e x p e c t e d t h a t these c h a r g e transfer b a n d s w i l l b e s h i f t e d to h i g h e r energies.
T h e spectrum i n F i g u r e 1 indicates that
an a b s o r p t i o n p a t t e r n v e r y s i m i l a r to that f o r I r C l " occurs f o r O s C l " . 6
2
A c c o r d i n g l y , Jorgensen assigned the b a n d s f r o m 28,500-30,000 these L ->
t
2g
to b e o b s e r v e d .
6
cm"
1
2
to
transitions. T h e O s C l " s p e c t r u m is one of the r i c h e s t 6
2
S t i l l , o n l y a h a n d f u l of i n c o m p l e t e l y r e s o l v e d
b a n d s i n the s o l u t i o n s p e c t r u m are seen.
broad
Since a considerably larger
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
7.
Ultraviolet
M A R T I N
Spectroscopic
81
Qualities
n u m b e r of s u c h c h a r g e transfer states m a y b e a t t a i n e d b y d i p o l e - a l l o w e d transitions t h a n are o b s e r v e d , a d e t a i l e d c o n f i r m a t i o n of this a s s i g n m e n t has not b e e n possible. Some v e r y r e c e n t i n f o r m a t i o n , w h i c h w i l l b e d i s cussed later, has b r o u g h t this assignment of these b a n d s i n t o q u e s t i o n . F i g u r e 1 does s h o w t w o v e r y w e a k , r e l a t i v e l y s h a r p b a n d s t h a t o c c u r at a p p r o x i m a t e l y 17,000 c m "
1
for O s C l " w h i c h a r e not o b s e r v e d i n the
other s p e c t r a p r e s e n t e d .
T h e s e are b e l i e v e d to represent a t r a n s i t i o n
6
2
w i t h i n the g r o u n d state c o n f i g u r a t i o n — L e . , t* gTi( T ) 2
w e a k e r transitions (12)
3
-> Γ Ί ^ Α ^ ) .
lg
Still
h a v e b e e n o b s e r v e d at a b o u t 8000, 10,800, a n d
11,780 c m " . 1
M a n y features of t h e s p e c t r a of the o c t a h e d r a l complexes s e e m e d consistent w i t h s i m p l e m o l e c u l a r o r b i t a l m o d e l s .
have
The high sym
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch007
m e t r y possessed b y these complexes f o r t u n a t e l y has r e d u c e d the n u m b e r of i n d i v i d u a l transitions w h i c h s h o u l d o c c u r because of the m a n y d e generate states for the i o n . T h e broadness of the f e w b a n d s
observed,
h o w e v e r , p r e c l u d e s r e s o l u t i o n of the f a i r l y l a r g e n u m b e r of transitions w h i c h m i g h t b e e x p e c t e d to h a v e m e a s u r a b l e intensities as a c o n s e q u e n c e of s p i n - o r b i t c o u p l i n g .
T h e b r e a d t h of the a b s o r p t i o n b a n d s at least
p a r t i a l l y arises f r o m t h e r m a l l y e x c i t e d of the c o o r d i n a t i o n c o m p l e x .
fluctuations
i n the e n v i r o n m e n t
F o r e x a m p l e , i n the g r o u n d state a b o n d
m a y be lengthened b y a molecular vibration. T h e vibrational energy i n this m o d e w i l l a m o u n t to o n l y a b o u t kT.
H o w e v e r , because
of the
F r a n k - C o n d o n p r i n c i p l e , the e x c i t e d i o n w i l l h a v e the same i n t e r - a t o m i c distances as the g r o u n d state. T h u s , i f the e x c i t e d state i o n has a steep p o t e n t i a l e n e r g y f u n c t i o n for a t o m i c separations at the t r a n s i t i o n c o n figuration,
a v i b r a t i o n a l d i s p l a c e m e n t of m o d e s t e n e r g y i n the g r o u n d
state w i l l p r o d u c e l a r g e energy differences i n the e x c i t e d c o m p l e x .
A
r e d u c t i o n i n t e m p e r a t u r e w i l l l e a d a c c o r d i n g l y to m u c h n a r r o w e r a n d better resolved bands.
Spectrum of
PtCl/'
T h e P t C l " i o n , w i t h the 2 + 4
a 5d
8
2
o x i d a t i o n state for p l a t i n u m , possesses
c o n f i g u r a t i o n . I t has a s q u a r e - p l a n a r c o o r d i n a t i o n , w h i c h is c o m
m o n l y o b s e r v e d w i t h the l o w s p i n complexes of this c o n f i g u r a t i o n .
Its
a b s o r p t i o n s p e c t r u m i n aqueous s o l u t i o n is also s h o w n i n F i g u r e 1.
With
the p l a t i n u m i n a l o w o x i d a t i o n state, the c h a r g e transfer b a n d s
have
b e e n s h i f t e d to b e y o n d 40,000 c m " . 1
S i n c e P t C l ~ absorbs so s t r o n g l y at 38,000 c m " , the a b s o r b a n c e 6
2
1
at
this w a v e n u m b e r c a n b e u s e d to set a v e r y l o w l i m i t of d e t e c t i o n o n the presence of P t ( I V ) i n samples of P t C l " . 4
2
T h i s is e s p e c i a l l y v a l u a b l e ,
since the h i g h e r o x i d a t i o n state has sometimes
been
suspected
catalyst f o r some of its reactions.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
as a
82
PLATINUM
GROUP
T h e m o l e c u l a r o r b i t a l scheme f o r t h e D
4h
METALS
AND COMPOUNDS
s y m m e t r y , possessed b y
this i o n , i s s h o w n i n F i g u r e 2. A l t h o u g h t h e i o n is h i g h l y s y m m e t r i c , the s y m m e t r y is sufficiently l o w that i n f o r m a t i o n f r o m p o l a r i z e d spectra of crystals is v e r y u s e f u l i n e s t a b l i s h i n g assignments f o r t h e transitions. T h e peaks at 25,400 a n d 30,300 c m " , w i t h e a b o u t 60, are c l e a r l y s p i n 1
a l l o w e d d-d transitions. I t w a s n o t c l e a r w h e t h e r t h e s m a l l e r p e a k a t a b o u t 20,000 c m " corresponds 1
s i m i l a r l y to a s p i n - a l l o w e d t r a n s i t i o n o r
to one w h i c h is s p i n - f o r b i d d e n . F i g u r e 2 shows a p o s s i b i l i t y o f three s p i n a l l o w e d transitions f r o m t h e filled d-orbitals i n t o t h e a n t i - b o n d i n g o r the d . 2
x
o r b i t a l . I n s u c h a t r a n s i t i o n , t h e e l e c t r o n leaves a s y m m e t r i c
2
y
( g ) o r b i t a l a n d moves i n t o a s y m m e t r i c ( g ) o r b i t a l , so t h e t r a n s i t i o n is therefore d i p o l e - f o r b i d d e n .
H o w e v e r , these transitions b e c o m e a l l o w e d
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch007
i n t h e presence o f a n a s y m m e t r i c the c h e m i c a l e n v i r o n m e n t — i . e . ,
field.
S u c h a field m a y r e s u l t f r o m
t h e effect o f n e i g h b o r i n g m o l e c u l e s o r
ions i n a s o l u t i o n o r i n a c r y s t a l . I t c a n also r e s u l t f r o m t h e a s y m m e t r i c vibrations of the complex. vibronically exicited.
I n t h e latter case, t h e t r a n s i t i o n is s a i d to b e
I n quantum mechanical description, the vibration
is c o n s i d e r e d a p e r t u r b a t i o n o n t h e system.
T h u s , t h e electronic
wave
f u n c t i o n , ^ i ct, is represented b y t h e e q u a t i o n e
e
(D
Σ Σ CQi ψu ψ„ 1
w h e r e ψ is t h e u n p e r t u r b e d f u n c t i o n , ψ is a n a s y m m e t r i c w a v e f u n c t i o n , 0
η
Q i is as a n a s y m m e t r i c n o r m a l v i b r a t i o n , a n d (2) I t i s necessary t o a n a l y z e t h e s y m m e t r y p r o p e r t i e s o f t h e n o r m a l vibrations of the complex
i n order to o b t a i n a set of selection rules.
Therefore, the spin-allowed transition of a n electron from the d
to the
xy
d . 2
x
2
y
o r b i t a l w i l l o c c u r w i t h t h e electric vector of l i g h t p o l a r i z e d i n t h e
d i r e c t i o n n o r m a l t o t h e s y m m e t r y axis—i.e., i n t h e xy p l a n e . T r a n s i t i o n s t a k i n g a n e l e c t r o n f r o m either t h e d
2
z
or d , xz
yz
o r b i t a l s t o t h e d -. x
y
will
o c c u r w i t h p o l a r i z a t i o n i n t h e ζ d i r e c t i o n a n d t h e xy d i r e c t i o n as w e l l . K PtCl 2
4
p r o v i d e s i d e a l crystals to test these conclusions.
e a c h P t C L t " o c c u p i e s a site w i t h f u l l D 2
ih
can b e introduced from the crystal s y m m e t r y (z)
I n t h e first p l a c e ,
s y m m e t r y (6), so n o asymmetries
fields.
E a c h i o n is a l i g n e d w i t h i t s
axis d i r e c t e d a l o n g t h e t e t r a g o n a l c-axis.
Crystals were
g r o w n as t h i n plates, < 50/x t h i c k , w i t h t h e c-axis l y i n g i n t h e face o f t h e plates. I t w a s possible t o measure t h e a b s o r p t i o n o f l i g h t p o l a r i z e d i n t h e ζ d i r e c t i o n a n d n o r m a l t o i t (20). T h e s e spectra are s h o w n i n F i g u r e 3, b o t h f o r r o o m t e m p e r a t u r e a n d w i t h l i q u i d h e l i u m c o o l i n g , n o m i n a l l y at 15 °K. A b a n d at ca. 26,000 c m " i n xy p o l a r i z a t i o n is c o m p l e t e l y m i s s i n g 1
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
7.
Ultraviolet
M A R T I N
Spectroscopic
83
Qualities
120 100 80 60 40 *
s
20
γ" 0 5 100 ο ν
80
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch007
60 40 20 0 1.4
1.6
1.8
2.0 22
2.4 2.6 2.8
Ι Ο " χ ν χ CM" spectra of a K PtCl light 4
Figure
3.
Absorption
3.0
3.2
3.4 3.6
1
2
crystal with
/t
polarized
Crystal thickness, 46 microns
w i t h the ζ p o l a r i z a t i o n . T h i s appears t o b e a rigorous selection r u l e a n d identifies that b a n d as associated w i t h the d
xy
-» d -. - t r a n s i t i o n . I n c i x
y
d e n t a l l y , the c r y s t a l spectra i d e n t i f i e d the b a n d at 20,000 c m "
as d u e t o
1
s p i n - f o r b i d d e n transitions. I f i t w e r e a s p i n - a l l o w e d t r a n s i t i o n , t h e n the t h e o r y w o u l d r e q u i r e a n o b s e r v a b l e s p i n - f o r b i d d e n b a n d i n the r e g i o n o f 11,000-14,000
cm" . 1
N o s u c h a b s o r p t i o n was o b s e r v e d
i n this r e g i o n ,
e v e n for crystals 1 m m t h i c k . A s s i g n m e n t o f the b a n d at a b o u t 30,000 c m
was achieved from a
- 1
m e a s u r e m e n t of the m a g n e t i c c i r c u l a r d i c h r o i s m ( M C D ) . W h e n a spe cies w i t h a nondegenerate g r o u n d state absorbs l i g h t to f o r m a degenerate e x c i t e d state, t h e degeneracy
w i l l be broken b y the Zeeman
splitting.
A characteristic M C D s p e c t r u m results w i t h a n i n v e r s i o n i n s i g n o f the m e a s u r e d A —A R
L
o c c u r r i n g n e a r t h e absorbance
maximum.
This has
b e e n assigned the Α-term i n the t h e o r e t i c a l treatment o f Stephens
(26).
T h e M C D s p e c t r u m i n F i g u r e 4 shows just this c h a r a c t e r i s t i c f o r m asso c i a t e d w i t h the b a n d at 30,000 c m " . 1
H e n c e , i t c a n b e assigned t o the
transitions f r o m t h e degenerate p a i r o f orbitals d , xz
A t l o w temperatures, n a r r o w e r b a n d s
yg
->
d . . 2
x
2
y
w i t h better r e s o l u t i o n a r e
expected, a n d the v i b r o n i c m o d e l p r e d i c t s l o w e r intensities as w e l l . T h e p o l a r i z e d spectra at l i q u i d h e l i u m temperatures c o n f i r m these p r e d i c t i o n s . T h u s , shoulders a t 24,000 c m "
1
a n d i n the r e g i o n o f 17,000-19,000
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
cm"
1
PLATINUM
84
GROUP
METALS
AND
w h i c h c o u l d not b e r e s o l v e d at r o o m t e m p e r a t u r e n o w clearly.
COMPOUNDS
are r e s o l v e d
A n i n t e r e s t i n g feature is the fine s t r u c t u r e w h i c h a p p e a r e d o n
t h e t w o b a n d s f r o m 23,000-28,000 c m " , w h e r e 17 i n d i v i d u a l p e a k s c a n b e 1
seen.
T h e s e i n d i v i d u a l peaks result f r o m e x c i t a t i o n of the t o t a l l y s y m
m e t r i c , b r e a t h i n g v i b r a t i o n i n the e x c i t e d
electronic
states.
Weaker
v i b r a t i o n a l structure c o u l d b e d i s c e r n e d , e s p e c i a l l y i n ζ p o l a r i z a t i o n for the b a n d c e n t e r e d o n 20,600 c m " . 1
H o w e v e r , n o s u c h structure w a s
e v i d e n t o n t h e strong b a n d a t 29,600 c m " . 1
A n i n t e r e s t i n g conjecture
is t h a t b a n d s for w h i c h t h e v i b r a t i o n a l
structure is m i s s i n g i n v o l v e transitions to e x c i t e d electronic states w h i c h
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch007
60
Έ υ 7
40 * 20 0
+
2.0
«•
Ο
< <
l
-2.0
300
400
500
WAVE LENGTH π\μ Figure 4. Absorption spectrum and magnetic circular dichroism for a solution of K PtCl, in dilute aqueous HCl 2
Cell length, 1.00 cm Concn. KJtCU, 0.015M
correlate w i t h states of l o w e r energy i n t e t r a h e d r a l c o o r d i n a t i o n of the ligands.
O n e of the o u t - o f - p l a n e b e n d i n g v i b r a t i o n s carries the s q u a r e -
p l a n a r c o o r d i n a t i o n t o w a r d the t e t r a h e d r a l . C o n s e q u e n t l y , a h a r m o n i c p o t e n t i a l energy f u n c t i o n f o r this v i b r a t i o n w o u l d not a p p l y .
Such a
c o n s e q u e n c e w o u l d l i k e l y p r o v i d e m a n y m o r e p o s s i b l e v i b r a t i o n a l states i n t h e e x c i t e d state. T h e a b u n d a n c e of closely s p a c e d states w h i c h are t h e n possible prevents t h e i r r e s o l u t i o n b y the t e c h n i q u e e m p l o y e d . T h e energy of the t r a n s i t i o n f r o m the d
2
z
to t h e ά *- * χ
2
ν
is n o t i n d i c a t e d
f r o m the o b s e r v e d spectra. H o w e v e r , the 1-electron o r b i t a l energies c a l -
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
7.
Ultraviolet
M A R T I N
Spectroscopic
85
Qualities
culated from theory b y B a s c h a n d G r a y (2) a n d b y C o t t o n a n d Harris p l a c e t h e d * o r b i t a l w e l l b e l o w the degenerate d ,d e
xz
(4)
orbitals. There
yz
fore, t h e y h a v e assigned a b s o r p t i o n i n the r e g i o n of 38,000-40,000
cm"
1
o n t h e t a i l of c h a r g e transfer b a n d s to this t r a n s i t i o n . T h e energy states for a d
system c a n b e c a l c u l a t e d f r o m a set of
s
parameters i n c l u d i n g the s p l i t t i n g of the d - o r b i t a l s , the e l e c t r o n - e l e c t r o n r e p u l s i o n p a r a m e t e r s ( e i t h e r those of S l a t e r a n d C o n d o n or of
Racah)
a n d the s p i n - o r b i t c o u p l i n g . I n F i g u r e 5 are p r e s e n t e d the results of s u c h a c a l c u l a t i o n , w i t h t h e p a r a m e t e r s a d j u s t e d to assign t r a n s i t i o n s w i t h e x p e c t e d h i g h i n t e n s i t y to t h e o b s e r v e d b a n d s .
T h e results of a c o r r e
s p o n d i n g c a l c u l a t i o n for the t e t r a h e d r a l a r r a n g e m e n t are s h o w n also.
K Ptci
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch007
2
5d
4
35000 U
—
*
r
~
\
_
30000
2 5 0 0 0 \-
Α
2 ς ^ - . ^ - ^ "
X
'Τ 5 —
/
2 c
y
3R
h
\
\
Γ
-=
20000
e
^
~
~
'
Z
j
r
-
N
^
15000 \/ / /
cm" i
0
3000
/
•Δ
<
/ D
'
4h
T
d
Figure 5. Calculated energy levels for the PtCl, ' ion in D and T symmetry. In the center, the energy levels are shown for D coordination with the inclusion of a spin-orbit coupling parameter: ζ = 3000 cm' . The states are designated with the Γ notation for the D / double group, which applies with the inclusion of spinorbit coupling. For D : d * — d = 26,100 cm' ; à .y ~ d = 30,200 cm ; d * _ / ~ <* = > cm' , F = 1000 cm' , F = 65 cm' . For the T coordination, A = 14,000 cm' , F = 1000 cm' , and F = 65 cm' . Observed bands for the crystal are shown at the right side 2
t
ih
d
ih
1
4 h
2
2
x
1
x z
x
2
1
2
t
y
1
x y
11
y z
2 z
x
3 8
1
4
1
2
3 0 0
d
1
à
1
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
86
P L A T I N U M
I
I
I
I
15
I
I
I
I
I
G R O U P
20 I0" x V
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch007
6. Absorption Salt, Pt(NH ) PtCl 3 A
i9
I
I
I
I
25 3
Figure
I
I
M E T A L S
cm"
A N D
I
C O M P O U N D S
I
30 1
spectrum of Magnus' Green with polarized light
It is possible to select a v a l u e of the p a r a m e t e r Δ* so t h a t w i t h the i n d i c a t e d values of F
2
a n d F the b a n d s w i t h h i g h v i b r a t i o n a l s t r u c t u r e at l o w 4
t e m p e r a t u r e correlate w i t h m u c h h i g h e r energy states i n t h e t e t r a h e d r a l s y m m e t r y . T h i s figure illustrates the p o i n t that s p i n - o r b i t c o u p l i n g m u l tiplies t h e n u m b e r of separated energy states. E v e n w i t h large s p i n - o r b i t c o u p l i n g s of the h e a v y p l a t i n u m elements, w h i c h p r o v i d e the i n t e n s i t y for these s p i n - f o r b i d d e n transitions, the s p l i t t i n g of the m a n y states is n o t sufficient for t h e i r i n d i v i d u a l r e s o l u t i o n f r o m the e x p e r i m e n t a l s o l u t i o n spectra w h e r e o n l y a f e w b r o a d areas of a b s o r p t i o n c a n b e i d e n t i f i e d . Professor S c h a t z a n d c o w o r k e r s
(23)
at the U n i v e r s i t y of V i r g i n i a
h a v e e x t e n d e d the M C D studies i n t o the charge transfer b a n d r e g i o n . H e r e also, t h e y i d e n t i f y a d e g e n e r a c y f o r the e x c i t e d states, w h i c h p r e s u m a b l y arises f r o m
a t r a n s i t i o n a l electron l e a v i n g a n e (ir)
orbital.
u
H o w e v e r , t h e y c o n c l u d e d t h a t the strongest o b s e r v e d b a n d at 46,200 c m "
1
c o r r e s p o n d e d to a 5d - » 6p t r a n s i t i o n . T h e a b s o r p t i o n b a n d s for the crystals of K P t C l 2
the solutions i n b o t h i n t e n s i t y a n d energy.
4
resemble those of
T h e r e is little d o u b t t h a t for
the c r y s t a l the o b s e r v e d spectra are c a u s e d b y i s o l a t e d ions w h i c h are n o t i n f l u e n c e d s u b s t a n t i a l l y b y n e i g h b o r i n g ions.
I n these crystals, the
p l a n a r ions are s t a c k e d one a b o v e the other w i t h a s e p a r a t i o n of 4.21A. T h e p o t a s s i u m ions p a c k i n the planes b e t w e e n the ions w i t h to
the
external portion
of
the
chloride
ligands.
I n the
contacts
compound
P t ( N H ) P t C l , M a g n u s ' green salt ( M G S ) , there are s t r i k i n g differences 3
4
4
i n the spectra.
I n M G S , the c a t i o n a n d anions stack alternately w i t h a
s e p a r a t i o n of o n l y 3.25A a l o n g a n e e d l e axis of the c r y s t a l . T h e s e needles are strongly d i c h r o i c , w i t h a m a x i m u m a b s o r p t i o n i n the v i s i b l e i n the d i r e c t i o n of the stacked chains. P o l a r i z e d spectra, w h i c h w e r e r e p o r t e d
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
7.
Ultraviolet
M A R T I N
Spectroscopic
87
Qualities
b y D a y et al. ( 5 ) , are s h o w n i n F i g u r e 6. S i n c e a b s o r p t i o n b a n d s of the ion P t ( N H ) 3
4
2 +
o c c u r at h i g h e r energies t h a n for P t C l " , the s p e c t r u m 4
2
of M G S is b e l i e v e d to represent t h a t of the P t C U " i o n as m o d i f i e d b y t h e 2
close presence of the cations. T h e h i g h a b s o r p t i o n i n the ζ d i r e c t i o n is e v i d e n t f r o m F i g u r e 6. H o w e v e r , the intense green results f r o m a r a t h e r n o r m a l a b s o r p t i o n b a n d at 16,500 c m " w i t h a w i n d o w at 20,000 c m " i n 1
1
the s p e c t r u m for a c o o r d i n a t i o n c o m p l e x .
T h e r e is n o e v i d e n c e f o r a n
a b s o r p t i o n c o n t i n u u m characteristic of a c o n d u c t i o n t y p e b a n d .
How
ever, the h i g h a b s o r p t i o n i n the ζ d i r e c t i o n has b e e n c o n s i d e r e d a c o n sequence of
a p e r t u r b a t i o n of the states for
PtCLi ". 2
A
z-polarized,
d i p o l e - a l l o w e d t r a n s i t i o n is m o v e d to l o w e r energies closer to the transitions.
Consequently,
greater i n t e n s i t y for
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch007
b o r r o w e d u n d e r the v i b r o n i c m e c h a n i s m (1, 5,
z-polarization can
d-d be
24).
Effects of Reduction in Symmetry If one of the c h l o r i d e l i g a n d s i n P t C U " is r e p l a c e d b y another g r o u p , 2
the center of s y m m e t r y i n the i o n is r e m o v e d .
I n F i g u r e 7 are s h o w n
spectra i n the r e g i o n of 25,000-40,000 c m " f o r t h e ions P t C l ( H 0 ) - a n d 1
PtCl (NH )~. 3
3
3
2
T h i s is the r e g i o n for the s p i n - a l l o w e d d-d b a n d s of these
ions. I n a c c o r d a n c e w i t h the c o n c e p t t h a t a m m o n i a has a stronger c r y s t a l field effect t h a n H 0 , w h i c h is stronger t h a n t h a t of c h l o r i d e , b a n d s are 2
s h i f t e d to h i g h e r energy b y the s u b s t i t u t i o n of a c h l o r i d e b y w a t e r a n d to s t i l l h i g h e r energy u p o n s u b s t i t u t i o n b y a m m o n i a .
S i n c e there is n o
center of s y m m e t r y i n these ions, the presence of the l i g a n d s creates a n a s y m m e t r i c electric field at the p l a t i n u m a t o m .
T h e h i g h e r intensities
of the b a n d s seem to b e a n a t u r a l c o n s e q u e n c e of these a s y m m e t r i c
fields.
O n e p u z z l i n g feature for w h i c h there appears to b e n o r e a d y e x p l a n a t i o n is the r e l a t i v e intensities of t h e t w o b a n d s i n the three complexes. P t C l ~ , the c's of the t w o s p i n - a l l o w e d peaks are a b o u t e q u a l . 4
2
For
I n the
P t C l ( H 0 ) " , the h i g h energy b a n d is m u c h m o r e intense t h a n the l o w e n 3
2
e r g y b a n d , whereas for the P t C l ( N H ) " , just the reverse s i t u a t i o n occurs. 3
If a s a m p l e of K P t C l 2
4
3
is d i s s o l v e d i n w a t e r w i t h n o a d d i t i o n a l c h l o
r i d e , a n d the absorbance of t h e s o l u t i o n is f o l l o w e d at 25,500 cm" —i.e., 1
at the m a x i m u m of the first s p i n - a l l o w e d b a n d — t h e absorbance falls a n d the m a x i m u m shifts t o w a r d l o n g e r w a v e l e n g t h s as the s p e c t r u m
changes
c o n t i n u o u s l y t o w a r d the s p e c t r u m of the P t C l ( H 0 ) " . A t e q u i l i b r i u m 3
2
w i t h respect to the a q u a t i o n r e a c t i o n P t C l ~ + H 0 -> P t C l ( H 0 ) - + C I " 4
2
2
3
(3)
2
the s p e c t r u m is i n t e r m e d i a t e b e t w e e n the t w o s h o w n i n F i g u r e 7.
The
s p e c t r u m for P t C l ( H 0 ) " w a s o b t a i n e d f r o m the o b s e r v e d e q u i l i b r i u m 3
2
s p e c t r u m a n d the e q u i l i b r i u m concentrations of the species.
T h e spec-
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch007
88
P L A T I N U M
10
Figure 7.
χ
M E T A L S
A N D
C O M P O U N D S
χ cm"
Absorption spectrum in dilute aqueous HCl of the com plexes, PtClf', PtCl (H 0); and PtCl (NH )s
6.00 X I0~
(5
3
M
Rb PtBr 2
8.
3
s
4
BQJJ
40
2
160
TIME IN
Figure
ν
GROUP
180
2ÔÔ
220
MINUTES
Changes in the absorbance solved in H 0
after RbzPtBr^
is dis-
2
Wavelength, 415
πΐμ.
NaNOs added to give an ionic strength of 0.318M. H\ 10- M. S
t r u m of t h e P t C L t " i o n c a n b e e v a l u a t e d f a i r l y a c c u r a t e l y i n solutions 2
w i t h h i g h c h l o r i d e concentrations. A s i m i l a r effect w a s e x p e c t e d for a s o l u t i o n of P t B r " at the c o r r e 4
2
s p o n d i n g b a n d w h i c h occurs at 24,400 c m " . H o w e v e r , i n s u c h a s o l u t i o n , 1
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
7.
M A R T I N
Ultraviolet
Spectroscopic
89
Qualities
as s h o w n i n F i g u r e 8, a l t h o u g h there was i n i t i a l l y a v e r y s m a l l decrease i n the a b s o r b a n c e , this decrease w a s f o l l o w e d b y a m u c h l a r g e r increase (27).
U p o n the a d d i t i o n of excess b r o m i d e i o n , the a b s o r b a n c e r e t u r n e d
to its i n i t i a l v a l u e w i t h a p e r i o d of a b o u t 5 m i n .
This behavior
was
a t t r i b u t e d to the f o r m a t i o n of the P t B r " d i m e r i c i o n i n t h e s o l u t i o n . 2
6
2
T h i s i o n h a d b e e n i d e n t i f i e d p r e v i o u s l y b y H a r r i s et al. ( 9 ) .
The data
i n F i g u r e 8 p r o v i d e d i n f o r m a t i o n a b o u t the rate of f o r m a t i o n a n d r e a c t i o n of this d i m e r . A p p a r e n t l y a n a q u a t i o n r e a c t i o n PtBr ~ + 4
H 0 -> P t B r ( H 0 ) - + B r ~
2
2
3
(4)
2
occurs i n i t i a l l y , b u t this process is f o l l o w e d b y the r e a c t i o n 2 P t B r ( H 0 ) - -> P t B r Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch007
3
2
2
2
6
- +
2H 0
(5)
2
T h i s d i m e r i c i o n c a n be c o n s i d e r e d i n e q u i l i b r i u m w i t h P t B r ~ i n a c c o r d 4
2
ance w i t h the r e a c t i o n 2 P t B r ~ <=> P t B r 4
2
2
6
2
- +
2Br~
(6)
S i n c e i n the f o r m a t i o n of P t B r " f r o m P t B r ~ t w o b r o m i d e 2
6
2
4
2
ions
are
f o r m e d , there w i l l be a h i g h e r f r a c t i o n of the p l a t i n u m c o n v e r t e d to the d i m e r at h i g h e r d i l u t i o n . F i g u r e 9 illustrates the spectra r e c o r d e d i n a n e x p e r i m e n t i n w h i c h a s o l u t i o n of H P t B r 2
2
was diluted. T h e initial solu-
6
t i o n h a d b e e n f o r m e d b y p a s s i n g the t e t r a e t h y l a m m o n i u m salt of P t B r " 2
t h r o u g h a c a t i o n exchanger i n the h y d r o g e n phase.
6
2
U p o n d i l u t i o n , the
a b s o r b a n c e d e c r e a s e d t o w a r d a s p e c t r u m to be e x p e c t e d for the P t B r 3
( H 0 ) ~ i o n . W i t h the a d d i t i o n of excess K B r , the o b s e r v e d s p e c t r a c o i n 2
c i d e d w i t h that of P t B r " . 4
2
T h e o b s e r v e d s p e c t r a l changes i n d i c a t e d t h a t
the f o r m a t i o n of t h e d i m e r i c species, P t B r " , was too s l o w to a c c o u n t for 2
6
2
the i s o t o p i c exchange b e t w e e n free b r o m i d e i o n a n d the b r o m i d e l i g a n d s i n P t B r " , even t h o u g h the kinetics for s u c h e x c h a n g e i n c l u d e d a t e r m 4
2
w h i c h was s e c o n d o r d e r i n c o m p l e x . I t was c o n c l u d e d that s u c h e x c h a n g e o c c u r r e d t h r o u g h the m a k i n g a n d b r e a k i n g of s i n g l y
bromide-bridged
d i m e r i c complexes.
Spectra
in Organic
Media
A l t h o u g h t h e v i s i b l e a n d u l t r a v i o l e t spectra of the p l a t i n u m m e t a l c o m p l e x e s serve as a v a l u a b l e means to f o l l o w t h e i r reactions, this feature is e s p e c i a l l y d i s t u r b i n g to one w h o is t r y i n g to establish the e n e r g y states for a p a r t i c u l a r species.
S o m e care is necessary
to e s t a b l i s h that t h e
m e a s u r e d s p e c t r u m results f r o m the p a r t i c u l a r c o m p l e x species of interest, a n d not some of its r e a c t i o n p r o d u c t s .
W a t e r is a n effective n u c l e o p h i l e
for these complexes.
