This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
ke_^h\Zl_evgh bn+1b1.
470.
Z an=a1qn–1; a2=a1q; a3=a1q2; a5=a1q4; a6=a1q5. a1qÂa1q5–a1q2Âa1q4= a12 q6– a12 q6 Ke_^h\Zl_evgh a2a6=a3a5. [ an=a1qn–1; an–3=a1qn–4; an+8=a1qn+7; an+5=a1qn+4. a1qn–4Âa1qn+7–a1qn–1Âa1qn+4= a12 q2n+3– a12 q2n+3 ke_^h\Zl_evgh
an–
3an+8=anan+5
471.
JZkkfhljbf hlghr_gb_ ke_^h\Zl_evgh b =b q .
bn=b1qn–1; bm=b1qm–1 1)
=qn–m
bn b q n −1 = 1 m −1 =qn–1–(m– bm b1q
n–m
n
m
31
472*. x (q n − 1) Sn= 1 ; q −1 x1=
20
5
1 −1 3
;
Â
1 61 4 ( − )=x1( − 5 –1); 3 3 3
61 ⋅ 4 3 5 61 ⋅ 4 ⋅ 3 3 244 ⋅ 27 = ⋅ = =27, xn=x5=27 9 1 + 35 244 1 + 35 −1 q −1
[ Sn=x1 q
n
\
=
1 x1 = ; 2 −
(–1)n=1;
]
Q
Q
–1; =
Q
8q − 1 15 = q − 1 , q n −1 = 8;
qn − 1 1 Sn=x1 = q −1 2 1 (−1)n = n ; 64 2 ; n=6. xn=x6=
q = 3 ; Sn=
4
=
1 . 3
7q = 14, q = 2, n −1 q = 8; n = 4.
(− ) Â
1 n −1 2 ; 3 −2
1 >0 ⇒ n 64
1 n − − 1 ; 2
21 1 =– 64 3
± q_lgh
⇒ (−1)n=1
5
1 1 1 1 . − =– 6 =– 2 2 64 2
Â
3 ⋅18 − x1 xn q n − x1 18 3 ⋅ 3 − x1 ; 26 3 +24= ; = q −1 3 −1 3 −1
(26 3 +24)( 3 –1)=3 x1=2
 − 13
Bkoh^y ba mkeh\by aZibr_f kbkl_fm
q n −1 , 165 = 11 q −1 n −1 88 = 11q ;
–
1 = 3
( ) − 1
1 x1 − 3
±x ; 1
; xn=x1qn–1; 18 3 =2 3 ( 3
26
Â
n −1 )n–1; 9= 9 4 ;
–26
–24–3
 ±x ; 1
n=5.
473*. xn=Sn–Sn–1;
xn=
  Â
.
x1=3
b
3 n 3 3 (5 –1)– (5n–1–1)= (5n–5n–1)= 5n–1 4 4 4
Ke_^h\Zl_evgh (xn y\ey_lky ]_hf_ljbq_kdhc ijh]j_kkb_c k
q=5.
32
n–1
474*. S5=b1 =
(
q 5 − 1 11 = ; q − 1 64
) Â
S10 − S 5 = b1 ⋅
q10 − 1 q5 − 1 − b1 ⋅ = q −1 q −1
Â
Â
11 b q10 − q 5 =q5 S5=– ; – =q5 ; q5=– =– =–32. q −1 2 b b S15–S10= 1 (q15–1–q10+1)= 1 q10(q5–1)=q10 S5=(–32)2 S5= q −1 q −1
Â
=16
Â
ÂÂ =16Â
475. −1 x 5 −1 ; S5= q −1 x −1
Z q=x; Sn= b1 q
n
−1 − x 7 −1 x 7 +1 = . ; S7= q −1 − x −1 x +1
[ q=–x; Sn= b1 q
n
476.
Z
1 2 1
q=
=
2− 2 ; 2
S=
2− 2 =
2 (2 − 2 )( 2 )
=
2 2 2 −2
=
1 2 −1
=
2− 2 b1 1 = = : 1 − q − 1 2 − 2 2
2 +1 = 2 +1; 2 −1
[ S=
q=
2− 2 2+ 2 2 2 +2 b1 = =1: 1 − = = 2+ 2 q −1 2⋅2 2 2
2− 2 2+ 2
;
2 +1 . 2
477.
Z b1=1; b2=sin30°= 1 ; q= 1 ; S= 2
2
b1 1 =2. = q −1 1− 1 2
( )
33
[ =
b 3 3 1 ; q=– ; S= 1 = q −1 1+ 2 2
b1=1; b2=–cos30°=–
2( 2 − 3 ) (2 + 3 )(2 − 3 )
3 2
=
2 2+ 3
=
= 2( 2 − 3 ) .
478*. q=
2 , 3
ke_^h\Zl_evgh ]_hf_ljbq_kdZy ijh]j_kkby ² [_kdhg_qgh
m[u\ZxsZy S= Z 4,5= [
b1 1−
2 3
b1 . q −1 ; b1=
1 3
 15
2
5 3 15 ; S= 4 2 = 3 b3= ; b3=q b1; b1= = 4 3 2 1−
2
Â
3
 =11 14 .
479. b2=18; S=81; S= =
b2 b b b1 ; q(1–q)= 2 = ; b2=b1q; b1= 2 ; S= 1− q q (1 − q ) q S
2 18 2 = ; q − q 2 = ; 9q2−9q+2=0; D=(−9)2−4⋅9⋅2=9; 9 81 9 19 + 3 2 19 − 3 1 q1= = ; q2= = . 18 3 18 3 2 2 Ijb q= , b3=b2q=18 =12. Ijb q= 1 , b3=b2q=18 3 3 3
Â
480.
Z 2,01(06)=2,01+0,01Â q_kdZy ijh]j_kkby GZc^_f __ kmffm 2,01(06)=2+
34
1 2 7 + =2 . 100 3300 660
 =6.
² ]_hf_ljbq=0,01, |q|=<1; S=
0,06 2 = ; 0,99 33
[ 5,25(21)=5,25+0,01Â21); 0,(21)=0,21+0,0021... — ]_hf_ljbq_kdZy ijh]j_kkby GZc^_f __ kmffm q=0,01, |q|<1; S= 0,21 = 7 ;
0,99 33 25 7 208 =5 5,25(21)=5+ . + 100 3300 825 \ 0,00(1)=0,01 1+0,01+... — ]_hf_ljbq_kdZy ijh]j_kkby GZc^_f __ kmffm q=0,1, |q|=<1; S= 0,1 = 1 ; 0,00(1)= 1 0,9 9 900 ] 0,28(30)=0,28+0,01 ]_hf_ljbq_kdZy ijh]j_kkby GZc^_f __ kmffm q= 0,0030 =0,01, |q|<1; 0,30 0,30 10 28 10 924 + 10 934 467 = ; 0,28(30)= = = = . S= + 0,99 33 100 3300 3300 3300 1650
  ²
481.
JZ^bmku djm]h\ − ]_hf_ljbq_kdZy ijh]j_kkby Rn kh agZf_gZl_e_f q= 1 < b R1=R klhjhgu d\Z^jZlh\ − ]_hf_ljbq_2
kdZy ijh]j_kkby (an kh agZf_gZl_e_f q= Z >ebgu hdjm`ghkl_c ]j_kkbx kh S=
2πR 1−
1 2
==
2πR 2 2 −1
1 2
<
b a =R 1
2.
h[jZamxl ]_hf_ljbq_kdmx ijh1 agZf_gZl_e_f q= ;
ln=2πRn
2
=2 πR(2 + 2 ) .
[ IehsZ^b djm]h\ Sn=2πRn h[jZamxl ]_hf_ljbq_kdmx ijh]j_k2
2 kbx kh agZf_gZl_e_f q= 1 = 1 ; S= πR 1 =2 πR 2 . 2 1− 2 2
\ I_jbf_lju d\Z^jZlh\
]j_kkbx kh agZf_gZl_e_f q=
pn=4an
h[jZamxl ]_hf_ljbq_kdmx ijh-
1
4R 2
2
; S=
1−
1 2
=
8R 2 −1
=8R(1+ 2 ).
35
] IehsZ^b d\Z^jZlh\
h[jZamxl ]_hf_ljbq_kdmx ijh-
Sn= ¶Q , 2
1 2R 2 1 = ; S= =4 R 2 1 2 1− 2 2
]j_kkbx kh agZf_gZl_e_f q= 482*.
>ebgu klhjhg lj_m]hevgbdZ y\eyxlky qe_gZfb ]_hf_ljbq_kdhc ijh]j_kkbb (an kh agZf_gZl_e_f 1 < b a1=a JZ^bmku hdjm`ghkl_c 2 y\eyxlky qe_gZfb ]_hf_ljbq_kdhc ijh]j_kkbb (rn) kh agZf_gZl_e_f 1 a < b r1= . 2
2 3
Z I_jbf_lju lj_m]hevgbdh\ pn=3an h[jZamxl ]_hf_ljbq_kdmx =6a. ijh]j_kkbx kh agZf_gZl_e_f q= 1 ; S= 3a1 = 3a 1 1− 2
2
a n2
[ IehsZ^b lj_m]hevgbdh\ Sn=
3
]j_kkbx kh agZf_gZl_e_f q= 1 ; S= 2
] IehsZ^b djm]h\
kbx kh agZf_gZl_e_f q= 1 ; S= 4
36
3 3 4
=a2
3 . 3
h[jZamxl ]_hf_ljbq_kdmx ijh-
ln=2πrn
Sn=π UQ
2
4⋅
4
\ >ebgu hdjm`ghkl_c
h[jZamxl ]_hf_ljbq_kdmx
4
ijh]j_kkbx kh agZf_gZl_e_f q= 1 ; S= a
2
2πa 2 3
1 2
=
2πa 3 . 3
h[jZamxl ]_hf_ljbq_kdmx ijh]j_kπa 2 3
12 ⋅ 4
=
πa 2 . 9
483.
Z Dp=R nmgdpby q_lgZ lZd dZd kbff_ljbqgZ hlghkbl_evgh b
j(o)=j(–o): (−o)4=o4.
[ Dp=R nmgdpby y\ey_lky q_lghc ld hgZ kbff_ljbqgZ hlghkbl_evgh b j(–o)=–3(–o)6=–3o6=j(o). \ Dp=R nmgdpby y\ey_lky q_lghc ld hgZ kbff_ljbqgZ hlghkbl_evgh b j(o)= = 21 =p(x). −[
+
x +1
484.
Z Dg=R nmgdpby y\ey_lky g_q_lghc lZd dZd kbff_ljbqgZ hlghkbl_evgh b g(–o)=(–o)5=–o5=–g(o). [ Dg=R nmgdpby y\ey_lky g_q_lghc lZd dZd kbff_ljbqgZ hlghkbl_evgh b g(–o)=–4(–o)3=4o3=–(–4o3)=–g(o). \ H[eZklv hij_^_e_gby Dg=(–; 0)∪(0;+ nmgdpby y\ey_lky g_q_lghc lZd dZd kbff_ljbqgZ hlghkbl_evgh b g(–o)=
12
12
=–g(o). (− x ) x3 ] Dg R nmgdpby y\ey_lky g_q_lghc lZd kbl_evgh b g(–o)=–o−o=–oo=–g(o). 3
=−
dZd kbff_ljbqgZ hlgh-
485.
Z Df=R — kbff_ljbqgZ hlghkbl_evgh b f(x)= =3x4−x2+5=3(–o)4−(–o)2+5=f(–o agZqbl f(x) ± q_lgZy [ Df=R — kbff_ljbqgZ hlghkbl_evgh b f(–o)=(–o)7+2(–o)3= =–o7−2x3=−(x7−2x3)=−f(x), ke_^h\Zl_evgh f(x)− g_q_lgZy \ f(−x)=5(−x)−1=−5x− agZqbl g_ [m^_l gb g_q_lghc gb q_lghc nmgdpb_c ] f(−x)=(−x)2+(−x)+1=x2−x+1≠f(x) b ≠–f(x ke_^h\Zl_evgh f(x)−g_ y\ey_lky gb q_lghc gb g_q_lghc ^ Df=(–; 0)∪(0;+ − nmgdpby kbff_ljbqgZ hlghkbl_evgh b 1 1 f(–o)= =− 5 = − f (x ) ke_^h\Zl_evgh f(x) − g_q_lgZy 5 −x +x x −x nmgdpby e) Df²kbff_ljbqgZ hlghkbl_evgh b f(–o)=(−x−3)2+(−x+3)2= =(x+3)2+(x−3)2=f(x agZqbl f(x)−q_lgZy nmgdpby 486. 1
Z Dg=R — ]jZnbd nmgdpbb kbff_ljbq_g hlghkbl_evgh b g(–
o)=5(−x)3=−5x3=−g(x agZqbl g(x)−g_q_lgZy nmgdpby [ g(–o)=−(–o)+5=x+5≠g(x) b nmgdpby g(−x)≠–g(x) ke_^h\Zl_ev-
gh g(x)−g_ y\ey_lky gb q_lghc gb g_q_lghc nmgdpb_c \ Dg=(–;–1)∪(–1; 0)∪(0; 1)∪(1;+) ² ^ZggZy nmgdpby kbff_ljbqgZ hlghkbl_evgh b g(–o)= 84 = 48 ke_^h\Zl_ev(− x ) − 1
x −1
gh g(x) — q_lgZy nmgdpby ] g(–o)=(−x−2)2=(x+2)2≠g(x) b g(−x)≠g(–x) ke_^h\Zl_evgh g(x) — g_ y\ey_lky gb q_lghc gb g_q_lghc nmgdpb_c 487.
Z
[
488.
Z LZd dZd ]jZnbd q_lghc nmgdpbb kbff_ljbq_g hlghkbl_evgh hkb Hy lh nmgdpby gZ ijhf_`mld_ −∞ ijbgbfZ_l hljbpZl_evgu_ agZq_gby [ LZd dZd ]jZnbd g_q_lghc nmgdpbb kbff_ljbq_g hlghkbl_evgh gZqZeZ dhhj^bgZl lh nmgdpby g_ ijhf_`mld_ −∞ ijbgbfZ_l iheh`bl_evgu_ agZq_gby 489.
Z Ghev nmgdpbb ijb x=−1,5; 1,5; Iheh`bl_evgu_ agZq_gby nmgdpbb ijb x∈(−1,5; 1,5); HljbpZl_evgu_ agZq_gby nmgdpbb ijb x∈[−2; −1,5)∪(1,5; 2].
2
[ Nmgdpby h[jZsZ_lky \ ghev ijb x=−1,5; 1,5;
HljbpZl_evgu_ agZq_gby nmgdpbb ijb x∈(−1,5; 0)∪(1,5; 2]; Iheh`bl_evgu_ agZq_gby nmgdpby ijbgbfZ_l ijb x∈[−2; −1,5)∪(0; 1,5).
490.
Z
6a 5b 5 ⋅ 8a 4b 8 6 ⋅ 8(b 5b 8 )( a 5 a 4 ) 48a 9b13 = = = 3ab . ( 2 a 2b 3 ) 4 2 4 a 8b12 16a 8b12
[
(−3x 2 y ) 4 ⋅ 25 x 3 y 6 (− 3) x 8 y 4 ⋅ 25 x 3 y 6 x11 y10 = = = 9 xy 2 . 9 (15 x 5 y 4 ) 2 225x10 y 8 x10 y 8 4
491.
185=(2⋅32)5=25⋅310=25⋅36⋅34; 126=(22⋅3)6=212⋅36=27⋅25⋅36 lZd 3 b 7=128, 81<128, lh 5<126. 544=(33⋅2)4=312⋅24=310⋅24⋅32, 365 (32⋅22)5=310⋅210=310⋅24⋅26 lZd 2 3 b 6=64, 9<64, lh 4<365. 453=(32⋅5)3=36⋅53, 67=(3⋅2)7=37⋅27=36⋅3⋅27; lZd dZd 53 b ⋅27=384, 125<384, lh 3<67. 4
dZd dZd
492.
Z
20 x + 7 y = 5, 15 x − 4 y = 50;
20 x + 7 y = 5, 4 y = 15x − 50;
7(15 x − 50) = 5, 80 x + 7(15x − 50) = 20, 20 x + 4 15x − 50 ; y= 15 x − 50 y= ; 4 4 185x = 370, 80 x + 105x − 350 = 20, 15 x − 50 y = 15x − 50 ; y= ; 4 4 x = 2, x = 2, y = 15 ⋅ 2 − 50 ; y = −5. 4 6( x + y ) − 10( x − y ) = 8, [ 5( x − y ) + 2( x + y ) = 1; 3
6 x + 6 y − 10 x + 10 y = 8, 5x − 5 y + 2 x + 2 y = 1; x = 4 y − 2, 7(4 y − 2) − 3 y = 1;
− 4 x + 16 y = 8, 7 x − 3 y = 1; x = 4 y − 2, 28 y − 14 − 3 y = 1;
3 x = 4 ⋅ 5 − 2, 3 y= ; 5
2 x = 5 , 3 y = . 5
4 y − x = 2, 7 x − 3 y = 1; x = 4 y − 2, 25 y = 15;
493.
Z = =
−2 x + 10 x − 10 x + 25 2
+
−2 x + 10 16 16 + +1 = +1 = 2 3 x − 15 3( x − 5) ( x − 5)
3(−2 x + 10) + 16( x − 5) + 3( x − 5) 2 3( x − 5) 2
(
=
)
− 6 x + 30 + 16 x − 80 + 3 x 2 − 10 x + 25 3x 2 − 20 x + 25 = ; 3( x − 5) 2 3( x − 5) 2 J_rbf mjZ\g_gb_ x2−20x+25=0; D=202−4⋅3⋅25=100; 20 + 100 20 − 100 10 5 = 5 beb x1 = = = ; 6 6 6 3 5 (3x−5) (x−5) 3x2−20x+25= 3 x − (x − 5) = 3 x2 =
3 x 2 − 20 x + 25 3(x − 5)
2
[
=
(x − 5)(3 x − 5) = 3x − 5 2 3(x − 5) 3(x − 5)
3 y + 18 y + 2 y + 36 2
+
15 y + 57 3 y + 18 15 y + 57 + −2 = −2 = 7 y + 42 ( y + 6) 2 7 ( y + 6)
7(3 y + 18) + (15 y + 57)( y + 6) − 2 ⋅ 7( y + 6) 2 = 7 ( y + 6) 2 ( y + 6)(21 + 15 y + 57 − 14 y − 84) y−6 y−6 . = = = 7( y + 6) 7 y + 42 7 ( y + 6) 2 =
494. 4
⇒
Ijb o=3 y(3)=336 − [hevr_ gmey ijb o=0 5)=(−5)36 ± [hevr_ gmey 495.
Ijb o=−9 y(–9)=(−9)49 y(7)=749 [hevr_ gmey
±
y(0)=036=0; y(–
f_gvr_ gmey ijb o=7
y(0)=049=0;
496.
Nmgdpby f(x)=x20 — \hajZklZ_l gZ ijhf_`mld_ ∞ b m[u\Z_l gZ ijhf_`mld_ −∞; 0). Z LZd dZd lh f(3,7)f(–5,2). \ f(x) — q_lgZy nmgdpby agZqbl f(−7)=f(7). 0<6<7, ke_^h\Zl_evgh f(6)
Nmgdpby g(x)=x35 — \hajZklZ_l gZ ijhf_`mld_ −∞;+∞). Z LZd dZd ! lh g(8,9)>g(7,6). [ LZd dZd −4,6>− lh g(−4,6)>g(−5,7). \ LZd dZd −! lh g(−10)>g(7). ] LZd dZd −63< lh g(−63)
Nmgdpby y(x)=x4 — \hajZklZ_l gZ ijhf_`mld_ ∞ b m[u\Z_l gZ ijhf_`mld_ −∞; 0). Z LZd dZd <1,2< lh 4<1,54. [ LZd dZd <0,7< lh 4<0,84. \ LZd dZd <0,9< lh 4<14=1. ] LZd dZd –3,4<–3,2< lh ± 4>(–3,2)4. ^ Nmgdpby y(x)=x5 — \hajZklZ_l gZ ijhf_`mld_ −∞;+∞) LZd dZd <0,8⇒ 0,35<0,85. _ Nmgdpby y(x)=x5 — \hajZklZ_l gZ ijhf_`mld_ −∞;+∞);
−
1 1 < − ⇒ − < − . 3 4
499. 5
Z Nmgdpby y=x3 \hajZklZ_l gZ ijhf_`mld_ −∞;+∞) lZd dZd > lh 5,73>5,43. [ Nmgdpby y=x3 \hajZklZ_l gZ ijhf_`mld_ −∞;+∞) lZd dZd – 4,1>± lh (−4,1)3>(−4,2)3. \ Nmgdpby y=x3 \hajZklZ_l gZ ijhf_`mld_ −∞;+∞); lZd dZd 0,8>(− lh 3>(−1,3)3. ] Nmgdpby y=x6 \hajZklZ_l gZ ijhf_`mld_ ∞); lZd dZd 0< lh 6<1,86. ^ Nmgdpby y=x6 m[u\Z_l gZ ijhf_`mld_ −∞ lZd dZd ±5,3<– 4,2< lh (−5,3)6>(−4,2)6. _ Nmgdpby y=x6 \hajZklZ_l gZ ijhf_`mld_ ∞); lZd dZd 0<2,1< lh 2,16<3,16. 500.
243=35 agZqbl ]jZnbd nmgdpbb y=x5 ijhoh^bl q_j_a lhqdm : 243≠(−3)5 agZqbl ]jZnbd nmgdpbb y=x5 g_ ijhoh^bl q_j_a B; 3125=55, agZqbl ]jZnbd nmgdpbb y=x5 ijhoh^bl q_j_a C.
501.
128=27 ke_^h\Zl_evgh lhqdZ A ijbgZ^e_`bl ]jZnbdm nmgdpbb y=x7; −128=(−2)7 ke_^h\Zl_evgh lhqdZ B ijbgZ^e_`bl ]jZnbdm nmgdpbb y=x7; 2187≠(−3)7 ke_^h\Zl_evgh lhqdZ C g_ ijbgZ^e_`bl ]jZnbdm nmgdpbb y=x7.
502.
Z y=0,725≈0,19; [ y=2,65≈118,81; \ y=(−3,4)5≈−454,35. 503.
Z
6
[
\
]
504.
Z — q_lgh_ qbkeh ke_^h\Zl_evgh ]jZnbd nmgdpbb y=x40 jZkiheh`_g \ , b ,, q_l\_jlyo [ — g_q_lgh_ qbkeh ke_^h\Zl_evgh ]jZnbd nmgdpbb y=x123 jZkiheh`_g \ , b ,,, q_l\_jlyo 505.
Z j_r_gby [ j_r_gb_ \ g_l j_r_gbc ] j_r_gb_ 506.
Z ?keb y [ ?keb y \ ?keb y
lh x1 ≈−1,5; x2 ≈1,5. lh x1≈−1,4; x2 ≈1,4. lh x1≈−1,7; x2 ≈1,7.
507.
Z x1≈− beb x2≈1,55. 7
[ x1≈− beb x2≈1,7. 508.
Z
y=x3. x −2 −1 y −8 −1
Kljhbf
0 0
1 1
]jZnbd
nmgdpbb
2 8
Kljhbf ]jZnbd nmgdpbb ijyfZy iZjZee_evgZy Hz b ijhoh^ysZy q_j_a GZoh^bf lhqdm i_j_k_q_gby [ Kljhbf ]jZnbd nmgdpbb
y=2 —
y=x3.
Kljhbf ]jZnbd nmgdpbb iZjZee_evgZy Hz b ijhoh^ysZy q_j_a GZoh^bf lhqdm i_j_k_q_gby \ Kljhbf ]jZnbd nmgdpbb y=x3. Kljhbf ]jZnbd nmgdpbb y=−5 — ijyfZy iZjZee_evgZy Hz b ijhoh^ysZy q_j_a GZoh^bf lhqdm i_j_k_q_gby Z ≈ [ ≈ \ ≈−1,7).
y=4−ijyfZy
509.
Nmgdpby y=x6 \hajZklZ_l gZ ∞)
x=1001>2, >10, >102=100, >103=1000⇒y(1001) >26, >106, >1012= =1006, >1018=10006.
510.
Nmgdpby y=x5 \hajZklZ_l gZ ijhf_`mld_ ±∞;+∞); LZd dZd x=–11<–10, <± lh y(–11)<(–3)5, <(–10)5; ijb x=–105; y(x)=y(–105)=(–105)5=–1025<–1021. 511. f(1)=13=1; f(0)=03=0; f(2)=23=8; f(3)=33=27; I − I = − =
I − I = − = I − I = − = 8
f(1)−f(0)
512.
m=ρV ]^_ ρ — iehlghklv V — h[t_f ?keb x — ^ebgZ j_[jZ lh V=x3 ke_^h\Zl_evgh m=ρx3 LZd dZd ijb x kf m ] lh ρ⋅103; ρ ]kf3). Ke_^h\Zl_evgh m=0,7x3. Ihkljhbf ]jZnbd wlhc aZ\bkbfhklb x m
_keb m
lh x≈5,2.
0 0
1 0,7
2 3 4 5 5,6 18,9 44,8 87,5 Ih kfukem aZ^Zqb x≥0. ?keb x lh m=5,6; _keb x lh m=87,5; _keb m lh x≈3,5;
513.
Z
y=x3.
Kljhbf ]jZnbd nmgdpbb
x −2 −1 0 y −8 −1 0
1 1
2 8
x≈1,3
Kljhbf ]jZnbd nmgdpbb ijyfZy Lhqdb i_j_k_q_gby x1=0;
y=x+1 ² x y
0 1
2 3
x2≈1,4; x3≈–1,4
[ Kljhbf ]jZnbd nmgdpbb y=x3. Kljhbf ]jZnbd nmgdpbb y=2x−ijyfZy Lhqdb x1≈1,6; x2≈–0,6; x3≈–1,2 i_j_k_q_gby x y
0 0
2 4
\ Kljhbf ]jZnbd nmgdpbb y=x3. Kljhbf ]jZnbd nmgdpbb y=2x+1 ² ijyfZy 9
x y
0 1
2 5
514. cn=c1qn−1; c9=c1q9−1=c1q8⇒ c1=
(
c9 q
8
);
=
81
( 3)
8
=
81 = 1; 81
c1 q n − 1
Sn =
q −1
S13 =
( 3)
− 1 = 3 −1 13
= +
( 3)
13
(
)
− 1 3 + 1 = 2
− +
(
)
−
=
.
515.
1) y=x12−x6⇒ Dy=R ² nmgdpby kbff_ljbqgZ hlghkbl_evgh gmey b y(−x)=(−x)12−(−x)6=x12−x6=y(x) ² q_lgZy nmgdpby 2) y=x9−x5⇒ Dy=R ² kbff_ljbqgZ hlghkbl_evgh gmey b y(−x)=(−x)9−(−x)5=(−x)9−(−x)5=−x9+x5=−(x9−x5) ² g_q_lgZy nmgdpby 3) y=x10−x5; y(−x)=(−x)10−(−x)5=x10+x5 ≠y(x) ≠–y(x)— gb q_lgZy
gb g_q_lgZy nmgdpby 4) y = y( − x) =
pby
x x + x2 +1 −x 4
⇒ Dy=R — kbff_ljbqgZ hlghkbl_evgh gmey b
( − x) + (− x) + 1 4
2
=−
x x + x2 +1 4
=−y(x) ²
g_q_lgZy nmgd-
516.
Z 1 − y + y 1+ y
=
+ 6 y 6 + y 1− y y ( y + 6)(1 + y ) = + = : y − 1 1 + y 1 + y ( y − 1)( y + 1)(6 + y ) 2
2
− y 2 + 2 y −1+ y + y 2 3y −1 1− y y = = 2 + . 1+ y y −1 y 2 −1 y −1
10
− 49 1 2x + 7 = ⋅ − 2 x + 5 4 x 2 + 14 x 4 x 2 − 10
[ 4 x − =
=
2
[ + [ [ −
=
[ − [ − − [ [ [
[ − [ + [ + ⋅ [ [ +
+ [ +
−
−
=
4 x 2 − 14 x − 10 x + 35 − 4 x 2 − 10 x − 14 x − 35 = 2 x 4 x 2 − 25
(
−[ [ [
−
517. 144
=−
)
[
−
.
agZqbl lhqdZ :
—
ijbgZ^e_`bl ]jZnbdm nmgdpbb
y= x .
pbb y=
≠ −
agZqbl lhqdZ < — g_ ijbgZ^e_`bl ]jZnbdm nmgd-
x.
−100 ∉ Dy=[0;+∞), agZqbl
nmgdpbb y=
lhqdZ K
—
g_ ijbgZ^e_`bl ]jZnbdm
x.
518. 4
1 1 1 1 ≥ b = 4 = ; 2 16 2 2 [ ≥ b 3=27; \ LZd dZd − lh g_ y\ey_lky Zjbnf_lbq_kdbf dhjg_f ] ≥ gh 5≠0,0001.
Z
519.
Z ≥ b 2=361; [ ≥ b 3=343; \
6
1 1 1 1 ≥ b = 6 = ; 2 2 64 2 5
2 25 32 2 ≥ b = 5 = ; 3 3 343 3 ^ ≥ b 10=1; _ ≥ b 7=0;
]
11
` − 3 ≥ b (2 − 3 ) = 2 2 − 4 3 + 3 = 7 − 4 a 5 −2≥ b 5 − 2)2=5−4 5 +4=9−4 5 . 2
520.
Z 4 16 = 4 24 =2. [ 5 32 = 5 25 = 2. \ 12 1 =1. ] 3 − 1 = −3 1 = −3 8
^
4
5
8
1 1 =− . 3 2 2
1 4 81 4 34 3 = = = . 16 16 24 2
_ 3 3 3 = 3 8
27 3 33 3 = = . 8 23 2
` 3 − 0,027 = − 3 0,027 = − 3 (0,3)3 a 4 0,0625 = 4 (0,5)4 = 0,5.
= −0,3.
521.
Z 9 512 = 9 29 = 2. [ 3 1331 = 3 113 = 11. \ 8 0 =0. ] 7 − 128 = −7 128 = − 7 27 ^
4
16 2 2 =4 4 = . 625 5 5
_ 5 0,00001 = 5 (0,1)5 `
4
7
32
522.
= 0,1.
58 4 625 5 4 54 5 2 = = = = =1 . 81 81 3 3 34 3
a 5 7 19
12
= 2.
4
=5
243 5 35 3 = = . 32 25 2
3;
Z 3 5 ≈1,7; [ 3 − 4 ≈−1,6; \ 3 − 1 =−1; ] 3 2 ≈ 1,25. 523.
Z 4 2 ≈ ±1,2; [ 4 5 ≈ ±1,5; \ 4 8 ≈ ±1,7. 524.
ke_^h\Zl_evgh lhqdZ ? g_ ijbgZ^e_`bl ]jZnbdm 81 =3≠− ke_^h\Zl_evgh lhqdZ F g_ ijbgZ^e_`bl ]jZnbdm −16∉Dy=[0;+∞ ke_^h\Zl_evgh lhqdZ K g_ ijbgZ^e_`bl ]jZnb4
81
4
dm
4
0,0001
ke_^h\Zl_evgh lhqdZ L ijbgZ^e_`bl ]jZnbdm
525. 3 3 3 3
8 =2, agZqbl lhqdZ : ijbgZ^e_`bl ]jZnbdm
216 =6, agZqbl lhqdZ < ijbgZ^e_`bl ]jZnbdm
27 =3 ≠– agZqbl lhqdZ K g_ ijbgZ^e_`bl ]jZnbdm
− 125 =− 3 125 =− agZqbl lhqdZ D ijbgZ^e_`bl ]jZnbdm
526.
Z
3
1 < 3 3,5 < 3 8 ; 1< 3 3,5 < 3 23 ; 1 < 3 3,5 < 2 ;
[ 3 8 < 3 20 < 3 27 ; 3 23 < 3 20 < 3 33 ⇒ 2 < 3 20 < 3 ; \ 4 1 < 4 9 < 4 16 ; 1< 4 9 < 4 24 ⇒ 1 < 4 9 < 2 ; ] 4 16 < 4 52 < 4 81 ; − 4 2 4 < 4 52 < 4 34 ⇒ 2 < 4 52 < 3 . 527.
Z 3 1 ≤ 3 x ≤ 3 8 ; 1≤ 3 x ≤ 3 23 ⇒ 1 ≤ 3 x ≤ 2 [ 3 − 1 ≤ 3 x ≤ 3 1 ; −1≤ 3 x ≤1. \ 3 − 27 ≤ 3 x ≤ 3 0 ; − 3 33 ≤ x ≤ 0 ⇒ −3 ≤ x ≤ 0 . 13
528.
Z 4 0 ≤ 4 x ≤ 4 1 ⇒ 0≤ 4 x ≤1. [ 4 1 < 4 x < 4 81 ⇒ 1< 4 x < 4 34 ⇒ 1 < 4 x < 3 . \ 4 256 ≤ 4 x ≤ 4 625 ⇒ 4 44 ≤ 4 x ≤ 4 54 ⇒ 4 ≤ 4 x ≤ 5 . 529.
Z n=3 — g_q_lgh_ ⇒ \ujZ`_gb_ bf__l kfuke [ n=7 — g_q_lgh_ ⇒ \ujZ`_gb_ bf__l kfuke \ n=4 — q_lgh_ ⇒ \ujZ`_gb_ g_ bf__l kfukeZ ] n=5 — g_q_lgh_ ⇒ \ujZ`_gb_ bf__l kfuke ^ n=8 — q_lgh_ ⇒ \ujZ`_gb_ g_ bf__l kfukeZ _ (–7)2>0 ⇒ \ujZ`_gb_ bf__l kfuke 530.
Z 5 − 32 = −5 32 = −5 25 = −2 . [ 7 − 1 = −7 1 = −1 . \ −2 4 81 = − 24 34 = −2⋅3=−6. ] −4 3 27 = − 4 ⋅ 3 33 = −4⋅3=−12. ^ 5 32 + 3 − 8 = 2 − 3 8 = 5 25 − 3 23 = 2 − 2 = 0 . _ 4 625 − 3 − 125 = 4 54 + 3 53 = 5 + 5 = 10 . ` −6 3 0,125 = 12 − 63 0,53 = 12−6⋅0,5=12−3=9. a 4 0,0081 = 1 + 104 0,34 = 1+10⋅0,3=1+3=4. 531.
Z 3 − 31 = − 3 31 . [ 5 − 17 = −5 17 . \ 11 − 2 = −11 2 . ] 17 − 6 = −17 6 . 532.
Z 3 − 125 = −3 125 = −3 53 [ 6 0 = 0 . 14
= −5 .
\ −5 4 16 = − 54 2 4 = −5⋅2=−10. ] −3 3 − 64 =−3⋅(− 3 43 )=−3⋅(−4)=12. ^ 3 − 3 3 +
2,25 = −3
8
27 33 + 1,5 = −3 3 + 8 2
_ 34 16 − 43 27 = 34 24 − 43 33
(1,5)2
=−
3 + 1,5 =0. 2
= 3 ⋅ 2 − 4 ⋅ 3 = 6 − 12 = −6 .
533.
Z (
10
)
2
2
1 = 10 2 =10. 3
[ (
1 5 = 5 3 =5.
\ (−
4
)
3
3
12
)
4
4
]
(2
5
−2
)
5
=2 ⋅ 5
1 = − 12 4 = 12.
(
5
−2
( )
1 6
)
5
(
=2 ⋅ − 2 5
^
6
_
2 4 (− 3) = 2 3 4 = 2 ⋅ 34
`
− 25 3 = − 5 2
a
2 6 = 26 4
6
6
6
)
5
5
1 = − 32 ⋅ 2 5 = −32⋅2=−64.
= 2.
( )
4
( ) (4 ) = 6
64 2 =
5
3 2
3
6
1 4
= 2⋅3=6.
( )
= 5 6 = − 56 6
46 =
( )
1 46 6
1 6
= −5.
= 4.
534.
Z
( 7) 4
4
4
1 = 74 = 7 .
15
[
( − 3 ) = (− 3 ) 7
7
\ (2
4
3
)
4
7
7
7
1 = − 3 7 = −3 .
( 3)
=2 ⋅ 4
4
4
4
1 = 16 ⋅ 3 4 = 16⋅3=48.
]
(− 3 2 ) = (− 3) ⋅ ( 2 )
^
5
3
3
3
3
3
3
1 = −27 2 3 =−27⋅2=−54.
5
1 7 = 7 5 = 7. 5
_ 53 (− 2 )3 ` 10 32 2 a
− 6 27 2
(
)
( )
3 = 5 ⋅ − 3 23 = 5 ⋅ − 23 = −5 23
( )= 2 = − (3 ) = −
= 10 25 6
2
10 10
3 2
6
= −5⋅2=−10.
( ) =2. = −(3 ) = −3 .
= 210
36
1 3
1 10
1 6 6
535.
Z JZ\_gkl\h \_jgh ijb Z≥0. [ JZ\_gkl\h \_jgh ijb Z≤0. \ JZ\_gkl\h \_jgh ijb ex[hf Z. 536.
( )
1 3
Z
x = 3 27 = 3 33 = 33
[
x = 3 − 27 = −3 27 = −3 33 = − 33
= 3.
( )
1 3
= −3 .
\ x = ±4 16 = ± 4 24 = ±2 . ] G_l j_r_gbc ld ijZ\Zy qZklv — qbkeh hljbpZl_evgh_ ^ x = 3 7 . _ x = 3 − 7 = − 3 7 . ` G_l j_r_gbc ld ijZ\Zy qZklv — qbkeh hljbpZl_evgh_ a x = ±6 11 . 16
eh
b x = 8 0 = 0 . d x3=−8; x = 3 − 8 = −3 8 = −3 23 = −2 . e x = ±8 1 = ±1 . f x8=−1 — g_l j_r_gbc ld ijZ\Zy qZklv hljbpZl_evgh_ qbk537.
Z
x2 = − 4
[
o4=1;
x4 =
1 ; 16
x1 = 4
beb
1 4 1 1 = = 16 24 2
1 1 1 = −4 =− . 16 24 2
( )
1 5 x = −4 ; o5=−32; x = 5 − 32 = −5 32 = −5 25 = − 25 8
\ −0,01o3=−10; o3=1000; ]
o6=1,28;
1 5
= −2 .
x = 3 1000 = 3 103 = 10 .
o6=64;
x1 = 6 64 = 6 26 = 2
beb
x2= − 6 64 = − 2 6 = −2 . 6
^ o9=2,4; o9=8; _
−
x = 9 8 = 23 = 3 2 . 9
3 8 3 51 ⋅ 4 x = −12 ; x 8 = = 17 ; x1 = 8 17 4 4 4⋅3
beb x2= − 8 17 .
538.
Z x = 5 8 . [ x = 7 − 5 = −7 5 . \ o4=19; x1 = 4 19 beb x 2 = −4 19 . ] o10=−6 — g_l j_r_gbc ld ijZ\Zy qZklv ± hljbpZl_evgh_ qbkeh ^ o3=−0,81; o3=−27; x = 3 − 27 = −3 27 = −3 33 = −3 .
17
_
o4=625;
x4 =
x2 = − 4
625 ; 16
x1 = 4
625 4 5 4 5 = = 16 24 2
beb
625 54 5 = −4 4 = − . 16 2 2
539.
Z =jZnbd nmgdpbb y=(x−2)2 − iZjZ[heZ m dhlhjhc \_l\b gZijZ\e_gu \\_jo y
2) −1
x
0
1
2 4
GZc^_f dhhj^bgZlu \_jrbgu − E =− =; D ⋅ y\=22−4⋅2+4=0 (+2; 0) —
[¸ = −
3)
1 2
x
\_jrbgZ iZjZ[heu y
9
4
y
y=–
+1
0
[
=jZnbd nmgdpbb iZjZ[heZ m dhlhjhc \_l\b gZijZ\e_gu \gba GZc^_f dhhj^bgZlu \_jrbgu E iZjZ[heu = =; [¸ = −
2
x +5
3 1 2
–2
D
x
(0; 5) — \_jrbgZ iZjZ[heu 3)
x y
2 3
3 1 2
−2 3
1 y = − x2 + 5 − 2
⋅
y\=5;
0 5
\ =jZnbd nmgdpbb y=2x2+5x − iZjZ[heZ m dhlhjhc \_l\b gZijZ\e_gu \\_jo 18
GZc^_f dhhj^bgZlu \_jrbgu iZjZ[heu
\¸ = −
E =− = − = − ; D ⋅
\G = ⋅ − + ⋅ − = 1 2 ⋅ 25 5 ⋅ 5 25 = − =− = −3 . 16 4 8 8 3)
x y
0 0
1 5,5
−1 5,5
−2,5 0
_s_ ljb lhqdb kljhdb kbff_ljbqgh lZ[ebqguf hlghkbl_evgh ijyfhc o=−1,25. ²
540.
