STRUCTURES
PROPERTIE S RUBBERLIKE
AND
OF
NETWORK S
TOPICS IN POLYMER SCIENCE
II
s.,it, <>I IId,,.,,
,aph.'
&,its fidi'", h mes E. Ma'k. Unive"';ty of Cir>cinn.oti
M""" Carlo <md MoJ«.la. OJ_k, Simu/ioti
/''''1''''.''
STRUCTU RES AND PROPERTIES OF RUBBERLIKE NETWORKS
Burak Erman & James E. Mark
New York O ,rord o "ro,,1 \) n;,,,,..;!)' Pre ..
""
---- Dw._ .,.._-__ .... --- '. o.f«d Uoi-.ily ""-
.......................
' - c..._ _ _
....
~
K_"-~
CI<J _
_ ........ ... _ ,.,.. lOI.,.. _ _
....
Copyri"" 0 1997 by Od onl Uniwnity Preoo. Ire. _ _ .. o.fooI " " " - _
_ ... __ . --, .
....
,tI _ _ _ Yeft.. _ _
'OO'.
0d000I •• _ _ .. """" _ _ _ _
....
.......,-_. ........... ", ;,..,-"'.'!':",'''' ,,' n .... _ .. - .
_
~-
"'-..-...,-.
----. _-.,--,""-....... "-c f<
_
_
Pol,.>
__
~;."",>-_,
..... 1..,
"'.No.'_moO ~---. $. _ _ •.
"-
Qt>J1U't7ETl
,09)
ur..._ "
_
-.............- ..• • 7.1',11
~-.
NO_
l ...... ' . . . "-., ......
Preface
In a sens<, thi s book isa sequ~ l t" ... ur 19881:><>01:. XubfH.rlike Elasticity. A Mol~c ular Pri_f. As such, ;1 has much in common "ilb it< predecessor. panicularly ils Mrong emphasis on molecular concepls and lheories. Similarly. only equilibrium properlies are co",,"'" in any dClai!. This i! n<)[ 10 q"~llion the im(>Orlan~ of the dynamic asp«ts "f vi<eoclastic phcn omcnO]l. nor c>"<'n the im(>Onan~ of ullimatciy developing. Ihoory that cov.:n; both rubber elast;c;ty and ,';sooclaslic;ly. Unfortunatel y, ]1O such cnoompassing Ihoory e_,i.", al pn"$Cnl, and il will probably be some I;me before one becomes ,,,'ailahlc;n a forn, thaI is u""fullo experimen. lalists. as w~1I as Iheorim . It i, also our opinion tltal a thorou gh understanding of equilibrium properlics must. of ne""",sily. pr<:<:<.>Je an understaooing of d}'namic phenomena.• 1 least in Ihe molecuLlr arca. This w~s Ih. approach taken in our earlier book. and in lhe now-cla,~i" 1975 book by Trcl""r (The Physic' of Ru/>bl'r Elarlidty). As waS specified in il' litle. R,,/>bI'rlik~ £1
o~ treats mucb the ",me ,ubjtel maller, buI j, meanl to be a more oo"' l,rehen,i,,,, some".-hat more sophis· ticated. Ir~atm.nl. Ikcaus<: o f iI, more oompreh.",ive oh3.ao"" much n,ore delai) is gi,-cn but. for (he oonvcnicnce of tM reader. this has generally bt.'Cn placed imo Ihe appendixe". It will be useful if Ihc reader already has SOme famil· iarity ",-i th the funda'"'enl .... ~lIClt os Ihose di",,,g&.:d in the ;nt.oo"CIOI)' book. For Ihi' reason. some of Ihis mate rial i. presented in condensed form in the lirst chapter, and in Ine first welion. of severa l of the other chaple ... A number of Ihe books and rc"iew anicles c ilc'
l11is /xige illl<'lIIiollally left blallk
Contents
1 CI ... kll Theorln 0/ R~ bber EIast;city 7 2. 1 The Kuhn-Trel"a r Tbwry g 1.2 T~ I'ha "~
2()
1 1..... moIecular Effect" I. The eonsr.ralned·luna"'" Model 12 3. 1 TM ModclanditsA ..... nlplions 2) 3.2 ProhobiHly Distribulion of l-' ucHllllions ,n I~ IXfom>c:d Nelwork 1.3 ~ Elastic F"", Enc-rgy JO 1.1. 1 exneral AspocU JO 3.3.2 Th¢ EI~Sh" F m: EncrS)' 1>... lO Dmorl;"" of t:.R JO J.J .J The Elallic Free En
Effecu , II. Con" n.int. >.Ion, N ..... ork Chain' 4.1 T he Slip-Link Model 34 4.2 T he Conslrain Mndcl 4(1 4.4 Olher T n:aln>cnIS of En~angk:,nenl> 42 K.f<~
",2
11
27
