This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
=NQSRT;>U/VJOWX=@QY=NZ=@9>[]\:^_`F1DNa b cedgfh8iKjkl/f8mid pn oIqGrsqutvrsqutxwTyIz{>qGre|~}I
s6w/t@6w xoI6o0tvwt~6<sOwTyIz{1qXrBsoIqG|vrXtvw{>quy>
qN s|EIr|T6qwI}|vrzgt~s6|vw.t~{1|vyprt~s6|vwtv1|v6w<p|vw:t~6vqX{rtv6@tvrs6qqNXu*|vwTqXr
qG soqXrqptvrsqxtv6s| twTyIz{>qGr8|~}1/t@wgxoIogoI|v1qGY}|r8rsqN
yIO|woIq`rs6{Iy|w|v} rts6|vw>t~T>|w<u|yI6{1qxy
qNEwtvs6Gt~TIr|v{I6qXz}r|vztvwt~6<s/w Fb]8ko!8:WD8:PUk=$P&Jë RcC]WDY[©b>Fb.Rc>T ̵ ± µ$ uż9D8k>F= Ù3`è$æ©à«â©ãh(æ #!â m̱ / `àa&` 0 â 0 m â©ãa`& 0 â 0 mDm 0 `,à m B@b=h9DE]Y[A>S8:WT>@RKwK=ACEpo/=A9XRcU:UÌëCEK>S8:Cäè WFY[©bÉ>@bRc>së ã0`' 0 â 0 m uh0 ¾«b8:W 8kW<0 Rhn.C8k>@=s9DE]Y[A>3B3]=L=LC]6E/C>@b=S[©bE/8k[L=sEKZ>@b=) RKC] P=sRcCv8kC&>@=L^K9@RKU8:]=LRKUº8:C >Fb=~[LU:RKWFW«EcZ«&` #â m CEc><]8ko!8:WD8:PUk= P&J6RKC&J69D8:fg=8kC \e}RKC]åUk=A> P=XWDY[©bå>@b.Rc>` m<± µ&` #â m æ>@b=L%C " ± µ RKC]y&` â mƱ u » Zºè 8:WdE/P>@RK8:C=A]gZ9DE/f èP&JgRK] DE/8kC8:C^SRKUkU>@b=\9D8:fg=LWÆBFb=LC Ù3`è\æ©à«â©ãg(æ " m²± Ù3`è$æ©à«â©ãh(æ â mű Ù3`è æ©à«â©ãgæ â m â BFb=~WF=A[LE/C]=Aj!YRKU:8Ç>iJabEKU:]WP=L[LRKYWD=T>@b=T>iB#Eh9FE!]Y[?>@W8kCoKE/UkoK=L]vRK9D=$>@=A9Ff P&J >F=L9FfÖ>@b=sW@Rcf0=cu#dJq` m >Fb=s9F8k^/b&>
xoIqGrsqgoIq á tvrsqsyIt~{q6wqGt~r0}|vrzgGKÙ´ TwI|xw²sot~/qGt~²t~IIr|@Ózt~s6|vw zt@E}Æt~6}|r/syoKt~r6qs6qGGTtvu6wqGqG°zgt@soq ±tv
q ØurwXq|vwIqsoIq qNs*/q Xtvw.
s66eqG
tv{Iso.tvwt
Tzg|~s}|vrzyIt}|vrºÃYÄÅ>xoIo°t~vqN/soIq0sotv>q ºÃYÄÅ]Ç È1Ê Ë Ì È Ì Ä ä à ŠnpoIqKw|vqX`oIqGrsq66qG06w4soq}Ætvs|v r enpoI00t¡rts6|vw>t~8wTyIz{1qXrw4oIqKrt~wIq
Îì SOÜ¡|vrqX|qXru*/|vw>`rsysqN|vy/|~}IÕ´t6qXwss6qG]}|vrpqXrstv w qGqGw< t~rqXs6qG .rsqG6t~sqG²|ºÃYìvÅ wIqKGt~w4
o|¹ot oIq°±tssqØurw>6Iqg}Ætv qXÓt xoIqGw °å I8npoIqtvs
å ì Ãzg| ÅÎ Y\ å w ) Ãzg|z<Å & { | o!N S P:o!N2\}Nu^jh QbS Y S P"\_^a~^ Qdc \ Q P#^Y S]Qc [!Yd^ S PY S PaoKNh_t\:k Q XZN ç ç ç ç ã è ìã â è & ã ä èy) ã ç åR npoI|vwIq|~}8soq0}qX¿X|vzgI6qqX6.yw|ws6|vwtvrqGsyI6woIqtvrsqNtInpoqIr|T|~} qG>qGwIx|w.tgrqGsyIp|v}OÝt~s q / ,>Øuç r|v1|sçµ|-w I ç ·xoIo¡`tqG/so>txsoq0yIrvq ã è ì~ã â åºUÕ ot*twI|vwIYrs6T6tvrts6|vw>t~1>|w</}|vrpt~wTgIrs6zgq*-Õ ìÃzg| z<ÅuÝt~s Cq / ]t~rvyzEqGw< ysqGt4±qGqXwIqXr1|v6w<X|vw
srys6|vweR I|rgsoIq¡rqGsyIKt~{1|vq.µoIqXrq}|rsq¡sy KqG
s|(
o|#sot~soq:{I6wtvrs²}|vrz & ã çä {è ) ã çç tvvqGEt¡Ir6zEq.t~6yIqÕR ìÃzg|z<Å Øur|vrsqNs6w»Irzgq:w
npoI°°t |vwqxsoÉqXrssqÓ Ã`ÒÎ ÎGÒNÅnpoIq|yIw<s6wI»}yIw>s6|vwMºÃÆÄEÅg}|rKso6 t~rqX`6/oIq0syI{½`qGx|~} "w|vvrtv2I| ] ]ÜqGt~w "ut~6yIq npoIqG|vrqXz8ÛI1qXr{1|vywI/}|vr ºÃYÄÅ]ot@vq@tvrs6|vy>*tvII66Gts6|vw>]6w:tvwt~6<swTyIz{1qXr/oIqX|rs|0oIqqG
s6zgt~s6|vwK|v} qÓ1|vwIqGw<st~usyIzw²soIqgÀ>r
w
tvwqBt~w>oIqXwXqEs|{>|yIwI0|vw²soIqx6qXzt~ww 1qXtS}yIws6|vwMt~wÉsoIq4qXrr|vrKqXrz 6wÉsoq4Ø]rs6zgq yIz{1qXr¡npoIqG|vrqXzß vrqGt~ qNt~|~}q |vrspo>tv/v|wIq6w<s|EzgIr|TwoIq|vrwtv>yI>qGrx{>|yIwIpqN`t~{I6
oIqN°{T "6wI|vrtv|Ù´6pwI|vot~r°s|
o|Éso>t ºÃÆÄEÅ ztDÓ NÄ S ÎsÄ Uä SUT â ä }|vr*t@vqxã â Î 2 Îsã S t 1qXrzyIt|w |~} Î 2 Î 8s|¡sot~EºÃYÄÅg Ç ~à LNÎ M@Å`Ä w»oIGtvsqvÜ¡|rsqG|vqXr "utvyIvo>t~w tvw ¸(|<|qGW do>t@vqqN`t~{I6
oIqNgsoqt~zgq tvs
"! #$%'&()*#"+ ,.-0/2143657-98:-98:1 ;=<>@?A?B)CD0EGFIH2JKHLEGCNMPORQ?>@?S?TO0UVSXW$OYH2JKCZS?G[\;=<E6]2CZ?STORQ)E^>@?TJ0Q >@Q_SCOK` a BMPS>bORQISO(S<)E6SO0H2>@MKc a EP]Q>@S>bORQ?dJ0Q a ]2CZ?SdHCZO0H#EGCZS>bEe?GfgMGh@J0??>iMGJ0hgEPjkJ0lVH2hbEe? J0Q a MPORBQ_SEGCEPjkJ0lVH2hbEe?G[m;=<)En?EeMPORQ a ORQ)ET>@?VJKoLORB)SVMPOR<ORl.ORhbO0pR>@MGJ0hql.EGS<)O a ?rc s CZJ0BEGC`utAJ0Q2>@Q^O0o2?SCZB2MPS>bORQ*f a Ee?MPEeQvS.S<EGO0CFwO0UyxzORh@hi>bO0S{`u;=
¡I¢£¤#¤#¥Z¦£=¢A§*¨©¤#ª.¢«#¤
¬ u¬* ®r¯L°K±X²6³{¯*²9´0° µ7¶¸·_¹º·k» ¼2½¼2½~¼¾{¿À·9ÁÂÄßÅƺ¹9Ç"È»wÁ)ÉȹÊËNÌ"ÍeÎÏÑÐÑ^ÒZÍdÓ Ô©ÕÖÎuÍ×GÍGÎgØ{Ù Ú#Û ÓRÜ:Í:×Ø{Ù*ÝÌ"ÍGÎÞ¸ßàRdÙPØKá
âßãÏgÝåä"ækÍGÕçÎækÍPáÍèÖ4×èÓKÕéÞßàâêævÖ~ÜPæÖ4× Ó0áGÒGÖÎáÓKá:Ö Ûìë Ü Û Øí×GÍ7ÎîØ7Þ¸qÙGØKá=
ßèÏgÝ ï O0CdJMPORl.H2h@EGSEAHCZO_O0Uðf?EGE^ñ ò¸Jíóîf;=<)EGO0CZEelõôAH[÷ö0ø9[;=<>i?.CEe?Bh@S>@?JCEP` ]#Q)Eel.EeQ_SyO0US<)Ex<>iQ)Ee?E.CEelVJ0>iQ a EGCyS<)EGO0CZEeld[dùgQ)E.CEGUO0CZl B2h@JKS>bORQO0U=>bSy>i?yJ0? UORh@hbOW?GcS<)E a >@JKp0ORQJ0h*Eel oLE aa >@Q)p.ú ûýü Gþíÿ 07>@? a EeQ?E0f)S<)EyHCO a BMPSoLEe>@Q)p E 9B>bH2H#E a W>@S
· ʸÈ4ÉȹÊâ¼½~¼2½ òEG S
KIoLEJ(p0EGORl.EGSCZ>iMGJ0h@hbFI>@Q_SEGp0CZJ0h J0h@p0EGoCZJ0>@MDíJKCZ>@EGSuF0[ ;<)Ee Q ?JKS>@?{]Ee? ê$ÍZÓ nÓ ÚRÚ áØ 0Ö VÓ0ÎÖ~ØKÕ>bUpR>bD0EeQÏÐ VJ
]Q>@SE7?EGSO0U$H2h@J0MPEe? a y J0Q ß ~00$U4O0CßèÏqf)S<EGCEEPjk>@?S?=JV_`îCZJKS>bORQJ0hLHLOR>@Q_S ß ~zW<2>@MZ< >i?JKCo2>bSCZJKC>@hbFMGhbOR?EySO yU4O0C
ßèÏ[ xJKCEl B?S©oLESJ 0EeQd>bU"ü eþíÿ ~RK©>@?©EelVHSuF ko_FVMPORQ_D0EeQvS>@ORQ*f)W$EqW>@hih?JeF S<2JKS>@Q7S<>@?MGJ0? E ?JKS>@?{]2Ee?WzEeJ JKHHCO jk>@lJKS>bORQ EGD0EeQ.S<)ORB)pR< ^~>@?Eel.H2SuF0[ Y<)EeQ^ü Gþí!ÿ ^~0K# % " $do2B)& S ~y' $9fORQ)E
?JeFk? S<2JKS S<)) E ( Óí××GÍ Ú á:ÖÕÜGÖ ÚÛ Í UJ0>@h@? [ *,+.- /0214336587:9,;<3>=@?BAC587D-,EFA6-FGH9,I61J-DKF;L7:7,58-:MN;<3O>-P9,;Q0R5SEUTELM6M67,;SV>1JWXEY9,14;<3 Z[EU14\J1436] O>7^EUWXEU9,1_= KSEL\4\_AC`
ô
E6?EGENS<JKSdW$EeJmJKHHCO jk>ilVJKS>bORQY>@?E_B2>bDíJ0h@EeQvSSO^S<)E?SJKSEel.EeQ_SnS<JKS ^~
>@? a EeQ2?EA>@Q ü G þKÿ ^~00TE9B>bHHLE a W >bS<éS<)EAHCO a BMPSVO0U S<)ETv`uJ a >@M SO0HLORhbO0pR>@Ee?[
·k»ÁºíÂY¼½~¼½òEGSãû HLEeMgoLEJ#JKSÆl.O a Eeh_O0UH OD0EGC HLEeM*y a EeQ)O0SE o9F ©)S<E ?EGS$O0U©Ó vÍ Û Ö~Ü Ú ØKÖÕ2Î×O0URf9S<JKS>@?Gc¸S<)ECEe?SCZ>@MPSE a H2CO a BMPSO0ULS<)E ?EGS? ~00z
ßA=í¸W>bS< CEe?HLEeMPSSOgS<)E?EGS?Aî0$>@S>i?ÆMGh@EeJKCZhbF >@Q a EGHLEeQ a EeQ_S ORQS<)ErMZ<OR>@MPErO0U
[ UX >@? HCOEeMPS>bD0E0fS<)EeQ ©)7ü Gþíÿ ~RK J0Q a WzEeJ
JKH2HCOej)>@lVJKS>@ORQ
>@?zE 9B>bDKJ0hbEeQ_S$SO.?SCORQp7JKHH2COej)>@lVJKS>bORQf9QJ0lVEehbF0f ~z>@? a EeQ?Ey>@# Q ^ )U4O0C=S<EyJ a Eeh@>@MSO0HLORhbO0p0F0[ ·k»ÁºíÂY¼½~¼½ òEGS So#EA?l.O9O0S<*[q??B2l.EnS<JKS >i?_`îo2>bCZJKS>@ORQJ0hSO [r;<)EeQ ?JKS>@?]2Ee?yWzEeJJKHHCZOej)>@lVJKS>bORQ6>@UJ0Q a ORQhbF>bUP ?JKS>@?{]2Ee? W$EeJ JKH2HCOej)>@lVJKS>@ORQ*cyS<>@? J0Q6EeJ0?F6MPORQ?E _B)EeQ2MPEO0US<)E>@lVH2h@>@MG>bSqUBQMPS>bORQS<EGO0CEel UO0C RJ.CEGUEGCEeQMPEgUO0CS<2>@?W$EehiRh 9Q)OWQdCEe?ZBhbS>@? ñ E KóîfH [ 0øR[
E
MGJ0QwS<)EGCEGUO0CE
?HLEeJNJKoLORB)SyWzEeJ6JKHHCO jk>@lJKS>bORQ6UO0C JdUBQMPS>@ORQN]2Eeh a *c S<>i?gl.EeJ0Q?gS<JKSgWzEeJ6JKHHCZOej)>@lVJKS>bORQ<)ORh a ?qU4O0C J0Q_F?l.O9O0S<HCOEeM:` S>@D0E©lVO a EehO0U ?BMZ
¬ *) +-,/. 01032¯5468790° E o#EGpR>iQrW>bS
qÇÁ2»wÅ4·w¼½@L½ x<JKSEehbEGS ?B)CUJ0MPEe?GcyhbEGS oLE.S<)EVJ
Q)E?ZB)CUJ0MPE
. LfkW<)EGCE a EGp ')f ßAè [ U >@?z>bCCE a B2MG>bo2hbE0fRS<EeQJ7?l.O9O0S
qÇÁ2»wÅ4·w¼½@L½ òEGS Ð "
J ?lVO_O0S
Q >@Q_SEGCEe?S>@Q)pAUJ0MPS >@? S<JKS S<EHCO9O0U? O0US<)ES<)CEGE
HCEGDk>bORB? CEe?BhbS? B?E a >#EGCZEeQvS$SO_ORh@?e[;=<)E ]2CZ?Sz?SJKSEel.EeQ_S=>@?©H2CO D0E a W>bS<
S<)E ]2oCZJKS>@ORQl.EGS<)O a ?EGE HJKCZJKp0CZJKH2<môK[÷ö9[ fS<)E?EeMPORQ a ORQ)EW>bS< a Ee?MPEeQvS7S<)EGO0CF?EGEHJKCZJKp0CZJKH2<19[[9[ [ ;¸O a EeJ0hLW>@S<jkJ0lVH2hbE ôK[[ 9([ 'ORQ)EgQ)EGE a ?S<O E JKC a Fv`uò¸>bSShbEGWzO_O a MG>bCZMGhbEgl.EGS<)O a f W <>@MZ<^>@?7Ee?HLEeMG>@J0hihbF6E
MG>bEeQ_S W<)EeQ^S<)EdQ9Bl o#EGC O0U DíJKCZ>iJKo2hbEe? >@?.?B)o?SJ0QvS>iJ0h@hbF o>bp0p0EGCS<J0QrS<)E a EGp0CEGE0[Ey?Z<J0h@hLQ)O0S a >@?MGB2??©UB)CS<EGCzS<2>@?$J0Q2J0hbF_S>iM SEeM<Q> 9B)E >iQrS<)Ee?E Q)O0SEe?e[ ;=<)EGCEyJKCE J0h@?O.CEe?B2hbS?U4O0C h@>@Q)EeJKC=J0hbp0EGo2CZJ0>@Mp0CORB)H?G[
qÇÁ2»w Å 4·w¼@½ L!½ òEGSdK^oLEJMPFkMGh@>@M
]2Eeh a EPjkSEeQ?>@ORQ*[ VqEP]QES<EdSO0CZB? o9FS<)EE_B2JKS>bORQW >bS<DKJKCZ>@JKohbEe? "!#!#!$&%Kc'() +*D-, !#!#!$.% * %e ôKfW<)EGCE D * "!#!#! * % 7>@?.JNo2J0?>i? O0U/dK#[é;=<)EeQ0å?ZJKS>@?{]2Ee? WzEeJÄJKHHCO jk>@lJKS>bORQIS<>@? UORh@hbOW?nUCORl ñ J0Qkóîf.xzO0Ce[ ö9[÷ø9[ >@>4[ ;=<E J0?Z?EwH2CZ>@QMG>bHhbENU4O0CèE_B2JKS>bORQ? '1() +* , !#!#!$&% * %P©2 3 ßT p0O9Ee?=o2J0UM dS O qJ0??E
{<ô H'_[
qÇÁ2»wÅ4·w¼½@L½54 U å>@?.Jw_`îSO0CZB?GfJ0Q aéa >il687 9f$S<)EeQå?JKS>@?{]Ee?.W$EeJ JKH2HCOej)>@lVJKS>@ORQro#EeMGJ0B2?E9â>@?=_`îCJKS>bORQJ0h©:OR?S9CEe?EeQ2?S9><;>~f"ñ :OR?óîf :7[[R[
qÇÁ2»wÅ4·w¼½@L½= U> >@?dJÄ?EelV> `u?>@lVH2hbE0f?>il.H2hbFéMPORQQEeMPSE a h@>@QEeJKCd_`îp0CZORB)Hf S<EeQ?>à?JKS>@?{]2Ee?W$EeJnJKH2HCOej)>@lVJKS>@ORQ*[z;<>@?=>@? a B)EgSOA@yQ)Ee?EGC ñ @B0øíóîfñ @BCíóf a Y hiJKSORQ)O D6ñ Y 0óîf"ñ Y LHNKó[ qJKC a EGC7ñ JKófJ0Q G
E MPORQMGh@B a ES<>@?H2JKCJKp0CZJKH2
UO0CBQ R
ø
;=<>@?$>@? kQ)O W QW<EeQS<)EqDKJKCZ>bEGSuF
<J0?$J CZJKS>bORQ2J0h2HLOR>@Q_S J0hboLEGCp0EGCJ0Q ad 0OK` CZO0o#O0pRJKSODçô<kôwñ J vó,=S<ETMGJ0?EGQURJ9fJ0Q a J0h@?O Q \øNEPjkMPEGH2SJ6?HLEeMG>@J0h ?Z>bSBJKS>bORQWzEGCErSCEeJKSE a >@QIñ x óîf©;<*[ö9[@ô0ô [;<_B? S<)E a > MGBhbSuF6>i?7QO WÑSO H2CO D0EyS<& E J0?Z?EyHCZ>iQMG>bH2hbE0[ D ¹ÊEe·F0ÉHG¸º·¼@½ L½5K K à?lVO_O0S<MGB)o>@M <_F9H#EGC?B)CUJ0MPErO0U a >@lVEeQ?>bORQèJKSghbEeJ0?S öR ?ZJKS>@?{]2Ee?WzEeJdJKHHCO jk>ilVJKS>bORQ*[ EGCE$S<) E qJ0??E$HCZ>@QMG>@H2hbE>@? kQ)O WQ U4O0CI KÖ~ÓLvØKÕ#Ó Û <_F_HLEGCZ?BCUJ0MPEe?">bU_WzE$J0?Z?Bl.E S<E]Q>bSEeQ)Ee?Z?O0U#;ÆJKSEP` <JKUJKCEGDk>@MZ<.p0CZORB)H2?O0U#Eeh@h@>bH2S>@M©MGB)CZD0Ee? W>@Q2Q)EGCSORQk`WVqF0EGC ñ W N)ô:ó[ E ?Z<J0h@h"?EGE7h@JKSEGCVH2JKCJKp0CZJKH2<ôK([ ')[ S<JKS S<E7?>ilV>@h@JKCMPORQ {EeMPSB)CZEe? UO0C?B)C` UJ0MPEe?JKCZEyUJ0hi?E0[
ö
¬ 0.R¯#´R±9, + 0)´, ;<)Ep0EeQ)EGCZJ0h_> a EeJO0U)S<>i?l.EGS<)O a >@?._B>@SEQJKSB)CZJ0h~cMPORQ2?> a EGC"JHLEeQMG>@hKO0UkDíJKC>bEGS>bEe? ?ZJKS>@?UF9>@QpyW$EeJ
JKHHCO jk>@lJKS>bORQVOD0EGC=J o2J0?EW<>iMZ<?ZJKS>@?{]2Ee?zJ0h@?O W$EeJJKH2HCOej9` >ilVJKS>bORQ*;[ VqO_Ee?zS<>i?©>@l.HhbF S<2JKS$WzEeJ
JKHH2COej)>@lVJKS>bORQ
<)ORh a ?©U4O0CzS<)EqSO0SJ0hL?H2J0MPE O0U©S<)Ey]2o2CZJKS>bOR Q QAp0EeQ)EGCZJ0h~f#S<)E J0Q2?W$EGCg>@? Q)OEGD0EeQAUO0CqEPjkJ0l.HhbEe?UO0CgMPORQ>@M oBQ a hbEe?$O D0EGC f?EGEqEPj)J0l.H2h@E ôK([ ')[÷ö.o#Eeh@O Wq©o2B)SzW>bS
_Ý
vÝ
Ö4× Ú á{Ø?>GÍZÜeÎÖ@KÍ.ÓKÕ V×GÓ0ÎÖ4×4ÔzÍP× ê$ÍÓ
Ó ÚRÚ á Ø0ÖVÓ0ÎÖØ0ÕÝ Û .ØK×:ÎÓ Û4Û E ÔzÒÍPá× Ø{Ù ×PÓ0ÎÖ4×4Ù ë ê$ÍÓ
Ó ÚvÚ {á Ø>0Ö.ÓRÎÖØKÕ#Ý Ù ÄÓKáÍ9L9ÍØ ÍGÎá:Ö~ÜZÓ ÛÛ ë ÖÕ2ÎuÍ LRá{Ó Û Ý ÛÛ ÔzÒZÍGáZ× Ø{
ä"æ)ÍPÕ#×PÓ0ÎÖ4×4ÔÍ:×yê$ÍÓÓ ÚRÚ áØRÖ VÓ0ÎÖ~ØKÕÝ EGCE=J0hil.OR?S[email protected]?ORQ.JLJKCZ>@?Sk> ` a EeQ2?E©O0HLEeQ.?B)o?EGSCRS<)E=<_F_HLO0S<)Ee?Z>@?B F ?Zl.O_O0S<7>@?¸Q)O0S"Ee??EeQvS>@J0hîfíoB)S¸>bS¸lVJ0Ee?ÆS<)Ez?SJKSEel.EeQvS?>@lVH2hbEGCK>bS¸>i?"J0h@?O HLOR??>bo2h@E SOrWzEeJ 0EeQNS<)E7S<>bC a J0??BlVHS>bORQno9FnCEGHh@J0MG>@Q)p :Kp0EGORl.EGSCZ>@MGJ0h@h@FA>@Q_SEGp0CZJ0h:
W>bS< :0?H2h@>bS :1 [ ;=<)EGCE JKCE CEP]Q)EelVEeQvS?qW<)Ee Q >i? S<E HCZO {EeMPS>bD0E.?HJ0MPEc F0ORBNMGJ0QJ0MGMPEGHS a EGp0EeQ)EGCZJKSE ]2oLEGCZ?ORQnORQE <_F_HLEGCH2hiJ0Q)EB?>@QpVS<)E ?SCZORQ)p
JKHH2COej)>@lVJKS>bORQTS<)EGOK` CZEelÑU4O0CS<)E J
Q)Ey?H2J0MPEf?EGEñ Níóî[ ;=<)E> a EeJ^O0U S<>@?dl.EGS<)O a p0O9Ee?no2J0UM (SOéS<EHCO9O0U O0U qJ0??EP`utè>@Q 0OWS? k> ;<)EGO0CEel l.O0CEqHCEeMG>@?EehbF0f_S<Eq?SEGHdMPORQ?Z>@?S>@Q)p O0Up0OR>@Q)p7UCORl U4ORB)CzDKJKCZ>@JKo2hbEe?$SO ]D0E[n;=<)E.]2C?S ?B)o2ShbEVJKHH2h@>iMGJKS>bORQO0U=;=<)EGO0CZEel ôK[÷ö9[@ôJKHHLEeJKCE a >@Q(ñ x ó$UO0C >iQvSEGCZ?EeMPS>bORQO0USXW$O 9BJ a CZ>iMG? >@Q $"2c.W<EeQ QPR w<EGCES<)ErJ0B)S<)O0C? B?E a J ]oCZJKS>bORQè>@Qx<JKSEehbEGSg?B)CZUJ0MPEe?fJ0Q a J0hi?O
W <)EeQ Q Râø
W<)EeQAS<)E.>@QvSEGC?EeMPS>bORQ O0UzSuWzO 9BJ a C>@MG?gMPORQvSJ0>iQ?yJdH2J0>@CgO0UY? 0EGWàMPORQ B)pRJKSE
h@>iQ)Ee?.S<)EVHLOR>@Q_S>i?gSOnp0O UCORl QA ' SO Q R(ø o_F.>@Q a BMPS>bORQ[ QO0S<)EGC$EPj)J0l.H2h@EO0UJKHH2hi>@MGJKS>bORQVMPORQ?Z>@?S? O0UqMGB)o2>@M
.80 + /C= 1LEU7,14589 A 14-"24365 798 1_Z1_9 FK ;<3C9^EL1436- E 3;L36=@5FWM69 A;: EY7,1J-:T1 ;LMN5F3 -=>6-:589 02I61JK^I 14- ]<58;<W589:7,14KSEU\J\_A 1J3C9,5F]U7^EL\[`"@RI14- 3;L9,14;L3 0 EU- 14C3 9:7,;OA<6KF5SOB>A /T ;L7,;C>N;<] EY9,;D1 143(E />TGFCHJI`
'
<EGCEW$EB?ES<JKSJ0h@h)_`~]2oLEGCZ?JKCEp0EGORl.EGSC>@MGJ0h@hbF7>bCCE a B2MG>bo2hbE0fW<>@M<7>il.H2h@>bEe?"S<JKS S<EqCZE a BMPS>bORQl.O a [VO0U *)wJ0h@?O.>@?$U4O0CJ ?B
MG>@EeQvShbFVhiJKCp0EA>@Q a EGHLEeQ a EeQvSO0U [ ¬ , 40IJ, ¸´0 . 0 2¯54687W02° S <J0? oLEGEeQ 9QO WQU4O0C7JnhbORQ)pnS>il.EVS<JKS U4O0C EPjkJ0l.HhbE.Eeh@h@>bH2S>@M MGB)CD0Ee? a OTQ)O0S ?ZJKS>@?UFWzEeJTJKHH2COej)>@lVJKS>bORQS<)E a EGU4EeMPSqO0UW$EeJAJKHHCO jk>@lJKS>bORQT>@? a Ee?MPCZ>@o#E a o9FAxJ0??Eeh ? a BJ0hEPj)J0MPSg?E 9B)EeQMPEdñ xJ0?{ó,*?EGE.J0h@?O;=<)EGO0CEelôK[(')[÷øoLEehbO Wq[ S>@? lVO0CE a >
MGB2hbS©SO ]Q a MPORB2QvSEGCEPj)J0l.H2h@Ee?SO.W$EeJ dJKHH2COej)>@lVJKS>bORQrJ0l.ORQp.CZJKS>bOK` >@? _ `îo2>bCZJKS>bORQ2J0hSO Q2J0h"DKJKCZ>bEGS>bEe? S<JKS>@?GcDKJKCZ>bEGS>bEe? ý?BM
, À' 1L P W>@QQ)EGCZSORQk`WVqF0EGC ô<CTñ W/ó[
qÇÁ2»wÅ4·w¼½ ½@ QTp0EeQ)EGCZJ0hÆJ?lVO_O0S<è>@Q_SEGCZ?EeMPS>bORQ O0USuWzO)9BJ a CZ>iMG?=>@Q a O_Ee?Q)O0S?JKS>@?UFVS<)E$qJ0??EHCZ>iQMG>bH2hbE0fRJ0Q a WzEeJ
JKH2HCOej)>@lVJKS>@ORQ a O9Ee?Q)O0S<)ORh a EGD0EeQA>bU ^~ " $9[ ï O0CEPj)J0l.H2hbE0f)S<EyDíJKC>bEGSuF a EP]QE a >@Q o9F
S<EyE_B2JKS>bORQ?
( ø N , P , ( wø N a O_Ee?QO0S?JKS>@?UF S<E J0??E=HCZ>@Q2MG>bH2hbE s >bCMZ
qÇÁ2»wÅ4·w¼½ ½âòEGS B?yEPjkH2h@J0>iQ<)OW >bS7>@? H#OR?Z?>bo2hbE.SONMPORQ?SCBMPS MPORBQ_SEGCEPj9` J0lVH2hbEe? SOWzEeJAJKH2HCOej)>@lVJKS>@ORQAJ0l.ORQpdx<JKSEehbEGSg?B)CUJ0MPEe?.W<>@M
cC , L * "
N
a GE p# a EGp#
9fpRM a d ô OD0EGC
S<)En]2Eeh a ( J O0U CJKS>bORQJ0h Q9Bl oLEGCZ?G[ EGS JT ôíf J LS<)EeQèS<)EGCE EPjk>@?S?qJ]Q>@SE ?EGS Ï VÐÀ?B2MZ<S<JKSy>@U© ß " Ï J0Q a ß J.íf¸S<)EeQ íq>@?gJdQ)O0CZl O0U ø
J B?E.JrMPORl.H2B)SJKS>@ORQNW>bS<èDíJ0hiBJKS>bORQ?[ UF0ORB]Q a ß^Ï W>bS
'? û
J
Gþíÿ!
û $ '?
qQdEPjkH2h@>@MG>@SzEPj)J0l.H2h@EgO0U¸S<>i??>bSBJKS>bORQT>@?pR>bD0EeQno9FS<)EgE_B2JKS>bORQ
, À R wöRP , R , öR ! EGCE S<)EGCE >i?J0QnO0o9Dk>bORB?=CJKS>bORQJ0hHLOR>@Q_S àFN Neô q?ZBMZ
qÇÁ2»wÅ4·w¼½ ½ ;=<)E CEe?BhbS?O0Uj)J0l.H2hbE
ôK[[9[÷ø
MGJ0Q2Q)O0S oLEyEPjkSEeQ a E a SOrJKCo2> ` SCJKCZ>2SO0C>~[òEGS rKoLE J o2>9BJ a CZJKS>@M=EPj9SEeQ?Z>bORQ*f9S<)EeQS<EGCE JKCEMPORBQ_SEGCEPj)J0l ` HhbEe?gSOèW$EeJ 6JKHH2COej)>@lVJKS>bORQwh@[> 0Eåc ' (-) , , ôKfW<)EGCE S<>@?q<)ORh a ? E0[ p)[U4O0Cyn Jdf T Jn ô Rf "!"!"M! >@?qJ
o2J0?>@? O0U-dK ñ J0Qkóîf" 9[@ô L0H" [ 0 ö L.J0Q a ;<*[ö9[÷ö9[
@h h_S<)EHCEGDk>bORB?ÆMPORBQ_SEGCEPj)J0l.H2hbEe?JKCECEeh@JKSE a SOgCEeMG>@HCOkMG>bSuFyh@J W?>@Q pRhbO0o2J0h MGhiJ0??g]2Eeh a S<)EGO0CF0[ Q6HJKCZJKp0CZJKH2< 9[[9[¸WzEW>ih@h a Ee?MPCZ>@o#EVJTp0EeQ)EGCZJ0h$U4CJ0l.EGW$O0CU UO0C=S<)Ee?E0f2QJ0l.EehbFS<)E s CZJ0B)EGC`utAJ0Q>iQdO0o2?SCZB2MPS>bORQ*[ E MPORQMGh@B a ES<>@?=?EeMPS>@ORQdW>bS
µ7¶¸·_¹º·k» ¼2½ "½!¾ ÈÊFí¶¸· ç¼K.I&KLË̸ÍGÎ& ÒÍÓ Ú áØ >GÍZÜeÎÖ@KÍÓKÕ é×LVØeØRÎæ( E @KÓKá:Ö~ÍeÎ ë VÓí×× C ÍNÎæ9Ó0Î7ÎækÍAL_ÍZØÍGÎá:ÖÜ.Ù CkÕ RÓNVÍGÕ2ÎîÓ ÛÍG ÎîÓ Û ÍAL0áØ C Ú 6rÖ4×nÕØ0Î Îá:Ö @ Ö~Ó Û êækÍGáÍ \ *Ý C ÚRÚ Øí×GÍVÎæ9Ó0Î ~& " $ zÎæ)ÍPÕ vØ Í:×7ÕØ0Îz×PÓRÎÖi×Ù ë ê$ÍZÓ
Ó ÚRÚ á{Ø RÖ VÓ0ÎÖ~ØKÕÝ Q2h@JKCp0EnS<)En?Z>bSBJKS>bORQÄOD0EGC H#EeM"y W <)EGCEèÏ © >i?qJ
]Q2>bSE7?EGSqO0U$H2h@J0MPEe?G[ s FèJ0??BlVHS>bORQ*fLS<)EGCE.>@?JrQ)ORQ_SCZ>bDk>@J0h¸p0EGORl.EGSCZ>@MGJ0h@h@F MPORQ2Q)EeMPSE a MPOD0EGCZ>@Q)p û fW<>iMZ<mU4O0CAl.O a Eeh@?rpR>bD0Ee ? û d[ ;ÆJ 0EJ0Q JKCZo2>bSCZJKCF ß~fkS<)EeQS<)E=]oC E ÑMGJ0Q
o#EW=CZ>bSSEeQ
J0 ? À HLEeM W<)EGCE >@?yJ0QÀG|E SJ0hbErJ0hbp0EGoCZJ Ñ Ï íf 66% EeJ0MZ<Ä! =>@?yBQ)CJ0lV> ]2E a ORB)S?Z> a E
<EeQMPEORQh@FA]#Q>bSEehbFlVJ0Q_F JKCEHLOR??>bohbEno_F EGCZlV>@SE ? ;=<EGO0CEeldfMPUX[ñ ò"Jíóîf º¹*¹"6¾eÂ2·_É FK¶ã¹!RË#
;<)EGO0CEel\ønH[@ô<kô [ ï >@Q a ßm " Ï W>@S<NSO0SJ0h@hbF?H2h@>@SgU4O0C EeJ0MZ<^ ?BM<wJn a O_Ee? EPjk>i?S o9FwxzEGoLO0SJKCEGD a EeQ2?>bSuF6;<)EGO0CEeldf=ñ ò"Jíó;=<)EGO0CZEelôXNAH[ôRL$]Q a N?BMZ<(S<JKS
S<)En]2o2CEnO0U JKS N>@?QO0SNS<>i?>@?H#OR?Z?>bo2hbEdoLEeMGJ0B?E >@? p0EGORlVEGSCZ>@MGJ0h@hbFMPORQQ)EeMPSE a fzDk>@JNJ :Kp0EGORlVEGSCZ>@MX:wxzEGoLO0SJKCEGD_`uh@>[0Ed;=<EGO0CEel J0?V>@Q ñ vóîfkòEellVJôK[[ R[©;<)EeQ qMGJ0Q2Q)O0S©oLEJKHH2COej)>@lVJKSE a o_F.J CZJKS>bORQJ0h2HLOR>@QvS B2?E @gCZJ0?QEG
g ¡ ¢
¥Z¦£=¢
¨«.¤
ò"EGS oLEgJ.?l.O9O0S
u¬* D0! 0 .R¯57g°H0)´K´R± ò"EGS > KgoLE©J0Q7J0hbp0EGoCZJ0>iMp0CORB)HdB?B2J0h@hbFh@>@Q)EeJKCefío2B)S¸Q)O0S¸Q)EeMPEe?Z?JKCZ>@hbFyMPORQ2Q)EeMPSE a f E0[ p)[ >]#Q>bSE[ U9>>@?VMPORlVl7B)SJKS>bD0E0f a EP]Q)EdS<)EYG|E SJ0hbEèMPOR<)ORl.ORhbO0p0FÄp0CZORB)H2? > Àô )S<)E MPOR<)ORlVORhbO0pR>@MGJ0h a >@l.EeQ2?>bORQ O0UJ7Q)ORQ
JKCMZ<>@lVE a EeJ0QhbOkMGJ0h ]Eeh a >@?*SXW$O)f0lVJ k>@Q)pS<)E©<>bpR<EGC"MPOR<)ORl.ORhbO0p0Fgp0CZORB)H2?"B2Q>@Q_SEGCEe?S>@Q)p_[ Qgp0EeQEGCZJ0h~f WzE©<J D0E©ORQh@F S<)E©H#OR>iQvSE a ?EGS > a EP]Q)E a o9F xzEeMZ< MPO9MPFkMGhbEe?UO0C"S<E7G|E SJ0hbE SO0HLORhbO0p0F[ X U HLEeM*#f > . >V [ U/>å>@? h@>iQ)EeJKCefS<)EeQ > gMPO0CCEe?H#ORQ a ?gSO >`îSO0CZ?O0CZ?>~[ E0[ >q`îHCZ>iQMG>bH2J0h<)ORl.O0p0EeQEGORB? ?H2J0MPEe? OD0EGC B)HnSO>i?ORl.O0CH2<2>@?l MPUX[ñ tA>@hìóîf Z ([ 'VJ0Q a ñ N)ô:óîf#x<JKHSEG C R[ ;¸J 0E Tß > fJ0Q ana EP]Q)E )
_
zß©$c zß lçñ ~ > û
eþíÿ
~ > uó!!
ùo_Dk>bORB?h@FQ~zÐ ©) [E=W>@hih_?EGES<2JKS©>@Q lVJ0Q_F7MGJ0?Ee? ~Ð [
qÇÁ2»wÅ4· L ½~¼½~¼mòEGS s CH 0#"%$y
oLENS<)EéMPOR<)ORl.ORhbO0pR>@MGJ0h s CZJ0B)EGC p0CZORB)HnO0UB a EP]#Q)EgS<)E'&á{ÓCÍGá E)(6Ó0ÕÖ4Õ?EGS=O0U
+*-,
©)
.
*-,0/ þ
^©k !
; <)EeQ ~dÐ $k *-, [ Q a EGE a >i? HCOEeMPS>bD0EnJ0Q a s C#gN N6U4O0C.EeJ0M< ]#Q>bSE Hh@J0MPE ñ tè>@h óîf :7[[9[@ôeöRf"<)EeQ2MPE UO0CEeJ0MZ<Þéß s CH S<EGCE EPj)>@?S?J]Q>bSE ?EGSO0UH2h@J0MPEe?gÏ S<E H2hiJ0MPEe?=O0Uo2J a CE a BMPS>@ORQnUO0C O0CÞ=?BMZ
ç ß " Ï J0Q a J0Q_F ß ^~ fW$Ed<J D0EnÞz Nk[6òEGSn ¸ ß L>bU ß ^~=>@?q?B MG>bEeQvSh@FrMGh@OR?E SO UO0C Tß6Ïf#S<)EeQèÞz Þ 0U4O0CJ0QvF
ßA_f)S<_B2 ? GþKÿ 9Þ 0 N.oLEeMGJ0B?E >@?CZJKS>@ORQJ0h~[ tAJ0Q>iQ'ñ tAJKó?Z<)O WzE a >@Q ô< LHNÄS<JKSdUO0CnJ^p0EeQ9B?dORQ)E6MGB)CZD0EèW >bS<m]Q>bSE ;ÆJKSEP` <JKUJKCEGDk>@MZ<^p0CZORB)HfS<)ErMPORQ a >bS>bORQ *-, " $A>@l.H2hi>bEe?gS<)EEPjk>i?SEeQMPE O0UzJCZJKS>bORQJ0hÆHLOR>@Q_SG[y;=<)E.?>@lV>ih@JKC ?SJKSEelVEeQvSyUO0CgJKoLEeh@>@J0QADíJKCZ>@EGS>bEe?g>@?qSCZB)E J0Q a S<EGCEy>@?=J0h@?OVJ0QnJ0QJ0hbO0pRB)E JKo#ORBSW$EeJ nJKHH2COej)>@lVJKS>bORQ6ñ 6JRó[ qÇÁ2»wÅ4· L½~¼½@òEGS c û oLE6J(J0hbOR>i?Gfp0EGORl.EGSCZ>@MGJ0h@h@FYMPORQ2Q)EeMPSE a f QORQvSCZ>@D9>@J0h.G|E SJ0hbETMPOD0EGCZ>@Q)p6W >bS<p0CORB)H > [wEnMGJ0QÄDk>bEGW (J0?.J0QéEehbEel.EeQ_S7O0U > f¸W<EGCE>Ñ>i?gMPORQ?> a EGCZE a J0? JnMPORQ2?SJ0QvS p0CORB)H?ZMZ<)Eel.E0[©??EeQvS>@J0hihbF S<E.HCO9O0U©O0UtA>iQMZ<)EGD ?gCEe?ZBhbS.;=<)EGO0CEelôK[(')[÷øRgMPORQ?>i?S?O0Uz?Z<)O W>iQ)p ~ Ð ^ S<>i?">@?"S<)Ez?SEGH W<2>@MZ< B?Ee? EGCZlV>@SE ?Æ;<)EGO0CEel
fKS<)EeQ SO=]Q a í ß " ^ S<J0Q k?SOJ.p0EGORlVEGSCZ>@M xzEGoLO0SJKCEGDd;=<EGO0CEeld[
·k»Áºí L½~¼½ UX >@?7CZJKS>bORQJ0hîfS<)EeQ s C
s CL ~ Y >@M N >@? ]Q>bSE0f W )< EGCE L [ >@QMPEUO0C=J MPORQ?SJ0Q_SEehbEel.EeQ_S nO0U s C>~[ E0[©J0QEehbEel.EeQ_S MPORl>@Q)prU4CZORl s C WzE O0o_Dk>bORB?ZhbFT<J D0E©= ©) f*WzE.O0oSJ0>@QèS<JKSy>@Q S<2>@?MGJ0?& E ^ *-, >i?yJKS hbEeJ0?S=>iQrS<)EGO0CF MPORl.H2B)SJKohbEb[ µ7¶¸·_¹º·k» *½¼2½ m¾AÁºíÁºíÈ Â¹2ºí¹ ¹ 2Á)ɹ Ë6Ì"ÍeÎ ÒÍVÓ Ú áØ >eÍÜ ÎÖ*@0Í ×LVØeØ0Îæ Ó0Õ L_ÍZØ ÍGÎá:ÖÜÓ Ö4ÕÎuÍ L0áÓ E @KÓKá:Ö~ÍeÎ ÝÌ"ÍeÎ9>ÒÍÓ ÖÕ#ÍÓ0ár E L0áØ C ÓKÕ ß > zÎækÍGÕ Û4Ûì^ë ~zÐ ^Û ©k ÓKëÕ © Öi×GÜZÛ Ø Ú C)ÎîÓvÒ Û ÍKÝ Ú ; <)E > a EeJ O0U"S<)E 2H CO_O0U>i?©SO.JKHH2h@F s O0CEehb` EGCCE ]Q>bSEeQEe??©;=<EGO0CEel ñ EH'0óîf = Z [(')[ R>@Q?SEeJ a O0U GE CZlV>@SE ?;=<)EGO0CZEeld[ EGEñ N Kóz;=<*[8')[ L0O0C ñ N)Gô óz~ø9[÷öR UO0C=S<)E a EGSJ0>@h@?G[
*) 0 7u±u¯ 02°K²0! ¸´T´0 , . ;<>@?
WzJ0? a EGD0EehbO0HLE a o_FIxzORh@h@>bO0S{`u;<$e|E hEe} Q)EJ0Q a J0Q?B2Mñ x J0Q9óîfJ0Q a CZEeMPEeQvShbF MPORlVH2hbEGSE a o_F 0O0CO0oLO0pRJKSODñ 3íóî[S%=EeMGJ0hih=S<JKSrJ LRá{Ø C Ú Ø{Ù C Û ÎÖ Ú#Û Ö~ÜZÓ0ÎÖ@KÍ Î ëÚ Í IOD0EGC>@?7JèMPORlVl BSJKS>bD0Enh@>@Q)EeJKC _`îp0CORB)H^W<>iMZ<>i? J0QEPjkSEeQ?>bORQwO0UJ ]#Q>bSEgp0CORB)HTo_FrJ.SO0CZB?e[$;=<) E V<Ø C Û Í.Ø{Ù7ÜPæ9ÓKáÓRÜ ÎuÍPá×=O0 U é>@?S<)E JKoLEeh@>iJ0Qrp0CORB)H T I ORlT #"%$f¸E _B2>bHHLE a W>bS
µ7¶¸·_¹º·k» *½*½~¼Y̸ÍGÎ E @íÓ0áÖîÍGÎ ë Ý ÍÔÕLÍ
ÒÍÓ Ú áØ >GÍZÜeÎÖ@KÍ=×LVØeØ0Îæ g ÓKÕ
@gEGC¸ s C û
L9ÍØÍGÎá:Ö~ÜZÓ ÛÛ ë Ö4ÕÎuÍ L0áÓ Û
. © þ *-,*)/ s C PÝ g×Z× C V ÍÙ CkáPÎækÍPárÎæ9Ó0Î^©) *-,* " $)Ý
+*-,
^©) *©
êæ)ÍPáÍ s C ä"æ)ÍPÕ
RÝAÍyæ9Ó 0@ Í
.
*-,
^) *
^©) !
þ */ !"#
_Ý ×× C Í.Ù Cká:Îæ)ÍPáÎæ9Ó0Î Y >@M Öi×6Ø{Ù ÔÕÖÎuÍÎ ëZÚ Í Û ÍeÎ ÒZÍ6ÎækÍ L0áØ C Ú Ø{Ù C Û ÎÖ ÚÛ Ö~ÜZÓRÎÖ*@0ÍÎ ëÚ ÍêÖÎæVØ< C Û ÍØ{ÙVÜPæ9Ó0á{ÓRÜ ÎuÍPá× Y >@M ÎækÍPÕ^ÎækÍGáÍÍYRÖi×PÎ× ÓÎîØKáZ×GØK á !c 'û CkÕ _ÍPá ÓnB2Q>bD0EGCZ?J0h#SO0CZ?O0CG× CÜPænÎæ9Ó0Î
*-, *$
^)
!
Q_SB)S>bS>bD0Eeh@F0fBQ>@D0EGCZ?J0hl.EeJ0Q2? :0J0?Q)ORQ_SCZ>bDk>@J0hJ0? HLOR??>bo2h@E<: 2>@QdH2JKCZS>@MGBh@JKCq>bU S<EGCE EPj)>@?S?JrBQ>@D0EGCZ?J0hSO0C?O0C c Ñû wf#S<EeQAUO0CgJ0QvFTSO0CZ?O0C wc$âû B2Q a EGC nS<)EGCEnEPj)>@?S?JBQ2> _BErlVO0CH2<>@?Zl O0U n`îSO0CZ?O0C?&% c û $?B2MZ< S<2JK S y (')%$[ EGErñ N)ôPóîf 9[÷ö9[÷ö9[ U4O0Cgl.O0CE a EGSJ0>ih@? JKoLORB)SS<)E a EP]Q2>bS>bORQnO0U B2Q>bD0EGCZ?J0hi?SO0CZ?O0CZ?qS<>@?Q)O0S>@ORQV>@? a BESO7xzORh@h@>@O0S{`u;=<$e|E hEe} Q)EJ0Q ar J0Q?B2Mñ x J0Qkó[ ;=<)EGO0CEeT l 9[[ 9[@ô>@? a >
MGBhbSGfR?EGE 0O0CO0oLO0pRJKSOD ?zoLO_NO dñ N)ôPó2UO0C$JyMPORlVH2hbEGSE J0MGMPORB2QvSORQAS<)E7?ZB)o EeMPSG[ùQ)E O0US<)E > a EeJ0?q>@? SO
CEeMPOD0EGCgS<)E s CJ0B)EGC p0CZORB)HAO0U õlVO a [ s C lVJ k>@Q)p
MGBH)`îHCO a BMPS?7ñ +ó * fLW<)EGCE Tß ~ J0Q a ñ ó >i?$S<EMGhiJ0??zO0U à>iQ [ qQ)O0S<)EGC=?SEGHW <>@MZ
, OWmJ0??ZBl.E=S<JKS >i?JgCZJKS>bORQ2J0h)DíJKC>bEGSuF0fk?OQ^© *-, *-,* ?>@QMPE s C P Nv[ ?Z?Bl.EQ^©) *-, " $9[xzORQ2?> a EGCJBQ>@D0EGCZ?J0h*SO0CZ?O0C6c û [ .U -Nß ~ fORQ)EyMGJ0Q a EP]Q)EgS<)EVÎêÖ4×:ÎuÍ rÎîØKáZ×GØKá 0/Vc!1/7û W<EGCE
ñ / Ló Àñ ó.2-Nß
;<)EeQ
/
3
þ *
í !
/ /
!
;<)EdBQ>bD0EGCZ?ZJ0h$SO0C?O0CZ?VJKCEdH2CEeMG>@?EehbFwS<)EdSO0CZ?O0C? 4/ -'ß ~ [ U F0ORB MGJ0QHCZO D0ErS<JKS7S<)EGF?JKS>@?U4FWzEeJ wJKHH2COej)>@lVJKS>bORQfÆS<EeQ ^~7 ^) ^ *-, f9W<>iMZ<l.EeJ0Q?$S<JKSS<)E s CZJ0B)EGC`utAJ0Q>iQO0o2?SCZBMPS>bORQ
SO W$EeJJKH2HCOej9` >ilVJKS>bORQn>@?=S<)EyORQhbFORQ)EyUO0C w[ QdHCJ0MPS>@MPE >bS>i?=>@l.HLO0CSJ0Q_SSOO0oSJ0>iQwYÍ ÚÛ Ö~ÜGÖÎ E9BJKS>bORQ2?©UO0C©S<)EqBQ>bD0EGC?J0hSO0CZ?O0CZ?qS<2>@?©>@? a ORQ)Eq>@QTñ x J0Q)ó#;=<*;[ 9[÷ö9[@ôKf?EGEJ0h@?O ñ N)ôPóî3f ')[÷ö9[@ôK[ [=ùQMPES<)EyB2Q>bD0EGCZ?J0hSO0CZ?O0C?=JKCE a Ee?MPC>boLE a o9F
S<Ee?EgE _B2JKS>bORQ?Gf ORQEMGJ0Qd<O0H#EqSO.HCOD0EE0[ p)[©B?>iQ)p ]oCZJKS>bORQl.EGS<)O a ?©S<JKSWzEeJ JKHH2COej)>@lVJí` S>@ORQ<)ORh a ?U4O0C$S<)Eel'oLEeMGJ0B?E=S<)Ee>bC s CJ0B)EGC©p0CORBH
>@?SC>bD9>iJ0h"S<JKS$>i?GcÆMPORQ2?>@?S?O0U MPORQ2?SJ0QvS[email protected]?:f<)EeQMPES<)E s CZJ0B)EGC`utèJ0Q>@QO0o2?SCZBMPS>bORQDKJ0Q>@?<)Ee?zUO0CS<)Eeld[ EGCE JKCZE ?ORl.EgEPj)J0l.H2hbEe?=W<)EGCEgS<>i?JKHHCORJ0M
qÇÁ2»wÅ4· L½@L½@xzORQ?> a EGCzJ.x<JKSEeh@EGS?ZB)CUJ0MPE0c ?
Lf ßT K Kf a EGp ')[ xzORh@hi>bO0S{`u;=
qÇÁ2»wÅ4· L½@L½âòEGSQoLEVJdMPORQ>@M o2BQ a hbE ?B)CUJ0MPE.O D0EGC VW>bS<JKS l.OR?S ø a EGp0EeQ)EGCZJKSE ]2oCZEe?G[q;<)EeQ ^~ ^©k *-, [gO0CYk?o9F J0hboLEGCp0EGC.ñ J0hìó J0Q a xORh@h@>bO0S{`u;=
E MPORQ2MGh@B a E S<>@? H2JKCZJKp0CZJKH2
*-, !
Z6 0" 02°K²0! ¸´ QdS<)E7h@J0?S=HJKCZJKp0CZJKH2<*f2W$E <2JeD0E MPORQ?> a EGCZE ana Ee?MPEeQ_SOD0EGC HCZO{EeMPS>bD0E DíJKC>bEGS>bEe?G[ s B)SS<Egp0EeQ)EGCZJ0h*CEe?ZBhbS?O0UÆS<)EgS<)EGO0CFr?S>@h@hL<)ORh a OD0EGCqJ p0EGORlVEGSCZ>@MGJ0h@hbFr>@Q_SEGp0CZJ0h DKJKCZ>bEGSX F J0?=?O9ORQdJ0?S<)EgORQh@F
>@Q_D0EGCS>bo2h@E UBQMPS>bORQ2?ORQ JKCEyMPORQ?SJ0QvSCS<>@?>@? O0USEeQèB?EGUBh*SOO0o2SJ0>@QnSO0CZ?O0CZ? a Ee?MPCZ>boLE a o9FdQ>@MPEyE 9BJKS>bORQ?eI [ VqEe?MPEeQ_SO D0EGCgJ0Q O0HLEeQn?ZB)o2?EG S O0UJ H2CO {EeMPS>@D0E DKJKCZ>bEGSu) F WzJ0? >@QvSCZO a B2MPE a >@G Q NNNVo9FTxzORh@h@>bO0S{` ;<$e|E hEe} Q)E J0Q aA 0O0CO0oLO0pRJKSO D#[ QdH2JKCS>iMGBh@JKCS<)EGFd?<)OW$E a ñ x vóîf Y CO0H[=ôK[@ô c )
S />K^I143 F5F\ - IA>MN;U9,I5F-:14- 14-HE 7^EU9,I6587 0214\JO]L5F3587^EU\41 FEU9,14;<3 ;UZ? 1_7,14K^I\4589 - R @ I5F;U7,5FW;L3DM>7,14W5F1J3 EL3 EY7,1_9,IW589,14K M67,;L]L7,5F-:-:14;L3G-:585 E /C0-I@`
ôXN
º¹Å¹ 4È Éȹ#Ê *½*½~¼Y̸ÍGÎ
ÒZÍAÓN<× VØeØ0Îæ Ú á{Ø Ú ÍPáAÓ0Õ L9ÍØÍeÎáÖ~ÜZÓ ÛÛìë 4Ö ÕÎuÍ L0áÓ Û E @íÓ0áÖîÍGÎ ë Ý^Ì"ÍGÎ ýÒZÍTÓÕØKÕ EÍC Ú Î ë ÓKá:Öi×LÖgØ Ú ÍPÕ× C2Ò:×eÍGÎyØ{Ù ^Ýg×Z× C d Í ÎækÓ0Î s C = s C#Ö4× Ø{ÙÔ©ÕÖÎuÍ ÖÕ vÍUÖ4Õ s CH
s C#*Ý ä"æ)ÍPÕ *-, Ö4& × vÍPÕ)×eÍ Ö4Õ#^) *-, ÙPØKá ÎækÍ Ó vÍ Û Ö~Ü.ÎîØ Ú Ø Û Ø3L ë Ý
, O0SENS<JKSEehbEel.EeQ_S?O0U s C a OwQ)O0SrQ)EeMPEe??JKC>@hbF^oLEehbORQ)p6SO s C[â;=<>@? H2CO0HLOR?>bS>bORQN>@?gJnMPORQ2?E_BEeQMPEVO0US<)EB:KUO0CZlVJ0h©h@EelVlVJ:6ñ H'Róîf 9[ 9[@ô?EGEJ0h@?O QEPj9SÆH2JKCZJKp0CZJKH<[¸Y>bS< S<)E$<EehbH O0U Y CO0HLOR?>bS>bORQ 9[÷ö9[@ôKfv>bSÆ>@?¸?ORl.EGS>@l.Ee?¸HLOR??>bo2h@E SO.H2CO D0EyS<2JKS ~ ^ ©) *-, W >bS
µ7¶¸·_¹º·k» * ½ "½~¼ÆÕ vÍGáèÎækÍÕØ0ÎîÓ0ÎÖ~ØKÕÀÓKÕ é ÓK×Z× C Ú ÎÖ~ØKÕ)×Óí×ÓvÒØ 0@ Í ê$ÍNæ9Ó 0 @ Í ^~ ^© Ö Ùgê$Í ÓK×Z× C Í7Îæ9Ó0Î
*-,
@> M 4Ö ×TÎîØKá×Ö~ØKÕ EìÙáÍZÍVêækÍPáÍ ( * nÍ Ý L_Ý á{ÓRÎÖØKÕ#Ó Û =KØ ág×<VØeØ0ÎæèÜØ ÚÛ ÍeÎuÍ7ÖÕ2ÎuÍPá×GÍZÜeÎÖ~ØKÕØ{Ù KÖ ÍPÕ)×:ÖØ0ÕÓ0Î Û ÍÓK×:ÎÎæváÍZÍeÝ _Ý s C Öi×Ô©ÕÖÎuÍ Ý RÝ
Y
vÝÖÎækÍPá.Ó ÛÛ ÔÒPáÍ:×.ÒXC)ÎØ0Õ#ÍVÓKáÍ L9ÍØÍeÎáÖ~ÜZÓ ÛÛìë Ö4Õ2ÎuÍ L0áÓ Û ØKá Tæ9Óí×.ÓV*) Ú ØKÖÕ2ÎîÝ
ô0ô
E
EGCEJKpRJ0>@Qr>bSz>@?©HLOR??Z>bo2hbESO CEGH2hiJ0MPE :Kp0EGORl.EGSC>@MGJ0h@hbF>iQvSEGp0CZJ0h!: o9FB:0?H2h@>@S : >@Q S<EgS<>bC a MPORQ a >bS>bORQ K[ U
W$EÄMPORl.H2JKCZES<EÄHCO9O0UVO0U
;=<EGO0CEel 9[(')[@ô^W>bS<S<)E^HCO9O0UVO0U;=<)EGOK` CZEelôK[÷ö9[@ôKf2S<)EGCZE JKCEySXW$OJ a2a >bS>bORQJ0h*>iQ)p0CE a >bEeQ_S?Gc
ôK[ <)OW S<JKSS<ET?HLEeMG>@J0h@> eJKS>@ORQÄlVJKH s CHK s C û s C!*) s Cé>@?VJ0Q >@?ORl.O0CZH2<>@?l U4O0C.lVJ0Q_Fw_`~]2o2CEe?&*)ã lVJ0Q_F >@QwS<)Er?EeQ?EO0U q>@hboLEGCSX ? >bCCE a BMG>bo2>@hi>bSuFVS<EGO0CEel
[g;=<>@? >@?qJ
MPORQ?E_B)EeQ2MPE O0U©J0?Z?Bl.HS>@ORQ? ôK[J0Q a 9[ ñ H'Róîfö9[÷ø9[@ôK[zJ0Q a ñ Lóîf 9[÷ö9[@ôK[ [ 9[ U
Þ "!"!"!<Þ%wJKCZE[email protected]?èO0U s CÄW<>@M<p0EeQ)EGCJKSE s C0 s C*f MZ<)O9OR?E6J0QmO0HLEeQY?B)o2?EGS Ð ?BMZ<mS<JKSnÞ dß s C [';=<)EeQYJKHHhbF S<)EnUORh@hbOW>@Q)p UO0CZlVJ0h hbEelVlVJ ñ H'0óîf 9[ 9[@ôK[ còEGSN Knß ^) *-, f ß f)J0Q a Ï Jy]Q2>bSE ?EGSO0UHh@J0MPEe?CkS<)EeQS<)EGCEqEPjk>i?S?g íßf ß fJ0Q a Ï mÏ ]Q2>bSEg?BMZ
Jv g yU4O0C
ßèÏ6 o# G þ kÞ 0TNrU4O0Cô 7 9 7kf"W<EGCE dc s C0
û S<)E hbOkMGJ0h*>@Q_DíJKC>@J0QvSG[
>@? J
;=<>@?UO0CZlVJ0h*h@EelVlVJ.>@?=J.MPORQ2?E_BEeQMPE O0U µ ¶¸·9¹2ºí·9» L½ ½@(¾ K *½~¼½~¼½Ë̸ÍGÎ=Þ ß s C y× C ÚRÚ Øí×GÍ
Þ ß " s CHÝ ä"ækÍPÕÎækÍPáÍrÍYRÖi×PÎÖ4Õ ÔÕÖÎuÍ Ûìë .Ó0Õ ë7ÚÛ ÓRÜÍP×ÄØ{Ùy× C)ÜGæèÎæ9ÓRÎ=ÎækÍVÖ VÓL9ÍØ{Ù ÎækÍ.Í @KÓ Û C)ÓRÎÖØKÕ VÓ Ú ñ .~00û s C0 ûýÞz KuóÖ4×Õ#Ø0Î ÍPáØRÝ ;=<)EGO0CEel 9 [(')[@ô <J0?=?EGD0EGCJ0h"JKHH2hi>@MGJKS>bORQ?Gc qÇÁ2»wÅ4· L½ ½E MGJ0QACEeMPO D0EGC J0Q2?BM ?CEe?ZBhbSBB?SXkQ)O W >@Q)p.S<)E7MGJ0?E 0O UJ SO0CB?.W<>@M
qÇÁ2»w Å 4· L½ ½ U ~g ^© *-, UO0C J0Q_F?l.O9O0S<HCOEeMPS>bD0EMGB)o>@M ?B)C` UJ0MPE.S<>@?©>i?©JyW > a EehbF_`îoLEeh@>bEGD0E a MPORQEeMPSB)CEfkS<)EeQ
o_F.>@Q a BMPS>bORQ.S<)Eq?J0l.Eq<)ORh a ? UO0CV<_F_HLEGCZ?BCUJ0MPEe?dñ H'Róîfø9[[9[[9[ L=S<)EGCEGUO0CEd>bU a >@l Råö9f$S<)EeQ õ?JKS>i?{]2Ee? WzEeJ nJKHHCZOej)>@lVJKS>bORQ;<)E s CZJ0B)EGCp0CZORB)HnO0U?l.O9O0S
SV>@?.J0hi?OHLOR??>bo2h@ESOMPCOR?Z?.O0HLEeQ a Ee?MPEeQ_SVW>bS<S<)Er]2o2CZJKS>bORQÄl.EGS<)O a SO O0o2SJ0>@Q.p0EeQ)EGCZJ0hi> eJKS>bORQ?©O0UL;<)EGO0CEelU9[(')[@ô W<)EeQJKS©l.OR?SIVO0Cöy>@Q.D0EGCF.?HLEeMG>@J0h MGJ0?Ee?z]2o2CEe?JKCE a EGp0EeQ)EGCJKSE0[ EGEñ NRöíóî[
@RI14-7,5 358W5F3C9H1J-5F-:MN5FKF1JEL\4\_A <-:5 Z <\14Z 0R5 IE 1 5 , 9 ; O65FEL\021_9,I E 3;<3XM>7,; 5FK89,1 1 5 W;L7,MI614-:W N5FKSEC<6-:5D9,I65 L-:M\41_9 KF;L3O61_9,14;<3Q7,5FWXEU1J36- 1LEL\41JO&EYZ 9,587 FK ;<WMELK89,1 KFEU9,14;<3&;LZ!9,I5 W;L7,MI614-:W ` />585 E ;F JIG H7,;C;UZH;LZ 7,;<M ` ` L` <` >
ô<
, ©¯ 0 7u±u¯ 02°K²0! ¸´ QÄS<)EnhiJ0?SVUEGW F0EeJKCZ?>@SV<J0?.oLEeMPORl.ETJKHHJKCEeQvSS<JKSVS<)E s CZJ0BEGC`utAJ0Q2>@Q^O0o)` ?SCZBMPS>bORQMGJ0QNoLE CEP]Q)E a >@UW$EVMPORQ2?> a EGCyQ)ORQ)`uJKo#Eehi>@J0QAMPOR<ORl.ORhbO0p0F0[ QNH2JKCS>@M:` B2h@JKC7>@U/> K>@? JA]Q>bSEo2B)S Q)O0S.MPORlVl7B)SJKS>bD0ET_`îp0CORBHf©>bS.lVJ Fw<JKHHLEeQwS<JKS UO0C ß > f ^ © " ^ ©) *-, [
;=<)E.UORh@hbO W >@Q)prCEe?Bh@SqWJ0?yS<E ]2CZ?S B2QMPORQ a >bS>@ORQJ0hMPORBQvSEGCZEPjkJ0l.HhbE.SOTS<)B E qJ0??EHCZ>@QMG>@H2hbE QO0S J0MGMPORBQ_SE a UO0Cyo9F S<E s CJ0B)EGC`utèJ0Q>@QdO0o2?SCZBMPS>bORQñ íó[ )
µ7¶¸·_¹º·k» *½*½~¼¾ Â2¹º¹¹ Á)É ¹ ËIä"æ)ÍPáÍ.ÍY0Ö4×:Î× ÓrÒPÖîÍ ÛÛ Ö Ú ÎÖ~Ü × kC á4ÙGÓRÜ:Í J × CÜPænÎæ9Ó0ÎB^ J© $ *-, " $)Ý
Ø@KÍPá
MPSBJ0hihbFwORQETMGJ0Q?<O Wñ N íóîfø9[@ô VS<JKS $NUO0C?ORl.E Àß > f2W<)EGCZE> >@?=J ]#Q>bSEy_`îp0CORB)HT?ZJKS>@?UF9>@Qp> J
À $M' © $ [ ;=<)EGCEgJKCEg?>@l>@h@JKC$?SJKSEel.EeQvS?U4O0CWzEeJ rJKHHCO jk>@lJKS>bORQñ NNKóf2E0[ p)[SJ0E
KnJ0QvFo2>bEeh@hi>bHS>@M ?B)CUJ0MPE0Hf ~ " $9fS<)EeQ ^~ ^ *-, [ , EGD0EGCS<EehbEe?? S<)E s CZJ0B)EGC`utAJ0Q>iQMPORQ a >@S>bORQ6>@Q? 9B>bSE
?SCORQ)p)fJ0? ?Z<)O W? S<)E UORh@hbOW>@Q)p CEe?ZBhbSyñ N 0,ó 2MPORl.H2JKCZEy;=<*[ 9[[ 9[@ô JKoLOD0Ec
µ7¶¸·_¹º·k» *½*½@â̸ÍGÎ ÒÍÓ Ú áØ >GÍZÜeÎÖ@KÍ=×LVØeØ0Îæ gÓKÕ 9L ÍØÍGÎá:Ö~ÜZÓ ÛÛ ë Ö4ÕÎuÍ L0áÓ Û E @íÓ0áÖîÍGÎ ë ÝVä"ækÍGÕ R Ý 4Ù/> K6Öi× Ó Û Ö4ÕLÍÓKá ÜZØKÕÕLÍÜeÎuÍ . E LRá{ØC Ú èß > J$Îæ)ÍPÕ ^)
*-,
Ð ^ !
