This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
is a multiplier of X and {) is inner and divides 4>, that is, 4>/{} E Hoc. Then Tfi,.? is a well-defined co-analytic Toeplitz operator. Moreover, for any h E Hoc, IIT4).?hlloc = 11{#h)+lIoc = IIT4)({)h)lIoc
~ IIT4>IIII{)hll oc = IIT4>lIlI h ll oc .
Thus and so
4>/{) is a multiplier with II Mq,t9- 1 II
= IIT4>.?1I
~ IIT4>1I
= IIMq,II·
o REMARK
6.5 6.
6 6 MULTIPLIERS AND INNER FUNCTIONS
129
(1) There IS a result of Poltoratski (see Corollary 10.5.9) which says that if KIlI{) = Kv, then 1J has non-tangential boundary values f.L-a.e. and dv can be chosen to be :edf.L. (2) TherE' is an alternate proof of the :f-property for X in [129]. 6.6. Multipliers and inner functions In this section, we discuss the question: when is an inner function a multiplier of X? This question has a complete answer due to Hruscev and Vinogradov [105J that we will present here. Recall from eq.(1.9.11) that any inner function r/> can be factored as r/> = SILB, where SIL is the singular inner factor
with f.L E M+, f.L 1- m, and B is a Blaschke product
B(z) = zm
fr n=l
=:
lanl an an 1- anz
whose zeros at z = 0 as well as {an} C II}\{O} (repeated according to multiplicity) satisfy the Blaschke condition 00
2)1 - lanl} < 00. n=1
Our first observation is that when trying to determine whether or not an inner function is a multiplier, we can consider the singular inner factor and Blaschke factor separately. PROPOSITION 6.6.1. An mner functton r/> = SILB as above zs a multtplzer oj X zJ and only zJ both SIL and Bare multzpizers oj X.
If SIL and B are multipliers, then, since the multipliers form an algebra, r/> = SJ.LB is also a multiplier. Conversely, if r/> = SJ.LB is a multiplier, then applying PROOF
Theorem 6.5.1 (the :f-property for multipliers), we conclude that both SJ.L" and B are multipliers. 0 Let us set a bit of notation that will make some explanations easier later on. For a sequence E C II} \ {O}, such that
L(l-laJ) <
00,
aEE
let
B(z) =
II ~a 1a-~ az
aE E
be the Blaschke product whose zeros (repeated according to multiplicity) are precisely E. By Theorem 6.2.6, every multiplier must have non-tangential limits at every point of the circle. We recall Frostman's theorem (Theorem 1.7.7) to help us eliminate certain Blaschke products as possIble multipliers.
6 MULTIPLIERS AND DIVISORS
130
THEOREM 6.6.2 (Frostman). Let B be a Blaschke product with zero set E. A necessary and sufficient condition that B and all its partial products have nontangential limits of modulus one at E 'H' is that
e
"
L...J
aEE
I-Ial Ie _ al < 00.
So certainly for a Blaschke product B to be a multiplier of X, the quantity
L aEE
must be finite for each
I-Ial Ie - aJ
eE 'H'. It will turn out that the stronger condition "" I-laJ II" _ al < 00,
aF(E) .= sup L...J
(ET aEE ."
is the precise condition for B to be a multiplier. THEOREM 6.6.3 (HruSCev-Vinogradov [105]). An inner function > is a multiplier for X if and only if > is a Blaschke product whose zeros E satisfyaF(E) < 00.
Some remarks about the Frostman condition: At this point, we feel obligated to give some examples of Frostman sequences. Before doing so, we present the following theorem of Vasjunin [226] which shows that Frostman sequences must be slightly better than Blaschke. 6.6.4 (Vasjunin). If B is a Blaschke product whose zeros E satisfy then 1 L(I-Ial) log I-Ial < 00.
THEOREM
aF(E) <
00,
aEE
PROOF.
I: (1 -
f
1
1
lal) log 1 _ laJ ~ cI: (1 - laD iT Ie _ aJ dm( e)
aEE
=
C
f"" I-la/ JrT aEE L...J Ie _ al dm(e)
~ c sup "" L...J
I-Jail dm -11"--,
(ET aEE ." -
=
(Lemma 1.12.3)
T
aEE
caF(E) <
a
T
00.
o Specific examples of Blaschke products for which aF(E) difficult to come by. Here is an example from [228}. LEMMA
6.6.5. Suppose (rnk;~l SUp {
Then the sequence satisfies aF(E) <
00.
C
(0,1) and (On)n~l
On+I} ---0;:: n EN <1
and
C
~ 1- Tn
~
<
00
are somewhat
(0,1) are such that
--0;:- < 00.
6 6 MULTIPLIERS AND INNER FUNCTIONS
PROOF.
Clearly 00 1- rn sup'" < 1 L..J le,(J - r e,(J" I 18 I~2 n=1 n
(6.6.6)
00
since the points rne,e,. only accumulate at ( = 1 and Ln (1 - rn) We get a uniform bound on the quantity
for 101 that
<
131
< 0 :::;;
1/2 in two steps. When -1/2
< 00.
0, we can use Lemma 1.121 to see
and SO
(66.7)
1 _ rn
00
sup
'"
(J
-1/2<9::;;O~ Ie' -
00
1 - rn
(J I : :; c ' " - - < 00. rne' " ~ On
The umform bound for 0 < 0 < 1/2 is a bit more delicate. Let
{0;:1 . EN} < On ! ° °< 0 < [ON-I, ONJ. > N, n
q := sup
The above condition implies that
N = N(O) such that 0 E
0- On
1.
and thus, for each For any n
~
ON -
1/2, there is an
()n
~ ()n-1 - ()n
= ()n
~ ()n
(();:1 -1) (t - 1)
~ ()n(l -
Hence for n to get
q).
> N, we can use Lemma 1.12.1 as well as the above estimate for 0 -
11- rne,«(J,,-(J) I = 11 - rne,«(J-(J,.) I
le,(J - rne,(Jnl =
~
c«() - On)
~cOn.
Thus
()n
132
6 MULTIPLIERS AND DIVISORS
In a similar way, for n < N - 1, On - () ~ On - ON-l
~ ()n - On+l
~ On+l (0~:1 ~
1)
On(1 - q).
As before, we get
L
1- Tn
lei6 _
00
Tnei6n
n
1- Tn
I ~ C L e;:- < 00. n=1
Finally, notice that when n = N - 1 or N, we get the obvious estimate 1- Tn on I ~ 1 IeO"on - Tne'Un and so, summing over the cases (n < N -1, n > N, n = N -1, n = N), we obtain 00
1 _ Tn
" I e'°6 -
(6.6.8)
SUp 1 L0<6< ~ n=1
c" 00
1 - Tn
- < 00. r n e'°6n I ~ 2 + n=1 L- - 0 n
Now use eq.(6.6.6), eq.(6.6.7), and eq.(6.6.8), to conclude that uF(E)
< 00.
0
6.6.9. (1) Adding in the extra hypothesis that
REMARK
;n :
1- r +1
sup { 1 _
n E 1'1
}
< 1,
says, via Theorem 1.11.8, that E is also uniformly separated (i.e., c5(E) >
0). (2) If 0 < m < c < 1, then Ok := ck and rk := 1 - m k is a specific example of a sequence satisfying the hypothesis of the above lemma (including the extra hypothesis mentioned above). (3) Matheson [134) has recently shown that if B is a Blaschke product whose zeros ZB satisfy UF(ZB) < 00, then ZB can accumulate only on a nowhere dense subset of T. (4) For a given closed nowhere dense subset LeT, an elaboration of the above construction produces a Blaschke product B whose zeros ZB satisfy UF(ZB) < 00 and accumulate precisely on L. Moreover, given f. > 0, B can be constructed so that UF(ZB) < 1 + f. [134). Some partial results: The proof of the main theorem of this section (Theorem 6.6.3) is quite beautiful but somewhat technical. For the reader to wants an overview of some of the tools used here, we offer these two partial results from [228). We review the following definitions from Chapter 1. Let E be a sequence of points in D. Define
6 6 MULTIPLIERS AND INNER FUNCTIONS
133
If B is a Blaschke product with zeros E, repeated according to multIplicity, and a E E, we write ba for the individual Blaschke factor b (z) = ~ a -
and let
Z
a I-az'
a
B(z) Ba(z) = ba{z)
be the Blaschke product with one of its factors divided out. With thIS notation, J(E) = inf
aEE
IBa(a)l.
Recall that the sequence E is sepamted if seE) > 0 and unzformly sepamted if 8(E) > O. Define the measure J.LE on D by
L
J.LE(A).=
(1 -laD,
c D,
A
aEEnA
and note that J.LE is a Carleson measure if J.LE(Q) I(E) := s~p m(l) <
00,
where the supremum is over all Carleson boxes Q with base I. Define C(E):=
sup inf{lIflloo:fEHoo,fIE=g} gE-+C
IIglI",,':;;l
The sequence E is mterpolatmg if given any 9 E £00, there is an f E HOO such that fiE = g. The constant C(E) is called the constant of interpolation. Note that E is interpolating if and only If C(E) < 00. Finally, recall Carleson's theorem (Theorem 1.11.5) which says that the three condItions (i) 8(E) > 0,
(ii) seE) > 0 and I(E) <
00,
(iii) E is interpolatmg
are equivalent. THEOREM
and 8(E)
>0
6.610 A Blaschke product whose zeros E satzsfy both ap(E) <
00
zs a multzpher of X. 6
THEOREM
6.6.11. The smgular znner junctzon SOl (z)
= exp (;
~ ~)
zs not a multzplzer of X.
The proof of the first result depends on this interesting proposition that will be used again la.ter. PROPOSITION 6.6.12. For a Blaschke sequence E c D\ {OJ satzsfymg J(E) > 0, the correspondmg Blaschke product B has the representatzon
() 6.6.13
1 B(z) __1__ '"" 1 -lal 2 1 - B(O) lal Ba(a) 1 - az
fEB
The above senes converges unzformly on compact subsets of D. Moreover, zf we also assume that ap(E) < 00, thzs representatzon holds pomtwzse for every (E T. 6Such E exist by Lemma 6 6 5 and Remark 6 6 9
134
6 MULTIPLIERS AND DIVISORS
PROOF. Let {En : n E N} be an increasing sequence of subsets of E with card(En} = n and such that 00
n=l
For each n, let B(n) be the Blaschke product with En as its zeros. If a E En, we let Bin) be the Blaschke product with En \ { a} as its zeros. By considering each B(n) as a rational function on
B(n)(z) =
(6.614)
_ ' " 1 -lal 2 1 1 B(n)(o) L.. lal B(n)(} 1 - az 1
aEE"
a a
Obviously,
B(n)(z) _
-+ B(z) __1_ asn-+oo
1
B
B(O)
uniformly on compact subsets of JD). Now define
otherwise. Since
i5(E) = inf IBa(a)1 > 0, aEE it follows that Thus for fixed z E
JD), 2 IA(n)(z)1 ~ c 1 - lal a 11-az l
Vn
E N.
Since · A(n)() _ l-lal 2 11m a Z 1 I
a
n ..... oo
1
_1_
Ba(a) 1 - az '
aE
E
,
zE
1n\
JUI,
it follows from the dominated convergence theorem that the right-hand side of eq.(66 14) converges to the right-hand side of eq.(6.6.13) whenever
L
1-la1 2
aEE 11 -azl converges, and in particular for z in any compact subset of JD). If uF(E) < 00 and ( E 1', Theorem 1.7.7 (Frostman's theorem) says that lim B(r()
r ..... l
= B«().
On the other hand, we have already shown that B(r() has the representation (6.6.15)
1
B(r() = B(O) -
L aEE
1-la1 2 1 1 lal Ba(a) 1 - ar(
Using the estimate
11- zl I1-rzI ~ 2, z E JD),
0
~
r < 1,
6 6 MULTIPLIERS AND INNER FUNCTIONS
135
it is easy to see that the terms of the series on the right-hand sIde of eq.{6.6.15) are dominated by a universal constant times the terms of the convergent series
'" 1-lal
~11-a(I'
aEE
and so, as r ---t 1-, the sum on the right-hand side of eq.{6.6 15) converges to the sum on the right-hand side of eq.{6.6.13), with z replaced by (. 0 PROOF OF THEOREM 66.10. To show B is a multiplier of X, we will use Proposition 6 2.1 and show that for each (E 'II',
B{z) EX
(-z and (6.6.16) For ( E 'II',
B{z)
B{()
B{z) - B{() . (-z The first term on the right-hand side of eq.{6.6 17) is
--=--+ (-z (-z
(6.6.17)
B{() (- z
=
(B{£)
= K
1- (z
((B{()8 ) (z) '
and so, via eq (4.1.23), (6.6.18)
II
~~(~ I =
II(B{()8dl = 1 for all (
E
'II'.
The second term on the right-hand side of eq.{6.6.17) can be written, usmg Proposition 6.6.12, as B(z) - B{() = '" Aa{() a_ , ~
(-z
aEE
1-az
where 1 -lal 2 laIBa {a)(1 - a() From our assumption that O'F{E) < 00 and 8(E) > 0 it is clear that
Aa(()
sup
:=
L
IAa(()1 = C
< 00.
'ET aEE
From eq.(4.1.23),
III :azll ~ 1 and so for any ( E 'II',
I B (!;() II ~ ~ 'Aa(()'111:az II ~ ~ IAa(()1 ~ C. Combining this with eq.(6 6.17) and eq.(6.6.18) we have shown eq.(6.6.16) and our 0 proof is complete.
136
6
MULTIPLIERS AND DIVISORS
PROOF OF THEOREM 6.6.11. We do this in three steps. We first claim that if hEX and W = {z· Iz -1/21 < 1/2}, then h' E HV(W) for all 0 < p < 1/4
(6.6.19)
Here HV(W) is the set of analytic function h on W such that (6.6.20)
r27r Ih (~ + sei9 ) IV
sup
o~s
d{}
< 00.
Note, as is the case with HV, that if hE HV(W), then h
(~2 + ~ei9) 2
:= lim h s-~
(~2 + sei9 )
exists for almost every {} and
127r Ih (~+ ~ei9) IV
d{}
< 00.
To show eq.(6.6.19) we observe that 11 - zl2 ~ 1 -lzl2
Vz E W (just write every point z E W as z = 1/2 + sei9 where 0 ~ s < 1/2) and so if h = Kf.L, then I ~ 1If.L1I Ih (z)1 "'" (1 -lzl)2
(6.6.21) With z = ~
CIlf.L11 ~ 11 _ z14'
zEW.
+ sei9 , we have for s > 1/4, 11-zI 4 =
(~_SCOS{}+S2)2
~ (G -8)' + 28.;n (0/2»), 2
~ 4s 2 sin4 ({}/2)
~ ~ sin4 ({}/2). Use this estimate along with eq.(6.6.21) to see that sup
r27r Ihl (~ + sei9 ) IV d{} ~ C 10r27r (sin dO({}/2»v <
o<s<~ 10
4
00
2
whenever 0 < p < ~. Hence, from eq (6.6.20), the definition of HV(W), we conclude that h' E HV(W) for all 0 < p < ~. We next claim that if hEX, then hI := (1 - z)2h' E Hl(W). Indeed, we already know that hI E HP(W) for all 0 < p < 1/4 so it suffices to show, by means of an adaption of Theorem 1.9.12, that
r Ih (z)lI dz l <
law To this end, note that
1
00.
6 6 MULTIPLIERS AND INNER FUNCTIONS
Hence
f
Jaw
Ih 1 (z)lIdzl
~ JTf (f Jaw
137
t-
zll: IdZ I) dIJLI(w).
w- z
We now use the fact that V z E oW
11 - zl2 = 1 - Izj2 to see that the above double integral becomes
h(law I~
-_1:\: IdZ I) dIJLI(w).
