This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
=<X,QR> = ( $ o(-))(QR)=$(R) Q hence Q
9.4.2
*
.
X = 4
Remark.
-
I
If E i s a n u c l e a r
Frdchet space o r a nuclear
Silva s p a c e one m a y r e m a r k t h a t a l i n e a r o p e r a t o r f r o m 63 (E) ink, 63 (E) i s bounded i f it i s continuous f o r the d i r e c t sum topology of the n s t r o n g topologies on the s p a c e 63 ( E ) , S e e C o l o m b e a u - P e r r o t [ 8 ] for m o r e details. 9.4, 3
t 81.
Remark.
-
A p h y s i c a l m o t i v a t i o n i s explained
Colombeau-Perrot
CHAPTER 10 CONVOLUTION EQUATIONS IN SPACES OF ENTIRE FUNCTIONS OF EXPONENTIAL TYPE
ABSTRACT.
-
If E is a c o m p l e x 1. c. s.
we denote b y E x p E t h e
s p a c e of e n t i r e functions of exponential type on E
,
i. e. , t h o s e e n t i r e
on E s u c h t h a t t h e r e a r e c > o and a continuous
functions
semi
n o r m p on E with
f o r a l l xE E
. A s u b s e t of E x p E i s
s a i d to be bounded i f i t i s a family
t h a t s a t i s f y the above inequality f o r all x e E with t h e s a m e c ('i)ic 1 T h u s E x p E: is a b. v. s. a n d we equip i t with t h e b o r and p f o r all i
.
nological topology a s s o c i a t e d t o t h i s bornology. Remark.
-
If F i s a c o m p l e x q u a s i c o m p l e t e dual n u c l e a r 1, c. s.
we
know f r o m chap 7 that E x p (F') is a l g e b r a i c a l l y a n d topologically i s o -
B
m o r p h i c , through t h e F o u r i e r B o r e 1 t r a n s f o r m 3 , w i t h (3C (F))'
s
THEOREM 1.
-
Let E -
be a c o m p l e x n u c l e a r 1. c, s.
.
8'
T h e n a n y non
z e r o convolution o p e r a t o r on E x p E i s s u r j e c t i v e . THEOREM 2 . -
-
Let E -
be a c o m p l e x n u c l e a r
1. c. s
a n d 6 a convolu--
tion o p e r a t o r on E x p E. T h e n a n y 6 E E x p E solution of 6 @ = 0 i s limit
Ti, finite which are a l s o solutions. i n E x p E of functions
QD..
. .@ T i ,
e x p (Ti, n+l ), (n
€rn,
T h e s e r e s u l t s a r e proved ir. m o r e g e n e r a l c a s e s . 223
T i € El),
224
Convolution equations in spaces
9
Convolution o p e r a t o r s on 5x1(n) S
10.1
We a s s u m e t h a t F is a c o m p l e x S c h w a r t z b.v. s. with a p p r o x i m a tion p r o p e r t y ( 5 . 1. 1) and t h a t
10. 1. 1.
n
is a convex, balanced,
Topologies and b o r n o l o g i e s on 3Kt,(n).
-
T F
open s e t .
F r o m 9 7. 1 we
X
denote by 35(' ( n ) c3c ( F ) the i m a g e u n d e r the F o u r i e r - B o r e 1 S S t r a n s f o r m 5 of the s p a c e 3C' (n) ( s e e 7. 1.5). We r e c a l l t h a t 3 i s a S bornological and a topological i s o m o r p h i s m .
(defined by : 7
5x1,(n)
Proof.
F o r each a
LEMMA. -
10. 1 . 2
-
0
$(p)
=
E FX, t h e t r a n s l a t i o n o p e r a t o r
$ ( p -a)) is
7
a
a continuous l i n e a r mapping f r o m
into i t s e l f .
It suffices to check that 7
is a bounded l i n e a r mapping a f r o m 33c' (0) into i t s e l f . If aEF , A E Xts(62), w e define S X
(exp(-a)).k f
EX
,(n)
.
x's(n)
by ( ( e x p ( - a ) ) . A ) ( q ) = A((exp(-CI)).y) f o r a n y
It i s i m m e d i a t e to c h e c k t h a t
T h u s the mapping 1
Kls(n) into i t s e l f .
m
-
(exp(-a}).& is a bounded l i n e a r mapping f r o m
225
Convolution operators
1 0 . 1. 3 Convolution product and convolution o p e r a t o r s . l e t T Y be the mapping f r o m 3X' S
if
@ E
S
(0)and a E F
X
(n) to x s(F
X
-
If
TE(355k(n))l,
) defined b y :
( i t i s e a s y to check that T
+
E
We r e c a l l t h a t , by definition, a convolution o p e r a t o r on
S
(FX)).
3(K's(n)
is a continuous l i n e a r mapping (equivalently a bounded l i n e a r m a p p i n g s e e 7.1.5) f r o m XK' lations
'r
a
if
a'
(n) sX
6 F
.
into i t s e l f which c o m m u t e s with a l l the t r a n s We denote by
convolution o p e r a t o r s on ZK
10. 1 . 4 LEMMA. onto the s p a c e
Proof.-
since t
3(T) E
If
S
(a)
ci
t
3
.
Is(n)
.
The mappinp T
*
G the l i n e a r s p a c e of t h e
T3c
d e c o t e s the t r a n s p o s e of
i s bijective f r o m ( 3 Y t s ( O ) ) '
5 , we have
i s n a t u r a l l y r e f l e x i v e (4.4. 1). So, i f
xs(n).
TF(5SCC!S(n))', t h e n
L e t us define a mapping U f r o m 3 ( '
S
(n)
into i t s e l f by :
Convolution equations in spaces
226
(T =
* 3 a ) ( x ) = T(T
-X
ZJ?)= T i y
-
J? ( e x p ( x t y))]
T i S ( ( e x p x ) . a ) ] = ( T 0 3 ) ( ( e x p x ) . a ) = [ ( e x p x).
=
a ] (T
o 3) =
= A I ( e x p x ) . ( T o 311 E
( w h e r e exp x and ( T o 5 ) F X (n)). On the o t h e r hand S
Therefore :
( T 3103
5 o U
and a s a consequence the following d i a g r a m is c o m m u t a t i v e .
c
Convolution operators
It is i m m e d i a t e to c h e c k t h a t U s u b s e t s of X l S ( n ) ) ,
so U
is bounded (on t h e equicontinuous
is continuous ( s e e proof of 7. 1.5). T h e r e f o r e
is conticuous s i n c e t h e mapping
T SC
3 is a topological i s o m o r p h i s m .
It i s i m m e d i a t e t o c h e c k t h a t the mapping translations. Therefore T Let
if
221
T
*
c o m m u t e s with t h e
.
*
is a convolution o p e r a t o r on 3'Hts(n)
.
One c h e c k s i m m e d i a t e l y ( t h e d e t a i l s of
Y be the mapping
(d F 3 H t s ( n ) and
6 6 G
c o m p u t a t i o n s a r e done in 1 2 . 1 . 2 ) t h a t which p r o v e s the bijection.
10. 1.5
Y o ( T % ) = T and
(Y6)t
= h,
I
G e n e r a l f o r m of t h e convolution o p e r a t o r s on E x p E.
-
-
If E
is
a c o m p l e x n u c l e a r 1.c. s . dnd i f E is t h e completior. of E , E x p E = E x p E a l g e b r a i c a l l y and topologically, s o t h a t we m a y a s s u m e without l o s s of g e n e r a l i t y that E is c o m p l e t e . T h e r e f o r e f r o m ( 0 . 3 . 1) and ( 0 . 5 . 9 ) ,
E i s a n a t u r a l l y r e f l e x i v e 1 . c . s.,
F = E ' . Now i f 0 g G ,
f r o m (10. 1.4), t h e r e is a
i. e.
ElX
= E. We s e t
TF(35(IS(F))'
such that 6 = T* , i.e.
for every -1
R = 5
$
f
3 K ' (F) = E x p E and e v e r y 5 6 F X = E . Now i f S
6 KIS(F),
it follows f r o m the a b o v e d i a g r a m t h a t
(ExpE)'
228
Convolution equations in spaces
t w h e r e we s e t p = 5 T gxS(F) ( p is c a l l e d t h e c h a r a c t e r i s t i c function of the convolution o p e r a t o r
6 ). T h e r e f o r e f r o m 7 , 1 . 4 ,
r . = o
229
Approximation of the solutions
9
10.2
L e t F and
A p p r o x i m a t i o n of t h e s o l u t i o n s
62 be a s i n
5
10. 1. Since the F o u r i e r - B o r e 1
t r a n s f o r m 3 i s a n i s o m o r p h i s m f r o m XI (0) onto XU,' (n) , i t s S s = ( 3 K ' (n))x onto t r a n s p o s e t3 is a bijection f r o m ( 3 X ' (0))' S S
K
'762) = (n) . S
S
10.2. 1 LEMMA. 3C
S
(n)
IfS
( X K 's(0))',
t h e n t3(S) is t h e e l e m e n t of
defined by : t
( 3 ( S ) ) (x) = S(exp x)
f o r e v e r y x E 62
.
~ y ' ~ ( ,nt h) e n is c o n s i d e r e d ir. K ( 6 2 ) S S t t f o r m u l a d x ) = y ( bX). So ( 3(S))(x) = ( 3 ( S ) ) ( E x ) = S ( 3 6,) Proof,-
If
Q
by the
= S ( e x p x).
We s e t E x p R c 3 K 1 (n) be t h e l i n e a r s p a n of t h e f u n c t i o n s e x p x S if x e n
.
10.2. 2 LEMMA,
-
E x p 0 is d e n s e ir? 3 H ' (0) ( f o r its l o c a l l y convex S
topology t h a t is t h e i m a g e of t h e topology of
Proof. x E 0
-
Let S E
(ax'S(0))'be
. F r o m (10.2.1)
hjective.
I
t
XI
S
(62)).
such that S(exp x) = o for e v e r y t 3(S) = o i n xs(n), s o S = o s i n c e 5 i s
Convolution equations in spaces
230
10.2.3.
-
Convolution product.
define a n e l e m e n t X
*Y t
3(X
If x , Y E ( 3 ~ ~ ~ ( n we ))l,
of (3x’ ( 0 ) ) l by t h e f o r m u l a : S
-)t
Y ) = t5(X).t3(Y)
w h e r e the r i g h t hand s i d e i s the o r d i n a r y p r o d u c t ir,
ws(n) . F r o m
and the above definitior. it follows t h a t
(X
(1)
for e v e r y x
c 0. t
andif x c R ,
* Y ) ( e x p x ) = x ( e x p x) . Y
If S , T 6 ( 5 K K ’ S ( R ) ) ’ , we have
:
5 [ ( t ( T * ) ) ( S ) ] = t3[S o ( T * ) ] = [S o ( T * ) ] o 3
5
E F”:
so t h a t
(21
(exp x)
(t(T * ) ) ( S ) = T
f o r e v e r y S, T C 3 3(
‘S( 0 ) ) l .
.)(
S
( 1 0 . 2 . 1)
Approximation of the solutions
231
10.2.4 P r o p o s i t i o n on d i v i s i o n of h o l o m o r p h i c f u n c t i o n s . complex b.v.6.
g fo,
and
7 F - o p e n set. L g f , g
a connected
t F
cxs(n) ,
be s u c h t h a t f o r e v e r y open s e t S of e v e r y affine s u b s p a c e of
d i m e n s i o n 1 of F , with S
C
G , and in which g is not i d e n t i c a l l y is d i v i s i b l e by t h e r e s t r i c t i o n g
z e r o , t h e n t h e r e s t r i c t i o n f/s
the quotient a s a h o l o m o r p h i c functior. in S.
, with /S Ther, f is d i v i s i b l e by g
with the quotient a s a Silva h o l o m o r p h i c function in fl
Proof.
k
-
.
It c l e a r l y s u f f i c e s t o p r o v e the r e s u l t in the c a s e F i s a
c o m p l e x n o r m e d s p a c e , u h i c h we a s s u m e f r o m now on in t h i s proof. Now i t is enough to p r o v e the r e s u l t l o c a l l y (in 0 which is a n open s e t of t h e n o r m e d s p a c e F). If x x
t hy F
F
n
1x1 5
1 F C,
for a l l
t h e r e is y 1.
F such that g(x t y )
#
0 and
Since the z e r o e s of a h o l o m o r p h i c
functior. of one c o m p l e x v a r i a b l e a r e i s o l a t e d , t h e r e is o < r < 1 s u c h that
if
1 e C,
IA 1
= r
{ x t Ay , A 6 C ,
.
IA I
V of x , V t f l y , all x
V acd h
f o r a l l x E V.
.$
S i n c e g is coctinuous in = r
lx
C,
I=
1AI
1
i s c o m p a c t , t h e r e is a n open neighborhood
r
] cn, = r
such that
~y
X
in
Ig(xtAy)l 5 6 P o f o r
. Now we define
h i s locally bounded in V .
a holomorphic f u n c t i o n
and the s e t
:
By o u r a s s u m p t i o n , t h e r e is
1 h F C , IX 1 e 1 1
such that
Convolution equations in spaces
232
f o r a l l t E Q:
, I t I < 1.
Hence, for e v e r y x E V
T h u s f(xf = g(x) h(x) f o r a l l x C V . bounded in V ,
on F
P f F
@n
and x C 0 , then t h e function
:
is in 35{' (0)( i f S
R
Since h is G-analytic and l o c a l l y
h is h o l o m o r p h i c in V .
N o w l e t u s r e m a r k t h a t , if X
:
P = x
~ 3 C ' ~ ( nis) defined
1
~1
... @ x n , x i E F ,
then P e x p x = 3 A
where
by
d ( 3 K ' (0))' with T # 0 . L e t u s S a s s u m e that f o r a l l P and x F 0, ther. the equality T * ( P e x p x ) = o t t i m p l y the equality X ( P e x p x) = 0. T h e n 3 ( X ) i s d i v i s i b l e by 5 ( T )
10.2.5 LEMMA.-
x X , T b F @n
with the quotient a s a Silva h o l o m o r p h i c function on
h2
.
If x , x E 0 we s e t S = { x .f w x when w r a n g e s o v e r 1 2 1 2 If w o is a z e r o of a suitable open s u b s e t of C s u c h t h a t S c 0 Proof.-
.
233
Approximation of the solutions
o r d e r m of the function
( s e e 10. 2. I ) , then a3k T ( x2
exp ( x l - t w o x 2 ) ) = o
for a l l k < m ,
k
@k
T+(x2
k
exp(x + a x ))= 1 0 2 i = o
!
1 i ! (k-i).
x
gk-i exp(x t w x ) 2 1 0 2
Therefore , 8k T 31 ( x 2 e x p ( x l t w o x 2 ) ) = o
f o r a l l k < m.
By assumptior. ,
x
( x y k e x p ( x l t w 0 x 2)
= o
.
for all k e m T h e r e f o r e w is a z e r o of o r d e r 2 m f o r t h e r e s t r i c 0 t t t tion t o S of 5 ( X ) . T h u s ( ~ ( X ) ) , I ~i s d i v i s i b l e by ( 3(T)) with t h e /S quotient a s a h o l o m o r p h i c function in S.
Now i t s u f f i c e s t o a p p l y (10.2.4).
I
234
Convolution equations in spaces
n
Now we denote by P . 6 x p
t h e l i n e a r s p a n i n 35cIs(n) of t h e
Qn
functions P . e x p x w h e r e P E F x
for s o m e v a r i a b l e n and w h e r e
en.
10.2.6 A p p r o x i m a t i o n t h e o r e m . b.v. s . and
-
L e t F be a c o m p l e x n u c l e a r
61 a convex balanced open s u b s e t of F.
convolution o p e r a t o r on 3 X ' (0). T h e n e v e r y solution t h e homogeneous equation 6
.
of solutions in P.Gxp 61
Proof.
-
fl
fl ( g 3 K ' S(n)) of
= o is a l i m i t , i n the topology of
If 6 = o t h e r e s u l t is t r u e s i n c e , by ( 1 0 . 2 . 2 ) ,
d e n s e i n 3X'
S
( f r o m 10.1.4).
P. d x p 0
s
6 be a
n
(n).
#
If 6
.
Q = (t3)"(h)
t
n),
P . & x p 0 is
be s u c h t h a t X i s null on
* (P. exp x)
o imply X ( P exp x)=
0.
t h e r e e x i s t s a n h E 5( ( 0 ) s u c h t h a t : S t
If we s e t
(a))'
S Therefore T
T h e r e f o r e , by ( 1 0 . 2 . 5 ) ,
Is(
o l e t T F(3Xts(n))'be s u c h t h a t Q = T j c
Let X 6 (SKI
Ker 8
3K
3(X) = h ( t 3 ( T ) ) .
then
E (3XtS(61) I ,
3(X)
= t3(Q)
t
3 ( Q ) = h and , f b m ( l 0 . 2 . 3 ) ,
%(T) = t3(Q
* T).
Therefore
Hence, f r o m f o r m u l a ( 2 ) i n ( 1 0 . 2 . 3 ) , t = Q 0 B , = ( (T+))(Q) = and x($)=Q(Q$)=o if !dg K e r 6 . T h e r e f o r e X is null on Ker 6 and i t
x
s u f f i c e s t o a p p l y the Hahn-Bandch t h e o r e m t o c o m p l e t e the proof.
a
235
Existence of solutions
9 lo. 3
A s before,
n
p r o p e r t y and
10.3. 1 LEMMA.
a Is(n) . T h e n
E x i s t e n c e of s o l u t i o n s
F is a c o m p l e x S c h w a r t z b.v. s. with a p p r o x i m a t i o n
a convex balanced
-
t
TF-open set.
be a nor, z e r o convolution o p e r a t o r on
@
S ( 3 , ~ s ( ~=) )( K I er
t h e p o l a r of K e r @, contained
@)O,
L ( 3 K I s ( 0))l.
T h e ir.clusion
Proof. if
t
& ( 3 X t ,(n))' c ( K e r 6)'
S 6 t@(3K's(n))1. t h e r e is a U E ( 3 K '
S
$
= o
i m p l i e s S($) =
0.
t h a t X($) = o w h e n e v e r G ( $ ) = T t h e r e is a 0
with
.
t
S = $(U)=UoO
Hence 6
(n))l
i s immediate :
Conversely let X F
*
$
=
(3KtS(n))' such that X =
such
F r o m the proof of (lO.Z.6),
0.
t
(3x'S(0))'be
b
(a).
10.3. 2 LEMMA { E x i s t e n c e of solutions i n a p a r t i c u l a r c a s e ) .
- If
F
is a Silva s p a c e , then e v e r y non z e r o convolution o p e r a t o r on 33CI (n) S is sur,jective.
Proof. -
In t h i s c a s e
",(n)
is a F r 6 c h e t - S c h w a r t z
s p a c e (4.2. 1 and
4. 3. 1) , h e n c e sKls(n) is a Silva s p a c e (0.6.8). F r o m (10. 3.11, t &(m1s(C2))' if X
i s w e a k l y c l o s e d in (35CtS(0))'
E (axl,(n))'
.
t @ is i n j e c t i v e
is s u c h t h a t t&(X) = o and if
:
8 = T * , it follows f r o m
Convolution equations in spaces
236
t t h e f o r m u l a (2) in ( 1 0 . 2 . 3 ) that T + X = 0 , h e n c e 3 ( T -X X ) = o a n d , t t t ( 1 0 . 2 . 3 ) , 3(T). % ( X ) = 0 . Since 3 ( T ) # o we h a v e 3 ( X ) = o t ( t Z ( T ) and 5 ( X ) E K S ( o ) and n is c o n n e c t e d ) , h e n c e X = 0 . Now it s u f f i c e s to apply the following c l a s s i c a l r e s u l t t h a t m a y be found in Hogbe Nlend
[
1
:
<< L e t E be a Silva s p a c e and u a continuous l i n e a r mapping f r o m E i n t o E. T h e n u is s u r j e c t i v e i f t~ is i n j e c t i v e a n d c l o s e d in E '
>>
.
t
u ( E ' ) is weakly
I
be a n i n c r e a s i n g s e q u e n c e of convex balanced Let ( C n ) n c m s t r i c t l y c o m p a c t s u b s e t s of F s u c h t h a t , f o r e v e r y n E IN , Cn is c o m p a c t and that t h e identity m a p p i n g in Fc may nt1 'n+ 1 be a p p r o x i m a t e d u n i f o r m l y on c by continuous l i n e a r finite r a n k n o p e r a t o r s (given a n y C , one m a y obtain the s e q u e n c e ( C ) icduc 0 c nEN in the Banach s p a c e F
tively, s i n c e F is a s s u m e d t o be a S c h w a r t z b.v. s . with a p p r o x i m a t i o n p r o p e r t y ) . If
8 d e n o t e s t h e b o r n o l o g i c a l inductive limit of t h e B a n a c h
c n ) n € N , 81
s p a c e s (F
i s a Silva space,(O. 6.7),
p r o p e r t y . We c o n s i d e r
R n 8 a s a 7 8 - o p e n s e t and denote by K ( n n & )
t h e s p a c e of t h e holomorphic functions on f2 fl 8 ,
6 is a Silva s p a c e ) . W e denote by r t h e r e s t r i c t i o n mapping
with a p p r o x i m a t i o n
(3CS(h2n&)=3((nnd)s i w e
Existence of solutions
Proof.
r(3cs(n)) is d e n s e in K ( n n d ) .
LEMMA. -
10.3.3
-
Since
237
8 is a Silva s p a c e u i t h a p p r o x i m a t i o n p r o p e r t y , i t
( a ) is d e n s e in 3( ( 6 1 n d ) . Now r(b;(F)) f is d e n s e in P f ( 8 ) s i n c e r ( F ” ) i s d e n s e ir, d * ( i f not t h e r e is
follows f r o m th (5. 1 . 2 ) that ‘6 x F 6’
=
8, x
#
0,
such that x’(x)= o for e v e r y
X I
i m p o s s i b l e s i n c e we a s s u m e t h a t F Y s e p a r a t e s F ,
10.3.4 Existence t h e o r e m . a p p r o x i m a t i o n p r o p e r t y and
K
6 FX
.
T h i s is
s e e (0.2.3)).
F be a c o m p l e x S c h w a r t z b.v. s . with
61 a convex balanced ‘TF-open s e t . T h e n
a n y n o n - z e r o convolution o p e r a t o r on Z X 1 (0) is s u r . j e c t i v e . S
B e f o r e t h e proof we s t a t e the m a i n c o r o l l a r y ,
COROLLARY. -
10.3.5
Let E
be a c o m p l e x n u l c e a r 1.c. s . T&
a n y non z e r o convolution o p e r a t o r on E x p E is s u r j e c t i v e .
Proof.
-
A s explained in ( 1 0 . 1 . 5 ) we m a y a s s u m e without l o s s of
g e n e r a l i t y thkt E
i s c o m p l e t e and we s e t F = E ’ equipped with the
equicontinuous bornology. T h e n , f r o m ( 7 . 2 . I ) , i t s u f f i c e s t o apply ( 1 0 . 3 . 4 ) .
I
10.3.6
Proof of t h e e x i s t e n c e t h e o r e m ( 1 0 . 3 . 4 ) .
z e r o convolution o p e r a t o r on 3 K t S ( R ) . commutative d i a g r a m
-
Let
6 be a non
We c o n s i d e r the following
238
Convolution equations in spaces
w h e r e , s e e t h e proof of (10. 1 , 4 ) , U
is given by
U(1) = ( t 3 ( T ) ) . a if 1 6
xfS(n).
Obviously, i t s u f f i c e s t o p r o v e t h a t U
If K i s a s t r i c t l y c o m p a c t s u b s e t of F contained i n
n
is s u r j e c t i v e .
and if
6 3 o
we r e c a l l that we s e t
V(K, E
EKS(h2) s u c h t h a t s u p
) =
xEK
and we denote by V o ( K , E )
i t s p o l a r in
WS(n)
.
I dx)15c I
Let u s also recall that
if K is a s t r i c t l y c o m p a c t s u b s e t of F contained i n
convex balanced hull of K is s t i l l contained in
-
n
%2 ,
L e t Y be a given e l e m e n t of t h e r e e x i s t s a n e l e m e n t X of
S
(n)
t h e r e i s a Z F X ' (0) s u c h that UZ S
K
x'S (0). We a r e g0ir.g to p r o v e
#
s u c h t h a t UX = Y.
1'
{Y,Z
U
that
#
is contained in s o m e Yo(K
E )) i s a n equicontinuous s u b s e t of k
1
Since
so
o
0.
1 bounded f o r t h e equicontinuous bornology on K
U(Vo(K
R n F B and
, E ), w h e r e w e m a y 1 1 convex and balanced ( a s a l r e a d y explained above). U is
The s e t assume
1
then t h e closed
( s i n c e K is c o m p a c t
r K i n F B is c o m p a c t in FB ' "closed" i s understood above in t h i s s e n s e ) ,
in s o m e Banach s p a c e
,
S
(n).
ls(O),
Therefore hence there i s a n
239
Existence of solutions
f
2
>
o and a s t r i c t l y c o m p a c t s u b s e t
K'
2
c
n
such that
a convex balanced s t r i c t l y c o m p a c t s u b s e t of F s u c h 1 We denote by d t h a t K i s c o m p a c t in the B a n a c h s p a c e 1 FT 1 ( r e s p e c t i v e l y 6 ) t h e d i s t a c c e in FK1 ( r e s p : F T 1 ) obtained with the We denote by
T
.
n o r m s of t h e s e Banach s p a c e s . We s e t
KY =
if
IX
F 0
nF
K1
IN aiid w h e r e
p
s u c h that
CF
FT1
,
K1
,
which is contained in
s o i t is contained in Kp 1
Kp in F
1 contained in R .
T1
, denoted by K p
T1
1
FT 2
The
, is c o m p a c t in
n
1
u
K'
and is
2
and c o m p c t in s o m e Bdnach s p a c e F
2 in F c l o s e d convex balanced hull of K U K li K ' 1 1 2
u
is also
f o r s o m e p F IN.
i s a convex and balanced s t r i c t l y c o m p a c t s u b s e t of
r(K1
0,
Therefore
K1 U K
is contained in
.
in F
T1
-F c l o s u r e of
n
R d e n o t e s the c o m p l e m e n t of
E v e r y c o m p a c t s u b s e t of F c o m p a c t in
b(x,
Kf. U Klz),
F. c1
,
, where c 1 c1 T h e r e f o r e the
denoted by
is s t i l l contained in 0 . T h e r e f o r e t h e r e is
g 7 o 1
240
Convolution equations in spaces
s u c h that
We s e t
K
2
=
r
(K
1
u ~ f u. ~
1 t a~ l c) l ,
i s a convex balanced s t r i c t l y c o m p a c t s u b s e t of F contained 2 in h2 Define the s e q u e n c e of s u b s e t s ( KP) ir, n n F in the 2 pcIN K2 s a m e way a s it w a s done b e f o r e with K in p l a c e of K 2 , ( u s e s o m e 1 T2 in place of T ). T h e r e f o r e , e v e r y c o m p a c t s u b s e t of F , which is 1 K2 contair.ed ir, n, is cnntained in Kp f o r s o m e p F IN 2
and thus K
.
.
Now, s i n c e t h e mapping
U is l i n e a r bounded on
e x i s t a s t r i c t l y c o m p a c t s u b s e t K'
3
c
n
and a n
E
3
4. o
X'
S
( 0 ) , there
such that
;
3 K3 U K U K r 3 t h e w o r k Blready d o c e with 1 2 3 3 K u K2 U K ' b e f o r e : it follows t h a t r ( K U K u K U K' ) is c o m p a c t 1 1 2 2 1 2 3 in s o m e Banach s p a c e Fc (with c a convex balanced s t r i c t l y c o m p a c t 2 2 s u b s e t of F) and contained in n T h e r e f o r e t h e r e is a n a 3 o s u c h 2 that N o w w e d o with K
2
u
.
We s e t
K
-
3
= r(K
2
3
U KI
u
3 K 2 U KI3) t g
2 c2
241
Existence of solutions
and t h u s K
3
i s a convex balanced s t r i c t l y c o m p a c t s u b s e t of F
.
contained i n hl
nn
F
in A s b e f o r e we define now a s e q u e n c e of s u b s e t s ( KP ) 3 p c N
.
K3 subset K’
F u r t h e r m o r e , a s before, t h e r e exist
4
c fl and a n
E
4
>
o s u c h that
a strictly compact
:
B y a n obvious inductior. we obtain s e q u e n c e s (Cn)nc N (O
of s t r i c t l y c o m p a c t s u b s e t s of F and s e q u e n c e s (& ) nn@N ’ of s t r i c t l y p o s i t i v e r e a l n u m b e r s s u c h t h a t :
c)nF N
Kn+ 1
(Kn)I?FN’ ( K ’ n ) n E N ’
c R a n d F
compact in F
C
n
K
.
C F r*
C F
with cnntinuous i n c l u s i o n s , and
Kn+ 1
r .
K
n
F u r t h e r m o r e , s i n c e F i s a S c h w a r t z b.v. s . with a p p r o x i m a t i o n p r o p e r t y (5. 1. l ) , then c
nt1
,
a t e a c h s t e p of t h e induction, w e m a y c h o o s e
l a r g e enough s u c h that the identity o p e r a t o r on F
a p p r o x i m a t e d u n i f o r m l y on c on F
.
n
m i g h t be C n t1 by finite r a n k s continuous l i n e a r o p e r a t o r s
C n t1
We denote by ( F c ) n € IN n
6 t h e inductive limit of t h e B a n a c h s p a c e s
, which is a l s o t h e inductive l i m i t of t h e B a n a c h s p a c e s
Convolution equations in spaces
242 : clearly
n
8 is a Silva s p a c e with a p p r o x i m a t i o n p r o p e r t y
(in the s e n s e of 5 . 1. 1).
Now , f r o m (10.3. 3 ) , the r e s t r i c t i o n mapping
h a s a d e n s e r a n g e ; thus its t r a n s p o s e
x
is injective. So K l s ( n n & ) m a y be identified a s a s u b s p a c e of
S( 0 ) .
6 which
Now l e t u s o b s e r v e t h a t a n y s t r i c t l y c o m p a c t s u b s e t of
i s c o n t a i n e d i n Q , i s contained i n K f o r s o m e n ( t h i s is d u e to the n for every n F N). F o r convenience u s e of t h e s e q u e n c e s (Kp ) n p F N one m a y a s s u m e without l o s s of g e n e r a l i t y t h a t lim E = o Therefore n I? a3 the sets
.
4
a r e a b a s e of o - n e i g h b o r h o o d s of 51
Wo(K,'C
n
) in X
IS(n n
S
(n n 6 )
Therefore their polars
6 ) a r e a b a s e of equicnntinuous s e t s .
F r o m t h e d e n s i t y of r(5( ( 0 ) ) i n that
.
S
Ks(n n 8 ) (10.3.3),
it follows
243
Existence of solutions
Since, by c o n s t r u c t i o n ,
then the s u b s p a c e 5 ( ' (0 n 8 ) of S restriction U
Z F3CiS(nn&) ( b e c a u s e Z e V o ( K
i t s e l f . S i n c e , by c o n s t r u c t i o n ,
U
Now
6
is mapped i n t o i t s e l f by U
and
is a bounded l i n e a r mapping f r o m K t (npd) into S
/X i s ( n ns)
and UZ # o ,
xis(n)
/~i,;nn
E )) ,
1' 1
is non z e r o .
8)
is the o p e r a t o r which c o r r e s p o c d s to U
dvS(nn 6
/33cfs( 0 na)
i. e. s u c h that the following d i a g r a m i s c o m m u t a t i v e
(since
6 = T* ,
/ ~ 3 cp
n a
=
i s the m u l t i p l i c a t i o n of e l e m e n t s of t
3(T)/
t
nn5
= 5(T
' ~ x i ~ ns) jn
).
)c
Is(
Thus @
convolution o p e r a t o r on 3%' (rind) S
(7%n ns)) x'S( n n 5 ) by
.
' 5 3 ~is(n n s )
.and U
/xis(n n8 1
is a non-zero
'
244
Convolution equations in spaces
From (10.3.2), is s u r j e c t i v e on
x
ssris(61ns).
I s ( n n 4 ) . Since Y F
C o n s i d e r i n g X in
10.3.7
Remark.
and s i n c e B
-
XI
S
x ’S(n)
Thus
is a Silva s p a c e ,
U/k~,(n”s)
6
i s s u r j e c t i v e on
(nn8) t h e r e e x i s t s a n X F K’ ( f i n d ) s u c h t h a t S
we have UX = Y
.
A n o t h e r d i f f e r e n t proof of th. ( 1 0 . 3 . 4 ) w i l l be given
i n the next c h a p t e r . N e v e t h e l e s s the c o n s t r u c t i o n ir. the above proof
(10.3.6) w i l l b e used i n chap. 15 f o r a d e e p e r s t u d y of t h e k e r n e l s of convolution o p e r a t o r s on Exp
E.
CHAPTER 1 1 DIVISION OF DISTRIBUTIONS
ABSTRACT. THEOREM
-
L e t E be a c o m p l e x q u a s i - c o m p l e t e d u a l S c h w a r t z
( i n p a r t i c u l a r d u a l n u c l e a r ) 1. c. s. and l e t h2 be a connected s e t . L e t T be a given e l e m e n t of h o l o m o r p h i c function on
TE-open
d ' ( 0 ) and p be a g i v e n non z e r o
. T h e n t h e r e is a n
S E d ' ( n ) s u c h that
p . S = T .
A n i m m e d i a t e c o n s e q u e n c e is a new proof of the e x i s t e n c e of s o l u t i o n s of convolution e q u a t i o n s i n s p a c e s of e n t i r e functions of exponential type ( a l r e a d y obtained with a d i f f e r e n t proof i n the p r e c e d i n g c h a p t e r 3. T h e n we show t h a t division by r e a l polynomials and a n a l y t i c f u n c t i o n s is i m p o s s i b l e in g e n e r a l e x c e p t f o r finite type polynomials and f o r finite type analytic functions.
245
246
Division ofdistributions
6
The Wei'erstrass preparation theorem.
11.1
11. 1. 1 R e c a l l s on h o l o m o r p h i c functions of one c o m p l e x v a r i a b l e .
-
If
r 9 o we s e t :
1.1
E C such that
A
= /z
C
= {z € C s u c h t h a t
12;
L r = {z C C s u c h t h a t
< r] ]=r
1z15r
1
A
=
u cr.
We denote by 3C(b ) the B a n a c h a l g e b r a of t h e c o m p l e x valued continuous functions on 11 with the s u p - R o r m on a r e in
x(A
br.
which a r e h o l o m o r p h i c in If U r
hr,
equipped
d e n o t e s t h e set of t h e functions which
U r is a n open 'r' t h e s u b s e t of U
) and which d o not take t h e value o on
s u b s e t of K ( A r )
.
If n E N ,
we denote by U
r,n m a d e of the functions t h a t h a v e e x a c t l y n z e r o e s i n A r
( e a c h z e r o is
counted with i t s o r d e r of multiplicity). C l a s s i c a l l y (Dieudonnk 9.17.4)
U
r,n
is a n open s u b s e t of 3
(2
)
.
[ 1
3
1 1 , 1 . 2 The W e i ' e r s t r a s s d i v i s i o n t h e o r e m i n the one d i m e n s i o n a l c a s e .
(1)
For every
e x i s t unique y E X (
L ~ and )
'
g 'r,n (ao, a l , .
and e v e r y f
. . , an - 1 F a?
f ( z ) = g(z) q ( z ) t a. t a z t 1 for e v e r y z E
Lr
.
cK
(ar)
such that
... t a n - 1 z n - 1
there
Weierstrass preparation theorem
(2)
T h e mapping
247
8
n - 1 a . z.
1
i = o is a n h o l o m o r p h i c d i f f e o m o r p h i s m .
Proof.
-
( 1 ) i s t h e c l a s s i c a l W e i e r s t r a s s division t h e o r e m
(Hormander Clearly
[
1
]
c h a p , VI) and a s a c o n s e q u e n c e
8 is continuously d i f f e r e n t i a b l e . F o r a n y
the d e r i v a t i v e 6 ‘ ( a ) is bijective
8
is a bijection.
g
6 Ur,n
x
“(~,)XC”
( u s e (1)). F r o m t h e c l a s s i c a l i m p l i c i t
function t h e o r e m ir. Banach s p a c e s (DieudocnC [ 1 ] c h a p 10) t h e i n v e r s e @-l . is d i f f e r e n t i a b l e , h e n c e h o l o m o r p h i c . mapping
11.1.3
The Weierstrass division theorem in Banach spaces.
a c o m p l e x Banach s p a c e and
n
If g F X ( % 2 ) , g f o N g ( 0 ) =
(1)
a convex balanced 0
- Let
E
o-neighborhood in E .
ther,:
t h e r e e x i s t s a d e c o m p o s i t i o n of E i n a topological
d i r e c t sum
E = F & c ~e ,f o
N
s u c h t h a t , i f w e denote by g ( 5 ) the function z a convex balanced
o-neighborhood
W
&
-, g ( 5 t
F and a n r
ze), there exists
>o
s m a l l enouph
Division of distributions
248
s u c h that, if
5 E
f o r some p E
IN
(2)
01
C
UJ,
;
if f
( 0 ) t h e r e i s a cocvex balanced o-neighborhood
h2 and t h e r e e x i s t unique
(1
E 3(
( n ' ) and a,,'.
s u c h that
- . , a P- 1c h ' ( f a l n F )
i = o for every x E R I
Proof.
-
(1)
. Since g
f
o t h e r e is a n e 6 k-2
, e # o , such that
E=F$(I:e x = ! , t z e N
(topological d i r e c t s u m ) . T h e function defined i f
z
r, g ( 5 t z e ) = (g(5))
5 t ze E n. L e t r > o be s u c h t h a t g/
t a k e the value o on C e c 0 hood in F such that
. Let
W
Ce
n
g!
(2)
is
does not
be a c o n v e x balacced o - n e i g h b o r -
249
Weierstrass preparation theorem N
T h u s g(6) c X ( i r ) i f
5
F W
and t h e r e f o r e we m a y c h o o s e
5 E N
g(5)
ui
.
r-d
W
s m a l l enough s o t h a t g ( s ) E U
. T h e c u m b e r of z e r o e s (with t h e i r o r d e r of m u l t i p l i c i t y ) of
in b r
is a continuous function of
w
hence g ( 5 ) F U
r *P
(2)
for some
5 ( f r o m Dieudonne' [ 1 ] 9.17.4),
p E N and a l l
5 6
W
.
We set
N
Thus f ( 5 ) E X ( & r ) if N
q ( $ ) € 3 r ( a r ) and
if
ai($)
5
W
.
F o r a n y fixed
5
UJ
l e t u s define
C ( o > i s p - 1 ) by ( s e e 1 1 . 1 . 2 )
Therefore
-r
i = o
:
250
Division of distributions
--
Clearly g, f 6 c . 4
q
c
X (W,X ( A r ) ) .
A ) and a i E X ( w , Q .
,3((br)) ,K(W
3((w
It follows t h a t , via
and it s u f f i c e s t h a t R ' c U J t b r e and
0' n F c
e-', T h e r e f o r t . qF3C("+Are)
UJ
. T h e u n i q u e n e s s of
and
follow s i m m e d i a t e l y f r o m the uniqueness in ( 1 1.. 1. 2) p a r t ( I ) ,
( a 1'02 is p- 1 applied f o r any fixed
11.1.4
5.
The W e i e r s t r a s s p r e p a r a t i o n t h e o r e m in B a n a c h s p a c e s .
Let E
U =open
be a c o m p l e x Banach s p a c e ,
o-neighborhood
i n E and l e t be given a g
3((U) , g $
e x i s t s a decomposition of E
in a topological d i r e c t sum
E = F G C e
g(o) =
0 , &w
Then there
0.
( e f o )
x = 5 t z e , a n i n v e r t i b l e holomorphic functior, J i n a
o-neighborhood
V
E
a polynomial
with ai f X (V p F) , ai(o)
0,
for all x
V.
Proof.-
We a p p l y (11.1.3)
r e s t r i c t i o n of
g to U
g(o)=o, gl(o).e=o,.
(Ir 1 5 i 5 p),
: let p f
c@e , i . e .
such that
IN d e n o t e the o r d e r of the
:
.. , g ( P - l ) ( o ) . e p - l = o ,
g(P)(o) -eP #
0.
ar.d
25 1
Weierstrass preparation theorem
We c h o o s e 62
C
U s m a l l enough s o t h a t g
than the origin in C e
F r o m (11.1.3)
n
R
.
/Ce n R Define f FX(62) by :
there a r e V c
n,
h a s no o t h e r z e r o
q F K ( V ) and a . c X ( V f l F ) , o 5 i 5 p - 1 ,
such that :
i = o
for all x =
5
t ze
a.(o) = o since g/ q(o)
#
V.
Ce
n
Therefore
a d m i t s t h e origir, a s a z e r o of o r d e r p and
o f o r t h c s a m e r e a s o n , T h e r e f o r e q is i n v e r t i b l e in a o - n e i g h b o r -
hood i n E .
m
252
Division of distributions
11.2
Division b y a c o m p l e x polynomial
E 6 ( W ” ) , m F IN
If
and i E INn
i s a m u l t i - i n d e x of d e r i v a t i m
we s e t
(possibly M
m
1 1 . 2 . 1 LEMMA. degree p 6 N ,
I’ = P y .
t a).
(6)
- Let P s u c h that
P(x) = o implies
x =
J f - Cp F
r .
Ther, the followiing inequality h o l d s :
w h e r e the c o n s t a n t A ( m , P) d e p e n d s only on m
Proof. -
0.
p.
,of 8(R ) we
be a h o m o g e n e o u s p o l y n o m i a l on JR
& P,
but not on
W e u s e the c l a s s i c a l m u l t i - i n d e x n o t a t i o n s (Schwartz
c2]
f o r i p s t a n c e ) . L e t u s d e v e l o p p \Y a c c o r d i n g to T a y l o r ’ s f o r m u l a u p t o
o r d e r m t p - 1 , G i t h the r e m a i n d e r w r i t t e n in i n t e g r a l form ( s e e Hoffman
[1 ]
5.4. f o r i n s t a n c e ) :
I
Rmtp-1
1 q I =mtp-1 i=l,2,.
. ., n
.
25 3
Complex polynomial
T h i s i n t e g r a l i s c o m p u t e d on a n y r e c t i f i a b l e c u r v e of o r i g i n o and endpoint x in
5
1
s i n c e f o r a n y fixed x t h e d i f f e r e n t i a l f o r m of d e g r e e
, under the integral sign , i s closed. F r o m ( 2 ) me h a v e :
(3)
S i n c e P is h o m o g e n e o u s and
'Y d i v i s i b l e by P,
p o l y n o m i a l s of v a r i o u s d e g r e e s t h a t a r e i n
by
P,
and t h u s
Qmtp- 1
P
a l l its d e r i v a t i v e s of o r d e r m
the homogeneous
Qmtp- 1
a r e a l l divisibke and s o
is a p o l y n o m i a l of d e g r e e 5 m - 1
a r e z e r o . T h e r e f o r e , if
I r 1 =m
:
s lr
By i n d u c t i o n on s ,
where
6
S
one p r o v e s e a s i l y t h a t D S ( 1/P) is a q u o t i e n t
i s a h o m o g e n e o u s p o l y n o m i a l of d e g r e e
w h e r e c ( s , P) is a c o n s t a n t t h a t d e p e n d s o n l y on s and hand,
1 I.
(p-I) s
P.
e
S ,
So
On a n o t h e r
Division of distributions
254
i f a is the i n f i m u m of
1 P(x) 1
if
Ix I
= 1.
F i n a l l y f r o m ( 5 ) and ( 6 ) :
w h e r e c ( s , P) is a n o t h e r c o n s t a n t which d e p e n d s only on s and L e t u s now c o n s i d e r the d e r i v a t i v e s of o r d e r S m
Of
P.
Rm+p-l
*
If m 2
5 i s a s u m of 2 t e r m s : d e r i v a t i o n of 1, a derivative bx k R m + p - l
(x-5)'
in the i n t e g r a l and d e r i v a t i o n ic x which is the endpoint of the
path of integration. F o r t h i s l a s t d e r i v a t i o n we m a y a s s u m e t h e path of i n t e g r a t i o n e n d s by a segment p a r a l l e l t o the x - a x i s and finally one
k
obtains :
T h e s u c c e s s i v e d e r i v a t i v e s m a y be computed in the s a m e way ( t h e expocents of (x-5 ) r e m a i r , I m ) . F i n a l l y one obtains
70
s i n c e w e c o m p u t e d e r i v a t i v e s of o r d e r
:
i = l,Z,...,n
We compute t h e i n t e g r a l i n ( 9 ) on t h e s t r a i g h t l i n e s e g m e n t
[ o,x]
of
25 5
Complex polynomial
length
I XI
where
c ( m , p ) is a c o n s t a n t t h a t d e p e n d s only on m a n d
and it follows t h a t
p.
F r o m (4) ( 7 ) and (10) it f o l l o w s :
(since r with
- 1 s l - p t m+p-lr-sl = m - I r I = o ) . Ir
I
i m one o b t a i n s (1).
11.2. 2 P a r t i c u l a r c a s e . -
From(I1)writtenforall
I
If n = 2 , IR2
a
C by s e t t i n g x t i y
= z
and if P ( x , y ) = z w e obtain
w h e r e t h e c o n s t a n t A ( m ) d e p e n d s only upon m F
IN
.
S i n c e M ( 8 ) is t r a n s l a t i o n i n v a r i a n t , t h e s o m e bound h o l d s if i s r e p l a c e d by d e n t of
z
) :
z
- z0'
z
0
z
C , with t h e s a m e c o n s t a n t A ( m ) ( i n d e p e n -
256
Division of distributions
LEMMA.