_Ý 4Ù/> Öi× ÓKÕ ë ÜZØN )C ÎîÓ0ÎÖ@KÍg E L0áØ C Ú Tß R > J$ÎækÍGÕ ^) *-, Ð ^ !
ò EGSB?MPORQMGh@B a E W>@S<J0QO0HLEeQ#_BEe?S>bORQèc>@?zS<)E ]2CZ?SzH2JKCSO0U"S<2>@?©S<EGO0CEel ?S>@h@hkSCZB)EU4O0CzJ
Q)ORQk`uMPORll B)SJKS>@D0E >çW<>@M
¨e¨§*¨ ¦¨¤ ñ s V ó s [[ s >bCZM<*f >bC Y EGSEGC W>iQQ)EGCSORQk`WVqF0EGCec;=<)E J0?Z?E H2CO0o2hbEelÀUO0CzCZJKS>bOK` QJ0h*?B)CZUJ0MPEe?Gf)[ %=Ee>iQ)EO Q p0EGWy[2tèJKS<*[ = H =3{ô< LKøRfôH'ôLM')[ ñ xJ0?{ó)[ [ [2xJ0??Eeh@?Gc CZ>bS<l.EGS>iMORQdMGB)CZD0Ee?O0U"p0EeQ9B?gôK[: Z [);=<)E a BJ0h#EPj)J0MPS ?E 9B)EeQMPE0f[ %=Ee>@Q)EOqQ)p0EGWy[tAJKS<*[R*¼ 4{ô<CH'_fôeø Nôeø9[ ôeö
ñ x ó)[ [ [RxJ0??Eehi?Gf0t[[ ;g[0gB)FcùQ S<)E q J0??EHC>@QMG>bH2h@EÆUO0CMGB)o2>@M$?B)CUJ0MPEe?Gf tAJKS<EelVJKS>[KJn¼ {ô<CCRfÆô0ô0ô ô< Nk[ ñ xORh ó )[ `uò©[LxzORh@hi>bO0S{`u;=
ñ x Wó )[ `uò©[qxzORh@hi>bO0S{`u;=
L
ó V7[ JKCJKCZ>~c ï h~Ee} M<)Ee? a E7?Hze|E MG>@J0h@>@?ZJKS>bORQnEeQèMPOR<)ORl.ORhbO0pR>@E6G|E SJ0hbE EGSJKHH2h@>@MGJí` S>bORQ?JKCZ>@S<lwG|E S>9B)Ee?Gf s B h@hî[ O9MK[lVJKS<[ ï CZJ0QMPE
¼ w{ô< L0fô 'vö ôC9[
ñ NNíó V7[ KJ CJKCZ>~cEeJ7JKHHCO kj >@lJKS>bORQ J0Q a Q)ORQk`uJKoLEeh@>iJ0QyUBQ a J0l.EeQ_SJ0hRp0CZORB)H2?Gf Q2Q*[ G M >~[ ©| MPORhbE , O0Cld[ )B H[ 'q?_G|E CZ>bE NNNvf ' L ' H')[ ñ N ó V7[5qJKCZJKCZ>~cqCORB)HLEe? 0J h@p¸G|E o2CZ>9B)Ee?qEGSqHLOR>@Q_S? CZJKS>bORQQ)Eehi?Gf#tèJKS<*[5qQQJ0hbEeQ !!Lf , OB'A NN Rf5kô0ô C9[
ñ N ó V7[5qJKCZJKCZ>~f5 [ , [ 0O0CO0oLO0pRJKSODc , RO Qk`uJKoLEeh@>@J0QèMPOR<)ORl.ORhbO0p0FNJ0Q a CZJKS>bOK` QJ0hLHLOR>@Q_S?GfxzORl.H[tèJKS<*["¼ NN R H'ô LKö9[ ñ NRöó V7[ JKCZJKC>~f [ , [ 0O0CO0oLO0pRJKSO D#cz;=<E s CJ0B)EGCp0CORBHnO0U¸SO0C?O0CZ?J0Q a >bS? JKCZ>bS<lVEGS>@MJKHH2h@>@MGJKS>@ORQ?Gf3 Q2Q*[ Q2?SG[ ï ORB)CZ>@EGCef)SOJKHHLEeJKCe[ ô '
ñ qJíó 7[BqJKC a EGC cJ$>@Q)E s Eel.EGCYkBQ)p eBl ? M
ñ @0øó t[@ Q)Ee?EGCec SJKCY0E HHCZOej)>@lVJKS>bORQ^>@Q^J0hbp0EGoCJ0>@?MZ<EeQÄCZB)HHLEeQ*[ [bf)[ %=Ee>@QO E Q)p0EGW [tAJKS<*[ *¼Iw{ô<C0øRyô< N NRö9[ ñ @Có t[ @ Q)Ee?EGCec SCORQ)prJKHHCZOej)>@lVJKS>bORQ*f>iQ Û L_ÍÒPáÓKÖ~ÜáØ C Ú ×
ÓKÕ Öi×GÜZØKÕ E ÎÖ4Õ )C ØC_× CÒ L0áØ C Ú ×f Y COkMK[ F9l.HLOR?G[ Y B)CEètAJKS<*[bf s ORB2h a EGCefxzORhbO)[qô<C0ø9f ô L <ô C9f5 l.EGC [tAJKS<*[ O9MK[bf Y COD9> a EeQMPE0f %y[ [ <
ñ ò¸Jíó [ ò"J0Q)p)c Û L9Í ÒPáÓKÖ~Ü$C ÒZÍGáYä"ækÍZØKá ë fqCJ a BJKSE^;"EPjkS>@QtèJKS<*[.¼2¼*f HZC >iQ)p0EGC` :EGCZh@JKp)f , EGW`O0CY#f¸ô<C9[ ñ tèJíó©B[ [tAJ0Q2>@Q*cròErp0CORB)HLE a E s CJ0B)EGC`ðqCO0S<EeQ a >bEeMUwEeQ^pÆG|E ORlG|E SCZ>bE a >bOK` H2<J0Q_S>bEeQQ)E0fÆ>@Qq MPSEe? a BwxzORQ)p0CeEe} ? QvSEGCZQ[¸tèJKS<*[z , >@MPEAô< LHNvf;¸ORl.Eè¼f ' N)ô:9 ` 'ô0ôKf*gJ0B)S<>bEGCZ?` :q>@hih@JKCZ?Gf Y JKCZ>@?yô< L9ôK[ ñ tè>@h ó [ [*tA>@hiQ)E0c = ÎîÓ Û Í ØKæ9ØVØ Û 3Ø L ë f ô Nk[ < Y
CZ>iQMPEGSORQ '
Q2>bD[ Y C Ee??O f Y C >@QMPEGSORQ
ñ tè>@QkóB@ <*[ Y [$tè>@QM<)EGDc SCORQpwJKHHCZOej)>@lVJKS>bORQÄUO0CDíJKCZ>@EGS>bEe?VOD0EGCrJ0h@p0EGoCZJ0>@M Q_B2l oLEGCV]Eeh a ?NF%B??Z>@J0QfVqON9hî[I KJ a [ , J0B s % *f , OIô^{ô<Rf ø 9[ ñ Y ó:7[ Y [ Y h@JKSORQ)ODc;=<)EH2CO0o2hbEelIO0U?SCORQ)pJKHHCO jk>@lJKS>bORQyJ0Q a S <)E @ Q)Ee?EGC` ;=>bS?
Y [ J0hboLEGCp0EGC c ORlVE Q)EGW J0??E HCZ>iQMG>bH2hbEe?UO0C MPORQ2>@Myo2B2Q a hbEy?BCUJ0MPEe?ef>@Q e|E lV>@QJ0>@CE a E7S
ñ J vó Y [ J0hboLEGCp0EGCef [ , [ 0O0CO0oLO0pRJKSO D#c$EeJAJKHHCO jk>@lJKS>bORQrU4O0Cq?B)CUJ0MPEe? a EP]Q)E a o9FSuWzO 9BJ a ZC JKS>@MUO0CZlV?ef VqBH0E tAJKS<[)[.4 w{ô<kô f*økôL 9ø0öC9[
ñ J0Qkó )[ ` [ J0Q?ZBMKcÑCORB)HLE a E s CJ0B)EGCEGS^JKCZ>bS<lG|E S>@_B)E a Ee?p0CZORB)HLEe?J0h ` p¸G|E oCZ>9B)Ee?dh@>@Qze|E J0>@CEe?d?B)CnBQIMPO0CZH2? a E6Q)ORl oCEe?Gf)[CEe>iQ)EJ0Q)p0EGWy[tèJKS<*[ ! ={< ô kô f<ô Nk[ ñ EMLHNíó ) [ ` Y [ GE CCE0c Ø kC á×
Ó0áÖÎæ
ÍG ÎÖ AXC2ÍPf ôeø
Y
'
ï f Y KJ CZ>@?yô< LHNk[
ñ Eó )[ ` Y [ EGCCE0cAÌÖîÍAÓ Û L9Í ÒGá{Óí×NÓKÕ NÌÖîÍ LRá{ØC Ú ×n EeMPORQ a E a >bS>@ORQf$ò"EeMPSB)CE , O0SEe? >@QdtèJKS<*[¸¼ f HC>@Q)p0EGC` :EGCZhiJKp)f s EGCh@>@Q*f*ô<9[
ñ EH'Kó )[ ` Y [ EGCCE0c Øíæ9ØVØ Û Ø3LRÖ~Í=Ó Û Ø0Öi×:Ö~ÍGÕÕ#Í
MG>@QH9B>Ee} l.Ew|E a >bS>bORQfC9G|E D9>i?_G|E EEGS MPORl.H2h:G|E S9G|E Ef HCZ>iQ)p0EGC :EGCZh@JKpTô<H')[ ñ 9> ó7x[ 9>@Q2Q)EGCec ï O0CZlV?O D0EGC Q9Bl oLEGC$]Eeh a ?J0Q a WzEeJJKH2HCOej)>@lVJKS>@ORQ*fxzORl ` HLOR?>bS>bO.tèJKS<*["¼ &4w{ô< L0fLQ)O)["ôKf¸ô0ô 9[ ñ Níó [ , [ 0O0CO0oLO0pRJKSO D#cùgQrS<)E]2oCZJKS>@ORQlVEGS<)O a UO0C=HCZO Dk>@Q)p S<)EOqJ0??E HCZ>@Q2MG>bH2hbEJ0Q a WzEeJ
JKHHCZOej)>@lVJKS>bORQ>@Q e|E l>@QJ0>bCE a E S<$G|E O0CZ>bE a Ee?Q)ORl oCEe? a E Y JKCZ>i? <ô ô<9f|E a [x[kqORh a ?SEe>@Q*f Y CO0p0CEe?Z?z>iQtèJKS<*[ s >bCU9< J0 B2?EGC K"¼ {<ô Nvf NRø k<ô 9[
ñ Có [ , [ 0O0CO0oLO0pRJKSO D#c&VqEe?MPEeQ_SyORQN]2oCJKS>bORQ? O D0EGC S<E.HCOEeMPS>bD0EVh@>@Q)E0f ÍPáGÝkÝ (Ó0Îæ9ÝƼ2¼Iw{ô<CR NRø 0ö9[ ñ ó [ , [ 0O0CO0oLO0pRJKSO D#c s EGF0ORQ a S<)EqtAJ0Q2>@Q.O0o2?SCBMPS>bORQ*f Q_D[_tAJKS<*[#¼ {ô<RfLö ' H')[
ñ )N ô:ó [ , [ 0O0CO0oLO0pRJKSO D#cAä2ØKá×PØ0áZ×
ÓKÕ n áÓ0ÎÖ~ØKÕÓ ÛÚ ØKÖÕ2Î×fÆxJ0l oC> a p0E0' Q2>bD[ Y CEe?Z?Gf NN)ôK[ ñ W ó >bC Y EGSEGC W >@QQ)EGCSORQ)`WV F0EGC c ;WzO?HLEeMG>@J0h
MGB)o2>@MÄ?BCUJ0MPEe?ef
tèJKS<)EP` lVJKS>[KJKw{ô<CRf*øH'9øC9[ ñ W )N ô:ó b> C Y EGSEGC W>@QQEGCSORQk`WVqF0EGCec";=<E$?ORh@Bo2>@h@>bSXF O0U a >@JKp0ORQJ0h9MGB)o2>@M$?B)CUJ0MPEe?Gf | MPORhbE , O0Cld[ B)H["'_ ^ NN)ô f#Q)O)[.9f kô kô<9[ Q2Q*[ MG>~[ © ñ :OR?ó:7[ =[-:OR?Y_CEe?EeQ?Sk> ;>~c Û L9Í ÒGá{ÓKÖ~ÜNÎîØKá:Ö CZB?Z?>@J0Qf , J0B íJkf tTOR?MPORBf ô< LL_[ ©Q)pRhi>@?<éSCJ0Q?h@JKS>bORQc Û L9Í ÒGá{ÓKÖ~Ü LRá{Ø C Ú ×6ÓKÕ ÎækÍPÖá6ÒPÖá{Ó0ÎÖ~ØKÕÓ Û ÖÕ @KÓKáÖ~ÓKÕ2Î× SCZJ0Q?hiJKSE a o_F s [ @yBQ_FRJeDk?S9><;>4fq;¸CZJ0Q?Zh@JKS>bORQ?O0U tAJKS<)EelJKS>@MGJ0h tAORQ)OK` p0CZJKH2<?g¼ = Kf ql.EGCZ>@MGJ0QntèJKS<)EelVJKS>iMGJ0h OkMG>bEGSuF0f Y COD9> a EeQMPE0f % fô<9[ ñ 6Jíó ò[e6J0Qp)c s CZJ0B)EGC`utAJ0Q>iQgO0o2?SCZB2MPS>bORQySO W$EeJyJKHH2COej)>@lVJKS>bORQyORQ JKoLEeh@>@J0Q DíJKC>bEGS>bEe?Gf ?CZJKEeh [tAJKS<[&K ^{ô<CRfÆô< NNk[
qJ D9> a JKCJKCZ> V [ tw[ [bf&=[ , [ [ 'vø CZB)E a 'qh@l LKø NNRø Y JKCZ>@? ï % , x <JKCZJKCZ> a lVJk[ EeQ?G[ UC V
ô
!"$#&%'#% (*)+,#&-#& ./02134365875:9<;>=:0@?BA+C!D4EF58G67 H9!I JKL M"N!O6L P QR SUTVWT I+KXKZY[]\_^`abI+cd^`XYe+K Nbf Vg L2hhhN ei Qjjk lmY T,n a!o*pKXI T l V ,K ` V [4N8qr^*cs T Y J W IN$\ut
v wzy|{|}~!{zwx~!{|}z
w{~b}~b x y~!{y|{|~ |B}zwx|wx|
@2]'B6
d¡ ¢*£¥¤¦8§ £¨ t T,V pb[bJ©R ª«ªN\_^*[bY[Y[bY `YF^`XI+Jz^O TVWT ^*c¬` V ^ T J®`abI_pb[bJbI T K`X^*[bJbY[ WV*¯ `abI *^ K,°c>O ` V `Yes$I+a!^+±Y V p TZV*¯ `abI T ^`Y V [!^ g O V Y[(`K V*¯ s V pb[bJbI+J²abI+Y W a(` V [_³$^*[ V ±^ T YI`XYI+KLµ´abYKZO TV*¶ WT ^*c g I+J·` V `abIBKXI ^ T eXa V*¯ [I c>I`a V JKµ` V I+K`Ycd^`XI`abI[ pbcs$I TV*¯ O V Y[(`K V*¯ s V pb[bJI J_aI Y W a&` V [d±^ T Y V pbKe g ^*KXKI K V*¯ ±^ T YI+`YI+KL¸\uI`Xa V JbKs!^*KI J V [¹a!^ T c V [Ye^*[!^ g ° KXYK I T I±&I T °dKpbe+e I+KK ¯ p gg8¯VT e V c>O!^*e`Y º!e ^`XY V [K V*¯ a V c VW I+[bI V pbKmKO!^*e+I+KL2» V I±&I T N`abI°>J V [ V `m^*ObO g °` VV `XaI T `¥°O$I+K V*¯ ±*^ T Y ¶ I`YI+KLr¼µ[bY ±&I T KX^ g ` VT K VT K aYe"a I T IY[&` TV Jbpbe+I+J_s(°]q Vgg Y V ` ¶ ´ab½ g¾ [IB^*[bJ²¿^*[bKpbeBY[·e V [b[I e`Y V [ Y `a`abI»Z^*KXKIµO T Y[be+YO g Iµ^*[bJ `abI I ^ n ^*OO TV À Ycd^`Y V [ `p T [I J V p `¸` V s$Iµ^pbKI ¯ p g ` V Vg ` V ^``X^*e n V `abI T ±*^ T YI`YI K L@´abI ^*Yc V*¯ `abYKKa VT `KXp T ±&I°_YK` V JI Ke T Ys$Ia V Y `a!^*Ks$I+I+[²pbKXI+J_Y[u±^ T Y V pbK KYc>O g II À ^*c>O g I+KL
¸Á ÂÄÃ&ÅmÆ(Ç!ÈÉÊZË8Æ ÌÈ2Å Í"ÎÏÐ'ÑuÒ*Ó!ÏÔÕ4ÖUÓ$׸Ø2Õ4ÔÖ6Ï*ÙÕ8ÎZÓÚbÓ8ÒÔÑ&Ï+ÛÜÝÕ!Ú8Ñ ÒÓÞÖ6ßUàÞá¸Ñ(ÒâUÑ(×ãzäÓ$ÒÑuårÓ$ÒÔÙæ<Ô¸ã:Ñ ÖUÙÑ8ç ÔÏuÔÙ]ÖUÓ$Ïß'Ò*Ó$×µÏÕ®Ñ è6ß'ÔØxÏÐUÑÚ!Ó$ÒÔÑ&Ï+ÛÜêé>ÔÏЩÓÐ'Ñ Ôë4Ð6Ï]ìíÓ8ÖUãzÏÕ®Ù ÏßUã'ÛÓ8ÙÛ6àØ:ÏÕ$ÏÔî ï Ó$××ÛÏÐ'Ñ_ÙÑ&Ï>Õ$εظÕ8ÔÖ6ÏÙ Õ8εá2Õ4ß'ÖUã:ÑãÐUÑ(Ôë8Ð6Ï>Õ8Ö®Üð@ÍÖòñ ó>ôöõ²÷rÓ8ÖUãñ øôù÷Xç'ú Ó$Ï+Û6ÒÑ(Úmç û'Ò*Ó$Ö'æ4Ñ8çmüÓ$Ö'ÔÖÓ8ÖUãòýÙ ï Ð'ÔÖUæ8Ñ(×ë4ÓbÚ4ѲÙ+ÏÒÕ4Ö'ëÑ Ú<Ôã:Ñ Ö ï ÑÙ ßUØ'Ø2Õ4Ò ÏÔÖUë ï Õ8Ö!þ+Ñ ï ÏßUÒÑÙ¹ÒÑ&î ×Ó$ÏÔÖ'ëÞÏÐ'Ñ_Ó8ÙÛ<àØ'ÏÕ$ÏÔ ï á¸Ñ(ÐUÓbÚ<ÔÕ8ß'ÒÕ$ÎZÏÐ'ÑuÖ<ß'àÞá¸Ñ(Ò Õ8ÎZظÕ8ÔÖ4Ï*ÙÕ$ÎZá¸Õ8ßUÖUã:Ñ ãÿÐ'Ñ Ôë4Ð4Ï Õ8Ö Õ8ظÑ(Ö Ù ß'á2Ù Ñ(ÏÙÕ$Î_Ü ÏÕ©ë4Ñ(Õ4àÑ(ÏÒÔ ï Ó$×ÔÖ<Ú!Ó$ÒÔÓ$Ö6ÏÙÕ$Î_ÜBðý Ð'ÔÙéÕ8Òæ àÕ$ÏÔÚ!Ó!ÏÑ ã ÏÐ'Ñ ã:Ñ(Ú4Ñ(×Õ8Ø'àÑ(Ö6ϹÕ8ÎBÙ Ñ Ú8Ñ(Ò*Ó$×µàÑ(ÏÐ'Õ:ã'Ù¹ÏÕÑ Ù ÏÔàÓ$ÏÑÞÏÐ'ÑÖ6ßUàÞá¸Ñ(Ò¹Õ8Î@Ø2Õ4ÔÖ6ÏÙ·Õ$Î@á¸Õ8ß'Ö2ã:Ñ ã
Ð'Ñ(Ôë8Ð6Ï Õ8Ö®Ö'Ñ(é ï ×Ó4ÙÙÑ ÙÕ$ÎÚ!Ó$ÒÔÑ(ÏÔÑ Ù ð·ÖUÑ·Õ8ÎÏÐ'ÑuàÕ4Ù ÏdÙ ß ï(ï ÑÙÙ Î ß'××màÑ(ÏÐ'Õ:ãÿéÓ4ÙBÏÐ'Ñ ßUÙ Ñ Õ8θÐUÓ8ÒàÕ4Ö'Ô ï Ó$Ö2Ó$×Û<ÙÔÙZÕ4ÖÓ4ã:Ñ(×Ô ï ë4ÒÕ4ß'ØUÙ ðZûUÕ8Ò@Ñ'Ó8àØU×Ñ4ç$ÔÏ@é Ó8ÙßUÙÑ ãá<ÛÞú Ó!Ï+Û<ÒÑ(Ú Ó$ÖUã|ýÙ ï Ð'ÔÖUæ8Ñ(×ÔÖñ øõ Á ÷Xç¹ñ øõ:÷XçBÓ8ÖUãñ øõ'÷ÏÕÐUÓ$ÖUã'×ÑÿÏÐ'Ñ ï Ó4Ù ÑÿÕ$ÎdØ'ÒÕ$þ+Ñ ï ÏÔÚ8Ñ ÏÕ8ÒÔ ï Ú!Ó8ÒÔÑ&ÏÔÑÙ(ç'á< Û <ÏÒ*Ó$ß ï ÐxÓ$Ö2ã®ýÙ ï Ð'ÔÖUæ8Ñ(×rÔÖñ µõ Á ÷ZÓ$Ö2ãñ µ õ '÷Î Õ8Ò ÏÕ8ÒÔ ï á'ßUÖUã:×Ñ Ù Õ!Ú8Ñ(Ò 2Ó8ëÿÚ!Ó8ÒÔÑ&ÏÔÑÙ(çµÓ8ÖUã©á<" Û !ÐUÓ$àá2Ñ Ò Ï$î #µÕ8ÔÒ_Ó$ÖUã©ýZÙ ï Ð'ÔÖ'æ8Ñ ×@ÔÖñ %&mõ Á ÷"çñ %&¸' õ :÷"ç Ó$ÖUã ñ %&m õ (U÷Î Õ4ÒÑè4ßUÔÚ!Ó$ÒÔÓ$Ö6Ï ï Õ8àØUÓ ï ÏÔâ ï Ó$ÏÔÕ8Ö Õ8ÎdÚ8Ñ ï ÏÕ4ÒÙØUÓ ï Ñ Ù * ð )¹Õ!éÑ Ú8Ñ(Ò²ÏÐ'ÔÙ Ï+Û6ظÑÄÕ$ÎàÑ&ÏÐUÕ<ãUÙ²Ó$Ø'ØU×ÛÕ8Ö'×ÛxÏÕzÑè4ßUÔÚ!Ó$ÒÔÓ$Ö6Ï ï Õ8àØUÓ ï ÏÔâ ï Ó!ÏÔÕ4ÖUÙ]Õ$Î Ð'Õ8àÕ8ë4Ñ(Ö'Ñ Õ8ßUÙ Ù ØUÓ ï ÑÙ(+ ð ·Ö'Ñ]àÄÓbÛÙÓbÛÏÐUÓ!ÏdÓ$×àÕ4Ù Ï Ó8××rÕ8ÏÐ'Ñ Ò àÑ(ÏÐ'Õ:ã'Ù Ð2ÓbÚ8Ñ]Õ8Ö'ÑuÙ+ÏÑ(Ø®ÔÖ ï Õ4ààÕ4Öç ÖUÓ$àÑ(×ÛÏÐUÑ·×ÔÎ¥ÏÔÖUëÏÕßUÖ'ÔÚ4Ñ(Ò*ÙÓ8×UÏÕ8Ò*Ù Õ4ÒÙ -ð ,¹Ö'ÔÚ8Ñ(Ò*ÙÓ$×2ÏÕ8Ò*ÙÕ8Ò*ÙBÐUÓbÚ4ѹá¸Ñ(Ñ(Ö®ÔÖ4ÏÒÕ:ã:ß ï Ñ ã á6. Û !Õ8××ÔÕ$Ïî"ý Ð / 1× 0 Ö'ÑÄÓ$ÖU2 ã :Ó8ÖUÙß ï ÔÖ ñ %Þ' õ Á ÷Xçñ % õ 3:÷Xçñ % õ -(:÷"çZÓ8ÖUãñ % õ 4U÷BÏÕ Ù+ÏßUã:ÛÏÐ'5 Ñ )¹Ó8ÙÙÑÄØ'ÒÔÖ ï ÔØ'×ÑÓ8ÖUã©ÏÐ'ÑéÑÓ$æÓ8Ø'Ø'Ò6Õ :ÔàÄÓ!ÏÔÕ4Öðÿý ÐUÑÔÖ6ÏÑ(ÒÑ Ù ÏÞÕ$Î>ß'Ö'Ôî Ú8Ñ(Ò*ÙÓ$×mÏÕ4ÒÙÕ8Ò*Ù ÔÙ ÏÐUÓ$Ï çUÎ ÒÕ4à Ó8ÖzÓ8ÒÔÏÐUàÑ(ÏÔ ï Ó8×Ø2Õ4ÔÖ6ϹÕ8Î@Ú6ÔÑ(é_çUÏÐ'ÑÙ ÑuÏÕ8Ò*Ù Õ4ÒÙ>ÙÐ'Õ4ß'×ã á2Ѳàß ï ÐÙÔàØ'×Ñ(Ò>ÏÐUÓ!ϹÏÐ'ѲÚ!Ó8ÒÔÑ&Ï+ÛÿÔÏ*Ù Ñ ×Î+ ð 7¹Ù·Ó$Öx8Ñ :Ó8àØ'×Ñ4ç'ß'Ö'ÔÚ8Ñ ÒÙÓ$×ÏÕ8Ò*ÙÕ8Ò*Ù Õ!Ú8Ñ(Ò Ù àÕ<Õ$ÏЮØUÒÕ8þ+Ñ ï ÏÔÚ4ѹÏÕ8ÒÔ ï Ú!Ó$ÒÔÏÔÑ ÙdÓ8ÒÑ]Õ8ظÑ(ÖxÙß'áUÙÑ&ÏÙdÕ$Î@Ó$Öz:Ó 9ÄÖ'ѲÙØUÓ ï Ñ8< ð ; Ð'Ñ ÖÿÏÐ'Ñ ûUÓ$ÖUÕ ÚbÓ8ÒÔÑ&Ï+ÛÜ
ÔÙÓ ÙàÕ<Õ$ÏÐ ï Õ8àØ'×Ñ&ÏÑxÔÖ6ÏÑ ÒÙÑ ï ÏÔÕ8ÖÕ$βã:ÔàÑ ÖUÙÔÕ4ÖáUÔë4ë8Ñ(ÒÏÐUÓ$Ö ÏÐ'ÒÑ(ÑdÔÖÏÐUÑdØ'ÒÕ$þ+Ñ ï ÏÔÚ8Ñ>ÙØUÓ ï Ñ8ç$ÏÐ'Ñdß'ÖUÔÚ4Ñ(Ò*ÙÓ8×<ÏÕ8Ò*ÙÕ8Ò@àÄÓbÛÞá¸Ñ·ã:ÑÙ ï ÒÔá¸Ñ ãÓ8ÙÏÐ'Ñ ï Õ8Ö'Ñ Ó$á¸Õ!Ú8Ñ_ÏÐ'ÑÚ!Ó8ÒÔÑ&Ï+Û4ð·ÍÖxÏÐUÓ!Ï ï Ó4Ù Ñ4çmÔÎBÏÐ'Ñã'ÔàÑ(Ö2Ù ÔÕ8ÖÕ$Î@ÏÐUÑÚ!Ó$ÒÔÑ&Ï+ÛzÔÙ·á'ÔëÑ Ö'Õ8ß'ë4Ðç ÏÐ'Ñ ï Õ4Ö!þ+Ñ ï Ïß'Ò*Ó$×Î Õ8ÒàÞßU×ÓÕ$ÎüÓ8Ö'ÔÖòàÄÓbÛzá2Ñã:Ñ ã'ß ï ÑãÎ ÒÕ8à ÏÐUÑÎ Õ4Òàß'×Óë8ÔÚ8Ñ Öá<Û ÏÐ'Ñ ï ×Ó4ÙÙÔ ï Ó$× ï ÔÒ ï ×Ñ_àÑ&ÏÐ'Õ:ãrðý ÐUÔÙ>ÒÑ ã'ß ï ÏÔÕ4Öç'é>Ð'Ô ï ÐxÔÙ¹ã:Ñ Ù ï ÒÔá¸Ñ ã®ÔÖ ñ ó>ôÝõu÷µàÄÓbÛ á2ÑÙ Ñ Ñ(ÖÓ8Ù¹ÓÄØUÓ$ÒÏÔ ï ßU×Ó8Ò ï Ó4Ù Ñ_Õ8Î@ÏÐ'Ѳ×ÔÎ¥ÏÔÖ'ëÏÕÄÏÐ'Ñß'Ö'ÔÚ8Ñ ÒÙÓ$×rÏÕ8Ò*Ù Õ4Ò ð :Ó8×á¸Ñ(Òë8Ñ Ò>ÔÖ ñ 4=<÷Bé Ó8Ù·ÏÐ'ÑâUÒ*Ù Ï·ÏÕÿßUÙÑÑ :Ø'×Ô ï ÔÏ×ÛxßUÖ'ÔÚ4Ñ(Ò*ÙÓ8×ÏÕ8Ò*ÙÕ8Ò*ÙdÔÖÒÑ(×Ó!ÏÔÕ4Öé>ÔÏÐظÕ8ÔÖ6ÏÙuÕ8Î á2Õ4ß'ÖUã:ÑãÿÐUÑ(Ôë8Ð6Ï ðÍÖ®ØUÓ$ÒÏÔ ï ß'×Ó$Òç<Ð'Ñ_é Ó8Ù Ó$á'×Ñ]ÏÕë8ÔÚ8ÑuÓÖ'Ñ(é Ø'ÒÕ6Õ8ÎZÕ8εÏÐUÑ·ÏÐ'Ñ(Õ4ÒÑ à Õ$Î_úÓ$Ï+Û<ÒÑ Ú Ó$ÖUã ýÙ ï ÐUÔÖ'æ4Ñ(× Î Õ4ÒÙ àÕ<Õ$ÏÐ ØUÒÕ8þ+Ñ ï ÏÔÚ4ÑxÙ Ø'×ÔÏÏÕ4ÒÔ ï ÚbÓ8ÒÔÑ&ÏÔÑÙÄÕ!Ú8Ñ ? Ò >zð ý Ð'ÔÙ¹×ÔÎ¥ÏÔÖ'ëÏÕÏÐ'Ѳß'ÖUÔÚ4Ñ(Ò*ÙÓ8×ÏÕ4ÒÙÕ8Ò>é Ó8ÙdÏÐ'Ñ ÖxßUÙÑ ãxá<Ûzã:ÑÞ×ÓúÒÑ(@Ï 0 ï Ð'Ñ_ÔÖ ñ ø :Ç A2Á ÷ ÏÕë4ÔÚ4ÑÞÓÄá¸Ñ&ÏÏÑ(Ò]Ñ Ù ÏÔàÄÓ!ÏѲΠÕ8Ò¹ÏÐ'ÑÖ<ß'àÞá¸Ñ(Ò]Õ$ÎBظÕ8ÔÖ6ÏÙdÕ8ÎBá2Õ4ß'ÖUã:ÑãxÐ'Ñ Ôë4Ð4Ï]Õ8ÖzÏÕ8ÒÔ ï ÚbÓ8ÒÔÑ&ÏÔÑÙ(ðý Ð'Ñ]×ÔÎ¥ÏÔÖ'ëÏÕß'Ö'ÔÚ8Ñ ÒÙÓ$×UÏÕ8Ò*ÙÕ8Ò*Ù@éÓ4Ù×Ó!ÏÑ(ÒßUÙÑ ãÄá Û :Ó8×á¸Ñ(Òë8Ñ ÒÓ$Ö2ãã:Ñ]×Ó úÒÑ&BÏ 0 ï Ð' Ñ C,ÙÑ(Ññ ø :Ç A :E÷ DÏÕØUÒÕ!Ú4ÑdÏÐUѲÓ8ÙÛ6àØ:ÏÕ$ÏÔ ï Î Õ8ÒàÞß'×ÓÎ Õ8ÒÏÐUÑ_Ø'×Ó8Ö'Ñuá'×Õ!é>Öß'Ø ÔÖÄÎ Õ4ß'ÒØ2Õ4ÔÖ6ÏÙÕ!Ú8Ñ Ò >xðZÍÖ®Ó²àÕ8ÒÑdë8Ñ Ö'Ñ(Ò*Ó$׸٠Ñ(Ï ÏÔÖ'ë2ç8ÏÐ'ÑuÓ$ß:ÏÐ'Õ8Òã:Ñ Ù ï ÒÔá¸Ñ ãÔÖñ F A '÷ Ó$ÖUã ñ F A ('÷ÐUÕ!é ÏÐ'Ñ ï Õ8Ö$þ+Ñ ï Ïß'Ò*Ó$×ZÓ4Ù Û<àØ:ÏÕ$ÏÔ ï Î Õ4Òàß'×ÓÄ×ÔÎ¥ÏÙ·ÖUÓ$Ïß'Ò*Ó$××ÛÿÏÕÿß'Ö'ÔÚ8Ñ ÒÙÓ$× ÏÕ8Ò*ÙÕ8Ò*Ù(ð ý Ð'ÑÞÓ$Ôà Õ8ÎÏÐ'ÔÙ¹ÙÐ'Õ8ÒϹÙß'ÒÚ4Ñ(ÛÿÔÙ ÏÕØ'ÒÑ ÙÑ(Ö6ÏdÔÖÓè6ß'ÔÏÑÞÙÑ(×Î¥î ï Õ8Ö6ÏÓ8ÔÖ'Ñã®éÓbÛÄÏÐ'Ñ ßUÙ Ñ(Î ß'×Ö'Ñ ÙÙuÕ$Îß'Ö'ÔÚ8Ñ(Ò*ÙÓ$×ÏÕ4ÒÙÕ8Ò*ÙdÎ Õ4Ò ï Õ8ßUÖ4ÏÔÖUë®Ø¸Õ8ÔÖ6ÏÙuÕ8Îá¸Õ8ß'ÖUã'Ñ ãÐ'Ñ(Ôë8Ð6Ï ðÍÖÙ Ñ ï î ÏÔÕ8 Ö G'ç!éÑã:Ñ Ù ï ÒÔá¸ÑBÏÐ'ÑÐUÑ(Ôë8Ð6ÏÙZßUÙÑ ãuÏÐ'ÒÕ4ß'ë8ÐUÕ8ß:ÏZÏÐ'ÔÙµØ2Ó$ظÑ(Òç!ÔÖÞÙÑ ï ÏÔÕ8 Ö H¹éÑÒÑ ï Ó8×× ÏÐ'ÑdÑ àØ'ÔÒÔ ï Î Õ8ÒàÞß'×Ó]Î Õ8ÒÏÐ'ѹÖ6ßUàÞá¸Ñ(ÒÕ8ÎrØ2Õ4ÔÖ6ÏÙÕ8Öû2Ó$Ö'Õ²Ú!Ó8ÒÔÑ&ÏÔÑÙ(ðÍÖÙ Ñ ï ÏÔÕ4' Ö IÞéÑ ë8ÔÚ8Ñ_ÓÄÙ ÐUÕ8ÒÏd×ÔÙ+ÏdÕ8Î ï Ó8ÙÑ ÙÎ Õ4Òdé>Ð'Ô ï ÐÿÏÐ'ÔÙ>Î Õ8ÒàÞßU×ÓÐ'Õ4×ã'Ù ç'ÔÖÙ Ñ ï ÏÔÕ4K Ö JéѲã:Ñ Ù ï ÒÔá2Ñ ÏÐ'Ñ ï Õ4ß'Ö6ÏÑ(Òî"Ñ 'Ó$àØ'×ÑdÕ$εú Ó$Ï+Û6ÒÑ(ÚÓ$Ö2ãýZÙ ï Ð'ÔÖ'æ8Ñ ×ðÍÖ®Ù Ñ ï ÏÔÕ8 Ö L²éÑ·ã:ÑÙ ï ÒÔá2Ñ·á'ÒÔ8Ñ UÛ á2Õ8ÏЩàÑ(ÏÐ'Õ:ã'NÙ M]ÐUÓ$ÒàÕ8Ö'Ô ï Ó8ÖUÓ$×Û:Ù ÔÙ]Ó$ÖUãòß'Ö'ÔÚ8Ñ(Ò*ÙÓ$×ZÏÕ8Ò*ÙÕ8Ò*Ù( ð <Ñ ï ÏÔÕ42 Ö OÔÙuã:Ñ Ú8Õ8ÏÑ ã ÏÕÏÐUÑ ï Ó8ÙÑ_Õ$Î@Ó$ÖzÐ<Û<Ø2Ñ ÒÙß'ÒÎ,Ó ï Ñ·ÔQ Ö PSRmðý Ð'Ñ_ÖUÑ <Ï¹Ù Ñ ï ÏÔÕ4Ö ï Õ8Ö6ÏÓ8ÔÖ2ÙÏÐ'Ѳã:Ñ(âUÖ'ÔÏÔÕ8Ö Õ$ÎBß'Ö'ÔÚ8Ñ ÒÙÓ$×µÏÕ4ÒÙÕ8Ò*Ù>ÔÖòë8Ñ Ö'Ñ(Ò*Ó$×XðdÍÖ©Ù Ñ ï ÏÔÕ8* Ö TéÑÞã:Ñ Ù ï ÒÔá2U Ñ !6Õ V Ù ï Õ8ÖUÙ ÏÒß ï ÏÔÕ8ÖÕ8Î ß'Ö'ÔÚ8Ñ(Ò*ÙÓ$×ÏÕ4ÒÙÕ8Ò*Ù·Î Õ8Ò_ÏÕ8ÒÔ ï Ú!Ó8ÒÔÑ&ÏÔÑÙ²Ó$ÖUã©8Ñ <ØU×Ó8ÔÖÐ'Õ!W é :Ó$×á¸Ñ(Òë8Ñ(Ò_ß2Ù ÑãÔÏÓ8ÖUã©ÔÖ
2 S .
Ù Ñ ï Ï ÔÕ8ÖéÑÏß'ÒÖÏÕÏÐUÑ ï Ó8ÙÑÞÕ8Î@ÏÐ'ÑØ'×Ó$Ö'Ñá'×Õ!é>Ö:îXßUØòÔÖÎ Õ8ßUҷظÕ8ÔÖ6ÏÙ çrÔÖé>Ð'Ô ï Ð ï Ó8ÙÑÏÐ'ÑÄßUÖ'ÔÚ4Ñ(Ò*ÙÓ8×ÏÕ8Ò*ÙÕ8Ò]éÓ4Ù_ã:Ñ Ù ï ÒÔá¸Ñ ãá<Û*:Ó8×á¸Ñ(Òë8Ñ ÒuÓ8ÖUã2<æ8Õ4ÒÕ4á2Õ4ë4Ó$ÏÕ!ÚmðÞý Ð'Ñ ×Ó4Ù+ÏÙÑ ï ÏÔÕ8Ö ï Õ8Ö6ÏÓ8ÔÖ2Ù²ÓòÙÐ'Õ8ÒÏÞã:ÑÙ ï ÒÔØ:ÏÔÕ8Ö Õ$Î ÏÐ'Ñÿë8Ñ Ö'Ñ(Ò*Ó$×Ô Ó!ÏÔÕ4Ö©Õ8Î>ÏÐ'ÑÙ Ñ×ÔÎ¥ÏÔÖ'ë Ó$Òë8ß'àÑ(Ö6Ï*ÙÏÕÓ×Ó8Òë4Ñ(Ò ï ×Ó8ÙÙ Õ$ÎÚbÓ8ÒÔÑ&ÏÔÑÙ(ð  A6ÌmÆÈ2ÅÇ!È A<Ë$ÆÌ! A" = Ç!Ì A6Æ Ì A
#%$'&)(+*-,-*/.(102/3 Â ý Ð'Ñ ï ×Ó4ÙÙÔ ï Ó$×<Ð'Ñ Ôë4Ð6ÏÕ4ÖÏÐ'Ñ>Ø'ÒÕ$þ+Ñ ï ÏÔÚ4ÑÙØUÓ ï Ñ Õ!Ú8Ñ(Ò+> ÔÙ@ã:Ñ&â2Ö'Ñ ã
Ó8ÙÎ Õ8××Õ!édÙ8M
4 8: ì5476 P 5 > 9<;>=@?A 8!B A 6DCECCD6 B 4 9
B LTS"U IG HDJ B L ÔÎRQ 8!B O AEKL!K4NM MPO VXWY LZ9<[]\^C
Í"Î+_
ÔÙdÓÖ6ßUàÞá¸Ñ(Ò âUÑ ×ãrçUÕ8Ö'Ñuë8Ñ Ö'Ñ(Ò*Ó$×Ô`(Ñ ÙÏÐ'ÔÙ ï Õ8Ö2Ù+ÏÒß ï ÏÔÕ8ÖÿÔÖ®ÏÐUÑuÎ Õ8××Õ!é>ÔÖ'ëéÓbÛM ì 4]6 P 4 8 _R9<;>=@?A 5 8!B Aa6DCECCD6 B 4b9c;F
d GIHDJ B L AEKL!K4NM M e ef^gh 8!B é>Ð'Ñ(ÒÑ)ikjöÔÙÏÐ'Ñ_Ù Ñ(Ï Õ8ÎZØ'×Ó ï Ñ ÙÕ$Î+_ Ó8ÖUãÎ Õ8Ò>Ó$Ö<Û B S%_ e ç B e [ j<m n'oqp 9 ÔÎ M M M l Mr 4 s M't ð7¹Ö<ÛàÕ8ÒØ'Ð'ÔÙ à Õ$ÎZÚ!Ó8ÒÔÑ&ÏÔÑÙvu"64Ü]; P j ÔÖUã:ß ï Ñ Ù>Ó$Ö®Ñ:ظÕ8Ö'Ñ Ö6ÏÔÓ$×rÐ'Ñ Ôë4Ð4Ï ìw64Ü 8 _R9<;x= ?A B F; ì 4 8 u 8!B 9/9yC
Í"< Î z|{ Ü ÔÙ¹Ó$ÖzÕ8ظÑ(ÖxÙß'áUÙÑ&Ï ç'ÏÐ'Ñ ÖxéÑuéÕ8ß'×ã®×Ôæ8ÑuÏÕã:Ñ Ù ï ÒÔá¸Ñ_Ó$ÖUã®ß'Ö2ã:Ñ(Ò*Ù+Ï*Ó$ÖUã ÏÐ'ѲÓ4Ù Û<àØ:ÏÕ8ÏÔ ï á2Ñ ÐUÓbÚ<ÔÕ4ÒÕ8ÎZÏÐ'Ñ ï Õ4ß'Ö6ÏÔÖ'ëÎ ß'Ö ï ÏÔÕ4Ö l5}D~
8 9[:
B S"z 8 _R9
#Ñ&Ï>ßUÙ>âUÒÙ Ï>ë8ÔÚ8Ñ_ÓÎ Ñ(éùÑ'Ó$àØ'×Ñ ÙNM
M
ì 8 B k 9 C
T!$020  Í"Î2Ü][ P 4 8 >:9ç^u[ Y çbÏÐ'Ñ(ÖÞÓ8Ö²Ñ Ó4Ù ÛuüxÕ<Ñ(áUÔßUÙZÔÖ6Ú4Ñ(Ò*Ù ÔÕ8Ö]Î Õ4Òàß'×Ó
ë8ÔÚ8Ñ ÙÏÐUÓ!Ï Ó8Ù ¢ ; ¡
l ~
8 9
4 4q 8 o \9 l
CÙ Ñ Ñ¹âUë4ß'ÒÑ56Dð@ý Ð'ÔÙ ÒÑÙ ßU×Ï>é Ó8Ù×Ó$ÏÑ(Ò>ë4Ñ(Ö'Ñ ÒÓ8×Ô`(ÑãÄá<Û ï ÐUÓ8Ö<ß'Ñ(×mÔÖñ Ë ÷ ÏÕÏÐ'Ñ_ØUÒÕ8þ+Ñ ï Ï ÔÚ4Ñ_Ù ØUÓ ï Ñ]Õ!Ú8Ñ Ò Ó8Ö<ÛÖ<ß'àÞá¸Ñ(Ò âUÑ ×ã.CÙ Ñ ÑuâUë8ß'ÒÑSG Dð
!#"%$'&
() +* !#, -./0!1325476
Ü 39|Ü:$çBì L56BÜL 8 _N9; =@?A88!çB zTLB { ÜL·Õ4Ø2Ñ 8!B Ö Ù ß'áUÙ8!Ñ&B ÏÙ ç ÏÐ'Ñ ÖéÑÐUÓbÚ8ÑuÏÐ'ÑÞÐUÑ(Ôë8Ð6Ï]ì¢6UÜ ; ="?Aã'Ñ&âUÖ'Ñãxá<Û®ì :9 [ ì: 9+; ì : :9 O Õï 8ÒÒÑ ÙØ2Õ4ÖUã:ÔÖ'ëÞÏÕ <Ñ(ë4ÒÑuÑ(àá2Ñã'ã:ÔÖ'ëU< ð 7·ÙÙß'àÑuÏÐUÓ$Ï 8 9<[?> L 8A@(B 9C 8I@B 9C :KJ C <%D FEHG <%D V V l }.< ~ =< ý Ð'Ñ(ÖçUá6Ûòñ ó>ôöõç'Ø'ÒÕ8ظÕ4ÙÔÏÔÕ45 Ö Gb÷ 8IP Q \90R 8AP :/Q \9SR 8 9< 8I@B 9%C C 8AP P : Q \9SR > 0>: L OD V l5}LNM }.EO ~ T!$02%8  Í"ηÜx[
2 S .
Ó8Ù ; ¡ðBû'Õ4Ò P 95P ç:éÑ_ë8Ñ&Ï l L M
C,ÙÑ(Ñ]âUë8ßUÒÑSH D&ð
L ~
8 9c > : (@ B V
. $ 0 !/, - "
T!$02  #Ñ(Ï_Ü ; P : 8 >:9¹á2ÑÏÐ'Ñá'×Õ!é>ÔÖUëß'ØÕ$Î P : Ó!Ï [ 8 \6%69ç : [ 8 6D\ 6 X 9ç'Ó8ÖUã [ 8 6 6\9ðBý B ÐUÑ(B ÖxB ÜÝàÄÓbÛÄá¸Ñ²Ù Ñ Ñ(ÖzÓ8Ù ÓÐ<Û6ظÑ(Ò*Ùß'Ò Î,Ó ï Ñ·ÔÖ P 95P 95P ë4ÔÚ4Ñ(Ö®á6ÛÏÐ'Ñ_Ñè4ß2Ó!ÏÔÕ8Ö : [ : 8ð<;Ñ_ØUß:Ï ì 8 + : 9<[ ì: 8 T E9 ì 8 :9 ì: 8 9 O O é>Ð'Ô ï Ðzã:Ñ(âUÖ'Ñ Ù¹ÓÐUÑ(Ôë8Ð6Ïdì 66 Ü 8 > 9c;x="?$A ð ÖÜçÏÐ'Ñ ÒÑzÓ$ÒÑÑ ï Ñ Ø:ÏÔÕ8Ö2Ó$××ÔÖ'Ñ ÙvL 6 B L · [ [ òÎ Õ8Ò!#"% [ $2ð µ # Ñ&Ï ~ O z1 [ Ü Q'& )L ( vL ð<© ; Ñ_ÐUÓbÚ8Ñ * 8 9c > : l +.- </ 021 ~ ,
Ó$ÖUã
3
\ I8 @B 9 V ;: : t t 6=< r54 8 t7698 8 4 8 9/9ðBý Ð<ßUÙ ç<ÔÖÿÏÐUÔÙ Ó4Ù Ñ4ç8ÏÐ'Ñ C,ÙÑ(Ñ·âUë8ß'ÒÑ IDð ;©ÑuÙÑ(ѹÏÐUÓ$Ï 9<[?> ï ã:Õ8àÔÖUÓ$Ö6ÏÏÑ ÒàöÕ8ÎUÏÐ'ÑdÓ8ÙÛ<àØ'l5Ï}DÕ$Ï~ Ô ï á¸Ñ(ÐUÓbÚ<ÔÕ8ß'l@Ò+.- Õ$Î </ 0 1 ~ 8 9ÔÙë8ÔÚ8Ñ ÖÞá<Û_ÏÐUÑ>Ö6ßUàÞá¸Ñ(Ò Õ$Î2ظÕ8ÔÖ6ÏÙ@Õ4ÖÞÏÐ'Ñ>Ù Ô1Þ×ÔÖUÑ Ù ðý Ð'Ñ ÒÑ(Î Õ8ÒÑÔÏ ï Ó8ÖÖUÕ$Ï@Òl5Ñ8U Ñ ~ ï ÏÏÐ'Ñ>ë4Ñ(Õ8àÑ(ÏÒÛ_Õ$ÎUÏÐ'Ñ>é>Ð'Õ4×Ñ Õ$ÎÜÄð · ÖUѲÕ$ÎÏÐUÑÞáUÓ4Ù Ô ï Ôã'Ñ ÓÄÔÖxÏÐUÑÞÔÖ4ÏÑ(ÒØ'ÒÑ&ÏÓ$ÏÔÕ8ÖzÕ$ÎÏÐ'ÑÓ4Ù Û<àØ:ÏÕ8ÏÔ ï á¸Ñ(ÐUÓbÚ<ÔÕ8ß'Ò l } ~
8 9c
\
d
\/Q
\
\
Õ$Î>ÏÐUÑÖ<ß'àÞá¸Ñ(ÒÕ$ÎdظÕ8ÔÖ6ÏÙÕ$Îdá¸Õ8ß'Ö2ã:Ñ ã Ð'Ñ(Ôë8Ð6ÏÞÔÙ²ÏÐUÓ!ÏÕ8ÖUÑÐUÓ8ÙÞÏÕ ï Õ4ÖUÙ Ôã:Ñ ÒÞÕ8ظÑ(Ö Ù ß'á2Ù Ñ(ÏÙÏÕÄá¸Ñ²Ó$áU×Ñ]ÏÕë4Ñ&ϹÓàÑ Ó$ÖUÔÖ'ë8Î ß'×rë8Ñ Õ8àÑ&ÏÒÔ ï ÔÖ6ÏÑ(ÒØ'ÒÑ(ÏÓ$ÏÔÕ8Öð
) )./$., &-.., ! - $
ÍÖ®Ó8××r8Ñ :Ó8àØ'×ÑÙÏÐ'Ñ_Ó$ß'ÏÐ'Õ4Òæ<Ö'Õ!édÙÎ Õ4Ò>é>Ð'Ô ï ЮÔÏ é Ó8ÙظÕ4ÙÙ Ôá'×Ñ]ÏÕë8ÔÚ8ÑuÓØ'ÒÑ ï ÔÙ Ñ Ñ Ù ÏÔàÓ$ÏÑ]Õ$ÎÏÐ'Ñ]Ö6ßUàÞá¸Ñ(Ò Õ$εظÕ8ÔÖ6ÏÙÕ$ÎZá2Õ4ß'ÖUã:ÑãÐ'Ñ Ôë4Ð4Ïç6ÏÐ'Ñ_Ó8ÙÛ<àØ:ÏÕ8ÏÔ ï á¸Ñ(ÐUÓbÚ<ÔÕ8ß'Ò ÔÙ Õ8ÎZÏÐ'ÑuÎ Õ8Òà 8 9c?> 8I@B 9 D V l5}D~ é>ÔÏÐ > 'ç ?ÿÓ$ÖU ã aS : Udç ]\4ð·ý Ð<ßUÙ·Õ8Ö'Ѳé>ÔÙÐ'Ñ Ù¹ÏÕÿë8ÔÚ8ÑÞÓÄë4Ñ(Õ4àÑ(ÏÒÔ ï Ó$× ÔÖ6ÏÑ ÒØUÒÑ(ÏÓ!ÏÔÕ4ÖÕ8 Î ¸ç ·Ó$ÖUã >ð (  ô = ÅZÌÅ`Ç!Ì,ÅË8Ì A
;ÑÓ8ÙÙ ß'àÑuÏÐUÓ!Ï_Ü ÔÙ·ÓÙàÕ<Õ$Ïеç2ë4Ñ(Õ8àÑ(ÏÒÔ ï Ó$××ÛÔÖ6ÏÑ ë8Ò*Ó$×µØUÒÕ8þ+Ñ ï ÏÔÚ4Ñ_Ú!Ó$ÒÔÑ(Ï+ÛÿÕ8Î :ã ÔàÑ ÖUÙ ÔÕ8Ö Õ!Ú8Ñ Ò]ÏÐ'ÑÖ<ß'àá2Ñ Ò_âUÑ ×ã _ ð?;©ÑÓ$×Ù ÕÓ4ÙÙß'àÑÏÐUÓ$Ï D [ R ÔÙ Ú8Ñ(ÒÛÓ8àØ'×Ñ*C ÔÖ|ØUÓ$ÒÏÔ ï ßU×Ó8Ò ç@Ü ÔÙÞÓû2Ó$Ö'ÕÚ!Ó8ÒÔÑ&Ï+ÛDðK;©Ñ×Õ<Õ8æòÕ4Ö'×Û© Ó$ϲÏÐ'ÑÿÐ'Ñ( Ôë8Ð6Ï 8 \9/9[& çÓ$ÖUãòéÑÓ8ÙÙß'àѲÏÐ2Ó!Ï ÒÑ ×Ó$ÏÔÚ8ѲÏÕÏÐ'ÔÙ]Ó8Ö6ÏÔ ï Ó$ÖUÕ8Ö'Ô ï Ó8×ã:ÔÚ<ÔÙÕ8Ò u! 8#" D 8 % $ Ü _N9BÔÙ>åmÓ$ÒÔÙæ<Ô2ã:Ñ ÖUÙÑ8ð@ý Ð'Ñ·Î Õ8××Õ!é>ÔÖ'ëè6ß'ÑÙ+ÏÔÕ4ÖÔÙÓÞÚ!Ó$ÒÔ Ó8Ö4ÏÕ$ÎÏÐ'Ñ ï Õ8Ö!þ+Ñ ï Ïß'Ò( Ñ '*) ÔÖñ øôù$÷ M
+-, /$ . ,-*/.( 82/3 Â-0 132547698:2<;#2=2?>/@A456-BDCE2
>VU
BX4
l< W
Ü
;
l5}D~
z
{ Ü
BOFPCQBRM1SFI456TBOFI6
8 9c > A8 @(B 9 C D V
Ü egih @WFjRM2 8I2J;?2 P A@ 4 698:2;#BSF^]_1 `a6W8I2b*@cRMBS;#C=dO;?1SL3HZ1 ` f @A4B\`M;#2M2 Umon 13CS^L pq2 1r`tsFI@W6o2(;#BOF ] e u ¡ZY\[
Ü
@A4k%BOFP1 Y
2 S .
ÍÖxÎ,Ó ï Ï çrÔÏ]ÔÙ¹Ñ Ú8Ñ ÖòظÕ4ÙÙ Ôá'×ѲÏÕÿë8ÔÚ8ÑÓ ï Õ4Ö!þ+Ñ ï Ïß'Ò*Ó$×ÔÖ4ÏÑ(ÒØ'ÒÑ&ÏÓ$ÏÔÕ8ÖxÕ8Î>çrá'ß:Ï]ÏÕ :ã Ñ Ù ï ÒÔá¸Ñ]ÏÐ'ÔÙ ï Õ4Ö!þ+Ñ ï Ïß'Ò*Ó$× ï Õ8ÖUÙ ÏÓ8Ö4Ïç:éÑ]âUÒ*Ù ÏÖ'Ñ Ñ ãÿÏÕÑ8<ØUÒÑÙÙÏÐ'Ñ_ÐUÑ(Ôë8Ð6Ï>ÔÖÿÏÑ ÒàÄÙ Õ$ÎàÑ(ÏÒÔ ï Ù(ð
"., ,/*/.( 8 20  #Ñ(ÏÄÜ á2ÑzÓë4Ñ(Õ4àÑ(ÏÒÔ ï Ó$××Û©ÔÖ4ÏÑ(ë4ÒÓ8×ÙàÕ6Õ8ÏÐ|ØUÒÕ8þ+Ñ 4 ï ÏÔÚ4ÑÚ!Ó$ÒÔÑ&Ï+Û Ó$ÖUã ì ¸á 8 ÑÞÏÐ'ÑÐUÑ(Ôë8Ð6Ï ï Õ8ÒÒÑ٠ظÕ8Ö2ã:ÔÖUëÄÏÕzÓ$ÖÑ(àÞá¸Ñ ãUã:ÔÖUë%u6¸8 Ü ; P j ð#Ñ&Ïá¸Ñ uj! 8#" \ 9I9ð<;©Ñ]ã'Ñ(Ö'Õ8ÏÑuá<ÛEA CCEC 4ÏÐ'ÑuØ'ß'××î"áUÓ ï æ<ÙÔÖ Ü 9Õ$ÎZÏÐ'ÑuÙÑ ï ÏÔÕ4ÖUÙ O Ü Ó$ÖUã©ã:Ñ&â2Ö'ÑÎ Õ8Ò 5A O C%CEC $ O 4 Õ8Î " $ 8 \9' ð ;©Ñ×Õ
ï e 6 _ e 9; = é>Ð'Ô ï ÐòÔÙ ï Õ4Ö4ÏÔÖ<ß'Õ4ßUٹΠÕ8Ò s îÓ8ã'Ô ï ÏÕ8ظÕ8×Õ8ë4ÛÄá<ÛÏÐUÑ ï Õ8ÖUã'ÔÏÔÕ4Ö M B SÜ
8_
e 9O
)S 8 Ü O 9 O
ý Ð'Ñ(Ö®ÏÐUÑ_Ð'Ñ(Ôë8Ð6Ïdì àÄÓbÛá¸Ñ ï ÐUÓ8ÒÓ ï ÏÑ ÒÔ`(Ñãá<Û B SxÜ 8 _R9 )S 8 Ü 9 8!B 9 [ " O
O
O
8!B 9 L 8B 9 ( A < + 1 *
8!B 9 [ e AEK L!K 4
ì
8B 9c[
e
C
d 8 B 9 M eD C M ef^g h
û'ÒÕ8à Ö'Õ!éöÕ4ÖéÑÓ8ÙÙß'àѲÏÐ2Ó!ÏuÏÐ'ÑÓ$á¸Õ!Ú8Ñ×ÔÖ'Ñá'ß'ÖUã'×ÑÔÙ·ÏÐ'ÑÓ$Ö6ÏÔ ï Ó$Ö'Õ4Ö'Ô ï Ó$× ×ÔÖ'ÑÞáUß'ÖUã:×Ñ D ð ;©ÑÞÖUÕ!é ã'Ñ&âUÖ'ÑÓÄà8Ñ Ó4Ù ß'ÒѲÕ4ÖxÏÐ'ÑÓ8ã:Ñ ×Ô ï ÙØUÓ ï ÑÜ 8 j 9dé>Ð'Ô ï Ð ï Õ8ÔÖ ï Ôã:ÑÙ é>ÔÏЮ ÏÐ'Ñ_Ø'ÒÕ:ã:ß ï Ï ef^gh Ü _ e 9ç2Ù ÔÖ ï Ñ²Ü ÔÙ Ø'ÒÕ$þ+Ñ ï ÏÔÚ8Ñ4ð #%$'&)(+*-,-*/.( 8 2%8  ûUÕ8Ò²Ó$Ö<ÛØU×Ó ï Ñ s Õ8k Î _ çµéÑÄÖ'Õ8ÒàÄÓ$× Ô ÑÏÐ'Ñ )¹Ó4Ó$Ò_àÑ Ó4Ù ßUÒÑ Y B e Õ8% Ö _ e á<ÛÄÏÐ'Ñ ï Õ4ÖUã:ÔÏÔÕ8ÖUÙ B !B m 8#Y " e []\uÔÎ s ÔÙ âUÖ'ÔÏÑ4ç Õ =òç Y B e O \%$ 9T[]\]ÔTÎ _ B e ÔÙ ÔÙÕ8àÕ4ÒØ'ÐUÔ ï Ï [ [ Ô Î + _ Ô Ù Ô Ù 8 Õ à 8 Õ ÒØ'Ð'Ô ï Ï Õ (ð Y e Y'&Y & Y 8,+ Y e ý Ð'Ñ_àÑ Ó8Ùß'Ò* Ñ ) e Õ4ÖzÜ e 9ÔÙ¹ã:Ñ&âUÖUÑ ãÿ×Õ ï Ó8××Ûá<ÛÏÐ'ÑuÎ Õ8ÒàÞßU×Ó
) e [.-- / / B 0 1% 0 / /B -- Y B ~ e CECC Y B R ~ e -R - e ÔÎ 8!B CCEC B R 9ÔÙÓ×Õ ï Ó$×>Ù Û<Ù ÏÑ à Õ$Î ï Õ<Õ8Ò*ã:ÔÖ2Ó!ÏÑÙÞÕ4ÖÜ 8 _ e 9ÔÖ s îÓ8ã'Ô ï ÏÕ4Ø2Õ4×Õ4ë8Û O O Ó$ÖUã é>Ð'Ñ(ÒÑ32 2 ÔÙÙ Ñ Ñ(ÖÓ8ÙÓÙÑ ï ÏÔÕ8Ö|Õ8Î\ D ð|ý Ð'ÑÎ,Ó ï ÏÏÐUÓ$ÏÏÐ'ÑÙ Ñ % 1 0 0 2 2 1 Ñ:Ø'ÒÑ ÙÙ ÔÕ8ÖUÙë8×ß'L Ñ·ÏÕ4ë8Ñ&ÏÐ'Ñ(ÒÎ 4 Õ4××Õ!é Î ÒÕ8à¬ÏÐUÑ ï ÐUÕ4ÙÑ(ÖÖUÕ8Òà Ó8×Ô` Ó$ÏÔÕ8ÖÕ8ÎÏÐUÑuÓ8áUÙÕ8×ß:ÏÑ ÚbÓ8×ßUÑ8ð@ÍÖUã:Ñ Ñ ãÏÐ'ÑuÎ Õ4Òàß'×ÓÞÎ Õ4ÒdÓ ï UÐ Ó$Ö'ë4ÑuÕ$ÎZÚ!Ó8ÒÔÓ$á'×Ñ ÙÔÙ>ë8ÔÚ8Ñ Öá<Û Y ~ e CECEC Y R ~ e [ C,ÙÑ(Ññ 8
A ç:9 G:ðG:ð`&÷ Dð
Y 576 / B L 4 / 6
y KLK R Y yK K R
B CCEC B Y R ~e ~e
$X F 8 2  7ÏÓ$Ö<ÛÒÑÓ$×BØ'×Ó ï ÑÏÐ'ÔÙ ï Õ8ÖUÙ ÏÒß ï ÏÔÕ8ÖÔÙ²ÏÐ'Ñ ï ×Ó8ÙÙ Ô ï Ó8×Î Õ8ÒàÞß'×Ó®ÏÕ Ø'ÒÕ:ã:ß ï ÑÓxàÑÓ8Ùß'ÒÑÕ8Ö|Óã:ÔmÑ(ÒÑ(Ö6ÏÔÓ$×ÚbÓ8ÒÔÑ&Ï+ÛÎ ÒÕ8à Ó ï Õ4Ö4ÏÔÖ<ß'Õ4ßUÙÞÙÑ ï ÏÔÕ8Ö Õ8ÎÏÐ'Ñ ï Ó$ÖUÕ8Ö'Ô ï Ó8×'×ÔÖ'ÑdáUß'ÖUã:×Ñ8ð<7ÏÓ8×àÕ4Ù ÏÓ8××:â2Ö'ÔÏѹØ'×Ó ï Ñ Ù ç8ßUÙÔÖ'ë_Ôã'Ñ Ó8ÙÕ$ÎýÓ$àÄÓ$ë6ÓbéÓ]Ó$ÖUã ;Ñ Ô×Xç'Õ8ÖUÑ]àÄÓbÛØUÒÕ!Ú4ѹÏÐ'ÑuÎ Õ8××Õ!é>ÔÖ'ëØ'ÒÕ8ظÕ4ÙÔÏÔÕ4Ö M .X.I. *-,/*/.( 82 Âk%1O;BSpWp n
) 8 Ü
[ 8:2<;#2
i j Y 8 Ü 9 8 ^9
1X456BSpWp stFI@W6o2 Q@WF 8 _ 9/9c[
@A4(698:2;#2545@cCOLI2s*2JpqC=BS6 e
ÍÖxØUÓ$ÒÏÔ ï ß'×Ó$Ò ÏÐ'ÔÙdÔàØU×ÔÑ ÙdÏÐUÓ$ÏdÏÐ'ÑÞØ'ÒÕ:ã:ß ï Ï ) 8 Ü 8 _ 9/9dã:ÔÚ4Ñ(Òë8ÑÙ(ðý Ð'Ñ(ÒÑ&î Î Õ8ÒÑ_éÑ_ÐUÓbÚ4ÑuÏÕÄÔÖ6ÏÒÕ<ã'ß ï Ñ ï Õ8Ö<Ú8Ñ Òë4Ñ(Ö ï ѹÎ,Ó ï ÏÕ4ÒÙ ðý ÐUÑ ÙÑuÎ,Ó ï ÏÕ8Ò*ÙdÓ$ÒѲÙß'ë8ë4Ñ Ù ÏÑ ãÿá<Û ÏÐ' Ñ ]ÒÕ$ÏÐ'Ñ(ÖUã'ÔÑ ï æ4î #Ñ(Î,Ù ï ÐUÑ&IÏ ·Î Õ8ÒàÞßU×ÓUð #%$'&)(+*-,-*/.( 8 2  ;©Ñ â Ó·âUÖUÔÏѹ٠Ñ( Ï Õ8θá2Ó8ãØ'×Ó ï ÑÙ ï Õ4Ö4Ï*Ó$ÔÖ'ÔÖ'ë_Ó$××'Ó$Ò ï Ð'ÔàÑã:Ñ Ó8Ö Ø'×Ó ï Ñ ÙÓ8ÖUãÓ$×׸Ø'×Ó ï ÑÙÕ8ÎáUÓ8ãÒÑã:ß ï ÏÔÕ4Öð #Ñ&Ï _ á¸ÑuÓ$ÖÓ8×ë4Ñ(á'Ò*Ó$Ô ï>ï ×Õ4Ùß'ÒѹÕ$Î _ Ó$ÖUã Ø'ß:Ï ] Ü [ Ü 9 j _|ð@ý Ð'Ñ ÖzÕ8Ö'Ñ_ã:Ñ(âUÖ'Ñ Ù
S"i j Q
8 O l< W 8 Ü
9/9[
\
M cl W 8 Ü "! 9# > 9
Y 5%6 Ó$ÖUãÏÐ'Ñ_ë4×Õ4áUÓ$×:BîÎ ßUÖ ï ÏÔÕ4ÖÿÔÙ ë8ÔÚ8Ñ Öÿá<ÛÄÏÐ'Ñ%$Bß'×Ñ(ÒdØUÒÕ:ã:ß ï Ï '& 8 O l< W 8 Ü9/9c[ d 8 O l< W 8 Ü 9/9 f^gh & D 8 é>Ð'Ô ï Ð ï Õ8Ö<Ú4Ñ(Òë8Ñ Ù>Î Õ8Ò)(>Ñ 9 U|\Ó8ÖUãòÓ4ã:àÔÏ*Ù·ÓàÑ ÒÕ4àÕ8ÒØ'Ð'Ô ï²ï Õ4Ö4ÏÔÖ<ßUÓ$ÏÔÕ8ÖzÏÕ (ð O
8 \/Q D
;Ѳã:Ñ(âUÖ'ÑuÏÐ'Ñ ï Õ4Ö6Ú4Ñ(Òë8ÔÖ'ë²Î,Ó ï ÏÕ8Ò*Ùá<Û 8 \ lc 8 Ü 9I9 ÔÎ s S@ikj?Q O * e [ Q e O W \uÕ$ÏÐUÑ(Òé>ÔÙÑ C 8 , j 9ÔÙÏÐ'Ñ(Öxã:Ñ(âUÖ'Ñ ã®á<ÛÏÐ'Ñ]Î Õ8ÒàÞß'×Ó ý Ð'ѲÓ8ã:Ñ ×Ô àÑ Ó8Ùß'ÒÑ·Õ4ÖÜ
ï
)
\ [ @ , + 8 # Q \9C & 8 l< W 8 Ü 9/9 O / 0 j 1 .-
* D d e ef^g h
)
e O
é>Ð'Ñ(ÒÑ 0 j ÔÙÏÐ'ѲÓ$áUÙÕ8×ß:ÏÑ]Ú!Ó8×ß'Ñ_Õ8εÏÐ'Ѳã:ÔÙ ï ÒÔàÔÖUÓ8Ö6Ï Õ8Î+_ ð * D ) e Î Õ4××Õ!édÙZÎ ÒÕ4à $X . 8 22  C EÔ Dý Ð'Ñ ï Õ4Ö6Ú4Ñ(Òë8Ñ Ö ï ÑBÕ8Î'ÏÐUÑØUÒÕ:ã:ß ï Ï e ^ f g h #Ñ&Î,Ù ï Ð'Ñ(IÏ ·Î Õ8ÒàÞß'×ÓÓ8ÖU ã ;Ñ Ô× V Ù ï Õ8Ö!þ+Ñ ï Ïß'ÒÑuÓ$á¸Õ8ß'ÏÏÐ'Ñ_Ó$áUÙÕ8×ß:ÏÑ·Ú!e Ó$×ß'ÑuÕ$εÏÐ'Ñ_Ñ Ôë4Ñ(Ö:î ÚbÓ8×ßUÑ Ù Õ$ÎÏÐUѲû'ÒÕ8á¸Ñ(Ö'ÔßUÙ Õ8ظÑ(Ò*Ó!ÏÕ8Ò é>Ð'Ô ï Ðÿé Ó8Ù ØUÒÕ!Ú4Ñ(Öá<4 Û 3·Ñ(×Ôë8Ö'ÑÄñ 5 A ÷"ð C ÔÔ D úÛã:Ñ(âUÖ'ÔÏÔÕ8Öç'ÏÐ'Ñ_àÑ Ó4Ù ßUÒÑ ) ã:Õ<Ñ Ù Ö'Õ8Ϲã:Ñ(ظÑ(ÖUã®Õ46 Ö ð B C ÔÔEÔ D 7dÕ8ÏÑuÏÐ2Ó!Ï / 0 j ÔÙÏÐ'Ñ_Ú8Õ4×ßUà ÑuÕ8Î j8 _ Î Õ4Ò ÏÐ'Ñ_àÑÓ8Ùß'ÒÑ Y e ð ef^g h