For fixed wE'll', the function
l-lzl2
Z 1-+ -;----'---'':-::-
Iw-zl 2
is harmonic on W and so, by the mean value theorem for harmomc functIOns, the mtegral
f
1 - lzl2 Idzl
Jaw Iw-zl 2 is equal to
7f
tImes the value of thls function at the center z =
1 w-z aw
! of W and so
l-lzl2 3 1 I 12Idzl=-41i"1 w- 2"112'
From here it follows that
f
Jaw
Ih 1 (z)lldzl <
00.
We now finish the proof by showing that the singular mner function 861 (z)
= exp (;
~ ~)
is not a multiplier of X. If 861 is a multiplier of X, then h to X. By the previous claim,
(1- z)2h' =
.= (1- Z)-1861
belongs
z+ 1 exp (zz-1 + 1) E H1(W).
z-1
However, we can use the identIty 11- zl2 = l-lzl2 for z E oW, to see that for any zEOW,
~-~ //exp (-;~-~) / ~ -IZ-~-11 exp (-_~I_-=--,-I;~I:)
/-;
=Ce- 1 _ 1_ Iz -11 which is not integrable on
o
oW.
Some technical lemmas: This next section consists of several technical results from [105J we will need as we make our way towards the proof of the main theorem (Theorem 6.6.3). We start off with the following theorem from [141]. Recall from Chapter 1, that for a Blaschke sequence E, we can form the finite measure JLE on Dby JLE(A)'=
L
aEAnE
(1 - lal)
6
138
MULTIPLIERS
AND
DIVISORS
PROPOSITION 6.6.22 (McKenna). If J.LE is a Carleson measure, then E is a finite union of interpolating sequences. PROOF. We present the proof from [140). If Q is any Carleson square, we let
T(Q) =
{z
E
Q . my)
~ 1 -Izl < m(I)}
(see Figure 1).
FIGURE 1. The 'top half' T(Q) of a Carleson square Q over the arc Ie 'Jr Let Q~ = Q, and for each n E N, we partition I into 2n congruent subintervals If, and let Q~ be the Carleson square over If. This gives us the following dyadic decomposition of Q (see Figure 2): 00
(6.623)
Q=
2"
U UT(Qj), n=Oj=l
where, by carefully arranging the boundary points, we have a disjoint union.
FIGURE 2. The dyadic decomposition of a Carleson box
6 6 MULTIPLIERS AND INNER FUNCTIONS
139
By dividing up ][) into four equal sectors, we can assume that our sequence E is contained in the Carleson square
w "4w}
Q.= { re ~ : 2"1 ~ r < 1, -"4 ~
(I ~
and we decompose Q as in eq.(6.6.23). Label the boxes
{T(Qj) : n E No,) EN} with the numbers one, two, three, and four, as in Figure 3, so that no two adjacent rectangles are given the same number.
FIGURE
3. The numbered dyadic decompositIOn
Since J.tE is a Carleson measure, there is an N E N such that
card(T(Q;) nE)
~
N
Vn,).
To see this, let and note that since
m(I;)
1
= 2n mel)
and 1 1 270H m(I) ~ (I-laD ~ 2n mel)
Va E T(Q;),
140
6 MULTIPLIERS AND DIVISORS
we see that Mj,n 2n~1 m(I)
~ J.LE(T(Qj) n E) ~ J.LE(Q;) ~
I
'Y(E)-m(I), 2n
where 'Y(E) := sup J.LE(Q) Q m(I) is the Carleson measure constant for the Carleson measure J.LE' Thus Mj,n ~ 2'Y(E)
Vj, n.
We will now divide the sequence E into 4N subsequences E1,
•
,E4N ,
each of which is interpolating. For E 1 , take one element of E from each of the boxes labeled one. For E 2 , take a different element of E from each of these boxes, and continue until EN (remember that each box has at most N elements). Do the same for the boxes labeled two, three, and four to get E N +1,'" ,E4N' Since, for each j, the points from E j are uniformly separated in the hyperbolic metric 7 , each E3 is an interpolation sequence (since Ej is separated and J.L E3 is a Carleson measure - see Theorem 1.11.5). 0 PROPOSITION
6.6.24. If uF(E)
< 00, then E is a finite union of interpolating
sequences. PROOF. By Proposition 6.6.22, it suffices to show that J.LE is a Carleson measure. Let Q be a Carleson square corresponding to the arc I C 1I', and let (Q denote the midpoint of I. Then
J.LE(Q) =
L
(I-laD
aEQnE
=
L
I -
aEQnE I(Q -
~
lal I(Q - al al
uF(E) em(I),
where e is an absolute constant. The last inequality follows because
Iz -
(QI ~
em(I) Vz
E
Q
o So. «)
We need a few more lemmas concerning the geometry of E We let denote the Stolz region at ( E 1I' with opening angle 2a, i.e., So.() is the convex hull (with ( removed) of the circle of radius sina centered at 0 and the point (. When a = 71"/4, we write S(C) for S.,../4()' Let z-w p(z,w):= --=I-wz
I
I
7If one thinks about this in the upper-half plane, then a sequence W J = X J + iY3 is separated if there is a constant s > 0 so that for fixed k, IWJ - Wk I > SYk for all j of k If one puts the boxes in this upper-half plane setting, the proof becomes easier to visualize
6 6 MULTIPLIERS AND INNER FUNCTIONS
141
be the pseudo-hyperbol~c d~tance between the points z and w in]]]). Following [19], we define for Zo E ]]]) and r > 0 the pseudo-hyperbolzc dzsk
K(zo,r):= {z: p(z,zo) < r} and note that K (zo, r) is also the Euclidean disk
A(c, R) = {z : Iz -
cl < R},
where 1 - r2 1 - Izol2 c= 1 - r21 Zo 12zo and R=r 1-r21 Zo 12. This next fact depends on an argument with hyperbolic geometry and can be found in [19, p. 299] For the sake of completeness, we include a proof here. , E
LEMMA 6.6.25. Suppose a sequence E ~ sepamted and E T. Let Q be a Carleson square wzth dyadzc decomposztwn 00
c
S(,) for some
2"
n=OJ=1
(see eq.{6.6.23)}. Then there zs an absolute constant c such that
earn
(En (Q T«(r,J) ) ~ 8(~)'
for each n. PROOF. First note that B(,) intersects at most C1 of the T(Qj), where C1 is an absolute constant (see Figure 4), and so it suffices to estimate card(E n T(Q» for an arbitrary Carleson square Q. Since seE) > 0, the pseudo-hyperbolic disks K(a, s(E)/2), a E E, are disjoint, and their union is contained in the set B of points z E ]]]) whose pseudo-hyperbolic distance to T(Q) is less than 1/2. Each pseudohyperbolic disk K(a, s(E)/2) has Euclidean radius proportional to m(I)s(E), where I is the arc upon which Q sits. Hence
area (
U
K(a'S(E)/2»)
o.EEnT(Q)
is proportional to card(EnT(Q»m(I)2s(E)2. On the other hand, the area of B is proportional to m(I)2, and so
card(E n T(Q»s(E)2 ~ c
o
for some absolute constant c.
6.6.26. If a sequence E ~ sepamted and E c B(,) for some' unzformly sepamted, and 8(E) depends only on seE).
LEMMA
then E
~
E
T,
PROOF To prove that 8(E) > 0, it is enough to use Carleson's theorem (Theorem 1.11.5) and reduce the problem to showing that J.LE is a Carleson measure. If Q is any Carleson square, we decompose Q using the diadic decomposItion in eq.(6.6.23}. By the geometry of B(,), there is an absolute constant C1 so that for each n, at most C1 of the sets T(Qj) intersect B(,) (see Figure 4).
6 MULTIPLIERS AND DIVISORS
142
FIGURE
4. At any high enough 'level', S«() intersects only two T(Q)'l
Since E is separated, we see from Lemma 6.6.25 that for any n, eNd
(En (,QT(Qj))) .; S(~)2
For a Carleson square Q, it follows from the facts that 1-
and for each n, only that
Cl
m(I)
n
lal ~ 2ft'
a E Qj'
of the boxes T(Qj) intersect S«(), and of course E ( 2"
00
JLE(Q) = L LJLE(T(Qj)) n=Oj=l
~
~
f::o
Cl
C m(I) s(E)2 ~
C
= S(E)2 m(I).
Thus the Carleson constant 'Y(E) satisfies the inequality C
'Y(E) ~ s(E)2· Using the inequalities exp (
-C3
~~~ ) ~ t5(E) ~ s(E),
from eq.(111.7), and the inequality 'Y(E) obtain (6.6.27) where
~2(s(E)) ~
~ ~l(s(E)),
5(E)
~
s(E),
where
~l(S) =
cJ
6 6 MULTIPLIERS AND INNER FUNCTIONS
143
is a non-negative increasing function on [0,00). Hence 8(E) depends only on s(E).
o
LEMMA
6.6.28. If uF(E)
< 00, then
card(E n S(()) ~ cUF(E) for each ( E 11.', where
C UI
an absolute constant.
PROOF. If Z E S(() and the segment from z to ( makes angle () with the diameter through (, then the chord of the circle 11.' passing through z and
1
viz
FIGURE
5
On the other hand, the Law of Cosmes yields
Izl2 = 1+ Iz - (1 2- 21z - (I cos{), or, by rearranging the terms,
1-lz12 j( _ zl
= 2cos{)
-I( -
zl·
Since the circle determming S (() has radius sin(7f / 4), the portion of the chord through z and ( lying in S(() has length at most 2 cos{) - (1- sin(7f /4)). It follows that 1-lzl2 7f I( - zl ~ 1 - sm "4' If E has N points in S((), then
7f) N ( 1 - sin"4 ~
,,1-laI2 L.; l( _ al
~ 2UF(E)
aEEnS«)
o
144
6 MULTIPLIERS AND DIVISORS
LEMMA 6.6.29.
II E is a sequence in II)) such that N:= supcard(E n S«)) < 00, (E'J['
then J.LE is a Carleson measure and "f(E) PROOF. For a E
II)),
~
eN.
let Ia consist of all ( E '][' such that a E S«) (see Figure
6)
o "" 1
V2
FIGURE 6. The arc Ia We note that 1 -Ial ~ c1m(Ia) for some absolute constant C1 8 • Next if ( E Ia n h, then both a and b belong to S«). By the hypothesis of the lemma, no ( E '][' belongs to more than N of the arcs la, a E E. Finally, if Q is a Carleson square, and a E Q, then m(la) ~ m(/), where I = Q- nT. It follows that J.LE(Q) =
L
(1-lal) ~
L
Cl
aEQnE
m(Ia) ~ cINm(/),
aEQnE
and so J.LE is a Carleson measure and "f(E)
~
o
cN.
Before getting into these next lemmas, recall from the beginning of this chapter that if is a multiplier of X (written E m(X», then the multiplication operator Mq, : X --+ X, M¢I = <1>1 is bounded on X (Proposition 6.1.1) and its operator norm
sup{IIIII : 11/11
~
I}
is denoted by "Mq,lI By Proposition 6.1 5, this norm is equal to the norm ofthe co-analytic Toeplitz operator T(f; : A --+ A Also recall from Proposition 6.1.3 that if ¢ E m(X), then ¢ E Hoo and 11<1>1100 ~ IIMI/>II. 8Indeed, tanOa :;::: mi~il{2 and so since tan(Oa)
-+
tan(1r/8) as
lal-+ 1, the result follows
6 6 MULTIPLIERS AND INNER FUNCTIONS
LEMMA 6.6.30. Let E be a sequence m each a E E. Suppose that
lIJ),
and let Xa be a complex number for
2: Ix l(l -laD <
(6.6.31)
145
a
00
aEE and that the functwn
1 ---"-la-,---12 1>(z) '= " Xa_ ~ 1-az aEE
belongs to H OO •
(1) If sup (ET
L aE
E
1-la1 2 IXa11a11 (I < 00 1- a
then 1> E W'l(X) and (6.6.32)
(2) If 1> E W'l(X) and E zs mterpolatmg, wzth mterpolatmg constant C(E) from eq.(llLlj, then
1-la1 L IXailal11 (I ~ 2C(E)II M ",1I < aEE - a 2
(6.6.33)
sup (ET
00.
Thus 'tf E zs an mterpolatmg sequence, we have
1-la1 2: IXallalll _ a(1 < aEE 2
1> E W'l(X) <=> sup (ET
00.
PROOF. We begin the proof with a few preliminary comments. Since 1> E H oo , the Toeplitz operator T(f is well-defined operator from Hoo to H2 and so the corresponding Hankel operator
is a well-defined operator from operator With
HOO
to HJ. Here we use P+ for the Riesz projectlOn
1-la1 2 1>(z) = "~ Xa 1 -az ' aEE we first claim that for f E Hoo, (6.6.34)
,,_
_1-laI 2
(H~f)(z) = ~ aXaf(a)z 1- az'
aEE
Z E lIJ).
146
6 MULTIPLIERS AND DIVISORS
To see this, observe that for z E ill>, ¢(z) = """ xa(l ~ aEE
1
-laI 2 )l-az -_00
x a{1-laI 2) Lakz k aEE k=O
=L
t
zk ( L xa(l - laI2)ak) k=O aEE Since we are assuming that ¢ E H oo , we know that the almost everywhere defined boundary function for ¢ belongs to LOO and has a Fourier expansion equal to =
00
¢ rv
L ¢(k)(k, k=O
where (6.6.35) aEE
For each n E No, we have
(nlfi '"
00
00
k=O
l=-n
L ¢(k)(k-n = L
¢(l + nfr!
and so l=1
Thus for each z E ill> and n E No, 00 =-__
(H¢(n)(z) =
L ¢(l + n)i l=1
= t z l ( L Xa(1-la I2 )al+n ) l=1 aEE
(byeq.(6.6.35))
00
= L
aEE
xa(l - lal 2 )an L
ali
1=1
= """ x a {1-laI 2 )an az _. ~ l-az aEE
Thus the formula in eq.(6.6.34) is valid whenever I is a monomial, and hence by linearity, any analytic polynomial. To show that the formula is valid for a general I E Hoo, approximate I in the weak-* topology of H OO with its Cesaro polynomials In = unl (Le., pointwise on ill> with uniformly bounded sup-norms). Argue that In ~ I weakly in HZ and so, since H¢ : H2 ~ H6 is continuous, H¢ln ~ H(j)1 weakly in H6 and hence pointwise in ill>. The that for each z E ill>, 1 - lal 2 lim """ aXaln(a)z 1 = n-oo ~ - az aEE
dominated convergence theorem says 1 - lal 2 """ axal(a)z--'----''-~ 1 - az aEE
6 6 MULTIPLIERS AND INNER FUNCTIONS
147
and thus the formula in eq.(6.6 34) is valid for all I E Hoo To prove (1), use the assumption that
'"
1-laj2
sup ~ IXallallI C;E'f aEE
- a
(I < 00,
along with the inequality 1 - ra(1 ~ 2 11a(
and the dominated convergence theorem, to see that for each ( E 1[',
(H?>f)«() = lim_ (H?>f) (r() r-.l
= lim
L aXal(a)r(_1-jaI 1 - are 2
(byeq.(6.6.34))
r-.l- aEE
-1-laI 2 . 1- a(
= L aXal(a)( aEE
Thus, for any I E Hoo,
IIH?>IIIoo ~ jlflloo sup
L laliXal111 -
C;E'f aEE
and so H?> . Hoo satisfies
---+
HO'
-
lal 2 (I < 00, a
and Its operator norm IIH?>1i .- IIH?> : Hoo
IIH?>II ~ sup
L
1
jaj2
11 -
a(1
lallxal -
C;E'f aEE
---+
HO'II
.