11.2.3
complex variable
-
k
C
z
2 If y E d(IR )
t P be a u n i t a r v polynomial of d e p r e e p in t h e
\Y
:
Pq then the following i n e q u a l i t v h o l d s :
w h e r e t h e c o n s t a n t A ( m , p ) d e p e n d s only upon m and
p, and n o t on cp
and the coefficients of P.
P(z) = (z-z ) ( z - z ) 1 2 w i t h z - z . , i = 1, ,p. Proof. -
...
... ( z - z P)
and it s u f f i c e s t o a p p l y (12l)
If 52 is a n o p e n s u b s e t of IR2? i f m E
11.2.4
C,i
LEMMA.
fn'
1 1 . 2 . 3 , if
-
( l o c a l f o r m of 1 1 . 2 . 3 ) :
is a bounded open s u b s e t of
cp
IN
and cped(n), w e s e t
If n
C with
i s a n open s u b s e t of c
R , if P
i s a s in
d ( n ) a n d \Y = Pcp, t h e n
w h e r e t h e c o n s t a n t A ( m , p, 61,
a')
d o e s not depend on cp a n d P.
Complex polynomial
a E J(n), a
-
1 in a neighborhood of 6'' and a 2 , t h e n o w and a'Y = P a f p F 6 ( R ). F r o m (13)
Proof.
Cn
-
251
If
E
E
o in
F r o m Leibnitz's formula
since a
d e p e n d s only on
N o-
and
n'. I
w e a r e going t o a p p l y thes:
r e s u l t s in the infinite d i m e n s i o n a l
c a s e , by i c t r o d u c i n g a p a r a m e t e r t v a r y i n g in a n o r m e d s p a c e . Let A
be a o-neighborhood in a r e a l n o r m e d s p a c e F (of n o r m
11 /I F )
and l e t t d e n o t e a v a r i a b l e point r a n g i n g o v e r p 2 Let fl be a o-neighborhood i n C = IR and l e t z d e n o t e a v a r i a b l e
denoted by
point rar.ging o v e r
R.
We c o n s i d e r t h e p o l y n o m i a l s in z
w h e r e the f u n c t i o n s a . a r e in in
A
.
W e set
.
&(A) ,
with a l l t h e i r d e r i v a t i v e s bounded
258
Division of distributions
be a function i n d(n x 1\)
Let
and
'f = P.7.
0' d e n o t e s a n o p e n
n'
is contained in 0. bounded o-neighborhood in C such t h a t i t s c l o s u r e 2 If @ E d ( R A ) , h and k E IN, r = ( r l , r 2 ) F IN , we s e t :
11.2.5
LEMMA. -
With t h e s e notations
w h e r e t h e c o n s t a n t B d o e s not depend on CF: only on h , k , p. a k ,
Proof.
-
n, n '
.
T h e proof i s by induction on k.
E d ( n x I\) and on P, but
For
consequence of (14). L e t u s a s s u m e (15) holds f o r k i t holds f o r k. W e fix t
1'""
t
k
.c F with Ilt.11
I F
15) is a
k= o
-
5 1
1 and l e t us prove
.
F r o m Leibni.tz s
formula :
S'
(16)
( bk k
P) t l . .
bt
w h e r e 8 d e n o t e s t h e s y m m e t r i c p r o d u c t of a n e l e m e n t of S
e l e m e n t of
L( ( k - s ' ) F ) .T h e r e f o r e :
S'
.tk
L( F ) and an
259
Complex polynomial
L e t 0 ' ' be a boucded open s u b s e t of
C , such that
bk F o r m u l a (14) applied t o (q). tl.. k at
.tk
121' C
$2
and E ' C R ' ' .
f o r a n y fixed t 6 A
gives
w h e r e A ( h , p, rill, n') i s independent on t E i\ , Now w e s e t r = (r
r )
1' 2
em2
with
r t r = h t p. F r o m (17) it s t i l l follows from 1 2 r tr
L e i b i t z ' s f o r m u l a t h a t , if D r =
b
r
dx
k
r
( s l ) < r l ) (D
1
r'
2
1
's'cp
by
Q S
r tr tk
(if
1
Dr'k =
2
r
bx
r by
1btk
r
with z = x t i y , 2
Dr-r'' k-s'
P)tl..
.t k
:
260
a)
Division of distnbffrjoffs
L e t u s f i r s t notice t h a t by definition :
SUP xtiy
b)
R"
IDr'
.k
y(x, y , t). t l . . t 15 M
htp,k
(YY,Oxh)
.
Now we c o n s i d e r the o t h e r t e r m s i n the ri&t hand s i d e of ( 1 9 ) :
f r o m the f o r m u l a of
P,
( w h e r e the above bound only d e p e n d s upon t h e q u a n t i t e s between p a r e n t h e s e s ) , On a c o t h e r h a n d , s i n c e s ' 5 k - 1 , f r o m f o r m u l a ( 1 5 ) f o r k-1 w e have :
sup
05 j I k - 1
M h t p ( j t l), k- 1- j ( y , n
F i n a l l y , f r o m a ) and
X
A).
b) and s e t t i n g j ' = j t 1, h ' = h t p , we obtair. f r o m (19) :
Complex polynomial
N o w i t s u f f i c e s to a p p l y (14) t o obtain, f r o m (20), i n e q u a l i t y (15) of order
k.
261
262
Division of distributions
0
11.3
D i v i s i o n of d i s t r i b u t i o n s by h o l o m o r p h i c f u n c t i o n s
-
11.3.1 T H E O R E M
and fl
a connected
p g",(n)
with p
#
Let
E
be a c o m p l e x Schwjartz b. v. s .
7 E - o p e n s e t . Let be given a n y TEd'(h2) and a n y 0.
Then t h e r e exists a n S E d'(n) such that p . S = T.
B e f o r e t h e proof w e need a l e m m a .
1 1 . 3 . 2 LEMMA. -
The mapping
is well defined a c d c o n t i n u o u s if p. d ( n ) = ip.cp[
with the topology induced by t h a t of
Proof.
-
p. y = o i m p l i e s
= o
balanced bounded s u b s e t B of E , point in p.(r
-
R
n EB,
so
VmE,
d(h2).
since p
#
cFEd(fi)
is equipped
o ( f o r e v e r y l a r g e enough
the s e t of z e r o e s of p h a s n o i n t e r i o r
o by continuity). T h e r e f o r e the m a p p i n g
is w e l l d e f i n e d , Now we p r o v e its continuity. L e t U'
o-neighborhood in d ( n ) , t h a t we m a y a s s u m e of t h e f o r m :
be a
263
Distributions by holomorphic functions
n,
K is a s t r i c t l y c o m p a c t s u b s e t of
where
balanced s t r i c t l y c o m p a c t s u b s e t of E , Let K'
L is a c o n v e x
where
where
E
>o
and n E IN.
E such that K
be a c n n v e x balanced s t r i c t l y c o m p a c t s u b s e t of
is c o m p a c t in t h e B d n a c h s p a c e E K , a n d t h a t K a n d L a r e c o n t a i n e d i n K ' ( K ' i s not necessarily contained i n 0). L e t xo be ap. e l e m e n t of
K s u c h t h a t p ( x )=o. In o r d e r t o u s e (11. 1.4) l e t u s a s s u m e 0
p r o v i s i o n a l y (by t r a n s l a t i o n ) t h a t x
0
=
0.
T h e n if
g = p/
(Ep)'
it
f o l l o w s f r o m ( 1 1 . 1.4) t h a t E K l = F C€ C e
and
g = P.J
R' of E K l ,
in a o-neighborhood
P and J h a v e t h e p r o p e r t i e s
where
l i s t e d i n ( 1 1. 1.4). F is equipped with t h e topology induced by E Let
E
0
9 o be s u c h t h a t E o K '
i n F and If
U
K" be a n o p e n o - n e i g h b o r h o o d
c nl. L e t
a n open o-rieighborhood i n
Ce
such that
~ d ( n we ) a p p l y l e m m a ( 1 1 . 2 . 5 ) . t o P.(Jv)/
A y W
A
x
and
c EoK'.
(Jv)/A
( ( J C ; ) / , ui~ is denoted by y i n 11.2. 5). T h i s g i v e s u s a l o c a l ( i n a ) m a j o r i e a t i o n of Jv f r o m a m a j o r i z a t i o n of K' W r i t i n g now e x p l i c i t e l y t h e point x for c o n v e n i e n c e of t h e
o-neighborhood of E
P. J.
.
0'
end of t h e p r o o f , we o b t a i n : f o r e v e r y n" an n'
N and a n
& I >
pcp
implies
o such that
V(xot
C
K',
E
', n ' )
N and
& "
> o there exist
264
Division of distributions
where
W'
comes f r o m lemma (11.2.4), i.e.
W' C VJ
.
(indeed (I)
implies that
w h i c h , b y l e m m a ( 1 1 . 2 . 5 ) i m p l i e s (11)). But J i s i n v e r t i b l e on x SE K ' , 0
if
F
0
>o
is s m a l l enough. H e n c e , f r o m (II), f o r e v e r y n C N and
0
E>o
t h e r e e x i s t a n n ' Fm and a n 0 ' 3 o s u c h t h a t , if
ther.
for some
3 o
s m a l l enough.
F o r a n x o F K s u c h t h a t p(x )
-
0
#
o , the implication (I)
(111)
is t r i v i a l l y valid. Since K i s c o m p a c t i n E K l , w e obtain i m m e d i a t e l y t h e continuity of the mapping
p ( ~
q
.I
265
Distributions by holornotphicfitnctions
11.3.3
We define a l i n e a r f o r m
Proof o f t h . (11.3.1).-
R
on p . & ( n ) c d ( n ) by t h e f o r m u l a
F r o m ( 11.3.2)
k
is continuous and s o from t h e Hdhn-Banach t h e o r e m
it m a y be continued a s a n S E 6 ' ( n ) . We h a v e
pS = T.
I
Division of distributions
266
9 11.4
Application to e x i s t e n c e of s o l u t i o n s
We r e c o v e r th ( 1 0 . 3 . 4 ) a s a n i m m e d i a t e c o n s e q u e n c e of ( 1 1.3. 1). L e t u s r e c a l l th. (10.3.4) : l e t E be a c o m p l e x S c h w a r t z b . v . s .
R
a p p r o x i m a t i o n p r o p e r t y and
a convex, balanced
with
TE-open set. Then
a n y Eon-zero convolution o p e r a t o r on 3KVS(n)i s s u r j e c t i v e .
11.4. 1.
-
T h e new proof of t h i s r e s u l t , u s i n g ( 1 1.3. 1) is t h e following. 8 = T3e f o r s o m e T 6
F r o m ( 1 0 . 1.4).
. Let
33(' (n) be giver. and l e t u s s e e k f o r ap, f c 3 X ' (0) s u c h t h a t
g T
(3K lS(cL))' , T # o
S
3t
f = g.
S
T h i s eyuatior, i s equivalent to :
&(T
-)c
f) = 3-lg.
F r o m the c o m m u t a t i v e d i a g r a m in proof of (10. 1.4), we have 3-'(T+f)
t
3(T).3-'f,
s o that o u r equation b e c o m e s :
where
t
3(T) E
xs(n)
and
t
3(T) f o .
3
-1
g F ~ ' ~ ( and 0 ) K s ( n ) is a
topological s u b s p a c e of d ( n ) , s o t h a t , f r o m Hahn-Banach,
5
-1
g may
be continued a s a n e l e m e n t h 6 d ' ( n ) . F r o m (11.3. 1) t h e r e i s an t A d V ( n ) s u c h that 5 ( T ) . A = h in d ' ( 0 ) . A
h
= 3-l g
, s o t h a t it s u f f i c e s to choose 3 - ' f
= 1
. I
261
Existence of solutions
11.4. 2.
-
If E is a r e a l n u c l e a r b.v. s . me c h a r a c t e r i z e d i n ( 7 . 4 . 1)
the i m a g e 3 d ' ( E ) of
d ' ( E ) , u n d e r the F o u r i e r t r a n s f o r m 3 , a s a
s p a c e of e n t i r e functions on E'
+
i
E '
(Paley-Wiener-Schwartz
t h e o r e m ) . Now, a s i n t h e d i a g r a m in proof of (10. 1.4), i f
6 is a
convolution o p e r a t o r on 3 d ' ( E ) then, via 3 , @ b e c o m e s in d ' ( E ) the t multiplication o p e r a t o r by 5 ( T ) g 8 ( E ) , f o r s o m e T C ( 3 d ' ( E ) ) ' with
8 = TW.
t
Z ( T ) is c a l l e d , a s ir, c h a p t e r 10, t h e c h a r a c t e r i s t i c f u m t i o n
of @ . P r o o f (11.4. 1) g i v e s :
PROPOSITION.
-
Let E
be a c o m p l e x n u c l e a r b . v . s. and l e t 8
be
a n o n - z e r o convolution o p e r a t o r on 5 d ' ( E ) s u c h t h a t its c h a r a c t e r i s t i c function is Silva h o l o m o r p h i c . T
d 14 is s u r j e c t i v e .
Division of distributions
268
$
i 1.5
Division by r e a l a n a l y t i c f u n c t i o n s of finite type
We prove a division r e s u l t which is a c o n s e q u e n c e of t h e c l a s s i c a l finite d i m e n s i o n a l c a s e r e s u l t s ,
11.5. 1 Definitions of r e a l analytic m a p p i n g s and r e a l a n a l v t i c m a p p i n g s of finite type.
-
If E is a r e a l b . v . s . ,
n o r m e d s p a c e , we s a y t h a t a mapping f : convex balanced bounded s u b s e t B of E , locally (in fi
0 a -+
T E - o p e n s e t and F a
F is a n a l y t i c i f f o r e v e r y
the r e s t r i c t i o n f
nEB
is
nEB ) the s u m of a n o r m a l l y c o n v e r g e n t s e r i e s of E B -
continuous polynomials ( s e e 2 . 6 . 2 ) .
-. F is a finite type a n a l y t i c
We s a y that a mapping f :
mapping in 0 i f f o r e v e r y B a s a b o v e t h e r e s t r i c t i o n
f/n
n E B is
l o c a l l y a n a n a l y t i c mapping of finite t y p e , i. e. f o r e v e r y x E OnE 0
B
t h e r e a r e a n E 3 0 , a d e c o m p o s i t i o n of the n o r m e d s p a c e E B i n a 1 2 1 topological d i r e c t s u m EB = EB @ E B , ( x = x 1 t x 2 ) , with d i m E
1
/x0tC B
2
(x t x ) = fl(X1)
.
In p a r t i c u l a r a n y finite type continuous polynomial ( s e e A b s t r a c t of chap. 5 ) i s a finite type a n a l y t i c mapping. If E is a l i n e a r s p a c e equipped with the finite d i m e n s i o n a l bornology, a n y a n a l y t i c m a p p i n g is c l e a r l y of finite type.
269
Real analytic functions of finite type
1 1 . 5 . 2 PROPOSITION.
-
Let E
h2
be a r e a l S c h w a r t z b . v . s . ,
a
connected 'TE-open s e t and p a n o n - z e r o f i n i t e tvpe r e a l a n a l v t i c mapping in 0
.
T h e n f o r e v e r y S 6 6 ' ( 0 ) t h e r e is a T F d I ( 0 ) s u c h
= S.
=PT
Proof.
-
F r o m proof 1 1 . 3 . 3 it s u f f i c e s t o show t h a t t h e mapping
is w e i l defined and cnntinuous. T h e continuity w i l l be obtained a s a
c o n s e q u e n c e of t h e s a m e r e s u l t in the finite d i m e c s i o n a l c a s e which follows f r o m L o j a s i e w i c z
[
1, 2
1
). L e t V ( K , L, E , n ) be a given
o-neighborhood in d(n) ( s e e proof of 11.3.2) and l e t B be a cnnvex balanced bounded s u b s e t of E L i s bounded in E x
E
n n EB,
s u c h t h a t K is c o m p a c t in E B and t h a t
F r o m t h e a s s u m p t i o n on p , f o r e v e r y B' m a y be w r i t t e n a s a topological d i r e c t s u m
EB x E E ) with d i m E < t m and E B = E l 6 E 2 (x = x t x x E E 1 2 ' 1 1 ' 2 2 1 0
p f x ) = p(x ) for e v e r y x in a s u i t a b l e x -neighborhood in E 1 0 B
m a y a s s u m e B h a s the f o r m B
1
f€
B2,
where B
1
= El. *I notations we w r i t e E x E i n s t e a d of E 6 E 2 . 1 2 1
convex balanced and bounded and w h e r e E
We s e e k f o r a o-neighborhood would i m p l y f
V(K,L,C ,n).
W
C
E
1'
B2 c E
(1)
are
i n d ( 0 ) s u c h t h a t pfFW
K in 0 n E B ,
F r o m the c o m p a c t n e s s of
tx EK 1 0,2 4. o and a o-neighborhood W(x ) in d ( n ) s u c h t h a t : 0
E
2
.
F o r convenience of
it s u f f i c e s , a s in proof 1 1 . 3 . 2 , to p r o v e t h a t f o r e v e r y x = x
there a r e an
.We
0
pf 6 W ( x o )
3
f E V ( x t& B , B , 0
0
E
,n),
0,
Division of distributions
270
f € V(x t & oB, B,E , n ) m e a n s t h a t i f 0
i ti
I(
(2)
b bx
1
i ) with
1' 2
2
i
< n and
1 -
i
i
1
i = (i
.bx
i
+E
B ,x
f ) ( x ~1, o 1
2
0,2
t E
i < n,
2i
o B 2 )(B1) '(BJ212-2.
2
i
If
i sn, 2
2 x 2 E x o , 2tEoB2, y2E(B2) , w e s e t
T h e r e f o r e ( 2 ) i s equivalent to :
f o r e v e r y i 2-
i 2 n, x 2 F x 0, 2+coB2' Y2E(B2)
i s finite d i m e n s i o n a l and if n c n is a neighborhood 1 1 of x te B in E f r o m L o j a s i e w i c z ' s r e s u l t i n the finite 0,1 0 1 1 ' d i m e n s i o n a l c a s e ( c h o o s e B l a r g e enough in o r d e r t h a t p /n n E Bf 0 ) Sicce E
t h e r e is a o-neighborhood
W
1
in
d ( n l ) s u c h that
271
Real analytic functions of finite type
T h e r e f o r e , ir. o r d e r t o have f E V ( x , t EoE3,B,e,n) it s u f f i c e s that
(4)
P. gi
2’ x 2 ’ y2
E W
1
i
tEoB2,y2E(B2) f o r every i 5 n, x E x 2 2 0,2 and K
1
c o m p a c t ir.
0
1’
‘.
W 1 = V ( K I , B l , E I , n l ) , (4) is e q u i v a l e n t to :
T h e r e f o r e , i n o r d e r to have f F V ( x
t E B, 0 0
B,
T h i s l a s t inequality d e f i n e s a o-neighborhood
1 1 . 5 . 3 PROPOSITION.
-
If, with u s u a l n o t a t i o n s
Let
E,
n),
it s u f f i c e s t h a t :
W ( x ) ir. d ( 0 ) .
E be a r e a l n u c l e a r b.v. s . and
@
n o n - z e r o convolution o p e r a t o r on 5 6 ‘(E) s u c h t h a t its c h a r a c t e r i s t i c function i s r e a l a n a l y t i c of finite type. T h e n
8 is sur,jective.
The proof i s s i m i l a r to 11.4.1 and 11.4.2.
,
212
Division of distributions Y 11.6 Impossibility of the division by r e a l polynomials
If E is a r e a l 1 . c . s . and 0 a n open s u b s e t we c o n s i d e r on d ( 0 ) e i t h e r topologies defined in (4.1. 1) and ?he. 11.6.2 below holds f o r both.
-
11.6. 1 DEFINITION.
If E
i s a r e a l 1 . c . s . we s a y t h a t E
p r o p e r t y (P) if t h e r e is a convex balanced o-neighborhood V L
-
and a convex balanced bounded s u b s e t B ( w h e r e sv: E
E
v
E
& E such t h a t d i m
s (E )=+a V B d e n o t e s a s u s u a l the canonical s u r j e c t i o n map).
Any infinite dimensional n o r m e d s p a c e has c l e a r l y p r o p e r t y (P), C l e a r l y i f E h a s a continuous n o r m , then i t h a s p r o p e r t y ( P ) i f and only if it h a s a n infinite d i m e n s i o n a l bounded s e t . F r o m ( 0 . 6 . 2 prop. 2 ) i t i s e a s y to prove that if E i s a s t r o n g dual of F r k c h e t s p a c e , always p r o p e r t y (P) except
if E =
i R(m)o r i f E
E has
is finite d i m e n s i o n a l .
F r o m ( 0 . 6 . 2 prop. 2) one a l s o p r o v e s e a s i l y that a F r e ' c h e t s p a c e E h a s always p r o p e r t y (P) except i f E = JRN
11.6.2 a&
THEOREM.
-
o r i s finite dimensional.
L e t E be a r e a l 1. c . s. with p r o p e r t y
(P)
R a n open s u b s e t of E . Then the division by a n y nor. z e r o
continuous polynomial i s i m p o s s i b l e ir. 8
If e l
Proof.-
vl(el)
#
0.
#
0 and
e
cs
1
'(n).
(B), t h e r e exists a v
v
E(E ) ' with
1
v
then E = R e & E a s a topological If we s e t E = k e r v 1 1' v 1 1
d i r e c t s u m . If e f 0 and e 2 C s V ( B ) flE 2 1'
there exists a u F(E ) ' 2 1
( E l is equipped with the topology induced f r o m E V ) with u ( e )#O. 2 2 If we s e t E = k e r u then E = R e 2 f€ E2 a s a topological d i r e c t s u m . 2 2' 1
273
Division by real polynomials
Thus
EV = R e
1
E2
%Re2
x = $ e t s e t x 1 1 2 2 2
a s a topological d i r e c t s u m . If w e s e t v (x) = 2 v 2 6 ( E V ) I , v ( e ) = 0 and v ( e ) 2 1 2 2
. .,en - 1 F
there exist e v ( e ) = o k . t
k#A
#
0.
5
2
u (e ) 2 2
~
then
Now, by induction, l e t u s a s s u m e
sV(B), v l , .
.., vn - 1
E (EV)I s u c h t h a t
and
EV = IR e l CE R e
2
C€.
. . CE IR e n - l
6€ E
n- 1
a s a topological d i r e c t . s u m . Since d i m s (E ) = t a, t h e r e is an e V B n e n 6 sV(B) n E n - 1 and u n F ( E n - l) I with u ( e n ) # 0 . If w e s e t
#
l?
= k e r u , then E = R e t€ E a s a topological d i r e c t s u m . n n- 1 n r. Therefore
E
n
EV
= Re
1
6
x = $ e 1 1
If we s e t v (x) = n
6
n
u (e ) , n n
f
... & R en CL E n
... + E n e n + xn .
t h e n v E (E ) I and v ( e ) = O n V n . t
n
#
1 .
-W T h e r e f o r e we proved by induction t h a t t h e r e is a s y s t e m ( e ) n nEN
of continuous of icdependent v e c t o r s i n EV and a s e q u e n c e (v ) n nElN We m a y c l e a r l y a s s u m e with v ( e d = 0 n l i n e a r f o r m s on E V n 1Iv 51 acd 00 (en) 5 I. We s e t n V n
11
&I.
0,
Division of distributions
214
a
If x gE
n
=
vn(en) n
1 n
5 -
we set
V'
and thus P is a continuous polynomial on E V V' continuous polynomial on E.
.
So P = P
v
o s
v
is a
Smce e n c s V ( B ) , t h e r e is an e ' F B s u c h n
We m a y a s s u m e without loss of g e n e r a l i t y t h a t oFR. n 1 T h e r e f o r e t h e r e is n G I N s u c h t h a t - e ' C f i i f n > n ( s i n c e e ' 6 B). 0 n n 0 r. L e t u s define an S C d ' ( a ) by : that s ( e ' ) = e
v
n
n S n
if f E d(n).
L e t u s a s s u m e by a b s u r d t h a t t h e r e is a
TCd'(n) s u c h
that P T = S i . e . T ( P f ) = S(f)
f o r e v e r y f e d ( n ) . Since T E d ' ( n ) t h e r e is a c o m p a c t s u b s e t K of a bounded s u b s e t L of E , 0
an
E
>o
and a n a
TEV ( K , L , & , a ) . Now we define a functior?
E IN s u c h t h a t
f r o m IR into IR by
:
0,
Division by real polynomials cp
E &IR)
and s o t h e r e is a c 2 o s u c h t h a t
k =
F o r e v e r y n E IN
*
0,
...,b
and x F E we s e t
C l e a r l y f n f d ( E ) and i f o
0
Since L is a boucded s u b s e t of E t h e r e is a b 2 0 s u c h t h a t
Therefore
sup x F E
h.€ J
L
I f E ( k ) ( x ) h l .. .hk 15 ~ ( a , ) ~ - ~ ( 2.b ) ~
275
216
Division of distributions
Since o g a such t h a t
n
5
1 , n
( a n ) n - k = 0 , and t h e r e f o r e t h e r e is an N E N lim 0 n -t m
v
F r o m definitions of
and f
(fn(X)
n
, a
#
3a
11
( 25-vn o s v ( x )
0)
5
-+.
I?
F r o m definition of P, n
E N.
P(x) = o is equivalent to v n 0 sV ( X ) = o f o r e v e r y T h e r e f o r e , if P(x0) = 0 , e a c h f n is z e r o on a neighborhood of
x , A s a consequence, 0
T h e r e f o r e , if N 1 n
0
,
fn P
is w e l l defined a s a n e l e m e n t of
d(n).
F r o m t h e definitions w e h a v e :
1
f N ( v e l N ) = (a,) TUN)
>-
2
N
N
~ ( 0=)2 ( a N )
.
2 2
(’ N ( e N ) )
which, f o r n l a r g e enough, is c o n t r a d i c t o r y with the f a c t s that f E V(K , L , N & , & ) and T i n its p o l a r .
CHAPTER 12 CONVOLUTION EQUATIONS IN SPACES OF HOLOMORPHIC FUNCTIONS
If E is a c o m p l e x q u a s i - c o m p l e t e d u a l i i u c l e a r 1. c.
ABSTRA CT.
S.
we r e c a l l t h a t we e q u i p the s p a c e 5c (E) with the c o m p a c t open topology. S If E is a c o m p l e x 1.c. s. we denote by 3( ( E ) the l i n e a r s p a c e of t h e u, b h o l o m o r p h i c functions on E of u n i f o r m bounded type. X u , b ( E ) is t h e inductive l i m i t , when V
r a n g e s o v e r a b a s e of convex balanced
o-neighborhoods in E ,
of the s p a c e s 3c ( E ) of t h e h o l o m o r p h i c b V t h a t a r e bounded on e v e r y bounded s u b s e t of E functions on E V V' i s a F r e ' c h e t s p a c e u n d e r the topology of u n i f o r m c o n v e r g e n c e on (E ) b V the bounded s u b s e t s of E and ( E ) i s equipped with t h e l o c a l l y V u, b convex inductive limit topology.
x
Existence theorem. -
L e t E be a c o m p l e x n u c l e a r 1. c . s. T h e n
a n y c o n z e r o convolution o p e r a t o r on X u , b ( E ) is s u r j e c t i v e .
If E
is a n u c l e a r Silva s p a c e X
a l g e b r a i c a l l y and topologically, s o :
COROLLARY.
- 3
-
when E =
(E)
=x ( E ) = 31u , b (E)
E be a c o m p l e x n u c l e a r Silva s p a c e . T h e n a c y
non z e r o convolution o p e r a t o r on 3(
Remark.
S
S
( E ) is s u r j e c t i v e .
T h e s a m e e q u a l i t y of t h e a b o v e t h r e e s p a c e s hold a l s o
&'(n),
s o t h e c o r o l l a r y still h o l d s in t h i s c a s e . 277
Convolution equations in spaces
278
Approximation t h e o r e m A . n u c l e a r 1.c. solution f
L e t E be a c o m p l e x q u a s i - c o m p l e t e d u a l
and l e t 8 be a convolution o p e r a t o r or,
S.
FX
-
S
( E ) of t h e homogeneous equation 8 f
x S(E).
o is l i m i t (in
of exponential-polynomial solutions (i. e . solutions of the type a,(x)
. .. a n ( x ) exp (B(x)) with
Then a n y
n FIN, x F
3; ( E ) ) S
E, a i and P F E l ) .
finite
A p p r o x i m a t i o n t h e o r e m B.
-
Let E
be a c o m p l e x n u c l e a r 1.c. s . and
X
(E). Ther, any solution u, b f C Y U , b ( E ) of the homogeneous equation 8f = o is l i m i t , in (E), of u, b exponential polynomial s o l u t i o n s ,
let
be a convolution o p e r a t o r on
We a l s o define in
12.8 the convolution o p e r a t o r s of finite type
and obtain f o r t h e s e o p e r a t o r s s t r o n g e r e x i s t e n c e r e s u l t s .
219
Convolution operators
4
Convolution o p e r a t o r s on
12.1
12.1. 1 PROPOSITION. T g x K s ( E )& f
-
X S(E)
.
scS(E)
L e t E be a c o m p l e x c o m p l e t e b. v . s., T h e n the function T
*f
m E into C
f
defined by :
(T
-h
f ) (x) = T ( 7
-X
f)
i s a n e l e m e n t of Y ( E ) and t h e mapping T 9 :f S
into XS(E),
Proof.
-
T
*f
f r o m xs(E)
is a convolution o p e r a t o r on ?( (E). S
It is e a s y to c h e c k t h a t the mapping x
to c h e c k t h a t the mapping
-h
f
tions. Now we p r o v e T* i s continuous. If
1>
s u b s e t of E and if
E) and
x13 o
0,
let
YB,A)
Since T F X i ( E )
Xs(E) ( s e e 4. 1.2).
7
f from E
into
-X
(E). It i s s t i l l i m m e d i a t e S T-X i s l i n e a r and c o m m u t e s with t h e t r a n s l a -
Ys(E) is Silva h o l o m o r p h i c , h e n c e T
of
-
be s u c h t h a t
c
3(
B is a s t r i c t l y c o m p a c t
be a given o-neighborhood i n
let B ' (a strictly compact subset
1 T(f)l
Y
v ( B ' , 1'). We m a y
if f
a s s u m e that B and B ' a r e convex and b a l a n c e d , T h e n if f g Y B t B ' , A ' ) and x E B, 7 -xf F Y B 1 , X I ) , whenever f E v(BtB',
I(T*f)(x) I S
1. T h u s T * f c v ( B ,
a)
I).
Now l e t u s denote by o p e r a t o r s on K s ( E ) ,
hence
G
-
t h e l i n e a r s p a c e of t h e convoIution
L e t u s define the l i c e a r m a p p i r g Y
from
S( E )
into G by :
if
T 6 KlS(E).
L e t u s define t h e l i n e a r m a p p i n g
Y
f r o m 12 i c t o X ' S (E)
280
by
12.1.2
PROPOSITION.
-
y and
N
Y
N
a r e i n v e r s e mappings.&
is a n a l g e b r a i c i s o m o r p h i s m f r o m K IS(E) onto
Proof. -
*
((7o Y)
= (Y(Y(Q)) ) ( f ) = ( Y ( 8 ) )
(of) (x).
* f ) (x) = (Y(Q))
Hence
.
*f .
N
(9) ( f )
( ~ ( 8 ) ) f = @ I s i n c e (Y(Q) =((T - x @ ) f )(0)=
G
Y
Furthermore
( ~ - ~ =f ( )Q ( T - ~ ~ )(0) ) =
N
y o Y is t h e identity mapping on G
. On
t h e o t h e r hand :
Hence
Y
N
o 'f
is t h e ider.tity mapping On
x'S(El.
(E). Since G is a n a l g e b r a u n d e r S composition w e m a y define t h e "convolution product" on X ' (E) by : S 12.1.3 Convolution p r o d u c t on
if
T
1'
(T1
T2 FXIS(E).
+
T2)
Now, if f EKs(E)
N
and
* f = ( @ 1o 8 2)(f) = 81( 8 2(f)) = T 1
@ . = Y ( T . ) , (i = 1 , 2 ) , t h e n :
.K
( 8 f ) = T I * ( T 2 * f) 2
.
28 1
Convolution operators
LEMMA. -
12.1.4
&(T 1 F o u r i e r -Bore1 t r a n s f o r m .
Proof.
-
* T2) =
If T F XIS(E),
5
F E
(d
X
T 1 ) . ( 5 T 2 ) , when 5 d e n o t e s the
and x E
E then
:
hence :
(1)
T*e'=T(e
If T 1 , T 2 E X I s ( E )
and
5
by definition ( 7 . 1. 2 ) of 5 .
s ) .' e 6
.
6 E X we have
:
F r o m f o r m u l a ( 1 ) above
:
Hence f r o m ( 1 2 . 1 . 3 )
T h u s we obtain :
c
c:
( 3 ( T l * T2))(C) = T 1 ( T 2 * e 5 ) = T ( T ( e 6 ) . e 5 ) = T 2 ( e ).T ( e )= 1 2 1
282
Convolution equations in spaces
1 2 . 1 . 5 G e n e r a l f o r m of t h e convolution o p e r a t o r s on X (E). S
We
a s s u m e E is a S c h w a r t z b . v . s . with a p p r o x i m a t i o n p r o p e r t y in o r d e r to use
5
7.1
on the F o u r i e r Bore1 t r a n s f o r m . If
B E G, then it follows
f r o m ( 1 2 . 1 . 2 ) that t h e r e i s s o m e T 6 K l S ( E ) s u c h t h a t 8 f = T every f F
*f
for
x S(E), i.e. ( @ f ) (x) = ( T
(1)
for every x 6 E
. Now,
if
y
* f ) (x) =
T(7
-X
f)
E
t m
n = o hence
We s e t
fl
=
3 T C 3('XIS(E)). T h e n f r o m (7.1.4),
( 1 ) and ( 2 ) a b o v e , we
have :
I
n = o
C o n v e r s e l y the s a m e computation p r o v e s t h a t f o r a n y flg 5X' ( E ) the above f o r m u l a d e f i n e s a convolution o p e r a t o r
8 on
S
(E). The
S convolution o p e r a t o r s on TS(E) a r e t h u s c h a r a c t e r i z e d by the a b o v e
f o r m u l a , with
@
€ 53(IS(E).
283
Entire functions of nuclear bounded type
5
12.2
E n t i r e functions of n u c l e a r bounded type on a Banach s p a c e .
In this s e c t i o n E is a n o r m e d s p a c e .
1 2 . 2 . 1 Nuclear m u l t i l i n e a r mappings. If n E N w e denote by n xf( E ) c L(nE) the l i n e a r s p a c e of the mappings (XI,.
. . xn) - $ 1(x 1) .. . $n( xn ) t
if x.
E and Pli€EI.
the s y m m e t r i z a t i o n (0.8. 1) of any e l e m e n t of W e write
2,
f, s
("E) = s A n E )
n
L
( s e e 0.8.3), and the mapping A
s
-
*
A
It is c l e a r t h a t
Cf(nE) is a l s o in
Ef(nE).
If A E L k n E ) , then i E p f ( k ) , is a l i n e a r bijection f r o m
onto P f ( n E ) .
If T 6 L f ( = E ) we d e f i n e the n u c l e a r n o r m of T by :
w h e r e m r a n g e s in IN and w h e r e
]Iffi,
] / = sup x (1
/I It
1 gi, j ( x ) 1 .
xE E
n i s the n a t u r a l n o r m in L( E ) , then c l e a r l y , i f T E L f ( n E ) ,
If
Lf(nE)
Convolution equations in spares
284
// I/
then the Lf(nE) is equipped with the n u c l e a r n o r m i " n a t u r a l inclusion mapping @ f ( n E ) L ( n E ) is continuous. If we denote Thus if
-
( n E ) the completion of Q ( n E ) , ( 0 . 1. 16), then the m a p p i n g i is N extended a s a continuous mapping If r o m L N ( n E ) i n t o L("E), s i n c e
by
C$
L ( n E ) is a Banach s p a c e . It is known ( c f S c h w a r t z
L 5 3 , e x p o s e 14 p 8)
t h a t i f E i s a Banach s p a c e s u c h t n a t its d u a l E ' i s a Banach s p a c e with A p p r o x i m a t i o n P r o p e r t y , t h e n t h e mapping T is n injective ( i n t h e notation of t e n s o r p r o d u c t , L f ( E ) is denoted by &In (El) ). In t h e s e q u e l we s h a l l u s e t h e c a s e E is a s e p a r a b l e H i l b e r t s p a c e , s o we m a y a s s u m e t h a t E l h a s the A p p r o x i m a t i o n P r o p e r t y , n and s o LN(rlE) is identified a s a l i n e a r s u b s p a c e of L( E). XN(nE) is called the s p a c e of t h e n u c l e a r n - l i n e a r m a p p i n g s on E and i s a l w a y s equipped with the n u c l e a r n o r m , which m a k e s i t a Banach s p a c e .
1 2 . 2 . 2 N u c l e a r polynomials.
-
T h e s e t XN(nE) n L ("E)
(nE). We N, s S N ( n E ) , which
of n u c l e a r s y m m e t r i c n l i n e a r m a p p i n g s is denoted by
2
( n E ) with the n u c l e a r n o r m induced by N, s m a k e s i t a Banach s p a c e . L ("E) is d e n s e i n ("E). f, s N, s endow
T
P
-
g
-
The i m a g e of
T,
(0.8.3),
6'N(nE)
L
N,s
n ( n E ) in P( E ) u n d e r the n a t u r a l i s o m o r p h i s m
i s denoted by
b N ( n E ) . An n - h o m o g e n e o u s polynomhl
-
is called a n u c l e a r n - h o m o g e n e o u s polynomial.
6'N(nE) is
equipped with the topology making this mapping T T a topological n i s o m o r p h i s m , It follows t h a t pN( E ) i s a Banach s p a c e and t h a t n b f ( n E ) i s d e n s e i n ' 6 ( E ) However we a r e going to c o n s i d e r on N b N ( n E ) a n o r m which d o e s not m a k e the mapping T T an isometry.
.
-
We define the n u c l e a r n o r m on 6'N(nE) in the following w a y : if
P
F
6'f(nE)
we define t h e n u c l e a r - p o l y n o m i a l n o r m
m
m
j = 1
j = l
IIPllN b y :
285
Entire functions of nuclear bounded type
n If T E- g f , s ( E ) ,
then c l e a r l y by definitior, ,
N o w if T E 2
(nE), a n e a s y computation based on t h e p o l a r h a t i o n f, s formula (0.8.4) gives :
( s e e Gupta [1,21 ). T h u s 63N(nE) m a y be c o n s i d e r e d a s t h e c o m p l e t i o n of
11 /IN
f o r t h e n u c l e a r polynomial n o r m , s t i l l denoted by
T E g N , s ( n E ) , we have :
12.2. 3 E n t i r e functions of n u c l e a r bounded tvpe. Banach s p a c e with
-
b;("E)
, and if
If E
is a c o m p l e x
A p p r o x i m a t i o n P r o p e r t y we s a y t h a t a n e n t i r e
function f f r o m E into C is "of n u c l e a r bounded type" i f , f o r e v e r y
m F N , $m)(o) E PN(mE) and if
We denote by 3C
N,b
( E ) the l i n e a r s p a c e of t h e e n t i r e functions
of n u c l e a r bounded type on E.
3C
N, b
(E) is a m e t r i z a b l e 1. c. s. f o r the
topology defined by a l l the s e m i - n o r m s
286
Convolution equations in spaces
t O 3
m = o Remark.
-
If E is a n o r m e d s p a c e s u c h t h a t its d u a l
El
is a
Banach s p a c e with A p p r o x i m a t i o n P r o p e r t y ( f o r i n s t a n c e w e s h a l l u s e l a t e r on the c a s e €3 is a p r e - H i l b e r t s p a c e ) , t h e n one d e f i n e s P N ( m E ) and
xN, b (E)
e x a c t l y a s b e f o r e and one h a s
P ( m E ) = PN(mk ) and N
If E ' h a s not the A p p r o x i m a t i o n P r o p e r t y the N , b (k). definitions of P ( E ) acd 3c (E) a r e still p o s s i b l e ( s e e Gupta [1,2] N N,b and Matos-Nachbin [ 2 ] )
K N , b(E) =
1 2 . 2 . 4 PROPOSITION.
Proof.-
xN, b ( E )
-
Let (fk)k
is a Fre'chet space.
(E). T h i s gives N, b e v e r y I? and s o t h e r e
be a Cauchy s e q u e c c e ic 3c
t h a t k ) ( o ) i s a Cauchy s e q u e n c e exists a p
n
every p
E
> 0,
f o r e v e r y k.
in '6
PN(nE) such that 03
-,
Now,
Letting k
tcr,
we have ~
(k). Also,
s u c h t h a t Ilf 11 I- M k N9P P M 1 \Ifk - ( n )( o ) l l N 5 f o r e v e r y k and n. n n. P
there exists o 5 M < t P Therefore
N
~
M p5 ~ 2\ l f o ~ r every n, Pn
for
287
Entire functions of nuclear bounded type
which i m p l i e s t h a t
for every p
>
o
. Letting
p
-
t m we h a v e
:
T h i s shows t h a t too
n - o
-
d e f i n e s a n e n t i r e function of n u c l e a r bounded type on E. T h u s i t r e m a i n s only t o p r o v e that (f ) t e n d s t o f i n k p > 0,
N,b
( E ) when k
t
CO.
m
n = o too
n =mtl
tco
t~
= mtl
F a r any
288
Convolution equations in spaces
Since
n = o and
too
too
n = o
n = o
when o < p < p such that
1'
we have that, f o r a n y C 3 0 , t h e r e e x i s t s m
>o
too
n = mtl
and
too
n = mtl Using t h i s and the above m a j o r i z a t i o n of /If -fII
k
If
5 E E',
N,p
then c l e a r l y t h e function expc
, we obtain that
is in x N , &E).
So
289
Entire functions of nuclear bounded type
we define a s u s u a l , if T E ( K N , b(E))'
, t h e F o u r i e r - B o r e 1 t r a n s f o r m of
T by the f o r m u l a :
1 2 . 2 . 5 PROPOSITION. -
The Fourier-Bore1 transform 3 i
algebrait isomorphism from
X'
N,b
(E) onto the s p a c e E x p ( E ' ) of e n t i r e
functions of exponential type on the B a n a c h s p a c e E ' ( i . e . e n t i r e fumtions
fl
=El
1 fl ( 6 ) I
such that
c o n s t a n t s a , b 7 o and f o r a n y
Proof.-
For every
5 E
5
= a e x p b1)s
for some
E El).
El,
n = o in the topology of X
N, b
(E).
Thus
n = o
(where
Can
is t h e function x
there exist c , p 9 o such that
for every f
EP
N. b
(E).
*
m
(C(x))")
.
Since T is continuous
290
Convolution equations in spaces
hence
and
Since i t is e a s y t o prove t h a t the mapping 3(
N, b
( E ) is G - a n a l y t i c , C o n v e r s e l y , if
5
exp
+
6
f r o m E ' into
3 T is G - a n a l y t i c and t h e r e f o r e 5 T E E x p E ' .
E Exp
El,
then f r o m ( 7 . 2 . 2 ) , t h e r e a r e c , ,I%
s u c h t h a t , for e v e r y n E N ,
m Let us r e m a r k that i f
PEP("E')
and i f p =
(@i)n E 6;("-E) , i = 1
m ( f l i E E 1 ) ,then P(p) is well defined a s
P(fli),
i.e.
d o e s not depend
i = l m ( @ i ) n (using the language of
upon the way p is x r i t t e n a s i =1
topological t e n s o r p r o d u c t s ( G r o t h e n d i e c k [ 2 3 , S c h a e f e r [ 1 3 , Tr'eves [ 1 1 ) : b("Et)
-
J? ( n E f )c S("E')
Pf(nE) = E s
f, s
a
( n E ) C Lf("E)
w")' E'V) .
(El
a
29 1
Entire functions of nuclear bounded type
and
Therefore
m
m
m
i =1
i = l
i = l
, b y continuity, p E (P,("E))'.
f o r e v e r y n. T h e r e f o r e : I$")(o). ;'"'(o)
Therefore taJ
I
I n! c.
x
(- )n M(p) P
.
292
Convolution equations in spaces
If w e s e t
n = o V
then
T EX
$ 6%’ (E) and N,b
’
V
S $ is the i d e n t i t y on Exp E ‘ . F u r t h e r m o r e if
V
n
( E ) , 3(T)
N,b
T.
So the m a p p i n g s $
Bore1 t r a n s f o r m 3 a r e i n v e r s e mappings.
I
-+
3 and t h e F o u r i e r -
293
Convolution operators
Q
12.3
Convolution o p e r a t o r s on 3c (E) u, b
(E). - F i r s t w e r e c a l l , u, b i f G is a c o m p l e x n o r m e d s p a c e , w e d e n o t e by Kb(G)
12.3. 1 Topology and bornology on t h e s p a c e (2.7.3),that,
the l i n e a r s p a c e of the h o l o m o r p h i c f u c c t i o n s of bounded type on G , i.e. which a r e bounded on e v e r y bounded s u b s e t of G.
The s p a c e Kb(G)
is naturalby equipped with the topology of u n i f o r m c o n v e r g e n c e on t h e
bounded s u b s e t s of G.
It is i m m e d i a t e t o c h e c k t h a t xb(C)is a F r e c h e t
s p a c e and t h a t its bounded s e t s a r e the f a m i l i e s of functions t h a t a r e equibounded on e v e r y bounded s u b s e t of G.