2 S .
ýµÕ©ã:Ñ&âUÖUÑÏÐ'Ñ ï Õ8Ö!þ+Ñ ï Ïß'ÒÓ8× ï Õ8ÖUÙ ÏÓ8Ö6ÏÞÔÏÄÒÑ(àÄÓ$ÔÖUÙ²ÏÕ©àÞß'×ÏÔØ'×Û á6Û©Ï+éÕòÒ*Ó!ÏÔÕ4ÖUÓ$× Î,Ó ï Ï Õ8Ò*Ùé>Ð'Ô ï ÐxÓ8ÒÑ·ÏÐ'Ñ_Õ4á:þ+Ñ ï ÏdÕ$ÎZÏÐ'Ñ_Ö'Ñ8<Ϲã:Ñ&âUÖUÔÏÔÕ4Öð #%$'&)(+*-,-*/.( 8 2  #µÑ&Ï > 8 Ü 9Þá2Ñ®ÏÐUÑ ï 8Õ8Ö'Ñ®ÔÖ l< W 8 Ü 9# ( ë4Ñ(Ö'Ñ ÒÓ$ÏÑ ã|á6ÛÏÐ'Ñ ï ×Ó8ÙÙ ÑÙÕ8ÎZÏÐ'Ñ_Ñ mÑ ï ÏÔÚ8Ñ_ã:ÔÚ<ÔÙÕ8Ò*Ù Ó$ÖUã > Ü 9 xá¸ÑuÏÐ'Ѳã:ß2Ó$× ï Õ4Ö'Ѳã:Ñ(âUÖ'Ñ ãÿá<Û > 8 Ü 9 [
S lc W 8 Ü 9# = B S > 8 Ü 9 B C M O O ý Ð'Ñ(Ö \ 8 L 8AP Q \9SR ~ "! Y Ü59<[ L + 1 é>Ð'Ñ(ÒÑdÏÐ'ѹàÑ Ó4Ù ßU8 ÒÑdÕ4f Ö l< W 8 Ü 9 # = ÔÙÖ'Õ4ÒàÄÓ8×`Ô (ÑãÄÙ ÕÞÏÐUÓ$ÏÏÐUÑ ï Õ!Ú8Õ8×ß'àÑ>Õ$ÎrÏÐ'Ñ ã:ßUÓ$×r×Ó!ÏÏÔ ï Ñ lc W Ü 9 ÔÙ Õ8Ö'Ñ4ð ;ѲÓ8×ÙÕ ï Õ8Ö2Ù Ôã:Ñ(ÒÏÐ'Ñ_ÔÖ6ÏÑ(ë8Ñ Ò 8 Ü 9<[1ì 8 _ lc 8 5 # Ü 9/9yC O W 8 $X . 8 2%$  C EÔ D_ý Ð'Ñ ï Õ8ÖUÙ ÏÓ8Ö4Ï Ü 9]àÓbÛÓ$×Ù Õzá¸Ñã:Ñ&âUÖUÑ ãÓ8ÙuÏÐ'ÑÄÚ8Õ4×ßUàÑÕ8Î ÏÐ'Ѳã:Õ4àÄÓ$ÔÖ
S > 8 Ü 9 D <[]\ M O Î Õ8ÒBÓ_Ùß'ÔÏ*Ó$á'×Ñ>àÑ Ó4Ù ß'ÒÑ Õ8ÖÏÐ'Ñ·:Ó 9ÄÖ'Ñ Ð<Û6ظÑ(ÒØ'×Ó$Ö'Ñ D c[ \ CÙ Ñ Ñ_ñ F A2Á 'ç 9 G:ð G:ð Jb÷ Dð ý Ð'Ñ(ÒÑ&Î Õ4ÒÑÔθÏÐUÑ(ÒÑ8Ñ :ÔÙ ÏÙ@Ó·âUÖ'ÔÏÑ Î,Ó8àÔ×Û 8'& L 9I yKLK ( Õ8O Î2Ñ mÑ ï ÏÔÚ8Ñdã:ÔÚ<ÔÙÕ8Ò*ÙÕ8ÖÄÜùÙ ß ï Ð ÏÐUÓ$Ï (
> 8 Ü 9<[
)
=+*A
"& L $
L* 8 ÏÐ'Ñ ÖÿÏÐ'Ñ ï Õ4ÖUÙ ÏÓ$Ö6Ï Ü 9 ÔÙ>Ò*Ó!ÏÔÕ4ÖUÓ$×Xð C ÔÔ D ý Ð'Ñ ï Õ8ÖUÙ ÏÓ8Ö6Ï # 8 Ü9é Ó8ÙÔÖ6ÏÒÕ<ã'ß ï Ñ ãÿá<Ûú Ó$Ï+Û6ÒÑ(ÚÓ8ÖUã®ýZÙ ï Ð'ÔÖ'æ8Ñ ×rÔÖñ øõ Á ÷"ð
ý Ð'Ñ ï Õ8Ö$þ+Ñ ï Ï ß'Ò*Ó$× ï Õ4ÖUÙ ÏÓ$Ö6Ï>ÔÙÏÐ'Ñ Özã'Ñ&âUÖ'ÑãzÓ8ÙÎ Õ8××Õ!édÙ #%$'&)(+*-,-*/.( 8 2/3-,  © ; Ѳã:Ñ&âUÖUÑ 8 Ü 9<[ 8Ü 9# 8 . Ü 9 ) 8 Ü 8 _N9/9 O é>Ð'Ñ(ÒÑ Ü 8 _N9ÿã'Ñ(Ö'Õ8ÏÑ Ù®ÏÐ'Ñ ï ×Õ4Ùß'ÒÑÕ8ÎÞÏÐUÑ ÒÓ$ÏÔÕ8ÖUÓ8׷ظÕ8ÔÖ6ÏÙzÔÖÏÐ'Ñ|Ó8ã:Ñ ×Ô ï Ù Ø2Ó ï Ñ Ü 8, j 9ð ;Ñ ï Ó$Ö®Ö'Õ!éë4ÔÚ4Ñ]ÓÒÑ&âUÖ'Ñã®Ú8Ñ(Ò*ÙÔÕ4ÖÕ$ÎZÏÐ'Ѳè6ß'ÑÙ+ÏÔÕ45 Ö HU ð M +*^*%/0.^ , ! 8 2/33 2  1 @W6W8DFj1S6oBS6i@c1SF BX4@WF43
1SFP2-8:BS4
C,û
l5}D~
8 9c .
8 Ü 9 I8 @B 9 C D V
Â?A Ê Æ , 8 + ý Ð'Ñ]Î Õ8ÒàÞß'×Ó 9 ÔÙÏÒß'Ñ_ÔÖ®ÏÐ'ÑuÎ Õ8××Õ!é>ÔÖ'ë ï Ó4Ù ÑÙ8M Ü][ 8 ç ÓuÒÑ ã:ß ï ÏÔÚ8ÑdÓ8×ë4Ñ(á'Ò*Ó$Ô ï ë8ÒÕ8ß'ØÕ!Ú8Ñ ÒT_|ç Ó_Ø2Ó$Ò*Ó$á¸Õ8×Ô ï Ùß'á'ë8ÒÕ8ßUØ Õ$Î ã:Ñ(âUÖ'Ñ ãÕ!Ú8Ñ(Ò| _ ðÍ"ÏÎ Õ8××Õ!édÙÎ ÒÕ4àÝÏÐ'ѹéÕ8ÒæÞÕ8Î4#µÓ8Ö'ë8×Ó$ÖUãUÙ@Õ8Ö$BÔÙÑ(ÖUÙ ÏÑ ÔÖ Ù Ñ ÒÔÑ Ùñ &+= Å ÷"ç+,C ÙÑ(Ñû'Ò*Ó$Ö'æ4Ñ8çüÓ8Ö'ÔÖçµýÙ ï Ð'ÔÖ'æ4Ñ(×ñ ó>ôöõ²÷BÓ$ÖUã ñ F ¸A Á ç 9 !L ÷ D ð © ; Ñ àÄÓbÛÄÏÓ8æ8Ñaz A [ ÜÄð@ÍÖzØUÓ$ÒÏÔ ï ßU×Ó8Ò ç<ÔÏdÔÙÏÒß'ÑuÎ Õ4ÒdÓ$Ö<Ûè6ßUÓ4ã:ÒÔ ï ð
Ü ÔÙÞÓÙàÕ6Õ8ÏÐ Ø'ÒÕ$þ+Ñ ï ÏÔÚ4ÑÏÕ8ÒÔ ï Ú!Ó$ÒÔÑ(Ï+Û8çZÏÐUÓ$ÏÔÙÞÓ$Ö Ñè6ß'ÔÚ!Ó8ÒÔÓ$Ö6Ï ï Õ8àØUÓ ï Ï î Ôâ ï Ó!ÏÔÕ4Ö Õ$βÓ$ÖÓ8×ë4Ñ(á'Ò*Ó$Ô ï ÏÕ4ÒßUÙ ðWC,ÙÑ(Ñ|ñ F A¸Á ç 9 X&÷>Î Õ8ÒÿØUÓ$ÒÏÔ ï ßU×Ó8Ò ï Ó4Ù ÑÙ(ç
ú Ó!Ï+Û<ÒÑ Ú Ó$ÖUãýZÙ ï Ð'ÔÖ'æ8Ñ ×uñ øõ Á ÷Xç·ñ øõ:÷Xç Ó$ÖUãñ øõ U÷Xç:Ó8×á¸Ñ(Òë8Ñ Òÿñ ='÷XçÓ$ÖUã ã:Ñ×Ó®úÒÑ(Ï@0 ï Ð'Ñÿñ ø Ç6A¸Á ÷ED&ð ·Ö'ÑàÄÓbÛzÏÓ8æ8ÑÏÐ'ÑÕ4Ø2Ñ ÖÕ4Òá'ÔÏ_Ó8Ùaz+A4ðý Ð'ÔÙ ï Ó4Ù Ñ ÔÖ ï ×ßUã:Ñ ÙÏÐ'ÑuØ'×Ó$Ö'Ñuá'×Õ!é>Ö<ß'ØÿÔÖN\8ç ç:Õ4Ò ÞظÕ8ÔÖ6ÏÙ çUÓ$Ö2ã)¹ÔÒ (Ñ á'Òß ï ÐÿÙß'Ò Î,Ó ï ÑÙ(ð ÜêÔÙuÓ$ÖÑ è6ß'ÔÚbÓ8ÒÔÓ$Ö6Ï ï Õ8àØUÓ ï ÏÔâ ï Ó!ÏÔÕ4ÖÕ$ÎÓ8ÖÓ 9ÖUÑÙØUÓ ï ѲΠÕ4Ò·ÏÐ'ÑÓ ï ÏÔÕ4ÖòÕ8Î ÏÐ'Ñ ï Õ4ÒÒÑ ÙØ2Õ4ÖUã:ÔÖ'ëÚ4Ñ ï ÏÕ8ÒÙ ØUÓ ï Ñ CÙ Ñ Ñ !Ð2Ó$àÞá¸Ñ(ÒÏ î #Õ4ÔÒçýZÙ ï Ð'ÔÖ'æ8Ñ ×·ñ %&¸õ Á ÷"ç ñ %&m õ :÷Xç2Ó$ÖUãñ %&m õ (U÷ Dð :o á'×Õ!é>Ö<ß'ØÓ!Ï 8 \ 6 :6 X9 8 6\6 9 8 :6 :6\9 8 \ 6\ 6\9SC :Ó$×á2Ñ Òë4Ñ(Ò | Ü [ P O Î Õ8ÒdÓ8Öÿß'ØUØ2Ñ Òdá2Õ4ß'ÖUãrç2ã:Ñu×ÓÄúÒÑ&@Ï O 0 ï Ð'Ññ ø :Ç A :O ÷ Dð ý Ð'Ñ]Î Õ8ÒàÞß'×Ó 8,+ 9ÔÙ ï Õ8àØUÓ$ÏÔá'×Ñ_é>ÔÏÐ M 8 ÏÐ'Ñ ï ÔÒ ï ×Ñ_0 àÑ(ÏÐ'Õ:ã C,ÍÖØUÓ$ÒÏÔ ï ßU×8Ó80 Ò ç2ÔÏ]ÔÙdÏÒß'ÑÞÔÎÜ { P R >:9¹ÓÄÐ<Û<Ø2Ñ ÒÙß'ÒÎ,Ó ï Ñ Õ$Îã:Ñ(ë4ÒÑ Ñ çUÙàÕ6Õ8ÏÐç:Ô Î DU Q \9 CÙ Ñ Ñ²úÔÒ Ðòñ ø Ì,Ç E÷ D ñ ó>ôöõu÷"çñ F A¸Á ç 9BI$ï ÷ Ï ' Ð _ Ñ U Ø Ò : Õ : ã ß > Ï $ Õ Î b Ú 8 Ó Ò Ô & Ñ Ï Ô Ñ Ù , C Ù ( Ñ Ä Ñ ï Ö<ß'àÑ(ÒÔ ï Ó$×$ÏÑ Ù ÏÙZÕ8Ö ï Õ8àØ'ß:ÏÑ(Ò*ÙrÎ Õ4ÒÙÕ8àÑã:ÔÓ$ë4Õ8ÖUÓ8× ï ß'á'Ô ï Ùß'Ò Î,Ó ï Ñ+Ù C,ÙÑ(Ñ·ñ F_õ Á ÷"ç ñ F_' õ <÷ D × ! Õ é Ñ(Òá2Õ4ß'ÖUã'ÙÎ Õ4ÒÄÙ Õ4àÑ ï ß'áUÔ ï Ùß'Ò Î,Ó ï Ñ Ù CÙ Ñ K Ñ <×Ó!ÏÑ(ÒÄÓ$Ö2ã <é>ÔÖ'Ö'Ñ Ò ÏÕ8Ö:î 3¹Û4Ñ(Ò ñ 3 5÷ Dðý Ð'ÑBØ'ÒÕ8á'×Ñ(àÕ$Î<âUÖUã:ÔÖ'ëdÓ8Ö]Õ4Ø:ÏÔàÄÓ$×$ßUØ'Ø2Ñ Òµá¸Õ8ß'Ö2ã]Î Õ8Ò ï ßUá'Ô ï Ù ß'ÒÎ,Ó ï Ñ Ù ÔÙ>Ù ÏÔ××Õ8ظÑ(Öð 7d××$ÏÐUÑ ÙÑÑ 'Ó8àØU×ÑÙÙ ßUØ'Ø2Õ4Ò ÏµÏÐ'ÑÑ(àØ'ÔÒÔ ï Ó8×!Î Õ8ÒàÞß'×Ó'çÐ'Õ!éÑ(Ú4Ñ(ÒmÏÐUÑ(ÒÑBÔÙZÓ ï Õ4ß'Ö6ÏÑ Ò î Ñ'Ó$àØ'×Ñué>Ð'Ô ï ÐzÔÙÏÐ'Ñ_Õ4á:þ+Ñ ï Ï>Õ$ÎÏÐ'Ñ_Ö'8Ñ <Ï¹Ù Ñ ï ÏÔÕ8Öµð õ -AË4È2ÊÅmÆNA6ÇBA = A®È ' ø = ÆrÇ:AX = ÅÉ õ ËÌ,Å A B ýZÓ8æ8ÑÜx{WP " 9 P ã:Ñ(âUÖ'Ñ ã|á6Û A A B B : : B [ Uð ;ÑÿÐUÓbÚ8Ñ 8 8 ÍÖ ØUÓ$ÒÏÔ ßU×Ó8Ò çZÜ ÔÙ²Ó l< W Ü59! l< W P * 9 P 9a[U 9 UöÓ$ÖUãD D [ " 8 \9&ð ï O ûUÓ$ÖUÕÚ!Ó8ÒÔÑ&Ï+Û43 ð ;©Ñ_àÄÓbÛßUÙÑ]ÏÐ'Ñ_Ð'Ñ Ôë4Ð6Ï Â
ìw64Ü 8 > 9<;x= ? A 8!B A 6DCECCD6 B 9 8 A 6DCECCD6 9
8
9 C
2 S .
"Í Î 8,+ 9·ÔÙdÏÒß'ÑÎ Õ8Ò_ÜêÏÐ'Ñ ÖÏÐUÑ(ÒÑÔÙuÙ Õ4àÑÕ8ظÑ(Ö©Ù ß'á2Ù Ñ(Ï z Ó8ÖUãòÓ ï Õ4ÖUÙ+Ï*Ó$Ö6Ï >êÙ ß ï Ð ÏÐUÓ$Ï 8 9c > @B V l D } ~ Ó8Ù ; ¡ ðý ÐUÑ(ÒÑÔÙ²Ó®Ø'ÒÕ$þ+Ñ ÏÔÕ8Ö©Õ8Ö6ÏÕÿÏÐ'ÑâUÒ*Ù+Ï ï Õ<Õ8Ò*ã:ÔÖ2Ó!ÏÑ 6µÜ ; P ðÄÍ"Î 8!B A 6DCECCD6 B 9S P ç6ÔÙÙ ß ÐÏÐUÓ!ï Ï B L [ " U8 ç D 88!B B 9@ÔÙBÓ²ÙàÕ68Õ8+ ÏÐ ï ßUá'Ô ï Ù ß'ÒÎ,Ó ï Ñ L* A ï B B B B B B ÔÎ 8 A : 8 A 8 A·Ó8ÒÑ ï ß'á¸Ñ Ù ç8ÏÐ'Ñ( Ö *l< W D 9/9[ ðÍ"Î 9@ÔÙ@ÏÒß'ÑdÎ Õ8ÒBÏÐ'Ñ O O âUá'ÒÑ : 8 9<?> 8I@B 9 V l L + 1 ~ Ó8Ù ; ¡ ç4á'ß:ÏÏÐ'Ñ ÙÑ>âUá¸Ñ(Ò*ÙB Ó8ÒÑ·åmÓ8ÒÔÙæ6Ô2ã:Ñ(ÖUÙÑ8ç6Ù ÕuÏÐ'Ñ·Ó8ÖUÙéÑ ÒÏÕ_ÏÐ'ѹè6ß'Ñ Ù ÏÔÕ8Ö HU ð ï Ó$ÖÖ'Õ$Ïuá¸ÑظÕ4ÙÔÏÔÚ4ÑÞÎ Õ4Ò·á¸Õ$ÏÐÜ Ó$Ö2ãzÏÐ'ÑâUá¸Ñ(Ò*Ù ð_ÍÖÎ,Ó ï Ïuú Ó$Ï+Û6ÒÑ(ÚxÓ8ÖUãòýÙ ï ÐUÔÖ'æ4Ñ(× Ø'ÒÕ!Ú4ѹÏÐ'ÑuÎ Õ8××Õ!é>ÔÖ'ëàÕ8ÒÑuØ'ÒÑ ï ÔÙ ÑuÒÑ Ùß'×ÏNM
$.$^ 2/3 ø= Æ rÇ:A = ÅÉ õ ËZÌ8,Å + A ñ øõ(:÷ Âc` _ RM1SF6TBO@WF:4aBGR
ô A6ÆÈÉqÈ>Ë8ȸÊÅmÆ Ì,Åq ;ÑÖ'Õ!é©Ïß'ÒÖ²áUÓ ï æ¹ÏÕdÏÐUÑàÑ&ÏÐ'Õ:ã'Ùµß2Ù ÑãuÏÕ·Ø'ÒÕ!Ú4ÑÏÐ'ÑÒÑÙ ßU×Ï*Ùë8ÔÚ8Ñ Ö_ÔÖÙ Ñ ï ÏÔÕ4ÖSIUð Ï z Õ8Î>Ü = Ç È2ÅÌ,Ë = Å = Ì 7¹ÙÙ ßUàÑÏÐUÓ!ÏÞÏÐ'Ñ ÒÑÑ :ÔÙ+Ï*Ù²Ózã:Ñ(Ö2Ù ÑÄÕ4Ø2Ñ ÖÙß'áUÙÑ&5 é>Ð'Ô ï ÐxÔÙ>Õ8ÎÏÐ'Ñ_Î Õ4Òà 8 ì
é>Ð'Ñ ÒÑ ¬ÔÙdÓÄÒÑ ã:ß ï ÏÔÚ8ѲÓ8×ë4Ñ(á'Ò*Ó$Ô ï ë8ÒÕ8ß'صç'×Õ<Õ4æÿÓ!Ï>ÏÐ'Ñ Ð'Ñ(Ôë8Ð6Ï (Ñ(ÏÓÎ ß'Ö ï ÏÔÕ8Ö 8 9<[ ) ì 8B 9 D }D~
f } +j
1
é>Ð'Ô ï Ð ï Õ4Ö<Ú8Ñ(Òë8ÑÙé>ÐUÑ(Ö 5 'ð 8 ý Ð'ÑÓ4Ù Û<àØ:ÏÕ8ÏÔ ï á¸Ñ(ÐUÓbÚ<ÔÕ8ÒµÕ8Î 9µÔÙµë4ÔÚ4Ñ(Ö²á<Û·ÏÐ'ÑàÑ(ÒÕ8àÕ8ÒØ'Ð'Ô Ø'ÒÕ8ظÑ(ÒÏÔÑ Ù 8 9ðÍ"c 8 9 ÔÙ ÓÕ4ÔÙÙÕ8ÖÿÎ Õ8ÒàÞß'×Ó'ðÍ"ÎBÜ [ 8 ï ç Õ$Î Î z7[ ç2Õ8Ö'Ñ_àÄÓbÛÿl5ßU}DÙ ~Ñ D } ~ D } ~ Ó$Ö $ÔÙÑ(ÖUÙ ÏÑ ÔÖÙÑ(ÒÔÑÙ]Ó8ÖUãéÑàÓbÛÓ8Ø'Ø'×ÛzÏÐ'ÑéÕ8ÒæzÕ$Î #ZÓ$Ö'ë4×Ó8ÖUã'Ù ð_ÍÖá¸Õ$ÏÐ ï Ó8ÙÑ Ù ÏÐ'Ñ_Ø'ÒÕ8áU×Ñ àêàÄÓbÛá2Ñ_Ð2Ó$ÖUã:×Ñ ãÿßUÙÔÖUëÄÐUÓ$ÒàÕ8Ö'Ô ï Ó8ÖUÓ$×Û:Ù ÔÙ ð ý Ð'ÔÙÏ+Û<ظÑxÕ$ιàÑ&ÏÐ'Õ:ã ã:ÕÖ'Õ$ÏÄÓ$Ø'ØU×Û|é>ÐUÑ(Ö ÏÐ'ÑzÚ!Ó$ÒÔÑ(Ï+Û|ã:Õ<Ñ ÙÖ'Õ8Ï ï Õ8Ö6Ï*Ó$ÔÖ Ó$Ö Ð'Õ8àÕ8ë4Ñ(Ö'Ñ Õ8ßUÙ>ÙØUÓ ï Ñ8 ð 7¹××Õ$ÏÐ'Ñ(Ò ï Ó8ÙѲÓ$Ø'Ø¸Ñ Ó8ÒÔÖ'ëÄÔÖxÏÐUѲ×ÔÙ Ï·Õ$ÎBÙÑ ï ÏÔÕ8K Ö IÐUÓbÚ4Ñ_Õ8Ö'Ñ Ø'ÒÑ ×ÔàÔÖ2Ó$ÒÛÙ+ÏÑ(ØzÔÖ ï Õ8ààÕ8Ö MÏÐ2ÓbÛÓ$××ßUÙÑ_Ó×ÔÎ¥ÏÔÖ'ëÏÕÏÐ'Ñ_ß'Ö'ÔÚ8Ñ ÒÙÓ$׸ÏÕ4ÒÙÕ8Ò*NÙ M Å!Ì A4Ç = _ÆÈUÇ ÈUÇ ÔàØ'×Ô ï ÔÏÔÖÏÐ'Ñ ï Ó4Ù ÑÄÕ8ÎdÓzÐ6Û<ظÑ(Ò*Ù ßUÒ Î,Ó ï ÑÔÖ P R 8 >:9&çÔÏÞé Ó8Ù àÓ4ã:Ñ]Ñ :Ø'×Ô ï ÔÏ á Û :Ó$×á2Ñ Òë4Ñ(ÒÔÖñ 4=:÷mÏÕë4ÔÚ4Ñ]ÓÞÖ'Ñ(é Ø'ÒÕ<Õ8ÎÔÖÿÏÐ'Ñ ï Ó4Ù Ñ]Õ$ÎÙ Ø'×ÔÏÏÕ8ÒÔ ï ÚbÓ8ÒÔÑ&ÏÔÑÙÕ!Ú4Ñ(Ò > <ÔÏ é Ó8ÙÏÐUÑ(Ö®ßUÙ Ñãá Û :Ó8×á¸Ñ(Òë8Ñ ÒÓ8ÖUãã:Ñ]×ÓúÒÑ&@Ï 0 ï Ð'ÑdÎ Õ4ÒÏÐ'Ñ ï Ó4Ù Ñ Õ$ÎdÏÐ'ÑÿØU×Ó8Ö'ÑÿáU×Õ!é>Ö<ß'Ø|ÔÖ Ø¸Õ8ÔÖ4Ï*Ù(ð|ý ÐUÑÿÑ ÖUã|Õ8ÎdÏÐ'ÔÙÙ ßUÒÚ4Ñ(Û©ÔÙã:Ñ Ú8Õ$ÏÑ ã|ÏÕÏÐ'Ñ ã:Ñ Ù ï ÒÔØ'ÏÔÕ8Ö®Õ$εÏÐ'ÔÙ>Ø'ÒÑ(×ÔàÔ: ÖUÓ$ÒÛÙ ÏÑ(Ø®ÔÖÿÏÐ'Õ4ÙÑ ï Ó4Ù ÑÙ(ð
8
 = Ì,ËKA = A ÍÖÏÐ'Ñ ï Ó8ÙÑuÕ$ÎÓÞÐ<Û<Ø2Ñ ÒÙß'ÒÎ,Ó ï Ñ·Õ8ÎZ×Ó$Òë8Ñ·ã'ÔàÑ(Ö2Ù ÔÕ8Öç'ÏÐ'ÑuØ'ÒÔÖ ï ÔØ'×ÑuÕ8ÎüÓ8Ö'ÔÖÿÎ Õ8×î ×Õ!édٸΠÒÕ8àÏÐ'Ñ@Î Õ4××Õ!é>ÔÖ'ë>ã:Ñ(Ñ ØuÏÐ'Ñ Õ8ÒÑ(àé>ÐUÔ ï ÐuÔÙráUÓ8ÙÑ ã]ß'ظÕ8Ö]ÏÐ'Ñ+)¹Ó8Òã'Û4î #ÔÏ Ï×Ñ éÕ<Õ:ã ï ÔÒ ï ×ÑuàÑ&ÏÐ'Õ:ãrð
$.$^ 22/3 ø 4kÌ,Ç! Ë ñ ø Ì Ç ÷ Â 2J6 S@U " B A O CECC O B 4 $ NM2t8:1 n 1?d/2
ì !8 B 9 [ì 4 8!B 9 4k D é>Ð'Ñ(ÒÑ_ì54öéÓ4Ùã'Ñ&âUÖ'Ñã®ÔÖxÙÑ ï ÏÔÕ4K Ö G'ðBý Ð'Ñ(Ö l ~
\
8 9c[
!
B SU 4k Q
,¹ÙÔÖ'ëÄüxÕ<Ñ á'Ôß2Ù>ÔÖ<Ú4Ñ(Ò*Ù ÔÕ8Öç<éÑuë8Ñ&Ï
l ~
é>Ð'Ñ(ÒÑ
\
'
8 9[ 6U ?A ; l5 ~
!
8B < 9 [? O GIHDJ B L 4k D 8!M B M VWEY L 9[ \^C
O O
"
O
8!B c 9 [ O G/HJ L B L 4k D M M
# C
$
\ ÔÙ ÏÐ'ѲüxÕ<Ñ(á'ÔßUÙÎ ß'Ö ï ÏÔÕ8Öµðý Ð'Ñ(Ö n 4k \ )*%+' 8 + D 1 \ > )*% äD,9 .ä / \ > C 8 \ Q 0 9 / l
Q \
[
8 ä9I Q B S 8 äU9 4k Q
Q
&%(' )
8 9c[
'
8 äD9 ä 4k D
)
O
ý Ð'ÑÔã:Ñ Óxá¸Ñ(ÐUÔÖUã ÏÐ'ÑÿÔÖ6ÏÒÕ:ã:ß ï ÏÔÕ8Ö Õ$ÎdßUÖ'ÔÚ4Ñ(Ò*ÙÓ8×@ÏÕ4ÒÙÕ8Ò*ÙuÔÙ_ÏÕë8Ñ Ö'Ñ(Ò*Ó$×Ô ÑÏÐ'ÔÙ Ù ÔàØ'×Ѳã'Ñ Ù ï Ñ(Ö6ÏdÓ$Òë8ßUàÑ Ö6ÏÏÕÄÕ$ÏÐUÑ(Ò>Ú!Ó$ÒÔÑ(ÏÔÑ Ù ð
2 S .
E
 ÅZÌ A6Ç = ÆÈUÇ ÈUÇ #Ñ&Ï·Ü á¸Ñ²ÓÙ àÕ<Õ$ÏÐç'ë4Ñ(Õ8àÑ(ÏÒÔ ï Ó$××ÛÄÔÖ6ÏÑ(ë4ÒÓ8×rØ'ÒÕ$þ+Ñ ï ÏÔÚ8ÑuÚ!Ó$ÒÔÑ(Ï+ÛÕ!Ú8Ñ Ò _|ç:é>Ð'Ñ ÒÑ W _w[?Uð 7·ÙÙß'àÑ C¥Î Õ4Ò·ÙÔàØ'×Ô ï ÔÏ+ÛDÏÐUÓ!Ï]Ü ÔÙdû2Ó$Ö'Õ2ç'é>Ð'Ô ï ÐxàÑ Ó$Ö2Ù ÏÐUÓ$Ï D 8 ÔÙ Ó$àØ'×Ñ8ð@ý Ð<ßUÙ(ç6ÔÎ _ ÔÙÓ8ÖÓ$×ë8Ñ á'ÒÓ8Ô ï>ï ×Õ6Ù ßUÒÑdÕ8Î _|ç<Ó$ÖUã Ü][ÜH9 j _ ç6ÏÐ'Ñ Ö=l< W Ü 9 ÔÙ>ÓÎ ÒÑ(Ñ_Ó$á¸Ñ(×ÔÓ$Ö®ë8ÒÕ8ß'Ø®Õ$ÎZâUÖ'ÔÏÑ_Ò*Ó$Ö'æmð _ [ _ âUÒ*Ù+Ïð #µÑ&Ï k CECEC C á¸Ñ ×ÔÖ'Ñ á'ß'ÖUã:×Ñ ÙòÕ8ÖÝÜ Ùß ï ÐùÏÐ2Ó!Ï " 7¹$ ÙCEÙ Cß'C à" Ñ O [ O lc 8 Ü 9&ð #Ñ(Ï Î Õ8Òà
ÓáUÓ8ÙÔÙ²Õ$Î\l< W 8 Ü 9 $ L M [ L Q (Ñ ÒÕÙÑ ï ÏÔÕ4Öð W C !Õ8ÖUO ÙÔã'Ñ(Ò O N6 M 9 : M 9 %1 9 M ;í< Ü C C ·ÖÏÐ'Ñ_×Ñ(ΥϹéÑ]Ð2ÓbÚ8ÑuÓ$ÖzÓ ï ÏÔÕ4ÖÿÕ8 Î C ç:ÏÐ'ÔÙdÔ Ù ÏÐ'Ñ V L^FI@ S2<;M4JBOp 6o1S;M4<1S; Õ$ÎBÜÄð .X.I. *-,/*/.( 2/3 Â9` _x[ _Y
698:2 L^F@ X2<;M4
ÏÐUÓ$Ï
" )L $[
)
C L
" $ C ~ L
* ÍÖ®Õ8ÏÐ'Ñ Ò>éÕ4ÒãUÙÎ Õ4Ò>Ñ Ó ï Ð BÔÖN
X\ CECC P' ç:éÑ_àÄÓbÛÄâ®Ó$Ö®ÔÙÕ8àÕ8ÒØ'Ð'ÔÙà O O C LT6 0 / < Q ; )L C *
úß'ÏÔÎ EC CC 8Ó ÒÑÕ4Ö'Ñ&îã:ÔàÑ(ÖUÙÔÕ4ÖUÓ$×Ú8Ñ ï ÏÕ4ÒÙØUÓ ï Ñ ÙÓ$ÖUã ä CECC ä ÔÖ6ÏÑ ë8Ñ ÒÙ O O % ÏÐ'Ñ ÒÑuÔÙdÓ O ï $Ó ÖUÕ8O Ö'Ô ï Ó8×¸Ä à Ó8Ø % 9 L 8 L Q
9 ; L L < * 8 CECC 9 F; L * L < O O * é>Ð'Ñ(ÒÑ>Î Õ8ÒÓ$Ö<ÛÚ8Ñ ï ÏÕ4ÒÙØUÓ ï = Ñ Õ$εã'ÔàÑ(Ö2Ù ÔÕ8ÖÄÕ4Ö'Ñ8ç<Ó$ÖUãÓ$Ö<ÛÖUÕ8Ö:î (Ñ ÒÕÔÖÄç D ÔÙÏÐ'Ñ]ß'Ö'Ôè6ß'Ñ¹Ñ ×Ñ àÑ(Ö6ÏÕ8ÎÏÐ'Ñ]ã:ßUÓ8× ®Õ8Î öÙß ï ÐÄÏÐ2Ó!Ï D 8 D9c[ \4ðÍÖÏÐUÓ$Ïé ÓbÛ8ç ï Õ8àظÕ4ÙÔÖUëé>ÔÏÐ L çUéÑuë8Ñ(ÏdàÄÓ$ØUÙ C ) LM C L 6 9 M ;
*
ý Ð'ÔÙdàÓ8ØÿÔÙ Ñ è6ß'ÔÚ!Ó$ÒÔÓ8Ö6ÏÎ Õ4Ò ÏÐ'Ñ²Ó ï ÏÔÕ4ÖÿÕ8Î C ÔÖ®ÏÐ'ÑuÎ Õ4××Õ!é>ÔÖUëÙÑ(ÖUÙÑ M C 8 & O CCEC O & C 9S C 8 _N9 O :S 9 C M 8 _N9 O L 8I8 & O CECC O & C 9yC D9<[ d & 0 / < C L 8 D9yC *
*
S
7dÕ$ÏÑ ÏÐUÓ$ÏBÔÎ )L ÔÙÓ$Ö'Õ8ÏÐ'Ñ Ò@àÓ8ØÎ ÒÕ4à 9 C M ÏÕ ) L M é>ÔÏÐÏÐ'ѹÙÓ$àÑ Ñ è6ß'ÔÚ!Ó$ÒÔÓ8Ö ï Ñ Ø'ÒÕ4Ø2Ñ Ò Ï+Û4ç<ÏÐ'Ñ Ö®ÏÐ'Ñ ÒÑuÔÙ>ÓÄÙ Ñ ï ÏÔÕ8Ö S *8 Ü 9 Ùß ï ÐÿÏÐUÓ$Ï O 8 8 C S 9 M _R9 )L D9c[ 8 8 D9/9 C L 8 D9yC
*
8Ü
O 9 [ _Q!Ó$Ö2ã c
úß'Ï ç$ÙÔÖ ï Ñ ÜÔÙµØ'ÒÕ$þ+Ñ ï ÏÔÚ4Ñ8ç á6ÛÿÓ ï Õ8ÖUÙ ÏÓ8Ö6Ï ð@ý Ð'Ñ_àÄÓ$ØUÙ L@Û<ÔO Ñ(×ãÿÓàÄÓ$Ø C 6 9 LM ; ý Ð'Ñ_àÄÓ!ÏÒÔ1
Ó$ÖUãÏÐ'Ñ_àÄÓ8Ø
&
L¸ÔÙµßUÖ'Ôè6ß'Ñß'ØÞÏÕ]àÞß'×ÏÔØ'×Ô ï Ó!ÏÔÕ8Ö
9 C L) M C
L*
L*
*
O
L*
L*
ã:Ñ(âUÖ'ÑÙ>ÓàÕ4ÒØUÐ'ÔÙàêÕ8ÎÓ$×ë8Ñ á'Ò*Ó$Ô ï ë4ÒÕ4ß'ØUÙ 6 C ; 8 C 8 CECC 9 F; C * & 0 / < 9 yKLK C & O O&C ÔÙ>Ñè4ßUÔÚ!Ó$ÒÔÓ$Ö6Ïé>ÔÏÐzÒÑ ÙØ2Ñ ï Ï>ÏÕ M :S L 9 C L M 8 _R9 8 & C 9<[ 8 & y9 C 8 D 9yC S C 8 _N9 O
ü Õ8ÒÑ(Õ!Ú4Ñ(ÒBÔÎ )¸ÔÙ Ó$ÖUÕ$ÏÐUÑ(Ò àÄÓ$Øé>ÔÏÐÏÐ'Ñ_ÙÓ$àѹÑè6ß'ÔÚ!Ó8ÒÔÓ$Ö ï ѹØ'ÒÕ8ظÑ(ÒÏ+Û8ç4ÏÐUÑ(ÖÿÏÐ'Ñ ÒÑ x ÔÙ & S C 8 _R9 Ùß ï ÐÿÏÐUÓ$Ï )[ & C ð<ÔàÔ×Ó$Ò×ÛéÑuàÄÓbÛã:Ñ&â2Ö'ѲÓàÓ8Ø 6 9 C )L M ; 9 C L M
é>Ð'Ô ï ЮÔÙ>Ñ è6ß'ÔÚ!Ó$ÒÔÓ8Ö4Ï é>ÔÏÐzÒÑÙ Ø¸Ñ ï Ï>ÏÕ D ðBý Ð<ßUÙÏÐ'Ñ ï Õ8àظÕ4ÙÔÏÑ]àÄÓ8Ø 6 L 9 C L M ; L 9 C L M * * ÔÙ@Ñè6ß'ÔÚ!Ó8ÒÔÓ$Ö6Ï@é>ÔÏÐÒÑÙ Ø¸Ñ ï Ï@ÏÕuÏÐUÑ>Ôã:Ñ Ö6ÏÔÏ+ÛàÄÓ$ØÓ$Ö2ãÞÏÐ'Ñ(ÒÑ&Î Õ4ÒÑ ï Õ8ÔÖ ï Ôã:Ñ ÙBé>ÔÏÐÏÐ'Ñ Ó ï ÏÔÕ4ÖÿÕ8ÎÓ8ÖÿÑ ×Ñ àÑ(Ö6Ï>Õ$Î C 8 _R9ðBý Ð<ßUÙ Ó8ÖUã Ó$ÒÑ]ÔÙÕ8àÕ8ÒØ'Ð'ÔÙ àÄÙ ð û'Õ8ÒÓ$Òá'ÔÏÒÓ8ÒÛ²âUÑ(×ã'Ù ç4Ó_ß'ÖUÔÚ4Ñ(Ò*ÙÓ8×:ÏÕ4ÒÙÕ8Ò@àÄÓbÛÞá¸Ñ¹ã:ÑÙ ï ÒÔá¸Ñ ãÄÓ8Ùa Ó _xîÙ+ÏÒß ï ÏßUÒÑ Õ8Ö ÏÐ'ѲÓ8á2Õ!Ú4ѹÏÕ8Ò*Ù Õ4Ò ð #Ñ(ÏdßUÙ>ã:Ñ&â2Ö'ÑuÏÐ'ÔÙ>Ö'Õ8ÏÔÕ8Ö®àÕ8ÒÑ]ØUÒÑ ï ÔÙ Ñ ×Û M (>Ñ ï Ó$××ÏÐUÓ!ÏÏÐ'Ñ ÒÑÿÔÙÓ ï Õ8Ö6ÏÒÓbÚ!Ó$ÒÔÓ$Ö6Ï²Ñ è6ß'ÔÚ!Ó$×Ñ(Ö ï ÑÕ$Î ï Ó!ÏÑ(ë8Õ4ÒÔÑ ÙÞá2Ñ(Ï+éÑ Ñ(Ö ÏÐ'Ñ Óï !ÏÑ(ë4Õ8ÒÛÕ8εÓ$×ë8Ñ(áUÒÓ8Ô ï ÏÕ8ÒÔç4ÏÐ2Ó!Ï ÔÙÓ$×ë8Ñ á'ÒÓ8Ô ï ë8ÒÕ8ß'ØUÙ Ùß ï ÐÄÏÐ2Ó!Ï ÔÙÔÙ Õ4àÕ4ÒØUÐ'Ô ï ÏÕ 1 j ç'Ó$ÖUãÏÐ'Ñ ï Ó!ÏÑ(ë8Õ4ÒÛÕ8Î @ 8 _ 8 _N9"î"×Ó$Ï ÏÔ ï ÑÙ(ç6ÏÐUÓ!Ï>ÔÙ @ 8 _ 8 _R9îXàÕ:ã:ß'×Ñ Ù é>Ð'Ô ï Ð~ Ó$ÒÑÎ ÒÑ(Ñ®Ó$á¸Ñ(×ÔÓ8Ö ë8ÒÕ8ßUØUÙ²Õ8ÎdâUÖ'ÔÏÑzÒ*Ó$Ö'æmð ·Ö'ÑÎ ßUÖ ï ÏÕ8ÒÔÙ F; ! 8 9[ B + 8 O 9ç2Ó$ÖUã ï Õ4Ö4ÏÒÓ8ÒÔ×Û F;J 5W 8 _ " $!9 + jvn j 1 ð #%$'&)(+*-,-*/.( 20  #µÑ&Ï ÏÐ'% Ñ 7¹Ñ(ÒÕ8Ö:î <Ñ(Ú4Ñ(ÒÔUÏÕ8ÒßUÙ ç ç:á¸ÑuÏÐ'Ñ]ÏÕ4Òß2Ù ï Õ8ÒÒÑ٠ظÕ8Ö2ã:ÔÖUë ÏÕÏÐ'Ñ @ 8 _ 8 _R9"î"×Ó!Ï ÏÔ ï Ñ lc W ÜÄð Í"Î ÔÙ]Ó8ÖòÓ$×ë8Ñ á'Ò*Ó$Ô ï ë8ÒÕ8ß'ØòÕ!Ú8Ñ(b Ò _|ç¸ÏÐUÑ(ÖÓ am 6T1O;M4<1S; ÔÙ]ÓÎ,Ó$ÔÏÐ'Î ß'××K Û 2Ó$Ï]àÄÓ$Ø 6 ; Ü é>ÔÏÐ Ó$ÖÓ ï ÏÔÕ4ÖòÕ8Î Õ8 Ö Ùß ï ÐÏÐUÓ$ϲ×Õ ï Ó$××ÛzÎ Õ4ÒuÏÐ'ÑÎ,Ó8ÔÏÐ:Î ß'××Û 2Ó!Ï
2 S .
ÏÕ8ظÕ8×Õ8ë4Û8ç 9 z 9 zç@é>Ð'Ñ ÒÑÏÐ'ÑÿÔÙÕ8àÕ4ÒØ'ÐUÔÙà ÔÙ ï Õ4àØ2Ó!ÏÔá'×Ñé>ÔÏÐ ÏÐ'Ñ Ó ï ÏÔÕ4ÖÿÕ8Î ð C,Í ÖxÓ$Ö'Õ8ÏÐ'Ñ Ò×Ó$ÖUë8ßUÓ8ë8Ñ8ç6ÏÐ'Ñ ÙѲÓ$ÒÑ·ØUÒÔÖ ï ÔØUÓ8×rÐ'Õ8àÕ8ë4Ñ(Ö'Ñ Õ8ßUÙ ÙØUÓ ï Ñ Ù ð D 7 îXÏÕ4ÒÙÕ8Ò ; Ü ÔÙ²ÙÓ$ÔãòÏÕxá¸Ñ L^FI@ S2J;M4
.X.I. *-,/*/.( 2%8 @% È ,ÌÈUÆ õ <Å-A 4= Åq ÊË Â 1 @W6W8FP1S6oBS6i@c1SFI4(BS4 BENM1 S2 Y B 8 _ 95Y 698:2<;#2f2?>/@A4M6 4fBL^F@'3JLI2 g L3H 6T1_@A4<1 n 1S;iH:8^@A4 n u L^F@ X2<;M4
ý Ð'ÔÙ ØUÒÕ4Ø2Õ6Ù ÔÏÔÕ8Ö®ë8ÔÚ8ÑÙß2Ù>ÓÖ'Ô ï Ñ_ã:Ñ ï 8Õ àØ2Õ6Ù ÔÏÔÕ8Ö®Õ$ÎÏÐUѲ٠Ñ(Ï Õ8ÎÒ*Ó!ÏÔÕ4ÖUÓ$×mظÕ8ÔÖ6ÏÙ Ü 8 _R9<[ L 8 L 8 _R9I9yC yKLK
!. ( 2 Âk ;#1 n BSFZBS;5@W698 n J2 6i@cRMBSpHI1S@WF6-1 ` 3 @c2 [Y L^FI@ S2J;M4
.X.I. *-,/*/.( 2 @ % È ,ÌÈUÆ õ <Å-A 4= qÅ ÊË Â 9` 8 @A4B 4 n 131S698fHP8 ;?1<2MRJ6i@ S2 ; ÜaY 6W8I2JF j 9[ j 9<e 5F R?1 n HIBER<6i@ sRMBS6i@c1SF 1r` BL^F@ X2<;M4
1S698:2<; [ 1S;?CX4 Y 698:2<;#2-BS;?2 FP1;#BOLI2J; m BOFI@WF_1ENJ456 ;5LIR<6 @c1OFG6T16W8I2BX4M4<2HP;5@WFjRJ@ Hjpq2BOFPC 6W8I2 [ 2MB ]=B?H/HP;#1 >/@ n BO6 @c1OF e T!$22  #Ñ(ÏÜw{ P 4 ÓzÐ6Û<ظÑ(Ò*Ù ßUÒ Î,Ó ï ÑÕ!Ú8Ñ(Ò>xç Y + Ü Uç Y 5V Ü [ 0 ç Ó$ÖUã \Q 0 U UçÏÐ'Ñ Ö²ÏÐUÑ ï Õ4Ö'Ñ { 4q Q
Ó$á¸Õ!Ú8ÑÜÔÙµß'Ø_ÏÕ¹ÔÙ Õ4àÕ4ÒØUÐ'ÔÙà l
ÏÐ'Ñ_Õ4Ö'×Ûß'Ö'ÔÚ8Ñ(Ò*ÙÓ$׸ÏÕ4ÒÙÕ8Ò Õ!Ú8Ñ ÒdÜÄð
 õ ÈUÇ!Ì,Ë = Ç!Ì A4ÆÌ A ý Ð'Ñ_Î Õ8××Õ!é>ÔÖ'ë ï Õ8Ö2Ù+ÏÒß ï ÏÔÕ8ÖxÔÙ¹ã:ßUѲÏÕ !Õ6rð #Ñ&Ï á2ÑÓ$ÖÓ8×ë4Ñ(á'Ò*Ó$Ô ï ÏÕ4ÒßUÙ·Ó$ÖUã ܬá2ÑÓÄÙ àÕ<Õ$ÏÐxØ'ÒÕ8þ+Ñ ï ÏÔÚ8ÑuÑ è6ß'ÔÚ!Ó$ÒÔÓ8Ö4Ï ï Õ8àØUÓ ï ÏÔâ ï Ó!ÏÔÕ8Ö®Õ$Î ð ý Ð'ÔÙ>àÑ Ó8ÖUÙ ÏÐ2Ó!Ï ÏÐ'Ñ ÒÑ·ÔÙÓ$ÖÓ ï ÏÔÕ4ÖÄÕ$Î Õ4ÖÿÜç:Ó$ÖÕ4Ø2Ñ ÖÙß'áUÙÑ&Ï z7{ ÜÄç<Ó$ÖUãÓ$ÖÔÙ Õ4àÕ8ÒØ'Ð'ÔÙ à Î ÒÕ4à z ÏÕ ï Õ8àØUÓ!ÏÔáU×Ñué>ÔÏЮÏÐ'Ñ²Ó ï ÏÔÕ4ÖUÙ Õ$Î ð
J
8 \9¹ÏÐUÑÙ Ñ(ÏuÕ8ÎÕ4Òá'ÔÏÙ]Õ8Î :Õ ã:ÔàÑ(ÖUÙÔÕ8Ö \ ÔÖ ÜÄðÄý Ð'Ñ(ÖÏÐUÑ(ÒÑÔÙ_Ó$Ö ï Ñ'Ó ï Ï>ÙÑ è6ß'Ñ Ö ï ÑuÕ8Î @8 _ 8 _N"9 î"àÕ:ã:ßU×ÑÙ ; ! 8 9 Q 1Q-; U + 1 Q ; l< W 8 Ü 9<; F; " & $ 3¹Ñ Ö'Õ$ÏÑá<Û
×ï Õ4Ùß'ÒÑÞÕ$ÎÏÐ'ÑÕ8Òá'ÔÏ ÔÖ ÜÄç¸é>Ð'Ô ï ÐòÔÙ·Ó$ÖÔÒÒÑ ã'ß ï Ôá'×Ѳã:ÔÚ<ÔÙ Õ4Ò¹Õ8Î
é>Ð'Ñ(ÒÑ & ÔÙ¹ÏÐ'Ñ ÜÄðBüxÕ4ÒÑ Õ!Ú8Ñ(ÒéÑ]Ð2ÓbÚ8Ñ
D [
)
f + 1
"& $ C
úÛÿã:ßUÓ$×ÔÏ+ÛéÑ]ë4Ñ&ÏdÓ$Ö®Ñ'Ó ï d Ï Ù Ñè6ß'Ñ(Ö ï ÑuÕ$ÎÏÕ8ÒÔ
+ 1 Q; {ùÜêÓ8ÖUãxéѲé Ó$Ö6ϹÏÕÑ<ÏÑ(ÖUãzÏÐ'ÑàÓ8Ø \ ;
;
;
\XC
úß'Ï ÏÕÿë8Ñ(Ï]ÓÄÏÕ8Ò*Ù Õ4ÒdÕ!Ú8Ñ Ò·ÜÄð ;©Ñã:Õ ÏÐ'ÔÙ>ÔÖÿÏÐ'ÑuÎ Õ8××Õ!é>ÔÖ'ëé ÓbÛM ;©Ñ ï 4Õ ÖUÙ Ôã:Ñ ÒÏÐ'ѲÓ:9ÄÖ'Ñ_ÙØUÓ ï Ñ [ J 5W 8 _ " $ 9 + jvnIj 1 J f+ 1 +1 G Ó$ÖUã®Ó ï ×Õ4ÙÑ ãÿÙ ß'á2Ù Ñ(Ï + { ç2ã:Ñ&âUÖUÑ ã®Õ!Ú8Ñ Ò _ Ó4Ù>ÓßUÖ'ÔÕ4ÖÿÕ8ÎÓ 9ÄÖ'Ñ_Ù ß'á2Ù ØUÓ ï ÑÙ(ç + 1
+
[
- 8 [X9 / + 1 * f
C
+ ÔÙÙ+Ï*Ó$á'×ѹß'Ö2ã:Ñ(ÒÏÐ'Ñ]Ó ï ÏÔÕ4ÖÕ$ÎmÏÐ'ÑuÓ8×Õ4ÔÙë8ÒÕ8ß'Øç<ÙÕ²ÔÏÔÙã:Ñ&â2Ö'Ñ ãÕ!Ú8Ñ(Ò _|ç'ÙÕéÑ]ÏÓ8æ8Ñ ] [ + 1 Q + ð B 8 7dÕ$ÏÑdÏÐUÓ!Ï
!*Z
$2/3
Â-k
1S;BSpWp
S
_N9MY
6W8I2 n B?H
+ 1 P
; F;
8AP 9 B
2#>/6o2JFjCX4-6T1=B n B?H 7; Ü 4<2JFjCS@WF d \)S + 1 6T1 B e $.$^ $20 B% È ,Ì,È2Æ õ <Å-A 4= Åq ÊË 4= +A6Ç A48Ç ô = ÉÈUÇ:8 A 8I2BENM1 S2_RM1SFI456 ;5LIR<6 @c1OFdE@ S254BQN<@ <2MRJ6i@c1SF NM2<6 [ 2M2
M
O
2 S .
1
'û Õ8Ò²Ó8×× S ç×Ñ&Ï S > " $ f á¸ÑÏÐ'Ñ ï Õ8ÒÒÑ٠ظÕ8ÖUã'ÔÖ'ëÿàÕ8Ö'Õ4àÔÓ$×Xð;©Ñ ×ÔÎ¥Ï>ÏÐ'Ñ_ÐUÑ(Ôë8Ð6Ï>ÏÕÏÐUÑ_ß'Ö'ÔÚ8Ñ(Ò*ÙÓ$׸ÏÕ4ÒÙÕ8Ò á<+ Û 1 ì 8/8 9 f
+ 1 9<[
GIHDJ f
M
8/8 9 f
+ 1 9 MC
$.$^ 8 $2%8 B = 8+ A6Ç A6Ç ñ4=<÷ Â 8:2<;#2 2?8>/ @A4M6 4*B\8I2J@ dX8 6 ì ;#2
ýµÕØUÒÕ!Ú4ѲüÓ$Ö'ÔÖ V Ù ï Õ8Ö!þ+Ñ ï ÏßUÒѲÔÖxÏÐUÓ!Ï ï Ó8ÙѲÕ8ÖUѲàÄÓbÛÏÐ'Ñ(ÖØUÒÕ ï Ñ Ñ ãxÓ4Ù>Î Õ8××Õ!édÙ8M úÛßUÙ Ñ_Õ8ÎÓüxÕ<Ñ(áUÔßUÙdÔÖ<Ú8Ñ ÒÙÔÕ8ÖÎ Õ4Òàß'×Ó'ç<ÒÑã:ß ï Ñ·ÏÕÄë8ÔÚ8ÑuÓ$ÖzÑ Ù ÏÔàÄÓ!ÏÑ
8 9 f + 1
S 8 U Q
9
+ 1 ì 8 D 9k
C
Ó$ÖUãÿØ'ÒÕ!Ú8Ñ·ÏÐUÓ$Ï ç'é>Ð'Ñ Öxú 8ë Õ<Ñ ÙÏÕ ¡ ÏÐ'ÔÙ>ÔÙ Ñ è6ß'ÔÚ!Ó$×Ñ(Ö6Ï ÏÕ 8I@B 8 B @ - 8 9 f @ + 1 S = + 1 ì 9 / > V 9 D O é>Ð'Ô ï ЮØ'ÒÕ!Ú8ÑÙÏÐ'ѲüÓ8Ö'ÔÖ ï Õ8Ö!þ+Ñ ï ÏßUÒÑuÔÖÏÐ'ÔÙ ï Ó8ÙÑ8ð Á  õ 3A@ = Å3A ,ÈÄÅrÊ ÌÅ F È2ÌÅmÆ ý Ð'Ñ ï Õ4ÖUÙ ÏÒß ï ÏÔÕ4ÖÄÔÙã:ß'Ñ>ÏÕ':Ó8×á¸Ñ(Òë8Ñ ÒÓ$Ö2ã?<æ8Õ4Ò8 Õ4á2: Õ4ë4Ó$ÏÕ!Úmð ;Ñ ï Õ4ÖUÙ 8 Ôã:Ñ ÒÔÖÏÐ'ÔÙ Ù Ñ ï ÏÔÕ8Ö ÏÐ'ÑxáU×Õ!é>ÔÖ'ë©ß'Ø 6 Ü ; P : Õ$Î + "[ \676 9ç :R[ 6 \ 679ç 8 % Õ8Ö Ü Ó8ÒÑ [ 67 6v\9&çÓ$Ö2ã [ 8 \ 6v\ 6v\9ð ý ÐUÑ®8Ñ ï Ñ(Ø'ÏÔÕ8ÖUÓ8×ã:ÔÚ<ÔÙÕ8Ò*Ù 8 % vL ~ [ D L 9uÓ$ÖUã v L ~ çÏÐ'ÑÙ+ÏÒÔ ï Ï_Ø'ßU××áUÓ ï æòÕ$ÎÏÐ'ÑÄ×ÔÖ'ÑÏÐ'ÒÕ8ß'ë4Ð Ó8ÖUã ÔÎ
$ ä [
\
ðdý Ð'Ñ Ö vL c[ ÄÔÎÓ$ÖUãòÕ8Ö'×Û®ÔvÎ
O $
!ä O [ " :ð O é O Ñ Õ8ÖUÙÔã'O Ñ(Ò] O ÏO Ð'Ñ ]Ò*8 Ó8ÙÙ àÄÓ8Ö'~Ö'ÔÓ$ ÖòÚ!Ó8~ ÒÔÑ&Ï+Û 8 ý Ð'O Ñ(Ö© 9¹Õ$ÎÏÐ'ÑÄØU×Ó8Ö'Ñ Ù]ÔÖ > ZéÑ :8 : ï àÓbÛòÔàá2ÑãÔϲÔÖ4ÏÕQP > 9ðÿý Ð'Ñ ï Õ4Ö'ÑÄÓ$á¸Õ!Ú8ÑÔÏç O { : > ÔÙ_ë8ÔÚ8Ñ Öá<ÛxÏÐ'Ñ B× ï æ8Ñ(Ò>ÒÑ(×Ó!ÏÔÕ4ÖUNÙ M ~: ~ Q ~ : ~ ~ : ~ [ O ~ : ~ Q ~ : ~ c ~ : ~ [ O ~ : ~ 8 Q ~ : ~ 8c ~ 8 : ~ [ O Q , , [ : ~ 8 ~ Q : ~ 8 , ~ : ~ , ~ 8 [ DOC ! ~
~
8
8
~
~
8
8
~
~
8
8
ÍÖUã:Ñ(ÑãÏÐUÑÚ8Ñ ï ÏÕ4ÒÞÙØUÓ ï f Ñ : > Ð2Ó8ÙÞã'ÔàÑ(Ö2Ù ÔÕ8Ö\ 'çé>ÔÏÐ Uá Ó8ÙÔÙ L á<ÔÎ9Û [ " 2$ ç ë8ÔÚ6ÔÖ'ë ï Õ<Õ4Òã:ÔÖUÓ$ÏÑ Ù L < ð ;Ñ ï 8Õ ÖUÙÔã'Ñ(ÒÏÐ'Ñ ï ×Õ6Ù ÑãÿÙß'áUÙÑ&Ï + { ë8Ô0 Ú8Ñ Ö ~ %
+
[
L
%
( ~ *
8/8 L
~
[?X9
8
~
[ 9/9
~ + Ó$ÖUãxã:Ñ(âUÖ'Ñ [ Q ð¹ý Ð'Ñ ÒÑÞÔÙ·Ó$ÖòÓ ï ÏÔÕ8Ö { 8 >:9>Õ4Ö ÄçmÓ$ÖUã 8 ÔÙÔÙ Õ4àÕ4ÒØUÐ'Ô ï ÏÕÄÜÝÓ8ÖUã ] ; ÜÝÔÙßUØÏÕÔÙ Õ4àÕ8ÒØ'Ð'ÔÙ à ÏÐU Ñ·Õ4Ö'×ÛÄßUÖ'ÔÚ4Ñ(Ò*ÙÓ8×UÏÕ8Ò*Ù Õ4Ò ð ;Ñ_Ø'ß'Ï
Ó$ÖUãÎ Õ8Ò
S
ç
[
8 L 9 SU L ~ ~ L * ( ) L vL [ D ~ ~ ~ SQ> " L $ L * ( ð@ ý Ð'Ñ(ÖzéÑ]àÄÓbÛ×ÔÎ¥ÏdÏÐ'Ñ_ÐUÑ(Ôë8Ð6Ï>ßUÙ ÔÖ'ë ~ / 8 ì 8 XL 9I9c[ GIHDJ 8 D9 C ~ M f M
.X.I. *-,/*/.(73-,2/3 B = +A6Ç A6Ç Â 6W8IBS6 l } ~ 8 9 [ l 8 9 8 [ 4MLIRM8G698:BO6
8I2J;#2Q8@A 4B8I2J@ dX8 6 ì #; 2
ì 8 ^ L 9k % ~ O
$
bä [ " VWEY 8 ^L 9<[]\^C O O ~ ^O ~ ý Ð'ÔÙ_ã'Ñ Ù ï ÒÔØ:ÏÔÕ4Öçé>Ð'Ô ï ÐéÓ4Ù]àÓ4ã:Ñá<" Û :Ó8×á¸Ñ(Òë8Ñ Ò·ÏÕzë8Ñ&ϲÓ8Ö©ßUØ'Ø2Ñ Ò_á2Õ4ß'ÖUã©Õ8Ö ÏÐ'ÑÖ6ßUàÞá¸Ñ(ÒdÕ8ÎظÕ8ÔÖ6ÏÙ¹Õ$ÎBá¸Õ8ß'ÖUã'Ñ ãzÐ'Ñ Ôë4Ð4ÏçUé Ó8Ù ÏÐ'Ѳâ2ÒÙ Ï·Ù ÏÑ(ØxÕ8ÎÏÐ'ÑØ'ÒÕ<Õ8ÎÕ8ÎÏÐ'Ñ Ñ(àØ'ÔÒÔ ï Ó8×mÎ Õ8ÒàÞß'× Ó C< û D é>Ð'Ô ï Ðÿé Ó8Ù ë4ÔÚ4Ñ(Ö®á6Ûÿã:Ñ_×ÓúÒÑ&@Ï 0 ï Ð'Ñ]ÔÖñ ø :Ç A <÷"ð Q
¸Á Á¸Â5A<Å3A4Ç = Ì = Æ ÌÈ2Å 7¹ÙÄé Ó8ÙÙÐ'Õ!é>ÖÔÖ ñ F A :÷·Ó$Ö2ã ñ F A ('÷"çÔÏÔÙÄظÕ4ÙÙ Ôá'×ÑzÏÕ|ë4Ñ(Ö'Ñ ÒÓ8×Ô`(ÑÿÏÐ'Ñò×ÔÎ¥ÏÔÖ'ë ã:Ñ Ù ï ÒÔá¸Ñ ãzÔÖÙÑ ï ÏÔÕ8ÖUÙ O<çT'çmÓ$ÖUã ÏÕ®ÓÄàÕ8ÒѲë8Ñ Ö'Ñ(Ò*Ó$×ZÙ Ñ(Ï ÏÔÖ'ë2ð·ý Ð'ÑÞâUÒ٠ϹÒÑ(àÄÓ$Òæ é>Ð'Ô ï ÐÑ ÖUÓ$á'×Ñ Ù@ÏÐ'ÔÙBë4Ñ(Ö'Ñ ÒÓ8×`Ô Ó$ÏÔÕ8ÖÞÔÙÏÐ'Ñ>Î,Ó ï Ï@ÏÐUÓ$Ïß'Ö'ÔÚ8Ñ ÒÙÓ$×<ÏÕ8Ò*Ù Õ4ÒÙÓ8ÒÑ Ñ è6ß'ÔØ'Ø¸Ñ ã é>ÔÏÐzÓë6Ó$ß'ë4ѹΠÕ4ÒK à M .X.I. *-,/*/.(7332/3 Â9` Ü
@A4 B7k BSFP1 SBS;5@c2<691 S2<; 1 S2J; Ü7Y 6W8I2JF 6W8I8 2 RMBOFP 1SF@cRMBSp
_
Y BSFjC B=L^FI@ S2J;M4
2 S .
"
#%$'&)(+*-,-*/.(73320  ,dØÏÕÿÓ ï Õ8Ö2Ù+Ï*Ó$Ö6Ï ç2ÏÐ'Ñ ÒÑÞÑ:ÔÙ ÏÙ]ÓÄß'ÖUÔè6ß'ÑÖ'Õ8Ö:î"Ú!Ó$Ö'ÔÙÐ'ÔÖUëÙ Ñ ï î ï Ó$ÖUÕ8Ö'Ô ï Ó8×6×ÔÖ'Ñ á'ß'ÖUã:×Ñ8ð # Ñ(Ï á2Ñ>8 Ùß ï ÐÓ]ÙÑ ï ÏÔÕ4Öðý Ð'ÔÙ@ÙÑ ï ÏÔÕ8Öã:Ñ&âUÖUÑ Ù ï Ñ s Õ$Î+_ ÓàÑÓ8Ùß'ÒÑ*) ~ e Õ8Ö _ e 9é>ÐUÔ ï ÐzÔÙ ×Õ ï Ó8××Ûã:Ñ(âUÖ'Ñãÿá<Û ) ~ e [ / / B 0 %% 0 / B / 4 O Y B ~ e CECC Y B 4 ~ e é>Ð'Ñ(ÒÑ 8!B CECEC B 4 9ÔÙÓ8Ö Ó8ÖUÓ$×Û6ÏÔ ï ×Õ ï Ó8×¹ÙÛ<Ù ÏÑ àíÕ8Î ï Õ6Õ4Òã'ÔÖUÓ$ÏÑÙÕ8Ö 8 8 _ e 9Î Õ8Ò O O ; ÑuÏÐ'Ñ Öxã:Ñ&âUÖUÑuÓ Ó$Ö'Õ4Ö'Ô Ó$×màÑ Ó4Ù ßUÒÑ]Õ8Ö _ e 9 á<Û ï ï s îÓ8ã:Ô ï ÏÕ4Ø2Õ4×Õ4ë8Û8ð © ef^gh \ ) [ d ) ~e C / 0 j ef^g h $X . 33%2 8  C ÔE D Í"Î@Ü ÔÙdÓÐ<Û<Ø2Ñ ÒÙß'ÒÎ,Ó ï ÑuÔÖ P R ç:ÏÐUÑ_àÑÓ8Ùß'ÒÑ ) e ï Õ4ÔÖ ï Ôã'Ñ Ù ~ é>ÔÏÐÿÏÐ'Ñ ï ×Ó8ÙÙÔ ï Ó$× # Ñ ÒÓbÛÄàÑ Ó4Ù ßUÒÑuÕ8Ö 8 _ e 9 ð C ÔÔ D ý Ð'Ñ_àÑÓ8Ùß'ÒÑ ) ã'Õ6ÑÙ>Ö'Õ8Ï>ã'Ñ(ظÑ(ÖUã®Õ8Ö®ÏÐ'Ñ ï Ð'Õ8Ô ï Ñ]Õ$ÎÏÐUÑ²Ù Ñ ï ÏÔÕ8Ö dð C ÔÔÔEDý Ð'Ñ·Ú4Õ8×ß'àÑ*) 8 8 _ e 9I9ÔÙÔÖ'âUÖ'ÔÏÑ8ç:áUß:Ï>ÔÎ {i j ÔÙÓÞâUÖ'ÔÏÑ_ÙÑ&Ï h e ^ f g Õ$ÎBØ'×Ó ï Ñ Ù ï Õ8Ö6Ï*Ó$ÔÖ'ÔÖUëÄÏÐ'ÑÓ$Ò ï Ð'ÔàÑ ã:ÑÓ$ÖxÕ8ÖUÑ Ù¹Ó8ÖUã ÓàÕ:ã:Ñ(×Õ$ÎêÕ!Ú8Ñ(Ò¹ÏÐ'ÑÒÔÖ'ë Õ$Î îXÔÖ6ÏÑ ë8Ñ(Ò*Ù " & ç<ÏÐ'Ñ ÖÿÏÐ'Ñ_Ø'ÒÕ:ã:ß ï Ï ) ~ e 8 8 " e 9I9 ï Õ4Ö6Ú4Ñ(Òë8ÑÙ(ð ef^g h D & # Ñ&Ï CECC ( á2ÑÿÏÕ4ÒÙÕ8Ò*Ù_ÒÑ(Ø'ÒÑ ÙÑ(Ö6ÏÔÖ'ëÓ$××ÔÙ Õ4àÕ8ÒØ'Ð'ÔÙ à ï ×Ó8ÙÙÑ Ù²Õ8Îdß'Ö'ÔÚ8Ñ ÒÙÓ$× ÏÕ8Ò*ÙÕ8Ò*ÙBÕ!Ú8O Ñ ÒÜöO ÐUÓbÚ<ÔÖ'ëÓÞÒ*Ó!ÏÔÕ4ÖUÓ$×2Ø2Õ4ÔÖ6ÏðÍ"Ï>ÔÙBÏÐ'Ñ(֮ظÕ4ÙÙ Ôá'×ÑdÏÕ ï Õ4ÖUÙ ÏÒß ï ÏÎ,Ó$àÔ×ÔÑ Ù 8 _ 9; = ?A Ù ß ÐÿÏÐUÓ!Ï·ß'Ø'ظÑ(Ò¹á¸Õ8ßUÖUã'Ù Õ$Î@ÔÖ6ÏÑ(ë8Ò*Ó$áU×Ñ]Î ß'Ö ï ÏÔÕ8ÖUÙ L 6 ï e e ^ f g h ~ ~
Î Õ8Ò ÏÐUѲã:Ô m Ñ(ÒÑ(Ö ï Ñ
ÏÔÕ8ÖÕ$Î'ÏÐ'Ñ Î Õ8ÒdÓ$Ö<ÛØU×Ó
)
f <+j
1
L ~ I ~
8 D9=Q
m
L ~ ~
+ 1
h
j<m
8 9
)
Û6ÔÑ(×ãzÓ$Ö®ß'Ø'ظÑ(Òdá¸Õ8ßUÖUãÎ Õ4Ò>ÏÐUÑuã'Ô mÑ(ÒÑ(Ö ï Ñ 8 9=Q . 8 Ü59 8I@B 9 C C D M V M l }D~ ý Ð'Ñ×ÔÎ¥ÏÔÖ'ë4Ù]ã:Ñ Ù ï ÒÔá2ÑãÔÖxÏÐ'ÑØ'ÒÑ(Ú<ÔÕ8ßUÙ]Ù Ñ ï ÏÔÕ4ÖUÙ¹àÄÓbÛ®á2ÑÙÑ(Ñ(Ö©Ó8Ù¹ØUÓ$ÒÏÔ ï ß'×Ó$Ò ï Ó4Ù Ñ Õ$ÎÏÐ'ÔÙ>ã:Ñ Ù ï Ñ Ö6ϹÓ$Òë8ß'àÑ(Ö6Ïð
& !N &0 , K .- K3 t. $ r -.N" / &N, " & r. & &N7-." ;&0r. 0& " N-!t. 3r. "")! ".&N"% "! A$A6Ç:A<ÅZË
A
# $ % !&! $ & ('!)*!+;&N- -,.-0/2143654798: ; 1<5>=?5A@B+8CD7FEG@H1IEGCJ8K707"5 3 @L=?5HMFIK/+EN5A/21 ;<81A79O<5P=?5A@>QKI1*CROAENOA@SI&3 T?O; 1*CJU /05A@<,;&r!.V -.-!.W0X.Y[Z]\_^^&`)aA,9b&cd?e)f2!