Z J_rbf mjZ\g_gb_ o2+3o−10=0;
D=32−4⋅1⋅(−10)=49; x1 =
− 3 + 49 =2 2
beb
− 3 − 49 = −5 ⇒ o2+3o−10=(o−2)(o+5); 2 x 8 14 − = ; x − 2 x + 5 ( x − 2)( x + 5) x (x + 5) − 8(x − 2 ) − 14 = 0 ; (o−2)(o+5)≠0; (x − 2 )(x + 5) x2+5x−8x+16−14=0; x2−3x+2=0; D=32−4⋅2⋅1=9−8=1; 3 +1 3 −1 x1 = = 2 beb x 2 = = 1 Gh o≠ agZqbl o=1. 2 2
x2 =
[ J_rbf mjZ\g_gb_ y2+11y−21=0; D=112−4⋅2⋅(−21)=289;
− 11 + 289 3 − 11 − 289 = beb y 2 = = −7 ; 4 4 2 3 2y2+11y−21= 2 y − (y+7)=(2y−3)(y+7); 2 y1 =
19
y 1 17 + + = 0; 2 y − 3 y + 7 (2 y − 3)( y + 7 ) y ( y + 7 ) + (2 y − 3) + 17 = 0 ; (2y−3)(y+7)≠0; (2 y − 3)( y + 7 ) y2+7y+2y−3+17=0; y2+9y+14=0; D=92−4⋅14=81−56=25; y1 =
− 9 + 25 = −2 2
beb
y2 =
− 9 − 25 = −7 2
Gh
y≠−
y=–2.
541. a −5
12a − 61
a −5
− a +5 a − 5a + 25 (a − 5)(a + 5) − (12a − 61) = = − 2 (a + 5)(a − 5a + 25) (a + 5)(a 2 − 5a + 25) 1)
a − 5a + 25 12a − 61 2
−
3
3
=
2
=
a 2 − 25 − 12a + 61 a 2 − 12a + 36 = = (a + 5)(a 2 − 5a + 25 (a + 5)(a 2 − 5a + 25)
=
a 2 − 25 − 12a + 61 a 2 − 12a + 36 = = (a + 5)( a 2 − 5a + 25 ( a + 5)( a 2 − 5a + 25)
=
(a − 6) . (a − 6) 2 = 3 2 (a + 5)(a − 5a + 25) a + 53 2
2) = =
(a − 6) 2
:
3a − 18
(a + 5)(a − 5a + 25) 2a − 10a + 50 2
2
=
(a − 6 )2 3(a − 6) = : (a + 5)(a 2 − 5a + 25) 2(a 2 − 5a + 25) ( a − 6) 2 ⋅ 2( a 2 − 5a + 25) ( a + 5)( a − 5a + 25) ⋅ 3( a − 6) 2
=
2( a − 6) 2 a − 12 = . 3( a + 5) 3a + 15
542.
Z 3 8 ⋅ 27 = 3 8 ⋅ 3 27 = 3 23 ⋅ 3 33 = 2⋅3=6. [ 4 16 ⋅ 0,0001 = 4 16 ⋅ 4 0,0001 = 4 24 ⋅ 4 0,14 20
= 2⋅0,1=0,2.
agZqbl
\ 4 625 ⋅ 16 = 4 625 ⋅ 4 16 = 4 54 ⋅ 4 2 4 = 5⋅2=10. ] 4 0,0016 ⋅ 81 = 4 0,0016 ⋅ 4 81 = 4 (0,2)4 ⋅ 4 34 = 0,2⋅3=0,6. ^ 5 243 ⋅ _
6
64 ⋅
` 3
1 5 243 = = 32 32
1 64 =6 = 729 729 3
8 8 =3 = 125 125
a 5 − 7 19
=5 −
32
3 3
5
243
5 6 6
2
3
5
3
32 64 729
=
= =
5
35
5
2
5
6
26
6
6
3
=
3 = 1,5 . 2
=
2 . 3
2 . 5
5 5 5 243 243 3 3 =− 5 =− =− . 5 5 32 2 32 2
543.
Z 3
( )
1
( )
1
3 3 3 3 3 56 ⋅ 2 9 = 3 56 ⋅ 29 = 3 (5 2 ) 3 ⋅ 3 (23 ) 3 = 5 2 ⋅ 23 =
= 52 ⋅ 23 = 25 ⋅ 8 = 200 .
[
4
78 = 34
4
(7 2 ) 4 4
34
\ 5 0,210 ⋅1010
(
1 2 5 5
]
56
= (0,2 ) 3
2
=
= 5 0,210 ⋅ 1010 = 5
1 2 5 5
) ⋅ (10 )
9
3
=
1 7 2 49 = = 16 . 3 3 3
3
56 29
3
= 3
( )⋅ ( )
=
= 0,2 2 ⋅ 10 2 = 0,04 ⋅ 100 = 4 .
(5 ) (2 )
2 3 3 3
=
52 2
3
=
25 1 =3 . 8 8
21
^
312 = 28
4
_ 5
55 10
13
3 4
( )
2 4
4
5
=
( )
(3 ) (2 )
4
5
1
33 4 4 3 = 3 = 27 = 6 3 . = 1 4 4 22 22 4 4
55
5
=
1310
5
=
(13 )
5
2
5 13
2
=
544.
0,125 = 26
\
4
810000 ⋅
]
4
216 3
8
4
=
4
( )
3 = 3 0,008 ⋅ 56 = 3 (0,2 ) ⋅ 3 5 2
Z 3 0,008 ⋅ 56 [ 3
5 . 169
3
3
0,125 3
2
6
=
3 3
0,53
=
(2 )
2 3
4
3
=
8
4
(2 ) (3 )
4 4
=
2 4
24 3
2
=0,2⋅52=0,2⋅25=5.
0,5 = 0,125 . 4
1 4 810000 4 810000 = = 4 = 16 16 16 216
3
=
4 4
30 4 2
4
=
30 = 15 . 2
16 7 =1 . 9 9
545.
Z 3 24 ⋅ 9 = 3 8 ⋅ 3 ⋅ 9 = 3 8 ⋅ 27 = 3 8 ⋅ 3 27 = 3 23 ⋅ 3 33 = 2 ⋅ 3 = 6 . [ 5 48 ⋅162 = 5 6 ⋅ 2 ⋅ 8 ⋅ 81 = 5 2 ⋅ 3 ⋅ 23 ⋅ 2 ⋅ 34 = 5 35 ⋅ 25 = 5 = 35 ⋅ 25 =3⋅2=6. 5
\
4
125 4 = 625 = 4 54 = 5 . 0,2
]
4
16 = 0,0625
4 4
16
0,0625
=
4 4
24
0,5 4
=
2 =4. 0,5
546.
Z 3 75 ⋅ 45 = 3 5 ⋅ 5 ⋅ 3 ⋅ 3 ⋅ 3 ⋅ 5 = 3 33 ⋅ 53 22
3 3 = 33 ⋅ 53 = 3 ⋅ 5 = 15 .
[ 4 54 ⋅ 24 = 4 3 ⋅ 3 ⋅ 3 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 3 = 4 24 ⋅ 34
= 4 2 4 ⋅ 4 34 = 2 ⋅ 3 = 6
.
\
54 3 = 3 216 = 6 3 = 6 . 0,25
3
547.
Z 4 4 ⋅ 4 4 = 4 4 ⋅ 4 = 4 16 = 4 24 = 2 . [ ⋅ = ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ \ 5 2 5 ⋅ 7 2 ⋅ 5 7 3 = 5 2 5 ⋅ 7 2 ⋅ 7 3 = ⋅
= 3 53 ⋅ 3 33 = 5 ⋅ 3 = 15 .
=
⋅
=
= ⋅ = .
] 6 510 ⋅ 6 212 ⋅ 5 2
( ) ⋅ (2 ) 6
= 6 52
2 6
6
= 510 ⋅ 212 ⋅ 5 2 = 6
512 ⋅ 212 = 6 512 ⋅ 6 212 =
= 5 2 ⋅ 2 2 = 25 ⋅ 4 = 100 .
(
^ 3 8 −
6
)(
)
37 ⋅ 3 8 + 37 = 3 8 − 37 8 + 37 = 3 8 2 −
( 37 )
2
=
= 3 64 − 37 = 3 27 = 3 33 = 3 .
_ 3
17 + 3 ⋅ 3 17 − 3 = 3
( 17 + 3)( 17 − 3) =
3
17 − 9 = 3 8 =
= 3 23 = 2 .
548.
Z [
3
54
3
2
5
3
5
\
7
]
4
96
=3
54 3 = 27 = 3 33 = 3 . 2
=5
3 5 1 5 1 1 = = = . 96 32 25 2
256 7
2
=7
2500 4
4
256 7 = 128 = 7 2 7 = 2 . 2
=4
2500 4 = 625 = 4 5 4 = 5 . 4 23
549.
Z
20 ⋅ 5 = 20 ⋅ 5 = 100 = 10 2 = 10 .
[ 4 32 ⋅ 3 ⋅ 4 8 ⋅ 27 = 4 32 ⋅ 3 ⋅ 8 ⋅ 27 = 4 2 3 ⋅ 4 ⋅ 3 ⋅ 2 3 ⋅ 33
( )
= 4 28 ⋅ 34 = 4 2
\ ]
8 2 4 4
3 48
= =4
2 4
=
⋅ 4 34 = 2 2 ⋅ 3 = 4 ⋅ 3 = 12 .
8 = 4 =2. 2 3 4 1 4 1 1 = = = . 48 16 24 2
550.
Z 25a 2 = 5 2 ⋅ a 2 = 5 2 ⋅ a 2 = 5 ⋅ a = 5a . [ 3 8b3 = 3 8 ⋅ 3 b3 = 3 23 ⋅ 3 b3 = 2b . \ 4 81c 4 = 4 81 ⋅ 4 c 4 = 4 34 ⋅ 4 c 4 = 3c . ] 5 32 x10 = 5 32 ⋅ 5 x10 = 5 25 ⋅ 5 (x 2 )5 = 2 x 2 . 551.
Z 9 x = 3 x . [ 12b = 4 ⋅ 3b = 2 3b . \ 25b 3 = 52 ⋅ b 3 = 5b b . ] 3 24c 6 = 3 2 3 ⋅ 3(c 2 )3 = 3 (2c 2 )3 ⋅ 3 = 2c 2 3 3 .
^ 3 250c10 = 3 2 ⋅ 53 ⋅ c10 = 3 (5 ⋅ c 3 )3 ⋅ 2c = 5c 3 3 2c . _ 4 162b 6 = 4 34 ⋅ 2b 4 ⋅ b 2 = 4 ( 3b) 4 ⋅ 2b 2 = 4 (3b) 4 ⋅ 4 2b 2 552.
Z = ⋅ = . [ 53 3 = 3 53 ⋅ 3 = 3 375 . \ 24
25
1 5 25 5 32 5 = = = 4. 8 8 8
= 3b4 2b 2 .
] a 4 5 = 4 a 4 ⋅ 4 5 = 4 5a 4 lZd dZd Z>0 ^ b6 2 = − 6 b 6 ⋅ 6 2 = −6 2b 6 lZd dZd b<0 _ c10 3c 2 = 10 c 10 ⋅ 10 3c 2 = 10 3c 10 ⋅ c 2 = 10 3c 12
.
553.
Z 4 16c = 4 2 4 ⋅ c = 4 2 4 ⋅ 4 c = 24 c . [ 3 27 y = 3 33 y = 3 33 ⋅ 3 y = 33 y . \ 50 x 3 = 2 ⋅ 52 ⋅ x 2 ⋅ x = (5 x )2 ⋅ 2 x = (5x )2 ⋅ ] 4 5a 6 = 4 5a 4 ⋅ a 2 = 4 a 4 ⋅ 4 5a 2 = −a ⋅ 4 5a 2 .
2 x = 5x 2 x .
554.
Z 2 3 = 4 ⋅ 3 = 12 . [ 23 5 = 3 23 ⋅ 5 = 3 8 ⋅ 5 = 3 40 . \ 34 1 9
]
34 4 81 4 = = 9. 9 9
=4
a 3 2 = 3 2a 3 .
555.
Z
2 = 25
[ 3
2 = 27
\
3
]
4
1
5
2 25 3 3
2 27
3 38 = = 5 5
2
=
52 3
=
3
3
2 3
23
3
3
3
=
5
=
^
2 . 3
_
.
`
a9 = 6
1 4 16 4 16 = = 4 = 3 3 3
.
a 4
2 3
a2 = 3
2 . 5
=
5
4 4
24 3
=
2 4
3
4
5 b
4
=
a2 3 4 4 3
5
b
3 3
7 b
4
12
6
=
.
3
=−
(a ) 3
a
=
= 4
4
5 . b
a3 3
.
6
7
(b )
3 4
=
4
7
b3
.
556.
25
Z [ \ ] ^
3 5 2 3
=
2
3 4
3
=
3
49
4
=
34 3
3
23 3 2 3 = 2 = 4. 2
=3
34 4 3 4 = 3 = 27 . 3
73 49 4
=
216
=3
2
4
18 4
23
3
4
3 5. 5
=
5 5
3
7 3
3 5
=
73
=3
18 4
7
18 4 4 4 4 = 486 = 3 4 ⋅ 6 = 3 4 ⋅ 4 6 = 34 6 . 216
=4
216
=37 .
2
557.
Z
1
[
2
\ ]
5
12 9
15 3
^
4
_
4
5
=
6 7 4
558.
26
=
32
=
=
5⋅ 5
12 ⋅ 12
12 ⋅ 3 3 3
9⋅ 3 3
=
153 25 3
5 ⋅ 3 25
4
7 4 343 4⋅4 8 4
32 ⋅ 8 4
2 12 1 = 12 ; 12 6
=
12 ⋅ 3 3 3
=
6 ⋅ 4 343
=
1 5; 5
2 12
=
12 3
5
=
=
27
=
153 25 3
125
64 343 4
=
2401 4⋅4 8 4
256
12 ⋅ 3 3 3
=
= =
33
153 25 3
53
64 343 4
2401
4⋅4 8 4
44
12 ⋅ 3 3 = 43 3 ; 3
=
=
153 25 = 33 25 ; 5
=
64 343 6 4 = 343 ; 7 7
=
4⋅4 8 4 = 8. 4
1
Z
3
1 1 2 6 = 63 = 66 = 6 6 . 1
[ 3
1 3 1 2 = 22 = 2 = 6 2 . 6
\
1 1 4 3 = 3 3 = 312 = 12 3 .
1
4 3
1
] ^
x x = 3
_ `
6
9
x2 ⋅ x =
m m2 =
3 3
p4 p 3 =
4
3
3
3 3
p4 ⋅4 p3 =
4
m3 ⋅ m2 =
2⋅3
7 2⋅2 = 7 2 = 3 49 .
=
8⋅2
42 = 8 4 =
a6 =
3⋅3
a 3⋅2 = a 2 .
74 =
a 16 4 2 b
3 3 2 x3 = x 2 = x 4 = 4 x3 .
m5 = m5 . 9
p7 = 8 p7 .
3
4⋅2
22 = 4 2 .
3
559. 1
Z 3
1 1 3 3 = 32 = 36 = 6 3 .
[ 4 4 = 8 4 = 4⋅2 2 2 = 4 2 . \ 3 a 3 a = 3 3 a 3 ⋅ 3 a = 3 3 a 4 = 9 a 4 . ] 4 m3 m = 4 3 m 3 ⋅ 3 m = 4 3 m 4 = 12 m 4 = 4⋅3 m 4 = 3 m . ^ 10 815 = 5⋅2 83⋅5 = 2 83 = 512 = 2 ⋅ 256 = 16 2 . _ 4 43 4 = 4 3 4 3 ⋅ 3 4 = 4 3 4 4 = 4⋅3 4 4 = 3 4 . 27
560.
Z 4 1296 = 4 362 = [ 4 4096 = 4 642 = \ 4 6561 = 4 812 =
36 = 6 2 = 6 ; 64 = 82 = 8 ; 81 = 9 2 = 9 .
561.
Z LZd dZd ke_^h\Zl_evgh 4 8 < 4 9 = 3 . [ LZd dZd ! ke_^h\Zl_evgh 6 49 = 3 7 > 6 48 . \ LZd dZd ! ke_^h\Zl_evgh 6
1,44 = 3 1,2 > 6 1,331 = 1,1 .
]
12
LZd
512 = 2 > 4
3
^
6
dZd
12
LZd
3
!
ke_^h\Zl_evgh
!
ke_^h\Zl_evgh
256 = 2 . 2
dZd
250 = 5 2 > 225 = 15 . 2
6
3
562.
Z LZd dZd lh 3 36 = 3 6 < 6 125 = 5 ⇒ 3 6 − 5 < 0 . [ LZd dZd lh 12 125 = 4 5 < 12 256 = 3 4 ⇒ 4
5−3 4 <0.
\ LZd dZd
5
!
lh
20
256 = 5 4 > 20 243 = 4 3
4 − 3 >0.
] LZd dZd ! lh 30 243 = 6 3 > 30 64 = 5 2 563.
Z =
⇒
4
(
) ( )( 2
9−4 5 9+4 5 9−4 5 + 9+4 5 + = 9+4 5 9−4 5 9+4 5 9−4 5
(
)
)
⇒
gZevgh_ qbkeh
28
)(
)
3−5 2 > 0.
2
=
81 − 72 5 + 80 + 81 + 72 5 + 80 322 322 = = = 322 81 − 80 1 9−4 5 9+4 5
(
6
²
jZpbh-
[ 5 + 2
2
=
+
5−2 2
+
5−2 2
+ + − −
564.
Z (3 + 2
6
(5 + 2 2 )(5 + 2 2 ) + (5 − 2 2 )(5 − 2 2 )
=
5+2 2
(5 − 2 2 )(5 + 2 2 ) +
) + (3 − 2 6 ) 2
2
=
²
=
jZpbhgZevgh_ qbkeh
= 9 + 12 6 + 24 + 9 − 12 6 + 24 = 66 . 2
[
7 + 2 10 + 7 − 2 10 = 7 + 2 10 +
+ 2 (7 + 2 10 ) (7 − 2 10 ) + 7 − 2 10 =
= +
+
−
+ −
565.
=
= +
(
= + = .
)(
)
Z 3 4 + 2
2 ⋅ 3 4 − 2 2 = 3 4 + 2 2 4 − 2 2 = 3 16 − 8 = 3 8 = 2
[
+
+
566.
Z 2)
=
−
−
=
4
+
−
232 − 64 ⋅ 7 =
= =.
a+b a−b (b − a )2 1 ; = = : 2 2 2 (a − b )(a + b )(a + b ) (a + b )2 a − b (b − a )
a−b
−
a −b
=
a−b a−b − = a (a − b ) (a + b )2
(a + b ) (a − b )(a + b ) − a(a − b )2 = (D − E)(( D + E) − D(D − E)) = = a (a − b )(a + b )2 D(D − E )(D + E ) (D + E) − D(D − E) = D + DE + E − D + DE = DE + E = D(D + E ) D(D + E ) D(D + E ) 2 b(3a + b ) (a + b ) 3a + b 3) . ⋅ = 2 2 ab b a (a + b ) a − ab 2
2
2
[
=
E(D + E )
D(D + E )
;
1 3 3 1 − 3 + 2 = − 2y +1 8y +1 4y − 2y +1 2y +1
29
− =
( \ + ) \ − \ + \
+
\
− \ + − + \ +
− \ +
\
=
=
− \ + − + ( \ + ) = ( \ + ) \ − \ +
\
+ \ +
=
( \ + ) \ − \ + ( \ + ) \ − \ + 2y +1 2y +1 (2 y + 1)2 . = = = (2 y + 1)(4 y 2 − 2 y + 1) 4 y 2 − 2 y + 1 (2 y − 1)2 4 y − 1 2 y (2 y + 1) − (4 y − 1) 2) 2 y − = =
2 y +1
=
2 y +1
4 y + 2 y − 4 y + 1 4 y − 2 y + 1 (2 y − 1)2 ; = = 2 y +1 2y +1 2 y +1 2
2
(2 y + 1)(2 y − 1)2 = 1 . (2 y − 1)2 (2 y + 1)
3)
567. 4
1 3 3 3 = . 3 ⋅ = 4 9 3 3
Z cn=c1qn-1; c5 = 3 =
(
[ c5 = (
=
\
)(
−
−
−
−
3
+
−
+
( 3) = 2 2 ⋅( 6) = 2 6
4
4
4
6
3 ⋅3 = 6 3 . 3
⋅ 2 4 ⋅ 3 4 = 26 2 ⋅ 81 = 26 162 .
568.
Z x4=36; x = ±4 36 = ± 2⋅2 6 2 = ± . [ o5=1024; x = 5 1024 ; o= 5 45 = 4. \ [ = ; x = 3 2 ; [ = .
569.
Z a4+1−a3−a≥0; a3 (a−1)−(a−1)≥0; (a−1)(a3−1)≥0;
2
(a−1) (a−1)(a2−a+1)≥0; ( a − 1) 2 a − 1 + 3 ≥ 0 . 2 4
30
c5 = 2 3 ⋅
] c 5 =
) ( 3− + )=
3+ 2 ⋅
( ) 2 ) = ( 3 + 2 )( 3 − 2 )( 3 − 2 ) 4
−
=
=
[ Z3(Z−2)−8(Z−2)≥0; (Z−2)(Z3−8)≥0; (Z−2)(Z−2)(Z2+2Z+4)≥0;
(Z−2)2((Z+1)2+3≥0.
570.
Z
=
=
=
5
−
3 4
1
=
3
;
y 1
=
4
54
=
53
1 4
[
;
125
=4
[ = [ ;
−
5 4
=y
−5 4
= 4 y −5 = 4
1 y5
6
1 ; 125
a 1,2 = a 5 = 5 a 6 ;
1
0,2 0,5 = 0,2 2 = 0,2 ;
b − 0 ,8 = b
−4 5
= 5 b −4 = 5
7 −0,25 = 7
−
1 4
=
1 4
7 −1
1 b4 =4
; 1 . 7
P
2
= D ;
5 2
−3 2
2
2 3
3
3( a + b) 4 = 34 ( a + b) ;
= x y −5 = x
− b −1,5 = −b
= 3 ( x − y) ;
x 3 − y 3 = x2 − 3 y2 ;
−
= P = P .
] ( x − y ) 3
D[ = D [ ; xy
2
\ (D) = D ; D
1 ; y5
= − b −3 = −
4a
−
2 3
3
2
+ ax 3 = 4 a − 2 + a x 2 . 3
3
1 . b3
571. 1
Z 7 2
= 7;
3 12 4
4
= 12 3 ; 31
1
29 3 = 3 29 ; 37
−
−1
1 4
= 37 4 = 4 37 −1 =
1 4
.
37
3
[ 3,8 0,6 = 3,8 5 8,5
− 0 ,5
1 3
−
2 3
−1 = 8,5 2
= 5 3,8 3 ; 1
= 8,5 −1 =
1 =3 3
8,5
;
−2
=3 9 .
1
\ 5a 3
1
1
(2b )4 3 4 −c
= 53 a ; 1
= 2 4 ⋅ b 4 = 4 2 ⋅ 4 b = 4 2b ; = − c3 . 4
1
]
xy 2 = x y ; 3
( x + y) 5 1
= 5 ( x + y) ; 3
1
x2 + y2 =
x+ y.
572.
Z
1,3
[ \ 32
1 2 = 1,3
7
3
−1
2,5
2
=
.
( )
1 7 −1 2
=7
= (2,5 )
1 2 3
=
−
1 2
.
2 2,5 3
.
_ 5
3 2
`
1
a
3
a −2 1
4
−2
x3
=
3 = 2 1
= a 1 3 x4
−
2 3
−
=
=x
−
2 5
.
2 a3
3 4
.
.
]
( )
333 = 333
4
3
1 4
(
b 5 4ab 2
= 33 4 .
= 4ab 2
1
2 2 4 = . 3 3
^
4
d
3
)
1 5
1
1
2
= 45 a 5b 5 .
(
a 2 − b2 = a 2 − b2
)
1 3
.
573. 1
Z 8
[ 11
7 −5 = 7
−
5 8
;
9
= ;
36 = 3 5 ;
(
0,12 2 = 0,12 2
)
1 9
2
= 0,12 9 .
9 8
1 (5c 2 ) 11
5c 2 =
5
4
a4 = a 7 ;
7
6
5 = 52 ;
a9 = a 8 ; =
12
1 2 5 11 c 11 ; 3
b −5 = b
−
5 12
; 1
a − b = ( a − b) 3 .
574.
Z
1 49 2
= 49 = 7 2 = 7 . 1
[ 1000 3 = 3 1000 = 3 103 \
1 − 4 2
] 8
−
^ 9
1 3
2
1 2
_ 0,16
1 = 4
= 4 −1 = 3 = 8 −1 = 3
= 10 .
1 1 = . 22 2
1 3 1 1 = = . 3 8 2 2
5
= 9 2 = 9 5 = 243 . −1
1 2
`
= 0,16
−
−3 2
4 = 0,16 − 3 = 25 −
=
=
−
−3
25 = 4
=
3
=
125 5 = 15 . 8 8
−
=
= 3 1254 = 3 57 = 5 4 = 625 .
33
4
a
4
4 4 4 3 3 81 1 33 3 3 27 3 =5 . 3 = 3 = 3 = 3 = = 2 16 16 8 8 8 2
575.
Z
1
27 3 = 3 27 = 3 33 = 3 .
1 25 2
[
\
−
1 2
−
1 5
25
] 32
= 25 = 52 = 5 . = 25−1 =
1 = 25
1 1 = . 2 5 5
= 5 32 −1 = 5
1 5 1 1 = = . 5 32 2 2
3
^ 0,16 2
= 0,16 3 = 0,064. −
_ −
=
=
−
=
=
=
= = = .
−
` 0,001 a 0,008
1
2 3
1 3
= 3 0,001−2 = 3 1000000 = 100. =
4 0,008 3
(
= 3 0,008 4 = 3 (0,2) 3
577. 4
Z 5 3 = 3 54 ² bf__l 2 [ ( − 16) 3 = 3 ( − 16) 2 ² g_ bf__l \ 23 3
] 0 4
−
2 3
=
34
233
²
bf__l
² 4 − 0 5 ²
^
1
g_ bf__l
bf__l
)
4
= 0,2 4 = 0,0016.
1
_ ( − 25) − 2
²
g_ bf__l
578.
Z x≥0; [ y−1≥0, y≥1; \ Z+2≥0, Z≥−2; ] b>0; ^ k−5≥0, k≥5. 579.
Z LZd dZd x≤ lh 4
0 < x ≤ 81 ⇒ 0 < 4
4
4
4
1 < x ≤ 16 ⇒ 1 ≤
4
\ LZd dZd
1 ≤ x < 1 lh 625
4
3 x4
1 4 x
≤ 2;
1
4
1 1 ≤ 4 x < 4 1 ⇒ ≤ x4 <1; 5 625 3
1 1 4 3 4 3 ≤ x 4 < 1. ≤ x < 1 ⇒ 626 125
] LZd dZd 0,1 <
≤ 3;
≤ 8.
3
4
1 4 x
≤ 27.
4
13 ≤ x 3 ≤ 16 3 ⇒ 1 ≤ 4
4
3 4 x
0 3 < x 3 ≤ 813 ⇒ 0 <
[ LZd dZd ≤o≤ lh 4
4
1 x4
< 10 ;
4
x
0,00013 <
3 x4
lh
4
0,0001 < 4 x < 4 10000
< 10000 3 ⇒ 0,001 < 4
3 x4
⇒
< 1000 .
580.
581.
Z LZd dZd b nmgdpby
y=
1 x2
\hajZklZ_l lh
1 2 2
<
1 2 3
. 35
[ LZd dZd b nmgdpby 3
1
\ 5 2 2
<
1 2 0,5
.
1
1
= 73 .
582.
( )
Z
x −12 x 2 x3 x−9
4
[
[ [−
−
]
1
\hajZklZ_l lh 0,3 2
= 5 6 = 6 125 > 6 25 = 5 3 .
] 7 6
\
y=
1 x2
( )
[ [
=
1 x −12 x 8 x − 4 x 6 = −6 = 4 = −2 = x2 . x3 x −9 x x x
=
[ [
6 −3
4
[ [
−16
=
−18
−3 4
−2 3
=
( ) = xx (x ) x (x )(x ) = x (x ) xx
−2 8
[
[
=[ .
−15
x 1 = −3 = x 3 . −18 x x
⋅ x −12 x8 = = x 8 ⋅ x 6 = x14 . x−6 x −6
20
583.
Z
2 −5 ⋅ 8 2 2 −5 ⋅ ( 2 3 ) 2 2 −5 ⋅ 2 6 2 = = = − 4 = 2 ⋅ 2 4 = 25 = 32. 4 −1 −1 −4 16 (2 ) 2 2
[
319 ⋅ 27 −5 319 ⋅ (33 ) −5 319 ⋅ 3−15 34 1 1 = = = 6 = 2 = . 3 2 3 6 9 9 (3 ) 3 3 3
\
54 ⋅ 49 −3 54 ⋅ (7 2 ) −3 5 4 7 −6 1 7 = −7 2 3 = 6 ⋅ −7 = 2 ⋅ 7 = . 25 7 − 7 ⋅ 253 7 (5 ) 5 7 5
]
8112 ⋅10 −7 10 −5 ⋅ 27 17
=
(3 4 )12 ⋅10 −7 10 −5 ⋅ (3 3 )17
=
3 48 10 −7 1 1 1 ⋅ −5 = 3 ⋅ 2 = . 51 2700 3 10 3 10
584.
Imklv ^ebgZ h^gh]h dZl_lZ jZ\gZ x ^f lh]^Z ^ebgZ ^jm]h]h dZl_lZ jZ\gZ o– ^f S= 1 o(o–1)=10; 2
x(x-1)=20; o2–o–20=0; D=12–4·(-20)=81; x =
36
1 + 81 = 5 beb 2
x=
1-9 =− 2
g_ ih^oh^bl ih kfukem ?keb o
^f
lh o–1=5–1=4
Ih l_hj_f_ IbnZ]hjZ 2+42 l_gmaZ jZ\gZ 4 1 ≈ ^f Hl\_l ^ebgZ ]bihl_gmau ^f
Ke_^h\Zl_evgh ]bih-
585.
Imklv ^ebgZ h^ghc ^bZ]hgZeb jhf[Z o kf lh]^Z ^ebgZ ^jm]hc 1 jZ\gZ o kf S= 2 x ( x + 2 ) = 1 2 oo o2o± D=22–4· − 2 + 100 2
(-24)=100; x =
beb
x=
−2 − 10 = −6 2
g_ ih^oh^bl ih
kfukem ?keb o lh o kf Iheh\bgZ i_j\hc ^bZ]hgZeb kf Iheh\bgZ \lhjhc ^bZ]hgZeb kf Ih l_hj_f_ IbnZ]hjZ d\Z^jZl klhjhgu jhf[Z jZ\_g 2 2 Lh]^Z ^ebgZ klhjhgu jZ\gZ 1 3 ≈ kf Hl\_l ^ebgZ klhjhgu jZ\gZ kf 586.
Z
1 1 c2c3
=
−1 1 b 3b 2
[
2
1 1 + c2 3
=
1
1 1 − + b 3 2
\
a3a6
]
d 5d 2
^
x2 : x2
_
y6 : y3 = y6
5
` ] a
=d 3
1
P
]
=a
1 2
=d
5+
1 3 − 2
4 +1 6 51 2
=]
P =P
+
−
1
= b6.
5
= a6. 11
=d 2.
1− 3 2
=y
5
= c6
−2 + 3 6
=b
5 1 − 3
−
3+ 2 6
=x
= x2
1
2 1 + 6
= a3
1
=c
= x −1.
5− 2 6
=]
3
1
= y6 = y2.
=P
−
= P−
37
b
E
⋅ = E = E
d
D
⋅ = D ⋅ = D
e
− F
f
(p )
− ⋅ − =F =F
2 3 −9
=p
−3⋅2 9
=p
−2 3
.
587. 1 2 + x2 5
Z x x = =x =x . [ y −0,6 y1,2 = y −0,6 +1,2 = y 0,6 . \ a : a = a − = a = a = a . ] b −0,2 : b −0,7 = b −0,2 + 0,7 = b 0,5 . ^ P = P = P _ (n 0,4 ) −2,5 = n −0,4⋅2,5 = n −1. ` k 3 k − = k 3− = k 3−1 = k1 = k . a d 1,7 : d −2 = d 1,7 + 2 = d 3,7 . 1 2
2 5
3 5
5+ 4 10
1 10
3 5
⋅ ⋅
5 3
9 10
6 −1 10
1 10
5 10
1 2
5 3
2 3
1 3
4 3
588.
Z x 0,2 x −1 x 0,6 = x 0,2 −1+ 0,6 = x 0,2 . [ a a a = a = a = a + + = a \ y 0,8 y −5 y 7,2 = y 0,8 −5 + 7,2 = y 3 . ] b b b = b + + = b = b = b 1 3
3 8
1 6
5 3
4 +1+10 6
5 24
1 3
3 8
15 6
5 24
1 3
1 6
9 +5+8 24
1 3
5 3
22 24
2 +1+10 6
11 12
=a
13 6
.
589.
Z (a 0,4 ) 2 ⋅ a 0,8 = a 0,4⋅ 2 a 0,8 = a 0,2 ⋅ a 0,8 = a 0,2 + 0,8 = a. [ ( x ) ⋅ x1,6 = x ⋅ x1,6 = x ⋅ x1,6 = x 0,6 ⋅ x1,6 = x 0,6 +1,6 = x 2,2 . 6⋅3 9 10 9 3 1 \ a(a −1,2 ) 4 = a ⋅ a − 5⋅4 = a ⋅ a − 10 = a 10 − a 10 = a 10 . ] D − ⋅ D − − = D − ⋅ D = D − ⋅ D = D − + = D . 1
3 4
590. 38
1
3⋅4 4⋅5
4 5
3 5
⋅ ⋅
⋅ ⋅
Z c 2c −1,5c 0,3 = c 2 + (−1,5) + 0,3 = c 0,8 . [ x x x = x + + = x = x = x. \ y1,7 y 2,8 y −1,5 = y1,7 + 2,8 −1,5 = y 3 . 0, 5 ] (a 0,8 ) ⋅ a 0,6 = a 0,8⋅0,5 ⋅ a 0,6 = a 0,4 ⋅ a 0,6 = a 0,4 + 0,6 = a. ^ E − ⋅ E = E − ⋅ E = E − ⋅ E = E − + = E = _ (m0,3 )1,2 ⋅ (m −0,4 )0,4 = m0,36 ⋅ m−0,16 = m0,36 − 0,16 = m0,2 . ` x 4 x = x x = x = x = x. 5 5 5+ 2 7 2 a y 3 3 y 2 = y 3 ⋅ y 3 = y 3 = y 3 . b 4 k3 ⋅ 5 k = k ⋅ k = c + = k = k . 1 2
3 14
2 7
3 14
1 2
2 7
14 14
⋅ ⋅
3 4
7 +3+ 4 14
3 4
3 +1 4
1 4
3 4
4 4
3 4
1 5
15 + 4 20
1 5
19 20
591.
Z 10
[
2 5
⋅ 10 − ⋅ 100,1 = 10 0, 4 ⋅ 10 −0,5 ⋅ 100,1 = 10 0, 4 − 0,5 + 0,1 = 10 0 = 1. 1 2
1
12
43 ⋅ 2
\ ⋅
] 8 −
⋅ 16 ⋅ 3
1 3
⋅
( ) ⋅ 2 ⋅ (2 ) = 2 ⋅ 2 ⋅ 2 = 2 = ⋅( ) ⋅ = ⋅ ⋅ = = 4 = (2 ) ⋅ (2 ) ⋅ (2 ) = 2 ⋅ 2 ⋅ 2 = 2 1 3
1
⋅ 8 9 = 22
3
1 3
1 3 −9
5 3
3 −
1 3
4
1 3
2
1 3
3
+
−1
2+ 5−1 3
−1
5 3
2 3
4 3
+ 2 3
= 2 2 = 4.
=
− 3+ 4 + 2 3
= 2.
592.
Z 21,3 ⋅ 2−0,7 ⋅ 21,4 = 21,3− 0,7 +1,4 = 2 2 = 4. [ 7 − ⋅ 7 ⋅ 7 − = 7 = 7 − 2 = 12 = 1 4 3
1 12
−16 +1− 9 12
3 4
7
49
.
\ 4 0,7 ⋅ 2 −0,4 = 21,4 ⋅ 2 −0,4 = 21,4 − 0,4 = 2. 0, 3 ] 250,3 ⋅ 51,4 = (52 ) ⋅ 51,4 = 50,6 ⋅ 51,4 = 50,6 +1,4 = 52 = 25. ^
2 ⋅ 64
− 13
( )
= 2 ⋅ 26
_ 4 9 ⋅ 3 −1,5 = 9
1 4
− 13
= 2 ⋅ 2 − 2 = 21− 2 = 2 −1 =
( )
⋅ 3 −1,5 = 3 2
1 4
1 . 2
⋅ 3 −1,5 = 3 0,5 ⋅ 3 −1,5 =
1 = 3 0,5−1,5 = 3 −1 = . 3 593.
Z (27 ⋅ 64)
1 3
= 27 ⋅ 64 = 3 27 ⋅ 3 64 = 3 33 ⋅ 3 43 = 3 ⋅ 4 = 12. 1 3
1 3
39
[ (27 ⋅ 64) −
1
= 27 − ⋅ 64 − =
1 3
1 3
1 3
3
27
\ 1 2
1 2
1 1 ⋅ 0,04 = ⋅ 0,04 = 36 36
] 1
⋅ 81−1 16 = ⋅ =
^
− 12
3 24 ⋅ 3 2 2 3
3
_ 3 4
1⋅1 = 16 ⋅ 81
=
3 2
(3 4 )
3 2
3
( 9)
− 12
− 14
=
64
3
⋅
1 3
4
3
=
1 1 1 ⋅ = . 3 4 12
1 1 1 1 1 ⋅ 2 = ⋅ = . 6 5 30 62 5
1
1
( 9)
3
1 4
= (3 64 ) − 2 =
3
1 3
= (16 ⋅ 81) = 4 16 ⋅ 4 81 = 4 2 4 ⋅ 4 34 =
(3 4 ) 3
=
1
1 1 ⋅ = 36 25
1 2
8 = 3 24 ⋅ 3
3 2
9
− 14
⋅3
( 64 )
(4 ) (9 ) 1 3
=
3
3
1 3
=
1 2
1 6
64
=
1 6
2
6
=
1 . 2
3
3
=
4 9
=
2 . 3
594.
Z (27 ⋅ 8) [ 1 1 ⋅ 125 64
1 3
− 13
1 3
1 3
= 27 ⋅ 8 = 3 27 ⋅ 3 8 = 3 33 ⋅ 3 23 = 3 ⋅ 2 = 6.
1 = 125 1 2
− 13
1 ⋅ 64
− 13
= 3 125 ⋅ 3 64 = 3 53 ⋅ 3 43 = 5 ⋅ 4 = 20.
1 2
\
49 49 72 7 49 = = = . = 2 144 12 144 144 12
]
363 36 36 1252 = 125 = 3 125 =
595.
1 2
1 6
1 3
Z
(m )
[
x − 34
\
40
1 2
−3
1 3
=m − 23
− 33
2 3
5
3
=
6 . 5
1
= x 4⋅ 3 = x 2 = x .
(8a ) = (8a ) = 8 −1 12
3
1 . m
= m −1 = 3⋅ 2
62
− 32
2 3
2 3
⋅a
− 32⋅⋅23
= 3 64 ⋅ a −1 = 4 3 ⋅ a −1 = 3
4 . a
] [ =
⋅
−
−
= ⋅ [
=
−
=
− − [
⋅
=
[
−
=
[ [ 1 −3 − 1 3 ( m ) = ( ) − m ⋅ = 27 m = 3 27 m = 3 33 m = 3m. 27 27
^
1 3
1 3
1 3
1 3
596.
Z
a ⋅ b − ⋅ (a − ⋅ b ) 4 = a ⋅ b − ⋅ a − ⋅ b = b − 5 3
[ (c −
1 6
1 3
)
3
5 3
1 3
y − 0, 4 ⋅ c ⋅ y 0, 2 = c 1 . = y −1 ⋅ c −1 = yc 3 7
2 7
\ D [ − ⋅ D
= D ⋅ [
− ⋅⋅
⋅D
⋅[
597.
4 3
⋅[
= D
+
−
[
− +
−
( )⋅
− ⋅ −
3 2
⋅2
x −1 = x −
1 2
⋅2
3
x=x
1 3
T
2
5 2
5
= x−
3 2
2
⋅2
5 2
1 2
− 12 2
1 6
⋅2
⋅[
=
( )=
⋅ −
1 3
1 6
0, 5 2
⋅2 1 6
⋅2
1 6
23 2
⋅2
( ) = (x ) ;
= x
2
23 2
11,5 2
2
[
( ) ; x = x = (x ) ; x = (x ) ; x = x = (x ) ; x = x = (x )
x −3 = x−
=
− = S T = S T = T
−7 2
− 97 + 72
1 3
= S− T ⋅ S
7 6
= b ⋅a
= D[ = D
2
[−
− 43
5 3
⋅a
( ) ( ) =x = (x ) ; x = x = (x ) ; = ([ ) [ = ([ ) [ = [ − 7⋅2
+ 43
2 7
x 6 = x 3⋅2 = x 3 ; x 40 = x 20⋅ 2 = x 20 ; x 23 = x x −14
1 6
⋅ y −1, 2 ⋅ c ⋅ y 0, 2 = y −1, 2+0, 2 ⋅ c
− = D [ ⋅ D
− = S − S T ⋅ T
4 3
− S − T S T
¹
− 97
1 6
2
1 4
−
= [
=x
− 0 ,9
1 8
⋅2
−
( );
= x
1 8
2
(
)
2
= x − 0, 45⋅ 2 = x − 0, 45 ;
2
41
598. y =y 6
1
( );y
2 ⋅3
= y
;y y
− 92
1 3
3
=y
−
=y
− 7 ⋅3
( );y
= y
1 ⋅3 2
1 2
1 − ⋅3 y 9
=
− 21
−7 3
7
=
7 ⋅3 y3
− 19 3
2 ⋅3 27
1 6
0, 2
− 272 3
3
−1,5
1 5
1 ⋅3 15
1 2
1 ⋅3 6
− 32
7 3
3
1 − ⋅3 2
3
1 15
1 6
( ); = (y )
= y
( ) ; y = y = (y ) ; y = y = y = (y ) ; y = y = y = (y ) ; = (y ) ; y = y = y = (y ) .