( E ) t h e s p a c e of t h e h o l o m o r p h i c f u n c t i o n s of u, b u n i f o r m bounded type on E , i. e. (2.7.3) t h o s e h o l o m o r p h i c functions f W e denote by %
on E f o r which t h e r e is a convex balanced o-neighborhood
V
in E
s u c h that f f a c t o r s in the following way
with
? E Xb(EV)
.
is s u r j e c t i v e , t h e mapping g € X b ( E V ) gosv€Ku!f) V is i n j e c t i v e , s o t h a t we m a y c o n s i d e r (E ) a s a l i n e a r s u b s p a c e of b V (E) A l g e b r a i c a l l y 3c (E) is t h e inductive limit of t h e s p a c e s u, b u, b 3’? (E ) , when V r a n g e s o v e r a b a s e of convex b a l a n c e d o - n e i g h b o r h o o d s b V ( E ) i s n a t u r a l l y equipped with t h e b o r n o l o g i c a l inductive in E. 3C u, b (E 1 (0.2.4). Then, f r o m (0.2.7), a convex limit of t h e s p a c e s b V balanced s u b s e t Q of K ( E ) is a o-neighborhood for t h e a s s o c i a t e d u, b
Since s
.
-t
294
Convolution equations in spaces
n
( E ) if Q 3( ( E ) is a b o r n i v o r o u s s u b s e t u, b b V ( E ) is m e t r i s a b l e , f r o m ( 0 . 6 . 2 ) , t h i s a m o u n t s t o :
bornological topology T3c of
X (E ). Since X
b V b V Q OK b(EV) is a o-neighborhood in 5( (E ). T h e r e f o r e t h i s topology on b V ( E ) coi'ncides with the l o c a l l y convex inductive l i m i t of the F r e ' c h e t u, b s p a c e s X (E ) We s h a l l only c o n s i d e r t h e above bornology and b V topology o n 5(u, b ( E ) *
.
12.3.2 PROPOSITION.
-
If E
i s a c o m p l e x n u c l e a r 1. C . s . ,
then
( E ) i s the algebrai'c, bornolopical and topological ( l o c a l l y c o n v e x ) u, b inductive l i m i t of the s p a c e s 3C when V r a n p e s o v e r a b a s e of
3c
N ,J E V )
c o ~ v e xbalanced o - n e i g h b o r h o o d s i n E .
-
T h e proof f o l l o w s i m m e d i a t e l y f r o m t h e a s s u m p t i o n t h a t E i s a n u c l e a r 1. c. s . and f r o m l e m m a 1 2 . 3 . 3 below.
12.3.3 LEMMA.
-
El-
E
xN,b(E1).
be two n o r m e d s p a c e s w i t h a
into E If f 12' M o r e o v e r the mapping
l i n e a r n u c l e a r mapping j f r o m E: f o j
2
EK (E ), t h e n b
2-
f o j
f
is continuous.
Proof.-
A f t e r a s u i t a b l e choice of n o r m s in E
a s sume
n = l
1
and E
2
w e may
Convolution operators
295
ta3
n = l
Heme
If r
>
o we set
M(r) =
1
sup
1I4& s 2
f(z)/
.
r
F r o m C a u c h y ' s i n t e g r a l f o r m u l a , a l r e a d y u s e d in (7. 1.4),
F r o m (1) we get
and thus,
hence
:
we have :
296
Convolution equations in spaces
and s o f r o m (12.2.2)
For a n y fixed M fixed r
> 0 , (M) l'm
-.
1 if m
>o ,
-
too. T h e r e f o r e , f o r e v e r y
Since t h i s inequality holds f o r e v e r y r 3 o ,
T h i s p r o v e s that f o j
E
N,b
(E ), 1
Now,from
inequality (2), w e g e t
too
m = o
Choosing p
0
too
too
m = o
m = o
= 2 p e
2
, we have
which p r o v e s t h e continuity of o u r mapping f
-
f o j
.
8
29 I
Convolution operators
3G'
(E). If E is a n y c o m p l e x u, b 1. c. s . u e define obviously a convolution o p e r a t o r on (E) a s a u, b continuous l i n e a r mapping f r o m 3C ( E ) i n t o i t s e l f which c o m m u t e s u, b with the t r a n s l a t i o n s . 12.3.4
Convolution o p e r a t o r s on
12.3.5
PROPOSITION.
and
f
xu , b(E).
E
T h e n t h e function T
(T if x -
'u,b
E E,
(E)
* f) (x)= T ( T
be a c o m p l e x 1. c. s , T E +?
-X
f)
( E ) , and t h e m a p p i n g T * , f r o m u, b (E), is a convolution operator on (E). u, b u, b
into
b(E),
then, f o r e v e r y V, T
+
EX' (E ). Now
b V f E Xb(EV), a n d ,
* *f
(E ) into X b ( E V ) , t h u s TW is continuous f r o m V (E). I u, b b
If w e denote by
xu, b ( E )
&E)
f f r o m E i n t o C defined bv
i m m e d i a t e to c h e c k t h a t i f f €3C (E ), t h e n T b V a s in (12.1. I ) , w e p r o v e that the mapping f T $(
x:,
is a n e l e m e n t of
If T EX:,
Proof.-
Let E
-
it i s
is continuous f r o m u, b
( E ) into
G the l i n e a r s p a c e of a l l convolution o p e r a t o r
w e d e f i n e a s u s u a l t h e two m a p p i n g s
Y and Y :
298
Convolution equations in spaces
T h e computations in 1 2 . 1 . 2 p r o v e t h a t N
Y
Therefore
12.3.6
N
Y
and
Y
a r e inverse mappings.
i s a n a l g e b r a i c i s o m o r p h i s m f r o m 5(
'
u, b
E n t i r e functions of exponential type on a b.v. s.
(E) onto G
-
.
If F i s a
we denote by E x p ( F ) t h e l i n e a r s u b s p a c e of X (F) S S m a d e of t h e functions $ on F such t h a t f o r e v e r y convex balanced complex b.v.s.
bounded s u b s e t B of F t h e r e a r e n u m b e r s
for every x EE
B '
12.3. 7 F o u r i e r - B o r e 1 t r a n s f o r m . if T
c , p 3 o such that
-
If E is a c o m p l e x 1. C . s . and
b(E) we define a s u s u a l the F o u r i e r - B o r e 1 t r a n s f o r m by t h e
E%jU,
f o rmula
+
for every
E
If E ' i s equipped, as u s u a l , with i t s equicontinuous
El.
bornology, then w e c h e c k t h a t 5 T E K S ( E ' ) .
1 2 . 3 . 8 PROPOSITION.
-
If E
i s a c o m p l e x n u c l e a r 1. c. s . , then I
(E) t h e F o u r i e r - B o r e 1 t r a n s f o r m 5 is a n a l g e b r a i c i s o m o r p h i s m of 3C u, b onto E x p ( E l ) . S Proof.-
If
We r e c a l l t h a t , f r o m ( 1 2 . 3 . 2 ) ,
T C3c
if CF E
(
IU,
~
b ( E ) , then T ~
=1
( 1~
1
)
8
'&N,b (EV
c EI,
xu , b ( E ) =
l i m 3t 4
V
N,b
(E ). V
€ ( x N , b(EV))I. T h u s f r o m (12.2.5),
I s~(cp)l5
c e x p ( p l l c c ~ ~ , ) i, . e .
V
Gmvolution operators
(3T',
and, a s a consequence,
E Exp
v
C o n v e r s e l y ,if
i.e.
5 T E ExpS(E').
V
(EIIo
borhood
299
$ E E x p S E l , t h e n , f o r e v e r y convex balanced o - n e i g h t h e r e is T
V in E ,
for e v e r y p E ( E l )
(E ) s u c h that V
V '"N,b
, T V ( e x p P) = $ (b)
3(TV),
/(Wo v
.
If V
V
1
cV
l e t r denote
2'
t h e c a n o n i c a l mapping
f
where i
f o i
v1'v2
into E
is the c a n o n i c a l mapping f r o m y1'v2
T
s i n c e the s e t
v2
l e x p cp
(f) = T V ( r ( f ) ) : 1 is dense in
I
V (12.2.5)
it s u f f i c e s t o prove t h a t T
v2
N,b
(E
V2
(exp
y) = $
TV ((exp ~ p o ) i 2 v11v2 ( T ) when cp is
and l e t E = G x GIP
. Then
E l = GI
B
x G
bornologically. If f is t h e duality b i l i n e a r function on G' x G , then
f E Exp
S
where < ,
(El)
1
L e t G be aninfinite d i m e n s i o n a l n u c l e a r , d u a l
n u c l e a r , r e f l e x i v e 1.c.s. f(x',x) = <xl,x>,
)
2
E ( E ) ' , and both a r e equal t o v2 c o n s i d e r e d a s a n e l e m e n t of El.
f o r any
12.3. 9 E x a m u l e . -
. One h a s
v2
>
d e n o t e s the duality between GI
and f $ E x p E l ,
B
s i m e f is not continuous.
and G ,
:
300
Convolution equations in spaces
T h e r e f o r e , f r o m (7.2.1) and (12.3.8),
XIS(E)c KfU, b(E).
f
12.3. 10 G e n e r a l f o r m of the convolution o p e r a t o r s on 3 (12.3.8) they a r e given by the foamula
u, b
(E).
-
From
n = o
if f
E X U ,b(E),
that of (12.1.5).
E ExpS(E') and x E E.
The proof is quite s i m i l a r to
301
Convolutionoperators
9
12.4
Convolution o p e r a t o r s on '3c
N, b
(E)
Owing to t h e t h r e e l e m m a s below, t h e study of t h e convolution
(E) is s i m i l a r t o t h a t in X (E) or 3( ( E ) of N, b S u, b and 9 12.3. The m a i n r e s u l t is t h a t a n y convolution o p e r a t o r on 3C
$ 12.1
o p e r a t o r s on X
is an o p e r a t o r (T-k) f o r s o m e T
N, b
(E)
A l s o w e have ( s e e 1 2 . 1 . 3
E "INib(E).
and 12. 1 . 4 )
(T
1
.)(
T ) # f = T l * (T2-k f ) 2
N o w , w e s t a t e and p r o v e the l e m m a s .
12.4. 1 LEMMA.
Let E
be a c o m p l e x n o r m e d s p a c e , a C E
(E). T h e n the t r a n s l a t e d function
"N,b
(T
-
l *f
-af) (x) =
7
and
is in vN,$E) a& -a f -
(x) ( a ) in the topoloev of
xN,b ( E ) ,
n = o
Proof,
-
For every x E E ,
t w
tco (T
:-
-af)(x) = f ( x t a ) =
f
(x) a
n = o
n = o
too f
n i (o).x . a
(i) i (x) a =
n = o
.
1fix) (a).
n!
=
Convolution equations in spaces
302
I t is e a s y t o p r o v e t h a t
n
Jnti)
(0)
ai
E q E )
and that
It follows t h a t , when x i s v a r i a b l e in E , V
C m
n = o
n =Vtl
n =vtl
n = V t l
which t e n d s t o o a s
V
-
.
t oo
n = o
a s functions of x and i n the s e n s e of 3C
n = o
N, b
(E). Now i f p
>o
is g i v e n ,
Convolution operators
n = V t l
i = o
too
t w
n= v t l
i = o
Choosing E > o C(E)
3-0
303
s u c h t h a t 2Ep < 1, 2 E I/a
(IE<
I,
we
s u c h that
tw
L
i = o
n = o too
i = o
tw
n=Vtl
tm
n=Vt1
have that t h e r e e x i s t s
Convolution equations in spaces
304
which tends t o o when
V
tends t o t m
.
Thus
I
n = o
in the s e n s e of 3C
1 2 . 4 . 2 LEMMA.
N, b
-
(E)
.
If_ T
EX(”, b ( E )
SO
that
f E3CN,b(E) and s o m e c , p 7 o and if n
A E E N , s ( E),
I T(f)j
ifllfIIN,pf o r e v e r y
€ PN(nE) with
then the polynomial or: E
-
y
k n-k T~(A.x.y )
E
c
A
k
denoted by Tx@x ) belongs t o PN(n-kE) f o r e v e r y
ks
n . ( w h e r e Tx
denotes T acting on functions of the v a r i a b l e x). F u r t h e r m o r e
m
F i r s t we a s s u m e A E
Proof.we have
f,s
(“E).
If p =
j = l :
m
j = l
305
Convolution operators
s o that
j = l
A l s o we have
:
m
A
j = 1 n
which g i v e s the d e s i r e d inequality. The r e s u l t f o r a r b i t r a r y A E b ( E ) N now follows f r o m t h e d e n s i t y of ' b ("E) in PN(nE). f
12.4.3 LEMMA.-
Let
d e f i n e s a function
T+ f
the mapping f
-
T
+
T
E
ExNN, b(E)
f from
(E).
N, b continuous and t r a n s l a t i o n i n v a r i a n t . Proof.
-
T h e n ( T + f ) ( x ) = T(T
for every f ( E ) into
E xN,b(E).
xN, b ( E )
-X
.n!!-
f) =
n = o tw
tw
p.=o
i = o
4
f), x 6 E ,
Furthermore
is linear,
By (12.4. l ) , f o r e v e r y x E E ,
( T + f) (x) = T ( T
-X
T z ( f t n ) ( z ) (x)) =
Convolutiorr equations in spaces
306
Now l e t c and p (depending on T ) be a s in ( 1 2 . 4 . 2) and l e t p' Z p. Then
tco
too
n
i = o
i = o
i = o
s o that the s e r i e s
i = o c o n v e r g e s in' 6
N
( n E ) to s o m e p
n
such that :
i = o and
which i m p l i e s that
1
307
Convolution operators
for every p'
> p.
Thus if p'
-
t
we g e t
00
Accordingly
tw (T* f) =
'
1 n: 'n
n = o
-
is in 3C (E). T o p r o v e that the mapping f T*f i s continuous l e t N, b p 1 > 0 . Taking p ' = p t p1 > p i t follows f r o m ( 1 ) t h a t
Therefore
n = o
'1
n = o
'IN, 2 ( p t p 1 ) .
T h e l i n e a r i t y and t r a n s l a t i o n i n v a r i a n c e a r e i m m e d i a t e t o prove.
Convolution equations in spaces
308
9
12.5.1
s u c h that if f , f , f 1 2 3
E
v(C) I
1 ii(z)l
if e
5
fl=f2.f3,
Qil
0,
there exist g
iff1(0)
3’
A 5 o 3
f2(0) = 1 and if
ZI
1, 2 and a l l z E C , then
for a l l z E C
Proof.
A division result
Given a l , a 2 , A , A 2 > 1
LEMMA.-
for i -
12.5
-
.
It is a n i m m e d i a t e c o n s e q u e n c e of L e m m a s 12.5.5 and
1 2 . 5 . 6 proved below, which a r e e x t r a c t e d f r o m LindelBf [ 1 ] and Malgrange
i 1] .
The d i v i s i o n r e s u l t (12.5. 1) is i m m e d i a t e l y extended to t h e infinite d i m e n s i o n a l c a s e i n t h e following way 12.5.2 PROPOSITION,
$1,$2 E E x p ( E Y )
Proof.
-
$1
If E
:
is a c o m p l e x b . v . s . ,
if
T-
a G-analytic function on Ex, t h e n
We m a y a s s u m e $ . ( o )
f o if
i = 1 , 2 since we m a y do any
t r a n s l a t i o n in E and s i n c e w e m a y a s s u m e $. convex balanced bounded sets in E and l e t c
f
.
Let B , B
be 1 2 c 2 > o be s u c h t h a t o
A division result
f o r i = 1 , 2 arid a l l B =
r ( B 1u
5
for all of $,
and
6
309
€ E x . If we l e t c = m a x ( c , , c 2 ) and
B ) ( t h e convex balanced hull of B u B ), 2 1 2
Ex
8,
.
Then i t suffices to apply (12.5. 1)
for the r e s t r i c t i o n s
to all complex l i n e s C x , x € E X ,x
1 2 . 5 . 3 LEMMA. -
T h e r e is a constant
A
complex number
K
then
f
0.
such t h a t , f o r e v e r y
,
I I-AI
5 exp K
I X[
l/2
The proof is obvious. 1 2 . 5 . 4 LEMMA. -
and
I ~ ( x ) 5I J
the c i r c l e
I
XI
f
f(o)I = r
,
exp
be a n e n t i r e function on
( ~ ( 1 11
f o r m a closed s e t of m e a s u r e
Proof.
-
If
i
1)
the points
- . ., 5,
m I
a
T
C , w i t h f(o)#o,
a positive function. O L
such that
2TTr ( 0 2o I t 0
denote the z e r o e s of
f
is given).
of absolute
Convolution equations in spaces
310 value
5 r
we r e c a l l J e n s e n ' s f o r m u l a ( T i t s c h m a r k
[
13
T h i s f o r m u l a shows t h a t the functior.
is a n i c c r e a s i n g functionof
From t h e a s s u m p t i o n on
o
5
r
>
o
. F(o) =
0,
thus
F(r) 2 o
.
f
F(r) 5
m
- -
G
m T(r) t ( 2 n - - ) T ( r )
.
Therefore
2 nr lta
m s
*
m
12.5.5
LEMMA, -
If
f
Exp C
f(o)
#
o
we s e t ( d e v e l o p m e n t
I-
~
and we a s s u m e
Then t h e r e exist t w o constants
C
and - D
which depend only upon
A division result
A
and
B
31 1
s u c h that
f o r any
n 2 1
P la
2")
- 11 s
+
'i
1
for any
I f(o)I
p 2 o
.
F r o m Jensen's formula ,
Proof.-
So, f o r e v e r y definition of
n E N,
ISn If we c h o o s e
we have ( s i n c e
a s a function of
p
r
Since
D
r .
5
I"
r =
. r
B
rn
I 6 ..6, I we obtain
I f ( o ) I 5 A , we obtain :
I (i I
5
1
if
izptl
by
r)
P 5
lcl.. . I p I
5 -
A If(0)
I
exp (Br).
Convolution equations in spaces
312
1")
which proves
. Now
let 'us prove
2"). We set
P
i = 1 with
F r o m l e m m a (12.5.3)
From
1")
w e have
:
:
P
1/
P 1 -
since i = 1
5
-
2 Vp
.
AS
a consequence
1/
A division result
313
In the s a m e w a y one p r o v e s
I 1 =p ,
T h e r e f o r e if
Therefore, since
If(o)
w h e r e the cor,stant a)
If
p 2 1
in a closed s e t
El
I
5 A,
and if
IhI
= p
,
A
and
B.
K' d e p e n d s only on
we a p p l y l e m m a 1 2 . 5 . 4 t o
of
-
m l 1 4n p ,
measure
ql.q2.
We obtain
If w e s e t
P
aP = a t
Z T
one p r o v e s e a s i l y ( g e o m e t r i c a l l y ) t h a t t h e
i = l set
R e ( a h ) 5 - p1 l a p l and P 2 2rr m e a s u r e m 2 = ~ pT h.e r e f o r e
1x1 El
= p
n
is
E2
# $
a closed set
.
If
of
E2
10 E E l
n
E2,
Convolution equations in spaces
314
and then
Since
If(o)
a number
b)
I
5 A
, t h i s l a s t m a j o r i z a t i o n i m p l i e s the e x i s t e n c e
D'
>
If
p = o
and, from 1")
o
which d e p e n d s only on
we h a v e , f r o m above
A
and
,
B, s u c h t h a t
of
A division result 12.5.6 LEMMA. n u m b e r s , with
315
If a and ( 6 i ) i E N (or 1 5
-
lcitl I
L
1Ci1
f o r e v e r y i,
i 5 q) a r e complex
such that, for every n a n d
P E N
P
i = 1
lfor some
1")
defines a n 2 a)
C,3
>
0)
then :
t h e p r o d u c t (finite o r infinite)
e n t i r e function there a r e A , B
> 0,
t h a t depend only
011
C and D ,
such that
Proof. -
F r o m t h e a s s u m p t i o n s and l e m m a 1 2 . 5 . 3
P T h e r e f o r e the infinite p r o d u c t
+-
i =1
h
[ ( 1 -7)
c o n v e r g e n t on e a c h bounded s u b s e t of
'i
exp
x
7;-
'i
)
is u n i f o r m l y
C , and f i s a n e n t i r e function.
316
Convolution equations in spaces
T o p r o v e the m a j o r i z a t i o n 2 ) it s u f f i c e s t o p r o v e it f o r
1x1 EN .
A s in
1 2 . 5 . 5 we w r i t e P
with
t$
1
and
a s in 1 2 . 5 . 5 . F r o m 1 2 . 5 . 3 and t h e a s s u m p t i o n s :
2
i =1
In the s a m e w a y one o b t a i n s :
Therefore, if
11
1
= p ,
we have
:
T h e r e f o r e we obtain
-1
_3
I f ( 1 ) ) 5 exp(pL2 K ( C 2 t C2) t D ]
)
.
317
Existence and approximation results
9
12.6
E x i s t e n c e and A p p r o x i m a t i o n r e s u l t s i n
In t h i s s e c t i o n E
N,b
(E)
s t i l l d e n o t e s a c o m p l e x n o r m e d s p a c e with
Approximation P r o p e r t y .
12.6. 1 THEOREM. -
lf
N,b
Let 8 -
be a convolution o p e r a t o r on
( E ) . Then the v e c t o r s u b s p a c e of
p.e5
(with p
E
Pf(E)
t h e topology of
Proof. -
N,b
s
c
N,b
( E ) s p a n n e d by t h e functior,s
C E l ) s u c h t h a t @ ( pe 5 ) = o is d e n s e f o r
( E ) ir, t h e k e r n e l of
@
.
F i r s t we r e m a r k e a s i l y t h a t a n y p . e
s i n c e t h e l i n e a r s p a n of t h e s e t
[el ,
t El
1
c I. S ir. . xN,b ( E ) .
Then
is d e n s e i n
N , b(E) ( t h i s follows f r o m khe bijectivity of the F o u r i e r - B o r e 1 t r a n s f o r m : 1 2 . 2 . 5 ) , we m a y a s s u m e without loss of g e n e r a l i t y t h a t
T E X I N , b(E),
"' I
N, b
T
f
o , such t h a t
8 = TY.
8
# 0.
So t h e r e is s o m e
L e t u s a s s u m e now
5
( E ) is s u c h t h a t Q ( p e ) = T-X ( p e ' )
= o imply S(p e
5)
= o
,
f o r e v e r y p € bJ ( E ) and e v e r y 5 E E l . We a r e going to p r o v e that f S(f) = o f o r a l l f in the k e r n e l of 8 and t h e n the d e s i r e d r e s u l t w i l l be a n i m m e d i a t e a p p l i c a t i o n fo the Hahn-Banach t h e o r e m . that
3s E 3T
Exp
El.
F o r this,we s e
If w o is a z e r o of o r d e r m
@k then T(C2 e x p
F i r s t we p r o v e
(61tw,62))
of the function
= o f o r a l l k .< m
.
If k < m ,
Convolution equations in spaces
318
k
i = o Therefore
f o r a l l k < m , and thus wo to L .
Thus by (12. 2 . 4 )
T h e r e f o r e , by ( 1 2 . 5 . 2 ) ,
is z e r o of o r d e r
2 is a 3'T
''
-E 3T
3s r e s t r i c t e d
G - a n a l y t i c functior. on E ' .
Exp E'.
i s o m o r p h i s m (12.3.8) t h e r e i s ar. R
2 m for
So f r o m t h e F o u r i e r - B o r e 1
Ex'N . b (E)
such that
Hence
S = R * T . Now, if
Bf =
0,
then
S* f = ( R * T ) + f = R+(T r f )
Therefore S(f) = which c o m p l e t e s the proof.
(s r f ) (0)=
0
R * ( @ f ) .=
0 .
319
Existence and approxima!ion results
1 2 . 6 . 2 PROPOSITION. -
Let Q -
on
(E)
t
K N , b(E) and l e t t @ : K ;,
4
be a non z e r o convolution o p e r a t o r
x ; . ~ , ~ (bE e its ) transpose. T :-
@(XI;,b(E)) = [Sf XIN, b(E) s u c h that S(f) = o f o r a l l f E K e r (9 t If S E Q(K;\l. b ( E ) ) t h e r e is a U E X '
Proof. -
s =t Q Hence
.
( E ) with
( U ) = U o Q .
C o n v e r s e l y l e t SEX' ( E ) be such N, b @f= o = T r f . F r o m the proof of ( 1 2 . 6 . 1)
of = o i m p l i e s S(f) =
that S(f) = o w h e n e v e r
N, b
1
0.
t h e r e is a n R E K I N , b(E) s u c h t h a t
= 3 T . 5R
3s aiid thus
S = R + T .
T h e r e f o r e , if f
ExN,b(E) ,
and thus S E t @ ( x k , b ( E ) ) .
12.6.3
THEOREM.
on 3C (E). N, b
& T
-
Let
@ be a R o n - z e r o convolution o p e r a t o r
@(KN,b(E))=XN,b(E).
Convolution equations in spaces
320
Proof. -
By (12.6.2)
t 6 (KCIN,b(E)) is a w e a k l y c l o s e d s u b s p a c e of
F u r t h e r m o r e l e t u s p r o v e t h a t t & is i n j e c t i v e . A s s u m e t is s u c h t h a t qR) = 0 . If @ = T r , t @(R) = ~r T = o
(E). 5?, b R E 3C' (E)
N, b ( c o m p u t a t i o n a t the end of proof 1 2 . 6 . 2 ) . T h u s
5(R* T ) Since on
6'
El).
#o
=
(3R)( 3 T )
= o
, (5T) # o hence 3 R = o (they a r e holomorphic functions
T h u s R = o ( 1 2 . 2 . 5 ) and t @ is i n j e c t i v e . Now l e t u s r e c a l l the
following c l a s s i c a l r e s u l t ( B o u r b a k i [ 1 1 , D i e u d o n n 6 - S c h w a r t z [ I ] ) : "Let 6 from B
be a F r e c h e t s p a c e and u a continuous l i i i e a r m a p p i n g
into 6 , T h e n u is s u r j e c t i v e if
is w e a k l y c l o s e d in B '
'I.
Since 3C
N,b
Lu is i n j e c t i v e and
'u ( 8 ' )
(E) is a Fre'chet s p a c e (12. 2.4),
the a b o v e r e s u l t p r o v e s t h e s u r j e c t i v i t y of
@
.
m
32 1
Existence and approximation results
6
12.7
E x i s t e n c e and A p p r o x i m a t i o n r e s u l t s i n 3C
12.7. 1 Existence theorem. -
k
t E
be a c o m p l e x n u c l e a r 1 . c . s .
a n y c o n - z e r o convolution o p e r a t o r on K
Proof.-
By ( 1 2 . 3 . 2 ) ,
3C
u, b
u. b
( E ) = lim 3C
9
N,b
(E ) w h e n V r a n g e s o v e r V S i n c e E is a n u c l e a r
is a p r e - H i l b e r t s p a c e ( 0 . 5 . 8 ) ,
V
t h e r e f o r e it h a s t h e a p p r o x i m a t i o n p r o p e r t y , We p r o v e d i n if T
from
If
X
8 i s a convolution o p e r a t o r on
E 3C'
8
u, b
#
o ,
u,
(E). Given V a s b e f o r e ,
$ 12.4, ( T T
#o
)
i3
T K '
( E ) , then
(E )
8
=
&
12.3 that
T % for some
E K C I N , b ( E V ) , so,
N,b V
is a convolution o p e r a t o r on 3CN,b(EV 1.
and w e m a y c h o o s e a l l t h e
consider such that ( T
Then
( E ) is s u r j e c t i v e .
a b a s e of c o n v e x balanced o - n e i g h b o r h o o d s in E . 1 . c . s . we m a y a s s u m e each E
aEd 3C (E) S
u,
)
#
0 .
o-neighborhoods V that we
Since
=( T
'KN, then
i s a n o n - z e r o convolution o p e r a t o r on 3 C N , b(EV 1 ,
(9
12.7.2 COROLLARY. -
L A E be a c o m p l e x n u c l e a r Silva s p a c e .
T h e n a n y n o n - z e r o convolution o p e r a t o r on
x S (E)
is s u r j e c t i v e .
(E) a l g e b r a i ' c a l l y . S u, b F u r t h e r m o r e i t f o l l o w s f r o m t h e proof of ( 2 . 7 . 4 ) t h a t a n y bounded Proof. -
F r o m th. ( 2 . 7 . 4 ) ,
3f ( E ) = 3C
s u b s e t i n 3C ( E ) i s in f a c t a l s o bounded i n 3C
( E ) ( i . e . bounded i n u, b S i n c e 3-C ( E ) is m e t r i z a b l e , its topology c o i n c i d e s b V S TKS(E) ( 0 . 2 . 7 and 0 . 6 . 2). F r o m (12. 3. 1) t h e n a t u r a l topology
S s o m e X (E )).
with
Convolution equations in spaces
322
(E) c o i n c i d e s a l s o w i t h T5( (E). So XS(E) = 3c (E) u, b u, b u, b topologically and t h u s (12. 7. 2) follows a t once f r o m (12.7. 1). I of
12.7.3 Remark.
-
A n y non z e r o convolution o p e r a t o r on X ( 8 ' )is S
surjective. Proof.
-
Dineen [ 7
In ( 2 . 7 . 5 ) w e r e m a r k t h a t , f r o m B o l a n d - D i n e e n [1,2]
3
, w e h a v e 3C (2')= 3C S
d e t a i l s and o t h e r r e s u l t s .
u, b
(f'). S e e B e r n e r [ 1 3
and
for
( E ) . - L e t E be a c o m p l e x u, b 8 be a convolution o p e r a t o r on Xu, &E). ' T h s
1 2 . 7 . 4 A p p r o x i m a t i o n t h e o r e m i n 3C n u c l e a r 1. c . s. and l e t a n y solution f E 3C
(E)
of solutions of t h e t y p e u'b
of
5-
( E ) of a s e q u e n c e u, b . @ u i n e x p ( p i ) w i t h a,. ., FiEE'. J
G f = o is l i m i t i n X
I
ai
finite
Proof, -
It f o l l o w s i m m e d i a t e l y f r o m t h e proof
Df
(12. 7. 1) a n d f r o m
(12.6.1).
-
1 2 . 7 . 5 A p p r o x i m a t i o n t h e o r e m in X (E)AL e t E be a c o m p l e x S E). T h e n n u c l e a r b . v . s . and l e t 8 b e a convolution o p e r a t o r on a n y solution f
E K S (E)
of@f
%(
o i s limit i n X (E) of s o l u t i o n s of t h e S
finite Proof.
-
T h e proof is e x a c t l y s i m i l a r t o t h a t of ( 1 2 . 6 . 1).
323
Existence and approximation results
-
If E is a q u a s i c o m p l e t e d u a l n u c l e a r 1 . c . s . then
X ( E ) is d e n s e in
and h a s the induced topology (5. 1 . 5 ) h e n c e
12.7.6 R e m a r k .
xS( E )
the two s p a c e s h a v e the s a m e convolution o p e r a t o r s . F u r t h e r m o r e i t is i m m e d i a t e to c h e c k that E ' is d e n s e ir. E X ( s i n c e E
( 0 . 3 . 3) and ( 0 . 5 . lo)), h e n c e E x p E ' works if Abstract.
0.
. and p i E E ' and
we
a
1JJ
12.7.7 Remark.
-
12.7.8 Problem. -
= E
. So t h e proof
from of ( 1 2 . 6 . 1)
obtain the e x i s t e n c e th. A of t h e
A m o r e g e n e r a l f o r m u l a t i o n of t h e e x i s t e n c e t h e o r e m
i n 3C ( E ) is in C o l o m b e a u - P e r r o t [
S
= Exp E X
X'
6
1 .
L e t E be a c o m p l e x b . v . s . ( r e s p . I.c. s . ) and
@
a non z e r o convolution o p e r a t o r on Jc ( E ) ( r e s p . 3C(E)). D o w e h a v e S @(3(,(E)) = 3CS(E) ( r e s p . @((X(E))= k ( E ) ) ? The p a r t i c u l a r c a s e E is a
n u c l e a r F r k c h e t s p a c e is p a r t i c u l a r l y i n t e r e s t i n g .
324
Convolution equations in spaces
9
1 2 . 8 Convolution o p e r a t o r s of f i n i t e type
1 2 . 8 . 1 DEFINITION, -
If E
we s a y that a convolution o p e r a t o r
is a c o m p l e x 1.c. s. (or b . v . s . 1 ,
6 02K ( E ) h K s ( E ) ) i s of f i n i t e
type i f t h e r e i s s o m e f i n i t e d i m e n s i o n a l c o m p a c t ( o r s t r i c t l v c o m p a c t ) subset K o f E
and
/ < T ,v >
( f o r some c
.L
such that
8 = T % , w i t h TE K ’ ( E )
1 5 1 for a n y
>
o),
i.e. T E
E K ( E ) (or XS(E))
% (K,&).
b ~ xS (E)) ’
ICJ
. w w
T h e s e convolution o p e r a t o r s a r e w r i t t e n
I
n = o
K6 ’I f o r s o m e p 3. o and s o m e ( c o n v e x balanced) 1 finite d i m e n s i o n a l c o m p a c t ( o r s t r i c t i y c o m p a c t ) s u b s e t K of E (apply
w h e r e $‘“’(o)
E iJ- l a
7 . 1. 5 and 12.1.5
12.8. 2
in a finite d i m e n s i o n a l s p a c e containing
K).
If E i s a c o m p l e x v e c t o r s p a c e we e q u i p E with its f i n i t e
d i m e n s i o n a l bornology 0 . 2 . 2 .
B y a proof of t r a n s f i n i t e inductior. based
upon the e x i s t e n c e t h e o r e m in the f i n i t e d i m e n s i o n a l case, Boland-Dineen
[ 3 ] obtain : Existence Theorem.
-
L e t E be any complex vector space
equipped with t h e finite d i m e n s i o n a l bornology. If convolution o p e r a t o r on 3c ( E ) , then S
1B.8. 3
8 i s a n y non z e r o
8 K ( E ) = Ks(E) S
.
A n o t h e r d i f f e r e n t r e s u l t is obtained by a proof e x a c t l y
s i m i l a r to t h a t ir, c h a p t e r 13 ( s o we j u s t s t a t e the r e s u l t ) .
325
Convolution operators of finite type
Existence Theorem. -
E be any c o m p l e x 1. c . s . and
a f i n i t e type convolution o p e r a t o r . Ther,
G(Ku , b ( E ) =
f9
xu,&E) .
We note t h a t in t h i s c a s e we d o not need a n y a s s u m p t i o n of n u c l e a r i t y on E ,
a s needed i n Th. 1 2 . 7 . 1 w h e r e g e n e r a l convolution
o p e r a t o r s w e r e c o n s i d e r e d . In p a r t i c u l a r i f E is a n o r m e d s p a c e
6(Kb(E)) = X b ( E ) and i f E is a Silva s p a c e i t f o l l o w s f r o m t h . 2 . 4 . 7 that
Q(K(E)) = K(E).
#
o
CHAPTER 13 LINEAR FINITE DIFFERENCE PARTIAL DIFFERENTIAL EQUATIONS IN %I (E)
A BSTRA CT.
If E is a r e a l 1.c.s. we d e f i n e a l i n e a r p a r t i a l
d i f f e r e n t i a l - d i f f e r e n c e o p e r a t o r with c o n s t a n t c o e f f i c i e n t s (1. p . d . d .
0.
f o r s h o r t ) by the f o r m u l a m
j = l
if m
E N , c E C , hj. and y . E E a r e fixed and w h e r e x E E and
v E &(El.
j
J
We r e c a l l that we denote by 8 ( E ) the l i n e a r s p a c e of t h e u, b c o m p l e x valued Cco functions on E t h a t a r e of " u n i f o r m bounded type" (defined in 1 . 6 . 2 ) .
Existence Theorem. 1.p.d.d.o.
on E
is a Silva s p a c e
.
-
If E -
then D &u, b ( E ) =
is a r e a l 1 . c . s . and D a nor. z e r o
a
d u , b(E). In p a r t i c u l a r C & ( E ) = & ( E )
In the p a r t i c u l a r c a s e E is a n o r m e d s p a c e , we have obviously a3
(E) = 8 ( E ) , t h e s p a c e of the C functions on E that a r e bounded 'u, b b a s w e l l a s a l l d e r i v a t i v e s on any bounded s u b s e t of E , and t h e r e f o r e D6b(E) = db(E). We a l s o obtain a p p r o x i m a t i o n of t h e s o l u t i o n s of t h e homogeneous equation by exponential polynomial solutions. 326
321
Imaginaty-exponentiabpoly nomials
5
13.1
A d i v i s i o n r e s u l t by i m a g i n a r y - e x p o n e n t i a l - p o l y n o m i a l s
By a n i m a g i n a r y exponential polynomial ( I . e. p. f o r s h o r t ) we m e a n a l i n e a r combination of p r o d u c t s of polynomials by p u r e i m a g i n a r y exponentials. L e t Q be a non z e r o i. e. p. on one c o m p l e x v a r i a b l e and write
... t Q k e x p ( i a k' ) Q ( z ) = Q , ( z ) exp(i a z ) t. . exp (i a z), 1 k a r e non z e r o polynomials and w h e r e a < a <. . . < a 1 2 k' Q
i. e.
1
.+Q,(z)
where the Q
L = ak
Q 1 e x p ( i a .) t
-
j a l and l e t
Q1 = b
( i t is allowed t h a t b
13. 1. 1 L E M M A , -
0
=
0
X
m
t bl Xm-'
t
Call
... t bm
0).
In t h e above notation, t h e r e e x i s t s a K > o which
.
and on the d e g r e e s of Q such that e a c h j k i n t e r v a l I in the c o m p l e x plane which is p a r a l l e l to t h e r e a l a x i s and
depends only on a l , a 2 , . . , a
h a s ler.gth 2 2 ( L t 1) contains a point y a t which
w h e r e a is t h e d i s t a n c e of I f r o m t h e r e a l a x i s .
328
Linear finite difference
1 3 . 1 . 2 LEMMA.
-
With Q a s above s u p p o s e t h a t
f o r a l l c o m p l e x n u m b e r s x, z ,
r
where
M i s a p o s i t i v e function and
7o
.Lety
>o
we c a n d e s c r i b e a c i r c l e a b o u t y of r a d i u s
be a n y c o m p l e x n u m b e r which s a t i s f i e s ( 1 ) . T h e n f o r a n v
r ' such that
r i r' 5 2r
where B , c d
d
a r e c o n s t a n t s and w h e r e d is a p o s i t i v e i n t e g e r .
We m a y obviously a s s u m e c < o ( s i n c e A we c h o o s e M(y) 2 1 we m a y a s s u m e B < o
>
o and
r'
lhence
IF((C) I
s
m(1
+ 1161
fixed non z e r o i . e . p . on C n
KP E
(A d i v i s i o n r e s u l t ) .
1 ) ~ e blllm
.
'I1
V
5
Let us assume
3 d ' ( l R n ) , i . e . t h e r e e x i s t m ' , V ' and
where m ' , v ' and b ' d o not depend on
9
If
. We d o not give the p r o o f s
of t h e s e two l e m m a s which m a y be found in E h r e n p r e i s [ 1 ]
1 3 . 1 . 3 PROPOSITION.
> 0).
E
8)and
fl E
and [ 2
58'(1Rn)
let P
a' E3C(Cn). P
Then
b' with
but only on m,
U '
a n d b.
3.
3 29
Imaginary-exponential-polynomials
n F o r c o n v e n i e n c e we s e t F = IR and l e t
Proof.-
(2)
P. e
P=
lYj
J
j € J
(ficite)
w h e r e y . E F and y if j , fy. J jl J2
# j2
, and w h e r e
(finite)
whith
Cj
the s e t s
Q
6 C , hj F F and P. a,P J
#o
We cl aim t h a t t h e r e is a t l e a s t one
n
hence F' =
A. J
. For each
# fl ,
j E J let us consider
s i n c e i f not
Q
j € J
,fj =
fl ,
, and F' would be c o n t a i c e d in a finite ucion of
j € J c l o s e d h y p e r p l a c e s (the h y p e r p l a n e s that
# fl
. L e t u s d e n o t e by
t h a t P,(q) by :
#
0.
For
U
-y
P
) = o i f er
# p).
We a s s u m e
m the d e g r e e of the polynomial
# $ , and P1 # 0 , t h e r e i s a n q we c o n s i d e r the function each 5 E F'
is open,
(2). Since
i$y
i\l
c
E
P
1
in
A1 s u c h
Q defined
Linear finite difference
330
Let ai = q(yi)
E
Since q E h l
JR.
the n u m b e r s a . a r e a l l d i s t i n c t . We
( k = c a r d J), and w e h a v e numerote them a < a < . . . < a 1 2 k '
where
where b
0
=
Pl(q e
it
(Y,)
and w h e r e b 1,
.. , bm a
a r e the o t h e r
- a 1 ' By l e m m a 13.1. 1 t h e r e is a K > o k and on the d e g r e e s of t h e which depends only on a l , a 2 , a k polynomials Q such that t h e r e a l i n t e r v a l [ - ( L t 2 ) , L t 2 3 c o n t a i n s a j point Y a t which coefficients. L e t L = a
R e m a r k that a 1,
... a k
...,
a r e fixed independently of
5 , and t h a t t h e r e i s
only a finite n u m b e r of p o s s i b l e d e g r e e s of O., 1 I j 5 k, when 5 J r a n g e s i n FIa; , hence i t i s p o s s i b l e to find K > o independently of Now, ir. o r d e r t o a p p l y t h e l e m m a 1 3 . 1 . 2 ,
w e a r e going t o p r o v e
that
IQ(h+
where
R
>o
u)1
5.
~ M ( Pe )
and w h e r e M is a positive function t h a t we a r e going t o
Irnagimrpexponential-polynomials
compute
. Since
we a r e only doing t h e c o m p u t a t i o n s f o r one index j ,
Hence t h e p r o b l e m is t o obtain a m a j o r i z a t i o n of a t e r m of t h e f o r m :
Such a t e r m is a s u m of 2
We have
:
n
t e r m s of the f o r m :
331
Linear finite difference
332
where
I/h
= max
19 ( h i , k) I } far t h e hJ , k i n ( 2 ' ) *
If N = s u p n . , j E J , ( s e e ( 2 ' ) ) , then e a c h J
H e n c e t h e r e is a A 2 1 ,
We h a v e
where
W e have a l s o :
w h e r e w e set
independect
OR
IT
5 ,
I
i s m a j o r i z e d by
such that :
Imaginnlyexponenrial-polynomials
333
T h e r e f o r e , f r o m (4)t o (8) ,
Therefore
i. e.
Where
and
k = 2.4'.
Now we apply the l e m m a 13. 1.2 with the point y = Y with the choice r = L t 3 .
obtained i n ( 3 )
T h e n we obtain that t h e r e is a
r'
,
r< r
such that
inf
( 9)
where B <
1 A I =r' 0,
fQ(1 t
c < o and d
>
\)I
2
B d d (M(L)) e x p ( c I r') K l b o l
o a r e constants.
, and ' 2 r~
334
Linear finite difference
CoRsider now t h e following e n t i r e f u n c t i o n F on
g
F(X) =
(5
t
1 q) , A
C :
C , q fixed a s a b o v e and
F r o m the maximum principle
because
o is i n s i d e t h e c i r c l e of c e n t e r
F r o m a s s u m p t i o n on
Since
and
g,
I X t Y l i 3Lt8 ,
we have
Y
and r a d i u s
r ' . Hence
Ec F'
c*
Imaginary-exponen tial-poly nornials
hence
and f r o m (9)
S i n c e , f r o m t h e definition of b ' ,
then
We s e t 2 A 1 ( L t 2 ) - B .-c.l(2Lt6) 1 C1 = ( k A e C2 = m ( 1 t ( 3 L t 8 ) IlqII) e b ( 3 w
I I 11 ~
335
Linear finite difference
336
which a r e independent on
5.
T h e n f r o m (10),(11) and (121,
and we obtain t h e d e s i r e d inequality.
Vg E F i C
337
A Paley-Wiener-Schwartz theorem
5
space
13.2
A-Paley-Wiener-Schwartz
t h e o r e m and a divisior, r e s u l t
If E is a r e a l Banach s p a c e w e r e c a l l that 8 ( E ) d e n o t e s t h e b of t h e c o m p l e x valued Cco functions on E t h a t a r e bounded a s
w e l l a s t h e i r s u c c e s s i v e d e r i v a t i v e s on t h e bounded s u b s e t s of E .
db(E)
is n a t u r a l l y equipped with the topology of u n i f o r m c o n v e r g e n c e on t h e
bounded s u b s e t s of E f o r t h e functions a n d the d e r i v a t i v e s . It is e a s y t o c h e c k t h a t d b ( E ) is a F r e ' c h e t s p a c e , L e t E be a r e a l Banach s p a c e and F be a f i n i t e d i m e n s i o n a l s u b s p a c e of E . We s e t E = F t a r y t o F.
R(F;T: , dIb(G))
G,
where G is a subspace complemen-
d e n o t e s t h e l i n e a r s p a c e of all m a p p i n g s f r o m
F i e into dlb(G).
13.2. 1 DEFINITION.
-
We define a F o u r i e r t r a n s f o r m z i n t h e
following way :
13.2.2 PROPOSITION. -
T h e F o u r i e r t r a n a f o r m 13.2. 1 is i n j e c t i v e .
Linear finite difference
338
yi.eFi) =
T h e r e f o r e k. (
0
for
Y i E B ( F ) , p i € Bb(G). But
finite
6 ( F ) Q" S , ( G ) is d e n s e in d ( F ) E 6,(G) , s i n c e d ( F ) h a s the approximation property (Schwartz (I)).