# $ L\A% !9S! $ &0 &- 'P!:"%# -F!,G,HIKEGCJ879I3.B+8CD70EG@P8;*8K/+7.=?5=M05AC6TM2E487*8K: B+I EGC *IKEGCJ870@ 8 I7FCD@A8EG18AB0C [ER81*CD,L7- -'&0_!H;&r! "! N "+WZ]\^&^&aA, ^2\Adf ?! # $ Hb_% , S5ACTM2E5AERI*/+7 EGCJ87F@H8 ER81*C QKI1*CR5AEGCR5A@<,2+!);&0r ! G!&X.W Z]\^&^&aA,!->\, f)bb`d?f)bKf&^+! # $ f% , HIKEGCJ879I3FB+8CD7FEG@87 @A8: 5! I7.8" /F; C P; /27.=F365A@<,#4!$ S!0VS& "!%G!.& " '&_!F ; &0r ! (.W ([Z]\^&^ &aA,.e+\Ad?e +! # $ eK% , ) I7FCD7 * + @ <8-7 ,.5 EG/21<5 81 ER8K1A C QKI1*CR5AEGCR5A@<,9F!.V ,K ? &N 0/ ! 1 Z]\^&3^ 2)aA, - \&,4\ 'd Kf+! # $ % $ !FF! $ #%, 81*:P@LC 7 :IK%7 5 QKI1*CJI);365A@<, &%! _?'! %! 6 K- K- W.Y 7$8 Z]\^ &b&aA, bK e _d+9b &f2! # $ \ : % S! , & $ <; . &, =8:4B.EN5A1 =?5A@B+8CD7FEG@ >= * /27"5 QKI1*CROAENO ER81ACGU /.5A,&F?! 70 r. X 1 ZRb``+\_aA,9f+?\ _d?f&f+\! # $ _b% $, @ 8: ; 1<5>=?5(B+8C 70EG@4=?5HMFI/2EN5A/21 ;<81*7"O<5L@21L365A@ @2A1 I *5A@>=?C 5 BS5 '3 DH.5 E_8 =)5 =?5JT1
2 S .
# _f%
,+U.81A@ 5A/21*@/+7FCDQ5A1*@5 3 @5AE4: OAE MF8_=)5 =/u*5A1.365A,V & N-'&N, $K - " N- &N,N-I & N& ",&"%"= - ; &r!, !K,G!0\^&^2, $ <E.& "%_, $ &N"%,J,FbK`&`2\&,$.$!?bb2\Ad
b&ceF! # %L\ % nH! &N- 'P!"%# -F!,G,+U9IK:I_T)I3t(I 70/2:;*5A1*@ 8J=CGI_T)879I3 /F; C @21A I *5A@EK 70/2: 5A1*C 1 5 3=@<, $ . , ,G! &!?; &0r ! o &N- 1Z]\^)cK^)aA, e)ffd?ee)^2! # $'HL% F! $ ! , & &- 0 mN! ! o ! - -.%N-$I HL _d, =8K/+7FEGCD72T B+8CD7FEG@H8i 7 /F; C @2A1 I *5AE@ K L*, /<&$.&% K- $N - "9 . & -%&&, V " <& "
"! 6 %_'! M Z]\_^&^&c&aA,9b&cf_d+9b 2)b2! # EHb% , 5AC6TM2+E K5AERsI A/27 EGCG870@ J8 ER81AWC [; /279=+365A@ 8Q5A1 I_T QKI1ACJ5AEGCR5A@<, , & ` &r! WZ S! 9! a 7[Z]\_^&^^)aA., - f+,.f)b d2f^ +! ; # % VS! ,G , = 365A@ I79=I&3 T?5; 1]I C T1]8/B.@<, & "%"+ -; &0r. &0 ", !N,G!bf2, $ <O' & "%_, $ K" N- , $ &N"%,G, %
THE COX RING OF A DEL PEZZO SURFACE VICTOR V. BATYREV AND OLEG N. POPOV Abstract. Let Xr be a smooth Del Pezzo surface obtained from P2 by blow-up of r ≤ 8 points in general position. It is well known that for r ∈ {3, 4, 5, 6, 7, 8} the Picard group Pic(Xr ) contains a canonical root system Rr ∈ {A2 × A1 , A4 , D5 , E6 , E7 , E8 }. In this paper, we prove some general properties of the Cox ring of Xr (r ≥ 4) and show its similarity to the homogeneous coordinate ring of the orbit of the highest weight vector in some irreducible representation of the algebraic group G associated with the root system Rr .
1. Introduction Let X be a projective algebraic variety over a field k. Assume that the Picard group Pic(X) is a finitely generated abelian group. Consider the vector space M Γ(X) := H 0 (X, O(D)). [D]∈Pic(X)
One wants to make it an k-algebra which is graded by the monoid of effective classes in Pic(X) such that the algebra structure will be compatible with the natural bilinear map bD1 ,D2 : H 0 (X, O(D1 )) × H 0 (X, O(D2 )) → H 0 (X, O(D1 + D2 )). However, there exist some problems in the realization of this idea. We remark that first of all there is no any natural isomorphism between H 0 (X, O(D)) and H 0 (X, O(D0 )) if [D] = [D0 ]. There exists only a canonical bijection between the linear systems |D| ∼ = |D0 | ( |D| denotes a projectivization of of the k-vector space H 0 (X, O(D))). As a consequence, the bilinear map bD1 ,D2 depends not only on the classes [D1 ], [D2 ], [D1 + D2 ] ∈ Pic(X), but also on their particular representatives. One can easily see that only the morphism s[D1 ],[D2 ] : |D1 | × |D2 | → |D1 + D2 | of the product of two projective spaces |D1 | × |D2 | to another projective space |D1 + D2 | is well-defined. For this reason, it is much more natural to consider the graded set of projective spaces G P(X) := |D| [D]∈Pic(X)
together with the all possible morphisms s[D1 ],[D2 ] ([D1 ], [D2 ] ∈ Pic(X)). Date: This version: August 3, 2003. Key words and phrases. Del Pezzo surfaces, torsors, homogeneous spaces, algebraic groups. 2000 Mathematics Subject Classification. Primary . 1
2
VICTOR V. BATYREV AND OLEG N. POPOV
Inspired by the paper of Cox on the homogeneous ring of a toric variety [Cox], Hu and Keel [H-K] suggested a definition of a Cox ring M Cox(X) = R(X, L1 , . . . , Lr ) := H 0 (X, O(m1 L1 + · · · + mr Lr ) (m1 ,...,mr )∈Zr
which uses a choice of some Z-basis L1 , . . . , Lr in Pic(X) (e.g. if Pic(X) ∼ = Zr is a free abelian group). Using such a Z-basis, one obtains a particular representative for each class in Pic(X) together with a well-defined multiplication so that R(X, L1 , . . . , Lr ) becomes a well-defined k-algebra. If L01 , . . . , L0r is another Z-basis of Pic(X), then the corresponding Cox algebra R(X, L01 , . . . , L0r ) is isomorphic to R(X, L1 , . . . , Lr ). Unfortunately, we can not expect to choose a Z-basis of Pic(X) in a natural canonical way. More often one can choose in a natural way some effective divisors D1 , . . . , Dn on X such that Pic(X) is generated by [D1 ], . . . , [Dn ]. If we set U := X \ (D1 ∪ · · · ∪ Dn ) and assume that X is smooth, then P ic(U ) = 0 and we obtain the exact sequence n M 1 → k∗ → k[U ]∗ → Z[Di ] → Pic(X) → 0. i=1
Choosing a k-rational point p in U , we can split the monomorphism k∗ → k[U ]∗ , so that one has an isomorphism k[U ]∗ ∼ = k∗ ⊕ G, where G ⊂ k[U ]∗ is a free abelian group of rank n − r. The choice of a k-rational point p ∈ U allows to give another approach to the graded space Γ(X) and to the Cox algebra: Definition 1.1. Let X, U, p, D1 , . . . , Dn be as above. We consider the graded k-algebra M Γ(X, U, p) := H 0 (X, O(m1 D1 + · · · + mn Dn ) (m1 ,...,mn )∈Zn
and define Cox(X, U, p) := Γ(X, U, p)G as the k-subalgebra of all G-invariant elements in Γ(X, U, p). Since P ic(X) ∼ = Zn /G, we obtain a natural Pic(X)-grading on Cox(X, U, p). We expect that the algebra Cox(X, U, p) can de applied to some arithmetic questions about k-rational points in U ⊂ X (e.g. see [S]). Remark 1.2. If X is a smooth projective toric variety and U ⊂ X is the open dense torus orbit, then the choice of a point p ∈ U defines an isomorphism of U with the algebraic torus T , so that the subgroup G ⊂ k[U ]∗ can be identified with the character group of T . In this way, one can show that Cox(X, U, p) is isomorphic to a polynomial ring in n variables (n is the number of irreducible components of X \ U , cf. [Cox]). Let Xr be a smooth Del Pezzo surface obtained from P2 by blow-up of r ≤ 8 points in general position. It is well known that for r ∈ {3, 4, 5, 6, 7, 8} the Picard group Pic(Xr ) contains a canonical root system Rr ∈ {A2 × A1 , A4 , D5 , E6 , E7 , E8 }. Moreover, the
THE COX RING OF A DEL PEZZO SURFACE
3
natural embedding Pic(Xr−1 ) ,→ Pic(Xr ) induces induces the inclusion of root systems Rr−1 ,→ Rr . If G(Rr ) is a connected algebraic group corresponding to the root system Rr , then the embedding Rr−1 ,→ Rr defines a maximal parabolic subgroup P (Rr−1 ) ⊂ G(Rr ). We expect that for r ≥ 4 there should be some relation between a Del Pezzo surface Xr and the GIT-quotient of the homogeneous space G(Rr )/P (Rr−1 ) modulo the action of a maximal torus Tr of G(Rr ). Our starting observation is the well-known isomorphism X4 ∼ = Gr(2, 5)//T4 which follows from an isomorphism between the homogeneous coordinate ring of the Grassmaniann Gr(3, 5) = G(A4 )/P (A2 × A1 ) ⊂ P9 and the Cox ring of X4 . Another proof of this fact follows form the identification of X4 with the moduli space M0,5 of stable rational curves with 5 marked points [K]. In this paper, we start an investigation of the Cox ring of Del Pezzo surfaces Xr (r ≥ 4). It is natural to choose the classes of all exceptional curves E1 , . . . , ENr ⊂ Xr as a generating set for the Picard group Pic(Xr ). There is a natural Z≥0 -grading on Pic(Xr ) defined by the intersection with the anticanonical divisor −K. We prove some general properties of Cox rings of Del Pezzo surfaces Xr (r ≥ 4) and show their similarity to the homogeneous coordinate ring of G(Rr )/P (Rr−1 ). We remark that the homogeneous space G(Rr )/P (Rr−1 ) can be interpreted as the orbit of the highest weight vector in some natural irreducible representation of G(Rr ). Remark 1.3. Some other connections between Del Pezzo surfaces and the corresponding algebraic groups were considered also by Friedman and Morgan in [F-M]. A similar topic was considered by Leung in [Le]. In this paper, we show that the Cox ring of a Del Pezzo surface Xr is generated by elements of degree 1. This implies that the homogeneous coordinate ring of G(Rr )/P (Rr−1 ) is naturally graded by the monoid of effective divisor classes on the surface Xr (the same monoid defines the multigrading of the Cox ring of Xr ). Moreover, we obtains some results of the quadratic relations between the generators of the Cox ring of Xr . The authors would like to thank Yu. Tschinkel, A. Skorobogatov, E. S. Golod, S. M. Lvovski and E. B. Vinberg for useful discussions and encouraging remarks. 2. Del Pezzo Surfaces Let us summarize briefly some well-known classical results on Del Pezzo surfaces which can be found in [Ma, Dem, Na]. One says that r (r ≤ 8) points p1 , . . . , pr in P2 are in general position if there are no 3 points on a line, no 6 points on a conic (r ≥ 6) and a cubic having seven points and one of them double does not have the eighth one (r = 8). Denote by Xr (r ≥ 3) the Del Pezzo surfaces obtained from P2 by blowing up of r points p1 , . . . , pr in general position. If π : Xr → P2 the corresponding projective morphism, then the Picard group P ic(Xr ) ∼ = Zr+1 contains a Z-basis li , (0 ≤ i ≤ r), l0 = [π ∗ O(1)] −1 and li := [π (pi )], i = 1, . . . , r. The intersection form (∗, ∗) on P ic(Xr ) is determined in the chosen basis by the diagonal matrix: (l0 , l0 ) = 1, (li , li ) = −1 for i ≥ 1, (li , lj ) = 0 for i 6= j,. The anticanonical class of Xr equals −K = 3l0 − l1 − · · · − lr . The number
4
VICTOR V. BATYREV AND OLEG N. POPOV
d := (K, K) = 9 − r is called the degree of Xr . The anticanonical system | − K| of a Del Pezzo surface Xr is very ample if r ≤ 6, it determines a two-fold covering of P2 if r = 7, and it has one base point, determining a rational map to P1 if r = 8. Smooth rational curves E ⊂ Xr such that (E, E) = −1 and (E, −K) = 1 are called exceptional curves. Theorem 2.1. [Ma] The exceptional curves on Xr are the following: (1) (2) (3) (4) (5) (6) (7)
blown-up points p1 , . . . , pr ; lines through pairs of points pi , pj ; conics through 5 points from {p1 , . . . , pr }(r ≥ 5); cubics, containing 7 points and 1 of them double (r ≥ 7); quartics, containing 8 points and 3 of them double (r = 8); quintics, containing 8 of point and 6 of them double (r = 8); sextics, containing 8 of those points, 7 of them double and 1 triple (r = 8).
The number Nr of exceptional curves on Xr is given by the following table: r 3 4 5 6 7 8 Nr 6 10 16 27 56 240 The root system Rr ⊂ Pic(Xr ) is defined as Rr := {α ∈ Pic(Xr ) : (α, α) = −2, (α, −K) = 0}. It is easy to show that Rr is exactly the set of all classes α = [Ei ] − [Ej ] where Ei and Ej are two exceptional curves on Xr such that Ei ∩ Ej = ∅. The corresponding Weyl group Wr is generated by the reflections σ : x 7→ x + (x, α)α for α ∈ Rr . There are so called simple roots α1 , . . . , αr such that the corresponding reflexions σ1 , . . . , σr form a minimal generating subset of Wr . The set of simple roots can be chosen as α1 = l1 − l2 , α2 = l2 − l3 , α3 = l0 − l1 − l2 − l3 , αi = li−1 − li , i ≥ 4. The blow up morphism Xr → Xr−1 determines an isometric embedding of the Picard lattices Pic(Xr−1 ) ,→ Pic(Xr ). This induces the embeddings for root systems, simple roots and Weyl groups Wr . For r ≥ 3, the Dynkin diagram of Rr can be considered as the subgraph on the vertices αi (i ≤ r) of the following graph: α1 e
α2 e
α4 e
α5 e
α6 e
α7 e
α8 e
α3 e
In particular, we obtain R3 = A2 × A1 , R4 = A4 , R5 = D5 , R6 = E6 , R7 = E7 , R8 = E8 . Denote by $1 , . . . , $r the dual basis to the Z-basis −α1 , . . . , −αr . Each $i is the highest weight of an irreducible representation of G(Rr ) which is called a fundamental representation. We will denote by V ($) the representation space of G(Rr ) with the highest weight $.
THE COX RING OF A DEL PEZZO SURFACE
5
Definition 2.2. A dominant weight $ is called minuscule if all weights of V ($) are nonzero and the Wr -orbit of the highest weight vector is a k-basis of V ($) [G/P-I]). A dominant weight $ is called quasiminuscule [G/P-III], if all nonzero weights of V ($) have multiplicity 1 and form an Wr -orbit of $ (the zero weight of V ($) may have some positive multiplicity). One can see from the explicit description of the root systems Rr that $r is minuscule for 3 ≤ r ≤ 7, and $8 is quasiminuscule. The dimension dr of of the irreducible representation V ($r ) of G(Rr ) is given by the following table: r 4 5 6 7 8 dr 10 16 27 56 248 We will need the following statement: Proposition 2.3. Let D be a divisor on a Del Pezzo surface Xr (2 ≤ r ≤ 8) such that (D, E) ≥ 0 for every exceptional curve E ⊂ Xr . Then the following statements hold: (i) the linear system |D| has no base points on any exceptional curve E ⊂ Xr ; (ii) if r ≤ 7, then the linear system |D| has no base points on Xr at all. Proof. Induction on r. If r = 2, then there exists exactly 3 exceptional curves E0 , E1 , E2 , whose classes in the standard basis are l0 − l1 − l2 , l1 , l2 . Moreover [E0 ], [E1 ] and [E3 ] form a basis of the Picard lattice P ic(X2 ). The dual basis w.r.t. the intersection form is l0 , l0 − l1 , l0 − l2 . Therefore the conditions on D imply that [D] = n0 l0 + n1 (l0 − l1 ) + n2 (l0 − l2 ), n0 , n1 , n2 ∈ Z≥0 So it is sufficient to check that the linear systems with the classes l0 , l0 − l1 , l0 − l2 have no base points. The latter immediately follows from the fact that the first system defines the birational morphism X2 → P2 contracting E1 and E2 , the second and third linear systems define conic bundle fibrations over P1 . For r > 2, we consider a second induction on deg D = (D, −K). If there is an exceptional curve E ⊂ Xr with (D, E) = 0, then the invetible sheaf O(D) is the inverse image of an invertible sheaf O(D0 ) on the Del Pezzo surface Xr−1 obtained by the contraction of E. Since the pull back of any exceptional curve on Xr−1 under the birational morphism πE : Xr → Xr−1 is again an exceptional curve on Xr , we obtain that D0 satisfy all conditions of the proposition on Xr−1 . By the induction assumption ∗ D 0 | has no base points (r − 1 ≤ 7), |D0 | has no base points on Xr−1 . Therefore, |D| = |πE on Xr . If there is no exceptional curve E ⊂ Xr with (D, E) = 0, then we denote by m the minimal intersection number (D, E) where E runs over all exceptional curves. Since we have (E, −K) = 1 for all exceptional curves, the divisor D0 := D + mK has nonnegative intersections with all exceptional curves and there exists an exceptional curve E ⊂ Xr with (D0 , E) = 0. Since deg D0 = (D0 , −K) = (D, −K) − m(K, K) < (D, −K) = deg D, by the induction assumption, we obtain that |D0 | is base point free. If r ≤ 7, then the anticanonical linear system | − K| has no base points. Therefore, |D| = |D0 + m(−K)| is
6
VICTOR V. BATYREV AND OLEG N. POPOV
also base point free. In the case r = 8, | − K| does have a base point p ∈ X8 . However, p cannot lie on an exceptional curve E, because the short exact sequence 0 → H 0 (X8 , O(−K − E)) → H 0 (X8 , O(−K)) → H 0 (E, O(−K)|E ) → 0 induces an isomorphism H 0 (X8 , O(−K)) ∼ = H 0 (E, O(−K)|E ) (since deg(−K − E) = 0 0 and H (X8 , O(−K − E)) = 0). 3. Generators of Cox(Xr ) Let {E1 , . . . , ENr } be the set of all exceptional curves on a Del Pezzo surface Xr . We S r choose a k-rational point p ∈ U := Xr \ ( N i=1 Ei ) and denote the ring Cox(Xr , U, p) (see 1.1) simply by Cox(Xr ). The ring Cox(Xr ) is graded by the semigroup Meff (Xr ) ⊂ Pic(Xr ) of classes of effective divisors on Xr . There is a coarser grading on Cox(Xr ) given by M Cox(Xr )d ∼ H 0 (Xr , O(D)), = (D,−K)=d
with respect to which we shall speak about the degree d = (D, −K) of a divisor D. Proposition 3.1. The ring Cox(X3 ) is isomorphic to a polynomial ring in 6 variables k[x1 , . . . , x6 ], where xi are sections defining all 6 exceptional curves on X3 . Proof. The Del Pezzo surface X3 is a toric variety which can be descrobed as the blownup of 3 torus invariant points (1:0:0), (0:1:0) and (0:0:1) on P2 . So we can apply a general result of Cox on toric varieties [Cox] (see also 1.2). Theorem 3.2. For 3 ≤ r ≤ 8, the ring Cox(Xd ) is generated by elements of degree 1. If r ≤ 7, then the generators of Cox(Xd ) are global sections of invertible sheaves defining the exceptional curves. If r = 8, then we should add to the above set of generators two linearly independent global sections of the anticanonical sheaf on X8 . Proof. Induction on r. The case r = 3 is settled by the previous proposition. For r > 3 we choose an effective divisor D on Xr . We call a section s ∈ H 0 (Xr , O(D)) a distinguished global section if its support is contained in the union of exceptional curves of Xr (r ≤ 7), or if its support is contained in the union of exceptional curves of X8 and some anticanonical curves on X8 . Our purpose is to show that the vector space H 0 (Xr , O(D)) is spanned by all distinguished global sections. This will be proved by induction on deg D := (D, −K) > 0. We consider several cases: • If there exists an exceptional curve E such that (D, E) < 0, then H 0 (Xr , O(D)|E ) = 0 and it follows from the exact sequence H 1 (Xr , O(D)|E ) → H 0 (Xr , O(D − E)) → H 0 (Xr , O(D)) → 0 that the multiplication by a non-zero distinguished global section of O(E) induces an epimorphism H 0 (Xr , O(D − E)) → H 0 (Xr , O(D)). Since deg (D − E) = deg D −1, using the induction assumption for D0 = D −E, we obtain the required statement for D.
THE COX RING OF A DEL PEZZO SURFACE
7
• If there exists an exceptional curve E such that (D, E) = 0, then O(D) is the inverse image of a sheaf O(D0 ) on the Del Pezzo surface Xr−1 obtained by the contraction of E. Therefore we have an isomorphism H 0 (Xr , O(D)) ∼ = H 0 (Xr−1 , O(D0 )) and, by the induction assumption for r − 1, we obtain the required statement for D, because distinguished global sections of O(D0 ) lift to distinguished global sections of O(D). • If D = −K, (or, equivalently, if (D, E) = 1 for every exceptional curve E), then O(D)|E ) is isomorphic to OE (1) and we have H 1 (Xr , O(D)|E ) = 0 together with the exact sequence 0 → H 0 (Xr , O(D − E)) → H 0 (Xr , O(D)) → H 0 (Xr , O(D)|E ) → 0, where H 0 (Xr , O(D)|E ) is 2-dimensional. Since one has deg (D − E) = deg D − 1. Using the induction assumption for D0 = D − E, it remains show that there exists two linearly independent distinguished global sections of O(D) such that their restriction to E are two linearly independent global sections of O(D)|E . We describe these two distinguisched sections explicitly for each value of r ∈ {4, 5, 6, 7, 8}. Without loss of generality we can assume that [E] = l1 . If r = 4, then we write the anticanonical class −K = 3l0 − l1 − · · · − l4 in the following two ways: −K = (l0 − l1 − l2 ) + (l0 − l3 − l4 ) + (l0 − l2 − l3 ) + l2 + l3 = (l0 − l1 − l3 ) + (l0 − l2 − l4 ) + (l0 − l2 − l3 ) + l2 + l3 . These two decompositions of −K determine two distinguished global sections of O(−K) with support on 5 exceptional curves. The projections of these sections under the morphism X4 → P2 are shown below in Figure 1. @re3 @ r1 E
r4 @ @
@e r2 @
r4 @re3 @ @ = @ 1 @ re2 E r @
Figure 1. Two distinguished anticanonical classes for r = 4. The restriction of the first section to E vanishes at the intersection point q1 of E with the exceptional curve with the class l0 − l1 − l2 . The restriction of the second section to E vanishes at the intersection point q2 of E with the exceptional curve with the class l0 − l1 − l3 . It is clear that q1 6= q2 . So the distinguished anticanonical sections are linearly independent. If r = 5, then we write the anticanonical class as −K = 3l0 − l1 − · · · − l5 = (l0 − l1 − l2 ) + (l0 − l3 − l4 ) + (l0 − l4 − l5 ) + l4 = (l0 − l1 − l5 ) + (l0 − l2 − l3 ) + (l0 − l3 − l4 ) + l3 .
8
VICTOR V. BATYREV AND OLEG N. POPOV
The corresponding distinguished anticanonical sections vanish at two different intersection points of E with the exceptional curves belonging to the classes l0 − l1 − l2 and l0 − l1 − l5 . If r = 6, then we write the anticanonical class as −K = 3l0 − l1 − · · · − l6 = (l0 − l1 − l2 ) + (l0 − l3 − l4 ) + (l0 − l5 − l6 ) = (l0 − l1 − l6 ) + (l0 − l5 − l4 ) + (l0 − l3 − l2 ). The corresponding distinguished anticanonical sections vanish at two different intersection points of E with the exceptional curves belonging to the classes l0 − l1 − l2 and l0 − l1 − l6 . If r = 7, then we write the anticanonical class as −K = 3l0 − l1 − · · · − l7 = (2l0 − l1 − l2 − l3 − l4 − l5 ) + (l0 − l6 − l7 ) = (2l0 − l7 − l6 − l5 − l4 − l3 ) + (l0 − l2 − l1 ). The corresponding distinguished anticanonical sections vanish at two different intersection points of E with the exceptional curves belonging to the classes 2l0 − l1 − l2 − l3 − l4 − l5 and l0 − l2 − l1 . If r = 8, then deg D − E = 0. Therefore, H 0 (X8 , O(D − E)) = 0 (see the proof of 2.3) and we have an isomorphism H 0 (X8 , O(D)) ∼ = H 0 (X8 , O(D)|E ). So H 0 (X8 , O(D)|E ) is generated by the restrictions of the anticanonical sections and we’re done. • If (D, E) ≥ 1 for all exceptional curves E and D 6= −K, then we denote by m the minimum of the numbers (D, E) for all exceptional curves. Let E0 be an exceptional curve such that (D, E0 ) = m ≥ 1. We define D0 = D − E0 and D00 := D + mK. By 2.3, |D0 | and |D00 | have no base points (if r ≤ 7). Moreover, D00 can be seen as zero of a distinguished global section s ∈ H 0 (Xr , O(D + mK)) whose support does not contain the exceptional curve E0 (if r ≤ 8). We have the short exact sequence 0 → H 0 (Xr , O(D0 )) → H 0 (Xr , O(D)) → H 0 (Xr , O(D)|E0 ) → 0. By the induction assumption, the space H 0 (Xr , O(D0 )) is generated by distinguished global sections. It remains to show that there exist distinguished global sections of O(D) such that their restriction to E0 generate the space H 0 (Xr , O(D)|E0 ). Since (−mK, E0 ) = (D, E0 ) = m, the space H 0 (Xr , O(D)|E0 ) is isomorphic to H 0 (Xr , O(−mK)|E0 ). Since (D00 , E0 ) = 0 the distinguished global section s ∈ H 0 (Xr , O(D + mK)) nowhere vanish on E0 . Therefore the multiplication by the distinguished global section s defines a homomorphism H 0 (Xr , O(−mK)) → H 0 (Xr , O(D))
THE COX RING OF A DEL PEZZO SURFACE
9
whose restriction to E0 is an isomorphism H 0 (Xr , O(−mK)|E0 ) ∼ = H 0 (Xr , O(D)|E0 . Therefore, it is enough to show that restrictions of the distinguished global sections of O(−mK) to E0 generate the space H 0 (Xr , O(−mK)|E0 ). Our previous considerations have shown this for m = 1. The general case m ≥ 1 follows now immediately from the fact that the homomorphism H 0 (Xr , O(−K)) → H 0 (E0 , OE0 (1)) is surjective and the space H 0 (E0 , OE0 (m)) is spanned by tensor products of m elements from H 0 (E0 , OE0 (1)). Corollary 3.3. The semigroup Meff (Xr ) ⊂ Pic(Xr ) of classes of effective divisors on a Del Pezzo surfaces Xr (2 ≤ r ≤ Xr ) is generated by elements of degree 1. These elements are exactly the classes of exceptional curves if r ≤ 7 and the classes of exceptional curves together with the anticanoncal class for r = 8. Proposition 3.4. If D is an effective divisor of degree ≥ 2 on X8 , then the vector space H 0 (X8 , O(D)) is spanned by distinguished global sections of O(D) with supports only on exceptional curves. Proof. By 3.2 and 3.3, it is sufficient to check the statement for D = −2K and for D = −K + E for any exceptional curve. The latter case immediately follows from 3.2, because D = −K + E is the pull back of the anticanonical sheaf on X7 obtained by the contraction of E. In the case D = −2K, we obtain 120 distinguished global sections of O(D) from 120 pairs of exceptional curves Ei , Ej such that (Ei , Ej ) = 3: −2K = 6l0 − 2l1 − . . . − 2l8 = l1 + (6l0 − 3l1 − 2l2 . . . − 2l8 ). Remark 3.5. Since H 0 (Xr , O(E)) is 1-dimensional for each exceptional curve E ⊂ Xr , we can choose a nonzero section xE ∈ H 0 (Xr , O(E)) which is determined up to multiplication by a nonzero scalar. Therefore the affine algebraic variety A(Xr ) := SpecCox(Xr ) is embedded into the affine space ANr on which the maximal torus Tr ⊂ G(Rr ) acts in a canonical way such that the space ANr can identified with the representation space V ($r ) of the algebraic group G(Rr ) (if r ≤ 7). In the case r = 8, all 240 exceptional curves on X8 can be similarly identified with all non-zero weights of the adjoint representation of G(E8 ) in V ($8 ). The space V ($8 ) contains the weight-0 subspace of dimension 8, but the ring Cox(Xr ) has only 2-dimensional space of anticanonical sections. Thus, there is no any identification of degree-1 homogeneous component of Cox(X8 ) with the representation space V ($8 ) of G(E8 ). 4. Quadratic relations in Cox(Xr ) Let us denote P (Xr ) := Proj Cox(Xr ). If 4 ≤ r ≤ 7, then P (Xr ) is canonically embedded into the projective space PNr −1 ( Nr is the number of exceptional curves on Xr ). For any exceptional curve E ⊂ X, we consider the open chart UE ⊂ PNr −1 defined by the condition xE 6= 0. Thus, we obtain an open covering of P (Xr ) by Nr affine subsets UE ∩ P (Xr ). We denote by A(Xr ) ⊂ ANr the affine cone over P (Xr ).
10
VICTOR V. BATYREV AND OLEG N. POPOV
Proposition 4.1. The ring Cox(X4 ) is isomorphic to the subring of all 3 × 3-minors of a generic 3 × 5-matrix. In particular, the projective variety P (X4 ) is isomorphic to the Grassmannian Gr(3, 5). Proof. To describe the multiplication in R(X5 ), one needs to choose a basis in Pic(X5 ). We choose the basis l0 , . . . , l4 , as in Section 2. We choose a divisor in each basis class: l0 being the preimage of the line at infinity w.r.t. a blow-down on P2 , li the exceptional fibers of this blow-down. We identify the representatives of each Picard class with the P subsheaves O( ci li ) of the constant sheaf k(X5 ). Then the multiplication in the ring is just the multiplication of the corresponding functions in the function field k(X5 ) of X5 . We choose the functions that represent xE ’s in the following way: let x : y : z be the homogeneous coordinates on P2 and let (xi : yi : zi ), i = 1, . . . , 4, be the coordinates of the blown-up points. Consider the matrix x1 x2 x3 x4 x/z M = y1 y2 y3 y4 y/z . z1 z 2 z3 z4 1 Let MI for I ⊂ [1, 5], |I| = 3, denote the maximal minor of M consisting of the columns with numbers in I, taken in the natural order. Then we set xli := M[1,4]\{i} for i ∈ [1, 4], xl0 −li −lj := M{i,j,5} for 1 ≤ i < j ≤ 4. All these functions lie in the corresponding O(D)’s and are non-zero because the points are in general position. It is known that the generators of the homogeneous coordinate ring of G(3, 5) are naturally identified with the maximal minors of a generic 3 × 5-matrix. We send these generic minors into the corresponding minors of the matrix above. This determines a homomorphism of the homogeneous coordinate ring of G(3, 5) to Cox(X5 ), as the equations of the Grassmann variety, being the relations between generic minors, hold for any particular minors. As R(X5 ) is generated by xE ’s, it is surjective. This homomorphism respects the Picard grading. Therefore this homomorphism respects the Z-grading. As it is surjective, it induces a closed embedding of P (X5 ) into G(3, 5). As both varieties are irreducible of dimension 6 (because ), it is an isomorphism of varieties, therefore they coincide as subvarieties in P9 , therefore we have an isomorphism of rings. And we see that Cox(X5 ) is defined by quadratic relations, as the homogeneous coordinate ring of G(3, 5) is. The article [G/P-I] describes a k-basis for the homogeneous coordinate ring of G/P in the case, when P is a maximal parabolic subgroup containing a Borel subgroup B such that the fundamental weight $ corresponding to P is minuscule (see 2.2). It also shows that this ring is defined by quadratic relations. A way to write explicitly the quadratic relations for the orbit of the highest weight vector for any representation of a semisimple Lie group is given in [Li]. A more geometric approach to these quadratic equations is contained in the proof of Theorem 1.1 in [L-T]: Proposition 4.2. The orbit G/P$ of the highest weight vector in the projective space PV ($) is the intersection of the second Veronese embedding of PV ($) with the subrepresentation V (2$) of the symmetric square S 2 V ($). Moreover, these quadratic relations generate the ideal of G/P$ ⊂ PV ($).
THE COX RING OF A DEL PEZZO SURFACE
11
We expect that the following statement is true: Conjecture 4.3. The ideal of relations between the degree-1 generators of Cox(Xr ) is generated by quadrics for all 4 ≤ r ≤ 8. Proposition 4.4. Let Xr−1 the Del Pezzo surface obtained by the contraction of E on Xr . Then there exist an isomorphism UE ∩ P (Xr ) ∼ = A(Xr−1 ). Proof. The coordinate ring of the affine variety UE ∩ P (Xr ) consists of all fractions D f /xdeg such that f ∈ H 0 (Xr , O(D)). Let πE : Xr → Xr−1 be the contraction of E. E Then any divisor class [D] ∈ Pic(Xr ) can be uniquely represented as sum [D0 ] + k[E] ∗ (Pic(X where [D0 ] = πE r−1 )). Such a fraction is a meromorphic section over D − (deg D)E with possible poles at E, and two such fractions are equal exactly when they determine the same section (xE is evidently a nonzerodivisor from the definition of the multiplication), so the affine coordinate ring is M M H 0 (Xr \ E, O(D)) = H 0 (Xr−1 \ πE (E), π∗ O(D)), D∈Pic(Xr ) deg D=0
D∈Pic(Xr \E)
where π : Xr → Xr−1 is the blow-down of E, because the condition deg D = 0 determines a unique extension of each divisor from Xr \E to Xr and the blow-down is an isomorphism outside E. Now, in the last sum one needn’t exclude πE (E) because it is a point on a normal surface Xr−1 , so the last sum is just our ring Cox(Xr−1 ) for a Del Pezzo surface Xr−1 with r one smaller, i.e. the affine coordinate ring of A(Xr−1 ). Corollary 4.5. The singular locus of the algebraic varieties P (Xr ) and A(Xr ) has codimension 7. Proof. Since A(X3 ) ∼ = A6 , we obtain that P (X4 ) is a smooth variety covered by 10 affine charts which are isomorphic to A6 . Using the isomorphism P (X4 ) ∼ = Gr(3, 5) (see 4.1 ), we obtain that A(X4 ) has an isolated singularity at 0. Therefore, the singular locus of P (X5 ) consists of 16 isolated points. The singular locus of P (X6 ) is 1-dimensional and the singular locus of P (X7 ) is 2-dimensional. Definition 4.6. A divisor class D of a sum of two exceptional curves intersecting with multiplicity 1, or, equivalently, satisfying (D, D) = 0, (D, −K) = 2, is called a ruling, as the corresponding invertible sheaf determines a conic bundle Xr → P1 . Lemma 5.3 of [F-M] says that the Weyl group acts transitively on rulings. Let D be a sum of two exceptional curves which meet each other. Then it has several such decompositions which determine several monomials from Γ(D). One can see that for r ≥ 4 there are more such monomials than the dimension of this space, so they are linearly dependent and it determines quadratic relations between the generators of Cox(Xr ). If the curves coincide or do not intersect, then the first case in the proof of Proposition 3.2 shows that the decomposition is unique and there are no relations. Because of the Picard grading one has to look only at such homogeneous relations, living over one divisor.
12
VICTOR V. BATYREV AND OLEG N. POPOV
The expectations are that the ring is defined by these relations, and for r = 3, 4 this follows from Lemma 3.1 and Proposition 4.1, but in general we have proved only a weaker result: Theorem 4.7. For 4 ≤ r ≤ 7, the ring Cox(Xr ) is defined by quadratic relations up to radical. Proof. Let us look more closely at the relations for r = 4, 5, 6. A sum D of two intersecting exceptional curves can be written as l0 − l1 in a suitable basis, so the global sections of O(D) correspond to linear homogeneous polynomials on P2 that vanish at the point l1 , therefore dim Γ(D) = 2, so there is a linear relation between any three monomials over D (but not between two, as they have different divisors). For r ≤ 6 the exceptional curves have only simple intersections, so if E + F = E 0 + F 0 are two such decompositions, then 0 = (E, E + F ) = (E, E 0 + F 0 ) requires (E, E 0 ) = (F, F 0 ) = 0 as the last two intersection numbers are nonnegative. We see that D = l0 − l1 = li + (l0 − l1 − li ), i ≥ 2 admits r − 1 such decompositions, so for r = 4, 5, 6 every monomial xE xF , (E, F ) 6= 0 is equal to a polynomial in some xE 0 , (E 0 , E) = 0, i.e. the affine coordinate ring of the quadratic variety in the affine chart xE 6= 0 is generated by {xF /xE |(E, F ) = 0}, i.e. by the variables corresponding to a blow-down of E. To show the italicized feature for r = 7 one has in addition to express the xE 0 /xE with (E, E 0 ) = 2 in terms of xF /xE , (E, F ) ≤ 1, because then the variables xF /xE , (E, F ) = 1 can be reduced to those with intersection zero, as we’ve just shown. But E + E 0 = −K and a basis of sections over it was described in the proof of the proposition 3.2, namely, let E1 be a point, E2 and E3 two lines through it, then xEi xEi0 is the basis (one can see from [Ma, 26.9] that ∀E∃!E 0 (E, E 0 ) = 2, so the involution ·0 is well-defined). If E is another point (which it without loss of generality is), then writing xE xE 0 in terms of this basis one obtains the desired result. The quadratic relations determine another variety in the same projective space, which contains the torsor. We need to show that these varieties coincide, and it suffices to show it in every affine chart. Let U = {xE 6= 0} be this chart, Xr−1 the blowdown of E. Let Rq (Xr−1 ) be the ring defined by quadratic relations for Xr−1 , Rq (Xd )U the coordinate ring of the quadratic variety for r in our affine chart, R(Xd )U = R(Xr−1 ) the coordinate ring of P (Xd ) in the chart = the homogeneous coordinate ring of P (Xr−1 ). Then it follows from the italicized feature that one has surjections Rq (Xr−1 ) → Rq (Xr )U → R(Xr )U , because the relations that we had for Xr−1 hold for the lifts of the sections to Xr . Now by induction on r, the basis being r = 3 and no relations at all, we can assume that in a chart the map between the rings Rq (Xr−1 ) → R(Xr−1 ) is the factorization modulo radical, so the varieties coincide in a chart, as we need. References [Cox] [Dem]
[F-M]
D. Cox. The Homogeneous Coordinate Ring of a Toric Variety. // J. Algebr. Geom. 4, No.1, 17–50 (1995). M. Demazure. Surfaces de Del Pezzo. I. II. III. IV. V. // S´eminaire sur les singularit´es des surfaces, Cent. Math. Ec. Polytech., Palaiseau 1976–77, Springer Lect. Notes Math. 777, 21–69 (1980). R. Friedman, J. W. Morgan. Exceptional Groups and del Pezzo Surfaces. math.AG/0009155.
THE COX RING OF A DEL PEZZO SURFACE
13
[G/P-I] C. S. Seshadri. Geometry of G/P. I: Theory of standard monomials for minuscule representations. // C. P. Ramanujam. — A tribute. Collect. Publ. of C. P. Ramanujam and Pap. in his Mem., Tata Inst. fundam. Res., Stud. Math. 8, 207–239 (Springer-Verlag, 1978). [K] M. M. Kapranov. Chow Quotients of Grassmannians. I, I.M. Gelfand Seminar, S. Gelfand, S. Gindikin eds., Advances in Soviet Mathematics vol. 16, part 2., A.M.S., 29-110 (1993). [G/P-III] V. Lakshmibai, C. Musili, C. S. Seshadri. Geometry of G/P. III: Standard monomial theory for a quasi-minuscule P. // Proc. Indian Acad. Sci., Sect. A, Part III 88, No.2, 93–177 (1979). [H-K] Y. Hu, S. Keel. Mori Dream Spaces and GIT. math.AG/0004017. [Hm] J. E. Humphreys. Linear algebraic groups. Graduate Texts in Mathematics, 21. Springer-Verlag, 1975. [Le] N. C. Leung. ADE-bundle over rational surfaces, configuration of lines and rulings. math.AG/0009192. [Li] W. Lichtenstein. A system of quadrics describing the orbit of the highest weight vector. // Proc. Am. Math. Soc. 84, No.4, 605–608 (1982). [L-T] G. Lancaster, J. Towber. Representation-Functors and Flag-Algebras for the Classical Groups. I. // J. Algebra 59, No.1, 16–38 (1979). [Ma] Yu. I. Manin. Cubic Forms. Algebra, Geometry, Arithmetic. North-Holland Mathematical Library. Vol. 4. North-Holland, 1974. [Na] M. Nagata. On rational surfaces. I: Irreducible curves of arithmetic genus 0 or 1. // Mem. Coll. Sci., Univ. Kyoto, Ser. A 32, 351–370 (1960). On rational surfaces. II. // Mem. Coll. Sci., Univ. Kyoto, Ser. A 33, 271–293 (1960). [S] A. N. Skorobogatov. On a theorem of Enriques-Swinnerton-Dyer. // Ann. Fac. Sci. Tiulouse Math. (6), 2 , no.3, 429-440 (1993). ¨ t Tu ¨bingen, Auf der Morgenstelle 10, Tu ¨bingen DMathematisches Institut Universita 72076, Germany E-mail address: [email protected] Department of Algebra, Faculty of Mathematics, Moscow State University, Moscow 117234, Russia E-mail address: [email protected]
Counting rational points on threefolds Niklas Broberg∗
Per Salberger
July 24, 2003 Abstract Let X ⊂ P4 be an irreducible hypersurface and ε > 0 be given. We show that there are O(B 3+ε ) resp. O(B 55/18+ε ) rational points on P4 lying on X when X is of degree d ≥ 4 resp. d = 3. The implied constants depend only on d and ε.
1
Introduction
Let Q be an algebraic closure of Q and Pn be projective n-space over Q. That n+1 is, Pn is the set of one-dimensional linear subspaces of Q . A point on Pn is n+1 said to be rational if it represents a subspace of Q generated by an element in Qn+1 . The height of a rational point p ∈ Pn (Q) is given by H(p) = max(|Z0 | , . . . , |Zn |), where Z0 , . . . , Zn are relatively prime integers such that p = [Z0 , . . . , Zn ]. For a Zariski closed subset X of Pn , let N (X, B) be the counting function N (X, B) = # {p ∈ Pn (Q) ∩ X : H(p) ≤ B} , where Pn (Q) is the set of rational points on Pn . In the case where X is defined by an irreducible form F (Z0 , . . . , Zn ) of degree d ≥ 2, Heath-Brown [4] conjectured that N (X, B) = On,d,ε (B n−1+ε ) for any ε > 0. The implied constant should thus not depend on F , only on n, d, and ε. In the same paper he verified the conjecture for curves, surfaces, and for quadrics of any dimension. In [1], Browning proved the conjecture for non-singular hypersurfaces in P4 of degree at least four. In this paper we shall prove the following result. Theorem 1. Let X ⊂ P4 be a hypersurface defined by an irreducible form F (Z0 , . . . , Zn ) with coefficients in Q. Then the following holds for any ε > 0: ( Od,ε (B 3+ε ) if d ≥ 4 N (X, B) = Oε (B 55/18+ε ) if d = 3. ∗ While working on this paper, the author was supported by the EC network Arithmetic Algebraic Geometry.
1
2
Preliminaries
In this section we recollect some known estimates of counting functions. We also state and prove some results that we use in the proof of Theorem 1. First note that: • We follow the convention that a subvariety X of Pn is a closed subset that is not necessarily irreducible. A hypersurface of Pn is a subvariety of codimension one. All varieties are defined over Q. • We shall often count rational points of bounded height on Pn which lie on X even if X is not defined over Q. The same situation occur for subvarieties of the dual space Pn∗ of Pn when we count hyperplanes Γ of Pn defined over Q for which Γ ∩ X is reducible. We shall also use coordinates over Q for Grassmannians. • If X ⊂ Pn is a hypersurface, then we define the degree of X to be the degree of the corresponding reduced scheme. That is, we let d = deg(X) be the minimal degree among all forms defining X. This implies that an intersection Λ ∩ X with a linear subspace Λ ⊂ Pn not contained in X may have lower degree than X. • Our calculations involve numerous constants. To avoid introducing the constants explicitly, we use the following notation. Suppose that f1 and f2 are functions such that fi (B) ≥ 0 for all B ≥ 1. We write f1 (B) p1 ,...,pk f2 (B), if there exists a positive constant C, depending only on the parameters p1 , . . . , pk , such that f1 (B) ≤ Cf2 (B) for all B ≥ 1. We write f1 (B) p1 ,...,pk f2 (B), if f1 (B) p1 ,...,pk f2 (B) and f2 (B) p1 ,...,pk f1 (B). • The Grassmannian G(k, n) of k-dimensional linear subspaces of Pn is assumed to be embedded into projective space by the Pl¨ ucker embedding. In particular, we identify G(n − 1, n) with the dual projective space Pn∗ . The height of a rational linear subspace Λ ⊂ Pn is by definition the height of its Pl¨ ucker coordinates. According to [6, Chapter I, Corollary 5I], we have H(Λ) n det(Λ), where
Λ = x ∈ Zn+1 : [x] ∈ Λ ∪ {0}
is the lattice associated to Λ and det(Λ) is the volume of a fundamental domain of Λ.
2
2.1
Results from the Geometry of Numbers
The following result is well-known [4, Lemma 1(iii)]. It is one of the principal results from the subject known as the Geometry of Numbers, and it is one of the key tools in the proof of Theorem 1. Lemma 2.1. Let Λ ⊂ Zn be a lattice of dimension P m. Then Λ has a basis b1 , . . . , bm such that if one writes x ∈ Λ as x = j λj bj , then λj n |x| / |bj | .
Moreover one has det(Λ) n
m Y
|bj | .
j=1
The following result is a consequence of [6, Chapter I, Corollary 5J]. Lemma 2.2. Suppose that a1 , . . . , ak are linearly independent n-dimensional vectors with integer components and let Λ = {x ∈ Zn : a1 .x = · · · = ak .x = 0} . Then Λ ⊂ Zn is a lattice of dimension n − k and det(Λ) n
k Y
|aj | .
j=1
2.2
Bad linear sections
The homogeneous ideal of a hypersurface X ⊂ Pn of degree d is generated by a single homogeneous polynomial F (Z0 , . . . , Zn ) of degree d. This means that hypersurfaces in Pn of degree d are parametrised by points in P(Q[Z0 , . . . , Zn ]d ), where Q[Z0 , . . . , Zn ]d is the vector space of homogeneous polynomials of degree d in n+1 variables. Let V (F ) denote the hypersurface in Pn given by the zero locus of F ∈ Q[Z0 , . . . , Zn ]d . The set of pairs (Λ, F ) ∈ G(k, n) × P(Q[Z0 , . . . , Zn ]d ) for which Λ ∩ V (F ) is an irreducible variety of dimension k − 1 and degree d is an open subset of G(k, n) × P(Q[Z0 , . . . , Zn ]d ). We denote the complement of this open subset by Φn,d,k . The following result is well-known but the proof is so short that we reproduce it here. Lemma 2.3. Let X ⊂ Pn be an irreducible hypersurface of degree d and dimension at least two. Then the set of hyperplanes Γ for which the linear section Γ ∩ X is reducible or of degree less than d is a proper closed subset of P n∗ . Furthermore, this closed subset is cut out by hypersurfaces of degrees bounded solely in terms of n and d. The number of required hypersurfaces is also bounded in terms of n and d.
3
Proof. By choosing a basis of Q[Z0 , . . . , Zn ]d , we may identify P(Q[Z0 , . . . , Zn ]d ) with PN for some N . Suppose that the ideal of Φn,d,n−1 ⊂ Pn∗ ×PN is generated by bihomogeneous polynomials Gi (Z0 , . . . , Zn ; W0 , . . . , WN ) for i = 1, 2, . . . , m.
(2.1)
The set of hyperplanes Γ for which Γ ∩ X is reducible or of degree less than d is then the common zero locus of the polynomials (2.1), where W0 , . . . , WN are the coefficients of any homogeneous polynomial generating the ideal of X. Since a general hyperplane section Γ ∩ X is irreducible [3, Proposition 18.10], all of the polynomials (2.1) cannot vanish identically on Pn∗ . Lemma 2.4. Let X ⊂ P4 be an irreducible hypersurface of degree d and let V ⊂ P4∗ be the set of hyperplanes Γ with the following property. There is a point p ∈ Γ ∩ X such that for every two-plane Λ ⊂ Γ either Λ is contained in X or Λ ∩ X contains an irreducible component of degree less than d. Then we have the following. (a) V is a closed subset of P4∗ , and if V 6= P4∗ , then V is cut out by hypersurfaces of degrees bounded in terms of d. The number of required hypersurfaces is also bounded in terms of d. (b) If Y = Γ ∩ X is an irreducible surface for some hyperplane Γ ∈ V , then Y is a cone over a plane curve. (c) V = P4∗ if and only if X is a cone over a plane curve with respect to a vertex line. Proof. As in the proof of Lemma 2.3, we identify P(Q[Z0 , . . . , Z4 ]d ) with PN . Let Ψ ⊂ P4∗ × P4 × PN × G(2, 4) be the set of four-tuples (Γ, p, F, Λ) such that F (p) = 0, p ∈ Λ, Λ ⊂ Γ, and (Λ, F ) ∈ Φ4,d,2 . Let π be the projection map from Ψ to P4∗ × P4 × PN . Then Ψ is a projective variety and the function λ(q) = dim(π −1 (q)) is an upper-semicontinuous function on the image π(Ψ) [3, Corollary 11.13]. In particular, Ω = {(Γ, p, F ) ∈ π(Ψ) : λ(Γ, p, F ) ≥ 2} is a subvariety of P4∗ × P4 × PN . Now the set of two-planes Λ ⊂ P4 for which p ∈ Λ and Λ ⊂ Γ for some (Γ, p) ∈ P4∗ × P4 is a two-dimensional linear subspace of G(2, 4). The fibre π −1 (Γ, p, F ) is contained in this linear subspace. Hence, Ω is the set of triples (Γ, p, F ) such that F (p) = 0 and such that Λ ⊂ V (F ) or Λ ∩ V (F ) contains an irreducible component of degree less than d for every two-plane Λ ⊂ Γ containing p. Let Σ be the projection of Ω on P4∗ × PN , and let Gi (Z0 , . . . , Zn ; W0 , . . . , WN ) for i = 1, 2, . . . , m, (2.2) be bihomogeneous polynomials generating the ideal of Σ. If W0 , . . . , WN are the coefficients of some homogeneous polynomial generating the ideal of X, then V is the common zero locus of the polynomials (2.2). This proves (a). 4
Next we consider (b). Let Y = Γ ∩ X be an irreducible hyperplane section and assume that p is a point of Y such that Λ ∩ X contains an irreducible component of degree less than d for every two-plane Λ ⊂ Γ containing p. Let π : Ye → Y be the blow-up of Y at p. There is, then, a unique map ψ : Ye → P2 which extends the projection map Y 99K P2 from p to some two-plane P2 ⊂ Γ. If ψ is surjective, then ψ −1 (L) is irreducible of degree d for a general line L ⊂ P2 [2, Theorem 1.1]. This contradicts the assumption that π(ψ −1 (L)) is reducible for every line L ⊂ P2 . Hence, the map ψ is not surjective, so Y is cone over a plane curve with vertex p. To prove (c) we assume that V = P4∗ and consider the incidence correspondence Ω ⊂ P4∗ × X consisting of all pairs (Γ, p) such that Λ ⊂ X or Λ ∩ X contains an irreducible component of degree less than d for every two-plane Λ ⊂ Γ containing p. It follows from the proof of (a) that Ω is a closed subset of P4∗ × X. Since V is the projection of Ω ⊂ P4∗ × X on the first factor, we have that the dimension of Ω is at least four. According to (b), we can then find a point p ∈ X and a family of hyperplanes {Γλ } through p such that Γλ ∩ X are all cones with the common vertex p. It follows that X is a cone with vertex p over Γ ∩ X for any hyperplane Γ ⊂ P4 which does not contain p. Let Γ ⊂ P4 be such that Γ ∩ X is a cone over a plane curve C ⊂ X with vertex q ∈ X. Then X is a cone over C with two different vertices p and q. This proves the first implication of (c). The other one is immediate.
2.3
Linear subspaces of hypersurfaces
In this section we state some elementary results about linear subspaces contained in a hypersurface X ⊂ Pn . Let Fk (X) ⊂ G(k, n) denote the Fano variety of kplanes contained in the variety X ⊂ Pn . It can be shown that the number of irreducible components and the dimensions of the irreducible components of Fk (X) can be bounded in terms of d. Lemma 2.5. Let X ⊂ Pn be an irreducible hypersurface and assume that X is not a hyperplane. Then the dimension of Fn−2 (X) is at most one and Fn−2 (X) contains no lines. Proof. Suppose that Y is anSirreducible component of Fn−2 (X) of dimension at least one. Then the variety Λ∈Y Λ has dimension at least n−1 and is therefore equal to X. In particular, every point on X belongs to an (n − 2)-plane Λ in Y . Consider the incidence correspondence Ψ = {(p, Λ) ∈ X × Y : p ∈ Λ} . The fibre of Ψ over an (n − 2)-plane Λ is irreducible of dimension n − 2. The variety Ψ is therefore irreducible of dimension dim(Y )+n−2 [3, Theorem 11.14]. Now if an (n − 2)-plane Λ ⊂ X contains the point p, then Λ must lie in the projective tangent space Tp (X) of X at p. For a non-singular point p ∈ X, the dimension of X ∩ Tp (X) is n − 2, so the fibre of Ψ over a general point of X is finite. The dimension of Ψ is thus at most n − 1. Hence, the dimension of Y is 5
S at most one. To finish the proof we note that Λ∈Y Λ is a hyperplane when Y is a line. Since X is irreducible, Fn−2 (X) cannot contain any lines. The following lemma is a modification of Example 19.11 on page 244 in [3]. Lemma 2.6. Let X ⊂ Pn be the surface swept out by the lines parametrised by an irreducible curve C ⊂ G(1, n). Then the degree of X does not exceed the degree of C. Proof. The degree of X is by definition the cardinality of the intersection Λ ∩ X for a general (n − 2)-plane Λ ⊂ Pn . Assume that Λ ∩ X contains deg(X) points. Now every point of Λ ∩ X belongs to a line L ∈ C that meets Λ. The locus of lines L ∈ G(1, n) that meet Λ is a hyperplane section Γ ∩ G(1, n). If C is contained in Γ, then every line L ∈ C meet Λ. That is, we have a regular map C → Λ given by L 7→ L ∩ Λ. But C is irreducible so the image of this map is irreducible. Hence, Λ ∩ X contains only one point so that the degree of X is one. If C is not contained in Γ, then there are at most deg(C) points in Γ ∩ C. Hence, Λ ∩ X contains at most deg(C) points. Lemma 2.7. Let X ⊂ P4 be an irreducible hypersurface of degree d, and let C(p, X) be union of lines on X passing through p ∈ X. Then the number of irreducible components and the degrees of the irreducible components of C(p, X) can be bounded in terms of d. Proof. Let Pij , for 0 ≤ i < j ≤ 4, be the Pl¨ ucker coordinates on G(1, 4), and assume that p = [1, 0, 0, 0, 0]. The lines in P4 that pass through p are then parametrised by the points in the three-dimensional plane Λ ⊂ G(1, 4) which is defined by Pij = 0 for 0 < i < j ≤ 4. The map φ : C(p, X) \ p → Λ, sending a point q to the line through p and q, is given by [Z0 , Z1 , Z2 , Z3 , Z4 ] 7→ [Z1 , Z2 , Z3 , Z4 , 0, 0, . . . ]. The map φ can thus be identified with the projection π of C(p, X) \ p to the hyperplane Z0 = 0 in Pn . Under this identification, the image of π is equal to Λ ∩ F1 (X). Since the number of irreducible components and the degrees of the irreducible components of F1 (X) are bounded in terms of d, the same is true for Λ ∩ F1 (X) and C(p, X).
2.4
Estimates for counting functions
It this section we list those known estimates for counting functions that we use in the proof of Theorem 1. (E1) Let Λ be a k-dimensional linear subspace of Pn . If Λ contains k +1 linearly independent rational points of height at most B, then Λ is defined over Q and B k+1 N (Λ, B) n . H(Λ) 6
To see this, let b1 , . . . , bk be a basis of the lattice Λ = x ∈ Zn+1 : [x] ∈ Λ ∪ {0}
with the properties stated in Lemma 2.1. Since Λ contains k + 1 linearly independent rational points of height at most B, we must have |bi | n B. Hence, B k+1 B k+1 n . N (Λ, B) n |b0 | · · · |bk | H(Λ) (E2) If X ⊂ Pn is an irreducible variety of degree d and dimension r, then N (X, B) n,d B r+1 . This is proved for hypersurfaces in [4, Theorem 1]. The general result follows by a standard projection argument (see for example the proof of Lemma 1 in [1]). (E3) If X ⊂ Pn is an irreducible variety of degree d ≥ 2 and dimension r, then N (X, B) n,d,ε B r+1/d+ε , for every ε > 0 [5]. (E4) If X ⊂ Pn is an irreducible curve of degree d, then N (X, B) n,d,ε B 2/d+ε , for every ε > 0. This estimate is proved for plane curves in [4, Theorem 3]. As in (E2), the general estimate follows by a projection argument. (E5) Let Λ ⊂ Pn be a two-plane which is defined over the rational numbers. If X ⊂ Λ is a non-singular curve of degree d ≥ 2, then N (X, B) n,d,ε 1 +
B 2/d+ε , H(Λ)2/3d
for every ε > 0. This follows from Theorem 3 and Lemma 1(iii) of [4]. (E6) If X ⊂ Pn is an irreducible surface of degree d ≥ 2, then N (X, B) n,d,ε B 2+ε , for every ε > 0 [1, Lemma 1]. (E7) If X ⊂ Pn is a quadratic hypersurface of rank at least three, then N (X, B) n,ε B n−1+ε , for every ε > 0 [4, Theorem 2] 7
3
Proof of Theorem 1
The idea of the proof is simple. We cover the set p ∈ P4 (Q) : H(p) ≤ B
by a finite collection I of linear subspaces Λ ⊂ P4 , and put [ (Λ ∩ X). Σ= Λ∈I
We then have N (X, B) = N (Σ, B)
and
dim(X) > dim(Σ).