T o a v o i d s o l v a t i o n of some p l a t i n u m c o m p l e x e s ,
M a s o n a n d G r a y (21)
h a v e r e c e n t l y r e p o r t e d spectra of t h e t e t r a b u t y l -
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch007
PLATINUM
GROUP
METALS
AND
COMPOUNDS
Figure 9. Spectral changes when an aged solution of H Pt Br in a 1-cm cell (0 min) is diluted 10-fold and added to a 10-cm cell 2
2
6
Dashed curve obtained after the addition of solid KBr. Temp., 25°. NaN0 added to give ionic strength of 0.318M. 3
Figure 10. Spectrum of (NBu ) PtBr^ in a 2:1 mixture of 2-methyltetrahydrofuran and propionitrile at room temperature and at 77° Κ (liquid nitrogen) u 2
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
7.
MARTIN
Ultraviolet
Spectroscopic
a m m o n i u m tetrabromoplatinate (II)
91
Qualities
i n a n o r g a n i c solvent m e d i u m c o n
sisting of 2 : 1 m i x t u r e of 2 - m e t h y l t e t r a h y d r o f u r a n a n d p r o p i o n i t r i l e . I n this w a y s o l v a t i o n w a s a v o i d e d . I n a d d i t i o n , t h e y w e r e a b l e to c o o l these solutions as glasses to l i q u i d n i t r o g e n temperatures. T h i s p r o v i d e d m u c h better r e s o l u t i o n of t h e a b s o r p t i o n b a n d s , as is s h o w n i n t h e i r spectra i n F i g u r e 10. Shoulders at 26,500 a n d 33,000 c m the l o w e r temperatures.
- 1
are c l e a r l y r e s o l v e d at
S i n c e v i b r o n i c e x c i t a t i o n is r e d u c e d at l o w e r
temperatures, intensities of t h e s y m m e t r y - f o r b i d d e n b a n d s i n t h e r e g i o n of 20,000-30,000 c m '
1
are l o w e r at t h e l i q u i d n i t r o g e n temperatures. T h e
d i p o l e - a l l o w e d transitions, o n t h e other h a n d , possess a t e m p e r a t u r e i n d e p e n d e n t t o t a l i n t e n s i t y . T h e r e f o r e , as t h e b a n d s n a r r o w at l o w t e m
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch007
p e r a t u r e , e x t i n c t i o n coefficient peaks b e c o m e h i g h e r .
T h i s is e s p e c i a l l y
Ε ο vu >ι-
α ο (/)
ω
< < -J Ο
2
20000
25000 Z/cnrf
30000
35000
1
Figure 11. Absorption spectrum of Pt(en)Cl in an aqueous 0.3M Cl~ solution and in single crystals with polarized light at 300°Κ and at liquid helium tem peratures (nominally 15°K) 2
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
92
PLATINUM
GROUP
METALS
A N D COMPOUNDS
e v i d e n t i n t h e i r spectra f r o m 33,000-38,000 c m " , the r e g i o n o f the h i g h 1
i n t e n s i t y charge transfer b a n d s .
Spectrum of Diehlorο (ethylene diamine) platinum (II). Metal—Metal Interactions
Evidence for
W e h a v e r e c e n t l y o b t a i n e d some i n t e r e s t i n g spectra o f the n e u t r a l c o m p l e x P t ( e n ) C l . T h e s o l u t i o n s p e c t r u m of this c o m p l e x i n the r e g i o n 2
of the d-d b a n d s i s s h o w n i n F i g u r e 11. T h e charge transfer b a n d s are b e y o n d 48,000 c m " .
Its s o l u t i o n s p e c t r u m is v e r y s i m i l a r t o t h a t of
1
P t ( N H ) C l 2 , except t h a t the m o l a r a b s o r p t i v i t y i n the r e g i o n o f t h e 3
2
a b s o r p t i o n m a x i m u m is t w i c e as h i g h f o r the c i s - d i c h l o r o d i a m m i n e p l a t i -
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch007
num(II).
C h a t t , G a m l e n , a n d O r g e l ( 3 ) h a v e assigned the s p e c t r u m o f
t h e d i c h l o r o d i a m m i n e c o m p l e x o n t h e basis o f D
4 f e
symmetry, considering
the l i g a n d field d i s t o r t i o n t o b e a m i n o r effect. T h e p e a k at 33,000 c m " w a s assigned as the first s p i n - a l l o w e d d-d b a n d — i . e . , d
xy
b a n d for d , xz
yz
-> d* *. x
2
y
1
-» d* . . T h e 2
x
2
y
w a s c o n s i d e r e d the s h o u l d e r t o the h i g h energy
side o f this peak. T h e r e w e r e t h e n t w o f a i r l y w e l l r e s o l v a b l e s p i n - f o r b i d d e n b a n d s at l o n g e r w a v e l e n g t h s . T h e c r y s t a l s t r u c t u r e o f P t ( e n ) C l
2
was
recently determined b y x-ray diffraction methods b y Jacobson a n d Benson i n our laboratory ( I I ) .
T h e y f o u n d that the crystals b e l o n g e d
to t h e
o r t h o r h o m b i c system w i t h the molecules stacked i n a n e a r l y l i n e a r a r r a y , as s h o w n i n F i g u r e 12, w i t h a u n i f o r m s p a c i n g o f 3.39A b e t w e e n t h e
A
Β
Figure 12. A. Stacking of Pt(en)Cl molecules in the orthorhombic cry stab. B. Anticipated order of 1-electron orbital energies with their symmetry designations for the à-orbitals under the D and the C groups. 2
ih
2y
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
7.
MARTIN
Ultraviolet
p l a t i n u m atoms.
Spectroscopic
93
Qualities
T h i s s p a c i n g is o n l y 0.14A greater t h a n b e t w e e n t h e
ions i n M G S . V e r y t h i n crystals, <
10μ t h i c k , w i t h the c a n d b axes
l y i n g i n the faces w e r e a v a i l a b l e so that l i g h t d i r e c t e d a l o n g the a axis p e r m i t t e d the o b s e r v a t i o n o f s p e c t r a p o l a r i z e d i n the b- a n d c-directions ( F i g u r e 12).
T h e s e p o l a r i z e d spectra are s h o w n i n F i g u r e 11. A t r o o m
t e m p e r a t u r e , t h e a b s o r p t i o n i n the c - d i r e c t i o n w a s m u c h h i g h e r t h a n for t h a t w i t h b - p o l a r i z a t i o n . A t 25,000 c m " , f o r e x a m p l e , the b - p o l a r i z a t i o n 1
is o f the o r d e r o f that i n s o l u t i o n , whereas i n the c - d i r e c t i o n i t has b e e n enhanced ten-fold.
I n its i n t e n s i t y features, these spectra strongly r e
semble those of M G S , a l t h o u g h there has not b e e n a shift of b a n d s t o longer w a v e l e n g t h s f r o m the s o l u t i o n spectra. A t l o w e r temperatures, t h e e x p e c t e d n a r r o w i n g o f b a n d s has b e e n o b s e r v e d , a n d f o r t h e c - p o l a r i z a -
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch007
t i o n three components are easily r e s o l v a b l e w i t h l o w e r intensities t h a n a t room temperature.
H o w e v e r , f o r the b - p o l a r i z a t i o n — i . e . , n o r m a l t o t h e
s t a c k i n g d i r e c t i o n — w i t h a n a r r o w i n g o f the a b s o r p t i o n b a n d , there has b e e n a n increase i n the h e i g h t o f the peak.
T h i s b e h a v i o r is that o f a
s y m m e t r y - a l l o w e d t r a n s i t i o n o f the sort w h i c h w e r e o b s e r v e d i n the l o w t e m p e r a t u r e spectra o f M a s o n a n d G r a y (21).
S i n c e the m o l e c u l e does
not possess a center o f s y m m e t r y , the possible effects o f the a s y m m e t r i c l i g a n d field w e r e e x a m i n e d . I f a p l a n a r c o n f i g u r a t i o n w a s a s s u m e d , w h i c h is not s t r i c t l y t r u e because o f p u c k e r i n g o f the chelate r i n g , b u t w h i c h is not a b a d a p p r o x i m a t i o n , a n a s y m m e t r i c
field
i n the direction of the
m o l e c u l a r d i p o l e w o u l d p r o v i d e some d i p o l e - a l l o w e d i n t e n s i t y f o r t h e d
xz
-> d * t r a n s i t i o n . H o w e v e r , this w o u l d b e for p o l a r i z a t i o n i n the z, o r xy
c - d i r e c t i o n . H e n c e , the presence of a n a l l o w e d t r a n s i t i o n n o r m a l t o the c h a i n d i r e c t i o n w o u l d not b e e x p e c t e d f r o m this source. N o t e that, as s h o w n i n F i g u r e 12, the χ a n d y axes h a v e b e e n d i r e c t e d b e t w e e n the l i g a n d s so that the a n t i b o n d i n g o r highest d - o r b i t a l is d e s c r i b e d as the d
xy
rather than the d . 2
x
2
y
w h i c h w a s u s e d i n the section o n
the P t C l " i o n . T h e assignment o f the χ a n d y axes is a r b i t r a r y b e t w e e n 4
2
t w o e q u i v a l e n t choices i n D
s y m m e t r y , a n d i n t e r c h a n g e o f t h e choices
4h
interchanges the b a n d b representations. 1
2
F o r this c o m p o u n d the p r e s
ent c h o i c e was c o n v e n i e n t , since the χ a n d y axes w e r e t h e n d i r e c t e d i n the d i r e c t i o n o f the o r t h o r h o m b i c axes a n d the y axis w a s d i r e c t e d a l o n g the C
2
s y m m e t r y axis o f t h e m o l e c u l e .
T h e consequences o f energy b a n d f o r m a t i o n f r o m i n t e r a c t i o n s o f electrons i n the p l a t i n u m d-orbitals o n l y w e r e c o n s i d e r e d . the d - o r b i t a l s , say the d
2
z
F o r a set o f
o r b i t a l o n e a c h p l a t i n u m a t o m i n the c h a i n ,
w e r e f o r m e d a n L C A O w a v e f u n c t i o n o f the f o r m
Ψη(* ) =
Σ
2
i
C .y(<«y n
= l
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
(7)
94
PLATINUM
GROUP
METALS
AND
COMPOUNDS
where Ν Σ C ».y = 1 =ι
(8)
2
i
a n d (ai)j is t h e d
2
z
o r b i t a l o f t h e / a t o m i n a c h a i n o f η-platinum atoms.
F r o m application of the simple theory of a particle i n a one-dimensional box
jf + i
WTT)
s i n
( 9 )
w h e r e η c a n b e a n integer, 0 < η < Ν -f- 1. W i t h v e r y large N, w h e r e
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch007
o n l y i n t e r a c t i o n s b e t w e e n adjacent atoms are c o n s i d e r e d , E
# <M τ = H
=
n
j3
+ 2H
jtj
+
T h u s , a b a n d o f e n e r g y states b a s e d o n the d
2
z
l C
os
(10)
o r b i t a l s is p r e d i c t e d . A
c o r r e s p o n d i n g set o f w a v e functions, d e s c r i b i n g s i m i l a r b a n d s , c a n b e w r i t t e n for e a c h o f the other f o u r d - o r b i t a l s . W i t h the a t o m i c d c o n f i g u r a t i o n 8
of P t , t h e f o u r l o w e s t b a n d s are filled; the h i g h e s t b a n d , b a s e d o n the 2 +
a n t i b o n d i n g o r b i t a l i n v o l v i n g d , is e m p t y . T h e expression for the t r a n s i xy
t i o n m o m e n t i n v o l v i n g a transfer of a n e l e c t r o n f r o m ψ i n a filled b a n d t o η
ij/m i n the e m p t y b a n d r e q u i r e s a n e v a l u a t i o n o f t h e d i p o l e m o m e n t i n t e g r a l Ρ η — m = Jψη(ζ*>
ψ™ (xy) dz
(11)
F r o m the s y m m e t r y p r o p e r t i e s of the p r o d u c t s i n these integrals, i t c a n b e c o n c l u d e d t h a t transitions f r o m the d
2
z
d 2. 2 X
y
b a n d t o the d*
xy
f r o m the d
xz
b a n d t o the d*
xy
a n d f r o m the d
yz
tion.
b a n d t o the d*
b a n d are d i p o l e - f o r b i d d e n .
xy
a n d f r o m the
However, a transition
b a n d is d i p o l e - a l l o w e d i n t h e y p o l a r i z a t i o n
b a n d t o t h e d*
xy
b a n d is d i p o l e - a l l o w e d i n the χ d i r e c
Therefore, t h e b a n d theory predicts a dipole-allowed transition
n o r m a l to the c h a i n f r o m t h e b a n d s a r i s i n g f r o m the o r b i t a l s w h i c h are degenerate
(e ) g
in D
4h
symmetry.
S i n c e p r e s u m a b l y interactions o f the
electrons b e t w e e n the p l a t i n u m atoms are not l a r g e , the b a n d is n a r r o w a n d o f l o w i n t e n s i t y . H o w e v e r , the b a n d t h e o r y does a c c o u n t v e r y n i c e l y for the o b s e r v e d d i p o l e - a l l o w e d t r a n s i t i o n i n y p o l a r i z a t i o n .
Direction of Current Research I n the p r e c e d i n g sections, a n u m b e r o f specific instances h a v e b e e n r e v i e w e d i n w h i c h the a b s o r p t i o n s p e c t r a o f p l a t i n u m g r o u p complexes h a v e p r o v i d e d i n f o r m a t i o n c o n c e r n i n g t h e c h e m i c a l b e h a v i o r o f t h e sys tems a n d the e l e c t r o n i c s t r u c t u r e a n d b o n d i n g i n the c o m p o u n d s .
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Some
7.
MARTIN
Ultraviolet
Spectroscopic
95
Qualities
d e v e l o p m e n t s , p u b l i s h e d v e r y r e c e n t l y , also deserve m e n t i o n , since t h e y illustrate t h e d i r e c t i o n i n w h i c h t h e research is m o v i n g . R e c e n t l y , Professor S c h a t z a n d c o w o r k e r s at t h e U n i v e r s i t y of V i r g i n i a h a v e r e p o r t e d m a g n e t i c c i r c u l a r d i c h r o i s m spectra f o r t h e I r C l " 6
i o n i n b o t h s o l u t i o n a n d single crystals (10, 22).
3
I n addition, they have
refined t h e t h e o r y , i n c l u d i n g t h e d e s c r i p t i o n of t h e d - o r b i t a l s , sufficiently that t h e y c a n p r e d i c t t h e s i g n of t h e M C D t e r m . F o r these transitions the M C D arises f r o m t h e B - t e r m as d e f i n e d b y Stephens transitions of electrons f r o m t h e t
lu
p r e d i c t e d to h a v e different signs.
a n d the t
(26), a n d
orbitals ( F i g u r e 2 ) are
2u
T h e i r experiments therefore
permit
i d e n t i f i c a t i o n of t h e e x c i t e d states f o r t w o of t h e charge transfer b a n d s w h i c h a r e i n t e r c h a n g e d f r o m t h e o r i g i n a l suggestion b y Jorgensen Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch007
D o r a i n , J o r d a n , a n d t h e i r students
(14).
at B r a n d e i s U n i v e r s i t y h a v e
r e c e n t l y r e p o r t e d some e x c i t i n g c r y s t a l spectra.
T h e y dissolved small
amounts of t h e hexahalo complexes as, f o r e x a m p l e , O s C l " , i n host 6
crystals s u c h as the P t C l
4
( I V ) , the Z n C L i ( I V ) , a n d t h e H f C l
2
4
( I V ) salts
of a l k a l i m e t a l ions ( 7 ) . T h e s e crystals w e r e c o o l e d t o l i q u i d h e l i u m t e m p e r a t u r e a n d t h e i r spectra w e r e r e c o r d e d w i t h h i g h - r e s o l u t i o n e q u i p ment.
N o w , i n s t e a d of b r o a d b a n d s , t h e y o b s e r v e d t r e m e n d o u s
detail
i n t h e i r spectra. I n t h e r e g i o n f r o m 17,000-35,000 c m , w e l l i n excess of - 1
100 lines w e r e r e c o r d e d .
P o r t i o n s of t h e i r spectra i n v e r y n a r r o w regions
are s h o w n i n F i g u r e 13. T h e p o r t i o n of t h e s p e c t r u m i n t h e v i c i n i t y of 17,000 c m " corresponds 1
to t h e w e a k b a n d s h o w n i n F i g u r e 1. T h e
z e r o - z e r o l i n e is i d e n t i f i e d ( Β ) a n d is a p p a r e n t l y e x c i t e d b y q u a d r u p o l e excitation. M u c h stronger lines arise f r o m t h e v i b r o n i c e x c i t a t i o n o f t h e lines i n d i c a t e d v a n d v . T h e v a n d v represent the t w o t 4
3
4
lu
3
normal vibra
tions of t h e o c t a h e d r a l i o n . F o r m a n y o f t h e b a n d s , t h e v i b r a t i o n a l A
Β
17000 17200 17400 17600
28800 29400 30000 30600
cm"'
Figure 13.
cm"
Spectra of the a ion, OsCl ~ 4
2
6
1
dissolved in host crystals
A. Host is KtPtCU. B. Host is CszZrCU. The Ο.Ό. scales are not equal in part A and B. Initial lines are enlarged by a factor of 5 in part B.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
96
PLATINUM GROUP METALS AND COMPOUNDS
progressions permit an identification of the symmetry of the excited state. This quality of spectrum also affords an incentive for the theorist to tackle the difficult problem of the spectral intensities. In the vicinity of 29,00030,000 cm" illustrated by the Β portion in Figure 13, the molar absorp tivity in solution is approximately 8000 cm" M" . However, from a con sideration of intensities, the ligandfieldparameters, which include the strong spin-orbit coupling and the vibrational frequencies, Jordan et al. (13) conclude that all the bands in the region up to at least 35,000 cm" are ligandfield—i.e.,d-d transitions. This, of course, challenges the conclusion mentioned earlier that these bands arose from charge transfer 7Γ —» t . Hence, some of the systematics of the band assignments need réévaluation. 1
1
1
1
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch007
2g
Summary The past two decades have witnessed a remarkable development in the experimental and theoretical considerations of the electronic absorption spectra of coordination complexes, of which the platinum metal compounds comprise an important segment. Despite their limited number of features, these spectra have proved useful for analytical purposes. With the development of ligandfieldtheory and molecular orbital treatment, they have provided rather considerable information about the energy states of complexes, the energies which can be associated with particular orbitals, and the trends that occur in these energies between various elements, with various ligands and environments. The development of these theories has in turn stimulated experimental investigations, so that polarization of absorption bands, the magnetic circular dichroism, low temperatures, and the utilization of crystalline environments have greatly extended possibilities for identification of the transitions. Most certainly, the next few years will see a further application of these techniques, a refinement of the methods and instrumentation,' and improved theoretical means for dealing with the problem of the energy states and the intensities.
Literature Cited (1) Anex, B. G., Ross, M. E., Hedgecock, M. W., J. Chem. Phys. 1967, 46, 1090. (2) Basch, H., Gray, H. B., Inorg. Chem. 1967, 6, 365. (3) Chatt, J., Gamlen, G. Α., Orgel, L. E.,J.Chem. Soc. (London) 1958, 486 (4) Cotton, F. Α., Harris, C. B., Inorg. Chem. 1967, 6, 369. (5) Day, P., Orchard, A. F., Thompson, A. J., Williams, R. J. P., J. Chem. Phys. 1965, 42, 1973. (6) Dickinson, R. G.,J.Am. Chem. Soc. 1922, 44, 2402. (7) Dorain, P. B., Patterson, Η. H., Jordan, P.C.,J.Chem. Phys. 1958, 49, 3845.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch007
7. MARTIN
Ultraviolet Spectroscopic Qualities
97
(8) Griffiths, J. Η. Ε., Owen, J., Ward, I. M., Proc. Roy. Soc. (London) 1953 A219, 526. (9) Harris, C. M., Livingstone, S. E., Stephenson, N. C.,J.Chem. Soc. (Lon don) 1958, 3697. (10) Henning, G. N., McCaffery, A. J., Schatz, P. N., Stephens, P. J.,J.Chem. Phys. 1968, 48, 5656. (11) Jacobson, Robert Α., Benson, James E., private communication. (12) Johannesen, R. B., Candela, G. Α., Inorg. Chem. 1963, 2, 67. (13) Jordan, P. C., Patterson, H. H., Dorain, P. B., J. Chem. Phys. 1968, 49, 3858. (14) Jorgensen, C. K., Acta Chem. Scand. 1956, 10, 500. (15) Jorgensen, C. K., Ibid., 1956, 10, 518. (16) Jorgensen, C. K., Ibid., 1963, 17, 1043. (17) Jorgensen, C. K., Mol. Phys. 1959, 2, 309. (18) Jorgensen, C. K., "Absorption Spectra and Chemical Bonding in Com plexes," Ch. 9, Pergamon, London, 1961. (19) Ref. 17, p. 114. (20) Martin, D. S., Jr., Tucker, Μ. Α., Kassman, A. J., Inorg. Chem. 1965, 4, 1682. (21) Mason, W. R., Gray, Η. B.,J.Am. Chem. Soc. 1968, 90, 5721. (22) McCaffery, A. J., Schatz, P. N., Lester, T. E., J. Chem. Phys. 1969, 50, 379 (23) McCaffery, A. J., Schatz, P. N., Stephens, P. J., J. Am. Chem. Soc. 1968, 90, 5730. (24) Miller, J. R., J. Chem. Soc. (London) 1965, 713. (25) Owen, J., Stevens, K. W. H., Nature 1953, 171, 836. (26) Stephens, P. J., Inorg. Chem. 1966, 5, 491. (27) Teggins, J. E., Gano, D. R., Tucker, Μ. Α., Martin, D. S., Jr., Ibid., 1967, 6, 69. RECEIVED December 16, 1969. Work performed in the Ames Laboratory of the U. S. Atomic Energy Commission, Contribution No. 2648.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
8
N M R Spectra of Compounds of the Platinum G r o u p Metals
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch008
R. STUART TOBIAS Purdue University, Lafayette, Ind. 47907
Although resonances of the nuclei of platinum group metals have been observed in some cases, the small magnetic mo ments of many of these lead to very low NMR intensities and the large spins of many of the nuclei cause very broa signals. Of much more use to the chemist have been studi on H, F, and P resonances of ligands coordinated to the metals. Very highfieldresonances characterize hydride ligands. Since many compounds of these elements are ster eochemically rigid, nuclear magnetic resonance spectro scopy is helpful in the elucidation of their structures. A number of the organometallic derivatives are nonrigid, and NMR has been used to study their reactions. 1
19
31
'Tphe application of nuclear magnetic resonance to the study of the compounds of the platinum group metals has been limited by the properties of these nuclei. Data are collected in Table I for all of the isotopes of these elements which have nonzero spins. The only nuclei which have spins of 1/2 and which consequently give relatively high resolution spectra are Rh, Os, and Pt. All of the other isotopes have spins of 3/2 or greater and give very broad reso nances because of the nuclear quadrupole moment. Thesefinitequadrupole moments lead to rapid relaxation of the nuclei in environments not described by one of the cubic groups—i.e., when the coordination sphere has symmetry lower than T or O . As a result, spin-spin coupling usually is not observed with these nuclei. Of the three isotopes with spins of 1/2, Os occurs with very low natural abundance, 1.64%. This, combined with the very poor sensitivity of the nucleus compared to the proton, 7.93 Χ 10" at constant field, virtually precludes its study with contemporary spectrometers. Of all of these nuclei, only Rh and Pt lend themselves to NMR experiments. 103
d
187
195
h
187
5
103
195
98 In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
8.
TOBIAS
NMR
Table I.
Spectra
Natural Abundance j
Isotope
NMR Frequency 10 Kgauss Field, MHz
"Ru Ru Rh Pd 0s 189 191 193J 195
1.9 2.1 1.340 1.74 1.8 3.307 0.813 0.86 9.153
12.81 16.98 100. 22.23 1.64 16.1 38.5 61.5 33.7
1 0 1 1 0 3
1 0 5
1 8 7
0s
Ir
r
Pt
a
99
Compounds
Nuclear Properties of the Platinum Group Metals"
y
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch008
of
Sensitivity (Constant Field) Relative to !! = 1
%
Quadrupole Moment, e · 10~ Cm
Spin,
24
1
1.07 1.41 3.12 7.94 7.93 2.34 3.5 4.2 9.94
?
5/2 5/2 1/2 5/2 1/2 3/2 3/2 3/2 1/2
X 10X 10X 10X 10-" X 10-* X 10X 10X 10X 103 3
5
3
s
5
3
?
-
-
2.0 1.5 1.5
-
Reprinted from Ref. 57 by permission of Varian Associates.
O f the t w o ,
1 9 5
P t is s o m e w h a t easier to s t u d y b e c a u s e of its r e l a t i v e l y g o o d
sensitivity a n d h i g h resonance
frequency.
E v e n w i t h these l i m i t a t i o n s , n u c l e a r m a g n e t i c resonance has
made
significant c o n t r i b u t i o n s to f o u r areas of the c h e m i s t r y of the p l a t i n u m g r o u p m e t a l s : b o n d i n g p r o b l e m s , m o l e c u l a r stereochemistry,
solvation
a n d solvent effects, a n d d y n a m i c s y s t e m s — r e a c t i o n rates. S e l e c t e d e x a m ples i n e a c h of these areas are discussed i n t u r n . l i m i t a t i o n s , this r e v i e w is not m e a n t to be Bonding
B e c a u s e of
space
comprehensive.
Problems
C o n c e p t u a l l y , the simplest N M R e x p e r i m e n t i n v o l v e s the s t u d y of the resonance of the m e t a l n u c l e u s itself, y i e l d i n g c h e m i c a l shift values a n d i n some cases s p i n - s p i n c o u p l i n g constant d a t a . R e c e n t l y , the i n t e r n u c l e a r d o u b l e resonance t e c h n i q u e (17)
also has b e e n u s e d to m e a s u r e
these c h e m i c a l shifts. F i g u r e 1 shows c h e m i c a l shift d a t a for a series of square p l a n a r p l a t i n u m ( I I ) complexes
o b t a i n e d b y the I N D O R t e c h n i q u e (36).
The
p r o t o n resonance spectra of the l i g a n d s w e r e m o n i t o r e d w h i l e s w e e p i n g t h r o u g h the ical
shifts,
1 9 5
almost
[(MeO) P] Pt 3
P t resonant f r e q u e n c y range.
4
2 +
1700
(high
ppm
field)
from
T h e l a r g e range of
(Me S) PtCl 2
2
2
(low
chem-
field)
to
suggests t h a t the shifts are d o m i n a t e d b y
the p a r a m a g n e t i c c o n t r i b u t i o n . Q u a l i t a t i v e l y , this is s u p p o r t e d b y
the
o b s e r v a t i o n that the complexes h a v i n g l o w field resonances a b s o r b i n the b l u e r e g i o n of the s p e c t r u m , w h i l e those w i t h the highest field resonances are colorless. P i d c o c k , R i c h a r d s , a n d V e n a n z i (47) investigations of
1 9 5
have conducted more detailed
P t c h e m i c a l shifts b y d i r e c t m e a s u r e m e n t of the p l a t i -
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
100
PLATINUM
GROUP
METALS
AND
COMPOUNDS
High R e l d +2 {[(MeO) P] Pt) 3
1500
4
trans(Et P) PtHCI 3
2
^cis(Et P)^tCI 3
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch008
1000
2
cis(Et2PhP) PtCI 2
^^ci<(EtO) P] PtCI 3
2
2
2
ppm
I
^trans(Et PhP) PtCl 2
2
2
500 ^Mrans(Et P) PtCI 3
^
2
. cis(Et S)pPtCI 2
\ *
2
cis(Me S^PtCI 2
2
cis(Et Se^PtCI 2
2
2
trans(Et Se)PtCI
OL
2
2
^ - -t r a n s ( E t S ) P t C I Low Field * N t r a n s ( M e S ) P t C I 2
2
2
2
2
2
Chemical Communications
Figure
1.
n u m resonances.
Chemical shifts in phtinum(II) redrawn from Ref. 36
complexes;
T h e c o m p o u n d trans- [ P t C l p e p y ] , p e p y = 2
4-pentyl-
2
p y r i d i n e , w a s u s e d as the reference. T h e g e n e r a l E x p r e s s i o n 1 for n u c l e a r s h i e l d i n g , σ, g i v e n b y R a m s e y (50)
was s i m p l i f i e d u s i n g a p r o c e d u r e first
e m p l o y e d b y G r i f f i t h a n d O r g e l (22) σ =
-
2 β Σ (E njé 0 2
+
n
-
[<ψ |Σ Ζ |ψ»><ψ»|Σ Z r - | ψ >
E )~ 0
to d e s c r i b e the shifts of c o b a l t ( I I I )
l
0
<β
fcz
i
<φ |Σ Ζ 0
k
λ 2
Γ - |φ Χψ |Σ λ
3
η
fc
3
0
k
η
Ζ -,|φ >] β
i
(1)
β
complexes. I n E q u a t i o n 1, ψ a n d ψ are the w a v e f u n c t i o n s of the g r o u n d a n d e x c i t e d states, E a n d E are the c o r r e s p o n d i n g energies, l is the ζ 0
0
n
η
ie
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
8.
TOBIAS
NMR Spectra
of
101
Compounds
c o m p o n e n t of the a n g u l a r m o m e n t u m operator f o r t h e f t h e l e c t r o n , r is t
the distance of the i t h e l e c t r o n f r o m t h e n u c l e u s , a n d β is t h e B o h r m a g n e t o n . W i t h P t ( I I ) complexes, t h e g r o u n d state is a singlet. I f i t is a s s u m e d t h a t a l l of t h e complexes c a n b e d e s c r i b e d i n terms of m e t r y , o n l y singlet A
2g
and E
sym
e x c i t e d states n e e d b e c o n s i d e r e d , since
g
these are the s y m m e t r y species of t h e a n g u l a r m o m e n t u m u n d e r t h e operations of the
components
p o i n t g r o u p . T h i s leads to t h e s i m p l i f i e d
E x p r e s s i o n 2 f o r t h e resonant f r e q u e n c y , v. H e r e , Η is the m a g n e t i c
field
strength, A is t h e d i a m a g n e t i c s h i e l d i n g c o n t r i b u t i o n , a n d Β contains ν = 2
ι
l
λβ
as w e l l as p h y s i c a l constants.
C (r~ ) M
- > iA,„ + BH\ A —>
AH + 2ΒΗ\ Α
3
%
lg
T h e term C
M
(2)
is t h e m o l e c u l a r
o r b i t a l m i x i n g coefficient f o r t h e p l a t i n u m 5d o r b i t a l , a n d t h e r " a v e r a g e Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch008
3
is t a k e n over the p l a t i n u m d r a d i a l f u n c t i o n . T h e differences i n e n e r g y of t h e g r o u n d a n d first e x c i t e d A
a n d E states are g i v e n i n terms of t h e
2g
g
t r a n s i t i o n w a v e l e n g t h s , λ. I f this s i m p l e m o d e l
is a d e q u a t e
to represent
the shielding i n
these p l a t i n u m ( I I ) complexes, a p l o t of (v — v f ) vs. (2k A 1
re
X*Ai0 -> E ) 1
g
lg
-» A 1
2g
+
s h o u l d b e linear. A l t h o u g h a v e r y r o u g h l i n e a r r e l a t i o n is
o b s e r v e d for complexes of t h e t y p e P t X L , X = 2
h a l i d e , w h e n X is c o n
2
stant a n d L is v a r i e d , different f a m i l i e s of curves w e r e o b t a i n e d as X w a s v a r i e d f r o m C I " to B r " to Γ .