The estimate liT?>!! ~ 114>1100 + IIH?>II, along with Proposition 6 1.5 shows that 4> E 9Jt(X). The identity IIM1>1I = liT?>!! from Proposition 6.1.5 implies the estimate in eq.(6.6.32}. To prove part (2), we first observe, that for fixed Z E Il}, we can choose E = {Ea : a E E} with lEal = 1 for all a and such that
L
(6.6.36)
aEE
l-laJ2 - _1- jal 2 Z IXallallzl,) = '" 1-az ~ XaaEa 1 -az . aEE
interpolating and f E baU(£OO(E)), there is a function IE E HOC such that for each a E E, and 11/.1100 ~ G(E), where C(E) IS the interpolating constant from eq.(1.11.4). But for such an IE> we know from eq.(6.6.34) that Since E
IS
IE(a) =
Ea
H:dE(Z) 0/
_ _ 1-laI 2
= '" XaaEa Z 1- az ~
.
aEE
However, we are assuming that 4> E 9Jt(X), and hence H?>: HOO Hence Thus we have (6.6.37)
---+
Hoo is bounded.
6 MULTIPLIERS AND DIVISORS
148
and so for each, E 'll',
E Ix llal{I-laI a
aEE
II-a'i
2)
~
lim
E Ix llalr{I-laI a
2)
II-ar'l '" Ixa llallzl{1 -laI 2 ) ~ sup L...J .zElI) 11 - azl aEE r-+1- aE E
~
IIH4iIlC{E) (by eq.{6.6.36) and eq.{6.6.37)).
The estimate in eq.(6.6.33) now follows from the estimates
o LEMMA 6.6.38. Let 0 < € < 1/2, and suppose that B is a finite Blaschke product with n zeros, all lying in the disk {z E O· Izi < €}. Then there is an absolute constant c such that
1~ c
(ne + 1 +logn 11MB II) .
PROOF. We write our finite Blaschke product B as
From Proposition 6.4.5 and the triangle inequality, (6.6.39) Now use Proposition 6.4.9 to get, (6.640)
IIMB(1).zn-BIl
~ c (~lInB(I)Zn-1 -
B'lIoo
To estimate the first term on the right, note that
+ log(en)IIB{I)zn -
Blloo) .
6 6 MULTIPLIERS AND INNER FUNCTIONS
149
Hence
IInB(I)zn-1 - B'I/oo
~ nIlB(I)zn -
Blloo +
~ II ~a~ ~~:: - 1/100
~ (1 -l -l akl)2 kl 2 - 1 ~ nIlB(I)zn - Blloo + ~ a
11
nIlB(I)zn - Blloo
=
~ nIlB(I)zn ~
+
I
t
2l akl- 21 akl 2 k=l (1 -l akl)2
Blloo + (1 2~:)2
nIlB(I)zn - Blloo + 8n€ (since 1 -
€
If bk is the Blaschke factor corresponding to the zero ak, we have B so by the triangle inequality,
> 1/2).
= b1' . bk and
n
IIB(I)(n - Blloo ~
L IKbk(I) - bklloo.
k=l Now for each k = 1,···
,n,
I
l(bk(I) - bk(()1 = al k - 1 ( - Iak ~( - ak - ak
I
+ ak - fik + fik( - ak(1 (1 - ak)(1 - ak()
= l'ak,2(( - ()
6€ (1 - 10)2 24€.
~ -;-.,-----c:-=
~
Hence
IIB(I)zn - Blloo ~ 24nt. Combine the above inequalities and put them in eq.(6.6.40) (and re-adjust the umversal constant c) to get
11MB(l)zn-BII Now bring
ill
~
c(€ + mlogn)
eq (6.6.39) to see that c1logn ~ C2(t + m log n) + IIMBII
and so, again re-adjusting the universal constant, we get
I~c(m+
€+IIMBII) logn
~c(m+
I+II MB logn
II). o
LEMMA
6.6.41. Let a
E ll}
and let
,),(z) If 4> E 9Jt(X), then 4> 0
(6.6.42)
')'
a-z I-az
:= - _ - .
E 9Jt(X) and
1
2"M",1 ~ IIM",o-yli ~ 211 M",II·
150
6
MULTIPLIERS
DIVISORS
AND
PROOF. Notice that "I is an automorphism ofID> and so from Lemma 5.6.1 both go'Y and gO'Y- 1 belong to X whenever 9 E X (i.e., the composition operator is well defined on X). So let! E X and apply the previous line to see that! 0 "1-1 EX. But since ¢ is a multiplier, then ¢U 0"1- 1) EX. Compose with "I to conclude that (¢ 0 "I)! E X. Thus ¢ 0 "I is a multiplier. We now prove the string of estimates in eq.(6.6.42). For h E A,
=
(T-h)(z) q,
I
4>(()h(() dm«) 1 - (z
and so, from Proposition 6.1.5 and the definition of the operator norm,
IIMq,1I = IIT~II
~ sup = sup = sup
{II! ~h~;) {II ~h~~) I: {II ¢~(2~ I:
dm((t . hE ball(A)}
dm«)
Izl =
dm«)
Izl = l,h E balI(A)}
l,h E ball(A)}
Observe that by a change of variables,
I
¢«)h(() dm«) = 1-(z
I
(4) 0 "I) «(h'«)(h 0 'Y)«() dm«) 1-'Y«)z
and, via a computation with partial fractions, that 'Y'«) z - -z= 1-'Y«()z 1/0,-( u-('
z,(E'lI'
where
l+az o,+z
U=--.
Notice that
l/a E ID>e and u E 'lI' (since z E 'lI') (1-+ /
z
la-(
and so the functions
z
and (1-+--
u-(
are Cauchy transforms which are at most of unit norm (see eq.(4.1.23)). Thus (6643) From our earlier argument that 4> 0 "I is a multiplier, we can use eq.(6.6.43) to conclude that for each Izl = 1, (6.6.44)
«h'«) II '"& 211Mq,o"( II • II (4) 1 -"I)'Y( ()z 0
By the Cauchy dual pairing
rl!..~- h(KIL)(r()g«)dm«),
IL E M,
9 E A,
151
6 6 MULTIPLIERS AND INNER FUNCTIONS
between A and X, we see that for all Izl = 1 and h E ball(A),
dm«() if (c/J if c/J«()h((j (z =
0
1-
,)(()-y'(()(h 0 ,)«() dm«() 1 -,«()z
~
II (c/J 0 ,)«()-y'«() 1IIIh 0 ,1100 1 -,(()z ~ 211Mo')'lI (by eq (6.6.44)). Thus, again usmg the definitIOn of the operator norm of IIT¢II and the equality IIT¢II = II MII, it follows that
1
"2 II M II ~
II M o')'ll·
Finally, to prove the inequality
we recall the argument at the beginning of the proof that c/J apply the above estimates to get 1
"2 II M o,), II
0,
is a multiplier and
~ IIM(o,),)o,),-lll = IIM II
o In a moment, we will need the following technical lemma relating pseudohyperbolic dISks and Carleson boxes. See [19, p 299] for details. LEMMA 6.6.45. For a gwen f > 0, there zs an mteger M > 0 such that for any Carleson box Q, the box T(Q) can be covered by at most M pseudo-hyperbolzc dzsks of radzus f. LEMMA 6.6 46 Let B be a Blaschke product such that B E 9Jl(X). If c zs the unwersal constant from Lemma 6.6.38, let N be an mteger such that
N ~ exp(2c(1 + 211MB I!)) and let
1
1
c= 4cN = 4c exp( -2c(1
Then for any a E ofB. PROOF
][J),
+ 211MB I!))
the pseudo-hyperbolzc dzsk K(a, f) contams less than N zeros
The automorphism
a-z
l(Z):= - _ I - az
maps K(a,f) onto the EuclIdean disk ~(O,f). Thus B has precisely as many zeros m K(a, f) as B 0 1 has in ~(O, f), Suppose BO l has at least N zeros in ~(O, f). We now derive a contradiction as follows. let B* be a sub-product of BO l with preczsely N zeros in ~(O, f). By the!tproperty for multiphers (Theorem 6.5.1), 11MB-Ii ~ IIMBo')'ll. Apply Lemma 66.41 to see that liMBOI'll ~ 211MB II· Combining these two estimates YIelds
11MB-II ~ 2I1MBII·
6 MULTIPLIERS AND DIVISORS
152
Notice that N was chosen so that
cl+211MBil 10gN
~ ~ '" 2·
Now apply Lemma 6.6 38 to B* to see that l~c
( N€+ 1+IIMB*II) logN
~cN€+c
1+211MBII 10gN
1 2
~cN€+-
Hence 1 1 1 2"" 4cN 4 which is a contradiction. Thus B has less than N zeros in K(a, c). -~CNf=cN--=-
o
Combine Lemma 6.6.45 and Lemma 6 6 46 to obtain the following important corollary. COROLLARY 6.6.47 If a Blaschke product B is a multiplier, then there is a positive integer M such that for any Carleson box Q, the box T(Q) contains at most M zeros of B.
LEMMA 6 6 48 If a Blaschke product B is a multiplier, then B =B1···Bn , where for each j E {I,··. ,n}, B j is a Blaschke product and the corresponding zero sequence ZB j is separated. PROOF. We first note that if 0 < € < 1 is given, Corollary 6.6.47 produces a positive integer M such that T( Q) can be covered by at most M pseudo-hyperbolic disks ofradius € If each such disk contains at most N zeros of B, then each T(Q) contains at most M N zeros of B. By partitioning the zero sequence into at most MN subsequences, we may assume that each T(Q) contains at most one zero of B. Now use the decomposition with the dyadic decomposition of Q (with the boxes 0 labeled 'one', 'two', 'three', 'four') in Proposition 6.6.22 to complete the proof
This next technical lemma is interesting in its own right. Let ~ denote the collection of Blaschke products. An old theorem of CaratModory [38J says that ~ is a weak-* dense subset of baU(Hoo). Our needed technical lemma is the following. LEMMA 6.6.49 (Tumarkin [222]). For each c > 0, the set ~c :=
{B E
~ :
(J'F(ZB) ~ c}
is a weak-* closed subset of HOO . The proof of this lemma requires a few facts. The first is an application of Jensen's formula. LEMMA 6.650. If B is a Blaschke product and n(p) is the number of non-zero zeros of B in the disk {Izl < p}, we have the formula (6.6.51)
[log IB(p()1 dm() = Alogp -
iT
where A is the order of the zero of B at the origin.
t
i
p
nCr} dr, r
153
6 6 MULTIPLIERS AND INNER FUNCTIONS
PROOF. For fixed 0
< p < 1, we can WrIte
(;f' B{z).
B 1 {z) =
Then B and Bl have the same modulus on the cIrcle {Izl = p} and B1(O) Jensen's formula (see [5, p. 208]) applied to Bl yields (6.6.52)
L
log IBI (0)1 = -
i
log C:' I) +
la,l";p
=1=
O.
log IB(p()1 dm(().
However, from the definitIOn of B 1 , 00
B 1 (O) = / '
II la 1 3
3=1
and so
00
logIB1 (0)1 = Alogp+ Llogla31. 3=1
Combine thIS last identity with eq.(6.6.52) to get (6.6.53)
Alogp+ EIOgla31= -
L
log C:'I) +
la,l";p
3=1
h
10gIB(p()ldm(().
With the observation that
L
L
log C:'I) = n(p) logp -
la,l";p
log la3 1,
la,l";p
eq.(6.6.53) becomes (6.6.54)
Alogp+n(p)logp+
L
logla31= 110gIB(p()ldm(().
la,l>p
'Il'
Now if PI ~ P2 ~ .. denote the successive moduli of the zeros of B which are greater than p, we observe that
n(P3) = n(p) + J, and so
1 1
p
n{r)
-dr= r
l p
P1
n(r)
~
- d r + L..,.; r 3=1
l
P'+l
P,
n(r)
-dr r
00
= n(p) log PI + L
p
3=1
n(P3) log P3+I P3
00
= n(p) log PI + L{n(p) + J) log P3+I
P
3=1
P3
00
= -n(p)logp+ Llogp3' 3=1
Combine this identIty with eq.(6.6.54) to obtain the result. Note that the Blaschke condition guarantees the convergence of all the infinite series. 0 We also need the following characterization of Blaschke products [79, p. 56].
MULTIPLIERS AND DIVISORS
6
154
PROPOSITION 6.6.55. A function U E HOC with 1!Ulloc if and only if (6656)
lim flog IU(r()1 dm(() rjl
JT
~
1 is a Blaschke product
= o.
Finally, to prove Lemma 6.6.49 we will need another technical result of Tumarkin [221]. Let (aj)j~1 be the zeros of the Blaschke product Bk and let nk(p) be the number of non-zero zeros of Bk in {Izj < pl. LEMMA 6657. Let (Bk) be a sequence of Blaschke products which converges uniformly on compact sets of]])) to a function B. Then B is a Blaschke product if and only if the following two conditions hold: (1) for each 0 < r < 1, the number of zeros of Bk in {Izl < r} is uniformly bounded in k; (2) for every f > 0 there is an 0 < R < 1 such that
L
(1 -
lajl) < f
laJI>R
for each k PROOF. First suppose that B is a Blaschke product. Since for each 0 < r < 1, Bk -+ B uniformly on the circle {/zl = r}, the principle of the argument (assuming B has no zeros on {I z I = r}) shows that for large enough k, B and Bk have the same number of zeros in the disk {Izl < r}. Condition (1) now follows. Since B is a Blaschke product it follows from eq.(6.6.56) that for every f > 0 there is an o < R < 1, such that
i
Since Bk that
for k
~
-+
log IB(R()I dm(()
i
log IBk(R()1 dm(() > -2f
K. From eq.(6.6 51)
1 -1 1
~
-f.
B uniformly on the circle {Izl = R}, there is a positive integer K such
nk(r) d - r< 2f
r K, since Ak log r is negative. Finally, R
for k
>
1
11
1 nk(r) - nk(R) d nk(r) d nk(R) d - - rr+ -- r R r R r R r 1
~ fl ndr) - nk(R) dr
JR
=
L
laJI>R
r 1
log
lajl·
Condition (2) now follows because
1 3 1 - x < log -; < "2(1 - x),
0 < x < 1-
Now suppose that conditions (1) and (2) hold. Because of (1), B is not the zero function. Let f > 0 and let R be given by condition (2). Notice how there is
6 6 MULTIPLIERS AND INNER FUNCTIONS
155
an RI with R < RI < 1 and such that 1 nk(R) log RI < € V k,
since nk(R) is bounded in k by condItion (1) Thus
r
I nk(r) dr = JRI r ~
r
r
I nk(r) - nk(R) dr + I nk(R) dr JRI r JRI r
1 1
R
nk(r) - nk(R) d (R) I 1 r+nk og-R
L
=
r
1
1
log
laJI>R
la~1
1 + nk(R) log RI
J
~2€+€
=3€ for all k. Choosmg R2
> Rl so that
it follows from eq.(6.6.51) that
Ii Ii
10gIBk(p()ldm«()1 < 4€
for R2 < P < 1. Since Bk
~
B uniformly on each cIrcle
for R2 < P < 1. Hence hm rj1
{Izl =
p}, we have
log IB(p()1 dm«()/ <4€
J.[r log IB(r()1 dm«() =
0,
and so B is a Blaschke product. This ends the proof of the Tumarkm result
0
PROOF OF LEMMA 6.6.49. To show that ~c is weak-* closed, it suffices to show that ~c is weak-* sequentIally closed9 . Let (Bk)k~I be a sequence of Blaschke products which converges uniformly on compact sets to the function B, and such that O'F(ZBk) ~ 0' Vk ThIs sequence enjoys condItion (1) of Thmarkin's result (Lemma 6.6.57). Indeed, E T( Q) we have the estimate for any Carleson box Q and
a;
m(I) k -2- ~ 1-1aJ I ~ m(I), where I is the base of Q. From here, it follows from the proof of Proposition 6.6.24 that If N is the number of zeros of B in T( Q) then 1 N ~ (1 -Ia;j) ~ ca. m(I) a~ET(Q)
L
Fmally, any disk 9This metnzable
IS
{Izl
< r} can be covered by a finite number ofT(Q)'s.
a consequence of the fact that the weak-* topology on the umt ball of Hoo
16
6 MULTIPLIERS AND DIVISORS
156
Now Vasjunin's theorem (Theorem 6.6.4) gives us the estimate 1
00
~(1 - laJI) log 1 _ la;1 ~ ca where c is an absolute constant. The function 1 log-l-r is increasing for 0 < r < 1 and so
L
L
1 1 og-
k
(1 - laJ I) < 1
la71>R
k
(1 - laj I) log
l-R la71>R
~
1 I kl 1- a J
ca l'
log l-R
Since the last expression tends to zero as R i 1, condition (2) of Tumarkin's result follows. Thus we know that the weak-* limit function of the sequence (Bk)k~l is a Blaschke product We now need to show that
O'F(ZB) ~ 0'. Define the measures
'Yk:=
L
(1 -lal)8a
aEZBk
and
'YB:=
L
(1 - lal)8a
aEZB
associated with the Blaschke products Bk and B respectively. Notice from the inequality
11-(zl that lI'Yk I =
~2,
(ET,
ZED,
L
d'Yk
~ 2sup {II 1 (ZI d'Yk{z) (ETJD Z = ~
20'F{ZBk) 20'.