We may thus apply the sharp estimates (E4) and (E6) from Section 2.4. To determine a suitable set I, we apply the results from Section 2.1. Let p = [Z0 , . . . , Z4 ] be a point of P4 such that Z0 , . . . , Z4 are relatively prime integers. According to [4, Lemma 1(i)], the set Λ1 = (x0 , . . . , x4 ) ∈ Z5 : Z0 x0 + · · · + Z4 x4 = 0 is a lattice of dimension four and q det(Λ1 ) = Z02 + · · · + Z42 H(p).
Lemma 2.1 states that there exists a basis b1 , b2 , b3 , b4 of Λ1 such that |b1 | |b2 | |b3 | |b4 | det(Λ1 ). Without loss of generality we may assume that |b1 | |b2 | det(Λ1 )1/2 . Let
Λ2 = x ∈ Z5 : b1 .x = b2 .x = 0
and apply Lemma 2.1 again to find a basis x1 , x2 , x3 of the lattice Λ2 such that |x1 | |x2 | |x3 | det(Λ2 ) |b1 | |b2 | . The last inequality of (3.1) follows from Lemma 2.2. Finally let Λ3 = a ∈ Z5 : a.x1 = a.x2 = a.x3 = 0
and apply Lemma 2.1 to find a basis a1 , a2 of Λ3 such that |a1 | |a2 | det(Λ3 ) |x1 | |x2 | |x3 | . Then (Z0 , . . . , Z4 ) ∈ Λ2 , Λ2 = x ∈ Z5 : a1 .x = a2 .x = 0 , 8
(3.1)
and, |a1 | |a2 | det(Λ2 ) H(p)1/2 . This shows that there exists a rational two-plane Λ ⊂ P4 containing p such that H(Λ) H(p)1/2 . It also shows that Λ = Γ1 ∩ Γ2 for some rational hyperplanes Γ1 , Γ2 in P4 such that H(Γ1 )H(Γ2 ) H(Λ). Let A be a positive constant and let I ⊂ P4∗ (Q) × P4∗ (Q) be the set of pairs (Γ1 , Γ2 ) of hyperplanes such that (i) Γ1 6= Γ2 , (ii) H(Γ1 )H(Γ2 ) ≤ AH(Γ1 ∩ Γ2 ), where Γ1 ∩ Γ2 is considered as an element of G(2, 4), (iii) H(Γ1 ) ≤ AB 1/4 , and (iv) H(Γ2 ) ≤ AB 1/2 /H(Γ1 ). Provided that A is large enough, we have p ∈ P4 (Q) : H(p) ≤ B ⊂
[
(Γ1 ∩ Γ2 ).
(Γ1 ,Γ2 )∈I
From the discussion above it follows that we may choose A independently of B. This defines I and Σ. The next step of the proof is to use the estimates from Section 2.4 to estimate N (Σ, B). The set I can be partitioned into three subsets: I1 is the set of (Γ1 , Γ2 ) ∈ I such that Γ1 ∩ X contains an irreducible component of degree less than d. I2 is the set of (Γ1 , Γ2 ) ∈ I such that Γ1 ∩ X is irreducible of degree d but Γ1 ∩ Γ2 ∩ X contains an irreducible component of degree less than d. I3 is the set of (Γ1 , Γ2 ) ∈ I such that Γ1 ∩ Γ2 ∩ X is an irreducible curve of degree d. Let Σi =
[
(Γ1 ∩ Γ2 ∩ X) for i = 1, 2, 3.
(Γ1 ,Γ2 )∈Ii
Then N (Σ, B) ≤ N (Σ1 , B) + N (Σ2 , B) + N (Σ3 , B).
3.1
Estimate of N (Σ1 , B)
Let J be the set of rational hyperplanes Γ ⊂ P4 such that H(Γ) ≤ AB 1/4 and such that Γ ∩ X is reducible or of degree less than d = deg(X). Consider an irreducible component Y ⊂ Γ ∩ X for some Γ ∈ J. If Y is not a two-plane, then N (Y, B) d,ε B 2+ε 9
according to (E6). If Y is a two-plane such that all points of height at most B on P4 (Q) ∩ Y lie on a line, then N (Y, B) B 2 according to (E2). Hence, N (Σ1 , B) d,ε B 2+ε |J| + N 0 (X, B),
(3.2)
where N 0 (X, B) is the number of rational points on P4 of height at most B lying on the union of all two-planes in X that contain three non-collinear rational points on P4 of height at most B. By Lemma 2.3 and (E2), the cardinality of J is Od (B) so the first term of (3.2) is Od,ε (B 3+ε ). By the following lemma, the second term is also Od,ε (B 3+ε ). Lemma 3.1. Let N 0 (X, B) be the number of rational points on P4 of height at most B lying on the union of all two-planes in X that contain three non-collinear rational points on P4 of height at most B. Then, N 0 (X, B) d,ε B 3+ε . Moreover, if X is a cone with respect to two different rational vertex points of height at most B, then N (X, B) d,ε B 3+ε . Proof. If a two-plane Λ ⊂ X contains three non-collinear rational points on P4 of height at most B, then H(Λ) ≤ A0 B 3 for some constant A0 . Furthermore, Λ contains O(B 3 /H(Λ)) rational points of height at most B according to (E1). Hence, X B3 N 0 (X, B) ≤ , H(Λ) Λ∈F2 (X)(Q) H(Λ)≤A0 B 3
where F2 (X) ⊂ G(2, 4) is the Fano variety of two-planes in X. By Lemma 2.5, the dimension of F2 (X) is at most one and F2 (X) contains no lines. The number of Λ ∈ F2 (X)(Q) with H(Λ) T for some T ≥ 1 is thus Od,ε (T 1+ε ) according to (E2). Hence, X
Λ∈F2 (X)(Q) T
B 3 1+ε B3 d,ε T B 3+ε , H(Λ) T
when T B 3 . By summing over dyadic intervals, we get N 0 (X, B) d,ε B 3+ε . To prove the second statement, let p and q be two different rational points on P4 of height at most B which are vertex points of X. If every point of P4 (Q)∩X of height at most B belongs to the line L containing p and q, then N (X, B) B 2 10
according to (E2). If there is some point of P4 (Q) ∩ X of height at most B that does not belong to the line L, then every point of P4 (Q) ∩ X belongs to a two-plane in X that contains three non-collinear rational points on P4 of height at most B. In that case N (X, B) = N 0 (X, B) d,ε B 3+ε , by what we just proved.
3.2
Estimate of N (Σ2 , B)
Consider an irreducible component Y ⊂ Γ1 ∩ Γ2 ∩ X for some (Γ1 , Γ2 ) ∈ I2 . If the degree of Y is at least three, then N (Y, B) d,ε B 2/3+ε according to (E4). If the degree of Y is two, then N (Y, B) ε 1 +
B 1+ε H(Γ1 ∩ Γ2 )1/3
according to (E5). If Y is a line such that Y contains at most one rational point of height at most B, then N (Y, B) ≤ 1. Hence, N (Σ2 , B) d,ε B 2/3+ε |I2 | X B 1+ε + H(Γ1 ∩ Γ2 )1/3
(3.3)
(Γ1 ,Γ2 )∈I2
+ |I2 | + N (Z, B),
where Z ⊂ X is the union of all lines L ⊂ Σ2 that contain two different rational points of height at most B. Note that if X is a cone over a plane curve, then Γ1 ∩ Γ2 ∩ X is a union of lines for every pair (Γ1 , Γ2 ) ∈ I2 . Thus, the first two terms of (3.3) do not appear in this case. Lemma 3.2. We have 10/3+ε
# {(Γ1 , Γ2 ) ∈ I2 : H(Γi ) ≤ Ti } d,ε T15 T2
+ T15−η T24 ,
where η = 1 unless X is a cone over a plane curve in which case η = 0. Proof. Let f : Γ1 → P3 be an isomorphism for some hyperplane Γ1 ⊂ P4 such that Γ1 ∩ X is irreducible. Let g : P4∗ \ {Γ1 } → P3∗ be the projection map induced by f −1 . By Lemma 2.3, the set of two-planes Λ ⊂ P3 for which Λ ∩ f −1 (X) contains an irreducible component of degree less than d = deg(X) is a proper closed subset V ⊂ P3∗ . The set of hyperplanes 11
Γ2 ∈ P4∗ \{Γ1 } for which Γ1 ∩Γ2 ∩X is reducible is thus contained in the proper closed subset W = g −1 (V ) of P4∗ . There are two cases to consider. If V does not contain any two-planes, then W does not contain any hyperplanes. Hence, the number of (Γ1 , Γ2 ) ∈ I2 with Γ1 fixed and H(Γ2 ) ≤ T2 is 10/3+ε Od,ε (T2 ) by (E3) and (E7). Note that W is cut out by Od (1) hypersurfaces of degrees Od (1) since V is. The number of Γ1 ∈ P4∗ (Q) of height at most T1 is O(T15 ). Hence, the number of pairs (Γ1 , Γ2 ) ∈ I2 such that V does not contain 10/3+ε any two-planes and H(Γi ) ≤ Ti is Od,ε (T15 T2 ). If V contains a two-plane, then W contains a hyperplane. The best estimate for the number of (Γ1 , Γ2 ) ∈ I2 with Γ1 fixed and H(Γ2 ) ≤ T2 is therefore Od (T24 ). This is the trivial estimate (E2). Lemma 2.4 states that the set of Γ1 for which V contains a two-plane is contained in a hypersurface in P4∗ of degree Od (1), provided that X is not a cone over a plane curve. In this case there are Od (T14 ) such Γ1 ∈ P4∗ (Q) of height at most T1 , again according to (E2). In the general case we have O(T15 ) hyperplanes. Hence, the number of pairs (Γ1 , Γ2 ) ∈ I2 such that V contains a two-plane and H(Γi ) ≤ Ti is Od (T15−η T24 ), where η = 1 unless X is a cone over a plane curve in which case η = 0. We can use Lemma 3.2 to estimate the cardinality of I2 . The number of (Γ1 , Γ2 ) ∈ I2 with T < H(Γ1 ) ≤ 2T for some T B 1/4 is ( 1/2 5−η 1/2 10/3+ε B 25/12+ε if η = 1, B B 5 4 T + T d,ε T T B 5/2+ε if η = 0. By summing over dyadic intervals we get ( B 25/12+ε |I2 | d,ε B 5/2+ε
if η = 1, if η = 0.
Consequently, the first term of (3.3) is Od,ε (B 3+ε ). In order to estimate the second term of (3.3) we divide the ranges of both Γ1 and Γ2 into dyadic intervals. If T1 B 1/4 and T1 T2 B 1/2 , then X B 1+ε B 1+ε 5 10/3+ε 4 4 T T + T T d,ε 1 2 1 2 H(Γ1 ∩ Γ2 )1/3 (T1 T2 )1/3 (Γ1 ,Γ2 )∈I2 Ti
B 35/12+ε . Hence, the second term of (3.3) is Od,ε (B 3+ε ). We have already seen that |I2 | = Od,ε (B 3+ε ), so it remains to estimate the very last term in (3.3). Let Z1 (T ) be the union of all lines L ⊂ Z with H(L) > T , for some T > 0, and let Z2 (T ) be the union of all lines L ⊂ Z with H(L) ≤ T . Then, N (Z, B) ≤ N (Z1 (T ), B) + N (Z2 (T ), B), for every T > 0. 12
(3.4)
Lemma 3.3. If T ≤ B 2 , then N (Z1 (T ), B) d,ε B 13/4 T 2/d−1+ε . Proof. Let J ⊂ P4∗ (Q) be the projection of I2 ⊂ P4∗ (Q) × P4∗ (Q) on the first factor. If Γ1 ∈ J, then Γ1 ∩ X is an irreducible surface of degree d. By Lemma 2.5, the dimension of F1 (Γ1 ∩ X) is at most one, and by Lemma 2.6, every one-dimensional irreducible component of F1 (Γ1 ∩ X) has degree at least d. There are thus Od,ε (R2/d+ε ) rational lines L ⊂ Γ1 ∩ X of height at most R according to (E4). If the line L is contained in Z, then L contains two different rational points on P4 of height at most B. Hence, X
N (L, B) d,ε
L∈F1 (Γ1 ∩X)(Q) L⊂Z R
B 2 2/d+ε R B 2 R2/d−1+ε R
according to (E1). The cardinality of J is O(B 5/4 ), so X N (L, B) d,ε B 13/4 R2/d−1+ε .
(3.5)
L⊂Z R
By summing over dyadic intervals, we get N (Z1 (T ), B) d,ε B 13/4 T 2/d−1+ε . Note that we only have to sum over O(log B) dyadic intervals since H(L) B 2 for every line L that contains two rational points of height at most B. Lemma 3.4. If T ≤ B 2 , then N (Z2 (T ), B) d,ε B 3+ε + B 2+ε T (3+1/d)/2+ε . Proof. Every rational line in P4 contains a rational point p such that H(p) A00 H(L)1/2 for some positive constant A00 . This is a consequence of Lemma 2.1 and 2.2. Hence, [ Z2 (T ) ⊂ (Z ∩ C(p, X)), p∈X(Q) H(p)≤A00 T
where C(p, X) is the cone of lines in X with vertex p. Suppose that C(p, X) = X for some rational point p ∈ X and let J ⊂ P4∗ (Q) be the projection of I2 ⊂ P4∗ (Q) × P4∗ (Q) on the first factor. There are O(B) hyperplanes Γ1 ∈ J passing through p, and there are Od,ε (R2/d+ε ) rational lines of height at most R on the irreducible surface Γ1 ∩ X for any Γ1 ∈ J (see the proof of Lemma 3.3). We are only interested in lines that contain two different 13
points of height at most B, and on such lines there are O(B 2 /R) rational points on P4 of height at most B if R ≤ B 2 . Hence, X N (L, B) d,ε B 3 R2/d−1+ε . L⊂Z∩C(p,X) R
By summing over dyadic intervals, we get N (Z ∩ C(p, X), B) d,ε B 3+ε . If there are two different rational points p and q on P4 of height at most T 1/2 ≤ B such that X = C(p, X) = C(q, X), then N (Z2 (T ), B) ≤ N (X, B) d,ε B 3+ε according to Lemma 3.1. Hence, the contribution to N (Z2 (T ), B) from the points p with C(p, X) = X is Od,ε (B 3+ε ). Now assume that C(p, X) 6= X for some rational point p ∈ X and consider an irreducible component Y ⊂ C(p, X). If Y is not a two-plane, then N (Y, B) d,ε B 2+ε according to (E2) or (E6). Note that the degree of Y is bounded in terms of d according to Lemma 2.7. If Y is a two-plane such that all points of height at most B on P4 (Q) ∩ Y lie on a line, then N (Y, B) B 2 according to (E2). Hence, X N (C(p, X), B) d,ε B 2+ε N (X, T 1/2 ) + N 0 (X, B),
(3.6)
p∈X(Q) H(p)≤A00 T 1/2 C(p,X)6=X
where N 0 (X, B) is the cardinality defined in Lemma 3.1. The first term in (3.6) is Od,ε (B 2+ε T (3+1/d)/2+ε ) according to (E3), and the second term is Od,ε (B 3+ε ) according to Lemma 3.1. Hence, N (Z2 (T ), B) d,ε B 3+ε + B 2+ε T (3+1/d)/2+ε , provided that T B 2 . 5d
If we put T = B 10d−6 in (3.4) and apply Lemma 3.3 and 3.4, then we get N (Z, B) d,ε B 3+ε + B
14
7 11 4 + 10d−6 +ε
.
3.3
Estimate of N (Σ3 , B)
Consider those pairs (Γ1 , Γ2 ) ∈ I3 with T < H(Γ1 ) ≤ 2T for some T B 1/4 . For each such pair we use Lemma 2.1 to find a basis b0 , b1 , b2 of the lattice x ∈ Z5 : [x] ∈ Γ1 ∩ Γ2 ∪ {0}. With out loss of generality, we may assume that
|b0 | ≤ |b1 | ≤ |b2 | . Let φ : Γ1 ∩ Γ2 → P2 be the map [λ0 b0 + λ1 b1 + λ2 b2 ] 7→ [λ0 , λ1 , λ2 ]. Then H(φ(p)) H(p)/ |b0 | for a rational point p ∈ Γ1 ∩ Γ2 , so N (Γ1 ∩ Γ2 ∩ X, B) d,ε
B |b0 |
2/d+ε
according to (E4). Now consider all bases b0 , b1 , b2 which satisfy Ci < |bi | ≤ 2Ci for some positive numbers Ci with C0 C1 C2 . The set of Γ ∈ P4∗ which contains the point [b0 ] is a hyperplane Λ in P4∗ , and the number of Γ ∈ Λ(Q) with H(Γ) ≤ R is O(R4 / |b0 |), provided that R |b0 | [4, Lemma 1(v)]. Hence, the number of pairs (Γ1 , Γ2 ) ∈ I3 with T < H(Γ1 ) ≤ 2T , Ci < |bi | ≤ 2Ci , and b0 fixed is 4 T ((C0 C1 C2 )/T )4 = C02 C14 C24 . C0 C0 The number of b0 with |b0 | C0 is O(C05 ). Hence, X 7−2/d 4 4 2/d+ε N (Γ1 ∩ Γ2 ∩ X, B) d,ε C0 C1 C2 B (Γ1 ,Γ2 )∈I3 T
(C0 C1 C2 )5−2/3d B 2/d+ε B 5/2+5/3d+ε . By summing over dyadic intervals we get N (Σ3 , B) d,ε B 5/2+5/3d+ε .
3.4
Conclusion
We have shown that if X ⊂ P4 is an irreducible hypersurface of degree d ≥ 3, then 11 7 5 5 N (X, B) d,ε B 3+ε + B 4 + 10d−6 +ε + B 2 + 3d +ε , for every ε > 0. It is straightforward to see that this estimate implies Theorem 1. 15
References [1] T. D. Browning, A note on the distribution of rational points on threefolds, Quart. J. Math., 54 (2003), 33–39. [2] W. Fulton and R. Lazarsfeld, Connectivity and its applications in algebraic geometry, Algebraic Geometry (LNM 862), Springer-Verlag, 1981, 26–92. [3] J. Harris, Algebraic Geometry, Springer-Verlag, 1992. [4] D. R. Heath-Brown, The density of rational points on curves and surfaces, Ann. of Math., 155 (2002), 553–595. [5] J. Pila, Density of integral and rational points on varieties, Ast´erisque, 228 (1995), 183–187. [6] W. M. Schmidt, Diophantine Approximations and Diophantine Equations (LNM 1467), Springer-Verlag, 1991.
16
Remarques sur l’approximation faible sur un corps de fonctions d’une variable J.-L. Colliot-Th´el`ene et P. Gille 26 mars 2003
Introduction Soit C/k une courbe projective, lisse, connexe, d´efinie sur un corps alg´ebriquement clos k de caract´eristique nulle. On note F = k(C) le corps de fonctions de C et FM le compl´et´e de F pour la valuation vM d´efinie par un point ferm´e M de C. Soit X/F une vari´et´e lisse g´eom´etriquement connexe. L’ensemble des FM -points X(FM ) est muni d’une topologie naturelle ([Kn]). On dit que l’approximationQfaible vaut pour un ensemble fini S de points ferm´es de C si l’image diagonale de X(F ) dans M ∈S X(FM ) est dense pour la topologie produit. Si c’est le cas pour tout ensemble fini S de points ferm´es, on dit que l’approximation faible vaut pour la vari´et´e X/F . Comme l’a rappel´e B. Hassett dans son expos´e `a l’A.I.M. de Palo Alto en d´ecembre 2002, on se demande si toute F -vari´et´e lisse et g´eom´etriquement rationnellement connexe satisfait `a l’approximation faible. Le seul r´esultat g´en´eral connu `a ce jour est un th´eor`eme de Koll´ar, Miyaoka et Mori (voir [Ko] IV. 6.10), qui ne concerne qu’une version faible de l’approximation, et ce seulement pour les M ∈ C o` u X/F a bonne r´eduction. Dans cette note nous ´etablissons cet ´enonc´e pour les F -vari´et´es g´eom´etriquement rationnellement connexes qui se ram`enent par fibrations `a des espaces homog`enes de groupes lin´eaires connexes. Nous montrons par ailleurs que sous la simple hypoth`ese d’annulation des H i (X, OX ) (pour i ≥ 1) il peut y avoir d´efaut d’approximation faible. Notre exemple est une surface d’Enriques. L’outil utilis´e est une loi de r´eciprocit´e et l’existence d’un revˆetement non ramifi´e non trivial sur une telle surface. On notera que des r´esultats particuliers sur l’approximation faible ont ´et´e obtenus sur des corps de fonctions plus compliqu´es que ceux consid´er´es ici : corps de fonctions d’une variable sur le corps des r´eels ([CT], [Sch], [Du]), et corps de fonctions de deux variables sur un corps alg´ebriquement clos ([CTGiPa]).
§1. Rappels et pr´ eliminaires §1.a Approximation faible Soient K un corps et Ω un ensemble de valuations de K, distinctes deux `a deux, discr`etes de rang un. Pour tout v ∈ Ω soit Kv le compl´et´e de K en v. L’approximation faible pour les K-vari´et´es lisses g´eom´etriquement connexes se d´efinit comme dans l’introduction. On note AnK l’espace affine de dimension n sur K. Le fait suivant est bien connu : Proposition 1.1. Soient K et Ω comme ci-dessus. Soient X et Y deux K-vari´et´es lisses g´eom´etriquement connexes. S’il existe n, m ∈ N tels que les K-vari´et´es X ×F AnK soient Kbirationnellement ´equivalentes, alors l’approximation faible vaut pour X si et seulement si elle vaut pour Y . En particulier, l’approximation faible vaut pour X si et seulement si elle vaut pour un ouvert non vide de X. Proposition 1.2. Soient K et Ω comme ci-dessus. Soit f : X → Y un K-morphisme lisse de K-vari´et´es lisses g´eom´etriquement connexes, a ` fibre g´en´erique g´eom´etriquement connexe. Si 1
pour tout point M ∈ Y (K) l’approximation faible vaut pour la F -vari´et´e fibre XM = f −1 (M ), et si l’approximation faible vaut pour Y , alors elle vaut pour X. D´emonstration. Soit S ⊂ Ω un ensemble fini, et supposons donn´e pour chaque v ∈ S un point Pv ∈ X(Kv ). Soit Qv = f (Pv ). Par le th´eor`eme des fonctions implicites, il existe un voisinage ouvert ωv ⊂ Y (Kv ) contenant Qv , ´equip´e d’une section analytique σv : ωv → X(Kv ) de la projection X(Kv ) → Y (Kv ). L’approximation faible valant pour Y , on peut trouver un point F -rationnel Q ∈ Y (K) tel que pour chaque v ∈ S le point Q soit tr`es proche de Qv dans Y (Kv ) et qu’il appartienne `a ωv . Soit Z = f −1 (Q) la fibre en Q. Alors Rv = σv (Q) ∈ Z(Kv ) est tr`es proche de Pv dans X(Kv ). Par hypoth`ese, l’approximation faible vaut pour la F -vari´et´e Z. Ainsi il existe un point P ∈ Z(K) ⊂ X(K) tr`es proche de Rv dans Z(Kv ) et donc dans X(Kv ) pour chaque v ∈ S. Un tel point est tr`es proche de chaque Pv pour v ∈ S. Remarque. On ne peut esp´erer appliquer cette proposition g´en´erale que lorsque l’on a d´ej`a la propri´et´e : toute fibre non vide de f au-dessus d’un point K-rationnel de Y poss`ede un point K-rationnel. Sur un corps K = k(C) du type consid´er´e dans l’introduction, d’apr`es Graber, Harris et Starr [GHS] et d’apr`es de Jong et Starr [dJS], c’est le cas si la fibre g´en´erique de f est birationnelle `a une vari´et´e projective, lisse, g´eom´etriquement connexe et rationnellement connexe. Dans ce cas, pour les vari´et´es qui se d´evissent en vari´et´es rationnellement connexes pour lesquelles l’approximation faible a d´ej`a ´et´e ´etablie, on obtient l’approximation faible.
§1.b Cohomologie galoisienne des corps C1 Le th´eor`eme suivant regroupe des r´esultats de Springer (cas des corps C1 , qui nous suffirait ici, les corps F = k(C) et FM ' k((t))) ´etant des corps C1 ) et de Steinberg (cas g´en´eral). Th´eor`eme 1.3. Soit K un corps de caract´eristique z´ero et de dimension cohomologique 1. a) Tout K-groupe r´eductif connexe est quasi-d´eploy´e. b) Tout espace homog`ene sous un K-groupe lin´eaire connexe poos`ede un point rationnel. c) Soient G un K-groupe lin´eaire connexe et H ⊂ G un sous-groupe ferm´e. La projection G(K)-´equivariante G(K) → (G/H)(K), o` u les deux ensembles sont point´es par l’´el´ement neutre de G et par son image, se prolonge en une suite exacte d’ensembles point´es G(K) → (G/H)(K) → H 1 (K, H) → 1. d) Soit H un K-groupe lin´eaire, et soit H 0 ⊂ H sa composante connexe, sous-groupe normal de H. L’homomorphisme quotient H → H/H 0 induit une bijection H 1 (K, H) → H 1 (K, H/H 0 ). D´emonstration. a) Voir [SeCG] III.2.3 Thm 1’ p. 139. b) Voir [SeCG] III.2.4 Cor. 1 p. 141. L’´enonc´e b) peut se reformuler ainsi : pour tout F espace homog`ene X sous un K-groupe lin´eaire connexe, il existe un K-morphisme G-´equivariant de G (vu comme espace principal homog`ene `a gauche sous G) vers X. c) Combiner H 1 (K, G) = 0 (qui est une reformulation de b) dans le cas des espaces principaux homog`enes) et [SeCG] I.5.4 Prop. 36 p. 47. d) Voir [SeCG] III.2.4 Cor. 3 p. 142.
§2. Approximation faible pour les espaces homog` enes de groupes lin´ eaires connexes et pour les vari´ et´ es qui s’y ram` enent Le th´eor`eme suivant devrait ˆetre consid´er´e comme bien connu.
2
Th´eor`eme 2.1 Soit F = k(C) un corps de fonctions d’une variable sur un corps alg´ebriquement clos de caract´eristique z´ero et soit G un F -groupe lin´eaire connexe. Alors G satisfait a ` l’approximation faible. D´emonstration. Le groupe G/F est le produit semi-direct de son quotient r´eductif Gred par son radical unipotent Ru G qui est F -isomorphe (en tant que vari´et´e) `a un espace affine. Par la proposition 1.1, on est ramen´e au cas o` u G est un groupe r´eductif connexe. Comme le corps F est C1 , le groupe r´eductif G est quasi-d´eploy´e. Soit B un sous-groupe de Borel de Gred et soit T un F -tore maximal de B. La F -vari´et´e sous-jacente au radical unipotent Ru B est un espace affine, il en est de mˆeme du radical unipotent Ru B − du sous-groupe de Borel B − oppos´e `a B, et le groupe G contient un ouvert, “la grosse cellule”, isomorphe au produit (Ru B) ×F T ×F (Ru B)− ([SGA3], exp. XXII, proposition 4.1.2 page 172). Par la Proposition 1.1, on est ramen´e `a ´etablir l’approximation faible pour un F -tore T . Par consid´eration du groupe des caract`eres de T , on voit ais´ement que pout tout F -tore (ici F pourrait ˆetre un corps quelconque), il existe une suite exacte de F -tores 1→R→E→T →1 Q o` u E est un F -tore quasi-trivial, i.e. un produit i RFi /F Gm de restrictions `a la Weil du groupe multiplicatif Gm pour diverses extensions de corps Fi /F , et o` u R est un F -tore. Le tore quasitrivial E est un ouvert d’un espace affine sur F , il satisfait donc `a l’approximation faible. Soit S un ensemble fini de points ferm´es de la courbe C. Comme les compl´et´es FM , M ∈ S, du corps 1 F = k(C) sont des continue Q Q corps C1 , les groupes H (FM , R) sont nuls. Ainsi l’application Q E(K T (K ) est surjective. Comme E(K) est dense dans E(K ) → M ), il M M M ∈S M ∈S M ∈S Q s’en suit imm´ediatement que T (K) est dense dans M ∈S T (KM ). Th´eor`eme 2.2. Soit F = k(C) un corps de fonctions d’une variable sur un corps alg´ebriquement clos de caract´eristique z´ero et soit G un F -groupe lin´ Qeaire. Pour tout ensemble fini u le second S de points ferm´es de C, l’application diagonale H 1 (F, G) → M ∈S H 1 (FM , G), o` produit est un ensemble fini, est surjective. D´emonstration. D’apr`es le Th´eor`eme 1.3.d, il suffit d’´etablir le th´eor`eme lorsque G est un F -sch´ema en groupes finis. Soient Fs une clˆoture s´eparable de F et G = Gal(Fs /F ). Soit M un point ferm´e de C. Soit FM,s une clˆoture s´eparable de FM ' k((t)) et Fs ⊂ FM,s un plongement. Le groupe de ˆ le compl´et´e profini de Z. On fixe un tel Galois absolu IM = Gal(FM,s /FM ) est isomorphe `a Z, isomorphisme, i.e. on fixe un g´en´erateur profini cM ∈ IM . Fixons aussi, pour chaque M ∈ C, un plongement Fs ⊂ FM,s . Ceci d´etermine un plongement IM ⊂ G. On note A = G(Fs ) = G(FM,s ). C’est un groupe fini muni d’une action de G et donc de IM pour tout M ∈ C. Quitte `a agrandir S, on peut supposer que le F -sch´ema en groupe G provient d’un U sch´ema en groupes fini ´etale sur U , o` u U d´esigne le compl´ementaire de S dans C. En d’autres termes, on peut supposer que pour tout M ∈ / S, l’action de IM sur A est triviale. Soit H un sous-groupe ferm´e de G. L’ensemble de cohomologie H 1 (H, A) est un quotient de l’ensemble Z 1 (H, A) des 1-cocycles continus de H `a valeurs dans le groupe fini A. Cet ensemble s’identifie `a l’ensemble des homomorphismes continus de H dans le produit semi-direct A.H qui sont des sections de la projection structurale A.H → H ([SeCG], chap. I, 5.1, Exercice 1 p. 43). Si zh ∈ A, h ∈ H est le 1-cocycle, la section est donn´ee par h 7→ zh .h. Si l’on se donne un syst`eme de g´en´erateurs topologiques de H, il existe au plus un 1-cocycle dans Z 1 (H, A) prenant des valeurs donn´ees sur ces g´en´erateurs. En particulier, pour tout M , l’ensemble Z 1 (IM , A) est fini (A ´etant fini). A fortiori 1 H (FM , G) = H 1 (IM , A) est fini. 3
Soit S ⊂ C un ensemble fini de points ferm´es de C. Pour ´etablir le th´eor`eme, nous allons ´etablir l’´enonc´e a priori plus fort que que l’application naturelle de 1-cocycles continus Y Z 1 (G, A) → Z 1 (IM , A) M ∈S
est surjective. Soit g le genre de la courbe C. Notons S = {M1 , · · · , Ms }. Choisissons un point ferm´e Ms+1 ∈ C \ S. Notons H = Gal(L/F ) le groupe de Galois de la sous-extension maximale L/F de Fs /F non ramifi´ee en dehors de S ∪ Ms+1 . C’est un quotient de G, et l’on a des inclusions induites IMj ⊂ H pour j = 1, · · · , s + 1. Rappelons que pour chaque j, on a choisi ˆ L’hypoth`ese initiale faite sur un g´en´erateur topologique cj du groupe d’inertie Ij = IMj ' Z. S garantit que l’inclusion naturelle G(L) ⊂ G(Fs ) = A est une ´egalit´e. On dispose alors d’une application Z 1 (H, A) → Z 1 G, A), et pour ´etablir l’´enonc´e il suffit de montrer que l’application diagonale Y Z 1 (H, A) → Z 1 (IM , A) M ∈S
est surjective. D’apr`es le th´eor`eme d’existence de Riemann ([SeRC], §1.2) le groupe H est le groupe profini engendr´e par les g´en´erateurs a1 , b1 , · · · , ag , bg , c1 , · · · , cs , cs+1 avec l’unique relation [a1 , b1 ] · · · [ag , bg ] c1 c2 · · · cs cs+1 = 1, o` u pour tout j = 1, · · · , s, l’´el´eQ ment cj est comme ci-dessus. u zj Un ´el´ement du produit M ∈S Z 1 (IM , A) d´etermine une famille zj = zMj ∈ A, o` est la valeur du 1-cocycle sur le g´en´erateur cMj = cj . Pour tout j = 1, · · · , s, on dispose donc de l’homomorphisme IMj → A.Ij envoyant cj sur zj .cj . Cet homomorphisme s’´etend naturellement en un homomorphisme ρj : IMj → A.H. Pour d´efinir un homomorphisme continu ρ : H → A.H, il suffit de le d´efinir sur les g´en´erateurs de H, et d’assurer que la relation ci-dessus est respect´ee. D´efinissons ρ(ai ) = 1.ai et ρ(bi ) = 1.bi pour tout i = 1, · · · , g, puis ρ(cj ) = zj .cj pour j = 1, · · · , s. Pour que la relation soit respect´ee, il suffit de choisir ρ(cs+1 ) ∈ A.H tel que [a1 , b1 ] · · · [ag , bg ]z1 .c1 . . . zs .cs .ρ(cs+1 ) = 1, (par abus de langage, on note ici ai .1 = ai et bi .1 = bi ), ce qui compte tenu de la relation initiale dans H se traduit encore par −1 −1 cs+1 .c−1 s . · · · .c1 .z1 .c1 . . . zs .cs .ρ(cs+1 ) = 1.
Soit u ∈ A.H tel que ρ(cs+1 ) = u.cs+1 . Un calcul imm´ediat (moins magique qu’il n’y paraˆıt) montre que u appartient `a A ⊂ A.H, on notera donc u = zs+1 . On dispose donc d’un homomorphisme continu envoyant H dans A.H, envoyant ai sur 1.ai et bi sur 1.bi pour i = 1, · · · , g, et par ailleurs cj sur zj .cj pour j = 1, · · · , s+1. Cet homomorphisme d´efinit une section de la projection A.H → H, comme on le voit sur les g´en´erateurs. Enfin sa restriction ` a chaque sous-groupe Ij pour j = 1, · · · , s a son image dans A.Ij et co¨ıncide avec l’homomorphisme initial Ij → A.Ij . Th´eor`eme 2.3. Soit F = k(C) un corps de fonctions d’une variable sur un corps alg´ebriquement clos de caract´eristique z´ero, et soit G un F -groupe lin´eaire connexe. L’approximation faible vaut pour tout espace homog`ene sous G.
4
D´emonstration. Soit X/F un tel espace homog`ene. D’apr`es le th´eor`eme 1.3.b, on peut ´ecrire X = G/H, o` u H ⊂ G est un F -sous-groupe ferm´e de G. D’apr`es le th´eor`eme 1.3.c, et le fait que tant le corps F que les corps FM sont des corps C1 , on a un diagramme commutatif de suites exactes d’ensembles point´es G(F ) − → y Q G(FM ) − → M ∈S
(G/H)(F ) y Q (G/H)(FM )
φ
H 1 (F, H) y
− →
φM
− →
Q
− →
1
H 1 (FM , H) − → 1.
M ∈S
M ∈S
D’apr`es le th´eor`eme 2.2, la fl`eche verticale de droite est surjective. Pour chaque M ∈ S, soit xM ∈ (G/H)(KM ). D’apr`es le diagramme ci-dessus et ses propri´et´es, il existe x ∈ (G/H)(F ) qui Q H 1 (FM , H). Il existe alors pour chaque M ∈ S a mˆeme image que la famille {PM } dans M ∈S
un ´el´ement gM ∈ G(FM ) tel que xM = gM .x. Comme l’approximation faible vaut pour G (Th´eor`eme 2.1), on peut trouver g ∈ G(F ) arbitrairement proche de chaque gM ∈ G(FM ), et alors g.X ∈ (G/H)(F ) est arbitrairement proche de chaque xM ∈ (G/H)(FM ) (chaque application G(FM ) → (G/H)(FM ) ´etant continue). Th´eor`eme 2.4. Soit F = k(C) le corps des fonctions d’une courbe projective lisse C sur un corps k alg´ebriquement clos de caract´eristique z´ero. Soit f : X → Y un F -morphisme dominant de F -vari´et´es g´eom´etriquement int`egres, dont la fibre g´en´erique est g´eom´etriquement connexe et F (Y )-birationnelle a ` un espace homog`ene d’un groupe lin´eaire connexe G sur le corps des fonctions F (Y ) de Y . Si Y satisfait a ` l’approximation faible, alors X satisfait a ` l’approximation faible. D´emonstration. Pour ´etablir le th´eor`eme, on peut d’apr`es la proposition 1.1 restreindre Y `a un ouvert et X `a l’image r´eciproque de cet ouvert. On peut donc supposer que le F (Y )groupe lin´eaire connexe est la restriction d’un Y -groupe lin´eaire fid`element plat sur Y , `a fibres connexes, soit G/Y , et que pour tout point P ∈ Y (F ) la fibre f −1 (P ) est lisse, g´eom´etriquement et F -birationnelle `a un F -espace homog`ene sous le F -groupe lin´eaire connexe fibre GP . D’apr`es le th´eor`eme 2.3 et la proposition 1.1, toute telle fibre satisfait `a l’approximation faible. Il r´esulte alors des hypoth`eses et de la proposition 1.2 que X satisfait `a l’approximation faible. Les exemples non triviaux abondent (par exemple non trivial, on entend des exemples de F -vari´et´es qui ne sont pas n´ecessairement F -birationnelles `a un espace projectif). Les plus ´evidents sont les surfaces fibr´ees en coniques (de dimension au moins un) au-dessus de la droite projective P1F , et plus g´en´eralement les fibr´es en quadriques, resp. en vari´et´es de Severi-Brauer au-dessus d’un espace projectif de dimension arbitraite. Dans les cas cit´es, la d´emonstration de l’approximation faible se fait bien sˆ ur `a moindres frais : outre l’´el´ementaire proposition 1.2, on utilise le fait que toute F -quadrique de dimension au moins 1 poss`ede un F -point (cas particulier du th´eor`eme de Tsen remontant `a Max Noether) et est donc F -birationnelle `a un espace projectif sur F , resp. le fait que toute vari´et´e de Severi-Brauer sur F est F -isomorphe `a un espace projectif sur F (th´eor`eme de Tsen et th´eorie ´el´ementaire des vari´et´es de Severi-Brauer, due `a F. Chˆatelet). D´egageons le : Corollaire 2.5. Soit F = k(C) comme ci-dessus et soit X/F une surface de Del Pezzo degr´e 4, c’est-` a-dire une intersection compl`ete lisse de deux quadriques dans P4F . L’approximation faible vaut pour X. 5
D´emonstration. Comme F est un corps C1 , on a X(F ) 6= ∅. Comme F est infini, il existe donc un point F -rationnel R non situ´e sur l’une quelconque des 16 droites (sur une clˆoture alg´ebrique de F ) contenues dans X ([Ma], Chap. IV, §30, Theorem 30.1 p. 162). En ´eclatant R, on obtient une surface cubique lisse Y ⊂ P3F qui contient une droite d´efinie sur F (la courbe exceptionnelle image inverse de R). Le pinceau des 2-plans de P3F passant par cette droite d´efinit sur Y une structure de surface fibr´ee en coniques au-dessus de P1F , et l’on a vu ci-dessus que l’approximation faible vaut pour une telle surface. Par la proposition 1.1, l’approximation faible vaut donc aussi pour X. Remarque. En utilisant la proposition 1.2, on d´eduit de ce r´esultat l’approximation faible pour toute F -vari´et´e X intersection compl`ete lisse de deux quadriques dans PnF , n ≥ 4. Pour n ≥ 5, on peut aussi d´eduire l’approximation faible de [CTSSD], Theorem 3.27 p. 80. Pour n ≥ 6, la situation est encore plus simple : dans ce cas, toute telle vari´et´e X est F -birationnelle `a un espace projectif ([CTSSD], Theorem 3.2 p. 60; Theorem 3.4 p. 62). Toute F -surface projective, lisse, g´eom´etriquement rationnellement connexe est F -birationnelle soit `a une surface fibr´ee en coniques au-dessus de P1F , soit `a une surface de Del Pezzo de degr´e d, avec 1 ≤ d ≤ 9. Toute F -surface de Del Pezzo de degr´e d ≥ 5 est F -birationnelle a` P2F , donc satisfait `a l’approximation faible. Nous venons de voir que cette derni`ere propri´et´e vaut pour d = 4. La question de savoir si l’approximation faible vaut reste ouverte pour les F -surfaces de Del Pezzo de degr´e 3 (surfaces cubiques lisses), et a fortiori pour les F -surfaces de Del Pezzo de degr´e 2 et 1.
§3. Une surface d’Enriques qui ne satisfait pas ` a l’approximation faible Soit F = k(C) comme dans l’introduction. Nous commen¸cons par d´ecrire un m´ecanisme familier dans un cadre plus d´elicat, `a savoir celui des corps de nombres. La somme des degr´es des diviseurs d’une fonction est nulle. Le complexe ainsi obtenu F ∗ → ⊕M ∈C Z → Z, o` u la derni`ere fl`eche est la somme, induit pour tout entier n > 0 un complexe F ∗ /F ∗n → ⊕M ∈C Z/n → Z/n. Pour tout M ∈ C, la fl`eche F ∗ /F ∗n → Z/n induite par l’application diviseur en M s’identifie `a ∗ ∗n la fl`eche naturelle F ∗ /F ∗n → FM /FM . Soit X une F -vari´et´e projective, lisse, g´eom´etriquement connexe. Soit F (X) son corps des fonctions et f ∈ F (X)∗ une fonction dont le diviseur est une puissance n-i`eme dans le groupe des diviseurs de X. Soit U ⊂ X un ouvert non vide sur lequel f est inversible. L’´equation f = tn d´efinit sur l’ouvert U un µn -torseur qui, grˆace `a l’hypoth`ese sur le diviseur, s’´etend en un µn -torseur Y → X. Pour tout corps L contenant F , `a ce µn -torseur est associ´e une application d’´evaluation ϕL : X(L) → H 1 (L, µn ) = L∗ /L∗n qui sur U (L) n’est autre que l’application associant `a P ∈ U (L) la classe de f (P ) dans L∗ /L∗n . Pour M ∈ C point ferm´e et L = FM , l’application ∗n ∗ ϕFM : X(FM ) → FM = Z/n est continue, i.e. localement constante. Par ailleurs, la /FM propret´e de X/F et un argument de bonne r´eduction montre que pour presque tout M ∈ C ∗ ∗n (i.e. tout M sauf un nombre fini), l’application ϕFM : X(FM ) → FM /FM = Z/n se factorise 6
∗ ∗ n par OM /(OM ) = 1, donc a une image nulle dans Z/n. Ici OM d´esigne le compl´et´e de l’anneau local de C en M , qui est isomorphe `a k[[t]]. Soit S ⊂ C l’ensemble fini des points o` u ϕFM n’est pas constante. Le torseur Y → X d´efinit donc une application X(F ) → ⊕M ∈S Z/n qui compos´ee avec la somme ⊕M ∈S Z/n → Z/n donne z´ero. Nous pouvons alors conclure :
Proposition M ∈ S, un point PM ∈ P 3.1. Dans la situation ci-dessus, soit pour chaque Q ϕ (P ) = 6 0 ∈ Z/n, alors la famille {P } ∈ X(FM ) n’est pas dans X(FM ). Si M M ∈S M Q M l’adh´erence de l’image de X(F ) dans le produit topologique M ∈S X(FM ). Remarque. L’id´ee de cette proposition n’est pas nouvelle, on a d´ej` a utilis´e des lois de r´eciprocit´es vari´ees pour d´efinir une obstruction `a l’approximation faible dans divers contexte. L’obstruction la plus connue est l’obstruction de Brauer-Manin sur un corps de nombres, qui fait intervenir le groupe H 2 (., µn ). Toujours sur un corps de nombres, on peut aussi utiliser H 1 (., µn ) (voir [Ha]). Sur un corps de fonctions d’une variable sur les r´eels, voir [CT] et [Du]. Soit A1F = SpecF [t] la droite affine, et soit A1F ⊂ C = P1k le plongement naturel. Notons F = k(P1 ) = k(t) le corps des fonctions de P1F . Soient a, b, c, d, e ∈ C, soit c(u) = t(u − a)(u − b), d(u) = et(t − c)(t − d). Supposons que le polynˆome e.c(u).d(u).(c(u) − d(u)).u(u − 1) ∈ C[u] est s´eparable de degr´e 8. Soit U ⊂ A4K , avec coordonn´ees affines x, y, z, u) la F -surface lisse d´efinie dans A4F par le syst`eme d’´equations x2 − t(u − a)(u − b) = u(u − 1)y 2 6= 0, x2 − te(u − c)(u − d) = u(u − 1)z 2 6= 0. (∗) Soit X/F un mod`ele projectif et lisse, F -minimal, de la surface U . Il existe un ouvert non vide V ⊂ U qu’on peut identifier `a un ouvert de X. Proposition 3.2. La F -surface X est une surface d’Enriques, elle satisfait en particulier H 1 (X, OX ) = 0 et H 2 (X, OX ) = 0. La fonction rationnelle d´efinie par f = u(u − 1) sur U a son diviseur sur X qui est un double. D´emonstration. Que le diviseur de f sur tout mod`ele lisse soit un double est facile `a ´etablir par des calculs valuatifs (voir [CTSkSD]). Pour le d´etail de la d´emonstration du fait que X est une surface d’Enriques, affirm´e dans [CTSkSD], voir [La]. D’apr`es ce qui a ´et´e rappel´e ci-dessus, il existe un Z/2-torseur Y au-dessus de X dont la restriction `a V est obtenue en extrayant la racine carr´ee de la fonction f (l’espace total du torseur est une surface K3). Pour tout corps L contenant F , on a une application induite ϕL : X(L) → L∗ /L∗2 , qui sur V (L) n’est autre que l’application envoyant P ∈ V (L) sur la classe de f (P ) dans L∗ /L∗2 . Proposition 3.3. Avec les notations ci-dessus, pour M 6= 0, ∞ ∈ P1 , l’image de l’application ∗ ∗2 ϕM : X(FM ) → FM /FM = Z/2 est nulle. Par ailleurs pour M = 0 et pour M = ∞, l’image de ϕM est tout le groupe Z/2. D´emonstration. Par continuit´e et par le th´eor`eme des fonctions implicites, qui garantit que V (FM ) est dense dans X(FM ), il suffit d’´etablir ces faits pour les applications U (FM ) → ∗ ∗2 FM /FM = Z/2 d´efinie par la fonction f . Soient M ∈ P1 , soit v = vM la valuation associ´ee sur F . Soit (x, y, z, u) un point de U (FM ). Supposons v(u) < 0. Des ´equations (*) il r´esulte que v(u(u − 1)) = 2v(u) est pair. Supposons alors v(u.(u − 1)) > 0, et v(u(u − 1)) ≥ 0 impair. Supposons d’abord v(t) = 0. Alors n´ecessairement v(x2 ) = v(t(u−a)(u−b) = 0 (tous deux sont pairs), et v(x2 −t(u−a)(u−b)) > 0. De mˆeme v(x2 − et(u − c)(u − d)) > 0. On a alors v(c(u) − d(u)) > 0, ce qui est impossible. L’´enonc´e pour tout v = vM avec M 6= 0, ∞ est donc ´etabli.
7
Soit v = vM avec M = 0 ∈ A1F , et donc v(t) = 1. Il existe un point (x, y, z, u) = (1/t, y, z, 1/t) ∈ U (FM ) avec v(y) = 0, v(z) = 0, et donc v(u.(u − 1)) pair. Par ailleurs il existe un point (x, y, z, u) = (0, y, z, t) avec v(y) = 0, v(z) = 0. Pour un tel point, on a v(u.(u − 1)) = 1 impair. Soit v = vM avec M = ∞ ∈ P1F , et donc v(t) = −1. Il existe des points avec v(x) < 0, v((u.(u − 1)) = 0, v(x) = v(y) = v(z) < 0. Par ailleurs il existe des points avec x = 0, u = 1/t, v(y) = v(z) = 1 et donc v(u.(u − 1)) = 1. Th´eor`eme 3.4. La surface d’Enriques X/F poss`ede des points rationnels. L’image de l’application diagonale X(F ) → X(F0 ) × X(F∞ ) n’est pas dense dans ce produit. D´emonstration. d’´equations
Fixons u = u0 ∈ C assez g´en´eral.
On obtient alors une F -courbe
x2 − t(u0 − a)(u0 − b) = u0 (u0 − 1)y 2 6= 0, x2 − et(u0 − c)(u0 − d) = u0 (u0 − 1)z 2 6= 0, contenue dans U , et rencontrant V . Cette courbe admet une F -compactification lisse Γ donn´ee en coordonn´ee homog`enes (X, Y, Z, T ) par X 2 − t(u0 − a)(u0 − b)T 2 = u0 (u0 − 1)Y 2 , X 2 − et(u0 − c)(u0 − d)T 2 = u0 (u0 − 1)Z 2 . Sur cette courbe on trouve pour T = 0 des F -points lisses (`a coordonn´ees dans C). L’application rationnelle de la F -courbe lisse Γ vers la F -vari´et´e propre X est partout d´efinie, on a donc X(F ) 6= ∅. Le reste de l’´enonc´e r´esulte de la combinaison des Propositions 3.1, 3.2 et 3.3.
Remarque. Les ´equations concr`etes de surfaces d’Enriques utilis´ees ci-dessus furent introduites dans [CTSkSD]. Lafon [La] utilise des formes tordues des ´equations (*) pour exhiber des exemples de surfaces d’Enriques sur F = C(t) et mˆeme sur F = C((t)) sans point rationnel. Nous ne doutons pas que l’on puisse utiliser de telles ´equations (tordues) pour exhiber des contre-exemples au principe de Hasse (X(FM ) 6= ∅ pour tout M ∈ P1 , mais X(F ) = ∅) reposant sur la loi de r´eciprocit´e sur F ∗ /F ∗2 utilis´ee plus haut, mais cela demandera sans doute un peu d’acharnement.
R´ ef´ erences
[CT] J.-L. Colliot-Th´el`ene, Groupes lin´eaires sur les corps de fonctions de courbes r´eelles. J. f¨ ur die reine und angew. Mathematik 474 (1996) 139-167. [CTGiPa] J.-L. Colliot-Th´el`ene, P. Gille et R. Parimala, Arithmetic of linear algebraic groups over two-dimensional fields, preprint, to appear (cf. Arithm´etique des groupes alg´ebriques lin´eaires sur certains corps g´eom´etriques de dimension deux. C. R. Acad. Sci. Paris S´er. I Math. 333 (2001), no. 9, 827-832.) [CTSkSD] J.-L. Colliot-Th´el`ene, A. N. Skorobogatov et Sir Peter Swinnerton-Dyer, Double fibres and double covers : paucity of rational points, Acta Arithmetica LXXIX.2 (1997) 113135. [CTSSD] J.-L. Colliot-Th´el`ene, J.-J. Sansuc et Sir Peter Swinnerton-Dyer, Intersections of two quadrics and Chˆatelet surfaces, I, J. f¨ ur die reine und angew. Math. 373 (1987) 37-107.
8
[dJSt] A. J. de Jong et J. Starr, Every rationally connected variety over the function field of a curve has a rational point, `a paraˆıtre. [Du] A. Ducros, L’obstruction de r´eciprocit´e `a l’existence de points rationnels pour certaines vari´et´es sur le corps des fonctions d’une courbe r´eelle. J. f¨ ur die reine und angew. Math. 504 (1998), 73-114. [GHS] T. Graber, J. Harris et J. Starr, Families of rationally connected varieties, J. Amer. Math. Soc., 16 (2003), 57-67. ´ [Ha] D. Harari, Weak approximation and non-abelian fundamental groups. Ann. Sci. Ecole Norm. Sup. (4) 33 (2000), 467-484. [Kn] M. Kneser, Schwache Approximation in algebraischen Gruppen, Colloque de Bruxelles (1962) 41-52. [Ko] J. Koll´ar, Rational Curves on Algebraic Varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Bd. 32, Springer (1996) [La] G. Lafon, Une surface d’Enriques sans point sur C((t)), note en pr´eparation. [Ma] Yu. I. Manin, Cubic forms, Algebra, Geometry, Arithmetic, North-Holland (1974; seconde ´edtion, r´evis´ee et compl´et´ee, 1986). [Sch] C. Scheiderer, Hasse principles and approximation theorems for homogeneous spaces over fields of virtual cohomological dimension one. Invent. Math. 125 (1996), no. 2, 307-365. [SeCG] J-P. Serre, Cohomologie Galoisienne, Cinqui`eme ´edition, r´evis´ee et compl´et´ee, Springer Lecture Notes in Mathematics 5 (1994) [SeRC] J-P. Serre, Revˆetements de courbes alg´ebriques, S´eminaire Bourbaki (1991/92), expos´e 749, Ast´erisque 206 (1992), 167-182. [SGA3] Sch´emas en groupes, S´eminaire de G´eom´etrie Alg´ebrique du Bois Marie 1962/64 (SGA 3), dirig´e par M. Demazure et A. Grothendieck, Lecture Notes in Math. 151-153, Springer-Verlag (1970).
J.-L. Colliot-Th´ el` ene, C.N.R.S., UMR 8628, Math´ ematiques, Bˆ atiment 425, Universit´ e de Paris-Sud, F-91405 Orsay France e-mail: [email protected]
Philippe Gille C.N.R.S., UMR 8628, Math´ ematiques, Bˆ atiment 425, Universit´ e de Paris-Sud, F-91405 Orsay France e-mail: [email protected]
9
!"#%$'&)(+*,-./&)0$! 12$! 34567 85 9;: <>=@?;ACBD/E8FGFIHJALKHM
Ë
q3¤Mq]}³}vqxy|}M'¹q{Mº}7MÀ¿¢Õ Æ]¾³õO"¼´Á 3^Ê" ö¢-÷ ,|8Â]>ò
5
ÆßÅ!y|y;¿~Oø{~7¼-y
m|'q-×>Ø
>Á~b¼
î8|Æ' ¡q¼'¼,µLúß0¢{43 ¢Qyû!³ µ`"vqb">4mk'>q¢ }q{²'!¨y
~ '·-{
¯ 8¡mq} m"q/0m{~Zm
~1Mm!úßq¢4k{MÈ
~~}{M34§}
û]y/Öbm|q{~±>¥4}7
q}v'y|q
¥4k¥4;q}J{My|,km{~'y|[}q¤M" |}q/0}Jm1~ÒúZ"¢È {~3¥44bû!³ {M}q§}J}q{~{m,@xª q¶v@ú / 'q1 ,úZ¢MÈ m{M3 @qûû{³§/Ù { {M¥|!m'
}Oª
{~''q/0¥41~!úZ¢m8È3m4qqûX~'{~| {¦ °%"4
úGÏ }3Ë8Mûú |û]©³ y||,|}mq Ü 4 /m '
M { > ~
5 q ' 4 ¥ · þ 8 > q } { ' m q 8 M m M { q ~ { ) | y } >
' ' ~
} Ò ß M { m k ¥
m | ~ { } v ~ { X ¯ mq>m8°|' ú Xû 4 m
mÒß |}q "3 " ü ú Xû "3^" ß{~ª
~y y " ¯ 4 ³/ÍÊ'ª
}
mq
y |}!y|m{M} à
}5q8}}q
{~;m{~8y
' ×>/ >5m8¡-m!qy|{MmZm
~qm§Mµ ¢Ñ}5|m·!¦þ]}
M>5|{m¤~{M>bÊ{M
y{M} ~qM¥±µ{b >Êú ¦`û]y³ ¨Qµ m8}yb|{~} ! ¯ 4 / 1 ú@Ú¢ 34 Gû }b!Oª
·
yú`ØÚ¨ ²¨7û®G¥4{qy|8Ò'mb]mm·{~}¯ 4 Öq8}{m8 à ·
~yGú`7Ú¨ ²¨û mq8'>§mqby>m|~}q|}kþ]
Mmq {·
|~}qy·{M|mÊ'
/mmO§>}MO
|'mO{M4}L³Ò
m>¥4}J
~b{MÉ/ ¢ ß{~y|y{ª 'q|¥k
~{~ |y|
~mM È }q{M!q~³ ã æQæ 0é òO¹~¹º¶Â¼ `ú ·
yú 7Ú¨ ²¨7ûmûøº½»®¿¾Ã½q·¿ô½¾Ã»®¼ ®¾Ã½ Á~¼'ñ±Â]òìGî~ÆmºòO¹ºÅ / ¶Ç4ï ðq¼½k'
~}q¬É|0¢4È üýË Ç ¯}b²ÆmºO¨QºÒ;Å!³Ç·}´Ù qqß{~}Jby|Xy|{J{ßmª{M¥ým
bm}qq
¬ÊÉ/!y~
~úZ'@ú¢·
È;{~~ûXyGmú |7qÚ¨ Ê~²';¯>{~û
yûm
'X·×O'
!{M'
}M{M}}L
ËM³|}qÖ~ÍÊ>'q
X|}©|>'¤ µ~q'4q{MÒ`'>
q},|y|;×Ê|>¤ |m{~!{~¦/}
{M>}4y|-}q¢{¤MÈk|})¯{M{M¥m¦!Qy}q
~4'mXʳ|!° Ìy'|}q}Om
m'{My|} Ò
q|y|×>ª{ >ª}q{ª!{M}J'
|}
,¦b}q'!}b!°q~'{~q5{* / ³ ! -
~y|m{}qO5
M}q>'
~y0y>¥¥k
{~}5y|}qO
Êþ]®
~~'{~qb³ »Â]ºòã Æ æQ¼') øæ »G¾Ãí¶_ú ¼4·À Ä"²>é§þ ºIê ½4§¼»® » ûº Ç·/ /"ï ²ìðq¼-¼½úÿkþ »ßøðqÀûº¼Ç Â!Æm¼¼Á±¼mñMÂ]ò¾Â]ì»ZîÂ-Æ'º¿òO½7¹7¾Ã½ºÒ&Å »®¼îM¼) Æ _ú 4 Â]GòûÇø'ðê ¼»Ãð» ¿»½;úúþ q¹ û8Æmº'ì¹¼¼»ßƱðqø!¼ À|º¶M¼¼Æ]Ák½;¼Â]À0òºìÅ@îÆ'¹ ºÆmòOº ¹Ø¼øºÅ»I¾Zº/ѽ,¹;ÅÆmÆ'ºº ó¼ø!/ »I ||,ªÆmq
5ºOmºÒÅ!OmqÇ·!Ù m>|}y
M!! mkq/,¯ m|!,ª
5{~)±y¥k{Jú
Ü Om'|û·m>q
Ê}q!M°m
{Mqú ;b7{Mû!m{~µ[ '¤Mq>) m±| }J@úm4 >~'G
~û!µ}q~·OÊ-{b
~¤~}
~'þ }
y|OJµ±mß_ú{M4 ·mGq
~û yq5yMÿ m¯ª{M³qÍÊLv³ ´®µL>}7'µqqb>k¤~
m~'m'k{~!qyy|
¥4Oµ0>m}Múêþ q'{~û úÃþ û·úÃ>þ
}!bû8k''mm>}Øü
M·)!³°LúGúÃÙ þ ;ûÎ ß{MÐ-ß{~{M-¥b
~m|4Ó¯Z
M]Ö8|}Øm>Ø
mmq>!mqy
~Obµ {Mß{~8->þ]¤~®
~>m )L|~'úÃþ{~ûm³û 'k !°
|ym'{ mOJq' }q{ ÛÏm³ {!>>Ó
~}CÎ µ/´ ,³ ¡q³ µ )L¥4¥k
¡Ðµ/qÓq'{¤~O8'qy>¥¥k
7}Õmq>
~m / ! ü Ù ) ³ Ù qq! ;{Mm6/ §|
8q'{~;!y|{Mm>kmqq~'{~kqm{ Ò>!m|}q- ÒO]m|¤~>y{~}J'{ /"² úßþ û!³X´m !>/m{±qm{¤M1 m/
Q q'/ { ,ÒO]'m{ Ò>q] Òª>!mmq|¤~ Ò>Oy]±'{~¤M}Jmy|{ "/"{M}M² '{ /"úÃþ ² !û!úßþ³ qûʪß{M'§q
'y|y!ßÿ {Mm' }v>³ 4! {M}q,y|q'm{q!{ÓOm
">µM|}ß{~!
~my|y {~" }
~}
~úßþ'mq¥4û] µ mq>m4° ' / km >" úÃþ qû!³!Ù }b!4ÿ 2Ë vµ mq>m4° ' úÃþ 1>û·m©'
%
" !
# $
& ' )(*
& +
,.
/
0
(1
0
2
0
43 5 "6
87
9
:
0
2
43 ; =<
$ /
=< / ,F
A@
GD
H
J<
K-ML4<
@ $ =? A@^]`_ NFbO
\
XR
fe
+g nmo 9e
g
POKF
TR RY
A@ULV<
Q =?
A@
, >W
%Z[
@
aZ
c
'g
ED
ED
NF
Ed
fe
fe Hg
CB
/
SR
=?
A@
AI
:
\
> =?
H ? H ? A@k]>_ Vm>]`_ Y4 ? A@
'g A@
g
h ?
I
^i
jF
Ï
lp
qOKF
"r4 ?
l ? A@k]
A@k]`_
ú_4 Gû!³@Ì b{~mqOµMm' !°üÒ "`³ ! / ¥k
¶m± m'm
k,üýú ËÃû 5þ W1±5þúßþ û]³/ÍÊßq{M>} ¥k
'm!O 3 ü Ëvþ 1 vþ 1
ß{~ªm{~¥4 1 0 ) _ú 4 Iû]³Ù {
¬~ üzú û üzË Øþ vþ 1 úÒ˶²~Ï~ûúÃþ>û!úßþ ÛËOû®þ 1 1
q5!{M}q~'q>}MÊ'{ "¥4{"þ µm}·ÿ ' Ï
y|ª
~|myM;Íʧqm|¥k·|q
'MmqO§'b'{J{!|·mqq{~|8y*Ò!)-{Mm'¥4'{->¥kmq;'
{~{}¡|!}q§m±{48q¡8'm>{Mqqy|mZ¥
~m>ßq{M@8ª¢q
,'m{~¥4{y4>"¥¸mþ b{
X m>qq{mO|
M>}q/}J±'y
m''~
{MÊ}L|
³X¥4}"Ì
~>þ]~y{
MW¥4{'8þ qm,q'{>µJm2}Jqq>{
m m |{~'}"{k'
~m |
}5'}Jmm·>~¯ >Êmß{~{4bm-qm;>
!}q¬J¦O9Ë 588
y
mmmq!8 >}ª0ë ³ / /M³@ÍÊq}5¯ |{M¥4{~'qqÊm{4¯ ß{~Ê
} b{My|
~!Ìm |×O
5"À¼!8í¡¼À{~ó )>m~'']8'që'³ {M}5
;{~y
'×>>58¡·¥4>
~}5
kq{M|§{~)m{~¥4!'m à~¯ ² ¯ ü ¯ ² ¯
! 5}{m J ú û'q ¬M'}qy{Êmq ¥4
~ { $ú ";8û@¯úZ¯&
·>mû!{M³ 'û m{M´}Gúßߢ2m>3~û'{~|4qL
7³Êbúß´{My|
~mm |×O!Õ>/8m¡{q{ 'Û{Mm%y|" ¤Myy)
'" úZ~¯ Ò¶/'² mm!
~¯ m}4qOû]'m~!³ qµ
{~q} { Q{J
{'#
{~
¥4"Q} {~±y'
q¦'q~}qkmm¥ >G}q{M{~'~>à/v/¢ y|{¥4'>}M¢
mq '>m¥,'¤J|}q8
~']qmb'{M¤ y|
~
my||y×>4
m{~|}{~}¯
}b úZ ±¥,'qbÒJ ;
¶{¤~'q¦b>m}q|'§{~'} {M'" qû]³@·Ìúß;>'
~qm} q'm>'m¤ '¤~
Oy;XJm±m§;{~Í`y
{~''×Oy|
y'm{Mq}b>û/{~'
~}¥ ß{~ª)L8¡* Ý 8+ )Î (¶²Ð³ Ü ;-'q¥{y@m
~-{/
~úß0¢ 3 -, û]µ0',¢£§
b{My|
~m|×O©8¡mqZ
M!±{>~',ë
} ., |·
5y|¤~> y "m']'q'~³ ! k
}!{M}Ò'mb]mq·¥4{ qqy@m
~± 2 ´ÒÍ·µL
M§|}7mq±¦}
~y@m>¥4
~m¬ {ÎË!гÍÊq,Z
~]§m
úZ0¢ 3 , ûª
M¥4}q{"}q{~}J'm|¤ |
~y
'{~¥4{~'qqm¥4¥4qy||>m
/ + ) |
,ô½;¼ª¥{y b
~!M³ 0ª{Cy* + ) úßþ ûÊ;-'q±m
M!8{/b
|'-úZ0¢ 3 , 3 21 û!µbq>m 21
4y>¤~yþ m']'q'-{~}¢Q³ 0ª{~m·mb
3 + )
~} + úÃ) þ ûÊ
'}{,¿·¹ Æ]¾ZºÆ]¾0!{M}q}qO]mO0³ 4 m}
~M
|}Q'qÍ{Mm>yy|mq>{~'¥ ß{~k8¡Z
M!>>µ/"¬ }q{¸m
'q
}
~yJ'|"¥4{ qqyªm
M! {~ b{~{M¥ky|
~m
~|×}QO {~8b¡>m|{qZ
M!³Ó>úIÙ {~>)7>ÎË~~&µ '9'·¡ÐGë4µX}q|Ê{~
4m|}qJ©q{''>
}M {~q57 6µ |q
}v'8|6}°
±®Ïmmq'q
M|}m{M!q{~v}}q{>ª!Ìm>>
~qË9¤ 8y|y|~|¥4Ý ;}:m|³ {~ûC}
~´ y ß|±{~y|y
{ª!{~±}'}q>
! m>Ø$ú ";{~<û 5=¥46b{Mk}q
7}J-{~{~}qB }q+ O) ]'úß>þ Õû {~0¥4³ ;§{~}q}q>{~}Mm4{ mq+
~}b}
y|M'+ ¦;úÃþ
'û·{M} mq+? ) > {~}q}{~/ >]+ '>) ص!