viii CONTENTS 5 Relation.h ips bet_en Str..... nd S'r>in +4 5. 1 General ReLationships of Finite ELa"icity Theory .14 5.2 Stres.-Strain Rdation. for the Phanlom ~nd Affine Nd·Chain Modeb under Uniaxia l Stress 4l! 5.4.1 TI\(: Slip-Link Modd 4l! 5.4.2 The ConSiraint>d·Chain Mood 49 5.5 Comparison of Slress Sirain Relations wilh Experimental Data 49 References 52 6 Swelli ng 01 N .. wor~. 53 6.1 Free Energy or a Swollen Network
53
6.2 The Solvent Cl\(:micai Potent ial for an lsotropically S"'olkn NCI"wk 55 6.3 Thermodynamics of a Network Uniaxially StTetchcd in Sol"em 6.4 Elastic Activity of a Swollen Nelwork 60 6,5 MOTe Recent Treatments of Nelwork Sw.;lIing 62 6.6 Sorption and E "f"~C1ion of Diluents 63 6.6, I Line~r Diluent, 63 6.6,2 Branched Diluents 65 6.6,3 Cyclic Dil""nts 66 6.7 T rapping of C)'ct;';s witnin Network Struclures 66 6.7 ,1 Experimental Results 66 6.7 ,2 Theoretical Interpretations 67 6.7,3 Olympic Nelworks 69 Kef.renees 70 7 Crit ic.1 Phenomena and Ph..., Tran.itions in Gel. n 7. 1 Theory of Critical PhenOln."" and Phase Transitions 7.2 ThcrmOTC'ICr>ible Gels 79 References 83
57
74
8 Calcu lation •• nd Sim ulation. 87 8, I Spati"l Configurat ions of an Isolated Chin 87 8.2 Statistical A '''''''ges of Configurational Variables 92 8.3 Distributions for End.to·"nd Scpanltions for SptciflC T ypes of Chains 94 K4 Stress_Strain lso(henns Cakolatw from the Non·Gaussian J)i s( ributions 100 8.5 Molecular Dynamics Calculations 104 Reference. 104
Nctwor~
CONTENTS
i~
107 9.1 Tl>cory 108 9.2 T ypiclll Stress- Temperature Ddta 11 0 9. 3 IIlumati,"" Th.rn'oela"i~ R~~ul!~ 112 9.4 Relevan! Cal",imet';e SlUdic. of Elastic Deformation. 121 9.S Relevant Vi !Cosily-Tcmpo:1""~turc ResuilS On Dilute Polymer Solutions 122 9.6 Rotali 1.11
<) Th.r~IU(i(ity
10 Mod,,1EI . >tomen; 134 10.1 T he Dependence of Ihe 51""" Oil Network Structure 114 10.1.1 General Approach 134 10. t.:' BITect "f Jun<. ion hnd ionalit y OS 10.2 T he Issuc of Entanglemen!s I3h 10.3 ln terpret.l i"n of Ultim a Ie Properties 141 10.4 Some Other Unusua l Netw"rk. 143 10.4.1 Dangl ing_Ch"in Networh 143 10.4.2 NCN'orh Containing Reptating Ow in, 145 IOA3 Networks ~par<xJ ;n s<:>lulion or in a Stal.
163
12 N l)eI"n",uon a nd O"o" ,,,,ion 174
x CON TE NTS 12.L6
[""lropic--N~matic
Phase T ransitions in Deformed Polymer Nctworks 17S ]2,2 Strain·l nduced Crystall ization 178 12.2. 1 General Feat ures 178 12.2.2 Models for Strain- Induced Crystallization in Stretched Networks 179 12.2.3 Predictions of the Molecular Theories 180 12.2.4 The Effects of Str~in_I nduced Cryitalli,ahon on Mochan;.;al Properties 182 References 185 13 Network> Hoving Mu lli mod~1 Chain_ Length Dist ribution. 188 [J . I Ultimate Properties and Non_(iauuian EfTects 188 13.2 lIi mo,:!. 1 Network. 189 13.2.1 Materials a"d Synthetic Tochniqucs IIW 13.2.2 T esting or the Weakest- l ink T heory 191 13.2.3 Elongation Result. 193 13.2.4 Result. in Other Mechan ical Deformations 203 13.2.5 Results On Nu nmc
Sm . II _An~le Neutron S.ca'ltering 220 14.1 GellC'al Fcature, of SANS 220 14.2 Expe,imental Stod ies 223 14.3 l boory of SANS from Net ..... or\> 224 14,3.1 The Scattering Low 224 14,3.2 Scatteri ng from a Phantom Network Chain 225 14.3.3 Scattering from an Affine Network Chain 228 14.3.4 Sealleri~g from a Chain wh"", Individual Segments Deform Affinel)" 229 14,3.5 Scauering f,om a La~led I'"th in the Network 229 14.4 Typical Result. from Experimcnts and Comparison ,",'ith Theory 230 RefetCnces 233