Hence the sequence bk)k~l forms a bounded sequence in the space of measures on the closed unit disk D-. By the Banach-Alaoglu theorem, there is a weak-* limit point 'Y*. So, passing to a subsequence, we know that
'Yk weak-* as k
-+ 00.
-+
'Y*
We now show that 'Y* = 'YB·
From condition (2) of Lemma 6.6.57 we know that 'Y*IT == O. By condition (1) of Lemma 6.6.57 we know that for any 0 < r < 1, the number of zeros of Bk inside {izi < r} is bounded in k. Using this fact, along with two applications of Hurwitz's theorem ([132, Vol II, p. 49]), and the fact that 'Yk is discrete for every k (with
6 6 MULTIPLIERS AND INNER FUNCTIONS
157
its atoms at the zeros of B k ), one can show that (assuming that B has no zeros on {Izl=r}) (6.6.58)
1'kl{lzl ~ r}
--t
1'BI{lzl ~ r} weak-* as k
--t 00.
== 0 and condition (2) of Lemma 6.6.57 that 1'k --t 1'B weak-*. Finally, for each ( E 1[', choose an r such that B has no zeros on {Izl = r}. Then
It follows from the facts that 1'kl1[' = 1'BI1[' = 1'*11['
= lim
k-+oo
~
It follows now that UF(ZB)
1
-I 1 rld1'k(z)
rD .. - Z
(byeq.(6.6.58))
U (sInce UF(ZBk) ~ u) ~
o
U
REMARK 6.6.59. There is an alternatIve proof of Lemma 6.6.49 In [105] USIng a Green function argument.
The proof of the main theorem: After working through those technical detaIls, the reader IS finally rewarded with the proof. Recall from PropositIon 6.6.1 that the inner function {} = B8,." is a multiplier if and only if both B and 8,." are multipliers. We now prove that B is a multiplier if and only if UF(ZB) < 00 and that 8,." is never a multiplier (unless J.t == 0) Claim 1: If UF(ZB) <
00,
then B is a multiplIer.
PROOF. By Proposition 6.6.24,
B =B1 • ·Bn , where each B3 is a Blaschke product and ZB3 is interpolating (and hence, by Theorem 1.11.5, uniformly separated and thus Carleson). Notice also that UF(ZB,) ~ UF(ZB) < 00 Combine Proposition 66.12 along with Lemma 6.6.30 (especially eq.(6.6.32)) to the Blaschke product B3 to conclude that B3 is a multiplier. But since the multipliers form an algebra, B is a multiplier 0 Claim 2: If B is a multiplIer, then UF(ZB)
< 00.
PROOF By Lemma 6.6.48, we can write
B=B1 ···Bn , where each B3 is a Blaschke product and ZBJ is separated. For a Blaschke sequence AcID>, let BA be the Blaschke product WIth zeros A. Fix J and let E = Z3 We will now show that uF(E) < 00. For each ( E 1[', let E(:= EnS«(). We can apply Lemma 6.6.26 to see that E( is uniformly separated and, more importantly, from eq.(6.6.27),
6 MULTIPLIERS AND DIVISORS
158
where q,2 is a non-negative increasing function on [0,00). Moreover, since
s(E) ~ s(Ed, we have Using the estimate
C(Ed
~ c 8(~d ( 1 + log 8(~d)
from eq.(I11 6), we see that
where
and is decreasing Use Proposition 6.6.12 along with Lemma 6.6.30 (especially eq.(6.6.33)) to get
O'F(Ed ~ cC(EdIlMBE< II ~
cq,3(s(E))IIMBEII (by Theorem 6.5.1)
Lemma 6.6.28 shows that card(Ed ~ c q,3(s(E)) liMBE II
\Ie, E ']['
Hence by Lemma 66.29,
'Y(E) ~ csupcard(Ed ~ cq,3(s(E))IIMBEII. (E'Il'
Hence J.LE is a Carleson measure By Carleson's interpolating theorem (Theorem 1.11.5) E is uniformly separated and so C(E) < 00. Finally, apply Proposition 6.6.12 along with Lemma 6.6.30 (especially eq.(6.6.33)) to see that
O'F(E) ~ cC(E)IIMBEIl < 00. Finally, with B = B 1 •·• B n , we have n
O'F(ZB) ~ LO'F(ZBj ) 3=1
n
~ c LC(ZBj)IIMBjll j=1
~cnmax{C(ZBj)IIMBjll:j=I, ..
,n}
<00 which proves Claim 2.
o
Claim 3. There is a non-negative increasing function q, on [0,00) so that whenever B is a multiplier,
6 6 MULTIPLIERS AND INNER FUNCTIONS
PROOF.
159
In the proof of Lemma 6.6.46 one can set €
= exp( -cliMB II)
and show that every pseudo-hyperbolic disk K(a, €) contains at most
exp(c'IIMBII) zeros (counting multiplicity). See [105, Lemma 4.3] for another proof of this fact. Important note: As 1S the usual tradition m analysis, c, c', c", etc., are umversal positive constants that may change from line to line. From here, follow the proof of Lemma 6.6.48 to show that when factoring B as
B= B 1 ···Bn mto Blaschke products with separated zeros, the number of factors n is bounded above by a function of the form cexp(c'IIMBII), c,c'
> o.
In that same proof, one can also show that the separation constant s( E J ), where E J are the zeros of B], for one of the factors B J , satisfies
s(E]) ~ cexp( -C'IIMBJ II). However by the ~-property for multipliers, IIMBJ ~ IIMBII and so
s(EJ) ~ cexp(-c'\lMBII)· Now follow the proof of Claim 2 above to obtain the inequality
,,(EJ) ~ dl>3(S(EJ»11MB II· But since
,,(EJ) ~ C
is an mcreasing function of x. Hence ,,(EJ )
::;;
Using the standard estimates (see eq.(1.11.6) and eq (1.11.7» ,,(EJ )
C(EJ ) ~ c 8(EJ ) and
along with our estimates
s(E]) ~ cexp( -C'IIMBJ II) and
160
6 MULTIPLIERS AND DIVISORS
we see that
C(Ej) ~ ce c'4>4(II MBIDexp(-c"11MB IDq>4(II MB II) ~ ce C'4>4(IIMBII)iP 4 (IIMB II)
= iPs(IIMBII), where iPs is increasing. The last line of the proof of Claim 2 says that
CTF(Ej) ~ cC(Ej ) 11MB II ~ ciPs (II MB II) 11MB II = 4>6(IIMB
II),
where iP6 is increasing. Finally, n
CTF(ZB) ~ LCT(Ej ) j=l
~ n4>6(IIMBII)
~ cexp(c"IIMBII)iP 6 (IIMBII)
= iP7 (II M BII), where 4>7 is increasing.
Claim 4: 8 =
81-'
D
is not a multiplier unless JL
== O.
PROOF. Suppose that 8 is a non-constant multiplier. By a well-known theorem of Frostman [79, p. 79]10, there is a sequence (an)n~l C JI} with an ---t 0 such that
B _ 8-an n - 1- a n 8 is a Blaschke product. We can assume that lanlliMslI < 1/2 for all n. Observe that
8- B n
=
S- 8-an l-a n 8 8 l-a n 8
S - a;;:8 2
-
+ an
00
(an - a n8 2 ) LankSk. k=O
Since lan l1l811 < 1/2, the multiplier norm of 00
Lan k 8 k k=O
is bounded by 2 Also observe by Proposition 6.1.3 that
I M sll
~ 1181100 = 1
IOThe theorem here is the following' suppose J is a non-constant inner function Then for all w E
JI)),
except possibly for a set of logarithmic capacity zero, the function Jw(z) = J(z) -
is a Blaschke product
t
I-wi z)
6 6 MULTIPLIERS AND INNER FUNCTIONS
and so the multiplier norm of an - a n S 2 is bounded above by again using Proposition 6.1.3,
liS -
161
21an 11lMs112.
Thus,
Bnlloo ~ II MS-Bn II ~ 4lan lliMslI2.
It follows from here that II S - Bn II co
-+
0 as n
-+ 00
IIMBnll ~ IIMBn-sll + IIMsl1 ~ 41an iliMsil But since each Bn is a multiplier, Claim 3 says that
and that for every n EN,
+ IIMsl1
~
311 Msll·
O"F(ZBn) ~
can be extended to a bounded operator on HP if and only if
: J 1--+ J 0
is bounded. Composition operators are a rich source of results and we won't try to survey them here but refer the reader to [51, 195] for two treatments of this subject... (reproducIng kernel for 19*(H2)) .. .. .. .. .. .. .... ........ .. ............ p. 186 .eJL ••.••..•• ••..•. •.•••••• •••••••• • • . . • • • • . . • • . • • • • • • • • • • • •• • •• p. 15 £p (Lebesgue spaces on 1r) .............. .. . .. . ........... p 12 L 1 ,co (weak LI) ........ ....... ....... .. . . . .. . . . . . . . . ....... , ..... p. 35 >..f (distribution function for f) .. .. .. .. .. . .... ............. .. .. .. ... p. 13 Au (Lipschitz class) ....... ....... .. ........ ....... ......... .... . .. p. 62 m (Lebesgue measure on 1r). . . .. ....... . . . . . . . . . . . .. ............... . p. 12 ml (Lebesgue measure on JR) ....... ..... .. ....... ....... . ........ p. 163 M (Borel measures on 1r) . . . . . . . . . . . .. ........ ....... ........ . . . .. . p. 14 M(JR) (finite Borel measures on JR) .. , ........ ....... ....... .. ...... p. 163 255
256
LIST OF SYMBOLS
M+ (resp. M+(lR)) (positive measures on 'll' (resp. JR)) ................... p. 14 Ms (absolutely continuous measures) ..................... ... .. ......... p. 16 Ms (singular measures).............. ... .. ...................... . p. 16 M/HJ ... ........................................................... p. 83 9Jl(X) (multipliers of X)........... ... .. ................... .... . p. 115 M", (multiplication by
Bibliography 1 D Adams and L Hedberg, Punct~on spaces and potential theory, Grundlehren der MathematlSChen WJSSenschaften [Fundamental Pnnclples of MathematIcal SCIences], vol 314, Spnnger-Verlag, Berlm, 1996 MR 1411441 (97j:46024) 2 P Ahern and D Clark, Radwl bm~ts and Invanant subspaces, Amer J Math 92 (1970), 332-342 MR 41 #7117 3 ___ , RadIal nth denvatwes of Blaschke products, Math Scand 28 (1971), 189-201 MR 0318495 (47 #7042) 4 ___ , On tnner functIons unth HP-denvatwe, MIchigan Math J 21 (1974), 115-127 MR 0344479 (49 #9218) 5 L Ahlfors, Bounded analytIC functions, Duke Math J 14 (1947), 1-11 MR 0021108 (9,24a) 6 ___ , Conformal tnvanants tOPICS In geometnc junctton theory, McGraw-Hill Book Co , New York, 1973, McGraw-HIll Senes m HIgher MathematICS MR 0357743 (50 #10211) 7 ___ , Complex analysIS, thIrd ed, McGraw-HIll Book Co, New York, 1978, An mtroduction to the theory of analytic functIons of one complex varIable, InternatIonal Series in Pure and ApplIed MathematICS MR 510197 (8Oc:30001) 8 A B Aleksandrov, Invariant subspaces of the backward shIft operator m the space HP (p E (0, 1», Zap Nauchn Sem Lemngrad Otdel Mat Inst Steklov (LOMI) 92 (1979), 7-29, 318, InvestIgatIOns on hnear operators and the theory of functions, IX MR 81h:46018 9 ___ , A-tntegrabUdy of boundary values of harmonre junctwns, Mat. Zametkl 30 (1981), no 1, 59-72, 154 MR 83j:30039 10 ___ , Essays on nonlocally convex Hardy classes, Complex analysis and spectral theory (Leningrad, 1979/1980), Sprmger, Berlin, 1981, pp 1-89 MR 84h:46066 11 ___ , Invarwnt subspaces of shIft opemtors An llXiomahc approach, Zap Nauchn Sem Lemngrad Otdel Mat Inst Steklov (LOMI) 113 (1981), 7-26, 264, InvestigatIOns on hnear operators and the theory of functions, XI MR 83g:47031 12 ___ , Measumble partttlons of the CIrcle Induced by mner juncttons, Zap Nauchn Sem Lenmgrad Otdel Mat lnst Steklov (LOMI) 149 (1986), no Issled Lmein Teor Funktsll XV, 103--106, 188 MR 849298 (87i:30065) 13 ___ , M'ILlhpllCdy of boundary values of Inner funchons, Izv Akad Nauk Armyan SSR Ser Mat 22 (1987), no 5,490-503,515 MR 8ge:30058 14 ___ , Inner functIOns and related spaces of pseudoconttnuable junctwns, Zap Nauchn Sem Lemngrad OtdeL Mat lnst Steklov (LOMI) 170 (1989), no Issled Linem Oper Teom Funktsn 17, 7-33, 321 MR 91c:30063 15 ___ , On the exIStence of angular boundary values of pseudocontlnuable juncttons, Zap Nauchn Sem S -Peterburg Otdel Mat Inst Steklov (POMI) 222 (1995), no Issled po Lmem Oper I Teor Funktsn 23,5-17,307 MR 1359992 (97a:30046) 16. A Aleman and J Clma, An mtegml opemtor on HP and Hardy's mequallty, J Anal Math 85 (2001), 157-176 MR 1 869606 17 A Aleman, S RIchter, and W T Ross, Pseudocontmuatlons and the backward shIft, Indiana Umv Math J 47 (1998), no. 1, 223--276 MR 1631561 (2000i:47009) 18 A Aleman, S Richter, and C Sundberg, Beurlmg's theorem for the Bergman space, Acta Math 177 (1996), no 2,275-310 MR 98a:46034 19 A Aleman and A Slskakls, An mtegml opemtor on HP, Complex Vanables Theory Appl 28 (1995), no 2, 149-158 MR 2000d:47050 20 R Ahev, Representabulty of analytIC functions m terms of theor boundary values, MathematIcal Notes 73 (2003), no. 1, 8-20
257
258
BIBLIOGRAPHY