I t seems l i k e l y t h a t m o r e
electronegative
ligands—e.g., C I " — l e a d to a c o n t r a c t i o n of the p l a t i n u m 5d orbitals a n d a n increase i n the Β p a r a m e t e r t h r o u g h its r " d e p e n d e n c e . 3
D e a n a n d G r e e n (14)
also h a v e o b t a i n e d
1 9 5
P t c h e m i c a l shifts f r o m
d o u b l e resonance studies of t h e s q u a r e p l a n a r h y d r i d e s L =
[Pt(PEt ) HL], 3
2
N O 3 - , N 0 " , C I " , B r " , Γ , S C N " , C N , a n d benzoate. T h e y f o u n d l i t t l e 2
c o r r e l a t i o n b e t w e e n t h e o p t i c a l properties—i.e., the s p e c t r o c h e m i c a l se r i e s — a n d t h e sequence of c h e m i c a l shifts a n d c o n c l u d e d that t h e e x c i t a t i o n energies d i d n o t d o m i n a t e t h e p a r a m a g n e t i c s c r e e n i n g t e r m . T h e shifts i n c r e a s e d i n t h e o r d e r N 0 " < 3
CN~ <
N0 "< 2
CI" <
—S C N
< Br" <
Γ . T h i s o r d e r is s i m i l a r to t h e n e p h e l a u x e t i c series, a n d D e a n
a n d G r e e n suggested that changes i n the m o l e c u l a r o r b i t a l m i x i n g co efficients w e r e m a i n l y r e s p o n s i b l e f o r t h e shifts. I n p r a c t i c e , i t is n o t possible to separate the effect of changes i n the M O m i x i n g coefficients f r o m those of o r b i t a l e x p a n s i o n a n d c o n t r a c t i o n , since t h e y c o n t r i b u t e to t h e same C (r~ ) 2
M
3
term. Pidcock, Richards,
a n d V e n a n z i chose to a t t r i b u t e t h e discrepancies to o r b i t a l c o n t r a c t i o n w h i l e D e a n a n d G r e e n c o n s i d e r e d o n l y changes i n the m i x i n g coefficient. It seems c e r t a i n that t h e large c h e m i c a l shifts o b s e r v e d f o r these d i v a l e n t p l a t i n u m complexes arise m a i n l y f r o m the p a r a m a g n e t i c terms, b u t t h e simplified models used have been inadequate for a quantitative descrip t i o n of the s h i e l d i n g .
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
102
PLATINUM
GROUP
METALS
AND
COMPOUNDS
C o n s i d e r a b l y m o r e i n f o r m a t i o n o n the n a t u r e of the b o n d i n g i n these complexes has b e e n o b t a i n e d f r o m measurements of the s p i n - s p i n c o u p l i n g of
1 0 3
R h and more frequently
A u s e f u l r e v i e w (40)
1 9 5
P t to
H and
1
3 1
P nuclei i n ligands.
of s p i n - s p i n c o u p l i n g b e t w e e n d i r e c t l y b o n d e d
atoms i n c l u d i n g these has a p p e a r e d r e c e n t l y . P h o s p h o r u s - 3 1 s p e c t r a h a v e y i e l d e d a w e a l t h o f d a t a o n cis ( I I ) num (II)
complexes w h e r e X =
M c F a r l a n e (24) 6
5
3
w
(46,
2
2
C H , C H , C H , and C H ; G r i m and 3
2
5
3
7
P(C H )3
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch008
4
4
P(C H9)
9
4
X— P t - X I P(C H9)3
9
3
(C4H9LP-Pt-x I X
4
I F e r e n c e (23)
isomers of p l a t i G r i m , Keiter, and
48).
h a v e o b t a i n e d s i m i l a r data for isomers of the complexes
(R (C H ) - P) PtCl , R = n
a n d trans ( I )
halide
Π
h a v e r e p o r t e d c o u p l i n g constants for cis a n d trans isomers
of R h ( I I I ) complexes. D a t a for a n u m b e r of p l a t i n u m ( I I ) p h o s p h i n e complexes are t a b u l a t e d i n T a b l e I I . T h e c o u p l i n g constant for the cis i s o m e r is ca. 1.5 times that for the trans isomer. Table II.
Platinum-19 5—Phosphorus-31 Spin—Spin Coupling Constants in Platinum (II) Complexes j(i95
Compound
cis Isomer
0
PtCl (Bu P) PtBr (Bu P) PtI (Bu P) PtCl (Et P) PtCl (Pr P) PtCl (Bu P) PtCl (Et PhP) PtCl (Pr PhP) PtCl (Bu PhP) PtCl (BuPh P) 2
3
2
2
3
2
2
2
3
2
2
3
2
2
3
2
2
2
2
2
2
2
2
2
* Bu
2
2
=
2 2
W - C 4 H 9 , Pr
=
71-C3H7, E t
Hz.
trans Isomer 2380 ± 2334 ± 2200 ± 2400 2385 2392 2482 2463 2462 2531
3508 ± 6 3479 db 10 3372 ± 3520 3530 3500 3530 3561 3551 3641
2
3
pt-tip),
=
C 2 H 5 , Ph
=
J /Ji,
Ref.
1.47 1.49 1.53 1.47 1.48 1.46 1.42 1.45 1.44 1.44
U6) (46) U6)
cis
4 8 4
m)
m (Π) (Π)
m) (H)
C H . 6
5
C o n s e q u e n t l y , a d e t e r m i n a t i o n of / is sufficient for a s t r u c t u r e as s i g n m e n t . I n t h e i r o r i g i n a l note, P i d c o c k et al. suggested that J
cis
> /trans
w a s c a u s e d b y changes i n σ b o n d i n g r e s u l t i n g f r o m the s y n e r g i c effect of 7Γ b a c k b o n d i n g b e t w e e n p l a t i n u m a n d p h o s p h o r u s . I n 1966, t h e y u s e d t h e P o p l e - S a n t r y (49)
E q u a t i o n , 3, for t h e F e r m i c o n t a c t t e r m i n t h e ex-
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
8.
TOBIAS
NMR
Spectra
of
103
Compounds
p r e s s i o n for s p i n - s p i n c o u p l i n g a n d c o n c l u d e d t h a t the difference
was
c a u s e d b y s e c o n d a r y σ o r b i t a l r e h y b r i d i z a t i o n effects r a t h e r t h a n as a c o n s e q u e n c e of π b o n d i n g J cc
effects. 2
2
Μ
(3)
ψ^(0) 1 1 ψχ(0)
ΑΕ-ΐα *χ 1
ΎΜΎχ
2
T h e F e r m i c o n t a c t t e r m seems to d o m i n a t e t h e d i r e c t c o u p l i n g b e t w e e n the h e a v y metals a n d l i g a n d d o n o r atoms. I n E q u a t i o n 3, t h e y s a r e t h e n u c l e a r m a g n e t o g y r i c r a t i o s , Δ Ε is a n a v e r a g e s i n g l e t - t r i p l e t ex c i t a t i o n energy, «
M
and «
are the m i x i n g coefficients for the m e t a l v a l
x
ence s o r b i t a l a n d l i g a n d v a l e n c e s o r b i t a l i n t h e h y b r i d o r b i t a l s u s e d to d e s c r i b e the M - X b o n d , a n d ^ M ( O )
2
and ψ ( 0 ) χ
2
are the e l e c t r o n densities
at t h e M a n d X n u c l e i , r e s p e c t i v e l y . F o r c o u p l i n g b e t w e e n
3 1
P and
1 9 5
Pt
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch008
i n t h e cis a n d trans isomers, the γ s are u n c h a n g e d ; a n d to a first a p p r o x i m a t i o n , i t m a y be a s s u m e d t h a t Δ Ε is constant. O r b i t a l c o n t r a c t i o n effects are n e g l e c t e d ; i.e., ψν(0)
a n d ψ χ ( 0 ) are a s s u m e d to b e the same i n the
t w o isomers. T h e c h a n g e f r o m cis to trans i s o m e r s h o u l d n o t h a v e a n y significant effect o n the p h o s p h o r u s o r b i t a l f o r the b o n d i n g p a i r . q u e n t l y , to a first a p p r o x i m a t i o n , /
oc
a M
2
;
Conse
i-e., the c o u p l i n g constant is
p r o p o r t i o n a l to the s c h a r a c t e r of the p l a t i n u m h y b r i d u s e d to b i n d the phosphine. T h e s p i n - s p i n c o u p l i n g d a t a i n d i c a t e t h a t the p l a t i n u m s c h a r a c t e r tends to b e c o n c e n t r a t e d i n the b o n d s to the m o r e p o l a r i z a b l e p h o s p h i n e ligands.
P i d c o c k et al. (46)
a d o p t e d the t e r m "trans i n f l u e n c e " to
de
s c r i b e the trans b o n d w e a k e n i n g effect o b s e r v e d w i t h l i g a n d s s u c h as p h o s p h i n e s . I n the cis c o m p l e x , the m e t a l d a n d s c h a r a c t e r c a n b e m a x i m i z e d i n t h e b o n d s to t h e t w o p h o s p h i n e s , l e a v i n g the trans b o n d s w i t h p r e d o m i n a n t l y 6p c h a r a c t e r consistent w i t h t h e i r ease of s u b s t i t u t i o n a n d l o n g b o n d lengths
(56).
S i m i l a r m e a s u r e m e n t s of t h e plexes of p l a t i n u m a l k y l s (1)
1 9 5
Pt-
3 1
P coupling in phosphine
com
a g a i n i n d i c a t e that the s c h a r a c t e r tends to
concentrate i n the b o n d s to t h e m o s t p o l a r i z a b l e l i g a n d s , the a l k y l g r o u p s . Structures I I I (24),
IV (I),
and V
(1)
s h o w the effect of i n c r e a s i n g
m e t h y l a t i o n of P t C l [ P ( C H ) ] . T h e b o n d to a l i g a n d trans to a m e t h y l 2
J = 3520 Hz.
2
5
3
2
J=4179 Hz.
J = 1 8 5 6 Hz.
J = 1719 Hz.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
104
PLATINUM
GROUP
METALS
AND
COMPOUNDS
g r o u p is w e a k e n e d , consistent w i t h a c o n c e n t r a t i o n of the p l a t i n u m 6p c h a r a c t e r i n these bonds. S i m i l a r effects h a v e b e e n r e p o r t e d for a r y l , s i l y l , a n d g e r m y l d e r i v a t i v e s of p l a t i n u m ( I I )
(25).
I n g e n e r a l , the /
1 9 5
Pt-
3 1
P
values are s m a l l w h e n p h o s p h o r u s is trans to a l i g a n d of h i g h trans i n fluence—e.g.,
a p h o s p h i n e or a c a r b a n i o n — a n d l a r g e w h e n trans to a
relatively nonpolarizable ligand like chloride. S i m i l a r effects are o b s e r v e d w i t h o c t a h e d r a l complexes w h e r e J
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch008
1.5 /trans as i l l u s t r a t e d i n structures V I a n d V I I (46).
«
c i B
T h e r a t i o of the
-m
S I c o u p l i n g constants for P t ( I V ) : P t ( I I ) =
0.59 for the cis complexes
II
a n d V I I a n d 0.61 f o r the trans complexes I a n d V I . T h e fact t h a t these values are near t h a t of the r a t i o of s c h a r a c t e r for d sp 2
1/6:1/4 =
a n d dsp
s
hybrids,
1
0.67, suggests t h a t |^ (0)| is c o m p a r a b l e f o r b o t h o x i d a t i o n Pt
2
states. T h e s i m i l a r i t y of the b e h a v i o r of P t ( I I ) a n d P t ( I V ) complexes
was
u s e d b y P i d c o c k et al. as e v i d e n c e t h a t o n l y σ b o n d i n g effects w e r e r e s p o n s i b l e for the cis—trans difference.
I t is g e n e r a l l y a s s u m e d t h a t (Ln—dv
b a c k b o n d i n g is n e g l i g i b l e w i t h P t ( I V ) , b u t this is b a s e d o n P t ( I V )
d
o r b i t a l s b e i n g c o n t r a c t e d w i t h respect to P t ( I I ) o r b i t a l s . T h e
evidence
also c i t e d f o r the i n v a r i a n c e of |^pt(0)|
suggests
2
w i t h o x i d a t i o n state
that άττ-άττ b a c k b o n d i n g s h o u l d b e c o m p a r a b l e i n P t ( I I )
and P t ( I V )
complexes. P a r s h a l l (44, s p e c t r a of the
45)
has u s e d
fluorophenyl
fluorine-19
nuclear magnetic
to s t u d y t h e trans influence of the X l i g a n d . T h e m e t a
F
P(C
resonance
d e r i v a t i v e s of p l a t i n u m ( I I ) , V I I I a n d I X ,
2
H
5
)3
PCC H ) 2
p a r a m e t e r varies w i t h the σ d o n o r c h a r a c t e r of the
5
1 9
F shielding
3
fluorophenyl
ring
substituent, w h i l e the p a r a s h i e l d i n g p a r a m e t e r is affected m a r k e d l y b y
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
8.
TOBIAS
NMR
Spectra
of
105
Compounds
the 7Γ d o n o r character of the substituent. C o n s e q u e n t l y , the p a r a s h i e l d i n g p a r a m e t e r reflects the a b i l i t y of the l i g a n d X b o u n d to p l a t i n u m to c o m p e t e w i t h the p - f l u o r o p h e n y l g r o u p f o r p l a t i n u m d* e l e c t r o n d e n s i t y . T o correct for s i m p l e i n d u c t i v e effects, the difference b e t w e e n the p a r a a n d the m e t a s h i e l d i n g parameters w a s c o n s i d e r e d .
I n this w a y ,
the
l i g a n d s X w e r e classified i n i n c r e a s i n g o r d e r of -π acceptor c h a r a c t e r as CI" ^ C H 6
Γ < —
5
Br" <
p-FC H 6
O C N - or N C O " ^ ^
4
m-FC H 6
<
4
CH
3
SnCl - ^
<
- S C N ' or - N C S "
<
C H — C ^ C < CN".
3
6
5
T h e r e h a v e b e e n some d e t e r m i n a t i o n s of the signs of t h e s p i n - s p i n c o u p l i n g constants for complexes of p l a t i n u m . A s m i g h t b e e x p e c t e d , the c o u p l i n g constants in [ ( C H ) P t C l ] 2
5
3
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch008
respectively. trans
2
/(
4
1 9 5
P t - C H ) and / (
(32),
3
2
1 9 5
P t - C H ) h a v e o p p o s i t e signs 3
a n d the absolute values are 86 a n d 72.0 H z ,
H e t e r o n u c l e a r d o u b l e resonance measurements o n cis a n d
dichlorobis(triethylphosphine)platinum(II)
i7(i95 _3ip) Pt
positive. (PEt ) 3
2
p
i s
0 s i t i v
e
2jr(3ip_
5
C H 2
)
(39)
negative, and / ( 3
i s
S i m i l a r l y , h e t e r o n u c l e a r d o u b l e resonance (35)
sign, w h i l e / ( 2
show that 7 ( 3 1
1 9 5
Pt-
3 1
P)
and V (
1 9 B
indicate 1 9 5
that
P t - C H ) is 2
spectra of
PtHCl-
P M H ) are of t h e same
Ρ - Ή ) is of opposite sign.
Stereochemistry T h e p r i n c i p a l a p p l i c a t i o n of N M B w i t h c o m p o u n d s of the p l a t i n u m g r o u p metals has b e e n i n the s t u d y of t h e i r stereochemistry. trans isomers of the P t ( P B ) L 3
2
2
Cis and
a n d P t ( P B ) X 4 t y p e are i d e n t i f i e d easily 3
2
because of the difference i n the c o u p l i n g constants as d i s c u s s e d above. T h e tris ( t r i - n - b u t y l ) p h o s p h i n e c o m p l e x of r h o d i u m t r i c h l o r i d e has the trans ( m e r ) s t r u c t u r e X (23).
Two
3 1
P resonances are o b s e r v e d w i t h
CI
I
^ci
Ç(C Hg)3 4
X a n i n t e n s i t y ratio of 2 : 1 . B o t h signals are s p l i t i n t o doublets b y c o u p l i n g with
1 0 3
Bh, /(
1 0 3
Bh-
3 1
P ) a
—
114, / (
1 0 3
Bh-
3 1
P ) 6
— 84 H z .
A g a i n the
r a t i o of c o u p l i n g constants for p h o s p h o r u s trans to c h l o r i n e r e l a t i v e to p h o s p h o r u s trans to p h o s p h i n e is ca. 1.5 T h i s s p e c t r u m also exhibits s m a l l splittings of the m o r e intense p h o s p h o r u s resonance b y 21 H z c a u s e d b y c o u p l i n g t h r o u g h t w o b o n d s w i t h the u n i q u e p h o s p h o r u s - 3 1 n u c l e u s P . a
T h e s p l i t t i n g of the less intense resonance b y the t w o e q u i v a l e n t p h o s phorus n u c l e i was not resolved.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
106
PLATINUM
GROUP
METALS
AND
COMPOUNDS
P h o s p h o r u s - 3 1 p r o t o n s p i n - s p i n c o u p l i n g constants d e t e r m i n e d w i t h p r o t o n resonance
spectra h a v e b e e n u s e d to d i s t i n g u i s h cis a n d trans
isomers of h y d r i d o complexes c o n t a i n i n g p h o s p h i n e l i g a n d s . F o r e x a m p l e , t h e complexes I r H a . Y 3 . J L 3 ( Y is a u n i n e g a t i v e a n i o n , L is a n e u t r a l p h o s phine ligand) have / ( 2
3 1
P-H) =
trans H a n d L l i g a n d s ( 6 ) .
1 1 - 2 1 H z for cis a n d 1 3 0 - 1 6 3 H z for
A n a l o g o u s d a t a h a v e b e e n u s e d to assign
s t r u c t u r e X I to the p r o d u c t of the r e a c t i o n b e t w e e n R h C l ( P P h ) 3
H C 1 i n s o l u t i o n (2).
3
and
T h e h y d r i d e resonance gives a p a i r of o v e r l a p p i n g
triplets c e n t e r e d at τ =
26.1 p p m because of c o u p l i n g w i t h the r h o d i u m Η ( C
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch008
( C
4
H
H
9
)
)
4 9 3
3
P \
P
^ ( S )
I
C l
I CI
ZI n u c l e u s a n d t w o e q u i v a l e n t p h o s p h o r u s n u c l e i . T h e assignment of the h y d r i d e cis to the p h o s p h i n e s is b a s e d o n the s m a l l v a l u e of =
2
/(
3 1
Ρ-Ή)
17 H z . M o r g a n , R e n n i c k , a n d S o o n g (41)
used coupling between platinum-
195 a n d the h y d r o x y l i c protons of [ ( Ο Η ) Ρ ί Ο Η ] , 3
3
4
X I I , to s h o w that the
2 H h y d r o x i d e was i s o s t r u c t u r a l w i t h the c h l o r i d e , b r o m i d e , a n d i o d i d e . p l a t i n u m is 3 3 . 7 %
1 9 5
Since
P t , w h i l e a l l other n a t u r a l l y - o c c u r r i n g isotopes h a v e
zero s p i n , a g i v e n h y d r o x o g r o u p b r i d g e s b e t w e e n 3 p l a t i n u m s w h e r e 1, 2, or a l l 3 m a y h a v e spins of 1/2.
T h e p r e d i c t e d p r o t o n resonance spec
t r u m f o r cage s t r u c t u r e X I I is i l l u s t r a t e d i n F i g u r e 2, a n d this agrees w i t h the o b s e r v e d s p e c t r u m w h e n / ( 2
1 9 5
Pt-OH) =
11.3 H z , τ == ca. 11.5 p p m .
T h e m a g n i t u d e of c o u p l i n g b e t w e e n the m e t h y l protons a n d p l a t i n u m - 1 9 5 also is h e l p f u l i n a s s i g n i n g structures to t r i m e t h y l p l a t i n u m ( I V ) complexes.
The
2
/(
1 9 5
P t — C H ) c o u p l i n g constant appears to b e 3
influ
e n c e d p r i m a r i l y b y the n a t u r e of the l i g a n d trans to t h e m e t h y l g r o u p , a n d the solvent u s e d makes little difference
(33,
54).
T h i s same effect
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
8.
TOBIAS
NMR
Spectra of
107
Compounds
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch008
H
1 x(0.662)
J
3x(0.662 x 2
ι
I
ι
0.337)
3x(0.662x0.337 ) 2
1X(0.337)
3
Inorganic Chemistry
Figure 2. resonance
Predicted spectrum for the hydroxylic proton of [(CH^sPtOH]^; observed spectrum re drawn from Ref. 41
has b e e n o b s e r v e d for s p e c t r a of the c o m p l e x cations PY3-w]
+
(py =
[(ΟΗ ) Ρί(ΟΗ ),ι3
3
2
p y r i d i n e ) d e t e r m i n e d w i t h aqueous solutions ( 7 ) .
Only
t w o c o u p l i n g constants w e r e o b s e r v e d f o r m i x t u r e s of these c o m p l e x e s w i t h values of 79.7 H z f o r m e t h y l s trans to w a t e r m o l e c u l e s a n d 67.7 H z f o r m e t h y l s trans to p y r i d i n e . values f o r t h e / ( 2
1 9 5
S t r u c t u r e s X I I I to X I X i l l u s t r a t e average
P t - C H ) c o u p l i n g constants as the l i g a n d trans t o t h e 3
m e t h y l g r o u p s are v a r i e d ( 3 3 ) .
Pt—CI ~ΧΊΤΤ
CI
J
l 9 5
P t - H = 81.7
•Pt
Br SET
Ο
80.1
79.1 H z .
Pt—ο !
j195 1 R
H =
Ζ2Ε
7 8 β 0
Ρί^—Ο
Br
/
•Pi—
sznr
c
Ν
75.9
74.9 Hz.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
108
PLATINUM
j195 ] P t
H
GROUP
METALS
AND
COMPOUNDS
= 74.1Hz.
O n e a p p l i c a t i o n of these d a t a is i l l u s t r a t e d i n X X . T r i m e t h y l p l a t i n u m ( I V ) oxinate is d i m e r i c . T h e m o l e c u l e has a t w o - f o l d axis i n s o l u t i o n , a n d three m e t h y l p r o t o n resonances w i t h c o u p l i n g constants of 80.4,
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch008
76.0, a n d 70.3 H z are o b s e r v e d .
T h e s i g n a l w i t h the smallest J is assigned
X X to t h e m e t h y l protons trans to n i t r o g e n a n d the o t h e r t w o signals to m e t h y l s trans to oxygen.
T h e s p e c t r u m shows t h a t the b o n d s f r o m P t to
the t w o b r i d g i n g oxygens are not e q u i v a l e n t . T h e c r y s t a l l o g r a p h i c values w e r e 2.22 ± 0.03 a n d 2.29 ± 0.04 A , a n d the errors i n the l i g h t a t o m
(34)
positions w e r e sufficiently l a r g e to leave the n o n e q u i v a l e n c e of the b r i d g e bonds i n doubt. Structures c a n b e assigned to square p l a n a r complexes P d X ( P R ) 2 and P t X ( P R ) 2
2
3
3
2
(X =
of the t y p e
u n i n e g a t i v e a n i o n ) o n the basis of
p r o t o n r a t h e r t h a n p h o s p h o r u s - 3 1 resonance
by using dimethylphenyl-
p h o s p h i n e as the l i g a n d (27,29).
T h e free l i g a n d shows a d o u b l e t m e t h y l
p r o t o n resonance, τ =
2
8.61 p p m , / (
3 1
Ρ-Ή) =
1.7 H z , because of c o u
p l i n g w i t h the p h o s p h o r u s n u c l e u s . I n the cis complexes, a s h a r p d o u b l e t also is o b s e r v e d / ( 2
3 1
Ρ - Ή ) = 7 to 13 H z . I f the t w o d i m e t h y l p h e n y l p h o s -
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
8.
TOBIAS
NMR
Spectra
of
109
Compounds
p h i n e s are m u t u a l l y trans, the resonance is u s u a l l y a w e l l r e s o l v e d t r i p l e t b e c a u s e of c o u p l i n g of the m e t h y l protons w i t h b o t h of the p h o s p h o r u s n u c l e i . T h e s e complexes are best t r e a t e d as A A ' X X ' systems ( 3 9 ) 3
very small
3 1
P....
the trans i s o m e r J (
with
3
P c o u p l i n g constants i n the cis isomers, w h i l e for
3 1
3 1
P ...
3 1
P) > >
10 H z . C o n s e q u e n t l y , d e t e r m i n a t i o n
of the P M R s p e c t r u m suffices for the s t r u c t u r e assignment. c o u p l i n g s c h e m e has b e e n o b s e r v e d
A
similar
for o c t a h e d r a l i r i d i u m ( I I I )
com-
p o u n d s of the t y p e [ I r X Y ( P M e P h ) ] ( X a n d Y are u n i n e g a t i v e a n i o n s ) 2
2
3
(28). P r o t o n N M R has b e e n u s e d to s t u d y the g e o m e t r i c a l isomers of the 2,5-dithiahexane complexes [RhCl L ] 2
2
+
of R h C l
3
i n D 0 s o l u t i o n . C a t i o n i c species 2
are o b t a i n e d , a n d the trans a r r a n g e m e n t of c h l o r i d e s
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch008
assigned o n the basis of v i b r a t i o n a l spectra (58).
was
B e c a u s e of t h e possible
d i t h i a h e x a n e l i g a n d c o n f o r m a t i o n s , u p to five different isomers c a n exist w i t h trans c h l o r i d e s . doublets w i t h 1 0 3
3
/(
1 0 3
T h e p r o t o n resonance s p e c t r u m shows a series of
Rh- H) 1
=
1.05 H z .
B y i r r a d i a t i o n at t h e
proper
R h resonance f r e q u e n c y , the doublets c a n b e c o l l a p s e d one b y
g i v i n g the
1 0 3
R h c h e m i c a l shifts i n the different complexes
different species w e r e i d e n t i f i e d w i t h
1 0 3
(38).
one,
Seven
R h c h e m i c a l shifts over the r a n g e
0 - 2 9 6 p p m , i n d i c a t i n g t h a t some cis isomers also w e r e present. S t r u c t u r e X X I was assigned to the i s o m e r w i t h a shift of 38 p p m r e l a t i v e to t h e lowest
field
resonance,
m e t h y l resonances
because the s p e c t r u m
showed
three
different
w i t h one t w i c e the i n t e n s i t y of the other t w o , c o n -
sistent w i t h this geometry.
XXI
Solvation and Solvent Effects S o m e studies u s i n g oxygen-17 N M R spectroscopy w i t h aqueous ions.
solutions of p l a t i n u m ( I I )
have been
and organoplatinum ( I V )
M a n y years ago, it was r e p o r t e d t h a t treatment of
w i t h a n aqueous s o l u t i o n of A g N 0
3
or A g S 0 2
4
made cat-
PtCl (NH ) 2
2
2
gave c o n c e n t r a t e d s o l u -
tions of a species p r e s u m e d to b e the d i a q u o d i a m m i n e p l a t i n u m ( I I ) c a t i o n Solutions of the p e r c h l o r a t e salt s h o w a b o u n d w a t e r
oxygen-17
resonance s i g n a l 92.6 =t 1 p p m u p f i e l d f r o m the b u l k w a t e r
resonance
(30). (20).
T h i s l a r g e c h e m i c a l shift for the w a t e r b o u n d to p l a t i n u m m a y b e
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
110
PLATINUM
GROUP
METALS
AND
c o m p a r e d w i t h t h e v a l u e of ca. —11 p p m for A 1 ( C 1 0 ) 4
COMPOUNDS
solutions
3
(9).
T h e r e w a s n o c h a n g e i n the c h e m i c a l shift over the t e m p e r a t u r e r a n g e 29° to 8 5 ° , i n d i c a t i n g that the w a t e r is r e l a t i v e l y i n e r t to s u b s t i t u t i o n . I n t e g r a t i o n of the b o u n d a n d b u l k w a t e r resonances gave the h y d r a t i o n number
as 1.9
±
[(H N)2Pt(OH )2] 3
2
0.1, c o n f i r m i n g the f o r m u l a t i o n of 2 +
.
the
cation
as
U n d o u b t e d l y , this c a t i o n is sufficiently i n e r t t h a t
the s o l v a t i o n n u m b e r c o u l d be d e t e r m i n e d b y conventional—e.g.,
isotope
dilution—techniques. T h e h y d r a t i o n of the t r i m e t h y l p l a t i n u m c a t i o n also has b e e n s t u d i e d by
1 7
0 N M R of aqueous solutions of ( C H ) P t C 1 0 3
3
4
Although
(20, 21).
m a n y p l a t i n u m ( I V ) complexes are n u m b e r e d a m o n g the most i n e r t co o r d i n a t i o n c o m p o u n d s k n o w n , the w a t e r molepules b o u n d to ( C H ) P t 3
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch008
exchange r a p i d l y w i t h the b u l k solvent at r o o m t e m p e r a t u r e . 0 ° C is i t possible to r e c o r d a b o u n d w a t e r resonance.
3
+
O n l y near
E m p l o y i n g the
m o l a l shift of the b u l k w a t e r solvent c a u s e d b y a d d e d D y ( C 1 0 ) , i t w a s 4
possible to d e t e r m i n e the h y d r a t i o n n u m b e r to b e 3.0 ±
is f o r m u l a t e d c o r r e c t l y as o c t a h e d r a l [ ( C H ) P t ( O H ) ] . 3
the l a r g e q u a d r u p o l e m o m e n t of the w i t h the
1 9 5
3
0 nucleus, 1 =
1 7
2
3
0.1. T h e c a t i o n 3
Because
+
of
5/2, no coupling
P t n u c l e u s w a s detected i n a n y of the spectra d e s c r i b e d above.
T h e s e experiments i l l u s t r a t e the v e r y great l a b i l i t y of some of the organo d e r i v a t i v e s of the p l a t i n u m g r o u p metals. C l e g g and H a l l (8)
n o t e d that the a d d i t i o n of s u l f u r i c a c i d to a n
aqueous s o l u t i o n of [ ( C H ) P t ( N H ) ] C l caused a shift of 0.5 p p m i n 3
3
3
3
the m e t h y l p r o t o n resonance a n d a n increase i n the v a l u e of / ( 2
1 9 5
Pt-CH ) 3
f r o m 71.0 to 79.7 H z because of r a p i d f o r m a t i o n of the t r i a q u o species. A d d i t i o n of a n excess of the l i g a n d s H C N H , p y r i d i n e , S C N " , N 0 " , a n d 3
2
C N " a l l gave rise to spectra c h a r a c t e r i s t i c of the c o m p l e x e d platinum ( I V ) cation
2
trimethyl
(7).
S a w y e r a n d c o w o r k e r s have s t u d i e d the p r o t o n resonance s p e c t r a of aqueous solutions of the 1:1 a n d 1:2 complexes f o r m e d f r o m P t ( I I ) Pd(II)
(53),
and Rh(III)
(52)
(51),
w i t h nitrilotriacetic acid, N - m e t h y l -
i m i n o d i a c e t i c a c i d , a n d i m i n o d i a c e t i c a c i d as a f u n c t i o n b o t h of
tem
p e r a t u r e a n d of p H . T h e acetate m e t h y l e n e protons e x h i b i t a n A B p a t t e r n i n a l l of the complexes, i n d i c a t i n g that the lifetimes of m e t a l - o x y g e n a n d m e t a l - n i t r o g e n b o n d s are r e l a t i v e l y long—i.e., that the
complexes
are s t e r e o c h e m i c a l ^ r i g i d . B o t h the m o n o X X I I a n d bis X X I I I
complexes
of p l a t i n u m ( I I )
show
1 9 5
Ρ ί - Ή c o u p l i n g s t h r o u g h three b o n d s to
the
acetate m e t h y l e n e protons a n d to the N - s u b s t i t u t e d groups. N o analogous c o u p l i n g s w e r e f o u n d w i t h the R h ( I I I ) chelates. C o m p l e x changes as the p H is r a i s e d w i t h the c o n c o m i t a n t f o r m a t i o n of h y d r o x o a n d p r o b a b l y p o l y n u c l e a r species.
occur
complexes
T h e s e changes c a n b e f o l l o w e d
con
v e n i e n t l y w i t h the p r o t o n resonance spectra, a l t h o u g h a d e t a i l e d i n t e r p r e t a t i o n of the effects is v e r y difficult.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
8.
