This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
.p
FxG i t s own s t r o n g e s t l o c a l l y convex topology, which i n t u r n i s t h e t o p o l o g i c a l p r o d u c t o f t h e s t r o n g e s t l o c a l l y convex t o p o l o g i e s o f F and G, p i s n o t continuous i f we check t h a t p*:FxG * C ,
p*(x,u):=
(x,u)
i s n o t continuous,
Suppose t h a t p* i s c o n t i n u o u s . Then t h e r e a r e seminorms r on F and t on 6 such t h a t I<x,u>I < r ( x ) t ( u ) f o r x i n F and u i n G. Since F i s i n f i n i t e - d i mensional, t h e r e i s a l i n e a r f o r m v on F which i s n o t continuous on ( F , r ) . On t h e o t h e r hand, I ( x , v ) l C r ( x ) t ( v ) t i n u o u s on (F,r),
f o r a l l x i n F. Thus, v has t o be con-
a c o n t r a d i c t i o n . The p r o o f i s complete.
//
Our n e x t aim i s t o prove t h a t , if E i s t h e s t r i c t i n d u c t i v e l i m i t o f a sequence o f Frechet-Monte1 spaces and i f E has a continuous norm, t h e n E l b i s h-bornological.
I n p a r t i c u l a r , i f E:=D(X)
,
l l f II :=sup( I f ( x ) l :x EX) i s a
continuous norm on i t s n a t u r a l ( L F ) - s t r u c t u r e and hence D ' ( X ) g i c a l . I f E=s-ind(En:n=1,2,..), and ( E n ' ,b(Enl ,En))
i s h-bornolo-
we w r i t e E ' and En' t o denote (E',b(E',E))
r e s p e c t i v e l y . We s h a l l s t a r t w i t h s e v e r a l remarks
Observation 12.2.4:
( a ) i n 9.1.46 we proved a s t r o n q v e r s i o n o f DE WILDE
c l o s e d graph theorem. Observe t h a t 9.1.46
implies that, i f E i s ultraborno-
l o g i c a l , F has an a b s o l u t e l y convex C-web and f : E +
F i s a l i n e a r mapping
w i t h c l o s e d graph i n ExF, t h e n F i s c o n t i n u o u s . From here i t i s immediate t o deduce t h e f o l l o w i n g open-mapping theorem: "If E i s u l t r a b o r n o l o g i c a l , F a space w i t h an a b s o l u t e l y convex C-web and f:E-F
a continuous s u r j e c t i v e
l i n e a r mapping, then f i s open". be a p r o p e r s t r i c t i n d u c t i v e l i m i t o f FrPchetL e t E=s-ind(E :n=1,2,..) n Montel spaces E ,n=1,2,... Then, n ( b ) E and E ' a r e b o t h complete Montel spaces. I f Jn:En+
E i s t h e canonical i n j e c t i o n (which i s a t o p o l o g i c a l homomor-
phism), t h e n i t s transposed mapping Qn:E' --En' mapping) i s c o n t i n u o u s and s u r j e c t i v e . Moreover,
(which i s the r e s t r i c t i o n
CHAPTER 12
459
E i s r e g u l a r (8.5.14(a))
.) where t h e
and hence E'=proj(En':n=1,2,.
l i n k i n g mappings (Qn:n=1,2,..)
a r e even open: Indeed, E ' has an a b s o l u t e l y
convex C-web (K2,$35.4.(13)),
En' i s u l t r a b o r n o l o g i c a l ( s i n c e i t i s a (DFM)-
space) and o u r o b s e r v a t i o n ( a ) a p p l i e s . Thus, ( c ) E ' i s t h e s t r i c t p r o j e c t i v e l i m i t o f a sequence o f (DFM)-spaces and moreover, i t i s even a d i r e c t e d p r o j e c t i v e l i m i t (0.3.3), i . e . i f U i s an -1 a b s o l u t e l y convex open subset o f E' t h e r e i s m w i t h U = Qm (Qm(U)). ( d ) Given a compact subset Km o f En',
t h e r e i s a compact subset K o f F'
such t h a t Qn(K)=Kn: Indeed, t h e r e i s an a b s o l u t e l y convex 0-nghb V i n En such t h a t i t s p o l a r V" i n En' c o n t a i n s Kn. Since 0-nghb W i n
E' i s s t r i c t , t h e r e i s a
E w i t h V 3 W n E n . Since E ' i s Montel, W" i s compact i n E ' and
Q(W")=V" by HAHN-BANACH theorem. Now t h e c o n c l u s i o n f o l l o w s . D e f i n i t i o n 12.2.5: y c ( U ) . A subset K o f
L e t U be a non-void open subset o f a space H and
H i s s a i d t o be d e t e r m i n i n g
for f
i f KT\U #
4 and
fc
f/(KAU) = 0 i m p l y t h a t f vanishes i d e n t i c a l l y . Lemma 12.2.6:
L e t G be a b o r n o l o g i c a l space and
K a t o t a l a b s o l u t e l y con-
vex subset o f G. Then, K i s d e t e r m i n i n g f o r each f which belongs t o
xc(V).
f o r e v e r y open a b s o l u t e l y convex s u b s e t W o f G. f/(K(IW)
# $.
L e t f be a v e c t o r of Wc(W) and suppose t h a t -ifin = 0. Since f = Z ( n 1 ) 2 f ( O ) , we have t h a t (n')-l$nf(0) /(KAW) = 0
Proof: Clearly, K f l W
cm
f o r each n and hence i t s u f f i c e s t o show t h a t K i s d e t e r m i n i n g f o r n-homogeneous p o l y n o m i a l s bounded on compact subsets o f G, n=1,2,..
. We
proceed by
i n d u c t i o n . F o r n=1, such a p o l y n o m i a l p i s continuous on G, s i n c e G i s b o r n o l o g i c a l and hence P E G ' . Moreover,
b p E K " f o r each b r C and, s i n c e K i s
t o t a l i n G, p=O as d e s i r e d . Now suppose t h a t K i s d e t e r m i n i n g f o r each k-homogeneous polynomial bounded on compact subsets o f G f o r each k C n and l e t p be a n-homogeneous p o l y nomial bounded on compact subsets o f G such t h a t p/K = 0 and l e t L be t h e symmetric n - l i n e a r form correspondinq t o p. According t o t h e P o l a r i z a t i o n Formula (0.5.11, Kx..xK.
L is. bounded on compact subsets o f Gx..xG
F i x x i n K and d e f i n e Lx:G-C,
Lx(z):=L(x,z,..,z).
and vanishes on Lx i s a (n-1)-
homogeneous polynomial bounded on compact subsets o f G v a n i s h i n o on K and hence Lx=O by i n d u c t i o n h y p o t h e s i s . L e t y be an a r b i t r a r y v e c t o r o f G. Then Ly:G-C,
LY(~):=L(z,y,..,y)
i s a l i n e a r form on G bounded on compact sub-
s e t s o f G and vanishes on K and hence on G by i n d u c t i o n h y p o t h e s i s . I n p a r -
460
BARRELLED LOCALLY CONVEXSPACES
t i c u l a r , Ly(y)=p(y)=O f o r y i n G. Thus p=O on G as d e s i r e d .
/I
Lemma 1 2 . 2 . 7 : L e t U be a non-void open subset o f a b o r n o l o q i c a l space E-sd-proj(En:n=l,2,..) of spaces En w i t h continuous p r o j e c t i o n s On,n=1,2,. L e t K be a t o t a l compact a b s o l u t e l y convex subset o f E.
...
( i ) i f fc%c(U), t h e n f f a c t o r i z e s through some En, i . e . s i n c e t h e r e i s rn -1(Qm(U)), t h e r e e x i s t s n and a mappinq f * : Q n ( U ) + C y f * ( x ) : = such t h a t U=Q, f ( x ' ) f o r x ' E U w i t h Q n ( x ' ) = x , such t h a t f = f * o Q n . (ii) i f T i s a bounded subset o f ( v ( U ) , t o ) ,
then ? f a c t o r i z e s
uniformly
t h r o u g h some En. P r o o f : Suppose n>m. n=1,2,..)
Suppose t h a t ( i ) does n o t h o l d . F i n d sequences (z(n):
and (z(n)+y(n):n=l,Z,..)
y(n))#f(z(n)).
The f u n c t i o n A ( z ) : = f ( z + y ( n ) ) - f ( z )
W i n E.
a b s o l u t e l y convex 0-nghb
there e x i s t x(n)E Kfl(Z-lU) gn(b):=f(x(n)+by(n)) 0.5.12(ii),
i n U w i t h On(y(n))=O; By 12.2.6,
y(n)#O and f ( z ( n ) +
belongs t o r)Cc(W) f o r some
K i s d e t e r m i n i n q f o r A and hence
such t h a t f ( x ( n ) + y ( n ) ) # f ( x ( n ) ) .
i s a non-constant (qn(0)#gn(l)) e n t i r e f u n c t i o n . By
choose b ( n ) C C such t h a t l q n ( b ( n ) ) / > n + l f ( x ( n ) ) l and hence
If(x(n)+b(n)y(n))\) (b(n)y(n):n=1,2,..)
n. Since K i s compact and s i n c e Qr(y(n))=O f o r r S n , is a i s a n u l l sequence and (x(n)+b(n)y(n):n=l,Z,..)
r e l a t i v e l y compact subset o f U whose c l o s u r e i s c o n t a i n e d i n U by c o n s t r u c t i o n . That i s a c o n t r a d i c t i o n s i n c e f i s unbounded on t h i s sequence. ( i i ) IfF d o e s n o t f a c t o r u n i f o r m l y through some En, proceed as above t o
.) in 2-'U
f i n d a sequence (x(n)+b(n)y(n):n=l,Z,. and a sequence ( f n :n=1,2,..)
in
contradicts the f a c t t h a t ? i s
5 such
which i s r e l a t i v e l y compact
t h a t l f n ( x ( n ) + b ( n ) y ( n ) ) ] > n and t h i s
bounded in ( % ( U ) , t o ) . / /
Proposition 12.2.8: L e t E be t h e s - d - p r o j e c t i v e l i m i t o f a sequence o f (DFM)-spaces and suppose t h a t E has a t o t a l compact a b s o l u t e l y convex subset. Then, E i s h - b o r n o l o g i c a l . P r o o f : Set E = s - p r o j ( E :n=1,2,..)
n
convex subset o f E. By 12.1.16, r e l l e d and t h a t y c ( U ) = $ ( U ) such t h a t U=Qm-l(Qm(U))
x(U):
and l e t K be a t o t a l compact a b s o l u t e l y
i t i s enough t o check t h a t E i s h-quasibar-
f o r U a non-void open subset o f E . There i s m
Qm b e i n g t h e m-th continuous p r o j e c t i o n .
Indeed, suppose t h a t ftyc(U).F i r s t observe t h a t E i s bor%,(U)= n o l o g i c a l : l e t T:E*F be a l i n e a r mapping bounded on compact subsets o f E, F being any space. According t o t h e f a c t o r i z a t i o n lemma ( D I y l . 1 6 ) , t h e r e i s a l i n e a r mapping
Tn*:En-+F
such t h a t
T=Tn*oQn f o r some n.
By 12.2.4(d),
Tn*
is
CHAPTER I2
461
bounded on compact subsets o f En and c l e a r l y i t i s G-holomorphic. Since En i s a (0FM)-space,
i t i s h - b o r n o l o g i c a l (12.1.6)
and hence Tn* i s continuous.
Thus, T i s c o n t i n u o u s as d e s i r e d . By 1 2 . 2 . 7 ( i ) ,
f f a c t o r i z e s through some En w i t h f a c t o r i z a t i o n mapping f*.
As above, f * i s bounded on compact subsets o f Q n ( U ) . S i n c e En i s a (DFM)-
space, f* i s continuous and so i s f . Thus, f C % ( U ) . E i s h - q u a s i b a r r e l l e d : Indeed, l e t y b e a subset bounded i n ( d ( U ) , t o ) . By 12.1.15,
i t s u f f i c e s t o show t h a t F i s l o c a l l y bounded. By 1 2 . 2 . 7 ( i i ) ,
. The
% f a c t o r s u n i f o r m l y t h r o u g h some En
t i o n mappings i s bounded i n ( g ( Q n ( U ) , t 0 ) , i s h - q u a s i b a r r e l l e d . Thus,
C o r o l l a r y 12.2.9:
3; i s
sequence ( f * : f E x )
o f factoriza-
hence l o c a l l y bounded, s i n c e E
n
l o c a l l y bounded on U . / /
The s t r o n g dual o f a p r o p e r s t r i c t i n d u c t i v e l i m i t o f a
sequence o f F r k h e t - M o n t e 1 spaces i s h - b o r n o l o g i c a l i f i t has a c o n t i n u o u s norm. I n p a r t i c u l a r , D ' ( X ) i s h - b o r n o l o g i c a l . Observation 12.2.10:
FLORET,(13)
has shown t h e e x i s t e n c e o f a n u c l e a r Fr6-
c h e t space (G,t) w i t h an i n c r e a s i n g sequence o f c l o s e d subspaces Fn each hav i n g a continuous norm b u t t h e s t r i c t i n d u c t i v e 1 i m i t E:=ind( (Fn,t):n=l,2,.) does n o t admit any continuous norm. I t would be n i c e t o know i f t h e s t r o n g dual of a p r o p e r s t r i c t i n d u c t i v e l i m i t o f Frechet-Monte1 spaces En, n=1,2,
..,
each h a v i n g a continuous norm, i s h - b o r n o l o g i c a l . The answer t o t h i s q u e s t i o n i s c l e a r l y a f f i r m a t i v e i f such an i n d u c t i v e l i m i t has u n c o n d i t i o n a l b a s i s , because i n t h i s case i t i s isomorphic t o a c o u n t a b l e d i r e c t sum and hence has a c o n t i n u o u s norm and we can a p p l y 12.2.9. P r o p o s i t i o n 12.2.11:
L e t E=s-ind(En:n=1,2,..)
of FrGchet-Monte1 spaces En, n=la2,..,
be a s t r i c t i n d u c t i v e l i m i t
such t h a t E l b i s h - b o r n o l o q i c a l . Then,
each En has a c o n t i n u o u s norm. P r o o f : W i t h o u t loss o f g e n e r a l i t y , suppose t h a t E does n o t have a c o n t i 1 N nuous norm. By 2.6.13, El c o n t a i n s C complemented. Set y(n) f o r t h e n - t h N c a n o n i c a l u n i t v e c t o r i n C C E=E" ( E i s r e f l e x i v e ! ) . S e t x ( n ) t : En\En-l m
and d e f i n e t h e 2-homogeneous p o l y n o m i a l on E ' p ( .):= F y ( n ) ( . ) x ( n ) ( . ) . p i s continuous on compact subsets o f E l : Indeed, l e t K be a compact subset
of E ' which i s c o n t a i n e d i n t h e p o l a r o f some 0-nghb V o f E b y r e f l e x i v i t y . Since VAEl
i s a 0-nghb i n El,
where W i s a 0-nghb i n Cq.
VOCN
W
c o n t a i n s a 0-nghb o f t h e f o r m W x n C , 9+' Thus, t h e r e i s k such t h a t b y ( n ) C V f o r each n>k
462
BARRELLED LOCALLY CONVEXSPACES
\ b y ( n ) ( x ) [ _ L l f o r a l l bGC, n)/k
and a l l b c C . Hence
t h e r e s t r i c t i o n of p t o K equals ,$y(n)(.)x(n)(.)
and x M " .
Since
KCV",
and t h e c o n c l u s i o n f o l l o w s .
p i s n o t continuous on E ' : Indeed, suppose p c o n t i n u o u s and a p p l y t h e F a c t o r i z a t i o n Lemma ( D I , l . l 6 ) t o o b t a i n t h e e x i s t e n c e o f m such t h a t , i f Qm-l(y)=O,
t h e n p(x+y)=p(x) f o r a l l x ( E ' . Take x as t h e m-th canonical u n i t N v e c t o r , which belongs t o ( C ) ' = C ( N ) and extend i t t o E. Thus, x C E ' and Go
y ( m ) ( x ) = l and y ( n ) ( x ) = O f o r n#m. For a l l y w i t h Q m - l ( y ) = 0 , F y ( n ) ( . ) x ( n ) ( x ) = i?y(n)(
. ) x ( n ) ( x + y ) and hence x(m)(x)+x(m)(y)=x(m)(x).
T h e r e f o r e x(m)(y)=O
-
and t h e n x(m) E(E, 1 1 ) ' = Em-1 and t h a t i s a c o n t r a d i c t i o n . By 12.2.10,
/I
a c o u n t a b l e p r o d u c t o f (0FM)-spaces each h a v i n g a t o t a l com-
p a c t subset i s h - b o r n o l o g i c a l . We s h a l l extend t h i s r e s u l t t o a r b i t r a r y p r o d u c t s o f such spaces. F i r s t a t e c h n i c a l lemma i n s p i r e d i n t h e technique o f 12.2.7: Lemma 12.2.12:
Let E=n(Ei:i
61) be a p r o d u c t o f b o r n o l o g i c a l spaces Ei
each h a v i n g a t o t a l a b s o l u t e l y convex subset Ki and suppose t h a t E i s borno-
C I)and U:=TT(Ui:i
l o g i c a l . Set D:= @ ( K i : i vex subset o f Ei and Ui=Ei
for all
L e t F be a space and f L y c ( U , F ) .
G I ) w i t h Ui open a b s o l u t e l y con-
i c I \ J , J b e i n g a f i n i t e subset o f I .
I f f does n o t f a c t o r t h r o u g h any f i n i t e
t h e r e e x i s t sequences unC UA(n-'D)
p r o d u c t o f spaces Ei,
and znC D such
t h a t f ( u n + z n ) # f ( u n ) f o r each n . Moreover, J and N n : = ( i G I : z n ( i ) # O )
are p a i r -
.
wise d i s j o i n t , n=1,2,.
P r o o f : Set L1 : = J . Since f does n o t f a c t o r t h r o u g h T ( E i :i&Ll), t h e r e a r e 1 1 1 such t h a t f ( x +y ) # f ( x ) . D e f i n e gl(y):= f ( x 1+ y ) - f ( x 1) , gl: TT(Ei:i&Ll)--+F, which i s G-holomorphic and bounded on
x
1-EU and y 1& E w i t h y 1(i)=O,iELly
compact subsets. D1:=
@(Ki:iLI\L
(with 1 ) i s d e t e r m i n i n g f o r g1 b y 12.2.6 1
t h e obvious m o d i f i c a t i o n s i n t h e n o n - s c a l a r c a s e ) . So, t h e r e i s z E D w i t h 1 gl(z 1) = 0 and hence f ( x 1+z 1) # f ( x 1) . An easy i n d u c t i o n argument shows t h e e x i s n tence o f sequences (xn:n=1,2,..) i n U and ( z :n=1,2,..) i n D with f(xn) # f ( x n + z n ) f o r each n w i t h t h e r e q u i r e d p r o p e r t i e s on t h e index s e t s . F o r each x t U , x + z n L U and, f o r f i x e d n, t h e mapping A ( z ) : = f ( z + z n ) - f ( z ) i s well-defined.
I t i s G-holomorphic and i t i s bounded on compact subsets of
U. Since E i s b o r n o l o g i c a l ,
i s un C (n-l)D/'IU
( n - 1D) i s d e t e r m i n i n g f o r A and t h e r e f o r e t h e r e
w i t h f ( un+zn)#f ( un) .//
P r o p o s i t i o n 12.2.13:
Let E=TT(Ei:i&I)
be a b o r n o l o g i c a l p r o d u c t o f a
CHAPTER 12
463
f a m i l y o f (DFM)ispaces Ei.
Then, E i s h - b o r n o l o g i c a l i f and o n l y
f each Ei
has a t o t a l compact subset Ki. Proof: Since each Ei
i s complete, we may suppose Ki a b s o l u t e l y convex.
We keep t h e n o t a t i o n i n 12.2.12 and we suppose F normed (F:=(F, 11.11). be a member o f T c ( U , F ) .
Our p r e v i o u s arguments i n 12.2.8
Let f
show t h a t i t
s u f f i c e s t o prove t h a t f f a c t o r s through some f i n i t e p r o d u c t o f t h e spaces ( a (DFM)-space!). I f t h i s i s n o t t h e case, a p p l y 12.2.12 t o f i n d sequen1 n i n D w i t h f(un+zn)#f(un) ces ( u :n=1,2,..) i n U A ( n - D) and (zn:n=1,2,..) Ei
f o r each n. D e f i n e hn(b):=f(un+bzn)),
b c C , which a r e non-constant e n t i r e
>
t o o b t a i n b ( n ) LC w i t h \ \ f ( u n + b ( n ) z n \ \ n f i s unbounded on t h e r e l a t i v e l y compact subset
f u n c t i o n s and a p p l y 0 . 5 . 1 2 ( i ) f o r each n. As i n 12.2.7, (un+b(n)zn:n=1,2,.
.) whose c l o s u r e i s c o n t a i n e d i n U, a c o n t r a d i c t i o n .
I f some Ek does n o t have a t o t a l compact subset, 9.1.12
and 9 . 1 . 1 4 ( i i )
show t h a t Ek c o n t a i n s C ( N ) complemented and hence E c o n t a i n s CNxC(N) complernented. By 12.2.2,
E i s n o t h-bornological
We keep t h e n o t a t i o n o f 12.2.13. @(Ei:i
*//
I n 6.2.9
and 6.2.10 we showed t h a t
6 I)endowed w i t h t h e t o p o l o g y induced b y E and Eo were b o r n o l o g i c a l
spaces. Moreover, we s h a l l p r o v e ( 1 2 . 2 3 8 ) t h a t CNxC(N) i s n o t even h-quasib a r r e l l e d . I f t stands f o r t h e t o p o l o g y on C ( N ) &l(C(N)yt)
induced b y CN,
t h e space
i s n o t h - b o r n o l o g i c a l , f o r i f i t were C(N)xCN would be h-quasi-
b a r r e l l e d (12.1.22),
a c o n t r a d i c t i o n . W i t h t h e hypotheses o f 12.2.13,@(Ei:
i G I ) c o n t a i n s C(N)x(C(N),t)
complemented i f some Ei does n o t have some t o t a l
compact subset and hence @(Ei:i
L I ) cannot be h - b o r n o l o g i c a l .
I f some Ei
does n o t have any t o t a l compact subset, Eo c o n t a i n s CNxC(N) Complemented and hence i t i s n o t h - b o r n o l o g i c a l . Making t h e obvious changes, we have P r o p o s i t i o n 12.2.14:
Let E=lT(Ei:i
f a m i l y o f (DFM)-spaces Ei.
Then, @(Ei:i
& I ) be a b o r n o l o g i c a l p r o d u c t o f a
G I ) and Eo a r e h - b o r n o l o g i c a l i f d3 (Ei:i t I ) and Eo
and o n l y i f each Ei has a t o t a l compact subset, where a r e endowed w i t h t h e t o p o l o g y induced b y E. C o r o l l a r y 12.2.15:
If C
I i s bornological
, then
(C('),t)
i s h-bornological.
Our n e x t r e s u l t improves 12.2.15 P r o p o s i t i o n 12.2.16:
L e t E = T ( E i : i E I)be a p r o d u c t o f m e t r i z a b l e spaces
BARRELLED LOCALLY CONVEX SPACES
464
E i . Then, ( i ) i f C I i s bornological, E i s h-bornological and ( i i ) f o r any index s e t I , Eo and @ ( E i : i C I ) a r e h-bornological. Proof: ( i ) We keep t h e notation in 1 2 . 2 . 1 2 . Let f be an element of Yc(U,F) and suppose F:=(F, J/,/]) normed. Since f i n i t e products of metrizable spaces a r e again metrizable and hence h-bornological, i t s u f f i c e s t o show t h a t f f a c t o r s through some f i n i t e product. If t h i s i s not the case, taking K i : = E i n n t h e r e a r e sequences ( u : n = 1 , 2 , . . ) i n UnD and ( z : n = 1 , 2 , . . ) i n D=$(Ei:i&I) w i t h f ( u n + z n ) # f ( u n )f o r each n with J and N n , n = 1 , 2 , . . , pairwise d i s j o i n t , by 12.2.12. S e t P : = ( i & I : u n ( i ) # O ; n = 1 , 2 , . . ) . P i s countable and hence t h e spac e n ( E i : i L P ) i s metrizable. Let ( V n : n = 1 , 2 , . . ) be a b a s i s of absolutely convex 0-nghbs i n this space w i t h V l c u n l T ( E i : i t P ) . For each n , define An: UAIT(Ei:iL P ) - - t F , A n ( z ) : = f ( z + z n ) - f ( z ) . Each An i s G-holomorphic and does not vanish i d e n t i c a l l y . Since VnA@(Ei:i C P ) i s absolutely convex and dense i n t h e bornological space V ( E i : i L P ) , 12.2.6 shows the existence of wnC V n A @ ( E i : i t P ) w i t h f(wn+zn)#f(wn)f o r each n . Take e n t i r e functions hn:C-+ F defined by hn(b):=f(wn+bzn). Since each hn i s non-constant, 0 . 5 . 1 2 ( i ) shows t h a t llf(wn+b(n)zn))ll> n f o r each n and some sequence of complex numbers ( b ( n ) : n = 1 , 2 , . . ) . The sequence ( w n + b ( n ) z n : n = 1 , 2 , . .) converges t o zero in D and hence f i s unbounded on some compact s e t , a c o n t r a d i c t i o n . ( i i ) Recall t h a t @(Ei:i G I ) and Eo a r e bornological (6.2.9 arid 6.2.10). The obvious modifications above and in 1 2 . 2 . 1 2 give t h e desired conclusion
I/
Corollary 12.2.17: ( C ( ' ) , t )
i s h-bornological.
Now we t u r n o u r a t t e n t i o n t o find l a r g e c l a s s e s o f spaces which a r e h barrel l e d . Lema 12.2.18: Let E be a space, F a normed space and p & P ( " E , F ) . I f a , b r E , then lIp(b)ll A s u p ( I\p(a+sb)l\ : s E C with I s l l l ) . Proof: By t h e maximum p r i n c i p l e , we may replace " 1 S I C 1" by " j s / = l " and then the mapping s -l / s shows t h e e q u a l i t y sup(jlp(sa+b)ll : I s l b l ) sup(l\p(a+sb)l\ : isl'l) from where the conclusion follows.
=
//
Theorem 12.2.19: I f E i s a Baire space, then E i s h-barrelled. Proof: Without loss of g e n e r a l i t y , we suppose F : = ( F , q ) normed. Let U be a non-void open subset o f E a n d y c w U , F ) bounded on every compact subset of U of t h e type (a+sb: \ s l L l ) , a and b being vectors of E . Fix x in U and take
CHAPTER 12
465
an open absolutely convex 0-nghb V such t h a t x+VCU. By 0.5.11, the set'll:= ( (m!)-l$mf(x): f t ~ m = 1 , 2 ..) , i s pointwise bounded on V , since 3;'is bounded on ( x + s y : l s l ~ l ) y, b e i n g a vector of V . By 1.1.5, V i s of second category i n E. Since 2' 4 i s pointwise bounded on V , there i s a vector a g V where 'LLis l o c a l l y bounded, i . e . there i s an absolutel y convex 0-nghb W such t h a t a+WcV and ' M i s bounded on a+W: Indeed, s e t V n : =(x(V: q ( f ( x ) ) L n f o r every f t U ) . Since uis pointwise bounded, V= n = 1 , 2 , . . ) . Since each Vn i s closed i n V and V i s o f second category i n E, there i s a positive integer p such t h a t V has non-void i n t e r i o r . I f a 4 P i n t ( V p ) , u i s l o c a l l y bounded a t a . By 12.2.18, Gis bounded on W. Take M)O such t h a t q ( g ( t ) ) / M f o r every tLW and g e u .Given any f e q there i s a 0-nghb ZC2-lW such t h a t lim q ( f ( x + t ) - $(m!)-'Gmf(x)(t)) = 0
u(Vn:
uniformly f o r t i n Z . Observing t h a t s u p ( q((m!)-l$mf(x)(t)): t t 2 - l W ) = 2-msup( q((m!)-'Gmf(x)(t): t tW), we have t h a t s u p ( q ( Z ( m ! ) - ' i m f ( x ) ( t ) :
t C2-'W)C z s u p ( q ( ( m ! ) - l i m f ( x ) ( t ) ) : t 62-lW) C M and therefore M % sup( q ( f ( x + t ) ) : t L Z ) f o r every f i n 3;. T h u s , f i s l o c a l l y bounded a t x and since x was a r b i t r a r y , % i s 1ocal l y bounded.