⋅3
y = y3 = y − 13
2 3
3
599.
Z a = a 2 = (a ) ; 3 [ a = a ⋅3 = (a ) ; 7 \ a = a ⋅7 = (a ) . 1
⋅2
1 3
1 3
1 7
1 7
600.
Z 3 [ 3
3 2
=3
1 2
⋅3
5 2
=3
1 2
⋅5
\ −
] 3 − 2 5
1 2
2
( ) ≈ 1,73 ; = (3 ) ≈ 1,73 ;
= 3
1 2
1 2
3
3
5
5
; = ≈ 1 1 1 = 5 = ≈ . 5 5 1 1 . 73 2 3 32
601.
Z 4312 = (4,31 ⋅100) 2 = 4,312 ⋅ 100 2 = 10α ; [ 43100 = (4,31⋅10000) = 4,31 ⋅10000 = 100α ; 1 1 1 1 \ 0,04312 = (4,31 ⋅ 0,01) 2 = 4,312 ⋅ 0,012 = 0,1α ; 1 1 1 1 ] 0,0004312 = (4,31 ⋅ 0,0001) 2 = 4,312 ⋅ 0,00012 = 0,01α . 1
1
1 2
1
1
1 2
1 2
602.
Z V = a 3 ke_^h\Zl_evgh 42
1
a =V 3 ;
1 2
− 12 3
[
1 V = a , S = a = V 3
\
P = 6 ⋅ S = 6 ⋅V 3 .
3
2
2 =V 3 ;
2
2
603.
Z
\ = [ \ = [ [ = \
[
\=[
\
\=[
] ^ _
−
\ = [−
\=
\
\ = [ [
−
−
\
= [
\
= [ =[
=[
−
−
\=[
\
=\
[
\
−
−
[
−
\
=\
= [
\
−
= [ −
−
−
[
= [
−
=\
[
\
=
−
[
−
= \
−
604.
Z 10 x ⋅ 15 x = x + = x = x . [ 8 a 3 ⋅ 12 a = a ⋅ a = a + = a = a . \ 7 y 2 ⋅ 3 y − 1 = y ⋅ y − = y − = y = y − 1 10
2 +3 30
1 15
3 8
3 8
1 12
2 7
]
E
^ 10 y3
1 6
1 3
9+2 24
1 12
2 7
6 −7 21
1 3
E = E E = E E = E
2 3
1 10
y 2 = ( yy ) = y
_ 5 x 2 4 x − 3
1 10
+ 151
= (x2 x− ) = x 3 4
1 5
2 5
11 24
=y − 203
+
3+ 2 30
1 21
.
= E 1 6
=y .
=x
8 −3 20
=x . 1 4
605.
(a a ) = (a ) = a = a = Z a a (a ⋅ a ) (a ) a (a ⋅ a ) = a ⋅ a = a = a a a = a a (a ⋅ a ) a ⋅ a a a a2 a
5
4
[
3
2
1 2
3
3
4
2
1 2
2 3
1 2
1 4
1 3
1 5
5 2
1 3
3 2
1 5
1 2
1 3
1 2
− 12
1 2
1 4
1 6
1 4
+ 16
3+ 2 12
1 3
1 12
1 3
+ 16
2 +1 6
=
= a 0 = 1;
a a
1 2 1 2
=a
1 2
− 12
= a 0 = 1.
606. 43
3
Z
1 1 x 3 = 4; x 3 = 4 3 ; x = 64.
[
4 3 3 y = 2; y 4 = 2 3 ; y = 3 2 4 = 3 2 3 ⋅ 2 = 23 2 .
\
x
]
y − 0,5 = 6; y −
^
x −0,3 ⋅ x1,3 = 1; x −0,3 +1,3 = 1; x1 = 1; x = 1.
_
x 8 ⋅ x 8 = 25; x
4
3 4
−1
4
−1 = 3; x 4
−4
( )
3
−2
1 2
13
= 3− 4 ; x =
1 1 = . 34 81
= 6−2 ; y =
1 . 36
3+13 8
= 25; x 2 = 25; x = 5.
608.
Z 10 x 2 + 4 x − 7,5 x − 3 − 10 x 2 − 35x − 4 < 0;−38,5 x < 7; x > − 2 . 11
[ 9 − 24 x + 16 x − 94 x > −7; x < −
2
− 16 x + 2 x − 72 x + 9 − 11 > 0; 2
7 . 94
609.
H[hagZqbf \j_fy aZiheg_gby [Zkk_cgZ \lhjhc ljm[hc aZ o q lh]^Z \j_fy i_j\hc ² aZ o q 1 qZklv [Zkk_cgZ aZihegy_lky \lhx
jhc ljm[hc aZ q aZ q
6⋅
[Zkk_cgZ
1 1,5 x ²
1 1,5 x
qZklv [Zkk_cgZ aZihegy_lky i_j\hc ljm[hc
qZklv [Zkk_cgZ ² aZihegbeZ i_j\Zy ljm[Z
Hl\_l q b q 44
1 qZklv x
aZihegbeZ \lhjZy ljm[Z IhemqZ_f mjZ\g_gb_
1 1 4 4 8 6⋅ + 4 ⋅ = 1; + = 1; = 1; x = 8. 1,5 x x x x x o=8; 1,5o=12. 610.
4⋅
Imklv \j_fy aZ dhlhjh_ \lhjZy [jb]Z^Z \uihegbl \kx jZ[hlm −
o ^g_c Lh]^Z \j_fy i_j\hc ² o ^g_c I_j\Zy [jb]Z^Z aZ h^bg
^_gv \uihegy_l
qZklv jZ[hlu Z \lhjZy [jb]Z^Z ²
1 x + 12
jZ[hlu IhemqZ_f mjZ\g_gb_
1 x
qZklv
14 5 + = 1; x + 12 x
14x+5x+60-x2-12x=0 x2–7x–60=0 D=72−4⋅(−60)=49+240=289 7 − 17 7 + 17 = −5 < 0 x1 = = 12 beb x2 = 2 2
g_ ih^oh^bl ih
²
kfukem aZ^Zqb x+12=24.
Hl\_l ^gy b ^g_c 611.
Z
2 3
x− ⋅ x x
[
y ⋅y
\
a b
] ^
(y ) 1 2
3 5
1 4
2 5
− 23 −4 1 6
c c a
1 2
5
− 12
(x
3 5
1 2
b2
b x
− 13
y
− 25
1
y y 0 ,5
− 12
1 2
)
5
=
y
2
−
3 3
− 35
− =y
− 87
c
=x
1 14
15 −9 15
− (− 73 )
6 15
3 5
=x =x .
=y
−1+16 14
15 14
=y .
1 4
=c
8 3
− 23
= ab −1 =
1 2
y
8 3 4 6
c
− 75
1 3
x
1 14
1 5
x y 5 3
=x
3 5
=b a .
=
b5
3 3
y−
− 14
1+ 3 6
+ 12
x
=
− 87
− 23 ⋅ ( −4 )
c
x
=
3 5
⋅a
=a2
1, 4
1 3
3 7
y
c
=
− 23 + 53
x
=
=b
(c ) a
_
− 12
−2
4 7
x
=
3 5
3 7
a b
5 3
=x
5 2
1 3
− (− 53 )
= c2. a . b ⋅y
1 2
− 52
= x2 y −2 =
x2 . y2
612.
Z
1 3
a a1,5 a
− 16
=
1 3
a a a
− 16
3 2
1 3
3 2
1 6
=a a a =a
1 3
+ 32 + 16
=a
2 + 9 +1 6
12 6
= a = a 2.
45
E
[
E
\
x1,5 y 0,5 x = y 0,5 −1,5 ⋅ x1,5 − 0,5 = y −1 x = . 0,5 1,5 y x y
E
=
−
d 2, 6 5 c 3
]
(c
− 0, 2
d
613.
Z
8 3
[
1 2
3
2 ⋅5
+ +
3 5
1 2
3 ⋅2
−1,6
d 2, 6 c = d 2, 6 − 0, 6 ⋅ c − 0, 4 0, 6 c d
5 3
25
1 3
)
0, 3 2
5
16
=
3
2 1 3
E
= EEE = E
−
(2 ) ⋅ 3 =
9
5 3
EE
2 3
=2
1 2
− 12
3 2
(2 ) ⋅ (5 ) = 1 3
4
2
1 3
2 ⋅5
⋅3
2 3
1 5
=2
− 85
4 3
− 53
− 13
3 5
+ 52
= d 2 c.
= 21 ⋅ 3−1 = ⋅5
2 5
+ 85
= E = E
2 . 3
= 21 ⋅ 52 = 2 ⋅ 25 = 50.
614.
Z [
− \ [ \ = [ [ \ − \ [ \ =
= [\ − \[ = [ \ − \ [
[ a \ (x
) + 3)(x − 3) = x x
2 3
2 3
(
1 3
1 3
1 3
2 3
2 3
2 3
1 3
2 3
1 3
2 3
2 3
2 3
b a + b = a b a + a b b = ab + a b.
1 3
2 3
2 3
1 3
+ 3 x − 3x − 9 = [ + [ −
− [ −
(m
] (m ^ (a _ 1 2
+n
)(
) ( ) +m −m − b )(a + b ) = (a ) + a ⋅ b −1 m +1 = m
1 2
3 2
1 2
1 2
1 2
3 2
2
1 2
1 2
3 2
1 2
2
3 2
1 2
− 12 = m − 1.
1 2
−b ⋅a − b
) = (m ) + 2m n + (n ) = m 2
1 2
2
1 2
1 2
1 2
2
1 2
1 2
⋅2
( ) =a
3 2
1 2
2
+ 2m n + n 1 2
1 2
1 2
⋅2
3
− b.
=
= m + 2 m n + n.
` D
a [
46
+ E D − D E + E = D + E = D + E
− \ [ + [ \ + \ = [ − \ = [ − \
615.
Z b c (b [ [ \ 1 3
1 4
2 3
)= b c b
3 4
+c
2 3
1 4
1 3
1 3
3 4
1 4
1 4
1 3
+ b c c = bc + b c.
([ − \ ) = [ \ [ − [ \ \ ( − \ )( + \ ) = − (\ ) = − \ ] ( S + T )( S − T ) = ( S ) − (T )
−
−
(a
1 2
1 2
2
2
1 2
1 2
2
1 2
1 2
2
1 2
a + 4a ⋅ b + 4b. 1 2
\ =\
−[ \
−
= 32 ⋅ p 0,5⋅2 − q −1⋅ 2 =
b + b = 1 − 2 b + b. 2 2
) = (a ) + 4a b + (2b ) = a
1 2
1 . q2
2
1 2
(1 − b ) = 1 − 2b + (b ) = 1 − 2
+ 2b
`
−
−
= 9 p − q−2 = 9 p −
^ _
+ 4a b + 4b =
2 2
1 2
1 2
2 2
1 2
(x
a D
)(x
3
3
+y
− E D + D E + E = D − E = D − E
1 3
2 3
−x y +y
)= (x ) + (y ) = x + y .
1 3
1 3
1 3
2 3
1 3
1 3
616.
Z (1 + c ) − 2c [ b + c − (b 2
1 2
( ) − 2c = 1 + c = 1 + c . b + c − (b ) − 2b c − (c ) =
1 2
= 1 + 2c + c
1 4
+c
1 2
1 4
)= 2
2
1 2
1 2
2 2
1 4
2
1 4
1 4
1 4
2
= b + c − 2b c − c − b = −24 bc . 1 2
1 2
\ D
1 4
1 4
1 2
1 2
+ E − D − E = D + D E + E − D +
+ 2a b − b = 4a ⋅ b = 43 ab . 1 3
] [
1 3
^
(y
2 3
1 3
1 3
− [ + [ = [ − [ [ + [ + [ =
= x − 2x 1 2
2 3
3+ 4 12
+ 3y
= \ + \
1 5
7 6
+ x + 2x = x − 2x + x + 2x = x + x = x . 2 3
7 12
) − 6y 2
+
13 15
1 2
7 12
2 3
7 12
1 2
2 3
13 15
= y + 6y y + 9y − 6y = 4 3
2 3
1 5
2 5
+ \ − \ = \ + \ + \ − \ = \ + \ .
47
_ [
(
+ [ − [ + = [ − [ + =
)(
1 2
) ( ) −1
1 2
= x −1 x +1 = x 617.
Z (x
=x
1 2
⋅2
1 2
−y
+y
[
1 2
1 2
⋅2
2
1 2
) + 2 x y = (x ) − 2 x y + (y ) + 2 x y 2
1 2
1 2
= x+ y.
(
1 2
2
1 2
m + n − m −n 1 2
2 2
= x − 12 = x − 1 .
2
1 4
1 4
1 2
) =m 2
1 2
1 2
1 2
1 2
=
( ) + 2m n − (n ) =
+n − m
1 2
2
1 2
1 2
2
1 4
1 2
1 4
1 4
1 4
1 4
2
1 4
= m + n − m + 24 mn − n = 24 mn = 2m ⋅ n .
\ D
+ D − D = D + D D + D − D =
= D + D + D − D = D + D .
] D
+ E D + E D − E =
) ( ) − (b ) = (a + b )(a − b )= . = (a + b )(a − b ) = (a ) − (b ) = a − b = a − b . 618. Z x − 2 x = x (x − 2) = x (x − 2). [ y + 3 y = y (y + 3 y ) = y (y + 3). \ a − 5a = a (a − 5a ) = a (a − 5) . ] a + a = a (a + a ) = a (a + 1). ^ b − 2b = b (b − 2b ) = b (b − 2) . _ c + 6c = c (c + 6c ) = c (c + 6) . (
= a + b × a 1 4
1 4
1 4
1 4
1 4
1 2
3 4
5 3
1 4
1 2
1 6
1 4
1 3
1 4
2 3
1 4
2
5 3
2 3
1 3
− 14
1 6
1 4
− 23
2 3
1 8
⋅2
1 2
1 3
− 14
2 3
1 4
− 16
− 14
⋅2
1 2
− 13 1 4
1 8
1 4
1 2
1 2
− 16 3 4
2
1 4
1− 13
1 3
1 6
2
1− 12
1 4
1 3
1 4
1 2
1 3
1 8
1 4
1 2
2
1 8
1 6
1 4
1 6
− 14
1 4
− 23
1 2
2 3
` (ab )3 − (ac )3 = a 3 b 3 − a 3 c 3 = a 3 b 3 − c 3 . 1
1
1
1
1
1
1
1
a
(
6 − 2 = (3 ⋅ 2 ) − 2 = 3 ⋅ 2 − 2 = 2 3 ⋅ 2 1 2
1 2
48
1
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
− 12
−2
1 2
− 12
)= 2 (3 − 1). 1 2
1 2
619.
Z 2 + 2 = 2 (21− + 2 − ) = 2 (2 + 1). [ 3 − 3 = 3 (31− − 3 − ) = 3 (3 − 1). \ a + a = a (a1− + a − ) = a (a + 1). ] b − b = b (b − − b1− ) = b (1 − b ) . 1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 3
1 2
1 2
1 2
1 3
1 3
1 2
1 2
1 2
1 2
1 2
1 3
1 2
1 2
1 2
1 2
1 3
1 2
1 3
2 3
^ 15 3 + 20 3 = (5 ⋅ 3)3 + (5 ⋅ 4)3 = 5 3 ⋅ 3 3 + 5 3 ⋅ 4 3 = 5 3 3 3 + 4 3 . 1
1
1
1
1
1
1
1
1
1
1
_ (2a ) − (5a ) 1 2
1 2
= 2 a − 5 a = a 2 − 5 . 1 2
1 2
1 2
1 2
1 2
1 2
1 2
620.
Z D − E = D [ D − E = D
− E
− E = D − E D + D E + E .
= D − E
+E .
D
621.
Z m 2 − 5 = m 2 − 5 ⋅2 = m 2 − (5 ) = (m + 5 )(m − 5 ). 2 [ 2 − x 2 = 2 ⋅2 − x 2 = (2 ) − x 2 = (2 + x )(2 − x ) . 2 \ a 3 − 4 = (a ) − 22 = (a + 2)(a − 2) . 2 2 ] x − y = (x ) − (y ) = (x + y )(x − y ). 2 ^ 4 − a = 22 − (a ) = (2 + a )(2 − a ). 2 2 _ m − n = (m ⋅2 − n ⋅2 ) = (m ) − (n ) = (m + n )(m − n 1 2
1 2
1 2
1 2
3 2
2 5
2
1 2
1 2
3 2
4 5
1 5
1 5
1 2
2 5
1 2
1 2
1 2
3 2
2 5
1 2
1 2
1 5
2 5
1 2
1 2
1 2
1 2
1 2
1 2
1 2
).
622.
Z x 3 − 2 = x 3 − 2 ⋅3 = x 3 − (2 ) = (x − 2 )(x 2 + 2 x + 2 ). 3 [ y 3 + 3 = y 3 + 3 ⋅3 = y 3 + (3 ) = (y + 3 )(y 2 − 3 y + 3 ). 3 \ m − 8 = m ⋅3 − 23 = (m ) − 23 = (m − 2)(m + 2m + 4). 3 ] a + 27 = a ⋅3 + 33 = (a ) + 33 = (a + 3)(a − 3a + 9) . 3 3 ^ x − 5 = x ⋅3 − 5 ⋅3 = (x ) − (5 ) = (x − 5 )(x + 5 x + 5 ) . 3 3 _ 4 + y = 4 ⋅3 + y ⋅3 = (4 ) + (y ) = (4 + y )(4 − 4 y + y ). 3 2
1 3
1 3
1 3
1 3
1 2
6 5
1 3
1 3
1 3
1 3
1 3
2 3
1 3
2 3
1 2
2 5
1 3
1 3
1 3
1 2
2 5
1 3
3
1 2
2 5
1 3
4 5
1 3
1 3
1 3
1 3
2 5
2 3
1 3
1 3
2 3
1 3
1 3
2 3
1 3
2 3
49
623.
Z
[ b \
3 2
−1 = b
x−4= x
( ) − 1 = (a − 1)(a + 1). − 1 = (b ) − 1 = (b − 1)(b + b + 1). − 2 = (x ) − 2 = (x − 2)(x + 2) . − y = (5 ) − (y ) = (5 − y )(5 + y ).
2 3
⋅2
1 2
⋅3
4 3
a −1 = a
1 2
⋅2
2
2 3
−1 = a
3
1 2
] 5 − y = 5 ⋅ 2 1 2
1 2
2
⋅2
1 2
1 2
2
2
1 2
2 3
1 2
3
1 2
2
2 3
2
1 2
2
1 2
1 2
1 2
1 2
1 2
624.
Z
1 2
1 2
x +y =x
[ 1 3
1 3
c +d =c
⋅3
+y
⋅3
+d
1 6
1 9
⋅3
= ( x ) 3 + ( y ) 3 = ( x + y )( x − x y + y ) .
⋅3
= (c )3 + (d ) 3 = (c + d )(c − c d + d ) .
1 6
1 9
1 6
1 6
1 9
1 6
1 9
1 9
\ a −1 + b −1 = a − ⋅3 + b − ⋅3 = (a − 1 3
= D 625.
−
+E
Z x [ 1 4
1 2
−
−
1 2
1 4
1 12
1 3
⋅3
−
⋅3
1 12
1 9
⋅3
1 3
−y
1 6
−
−
+E
1 9
= x
4⋅3
1 2
= x 1 9
1 4
4⋅3
( − 2 2 (2 =
3 −3 1 2
=
1 2
3 3 1 4
3
1 12
3
1 6
3
1 12
⋅3
1 12
3
1 9
1 2
− 12 1 4
1 2
1− 12
−3
− 14
1− 14
2
\
x+ x x x − +x = 2x 2x
]
x −x
50
1 4
1 2
1 2
x
3 4
1 2
1 4
=
(
5⋅2 1
1 4
1 4
1 2
1 4
x ( x − 1) x
3 4
)
−2
[
5⋅2
1 9
1 3
1 9
2 9
.
1 6
−y
3
1 9
1 12
1 9
626.
Z
2 9
1 6
1 3
3
1 6
1 6
) 3 + (b − ) 3
1 3
( ) − (y ) = (x
⋅3
1 3
1 6
)(x
1 3
1 6
1 6
1 3
)
+x y +y .
( ) − (y ) = (x − y )(x + x y + y ). − b = (a ) − (b ) = (a − b )(a + a b + b ) .
⋅3
−y
a −b = a
1 3
−D E
1 6
−y =x
x −y =x
\
D
1 6
1 2
− 12
=
4 1− 3
) = 1− 2 )= x
=
1 2
x −1 x
3 4
− 14
3 4
.
5
+1
2x
1 4
.
1 2
1 2
=
. 1 4
x −1 x
1 2
.
1 6
1 9
1 12
2 9
1 12
1 9
1 6
1 9
2 9
^ _
2
1 3
1 3
1 2
1 2
a +b
1
1
1
(a 3 ) 2 − (b 3 ) 2
=
1 3
1 3
1 2
1 2
a +b
1
x− y 1 2
x +y 2 3
=
=
1 2
1 3
1 2
x +y
1 3
2 3
[
+\
[
1 2
[
10
3
−
=
1 2
=
1 2
2 3
1
1
1
1
= a3 − b3 .
1 3
1
1
1 2
1 2
1
x +y
1 3
2 3
2 3
1 3
1
1
= x2 − y2 .
1 3
2 3
1 3
−[ \ +\
10 − 10
1 2
x +y
1 2
3
=3
− 12
+ 12
1 2
=
1 2
10 (10 − 1) 1
1 3
1 2
x +y
1 2
=
1 3
(3 + 1) = 3 1 2
1− 12
1 2
10 − 1
=
1
1
+ 3.
1,5
10
=
.
[ + \
1
( x 2 )2 − ( y 2 )2
=
1 2
1 2
10
=
x− y 1 2
1 2
( ) ( )
3 (3 + 1)
1
10
1 2
1 2
10 − 1 1
1
1 2
1 2
. 1
( x 2 − y 2 )( x 2 + y 2 ) x +y
1
1
= x2 − y2 .
1
1 b2 − 5 b2 −5 b2 −5 . = 1 = 1 = 1 1 b − 25 (b 2 ) 2 − 52 (b 2 − 5)(b 2 + 5) b 2 + 5 1 2
( ) + 2c d + (d )
1 2
c + 2c d + d c = c−d
F F
1 3
1
[ − [ \ + \
3+3
1
( x 2 − y 2 )( x 2 + y 2 )
1 3
Z
^
1 3
a +b
1
( x 2 )2 − ( y 2 )2
627.
]
1
x −x y +y x −x y +y x −x ⋅y +y = = = 3 3 ⋅3 ⋅2 x+ y x +y x + y
a
\
1
(a 3 − b 3 )(a 3 + b 3 )
1 a −b a −b a2 − b2 . = 1 = 1 = 1 1 1 1 1 1 a−b (a 2 ) 2 − (b 2 ) 2 (a 2 − b 2 )(a 2 + b 2 ) a 2 + b 2
`
=
2
a3 −b3
−G
+G
F
1 2
+G
1 2
c
2
=
1 2
⋅2
1 2
1 2
−d
1 2
c +d
1 2
1 2
1 2
1 2
c −d
⋅2
2
=
1 2
1 2
(c + d ) 2 1 2
1 2
(c ) 2 − ( d ) 2
=
.
51
_
m+n 2 3
1 3
=
1 3
m −m n +n
2 3
1 3
1 3
P −P Q +Q 5 6
1 3
5 6
1 3
x +x x −x
Ijb o
( x (x 1 3
5 6
− 12
1 3
5 6
− 13
x x
=
x2 +1
1 2
x −1
2
1 3
+x
1 3
− 13
−x
1 3
− 13
1,44 + 1
=
1,44 − 1
=
1 3
m + 1,5
m + 1,5
1 3
1 3
3
1 3
m −m n +n
2 3
=
=
1 2
+1
1 2
−1
.
1,2 + 1 2,2 = = 11. 1,2 − 1 0,2 1
1 3
m + 1,5
1
= m 3 − 1,5.
m − 1,5 = 3 8 − 1,5 = 2 3 − 1,5 = 2 − 1,5 = 0,5.
−
[−
3
[ −
=
[
[
−
−
[ −
[
2 3
1 3
(m 3 − 1,5)(m 3 + 1,5)
=
1 3
3
1 3
[
− [ +
[
2 3
(m ) + (n )
1
( m 3 ) 2 − 1,5 2
=
=
= P +Q .
)= x ) x
1
m 3 − 2,25
Ijb m=8 \
2 3
m −m n +n
1
[
1 3
(m ) 3 + (n )3
+ Q P − P Q + Q
P
628.
Z
=
−
=
[ −
[
[
=
− [ +
− [ +
=
=
[ − [
− [ +
Ijb o
1
x +2
=
=
[ + 1 9 +2
]
1 1 = . 3+ 2 5
− − \ +
= \ − \ + \ − 12 =− =− . y −9 y −9
\ + 12
−
\
=
=
\
− −\ −
\
1 2
Ijb m 52
−
12 y −9
=−
12 100 − 9
=−
12 = −12. 10 − 9
−
=
629.
=
[ = =
D −E D−E D −E D−E − = − = − D−E D −E D − E D − E D −E
Z −
D−E
3 2
3 2
1 2
1 2
a −b 1 2
=
1 2
(a − b )(a + b ) 3 2
1 2
1 2
1 2
1 2
1 2
3 2
1 2
3 2
3 2
3 2
1 2
1 2
1 2
a +b
a−b
⋅
1 2
1 2
1 2
1 2
)=
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
⋅3
1 2
a +b
1 2
1 2
1 2
⋅3
−b
a
1 2
1 2
⋅
a
1 2
⋅2
1 2
a b
=
(a − b )(a + b )
+ 2a b =
1 2
a+a b +b
1 2
1 2
3 2
a b (a − b )
=
(a − b )(a + b ) a −b
3 2
(a − b )(a + b )
a − a b + ab − b − a + b 1 2
(
1 2
(a − b)(a + b ) − a + b
3 2
1 2
1 2
1 2
a +b
−b 1 2
1 2
1 2
⋅2
1 2
a+a b +b
.
=
(a )3 − (b )3 (a ) 2 − (b ) 2 + 2a b = ⋅ a +b a+a b +b 1 2
1 2
1 2
1 2
1 2
1 2
(a − b )(a + a b + b)(a − b )(a + b ) 1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
(a + b )(a + a b + b) 1 2
1 2
1 2
1 2
1 2
1 2
1 2
= ( a − b ) + 2a b = a 2
1 2
1 2
⋅2
1 2
1 2
− 2a b + b
1 2
⋅2
+ 2a b = 1 2
1 2
1 2
1 2
+ 2a b = a
1 2
⋅2
+b
1 2
⋅2
= a + b.
630.
Z =
[ + =
\
[
+
[ + \ x
1 2
+ 12
1 2
\
1 2
1 2
1 2
−x y +x y +y 1 2
1 2
(x ) − ( y )
2
D +E
D
−
1 2
1 2
a (a − b ) 1 2
D −E =
1 2
1 2
+ 12
=
D
1 2
1 2
a (a − b )
=
1 2
−
1 2
T S + − S S T T − ST
a (a − b ) 1 2
1 2
=
D
D −E
0 a (a − b ) 1 2
+
=
1 2
a −b−a +b 1 2
=
D +E
=
1 2
− \
[
D−DE 1 2
1 2
x+ y . x− y
E 1 2
+ \
a (a − b )
1 2
1 2
(a + b )(a − b ) − a a + b
(a ) 2 − (b ) 2 − a + b 1 2
2
+
[
D
b 1 2
=
[ − \
[ [ − \ + \ [ + \
1 2
1 2
= 0.
ST + S T ⋅ S−T
53
1)
1 2
p− p q
=
2)
1 2
q
+
1 2
p
1 2
S T
S
=
1 2
q− p q
T T − S S
1 2
−T
=
q 1 2
p (p
1 2
1− 12
1 2
−q )
T− S
S T
S
1 2
+
1 2
q (q
1− 12
1 2 1 2
−p )
=
−T
p
1 2
1 2
1 2
1 2
1 2
pq + p q (q − p) p q ( p + q ) = = p−q p q (p − q ) p q ( p − q )( p − q )
=−
q− p
1 2
1 2
1 2
S + T S −T
⋅
1 2
=
1 2
T + S
1 2
1 2
1 2
T − S
631.
Z
21 − 4 x + 2(7 x − 0,5) < 0, − 4( x + 0,5) − 2 x − 1 > 0,
[
2(0,5 x − 3) − 3(2 x + 3) ≥ 0, − (4 x + 7) + 0,5(4 x − 6) ≤ 0,
21 − 4 x + 14 x − 1 < 0, − 4 x − 2 − 2 x − 1 > 0,
x − 6 − 6 x − 9 ≥ 0, − 4 x − 7 + 2 x − 3 ≤ 0,
10 x + 20 < 0, − 6 x − 3 > 0,
− 5 x − 15 ≥ 0, − 2 x − 10 ≤ 0,
x < −2, x < −0,5.
x ≤ −3, x ≥ −5 .
632.
Imklv jZkklhygb_ hl ]hjh^Z ^h kh\ohaZ l df Z kdhjhklv Z\lh[mkZ v dfq Ba i_j\h]h mkeh\by ihemqbf ke_^mxs__ mjZ\g_gb_ v+20=1,5v l_ v=40. Ba \lhjh]h mkeh\by ihemqbf ke_^mxs__ mjZ\g_gb_ l l l l = + 1 l_ = +1
v − 10 v 10l=1200 .l=120 df
30
40
Hl\_l df 633.
Imklv jZkklhygb_ hl klhebpu ^h ^_j_\gb l df Z kdhjhklv \_ehkbi_^bklZ ² v dfq IhemqZ_f kbkl_fm mjZ\g_gbc 54
3 1 l v(v − 3) = 3 1 l 1 = v(v + 1) 12
l 1 l v − 3 − v = 3 l − l = 1 v v + 1 12
v(v − 3) v(v + 1) = 9 12 v ( v + 1 ) l 12
v = 15 15 ⋅16 l = 12 = 20
4v − 12 = 3v + 3 v(v + 1) l = 12
Hl\_l df 634.
Z =
+
−
+
[ =
+
−
−
+
++−
+
+
−
+
+
=
−
+
(2 − 3 )(2 + 3 )
2+ 3 +2− 3
=
=
=
+
−
4
( 3)
2
−
+
=
=
−
−
22 −
+
+ ⋅
=
− +
4 4−3
=
= 4.
635.
Z g_ fh`_l [ g_ fh`_l
636.
Z LZd dZd Df =(– ∪(0;+ kbff_ljbqgZ hlghkbl_evgh gmey b 1 1 1 f (− x ) = = =− 3 = − f ( x) ke_^h\Z3 3
( − x ) + 2( − x ) − x − 2 x x + 2x l_evgh f (x) — g_q_lgZy nmgdpby [ LZd dZd Df =R kbff_ljbqgZ hlghkbl_evgh gmey b 1 1 f (− x) = = 2 = f ( x) ke_^h\Zl_evgh f (x) — 2 (− x) + 7 x + 7
q_l-
gZy nmgdpby
55
\ LZd dZd
f (− x) =
1 (− x) + 3(− x) 4
=
1 x − 3x 4
≠ f ( x)
b
≠ − f (x) ,
ke_^h\Zl_evgh g_ y\ey_lky gb q_lghc gb g_q_lghc nmgdpb_c ] Df =R kbff_ljbqgZ hlghkbl_evgh gmey b
f (− x) = − x + 3 + − x − 3 + − ( x − 3) + − ( x + 3) = x − 3 + x + 3 =
f (x) ke_^h\Zl_evgh f (x)
q_lgZy nmgdpby ^ Df =R kbff_ljbqgZ hlghkbl_evgh gmey b
f (− x) = − x + 5 − − x − 5 = − ( x − 5) − − ( x + 5) = x − 5 − x + 5 =
= −( x + 5 − x − 5 ) = − f ( x) ke_^h\Zl_evgh f(x g_q_lgZy nmgdpby
_ I − [ = − [ + + − [ − = − [ − + − [ + = x − 1 + x + 2 ≠ ≠ f (x ) b f(−x)≠ − f (x) ² g_ y\ey_lky gb q_lghc gb g_q_lghc nmgdpb_c 637.
Z fh`_l \ fh`_l [ g_ fh`_l ] g_ fh`_l
638.
[
y Z
y= 4 0
\
y
y
y=x [
[
1
y=–
1
x
3
]
[ −
x
y=– − [
y
3 1 –2
639.
1 2
Z m[u\Z_l [ \hajZklZ_l
640. 56
x
1
3
x
Ih mkeh\bx bf__f
g (− x) = g ( x), f (− x ) = f ( x)
agZqbl y(−x)= = g (− x) + f (− x) = g ( x) + f ( x) = y ( x) ; y(x) — q_lgZy nmgdpby [ y( x) = f ( x) − g ( x), f (− x) = f ( x), g (− x) = g ( x), agZqbl m(−o)= = f (− x) − g (− x) = f ( x) − g ( x) = y ( x ) ; y(x) — q_lgZy nmgdpby \ y ( x) = g ( x) ⋅ f ( x), f (− x) = f ( x), g (− x) = g ( x), agZqbl m(−o)= = g (− x) × f (− x ) = g ( x) ⋅ f ( x) = y ( x); y(x) — q_lgZy nmgdpby a) y ( x) = g ( x) + f ( x), f (− x) = f ( x), g (− x) = g ( x ),
] y ( x ) =
f ( x) , f (− x) = f ( x), g (− x) = g ( x ), agZqbl g ( x) f (− x) f ( x) = = = y ( x) ; y(x) — q_lgZy nmgdpby g (− x) g ( x) 641. Ih mkeh\bx bf__f f (− x) = − f ( x); g (− x) = − g ( x). a) y ( x) = g ( x) + f ( x), f ( x) = − f (− x), g ( x) = − g (− x),
m(−o)=
agZqbl
m(−o) = g (− x) + f (− x) = g ( x) − f ( x) = − y ( x ) ; y(x ² g_q_lgZy nmgd-
pby [ y( x) =
agZqbl m(−o)= = f (− x) − g ( x) = − f ( x) + g ( x) = −( f ( x) − g ( x)) = − y ( x) ; y(x ² g_q_lgZy nmgdpby \ y ( x) = g ( x) ⋅ f ( x), f ( x) = − f (− x), g ( x) = − g (− x), agZqbl f ( x) − g ( x), f ( x) = − f ( x ), g ( x) = − g ( x),
m(−o) = g (− x) ⋅ f (− x) = − g ( x) ⋅ (− f ( x)) = g ( x) ⋅ f ( x) = y ( x); y(x) —
q_lgZy nmgdpby
57
f ( x) , f ( x) = − f (− x), g ( x) = − g (− x), agZqbl g ( x) f (− x) − f ( x) = = = y ( x) ; y(x) — q_lgZy nmgdpby g (− x) − g ( x)
] y ( x ) =
m(−o)=
642.
=jZnbdhf nmgdpbb f ( x) = x − 2 [m^_l ijyfZy o 0 1 m -2 -1 =jZnbdhf nmgdpbb f ( x) = − x − 2 [m^_l ijyfZy o 0 -2 m -2 0
643. =jZnbd nmgdpbb g ( x) = x 2 + 1 − iZjZ[heZ m dhlhjhc \_l\b gZijZ\e_gu \\_jo GZc^_f dhhj^bgZlu \_jrbgu iZjZ[heu b 0 x\ = − = − = 0; g \ = 1. 2a 2 o 1 2 0 -1 m 2 5 1 2 =jZnbd nmgdpbb g ( x) = − x 2 − 1 − iZjZ[heZ <_l\b wlhc iZjZ[heu gZijZ\e_gu \gba GZc^_f dhhj^bgZlu \_jrbgu iZjZ[heu x\ = −
0 b =− = 0; g \ = −1. 2a 2 ⋅ (−1)
o -1 -2 -3 0 m -2 -5 -10 -1
1 -2
2 -5
3 -10
644. Z =jZnbdhf nmgdpbb f(x)= ijyfZy o 0
o− [m^_l
4 1
um
1 −1 [ =jZnbd nmgdpbb f(x o2−o − iZjZ[heZ <_l\b wlhc iZjZ[heu gZijZ\e_gu \\_jo Dhhj^bgZlu \_jrbgu iZjZ[heu E =− − m =1. o\=− \ D ⋅
\ Ijb o≥ ]jZnbd nmgdpbb ijb ihkljhbf ih lhqdZf ijb o≤ ]jZnbd [m^_l kbff_ljbq_g ihkljh_gghfm hlghkbl_evgh Hm o 0 1 4 9 m 0 1 2 3
645. Z =jZnbd nmgdpbb g(x)=x2 − iZjZ[heZ <_l\b wlhc iZjZ[heu gZijZ\e_gu \\_jo GZc^_f dhhj^bgZlu \_jrbgu iZjZ[heu o\=−
o m
E =− =0; g =0. \ D ⋅ 0 0
1 1
2 4
3 9
4 16
[ =jZnbd nmgdpbb g(x o2−o − iZjZ[heZ <_l\b wlhc iZjZ[heu gZijZ\e_gu \\_jo
2
GZc^_f dhhj^bgZlu \_jrbgu iZjZ[heu o\=− g\=4−4⋅2=−4. o 0 1 m 0 −3
2 4 −4 0 \ Ihkljhbf ]jZnbd nmgdpbb g(x)=
o m
0 0
1 1
4 2
E =− − =2; D ⋅
Ë: 9 3
16 4
646.
Z =jZnbd nmgdpbb y=f(x y\ey_lky kbff_ljbqguf hlghkbl_evgh hkb hj^bgZl Ihwlhfm _keb (x0; f(x0)) ijbgZ^e_`bl ]jZnbdm lh b (–x0; f(x0)) ijbgZ^e_`bl ]jZnbdm Ke_^h\Zl_evgh f(–x0)=f(x0) lh _klv f(x0) ² q_lgZy nmgdpby [ =jZnbd nmgdpbb y=f(x y\ey_lky kbff_ljbqguf hlghkbl_evgh gZqZeZ dhhj^bgZl Ihwlhfm _keb (x0; f(x0)) ijbgZ^e_`bl ]jZnbdm lh b (–x0; –f(x0)) ijbgZ^e_`bl ]jZnbdm Ke_^h\Zl_evgh f(–x0)=– f(x0) lh _klv f(x) ² g_q_lgZy nmgdpby
647.
Z >Z ijb k=0 y=b — q_lgZy nmgdpby [ >Z ijb b=0: y=kx — g_q_lgZy nmgdpby
648. >Z ijb b
b Z≠ m Zo2k ² y\ey_lky q_lghc nmgdpb_c
649. Z Nmgdpby m o100 \hajZklZ_l gZ ijhf_`mld_ 5 >4100. 100
>∞),
agZqbl
3
[ Ld < b nmgdpby m o100 \hajZklZ_l gZ ijhf_`mld_ [0;+∞ agZqbl 100<0,89100. Nmgdpby m o261 \hajZklZ_l gZ ijhf_`mld_ −∞;+∞ agZqbl 1,5 <1,6261. \ 261
] Nmgdpby m o261 \hajZklZ_l gZ ijhf_`mld_ −∞;+∞ agZqbl
>
.
650.
Z Nmgdpby m o10 \hajZklZ_l gZ ijhf_`mld_ >∞ agZqbl 2 <310. [ Nmgdpby m o5 \hajZklZ_l gZ ijhf_`mld_ −∞;+∞ agZqbl 5 0,3 >0,25. \ Nmgdpby m o17 \hajZklZ_l gZ ijhf_`mld_ −∞;+∞ agZqbl 10
]
>
.
= ⇒
=
=
;
^ 7=(23)7−221 m o21 \hajZklZ_l gZ ijhf_`mld_ −∞;+∞ agZqbl 3 >221 l_ 21>87. _ 6=(362)3=12963 Nmgdpby \hajZklZ_l gZ ijhf_`mld_ (−∞;+∞ b <1296, 12963>12503 l_ 6>12503. 21
651.
Z Nmgdpby f(x o7 \hajZklZ_l gZ ijhf_`mld_ −∞; +∞)⇒f(25)>f(12)⇒ f(25)−f(12)>0. [ Nmgdpby f(x o7 \hajZklZ_l gZ ijhf_`mld_ −∞; +∞)⇒f(−30)+∞)⇒g(17) −g(5)>0. ^ g(−9)>o; g(−17)>0⇒g(−9)⋅g(−17)>0. _ Nmgdpby g(x o10 \hajZklZ_l gZ ijhf_`mld_ > +∞)⇒g(38)> g(0)⇒ g(38)−g(0)>0.
652. 4
Z JZkkfhljbf jZaghklv on+1−xn=xn(x− LZd dZd x∈[0; lh x ≥ o−1≤ ke_^h\Zl_evgh on+1−xn≤ lh _klv on+1≤xn. [ JZkkfhljbf jZaghklv on+1−xn=xn(x− LZd dZd x∈(1; +∞ lh n x ≥ o−1> ke_^h\Zl_evgh on+1−xn> lh _klv on+1>xn. n
653.
Z n agZqbl n=3. [ n agZqbl n=2. \ −3)n agZqbl n=4. ] −32=(−2)n agZqbl n=5.