B(F)
6 . 2 . 1 and
a($)
=
6
d b ( G ) = G ( F , Bb(G)) from
d ( F , db(C)) = d b ( F x G) = Bb(E), see 6.2.3 0, f o r a l l $ E 6 ( E ) , t h a t is ,t = 0
.
b
13.2.3
. Therefore
The Fourier
PROPOSITION ( P a l e y - W i e n e r - S c h w a r t z t h e o r e m ) . -
t r a n s f o r m is a n a l g e b r a i c i s o m o r p h i s m f r o m
8 ' (E) onto a l i n e a r s p a c e
b i n t o 6 ' (G) t h a t we denote by 3 d l b ( E ) and w e cb d e s c r i b e now : 3 S r b ( E ) is the l i n e a r s p a c e of the m a p p i n g s of mappings f r o m F '
-
$ :Frc (1)
B1,(G)
such that :
f o r e v e r y tgEQb(C) , the function 5
-,
a' ( s ) . y
is holomorphic
on F ' c (2)
f o r e v e r y cq such that
(3)
E 6
b
(G) , t h e r e a r e c o n s t a n t s m
t h e r e i s a 0-neighborhood
'V
cp'
v
so-
and b
i . 8 (G) s u c h t h a t i f
b c'lf t h e n w e m a y c h o o s e t h e c o n s t a n t s m
b
va
independent of
uEn.
cc
,v 9,
a&
339
A Paley- Wiener-Schwortz theorem
5
where
d e n o t e s the F o u r i e r t r a n s f o r m on 6 ' ( F ) . T h e n by the P a l e y F and b W i e n e r - S c h w a r t z t h e o r e m i n finite d i m e n s i o n , t h e r e a r e m
CF
such that
for e v e r y
GF'
0
. Now
c
B E
, where
?f
lVCy
v
is a o-neighborhood
1
(convex balanced bounded and K in d b ( E ) = Bb(FUG). T h e r e a r e K F G s u b s e t s of F and G) s u c h t h a t we m a y a s s u m e
such t h a t
?fl = / f € g t ( E ) ,
If
(i)
(KFxK
G
).(KFxK
G
)
i
I@,
i f 0 5 is n
.
We s e t
?f= { v C Q b ( G ) ; s u c h t h a t l(i(i)(KG). (KG )i 15 p i f
Then on rp
(iP E
E
E
0
in &'(F),i f
k
?f.T h e r e f o r e
e p G ? f and for s o m e
05 i 5 n
E
>o
1
independent
ICQP ] c ; c l r i s a bounded s u b s e t of d ' ( F ) . By
the P a l e y - W i e n e r - S c h w a r t z t h e o r e m s in f i n i t e d i m e n s i o n , we have (3). Conversely let
a'
i n t o 6' (G), t h a t v e r i f i e s ( 1 ) , b in Bb(G) be fixed and define fl : F' C by
be a function f r o m F '
( 2 ) and (3). L e t cc,
Idcp(!)
=
$(c) .y
. By (1) and ( 2 ) ,
IdCF E
B'(F) with ( 3 .4 ) ( { ) = A & e i 5 ) = Fcp w e define a m a p
2
:
8 (F)
db(G)
-
c
v
c
-
Z F ( S ' ( F ) ) , s o t h a t t h e r e is
cp
(5),
for every
G by i ( y , @) =
T € F I C .
CF
A
CF.
in
Now
( y ) , if @Edb(G)
340
and
Linear finite difference
2
'f E B(F), and i t is i m m e d i a t e t o check that (given by (3)) then
cp E ?f
is bilinear. F o r
{ A q 1 is a n equikontinuous s u b s e t of .$'(F),
f r o m the Paley-Wiener -Schwartz t h e o r e m in finite d i m e n s i o n , t h e r e f o r e is bounded on
v,
k
0
k in B ( F ) s u c h t h a t k?
is a 0-neighborhood
that is
3
E II;
cp is continuous. So
continuous l i n e a r mapping ,f, f r o m d ( F )
QP
Schaefer [ 13, cor. 2,p. 172, that
&(F)@,
1
2 comes from a
8 (C) into C. Since d ( F )
n b
is a nuclear s p a c e , i t follows f r o m T r i v e s [ I ] ,
-
. T h i s i m p l i e s that
thCor'eme 50. 1,
db(G) = d(F) @c Bb(C),
( W h e r e n and
E
&(F)Q~ S,(C)
is a topological s u b s p a c e of B(F) E db(G) acd is d e n s e in
it
denote the topologies on the topological
product.).
, since &(F) h a s the approximation p r o p e r t y (Schwartz [I 1).
T h e r e f o r e B(F) @E Bb(G) = 8(F) & db(G). By 6.2.1, B(F) E d b ( G ) = B(F, B b ( G ) ) = db(E). T h e r e f o r e & E 8' ( E ) acd b
13.2.4 Remark.
-
fl
= 378.
T h e Paley-Wiener-Schwartz t h e o r e m 13.2.3 r e m a i n s
t r u e i f E i s any Schwartz b.v.s.
and if w e r e p l a c e d b ( E ) by &(E) :
the proof is the s a m e a s above.
+- -.
- 2 fl E
13.2.5 PROPOSITION ( a division r e s u l t ) . a non z e r o i.e. p
on
F and if
is a mapping f r o m F ' ,f
s u c h that f o r e v e r y v,€Sb(C) , then P P
then
P
(2-
if
P
into tjIb(G)
cp is holomorphic on F '
E 5 8lb(E).
Proof.
-
If cp
#,(C)
=
#(C).q ,
that
38',(E),
F
.$,(C)
is fixed a n d i f
$
CF
C '
E K ( F I C ) is defined by
then by hypothesis t h e r e a r e m
cp' veF,
and b
cp
such
341
A Paiey-Wiener-Schwartz theorem
F r o m prop.
mcC'
"CP
13.1.3
and b
CP
there a r e m'
such that
cp'
v'
T h e r e f o r e it follows f r o m ( 1 3 . 2 . 3 ) t h a t ty ( 3 ) 13.2. 3 since
#
h a s it).
(P
and
b'
cp
w h i c h depend only on
$ E 3 8' (E),(pry P
b
has proper-
Linear finite difference
342
9
E x i s t e n c e and A p p r o x i m a t i o n of s o l u t i o n s in a B a n a c h s p a c e .
13.3
In t h i s s e c t i o n E s t i l l d e n o t e s a r e a l Banach s p a c e . If h l , and y a r e in E we d e n o t e by
Dh l , . . . , h n ;
y
. .,, h n
the l i n e a r o p e r a t o r f r o m
& ( E ) i c t o d ( E ) defined b y :
(Oh , , . . . ,
(x)
h r? ; y
if q E d ( E ) and x E E .
Clearly D
rC(n)(x+y).hl...hl,
hl,...shn;
y
i s also a linear
o p e r a t o r f r o m B'&E) i n t o BIb(E). We define a l i n e a r p a r t i a l d i f f e r e n t i a l d i f f e r e n c e o p e r a t o r with c o n s t a n t c o e f f i c i e n t s (1.p.d.d.
0.
for short) a s
finite
with
c.E
C. T o the l . p . d . d . o .
J defined by
D we a s s o c i a t e t h e i . e . p .
PD on E'
j C J finite
We c h o o s e F and G w i t h E = F @ G s u c h t h a t t h e s e t is contained i n F.
{hq/ u /yj jj P PIq
343
Existence and approximation
1 3 . 3 . 1 PROPOSITION ( A p p r o x i m a t i o n of s o l u t i o n s ) .
-
Each u E & ~ ( E )
solution of D u = o is l i m i t i n B (E) of so1utior.s of t h e f o r m b
E J P.e
a.
.1. with J
P . finite type continuous p o l y n o m i a l s on E , J
finite
Proof.
-
It s u f f i c e s to c o n s i d e r the c a s e D
#o
. We a r e going t o
p r o v e that the s e t of t h e s e p a r t i c u l a r s o l u t i o n s is d e n s e i n K e r C f o r t h e topology induced by 8 ( E ) . F r o m the H a h n - B a n a c h t h e o r e m it b s u f f i c e s t o p r o v e t h a t a n y A? E 8Ib(E) which is null on t h i s s e t is null on K e r D . F i r s t we show t h a t i f
A is a s a b o v e then
''
- is
a well
pD
defined mapping f r o m F r C into BIb(G) a fixed qr E Sb(C) , fixed
6
. F o r t h i s we f i r s t c o n s i d e r
and r) in FIC and the e n t i r e functions
on C defined by :
if h E
C
.
in (12.6.1)
f o r all j s n
If
1 E C is a z e r o of o r d e r n of Q, the c o m p u t a t i o n s 0
give t h a t
. T h e n for a l l
E db(G)
I
344
Linear finite difjerence
j i ( S -t 1 .q) q .e .Y
T h e r e f o r e the function
is i n the a b o v e s e t of
p a r t i c u l a r s o l u t i o n s and t h u s by h y p o t h e s i s
T h e r e f o r e F ( j ) ( A o ) = o i f j < n , t h a t is g r e a t e r t h a n n o r e q u a l to n. H e n c e function on C function g
-
. T h e n by ( 1 0 . 2 . 4 ) ,
n r
o
Q
i s w e l l defined a s a n e n t i r e
f o r e v e r y fixed
-t
q 6 6b ( G ) the
is w e l l defined and h o l o m o r p h i c on
FIc.
PD(S)
5 E F'
Now we a r e going to p r o v e that f o r a n y fixed q-
i s a z e r o of F of o r d e r
3.l (0.y
is a n e l e m e n t of
pD
c'
the m a p p i n g
8 ' b (G). If PD(S) # o t h i s i s
. If
P ( 5 ) = o t h e r e i s a null s e q u e n c e ( A ) of c o m p l e x n D n u m b e r s , and a 1-I c F t C s u c h t h a t P ( s t 1 p ) # o f o r all n. D r . 31 5a S i n c e -(5tinp).cF 3 ( 5 ) . y if n t a o , w e obtain t h a t -(g) P D pD pD obvious
-
4
is a l i n e a r f o r m on db(G)
. Now if
{cp
1
i s a bounded s e t i n db(G),
a &A
f r o m 1 3 . 2 . 3 and 13.1.3,
w h e r e m ' , v 1 and b' a r e independent of
0
is a bounded s u b s e t of
e
p
. Therefore
C and t h e r e f o r e
- (3Rz ) pD
is a bounded l i n e a r f o r m o n 8 (G) , i . e . a continuous l i n e a r f o r m s i n c e b 3.t db(G) i s a F r e ' c h e t s p a c e . F r o m 1 3 . 2 . 3 , E 3dIb(E), that i s ,
-
t h e r e is a n R E 6Ib(E) s u c h t h a t 51 = P 3R. If D' E 6b(') 1
5 C
FIc
and
Existence and approximation
ie ( ei'
.
q)=3,4( 8 ) . q = PD(g). ( 3 R (5 ) .
cp)=x
n c j ( i ) Jh$
345
5)
iSYj ...h h ( 5 )e .R ( e.'
v)
j
j€J finite
By d e n s i t y in &F) of the l i n e a r s p a n of t h e exponentials, we have R(f.cp)
\YE NF).
= (R o D ) ( f . ~ )f o r any
Since, f r o m 13.2.2,
Bb(G) i s d e n s e i n 8 (E), i = R o D i n dIb(E). T h e r e f o r e b if f E K e r D.
a(f)=o
d(F)
Remark.
13.3.2
-
The A p p r o x i m a t i o n R e s u l t 13.3. 1 m a y be adapted to
o t h e r s p a c e s and i m p r o v e d . For i n s t a n c e if E i s a n u c l e a r b . v . s . c o n s i d e r d(E) ar.d We know, ( 5 . 2 . h ) ,
we
B(G) i n p l a c e of db(E) and &b(G) r e s p e c t i v e l y . that the l i n e a r s p a n of t h e exponentials i s d e n s e i n
S(G) , s i n c e G is a l s o a n u c l e a r b.v.
s, and the proof of
in t h i s c a s e t h a t t h e s e t of s o l u t i o n s of t h e f o r m P. f i n i t e type continuous polynomials on E and J the s e t of a l l solutions.
fiEite
13. 3. 1 g i v e s
P . e a j with J a.EE' a r e dense in
J
C
N o w the following r e s u l t s a r e analogous t o (12.6.2) and (12.6.3).
13.3.3 LEMMA. E and C be a s u s u a l i n t h i s s e c t i o n and l e t t D : dfb(E) 6' ( E ) be t h e t r a n s p o s e d of D. T h e n b
-
t
13.3.4
E ( d l b ( E ) ) = /SEd',(E)
s u c h t h a t S(f) = o f o r a l l f C K e r D
E x i s t e x e Theorem. -
l e t D__ be a non z e r o l.ptd,dlo.
.I__.
]
.
L e t E be a r e a l B a n a c h s i _ a c_ e_ and -on -__I_. E . T h e n D b b ( E ) = B b( E ) .
Linear finite difference
346
9
13.4
E x i s t e n c e of solutions in locally convex s p a c e s
L e t E be a r e a l 1.c. s. and C a non
13.4.1 THEOREM. z e r o l.p.d.d.o.
Proof.
-
on E.
Then D . d ( E ) = d U , b(E). u, b
By definition (1.6.2), 8
u, b
( E ) = l i m 8 ( E ) when V r a n g e s b V
v"
o v e r a b a s e of convex balanced o-neighborhoods in E . Th. 13.4.1. follows immediately f r o m the s a m e r e s u l t in the p a r t i c u l a r c a s e E is a normed space and since $ ( E ) = &b(E) algebrarcally i f E i s a normed
.
space acd E its completion it suffices to apply 1 3 . 3 . 4 .
13.4.2 COROLLARY. z e r o l.p.d.d.o.
-
Let -
.
E be a r e a l Silva s p a c e and D a non
on E. Then Dd(E) = d(E).
The r e s u l t follows immediately f r o m 13.4. 1 and 1.6.3. ,
CHAPTER 14 PSEUDO-CONVEX DOMAINS AND APPROXIMATION RESULTS
A BS TRA CT
.
We s t a t e c l a s s i c a l definitions and p r o v e v a r i o u s m a i n
r e s u l t s on pseudo -convex d o m a i n s , d o m a i n s of h o l o m o r p h y , d o m a i n s of
. S o m e of t h e m w i l l be used
e x i s t e c c e , h o l o m o r p h i c convexity..
in the
next c h a p t e r .
THEOREM (Solution of the L e v i p r o b l e m ) . Banach s p a c e with b a s i s and
-
L e t E be a complex
0 a pseudo-convex open s u b s e t of E .
Then fl is a d o m a i n of e x i s t e n c e of a h o l o m o r p h i c function ( t h e r e f o r e 0
R
is a d o m a i n of h o l o m o r p h y , h e n c e
is h o l o m o r p h i c a l l y convex). L e t u s
p o i n t out that the s a m e r e s u l t holds i f E i s a DFN s p a c e , a Silva s p a c e with b a s i s , a F r 6 c h e t s p a c e with b a s i s and s e v e r a l o t h e r s p a c e s .
THEOREM (Runge A p p r o x i m a t i o n t h e o r e m ) . Banach s p a c e with b a s i s and
n
Let E
-
be a c o m p l e x
a pseudo convex open s u b s e t of E .
K is a c o m p a c t s u b s e t of 0 s u c h t h a t
Go,
= K,
If
then ahy holomorphic
function in a neighborhood of K m a y be a p p r o x i m a t e d u n i f o r m l y on K by h o l o m o r p h i c functions on 0 .
THEOREM Ian A p p r o x i m a t i o n r e s u l t ) .
-
W
E &F
be two
s e p a r a b l e H i l b e r t s p a c e s with a c o m p a c t i n c l u s i o n m a p p i n g f r o m F L e t R be a pseudo-convex open s u b s e t of E with 0 n F # $ . Then E* the r e s t r i c t i o n mapping,:
xc(n)
+
qfl n F)
h a s dense range. 341
Pseudo-convex domains
348
$ 14.1
G l i m p s e a t pseudo-convexity and d o m a i n s of h o l o m o r p h y
L e t E be a l i n e a r s p a c e o v e r -
1 4 . 1 . 1 DEFINITION. -
C,
“rf: a
0 a n open s e t f o r (E,?f).Let v be a
Hausdorff topology on E
function defined on %1 and with r a n g e i n ’
[-00,
f a [ , with v
,d -00. The
function v is called p l u r i s u b h a r m o n i c if a) v(z) < c
1
b)
v is upper s e m i - c o n t i n u o u s (i.e. the s e t is open f o r a n y c
E
if(a,b)
E R)
~ (E x - 101)
is s u b h a r m o n i c o r i d e n t i c a l to w h e r e it is defined
.
I z 6 R such that
the function
-OD
6
-v(atcb)
(5 E C)
on e a c h connected component of
C
We r e c a l l t h a t if a ) is s a t i s f i e d , b) is e q u i v a l e n t t o
When E i s a l c s and we do not m e n t i o n t h e t o p o l o g y c , w e assume that
b e i s t h e topology of
1 4 . 1 . 2 DEFINITION. s u b s e t of E .
-
E . F o r o t h e r topologies s e e K i s e l m a n [43.
L e t E be a c o m p l e x 1 . c . s . and
We denote bv d n t h e function :
n
a n open
Glimpse at pseudo-convexity
349
We s+y t h a t %2 is pseudo-convex i f the function -Log d m o n i c on 0 dn
x
(E- l o
1)
( f o r e v e r y fixed z I ir, ( E - l o ] ) ,
is t h e d i s t a n c e f r o m z to t h e c o m p l e m e n t of
14.1.3 and
R
is a h u b s e t of E
if %1
n
is p l u r i s u b h a r -
the function
0 in t h e d i r e c t i o n zl).
If E is a c o m p l e x l i n e a r s p a c e
P s e u d o - c o n v e x open s e t s . -
dimensional subspace
R
such that 0
n
F i s open f o r a n y finite
F of E , we s a y t h a t R is f i n i t e l y pseudo convex
F i s p s e u d o convex f o r a n y finite d i m e n s i o n a l s u b s p a c e F of E. T h e n i t is proved ir, N o v e r r a z [ 1 ] 2 . 1.5 that i f E is a c o m p l e x
1 . c . s . and R an open s e t in E , then
R
is p s e u d o - c o n v e x i f and only i f
s1 i s finitely pseudo-convex.
1 4 . 1 . 4 DEFINITION.
Let E
-
be a c o m p l e x l i n e a r s p a c e with be a n open s u b s e t of E. L e t
s o m e topology o r bornology and l e t
A ( n ) denote a f a m i l y of h o l o m o r p h i c o r Silva h o l o m o r p h i c functinns on L e t K be a s u b s e t of R s u c h t h t
f EA(R)
. Then w e call
If
1 K=
s u p I f ( z ) 1
zE K
A(R)-enveloppe of K the s e t
={zEh2 s u c h t h a t I f ( z ) 1 5 1 f / K f o re v e r y f c A ( R ) ] K A(R)
If K'(n) -
.
is a f a m i l y of p l u r i s u b h a r m o n i c functions on R we s e t :
-
K p ( n ) = { Z E D s u c h t h a t f ( z ) S s u p f ( x ) f o r .every f g q n ) 1 xE K
14.1.5
n.
A( n) convexity.
-
.
If E i s a c o m p l e t e 1 . c . s. and R ar, open
then R i s said to be A ( n ) - c o n v e x i f K is c o m p a c t i n R A(0) f o r a n y c o m p a c t s u b s e t K of R set in E,
.
Pseudo-convex domains
350
14.1.6
Domains of Holornorphy
.-
If E i s a complex 1. c. s .
0 a n open s u b s e t of E , 0 is said t o be a domain of holomorphy
and
if t h e r e d o cot e x i s t two non void connected open s u b s e t s R1 and
of E
14. 1.7
fi
such t h a t
n h2 1
kh2
a)
n,cR
b)
for every f E X ( n ) there exists f
and
R
1
Domains of E x i s t e n c e .
R ar, open s u b s e t of E , 0
2
-
1
€ q R 1)
such that
If E is a complex 1 . c . s . and
is said to be a domain of e x i s t e n c e (of a
holomorphic function) i f t h e r e i s a n f
Eqn)
e x i s t two non void connected open s u b s e t s Rl
such t h a t t h e r e do not and
hl
2
of E ,
m e a n s that f cannot be continued to a connected open s e t l a r g e r than 0).
14. 1.8 R e m a r k .
-
The l i t t e r a t u r e
OR
t h i s topic d e a l s with holomorphir
functions although one m i g h t c o n s i d e r Silva -holomorphic functions. In a n y c a s e , in a l l this c h a p t e r , we s h a l l w o r k in s p a c e s w h e r e t h e s e two co
~ e pts c
c oihc id e
.
14. 1 . 9 V a r i o u s p r o p e r t i e s of open s e t s .
-
L e t E be a complex 1. c. s.
and h2 a n open s u b s e t of E. We c o n s i d e r the following p r o p e r t i e s : (PI)
0 is domain of existence of a holomorphic function.
(P,)
f o r e v e r y sequence
( 5n ) nEJN of e l e m e n t s of h2 which c o n v e r g e s t o 5 E on ( b n is the boujidary of 0) t h e r e e x i s t s a n fEx(C(h)
351
Glimpse at pseudo-convexity
such t h a t
R i s a d o m a i n of h o l o m o r p h y R i s h o l o m o r p h i c a l l y convex ( i . e .
n
14. 1.5 with A ( 0 )
a"(n)
is p l u r i s u b h a r m o n i c a l l y convex (14. 1.5 with
x(6-2)) the s e t of
t h e p l u r i s u b h a r m o n i c functions in 0)
R is pseudo-convex R is f i n i t e l y pseudo-convex. Then it i s proved i n N o v e r r a z
('5)
1 3 that
('6 P1)
F u r t h e r m o r e the i m p l i c a t i o n s
* (P3)
In 14. 1. 10 below we p r o v e t h a t (P,) not (P,)
(P,)
and ( P 4 )
3
(P,) a r e obvious.
. T h e p r o b l e m w h e t h e r or
(P,) is called t h e L e v i p r o b l e m and it w i l l be studied i n the
next section. If (P,)
(P,)
, thele'vi problem
is a f f i r m a t i v e l y solved
in 6-2 , and then p r o p e r t i e s ( P ) ( P ) ( P ) ( P ) ( P ) and (P,) a r e 1 3 4 5 6 equivalent.
14.1.10 THEOREM.
-
E v e r y d o m a i n of h o l o m o r p h y in a c o m p l e x
c o m p l e t e 1. c. s . is h o l o m o r p h i c a l l y convex.
Proof.
-
L e t U be a d o m a i n of h o l o m o r p h y i n t h e c o m p l e t e 1. c.
and l e t K be a g i v e n c o m p a c t s u b s e t of U.
E,
L e t u s a s s u m e , by a b s u r d ,
that f o r e v e r y continuous s e m i - n o r m p on E (and i f d a s s o c i a t e d d i s t a n c e ) , w e have :
S.
P
denotes the
352
Pseudo-convex domains
T h e r e is s o m e p with
dp(K,
By a s s u m p t i o n , t h e r e is a
IU) = E 30.
5 E
. If
Fix any y E E with p(y) 4 6 let
%
(U)
such that
A d e n o t e s the open unit b a l l i n C ,
b > 1 be s u c h that 1
We s e t
K
If f
ex(U)
Y
= K t b1 b y .
t h e r e is a convex balanced o-neighborhood
W
in E
such
t h a t K t 6 W c U and Y 1
If w E W
Since 5 C
,
f? A and n EN we c o n s i d e r t h e h o l o m o r p h i c function on U
%
(U)
we have :
353
Glimpse at pseudo-convexity
from Cauchy's integral formula, since x t T h e r e f o r e the function
(hytw) 1
eK
Y
+€I
1
W
.
t m
L
n = o
c o n v e r g e s u n i f o r m l y in a neighborhood of we l e t y be v a r i a b l e , with p(y)
e
6
5 t xy,
(then W
for every
A€A
. Now
becomes variable). Thus
we define a h o l o m o r p h i c fLhnction in the ball
B
P
( 5 , 6)
= / z CE
s u c h that p ( z - s ) . c 6
1.
E ) i s not contained i n U s i n c e d P ( 5 ,[U) . f and f coi'ncide 2 This on e v e r y neighborhood of 5 contained in B ( 6 , 6 ) n U
Bp(E,
N
.
P c o n t r a d i c t s the a s s u m p t i o n that U i s a d o m a i n of holomoxphy ,
T h e r e f o r e , we proved by a b s u r d the e x i s t e n c e of a o-neighborhood - c Vt i)n uE (s u c. h that , , & V c U. L e t K denote the closed convex hull of K
ir,
E.
gc
is c o m p a c t f r o m Kdthe
[l ] $ 20.6. C l e a r l y
%(uf :?I
in U and E a r e i d e n t i c a l . Since &(U) T h e c l o s u r e s of K is K(U) closed in U i t is c l o s e d in E , h e n c e c l o s e d in k , h e n c e c o m p a c t .
Pseudo-convex domains
354
5
14.2
-
The Levi p r o b l e m
Schauder b a s e s ir. Banach s p a c e s .
14.2.1
-
A Schauder b a s i s in a
Banach space E is a sequence ( e )'O0 of e l e m e n t s of E s u c h t h a t n n = l every x
E
E may be writter. in a ur.ique way
x
n
e
n
n = l
(xn IK = R or C and the s e r i e s c o n v e r g e s in E). We denote by E n the l i n e a r span of the s e t the mapping f r o m E , ,e and by u n n into E defined by :
lei,. .
1
11
n u (x) = n
7-
I
xj ej
j = l
T h e n i t follows f r o m the c l a s s i c a l fact that a Banach space has the B a i r e p r o p e r t y that
( s e e Ktithe [ I 1
9
15. 13).
The Hilbertian b a s i s of a s e p a r a b l e H i l b e r t s p a c e is the m o s t c l a s s i c a l example of a Schauder basis. F o r o t h e r e x a m p l e s and a study of this concept s e e L i n d e n s t r a u s s - T z a f r i r i
[,1 ] ,
Singer [ l ]
.
355
The Levi problem
14.2.2
LEMMA. -
b a s i s and l e t U
E be a c o m p l e x Banach s p a c e with a S c h a u d e r
be a pseudo-convex open s u b s e t o f , E.
A s usual w e
denote by d the d i s t a n c e in E _given by d ( x , y) = /Ix-yII i f x , y e E . We s e t :
Ib
Ism
d e n o t e s a s e q u e n c e of points of
n n=l
T h e n t h e r e e x i s t s a sequence
Ifn
function f
Proof, -
= fn-l
E U n n K n n L n - l , u ~ - ~ ( E'x U) n - ] )
m a y be choser. s u c h that
n
U
p.
'
. Furthermore each
is i t s d o m a i n of e x i s t e n c e ,
We u s e s e v e r a l r e s u l t s of f i n i t e d i m e n s i o n a l c o m p l e x
a n a l y s i s t h a t m a y be found in H o r m a n d e r 'n
IN
, fn E x(Un), such that
'O0
n =1
n- 1
(note t h a t , i f x
U s u c h t h a t f o r e v e r y nE
Kn "n-1
€ 13
. F i r s t we r e m a r k t h a t
i s a Runge c o m p a c t s u b s e t of U
n
s i n c e t h i s l a s t s e t is
Pseudo-convex domains
356
E
!x
Un
n Kn
s u c h t h a t -log d(x,CU) t log 2 lxn ( 5 - l o g ( 2 lien
s e e Hormander [ 1 Hormander [ 1
fl,
1
1
-
th. 4.3.2
I} 1
t h i s s e t i s equal t o i t s P ( U ) - h u l l , 11
def. 2.6.6.
Now we prove the l e m m a by induction on n. L e t u s a s s u m e -1 f 1 e x i s t . If x C Un n u n q l ( U n - l ) we s e t n-
...,
g(xl,.
Let (Un
..,
xn) = f n - 1 ( x I
n
n
Kn
unn(ur,- I 1(
Ln-l)
r
u Un-l
1) '
E 1 i n a neighborhood of
i n 6(U ) he s u c h t h a t I?
J * * * Jn ~-
and (p
5
0 i n a neighborhood of
bLr,-U n-1 ) ) ( t h e s e a r e two disjoint closed s u b s e t s of U 11).We
1
set
h is holomorphic ir, U n
if and only i f
bh =
0 ,
i.e.
8v = x
L e t v E S(U ) be a solution of t h i s equation ( H o r m a n d e r n
-1
n
g
. :(+ .
[ 1 ] 4.2.6).
Since v is holomorphic in a n open neighborhood of the Runge c o m p a c t set Un
Kn
n
Ln-l
( 5 ~o
t h e r e ) , t h e r e exists a w c K ( U ) such that n
( f r o m H o r m a n d e r [ 1 ] th 4.3.2).
F=h t x
n
NOWi f
w = yg
-
, xn
(V
-
W)
357
The Levi problem
then
We c h o o s e : f
n
= F t x GtPxnH n
where G E x ( U n ) is such that
IG(b n
)I
is l a r g e enough and
IG
1
'n nKn i s s m a l l enough ( H o r m a n d e r [ 1 ] th. 4.3.4) : we c h o o s e G s u c h t h a t
and
We c h o o s e f o r H a h o l o m o r p h i c function s u c h that U e x i s t e n c e (solution of the Ldvi p r o b l e m i n C th. 2.5.5 and 4.2.8)
. We c h o o s e F t x
has
lso U
r .
n
E
is its d o m a i n of n see Hormander [ 1 1
> o such that
G t E x
n
H
a s its d o m a i n of e x i s t e n c e and
SUP x E :UnnKn)U ibn
T h e n f,
n
1
[E
xnH(x)
has all the requested properties.
I c- 2 - n - 2
Pseudo-convex domains
358
Let E -
THEOREM. -
14.2.3
be a complex Banach s p a c e with c
a b a s i s and l e t U be a pseudo-convex open s u b s e t of E. Then is a - Udomain of existence of a holomorphic function.
Since E i s s e p a r a b l e t h e r e e x i s t s a sequence ( b ) of n e l e m e n t s of U such that a n y e l e m e n t of b U , i s a l i m i t of s o m e Proof.-
subsequence of ( b ). We m a y a s s u m e that, f o r e v e r y n , bnEUn"K$[En-,. n We consider the sequence (f n ) obtained in l e m m a 14.2.2. We a r e going to prove that f o r e v e r y a t? U t h e r e i s a n r > o s u c h that f o r e v e r y E>O there is a
6 > o such that
a s soonas x
U
n
,y E
Urn,
[ I x - y l l ~ 6and
(i.e. that the function obtained on
Ilx-aI!s r
, Ily-aII< r
U n by patching together t h e
u
functions ( f ) is 13cally uniformly continuous on U f o r the topology n n n of E). T h i s will prove the existence of a holomorphic function f on U defined by f(x) = l i m f ( x . ) w h e r e ( x . ) is a sequence of points in J j + t m "j J
K Un
which c o n v e r g e s to x 6 U ( x is such that x . E U ) j J "j
above a s s e r t i o n we m a y a s s u m e that
/I
1lu 5 1 for every n n L(E)
( s e e 14.2. 1). T h e r e f o r e un(B(a, r)) c B(un(a), r ) the open ball of c e n t e r a and r a d i u s r in E.
and l a r g e enough so that
no t 1
. T o prove the
n En
if
B(a, r ) denotes
L e t u s choose
359
The Leviproblein
and
Iju ( a ) - a l l s g 1 d ( a , [ U ) if
"
n 2 n -1 0
1
If
r 5 .(a) = m i n ( - d(a,[u) , l ) , 8
in
Kn
if n 2 n
Ln-l
(recall u (a) n
B ( a , r ) and
E
( t h e r e f o r e if x
0
u n i f o r m l y continuous in U
n
n Kn 0
a).
u ( B ( a , r ) ) a r e contained n
B(a, r ) p E
. Choose a fixed
p p . ( x ) - f n - l ( u n - l ( x ) )15 2 - " )
I?
, and
r < .(a).
p.
>n
0
f
'
is "0
, h e n c e t h e r e is a
b
o with
0
6 5 r ( a ) - r such t h a t
If,.
0
('n
( y ) ) 15
(x))-fh (u, 0
0
T h e r e f o r e if n , m 5 n
E
.
if
x, y
E B ( a , r t 6 ) and 1Ix-y
I/ < 6 .
0
:
j=n + I
j = n t l 0
n
j = n tl
a s soon a s x
E U , y E Urn, n
Ilx-aIIS r
,
l/y-aII< r
and
I'x-yI'< 6
.
360
Pseudo-convex domains
Now it r e m a i n s to p r o v e t h a t U is the d o m a i n of e x i s t e n c e of f . T h i s c o m e s e a s i l y by a b s u r d f r o m the p r o p e r t i e s of the functions
14.2.4
Remark.
-
A c o u n t e r e x a m p l e d u e to J o s e f s o n [ 3
3
( f r? ).
shows that
t h e Lgvi p r o b l e m c a n n o t be solved in g e n e r a l in non s e p a r a b l e B a n a c h s p a c e s . In s e p a r a b l e B a n a c h s p a c e s the a n s w e r is unknown.
1 4 . 2 . 5 THEOREM. -
Let E
be a c o m p l e x nuclear Silva s p a c e
and l e t U be a pseudo convex open s u b s e t of E. T h e n U i s a d o m a i n of e x i s t e m e .
Proof.
-
F r o m the s t r u c t u r e of E (0.6. 10 and 0.5.8)
E =
lim +
n €IN
E
, then
n
w h e r e the s p a c e s E
a r e s e p a r a b l e H i l b e r t s p a c e s with c o m p a c t n and w h e r e e v e r y c o m p a c t s u b s e t of inclusion m a p s f r o m E n i n t o Z nt 1 So we p r o v e i m m e d i a t e l y the E i s contained and c o m p a c t in s o m e En* of c o m p a c t s u b s e t s of U e x i s t e n c e of a n i n c r e a s i n g s e q u e n c e (Kn)nE IN K F o r e v e r y n EN , t h e r e is a o-neighborhood s u c h that U = r . n E N
u
V
n
.
s u c h that K n + Vn C U
.
F r o m ( 0 . 6 . 2 , p r o p , 2 ) i t follows by p o l a r i t y t h a t : f o r a n y s e q u e n c e (V n )
361
The Levi problem of o-neighborhoods in E t h e r e is a s e q u e n c e p
v =
is s t i l l a o-neighborhood.
( E , p V ) if pv
pn
n
n
Po
s u c h that
Vn
So U is oper, ir. the s e m i - n o r m e d s p a c e
d e n o t e s the Minkowski functional of V .
N o w , f r o m (0.6.11)
E X= El is a n u c l e a r F r e ' c h e t s p a c e and it i s e a s y t o p r o v e that a n u c l e a r F r e ' c h e t s p a c e i s s e p a r a b l e . F r o m ( 0 . 6 . 2 p r o p , 2) t h e r e is a bounded s u b s e t B of El s u c h that
(ElB)
is d e n s e in E'. Its p o l a r in E
is a
zero-neighborhood which c n n t a i n s no s t r a i g h t line. So E a d m i t s a continuous n o r m . So, siiice E t h e r e is a o-neighborhood
i s a n u c l e a r 1 . c . s . , f r o m 0.5.8 ,
W of E , W c V , with E
s p a c e and s u c h t h a t the gauge of W EW
pre-Hilbert W is a n o r m . T h e r e f o r e U is o p e n in
. Now it s u f f i c e s to a d a p t t h e proof of (14.2.3)
in t h e p r e - H i l b e r t
s p a c e E W ( t h e s e q u e n c e (b ) of (14.2.3) is obtained a s i n (14.2.3)). n
14.2.6 R e m a r k . for E
Th. 14.2.5 r e m a i n s valid in m o r e g e n e r a l s i t u a t i o n s
s e e Colombeau-Mujica
[ 3 3 . The L&i p r o b l e m w a s a l s o solved
in F r g c h e t s p a c e s with b a s i s o r in Silva s p a c e s with b a s i s : s e e the Notes of t h i s c h a p t e r .
14.2.7
T h e proof of (14. 2. 3) and (14.2. 5) g i v e s a l s o : L e t E be a
Banach s p a c e with a b a s i s o r a n u c l e a r Silva s p a c e , l e t
n
be a p s e u d o
convex open s u b s e t of E and l e t F be a finite d i m e n s i o n a l s u b s p a c e of
E. T h e n the r e s t r i c t i o n mapping
is surjective.
362
Pseudo-convex domains
9
14.3
T h e Runge a p p r o x i m a t i o n t h e o r e m
In a l l t h i s s e c t i o n E is a c o m p l e x B a n a c h s p a c e with a S c h a u d e r b a s i s and U i s a pseudo convex open s u b s e t of E . W e u s e the n o t a t i o n s of
8
14.2 and w e s e t
14.3. 1 LEMMA. n (K) E IN
1
F o r every compact subset K o f U
s u c h that c A
if n -
2 n (K)
Proof.
1
-
n
.
Since u
r,
c o n v e r g e s t o the identity mapping uniformly on
e v e r y c o m p a c t s u b s e t of U t h e r e is a n l ( K ) C
if n p n (K).
1
t h e r e is a
IN s u c h t h a t
Therefore
and w e know f r o m t h e proof of 13.2.2 t h a t A n is a Runge c o m p a c t s u b s e t of U , hence t h e r e s u l t . n
The Runge approximation theorem
1 4 . 3 . 2 LEMMA. -
L e t n E IN,
t h e r e is a g c K I U n t l )
such that
f c"(U
3.
n -
aiid
E > o
363
be given. T h e n
T h i s r e s u l t follows f r o m t h e proof of 14.2. 2 .
14.3. 3 LEMMA. n (K) 2
If K is a c o m p a c t s u b s e t of U , t h e r e e x i s t s a
-
I
IN such t h a t if n > n ( K ) , i f& 3 0 and i f f
E
exists a g E x ( U ) such that a) b)
g
/un
2
Ex ( U n )
there
= f
Ig-f o u
1
n K
5 e
.
-
L e t n ( K ) be the n u m b e r obtained in 14.3. 1 and i f n>n ( K ) , 1 1 apply ( 1 4 . 3 . 2 ) w i t h E 2 - n and f E x ( U ) : t h e r e is a g C x ( U n t l ) s u c h n 1 5 e 2-n Apply a g a i n (14.3.2) = f and g -f o u I that g n A 1 nt1 '/U n -(&I) and g 1c q U n t l ) . C l e a r l y w e obtain by icduction a s e q u e n c e with E 2 Proof.
I
.
of functions (g,). such that : J JZl
A s i n t h e proof of (14. 2 . 3 ) w e obtain g fx(U) with a l l t h e r e q u e s t e d p r o p e r t i e s , and w e m a y c h o o s e n ( K ) = n l ( K ) 2
.
Pseudo-convex domains
364
1 4 . 3 . 4 LEMMA.
n3(K)
E
-
F o r every compact subset K
U t h e r e is a
IN s u c h t h a t , i f n 5 n 3 ( K ) , t h e s e q u e n c e of s u b s e t s of E
is d e c r e a s i n g , w h e r e E
Proof.
of
-
n
d e n o t e s t h e c l o s e d l i n e a r s p a n of
Itm
( e1. i - n t l
W e a r e going to p r o v e t h a t , if n 2 n ( K ) , 3
F o r t h i s , if n (K) i s t h e n u m b e r o b t a i n e d in (14.3, I), a e c o n s i d e r 1 a n n > n (K) and a n x E E s u c h t h a t 1 0
W e set
365
The Runge approximation theorem
F r o m (14. 3 . 2 ) applied with f and with a g EX(Untl)
such that
g/u
= f
and
E
=
-a3
Ig-f o u
n
2 a . 3
Furthermore
F o r n large enough, u
(K) c A n t l
n+ 1
F r o m ( 2 ) and ( 3 ) we obtain :
Therefore
we obtain t h a t t h e r e is
, hence
I
n A
U
c-
-3 nt 1
. Therefore
Pseudo-convex domains
366
14.3.5
LEMMA.
-
of U
F o r e v e r y c o m p a c t s u b s e t -K
t h e r e exists .
a a n 4 ( K ) E IN s u c h that
Proof.
-
F i r s t we p r o v e that f o r a n y n E N :
u (K) c U n
If x ( K3C(U)t h e r e is a n f E x(U) with l a r g e enough, un(K) c U n and
f(‘,k))
f/u E
I > 1 1 un(K) K(Un)
,
(f(x) ( >( f
1,
it f o l l o w s t h a t un(x)
Now let u s p r o v e that, f o r s o m e n ( K ) E 4
p.
for n
( b y continuity of f ) . Since u I2( x ) E Un ,
f
n
If
-
. Therefore,
IN ,
> n l ( K ) , ( s e e 14.3, l ) , l e t xo E E be s u c h t h a t
( u (K))qu n n
, i.e.
The Runge approximation theorem
T h e r e is a n N if
> n 1( K )
s u c h t h a t xo
n > N
We s h a l l apply ( 1 4 . 3 . 3 ) with K
u
fi
$ ( u h(K))K(U N
~
/xo
1
367
G3 E N
.
F r o m (14.3.4),
and we c o n s i d e r n 2 n ( K u /x
2
F r o m (1) t h e r e i s a n f E x ( U ) s u c h that
1)
n
We s e t
We a p p l y (14.3.3) with K
u {xo] , n r n 2 ( K
T h e r e is a g EK(U) such t h a t g/
Un
= f
u
/x
I),
E =
a 3
aad f.
and
(a detailed proof of t h i s l a s t inequality is given in proof of (14. 3 . 4 ) ) .
Therefore x
0
k%
(U)
'
I
-C
If K is a c o m p a c t s u b s e t of E w e r e c a l l t h a t w e denote by K the c l o s e d convex hull of K , a Banach s p a c e (Kbthe [ I ] and i f n
E JN (with
II
which i s still c o m p a c t in E ,
s i n c e E is
2 0 . 6 ) . If K is a c o m p a c t s u b s e t of U
l a r g e enough s o that un(K) c U ) ,
we set
:
.
368
Pseudo-convex domains
LEMM4. -
14.3.6
Proof,
-
F o r e v e r y n,
Since T n c S n , un(Tn) c u n ( S n ) .
c o m p a c t convex s u b s e t of E n . t h e r e f o r e u (K) i n En)
n
Since
-
-c c u n ( K ), (un(K)'
. O n t h e o t h e r hand
K c
k'
-C
C o n v e r s e l y u n (K ) is a -C
, un(K) c u n ( K ) , and
is the closed convex hull of
u I? (K)
,
and t h e r e f o r e ,
T h e r e f o r e , i f x E un(Sn),
0
u n ( y ) = x 6 ( u , ( K ) ) ~ (u
n
s u c h t h a t x = u n (y)
.
, and s o y E Sn. T h e r e f o r e x E u ( T ) which
p r o v e s that u (S ) C u,(Tn) n n
14.3.7 LEMMA. -
-C
t h e r e is a n y E K
Let K
n
.
n
be a c o m p a c t s u b s e t of U
K. T h e n f o r e v e r y open neighborhood V K V U ) n u m b e r n(K, V ) E IN s u c h t h a t , i f n 2 n ( K , V ) ,
I\ (Un(K))qu ) n
=v
*
of
K t h e r e is a
369
The Kunge approximation theorem L e t u s a s s u m e by a b s u r d t h a t t h e r e is a n infinite s e q u e n c e
Proof. -
of i n d i c e s n f o r which
T h e r e is a s e q u e n c e (v
tco of e l e m e r k s of U nk)k = 1
such that, for every
k E N ,
So,
v
1.e.
=k
v
ELI
n
nk
(S
nk
= u nk(Ynk)
from t h e s e q u e n c e by
{y nk
(yn ) ''k k
{u
From
) ar.d t h e r e f o r e , f r o m (14.3.6), W'ith YE {y,
k
Ik
ET k
*
E KC ,
Yn
nk
c o n v e r g e s to y
is closed
u
nk
(T
nk
)
,
so we may extract
dn infinite s e q u e n c e - t h a t we still d e n o t e
0
since
,
E kc
. The sequence
:
{T,. k
nk
E
~
(14.3.4) the s e q u e n c e of s e t s
every s e t T
nk
k
- which c o n v e r g e s t o s o m e y 0
ltco k=l
v
I Sk a=J
i s d e c r e a s i n g , and s i n c e
370
Pseudo-convex domains
F r o m (14.3.5),
f r o m the a s s u m p t i o n s on K
u
(yn )
k
14.3.8
3
y
.
But u
nk
(y
nk
) $V
for every k,
E K C V and V is a n open s e t , s o w e g e t a c o n t r a d i c t i o n .
I
Runge a p p r o x i m a t i o n t h e o r e i n . -
s p a c e with b a s i s ,
U a p s e u d o convex o p e n s u b s e t of E and K a Runge
c o m p a c t s u b s e t of U ( i . e . neighborhood of K ,
a g €x(U) __
L e t E be a c o m p l e x Bandch
ifE
K =
% ( u ) ) .If V c U
6
.
> o &f
is a n open
I
x(V) a r e g i v e n , t h e n t h e r e e x i s t s
s u c h that
-
mqu
E
and , For n l a r g e enough, un(K) c V , If o uE-f Ks 7 A CV ) is a Runge c o m p a c t f r o m 14.3.7, (UP)K(U,) n , t h e n by the Runge a p p r o x i m a t i o n s u b s e t of U ; if f = f / v n n n t h e o r e m in finite d i m e n s i o n ( H o r m a n d e r 1 1 ] th. 4.3.2 and th. 4.3.4) Proof.
t h e r e is a g
.
n
6 x(U ) s u c h t h a t n
F r o m ( 1 4 . 3 . 3 ) (and f o r n l a r g e e n o u g h ), t h e r e is a g E Y U ) s u c h t h a t
The Runge approximation theorem
lg
Therefore
,
-
gn
UnlK
E
'7
'
37 1
372
Pseudo-convex domains
6
14.4. I
14.4
An approximation theorem
L e t E and F be two s e r i a r a b l e H i l b e r t
THEOREM. -
with a compact inclusion mapping f r o m F into E. convex open s u b s e t of E w i t h
h a s d e n s e r a n g e , i.e. of R n F -
and if
Let
Proof. -
E
R
pF
f $
if h 6x(n fl F) ,
-
Let 9
be a pseudo--
. T h e n the r e s t r i c t i o n mapDinP
if K
is a compact subset
N
2 0 is given, t h e r e is a n h
Eyl?)
such that
b e a n o r t h o n o r m a l b a s i s of F which is a n
{en :=: \
orthogonal s y s t e m in E ( s u c h a b a s i s e x i s t s f r o m P i e t s c h Cl] th. 8 . 3 . 1). L e t us denote by Pn the o r t h o g o n a l p r o j e c t i o n f r o m F onto the l i n e a r s p a n of
{el,.
such that
.., e n 1.