//
T h u s , we have Frichet
-
Metr i zabl e
Baire
h-barrel led
\P h-bornological
h-quasibarrel1edjMN/
'
Let us show t h a t (LS)-spaces a r e h-barrelled. Unfortunately, we do not know i f (DFM)-spaces a r e h-barrelled. An inspection of the proof of 12.2.19 shows t h a t a subset F o f Z ( U , F ) i s bounded on each finite-dimensional compact subset of U i f and only i f i t i s bounded on every compact subset of U of the type ( a + s b : l s l $ l ) f o r each a,btU. Indeed, t o prove this, we may r e s t r i c t a t t e n t i o n t o the case when E i s f i n i t e dimensional and hence a Baire space. So we have Theorem 12.2.20: (BANACH-STEINHAUS-NACHBIN THEOREM) If E i s a Frechet space, each subset FC%(U,F) i s equicontinuous i f bounded on every compact subset of U of the type (a+sb: Islrl).
BARREL LED LOCAL L Y CON VEX SPACES
466
Lemma 12.2.21: Let (E,t)=ind((En,tn):n=l,2,.
.) be a (LS)-space and U a
non-void open subset of ( E , t ) . Then ( U , t ) c a r r i e s t h e f i n e s t topology such t h a t the inclusions ( U / \ E n , t n ) - + ( U , t ) a r e continuous f o r each n . Proof: S e t s f o r t h e f i n e s t topology on U f o r which t h e canonical inclusions a r e continuous. Clearly, s i s f i n e r than t on U . I f V i s an open sub-
set of (U,s), t h e n VAEn i s open i n ( U / \ E n , t n ) and, s i n c e UOEn i s open i n ( E n , t n ) , we have t h a t VOEn i s open i n (En,tn) f o r each n . T h u s , V i s open i n (E,t**)=(E,t) by 8 . 5 . 2 8 ( i i ) . T h u s , V i s open i n ( U , t ) . / / Lemna 12.2.22: Let ( E , t ) and U be a s above. Suppose t h a t U A E l # 4 . Let f:U-.F, F being any space, be a mapping and s e t f ( n ) f o r i t s r e s t r i c t i o n t o UI\En f o r each n . Then, f&%(U,F) i f and only i f f ( n ) C . ' d e ( ( U n E n , t n ) , F )f o r each n . , n e c e s s i t y is c l e a r . To prove s u f f i c i e n c y , Proof: According t o 0.5.4 we s h a l l see t h a t f i s G-holomorphic and continuous ( 0 . 5 . 9 ) . Let S be a finite-dimensional subspace of E i n t e r s e c t i n g U . There i s k w i t h S C E k and s i n c e f ( k ) Lg((UnEk,tk),F),we have t h a t f L % ( ( U n S , t ) , F ) which proves our f i r s t a s s e r t i o n . According t o 0 . 5 . 4 ( a ) , each f ( n ) : ( U ( \ E n , t n ) - + F i s continuous. By 1 2 . 2 . 2 1 , f i s continuous.
//
Proposition 12.2.23 : Let ( E, t ) = ind( ( En, t n ) :n = l , 2 , . .) be a ( LS) -space. Then ( E , t ) i s h-barrelled. Proof: Let U be a non-void subset of ( E , t ) and ?-a subset of X(U,F) bounded on finite-dimensional compact subsets of U . Without l o s s o f g e n e r a l i t y , and set Fnf o r t h e s e t of a l l r e s t r i c t i o n s t o we may assume t h a t UOE1# UAE, of t h e members of f o r each n . i s amply bounded i f and only i f each FnC g ( ( U n E n , t n ) , F )i s Claim: ----amply bounded. e may assume F normed. Since each ?,,i s Only s u f f i c i e n c y needs proof. W pointwise bounded (12.1.10), i t follows t h a t F i s pointwise bounded and hence t h e mapping g:U- 1@(? , F ) defined in 12.1.11 i s well-defined. I f gn stands f o r t h e r e s t r i c t i o n of g t o U / I E n , 12.1.11 shows t h a t each gn belongs t o % ( ( U n E , t ) , l @ (% , F ) ) , since each Fn i s l o c a l l y bounded. By 1 2 . 2 . 2 2 , g & w 5 n i s l o c a l l y bounded. g ( U , l ( 3, F ) ) . Again by 1 2 . 1 . 1 1 , Clearly, each Fn i s bounded on finite-dimensional compact subsets of U . Moreover, each ( E n , t n ) can be taken as a Banach space (hence h-barrelled by 12.2.19) and hence each i s amply bounded. Now apply t h e claim.,,
4
yn
467
CHAPTER 12
L e t E=T(Ei:i 6 I ) be an a r b i t r a r y product o f (LS)E i s h-barrelled, i f each Ei has a t o t a l compact subset Ki.
P r o p o s i t i o n 12.2.24: spaces. Then
Proof: We
keep t h e n o t a t i o n i n 12.2.12.
t h a t Eo i s h-barrelled.
L e t y b e a subset o f X(U,F)
subsets o f U (see 12.1.13) t e d i n 12.1.11.
By 12.1.22,
and s e t g:U--lm($:,F)
i t i s enough t o show
bounded on f a s t compact
f o r t h e f u n c t i o n construc-
The conclusion f o l l o w s i f we show t h a t g f a c t o r i z e s throuqh
some f i n i t e product o f f a c t o r spaces. Since D:= @(Ki:i6?I)
i s determining
f o r g, proceed as i n t h e p r o o f o f 12.2.12 t o f i n d sequences (un:n=1,2,..) and (zn:n=1,2,. .), w i t h p a i r w i s e d i s j o i n t supports, such t h a t (nun:n=1,2,..) n n n contained i n U A D and w i t h g ( u +z )#g(un) f o r each n, i f and ( z :n=1,2,..)
g does n o t f a c t o r through any f i n i t e product o f f a c t o r spaces. Proceeding as i n 12.2.13,
take a sequence (b(n):n=1,2,..)
i n C withIlg(un+b(n)zn))l't>n f o r
K i s a Banach d i s c and (un:n=1,2,..) convereach n. I f K:=ZE?(nun:n=1,2,..), N n ges t o zero i n EK. Now sp(z :n=1,2,..) i s c l e a r l y isomorphic t o C and hence the n u l l sequence (b(n)zn:n=1,2,..)
i s f a s t convergent t o 0. Thus, g i s un-
bounded on t h e f a s t convergent sequence (un+b(n)zn:n=1,2,.
.)CU, a contradic-
t i o n . Thus, g i s holomorphic and hence F i s l o c a l l y bounded by 12.1.11.
C o r o l l a r y 12.2.25:
/I
D'(X) i s h - b a r r e l l e d .
Proof: The conclusion follows from 12.2.24 r e c a l l i n g t h a t D'(X) i s isomorp h i c t o ( s ' ) N by 7.6.10.//
Our next purpose i s t o prove t h a t t h e a r b i t r a r y product o f B a i r e metrizab l e spaces i s t?-barrelled,
f o r what we need some preparation.
L e t U be a non-void open subset o f t h e product o f spa-
D e f i n i t i o n 12.2.26:
ces ExG and suppose t h a t f i s a mapping from U i n t o any space F. f i s s a i d t o be separately holomorphic i f t h e f u n c t i o n s fa(b):=f(a,b)
and fb(a):=f(a,b)
are holomorphic on ( ( a ) x G ) A U and on ( E x ( b ) ) n U r e s p e c t i v e l y f o r a l l a t E and b EG. Observation 12.2.27:
HARTOGS proved t h a t every separately holomorphic
f u n t i o n defined on an open subset of Cn i s holomorphic. For a separately holomorphic f u n c t i o n as i n 12.2.26,
t h e f u n c t i o n ( z , z ' ) w f(a+zc,b+z'd)
, with
z,z' f C and a , c t E and c,dCG i s separately holomorphic, hence holomorphic by HARTOGS' theorem.
In
Thus, f i s G-holomorphic.
p a r t i c u l a r , i t i s holomorphic on the diagonal z = z ' .
BARRELLED LOCAL L Y CONVEX SPACES
468
P r o p o s i t i o n 12.2.28:
L e t E be a B a i r e space, G a B a i r e m e t r i z a b l e space
such t h a t ExG i s B a i r e and U a non-void connected open subset o f ExG. I f f : U-F
i s s e p a r a t e l y holomorphic, t h e n f i s holomorphic.
P r o o f : By DI,2.28 (ZORN's theorem), i t s u f f i c e s t o show t h a t f i s bounded on some open subset c o n t a i n e d i n U. L e t V:=VlxV2
be an open subset c o n t a i n e d
i n U w i t h Yl and V 2 open subsets o f E and G r e s p e c t i v e l y . F i x y o E V 1 and l e t (Wn:n=1,2,..)
be a b a s i s o f yo-nghbs c o n t a i n e d i n V2.
Set A(n,r):=(x€V1:
llf(x,y)ll Lr f o r a l l yGWn), where 11.1 stands f o r t h e norm o f F ( F may be assumed normed ) . Since A ( n , r ) = n ( l l f lomorphic, each A(n,r) Since
lt-'([O,r]): y € W n ) and each f i s hoY Y n,r=l,Z,..). i s c l o s e d i n V and a l s o V,=U(A(n,r):
E i s Baire, there e x i s t
n and r such t h a t i n t ( A ( n , r ) ) #
t h e r e i s a p o i n t x i n V1 and an open x-nghb Z w i t h
c ZXV,.
16
and hence
I l f ( x , y ) \ l S r f o r a l l (x,y)
//
Theorem 12.2.29:
L e t E ba a B a i r e space, G a m e t r i z a b l e space, (F,II.II)
notmed space and U a non-void open s u b s e t o f ExG. L e t f : U +
a
F be a s e p a r a t e l y
holomorphic mapping which i s bounded on t h e subsets o f U o f t h e form KxL, K being a finite-dimensional
compact subset o f E and L a compact subset o f G .
Then f i s holomorphic. P r o o f : We may suppose U=UlxU2. function g(j,x):=f(
5
7 +2x,y)
Since CxG i s m e t r i z a b l e and 1 2 . 1 . 6 ( i ) ,
the
d e f i n e d on U * : = ( k C : $ + 2 x CU1)xU2 i s holomor-
U1 and x i n E. F i x (a,b)CU and l e t W1xW2 be an open absol u t e l y convex subset o f ExG such t h a t (a,b)+WlxW2 CU. Set Bn:=(x&W1:
phic f o r a l l
in
Il(m!)-l~mf(a,b)(x,y)ll,cn,
f o r a l l y C V n and m=0,1,2,..), where (Vn:n=1,2,.)
i s a d e c r e s i n g b a s i s o f 0-nghbs i n G w i t h V1CGJ2. Given y.CW2, d e f i n e f*: W1x(%y: ' X t C and Ay(W2)-F,
by f * ( x , % y ) : = f ( ( a , b ) + ( x , % y ) ) .
Since Ex(hy: r mf(0,O) IXEC) i s B a i r e ( 1 . 4 . 1 ) , f* i s holomorphic by 1.2.28 and hence ( m ! ) - l9
i s continuous f o r e v e r y m=0,1,2,. . Since (m!)-l$mf*(O,O)(x,y)=(m!)-%mf(a,b) (0,O)
f o r every x 6Wly
t h e mapping x t t ( m ! ) - 1 6 m f ( a , b ) ( x , y )
i s continuous on
. ) : Indeed, i f f o r some xCW1 and f o r each m y t h e r e e x i s t l m E C w i t h \ > m l C 1 and ym(Vm such t h a t I l f ( ( a , b ) + ( ; t m x , y m ) ) \ I m y then g(a,x) i s unbounded on t h e compact
W1 and hence Bn i s c l o s e d i n W1.
Moreover, W1=u(Bn:n=l,2,.
>
) , a c o n t r a d i c t i o n . Thus, g i v e n x&W1, s e t (2.x: I X k l ) x ( (b+y :m=l,Z,..)L'(b) m t h e r e i s n such t h a t I l f ( ( a , b ) + ( fix,y))ll 5 n f o r every1AcC w i t h I ? \ S l and A m By DIy1.l3, Il(m!)-l'$mf(a,b)(x,y)l) d sup( 11 (m!) -19 f(a,b)(lx,z)! e v e r y y EV,.
: l ~ l $ lz, €Vn),(sup(
IIf((a,b)+(fix,z))\\
: 12\L1,z€Vn) L n f o r every m=O,l,
...
and hence x E B n . Now a c a t e g o r y argument shows t h e e x i s t e n c e o f a p o s i t i v e
CHAPTER 12
469
i n t e g e r n such t h a t i n t ( B n ) # d and hence t h e r e i s a p o i n t x E B n and an absol u t e l y convex 0-nghb V w i t h x+VCBn. By 0 . 5 . 1 2 ( i i ) , ~ ~ ( m ! )- l . a’ m’ f ( a , b ) ( x , y ) l l ,C n f o r each (x,y)EVxVn and each m=0,1, (a,b)
...
The TAYLOR s e r i e s expansion a t
shows t h a t f i s bounded on (a,b)+2-lVxVn
P r o p o s i t i o n 12.2.30:
which concludes t h e p r o o f .
//
.) be a c o u n t a b l e p r o d u c t o f Bai-
L e t E=T(En:n=l,2,.
r e m e t r i z a b l e spaces. Then E i s h - b a r r e l l e d . P r o o f : F o r each m y s e t Gm:=TT(En:n=m+l,m+2,..). space and
7a
subset o f x ( E , F )
s e t s o f E. L e t us check t h a t
be a normed
bounded on f i n i t e - d i m e n s i o n a l compact sub-
3; i s
l o c a l l y bounded, o r e q u i v a l e n t l y t h a t t h e i s l o c a l l y bounded. I f t h i s i s
d e f i n e d i n 12.1.11
function g : E - t l m ( ~ , F )
L e t (F,II.lI)
which i s holomorand c o n s i d e r g * E +l””(?,F) Y‘ 1 i s h - b a r r e l l e d (12.2.19), y t G 2 . I f , f o r e v e r y x L E 1 and v C E ,
n o t t h e case, w r i t e E=ElxG2 p h i c s i n c e El
t h e mapping gV:sp(x)xG2-+lp(
5,F)
, gv(sx,y):=g(v+(sx,y))
i s holomorphic i n
we a p p l y 12.2.29 t o o b t a i n t h a t g i s l o c a l l y
a nghb o f ( s x : s C C , ( s l & l ) x ( O ) ,
bounded. Thus, t h e r e i s v C E and x GE1 w i t h g (sxlyy) i s n o t bounded on a 1 V GE1xE2 and d e f i n e f S y t : G 2 4 F nghb of (sxl:s €C, I s l L l ) x ( O ) . W r i t e v=(vl,zl) by fsyt(y):=f(sxl+tvl,y).
The f a m i l y 5 1 : = ( f S y t : f 4 F
i n G2 and, consequently,
i s unbounded on any zl-nghb
, s,t CC, I s l L 2 , It1 -L 2)
Fl
i s not locally
bounded on G2 but i s c l e a r l y bounded on f i n i t e - d i m e n s i o n a l compact subsets o f G2. By i n d u c t i o n , determine sequences (vn:n=1,2,..) E such t h a t t h e f a m i l y F k : = ( f s j=l,..
L C Y \ S . \ C 2 , \ t . \ ~ 2, J J on f i n i t e - d i m e n s i o n a l compact
( y ) : = f ( SlXl+tlV1,. - - , s Ytk skxk+tkvkyy) w i t h Y C G ~ + ~ Then, . gj;eh’k, there exists f(k)CF,
subsets o f Gk+ly
EC, j = l , . . , k ,
w i t h fs
and u(k)rZGk+l
sk(k)xk+tk(k)vk,u(k))
w i t h l\f(k)(sl(k)x
sp((xn,vn)~(u(k)(n):k=1,2,.
and u ( k ) ( j ) = O f o r j=l,Z,..,k.
.I).
o f En and hence H:=mHn:n=l,2,..) family o f a l l
f/H,fCT
on f i n i t e - d i m e n s i o n a l i n H (12.2.19).
.di s
s.(k),t.(k) J J
t o E with We s e t Hn:=
i s a Fre‘chet space. NOW, s e t
fi f o r
the
a f a m i l y o f holomorphic f u n c t i o n s on H bounded
bounded on t h e compact subsets o f H. L e t us
00
sn,tn CC, I s n \ 6 2 ,
?is
y
................. ,
compact subsets o f H and hence& i s l o c a l l y bounded
Thus,&is
and we a r e done. Thus,
.... . ....
Each Hn i s a f i n i t e - d i m e n s i o n a l subspace
i s n o t bounded: s e t K:=
c o n s t r u c t a compact subset o f H i n w h i c h & fl(snxn+tnvn:
+t (k)vly
1 1 Il>k. We may c o n s i d e r each u ( k ) b&nging
c o o r d i n a t e s (u(k)(n):n=1,2,..)
in
,t : f c 3 , s j y t j
,k) i s n o t l o c a l l y boundeh’bh;*b&kdeb k=1,2,..,
and (xn:n=1,2,..)
ItnlL2) +
( (u(k):k=l,Z,..)U(O)
)
l o c a l l y bounded.
Now l e t U be a non-void open subset o f E and Y&(U,F)
a f a m i l y bounded
BARRELLED LOCALLY CONVEXSPACES
470
on finite-dimensional compact subsets of U . We consider f i r s t U=UlxG2, where U1 i s an open subset of E l . I f we f i x v:=(v(n):n=1,2,..) i n U , take W1 a s an open absolutely convex subset of El w i t h xl+WICU1 and s e t W:=WlxG2. -1"m , f ( 5 ) i s bounded on finite-dimensioClearly, :=( ( m ! ) d f ( v ) : m = O , l , . . nal compact subsets of W . For each xcW1, set y x : = ( P x : P & ) w i t h Px(y):= P(x,y) f o r each y(G2. Clearly, ~ x C ~ ( G 2 , F i s ) bounded on finite-dimensio-
9
nal compact subsets of G2. Let (Zk:k=1,2,..) be a basis of 0-nqhbs i n G2. According t o the f i r s t p a r t of t h i s proof, there exist r,k such t h a t IIPx(y)II
_Cr f o r each y(Zk and P i n p, hence W 1 = u ( A ( k , r ) : k , r = 1 , 2 , . . ) ,A(k,r):= (xhW1: ~ ~ P x ( y ) ~y~hLZ kr , P c ~ ) Each . A(k,r) i s closed i n the Baire space W1 and hence 11P!x7y)111r f o r each (x,y)(VxZk f o r some k,r and a 0-nghb V contained i n W1 (see 0 . 5 . 1 2 ( i i ) ) . T h u s , 3; i s bounded on v+2-lVxZk. A repeated use of the former argument shows the conclusion t r u e . // Theorem 12.2.31: The a r b i t r a r y product E=-TTfEi:i GI) of Baire metr zabl e spaces Ei i s h-barrelled. Proof: Let 3; be a subset of %(U,f) w i t h U=TT(Ui:iCI) bounded on f i n i t e -dimensional compact subsets of U and set g:U---lP($,F) f o r the G-ho omorphic mapping defined i n 12.1.11. The s e t @ ( E i : i & I ) i s determining f o r g . Proceeding a s we d i d i n 12.2.13, i f g does not f a c t o r through a f i n i t e product of E i ' s , take sequences ( w n : n = 1 , 2 , . . ) and ( v n : n = 1 , 2 , . . ) i n Un&(Ei:iQ) n n w i t h IIg(w +v )\i> n f o r each n . The set K:=(wn+vn:n=1,2,..)U(0) i s compact. Q : = ( i EI:wn(i)#O o r v n ( i ) # O ) i s countable and G:=n(E CQ) i:i i s h-barrelled (12.2.30) and hence g / ( U n G ) i s holomorphic b u t unbounded on K . That i s a contradiction, hence g f a c t o r i z e s through a f i n i t e product of f a c t o r spaces from where the conclusion fol lows.
//
Our next aim i s t o find a c l a s s of spaces f o r which the concepts of hb a r r e l l e d , h-bornological and h-quasibarrelled coincide. The core of the proof of 1 2 . 1 . 6 ( i i ) was the claim in i t and the f a c t t h a t , i f f C q c ( U 7 F ) , t h e n 6 m f ( x ) i s bounded on compact subsets of U f o r each x t U and m=0,1,2.. We study two related r e s u l t s : Proposition 12.2.32: IfyC%(U,F) i s bounded on (finite-dimensional) compact subsets of U , then (^dmf(x):ftF) i s bounded on (finite-dimensional) compact subsets of E f o r each x CU and m = = 1 , 2 , . . Proof: Let K be a compact subset of E . There i s a > O such t h a t x+bzCU
CHAPTER 12
471
f o r a l l bCC such t h a t Bf :==(
I
bl
f (x+bz) : I b l =a,z E K)
. Clearly,
(2"f ( x ) (K) :f
($1
$mf(x)(K)Ca-m(mI)Bf, C a - m ( m ! ) u ( Bf
and, since
i s bounded on the compact s e t (x+bz: I bl=a,xCK),
_.
I bl=a,fc'5;)
acx(f(x+bz):
we have t h a t
P r o p o s i t i o n 12.2.33:
P(mE,F)
the s e t A:=
C A,
i s bounded i n F. Therefore, since U ( B f : f E $ )
u(i m(fx ) (K) :f
E
9)=
($f ( x ) ( z ) :z 6 K,f
( 3 )C a-"(m!
:fLF)
)A.
//
L e t E be a b a r r e l l e d (DF)-space and F a space.
i s bounded on f i n i t e - d i m e n s i o n a l compact subsets o f
E,
then
Ifxc
3; i s
amply bounded. Proof: Set y*:=(AELs(mE,F):
F* i s
%C$).
bounded on f i n i t e - d i m e n s i o -
nal compact subsets o f Em. By t h e P o l a r i z a t i o n Formula,
F* is
bounded as a
subset o f L(mE,F) f o r t h e topology o f the simple convergence. By K2,540.2.
( l l ) ,F * i s equicontinuous and hence F i s equicontinuous. By 12.1.10,the conclusion f o l l o w s .
//
D e f i n i t i o n 12.2.34: $mf(x)€P(mE,F)
%,*(U,F)
i s t h e space o f a l l f6%G(U,F)
fo a l l x i n U and m=1,2,
P r o p o s i t i o n 12.2.35:
X(U,F)= %',(u,F) E
Proof: Suppose
...
Clearly, %,(U,F)L
I f E i s h-quasibarrelled (resp.
l y ) . L e t x E U and fs%D(U,F).
, h - b a r r e l l e d ) , then
I t s u f f i c e s t o show the existence o f an open
p(z-x).La-')
There e x i s t s p(cs(E)
i s contained i n U and (1-b)x+bzGU f o r a l l b 4
C w i t h I b K a and z C V and f ( z ) - T ( j ! ) - % j f ( x ) ( z - x ) f((1-b)x+bz)
T,*(U,F).
(resp., X ( U , F ) = X,,(U,F)), f o r any u i n E. h-quasi b a r r e l l e d ( t h e h-barrel 1ed case f o l lows analogous-
x-nghb VCU such t h a t f / V i s continuous. F i x a ) l . such t h a t V:=(z:
such t h a t
= (2~i)-'J,~,=~
... .Set fm:V-+F :=( fm:m=l ,2,. - ) . 9i s bounded i n
/ bm+l(b-l) db f o r every z C V and m=1,2,
m
( x ) (z-x) and fm( z) := &(j ! (%(V,F) ,to) and hence equicontinuous,
since E i s h-quasibarrelled.
converges t o f over t h e p o i n t s o f V, the s e t ~ ( z ) : = ( f m ( z ) : m = 1 , 2 , . . ) l a t i v e l y compact i n F f o r each z i n compact i n (C(V,F),to)
v.
by
Since i s re-
By ASCOLI's theorem, 's; i s r e l a t i v e l y
and hence i t has an adherent p o i n t g LC(V,F).
For
every q G c s ( F ) and Z G V , we have q ( f ( z ) - g ( z ) ) = O . Since F may be assumed Hausdorff, f / V coincides w i t h g and t h e conclusion f o l l o w s .