TOBIAS
NMR
Spectra
of
111
Compounds
E M
2XHI
T h e i n t e r a c t i o n of cations f o r m e d f r o m the p l a t i n u m g r o u p metals Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch008
w i t h solvents l i k e a c e t o n i t r i l e , d i m e t h y l s u l f o x i d e , a n d other c o n t a i n i n g m e t h y l protons is s t u d i e d easily w i t h Ή complexes
are r a t h e r inert. O ' B r i e n , G l a s s , a n d R e y n o l d s
m i n e d the s o l v a t i o n n u m b e r of ( H N ) P t 3
2
2 +
molecules
N M R , since these deter
(42)
i n acetonitrile solution from
the p r o t o n resonance spectra of solutions of a n h y d r o u s ( H N ) P t ( C 1 0 ) . 3
2
4
2
B o t h b o u n d a n d b u l k a c e t o n i t r i l e resonances w e r e o b s e r v e d w i t h n o e v i d e n c e for a n y exchange b r o a d e n i n g to 8 1 ° , the b o i l i n g p o i n t of aceto n i t r i l e . C o u p l i n g of the l i g a n d protons w i t h the p l a t i n u m n u c l e u s leads to the u s u a l 1:4:1 t r i p l e t , / ( 4
1 9 5
Ρί-Ή)
=
12.1 H z . I n t e g r a t i o n of
c o m p o n e n t of the t r i p l e t for the b o u n d solvent r e l a t i v e to the b a n d of the b u l k solvent gave a s o l v a t i o n n u m b e r of 2.0 ±
1 3
one
C side
0.1. It also
was possible to d e t e r m i n e a p p r o x i m a t e l y the r e l a t i v e integrals of
the
amine and
are
a c e t o n i t r i l e protons,
v e r y b r o a d because of the
1 4
a l t h o u g h the
a m i n e resonances
N quadrupole moment.
a s o l v a t i o n n u m b e r of 2.0 =b 0.1, too.
T h i s m e t h o d gives
T h e r e was no shift i n the b u l k
solvent resonance as the c o n c e n t r a t i o n of [ ( H N ) P t ( N C C H ) ] ( C 1 0 ) 3
2
3
2
4
2
was v a r i e d , suggesting that there are no significant solvent interactions i n the a x i a l positions of p l a t i n u m . Anhydrous ( H N ) P t ( C 1 0 ) 3
3
4
2
also has b e e n s t u d i e d i n d i m e t h y l s u l f
oxide s o l u t i o n ( 5 5 ) , since M e S O is a n a m b i d e n t a t e l i g a n d a n d p r o b a b l y 2
coordinates via s u l f u r r a t h e r t h a n o x y g e n as is k n o w n to b e the case w i t h p a l l a d i u m . T h e m e t h y l p r o t o n resonance for the b o u n d D M S O is s h i f t e d 2.54 p p m u p f i e l d f r o m the b u l k solvent, a n d the l i g a n d exchange rate is n e g l i g i b l e at 3 5 ° . the b o u n d D M S O n u m b e r s of 2.0 ±
Integrations of the b u l k a n d b o u n d D M S O signals or a n d a m i n e p r o t o n resonances 0.1. T h e c o u p l i n g constant / (
1 9 5
b o t h gave s o l v a t i o n Ρΐ-Ή)
=
23.2 H z ,
a n d this l a r g e a v a l u e suggests that D M S O is b o u n d via s u l f u r a n d n o t oxygen—i.e., t h a t the c o u p l i n g is t h r o u g h o n l y three a n d n o t f o u r b o n d s . U n d o u b t e d l y , i s o l a t i o n of the c r y s t a l l i n e a d d u c t s ( H N ) P t ( C 1 0 ) 3
2
4
2
· 2B
f r o m s o l u t i o n w o u l d c o n f i r m these s t o i c h i o m e t r i c s ; h o w e v e r , these c o m p o u n d s are v e r y explosive.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
112
PLATINUM
M c F a r l a n e and W h i t e (37)
GROUP
METALS
2
COMPOUNDS
h a v e n o t e d that d i m e t h y l s u l f o x i d e w i l l
replace M e S and M e S e w h e n [ ( M e L ) P t C l ] ( L = 2
AND
2
2
S, S e )
2
complexes
are d i s s o l v e d i n D M S O a c c o r d i n g to R e a c t i o n s 4 a n d 5. (Me L) PtCl 2
2
+
2
D M S O <± M e L +
(DMSO)(Me L)PtCl 2
Well-resolved
1 9 5
(DMSO)(Me L)PtCl
2
+
2
2
D M S O <=> M e L + 2
(DMSO) PtCl 2
(4)
2
(5)
2
Ρ ί - Ή c o u p l i n g ( D M S O p r o t o n s ) of 21 to 24 H z is o b
s e r v e d , i n d i c a t i n g t h a t the D M S O exchanges s l o w l y w i t h the b u l k solvent. P r o t o n m a g n e t i c resonance s p e c t r a h a v e b e e n u s e d to assign struc tures to the g e o m e t r i c a l isomers of R h C l ( N C C H ) , since t h e cis c o m 3
3
3
p l e x gives a single resonance w h i l e the trans i s o m e r gives t w o
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch008
s e p a r a t e d b y 0.05 p p m ( 5 ) . the c o m p l e x
resonances
T h e s t o i c h i o m e t r y i n a c e t o n i t r i l e s o l u t i o n of
[ ( C H ) N ] [ R h C l 4 ( N C C H ) ] w a s established b y i n t e 2
5
4
3
2
g r a t i o n of the b o u n d a c e t o n i t r i l e resonances w i t h respect to the t e t r a e t h y l a m m o n i u m m e t h y l or m e t h y l e n e signals. Since most of the complexes of the p l a t i n u m g r o u p metals are stereoc h e m i c a l l y r i g i d a n d l i g a n d s exchange v e r y s l o w l y , studies of stereochem i s t r y w i t h solutions are s t r a i g h t f o r w a r d . C a r e m u s t b e u s e d , h o w e v e r , i n i n t e r p r e t i n g s p e c t r a of o r g a n i c d e r i v a t i v e s of these metals, since m a n y of t h e m are n o t r i g i d .
Dynamic Systems T h e N M R m e t h o d for s t u d y i n g the rates of m o d e r a t e l y fast r e a c tions has f o u n d l i t t l e use w i t h the s t r i c t l y i n o r g a n i c complexes
of
the
p l a t i n u m g r o u p metals, since t h e y i n c l u d e m a n y of the most i n e r t c o m plexes k n o w n .
T h e r e are, h o w e v e r , t w o types of c o m p o u n d s
of
these
metals w h i c h often are r a t h e r l a b i l e — i . e . , the organo a n d h y d r i d o d e r i v a tives. F o r s u c h c o m p o u n d s , the N M R m e t h o d , a l t h o u g h less u s e f u l for s t e r e o c h e m i c a l studies, is p r o v i n g v e r y v a l u a b l e for s t u d y i n g r e a c t i o n rates. T h e t r i m e t h y l p l a t i n u m ( I V ) species p r o v i d e a p a r t i c u l a r l y clear ex a m p l e of the effects d e s c r i b e d above.
Octahedral inorganic
complexes
of p l a t i n u m ( I V ) are v e r y i n e r t to l i g a n d s u b s t i t u t i o n , a n d the fact that s u c h reactions o c c u r num (II)
at a l l is often a t t r i b u t a b l e to catalysis b y
impurities (3).
T h e o r g a n o m e t a l l i c complexes
plati
[(CH ) PtL ] 3
3
3
u n d e r g o s u b s t i t u t i o n reactions of the L l i g a n d s v e r y r a p i d l y as a r e s u l t of the c o o r d i n a t i o n of the three p o l a r i z a b l e " m e t h i d e " l i g a n d s . G l a s s a n d Tobias
(20)
Pt(OH ) ] 2
3
+
s t u d i e d the rate of w a t e r exchange
between
[(CH ) 3
3
a n d the b u l k solvent u s i n g oxygen-17 N M R a n d f o u n d the
average l i f e t i m e of a w a t e r m o l e c u l e b o u n d to ( C H ) P t to b e o n l y ca. 3
9 Χ
10"
5
sec at 2 5 ° .
3
+
A p p r o x i m a t e expressions w e r e u s e d to relate the
l i n e shapes to the p s e u d o first o r d e r rate constant.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
8.
TOBIAS
NMR
Spectra
of
113
Compounds
T h e first a p p l i c a t i o n s of N M R to the s t u d y of d y n a m i c systems of the p l a t i n u m g r o u p metals a p p e a r to h a v e b e e n studies o n the r o t a t i o n a b o u t the m e t a l - o l e f i n b o n d of c o o r d i n a t e d olefins, a n d this process has b e e n i n v e s t i g a t e d b y m a n y w o r k e r s . T h e r e are t w o r e a s o n a b l e o r i e n t a tions of a n olefin w i t h respect to t h e rest of a s q u a r e p l a n a r c o m p l e x ,
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch008
X X I V and X X V .
M o s t of the g r o u n d states of complexes seem to h a v e s t r u c t u r e X X I V , b u t X X V r e a s o n a b l y c o u l d p r o v i d e a m e c h a n i s m for r o t a t i o n a b o u t t h e metal—olefin b o n d axis w i t h a l o w e n e r g y b a r r i e r .
C r a m e r (11)
found
that 7 T - c y c l o p e n t a d i e n y l b i s ( e t h y l e n e ) r h o d i u m ( I ) , X X V I , gave t w o b r o a d signals (τ =
7.23, 8.88 p p m ) for the e t h y l e n e protons at —25° a n d t h a t
3X2L u p o n h e a t i n g these coalesced to a single resonance (τ = 57°.
8.07 p p m )
at
T h e most l i k e l y process w h i c h w o u l d l e a d to e q u i v a l e n c e of a l l of
the e t h y l e n e protons is r o t a t i o n of the e t h y l e n e m o l e c u l e s
about
the
r h o d i u m - o l e f i n b o n d , since the c o m p l e x e x h i b i t s no m e a s u r a b l e exchange w i t h free e t h y l e n e after h e a t i n g for five h o u r s at 100°. I n contrast to the results w i t h the c y c l o p e n t a d i e n y l d e r i v a t i v e , a c e t y l a c e t o n a t o b i s ( e t h y l e n e ) r h o d i u m ( I ) , X X V I I shows a s i n g l e c o a l e s c e d s i g n a l for the e t h y l e n e protons at 2 5 ° , a n d o n l y u p o n c o o l i n g to —58° are t w o signals o b s e r v e d at τ =
6.42 a n d 7.49 p p m (11).
I f e t h y l e n e is a d d e d
to the c o l d s o l u t i o n , o n l y a s i n g l e resonance for b o u n d a n d free e t h y l e n e is o b s e r v e d at τ =
ca. 6.95 p p m .
T h u s , the e t h y l e n e exchanges r a t h e r
r a p i d l y e v e n at — 5 8 ° , a n d a b i m o l e c u l a r process is i n d i c a t e d . T h e a n i o n of Z e i s e s salt, [ ( C H 4 ) P t C l ] - , a n d free e t h y l e n e i n m e t h a n o l i c HC1 also 2
3
e x h i b i t o n l y one p r o t o n resonance at t e m p e r a t u r e s as l o w as —75°
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
(10),
114
PLATINUM
GROUP
METALS
AND
COMPOUNDS
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch008
H
a n d the τ v a l u e is a f u n c t i o n of the [ ( C H 4 ) P t C l 3 ] " : C H 4 m o l e r a t i o . 2
2
C o n s e q u e n t l y , e x c h a n g e is v e r y r a p i d w i t h this c o m p l e x , too.
O n e pos
s i b l e e x p l a n a t i o n of the fact that ( 7 r - C 5 H ) R h ( C H ) 2 does not exchange 5
2
4
ethylene at a m e a s u r a b l e rate is that t h e π-cyclopentadienyl g r o u p f u n c tions as a six-electron donor, m a k i n g the c o m p l e x m u c h less susceptible to n u c l e o p h i l i c attack (11, Reaction (C H )S0 . 2
4
of
12).
(7r-C H )Rh(C H ) 5
5
2
4
2
w i t h S0
2
yields
(7r-C H )Rh5
resonance at — 2 ° , τ =
6.68 p p m , b u t u p o n c o o l i n g to — 5 0 ° , t w o reso
nances t y p i c a l of a n A B 2
Recently, Cramer,
reinvestigated ( 7 r - C H 5 ) R h ( C H ) , X X V I , a n d 5
(7r-C H5)Rh(C H4)S0 5
s p e c t r u m are o b s e r v e d (12).
2
K l i n e , a n d R o b e r t s (13) 2
2
2
4
2
u s i n g m o r e p r e c i s e equations for the v a r i a t i o n
of l i n e shape w i t h l i f e t i m e a n d o b t a i n e d 15.0 ±
0.2 a n d 12.2 ±
m o l e , r e s p e c t i v e l y , for t h e a c t i v a t i o n energies
for r o t a t i o n .
C H )Rh(C F )(C H ),
±
5
5
5
A g a i n , this c o m p o u n d shows o n l y a single ethylene p r o t o n
2
2
4
2
the b a r r i e r w a s
4
13.6
0.8 k c a l / With
0.6 k c a l / m o l e .
(πThe
r e d u c t i o n of the b a r r i e r to r o t a t i o n u p o n s u b s t i t u t i o n of e l e c t r o n - w i t h d r a w i n g groups, e.g., C F , is consistent w i t h a r e d u c t i o n i n b a c k b o n d i n g . 2
4
B r a u s e , K a p l a n , a n d O r c h i n (4) styrene a n d f e r f - b u t y l e t h y l e n e
e x a m i n e d the b a r r i e r to r o t a t i o n of
i n 2 , 4 , 6 - t r i m e t h y l p y r i d i n e complexes
platinum (II), X X V I I I .
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
of
8.
TOBIAS
NMR
Spectra
of
115
Compounds
T h e p r o t o n resonance of the o - m e t h y l protons of the 2 , 4 , 6 - t r i m e t h y l p y r i d i n e l i g a n d b o u n d trans to styrene is a s i n g l e t r i p l e t [ / (
1 9 5
Pt-CH ) 3
=
13 H z ] at r o o m t e m p e r a t u r e , b u t i t splits into t w o o v e r l a p p i n g t r i p l e t s at —60°.
S i m i l a r b e h a v i o r is f o u n d w i t h i e r f - b u t y l e t h y l e n e . S i n c e the c o u
p l i n g b e t w e e n p l a t i n u m a n d the olefin protons ( /
1 9 5
Ρί-Ή =
ca. 10 H z )
is m a i n t a i n e d for the coalesced s i g n a l , the process was a s s u m e d to i n v o l v e i n t e r n a l r o t a t i o n a b o u t the e t h y l e n e - p l a t i n u m b o n d ; h o w e v e r , i t n o w is k n o w n that the p y r i d i n e l i g a n d s are b o u n d q u i t e w e a k l y because of the large trans influence of
ethylene.
Kaplin, Schmidt, and Orchin
s t u d i e d the exchange of s u b s t i t u t e d p y r i d i n e s a n d olefin i n
(31)
complexes
analogous to X X V I I I . A t r o o m t e m p e r a t u r e , the p y r i d i n e bases exchange r a p i d l y o n the P M R t i m e scale, p r o b a b l y b y b o t h dissociative a n d b i m o Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch008
lecular mechanisms.
T h e olefins are s t i l l sufficiently s t r o n g l y b o u n d
to
give s p i n - s p i n c o u p l i n g w i t h p l a t i n u m - 1 9 5 . H o l l o w a y , H u l l e y , J o h n s o n , a n d L e w i s (26) of several olefins i n the p l a t i n u m ( I I )
have observed rotation
complexes of t y p e X X I X .
ethylene protons, t w o o v e r l a p p i n g t r i p l e t resonances o b s e r v e d at l o w temperatures, τ = curs at — 2 8 ° C .
The
1 9 5
(
1 9 5
5.48 a n d 5.53 p p m .
F o r the
P t c o u p l i n g ) are Coalescence
P t c o u p l i n g persists after coalescence.
oc
Free en
ergies of a c t i v a t i o n for the r o t a t i o n a l process r a n g e f r o m 10.9 k c a l / m o l e w i t h t e t r a m e t h y l e t h y l e n e to 15.8 k c a l / m o l e w i t h trans but-2-ene. A n u m b e r of studies h a v e b e e n m a d e of the exchange of c o o r d i n a t e d a n d free l i g a n d s . E a t o n a n d Suart (16)
used
3 1
P N M R to e x a m i n e the
extent of d i s s o c i a t i o n of c h l o r o t r i s ( t r i p h e n y l p h o s p h i n e ) r h o d i u m ( I ) CH C1 2
2
solution. A t r o o m t e m p e r a t u r e , the c o m p l e x shows t w o
3 1
in
P reso
nances for the trans a n d the t w o cis p h o s p h i n e s , a n d these are s p l i t b y i n t e r a c t i o n w i t h the
1 0 3
R h and
3 1
P n u c l e i . A d d i t i o n of excess t r i p h e n y l -
p h o s p h i n e has no effect o n the c o m p l e x s p e c t r u m , a n d exchange is s l o w o n the N M R t i m e scale.
D i s s o c i a t i o n , 6, w h i c h w a s suggested o n the basis
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
116
PLATINUM
Rh(PPh ) Cl + CH C1 3
3
2
2
10" M.
METALS
AND
COMPOUNDS
<± R h ( P P h ) C l ( C H C l ) + P P H 3
of m o l e c u l a r w e i g h t d a t a (43), at concentrations >
GROUP
2
2
2
(6)
3
occurs o n l y to the extent of less t h a n 5 %
M i x t u r e s of tris ( p - t o l y l ) p h o s p h i n e a n d tris-
2
( t r i p h e n y l p h o s p h i n e ) r h o d i u m c h l o r i d e g i v e p - t o l y l m e t h y l resonances o w i n g to tris ( p - t o l y l ) p h o s p h i n e s b o u n d b o t h cis a n d trans at
—35°.
T h e s e are c o l l a p s e d at 0 ° , a n d at 35° i n the presence of excess t r i s ( p t o l y l ) p h o s p h i n e , the l i g a n d resonance is a v e r a g e d o v e r b o t h b o u n d a n d free p h o s p h i n e . T h e a c t i v a t i o n energy for the i n t r a m o l e c u l a r exchange of t h e cis a n d trans p h o s p h i n e s is ca. 6 k c a l / m o l e , a n d this process is a p p r e c i a b l y faster t h a n the exchange b e t w e e n free a n d b o u n d p h o s p h i n e .
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch008
D e e m i n g a n d S h a w (43)
h a v e s t u d i e d the exchange of d i m e t h y l -
p h e n y l p h o s p h i n e w i t h complexes of the t y p e =
tons
RhX(CO) (PR ) , X 3
2
h a l i d e , X X X . T h e l i g a n d m e t h y l resonance gives a t r i p l e t because of
c o u p l i n g w i t h b o t h p h o s p h o r u s n u c l e i , w h i c h is s p l i t f u r t h e r b y c o u p l i n g
XXX
w i t h the r h o d i u m n u c l e u s / ( 3
1 0 3
Rh- H) =
c o u p l i n g i n trans bis ( p h o s p h i n e ) chemistry.
A d d i t i o n of
1 H z . See the d i s c u s s i o n of
1
complexes
i n the section o n
stereo
sufficient d i m e t h y l p h e n y l p h o s p h i n e to
give
a
1:10 l i g a n d : c o m p l e x m o l e r a t i o causes the t r i p l e t to collapse because of exchange of b o u n d a n d free p h o s p h i n e . O n l y a b r o a d singlet is o b s e r v e d . T h e v a n i s h i n g of the c o u p l i n g w i t h Ή ) bound a n d / ( 2
3 1
Ρ-Ή)
Ϊ Γ Θ β
3 1
P, I =
1/2, i n d i c a t e s t h a t / ( 2
3 1
P-
are of o p p o s i t e s i g n a n d t h a t t h e y average
to zero. T h i s is s u p p o r t e d b y t h e o b s e r v a t i o n t h a t the a d d i t i o n of m o r e p h o s p h i n e leads to the e x p e c t e d d o u b l e t a r i s i n g f r o m c o u p l i n g w i t h F a c k l e r a n d c o w o r k e r s (18, 19)
3 1
P.
h a v e u s e d the m e t h y l p r o t o n reso
nances to d e t e r m i n e a c t i v a t i o n energies for the exchange of m e t h y l d i p h e n y l p h o s p h i n e c o o r d i n a t e d to the bis-complexes of p l a t i n u m ( I I ) ligands (18),
such
as
p-dithiocumate
X X X I , a n d o-benzylxanthate
(18),
with
3,4,5-trimethoxydithiobenzoate
(19).
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
8.
TOBIAS
NMR
Spectra
of
117
Compounds
XXXI The / (
1 9 5
Ρ ί - Ή ) c o u p l i n g , 3 9 - 4 0 H z , shows t h a t the p h o s p h i n e is
c o o r d i n a t e d to p l a t i n u m .
S i n c e i t o c c u p i e s a n a x i a l p o s i t i o n of the b a s
i c a l l y square p l a n a r c o m p l e x , the p h o s p h i n e is r a t h e r l a b i l e . A c t i v a t i o n Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch008
energies for exchange of 4.2 a n d 19.7 k c a l / m o l e w e r e f o u n d w h e r e the l i g a n d was p - d i t h i o c u m a t e a n d 3,4,5-trimethoxydithiobenzoate,
respec
tively. Y a g u p s k y a n d W i l k i n s o n ( 5 9 ) h a v e e x a m i n e d the h y d r i d e resonance of the 5-coordinate h y d r i d o d i c a r b o n y l b i s ( t r i p h e n y l p h o s p h i n e ) i r i d i u m ( I ) as a f u n c t i o n of t e m p e r a t u r e . T w o isomers a p p e a r to exist i n e q u i l i b r i u m , since the c o u p l i n g constant / ( P — Ή ) is c o n s i d e r a b l y s m a l l e r t h a n ex 2
3 1
p e c t e d for c o u p l i n g to a cis p h o s p h i n e
(1.5-8.5 H z , depending
solvent at 3 5 ° ) , a n d it is t e m p e r a t u r e - d e p e n d e n t .
upon
See the d i s c u s s i o n of
h y d r i d e - p h o s p h i n e c o u p l i n g i n cis a n d trans complexes
i n the section
o n stereochemistry. S i n c e the c o u p l i n g decreases to zero as the t e m p e r a ture is l o w e r e d a n d t h e n increases a g a i n as the t e m p e r a t u r e d r o p s s t i l l further, i t appears t h a t the t w o isomers h a v e
3 1
Ρ - Ή c o u p l i n g constants of
opposite sign. A s the e q u i l i b r i u m b e t w e e n the isomers is shifted b y v a r y i n g the t e m p e r a t u r e , there exists a t e m p e r a t u r e at w h i c h / averages to 0; i-e>,
XAJA
+
XBJB
=
0 where χ
Α
isomers a n d J a n d J are t h e i r A
B
and 3 1
X B
are the m o l e fractions of the t w o
Ρ - Ή c o u p l i n g constants.
S o m e c a u t i o n s h o u l d b e u s e d i n the i n t e r p r e t a t i o n of the a c t i v a t i o n parameters o b t a i n e d i n m a n y of these studies. P a r t i c u l a r l y i n the e a r l i e r w o r k , a p p r o x i m a t e equations r e l a t i n g l i n e shape to rate parameters often h a v e b e e n u s e d , so m a n y of the rates are b a s i c a l l y o r d e r of m a g n i t u d e values. T h e c u r r e n t use of c o m p u t e r s to d e t e r m i n e the best agreement b e t w e e n c a l c u l a t e d a n d o b s e r v e d spectra s h o u l d i m p r o v e the a c c u r a c y of these calculations. O t h e r factors s u c h as changes i n the c h e m i c a l shifts b e t w e e n t w o resonances w i t h t e m p e r a t u r e c a n cause l a r g e errors i n the a c t i v a t i o n energy.
Summary T h e p r i n c i p a l a p p l i c a t i o n of N M R i n the s t u d y of the
compounds
of the p l a t i n u m g r o u p metals is l i k e l y to c o n t i n u e to b e i n s t r u c t u r e d e -
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
118
PLATINUM GROUP METALS AND COMPOUNDS
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch008
termination. As spectrometers suitable for heteronuclear double reso nance measurements become increasingly available, more information on the chemical shifts of the metal nuclei will be produced. NMR should prove extremely useful for the study of labile complexes of these elements, and it is precisely these systems which are of interest as catalytic inter mediates. This technique affords a convenient method for the study of intra- and intermolecular exchange processes. Literature Cited (1) Allen, F. H., Pidcock, Α., J. Chem. Soc. 1968, A, 2700. (2) Baird, M.C.,Mague, J. T., Osborn, T. Α., Wilkinson, G.,J.Chem. Soc. 1967, A, 1347. (3) Basolo, F., Pearson, R. G., "Mechanisms of Inorganic Reactions," 2nd ed., p. 238, Wiley, New York, 1966. (4) Brause, A. R., Kaplan, F., Orchin, M.,J.Am. Chem. Soc. 1967, 89, 2661. (5) Catsikis, B. D., Good, M. L., Inorg. Chem. 1969, 8, 1095. (6) Chatt, J., Coffey, R. S., Shaw, B. L.,J.Chem. Soc. 1965, 7391. (7) Clegg, D. E., Hall, J. R., Australian J. Chem. 1967, 20, 2025. (8) Clegg, D. E., Hall, J. R., Spectrochim. Acta 1967, 23A, 263. (9) Connick, R. E., Fiat, D. N.,J.Chem. Phys. 1963, 39, 1349. (10) Cramer, R., Inorg. Chem. 1965, 4, 445. (11) Cramer, R.,J.Am. Chem. Soc. 1964, 86, 217. (12) Ibid., 1967, 89, 5377. (13) Cramer, R., Kline, J. B., Roberts, J. D., J. Am. Chem. Soc. 1969, 91, 2519. (14) Dean, R. R., Green, J. C.,J.Chem. Soc. 1968, A, 3047. (15) Deeming, A. J., Shaw, B. L., J. Chem. Soc. 1969, A, 597. (16) Eaton, D. R., Suart, S. R.,J.Am. Chem. Soc. 1968, 90, 4170. (17) Emsley, J. W., Feeny, J., Sutcliffe, L. H., "High Resolution Nuclear Mag netic Resonance Spectroscopy," Vol. 2, p. 989, Pergamon, Oxford, 1966. (18) Fackler, J. P., Jr., Fetchin, J. Α., Seidel, W.C.,J.Am. Chem. Soc. 1969, 91, 1217. (19) Fackler, J. P., Jr., Seidel, W.C.,Fetchin, J. Α.,J.Am. Chem. Soc. 1968, 90, 2707. (20) Glass, G. E., Schwabacher, W. B., Tobias, R. S., Inorg. Chem. 1968, 7, 2471. (21) Glass, G. E., Tobias, R. S.,J.Am. Chem. Soc. 1967, 89, 6371. (22) Griffith, J. S., Orgel, L. E., Trans. Faraday Soc. 1957, 53, 601. (23) Grim, S. O., Ference, R. Α., Inorg. Nucl. Chem. Letters 1966, 2, 205. (24) Grim, S. O., Keiter, R. L., McFarlane, W., Inorg. Chem. 1967, 6, 1133. (25) Heaton, B. T., Pidcock, Α.,J.Organometal. Chem. 1968, 14, 235. (26) Holloway, C. E., Hulley, G., Johnson, B. F. G., Lewis, J.,J.Chem. Soc. 1969, A, 53. (27) Jenkins, J. M., Shaw, B. L.,J.Chem. Soc. 1966, A, 770. (28) Ibid., 1966, 1407. (29) Jenkins, J. M., Shaw, B. L., Proc. Chem. Soc. 1963, 279. (30) Jensen, Κ. Α., Ζ. Anorg. Allgem. Chem. 1936, 229, 252. (31) Kaplan, P. D., Schmidt, P., Orchin, M., J. Am. Chem. Soc. 1967, 89, 4537. (32) Kettle, S. F. Α.,J.Chem. Soc. 1965, 6664. (33) Kite, K., Smith, J. A. S., Wilkins, E. J., J. Chem. Soc. 1966, A, 1744. (34) Lydon, J. E., Truter, M. R.,J.Chem. Soc. 1965, 6899. (35) McFarlane, W., Chem. Commun. 1967, 772.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch008
8. TOBIAS
NMR Spectra of Compounds
119
(36) Ibid., 1968, 393. (37) Ibid., 1969, 439. (38) Ibid., 1969, 700. (39) McFarlane, W.,J.Chem. Soc. 1967, A, 1922. (40) McFarlane, W., Quart. Rev. 1969, 23, 187. (41) Morgan, G. L., Rennick, R. D., Soong, C. C., Inorg. Chem. 1966, 5, 372. (42) O'Brien, J. F., Glass, G. E., Reynolds, W. L., Inorg. Chem. 1968, 7, 1664. (43) Osborn, J. Α., Jardine, F. H., Young, J. F., Wilkinson, G., J. Chem. Soc. 1966, A, 1711. (44) Parshall, G. W.,J.Am. Chem. Soc. 1964, 86, 5367. (45) Ibid., 1966, 88, 704. (46) Pidcock, Α., Richards, R. E., Venanzi, L. M.,J.Chem. Soc. 1966, A, 1707. (47) Ibid., 1968, 1970. (48) Pidcock, Α., Richards, R. E., Venanzi, L. M., Proc. Chem. Soc. 1962, 184. (49) Pople, J. Α., Santry, D. P., Mol. Phys. 1964, 8, 1. (50) Ramsey, N. F., Phys. Rev. 1950, 78, 699. (51) Smith, Β. B., Sawyer, D. T., Inorg. Chem. 1969, 8, 379. (52) Ibid., 1968, 7, 922. (53) Ibid., 1968, 7, 1526. (54) Smith, J. A. S.,J.Chem. Soc. 1962, 4736. (55) Thomas, S., Reynolds, W. L., Inorg. Chem. 1969, 8, 1531. (56) Tobias, R. S., Inorg. Chem. 1970, 9, 1296. (57) Varian Associates, "NMR Table," 5thed.,1965. (58) Walton, R. Α.,J.Chem. Soc. 1967, A, 1852. (59) Yagupsky, G., Wilkinson, G.,J.Chem. Soc. 1969, A, 725. RECEIVED December 16, 1969.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
9
Crystal Structures of Complexes of the Platinum G r o u p Metals
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch009
E. L. AMMA University of South Carolina, Columbia, S. C. 29208
The crystal and molecular structure of selected groups of P metal complexes are reviewed and discussed. These stru tures are divided into three groups: molecular adducts, "squareplanar"Pt(II) complexes, and structures involving delocalizedπsystems. The molecular adducts of N , O , CO, and NO are classified (in general) into two types, either trigonal bipyramids or distorted tetragonal pyramids The geometry and bond lengths of thePt(II)complexes are discussed in terms of limitations imposed on discussions o bond lengths. The effect ofπelectrons on complex stereo chemistry is discussed in the remaining section. 2
+
'T^his summary of the x-ray structure determinations of Pt group metals is not to be construed as comprehensive. Rather, it should be viewed as recent structure determinations of Pt group metals of interest to the author; any omissions should be considered as limitations in the scope of interest of the author and not in the importance of the research omitted. The crystal structures of the Pt group metals to be examined fall readily into three categories : (1) New complexes where the stereochem istry about the metal atom is of interest, e.g., molecular adducts. These results are intrinsically of interest and importance to the nature of the chemical bonding in these molecules or ions. The inclusion of the struc tures of this class of compounds is particularly appropriate since their chemistry and kinetic properties are discussed elsewhere in this sym posium. (2) The "accurate" determination of bond lengths in order to investigate π bonding or the nature of metal-ligand bonds in general. (3) Pt metal structures containing, or potentially containing, delocalized 7Γ systems. A recent review containing a number of Pt structures is: Churchill, M. R., "Structural Studies on Transition Metal Complexes ConA
120 In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
2
9.