654.
Z n, y=2n \hajZklZ_l 22=4<5<82=23 agZqbl g_ kms_kl\m_l [ )n agZqbl n=8. \ ± n agZqbl n=2m. 415=(–5)2m=25m y=25m — \hajZklZ_l 25'=25<415<625=252 agZqbl g_ kms_kl\m_l ] ± −7)n agZqbl n=3.
655.
,
x y
Ihkljhbf ]jZnbd nmgdpbb m o3 −1 −2 −1 −8
− −
0 1 2 3 0 1 8 9
Ihkljhbf ]jZnbd nmgdpbb m o4. 0 1 2 o −1 −2 − ,,
m −1 −16
−
0 1 16
5
Z =jZnbd nmgdpbb m −o3 fh`gh ihemqblv ba ]jZnbdZ nmgdpbb m o3 ihevamykv kbff_ljb_c hlghkbl_evgh hkb o [ =jZnbd nmgdpbb m o3−1 fh`gh ihemqblv ba ]jZnbdZ nmgdpbb m o3 ijb ihfhsb iZjZee_evgh]h i_j_ghkZ gZ _^bgbpm \gba \^hev hkb m \ =jZnbd nmgdpbb m o−2)3 fh`gh ihemqblv ba ]jZnbdZ nmgdpbb m o3 ijb ihfhsb iZjZee_evgh]h i_j_ghkZ gZ _^bgbpu \ijZ\h \^hev hkb o ] =jZnbd nmgdpbb m o−2)3 fh`gh ihemqblv ba ]jZnbdZ nmgdpbb m o3 ijb ihfhsb ^\mo iZjZee_evguo i_j_ghkh\ — k^\b]Z m o3 gZ _^bgbpu \ijZ\h b gZ _^bgbpm \\_jo ^ =jZnbd nmgdpbb m −o4 fh`gh ihemqblv ba ]jZnbdZ nmgdpbb m o4 ihevamykv kbff_ljb_c hlghkbl_evgh hkb o _ =jZnbd nmgdpbb m o4− fh`gh ihemqblv ba ]jZnbdZ nmgdpbb m o3 ijb ihfhsb iZjZee_evgh]h i_j_ghkZ gZ _^bgbpm \gba \^hev hkb m ` =jZnbd nmgdpbb m o−3)4 fh`gh ihemqblv ba ]jZnbdZ nmgdpbb m o4 ijb ihfhsb iZjZee_evgh]h i_j_ghkZ gZ _^bgbpu \ijZ\h \^hev hkb o a =jZnbd nmgdpbb m o−3)4 fh`gh ihemqblv ba ]jZnbdZ nmgdpbb m o3 ijb ihfhsb ^\mo iZjZee_evguo i_j_ghkh\ ² k^\b]Z m o4 gZ _^bgbpu \ijZ\h b gZ _^bgbpm \\_jo 6
656.
Z dhjgy [ dhj_gv \ g_l dhjg_c ] dhj_gv ^ dhj_gv _ dhj_gv
657. Z −0,5 [ −
^ _
=1,5
−
=−0,5⋅
− =
⋅
− ⋅
\ ]
⋅
É=
=
5
3 ⋅ = . =5 ⋅ = 2 ⋅
⋅
= −3 53 ⋅0,1=−5⋅0,1=−0,5.
=
;( É )3=
) = 0,04 ⇒ o=0,04. 1 ; (y ) = ⇒ m . 2 1 2
2
1 3
⋅ = ⋅ = = . ⋅
⋅
3
3
\ ¶ =− g_l j_r_gbc ld dhj_gv qbkeZ _klv qbkeh g_hljbpZl_evgh_
^ _
]
⋅3=2.
=
Ë =0,2; ( Ë )2=0,22; (x
Z
=
=1,5⋅2=3.
658.
[
=−0,5·2=−1.
hc
kl_i_gb ba ex[h]h
E =2; ( E )4=24; (b ) = 24 ⇒ b=16. 8 Ë =1; ( Ë )8=18; (x ) = 18 ⇒ o
4
1 4
1 8
3
3
( ) = (− 2) ⇒ o −8. 1
É =−2; ( 3 › ) =(−2) =−8; x 3
3
3
659.
Z Ijb o−2≥0; o≥ \ujZ`_gb_ bf__l kfuke − Ë [ Ijb ≥ o≤9.
7
\ Ijb ex[hf o \ujZ`_gb_ bf__l kfuke ] Ijb Z− Z−2)≥ l_ ijb Z ≤ beb a≥5. ^ Ijb m2−m≥ J_rbf mjZ\g_gb_ m2−m D=52−4⋅6=1; + − 2 m =3 beb m m −m m− m−2)≥ l_ m≤ beb m≥3.
_ Ijb −b2+6b−8≥ J_rbf mjZ\g_gb_ −b2+6b−8=0; b2−6b+8=0; 6+ 4 6− 4 b= D=62−4⋅1⋅8=4; beb b= =2⇒−b2+6b−8= 2 2 =−(b−4)(b−2)≥0; (b−4)(b−2)≤ l_ ≤b≤4.
660. Z o6 o [ o9 o \ o7=− o ] o11 o ^ _
4
.
. − =−
.
.
(
› + 1 =2; ( 4 › + 1 )4=24; (x + 1)
Ë − =1;( Ë − )
5
=15
1 4
o−
) =2 4
o
4
⇒ o
o
661.
Z o8o4− Imklv o4=y; y2+6y−7=0; D=62−4⋅(−7)=64; − 6 + 64 − 6 − 64 beb y2= =−7; x4=− \ i_j\hf kemqZ_ y 1= 2 2 o1 beb o2=− \h \lhjhf kemqZ_ g_l j_r_gbc ld ijZ\Zy qZklv jZ\_gkl\Z o4=− ± hljbpZl_evgh_ qbkeh [ o12−o6 Imklv o6=y; y2−9y+14=0; D=92−4⋅14=25; 9 + 25 9 − 25 beb y2= =2 ⇒ o6 beb o6 \ i_j\hf y 1= 2 2 kemqZ_ o1,2=± \h \lhjhf kemqZ_ o3,4=± . \ o6o3 Imklv o3=y; y2+11y+24=0; D=112−4⋅24=25;
8
− 11 + 25 − 11 − 25 =− beb y2= =−8⇒o3=− beb o3=−8; 2 2 o1=− beb o2= − =−2. ] o14−o7 Imklv o7=y; y2−5y+6=0; D=25−4⋅6=1; + − y 1= beb y2= =2 ⇒o7 beb o7 l_ x1 o2= . y 1=
662.
Ë =5; ( Ë )3=53=125; (x ) = 53 ⇒o 2) Ë >5; ( Ë )3>53o>125. 3) Ë <5; ( Ë )3<53 o<125. 4 [ Ë =2; ( Ë )4=24; (x ) = 2 4 ⇒ o 2) Ë >2; ( Ë )4>24o>16. 3) Ë <2; ( Ë )4<24; 0x<16. Z
1 3
1 4
3
663.
Ihkljhbf ]jZnbd nmgdpbb m Ë o 0 1 8 −1 −27 m 0 1 2 −1 −3
Z [ \
<
;
− < − ; − < − .
664. Z LZd dZd < lh − <0.
<
ke_^h\Zl_evgh
9
[ LZd dZd
−
>
lh
>
ke_^h\Zl_evgh
>0.
\ LZd dZd >0,99, lh > ke_^h\Zl_evgh
1−
>0.
] LZd dZd lh
−
<
=
<
,
ke_^h\Zl_evgh
<0
665. Z
−[ =
I −[ =
[
=
I [
Df=R Ke_^h\Zl_evgh I [ ² q_lgZy nmgdpby Ihkljhbf ]jZnbd nmgdpbb y= I [ .
Ijb x y= I [ = [ Ijb x<0 ]jZnbd [m^_l kbff_ljbq_g hlghkbl_evgh Oy. y
1 1
[
I −[ =
−[ =
[
=
4
I [
Df=R — kbff_ljbqgZ hlghkbl_evgh gmey Ke_^h\Zl_evgh I [ ² q_lgZy nmgdpby Ihkljhbf ]jZnbd nmgdpbb y= I [ . 10
x
Ijb x y= I [ = [ Ijb x<0 ]jZnbd y\ey_lky kbff_ljbqguf hlghkbl_evgh Oy.
y
2 1
x
666. Z
[ 1<
Ë<
<
<
Ë<
; 0<
ke_^h\Zl_evgh
Ë <1.
<
Ë<
;
.
10
\
Ë <10.
ke_^h\Zl_evgh
<
Ë<
;
667.
Z o−2≥ o≥2. [ −o≥ o≤ o≤2,5. \ m
Ë+
hij_^_e_gZ ijb ex[hf o
668. y
y=x
[
y= 2
y= 1
Z o2=1
4
[
x
8
x = x agZqbl x = x 2 oo−1)=0 ⇒ x1 = 0, x2 = 1 l_ o1=0, 1 2
x = x agZqbl x>0 ld dhj_gv l_evgh_
hc
1 2
kl_i_gb qbkeh g_hljbpZ-
x > x agZqbl oo−1)< l_ 0<x<1. 11
[ 3 x = x agZqbl o=o3 l_ o(o2−1)=0; o(o−1)(o o2=1, o3=−1. 3
x < x agZqbl x<x3; x(x2−1)>0; −1<x<0 beb x>1
3
x > x agZqbl x>x3; x(x2−1)<0; x<−1 beb 0<x<1.
l_
670. Z
[
\
]
⋅
⋅
=
=
3
⋅
=
5
4
=
⋅
=
5
3
4
⋅
43 ⋅ 3 33
3
⋅
=
⋅
=
⋅
=
6
4 ⋅ 3 12 = . 5 5
=
34
2 ⋅ 5 4
4
(3 ) ⋅ 5 (7 ) (3 ) (2 ) ⋅ 5 2 5
5
5
2 5
6
2 3⋅ 3
2 6
6
=
4 5
⋅
=
= 6
⋅
=
=
⋅
.
=
.
=1
671. Z
[
\
]
Ë É=
Ë
ËÉ =4 [ [\ .
⋅
DE = E ⋅ DE = 4 34 b 4 ⋅ 4 ab3 3b DE . 3 3 3 3 3 2 D [ = D [ ⋅ D = 5 a x ⋅ a = 5Zo D E \ = E \ \ = 4b4m2 \ .
672.
Z Z
¶
[ o
\ b
12
¶ ¶
=
Ë
E
=
=
Ë Ë E E
=
¶.
= 3 23 x 3 − 2 = 2 = 4 3b 4 − 3 =
Ë.
E.
.
.
o1=0,
] k
Ç
=
Ç Ç
⋅
= 5 2c 5 − 4 =
Ç.
673.
Z LZd dZd ! Lh]^Z 32 =
15
15
2 =
5 15 2
5
[ LZd dZd
=
<
<
>
15
8=
15
2 = 3
3 15 2
=
1 25 ;
lh]^Z
=
1 23
−
<
\ LZd dZd ! lh]^Z
N
=N >
N
N
−
<
N
<
=N
N
] LZd dZd
N
−
N
>
lh]^Z
N
< .
674. Z
=
=
=
=
LZd dZd ke_^h\Zl_evgh [
=
=
<
=
<
<
;
5
3
243 8 23 2 5 3 0,3 = 15 = 15 < 15 = 3⋅5 3 = 5 = 0,2 , 100000 1000 10 10 10
ke_^h\Zl_evgh
<
675. Z
−
⋅
+
=1.
3⋅ 2
<
.
(2 − 3 ) ⋅ 3
6
7+4 3 =
13
= 6 (2 − 3 ) 2 ⋅ 6 7 + 4 3 = =
−
=
−
=1.
[
+ +
−
=
6
−
−
=
=1.
3
3
⋅ +
+
( 2 − 1)
=
2
−
=
2
=
( 2 − 1)
3 − 2 2 : 2⋅3 3− 2 2
= 6 (3 − 2 2 ) : 6 ( 2 − 1) 2 = 6
=
−
− =1.
−
−
=
=
−
+
=
676. 3
Z
3
3
[
25
3
2
3
10
= =
\
−
2
]
3
3 −1
3
3
( 25 ) 5 3 3
5
2
3
5 5
=
7 3
5+ 2 3
3
3
3
=
+
=
125
25 5
15
=
+
3
15 . 5
25 . 5
2 +1
(3 3 − 1)(3 32 + 3 3 + 1)
+
2
=
+ = −
2(3 32 + 3 3 + 1)
( 3) −1 3
3
3
(3 5 + 3 2 )(3 5 2 − 3 5 ⋅ 3 2 + 3 2 )
3
=
o2
o
[ 14
Ë−
2
Ë =0;
(
)
7 3 25 − 3 10 + 3 4 == 5+2
Ë =2 Ë ;
(
−
=
Ë )6=(2 Ë )6;
oo− o1 beb o2=0. Ë −0,1=0; Ë =0,1; ( Ë )6=0,16 o
+.
=
677. Z
+1.
7( 3 5 2 − 3 5 ⋅ 3 2 + 3 2 2 )
=
3
2
=
( 2 ) −1
2(3 32 + 3 3 + 1)
( 5) + ( 2) 3
3
3
−
7(3 25 − 3 10 + 3 4 ) 3
=
= =
2
3
=
3
2 3 32 + 3 3 + 1 = = 2
^
5
+
.
(x ) = 2 (x ) ; 1 3
6
6
1 6
6
\ Ë +5=0; Ë =− g_l j_r_gbc ld dhj_gv hc kl_i_gb qbkeh g_hljbpZl_evgh_ ] Ë +2 Ë − imklv Ë =y, 2y2+y−1=0; D=1+1⋅2⋅4=9;
−1± 9 , y1=− beb y2= < i_j\hf kemqZ_ j_r_gbc g_l ld 4 dhj_gv hc kl_i_gb ± qbkeh g_hljbpZl_evgh_ \h \lhjhf kemqZ_ y=
Ë=o
o
Ë −5 Ë
=
.
imklv Ë =y lh]^Z y2–5y+6=0; ± D=252−6⋅4=25−24=1; y1,2= ; y1=3 beb y2=2. < i_j\hf kemqZ_ ^
Ë
_
o1=3 \h \lhjhf kemqZ_ Ë −2 Ë − imklv 4
Ë o2=24=16. Ë =y lh]^Z
y2
−2y−3=0;
2 ± 16 ; y1=3 beb y2=–1 — dhjg_c g_l ld D=22+3⋅4=4+12=16; y= 2
e_\Zy qZklv x=6561.
±
iheh`bl_evgZy Z ijZ\Zy
hljbpZl_evgZy
[ =
678.
Z
=2,5⋅2
3
=5
=5⋅ =5⋅ ⋅ =
=5⋅ ⋅ = 5 2 ⋅ .
[ −8⋅ \ a
=− ⋅ = − 2
D =a⋅ D
3+
=a
1+
1 2
=−
.
3
= a2 1+
] −b⋅ 3 b =−b⋅ E = − b
1 3
1 3
4
= − b3 . 1
^ x+1)2⋅ 4 x + 1 =(x+1)2⋅ ( x + 1) 4 = (x + 1)
2+
1
_ y−5)3⋅ 3 y − 5 =(y−5)3⋅ ( y − 5) 2 = ( y − 5)
1 4
3+
1 2
9
= ( x + 1) 4 . 7
( y − 5) 2 .
679. Z ! ihwlhfm 15
3
2
1
1
512 = 6 83 = 8 6 = 8 2 > 6 64 = 6 82 = 8 6 = 8 3
6
[ ! ihwlhfm 1
4
1
3
625 = 24 54 = 5 24 = 5 6 > 24 512 = 24 83 = 8 24 = 8 8 \ ihwlhfm 24
4 12 3
81 = 3 = = ] ! ihwlhfm 12 4
12
1 33
4 48
< 125 = 12
5 =
12 3
3 12 5
=
3
1
81 = 48 34 = 3 48 = 312 > 48 64 =
1 54
1
43 = 4 48 = 4 16 .
48
680. 1
1
Z ( x − 2) 2 =4; ( ( x − 2) 2 )2=42; x−2=16; x=18. [ x−2)
2
1 = 42
Iheh`bf x−2=y⇒y2= 4 =2;
y=± 2 ; x−2=± 2 ; x1=2+ 2 , x2=2− 2 . 1
\ ( y + 3) 4 =−1; 4 y + 3 =− g_l j_r_gbc ld dhj_gv hc kl_i_gb ± qbkeh g_hljbpZl_evgh_ 1 1 1 = ; y+3=4; y=1. ] ( y + 3) −1 = ; 4 y+3 4 1
^ ( a − 5) 3 =0; a−5=0; a=5. _ a−5)0=
1 g_l j_r_gbc ld Z−5)0 3
gh
1 ≠1. 3
681. Z
5
1 5 < x < 5 1 agZqbl 32
2
2
2
1 5 < x 5 <1 5 agZqbl 32
[ 2
5
1
5
1
1 < x 5 < 15 ; 25 2
5
1 < x 5 <1; 1024
1
1
2
5
1 < 5 x < 5 32 ; 1< x 5 < 5 25 ; 1 < x 5 < 2 ; 2
2
2
2
2
1 5 < x 5 < 32 5 ; 1< x 5 < 5 1024 ; 1< x 5 < 45 ; 1< x 5 <4. 5
16
2
1 1 < x 5 <1; < x 5 < 1 . 5 4 4
1
1
\
32 < 5 x < 5 1000 ;
5 2
2
25 < x 5 < 5 1000 ; 2 < x 5 < 5 1000
5
2
2
32 5 < x 5 <1000 5 ;
5
1 5
1024 < x 5 < 5 1000000 ;
2
45 < x 5 < 5 10 ⋅ 105 ; 4< x 5 < 105 10 .
682. 3 5 x
Z
3
3
= x5
2
−
3 2 − 10 15
=x
18 − 9 − 4 30
5
1
= x 30 = x 6 .
x 10 ⋅ x 15
[
a −3,5 ⋅ a 3,8 a −3,5 + a 3,8 a 0,3 = = 0, 2 = a 0, 3− 0, 2 = a 0,1 . a 2,1 ⋅ a −1,9 a 2,1−1,9 a
\ m−0,6 ⋅ m0,2 )2,5=( m−0,6 + 0, 2 )2,5=( m−0,4 )2,5=m−0,4⋅2,5= m −1 = 3 −1 ] c 4 c 6
−1
2 7
9− 2 = c 12
−
1 3
9 7
−
=c
7 9 ⋅ 12 7
1
1
25a − 2 2 = ^ 4 4b 8 x12 _ 6 y
−
25 ⋅ (a − 2 ) 2
=
1
5a
4 ⋅ (b 4 ) 2
− 2⋅
2b
4⋅
1 2
1 2
=
.
5a −1 5 = 2 2b 2ab 2
6
1
y6 3 = 12 = 8x
=c
3 4
−
1 . m
y3 1
12
=
83 x 3
y2 . 2x4
683. 3
Z [
5
x3 ⋅
8 4
x
x −1
10
=
9
3
x 9 = x 5 ⋅ x 10 = x 5 1 x8
x
−
1 4
1 1 + 4
= x8
1 1
=x 2
+
9 10
1+ 2 8
=x
6+9 10
15
3
= x 10 = x 2 .
3
= x8 . 1
2 1 + 12
\ 3 x 2 4 x = ( x 2 x 4 ) 3 = x 3 ⋅ x 12 = x 3
9
3
= x 12 = x 4 .
17
684. 8 −2 x3 ⋅ x 3 Z 4 3 x 1 = x −1 = x
?keb x [
[ =
−
[
⋅ ⋅
−
3 2
8− 2 x3 3 = 4 3 x
lh
−
3 2
2 x = 4 3 x
− [ ⋅[ = [ ⋅[−
[ ⋅[ [ ⋅ [−
−
3 2
=
3 2 − x 2 4 3 ⋅ − 2
x3
=
[
− +
[
−
=
⋅ ⋅
=[
−
[
=[
− −
=[
−
1
=
.
?keb x
685.
lh x
−
1 4
=
[ = Z \ =
[ = \ = −
[ = [ \ =
[ = \ = −
4
x
1 4
(0,5)4
686. Z om t [ o
2 t3 1
−
1 2
=
1
⋅t2 =t 1 (t 3 ) 2 1
1 1 − + 2 2
= t 0 = om
m2 o m2. 1
\ o t 2 o2=( t 2 )2=t=( t 3 )3 m3 o3 m3.
687. 18
x −3 = x −3+2 = −2 x
=
1 1 = =125. x 0,008
−
=
1 =2. 0,5
[
−
[
=
Z a
1 1 2 − 3 b 3 (a 3
−
2 =a3
1 − ⋅a 3
1 = a3
1 − ⋅b 3
1 − ⋅b 3
+
+
2 + b3
1 1 − a 3b 3
[ [ + \
2 2 2 1 − 3 3 b ) − (a b 3 ) 2
1 − ⋅a 3
1 − a3
[
1 − ⋅b 3
1 − ⋅b 3
=
−\
+
=
2 1 − (a 3 ) 2 1 1 − a 3b 3
\
⋅ (b
2 1 3 )2
−
=
.
= [
−\
+\ =
= [−\ +\ = [.
688. Z a −0,5 −3a=a−0,5(2a−0,5+0,5−3a1+0,5)= a −0,5 (2−3 a1,5 ). [ a −0,5 +5 a 0,5 =Z−0,5(3Z−0,5+0,5+5Z0,5+0,5)= a −0,5 (3+5a). \ a−1=Z−0,5(6Z1+0,5−Z−0,5)= a −0,5 (6 a1,5 − a −0,5 ).
689. 1
2
1
⋅2
1
1
Z x 3 −4= x 3 − 23 = ( x 3 ) 2 − 2 2 =( x 3 −2)( x 3 +2). 4
2
1
2
2
[ a 3 −5=( a 3 )2−( 5 2 )2=( a 3 − 1
1
1
⋅2
)( a 3 +
1
). 1
\ m 2 −25= m 4 −52= (m 4 ) 2 − 52 = ( m 4 −5)( m 4 +5). 1
1
1
1
1
1
] −2 x 3 =( 3 2 )2−( 2 2 x 6 )2=( 3 − 2 x 6 )( 3 + 2 x 6 ). ^ c 0,8 − x 0,5 =( c 0, 4 )2−( x 0,25 )2=( c 0, 4 − x 0,25 )( c 0, 4 + x 0,25 ) _ p− p0,6 = p
1 2
⋅2
− p 0,3⋅ 2 =(p0,5)2−(p0,3)2=( p0,5 − p 0, 3 )( p 0,5 + p0, 3 ).
690. 1
1
⋅3
1
Z Z−8= a 3 −23= (a 3 ) 3 − 23 = ( a 3 −2)( 1
⋅3
1
D
1
+2 a 3 +4).
1
1
2
[ 1+27b=13+33 b 3 = 13 + (3b 3 ) 3 =(1+3 b 3 )(1−3 b 3 +9 b 3 ). \ a 0,6 − b0,6 =( a 0,2 )3−( b0,2 )3=( a 0,2 − b0,2 )( a 0,4 + a 0,2 b0,2 + b0,4 ). ] x 0,9 +125=x0,3⋅3+53=( x 0,3 )3+53=( x 0,3 +5)( x 0,6 −5 x 0,3 +25). 19
691. x − y +x−y= x − y +( x )2−( y )2=( x − y )+
Z
+( x − y )( x + y )=( x − y )(1+ x + y ); a +a+ b −b=( a + b )+( a )2−( b )2=( a + b )+
[
+( a − b )( a + b )=( a + b )(1+ a − b );
[
\ ]
3
1
3
3
3
+4 x 4 +4=( x 4 )2+2⋅2 x 4 +22=( x 4 +2)2;
1
1
1
⋅2
1
1
1
⋅2
x−2 x 2 a 2 +a= x 2 − 2 x 2 ⋅ a 2 + a 2
1
1
1
1
a 2 )2; 1
1
1
1
^ x+2 x 2 −8= ( x 2 ) 2 + 2 x 2 + 1 − 9 = ( x 2 + 1) 2 − 32 = 1
1
1
1
= ( x 2 + 1 − 3)( x 2 + 1 + 3) = ( x 2 −2)( x 2 +4);
_ [ =3 x
−
1 4
−
−5 x
(2 x
−
1 4
−
1 4
+1=6 x
−1)−(2 x
−
1 4
−
1 2
−3 x
−
−1)= (3 x
1 4 −
−2 x 1 4
−
1 4
+1=
−1) (2 x
−
1 4
−1).
692. Ijb x=
1 a2
xy = x+ y
1)
2)
20
1 a2
1
b2
+
1 + b2
; y=
1 b2
1
E
D
E
⋅
⋅
+ E
D
1 b2 1 a2
1 − b2
1
1
a2
b2
1 + b2
1
a 2 − b2
D D
1 a2 1 a2
1
a2
+
1 a2
− E
=
1 − b2
D
+ E
1
=
− E
1
+
D
− E
;
1
D E D
1
1
(ab) 2
=
1
1
⋅2
a2 − b2 1
1
⋅2
1 1 + b 2 )(a 2
1 − b2 )
(ab) 2 ; = a−b
1
a 2 (a 2 − b 2 ) + b 2 (a 2 + b 2 ) 1 (a 2
1
= ( x 2 )2−2 x 2 a 2 +( a 2 )2=( x 2 −
=
=
a+
1 1 a 2b 2
1 1 − b2a2
+b
a −b 1
=
a+b ; a−b
1 1
1 1
(ab) 2 a + b a 2 b 2 ( a − b) a 2 b 2 3) : = . = a − b a − b ( a − b)( a + b) a + b
693. 1
Z Iheh`bf c 2 =y; 18m2+3m−10=0; D=32−4⋅18⋅(−10)=729; y=
5 − 3 − 729 =− <0, 36 6
− 3 + 729 2 = 36 3
dhjg_c g_l ld c 2 ^he`gh [ulv g_hljb2
1
22 2 4 2 k = = . 2 3 9 3 3
1
[ Iheh`bf x 2 =y; 21y2−6y−15=0; D=62−4⋅21⋅(−15)=1296; 6 + 1296 6 − 1296 5 beb y= =− <0, y= 42 42 7 dZd x
−
1 2
²
^he`gh [ulv g_hljbpZl_evguf qbkehf x
1 \ Iheh`bf y 3 =v;
dhjg_c g_l lZd −
1 2
=1; x=1.
3v2+5v−2=0;
D=52−4⋅3⋅(−2)=49; − 5 + 49 1 = beb v 1= 6 3 1 1 . y=( )3= 3 27 −
beb
1
²
pZl_evguf qbkehf c 2 = −
y=
v2=
− 5 − 49 =−2, 6
²
dhjg_c
g_l
1
] Iheh`bf a 3 =y; 2y2−7y+3=0; D=72−4⋅2⋅3=25; 7 + 25 7 − 25 1 beb y2= = ; y 1= 4 4 2 1 1 , a=8. a1=3–3 beb a2=( )–3; a= 2 27 21
694. 2
1
Z v=
+1=
2 t3
1+ t 3
=
2 t3
2
u
; t 3 =u− ke_^h\Zl_evgh v=
2 t3
u ; u −1
v(u−1)=u; vu−v=u; vu= u+v; [ u4=t+2; v4=2−t; u4+v4=4.
695. 1
5
1
1
1
1
1
1
1
1
m 2 − n 2 m 6 + m 3 n 2 (m 2 − n 2 ) ⋅ m 3 (m 2 + n 2 ) Z ⋅ = 1 =1 1 1 1 1 1 m−n 3 3 2 2 2 2 m m ⋅ (m − n )(m + n ) 1
2)
=
1
1
1 1 m3 n3
−
1 1 m6 n 6
1 1 1 1 m 3 n 3 (m 6 n 6 1
1
m 2 n 2 − m6 n 6
1
1
− 1)
1
1
−1=
1
1
1
1 1
1
1
m 2 n 2 − m6 n 6 − m 3 n 3 + m6 n 6
1
1 1 m3n3
1 1 m6 n 6
−
1 x 6 (1 −
1 x6 )
=
1
= m6 ⋅ n 6 .
n 6 m 6 (m 6 n 6 − 1)
[
=
1 x 6 (1 −
1 x6
1 x3
− 1+ x
1 x6 )
1+ x
+
1−
+
1− (1 −
1 x3
1 x6
+
1 x 6 )(1 +
2 x3
1 x3)
1 13 + ( x 3 )3
1
1− x 2 1+ x 2) ⋅ = 1+ x 1− x
696.
22
− −
[
[
=
=
−
[
(1 +
(1 −
+
+ +
[ [
⋅
1+ x
+
[
=
+
[
.
1 x 6 )(1 +
1 x 3 )(1 −
+[
1 x3
1 x3)
+
2 x3)
=
−
[ [
+
;
=
1
1
( a + b) 2 + (a − b) 2 (a
=
=
1 + b) 2
a+b+
1 2( a + b) 2 ( a
1 ((a + b) 2 ) 2
5(a +
=
=
1
1
1
((a
1 − b) 2
1 + b) 2
+ a −b
1 − ((a − b) 2 ) 2
− (a =
1 − b) 2 ((a
1 + b) 2
+ (a
1 − b) 2 )
=
2a + 2 ( a + b)(a − b) = a+b−a+b
2 a + 2 a 2 − b 2 2( a + a 2 − b 2 ) a + a 2 − b 2 = = . 2b 2b b
?keb b=
=
− (a
1 − b) 2
1
((a + b) 2 + (a − b) 2 )((a + b) 2 + (a − b) 2 )
4a a + a 2 − b2 b a>0 lh = 5 b
a + a2 − 4a 5
16a 2 25 =
25a 2 − 16a 2 9a 2 3a ) 5(a + ) 5(a + ) 25 25 5 = 5(5a + 3a ) = = = 4a 4a 4a 4a ⋅ 5
5 ⋅ 8a 8a = =2. 4 a ⋅ 5 4a
23
697.
∠AOB=150°; ∠AOD=210°; ∠AOC=540°; ∠AON=−45°; ∠AOL=−135°.
698.
{ A{C=−210°; A{D=240°.
A B=400°;
699. Z α=282°; 270°<282°<360° agZqbl α∈,9 q_l\_jlb [ α=190°; 180°<190°<270° agZqbl α∈,,, q_l\_jlb \ α=100°; 90°<100°<180° agZqbl α∈,, q_l\_jlb ] α=−20°; 270°<−20°<360° agZqbl α∈,9 q_l\_jlb ^ α=−110°; 180°<−110°<270° agZqbl α∈,,, q_l\_jlb _ α=4200°; 4200°=360°⋅11+240°; 180°<240°<270° agZqbl α∈III q_l\_jlb
700. Z α=179°; 90°<179°<180° agZqbl α∈,, q_l\_jlb [ α=325°; 270°<325°<360° agZqbl α∈,9 q_l\_jlb \ α=−150°; 180°<−150°<270° agZqbl α∈,,, q_l\_jlb ] α=−10°; 270°<−10°<360° agZqbl α∈,9 q_l\_jlb ^ α=800°; 800°=360°⋅2+80°; 0°<80°<90° agZqbl α∈, q_l\_jlb _ α=10000°; 10000°=360°⋅27+280°; 270°<280°<360° agZqbl α∈,9 q_l\_jlb 24
701. Z °=2⋅360°+50°; −310°=−360+50°. [ °=360°+120°; 1560°=4⋅360°+120°; −240h=−360h+120h.
702. Z °=360°+60°; α=60°; [ −210°=−360+150°; α=150°; \ −700°=−2⋅360°+20°; α=20°.
703. sin35°=
\ ≈ ≈0,58; 5
cos35°=
x sin 35$ ≈ ≈0,82; tg35°= = R cos35$
\ ≈ ≈0,71; [
[ ≈1,4. \ \ sin160°= ≈ ≈0,37; 5 Ë − ≈−0,93; tg160°= \ ≈ ≈−0,39; cos160°= ≈ 5 [ − [ − ≈−2,55. ctg160°= ≈ \ \ −2,25 ≈–0,75; cos230°= x ≈ − ≈−0,65; sin230°= ≈ R 5 3 \ − ≈1,15; ctg230°= x ≈ − ≈0,87; tg230°= ≈ R − 5 − \ − ≈−0,97; sin(−75°)= ≈ [ Ë ≈0,27; tg(−75°)= \ ≈ − ≈−3,625; cos(−75°)= ≈ 5 [ [ ≈−0,28. ctg(−75°)= ≈ \ − ctg35°=
25
704.
\ ; cosα= [ ; 5 5 [ \ tgα= ; ctgα= . \ [ \ 1) sin50°= ≈ =0,8; 5 [ cos50°= ≈ =0,6; 5 \ tg50°= = ≈1,33; [ [ ctg50°= ≈ ≈0,75. \ \ =0,14; 2) sin175°= ≈ 5 [ − =−1; cos175°= ≈ 5 \ =−0,14; tg175°= = [ − [ − ≈−7,14. ctg50°= ≈ \ sinα=
y 5
1 1
3) sin(−100°)= cos(−100°)=
\ ≈ − =–1; 5
[ ≈ − =−0,2; 5
\ = − =5; [ − [ − =0,2. ctg(−100°)= ≈ \ − tg(−100°)=
705. Z FRV°+
cos30°=2⋅
[ VLQ°−ctg45°=5⋅
−1=
+
=3
^ WJ°⋅sin60°=4⋅
⋅
_ VLQ°⋅cos60°=12⋅ 26
⋅
⋅
=1+
3 1 =2 . 2 2
5 3 −1 = . 2 2
\ VLQ°+6cos60°−4tg45°=2⋅ ] WJ°⋅tg60°=3⋅1⋅
5 x
+6⋅
−4⋅1=1+3−4=4−4=0.
.
= 2( 3 ) 2 = 2⋅3=6.
=
12 ⋅ 3 =3 4
.
706. Z VLQ°⋅ctg60°=2⋅
[ sin45°−4cos30°=2⋅ \ WJ°⋅ctg30°=7⋅
] FWJ°−2sin60°=6⋅
⋅
⋅
−4⋅
=
( 3 )2 = =1. 3
=7⋅
−2⋅
=
−2
.
( 3 )2 3 = 7 : = 7. 3 3
=2
−
=
.
707. Z VLQα=1; α=90°; α=810°+360°=1170°;…
α=90°+360°=450°;
α=450°+360°=810°;
[ kRVα=−1; α=180°; α=180°+360°=540°; α=540°+360°=900°; α=900°+360°=1260°;... \ VLQα=0; α=0°; α=720°+360°=1080°;...
α=0°+360°=360°;
α=360°+360°=720°;
] WJα=0; α=0°; 180°; 360°;...
708. Z sinβ=−1; β=−90°; β=−90°+360°=270°; β=270°+360°=630°; [ cosβ=1; β=0°; β=0°+360°=360°; β=360°+360°=720°; \ cosβ=0; β=90°; β=90°+360°=450°; β=450°+360°=810°; ] ctgβ=0; β=90°; β=450°; β=270°.
709. Z LZd dZd –1VLQα lh 1+sinα2; [ LZd dZd FRVα lh 2–cosα3.
710. Z LZd dZd −1VLQα lh 1–sinα2; [ LZd dZd −1FRVα lh 12+cosα.
711. 27
Z α=90°; 450°; 270°; 810°; [ α=0°; 360°; 180°; 540°.
712. Z g_ fh`_l lZd dZd [ fh`_l lZd dZd
<1;
+
\ g_ fh`_l lZd dZd ] fh`_l lZd dZd
>1;
>1;
−
<1.
713.
Z FRV°−4sin90°+5tg180°=2⋅1−4⋅1+5⋅0=2−4+0=−2. [ FWJ°−3cos270°+5sin0°=2⋅0−3⋅0+5⋅0=0. \ WJ°−
sin270°−
cos180°=0−
⋅(−1)−
⋅(−1)=
714. Z VLQ°+2cos60°=0+2⋅ [ WJ°sin60⋅ctg30°=
=1. ⋅
⋅
=
.
\ VLQ°−3cos180°=4⋅1−3⋅(−1)=4+3=7. ] FWJ°−3sin270°=3⋅0−3⋅(−1)=3.
715.
Z VLQα+cosα=sin0°+cos0°=0+1=1. [ VLQα+cosα=sin45°+cos45°=
+
=
=
.
\ VLQα+cosα=sin90°+cos90°=1+0=1. ] VLQα+cosα=sin180°+cos180°=0+(−1)=−1.
716. Z FRVα+cos3α=cos30°+cos45°=
+
=
+0= . \ FRVα+cos3α=cos180°+cos270°=−1+0=−1.
[ FRVα+cos3α=cos60°+cos90°=
28
+
.
+
=1.
717.
Z VLQ°+sin2⋅30°+3sin3⋅30°=sin30°+sin60°+sin90°= 1 3 + +1= 2 2
=
+
+
[ WJ°+tg30°=1+
+
=
=
.
+ .
718. (a 0,5 + b 0,5 )(a 0,5 + b 0,5 ) − b 0,5 a 0,5 a 0 ,5 + b 0 ,5 b 0, 5 − 0, 5 = = 0, 5 a a + b 0 ,5 a 0, 5 ( a 0 , 5 + b 0, 5 )
1) =
D + D E + E − E D D D + E
D
2)
D+D D
=( D
D
+E
D
E
+E
+E
)2−( E
=
D+D D
=
D
D
E
D+D E +E ; D D + E
+E
+E
−E
=
D
E + E ⋅ D D D D + D E + E
D
D + D
E
+E
=
)2=a−b.
719. [ − \ = Z [ + \ = 2 + 3— , x = 2 2 ( 2 + 3 y ) + y 2 = 20; 4
2 + 3— , x = 2 x 2 + y 2 = 20; 2 + 3y , x = 2 ( 2 + 3 y ) 2 + 4 y 2 = 80;
2 + 3y x = 2 4 + 12 y + 9 y 2 + 4 y 2 = 80 13y2+12y−76=0; D=122−4⋅13⋅(−76)=4096>0; ke_^h\Zl_evgh ijyfZy b hdjm`ghklv i_j_k_dZxlky \ ^\mo lhq-
dZo
29
Ë + É = Ë = − É [ Ë + É = − É + É =
x = 50 − 7 y 2500 − 700 y + 49 y 2 + y 2 = 50 J_rbf mjZ\g_gb_ y2−14y+49=0; D=142−4⋅49=196−196=0; Ke_^h\Zl_evgh ijyfZy b hdjm`ghklv bf_xl h^gm lhqdm i_j_k_q_gby l_ ijyfZy dZkZ_lky hdjm`ghklb
720.
Z
[
2
−
−
=
−
1 − 4 4 (3 ) 2
−
3
((33 ) 3 − (2 4 ) 4 )
=
32 − 2 3 = (9 − 8) ⋅ 3 = 3 ; 3−1
1
((23 ) 3 − (25 ) 5 ) (5 3 )
=
−
1 3
=
2 2 − 21 = (4 − 2) ⋅ 5 = 10 . 5−1
721.
Z α=48° lZd dZd °<α<90° lh α∈, q_l\_jlb ihwlhfm VLQα>0; cosα>0; tgα>0; ctgα>0. [ α=137° lZd dZd °<α<180°; α∈,, q_l\_jlb ihwlhfm VLQα>0; cosα<0; tgα<0; ctgα<0. \ α=200° lZd dZd °<α<270°; α∈,,, q_l\_jlb ihwlhfm sinα<0; cosα<0; tgα>0; ctgα>0. ] α=306° lZd dZd °; 270°<α<360°; α∈,9 q_l\_jlb ihwlhfm sinα<0; cosα>0; tgα<0; ctgα<0.
722.
Z LZd dZd °<179°<180° lh α=179°∈,, q_l\_jlb ihwlhfm sin179>0. [ LZd dZd °<280°<360° lh α=280°∈,9 q_l\_jlb ihwlhfm cos280°>0. \ LZd dZd °<175°<180° lh α=175°∈,, q_l\_jlb ihwlhfm tg175°<0. 30
] LZd dZd °<359°<360° lh α=359°∈,9 q_l\_jlb ihwlhfm ctg359°<0. ^ LZd dZd FRV °=cos(360°+50°)=cos50° lh °<50°<90°; α=50°∈, q_l\_jlb ihwlhfm FRV°>0. _ LZd dZd WJ°=tg(360°+140°)=tg140° lh °<140°<180°; α=140°∈,, q_l\_jlb ihwlhfm WJ°<0. ` LZd dZd sin(–75°)=sin(360°–75°)=sin285° lh 270°<285°<360°; α∈,9 q_l\_jlb ihwlhfm VLQ−75°)<0; a LZd dZd cos(–116°)=cos(360°–116°)=cos244° lh 180°<244°<270°; α∈,,, q_l\_jlb ihwlhfm FRV−116°)<0.
723.
Z LZd dZd °<315°<360° lh α=315°∈,9 q_l\_jlb ke_^h\Zl_evgh FRV°>0. [ LZd dZd °<109°<180° lh α=109°∈,, q_l\_jlb ke_^h\Zl_evgh VLQ°>0. \ LZd dZd °<145°<180° lh α=145°∈,, q_l\_jlb ke_^h\Zl_evgh WJ°<0. ] LZd dZd °<288°<360° lh α=288°∈,9 q_l\_jlb ke_^h\Zl_evgh FWJ°<0. ^ LZd dZd cos(–25°)=cos(360°–25°)=cos335°; 270°<335°<360°; α∈,9 q_l\_jlb ke_^h\Zl_evgh FRV−25°)>0. _ LZd dZd tg(–10°)=tg(360°–10°)=tg350°; 270°<350°<360°; α∈IV q_l\_jlb ke_^h\Zl_evgh WJ−10°)<0.