Theorem 12.2.36:
//
L e t E be a bornological b a r r e l l e d (DF)-space such t h a t
E and F. The f o l l o w i n g c o n d i t i o n s are equivalent: ( i ) E i s h-bornological; ( i i ) E i s h - b a r r e l l e d and ( i i i ) E i s V,(U,F)=
gD*(U,F)
f o r each U i n
472
BARRELLED LOCALLY CONVEXSPACES
h-quasibarrelled. Proof: Clearly, (if implies (iii). If (iii) holds, 12.2.35 shows that %(U,F)= PD(U,F) and by assumption, gD*(U,F). Fix an open subset U in E. In order to prove (ii), it suffices to show that, ifycp(U) is bounded on finite-dimensional compact subsets of U, then ?is locally bounded by 12.1.15. Define g:U+lm(~,F) as in 12.1.11. By 12.2.32 and 12.2.33, gC&’D,(U,F) and hence gEx(U,F). Thus 3; is locally bounded by 12.1.11. Now suppose that (ii) holds. By 12.2.35, %(U,F)= gD*(U,F) and hence Z(U,F)= XD(U,F) by assumption. By the claim in the proof o f 12.1.6(ii), Yc(U,F)= YD(U,F) and hence %(U,F)= Pc(U,F) as desired./,
x(U,F)=
Theorem 12.2.37: In sequentially retractive (s.r.1 (LB)-spaces, the notions of h-bornological, h-barrelled and h-quasibarrelled coincide. Proof: By 8.5.48, we may suppose that the (LB)-space (E,t)=ind((En,tn): n=1,2,..) is compactly regular. By 12.2.36, it suffices to prove that ZD(U,F) =vD*(U,F) for any U and F. Let f&’J4D*(U,F) and K a compact subset of (E,t). Since (E,t) is compactly regular, there exists a positive integer p such that K is contained and it is compact in ( U O E ,t ) . Set f :=f/(Uf\E ) . Clearly, P P P P Gnfp(x) = ^anf(x)oJ for each xt U n E and every n. Thus, f Cp?,,,((UnEP,tp) P P P , F ) . By 12.2.19, (E ,t ) is h-barrelled and hence 12.2.35 shows that f 6 P P P %((UnEp,tp),F). Thus, f(K)=fp(K) is bounded in F as required. //
In what follows we shall provide examples which show that the holomorphically significant properties introduced in this chapter are different. First observe that any metrizable non-barrelled space is an example o f a hbornological space which is not h-barrelled. If x(C R ( C R ) o , the space E:= sp( (CR ),U(x) ) endowed with the topology induced by CR is a Baire space which is not bornological (6.2.16). Thus, E is h-barrelled (12.2.19) but not h-bornological. Unfortunately, the topoloqical product of two h-barrelled or h-bornological spaces need not be even h-quasibarrelled as the following examples shows: Example 12.2.38: Let Xo be an infinite-dimensional complex Banach space. Set X,:=C for m=1,2,.. and E:=Xo @@(Xm:m=1,2,..), Ek:=Xo@ @(Xm:m=l,.,k) for each k. Xo is h-barrelled (12.2.19) and h-bornological (12.1.6(i)) and @ (Xm:m=1,2,..) is h-barrelled (12.2.23) and h-bornological (12.1.6(ii)). We shall see that E is not even h-quasibarrelled. If this is true, E is an
CHAPTER 12
473
example of a s t r i c t (LB)-space E = s - i n d ( E k : k = 1 , 2 , . .) which i s not h-quasibarr e l l e d and a l s o of a non-h-barrelled countable inductive l i m i t of h-barrelled spaces. By 12.1.8(a), f o r every positive integer m y there i s a function g m t % ( X 0 ) unbounded on Bm:=(xCXo: I l ~ l l S m - ~ )I .f x : = ( x k : k = O , l , . . ) belongs t o E , s e t 01 .& f(x):= ~ g m ( x o ) x m and f k ( x ) : = c g m ( x o ) x m f o r k = 1 , 2 , . . Since f/Ek i s holomorphic and E i s compactly regular, f i s bounded on compact subsets of E and ? : = ( f k : k = 1 , 2 , . . ) i s a l s o bounded on compact subsets of E . Moreover,xconverges pointwise t o f . Should 3;' be amply bounded, then f would be l o c a l l y bounded. W e shall see t h a t f i s not l o c a l l y bounded a t 0 from where our des i r e d conclusion follows. Suppose the existence of a 0-nqhb V i n E and a positive constant M such t h a t s u p ( I f ( y ) l :yCV) CM. Clearly, there i s k and positive s c a l a r s a(m), m=1,2,.., such t h a t , i f Cm:=(a&C: l a \ & a ( m ) ) , t h e n Bk O$CmCV and hence ff(y,O, O,a(k),O, . . . ) \ GM f o r every y & B k . T h u s , I g k ( y ) ( -L Ma(k)-' f o r each yEBk and t h a t i s a contradiction since gk i s unbounded on B k . Observe t h a t , since each f k belongs t o g(E)and since %converges t o f uniformly on compact subsets, we have a l s o seen t h a t ( X ( E ) , t o ) i s not sequentially complete. Now replace Xo i n the construction by CN. By DI,4.25, t h e r e e x i s t s a sequence (g : m = l Y 2 , . . ) , g , & Y ( C N ) such t h a t , given any 0-nqhb V i n C N , then
..,
m
some g, i s unbounded on V and the above construction can be repeated t o obtain t h a t C N x C ( N ) ( which i s an inductive l i m i t of copies of CN o r a s t r i c t directed projective l i m i t of copies of C ( N ) ) i s not h-quasibarrelled. Proposition 12.2.39: Let E=s-d-proj(E :n=1,2,. .) be the s t r i c t directed n projective l i m i t of a sequence of spaces E n in which weakly holomorphic mappings on open s e t s a r e holomorphic. T h e n , y ( U , F s ) = F ( U , F ) f o r every open s e t U of E. Proof: Let Q n : E 4 En the n - t h continuous projection and suppose t h a t U= Q, -1(Ql(U)) and Qn+l-l(0)CQn-l(O) f o r each n . I t s u f f i c e s t o show t h a t f f a c t o r i z e s through some E n . I f not, s e l e c t sequences ( x n : n = 1 , 2 , . . ) in U and (yn:n=1,2,..) i n E such t h a t Qn(yn)=Oand f ( x n + y n ) # f ( x n )f o r each n . Define b h f(xn+byn)-f(xn) f o r b CC. This mapping i s non-constant and e n t i r e and, by 0 . 5 . 1 2 ( i ) , choose (b(n):n=1,2,..) i n C such t h a t ~ ~ f ( x n + b ( n ) y n ) - f ( x >n )nl,I
0 . I I being the norm on the Banach space F. Given v C F ' , vof i s holomorphic and hence vof f a c t o r s through some Em. Then, vof(xn+b(n)yn)-v*f(xn)= 0 f o r a l l n 7 / m , a contradiction since (f(xn+b(n)yn)-f(xn):n=l,2. . ) converges
BARRELLED LOCALLY CONVEXSPACES
474
weakly t o zero.
/I
C o r o l l a r y 12.2.40: Example 12.2.41: nor h-bornological.
CNxC(N) i s a MN-space,
but n o t h-quasibarrelled.
A h - q u a s i b a r r e l l e d space which i s n e i t h e r h - b a r r e l l e d L e t G be t h e t o p o l o g i c a l p r o d u c t T ( E i : i
t I ) o f metri-
z a b l e spaces Ei such t h a t c a r d ( I ) = c and w i t h a t l e a s t one o f then which i s n o t barrelled. I f xCG\Go, barrelled nor bornological
s e t E:=sp(GoU(x)).
. On
w i t h respect t o the i n j e c t i o n s T ( E i : i t a b l e p a r t s o f I (see 0.1.3
By 6.2.17,
E i s neither
t h e o t h e r hand, Go c a r r i e s t h e f i n a l topology 6P)-
5,
P r u n n i n g through a l l coun-
) . Proceedina as i n t h e p r o o f o f 12.2.21,
if U
i s a non-void open subset o f Go and i f t stands f o r t h e p r o d u c t topology, (U,t)
has t h e f i n a l topology w i t h r e s p e c t t o t h e canonical i n c l u s i o n s
UA'rr(Ei:icP)-+ hence (E,t)
(U,t).
lde s h a l l see t h a t (Go,t)
w i l l be h - q u a s i b a r r e l l e d by 12.1.22.
L e t ? be a subset o f X(U,F) -la(F,F)
i s h - q u a s i b a r r e l l e d and
bounded on compact subsets o f U and s e t g:U
f o r t h e G-holomorphic f u n c t i o n d e f i n e d i n 12.1.11.
t o show t h a t g i s continuous. Since each F ( E i : i t P ) hence h - q u a s i b a r r e l l e d ) , g/(UATT(Ei:i
CP))
ments above, g i s continuous as d e s i r e d .
I t i s enough
i s m e t r i z a b l e ( and
i s continuous and, by o u r com-
/I
12.3 Notes and Remarks.
A p r e c i s e understanding o f t h e c o n t e n t o f t h i s chapter r e q u i r e s a knowledge o f t h e b a s i c t h e o r y o f I n f i n i t e Holomorphy and those r e s u l t s which a r e used droughout o u r e x p o s i t i o n a r e l i s t e d i n Chapter 0. The i n t e r e s t e d reader should l o o k a t t h e p i o n e e r i n g work o f NACHBIN,(l) and t h e more r e c e n t books BARROS0,(5), CHAE,(l), DINEEN,(DI) and MUJICA,(5). B o r n o l o g i c a l , b a r r e l l e d , quasi b a r r e l l e d and Mackey spaces appear when l o c a l l y convex spaces a r e c l a s s i f i e d according t o t h e i r behaviour w i t h r e s p e c t t o b a s i c p r i n c i p l e s and p r o p e r t i e s o f L i n e a r F u n c t i o n a l A n a l y s i s . Replacing l i n e a r mappings by holomorphic mappings, h - b o r n o l o p i c a l (12.1.5) h - b a r r e l 1ed and h-quasi b a r r e l 1ed (12.1.12) and h-Mac key (here c a l l ed MN-) spaces can be d e f i n e d (see NACHBIN,(E) ,(3) and BARROSO,MATOS,NACHBIN,(4)). T h i s l a s t r e f e r e n c e i s a readable account o f t h e b a s i c t h e o r y o f holomorphic a l l y s i g n i f i c a n t p r o p e r t i e s w i t h f u l l p r o o f s and t h i s has been o u r p r i n c i p a l source o f i n s p i r a t i o n f o r p r e s e n t i n g t h i s m a t e r i a l . The f o l l o w i n g r e s u l t s can be seen t h e r e : 1 2 . 1 . 6 ( i ) ; 12.1.7; 12.1.11; 12.1.14; 12.1.15; 12.2.18; 12.2.19; 12.2.20; 12.2.23; 12.1.18 and 12.1.19. There i s another source which has i n f l u e n c e d o u r p r e s e n t a t i o n , namely ARAGONA,(l) where one can f i n d 12.1.2; 12.2.32; 12.2.33; 12.2.34; 12.2.35; 12.2.36 and 12.2.37. I n BARROSO,MATOS,NACHBIN,(4) one can f i n d t h e p r o o f o f every (LS)-space
CHAPTER 12
475
.
b e i n g h - b o r n o l o g i c a l T h i s r e s u l t was extended by DINEEN,(l) t o (DFM)-spaces ( 1 2 . 2 . 6 ( i i ) ) and o u r p r o o f uses i d e a s t o be found i n ARAGONA,(l). 12.1.8 f o l l o w s NACHBIN,(3). The f a c t t h a t i n e v e r y i n f i n i t e - d i m e n s i o n a l complex normed space t h e r e e x i s t s an e n t i r e complex-valued f u n c t i o n unbounded on some bounded s e t f o l l o w s from a deep r e s u l t o f JOSEFSON,(1),(2) and NISSENZ V E I G , ( l ) , namely 12.3.1: I f E i s an i n f i n i t e - d i m e n s i o n a l normed space, t h e r e e x i s t s a sequeni s a n u l l sequence ce(f(m):m=l,Z,..) i n E ' such t h a t ( <x,f(m)> :m=1,2,..) f o r any x i n E and y e t llf(m)ll = 1 f o r a l l m. which s o l v e d a l o n g - s t a n d i n g open q u e s t i o n i n Banach Space Theory. The i d e a behind 12.2.5 and 12.2.6 appears i n BOLAND,DINEEN,(l) and those r e s u l t s t o e t h e r w i t h 12.2.4; 12.2.7; 12.2.8; 12.2.9 and 12.2.11 can be seen i n MORAES,~l),(P), where she asks i f s t r i c t i n d u c t i v e l i m i t s o f F r e c h e t Monte1 spaces such t h a t t h e i r s t r o n g d u a l s a r e h - b o r n o l o g i c a l have a c o n t i nuous norm. 12.2.38 i s based on i d e a s o f DINEEN,(4) and appears i n NACHBIN,(3) (see a l s o BARROSO,MATOS,NACHBIN,(4) which i n c l u d e s a l s o 12.2.3). The Continuum Hypothesis i n 12($)3 can be e l i m i n a t e d as showed by JECH and a l s o DINEEN,(3), Prop. 2 . Then, C f o r uncountable A serves as an example o f an u l t r a b o r n o l o g i c a l space h i c h i s n o t a MN-space, s i n c e a non-continuou -homogeneous polynomial p:C?A) ~ ~ ( A X can A ) be c o n s t r u c t e d such t h a t p:CTAf-+l2(AxA), i s continuous (see DINEEN,(3)). 12.1.20; 12.1.21 and 12.1.22 can be seen i n GALINDO,GARCIA,MAESTRE,(l). 12.2.12; 12.2.13; 12.2.14 and 12.2.16 appear i n MAESTRE,(l) where t h e t e c h n i q u e s o f MORAES,(1),(2) a r e used t o s t u d y p r o d u c t s . 12.2.7 i s due t o BARROSO,NACHBIN,(P). 12.2.28 i s a HARTOGS' t y p e theorem (see NOVERRAZ,(l),p.31) and 12.2.29 extends r e s u l t s o f BOCHNAK,SICIAK,(l) ( w i t h t h e e x t r a assumption o f ExG b e i n g B a i r e ) and MATOS,(l) ( w i t h E a F r 6 c h e t space), and can be seen i n BONET,GALINDO,GARCIA,MAESTRE,(G). 12.2.30 and 12.2.31 can be found i n MAESTRE (1). 12.2.39 and 12.2.40 a r e s u b s t a n t i a l l y due t o DINEEN,(3) and o u r formuwhere t h e f o l l o w i n g r e s u l t can t i o n f o l l o w s BONET,GALINDO,GARCIA,MAESTRE,(6) a l s o be seen 12.3.2: I n ( C ( X ) , t o ) , t h e n o t i o n s o f b a r r e l l e d and h - b a r r e l l e d space c o i n c i d e a n d e same i s t r u e f o r t h e q u a s i b a r r e l l e d case. T h i s l a s t r e s u l t i s o b t a i n e d v i a techniques due t o SORAGGI (see DI,Ch.6). The n o t i o n s o f p o l y n o m i a l l y b o r n o l o g i c a l , b a r r e l l e d , e t c . . can a l s o be t r e a t e d (see ARAGONA,(l)) b u t we s h a l l n o t e n t e r t h i s t o p i c here.
This Page Intentionally Left Blank
47 7
CHAPTER THIRTEEN
A SHORT COLLECTION OF OPEN PROBLEMS
Chapter One
13.1.1
I s i t t r u e t h a t e v e r y Banach space c o n t a i n s a dense h y p e r p l a n e w h i c h i s not Baire?
13.1.2 13.1.3
P r o v i d e permanence p r o p e r t i e s f o r spaces e n j o y i n g p r o p e r t y (K) F i n d a ( m e t r i z a b l e ) B a i r e space E such t h a t ExE i s n o t B a i r e
Chapter Two
13.2.1 13.2.2 13.2.3
Does e v e r y b a r r e l l e d p r e h i l b e r t i a n space have t h e quasicomplementat i o n p r o p e r t y (QCP)? (VALDIVIA) L e t E b e a non-normable F r 6 c h e t space and l e t F be a c o u n t a b l e -codimensional subspace o f E. Does F have a q u o t i e n t isomorphic t o KN? F i n d n o n - l o c a l l y convex spaces w h i c h a r e m i n i m a l and show i f m i n i m a l and q-minimal spaces a r e d i f f e r e n t
Chapter Four
13.4.1 13.4.2 13.4.3 13.4.4 13.4.5
L e t E be a b a r r e l l e d space n o t endowed w i t h t h e s t r o n g e s t l o c a l l y convex t o p o l o g y . Does E have a b a r r e l l e d c o u n t a b l e enlargement? Does e v e r y i n f i n i t e - d i m e n s i o n a l Banach space have a p r o p e r dense n o n - b a r r e l l e d subspace? I f E i s an i n f i n i t e - d i m e n s i o n a l F r e c h e t space and F a subspace o f E s t r i c t l y dominated by an (LF)-space, i s t h e r e a c l o s e d i n f i n i t e -dimensional subspace H o f E t r a n s v e r s a l t o F? C h a r a c t e r i z e t h e p a i r s (al,E), 1, b e i n g a Ktlthe e c h e l o n space and E a b a r r e l l e d space, such t h a t t h e space 114Ej i s b a r r e l l e d G i v e a boolean c h a r a c t e r i z a t i o n o f t h o s e r i n g s ?& f o r w h i c h mo(#) i s barrel led
Chapter F i v e
13.5.1
L e t E be a s e p a r a b l e i n f i n i t e - d i m e n s i o n a l F r i c h e t space such t h a t i t s s t r o n g d u a l E'b has t h e M.c.c.. Does E l b have t h e s.M.c.? (VALD I V I A)
BARRELLED LOCALLY CONVEXSPACES
478
Chapter S i x
13.6.1 13.6.2
I s e v e r y p r o d u c t o f b o r n o l o g i c a l spaces aga n b o r n o l o g ica ? (MACKEY) L e t E be a b o r n o l o g i c a l (DF)-space. I s co(E borno 1 og ic a 1
Chapter Seven
13.7.1
F i n d b a r r e l l e d 8,-complete spaces w h i c h a r e n o t 6-complete and f i n d l',-spaces w h i c h a r e n o t p-spaces (VALDIVIA)
Chapter E i g h t
13.8.1 13.8.2 13.8.3
I s t h e c o m p l e t i o n o f an (LB)-space a g a i n an (LB)-space? C h a r a c t e r i z e t h e x z q u a s i b a r r e l ledness o f co(E) L e t X be a H a u s d o r f f c o m p l e t e l y r e g u l a r space and E a (DF)( r e s p . , (gDF)-) space. I s (Cb(X,E),u) a (DF)- (resp., (gDF)-) space? 1 3 . 8 . 4 L e t E be a q u a s i b a r r e l l e d (DF)-space w i t h t h e M.c.c.. Is E b o r n o l og ic a 1 ? 1 3 . 8 . 5 F i n d c o n d i t i o n s t o ensure t h a t a c l o s e d subspace o f a (DF)( r e s p . , (gDF)-) space i s a g a i n a (DF)- ( r e s p . , (gDF)-) space 1 3 . 8 . 6 I s e v e r y r e g u l a r (LB)-space complete? (GROTHENDIECK) 1 3 . 8 . 7 Prove o r d i s p r o v e t h a t c o n d i t i o n s c . r . , b . r . , s.b.r. and p r o p e r t y (M) c o i n c i d e on r e g u l a r (LF)-spaces 1 3 . 8 . 8 F i n d necessary and s u f f i c i e n t c o n d i t i o n s f o r a c l o s e d subspace o f an (LF)-space t o be l i m i t o r w e l l - l o c a t e d subspace (even f o r c o n c r e t e (LB)-spaces (see BIERSTEDT,MEISE, ( 4 ) ) ) . 1 3 . 8 . 9 C h a r a c t e r i z e t h e (LF)-spaces w i t h an i n f i n i t e - d i m e n s i o n a l F r e c h e t space as a q u o t i e n t 1 3 . 8 . 1 0 L e t E b e indE a s t r i c t (LF)-space. Is i t t r u e t h a t E" = indE,"? (GROTHEND IE C K ~ 1 3 . 8 . 1 1 C h a r a c t e r i z e t h e (LF)-spaces w i t h b a r r e l l e d s t r o n g d u a l ( i .e., d i s t i n g u i s h e d (LF)-spaces. A c c o r d i n g t o a r e s u l t o f G r o t h e n d i e c k i f E = s - i n d En, each En b e i n g d i s t i n g u i s h e d , t h e n E i s a l s o d i s t i n g u ished 1 3 . 8 . 1 2 F i n d c o n d i t i o n s under w h i c h (LF)-spaces a r e H a u s d o r f f o r even regu I a r (FLORET) 1 3 . 8 . 1 3 I s e v e r y (LF)-space E=indEn i n w h i c h e v e r y s t e p w i s e c l o s e d subspace i s we1 I - l o c a t e d , r e g u l a r ? (FLORET) 1 3 . 8 . 1 4 Does e v e r y Banach space c o n t a i n a dense subspace w h i c h i s an (LF)space? 1 3 . 8 . 1 5 I s e v e r y FS-space a q u o t i e n t o f a s u i t a b l e Schwartz Ktlthe e c h e l o n space? 1 3 . 8 . 1 6 Does t h e t h r e e - s p a c e problem have an a f f i r m a t i v e s o l u t i o n f o r the p r o p e r t y o f being Im-barrel l e d ?
Chapter N i n e
1 3 . 9 . 1 Are t h e r e complete B a i r e - l i k e spaces w h i c h a r e n o t B a i r e ? (VALDIVIA) 1 3 . 9 . 2 Prove o r d i s p r o v e t h a t e v e r y s e p a r a b l e i n f i n i t e - d i m e n s i o n a l Banach space has a p r o p e r dense subspace w h i c h i s UBL b u t n o t i n d u c t i v e l i m i t o f B a i r e spaces ( f o r non-normable F r g c h e t spaces, spe VALDIVIA (50))
CHAPTER 73
13.9.3
479
I s m (X,#) c o n t a i n e d i n t h e domain c l a s s f o r a c l o s e d g r a p h theorem w h i c f has t h e spaces w i t h a b s o l u t e l y convex C-web as range c l a s s ?
Chapter Ten 13.10.1
C h a r a c t e r i z e t h e t o p o l o g i c a l spaces X f o r w h i c h ( C ( X ) , t o ) SB, TB, B- and Br-complete
i s BL,
Chapter Eleven C h a r a c t e r i z e t h e b a r r e l l e d spaces F such t h a t E @=F i s b a r r e l l e d f o r e v e r y m e t r i z a b l e b a r r e l l e d space E 13.11.2 I f E and F a r e FrEchet-Monte1 spaces, i s E S x F a g a i n a F r b c h e t -Monte1 space? (K6THE) 13.11.3 C h a r a c t e r i z e t h e p a i r s (E,F) o f d i s t i n g u i s h e d F r b c h e t spaces such t h a t E&=F i s d i s t i n g u i s h e d (see BIERSTEDT,BONET,(S)) 13.11.4 Is t h e r e a F r g c h e t space E such t h a t EC&E'b i s b a r r e l l e d ? E'b i s b a r r e l l e d C h a r a c t e r i z e t h o s e F r g c n e t spaces E for w h i c h E 13. 1.5 L e t E be a n u c l e a r F r 6 c h e t o r i t s s t r o n q d u a l . C h a r a c t e r i z e t h e (1) E @ ?, i s b a r r e l l e d , (2) E & F b a r r e l l e d spaces F such t h a t i s b a r r e l l e d (see GROTHENOIECK, (31, VOGT, ( 1 ) ,( 4 ) and KRONE,VOGT, (1)) L e t E and F be (DF)-spaces. Are E q F and E EF (DF)-spaces? 13. 1.6 (GROTHEND I ECK) I f E i s a F r i c h e t space and F i s a (DF)-space, i s Lb(E,F) a g a i n 13. 1.7 a (DF) -space? (GROTHEND I ECK) * 13. 1.8 L e t E be a (DF)-space such t h a t E mE F i s q u a s i b a r r e l l e d f o r e v e r y q u a s i b a r r e l l e d (DF)-space F. I s E an &-space? 13. 1.9 Which a r e t h e spaces E ( w i t h t h e c.n.p.1 such t h a t E c B a F = = ind(E @ Fn) l fa o r F=indFn , f o r a l l tensornorm t o p o l o g i e s and (F,)? (FLORET) a l l i n d u c t i v e sequences (BIERSTEDT,MEISE, 13. 1.10 When i s VoA(X) a l i m i t subspace o f V o C ( X ) ? SUMMERS., ( 5 ) 1 13.11.11 C h a r a c t e r i z e t h e spaces E such t h a t (C(K,E) to) i s b o r n o l o g i c a l f o r e v e r y compact space K 13.11.12 L e t E and F be b o r n o l o g i c a l (DF)-spaces. I s E a E F a l s o a bornol o g i c a l (DF)-space? (see HOLLSTEIN,(6)) I f k'7/1 and 1171, when i s Ck(Rn) E barre led? 13.11.13 13.11.14 When i s l P t E f b a r r e l l e d ? ( p ) l ) 13.11.1
Chapter Twelve 13.12.1 13.12.2 13.12.3 13.12.4
*
I s e v e r y (DFM)-space, h - b a r r e l l e d ? F i n d r i c h c l a s s e s o f b o r n o l o g i c a l , b a r r e l l e d spaces w h i c h a r e h-bornological , h-barrel l e d respectively L e t E and F be MN-spaces s ExF a MN-space? T h i s seems t o be open even f o r F:=C o r i f E:=KtNf and F i s a Banach space. L e t E:=s-indE be a s t r i c t i n d u c t i v e l i m i t o f FrEchet-Monte1 spaces En w i t h a conPinuous norm f o r each n such t h a t E ' b i s h - b o r n o l o g i c a l . Does E have a c o n t i n u o u s norm? (DE MORAES)
TASKINEN'S negative s o l u t i o n t o the problem o f topologies ( s e e 11.10) leads t o a negative s o l u t i o n o f 13.11.7 a s observed by S. DIEROLF.
This Page Intentionally Left Blank
48 1
A TABLE OF BARRELLED SPACES
I n what f o l l o w s A i s a s e t , X a compact subset o f X , E a H a u s d o r f f subset o f t h e e u c l i d e a n space, U a i n t h e e u c l i d e a n space w i t h v e r t e x and k a p o s i t i v e i n t e g e r .
c o m p l e t e l y r e g u l a r H a u s d o r f f space, K a l o c a l l y convex s p a c e , f i a non-void open p o l y d i s c i n Cn, p a c l o s e d convex cone i n t h e o r i g i n and w i t h non-void i n t e r i o r
This Page Intentionally Left Blank
483 BOOK REFERENCES I N THE TEXT
B1
BOURBAKl,N.:
General Topology. P a r i s , Hermann 1966
82
BOURBAKI ,N.:
Espaces V e c t o r i e l s Topologiques.
D
DIESTEL,J.:
DS
DUNFORD,N;SCHWARTZ,J.:
DU
DIESTEL,J;UHL,J.J.:
DI
DINEEN,S.:
E
ENGELKING,R.:
G
GROTHENDIECK,A.:
GJ
GILLMAN,L.;JERISON,M.:
GWS
GARNIR,H.G.;DE
H
HORVATH,J.:
JM
JAMESON,G.J.O.:
P a r i s , Masson 1981
Sequences and S e r i e s i n Banach Spaces. New York H e i d e l b e r g , S p r i n g e r V e r l a g 1984 L i n e a r O p e r a t o r s , P a r t I . New York, Pub1 i s h e r s I n c . 1958
-
Berlin-
lnterscience
V e c t o r Measures. M a t h e m a t i c a l Surveys No. 15, Providence, Amer. Math. SOC. 1977
Complex A n a l y s i s i n L o c a l l y Convex Spaces. N o r t h - H o l l a n d Math. S t u d i e s , Amsterdam, N o r t h - H o l l a n d 1981 General Topology, Warszawa, PWN 1977 LeCons s u r l e s espaces v e c t o r i e l s t o p o l o g i q u e s . Sao Paulo, l n s t i t u t o de Matema'tica Pura e A p l i c a d a U n i v e r s i d a d e de Sao Paulo, 2nd ed. 1958 Rings o f Continuous F u n c t i o n s . New York, Van N o s t r a n d 1960
WILDE,M.;SCHMETS,J.:
Analyse F o n c t i o n e l l e I . B a s e l , Birkhkluser V e r l a g 1968
T o p o l o g i c a l V e c t o r Spaces and D i s t r i b u t i o n s , Vo1. Reading, Addison-Wesley 1966
I.