~{M}¥4 b{M@ú }q"þ }J'Aû·57{~6 > + )
~} + ) úßþ û4{~'mO;{~}b}©m{'qM{m|}Jk
;{¤~~Ö'q}Lµß{~m{~¥45} q¥,;4¦>y| ¨Õµ/m5¥k
~ ¦C }qà m+0ª-{M¸úÃþm{My|q!û 8"ý Õ+ à Ú ³ ª
E·
D y|G{~F"b!{¤M
7Ê~{}X¤'
|>'
y|ym|>ʦ}q{¤~m>¥k¨
Ó{'··
~Mym{M>| ÊMÿ@m³Õ{MqÍÊ q>}Õ@ú " 'ûm²q@ú "!{Mþ ¥û!;³ {M§mm|}q{~{~}!m·"ImH | !D °GqF'>'q{MOm'qßq-}ß]q'}b+ {M]}m|{~¦}y¦y©m¨Ó ú + ·
úÃþy|{~ û8û!
~y|{Mm
4qm¦}q{mʨÕ!° ú '}úÃmþ {M }ûûm²{¨Õ¨Óú D Jú GD FGû]F³û!6³ÍÊq)L>}8 K'q ;±·
(
y|·
{~y|{~~'{~q!{ ¤M¸ª{~{~C ¨Õ
}úLK8!°qûm
M²]¨ÕªúJD OJ2FqûÊ}| }
'q
y|y!{M}M
|}q>5|}m,'>
'q+ m{b]NM {~8ÕÚ ' ³ªÍÊq,~'{~qOM ¦qª|} Ë Ú PM Ë ~
'}{~7q5'q{`|m}Mq'-{O¤~]'> {MC}7³ {~ mv!
mmO
}7Z
~!m{~8{~±Ú ·'qkßqy|y/~'{~ Ú µ)m}b!ØÚ ·mq ·
~y{M| ¡
r
,r
e
Cm >
A@^] ]`_rq J?
Sm
A@k]>_ L A@k]`_
@k]
m
TL
=<
L
_
%LV<
_
@k]`_ L
,
m
+m
@k]>_
@ L
A@
[F
@k]
p
O
I
AI
0
p k
,F
4 j(
^i
"
1
(
I
I
I
,
f
T
@
I
@
o
AI
I
I
I (
H
I
(
._
._
._
._
_
C(
@
(
(*
J@
@
)
@
(
{b/{M;}J0ª{~O{|µ }J8
~'}6µk "y|!m'q4 bªmb|y|
Õb>Ü Ú 'ªqb|{Mm'·
}J>qy|{~{~! |ªq+ ~|y'Ò{~yk |5}qm,{~{{~¤M'ú@"¥.H "`µC ³/'û qÍÊq'ú_·";} |û {
k¤~«06
+ '"|múI¬ ¯ª®ûX'qß{M-}bßm·{~yyX¥4~ª'{~} qª ¥±{4b >D ³QG)LF¦búZ¨Qy "7ûʯª!b{~µ }b
}b4Ò'7m}q
b·
{My|}J{~ ~µ''{~qq87¥k{
C ú û§{¤M ·
§myqú Ü Ú ß²q¯y|y/û Mm{M8q2¯ /Ú úZ³±¯ ´¢ ,²¯ ú_4·²>þ 'q4kûm8û ¡"mqmZ
~{~'mO;{~}q}qm{5mq 1 m~q|¤~>!}©y|{M mq'mq| }k·
'qy|{~þ]®§
~
M]'{Mm{M}©b{~{M2} y{M~/ -1 {~úZ;0¢ 'q34ª²O|¥kþ
4~û{
Mú@|" ¥kû@
|}~ 8@Ú ¯ '³ 0ªúZ¯ {z
~qq4 y| û!³ )L¥4¥k{~
5}¡qyµ;b'
~ʬJm|}q
>/ µJ
¶m{5¤ }b mq
{M-mm} ѥky
~'~~·4{}q {Mq~!µ{M}M-
|}
#}5/v¦}bµ)
kqMm->·
5ë ¦b}{M'y|!
~m|}×qO!°8m¡q1 qmqMmm{MZ
~q8{¢Ñ / {¤M! ³ ª0
4{} q¥±¢ b>
M¦8~y>{~¯ ¥4!m'm É/
~'"} q¥,;8Ë· ()¥4¥k
4Ïq³ )L>q¼¥ó4¥kÕ¿Æ
±
M¡- ±~.Ç Mb)
{M¥4¥
}J¥kmm>
~'>|X ÏÉ/
§}b
~¡}Lvµ~³)|} ´}4qq¥±'mb|¥k}>
5|q}ËMy|/³~µJm{-§}q{~"q'y'4§{~
y|{yy|{ØÓ}¦b{~'
±}q48Ê'¡-{~{¥4mqq'Z
Mm'ª!5ªm¢{q'm}k
~q
8yk"8'¡¤
{y|0q>
mq} §,{m>Oþ q'|
'>}>m }J'v
Mmµ|m{~>
~} {{~}q§·
qy|{~M~O{MÒ'} >4/2|1}4úZm0¢ q34·¦²>}þ
ybm>û¥k|Ê
'
~¬,{y
/'Î ~¡Ð·³X
~´®}k;{~{M'|@qy|'~{,³X¥k´®}5
¬M>Ê
~mmqëü !{~b¥4µ qmqq'
'!{M{M¥}k¥4{~''
Êm|m{~}
~]Ê
qq'y|>~µJ|m¥4y|4MmqM b/§µq
8~ª{ {q|O
mm|{8y|y'>{ m>'m|}L!Ý@Êmb{,
¶
¤~8Z
~
¥4} y|±'{~
~ qJy||×
~'|{mXqbmZ{M
~}J>@Ê}q¯{J¥4
M{M}q¦{}qmm{MG¥,|}-M°5m{Mmqq q~'ª{~m¥k³
y|y>Xm
~} ._
]>_
r
]>_ r
Z
,r
(1
I
Y
I
`
%F
0
B
F
I
>e
ÎËÐ,ÌúZÉ@>
~
y|
~¤J|m|>y|y
~MLµx-µb˳q8 xªË qËy8 J
Ï~m|û]{~³J}4x
>°-mO'Mb
~ !O0`{q³0ËO¥4Ï {úÒË9q8 y|>>(M³7û]µ Ëcb{MË¥4;!Ëm(~'Ïq·³ { 8¡§mqmZ
~!Oà0¥4{qy|q
}b,;'{q Î ÏÐ,Ì©{~
~'{ML¥4³ ©{~y|{úIÏ=¤;=µ M³û]µ
~}q}{bسÍϵqm¡ q(|Ë }q¬M¡ yGqµ ³ ±³ >}Ò{~
'{M}
y@;{~|}J'8{M}7>yy||m8¡Z
M!>>³xm
} ³ Î ¡Ð,Í·³º/ó4¬Mì>Æmq¼!Â'
~ù qyG³¿xªÆ]¾}k ;O]m|¤~¤Mµ0É/|{~'{~}M{>³ ª©|
y|bmL>³7O8Ý @Ë~µ |'mO
~~>ª!|ÏKq|yË Ò-Ï 'q8q³J{MÌm|>'¥¬Jb³
´®} m¼ó±Ì{M¾Ã½ m¿{M¾ÃÆm}L¼8µqÁM̼k{Mï;mð {~¼>}ºµ;Æ]˾Z¼-88 Á~q¼!³  Π~Ð ª{ {~¬M~µ 8.³ )}qO
% "
M|Mm{MqÊ
} m| )L|8
y|~'
M³Xxª}q}³q{ ©
'L³úGÏ~û M¡µLúÒ9Ë 8JÏMû]³ KbË (=(q³ Î (Ð )LúÒË { 8 {~= Ò }MËO
qû]µµM}qª{³)³;
Ï}µ0ÕcË ÉX( ! mË >'>µ ³ §³Í{Mm>yy|@'q{Mm>¥4-ß{~4
qy|±8¡©Z
M!>>!³ {~¥4;{Mm'2{
m³ Ï Î Ð±Ù y|'
M'm~mµb>³³;ÉXx§³ªqxb{M>}y
} >ßmy|
M·Émq>qqy|m|Omq>|}q}J'
'{{MM}¥4ª
~
}} ~µLx§y|y|¤'
|}!>q'¤~ÌO{J³ª{M¬©Ù OÉ/!{M'{~}M'
~>¥5q'µ {M}LO³bx§{J{¤
}>Ò©Mµ Ìx{ {~-¬ µ ! Ë98 8
'c
!
q
'c
"
6&%
$#
:
'
)(*++'7,(*+*
-
%
/.
Uc
g
23
c
0"
1.
4 5'c
76
^c
UNIVERSAL TORSORS AND COX RINGS by
Brendan Hassett and Yuri Tschinkel
Abstract. — We study the equations of universal torsors on rational surfaces.
Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. Generalities on the Cox ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. Generalities on toric varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3. The E6 cubic surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4. D4 cubic surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Introduction The study of surfaces over nonclosed fields k leads naturally to certain auxiliary varieties, called universal torsors. The proofs of the Hasse principle and weak approximation for certain Del Pezzo surfaces required a very detailed knowledge of the projective geometry, in fact, explicit equations, for these torsors [6], [8], [7], [20], [22], [23]. More recently, Salberger proposed using universal torsors to count rational points of The first author was partially supported by the Sloan Foundation and by NSF Grants 0196187 and 0134259. The second author was partially supported by NSF Grant 0100277.
2
BRENDAN HASSETT and YURI TSCHINKEL
bounded height, obtaining the first sharp upper bounds on split Del Pezzo surfaces of degree 5 and asymptotics on split toric varieties over Q [?]. This approach was further developed in [18], [19], [2], [13]. Colliot-Th´el`ene and Sansuc have given a general formalism for writing down equations for these torsors. We briefly sketch their method: Let X be a smooth projective variety and {Dj }j∈J a finite set of irreducible divisors on X such that U := X \ ∪j∈J Dj has trivial Picard group. In practice, one usually chooses generators of the effective cone of X, e.g., the lines on the Del Pezzo surface. Consider the resulting exact sequence: ¯ ]∗ /k¯∗ −→ ⊕j∈J ZDj −→ Pic(Xk¯ ) −→ 0. 0 −→ k[U Applying Hom(−, Gm ), one obtains an exact sequence of tori 1 −→ T (X) −→ T −→ R −→ 1, where the first term is the N´eron-Severi torus of X. Suppose we have a collection of rational functions, invertible on U , which form a basis for the relations among the {Dj }j∈J . These can be interpreted as a section U →R × U , and thus naturally induce a T (X)-torsor over U , which canonically extends to the universal torsor over X. In practice, this extension can be made explicit, yielding equations for the universal torsor. However, when the cone generated by {Dj }j∈J is simplicial, there are no relations and this method gives little information. In this paper, we outline an alternative approach to the construction of universal torsors and illustrate it in specific examples where the effective cone of X is simplicial. We will work with varieties X such that the Picard and the N´eronSeveri groups of X coincide and such that the ring M Γ(X, L), Cox(X) := L∈Pic(X)
is finitely generated. This ring admits a natural action of the N´eronSeveri torus and the corresponding affine variety is a natural embedding of the universal torsor of X. The challenge is to actually compute Cox(X)
UNIVERSAL TORSORS AND COX RINGS
3
in specific examples; Cox has shown that it is a polynomial ring precisely when X is toric [9]. Here is a roadmap of the paper: In Section 1 we introduce Cox rings and discuss their general properties. Finding generators for the Cox ring entails embedding the universal torsor into affine space, which yields embeddings of our original variety into toric quotients of this affine space. We have collected several useful facts about toric varieties in Section 2. Section 3 is devoted to a detailed analysis of the unique cubic surface S with an isolated singularity of type E6 . We compute the (simplicial) ˜ and produce 10 distineffective cone of its minimal desingularization S, ˜ guished sections in Cox(S). These satisfy a unique equation and we show the universal torsor naturally embeds in the corresponding hypersurface in A10 . More precisely, we get a homomorphism from the coordinate ring ˜ and the main point is to prove its surjectivity. Here of A10 to Cox(S) we use an embedding of S˜ into a simplicial toric threefold Y , a quotient of A10 under the action of the N´eron-Severi torus so that Cox(Y ) is the polynomial ring over the above 10 generators. The induced restriction map on the level of Picard groups is an isomorphism respecting the moving cones. We conclude surjectivity for each degree by finding an appropriate birational projective model of Y and using vanishing results on it. Finally, in Section 4 we write down equations for the universal torsors (the Cox rings) of a split and a nonsplit cubic surface with an isolated singularity of type D4 . Acknowledgments: The results of this paper have been reported at the American Institute of Mathematics conference “Rational and integral points on higher dimensional varieties”. We benefited from the comments of the other participants, in particular, V. Batyrev and J.L. ColliotTh´el`ene. We also thank S. Keel for several helpful discussions about Cox rings and M. Thaddeus for advice about the geometric invariant theory of toric varieties.
4
BRENDAN HASSETT and YURI TSCHINKEL
1. Generalities on the Cox ring For any finite subset Ξ of a real vector space, let Cone(Ξ) denote the closed cone generated by Ξ. Let X be a normal projective variety of dimension n over an algebraically closed field k of characteristic zero. Let An−1 (X) and Nn−1 (X) denote Weil divisors on X up to linear and numerical equivalence, respectively. Let A1 (X) and N1 (X) denote the classes of curves up to equivalence. Let NEn−1 (X) ⊂ Nn−1 (X)R denote the cone of (pseudo)effective divisors, i.e., the smallest real closed cone containing all the effective divisors of X. Let NE1 (X) ⊂ N1 (X)R denote the cone of effective curves and NM1 (X) ⊂ Nn−1 (X)R the cone of nef Cartier divisors, which is dual to the cone of effective Cartier divisors. By Kleiman’s criterion, this is the smallest real closed cone containing all ample divisors of X. Let L1 , . . . , Lr be invertible sheaves on X. For ν = (n1 , . . . , nr ) ∈ Nr write 1 r Lν := L⊗n ⊗ . . . ⊗ L⊗n . 1 r Consider the ring R(X, L1 , . . . , Lr ) :=
M
Γ(X, Lν ),
ν∈Nr
which need not be finitely generated in general. By definition, an invertible sheaf L on X is semiample if LN is globally generated for some N > 0: Proposition 1.1. — ([14], Lemma 2.8) If L1 , . . . , Lr are semiample then R(X, L1 , . . . , Lr ) is finitely generated. Remark 1.2. — If the Li are ample then, after replacing each Li by a large multiple, R(X, L1 , . . . , Lr ) is generated by Γ(X, L1 ) ⊗ . . . ⊗ Γ(X, Lr ). However, this is not generally the case if the Li are only semiample (despite the assertion in the second part of Lemma 2.8 of [14]). Indeed, let X→P1 × P1 be a double cover and L1 and L2 be the pull-backs of the polarizations on the P1 ’s to X. For suitably large n1 and n2 , Ln1 1 ⊗ Ln2 2
UNIVERSAL TORSORS AND COX RINGS
5
is very ample and its sections embed X. However, Γ(X, Ln1 1 ) ⊗ Γ(X, Ln2 2 ) ' Γ(P1 , OP1 (n1 )) ⊗ Γ(P1 , OP1 (n2 )), and any morphism induced by these sections factors through P1 × P1 . Proposition 1.3. — Let L1 , . . . , Lr be a set of invertible sheaves on X such that Lj is generated by sections sj,0 , ..., sj,dj . Assume that the Q induced morphism X→ j Pdj is birational into its image. Then the ring generated by the sj,k ’s has the same fraction field as R(X, L1 , . . . , Lr ). Proof. — Both rings have fraction field k(X)(t1 , ..., tr ), where tj is a nonzero section of Lj .
Definition 1.4. — [14] Let X be a nonsingular projective variety so that Pic(X) is a free abelian group of rank r. The Cox ring for X is defined Cox(X) := R(X, L1 , . . . , Lr ), where L1 , . . . , Lr are lines bundles so that 1. the Li form a Z-basis of Pic(X); 2. the cone Cone({L1 , . . . , Lr }) contains NEn−1 (X). This ring is naturally graded by Pic(X): for ν ∈ Pic(X) the ν-graded piece is denoted Cox(X)ν . Proposition 1.5. — [14] The ring Cox(X) does not depend on the choice of generators for Pic(X). Proof. — Consider two sets of generators L1 , . . . , Lr and M1 , . . . , Mr . Since Cone({Li }) and Cone({Mi }) contain all the effective divisors, the nonzero graded pieces of both R(X, L1 , . . . , Lr ) and R(X, M1 , . . . , Mr ) are indexed by the effective divisor classes in Pic(X). Choose isomorphisms Mj ' L(a1j ,...,arj ) , i = 1, . . . , r, A = (aij ) which naturally induce isomorphisms Γ(M ν ) ' Γ(LAν ),
Aν = (a11 ν1 + . . . + a1r νr , . . . , ar1 ν1 + . . . + arr νr ).
Thus we find R(X, L1 , . . . , Lr ) ' R(X, M1 , . . . , Mr ).
6
BRENDAN HASSETT and YURI TSCHINKEL
As Cox(X) is graded by Pic(X), a free abelian group of rank r, the torus T (X) := Hom(Pic(X), Gm ) acts on Cox(X). Indeed, each ν ∈ Pic(X) naturally yields a character χν of T (X), and the action is given by t · ξ = χν (t)ξ,
ξ ∈ Cox(X)ν , t ∈ T (X).
Thus the isomorphism constructed in Proposition 1.5 is not canonical: Two such isomorphisms differ by the action of an element of T (X). It is precisely this ambiguity that makes descending the universal torsor to nonclosed fields an interesting question. The following conjecture is a special case of 2.14 of [14]: Conjecture 1.6 (Finiteness of Cox ring). — Let X be a log Fano variety. Then Cox(X) is finitely generated. Remark 1.7. — Note that if Cox(X) is finitely generated it follows trivially that NEn−1 (X) is finitely generated. Moreover, the nef cone NM1 (X) is also finitely generated. Indeed, the nef cone corresponds to one of the chambers in the group of characters of T (X) governed by the stability conditions for points v ∈ Spec(Cox(X)). These chambers are bounded by finitely many hyperplanes (see Theorem 0.2.3 in [10] for more details). It has been conjectured by Batyrev [1] that the pseudo-effective cone of a Fano variety is finitely generated. However, the finiteness of the Cox ring is not a formal consequence of the finiteness of the pseudo-effective cone. Example 1.8. — Let p1 , . . . , p9 ∈ H ⊂ P3 be nine distinct coplanar points given as a complete intersection of two generic cubic curves in the hyperplane H, and let X be the blow-up of P3 at these points. Then NE1 (X) is finitely generated but Cox(X) is not. Indeed, X is an equivariant compactification of the additive group G3a , acting by translation on the affine space P3 − H. The group action can be used to show that NE1 (X) is generated by the boundary components (see [12]). Similarly, one can show that the cone NE1 (X) is generated by classes of curves in ˜ ⊂ X of H. It the boundary components, e.g., the proper transform H
UNIVERSAL TORSORS AND COX RINGS
7
˜ is infinite [16] §1.23(4): The pencil of cubic is well-known that NE1 (H) plane curves with base locus p1 , . . . , p9 induces an elliptic fibration, 1 ˜ , H→P
˜ for which the nine exceptional curves of H→H are sections. Addition in the group law gives an infinite number of sections, which are also (−1)˜ These are also generators of NE1 (X), curves and generators of NE1 (H). ˜ since the sections (other than the nine exceptional curves) intersect H 1 negatively. It follows that NE1 (X) and NM (X) are not finitely generated and hence Cox(X) is not finitely generated (see Remark 1.7).
Proposition 1.9. — Let X be a nonsingular projective variety whose anticanonical divisor −KX is nef and big. Suppose that D is a nef divisor on X. Then H i (X, D) = 0 for each i > 0 and D is semiample. Proof. — The first assertion is a consequence of Kawamata-Viehweg vanishing [16] §2.5. The second is a special case of the Kawamata Basepointfreeness Theorem [16] §3.2. Proposition 1.9 largely determines the Hilbert function of the Cox ring: Corollary 1.10. — Retain the assumptions of Proposition 1.9. Then for nef classes ν we have dim Cox(X)ν = χ(OX (ν)). Remark 1.11. — In practice, this will help us to find generators of Cox(X).
2. Generalities on toric varieties We recall quotient constructions of toric varieties, following BrionProcesi [3], Cox [9], and Thaddeus [24]. Let T ' Grm be a torus with character group X∗ (T ). Suppose that T acts faithfully on the polynomial ring k[x1 , . . . , xn+r ] by the formula t(xj ) = χj (t)xj ,
t ∈ T,
8
BRENDAN HASSETT and YURI TSCHINKEL
where {χ1 , . . . , χn+r } ⊂ X∗ (T ). Define M as the kernel of the surjective morphism χ := (χ1 , . . . , χn+r ) : Zn+r →X∗ (T ). We interpret M as the character group of the quotient torus Gn+r m /T . Set N = Hom(M, Z) so that dualizing gives (Zn+r )∗ →N →0. Let e1 , . . . , en+r and e∗1 , . . . , e∗n+r denote the coordinate vectors in Zn+r and (Zn+r )∗ ; let e¯∗1 , . . . , e¯∗n+r ∈ N denote the images of the e∗i in N . Concretely, the e¯∗i are the columns of the n×(n+r) matrix of dependence relations among the χj . Consider a toric n-fold X associated with a fan having one-skeleton {¯ e∗1 , . . . , e¯∗n+r }. In particular, we assume that none of e¯∗i is zero or a positive multiple of any of the others. The variety X is a categorical quotient of an invariant open subset U ⊂ An+r under the action of T described above (see [9] 2.1). Elements ν ∈ X∗ (T ) classify T -linearied invertible sheaves Lν on An+r and Γ(An+r , Lν ) ' k[x1 , . . . , xn+r ]ν . We have An−1 (X) ' X∗ (T ) and we can identify Γ(OX (D)) ' k[x1 , . . . , xn ]ν(D) , where ν(D) ∈ X∗ (T ) is associated with the divisor class of D. The variables xi are associated with the irreducible torus-invariant divisors Di on X (see [11] §3.4), and the cone of effective divisors NEn−1 (X) is generated by {D1 , . . . , Dn+r }. Geometrically, the effective cone in X∗ (T ) is the image of the standard simplicial cone generated by e1 , . . . , en+r under the projection homomorphism χ : Zn+r →X(T ). Recall that the moving cone Mov(X) ⊂ NEn−1 (X) is defined as the smallest closed subcone containing the effective divisors on X without fixed components. Proposition 2.1. — Retaining the notation and assumptions above, \ Cone(χ1 , . . . , χi−1 , χi+1 , . . . , χn+r ) Mov(X) = i=1,...,n+r
UNIVERSAL TORSORS AND COX RINGS
9
and has nonempty interior. Proof. — The fixed components of Γ(X, OX (D)) are necessarily invariant under the torus action, hence are taken from {D1 , . . . , Dn+r }. Moreover, Di is fixed in each Γ(X, OX (dD)), d > 0 if and only if xi divides each element of k[x1 , . . . , xn+r ]dν(D) . This is the case exactly when ν(D) ∈ Cone(χ1 , . . . , χn+r ) − Cone(χ1 , . . . , χi−1 , χi+1 , . . . , χn+r ). Suppose that the interior of the moving cone is empty. After permuting indices there are two possibilities: Either Cone(χ2 , . . . , χn+r ) has no interior, or the cones Cone(χ2 , . . . , χn+r ) and Cone(χ1 , χ3 , . . . , χn+r ) have nonempty interiors but meet in a cone with positive codimension. As the T -action is faithful, the χi span X∗ (T ). In the first case, χ2 , . . . , χn+r span a codimension-one subspace of X∗ (T ) that does not contain χ1 , so that each dependence relation c1 χ1 + . . . + cn+r χn+r = 0 has c1 = 0. This translates into e¯∗1 = 0, a contradiction. In the second case, χ3 , . . . , χn+r span a hyperplane, and χ1 and χ2 are on opposite sides of this hyperplane. Putting the dependence relations among the χi in row echelon form, we obtain a unique relation with nonzero first and second entries, and these two entries are both positive. This translates into the proportionality of e¯∗1 and e¯∗2 . We now seek to characterize the projective toric n-folds X with oneskeleton {¯ e∗1 , . . . , e¯∗n+r }. These are realized as Geometric Invariant Theory quotients An+r //T associated with the various linearizations of our T action. We consider the graded ring X X Γ(An+r , Ldν ) = k[x1 , . . . , xn+r ]dν . R := d≥0
d≥0
Proposition 2.2 (see [24] §2,3). — Retain the notation above and set X := Proj(R). 1. X is projective over k if and only if 0 is not contained in the convex hull of {χ1 , . . . , χn+r }. 2. X is toric of dimension n if ν is in the interior of Cone(χ1 , . . . , χn+r ).
10
BRENDAN HASSETT and YURI TSCHINKEL
3. In this case, the one-skeleton of X is contained in {¯ e∗1 , . . . , e¯∗n+r }. Equality holds if ν is in the interior of the moving cone \ Cone(χ1 , . . . , χi−1 , χi+1 , . . . , χn+r ). i=1,...,n+r
Remark 2.3. — Our proof will show that X may still be of dimension n even when ν is contained in a facet of Cone(χ1 , . . . , χn+r ). Similary, the one-skeleton of X may still be {¯ e∗1 , . . . , e¯∗n+r } even when ν is contained in a facet of \ Cone(χ1 , . . . , χi−1 , χi+1 , . . . , χn+r ). i=1,...,n+r
Proof. — The monomials which appear in R are in one-to-one correspondence to solutions of a1 χ1 + . . . + an+r χn+r = dν,
ai ∈ Z≥0 .
In geometric terms, the monomials appearing in R coincide with the elements of Zn+r in the cone χ−1 (Cone(ν)) ∩ Cone(e1 , . . . , en+r ). By Gordan’s Lemma in convex geometry, R is generated as a k-algebra by a finite set of monomials xm1 , . . . , xms . The monomials appearing in the dth graded piece Rd coincide with elements of Zn+r in the polytope Pdν := χ−1 R (dν) ∩ Cone(e1 , . . . , en+r ). Note that χ−1 (dν) is a translate of M . For the first part, recall that Proj(R) is projective over Spec(R0 ), where R0 is the degree-zero part. Now 0 is in the convex hull of {χ1 , . . . , χn+r } if and only if there are nonconstant elements of R of degree zero. Our hypothesis just says that R0 = k and thus is equivalent to the projectivity of X over k. As for the second part, T acts on R by homotheties and thus acts n+r trivially on Proj(R), so we have an induced action of Gm /T on Proj(R). We claim this action is faithful, so the quotient is toric of dimension n. n+r Let µ1 , . . . , µn be generators for M = X∗ (Gn+r m /T ). Choose v ∈ Z in the interior of Cone(e1 , . . . , en+r ) so that χR (Cone(v)) = Cone(ν).
UNIVERSAL TORSORS AND COX RINGS
11
Replacing v by a suitably large integral multiple, we may assume each v+µi , i = 1, . . . , n, is in Cone(e1 , . . . , en+r ). If χ(v) = dν then Rd contains a set of generators for M , so the induced representation of Gn+r m /T on Rd is faithful. For the third part, we extract the fan classifying X from Pdν , following [11] §1.5 and 3.4: For each face Q of Pdν , consider the cone σQ = {v ∈ NR : hu, vi ≤ hu0 , vi for all u ∈ Q, u0 ∈ Pdν }. This assignment is inclusion reversing, so the one-dimensional cones of the fan correspond to facets of Pdν . Moreover, each facet of Pdν is induced by one of the facets of Cone(e1 , . . . , en+r ). The corresponding one-dimensional cone in NR is spanned by e¯∗i . It remains to verify that each facet of Cone(e1 , . . . , en+r ) actually induces a facet of Pdν . The hypothesis that ν is in the moving cone means that Pdν intersects each of the Cone(e1 , . . . , ei−1 , ei+1 , . . . , en+r ). If ν is in the interior of the moving cone then the intersection of Pdν with Cone(e1 , . . . , ei−1 , ei+1 , . . . , en+r ) meets the relative interior of this cone, hence this cone induces a facet of Pdν . Proposition 2.2 yields the following nice consequence: Proposition 2.4. — Let X be a complete toric variety and ν a divisor class in the interior of Mov(X). Then there exists a projective toric variety Yν , with the same one-skeleton as X, and polarized by ν. For generic T -linearized invertible sheaves on An+r , all semistable points are actually stable; hence Yν is a simplicial toric variety for generic ν (see [3] 1.2 and [9] 2.1). For the special values ν0 , contained in the walls of the chamber decomposition of [24], this fails to be the case. However, for each special ν0 , there exists a generic ν so that Cone(ν) is very close to Cone(ν0 ) and there is a projective, torus-equivariant morphism Yν →Yν0 [24] 3.11. The polarization associated to ν0 pulls back to Yν , so we obtain the following: Proposition 2.5. — Let X be a complete toric variety and ν0 a divisor class in the moving cone of X. Then there exists a simplicial projective toric variety Y , with the same one-skeleton as X, so that ν0 is semiample on Y .
BRENDAN HASSETT and YURI TSCHINKEL
12
Of course, ν0 is big when it is in the interior of the effective cone. 3. The E6 cubic surface By definition, the E6 cubic surface is given by the homogeneous equation (3.1)
S = {(w, x, y, z) : xy 2 + yw2 + z 3 = 0} ⊂ P3 .
We recall some elementary properties (see [4] for more details on singular cubic surfaces): Proposition 3.1. — 1. The surface S has a single singularity at the point p := (0, 1, 0, 0), of type E6 . 2. S is the unique cubic surface with this property, up to projectivity. 3. S contains a unique line, satisfying the equations y = z = 0. Any smooth cubic surface may be represented as the blow-up of P2 at six points in ‘general position’. There is an analogous property of the E6 cubic surface: Proposition 3.2. — The E6 cubic surface S is the closure of the image of P2 under the linear series w = a2 c x = −(ac2 + b3 ) y = a3
z = a2 b,
where Γ(P2 , OP2 (1)) = ha, b, ci. This map is the inverse of the projection of S from the double point p. The affine open subset A2 := {a 6= 0} ⊂ P2 is mapped isomorphically onto S − `. In particular, S \ ` ' A2 , so the E6 cubic surface is a compactification of A2 . Remark 3.3. — Note that S is not an equivariant compactification of G2a , so the general theory of [5] does not apply. Indeed, if S were an equivariant compactification of G2a then the projection from p would be G2a -equivariant (see [12]). Therefore, the map P2 99K S given above has to be G2a -equivariant. The only G2a -action
UNIVERSAL TORSORS AND COX RINGS
13
2 1
3
6
5
4
l
Figure 1. Dynkin diagram of E6
on P2 under which a line is invariant is the standard translation action [12]. However, the linear series above is not invariant under the standard translation action b 7→ b + βa c 7→ c + γa.
We proceed to compute the effective cone of the minimal resolution ˜ φ` : S→S. Let ` ⊂ S˜ be the proper transform of the line mentioned in Proposition 3.1. ˜ is a free abelian group of Proposition 3.4. — The Picard group Pic(S) rank seven, generated by ` and the exceptional curves of φ` . For a suitable ordering {F1 , F2 , F3 , F4 , F5 , F6 } of the exceptional curves, the intersection pairing takes the form
(3.2)
F1 F2 F3 ` F4 F5 F6 F1 −2 0 1 0 0 0 0 F2 0 −2 0 0 0 0 1 F3 1 0 −2 0 0 0 1 . ` 0 0 0 −1 1 0 0 F4 0 0 0 1 −2 1 0 F5 0 0 0 0 1 −2 1 F6 0 1 1 0 0 1 −2
˜ is simplicial and genProposition 3.5. — The effective cone NE(S) erated by Φ := {F1 , F2 , F3 , `, F4 , F5 , F6 }. Each nef divisor is contained in
BRENDAN HASSETT and YURI TSCHINKEL
14
the monoid generated by the divisors A1 A2 A3 A` A4 A5 A6
= = = = = = =
F2 + F3 + 2` + 2F4 + 2F5 + 2F6 F1 + F2 + 2F3 + 3` + 3F4 + 3F5 + 3F6 F1 + 2F2 + 2F3 + 4` + 4F4 + 4F5 + 4F6 2F1 + 3F2 + 4F3 + 3` + 4F4 + 5F5 + 6F6 2F1 + 3F2 + 4F3 + 4` + 4F4 + 5F5 + 6F6 2F1 + 3F2 + 4F3 + 5` + 5F4 + 5F5 + 6F6 2F1 + 3F2 + 4F3 + 6` + 6F4 + 6F5 + 6F6
. Moreover A` is the anticanonical class −KS˜ and its sections induce the ˜ resolution morphism φ` : S→S. Proof. — The intersection form in terms of A := {A1 , . . . , A6 } is:
(3.3)
A1 A2 A3 A` A4 A5 A6
A1 A2 A3 A` A4 A5 A6 0 1 1 2 2 2 2 1 1 2 3 3 3 3 1 2 2 4 4 4 4 2 3 4 3 4 5 6 2 3 4 4 4 5 6 2 3 4 5 5 5 6 2 3 4 6 6 6 6.
This is the inverse of the intersection matrix (3.2) written in terms of the basis Φ, so the Ai generate the dual to Cone(Φ). Observe that all the entries of matrix (3.3) are nonnegative and Cone(A) ⊂ Cone(Φ). ˜ We write D as a sum of Suppose that D is an effective divisor on S. the fixed components contained in {F1 , . . . , F6 , `} and the parts moving relative to Φ: D = MΦ + a1 F1 + . . . + a6 F6 + a` `,
a1 , . . . , a6 , a` ≥ 0.
A priori, MΦ may have fixed components, but they are not contained in Φ (however, see Lemma 3.6). It follows that MΦ intersects each element of Φ nonnegatively, i.e., it is contained in Cone(A) and thus in Cone(Φ). ˜ over We conclude that D ∈ Cone(Φ). Since A1 , ..., A6 , A` generate N1 (S)
UNIVERSAL TORSORS AND COX RINGS
15
Z each nef divisor can be written as a nonnegative linear combination of these divisors. To see that A` is the anticanonical divisor, we apply adjunction KS˜ Fi = 0, i = 1, . . . , 6 KS˜ ` = −1. Nondegeneracy of the intersection form implies A` = −KS˜ . Since S has rational double points, the resolution map φ` is crepant, i.e., φ∗` KS = KS˜ . Thus Γ(A` ) = Γ(−KS˜ ) = Γ(−φ∗` KS ) = Γ(φ∗` OS (+1)) so the sections of A` induce φ` . Choose nonzero sections ξ1 , . . . , ξ` generating Γ(F1 ), . . . , Γ(`): Γ(F1 ) = hξ1 i , . . . , Γ(F6 ) = hξ6 i , Γ(`) = hξ` i . These are canonical up to scalar multiplication. Each effective divisor D = b1 F1 + b2 F2 + b3 F3 + b` ` + b4 F4 + b5 F5 + b6 F6 has a distinguished nonzero section ξ (b1 ,b2 ,b3 ,b` ,b4 ,b5 ,b6 ) := ξ1b1 . . . ξ6b6 ξ`b` . The distinguished section of Aj is denoted ξ α(j) . Note that we have an injective ring homomorphism ˜ (3.4) k[ξ1 , . . . , ξ6 , ξ` ]→Cox(S). ˜ D1 ≺ There is a partial order on the monoid of effective divisors of S: D2 if D2 − D1 is effective. The restriction of this order to the generators of the nef cone is illustrated in the diagram below: A6 | A5 | A4
A`
A3 A2 | A1
16
BRENDAN HASSETT and YURI TSCHINKEL
Whenever D1 ≺ D2 we have an inclusion Γ(D1 ),→Γ(D2 ) which is natural up to scalar multiplication. Indeed, express D1 − D2 = b1 F1 + b2 F2 + . . . + b6 F6 + b` `,
bj ≥ 0
so we have s1 7→ ξ (b1 ,b2 ,b3 ,b` ,b4 ,b5 ,b6 ) s1 Γ(D1 ) ,→ Γ(D2 ). The homomorphism (3.4) is not surjective, and we now look for gen˜ beyond the ξj . Consider the subring erators of Cox(S) M ˜ = ˜ν Coxa (S) Cox(S) ˜ ν∈NM(S)
˜ The obtained by restricting to degrees corresponding to nef classes on S. ˜ can following lemma implies that any homogeneous element sD ∈ Cox(S) be written in the form sD = mD ξ1b1 · · · ξ6b6 ξ`b` ˜ with nonnegative exponents and mD ∈ Coxa (S). Lemma 3.6. — Let D be an effective divisor on S˜ with fixed part FD and moving part MD . Then FD is supported in {F1 , . . . , F6 , `}, and MD is a linear combination of A1 , . . . , A6 , A` with nonnegative coefficients. Proof. — Clearly MD is nef, so the description of the nef divisors in Proposition 3.5 gives the expression in terms of the Ai . Proposition 1.9 shows MD is semiample with vanishing higher cohomology; the last part of Proposition 3.5 gives the requisite positivity of the anticanonical class. Let F be a fixed component of D not supported in {F1 , . . . , F6 , `}. To arrive at a contradiction, we need to show that h0 (MD + F ) > h0 (MD ). Since MD has vanishing higher cohomology and h2 (F + MD ) = h0 (K − F − MD ) = 0 it suffices to show that χ(F + MD ) > χ(MD ).
UNIVERSAL TORSORS AND COX RINGS
17
By Riemann-Roch, it suffices to show that F 2 + 2MD F − KS˜ F > 0 or, equivalently, F 2 + KS˜ F + 2MD F − 2KS˜ F = 2g(F ) − 2 + 2MD F − 2KS˜ F > 0. Since F is irreducible, g(F ) ≥ 0 and MD F ≥ 0 and −KS˜ F > 1, as MD is nef and −KS˜ is nonpositive only along the exceptional curves and has degree 1 only on the line ` (see Proposition 3.1). ˜ Corollary 1.10 gives the dimensions of the graded pieces of Coxa (S). We focus first on the generators of the nef cone, introducing sections τj ∈ Γ(Aj ) as needed to achieve the prescribed dimensions:
Γ(A1 ) = ξ α(1) , τ1
Γ(A2 ) = ξ α(2) , ξ α(2)−α(1) τ1 , τ2
Γ(A` ) = ξ α(`) , ξ α(`)−α(1) τ1 , ξ α(`)−α(2) τ2 , τ`
˜ ⊂ P3 by Proposition 3.5, and can be The sections of A` induce φ` : S→S identified with the coordinates w, x, y, z of Equation (3.1). Since A1 ≺ A2 ≺ A` , we have Γ(A1 ) ,→ Γ(A2 ) ,→ Γ(A` ). We can identify Γ(A1 ) = hy, zi; these correspond to projecting S from the line ` = {y = z = 0} and induce a conic bundle structure 1 ˜ . φ1 : S→P
We have Γ(A2 ) = hx, y, zi; these correspond to projecting S from the singularity p = {w = y = z = 0} and induce the blow-up realization 2 ˜ . φ2 : S→P
Therefore, we may choose τ1 , τ2 , and τ` so that y = ξ α(`)
w = ξ α(`)−α(2) τ2
z = ξ α(`)−α(1) τ1
x = τ` .
BRENDAN HASSETT and YURI TSCHINKEL
18
We obtain the following induced sections for A3 , A4 , A5 , and A6 :
Γ(A3 ) = ξ α(3) , ξ α(3)−α(1) τ1 , ξ α(3)−α(2) τ2 , ξ α(3)−2α(1) τ12
Γ(A4 ) = ξ α(4) , ξ α(4)−α(1) τ1 , ξ α(4)−α(2) τ2 , ξ α(4)−α(`) τ` , ξ α(4)−2α(1) τ12
Γ(A5 ) = ξ α(5) , ξ α(5)−α(1) τ1 , ξ α(5)−α(2) τ2 , ξ α(5)−α(`) τ` , ξ α(5)−2α(1) τ12 , ξ α(5)−α(1)−α(2) τ1 τ2
Γ(A6 ) = ξ α(6) , ξ α(6)−α(1) τ1 , ξ α(6)−α(2) τ2 , ξ α(6)−α(`) τ` , ξ α(6)−2α(1) τ12 , ξ α(6)−α(1)−α(2) τ1 τ2 , ξ α(6)−2α(2) τ22 , ξ α(6)−3α(1) τ13
Equation (3.1) gives the relation
τ` ξ 2α(`) + τ22 ξ 3α(`)−2α(2) + τ13 ξ 3α(`)−3α(1) = 0. Dividing by a suitable monomial ξ β , we obtain τ` ξ`3 ξ42 ξ5 + τ22 ξ2 + τ13 ξ12 ξ3 = 0, a dependence relation in Γ(A6 ). This is the only such relation: Any other relation, after multiplying through by ξ β , yields a cubic form vanishing on S ⊂ P3 , but equation (3.1) is the only such form. It follows that the sections given above for A1 , . . . , A5 form bases for Γ(A1 ), . . . , Γ(A5 ). Since A3 ≺ A4 ≺ A5 ≺ A6 ≺ 2A` we have Γ(A3 ) ,→ Γ(A4 ) ,→ Γ(A5 ) ,→ Γ(A6 )
,→ Γ(2A` ) = w2 , wx, wy, x2 , xy, xz, y 2 , yz, z 2
and identifications
Γ(A3 ) = Γ(A4 ) = Γ(A5 ) = Γ(A6 ) =
y 2 , yz, wy, z 2
y 2 , yz, wy, xy, z 2 , wz
y 2 , yz, wy, xy, z 2
y 2 , yz, wy, xy, z 2 , wz, w2 .
The sections of A3 induce a morphism
3 ˜ φ3 : S→P
UNIVERSAL TORSORS AND COX RINGS
19
onto a quadric surface with a single ordinary double point. The sections of A4 induce a morphism 4 ˜ φ4 : S→P with image a quartic Del Pezzo surface with a rational double point of type D5 . The sections of A5 induce a morphism 5 ˜ φ5 : S→P with image a quintic Del Pezzo surface with a rational double point of type D4 . The sections of A6 induce a morphisms 6 ˜ φ6 : S→P with image a sextic Del Pezzo surface with two rational double points, of types A1 and A2 . We summarize this analysis in the following proposition Proposition 3.7. — Every section of Aj , j = 1, 2, 3, `, 4, 5, 6, can be expressed as a polynomial in ξ1 , . . . , ξ6 , ξ` , τ1 , τ2 , τ6 . The only dependence relation among these is τ` ξ`3 ξ42 ξ5 + τ22 ξ2 + τ13 ξ12 ξ3 = 0 in Γ(A6 ). Each Aj is globally generated and induces a morphism χ−1 ˜ φj : S→P ,
χ = χ(OS˜ (Aj )).
The remainder of this section is devoted to proving the following: Theorem 3.8. — The homomorphism ˜ % : k[ξ1 , ..., ξ6 , ξ` , τ1 , τ2 , τ` ]/hτ` ξ`3 ξ42 ξ5 + τ22 ξ2 + τ13 ξ12 ξ3 i→Cox(S) is an isomorphism. If % were not injective, its kernel would have nontrivial elements in degree ν = dA` , for some d sufficiently large. These translate into homogeneous polynomials of degree d vanishing on S ⊂ P3 . All such polynomials are multiples of the cubic form defining S, which itself is a multiple of the relation we already have. It remains to show that % is surjective. By Proposition 3.5, Lemma 3.6 and the analysis of the sections of the Ai , it suffices to prove:
20
BRENDAN HASSETT and YURI TSCHINKEL
Proposition 3.9. — % is surjective in degrees corresponding to nef di˜ visor classes of S. Lemma 3.10. — For any positive integers c1 , c2 , c3 , c` , c4 , c5 , c6 , the image of Γ(A1 )⊗c1 ⊗ . . . ⊗ Γ(A` )⊗c` ⊗ . . . ⊗ Γ(A6 )⊗c6 −→ Γ(c1 A1 + . . . + c6 A6 ) ˜ is a linear series embedding S. Proof. — Proposition 3.7 says that each Aj is globally generated, so if the image of Γ(A1 ) ⊗ . . . ⊗ Γ(A6 ) −→ Γ(A1 + . . . + A6 ) embed S˜ then the general result follows. We use the standard criterion: a linear series gives an embedding iff any length-two subscheme Σ ⊂ S˜ imposes two independent conditions on the linear series. First, suppose the support of Σ is not contained in the exceptional ˜ i.e., the curves F1 , F2 , F3 , F4 , F5 , F6 . Then φ` maps Σ locus of φ` : S→S, to a subscheme of length two, which imposes independent conditions on Γ(A` ), and thus independent conditions on the linear series in question. Second, suppose that Σ ⊂ Fj for some j (resp. Σ ⊂ `). Since Aj · Fj = 1 (resp. A` · ` = 1), φj maps Fj (resp. `) isomorphically onto a line. It follows that Σ imposes independent conditions on Γ(Aj ). Third, suppose that Σ is reduced with support in Fi and Fj , but is not contained in either Fi or Fj . Consider the chain of rational curves containing Fi and Fj (see Figure 3.) There exists a curve Fk in this chain so that φk (Fi ) 6= φk (Fj ), so Σ imposes independent conditions on Γ(Ak ). Fourth, suppose that Σ is nonreduced and supported in Fj but not contained in any Fi or `. The morphism φj ramifies at points where Fj meets one of the other exceptional curves, and the kernel of the tangent morphism dφj consists of the tangent vectors to the curves contracted by φj . It follows that φj (Σ) has length two and imposes independent conditions on Γ(Aj ). The polynomial ring k[ξ1 , . . . , ξ6 , ξ` , τ1 , τ2 , τ` ] is graded by the N´eron-Severi group of S˜ deg(ξj ) = Fj , j = 1, . . . , 6 deg(ξ` ) = ` deg(τj ) = Aj , j = 1, 2, `.
UNIVERSAL TORSORS AND COX RINGS
21
˜ on the corresponding This gives an action of the N´eron-Severi torus T (S) 10 affine space A . We consider the projective toric varieties that arise as quotients of A10 ˜ As sketched in §2, these varieties have the one-skeleton by T (S). x1 = (0, 1, 2), x2 = (1, 1, 3), x3 = (1, 2, 4), x` = (2, 3, 3), x4 = (2, 3, 4) x5 = (2, 3, 5), x6 = (2, 3, 6), t1 = (−1, 0, 0), t2 = (0, −1, 0), t` = (0, 0, −1) where the xj correspond to the ξj and the tj correspond to the τj . Lemma 3.11. — Let X be a toric threefold with one-skeleton {x1 , . . . , t` } ˜ = N1 (S). ˜ Then and divisor class-group X∗ (T (S)) Mov(X) = Cone(A1 , . . . , A6 , A` ). Proof. — Proposition 2.1 reduces this to computing the intersection of the cones generated by subsets of {F1 , . . . , F6 , `, A1 , A2 , A` } with nine elements. Since A1 , A2 , A` are effective combinations of the classes F1 , . . . , F6 , and `, it suffices to compute ! \ \ ˆ . . . , A` ) Cone(F1 , . . . , `, Cone(F1 , . . . , Fˆi , . . . , A` ) . i=1,...,6
This intersection obviously contains A1 , A2 , and A` , and it is a straightforward computation to show that it also contains A3 , A4 , A5 , A6 . For the reverse inclusion, suppose that D is contained in the intersection. Con˜ we see that sidering D as a divisor on S, D · F1 , . . . , D · F6 , D · ` are all nonnegative. Thus D is an effective sum of Aj by Proposition 3.5. Combining Lemmas 3.11 and 3.10 with Propositions 2.2 and 3.7, we obtain the following ˜ Then there Proposition 3.12. — Let ν be an ample divisor on S. exists a projective toric variety Yν with one-skeleton {x1 , . . . , t` } and polarization ν, and an embedding S˜ ,→ Yν with the following properties:
22
BRENDAN HASSETT and YURI TSCHINKEL
1. the divisor class group of Yν is isomorphic to the divisor class group of S˜ so that the moving cone of Yν is identified with the nef cone of ˜ S; 2. the equation for S˜ in the Cox ring of Yν is τ` ξ`3 ξ42 ξ5 + τ22 ξ2 + τ13 ξ12 ξ3 = 0 ˜ = A6 in the divisor class group of Yν ; and [S] 3. Cox(Yν ) = k[ξ1 , . . . , τ` ] and is mapped isomorphically to the image of the homomorphism %. For each toric variety Yν , we can consider the exact sequence of sheaves 0→IS˜ →OYν →OS˜ →0, ˜ Given an element θ in the where IS˜ ' OYν (−A6 ) is the ideal sheaf of S. divisor class group of Yν , we can twist to obtain 0→IS˜ (θ)→OYν (θ)→OS˜ (θ)→0. We should make precise what we mean by the twist F(θ) of a coherent sheaf F on Yν : Realize F as the sheafification of a graded module F over Cox(Yν ) (which exists by [17] Theorem 1.1, [9] Proposition 3.1), shift F by θ, and then resheafify the shifted module to obtain F(θ). Twisting respects exact sequences [9] 3.1. The anticanonical divisor of a toric variety is the sum of the invariant divisors [11] p. 89, so −KYν = F1 + . . . + F6 + ` + A1 + A2 + A` = A` + A6 and we can rewrite our exact sequence as 0→OYν (KYν + A` + θ)→OYν (θ)→OS˜ (θ)→0. ˜ we shall prove that % Suppose that θ corresponds to a nef class on S; is surjective in degree θ, thus proving Proposition 3.9 and Theorem 3.8. Since Γ(OYν (θ)) ' k[ξ1 , . . . , ξ6 , ξ` , τ1 , τ2 , τ` ]θ it suffices to show that H 1 (OYν (KYν + A` + θ)) = 0. We apply Proposition 2.5, with ν0 = A` + θ, to get a simplicial toric variety Yν on which A` + θ is nef. As A` is in the interior of the effective
UNIVERSAL TORSORS AND COX RINGS
23
cone of Yν , A` +θ is also big. Note that Yν has finite-quotient singularities, which are log terminal [16] §5.2. The desired vanishing follows from Theorem 2.17 of [15]. Alternately, we could apply Theorem 0.1 of [17], which applies in arbitrary characteristic and obviates the need to pass to a simplicial model.
4. D4 cubic surface The strategy of the previous section can applied to other surfaces as well. Here we illustrate it in the case of a cubic surface given by the homogeneous equation S = {(x1 , x2 , x3 , w) : w(x1 + x2 + x3 )2 = x1 x2 x3 } ⊂ P3 . We summarize its properties: 1. S has a single singularity at the point (0, 0, 0, 1) of type D4 . 2. S contains 6 lines with the equations `01 := {w = x1 = 0} m01 := {x1 = x2 + x3 = 0} `02 := {w = x2 = 0} m02 := {x2 = x1 + x3 = 0} `03 := {w = x3 = 0} m03 := {x3 = x1 + x2 = 0} 3. S is given as a blow-up of P2 by the linear series x1 = u1 (u1 + u2 + u3 )2 , x2 = u2 (u1 + u2 + u3 )2 , x3 = u3 (u1 + u2 + u3 )2 , w = u1 u 2 u3 , where hu1 , u2 , u3 i = Γ(P2 , OP2 (1)). Remark 4.1. — There are two isomorphism classes of cubic surfaces with a D4 singularity [4] Lemma 4. The other class is w(x1 + x2 + x3 )2 = x1 x2 (−x1 − x2 ); it is obtained from S by substituting (w, x1 , x2 , x3 ) 7→ (t−2 w, x1 , x2 , tx3 + (t − 1)x1 + (t − 1)x2 ) and letting t→0 in the resulting equation.
BRENDAN HASSETT and YURI TSCHINKEL
24
˜ Let β : S→S denote the minimal desingularization of S and `1 , `2 , `3 , m1 , m2 , m3 the strict transforms of the lines. The rational map S 99K P2 induces a 2 ˜ and let L denote the pullback of the hyperplane class. morphism S→P Let E0 , E1 , E2 , E3 be the exceptional divisors of β, ordered so that we have the following intersection matrix:
(4.1)
L E1 E2 E3 m1 m2 m3
L E1 E2 E3 m1 m2 m3 1 0 0 0 0 0 0 0 −2 0 0 1 0 0 0 0 −2 0 0 1 0 . 0 0 0 −2 0 0 1 0 1 0 0 −1 0 0 0 0 1 0 0 −1 0 0 0 0 1 0 0 −1
This is a rank seven unimodular matrix; since the Picard group of S˜ has rank seven, it is generated by L, E1 , E2 , E3 , m1 , m2 , m3 . In particular, we have E0 = L − (E1 + E2 + E3 + m1 + m2 + m3 ) and `j = L − Ej − 2mj . The anticanonical class is given by −KS˜ = 3L − (E1 + E2 + E3 ) − 2(m1 + m2 + m3 ) = `1 + `2 + `3 . ˜ is generated by Proposition 4.2. — The effective cone NE(S) Ξ := {E0 , E1 , E2 , E3 , mj , `j }. Proof. — Each effective divisor D can be expressed as a sum D = MΞ + bE0 E0 + bE1 E1 + . . . + b`3 `3 , with nonnegative coefficients, where MΞ intersects each of the elements in Ξ nonnegatively and thus is in the dual cone to Cone(Ξ). Direct computation shows that the dual to Cone(Ξ) has generators L, L − Ei − mi , 2L − Ei − 2mi , 2L − Ei − Ej − 2mi − 2mj , 2L − Ei − Ej − mi − 2mj .
UNIVERSAL TORSORS AND COX RINGS
25
Each of these is contained in Cone(Ξ): L 2L − Ei − 2mi 2L − Ei − Ej − mi − 2mj L − Ei − mi 2L − Ei − Ej − 2mi − 2mj
= = = = =
`i + Ei + 2mi , 2`i + Ei + 2mi , `i + `j + mi , `i + mi , `i + `j .
It follows that MΞ and D are sums of elements in Ξ with nonnegative coefficients. Each of the divisors mi , `i and Ei has a distinguished nonzero section (up to a constant), denoted µi , λi and ηi , respectively. We have {λi ηi µ2i , η0 η1 η2 η3 µ1 µ2 µ3 } ⊂ Γ(L), and we may identify ui = λi ηi µ2i and u1 + u2 + u3 = η0 η1 η2 η3 µ1 µ2 µ3 after suitably normalizing the µi , λi , and ηi . The dependence relation among the sections in Γ(L) translates into (4.2)
λ1 η1 µ21 + λ2 η2 µ22 + λ3 η3 µ23 = η0 η1 η2 η3 µ1 µ2 µ3 .
An argument similar to the one given at the end of Section 3 proves that the natural homomorphism ˜ k[η0 , ..., η3 , µi , λi ]/hλ1 η1 µ21 + λ2 η2 µ22 + λ3 η3 µ23 − η0 η1 η2 η3 µ1 µ2 µ3 i→Cox(S) is an isomorphism. The cubic surface S admits an S3 -action on the coordinates x1 , x2 , x3 . In particular, it admits nonsplit forms over nonclosed ground fields. They can be expressed as follows: Let K/k be a cubic extension with Galois closure E/k. Fix a basis {γ, γ 0 , γ 00 } for K over k so that elements Y ∈ K can be represented as Y = yγ + y 0 γ 0 + y 00 γ 00 with y, y 0 , y 00 ∈ k. Choose σ ∈ Gal(E/k) so that σ and σ 2 are coset representatives Gal(E/k) modulo Gal(E/K). Then w · TrK/k (Y )2 = NK/k (Y )
26
BRENDAN HASSETT and YURI TSCHINKEL
is isomorphic, over E, to S: x1 = Y = yγ + y 0 γ 0 + y 00 γ 00 x2 = σ(Y ) = yσ(γ) + y 0 σ(γ 0 ) + y 00 σ(γ 00 ) . 2 2 0 2 0 00 2 00 x3 = σ (Y ) = yσ (γ) + y σ (γ ) + y σ (γ ) Assigning elements U, V, W ∈ K to η1 , µ1 and λ1 , respectively, the torsor equation (4.2) takes the form TrK/k (U V 2 W ) = η0 NK/k (U V ). References [1] V. V. Batyrev – “The cone of effective divisors of threefolds”, Proceedings of the International Conference on Algebra, Part 3 (Novosibirsk, 1989) (Providence, RI), Contemp. Math., vol. 131, Amer. Math. Soc., 1992, p. 337–352. `che – “Nombre de points de hauteur born´ee sur [2] R. de la Brete les surfaces de del Pezzo de degr´e 5”, Duke Math. J. 113 (2002), no. 3, p. 421–464. [3] M. Brion and C. Procesi – “Action d’un tore dans une vari´et´e projective”, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989), Progr. Math., vol. 92, Birkh¨auser Boston, Boston, MA, 1990, p. 509–539. [4] J. W. Bruce and C. T. C. Wall – “On the classification of cubic surfaces”, J. London Math. Soc. (2) 19 (1979), no. 2, p. 245–256. [5] A. Chambert-Loir and Y. Tschinkel – “On the distribution of points of bounded height on equivariant compactifications of vector groups”, Invent. Math. 148 (2002), no. 2, p. 421–452. ´le `ne and J.-J. Sansuc – “La descente sur les [6] J.-L. Colliot-The vari´et´es rationnelles. II”, Duke Math. J. 54 (1987), no. 2, p. 375–492. ´le `ne, J.-J. Sansuc and P. Swinnerton[7] J.-L. Colliot-The Dyer – “Intersections of two quadrics and Chˆatelet surfaces. I”, J. Reine Angew. Math. 373 (1987), p. 37–107. [8] , “Intersections of two quadrics and Chˆatelet surfaces. II”, J. Reine Angew. Math. 374 (1987), p. 72–168. [9] D. A. Cox – “The homogeneous coordinate ring of a toric variety”, J. Algebraic Geom. 4 (1995), no. 1, p. 17–50.
UNIVERSAL TORSORS AND COX RINGS
27
[10] I. V. Dolgachev and Y. Hu – “Variation of geometric invari´ ant theory quotients”, Inst. Hautes Etudes Sci. Publ. Math. (1998), no. 87, p. 5–56, With an appendix by Nicolas Ressayre. [11] W. Fulton – Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993, The William H. Roever Lectures in Geometry. [12] B. Hassett and Y. Tschinkel – “Geometry of equivariant compactifications of Gna ”, Internat. Math. Res. Notices (1999), no. 22, p. 1211–1230. [13] D. R. Heath-Brown – “The density of rational points on Cayley’s cubic surface”, to appear. [14] Y. Hu and S. Keel – “Mori dream spaces and GIT”, Michigan Math. J. 48 (2000), p. 331–348, Dedicated to William Fulton on the occasion of his 60th birthday. ´r – “Singularities of pairs”, Algebraic geometry—Santa [15] J. Kolla Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, p. 221–287. ´r and S. Mori – Birational geometry of algebraic vari[16] J. Kolla eties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998, With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original. ˘ – “Vanishing theorems on toric varieties”, Tohoku [17] M. Mustat ¸a Math. J. (2) 54 (2002), no. 3, p. 451–470. [18] E. Peyre – “Terme principal de la fonction zˆeta des hauteurs et torseurs universels”, Ast´erisque (1998), no. 251, p. 259–298, Nombre et r´epartition de points de hauteur born´ee (Paris, 1996). , “Torseurs universels et m´ethode du cercle”, Rational points [19] on algebraic varieties, Progr. Math., vol. 199, Birkh¨auser, Basel, 2001, p. 221–274. [20] P. Salberger and A. N. Skorobogatov – “Weak approximation for surfaces defined by two quadratic forms”, Duke Math. J. 63 (1991), no. 2, p. 517–536. [21] P. Salberger – “Tamagawa measures on universal torsors and points of bounded height on Fano varieties”, Ast´erisque (1998), no. 251, p. 91–258, Nombre et r´epartition de points de hauteur born´ee (Paris, 1996).
28
BRENDAN HASSETT and YURI TSCHINKEL
[22] A. Skorobogatov – Torsors and rational points, Cambridge Tracts in Mathematics, vol. 144, Cambridge University Press, Cambridge, 2001. [23] A. N. Skorobogatov – “On a theorem of Enriques-SwinnertonDyer”, Ann. Fac. Sci. Toulouse Math. (6) 2 (1993), no. 3, p. 429– 440. [24] M. Thaddeus – “Toric quotients and flips”, Topology, geometry and field theory, World Sci. Publishing, River Edge, NJ, 1994, p. 193–213.
RANDOM DIOPHANTINE EQUATIONS ´ FELIPE VOLOCH BJORN POONEN AND JOSE
´ le `ne and Nicholas M. Katz) (with appendices by Jean-Louis Colliot-The 1. Introduction The main result of this paper is that, in a precise sense, a positive proportion of all hypersurfaces in Pn of degree d defined over Q are everywhere locally solvable, provided that n, d ≥ 2 and (n, d) 6= (2, 2). This result is motivated by a conjecture discussed in detail below about the proportion of hypersurfaces as above that are globally solvable, i.e., have a rational point. 2. A conjecture Fix n, d ≥ 2. Let Z[x0 , .. . , xn ]d denote the set of homogeneous polynomials in Z[x0 , . . . , xn ] of degree d. Let m = n+d denote the number of monomials in x0 , . . . , xn of degree d. Define d the height h(f ) of f ∈ Z[x0 , . . . , xn ]d as the maximum of the absolute values of the coefficients of f . Let MQ be the set of places of Q, and let Qv be the completion of Q at the place v. Define Ntot (H) = #{ f ∈ Z[x0 , . . . , xn ]d : h(f ) ≤ H } = (2bHc + 1)m , N (H) = #{ f ∈ Z[x0 , . . . , xn ]d : h(f ) ≤ H, and ∃x ∈ Zn+1 \ {0} with f (x) = 0 }, Nloc (H) = #{ f ∈ Z[x0 , . . . , xn ]d : h(f ) ≤ H, and ∀v ∈ MQ , ∃x ∈ Qn+1 \ {0} with f (x) = 0 }. v The limit of N (H)/Ntot (H) as H → ∞, if it exists, will be called the proportion of globally solvable hypersurfaces. Similarly, the limit of Nloc (H)/Ntot (H) will be called the proportion of locally solvable hypersurfaces. Remark 2.1. (1) Restricting the set of f ’s to those such that f = 0 defines a smooth geometrically integral hypersurface in Pn does not change the values of these limits, since the f ’s that violate these conditions correspond to integer points on a Zariski closed subset of positive codimension in some affine space. (2) A standard argument involving M¨obius inversion shows that the values of the limits do not change if in all our counts we restrict to f ’s whose coefficients are coprime. (3) Everything we do in this paper over Q could be generalized to number fields without difficulty. We chose to work over Q to keep statements and proofs simple. Conjecture 2.2. Date: March 1, 2003. 2000 Mathematics Subject Classification. Primary 11D72; Secondary 11G35, 14G25. Key words and phrases. Diophantine equation, Hasse principle, Brauer-Manin obstruction, hypersurface, complete intersection, Weak Lefschetz Theorem, cubic surface. The first author was partially supported by a Packard Fellowship. 1
2
´ FELIPE VOLOCH BJORN POONEN AND JOSE
(i) If d > n + 1, then N (H)/Ntot (H) → 0. (ii) If d < n + 1 and Q (d, n) 6= (2, 2), then N (H)/Ntot (H) → c for some real c > 0. Moreover, c = v∈MQ cv , where cv is the proportion of polynomials in Z[x0 , . . . , xn ]d with a nontrivial zero over Qv . In the case d = n + 1, we do not know what to expect. As a special case, if you write down a plane cubic, how likely is it to have a rational point? Remark 2.3. Each local proportion cv exists, since if we define Zv = { x ∈ Qv : |x|v ≤ 1 } and normalize Haar measure (Lebesgue measure if v = ∞) on the space Zm v parametrizing homogeneous polynomials of degree d in x0 , . . . , xn with coefficients in Zv , then cv is the measure of the v-adically closed subset of Zm v corresponding to homogeneous polynomials with a nontrivial zero over Qv . 3. Motivation and evidence To motivate the first part of the conjecture, consider the set of f ∈ Z[x0 , . . . , xn ]d of height at most H having a given zero a ∈ Zn+1 \ {0} with coprime coordinates. This forms a hyperplane in the parameter space Zm , and contains c(a)H m−1 /φ(a) + O(H m−2 ) integer points of height at most H, where c(a) is the (m − 1)-dimensional volume of the part of the hyperplane inside [−1, 1]m , and φ(a) is the covolume of the lattice of integer points lying on the hyperplane. Lemma 3.1 below shows that φ(a) equals the norm of the vector b formed by the monomials of degree ignore the error term, then we get P d in the coordinates of a. If wen+1 m−1 that N (H) ≤ H \{0}. Now c(a) is bounded, and a c(a)/φ(a), where a ranges over Z P it is easy to show that 1/φ(a) converges precisely when d > n + 1, so our heuristic predicts N (H) = O(H m−1 ). Since Ntot (H) ∼ (2H)m , this leads to the first part of the conjecture. Lemma 3.1. Let b be a vector in Rm with coprime integer √ coordinates and norm |b| = M . m The covolume of the lattice Λ = { x ∈ Z : hx, bi = 0 } is M . Proof. The lattice Γ = { x ∈ Zm : hx, bi ≡ 0 (mod M ) } is the inverse image of M Z under the surjection Zm → Z mapping x to hx, bi, so Γ has covolume M in Rm . On the √ other hand, Γ is the orthogonal direct sum of Λ and Zb, so the covolume of Λ is M/|b| = M . Our next proposition will be conditional on cases of the following very general conjecture. Conjecture 3.2 (Colliot-Th´el`ene). Let X be a smooth, proper, geometrically integral variety over a number field k. Suppose that X is (geometrically) rationally connected. Then the Brauer-Manin obstruction to the Hasse principle for X is the only obstruction. Remark 3.3. Conjecture 3.2 has a long history. In the special case of rational surfaces, it appeared as Question (k1) on page 233 of [CTS80] (a paper later developed as [CTS87]), based on evidence eventually published in the papers [CTCS80] and [CTS82]. Theoretical evidence and some numerical evidence have been gathered since then, in the case of rational surfaces. The conjecture was generalized to (geometrically) unirational and Fano varieties on the first page of [CTSD94]. The full version of Conjecture 3.2 was raised as a question in lectures by Colliot-Th´el`ene at the Institut Henri Poincar´e in Spring 1999, and was repeated in print on page 3 of [CT03]. Proposition 3.4. Assume Conjecture 3.2. If 2 ≤ d ≤ n, then (Nloc − N (H))/Ntot (H) → 0 as H → ∞.