21 M Andersson, Tornes m complex analys~s, Umversltext, Spnnger-Verlag, New York, 1997 MR 1419088 (98a:30001) 22 N AronBZ&Jn, On a problem of Weyl m the theory of smgular Sturm-Lwuvtlle equatwns, Amer J Math 79 (1957), 597-610 MR 0088623 (19,550b) 23 N AronszaJn and W Donoghue, A supplement to the paper on exponent~al representat,ons of analyttc functtons m the upper half-plane unth posthve tmagmary part, J Analyse Math 12 (1964), 113-127 MR 0168769 (29 #6025) 24 A Baernstem, Some sharp mequalthes for conjugate functwns, Indiana Umv Math J 27 (1978), no 5, 833-852 MR 80g:30022 25 F Bagemihl and W Seidel, Some boundary properttes of analyttc functwns, Math Z 61 (1954), 186-199 MR 16,460d 26 N K Bary, A treattse on tngonometnc senes V ols I, II, Authonzed translatIOn by Margaret F. Mullms A Pergamon Press Book, The Macmlllan Co, New York, 1964 MR 30 #1347 27 S Bell, The Cauchy transform, potent~al theory, and conformal mappmg, CRC Press, Boca Raton, FL, 1992 MR 94k:3OO13 28 A Beurhng, On two problems concernmg ltnear transformatwns m Htlbert space, Acta Math 81 (1948), 17 MR 10,381e 29 S V Bockarev, Exutence of a basts m the space of functwns analyt~c ~n the dtsc, and some properttes of Frankltn's system, Mat Sb (N S ) 95(137) (1974),3-18, 159. MR 50 #8036 30 G Boole, On the companson of transcendents unth certatn appltcattons to the theory of defimte mtegra/s, PhIl Trans Royal Soc 147 (1857),745-803 31 P Bourdon and J A Clma, On tntegrals of Cauchy-SbeltJes type, Houston J Math 14 (1988), no 4, 465-474 MR 90h:30095 32 J E Brennan, The Cauchy mtegral and certatn of tts appltcatwns, Izv Nats Akad Nauk Armenll Mat 39 (2004), no 1, 5-48. MR 2168198 33 ___ , Thompson's theorem on mean-square polynomtal approXtmatton, Algebra i Anallz 17 (2005), no 2, 1-32 MR 2159582 34 L Brown and A L ShIelds, Cycltc vectors m the Dznchlet space, Trans Amer Math Soc 285 (1984), no 1,269-303 MR 86d:30079 35 D L Burkholder, R F Gundy, and M L SIlversteIn, A fflaXtmal functzon characterzzabon of the class HP, Trans Amer Math Soc 157 (1971), 137-153 MR 0274767 (43 #527) 36 A P Calderon, On theorems of M R~esz and Zygmund, Proc Amer Math Soc 1 (1950), 533-535 MR 12,255d 37. A P Calderon and A Zygmund, On the exutence of certam stngular mtegrals, Acta Math 88 (1952), 85-139 MR 14,637£ 38 C Caratheodory, Punkttonentheone Band II, Verlag Brrkhauser, Basel, 1950. MR 0037343 (12,248c) 39 L Carleson, An expltctt unconddwnal basts m HI, Bull SCI Math (2) 104 (1980), no 4, 405-416 MR 82b:46028 40 G Choquet, Lectures on analysts Vol. I· Integmtwn and topologtcal vector spaces, EdIted by J Marsden, T Lance and S Gelbart, W A BenJamIn, Inc , New York-Amsterdam, 1969 MR 0250011 (40 #3252) 41 J A Clma, Some open questwns concernmg Gelfer functwns and Cauchy transforms, Izv Tekhn Umv Plovdlv Fund Nauk Pnlozhen 1 (1995),9-11. MR 1398573 (98g:30065) 42 J A Clma and A Matheson, Cauchy transforms and compostbon operators, IllInOIS J Math 42 (1998), no 1, 5~9 MR 98k:42028 43 J A Clma, A Matheson, and W T Ross, The backward shtft on the space of Cauchy transforms, Proc Amer Math Soc 132 (2004), no 3,745-754 MR2019951 (2004.1:47013) 44. J A Clma and W. T Ross, The backward shtft on the Hardy space, Amencan Mathematical Society, PrOVidence, RI, 2000 MR 2002f:47068 45 J A CIIDa and A Slskal{ls, Cauchy transforms and Cesaro averagmg operators, Acta SCI Math (Szeged) 65 (1999), no 3-4,505-513 MR 2000m:47043 46 D Clark, One dtmenstonal perturbabons of restrzcted shtjts, J Analyse Math 25 (1972), 169-191 MR 46 #692 47 W Cohn, Radtallzmtts and star mvarzant subspaces of bounded mean oscdlatwn, Amer J Math 108 (1986), no 3, 719-749 MR 844637 (87j:3OO76)
BIBLIOGRAPHY
259
48 E F CollIngwood and A J Lohwater, The theory of cluster sets, Cambndge Umverslty Press, Cambndge, 1966 MR 38 #325 49 J B Conway, A course m junctwnal analyS'tS, second ed , Graduate Texts m Mathematics, vol 96, Spnnger-Verlag, New York, 1990 MR 91e:46001 50 ___ , The theory of subnormal operators, MathematIcal Surveys and Monographs, vol 36, Amencan Mathematical Society, Providence, Rl, 1991 MR 1112128 (92h:47026) 51 C Cowen and B MacCluer, Compos~t~on operators on spaces of analyhc junct~ons, Studies m Advanced MathematIcs, CRC Press, Boca Raton, FL, 1995 MR 97i:47056 52 C Cowen and C Pommerenke, Inequal~tles for the angular denvatlve of an analytIc junctwn m the umt dISk, J London Math Soc (2) 26 (1982), no 2, 271-289 MR 675170 (84a:30006) 53 B DaVIS, On the dlStnbutlons of conJugate junctwns of nonnegatIVe measures, Duke Math J 40 (1973), 695-700 MR 48 #2649 54 ___ , On the weak type (1, 1) ~nequahty for conJUgate junchons, Proc Amer Math Soc 44 (1974), 307-311 MR 50 #879 55 ___ , On Kolmogorov's mequal~t~es jp ::; C p /r, 0 < p < 1, Trans Amer Math Soc 222 (1976), 179-192 MR 54 #10967 56 M M Day, The spaces LP w~th 0 < p < 1, Bull Amer Math Soc 46 (1940), 816-823 MR 2,102b 57 R del fuo, S Fuentes, and A Poltoratskl, CoexIStence of spectra m rank-one perturbahon problems, Bol Soc Mat Mexlcana (3) 8 (2002), no 1,49-61 MR 1916890 (2003d:47013) 58 ___ , Famu~es of spectral measures ~th mzxed types, Operator methods m ordmary and partial differentIal equatIons (Stockholm, 20(0), Oper Theory Adv Appl, vol 132, Blrkhauser, Basel, 2002, pp 131-140 MR 1924976 (2003g:47081) 59 F Delbaen, Weakly compact operators on the dISC algebra, J Algebra 45 (1977), no 2, 284-294 MR 58 #2304 60 J Dlestel, Sequences and senes m Banach spaces, Spnnger-Verlag, New York, 1984 MR 85i:46020 61 J Dlestel and J Uhl, Vector measures, AmerIcan Mathematical Society, ProVIdence, R I , 1977, With a foreword by B J PettiS, Mathematical Surveys, No 15 MR 0453964 (56 #12216) 62 W Donoghue, On the perturbatwn of spectra, Comm Pure Appl Math 18 (1965), 559-579 MR 0190761 (32 #8171) 63 J L Doob, A mlmmum problem m the theory of anaiyhcjunctlons, Duke Math J 8 (1941), 413--424 MR 3,76b 64 R G Douglas, H S Shapiro, and A L Shields, Cyclw vectors and mvanant subspaces for the backward shIft operator., Ann lnst Founer (Grenoble) 20 (1970), no fasc 1,37-76 MR 42 #5088 65 P L Duren, Theory of HP spaces, AcademiC Press, New York, 1970 MR 42 #3552 66 P L Duren, B. W Romberg, and A. L Shields, L~near junctlonals on HP spaces ~th 0< p < 1, J Reme Angew Math 238 (1969), 32-60 MR 41 #4217 67 P Enfio, A counterexample to the approX'tmatwn problem m Banach spaces, Acta Math 130 (1973), 309-317 MR 53 #6288 68 L Evans and R Gariepy, Measure theory and fine propert~es of junctwns, StudIes m Advanced MathematIcs, CRC Press, Boca Raton, FL, 1992 MR 1158660 (93f:28001) 69 P Fatou, Sines tngonomitnques et senes de Taylor, Acta Math 30 (1906), 335 - 400 70 C Feffennan, Charactertzahons of bounded mean osculatzon, Bull Amer Math Soc 11 (1971), 587-588 MR 43 #6713 71 C Fefferman and E M Stem, HP spaces of several vartables, Acta Math 129 (1972), no 3-4, 137-193 MR 56 #6263 72 0 Frostman, Sur les produ~ts de Blaschke, Kungl Fysiografiska Sallskapets I Lund Forhandlmgar {Proc Roy PhYSlog Soc Lund] 12 (1942), no 15, 169-182 MR 6,262e 73 T W Gamelin, Umform algebras, PrentIce-Hall Inc, Englewood ClIffs, N J, 1969 MR 53 #14137 74 ___ , Umform algebras and Jensen measures, Cambridge Umversity Press, Cambridge, 1978 MR 81a:46058 75 S R Garcia and M Putmar, Complex symmetric operators and appl~cat~ons, to appear Trans Amer Math Soc
260
BIBLIOGRAPHY
76 ___ , The structure of complex symmetT"lc operators, prepnnt 77 S R Garcia and D Sarason, Real outer juncbons, Indiana Umv Math J 52 (2003), no 6, 1397-1412 MR 2021044 (2004k:30129) 78 J B Garnett, Analytic capacity and measure, SprInger-Verlag, Berlin, 1972, Lecture Notes In Mathematics, Vol 297 MR 56 #12257 79 ___ , Bounded analyhc functIons, Academic Press Inc, New York, 1981 MR 83g:30037 80 S Gelfer, On a class of regular functIOns which do not take any pair of values wand -w, Mat Sb 19(61) (1946), 33-46 81 H H Goldstine, Weakly complete Banach spaces, Duke Math J 4 (1938), 125 - 131 82 G M GoluZIn, GeometT"lc theory of functIOns of a complex vaT"!able, Amencan Mathematical SOCiety, Providence, R.I ,1969 MR 40 #308 83 M G Goluzlna, On the multiplicatIOn and dWI810n of Cauchy-StreltJes-type Integrals, Vestmk Leningrad Umv. Mat Mekh Astronom (1981),8-15,124. MR 84a:3OO74 84 ___ , Several remarks on the factoT"lzatton of Cauchy-StieltJes-type Integrals, Quart Appl Math 40 (1982/83), no 1, 107-110, 136 MR 83h:30034 85 L Grafakos, ClasSical and modern analysts, Pearson, 2004 86 V P Gurarii, The factoT"lzattOn of absolutely convergent Taylor seT"les and FouT"ler tntegrals, Zap Nauen Sem Lemngrad Otdel Mat Inst Steklov (LOMI) 30 (1972), 15-32, Investigations on lInear operators and the theory of functiOns, III MR 0340622 (49 #5374) 87 G H Hardy and J E Littlewood, A mllX'!mal theorem unth functIOn-theoretiC applications, Acta Math 54 (1930), 81 - 116 88 ___ , Some properties of fractIOnal Integrals, II, Math Z 34 (1932), 403 - 439 89 ___ , SO'me more theorems concerning FCrlJner seT"le8 and FouT"ler power seT"les, Duke Math J 2 (1936), 354 - 382 90 F Hausdorff, Set theory, Second editIOn Translated from the German by John R Aumann et aI, Chelsea Publishing Co , New York, 1962 MR 0141601 (25 #4999) 91 V P Havln, On analyttc functIOns representable by an Integral of Cauchy-SheltJes type, Vestmk Leningrad Umv Ser Mat Meh Astr 13 (1958), no 1,66-79 MR 20 #1762 92 ___ , Analyhc representation of ltnear functwnals In spaces of harmOniC and analytic functions which are continuous In a closed regiOn, Dokl Akad. Nauk SSSR 151 (1963), 505-508 MR 27 #2636 93 ___ , The spaces HOC and L1 / H{j, Zap Nauen Sem Leningrad Otdel Mat Inst Steklov (LOMI) 39 (1974), 120-148, Investigations on linear operators and the theory of functiOns, IV MR50 #965 94 S Ya Havlnson, On an extremal problem of the theory of analytIC functIOns, Uspehi Matern Nauk (N S ) 4 (1949), no. 4(32), 158-159 MR 11,508e 95 ___ , On some extremal problems of the theory of analytic functiOns, Moskov Gos Umv Ueenye Zaplskl MatematIka 148(4) (1951), 133-143 MR 14,155f 96 W K Hayman and P. B Kennedy, Subharmonlc functions. Vol I, AcademiC Press [Harcourt Brace JovanOVich PublIshers), London, 1976, London Mathematical Society Monographs, No 9 MR 0460672 (57 #665) 97 H Helson and G Szego, A problem In predlctton theory, Ann Mat. Pura Appl (4) 51 (1960), 107-138 MR 22 #12343 98 G Herglotz, Uber Potenzrelhen mit posttwem, reellen Ted 1m Etnhettskre18, S -B Sachs Akad WlSS Leipzig Math -Natur Kl 63 (1911), 501-51I. 99 E HeWItt and K Stromberg, Real and abstract analySlS A modern treatment of the theory of junchons of a real vaT"lable, Springer-Verlag, New York, 1965 MR 32 #5826 100 E W Hobson, The theory of functions of a real variable and the theory of FouT"ler's seT"!eS Vol II, Dover PublIcations Inc, New York, NY, 1958 MR 0092829 (19,1166b) 101 K Hoffman, Banach spaces of analybc junchons, Dover PublIcations Inc, New York, 1988, ReprInt of the 1962 onglnal MR 92d:46066 102 B Hollenbeck and I Verbltsky, Best constants for the R1.e8z proJection, J Funct Anal 175 (2000), no 2, 370-392 MR 200li:42010 103 S V HruSCev, The problem of Simultaneous approXlmabon and of removal of the slngularltles of Cauchy type mtegrals, Trudy Mat Inst Steklov 130 (1978), 124-195, 223, Spectral theory of functiOns and operators MR 80j:30055
BIBLIOGRAPHY
261