Topology and Normed Spaces. London, Chapman and H a l l
1974 J
JARCHOW,H.:
L o c a l l y Convex Spaces. S t u t t g a r t , Teubner 1981
KA
KANTOROWITSCH,L.W.;AKILOW,G.P.:
KN
KELLEY,J.L.;NAMIOKA,I
K1
KOTHE,G.:
T o p o l o g i c a l V e c t o r Spaces I . S p r i n g e r V e r l a g 15169
K2
KUTHE,G.:
T o p o l o g i c a l V e c t o r Spaces I I . B e r l i n - H e i d e l b e r g - N e w York, S p r i n g e r V e r l a g 1979
M
MARTI,J.:
I n t r o d u c t i o n t o t h e Theory o f Bases. B e r l i n - H e i d e l b e r g - N e w York, S p r i n g e r V e r l a g 1969
et alt.:
Funktionalanalysis i n norrnierten Rklume. T h u n - F r a n k f u r t a.M., H a r r i Deutsch 1978 L i n e a r T o p o l o g i c a l Spaces. P r i n c e t o n , Van N o s t r a n d 1963 B e r l i n - H e i d e l b e r g - N e w York,
REFERENCES
484
P
PIETSCH,A.:
RR
ROBERTSON,A.P.;ROBERTSON,W.:
RO
ROLEWICZ,S.:
RU
RUDIN,W.:
S
SCHAEFER,H.H.:
SE
SEMADENI,Z.:
SI
SIERPINSK1,W.:
SIK
SlKORSK1,R.:
SM 1
SCHMETS,J.:
Espaces de F o n c t i o n s Continues. t i c s 519, S p r i n g e r V e r l a g 1976
SM2
SCHMETS,J.:
Spaces o f V e c t o r - v a l u e d Continuous F u n c t i o n s . L e c t u r e Notes i n Mathematics 1003, S p r i n g e r V e r l a g 1983
V
VALDIVIA,M.:
T o p i c s i n L o c a l l y Convex Spaces.North-Holland d i e s , Amsterdam, N o r t h - H o l l a n d 1982
W
WILANSKY,A.:
Modern Methods i n T o p o l o g i c a l V e c t o r Spaces. New York, McGraw-Hill 1978
N u c l e a r L o c a l l y Convex Spaces. B e r l i n - H e i d e l b e r g - N e w York, S p r i n g e r V e r l a g 1972 T o p o l o g i c a l V e c t o r Spaces. Cambridge, Cambridge U n i v e r s i t y Press 1973
M e t r i c L i n e a r Spaces. Warszawa, PWN 1972
F u n c t i o n a l A n a l y s i s . New York, McGraw-Hill
1973
T o p o l o g i c a l V e c t o r Spaces, New Y o r k - B e r l i n - H e i d e l b e r g , S p r i n g e r V e r l a g 1971 Banach Spaces o f Continuous F u n c t i o n s , V o 1 . I . PWN 1971 C a r d i n a l and O r d i n a l Numbers. Warszawa,
Warszawa,
PWN 1958
Boolean A l g e b r a s , B e r l i n - H e i d e l b e r g - N e w York, V e r l a g 1964
Springer
L e c t u r e Notes i n Mathema-
Math, S t u -
REFERENCES
AARTS,J.M.,LUTZER,D.J.: ( 1 ) Pseudo-completeness and t h e p r o d u c t o f B a i r e s p d ces. P a c i f i c J. Math., 48, 1-10, (1973) - _ _ _ _ _ _ _ _ _ ._(2) _ _Completeness ______ pro _p e-r-t i.e s designed f o r r e c o g n i z i n g B a i r e spaces. D i s s . Math. ,116, Warszawa 1974 ADASCH,N.: (1) Tonne1 i e r t e RUume und zwei S s t z e von Banach. Math. Ann., 186, 209-2 14, ( 1 970) (2) E i n o p t i m a l e r S a t z Uber o f f e n e Abbildungen. Math. Ann,, 265,
_ _ _ - _ _._ _ _ .
113-114, (1983) ADASCH,N.,ERNST,B.: -274, (1974)
(3) L o k a l t o p o l o g i s c h e Rkfume I . C o l l e c t . Math.,
25, 225-
. ( 4 ) L o k a l t o p o l o g i s c h e RYume I I . C o l l e c t . Math., 26, 13-18, (1974) ADASCH,N.,ERNST,B.,KEIM,D.: ( 5 ) T o p o l o g i c a l V e c t o r Spaces. L e c t u r e Notes i n Math., 639, S p r i n g e r V e r l a g 1978 AHMEDOVA,P.D.: (1) S e q u e n t i a l l y continuous 1 inear f u n c t i o n a l s i n s t r i c t l y i n d u c t i v e l i m i t s o f F r i c h e t - s p a c e s . Usp. Mat. Nauk., 27, 163-164, (1972) (Russian).
REFERENCES
485
AMEMIYA,I.: (1) Some examples o f (F) and (DF)-spaces. Proc. Japan Acad., 33, 169-171, (1957) A M E M I Y A , I . ,KOMURA,Y. : (2) n b e r n i c h t v o l I s t ' d n d i g e Monte1 ryume. Math. Ann., 177, 273-277, (1968) AMIR,D.,LINDENSTRAUSS,J.: ( 1 ) The s t r u c t u r e o f w e a k l y compact s e t s i n Banach spaces. Ann. o f Math., 88, 35-46, (1968) AMSTRONG,Th.,PRIKRY,K.: ( 1 ) On t h e s e m i m e t r i c o f a boolean a l g e b r a induced by a f i n i t e l y a d d i t i v e p r o b a b i l i t y measure. P a c i f i c J . Math., 99, 2 4 9 263, (1982) ANTOSIK,P.,SWARTZ,Ch.: (1) M a t r i x Methods i n A n a l y s i s . L e c t u r e Notes i n Math. 1113, S p r i n g e r V e r l a g 1985 (1) On t h e h o l o m o r p h i c a l c l a s s i f i c a t i o n o f spaces o f h o l o m o r p h i c ARAGONA,J.: germs. Nagoya Math, J., 84, 85-118, (1981) ARENS,R.: ( 1 ) A t o p o l o g y f o r spaces o f t r a n s f o r m a t i o n s . Ann. o f Math., 47, 480-495, (1946) ( 1 ) On a theorem o f O r l i c z and P e t t i s . P a c i f i c J. Math., 22, McARTHUR,C.W.: 297-302, ( 1 967) A R I A S DE REYNA,J.: ( 1 ) Dense hyperplanes o f f i r s t c a t e g o r y . Math. Ann., 249, 111-114, (1980) --_- - _ _ _ - - - _-_. ---. (2) l",(Z) no es t o t a l m e n t e t o n e l a d o . Rev.Rea1 Acad. C i
-
Madrid
_----------------: ( 3 )
Normed b a r e l y B a i r e spaces. I s r a e l J. Math., 42, 3 3 (1982). C o r r e c t i o n , I s r a e l J. Math., 50, 264, (1985) _ - _ - - _ _ - _ _ _ _._ (4) _ - _Non _ . B a i r e measure spaces. C o l l e c t . Math., 34, 109-
-36,
-114,
(1983)
( I ) R e p r e s e n t a t i o n o f h o l o m r p h i c f u n c t i o n s by boundary i n t e BAERNSTEIN,A.: g r a l s . Trans. Amer, Math. S O C . , 160, 27-37, (1971) BANACH,S.: (1) T h E o r i e des o p g r a t i o n s 1 i n g a i r e s . M o n o g r a f i e Matematyczne I , Warszawa 1932 ------_--. . ( 2 ) Oeuvres Vol. I I , Warszawa, PUN 1q7Q BARROS0,J.A.: ( I ) I n t r o d u c c i 6 n a l a h o l o m o r f i a en e s p a c i o s l o c a i m e n t e convexos. Pub1 i c a c i o n e s d e l Departamento de T e o r i a de Funciones, V a l e n c i a 1980 BARROS0,J.A. ,NACHBIN,L.: (2) A d i r e c t sum i s h o l o m o r p h i c a l l y b o r n o l o g i c a l w i t h t h e t o p o l o g y induced by a C a r t e s i a n p r o d u c t . P o r t u g . Math., 40, 252-256, (1981) _ _ _ _ _ _ _ _ _ - _ _ _ _.- -(3) - _ _Some - - - -t o. p o l o g i c a l p r o p e r t i e s o f spaces o f h o l o morphic mappings i n i n f i n i t e l y many v a r i a b l e s . Adavances I n Holomorphy (ed. : J.A.Barroso) North-Hol l a n d 1979 BARROSO,J.A.,MATOS,M.,NACHBIN,L.: (4) On holomorphy versus l i n e a r i t y i n c l a s s i f y i n g l o c a l l y convex spaces. I n f i n i t e Holomorphy and A p p l i c a t i o n s ( e d . : M.Matos). N o r t h - H o l l a n d Math. S t u d i e s 1977 BARROS0,J.A.: (5) I n t r o d u c t i o n t o Holomorphy. N o r t h - H o l l a n d Math. S t u d i e s , 106, Amsterdam 1985 BECKENSTEIN,E, , N A R I C I ,L. ,SUFFEL,C.: ( 1 ) Topological Algebra. North Holland Math. S t u d i e s , 24, 1985 BELLENOT,S.,DUBINSKY,E.: (1) FrEchet spaces w i t h n u c l e a r Ktlthe q u o t i e n t s . Trans. Amer. Math. SOC., 273, 579-594, (1982) BELLENOT,S.: (2) I n d u c t i v e l i m i t s o f Banach spaces. Canad. Math. B u l l . , 19, 495-496, (1974) BENNETT,G. ,KALTON,N.: ( 1 ) I n c l u s i o n theorems f o r K-spaces. ranad. J. Math., 25, 511-524, (1973) BEREZANSKI I ,J.A.: (1) I n d u c t i v e l y r e f l e x i v e l o c a l l y convex spaces. S o v i e t Math. D o k l . , 9, 1080-1082, (7968)
REFERENCES
486 BESSAGA,C.;PELCZYNSKI,A.:
(1)
On a c l a s s o f Bo-spaces.
5, 375-377, (1957)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ ._ _ (2) _ _S e_l e_c_t e_d _T _ o p.i c s
B u l l . Acad.
Pol. Sci.
I n I n f i n i t e Dimensional Topo-
l o g y . Warszawa, PWN 1975 BESSAGA,C. ;PELCZYNSKI ,A. ,ROLEMICZ,S.: (3) Some p r o p e r t i e s o f t h e space ( s ) . C o l l o q . Math., 2, 45-51, (1959) BESSAGA,C.;PELCZYNSKI,A.: (4) On bases and u n c o n d i t i o n a l converaence o f s e r i e s i n Banach spaces. S t u d i a Math., 17, 151-164, (1958) BHASKARA RAO,N.;BHASKARA RA0,K.P.S.: (1) C a r d i n a l i t i e s o f Banach spaces. J. I n d i a n Math. SOC., 37, 347-349, (1973) B I ERSTEDT, K. D. ;ME I S E ,R. : (1) I n d u k t ive L i m i t e s aew i c h t e t e r Ryume s t e t i qer und holomorpher Funktionen. J . r e i n e u . angew. Math., 282, 186-220,(1976) BIERSTEDT,K.: (2) G e w i c h t e t e Rgume s t e t i g e r v e k t o r w e r t i a e r F u n k t i o n e n und das i n j e k t i v e T e n s o r p r o d u k t . D i s s e r t a t i o n , Mainz 1970 _ _ _ _ _ _ _ ._ _ (3) _ _L e_c.t u r e Notes on L o c a l l y Convex I n d u c t i v e L i m i t s . U n i v e r s i d a d e Federal do R i o de J a n e i r o , 1980 (4) Weighted i n d u c t i v e l i m i t s and t h e i r p r o j e c t i v e d e s c r i p t i o n s . Proc. o f t h e Conference on F u n c t i o n a l A n a l y s i s , S i l i v r i (Turkey) 1985 ( t o appear i n 1986) B I ERSTEDT ,K. D . ;ME I SE ,R. ;SUMMERS ,W. H : (5) A p r o j e c t ive d e s c r i p t i o n o f w e i g h t e d i n d u c t i v e l i m i t s . Trans. Amer. Math. SOC., 272, 107-1hn,(lq82) --------------_-_-__________________. . ( 6 ) Ktjthe s e t s and KHthe sequence spaces, p.27-91 i n F u n c t i o n a l A n a l y s i s , Holomorphy and A p p r o x i m a t i o n Theory, North-Hol l a n d Math. S t u d i e s 71, 1982 BIERSTEDT,K.D.: (7) Tensor p r o d u c t s o f w e i g h t e d spaces. Bonner Math. S c h r i f t e n , 81, 26-58, (1975) B I ERSTEDT,K. D. ;ME I SE, R. : (8) D i s t i n g u i s h e d echelon spaces and t h e p r o j e c t i v e d e s c r i p t i o n o f w e i q h t e d i n d u c t i v e l i m i t s o f t y p e V d C ( X ) . To appear i n Aspects o f Mathematics and i t s A p p l i c a t i o n s . E l s e v i e r Science Publ. 1986 B I ERSTEOT,K. D. ;BONET,J. : (9) S t e f a n He i n r i c h ' s d e n s i t y c o n d i t i o n f o r F r i c h e t spaces and t h e c h a r a c t e r i z a t i o n o f d i s t i n g u i s h e d Ktjthe e c h e l o n spaces. ( p r e p r i n t 1986) BIERSTEDT,K.D.;MEISE,R.: (10) Bemerkunpen Uber d i e A p p r o x i m a t i o n s e i q e n s c h a f t l o k a l k o n v e x e r Funktionenrgume. Math. Ann., 209, 99-107, (1974) BIERSTEDT,K.D.: (11) Neue Ergebnisse zum A p p r o x i m a t i o n s p r o b l e m von BanachGrothendieck. Jahrbuch Uberbl i c k e Mathematik 1976, 45-72, BI 1976 BILBA0,M;PEREZ CARRERAS,P.: (1) Una n o t a en c o m p l e t i t u d en l a p-dual idad de e s p a c i o s de sucesiones. Rev. Real. Acad. C i . Madrid, 78, 199-206,(1983) (1) A g e n e r a l i z a t i o n o f t h e S t o n e - W e i e r s t r a s s theorem. P a c i f i c BISHOP,E.: J . Math., 1 1 , 777-783, (1961) BOCHNAK,J.;SICIAK,J.: (1) A n a l y t i c f u n c t i o n s i n t o p o l o g i c a l v e c t o r spaces. S t u d i a Math,, 39, 77-112, (1971) BLASC0,J.L.: (1) Two problems on kR-spaces. A c t a Math. Acad. S c i . Hunqar.,
BIERSTEDT,K.D.;MEISE,R.:
.
27-30, (1978) . (2) On p - s p a c e s and kR-SpaCeS. Proc. Amer. Math. S O C . , 67, 179-186, (1977) BOLAND,P.J.;DINEEN,S.: (1) D u a l i t y t h e o r y f o r spaces o f aerms and holomorp h i c f u n c t i o n s on n u c l e a r spaces, p. 147-207 i n Advances i n Holomorphy ( e d . : J.A, B a r r o s o ) N o r t h - H o l l a n d Math. S t u d i e s 34, lq7q BONET,J.: (1) The c o u n t a b l e neighbourhood p r o p e r t y and t e n s o r p r o d u c t s . Proc. Edinb. Math. S O C . , 28, 207-215, (1985) 32,
- -- - - -- - .
( 2 ) Q u o j e c t i o n s and p r o j e c t i v e t e n s o r p r o d u c t s . A r c h i v d . Math.
45, 169-173, (1985) (3) On t h e t h r e e - s p a c e p r o b l e m f o r c e r t a i n BONET,J.;PEREZ C A R R E R A S , P . : c l a s s e s o f B a i r e - l i k e spaces. B u l l . S O C . Roy. S c i . L i g g e , 51, 381-385, (1982)
487
REFERENCES
BONET,J. ;PEREZ CARRERAS,P.: (4) Remarks on t h e s t a b i l i t y o f b a r r e l e d - t y p e t o p o l o g i e s . B u l l . SOC. Roy. S c i . L i g g e , 52, 313-318, (1983) ____________________ . _(5) ___ Some _ _ . r e s u l t s on b a r r e l l e d n e s s i n p o j e c t i v e t e n s o r p r o d u c t s . Math. Z . , 185, 333-338, (1984) BONET ,J ;GAL I NDO ,P. ;GARC I A , 0. ;MAESTRE ,M. : (6) Loca 1 1 y bounded s e t s o f h o l o morphic mappings. P r e p r i n t 1986 BONET,J,: ( 7 ) Una n o t a sobre l a c o i n c i d e n c i a de t o p o l o g i a s en p r o d u c t o s t e n s o r i a l e s . To appear i n Rev. Real Acad. C i . M a d r i d BONET,J.;SCHMETS,J.: (8) B o r n o l o g i c a l spaces o f t y p e C ( X ) aeE and C ( X , E ) . To appear i n Funct. e t Approx. ------------------- : (9) Examples o f b o r n o l o g i c a l C ( X , E ) spaces. Proc. o f t h e Conference on F u n c t i o n a l A n a l y s i s , S i l i v r i (Turkey) 1985. To appear i n 1986 BONET,J.: (10) P r o j e c t i v e d e s c r i p t i o n s o f i n d u c t i v e l i m i t s o f F r d c h e t seque! ce spaces. reprint 1986 - - - - - - - - . (11) A p r o j e c t i v e d e s c r i p t i o n o f w e i g h t e d i n d u c t i v e l i m i t s o f spaces o f v e c t o r - v a l u e d c o n t i n u o u s f u n c t i o n s . C o l l e c t . Math., 34, 117-124, (1983) . (12) On w e i g h t e d i n d u c t i v e l i m i t s o f spaces o f c o n t i n u o u s f u n c t i o n s
.
_-----__.
Math. Z . , 192, 9-20, (1986) BOURBAKI ,N.: (1) I n t e g r a t i o n Chap. I I I . P a r i s , Hermann 1965 BUCHWALTER,H.: (1) F o n c t i o n s c o n t i n u e s e t mesures s u r un espace complZtement r e g u l i e r . Summer School on T o p o l o g i c a l V e c t o r Spaces. L e c t u r e Notes i n Math. 331, 183-202, S p r i n g e r V e r l a g 1973 __-______ (2)- -Sur _ _l.e t h k o r k n e de Nachbin e t S h i r o t a . J . Math. Pures e t
.
Appl., 51, 399-415, (1972) BUCK,R.C.: (1) Rounded c o n t i n u o u s f u n c t i o n s on a l o c a l l y compact space. M i c h i g a n Math. J . , 5 , 95-104, (1958) (1) On m e t r i z a b l e a b e l i a n groups w i t h a BURZYK,J.;KLIS,C. ;LIPECKI ,Z.: completeness t y p e p r o p e r t y , C o l l o q . Math., 69, 33-39, (1984)
( 1 ) Holomorphy and C a l c u l u s i n Normed Spaces. New York, Dekker, 1985 . . CHEVET,S.: (1) Sur c e r t a i n p r o d u i t s t e n s o r i e l s t o p o l o g i q u e s d'espaces de Banach. Z e i t s c h r . Wahrscheinl i c h k e i t s t h e o r i e u. Verw. Geb., 11, 12n-138, (1969) CIVIN,P.;YOOD,B.: ( 1 ) Q u a s i - r e f l e x i v e spaces. Proc. Amer. Math. SOC., 8, 906-911, (1957) COHEN,P.E.: ( 1 ) Products o f B a i r e spaces. Proc. Amer. Math. SOC., 55, lip-124, (1976) COLLINS,H.S.: ( 1 ) Completeness and compactness i n 1 i n e a r t o p o l o p i c d l spaces. Trans. Amer. Math. S O C . , 79, 256-280, (1955) _ _ - _ _ - ._(2) _ _S _ t r i_ c t_ , w . e i g h t e d and mixed t o p o l o g i e s and a p p l i c a t i o n s . CHAE,S.B.:
Advances
i n Math.,
19, 207-237,
_ _ - _ _ _ _. _(3) _ _Completeness, __. Math. SOC.,
6, 832-835,
(1976) f u l l completeness and k-spaces.
Proc. Amer.
(1955) COLOMBEAU,J.F.;MUJICA,J.: (1) E x i s t e n c e o f h o l o m o r p h i c mappinqs w i t h p r e s c r i b e d a s y m p t o t i c expansion a t a p i v e n s e t o f p o i n t s i n i n f i n i t e dimens i o n , N o n l i n e a r A n a l y s i s , Theory, Methods and A p p l i c a t i o n s , Vol. 5 , 2, 1981, pp. 149-156 ( 1 ) The s t r i c t t o p o l o g y and spaces w i t h mixed t o p o l o g i e s . Proc. COOPER,J.B.: Mer. Math. SOC., 30, 583-592, (1971)
REFERENCES
488
(1) The spaces Lp w i t h o < p Ll. B u l l . Amer. Math. S O C . , 46, 816823, ( 940) -____. - (2) -, Normed L i n e a r Spaces. B e r l i n , S p r i n q e r V e r l a g 1973 DEFANT,A. GOVAERTS,W.: (1) T en sor p r o d u c t s and spaces o f v e c t o r - v a l u e d c o n t i n u o u s f u n c t i o n s . Manuscr. Mat h. , 55, 433-449, (1986) _ - _ _ _ _ _ _ _ _ _ ._ (2) _ _B_o _ rn_ o l o_g _ i c a_ l -a.nd u l t r a b o r n o l o q i c a l spaces o f t y p e C(X,E) and E € F . Math. Ann., 268, 347-355, (1984) DEFANT,A.: (3) B a r r e l l e d n e s s and n u c l e a r i t y . A r c h i v d. M a t h . , 44, 168-170, (1985) DEFANT,A. ;FLORET,K.: (4) The precompactness-lemma f o r s e t s o f o p e r a t o r s , p . 39-55 i n F u n c t i o n a l A n a l y s i s , Holomorphy and A p p r o x i m a t i o n T h e o r y I I ( e d . : G . Z a p a t a ) . N o r t h - H o l l a n d Mat h. S t u d i e s 1984 DE GRANDE-DE KIMPE,N.: (1) G e n e r a l i z e d sequence spaces. B u l l . S O C . Math. B e l g i q u e , 23, 123-166, (1971) DAY,M.M.:
DE VIT0,C.L.: ( 1 ) On A l a o g l u ' s t he ore m, b o r n o l o q i c a l spaces and t h e MackeyUlam theorem. Ma t h . Ann., 192, 83-89, (1971) DE WILDE,M.;TSIRULNIKDV,B.: ( 1 ) B a r r e l l e d n e s s and t h e supremum o f two l o c a l l y c o n v e x t o p o l o g i e s . Mat h. Ann., 246, 241-248, (1980) . (2) B a r r e l l e d spaces w i t h a B - c o m p l e t e c o m p l e t i o n Manuscr. M a th. , 33, 411-427, (1981) DE WILDE,M.: (3) L i m i t e s i n d u c t i v e s d ' e s p a c e s 1 i n i a i r e s seminormEs. Bull. S O C . Roy. S c i . Li 'eg e, 32, 476-484, (1963) . (4) I n d u c t i v e l i m i t s an d p a r t i t i o n s o f u n i t y . Manuscr. Math.,
--_____-___. - - _5,_45-58, _ _ _. _(1971) (5) _ _C l_o s.e d
Graph Theorems and Webbed Spaces. R esearch N otes i n
London, P i t m a n 1978 . (6) S u r un t y p e p a r t i c u l i e r de l i m i t e i n d u c t i v e . B u l l . S O C . Roy. S c i . L i e g e , 35, 545-551, (1966) _ - - _ _ _ _ _. _(7) _ _V.a r i o u s t y p e s o f b a r r e l l e d n e s s and i n c r e a s i n g sequences o f M a th ,
19,
b a l a n c e d and c o n v e x s e t s i n l o c a l l y co nvex spaces. P r o c . Summer School T o p o l o g i c a l V e c t o r Spaces, B r u x e l l e s , L e c t u r e N o t e s i n Math.,331, 211-217, S p r i n g e r V e r l a g 1973 - - _ _ _ - _ -._ (8) _ _ .S u r l e r e l k v e m e n t des p a r t i e s b o r n k e s d ' u n q u o t i e n t d ' e s paces v e c t o r i e l s t o p o l o q i q u e s .
B u l l . SOC.
Roy. S c i . L i k q e ,
43, 299-301,
1971 . (9) S u i t e s a b s o r b a n t e s e t s u i t e s b o r n i v o r e s dans I e s espaces l o c a l r n e n t c o n vexe s. B u l l . SOC. Mat h. F r a n c e Mem. 31-32, 137-141 (1972) . ( 1 0 ) L o c a l l y con vex spaces w i t h f u n d a m e n t a l sequences. Glasqow M a t h . J . , 14, 96-100, (1973) DE \JILDE,M.;HOUET,C.: (11) On i n c r e a s i n a sequences o f a b s o l u t e l y convex s e t s i n l o c a l l y c o n v e x spa ces. Ma t h . Ann., 192, 257-261, (1971) _ _ _ _ _ _ _ _ _ _ _ _. _(12) _ _ _On_some _ _ _permanence . properties in topoloqical v e c t o r s p a c e s,
(unpublished)
- - _ _ _ _ _ _ _ _ _. _(13) _ _ S_u_ r _ l e s_ p_r o_ p r.i e ' t k s
de t o n n e l a g e des espaces
v e c t o r i e l s t o p o l o g i q u e s . B u l 1 . S O C . Roy. S c i . LiGge, 40, 555-560, (1971) DE WILDE,M.: (14) V e c t o r t o p o l o g i e s and l i n e a r maps o n p r o d u c t s o f t o p o l o g i c a l v e c t o r sp ace s. Ma t h . Ann., 196, 117-128, (1972) -. (15) C r i t z r e s de d e n s i t 6 e t de s E p a r a t i o n dans l e s l i m i t e s p r o j e c t i v e 5 e t i n d u c t i v e s d En omb rab l es. B u l l .
SOC.
Roy. S c i .
LiEae,
41,
155-162, (1972) DE WILDE,M. ;SCHMETS,J.: (16) C h a r a c t g r i z a t i o n des espaces C(X) u l t r a b o r n o l o g i q u e s . B u l l . S O C . Roy. S c i . L i e g e , 40, 119-121, (1971) DE WILDE,M.: (17) Rgseaux dans l e s espaces l i n g a i r e s 5 semi-normes. M6m. S O C . Roy. S c i . L i G g e , 18, 2, (1974) . (18) Su r l e t hi o re'me du g r a p h e f e r m e . C . R . Acad. S c i . P a r i s ,
265, 376-379, (1967)
REFERENCES
489
DE WILDE,M.: (19) ThkorGme du graphe ferrne e t espaces a re'seau a b s o r b a n t . B u l l . Math. SOC. S c i . Math. R . S . Roumanie 1 1 , 225-238, (1968) DIEROLF,P.: (1) Summable sequences and a s s o c i a t e d O r l i c z - P e t t i s t o p o l o g i e s . Commentationes Math., Tomus S p e c i a l e s i n honorem L a d i s l a i O r l i c z . Tome I I
71-88, 1979
_
- - - - - - - . (2) Summierbare Famil i e n und a s s o z i e r t e ORLICZ-PETTIS T o p o l o q i e n . H a b i l i t a t i o n s s c h r i f t , Mljnchen 1975 (3) T o p o l o g i c a l p r o p e r t i e s o f t h e d u a l p a i r bj(fl)'y EROLF,P.;DIEROLF,S.: P a c i f i c J. Math.,108, 51-82, (1983) EROLF,P. ;DIEROLF,S.;DREWNOWSKI ,L.: (11) Remarks and examples c o n c e r n i n g u n o r d e r e d - B a i r e - l i k e and u l t r a b a r r e l l e d spaces. C o l l o q . Math., 39, 110-
(8@1:
117, (1978) EROLF,P.: (5) Une c h a r a c t g r i s a t i o n des espaces v e c t o r i e l s complets au sens de Mackey. C.R. Acad. S c i . P a r i s , 283, 245-248, (1976) (1) The F r g c h e t space W a d m i t s a s t r i c t l y s t r o n q e r and separaEROLF,S.: b l e q u a s i c o m p l e t e l o c a l l y convex t o p o l o n y . Proc. Amer. Math. S O C . , 82,
655-656, (1981)
- - - - - - - - . (2) V e r e r b a r k e i t s a u s s a g e n
fiir abgeschlossene a l g e b r a i s c h e KomplementarrSume i n t o p o l o g i s c h e n Vektorrsumen. A r c h i v d. Math., 27, 401-411, (1976) ______ . _ (3) _On _ _spaces . o f c o n t i n u o u s l i n e a r mappinqs between l o c a l l y convex spaces.