724.
Z VLQα> \ , b ,, q_l\_jlb FRVα> \ , b ,9 q_l\_jlb ihwlhfm α∈I q_l\_jlb [ VLQα< \ ,,, b ,9 q_l\_jlb FRVα> \ , b ,, q_l\_jlb ihwlhfm α∈IV q_l\_jlb \ VLQα< \ ,,, b ,9 q_l\_jlb FRVα> \h ,, b ,,, q_l\_jlb ihwlhfm α∈III q_l\_jlb ] VLQα> \ , b ,, q_l\_jlb WJα< \ , b ,,, q_l\_jlb ihwlhfm α∈I q_l\_jlb ^ WJα< \ ,, b ,9 q_l\_jlb FRVα> \h , b ,9 q_l\_jlb ihwlhfm α∈IV q_l\_jlb
31
_ FWJα> \ , b α∈III q_l\_jlb
,,,
q_l\_jlb
VLQα<
\
,,,
725.
b
,9
q_l\_jlb ihwlhfm
Z °<100°<180°, sin100°>0; 270°<300°<360°; sin100°>0, cos300°>0; sin100°⋅cos300°>0 [ °<190°<270°, sin190°<0; 180°<200°<270°; sin190°<0, tg200°>0; sin190°⋅tg200°<0 \ °<320°<360°, cos320°>0; 0°<17°<90°;cos320°>0, ctg17°>0; cos320°⋅ctg17°>0 ] °<170°<180°, tg170°<0; 400°=360°+40°, 0°<40°<90°; tg170°<0, cos400°>0; tg170°⋅cos400°<0
726.
Z \ , b ,,, q_l\_jlyo [ \ , ,, ,,, ,9 q_l\_jlyo \ \ , ,, q_l\_jlyo
727. Z VLQ −30°)=−sin30°=−
[ FRV −60°)=−cos60°=
.
\ WJ −45°)=−tg45°=−1. ] FWJ −30°)=−ctg30°=− ^ FRV −90°)=cos90°=0 _ VLQ −45°)=−sin45°=−
.
.
728. Z VLQ −60°)=−sin60°=−
.
[ FRV −60°)=cos60°=−1. \ VLQ −90°)=−sin90°=−1. ] FWJ −45°)=ctg45°=−1.
729. Z VLQ°=sin(2⋅360°+30°)=sin30°=
32
;
cos750°=cos(2⋅360°+30°)=cos30°= tg750°=tg(2⋅360°+30°)=tg30°=
;
;
ctg750°=ctg(2⋅360°+30°)=ctg30°= ; [ VLQ°=sin(2⋅360°+90°)=sin90°=1; cos810°=cos(2⋅360°+90°)=cos90°=0; tg810°=tg(2⋅360°+90°)=tg90° ² g_ kms_kl\m_l kWJ° kWJ2⋅360°+90° kWJ°=0. \ VLQ°=sin(2⋅360°+180°)=sin180°=0; cos1260°=cos(2⋅360°+180°)=cos180°=−1; tg1260°=tg(2⋅360°+180°)=tg180°=0; ctg1260°=ctg(2⋅360°+180°)=ctg180° ² g_ kms_kl\m_l
730. Z VLQ°=sin(30°+360°)=sin30°=
;
[ FRV°=cos(60°+360°)=cos60°=
;
\ WJ°=tg(180°+360°)=tg180°=0; ] FWJ°=ctg(90°+360°)=ctg90°=0.
731. Z VLQ°=sin(45°+360°)=sin45°=
;
[ FRV°=cos(45°+360°)=cos360°=cos0°=1; \ WJ°=tg(30°+360°)=tg30°=
;
] FWJ°=ctg(270°+360°)=ctg270°=0.
732.
Z VLQ−720)°=−sin720°=−sin(2⋅360°+0°)=−sin0°=0; [ FRV−405)°=cos405°=cos(45°+360°)=cos45°=
\ FRV−780)°=cos780°=cos(2⋅360°+60°)=cos60°=
; ;
] FWJ−1110)°=−ctg1110°=−ctg(3⋅360°+30°)=−ctg30°=
. 33
733.
Z WJ−900°)=−tg(2⋅360°+180°)=−tg180°=0; [ FWJ−780°)=−ctg780°=−ctg(2⋅360°+60°)=−ctg60°=−
\ VLQ−1125°)=−sin1125°=−sin(3⋅360°+45°)=−sin45°=−
;
.
734. 1 1 − x−2 − y −2 x2 y 2 x 2 y 2 x 2 y 2 y 2 − x 2 xy x 2 y 2 ⋅ = ⋅ = 2 2 ⋅ ⋅ = 1 1 x+ y y−x x+ y x −1 − y −1 x + y x y − x y (y − x )( y + x )⋅ xy =xy. = (y − x )(x + y ) Ijb o=−0,12; m=−0,5 om=−0,12⋅0,5=−0,06.
735.
Z o2−o−56< GZc^_f dhjgb mjZ\g_gby o2−o−56=0; D=1−4⋅(−56)=225; 1 + 225 1 − 225 o= beb o= =−7; 2 2 (–7; 8) o2−o−56=(o−8)(o+7)<0. [ o2−29o−10> GZc^_f dhjgb mjZ\g_gb_ o2−29o−10=0; D=292−4⋅3⋅(−10)=961; + − o= beb o= =− ;
3o2−29o−10=3(o−10)(o+ )>0.
(– ±
)∪(10;+
\ o2≤−1; 4o2+1≤0. H[Z keZ]Z_fuo g_hljbpZl_evgu ihwlhfm j_r_gbc g_l ]
736. Z 34
−oo2>0; [ − >0;
180° 90° ≈29°. ⋅ 0,5 = π π
[≠ .
°
[ \ ]
π
π
=
π
=
π
^
° °
π
π
⋅
π
⋅
°
=
⋅10=
π
π
π
⋅
°
π
≈573°.
=36°. =20°.
π
=135°.
5π ⋅ − =−150°. π 6 π ° 9π ⋅ = ` − =−810°. π 2 ° 1 ⋅ π =2160°. a π=− 2 π
_ −
°
=
737. °
Z
π
°
[ \
π
⋅0,2=
π
π
≈11°.
⋅3,1≈178°.
π
=
°
°
π
⋅
π
=450°.
3π ⋅ =−270°. π 2 π ° π ⋅ =−60°. ^ − = π 3 π ° π ⋅ _ = =225°. π
] −
=
738. Z °= [ °= \ °=
°
π
π
π
⋅135°= ⋅210=
⋅36=
π
π
.
π
.
. 35
] °= ^ °= _ °=
π
π
π
` −120°= a −225°=
⋅150= ⋅240= ⋅300=
π
π
739. Z α=10°= [ α=18°= \ α=54°=
π
π
π
π
.
π
.
π
.
⋅(−120)=−
π
⋅(−225)=
⋅10= ⋅18= ⋅54=
π
π
.
.
.
π
.
π
.
π π ⋅ 200 = . 180 π π ⋅ 225 = . ^ α=225°= 180 π π ⋅ 390 = . _ α=390°= 180 45π π ⋅ (− 45) =− . ` α=−45°= 180 π π ⋅ (− 60 ) =− . a α=−60°= 180 ] α=200°=
740. Z α= [ α=
π
π
; β=π−
π
; β=π−
=
π
π
=
.
π
.
\ α=0,3π; β=π−0,3π=0,7π.
741. 36
< jZ\gh[_^j_gghf ijyfhm]hevghf lj_m]hevgbd_ m]eu jZ\gu π π π π 90°; 45°; 45°; 90°=90⋅ = ; 45°=45⋅ = .
742. Z [ \ ]
π
<
π
π
π
<π, ihwlhfm
π
∈II q_l\_jlb
<1,8π<2π, ihwlhfm π∈IV q_l\_jlb
<0,6π<π, ihwlhfm π∈II q_l\_jlb
<
⋅
<
π
743. Z LZd dZd [ LZd dZd
π
π
π
<
π
, ihwlhfm ∈I q_l\_jlb
π
<
π
<π;
π
<π;
∈II q_l\_jlb ⇒ sin
π
∈II q_l\_jlb ⇒ cos
>0.
π
<0.
\ LZd dZd ≈57°∈I q_l\_jlb ⇒ sin1>0. ⋅° ≈52°∈I q_l\_jlb ⇒ cos0,9>0. ] LZd dZd ⋅ π π π π π ^ LZd dZd < < ⇒ ∈I q_l\_jlb ⇒ tg >0.
_ LZd dZd ` LZd dZd
π
a LZd dZd
744. Z [
π
π
⋅°
<
π π
≈172°∈II q_l\_jlb ⇒ tg3<0.
<π;
⋅ ° ⋅ π
π
∈II q_l\_jlb ⇒ ctg
π
<0.
≈11°∈I q_l\_jlb ⇒ ctg0,2>0.
) — , q_l\_jlv ⇒ sin x > FRVo>0; tg x>0; ctgx >0.
;π) — ,, q_l\_jlv ⇒ sin x > FRVo<0; tg x<0; ctgx <0.
37
\ π; ]
π
) — ,,, q_l\_jlv ⇒ VLQo<0; cos x <0; tg x>0; ctgx>0.
π
;2π) — ,9 q_l\_jlv ⇒ VLQo<0; cos x >0; tg x<0; ctgx<0.
745. α
0
sinα
0
π
π
π
π
1
ctgα 0
1
2π
1
0
−1
0
0
−1
0
1
−
0
−
0
0
−
0
−
0
cosα 1 tgα
π
π
746. π
Z VLQ [ FRV
+tg
π
−sin
\ FRVπ−2sin ] FRV
π
π
=2
π
π
+1=
+1.
=0−(−1)=1.
=−1−2⋅
+tgπ=2⋅
=−1−1=−2.
+0=1.
747. Z VLQπ−2cos
− 38
VLQ−
[ =
π
=
−
π
.
+3tg
π
)+3cos
−ctg
π
π
−tg
=2⋅0−2⋅0+3⋅1−0=3.
π
+ctg
π
=−
+3⋅
−
+
=
π
\ VLQ
] WJ−
−3tg
π
π
)+2sin
+ctg(− π
π
)−tgπ=2⋅
−3tg0−2ctg
π
−3⋅
=−3⋅1+2⋅
+0=
−
−3⋅0−2⋅1=
.
−5.
748. Z VLQ2
π
] WJ
π
π
π
2
2
2 3 + = + = =1 . = 2 2 2
2
π 3 2 − cos = − = − = . 2 2 2
sin
π
+sin
[ FRV2 \ WJ2
2
cos2
π
π
tg2 sin
π
π
=(1)2⋅
⋅
( 3) = 2
.
2
=
3 3
3 ⋅ 3 = 3 ⋅3=3. ⋅ 2 2 3⋅2 4 8
749. Z VLQ
π
+4cos0−3sin
π
+cosπ=5⋅1+4⋅1−3⋅(−1)+(−1)=11.
π )+2sin2π−tgπ=0−0+2⋅0−0=0. π π π 2 ) +2⋅02−5⋅12=3− −5=−2 . \ −sin2 +2cos2 −5tg2 =3−( π π π π 2 ) +3⋅0= ] VLQ2 −4tg2 −3cos2 kWJ2 =3⋅12−4⋅12−3⋅(
[ VLQ−π)−cos(−
=3−4−
=−3
.
750.
π =1. 2 π π π π [ FRV − )=cos =cos(2π+ )=cos =
Z VLQπ=sin(2π+0,5π)=sin
.
39
\ WJ
π
=tg(2π+
)=tg
π
π
=ctg(4π+
=
.
π
)=−tg
π
π
)=ctg
_ WJ−
π
π π π π )=sin =−sin(4π+ )=−sin =−1.
] VLQ − ^ FWJ
π
=
=−tg(4π+
.
π
)=−tg
π
=−1.
751. π
Z FWJ
=ctg(2π+
[ FRV
π
\ VLQ−
)=ctg
π
=cos(4π+
π
π
=
)=cos
π
)= −sin
π
π
=
.
=−sin(4π+
.
π
)=−sin
π
=−
.
] FRV−4,5π)=cos4,5π=cos(4π+0,5π)=cos0,5π=0.
753. Z
D
D−
− D +
−
D − =
D
+
D
D−
− D +
−
D − = D + D − D +
=
( a − 3)(a + 3) − 6a + 18 a 2 − 6a − 9 + 18 a 2 − 6a + 9 = = = 2 2 ( a + 3)(a − 3a + 9) (a + 3)(a − 3a + 9) ( a + 3)(a 2 − 3a + 9)
=
(a − 3) 2 (a − 3) 2 = 3 . 2 (a + 3)(a − 3a + 9) a + 27 2)
D − 5a − 15 : 3 = D + D − D + 4a + 108
(a − 3) 2 5( a − 3) : = 2 (a + 3)( a − 3a + 9) 4( a + 3)(a 2 − 3a + 9) =
(a − 3) 2 ⋅ 4(• + 3)(a 2 − 3a + 9) 4(a − 3) = . 5 (a + 3)(a 2 − 3a + 9)(a − 3) ⋅ 5
40
[ −
[ − = [ − [ + [ + Ë− Ë− = + = Ë + Ë + Ë − Ë + Ë + [ − + [ − [ − = ( x − 3)(1 + x − 4) = ( x − 3) 2 . = ( x − 4)( x 2 + 4 x + 16) x 3 − 64 [ − [ + [ + Ë − Ë + Ë − ⋅ 2) = − Ë Ë − Ë + Ë + − Ë ⋅ Ë − Ë + Ë + =2 − Ë . = − Ë Ë − Ë + Ë + [
+
754.
Z o−10o2<0; o(3−5o)<0; o(o−0,6)>0.
(– ∪(0,6;
[ o2≤−2o; 7o2+2o≤0;
–2/7
o(o+ )≤0.
[–
0 ; 0]
755.
Z −cos2α=sin2α. [ VLQ2α−1=−(1− sin2α)=− cos2α. \ FRV2α+(1−sin2α)=cos2α+cos2α=2 cos2α. ] VLQ2α+2 cos2α−1=sin2α+cos2α+cos2α–1=1+cos2α–1=cos2α. ^ − sinα)(1+sinα)=1− sin2α=cos2α. _ FRVα−1)(1+cosα)=cos2α−1=−(1− cos2α)=− sin2α.
756.
Z − sin2α− cos2α=1−( sin2α+cos2α)=1−1=0. [ FRV2α−(1−2sin2α)=cos2α−1+2sin2α=−sin2α+2sin2α=sin2α.
757. Z VLQα cosα tgα=
VLQ α FRV α VLQα FRV α
=sin2α.
41
[ VLQα cosα kWJα−1=
VLQ α FRV α FRV α
−1=cos2α−1=
VLQ α =−(1− cos2α)=− sin2α. \ VLQ2α−tgαctgα=sin2α−1=−(1− sin2α)=− cos2α.
α FRV α = =1. FRV α FRV α FRV α FRV α FRV α ^ = =− =−ctg2α. − − FRV α FRV α − VLQ α
]
− VLQ
_
− FRV
− VLQ
α VLQ α = =tg2α. α FRV α
758. Z VLQ2α+cos2α+tg2α=1+tg2α= [ WJαctgα+ctg α=1+ctg α= 2
2
FRV
α
VLQ
α .
759.
sinα - cosα = FRV¡ . sin. sinα ⋅ cosα [ WJα FRV α = =sinα. cos. sin. ⋅ cos. VLQ¡ =cosα. \ = sin. WJ¡
Z VLQα kWJα=
] WJα kWJα−1=1−1=0. WJ¡ WJ¡ . ^ +1= +1=tg2α+1= FWJ¡ WJ¡ FRV ¡
_
VLQ
¡ −
− FRV
¡
(1 − sin . ) =− 2
=
1 − cos . 2
FRV VLQ
¡
¡
=−ctg2α.
760.
Z VLQ2α+cos2α=1; sin2α=1−cos2α; sin2α=1−(−0,6)2=1−0,36=0,64; sinα= ± 0,64 = ±0,8 gh α∈,, q_l\_jlb VLQα> l_ sinα=0,8. [ VLQ2α+cos2α=1; 42
cos2α=1−sin2α; cos2α=1−(
2
)=
−
=
; cos α = ±
8 2 2 gh =± 9 3
α∈,, q_l\_jlb FRVα< ihwlhfm cos α =
\ WJ2α=
tg2α=
tg α=
FRV
FRV
2
−
tgα=± tgα = −
;
α
−1=
α
− −
−2 2 . 3
− FRV FRV
α
;
α
=(1−
=±
):
α∈,,
gh
225 64 = ; 289 225
q_l\_jlb
WJα<
ihwlhfm
8 . 15
] FWJ2α= sin2α=
VLQ
+ −
α =
;
; sinα=±
sinα> ihwlhfm sin α =
1 5 =± 5 5
gh α∈,, q_l\_jlb
5 . 5
761.
sin2α+cos2α=1; cos2α=1−sin2α; cos2α=1−0,62=1−0,36=0,64; cosα=± =± gh α∈, cosα=0,8. [ VLQ2α+cos2α=1; sin2α=1−cos2α; sin2α=1−(
2
) =1−
=
q_l\_jlb
FRVα>
ihwlhfm
;
43
sinα=±
α∈,
q_l\_jlb
VLQα>
ihwlhfm
gh α∈, q_l\_jlb
FRVα>
ihwlhfm
FWJα>
ihwlhfm
gh
15 . 4
sin α =
\ WJ2α=
FRV
cos2α=
+ WJ
+
cosα=±
=
;
¡
;
¡
cos2α=
;
1 10 =± 10 10
10 . 10
cos α =
] FWJ2α= ctg2α=
ctg2α=
VLQ
− VLQ VLQ
¡
¡
; ctg2α=
¡
−
ctgα=± ctgα =
=±
VLQ
¡
−1;
;
−
=
=
⋅ ⋅
=
;
=±
α∈,
gh
q_l\_jlb
5 . 12
762. Z
2 2 VLQ α+cos α=
gy_lky
2
81 1600 1681 40 + = + = 1681 1681 1681 41
\uihe-
9 1 10 = ≠ g_ \uihegy_lky [ VLQ2β+cos2β= + = + 16 16 16 44
\ WJβctgβ=
] WJβctgβ=(
⋅1,8=
⋅
−1) (
⋅
\uihegy_lky
+1)=2−
\uihegy_lky
763.
sin2α+cos2α=0,332+0,632=0,1089+0,3969=0,5058≠1.
764.
Z VLQ2α+cos2α=1; cos2α=1− sin2α;
cos2α=1− = ;
cosα=± cos α = −
=±
gh α∈,, q_l\_jlb
FRVα<
ihwlhfm
40 . 41
2) tgα=
VLQ α FRV α
; tgα=
: (−
[ ctgα =
1 ⇒ tgα = 3 3
1 + tg 2α =
1 1 ; cos 2 α = 10 cos 2 α
cos α = −
1 10
=−
)=−−
.
10 ld α∈III q_l\_jlb cosα<0. 10
765. Z WJ2α= tg2α=
FRV
; α − FRV α −1= ; FRV α α FRV
45
tg2α=
− −
−
−
tgα=± tgα = −
=
=
;
=±
gh α∈II q_l\_jlb l_ tgα<0 ihwlhfm
3 . 4
2) ctgα=
WJα
[ FWJα=
−
; ctgα=
WJα
2) 1+ctg2α=
; ctgα=
VLQ
α
=−
=−1 .
−
; sin2α=
.
+
(α∈,, q_l\_jlb VLQα>0).
FWJ α
;
766. Z VLQ2α+cos2α=1; cos2α=1− sin2α; − cos2α=1− = = ; cosα= 4 cosα> ihwlhfm cos α = . 5
2) tgα=
VLQ α FRV α
3) ctgα=
WJα
; tgα= ; ctgα=
:
=
=
⋅ ⋅
=1
=
.
.
[ VLQ2α+cos2α=1; sin2α=1− cos2α;
46
=
gh α∈, q_l\_jlb
− sin2α=1− = = ;sinα=±
q_l\_jlb VLQα> ihwlhfm sinα= 2) tgα=
VLQ α FRV α
3) ctgα=
; tgα=
; ctgα=
WJα
:
=
=±
gh α∈I
.
⋅
=
=
⋅
=1
.
.
\ FWJα=
−
VLQ
α
+
(− )
; sin2α=
VLQ α
+ −
sinα=±
=
VLQ
+
3) tgα= =
VLQ α FRV α
; tgα=
FWJα
; cosα=
2) 1+ctg2α= =
FRV α
] WJα=
=
sinα> ihwlhfm sinα= 3) tgα=
; ctgα=
WJα
2) 1+ctg2α= sin2α=
α
=
.
+
FWJ α
; sinα=±
; =±
gh α∈,, q_l\_jlb
. VLQ α
WJα
; cosα=
−
; sin2α=
=−
=−
:(−
)=
−
=−
.
.
+
FWJ α
=
;
2
gh α∈,,, q_l\_jlb VLQα< ihwlhfm sin α = − ;
VLQ α
WJα
=cosα=−
: (−
)=−
⋅ ⋅
=
29
.
=
. 47
767.
Z VLQ2β+cos2β
agZqbl FRV2β=1− sin2β;
cos2β=1− = ;
cosβ=± cos β = −
=±
gh β∈,, q_l\_jlb
9 . 41
2) tgβ=
VLQ β
FRV β
3) ctgβ=
; tgβ=
; ctgβ=
WJβ
: (−
−
=−
⋅
)=−
⋅
=−4
FRVβ<
ihwlhfm
.
.
[ VLQ2β+cos2β=1; sin2β=1− cos2β;
sin2β=1− = ;
sinβ=± 2) tgβ=
VLQ β FRV β
3) ctgβ=
2) 1+tg2β= +
=
48
gh β∈,9 q_l\_jlb VLQβ< ihwlhfm sinβ=−
WJβ
=−
=−1
⋅ ⋅
=−
.
.
.
β
; cos2β=
; cosβ=±
FRV β
; ctgβ= =1.
FRV
VLQ β
; tgβ=− :
wlhfm cos β = − 3) tgβ=
; ctgβ=−
WJβ
\ FWJβ=
=
=±
+
WJ
1 2 =± 2 2
β
; cos2β=
gh β∈,,, q_l\_jlb
2 . 2 ; sinβ=tgβ⋅cosβ; sinβ=1⋅(−
)=−
.
FRVβ<
ih-
] WJβ=
FWJβ
2) 1+ctg2β= sin2β=
; tgβ= ;
+
β
VLQ
=
; sin2β=
+
; sinβ=±
FWJ
β
;
10 10
=±
gh β∈, q_l\_jlb
10 . 10 FRV β ; cosβ= ctgβ⋅sinβ; cosβ=3⋅ 3) ctgβ= VLQ β
VLQβ>0,
ihwlhfm sinβ=
=
.
768.
Z VLQ2α+cos2α=1; cos2α=1− sin2α; cos2α=1−0,622=0,6156; π <α<π; cosα=± ≈± gh
cosα<
ihwlhfm
cosα≈−0,78. 2) tgα=
VLQ α FRV α
; tgα=0,62: (−0,78)≈−0,79.
3) ctgα =
1 1 = ≈ −1,3 . tgα − 0,79
[ WJα=
FWJα
kWJα=
WJα
;
ctgα=1: (−2,1)≈−0,48. 2) 1+tg2α= cos2α= π
FRV
α
+ −
; cos2α= =
+
+
=
WJ α
;
;
cosα=±
≈±
gh
<α<2π; cosα> ihwlhfm cosα≈0,43. 3) tgα=
VLQ α FRV α 2
; sinα=tgα⋅cosα; sinα=−2,1⋅0,43≈−0,90.
\ VLQ α+cos2α=1; sin2α=1− cos2α; 49
sin2α=1−(−0,23)2=0,9471; sinα=±
≈±
π
π<α<
gh
;
ihwlhfm
sinα<
sinα≈−0,97. 2) tgα=
VLQ α
; tgα=−0,97: (−0,23)≈4,2.
FRV α
3) ctgα=
1 1 = ≈0,24. tgα 4,2
] FWJ2α= sin2α=
VLQ
+
=
; sin2α=
α
+
; sinα=±
;
FWJ α
≈± gh <α<
π
; 0sinα>0,
ihwlhfm sinα=0,41. FRV α 2) ctgα= ; cosα=ctgα⋅sinα; cosα=0,41⋅2,2≈0,902. VLQ α VLQ α ; tgα=0,41: 0,902≈0,45. 3) tgα= FRV α
769. Z VLQ2α+cos2α=1; cos2α=1− sin2α;
cos2α=1− = ; cosα=
cosα=− 2) tgα= tgα=
=−
VLQ α
FRV α
:(–
3) ctgα=
WJα
)=−
=
beb
.
; tgα=
:
=
⋅ ⋅
=
beb
.
; ctgα=
=
=1
beb FWJα=
[ VLQ2α+cos2α=1; sin2α=1− cos2α; sin α=1− − 2
50
= ; sinα=
=
beb
−
=–1
.
sinα=−
VLQ α
2) tgα= tgα=−
3) ctgα=
ctgα=
: (−
.
)=
WJα
; tgα=
FRV α
=−
⋅ ⋅
=
; ctgα=
=
:(
−
)=−
⋅ ⋅
=−
beb
.
=−
=−
beb
.
770.
Z VLQ2α+cos2α=1; cos2α=1− sin2α agZqbl
α beb FRVα=− − VLQ α ; VLQ α VLQ α 2) tgα= beb WJα= − . − VLQ α − VLQ α
cosα=
− VLQ
3) ctgα=
− VLQ
α
VLQ α
− VLQ
beb FWJα=−
α
VLQ α
.
[ VLQ2α+cos2α=1 ⇒ sin2α=1− cos2α agZqbl sinα=
− FRV
α beb VLQα=−
− FRV
2) tgα=
α FRV α
FRV
3) ctgα=
771. Z −
α
− FRV α
beb WJα=–
α ;
1 − cos 2 α . cos α
beb ctgα=–
D+E ⋅ D −E D + DE + E E − D
FRV α − FRV α
.
1+ b b −1− b 1 = =− ; b b b
2)
− FRV
=
(a + b)( a − b)( a 2 + ab + b 2 ) a − b =−1; = ( a 2 + ab + b 2 )(b − a)(b + a) b − a 51
3) −1: − =b. E
ab DD − E + DE a+ DE E − D ab 2 − a 2b a−b = D−E = ⋅ [ ⋅ ab D D + E − DE a+b D + E a− a+b D+E D − DE + DE DE E − D D − E = DEE − D D + E =−ab. = ⋅ D + E D + DE − DE D + E D − E D+E 772. \ = [ − [ [ = [ − [ [ − [ = \ = [ \ = [ \ = [
[ = [ = beb I_j_k_dZxlky \ ^\mo lhqdZo = \ \ = 773.
Z − [
FRV
VLQ
\ − ]
α
α
=
cos 2 α − 1 − sin 2 α =−tg2α. = 2 2 cos α cos α
−1=1+ctg2α−1=ctg2α.
VLQ α FRV α
FWJα WJαFWJα − FRV
=1−
α
VLQ α
774.
VLQ α FRV α VLQ α
=
=1−sin2α=cos2α.
FRV α − FRV
VLQ α
α
=
VLQ
α
VLQ α
1 = sin α . 2
− FRV β FRV β − − = = VLQ β VLQ β VLQ β cos β ⋅ sin β − sin β ⋅ cos β + 1 . = = sin β VLQ β
Z FWJβ−
[
52
FRV β
VLQ α
−
−
+ VLQ α
=
VLQ α
+ − VLQ α − = − VLQα +
VLQ α
=
α −
VLQ
\
− FWJ£
−
WJ£
VLQ
]
FRV
VLQ
−2 −2 = . 2 1 − sin α cos 2 α
=
ctgγ ( tgγ − 1) =ctgγ. tg − 1
α − FRV α − VLQ α +1= +tgα ctgα= +1= α − VLQ α − FRV α
=
=
α
.
VLQ
^ WJ2β(sin2β−1)=
β ⋅ − FRV β =−sin2β. FRV β
_ FRV2α−kWJ2α+1)⋅sin2α=cos2α−
VLQ
α
⋅ sin2α=cos2α−1=−sin2α.
775. 1 − sin α + sin α . = cos α FRV α FRV α FRV α FRV α − FRV α + + FRV α = [ + = + FRV α − FRV α + FRV α − FRV α
Z
=
− VLQ α
− FRV
α
+tgα=
=
− VLQ α
VLQ
α
+
VLQ α
=
.
\ kWJ2β(cos2β−1)+1=–
FRV
β ⋅ − FRV β FRV β ⋅ VLQ β +1=– +1= VLQ β VLQ β
=1−cos β=sin β. tgβ + 1 tgβ + 1 tgβ + 1 ] = = =tgβ. tgβ + 1 1 + ctgβ 1 + 1 tgβ tgβ 2
2
776.
Z
+ VLQ β FRV β
=
1 + 2 sin β cos β = sin β + 2 sin β cos β + cos 2 β
VLQ β + FRV β 1 + 2 sin β cos β =1. = 1 + 2 sin β cos β
2
53
[ \
VLQ
β − FRV β + VLQ
WJ α
+
+
β
VLQ
β + VLQ β VLQ
+
=
ÇWJ α
=
+
FRV
β
β
2 sin 2 β =2. sin 2 β
=
=
VLQ
β
=cos β+sin β=1. + VLQ β − VLQ β (1 + sin β )(1 − sin β ) ] ⋅ = = FRV β FRV β cos 2 β 2
=
2
− VLQ FRV
β
β
=
FRV
FRV
β β
=1.
777. Z VLQα+cosα)2−2sinα cosα=sin2α+2sinα cosα+cos2α− –2sinα cosα=sin2α+cos2α=1. 2 − sin 2 α − cos 2 α 2 − (sin 2 α + cos 2 α ) 2 − 1 [ = = = . 3 3 sin 2 α + 3 cos 2 α 3(sin 2 α + cos 2 α ) 4 4 2 2 2 2 2 2 \ VLQ α+cos α+2sin α cos α=(sin α+cos α) =1 =1.
α − FRV α = VLQ α − FRV α =sin2α+cos2α=1. ]
VLQ
VLQ
α − FRV α VLQ α + FRV α = VLQ α − FRV α
778.
Z WJ−α) cosα+sinα=−tgα cosα+sinα= −
cos α sin α + sinα= cos α
=−sinα+ sinα=0. ctg (−α ) sin α ctgα sin α cos α ⋅ sin α =− =− [ =−1. cos α cos α sin α ⋅ cos α \ FRV2α tg2(−α)−1=cos2α⋅tg2α−1= FRV α ⋅ VLQ α −1=sin2α−1=− cos2α. = FRV α VLQ α + − WJ −α + WJα FRV α ] = = = VLQ α + FRV −α VLQ α + FRV α VLQ α + FRV α (cos α + sin α ) 1 = . = ⋅ + α α α cos (sin cos ) cos α
54
779.
Z FWJα sin(−α)−cos(−α)=−
FRV α ⋅ VLQ α VLQ α
−cosα=
=−cosα−cosα=−2cosα.
[
Ë
− VLQ −
FRV
Ë
=
Ë = FRV Ë =cos x. FRV Ë FRV Ë
− VLQ
\ WJ−β) ctgβ+sin2β=−tgβ ⋅ctgβ+sin2β=sin2β−1=−cos2β. tg ( − x ) + 1 −tgx + 1 1 − tgx 1 − tgx = = = ] =−tgo. tgx − 1 1 − ctgx 1 − ctgx 1 − 1 tgx tgx 780. cos x cos x cos x(1 + sin x) + cos x(1 − sin x) + = = 1 − sin x 1 + sin x (1 − sin x)(1 + sin x) FRV [ + FRV [ VLQ [ + FRV [ − FRV [ VLQ [ FRV [ = . = = FRV [ FRV [ − VLQ [
Z
[
FRV α + VLQ
α
+tgα=
FRV α VLQ α + = + VLQ α FRV α
1 cos α + sin α + sin 2 α 1 + sin α = = . (1 + sin α ) cos α (1 + sin α ) cos α cos α 2
=
\ =
WJ ϕ − +cos2ϕ= tg 2ϕ − 1 + cos 2 ϕ ⋅ tg 2ϕ + cos 2 ϕ = tg 2ϕ + 1 WJ ϕ +
tg 2α − sin 2 ϕ + sin 2 ϕ sin 2 ϕ = = sin 2 ϕ . 1 2 tg 2ϕ + 1 cos ϕ ⋅ cos 2 ϕ
]
sin 3 α + cos 3 α +sinα cosα= sin α + cos α
(sin α − cos α )(sin 2 α − sin α cos α + cos 2 α ) +sinα cosα= (sin α + cos α ) =sin2α−sinα cosα+cos2α+sinα cosα=sin2α+cos2α=1.
=
781. Z −(cos2α−sin2α)=sin2α+cos2α− cos2α+sin2α=2 sin2α. |sinα| sin2α≤1; l_ VLQ2α 55
[ − sinα cosα tgα=1−
VLQ α FRV α VLQ α FRV α
|cosα| FRV2α
\ FRV2α tg2α+5 cos2α−1=
FRV ¡VLQ ¡
FRV ¡
=1− sin2α=cos2α.
+5 cos2α−1=
=sin2α−1+5 cos2α=−cos2α+5cos2α=4 cos2α. 2 2 FRV α ≤ ; cos α≤1 l_ FRV α
] VLQα+3 sin2α+3 cos2α=sinα+3(sin2α+cos2α)=sinα+3. |sinα| VLQα+3
782. sinα+cosα=0,8; ( sinα+cosα)2=0,82=0,64; sin2α+2sinα cosα+cos2α=0,64; 2sinα cosα=0,64−1=−0,36; sinα cosα=−0,18.
783. tgα+ctgα=2,3; (tgα+ctgα)2=2,32=5,29; tg2α+2 tgα ctgα+ctg2α=5,29; tg2α+ctg2α=5,29−2=3,29.
784.
Z WJ α+ctgα)2−(tgα −ctgα)2=tg2α+2tgα⋅ctgα+ctg2α−tg2α+ +2tgα⋅ctgα−ctg2α=4tgα⋅ctgα=4; [ VLQβ)(2−sinβ)+(2+cosβ) (2−cosβ)=4−sin2β+4−cos2β= =4+4−(sin2β+cos2β)=4+4−1=7; VLQ α cosα sin α \ FWJ α+ = + = sin α 1 + cosα + FRV α cos α + cos 2 α + sin 2 α cos α + 1 1 = = = ; (1 + cos α ) ⋅ sin α sin α (1 + cos α ) sin α ] =
1 − 2sin x cos x sin 2 x + cos 2 x − 2 sin x cos x = = sin x − cos x sin x − cos x
(sin x − cos x) 2 = sin x − cos x. (sin x − cos x)
785.
Z VLQα+cosα)2+(sinα−cosα)2=sin2α+2sinα cosα+cos2α+
56
+sin2α−2sinα
cosα+cos2α=2cos2α+2sin2α
[
1 − sin α cos α = =ctg2α= ; 1 − cos 2 α sin 2 α WJ α \ VLQ4α−cos4α=(sin2 α−cos2α)(sin2α+cos2α)=sin2α−cos2α; ctgα ctgα ctgα 1 = = = + 1 = cos 2 α . ] 2 1 ctgα + tgα ctgα + ctg α + 1 ctg 2α ctgα ctgα
2
2
786. α − VLQ α FRV α − VLQ α FRV α + FRV α VLQ α + VLQ α = = + VLQ α FRV α + VLQ α FRV α (cos α − sin α )(1 + cos α sin α ) = = cos α − sin α ; (1 + sin α ⋅ cos α ) [ WJα)2+(1−tgα)2=1+2tgα+tg2α+1−2tgα+tg2α= 2 =2(1+tg2α)= ; cos 2 α cos β cos β cos β (1 + sin β ) − cos β (1 − sin β ) − = = \ 1 − sin β 1 + sin β (1 + sin β )(1 − sin β ) FRV β + FRV β VLQ β − FRV β + FRV β VLQ β FRV β VLQ β = = = − VLQ β FRV β sin β = 2⋅ = 2tgβ; cos β tgα + tgβ tgα + tgβ tgα + tgβ ] = = = tgα ⋅ tgβ . 1 1 tgβ + tgα ctgα + ctgβ + tgα tgβ tgα − tgβ 2 2 2 2 2 ^ VLQ α cos β−cos α sin β=sin α(1−sin2β)−sin2β(1−sin2α)= =sin2α−sin2αsin2β−sin2β+sin2βsin2α=sin2α−sin2β; _ FRV2αcos2β−sin2αsin2β=cos2α(1−sin2β)−sin2β(1−cos2α)= =cos2α−cos2αsin2β−sin2β+sin2βcos2α=cos2α−sin2β.
Z
FRV
787.
Z VLQβ+sinα)(sinα−sinβ)−(cosα+cosβ)(cosβ−cosα)= =(sin2α−sin2β)−(cos2β−cos2α)=sin2α−sin2β−cos2β+cos2α= =(sin2α+cos2α)−(sin2βcos2β)=1−1=0; [ FWJ2α−cos2α=
cos 2 α cos 2 α − sin 2 α cos 2 α 2 − = = α cos sin 2 α sin 2 α 57
=
cos 2 α(1 − sin 2 α ) sin α 2
FRV
\
α − VLQ α
cos 2 α
=
FWJ α − WJ α
sin α 2
⋅ cos 2 α = ctg 2 α cos 2 α;
= FRV α − VLQ α
FRV VLQ
α α
−
VLQ
α
α
FRV
=
sin 2 α cos 2 α = cos 4 α − sin 4 α (cos 2 α − sin 2 α )(sin 2 α cos 2 α ) sin 2 α cos 2 α = = = sin2α cos2α; 2 2 2 2 1 (cos α + sin α )(cos α − sin α )
= FRV α − VLQ α ⋅
− VLQ
]
α FRV α
VLQ α + FRV α − VLQ
+ VLQ α FRVα =
α FRV α
+ VLQ α FRVα = α + VLQ α FRV α + FRV α − VLQ α FRVα + VLQ α FRVα = + VLQ α FRVα = + VLQ α FRVα = 1 − 2 sin α cosα + 2sinα cosα = 1.
=
VLQ
788. Z −sinα cosα tgα= − LZd dZd VLQ α
VLQ α FRV α VLQα FRV α 2
= − VLQ α
lh − sin α=1−0,72=1−0,49=0,51.
[ FRV4α+sin2α cos2α=cos2α(cos2α+sin2α)=cos2α = LZd dZd WJα
lh
1 1 + tg α 2
=
1 1+ 2
2
=
1 . 1 + tg 2α
1 . 5
789.
sin α sin α sin α (1 − cos α ) + sin α (1 + cos α ) + = = 1 + cos α 1 − cos α (1 + cos α )(1 − cos α ) sin α(1 − cos α + 1 + cos α ) 2 sin α 2 = . = = 2 2 1 − cos α sin α sin α
LZd dZd VLQα = −
790.
lh
2 1 = 2 : − = −16 . sin α 8
Z FRV π=cos(4⋅2π+0,5π)=cos0,5π=0. 58
[ WJπ=tg(4⋅2π+π)=tgπ=0. \ VLQ−3,5π)=−sin3,5π=−sin(2π+1,5π)=−sin1,5π=−(−1)=1. ] ctg
π 9π π = ctg 2π + = ctg = 1. 4 4 4
π π 1 19π 19π = cos 6π + = cos = . ^ cos − = cos 3 2 3 3 3
791.
Imklv ^ebgZ [hevrh]h dZl_lZ x ^f Z ^ebgZ f_gvr_]h − y ^f Ih mkeh\bx aZ^Zqb o−m b x+4)2+(m−8)2=x2+m2 ih l_hj_f_ IbnZ]hjZ Ihemqbf kbkl_fm mjZ\g_gbc y = x − 5 ( x + 4) 2 + ( x − 13) 2 x 2 + ( x − 5) 2 y = x − 5 2 x + 8 x + 16 + x 2 − 26 x + 169 = x 2 + x 2 − 10 x + 25 y = x − 5 x = 20 − 8 x = −160 y = 20 − 5 = 15
Hl\_l ^f b ^f 792.
Imklv ^ebgu dZl_lh\ o kf b m kf Lh]^Z ih mkeh\bx aZ^Zqb 2 2 2 2 b o23) +(m−11) =o +m ih l_hj_f_ IbnZ]hjZ Ihemqbf kbkl_fm mjZ\g_gbc
o+ m
x + y = 79, ( x + 23) 2 + ( y − 11) 2 = x 2 + y 2 ; x = 79 − y, (102 − y ) 2 + ( y − 11) 2 = (79 − y ) 2 + y 2 x = 79 − y 10404 − 204 y + y 2 + y 2 − 22 y + 121 = 6241 − 158 y + y 2 + y 2 x = 79 − y x = 16 68 y = 4284 y = 63 59
Hl\_l kf b kf 793.
[
FRV
\
WJ
π
+ α = VLQ α.
− α = FWJα.
] FWJπ+α)=ctgα. ^ FRVπ−α)=cosα. _ VLQπ+α)=sinα. ` WJ° −α)=−tgα. a VLQ°+α)=−sinα. b FWJ° −α)=−ctgα. d FRV°−α)=sinα. e VLQ°−α)=−cosα. f WJ°+α)=−ctgα.
794. π
Z
VLQ
[
FRV
+ α = FRV α.
π
− α = − VLQ α.
\ WJπ+α)=tgα. ] FRVπ+α)=cosα. ^ FWJπ−α)=−ctgα. _ VLQπ+α)=−sinα. ` VLQ°+α)=sinα. a FRV°+α)=−sinα. b WJ°=α)=ctgα.