104 S V Hruscev and S A VInogradov, Free mterpolatwn m the space of umformly convergent Taylor senes, Complex analysIS and spectral theory (Lemngrad, 1979/1980), Spnnger, BerlIn, 1981, pp 171-213 MR 83b:30032 105 ___ , Inner functIons and mult1.plters of Cauchy type ,ntegrals, Ark Mat 19 (1981), no 1, 23-42 MR 83c:30027 106 R Hunt, B Muckenhoupt, and R Wheeden, WeIghted norm mequallbes for the conJUgate functwn and HIlbert transform, Trans Amer Math Soc 176 (1973), 227-251 MR 47 #701 107 V JakSlC: and Y Last, A new proof of Poltomtslr:tt's theorem, J Funct Anal 215 (2004), no 1, 103--110 MR 2085111 (2005d:47027) 108 S Janson, J Peetre, and S Semmes, On the actIon of Hankel and Toeplltz operators on some functwn spaces, Duke Math J 51 (1984), no 4,937-958 MR 86m:47033 109 J -P Kahane, Some mndom senes of functIOns, second ed, Cambndge StudIes m Advanced MathematIcs, vol 5, Cambndge UmversIty Press, Cambridge, 1985 MR 833013 (81m:60119) 110 S KakutanI, Concrete representatwn of abstmct (L)-spaces and the mean ergodIC theorem, Ann of Math (2) 42 (1941), 523--537 MR 2,318d 111 N Kalton, N Peck, and J Roberts, An F-space sampler, London MathematIcal SoCIety Lecture Note Senes, vol 89, CambrIdge UmversIty Press, CambrIdge, 1984 MR 808111 (81c:46002) 112 Y Katznelson, An mtroductwn to harmomc analystS, corrected ed, Dover PublIcations Inc, New York, 1976 MR 54 #10976 113 J L Kelley, Geneml topology, D Van Nostrand Company, Inc, Toronto-New York-London, 1955 MR 16,1l36c 114 D KhavInson and K Dyakonov, Smooth functwns m star-mvanant subspaces, preprmt 115 S V KISIJakov, The Dunford-Petbs, Pelczy7is1r:t and Grothendleck condzhons, Dokl Akad Nauk SSSR 225 (1975), no 6, 1252-1255 MR 53 #1241 116 A N Kolmogorov, Sur les fonchons harmomques conJuquees et les senes de Founer, Fund Math 1 (1925), 24 - 29 117 A N Kolmogorov and S V Fomln, Introductory real analyStS, Dover PublIcatIons Inc, New York, 1975, Translated from the second RUSSIan edItion and edIted by RIchard A SIlverman, Corrected reprIntmg MR 51 #13617 118 P KOOSIS, IntroductIon to Hp spaces, second ed , Cambndge UmversIty Press, Cambndge, 1998 MR 2000b:30052 119 B. I Korenblum, Closed meals of the nng An, FunkcIonal Anal I PnloZen 6 (1972), no 3, 38--52 MR 48 #2776 120 _ _ , A Beurlmg-type theorem, Acta Math 138 (1976), no 3-4, 265--293 MR 56 #5894 121 E Landau, Abschatzung der Koeffinentensumme emer Potenzreme, Arch Math Phys 21 (1913), 42-50, 250--255 122 E Landau and D GaIer, Darstellung und Begrundung elmger neuerer ErgebnISse der F'unktwnentheone, third ed , Spnnger-Verlag, BerlIn, 1986 MR 869998 (88d:Ol046) 123 E Lleb and M Loss, AnalyStS, Graduate StudIes In Mathematics, vol 14, Amencan Mathematical Society, PrOVIdence, RI, 1997 MR 1415616 (98b:00004) 124 J Littlewood, On a theorem of Fatou, J London Math Soc 2 (1927), 172-176 125 M S LIViilc, On a certam class of lmear operators m Hdbert space, Rec Math [Mat Sbormk] N S 19(61) (1946), 239--262 MR 0020719 (8,588d) 126 A J Lohwater and G PIraman, The boundary behaVIor of functwns analyhc m a dISk, Ann. Acad SCI Fenn Ser A 1. 1951 (1957), no 239, 17 MR 19,950c 127 ___ , Bounded analyhc functIons Wl.th large cluster sets, Ann Acad Sci Fenn Ser A I (1971), no 499, 7 MR 45 #2178 128 L LoomiS, A note on the Hilbert tronsform, Bull Amer Math Soc 52 (1946), 1082-1086 MR 8,377d 129 B A. Lotto and D Sarason, Multlplwahve structure of de Branges's spaces, Rev Mat Iberoamencana 7 (1991), no 2, 183--220 MR 1133377 (92k:46035) 130 T H MacGregor, Analytic and univalent functwns Wl.th mtegral representabons mvolvmg complex measures, Indiana Umv Math J 36 (1987), no 1, 109--130 MR 876994 (81m:30037)
262
BIBLIOGRAPHY
131 ___ , Fractwnal Cauchy tronsforms, J Comput Appl Math 105 (1999), no 1-2, 93108, Contmued fractiOns and geometnc function theory (CONFUN) (Trondhelm, 1997) MR 1690579 (2000d:30057) 132 A I Markushevlch, Theory of funcbons of a complex vaT7,able Vol I, II, III, EngliSh ed , Chelsea PublIshmg Co, New York, 1977 MR 56 #3258 133 L A Markushevlch and G Ts Tumarkm, On a class of functwns that can be represented m a doma~n by an mtegral of Cauchy-StteltJe8 type, Uspekhl Mat Nauk 52 (1997), no 3(315), 169-170 MR 98j:30045 134 A Matheson, Boundary spectra of umform Frostman Blaschke products, to appear, Proc Amer Math Soc 135 ___ , Closed ideals m T7,ngs of analyttc funct~ons satisfying a Lipschztz condthon, Banach spaces of analytiC functions (Proc Pelczynskl Conf, Kent State Umv, Kent, OhiO, 1976), Sprmger, Berlin, 1977, pp 67-72 Lecture Notes m Math, Vol 604 MR 0463926 (57 #3864) 136 ___ , Aleksandrov operators as smoothmg operators, IllinOiS J Math 45 (2001), no 3, 981-998 MR 1879248 (2002j:47059) 137 A Matheson and M Stessm, Applicatwns of spectrol measures, to appear, Cont Math 138 B Maurey, IsomorphtSmes entre espaces HI, Acta Math 145 (1980), no 1-2,79-120 MR 84b:46027 139 V G Maz'ya and T 0 Shaposhmkova, Theory of multtplters m spaces of differentzable functwns, Pitman (Advanced PubliShmg Program), Boston, MA, 1985 MR 87j:46074 140 G McDonald and C Sundberg, Toeplztz operotors on the diSC, Indiana Umv Math J 28 (1979), no 4, 595-611 MR 542947 (80h:47034) 141 P J McKenna, Discrete Carleson measures and some interpolahon problems, Michigan Math J 24 (1977), no 3, 311-319 MR 0481016 (58 #1163) 142 R Meggmson, An mtroductwn to Banach space theory, Graduate Texts m Mathematics, vol 183, Sprmger-Verlag, New York, 1998 MR 99k:46002 143 J Moeller, On the spectro of some translatton mvanant spaces, J Math Anal Appl 4 (1962), 276--296 MR 0150592 (27 #588) 144 M Mooney, A theorem on bounded analyhc functwns, Pacific J Math 43 (1972), 457-463 MR 47 #2374 145 G Morera, Intorno all'tntegrale dt Cauchy, Rendlcontl det R Istltuto Lombardo, cl sc math e nat 22 (1889), no 11, 191 - 200 146 N I Muskhelishvlh, Smgular tntegral equatwns, Dover PubhcatIons Inc, New York, 1992, Boundary problems of functIOn theory and their application to mathematical phYSICS, Translated flOm the second (1946) RUSSian edition and With a preface by J R M Radok, Corrected reprmt of the 1953 English translatIOn MR 94a:45001 147 A G Naftalevlc, On mterpolatwn by functtons of bounded charactertstzc, Vlhnaus Valst Umv Moksly. Darbal Mat FIZ Chern Moksly. Ser 5 (1956), 5-27 MR 0120387 (22 #11141) 148 A Nagel, W Rudm, and J H ShapIrO, Tangentzal boundary behavzor of functwns in DtT7,chlet-type spaces, Ann of Math (2) 116 (1982), no 2, 331-360 MR 672838 (84a:31002) 149 I P Natanson, Theory of functtons of a real vanable, Frederick Ungar PublIshmg Co , New York, 1955, Translated by Leo F Boron With the collaboration of Edwm HeWitt MR 16,804c 150 F Nazarov and S Treil, The weighted norm mequaitties for Hzlbert transform are now tnvzal, C R Acad SCI Paris ser I Math 323 (1996), no 7,717-722 MR 99j:42010 151 R Nevanlmna, Remarques sur la lemma de Schwarz, Comptes Rendu Acad SCI. ParIS 188 (1929), 1027 - 1029 152 D J. Newman, The nonexIStence of proJectwns from LI to HI, Proc Amer Math Soc 12 (1961), 98-99 MR 22 #11276 153 N K Nikol'sklI, TreattSe on the shift operotor, Springer-Verlag, Berhn, 1986 MR 87i:47042 154 H PaJot, Analyttc capaCtty, rechjialnltty, Menger curvature and the Cauchy mtegrol, Lecture Notes m MathematiCs, vol 1799, Sprmger-Verlag, BerlIn, 2002 MR 1952175 (2004d:28009) 155 R Paley and N Wiener, Founer tronsforms in the complex domam, American Mathematical Society ColloqUIUm PublIcatiOns, vol 19, American MathematIcal Society, PrOVidence, RI, 1987, Reprmt of the 1934 orIgmai MR 1451142 (98a:01023) 156. K R Parthasarathy, Probaln12ty measures on metnc spaces, Probability and Mathematical StatIstiCS, No 3, AcademiC Press Inc, New York, 1967 MR 0226684 (37 #2271)
BIBLIOGRAPHY
263
157 A PeiczyJiskl, Banach spaces of analybc junct~ons and absolutely summmg operators, AmerIcan Mathematical Society, Providence, R.I, 1977, EXposItory lectures from the CBMS Regional Conference held at Kent State UnIversity, Kent, OhIO, July 11-16, 1976, Conference Board of the Mathematical SCIences Regional Conference Senes In Mathematics, No 30 MR 58 #23526 158 ___ , Norms ofclassu:al operators ~njunctlon spaces, Astensque (1985), no 131,137-162, ColloquIUm In honor of Laurent Schwartz, Vol 1 (Pal8.lseau, 1983) MR 87b:47036 159 S K Plchondes, On the best values of the constants m the theorems of M Rzesz, Zygmund and Kolmogorov, Studla Math 44 (1972), 165-179 (errata Insert), Collection of articles honorIng the completion by AntOnI Zygmund of 50 years of sCient ilk actiVity, II MR 47 #702 160 I PlemelJ, Em Eryanzungssatz zur Cauchyschen Integraldarstellung analytlScher Functzonen, Randwerte betrefJend, Monatshefte fur Math u Phys XIX (1908), 205 - 210 161 H POInCare, Sur les fonctwns d espaces lacunazres, Acta Soc SCient Fenmcae 12 (1883), 341-350 162 A Poltoratskl, Boundary behaVIOr of pseudocontmuable junctwns, Algebra I AnallZ 5 (1993), no 2, 189-210 MR 94k:30090 163 ___ , On the dlStnbubons of boundary values of Cauchy mtegrals, Proc Amer Math Soc 124 (1996), no 8, 2455-2463 MR 96j:30057 164 ___ , Flmte rank perturbatwns of smgular spectra, Internat Math Res NotICes (1997), no 9, 421-436 MR 1443321 (98d:47035) 165 ___ , Ma.x'!mal propertIes of the normalIzed Cauchy transform, J Amer Math Soc 16 (2003), no. 1, 1-17 (electromc) MR 1937196 (2003j:30056) 166 A Poltoratskl and D Sarason, Aleksandrov-Clark measures, to appear, Cont Math 167 I I Pnvalov, Sur les foncbons conjUguees, Bull Soc Math France 44 (1916), 100-103 168. ___ , Integral de Cauchy, Ph D thesiS, Saratov, 1919 169 ___ , Randelgenschaften analytlScher Funktlonen, VEB Deutscher Verlag der WISsenschaften, Berhn, 1956 MR 18,727£ 170 S Richter, Invanant S'Ubspaces In Banach spaces of analybc funchons, Trans Amer Math Soc. 304 (1987), no 2, 585-616 MR 88m:47056 171 ___ , Invanant subspaces of the Dtnchlet shIft, J ReIne Angew Math 386 (1988), 205220 MR 8ge:47048 172 S Richter and C Sundberg, Mulbplters and mvanant subspaces m the Dtnchlet space, J Operator Theory 28 (1992), no 1, 167-186 MR 95e:47007 173 FRiesz and B Sz -Nagy, Funcbonal analysIS, Dover Books on Advanced Mathematics, Dover PubhcatIOns Inc, New York, 1990, Translated from the second French edItion by Leo F Boron, ReprInt of the 1955 ongInal MR 1068530 (91g:00002) 174 M Rlesz, Sur les fonctwns conjUgees, Math Z 27 (1927), 218 - 244 175 ___ , Sur certames megaldes dans la theone des fonchons avec quelques rermarques sur les geomemes non-Eucl,dlennes, Kungl FYSlogr Sallsk I Lund Forh 1 (1931), no 4, 1838 176 W W RogoSInskl and H S Shapiro, On certaIn extremum problems for analytu; juncbons, Acta Math 90 (1953), 287-318 MR 15,516a 177 W T Ross, The backward shIft on HP, Operator Theory Advances and Apphcatlons 158 (2005), 191 - 211 178 W T Ross and H S Shapiro, Generalued analytIC cont~nuatwn, UnIversity Lecture Senes, vol 25, Amencan Mathematical Society, PrOVidence, RI, 2002 MR 2003h:30003 179 ___ , Prolongatwns and cyclIC vectors, Comput Methods Funct Theory 3 (2003), no 1-2, 453-483 MR 2082029 (2005h:30001) ISO W RudIn, The closed weals m an algebra of analytic junchons, Canad J Math 9 (1957), 426-434 MR 19,641c 181 ___ , Functwn theory m the umt ball of en, Grundlehren der Mathematlschen WISsenschaften [Fundamental PrInCIples of Mathematical SCience], vol 241, Spnnger-Verlag, New York, 1980 MR 82i:32002 182 ___ , Real and complex analysIS, thIrd ed , McGraw-HIll Book Co , New York, 1987 MR 88k:00002 183 ___ , Functwnal analysIS, second ed , McGraw-HIll Inc, New York, 1991 MR 92k:46001
264
BIBLIOGRAPHY
184 A Rybkm, On an analogue of Cauchy's formula for HP, 1/2 ~ P < 1, and the Cauchy type Integral of a SUI-gular measure, Complex Vanables Theory Appl 43 (2000), no 2, 139--149 MR 20011:30042 185 J Ryff, Orbtts of LI_funchons under doubly stochastic tmnsformatwns, Trans Amer Math Soc 117 (1965), 92-100 MR 0209866 (35 #762) 186 D Sarason, A remark on the Volterra opemtor, J Math Anal Appl 12 (1965), 244-246 MR 0192355 (33 #580) 187 ___ , F'unctwns ofvamshmg mean oscdlatlon, Trans Amer Math Soc 207 (1975), 391405 MR 51 #13690 188. ___ , Sub-Hardy Hdbert spaces m the 'Umt d18k, UnIversity of Arkansas Lecture Notes m the Mathematical SCiences, 10, John Wiley & Sons Inc, New York, 1994, A WIleyIntersclence Publication MR 1289670 (96k:46039) 189. J Schauder, Zur Theone stebger Abbddungen m Funktwnalra'Umen, Math Z. 26 (1927), 47 - 65. 190 ___ , Etne Etgenschajt des Haarschen Orthogonalsystems, Math Z 28 (1928), 317 - 320 191 K. SelP, Interpolabon and samplmg In spaces of analytic funcbons, UnIversity Lecture Senes, vol 33, American Mathematical Society, Providence, RI, 2004 MR 2040080 (2005c:30038) 192 H S. Shapiro, Some observatwns concermng weIghted polynomIal approX1.matwn of holomorphlc functions, Mat Sb (N S.) 73 (115) (1967),320-330 MR 0217304 (36 #395) 193 H S. ShapIro and A L Shields, On some Interpolation problems for analytIC functlons, Amer J Math 83 (1961), 513-532 MR 0133446 (24 #A3280) 194 J ShapIrO, The essentIal norm of a compoSltion opemtor, Ann of Math (2) 125 (1987), no 2,375-404 MR 881273 (88c:47058) 195 ___ , CompoSltwn opemtors and clasSIcal functwn theory, UnIversltext Tracts m MathematiCS, Sprmger-Verlag, New York, 1993 MR 94k:47049 196 S ShlmOrIn, Wold-type decomposltzons and wandenng subspaces for opemtors close to 18ometnes, J Reme Angew Math 531 (2001), 147-189 MR 1810120 (2002c:47018) 197 N. A Shlrokov, Analytic functwns smooth up to the boundary, Sprmger-Verlag, Berlin, 1988 MR 90h:30087 198 B. Simon, Spectml analYSIS of ronk one perturbations and applzcatwns, Mathematical quantlIrll theory II Schrodmger operators (Vancouver, BC, 1993), CRM Proc Lecture Notes, vol. 8, Amer Math Soc, PrOVidence, RI, 1995, pp 109--149 MR 1332038 (97c:47008) 199. B Simon and T Wolff, Smgular contmuous spectrum under mnk one perturbatwns and localiZation for mndom Hamdtomans, Comm Pure Appl Math 39 (1986), no 1, 75-90 MR 820340 (87k:47032) 200 V I Smlrnov, Sur les valeurs ltmztes des fonchons, reguheres Ii l'tnteneur d'un cercle, Journal de la Societe Phys -Math de LenIngrade 2 (1929), 22-37 201 F Smithies, Cauchy and the creatzon of complex funchon thpory, CambrIdge UnIversity Press, CambrIdge, 1997 MR 99b:01013 202 Y Sokhotskl, On defimte mtegrols and funchons 'USlng sene.~ expanswns, Ph D theSIS, St Petersburg, 1873 203 S Spanne, Sur l'mterpolatwn entre les espaces Lkp<J!, Ann Scuola Norm Sup Plsa (3) 20 (1966), 625-&18 MR 35 #728 204 D. Stegenga, Bounded Toeplztz operotors on HI and applu:abons of the duallty between HI and the funchons of bounded mean osclllabo1£, Amer J Math 98 (1976), no 3, 573-589 MR54 #8340 205 ___ , MultIplIers of the Dlnchlet space, IllInOIS J Math 24 (1980), no 1, 113-139 MR 81a:30027 206 E M Stem, SIngular mtegrols, harmomc functions, and dlJferenhabzlzty propertIes of functwns of sevemlvanables, Smgular mtegrals (Proc Sympos. Pure Math, ChiCagO, III , 1966), Amer Math Soc, PrOVidence, R I , 1967, pp 316-335 MR 58 #2467 207 ___ , Smgular Integrals and dlJferenhabthty propertIes of functIons, Prmceton MathematIcal Series, No 30, Prmceton UnIversity Press, PrInceton, N J ,1970 MR 44 #7280 208 E M Stem and G WeiSS, An extensIon of a theorem of Marcmhewlcz and some of Its appllcatwns, J Math Mech 8 (1959), 263-284 MR 21 #5888 209 P Stem, On a theorem of M Rzesz, J London Math Soc 8 (1933), 242 - 247 210. D. Stroock, Probabzlsty theory, an analytIC mew, CambrIdge UnIversity Press, CambrIdge, 1993 MR 1267569 (95f:60003)