H a b i l i t a t i o n s s c h r i f t , Mhnchen 1984 q u e s t i o n s o f A. G r o t h e n d i e c k . B u l l . SOC.
_ _ _ _ - -._(4) _ _On _ .two
Roy. S c i .
L i g g e , 50, 282-285, (1981) DIEROLF,S. ;MOSCATELLI ,V.B.: (5) A F r 6 c h e t space w h i c h has a c o n t i n u o u s norm b u t whose b i d u a l does n o t . Math. 7 . , 191, 17-21, (1986) EROLF,S.;LURJE,P.: (6) Deux examples c o n c e r n a n t des espaces ( u l t r a ) bornol o g i q u e s . C . R . Acad. S c i . P a r i s , 282, 1347-1350, (1975) EROLF,S.: (7) The b a r r e l l e d space a s s o c i a t e d w i t h a b o r n o l o q i c a l space need n o t be b o r n o l o g i c a l . B u l l . London Math. SOC., 12, 60-62, (1980) EROLF,S. ;SCHWANENGEL,U. : (8) Examples o f l o c a l l y compact non-compact minimal t o p o l o g i c a l groups. P a c i f i c J . Math., 82, 349-355, (1979) EROLF,S. ;ZARNADZE,D.N.: (9) A n o t e on s t r i c t l y r e g u l a r F r h c h e t spaces. 42, 549-556, (1984) A r c h i v d. Math:, DIER0LF.S.: (10) Uber V e r e r b b a r k e i t s e i o e n s c h a f t e n i n toDo o a i s c h e n V e k t o r r 3 g men. D i s s e r t a t i o n , Munchen 1974 _ - - - - _ _ _. _(11) _ . A n o t e on t h e l i f t i n g of l i n e a r and l o c a l y convex t o p o l o g i e s on a q u o t i e n t space. C o l l e c t . Math., 31, 193-198, (1980) DIESTEL,J.: ( 1 ) Geometry o f Banach Spaces-Selected T o p i c s L e c t u r e Notes i n Math. 485, S p r i n g e r V e r l a g 1975 DIEUDONNE,J.: (1) Bounded s e t s i n (F)-spaces. Proc. Amer. MaZh. SOC., 6 ,
-
729-731, (1955)
_ - - _ _ - _ _ _. _(2) _ _Sur .
l e s p r o p r i 6 t i s de permanence de c e r t a i n s espaces v e c t o r i e l s t o p o l o g i q u e s . Ann. P o l . Math. SOC. Krakow, 25, 50-55, (1952) _ _ _ _ _ _ _ _(3) - _Denumerabil __. i t y c o n d i t i o n s i n l o c a l l y convex v e c t o r spaces. ~
Proc. Amer. Math. S O C . ,
DIEUDONNE,J.;SCHWARTZ,L.:
8, 367-372, (1957) La dual i t 6 dans l e s espaces (F) e t ( L F ) . Ann.
Inst. F o u r i e r , 1 , 47-65, (1954) DIEUDONNE,J.: (5) Recent development i n t h e t h e o r y o f l o c a l l y convex v e c t o r spaces. B u l l . Amer. Math. S O C . , 59, 495-512, (1953) DINEEN,S.: (1) h o l o m o r p h i c f u n c t i o n s on s t r o n g d u a l s o f Fr6chet-Monte1 spaces, p. 147-166 i n I n f i n i t e Dimensional Holomorphy and A p p l i c a t i o n s . (ed.:M.C.Matos) North-Hol l a n d Math. S t u d i e s 12, Amsterdam 1977 - - - - - - - _ - . ( 2 ) H o l o m r p h i c germs on compact subsets o f l o c a l l y convex spaces p. 247-283 i n F u n c t i o n a l A n a l y s i s , Holomorphy and Approximat i o n Theory. L e c t u r e Notes i n Math., 843, S p r i n g e r V e r l a g 1981
490
REFERENCES
OINEEN,S.:
(3)
Holomorphic f u n c t i o n s on
nductive 1 imits o f C
N
( P r e p r in t
1986)
- -------- : (4)
Holomorphic f u n c t i o n s on o c a l l y convex t o p o l o q c a l v e c t o r n s t . F o u r i e r , 2 3 , 19-54 and 155-185 (1973) _ _ _ _ _ _. _(5) _ _S.u r j e c t i v e i m i t s o f l o c a l y convex spaces and h e i r a p p l i c a t i o n s t o i n f i n i t e d i m e n s i o n a l holomorphy. B u l l . S O C . Math. France, 103, spaces,
I and 1 1 . Ann.
441-509, (1975) DOMANSKI,P.: (1) On t h e s e p a r a b l e t o p o l o g i c a l v e c t o r spaces. Functiones e t Approx., 14, 117-122, (1983) DORROH,J.R.: (1) The l o c a l i z a t i o n o f t h e s t r i c t t o p o l o g y v i a bounded s e t s . Proc. Amer. Math. S O C . , 2 0 , 413-414, (1969) DOUADY,A.: ( 1 ) P a r t i e s compactes d ' u n espace de f o n c t i o n s c o n t i n u e s % s u p p o r t compact. C.R. Acad. S c i . P a r i s , 257, 2788-2791, (1963) DOSTAL,M.: ( 1 ) Some r e c e n t r e s u l t s on t o p o l o g i c a l v e c t o r spaces, p . 18-91 i n Symp. R e c i f e 1972. L e c t u r e Notes i n Math., 384, S p r i n g e r V e r l a q 1974 DREWNOWSKI ,L.: ( 1 ) Quasicomplements i n (F)-spaces. S t u d i a Math., 7 7 , 373-
-391, (1984)
__------_-___. . (2) A solution Manuscr. Math.,
t o a p r o b l e m o f De W i l d e and T s i r u l n i k o v .
37, 61-64, (1982)
_ _ _ _ _ _ _ _. _(3) _ _An _ _e.x t e n s i o n a c t i n g f r o m 1'(
o f a theorem o f Rosenthal on o p e r a t o r s P ) . S t u d i a Math., 6 2 , 209-215, (1976) Un thhor'eme s u r l e s o p e r a t e u r s de I * ( ? ) . C.R. Acad.
_ _ _ _ _ _ _. _(4) _____.
281, 967-969, (1975) ____..________. . (5) E q u i v a l e n c e Paris,
o f Brooks-Jewett,
V i t a l i-Hahn-Saks
Sci.
and
2 0 , 725-731, (1972) DREWNOWSKI ,L.;LABUDA,I.;LIPECKI,Z.: ( 6 ) E x i s t e n c e o f quasibases f o r separab l e t o p o l o g i c a l l i n e a r spaces. A r c h i v d. Math., 3 7 , 454-456, (1981) DREWNOWSKI ,L.;LOHMAN,R.H.: (7) On t h e number o f s e p a r a b l e l o c a l l y convex spaces. Proc. Amer. Math. S O C . , 58, 185-188, (1976) DREWNOWSK1,L.: (8) The dimension and codimension o f a n a l y t i c subspaces i n Nikodym. B u l l . Acad.
Polon. S c i . ,
t o p o l o g i c a l v e c t o r spaces, w i t h a p p l i c a t i o n s t o t h e c o n s t r u c t i o n o f some p a t h o l o g i c a l t o p o l o g i c a l v e c t o r spaces. L i e g e 1982 (Mathematical t a l k ) . - _ - - - - _ - _ _ _ _( 9_) .Another n o t e on K a l t o n ' s theorem. S t u d i a Math., 5 2 , 233-
237, (1975j
_ _ _ - _ _ _ ._ (10) _ _ _On_minimal _.
t o p o l o g i c a l l i n e a r spaces and s t r i c t l y s i n -
g u l a r o p e r a t o r s . Comment. Math.. Tomus s p e c i a l i s i n Honorem L a d i s l a i O r 1 i c z I I , 89-106, Warszawa, 1979 - - - _ _ _ _ _._( _ 1 1_ ) _ Some _ .u n i v e r s a l i t y questions f o r separable t o p o l o g i c a l v e c t o r spaces. ( T o appear i n Funct. e t Approx.) DUBINSKY,E.: ( 1 ) P r o j e c t i v e and i n j e c t i v e 1 i m i t s o f Banach spaces. S t u d i a Math., 42, 259-263, (1972) _ _ _ _ _ _ _. _(2) _ _On _ . (LB)-spaces and q u o t i e n t s o f F r 6 c h e t spaces. F u n c t . Anal. Holom. and Approx. Th., L e c t u r e Notes 8 3 , Marcel Dekker 1983 F r 6 c h e t spaces. Math. Ann., 174, 186-194,
_ _ _ _ _ _ _ _._ (3) _ _ .P e r f e c t
(1967)
VAN D U L S T , D . : ( 1 ) A n o t e on B- and Br-completeness. Math. Ann., 147, 197- 2 0 2 , (1972) OYNIN,A.S. ;MITIAGIN,B.S.: ( I ) C r i t e r i o n f o r n u c l e a r i t y i n terms o f a p p r o x i m a t i v e dimension. B u l l . Acad. Polon. S c i . , 8, 535-540, (1960)
EBERHARDT,V.: ( 1 ) B e i s p i e l e t o p o l o g i s c h e r Vektorr'dume m i t d e r Komplement'drr a u m e i g e n s c h a f t . A r c h i v d. Math., 26, 627-636, (1975) _ _ _ _ _ _ _ ._ _( 2-) _E_i n.i g e V e r e r b a r k e i t s e i g e n s c h a f t e n von B - und B r - v o l l s t z n d i g e n Ryumen. Math. Ann., 215, 1-11, (1975) Komuras Graphensatz: Vol l s t ' d n d i g k e i t , Permanenzeigen-
_ _ _ _ _ _ _ ._ _ (3)_ _ Uber _.
s c h a f t e n und B e i s p i e l e . H a b i l i t a t i o n s s c h r i f t . Miinchen
1977
REFERENCES
491
EBERHARDT,V. ;DIEROLF,S.: (4) P r o d u i t s d’espaces v e c t o r i e l s t o p o l o a i q u e s q-minimaux. C.R, Acad. Sci, P a r i s , 288, 275-277, (1979) ( 5 ) Uber e i n e n Graphensatz f u r 1 i n e a r e Abbildunqen EBERHARDT,V. ;ROELCKE,W.: m i t m e t r i s i e r b a r e n Z i e l r a u m . Manuscr. Math., 1 3 , 53-68, (1974) ________----------__---. (6) Uber e i n e n Graphensatz f u r Ahbildunoen m i t ~
n o r m i e r t e n Z i e l r a u m . Manuscr. Math., 1 2 , 47-65, (1974) EDGAR,G.A.: (1) Two f u n c t i o n - s p a c e t o p o l o g i e s . Proc. Amer.
Math. SOC.,
39,
219-220, (1973) EFIMOVA,T.A.:
( 1 ) A c l a s s o f spaces w i t h n e t s o f t y p e C.
S i b i r s k . Mat. Z . ,
18, 939-943, (1977). E n g l i s h t r a n s l . i n S i b e r i a n Math. J . , 1 8 , (1977) ------------ : (2) On t h e c o n n e c t i o n between some c l a s s e s o f spaces f o r w h i c h t h e c l o s e d graph theorem i s v a l i d . V e s t n i k L e n i n g . Univ.
Math,
12,
107-113, (7980) ------------ : ( 3 ) The
c l o s e d g r a p h theorem f o r a t o p o l o g i c a l v e c t o r g r o u p w i t h a n e t o f t y p e U . V e s t n i k Lening. U n i v . Math., 1 1 , 191-195, (1983) ERNST,B,: ( 1 ) Ultra-(DF)-Rklume. J . r e i n e u. angew. Math., 258, 87-102,(1973) - - - - - - - - . (2) Uber e i n e n Homomorphiesatz von G . Kfjthe. Manuscr. Math., 23,
103-1
1 2 , (1978)
FLEISSNER,W.G.;KUNEN,K.: 229-240, (1978)
(1)
B a r e l y B a i r e spaces.
Fundamenta Math
,
101,
( I ) B a r r e l l e d n e s s c o n d i t i o n s o f c e r t a i n vec o r - v a l u e d FLORENCIO,M.;PAUL,P.: sequence spaces. P r e p r i n t 1985 FLORENCI0,M: (2) Una n o t a en e s p a c i o s escalonados g e n e r a l e s . Rev. Real Acad. C i . M a d r i d , 77, 221-226, (1983) FLORENCI0,M. ;PEREZ CARRERAS,P.: (3) Sobre sumabil i d a d Cesaro en e l e s p a c i o cs I . Rev. Real Acad. C i . Madrid, 75, 1187-1197, (1981) -___-____---_-________________. . (4) Sobre s u m a b i l i d a d Cesaro en e l e s p a c i o cs I I . Rev. Real Acad. C i . M a d r i d , 76, 531-546, (1982) FLORET,K.;WLOKA,J.: (1) E i n f c h r u n g i n d i e T h e o r i e d e r Lokalkonvexe Rklume. L e c t u r e Notes i n Math., 56, S p r i n g e r V e r l a g 1968 FLORET,K,: (2) Some a s p e c t s o f t h e t h e o r y o f l o c a l l y convex i n d u c t i v e l i m i t s p . 205-237 i n F u n c t i o n a l A n a l y s i s : Surveys and Recent R e s u l t s I I (ed.: K . D . B i e r s t e d t , B . F u c h s s t e i n e r ) . North-Hol l a n d Math. S t u d i e s 3 8 , Amsterdam
1980
_-_----_-. . (3)
Lokalkonvexe Sequenzen m i t kompakten Abbildungen.
J. reine
u. angew. Math., 247, 155-195, (1971) - - - - - - - - - : (4) F o l g e n r e t r a k t i v e Sequenzen l o k a l k o n v e x e r R3ume. J. r e i n e u. angew. Math., 259, 65-85, (1973) - - - - - - - - - (5) On bounded s e t s i n i n d u c t i v e l i m i t s o f normed spaces. Proc.
.
Amer. Math. S O C . , 75, 221-225, (lQ79) - - - - - - - - - : (6) FrEchet-Monte1 spaces w h i c h a r e n o t Schwartz spaces. P o r t u g a l . Math., 42, 1 - 4 , (1983/84) - - - - - - - - - : (7) On w e l l - l o c a t e d subspaces o f d i s t r i b u t i o n s spaces. Math. Ann.,
221, 147-151, (1976)
_
- - - - - - - - : (8) Uber den Dualraum e i n e s l o k a l k o n v e x e n Unterraumes. A r c h i v d. Math,, 25, 646-648, (1974) FLORET,K.;MOSCATELLI ,V.B.: (9) On bases i n s t r i c t i n d u c t i v e and p r o j e c t i v e l i m i t s o f l o c a l l y convex spaces. P a c i f i c J . Math., 1 1 8 , (1985) (10) Uber k o m p l e m e n t i e r t e Unterr2ume i n l o k a l k o n v e x e n i n d u k t i v e FLORET,K.: L i m i t e n . B u l l . SOC. Math. France, Mem. 31-32, 169-179, (1972) FLORET,K.;MOSCATELLI,V.B.: (11) U n c o n d i t i o n a l bases i n FrEchet spaces. P r e p r i n t 1985 FLORET,K.: (12) Weakly Compact Sets. L e c t u r e Notes i n Math., 8 0 1 , S p r i n g e r
REFERENCES
492
V e r l a g 1980 FLORET,K.: (13) C o n t i n u o u s norms o n l o c a l l y convex s t r i c t i n d u c t i v e l i m i t s . Math. Z . , 188, 75-88, (1984) - - - - _ - _.- -(14) . Two q u e s t i o n s c o n c e r n i n g v e c t o r - v a l u e d h o l o m o r p h i c f u n c t i o n s P r o c e e d i n g s o f t h e 1 0 t h W i n t e r S c h o o l . R e n d i c o n t i C i r c . Mat. Palermo, I I , n. 2 , 83-85, (1982) FOIAS,C. ; M A R I N E S C U , G . : ( 1 ) F o n c t i o n n e l l e s 1 i n g a i r e s dans l e s r d u n i o n s dgnomb r a b l e d ' e s p a c e s de Banach r g f l e x i f s . C . R . Acad. S c i . P a r i s , 261, 4958-
-4960, ( 1 965) FREMLIN,D.;TALAGRAND,M.:
( 1 ) On CS -cl o sed s e t s . M a t e m a t i k a , 26, 3 0 - 3 2 , ( l q 7 8 ) FRENICHE,F.J.: ( 1 ) B a r r e l l e d n e s s o f t h e space o f v e c t o r - v a l u e d and s i m p l e f u n c t i o n s . Ma t h . Ann., 267, 479-486, (1984)
GALINDO,P.;GARCIA,D.;MAESTRE,M.:
( 1 ) H o l o m o r p h i c a l l y u l t r a b o r n o l o g i c a l spac e s and h o l o m o r p h i c i n d u c t i v e l i m i t s . To a p p e a r i n J . Math. A n a l . and APPl* ( 1 ) A generalized form o f inductive l i m i t topology f o r GARLING,D.J.H.: v e c t o r s p a c e s. P r o c . London Mat h, S O C . , 1 4 , 1-28, (1964) _ _ _ - _ _ _ _ _(. 2_.) _L o_c a_l l_ v .co nve x sDaces w i t h denumerable svstems o f 60, 8 i 3 - 8 1 5 , (1964) w e a k l y compact s u b s e t s . ' P r o c . Cambridge P h i l . S O C . GEILER,V.A. ;KENDEROV,P.S. : (1) On t h e c o m p l e t e n e s s o f a f a c t o r g r o u p . V e s t n i k Moscow U n i v . Matem. Meh., 5 , 32-33, (1971) ( R u s s i a n ) GELBAUM,B.R.;GIL D E LA MADRID,J.: ( 1 ) Bases o f t e n s o r p r o d u c t s o f Banach s p a c e s . P a c i f i c J . M a t h . , 1 1 , 297-310, (1959) GILLMAN,L.;HENRIKSEN,M.: ( I ) C o n c e r n i n g r i n g s o f c o n t nuous f u n c t i o n s . T r a n s . Amer. Ma t h . S O C . , 77, 340-362, (1954) GOULLET DE RUGY,A.: (1) Espaces d e f o n c t i o n s ponderab es. I s r a e l J . M a t h . , 1 2 , 147-160, (1972) GOVAERTS,W.: ( 1 ) S e q u e n t i a l l y c o n t i n u o u s 1 i n e a r f u n c t i o n a l s o n spaces o f c o n t i n u o u s f u n c t i o n s . B u l l . S O C . Ma t h . B e l g i q u e , 34, 95-105, (1982) GREGORY,D.A.: ( 1 ) Some b a s i c p r o p e r t i e s o f v e c t o r sequence spaces. J. r e i n e u . angew. M a t h . , 237, 26-38, (1969) GROTHENDIECK,A.: (1) S u r l e s a p p l i c a t i o n s 1 i n i a i r e s f a i b l e m e n t compactes d ' e s p a c e s du t y p e C(K ). Canad. J. M a t h . , 5, 129-173, (1953) . ( 2 ) Sur l e s e spa ces (F) e t (D F). Summa B r a s i l M a t h . , 3 ,
57-123, (1954)
. ( 3 ) P r o d u i t s t e n s o r i e l s t o p o l o g i q u e s e t espaces n u c l g a i r e s . Mem. Amer. Ma t h . S O C . , 1 6 , (1955) . ( 4 ) R6sumP de l a t h i o r i e m i t r i q u e des p r o d u i t s t e n s o r i e l s t o p o l o g i q u e s . B o l l . S c . Ma t h . Sao P a u l o , 8 , 1-79, (1956) GULICK,D.;SCHMETS,J.: ( 1 S e p a r a b i l i t y and semi-norm s e p a r a b i l i t y f o r spaces o f bounded c o n t i n u o u s f u n c t i o n s . B u l l . S O C . Roy. S c i . L i e g e , 4 1 , 245-260, (1972) HAGEMANN,E. : (1) Das Rez o r o k e n t h e o r e m i n b e l i e b i a e n l i n e a r e n K o o r d i n a t e n rgumcn. Math. An n. . 1 4 , 126-143, (1937) HAMLETT,T.R.;HERRINGTON,L.L.: ( 1 ) The C l o s e d Graph and P - c l o s e d Graph P r o p e r t i e s i n G e n e r a l T o p o l o g y . Con t e mporary M a t h e m a t i c s . Amer. M a t h . S O C . Vol. 3 , P r o v i d e n c e 1981 HARKSEN,J.: ( 1 ) C h a r a k t e r i s i e r u n g l o k a l k o n v e x e r Rgume r n i t H i l f e von T e n s o r n o r m t o p o l o g i e n . Math. Nach r. , 106, 347-374, (1982) . ( 2 ) T e n s o r n o r m t o p o l o g i e n . D i s s e r t a t i o n , K i e l 1979 HARVEY,C.;HARVEY,F.R.: ( 1 ) Open mapping and t h e l a c k o f f u l l y c o m p l e t e n e s s ~
REFERENCES
493
o f D ' ( f l ) . P r o c . Amer. Math. SOC., 25, 786-790, (1970) HAWORTH,R.C.;McCOY,R.A.: ( 1 ) B a i r e Spaces. D i s s e r t . Math.,
141, \4arszawa
1977 HAYDON,R.: ( 1 ) Sur un p r o b l c h e de H. B u c h w a l t e r . C . R . Acad. S c i . P a r i s , 275, 1077- 1080, ( 1 972) HEWITT,E. ;ROSS,K.A.: ( 1 ) A b s t r a c t Harmonic A n a l y s i s Vol I . R e r l n, S p r i n g e r V e r l a g 1963 HOGBE-NLEND,H.: (1) Sur une q u e s t i o n de J . Dieudonni. B u l l . Soc Math. France 98, 201-208, (1970) HORVATH,J.: ( 1 ) The l i f e and works o f Leopoldo Nachbin. To appear i n Aspects o f Mathematics and I t s A p p l i c a t i o n s . E l s e v i e r Science P u b l . , Amsterdam, New York, O x f o r d 1986 HORVATH,J.: (2) L o c a l l y Convex Spaces. Summer School on T o p o l o g i c a l V e c t o r Spaces, B r u x e l l e s . L e c t u r e Notes i n Math. 331, 41-83 S p r i n g e r V e r l a g
1973 HOLLSTEIN,R.: ( 1 ) c b e r d i e Tonne1 i e r t h e i t von l o k a l k o n v e x e n Tensorprodukten. Manuscr. Math., 22, 7-12, (1977) ________ . _(2)- - _(DCF)-Rkiume . und l o k a l k o n v e x e Tensorprodukte. A r c h i v d. Math.,
29,
524-531,
(1977) l i m i t s and
_ _ _ _ _ _ _ ._ _ (3)_ _I n_d.u c t i v e
& - t e n s o r p r o d u c t s . J.
r e i n e u.
angew. Math.,
319, 38-62, (1980) ( 4 ) 6 - l o k a l t o p o l o g i s c h e n Rklume und p r o j e k t i v e T e n s o r p r o d u k t .
_ _ _ _ _ _ _ _. _ _ _ _ . C o l l e c t . Math., 26, 239-252, (1975) _ _ _ _ _ _ _ _ _. _(5) _ _ .Permanence p r o p e r t i e s
o f C(X,E).
Manuscr. Math.,
38,
41-58,
(1982) _______ . _ (6)_ _ @-sequences __. and i n d u c t i v e l i m i t s w i t h l o c a l p a r t i t i o n
of t h e u n i t y . Manuscr. Math.,
-- _ - _ - _ _ _.- -(7) -.
52, 227-249, (1985) Topologische Tensorprodukte gewisser topologischer
Vektorryume. C o l l e c t . Math., 25, 127-135, (1974) HORMANDER,L.: (1) On t h e range o f c o n v o l u t i o n o p e r a t o r s . Ann. o f Math., 26, 148-170, (1962) HUSAIN,T.: ( 1 ) Two new c l a s s e s o f l o c a l l y convex spaces. Math. Ann., 166, 289-299, (1 966) - - - _ _ _ _. _( 2_) . The open mapping and c l o s e d graph theorem i n t o p o l o g i c a l v e c t o r spaces. O x f o r d U . P . , O x f o r d 1965 HUSAIN,T.;KHALEELULLA,S.M : (3) B a r r e l l e d n e s s i n T o p o l o o i c a l and Ordered V e c t o r Spaces. L e c t u r e Notes i n Math. 692, S p r i n g e r V e r l a g 1978
IYAHEN,S.O.: (3971)
( I ) On t h e c osed g r a p h theorem.
- - - - _ _ _ _ _. -(2) -.
I s r a e l J. Math.,
10, 96-105,
On c e r t a i n c l a s s e s o f l i n e a r t o p o l o g i c a l spaces I . Proc.
London Math. SOC., 18, 285-307, (1968) _ _ _ _ _ - _._(3) _ _ On _ . c e r t a i n c l a s s e s o f l i n e a r t o p o l o g i c a l spaces 1 1 .
J.