RANDOM DIOPHANTINE EQUATIONS
3
Proof. By Remark 2.1, we may restrict attention to f ’s for which f = 0 defines a smooth, geometrically integral hypersurface X in Pn . The assumption d ≤ n implies that X is Fano, hence rationally connected (see Theorem V.2.13 of [Kol96]). If n ≥ 4, then by Corollary 4.2 there is no Brauer-Manin obstruction, so Conjecture 3.2 gives the Hasse principle, as desired. If d = 2, then the Hasse principle holds unconditionally. It remains to consider the case of cubic surfaces (d = n = 3). Here the Hasse principle does not always hold. But by [SD93] there is no Brauer-Manin obstruction whenever whenever the action of Gal(Q/Q) on the 27 lines is as large as possible (namely, the Weyl group W (E6 )). The Galois action on the 27 lines on the generic cubic surface over Q(a1 , . . . , a20 ) is W (E6 ) (this follows from [Tod35] and [Seg42]), so it follows by Hilbert irreducibility (see §9.2 and §13 of [Ser97]) that the same holds for a density 1 set of cubic surfaces over Q. Such cubic surfaces, under Conjecture 3.2, satisfy the Hasse principle as desired. Remark 3.5. For n large compared to d, the conclusion of Proposition 3.4 can be proved unconditionally by using the circle method. Part (ii) of Conjecture 2.2 would follow from the conclusion of Proposition 3.4 and the following result. Theorem 3.6.QIf n, d ≥ 2 and (n, d) 6= (2, 2) then Nloc (H)/Ntot (H) → c for some c > 0. Moreover, c = cv where cv is as in Conjecture 2.2. Proof. By Hensel’s Lemma, a hypersurface f = 0 will have a point in Qp if its reduction modulo p has a smooth point in Fp . If f is absolutely irreducible modulo p and p is sufficiently large (in terms of n and d), then the existence of a smooth point in Fp is ensured by the Lang-Weil estimate [LW54]. Lemmas 20 and 21 of [PS99a] will now imply the theorem, provided that we can show that the space of reducible polynomials is of codimension at least 2 in the space of all polynomials. The lower bound on the codimension follows from the inequalities n+r n + (d − r) n+d −1 + −1 ≤ −1 −2 n n n for 0 < r < d, which hold provided that n, d ≥ 2 and (n, d) 6= (2, 2). (Here r and d − r represent degrees in a potential factorization.) See also [PS99b] for an exposition of the application of the density lemmas from [PS99a]. Remark 3.7. It follows from Theorem 3.6 and part (i) of Conjecture 2.2 that for each pair (d, n) with n ≥ 2 and d > n + 1, there are hypersurfaces of degree d in Pn for which the Hasse principle fails. There does not seem to be an unconditional proof of this statement yet, when n ≥ 3. For results conditional on various conjectures see [SW95] and [Poo01]. ´ le `ne: The Brauer-Manin 4. Appendix A by Jean-Louis Colliot-The obstruction for complete intersections of dimension ≥ 3 It seems that a full proof of the following proposition has never before appeared in print, though a sketch can be found in §2 of [SW95]. Let Hi below denote ´etale cohomology (or profinite group cohomology) unless otherwise specified, and let Br X denote the cohomological Brauer group H2 (X, Gm ) of a scheme X. Proposition 4.1. Let k be a field of characteristic 0. Let X be a smooth complete intersection in Pnk satisfying dim X ≥ 3. Then the natural map Br k → Br X is an isomorphism.
´ FELIPE VOLOCH BJORN POONEN AND JOSE
4
Proof. Let k denote an algebraic closure of k, let G = Gal(k/k), and let X = X ×k k. Let p : X → Spec k denote the structure map. In the Leray spectral sequence E2p,q := Hp (k, Rq p∗ Gm )) =⇒ E p+q := Hp+q (X, Gm ), the ´etale sheaf Rq p∗ Gm on Spec k corresponds to the G-module Hq (X, Gm ). A smooth complete intersection of positive dimension is geometrically connected [Har77, Exercise III.5.5(b)], × so H0 (X, Gm ) = k , and [BLR90, p. 203] shows that H1 (X, Gm ) = H1Zariski (X, Gm ) =: Pic X. Thus the exact sequence E21,0 → E 1 → E20,1 → E22,0 → ker E 2 → E20,2 → E21,1 from the spectral sequence becomes G 0 → Pic X → Pic X → Br k → ker Br X → Br X → H1 (k, Pic X). G It remains to prove that Pic X → Pic X is an isomorphism, that H1 (k, Pic X) = 0, and that Br X = 0. For smooth complete intersections of dimension ≥ 3 in Pn , M. Noether proved that the restriction map Pic Pn → Pic X is an isomorphism (see Corollary 3.3 on p. 180 of [Har70] for a modern proof). The commutative square / Pic X _
Pic Pn
*
Pic Pn
∼
/
Pic X
shows that the injections Pic X ,→ Pic X 1
G
,→ Pic X
1
are isomorphisms, and that H (k, Pic X) = H (G, Z) = Homconts (G, Z) = 0. Finally we need to show that if Y is a complete intersection of dimension ≥ 3 in Pn over an algebraically closed field L of characteristic 0, then Br Y = 0. For each prime `, the Kummer sequence yields the exact rows of the diagram 0 −−−→ Pic(Pn )/` −−−→ H2 (Pn , Z/`Z) y y 0 −−−→ Pic(Y )/` −−−→ H2 (Y, Z/`Z) −−−→ (Br Y )[`] −−−→ 0, where for any abelian group A, the notation A/` denotes A/`A, and A[`] is the kernel of multiplication-by-` on A. The top horizontal injection Pic(Pn )/` → H2 (Pn , Z/`Z) is an isomorphism since both groups are of rank 1 over Z/`Z. The right vertical map H2 (Pn , Z/`Z) → H2 (Y, Z/`Z) is an isomorphism by a version of the Weak Lefschetz Theorem: see Corollary 5.6 in Appendix B of this paper. The diagram then implies that (Br Y )[`] = 0. This holds for all `, and Br Y is torsion [Gro68, Proposition 1.4], so Br Y = 0. Corollary 4.2. If in addition, k is a number field, then the Brauer-Manin obstruction for X is vacuous. Proof. This follows from Proposition 4.1, since the elements of Br X coming from Br k do not give any obstruction to rational points.
RANDOM DIOPHANTINE EQUATIONS
5
5. Appendix B by Nicholas M. Katz: Applications of the Weak Lefschetz Theorem We work over an algebraically closed field k. Take as ambient space any separated V /k of finite type which is smooth, and everywhere of dimension N (i.e., each connected component of V has the same dimension N ). In V , we are given a certain number r ≥ 1 of closed subschemes Hi , each of which has the property that its complement V − Hi is affine. Define the closed subscheme X of V to be the intersection of the Hi . Its complement V − X is covered by r affine open sets, each of dimension (at most) N , namely the V − Hi . Lemma 5.1. The scheme V − X has cohomological dimension at most N + r − 1, i.e., for any constructible torsion sheaf F on V − X, we have Hi (V − X, F) = 0 for i ≥ N + r. This is a special case of Lemma 5.2. If a separated k-scheme W/k of finite type is the union of r affine opens Ui , each of dimension at most N , then W has cohomological dimension at most N + r − 1. Proof. For r = 1, this is just the Lefschetz affine theorem [SGA4 III, Expos´e XIV, Corollaire 3.2]. For general r, one proceeds by induction on r, writing W as the union of the two S open sets A := Ur and B := i
Suppose now that ` is a prime number invertible in the field k, and that F is a Z/`Z sheaf on V whose restriction to V − X is lisse, for instance Z/`Z itself. Because V − X is smooth, everywhere of dimension N , the Poincare dual of Lemma 5.1 is the vanishing of compact cohomology up through dimension N − r: Lemma 5.3. For any integer i ≤ N − r, we have Hic (V − X, F) = 0. Now use the excision sequence (this is why we need F to be a sheaf on V ) in compact cohomology . . . → Hic (V − X, F) → Hic (V, F) → Hic (X, F) → . . . to conclude Theorem 5.4. For any integer i < N − r, the restriction map Hic (V, F) → Hic (X, F) is an isomorphism. For i = N − r, this map is injective. Corollary 5.5. If V /k is in addition assumed proper, then we have the same result for non-compact cohomology: For any integer i < N − r, the restriction map Hi (V, F) → Hi (X, F) is an isomorphism. For i = N − r, this map is injective. As a special case of Corollary 5.5, we get Corollary 5.6. Suppose X is a closed subscheme of projective space PN which is defined by the vanishing of N − d homogeneous forms. Then for i < d, the restriction map Hi (PN , Z/`Z) → Hi (X, Z/`Z) is an isomorphism. For i=d, this map is injective.
6
´ FELIPE VOLOCH BJORN POONEN AND JOSE
Remark 5.7. In Corollary 5.6, it is enough if X is defined set-theoretically by the vanishing of N − d homogeneous forms, since X and X red have the same ´etale cohomology.
Acknowledgements This paper developed during a workshop sponsored by the American Institute of Mathematics. We thank Jean-Louis Colliot-Th´el`ene and Nick Katz for allowing us to include their results in the appendices to this paper. We thank also Jean-Louis Colliot-Th´el`ene, Jordan Ellenberg, Brendan Hassett, Roger Heath-Brown, Bill McCallum, and Trevor Wooley for many conversations which helped shape Conjecture 2.2.
References [BLR90]
Siegfried Bosch, Werner L¨ utkebohmert, and Michel Raynaud, N´eron models, Springer-Verlag, Berlin, 1990. [CT03] Jean-Louis Colliot-Th´el`ene, Points rationnels sur les fibrations, Higher dimensional varieties and rational points, Proceedings of the 2001 Budapest conference (K. B¨or¨oczky, J. Koll´ar, and T. Szamuely, eds.), Springer-Verlag, 2003, Bolyai Society Colloquium Publications. [CTCS80] Jean-Louis Colliot-Th´el`ene, Daniel Coray, and Jean-Jacques Sansuc, Descente et principe de Hasse pour certaines vari´et´es rationnelles, J. Reine Angew. Math. 320 (1980), 150–191. [CTS80] J.-L. Colliot-Th´el`ene and J.-J. Sansuc, La descente sur les vari´et´es rationnelles, Journ´ees de G´eometrie Alg´ebrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff & Noordhoff, Alphen aan den Rijn, 1980, pp. 223–237. [CTS82] Jean-Louis Colliot-Th´el`ene and Jean-Jacques Sansuc, Sur le principe de Hasse et l’approximation faible, et sur une hypoth`ese de Schinzel, Acta Arith. 41 (1982), no. 1, 33–53. [CTS87] Jean-Louis Colliot-Th´el`ene and Jean-Jacques Sansuc, La descente sur les vari´et´es rationnelles. II, Duke Math. J. 54 (1987), no. 2, 375–492. [CTSD94] Jean-Louis Colliot-Th´el`ene and Peter Swinnerton-Dyer, Hasse principle and weak approximation for pencils of Severi-Brauer and similar varieties, J. Reine Angew. Math. 453 (1994), 49–112. [Gro68] Alexander Grothendieck, Le groupe de Brauer. II. Th´eorie cohomologique, Dix Expos´es sur la Cohomologie des Sch´emas, North-Holland, Amsterdam, 1968, pp. 67–87. [Har70] Robin Hartshorne, Ample subvarieties of algebraic varieties, Notes written in collaboration with C. Musili. Lecture Notes in Mathematics, Vol. 156, Springer-Verlag, Berlin, 1970. [Har77] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977, Graduate Texts in Mathematics, No. 52. [Kol96] J´ anos Koll´ ar, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. [LW54] Serge Lang and Andr´e Weil, Number of points of varieties in finite fields, Amer. J. Math. 76 (1954), 819–827. [Poo01] Bjorn Poonen, The Hasse principle for complete intersections in projective space, Rational points on algebraic varieties, Progr. Math., vol. 199, Birkh¨auser, Basel, 2001, pp. 307–311. [PS99a] Bjorn Poonen and Michael Stoll, The Cassels-Tate pairing on polarized abelian varieties, Ann. of Math. (2) 150 (1999), no. 3, 1109–1149. [PS99b] Bjorn Poonen and Michael Stoll, A local-global principle for densities, Topics in number theory (University Park, PA, 1997), Math. Appl., vol. 467, Kluwer Acad. Publ., Dordrecht, 1999, pp. 241–244. [SD93] Peter Swinnerton-Dyer, The Brauer group of cubic surfaces, Math. Proc. Cambridge Philos. Soc. 113 (1993), no. 3, 449–460. [Seg42] B. Segre, The Non-singular Cubic Surfaces, Oxford University Press, Oxford, 1942.
RANDOM DIOPHANTINE EQUATIONS
[Ser97]
7
Jean-Pierre Serre, Lectures on the Mordell-Weil theorem, third ed., Friedr. Vieweg & Sohn, Braunschweig, 1997, Translated from the French and edited by Martin Brown from notes by Michel Waldschmidt, With a foreword by Brown and Serre. [SGA4 III] Th´eorie des topos et cohomologie ´etale des sch´emas. Tome 3, Springer-Verlag, Berlin, 1973, S´eminaire de G´eom´etrie Alg´ebrique du Bois-Marie 1963–1964 (SGA 4), Dirig´e par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat, Lecture Notes in Mathematics, Vol. 305. [SW95] Peter Sarnak and Lan Wang, Some hypersurfaces in P4 and the Hasse-principle, C. R. Acad. Sci. Paris S´er. I Math. 321 (1995), no. 3, 319–322. [Tod35] J. A. Todd, On the topology of certain threefold loci, Proc. Edinburgh Math. Soc. (2) (1935), no. 4, 175–184. Department of Mathematics, University of California, Berkeley, CA 94720-3840, USA E-mail address: [email protected] Department of Mathematics, University of Texas, Austin, TX 78712, USA E-mail address: [email protected]
"!$#%&(')*#%,+-. #/ ) 0.132 4 5&6$78:9<;46>=@?BAC8:D:EGF ACHJILK"MONHQPR6SML6>=@HQP:?BAC8:E,E TSU:VW7YX"Z[XS\"\"] B^ _)`aRbdcfe g`Rhb)_ ijQk lnm:jpoqsrut>tvkw1xByst{z|j~}Lkvjdqsy
ov}Lj tvjQy-ovovvjQmBysovW} SBr4mjQyBj~W1BovB j~tvk,jmS
²
k,tkwjÌ ovqsq,jOxByÆB}Qxj kwj4tBÏtj4Ítvy)ovvjQtrujQk,yÆ}Qov©qWrux1}LtBj~}Lk,j~ qy
ov}Lj ¢£Èo ©qByCov}Lj1l wBovqoÖ>yÆo$ktBov/xtWkQ¸tSj~q4kwBo~vjBBk,j~ rfovv/ovBÑqOlÑB :o$ysq,Ò"ÎBj~Bq,jÏ×l Ôtvyfo qByCov}Lj1l tvÈvj~jQyÆovk§Sxjv o$yj!j }Qj~kq~ « wj)rfo$vj~q%tvRkwj)yso$ktBov xtWkq4tvÈkwj~q,j1tvm"z,j~}LkqSoËkwj1q,k,ysB}Lkysj1rutvysxwBqr
kQ¡kwBo$k kwjQÇo$yj ß,qruxjQysà kwBovYlÇ k,jQysr
t1qsy
ov}Lj~qÎtvBtÓQjQytvjQtrujQk,ys} vj~>qÆÆovB
b ijQk/m:j opBj~uovB loqrutStvkwRxyt{z|j~}LkvjvvjQtrujQk,ysW}Qov }LtBj~}Lk,j~f$o$ysjQk£ tJvjQyO "¨j Bj~tvk,j m> ËoqjQxo$yso$mj}Qtqysj4tv/mS kwjo$mq,tk,j povtq vytxtv-YovB l lÎ "¨jÏ·-W(qo~Ykwo$k4l )q >¿!Å f¿~Ä
ÀÆ#½ "sÂvÃÍ%à $ ÁÆ&½ (')à $ "sÅ$¼B¼:*¿ "~ħ¿ + ,.2 /10 lY(4 36² 5 "3wj~Ï·%jovqqBrfj)kwq}LtBBkt>·%jyj~ov
Ô tvy ovÇo$mj~Wov¨vytxÇovB 7foxByÆrujfSBrOm:jQy~·/j1j~tvk,j<mSM3 765kwBj7Æ xBysrfo$ysOxo$yk(tv3ovB ¯ 7µkwjÈqBmBvytxutv tvj~j~ruj~kqÎÒSWj~m>?7 "¿ 7 Âħ ¿ fÅ +$»"ÿutv Wq-r ¯ 7 µ(ovB¶· Rm:j4Bj~tvk,j~JpÆ)¢£ q-j~kwjQy)o Bk,j~pvj~jQyÆo$k,j~ |§rut" BBjÎtvy¸ov 7@xBysrfo$ys)k,tvyÆqtrutSBj¡tvBBk,j/}Ltvk£>x:jv ·/jdj~Btvk,jdm> E kwj t>k,yo$©Bov:tv 4 "¨jOj~Btvk,jm>1Ù)
povtqrut"BBj ·-wtq,jpvytBx1tv}swBo$ysov}Lk,jQyÆqÈq¤¥§¦v lYÆBovB1xk5& Y¡ l× Èj~}QovÎkwjf
BBBovruj~>kov¸jLºov}Lkq,j#Sj~B}Lj
Î]_A 2 ClHG ¡]_ A 2 l G ¡]_ A C RG ¡] A C ClHG Î] Z qfqswtJ·-ÑmSÑÌ o$yso$yÆ ®SÒvtvytvm:tvo$k,tJ ,¯ Ì®>µ Îytvx:tqktÑc xBx:j~BB ºÇÉ ovB ¯°®SÒ"³µ Îytvx:tqktY³S S²JÆ(kwBWqO}QovYm:jftvmkovj~YCytr kwjfjLºov}Lkq,j#Sj~B}Ljtv k,jQysrfqÈtv¸t· jQvyjQjdCtvy-kwBjdÌ-t"}swBqs}swBW"®SjQyyjq,x:j~}Lk,ysovq,j#>Bj~B}Lj!J A L R G*A P Sl G ¡,¡U T A L*WP C=l G ¡ Z "¨j<wBo~vjukwo$k A 2 S l G ¡ /B
¤¥§¦v l×,Æ? ¹»S¼½Í¾v¿LÀÆÁLÂ$áÄÅ$ÀÆÁQ¿Q»"À1qpov j~jL 2 ruj~k tv A C=l G ¡%·-wtqjpWrfo$vjpSo ×Wq/kwBjpWj~kk§k tvjQxo$ykByjÈCtvy/ty/kwjQtvyfCtvy/qsy
ov}Lj~qÎtvBtÓQjQytOvjQtrfjQk,ys} vj~>Bq~>m:j~}QovBq,j ÖkwBq}Qovq,jukwjQysjfqptÏvytx§q}Æwj~ruj &qsB}sw kwBo$k ȯ :µ( A C l G -³, Ítvy)ov (' >½WÁO½ÍÁO.Ä "¿ @»"g¼ + <¿Q¼ÄÂ$ÃÀ,¿sÂ{ÁLÅ$¼ $S¿LÀ s¿LÁ4Â$À,¿ À,¿ Q»"½ÍÀ*¿ +½Í¼ÁLħ¿Â +¶Å ÄÅ$ÀsÁ~¿L»"ÀÆÁ ¢£k%qÎq,trfjQ·-wBo$kÎk,j~tBq¡mk¡q,k,ysovw>k,Ctvy·%o$yÆ
2 RG
AC:
b b(sb hsg^ ( ab 9 g^Î_)` ( ¢ kwBqq,j~}LktR ·%jËtBkjkwj wtruttv}Qov-ovvjQmysoÇBjQj~j~ k,tÑq,jQkÏx kwj vj~jQysovkwBjQtvytv(j~qs}Lj~kQÎijQk Jl ]ЮSx:j~} mj)kwjq,k,ys}Lkyj rftvyxwBqsr¢ Wq%ovBtvkwjQyvjQtrujQk,ys}Qov<>k,jQvysovR>{o$ysjQk§v jQk J JÈl ¡ ] l mjxyt{z|j~}Lkttk,tkwjBysqk Cov}Lk,tvy~ ª%tBqWjQykwjOijQyÆo~q,x:j~}Lk,ysovRq,j #Sj~B}L!j J K LON P A L CH l G P E -³,/U T_A LXWP Cl ¡ G -³, Z C qqsBruj tJ· kwBo$ k qxBytvx:jQy
UG ȳ,Z É/ kwjqrutStvkw×ovB¨xytvx:jQymovq,j<}ÆwBovvj
cY
l G C E -³, ÎB A C l G -|²J,,Z 4Y»"¼B½C¾$¿QÀsÁQÂ$Ã7 S¿LÀs¿½ÍÁÏÂ$¼3¿Qÿ <¿L¼ÄdÅACClHG C E -³, ½ " ½WÁϽͼ3.Ä "¿©ÁÆ» À|Åv9» ' S¿L¼¿QÀ|Âvħ¿ + ;$Y.Ä "¿¶&½ u >¿ËÅ f¦ C C Â$g¼ +Ç.Ä "¿¶½ fÂS¿ÖÅ A=CRG C E -³, ¸Â$R ¼ + SÅ$ÁQ¿ &½ u >¿-½Í@¼ A=Cv Sl G C E Nȳ, ¾J½ÂOÄ. ¿È¼ÂvÄ »SÀ,Â$ÃfÂ' ½ÍÁ Ä. "¿f½#+¿L¼Ä
½
Ä $Ö¿Q¼g+ÅfÅ$À ' ½ÍÁ »"¼B½C¾$¿QÀsÁQÂ$Ã7 | +v½ ")>¿QÀ!Æ¿u½ÍÁuÂv¼Ç½C¼@ ¾$¿LÀÆÁQ¿OÁ ${Á@ħ;¿ Åd»"¼B½C¾$¿QÀsÁQÂ$à 7;: >¿LÀ s¿LÁ ÔtvyOq,trujumovq} tvktBqpo$m:tkvjQym:j~qQqjQjukwj -xBx:j~B º©k,tkwBq)xo$x:jQy~ovB Ítvy)rutvyj4BjQkovqQBq,jQjÏ,¯Øʶµ:ªwR%¢ %4RÚƳ
Û
-³,,
G
!#"$&% '
tvmq,k,ys}Lktfk,tlwBo~"Oo4yso$ktovBx:t>kÎqÎkÎwBo~"oOBvjQysqov :vjQysmj ÍtvyÏov ( ¢£l wBovq1o>yÆo$ktBov xtWkQkwj~ kwjË}QWovqq
l G C E -³, ÎB A C l G -|²J,,Z « wjÈqovruj }Qovum:jÈtjÈl wBovq¡odÓQjQyt$§}LS}Qj-tv:jQvyjQjÈtjv(ÉkÎk¸Wq¡tvk(k,ysjv ©vj~jQyÆovkwBo$k l wBovq oBBvjQyÆqov :vjQym:jvov©·%j4}QovkwBqOÄ. ¿f¿Lÿ;<¿L¼ÄÂ$À$ Å @ÁLÄ
ÀÆ» "~Ä
½Å$¼B )(+* ¾$¿QÀ $uÁ~*¿ "JÄ
½
Å$¼ , J >@@<BL¯ :µ ÄÅÏ.Ä "¿4¼ÂvÄ
»"À,Â$-Ã fÂ'>?@¿4Å Þ»"g¼ +¿QÀO.Ä "? ¿ fÂ' A C CH l G C E -³, ]_A C R G C E -³, ½WÁOÄ
À@½Í¾½
Âvà /.(Å$¼¾$¿LÀÆÁQ¿Q)à $ Â<»"¼B½C¾$¿QÀsÁQÂ$à 7 >¿Q!À Æ¿ +¿~ħ¿LÀ ½Í¼¿LÁdÁÆ» " ©Â<Á~*¿ "~Ä
½Å$¼ CtvykBo$k,j~v:·/juwBoJvj Btvk m:jQj~ o$mjovqptv¡vjQkpk,tÏ}Ltrfxk,jkwj j~j~ruj~>ko$y tvmq,k,ysB}Lkt<vjQy<j *j~}Lkvj~v "¨jpm:j~jQvj-q,k,ystfkwBo$kk%qwtB<m:j j~q}LyÆm:j~ m>©kwBj jLº"k,j~BqtÖ}QWovqq)tv¡kwjjLº"ov}Lkq,j #Sj~B}Lj tvmBkovBj~¶Cytr kwj pjQysq,k,j~" 0 Bj~Ï}LtruxjLRº J A C
'?]_A
l
2 G21 C
]
3
4 / 65
R R E "¯ C RCl¨ 6A / lSG21 C §µ]
3
3 4/
S]
)MA C
l ]
3wBWj4kpq jLºSx:j~}Lk,j~ÖkwBo$kpCtvypËoÏ>Br4m:jQy-Bj~WËovBËlvjQtrujQk,yÆ}Qov¶qsrux }LtBj~}Lk,j~ÖtJvjQyd<)MA C lYÎ kwBWqÈq-Btvk-Ò"tJ·-¶Ítvy tj4qsjdqByCov}Lj4tv xtqskvjOvjQtrfjQk,ys}4vj~>Bq~ $ tjQkwj~j~qq~qWB}Lj 1/v l¨-q-B #Sj~ÏB"qmj) kwBqÈ}Qovq,j1 Ètkrfov©kwjQtvyj~r ¯ -t$µCÆ·%jOwBoJv!j J "
'
' Z
) A C lYG*A 2 l
, K C G*A 2 l G21 C ,G ovBdq,tÈkwBj(j~j~ruj~>ko$yptvmq,k,ysB}LktqwtBpm:j(ovj~j~rfj~ktv A C RG*A 2 lSG21 C ,G ·-wB}Æw}Qov©m:jyjQo$ysj~¶ovq-ovj~j~rfj~kÈtv ACRG*A=C lSG ȳ,GqB}Lj A 2 lSG21 A C l G -³, C E LXP {ovBdkwj¡k,tvysqtÍysjQj #>Btvkj~ktv A 2 l G21 C :WqBB #Sj~ B"qmj%
q,jQjp¯°ª « ± µ « wjQtvyj~rfq³S²ÎovBd³S´³ÈÍtvymovq}yj~qBkqRo$mtBkRkwjÎq,k,ys}Lkyj(tv 1 C §}LtwBtruttvvBÆ $-tvk,j)kwBo$kη wj~flwBovqÎvjQtrujQk,ys}-vj~>Bq/ÓQjQytovB<q¡vjQtrujQk,ys}Qovf}LtBj~}Lk,j~R k ÍtWtJ·-qÈÍytr ,¯°ª « ± µ « wjQtvyj~r¹³S²~³ kwBo$kÈkwj4rfo$Ux J È l¨ 6 E ]_A 2 l G21 C q{z,j~}Lkvjp·-kw1BB #Sj~uB"qmjÈ}LtvÒvjQysj~BovB B lY E « w>Bq A C R G ¡ A C R G*A 2 l G21 C , G ovBÑty xBytvx:tqov%CtvyukwjÏj~j~ruj~>ko$yÇtvmq,k,ysB}Lkt·%tBvj~jQysovWÓQjÏkwBo$kutv ª%ttvk| « w/j~¬
j~ jOovBË®ovBqB}$ $-t·*qxBx:tq,j kwj j~j~ruj~ko$ysftvmq,k,ys}LktÏqÎk,yÆSWovBjQvjQyS·-wjQyjpt"}Qovv « wj~ ofBo$vysovr¹}swBovq,jvBqB4kwjOCov}LkÈkwo$kÈkwjOrfo$x-J A C R G*>@@?
G21
C
½WÁ©Ä. "¿Åv»S¼R+Â$À $ fÂ'*½C¼ Ä. "¿ Â$ÃÅ$½ÍÁ"sÅ "ÅfÅ$à Š!$ÁQ¿Q»¿L¼g"@¿QÅ$À©Ä. "¿ ¿  "JÄdÁ~¿ Q»¿Lg¼ "@¿Å , " $ " FfÅ +v»Sÿ@Á {
¤ ¥§¦v lY -|²J,] A C l G -³,]_>@tvkwovBfxyt{z|j~}Lkvj tvjQyoOBj~<fkwBo$k/Wq¡Bk,j~4vj~BjQyso$k,j~1tJvjQy kq%xBysruj qmBBj~WRÙ)j~tvk,jpmSË @¡kwjpq,ko$k,j~ruj~>k%kwo$k%kwBj)BSqtvy/}Qovqq%rfo$Ux J ¤¥§¦vCl¨ 6 ] A C Sl G J|²J, qÏqy
z,j~}Lkvj Ckwj « o$k,jY}Lt{z,j~}Lkyj CtvyB"q,tvysqÆÆ $ tvk,jÖkwo$k1kwqÏwBovq1mjQj~ xBytJvj~ÇCtvy4o$m:j~ov $o$ysjQkj~qOm>¨ÔBovkq¯ Ôo{µ¸ovYk,tvvjQkwjQy·-kw¨kwBj "do{ ®"o$ko$Òvj1}Ltq,k,ysB}Lkt3,¯ "4®>µ ,qjQjk,tukwjdkwBjQtvyÏtv(ª%tWtvk| « w%j~¬ j~ j ± ®ovBqB}$ ; (¿QÄ%l Æ¿Ï Â >¿!Å f¿~Ä
ÀÆ#½ "sÂvÃÍ%à $ ÁÆ&½ (')à $ "ÆÅ$¼B¼¿ "~ħ*¿ + ÁÆ»"À Q "@¿©Å$¾v¿LÀ Â{Áu Å$¾v5¿ ÈÂ$g¼ +¶Â$ÁsÁÆ» <¿uÁ@ÄÂvħ¿ f¿Q¼Ä- s4½ÍÁÄ
À@»¿ + ¿LH¼ >@@<B 3 765˽ÍÁ  ¡¼B½
ħ&¿ vÀ,Å$B» ' s4½ÍÁ4Ä
À@»B¿ LÅvÀu¿Q¾$¿LÀ $?7ÏÂ$g¼ +¶.Ä "¿LÀ¿< ¿ v½ÍÁ@ÄCÁuÂÁ fÅ~Åv.Ä ÖÁ '¿ "Q½Â$à ½ JÂvÄ
½
Åv¼ Å l fÅ +$»"ÃÅ1 Â 'ÃÂ "Æ¿Å - (½C.Ä .Ä "¿dÁLÂ <¿ >¿sÅ <¿QÄ
À@½ " ½ "ÆÂ$OÀ +¼B» +s¿QÀ Â{Áfl Â$g¼ + LÅvÀ #½ " @½WÁ©Ä
À@»B¿ QÅ$ÀÁQÅ <¿ 7 LÅ$(À .Ä ¿L¼Þ.Ä "¿ SÅ$ÿ vÀ,Å$B» ' >??
Í¢ @qRk,ysjvkwj~M>@@<B3 765%WqRkwj #Stvkj~>ktv AC l G GJ|²J, mSYkq rfo{ºrfov 7ƧBSqsmjuqmvytx·-wB}ÆwÇWqOvj~mSYkwjÏrfo$vj1tv Cl G~
Í « wBj%}Ltwtrfttvvqj #>j~}Lj tvkwj "dBr
KBq}swfkwo$kÎlq¡odBtmjÈ}LtvjQy%tv:kwj "dBrfrfjQyÎqy
ov}Lj tv KÞ? K"Í ®"B}Ljkwj /}Qo$ys>rOm:jQysq4ovBÇqj~}LtBÑÉ/jQk,k SBr4m:jQysqdtv ovÇl o$ysjkwj qovrujvBkwj4Bo$kysovRrfo$-x J ²v²
BCl ^] >?³S¡®"B}LjÈ C qRk,ysj(CtvylÇ6>@@??@@*¿ +ÏÄÅ<ÁLÅ <¿ B £ÁÆ»"À L "@¿@Á4Å S¿Å <¿~Ä
ÀÆ#½ " #½ "sÂvOÀ +1¼B» +s¿QÀ _uh 6(Îa g Îa =È_ c ` : :uh 1:¡a ? g(b u(h 54 ? 4uhs_ qqsBrujkwBo$kÈl wBovqÈo<BBvjQysqsov :vjQysmjv Î « wj~Ï·%jO}Qov¶jQjofrfo$Ux J & J1) A / Cl¨ ]_A C R G*A C S l G ȳ,, m>¨q,j~BÏoyso$ktBov¡xtWk¤ l pk,t¶¦ 6< 7 ! ovBYjLºSk,j~BÏm>¨W" j~o$ysk§v%Ì-jQysj ¦ 6< 7 J A C G*A C l G -³,, ]_A C R G*A C l G -³,, q)kwj}Ltvysj~q,k,ys}Lkt¨r
²~³
« wj<xyt>tv tv-kwjCtt·-¶xBytvx:tqkt×qOw>>x:jQyk,j~}ÆwBB}Qov¸ov×·%j· (vj kOj~qjQ·-wjQyjv¢k4Bqj~qdkwjjLºSxW}QkOj~qs}LysxBktYtv Yk,jQyÆrfqdtvÈ}LjQykovW³ jLºSk,j~BqstBq%tvmBkovj~1Cytr kwjtjLº"ov}LkÈqj#>j~}Lj)CtvN }LtwtruttvvtvqBxBx:tvyk of}Lt"Bruj~Bqst³u}LS}Qj
q,jQj¯ ,>³µCÆ ; l ½WÁ S¿Å <¿QÄ
À@#½ "sÂ$ÃC)à $ ÁÆ&½ (')à $Q"sÅ$¼¼*¿ "Jħ*¿ + ©.Ä " ¿ fÂ' ÏÀ,¿ Á@Ä
À@½ "Jħ*¿ +dÄ5Å /Cl¨ ½WÁ/.Ä ¿%ÁL! f¿" B» '1ÄÅpÁƽ v¼)Â$Á%.Ä "%¿ ½ # "¿LÀ Æ¿Là  "ÆÅ Lg½ u & ' '½C¼ C N
-t· ko$Òvj) 7;:do<x:tJ·%jQy-tv¡ofxysrujdSBr4mjQy 7{ "¨j }Qov¶kwBj~¶}LtBqWjQy-kwj wBwjQy m:j~ ,ov}Ltvmrfo$xBxB}Lt>kStBq 7ƧovBW}¶jQ¬ kovj4}Ltwtruttvv¨
qjQj1¯ µ ÍtvypkwBq)rfo$xBxf·-kw £§}LtSj!<}Qj~>kq ,kwBj4vjQtrujQk,yÆ} qruxjO}LtBj~}Lk"k£©tv l ovtJ· q4BqOk,tÖBjQjkO·-kw G§}LtS!j <}Qj~>kq Bq¶kwjqovrfj1o$yruj~kq ovq Bq,j~©o$m:tJvjOÍtvy ¸§}LtS!j <}Qj~>kqÆ J C N J5/Cl¨ ]_A C R G*A C S l G G~³,, Z ; "¿u½ fÂS¿fÅ C ½ÍÁ μB½Cħ¿Q)à $ S¿L¼¿QÀ|Âvħ¿ + G FfÅ +$»"ÿ #½ "
N ½W?Á "ÆÅ$¼ ~*¿ "~Ä
»"À,Â$ÃC)à $ÏÄÅ$ÀÆÁƽÅ$¼ #!*J « wqfCtt·-qfj~ovqWÑÍytrÐkwjÖCov}Lk1kwBo$k<CtvyÏoÇqko$mjk,j¶q,jQk1tv xov}Lj~q tv%·%j }QovË
ov}Lk,tvy C N kwBytw A=Cv &UG*A=C Sl G G~³,,
q,jQj1ÚJ²4Ítvy tvko$ktÆovBÏkwBq vystx©qÈouBk,j~fvj~BjQyso$k,j~ G§rutSBjv ( l ½WÁÂ Á@»SÀ QÂ "Æ¿ÏÅ S¿Å <¿~Ä
ÀÆ#½ "#½ "sÂ$XÀ +Ö¼B» +s¿QÀ ÖÅ$¾$¿QÀ Å$ À §.Ä "¿ . %¿LÃ +fÅ .Ä "¿¿LÃCÃ 1½ 'Ä
#½ "@"Q»"Àƾv¿@Á)½Í¼Ö.Ä "¿ @ ½
9Å + ƼÅ{ÁQ¿4.Ä "¿sÅ$À;¿ .Ä "¿L¼ .Ä "¿)&½ u >¿pÅ ).Ä "¿ ½ "¿QÀ 7 | +v½ " Æ¿Là  "ÆÅ LU½ fÂ' '½Í¼ C N ½ÍÁ ¡¼½Cħ¿ QÅ$À)ÂvÃÍ!à 7 Â$g¼ + J¿LÀ,Å QÅ$À4Â$%à fÅ{Á@ÄÈÂ$ÃCà 7 % "! "!*J q kwjOxBytStvtv¸kwjOWovq,kÈyj~qkQ·/j4o$yjdyj~B}Lj~k,t
¡b ¸`:ahg hs_p`R¡a 4 a¸`%`:hsb _ b 9`<: *aÈeÎa? È_uhÆ_ b `ae g`Rhb)_ ijQk%l m:j)oOvjQtrujQk,yÆ}Qovf>k,jQvysov{o$ysjQk§ftvjQyoSBrOm:jQy/Bj~"ovBovqqBruj kwBo$k Ctvy-jQvjQysxov}L j !Ïtv¡l wovqÈyso$ktovx:t>kqÈË "¢£ >@<Cl¨ ovB ¤ " l " ÆjQk ! dj~Btvk,jdkwjxBWmov}Òtv "o kwjOrutvysxwBqfr J ¤ " J)®Sx:j~}R " ] l jQk,jQysrfBj~ mS kwj¶x:t>k¤ " ijQk<¥ ! " J >@kdtv-oÖ}Lj~>k,ysovqruxjfovvjQmByso"¸·-wBW}swqOov q,trutvyxwBqr¹Ítvy !©t§o$ys}swBWruj~j~ov ovB ov¨{z,j~}LktËtk,tkwjuqBmBvytxÖtv j~j~ruj~>kqÏtvdtvysjQy©³> + Ítv(y ! ysj~ov ijQk m:j oÑqmBvytBx tv? >@@
¤ " " l " J ( G " ¥ ! " ! ' 5 Z « wjdÉ%ysovjQy,§Ì)ovqq,jL $ tSjQkwjQy kwBjQtvyj~r¹rfxj~q%kwBo$k J lB lÑ $1 v Z ¢£ &Q >@qo~kwBo$k¸l ½ÍÁ  "sÅv»S¼Ä§¿LÀ¿ ! 'ÿpÄÅ4.Ä "¿ 4Â{ÁsÁ~¿ 'ÀƽCg¼ "Q½ 'ÿ Bl $1 S mk(lBÎ SkwBo$k .Ä "¿LÀ¿)½ÍÁȼŠÈÀ,Â$»¿LÀ YÂ$¼B½C¼©Å @ÁLÄ
ÀÆ» "JÄ
½
Å$¼ QÅ$À ÄÅ .Ä "¿ 4Â{ÁÆÁQ¿ 'ÀƽCg ¼ "~1½ 'ÿ QÅ$À¡l¹l $1 SovB kwBo$k(l ½ÍÁ-? "ÆÅ$»"¼Ä§¿LÀ¿ > ('ÿÄÅ4.Ä ¿ 4Â{ÁÆÁQ¿ 'ÀƽCg ¼ "~1½ 'ÿf ¿ 'ÃÂ$½C¼*¿ + $.Ä "¿ -À,Â$»¿LÀ ×Â$¼B½C¼¨Å @Á@Ä
À@» "~Ä
½Å$¼¨l $1 $ L S
¿~Äl s¿¶ÂËÁ fÅ~ÅvÄ. ='À,Å ~¿*"~Ä
½C¾$¿>¿sÅ<¿QÄ
À@½ "ÆÂ$ÃCÃ)$ Á@½ ('Ã%$ "sÅ$¼B¼:¿*"~ħ¿+ ÁÆ»"À Q "@¿¨Å$¾$¿QÀËÂ$¼*Â$à >¿LÀ,Â$½ "¨¼B» Æ¿LÀ ¿Là +¨ ¿QÄ 7 Æ¿  'Àƽ&<¿Ë¼B» Æ¿LÀ <Â$¼g+ Â{ÁsÁ@» <¿
½ ÖlÑ $ v
½C½ "¿QÀ,¿p½WÁ-¼Åf¿LÃ;¿ <¿L¼ÄÂvÀ $fÅ LÁ@Ä
À@» "JÄ
½
Åv¼¶ÄÅu.Ä "¿d ¿ v½ÍÁ@ħ¿Qg¼ "Æ¿Å )Â$¼ 7 | +$½ " >¿LÀs¿
§½Í½C½ "(¿ Âvħ¿ "ÆÅ$¼ ~*¿ "~Ä
»"À¿ LÅv?À +$½C¾J½ÍÁLÅ$ÀÆÁ ƽWÁOÄ
À@»¿ Á~¿s¿OÚ "¿L¼1.Ä "¿LÀ¿½ÍÁ/¼Å -À|Â$»¿QÀ YÂ$¼½Í¼Å @Á@Ä
À@» "~Ä
½Å$¼ QÅ$^À >@
« wBqdxBytStv%qOqrfWo$yd tkBjuk,t¶kwjftBj ,¯°ª « ± ®³µ « w/jQ¬ tvyQj~ ruj SS²JÆjLº"}LjQxk)·%jyjQxov}Lj « o$k,jL $)o$Ò$o~ovrfoËBBovk£Ï·-kwtk,t" « o$k,jfBovk£v É/tB}Qo$y"j¬ BBovk§v"·/j4wBo~vjoftBjQvj~BjQyso$k,jdxovyÆ J
#!*J
l J³, HA C lSG G~|²J, ]_A l G G , G~|²JZ É/ij~rfrfo ³S"kwj){ovBWqwBtvkwj j~j~ruj~ko$ysftvmq,k,ys}Lkt<vj~q%q/oq,j~}Lkt tvkwjpBo$kysov:rfo$x >@@
l G~³,, ] " /#& A C " G*A C l G GJ³,,] « wjdrfo$xÏq jQyÆvj~ÏÍystr kwjdx:jQyCj~}Lk xovysWq J A C & G*A C SG
A
/ U& G*A
l
G ~|²J,, E
C SG
" G*A C lSG J³,, HA / " G*A C lSG GJ|²J,,]_A C " G G|²J, m>Ïko$Ò"ukwjdqr tvkwBjO>{o$ysWovkqQ/ªtBqjQykwjOÍttJ·-B o$vysovr J " / & lÑ#"$ " / & >@@< " " / & ACv " G*A=Cv S l G J³,, " /#& A / " G*AC l G |²J,, ] >@@@@<Cl " 3 7B5 6>@@<Cl " 3 765 kwBo$kη%j-vjQk%Íystr kwj BvjQysqov 7ƧovBW} vjQym:jv0 " ov
²
]
' Z
-t· qxxtqjkwBjQyjfqdt©É%ysovBjQy,£Ê¶ov tvmq,k,ys}Lkt¨Ctvy >@<Cl¨3 7B5ovBYjQk
¤ " %m:jpofCovrfW
SÂ +©Ä
À,Å$» Lÿ1 ¿ 'À¿@ÁÆÁƽC¼ Ë.Ä "¿¿Qÿ <¿L¼ÄÂ$À $ËÅ LÁ@Ä
À@» "~Ä
½Å$¼ ÁQ¿s¿uÚ Ë Å$¾v¿ Ͻͼ ħ¿QÀ Á4Å 4Å.Ä "¿LÀ "sÅ ('»Ä Qÿ "Æ Å SÅ fÅ$ÃÅ ½ "ÆÂ$ø½Í¼B¾$Â$À@½
Â$¼ÄCÁ
½C½ Ë¿ "Å '¿.Ä "ÂvÄ¡.Ä ½ÍÁ .Ä "¿sÅ$À,¿ fÂ$ ÿs +uÄÅfÅv.Ä ¿LÀÅ @ÁLÄ
ÀÆ» "~Ä
½Å$¼ÁpÄÅu.Ä "¿ 4Â{ÁÆÁQ¿ 'À@½Cg ¼ "Q½ 'ÿ Å$À .Ä "¿).Ä "¿ÅvÀ,¿ ¿ )*¿ "JÄ
½Í¾v¿L%à $4Â$ÃCà Š¸ÁpÅ$¼¿ ÄÅ4À,¿ 'à  "Æ¿p.Ä "¿ -À,Â$»¿LÀ
×Â$¼B½C¼ Å @Á@Ä
À@» "~Ä
½Å$¼ ;$Ë.Ä "¿©¿ ½WÁLħ¿Lg¼ "@¿ÏÅ Â$¼ Â$» ½Íà ½
ÂvÀ $¨Â$à >¿ QÀ|#Å S¿Å <¿QÄ
À@#½ " Å Q¿ "~Äp.Ä SÂvÄ »SÁ@Ä SÂv¾$¿1À,ÂvÄ
½Å$¼Â$8à '"Å$½C¼ÄCÁ©¿L¾$¿QÀ $ "¿QÀ,¿Ã 9Å "sÂ$ÃC)à $ ÁƽC¼ YÂ$¼Â ÃÅ v»¿LÁ)Å p.Ä "1¿ S!Å uÅvà Š½ "ÆÂ$ÃÂ$à >¿ LÀ, +¿Q¾$¿LÃÅ '¿ +u½C¼Ú f sÅ$¾$¿ (Åv¼M¿ "ÆÂ$=¼ +¿ ¡¼¿ Åv.Ä ¿LÀ1Âv» ½Íà ½Â$À $¨Å Q¿ "~ÄCÁÂ{ÁÆÁLÅ "~½
Âvħ¿ +YÄ+Å ½ "¿QÀ "Æ Å SÅ fÅ$ÃÅ !$ À|Åv9» 'Á1Å f¾$ À@½¿~Ä
½¿LÁÅ ½ "¿QÀ +v½ <¿L¼BÁƽÅ$¼ Å$À<¿ > ('Ã5¿ ÿ~ĸl Æ¿fÂ.Ä À¿s¿ LÅvà +˽C¼ "¿Q¼ÁƽCg¼ "Æ?¿ >@¿ÏÅ >@<B p.Ä "¿LÀ¿1½ÍÁu¼Å ÈÀ,Â$»¿LÀ YÂ$¼B½C¼ Å LÁ@Ä
À@» "~Ä
½Å$¼ ÄÅ .Ä "¿ 4Â{ÁÆÁQ¿ 'À@½Cg¼ "Q½ 'ÿ 4Å /¿L¾v¿LÀ p.Ä "¿QÀ,¿½WÁ<Á@Ä
½CÃÍÃ%.Ä "¿1½C¼Ä§¿LÀ ¿LÁ@Ä
½C¼ "s Å "Å fÅ$à Š!$+vÀ,Å$B» 'A a l G - , ¼¿ "sÂ$ ¼ +>¿ ¡¼¿.Ä ¿¼ÅvÄ
½Å$¼ Å »"¼B½C¾$¿LÀÆÁLÂvà # >¿LÀ s¿ Â{ÁsÁQÅ "Q½Âvħ¿ +uÄÅ .Ä ½Í Á vÀ,Å$B» '¶»>Á@½Í¼ 4ÁÆ&½ ½CÃÂ$À QÅ$À uÂvà ½ÍÁ $
²
{ Á»SÁQ¿+ Å$¾v¿5/Â$¼g+1Ä. ½ÍÁ "sÂ$¼ s¿O»SÁQ¿+<ÄÅ QÅ$À »"ÃÂvħ¿ Â$¼YÅ @ÁLÄ
ÀÆ» "JÄ
½
Å$¼ ÄÅ1Ä. "¿ 4Â{ÁsÁ~¿ 'À@½Í¼R"Q½ 'ÿ Ä. "ÂvÄ Ä. "¿LÀ¿4Á SÅ$»"à +s¿uÅv¼¿4ÁÆ» " (½CÄ. 'Å$½Í¼ÄCÁu¿L¾v¿LÀ $ "¿LÀ¿ ÃÅ "sÂvÃÍÃ%$ ½ÍÁÁLÅ$»"¼g+{ÁdÀ,ÂvÄ. "¿QÀ LÁ@Ä
À, "~Ä L»ÄfÂ$ Æ¿½CÄ "sÅ$»"à +s¿ f +¿@fÅ$À¿ "ÆÅ$g ¼ "QÀ¿Qħ¿4½C¼ÖÁLÅ <¿"ÆÂ{ÁQ¿LÁ
^g /_)` b)_Õg¡e tvkw<xByt{z,j~}Lkvj }QByvjÈtJvjQyoOSBr4m:jQy¡Bj~R·/j-}QovjQvj~tvx1oOqru o$y%kwjQtvyq A 2 Sl G Î|²J,Æ΢1kwBq%}Qovq,jv·%jo$yj)Bj~ov4·-kwxBysB}Qxov wtrutvvj~jQtBq q,xov}Lj~qOtvjQyl BjQydkwjvytx§qs}swj~ruj ί :µ¸·-wjQyj 3qdkwj ,ov}LtvmovtvRl×ovBkwj~q,j)o$yj)xo$ysovrujQk,ysÓQj~fmS ÎB ( q/x:tk,j~
Í"¨j)wBo~vj)ovq,tOtvkÎmjQj~
mj o1CB}Lk,tvyÍystr oÏ}Qo$k,jQvtvy k,tÏkwjuBBBjQys"<}Qo$k,jQvtvy tvÎoqsk,jvdÔtvydty xyx:tq,j~qQ{kwBqqk,j%·-ovrutq,kov·%oJSqm:jÎkwBj/mÏjQ¬ kovj qk,jv pvj~ovtvm"z|j~}Lk tv l
v·%j j~tvk,j%m> < kwj }Qo$k,jQvtvy }LtBqq,kW-tvtvm"z|j~}Lk q utv3qsB}sw kwBo$k R¡ ovBOrftvyxwBqsrf-q d m:jQk§·%jQj~ qB}Æwdtvm"z,j~}LkqkwBo$k}LtvjQy¸kwj%Wj~kk§ rutvyxwBWqr tv 4( vj~¶o1}LtJvjQysW ] 0 ovBÖov©j~j~ruj~k)tv < dÆ·%jOvjQk So *E j~j~ruj~kqÈtv < * /·-wB}Æwo$vyjQjd* t < * {%ovBqo$kqÍkwjd}LtS}L"}Qj }LtBBkt¶t¶kwByjQjLÍtW¶BmyjdxByt"BB}Lkq~ ¢£(ov>©Covr< < * -qo$kq,CSWfkwj~q,j }LtBBktuo$yÆq,j~q(Cytr q}swfov<j~j~ruj~>k(tv Æ>ovfÍtvyÎov> 2 G C < Æ kwjd
BB}Lk,tvy J ] 0 d ]_A 4 9 E 2 G E C q¸o)qswj~o$£vkwBj~ fqoÁ@ÄÂ "
}swovruxÆ(¢k¸Wq&o >¿Q!À Æ¿Èk¸q¸o)qkov}Òtvvytx:tqQ kwjQyjÏqOoË}LtJvjQysB- * tv 0qB}swÇkwBo$k4j~ov}sw < * OqOBtj~ruxBk£v¸ovÇ ov> ²'
k§·%tutvm"z|j~}Lkq%tv /o$yjptS}QovWfq,trutvysxwB}$ ÞvjQym:j WqÎm:tBB<m>ov1o$m:j~Wov qwj~o$ 0Ctvy-ov>tvmz|j~}Lk tv l ovB©ov> ÆB·%jOwBoJvj ¶ 4 9 :Z movq}kwjQtvyj~r tv ysovBq4kwBo$k kwj1qjQk4tvÈvjQysmj~qm:tBB×m>Çovo$m:j~Wov qwj~o$ xÑk,t¨j #SB$ovj~B}LjÏq q,trutvyxwB}fk,t¨kwBjÏqj~}LtB }Ltwtruttvvvytx A=CCl GÆ ¢Ñ,¯ i ± ÊËÉ/µ:Ù¶jQ¬ Bkt S²$ Æo<vjQym:j4q jQj~¶k,tm:joq}swj~rfjl q o
kqQ « wSBqo-q,kov}ÒCtvykwj jQ¬ kovj/k,tvx:ttvvrfo~pm:j({o$Bj~ CmkÈB}Ltvysyj~}LkB/yjQo$ysj~©ovq oYß,q}Æwj~rujdCtvy-kwj jQ¬ kovjdk,tvx:ttvvv°à
g(ah 44`Rhb)_b 9Ë<` : *a Èe ¡a -aRb e 4hs_R` ¡Ua *b 9(¡a « wjvytfx A C CHl G;I : %wovqÈouB}Ljdj~qs}LysxBktÏ1k,jQysrk kwjQtvys©qwtJ· qÈkwBo$k kwBqqouq,kov}ÒovB1kwjdBjQBkt
²
3 9 ¡aÎ_
g ^ ¯ É Ê©µ % É%o$k£>ysjQ3ovB -ʶovR)®"ByÏjÖtr4mByj¨j~q1x:t>kq1yso$ktBj~Wqj wBovBk,j~y<m:tvys%jÖ¬ j~q<$o$ys@jQ¬ kSj~¬ qovjQ¬ mBys #>j~q~-ʶo$kwR4 Bovj~ ³ ' &|² ' ³ÛJ I#I ¯ É « ²@µÔ% 4>É%tvvtruttJ
¯ Ì)o{µÙ(Ì o$yÆo$ys Ü mqk,ysB}LktBqj©ÊËovB°k,ysovBq}Lj~BBj~k,j~qQÝ% ®¡j~¬ rfBovyjj « w%jQ¬ tvyÆj¡j~q $ tr4mByj~qBj o$yÆqQ>² I"®JÙpo~" j~¬ RÛ( 'Û>>ªovr4mBysBvj )BvjQysqsk§ ¡yj~qq~² ¯ Ì®>µ4ÙÌ)o$yso$ysBov O"®SÒvtvytvm:tvo$k,tJ $-t"§o$m:j~Wovf}Ltwtruttvvfovuyso$ktBov x:t>kqQª%trux:tqktuÊËo$kwj~rfo$kW}Qo¶² ('Ë(³ ' '³- ³ IB²@£³(Û ¯ Ì)Í®" µ4Ê×Ì)ByovB ,BS®"vjQysrfovRÙptvxwBovkW(j )jQtrujQk,yR J¡ov<Wk,yt"BB}LktR )yÆovBBo$k,j « jLºSkq-¶ÊËo$kwj~rfo$k}QqQ %(tBruj4( ³ '²$:®SxBysBvjQy %(jQyso$(³ ' ' ' ¯ ,²@@µ 4 ,ovBBq,j~ Ü Ëkw?j 7ƧovBW}¨jQ¬ kovju}Ltwtruttvv©tv¡$o$ysjQkj~q tJvjQydSBr4mjQy Bj~WBqovBYk@q povtq4}Ltwtruttvvv( povtqdvytBxqtJvjQy Ð
É%jQyÒvj~jQv ª 4¸² 'ÛvÆ "² ('"¸ÊËo$kwRO®"}Q& -j~qQp¢BqkQ /m¸² S®SxByÆvjQy~ $-jQ· ¡tvyÒ² ' ¯ ,>³@µ 4 ,ovBBq,j~R$ijQk,k,jQy¸Cytr ,ovBBqj~dk,t pytqqt4wwjQ-y m:j~ ,ov}Ltvm>rfo$xqQ « wj)o$yskwBrujQkW}-ovBvjQtrujQk,ytvovvjQmBysov})}L"}Qj~q)
Éov *¸ É)R² 'Æ ³ "² S³(Û S $( « Ü ®"}Q×®SjQy~ת ʶo$kw Îw>SqQÇ®}Q I 'S "dW·%jQ@y )}QovR /mÙ)tvysyj~}ÆwkQ( ³ ' ' '" ¯ "4®>µÊ× "dBo¶ovBÇ¢Æ(®"o$ko$Òvjv mj~Wov¨$o$ysjQkj~qo$k,kov}swj~Ñk,tËx:to$ysÓQj~ qByCov}Lj~q~Îʶo$kwR BȲ |² Ûv ³ S³ I³ ¯ i ± Ê©§É/ µ iovBrut1ovBÏi¡BÊ©tvysjQk|§É%ovWvªwBovruxq )jQ¬ mBys #Sj~qQ ÎyvjQmBqsq,j jQy ÊËo$kwj~rfo$kÒuBfwjQy(j pyj~ÓQvjQmjQk,jv %(tBrfj ®SxysvjQy %(jQyso$(³ ' ' ' ¯ØÊË µ),B ®{ÊËjv ¡¬ kovjȪ%twtrfttvvv ¡ysWB}LjQk,tÊËo$kwj~rfo$kW}Qov®"jQysj~qQ%(tBruj S ÎysB}LjQk,tH BvjQysqk£ ¡ysj~qqQ² '(' ¯Øʶt$µÙʶtvyysqtR Ü qByCov}Lj~qd·-kw¨o$yvj Î}Qo$ys¨SBr4m:jQy~¢|vj~>ktj~q ÊËo$kwR%(Û ©|² ' I>O!² ' s²~³"² ¯ $-)µ $4 $ >ovo$ys « wj « o$k,j4}Lt$z|j~}LkysjOCtvy-tvysBWBo$y uqsy
ov}Lj~qÈtJvjQy)Bk,j Bj~WBqQ"¢>vj~>kQ/ʶo$kwÛ IË|² ' Æ:t/³S³"² £³ Û ¯ $ Ü µ $4 $-Sovo$ysÇovB 4 Ü BqQ « o$k,jvÝ°q}Lt{z,j~}LkyjfCtvy Ïqy
ov}Lj~qdtv%Bk,j wj~wkQ )BR(tv¡ÊËo$kwR ³p²~³v³Ë|² ' Æt S@ I "²@ (' ¯ µ " -ovq,Ò"BÎÌ wjQy 7@§ovB} mj~ ,ov}Ltvm rfo$xxq ovB k,yso$ktBqt ªwBtJ·*vytBxqQBÙpÒvj4ÊËo$kwR ,tysBov '©|² Û ¯ -t$@µ 41 O% Ètkr
¯°®S¢£µ « ®"wtSo-ovBuÌ4$¢tqjv Ü qo$y%)qysCov}Lj~qQ>fª%truxjLº@ BovSqWq ovBc)vjQmBysovW} )jQtrfjQk,yv%o$ysk}Qj~quj~BW}Qo$k,j~Çk,t "f"dtSBovyso"Ȳv² s² S ¢·%ovovrf®"wtvk,j~©ov˪ovr4mBysvj )BvjQysqsk§ ¡yj~qsqQ² ÛvÛ ¯°®SÒ:²@?µ 4¸®SÒvtvystvmtvo$k,t%É%jQvtB×kwBjÏÊËovB×tvmq,k,ysB}LktR¸¢>vj~ktj~qÊËo$kwR ² ©|² I ³I ¯°®SÒ³?µ 4(®"Òvtvytvm:tvo$k,tJ « tvysq,tvysq ovByso$ktovÎx:t>kqQYªovrOmysvj « ysov}Lkq ÊËo$kwj~rfo$k}Qq~² I#Iªovr4mBysWvMj vjQysqk£ Îyj~qqQªovr4mBysWvjv(³ ' '²$ ¯°®"Ù µ4Ì4 °Ô/®"·-BjQysk,t"§Ù)vjQy~ Bov>k} kwjQtvy1tvo$m:j~Wov$o$ysjQkj~qQitBt ÊËo$kwj~rfo$k}Qovή"tS}QjQk£Ëij~}Lkyj $-tvk,j~q~ %(tBrujϲ Iªovr4mBysWv?j )BvjQy, qk§ ¡yj~qqO² Û I ¯ « o³µ ,B « o$k,jv Ü Ökwju}Lt{z,j~}Lkyj tv%É%ys}sw¨ovBY®S· BjQyk,t§Ù vjQyovB o1vjQt$ rujQk,yÆ}ovBovtvR®¡j~¬ rfBovysjdÉ/tBymo$Ò"- (º"x:tq>j ¬ (' S¸² B,¶Ù)º ¡ºSx:tqSj~¬ q qBy o1}Ltwtruttvj Bj~q q}Æw/j~¬ rfovqQ- 4U )ytvkwj~Bj~}Ò¶ov $4 "OBx:jQy-j~R $ tvykw©Ì tovBov¶Ê¶ovqsq,tR² ' ¯ " @µ 4 "3Wj~qQBÊ©t"BBWo$y%j~WxBk})}Qyvj~q ov©ÔjQysrfo$kQÝ°q ovq,kkwjQtvyj~r© R(tv ÊËo$kwR ³p² IB²1|² ÆBt S@ I#I "² )».Ä SÅ$ÀÆÁ B + +$À,¿LÁsÁ~¿@Á !#"$% &(' )* ,+ -.!0/1 % 24356!722 89 ;:<=56= 6>?3@:BADCDCDEDAGFHDHDHJI>9)K/&: LNMOP6Q9R SODTNU-PNVW7XYM&OJZ6[]\_^TG`a\bLGWc^ def'&4/'&%2 N'&% ( !#"$% &(' g % h)e2i+ j(-k!ml1 = 56 no( p- >al;56qC=rDs : 1 56i LNMOP6Q9R t-PG`Zu6S&TXYM&OJZ6[T?\v^wx\bLGWc^y\zOY^
³v³
RATIONAL POINTS ON COMPACTIFICATIONS OF SEMI-SIMPLE GROUPS OF RANK 1 by
Joseph Shalika, Ramin Takloo-Bighash and Yuri Tschinkel Abstract. — We explain our approach to the problem of counting rational points of bounded height on equivariant compactifications of semi-simple groups.
Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. Basic definitions and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. Heights and height integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. Eisenstein series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. Eisenstein integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6. P-series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7. The cuspidal spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8. Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 3 7 9 13 16 22 26 31
1. Introduction Let G be a linear algebraic group, S ⊂ G a subgroup and S\G the corresponding homogeneous space, all assumed to be defined over a number
The second author was partially supported by the Clay Mathematics Institute. The third author was partially supported by NSF grant 0100277.
2
JOSEPH SHALIKA, RAMIN TAKLOO-BIGHASH and YURI TSCHINKEL
field F . We consider G-equivariant embeddings S\G ,→ Pn . Such embeddings arise from a choice of an F -rational projective representation % : G → PGLn+1 , together with a point p0 ∈ Pn (F ) with stabilizer S. The standard height on F -rational points of Pn is defined by H : Pn (F ) → R>0 , Q x = (x0 , ..., xn ) 7→ H(x) := v Hv (x), Hv (x) := maxj (|xj |v ),
the product over all valuations v of F . More generally, one considers heights whose local factors coincide with the above at almost all v and differ from the above by a globally bounded P function at the remaining v. For example, one could choose Hv (x) = ( j |xj |2v )1/2 at a real v. We are interested in the asymptotic distribution of the number N (%, B) of F -rational points on H\G of height ≤ B, as B → ∞. In many cases, one finds (1.1)
N (%, B) ∼ c · B a log(B)b−1 ,
with a ∈ Q, b ∈ N and c ∈ R>0 (see [7],[2],[17], [4]). There is a conceptual interpretation of these constants in terms of global geometric and arithmetic invariants of the associated algebraic variety X, the closure of the G-orbit through p0 (see [7],[1], [13] and [3]). The proofs of the above asymptotics rely on harmonic analysis on corresponding adelic groups. Note that results of type (1.1) are quite nontrivial even when unitary representations of the adeles G(AF ) are well-understood. For example, we still don’t know how to treat general equivariant compactifications of the Heisenberg group (the case of bi-equivariant compactifications is considered in [16]). For semi-simple groups we need to appeal to rather nontrivial results from the theory of automorphic forms: multiplicity one, uniform bounds of matrix coefficients, Eisenstein series, spectral theory etc. We now give an outline of our approach in a special case. Let G be a split semi-simple group of adjoint type over Q Q. Consider the Cartan decomposition G(A)Q = KA+ K, where K = v Kv is a maximal compact subgroup and A+ = v A+ v (and the product is over all valuations v of Q).
RATIONAL POINTS
3
+ Here A+ p (resp. A∞ ) can be identified (via the logarithmic map) with the + monoid a (resp. cone a+ ∞ ) in the Lie algebra a (resp. a∞ := a ⊗ R), dual to the monoid (resp. cone) spanned by simple roots of the corresponding maximal torus A. Fix a triangulation Σ of a+ (resp. a+ ∞ for archimedean v) into simplicial subcones σ and let λ be a continuous R-valued function on a (resp. a∞ ) which is linear on every cone σ ∈ Σ. For example, we may take
(1.2)
λ(av ) = hs, av i,
where s ∈ a∗v ⊗ R and av = log(av ) ∈ av , av ∈ A(Qv ). Put qv = p for v = p, qv = e for v = ∞ and define Y Hv (λ, gv ) = qvλ(av ) and H(λ, g) := Hv (λ, gv ), v
where g = (gv ) ∈ G(AQ ), gv =
kv av kv0
with
kv , kv0
∈ Kv , a v ∈ A + v.
Problem 1.1. — Study the analytic properties of the zeta function X H(λ, γg)−s . (1.3) Z(λ, s, g) := γ∈G(F )
For λ chosen as in (1.2), the zeta function (1.3) encodes information about the distribution of rational points of bounded height on “wonderful” compactifications of G studied by de Concini and Procesi in [5]. The study of arbitrary bi-equivariant compactifications of G can be reduced to other λ. The main goal of this paper is to explain in detail how our approach works in the simplest case: P3 considered as the wonderful compactification of P GL2 over Q. The counting problem itself is trivial, but it allows us to focus on the method, which covers (verbatim) wonderful compactifications of rank one semi-simple groups of adjoint type and highlights the technical difficulties one faces for groups of higher rank. Compactifications of anisotropic forms of semi-simple groups of adjoint type are treated in [15]. 2. Basic definitions and results Notation . —
JOSEPH SHALIKA, RAMIN TAKLOO-BIGHASH and YURI TSCHINKEL
4
– V = VQ := {2, 3, 5, . . . , p, . . . , ∞} - valuations of Q; – G = P GL2 , A the (diagonal) torus, N upper triangular unipotent matrices, P = N A the Borel subgroup; – a ' Z - Lie algebra Q of A, a∗ its character lattice; – Kp = G(Zp ), Kf = p Kp , K∞ = SO(2) and K = K∞ × Kf ; – for v ∈ V, let G(Qv ) = Nv Av Kv and Kv A+ v Kv be the Iwasawa, resp. Cartan decompositions; – a S = Sc := a ≥ c > 0 ⊂ G(R) ,→ G(A) 1 a Siegel Q domain, G(A) = G(Q) · S · Ω, for some compact Ω ⊂ G(A); – dg = v dgv = dn da dk normalized Haar measure, Z Z dkv = 1, dn = 1; Kv
– – – – –
N (Q)\N (A)
1 0 ; volp (`) := where = 0 p` U = U(g) universal enveloping algebra of g = Lie(G(R)); ∆ ∈ U - the standard Casimir element (Laplacian); Tδ = {s ∈ C | <(s) > 4 + δ}; L2 := L2 (G(Q)\G(A)), unless noted otherwise, k · k2 the L2 -norm. vol(Kp a`p Kp ),
a`p
Represent an element in A(Qv ) in the form av 0 , 0 1 (with av ∈ Qv ) and define two local height functions: 1/2
(2.1)
Hv : gv = kv av kv0 → 7 |av |v χv,P : gv = nv av kv → 7 |av |v
Define the global heights by Y Y (2.2) H := Hv and χP := χv,P v
v
Remark 2.1. — For γ ∈ P (Q) we have χP (γg) = χP (g) (by the product 1 formula) and χ−1 P is the usual height on P (Q) = P (Q)\G(Q).