795. 60
Z VLQ VLQ cos40°; cos 130°= =cos(90°+40°)=−sin40°; tg 130°=tg(90°+40°)= =−ctg40°; ctg 130°=ctg(90°+40°)=−tg400. [ VLQ °=sin(180°+10°)=−sin10°; cos 190°= =cos(180°+10°)=−cos10°; tg190°=tg(180°+10°)=tg10°; ctg190°=ctg(180°+10°)=ctg 10°. \ VLQ−320°)=−sin(320°)=−sin(360°−40°)= =−(−sin40°)=sin40°; cos(−320°)=cos(320°)= =cos(360°−40°)=cos40°; tg(−320°)=−tg(320°)= =−tg(360°−40°)=−(−tg40°)=tg40°; ctg(−320°)= =−ctg(320°)=−ctg(360°−40°)=−(−ctg40°)=ctg40°. ] VLQ−590°)=sin(−360°−230°)=sin(−230°)= =−sin(180°+50°)=sin50°; cos(−590°)=cos(−230°)= =cos(180°+50°)=− cos50°; tg(−590°)=−tg50°; ctg (−590°)=−ctg50°.
796.
Z FRV π=cos(0,5π+0,2π)=−sin0,2π. [ FWJ−0,6π)=−ctg0,6π=−ctg(0,5π+0,1π)=tg0,1π. \ VLQ π=sin(2π−0,4π)=−sin0,4π. π ] WJ − =−tg1,8π=−tg(2π−0,2π)=−(tg0,2π)=tg0,2π.
797.
Z WJ°=tg(90°+47°)=−ctg47°. [ VLQ−178°)=−sin178°=−sin(180°−2°)=−sin2°. \ VLQ°=sin(720°−40°)=−sin40°. ] FRV−1000°)=cos1000°=cos(900°+100°)=−cos100°= =−cos(90°+10°)=sin10°.
798.
π 1 2π π = cos π − = − cos = − ; 3 3 3 2 61
2π π π = tg π − = −tg = − 3 ; 3 3 3
tg FWJ
π
[ sin cos tg
π π = FWJ π − = −FWJ = −
3π π 2 π ; = sin π − = sin = 4 4 4 2
π 2 3π π ; = cos π − = − cos = − 4 2 4 4
3π π π = tg π − = −tg = −1; 4 4 4
FWJ
π
\ sin
FWJ
5π π 1 π = sin π − = sin = ; 6 6 6 2
π 3 5π π ; = cos π − = − cos = − 6 6 6 2
cos tg
π π = FWJ π − = −FWJ = −
5π π 3 π ; = tg π − = −tg = − 6 6 6 3 π
π π = FWJ π − = −FWJ = −
799. Z VLQ°=sin(180°+60°)=−sin60°=−
[ FRV−210°)=cos(210°)=cos(180°+30°)=−cos30°=− \ WJ °=tg(360°−60°)=−tg60°=−
] Vin 330°=sin(270°+60°)=−cos60°=−
. 1 . 2
^ FWJ−225°)=−ctg 225°=−ctg(180°+45°)=−ctg 45°=−1. 62
.
_ VLQ °=sin(360°−45°)=−sin 45°= −
.
800. Z FRV°=cos(180°−60°)=−cos60°=−
1 . 2
[ VLQ−150°)=−sin150°=−sin (90°+60°)=−cos60°=−
1 . 2
\ WJ−225°)=−tg225°=−tg(270°−45°)=−ctg45°=−1. ] FRV−225°)=cos225°=cos(270°−45°)=−sin45°= − ^ FRV _ sin
.
7π 3 π π = cos π + = − cos = − . 6 6 6 2 4π 3 π π = sin π + = − sin = − . 3 3 3 2
801. π π Z sin α − = − sin − α = − cos α . 2 2 [ FRV α −π)=cos(π−α)=− cosα. \ FWJα−360°)=−ctg(360°−α)=−(−ctgα)=ctgα. ] WJ−α+270°)=tg(270°−α)=ctgα.
802. 3π 3π − α = − (− cos α ) = cos α . Z VLQ α − = − sin 2 2 π π 3 3 − α = − sin α . [ FRV α − = cos 2 2 \ WJα−2π)=−tg(2π−α)=tg α.
803.
Z VLQ2(π+α)=(−sinα)2=sin2α. π 2 [ tg 2 + α = (− ctgα ) = ctg 2α . 2 63
3π 2 \ cos 2 − α = (− sin α ) = sin 2 α . 2 ] FWJ2(2π−α)=(−ctg α)2=ctg2α.
804.
Ba l_hj_fu h kmff_ m]eh\ lj_m]hevgbdZ :+<+K=180° hldm^Z ke_^m_l $ + % = VLQ° − & = sin(90° − C ) = cos C . VLQ 2 2
805. α+β+γ=180°; α+β=180°−γ; tg(
α+β
=
° − γ
, hldm^Z
.+ 180° − ) = tg( ) = tg(90° − ) = ctg . 2 2 2 2
806.
Z VLQ°−α)+cos(180°+α)+tg(270°+α)+ctg(360°+α)= =cosα+(−cosα)+(−ctgα)+ctgα=0. π π [ VLQ + α − FRV(α − π )+ WJ(π − α )+ FWJ − α = π = cosα − cos(π − α ) − tgα + ctg − α = 2 = cos α − (− cos α ) − tgα + tgα = 2 cos α .
807. Z
FRV −α FRV° + α VLQ −α VLQ ° + α
=
FRV α ⋅
(− FRV α ) = FWJα
− VLQ −α ⋅ FRV α
sin(π + α ) cos(2π − α ) − sin α ⋅ cos α = = − tgα cos(− cos α ) tg (π − α ) cos(α − π ) sin α ⋅ cos α ⋅ cos α =− = − cos α . sin α ⋅ cos α VLQ −α FWJ −α VLQ α ⋅ FWJα \ = = FRV ° − α WJ° + α FRV α ⋅ WJα sin α ⋅ cos α ⋅ cos α cos α = = = ctgα . cos α ⋅ sin α ⋅ sin α sin α
[
64
]
VLQπ + α VLQα + π
WJ π + α FRV(π + α )
=
VLQ α ⋅ FRVα − VLQ α ⋅ VLQ α =− = − FRVα WJα ⋅ VLQ α VLQ α
808. Z VLQ2(180°−x)+sin2(270°−x)=sin2x+(–cosx)2=sin2x+cos2x=1. π π [ VLQπ−x) cos [ − − VLQ [ + cos(π−x)=sin x⋅sin x 2 2 − cos x ⋅ (− cos x) = sin x+cos x=1.
809.
[ + VLQ [
= π π [ VLQπ+x)cos + [ − FRVπ + [ VLQ − [ = =−sin x⋅(−sin x)−cos x⋅(−cos x)=sin2x+cos2x=1.
810. π
+α WJ π − α = − WJα ⋅ − FRVα = tgα = tg 2 α; ⋅ Z FRVπ + α π − FRVα −FWJα ctgα WJ +α FWJ π − α FRV π − α VLQ π − α ⋅ [ ⋅ = WJ π + α WJ π + α VLQ −α VLQ
tgα sin α cos α = ⋅ ⋅ = tgα (−ctgα ) (− sin α)
FRV α
WJα
=
FRV α ⋅ VLQ α FRV α
= VLQ α
811.
Ih nhjfmeZf ijb\_^_gby π π Z VLQ + α FWJ − α +
+ VLQ π − α + FWJ
π
− α = − FRV α ⋅ WJα + VLQ α + WJα = 65
cos α ⋅ sin α + sin α + tgα = − sin α + sin α + tgα = tgα ; cos α π [ FWJ π − α − VLQ α − ⋅ = FRV α 1 1 = (−ctgα ) 2 + cos α ⋅ = ctg 2α + 1 = . cos α sin 2 α =−
812.
Z VLQ2α+cos2α=1; sin2α=1−cos2α; sin2α=1−(−0,8)2=0,36; sinα=±
=± lZd dZd
π < α < π lh 2
α ∈ ,, q_l\_jlb agZqbl VLQ α > ihwlhfm sinα=0,6. FRVα FWJα = − = − = − 2) FWJα = VLQ α 1 1 [ WJ2α= ; ; cos 2 α = 1 + tg 2 α cos 2 α cos 2 α =
1 1 + (−5)
2
=
1 ; cos α=± 26
LZd dZd
α∈II q_l\_jlb agZqbl FRV α ihwlhfm cos α = −
π <α <π 2
1 26 . =− 26 26
sin α ; sin α = tgα ⋅ cos α; cos α = VLQ α = − ⋅ −
2) tg α=
813.
sin3α(1+ctgα)+cos3α(1+tgα)= VLQ α FRVα =sin3α + = + FRV α+ VLQ α FRVα =sin3α+sin2αcosα+cos3α+cos2αsinα= =(sinα+cosα)⋅(sin2α−sinαcosα+cos2α)+sinαcosα(sinα+cosα)= =(sinα+cosα)(sin2α+cos2α)=sinα+cosα.
814.
66
lh
Imklv o dfq − wlh kdhjhklv kdhjh]h ih_a^Z Z m dfq − kdhjhklv lh\Zjgh]h ih_a^Z Ih mkeh\bx aZ^Zqb bf__f xÂy LZd 75 q Z \j_fy ^\b`_gby lhdZd \j_fy ^\b`_gby kdhjh]h ih_a^Z x 75 \Zjgh]h ² q lh bf__f kbkl_fm mjZ\g_gbc y 75 75 5 = − x 12 y x ⋅ 0,5 + y ⋅ 0,5 = 75 x = 150 − y 15 1 15 y − 150 − y = 12
x = 150 − y 75 5 75 y − 150 − y = 12 x = 150 − y 27000 − 180 y − 180 y = 150 y − y 2
m2=510m+27000=0 D=(510)2−4⋅27000=152100
−210 + 390 = 90 beb 2 −210 − 390 y2 = = −300 — g_ ih^oh^bl ih kfukem 2 y2 =
y = 90 y = 90 x = 150 − 90 x = 60
Hl\_l dfq dfq 815. Imklv o dfq mjZ\g_gb_
±
kdhjhklv ih_a^Z ihke_ __ m\_ebq_gby Ihemqbf
70 70 1 − = ; x − 10 x 6 420x−420x+4200=x2 – 10x; x2 – 10x –4200=0; D=102+4Â x=
10 + 16900 = 70; beb 2 67
x=
10 − 16900 = −60 2
²
g_ ih^oh^bl ih kfukem
Hl\_l dfq 816.
2 (cos ϕ + sin ϕ); 2
[ =
2 2 π π π ⋅ sin ϕ cos ϕ + sin ϕ = − ϕ) = cos cos ϕ + sin = 4 4 4 2 2
FRV
π
+ ϕ = FRV
π
FRV ϕ − VLQ
π
VLQ ϕ
=
FRV ϕ −
VLQ ϕ
=
FRV ϕ
=
FRV ϕ
=
2 (cos ϕ − sin ϕ); 2
π
= VLQ ϕ FRV
π
+ FRV ϕ VLQ
π
=
VLQ ϕ +
2 (sin ϕ + cos ϕ); 2
] =
VLQ ϕ +
VLQ ϕ −
π
= VLQ ϕ FRV
π
− FRV ϕ VLQ
π
=
VLQ ϕ −
2 (sin ϕ − cos ϕ). 2
817. Z π π π sin( + α ) = sin cos α + cos sin α = 1 ⋅ cos α + 0 ⋅ sin α = cos α . 2 2 2 [ VLQ π+α)=sinπ cosα+cosπ sinα=0⋅cosα−1⋅sinα=−sin α. \ FRV π−α)=cos π cosα+sinπ sinα=−1⋅cosα+0⋅sinα=−cosα.
68
] 3π 3π 3π + α ) = cos cos( cos α − sin sin α = 0 ⋅ cos α − (−1) sin α = sin α . 2 2 2
818. Ih nhjfmeZf kbgmkZ b dhkbgmkZ jZaghklb Z VLQ°−β)=sin60° cosβ−cos60° sinβ= [ FRVβ−30°)=cosβ cos30°+sinβ sin30°=
FRV β −
FRV β +
VLQ β
VLQ β
819. Z VLQ°=sin(45°+60°)=sin 45°⋅cos60°+cos45°⋅sin60°= 2 3 2 1 6+ 2 ⋅ + ⋅ = . = 2 3 2 2 4 [ FRV°=cos(45°+60°)=cos45°⋅cos60°−sin45°⋅sin60°= 2 1 2 3 2− 6 ⋅ − ⋅ = . = 2 2 2 2 4
820.
821. Z VLQ. −VLQ. FRV
VLQ. FRV
FRV. VLQ −VLQ. FRV
[ VLQ. VLQFRV.
VLQ. VLQFRV. FRV−VLQ
. VLQ
FRV. VLQ
FRV. FRV
69
\ =
π π − α − FRVα = VLQ ⋅ FRVα − FRV ⋅ VLQ α − FRVα =
FRVα −
] =
π
VLQ
VLQ α −
FRVα = −
VLQ α + FRV α −
π =
VLQ α
VLQ α + FRVα FRV
π
π + VLQ α VLQ =
3 1 3 1 = 3 sin α + cos α . sin α + cos α ⋅ + sin α ⋅ 2 2 2 2
822. π
+ α − FRVα = π π = 2 ⋅ sin cos α + 2 cos sin α − cos α = 4 4
Z
= 2⋅
[
VLQ
2 2 cos α + ⋅ 2 sin α − cos α = cos α + sin α − cos α = sin α . 2 2
VLQ α −
π − VLQ α =
π π − 2 ⋅ cos α sin − sin α = 4 4 2 2 = 2⋅ sin α − ⋅ 2 cos α − VLQ α = VLQ α − FRVα − VLQ α = − FRVα 2 2 = 2 ⋅ sin α cos
π \ FRV − α −
VLQ α =
π π = FRV FRVα + VLQ VLQ α −
−
VLQ α = FRVα +
] =
VLQ α −
FRVα − FRV α −
FRV α − FRVα ⋅ FRV
70
π
VLQ α = ⋅
FRVα + ⋅
VLQ α −
VLQ α = FRVα
π =
π + VLQ α VLQ =
FRV α −
FRVα −
− ⋅
VLQ α =
FRVα −
FRVα − VLQ α = − VLQ α
823.
Ijbf_gy_f nhjfmeu kbgmkZ b dhkbgmkZ kmffu b jZaghklb Z FRV.− −FRV. FRV FRV. FRVVLQ. VLQ −cosα FRV VLQ. VLQ [ VLQα FRV−VLQ.− \ =
=
π
π π + α − VLQ α = VLQ FRVα + FRV VLQ α − VLQ α =
VLQ
FRVα +
]
FRV α +
FRV α −
VLQα FRV−VLQ. FRVFRV. VLQ FRV. VLQ
VLQ α −
π +
VLQ α =
FRVα
VLQ α = FRVα FRV
VLQ α +
VLQ α
=
π
π − VLQ α VLQ +
VLQ α
=
FRV α
824.
Ijbf_gy_f nhjfmeu kbgmkZ b dhkbgmkZ kmffu b jZaghklb Z FRVα− VLQ−. VLQ FRVα FRV VLQ. VLQ−VLQ. VLQ FRV. FRV [ VLQ. VLQ−. FRV−
FRV. VLQ−VLQ. FRV FRV. VLQ
VLQ. FRV
825.
Ijbf_gy_f nhjfmeu kbgmkZ b dhkbgmkZ kmffu b jZaghklb Z VLQ.− −FRV . VLQ− VLQ. FRV− −FRV. VLQFRV. VLQ VLQ. FRV [ FRV. VLQ−. VLQ− FRV. FRV− −VLQ. VLQVLQ. VLQ FRV. FRV
826.
Ijbf_gy_f nhjfmeu kbgmkZ b dhkbgmkZ kmffu b jZaghklb D FRV FRV VLQ VLQ FRV− FRV 6) sin3γ cosγ−cos3γ sinγ=sin(3γ−γ)=sin2γ.
827.
Ijbf_gy_f nhjfmeu kbgmkZ b dhkbgmkZ kmffu b jZaghklb 71
Z FRV°cos17°+sin107°sin17°=cos(107°−17°)=cos90°=0; [ FRV°cos24°−sin36°sin24°=cos(36°+24°)=cos60°=
.
\ VLQ°cos27°+cos63°sin27°=sin(63°+27°)=sin90°=1. ] VLQ ° cos21°−cos51°sin21°=sin(51°−21°)=sin30°=
.
828. Z FRV°cos63°+sin18°sin63°=cos(18°−63°)=cos(−45°)=
.
6) cos 32° cos 58°−sin 32° sin 58°=cos(32°+58°)=cos90°=0.
829. π π π π Z VLQ α + cosα − + cosα + sin α − = 6 6 6 6 π π = sin α + + α − = sin 2α . 6 6 π π π π [ FRV + β FRV − β − VLQ + β VLQ − β = π 2π π = cos + β + − β = cos = 0. 4 4 4
830. Ih nhjfmeZf kbgmkZ kmffu b jZaghklb Z VLQ. VLQ.− VLQ α FRV FRV . VLQ VLQ . FRV − –cos α VLQ VLQ . FRV [ FRV.− −FRV.− +sin α VLQ VLQ . VLQ
FRV
\ FRV−. −FRV.
. FRV VLQ . VLQ −cos α FRV
.VLQ VLQ .− 2 3 sin α = 3 sin α –cos60°⋅cosα+sin 60° sin α=2sin60°sinα= 2 ] VLQ°− α)+sin(30°+α)=sin30° cosα−cos30° sinα+sin30°cosα+
72
FRV FRV
1 +cos30° sinα = 2 ⋅ cos α = cos α. 2
831. Ih nhjfmeZf kbgmkZ b dhkbgmkZ kmffu b jZaghklb Z VLQ. −VLQ.− −VLQ . FRV FRV . VLQ
. FRV FRV . VLQ − . VLQ [ FRV°+α)−cos(30°−α)=cos30° cos α−sin30°sin α− 1 −cos30° cos α−sin30°sin α= 2 ⋅ sin α = − VLQ α . 2 VLQ
FRV
832. Z VLQ. VLQ.− VLQ . FRV FRV . VLQ VLQ . FRV − 2 2 2 2 2 2 ±FRV. VLQ VLQ. FRV − FRV. VLQ =sin a cos −cos . VLQ 2 2 2 2 2 2 2 2 =sin .O−sin −(1−sin α) sin VLQ .−sin . VLQ −sin +sin2. VLQ2 VLQ2 .−sin2
FRV. FRV.− FRV . FRV −VLQ . VLQ ⋅FRV . FRV 2 2 2 2 2 2 VLQ . VLQ FRV . FRV −sin . VLQ FRV . −sin − 2 2 2 2 2 2 2 –sin ⋅(1−cos α)=cos .−sin FRV .−sin VLQ ⋅cos2. FRV2.−sin2
833. Z =
=
VLQα − β + FRVα VLQβ
VLQ α FRV β VLQ α FRV β
[ =
VLQα + β − FRVα VLQβ
=
VLQ α FRV β + FRV α VLQ β − FRV α VLQ β VLQ α FRV β − FRV α VLQ β + FRV α VLQ β
=
=.
VLQα − β + FRVα VLQ β FRVα FRVβ − FRVα − β
=
VLQ α FRVβ − FRVα VLQβ + FRVα VLQβ FRVα FRVβ − FRVα FRVβ + VLQ α VLQβ VLQ α FRVβ + FRVα VLQβ FRVα FRVβ − VLQ α VLQβ
=
VLQα + β FRVα + β
=
= WJα + β
834.
73
Z =
=
FRVα − β − VLQ α VLQβ
=
FRVα FRVβ − VLQ α VLQβ + VLQ α VLQβ FRVα FRVβ + VLQ α VLQβ − VLQ α VLQβ
[ =
FRVα + β + VLQ α VLQ β
FRVα − β − VLQ α VLQ β VLQ α FRVβ − VLQα − β
=
FRVα FRVβ + VLQ α VLQ β − VLQ α VLQ β
VLQ α FRVβ + FRVα FRVβ
=
FRVα FRVβ
=.
=
VLQ α FRVβ − VLQ α FRVβ + FRVα FRVβ FRVα FRVβ − VLQ α VLQβ
FRVα FRVβ
FRVα + β VLQα + β
= = FWJα + β .
835.
1) sin2α+cos2α=1; cos2α=1−sin2α; cos2α= 2
225 225 15 8 =1− = =± ; cos α = ± 17 289 289 17 15 agZqbl FRVα ! ihwlhfm cos α = . 17
lZd dZd α ∈
,
q_l\_jlb
2) sin2β+cos2β=1; sin2β=1−cos2β; sin2β=1 − = ;
9 3 =± 25 5 3 ihwlhfm sin β = . 5 sinβ=±
lZd dZd β ∈
Z VLQα+β)=sinα cosβ+cosα sinβ=
⋅
+
⋅
60 24 84 . + = 85 85 85 74
=
15 ⋅ 4 8 ⋅ 3 − = 17 ⋅ 5 17 ⋅ 5
60 24 36 . − = 85 85 85
\ FRVα−β)=cosα cosβ+sinα sinβ= =
q_l\_jlb agZqbl
[ FRVα+β)=cosα cosβ−sinα sinβ= =
,
⋅ ⋅
+
⋅ ⋅
=
VLQβ
>0,
32 45 77 . + = 85 85 85
836. 2
9 1) sin2α+cos2α=1; cos2α=1−sin2α; cos2α=1− = 41 1681 − 81 1600 = =− ; 1681 1681 1600 40 =± lZd dZd α∈,, q_l\_jlb agZqbl 1681 41 40 ihwlhfm cos α = − . 41 cosα = ±
FRVα<0,
2) sin2β+cos2β=1; cos2β=1−sin2β; cos2β=1− − = 1681 − 1600 81 81 9 = ± lZd dZd β∈,9 q_l\_j= ; cosβ = ± 1681 41 1681 1681 9 lb agZqbl FRVβ! ihwlhfm cos β = . 41 ⋅ ⋅ 3) sin(α+β) = sinα cosβ+cosα sinβ= + = ⋅ ⋅ + = = =. =
75
837.
1) cos2 α+sin2α=1; cos2α=1−sin2α; 2
25 − 16 9 9 3 4 ; cosα= ± =± ; cos2α= 1 − = = 25 5 5 25 25
lZd dZd α∈,, q_l\_jlb agZqbl FRVα ihwlhfm cos α = − 2) sin2β+cos2β=1; sin2β=1−cos2β;
3 . 5
2
64 8 289 − 225 64 15 = =± ; sin2β=1− − = ; sin β = ± 289 289 289 17 17 8 lZd dZd β∈,, q_l\_jlb agZqbl VLQβ! ihwlhfm sin β = 17 ⋅ ⋅ − = Z VLQα+β)=sinα cosβ+cosα sinβ= − ⋅ ⋅ 60 24 84 . =− − =− 85 85 85 ⋅ ⋅ [ VLQα−β)=sinα cosβ−cosα sinβ= − + = ⋅ ⋅ −60 24 36 = + =− . 85 85 85 ⋅ ⋅ \ FRVα−β)=cosα cosβ+sinα sinβ= + = ⋅ ⋅ 45 + 32 77 = = . 85 85 ⋅ ⋅ ] FRVα+β)=cosα cosβ−sinα son β= − = ⋅ ⋅ 45 − 32 13 = = . 85 85
838.
Ba l_hj_fu h kmff_ m]eh\ lj_m]hevgbdZ α=180°−α−β. sinγ=sin(180°−. VLQ. VLQ. FRVFRV. VLQ
839.
Imklv . b γ − m]eu lj_m]hevgbdZ 2
16 9 4 = , sin2α+cos2 α=1; cos2α=1−sin2α, cos2α=1 − = 1 − 25 25 5 1
9 3 = ± M]he hkljuc l_ 25 5 3 wlhfm cos α = . 5 β+cos2β=1, 2) sin2 cosα=±
α<
π
agZqbl
FRVα>0
cos2β=1−sin2
ih-
β,
2
25 144 5 = cos2β=1− = 1 − , 169 169 13 144 12 = ± lZd dZd m]he hkljuc lh 169 13 12 . cosβ! ihwlhfm cos β = 13
β<
cosβ=±
π
agZqbl
3) α+β+γ=180°; 180°−α−β=180°−0(α+β), cos(180°−(α+β))=−cos(α+β)=sinα sinβ−cosα cosβ= =
⋅
− ⋅
=
−
=−
.
840. Imklv . b γ − m]eu lj_m]hevgbdZ b imklv cosα=
FRV β
=
γ=180°−(α+β).
Ke_^h\Zl_evgh α b β
hklju_ m]eu Z
²
2
1 8 1 1) cos2α+sin2α=1, sin2α=1−cos2α, sin2α= 1 − = 1 − = , 3 9 9 sinα=± sin α =
8 2 2 =± 9 3
gh
α<
π
VLQα!
agZqbl
2 2 . 3 2
4 5 2 2) cos2β+sin2β=1, sin2β=1−cos2β, sin2β=1− 1 − = , 9 9 3
2
ihwlhfm
5 5 =± 9 3
sinβ=±
β<
gh
π
VLQβ !
agZqbl
ihwlhfm
5 . 3
sin β =
3) sinγ=sin(180°−(α+β))=sin(α+β)=sinα cosβ+cosα sinβ= + = ⋅ + ⋅ = + = .
841.
WJα + WJβ − WJα WJβ
=
−
+
⋅
=
+
=
⋅ ⋅
= .
⋅
842. Z WJ°=tg(45°−30°)=
=
3− 3 3+ 3
=
WJ° − WJ° + WJ°WJ°
=
+
=
(3 − 3 ) 12 − 6 3 = = 2− 3 ; − 9 3 6 2
tg30° + tg45° = [ WJ°=tg(30°+45°)= 1 − tg30°tg45°
3 +1 3 = 3 1− ⋅1 3
( 3 + 3) = ( 3 + 3) = 3 + 6 3 + 9 = 9=3 3(3 − 3 ) (3 − 3 )(3 + 3 ) 2
=
−
843. tg(α−β)=tg(α+(−β))=
2
+
=+
.
tg. + tg( − tg. − tg = . 1 − tgαtg(- β ) 1 + tgαtg
844. 3
=
+
[ WJα−β)= =
−
WJα + WJβ
; tg(α+β)= + − ⋅ = − WJαWJβ ⋅ = =. ⋅
Z WJα+β)=
=
WJα − WJβ + WJDWJβ
⋅ ⋅
=
; tg(α−β)= − + ⋅ =
.
845. Z VLQ°=sin(360°+120°)=sin120°=sin(90°+30°)=cos30°= [ FRV−570°)=cos570°=cos(540°+30°)=−cos30°=− \ WJ−750°)=−tg750°=−tg(720°+30°)=−tg30°=− ] FWJ
.
.
FWJ540°−45°)=−ctg45°=−1.
846. FRV α + VLQ α
− = FWJα − VLQ α FRV α
FRV
α + VLQ α + VLQ α FRV α − = FRV α − VLQ α FRV α VLQ α
2 sin α cos α 2 sin 2 α cos α = = cos α − sin 2 α cos α cos α (1 − sin 2 α ) sin α VLQ α VLQ α FRV α = = = WJ α . FRV α ⋅ FRV α FRV α
=
847. Z
FRV α
− VLQ−α
− FWJ −α
=
cos α + sin α = sin α . = sin α + cos α sin α 4
FRV α + VLQ α + FWJα
=
FRV α + VLQ α +
FRV α VLQ α
=
.
[ WJ−α)ctgα+ = − + WJ α = −
WJα = −WJαFWJα − WJα ⋅ WJα = FWJ −α
FRV
α
.
848. Z x+4)(x+5)− 5≤ 7; x2+4x+5x+20− 5≤7; x2+9x+8≤ 0. GZc^_f dhjgb mjZ\g_gby: o2+9x+8=0; D=92−4⋅1⋅8=81−32=49; − 9 + 49 − 9 − 49 x= = −1 beb o = −8 . 2 2 x2+9x+8=(x+1)(x+8)≤0. Hl\_l: −8x−1. [ −(2x+1,5)(4−x)≥0; 6−(8x+6−2x2−1,5x)≥0; 6−8x−6+2x2+l,5x≥0; 2x2−6,5x≥0. GZc^_f dhjgb mjZ\g_gby x2−6,5x=0; x(x−3,25)=0; x
beb x=3,25= .
2x2−6,5x=2(x−0)(2− )≥0,
Hl\_l [0 beb x≥ .
849.
Imklv o q ± \j_fy jZ[hlu i_j\h]h Z\lh]jmaqbdZ Z m q ± \j_fy \lhjh]h Lh]^Z ih mkeh\bx bf__f o−m AZ q i_j\uc Z\lh]jmaqbd ^_eZ_l
Ë
qZklv jZ[hlu Z \lhjhc −
qZk hgb k^_eZxl
\kx jZ[hlm agZqbl
+
+
[ \ [ \
É
qZklv jZ[hlu
qZklv jZ[hlu Z aZ ⋅
q hgb k^_eZxl
Bf__f kbkl_fm mjZ\g_gbc
5
[ − \ = [ + \ ⋅ = J_rbf mjZ\g_gb_ 20 20 + = 1; y 9+ y 20o−180+20o=o2−9o o2−49o+180=0. GZc^_f dhjgb D=492−4⋅1⋅180=1681
x = 9 + y, 20 20 9 + y + y − 1 = 0
y = x − 9 1 1 x + x − 9 ⋅ 20 = 1
49 + 1681 49 + 41 = = 45 2 2 49 − 41 x2 = =4 2 x1 = 45 x2 = 4 beb − g_ bf__l kfukeZ y1 = 36 y2 = −5 x1 =
Hl\_l q b q 850.
[
FRV
] FRVα+sin2α=cos2α−sin2α+sin2α=cos2α. ^ FRV2β−cos2β=cos2β−(cos2β−sin2β)=cos2β−cos2β+sin2β=sin2β. _ FRV α − VLQ α FRV α − FRV α = − FRV α = FRV α + VLQ α FRV α + VLQ α cos 2 α − sin 2 α − cos 2 α − sin α cos α − sin α (sin α + cos α ) = = = cos α + sin α cos α + sin α = − sin α . 6
851.
Ih nhjfmeZf ^\hcgh]h m]eZ sin 40° sin 2 ⋅ 20° 2 sin 20° cos 20° Z = = = 2 cos 20° . sin 20° sin 20° sin 20° sin 100° sin 2 ⋅ 50° 2 sin 50° cos 50° = = = 2 sin 50° . [ cos 50° cos 50° cos 50° cos(2 ⋅ 40°) cos 80° = = \ cos 40° + sin 40° cos 40° + sin 40° cos 2 40° − sin 2 40° (cos 40° + sin 40°)(cos 40° − sin 40°) = = cos 40° + sin 40° cos 40° + sin 40° = cos 40° − sin 40° . =
] =
cos 36° + sin 2 18° cos(2 ⋅18°) + sin 2 18° = = cos 18° cos 18°
cos 2 18° − sin 2 18° + sin 2 18° cos 2 18° = = cos 18° . cos 18° cos 18°
852.
Bkihevam_f nhjfmeu ^\hcgh]h m]eZ VLQ β VLQ β FRV β FRV β Z = = = FWJβ . VLQ β VLQ β VLQ β sin 2α 2 sin α cos α − 2 sin α cos α − cos α = =0. 2 sin α 2 sin α \ VLQ2γ+cos2γ=sin2γ+cos2γ−sin2γ=cos2γ. FRV α − VLQ α FRV α ] − VLQ α = − VLQ α = FRV α − VLQ α FRV α − VLQ α cos 2 α − sin 2 α − sin α cos α + sin 2 α cos α (cos α − sin α ) = = = cos α . cos α − sin α cos α − sin α
[
853.
1) sin2α+cos2α=1; cos2α=1−sin2α; cos2α= 12 − ; lZd dZd α∈,, q_l\_jlb =1− = = cosα= ± 13 12 agZqbl FRVα ihwlhfm cos α = − . 13
7
2) tgα=
VLQ α FRV α
WJα =
3) sin2α=2sinα cosα=2 ⋅ cos2α=cos2α−sin2α= −
tg2α=
WJα − WJ
α
−
⋅ −
−
⋅ −
; tg2α= − −
=−
=−
=−
;
=
;
⋅ ⋅
−
=−
=
= −
;
.
854. 1) tg2α=
WJα − WJ
2) 1+tg2α=
α
⋅
; tg2α=
1 cos α 2
−
; cos 2 α =
=
⋅ ⋅
1 1 + tg α 2
=
=
;
; cos2α=
+
=
16 16 4 ; cosα= ± = ± lZd dZd α∈,,, q_l\_jlb agZqbl 25 5 25 4 ihwlhfm cos α = − . 5 sin α 3) tgα= ; sin α = tgα cos α ; sinα= ⋅ − = − . cos α
FRVα<0,
=
4) cos2α=cos2α−sin2α; cos2α= −
5) sin2α=2sinα cosα; sin2α=2⋅ −
− −
⋅ −
=
=
⋅⋅ ⋅
− =
=
;
.
855. Imklv α − m]eu ijb hkgh\Zgbb jZ\gh[_^j_ggh]h lj_m]hevgbdZ Z m]he ijb \_jrbg_ ² γ Lh]^Z γ=180°−. ih l_hj_f_ h kmff_ m]eh\ lj_m]hevgbdZ
8
2) sin2α+cos2α=1; sin2α=1−0,82=0,36; sin α = ± 0,36 ; sinα=±0,6; π lZd dZd α< agZqbl VLQα> ihwlhfm sinα=0,6.
3) sinγ=sin(180°−. VLQ. VLQ. FRV. ⋅0,6⋅0,8=0,96; cosγ=−cos(180°−. −FRV. VLQ2.−cos2. 2−0,82=0,36−0,64=−0,28.
856. Ba hkgh\gh]h ljb]hghf_ljbq_kdh]h lh`^_kl\Z 1) sin2α+cos2α=1; sin2α=1−cos2α; sin2α=1−(−0,6)2=1− −0,36=0,64; sinα=± =±0,8. LZd dZd α∈,,, q_l\_jlb agZqbl sinα ihwlhfm sinα=−0,8. VLQ α
8 4 = ; FRV α 6 3 VLQ. VLQ. FRV. VLQ. ⋅(−0,8)(−0,6)=−0,96. 4) cos2α=cos2α−sin2α; cos2α=(−0,6)2−(−0,8)2=0,36−0,64=−0,28. 4 2⋅ WJα 3 = − 8 ⋅ 9 = − 24 = −3 3 . 5) tg2α= ; tg2α= 2 3⋅7 7 7 − WJ α 4 1− 3
2) tgα=
; tgα=−0,8 : (−0,6)=
857.
cosα=cos ⋅ tgα=tg ⋅
α
α
=
=
FRV
WJ − WJ
α
α
− VLQ
α
α
;
.
[ VLQα=sin2⋅2α=2sin2α cos2α; cos4α=cos2⋅2α=cos22α−sin22α ; WJα tg4 α=tg2⋅2α= − WJ α
858. 9
VLQ α
Z
FRV
[
=
α
FRV
VLQ β
FRV β
=
FRV
ϕ
FRV β
+ VLQ
ϕ
α
α
=
VLQ
=
FRV
FRV
α
α
ϕ
+ VLQ
ϕ
=
FRV
ϕ
FRV
= WJ
α
α
.
= VLQ β .
FRV β
ϕ
=
α
VLQ FRV
VLQ β FRV β
FRV ⋅
=
α
FRV
VLQ ⋅ β
FRV ϕ
\
VLQ ⋅
ϕ
− VLQ + VLQ
ϕ
ϕ
=
ϕ ϕ ϕ ϕ cos + sin cos − sin ϕ ϕ 2 2 2 2 = = cos − sin . ϕ ϕ 2 2 cos + sin 2 2
] =
FRV α − VLQ α
=
FRV α
FRV α − VLQ α FRV α
=
FRV α − VLQ α
FRV α − VLQ α
=
cos 2α − sin 2α 1 = . (cos 2α + sin 2α )(cos 2α − sin 2α ) cos 2α + sin 2α
859. 1) sin2
α α α α + cos 2 = 1; cos 2 = 1 − sin 2 ; 2 2 2 2 2
cos 2
α α 1600 1600 40 9 =1− = =± ; cos = ± 2 1681 2 1681 41 42
α α 40 > 0 ihwlhfm cos = . 2 2 41 α α α ⋅ ⋅ = ; 2) VLQ α = VLQ ⋅ = VLQ FRV = ⋅
LZd dZd
3)
FRV α
4) tgα =
860. 10
α
∈, q_l\_jlb agZqbl cos
= FRV ⋅
α
= FRV
α
− VLQ
α
= − = ;
sin α 720 1519 720 . : = = cos α 1681 1681 1519
cos 2α − cos 2 α cos 2 α − sin 2 α − cos 2 α − sin 2 α = = =–1. 1 − cos 2 α sin 2 α sin 2 α
\ VLQα ctgα−1=
VLQ α FRV α ⋅ FRV α VLQ α
−1=2cos2α−1=
=2cos2α−sin2α−cos2α=cos2α−sin2α=cos2 α. FRV α VLQ α + ] FWJα+tgα) sin2 α= ⋅ VLQ α FRV α = VLQ α FRV α =2cos2α+2sin2α=2(cos2α+sin2α)=2.
861. Z WJα sin2 α+cos2 α=
VLQ α ⋅ VLQ α FRV α FRV α
=sin2 α+cos2α=1.
+cos2 α=
sin 2 β 2 sin β cos β 2 sin β cos β = = = cos 2 β + sin 2 β cos 2 β − sin 2 β + sin β cos 2 β VLQ β = = WJβ . FRV β
[
862.
Ih nhjfmeZf ^\hcgh]h m]eZ Z VLQ°cos15°=sin2⋅15°=sin30°= [ VLQ
.
4 2 π π π =2 2. ⋅ cos = 4 sin = 2 8 8 4
\ VLQ°cos105°= =
sin210°=
(2sin105°⋅cos105°)=
sin(180°+30°)=−
sin30°=−
] FRV2 15°−sin2 15°=cos2⋅15°=cos30°= ^ FRV2
⋅ sin2⋅105°=
1 1 1 ⋅ =− . 2 2 4
.
π π π π − 4 sin 2 = 4 cos 2 − sin 2 = 8 8 8 8 11
= FRV
π
=
_ cos 2
=
.
7π 7π 7π 7π − sin 2 = cos 2 ⋅ = cos = 12 12 12 6
π π = FRV π + = − FRV = −
.
863.
[ \ =
WJ°
− WJ °
= WJ ⋅ ° = WJ° .
2 3 4tg15° 2tg15° = 2⋅ = 2 ⋅ tg2 ⋅ 15° = 2tg30° = . 2 2 3 1 − tg 15° 1 − tg 15° WJ°
− WJ °
=
WJ°
− WJ °
=
WJ ⋅ °
=
WJ°
=
1 1 1 3 =− . tg(90° + 60°) = − ctg60° = − 2 2 6 2 3
864. Z VLQ°cos165°=sin2⋅165°=sin330°=sin(360°−30°)= =−sin30°= −
.
[ FRV2 75°−sin2 75°=cos2⋅75°=cos150°=cos(180°−30°)= =−cos30°= −
\
.
2tg 240° 1 − tg 2 240°
= tg 2 ⋅ 240° = tg 480° = tg (360° + 120°) = tg120° =
=tg(90°+30°)=−kWJ°= −
12
.
865. Z
=
2 2 2tgα = = 2 = 2tgα cos 2 α = tgα + ctgα tgα + 1 tg α + 1 tgα
2 sin α ⋅ cos 2 α = 2 sin α ⋅ cos α = sin2 α. cos α VLQ α [ −tg2α)cos2 α= − FRV α = FRV α
=cos2 α−sin2 α=cos2 α. \ + VLQ α = VLQ α FRV α
=
sin 2 2α 1 ⋅ sin 2 2α 4
]
VLQ
FRV
α + VLQ α VLQ α = VLQ α FRV α
=4.
π−α
FRV
π−α
=
VLQ π − α FRV π − α =
α α 1 α α π α π α = sin − cos − = cos sin = 2 sin cos = 2 2 2 2 2 2 2 2 2 =
1 sin α . 2
^
FRV
= 2 cos
_
π+α
− VLQ
π+α
π+α π+α = FRV − VLQ =
π +α α π α = 2 cos + = −2 sin . 2 2 2 2 WJ
− WJ
π − α
π−α
= ⋅
WJ − WJ
π − α
π−α
= ⋅ WJ ⋅
π − α
=
=2tg(3π−α)=2tg(π−α)=−2tgα.
866.
Z −VLQ.−FRV. 2=1−sin2 .−cos2 . VLQα FRV. VLQ. [ FRV4 .−sinα=(cos2 .−sin2 . FRV2 .VLQ2 α FRV. 13
FRV α
\ FWJα−sin2α = =
FRV α − VLQ VLQ α
]
FWJ
α
− WJ
FRV α
=
VLQ
α
FRV
α
VLQ α
α
α
=
− VLQ α ⋅ FRV α =
=
=
FRV α VLQ α
FRV
VLQ
VLQ α
−
FRV α
VLQ α
α FRV α
=
⋅ FRV α = FWJα FRV α ;
α
α
FRV α − VLQ
VLQ
FRV
α
α
=
FRV
VLQ
α
α
− VLQ FRV
α
α
=
= FWJα .
867.
Z VLQ.FRV. 2−VLQ.