London Math. S O C . , 3 , 609-617, (1971) ( 1 ) Sobre c i e r t a s c l a s e s de e s p a c i o s h i p e r t o n e l a d o s . T e s i s IZQUIERD0,J.: D o c t o r a l , V a l e n c i a 1982
JAMES,R.C.: 518-527,
( 3 ) Bases and r e f l e x i v i t y o f Banach spaces. Ann. o f Math., 52, (1950) (2) C h a r a c t e r i z a t i o n s o f r e f l e x i v i t y . S t u d i a Math., 23, 205-216,
_ _ _ _ _ _._ _ _ _ . ( 1 964)
REFERENCES
494
JAMESON,G.J.O.: ( 1 ) Convex s e r i e s . P r o c . Cambridge P h i l . S O C . , 72, 3 7 -4 7 , (1972) JARCHOW,H.: ( 1 ) S t r i k t h e i t v o n (LF)-Rklumen. Math. Ann., 187, 37-39, (1970) _ _ _ _ _ _._ (_2 )_ -F .a c t o r i z a t i o n t h r o u g h i n c l u s i o n mappings between I P - s p a c e s . M a t h . Ann., 220, 123-135, (1976) JOSEFSON,B.: ( 1 ) Weak s e q u e n t i a l con verg en ce i n t h e d u a l o f a Banach space does n o t i m p l y norm c o n v e r g e n c e . B u l l . Amer. Math. SOC ., 81, 166-168, ( 1 975) _ _ _ - _ _ _._ (_2 )- -Weak . s e q u e n t i a l c o n v e r g e n c e i n t h e d u a l o f a Banach space does n o t i m p l y norm c o n v e r g e n c e . A r k i v fur Mat., 1 3 , 78-89, (1975) c o u n t e r e x a m p l e i n t h e L e v i p r o b l e m . P r o c . on I n f i n i t e
_ - _ - _ _ _ _. _( 3-)- .A
D i m e n s i o n a l Ho l omo rph y. (Ed.: T.L.Hayden and T . J . S u f f r i d g e ) . N o t e s i n M a t h. 364, 168-177, S p r i n g e r V e r l a g 1974
Lecture
KABALL0,W. : ( 1 ) L i f t i ng s-Skl t ze f u r V e k t o r f u n k t ionen und das E - T e n s o r p r o d u k t . H a b i l i t a t i o n s s c h r i f t , K a i s e r s l a u t e r n 1976 KABALLO,W.;VOGT,D.: ( 2 ) L i f t i n g - P r o b l e m e f u r V e k t o r f u n k t i o n e n und 8 - S e quenzen. Manuscr. Math., 32, 1-27, (1980) KAKOL,J.: (1) Non l o c a l l y c o n v e x B a i r e - l i k e , b - B a i r e - l i k e spaces and spaces w i t h g e n e r a l i z e d i n d u c t i v e l i m i t t o p o l o g i e s . Rev. Roum. Math. Pures e t A p p l . , 25, 1523-1530, (1980) ( 1 ) An F-space s a m p l e r . London Math. S O C . KALTON,N.J. ;PECK,N.T.;ROBERTS,J.W.: L e c t u r e N o t e s S e r i e s 89, Cambridge U.P. 1984 KALTON,N.J.: ( 2 ) Some forms o f t h e c l o s e d g r a p h theorem, P r o c . Cambridqe P h i l . SOC., 70, 401-408, (1971) - - - - - - - - - - - . (3) The t h r e e - s p a c e p r o b l e m f o r l o c a l l y bounded F-spaces. C o m p o s i t i o M at h. , 37, 243-276, (1978) . (4) U n i v e r s a l spaces a nd u n i v e r s a l bases i n m e t r i c 1 i n e a r spa-
___________.
c e s . S t u d i a Math,, 61, 161-191, (1977) ( 1 ) E v e r y (DF )-sp ace i s q u a s i - n o r m a b l e . F u n c t . A n a l . and A p p l . , KAT2,M.P.: 7, 157-158, (19 73 ) KEIM,D.: ( 1 ) l n d u k t i v e und P r o j e k t i v e L i m i t e n m i t Z e r l e g u n g d e r E i n h e i t . Manuscr. M a t h. , 1 0 , 191-195, (1973) KELLEY,J.L.: ( 1 ) H y p e r c o m p l e t e l i n e a r t o p o l o g i c a l spaces. M i c h i o a n Math. J . , 5 , 235-246, (1958) - - - _ - - _ _ - :- - ( 2 ) G e n e r a l T o p o l o g y . P r i n c e t o n , van N o s t r a n d , 1955 KLEE,V.: ( 1 ) Dense co nve x s e t s . Duke J. Math., 16, 3 5 1 - 3 5 4 , (1949) - - - - - - - . ( 2 ) Convex s e t s i n l i n e a r spaces I l l . Duke J . Math., 2 0 , 105-111, (1953) KLEE,V.;WILANSKY,A.: (3) Rese arch p r o b l e m no. 13. B u l l . Amer. Math. SOC., 7 2 , 656-656, (1966) KLIS,C.: ( 1 ) An e xamp l e o f n on c o m p l e t e normed K-spaces. B u l l . Acad. P o l o n . S c i . S e r . S c i . Math. Astronom. P h ys. , 26, 415-420, (1978) KNOWLES,R.J.;COOK,T.A.: ( 1 ) I n c o m p l e t e r e f l e x i v e spaces w i t h o u t Schauder n a s e s . P r o c . Cambridge P h i l . S O C . , 74, 83-86, (1973) K‘OHN, J . : ( 1 ) l n d u k t i v e r L i m i t e s n i c h t l o k a l k o n v e x e r t o p o l o g i s c h e n V e k t o r rklume. Math. Ann., 181, 269-278, (1969) KOMURA,Y.: ( 1 ) On l i n e a r t o p o l o q i c a l sp ace s. Kumamoto J . S c i . , 5 , 148-157, (1962) - - - - - - - - - : ( 2 ) Some examples o n 1 i n e a r t o p o l o q i c a l spaces. Math. Ann., 153, 1 5 0 - 1 6 2 , ( 1 9 62 ) KOMURA,T.;KOMURA,Y.: ( 3 ) Sur les espaces p a r f a i t s de s u i t e s e t l e u r s qGn6t-al i s a t i o n s . J . Mat h. SOC. Ja pa n, 15 , 319-338, (1963) KaTHE,G.: ( 1 ) D i e T e i l r k l u m e e i n e s 1 i n e a r e n K o o r d i n a t e n r a u m s . Math. Ann., 1 1 4 , 99-125, (1937)
REFERENCES
495
KuTHE,G.: (2) D i e B i l d r g u m e abgeschlossener Operatoren. J. r e i n e u. angew. Math., 232, 110-111, (1968) KREIN,M.;SMULJAN,V.: (1) On r e g u l a r l y convex s e t s i n t h e space c o n j u g a t e t o a Banach space. Pnn. o f Math., 41, 556-583, (1940) KREIN,M.;KREIN,S.: (2) On an i n n e r c h a r a c t e r i s t i c o f t h e s e t o f a l l c o n t i nuous f u n c t i o n s d e f i n e d on a bicompact H a u s d o r f f space. Doklady Acad. Nauk, USSR, 27, 427-430, (1940) KROM,M.R.: (1) C a r t e s i a n p r o d u c t s o f m e t r i c B a i r e spaces. Proc. Amer. Math. SOC., 42, 588-594, (1973) KRONE,J.;VOGT,D.: (1)The s p l i t t i n g r e l a t i o n f o r p a i r s o f Ktlthe e c h e l o n spaces. Math. Z . , 190, 387-400, (1985) KUROCHKIN,S.V.: ( 1 ) The c a r d i n a l i t y o f an (F)-space. V e s t n i k Moscow U n i v . Ser. 1 , Mat. Mech. 1982, n o . 5 , 51-52. E n g l i s h t r a n s l . Moscow U n i v . Math. B u l l . , 37, 63-65, (1982)
LABUDA,I.;LIPECKI , Z . : ( 1 ) On s u b s e r i e s convergent s e r i e s and m-quasi-basis i n t o p o l o g i c a l 1 i n e a r spaces. Manuscr. Math., 38, 87-98, (1982) LABUDA,I.: (2) On t h e e x i s t e n c e o f n o n - t r i v i a l Saks s e t s and c o n t i n u i t y o f 1 i n e a r mappings a c t i n g on them, Bul 1 . Acad. Polon. S c i . , 2 3 , 885-890,
- (1975) -
- - - - - - - - . (3) A n o t e on t h e Banach-Mackey theorem. B u l l . Acad. Polon. S c i . , 21,
687-689, (1973)
LACEY,E.: ( I ) The Hamel dimension o f any i n f i n i t e - d i m e n s i o n a l s e p a r a b l e Banach space i s c . Amer. Math. M o n t h l y 8 0 , 298-298, (1973) LAVIGNE,J.P.: ( I ) A p p r o x i m a t i o n des f o n c t i o n s uniforrn&ent c o n t i n u e s . J. Math. Pur. e t Appl., 51, 419-427, (1972) LEBESGUE,H.: (1) Sur l e s i n t & g r a l e s s i n g u l i'eres. Toulouse Ann. ( 3 ) , 1 , 25-
-117, (1890).. LEHNER,W.: ( I ) Uber d i e Bedeutuna gewisser V a r i a n t e n des Bairenschen Kateg o r i e n b e g r i f f s f u r d i e Funktionenrgume Cc(T). D i s s e r t a t i o n , Munchen 1978 ( 1 ) A n o t e on t h e i n h e r i t a n c e o f p r o p e r t i e s o f l o c a l l y LEVIN,M.;SAXON,S.: convex spaces o f c o u n t a b l e codimension. Proc. Amer. Math. SOC., 29, 97-
-102,
(1971) (1) Sur
LIGAUD,P.: convexit;.
l a t h e ' o r i e des espaces (DF) en l a absence de l a l o c a l e Proc. London Math. S O C . , 28, 725-737, (1974) LINDENSTRAUSS,J.;TZAFRlRl,L.: (1) C l a s s i c a l Banach Spaces I . B e r l i n - H e i d e l berg-New York, S p r i n g e r V e r l a g 1977 ( 1 ) On independent sequences i n t o p o l o g i c a l 1 i n e a r spaces. LlPECKl ,Z.: C o l l o q . Math. (To appear) . ( 2 ) On some dense subspaces o f t o p o l o o i c a l l i n e a r spaces. S t u d i a Math., 77, 413-421, (1984) LOHMAN,R.H.: (1) A p r o p e r t y o f quasi-complements. C o l l o q . Math., 29, 155-
-156, (1974)
LOHMAN,R.H.;STILES,W.J.: (2) On s e p a r a b i l i t y i n 1 i n e a r t o p o l o q i c a l spaces. Proc. Amer. Math. S O C . , 42, 23h-237, (1974) (3) An embedding theorem f o r s e p a r a b l e l o c a l l y convex spaces. LOHMAN,R.H.: Canad. Math. B u l l . , 1 4 , 119-120, (1971) LOPEZ PELLICER,M.: (1) Una c a r a c t e r i z a c i 6 n s u c e s i o n a l de 10s e s p a c i o s C ( X ) u l t r a b o r n o l 6 g i c o s . Rev. Real Acad. C i . M a d r i d , 6 7 , 485-503, (1973) - - _ _ - _ _ _ _ _. _( _ _ _ _ _propiedades . 2 ) _Algunas de e s p a c i o s de f u n c i o n e s c o n t i nuas u l t r a b o r n o l 6 g i c o s . C o l l e c t . Math., 25, 119-126, (1974) - _ - _ _ _ _ _ _ _ _.- _(3)- _Un _ _e .j e m p l o de un e s p a c i o t o p o l 6 g i c o cornpletamente r e g u l a r cuyo k - e s p a c i o a s o c i a d o no es completarnente r e g u l a r . Rev. Real Acad. C i . M a d r i d , 6 8 , 111-118, (1974)
REFERENCES
496
Lb'WIG,H.:
( 1 ) Uber d i e Di men si on I i n e a r e r R2ume. S t u d i a Math.,
5, 18-23,
(1934) LURJE,P.:
( 1 ) T o n n e l i e r t h e i t i n lokalkonvexen Vektorgruppen.
Manuscr.
Math.,
14, 107-121, (1974)
- - - - - - - - : (2) U be r t o p o l o g i s c h e V e k t o r g r u p p e n .
D i s s e r t a t i o n , Munchen
1972
MACHAD0,S.: (1) On B i s h o p ' s g e n e r a l i z a t i o n o f t h e S t o n e - W e i e r s t r a s s theorem. In d a g . M a t h , , 39, 218-224, (1977) MACKEY,G.W.: ( 1 ) On i n f i n i t e - d i m e n s i o n a l l i n e a r spaces. T r a n s . Arner. Math. S O C . , 57, 155-207, (1945) _ _ - - _ - - - _:- -(2) N o t e o n a t h e o r e m o f M u r r a y . B u l l . Amer. Math. S O C . , 52,
322-325, ( I 946)
_ - - - - - - - - - - : (3)
E q u i v a l e n c e o f a p r o b l e m i n measure t h e o r y t o a p r o b l e m i n t h e t h e o r y o f v e c t o r l a t t i c e s . B u l l . Amer. Math. S O ~ . , 5 0 , 719-722,
(1 944) MAESTRE,M. : (1) P r o d u c t s o f h o i o m o r p h i c a l l y r e v e l a n t spaces. P o r t u g . Math. (To a p p e a r ) ( 1 ) B a r r e l l e d spaces a nd t h e c l o s e d q r a p h theorem. J. London MAHOWALD,M.: Math. SOC., 36, 108-110, (1969) MAHOWALD,M.;GOULD,G.: (2) O . u a s i - b a r r e l l e d l o c a l l y convex s p a c e s . P r o c . Amer. M a th . S O C . , 11,,.811-816, (1960) MAKAROV,B.M. : ( 1 ) Uber e i n i g e p a t h o l o g i s c h e E i g e n s c h a f t e n i n d u k t i v e r L i m i t e s v o n 6-R2ume. Usp eh i Ma t . Nauk, 18, n r . 3 (lll), 171-178, ( 1 9 6 3 ) ( R u s s i a n ) . (2) On i n d u c t i v e l i m i t s o f normed spaces. V e s t n i k L e n i n a . U n i v .
_______--___. 13, 50-58, (1965) . . . _ _ _ _ _ _ -.- _ ( 3_) _Uber . induktive
L i m i t e n n o r m i e r t e RUume. D o k l a d y Akad. Nauk
S S S R , 119, 1092-1094, (1958) ( R u s s i a n ) MARO.UINA,A.: (1) A n o t e o n t h e c l o s e d q r a p h theorem.
A r c h i v d. M a t h . , 28, ( 1 977) MARQUINA,A.;SANZ SERNA,J.: (2) B a r r e l l e d n e s s c o n d i t i o n s o n c o ( E ) . A r c h i v d . M a t h . , 31, 589-596, (1978) MARQUINA,A.;SCHMETS,J.: (3) On b o r n o l o q i c a l co(E) spaces. B u l l . S O C . Roy. S c i . L i e g e , 51, 170-173, (1982) MAK@UINA,A.;PEREZ CARRERAS,P.: (4) On q u a s i b a r r e l l e d spaces. Manuscr. M a t h . ,
82-85,
72, 387-398, (1974)
_ _ _ _ _ _ _ - _ __ _ _ _ _ _ _ _ _. -__ (5) A _l _ g u_ na _s___. caracterizaciones bornol6gicos y ultrabornol6gicos.
Rev.
Real Acad.
Ci.
-483, (1973)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _._(_6 )_ _P r_o d_u_c t_o s_ _de_ e. s p a c i o s
de e s p a c i o s
Madrid,
67, 477-
casitonelados.
Rev. Real Acad. C i . M a d r i d , 68, 129-136, (1974) MARTINEAU,A.: ( 1 ) S u r une p r o p r i g t ; c a r a c t z r i s t i q u e d ' u n p r o d u i t de d r o i t e s . A r c h i v d. M at h. , 1 1 , 423-426, (1960) - - - - - - - - - - - - . (2) S u r l e s th6orGmes de S . Banach e t L. S c h w a r t z c o n c e r n a n t
.
l e g r a p h e f e r m i . S t u d i a Mat h. , 30, 43-51, (1968) MATOS,M.C.: ( 1 ) H o l o m o r p h i c a l l y b o r n o l o g i c a l spaces and i n f i n i t e d i m e n s i o n a l , (1978) v e r s i o n s o f H a r t o g s ' t he ore m. J . London Math. S O C . , ~ ~ 363-368, MAZON,J.M.:
( 1 ) Some c l a s s e s o f l o c a l l y c o n v e x spaces. A r c h i v d. M a t h . ,
131-137, (1982). E r r a t u m 42, 384-384, (1984) . (2) On t h e d f - s p a c e s o f c o n t i n u o u s f u n c t i o n s . S c i . L i e g e , 53, 225-232, (1984) MAZUR,S.;ORLICZ,W.:
B u l l . SOC.
( 1 ) S u r l e s espaces r n g t r i q u e s l i n e ' a i r e s .
13, 137-179, (1953)
38,
Roy.
S t u d i a Math.,
REFERENCES
MENDOZA,J.:
497
( 1 ) A b a r r e l l e d n e s s c r i t e r i o n f o r c o ( E ) . A r c h i v d. Math.,
156-158, (1983)
_ _ _ _ _ _._ (_2 )_ _ Necessary .
and s u f f i c i e n t c o n d i t i o n s f o r C(X,E)
40,
t o be b a r r e l -
l e d o r i n f r a b a r r e l l e d . Simon S t e v i n J . , 57, 103-123, (1983) MERZON ,A. E . : ( 1 ) Uber e i ne E igenschaf t t o p o l og i sch-a 1 qebra i s c h e r Ka t e q o r i e n . Uspehi Math. Nauk, 27, n r . 4 , ( l h 6 ) , 217 (1972) MICHAEL,E.: ( 1 ) x,-spaces. J . Math. and Mech., 1 5 , no. 6, 983-1002, ( l q 7 h ) MICHAEL,E.;RUDIN,M.E.: (2) A n o t e on E b e r l e i n compacts. P a c i f i c J . Math.,
72, 487-495, (1977)
MITIAGIN,B.: (1) A p p r o x i m a t i v e dimension and bases i n n u c l e a r spaces. Uspehi Mat. Nauk, 16, 73-132, (1961) (Russian) MOLT0,A.: (1) On u n i f o r m boundedness p r o p e r t i e s i n e x h a u s t i n g a d d i t i v e s e t f u n c t i o n s . Proc. Roy. SOC. Edinb., 90, 175-184, (1981) MONTES,C.;PEREZ CARRERAS,P.: (1) A n o t e on b a s i s i n t h e sense o f Abel i n l o c a l l y convex spaces. B u l l . SOC. Roy. S c i . Lle'ge, 52, 323-328, (1983) MORAES,L.A.: ( 1 ) Holomorphic f u n c t i o n s on s t r i c t i n d u c t i v e 1 i m i t s . R e s u l t a t e d. Math., 4 , 201-212, (1981) - - - - _ _ _ - _. _( -2 ). Holomorphic f u n c t i o n s on h o l o m o r p h i c i n d u c t i v e 1 i m i t s and on t h e s t r o n g d u a l o f s t r i c t i n d u c t i v e l i m i t s . F u n c t i o n a l A n a l y s i s , H o l o morphy and Approximat i o n Theory I I (ed. : G. Zapata) N o r t h - H o l l a n d Math. S t u d i e s 1984 M O R R I S , P . D . ;WULBERT,D.E.: ( 1 ) Functional representations o f topolooical a l g e b r a s . P a c i f i c J. Math., 2 2 , 323-327, (1967) MOSCATELLI , V . B . : (1) Sur une c l a s s e d'espaces l o c a l m e n t convexes B-complets. C.R. Acad. S c i . P a r i s , 276, 1205-1208, (1973) _ _ _ _ _ _ _ _ _._(_2 )_ E_x_t e_n s.i o n s o f bounded l i n e a r f u n c t i o n a l s and Br-completeness. Sem. A n a l . F o n c t . Bordeaux 1974/75 . (3) F r g c h e t spaces w i t h o u t c o n t i n u o u s norms and w i t h o u t bases. B u l l . London Math. SOC., 1 2 , 63-hh, (1980) . (4) R e p r e s e n t a t i o n s des espaces complstement b o r n o l o g i q u e s e t des espaces n u c l e ' a i r e s . C.R. Acad. S c i . P a r i s , 2 9 1 , 279-282, (1980) - - - _ _ _ _ _ _ _.- -(_5 )_ S_t.r i c t i n d u c t i v e and p r o j e c t i v e l i m i t s , t w i s t e d spaces
-_-_______-____.
and q u o j e c t i o n s . Rend. C i r c . Mat. Palermo (To appear) MUJICA,J.: (1) Girmenes h o l o m o r f o s y f u n c i o n e s h o l o m o r f a s en e s p a c i o s de F r i c h e t . P u b l i c a c i o n e s d e l Dept. de T e o r i a de Funciones, S a n t i a q o 1978 - - _ _ _ _ ._ _( 2_ ) .Domains of holomorphy i n (DFC)-spaces. F u n c t i o n a l A n a l y s i s , Holomorphy and A p p r o x i m a t i o n Theory (ed. : S.Machado). L e c t u r e Notes i n Math. 843, 500-533, S p r i n g e r V e r l a g 1981 _ _ _ _ _ _. _(3) _ _A. completeness c r i t e r i o n f o r i n d u c t i v e l i m i t s o f Banach spaces F u n c t i o n a l A n a l y s i s , Holomorphy and A p p r o x i m a t i o n Theory I I (ed.: G. I . Z a p a t a ) . N o r t h - H o l l a n d Math. S t u d i e s 1984 - _ - _ _ _. _( 4_ ) _ A .Banach-Dieudonni theorem f o r germs o f h o l o m o r p h i c f u n c t i o n s J . F u n c t . A n a l . , 57, 31-48, (19811) _____ . (_5 )_Complex _ - . A n a l y s i s i n Banach Spaces. N o r t h - H o l l a n d Math. S t u d i e s
120, Amsterdam 1986 MURRAY,F.J. : ( 1 ) Quasicomplements and c l o s e d p r o j e c t i o n s spaces. Trans. Amer. Math. S O C . , 58, 77-95, (1945)
i n r e f l e x i v e Banach
NACHBIN,L.: ( 1 ) Topology on Spaces o f Holomorphic Mappings. Erg. d. Math., B e r l i n , S p r i n g e r V e r l a g 1969 - - - : ( 2 ) A g l i m p s e a t i n f i n i t e d i m e n s i o n a l holomorphy. Proc. on I n f i n i t e D imens i o n a l Holomorphy (ed : T. L . Hayden, T. J. Suf f r i d g e ) . L e c t u r e Notes i n MAth. 3 6 4 , 69-79, S p r i n g e r V e r l a g 1974 . (3) Some h o l o m o r p h i c a l l y s i g n i f i c a n t p r o p e r t i e s o f l o c a l l y convex spaces. F u n c t i o n a l A n a l y s i s (ed.: J . F i g u e r e i d o ) . Marcel Dekker 1976
.
REFERENCES
498
NACHBIN,L.: (4) A g l a n c e a t h o l o m o r p h i c f a c t o r i z a t i o n and u n i f o r m holomorphy To a p p e a r i n Complex A n a l y s i s , F u n c t i o n a l A n a l y s i s and A p p r o x i m a t i o n T h e o r y . ( e d . : J. Muj i c a ) N o r t h - H o l l a n d ------ - _ - -.. (5) T o p o l o g i c a l v e c t o r spaces o f c o n t i n u o u s f u n c t i o n s . P r o c . N a t . Acad. S c i . USA, 40, 471-474, (1954) . ( 6 ) El e men t s o f A p p r o x i m a t i o n T h e o r y . P r i n c e t o n , van N o s t r a n d
__-___-___. 1967
NAKAMURA,M.: ( 1 ) On q u a s i - S o u s l i n spaces and t h e c l o s e d q r a p h theorem. P r o c . Japan Acad., 46, 514-517, (1970) . ( 2 ) On t h e c l o s e d g r a p h theorem. P r o c . Japan Acad., 46, 846-
-849, (1970)
----------- : (3)
On t h e c l o s e d q r a p h t h e o r e m I I .
-109, (1972) I_______-_ . _(4) . On
P r o c . Japan Acad.,
48, 108-
a g e n e r a l i z a t i o n o f t h e spaces i n t r o d u c e d h y M . de W i l d e
and t h e c l o s e d q r a p h theorem.
N a t . S c i . Rep. Ochanomizu U n i v . ,
22,
137-
- 142, (J.971) NEDER,L.: Uber den Zussamenhang z w e i e r Skltze von Lebesque und T o e p l i t z . Math. Z . , 49, 576-278, (1944) NEUMANN,M.M.;PTAK,V.: (1) A u t o m a t i c c o n t i n u i t y , l o c a l t y p e and c a s u a l t y . S t u d i a M a t h . , 8 2 , 61-90, (1985) NEUS,H,: ( 1 ) Uber d i e R e g u l a r i t g t s b e a r i f f e i n d u k t i v e r l o k a l k o n v e x e r Sequenz e n . M a n u s c r . M a t h . , 25, 135-145, (1978) NISSENZVEIG,A. : (1) w " - s e q u e n t i a l c o n v e r q e n c e . I s r a e l J. M a t h . , 2 2 , 266-272,
(1 975) NOBLE,N.: ( 1 ) The c o n t i n u i t y o f f u n c t i o n s o n C a r t e s i a n p r o d u c t s . T r a n s . Amer. M a th . S O C . , 149, 187-198, (1970) NOUREDDINE,K.: (1) N o u v e l l e s c l a s s e s d ' e s p a c e s l o c a l e m e n t convexes. P u b l . D e p t . M a th . Lyo n, 10, 259-277, (1973) - - - - - - - - - - - - - : ( 2 ) Espaces du t y p e Db. C . R . Acad. S c i . P a r i s , 276, 1301-1301
(1973)
_ - _ _ _ - - - _ _: _(3) _ - Note
s u r l e s espaces Db. Math. Ann., 219, 97-103, (1976) NOVERRAZ,Ph.: ( 1 ) P s e u d o - c o n v e x i t e ' , c o n v e x i t 6 p o l y n o m i a l e t domaines d ' h o l o r n o r p h ie e n d i m e n s i o n i n f i n i e . N o r t h - H o l l a n d Math S t u d i e s 3 , 1973
ORLICZ,W.: ( 1 ) B e i t r a g e zur Theorie der Orthogonalentwicklungen I I . Studia M a t h . , 7 , 241-255, (1929) ORNSTEIN,D.: (1) Dual v e c t o r sp ace s. Ann. o f M a t h . , 6 9 , 520-534, (1959) OXTOBY,J.C.: ( 1 ) C a r t e s i a n p r o d u c t s o f B a i r e spaces. Fund. M a t h . , 6 4 , 157-
-166, (1961)
PALAMODOV,V.P.: ( 1 ) Usp eh i Mat. Nauk., 26, 1-64, (1971) PAUL ESCOLAN0,P.J.: ( 1 ) E s p a c i o s d e S u c e s i o n e s V e c t o r i a l e s . Tesis D o c t o r a l , S e v i I I a 1985 PEREZ CARRERAS,P.: ( 1 ) Una n o t a s o b r e e s p a c i o s ( D F ) . Rev. Real Acad. C i . M a d r i d , 75, 739-741, (1981) - -- - - - - - - - - - - - - - - . ( 2 ) On c e r t a i n c l a s s e s o f B a i r e - l i k e spaces. Semesterb e r i c h t F u n k t . A n a l . T u b i n g e n , Sommersemester, 59-70, (1982) o f t h e t h e o r y o f b a r r e l l e d spaces. E a s o p i s
-__________ . _Some _ _ a_s _ p e_ c t.s
Mat. P e s t . (To a p p e a r ) P E R E Z CARRERAS,P.;BONET,J.: ( 4 ) E s p a c i o s T o n e l a d o s . P u b l i c a c i o n e s de l a U n i v e r s i d a d de S e v i l l a , S e r i e I n g e n i e r i a , S e v i l l a 1980 . (5) Una n o t a en c o d i m e n s i 6 n de s u b e s p a c i o s de _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ I
c i e r t o s e s p a c i o s l o c a l m e n t e co nve xos.
Rev. Real Acad.
C i . Madrid,74,1002-
REFERENCES
499
-1006, (1980) PEREZ CARRERAS,P. ;BONET,J.: (6) Remarks and examples c o n c e r n i n g s u p r a b a r r e l l e d and t o t a l l y b a r r e l l e d spaces. A r c h i v d. Math., 39, 340-347, (1982) _______--___-___-_ . -(7) - - -Una - - - -n.o t a sobre un r e s u l t a d o de E i d e l h e i t . C o l l e c t . Math., 33, 195-199; (1982) PEREZ CARRERAS,P.: (8) Sobre c i e r t a s c l a s e s de e s p a c i o s v e c t o r i a l e s t o p o l 6 g i c o s . Rev. Real Acad. C i . Madrid,76, 585-594, (1982 _______-__ ._ (10) _ - Espacios _ _ _ _ . K - S u s l i n i a n o s y grupos t o p o l b g i c o s . C o l l e c t . Math., 27, 105-108, (1976) PETTIS,B.J.: ( 1 ) On i n t e g r a t i o n o f v e c t o r spaces. Trans Amer. Math. S O C . ,
44, 277-304, (1938) PFISTER,H.: (1) Btmerkungen zum S a t z uber d i e S e p a r a b i l t Y t d e r FrGchet-Monte1 RYume. A r c h i v d. Math., 26, 86-92, (1976) - - - - - - - - - - . (2) Uber e i n e A r t von g e m i s c h t e r T o p o l o g i e n und e i n e n Satz von A . G r o t h e n d i e c k Gber (DF)-RkJume. Manuscr. Math., 10, 273-287, ( 1 973) - - - - - - - - - - . (3) R8ume von s t e t i g e n F u n k t i o n e n und summenstetige Abbildunaen. H a b i l i t a t i o n s s c h r i f t , M h c h e n 1978 _ _ _ _ _ _ ._ _ (4) _ _Zwei . Bemerkungen Gber (DF)-RkJume.Archiv d. Math., 2 6 , 646-
_ _-649, _ _ _(1975) _. _(5)_ A_ _ new .
c h a r a c t e r i z a t i o n o f b a r r e l l e d spaces. Proc. Amer. Math.