AMMA
Crystal
Structure
of
121
Complexes
t a i n i n g σ-Bonded C a r b o n A t o m s " in "Perspectives i n S t r u c t u r a l C h e m istry " J . D . D u n i t z a n d J . A . Ibers, E d s . , W i l e y , N e w Y o r k , 1970. It seems a p p r o p r i a t e at this t i m e to p u t f o r t h some c a u t i o n a r y state ments for the g e n e r a l reader c o n c e r n i n g these h e a v y m e t a l a t o m s t r u c tures a n d t h e i r q u o t e d a c c u r a c y i n b o n d lengths. I n g e n e r a l , c r y s t a l l o g r a phers are w e l l a w a r e of the shortcomings of t h e i r d a t a . T h e q u o t e d errors i n b o n d lengths are the results of m a t h e m a t i c a l treatment of the d a t a a s s u m i n g n o u n c o r r e c t e d systematic errors.
A l l crystallographic data,
i n c l u d i n g m o d e r n counter d a t a c o l l e c t e d b y a u t o m a t e d diffractometers, c o n t a i n u n c o r r e c t e d systematic errors even after corrections for a b s o r p t i o n , a n o m a l o u s d i s p e r s i o n , etc., h a v e b e e n m a d e . Some of the i n h e r e n t l y r e m a i n i n g errors are i n s t r u m e n t a l , i n v o l v i n g the m o n o c h r o m a t i c i t y of the Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch009
r a d i a t i o n , s t a b i l i t y a n d h o m o g e n e i t y of the source, as w e l l as the s t a b i l i t y of the detector a n d associated e l e c t r o n i c systems. ments are not to b e o v e r l o o k e d .
Mechanical misalign
C r y s t a l s themselves m a y u n d e r g o r a d i a
t i o n d a m a g e d u r i n g the d a t a c o l l e c t i o n p e r i o d , a n d e v e n m o r e m u n d a n e occurrences s u c h as c r y s t a l m o v e m e n t c a n create serious difficulties for the u n w a r y . T h e t h e o r e t i c a l m o d e l s u s e d for the c a l c u l a t i o n of the x - r a y scattering b y electrons i n m o l e c u l e s h a v e t h e i r shortcomings
as w e l l .
T h e r m a l motions of atoms f r o m x-ray i n t e n s i t y d a t a of crystals are not w e l l understood.
( T h e r m a l e l l i p s o i d s of atoms are n o w c o m m o n i n m a n y
x-ray structure p u b l i c a t i o n s ; t h e y s h o u l d be i n t e r p r e t e d a n d , for that m a t ter, a c c e p t e d
w i t h caution.)
We
suggest t h a t the p r a c t i c i n g c h e m i s t
m u l t i p l y the q u o t e d error b y t w o unless some q u a l i f y i n g statements h a v e b e e n m a d e , a n d w h e n m a k i n g comparisons b e t w e e n
bond
lengths i n
different structures, not consider differences significant unless t h e y are at least t w i c e this i n f l a t e d error. I n cases w h e r e d i s o r d e r or u n u s u a l l y l a r g e t h e r m a l m o t i o n is r e p o r t e d , one is w e l l a d v i s e d to be e v e n m o r e servative.
con
P r i o r to a p p r o x i m a t e l y five to six years ago, almost a l l d a t a
were collected by photographic techniques, a n d photographic data have e v e n m o r e i n n a t e systematic errors. H e n c e , a n y d e t a i l e d d i s c u s s i o n a b o u t s m a l l differences i n b o n d lengths f r o m d a t a before a n d p h o t o g r a p h i c d a t a after that date s h o u l d be m a d e w i t h c a u t i o n . N e v e r t h e l e s s , there is n o other m e t h o d of structure d e t e r m i n a t i o n w i t h a c o m p a r a b l e m a g n i t u d e of r e l i a b i l i t y for the d e t e r m i n a t i o n of structures of m o d e r a t e to c o m p l i c a t e d molecules.
Molecular 0 of 0 (37)
2
2
Adducts Adducts.
Ibers continues his excellent s t r u c t u r a l investigations
a d d u c t s w h i c h started w i t h [ ( C H ) P ] 2 l r C O Z i n w h i c h Ζ = 6
a n d I (44).
s o l v e d (71).
5
3
Cl
T h e s t r u c t u r e of the B r isomer has also b e e n r e c e n t l y
T h e s e studies b y Ibers et al. h a v e b e e n e x t e n d e d to i n c l u d e
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch009
122
PLATINUM
GROUP
METALS
AND
COMPOUNDS
Inorganic Chemistry
Figure 1. The local environment about the Ir atom in [(C H ) ?'\ Ir COCl · 0 6
5 3
B
2
Bond length errors: Ir-P ± 0.008A, Ir-I ± 0.005A, Ir-O ± 0.02A, O-O ± 0.026A. Angle errors are 0.7° or less. (Ref. 44)
the o x y g e n a d d u c t s of [ ( C H ) P ( C H 2 ) ] 2 l r ( P F - ) 6
P(CH )] Rh (PF -) 2
the 0
2
2
+
6
5
+
2
a d d u c t of [ ( C H 5 ) ( C 2 H ) P ] I r C O C l ( 7 7 ) . 6
pictorial purposes) 0
2
[(C H ) -
{45,46),
6
6
5
2
O t h e r w o r k e r s h a v e s o l v e d t h e structure of
(46). 2
5
Considering (for
2
as a u n i d e n t a t e l i g a n d , t h e structures of t h e first
three a n d t h e v e r y last c o m p l e x c a n b e d e s c r i b e d as t r i g o n a l b i p y r a m i d a l w i t h trans a p i c a l phosphines w h i l e C O a n d Ζ a c c o m p a n y the 0
molecule
2
i n the t r i g o n a l p l a n e ( F i g u r e 1 ) . T h e geometry of t h e c h e l a t e d d i p h o s , [ b i s ( l , 2 - d i p h e n y l p h o s p h i n o ) e t h a n e ] R h a n d I r complexes m a y b e d e s c r i b e d i n a n analogous O f considerable
manner.
c h e m i c a l a n d p o t e n t i a l l y of b i o l o g i c a l
is t h e c h a n g e i n ease w i t h w h i c h t h e 0 parent complex
2
importance
m o l e c u l e c a n b e a d d e d to t h e
as a f u n c t i o n of l i g a n d s a n d c e n t r a l m e t a l i o n . T h e
changes i n b o n d lengths ( O - O a n d M - O ) have b e e n c o r r e l a t e d w i t h t h e r e v e r s i b i l i t y o f o x y g e n u p t a k e (46).
T h e m o r e electronegative t h e l i g a n d
Ρ < I < B r < C I , t h e less is t h e b a c k d o n a t i o n of electrons i n t o t h e 0 l i g a n d f r o m t h e m e t a l , a n d t h e O - O distance is m o r e l i k e free 0 .
2
Like
2
w i s e , t h e p o o r e r t h e energy m a t c h b e t w e e n m e t a l a n d o x y g e n o r b i t a l s , the m o r e l i k e free 0 Rh0
2
+
2
is the c o o r d i n a t e d oxygen—i.e., i n [ ( C H ) P ( C H ) ] 6
5
2
2
, the O - O b o n d l e n g t h is shorter t h a n i n [ ( C H ) P ( C H ) ] I r 0 6
5
2
2
2
2
2
+
.
T h i s e x p l a n a t i o n is i n agreement w i t h t h e facts, b u t t h e n a t u r e o f t h e metal-oxygen
bond
is p r o b a b l y
more complex
a n d m o r e sensitive to
subtle changes at t h e m e t a l t h a n this s i m p l e p i c t u r e indicates.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
F o r ex-
9.
Crystal
A M M A
Structure
of
123
Complexes
a m p l e , there is the v a r i a t i o n i n I r - P d i s t a n c e of 0.17A i n the P(CH )] M) 2
2
2
(45,
+
[(C H ) 6
5
2
c o m p l e x , b u t n o significant difference i n R h - P
46)
b o n d lengths i n the analogous R h a d d u c t . F u r t h e r m o r e , the O - O d i s t a n c e of 1 . 6 3 ( 2 ) A i n this I r - 0 1.48(2)A i n H 0 2
2
a d d u c t is longer t h a n the 0
o n e considers m i x i n g of e x c i t e d states of 0 lation 0 " . 2
distance
2
of
H o w e v e r , this distance m a y b e u n d e r s t o o d i f
(76).
2
r a t h e r t h a n the i o n i c f o r m u
2
I n a d d i t i o n , the O - O distance is s u r p r i s i n g l y sensitive to
2
changes i n the p h o s p h i n e g o i n g f r o m 1 . 3 0 ( 3 ) A i n [ ( C H ) P ] I r C O C l · 6
0
to 1 . 5 4 ( 4 ) A i n [ ( C H ) ( C H ) P ] I r C O C l · 0
(37)
2
6
5
2
2
5
2
5
t i o n to these structures, the s t r u c t u r e of [ ( C H ) P ] P t 0 6
5
3
3
2
2
2
2
(77).
I n rela
(34)
is i n t e r
esting. I n this case the m e t a l , t w o p h o s p h o r u s , a n d t w o o x y g e n atoms l i e i n t h e same p l a n e a c c o m p a n i e d b y P t - O distances of 2 . 0 1 ( 3 ) A a n d a n Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch009
O - O distance of 1 . 4 5 ( 4 ) A .
T h i s P t - O distance is w i t h i n the r a n g e of
I r - O distances f o u n d b y Ibers, b u t the O - O d i s t a n c e is essentially that e x p e c t e d for 0 ~ . 2
S i n c e this c o m p l e x does not i n a n y sense of t h e t e r m
2
reversibly a d d 0
2
d e s c r i b e d as P t
with 0 ~.
2 +
a n d the g e o m e t r y 2
2
is " s q u a r e p l a n a r , " i t s h o u l d
be
S u p p o r t for this f o r m u l a t i o n is f o u n d i n the
structure of tris ( t r i p h e n y l p h o s p h i n e ) c a r b o n y l p l a t i n u m w h i c h m a y
be
d e s c r i b e d as t e t r a h e d r a l ( i ) — i . e . , P t ( O ) . N
T h e c r y s t a l structures of three n i t r o g e n adducts h a v e
Adducts.
2
b e e n s o l v e d a n d r e p o r t e d at this t i m e . Ibers a n d c o w o r k e r s h a v e d e t e r m i n e d the structures of C o H ( N ) [ P ( C H ) ] 2
[ N H ( C H ) N H ] } P F " (15). 2
2
2
2
2
+
6
5
3
3
(16)
and
{Ru(N )(N )3
2
T h e e n v i r o n m e n t a b o u t the c o b a l t a t o m
6
is t r i g o n a l b i p y r a m i d a l w i t h the three p h o s p h o r u s atoms i n the t r i g o n a l p l a n e , whereas the N
2
m o l e c u l e a n d the h y d r i d e are i n the a p i c a l p o s i
tions. I n contrast, the R u is six-coordinate. T h e M - N - N angle i n b o t h cases is 180°, a n d the N
2
m o l e c u l e is b o u n d e n d - o n to the m e t a l , as is the
C O m o i e t y i n c a r b o n y l complexes.
T h e C o - N b o n d l e n g t h of 1 . 8 0 ( 1 ) A
av. also denotes some metal—nitrogen m u l t i p l e b o n d i n g . T h e structure of Ru(NH ) N Cl 3
5
2
was s o l v e d b y N y b u r g a n d B o t t o m l y (13),
2
a n d t h e y also
r e p o r t a six-coordinate R u w i t h a l i n e a r R u - N - N arrangement.
However,
this structure is c o m p l i c a t e d b y d i s o r d e r . S0 the S 0 (53).
2
2
and C S Adducts. Ibers et al. h a v e p u b l i s h e d the structures of 2
a d d u c t s of [ ( C H ) P ] M - C O C l i n w h i c h M = 6
5
3
2
I r (36)
or R h
T h e stereochemistry of the m e t a l atoms is that of a t e t r a g o n a l
p y r a m i d w i t h C O , C I , a n d trans Ρ atoms i n the b a s a l p l a n e a n d S of the S0
2
g r o u p at the apex.
T h e M—S vector i n these c o m p o u n d s makes a n
angle of — 3 0 ° w i t h the n o r m a l to the S 0
2
p l a n e . N o t e t h e difference
b e t w e e n this geometry a n d that of the analogous 0 a n d W i b e r l y (80)
2
adducts. Vogt, K a t z ,
r e p o r t e d the c r y s t a l structure of [ R u C l ( N H ) S 0 ] C l 3
4
2
w h e r e i n the R u is " o c t a h e d r a l l y " c o o r d i n a t e d w i t h C I trans to S. T h e S of the S 0
2
g r o u p is t i l t e d s i m i l a r l y to that f o u n d i n the a b o v e - m e n t i o n e d
I r a n d R h complexes.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
124
PLATINUM
GROUP
METALS
AND
COMPOUNDS
T h e c r y s t a l s t r u c t u r e o f the c a r b o n d i s u l f i d e a d d u c t of [ ( C H ) P ] P t 6
has b e e n s o l v e d (42). s u l f u r of the C S
group.
2
5
3
3
I n this case, the P t is b o u n d to a c a r b o n a n d o n e T h e P t a t o m a n d its f o u r d i r e c t l y - b o u n d n e i g h
bors are c o p l a n a r , b u t the u n b o u n d s u l f u r is t i p p e d out of t h i s p l a n e . F u r t h e r m o r e , the C S
m o l e c u l e is b e n t w i t h a S - C - S a n g l e of
2
136(4)°.
It is a n i n t e r e s t i n g q u e s t i o n i n this case as to the o x i d a t i o n state of the m e t a l r e l a t i v e to t h e g e o m e t r y of the c o m p l e x . Tetracyanoethylene Adducts ( T C N E ) . T h e structure of the t e t r a c y a n o e t h y l e n e a d d u c t ( 4 5 ) of [ ( C H ) P ] I r C O B r has b e e n d e t e r m i n e d , 6
a n d i n contrast to the 0
5
3
2
a d d u c t , a l t h o u g h the stereochemistry a b o u t I r
2
is also t r i g o n a l b i p y r a m i d a l w i t h the C = C
i n the e q u a t o r i a l p l a n e , the
p h o s p h i n e s are cis a n d i n t h e e q u a t o r i a l p l a n e .
The C = C
distance i n
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch009
t h e a d d u c t is 0.18A longer t h a n i n free t e t r a c y a n o e t h y l e n e a n d the T C N E e n t i t y is n o n p l a n a r .
T h e s e facts c a n b e r e a d i l y i n t e r p r e t e d as t h e I r
d o n a t i n g c h a r g e i n t o the π* o r b i t a l of T C N E . T h e s t r u c t u r e of I r ( C N H ) 6
CO(TCNE)[P(C H ) ]2 6
5
4
is v e r y s i m i l a r to t h e a b o v e except t h a t
(60)
3
t h e a x i a l I r - B r i n t e r a c t i o n is r e p l a c e d b y a n I r — N s i g m a b o n d f r o m a m o d i f i e d T C N E l i g a n d . I n contrast, the structure of the P t [ P ( C H ) ] 2 6
TCNE
complex yields an approximately planar P t P C
(12)
2
a g a i n , as i n the C S
2
2
5
3
unit and
a d d u c t of P t ( O ) , a n u n u s u a l stereochemistry.
Nitrosyl Adducts. T h r e e structures c a n be r e l a t e d to the I r C O C l [ P (C H ) ] 6
5
3
· S0
2
structure directly—i.e., they have a tetragonal p y r a m i d
2
structure w i t h a bent axial M - N - O grouping. These are: { I r l ( C O ) ( N O ) [P(C H ) ] }BF -C H 6
32),
5
3
2
4
6
{IrCl(CO) (NO) [ P ( C H ) ] } B F
(31),
6
6
and R u C l ( N O ) [ P ( C H ) ] P F (59). 2
6
5
3
2
6
5
3
2
4
(30,
I n the latter s t r u c t u r e , the
o n l y significant difference is that one of t h e N O groups is i n the b a s a l plane w i t h a linear R u - N - O complex.
g r o u p i n g s i m i l a r to t h e C O of t h e
S0
2
A l i n e a r M - N - O a r r a n g e m e n t w a s also f o u n d i n " o c t a h e d r a l "
OsCl (HgCl)NO[P(C H ) ]2 2
6
5
Ir(NO)2[P(C H ) ] C10 6
5
3
2
(7).
2
4
O n the other h a n d , the s t r u c t u r e of
consists of a d i s t o r t e d t e t r a h e d r o n of the
(52)
nearest n e i g h b o r atoms a b o u t I r w i t h almost l i n e a r I r - N - O g r o u p i n g s . C O Adducts. T h i s is s o m e w h a t u n u s u a l t e r m i n o l o g y , b u t w e restrict this b r i e f d i s c u s s i o n to m o l e c u l e s r e l a t e d to the a b o v e . T h e structures of IrCl(CO)2[P(C H5) ] 6
3
2
· C H 6
6
(58)
and O s ( C O ) [ P ( C H ) ] 3
6
5
3
2
have been
d e t e r m i n e d , a n d t h e y are t r i g o n a l b i p y r a m i d a l , as is
analogous 0
2
(73) the
a n a l o g of the f o r m e r of t h e t w o m e n t i o n e d h e r e i n e x c e p t
that C O is b o u n d e n d - o n i n b o t h cases.
Stereochemistry and Bond Lengths in Pt(II) Complexes B a s o l o a n d P e a r s o n (5b)
as p a r t of a d i s c u s s i o n of the k i n e t i c trans
effect ( f o r d e f i n i t i o n see R e f . 5a)
e s t a b l i s h e d a q u a l i t a t i v e trans i n f l u e n c e
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
9.
Crystal
A M M A
Structure
of
125
Complexes
series b y n o t i n g the P t - X b o n d l e n g t h as a f u n c t i o n of the trans p a r t n e r L in L - P t - X .
T h e r e s u l t i n g series is q u i t e s i m i l a r to the k i n e t i c trans
effect series. H o w e v e r , i t is n o w g e n e r a l l y a c c e p t e d t h a t the trans effect is a n o u t d a t e d c o n c e p t w h e n v i e w e d i n terms of the details of t h e elec t r o n i c structure of the c o m p l e x a n d a c t i v a t e d i n t e r m e d i a t e s (35,
85).
T h e d a t a o n b o n d lengths u s e d i n the series b y B a s o l o a n d P e a r s o n are i n t e r e s t i n g examples of o l d e r d a t a t h a t h a v e b e e n u s e d to d r a w c o n clusions.
( T h i s is not to find f a u l t w i t h B a s o l o a n d P e a r s o n ; that's a l l
they h a d ! ) modern
A n u m b e r of these structures h a v e b e e n r e d e t e r m i n e d
methods
a n d the earlier w o r k w a s
found
to
be
by
unreliable.
F u r t h e r m o r e , the use of the t e r m trans-influence is s t i l l to b e f o u n d i n the l i t e r a t u r e as a b o n d l e n g t h feature. Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch009
T h e most s t r i k i n g e x a m p l e of the difference b e t w e e n earlier w o r k a n d the m o r e recent structure (9, 33)
(11, 47, 48)
Zeise's salt ( K P t C l
3
•C H 2
4
· H 0) 2
refinement is that of
( F i g u r e 2 ) . T h e o l d e r results s h o w e d
a P t - C l b o n d l e n g t h of 2.42A for C I trans to C H 2
4
a n d a 2.32A P t - C l b o n d
l e n g t h for C I trans to C I . A s c a n b e seen i n F i g u r e 2, t h e r e are n o s i g nificant differences b e t w e e n the three P t - C l distances. A " n o r m a l " P t - C l single b o n d l e n g t h m a y be t a k e n as 2.30A (41,
This particular
49, 57).
c o m p o u n d w a s u s e d for some t i m e as the e x a m p l e for ττ-bonding a n d trans influence!
T h e P t - C l b o n d l e n g t h trans to ethylene i n d i p e n t e n e P t ( I I )
c h l o r i d e (4)
is 2 . 3 3 ( 1 ) A , b u t is r a r e l y referenced.
T h e t e r m trans i n f l u -
Cl(3)
Acta Crystallographica
Figure 2. The local environment Pt atom in Zieses salt [KPtCl C H 3
2
i
about the · H 0] 2
Bond length errors: Pt-Cl(l) ± 0.004A, Pt-Cl(2), Cl(3) ± 0.020A, Pt-C ± 0.020A. Angle errors are 0.6° or less. (Ref. 9) A more recent refinement (private communication from P. G. Owston) makes the distances as follows: Pt-CUl) 2,327(5) A Ptr-Cl(2) 2.314(7) A Pt-Cl(3) 2.296(7) A
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
126
PLATINUM
GROUP
METALS
AND
COMPOUNDS
ence r e l a t i v e to b o n d lengths continues i n use b u t one m u s t b e a r i n m i n d that for s m a l l changes i n b o n d lengths a m u l t i t u d e of factors c a n r e s p o n s i b l e , s u c h as i o n i c forces i f t h e c o m p l e x is i o n i c , h y d r o g e n i n g , a n d m o l e c u l a r p a c k i n g , to n a m e a f e w .
I n t e r m o l e c u l a r forces a n d
t h e i r effect o n b o n d lengths a n d angles are m i n i m i z e d f o r
uncharged
complexes, a n d t h e most r e l i a b l e distances for c o m p a r i s o n purposes be o b t a i n e d f r o m these systems.
be
bond
can
H o w e v e r , e v e n i n these cases, c a u t i o n
m u s t b e exercised; for e x a m p l e , the structure of t r a n s - d i c h l o r o b i s t r i p r o pylphosphine-WjW'-dichloroplatinum
(JO)
i n w h i c h the
center
of
the
c h l o r i n e - b r i d g e d d i m e r lies o n a center of s y m m e t r y . T h e P t - C l distance of t h e b r i d g i n g c h l o r i n e trans to the p h o s p h i n e g r o u p is l o n g at 2 . 4 2 5 ( 8 ) A and
the P t - P d i s t a n c e is " s h o r t " at 2 . 2 3 9 ( 9 ) A .
2 . 2 4 7 ( 7 ) A is o b s e r v e d i n c i s - P t [ P ( C H ) ] C l
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch009
3
3
2
2
A
P t - P distance
of
T h e e l o n g a t i o n of
(50).
t h e P t - C l distance f r o m the n o r m a l 2.30A is a t t r i b u t a b l e to t w o factors: ( a ) I n e v i t a b l y , the P t - C l distance w i t h the b r i d g i n g c h l o r i n e w i l l b e l o n g because of the h a l o g e n f o r m i n g t w o b o n d s a n d c o n s e q u e n t l y , b e a r i n g a n effective f o r m a l p o s i t i v e c h a r g e a n d ( b ) phosphine ( P t - C l i n c « - P t [ P ( C H ) ] C l 3
2
2
the fact that i t is trans to t h e 2
is 2 . 3 8 A ) .
The terminal P t - C l
distance is n o r m a l at 2 . 2 7 9 ( 9 ) A w i t h i n t w o s t a n d a r d d e v i a t i o n s .
There
fore, care m u s t b e exercised i n terms of h o w m u c h b o n d l e n g t h e n i n g of the P t - C l b o n d is a t t r i b u t a b l e to the p h o s p h i n e alone. T h e structures of cis- a n d i m n 5 - d i c h l o r o d i a m m i n o p l a t i n u m ( I I ) d e t e r m i n e d b y M i l b u r n a n d Truter (51) simple
are the most r e l i a b l e structure d e t e r m i n a t i o n s a v a i l a b l e of
Pt(II)
chloroammines.
The
P t - N distances
are
2.03(4)Av.,
whereas the P t - C l distances are 2 . 3 2 ( 1 ) A v . a n d are not s i g n i f i c a n t l y d i f ferent i n the t w o isomers. E s s e n t i a l l y the same results for Pt—Ν distances were found i n fram-bis (dimethylamine) diamine platinum (II) Recent
(3).
structures c o n t a i n i n g P t - N distances
methyl-3-butanone-oximato) platinum (II) and bis(glyoximato)platinum(II)
chloride
are
chloride
bis(2-amino-2-
monohydrate
(64)
T h e r e is l i t t l e d o u b t a b o u t the
(23).
b o n d l e n g t h e n i n g that occurs for P t - X trans to h y d r i d e , as has b e e n s h o w n i n P t [ P ( C H ) ] H B r (56) 6
5
3
2
a n d P t [ P ( C H 5 ) C H ] ( H ) C l (20), 6
2
2
5
where
2
the l e n g t h e n i n g is a p p r o x i m a t e l y 0.1A i n b o t h cases. T u r n i n g to other l i g a n d s that h a v e strong trans influence, the struc t u r e of
dichlorodi(o-phenylenebisdimethylarsine)platinum(II)
(74)
w h i c h is " s q u a r e p l a n a r " w i t h P t - A s b o n d s of 2 . 3 7 ( 1 ) A is c o n s i d e r a b l y shorter t h a n t h e 2.49A ( 5 7 )
e x p e c t e d f r o m the s u m of s i n g l e - b o n d r a d i i .
U n f o r t u n a t e l y , there are no structure d a t a o n c i s - P t C l ( A s R ) 2
3
for
2
p a r i s o n purposes, b u t the b r i d g i n g c h l o r i n e trans to A s ( C H ) 3
3
com has a
P t - C l distance i n d i - M - c h l o r o - [ d i c h l o r o - b i s ( t r i m e t h y l a r s i n e ) ] p l a t i n u m ( I I ) l o n g e r at 2.39A t h a n the b r i d g i n g c h l o r i n e P t - C l d i s t a n c e trans to C I at 2.31A.
T h e P t - A s d i s t a n c e is c o n c o m m i t a n t l y 2.31A ( s o m e w h a t shorter
t h a n for the A s - P t - A s i n t e r a c t i o n ) .
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch009
9.
Crystal
A M M A
Figure
3.
Structure
The
of
127
Complexes
local environment
cis-[(p-C/-C HJ 6
2
·
about the Pt atom in
S] PtCl 2
2
Bond length errors are: Pt-S — Pt-Cl ± 0.007A, S - C = C-C = ±0.02A. Angle errors are ±0.6° or less. S-C distances are not significantly different from 1.80A.
S u l f u r is g e n e r a l l y c o n s i d e r e d as h a v i n g w e a k e r trans influence t h a n p h o s p h i n e s ; h o w e v e r , t h i o u r e a has a greater trans influence t h a n t h i o ether. V e r y f e w structures of P t or P d t h i o e t h e r complexes h a v e b e e n solved. W o o d w a r d et al. (28, 62) h a v e s h o w n that i n ( R S ) M B r w h e n 2
2
2
4
M is P t , the c o m p l e x is a s u l f u r - b r i d g e d d i m e r w i t h r e l a t i v e l y short P t - S b r i d g i n g distances at 2 . 2 0 9 ( 7 ) a n d 2 . 2 4 2 ( 1 4 ) A , a n d P t - B r t e r m i n a l d i s tances of 2 . 3 8 4 ( 4 ) A a n d 2 . 4 0 0 ( 7 ) A . W h e n M is P d , X =
B r , the c o m p l e x
is a trans B r - b r i d g e d d i m e r w i t h P d - B r b r i d g i n g distances of and 2.447(11)A,
2.429(4)A
P d - B r t e r m i n a l distances of 2 . 4 0 4 ( 4 ) A , a n d P d - S d i s -
tances of 2 . 3 0 ( 2 ) A .
I n t e r e s t i n g as the contrast i n these t w o structures
m a y be, t h e y say little a b o u t the trans influence of the P t - S b o n d o n the P t - X b o n d l e n g t h . I n p a r t to e x a m i n e this q u e s t i o n , w e h a v e s o l v e d the structure of d i c h l o r o b i s ( 4 , 4 ' - d i c h l o r o d i p h e n y l s u l f i d e ) p l a t i n u m ( I I )
(70)
( F i g u r e 3 ) . T h e 2S, 2C1, a n d P t atoms are essentially i n the same p l a n e , a n d the P t S C l 2
2
u n i t m a y b e d e s c r i b e d as "square p l a n a r . " T h e P t - C l
distances are n o r m a l single b o n d s , as are the P t - S distances. T h e r e is n o e l o n g a t i o n of the P t - C l distances o w i n g to a trans thioether. T h e P t - S l e n g t h is o n l y s l i g h t l y shorter t h a n the 2.35A expected f r o m the s u m of the c o v a l e n t r a d i i . T h e C - S - P t angles are s u c h that it is clear that S
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
sp
s
128
PLATINUM
orbitals a r e u s e d to f o r m t h e P t - S b o n d .
GROUP
METALS
AND
COMPOUNDS
F u r t h e r , t h e o r i e n t a t i o n of t h e
p - c h l o r o p h e n y l r i n g s is s u c h t h a t n o significant ir i n t e r a c t i o n exists b e t w e e n t h e rings a n d the s u l f u r or P t atoms.
H e n c e , t h e trans influence
of a thioether is n o t reflected i n a n y P t - C l b o n d e l o n g a t i o n . A means o f testing f o r t h e influence of ττ-type interactions i n P t - S b o n d s w o u l d b e t o use a l i g a n d w i t h a geometry that c a n b e p r e c i s e l y l o c a t e d r e l a t i v e t o t h e m e t a l , a n d t h e l o c a t i o n of t h e π orbitals i n this l i g a n d is u n a m b i g u o u s . A l i g a n d that fulfills these c r i t e r i a is t h i o u r e a ( t u ) ; t h e m o l e c u l e is p l a n a r i n a l l k n o w n complexes w i t h metals, a n d t h e π o r b i t a l s a r e n o r m a l to t h e molecular plane.
F u r t h e r , t h e r e l a t i v e energies of t h e ir levels i n this
m o l e c u l e h a v e b e e n c a l c u l a t e d . A s i m p l e M O c a l c u l a t i o n of t h e energy levels
gives
a strongly b o n d i n g
α ι ( — 2.23/3), m o d e r a t e l y
bonding &i
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch009
(—1.50)8), w e a k l y b o n d i n g d i ( — 0.81/3), a n d s t r o n g l y a n t i b o n d i n g α / ' ( + 1.03/3) ( 2 ) . W i t h six electrons ( o n e electron f r o m S, C., a n d t w o f r o m
Figure 4. (NH ) ^ Cl 2 2
Jt
2
The molecular structure of Pd[SCshowing the principal interatomic dis tances
Bond length errors are: Pd-S = Pd-Cl ± 0.003A, S-C ± 0.011 A, C-N ± 0.014A. For clarity the angles are omitted. The angles are: S-Pd-S approximately 90° with errors of 0.Γ, Pd-S-C <-< 110° with errors of 0.4°, S-C-N ~ 120° with errors of Γ or less. N-C-N ~> 120° with errors of 1° or less.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
9.