(1)
i f n z N 1 , Pn(K) c R
(2)
if
x E K (here d
E
(3)
I?
N 2 and N 6 IN 3
There a r e three numbers N
1
> N 2 ’ IIx - Pn ( x ) l & b q d E ( K ,
i s the u s u a l d i s t a n c e i n E ) . if n > N
3 ’
(h(x) - h(Pn(x,)I
<
& y
cE
0) f o r e v e r y
for every x F K
In the s e q u e l N d e n o t e s a n u m b e r l a r g e r t h a n N 1 , N Z , N g ,
3 (z dE(K,CE n))-’
and
sup
x E K
Ilx
.
if n tco n = l denotes
an orthonormal
.
313
An approximation theorem
b a s i s of E
such that
e
and
-1
e
-P IlepllE
]to" P=l
c If
Itrn
n n=l
t h e o r t h o g o n a l projectior, ( i n E ) f r o m E t o the n T h e r e f o r e if x E F and n g N , l i n e a r s p a n of the s e t I f , , , , f n (x) for some n'(n) (2 ( x ) = P,(x) If x E F and n > N , Qn(x) = P n n YE) We der.ote by Q
..
.
with
N 5 n ' ( n ) 5 n.
If
n 2 N
1.
and x E K i t follows f r o m (Z),
T h e r e f o r e , f r o m t h e above c h o i c e of N ,
if
We defir.e K = {xEfl s u c h that l i x l l E ~ n and n and t h e choice of N we obtain :
11
that :
g N and x € K , we h a v e :
dE(x,CE 0)2
1
;I
.From(5)
Pseudo-convex domains
314
is a I l i l b e r t s p a c e and f r o m ( 2 ) . T h e r e f o r e , f r o m (4),
since E
f r o b which it follows t h a t i f n > N
We s e t n 2 N
Rn
0 n Q n ( E ) (Qn ( E ) i s the l i n e a r s p a n of
{f
. ., f n 1).
If
i t follows f r o m (6) and ( 7 ) t h a t :
Now we apply the c o n s t r u c t i o n of l e m m a ( 1 4 . 2 . 2 ) in the s e p a r a b l e H i l b e r t space E,
f o r the b a s i s
the function h
’ON
.
{f \tm and s t a r t i n g a t t h e index N , n n=l
and w i t h
T h u s one obtains a n infinite s e q u e n c e h n ( q n n ) , i f
n > N , with f o r e v e r y n > N
,
’ hntl
hN = h/
nN
= h
I?
4-2 n
a nd
(91
A s i n the proof of th. 14.2.3 we s e t , if x N
h(x) =
lim n e t
E 62
h,(Q,(x)) M
:
375
An approximation theorem N
and h E
Since Q
x(n) .
If x 6 K i t follows f r o m (8) and (9) that
= P
on K ar.d f r o m ( 3 ) w e obtain, if x E K
N
N
1 h (x) - h(x) I c N
e
.
:
CHAPTER 15 THE 3 EQUATION
ABSTRACT.
E b e a compkxleDFN s p a c e a n d 0 be a
THEOREM 1 . -
p s e u d o - c o n v e x open s u b s e t of E of type ( 0 , l ) s bf = F . In o t h e r --__0
-
When
0
,thereexists
n u c l e a r 1. c . s .
THEOREM 2. E
type,
,
(ha )
= E this
c l o s e d differential form
function
f
=nR
such t h a t
in t h e following way
&J
-
b
___j
'
0,1, closed
0 .
:
E be a c o m p l e x n u c l e a r 1. c . s .
bf = F
(n)-
r e s u l t s e x t e n d s t o the c a s e E i s a n y
T h e n t h e r e is a - C
such that
00
00
-
c l o s e d d i f f e r e n t i a l f o r m of type on -
C
a C
w o r d s the foll_owing s e q u e n c e is e x a c t :
- -m ~ (0) 80
. IfFis
03
a n d F 2 Cco
0 , l a n d of u n i f o r m bounded tEe_
function f o n E , of u n i f o r m bounded
.
In o t h e r w o r d s t h e following s e q u e n c e is e x a c t :
316
377
Differential forms
4
15. 1
Differential f o r m and
-
a
operator
If E is a c o m p l e x b. v s the l i n e a r s p a c e of the on E , i. e
x
i
skew-symmetric
p
€IN we d e n o t e by I\
.,P
1,
0,
EE:
. ( a ) i s the s i g n a t u r e of the p e r m u t a t i o n
where
{I,
if
(E) P p - a n t i l i n e a r bounded f o r m s A
and i f
of t h e
0
set
and
i f x . ~ E f o r l s i r ; ; p , if y c E and 1
€~a .
( E ) i s equipped with Ao,p t h e topology of u n i f o r m c o n v e r g e n c e on t h e bounded s u b s e t s of E , o r with i t s n a t u r a l bornology
15. 1. 1 a
C
a3
,
of equibounded s e t s
D i f f e r e n t i a l f o r m s . - If
d i f f e r e n t i a l f o r m w on 0
,
n
is a
of t y p e
7
.
E - o p e n s e t we
( 0 , p)
,as a
C
a3
define mapping
( E ) . We d e n o t e by 6 ( n ) the l i n e a r s p a c e of P 0, P Cm d i f f e r e n t i a l f o r m s of type ( 0 , p) on Q . 6 (0) i s equipped with 0, P i t s n a t - u r a l t o p o l o g i e s , s e e 4.4. 1. from
into
15. 1. 2
where x 6
A
The
n,
0,
-
a
operator
.-
W e define
a linear operator
yi E E i f 1 s i s p t l , and w h e r e the
h a t on y
k
-
aP
from
means
The i equation
378
that y
k
is o m i t t e d . I n case p = 0 we set g
c o m p l e x valued C valid
00
0,0
( 0 ) a s the
s p a c e of
functions on 0 a n d the above f o r m u l a r e m a i n s
,
By definition, closed i f
-
a n e l e m e n t F of
a F = 0 . We denote by
'
8
0,P
(n)is
s a i d t o be
0,p , c l o s e d P t h e l i n e a r s p a c e of c l o s e d f o r m s . Since t h i s b r i n g s no confusion,
note
a
i n s t e a d of
-
a
P
. We denote
m o r e simply A
(E) by A ( E ) .
0,1
we
309
A review of Hormander's L2 estimates
Q
1 5 . 2.
A r e v i e w of H o r m a n d e r ' s L F i r s t we
basic w = (w
e s t i m a t e s and e x i s t e n c e t h e o r e m s .
r e c a l l th. 4. 4. 1 of H o r m a n d e r
[ I ] , which p l a y s a
.
.
We denote by z = (z , z ) and 1' * . n n , wn ) e l e m e n t s of (T, W e d e n o t e by dh. t h e L e b e s g u e mea-
role in this chapter
...
2
1' n s u r e on (T, 5
.
R
2n
15. 2. 1
THEOREM ( H o r m a n d e r ) 61 be a p s e u d o - c o n v e x o p e n n be a C 2 function on fl a n d l e t c > o be a s u b s e t of (T, , K T n constant such that for e v e r y z , w C ,
T h e n for e v e r y c l o s e d (0, 1) f o r m g on fl t h a t
t h e r e e x i s t s a function u on
-
fl s u c h t h a t a u
satisfies
= g in the
s e n s e of
d i s t r i b u t i o n s and t h a t
1 5 . 2. 2.
R e m a r k : If
n is a C2 function on 0 c(T, which is p l u r i -
$
s u b h a r m o n i c a n d i f tp is t h e f u n c t i o n d e f i n e d by
then
y JI
s a t i s f i e s (1) with c =
1 2
(because j, k = l
i s p l u r i s u b h a r m o n i c , s e e H o r m a n d e r [ 11
4
a 2..a r J
2
0 since
k
2. 6 , a n d s i n c e
The a equation
380
n -
j, k = l
15. 2. 3 . R e m a r k . s(z)= Q
-
a z .J .
If Q
1 z 1 2 - L o g (d(z,Cn))
1
J
azk
k
2
j =1
is a pseudo convex open s u b s e t of
n
C , if
i s a continuous p l u r i s u b h a r m o n i c function on
such that, f o r e v e r y a > 0 , the s e t
'a
= [ z E 0 s u c h that
s(z)
}
i s r e l a t i v e l y c o m p a c t i n fi
Now we r e c a l l a c l a s s i c a l p r o p e r t y of p l u r i s u b h a r m o n i c functions.
15. 2. 4. in
Theorem (Hormander
~ ( n s)u c h
11 th. 2. 6. 3)
that h 2 0 , h(z) = 0 if
d e p e n d s only on
\ z 1I , . . . , 1 znI
i s a p l u r i s u b h a r m o n i c function i n
i s plurisubharmonic, to u ( z ) i f
r
u
E
is
i\ > 1 .
and that
,
and u
Cw where d ( z ,
d e c r e a s e s t o 0 and z E
.-
L e t h be a function
We
assume that h 1 . If u
h ( z ) d), ( z )
#
CQ
-cot then,
)>
E ,
u
(z)
decreases
, and u - u z 0 . E
.
THEOREM ( H o r m a n d e r , a c o n s e q u e n c e of 15. 2. 1) Let 0 n be a pseudo c o n v e x oTen s u b s e t of C , l e t $ be a continuous p l u r i 15. 2. 5.
s u b h a r m o n i c function on
If
n
and l e t
g i s a c l o s e d Coo ( 0 , l ) form of type ( 0 , l ) on
such that
A review of Hormander's L2 estimates
then t h e r e e x i s t s a u E 8
(n)
s u c h that
-
au
= g
38 1
i n t h e s e n s e of d i s -
t r i b u t i o n s and that
proof, have
-
We
apply (15. 2. 4) with $
a function
F r o m (15. 2. 2 . ) , depends upon
E
4E '
We
in p l a c e
of
set
I
VE
and
, a n d thus w e
u
.
s a t i s f i e s (1) with s o m e c z 2 In n a ( E ) ( a ( E1 > 0
na
i s defined in (15. 2. 3 )). If
E
-+
n
0 we m a y
c h o o s e n u m b e r s a(E ) > 0 l a r g e enough s o t h a t n
We may a s s u m e a(E n ) - t
a3
if n
F r o m (15.2. l ) , for e v e r y nEIN
4
R =
un
t h e r e e x i s t s a function u
such that
a u n = g!na(E
tco , s o that
) 11
i n the s e n s e of d i s t r i b u t i o n s a n d that
Oa(E
n on
n)
n a (n)~
R e a equation
382
.
(the second m e m b e r m a k e s s e n s e s i n c e 2 cp) Now t h e r e i s a ta, to3 'En , that we s t i l l denote by { u n 3 , which subsequence of [ u n 3 n=1 n=1 c o n v e r g e s locally i n the weak s e n s e in Q , t o a function which i s 2 locally L i n n. We have
i n the s e n s e of d i s t r i b u t i o n s and
Now u E & ( n ) b e c a u s e e a c h solution u locally L
-
au= g
belongs n e c e s s a r i l y to 8
( s e e Lelong [ 11c h a p t e r 5
(n),
2
in
fl of the equation
since g is a C
0
form
: t h i s a l s o follows f r o m H o r m a n d e r f 11
th. 4.2. 5 and the proof of c o r o l l a r y
4. 2. 6 )
.
383
Integration in Hilberr spaces
6. 15. 3.
A r e v i e w on I n t e g r a t i o n i n H i l b e r t s p a c e s .
In the following s e c t i o n we s h a l l u s e I n t e g r a t i o n T h e o r y a c c o r d i n g to the G a u s s m e a s u r e i n a r e a l s e p a r a b l e H i l b e r t s p a c e H
,
s o we s t a t e
h e r e the r e s u l t s we n e e d ,
15. 3. 1.
The Gauss pro-measure.
on the family 2
-
A system [ p
1
2 /-
L
where
=
of m e a s u r e s
of a l l f i n i t e d i m e n s i o n a l s u b s p a c e s of H is said to
be a p r o - m e a s u r e i f i t c o h e r e n t , i.e.
b L
3
L L€L
YL1
.
If L E 1:
if
L c L i m p l i e s that 1 2
the G a u s s m e a s u r e p
L
on L i s defined by
1
/I 11
d e n o t e s the n o r m i n H I n the d i m e n s i o n of
L and
Lebesgue m e a s u r e o n L =. IRn ( with the s c a l a r p r o d u c t of H )
0
the
.
C l e a r l y , i n the above f o r m u l a , f is a c o m p l e x valued function on L s u c h n From t h a t the second m e m b e r e x i s t s as a L e b e s g u e i n t e g r a l o v e r R
.
the formula
i t follows i m m e d i a t e l y t h a t this f a m i l y
1u L 3 LCS
is coherent
It i s c a l l e d t h e G a u s s - p r o m e a s u r e on H a n d we denote i t by \J 15. 3. 2.
I m a g e of a p r o - m e a s u r e by a l i n e a r o p e r a t o r
,
-
.
L e t T be a
self adjoint continuous l i n e a r m a p p i n g f r o m H i n t o H and let
{u
3 LE
be a s y s t e m of m e a s u r e s on t h e f a m i l y
L e 1 , we define the image
T, L
of
uL
c
.
For every
through T i n the following
way.
F i r s t notice t h a t i f L is finite d i m e n s i o n a l t h e n the orthogonal
The a equation
384
is finite c o d i m e n s i o n a l and t h e r e f o r e T
s p a c e L'
codimensional, s o (T-l(L' )) -1 L' = ( T ( L ' ) ) '
.
-1
(L') i s a l s o finite
is finite d i m e n s i o n a l
.
So if L E d:
t h e orthogonal p r o j e c L tion f r o m H onto L and i f f i s a function defined on L , f o p o T L i s a function defined on L' and we s e t :
E S.
Now i f we denote by p
( T h i s definition i s given i n a m u c h m o r e g e n e r a l s e t t i n g i n B o u r b a k i [ 2 ]
6 . 6. 2 H
/L
; for
u s , s i n c e we
i s i s o m o r p h i c to L')
a r e i n a H i l b e r t s p a c e , t h e quotient s p a c e
.
W e a d m i t ( s e e B o u r b a k i [23 9 6 . 11, T ' Skorohod [ 13 $! 4 ) that i f T i s a H i l b e r t - S c h m i d t i n j e c t i v e self
15. 3. 3.
The m e a s u r e
adjoint o p e r a t o r on H ( T will be e v e n n u c l e a r i n t h e the i m a g e , denoted
by p T , of the G a u s s p r o m e a s u r e
sequel ) , then
, through T ,
is a Radon m e a s u r e on the s p a c e H equipped with t h e weak
gy u
(H, H')
topolo-
.
T h i s , i m p l i e d t h a t t h e c o n v e r g e n c e t h e o r e m s of the c l a s s i c a l L e b e s g u e T h e o r y r e m a i n valid f o r the i n t e g r a t i o n on H a c c o r d i n g t o the m e a s u r e
FT
*
P r a c t i c a l l y , i n o r d e r t o i n t e g r a t e a f u n c t i o n f on H a c c o r d i n g
to the m e a s u r e
( and i n o r d e r t o p r o v e that f i s i n t e g r a b l e ) we T do the f o l l o w i n g . Since T is i n j e c t i v e self adjoint, i t follows f r o m P i e t s c h [I
3
th. 8. 3. 1.
that there i s an orthonormal basis
[e
3
tor)
of n=1 0 since
n
H m a d e of e i g e n v e c t o r s f o r T , i. e. T ( e n ) = 1, e with 1 # n too for) T i s injective S o , i f x = c x e € H I then T(x) = c 1 x e n n n n n n= 1 n: 1 too where [ 1 E e s i n c e T is H i l b e r t - S c h m i d t F r o m (15. 3. 2 . ) , t h e n=l a d m i t t e d f a c t t h a t u T is a measure (we m a y a p p l y F a t o u ' s lemma ) ,
.
.
385
integration in Hilbert spaces
and i f f(x) =
f (
lim
N+t
03
N
c
n=l
xn e n )
- a l m o s t e v e r y w h e r e in H ( f o r i n s t a n c e t h i s i s t r u e i f f i s continuous UT in H ) we a r e l e d t o c o n s i d e r the i n t e g r a l s
Then, f r o m F a t o u ’ s l e m m a , i f t h e s e q u e n c e (I )
1f 1
i s I-I
T
N=l
i s bounded,
- integrable and
We u s u a l l y obtain
f f(x) dv T ( x ) by application of t h e monotone c o n v e r -
H T h e o r e m or of the d o m i n a t e d c o n v e r g e n c e t h e o r e m , a s u s u a l
gence
.A below .
in Lebesgue Integration Theory tation i s given i n (15. 3. 5)
15. 3. 4.
-
The m e a s u r e LJ i s not t r a n s l a T n tion i n v a r i a n t ( a s i s L e b e s g u e m e a s u r e on IR ) , but we have (Skorohod [ i 3 ch. 3
The d e n s i t y of t r a n s l a t i o n .
f i r s t e x a m p l e of a p r a t i c a l c o m p u -
5 . 16
th. 2 ) that i f
z E T ( H ) the
translated measure
(B) = u T ( B - z ) i f B i s a B o r e l i a n s u b s e t of by , J T , z t o uT .vith a d e n s i t y
that we
(defined T, z H) i s e q u i v a l e n t ,J
give explicitely b e l o w . T h e r e is a n o r t h o n o r m a l b a s i s ( e
vectors for T (Pietsch [
11
to3
n
3
n=1
of H m a d e of e i g e n -
th. 8. 3. 1) : T (en) = 1, en a n d 1,
s i n c e T i s i n j e c t i v e and s e l f - a d j o i n t .
#
0
,
The a equation ~
386
If z
,
x € T ( H ) , then < T
a n d is well defined
.
-1
z, T
-1 x > i s the s c a l a r p r o d u c t i n H
Now i f z E T (H) a n d f o r any s u i t a b l e x E H we s e t :
16 t h a t t h i s function of x g H
and i t i s p r o v e d i n Skorohod [ 1 1 chap 3. $
u T - a l m o s t e v e r y w h e r e , f o r e v e r y fixed z cT(H)and t h a t :
is defined
When H i s a complex s e p a r a b l e H i l b e r t s p a c e and s i n c e i n t e g r a t i o n is done in the real underlying s p a c e , w e obtain : 2
f T 15. 3. 5. LEMMA. -
2
11
T -1z \ \ - 2 R e c T
-
2
-
z, T
2
We set
I =
exp (2 R e < T
-1
z, T
-1 x 7 ) dllT(x)
and, f r o m F a t o u ’ s l e m m a , i t suffices t o p r o v e that :
too
If
-1
F o r any z cT(H) the function p T ( z , . ) U
and -
proof.
( z , x ) = e x p t - - 1(
{ en)
n=1
i s a n o r t h o n o r m a l b a s i s i n H I we
set :
-1 x>
n L
2
3.
( uT)
387
Integration in Hilbert spaces
T
T
-1
-1
x =
too
c
n=1 too
c
Z =
n= 1
X Z
n
e
n e
where X
n
n
where Z
n
n
= x f iyn a n d xn, yn fTR
n
= u t i v andu v GIR. n n n' n
F o r e v e r y N E I N we s e t :
We have :
N
n
IN =
i=1
Ai
where
Setting
u.1
=
u.
l
=
-
I
\127i
[ 'R
exp (
- 'j m
j'lR "i=P we obtain
and, if N
- -1
exp (-
2
x2 t 2 i
1
2 2 ( ( xi-2ui) -4 u i ) ) dxi
2
U. X. 1
1
) dxi
j
1 2 2 e x p ( - - x2 t 2 u ) dxi = e x p 2 u 2 i i i '
2 2 A.1 = e x p 2 ( u i t v i ) ,
tcu , f r o m F a t o u ' s
I
lemma ,
lim inf I
n
= exp 2
11 T -1z 11 2
I
The a equation
388
Q
. 15.4.
-
A basic existence result.
Let H be a s e p a r a b l e
c o m p l e x H i l b e r t s p a c e and let T be a n u c l e a r i n j e c t i v e self adjoint o p e r a t o r on H ( t h e r e f o r e
T h a s d e n s e r a n g e ) . We denote b y
the r a n g e of T , equipped with t h e s c a l a r p r o d u c t
H c H T
Let G be a s e p a r a b l e H i l b e r t s p a c e s u c h t h a t H i s contained i n G with c o m p a c t i n c l u s i o n m a p . We a s s u m e t h a t t h e r e e x i s t s a n o r t h o n o r -
mat b a s i s { e 3 f w n n=1 tw
is a t o t a l orthogonal
n=l
n
of H m a d e of e i g e n v e c t o r s f o r T , system i n G
Basic existence l e m m a .
-
Let Q -
s u b s e t of G a n d let F be a c l o s e d C
on Q . f
* on
We
set
T ( e n ) = i nen,
.
> 0 f r o m t h e p r o p e r t i e s of T
15. 4. 1.
.
s u c h that
m
be a p s e u d o - c o n v e x open
d i f f e r e n t i a l f o r m of type (0, 1)
T h e n t h e r e e x i s t s a locally bounded a n d ficitely n H T ( for the topology of H
T
) s u c h that
Coo function
a f*=
F on
Q R HT' Remark.
n
-
It w i l l be p r o v e d i n
5.
15. 5 t h a t t h e function f* is Cm
RHT. The e n d of t h i s s e c t i o n i s devoted to t h e p r o o f of lemma
We denote by d t h e d i s t a n c e i n G, ( d ( x , y) =
11 x - y
I\
)
15. 4. 1.
.
15. 4. 2.
LEMMA. -Th_ere e x i s t s a continuous p l u r i s u b h a r m o n i c function
epon nn
H s u c h that f o r all x E
Q
nH:
A basic existence result
proof.
-
We c o n s i d e r the
S
n
=
389
sets
{ x E R n H such that
(x) s n
3
where
Then
nnH=
to3
u
'n n= 1 c o m p a c t i n G . We set
the s e t s S a r e i n c r e a s i n g a n d r e l a t i v e l y n
M n = SUP XE
Let
x
I( F ( x ) 11
*
A
(H)
be a positive, i n c r e a s i n g , convex function of c l a s s C
such that
1
2 f o r all n = 1,2,.
f o r all
sn
X E
61 n H
.. .
.
x (n-1)
2
log M
2
onR,
n
Then
We s e t cp =
properties ( f r o m Hormander
o
a n d cp
h a s all t h e r e q u e s t e d
[11 th. 2. 6. 7 a n d def 2. 6. 8 , v
p l u r i s u b h a r m o n i c , and continuous, on
n).
is
The a equation
390
15.4. 3.
P r o o f of
set { el,.
. . , en 3
-
15.4. 1.
W e denote by H
n
t h e l i n e a r s p a n of t h e
a n d b y Pn t h e o r t h o g o n a l p r o j e c t i o n f r o m H
H n . We define a mapping
T
n
onto
by :
T
an A
H
~
n
c
i=1
We denote by
N
~e C G
x i zi ei
*
t h e p s e u d o convex open s u b s e t of
'n
n
defined by :
N
W e define a c l o s e d Cm d i f f e r e n t i a l f o r m F of t y p e (0, 1) on n Fn(z). y = F (T if
..,
z E
where
nn
and y c C
\I (Ian
C l e a r l y , if
n
.
We
n
Z)
.
Tn y
set
d e n o t e s t h e E u c l i d i a n n o r m on
n ,
u
ZE
n
N
n
.
We
we have :
T h e r e f o r e , i f z c o n , it follows f r o m
15.4. 2. t h a t :
set
an by
N
:
391
A basic existence result
If
a 2 n denotes the Lebesgue m e a s u r e on IR
2n
-
C n it follows f r o m (1)
that :
N
F r o m (15. 2. 5) t h e e x i s t s a GO3 function f
n
on
nn
N
such that :
We set
and we define a c y l i n d e r function f n on 0,
by :
nn and,
if z c
i f z E 61
n'
Therefore f
We d e n o t e by
,,the
n
is C
00
on
n
and Y E H I
G a u s s p r o - m e a s u r e on the H i l b e r t s p a c e H
( c o n s i d e r i n g i t s r e a l underlying s t r u c t u r e ) , s e e (15. 3. 1 ) and we d e n o t e by
r-
i t s i m a g e by the o p e r a t o r T (15. 3. 2 and
We have :
15. 3 . 3. )
.
-
The a equation
392
T h e r e f o r e , f o r e v e r y nclN
Now l e t u s o b s e r v e t h e following : i f x
~n fl H ,
if
6 (x,
c(n n H))
d e n o t e s the d i s t a n c e in H between x a n d t h e c o m p l e m e n t of 0 n H i n H
,
then
f o r n l a r g e e n o u g h , i f B(x, 1 ) d e n o t e s t h e c l o s e d b a l l i n H of c e n t e r too x and r a d i u s )< We u s e t h i s r e m a r k f o r a d e n s e s e q u e n c e { x 1 n n= 1 in and we d e n o t e by B the above b a l l of c e n t e r x X n n Any B i s c o m p a c t f o r t h e weak topology 0 (H, HI) , t h e r e f o r e u X T n measurable R e c a l l that t h e c l o s e d unit b a l l of t h e H i l b e r t s p a c e
.
.
n
.
2 L (B, 1~ T)i s weakly c o m p a c t , s o a diagonal p r o c e s s g i v e s t h e e x i s t e n c e
of a subsequence
of the
sequence
1
2 ( - v o pn ) ]
too
which i s defined on B X n= 1 n f o r k l a r g e enough (depending on n) a n d w h i c h , f o r e v e r y n G IN , 2 is weakly c o n v e r g e n t i n L (Bx , uT) to s o m e function n 2 E L ( Bx U T ) . We s e t gB X n n {f,.
exp
7
fB Now, i f z c R pL{
T'
let
ned i n s o m e b a l l Bx
n
.
= gB X
n
X
exp
(+I.
n
> o be small enough s o that B ( z , 6
.
)
i s contai-
393
A basic existence result
Let
denotes
the d e n s i t y of t r a n s l a t i o n (15. 3. 4)
by B the above b a l l Bx
a n d by B n
the ball
E
.
B(o,
Then, i f we d e n o t e C )
:
with
.
Since p (z, ) exp of f
5 E L2 (
z tB
€
, u,)
,
a
-0
if k
+
t m by d e f i n i t i o n
B '
2
2
From (3) :
F o r k l a r g e enough the functions ep o z +B
E
,
i f k -.,
a r e u n i f o r m l y bounded on k t h e r e f o r e f r o m t h e t h e o r e m of d o m i n a t e d c o n v e r g e n c e , a -+ o
+ OD.
Therefore :
The a equation
394
when k
-
m .
Now we c o n s i d e r t h e C of C
00
f u n c t i o n on t h e o p e n u n i t b a l l A(0, 1)
defined by
if x E B E .
T h e Cauchy i n t e g r a l f o r m u l a f o r Cc0 f u n c t i o n s ( H o r m a n d e r
[ 1 ] th. 1.2. 1) g i v e s :
(5)
fn(z)
J
2h
-.
i e db 2n ie i0 dr d6 fn(ztxe t2.r ,f Eifn(ztrxe ).xe 2h
0
0
0
Now w e i n t e g r a t e in x on t h e b a l l B&
and f o r t h e m e a s u r e p T : from
t h e r o t a t i o n i n v a r i a n c e in ( 1 5.4.4) below, w e o b t a i n :
t h a t w e m a y w r i t e , i f z E 0 n HT
:
1
395
A basic existence result
F r o m (4)and
( 6 ) it follows t h a t the s e q u e n c e (f a ) kEIN ‘Onverges
pointwise on fl
n HT
to a function denoted by f
\
in t h e s e q u e l .
Now l e t u s c o n s i d e r a closed ball B1 of HT, contained in S? , 1 and such t h a t , f o r s o m e & 3 0 , B t B is contained i n s o m e ball B & X n 1 of t h e s e q u e n c e u s e d above. F r o m ( 6 ) it follows t h a t if z E B ,
1
F r o m (3) :
F u r t h e r m o r e it follows f r o m l e m m a (15. 3. 5) t h a t
is bounded u n i f o r m l y in n
EN
and
E
.
*
.
a r e bounded u n i f o r m l y i n B
T h e r e f o r e t h e functions f
A s a consequence, f
B
1
The last integral in the 1 second m e m b e r of ( 7 ) is bounded u n i f o r m l y in n E IN and z f B z
‘k is bounded on B1 and t h e r e f o r e f
*
.
1
is l o c a l l y
-
The a equation
396
bounded on
0
n HT
( f o r t h e topology of H )
T
Now w e p r o v e that f
*
d i m e n s i o n a l s u b s p a c e of H
i s finitely
If T' from ( 5 ) that the r e s t r i c t i o r . of f
of
Ji(n
?)( f * F
'n
nL),(f ) "k/n nL
'n nL
)= F
/hi r7L
-
*
f+ '0nL
C"
. Let
L be a g i v e n finite
n n L , i t follows i m m e d i a t e l y
z
to 0
n
L is continuous. In t h e s e n s e
and t h e r e f o r e f r o m ( 2 ) we have
in D n L and i n t h e s e n s e of
& ( n n L ) . Since
is Co3 i t follows f r o m t l z e hypoellipticity of the
"L
finite d i m e n s i o n ( s e e t h e end of ( 1 5 . 2 . 5 ) )
15.4.4
that f
Rotation i n v a r i a n c e of s o m e i n t e g r a l s .
5 and if f is a n i n t e g r a b--__le cylinder
f o r any z E H
Proof.
.
-
/nr L
is
o p e r a t o r in
cO'
.
In the notations of t h i s --
function defined on H
I?
,
we have :
-__
.
TC(X
and we s e t i f
-
*
8
1+iy1 ) e 1+ . . . + ( xn +iyn )e n 3 = X 1(x 1t i y 1) e 1t . . . + X n( x n + i yn ) en
1 = ( 1) *
...,An),
By definition t h e second m e m b e r of t h e equality ( 1 5 . 4 . 4 ) i s :
A basic existence result
397
dx
We d o t h e change of v a r i a b l e X and w e have x
RtY.E
= X
the t r a n s f o r m a t i o n ( x
Integration in
I - s R2n
2
a
t i Y
a
a dy k.‘
= (xA t iya ) e
i4
( f o r a n y fixed
t Y 2 and t h e a b s o l u t e v a l u e of the Jacobian of
e
1
y
a
1515 n
+
(
x
~
p
y ) A 14t
is 1
. Therefore
8 gives :
foT(XtiY 1 1’“”
and t h e r e f o r e I
i.1 ( f ) T
.
n
X n t i Y n ) n e x p { - -2 ( X R t Ya ) a =1 1
2
2
1
dXR d Y Q
e)
398
The bequation
0
15.5
An hypoellipticity r e s u l t
15.5. 1 Basic hypoellipticity l e m m a . s p a c e and l e t F
_
_
I
_
B(o, a ) -of E ,
~
k z
C
00
-
&At E
be a complex Banach
differential f o r m of type ( 0 , l ) on a n open ball
which is bounded on B(o, a) together with i t s s u c c e s s i v e
be a finitely d e r i v a t i v e s . L e t f --
Co3 function on B(o, a ) which is
bounded on B(o, u) and such that z f = F on the i n t e r s e c t i o n with B(o, a )
--
of any finite dimensional subspaceof E . Then f is C
m
on
B(o,B)
b f = F.
15.5.2
If EIR denotes the r e a l space a s s o c i a t e d
Proof of 14.5. 1 . -
to E we a r e going to prove that f ' ( x ) 6 L(E with
p< a
, the s e t
1
i f ' ( x ) l,xll..g
IR
) and that f o r any @ > o
i s a bounded s u b s e t of L ( E
IR)
We have :
f ' ( x ) . y = 6 f ( x ) . y -t b f ( x ) . y
where
The set
j
5 f(x) 2
is bounded in L ( E IlXIl-=~
to prove a majorizatior. of
bf(x). We s e t :
IR
) s i n c e s f = F.
It r e m a i n s
399
An hypoellipticity result
and w e c o n s i d e r t h e
C
m
function
+ ( z ) = f(x
if
p
IIxIIs
denote by
ad
l l y I 1 S 1.
If
r'<
on h ( o , g - 8 ) defined by
f
zy)
F L - ~,
w e s e t A = A ( o , r ' ) and w e
b h its bouzdary o r i e n t e d in t h e positive s e n s e . Cauchy's
integral formula for
Coo functions ( H o r m a n d e r [ 1
1th
1.2.1) g i v e s :
thus
F r o m Stokes formula :
Therefore
2 i n
From t h e boundedness of f , an M Irp(t)
I
>
o d e p e c d e n t on r ' ,
, [ _bcD ( t ) 1 and bt
1- b 2cp bt b t
dt t
dt CLli
dtAdt
bt
F and its d e r i v a t i v e s
OR
B(o,
but independent o n x a n d y
8) ,
t h e r e is
, such that
( t ) ' a r e bounded above by M i f t
E E.0
1.
The a equation
400 or t €
4. T h e r e f o r e
T h e r e f o r e the s e t
is bounded i n L ( E
R
) , T h e end of t h e
proof is a n i m m e d i a t e induction on the o r d e r of t h e d e r i v a t i v e : w e s e t ( n - 1) g = f and we p r o v e t h a t {g'(x).y 1 i s bounded i n L((n'l)E ) when / / x j ( s p < e t and
IIy 1 1 s1
15.5. 3 COROLLARY. function f
3(
. The computations a r e the same.
JR
It follows i m m e d i a t e l v f r o m 15.5. 1 t h a t the
obtained in 1 5 . 4 . 1 i s C
03
on 0 n H
T '
40 1
Scale of Hilbert spaces
$
The b
15.6
equation in a s c a l e of H i l b e r t s p a c e s
T h e r e s u l t of t h i s s e c t i o n is a c o n s e q u e n c e of t h e e x i s t e n c e r e s u l t 15.4. 1 and of t h e hypoellipticity r e s u l t 15.5. 1
. In t u r n it w i l l be t h e 0
basic f a c t in the p r o o f s of the r e s o l u t i o n of the
o p e r a t o r given in
the following s e c t i o n s . Let
be a n i n c r e a s i n g s e q u e n c e of t h r e e s e p a r a b l e H i l b e r t s p a c e s with n u c l e a r i n c l u s i o n s . L e t R be a pseudo-convex open s u b s e t of H a closed C
and l e t F be 2 d i f f e r e n t i a l f o r m of type (0, 1 ) on 0. A s u s u a l we e q u i p
m
0 n Ho with the topology induced by H 0 -
15.6.1 LEMMA. that -
b f * = F on
Proof.
-
There exists a
n
I
-
pH
C
03
function f
7y
R nH
0
such --
0 '
Hi Go d e n o t e s t h e c l o s u r e of H i n H . , equipped w i t h 0
If
the s c a l a r p r o d u c t induced by t h a t of H. , w e have t h e i n c l u s i o n
Ho c
HI
fi0
-
H2
c Ho
and t h e s e i n c l u s i o n s a r e n u c l e a r with d e n s e r a n g e ( a s t h e c o m p o s i t i o n - H2 p r o d u c t of a n u c l e a r mapping and a p r o j e c t i o n ) . We s e t G = H
A n u b l e a r mapping is of type Q 1 ( P i e t s c h Pietsch [ 1 ] i s of type
11
th. 8 . 2 . 7 ,
1'"
t
1
3
0
the composed i n j e c t i o n U ,
form H
0
to
C ,
. F r o m the S p e c t r a l D e c o m p o s i t i o n T h e o r e m ( P i e t s c h
] th. 8 . 3 . 1) and f r o m P i e t s c h [ 1 ] th. 8 . 3 . 2 ,
mapping U ,
.
th. 8 . 3 . 3 ) , s o from
applied t o t h e too +a3 there exist 2 orthonormal bases (el ) n n = l and ( f n ) n = l
The a equation ~
402
pf H o and G r e s p e c t i v e l y s u c h t h a t , f o r e v e r y x E H
0 '
too
ha
n
<x,el
z
n Ho
f
n
n = l
Since
u
is injective ,
Atn
#o
f o r e v e r y n. We s e t
We have
and
We s e t :
2 fa3
H
=
{
x n er, E G s u c h t h a t (xn )too n=l E Q21
n = l
equipped with the s c a l a r p r o d u c t
< Z xn e n , C y n e n >H
Cx
n
*
,
403
Scale of Hilbert spaces
Therefore H
iB
tw a H i l b e r t s p a c e with ( e ) a s an orthonormal basis, n n=l
t h e n a t u r a l inclusion f r o m H into G is n u c l e a r . Now l e t u s define t h e operator
T on H by :
T ( e ) = h e n n n tm
1
T is n u c l e a r s i n c e ( A ) 6 l. n n=l r a n g e . Since e '
r,
=
n
e
n
and
(e'
T is i n j e c t i v e , self adjoint, with d e n s e tm
n)n = 1
we c h e c k i m m e d i a t e l y t h a t E T = H o
15.4. 1 and 15.5. 1.
.
.
i s a n o r t h o n o r m a l b a s i s of H
0'
N o w l e m m a 15.6. 1 follows f r o m
-
The a vquation
404
$ 15.7
E x i s t e n c e of
C
00
open s u b s e t s
-
15.7.1 T H E O R E M .
of D F N s p a c e s
L e t E be a c o m p l e x n u c l e a r Silva s p a c e and R
be a ps~!u!o convex open s u b s e t of E. d i f f e r e n t i a l f o r m on solution of
Ef = F
.
s o l u t i o n s in pseudo-convex
R
.
Let
F be a c l o s e d C
Then there exists a
C
Q3
cn
(-0, 1)
function f c n 0
In o t h e r w o r d s the following is a n exact sequence_ of F r C c h e t Schwartz s p a c e s :
P roof.
-
Since E
is a n u c l e a r Silva s p a c e i t is t h e inductive l i m i t of
a n i n c r e a s i n g s e q u e n c e of H i l b e r t s p a c e s E
with a n u c l e a r i n j e c t i o n n We m a y a s s u m e t h a t , f o r e v e r y n ,
-
f o r e v e r y n ( s e e 0.6.10). n Entl t h e inclusion of E into E m a y be f a c t o r i z e d a s follows : n nt1
E n = H0, n
-
H l,n
HZ,n = E n t l
-+
w h e r e a l l t h e s e mappings a r e n u c l e a r i n c l u s i o n s and w h e r e t h e s p a c e s
H.
a r e s e p a r a b l e H i l b e r t s p a c e s . It is e a s y t o p r o v e t h a t ( i f E i s any n Silva s p a c e ) t h e r e e x i s t s a n i n c r e a s i n g e x h a u s t i v e s e q u e n c e of c o m p a c t 1,
subsets K
of
R ,
w h e r e we m a y a s s u m e t h a t K
In the s e q u e l of t h e proof we s e t R(n) =
R nE
n
.
n
is compact i n
Now we c o n s i d e r t h e r e s t r i c t i o n of F t o 0 n E l e m m a ( 1 5 . 6 . 1) t h e r e e x i s t s a on
n(n) ,
Co3 function f
-k
n
nt1
En
.
. From
on O(n) c E
n
s u c h that
405
Existence of C a, solutions
Ff
ji
n
=
F
.
In o r d e r t o s t a r t a n induction w e s e t f
0
-
9
f2
2+
. f 3 -f 2 %
is defined and
C
00
(f -f ) = o on n(2), t h u s f 3 - f 2 is h o l o m o r p h i c or! R(2). 3 2 F r o m t h , 1 4 . 4 . 1 this h o l o m o r p h i c fur,ction m a y be a p p r o x i m a t e d u n i f o r m l y on n ( 2 ) .
OR
jc
K2 by h o l o m o r p h i c f u n c t i o n s on 'i-2
holomorphic function P
2
Ex (nn E 3 )
n E3'
Therefore , there is a
such that:
$(
sup (f3(x)-f ( X ) - P , ( X ) 2 x E K2
I
.
1 522
We s e t
f
3
= f
Y - P 3 2
and w e h a v e :
i s Ccn on P ( 3 ) = R
f3 if
3
= F
on ~ ( 3 )( s i n c e
1 If3(x)-f2fx) 5 2 SUP x E K2 2
I
rE3
SP 2
Df
n
= F and
on n ( n )
0)
*
By a n obvious ifiduction w e obtair, a s e q u e n c e
n ( ~ )s u c h t h a t
=
(f ) of n
C
00
f u n c t i o n s on
-
The a equation
406
F o r every
Thus
for
x f 61
fn(x)
t h e r e is s o m e
i s defined f o r
n
l a r g e enough s u c h t h a t xE K nc n ( n ) . l a r g e enough a n d n
l a r g e enough. We s e t
n
f ( x ) = lim fn(x) n + too We notice that .t, -+ to3
-
b(fnta-
on
fn) = 0
- fn)
, the functions
(fnt.t, s i n c e e v e r y c o m p a c t s u b s e t of
-
n(n) , t h u s
fn+a a r e convergent t o
n(n)
is c o n t a i n e d i n
l a r g e enough. T h e r e f o r e
f
n f
K
P
E x(Q(n)). When
-
f
in K(n(n)) n , f o r some p
f = (f-f ) t f n n
is a
on af
Co3
n .
function o n
Furthermore
n(n) f
-
.
Since t h i s h o l d s f o r a n y
fnET(61(n))
and
-
bf =
n
F
n , f on
is
Cm
O(n) , h e n c e
= F on n(n), i . e .
-
b f = F
on
0 .
m
Existence of C a, solutions
$ 15.8
15.8.1 - THEOREM. be a c l o s e d
Co3
Existence_&
Let
E
Co3
407
solutions in nuclear
be a c o m p l e x n u c l e a r A . c . s .
e .c . s .
and l e t
F
( 0 , l ) d i f f e r e n t i a l f o r m of-uniform bounded type o n
( s e e D e f . 1.6.1). T h e n t h e r e is a bounded t y p e , s u c h that b f = F
function
Ca
on
f
.
E
, of u n i f o r m
E
In o t h e r w o r d s a n d with obvious n o t a t i o n s , t h e following s e q u e n c e isexact -
15.8.2
-
:
R e m a r k : If
E
i s a Silva s p a c e ,
t h e n , from T h e o r e m 1 . 6 . 3 , a n y
Cm
A(E)
E
mapping f r o m
of u n i f o r m bounded t y p e . T h u s we r e c o v e r t h e c a s e
into
n= E
-
R e m a r k : E v e n if
E
(Theorem
F
i s of u n i f o r m bounded type i s
i n d i s p e n s a b l e in o r d e r to e n s u r e t h e e x i s t e n c e of a solution
of
= F . M e i s e - V o g t 1 3 1 proved t h a t t h e
5
equation is not
ble i n n u c l e a r F r e ' c h e t s p a c e s even with continuous n o r m s
15.8.4
is
is a n u c l e a r F r g c h e t s p a c e we s h a l l s e e
in 1 6 . 2 . 3 t h a t t h e a s s u m p t i o n t h a t
-
A(E)
as a p a r t i c u l a r c a s e of T h e o r e m 15.8.1.
15.7.1)
15.8.3
i s a F r i c h e t space and
-
Proof of T h e o r e m 15.8.1 :
Since
F
of
always resolu-
.
is of u n i f o r m bounded type
( 1 . 6 . 2 ) t h e r e is a convex b a l a n c e d o-neighbourhood the following d i a g r a m is c o m m u t a t i v e :
fEB(E)
V
in
E
such that
The a equation
408
where *
E 'v
V
I
, and w h e r e
F'8b;0,1;
E
denotes the n a t u r a l injection f r o m M
*
%; 0 , l ;c l o s e d ( E v )
Fc c l o s e d (Ev )
into i t s completion
V
i s the continuation of
.
T h e r e a r e convex balanced 0-neighbourhoods in
E
v0 c v 1 c v 2 = v such that the n a t u r a l inclusions E
i L
V
E
i
V
1
1 -E
a r e n u c l e a r mappings and t h a t the s p a c e s
V
E
s p a c e s . P a s s i n g to the completions we have
a r e separable pre-Hilbert
Iz
h
c l ? +i 0 e V d i 1k v .
E V
If t h e mappings
V.
0
+ 1 (k=O,1) k
V
1
a r e not injective ( i . e . i n c a s e
E
d o e s not
a d m i t any continuous n o r m ) we c o n s i d e r quotient s p a c e s . T h e n it suffices t o apply l e m m a 15.6.1.
I
CHAPTER 16
SOME APPLICATIONS OF THE
ABSTRACT
-
2 EQUATION
F i r s t we state and p r o v e t h e e x i s t e n c e of a solution of
t h e first Cousin p r o b l e m , in a pseudo convex open s u b s e t of a D F N space,as a s t r a i g h t f o r w a r d c o n s e q u e n c e of t h e e x i s t e n c e of C of t h e
-
a
equation i n t h e s e s p a c e s
03
solutions
.
T h e n we e x p o s e a c o u n t e r e x a m p l e proving t h a t t h e f i r s t Cousin p r o b l e m may have no solution i n s o m e F r e ' c h e t s p a c e s ( s u c h a s am) a n d 00 solution i n t h e s e that t h e r e f o r e t h e a equation h a s i n g e n e r a l no C spaces. T h e n u s i n g t h e r e s o l u t i o n of t h e
-
a
equation a n d t h e d i v i s i o n of
d i s t r i b u t i o n s by holomorphic functions, we p r o v e t h e following r e s u l t which g i v e s s o m e knowledge of t h e s o l u t i o n s of t h e h o m o g e n e o u s convolution e q u a t i o n s i n the s p a c e E x p E when E is a c o m p l e x n u c l e a r 1. C. s. THEOREM.