SOC., 65, 103-104, (1977) POL,R.: ( 1 ) Note on c a t e g o r y i n C a r t e s i a n p r o d u c t s o f m e t r i z a b l e spaces. Fundamenta Math., 102, 55-59, (1979) - - - - - - . (2) An i n f i n i t e - d i m e n s i o n a l p r e - H i l b e r t space n o t homeomorphic t o i t s own square. POPOOLA,J.O. ;TWEDDLE, I ( 1 ) On t h e dimension o f a complete m e t r i z a b l e space. Canad. Math. B u l l . , 20, (2), 271-272, (1977) ----_______-_-_ . _ (2) __ D e_ n s-i-t y- -c .h a r a c t e r , b a r r e l l e d n e s s and t h e c l o -
.:
sed graph theorem.
Colloq. Math.,
40, 249-258, (1979)
_ _ _ _ _ _ _ _ _ _ _ _._(3) _ _S_t a_b i_l i _ _a_ .lledness t y _o _ f b rre i n t o p o l o g i c a t v e c t o r spaces.
Proc. Edinb. Math. SOC.,
and r e l a t e d concepts
27, 321-325,
( 1 984) POPOV,M.M.:
(1) On t h e codimension o f subspaces o f L ( 1, O ( p C 1 . 9/“ F u n k t . Anal. i, P r i l o z e n , 18, 94-95, (1984) (Russian) PROLLA,J.B.: (1) Weighted spaces o f v e c t o r - v a l u e d c o n t i n u o u s f u n c t i o n s . Ann. Math. Pur. A p p l . , (4), 89, 145-158, (1971) . ( 2 ) B i s h o p ’ s g e n e r a l i z e d S t o n e - V e i e r s t r a s s theorem f o r w e i g h t e d
_____-_____.
spaces. Math. Ann., 191, 283-289, (1971) (1) On complete t o p o l o g i c a l l i n e a r spaces. Cehosl. Mat. Z . , 78, 3, PTiK,V.: 301-364, (1953) ( R u s s i a n ) ; Engl i s h t r a n s l . : Amer. Math. SOC. T r a n s l . ( 2 )
110, 61-106, (1977) (2) Completeness and t h e open mapping theorem. B u l l . SOC. Math.
- - - - -- - .
France,
86, 41-74, (1958)
- - - - - - - . (3) Openess
o f l i n e a r mappings i n (LF)-spaces.
Czech. Math. J.,
94, 547-552, (1969) - - - - - - - . (4) E x t e n s i o n s
o f s e q u e n t i a l l y continuous functionals o f inductive l i m i t s o f Banach spaces. Czech. Math. J., 95, 112-121, (1970) -------. . (5) Simultaneous e x t e n s i o n s o f two f u n c t i o n a l s . Czech. Math. J . ,
94, 553-566, (1969) (6) Uber e i n e n
--- ---- .
Typ von SkJtzen uber abqeschlossene Abbildungen. Comment. Math. U n i v . C a r o l i n a e , 1 , 4, 3-7, (1960) - - - - - - - . (7) Some open mappina theorems i n (LF)-spaces and t h e i r a p p l i c a t i o n s t o e x i s t e n c e theorems f o r c o n v o l u t i o n e q u a t i o n s . Math. Scand.,
(1965) - - - - - - - .. (8) A
16, 75-93,
u n i f o r m boundedness theorem and mappings i n t o spaces o f ope-
r a t o r s . S t u d i a Math.,
31, 425-431, (1968)
REFERENCES
500
(1) On 295-306, (1968)
RAIKOV,D.A.:
B-complete t o p o l o g i c a l v e c t o r groups.
_ _ _ _ _ _ _. _( _ 2 )_C- o. m p l e t e l y
S t u d i a Math.,
31,
c o n t i n u o u s s p e c t r a o f l o c a l l y convex spaces.
Math. O b s . , 7, 413-438, (1958) ( R u s s i a n ) ______-..-__. . (3) A c r i t e r i o n o f c o m p l e t e n e s s o f l o c a l l y convex spaces. T r u d y Moscov.
Nauk, 14, 1 , 223-229, (1959) ( R u s s i a n ) Cl ose d g r a p h theorems and t h e c o m p l e t e n e s s o f t o p o l o g i c a l 1 i n e a r s p a c e s . P r o c . F o u r t h A1 I - U n i o n Math. Congr. L e n i n g r a d 1961, V o l I I , 317-323, l z d a t "Nauka", L e n i n g r a d 1974 - _ - _ - - - ---.. (5) Do ub l e c l o s e d - g r a p h t h e o r e m f o r t o p o l o g i c a l l i n e a r spaces. U s p e h i . Mat.
. (4)
S i b e r . M a t h . J . , 7, 287-300, (1966) (1) A s h o r t e l e m e n t a r y p r o o f o f t h e Bishop-Stone-Veierstrass RANSFORD,T.J.: th e o r e m . P r o c . Cambridge P h i l . S O C . , 96, 309-310, (1984) RETAKH,V.S.: ( 1 ) Subspaces o f c o u n t a b l e i n d u c t i v e 1 i m i t s . S o v i e t Mat. D o k l a d y , 1 1 , 1384-1386, (1970) RIBE,M.: (1) Examples f o r t h e n o n l o c a l l y convex t h r e e - s p a c e p r o b l e m . P r o c . Amer. M a th . S O C . , 73, 351-355, (1979) ROBERT,A.: (1) S u r q u e l q u e s q u e s t i o n s d ' e s p a c e s v e c t o r i e l s t o p o l o q i q u e s . Comment. Math. H e l v e t . , 42, 314-342, (1967) ROBERTSON,A.P.;ROBERTSON,W.J.: (1) On t h e c l o s e d g r a p h theorem. P r o c . Glasgow M a t h . S O C . , 3, 692-738, (1956) ROBERTSON,A.P.: (2) On b o r n o l o g i c a l p r o d u c t s . Glasgow Math. J . , 1 1 , 37-40,
( 1970) ROBERTSON,W.J.;YEOMANS,F.E.: (1) On t h e s t a b i l i t y o f b a r r e l l e d t o p o l o g i e s I . B u l l . A u s t r a l . Math. SOC., 20, 385-395, (1979) ROBERTSON ,W. J ;TWEDDL E , I ;Y EOMANS ,F E : ( 2 ) On t h e s t a b i 1 i t y o f ha r r e 1 1 ed t o p o l o g i e s I I I . B u l l . A u s t r a l . Ma t h . S O C . , 22, 99-112, (1980) (3) C o m p l e t i o n s o f t o p o l o g i c a l spaces. P r o c . London Math. ROBERTSON,W.J.: S O C . , 8, 242-257, (1958) ROELCKE,W. : ( 1 ) T o p o l o g i s c h e Ve kt o rrgu me I und 1 1 . Munchen lq7h ROELCKE,W. ;LURJE,P. ;DIEROLF,S.;EBERHARDT,V.: ( 2 ) E i n i g e B e i s p i e l e u b e r B a i r e s c h e n o r m i e r t e und u l t r a b o r n o l o g i s c h e Rkiume. A r c h i v d. M a t h . , 23,
.
.
.
.
513-519, (1972) ROELCKE,W.;DIEROLF,S.: (3) On t h e t h r e e - s p a c e p r o b l e m f o r t o p o l o g i c a l v e c t o r s p a c e s . C o l l e c t . M a t h . , 32, 3-25, (1981) ROELCKE,W.: (4) On t h e f i n e s t l o c a l l y co nvex t o p o l o q y a q r e e i n g w i t h a a i v e n t o p o l o g y on a sequence o f a b s o l u t e l y co nvex s e t s . Math. Ann., 198, 57-80,
(1972)
_-_____ . _(5) _ _On.
t h e h e h a v i o u r o f 1 i n e a r mappings on a b s o l u t e l y convex
s e t s and A. G r o t h e n d i e c k ' s c o m p l e t i o n o f l o c a l l y convex spaces. I l l i n o i s J . M a t h . , 17, 311-316, (1973) - _ _ _ _ _ _. -(-6-). E i n i g e P e r m a n e n t e i g e n s c h a f t e n b e i t o p o l o a i s c h e n Gruppen und t o p o l o g i s c h e n Vektorrklumen. V o r t r a g a u f d e r Funktionalanalysistaqung i n Oberwol f a c h 1972 ROSIER,R.C.: (1) Dual spaces o f c e r t a i n v e c t o r sequence spaces. P a c i f i c J . M a t h , , 46, 487-501, (1973) RUES5,W.: (1) G e n e r a l i z e d i n d u c t i v e 1 i r n i t t o p o l o g i e s and b a r r e l l e d n e s s p r o p e r t i e s . P a c i f i c J . M a t h . , 63, 499-516, (1976) - - - - - - - - : ( 2 ) A G r o t h e n d i e c k r e p r e s e n t a t i o n f o r t h e c o m p l e t i o n o f cones o f c o n t i n u o u s seminorms. Ma t h . A n n. , 208, 71-90, (1974) - - - - - - - - . (3) On t h e l o c a l l y co nve x s t r u c t u r e o f s t r i c t t o p o l o g i e s . Math. Z . ,
1 5 3 , 179-192, (1977)
- -- - -- - - .
(4)
C l o s e d g r a p h theorems f o r g e n e r a l i z e d i n d u c t i v e l i m i t t o p o l o q i e s
P r o c . Cambridge P h i l . S O C . , 82, 67-83, (1977) - - - - - - - - . ( 5 ) The s t r i c t t o p o l o g y and ( D F ) - s p a c e s . v e y s and r e c e n t r e s u l t s ( e d . :
K.D.Bierstedt,
B.
Functionai Analysis:
Sur-
Fuchssteiner). North-Holland
REFERENCES
501
Math. S t u d i e s RUESS,W. : (6) Compactness and c o l l e c t i v e compactness i n spaces o f compact o p e r a t o r s . J . Math. A n a l . A p p l . , 84, 400-417, (1981) - - - - - - - - . ( 7 ) Weakly compact o p e r a t o r s and (D F)-spaces. P a c i f i c J . M a t h . , 9 8 , 419-441, (1982) RUESS,W. ;WAGNER,R.: ( 8 ) i b e r b e s c h r k f n k t e Mengen i n i n d u k t i v e n L i m i t e n t o p o l o g i s c h e r Vektorrkiume. Manuscr. M a t h . , 14, 3 6 5 - 3 7 4 , (1976) RYLL-NARDZEWSKI ,Cz. : ( 1 ) Example o f a n o n - s e p a r a b l e Bo-space i n w h i c h e v e r v bounded s e t i s s e p a r a b l e . C o l l o q . Mat h. , 9 , 93-94, (1962)
SAIFLU,H. ;TWEDDLE, I . : ( 1 ) From 6 -comp l et en ess t o c o u n t a b l e c o d i m e n s i o n a l subspaces v i a t h e c l o s e d q r a p h theorem. P r o c . Roy. S O C . E d i n b . , 86, 107- 1 1 4 , (1980) --------------------: (2) The domain sp ace f o r M a r q u i n a ' s c l o s e d q r a p h t h e o r e m . A r c h i v d. Mat h. , 34, 463-468, (1980) SAPHAR,P.: ( I ) P r o d u i t s t e n s o r i e l s d ' e s p a c e s de Banach e t c l a s s e s d ' a p p l ic a t i o n s l i n e ' a i r e s . S t u d i a Ma t h . , 38, 71-100, (1970) SAVGULIDZE,E.T.: ( 1 ) Some p r o p e r t i e s o f h y p e r c o m p l e t e l o c a l l y c o n v e x spaces. T r a n s l . Moscow Ma t h . S O C . , 32, 245-251, (1975) _ _ _ _ _ _ _ _ _. _( 2_) _On _ _t h_e. h y p e r c o m p l e t e n e s s o f l o c a l l y convex spaces. M a t h . No t e s o f t h e Acad. o f S c i . o f t h e U S S R , 1 3 , 180-182, (1973) . ( 3 ) B,-completeness. F u n c t . A n a l . A p p l . , 9, 363-364, (1975) SAXON,S.: ( 1 ) Two c h a r a c t e r i z a t i o n s o f l i n e a r B a i r e spaces. P r o c . Amer. M a t h . Soc., 45, 204-208, (1974) SAXON,S. ;NARAYANASWAMI , P . P . : ( 2 ) M e t r i z a b l e ( n o r m a b l e ) ( L F ) - s p a c e s and t'wo c l a s s i c a l p r o b l e m s i n F r g c h e t (Banach) spaces. Math. Ann. ( T o a p p e a r ) . SAXON,S.: ( 3 ) Some normed b a r r e l l e d spaces w h i c h a r e n o t B a i r e . Math. Ann., 209, 153-160, (1974) S A X O N , S . ;NARAYANASWAMI , P . P . : (4) M e t r i z a b l e ( L F ) - s p a c e s , ( d b ) - s p a c e s and t h e s e p a r a b l e q u o t i e n t p r o b l e m . B u l 1 . A u s t r a l . Math. SOC., 23, 65-80, (1981) SAXON,S.: ( 5 ) N u c l e a r and p r o d u c t s p a c e s , R a i r e - 1 i k e spaces and t h e s t r o n g e s t l o c a l l y co nve x t o p o l o g y . Ma t h . Ann., 197, 87-106, (1972) SAXOh,S. ;LEVIN,M.: (6) E v e r y c o u n t a b l e - c o d i r n e n s i o n a l subspace o f a b a r r e l l e d s p a c e i s b a r r e l l e d . P r o c . Amer. Mat h. S O C . , 91-96, (1971) SAXON,S.;WILANSKY,A.: (7 ) The e q u i v a l e n c e o f some Banach space p r o b l e m s . Col l o q . M a t h . , 37, 217-226, (1 97 7) SAXON,S. ;NARAYANASWAMI , P . P . : (8 ) ( L F ) - s p a c e s , q u a s i - B a i r e spaces and t h e s t r o n g e s t l o c a l I y con vex t o p o l o g y . ( P r e p r i n t ) SCHMERBECK,F. : ( 1 ) K re i n-S mu l i a n E i g e n s c h a f t und w e i t e r e Vol I s t k i n d i q k e i t s - e i g e n s c h a f t e n i n s p e z i e l l e Produktrkfumen. D i p l o m a r b e i t , Munchen 1981 SCHMETS,J.: ( 1 ) Espaces C(X) t o n n e l k , i n f r a t o n n e l g e t 6 - t o n n e ! & . B u l l . SOC. M a th . F r a n c e , 3 1-3 2, 352-355, (1972) SCHMIDT,F.K.: ( 1 ) Uber d i e d i c h t e m e t r i s c h e r Rkiume. Math. Ann., 106, 457- 4 7. 2 ., ( 1 9 3 2 ) SCHOENFIELD,J.R. : ( I ) M a r t i n ' s axi o m. Amer. Math. M o n t h l y , 82, 610-617, (.3 9 7 5 ) SCHWARTZ,L.: ( 1 ) Radon Measures. O x f o r d U . P . , O x f o r d 1973 _ _ _ _ _ _ _. _( 2_) _T _ h e.' o r i e des d i s t r i b u t i o n s 'a v a l e u r s v e c t o r i e l l e s I e t I I . Ann.
I n s t . F o u r i e r , 7 , 1 - 1 4 1 , ( 1 9 5 7 ) ; 8, 1-209, (1958) de f o n c t i o n s d i f f e r e n t i a b l e s 2 v a l e u r s v e c t o r i e l -
_ _ _ _ _ _ _. -(_3 )_ Espaces _.
l e s . J. A n a l y s e Math., 4 , 88-148, -----___-_-. . (4)Produits tensorieles topologiques.
(1 95 4) topologiques d'espaces v e c t o r i e l s
Espaces v e c t o r i e l s t o p o l o g i q u e s n u c l i h i r e s . A p p l i c a t i o n s .
Sem. S c h w a r t z 53/54 P a r i s
502
REFERENCES
SEBASTIAO E SILVA,J.: (1) Su c e r t i c l a s s i d i s p a z i l o c a l m e n t e c o n v e s s i i m p o r t a n t i p e r l a a p p l i c a z i o n i . Rend. Mat. e A p p l . , 14, 388-410, (1955) SENTILLES,F.D.: (1) Bounded c o n t i n u o u s f u n c t i o n s on a c o m p l e t e l y r e q u l a r space. T r a n s . Amer. Math. S O C . , 168, 311-336, (1972) (1) On l o c a l l y co nve x spaces o f c o n t i n u o u s f u n c t i o n s . P r o c . SHIROTA,T.: Japan Acad., 30, 294-298, (1954) SLOWIKOWSKI ,W.: ( 1 ) Epimorphism o f a d j o i n t s t o g e n e r a l i z e d (LF)-spaces. Aarhus U n i v e r s i t e t M a t e m a t i s k I n s t i t u t e . L e c t u r e N otes 1966 _ _ _ _ _ _ _ _ ._ _ (2) _ _F o_n_c t.i o n e l l e s 1 i n e ' a i r e s dans des r i u n i o n s d6nombrables d ' e s p a c e s de Banach r k f l e x i f s . C.R.
Acad.
Sci. Paris,
262, 870-872,
(1966)
_ _ _ _ _ _ _ _ ._ _ _ _O u_o_t i e. n t (3)
spaces and t h e open map theorem. B u l l . Amer.
67, 498-500, (1961) (1) The c o n t i n u i t y o f a s e m i a d d i t i v e f u n c t i o n a l . Mat. Zametki 19, 541-548, (1976) ( R u s s i a n ) . E n g l i s h t r a n s l . i n MAth. N otes 19, (1976) _ _ _ _ _ _ _ ._ (2) ___ Bases _ . i n i n d u c t i v e l i m i t s o f l i n e a r m e t r i c -paces. V e s t n i k J a r o s l a v U n i v . V yp . , 12, 125-130, (1975) ( R u s s i a n ) SMOLJANOV,O.G. : (1) Uber den Umfanq d e r K l a s s e r e h y p e r v o l l s t k l n d i q e r Rgume Math. S O C . , SMIRNOV,E.I.:
und v o n Raumen, w e l c h e d i e K l e i n - S m u l y a n s c h e Bedinqunq e r f u l l e n . Uspehi M a t . Nauk 30, no. 1 (181), 259-260, (1975) ( R u s s i a n ) - _ - _ _ _ _ _ _._(2) _ _ The _ _ .spa ce D i s n o t h e r e d i t a r y c o m p l e t e . Math. I z v . Akad. Nauk S S S R , 35, 686-696, (1q71) - - - - - _ _ - _ _ _. _(3) _ _A.l m o s t c l o s e d 1 i n e a r subspaces o f s t r i c t i n d u c t i v e l i m i t s o f sequences o f F r g c h e t sp ace s, Mat. S b o r n i k , 80, 513-52Q, (1969) STEINHAUS,H.: ( 1 ) Ouelques remarques s u r l a g 5 n G r a l i z a t i o n de l a n o t i o n de 1 i m i t e . P r a c e M a t h - F i z . , 22, 121-134, (1911) ( P o l i s h ) SUMMERS,W.H.: ( 1 ) P r o d u c t s o f f u l l y c o m p l e t e spaces. B u l l . Amer. Math. S O C .
75, 1005-1005, (1965)
_ _ _ _ _ _ _ ._ _ ( 2_ ) W_e _ i g h. t e d
l o c a l l y c o n v e x spaces o f c o n t i n u o u s f u n c t i o n s .
D i s s e r t a t i o n , B a t o n Rouge 1968 - _ _ _ _ _ _ _. _(3) _ _The _ . bounded c a s e o f t h e
w e i g h t e d a p p r o x i m a t i o n problem.
171-183 i n F u n c t i o n a l A n a l y s i s and A p p l i c a t i o n s (Symp. 1972). L e c t u r e No t e s i n Ma t h . 384, S p r i n g e r V e r l a a 1974
p.
Recife,
Brasil
SZAREK,S.J.: ( 1 ) A Banach sp ace w i t h o u t a b a s i s w h i c h has t h e bounded a p p r o x i m a t i o n p r o p e r t y . P r e p r i n t 1985
THOMAS,E.: ( 1 ) Sur l e s mesures v e c t o r i e l l e s 2 v a l e u r s dans des espaces d ' u n t y p e p a r t i c u l i e r . C . R. Acad. S c i . P a r i s , 266, 1135-1137, (1968) ( I ) L i n e a r B a i r e Spaces and A n a l o g s o f Convex B a i r e Spaces. U n i v e r TODD,A.: s i t y o f F l o r i d a , D i s s e r t a t i o n 1972 ( 2 ) A p r o p e r t y o f l o c a l l y convex B a i r e spaces. Math. Ann., TODD,A.;SAXON,S.:
206, 23-34, (1973) (3) Ck(X) and a 128, 317-323, (1981)
TODD,A.:
p r o p e r t y o f (db)-spaces.
Ann. Math. P u r . A p p l . ,
( 1 ) Ub er a l l g e m e i n e l i n e a r e M i t t e l b i l d u n g e n .
TOEPLITZ,O.:
Prace M a t - F i z . ,
22, 113-138, (1911) TOMASEK,S.: nae, 6 , -------___I
(1) Some re marks 85-96, (1965)
.
on t e n s o r p r o d u c t s .
Comm. Math.
Univ. C a r o l i -
(2) P r o j e c t i v e l y g e n e r a t e d t o p o l o g i e s o n t e n s o r p r o d u c t s . Comm.
M a t h . U n i v . C a r o l i n a e , 1 1 , 745-768, (1970) TSIRULNIKOV,B.: ( 1 ) Remarkable h y p e r p l a n e s i n l o c a l l y convex spaces o f d i m e n s i o n a t most c . Canad. Math. B u l l . , 24, 369-371, (1981) _ - _ _ _ _ _ _ _. _(2) _ _Subspaces __. w i t h p r o p e r t y ( b ) i n l o c a l l y convex spaces o f quasibarrelled type.
P r o c . Cambridge P h i l . SOC.,
88, 331-337, (1980-
REFERENCES
503
TSIRULNIKOV,B.: (3) Sur l e s t o p o l o g i e s t o n n e l g e e t b o r n o l o g i q u e a s s o c i g e s 2 une t o p o l o g i e d ' u n espace l o c a l m e n t convexe. C . R . Acad. S c i . P a r i s , 288, 82 1-822, (1 979) : (4) Boundedly complete subspaces i n l o c a l l y convex spaces. Rev. Real Acad. C i . M a d r i d , 75, 625-633, (1981) TURPIN.Ph.: (1) ConvexitCs des Espaces V e c t o r i e l s Topolopiques Ge/nGraux. D i s s e r t . Math., 31, Warszawa 1976 . ( 2 ) R e p r e s e n t a t i o n f o n c t i o n n e l l e des espaces v e c t o r i e l s t o p o -
___________---
__--------.
l o g i q u e s . S t u d i a Math, 73, 1-10, (1982) P r o d u i t s t e n s o r i e l s d'espaces v e c t o r i e l s t o p o l o g i q u e s .
_ - _ _ _ - _.- -(3) _.
B u l l . SOC. Math. F r a n c e , i l o , 3-13, (1982) TWEDDLE,I.: (1) B a r r e l l e d spaces whose bounded s e t s have a t most c o u n t a b l e dimension. J . London Math. SOC., 29, 276-282, (1984) . ( 2 ) U n c o n d i t i o n a l convergence and v e c t o r - v a l u e d measures. J . London Math. SOC., 2 , 603-610, (1970) TWEDDLE,I.;YEOMANS,F.E.: (3) On t h e s t a b i l i t y o f b a r r e l l e d t o p o l o g i e s I I . Glasgow Math. J . , 21, 91-95, (1980) TWEDDLE, I . : (4) Some r e s u l t s i n v o l v i n g weak compactness i n C ( X ) , C ( v X ) and C ( X ) ' . Proc. Edinb. Math. SOC., 19, 221-230, (1975)
!IALDl!IlA,M.: ( 1 ) On bounded s e t s w h i c h g e n e r a t e Banach spaces. A r c h i v d. Math., 23, 640-642, (1972) _ _ _ _ _ _._(2) _ -Sobre _ _ . c i e r t o s subespacios de p r i m e r a c a t e g o r i a en e s p a c i o s v e c t o r i a l e s t o p o l 6 g i c o s de B a i r e . C o l l e c t . Math., 34, 287-296, (1983) - - - - - _ _ _. _( 2_' )_A.r c h i v d. Math., 26, 202-208, (1975) _ _ _ _ _ _._(3) _ _On_ weakly _. complete s e t s i n l o c a l l y convex spaces. A r c h i v 28, 638-643, (1977) On quasicompleteness and s e q u e n t i a l completeness i n l o c a l l y convex spaces. J. r e i n e u. angew Math., 276, 190-199, (1975) - - -- - - - - - - - : (5) Some c r i t e r i a f o r weak compactness. J. r e i n e u. angew. Math., 255, 165-169, (1972) --------_: ( 6 ) The space o f d i s t r i b u t i o n s D ' ( n ) i s n o t Br-complete. Math. Ann., 211, 145-149, (1974) -----_---_-: (7) On B,-completeness. Ann I n s t . F o u r i e r , 2 5 , 235-248, (1975) _ _ _ _ _ _ _. _(8) _ _On _ . i n d u c t i v e l i m i t s o f Banach spaces. Manuscr. Math., 15, d. Math.,
--------_--: (4)
--
153-163,
(1975) (9) The space D ( n ) i s n o t 27, 29-43, (1977) - - - - - - - - - - _: (10) On m e t r i z a b l e l o c a l l y 79-85, (1976) - - - - - - - - - - - : ( 1 1 ) Cocientes de espacios M a d r i d , 73, 169-183, (1979) - - - _ - - _ -.- _(12) _ . S o l u t i o n t o a problem
___________ :
Br-complete.
Ann.
Inst. Fourier,
convex spaces. A r c h i v d. Math., escalonados.
Rev.
o f Grothendieck.
Real Acad.
27,
Ci.
J . r e i n e u. angew.
Math.,
305, 116-121, (1975) ----------_: (13) On Mackey spaces. Duke Math. J . , 41, 835-841, (1974) . (14) On weak compactness. S t u d i a Math., 49, 35-40, (1973) _ - - _ _ _ _ _. _(15) _ - .On f i n a l t o p o l o g i e s . J . r e i n e u. angew. Math., 251, 193-
----_-_____. 199, (1971)
- - - - - - - -- - - .
(16) On non b o r n o l o g i c a l b a r r e l l e d spaces. Ann.
Inst. Fourier,
22, 27-30,
(1972) ----------- : (17) Some examples on q u a s i b a r r e l l e d spaces. Ann. I n s t . Four i e r , 2 2 , 21-26, (1972) - _ - - _ - _ _._ _ (18) _ . Some c h a r a c t e r i z a t i o n s o f u l t r a b o r n o l o q i c a l spaces. Ann.
I n s t . F o u r i e r , 24, 57-66, (1974) o f precompact s e t s i n Banach spaces.