.FRV2.VLQ. FRV.−VLQ. FRV. [ VLQ. FRV.⋅FRV. VLQ.⋅FRV. VLQ. VLQ
2
\ VLQα−tgα=2sinα⋅cosα− =
VLQ α
FRV α
=
VLQ α FRV
α − VLQ α
FRV α
=
sin α(2 cos 2 α − 1) sin α = ⋅ cos 2α = tgα⋅cos2α; cos α cos α
FRV α VLQ α − ] FWJα−tgα) sin2α = VLQ α = VLQ α FRV α cos α sin α 2 2 = − 2 sin α cos α = 2 cos α − 2 sin α = 2cos2α. sin α cos α
868. α π −α 3π −α = sin sin 2 2 2 α α α α = 4 sin ⋅ cos ⋅ (− cos α ) = −2 2 sin cos ⋅ cos α = 2 2 2 2 =−2sinα cosα=−sin2α. Z 4 sin
(sin β + cos β ) 2 sin 2 β + 2 sin β cos β + cos 2 β = = 1 + sin 2 β 1 + 2 sin β cos β + VLQ β FRV β = = . + VLQ β FRV β
[
14
\
αFWJα = VLQ α
VLQ
VLQ
α ⋅ FRV α
VLQ α FRV α ⋅ VLQ α
=
.
FRV β FRV β + ] VLQ β = + VLQ β − VLQ β
=
FRV β − VLQ β + FRV β + VLQ β + VLQ β − VLQ β
VLQ β
=
=
cos β − sin β cos β + cos β + cos β sin β sin 2 β = 1 − sin 2 β
=
2 cos β ⋅ sin 2 β 2 cos β ⋅ 2 sin β cos β = = 4 sin β . 1 − sin 2 β cos 2 β
869. Z 4 cos
2π + α 2π + α α α π α cos cos = 4 cos cos + × 4 4 2 4 2 4
α α α α × FRV π + = FRV ⋅ − VLQ ⋅ − FRV = = 2 cos
α α α 2 cos sin = 2 4 4
α WJα = [ FRV α − VLQ α FRV
=
VLQ α
FRV α
\
FRV
FRV FRV
α⋅
α
VLQ
α
= VLQ α .
VLQ α
FRV α
α − VLQ α
=
FRV α VLQ α FRV
α − VLQ α
=
= WJα .
1 + tgα − (1 − tgα ) 1 1 2tgα − = = = tg 2α . 1 − tgα 1 + tgα (1 − tgα )(1 + tgα) 1 − tg 2 α
VLQ α VLQ α + ] VLQ α = + FRV α − FRV α
= =
VLQ α − FRV α + VLQ α + FRV α + FRV α − FRV α
VLQ α
VLQ α − VLQ α FRV α + VLQ α + VLQ α FRV α − FRV
α
=
⋅ VLQ α = 15
=
VLQ α ⋅ VLQ α FRV α VLQ
α
= FRV α .
870.
Ihevam_fky nhjfmeZfb ^\hcgh]h m]eZ 2 2 D FRV. FRV⋅. OFRV .−sin . 2 2 2 2 2 =sin 2α+cos 2α+cos 2α−sin 2α=2cos 2α. [ −FRV. −cos2⋅. −cos2 .VLQ2. =sin2 .VLQ2 . VLQ2 . + FRV α + FRV α − VLQ α FRV α + FRV α = = = \ FRV α FRV α FRV α FRV α = = FRV α . FRV α 1 − cos 2α 1 − cos 2 α + sin 2 α VLQ α VLQ α = = = = WJα . ] sin 2α 2 sin α cosα VLQ α FRV α FRV α VLQ α ⋅ FRV α = VLQ α FRV α = VLQ α . ^ WJα (1+cos2α)= FRV α VLQ α + VLQ α VLQ α + VLQ α FRV α e) = = VLQ α − VLQ α VLQ α − VLQ α FRV α α FRV VLQ α + FRV α α + FRV α = = = = FWJ . VLQ α − FRV α − FRV α α VLQ
α + VLQ α + VLQ α FRV α = + FRV α + VLQ α + FRV α − VLQ α + VLQ α FRV α VLQ α VLQ α + FRV α VLQ α VLQ α + VLQ α FRV α = = = = WJα . FRV αFRV α + VLQ α FRV α FRV α + VLQ α FRV α π − α + VLQ = + FRV α = FRV α = FRV α . a
`
− FRV α + VLQ α
=
− FRV
871. Z [
16
VLQ β
+ FRV β − FRV β VLQ β
= =
VLQ β FRV β FRV
β
=
VLQ β
FRV β
β = VLQ β . VLQ β
VLQ
= WJβ .
\ ctgβ (1 − cos 2 β ) = ]
+ FRV β
2 + cos 2 2 β − sin 2 2 β 2 cos 2 2 β = = 2 cos 2 β . cos 2 β cos 2 β
=
β − VLQ β π − VLQ + β − FRV β VLQ β ^ = = = VLQ β . VLQ β VLQ β VLQ β β − FRV ⋅ + FRV π + β − FRV β _ = = = β VLQ π − β VLQ β VLQ ⋅ FRV
cos β ⋅ 2 sin 2 β = 2 cos β sin β = sin 2 β . sin β
=
VLQ VLQ
β
β
FRV
β
=
VLQ FRV
β
β
β = WJ .
872. π FRV
−
α
π α π = + FRV − = + FRV − α = + VLQ α .
873. + FRV ϕ
ϕ = FWJ ϕ . − FRV ϕ VLQ ϕ π π − FRV − ϕ VLQ − ϕ − VLQ ϕ π [ = WJ − ϕ . = = π + VLQ ϕ π + FRV − ϕ FRV − ϕ
Z
=
FRV
874. Z VLQx cosx=
, 2sinx cosx=
m]he kms_kl\m_l [ VLQx cosx=
, 2sinx cosx=
m]eZ g_ kms_kl\m_l
875.
Z FRV−.
, sin2x=
, sin2x=
FRV−. =FRV−.
LZd dZd
LZd dZd
!
lh lZdhc
lh lZdh]h
−cosα.
FWJ. FWJ. FWJ. FWJ.
17
\ VLQπ+α)cos(α− ] WJπ−α)sin(α+
π
π
)=−sinα⋅sinα=−sin2α.
)=−tgα⋅cosα=−
VLQ α ⋅ FRV α FRV α
876. Z
=
VLQα − β WJα − WJβ
=
VLQ α FRV β − FRV α VLQ β VLQ α
FRV α
sin α cos β − cos α sin β = sin α cos β − sin β cos α cos α cos β
[
FWJα + FWJβ = VLQ α + β
−
VLQ β
FRV β
FRV α FRV β .
FRV α VLQ α
+
FRV β VLQ β
VLQ α FRV β + FRV α VLQ β
cosα sin β + sin α cos β sin α sin β = = sin α cos β + cosα sin β
VLQ α VLQ β
877. a) x(x+5)≤2x2+4; x2+5x−2x2−4≤0; x2−5x+4≥0; GZc^_f dhjgb mjZ\g_gby: x2−5x+4=0; D=52−4⋅l⋅4=25−16=9; x=
5+ 9 5− 9 = 4 beb x = = 1; 2 2
x2−5x+4=(x−4)(x−1)≥0.
Hl\_l [≤ beb x≥4 [ −(2x−1)(3−x)≥l−7x, 18
=
.
=
= −sinα.
10−(6x−3−2x2+x)≥1−7x; 10−6x+3+2x2−x−1+7x≥0; 2x2+12≥0.
Wlh g_jZ\_gkl\h \uihegy_lky ijb ex[uo agZq_gbyo 2o2≥ b >0.
o
ld
878.
Imklv o q − \j_fy jZ[hlu i_j\h]h k\ZjsbdZ Z m q ± \j_fy jZ[hlu \lhjh]h k\ZjsbdZ Lh]^Z ih mkeh\bx aZ^Zqb x−m AZ q i_j\uc k\Zjsbd k^_eZ_l [hlu
Ë
qZklv jZ[hlu Z \lhjhc ²
q hgb k^_eZxl
hgb k^_eZxl \kx jZ[hlm agZqbl mjZ\g_gbc [ − \ = [ + \ ⋅ =
É
qZklv jZ-
Ë É
+
qZklv jZ[hlu Z aZ
+
⋅
Ë É
q
Bf__f kbkl_fm
y = x − 11, 30 30 x + x − 11 = 1.
30 30 + = 1; x x − 11 30o−330+30o=o2−11o; o2−71o+330=0 D=712−4⋅330=3721;
J_rbf mjZ\g_gb_
x1 =
71 + 3721 = 66 ; 2
71 − 3721 =5 2 x1 = 66 x2 = 5 − g_ ih^oh^bl ih kfukem y1 = 55 y2 = −6 x2 =
Hl\_l q b q 879. 19
Z VLQα+sinα=2sin [ VLQβ−sin5β=2sin
α + α
β − β
=−2sin2β cos3β.
\ FRVx+cos3x=2cos
FRV
+ [
= VLQ α ⋅ FRV α .
β + β
= 2sin(−2β) cos3β=
FRV
− [
[
=
=2cos2,5x cos0,5x. \ + \ \ − \ VLQ ] FRVy−cos3y=−2sin =−2sin2y sin(−y)=
=2cos
[
[
α − α
FRV
FRV −
[
=2sin2y siny.
880.
Ihevam_fky nhjfmeZfb kmffu b jZaghklb kbgmkh\ b dhkbgmkh\ ° + ° ° − ° FRV = 2sin28° cos12°; Z VLQ°+sin16°=2sin
[ VLQ°−sin40°=2cos =−2cos30°sin10°=−2⋅
] FRV°+cos45°=2cos
^ VLQ
e)
FRV
= FRV 20
+ VLQ
π
π
π
+ FRV
FRV
π
=
=
sin10°;
VLQ
° − °
=
VLQ ° ;
° + °
FRV
° + °
=
FRV° ;
=2cos30°cos15°= π
° + °
VLQ °
° − °
VLQ
sin10°=−
\ FRV°−cos74°=−2sin =2sin60°sin14°=2 ⋅
° + °
.
π
= VLQ π
+
π
π
π
= FRV
FRV
+
−
π
=
π
π
FRV
VLQ
−
π
π
=
FRV
π
.
π − α + α π × ` FRV − α + FRV α = FRV π − α − α π π − α π × FRV = FRV FRV = FRV − α . π π + α − − α π π a VLQ + α − VLQ − α = VLQ × π π + α + − α π × FRV = VLQ α ⋅ FRV = VLQ α .
881.
Ih nhjfmeZf kmffu b jZaghklb kbgmkh\ b dhkbgmkh\ ° + ° ° − ° FRV = 2sin16°cos4°. Z VLQ°+sin20°=2sin
[ VLQ°−sin32°=2cos \ ]
FRV
VLQ
π
π
− FRV
− VLQ
^ VLQα− α + = − FRV α +
π
π
π
= − VLQ
π = FRV
VLQ
= FRV π
+
+
π
π
π
π
VLQ
π
VLQ α
=−
VLQ
−
π
π
= 2cos42°sin10°.
π
−
= − VLQ
π
e) FRV + α − FRV − α = − VLQ = − VLQ
π
α+α+
° − °
= − FRV α +
π
VLQ
π
π
° + °
=
α−α− VLQ
π
FRV
VLQ
π
π
VLQ
π
.
.
π
=
. π
+α+
π
−α
π ⋅
VLQ
+α−
π
+α
=
VLQ α .
21
882.
Ih nhjfmeZf kmffu b jZaghklb kbgmkh\ b dhkbgmkh\ a) sin15°+cos65°=sin15°+cos(90°−25°)= ° + ° ° − ° FRV = 2 sin20° cos5°. =sin15°+sin25°=2sin
6) cos40°−sin16°=cos(90°−50°)−sin16°= ° + ° ° − ° VLQ = 2 cos33° sin17°. =sin50°−sin16°=2cos
\ FRVVLQ=cos50°+sin(90°−10°)= ° + ° ° − ° FRV = =cos50°+cos10°=2cos
=2cos30° cos20°= FRV ° . ] VLQ−cos40°=sin40°+sin(90°−50°)=sin40°−sin50°= ° + ° ° − ° = −2sin5° cos45°= − 2 sin 5° . FRV =2sin
883. a) cos18°−sin22°=cos(90°−72°)−sin22°= ° + ° ° − ° VLQ = =sin72°−sin22°=2cos
=2 cos47° sin25°.
[ FRVVLQ
FRVVLQ−54°)=
=cos36°+cos54°=2cos =2cos45° cos9°= 2
° + °
2 ⋅ cos 9 $ = 2
FRV
° − °
FRV °
=
.
884. Z WJα+tgβ= [ WJα−tgβ=
885.
VLQ α
FRV α VLQ α
FRV α
+ −
VLQ β
FRV β VLQ β
FRV β
= =
VLQ α FRV β + VLQ β FRV α FRV α VLQ β VLQ α FRV β − VLQ β FRV α FRV α FRV β
= =
VLQ α + β FRV α FRV β VLQ α − β FRV α FRV β
; .
VLQ α α + α
Z WJα+tgα= [ WJβ−tgβ= =
VLQ β
FRV α FRV α VLQ β − β
FRV β FRV β
\ FWJx+tg4x= WJ − [ + WJ[ = π VLQ + [ FRV [ = = = VLQ [ FRV [ π FRV − [ FRV [ °
WJ
°
+ WJ
+
VLQ
°
=
° = °
° FRV ⋅ FRV
^ WJ
VLQ
= FRV
− WJ
VLQ
=
FRV
=
WJ
FRV β FRV β
=
− FWJ
FRV[
VLQ
FRV
=
= WJ
FRV
°
π
°
°
.
VLQ
=
FRV
− π
π
=;
=
FRV
WJ
°
FWJ[
FRV − FRV −
− FRV − FRV
_
VLQ β FRV β
VLQ
FRV
°
−
VLQ
=
=
;
FRV β
]
;
FRV α FRV α VLQ β
=
FRV β FRV β
VLQ α
=
=
;
° ° − WJ − =
VLQ
FRV
°
°
FRV
°
=
23
=
=−
° ° ⋅ FRV° − FRV
° FRV
.
886. a) sin2x−sin2y=(sinx−siny)(sinx+siny)= [−\ [+ \ [+ \ [−\
= VLQ
FRV
VLQ
FRV
[ − \ FRV [ − \ VLQ = VLQ = VLQ [ − \ VLQ [ + \ .
=
[ + \ FRV [ + \ =
6) cos2 x−cos2 m FRVx−cosy)(cosxFRVm [ + \ VLQ [ − \ ⋅ FRV [ + \ FRV [ − \ = = − VLQ
[ + \ FRV [ + \ ⋅ VLQ [ − \ FRV [ − \ = = − VLQ
= − VLQ [ + \ VLQ [ − \ .
887. π Z VLQx+cosy=sinx+sin − \ = VLQ π = VLQ +
[+ π −\
⋅
[− π + \ FRV
[ − \ FRV π − [ + \ ;
π −[+\ π × [ FRVx−siny=sin − [ − VLQ \ = FRV π −[−\ π [+\ π [−\ × VLQ = VLQ − . FRV −
888.
24
=
Z
FRV
π
+ α =
FRV
π
FRV α + VLQ
π
VLQ α
=
2 2 = 2 cos α + sin α = cos α + sin α . 2 2
[ −
FRV
π
− α = −
FRV
π
FRV α − VLQ
π
VLQ α
=
2 2 = − 2 cos α − sin α = sin α − cos α . 2 2
889.
Ih nhjfmeZf kmffu b jZaghklb dhkbgmkh\ b kbgmkh\ π +α π −α π = Z + FRV α = FRV + FRV α = FRV FRV
π
α
= FRV +
[
= FRV
FRV
π
π
+
α
VLQ
−
π
− VLQ α = VLQ
π
α
− VLQ α = FRV −
α
π +α
π −α
VLQ
1 π \ 2 sin α + 1 = 2(sin α + ) = 2(sin α + sin ) = 2 6 α+ π α− π α π α π = ⋅ VLQ FRV = VLQ + FRV −
= ⋅ − VLQ
π
^
π +α
] − FRV α = − FRV α = FRV
π −α
VLQ
+ FRV α =
=
− FRV α =
π α π α = − VLQ + VLQ −
+ FRV α = FRV
π
+ FRV α =
25
π +α
= ⋅ FRV
_
π −α
FRV
VLQ α −
= ⋅ FRV
= VLQ α −
α+ π
π α π α = FRV + FRV −
α− π
VLQ
= FRV
Z
VLQ α −
α
= FRV
[
= VLQ α − VLQ
VLQ
α
−
π
α
+
π
π
+
α
FRV
π
= ⋅ FRV
]
π +α
α
= − VLQ
891.
π +α
VLQ
π +α
=
π −α
FRV
=
+ FRV α =
− FRV α = FRV
π −α
π α π α = FRV + FRV −
π
=
π
− FRV α =
−
VLQ
π −α
FRV
α− π
= FRV
\ + FRV α = + FRV α = FRV
α
α+ π
+ FRV α = FRV
−
VLQ
π
π
+ FRV α − = FRV
= FRV
π
+
π
= VLQ α − VLQ
890.
= − VLQ
π
+
π
α
+ FRV α =
VLQ
π
−
α
Ih nhjfmeZf kmffu b jZaghklb kbgmkh\ b dhkbgmkh\ 2α + 6α 2α − 6α cos 2 sin sin 2α + sin 6α 2 2 Z = = cos 2α + cos 6α 2 cos 2α + 6α cos 2α − 6α 2 2 26
=
sin 4α cos 2α sin 4α = = tg 4α; cos 4α cos 2α cos 4α
[
=
FRV α − FRV α FRV α + FRV α
VLQ α VLQ α FRV α FRV α
− VLQ
=
FRV
α + α
α + α
VLQ
FRV
α − α
α − α
=
= WJαWJα
892.
FRV
sin 3α ⋅ cos 2α sin 3α = = = tg3α ; cos 3α ⋅ cos 2α cos 3α
[
=
VLQ
VLQ
VLQ α + VLQ α
=
VLQ α − VLQ α α
α
FRV
FRV
α
α
=
WJ
VLQ
VLQ
α + α
α − α
FRV
FRV
α − α
α + α
=
α
WJ
α
893. Z
FRV ° − FRV ° VLQ ° − VLQ °
=
− VLQ FRV
° + °
° + °
sin 45° sin 23° =− = −tg 45$ = −1. cos 45° sin 23°
VLQ
VLQ
° − °
° − °
=
27
VLQ ° + VLQ °
[
=
FRV ° + FRV °
=
VLQ
FRV
° + °
FRV
° + °
FRV
° − °
° − °
sin 120° cos 10° sin(90° + 30°) 3 ⋅2 = =− = − 3. cos 120° cos 10° − cos(90° + 30°) 2 ⋅1
894.
[ + VLQ [ + VLQ [ + VLQ [ = VLQ [ + VLQ [ + [ + [ FRV [ − [ + + VLQ [ + VLQ [ = VLQ Z
VLQ
+ VLQ
[ + [ FRV [ − [ = VLQ [ FRV [ +
+ VLQ
[ FRV [ = VLQ [ FRV [ + FRV [ =
= VLQ
[ ⋅ FRV
[+[
FRV
[−[
= VLQ
[ ⋅ FRV [ FRV [
\ − FRV \ − FRV \ + FRV \ = FRV \ − FRV \ + \ − \ \ + \ + FRV \ − FRV \ = − VLQ − VLQ [
FRV
− VLQ
\ + \ VLQ \ − \ = VLQ \ VLQ \ −
− VLQ \ VLQ \ = VLQ \VLQ \ − VLQ \ = = VLQ \ ⋅ VLQ
895. FRV
28
\ − \ FRV \ + \ = − VLQ \ VLQ \ FRV \
[ + FRV [ + FRV [ + FRV [ = FRV [ + FRV [ +
=
+ FRV [ + FRV [ = FRV + FRV
[ + [ FRV [ − [ +
[ + [ FRV [ + [ = FRV [ FRV [ +
+ FRV [ FRV [ = FRV [FRV [ + FRV [ =
[ ⋅ FRV [ + [ FRV [ − [ = = FRV [ FRV [ FRV [
FRV
896. Z
VLQ ° − VLQ ° − VLQ ° + VLQ °
= VLQ ° − VLQ ° +
87° − 93° 87° + 93° + cos 2 2 61° − 59° 61° + 59° + 2 sin = −2 sin 3° cos 90° + cos 2 2 1 + 2 sin 1° cos 60° = 0 + 2 ⋅ sin 1° = sin 1°; 2 [ FRV° − FRV ° + FRV ° + FRV ° = FRV° + FRV ° + + (sin 61° − sin 59°) = 2 sin
115° + 65° 115° − 65° − cos 2 2 25° + 35° 25° − 35° − 2 sin = 2 cos 90° cos 25° + sin 2 2 1 + 2 sin 30° sin 5° = 0 + 2 ⋅ sin 5° = sin 5°. 2 + (cos 25° − cos 35°) = 2 cos
897. Z
VLQ ° + VLQ ° − FRV °
= VLQ
° + °
− FRV ° = VLQ ° FRV° − FRV ° = ⋅
[
FRV ° + FRV ° − FRV °
= FRV
Z
FRV α − VLQ π + α VLQ π + α
° − °
FRV ° − FRV °
° + °
− FRV ° = FRV ° FRV ° − FRV ° = ⋅
898.
FRV
FRV
−
=
° − °
FRV ° − FRV °
−
=
= FRV α + VLQ α VLQ α = 29
= FRV α − VLQ α + VLQ α = FRV α [ VLQ α FRV α + VLQ α − π = = ⋅ VLQ α FRV α − VLQ π − α =
VLQ α − VLQ α
= VLQ α
899. Z =
− FRV α VLQ π + α
VLQ
WJ π + α = VLQ
α ⋅ FRV α
FRV
[ =−
π
− α
+ FRV α
=
FWJ π + α = − VLQ α FWJα = FRV
VLQ α FRV α ⋅ FRV α FRV
α ⋅ −FWJα = − VLQ α
VLQ α FRV α ⋅ VLQ α
α ⋅ VLQ α
α
= −
900.
Z Lhqdb : ± b H ijbgZ^e_`Zl ijyfhc y=kx+b. Bf__f kbkl_fm mjZ\g_gbc = N ⋅ + E b = 0 b = 0 y=–4,5x k 2 , 7 b : 0 , 6 = − − − = N ⋅ + E k = −4,5 [ Lhqdb % b & ± ijbgZ^e_`Zl ijyfhc y=kx+b. Bf__f kbkl_fm mjZ\g_gbc = N ⋅ + E E = E = = N ⋅ − + E N = N = MjZ\g_gb_ ijyfhc bf__l \b^ y = 1, 6 x + 4 .
901. Z = =
DE D − E
+
D−E = D−E = DE + D + E D − E D + E D + E
4ab + (a − b) 2 4ab + a 2 − 2ab + b 2 = = 2(a − b)(a + b) 2(a − b)(a + b) (a + b) 2 a+b = ; 2(a − b)(a + b) 2(a − b) a+b 2a b a−b 2) ⋅ + = = 1; 2( a − b ) a + b b − a a − b 30
[ =
[ − \ [ − \ [ − \
=
[ [ − \
−
\
[ − \ [ + \
=
x( x + y ) − y ( x − y ) x2 + y2 = ; ( x − y) 2 ( x + y) (x − y)2 ( x + y)
[ − [\ ⋅ [ + \ = [ + \ [ − \ [ + \ [ [ − \ [ + \ [ + \ = [ = [−\ [ + \ [ − \ [ + \ \ − [ = \ − [ = − [−\ [−\ [−\ 2)
902. Z Ijb α=30° sinα–cos2α–cos3α=sin30°–cos2⋅30°– –cos3⋅30°=
−
− =
[ Ijb α=45° sin2α+tgα–2ctgα=sin2⋅45°+tg45°– –2ctg45°=1+1–2⋅1=0;
\ Ijb α=45° tg(90°–α)+sin(45°+α)+cos(180°–2α)= =tg45°+sin90°+cos90°=1+1+0=2.
903. Z cos 60° + cos 45° =
1 2 1+ 2 + = > 1 − \_jgh 2 2 2
[ sin 60° + cos 60° > 1 =
3 1 + = 2 2
3 +1 > 1 − \_jgh 2
904. Ijb α=30°
sin 2 α sin(15° + α ) − sin α
=
31
sin 60° = = sin 45° − sin 30° =
3 2 −1
=
3 2 2 1 − 2 2
3 ( 2 + 1) ( 2 − 1)( 2 + 1)
· qƾ α
= ° β = °
=
=
6+ 3 = 6 + 3; 2 −1 VLQ α FRV β
FRV α + β + FRV α − β
VLQ ° FRV ° = = FRV ° + ° + FRV ° − °
⋅
FRV ° + FRV °
=
=
+
=
905. Z tg 2 45°cos30°ctg 2 30° = 12 ⋅
3 ⋅ 2
( 3 ) = 3 23 ;
WJ ° + VLQ° − WJ° + FRV °
[
2
2
=
2
3 + 2 ⋅ 3 −1+ 3 = 1 + 3 −1+ 3 = = 3 2 3 4 2 =
4 + 12 3 − 12 + 9 12 3 + 1 1 = = 3+ ; 12 12 12 FWJ ° + FRV° − VLQ ° + FWJ ° 2
\ = 12 +
32
=
1 3 3 3 3 1 3 1 − + ⋅ ⋅ = 1 + − + = 1. 2 2 4 3 3 2 4 4
906.
Ij_h[jZam_f ijZ\mx qZklv
=
=
2 2 3 2 1+ = ctg 2 60°(1 + sin 2 45°) = 3 2 ⋅ = + = = ⋅ Ij_h[jZam_f e_\mx qZklv FRV°WJ° − =
⋅
− =
− =
907. Z
WJ[ ⋅ VLQ [ = VLQ [ sin2x ke_^h\Zl_evgh tgx⋅sinx>0 \ , b ,9 FRV [
q_l\_jlyo cosx cosx = sinx, ke_^h\Zl_evgh > 0 \ , b ,I q_l\_jlyo [ ctgx ctgx sin x cos x sin x \ VLQxcosxtgx= = sin2x0. cos x
908.
Z sin170Û! agZqbl \ujZ`_gb_ bf__l kfuke [ cos160Û agZqbl \ujZ`_gb_ g_ bf__l kfukeZ \ tg230Û! agZqbl \ujZ`_gb_ bf__l kfuke ] ctg340Û agZqbl \ujZ`_gb_ g_ bf__l kfukeZ
909. Z sin α = sin α , l_ sinα>0 agZqbl α ∈ , beb ,, q_l\_jlb [ cos α = − cos α l_ cosα<0 agZqbl α ∈
,,
beb ,,, q_l\_jlb
\ tgα = tgα , l_ tgα>0 agZqbl α ∈ , beb ,,, q_l\_jlb ] ctgα = −ctgα , l_ ctgα<0 agZqbl α ∈
,,
beb ,9 q_l\_jlb
910. a) VLQ α = α =
π
+ πN N ∈ =
[ VLQ α = α = πN N ∈ =
33
\ VLQ α = − α = − ] FRV α = α =
π
π
+ πN N ∈ =
+ πN N ∈ =
^ FRV α = α = πN N ∈ = _ FRV α = − α = π + πN N ∈ =
911. Z − ≤ VLQ α ≤ −2 ≤ 2 sin α ≤ 2 ; −1 ≤ 1 + 2 sin α ≤ 3. [ − ≤ FRV α ≤ −3 ≤ −3 cos α ≤ 3; − ≤ − FRV α ≤ \ − ≤ VLQ α ≤ 0 ≤ sin α ≤ 1. ] − ≤ FRV α ≤ 0 ≤ cos α ≤ 1. ^ − ≤ FRV α ≤ −4 ≤ 4 sin α ≤ 4; − 1 ≤ 3 + 4 sin α ≤ 7. _ − ≤ FRV α ≤
≤ FRV α ≤
≤ FRV α ≤
912. Z
VLQ −° + FRV ° − VLQ −°
= − VLQ ° +
+ FRV ° + VLQ ° = − ⋅ + ⋅ + ⋅ − = −
[ −
FRV −° −
WJ° − VLQ −° = FRV ° −
WJ° + VLQ ° = ⋅ − ⋅ + =
913.
Z Ijb α = −° sin α + cos α = sin( −45° ) + + cos( −45° ) = − sin 45° + cos 45° = −
2
+
2
2 2 [ Ijb α = −° sin α + cos α = sin( −90° ) + + cos( −90° ) = − sin 90° + cos 90° = −1 + 0 = −1.
= 0.
\ ?keb α = −° sin α + cos α = sin( −360° ) + + cos( −360° ) = − sin 360° + cos 360° = 0 + 1 = 1. 34
] Ijb α = −° sin α + cos α = sin( −180° ) + + cos( −180° ) = − sin 180° + cos 180° = 0 − 1 = −1. ^ Ijb α = −° sin α + cos α = sin( −420° ) + + FRV −° = − VLQ ° + FRV ° = − VLQ° + ° + + FRV ° + ° = − VLQ ° + FRV ° = −
+
=
−
_ Ijb α = −° sin α + cos α = sin( −1710° ) + + FRV −° = − VLQ ° + FRV° = − VLQ° − − ° + FRV° + ° = VLQ ° + FRV ° = + =
914. 5 5 ∈ II q_l\_jlb agZqbl α = sin > 0; 6 6 2 2 ∈ II q_l\_jlb agZqbl α = cos < 0; 3 3 5π 2π ke_^h\Zl_evgh sin cos < 0. 6 3 5 5 ∈ III q_l\_jlb agZqbl tg > 0; [ . = 4 4 . = ∈ I q_l\_jlb agZqbl ctg > 0; 5 5 5π π ctg > 0. ke_^h\Zl_evgh tg 4 5 5 5 ∈ II q_l\_jlb agZqbl cos > 0; \ . = 7 7 3 3 .= ∈ II q_l\_jlb agZqbl cos < 0; 4 4 5π 3π + cos < 0. ke_^h\Zl_evgh cos 7 4 ] . = ∈ I q_l\_jlb agZqbl tg > 0; 8 8 . = ∈ I q_l\_jlb agZqbl ctg > 0; 5 5
Z
35
π
ke_^h\Zl_evgh tg
8
+ ctg
π
> 0.
5
915.
Imklv o ± jZ\gu_ m]eu ijb hkgh\Zgbb jZ\gh[_^j_ggh]h lj_m]hevgbdZ Lh]^Z ba l_hj_fu h kmff_ m]eh\ lj_m]hevgbdZ ke_^m_l π π π x + x + = π ; 2x = π − ; [ = 9 9
Hl\_l:
°
¾
°
916.
Imklv o o o ± m]eu lj_m]hevgbdZ Lh]^Z ba l_hj_fu h kmff_ m]eh\ lj_m]hevgbdZ ke_^m_l [ + [ + [ = π[ = π [ = π [ = π [ = π
Hl\_l:
π
π
π
917. VLQ
Z
π
+ FRV −π + WJ
VLQ
π
− FRV
π
π
=
+ − + ⋅
−
= =
[ 1 3 π π π 3 sin + 2tg (− ) + cos(− ) 3 ⋅ − 2 ⋅ 1 + 0 −2 1 ⋅1 1 2 6 4 2 = = 2 = = π −6 5 ⋅ 0 − 6 ⋅1 2 ⋅ 6 12. 5tg 0 + 6 sin( − ) 2
π π 5 3 1 5 sin( − ) + 2 cos(− ) − + 2⋅ 3 3 = 2 2 = 5 3 −2. \ 3π π 0 + (−1) 2 cos(− ) + sin 2 2 2 2 π π + −1 sin( − ) + cos(− ) − 1 − −1 2 2 4 4 ] = = 1. = 3π 3π −1+ 0 −1 sin + cos(− ) 2 2 36
918. a ) sin( =
π 3
3 1 + = 2 2 π
· FRV
+
π 6
2π + π
) = sin
= sin
6
π 2
= 1; sin
π 3
+ sin
π 6
=
3 +1 ≠ 1 agZqbl jZ\_gkl\h g_\_jgh 2 π + + FRV = + = > agZqbl g_jZ\_gkl\h g_
\_jgh
919. VLQ
=
α + FRV α =
D
+
E
D + E D + E
=
D
D
+E
D + E D + E
920. WJ¡ ⋅ FWJ¡
= D +
fh]ml
D
⋅
+
D
E
+E
=
= ke_^h\Zl_evgh fh]ml
D D +
=
D + ⋅ D = ke_^h\Zl_evgh D D +
921. Z
FRV
α − FWJ α
WJ α − VLQ α
FRV
=
VLQ
α−
α
α
FRV
α
α =
FRV VLQ
− VLQ α
cos 2 α sin 2 α − cos 2 α cos 2 α (sin 2 α − 1) ⋅ cos 2 α sin 2 α = = = sin 2 α − sin 2 α cos 2 α sin 2 α ⋅ sin 2 α (1 − cos 2 α ) cos 2 α =
cos 4 α (− cos 2 α ) cos 6 α = − = −ctg 6α sin 4 α ⋅ sin 2 α sin 6 α
[
= − VLQ
− WJ α − VLQ α = + WJ α − WJ α − VLQ α =
α α = FRV α
FRV
37
1 1 sin γ + tgγ + 2 2 1 + tgγ + tg γ cos γ cos γ cos γ = = = \ 1 1 cos γ 1 + ctgγ + ctg 2γ + + γ ctg sin 2 γ sin 2 γ sin γ + VLQ γ FRV γ 2
=
FRV + VLQ
γ
γ FRV γ
VLQ
=
+ VLQ FRV
γ FRV γ ⋅ VLQ γ
γ ⋅ + VLQ γ FRV γ
=
VLQ
γ
γ
FRV
= WJ γ
γ
1 −1 ctg 2γ − 1 tgγ tg 2γ ⋅ = ⋅ = ] 1 ctgγ 1 − tg 2γ 1 − tg 2γ tgγ tgγ
=
(
)
1 − tg 2γ ⋅ tgγ tgγ ⋅ =1. 1 − tg 2γ tg 2γ
922. Z
VLQ
α + FRV α + VLQ α FRV α = VLQ α + FRV α = = .
cos 2 α cos 2 α + sin α + sin 2 α 1 + sin α + sin α = = =1 1 + sin α 1 + sin α 1 + sin α \ FRV α − VLQ α + VLQ α = FRV α − VLQ α FRV α +
[
(
)
+ sin 2 α ) + 2 sin 2 α = cos 2 α − sin 2 α ⋅ 1 + 2 sin 2 α = cos 2 α + + sin α = 1. 2
]
=
−
−
WJ
WJ α
+
α
+
−
FWJ
α
=
−
WJ
α
+ −
WJ α = − WJ α = WJ α − − WJ α
923. Z 38
WJα + FWJα + FRV α − FRV α =
WJ α
=
= (tgα + ctgα )(1 − cos 2 α ) = sin 2 α ( =
sin 2 α (sin 2 α + cos 2 α ) sin α = = tgα . sin α cos α cos α
[ =
=
sin α cos α + )= cos α sin α
VLQ α + FRV α
− = FWJα − VLQ α FRV α
VLQ
α + FRV α + VLQ α FRV α − = FWJα − VLQ α FRV α
2 sin α cos α 2 sin α cos α = = 2 cos α − sin α cos α cos α − sin α cos α sin α sin α 2 sin 2 α cos α 2 sin 2 α = = 2tg 2α . 2 2 cos α (1 − sin α ) cos α
\
VLQ
α + VLQ α FRV α + FRV α = VLQ αVLQ α +
+ FRV α + FRV α = VLQ α + FRV α =
]
VLQ
α + VLQ α FRV α + FRV α = VLQ α + FRV α ×
× VLQ α + FRV α = VLQ α + FRV α =
924. VLQ
Z
α
− VLQ α
WJ α − VLQ α = FRV α = FWJ α − FRV α FRV α − FRV α
VLQ
α
sin α − sin α cos α sin 2 α (1 − cos 2 α ) ⋅ sin 2 α sin 6 α cos 2 α = = = = tg 6α ; 2 2 2 2 2 2 6 cos α − cos α sin α cos α ⋅ cos α (1 − sin α ) cos α sin 2 α 2
[
2
2
tgβ tgβ tgβ ⋅ tgβ 1 = = 2 = = tgβ + ctgβ tgβ + 1 tg β + 1 1 + 1 tgβ tg 2 β
39
=
1 = sin 2 β ; 1 sin 2 β VLQ β
VLQ β
WJβ = FRV β \ − WJ β VLQ β − FRV
=
VLQ β ⋅ FRV FRV βFRV
β
β − VLQ β
ctgβ = 2) ctg 2 β − 1 =
VLQ FRV
=
=
= FRV
β
β − VLQ β
FRV
VLQ β FRV β FRV
β − VLQ β
=
β
1 sin β tgβ tgβ cos β = = = 1 1 − tg 2 β sin 2 β − 1 − 1 tg 2 β cos 2 β
sin β cos β . cos 2 β − sin 2 β
] =
FRV β
VLQ FRV
VLQ
α − FRV α + FRV α
α − VLQ α + VLQ α
FRV
α − FRV α VLQ α
α − VLQ α FRV α
α ⋅ VLQ α
α ⋅ FRV α
=
VLQ
= α
α
VLQ
α − FRV α − FRV α
α − VLQ α − VLQ α
FRV
α − FRV α
α − VLQ α
FRV
FRV
VLQ
=
=
= WJ α
925. Z
FRV
γ − VLQ γ = FRV γ − VLQ γ FRV γ + VLQ γ =
= FRV γ − VLQ γ = − VLQ γ − VLQ γ = − VLQ γ
[ =
− VLQ
α = VLQ α FRV α
VLQ
α + FRV α − VLQ α = FRV α VLQ α
cos 2 α − sin 2 α cos 2 α sin 2 α = − = ctgα − tgα ; cos α sin α cos α sin α cos α sin α
40
=
tgα sin α tgα ⋅ ctgα − sin 2 α 1 − sin 2 α − = = = cos α sin α ctgα sin α ⋅ ctgα sin α ⋅ sin α
\
=
cos 2 α = cos α ; cos α VLQ
+
WJ γ + = FRV γ = WJ γ − VLQ γ −
]
FRV
=
γ
VLQ
γ + FRV γ FRV
VLQ
γ
γ
γ − FRV γ FRV
=
γ
cos γ 1 = 2 2 2 cos γ (sin γ − cos γ ) sin γ − cos 2 γ 2
2
926.
= D
D VLQ α + E D VLQ α − E + D FRV α + E D FRV α − E = VLQ
α − E + D
− E = D − E
²
FRV
α − E = D VLQ α + FRV α −
agZq_gb_ \ujZ`_gby g_ aZ\bkbl hl a.
927. 1 − sin α + Z Mijhklbf 1 + sin α
2
1 + sin α = 1 − sin α
+ ( − VLQ α )( + VLQ α ) + + VLQ α ( + VLQ α )( − VLQ α ) − VLQ α + VLQ α = + + = + VLQ α − VLQ α
=
= = =
− VLQ α
( − VLQ α ) + ( + VLQ α )( − VLQ α )+ ( + VLQ α ) ( + VLQ α )( − VLQ α )
− VLQ α + VLQ
(
− VLQ FRV
α
)
=
α + − VLQ α + + VLQ α + VLQ α
α
= − VLQ α
+ VLQ α
=
41
ke_^h\Zl_evgh
− VLQ α + VLQ α
+
+ VLQ α − VLQ α
=
FRV
=
α
FRV α
[ Mijhklbf
− VLQ α + VLQ α
−
⋅ − VLQ α + VLQ α
− FRV α + FRV α
−
= − FRV α
+ FRV α
− VLQ α + VLQ α − FRV α + FRV α ⋅ = = − − + VLQ α − VLQ α + FRV α − FRV α + VLQ α − VLQ α − VLQ α + VLQ α × = − + − VLQ α + VLQ α + VLQ α − VLQ α ×
− + FRV α − FRV α
+ + FRV α − FRV α − FRV α + FRV α
− FRV α
+ FRV α
=
1 − sin α ⋅ 1 1 + sin α 1 − cos α 1 + cos α = −2+ ⋅ − 2⋅ 2 + = 1 + sin α 1 − sin α 1 + cos α 1 − cos α =
− VLQ α
− ( + VLQ α )( − VLQ α ) + ( + VLQ α ) × + VLQ α − VLQ α
×
2 (1 − cos α ) 2 − 2(1 + cos α )(1 − cos α ) + (1 + cos α ) = (1 + cos α )(1 − cos α )
=
1 − 2 sin α + sin 2 α − 2(1 − sin 2 α ) + 1 + 2 sin α + sin 2 α × 1 − sin 2 α
×
1 − 2 cos α + cos 2 α − 2(1 − cos 2 α ) + 1 + 2 cos α + cos 2 α = 1 − cos 2 α
4 sin 2 α 4 cos 2 α ⋅ = 16; cos 2 α sin 2 α ke_^h\Zl_evgh − VLQ α + VLQ α ⋅ − + VLQ α − VLQ α − VLQ α + VLQ α ⋅ beb − + VLQ α − VLQ α =
42
= + FRV α − FRV α − FRV α + FRV α = − + FRV α − FRV α − FRV α
−
+ FRV α
=
= −
928. Z sin 4 α − sin 2 α + cos 2 α = (1 − cos 2 α ) 2 − (1 − cos 2 α ) + + FRV α = − FRV α + FRV α − + FRV α + FRV α = FRV α [ cos 4 α − cos 2 α + sin 2 α = (1 − sin 2 α ) 2 − (1 − sin 2 α ) + + VLQ α = − VLQ α + VLQ α − + VLQ α + VLQ α = VLQ α
929.