-
If
E is a complex nuclear
lution o p e r a t o r on t h e s p a c e E x p E
tor -
@
.
p
@
is a convo-
, t h e n a n y solution of t h e homogeneous
equation @ f = 0 is t h e F o u r i e r t r a n s f o r m that pU = 0 , where
1.c. s. a n d i f
.
of a n e l e m e n t U €4' ' ( E ) s u c h
d e n o t e s t h e c h a r a c t e r i s t i c function of t h e o p e r a -
Some applications
410
5 16. 1. 1.
14. 1
THEOREM.
Solution of the first Cousin p r o b l e m .
-
-
n
E be a c o m p l e x DFN space,
convex open s u b s e t of E
& { n .) '*
trn
n = u
n j . If
j = l
S.
J*k
open s u b s e t s of 61 s u c h t h a t
j=1
J
( Q j n 0,)
EX
a pseudo-
wherej,k=1,2,..
and if, f o r a l l i, j, k,
'j, k =
gi, j
+ gj,k
f
gk, j
J
nk9
blin n . 0
gk,i = 0 in
x ( a .)
E
then one can find functions g . J
-
J
s u c h that, f o r all j and k
gj, k = gk
-
gj
in
n
Rk
fl
,
.
For s h o r t we c l a s s i c a l l y s t a t e t h i s r e s u l t by s a y i n g t h a t t h e first Cousin s e t (g. ., 1s J
p r o b l e m i n 0 h a s a s o l u t i o n , and the Cousin data Proof.
-
.
ni)
i s c:rlled a
I t i s a d i r e c t consequence of t h 5. 3. 1. on e x i s t e n c e of C
p a r t i t i o n s of t h e unity i n solutions of t h e
-
a
a
equation
15. 7 . 1. on e x i s t e n c e of
a n d of the
.
F r o m t h 5. 3. 1. a n d from 5. 3. 4.
t h a t supp cp
I Ic
ai .
..
F o r e v e r y k = 1.2,..
hk =
t v =1
Fp,
.
f
v=l we c h o o s e i G I N
.
we s e t
fa3
V
there
J
3
l i s t e d i n th. 5. 3. 1. F o r e v e r y v = 1, 2 , .
a3
, that j=1 with t h e p r o p e r t i e s
e x i s t s a p a r t i t i o n of unity s u b o r d i n a t e t o t h e c o v e r i n g is t h e r e exists a s e q u e n c e of functions f
C
00
gi , k V
U
such
41 I
Solution of the first Cousin problem
( t h i s s u m i s locally finite) and h E (B (61 )
k
since g k,i
in 0 . n J
v
’
nk .
gi
v
= 0
, j “j,k
.
k
.
F u r t h e m o r e w e have :
This implies that
T h e r e f o r e t h e r e is a
c
03
c l o s e d ( 0 , l ) f o r m ~r on 61
k
s u c h that
in
nk
f o r e v e r y k = 1, 2 , .
function
in 0
.
..
F r o m t h 1 5 . 7. 1.
u € 8 (61) s u c h that
Now t h e functions g k = h k t u
have all t h e r e q u e s t e d p r o p e r t i e s
.
there exists a
Some applications
412
8 16. 2. 1.
A counterexample.
16. 2 .
Very strongly convergent
sequences.
-
-
If E i s 1.
C.S.
f e n 1+0° of non z e r o e l e m e n t s of E is s a i d t o be v e r y s t r o n g l y n=1 I,] '0° of ( r e a l o r c o m p l e x ) n u m b e r s , c o n v e r g e n t if f o r e v e r y s e q u e n c e n=1 tm t h e sequence { X e 3 i s a null s e q u e n c e i n E n n n=1
a sequence
.
E
Example. -
am
and e
11
=
(0,
, 0,1,
.. ) .
0,.
M o r e g e n e r a l l y any
order n Fre'chet s p a c e without continuous n o r m h a s v e r y s t r o n g l y convergent sequences. 16. 2. 2. PROPOSITION.
-
E be a c o m p l e x 1. c. s. which a d m i t s a
U be a c o n n e c t e d open
v e r y s t r o n g l y c o n v e r g e n t sequence, a n d l e t
s u b s e t of E
.
Let
(gi, j, U i ) be a Cousin d a t a on U w h e r e t h e
, a r e h o l o m o r p h i c and continuous i n U . ( s e e 16. 1. 1. ) J T h e n the Cousin p r o b l e m is not a l w a y s s o l v a b l e (with functions g.
functions
g.
1,
holomorphic a n d continuous o n R .) 16. 2. 3.
.
If f u r t h e r m o r e U is a Lindelof s p a c e a n d E a
Remark.-
n u c l e a r 1. c. s.
then we p r o v e d in 5. 3. 1.
t i o n s of unity. T h e r e f o r e , f r o m t h e proof is not solvable i n U
16.2.4.
P r o o f of
.
t h e e x i s t e n c e of C
of
16. 1. l . , t h e
(in t h e s e n s e n e e d e d i n t h e proof of
16. 2 . 2 .
-
-
a
m
parti-
equation
16. 1. 1. )
.
We denote by U a c o n n e c t e d open s u b -
t h e l i n e a r s p a n of { e l , . . . , e n } ( w e a s s u r e t h a t n t h e points e a r e l i n e a r l y independent) a n d by F a d e c r e a s i n g s e n n quence of c l o s e d l i n e a r s u b s p a c e s of E s u c h t h a t F i s a topologin c a l c o m p l e m e n t of E . We set n s e t of E , by E
U 2 = ({ a e l + w )
aE
and (Im a ) c
w EFl
11 4
fl U ) .
413
A counterexample
If n > 2 w e set
f un 3
too
i s a n open c o v e r
n=1
of U
.
If
1 n-ml #
1 , t h e n U n fl U m =
$,
and
n z 2 , any
For
Z E E m a y be w r i t t e n i n
a unique way
n
z= c
p=1
U
n
P
t w
E Fn .
with w If n , m
ap(z) e
2
2 w e define a continuous h o l o m o r p h i c function g
fl Urn
Clearly
by :
gn, m = - gm, n
f o r e v e r y n, m and g
Cousin p r o b l e m h a s a
solution i n U m a d e of continuous h o l o m o r p h i c functions f o r e v e r y n and m
, gn, m = g m
in Un
n
Um
.
Let u s notice that a ‘
n
-
(2).
on
.t gj, kt gk, i= 0 f o r e v e r y i, J
i , j a n d k . L e t u s a d m i t by a b s u r d t h a t t h i s i. e.
n, m
g
n
gn em= 0 i f m
#
n and
in U
n
,
Some applications
414
a In(z) e = 1 for e v e r y n and e v e r y z c E n
we
If z c U n and I m a l ( z )
#
n
)
.
set
We h a v e , i f n
#
1,
Furthermorethereis
(if
.
not
1
a
(2)-
1
a w
n
would be a holomorphic
i n
Now, l e t us notice t h a t
if z E U
and that t h e r e f o r e f o r m u l a function f
E U n c U s u c h that
n
n
n um
(1) defines a continuous holomorphic
on the set
( z G U such that which i s a connected open f r o m ( 2 ) and l e m m a
16. 2. 5.
function of z E U
-
subset in U
16. 2 . 5 below
a,(.)
.
#
n for every
n >1 )
Now the c o n t r a d i c t i o n follows
.
L e t E be a c o m p l e x 1. c. s. with a v e r y sJronglyconvcz too gant_-sequen-c3-- e n ] a n d l e t U be a connected open s u b s e t of E n=1 Then i f - f i s a continuous holomorphic function on U , t h e r e
LEMMA.
.
415
A counterexample
is a n a t u r a l i n t e g e r N s u c h t h a t
f'(z)
.
en = 0
for every Z C U and every proof.
-
n > N
F r o m C a u c h y ' s i n t e g r a l f o r m u l a 2. 2. 7, f o r e v e r y XoE U V in E
t h e r e i s a o-neighborhood family
( f'(x)]
is a n equicontinuous
XFX - t V 0
F o r every sequence {
),
t h e r e f o r e the s e t [ f ' ( x )
such that X
n ),
1t o o e
n
}
t V c U and the
s u b s e t of I ( E ) .
, the sequence { 1
n=1
n
0
i s bounded i n XEX t V
n
a.
too
n=1
i s null,
This implies
0
n
€IN
that f ' ( x ) e n = 0 f o r e v e r y x E x t V
U i s c o n n e c t e d , t h e uniqueness the p r o o f .
16.2.6
i f n is large
enough
.
Since
of h o l o m o r p h i c continuation c o m p l e t e s
I
Remark.
-
T h e a b o v e c o u n t e r e x a m p l e is valid i n a l l n u c l e a r
Fre'chet s p a c e s without continuous n o r m . A d i f f e r e n t c o u n t e r e x a m p l e , valid in s o m e F r e ' c h e t s p a c e s w i t h continuous n o r m s w a s r e c e n t l y obtained i n Meise-Vogt [ 3 ]
.
Some applications
416
4
16. '3.
On t h e solutions of s o m e homogeneous convolution e q u a t i o n s
We c o m p l e t e t h e study of t h e convolution e q u a t i o n s i n E x p E , when E i s a complex n u c l e a r
1. c. s . , by proving
t h e homogsneous convolution e q u a t i o n s a complex n u c l e a r b.
V.S.
.
A s in
5
of t h e s o l u t i o n s of
10. 1 , ue denote by F
( s e p a r a t e d by its d u a l ) and we denote by
convex b a l a n c e d open set i n F
sxk(n),
a property
.
If
@
na
i s a convolution o p e r a t o r on
10. 1. 4, s e e a l s o 10. 3. 6 , that t h e r e i s s o m e t s u c h t h a t (9 = T * , t h a t p = ;F ( T ) ExS(n) i s c a l -
we r e c a l l f r o m
T € ( zK$(n))'
l e d the c h a r a c t e r i s t i c function of Q , a n d t h a t t h e following d i a g r a m is c o m m u t a t i v e
where, i f E
ExFC'S(n) , U ( e ) cK'S(n) i s U(e)
(i. e. ( p .
e )(cp)
=
e
defined by t h e f o r m u l a :
p.e
(p c p ) f o r any ~p E ~ ~ ( Q .) )
In t h i s s e c t i o n w e a r e g o i n g to p r o v e :
Homogeneous convolution equations
26. 3 . 1. Q
THEOREM.
-
Let -
r a t o r on 3
~
S
('n )
.If
Is(n)
-
R e m a r k and Comments
p a r t i t i o n s of unity i n m a n y bornology of of
6
I (
If
and let
i s a convolution ope-
function,
of the h o m o g e n e o u s e q u a t i o n 8 f = 0 -i-s
t h e F o u r i e r t r a n s f o r m of a n e l e m e n t U E & '(
16. 3 . 2.
(g
p c K s ( n ) denotes i t s c h a r a c t e r i s t i c
and i f
then any solution f E 3 X
F be a c o m p l e x n u c l e a r b. v. s.
open s u b s e t of F
b e a convex b a l a n c e d
417
.-
usual
n)
such that
pU = 0
.
F r o m th. 5. 3 . 1. t h e r e exist C 1. c. s.
.
If
00
F is t h e Von N e u m a n n
s u c h a 1. c. s. one may define t h e s u p p o r t of a n e l e m e n t
0 ) a s i t i s c l a s s i c a l l y done i n t h e finite d i m e n s i o n a l c a s e
Then t h e p r o p e r t y t h a t
pU = 0 i m p l i e s t h a t t h e s u p p o r t
.
of U is c o n t a i -
n e d i n t h e c l o s u r e ( f o r t h e topology of t h e 1. c. s. i n which w e h a v e p a r -1 p ( 0 ) of z e r o e s of p , t i t i o n s of unity ) of t h e s e t
the s e t
In t h e one d i m e n s i o n a l c a s e and i f p f 0 , i. e. Q # 0 , t h e n -1 p ( 0 ) i s m a d e of i s o l a t e d p o i n t s and t h e n th. 16. 3 . 1 h a s a
v e r y p r e c i s e and f a m i l i a r f o r m : i f f C x ( C ) and i f convolution o p e r a t o r on Exp
of p
and f o r e v e r y k = 1, 2 , .
tiplicity
o r d e r of z
mensional
cgf = 0
on
k'
i s a non z e r o
,
(E
a n d t h e c h a r a c t e r i s t i c function
a n d i s a n e n t i r e function
(9
p
.
L e t { zk}+03 d e n o t e t h e s e t of z e r o e s k =1 m 2 1 d e n o t e t h e mul. , let
(E
.
i s d e f i n e d by
T h e n i t follows
k
f r o m th. 16. 3. 1 i n t h e o n e d i -
c a s e t h a t e v e r y solution f of t h e h o m o n e n e o u s e q u a t i o n
h a s the
form
Some applications
418
where P
j
i s a polynomial of d e g r e s
m
k-1
'
Now, the s e q u e l of t h i s s e c t i o n i s devoted t o the proof
of T h
16. 3. I
a n d , f o r t h i s , we begin by proving :
16. 3. 3.
Division lemma.
l e t Q -be a -
'
-
L A F be a c o m p l e x S c h w a r t z b. v. s. and
connected M-open
s u b s e t of
F
.
Then for every
--
'0, 1, c l o s e d ( Q ) a n d e v e r y p E ~ , ( Q ) , with p f 0
"'0, proof.
-
1,closed
(Q)
with p S = T
.
w e first p r o v e t h a t t h e m a p p i n g
A s i n 11. 3. 2
'
0,1, c l o s e d ( * )
'
0,1, c l o s e d
P*V i s continuous
'
0, 1, c l o s e d
.
'0,1,
c l o s e d (n1 cp
A f u n d a m e n t a l s y s t e m of o - n e i g h b o r h o o d s i n
(0) i s m a d e of the s e t s
w h e r e K i s a strictly c o m p a c t s u b s e t subset
, t h e r e is a n
of E,
where
E>
0 and n
€IN .
of Q , w h e r e L is a bounded A s usual we
set
Homogeneous convolution equations
For every
y e E a n d e v e r y epEd
i s equivalent to : rg YE
Now i f W (K, L,
E
0, 1, c l o s e d
V( K, L,
E
(n), we
11. 3 . 2
c o n s i d e r t h e mapping:
, n) f o r e v e r y y E L .
, n) i s a given o-neigborhood
follow5 f r o m l e m m a
419
in ' 0 , I, c l o s e d
that t h e r e is a V ( K ' , L',
E
I,
(n)tit
n') such
that, i f h € 6 (n), then
T h e r e f o r e , f r o m w h a t p r e c e e d s , and i f L
c L' ,
which p r o v e s the continuity of the above m a p p i n g e n d of the proof i s quite s i m i l a r to
11. 3 . 3.
p q
I
-+
p . Now t h e
Some applications
420
16. 3 . 4 .
F i r s t s t e p in the proof
s p a c e . F r o m 4. 2.4 s p a c e and s i n c e
closed
FrCchet Schwartz space
.
(n)
We a s s u m e F i s a DFN a Fre'chet Schwartz
i s a c l o s e d s u b s p a c e , i t is a l s o a
F r o m t h . 15.7. 1. we h a v e the e x a c t s e q u e n c e
Since t h e s e s p a c e s a r e F r P c h e t - S c h w a r t z
ils
-
, @ , , , ( a ) is
and 4. 3 . 4
'0,1,
16. 3. 1.
of
spaces, the transposed
se-
a l s o e x a c t ( s i n c e any F r e ' c h e t S c h w a r t z s p a c e is reflexive,o. 6. 7 - 8 and
f r o m the s u r j e c t i o n t h e o r e m i n F r g c h e t s p a c e s u s e d i n the proof Let f E 3 Since
t
~ (n) ' be a solution of @ f = 0 S
function of t h e o p e r a t o r
@
hE5CS("))
W e set
S €6
i is s u r j e c t i v e t h e r e e x i s t s a n
S(h) = $ (h) f o r e v e r y
(i. e.
.
.
If p
, and f o r a n y h
(p S)(ih) = S(p (ih)) = S ( i ( p h ) ) - (
t
'(n)
%
=
of
12. 6. 3 ) .
z-l(f)cXts(n).
s u c h that
t
i (S) =
denotes the c h a r a c t e r i s t i c
exs(n),
i ( S ) ) (p h) = * ( p
we h a v e :
h) = ( p$)(h) = 0
.
T h e r e f o r e p S i s n u l l on I m i c ' ( n ) t t tand a s a consequence p S E K e r i But K e r i = Im a , therefore t t h e r e exists a Y € 8 (n) s u c h that p S = ( a ) ( Y ) . 0, 1, c l o s e d since
p$= 0
( b e c a u s e @ f = 0)
.
F r o m (16. 3. 3 . ) and i f p is t r i v i a l ), t h e r e e x i s t s set
p
0 (if p
t
0, then
'0, 1, c l o s e d
u= U E g ' ( n ) and
=
=
0 and
1 6 . 3. 1
s u c h that p X = Y
.
We
Lr(X) .
s -
t t i ( U ) = i (S) ( s i n c e i
(n)
@
O
%=
0 ) . T h e r e f o r e U ( h ) = S(h)
42 1
Homogeneous convolution equations
I n o r d e r to p r o v e t h 16. 3. 1 i n c a s e F i s a D F N s p a c e i t r e m a i n s p U = 0, i. e.
to p r o v e that
only
( p U ) (h) = 0 f o r a11 h € 8 ( 0 ). We have
and
(recall
-
a
16. 3. 5 Q
#
0
.
p = 0 since p
txc,(n)).T h e r e f o r e
Second s t e p in the proof of and
,
a s in
f r o m t h e proof 10. 3. 6
16. 3. 1. -
We a s s u m e now
15. 3. 1, t h a t F i s a n u c l e a r b. v. s. that t h e r e e x i s t s a f a m i l y (8 .) 1
s p a c e s s u c h that (1)
of D F N
i '
zxIs(0 ) i s t h e b o r n o l o g i c a l inductive limit of t h e ( 3 x c ' R( fl q)i E I (i. e. e v e r y bounded s u b s e t of zxc'S ( 0 )
i s contained and bounded i n s o m e n a t u r a l inclusion m a p p i n g 3~ all i € 1 ) and
(3) f o r a l l i E 1 range in space.
It follows
F i s t h e b o r n o l o g i c a l inductive limit of t h e s p a c e s 8
(2)
spaces
i €1
.
that
a x '(0n 8 i)
,
I (
-
3x'(0 0 8 .)
R 0 8 .)
t h e r e s t r i c t i o n of
3
and c o n v e r s e l y t h e
x
Is(
@
to
n) i s
bounded for
axc'( 0 n&?1.)
has
and i s a non z e r o convolution o p e r a t o r on t h i s
422
Some applications
F o r every i
E I , we
denote by ( i ) the injective n a t u r a l mapping
z x lS ( a ) . L e t n o w f be a n e l e m e n t of Is(n) s u c h that 8 f = 0 . T h e r e is a n index i0E I a n d t h e r e is e l e m e n t fo€3K '(0 n 8 , ) such t h a t f = (i0 )(f 0 ) . F r o m the first
f r o m 3 K c l ( Q n 8 . ) into an
step 1 6 . 3 . 4
0
there exists a U
where p .
pi, Uo = 0 r e s t r i c t i o n of
8 to
10
0
E % ' ( nn 8 , )
s u c h that f = 3 U a n d 0
0
3K
'(n n
8. ) 0
t h e beginning of t h i s s e c t i o n , p i
0
. Clearly,
f r o m the d i a g r a m at
is the r e s t r i c t i o n of
) (.(P) =
~ / na8 .
0
if rp
E
p to R
n 8. . 15
We denote by r the r e s t r i c t i o n mapping f r o m 8
& ( a n 8,
0
denotes the c h a r a c t e r i s t i c function of the
8
(n))
( n ) into
a n d b y t r its t r a n s p o s e d
10
U
We have the following c o m m u t a t i v e d i a g r a m (with s o m e s i m p l i f i e d obvious n o t a t i o n s )
We
set
t
u = r ( u0 )
BIBLIOGRAPHIC NOTES
F i r s t we quote t h e s o u r c e of t h e t h e o r e m s p r e s e n t e d i n t h e book, a n d t h e n we give s o m e m o r e r e f e r e n c e s of p r e v i o u s o r r e l a t e d r e s u l t s . T h e r e f o r e n u m e r o u s i m p o r t a n t p a p e r s c o n n e c t e d with t h e t o p i c s d i s c u s s e d a r e not m e n t i o n e d . CHAPTER 1 T h e o r e m s 1 . 4 .7-8 w e r e obtained i n C o l o m b e a u [3,17] a n d t h e o r e m s 1 . 6 . 3 w a s obtained in C o l - m b e a u - M u j i c a [l] . T h e concept of differentiable m a p p i n g s in t h e s e n s e of 8 1.1 a n d 6 1 . 2 i s i n Sebastigo e Silva [l, 21 in t h e c a s e of t h e Von N e u m a n n b o r nologies of l o c a l l y convex s p a c e s . T h e n h e p l a c e d h i s t h e o r y i n i t s n a t u r a l s e t t i n g of bornological v e c t o r s p a c e s in S e b a s t i c o e Silva [3]. T h e c o n Cco m a p p i n g s in the e n l a r g e d s e n s e c o n s i d e r e d in $ 1 . 4 w a s i n c e p t of t r o d u c e d in Sebastia40 e Silva [ Z ] . T h e concept of d i f f e r e n t i a b l e m a p p i n g s in t h e s e n s e of $ 1.1 a n d 8 1 . 2 w a s a l s o i n t r o d u c e d i n M a r i n e s c u [l] in the s e t t i n g of bornological v e c t o r s p a c e s ( p o l y n o r m e d s p a c e s i n M a r i n e s c u [ l ] ' s t e r m i n o l o g y ) . T h e r e i s a slight d i f f e r e n c e b e t w e e n M a r i n e s c u ' s definition a n d t h e definition in $ 1.1, 0 1 . 2 , s e e C o l o m b e a u [ 2 ] , p . 20 a n d p.31-32. F o r f u r t h e r c o m p a r i s o n r e s u l t s between t h e t h r e e c o n c e p t s of differentiability of 3 1 . 1 , 0 1 . 2 , 8 1 . 4 a n d $ 1. 5 we r e f e r to C o l o m b e a u [ 3 , 4,171 . F o r the g e n e r a l l i t t e r a t u r e on d i f f e r e n t i a b l e m a p p i n g s between l o c a l l y convex s p a c e s we r e f e r t o t h e e x c e l l e n t s u r v e y s of A v e r b u c k Smolyanov [ Z ] a n d N a s h e d [l] t h a t contain e x c e l l e n t b i b l i o g r a p h i e s f o r p a p e r s a n t e r i o r to 1969. Among t h e v e r y n u m e r o u s books a n d a r t i c l e s on t h i s s u j e c t l e t u s f u r t h e r m o r e quote Averbuck-Smolyanov [l] , B u c h e r F r b l i c h e r [l] , K e l l e r [l] , Y a m a m u r o [l, 21, M e i s e [l], C o l o m b e a u Meise [l]. In t h i s book we did n o t c o n s i d e r t h e v e r y i m p o r t a n t t o p i c s of I m p l i c i t F u n c t i o n s a n d O r d i n a r y D i f f e r e n t i a l E q u a t i o n s . In t h e c a s e of Banach s p a c e s v e r y g e n e r a l r e s u l t s w e r e obtained a l r e a d y i n t h e t h i r t i e s ( s e e C a r t a n [l] o r DieudonnC [l] f o r i n s t a n c e ) a n d a r e now v e r y c l a s s i c a l . In the c a s e of non n o r m e d s p a c e s t h e s i t u a t i o n i s c o n s i d e r a b l y m o r e c o m p l i c a t e d a n d does not s e e m t o be c o m p l e t e l y c l a r i f i e d at p r e s e n t . So we j u s t s k e t c h h e r e t h i s topic a n d give s o m e r e f e r e n c e s . L e t u s f i r s t a s s u m e the e x i s t e n c e of a continuous i m p l i c i t f u n c tion o r of a continuous i n v e r s e , when t h e g i v e n f u n c t i o n s a r e d i f f e r e n t i a b l e In t h e Banach s p a c e c a s e t h i s i m p l i c i t function o r t h i s i n v e r s e m a p i s diff e r e n t i a b l e (Nachbin [43, P r o p o s i t i o n 16.16 a n d 22.10 f o r i n s t a n c e ) . A c o u n t e r e x a m p l e i n Averbuck-Smolyanov [ 2 ) shows that t h i s is no l o n g e r t r u e in g e n e r a l l o c a l l y convex s p a c e s . On t h i s topic s e e C o l o m b e a u [ 4 ] , Smolyanov [l]. If one a s s u m e s s o m e p r o p e r t y s t r o n g e r t h a n continuity on t h e i m p l i c i t o r i n v e r s e m a p , one o b t a i n s the d e s i r e d differentiability 423
Bibliographic Notes
424
r e s u l t , s e e C o l o m b e a u [4], t h e o r e m 2 . 2 which i s q u i t e g e n e r a l . Now l e t i s a n - t i m e s d i f f e r e n t i a b l e b i j e c t i o n a n d t h a t its i n v e r s e m a p us assume f f - l i s one t i m e d i f f e r e n t i a b l e ( s a m e s i t u a t i o n a n d r e s u l t s i n t h e c a s e of t h e i m p l i c i t f u n c t i o n ) . In t h e c a s e of B a n a c h s p a c e s f - l i s n - t i m e s d i f f e rentiable. A counterexample in Colombeau [4], $ 6 , example 2 , shows t h a t t h i s i s no l o n g e r t r u e i n g e n e r a l i n non n o r m e d s p a c e s , but t h e o r e m 3 . 2 i n C o l o m b e a u [4] g i v e s a v e r y g e n e r a l c a s e i n which f - l i s n - t i m e s d i f f e r e n t i a b l e . In s h o r t t h e r e s u l t s a r e q u i t e g e n e r a l , but one n e e d s t o a s s u m e m o r e r e s t r i c t i v e a s s u m p t i o n s t h a n in t h e B a n a c h s p a c e s c a s e (the continuity of t h e i m p l i c i t f u n c t i o n i m p l i e s t h e s e p r o p e r t i e s i n t h e B a n a c h s p a c e s c a s e ) . The s i t u a t i o n of t h e e x i s t e n c e r e s u l t s i s m u c h w o r s e : L e t u s now c o n s i d e r t h e p r o b l e m of e x i s t e n c e of a n i m p l i c i t f u n c t i o n o r of a n i n v e r s e of a g i v e n d i f f e r e n t i a b l e m a p , in t h e c o n d i t i o n s t h a t , i n B a n a c h s p a c e s , e n s u r e t h e i r e x i s t e n c e ( C a r t a n [ l ] , Dieudonng [l], . ) . C o u n t e r e x a m p l e s i n E e l l s [l] , P i s a n e l l i [l] , C o l o m b e a u [l] , L o j a s i e w i c z J r . [l] show t h a t t h e v e r y n e a t r e s u l t s of t h e B a n a c h s p a c e s f r a m e w o r k do not r e m a i n v a l i d i n l o c a l l y c o n v e x s p a c e s . T h e r e is a v e r y l a r g e a m o u n t of w o r k s on t h i s t o p i c : people f i r s t t r i e d v a r i o u s g e n e r a l i z a t i o n s of the c l a s s i c a l p r o o f , s e e f o r i n s t a n c e F a l b - J a c o b [l], M a c D e r m o t t [l, 2 , 31, C o l o m b e a u [l, 5, 6 , 7 1 , Y a m a m u r o [ 2 ] , T h e i m p l i c i t function a n d l o c a l i n v e r s i o n t h e o r e m s i n C o l o m b e a u [l, 5, 61 a r e u s e d i n J . A . L e s l i e [ 3 ] f o r a proof of a K u p k a - S m a l e t h e o r e m in t h e r e a l a n a l y t i c c a s e . A d i f f e r e n t m e t h o d w a s i n s p i r e d by t h e " N a s h I m p l i c i t F u n c t i o n T h e o r e m " , s e e J . T . S c h w a r z [l], M o s e r [l] , H a m i l t o n [l] , S e r g e r a e r t [l] , J a c o b o w i t z [ l ] , Z e h n d e r [l], L o j a s i e w i c z - Z e h n d e r [l] T h i s o t h e r kind of i m p l i c i t function t h e o r e m s have c l a s s i c a l p o w e r f u l a p p l i c a t i o n s , f o r i n s t a n c e in t h e proof of t h e e m b e d d i n g of R i e m a n n i a n m a n i f o l d s i n IR" , s e e S c h w a r z [l]
..
... .
.
.
Now l e t us c o n s i d e r " o r d i n a r y " d i f f e r e n t i a l e q u a t i o n s X ' ( t ) = F ( X ( t ) ,t ) , X(to) = Xo ( C a u c h y p r o b l e m s ) . T h e v e r y b e a u t i f u l e x i s t e n c e , u n i q u e n e s s a n d d e p e n d e n c e on p a r a ' m e t e r s a n d d a t a r e s u l t s of t h e B a n a c h s p a c e c a s e t h e o r y ( C a r t a n [l] , Dieudonne [l] , . ) do not r e m a i n v a l i d i n l o c a l l y convex s p a c e s , s e e C o l o m b e a u [2] , P l i s [l], De G i o r g i [l]). V a r i o u s m e t h o d s w e r e u s e d : a c o m p a c t n e s s m e t h o d in Dubinsky [l], a n , i t e r a t i o n m e t h o d in C o l o m b e a u 61, 2 , 61, T r e v e s [2] , L e s l i e [2], V e r y good r e s u l t s a n d a p p l i c a t i o n s c a m e f r o m a v e r y s t r o n g r e i n f o r c e m e n t of t h i s i t e r a t i o n m e t h o d by a n a s t u t e m a j o r i z a t i o n t e c h n i q u e i n t h e s o c a l l e d "Ovcyannikov method" : Ovcyannikov [l, 2 3 , T r e v e s [ 3 , 4 , 51, S t e i m b e r g T r e v e s [l], S t e i m b e r g [l], P i s a n e l l i [2], N i r e m b e r g [l], Du C h a t e a u [l], L a s c a r [2], . T h e s e r e f e r e n c e s c o n c e r n t h e s t u d y at o r d i n a r y points (for a c l a s s i f i c a t i o n of s i n g u l a r i t i e s of o r d i n a r y d i f f e r e n t i a l e q u a t i o n s s e e Wasow [ l ] ) . T h e Ovcyannikov m e t h o d w a s u s e d i n t h e c a s e of " r e g u l a r s i n g u l a r points" i n Baouendi-Goulaouic [l, 21 a n d i n t h e c a s e of " i r r e g u l a r s i n g u l a r points" i n C o l o m b e a u - M C r i l [l]
..
.. .
...
.
B e s i d e s the a b o v e t o p i c s , D i f f e r e n t i a l C a l c u l u s i n a . c . s . h a s a l o t of v a r i o u s a p p l i c a t i o n s , m o s t of t h e m being at p r e s e n t i n f u l l d e v e l o p -
425
Bibliographic Notes
m e n t : f o r i n s t a n c e d i f f e r e n t i a l s t r u c t u r e s i n s e t s of COD o r real a n a l y tic d i f f e o m o r p h i s m s of c o m p a c t R i e m a n n i a n m a n i f o l d s ( L e s l i e [l, 31 ) o r new c o n c e p t s of g e n e r a l i z e d f u n c t i o n s on IE?? , giving a m e a n i n g t o a n y p r o d u c t of d i s t r i b u t i o n s ( C o l o m b e a u [l8] ), j u s t t o quote a few of t h e m . CHAPTER 2 T h e o r e m 2.2.3 w a s obtained in L a z e t [l, 2 3 . T h e o r e m s 2 . 3 . 3 - 4 a r e i n C o l o m b e a u [ 8 ] . T h e o r e m 2 . 4 . 1 and c o r o l l a r i e s w e r e o b t a i n e d i n L a z e t [l, 21, C o l o m b e a u [9,10] T h e c o u n t e r e x a m p l e in 2 . 5 w a s obtained i n C o l o m b e a u [9,10] . T h e o r e m 2 . 6 . 4 w a s o b t a i n e d i n B o c h n a k - S i c i a k [ l , 23 a n d T h e o r e m 2 . 7 . 4 i n C o l o m b e a u - M u j i c a [l]
.
.
T h e concept of Silva h o l o m o r p h i c m a p p i n g s w a s i n t r o d u c e d in S e b a s t i s e Silva [l, 2 , 33, a n d t h e n s t u d i e d i n m o r e d e t a i l s in C o l o m b e a u [ 9 , 1 0 , 8 , 1 , 1 7 ] , C o l o m b e a u - L a z e t [l], L a z e t [l, 23, P i s a n e l l i [3, 43, M a t o s Nachbin [l] , B i a n c h i n i [l] , B i a n c h i n i - P a q u e s - Z a i n e [l], e t c . L e t u s m e n tion a n i c e o r i g i n a l i n t r o d u c t i o n i n M e i s e - V o g t [l] a n d t h a t s e v e r a l a u t h o r s i n t r o d u c e d t h e concept of "hypo-analytic m a p p i n g s " which c o i n c i d e s with t h e one of Silva h o l o m o r p h i c m a p p i n g s i n all "usual" A . c s . .
.
T h e c o n c e p t of h o l o m o r p h i c ( = G - a n a l y t i c a n d c o n t i n u o u s ) m a p p i n g s i n l o c a l l y convex s p a c e s h a s b e e n s t u d i e d by a c o n s i d e r a b l e n u m b e r of a u t h o r s , a n d we r e f e r t o D i n e e n ' s r e c e n t book [I] f o r r e f e r e n c e s , a s w e l l a s t o Nachbin [l] f o r a n i n t r o d u c t i o n a n d r e f e r e n c e s . T h e r e a r e a l s o m a n y books a n d v o l u m e s of P r o c e e d i n g s c o n c e r n i n g t h i s s u b j e c t : B a r r o s o [l, 2 , 3, 41, Boland [3], C o e u r 6 [l], Dineen [l] , Hayden-Suffridge [l] , HervC [l], Lelong [ Z , 33, Lelong-Skoda [l], Machado [l] , M a t o s [7], Mazet [l] , Mujica [l] , Nachbin [ Z ] , N o v e r r a z [l, 43, Z a p a t a [l] , e t c . L e t u s a l s o m e n t i o n the s u r v e y a r t i c l e s N a c h b i n [l, 3 , 51, B i e r s t e d t - M e i s e [Z] , C o l o m b e a u - M a t o s [ Z ] , Dineen [lo] Concerning holomorphic functions on n u c l e a r F r k c h e t s p a c e s a n d v e r y i m p o r t a n t c o u n t e r e x a m p l e s s e e M e i s e Vogt [ 2 , 31
.
.
T h e h o l o m o r p h i c r e p r e s e n t a t i o n of F o c k s p a c e s of B o s o n f i e l d s i s e x p o s e d o r u s e d i n B e r e z i n [l] , Novozhilov-Tulub [l], S a r a v a s t i - V a l a t i n [l], R z e w u s k i [l, 2 3 , Dwyer [l, 2 , 3 , 4 J , C o l o m b e a u - P e r r o t [l, 2 , 31, K r 6 e [l, 21, K r g e - R a c z k a [l]
.
CHAPTER 3 T h e o r e m s 3 . 1 . 2 , 3 . 2 . 1 , 3 . 2 . 3 a n d 3 . 3 . 1 a r e r e f o r m u l a t i o n s of c l a s s i c a l r e s u l t s . E x a m p l e 3 ' 2 . 4 is t a k e n f r o m C o l o m b e a u [9,10] ; a s i milar c o u n t e r e x a m p l e w a s o b t a i n e d independently in H i r s c h o w i t z [l] E x a m p l e 3 . 3 . 3 i s t a k e n f r o m Colombeau [17] A m o r e g e n e r a l f o r m of t h e o r e m 3 . 4 . 3 - 4 i s in C o l o m b e a u - L a z e t [l] , C o l o m b e a u [lo]
.
.
.
S o m e l i t t e r a t u r e on Z o r n , H a r t o g s a n d M o n t e l ' s t h e o r e m s i s i n Dineen [ l ] , S e b a s t i c o e Silva [l, 21, Hille [l] , H i l l e - P h i l l i p s [l],
426
Bibliographic Notes
L a z e t [l, 2 3 , Colombeau [l, 9,10,17], Col.ombeau-Lazet [l] , N o v e r r a z [l, 2 1 , B o c h n a k - S i c i a k [l, 21, P i s a n e l l i [3, 43, Matos [I, 23, .
. ..
CHAPTER 4 T h e o r e m s 4 . 2 . 1 - 2 , 4 . 3 . 1 , 4 . 4 . 1 w e r e obtained i n C o l o m b e a u P e r r o t [2,4,5]. T h e o r e m s 4 . 2 . 4 , 4 . 3 . 4 , 4 . 4 . 2 w e r e obtained i n a n unpublished m a n u s c r i p t Colombeau [ll] ; s e e a l s o M e i s e [l] a n d C o l o m b e a u M e i s e [l]. T h e s t r i c t l y c o m p a c t p o r t e d topology w a s i n t r o d u c e d i n BianchiniP a q u e s - Z a i n e [l] a n d p r o p o s i t i o n 4 . 1 . 4 w a s obtained i n C o l o m b e a u - M e i s e P e r r o t [l] N a c h b i n ' s p o r t e d t o p o l o g y w a s defined i n Nachbin [2] f o r hol o m o r p h i c functions on Banach s p a c e s . T h i s last book o r i g i n a t e d a v e r y i m p o r t a n t t r e n d of w o r k s , in p a r t i c u l a r on topologies i n s p a c e s of holom o r p h i c m a p p i n g s , a n d t h i s last topic i s t r e a t e d i n d e t a i l i n t h e r e c e n t book Dineen [l], to which we r e f e r . Let u s j u s t m e n t i o n r e c e n t r e s u l t s i n Dineen [9], Boland-Dineen [4], M e i s e [ 21, Mujica €21
.
.
CHAPTER 5 T h e o r e m 5.1.2 w a s obtained i n the m o r e g e n e r a l c a s e of a f i n i t e l y Runge open s e t 0 in C o l o m b e a u - M e i s e - P e r r o t [l]. T h e o r e m 5 . 2 . 1 w a s obtained in C o l o m b e a u - M e i s e [l], s e e a l s o M e i s e [l] T h e proof of t h e o r e m 5 . 3 . 1 is a n i m m e d i a t e a d a p t a t i o n of a proof i n B o n i c - F r a m p t o n [I].
.
G e n e r a l i z a t i o n s of N a c h b i n ' s A p p r o x i m a t i o n T h e o r e m a r e i n P r o l l a [ 2 , 31, G u e r e i r o - P r o l l a [l], s e e a l s o Nachbin [7]
.
T h e r e s u l t s in t h i s c h a p t e r w e r e c h o s e n s i n c e we u s e t h e m i n t h i s book. S e v e r a l o t h e r r e s u l t s of e x i s t e n c e a n d a p p r o x i m a t i o n a r e i n c h a p t e r s 6 , 9 t o 16. S o m e r e s u l t s which a r e not i n t h i s book a r e s u r v e y e d i n : Dineen [l], J o s e f s o n Schottenloher [l] T h e y c o n c e r n (1) . , ( 2 ) e x i s t e n c e of ho[ 1 , 2 3 , R u s e k [I], Bayoumi [l], l o m o r p h i c functions with p r e s c r i b e d r a d i u s of c o n v e r e n c e : A r o n T i f , C o e u r 6 [2], K i s e l m a n 11, 2 , 31, Schotten-&rvey in Schottenloher [l] contains a l s o o t h e r t o p i c s r e l a t e d with following c h a p t e r s of t h i s book. E x i s t e n c e r e s u l t s on h o l o m o r p h i c f u n c t i o n s with p r e s c r i b e d v a l u e s a t a n infinite given s e t of points a r e in H e r v i e r [I], Valdivia [l] R e s u l t s on e x t e n s i o n s of h o l o m o r p h i c f u n c t i o n s defined in a c l o s e d s u b s p a c e of a l o c a l l y convex s p a c e a r e i n B o l a n d r 3 ] , A r o n - B e r n e r [l], Colombeau-Mujica Meise-Vogt [3] R e s u l t s of e x i s t e n c e of Co3 holomorphic ma in s with p r e s c r i b e d a s y m p t o t i c e x a n s i o n s a r e i n G b e a T d k & - 5 , 1 6 ] , Colombeau-Mujici&zr.
.
.
.
~
m:
.
CHAPTER 6 T h e o r e m 6.1.1 w a s obtained in a m o r e r e s t r i c t i v e c a s e i n A r o n Schottenloher [l], Schottenloher [3], a n d in m o r e g e n e r a l i t y i n P a q u e s [l]
.
421
Bibliographic Notes
C o r o l l a r y 6.1.4 w a s d i r e c t l y obtained f o r Cn f u n c t i o n s in M e i s e [l] w h e r e a d e t a i l e d proof is g i v e n . A m o r e g e n e r a l f o r m of t h e o r e m 6 . 2 . 1 i s in C o l o m b e a u - M e i s e [l] t h e o r e m 3 . 5 . C o r o l l a r y 6 . 2 . 2 w a s d i r e c t l y obtained in Colombeau [ll] a n d i s a l s o in C o l o m b e a u - M e i s e [l] t h e o r e m 3 . 6 T h e o r e m 6 . 3 . 2 i s i n C o l o m b e a u - M e i s e - P e r r o t [l] A m o r e g e n e r a l f o r m of t h e o r e m 6 . 3 . 3 i s in C o l o m b e a u - M e i s e [l] r e m a r k 4 . 5 .
.
F o r o t h e r p a p e r s on t h e A p p r o x i m a t i o n P r o p e r t y of 'Q (Q), X(Q) a n d Cn(Q) s e e P a q u e s [2], A r o n - S c h o t t e n l o h e r [l] , M e i s e [l], B o m b a l Gordon-Gonzalez Llavona [l] . U s e of the " k e r n e l t h e o r e m " 6.1.4 t o a study of l i n e a r o p e r a t o r s o n F o c k s p a c e s of Boson f i e l d s i s done in C o l o m b e a u - P e r r o t [l, 2 , 3 ] , Kre'e [l, 21, K r i e - R a c z k a [l]
.
CHAPTER 7 T h e o r e m 7 . 2 . 1 w a s obtained in C o l o m b e a u - P e r r o t [6] but is a l s o a c o n s e q u e n c e of a t h e o r e m in Boland (2, 31, s e e C o l o m b e a u - P e r r o t [6]. T h e o r e m 7 . 4 . 1 is i n A n s e m i l - C o l o m b e a u [l] a n d t h e o r e m " 7 . 4 . 7 i n C o l o m b e a u - P o n t e [l]
.
T h e f i r s t r e s u l t o n t h e F o u r i e r - B o r e 1 i s o m o r p h i s m i n infinite d i m e n s i o n w a s obtained by Gupta [l, 2 , 3 ] f o r e n t i r e f u n c t i o n s of n u c l e a r type on Banach s p a c e s . T h i s r e s u l t w a s e x t e n d e d to l o c a l l y convex s p a c e s in M a t o s [ 3 , 4 ] a n d Boland [ 2 , 3 ] . F o r connections b e t w e e n t h e above r e s u l t s of Boland a n d Matos s e e C o l o m b e a u - M a t o s [l] . S p a c e s of h o l o m o r p h i c g e r m s w e r e i n t e n s i v e l y s t u d i e d , s e e t h e book Dineen [l] ; let u s only quote Mujica [l. 2, 31, Dineen [5], B i e r s t e d t M e i s e (1, 21, A r a g o n a [l] , S o r a g g i [l] , Biagioni [l]
.
T h e difficulty to extend the c l a s s i c a l P a l e y - W i e n e r - S c h w a r t z t h e o r e m t o infinite d i m e n s i o n w a s pointed out i n Dineen-Nachbin [l] T h e n a P. W .S. t h e o r e m w a s obtained i n A b u a b a r a [l, 21 a n d h i s i d e a w a s a d a p t e d t o the c a s e of n u c l e a r s p a c e s i n A n s e m i l - C o l o m b e a u [l]. O t h e r r e s u l t s w e r e obtained by defining a s u i t a b l e s p a c e of Coo f u n c t i o n s i n C o l o m b e a u Ponte [l] f o r t h e c a s e of n u c l e a r s p a c e s a n d in C o l o m b e a u - P a q u e s [l] f o r the c a s e of Banach s p a c e s . See a l s o o t h e r kinds of P . W . S . t h e o r e m s in t h i s book c h a p t e r 13 ( C o l o m b e a u - P a q u e s [3] ), i n C o l o m b e a u - P a q u e s [a] a n d Gal6 [l]
.
.
CHAPTER 8 T h e o r e m s 8.1.1-2 a r e r e f o r m u l a t i o n s of a r e s u l t obtained i n d e pendently i n Boland [4] a n d W a e l b r o e c k [I] T h e proof g i v e n h e r e is t h a t of C o l o m b e a u - P e r r o t [ 7 ] obtained l a t e r . T h e o r e m s 8 . 2 . 5 - 6 w e r e g i v e n in C o l o m b e a u - M e i s e [2] a n d a r e e x t e n s i o n s of a r e s u l t i n B i e r s t e d t - G r a m s c h Meise [l] T h e o r e m 8 . 3 . 2 i s due to M e i s e [ 3 ] , s e e a l s o C o l o m b e a u - M e i s e
.
bl
.