Crystal
A M M A
Structure
of
129
Complexes
e a c h N ) , these levels are filled t h r o u g h a J . A l t h o u g h this m o l e c u l e c a n b e h a v e as a π d o n o r (69, 72, 78, 79, 81) w i t h o u t s i g m a b o n d i n g , i t has b e e n s h o w n b y others (14, 25, 26, 38, 40, 61) as w e l l as ourselves (8, 54, 55, 84) that, i n g e n e r a l , i t forms b o n d s w i t h t r a n s i t i o n metals via t h e sp
2
orbitals of sulfur. S t e r i c a l l y , i t is possible t o construct a m o d e l s u c h t h a t a l l f o u r t h i o u r e a groups are c o p l a n a r w i t h t h e m e t a l — i . e . , w i t h C
sym
4h
metry.
A l t h o u g h w e h a v e d e t a i l e d x-ray s t r u c t u r e d a t a o n P t t u C l , 4
Pdtu Cl 4
(8), N i t u C l
2
4
2
(38), C o t u C l 4
(54, 55), a n d N i t u B r
2
6
g e n e r a l i m p o r t a n t features c a n b e seen f r o m P d t u C l 4
Pdtu
4
2
2
2
(84), t h e
( F i g u r e 4). T h e
u n i t is n o t p l a n a r , b u t r a t h e r t h e m e t a l ( n e g l e c t i n g t h e C I a t o m s )
2 +
defines a n a p p r o x i m a t e m o l e c u l a r center of s y m m e t r y a n d t h e t h i o u r e a groups are t i p p e d r e l a t i v e to t h e a p p r o x i m a t e P d S
4
plane b y 43°-60°
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch009
a n d t w i s t e d r e l a t i v e to t h e P d - S - C fines b y 1 7 ° - 2 6 ° . T h e tilt is d e f i n e d as t h e d i h e d r a l a n g l e b e t w e e n planes—e.g., P d S ( l ) , S ( 3 ) a n d S ( l ) , S(3), C ( l ) . T h e t w i s t is defined as t h e d i h e d r a l angle b e t w e e n p l a n e s — e.g., P d S ( l ) , C ( l ) a n d S ( l ) , C ( l ) , N ( l ) , N ( 2 ) . I t is t e m p t i n g to say that these orientations are g o v e r n e d b y h y d r o g e n b o n d i n g a n d p a c k i n g considerations. H o w e v e r , a p p r o x i m a t e l y t h e same orientations are f o u n d for t h e t h i o u r e a groups i n d e p e n d e n t of m e t a l c o o r d i n a t i o n n u m b e r a n d a n i o n . I n l i e u of a c o m p l e t e d e s c r i p t i o n of t h e electronic structure of t h e c o m p l e x , a possible b u t n o t u n i q u e i n t e r p r e t a t i o n of these results is t h a t i t is e n e r g e t i c a l l y too expensive to r e m o v e electrons f r o m t h e m e t a l dir orbitals to t h e t u π α / ' M O . T h e system distorts ( t i l t s a n d t w i s t s ) i n o r d e r to m a k e use of e m p t y n o n b o n d i n g 3d orbitals o n t h e s u l f u r a t o m . A
f u r t h e r test of this h y p o t h e s i s c a n b e m a d e b y c h a n g i n g t h e
e n e r g y levels of t h e l i g a n d b y , e.g., g o i n g to t h i o a c e t a m i d e ( t a c ) w i t h three π levels at energies (—1.96/3), (—0.91/?), a n d (+0.86/3). I n a s i m i lar m a n n e r , t h e ττ* l e v e l of t h i o u r e a m a y b e m a d e m o r e accessible b y replacing hydrogen dimethylthiourea Ni(DMT) Br 4
Pd(tu)
4
2 +
2
atoms
(DMT).
b y electron donor
substituents, e.g.,
T h e c r y s t a l structures of
Nitac Br 4
sym2
and
h a v e i n d e e d s i g n i f i c a n t l y different s t r u c t u r a l features f r o m
, a n d these differences c a n b e r e l a t e d t o the d i s c u s s i o n above.
Structures
of Delocalized
π-Systems
Involving
Pt
Metals
M u c h interest has b e e n generated i n v a r i o u s properties of m e t a l d e r i v a t i v e s of d i t h i o k e t o n e s , e t h y l e n e (1,2) p o u n d s i n recent years (17,18,29,
facets of these f a s c i n a t i n g c o m p o u n d s , references
dithiolates, a n d related com
43, 65, 66).
cover t h e m i n some d e t a i l .
T h e r e are m a n y i n t e r e s t i n g
a n d the previously mentioned W e l i m i t ourselves here to t h e
structures of t h e P t g r o u p metajs of these engrossing l i g a n d s .
Unfortu
n a t e l y , some of t h e m o r e i n t e r e s t i n g p r o p e r t i e s of t h e t r a n s i t i o n metals
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
130
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch009
PLATINUM
Table I.
GROUP
Pd(dtb)
2
L i g a n d charge C h a i r angle M a x i m u m deviation from planarity Distances a. I n t e r l i g a n d S - S b. I n t r a l i g a n d S - S c. M e t a l - S 6
d
e. C - N
AND
COMPOUNDS
Comparison of the Structural
Function
d. S - C
METALS
Ni(dtb)
2
-1 38°
-1 11°
0.51A
0.26A
3.169(2) 3.319(2) 2.301(1) 2.288(1) 1.712(7) 1.743(7) 1.32(1) 1.34(1) 1.35(1)
2.895(6) 3.220(6) 2.160(2) 2.171(2) 1.720(8) 1.728(8) 1.32(1) 1.34(1) 1.34(1)
° T i l t : Angle between planes defined by: M , S(l), S(2) and S(l), C ( l ) , C ( l ) or M , (S(2),C(2). Chair Angle: Angle between planes defined by M , S(l), S(2) and S(l), S(2), N(3). b
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
9.
A M M A
Crystal
Structure
of
131
Complexes
w i t h these l i g a n d s are not m a n i f e s t e d w i t h t h e P t metals. It has b e e n s h o w n t h a t the structures:
η
are c o m p l e t e l y p l a n a r f o r R = M =
N i ,η =
C H , M = 6
6
Ni, η =
0 (63); R =
- 2 ( 1 9 ) ; R — C N , M — N i , η — - 1 (24).
a c c e p t e d that for M =
CN,
It is generaUy
P t , P d , they are i s o s t r u c t u r a l w i t h the N i a n a l o g .
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch009
F u r t h e r , i t has b e e n s h o w n that e x p a n s i o n of the chelate r i n g also y i e l d s planar
structures,
Co(II)
(6).
for
example,
bis(dithioacetylacetone)Ni(II)
W e d e c i d e d to e x a m i n e w h a t h a p p e n s s t r u c t u r a l l y to the
and
complex
u p o n g o i n g to a s i x - m e m b e r e d r i n g a n d i n a d d i t i o n , a d d i n g a n excess of n o n b o n d i n g π electrons f r o m a p l a n a r l i g a n d . P r e s u m a b l y , the e x p a n s i o n to a s i x - m e m b e r e d r i n g does not effect the p l a n a r i t y , b u t t h e a d d i t i o n of π electrons m i g h t . W e chose the l i g a n d d i t h i o b i u r e t ( H N C S N H C S N H ) . 2
2
W e f o u n d that this l i g a n d reacts as a negative a n i o n w i t h loss of the p r o t o n f r o m the c e n t r a l n i t r o g e n , f o r m i n g n e u t r a l complexes
M(dtb)
2
w i t h P d , P t , a n d N i . T h i s l i g a n d has four m o r e π electrons t h a n does
Parameters of N i ( d t b ) Functions Tilt" Twist
c
Angles a. M - S - C b. S - M - S (Interligand) c. S - C - N (Interior) d. C - N - C
2
and
Pd(dtb)
Pd(dtb)
2
41.1° 30.1° 32.2° 4.4°
2
Ni(dtb)
2
3.23° 18.6° 23.4° 12.4°
108.8(2) 111.6(2) 87.4(1)
116.4(2) 115.3(2) 83.9(1)
131.1(5) 131.3(5) 126.0(6)
130.8(7) 130.2(7) 125.0(8)
Twist: Angle between planes defined by: M , S(l), C ( l ) and S(l), C ( l ) N ( l ) , Ν ( 3 ) ; M , S(2), C(2) and S(2), C(2) Ν(2) N(3). The S(l), C ( l ) , N ( l ) , Ν(3) and S(2), C(2), Ν(2), Ν(3) units are rigorously planar. c
d
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
132
PLATINUM GROUP METALS AND COMPOUNDS
dithioacetylacetone. We have determined the crystal structures of these three complexes (27, 39). The structure of the Pd(dtb) is shown in Figure 5. Although the Ni, Pt, and Pd structures are similar, there are nevertheless some important differences; these are summarized in Table I. In each case, the metal and its four sulfur atoms are planar, but the entire molecule is distinctly not planar; in fact, it is in a chair form. In changing the metal from Pd to Ni, the molecule becomes more planar. If nonbonded repulsions between the sulfur atoms on opposite ligands were responsible for the nonplanarity, it would be expected that the Ni complex would be less planar because the shorter Ni-S distance pulls the nonbonded sulfur atoms closer together. This is clearly not the case. The Pd, Pt complexes could be more distorted from planarity because of steric strain introduced into the six-membered ring by the longer (Pd)Pt-S distances. Alternatively, the distortion could arise from the fact that the extra π electrons on the nitrogen would go into antibonding MO's if the entire molecule were planar and since, in general, there is more metal-ligand π interaction with Pd or Pt than Ni, it would be expfected that these two complexes would be less planar. Another ex planation that might be advanced for this change in geometry is that the action of pulling the sulfur atoms closer together brings about some bonded S-S interaction. However, this type of interaction has not been proven as a stabilization factor. This S-S interaction has been suggested (67, 75) as the reason for trigonal prismatic coordination in M(S C R )a (21, 22, 68). Even though there seems to be a S-S ir—π interaction between the individual S C R groups, this interaction alone would not stabilize trigonal prismatic coordination so long as the ligands are neutral or dianions.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch009
2
2
2
2
2
2
2
Acknowledgment The authors receivedfinancialsupport from National Institutes of Health, Grants GM-13985 and HE-12523. Literature Cited (1) Albano, V. G., Ricci, G. M. B., Bellon, P. L., Inorg. Chem. 1969, 8, 2109. (2) Amma, E. L., unpublished calculations. (3) Anderson, J. S., Carmichael, J. W., Cordes, A. W., Inorg. Chem. 1970, 9, 143. (4) Baenziger, N.C.,Medrud, R.C.,Doyle, J. R., Acta Cryst. 1965, 18, 237. (5) Basolo, F., Pearson, R. G., "Mechanisms of Inorganic Reactions," 2nd ed., a) p. 355, b) p. 360, Wiley, New York, 1967. (6) Beckett, R., Hoskins, B. F., Chem. Commun. 1967, 909. (7) Bentley, G. Α., Laing, Κ. R., Roper, W. R., Waters, J. M., Chem. Com mun. 1970, 998.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch009
9. AMMA
Crystal Structure of Complexes
133
(8) Berta, D. Α., Spofford, W. Α.,III,Boldrini, P., Amma, E. L., Inorg. Chem. 1970, 9, 136. (9) Black, M., Mais, R. H. B., Owston, P. G., Acta Cryst. 1969, B25, 1753. (10) Ibid., 1969, B25, 1760. (11) Bokii, G. B., Kukina, G. Α., Zh. Strukt. Khim. 1965, 5, 706. (12) Bombieri, G., Forsellini, E., Panattoni, G., Graziani, R., Bandoli, G., J. Chem. Soc. 1970, A 1313. (13) Bottomley, F., Nyburg, S. C., Chem. Commun. 1966, 897. (14) Capacchi, L., Gasparri, G. F., Nardelli, M., Pelizzi, G., Acta Cryst. 1968, B24, 1199. (15) Davis, B. R., Ibers, J. Α., Am. Cryst. Assoc. Meeting, New Orleans, La March 1970, Abstr. No. C-9; Inorg. Chem. 1970, 9, 2768. (16) Davis, B. R., Payne, N. C., Ibers, J. Α., Inorg. Chem. 1969, 8, 2719. (17) Davison, Α., Edelstein, N., Holm, R. H., Maki, A. H., J. Am. Chem. Soc. 1963, 85, 2029. (18) Ibid., 1964, 86, 2799. (19) Eisenberg, R., Ibers, J. Α., Inorg. Chem. 1965, 4, 605. (20) Ibid., 1965, 4, 773. (21) Eisenberg, R., Ibers, J. Α.,J.Am. Chem. Soc. 1965, 87, 3776. (22) Eisenberg, R., Stiefel, Ε. I., Rosenberg, R. C., Gray, Η. B., J. Am. Chem. Soc. 1966, 88, 2874. (23) Ferraris, G., Viterbo, D., Acta Cryst. 1969, B25, 2066. (24) Fritchie, C. J., Jr., Acta Cryst. 1966, 20, 107. (25) Gasparri, G. F., Mangia, Α., Musatti, Α., Nardelli, M., Acta Cryst. 1969, B25, 203. (26) Gasparri, G. F., Musatti, Α., Nardelli, M., Chem. Commun. 1966, 602. (27) Girling, R. L., Amma, E. L., Chem. Commun. 1968, 1487. (28) Goggin, P. L., Goodfellow, R. J., Sales, D. L., Stokes, J., Woodward, P., Chem. Commun. 1968, 31. (29) Gray, H. B., Trans. Metal Chem. 1965, 1, 239. (30) Hodgson, D. J., Ibers, J. Α., Inorg. Chem. 1968, 7, 2345. (31) Ibid., 1969, 8, 1282. (32) Hodgson, D. J., Payne, N. C., McGinnety, J. Α., Pearson, R. G., Ibers, J. Α., J. Am. Chem. Soc. 1968, 90, 4486. (33) Jarvis, J. A. J., Kilbourn, B. T., Owston, P. G., Acta Cryst. 1970, B26, 876. (34) Kashiwagi, T., Yasuoka, N., Kasai, N., Kakudo, M., Takahashi, S., Hagi hara, N., Chem. Commun. 1969, 743. (35) Langford, C. H., Gray, H. B., "Ligand Substitution Processes," Benjamin, New York, 1966. (36) La Placa, S. J., Ibers, J. Α., Inorg. Chem. 1966, 5, 405. (37) La Placa, S. J., Ibers, J. Α., J. Am. Chem. Soc. 1965, 87, 2581. (38) Lopez-Castro, Α., Truter, M. R., J. Chem. Soc. 1963, 1309. (39) Luth, H., Hall, Ε. Α., Spofford, W. Α., III, Amma, E. L., Chem. Com mun. 1969, 520. (40) Luth, H., Truter, M. R., J. Chem. Soc. 1968, A, 1879. (41) Mais, R. H. B., Owston, P. G., Wood, A. M., unpublished results, 1968. (42) Mason, R., Rae, Α. I. M., J. Chem. Soc. 1970, 1767. (43) McCleverty, J. Α., Progr. Inorg. Chem. 1968, 10, 49. (44) McGinnety, J. Α., Doedens, R. J., Ibers, J. Α., Inorg. Chem. 1967, 6, 2243. (45) McGinnety, J. Α., Ibers, J. Α., Chem. Commun. 1968, 235. (46) McGinnety, J. Α., Payne, N. C., Ibers, J. Α.,J.Am. Chem. Soc. 1969, 91, 6301. (47) Mellor, D. P., Wunderlich, J. Α., Acta Cryst. 1954, 7, 130. (48) Ibid., 1955, 8, 57. (49) Messmer, G. G., Amma, E. L., Inorg. Chem. 1966, 5, 1775. (50) Messmer, G. G., Amma, E. L., Ibers, J. Α., Inorg. Chem. 1967, 6, 725. (51) Milburn, G. H. W., Truter, M. R., J. Chem. Soc. 1966, A, 1609.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch009
134
PLATINUM GROUP METALS AND COMPOUNDS
(52) (53) (54) (55) (56) (57) (58) (59) (60) (61) (62) (63) (64) (65) (66) (67) (68) (69) (70) (71) (72) (73) (74) (75) (76)
Mingos, D. M. P., Ibers, J. Α., Inorg. Chem. 1970, 9, 1105. Muir, K. W., Ibers, J. Α., Inorg. Chem. 1969, 8, 1921. O'Connor, J. E., Amma, E. L., Chem. Commun. 1968, 892. O'Connor, J. E., Amma, E. L., Inorg. Chem. 1969, 8, 2367. Owston, P. G., Partridge, J. M., Rowe, J. M., Acta Cryst. 1960, 13, 246. Pauling, L., "Nature of the Chemical Bond," 3rded.,p. 249, Cornell Uni versity Press, 1960. Payne, N.C.,Ibers, J. Α., Inorg. Chem. 1969, 8, 2714. Pierpont, C. G., Van Derveer, D. G., Durlard, W., Eisenberg, R., J. Am. Chem. Soc. 1970, 92, 4760. Ricci, J. S., Ibers, J. Α., Fraser, M. S., Baddley, W. H., J. Am. Chem. Soc. 1970, 92, 3489. Robinson, W. T., Holt, S. L., Jr., Carpenter, G. B., Inorg. Chem. 1967, 6, 605. Sales, D. L., Stokes, J., Woodward, P.,J.Chem. Soc. 1968, A, 1852. Sartain, D., Truter, M. R., Chem. Commun. 1966, 382;J.Chem. Soc. A 1967, 1264. Schlemper, E. O., Inorg. Chem. 1969, 8, 2740. Schrauzer, G. N., Acct. Chem. Res. 1969, 2, 72. Schrauzer, G. N., Trans. Metal Chem. 1968, 4, 299. Schrauzer, G. N., Mayweg, V. P.,J.Am. Chem. Soc. 1966, 88, 3235. Smith, A. E., Schrauzer, G. N., Mayweg, B. P., Heinrich, W.,J.Am. Chem. Soc. 1965, 87, 5798. Spofford, W. Α.,III,Amma, E. L., Chem. Commun. 1968, 405. Spofford, W. Α.,III,Amma, E. L., Natl. Mtg. ACS, 157th, Minneapoli Minnesota, April 1969, Abstr. INOR 133; Inorg. Chem., in press. Spofford, W. Α.,III,Amma, E. L., to be published. Spofford, W. Α.,III,Boldrini, P., Amma, E. L., Carfagno, P., Gentile, P. S., Chem. Commun. 1970, 40. Stalick, J. K., Ibers, J. Α., Inorg. Chem. 1969, 8, 419. Stephenson, N.C.,Acta Cryst. 1964, 17, 1517. Stiefel, E.I.,Eisenberg, R., Rosenberg, R.C.,Gray, H. B.,J.Am. Chem. Soc. 1966, 88, 2956. Sutton, L. E., Ed., "Tables of Inter-Atomic Distances and Configuration in Molecules and Ions," Supplement, 1956-59, Special Publication No. 18, p. S-9-s, The Chemical Society, London, 1965. (77) Taylor, I. F., Jr., Weininger, M. S., Amma, E. L., to be published. (78) Vizzini, Ε. Α., Amma, E. L., J. Am. Chem. Soc. 1966, 88, 2872. (79) Vizzini, Ε. Α., Taylor, I. F., Jr., Amma, E. L., Inorg. Chem. 1968, 7, 1351. (80) Vogt, L. H., Jr., Katz, J. L., Wiberly, S. E., Inorg. Chem. 1965, 4, 1157. (81) Vranka, R. G., Amma, E. L., J. Am. Chem. Soc. 1966, 88, 4270. (82) Watkins, S. F., Chem. Commun. 1968, 504. (83) Watkins, S. F., J. Chem. Soc. 1970, A, 168. (84) Weininger, M. S., O'Connor, J. E., Amma, E. L., Inorg. Chem. 1969, 8, 424. (85) Zumdahl, S. S., Drago, R. S.,J.Am. Chem. Soc. 1968, 90, 6669. RECEIVED February 18, 1970.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
10
195
Pt—A
Survey of Mossbauer Spectroscopy
N. BENCZER-KOLLER Department of Physics, Rutgers University, New Brunswick, N. J. 08903
The recoilless resonance absorption and scattering of the 99 keV transition in Pthas been studied to determine the lifetime [τ = (1.7 ± 0.2) χ 10 sec], conversion coeffi cient (α= 7.0 ± 0.3), magnetic moment (μ = —0.615 ± 0.041 nm), and radius relative to the ground state radiu ( δ R / R <0)of thefirstexcited state of Pt.The magnetic hyperfine structure of iron, cobalt, and nickel alloys was investigated. The internalfieldat the platinum nucleus in all these alloys was negative, and its magnitude suggest that its main contribution comes from polarization of con duction electrons. The temperature dependence of the Debye-Waller factor is in excellent agreement with predic tions based on the quasiharmonic model.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch010
195
-10
195
An interesting candidate for Mossbauer effect studies from the point of view of both nuclear structure and solid state investigations is Pt. Au decays to Pt (10) (Figure 1) with a half-life of 192 days, and feeds two states at 99 and 130 keV, respectively, both of which in prin ciple may be used for recoilless resonance experiments. However, both states have short mean lives and therefore relatively broad resonance lines. In addition, because of the high energy of the transitions, the recoilless fraction is small. Most of the results described below have been obtained from the study of the Mossbauer effect of the 99 keV transition alone. The mean life of the 99 keVfirstexcited state, its magnetic moment, and the internal conversion coefficient α of the radiative transition are the nuclear properties of the state that were determined by Mossbauer spec troscopy. The interest in the solid state properties of platinum metal lies in the fact that magnetic properties of platinum alloys are nearly un known compared with those of the iron group metals and alloys. Fur thermore, the study of platinum metal lattice dynamics is amenable to straightforward theoretical analysis because of the simple crystal struc195
195
195
135 In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
136
PLATINUM
METALS
AND
COMPOUNDS
195m Ptni =4.ld)
keV
re
/2
259.3
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch010
GROUP
13/2+
Physical Review
Figure 1. Decay scheme of Au and energy level diagram of Pt ( 1 0 ) . P i represents the relative transition probability for electron cap ture decay to the state i in Pt and P i / P j is the ratio of Κ to total capture for decay to the state i . 195
195
K
195
1
1
1
1
1
1
1
1
b>
r
ι
Ta=Ts=20°K ta=0.0063 in.
1.00 J99 .98
\\ J f
J97 36 .95 .94
€= «052*.002 -5
-4
-3
-2
- 1 0 1 2
3
4
5
RELATIVE VELOCITY CM/SEC)
Physical Review
Figure 2. Typical Mossbauer absorption spec trum obtained with a Au in a Pt matrix source and a 0.0063-inch thick Pt absorber; both source and absorber were at 20°Κ (9) 195
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
10.
BENCZER-KOLLER:
Survey of Mossbauer
137
Spectroscopy
ture a n d vast a v a i l a b l e d a t a o n heat capacity, lattice constants, a n d elastic constants.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch010
I n a b a s i c M o s s b a u e r e x p e r i m e n t , the r e d u c t i o n i n t r a n s m i s s i o n ( 9 ) ( F i g u r e 2 ) or the increase i n scattered i n t e n s i t y of r a d i a t i o n ( 2 ) ( F i g u r e 3 ) is o b s e r v e d as a f u n c t i o n of the r e l a t i v e v e l o c i t y b e t w e e n a source a n d an absorber. T h e f u l l w i d t h at h a l f m a x i m u m of the resonance c u r v e Γ is r e l a t e d to the m e a n l i f e of the r a d i a t i n g state b y the u n c e r t a i n t y r e l a tion Γ 2fr/r. T h e d e p t h of the c u r v e , C., is r e l a t e d to / , t h e m a g n i t u d e of the recoilless f r a c t i o n of g a m m a rays e m i t t e d , a n d h e n c e to the c r y s t a l l i n e properties of the s o l i d . F i n a l l y , the d i s p l a c e m e n t of the c u r v e f r o m zero r e l a t i v e v e l o c i t y indicates the e n e r g y difference b e t w e e n e m i t t e d a n d a b s o r b e d r a d i a t i o n a n d is p r o p o r t i o n a l to the s-electron
τ
I
I
I
I
Γ
Physics Letters
Figure 3. Typical Mossbauer scattering spectrum obtained with 32 mg/cm Pt scatterer at 29°Κ and 560 mg/cm Pt scatterer at 92°Κ (2)
2
2
d e n s i t y difference at the nucleus i n the source a n d absorber, a n d to the difference i n the m e a n square r a d i u s of the nucleus i n its e x c i t e d state and its g r o u n d state.
Resonance Effect and Line Width of the 99 and 130 keV Transitions T h e 99 k e V S t a t e . T y p i c a l l y , a source of 1-3 m C i of p l a t e d o n a p l a t i n u m f o i l m a y be used.
1 9 5
A u electro
T h e resonance effect for the
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
138
PLATINUM
GROUP
METALS
AND
COMPOUNDS
99 k e V t r a n s i t i o n f o r s u c h a source a n d a 0.006-inch n a t u r a l p l a t i n u m f o i l absorber, b o t h at 20 °K, is c Ξ== 5% a n d the l i n e w i d t h Γ = 2.1 c m / s e c . T h e w i d t h of the resonant l i n e depends o n the absorber thickness, t . T h e a
e x t r a p o l a t e d l i n e w i d t h at t = 0, Γ = a
h a l f l i f e of t h e state, τ
1 / 2
=
(1.7 ±
(1.75 ± 0.18) c m / s e c , y i e l d s t h e
0.2) Χ 10"
10
sec, i f one assumes n o
b r o a d e n i n g of t h e l i n e o w i n g to hyperfine interactions. T h i s v a l u e agrees w i t h the electronically measured value r
1/2
«
1.4 Χ 10"
10
sec (4). A s
p l a t i n u m m e t a l is a c u b i c c r y s t a l , n o l i n e b r o a d e n i n g interactions are e x p e c t e d (9). T h e 130 k e V S t a t e . T h e d e c a y of the 130 k e V state has b e e n s t u d i e d extensively, a n d several inconsistencies a r e b e i n g r e s o l v e d .
T h e results
of different measurements of t h e m e a n l i f e a n d d e c a y m o d e of t h e 130 Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch010
k e V state a r e discussed b y F i n k a n d B e n c z e r - K o l l e r (8).
T h e half-life
of t h e state has b e e n m e a s u r e d e l e c t r o n i c a l l y , a n d t h e t r a n s i t i o n m a t r i x e l e m e n t for excitation has b e e n d e r i v e d f r o m C o u l o m b e x c i t a t i o n d a t a T h e c o m b i n a t i o n of t h e C o u l o m b e x c i t a t i o n y i e l d , t h e i n t e r n a l
(12).
c o n v e r s i o n coefficient (8) a =
1.76 ± 0.19, a n d t h e b r a n c h i n g r a t i o
(8)
P o = 0.060 ± 0.008 f o r t h e crossover d e c a y to g r o u n d , y i e l d s a h a l f - l i f e C
τι/2 =
0.014) ns i n excellent agreement w i t h a recent
(0.414 ±
M o s s b a u e r d e t e r m i n a t i o n of t h e l i n e w i d t h , Γ = e q u i v a l e n t to π /
2
=
(4.4 ±
(0.49 ± 0.05) ns. W i l e n z i c k et al. (15)
(15)
mm/sec,
0.4)
do not i n
d i c a t e t h e thickness of t h e P t absorber u s e d . T h e resonance l i n e f r o m t h e 130 k e V state is a factor of 5 n a r r o w e r t h a n that f r o m t h e 99 k e V t r a n s i t i o n a n d therefore m o r e a m e n a b l e to i s o m e r shift studies. recoilfree f r a c t i o n , / =
H o w e v e r , e v e n at 20°K, t h e 130 k e V t r a n s i t i o n 2.8%, is m u c h s m a l l e r t h a n that of t h e 99 k e V
t r a n s i t i o n , a n d t h e effect o b s e r v e d 0.26%
w i t h a 0.011-inch absorber is o n l y
(10).
Lattice Dynamics T w o of t h e m o r e d i r e c t t e c h n i q u e s u s e d i n t h e s t u d y o f l a t t i c e d y n a m i c s of crystals h a v e b e e n t h e s c a t t e r i n g of neutrons a n d of x-rays f r o m crystals. I n a d d i t i o n , t h e p h o n o n v i b r a t i o n a l s p e c t r u m c a n b e i n f e r r e d f r o m c a r e f u l analysis of measurements of specific heat a n d elastic constants.
I n studies of B r a g g reflection of x-rays ( w h i c h i n v o l v e s n o
loss of energy t o t h e l a t t i c e ) , i t w a s f o u n d that t e m p e r a t u r e has a strong influence o n t h e i n t e n s i t y of t h e reflected lines.
T h e i n t e n s i t y of the
scattered x-rays as a f u n c t i o n of t e m p e r a t u r e c a n b e expressed b y =
I e~ 0
2wm
w h e r e 2W(T)
is c a l l e d t h e D e b y e - W a l l e r factor.
I(T)
Similarly;
i n t h e M o s s b a u e r effect, g a m m a rays are e m i t t e d or a b s o r b e d
without
loss o f energy a n d w i t h o u t change i n t h e q u a n t u m state of t h e lattice b y
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
10.
BENCZER-KOLLER
Survey
of Mossbauer
139
Spectroscopy
a n u c l e u s b o u n d i n a c r y s t a l . T h e f r a c t i o n / of recoilless g a m m a rays e m i t t e d or a b s o r b e d b y a n u c l e u s i n a c r y s t a l l a t t i c e is e~
2W
w h e r e R = r e c o i l e n e r g y of n u c l e u s a n d G (ω) =
where
frequency distribution,
n o r m a l i z e d so that
J
G(G>)
άω =
1
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch010
ο If t h e lattice is a s s u m e d to h a v e a D e b y e f r e q u e n c y s p e c t r u m w i t h c o = k6 /h, then DW
m
where 6
DW
is t h e effective D e b y e t e m p e r a t u r e .
s p e c t r u m , G (ω),
Since t h e r e a l f r e q u e n c y
m a y b e c o n s i d e r a b l y different f r o m a h a r m o n i c
Debye
s p e c t r u m , t h e effective D e b y e t e m p e r a t u r e a p p r o p r i a t e to a n y other q u a n t i t y i n v o l v i n g a different average over t h e s p e c t r u m m a y b e a p p r e c i a b l y different f r o m 6 DW
T h u s , for example, the D e b y e temperature 0 perti C
nent to the heat c a p a c i t y w i l l v a r y m u c h m o r e r a p i d l y w i t h t e m p e r a t u r e than 0 . DW
I n p r i n c i p l e , h o w e v e r , f r o m k n o w l e d g e of t h e heat c a p a c i t y ,
lattice constants, a n d elastic constants as a f u n c t i o n of t e m p e r a t u r e , one c a n l e a r n e n o u g h a b o u t the f r e q u e n c y s p e c t r u m to p r e d i c t t h e D e b y e W a l l e r factor.