BIBLIOGRAPHY
265
211 C Sundberg, Ihmcabons of BMO /uncttons, Indiana Umv Math J 33 (1984), no 5, 749-771 MR MR156151 (86a:42029) 212 J E Thomson, Appronmatzon m the mean by polynomzals, Ann of Math (2) 133 (1991), no 3,477-507 MR 1109351 (93g:47026) 213 ___ , Umform approxzmatwn by rabonal/unctwns, Indiana Umv Math J 42 (1993), no 1,167-177 MR 1218111 (94h:4103O) 214 ___ , Bounded pomt evaluatIOns and polynomzal approxzmatlon, Proc Amer Math Soc 123 (1995), no 6, 1757-1761 MR 1242106 (95g:30051) 215 E Tltchmarsh, On conJUgate [unhons, Proc London Math Soc 29 (1929), 49 - 80 216 X Toisa, Pamleve's problem and the semzadddwdy of analytzc capaczty, Acta Math 190 (2003), no 1, 105-149 MR 1982194 (2005c:30020) 217 ___ , The semzadd~twzty of contmuous analytzc capacdy and the mner boundary conJecture, Amer J Math 126 (2004), no. 3, 523-567 MR 2058383 (2005f:30052) 218 0 D Tsereteh, Remarks on the theorems of Kolmogorov and of F and M Rtesz, Proceedmgs of the SymposIUm on Contmuum Mechanics and Related Problems of AnalYSIS (Tbllisl, 1971), Vol 1 (Russian), Izdat "Mecmereba", TbilIsl, 1973, pp 241-254 MR 52 #6306 219 _ _ , ConJUgate functIOns, Mat Zametla 22 (1977), no 5,771-783 MR 58 #12166 220 G C Tumarkm, On mtegrals of Cauchy-StzeltJes type, Usperu Mat Nauk (N S ) 11 (1956), no 4(70), 163-166 MR 18,725f 221 _ _ , Sequences of Blaschke products, Dokl Akad Nauk SSSR 129 (1959), 40--43 MR 0108592 (21 #7308) 222 ___ , Convergent sequences of Blaschke products, Slblrsk Mat Z 5 (1964), 201-233 MR 0161980 (28 #5182) 223 J B Twomey, Tangentwl boundary behamour of the Cauchy mtegral, J London Math Soc (2) 31 (1988), no 3, 447-454 MR 939120 (8ge:30057) 224 P L Ul'yanov, The A-mtegral and conJugate functions, Moskov Gos Umv Ue Zap Mat 181(8) (1956), 139-157 MR 18,892d 225 _ _ , On the A-Cauchy zntegral I, Uspehl Mat Nauk (N S ) 11 (1956), no 5(71),223-229 MR 18,726a 226 V I VasJunm, Czrcular projectIOns of sets that occur m the theory of mterpolahon, Zap Nauchn Sem Lemngrad Otdel Mat lnst Steklov (LOMI) 92 (1979),51-59,318, Investigations on hnear operators and the theory of functiOns, IX MR 566141 (82h:30040) 227 S A Vmogradov. Properties of mulbplzers of zntegrals of Cauchy-SbeltJes type, and bome problems of factonzatlon of analybc /unchons, Mathematical programmmg and related questIOns (Proc Seventh Wmter School, Drogobych, 1974), Theory of functiOns and functional analysIs (RUSSian), Central Ekonom -Mat Inst Akad Nauk SSSR, Moscow, 1976. pp 5-39 MR 58 #28518 228 S A VIllOgradov, M G Goluzllla, and V P Havm, Multzplzers and dzmsors of CauchyStleltJes type mtegrals, Zap Nauen Sem Lemngrad Otdel Mat.lnst Steklov (LOM!) 19 (1970), 55-78 MR 45 #562 229 R Wheeden and A Zygmund, Measure and mtegral, Marcel Dekker Inc, New York, 1977, An llltroductlOn to real analysIS, Pure and Apphed MathematiCs, Vol 43 MR 58 #11295 230 D Williams, Probabdzty wzth martmgales, Cambridge Mathematical Textbooks, CambrIdge Umverslty Press, Cambndge, 1991 MR 1155402 (93d:60002) 231 P WOJtaszczyk, Banach spaces for analysts, Cambndge Umverslty Press, Cambndge, 1991 MR 93d:46001 232 K Zhu, Spaces of holomorphzc /unctsons m the umt ball, Graduate Texts m MathematICS, vol 226, Springer-Verlag, New York, 2005 MR 2115155 233 A Zygmund, Sur les foncbons conJUgees, Fund Math 13 (1929), 284 - 303 234 ___ , 1hgonometnc senes 2nd ed Vols I, II, Cambridge Umverslty Pless, New York, 1959 MR 21 #6498
Index
A-mtegral, 48 absolutely contmuous measure, 15 Adams, D, 59 adJomt, 21 Ahern, P, 27, 30, 192 Ahlfors, L., 28, 103, 110 Aleksandrov measure, see also Clark measure dlsmtegratlOn theorem, 212, 216, 242 Aleksandrov, A., 1, 4, 6, 8, 36, 48, 49, 67, 102, 109, 183, 188, 215, 217, 228-230, 244, 250--252 Aleman, A , 179, 180, 185, 253 algebra, 11 u-algebra, 11 Allev, R, 54 analytiC self-map, 28, 201 Andersson, M , 36 angular denvatlve, 28, 192, 208, 211, 216 annihilator, 18 AronszaJn, N , 9, 241 atoms (of a measure), 17
Beurhng's theorem, 179, 251 Blaschke conditIOn, 27 Blaschke product Carathoodory's theorem, 152 defimtlOn, 27 Frostman's theorem, 27 multiplier, 130 Tumarkm's theorem, 152 Bochner mtegral, 121 Boole's lemma, 165 Boole, G , 6, 164 Borel algebra, 12 function, 12 measure, 14 sets, 12 transform, 231, 241 bounded mean oscillation, 69 bounded operator, 20 bounded type, 34 Bourdon, P , 111, 253 Boekarev, S , 96 Brennan, J , 9 Brown, L, 93 Burkholder, D , 36
backward Shift, see also Clark measure H2 analytic continuation, 182 basiS, 192 denSity theorem, 187 Douglas-Shapiro-Shields theorem, 181 kernel functlOn, 186, 192 pseudocontinuatlOn, 181 spectrum, 184 HP, 183, 192 X, 252 other spaces, 185 Baernstem, A , 79, 80 Bagemlhl, F , 26, 43 balanced hull, 18 Banach-Alaoglu theorem, 19, 24 Bary, N , 54 basiS, 95, 192 Bell, S, 9 Beslcovlch covermg theorem, 233 best constants, 79, 82
Calderon, A, 65,67, 163 capacity, 59 Carathoodory, C , 152 Carleson mterpolatlOn theorem, 38 measure, 37, 133 square, 37 Carleson, L , 5, 38, 96 carner (of a measure), 16, 232 Cauchy A-Integral formula, 49 mtegral formula, 47 StleltJes mtegral, 1, 59 Cauchy transform A-mtegral formula, 49 Aleksandrov's characterIZation, 102, 127, 190,244 and C(1'), 72 267
268
and LI, 68 and Loo, 68, 69 and LP, 65 and duality, 78 and weighted LP, 76 boundary behavior, 42, 58 Cauchy mtegral formula, 47 Clark measure, 203 defimtlOn, 41 dlstnbutlOn function, 172, 222 F-property, 127, 243 Fatou's Jump theorem, 55 geometnc characterization, 111 Havm's characterization, 99 Lipschitz classes, 62 M RIesz's theorem, 65 multiplier, 115 non-tangential limit, 44 norm, 83 normalized Cauchy transform, 227 PlemelJ formula, 56 pomtwlse estimate, 87 pnnclpal value Integral, 56 representIng measures, 42 space of Cauchy transforms, 41 backward Shift, 252 basiS, 97 composItion operator, 253 duahty, 89, 91 forward shift, 250 Lebesgue decompOSitIOn, 88 multiplier, 115 refleXive, 90 separable, 89, 93 Toephtz operator, 252 weak topology, 95 weak-* topology, 91 weakly sequentially complete, 95 Tumarkin's characterization, 101 Cauchy, A, 1,46,60
cesaro operator, 250 sum, 24 Choquet, G , 25 Clma, J ,26,67, Ill, 112, 181-183, 185, 250, 252,253 Clark measure Aleksandrov's dISIntegration theorem, 212, 216,242 angular denvatlve, 208, 211, 216 carner, 207 Cauchy transform, 203 compOSitIOn operator, 253 deBranges-Rovnyak space, 229 defimtlOn, 202 Fourier coeffiCients, 204 Herglotz integral, 202 Lebesgue decompoSltlon, 205
INDEX
norm, 204 normalized Cauchy transfonn, 227 POInt mass, 208, 211, 216, 222, 230, 243 Clark, D , 1, 6, 7, 27, 30, 192, 193, 197, 199, 201, 220 closed graph theorem, 21 Cohn, W, 192 CollIngwood, E , 26, 27 composition operator, 250, 253 compression, see also forward shift conditional expectation operator, 215 conjugate POisson Integral, 30 function, 32, 62, 65, 69, 72, 73, 80 contInUOUS measure, 17 operator, 20 convex balanced hull, 18 hull, 18 Conway, J , IX, 9, 17,20 coset, 18 Cowen, C , 28, 209, 250 cyclic, 21, 195, 200, 236 DaVIS, B , 80, 82 Day, M., 12 deBranges-Rovnyak space, 229 decreasIng rearrangement, 13, 49 del Rio, R , 243 Delbaen, F , 95 DenJoy, A , 48 denvatlve (of a measure), 15 Dlestel, J , 94-97, 121, 193 discrete measure, 17 dISIntegratIOn theorem, see also Aleksandrov's dlsmtegratIOn theorem, 242 disk algebra, 91, 117 dlstnbutlon function, 13, see also decreasIng rearrangement Boole's lemma, 165 Cauchy transform, 172, 222 conjugate function, 73, 80, 222 Herglotz mtegral, 170 Hilbert transform, 163, 176 HruSCev-Vmogradov theorem, 164, 170 normalized Cauchy transform, 227 PoltoratskI's dlstnbutlon theorem, 222 Stein-Weiss theorem, 176 Tsereteh's theorem, 169 Donoghue, W , 9, 222, 241 Doob, J, 84 Douglas, R , 181, 182 dual extremal problenlS, 84 duality A, 91 HI, 78 HP,78
INDEX
X, 91, 95 X a ,89 f}*(HP), 183
Duren, P, 27, 31, 32, 36, 41, 45, 65, 68, 84, 94, 111, 179, 180, 250 Dyakonov, K, 187 Enflo, P, 96 Evans, L , 11, 15, 16, 233 F-propert~ 127, 129, 151, 157, 243 F and M Rlesz theorem, 34 factoriza.tlon bounded a.nalytlc functIOn, 27 functIOns of bounded type, 34 Hardy space functions, 34 Fatou's theorem Jump theorem, 55 on non-tangential hmlts, 26 on Poisson mtegrals, 31 Fatou, P , 2, 26, 31, 55 Fefferman, C , 79 Fefferman-Stem duality theorem, 79 FeJer, L, 24 Fomin, S, 11 forward shift H2 Beurhng's theorem, 179 compression, 194 X, 250, 251 perturbatIOns, 196 Founer coefficient, 24 Frostman's theorem on angular denvatlves, 29 on radial hmlts, 27, 130 Frostman, 0 , 27, 29, 130, 160 Fuentes, S., 243
Galer, D, 86 Gamehn, T , 9, 80 Garcia, S., 2, 54, 199 Gariepy, R, 11, 15, 16 Garnett, J , 9, 32, 36, 44, 69, 70, 72, 76, 79, 84,86,95, 103, 109, 141, 153, 164,176, 180, 182 Garsla norm, 69 Gelfer domam, 112 Gelfer, S , 112 Goldstme, H , 20 Goluzin, G , 57, 62 Goluzma, M , 120, 122, 124, 130, 245 Grafakos, L , 13 Gundy, R, 36 Gurarll, V , 127 Holder's mequallty, 12 Hahn-Banach extensIOn theorem, 17 separatIOn theorem, 17
269
Hankel operator, 145 Hardy space, see also forward shift, backward shift, Toephtz operator classiCal operators, 249 defimtlon, 32 IUesz factonzatlOn, 34 Smlrnov class, 35 standard facts, 33 Hardy's inequality, 68 Hardy, G , 36, 57, 62, 76 harmomc maJorant, 103 Hausdorff, F ,214 Havm, V., 95, 99, 109, 122 Havlnson, S Ja, 84 Hayman, W , 38, 103 Hedberg, L , 59 Helson, H , 76 Herglotz mtegral, 30, 170, 202 theorem, 32, 201 Herglotz, G , 32 HeWitt, E , 16, 17 Hilbert transform, see also distribution functIOn, 163, 164, 169, 170 Hobson, E , 214 Hoffman, K , 31, 32, 38, 68, 93, 252 Hollenbeck, B., 3, 67, 79 HrusCev, S., 3, 5, 6, 110, 127-130, 137, 164, 170, 190 Hunt, R, 76 mner functIOn angular denvatlve, 29, 192 Clark measure, 202, 216, 222 defimtlon, 27 kernel function, 192 measure preserving, 171,215 multiplier, 129 non-tangential hmlts, 27 spectrum, 182 interpolating sequence, 37, 133
JakSlC:, V , 231 Jal1Son, S , 249, 253 John-Nirenberg inequality, 70 Jordan decomposition theorem, 14 Juha-Caratheodory theorem, 28, 209--211 Kahane, J., 42 Kakutanl, S , 95 Kalton, N , 35 Katznelson, Y , 176 Kelley, J , 94 Kennedy, P , 103 kernel function, 185, 192, 199 Khavinson, D , 187 KislJakov, S ,95 Kolmogorov, A, 3, 5, 11, 48, 73, 80, 163, 227
270