JZa^_ebf agZf_gZl_ev b qbkebl_ev ^jh[b gZ FRV.: sin α cos α + sin α + cos α tgα + 1 = cos α cos α = . sin α cos α sin α − cos α tgα − 1 − cos α cos α WJα + = + = ?keb tgα = 3, lh WJα − −
930. cos. sin. + ctg. + tg. sin. cos. cos 2 . + sin 2 . : = = ctg. − tg. cos. − sin. sin α cos α sin. cos. FRV α − VLQ α FRV α + VLQ α = = = VLQ α FRV α FRV α − VLQ α − VLQ α − VLQ α =
− VLQ
α
?keb sin α =
1 3
, lh
− VLQ
α
=
− ⋅
=
=
931. Z
VLQ α + FRV α
= VLQ α + VLQ α FRV α + FRV α =
= 1 + 2 sin α cos α = a 2 ; agZqbl 2 sin α cos α = α 2 − 1; sin α cos α =
[
VLQ
a2 − 1 . 2
α + FRV α = VLQ α + FRV α VLQ α − VLQ α FRV α + 43
+ FRV α = D − VLQ α FRV α
gh VLQ.FRV.
α −
(kfZ
D − = D ⋅ − D + = agZqbl sin3.FRV3. α ⋅ −
D − D
932. Z WJα + FWJα = WJ α + WJαFWJα + FWJ α = = WJ α + + FWJ α = P WJ α + FWJ α = P −
[ WJ α + FWJ α = WJα + FWJα WJ α − WJαFWJα + FWJ α = = PWJ α + FWJ α − gh tg2.FWJ2. P2–2 (kf Z Ke_^h\Zl_evgh tg3.FWJ3. P P − − = P P −
933. Ij_h[jZam_f 2
(sin x + cos x) 2 sin x + cos x = = (sin x − cos x ) 2 sin x − cos x =
sin 2 x + 2 sin x cos x + cos 2 x 1 + 2 sin x cos x . = sin 2 x − 2 sin x cos x + cos 2 x 1 − 2 sin x cos x
LZd dZd VLQxcosx
lh
1 + 2 sin x cos x
=
1 + 2 ⋅ 0, 4
1 − 2 sin x cos x 1 − 2 ⋅ 0 , 4 VLQ [ + FRV [ = = Ke_^h\Zl_evgh = = beb VLQ [ − FRV [ sin x + cos x = − 9 = −3. sin x − cos x
934.
sin α sin α + sin α + tgα cos α = sin α cos α + sin α : = cos α + ctgα cos α + cos α cos α sin α
44
=
:
cos α sin α + cos α (sin α cos α + sin α ) sin α = = sin α (cos α sin α + cos α ) cos α
=
sin 2 α (cos α + 1) cos α + 1 . = tg 2α 2 sin α + 1 cos α (sin α + 1)
Gh
FRV α
≥ −¾ VLQ α ≥ − ke_^h\Zl_evgh
WJ α FRV α + ≥ VLQ α +
935. Z Ijb α =
π
cos α + cos 2α + cos 3α =
7π 7π 7π + cos + cos = 6 3 2 π π π π = cos(π + ) + cos(2π + ) + cos(4π + ) = − cos + 6 3 2 6 = cos
3 1 1− 3 π π + cos = − + +0= . 3 2 2 2 2 [ Ijb α = −° cos α + cos 2 α + cos 3 α = = cos 120° + cos 240° + cos 360° = cos(90° + 30°) + cos(180° + 1 1 + 60°) + cos 360° = − sin 30° − cos 60° + cos 360° = − − + 1 = 0. 2 2
+ cos
936. Z cos( 60° − α ) = cos( 90° − 30° − α ) = cos( 90° − ( 30° + α )) = = sin( 30° + α ) ; [ ctg ( 80° − = tg (10° +
\
α 2
α 2
) = ctg ( 90° − 10° −
α 2
) = ctg ( 90° − (10° +
α 2
)) =
);
VLQ° − α
= VLQ° − ° − α =
= VLQ ° − ° + α =
FRV ° + α .
937. 45
Imklv α − hkljuc m]he iZjZee_eh]jZffZ β − lmihc m]he iZjZee_eh]jZffZ KmffZ h^ghklhjhggbo m]eh\ jZ\gZ 0; α + β = ° β = ° − α Ke_^h\Zl_evgh WJ β = tg (180° − α ) = − tgα = −0 , 7 .
Hl\_l: –0,7. 938.
Imklv α − \g_rgbc m]he lj_m]hevgbdZ Z β b γ − hklju_ m]eu lj_m]hevgbdZ Ba\_klgh qlh kmffZ kf_`guo m]eh\ jZ\gZ °, ⇒ β=180°–α ke_^h\Zl_evgh WJβ=tg(180°–α)=–tgα=–k. KmffZ hkljuo m]eh\ lj_m]hevgbdZ jZ\gZ ° ihwlhfm 1 γ=90°–β ke_^h\Zl_evgh WJγ=tg(90°–β)=ctgβ=– . k
Hl\_l: –k; –
1 k
.
939. H[hagZqbf kf_`gu_ m]eu α b β b FRVα=– cosα<0, ke_^h\Zl_evgh
π
−
Hl\_l:
4 5
.
940.
α+β=π–γ.
Z VLQα+β)=sin(π–γ)=sinγ. [ FRVα+β)=cos(π–γ)=cosγ . 46
5
;
< α < π Lh]^Z VLQ.! VLQ2α+cos2α=1;
= LZd dZd kmffZ kf_`guo m]eh\ jZ\gZ °, 4 ihwlhfm VLQβ=sin(180°–α)=sinα= . 5
sinα=
3
\ sin2(α+β)=sin2(π–γ)=sin(2π–2γ)=–sin2γ. ] FRVα+β)=cos2(π–γ)=cos(2π–2γ)=cos2γ.
941. a) tg75°=tg(90°–15°)=ctg15°, tg15°⋅ctg15°⋅tg30°tg45°tg60°= 3 =1⋅ ⋅1⋅ 3 =1. 3
[ FWJ°=ctg(90°–72°)=tg72° ctg36°=ctg(90°–54°)=tg54°, (tg72°⋅ctg72°)⋅(tg54°⋅ctg54°)=1⋅1=1.
942. Z WJ°–α)=ctgα=
1 tgα
?keb WJα=
3 5
lh]^Z
1 tgα
=
5
2 =1 . 3 3
[ VLQ2 α+cos2 α=1; sin2 α=1–cos2 α=1–0,82=1–0,64=0,36; sinα= ± 0,36 =±0,6 (α∈ q_l\_jlb agZqbl sinα! ihwlhfm sinα=0,6; sin(180°+α)=–sinα=–0,6. 1 1 1 − sin 2 α \ FWJ2 α= ; ctg2 α= –1= = 2 2 sin α sin α sin 2 α −
=
=
−
= ;
ctgα=± 3
gh α∈ II q_l\_jlb agZqbl ctgα ihwlhfm
ctgα= − 3 . ctg(360°–α)=– ctgα= 3 .
] VLQ2 α+cos2 α=1; cos2 α=1–sin2 α=1–(– cosα=± cos α = −
9 25
=±
3 5
4 5
)2=
(α∈,,, q_l\_jlb agZqbl
25 − 16 25
=
FRVα<0
9 25
;
ihwlhfm
3 . 5 47
sin(270°+α)=–cosα=
3 5
.
943. Z VLQα=
1 2
b °<α<180°, α=180°–30°=150°;
[ FRVα=–
3
b °<α<270°, α=180°+30°=210°; 2 \ WJα ± b °<α<180°, α=90°+45°=135°;
] FWJα=– 3 b °<α<360°, α=360°–30°=330°.
944. tg1°·tg2°·…·tg88°·tg89°=(tg1°·tg89°)(tg2°·tg88°)·…· ·(tg44°·tg46°)tg45°=(tg1°·tg(90°–89°))(tg2°·tg(90°–2°))·…· ·(tg44°·tg(90°–44°))·tg45°=(tg1°·ctg1°)(tg2°·ctg2°)·…· ·(tg44°·ctg44°)·tg45°=1.
945. Z VLQπ+α)+cos(
π
3π
– α))2= 2 2 =(–sinα–sinα)2+(cosα+cosα)2=(–2 sinα)2+(2 cosα)2= =4 sin2 α+4 cos2 α=4(sin2 α+cos2 α)=4. π π 3π [ WJ –α)–ctg( +α))2–(ctg(π+α)+ctg( +α))2= 2 2 2 =(ctgα+tgα)2–(ctgα–tgα)2= =ctg2α+2 ctgα tgα+tg2 α–ctg2 α+2 ctgα tgα–tg2 α= =2⋅1+2⋅1=4. +α))2+(cos(2π–α)–sin(
946. tg (
3π 2
− α ) cos(
2 cos( 2 π − α )
+cos(π+α) sin(α– =–
cos α ⋅ sin α sin α ⋅ cos α 48
3π
π 2
)=
− α)
+ cos( α −
− ctgα ⋅ sin α cos α
π 2
) sin(π–α)+
+sLQ.sinα+cosα cosα=
+sin2α+cos2α=– 1+1=0.
947.
Z VLQ° cos110°+sin250° cos340°+tg110°⋅tg340°= =sin(180°–20°) cos(90°+20°)+sin(270°–20°) ·cos(360°–20°)+tg(90°+20°) tg(360°–20°)= =sin20°(–sin20°)+(–cos20°) cos20°+ctg20° tg20°= =– sin220°–cos220°+1=–1+1=0. [ WJ° tg288°+sin32° sin148°–sin302° sin122°= =tg18° tg(270°+18°)+sin32° sin(180°–32°)–sin(270°+ +32° sin(90°+32°)=– tg18° ctg18°+sin32° sin32°+cos32° ·cos32°=–1+sin232°+cos232°=–1+1=0.
948.
Ihevam_fky nhjfmeZfb ijb\_^_gby Z
cos 2 ( π − α ) + sin 2 (
π 2
− α ) + cos( π + α ) cos( 2 π − α )
tg 2 ( α −
=
π
) ctg 2 (
2 cos 2 α + cos 2 α − cos α cos α ctg 2 αtg 2 α
=
3π
=
+ α)
2 2 cos 2 α − cos 2 α 1
3π ) cos(2π − α ) cos 3 α ⋅ cosα 2 [ = = π 3π ctg 3α sin 3 α tg 3 (α − ) cos 3 (α − ) 2 2 =cosα. sin 3 (α −
= cos 2 α .
α VLQ α = FRV α ⋅ VLQ α FRV
949. Z FRV
π 3
+α) cosα+sin(
π 3
+α) sinα=cos(
π 3
+α–α)=cos
π 3
=
1 2
;
[ VLQα sin(α+β)+cosα cos(α+β)=cos(α+β–α)=cosβ; \ FRV°+α) cos(54°+α)–sin(36°+α) sin(54°+α)= =cos(36°+α+54°+α)=cos(90°+2α)=– sin2α; ] VLQβ cos(α+β)–cosβ sin(α+β)=sin(β–α–β)=sin(−α)=–sinα.
950.
49
sin2 α+cos2 α=1, cosα=1 –sinα agZqbl 16
cosα=±
25
=±
4 5
gh α∈I
FRV
2
q_l\_jlb l_
α=– 1 (
3 5
cosα>0
)2=
16 25
ihwlhfm
4 . 5
cos α =
a) cos2(45°–α)=(cos45° cosα+sin45° sinα)2= 2 2 2 4 2 3 2 2 ⋅7 2 =( cosα+ sinα)2=( ⋅ + ⋅ ) =( ) =0,98. 2 2 2 5 2 5 2⋅5
[ FRV2(60°+α)=(cos60° cosα–sin60° sinα)2=( –
3 2
sinα)2=(
1 2
cosα–
1 4 3 3 2 4−3 3 2 ⋅ – ⋅ ) =( ) =0,43–0,24 3 . 2 5 2 5 10
\ VLQ°+α)=sin30° cosα+cos30° sinα= sin(30°–α)=sin30° cosα–cos30° sinα=
2
2
3
cosα+
cosα–
3 2
2
sinα;
;
1 4 3 3 1 4 ⋅ + ⋅ )⋅( ⋅ – 2 2 5 2 5 2 5 3 3 3 4 3 3 4 3 3 3 4 2 3 3 2 – ⋅ )= +( + )⋅( – )= +( ) –( )= 2 5 4 10 10 10 10 4 10 10 75 + 16 − 27 = =0,64. 100 sin260°+sin(30°+α)⋅sin(30°–α)=(
3
1
1
)2+(
951.
Z FRV2 α+cos2(60°+α)+cos2(60°–α)=cos2 α+(cos60° cosα– 1 –sin60° sinα)2+(cos60° cosα+sin60° sinα)2=cos2 α+( cosα– 2 – –
3 2
sinα)2+(
2 3 4 50
1 2
cosα+
cosα sinα+
3 4
3 2
sinα)2=cos2 α+
sin2 α+
1 4
cos2 α+
1 4
2 3 4
cosα– cosα sinα+
3 4
.
sin2 α=
=
3 2
cos2 α+
[
3 2
sin2 α=
3 2
(cos2 α+sin2 α)=
3 ; 2
sin( α + β ) sin( α − β )
= sin α + sin β (sin α cos β + cos α sin β )(sin α cos β − cos α sin β ) = = sin α + sin β = =
VLQ
α FRV β − FRV α VLQ β sin 2 α (1 − sin 2 β ) − cos 2 α sin 2 β = = sin α + sin β VLQ α + VLQ β
sin 2 α − sin 2 α sin 2 β − cos 2 α sin 2 β = sin α + sin β
sin 2 α − sin 2 β (sin 2 α + cos 2 β ) = sin α + sin β (sin α − sin β )(sin α + sin β ) = =sinα–sinβ; sin α + sin β
=
\ VLQ2(120°+α)=sin2(90°+30°+α)=cos2(30°+α)=(cos30° cosα– –sin30° ⋅sinα)2=( +
1 4
3 2
cosα–
1 2
sinα)2=
2 3 4
cosα sinα+
sin2α+ +
4
cos2 α–
2 3 4
cosα ⋅sinα+
sin2 α; sin2(120°–α) sin2(90°+30°–α)=cos2(30°−α)=
=(cos30° cosα+sin30° sinα)2=( +
3
2 3
3 4
1 4
cos2 α–
cosα sinα+
1
2
cosα+
1 2
sinα)2=
3 4
cos2α+
sin2 α; 2 3 4
cosα sinα+
sin2 α=
4 4 3 3 = (sin 2 α + cos 2 α ) = . 2 2
]
3
cos( α + β ) cos( α − β ) cos α − sin β
3 2
sin2 α+
1 4 3 2
sin2 α+
3 4
cos2 α+
cos2 α=
= 51
= =
(cos α cos β − sin α sin β )(cos α cos β + sin α sin β cos α − sin β cos 2 α cos 2 β − sin 2 α sin 2 β cos α − sin β
=
=
cos 2 α (1 − sin 2 β ) − sin 2 α sin 2 β = cos α − sin β
cos α − cos 2 α sin 2 β − sin 2 α sin 2 β = cos α − sin β 2
=
cos 2 α − sin 2 β (cos 2 α + sin 2 α ) cos 2 α − sin 2 β = = cos α − sin β cos α − sin β (cos α − sin β )(cos α + sin β ) =cosα+sinβ. = cos α − sin β
=
952. 1) sin2 α+cos2 α=1; sin2 α=1–cos2 α; 3 25 − 9 16 4 16 sin2 α=1–( )2= ; sinα=± =± = 5 25 25 5 25 (α∈, q_l\_jlb agZqbl VLQα>0 ihwlhfm sin α = 2) sin2 β+cos2 β=1; sin2 β=1–cos2 β; 7 2 625 − 49 576 sin2 β=1–( )= ; sinβ=± = 25 625 625
576 625
=±
(β∈, q_l\_jlb agZqbl VLQβ! ihwlhfm sin β = 4⋅5
4
953. 52
5⋅3
=
; tgβ=
24 ⋅ 25
25
; 3 25 ⋅ 7 7 tg α + tgβ 4) tg(α+β)= ; 1 − tgαtgβ 4 24 + 7 =– 100 ⋅ 21 =– 4 =–1 1 . tg(α+β)= 3 4 ⋅ 24 21 ⋅ 75 3 3 1− 3⋅7 3) tgα=
=
4 ; 5 24 25
24 ; 25
1) sin2 α+cos2 α=1; cos2 α=1–sin2 α; 8 2 289 − 64 225 cos2 α=1–( )= ; = 17 289 289 15 225 (α∈,,, q_l\_jlb ke_^h\Zl_evgh cosα=± =± 17 289 15 ihwlhfm cos α = − ; 17 2) tgα=–
tg(
π 4
8 17
:(–
tg –α)=
15 17
π
)=
8 ⋅ 17 17 ⋅ 15
1−
− tgα
4
1 + tg
π 4
=
= tgα
8 15 8
FRVα<0),
;
15 = 7 ⋅ 15 = 7 . 8 15 ⋅ 23 23 1+ 1⋅ 15
954. tg 2 α − tg 2 β
(tgα + tgβ )(tgα − tgβ ) = = 1 − tg 2 αtg 2 β (1 + tgαtgβ )(1 − tgαtgβ ) tgα + tgβ tgα − tgβ = ⋅ =tg(α+β)⋅tg(α–β); 1 − tgαtgβ 1 + tgαtgβ a)
[ WJα tg(
π 4
– α)=tgα⋅
tg
π 4
− tgα
1 + tg
π 4
=tgα⋅ tgα
1 − tgα 1 + tgα
=
1 1 − tgα 1 − tgα ⋅ = . ctgα 1 + tgα ctgα + 1 Ih nhjfme_ lZg]_gkZ kmffu π tg + tgα 1 + tgα π 4 = \ WJ +α)= ; π 4 1 − tgα 1 − tg tgα 4 =
]
tgα + tgβ tg ( α + β )
+
tgα − tgβ tg ( α − β )
=
( tgα + tgβ )(1 − tgαtgβ ) tgα + tgβ
+
53
+
( tgα − tgβ )(1 + tgαtgβ ) tgα − tgβ
=
=
(tg 2α − tg 2 β )(1 − tgαtgβ ) + (tg 2α − tg 2 β )(1 + tgαtgβ ) = (tg 2α − tg 2 β )
=
(tg 2α − tg 2 β ) ⋅ 2 = 2. tg 2α − tg 2 β
955. a) tg(45°+α)=
tg 45° + tgα
1 + tgα
=α; 1 − tg 45° tgα 1 − tgα 1+tgα=α(1–tgα); 1+tgα=α–α tgα; a tgα+tgα=a–1; tgα(α+1)=α−1 α −1 tgα= . α +1
[ ctg(45°+α)= ctg(45°+α)=
=
1
; α ctg 45° ctgα − 1
=
ctgα − 1
ctgα + 1 tgα + tg 45° ctgα+1=α(ctgα–1); ctgα+1=α ctgα–α;
=
1 α
;
α ctgα–ctgα=1+α; ctgα(α−1)=α+1 ⇒ ctgα=
α +1 α −1
.
956. a)
1 + tg ( 45° − α ) 1 − tg ( 45° − α )
1+ = 1−
tg 45° − tgα 1 + tg 45° tgα = tg 45° − tgα
1 + tg 45° − tgα 2 1 2(1 + tgα ) = = =ctgα; = (1 + tgα )(2tgα ) 2 tgα tgα
[
54
ctg 45° ctgα + 1
1+ 1−
1 − tgα 1 + tgα = 1 − tgα 1 + tgα
FWJα + + ctg 45 ctg ° − α = FWJα − = = tg ( 45° + α ) − 1 tg 45° + tgα + WJα − −1 − WJα 1 − tg 45° tgα
1 + ctg ( 45° − α )
1+
=
FWJα − + FWJα + − WJα FWJα − + WJα − + WJα
=
2ctgα (1 − tgα ) = (ctgα − 1)tgα ⋅ 2
ctgα (1 − tgα ) − WJα = FWJα = FWJα ; (ctgα − 1)tgα − WJα Ih nhjfmeZf kbgmkh\ dhkbgmkh\ lZg]_gkh\ kmffu b jZaghklb π π π π \ WJ +α) tg( –α)+sin( +α)+sin( –α)= 4 4 6 6 π π ( tg + tgα )( tg − tgα ) π π 4 4 +sin cosα+cos sinα+ = 6 6 π π (1 − tg tgα )(1 + tg tgα ) 4 4 π π (1 + tgα )(1 − tgα ) 1 +sin cosα–cos sinα= + cosα+ 6 6 (1 − tgα )(1 + tgα ) 2 1 1 1 + cosα=1+ cosα+ cosα=1+cosα. 2 2 2 π π π π ] FWJ +α) ctg( +α)+cos( –α)+cos( +α)= 4 4 3 3 π π FWJ FWJα + FWJ FWJα − π π +cos cosα+sin sinα+ = 3 3 π π FWJα − FWJ FWJ + FWJα =
+cos +
1 2
π 3
cosα–sin
cosα=1+
1 2
π α
sinα=
cosα+
1 2
FWJα + FWJα − + 1 2 FWJα − + FWJα
cosα+
cosα=1+cosα.
957. JZa^_ebf qbkebl_ev b agZf_gZl_ev gZ cosα⋅cosβ sin( α + β )
= sin α cos β + cosα sin β = sin( α − β ) sin α cos β − cos α sin β sin α cos β cos α sin β + tgα + tgβ = cos α cos β cos α cos β = . tgα − tgβ sin α cos β cos α sin β − cos α cos β cos α cos β a)
JZa^_ebf qbkebl_ev b agZf_gZl_ev gZ sinα⋅cosβ 55
[
cos( α + β )
=
cos α cos β − sin α sin β
cos( α − β ) cos α cos β + sin α sin β cos α cos β sin α sin β − sin α cos β sin α cos β ctgα − ctgβ . = = sin α cos β sin α sin β ctgα + ctgβ + sin α cos β sin α cos β
=
958. JZa^_ebf qbkebl_ev b agZf_gZl_ev gZ sinα⋅sinβ cos( α + β ) cos α cos β − sin α sin β = = 1) ctg(α+β)= sin( α + β ) sin α cos β + cos α sin β cos α cos β sin α sin β cos α cos β − ⋅ −1 ctgα ⋅ ctgβ − 1 sin α sin β sin α sin β sin α sin β ; = = = cos α cos β cos α sin β cos β cos α ctgβ + ctgα + + sin α sin β sin α sin β sin β sin α 2) ctg(α−β)=
cos( α − β )
=
cos α cos β + sin α sin β
= sin( α − β ) sin α cos β − cos α sin β cos α cos β sin α sin β cos α cos β + ⋅ +1 ctgα ⋅ ctgβ + 1 sin α sin β sin α sin β sin α sin β . = = = cos α cos β cos α sin β cos β cos α ctgβ − ctgα − − sin α sin β sin α sin β sin β sin α
959.
1) sin2 α+cos2 α=1; cos2 α=1–sin2 α; cos2 α=1 – – (0,1 2 )2=0,98; cosα=± 0 , 98 =±0,7 2
LZd dZd α±hkljuc lh FRVα>0 ihwlhfm FRVα=0,7 2 2) sin2 β+cos2 β=1; cos2 β=1–sin2 β; cos2 β= =1–(0,6)2=0,64; cosβ=± 0 , 64 =±0,8
LZd dZd β±hkljuc lh FRVβ>0 ihwlhfm FRVα=0,8 3) sin(α+β)=sinα cosβ–cosα sinβ= =0,1 2 ⋅0,8+0,7⋅0,6=(0,8+0,42) 2 = 56
2 2
.
Ke_^h\Zl_evgh α+β=45°.
960. + WJ = tg(α+β)= − WJ.WJ
WJ.
−
+
⋅
=
⋅ ⋅
=.
Ke_^h\Zl_evgh α+β=45° (α b β ² hklju_
961. 4 25 25 +7 + WJ = 3 = 3 =–1. = 3 tg( α+β)= 4 28 25 − WJ.WJ − 1− ⋅7 1− 3 3 3 3π π π α∈(0; ), β∈(0; ); α+β∈ Ke_^h\Zl_evgh α+β= . 2 WJ.
962. Z sinα=2sin
α
cos
α
α 1 2 cos 2 α = 2tg α = =2 α 1 2 2 cos α 2 cos 2 2 sin
α 2 = 2(−3) = −0,6 . = 2α 1 + (−3) 2 1 + tg 2 2tg
[ cosα= FRV
cosα=
¡
− −
+ −
− VLQ
¡
= FRV
¡
− WJ
¡
=
− WJ + WJ
¡
¡
;
= −
57
WJ
\ tgα=
] ctgα
− WJ
WJα
¡
=
¡
⋅ −
; tgα=
− −
=
= ;
−
α
WJ
WJ α
; ctgα=
− −
⋅ −
=
= .
963.
cos4α=1–2sin22α=1–8sin2αcos2α=1–8sin2α(1–sin2α); sin2α=
−
cos4α=1–8 −
= −
−
=
−
=
−
−
;
= −
−
= −
.
964.
a) sin3α=sin(2α+α)=sin2α cosα+cos2α sinα=sinα(cos2α– –sin2α)+cosα(2sinα cosα)=sinα cos2 α–sin3α+2sinα⋅cos2α= =3sinα cos2α–sin3α=3sinα(1–sin2α)–sin3α=3sinα–4sin3α;
[ FRVα=cos(2α+α)=cos2α cosα–sin2α sinα=cosα(cos2α– –sin2α)–sinα(2sinα cosα)=cos3α–cosα sin2α–2sin2α⋅cosα= =cos3α–3sin2α cosα=cos3α–3(1–cos2α)⋅cosα=cos3α–3cosα+ +3cos3α=4cos3α–3cosα; cos 3α sin 3 α cos α − cos 3 α sin α = = cos α sin α sin α cos α sin( 3 α − α ) sin 2 α 2 sin α cos α = = = =2; sin α cos α sin α cos α sin α cos α
\
]
sin 3 α
–
cos α − cos 3 α sin α + sin α
965.
2 sin = 2 sin
α + 3α 2 α + 3α 2
sin
3α − α
sin α 2 = =tgα. α − 3 α cos α cos 2
a) sin4α=2sin2α cos2α=2⋅2sinα⋅cosα⋅(cos2α–sin2α)= 58
+ =
=4sinα cos3α–4sin3α cosα.
[ FRVα=1–2sin22α=1–8sin2αcos2α=1–8(1–cos2α)cos2α= =8cos4α–8cos2α+1.
966. a) 4sin15° cos15°(cos215°–sin215°)=2 sin30° cos30°=sin60°=
3 2
;
[ VLQ2 75° cos2 75°–(sin275°–cos2 75°)2=(2⋅sin75° cos75°)2– –(sin275°–cos275°)2=sin2(2⋅75°)–cos2(2⋅75°)=–cos(2·2 · 75°)= 1 =– cos300°=−cos60°=– ; 2 π
\ ±VLQ2 =1–
VLQ
] VLQ · (cos2
π
π 16
π
cos2
12
–sin2
π
=
–sin3
16
π
12
= − ⋅
cos3
π
)=
1 4
=1–
VLQ
π
FRV
π
=
;
π 16
2sin
cos
π
π 16
cos
π
= =
1 2 1 4
(2sin sin
π
π
cos 2
=
8
π
)·
.
967. a2+b2=(sinα+cosα)2+(cosα – sinα)2= =sin2α+2sinα cosα+cos2α+cos2α – –2sinα cosα+sin2α=2sin2α+2cos2α=(sin2α+cos2α)=2.
968. 1) cos2x+sin2x=1; sin2x=1–cos2x; sin2x=1–( =1–
4−2 3 4
=
3 2
−
)2=
.
2) cos2x=cos2x–sin2x; cos2x=(
1− 2
3
)2–
3 2
= 59
3 4−4 3 = – =1– 3 4 2 4 cos2x=2cosx \_jgh
=
4−2 3
ke_^h\Zl_evgh
jZ\_gkl\h
969. sin 4 α
=
2 sin 2 α cos 2 α
= sin α sin α 4 sin α cos α (cos 2 α − sin 2 α )
= sin α =4cosα(cos2α–(1–cos2α))=4cosα(2cos2α–1). 1 ?keb FRVα=– , 4 1 1 1 7 lh FRVα(2cos2α–1)=4⋅(– )(2⋅(– )2–1)=–( –1)=– +1= . 4 4 8 8
=
970. a) cos2α–ctg( FRV
–
π
FRVα VLQ
FRVαVLQ
π
+ FRV
π 4 π
π
+α)–sin2α ctg(
π 4
+α)=cos2α–sin2α–
VLQα
cos
–– 2sinα cosα⋅ VLQ α
sin
π 4 π 4
cosα − sin cosα + cos
π 4 π 4
sinα
= sin α
2 2 ⋅ cosα − sinα ⋅ 2 2 =cos α–sin α– – 2 2 ⋅ cosα + sinα ⋅ 2 2 2 2 ⋅ cosα − sinα ⋅ 2 = −2sinα cosα⋅ 2 2 2 ⋅ cosα + sinα ⋅ 2 2 FRV α − VLQ α (FRV α + VLQ α ) − − VLQ α FRV α = = FRV α + VLQ α FRV α − VLQ α = ⋅ FRV α + VLQ α FRV α + VLQ α − − VLQ α FRV α = FRV α + VLQ α π π Ke_^h\Zl_evgh FRVα –ctg( +α)=sin2α ctg( +α); 4 4 2
2
(
(
60
)
)
2
[
+tg2α)⋅(cos2α–
1
)=(
2
2 tgα
+
2 1 + tgα 1 + tgα 1 − tg 2 α 1 1 2 (1 − tgα ) + 2 tgα ⋅(cos2α– )= ⋅ · (cos2α– )= 2 2 − WJ α 1 − tg 2 α · (cos2α–
1
2 cos 2 α − 1
2 cos 2 α − sin 2 α − cos 2 α
= 1 − tg 2 α 1 − tg α cos 2 α − sin 2 α (cos 2 α − sin 2 α ) ⋅ cos 2 α = = =cos2α; (cos 2 α − sin 2 α ) sin 2 α 1− cos 2 α 3 + cos β 1 = (3+1–2sin22β)= (4–8sin2β cos2β)=1– \ 4 4 –2sin2βcos2β=(sin2β+cos2β)2– 2sin2βcos2β=sin4β+ +2sin2βcos2β+cos4β–2sin2βcos2β=sin4β+cos4β. 2
)=
)·
2
=
971. 1
a)
1
–
=
1 − ctgα − 1 − ctgα
=–
1 + ctgα 1 − ctgα 1 − ctg α 2 − 2 tg 2 α − 1 2 tgα tgα : = =tg2α. = =– 2 1 tgα tg α 1 − tg 2 α 1− 2 tg α
[
=
1 − tg 2 α 1 + tg 2 α
1− =
2
2 ctgα 1 − ctg 2 α
=
sin 2 α
2 2 2 2 cos 2 α = cos α − sin α : cos α + sin α = 2 2 2 sin α cos α cos α 1+ cos 2 α
(cos 2 α − sin 2 α ) cos 2 α
cos 2 α ⋅ (cos 2 α + sin 2 α ) cos 2 α − sin 2 α =cos2α = 1
=
sin 2 (45° + α ) −1 tg ( 45° + α ) − 1 cos 2 (45° + α ) = = \ tg 2 ( 45° + α ) + 1 sin 2 (45° + α ) +1 cos 2 (45° + α ) 2
61
sin 2 (45$ + α ) − cos 2 (45$ + α ) cos 2 (45$ + α ) = sin 2 (45$ + α ) + cos 2 (45$ + α ) cos 2 (45$ + α ) (sin 2 (45° + α ) − cos 2 (45° + α )) cos 2 (45° + α ) = (sin 2 (45° + α ) + cos 2 (45° + α )) cos 2 (45° + α ) –cos(90°+2α)=sin2α. =
] WJα–2tgα)⋅(ctgα–tgα)= 2 tgα − 2 tgα )⋅(ctgα–tgα)= =( 1 − tg 2 α ( 2 tgα − 2 tgα + 2 tg 3 α ) ⋅ ( ctgα − tgα ) = = 1 − tg 2 α 2 tg 3 α ⋅ ctgα − 2 tg 4 α 2 tg 2 α − 2 tg 4 α = = = 2 1 − tg α 1 − tg 2 α 2 tg 2 α (1 − tg 2 α ) = =2tg2 α. 1 − tg 2 α tgα sin α 1 = = ^ : tg 2 α − tgα cos α sin 2 α sin α − cos 2 α cos α 1 sin α 1 ⋅ = = cos α sin 2α cos α − sin α cos 2α cos 2α ⋅ cos α VLQ α ⋅ FRV α sin α FRV α FRV α = ⋅ = = FRV α ; cos α VLQ α FRV α − VLQ α FRV α VLQ α e) JZkkfhljbf VLQ α FRV α FRV α − VLQ α tgα –ctgα= − = − = FRV α VLQ α VLQ α FRV α FRV α = − = −FWJα VLQ α
JZkkfhljbf
WJ.±FWJ.WJ.FWJ. ±FWJ.WJ.FWJ.
WJ.±FWJ. FWJ. ±FWJ. FWJ.
62
Ke_^h\Zl_evgh WJ.WJ.FWJ.
FWJ.
972.
Ihevam_fky nhjfmeZfb kmffu b jZaghklb kbgmkh\ b dhkbgmkh\ α+β α−β α+β 2 sin cos sin sin α + sin β 2 2 2 = = = a) α+β α−β α+β cos α + cos β 2 cos cos cos 2 2 2 α+β =tg . 2
α+β α −β α+β 2 cos sin cos sin α − sin β 2 2 2 [ = = = cos α − cos β − 2 sin α + β sin α − β − sin α + β 2 2 2 α+β =– ctg . 2 π π π sin α + sin( − α ) 2 sin cos(α − ) sin α + cos α 2 4 4 = = = \ cos α − cos α sin α − sin( π − α ) 2 cos π sin(α − π ) 2 4 4 π kWJα– ). 4
973.
Ih nhjfmeZf kmffu dhkbgmkh\ b kbgmkh\ FRV.FRV.FRV. FRV.FRV.ÂFRV. FRV. FRV.FRV
π
FRV. FRV.FRV
π
+
. FRV
VLQ.VLQ.VLQ. VLQ.VLQ.FRV. VLQ. VLQ.FRV
π
FRV. VLQ.FRV
π
–
1
1 2
FRV.
.
FRV.
2 π α π α + )cos( – ).
63
974. a) sin19°+sin25°+sin31°=2sin
19° + 31° 2
19° − 31° 2
⋅cos
6° − 60°
2 =4 sin25° cos33° cos(−27°)=4sin25°cos33°cos27°.
[ VLQ°+sin24°+sin40°=2sin
+sin25°=
1
)= 2 6° + 60°
=2sin25° cos(−6°)+sin25°=2sin25°(cos6°+ =2sin25° (cos6°+cos60°)=2 sin25°⋅2 cos
cos
16° + 24°
cos
2
=
16° − 24°
+sin40°= 2 2 =2sin20° cos4°+2sin20° cos20°=2sin20°(cos4°+cos20°)= 4° + 20° 4° − 20° =2sin20°⋅2cos cos =4sin20° cos12°⋅cos8°. 2 2
975. 22$ + 8$ 22$ − 8$ cos sin22° + sin8° 2 2 = = a) sin30° 30$ 30$ 2 sin cos 2 2 VLQ ° FRV ° FRV ° = = VLQ ° FRV ° FRV ° VLQ ° − VLQ ° VLQ ° FRV ° FRV ° = = = FRV ° − ° FRV ° − FRV ° VLQ ° ⋅ VLQ ° 2 sin
[ =
cos 20° − cos 50° = cos 31° + sin 11° VLQ −° VLQ ° VLQ ° FRV °
sin 80 − sin 70 sin 29 − sin 19
976.
64
=
2 sin
=
FRV ° VLQ °
20$ − 50$ 20$ + 50$ ⋅ sin 2 2 = 2 sin 59$ + sin 11$
VLQ ° FRV °
;
2 sin 5° cos 75° 2 sin 5° cos 24°
=
cos 75° cos 24°
=
sin 15° cos 24°
.
.
a) π π sin( + α ) + sin( − α ) 4 4 = π π sin( + α ) − sin( − α ) 4 4 π π π π sin cos α + cos sin α + sin cos α − cos sin α 4 4 4 4 = = π π π π sin cos α + cos sin α − sin cos α + cos sin α 4 4 4 4 π VLQ FRV α = =ctgα π VLQ α FRV
[
FRV α + FRV α +
π
π
− VLQ α − + FRV α −
π
π
°
− VLQ¡VLQ = FRV¡FRV
°
= −WJ
°
WJ¡
= – 3 tgα
977. a) sinα+cosα–sin(α –
π 6
)+cos(α–
π 6
)=(sinα–sin(α–
π π α −α + 6 sin 6 + +cos(α– ))= 2 cos 2 2 6 π π α +α − α −α + 6 6 = + 2 cos cos 2 2 π π π π = =2cos α − sin +2cos α − FRV
π 6
))+(cosα+
α +α −
π
π
π
π π π π ) ⋅ (sin + sin( − )) = 12 12 2 12 π π π π π π π ) 2sin cos(– )= = FRV α − VLQ FRV − = 2cos(α– 12 4 6 π π ⋅ = 6 cos(α– ); =2cos( α − )⋅2 ⋅ 12
=2cos α −
VLQ
+ FRV
π
= 2 cos(α −
65
[ FRV –cos(
π
π 3
– α)–cos(
–α))–(cos(
π
π 6
–α)–cos(
+α)–cos(
π π +α + −α 6 sin = 2 sin 6 2 π π +α + −α 3 3 sin + 2 sin 2 =–sinα+ 3 sinα=sinα(
π
π 3
+α)+cos(
π 6
+α)=(cos(
π
+α)–
–α))=
π π +α − +α 6 6 + 2 π π +α − +α π π 3 3 = 2sin sinα+2sin sinα= 2 6 3 3 –1).
978. cos(α+β) cos(α–β)=(cosα cosβ–sinα sinβ)⋅(cosα cosβ+sinα sinβ)= =cos2α cos2β–sin2α sin2β=cos2α(1–sin2β)–sin2β⋅(1–cos2α)= =cos2α–sin2β cos2α–sin2β+cos2α⋅sin2β=cos2α–sin2β.
980. 1 + cos α + cos 2 α + cos 3 α 2 cos α + cos α − 1 2
=
+ FRV α + FRV α
+ FRV α = + FRV α + FRV α −
3α + α 3α − α cos 2 2 = = 1 + cos 2α + cos α − 1 FRV αFRV α + FRV α = = 2cosα. FRV α + FRV α (1 + cos 2α ) + 2 cos
FRV
α + FRV α FRV α = + FRV α
FRV α
981. a)
cos α − 2 cos 2 α + cos 3 α sin α + 2 sin 2 α + sin 3 α
=
FRV α + FRV α + FRV α VLQ α + VLQ α + VLQ α
=
3α + α 3α − α + 2 cos α 2 cos 2 α cos α + 2 cos 2 α cos 2 2 = = = 3α + α 3α − α 2 sin 2 α sin α + 2 sin 2 α + 2 sin α 2 sin sin 2 2 FRV αFRV α + = VLQ αFRV α + 2 cos
=
2 cos 2α = ctg 2α . 2 sin 2α 66
[
VLQ α + FRV α − VLQ α FRV α − VLQ α − FRV α
=
(sin 4 α − sin 2 α ) + 2 cos 3 α (cos 4 α − cos 3 α ) − 2 sin 3 α
=
4α + 2α 4α − 2α + 2 cos 3α sin FRV VLQ α + FRV α 2 2 = = = 4α + 2α 4α + α − VLQ α VLQ α − VLQ α − 2 sin − 2 sin 3α sin 2 2 2 cos 3 α (sin α + 1) cos 3 α = = − = − 2 sin 3 α (sin α + 1) sin 3 α =– ctg3 α. 2 cos
982. a) =
FRV α − FRV α + FRV α − FRV α VLQ α + VLQ α + VLQ α + VLQ α
FRV α + FRV α − FRV α + FRV α VLQ α + VLQ α + VLQ α + VLQ α
=
=
5α + α 5α − α 7α + 3α 7α − 3α − 2 cos cos cos 2 2 2 2 = = 5α + α 5α − α 7α + 3α 7α − 3α 2 sin cos cos + 2 sin 2 2 2 2 FRV αFRV α − FRV α FRV α FRV α − FRV α FRV α = = = VLQ α FRV α + VLQ α FRV α FRV αVLQ α + VLQ α 2 cos
=
FRV α − FRV α VLQ α + VLQ α
[
= −
VLQ α VLQ −α VLQ α FRV −α
cos α − cos 2 α − cos 4 α + cos 5 α
sin α − sin 2 α − sin 4 α + sin 5 α FRV α + FRV α − FRV α + FRV α = = VLQ α + VLQ α − VLQ α + VLQ α
=
VLQ α FRV α
= WJα
=
5α + α 5α − α 4α + 2α 4α − 2α cos cos − 2 cos 2 2 2 2 = = 5α + α 5α − α 4α + 2α 4α − 2α 2 sin cos cos − 2 sin 2 2 2 2 2 cos
67
= =
FRV α FRV α − FRV α FRV α VLQ α FRV α − VLQ α FRV α
cos 3 α sin 3 α
=
FRV αFRV α − FRV α VLQ αFRV α − FRV α
=
=ctg3α.
983. VLQ$VLQ%VLQ& VLQ$VLQ%VLQ±$±% VLQ
$ + % cos $ − % +
$ + % cos $ + % =2sin $ + % (cos $ − % +cos $ + % )= +2sin
=2sin
68
π −&
$ % & $ % ·2cos cos =4cos cos cos .