F e l d m a n a n d H o r t o n ( 7 ) have m a d e s u c h a c a l c u l a t i o n
in the quasiharmonic approximation i n w h i c h the lattice potential i n P t m e t a l is a s s u m e d to b e h a r m o n i c , a n d of a l l a n h a r m o n i c effects, o n l y the
_ 240
^23I°K
229 K>^ e
Ξ 230 ο ®
225 K^^ e
220 210 0
100
50
150
200
250
300 Physical Review
Figure 4. Flot of ^ ( T ) vs. T . The solid line gives the value of ^ D W ( T ) referred to the 0°K volume. The broken line shows the effect of thermal expansion ( 7 ) . D
W
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
140
PLATINUM
t h e r m a l expansion is t a k e n i n t o account. D e b y e temperature should b e 0
DW
=
GROUP
METALS
A N D COMPOUNDS
T h e i r conclusions are that the
(231 ± 3 ) ° K at 0 ° K a n d s h o u l d
have a very slight temperature dependence ( F i g u r e 4 ) . Experimentally, f r o m the analysis of the t e m p e r a t u r e d e p e n d e n c e of the a b s o r p t i o n s p e c t r a o b t a i n e d w i t h a source o f
1 9 5
A u embedded in a natural platinum matrix
a n d a n a t u r a l p l a t i n u m absorber, H a r r i s , R o t h b e r g , a n d B e n c z e r - K o l l e r (JO) obtained an extrapolated 0
DW
=
(234 ± 6 ) ° K at 0 ° K i n excellent
a g r e e m e n t w i t h t h e o r e t i c a l p r e d i c t i o n s f o r the p l a t i n u m c u b i c l a t t i c e . A c t u a l l y , the q u a n t i t y t h a t is m e a s u r e d is f/(l
+ a), n a m e l y a c o m b i n a
t i o n o f the recoilless f r a c t i o n / a n d o f the c o n v e r s i o n coefficient « . T h e determination of 6
DW
is t h e n v e r y sensitive to the c h o i c e o f a ( F i g u r e 5 ) .
If the e x p e r i m e n t a l 2 W is fitted to the t h e o r e t i c a l p r e d i c t i o n s o f F e l d m a n Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch010
a n d H o r t o n , t h e n a v a l u e for the c o n v e r s i o n coefficient a c a n b e o b t a i n e d , a = 7.0 ± 0.3. T h i s v a l u e o f the i n t e r n a l c o n v e r s i o n coefficient is m o r e
β no
K)
2030405060708090100 TfK) Physical Review
Figure 5. Experimental values ( 9 ) of 0 for various values of the internal conversion coefficient vs. temperature. The solid line was obtained from the analysis of specific heat measurements and other thermody namic data ( 7 ) . D W
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
B E N C Z E R - K O L L E R
Survey of Mossbauer
141
Spectroscopy
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch010
10.
Physics Letters
Figure 6.
Mossbauer spectra with Pt in ferromagnetic
alloys
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
(2)
142
GROUP
METALS
AND
COMPOUNDS
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch010
PLATINUM
Physical Review
Figure
7. Mossbauer spectra for Pt-Fe absorbers in different field configurations (1)
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch010
10.
BENCZER-KOLLER
Survey of Mossbauer
143
Spectroscopy
Physical Review
Figure 8. Mossbauer spectra for absorbers of Pt-Co, Pt-Ni, and Pt (1) precise t h a n t h a t w h i c h c a n b e o b t a i n e d b y a n y of the n u c l e a r spectroscopy m e t h o d s a v a i l a b l e to date.
Hyperfine Interaction T h e M o s s b a u e r a b s o r p t i o n of scattering experiments w e r e c a r r i e d out b y B e n c z e r - K o l l e r , H a r r i s , a n d R o t h b e r g ( 3 ) , A t a c , D e b r u n n e r , a n d F r a u e n f e l d e r (2),
Agresti, Kankeleit, a n d Persson ( J ) , a n d B u y r n , G r o d -
zins, B l u m , a n d W u l f f (6) Pt-Fe
w i t h a single l i n e source a n d absorbers
alloys r a n g i n g i n c o m p o s i t i o n
from
P t - C o , a n d P t - N i alloys as w e l l as P t F e . 3
Pto.03Feo.97 to
of
Pt .5oFe .5o, 0
0
A t y p i c a l s p e c t r u m is s h o w n
i n F i g u r e 6. T h e e x p e c t e d 6-line p a t t e r n c o r r e s p o n d i n g to a 3 / 2 - »
1/2
m a g n e t i c d i p o l e t r a n s i t i o n is not r e s o l v e d , a n d o n l y t w o peaks c a n b e o b served. F r o m a 6-line fit to the o b s e r v e d p a t t e r n , H a r r i s et al. ( 3 )
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
were
144
PLATINUM
Table I.
GROUP
AND
COMPOUNDS
Magnetic Moment of the 99 k e V Excited State in T.,
Absorber
°K
T.,
°K
Pto.iFeo.9 Pt Fe
229 418
20 20
20 20
Pto.sFeo.7 Pto.07Coo.93 Pto.07Nio.93
166 71.5 140
29 29 29
29 29 29
Pto.03Feo.97 Pto.03Coo.97 Pto.03Nio.97
30-60 50 50
4.2 4.2 4.2
4.2 4.2 4.2
Pto.03Feo.97 •
52
4.2
4.2
3
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch010
METALS
• 521
Pto.50Feo.50
Calorimetric determination P o l a r i z e d n e u t r o n - s p i n resonance
Pto.03Feo.97 Pto.iFeo.9 Average
Table II.
W i d t h , Isomer Shift, Magnitude of the A u in Various Matrices and 1 9 5
(Mv\
t Source Matrix
\Cm2J
Pt
Cu Be Ir Pt 195mp
t
p
m
t
T.,
°K
Foil
326 326 610 104
4.2 4.2 4.2 20.0
4.2 4.2 4.2 20.0
326
4.2
4.2
o n l y a b l e to o b t a i n a r e l a t i o n s h i p b e t w e e n H n u c l e u s , a n d the r a t i o μ*/μ
ΰ
i n t
2.04 ± 0.10 ~2.5 3.05 ± 0.15 2.1 =fc 0.2
, t h e effective field at the
of m a g n e t i c m o m e n t s
of the e x c i t e d
and
g r o u n d states. T h e three o t h e r groups a l t e r e d t h e a b s o r p t i o n or s c a t t e r i n g patterns b y p o l a r i z i n g t h e absorbers w i t h a n e x t e r n a l field a p p l i e d e i t h e r p a r a l l e l or p e r p e n d i c u l a r to the g a m m a r a y e m i s s i o n ( F i g u r e s 7 a n d 8 ) . T h e y thus w e r e able to o b t a i n u n i q u e v a l u e s for the s i g n a n d m a g n i t u d e of μβ a n d H
i n t
.
T h e s e results, as w e l l as i n t e r n a l fields o b t a i n e d f r o m a
c a l o r i m e t r i c d e t e r m i n a t i o n (11)
a n d a p o l a r i z e d n e u t r o n s p i n resonance
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
10. 1 9 5
Spectroscopy
145
P t and Internal Magnetic Field for Various P t - F e Alloys
μ
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch010
Survey of Mossbauer
B E N C Z E R - K O L L E R
Hint MG
β
Ref.
-0.9<μ<0.18
-1.2<#<-2.9 0
3
- 0 . 6 4 5 =fc 0.150
-1.24 -0.77 -0.34
±0.15 ± 0.07 ± 0.08
2
- 0 . 6 1 5 ± 0.045
-1.119 ± 0 . 0 4 - 0 . 8 6 ± 0.03 - 0 . 3 6 ± 0.04
1
- 0 . 5 8 5 ± 0.120
-1.29
6
Hint Hint
±0.09
= 1.39 = 1.08
11 13 1,2 β
- 0 . 6 1 5 ± 0.041
Effect, and Effective Debye Temperature for Sources of N a t u r a l Platinum Absorber ( 6 ) Effect,
%
·(&) 6.2 6.0 11.9 5.2
<0.05 <0.05
θβ, °K 0.3 0.8 1.0 0.2
220 220 315 234
Ref. 5
± 20 ± 30 ± 35 ± 6
-6
e x p e r i m e n t (13) values of H if
i n t
i n t
o n similar alloys, are shown i n T a b l e I. These latter
d o n o t agree too w e l l w i t h t h e M o s s b a u e r effect results.
is s m a l l e r f o r t h e P t - C o a n d P t - N i alloys t h a n f o r t h e P t - F e case. H o w e v e r , the r a t i o of H
i n t
t o t h e effective m a g n e t i c m o m e n t of t h e
host a t o m is a l m o s t constant f o r t h e three a l l o y s , as is to b e e x p e c t e d i f c o n d u c t i o n e l e c t r o n p o l a r i z a t i o n is t h e cause of t h e i n t e r n a l fields. A c c u r a t e t h e o r e t i c a l estimates of t h e c o n t r i b u t i o n s to H
lut
f r o m c o n d u c t i o n elec
t r o n p o l a r i z a t i o n a n d f r o m core p o l a r i z a t i o n h a v e n o t b e e n m a d e yet.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
146
PLATINUM
GROUP
METALS
AND
COMPOUNDS
Debye Temperatures for Platinum in Pt, Be, Cu, and Ir In most experiments reported, matrices were used.
1 9 5
A u sources e m b e d d e d i n p l a t i n u m
F o r these sources, the recoilless f r a c t i o n , e v e n a t
l i q u i d h e l i u m t e m p e r a t u r e s , is s m a l l , a n d the resonance effects are of t h e o r d e r of a f e w p e r cent at best.
Table III.
T.,
T.,
°K
°K
Pt Pto.iFeo.9 Pto.sFeo.7 Pto.sFeo.ô Pt Fe
217 229 147 216 418
20 20 20 20 20
20 20 20 20
Pt
32 122 580 580
29 29 29 92
29 29 29 92
Pto.03Feo.97 Pto.07Coo.93 Pto.07Nio.93
166 71.5 140
29 29 29
29 29 29
Pt Pto.03Feo.97 Pto.03Coo.97 Pto.03Nio.97 PtO Pt0 PtCl PtCl
50 30-60 50 50
3
s e a r c h e d for
Widths, Isomer Shift, and Mossbauer Fractions
Absorber
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch010
B u y r n and Grodzins (5)
\SecJ
1.91 1.98 2.14 2.46
0.08 0.07 0.06 0.07
2.05 2.03 2.01
4.2 4.2 4.2 4.2
4.2 4.2 4.2 4.2
± ± ± ±
1.80 1.74 1.86 1.78
db ± ± ±
0.04 0.003 0.004 0.006
2
2
4
Pto.2oAUo.80
e n v i r o n m e n t s for w h i c h a h i g h e r D e b y e t e m p e r a t u r e a n d h e n c e a l a r g e r effect c o u l d be o b t a i n e d .
T h e y u s e d sources of
Be, a n d Ir matrices ( T a b l e I I ) . 6
DW
=
(315 ±
1 9 5
A u and
1 9 5 w i
Pt in Cu,
I r is b y f a r the best host m a t e r i a l , w i t h
3 5 ) ° K , as c o m p a r e d w i t h 6 (Vt)
(234 ±
=
DW
6)°K.
In
a l l cases, the D e b y e - W a l l e r t e m p e r a t u r e 6 w is o n l y i n r o u g h a g r e e m e n t D
w i t h the p r e d i c t e d values 0 ff = e
0host ( M
h o s
t/M
i m
p)
1 / 2
for a n i m p u r i t y
a t o m b o u n d w i t h the same force constant as the host atoms.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
10.
Survey of Mossbauer
B E N C Z E R - K O L L E R
147
Spectroscopy
Isomeric Shift A g r e s t i , K a n k e l e i t , a n d Persson ( I )
s t u d i e d the M o s s b a u e r
effect
w i t h alloys of 20 a t o m % P t i n A u a n d 0.7 a t o m % P t i n A l , as w e l l as w i t h c o m p o u n d s s u c h as P t O , P t 0 , P t C l , a n d P t C l 2
2
4
( T a b l e I I I ) i n order
to o b t a i n f u r t h e r i n f o r m a t i o n a b o u t i s o m e r i c shifts a n d p o s s i b l y e l e c t r i c
for Various Ferromagnetic Alloys and Platinum Compounds
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch010
f 1.70
zb 0.20
-0.16 -0.10 -0.14 -0.12
zb zb zb zb
0.04 0.02 0.07 0.14
-0.21 -0.35 -0.23
zb 0.02 zb 0.03 zb 0.02
-0.006 -0.190 -0.196 -0.165 -0.034 -0.040 -0.010 -0.03 +0.075 -0.205
zb zb zb zb zb zb zb zb zb
f
s
( ) ; 0.089 ± / V
0.002
\ 0.096 =b 0.015 0.02
=b 0.003
0.129 0.269 0.243 0.116 0.096
Ref.
a
db =b ± db db
0.008 0.041 0.026 0.008 0.010
3,9
0.105 =b 0.015 0.02
=b 0.003
0.017 0.011 0.009 0.008 0.011 0.008 0.020 0.03 0.002 db 0.001
q u a d r u p o l a r interactions. T h e y h a v e o b s e r v e d i s o m e r i c shifts ( F i g u r e 9 ) w h i c h decrease w i t h d e c r e a s i n g e l e c t r o n e g a t i v i t y of the host element.
If
d e c r e a s i n g the e l e c t r o n e g a t i v i t y of the host m a t e r i a l reflects a n increase i n the e l e c t r o n d e n s i t y at the i m p u r i t y n u c l e u s , the s i g n of the i s o m e r i c shifts i m p l i e s that the m e a n square radius, for the
1 9 5
P t first e x c i t e d state
is s m a l l e r t h a n t h a t of the g r o u n d state. T h i s result is i n a g r e e m e n t w i t h the p r e d i c t i o n of U h e r a n d Sorensen (14)
for the r e l a t i v e effective r a d i i
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
148
PLATINUM GROUP METALS AND COMPOUNDS
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch010
Pt-AI 15 .
2.0 ELECTRONEGATIVITY
Physical Reveiw Figure 9. Plot of the isomeric shift of platinum alloys vs. the electronegativity of the host eleme The deviation for Pt-Al from the general trend might occur because the platinum is not in a so solution. In the insert, isomeric shifts for som platinum compounds are shown related to th valency of platinum (1). 195
of Pt nuclei with the valence neutron in the 3p or the 3p states. Both the 99 and 130 keV states exhibit relatively small collective effects [B(E2) ^ 10 W.u.] compared with the higher excited states of Pt, and therefore the root mean square radii should be controlled mostly by the monopole core polarization contribution. Under these circumstances, the isomer shift for the 130 keV state should be vanishingly small, as the effective radii for the 2/ and 3p neutron states are almost equal. 3/2
1/2
195
5/2
V2
Acknowledgment This work was supported by the National Science Foundation. Literature Cited (1) Agresti, D., Kankeleit, E., Persson, B., Phys. Rev. 1967, 155, 1339. (2) Atac, M., Debrunner, P., Frauenfelder, H., Phys. Letters 1966, 21, 699. (3) Benczer-Koller, N., Harris, J. R., Rothberg, G. M., Phys. Rev. 1965, 140, B547. (4) Blaugrund, A. E., Phys. Rev. Letters 1959, 3, 226. (5) Buyrn, A. B., Grodzins, L., Phys. Letters 1966, 21, 389. (6) Buyrn, A. B., Grodzins, L., Blum, Ν. Α., Wulff, J., Phys. Rev. 1967, 163, 286. (7) Feldman, J. L., Horton,G.Κ., Phys. Rev. 1965, 137, A1106.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
10. BENCZER-KOLLER
149 Survey of Mossbauer Spectroscopy
Fink, T., Benczer-Koller, N., Nucl. Phys. 1969, A138, 337. Harris, J. R., Benczer-Koller, N., Rothberg, G. M., Phys. Rev. 1965, 137, A1101. Harris, J. R., Rothberg, G. M., Benczer-Koller, N., Phys. Rev. 1965, 138, B554. Ho, J. M., Phillips, Ν. E., Phys. Rev. 1965, 140, A648. Keszthelyi, L., Cameron, J. Α., private communication. Stolovy, Α.,Bull.Am. Phys. Soc. 1965, 10, 17. Uher, R. Α., Sorensen, R. Α., Nucl. Phys. 1966, 86, 1. Wilenzick, R. M., Hardy, Κ. Α., Hicks, J. Α., Owens, W. R., Phys. Letters 1969, 29A, 670. RECEIVED December 16, 1969.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch010
(8) (9) (10) (11) (12) (13) (14) (15)
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
11
Double B o n d Isomerization as a ProductControlling Factor in Hydrogenation over
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch011
Platinum G r o u p Metals PAUL N. RYLANDER Engelhard Industries, Newark, N. J. 07105
A useful endeavor in catalysis is to describe properties of catalysts in terms that will correlate various phenomena and permit prediction. One such parameter is the relative tendency of catalysts to promote double bond migration during hydrogenation. This tendency relates to such dive events as catalyst poisoning, changes in the organic functio hydrogenolysis, loss of optical activity, and selectivity in hydrogenation of aliphatic and aromatic systems. 11 of the elements in the platinum group metals make hydrogénation catalysts, and among them they can catalyze the reduction of most organic functional groups. Both the rate and selectivity depend markedly on the metal. The number of organic compounds and the products derivable from them by hydrogénation is very large, and it is of considerable practical value to search for a few characteristics of catalysts that will permit some correlation of the catalytic metal with the type of product obtained. One of these useful characteristics is the relative ability of various catalysts to promote double bond isomerization in olefins prior to their saturation. The concept is applicable not only to olefins per se but also to compounds such as acetylenes and aromatics that are converted to olefins during hydrogénation. In the presentation that follows, a number of diverse phenomena will be correlated with this property. Double Bond Migration Olefins may undergo a facile double bond migration in the presence of hydrogen and a platinum metal catalyst. A relative order (palladium >> ruthenium > rhodium > platinum >> iridium) established (2) for 150 In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
11.
Double
R Y L A N D E R
Bond
151
Isomerization
1-pentene, for the t e n d e n c y to p r o m o t e d o u b l e b o n d m i g r a t i o n d u r i n g hydrogénation, is p r o b a b l y g e n e r a l for most olefinic systems.
T h e extent
of i s o m e r i z a t i o n also d e p e n d s i m p o r t a n t l y o n t h e substrate.
For migra-
t i o n to occur, the a l l y l i c h y d r o g e n
to b e r e m o v e d
m u s t be
sterically
accessible to the catalyst a n d o n the same side of the m o l e c u l e as t h e entering hydrogen ( 5 ) .
T h e m e c h a n i s m i n v o l v e d m a y be c o m p l e x
M i g r a t i o n is d i m i n i s h e d b y the presence of h e a v y metals, amines, a n d e l e v a t e d pressure Selectivity
Among
Olefinic
(3).
hydroxides,
(15). Types
A u s e f u l g e n e r a l i t y i n p r e d i c t i n g selectivity is that the rate of h y d r o -
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch011
génation falls, b o t h a b s o l u t e l y a n d c o m p e t i t i v e l y , as steric a r o u n d the d o u b l e b o n d is i n c r e a s e d (23).
hinderance
O n this basis i n a m i x t u r e of
olefins, t e r m i n a l olefins w o u l d b e e x p e c t e d to be s a t u r a t e d p r e f e r e n t i a l l y to i n t e r n a l olefins, i f a p r i o r r a p i d e q u i l i b r a t i o n b y i s o m e r i z a t i o n d i d not ensue. T h i s thesis was d e m o n s t r a t e d the pairs of
olefins
shown
(1)
in Table
i n the selective hydrogénation of I, over r u t h e n i u m - o n - c a r b o n ,
a
catalyst w i t h r e l a t i v e l y l o w i s o m e r i z a t i o n a c t i v i t y . T h e experiments
were
c a r r i e d out b y p a r t i a l hydrogénation of a m i x t u r e of 1 m o l e of
each
olefin, a n d the r e a c t i o n was i n t e r r u p t e d a n d a n a l y z e d after of 1 m o l e of h y d r o g e n .
absorption
Those compounds underlined i n Table I were
r e d u c e d w i t h h i g h s e l e c t i v i t y i n preference
to the other m e m b e r of the
p a i r . T h i s h i g h degree of selectivity w a s l i m i t e d to those pairs of olefins
Table I.
Competitive Hydrogénation of Olefins by Ruthenium on Carbon 2-methyl-2-pentene
Selective
a n d 2 - m e t h y l - 1-pentene a n d 2-octene a n d cyclohexene and 2-methyl-1-pentene
Selective Selective
4-Methyl-1-pentene and 4-Methyl-l-pentene 4-Methyl-l-pentene 4-Methyl-l-pentene 2-Methyl-2-pentene
2 - M e t h y l - 2 - p e n t e n e a n d 2-octene 2 - M e t h y l - 2 - p e n t e n e a n d 1-octene 2 - M e t h y l - 2 - p e n t e n e a n d cyclohexene 2 - M e t h y l - l - p e n t e n e a n d 2-octene 2 - M e t h y l - l - p e n t e n e a n d 1-octene 2 - M e t h y l - l - p e n t e n e a n d cyclohexene 2-Octene a n d 1-octene 2-Octene a n d cyclohexene 1-Octene a n d cyclohexene
Selective N o t selective N o t selective Selective N o t selective N o t selective Selective N o t selective Selective N o t selective Selective
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
152
PLATINUM
GROUP
METALS
AND
COMPOUNDS
c o n t a i n i n g one t e r m i n a l a n d one i n t e r n a l olefin; other pairs w e r e r e d u c e d w i t h a m u c h l o w e r selectivity. T h i s same t y p e of d i s c r i m i n a t i o n b e t w e e n i n t e r n a l a n d t e r m i n a l olefins also has b e e n d e m o n s t r a t e d w h e n the t w o types of d o u b l e b o n d s w e r e i n the same m o l e c u l e . T h e s e hydrogénations w e r e c a r r i e d out w i t h w a t e r as a solvent, i f i n d e e d solvent is the correct w o r d to use w i t h olefins, b u t i f there w e r e no w a t e r present there w a s n o r e d u c t i o n . T h i s is a c o m m o n c h a r a c t e r i s t i c of r u t h e n i u m catalysis at l o w pressure. A t h i g h pressure, m a n y solvents c a n be u s e d , b u t e v e n here w a t e r sometimes has a s t r i k i n g l y b e n e f i c i a l effect o n the rate ( 3 2 ) . S e l e c t i v i t y of the t y p e f o u n d w i t h r u t h e n i u m w a s not possible w h e n p a l l a d i u m catalysts w e r e u s e d . F o r instance, hydrogénation of a m i x t u r e of 1- a n d 2-octene was c o m p l e t e l y nonselective over p a l l a d i u m catalysts. Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch011
T h i s l a c k of s e l e c t i v i t y r e s u l t e d f r o m the h i g h i s o m e r i z a t i o n a c t i v i t y of p a l l a d i u m ; w h e n the r e a c t i o n w a s s t o p p e d at o n l y one-tenth of
comple-
t i o n , a l l 1-octene h a d d i s a p p e a r e d b y m i g r a t i o n of the t e r m i n a l d o u b l e bond inward.
Migration to Inaccessible Positions T r i v i a l r e d u c t i o n s at times m a y b e r e n d e r e d difficult or i m p o s s i b l e b y i m p r o p e r selection of catalysts. T h i s is d e m o n s t r a t e d
(13)
b y the
hydrogénation of p u l c h e l l i n , I. O v e r p l a t i n u m oxide i n e t h a n o l , p u l c h e l l i n w a s r e d u c e d to d i h y d r o p u l c h e l l i n , I I . O n the other h a n d , r e d u c t i o n of p u l c h e l l i n over p a l l a d i u m - o n - c a r b o n or p a l l a d i u m - o n - c a l c i u m c a r b o n a t e afforded d i h y d r o p u l c h e l l i n i n 6 0 - 8 0 % y i e l d a c c o m p a n i e d b y the i s o m e r i z e d p r o d u c t , i s o p u l c h e l l i n , I I I . T h e s e results are i n k e e p i n g w i t h the greater t e n d e n c y of p a l l a d i u m to cause d o u b l e b o n d m i g r a t i o n . It w o u l d b e most difficult to convert i s o p u l c h e l l i n to d i h y d r o p u l c h e l l i n b y c a t a l y t i c hydrogénation, f o r a n y a t t e m p t to d o so p r o b a b l y w o u l d result i n h y d r o genolysis of the a l l y l i c c a r b o n - o x y g e n b o n d .
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
11.
Double
R Y L A N D E R
Bond
153
Isomerization
T h e r e are m a n y other examples of d o u b l e b o n d m i g r a t i o n to a t e t r a s u b s t i t u t e d p o s i t i o n , a n d these i n c l u d e hydrogénations e v e n over p l a t i n u m , a catalyst w i t h a r e l a t i v e l y l o w i s o m e r i z a t i o n a c t i v i t y (24).
One
example, the a t t e m p t e d hydrogénation of the e x o c y c l i c d o u b l e b o n d of h y s t e r i n o v e r p l a t i n u m oxide, r e s u l t e d i n i s o m e r i z a t i o n to i s o h y s t e r i n , w h i c h w a s resistant to hydrogénation u n d e r the c o n d i t i o n s of the r e a c t i o n . H y s t e r i n (39)
w a s r e d u c e d successfully over r u t h e n i u m d i o x i d e at ele-
v a t e d temperatures a n d pressures. It is e x p e c t e d that the e l e v a t e d p r e s sures u s e d w i t h r u t h e n i u m w o u l d d i m i n i s h i s o m e r i z a t i o n , a n d t h e v i g o r o u s c o n d i t i o n s w i t h r u t h e n i u m also m i g h t be sufficient to r e d u c e i s o h y s t e r i n if i t f o r m e d .
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch011
Changes
in the Organic
Function
I s o m e r i z a t i o n d u r i n g hydrogénation m a y a l t e r the f u n c t i o n a l g r o u p s present i n the m o l e c u l e . 5%
F o r instance, r e d u c t i o n of c y c l o h e x e n - 2 - o l
over
p l a t i n u m - o n - c a r b o n o c c u r r e d w i t h r a p i d a b s o r p t i o n of 1 m o l e
of
h y d r o g e n at s u b s t a n t i a l l y constant rate a n d q u a n t i t a t i v e f o r m a t i o n of cyclohexanol.
O n t h e other h a n d , r e d u c t i o n over p a l l a d i u m ceased
ab-
r u p t l y at about t w o - t h i r d s of a m o l e , a n d the p r o d u c t w a s a m i x t u r e of c y c l o h e x a n o l a n d c y c l o h e x a n o n e , the latter a r i s i n g t h r o u g h d o u b l e b o n d m i g r a t i o n to the e n o l of c y c l o h e x a n o n e OH
Λ,
(29). OH
Ο
Λ
Λ,
5% P d / C
67%
33%
5% P t / C
100%
0%
T h i s t y p e of t r a n s f o r m a t i o n m a y o c c u r also b y a n exchange r e a c t i o n . C a t a l y t i c hydrogénation of
5-cyclodecen-l-ol
over
p l a t i n u m oxide
m e t h a n o l r e s u l t e d i n a b s o r p t i o n of 0.97 m o l a r e q u i v a l e n t s of
in
hydrogen
a n d f o r m a t i o n of the s a t u r a t e d a l c o h o l . H o w e v e r , w h e n 1 0 % p a l l a d i u m o n - c a r b o n i n a l c o h o l was u s e d as a catalyst, r e d u c t i o n w a s i n c o m p l e t e o w i n g to f o r m a t i o n of c y c l o d e c a n o n e .
T h e authors (8)
e x p l a i n e d the
e x c e p t i o n a l ease o f this t y p e of r e a c t i o n b y the s p a t i a l p r o x i m i t y of t h e a l c o h o l a n d olefin g r o u p s , f a v o r i n g a n i n t r a m o l e c u l a r h y d r o g e n transfer. P r e s u m a b l y , p a l l a d i u m is v e r y m u c h m o r e effective i n this transfer r e a c t i o n t h a n p l a t i n u m , b u t s i m i l a r transfer b y p l a t i n u m m i g h t pass u n o b s e r v e d , as this catalyst w o u l d r e d u c e the ketone so f o r m e d to a l c o h o l ; p a l l a d i u m is a r e l a t i v e l y p o o r catalyst for hydrogénation a l i p h a t i c ketones
(6).
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
the of
154
PLATINUM
GROUP
METALS
AND
COMPOUNDS
OH
OH
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch011
Catalyst
Inhibition
W i t h sufficient use, a l l catalysts u n d e r g o d e a c t i v a t i o n .
Two
broad
types of i n h i b i t i o n m a y be d i s t i n g u i s h e d . I n the first, the catalyst b e comes i n h i b i t e d t h r o u g h the i n t r o d u c t i o n of catalyst i n h i b i t o r s c a r r i e d i n t o the system b y the substrate, solvent, h y d r o g e n , o r e v e n f o r m e d
by
d i s s o l u t i o n of the reactor. I n the second t y p e , d e a c t i v a t i o n arises t h r o u g h some i n h i b i t o r f o r m e d i n the r e a c t i o n itself. A n e x a m p l e of the t y p e is p r o v i d e d b y the w o r k of N i s h i m u r a a n d H a m a (21).
second
These work-
ers f o u n d , c o n t r a r y to w h a t one m i g h t expect b y a n a l o g y to s i m i l a r s i t u a tions, that b e n z y l a l c o h o l w a s r e d u c e d m o r e s m o o t h l y to c y c l o h e x y l c a r b i n o l over
p l a t i n u m oxide
t h a n over
r h o d i u m catalysts.
The
rate
of
hydrogénation over r h o d i u m decreased m a r k e d l y d u r i n g the course
of
the r e a c t i o n , a c c o m p a n i e d
b y the f o r m a t i o n of i n c r e a s i n g amounts
of
cyclohexanecarboxaldehyde,
a strong i n h i b i t o r . R e d u c t i o n s over p l a t i n u m
catalyst, o n the other h a n d , p r o c e e d e d at a m o r e n e a r l y constant rate a n d w i t h the a c c u m u l a t i o n of less a l d e h y d e .
The inhibiting
b o x a l d e h y d e arose f r o m i s o m e r i z a t i o n of i n t e r m e d i a t e
cyclohexanecar-
1-cyclohexenylcar-
b i n o l . P l a t i n u m catalysts w e r e less i n h i b i t e d t h a n r h o d i u m b y t h e a l d e h y d e o n t w o counts.
T h e i n t e r m e d i a t e u n s a t u r a t e d c a r b i n o l w a s isomer-
i z e d less over p l a t i n u m t h a n r h o d i u m , a n d the a l d e h y d e once f o r m e d w a s h y d r o g e n a t e d a b o u t four to five times m o r e r a p i d l y over p l a t i n u m .
CH OH 2
CH OH 2
CHO
S i m i l a r isomerizations h a v e been o b s e r v e d i n the hydrogénation of p h e n y l e t h a n o l over r h o d i u m , w h e r e one of the i n t e r m e d i a t e p r o d u c t s is cyclohexylmethylketone.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
11.
R Y L A N D E R
Double
Bond
155
Isomerization
T h i s ketone, u n l i k e c y c l o h e x a n e c a r b o x a l d e h y d e ,
is not a n i n h i b i t o r a n d
c a n b e o b t a i n e d as a n i n t e r m e d i a t e i n about 4 0 % y i e l d f r o m hydrogénat i o n of a c e t o p h e n o n e over r h o d i u m ; f u r t h e r r e d u c t i o n affords h i g h y i e l d s of c y c l o h e x y l m e t h y l c a r b i n o l
(28).