RATIONAL POINTS
5
Remark 2.2. — The group G has a (canonical) compactification a b G= ,→ P(End(V )) = P3 = {(a : b : c : d)} c d
which is equivariant for the action of G on both sides. A standard height on P3 (Q) is Y √ a2 + b2 + c2 + d2 · max(|a|p , |b|p , |c|p , |d|p ). p
Its local factors are identical with (2.1).
The main object of interest is the height zeta function X (2.3) Z(s, g) := H(γg)−s . γ∈G(Q)
The convergence of the series in the domain <(s) 0 (for fixed g) is a special case of a general fact: let X be any projective algebraic variety over a number field F , and H any height induced from a projective embedding of X. Then the height zeta function X H(x)−s Z(H, s) = x∈X(F )
converges absolutely and uniformly on compacts in the domain <(s) 0.
Proposition 2.3. — There exists a σ > 0 such that the series X H(γg)−s γ∈G(Q)
converges absolutely and uniformly on compacts in the domain Tσ ×G(A) to a function Z(s, g) which (1) is continuous in g; (2) is bounded on G(Q)\G(A); (3) has bounded ∆-derivatives. In particular, in this domain, Z(s, g) and all its ∆-derivatives are in L2 . Proof. — By reduction theory, G(A) = G(Q) · S · Ω, where Ω ⊂ G(A) is some compact and S a Siegel domain. Now we use the following easy property of the height: there exist constants c, r > 0 such that – H(γaω) ≥ cH(γ)r for all a ∈ S, ω ∈ Ω and γ ∈ G(Q).
JOSEPH SHALIKA, RAMIN TAKLOO-BIGHASH and YURI TSCHINKEL
6
In particular, there exists an r > 0 such that for all g ∈ G(A) one has Z(<(s), g) ≤ Z(r<(s), e) < ∞ for <(s) 0. Since ∆ commutes with the K-action, it suffices to prove (3) on matrices in A+ ∞ . Explicit formulas for the height and for ∆ give the result. A solution of Problem 1.1 in our special case is given by Theorem 2.4. — There exists an > 0 such that Z(s, e) admits a meromorphic continuation to T− with a unique simple pole at s = 4. In the analysis of Z(s, g) we use the Eisenstein series: X (2.4) E(s, g) := χ(s, γg), γ∈P (Q)\G(Q)
where χ(s, g) := χP (g)s+1/2 . The idea of the proof of Theorem 2.4 is to first establish an identity of continuous L2 -functions on G(Q)\G(A) (2.5)
Z(s, g) = Z res (s) + Z cusp (s, g) + Z eis (s, g), for <(s) 0,
where (2.6)
res
Z (s) :=
Z
G(Q)\G(A)
Z(s, g) dg =
Z
H(g)−s dg
G(A)
is the contribution from the trivial representation, Z cusp (s, g) is the projection of Z(s, g) onto the cuspidal spectrum and Z Z 1 eis (2.7) Z (s, g) := Z(s, g)E(it, g)dg E(it, g)dt 2πi R G(Q)\G(A) is the projection onto the continuous spectrum. This is accomplished in Propositions 5.1 and 7.1. Then we use (2.5) to meromorphically continue Z(s, e) (see Propositions 3.4, 7.6 and 5.1). Finally, a Tauberian theorem implies Corollary 2.5. — There is a constant c > 0, such that # {γ ∈ G(Q) | H(γ) ≤ B} = cB 4 (1 + o(1)),
as B → ∞.
RATIONAL POINTS
7
3. Heights and height integrals Let ϕp = ϕp (χp ) be a bi-Kp -invariant function on G(Qp ) such that ` p− 2 1 − χ¯p (p)2 /p 1 − χp (p)2 /p ` ` (3.1) ϕp (a`p ) = χ (p ) + χ ¯ (p ) , p p 1 + p−1 1 − χ¯p (p)2 1 − χp (p)2 for ` ≥ 1, where χp is a nontrivial unramified quasi-character of Q∗p , (3.2)
χp (p) = χ¯p (p)−1 = pαp , with parameter αp ∈ C∗ .
We write also ϕp = ϕp (s, ·), if αp = s for all p. Define Z Y (3.3) Iv (s) := Hv (gv )−s dgv , If (s) := Ip (s) G(Qv )
p
Q
and, for ϕp = ϕp (χp ) and ϕ = p ϕp , Z Y Ip (s, ϕp (χp )) := ϕp (gp )Hp (gp )−s dgp , If (s, ϕ) := Ip (s, ϕ). G(Qv )
p
Lemma 3.1. — The functions Ip (s) are holomorphic in T−2 . Moreover, If (s) is holomorphic in T0 and admits a meromorphic continuation to T−2 with an isolated simple pole at s = 4. Proof. — We have (3.4)
( p` (1 + p−1 ) volp (`) = 1
if ` > 0, if ` = 0
so that Ip (s) is given by X `s s s s s p− 2 p` = (1 − p−( 2 −1) )−1 (1 + p− 2 ) = ζp ( − 1)(1 + p− 2 ), 1 + (1 + p−1 ) 2 `≥1 where ζp is the local factor of the Riemann zeta function ζ (the sum convergesQabsolutely and uniformly on compacts in T−2 ). The Euler s product p (1 + p− 2 ) converges (uniformly on compacts in T−2 ) to a holomorphic function. It suffices to recall the analytic properties of ζ.
8
JOSEPH SHALIKA, RAMIN TAKLOO-BIGHASH and YURI TSCHINKEL
Lemma 3.2. — Assume that for all p, |<(αp )| < r. Then Ip (s, ϕp ) is holomorphic for <(s) > 2r + 1. Moreover, for all > 0 there exists a constant c = c() such that If (s, ϕ) is holomorphic and |If (s, ϕ)| ≤ c,
for <(s) > 2r + 3 + .
Proof. — Combining (3.1) with (3.4) we have 1 − χ¯2p (p)/p X −` s−1 ` 1 − χ2p (p)/p X −` s−1 ` 2 χ (p)+ Ip (s, ϕp ) = 1+ p p 2 χ¯p (p). p 1 − χ¯2p (p) `>0 1 − χ2p (p) `>0 For <(s) > 2r + 1 the series converges absolutely (and uniformly) to (3.5)
(1 − p−
Ip (s, ϕp ) =
s−1 2
χp (p))−1 (1 − p− ζp (s)
s−1 2
χ¯p (p))−1
.
The corresponding Euler product is holomorphic and bounded by some constant c(), provided <(s) > 2r + 3 + . Lemma 3.3. — For all > 0 and n ∈ N there is a c = c(, n) such that Z ∆n · H∞ (g∞ )−s dg∞ I∞ (s) and In,∞ (s) := G(R)
are holomorphic for all s ∈ T−2+ with absolute value bounded by c. Proof. — Write (3.6)
g=k
1
a
k 0 , with k, k 0 ∈ SO(2), 0 < a ≤ 1.
By a standard integration formula (cf. p. 142 of [11]) Z 1 Z 1 σ σ −1 ∗ 2 a (a − a) da < I∞ (σ) a 2 −1 da∗ < ∞ 0
0
(for σ > 2). A similar explicit computation proves the second claim. Proposition 3.4. — The function Z res (s) is holomorphic in T0 and admits a meromorphic continuation to T−2 with an isolated pole at s = 4. Proof. — By definition, Z Z X Z res (s) = H(γg)−s dg = G(Q)\G(A) γ∈G(Q)
G(A)
H(g)−s dg = If (s) · I∞ (s).
RATIONAL POINTS
9
It suffices to apply Lemma 3.1 and 3.3. 4. Eisenstein series Notation . — R +∞ R – R := −∞ ;
– dµn (t) := (1 + t2 )−n dt - a measure on R;
– c(s) :=
Q
v cv (s),
with cp (s) =
ζp (2s) ζp (2s+1)
Γ(s) and c∞ (s) = π Γ(s+1/2) ;
P 2<(η) – W (t) := 1 − η <(η)2 +(t−=(η)) 2 , sum over all poles, with multiplicity, of c(s) with <(η) < 0; – E(s, g) - Eisenstein series (2.4), Es := E(s, e) and Z E(s, ng)dn; EP (s, g) := N (Q)\N (A)
– truncations: X ∧T E(s, g) := EP (s, γg) and T
∧T E(s, g) := E(s, g) − ∧T E(s, g),
the sum over γ ∈ P (Q)\G(Q), with χP (γg) ≥ T > 0.
We recall some basic facts from the theory of Eisenstein series. We follow closely the exposition in [8, 9]. Theorem 4.1. — (1) the poles of E(s, g) coincide with the poles of c(s); (2) away from the poles, E(s, g) = E(1 − s, g); (3) away from the poles, Z E(s, kg) dk = E(s, e)ϕ(s, g), K
Q where ϕ(s, ·) = v ϕv (s, ·) is the spherical function of the corresponding principal series representation; R (4) G(Q)\G(A) E(it, g)dg = 0.
JOSEPH SHALIKA, RAMIN TAKLOO-BIGHASH and YURI TSCHINKEL
10
Proof. — Property (4) follows easily from the fact that the p-adic principal series representations corresponding to a purely imaginary parameter do not have the trivial representation as a quotient. The following key facts about Eisenstein series will be crucial for the analysis of the height zeta function. In the special case at hand, they could be deduced from standard facts about the Riemann zeta function. However, we give proofs applicable in more general situations. Theorem 4.2. — For n 0, one has R (1) R k ∧T E(it, ·)k22 dµn (t) < ∞; (2)
R
R
kE(it, ·)k22,Ω dµn (t) < ∞, where Ω ⊂ G(A) is a compact subset;
(3) for all g ∈ G(A) Z | ∧T E(it, g)|dµn (t) < ∞ and R
(4) the function g 7→
R
R
Z
R
|E(it, g)|2 dµn (t) < ∞;
|E(it, g)|dµn (t) is continuous.
We will need the following Lemma 4.3. — We have (4.1)
k ∧T E(it, ·)k22 = 2T −
c0 (it) + Ψ(it, T ), c(it)
where Ψ(it, T ) is a bounded function. Proof. — Following [9], p. 102, we get, away from the poles (4.2) k ∧T E(s, ·)k22 = (s + s¯)−1 eT (s+¯s) − |c(s)|2 e−T (s+¯s) + Ψ(s − s¯, T ), where
1 c(s)e(s−¯s)T − c(s)e−(s−¯s)T . s − s¯ The singularities from (s + s¯)−1 and (s − s¯)−1 are removable ([8], p. 231). For s = σ + it, and σ → 0 the right side of (4.2) equals 1 2T σ c0 (it) lim − |c(σ + it)|2 e−2T σ + Ψ(it, T ) = 2T − + Ψ(it, T ). e σ→0 2σ c(it) Ψ(s, T ) :=
RATIONAL POINTS
11
Since |c(it)| = 1, it suffices to show that Ψ is bounded near t = 0. Write e2itT − 1 e−2itT − 1 c(it) − c(it) − c(it) + . 2it 2it 2it Since c(0) ∈ R and c(it) is differentiable in t, limt→0 Ψ(it, T ) exists. Ψ(it, T ) = c(it)
Corollary 4.4. — The function s 7→ c(s) is bounded in any region 0 ≤ <(s) ≤ , =(s) ≥ 1. Proof. — Follows from the positivity of k ∧T E(s, ·)k2 and (4.2). Lemma 4.5. — For n 0, Z 0 c (it) c(it) dµn (t) < ∞. R
Proof. — The only pole of c(s) in the right half-plane is at s = 1/2. By Theorem 6.9 in [12], there is a q > 0, such that c0 (it) 1 = log(q) + 2 c(it) t +
1 4
+ (1 − W (t)).
By Theorem 7.1 of [12], there is a polynomial Q with positive coefficients such that Z +T 0 c (it) ≤ Q(T ), dt c(it) −T
for all T ∈ R>0 . By definition, for all t, W (t) > 1, so that Z +T 0 Z +T Z +T c (it) 1 (W (t) − 1)dt − dt ≥ log(q) + 2 1 dt, t +4 −T c(it) −T −T and
Z
+T
−T
W (t)dt ≤ 2T + Q(T ) +
Z
+T
−T
1 log(q) + 2 t +
1 4
dt.
In particular, there is a polynomial R with positive coefficients such that for all T ∈ R>0 one has Z +T W (t) dt ≤ R(T ). −T
12
JOSEPH SHALIKA, RAMIN TAKLOO-BIGHASH and YURI TSCHINKEL
Now we use the following easy statement: if a function f : R → R>0 and a polynomial R with positive coefficients are such that Z +T Z f (t) dt ≤ Q(T ) then f (t) dµn (t) < ∞, for n 0. −T
R
If follows that, for n 0, Z 0 Z c (it) dµn (t) < ∞. W (t)dµn (t) < ∞ and R R c(it)
Combining Lemma 4.3 with Lemma 4.5 we see that for all polynomials R there exists an n0 > 0 such that for all n > n0 one has Z |R(it)| · k ∧T E(it, ·)k22 dµn (t) < ∞. (4.3) J T := R
This proves (1) of Theorem 4.2. Next, fix a compact Ω ⊂ G(A), g ∈ Ω, and let k · k∞,Ω , resp. k · k2,Ω be the L∞ (Ω), resp. L2 (Ω), norms. We bound kE(it, ·)k2,Ω by
k ∧T E(it, ·)k2,Ω + k ∧T E(it, ·)k2,Ω ≤ ck ∧T E(it, ·)k∞,Ω + k ∧T E(it, ·)k2 , for some c > 0. We proceed to estimate Z |R(it)| · k ∧T E(it, ·)k2∞,Ω dµn (t). (4.4) JT := R
Observe that
∧T E(it, g) =
X
EP (it, γg)XT (χP (γg)),
γ∈S
where S is a finite subset of P (Q)\G(Q), depending only on S and T , and XT is the characteristic function of [T, ∞). Thus X X | ∧T E(it, g)| ≤ |χ(it, γg)| + |χ(−it, g)| ≤ 2 kχ(0, γ·)k∞,Ω , γ∈S
γ∈S
and the sum on the right side is bounded. It follows that the integral JT converges, for n 0. Combined with (4.3) this proves (2) of Theorem 4.2. An argument based on Sobolev’s lemma (see the appendix or the proof of Lemma 3.4.7 [14]), shows that there exists a polynomial R such that |E(it, g)| ≤ |R(it)| · kE(it, ·)k2,Ω .
RATIONAL POINTS
13
Hence the integral in (3), Theorem 4.2, is bounded by J T + JT , from (4.3) and (4.4)). This proves (3) and (4). 5. Eisenstein integrals For g ∈ G(A), and s, w ∈ C, we put (formally) Z ˆ Z(s, g)E(−w, g) dg. (5.1) Z(s, w) := G(Q)\G(A)
The main technical result of this section is the following Proposition 5.1. — For s ∈ T−1 , the integral Z 1 eis ˆ it)E(it, g) dt Z(s, (5.2) Z (s, g) := 2πi R
(1) is absolutely and uniformly convergent to a holomorphic in s and continuous in g function; (2) Z eis (s, g) ∈ L2 . R ˆ w) equals Proof. — Since K E(s, gk)dk = E(s, e)ϕ(s, g), (formally) Z(s, Z Z H(g)−s E(−w, g) dg = H(g)−s ϕ(−w, g) dg · E(−w, e). G(A)
G(A)
The local integrals Iv (s, w) :=
Z
Hv (g)−s ϕv (−w, g)dgv
G(Qv )
have been computed for v = p in (3.5) (the character corresponding to the spherical function ϕv (w, ·) is | · |w p , see (3.1) and (3.2)). We get (5.3)
If (s, w) =
Y p
Ip (s, w) =
ζ( s−1 − w)ζ( s−1 + w) 2 2 . ζ(s)
In particular, for ∈ (0, 1) and all w = σ + it with 0 ≤ σ ≤ , the map s 7→ I(s, w) = If (s, w) · I∞ (s, w)
is holomorphic for s ∈ T−1+ . Furthermore, for s and w as above, (5.4)
|I(s, σ + it)| n, (1 + t2 )−n .
JOSEPH SHALIKA, RAMIN TAKLOO-BIGHASH and YURI TSCHINKEL
14
Indeed, the function ϕ∞ (it, ·) is bounded. Moreover, by Lemma 4.1, it is an eigenfunction for ∆. We now apply repeatedly integration by parts (with respect to ∆) combined with Lemma 3.3 to I∞ (s, w) and use the standard bounds for ζ. We have Z Z ˆ |Z(s, it)| · |E(it, g)| dt ≤ |I(s, it)| · |E(it, e)| · |E(it, g)| dt R
R
Let K ⊂ T−1 and Ω ⊂ G(A) be compact sets. By the estimates above, for every n ∈ N, there is a constant c = c(n, K) such that Z
(5.5)
2
sup |I(s, it)| · |E(it, e)| dt ≤ c
R s∈K
Z
R
|E(it, e)|2 dµn (t).
To show the absolute and uniform convergence of the integral (5.2) for (s, g) ∈ K × Ω we need to check that, for n 0, Z
R
|E(it, e)| · kE(it, ·)k∞,Ω dµn (t) < ∞,
or, by Cauchy-Schwartz, that Z
R
|E(it, e)|2 dµn (t) < 0 and
Z
R
kE(it, ·)k∞,Ω dµn (t) < ∞,
which follows from Theorem 4.2. To prove that Z eis (s, ·) ∈ L2 , for s ∈ T−1 , write Es := E(s, e), 2πi · Z eis (s, g) = J T (s, g) + JT (s, g), T
J (s, g) :=
Z
R
I(s, it)E−it ∧T E(it, g) dt,
RATIONAL POINTS
15
similarly JT (s, g), with ∧T replaced by ∧T . We bound kJ T (s, ·)k22 as Z Z Z T | I(s, it)E−it ∧ E(it, g)dt| · | I(s, iτ )Eiτ ∧T (iτ, g)dτ |dg G(Q)\G(A) R R Z Z | ∧T E(it, g) ∧T E(iτ, g)|dgdtdτ |I(s, it)I(s, iτ )Eit Eiτ | ≤ R2 G(Q)\G(A) Z ≤ |I(s, it)I(s, iτ )Eit Eiτ | · k ∧T E(it, ·)k2 · k ∧T E(iτ, ·)k2 dtdτ R2 Z 2 T = |I(s, it)Eit | · k ∧ E(it, ·)k2 dt R
by repeatedly applying Fubini’s theorem, and then Cauchy-Schwartz to the inner integral. Thus it suffices to bound the integrals Z Z |E(it, e)|dµn (t) and k ∧T E(it, ·)k22 dµn (t), R
R
which has been accomplished in Theorem 4.2. We turn to JT (s, ·). It suffices to consider the integral over ST (since T S is compact). For T > 1 we have, for all g ∈ G(A), ∧T E(it, g) = EP (it, g) = χ(it, g) + c(it)χ(−it, g).
R Substituting this into the definition of JT (and rewriting the integral R ) we see that we need to bound the L2 (ST )-norms of Z Z I(s, w)E−w χ(w, ·)dw and I(s, w)E−w c(w)χ(−w, ·) dw <(w)=0
<(w)=0
By Corollary 4.4, c(s) is bounded in the region <(s) ∈ [0, ], =(s) ≥ 1 and we can shift the contour of integration of the first integral slightly to the left and that of the second to the right. This gives Z Z χ(−ε, ·) I(s, w)E−w dw and χ(−ε, ·) I(s, w)E−w dw. <(w)=−ε
<(w)=ε
Now it suffices to observe that, for ε > 0, Z ∞ 1 a2(−ε+ 2 ) a−1 da∗ < ∞, kχ(−ε, ·)k2,ST = T
and to use the estimate (5.4). This completes the proof of Proposition 5.1
16
JOSEPH SHALIKA, RAMIN TAKLOO-BIGHASH and YURI TSCHINKEL
6. P-series Definition 6.1. — Let φ : G(A) → C satisfy
– φ(ngk) = φ(g), for n ∈ N (A), k ∈ K and g ∈ G(A); – φ(ag) = φ(g), for a ∈ A(Q), g ∈ G(A); – φ : A(Q)\A(A) → C is smooth of compact support.
For g ∈ G(A), set θφ (g) :=
X
φ(γg) and θˆφ (s) :=
Z
θφ (g)E(s, g)dg.
G(Q)\G(A)
γ∈P (Q)\G(Q)
Since φ is left P (Q)-invariant and compactly supported modulo P (Q) ˆ the sum defining θφ is finite so that θφ ∈ C∞ c (G(Q)\G(A)) and θφ is meromorphic, analytic in <(s) ≥ 0, except possibly at s = 1/2. In the following we identify A∗ with A(A): a 0 a := , 0 1 write da∗ , resp. da, for the corresponding Haar measure and regard φ as ∗ ˆ∗ ∗ ∞ ∗ being (simultaneously) in C∞ c (Q · Z \A ) = Cc (R>0 ). For <(s) 0 we may use Fubini to derive Z ˆ θφ (s) = θφ (g)χ(s, g)dg P (Q)\G(A) Z = θφ,P (g)χ(s, g)dg N (A)A(A)\G(A) Z = θφ,P (a)χ(s, a)|δ(a)|−1 A da A(Q)\A(A) Z s−1/2 da∗ , θφ,P (a)|a|A = Q∗ \A∗
where θφ,P is the constant term of θφ . By Bruhat’s lemma, Z X φ(wγg) and θφ,P (g) = φ(g) + φ(wng)dn, θφ (g) = φ(g) + γ∈N (Q)
N (A)
RATIONAL POINTS
17
(with w the nontrivial element of the Weyl group), so that Z Z Z s−1/2 s−1/2 ∗ ˆ da + φ(wna)dn · |a|A da∗ . φ(a)|a|A θφ (s) = Q∗ \A∗
Q∗ \A∗
N (A)
To justify the above equation note that the double integral on the right is absolutely convergent. Indeed, for g ∈ G(A) and φ as above, set Z −1/2−s fφ (s, g) = da∗ . φ(ag)|a|A Q∗ \A∗
Then
1/2+s
fφ (s, nag) = |a|A fφ (s, g) and the double integral may be written as Z (6.1) fφ (s, wn)dn = c(s) · fφ (−s, e). N (A)
The Euler product defining c(s) and hence the integral (6.1) converge for <(s) 0. We have, for general φ, and, at first for <(s) 0 and then, by analytic continuation, for all s, (6.2) θˆφ (s) = fφ (−s, e) + c(s)fφ (s, e). Notice that θˆφ (it) is rapidly decreasing (fφ (it, e) is essentially the Fourier transform of a function in C∞ c (R)) and define, for g ∈ G(A), Z 1 c θˆφ (it)E(it, g)dt. (6.3) θφ (g) := 2π R ∗ c 2 Proposition 6.2. — If φ ∈ C∞ c (R>0 ) then θφ is continuous and in L .
Proof. — From (6.3) and (6.6) we have |θφc (g)| ≤ J T (g) + JT (g), with Z Z T T J (g) := | ∧ E(it, g)|dµn (t) and JT (g) := | ∧T E(it, g)|dµn (t). R
R
Both integrals are finite by Theorem 4.2, (3). To prove continuity, let Ω be a pre-compact neighborhood of g and recall that (by the same theorem) Z sup |E(it, g)|dµn (t) < ∞ for n 0.
R g∈Ω
18
JOSEPH SHALIKA, RAMIN TAKLOO-BIGHASH and YURI TSCHINKEL
∗ ˆ∗ ∗ Theorem 6.3. — For all φ ∈ C∞ c (Q · Z \A ) one has
θφc = θφ − hθφ , 1i1.
Proof. — We first prove the identity for constant terms: c θφ,P = θφ,P − hθφ , 1i1.
By Theorem 4.2, g 7→ Z
R
R
|E(−it, g)|dµn (t) is continuous so that Z |θˆφ (it)E(−it, ng)|dtdn < ∞.
N (Q)\N (A)
R
It follows that, for g ∈ G(A), Z Z c ˆ θφ (it)EP (−it, g)dt = θˆφ (it) (χ(it, g) + c(−it)χ(−it, g)) dt. θφ,P (g) = R
R
Since
c(−s)θˆφ (s) = fφ (s, e) + c(−s)fφ (−s, e) = θˆφ (−s) we obtain that (6.4)
c (g) θφ,P
1 = π
Z
θˆφ (it)χ(it, g)dt.
R
c We now compare θφ,P and θφ,P . We have already seen that Z s−1/2 da∗ , for <(s) 0. (6.5) θˆφ (s) = θφ,P (a)|a|A Q∗ \A∗
For <(s) ≥ 1, the function
−1/2+s
a 7→ θφ,P (a)|a|A
ˆ ∗ and in L1 (Q∗ · Z ˆ ∗ \A∗ ) = L1 (R∗ ). On the other is left-invariant under Z >0 hand, c(s) is bounded in the region 0 ≤ <(s) ≤ σ0 (for any σ0 > 0), |=(s)| ≥ 1 (by Corollary 4.4). It follows from (6.2) that in this domain Z −1/2+σ ˆ θφ (σ + it) = |a|itA da∗ θφ,P (a)|a|A Q∗ \A∗
is rapidly decreasing in t and we may apply Fourier inversion so that Z −σ+1/2 (6.6) θφ,P (a) = |a|A θˆφ (σ + it)|a|−it A dt. R
RATIONAL POINTS
19
But we also have (6.7)
c θφ,P (g)
1 = 2πi
Z
1/2−s ds. θˆφ (s)|a|A
<(s)=0
We shift the contour to <(s) = σ, taking σ > 1/2. The shift is justified by using (6.6) and the fact that fφ (σ + it, e) is rapidly decreasing in t, uniformly in σ, for |σ| ≤ σ0 . It follows that Z 1 1/2−s 1/2−s c θφ,P (a) = ds − ress=1/2 θˆφ (s)|a|A . θˆφ (s)|a|A 2πi <(s)=σ Now it suffices to compute the residue of c(s) at s = 1/2 and to see that Z Z −1 ∗ fφ (1/2, e) = θφ (g)dg, φ(a)|a|A da = Q∗ \A∗
G(Q)\G(A)
(for appropriately normalized measures). Let us now set θφcusp := θφ − hθφ , 1i · 1 − θφc .
We have proved that θφcusp is continuous, in L2 and has a vanishing constant term. Thus θφcusp is a cusp form, i.e., orthogonal to all the P-series θφ . To complete the proof of Theorem 6.3 it suffices to prove that θφc is orthogonal to all cusp forms. Since θφc ∈ L2 , it will suffice to prove that hθφc , ψ ∗ αi = 0
for all cusp forms ψ and all α ∈ C∞ c (G(A)). Replacing ψ by ψ ∗ α we may assume that ψ is rapidly decreasing (and continuous). Recall that Z θφc (g) = θˆφ (t)E(−it, g)dt. R
Since hE(−it, ·), ψi = 0, for all t ∈ R, it suffices to prove that Z Z |E(it, g)ψ(g)|dµn (t)dg < ∞ for n 0. G(Q)\G(A)
R
As before, we consider the integral Z Z T J := | ∧T E(it, g)| · |ψ(g)|dµn (t)dg S
R
20
JOSEPH SHALIKA, RAMIN TAKLOO-BIGHASH and YURI TSCHINKEL
and a similar integral JT with ∧T replaced by ∧T . Using Theorem 4.2, Z T J kψk2 · k ∧T E(it, ·)k2 dµn (t) < ∞. R
To treat the integral JT we decompose S = ST ∪ ST . Since ST is compact, ψ continuous and | ∧T E(it, g)| bounded in this domain, the double integral is absolutely convergent. It remains to estimate Z Z | ∧T E(it, g)| · |ψ(g)|dµn (t)dg. ST
R
To complete the proof of Theorem 6.3 observe that for T > 1, | ∧T E(it, g)| = |EP (it, g)| ≤ 2χ(0, g)
and, since ψ is rapidly decreasing, Z |ψ(g)| · χ(0, g)dg < ∞. ST
Proposition 6.4. — For <(s) 0, the function Z eis (s, ·) is orthogonal to all cusp forms and to the constant function. Proof. — Recall that Z eis (s, g) = where
1 2πi
Z
R
ˆ it)E(−it, g)dt, Z(s,
ˆ it) = I(s, it)E(it, e) with I(s, w) = Z(s,
Z
H(g)−s ϕw (g)dg.
G(A)
As above, we show first that the double integral Z Z ˆ it)E(−it, g)ψ(g)dtdg, Z(s, G(Q)\G(A)
R
is absolutely convergent, for ψ continuous and bounded, and that it converges to zero. The last integral is majorized by Z Z |E(it, e)| · |E(−it, g)| · |ψ(g)|dµn (t)dg. R
G(Q)\G(A)
RATIONAL POINTS
21
We set J
T
:=
Z Z R
G(Q)\G(A)
|E(−it, e)| · | ∧T E(it, g)| · |ψ(g)|dµn (t)dg.
and a similar integral JT (with ∧T replaced by ∧T ). By Cauchy-Schwartz, to treat J T it suffices to consider Z |E(−it, e)| · k ∧T E(it, ·)k2 dµn (t), R
and again by Cauchy-Schwartz, the two integrals Z Z 2 |E(−it, e)| dµn (t) and k ∧T E(it, ·)k22 dµn (t), R
R
which are finite by Theorem 4.2. To bound JT we decompose S = ST ∪ ST . The contribution from (the compact) ST is estimated using the boundedness of ∧T E(it, ·) · ψ(·). To treat ST recall that in this domain (for T > 1), ∧T E(it, ·) = EP (it, ·) and |EP (it, g)ψ(g)| ≤ c · χ(0, g). Using the fact that the right side is integrable on S and, once again, Theorem 4.2, we see that J T is also finite. Since Z |E(−it, e)|dµn (t) (6.8) R
is finite for n 0, the integral J T is also finite. As we have remarked, hE(−it, ·), ψ(·)i = 0, for t ∈ R, at least if ψ is rapidly decreasing. It remains to recall Proposition 4.1 (4): Z E(it, g)dg = 0. G(Q)\G(A)
This completes the proof. We will need the following ∗ Lemma 6.5. — For all φ ∈ C∞ c (R>0 ), we have
hZ eis (s, ·), θφ i = hZ(s, ·), θφc i.
JOSEPH SHALIKA, RAMIN TAKLOO-BIGHASH and YURI TSCHINKEL
22
Proof. — First observe that (6.9)
ˆ θˆφ iL2 (R) = hZ eis , θφ i = hZ,
1 2πi
Z
R
ˆ it)θˆφ (t)dt. Z(s,
For this it suffices to prove that Z Z ˆ it)E(it, g)θφ (g)|dtdg < ∞ |Z(s, G(Q)\G(A)
R
ˆ it) = I(s, it)E(it, e), where, by (5.4), I(s, it) is rapidly We have Z(s, decreasing in t, and Z Z |E(−it, e)E(it, g)θφ (g)|dµn (t)dg < ∞, G(A)\G(A)
R
for n 0, by Theorem 4.2. To show that ˆ θˆφ iL2 (R) = hZ, θc i hZ, φ
it suffices to check that, for <(s) 0, Z Z |Z(s, g)E(it, g)θˆφ (it)|dtdg < ∞. G(A)\G(A)
R
Since Z(s, g) is bounded in g, for <(s) 0, and θˆφ (it) is rapidly decreasing, it suffices to recall that Z |E(it, ·)|dµn (t) ∈ L2 , for n 0. R
7. The cuspidal spectrum Write G(A) = G(Q) · G(R) · Kf and let Γ = pr∞ (G(Z)). The map j : L2 (G(Q)\G(A)) → L2 (Γ\G(R)) φ 7→ φ|G(R)
is an isometry. We consider the right regular representation of G(R) on H := L2 (G(Q)\G(A))Kf = L2 (Γ\G(R)) and denote by H∞ ⊂ H the subspace of smooth vectors. If M = Γ\G(R) and ω is the gauge form on M whose accociated measure is a fixed rightinvariant measure on Γ\G(R), then H∞ = H∞ (M ) as defined in the
RATIONAL POINTS
23
Appendix. Write L20 := L20 (G(Q)\G(A)) for the space of cusp forms on G(A) and H0 = L20 (G(Q)\G(A))Kf for the closed G(R)-stable subspace of H. Let P : H → H0 be the orthogonal projection, it maps H∞ to H∞ 0 , the subspace of smooth ∞ vectors in H0 . Moreover, H∞ ⊂ H . We have decompositions 0 (7.1)
K
L20 = ⊕π Hπ ⊂ L2 (G (Q)\G(A)) , and H0 = ⊕Hπ f ,
as a G(A)-modules, into a countable direct sum of closed irreducible subspaces (each occuring with finite multiplicity). Let A0 be the set of all K π occuring in H0 . Note that each Hπ f contains an essentially unique K∞ fixed vector φπ normalized so that kφπ k2 = 1. Let H0 (M ) ⊂ L2 (M, ω) be the Hilbert subspace spanned by the φπ ’s. We remark that the φπ are necessarily in H∞ and are eigenfunctions of ∆, with eigenvalue, say, λπ . By Proposition 8.8, for φ ∈ H0 ∩ H∞ , the Fourier series X hφ, φπ iφπ (7.2) π∈A0
converges to φ, uniformly of compact sets.
We apply the above arguments to the height zeta function as follows. For <(s) 0, put Z res = hZ, 1i1 and define Z cusp so that Z(s, ·) = Z res (s) + Z cusp (s, ·) + Z eis (s, ·).
Proposition 7.1. — For <(s) 0,
Z cusp (s, ·) = P(Z(s, ·)) ∈ L20 .
Proof. — By Proposition 5.1, Z eis (s, ·) ∈ L2
for <(s) 0 and is continuous. Same holds for all its ∆-derivatives. It follows that Z cups (s, ·) ∈ L2 and is also continuous. ∗ For φ ∈ C∞ c (R>0 ) we have hZ cusp (s, ·), θφ i = hZ(s, ·), θφ i − hZ eis (s, ·), θφ i − hZ(s, ·), 1i1.
By Lemma 6.5, hZ eis (s, ·), θφ i = hZ(s, ·), θφc i and, by Theorem 6.3, θφc = θφ − hθφ , 1i1.
24
JOSEPH SHALIKA, RAMIN TAKLOO-BIGHASH and YURI TSCHINKEL
We get at once hZ cusp (s, ·), θφ i = 0
and Z cusp ∈ L20 . (Here we used the right K-invariance of Z cusp (s, ·).) To prove that Z cusp = P(Z), we need to show that hZ cusp (s, ·), ψi = hZ(s, ·), ψi,
for all ψ ∈ L20 . This is an immediate consequence of Proposition 6.4. We proceed to investigate the meromorphic properties of the Fourier expansion of Z cusp as in (7.2). For v = p, let ϕp be the corresponding local spherical function with parameter αp ∈ C∗ . They are given by (3.1) and (3.2). The crucial facts in our further analysis are Theorem 7.2. — [10] For π = ⊗ν πν ∈ A0 let ϕp be the normalized spherical function corresponding to πp and αp its parameter. Then |<(αp )| ≤ 1/6. Remark 7.3. — Any nontrivial uniform bound towards the Ramanujan conjecture suffices for our purposes. Theorem 7.4. — For all r > 0 there is a c > 0 such that X kφkr ∞ (7.3) Z∆ (s) := < ∞, for all n > c. n |λ π| π∈A ,λ 6=0 0
π
Proof. — Estimate the k·k∞ -norm of eigenfunctions in terms of the corresponding eigenvalues as in the Appendix and use the following fact: there exist constants c, r > 0 such that the number of linearly independent ∆eigenfunctions with eigenvalue less than B is bounded by c(1 + B r ), for all B ≥ 0 (see [12], for example). Lemma 7.5. — For all > 0 and n ∈ N there is a constant c = c(, n) such that for all s ∈ T−2/3+ and all π the function Z hZ(s, ·), φπ i = Z(s, g)φπ (g)dg G(Q)\G(A)
is holomorphic, with absolute value bounded by ckφk∞ |λπ |−n (for λπ 6= 0).
RATIONAL POINTS
25
Proof. — For φπ (with λπ 6= 0) and s such that Z(s, ·) ∈ L2 Z Z −s −n hZ(s, ·), φπ i = H(g) φπ (g) dg = λπ H(g)−s ∆n φπ (g) dg G(A) G(A) Z = λ−n ∆n H(g)−s φπ (g) dg. π G(A)
Since the (right) actions of ∆ and K commute, ∆n H(g)−s is invariant under K (which has volume 1), so that the above expression equals (7.4)Z Z Z Z −n n −s −n n −s λπ ∆ H(kg) φπ (g)dgdk = λπ ∆ H(g) φπ (kg)dkdg. K G(A)
G(A)
K
As is well-known, Z
K
φπ (kg) = ϕπ (g) · φπ (e),
where ϕπ is the spherical function attached to π, i.e., ϕπ (g) = hπ(g)φπ , φπ i, g ∈ G(A). Indeed, the functional φ 7→
Z
φ(k·)dk
K
is a bounded, left K-invariant functional on H∞ π (and Hπ ). Thus it is proportional to the functional φ 7→ hφ, φπ i. Taking φ = π(g)φπ , we find that the proportionality constant is φπ (e). Thus the integral in (7.4) is computed as Z (7.5) If (s, ϕ) · ∆n H∞ (g∞ )−s ϕ∞ (g∞ ) dg∞ · φπ (e) G(R)
Combining Lemma 3.2 with Theorem 7.2 (giving r = 1/6), we find that If (s, ϕ) is holomorphic for s ∈ T−2/3 and uniformly bounded by a constant c() for s ∈ T−2/3+ (and > 0). Since φ is bounded, Lemma 3.3 shows that Z ∆n H∞ (g∞ )−s ϕ∞ (g∞ ) dg∞ G(R)
26
JOSEPH SHALIKA, RAMIN TAKLOO-BIGHASH and YURI TSCHINKEL
is absolutely convergent, in T−2 , to a holomorphic function which, in T−2+ , is bounded by ckφk∞ for some constant c = c(, n). Proposition 7.6. — For all > 0 the function X hZ(s, ·), φπ iφπ (g) (7.6) Z cusp (s, g) := π∈A0
is holomorphic in s and continuous in g ∈ G(A) for all s ∈ T−2/3+ . Proof. — Combine Theorem 7.4 and Lemma 7.5. The uniform convergence on compacts Ω ⊂ G(A) follows from the estimate X X kφπ k2 ∞ sup |hZ(s, ·), φπ iφπ (g)| n,,Ω n |λπ | π g∈Ω π∈A 0
and the convergence of the spectral zeta function (7.3) for n 0. 8. Appendix Notation . — – dx = dx1 · · · dxn - Lebesgue measure on Rn , |x|2 = x21 + · · · + x2n ; – α = (α1 , . . . , αn ) ∈ Nn - a multi-index, |α| = α1 + · · · + αn and ∂ α = ( ∂x∂ 1 )α1 · · · ( ∂x∂n )αn the corresponding differential operator; ¯ 0 ⊂ B; – B, B0 ⊂ Rn - open balls such that the closure B ∞ ∞ α 2 – H (B) := {u ∈ C (B) | ∂ u ∈ L (B), ∀α}; – ∆ - a fixed second order elliptic operator on B; – u 7→ uˆ the usual Fourier transform. ∞ n For u ∈ C∞ c (B) ⊂ Cc (R ), put Z Z 2 2 2 kukB := kuk(2,0),B = |u(x)| dx =
Rn
B
and, more generally, X k∂ α ukB , kuk(2,r),B := |α|≤r
kuk2(2,−1) :=
Z
Rn
|u(x)|2 dx
u(x)|2 dx. (1 + |x|2 )−1 |ˆ
Since ∂ α preserves H∞ (B), we can extend the norm k · k(2,r),B to H∞ (B).
RATIONAL POINTS
27
Proposition 8.1. — For every r ≥ 2, there is a c = cr,B > 0 such that (8.1)
kuk(2,r),B0 ≤ c kukB + k∆uk(2,r−2),B ,
for all u ∈ H∞ (B).
Proof. — Induction on r. Fix ψ ∈ C∞ c (B) with 0 ≤ ψ ≤ 1 and ψ = 1 on ¯ 0 . Let v = u · ψ ∈ C∞ (B). By Corollary 6.27, p. 267 in [6], B Next we have (8.2)
kvk(2,2),B ≤ c (k∆vkB + kvkB ) .
∆v = ∆(ψ · u) = ψ · ∆u +
n X
ψj
j=1
∂u + ψ0 · u, ∂xj
with ψj (0 ≤ j ≤ n) fixed in C∞ c (B). To prove the assertion for r = 2 it suffices to show that with φ fixed in C∞ (B), ∂u (8.3) kφ · kB ≤ c1 (kukB + k∆ukB ) . ∂xj For this we write
∂u ∂(uφ) ∂φ = −u ∂xi ∂xi ∂xi and note that w := φ · u ∈ C∞ c (B). Apply (6.25), p. 262 of [6] to obtain kwk(2,1),B ≤ c k∆wk(2,−1) + kwkB . φ·
The following inequality will imply (8.3): (8.4)
k∆wk(2,−1) ≤ c1 (k∆ukB + kukB ) .
Again, for φ as above, we have
∆w = ∆(φ · u) = φ · ∆u +
n X
φj
j=1
∂u + φ0 · u, ∂xj
∂u with φj ’s fixed in To prove (8.4) it suffices to bound kφ· ∂x k(2,−1) j ∂w ∞ (for φ ∈ Cc (B)), or equivalently, k ∂xj k(2,−1) . We have in fact Z ∂w 2 2 k k = ˆ dx (1 + |x|2 )−1 x2j |w(x)| ∂xj (2,−1) n ZR Z 2 |w(x)| ˆ |w(x)|2 dx ≤ kuk2B ≤ dx ≤
C∞ c (B).
Rn
Rn
28
JOSEPH SHALIKA, RAMIN TAKLOO-BIGHASH and YURI TSCHINKEL
This completes the proof of (8.1) for r = 2. Suppose that r ≥ 2 and assume that the claim holds for all s with 2 ≤ s ≤ r. Choose a ball B1 ⊂ Rn with ¯ 0 ⊂ B1 ⊂ B ¯ 1 ⊂ B. B0 ⊂ B
For ψ ∈ C∞ (B1 ) and v as before, we have (8.5)
kuk(2,r),B0 ≤ kvk(2,r),B1 ≤ c(k∆vk(2,r−2),B1 + kvkB1 ),
again, by Corollary 6.27 in [6]. We need only bound k∆vk(2,r−2),B1 . For this we have first from (8.2) (8.6)
∂ α (∆v) = ∂ α (ψ · ∆u) + ∂ α (ψ0 · u) +
n X
∂ α (ψj
j=1
∂u ), ∂xj
2 where now ψj ∈ C∞ c (B1 ) (for 0 ≤ j ≤ n). It suffices to bound the L norms of the terms on the right in (8.6) (for |α| ≤ r − 2) in terms of kukB and k∆uk(2,r−2),B . By Leibniz’ rule,
k∂ α (ψ0 · u)kB1 ≤ c2 kuk(2,r−2),B1 ,
and we may use induction on r, provided r ≥ 4. Suppose then that r = 3 and set w = ψ0 · u ∈ C∞ c (B1 ). Since here |α| ≤ 1, we have trivially, k∂ α wkB1 ≤ kwk(2,1),B1 .
Applying [6] once more, this time to B1 , kwk(2,1),B1 ≤ c1 (k∆wk(2,−1) + kwkB1 ) ≤ c2 (k∆ukB1 + kukB1 ) ≤ c2 (k∆ukB + kukB ),
(the second inequality follows from (8.4)). Next we have, with |α| ≤ r−2, k∂ α (ψ∆u)kB ≤ c3 k∆uk(2,r−2),B ,
and finally k∂ α (ψj
∂u )kB1 ≤ c4 kuk(2,r−1),B ∂xj
and we may apply the induction hypothesis to arrive at (8.1).
RATIONAL POINTS
29
Corollary 8.2. — Suppose that r > 0 is even. Then there is a constant c = cr > 0 such that for all u ∈ H∞ (B) kuk(2,r),B0 ≤ c kukB + k∆ukB + · · · + k∆r/2 ukB .
Proof. — We use induction on r. The case r = 2 follows from Proposition 8.1. Suppose that r ≥ 4 and choose a ball B1 ⊂ Rn so that ¯ 0 ⊂ B1 ⊂ B ¯ 1 ⊂ B. B0 ⊂ B
By Proposition 8.1,
kuk(2,r),B0 ≤ c0r kukB1 + k∆uk(2,r−2),B1 .
Further, we have by induction
k∆uk(2,r−2),B1 ≤ cr/2−1
r/2−1
X j=0
k∆j+1 ukB .
The claim follows combining these two inequalities.
The following form of Sobolev’s lemma will be useful for our purposes. Proposition 8.3. — Let r > n/2 be an integer, B ⊂ Rn an open ball and u ∈ H∞ (B). Then u ∈ L∞ (B) and there exists a c = cr,B such that sup |u(x)| ≤ ckuk(2,r),B . x∈B
Corollary 8.4. — Assume in addition that r is even. Then there exists a c = cr,B , such that r/2 X k∆j ukB ) sup |u(x)| ≤ c(
x∈B0
j=0
Let M be an n-dimensional manifold, ω a gauge form on M (a nowhere vanishing exterior n-form) and dµ the associated volume form. We define Z 2 kf kB := |f (x)|2 dµ(x), and similarly kf k2M , B
and the corresponding space L2 (M ) = L2 (M, ω). Here B is a coordinate ¯ 0 ⊂ B. Let G be the ball in M . We also fix a ball B0 such that B0 ⊂ B Lie algebra of vector fields on M (for each x ∈ M , Gx = Tx , the tangent
30
JOSEPH SHALIKA, RAMIN TAKLOO-BIGHASH and YURI TSCHINKEL
space to M at x). Let U = U(G) be its universal enveloping algebra, regarded as the algebra of differential operators on M . Define H∞ (M ) to be the space of all C∞ -functions f : M → C such that ∂f ∈ L2 (M ) for all ∂ ∈ U. We fix a second order elliptic operator ∆ ∈ U. Proposition 8.5. — Let r > n/2 be an even integer. Then there exists a c = cB > 0 such that for all f ∈ H∞ (M ) one has r/2 X k∆j f kM . sup |f (x)| ≤ c x∈B0
j=0
Proof. — Easy consequence of Corollary 8.4.
Corollary 8.6. — Let K be a compact and r > n/2 an even integer. Then there exists a constant c = cK > 0 such that for all f ∈ H∞ (M ) one has r/2 X k∆j f kM . sup |f (x)| ≤ c x∈K
j=0
Corollary 8.7. — For any even integer r > n/2 there exists a constant c = cr,B > 0 such that for any ∆-eigenfunction f = fλ ∈ C∞ (M ) with eigenvalue λ 6= 0 and any B0 ⊂ B as above one has sup |f (u)| ≤ c|λ|r/2 kf kB
x∈B0
Let M, ω, ∆ be as above. Assume that h∆f, f 0 i = hf, ∆f 0 i, for all f, f 0 ∈ H∞ (M ),
and let {fj }j≥1 be an orthonormal sequence of ∆-eigenfuctions in H∞ (M ). Let H0 (M ) ⊂ L2 (M ) be the Hilbert subspace spanned by the fj ’s and H0,∞ := {f ∈ H∞ (M ) | ∆j f ∈ H0 (M ) for all j}.
Proposition 8.8. — Suppose that f ∈ H0,∞ (M ). Then the series X hf, fj ifj j≥1
converges uniformly on compacts, and in particular, pointwise, to f .
RATIONAL POINTS
31
Proof. — Write ∆fj = λj fj (and note that λj ∈ R). For f ∈ H0,∞ (M ) and n ∈ N we set n X [n] hf, fj ifj . f := j=1
We have k [n]
∆f
=
n X j=1
k
h∆ f, fj ifj =
n X j=1
k
hf, ∆ fj ifj =
n X j=1
hf, fj iλkj fj = ∆k f [n] .
Consequently, for given > 0, we have k∆k (f − f [n] )kM ≤ for 1 ≤ k ≤ r/2 (with r as above), provided n 0. Since f − f [n] belongs to H∞ (M ), the proof follows immediately from Corollary 8.6.
References [1] V. V. Batyrev and Yu. I. Manin – “Sur le nombre de points rationnels de hauteur born´ee des vari´et´es alg´ebriques”, matha 286 (1990), p. 27–43. [2] V. V. Batyrev and Yu. Tschinkel – “Manin’s conjecture for toric varieties”, J. Algebraic Geom. 7 (1998), no. 1, p. 15–53. [3] V. V. Batyrev and Yu. Tschinkel – “Tamagawa numbers of polarized algebraic varieties”, in Nombre et r´epartition des points de hauteur born´ee, Ast´erisque, no. 251, 1998, p. 299–340. [4] A. Chambert-Loir and Yu. Tschinkel – “On the distribution of points of bounded height on equivariant compactifications of vector groups”, Invent. Math. 148 (2002), no. 2, p. 421–452. [5] C. De Concini and C. Procesi – “Complete symmetric varieties”, in Invariant theory (Montecatini, 1982), Lecture Notes in Math., vol. 996, Springer, Berlin, 1983, p. 1–44. [6] G. B. Folland – Introduction to partial differential equations, Princeton University Press, Princeton, N.J., 1976, Preliminary informal notes of university courses and seminars in mathematics, Mathematical Notes.
32
JOSEPH SHALIKA, RAMIN TAKLOO-BIGHASH and YURI TSCHINKEL
[7] J. Franke, Yu. I. Manin and Yu. Tschinkel – “Rational points of bounded height on Fano varieties”, Invent. Math. 95 (1989), no. 2, p. 421–435. [8] S. Gelbart and H. Jacquet – “Forms of GL(2) from the analytic point of view”, in Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, p. 213–251. [9] S. Gelbart and F. Shahidi – “Boundedness of automorphic Lfunctions in vertical strips”, J. Amer. Math. Soc. 14 (2001), no. 1, p. 79–107 (electronic). [10] H. H. Kim and F. Shahidi – “Functorial products for GLb2×GLb3 and the symmetric cube for GLb2”, Ann. of Math. (2) 155 (2002), no. 3, p. 837–893, With an appendix by Colin J. Bushnell and Guy Henniart. [11] A. W. Knapp – Representation theory of semisimple groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 2001, An overview based on examples, Reprint of the 1986 original. ¨ller – “The trace class conjecture in the theory of auto[12] W. Mu morphic forms”, Ann. of Math. (2) 130 (1989), no. 3, p. 473–529. [13] E. Peyre – “Hauteurs et mesures de Tamagawa sur les vari´et´es de Fano”, Duke Math. J. 79 (1995), p. 101–218. [14] D. Ramakrishnan – “Modularity of the Rankin-Selberg L-series, and multiplicity one for SL(2)”, Ann. of Math. (2) 152 (2000), no. 1, p. 45–111. [15] J. Shalika, R. Takloo-Bighash and Y. Tschinkel – “Rational points on compactifications of anisotropic forms of semi-simple groups”, to appear, 2003. [16] J. Shalika and Y. Tschinkel – “Height zeta functions of equivariant compactifications of the Heisenberg group”, ArXiV:math.NT/0203093, to appear, 2001. [17] M. Strauch and Yu. Tschinkel – “Height zeta functions of toric bundles over flag varieties”, Selecta Math. (N.S.) 5 (1999), no. 3, p. 325–396.
!#"$!%&%&')( +*,.-/!'01*32 41 !65 7!8:9<;=?>@=A9$7B<8:CC=A9D>FE/CGIH$JK=L9 M =A>ONQP=3RSHT=LU1;=AVLVAEXWFY9DZRK[A=\EKZ]=A^/9F=A=\_a`>Fb.Rc>d8:WAe/>@b=3WFfgEEc>@bh8:C&>@=A9FWD=L[A>F8:E/C EKZd>iB#E6jY.RK]9D8:[AWS8kC "Sl?m ]=?n.C=A]Epo/=A9XRKCqRKUk^/=LP9@RK8k[rCYfrP=L9sn.=LUk]tua7RKU:P=L9D^/=L9 RKC]v7wKE/9DE/PE/^&Rc>FEoyx{z+|}b.R)o/=~WDbEpB
B9D=Lf0RK8:C0WF=LRK9@RKPU:=$B@=$>Fb.Rc>#BO=~]E CEc>3RKWFWDYf0=~>Fb.Rc>3è½[LE/C&>©Rc8:CW
tu m Î\EpB#=Ao/=A9Le>Fb=~9FE!EKZ}BFb=~8:]=LRKWEKZ#x _K|e9DEpo8k]=LW
¼É=CEpB Rc9F^/Y=XPJ68:C]Y[A>F8:E/CåE/Cå]=L^`àSã m u78:C[A=XB#=g[LRKCäRKWDWFYfg=r>@b.R+>sà RKC] ã Rc9F=s8:9D9F=L]Y[L8kPU:=ceB#=C=A=L]vE/CUÇJ[LE/CWF8:]=L9>@b=S[LRKWF=sB«è P=~E/P>©Rc8:C=A]PJRK] DE/8kC8:C^S>@EhèÝ>@bE/WF=~9D8:fg=LWEcZ t CEK>38kCvè Rc>«B3RhYC8k>Lu²#Jq`, m BO=Sb.R)o/= `Ô m 7 `è æ©à«â©ã mÆ ± 7 `è æ@à ãá 9;B< = D 9;B< C â©ã m E #JÉ>©RKw8kC^åR6ZRK[?>@E/9hNÁEKY>EKZ<>@b=f08k]]U:=0RK9D^/Yfg=LC&>hE/CÚ>@b=9F8:^Kb>LeÆRKC] YWD8:C^ `_ m e!>@b=sWF=A[LE/C]WD=A[L8ÓRcUº[)RKWD=sRKPEoK=SRKC]>@b=~8kC]Y[?>@8kE/Cb&JEK>Fb=LWD8:WLeB#=sWF=A=s>Fb.Rc> 7 `è æ©à«â©ã m 8kW[AE/C&>@8:CYEKYWX8kCÉ>@b=g>FE/EKU:E/^KJy8:C]Y[L=L]PJÉè RKC]8:WR9FE!]Y[A> >@RKwK=ACa Epo/=A9RKUkU L 8:Cgè EKZ[LE/C&>F8:CYE/YW²>@=A9FfgW#=LRK[©baEKC=\EcZBFb= L uÆÎ3=LC[A=T>@b=\W@RKfg=38:W#>F9FY=\EKZ 7 `è$æ©à«â©ã m eP=A[)RKYWF=$>Fb8:Wd]8 5=L9DW#Z9DE/f 7 `è æ©à«â©ã m P&Jn.C8k>@=AUkJf0RKC&J[AE/C&>@8:CYEKYWdZRc[A>@EK9FWLe!=)Rc[©baEKZBaè è E/CUkJ [LEKC>@RK8:CW09D8:fg=LWhB@=6CE/9Ff 8kW0^/9D=)Rc>F=L9g>@b.RKC ]=A^`àSã m už« bYWdPJRKC08kC&>@=L^K9@RKUYC8:fgE]YUÓRK9 >@9FRKCWDZEK9Ff0Rc>@8kE/CrZ9FE/fÈá#â N>@Erá#â N B#=~[)RKCvRK9D9@RKC^/=$>@bRc><ã ± á 9;B
CEKCVL=A9FEuQ.E/9$RKC&JyWFY[©b dâ RKC]äRKC&JvëvCEK>T8kCyè$0 e}[©0bEE/WD= 0 â 0 8kC>F=L^/9FRKURc>Të1e CEc>
æ8:C]=A=L]ä8k>$E/CUÇJ]=L=LC]WsE/% C " ± ̵ RKC]yB@=A^/=L9DW~[LE/9F8:fg= E/Y>@WF8k]=Oè8k>8:W>Fb=WFRKf0=RKW>Fb=OZYC[?>@8kE/Cr^/8Ço/=LCP&J `À m u̾«bYWÅB#=[)RcChRK^&RK8kCB<9F8Ç>@= 8Ç>«RKW<Ù3`è\æ©à«â©ãhæ " m uƾ«b8:WO^/=LC=A9@RKUk8:VLRc>@8kE/Ca8kWCEK><9D=)RKUkUkJgC=L=A]=L]vYC&>@8kUB#=s[LE/fg=$>@E `IÀ/À m æKPY>dRc>>@b.Rc>ÅWD>©Rc^/=OB#=«C=L=A]gèÉ>@E~P=8:C]=L=LC]=AC&>²EKZ Úu » >@WÌ]8:WFRK]ocRKC&>©RK^K=8:W >Fb.Rc>OÙ 8kW#CEXU:EKC^/=L9dC=A[L=LWDW@RK9D8:UÇJaRS[LE/C&>F8:CYE/YWdZYC[?>@8:EKCaEKZ ²æB#=T8kCoK=LW>@8:^/Rc>@= >Fb8:W«WD8k>@YRc>@8kE/C8:CfgE/9F=~]=?>©RK8kU}RcZ>F=L9>@b=S9FE!EKZÌEcZ M =Lfgf0RÊu » Cq]8:WD[LYWDWF8:C^v>Fb=h[LE/C&>@8kCY8k>iJ69FE/=L9>@8k=LWsEKZOÙ RKWsRZYC[A>F8:E/CäEKZ "}eºBO=gWFb.RcU:U C=A=L]>@b=~ZE/UkU:EpB<8:C^rU:=Af0f0Ru H²!Ú é ? " ± ?µ PÆ p!â + U +?·©aK¥a.i,ªK·DK¦Å+?¥! è K¥ ¦:? y£?rKä.i,ªK·FK¦¥!FK¦ t +«¥K@ Ip:?£L¦:X£LK.s· aS è ¹º.?- POh¨FK ¥ #!â t .I,ªK·DK¦º+!?¥! è PÆ '` dâ mű &` )!â m~K¥?1¨©0K R : K·A£L·DK· ¦§É¨?¦:pp0i ) KF!¨© .iS· a0 è T ̵ : K·A£L·FK· ¦§ ¨?¦:ppSi ?µ K<F!¨© .I«¦Ç!¨©I¤ t K¥ Å>µ K¥ µ K·@<.p?@ IKXK F!¨©·@FK¦} .i¦Ç!¨©rI¤ t > ÍP=y>@b=äWD=A>vEKZ9F8kf0=AW B@= Y#·@pI¤QM =A
T± ` â m B@WdRc>d=AoK=L9J09F8:fg=«8:CgèRKC]0PEK>Fb µ RKC] µ RK9F=3YC8Ç>@W#Rc>O=?o/=A9DJ09F8kf0=<8:C $u M =?> 8:C eRYC8Ç>OEKY>@WD8:]=3è$eP=3WFY[©b >Fb.Rc> RKC] RK9F=h8:C &ugÏObEEKWF=E/WF8Ç>@8koK=[LE/9F8:fg=r8kC>F=L^/=A9FW .â X8kC¶¡B@EÀsRc>=Ao/=A9DJ nC8k>F=T9F8kf0=\8:C è½RcC]YC8Ç>@W«Rc>«RKU:U1>@b=~9F8:fg=LWdB 7 â P=gUÓRK9D^/=hEKWF8k>F8koK=08kC>F=L^/=A9FWAu#JåB<9F8Ç>@8:CR^ hµ 8:C >F=L 9FfgW²EK Z}RsP.RKWD=3ZEK9 +µ¶RKC]g[©b.RKC^/8kC^s>@b=3[LE!=Aêg[L8k=LC&>@WdP&Jh=LUk=Lfg=LC&>@WdEKZ´BT=LRK[©bån.C8k>F=X9D8:fg=8kCyè RKC] a!` m R+>$>@b=r8:CnC8k>F=U:RK[L=EKZ´e B#=~[)RKCEKP>©RK8kC RKC8kC&>@=L^K=L9 8:C TB@"E gRKC] µ RKC]WFY[©b>Fb.Rc> r>µ 8kWT[LUkE/WF=S>@EåÀR+>T=)Rc[©bqUÓRK[A=X8:C6èQRKC2 ] pe RK9F=X]8ko!8:WD8:PUk=P&Jv>@b= WFRKf0=hEpBO=A9EKZdë6ZEK9S=LRK[©bÉë68:C \u78kf08kUÓRK9DUkJB#=0[LRKCE/P>©RK8k%C 8:*C gB@#E ~RKC] µ RKC]WFY[©b6>Fb.Rc> %$#µ 8kW\[AU:E/WD=S>FEÀXRc>\=)RK[©bUÓRK[A=EcZ è RKC-] pe RK9F=r]8ko!8:WD8:PUk=XP&J6>Fb=W@RKfg=rEpBO=A9SEcZÆëZE/9$=)RK[©båëv8:C \u¼É=r[)RcC ZY9>@b=A9«=LCWDY9F=~>Fb.Rc> 8:WO9F8kf0=3>@E E/Y>@WF8k]=T2è &\u EpB ± $ µ RKC]
± µ W@R+>@8:WZJRKU:U>@b=9F=Aj!Y8:9F=Af0=AC&>@WT8kC6>@b=U:=Af0f0Ru3¾«b=rE/CUÇJ]8kêg[AYUk>
Â
>Fb8:C^T>FETo/=A9F8kZJX8:WÌ>Fb.Rc>\`& #â mű `& Lâ m uÆ7ETZRK9ÆRKWÆ9F8:fg=LWÌ8:Cè RK9D=«[LE/C[A=L9DC=L]ºe >Fb=~>iBOEgWF8k]=LW3RK^/9D=L=cæ1RKC] '` #!â m̱ '` â m² ± &` ` µ cm â ` µ cmFmƱ &` â! m Y>@EhWDY[©b69D8:fg=LWAu ¾«b=#9FE!EKZEcZ M =LfgfaR~Àd[LE/CWD>@9DY[A>FWÆRKCS=AocRKUkY.Rc>@8kE/C~ZE/9FfXYUÓR
!
"
#
C Ec>R6YC8k>)u M =A>Xè P= EKP>©RK8kC=L]ÉP&JÚRK] DE/8:C8kC^>@Eyè RKU:UÆ>@b= 9F8kf0=AWXR+>XB~RYC8k>Læº>@b=AC ¬ ` p`' #â! m â cmI®S± SÀgP&J>@b=hÎ38:U:P=L9>T9DE]Y[A>~ZE/9DfrYU:Re B@b=g9FE!]Y[?>X8kWS>@RKwK=ACÚEpo/=A9rRKUkUÆUÓRK[A=LW L 8:CÉè uÄ<=L[)RcU:U:8kC^ >@bRc> X]E!=LW CEc>]=A=AC]E/C èRKC] B<9F8k>F8:C^è â ZE/9Oè\â 8:Cä` m eBO=~EKP>©RK8kC Rr[AE/C&>@9@Rc]8:[?>@8:EKCºu » >dZE/U:UkEpB<W²>Fb.Rc> &` #â m U:8k=LW²8:C ¡ZE/9dRKUk U #â ²æ&>@b8kW#[LRKCaEKCUkJhb.Rc=AC 8kZ `Ðá#â N m 8kW«8k>@WD=LUÇZ8kC éfgE]YU:EWFjY.Rc9F=LWAu 0 0 0 0 M =A> P=#>@b=WD=A>ÆEcZ19F8kf0=AWësE/Y>FWF8k]=OèZEK9BFb=$CEc>©Rc>F8:E/CgEKZd`à m u̼É=$[LRKC0B<9D8k>F= " ± ŵ yBO]8Ço!8:WF8kPU:=
± ® / V6W / ` &` #â m â `& #â mFmi® ®(/ V6W ` `& #â m â mI® P=L[LRKYWF=EcZd>Fb=.RK9D8k>iJv9DE/=A9D>F8:=LWTRKPEpoK=Ku » Z²B#=rZY9D>Fb=L9$9F=LjY8k9F=r>Fb.Rc>~CE9F8:fg= B@b= '` #!â m E/9 `' #â! m ec>Fb=LCh=)Rc[©bEKZ1>@b=O>F=L9Df0W 8kCr[LY9DUkJXP9@RK[©wc=A>FW²B<8Ç>@b L 8:Crè èç8:WÌ>F9F8Ço8:RKU,æcWFET>Fb=«E/Y>F=L9Å9DE]Y[A>Æ>Fb=L9D=«9F=L]Y[L=AW >FE~RT9FE!]Y[?>ÆEpo/=A9 L 8kCrè$uÌ#JX >F b=«Î38:U:P=L9>Ì9FE!]Y[A>ÌZE/9FfrYUÓR3>Fb=9DE]Y[A>ÆEKY>@WD8:]= >Fb=$[AY9FUÇJ0P9@RK[©wc=A>@W«[LRKC P=$9D=LU:RK[L=A] P&JaR9FE!]Y[?>Epo/=A9«RKU:U L CEc>8:C0è u » Cao!8:=?B EKZ M =Af0f0RaÊ0B#=r[LRK0 Cå9F=A]Y[L=>@b8kW\>@E Ra9FE!]Y[?>~Epo/=A9$>@bEKWF= L E/Y>FWF8:]=Xè BFb=jY.RK]9@Rc>F8:[9D=LWF8k]Y=WJ!frPEKUfgE]Së1eKBO=«[LRKCrB<9F8Ç>@= >Fb=s9F=LWDYUk>«B3E/P>©RK8kC=L]8:C>Fb=~ZE/9Ff Ù3`è$æ@à<â@ãgæ " m²± ®(/ V6W / ` '` #!â m â &` #â mFmi® / 3 0 ` m `IÀ ³&m BFb=rn.C.RKU9FE!]Y[?>~8:W\>©RKwc=LCäEpo/=L9T>FbE/WD=rëEKY>@WD8:]=rè BFE0RcCvE!]]vEpB#=L9Au
Ã
1 &.ppK ]=A^Oà :$XIK?K¥S.$¨©+IK?.,+$I¤d ?g Ê .+¦Ç¥& ¹º.? :~. L.?¦§0¥!?I?· F¥ £L à K¥ ã +KÉ?¦:?a?.OI¤ Sµ K¥ :< ¤3K¥h+.¦§s ¤ Ù3`è$æ@à<â@ãgæ " m«:T¨©+...+&< " .«I©.+¦:FªKs¥K.¨©F¥ £L è Y#·@pI¤ 7YE/WD=3n9FWD>²>Fb.Rc> d8:W²8:C )už«bYWd>@b=«n.CRKU19FE!]Y[?>#8kC`À ³&m 8kWÅ>@9F8Ço!8ÓRKUu EBU:=?> " ± Å$µ ÚRKC]vU:=?> " P=s[LUkE/WF=~>@E "68kC >@b=s>@E/E/UkE/^KJ08:C]Y[L=L]vP&Jè$u M =A> 8:C+P=sWFY[©b>@bRc> " 8:W«8kC>F=L^/9FRKU,uÌØ$UÇJ!8:C^`À ³&m >@Eh>@b=S9D=L9D=LWD=LC&>©Rc>F8:E/CW " ± µ RcC] " ± " µ B#=s]=L]Y[L=>Fb.Rc>3Ù3`è\æ©à«â©ãhæ " mƱ Ù\`è$æ©à«â©ãhæ " m u ÏOE/C&o/=A9FWD=LUkJÞWFYEKWF=>@b.Rc> a8:W8kC PY>gCEK>g8:C )uÏObEE/WD=6Rä9D8:fg= ë E/Y>@WF8k]=sè Rc>\RjY.RK]9FRc>@8k[S9D=LWD8:]Y=cuOØ\W\P=AZE/9D=Ke.Uk=A> " ± µ pe RKC]ÞUk=A> " ± ŵ BFb=9FEK=A9D>@8k=LWhWD>@Rc>@=A]Þ8kC M =Af0f0Rqz6B<8k>@b