*
428
Bibliographic Notes
M o r e r e c e n t l y in B o r g e n s - M e i s e - V o g t [l, 2, 31 a p p e a r e d a unified proof of all n u c l e a r i t y r e s u l t s p r e s e n t l y known in Infinite D i m e n s i o n a l Holomorphy, a n d i t is e a s y to s e e t h a t t h e m e t h o d s t h e r e a l s o apply t o the s p a c e s K s ( n ) s i n c e the p r o o f s r e l y on l e m m a s dealing with t h e B a n a c h space situation. CHAPTER 9 T h e o r e m 9 . 4 . 1 i s in C o l o m b e a u - P e r r o t [8], a s well a s a p h y s i c a l i n t e r p r e t a t i o n of t h e s e e q u a t i o n s . A d i f f e r e n t proof a n d f u r t h e r r e s u l t s a r e in Colombeau-Matos [2]. CHAPTER 10 T h e o r e m s 1 0 . 2 . 6 and 1 0 . 3 . 4 a r e i n C o l o m b e a u - P e r r o t [9] a n d we expose h e r e the proof of t h i s p a p e r s i n c e we s h a l l n e e d it a l s o i n c h a p t e r 16. Another proof will be given in c h a p t e r 11, a n d will be t a k e n f r o m C o l o m b e a u G a y - P e r r o t [l] A t h i r d proof is i n C o l o m b e a u - M a t o s [ 2 ] .
.
O t h e r r e s u l t s on convolution e q u a t i o n s i n s p a c e s of e n t i r e f u n c t i o n s of exponential type a r e i n Boland-Dineen [3] ; they a r e obtained f r o m t h e f i n i t e d i m e n s i o n a l r e s u l t s by a method of t r a n s f i n i t e induction. A g r e a t a m o u n t of r e s u l t s on r e l a t e d e q u a t i o n s i s i n Dwyer [l, 2, 3, 4,5, 6, 7,8] , i m p r o v e d in p a r t i n C o l o m b e a u - D w y e r - P e r r o t [l]
.
CHAPTER 11 T h e W e i ' e r s t r a s s p r e p a r a t i o n t h e o r e m s 11.1.3-4 a r e in M a z e t [l], 8 11.2 is taken f r o m S c h w a r t z [4]. T h e o r e m 11.3.1 w a s obtained R a m i s [l]. i n C o l o m b e a u - G a y - P e r r o t [l] P r o p o s i t i o n 11.5.2 a n d t h e o r e m 1 1 . 6 . 2 a r e in Chansolme €13.
.
CHAPTER 12
.
T h e o r e m s 1 2 . 6 . 1 and 1 2 . 6 . 3 w e r e obtained i n Gupta [l, 2 , 3 ] T h e o r e m s 1 2 . 7 . 1 and 1 2 . 7 . 4 w e r e obtained in C o l o m b e a u - M a t o s [3]. T h e o r e m 1 2 . 7 . 5 w a s obtained i n C o l o m b e a u - P e r r o t [6], t h e o r e m 1 2 . 8 . 2 i n BolandDineen [3] a n d t h e o r e m 1 2 . 8 . 3 i n C o l o m b e a u - P a q u e s [3)
.
P a r t i c u l a r c a s e s of t h e o r e m s 12.7.1, 1 2 . 7 . 4 a n d 1 2 . 7 . 5 a r e i n Matos [5], B e r n e r [l) , Boland [2, 39 A l r e a d y i n 1970 M a t o s e x t e n d e d G u p t a ' s r e s u l t s [l, 2 , 31 to l o c a l l y convex s p a c e s i n M a t o s [3, 41 T h e n Boland [2, 31 obtained r e s u l t s i n n u c l e a r s p a c e s . F o r c o n n e c t i o n s between t h e s e l a s t r e s u l t s s e e C o l o m b e a u - M a t o s [l] . L e t u s a l s o m e n t i o n Matos [ 6 , 8 ] , a s u r v e y a n d f u r t h e r r e f e r e n c e s in C o l o m b e a u - M a t o s [ 2 ) . Convolution e q u a t i o n s i n s p a c e s of h o l o m o r p h i c g e r m s a r e s t u d i e d i n Biagioni[l]
.
.
CHAPTER 13 T h e o r e m 1 3 . 4 . 1 i s i n C o l o m b e a u - P a q u e s [3]. T h e s e r e s u l t s , a s well
.
429
Bibliographic Notes
a s o t h e r r e s u l t s , w e r e obtained independently with a d i f f e r e n t proof by S c h w e r d t f e g e r [l] . O t h e r r e s u l t s a r e i n A n s e m i l - P e r r o t [l]
.
CHAPTER 14 $1 r e v i e w s c l a s s i c a l definitions on pseudo-convexity i n l o c a l l y convex s p a c e s . T h i s m a t e r i a l i s given i n m u c h m o r e d e t a i l i n N o v e r r a z [l, 43 T h e o r e m 1 4 . 2 . 3 i s in G r u m a n - K i s e l m a n [l] , t h e o r e m 1 4 . 2 . 5 i s in Colombeau-Mujica [3] but follows a l s o e a s i l y f r o m S c h o t t e n l o h e r €43 . T h e o r e m 1 4 . 3 . 8 i s t a k e n f r o m N o v e r r a z [3,4] a n d t h e o r e m 14.4.1 f r o m C o l o m b e a u - P e r r o t [ll] w h e r e it is a l e m m a f o r the s o l u t i o n of t h e 6 e q u a t i o n
.
T h e L k v i p r o b l e m w a s s o l v e d in s e p a r a b l e H i l b e r t s p a c e s a n d i n l i n e a r s p a c e s equipped with t h e finite d i m e n s i o n a l bornology by G r u m a n [l], t h e n i n B a n a c h s p a c e s with b a s i s i n G r u m a n - K i s e l m a n [l]. A c o u n t e r e x a m p l e i n non s e p a r a b l e B a n a c h s p a c e s is in Josefson[3].The L k v i p r o b l e m w a s t h e n s o l v e d in Silva s p a c e s with b a s i s i n Pome's [l]. V e r y g e n e r a l r e s u l t s w e r e obtained in Schottenloher [4] f o r d o m a i n s s p r e a d o v e r locally convex s p a c e s with a S c h a u d e r d e c o m p o s i t i o n . A f t e r t h e s e l a s t r e s u l t s w e r e obtained, o t h e r p r o o f s i n F r C c h e t s p a c e s with b a s i s a n d Silva s p a c e s with b a s i s w e r e published i n D i n e e n - N o v e r r a z - S c h o t t e n l o h e r [l], a s w e l l a s t h e c a s e of all n u c l e a r Silva s p a c e s i n C o l o m b e a u - M u j i c a [ 3 ] , S e e a l s o Mujica [4] f o r a s u r v e y a n d new r e s u l t s . See t h e H i s t o r i c a l N o t e s i n Dineen [l] f o r t h e evolution of t h i s p r o b l e m i n infinite d i m e n s i o n . CHAPTER 15 T h e o r e m 1 5 . 7 . 1 i s i n C o l o m b e a u - P e r r o t [ll], ( s e e a l s o N o s s k e equa[l]). A w e a k e r r e s u l t w a s i n Raboin [7] a n d t h e r e s o l u t i o n of t h e t i o n i n t h e whole s p a c e w a s in C o l o m b e a u - P e r r o t [lo] T h e o r e m 1 5 . 8 . l is in C o l o m b e a u - M u j i c a [l].
.
T h e 5 equation i n s e p a r a b l e H i l b e r t s p a c e s w a s s t u d i e d by H e n r i c h [l] when t h e s e c o n d m e m b e r h a s a polynomial g r o w t h . He u s e s i n t e g r a t i o n t h e o r y a c c o r d i n g to G a u s s m e a s u r e i n H i l b e r t s p a c e s a n d h e o b t a i n s solutions defined on a d e n s e s u b s p a c e . L a t e r Raboin el, 2, 3 , 4 , 5, 6,7] s t u d i e d t h e b equation i n a r b i t r a r y pseudo-convex open s u b s e t s of s e p a 2 r a b l e H i l b e r t s p a c e s , without g r o w t h condition. He u s e s H ( 3 r m a n d e r ' s L e s t i m a t e s a n d i n t e g r a t i o n t h e o r y a c c o r d i n g to G a u s s m e a s u r e . When t h e s e c o n d m e m b e r i s Coo a n d of bounded t y p e , h e o b t a i n e d e x i s t e n c e of C 1 solutions defined o n a d e n s e s u b s p a c e . H i s t h e o r e m is published in Raboin [l, 2, 3, 4, 5, 6, 71 i n which i t s proof i s s k e t c h e d at v a r i o u s l e v e l s . It is v e r y c l o s e t o a n i m p r o v e m e n t of the l e m m a 1 5 . 4 . 1 of t h i s book. I n p a r t i c u l a r he obtained a s c o n s e q u e n c e s s o m e e x i s t e n c e r e s u l t in n u c l e a r Silva s p a c e s roblem in these with b a s i s (Raboin [7] ) a n d t h e solution of t h e f i r s t C o u s i n ps p a c e s (Raboin [6, 71). T h e n i n C o l o m b e a u - P e r r o t [lo] the 0 e q u a t i o n w a s s o l v e d , i n the c a s e of all n u c l e a r Silva s p a c e s , but only i n the whole s p a c e . F o r t h i s a c o m p l i c a t e d i m p r o v e m e n t of t h e a b o v e R a b o i n ' s proof w a s u s e d t o obtain i n t h e H i l b e r t i a n f r a m e w o r k a Cw solution on a d e n s e s u b s p a c e , which w a s u s e d a s a l e m m a . T h e n t h i s r e s u l t w a s extended t o a r b i t r a r y pseudo-convex open s u b s e t s of n u c l e a r Silva s p a c e s i n C o l o m b e a u -
430
Bibliographic Notes
P e r r o t [ll], and independently in N o s s k e el]. L a t e r a l a r g e p a r t of R a b o i n ' s proof a n d all i t s long i m p r o v e m e n t i n C o l o m b e a u - P e r r o t [lo] w e r e r e p l a c e d by a c o n s i d e r a b l y s h o r t e r proof of a n hypoellipticity r e s u l t due t o Mazet [2] ( l e m m a 15.5.1 of t h i s book). Still l a t e r a t e c h n i c a l a s s u m p t i o n on the s e c o n d m e m b e r , c o n s i d e r e d i n Raboin [7], w a s p r o v e d t o be a l w a y s t r u e i n Colombeau-Mujica [l] ( t h e o r e m 1 . 6 . 3 of t h i s book), S O t h a t t h e conjunction of Raboin [ 7 ] , Mazet [2] a n d Colombeau-Mujica [l] g i v e s in t h e p a r t i c u l a r c a s e of n u c l e a r Silva s p a c e s with b a s i s a proof d i f f e r e n t f r o m the f o r m e r proofs i n C o l o m b e a u - P e r r o t [ll] a n d N o s s k e [l] (that do not u s e the b a s i s a s s u m p t i o n ) . T h i s c o n c e r n e d the c a s e of 0 , l f o r m s ; the c a s e of p , q f o r m s with q > 1 r e m a i n s unsolved. V e r y i n t e r e s ting c o u n t e r e x a m p l e s of a different n a t u r e , i n Dineen [ 8 ] and M e i s e Vogt [3], show that even t h e c a s e of 0 , l f o r m s is not in g e n e r a l s o l vable in n u c l e a r F r k c h e t s p a c e s . F i n a l l y we m u s t mention that a " p e r sonal" a p p r e c i a t i o n on the r e s p e c t i v e contributions of s o m e of t h e s e a u t h o r s was published in K r a m m [l]. CHAPTER 16 T h e o r e m 16.1.1 is a s t a n d a r d consequence of t h e o r e m 15.7.1 a n d was f o r m e r l y obtained, a s a l r e a d y quoted a b o v e , i n t h e p a r t i c u l a r c a s e of s p a c e s with b a s i s i n Raboin [6, 74. T h e c o u n t e r e x a m p l e i n $ 16.2 i s taken f r o m Dineen [ 8 ] . T h e o r e m 16.3.1 w a s published i n C o l o m b e a u G a y - P e r r o t [l] . O t h e r applications a r e in K r a m m
111.
BIBLIOGRAPHY
A ' k o m p l e t e " b i b l i o g r a p h y on t h e s u b j e c t of t h e book would include m o r e t h a n 1000 i t e m s , s o t h e p r e s e n t b i b l i o g r a p h y is q u i t e u n c o m plete. F o r p a p e r s o n H o l o m o r p h y w e r e f e r t o t h e v e r y good b i b l i o g r a p h y of the r e c e n t D i n e e n ' s book [ 13. F o r p a p e r s o n D i f f e r e n t i a l C a l c u l u s wre r e f e r t o t h e v e r y g o o d - but now m o r e t h a n 1 0 y e a r s o l d - b i b l i o g r a p h i e s in A v e r b u c k - S m o l y a n o v [ 2 ] and N a s h e d [ 1 3 .
T. A b u a b a r a 1. 2.
On t h e P a l e y - W i e n e r - S c h w a r t z t h e o r e m i n infinite d i m e n s i o n A t t i A c a d . Naz. L i n c e i 6 8 , 1977, p 192-194. A v e r s i o n of t h e P a l e y - W i e n e r - S c h w a r t z t h e o r e m i n infinite d i m e n s i o n . A d v a n c e s i n H o l o m o r p h y , J . A . B a r r o s o e d . , N o r t h Holland Math. S t u d i e s 34, 1 9 7 9 , p 1 - 2 9 .
.
J. M. A n s e m i l , J . F. C o l o m b e a u The Paley-Wiener-Schwartz theorem in nuclear spaces. 1 R e v u e R o u m . d e Math. P u r e s Appl. 2 6 , 2 , 1981, p.169-181. J. M. A n s e m i l , B . P e r r o t 1 C a f u n c t i o n s i n infinite d i m e n s i o n and l i n e a r p a r t i a l differential difference equations with constant coefficients, preprint, J.Aragona
R. A r o n
1
H o l o m o r p h i c a l l y s i g n i f i c a n t p r o p e r t i e s of s p a c e s of holomorphic g e r m s . Advances in Holomorphy, J . A . B a r r o s o e d . , N o r t h Holland Math S t u d i e s 34, 1979, p 3 1 - 4 6
1
E n t i r e f u n c t i o n s of unbounded t y p e on a B a n a c h s p a c e . Boll U n . Mat. I t a l . 9 , 1974, p 2 8 - 3 1 .
R . A r m , P. B e r n e r A Hahn-Banach extension t h e o r e m f o r analytic mappings. 1 Bull.. S O C . Math. F r a n c e 106, 1978, p 3 - 2 4 . R . A r o n , M. S c h o t t e n l o h e r C o m p a c t h o l o m o r p h i c m a p p i n g s on Bar.ach s p a c e s and 1 t h e A p p r o x i m a t i o n P r o p e r t y . J . F u n c t . A n a . 21, 1976 p. 7 - 3 0 . 43 1
432
Bibliography
V . I. A v e r b u c k , 0. G. Smolyanov The t h e o r y of d i f f e r e n t i a t i o n in l i n e a r topological s p a c e s . 1 R u s s i a n Math. S u r v e y s 2 2 , 6 , 1967, p 2 0 1 - 2 5 8 . The v a r i o u s definitions of t h e d e r i v a t i v e in l i n e a r topolo2 g i c a l s p a c e s . R u s s i a n Math. S u r v e y s 2 3 , 4 , 1968, p 67-11? M.S. Baouendi, C. Goulaouic Cauchy p r o b l e m s with c h a r a c t e r i s t i c i n i t i a l h y p e r s u r f a c e . 1 C o m m . P u r e Appl. Math 36, 1973, p 4 3 3 - 4 7 3 . Singular Nonlinear Cauchy P r o b l e m s . J . Diff. E y . 22, L 1976, p. 268-291 . J.A.
Barroso 1
2 3 4
A . Bayoumi
1
F . A . Berezin 1
P. B e r n e r 1
H . A . Biagi0r.i 1
M. Bianchini 1
2
Introduccion a la H o l o m o r f i a e n t r e E s p a c i o s N o r m a d o s . Universidad d e Santiago d e C o m p o s t e l a , 1976, Spain. Introduccion a l a H o l o m o r f i a e n t r e E s p a c i o s L o c a l m e n t e Convexos. Universidad d e V a l e n c i a , 1980, S p a i n . ( E d i t o r ) : A d v a n c e s in Holomorphy. N o r t h Holland Math. Studies 3 4 , 1 9 7 9 . ( E d i t o r ) F u n c t i o n a l A n a l y s i s , Holomorphy and Appronima tion T h e o r y N o r t h Holland Math Studies, t o a p p e a r i n 1982.
.
Bounding s u b s e t s of s o m e m e t r i c v e c t o r s p a c e s f o r Math 18, 1, 1980, p 13-17 .
. Archiv
The Method of Second Quantization. A c a d e m i c P r e s s . 1966. Convolution o p e r a t o r s and s u r j e c t i v e limits. A d v a n c e s in Holomorphy, J . A . B a r r o s o ed, N o r t h Holland Math. Studies 3 4 , 1979, p 9 3 - 1 0 2 . O p e r a d o r e s d e convoluqao no e s p a q o d e g e r m e s holomor: fos d e tip0 n u c l e a r . T h e s i s . C a m p i n a s 1981. Silva Holomorphy t y p e s , B o r e 1 t r a n s f o r m s and P a r t i a l Differential o p e r a t o r s , F u n c tinnal A n a l y s i s , Holomorphy and A p p r o x i m a t i o n T h e o r y , S. Machado e d . , L e c t u r e Notes in Math 843, S p r i n g e r V e r l a g 1981, p 55-92 K ( E ) bounded s u b s e t s of a locally convex s p a c e . A d v a n c e s in Holomorphy, J . A . B a r r o s o e d . , North Holland Math. Studies 34, 1979, p 103-110
.
M. Bianchini, O . W . P a q u e s , C. Zaine On the s t r o n g c o m p a c t ported topology f o r s p a c e s of 1 holomorphic m a p p i n g s . P a c i f i c J. of Math. 7 7 , 1, 1978, p 33-49.
433
Bibliography
K.D. Bierstedt, B. G r a m s c h , R. Meise A p p r o x i m a t i o n s e i g e n s c h a f t , Lift ing und Kohomolog i e bei 1 l o c a l c o n v e x P r o d u c k t g a r b r n . M a n u s c r i p t a Math. 1 9 , 1976, p 319-364. K.D. B i e r s t e d t , R . M e i s e N u c l e a r i t y and the S c h w a r t z p r o p e r t y i n t h e t h e o r y of 1 holomorphic functions on m e t r i z a b l e locally convex spaces. Infinite D i m e r i s i o n a l H o l o m o r p h y and A p p l i c a t i o n s , M. C. M a t o s , e d . , N o r t h Holland Math. S t u d i e s 12, 1977, p 9 3 - 1 2 9 . A s p e c t s of i n d u c t i v e l i m i t s in s p a c e s of g e r m s of 2 h o l o m o r p h i c f u n c t i o n s on l o c a l l y c o n v e x s p a c e s and a p p l i c a t i o n t o a study of ( x ( U ) , T J . A d v a n c e s in Holomorphy, J . A . B a r r o s o e d . , N o r t h Holland Math. S t u d i e s 34, 1979, p 111-1786
3. B o c h n a k , J. S i c i a k P o l y n o m i a l s and m u l t i l i n e a r m a p p i n g s i n t o p o l o g i c a l v e c t o r 1 2 s p a c e s . Studia Math. 39, 1971, p 5 9 - 7 6 . A n a l y t i c f u n c t i o n s in t o p o l o g i c a l v e c t o r s p a c e s . Studia M a t h . 39, 1971, p 77-112.
N . N . Bogoliubv, D.V. Shirkov 1 I n t r o d u c t i o n t o t h e T h e o r y of Quantized F i e l d s . I n t e r s c i e r x e Publ. 1959.
P. J. Boland
1
2
3 4
H o l o m o r p h i c f u n c t i o n s on n u c l e a r s p a c e s . T r a n s . A.M.S 209, 1975, p 275-281 M a l g r a n g e t h e o r e m f o r e n t i r e f u n c t i o n s on n u c l e a r s p a c e s P r o c e e d i n g s or. Infinite Diknensional Ho1omorphy.T. L. H a y d e n and T . J . Suffridge e d i t o r s , L e c t u r e N o t e s i n M a t h 364, S p r i n g e r V e r l a g , 1 9 7 4 , ~1 3 5 - 1 4 4 . Holomorphic functions on nuclear spaces. Universidad de S a n t i a g o d e C o m p o s t e l a , 1977, S p a i n . A n e x a m p l e of a n u c l e a r s p a c e i n Infinite D i m e n s i o n a l H o l o m o r p h y . A r k i v f o r M a t . 15, 1977, p 8 7 - 9 1 .
-
P. J. B o l a n d , S. D i n e e n D u a l i t y t h e o r y f o r s p a c e s of g e r m s and h o l o m o r p h i c 1 f u n c t i o n s on n u c l e a r s p a c e s . A d v a n c e s in H o l o m o r p h y , J . A . B a r r o s o e d . , N o r t h Holland Math. S t u d i e s 34, 1979 p 179-207. 2 H o l o m o r p h y O R s p a c e s of d i s t r i b u t i o n s , P a c i f i c j . of Math. 92, 1, 1981, p 2 7 - 3 4 * 3 Convolution o p e r a t o r s on G - h o l o m o r p h i c f u n c t i o n s i n infinite d i m e n s i o n . T r a n s . A . M . S . 1 9 0 , 1974, p 3 1 3 - 3 2 3 . 4 H o l o m o r p h i c f u n c t i o n s on f u l l y n u c l e a r s p a c e s . B u l l . S O C . Math. F r a n c e 106, 1978, p 311-336
-
F. B o m b a l G o r d o n , J . L. G o n z a l e z Llavona La propriedad d e approximacion en espacios de functiones 1 d i f e r e c c i a b l e s . R e v i s t a A c a d . Ci. M a d r i d 70, 1976, p 7 2 7 - 7 4 1 .
434
Bibliography
R . B o n i c , J. FramptDn 1 Smooth f u n c t i o n s on B a n a c h m a n i f o l d s . J. of Math. and M e c h . 1 5 , 1966, p 8 7 7 - 8 9 8 . M. B o r g e n s , R . M e i s e , D . Vogt F o n c t i o n s h o l o m o r p h e s s u r c e r t a i n s e s p a c e s Bchelonne's 1 e t h -nucle'arite'. C o m p t e s R e n d u s A c a d . Sci. P a r i s 290, 1980, p 2 2 9 - 2 3 2 . 2 E n t i r e f u n c t i o n s on n u c l e a r s e q u e n c e s p a c e s . J . r e v u e Angew m a t h . 322, 1981, p 1 9 6 - 2 2 0 . ~ ( a n) u c l e a r i t y in Infinite D i m e n s i o n a l Holomorphy, Math. 3 N a c h r i t e n , in p r e s s . N. B o u r b a k i 1 2
E s p a c e s Vectoriels Topologiques. H e r m a n n , Paris. Integration. Hermann, P a r i s .
W . Bucher, A . Frolicher 1 C a l c u l u s i n v e c t o r s p a c e s without n o r m . L e c t u r e N o t e s M a t h 30, S p r i n g e r V e r l a g , 1 9 6 6 .
H. C d r t a n
1
D. Chansolme 1 P. Du C h a t e a u 1 G. C o e u r 6 1
iE
C a l c u l d i f f 6 r e n t i e l . H e r m a n n , P a r i s . C o l l e c t i o n Me'thodes. On t h e d i v i s i o n of d i s t r i b u t i o n s by a n a l y t i c f u n c t i o n s in T r d n S of A . M . S . in p r e s s , locally c o n v e x s p a c e s
.
T h e C a u c h y - G o u r s a t p r o b l e m . M e m o i r s of A . M . S . 1972.
118,
A n a l y t i c F u n c t i o n s and Manifolds i n Infinite D i m e n s i o n a l S p a c e s . N o r t h Holland Math S t u d i e s 11, 1974 Sur le rayon de bornologie d e s fonctions holomorphes. Journe'es d e f o n c t i o n s a n a l y t i q u e s , P. L e l o n g e d . , L e c t u r e N o t e s i n Math 5 7 8 , S p r i n g e r V c r l a g 1977, p 183-194. . I
2
J. F . C o l o m b e a u 1 D i f f e ' r e c t i a t i o n e t B o r n o l o g i e . Th'ese , B o r d e a u x 1 9 7 3 . S u r l e s e'quations d i f f e ' r e n t i e l l e s d a n s l e s e s p a c e s vectoriels 2 topologiques ou b o r n o l o g i q u e s . Rev. R o u m . Math. P u r e s Appl. 2 0 , 1, 1 9 7 5 , ~1 9 - 3 2 . 3 S u r la d i f f e ' r e t i a b i l i t e ' d a n s l e s e s p a c e s d e F r C c h e t . P u b l i c . Dept. Math. L y o n 10, 2 , 1973, p 4 1 - 5 2 S u r q u e l q u e s p a r t i c u l a r i t e ' s d u C a l c u l Diffe'rentiel d a n s l e s 4 e s p a c e s v e c t o r i e l s topologiques e t b o r n o l o g i q u e s . R e v . R o u m . Math. P u r e s . Appl. 1 8 , 1 , 1973, p 3-17. L ' i n v e r s i o n d ' u n e a p p l i c a t i o n diffe'rentiable e n t r e e s p a c e s 5 b o r n o l o g i q u e s . C o m p t e s Rend. A c a d . Sci. P a r i s 270, 1970, p. 1692-1694 0
.
435
Bibliography
6 7
8
9 10
11 12
13
14
15 16 17 18
F o n c t i o n s i m p l i c i t e s e t kquations d i f f k r e n t i e l l e s dar.s l e s e s p a c e s b o r n o l o g i q u e s . C o m p t e s Rend. A c a d . Sci. P a r i s 272, 1971, p 240-243. Quelques applications d e s fonctions implicites dans l e s e s p a c e s b o r n o l o g i q u e s . B u l l . S O C . Math. F r a m e , M e m o i r e s 3 1 - 3 2 , 1972, p 1 0 9 - 1 1 5 0 On s o m e v a r i o u s notioris of Infinite D i m e n s i o n a l h ' o l o m o r phy. P r o c e e d i n g s on Infinite C i m e n s i o n a l H o l o m o r p h y , T . L . Hayden and T . J. S u f f r i d g e e d i t o r s , L e c t u r e N o t e s i n Math. 364, S p r i n g e r V e r l a g , 1974, p 1 4 5 - 1 4 9 . Quklque s e x e m p l e s s i n g u l i e r s d ' a p p l i c a t i o n s G -a na l y t i y u e s a n a l y t i y u e s e t d i f f k r e n t i a b l e s e n d i m e n s i o n infinie. C o m p t e s R e n d u s A c a d . Sci. P a r i s 273, 1971, p 1 5 8 - 1 6 0 . Sur les applications G-analytiques e t analytiques e n d i m e n s i o n infinie. S e m i n a i r e P. L e l o n g 1971-72. L e c t u r e N o t e s i n Math. 332, S p r i n g e r V e r l a g 1973, p 4 8 - 5 8 . S p a c e s of C'X' m a p p i n g s i n infinitely m a n y d i m e n s i o n s and a p p l i c a t i o n s , unpublished p a p e r , 1977. D i f f e r e n t i a b l e m a p p i n g s on r e a l n u c l e a r Silva s p d c e s and a p p l i c a t i o n s . R e v . R o u m . Math. P u r e s A p p l . 25, 1, 1980, p 13-20. h f i n i t e d i m e n s i o n a l Cm m a p p i n g s w i t h a given s e q u e n c e of d e r i v a t i v e s a t a given point. J. Math. A n a . A p p l 7 1 , 1979, p 95-104 A r e s u l t of e x i s t e n c e of h o l o m o r p h i c m a p s w h i c h a d m i t a given asymptotic expansion. Advances in Holomorphy, J . A . B a r r o s o e d . , N o r t h Holland Math. S t u d i e s 34, 1979 p 221-232. H o l o m o r p h y i n locally c o n v e x s p a c e s a n d o p e r a t o r s on t h e F o c k s p a c e s . S e m i n a i r e Lelong-Skoda 1977, 7 8 , 79. L e c t u r e s N o t e s in Math. 8 2 2 , S p r i n g e r V e r l a g 1980, p 4 6 - 6 0 Holomorphic m a p s with a given asymptotic expansion a t a g i v e n point. J. Math. A n a . A p p l . 72, 1979, p 2 7 4 - 2 8 2 . S u r l e s app1icatior.s d i f f e r e n t i a b l e s e t a n a l y t i q u e s a u s e n s d e J . S e b a s t i p o e Silva. P o r t . Math. 3 6 , 2 , 1977, p 1 0 4 - 1 1 8 , A m u l t i p l i c a t i o r , of d i s t r i b u t i o n s p r e p r i n t .
-
.
9
J . F . C o l o m b e a u , T h . A . W . D w y e r 111, B. P e r r o t On t h e s o l v a b i l i t y of d i f f e r e n t i a l e q u a t i o n s of infinite o r d e r 1 in non m e t r i z a b l e s p a c e s . F u n c t i o n a l A n a l y s i s , H o l o m o r - . phy and A p p r o x i m a t i o n T h e o r y , S. M a c h a d o e d . , L e c t u r e N o t e s i n Math. 8 4 3 , S p r i n g e r V e r l a g 1 9 8 1 , p 1 8 7 - 1 9 4 .
J.F.C o l o m b e a u , R . Gay, B. P e r r o t 1
Divisior. by h o l o m o r p h i c f u n c t i o n s and c o n v o l u t i o n s e y u a t i o n s in infinite d i m e n s i o n . T r a n s . A.M.S. 2 6 4 , 2 , 1981, p 381-391.
J . F . C o l o m b e a u , M. G r a n g k , B . P e r r o t S u r la c o m p l 6 t i o n d e s e s p a c e s v e c t o r i e l s b o r c o l o g i q u e s 1 p o l a i r e s . C o m p t e s R e n d u s . A c a d . Sci. P a r i s 274, 1972, p 1481-1483.
436
Bibliography
J.F. Colombeau, D. L a z e t 1
S u r l e s the'or'emes d e V i t a l i e t d e Monte1 e n d i m e n s i o n infinie. C o m p t e s R e n d u s . A c a d . S c i . P a r i s 2 7 4 , 1972, p 185-187
-
J . F . C o l o m b e a u , D . L a z e t , B. P e r r o t 1
S u r l e probl'eme 'de l ' a d h 6 r e n c e e t d e la f e r m e t u r e d ' u n s o u s e s p a c e v e c t o r i e l d a m un e s p a c e b o r n o l o g i y u e , C o m p t e s R e n d u s A c a d . Sci. P a r i s 274, 1972, p 1452-1454
J . F . C o l o m b e a u , M.C. M a t o s 1 Or, s o m e s p a c e s of e n t i r e f u n c t i o n s defined on infinite d i m e n s i o n a l s p a c e s . P a c i f i c J. of Math. i n p r e s s 2 Convolution e q u a t i o n s i p infinite d i m e n s i o n , B r i e f S u r v e y , New R e s u l t s and P r o o f s . F u n c t i o n a l A n a l y s i s , H o l o m o r p h y and A p p r o x i m a t i o n T h e o r y , J . A . B a r r o s o e d . , N o r t h Holland M a t h . S t u d i e s , t o a p p e a r . Convolutior, e q u a t i o n s i n s p a c e s of infinite d i m e n s i o n a l 3 e n t i r e f u n c t i o n s . Indag Math 42 : : P r o c e e d i n g s of t h e KdEikl. A c a d . S c i e n c e A 8 4 , 4 , 1980, p 375-389. J.F. Colombeau, R . Meise Coo f u n c t i o n s o n l o c a l l y convex and on b o r n o l o g i c a l v e c t o r 1 s p a c e s . F u n c t i o n a l A n a l y s i s , H o l o m o r p h y and A p p r o x i m a t ion T h e o r y , S. M a c h a d o e d . , L e c t u r e N.otes i n Math. 843, S p r i n g e r V e r l a g 1981, p 1 9 5 - 2 1 6 . S t r o n g n u c l e a r i t y ir. s p a c e s of h o l o m o r p h i c m a p p i n g s . 2 Advances in Holomorphy, J . A . B a r r o s o e d . , North Holland Math. S t u d i e s 3 4 , 1979, p 233-248. J . F . C o l o m b e a u , R . M e i s e , B. F e r r o t 1 D e n s i t y r e s u l t i n s p a c e s of Silva h o l o m o r p h i c m a p p i n g s . P a c i f i c J. of Math. 8 4 , 1, 1979, p 3 5 - 4 2 ,
J.F. Colombeau, A . M e r i l A r e m a r k on e q u a t i o n s y" t p l y ' t p y = o a t a n i r r e g u l a r 1 2. s i n g u l a r p o i n t . S. I . A . M. J . M a t h . A n a . p 1002-1010.
11, 6 , 1980,
J. F. C o l o m b e a u , J . Mujica H o l o m o r p h i c and d i f f e r e n t i a b l e m a p p i n g s of u n i f o r m 1 bounded t y p e . F u n c t i o n a l AnalySjis, H o l o m o r p h y and A p p r o x i m a t i o n T h e o r y , J.A. B a r r o s o e d . , N o r t h Holland Math. S t u d i e s , t o a p p e a r i n 1982. E x i s t e n c e of h o l o m o r p h i c m a p p i n g s with p r e s c r i b e d a s y m 2 ptotic e x p a n s i o n s a t a given s e t of p o i n t s in infinite d i m e n s i o n . J. of N o n l i n e a r A n a , T h . M e t h . , Appl. 5 , 2, 1981, p 149-156. 3 T h e L 6 v i p r o b l e m i n n u c l e a r Silva s p a c e s . A r k i v . f a r Math. 18, 1, 1980, p. 1 1 7 - 1 2 3 .
.
437
Bibliography
J . F. C o l o m b e a u , 0. W . P a q u e s 1 A r e m a r k 01: the P a l e y - W i e n e r l S c h w a r t z t h e o r e m in Banach spaces, preprint 03 2 S t r u c t u r e of s p a c e s of C f u n c t i o n s on n u c l e a r s p c e s , preprint . 3 Finite difference partiaI differential equations in normed and locally c o n v e x s p a c e s . F u n c t i o n a l A n a l y s i s , H o l o m o r phy and A p p r o x i m a t i o n T h e o r y , J . A . B a r r o s o e d . , N o r t h Holland Math. S t u d i e s , to a p p e a r i n 1 9 8 2 .
.
J . F . C o l o m b e a u , B. P e r s o t ' The'or'emes d e Noyaux A n a l y t i q u e s e n d i m e n s i o n infinie. 1 C o m p t e s R e n d u s A c a d . S c i . P a r i s 2 8 4 , 1977, p 759-762. T r a n s f o r m a t i o n d e F o u r i e r B o r e l e t noyaux e n d i m e n s i o n 2 infinie. C o m p t e s R e n d u s A c a d . S c i . P a r i s 284, 1977, p 963-966. Infinite d i m e n s i o n a l n o r m a l f o r m s of o p e r a t o r s on the 3 F o c k s p a c e s o f B o s o n f i e l d s and a n e x t e n s i o n of t h e c o n c e p t of W i c k p r o d u c t - . A d v a n c e s in H o l o m o r p h y . J . A . B a ' r r o s o e d . , N o r t h Holland Math. S t u d i e s 3 4 , 1979, p 249-274. R e f l e x i v i t y a c d k e r n e l s i n infinite d i m e n s i o n a l h o l o m o r p h y 4 P o r t . Math. 36, 3 - 4 , 1977, p 2 9 1 - 3 0 0 . 5 Trar.sformation de F o u r i e r B o r e l et rgflexivitg d a n s l e s e s p a c e s d ' a p p l i c a t i o n s Silva a n a l y t i q u e s b v a l e u r s v e c t o r i e l l e s . C o m p t e s R e n d u s A c a d . S c i . P a r i s 285, 1977, p 1 9 - 2 1 . 6 T h e F o u r i e r - B o r e 1 t r a n s f o r m i n infinitely m a n y d i m e n s i o n s and a p p l i c a t i o n s . F u n c t i o n a l A n a l y s i s , H o l o m o r p h y and A p p r o x i m a t i o n T h e o r y , S . M a c h a d o e d . , L e c t u r e 163-186. N o t e s in Math. 843, S p r i i i g e r V e r l a g , 1 9 8 1 , ~ Une c a r a c t e ' r i s a t i o n d e l a nuclgarite' d e s e s p a c e s d e 7 f o n c t i o n s h o l o m o r p h e s e n d i m e n s i o n infinie. C o m p t e s R e n d u s A c a d . S c i . P a r i s 284, 1977, p 1275-1278. Convolution e q u a t i o n s in s p a c e s of p o l y n o m i a l s o n 8 locally convex s p a c e s . Functional Analysis, Holomorphy and A p p r o x i m a t i o n T h e o r y , G - Z a p a t a e d . , M a r c e l Dekker Inc, t o appear in 1982. Convolution e q u a t i o n s in s p a c e s of infinite d i m e n s i o n a l 9 e n t i r e f u n c t i o n s of e x p o n e n t i a l and r e l a t e d t y p e s . T r a n s of A . M . S . 2 5 8 , 1, 1 9 8 0 , ~1 9 1 - 1 9 8 . 10 T h e e q u a t i o n in D F N s p a c e s , J M a t h . A n a . A p p l . 7 8 , 2, 1 9 8 0 , p 466-487 11 L ' 6 q u a t i o n b dans les ouverts pseudo-convexes d e s e s p a c e s D F N . Bull. S o c . M a t h . F r a n c e , in p r e s s .
F
.
J . F . C o l o m b e a u , S. P o n t e A n infinite d i m e n s i o n a l v e r s i o n of t h e P a l e y - W i e n e r 1 Schwartz theorem. Resultate d e r Math. in p r e s s .
Bibliography
438
L. C o r w i n , R. Szc z a r b a 1 C a l c u l u s i n V e c t o r S p a c e s . M o n o g r a p h s and T e x t b o o k s i n p u r e a n d appl. M a t h . 52, M. D e k k e r , 1979. J. DieudonnC
1 ElCments d'Analyse. Gauthier V i l l a r s
-
P a r i s Vol. 1. 2.3.
J. DieudonnC, L. S c h w a r t z 1 L a dualitk d a n s l e s e s p a c e s ( 3 ) e t ( S 3 ) . A n n a l e s I n s t i t u t F o u r i e r , G r e n o b l e , t o m e I, 1949, p. 61-101.
S. Dineen
C o m p l e x A n a l y s i s i n L o c a l l y Convex S p a c e s . N o r t h Holland Math. Studies. t o a p p e a r i n 1981. 2 E q u i v a l e n t d e f i n i t i o n s of H o l o m o r p h y Sbminaire L e l o n g 1973-74. L e c t u r e N o t e s i n Math. 474, S p r i n g e r V e r l a g , 1975, p. 114-122. Unbounded h o l o m o r p h i c f u n c t i o n s o n a B a n a c h s p a c e . J. London M a t h , SOC. 4 , 1972, p. 46 1-465. Bounding s u b s e t s of a B a n a c h s p a c e . Math. Ann. 192, 1971, p.61-70. H o l o m o r p h i c g e r m s on c o m p a c t s u b s e t s of l o c a l l y convex s p a c e s . F u n c t i o n a l A n a l y s i s , H o l o m o r p h y a n d Approximation Theory, S . Machado e d . , L e c t u r e Notes i n Math. 843, S p r i n g e r V e r l a g 198 1, p. 247-263. 6 S c h e a v e s of h o l o m o r p h i c f u n c t i o n s on infinite d i m e n s i o n a l v e c t o r s p a c e s . Math. Ann. 202, 1973, p. 337-345. 7 S u r j e c t u r e limits of l o c a l l y c o n v e x s p a c e s a n d t h e i r a p p l i c a t i o n s t o Infinite D i m e n s i o n a l H o l o m o r p h y . Bull. S. M. F. 103, 1974, p . 4 4 1 - 5 0 9 . 8 C o u s i n ' s f i r s t p r o b l e m on c e r t a i n l o c a l l y c o n v e x t o p o l o g i c a l v e c t o r s p a c e s An. A c a d . B r a s . C i e n c i a s 48, 1, 1976, p. 11-12. 9 A n a l y t i c f u n c t i o n a l s on fully n u c l e a r s p a c e s . Studia Math. to a p p e a r , 10 H o l o m o r p h i c f u n c t i o n s on n u c l e a r s e q u e n c e s p a c e s . F u n c t i o n a l A n a l y s i s, S u r v e y s a n d R e c e n t R e s u l t s I1 N o r t h Holland Math. S t u d i e s 38, 1980, p. 239-256. 1
.
.
S. Dineen, L. Nachbin 1 E n t i r e f u n c t i o n s of e x p o n e n t i a l t y p e bounded o n t h e r e a l a x i s a n d F o u r i e r t r a n s f o r m of d i s t r i b u t i o n s with bounded s u p p o r t s . I s r a e l J. Math. 13, 1972, p. 321-326. S. Dineen, Ph. N o v e r r a z , M. S c h o t t e n l o h e r 1 L e probl'eme d e L e v i d a n s c e r t a i n s e s p a c e s v e c t o r i e l s topologique s l o c a l e m e n t c o n v e x e s. Bull. SOC. Math. F r a n c e 104, 1976, p . 8 7 - 9 7 . E . Dubinsky
1
Differential equations and differential calculus in Monte1 s p a c e s . T r a n s . of A. M. S. 110, 1, 1964, p. 1-21.
Bibliography
439
Th. A. W. Dwyer I11 P a r t i a l d i f f e r e n t i a l e q u a t i o n s in F i s h e r F o c k s p a c e s f o r the I i i l b e r t S c h m i d t h o l o m o r p h y type. Bull. A. M. S. 77, 5, 1971, p. 725-730. H o l o m o r p h i c r e p r e s e n t a t i o n of t e m p e r e d d i s t r i b u t i o n s and weighted F o c k s p a c e s . A n a l y s e F o n c t i o n n e l l e e t A p p l i c a t i o n s , L. Nachbin e d , H e r m a n n , P a r i s 1975, p. 95-118. 3 Holomorphic Fock r e p r e s e n t a t i o n and p a r t i a l differential e q u a t i o n s on count a b l y H i l b e r t s p a c e s , Bull. A. M. S. 79, 1973, p. 1045-1050. 4 P a r t i a l differential equations in holomorphic Fock s p a c e s , F u n c t i o n a l A n a l y s i s and A p p l i c a t i o n s , L. Nachbin ed, L e c t u r e Notes i n Math 834, S p r i n g e r V e r l a g 1974, p. 252259. 5 DualitC d e s e s p a c e s de fonctions e n t i ' e r e s e n d i m e n s i o n infinie . C o m p t e s R e n d u s Acad. Sci. P a r i s , 280, 1975, p. 1439- 1442 6 E q u a t i o n s d i f f P r e n t i e l l e s d ' o r d r e infini d a n s l e s e s p a c e s l o c a l e m e n t c o n v e x e s . C o m p t e s R e n d u s Acad. Sci. P a r i s 281, 1975, p. 163-166. 7 DualitC d e s e s p a c e s d e fonctions enti'er e s e n d i m e n s i o n infinie. Ann. Inst. F o u r i e r 26, 4, 1976, p. 151-195. 8 D i f f e r e n t i a l o p e r a t o r s o f infinite o r d e r i n l o c a l l y c o n v e x s p a c e s I, I1 Rend. di. M a t 10, 1977, p. 149- 179, p. 273293.
.
J. E e l l s
L. E h r e n p r e i s
1
A setting for global a n a l y s i s . Bull. A. M. S. 7 2 , 1966, p. 751-807.
1
S o l u t i o n of s o m e p r o b l e m s of d i v i s i o n 11, A m e r . J. of Math. 77, 1955, p. 287-292. Mean p e r i o d i c functions, P a r t . I. V a r i e t i e s w h o s e a n n i h i l a t o r i d e a l s a r e p r i n c i p a l . A m e r . J. of Math. 77, 1955, p. 293-328.
2
S. F a l b , M. Q. J a c o b 1 On d i f f e r e n t i a l s i n l o c a l l y convex s p a c e s . J. Diff. Eq. 4 , 1968, p. 444-459.
M. F r e ' c h e t
1
2 3
La notion de d i f f g r e n t i e l l e totale. Nouv. Ann. Math. 12, 19 12, p. 385-403, p. 433-449. Une dgfinition fonctionnelle d e s polynome s. Nouv. Ann. Math. 9 , 1909, p.145-162. Sur la notion d e d i f f k r e n t i e l l e . Cornptes Rend. Acad. S c i P a r i s 152, 1911, p. 845-847, p. 1050-1051.
440
Bibliography
J . E. G a l e
1 S o b r e e s p a c i o s de f u n c i o n e s d i f f e r e n c i a b l e s e n d i m e n s i o n infinit a , a p r o x i m a b l e s p o r p o l i n o m i o s s o b r e c o n j u n t o s a c o t a d o s , T h e s i s , Z a r a g o z a 1980. R. G a t e a u x 1
2
E. de G i o r g i
1
A. G r o t h e n d i e c k 1 7
L
3 L. G r u m a n
1
F o n c t i o n s d'une infinite' d e v a r i a b l e s i n d e p e n d a n t e s . Bull. SOC. Math, F r a n c e 47, 1919, p. 70-96. S u r l e s fonctionnelles continues e t l e s fonctionnelles a n a l y t i q u e s . C o m p t e s Rend. Acad. Sci. P a r i s 157, 1913, p. 325-327 and Bull. SOC. Math. F r a n c e 50, 1922, p. 1-21. Un e s e m p i o d i non u n i c i t a d e l l a s o l u z i o n e d e l p r o b l e m a d i Cauchy. R e n d i d i Mat. 5, 14, 1955, p. 382-387. S u r c e r t a i n s e s p a c e s de f o n c t i o n s h o l o m o r p h e s I, 11, J. r e i n e ang. Math. 192, 1953, p. 35-64, p. 77-95. P r o d u i t s t e n s o r i e l s topologique s e t e s p a c e s n u c l e ' a i r e s. M e m o i r s A. M. S. 16, 1955 a n d 1966. T o p o l o g i c a l V e c t o r S p a c e s . G o r d o n a n d B r e a c h , New Y o r k , 1973. The Lkvi p r o b l e m i n c e r t a i n i n f i n i t e d i m e n s i o n a l v e c t o r s p a c e s . Ill. J. Math. 18, 1974, p. 20-26.