Hydrogenolysis of Carbon-Oxygen Bonds C a r b o n - o x y g e n b o n d s are not c l e a v e d r e a d i l y b y c a t a l y t i c h y d r o genolysis unless t h e y are i n some w a y a c t i v a t e d b y p r o x i m i t y to another function.
Benzylic, vinylic, and allylic oxygen bonds undergo a facile
h y d r o g e n o l y s i s , b u t f u n c t i o n s r e m o v e d f r o m the d o u b l e unless a p r i o r i s o m e r i z a t i o n occurs.
b o n d do
not
A n e x a m p l e of i s o m e r i z a t i o n l e a d i n g
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch011
to h y d r o g e n o l y s i s p r o d u c t s is f o u n d i n the hydrogénation of h e p t - 3 - y n e 1,7-diol over 5 % p a l l a d i u m - o n - b a r i u m sulfate; i n a d d i t i o n to t h e expected d i o l , a c o n s i d e r a b l e a m o u n t of 1-heptanol w a s f o r m e d ( 9 ) .
The forma-
t i o n of 1-heptanol is best a c c o u n t e d for b y the a s s u m p t i o n of r e d u c t i o n of the acetylene to the c o r r e s p o n d i n g olefin f o l l o w e d b y i s o m e r i z a t i o n of the d o u b l e b o n d i n t o a n a l l y l i c p o s i t i o n .
P l a t i n u m , or better r h o d i u m ,
w o u l d b e p r e f e r r e d to p a l l a d i u m i n examples of this t y p e .
Rhodium
w o u l d seem p a r t i c u l a r l y d e s i r a b l e o n t w o counts. T h e i s o m e r i z a t i o n a c t i v i t y of r h o d i u m is m u c h l o w e r t h a n that of p a l l a d i u m , a n d less a l l y l i c a l c o h o l w o u l d be f o r m e d i n the hydrogénation. A d d i t i o n a l l y , r h o d i u m has f o u n d c o n s i d e r a b l e use i n the r e d u c t i o n of a l l y l i c a n d v i n y l i c systems w h e n h y d r o g e n o l y s i s was to be a v o i d e d
(27).
H O C H C H C = C C H C H C H O H -> 2
2
2
2
2
HOCH CH CH = CHCH CH CH OH
->
HOCH CH = CHCH CH CH CH OH
-*
2
2
2
2
2
2
2
2
2
2
CH CH = CHCH CH CH CH OH 3
2
2
2
2
->
CH3CH CH CH CH CH CH OH 2
2
2
2
2
2
Hydrogenolysis of Carbon-Carbon Bonds A s t r i k i n g e x a m p l e of the effect i s o m e r i z a t i o n m a y h a v e is f o u n d i n the hydrogénation of car-3-ene ( 7 ) .
T w o different p r o d u c t s are o b t a i n e d
i n nearly quantitative yield, depending p l a t i n u m - o n - c a r b o n at 1500 p s i g , cis-carane
on
the
catalyst u s e d .
Over
was obtained i n 9 8 % y i e l d ,
whereas over p a l l a d i u m - o n - c a r b o n , q u a n t i t a t i v e y i e l d s of 1,1,4-trimethylcycloheptane could be achieved.
H y d r o g e n o l y s i s w i t h f o r m a t i o n of the
s e v e n - m e m b e r e d r i n g s w a s b e l i e v e d to be p r e c e e d e d b y i s o m e r i z a t i o n to car-2-ene.
If i s o m e r i z a t i o n is a p r e r e q u i s i t e for h y d r o g e n o l y s i s , i t is to b e
e x p e c t e d that less of the h y d r o g e n o l y s i s p r o d u c t w o u l d b e f o r m e d
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
over
156
PLATINUM
GROUP
METALS
AND
COMPOUNDS
p l a t i n u m , since p l a t i n u m is n o t as a c t i v e as p a l l a d i u m for d o u b l e b o n d
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch011
migration.
F o r m a t i o n of 1,1,4-trimethylcycloheptane f r o m car-3-ene d e p e n d s o n t w o properties of p a l l a d i u m , the strong t e n d e n c y of p a l l a d i u m to p r o m o t e i s o m e r i z a t i o n a n d to h y d r o g e n o l y z e v i n y l c y c l o p r o p a n e systems.
I n the
b i c y c l i c u n s a t u r a t e d a c i d , I V , p r i o r i s o m e r i z a t i o n is not necessary
to
m o v e the d o u b l e b o n d i n t o c o n j u g a t i o n , yet here, too, p l a t i n u m a n d p a l l a d i u m g i v e q u i t e different results. T h e s a t u r a t e d b i c y c l i c a c i d is f o r m e d over p l a t i n u m , w h e r e a s over p a l l a d i u m a m i x t u r e of c y c l o h e x a n e carboxylic acid and benzoic disproportionation
COOH
a c i d results t h r o u g h h y d r o g e n o l y s i s a n d
(20).
COOH
COOH
COOH
Disproportionation D i s p r o p o r t i o n a t i o n is a s p e c i a l f o r m of d o u b l e b o n d m i g r a t i o n i n w h i c h the d o u b l e b o n d is t r a n s f e r r e d f r o m one m o l e c u l e to another. R e a c t i o n s of this t y p e are e s p e c i a l l y l i a b l e to o c c u r over p a l l a d i u m , a n d for this reason p a l l a d i u m sometimes is best a v o i d e d i n olefin hydrogénat i o n w h e n the d o u b l e b o n d is c o n t a i n e d i n a n i n c i p i e n t a r o m a t i c system. D i s p r o p o r t i o n a t i o n a c t i v i t y i n the hydrogénation of c y c l o h e x e n e
(and
p r e s u m a b l y other i n c i p i e n t a r o m a t i c systems w i l l f o l l o w the same o r d e r ) decreases w i t h the m e t a l i n the o r d e r p a l l a d i u m > > p l a t i n u m > r h o d i u m (16).
A n e x a m p l e of the c o m p l i c a t i o n t h a t c a n be c a u s e d b y d i s p r o p o r -
t i o n a t i o n d u r i n g hydrogénation is f o u n d i n t h e a t t e m p t e d r e d u c t i o n of
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
11.
Double
RYLANDER
Bond
157
Isomerization
the d i e n o n e , V , to the saturated ketone over p a l l a d i u m - o n - c a r b o n i n ether. T h e p r o d u c t m i x t u r e consisted of a b o u t 2 0 % i n d a n e , 2 0 % 1-indanone,
and 4 5 %
4,5,6,7-tetrahydro-l-indanone
o x y g e n f u n c t i o n w o u l d be
expected
(14).
once the c o m p o u n d
cis-hexahydroL o s s of has
a r o m a t i c , for p a l l a d i u m makes t h e best k n o w n catalyst for
the
become selective
hydrogénation of a n a r o m a t i c ketone to a n a r o m a t i c a l c o h o l a n d
for
h y d r o g e n o l y s i s of the a r o m a t i c a l c o h o l to t h e a r o m a t i c h y d r o c a r b o n .
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch011
0
Ο
Ο
Loss of Optical
Activity
U n s a t u r a t e d o p t i c a l l y active c o m p o u n d s h a v i n g a n a s y m m e t r i c center accessible
to a m i g r a t i n g d o u b l e
hydrogénation (4).
bond may undergo
a c t i v e olefin ( — ) - 3 , 7 - d i m e t h y l - l - o c t e n e oxide, a catalyst of racemization, but
low
over
product was 4 3 - 5 2 %
(15).
R e d u c t i o n over p l a t i n u m
isomerization activity, resulted i n only v a r y i n g amounts
racemized.
of
3%
palladium-on-carbon,
the
R a c e m i z a t i o n , a n d therefore b y i n f e r -
ence i s o m e r i z a t i o n , w e r e decreased a n d b y bases.
racemization on
A n e x a m p l e is the hydrogénation of the o p t i c a l l y
b y pressure, b y catalyst i n h i b i t o r s ,
R e d u c t i o n at 1500 p s i g over p a l l a d i u m - o n - c a r b o n gave
o n l y 2 3 % r a c e m i z e d p r o d u c t , over a L i n d l a r catalyst (19)
at 1 a t m gave
1 6 % , a n d over p a l l a d i u m - o n - c a r b o n i n the presence of s m a l l q u a n t i t i e s of p o t a s s i u m h y d r o x i d e or p y r i d i n e gave 12 a n d 1 8 % r a c e m i z a t i o n , respectively.
C e r t a i n l y , i n this c o m p o u n d , m i g r a t i o n of the d o u b l e b o n d
afford t h e 2-octene w i l l result i n r a c e m i z a t i o n i f the olefin is before
saturation, but
other
pathways
to
to
desorbed
r a c e m i z a t i o n also m a y
be
operative. Stereochemistry T h e extent of d o u b l e b o n d m i g r a t i o n d u r i n g r e d u c t i o n of a n olefin m a y influence m a r k e d l y the stereochemistry of the r e s u l t i n g p r o d u c t .
A
s t r i k i n g e x a m p l e is p r o v i d e d b y the w o r k of S i e g e l a n d S m i t h ( 3 5 )
on
hydrogénation of 1,2-dimethylcyclohexene.
O v e r p l a t i n u m oxide i n acetic
a c i d , this olefin afforded 8 2 % cis- 1,2-dimethylcyclohexane, whereas
over
palladium-on-alumina
The
the p r o d u c t
contained
73%
trans-isomer.
e x p l a n a t i o n for this u n e x p e c t e d l y large percentage of trans-isomer lies i n d o u b l e b o n d m i g r a t i o n to the 2 - p o s i t i o n or to the m e t h y l e n e p o s i t i o n . T h e stereochemistry of the p r o d u c t is i n a sense t h e r e s u l t a n t of c o m p e t i -
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
158
PLATINUM
GROUP
METALS
AND
COMPOUNDS
t i o n b e t w e e n rates of hydrogénation a n d rates of i s o m e r i z a t i o n of the i n d i v i d u a l olefinic species. I n general, it seems easier to r a t i o n a l i z e a s t e r e o c h e m i c a l r e s u l t t h a n it is to p r e d i c t i t . T h e stereochemistry of hydrogénation of olefins is s u c h that h y d r o g e n u s u a l l y is a d d e d as i f b y cis a d d i t i o n f r o m the catalyst to the side of the m o l e c u l e that is a d s o r b e d o n it (34),
but unfortunately it
is not a l w a y s easy to d e c i d e w h i c h side of t h e m o l e c u l e w i l l a d s o r b o n the catalyst. T h e consequence of d o u b l e b o n d m i g r a t i o n o n the stereochemistry of the p r o d u c t is f r e q u e n t l y , therefore, not easy to p r e d i c t .
Hydrogénation of Aromatic Rings
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch011
A r o m a t i c c o m p o u n d s are r e d u c e d over the six p l a t i n u m m e t a l g r o u p catalysts at w i d e l y different rates, as expected, b u t a d d i t i o n a l l y t h e p r o d ucts of r e d u c t i o n f r e q u e n t l y v a r y w i t h the m e t a l used.
M a n y of these
results m a y be c o r r e l a t e d i n terms of t w o parameters not o b v i o u s l y c o n n e c t e d to a r o m a t i c p r o p e r t i e s : the r e l a t i v e tendencies of these catalysts to p r o m o t e
d o u b l e b o n d m i g r a t i o n i n olefins a n d to p r o m o t e
hydro-
genolysis of v i n y l i c a n d a l l y l i c functions.
Hydrogenolysis of Vinylic and Allylic Functions A g e n e r a l i z a t i o n d e r i v e d f r o m m a n y studies is that the toward
hydrogenolysis
of
vinylic
and
allylic
h a l o g e n increases i n the o r d e r r u t h e n i u m ^ platinum
<;
irridium.
I n v i n y l i c systems
oxygen,
rhodium «
tendency
nitrogen,
and
p a l l a d i u m <ί
especially, p l a t i n u m favors
h y d r o g e n o l y s i s m o r e t h a n p a l l a d i u m ; i n a l l y l i c systems, the t r e n d is not so clear b u t appears to be the reverse (26).
I r i d i u m is p l a c e d i n this
sequence o n the basis of l i m i t e d d a t a .
Partial Hydrogénation of Aromatic Rings A l t h o u g h hydrogénation of c a r b o c y c l i c aromatics u s u a l l y leads to the f u l l y saturated d e r i v a t i v e , there is a b u n d a n t e v i d e n c e r e d u c t i o n s p r o c e e d t h r o u g h i n t e r m e d i a t e olefins.
that m a n y
Hydrogénation of c r e -
sols was a s s u m e d to p r o c e e d t h r o u g h f o r m a t i o n of a l l k i n d s of 1,2-dihydrocresols p r o d u c e d i n e q u a l amounts (38)
a n d hydrogénation of xylenes to
afford e q u a l q u a n t i t i e s of a l l t e t r a h y d r o x y l e n e s as i n t e r m e d i a t e s
(36).
O c c a s i o n a l l y w i t h catalysts h a v i n g h i g h a c t i v i t y for a r o m a t i c r i n g r e d u c t i o n a n d r e l a t i v e l y l o w a c t i v i t y for olefin s a t u r a t i o n , p a r t i a l r e d u c t i o n to olefins m a y be u s e f u l i n synthesis. F o r e x a m p l e , hydrogénation of benzene over r u t h e n i u m afforded cyclohexene cis-A -tetrahydroterephthalic 2
thalicacid
(12)
in 20%
yield and
acid was obtained i n 7 3 % y i e l d from tereph-
(31).
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
11.
Double
RYLANDER
Bond
159
Isomerization
P r i o r to s a t u r a t i o n , i n t e r m e d i a t e olefins m a y u n d e r g o m i g r a t i o n , a n d i t is the extent of this step that accounts i n large p a r t for the v a r y i n g results over different catalysts. Hydrogénation
of
Anilines
Hydrogénation of a n i l i n e s u s u a l l y affords a s a t u r a t e d a m i n e as the m a j o r p r o d u c t , b u t several side reactions, i n c l u d i n g h y d r o g e n o l y s i s , r e ductive hydrolysis, and reductive coupling, m a y accompany d o m i n a t e the r e d u c t i o n . activated molecules
and even
H y d r o g e n o l y s i s is i m p o r t a n t o n l y i n c e r t a i n
(10).
Reductive Hydrolysis.
R e d u c t i v e h y d r o l y s i s of anilines to
cyclo-
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch011
hexanones, assumed to go t h r o u g h a n i m i n e - t y p e i n t e r m e d i a t e , c l e a r l y involves isomerization
(18). CH
,CH;
3
P a l l a d i u m , b y far the most effective of p l a t i n u m metals for i s o m e r i z a t i o n , is also the most effective i n this r e a c t i o n . T h e i s o m e r i z a t i o n i n v o l v e s not o n l y t a u t o m e r i z a t i o n of a n e n a m i n e to a n i m i n e , b u t a d d i t i o n a l l y , i s o m e r i z a t i o n of d o u b l e b o n d s
remote f r o m the a m i n e i n t o a v i n y l i c
p o s i t i o n . P l a t i n u m , r u t h e n i u m , a n d r h o d i u m afford m i x t u r e s of less c y c l o hexanols a n d m o r e d i m e t h y l c y c l o h e x y l a m i n e s
(17).
U n d e r v i g o r o u s c o n d i t i o n s ( 1 0 0 ° C a n d 1000 p s i g ) i n 2 5 %
aqueous
s u l f u r i c a c i d , the y i e l d of c y c l o h e x a n o l p l u s c y c l o h e x a n o n e f r o m d i m e t h y l a n i l i n e was 90, 75, a n d 1 3 % over 5 % p a l l a d i u m - , 5 % r h o d i u m - , a n d 5 % p l a t i n u m - o n - c a r b o n , r e s p e c t i v e l y (33).
T h e d e c r e a s i n g y i e l d p a r a l l e l s the
d e c r e a s i n g t e n d e n c y for m i g r a t i o n . R e d u c t i v e h y d r o l y s i s is f a v o r e d
by
s u b s t i t u t i o n o n the n i t r o g e n a t o m a t t r i b u t e d i n p a r t to the r e l a t i v e diffic u l t y of h y d r o g e n a t i n g h i n d e r e d enamines. Reductive Coupling. F o r m a t i o n of d i c y c l o h e x y l a m i n e (25)
in hy-
drogénation of a n i l i n e p r o b a b l y i n v o l v e s a d d i t i o n of c y c l o h e x y l a m i n e to a n i m i n e a n d subsequent h y d r o g e n o l y s i s of a c a r b o n - n i t r o g e n b o n d NH; :NH
+ NH;
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
(11).
160
PLATINUM
GROUP
METALS
AND
COMPOUNDS
T h e p e r cent of d i c y c l o h e x y l a m i n e f o r m e d i n hydrogénation of a n i l i n e increases w i t h catalyst i n t h e o r d e r r u t h e n i u m < r h o d i u m «
platinum,
a n o r d e r a n t i c i p a t e d f r o m the r e l a t i v e t e n d e n c y of these metals to p r o mote double b o n d migration a n d hydrogenolysis (30).
S m a l l a m o u n t s of
a l k a l i i n u n s u p p o r t e d r h o d i u m a n d r u t h e n i u m catalysts c o m p l e t e l y e l i m i nate c o u p l i n g reactions, p r e s u m a b l y t h r o u g h i n h i b i t i o n of h y d r o g e n o l y s i s a n d / o r i s o m e r i z a t i o n . A l k a l i w a s w i t h o u t effect o n r u t h e n i u m or r h o d i u m catalysts s u p p o r t e d o n c a r b o n , p o s s i b l y because the a l k a l i is a d s o r b e d o n carbon rather than metal
(22).
Phenols
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch011
O n hydrogénation, p h e n o l s m a y u n d e r g o
s a t u r a t i o n to the
h e x a n o l , h y d r o g e n o l y s i s of the c a r b o n - o x y g e n
cyclo-
b o n d , or partial h y d r o -
génation to the c y c l o h e x a n o n e .
Hydrogenolysis P a r t i a l r e d u c t i o n of p h e n o l s affords m i x t u r e s of a l l y l i c a n d v i n y l i c alcohols.
F r o m t h e g e n e r a l i t y d e r i v e d for a l i p h a t i c systems, t h e most
h y d r o g e n o l y s i s of this m i x t u r e is e x p e c t e d w i t h p l a t i n u m , p a l l a d i u m , a n d i r i d i u m catalysts, a n d m u c h less w i t h r h o d i u m a n d r u t h e n i u m , a n expectat i o n s u b s t a n t i a t e d i n p r a c t i c e . F o r e x a m p l e , hydrogénation of r e s o r c i n o l i n n e u t r a l m e d i u m affords 20, 19, a n d 7 0 %
cyclohexanediol over
ladium-, platinum-, and rhodium-on-carbon, respectively
pal-
Many
(29).
examples attest to the v a l u e of r h o d i u m a n d r u t h e n i u m at e l e v a t e d pressure i n a v o i d i n g h y d r o g e n o l y s i s .
Partial Reduction to Ketones K e t o n e s arise f r o m p h e n o l s b y i s o m e r i z a t i o n of u n s a t u r a t e d alcohols (37).
P a l l a d i u m is the most s u i t e d for this t y p e of r e a c t i o n because
of
its h i g h i s o m e r i z a t i o n a c t i v i t y c o u p l e d w i t h a v e r y l o w r a t e of r e d u c t i o n of the r e s u l t i n g ketones (6).
E x c e l l e n t y i e l d s of ketones often m a y b e
o b t a i n e d ; r h o d i u m w i l l g i v e at times q u i t e s u b s t a n t i a l y i e l d s of c y c l o h e x a nones ( 5 0 - 6 5 %
m e t h y l c y c l o h e x a n o n e s f r o m cresols)
( 3 8 ) , b u t i n other
r e d u c t i o n s s u c h as r e s o r c i n o l , little ketone a c c u m u l a t e s over either r h o d i u m or p l a t i n u m u n d e r c o n d i t i o n s w h e r e i t is a m a j o r p r o d u c t
over
palladium (29). W h e t h e r or not ketone a c c u m u l a t e s i n r e d u c t i o n of p h e n o l s
depends
a d d i t i o n a l l y o n the r e l a t i v e rates of hydrogénation of k e t o n e a n d p h e n o l i n c o m p e t i t i o n . F o r instance, e q u i m o l a r m i x t u r e s of r e s o r c i n o l a n d c y c l o hexanone i n e t h a n o l w e r e p a r t i a l l y h y d r o g e n a t e d over s e v e r a l catalysts;
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
11. RYLANDER
Double Bond Isomerization
161
over palladium-on-carbon, resorcinol was reduced to the exclusion of cyclohexanone, whereas over platinum-on-carbon the reverse was true. No such marked preference for substrate was observed in reduction over rhodium-on-alumina or rhodium-on-carbon (29). The problem of ordering platinum group metals for the relative rate of reduction of various functions in competition is, with few exceptions, unsolved. A generalized solution would do much to aid in the proper choice of metal for selective reduction of bifunctional compounds.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch011
Literature Cited (1) Berkowitz, L. M., Rylander, P. N., J. Org. Chem. 1959, 24, 708. (2) Bond, G. C., Rank, J. S., Proc. Intern. Congr. Catalysis, 3rd,W.M.H. Sachtleretal.,Eds., 1965, 2, 1225. (3) Bond, G.C.,Wells, P. B., Advan. Catalysis 1964, 15, 91. (4) Bonner, W. Α., Stehr, C. E., doAmaral, J. R., J. Am. Chem. Soc. 1958, 80, 4732. (5) Bream, J. B., Eaton, D.C.,Henbest, Η. B., J. Chem. Soc. 1957, 1974. (6) Breitner, E., Roginski, E., Rylander, P. N., J. Org. Chem. 1959, 24, 1855. (7) Cocker, W., Shannon, P. V. R., Staniland, P. Α., J. Chem. Soc. 1966, 41. (8) Cope, A. G., Cotter, R. J., Roller, G. G., J. Am. Chem. Soc. 1955, 77, 3594. (9) Crombie, L., Jacklin, A. G., J. Chem. Soc. 1957, 1622. (10) Freifelder, M., Stone, G. R.,J.Org. Chem. 1962, 27, 3568. (11) Greenfield, H., J. Org. Chem. 1964, 29, 3082. (12) Hartog, F., U. S. Patent 3,391,206 (July 2, 1968). (13) Hetz, W., Ueda, K., Inayama, S., Tetrahedron 1963, 19, 483. (14) House, H. O., Rasmusson, G. H., J. Org. Chem. 1963, 28, 27. (15) Huntsman, W. D., Madison, N. L., Schlesinger, S. I., J. Catalysis 1963, 2, 498. (16) Hussey, A. S., Schenach, Τ. Α., Baker, R. H., J. Org. Chem. 1968, 33, 3258. (17) Kuhn, R., Driesen, H. E., Haas, H. J., Ann. Chem. 1968, 718, 78. (18) Kuhn, R., Haas, H. J., Ann. Chem. 1958, 611, 57. (19) Lindlar, H., Helv. Chim. Acta 1952, 35, 446. (20) Meinwald, J., Labana, S. S., Chadha, M. S., J. Am. Chem. Soc. 1963, 85, 582. (21) Nishimura, S., Hama, M., Bull. Chem. Soc. Japan 1966, 39, 2467. (22) Nishimura, S., Shu, T., Hara, T., Takagi, Y., Bull. Chem. Soc. Japan 1966, 39, 329. (23) Rylander, P. N., "Catalytic Hydrogenation over Platinum Metals," p. 91, Academic Press, New York, 1967. (24) Ibid., p. 99. (25) Ibid., p. 355. (26) Ibid., p. 445. (27) Ibid., p. 447. (28) Rylander, P. N., Hasbrouck, L., Engelhard Ind. Tech. Bull. 1968, 8, 148. (29) Rylander, P. N., Himelstein, N., Engelhard Ind. Tech. Bull. 1964, 5, 43. (30) Rylander, P. N., Kilroy, M., Coven, V., Engelhard Ind. Tech. Bull. 1965, 6, 11. (31) Rylander, P. N., Rakonza, N. F., U. S. Patent 3,163,679 (December 22, 1964). (32) Rylander, P. N., Rakoncza, N., Steele, D. R., Bollinger, M., Engelhard Ind. Tech. Bull. 1963, 4, 95.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
162
PLATINUM GROUP METALS AND COMPOUNDS
Rylander, P. N., Steele, D. R., Engelhard Ind., unpublished observations, 1963. Siegel, S., Advan. Catalysis 1966, 16, 123. Siegel, S., Smith, G. V.,J.Am. Chem. Soc. 1960, 82, 6082, 6087. Siegel, S., Smith, G. V., Dmuchovsky,B.,Dubbel, D., Halpren, W., J. Am. Chem. Soc. 1962, 84, 3136. Smith, Η. Α., Stump, B. L.,J.Am. Chem. Soc. 1961, 83, 2739. Takagi, Y., Nishimura, S., Taya, K., Hirota, K.,J.Catalysis 1967, 8, 100. Vivar, A. R. de, Bratoeff, Ε. Α., Rios, T.,J.Org. Chem. 1966, 31, 673. RECEIVED December 16, 1969.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch011
(33) (34) (35) (36) (37) (38) (39)
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
INDEX A
Absorption spectra. .83-4, 86, 88, 91,140 Accuracy in bond lengths 121 Acetonitrile Ill Activation parameters 117 Adducts CO 124 CS 123 molecular 121 N 123 nitrosyl 124 S0 123 tetracyanoethylene 124 Alloys, ordered 7 Allylic functions, hydrogenolysis of 158 Ambidentate ligand Ill Anilines, hydrogénation of 159 Anisotropy, magnetic 11 Antiferromagnetism 1 Aqueous solutions 110 Aromatic rings, hydrogénation of . . 158 Aryl, silyl, and germyl derivatives 104 2
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ix001
2
2
Β Binuclear nitrides Bonding problems Bond lengths
56 99 124
Canted-ferrimagnetic structure . . . 9 CaPd 0 34 Catalyst hydrogénation 150 inhibition 154 Cationic complexes 57 CdPd 0 34 Chalcogenides, platinum metal . . . 17 Chemical shift 99 (CH ) PtC10 110 C O adducts 124 Coercive force 10 Competitive hydrogénation 151 Conduction bands 18 Conversion coefficient 140 Coupling constant 103 Crystal chemistry and synthesis 28 spectra 95 structure 7,18,44,120 Crystallite distribution 11 Crystallographic relationships 10 3
4
3
4
3
4
8 13
D Debye temperature 145-6 Debye-Waller factor 138 Delocalized 7r-systems involving Pt metals, structures of 129 Dimethylsulfoxide Ill Disordered structure 41 Disproportionation 156 Distortion 132 2,5-Dithiahexane complexes of RhCl 109 Double bond isomerization 150 migration 150 Dynamics, lattice 138 Dynamic systems 112 3
£ Electrical conductors resistivity Electron capture decay Electronic spectra
17 6 136 61,76
F
C 3
Curie point behavior ferromagnetic
Fermi contact term Ferromagnetic alloys Curie points Ferromagnetism Fluorophenyl derivatives Frozen-in flux
103 141 13 1 104 15
G Geometrical isomers
109,112
H Heteronuclear double resonance spectra 105 Hexahalo-complexes, spectra of . . 75 Hydride resonance 117 Hydrido complexes 66,106 organo and 112 preparative methods for 67 properties of 68 reaction of 70
163
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
164
PLATINUM
Hydrogénation anilines aromatic rings catalysts competitive Hydrogenolysis of vinylic and allylic functions . . Hyperfine interaction Hysteresis loops
159 158 150 151 155 158 143 14
METALS
AND
COMPOUNDS
Ν Neutrons, scattering of Nitrosyl adducts N adducts Nuclear properties N M R spectra Nitride ion Nitrido complexes 2
138 124 123 99 98 54 54
Ο
I
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ix001
GROUP
Infrared spectra 42,47,50 Inhibition, catalyst 154 Interaction, hyperfine 143 Interatomic distances 36, 128 Internal magnetic field 145 Iridium 5,19, 54, 70, 80, 95,122 Iron moment 4 Isomeric shift 144,147 Isomerization, double bond 150
Κ
Olefins 150 Optical activity, loss of 157 Ordered alloys 7 Ordering alloy 10 Organic function, changes in . . . . 153 Organo and hydrido derivatives . . 112 Osmium 14,54,80,95,98
Ρ Palladium . . 1, 21, 28,129, 152,156,159 oxides 28 Paramagnetism 99 Pb0 46 PbPd0 29 Phenols 160 Platinum 3, 9, 21,39, 76, 81, 86, 98,125,135,154 alkyls 103 dioxide, reaction of 39 metal chalcogenides 17 (II) phosphine complexes 102 Predicted proton resonance spectrum 107 Preparative methods for hydrido complexes 67 Properties of hydrido complexes . . 68 i95Pt chemical shifts 99 iS-Pt0 43 Pyrite structure 18 Pyrochlore series 47 structures 48 2
Ketones, partial reduction to . . . .
160
L Lattice dynamics Li^and substitution Local moments
138 112 4
M
Magnetic anisotropy circular dichroism moment ordering permanent properties susceptibility Magnetization saturation Marcasite structure Mass susceptibility Metallic properties Metal-olefin bond Mg Pd0 Migration double bond Molecular adducts Moment iron local magnetic M O - P t 0 system M02-Pt0 system M 0 - P t 0 system Mossbauer fractions spectra spectroscopy 2
4
2
2
2
11 84 4,144 17 1 1 1 6,8 10 20 2 18 113 37 152 150 121
3
2
·
4 4 4 49 43 47 146 142-3 135
2
2
R Racemization 157 Reactions of hydrido complexes . . 70 Recoilless resonance experiments . . 135 Remanence 15 Resonance effect 137 Rhodium 4, 7,19, 24,122,154 Rotation 113 Ruthenium . . . . 14, 17, 54,123,151,158 Rutile structure 46
S Sandwich-like structure Saturation magnetization Scattering of neutrons and x-rays . . Selectivity Signs of the spin-spin coupling constants
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
21 10 138 151 105
165
INDEX
S 0 and C S adducts 123 Solvation and solvent effects 109 number 110 Spectra absorption 83—4,86,88,91 crystal 95 electronic 61 electronic absorption 76 infrared 42,47,50 in organic media 89 Mossbauer 142-3 of hexahalo-complexes 75 of P t C l 81 predicted proton resonance . . . . 107 vibrational 59,60,64 Spectroscopic qualities, ultraviolet 74 Spectroscopy, Mossbauer 135 Spinel 49 Spin-spin coupling 102,115 Square planar complexes 108 hydrides 101 SrPd 0 34 Sr Pd0 31 Stereochemistry 105,124,157 Structure marcasite 20 pyrite 18 sandwich-like 21 tetragonal 23 Susceptibility magnetic 1 mass 2 2
2
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ix001
4
3
2
2
Symmetry patterns Synthesis and crystal chemistry . .
87 46 28
Τ Terminal nitrido complexes . . 55 Tetracyanoethylene adducts 124 Tetragonal structure 23 Thermal expansion 139 Trans influence 103,115,124 Trimethylplatinum (IV) complexes 106 oxinate 108 Trinuclear complex iridium 63 osmium 62
U Ultraviolet spectroscopic qualities 74 Vibrational spectra 59,80,64 Vinylic functions, hydrogenolysis of 158
4
W
3
Water exchange
112
X-ray diffraction powder data 30, 32, 35, 41, 52 X-rays, scattering of 138 X-ray structure determinations . . . 120
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.