KOOSIS, P, 32, 36, 69, 70, 73, 79, 95, 164, 207 Korenblum, B , 180, 252 Landau, E., 86, 125 Last, Y, 231 Lebesgue decomposItIon theorem, 16 and space of Cauchy transforms, 88 dIfferentIation theorem, 15 measurable functions, 12 measure, 12 Lebesgue, H , 24 Lleb, E, 234 LIndelof, E , 26 Lipschitz class, 62, 250 Littlewood subordInatIOn theorem, 79, 250 Littlewood, J , 26, 36,41,57,62,76,79,250 LIVSIC, M , 184 Lohwater, A , 26, 27, 43 LoomiS, L , 163, 164 Loss, M, 234 Lotto, B , 129 MacCluer, B, 28, 250 MacGregor, T , 9, 112 Markushevlch, A , 101 Matheson, A , 132, 180, 217, 226, 252, 253 Maurey, B , 96 mWClmal functIOn, 36, 233 Mazur's theorem, 19 Maz'ya, V, 116 McDonald, G , 138 McKenna, P , 137 measure absolutely contInuous, 15 atoms, 17 Banach-Alaoglu theorem, 24 Borel, 14 carrIer, 16, 232 Cesaro sum, 24 contInuous, 17 derIvative, 15 discrete, 17 FOUrIer coefficients, 24 Jordan decompOSitIOn, 14 Lebesgue, 12 Lebesgue decompositIOn, 16 pOSitive, 14 Radon-Nlkodym derIvative, 15 Rlesz representatIOn theorem, 15 smgular,15 support, 16 total variation, 14 MeggInson, R , 17, 96, 193 MInkowskl's inequality, 12 Moeller, J, 184 Monotone class theorem, 213 Mooney, M , 95
INDEX
Morera, G, 1,60 Muckenhoupt, B, 76 multIpher HP,116 BMO,117 defirution, 115 Dmchlet space, 116 F-property, 127, 129, 151, 157 Frostman condition, 130 mner function, 129 multlpber norm, 115 necessary conditIOns, 118 non-tangential lImits, 119, 120 suffiCient conditIOns, 122 Toephtz operator, 117 MuskhelIshvllI, N , 9 Naftalevic, A, 38 Nagel, A, 58 Natanson, I ,11 Nazarov, F, 77 Nevaniinna class, 34 Nevanlmna, R , 208 Newman, D , 38, 68 Nlkol'skil, N , 179, 181, 194, 195 non-tangential lImit HP functions, 33 Cauchy transform, 44 defirutlon, 25 Fatou's theorem, 26 Frostman's theorem, 27 Lmdelof's theorem, 26 multIpher, 119, 120 normalized Cauchy transform, 231 PrIvalov's uruqueness theorem, 26 non-tangential mWClmai functIOn, 36 norm
LP, 12 Cauchy transform, 83 operator, 20 total varIatIon, 14 normalized Cauchy transform defimtlOn, 227 distrIbutIOn functIon, 227 mappIng properties, 228-230, 240 non-tangential hmlts, 231 operator adJomt,21 bounded, 20 norm, 20 spectral theorem, 22 spectrum, 21 orlcyclIc lmllt, 58 outer functIOn, 27, 34 PaJot, H, 9 Paley, R., 193 Parthasarathy, K , 23
INDEX
Peck, N, 35 Peetre, J , 249, 253 Peller, V , 125 perturbations Clark's theorem, 220 of self-adJomt operators, 242 umtary, 196, 197, 199 Pelczytiskl, A , 79, 96 Plchondes, S , 3, 80, 82, 103 Plraman, G , 26, 43 PlemelJ's formula, 56 PlemelJ, J , 1, 2, 56, 60 POinCare, H , 43 POISson mtegral, 30, 232 POlSson-StleltJes mtegral, 31 polar, 18 Poltoratskl, A , 1, 3, 6, 8, 199,222,226,231, 240, 243, 244, 246 Pommerenke, C , 209 pre-polar, 18 pnnclple of umform boundedness, 17 Pnvalov's theorem on Lipschitz classes, 62 prmclple value of Cauchy Integrals, 56 umqueness theorem, 26 Pnvalov, I ,1,3,9,26,56,60,62 pseudo-hyperbohc distance, 37 pseudocontlnuatlon, 181, 244 pure pOint spectrum, 22, 222, 243 Putlnar, M , 199 quotient space, 18 radial limit, 25 maJ{lmal function, 36 Radon-Nlkodym denvatlve, 15 theorem, 15 refleXive, 20 space of Cauchy transforms, 90 representing measures, 42 RIchter, S , 179, 180 RIesz prOJection, 65, 67 representatIOn theorem, 12, 15 RIesz, F , 20, 34, 193 RIesz, M , 3, 29, 34, 65, 164, 210 Roberts, J., 35 Rogosmskl, W , 84 Romberg, B , 94 ~,W ,26,67, 179, 181-183, 185,250,252 Rudin, W, IX, 11, 15-17,20,31,58,62,91, 180, 233, 252 Rybkm, A, 54 Ryff, J, 13 Sarason, D , 2, 54, 72, 129, 194, 218, 226, 229
271
Schauder basiS, 95 Schauder, J., 96 second dual, 19 Seidel, W , 26, 43 Selp, K, 36 self-adjOint operator, 22 spectral theorem, 22 self-map, 28, 201 Semmes, S , 249, 253 separable, 20 space of Cauchy transforms, 89, 93 space of measures, 24 separated, 37, 133 Shapiro, H S, 36, 84, 179, 181, 182, 185, 187 Shapiro, J., 28, 58, 209, 250 Shaposhmkova, T, 116 Shields, A , 36, 93, 94, 181, 182 shift operator, see also forward sluft, backward shift Shlmorm, S , 180 Shlrokov, N., 127, 180 Silverstem, M , 36 Simon, B , 9, 241 Singular mner function, 27 smgular measure, 15 SiSkakIS, A , 250, 253 Smirnov class, 35 Smlrnov, V , 2, 34, 35, 43, 45, 62 Smithies, F , 46 Sokhotslu, Y , 1, 56, 60 Spanne, S , 69 spectral theorem, 22, 218, 236, 241 spectrum backward Shift, 184 compreSSIOn, 196 mner functIOn, 182 kernel functIOn, 192 operator, 21 pure pomt spectrum, 22, 222, 243 restnctlOn of backward sluft, 184 spectral theorem, 22, 218, 236, 241 umtary perturbatIOns, 222 Stegenga, D , 116, 117, 249 Stem, E, 69, 79,82, 164, 176,233 Stem, P, 65 Stessm, M , 226 Stoltz regIon, 25 Stromberg, K , 16, 17 Stroock, D , 23 subharmomc functIon, 103 Sundberg, C , 79, 138, 180 support (of a measure), 16 symmetnc denvatIve, 15 Sz -Nagy, B , 20, 193 Sz -Nagy-FOla§ functional model, 194 Szego's theorem, 22 Szego, G , 22, 76
272
tangential boundary behavior, 58 Thomson, J , 9 Titchmarsh, E , 48, 164 Toephtz operator, see also multipher
A,117 HI, 117,249
Hoo,117 HP, 116,250 X,252 Tolsa, X, 9 topology weak, 19,95 weak-*, 19, 91 total varIation, 14 TreIl, S , 77 Tsereteh, 0 , 3, 5, 6, 76, 169 Tumarkm, G , 4, 101, 152, 154 Twomey, J , 58, 59 Uhl, J ,121 Ul'yanov, P, 2, 48, 49, 54 umform boundedness prmciple, 17 umformly separated, 37, 133 umtary operator, 21 spectral theorem, 21 umtary perturbatIons, see also perturbations vanIshmg mean oscIllation, 72 VasJumn, V , 130 Verbitsky, I , 3, 67, 79 Vmogradov, S, 3, 5, 6, 117, 122, 127-130, 137, 164, 170, 190,249 weak topology, 19,94 weak-* Schauder basIS, 96 weak-* topology, 19, 91 weak-LI, 35 weakly sequentIally complete, 94, 95 WeIss, G , 176 Wheeden, R , 11, 13, 65, 76 Wiener algebra, 127 WIener, N , 193 Williams, D , 213 WOJtaszczyk, P, 17,94-96 Wolff, T , 9, 241 Zhu, K, 62 Zygmund, A, 11, 13,32,42,62,64,65,68, 123, 163
INDEX
Titles in This Series 125 Joseph A. Cima, Alec L. Matheson, and William T. Ross, The Cauchy Transform, 2006 124 Ido Efrat, Editor, ValuatIOns, orderIngs, and Milnor K-Theory, 2006 123 Barbara Fantechi, Lothar Gottsche, Luc Illusie, Steven L. Kleiman, Nltln Nitsure, and Angelo Vistoli, Fundamental algebraic geometry Grothendleck's FGA explained, 2005 122 Antonio Giambruno and Mikhail Zaicev, Editors, Polynomial Identities and asymptotic methods, 2005 121 Anton Zettl, Sturm-LIouville theory, 2005 120 Barry Simon, Trace Ideals and their applications, 2005 119 Tian Ma and Shouhong Wang, Geometnc theory of Incompressible flows With applications to flUid dynamiCS, 2005 118 Alexandru Buium, Anthmetlc differential equations, 2005 117 Volodymyr Nekrashevych, Self-Similar groups, 2005 116 Alexander Koldobsky, Founer analYSIs In convex geometry, 2005 115 Carlos Julio Moreno, Advanced analytic number theory L-functlons, 2005 114 Gregory F. Lawler, Conformally Invanant processes In the plane, 2005 113 William G. Dwyer, Philip S. Hirschhorn, Daniel M. Kan, and Jeffrey H. Smith, Homotopy limit functors on model categones and homotoplcal categones, 2004 112 Michael Aschbacher and Stephen D. Smith, The classification of quaslthln groups II Main theorems The classificatIOn of Simple QTKE-groups, 2004 111 Michael Aschbacher and Stephen D. Smith, The clasSification of quaslthIn groups I Structure of strongly quasithIn K-groups, 2004 110 Bennett Chow and Dan Knopf, The RICCI flow An introductIOn, 2004 109 Goro Shimura, AnthmetlC and analytiC theones of quadratic forms and Clifford groups, 2004 108 Michael Farber, Topology of closed one-forms, 2004 107 Jens Carsten Jantzen, Representations of algebraiC groups, 2003 106 Hiroyuki Yoshida, Absolute CM-penods, 2003 105 Charalambos D. Aliprantis and Owen Burkinshaw, Locally solid Rlesz spaces with apphcatIOns to economiCS, second edition, 2003 104 Graham Everest, Alf van der Poorten, Igor Shparlinski, and Thomas Ward, Recurrence sequences, 2003 103 Octav Cornea, Gregory Lupton, John Oprea, and Daniel Tanre, Lustermk-Schmrelmann category, 2003 102 Linda Rass and John Radcliffe, Spatial deterministic epidemiCS, 2003 101 Eli Glasner, ErgodiC theory via JOinIngs, 2003 100 Peter Duren and Alexander Schuster, Bergman spaces, 2004 99 Philip S. Hirschhorn, Model categones and their localizations, 2003 98 Victor Guillemin, Viktor Ginzburg, and Yael Karshon, Moment maps, cobordlsms, and Hamiltoman group actions, 2002 97 V. A. Vassiliev, Applied Plcard-Lefschetz theory, 2002 96 Martin Markl, Steve Shnider, and Jim Stasheff, Operads In algebra, topology and phYSICS, 2002 95 Seiichi Kamada, Braid and knot theory In dimenSIOn four, 2002 94 Mara D. Neusel and Larry Smith, Invariant theory of fillite groups, 2002 93 Nikolai K. Nikolski, Operators, functIOns, and systems An easy readIng Volume 2 Model operators and systems, 2002
TITLES IN THIS SERIES 92 Nikolai K. Nikolski, Operators, functions, and systems An easy readmg Volume 1 Hardy, Hankel, and Toephtz, 2002 91 Richard Montgomery, A tour of subnemanman geometnes, their geodeSICS and applicatiOns, 2002 90 Christian Gerard and Izabella Laba, MultlpartIcle quantum scattermg m constant magnetic fields, 2002 89 Michel Ledoux, The concentration of measure phenomenon, 2001 88 Edward Frenkel and David Ben-Zvi, Vertex algebras and algebraiC curves, second edition, 2004 87 Bruno Poizat, Stable groups, 2001 86 Stanley N. Burris, Number theoretic density and 10gIcalllIDit laws, 2001
85 V. A. Kozlov, V. G. Maz'ya, and J. Rossnmnn, Spectral problems associated WIth corner smgulantles of solutions to elliptic equations, 2001 84 Lasz16 Fuchs and Luigi Salce, Modules over non-Noetherxan domains, 2001 83 Sigurdur Helgason, Groups and geometrxc analYSIS Integral geometry, mvarlant differential operators, and sphencal functions, 2000 82 Goro Shlmura, ArxthmetIcity m the theory of automorphic forms, 2000 81 Michael E. Taylor, Tools for PDE Pseudodifferentlal operators, paradlfferentlal operators, and layer potentials, 2000 80 Lindsay N. Childs, Tammg wild extensions Hopf algebras and local GalOIS module theory, 2000 79 Joseph A. Cima and William T. Ross, The backward shift on the Hardy space, 2000 78 Boris A. Kupershmidt, KP or mKP NoncommutatIve mathematiCs of Lagrangian, HamIltoman, and mtegrable systems, 2000 77 Fumio Hial and Denes Petz, The semiCircle law, free random variables and entropy, 2000 76 Frederick P. Gardiner and Nikola Lakic, Quaslconformal Telchmuller theory, 2000 75 Greg HJorth, Classification and orbit equivalence relations, 2000 74 Daniel W. Stroock, An mtroduction to the analysIS of paths on a Rlemanman mamfold, 2000 73 John Locker, Spectral theory of non-self-adjomt two-pomt differential operators, 2000 72 Gerald Teschl, Jacobi operators and completely mtegrable nonlInear lattiCes, 1999 71 Lajos Pukanszky, Characters of connected Lie groups, 1999 70 Carmen Chicone and Yuri Latushkin, Evolution semigroups m dynamical systems and differential equations, 1999 69 C. T. C. Wall (A. A. Ranicki, Editor), Surgery on compact mamfolds, second edition, 1999 68 David A. Cox and Sheldon Katz, Mirror symmetry and algebraiC geometry, 1999 67 A. Borel and N. Wallach, Contmuous cohomology, dISCrete subgroups, and representations of reductive groups, second edition, 2000 66 Yu. Ilyashenko and Weigu Li, Nonlocal bifurcatIons, 1999 65 Carl Faith, RIngs and thmgs and a fine array of twentieth century associative algebra, 1999 64 Rene A. Carmona and Boris Rozovskii, Editors, StochastiC partial differential equations Six perspectives, 1999
For a complete lIst of titles in this series, Visit the AMS Bookstore at www.ams.org/bookstore/.
The Cauchy transform of a measure on the circle is a subject of both classical and current interest with a sizable literature. This book is a thorough, welldocumented, and readable survey of this literature and includes full proofs of the main results of the subject. This book also covers more recent perturbation theory as covered by Clark, Poltoratski, and Aleksandrov and contains an in-depth treatment of Clark measures.
_
For additional information
~ and updates on this book, visit www.ams.org/bookpages/surv-125
ISBN 0- 8218- 3871 - 7
9 780821838716
SURV/125
AMS on the Web www.ams.org