L. G r u m a n , C. 0. K i s e l m a n 1 L e probl'eme de Le'vi d a n s l e s e s p a c e s de B a n a c h 'a b a s e C o m p t e s Rend. Acad. Sci. P a r i s 274, 1972, p. 8 2 1-824. C. G u e i r r e i r o , J. B. P r o l l a I An e x t e n s i o n of N a c h b i n ' s t h e o r e m t o d i f f e r e n t i a b l e f u n c t i o n s on B a n a c h s p a c e s with t h e a p p r o x i m a t i o n p r o p e r t y . A r k i v . far Mat. 14 , 1976, p. 251-258
.
C. Gupta
M a l g r a n g e t h e o r e m for n u c l e a r l y e n t i r e f u n c t i o n s of bounded type on a B a n a c h s p a c e . N o t a s de M a t e m a t i c a 37, I M P A , R i o d e J a n e i r o 1968. L Convolution o p e r a t o r s a n d h o l o m o r p h i c m a p p i n g s on a B a n a c h s p a c e . S g m i n a i r e d ' A n a l y s e M o d e r n e 2 , Dept. of M a t h . , U n i v e r s i t y of S h e r b r o o k e , Q u e b e c , 1969. 3 On M a l g r a n g e t h e o r e m f o r n u c l e a r l y e n t i r e f u n c t i o n s of bounded t y p e on a B a n a c h s p a c e . I n d a g Math. 32, 1970, p. 356-358
1
7
.
J. H a d a m a r d 1
Sui. l e s t r a n s f o r m a t i o n s p o n c t u e l l e s . Bull. SOC. Math. F r a n c e 34, 1906, p. 71-84.
441
Bibliography
R. S. H a m i l t o n
1
T h e i n v e r s e function t h e o r e m of N a s h a n d M o s e r , p r e p r i n t , C o r n e l l U n i v e r s i t y 1974.
T . L. Hayden, T. J. Suffridge ( E d i t o r s ) P r o c e e d i n g o n Infinite D i m e n s i o n a l H o l o m o r p h y , L e c t u r e N o t e s i n Math. 264, 1974. C. J. H e n r i c h
-
T h e a e q u a t i o n with p o l y n o m i a l g r o w t h on a H i l b e r t s p a c e . Duke Math. J . 4 0 , 2, 1973, p. 279-306.
M. H e r v k
A n a l y t i c a n d p l u r i s b h a r m o n i c functions. L e c t u r e N o t e s i n M a t h 198, S p r i n g e r V e r l a g 1971.
Y. H e i . v i e r On t h e W e i e r s t r a s s p r o b l e m i n B a n a c h s p a c e s . P r o c e e d i n g s on i n f i n i t e d i m e n s i o n a l h o l o m o r p h y , T. L. H a y d e n a n d T. J. Suffridge e d i t o r s , L e c t u r e N o t e s i n Math. 364, S p r i n g e r V e r l a g 1974, p. 157-167.
D. H i l b e r t
W e s e n und Z i e l e e i n e r A n a l y s i s d e r u n e n d l i c h v i e l e n unabhagigen V a r i a b l e n . Rend. d e l C i r c o l o Mat. P a l e r m o 27, 1909, p. 59-74, o r G e s a m m e l t e Abhandlungen I11 p. 56-72.
E. Hille
F u n c t i o n a l A n a l y s i s a n d S e m i g r o u p s . A. M. S. C o l l o q u i u m P u b l . 31, 1948.
E. Hille, R. S . P h i l l i p s 1 F u n c t i o n a l A n a l y s i s a n d S e m i g r o u p s . A. R.I.,1957. A. H i r s c h o v i t z
K . Hoffman
bi.
S., P r o v i d e n c e ,
1
S u r un thkor’eme d e M. A. Z o r n . A r c h i v . d e r Math. 23, 1972, p. 77-79.
1
A n a l y s i s i n E u c l i d e a n S p a c e . P r e n t i c e H a l l I n c , 1975.
H. Hogb6-Nlend 1
2
Bornologies and Functional Analysis. North Holland Math. S t u d i e s 26, 1977. Thkorie d e s Bornologies e t Applications. L e c t u r e Notes i n M a t h 2 1 3 , S p r i n g e r V e r l a g 1971.
H. HogbC-Nlend, V. B. M o s c a t e l l i 1 N u c l e a r a n d C o - n u c l e a r S p a c e s . N o r t h Holland Math. S t d i e s , t o a p p e a r i n 1981.
442
L. H o r m a n d e r
Bibliography
An I n t r o d u c t i o n t o C o m p l e x A n a l y s i s i n S e v e r a l V a r i a b l e s . Van N o s t r a n d 1966, N o r t h Holland 1973. On the division of d i s t r i b u t i o n s by p o l y n o m i a l s A r k . f o r Mat 3, 1958, p. 555-568.
1
2 J. Horvath
H. Jacobowitz
B. J o s e f s o n
H. H. K e l l e r
1
Topological V e c t o r S p a c e s and D i s t r i b u t i o n s . Addison Wesley, M a s s a c h u s s e t t s 1966.
1
I m p l i c i t function t h e o r e m s and i s o m e t r i c Ann. of Math. 95, 1972, p. 191-225.
embeddings.
Weak s e q u e n t i a l c o n v e r g e n c e in t h e dual of a B a n a c h s p a c e d o e s not i m p l y n o r m c o n v e r g e n c e . A r k f o r Mat 13, 1975, p. 78-89. m(A). T h e s i s , U n i v e r s i t y of 2 Bounding s u b s e t s of Uppsala, 1975. 3 A c o u n t e r e x a m p l e i n the Lkvi p r o b l e m . P r o c e e d i n g s on Infinite D i m e n s i o n a l Holomorphy, T. L. Hayden a n d T. J. Suffridge e d , L e c t u r e Notes i n Math. 364, S p r i n g e r V e r l a g 1974, p. 168-177.
1
1
D i f f e r e n t i a l C a l c u l u s i n l o c a l l y convex s p a c e s . L e c t u r e Notes i n Math. 417, S p r i n g e r V e r l a g 1974.
J. L. Kelley, I . Namioka
1
C. 0. K i s e l m a n
L i n e a r Topological S p a c e s . P r i n c e t o n 1963.
On the r a d i u s of c o n v e r g e n c e of a n e n t i r e function in a n o r m e d s p a c e . Ann. Pol. Math 33, 1976, p. 39-55. 2 G e o m e t r i c a s p e c t s of the t h e o r y of bounds f o r e n t i r e functions i n n o r m e d s p a c e s . Infinite D i m e n s i o n a l Holom o r p h y a n d A p p l i c a t i o n s M. C. M a t o s ed, N o r t h Holland M a t h s t u d i e s 12, 1977, p. 249-275. 3 C o n s t r u c t i o n de fonctions enti'eres 'a r a y o n d e c o n v e r gence donne'. J o u r n k e s de F o n c t i o n s A n a l y t i q u e s , P. Lelong ed, L e c t u r e Notes i n Math 578, S p r i n g e r V e r l a g 1977, p. 246-253. 4 P l u r i s u b h a r m o n i c functions a n d p l u r i s u b h a r m o n i c topologies. A d v a n c e s in Holomorphy, J. A. B a r r o s o e d . , Noth Holland Math, S t d i e s 34, 1979, p. 4 3 1-449. 1
.
C. Kothe
1
.
Topological V e c t o r S p a c e s I Die Crund. d e r Math. Wiss. 159 S p r i n g e r V e r l a g 1969.
443
Bibliography
B. K r a m m
P. K r e e
1
D F N a n a l y t i c s p a c e s , S t e i n a l g e b r a s a n d a u n i v e r s a l hol o m o r p h i c functiona 1 c a l c u l us.S&minaire L e l o n g -Skoda 1978-79. L e c t u r e N o t e s i n Math. 822, S p r i n g e r V e r l a g 1980, p. 109- 128.
1
Calcul symbolique e t seconde quantification d e s fonctions s e s q u i - h o l o m o r p h e s . C o m p t e s - R e n d . Acad. Sci. Paris 274, 1977, p . 2 5 - 2 8 . Mkthodes h o l o m o r p h e s e t m k t h o d e s n u c l e ' a i r e s e n a n a l y s e de d i m e n s i o n i n f i n i e e t e n the'orie q u a n t i q u e d e s c h a m p s , V e c t o r s p a c e M e a s u r e s a n d A p p l i c a t i o n s I, R. A r o n a n d S. D i n e e n e d . L s c t u r e N o t e s i n Math 644, S p r i n g e r V e r l a g 1978, p. 212-254.
2
P. K r e e , R. R a c z k a 1
K e r n e l s a n d S y m b o l s of o p e r a t o r s i n Q u a n t u m F i e l d T h e o r y . Ann. I n s t . H. P o i n c a r k 28, 1, 1978, p . 4 1 - 7 3 .
1
I n t r o d u c t i o n t o the T h e o r y of D i f f e r e n t i a b l e M a n i f o l d s I n t e r s c i e n c e Publ. N e w - Y o r k , 1962. R e a l A n a l y s i s . A d d i s o n W e s l e y Publ. Comp. 1968.
S. L a n g 2 B. L a s c a r
1
2
D. L a z e t 1
2
-
Solutions f a i b l e s e t s o l u t i o n s f o r t e s du probl'eme a u = f oh f e s t une fonction 'a c r o i s s a n c e p o l y n o m i a l e s u r un e s p a c e de Hilbert. Functional A n a l y s i s , Holomorphy a n d A p p r o x i m a t i o n T h e o r y , S. M a c h a d o e d , L e c t u r e N o t e s i n Math. 843, S p r i n g e r V e r l a g 1981, p. 405-436. The'or'eme d e C a u c h y - K o v a l e v s k y e t thCor'eme d ' u n i c i t k d ' H o l m g r e n pour d e s f o n c t i o n s a n a l y t i q u e s d'une infinite' de v a r i a b l e s . A d v a n c e s i n H o l o m o r p h y , J. A. B a r r o s o e d , N o r t h Holland Math S t u d i e s 34, 1979, p. 485-508. S u r l a diffkrentiabilitk d e s applications analytique s e n d i m e n s i o n infinie. C o m p t e s Rend. Acad. Sci. P a r i s 273, 1971, p. 155-157. A p p l i c a t i o n s a n a l y t i q u e s d a n s les e s p a c e s b o r n o l o g i q u e s S k m i n a i r e P. Lelong 197 1 , 72. L e c t u r e N o t e s i n M a t h 332, S p r i n g e r V e r l a g 1973, p. 1 - 4 7
.
P. L e l o n g 1
2 3
Fonctionnelles Analytiques e t F o n c t i o n s Enti'eres. U n i v e r s i t k de Montre'al, 1967, C a n a d a . ( e d i t o r ) S G m i n a i r e P. L e l o n g , L e c t u r e N o t e s i n M a t h , Springer Verlag, several volumes . ( e d i t o r ) F u n c t i o n s A n a l y t i q u e s de p l u s i e u r s v a r i a b l e s c o m p l e x e s e t A n a l y s e c o m p l e x e . G a u t h i e r - V i l l a r s , 1974.
Bibliography
444
P. Lelong, H. Skoda ( e d i t o r s ) I SCminaire P. Lelong-H. Sckcda, L e c t u r e Notes in Math S p r i n g e r V e r l a g , s e v e r a l volumes. J. A. L e s l i e
1 2 3
E. LindelOf
1
On a d i f f e r e n t i a l s t r u c t u r e f o r t h e g r o u p of d i f f e o m o r p h i s m s Topology 6,1967, p. 263-271. Some F r o b e n i u s t h e o r e m i n Global A n a l y s i s . J. Diff. Geom. 2 , 1968, p.279-297. On t h e g r o u p of r e a l a n a l y t i c d i f f e o m o r p h i s m s of a c o m p a c t r e a l analytic manifold. T r a n s of A. M. S. in press. S u r l e s fonctions enti'eres d ' o r d r e e n t i e r . Ann. E c o l e N o r m a l e Sup. 22, 1905, p. 369-395.
L. L i n d e n s t r a u s s , L. T z a f r i r i 1 C l a s s i c a l Banach S p a c e s I. E r g . de r Math. 92, S p r i n g e r V e r l a g 1977. S. L o j a s i e w i c z
1 2
S u r l e probl'eme de la d i v i s i o n . Studia Math 18, 1959, p. 8 7 - 136. S u r le probl'eme de l a d i v i s i o n , R o z p r a w y M a t e m a t y c z n e 22, 1961.
L. Lojasiewicz ( J r ) 1 An e x a m p l e of a continuous injective polynomial with nowhere d e n s e r a n g e , whose d i f f e r e n t i a l at e a c h point i s a n i s o m o r p h i s m . Bull. Acad. Pol. Sci. 24, 12, 1 9 7 6 , p. 1 1 0 9 - 1 1 1 1 . S. Lojasiewicz ( J r ) , E . Z e h n d e r 1 An i n v e r s e function t h e o r e m i n F r k c h e t s p a c e s . J. Funct. Ana. 33, 1979, p. 1 6 5 - 1 7 4 .
T. M a c - D e r m o t t 1
Non l i n e a r m a p p i n g s i n l o c a l l y convex s p a c e s . T r a n s . A. M.S. 153, 1971, p. 157-165. 2 I m p l i c i t e l y defined m a p p i n g s i n l o c a l l y convex s p a c e s . T r a n s . A . M . S . 161, 1971, p.89-99. 3 Successive Approximations in ordered vector spaces. T r a n s . A.M. S. 165, 1972, p. 57-64.
S. Machado ( e d i t o r ) 1 F u n c t i o n a l A n a l y s i s , Holomorphy and A p p r o x i m a t i o n Theory. L e c t u r e N o t e s in Math 843, S p r i n g e r V e r l a g 1981. 13. Malgrange
1
E x i s t e n c e e t A p p r o x i m a t i o n d e s s o l u t i o n s d e s equations aux dkrive'es p a r t i e l l e s e t d e s 6quations d e convolution. Anna. Inst. F o u r i e r 4, 1955-56, p. 27 1-355.
445
Bibliography
G. M a r i n e s c u
M. C. M a t o s
1
T r a t a t de A n a l i z s Functional: B u c a r e s t 1972.
, Vol
11, Ed. A c a d e m i e i ,
H o l o m o r p h i c a l l y b o r n o l o g i c a l s p a c e s and infinite dimeiis i o n a l v e r s i o n s of H a r t o g s ' t h e o r e m . J. London M a t h SOC. 2 , 17, 1978, p. 363-368. 2 On s e p a r a t e l y h o l o m o r p h i c a n d Silva h o l o m o r p h i c m a p pings. A d v a n c e s in Holomorphy, J. A. B a r r o s o e d . , N o r t h Holland Math. S t u d i e s 34, 1979, p. 509-520. 3 Holomorphic m a p p i n g s a n d d o m a i n s of holomorphy. Monografias centro Brasil.de Pesquisas F i s i c a s 27, Rio de J a n e i r o , 1970. 4 S u r l e thkor'eme d ' a p p r o x i m a t i o n e t d ' e x i s t e n c e d e M a l g r a n g e - Gupta. C o m p t e s Rendus Acad. S c i P a r i s 271, 1970, p. 1258-1259. 5 On convolution e q u a t i o n s i n a weak l o c a l l y convex space. Ann. Acad. B r a s . de C i e n c i a s 49, 4, 1977, p. 529-531 6 On M a l g r a n g e t h e o r e m f o r n u c l e a r h o l o m o r p h i c functions i n open b a l l s of a B a n a c h s p a c e . Math. Z e i t s c h . 102, 1978, p. 113- 123. 7 ( e d i t o r ) Infinite D i m e n s i o n a l H o l o m o r p h y a n d Applications. North Holland Math. S t u d i e s 1 2 , 1977. 8 Convolution o p e r a t o r s in s p a c e s of u n i f o r m n u c l e a r e n t i r e functions. F u n c t i o n a l A n a l y s i s , H o l o m o r p h y a n d A p p r o x i m a t i o n T h e o r y . G. Z a p a t a e d i t o r . M a r c e l Dekker, in press. 1
.
M. C. M a t o s , L. Nachbin F u n c t i o n a l A n a l y s i s , %lo1 Silva Holomorphy t y p e s m o r p h y and A p p r o x i m a t i o n T h e o r y , S. Machado e d . , L e c t u r e N o t e s i n Math. 843, S p r i n g e r V e r l a g 1981, p. 437-487. 2 On infinite d i m e n s i o n a l convolution equations. P r e p r i n t ,
.
P. M a z e t
1 2
R. M e i s e
1
2
E n s e m b l e s Analytiques C o m p l e x e s d a n s l e s e s p a c e s l o c a l e m e n t convexes. Th'ese, P a r i s 1979. Un thCor'eme d'hypoellipticit6 p o u r l ' o p k r a t e u r a s u r l e s e s p a c e s d e Banach. C o m p t e s Rend. Acad. Sci. P a r i s 292, 198 1, p. 3 1-33. S p a c e s of d i f f e r e n t i a b l e functions a n d the a p p r o x i m a t i o n p r o p e r t y . A p p r o x i m a t i o n T h e o r y and F u n c t i o n a l A n a l y s i s , J. B. P r o l l a e d . , N o r t h Holland Math. S t u d i e s 35 1979, p. 263-307. A r e m a r k on t h e p o r t e d and the c o m p a c t open topology f o r s p a c e s of h o l o m o r p h i c functions on n u c l e a r F r C c h e t spaces, preprint.
446
Bibliography
N i c h t - N u k l e a r i t a t von R a m e n beliebig oft d i f f e r e n z i e r b a r e r Funktionen. A r c h . d e r Math. 34, 2, 1980, p. 143148.
3
R. M e i s e , D. Vogt Symmetric Tensor Algebra and Entire Functions, preprint. Holomorphic functions of u n i f o r m l y bounded type on nuclear Fr6chet spaces, preprint. C o u n t e r e x a m p l e s in h o l o m o r p h i c functions on n u c l e a r Frgchet spaces, preprint. L. A. M o r a e s
1
V. B. M o s c a t e l l i 1 J. M o s e r
J . Mujica
L. Nachbin
Holomorphic functions on s t r i c t inductive l i m i t s . R e s u l t a t e d e r Math. to a p p e a r . On a p r o b l e m of c o m p l e t i o n i n Bornology. P a c i f i c T.. of Math 46, 2 , 1973, p. 467-470.
1 A new technique f o r t h e c o n s t r u c t i o n of s o l u t i o n s of non l i n e a r d i f f e r e n t i a l equations . P r o c . Nat. Acad. Sci. USA 47, 1961, p. 1824-1831. G C r m e n e s H o l o m o r f o s y Funcione s H o l o m o r f a s e n E s p a c i o s d e F r 6 c h e t . U n i v e r s i d a d d e Santiago d e C o m p o s t e l a , 1978, S p a i n . 2 A new topology on the s p a c e of g e r m s of h o l o m o r p h i c functions , p r e p r i n t . 3 S p a c e s of g e r m s of h o l o m o r p h i c functions. A d v a n c e s i n Math. Suppl. Studies 4, G. C. R o t a e d . , A c a d e m i c P r e s c 1979, p. 1-41. 4 Domains of h o l o m o r p h y i n D. F. C. s p a c e s . F u n c t i o n a l A n a l y s i s , Holomorphy and A p p r o x i m a t i o n T h e o r y , S. Machado e s , L e c t u r e Notes i n Math. 843, S p r i n g e r V e r l a g 198 1 , p. 500-533.
1
Why Holomorphy i n infinite d i m e n s i o n s ? E n s . Math. 26 3-4, 1980, p. 257-269. 2 Topology on S p a c e s of Holomorphic Mappings, E r g . d e r Math. 47, S p r i n g e r V e r l a g , 1969. Procee3 A g l i m p s e at Infinite D i m e n s i o n a l Holomorphy dings on Infinite D i m e n s i o n a l Holomorphy, T. L. Hayden and T. J. Suffridge e d , L e c t u r e N o t e s in Math. 364, S p r i n g e r V e r l a g , 1974.
1
.
447
Bibliography
4
5 6
7
8
M. Z . N a s h e d
L. N i r e m b e r g D. N o s s k e Ph. N o v e r r a z
I n t r o d u c t i o n t o F u n c t i o n a l A n a l y s i s : B a n a c h S p a c e s and Differential Calculus. Monogr. and Textbooks i n P u r e a n d Appl. Math. 60, M a r c e l D e k k e r I n c , 1981. R e c e n t d e v e l o p p m e n t s i n Infinite D i m e n s i o n a l H o l o m o r p hy. Bull. A. M . S . 79, 1973, P. 615-640. S u r l e s alg'ebres d e n s e s de fonctions diff6rentiables s u r une vari6te'. C o m p t e s ReFd. A c a d . S c i . P a r i s 228, 1949, p. 1549-1551. A look a t A p p r o x i m a t i o n T h e o r y . A p p r o x i m a t i o n T h e o r y a n d F u n c t i o n a l A n a l y s i s , J. B. P r o l l a e d , N o r t h Holland Math. S t u d i e s 35, 1979, p. 309-332. L e c t u r e s on t h e T h e o r y of D i s t r i b u t i o n s . T e x t o s d e M a t e m a t i c a . I n s t i t u t o de F i s i c a e M a t e m a t i c a , U n i v e r s i d a d e d o R e c i f e 1964. R e p r i n t e d by U n i v e r s i t y M i c r o f i l m s I n t e r n a t i o n a l (USA) 1980.
1
D i f f e r e n t i a b i l i t y a n d r e l a t e d p r o p e r t i e s of non l i n e a r o p e r a t o r s : s o m e a s p e c t s of t h e r o l e d i f f e r e n t i a l s i n non l i n e a r F u n c t i o n a l A n a l y s i s . Non l i n e a r F u n c t i o n a l A n a l y s i s and A p p l i c a t i o n s . A c a d e m i c P r e s s , 1971, p. 103-309.
1
A n a b s t r a c t f o r m of t h e non l i n e a r Cauchy-Kowalewski t h e 0 r e m . j . Diff. G e o m 6 , 1972, p. 56 1-576.
1
P r i v a t e c o m m u n i c a t i o n . A p r i l 1980.
1
P s e u d o c o n v e x i t 6 , Convexit6 P o l y n o m i a l e e t D o m a i n e s d ' H o l o m o r p h i e e n d i m e n s i o n infinie. N o r t h H o l l a n d Math. S t u d i e s 3, 1973. Fonctions plurisousharmoniques et analytiques dans les e s p a c e s v e c t o r i e l s topologiques. Ann. I n s t . F o u r i e r 19, 2 , 1969, p, 419-493. A p p r o x i m a t i o n of h o l o m o r p h i c o r p l u r i s u b h a r m o n i c functions in c e r t a i n Banach s p a c e s . P r o c e e d i n g s i n Infinite D i m e n s i o n a l H o l o m o r p h y , T. L. Hayden a n d T. J. S u f f r i d g e e d , L e c t u r e N o t e s i n Math. 364, S p r i n g e r V e r l a g 1974, p. 1 7 8 - 1 8 5 . E l p r o b l e m a d e Le'vi - 0 k a e n d i m e n s i o n infinita. U n i v e r s i d a d de S a n t i a g o de C o m p o s t e l a , 1979, S p a i n
2 3
4
.
Y. V. Novozhi lov, A . V . T u l u b 1 T h e m e t h o d of f u n c t i o n a l s i n t h e Q u a n t u m T h e o r y of f i e l d s . R u s s i a n T r a c t s on A d v a n c e d Math.and P h y s . , 5, G o r d o n and B r e a c h , New York, 1961.
448
Bibliography
L. V. Ovcyannikov 1 A s i n g u l a r o p e r a t o r i n a s c a l e of B a n a c h s p a c e s . Soviet Math. Dokl. 6 , 1965, p. 1025-1028. 2 A non l i n e a r C a u c h y p r o b l e m i n a s c a l e of B a n a c h s p a c e s . Soviet Math. Dokl. 12, 1971, p. 1497-1502.
0. W. P a q u e s
1 2
B. P e r r o t
1 2
A. P i e t s c h
D. P i s a n e l l i
1
T e n s o r p r o d u c t s of Silva h o l o m o r p h i c functions. A d v a n c e s i n H o l o m o r p h y , J. A. B a r r o s o ed. , N o r t h H o l l a n d Math. S t u d i e s 34, 1979, p. 629-700. T h e A p p r o x i m a t i o n P r o p e r t y f o r c e r t a i n s p a c e s of holom o r p h i c m a p p i n g s . A p p r o x i m a t i o n T h e o r y and F u n c t i o n a l A n a l y s i s , J. B. P r o l l a e d . , N o r t h Holland Math. S t u d i e s 35, 1979, p. 351-370. S u r l e probl'eme d e l a M - f e r m e t u r e . C o m p t e s - R e n d . Acad. Sci. P a r i s 271, 1970, p. 832-834. S u r la c o m p a r a i s o n d e c e r t a i n e s t o p o l o g i e s m i x t e s d a n s l e s e s p a c e s b i - n o r m 6 s . C o l l o q u i u m Math. 34, 1, 1975, p. 8 1-90. N u c l e a r L o c a l l y C o n v e x S p a c e s . E r g . d e r Math. 66, S p r i n g e r V e r l a g 1972.
A n e x t e n s i o n of t h e e x p o n e n t i a l of a m a t r i x a n d a c o u n t e r e x a m p l e t o t h e i n v e r s i o n t h e o r e m of a h o l o m o r phic m a p p i n g i n a s p a c e 3C (K). Rendi. d i Mat. 6, 9 , 1976, p. 465-475. 2 T h 6 o r B m e s d ' O v c y a n n i k o v , F r o b e n i u s , d'Inve r s i o n e t G r o u p e s de L i e l o c a u x d a n s une 6 c h e l l e d ' e s p a c e s d e Banach. C o m p t e s Rend. Acad. Sci. P a r i s 277, 1973, p. 943-946. 3 A p p l i c a t i o n s a n a l y t i q u e s e n d i m e n s i o n infinie. Compt e s r e n d u s Acad. Sci. P a r i s 274, 1972, p, 760-762. 4 A p p l i c a t i o n s a n a l y t i q u e s e n d i m e n s i o n infinie. Bull. Sci. Math, 96, 1972, p. 181-191.
1
A. Plis
R. P o m e s
1
1
T h e p r o b l e m of u n i q u e n e s s , Bull. Acad. Pol. S c i e n c e s 2, 1954, p. 55-57. Solution d u p r o b l k m e d e Le'vi d a n s l e s e s p a c e s d e S i l v a 1974, p. 707-710.
'a b a s e . C o m p t e s Rend. Acad. Sci. P a r i s 278,
J. B. P r o l l a ( e d i t o r ) 1 Approximation T h e o r y and Functional Analysi s . North, Holland Math. S t d i e s 35, 1979.
449
Bibliography
2
3 P. Raboin
On polynomial a l g e b r a s of continuously d i f f e r e n t i a b l e functions. Rend. Acad. Naz. l i c e i 57, 1974, p. 48 1-486. Dense a p p r o x i m a t i o n f o r polynomial a l g e b r a s . B o n n e r Math. S c h r i f t e n 81, 1975, p. 115-123
.
-
1 E t u d e d e l'kquation a f = g s u r un e s p a c e d e H i l b e r t . C o m p t e s Rend. Acad. Sci. P a r i s 282, 1976, p. 627-630. 2 L e probl'eme du a s u r un o u v e r t p s e u d o convexe d ' u n e s p a c e d e H i l b e r t e t une application a u probl'eme de Cousin s u r un e s p a c e d e F r k c h e t n u c l k a i r e 5. b a s e . C o m p t e s Rend. Acad. Sci. P a r i s 285, 1977, p. 100910 11. 3 Rksolution d e l'kquation a f = F s u r un e s p a c e d e Hilbert. J o u r l l k e s d e F o n c t i o n s Analytiques, P. L e l o n g e d . , L e c t u r e Notes i n Math 578, S p r i n g e r V e r l a g 1977
p. 269-279. L e probl'eme du a s u r un e s p a c e d e Hilbert. S k m i n a i r e P. Lelong, H. Skoda 1976-77. L e c t u r e Notes in Math. 694, S p r i n g e r V e r l a g 1978, p. 214-227 5 Application d e l a t h e o r i e de l a m e s u L e e n d i m e n s i o n i n f i n i e 'a la r k s o l u t i o n d e L'kquation a s u r un e s p a c e d e Hilbert.Vector Space M e a s u r e s a n d A p p l i c a t i o n s I , R. A r o n and S. Dineen ed. , L e c t u r e N o t e s i n Math. 644, S p r i n g e r V e r l a g 1978, p. 356-367. 6 The b equation on a H i l b e r t s p a c e a n d s o m e a p p l i c a t i o n s t o c o m p l e x a n a l y s i s on infinite d i m e n s i o n a l v e c t o r s p a c e s . A d v a n c e s .in Holomorphy, J. A. B a r r o s o e d . , N o r t h Holland Math Studies 34, 1979, p. 7 13-734 7 Le probl'eme du 5 s u r un e s p a c e d e H i l b e r t . Bull. SOC. Math. F r a n c e 107, 1979, p. 225-240. 4
.
.
J. P. R a m i s
1
SOUS e n s e m b l e s a n a l y t i q u e s d'une v a r i k t 6 B a n a c h i q u e
complexe. E r g . d e r Math. 53, S p r i n g e r V e r l i g , 1970.
A. R o b e r t s o n , W. R o b e r t s o n 1 Topological V e c t o r S p a c e s . C a m b r i d g e 1964.
K. Rusek
J. R z e w u s k i
1
R e m a r k s on H-bounded s u b s e t s i n B a n a c h s p a c e . Z e s z y t y Naukowe U n i v e r s y t e t u J a g i e l l o n s k i e g o 1974
1
On a H i l b e r t s p a c e of e n t i r e functionals. Bull. Acad. Pol. Sci. 17, 1969, p. 453-458, 459-466, 57 1-578. H i l b e r t s p a c e s o f f u n c t i o n a l power s e r i e s . R e p o r t s on Math. P h y s . 1, 1971, p. 195-210.
2
.
D. S a r a v a s t i , J. Valatin 1 A n a n a l y t i c r e p r e s e n t a t i o n of Q u a n t u m F i e l d T h e o r y . C o m m Math. P h y s . 12, 1969, p. 253-268.
450
H. H. S c h a e f e r
Bibliography
1
Topological V e c t o r S p a c e s . G r a d u a t e T e x t s i n Math. 3. S p r i n g e r V e r l a g 1970.
M. Schottenloher 1 R i c h n e s s of t h e c l a s s of h o l o m o r p h i c functions on a n infinite d i m e n s i o n a l s p a c e . F u n c t i o n a l A n a l y s i s , New R e s u l t s a n d S U Iveys, K. D. B i e r s t e d t and B. F u c h s s t e i n e r ed. I N o r t h Holland Math. Studies 27, 1977, p. 209-226. 2 Holomorphe Funktionen a u f G e b i e t e n u b e r BanachraUmen zu vogegebenen K o n v e r g e n z g r a d i e n . M a n u s c r i p t a Math. 21, 1977, p. 3 15-327. 3 E p r o d u c t a n d continuation of a n a l y t i c m a p p i n g s . A n a l y s e Fonctionnelle e t Applications, L. Nachbin e d , , H e r m a n n , P a r i s , 1975, p. 261-270. 4 The Lkvi p r o b l e m f o r d o m a i n s s p r e a d o v e r l o c a l l y convex s p a c e s with a finite d i m e n s i o n a l S c h a u d e r d e c o m position. Ann. Inst. F o u r i e r 26, 1976, p. 207-237.
-
L. S c h w a r t z
J. T. S c h w a r z
E s p a c e s de fonctions d i f f k r e n t i a b l e s 'a v a l e u r s v e c t o r i e l l e s J. Ana. Math. J e r u s a l e m 4, 1954-55, p. 88- 148. 2 The'orie d e s D i s t r i b u t i o n s , H e r m a n n , P a r i s , 1966. 3 The'orie d e s D i s t r i b u t i o n s 'a v a l e u r s v e c t o r i e l l e s. Ann. Inst. F o u r i e r 7, 1957, p. 1-141. 4 Division par une fonction h o l o m o r p h e s u r une variktk analytique complexe. S u m m a B r a s . Math. 3, 1955, p. 181-209. 5 P r o d u i t s t e n s o r i e l s Topologiques d ' E s p a c e s V e c t o r i e l s Topologiques. E s p a c e s V e c t o r i e l s Topologiques NuclCa i r e s . Se'minaire S c h w a r t z , 1953/54, P a r i s . 1
1
Non l i n e a r F u n c t i o n a l Analysis. C o u r a n t I n s t i t u t e New York, 1965.
K. S c h w e r d t f e g e r 1 Personal
communications
, june, S e p t e m b e r 198 1.
J. S e b a s t i z o e Silva 1 Le Calcul Differentiel et Intkgral dans l e s espaces local e m e n t c o n v e x e s re'els o u c o m p l e x e s . Atti. Acad. Naz. Lincei,2O, 1956, p. 743-750 and 21, 1956, p. 40-46. 2 Conceitos d e funqag d i f f e r e m c i a v e l em e s p a q o s l o c a l m e n t e convexos. Publ. Math. L i s b o a , 1957. 3 L e s e s p a c e s 'a borne's e t la notion de fonction d i f f k r e n tiable. C e n t r e Belge. Rech. Math. 1961, p. 57-61.
F. S e r g e r a e r t
1
Un thkor'eme d e s fonctions i m p l i c i t e s s u r c e r t a i n s e s p a c e s d e F r k c h e t e t q u e l q u e s a p p l i c a t i o n s . Ann. Sci. E c o l e N o r m . Sup. 4, 5 , 1972, p. 599-660.
Bibliography
I. S i n g e r
A. V. Skorohod
1
B a s e s i n B a n a c h s p a c e s . Die Grund. d e r Math. W i s s . 154, S p r i n g e r V e r l a g , 1970.
1
I n t e g r a t i o n i n H i l b e r t s p a c e s . E r g . d e r Math. 79, S p r i n g e r V e r l a g , 1974.
0. G. Smolyanov 1
R. S o r a g g i
S. S t e i m b e r g
T h e c l a s s of s p a c e s i n which t h e t h e o r e m on the bounded d i f f e r e n t i a b i l i t y of t h e i n v e r s e m a p p i n g i s valid ( R u s s i a n ) Mat. Z a m e t k i 17, 5, 1975, p. 703-709 ( E n g l i s h T r a n s l . ) Math. Notes 17, 1975, 5-6 p.418-421.
1
Bounded s e t s i n s p a c e s of h o l o m o r p h i c g e r m s . A d v a n c e s i n Holomorphy, J. A. B a r r o s o ed. , N o r t h Holland Math S t u d i e s 34, 1979, p. 745-766.
I
T h e Cauchy p r o b l e m f o r d i f f e r e n t i a l e q u a t i o n s of infinite o r d e r . J. Diff. Eq. 9 , 1971, p. 591-607.
S. S t e i m b e r g , F. T r e v e s 1 P s e u d o F o k k e r P l a n k e q u a t i o n s a n d hyperdifferenLia1 o p e r a t o r s . J. Diff. Eq. 8, 1970, p. 333-366. T i t s c h m a rk
1
F. Tr'eves
M. Valdivia
V. V o l t e r r a
451
T h e T h e o r y of F u n c t i o n s , Oxford, 1947.
Topological V e c t o r S p a c e s , D i s t r i b u t i o n s a n d K e r n e l s . A c a d e m i c P r e s s , 1967. 2 Differential equations in Banach Filtrations. Centre B e l g e Rech. Math. 1971, p. 111-117. 3 On t h e t h e o r y of l i n e a r p a r t i a l d i f f e r e n t i a l o p e r a t o r s w i t h analytic coefficients, T r a n s . A. M. S. 137, 1969, p. 1-20. 4 Ovcyannckov t h e o r e m a n d h y p e r d i f f e r e n t i a l o p e r a t o r s . N o t a s d e M a t e m a t i c a , IMPA, Rio d e J a n e i r o , 1968. 5 A n a b s t r a c t non l i n e a r Cauchy K o v a l e v s k a t h e o r e m . T r a n s . A.M.S. 150, 1970, p.77-92. 1
1
I n t e r p o l a t i o n on c e r t a i n function s p a c e s . P r o c . R o y a l I r i s h Acad. 80 A, 1980, p. 178- 189.
1
S o p r a l e funzioni c h e dependone d a a l t r e funzioni. Nota I, 11, I11 Rend. Acad. Naz. L i n c e i , 4, 3, 1887, p.97-105, p. 141-146, p. 153-158.
.
Bibliography
452
L. W a e l b r o e c k
W . Wasow
S. Y a m a m u r o
1
The n u c l e a r i t y of (4 (U). Infinite D i m e n s i o n a l Holomorphy a n d Applications, M. C. M a t o s ed. , N o r t h Holland Math. Studies 12, 1977, p. 425-436.
1 Asymptotic Expansions for Ordinary Differential Equations. J. Wiley, New York, 1965. 1 2
D i f f e r e n t i a l C a l c u l u s i n topological l i n e a r s p a c e s . L e c t u r e N o t e s i n Math. 374, S p r i n g e r V e r l a g , 1974. A t h e o r y of d i f f e r e n t i a t i o n i n l o c a l l y c m v e x s p a c e s . M e m o i r s of A. M. S. 17, 2 1 2 , 1979.
G.Z a p a t a ( e d i t o r )
1 F u n c t i o n a l A n a l y s i s , Holomorphy a n d A p p r o x i m a t i o n T h e o r y . M a r c e 1 D e k k e r Inc, t o a p p e a r i n 1981.
E. Z e h n d e r
1
G e n e r a l i z e d i m p l i c i t function t h e o r e m s with application to s o m e s m a l l d i v i s o r p r o b l e m s . Comm. P u r e Appl. Math. 28, 1975, p. 91-140.
INDEX
c o - S c h w a r t z s p a c e s , 22 C o u s i n p r o b l e m I, 410 C r e a t i o n o p e r a t o r s , 110
A n a l y t i c (function o r m a p ) : a n a l y t i c (G -analy t i c t c ontinuous), 8 8 G - a n a l y t i c , 79 h y p o a n a l y t i c , 425 r e a l a n a l y t i c , 104 Silva a n a l y t i c , 8 3 Silva a n a l y t i c in t h e e n l a r g e d s e n s e , 88 of n u c l e a r bounded t y p e , 283 of unifiorm bounded t y p e , 105 A n i h i l a t i o n o p e r a t o r s , 110 A p p r o x i m a t i o n t h e o r e m s 143. 1 4 5 , 1 4 9 , 1 6 6 , 2 2 9 ,3 1 7 , 3 2 1 , 3 4 2 , 3 4 7 , 362, 372. A s y m p t o t i c e x p a n s i o n s 426 B a s e of b o u n d e d s e t s , 10 B a s e of o - n e i g h b o r h o o d s , 4 B a s i s (Schauder), 354 B i p o l a r t h e o r e m , 17 Bounded s e t s , 7, 1 0 B o r e l ( F o u r i e r ) t r a n s f o r m 167, 1 6 9 , 196. B o r n i v o r o u s s e t s , 12 B o r n o l o g i c a l d u a l , 11 B o r n o l o g i c a l l o c a l l y convex s p a c e s , 2 B o r n o l o g i c a l s u b s p a c e , 12 B o r n o l o g i c a l topology, 12 Bornological v e c t o r s p a c e , 10 B o s o n f i e l d s , 109 Cauchy s y s t e m , 8 Cauchy's integral f o r m u l a , 86 C n and C a m a p s : s e e d i f f e r e n . tia bility . c o m p a c t m a p p i n g s , 19 c o m p a c t s u b s e t 6 of a F r k c h e t s p a c e , 29 c o m p l e t e n e s s , 9, 134 c o - n u c l e a r s p a c e s , 22 convolution e q u a t i o n s 206, 208, 223, 266,277,326
D. F. N. s p a c e s , 2 8 D i f f e r e n t i a l f o r m s , 377 D i f f e r e n t i a b l e m a p p i n g s , 4 5 , 4 7 , 48, 52, 54, 6 1 , 6 9 , 72, 92 D i v i s i o n of d i s t r i b u t i o n s , 2 4 5 , 252, 262, 268, 272 D i v i s i o n ( o t h e r r e s u l t s ) , 213, 231, 308, 327 D i v i s i o n ( W e i ' e r s t r a s s t h . ) , 246 D o m a i n of e x i s t e n c e , 348 D o m a i n of H o l o m o r p h y , 348 e q u a t i o n , 3 7 6 , 3 7 9 , 388, 398, 401, 404,407 b o p e r a t o r , 377 Exact sequence, 376,404,407,416 E x i s t e n c e d o m a i n , 348 E x i s t e n c e r e s u l t , 154, 222, 235, 266, 3 1 7 , 321, 324, 342, 346, 354, 3 7 9 , 388,401,404,407,410 F i n i t e d iffe r enc e pa r t ia 1 d iffe r e ntia 1 e q u a t i o n s , o p e r a t o r s , 326 F i n i t e l y d i f f e r e n t i a ble m a p p i n g , 5 4 , 288,398 F o c k s p a c e , 109 Fourier-Bore1 t r a n s f o r m , s e e Bore1 F o u r i e r t r a n s f o r m , 167, 186 F r C c h e t s p a c e , 25 G a t e a u x a n a l y t i c , 79 Gateaux differentiable, 54 Gauss m e a s u r e , 383 G e r m s ( H o l o m o r p h i c ) , 182
453
454
Index
H a r t o g s ' t h e o r e m , 123 N u c l e a r i t y of h s ( O , F ) , K ( a , F); H o l o m o r p h i c g e r m s , 182 1 9 3 , 2 0 1 , 428 Holomorphic mapping, s e e analytic N u c l e a r i t y of d(0,F ) , 205 mappings H o l o m o r p h i c r e p r e s e n t a t i o n of FOCI s p a c e s , 109 Paley-W iener -Schwartz t h e o r e m s H o l o m o r p h y ( d o m a i n of), 348 1 8 6 , 3 3 7 , 427 HLirmander's L2 t h e o r y , 3 7 9 P a r t i t i o n of u n i t y , 154 Hypoellipticity r e s u l t , 398 P l u r i s u b h a r m o n i c f u n c t i o n s , 348 P o l y n o m i a l s , 35, 101 P o l a r b.v. s . , 13 Imaginary exponential polynomials, Polarity, 8 327 P o l a r i z a t i o n f o r m u l a , 36 I m p l i c i t functions t h e o r e m s , 423, 42. P r o j e c t i v e limit, 7 Inductive l i m i t , 1 1 , 26 P s e u d o c o n v e x i t y , 347, 348 I n t e g r a t i o n ( i n H i l b e r t s p a c e s ) , 383 K e r n e l t h e o r e m s , 158, 161, 164
2 3 s p a c e s , 26 L6vi p r o b l e m , 347, 3 4 8 , 3 5 4 Locally convex s p a c e s , 4
M a c k e y - A r e n s t h e o r e m , 18 M a c k e y c l o s u r e topology, 12 M a c k e y c o n v e r g e n t s e q u e n c e s , 14 Ma c key ' s t h e o r e in,17 M a c k e y topology, 17 M e a n v a l u e t h e o r e m 55 M e t r i z a b l e s p a c e s , 25 M o n t e l ' s t h e o r e m , 126 M u l t i l i n e a r m a p s , 35 Na c h bin ' s a p p r o x i m a t i o n t h e o r e m 151 N a c h b i n ' s p o r t e d topology, 132, 426 Naturally reflexive spaces, i 5 N o r m a l c o n v e r g e n c e , 101 N u c l e a r bornology (of a F r 6 c h e t space), 34 N u c l e a r m a p p i n g s , 19 N u c l e a r Silva s p a c e s ; 28 N u c l e a r s p a c e s , 22 N u c l e a r s u b s e t s , 29
Quasi nuclear mappings, 20 R d d i u s of c o n v e r g e n c e , 426 Rapidly d e c r e a s i n g sequences, 34 R e f l e x i v e s p a c e s , 1 5 , 16 R e f l e x i v i t y of 3c ( 0 , F) and &(0, F), S 142 R e p r e s e n t a t i o n of F o c k s p a c e s ( H o l o m o r p h i c ) , 109 R u n g e a p p r o x i m a t i o n t h e o r e m , 362 S e m i - M o n t e l 1. c . s . , 126 S c h w a r t z E - p r o d u c t , 157, 159, 164 S c h w a r t z p r o p e r t y , 138 Schrvartz s p a c e s , 22 Silva spaces, 27-28 S t r i c t l y c o m p a c t b o r m l o g y , 33 S t r i c t l y c o m p a c t s e t s , 33 S u p p o r t (of a n e l e m e n t of 6'(!2)),417 T a y l o r ' s f o r m u l a s , 55 Tdylor series expansion, 8 7 T o p o l o g i c a l b . v . s . , 27 T o p o l o g i e s on X s ( n , F) and d ( 0 , F), 129, 131,426 U n i q u e n e s s of a n a l y t i c c o n t i n u a t i o n 82
index
V i t a l i ' s t h e o r e m , 128
MI e i'e r s t r a s s d iv i s ion t h e o r e m , 2 46 W ei'erstrass preparation theorem, 246 Z o r n ' s t h e o r e m , 118
.
455
This Page Intentionally Left Blank