_ _ _ _ _ _._(19) _ _ A_ c_l a.s s
J.
r e i n e u.
REFERENCES
504
angew. M a t h . , 276, 130-136, (1975) VALDIVIA,M.: ( 2 0 ) A p r o p e r t y o f F r e c h e t spaces. p. 466-477 i n F u n c t i o n a l A n a l y s i s , Holomorphy and A p p r o x i m a t i o n T h e o r y . P r o c . Semin. R i o de J a n e i r o 1981. N o r t h - H o l l a n d Ma t h . S t u d i e s 8 6 , 1984 - - - - - - - - - - - . (21) On (DF)-spaces. Math. Ann., 191, 38-43, (1973) ..-______ . _( 2-2-). A h e r e d i t a r y p r o p e r t y i n l o c a l l y convex spaces. Ann. I n s t . Fourier,
2 1 , 1 - 2 , (1971)
_ _ _ _ _ _ _. _(23) _ - _A.b s o l u t e l y
co nve x s e t s i n b a r r e l l e d spaces. Ann.
Inst.
3-13, (1971) - - - - _ _ _ _ _ -. - .(24) On a c l a s s o f q u a s i b a r r e l l e d spaces. Math. Ann., 2 0 2 , 295-300, (1973) . (25) On su bsp ace s o f c o u n t a b l e c o d i m e n s i o n o f l o c a l l y convex s p a c e s . J. r e i n e u . angew. M a t h . , 256, 185-189, (1973) _ _ _ _ _ _ _. _(26) ___ S u.r c e r t a i n s h y p e r p l a n e s q u i ne s o n t pas u l t r a b o r n o l o q i ques dans l e s e spa ces u l t r a b o r n o l o g i q u e s . C . R . Acad. S c i . P a r i s , 284, 935-937, (1977) _ _ _ _ _ _ _. _(27) ___ A .n o t e on l o c a l l y con vex spaces. Math. Ann., 201, 145-1”8, (1973) . (28) On s u p r a b a r r e l l e d spaces, p . 572-580 i n F u n c t i o n a l A n a l . , Ho lo m o r p h y a nd A p p r o x . T h e o r y . R i o de J a n e i r o 1978. L e c t u r e N o t e s i n Math. 8 4 3 , S p r i n g e r V e r l a g 1981 Fourier, 21,
_ _ _ _ _ _ _. _( 2_9 _ ) A_ .c l a s s
of quasibarrelled
(D F)-spaces w h i c h a r e n o t b o r -
n o l o g i c a l . M at h. Z . , 136, 249-251, (1974) _ _ _ _ _ _ _. _( 3_0 )_ On _ . q u a s i n o r m a b l e e c h e l o n spaces.
Proc.
E d i n b . Math. S O C . ,
24, 73-80, (1981) - - - _ _ _ _ _. _(31) _ - . A c h a r a c t e r i z a t i o n o f e c h e l o n K u t h e - S c h w a r t z spaces, p . 409-419 i n N o r t h - H o l l a n d M i t h . S t u d i e s 35, Amsterdam lS79 _ _ _ _ _ _ _. _(32) _ _ _L o.c a l i z a t i o n t he ore ms i n webbed spaces. S e m e s t e r b e r i c h t F u n k t . A n a l . T u b i n g e n . Sommersemester 8 2 , 49-57, (1982) _ _ _ _ _ _ _. _(33) _ _ _C l.a s s e s o f b a r r e l l e d spaces r e l a t e d w i t h t h e c l o s e d g r a p h th e o r e m. P o r t u g . M a t h . , 40, 345-366, (1981) VALDIVIA,M.;PEREZ CARRERAS,P.: (34) On t o t a l l y b a r r e l l e d spaces. Math. Z . , 178, 263-269, (1981) _ _ _ - _ _ _ _ _ _ - _ _ _ _ _ _ _ _. _(35) _ _ _S_ _ _ e_s_p a_c.i o s (LF) m e t r i z a b l e s . C o l l e c t . o bre M a t h . , 3 3 , 297-303, (1982) VALDIVIA,M.: (36) So bre c i e r t a s c l a s e s de c o n j u n t o s en e s p a c i o s l o c a l m e n t e c o n v e x o s . C o l l e c t . Ma t h . , 3 1 , 3-14, (1980) _ _ _ _ _ _ - _ _ _ _ : (37) Some n o t e s on co nve x s e t s . Manuscr. M a t h . , 2 6 , 381-386, (1979) . (38) Some new r e s u l t s o n b o r n o l o g i c a l b a r r e l l e d spaces. P r o c . Syrnp. F u n c t . A n a l . S i l i v r i ( T u r k e y ) 1973 . (39) B r - c o m p l e t e spaces w h i c h a r e n o t B - c o m p l e t e . Math. Z . , 185, 253-259, (1984) _ - _ _ _ _ _ -:_ (40) - - So bre 10s c o n j u n t o s compactos en 10s e s p a c i o s (D F). C o l l e c t . M a t h . , 2 1 , 99-103, (lS70) _ _ _ _ _ _ _ _ _ _ _ : (41) C o u n t a b l e d i r e c t sums o f Banach spaces. P r e p r i n t 1985 - _ - _ _ _ - _. _(42) _ _ .( F ) - s p a c e s and s t r i c t ( L F ) - s p a c e s . P r e p r i n t lQ86 - - - _ _ _ _ _. _(43) - - . Mackey c o n v e r g e n c e and t h e c l o s e d q r a p h theorem. A r c h i v d . M a t h . , 2 5 , 649-656, (1974) - - - _ _ _ _ _. _(44) - _ . A n o t e o n a u a s i b a r r e l l e d sDaces. A r c h i v d . Math.. . 26., 98100, (1975) - - _ _ _ _ _ _. _(45) - - . Some p. r o .p e r t i e s o f a b o r n o l o q i c a l space. I t e m e C o l l . Anal F u n c t . 1973, Bo rde au x, 329-334, (1973) _ _ _ _ _ _ _ _. _(46) _ _ . On t h e c o m p l e t i o n o f a b o r n o l o a i c a l space. A r c h i v d. Math. 29, 608-613, (1977)
505
REFERENCES
(47) N u c l e a r i t y and Ranach spaces. P r o c . Edinb. Math. S O C . , 20, 1976/77) -____------. (48) On c e r t a i n normed b a r r e l l e d spaces. Ann. I n s t . F o u r i e r , (1979) 29, 39-56 _ _ _ _ _ _ _(49) ___ _ . e s p a c i o s l o c a l m e n t e convexos d e S u s l i n . Rev. Real Sobre Acad. C i . M a d r i d , 72, 215-220, (1978) _ - - _ _ - _.- -( S-O_) .On c e r t a i n p r o p e r t i e s o f b a r r e l l e d n e s s . P r e p r i n t 1986 _ _ - _ _ _ _._ (51) _ _ _On. S l o w i k o w s k i , Raikov and De V i l d e c l o s e d g r a p h theorems. To appear i n Aspects o f Mathematics and i t s A p p l i c a t i o n s . E l e s e v i e r Science P u b l . 1986 _ _ _ _ _ _._(52) - _ _A _c l.a s s o f l o c a l l y convex spaces w i t h o u t C-webs. Ann. I n s t . F o u r i e r , 22, 261-269, (1982) VIDOSSICH,G.: (1) C h a r a c t e r i z a t i o n s o f s e p s r a b i l i t y f o r (LF)-spaces. Ann. I n s t . F o u r i e r , 18, 87-90, (1968) (1) Compact p e r t u r b a t i o n s o f @ - o p e r a t o r s i n l o c a l l y VLADlMlRSKl I , Y . N . : convex spaces. S i b . J. Math., 14, 511-524, (1973) VOGT,D.: (1) Fr&hetr!dume, zwischen denen j e d e s t e t i g e l i n e a r e A b b i l d u n q b e s c h r 3 n k t i s t . J . r e i n e u. angew. Math., 345, 182-200, (1983) - _ _ _ _*._ _(2) Sequence space r e p r e s e n t a t i o n s o f spaces o f t e s t f u n c t i o n s and
VALDIVIA,M.: 205-209,
d i s t r i b u t i o n s , p. 405-443 i n F u n c t i o n a l A n a l y s i s , Holomorphy and A p p r o x i m a t i o n Theory. P r o c . Sernin. Rio de J a n e i r o 1979. L e c t u r e Notes Pure Appl. Math., 83, Marcel Dekker 1983 - - - - - - - . ( 3 ) Subspaces and q u o t i e n t s o f s, p. 167-187 i n F u n c t i o n a l A n a l y s i s :
.
Surveys and Recent R e s u l t s (ed.: K . D . B i e r s t e d t , B. F u c h s s t e i n e r ) . N o r t h H o l l a n d Math. S r u d i e s 27, 1977 -_---_-: (4) Some r e s u l t s on c o n t i n u o u s 1 i n e a r maps between F r 6 c h e t spaces, p. 349-381 i n F u n c t i o n a l A n a l y s i s : Surveys and Recent R e s u l t s I I I ( e d . : K. D. B i e r s t e d t , B. Fuchss t e i n e r ) N o r t h - H o l 1 and Math Stud i e s 1984
.
.
WAELBROECK,L.: (1) The t e n s o r p r o d u c t o f a l o c a l l y pseudo-convex and n u c l e a r space. C o l l o q . on N u c l e a r Spaces and I d e a l s o f O p e r a t o r A l q e b r a s . S t u d i a Math., 38, 101-104, (1970) WARNER,S.: ( 1 ) The t o p o l o g y o f compact convergence on c o n t i n u o u s f u n c t i o n spaces. Duke Math. J . , 25, 265-282, (1958) WEBB,J.H.: (1) Countable codimensional subspaces o f l o c a l l y convex spaces. P r o c . Edinb. Math. SOC., 18, 167-172, (1973) -_-_.._---. . ( 2 ) Subspares o f b a r r e l l e d spaces. Ouaestiones Math., 4, 323-324, (1981)
- - - - - - - - - : ( 3 ) Subspaces o f b o r n o l o g i c a l Math. S O C . , 7, 157-158, (1973) _ _ _ _ _. _( 4_) _S_ e q.u e n t i a l convergence i n
and q u a s i b a r r e l l e d spaces. J . London l o c a l l y convex spaces.
Proc. Cambr.
P h i l . S O C . , 64, 341-364, (1968) WEBER,J.K.: (1) ~ u a s i c o m p l e m e n t s i n s e p a r a b l e l o c a l l y convex spaces. A h s t r . 682-46-11, N o t i c e s Mer. Marh. S O C . , 18, p. 168, (1971) WEIR,M.D.: ( 7 ) H e w i t t Nachbin Spaces. Amsterdam, N o r t h - H o l l a n d Math. S t u d i e s 1975 WHITE,H.E.: (1) T o p o l o g i c a l spaces t h a t a r e d-favorable f o r a player with p e r f e c t i n f o r m a t i o n . Proc. Amer. Math. SOC., 50, 477-482, (1975) LIHITNEY,H.: (1) Tensor p r o d u c t s o f a b e l i a n groups. Trans. Amer. Math. Soc.,
WiLANSKY,A.: (1) T o p i c s i n F u n c t i o n a l A n a l y s i s . L e c t u r e Notes i n Math., 4 5 S p r i n g e r V e r l a g 1967 _ _ _ _ _ _ _. _(2) _ _Topology _. f o r A n a l y s i s . blaltham, Ginn and Co. 1970 _ _ _ _ _ _ -._(3) _ _ On _ . a c h a r a c t e r i z a t i o n o f b a r r e l l e d spaces. Proc. Amer. Math. S O C . , 57, 375-375, (1976)
REFERENCES
506
WINKLER, M . : ( 1 ) L i n e a r k o m p a k t e t o p o l o g i s c h e 1 i n e a r e Rklume. D i p l o m a r b e i t , Munchen 1969 WIWEGER,A.: ( 1 ) L i n e a r spaces w i t h m i x e d t o p o l o g i e s . S t u d i a M a t h . , 20, 47-
-68,
(1961)
_ _ _ _ _ _ _._ _( 2_) . A 5, 773-777,
t o p c l o g i z a t i o n o f Saks s p a c e s . B u l l . Acad.
Polon.
Sci.,
(1957)
ZABREIKO,P.P.;SMIRNOV,E. I.: Z . , 18, 304-313, ( 1 9 7 7 ) .
( 1 ) On t h e c l o s e d g r a p h t h e o r e m . S i b i r s k . M a t . English transl. i n S i b e r i a n M a t h . J . , 18,
(1977) ZARNADZE, D . N . :
458, (1982)
( 1 ) S t r i c t l y r e g u l a r F r 6 c h e t spaces. M a t h . N o t e s 3 1 , 454-
507
TABLES
~9big-l
( F R ~ C H E TSPACES)
N u c l e a r FrEchet 4FS j
Frichet-Montel-
r e f 1e x i v e
I
1
Banach ------;rquas
inormble
t
distinguished
T2ble-2
.1
1
1
La
1ed-+XO-barrelled---+l
ultrabornological-barrel
borno 1og i ca 1 -+ quas iba r r e l 1 ed-syquas
- b a r r e l l e d --tG-barrel l e d
iba r r e 1 1 e d - 4
co
i
-quas ib a r r e 1 1 ed
1 2ble- 2
x,-
(quas i ) b a r r e l l e d -C-
Is-(quasi)b
f
rrelled-
1
1
c -(quasi)barrelled
OD
(LS)---+(DFM)--+(DF)(DcF)-
(quas i)b a r r e l l e d
1 - q u a s i b a r r e l l e d + f.s.b.
1
(gDF)
t
.1
df
T able 5 ------Bai re+UBL---+TB---tSB--tBL---tQB-barrel
- - - - - - -6
Table
(INDUCTIVE LIMITS)
hyperstrictts.b.r.+
Iabie-6
led
b.r.+-
c . r . t s.r.--?-regular-
-p
q
-regular - regu 1a r
(HOLOMORPH ICALLY S I GN I F ICANT PROPERTI E S )
Frichet
Baire
9 -
h-u 1 t raborno log i c a 1
Met r i z a b l e
__
h-barrelled h - q u a s i b a r r e l Ied-MN
h-bornolog ica 1
This Page Intentionally Left Blank
5 09
a-topology 11.4.h absol u t e l y - 1 -summabl e 4.8.1 a b s o r b i n g sequence 8.1.15 9.4 admissible set ( a ) , (rl')-space 10.2 x-subspace 2.2.12 amply bounded 12.1.9 Banach d i s c 3.2.4 BANACH-MAZUR d i s t a n c e 0.2.1 barrel 3.1.2 4-barrel 8.2.1 b a r r e l l e d c o u n t a b l e enlargement 4 . 5 . 6 b a r r e l l e d associated topology 4.4.10 b a s i c sequence 8.5.43 b a s i c sequence ( o f s e t s ) 9.4 BEREZANSKI I t o p o l o g y 8.3.40 Bore1 measurable mapping 1.2.28 bounded 1 i n e a r mapping 11.6.1 b o r n i v o r o u s sequence 8.1.15 ( b - ) bounding s e t 10.1.16 C-web 9.1.42 CS-compact s e t 2.1.4 Cauchy c o n d i t i o n 2.2.6 Cauchy i n e q u a l i t i e s 0.5.11 Cauchy i n t e g r a l f o r m u l a 0.5.10 Closed graph theorem - Banach 1.2.19 - De W i l d e 9.1.46 - Efimova 9.4 - Grothendieck-Ktfthe 1.2.20 - Nakamura 9.4 - PtZk 7.1.12 - Raikov-PtSk 8.3.59 - Robertson,Robertson 7.6.1 - Saxon 9.1.6 - Schwartz 1.2.31 (weakly) compact mapping 8.5.1 complemented p a i r 2.3.4 c o m p l e t i n g sequence 9.1.38 convex s e r i e s 2.1.4 convolution operator 8.9 decreasing n e t o f s e t s 7.5.7 d e t e r m i n i n g subset 12.2.5 disc 3.2.1 d i s t i n g u i s h e d space 8.3.43 enlargement 4.5.4 equibounded subset 11.6.1 equihypocontinuous f a m i l y 11.3.1 extraneous t o p o l o g i e s 4.5.24
$-convergent 8.5.34 f a s t compact 6.1.20 f a s t convergent 6.1.20 f i r s t category 1.1.1 fundamental l y - l I-bounded f u n d a m e n t a l l y - %-bounded
4.8.2
4.9
G-holomorphic 0.5.8 G(d )-barrel 4.9.2 4.9 generalized d-dual general ized i n d u c t i v e 1 i m i t topology 8.1.1 GROTHENDIECK's i n e q u a l i t y ll.lO.C HEWITT-NACHBIN space 10.1.11 hold 10.1.2 hypercomplete s e t 3.2.15 7.5.7 hypercomplete space hyperprecompact s e t 6.1.10 hypocontinuous b i l i n e a r mapping 11.3.1 inductive 1 i m i t - boundedly r e t r a c t i v e 8.5.32 - compactly r e g u l a r 8.5.32 - e q u i v a l e n t 8.4.5 - h y p e r s t r i c t 0.3.1 - (a-), regular 8.5.11 - sequentially retractive 8.5.32 - s t r i c t 0.3.1 - s t r o n g l y boundedly r e t r a c t i v e 8.5.32 - w e i g h t e d 11.9 - w i t h p a r t i t i o n o f u n i t y 8.4.1 i n j e c t i v e Banach space 0.2.4
(p-)
K-SOUSLIN space 1.4 kR-SpaCe 10.1.23 K t f t h e ' s non-complete (LB) -space 7.3.6 l a r g e subspace 8.3.22 1 i m i t subspace 8.6.5 local closure 5.1.18 local completion 5.1.19 local l i m i t point 5.1.14 @ - l o c a l l y bounded map 6.1.7 l o c a l l y Cauchy 5.1.1 l o c a l l y closed 5.1.14 8.4.8 l o c a l l y complemented l o c a l l y complete 5.1.5 l o c a l l y convergent 5.1.1 l o c a l l y dense 5.1.14 locally null 5.1.1
INDEX
510 m-independent 2.2.2 M( M )-barrel 4.9 p-space 10.1.18 Mackey Cauchy sequence 5.1.1 Mackey c o n v e r g e n t sequence 5.1.1 Mackey convergence c o n d i t i o n 5.1.29 MACKEY-ULAM c o n d i t i o n 6.2.21 MARTIN'S axiom 1.2.12 minimal spaces 2.6.3 mutually orthogonal 8.9 NACHBIN space 11.7 nearly closed 4.4.5 NEUMANN-PTAK a b s t r a c t s l i d i n g hump technique 2.1.5 Open-mapping theorem f o r (LF)8.4.11 -spaces Orthogonal sequence o f p r o j e c t i o n s
7 p-complete 5.3 P o l a r i z a t i o n formula 0.5.1 pol i s h space 1.1.11 projective description 11.9 projective 1 i m i t -reduced 0.3.3 - s t r i c t 8.4.27 - directed 0.3.3 property - Baire 1.1.7 - bounded a p p r o x i m a t i o n 0 . 6 . 5 - complementation 2.3.4 - c o u n t a b l e neighbourhood 8 . 3 . 4 - extension 0.2.4 - KREIN-SMULJAN 4 . 4 . 6 - 1 i f t i n g 6.6 - m e t r i c mapping 11.4.2 - (K) 1 . 2 . 1 5
- (MI, (No) 8 . 9 . 1 6 - quasi-complementation 2.3.4 - r i g h t - s u b s p a c e 11.4.22
- right-quotient 11.4.22 - Schwartz a p p r o x i m a t i o n 0.6.5
1.1.7 pseudobas i s pseudo-complete 1.1.7 PTAK' s u n i f o r m boundedness 2.1.2 principle q-minimal 2.7 quas i-compl emented pa i r 2.3.4 quasi-completion 4.9 quas i normabl e space 7.5.12 q u a s i - r e f l e x i v e space 7.5.12 quas i - regu 1 a r 1 1.7 quoject ion 8.4.27
.
8.7.
rare 1.1.1 r e a s o n a b l e norm 11.4.1 r e g u l a r l y decreasing 11.9.5 S-Cauchy f a m i l y 2.2.6 S-Cauchy c o n d i t i o n 2.2.6 s-compact 6.5.1 'i-complete 5.3 S-convergent s e r i e s 2.2.6 6-convex 2.1 .4 S-summable f a m i l y 2.2.6 s-polar topology 4.4.15 s c a l a r l y complete 7.5.8 s c a l a r l y decreasing n e t 7.5.7 second c a t e g o r y 1.1.1 s e p a r a t i n g system 11.7 s e p a r a t e l y holomorph i c 12.2.26 sequential completion 4.9 s e q u e n t i a l l y open map 8.4.12 s e q u e n t i a l l y separable 2.5 sliding-hump technique 2.1 space - d-barrel led 4.9 - %-barrel led 6.6 - % - ( q u a s i ) b a r r e l l e d 8.2.1 - B-, B -complete 7.2.1 - Baire' 1.1.5 - B a i r e - l i k e 9.1.1 - (quasi)barrelled 4.1.1 - b o r n o l o g i c a l 6.1.1 - C-(quasi)barrelled 8.2.6 - co- (quas i)b a r r e l 1 ed 8 . 2 . 2 2 - Db- 8 . 9 - (df)- 8.9 - (DcF)- 8.3.49 - (DFM)- 8 . 9
- E- 11.4.41 - F S - , FSw 8.5.2 - GM- 4 . 9 - G - b a r r e l l e d 4 . .24 - G ( < )-barrel led 4.9.2 - r -, rr- 7.1 9 - h-borno 1 og ica 1 12.1 5 - h-(quasi)barrel led
2.1.12
h-ul t rabornological - KUthe e c h e l o n 8 . 5 . 6
12.1.5
-
- xm-,xg-,x?-, r;0.2.2 - ( L S ) - , (LSw)- 8 . 5 . 3 - l m - (quas i)ba r r e l 1 ed 8 . 2 . 1 3 - M(c4)-bdrralled - Mackey 5.2
-
4.9
MACKEY-NACHBIN 12.1 .17 ORLICZ-PETTIS 2.7.4 q u a s i - B a i r e 9.1.9 semibornological 6.6 SOUSLIN 1 . 1 . 1 1
INDEX
51 1
space s t r i c t l y r e g u l a r 8.9 - s t r o n g b a r r e l l e d 6.6 - s u p r a b a r r e l l e d 9.1.22 t o t a l l y b a r r e l l e d 9.1.31 - u l t r a b a r r e l l e d 9.4 - u l t r a b o r n o l o g i c a l 6.1.1 - u n o r d e r e d - B a i r e - l i k e 9.1.19 stepwise closed 8.6.1 s t r i c t Mackey c o n d i t i o n 5.1.29 s t r i c t l y dominated by 4.3.7 s t r o n g e s t l o c a l l y coilvex t o p o l o g y
-
-
topology u n i f o r m 11.7.2 - w e i g h t e d 11.7 t o p o l o g i c a l l y m-independent 2.2.2 t o t a 1 1 y - 1 1- s ummab 1 e 4.8.1 2.3.4 t r a n s v e r s a l subspaces transseparable 2.5.1 twisted 8.9
-
U n i f o r m boundedness p r i n c i p l e
2.1.6 v.g.
barrelled
4.9
0.4.1 1.1.12 subdivision s u b m e t r i z a b l e space 2.5.18 subspace problem 8.9 summable 2.2.6 support 10.1.5 system o f w e i g h t s 11.7 TAYLOR'S remainder f o r m u l a tensor product injective 0.6.3 - p r o j e c t i v e 0.6.3 tensornorm 11.4.2 - r i g h t i n j e c t i v e 11.4.15 - r i g h t p r o j e c t i v e 11.4.15
we1 I - l o c a t e d subspace weight 11.7
0.5.10
-
-
Ex-
11.4.33 11.4.33 11.4.37 11.4.37
r1three-space problem 2.4 t heo r em - BAERNSTEIN 8.3.55 - BANACH c o n d e n s a t i o n 1.1.4 BANACH-MACKEY 3.4.1 BANACH-SCHAUDER 1.2.36
-
-
-
- BANACH-STEINHAUS-NACHBIN - BISHOP-STONE 1l.lO.D
-
12.2.20
D e s i n t e g r a t i o n 11.4.46 GELBAUM,GIL DE LAMADRID 1l.lO.B GROTHENDIECK's f a c t o r i z a t i o n 1.2.20 GROTHENDIECK-FLORET' s f a c t o r i z a t i o n
8.5.38
HARTOGS 12.2.27 JAMES 3.2.21 KOTHE's homomorphism 8.4.13 LlOUVlLLE 0.5.12 Maximum modulus 0.5.12 - NEUS 8.5.48 - ORLICZ-PETTIS 2.7 - TIETZE 3.4.4 topology - o f c l a s s T a s s o c i a t e d t o 4.4.10 - compact open 11.7.2 s u b s t r i c t 11.7.2
-
-
8.6.5
1.2.18
ABBRE VIA TIONS and SYMBOLS
512
r-p 11.4.15 r.-s.p. 11.4.22 r.-q.p. 11.4.22 (S) 11.9.7 S.a.p. 0.6.5
b.a.p. 0.6.5 BL 9.1.1 c.n.p. 8.3.4 CP 2.3.4 M.c.c. 5.1.29 MN 12.1.17 p.0.u. 8.4.1
QB QCP (RD) r-i
SB S.M.C.
SHT TR
9.1.9 2.3.4 11.9.5 11.4.15
UBL v.g.
E
5.1.21
AE 4.5.23 Fo 7 . 1 LF; 7 - 1
mo(&)
1.2.23 H?U,F) 0.5.13 N(U.F) 12.1.1 $G(U,F) 12.1.1
t"
tC51 t(M)
12.1.1
tg
11.8.1
%(x,K,E)
lP-
8.8.5
I'IEf B
E :
E
4.8.2
:F+G
8.1.8
t(a)
12.1.1
X(U,F)
8 . 1 .8
t;':?:
12.1.1
$,(U,F)
1.3.4
sp(.) span o f fc(E,E') 6.1.24 hp(E,E') 6.1 - 1 7 OP(t) 2.7.4
3'
'&j(U,F)
4.9
lm(E) 4 . 8 . 2 ( L F ) ~ - 8.8.1 (LB)0.3.1 (LF)0.3.1 (LM)0.3.1 (LN)0.3.1 L(E,F) 1 i n e a r c o n t i n u o u s maps between X',(E,F) 1 i n e a r mappings between
acx(.) a b s o l u t e l y convex h u l l o f c,(E) 4.8.2 Cc(X,E) 11.8.3 cs(.) c o n t i n u o u s seminorms o f cx(.) convex h u l l o f EB 3 . 2 . 1 N
9.1.22 5.1.29 2.1 9.1.31 9.1.19
8.1.16
3.3 4.5 4.4.10
tb
4.4.10
tX
6.2.4
tub
6.2.4
l i n e a r mapping a s s o c i a t e d t o t h e b i l i n e a r map B:ExF-+G d e f i n e d by Ba(y):=B(a,y) f o r a l l y i n F. I f E= T T ( E i : i G I ) , Eo i s t h e space o f aJl x"&E w i t h x ( i j f 0 f o r count a b l y many c o o r d i n a t e s (see 0 . 1 . 3 w i t h a = 0)
. (u) .
:
I f U i s a 0-nghb gauge o f U ,
i n a space E and i f p U ( x ) : = i n f ( a ) O :
then E ( U )
i s t h e q u o t i e n t E/pU-'(0)
c a n o n i c a l norm induced by p
U'
x6aU)
i s the
endowed w i t h t h e