15 8;.,.,1..,0""'''' lJ5 15. 1 Some Gene .... l O bscr>ations 235 15.2 CIlcmical Aspects of Protein Biocl"stomer1 237 15,2.1 O"cfall Amino Aeid Cuml"',ition 237 15, 2.2 Amino Acid Scque,,,,ing 2.19 152..1 Cr<:>ss_l.inking Chemi
CONTENTS 15.3 NOlwork Thormoc:llI.Slicily 241 15.l .1 ~""r;d Relovantt 24 1 15.3.2 Elul,n 242 1~.J.3 Resili n 241 Is.l .4 OIh" I'rolei" Ellulomers 247 1 ~ .4 Stm.a-Strain Rc havior 248 15.4.1 ~nc,..1 Resullll 248 15.4.2 Ellutin 249 1~.4.l R";I'n 2S2 15.4.4 Spider.Web Silk 2j2 15.4.5 OIMr Protein Eto"Dfncr1 !~2 15.S Dynamic·Meclwoniaol Properties 253 I S.S.1 V,tOOdastoc Responses i" Gene ....1 251 IS .U EtT«t. of Dehyd .... lIon 256 IS.6 Some OtMr D"",Luwmcric Gels 2j7 15.6. 1 Gc1IcnJ l'roperties 257 1506.2 Some S~tic Systeml 2~ Rcf=nces 262
t6 Muklpl\ue Sys<erM 265 16.1 Some Theoretical Approac:hes 267 16.2 In S,\u GCI'H:,-~tio" of Fillcr$ in F.lutomen 26'1 16.1. 1 Gene ....1 Comment' 269 16.1.2 P~""r"lion 270 16.2.3 Elec1(on Mie, os«>py 270 16.2.4 Scanorina Toch niques 27 1 16.2.5 NlIClcar Magnetic Rewna ~ 272 16.2.6 A8ina 275 16.2.1 0 0n.i1i.. 2H 16.1.8 Calorimetry 275 16.2.9 Thorm"iravirr"'lIic Analysi, 2 76 16.2.10 Mechanica l Propcllies and !;quilihriu m S ....ellin' 276 16.2.11 Compori",n. amons Vari"". Silica· Hased fillers 287 16.2.12 Oth" Polymers 288 16.2.1l OIMr u",mic- Typr "i lien 2~8 16.l Prcpo "'lion of 6 icOllI,n"",,1 Syslcml 2119 16.4 10 Situ Genc: .... 1ion of EJastomcn In Ccnn,ia 290 16.5 In Situ GenerlOt;on of CatalystS in Polymers 291 16.6 In Silu PoI)...,..ri>.aI'oru ofGbSf,Y PoIy"",rs 292 16.6.1 Isotropic SY$IC1nS 292 16.6.2 Anisotmpoc S)'lIcmJ 29S 16.7 Filler. R"''''''''!'n, 10 MalJlCl ic l'"icJ
Rcf=nces
299
~i
~ii
CONTENTS
Ap~ndi~""
A. Network Structural "" ... mete... Rcfen: n<:es 310
307
a. Definitions In , .... Are. oi Rubber Toechnolotl:y B.I Basic Defini, ions 311 Rcfcn:nces 314
c.
111
DelormationandStre.. 115 C.I Deforma.ion 315 CI.I G .... r... 1 Aspect; 315 CI.2 l;;otropic Sv..iling 317 C. I.) Simple Tcns,on 317 C.l.4 Biaxial Extension 317 C.1.5 Pur. Shear 318 C.2 Stress 318 Ref...,,= 320
D. Summ ....,. oIThermodyn.mlcs . nd Stul.. ,<. 1M,,< h.nKs Ref.,""n= 323
321
E. fluetu .. io", in Phantom Network. 324 E. I The Matn. l' and its Inverse 324 E.2 Expressions f"r Van"us Fluctuations 326 E.2.1 Tv.·o j unction. Join.d by a Singk Chain 326 E.2.2 Two Junctions Separated by Several Chains 327 E.2.3 Poin," on a Ntlwor' <'''ain 327 E.2.4 Points on Network Chain. that a rc Separa.ed by Several JunctiOnl 328 References 329 F. Di .. r ibutio<\sohhe Chli" End-to-End Vector 130 1'.1 Examples of DiStribution Function, 330 1'.1.1 Th.Fr~"'yJoinlCdCha;n 330 F.I.2 More Realistic Piclures of the Ne.work Chain 131 1'.2 Transfonnation of Distnbution Functio", under Deforma.ion References 333
333
G. Fortran Pr"Olram /or Monte Carlo Calculat ion. 115 G . I Program (Calculation of Persistence Length, and Mean·Squaw End·to· End DiSla,lCcs) 335 0.2 Form or.he [Ja,a Sc, 319 G .3 Output of the f'rogr;,m JJ9
CONTE NTS H. Some Historical Aspect.
341 ILl The Earliest History 341 11.2 Natural Rubber in th. Un.Cro.,;-Li~h'
Setected (;e""r~1 8ibli"' .... phy
"' ~hor
Indu
Subject Irtde~
355
16t
l51
~i ii
STRUCTURES AN D
PROPERTIES
Of RUBBERLIKE NETWORKS
1
Overview and Some Fundamental Information
This chapter i~ a bti ~f overview of the ' and Ihus 10 Ino". "s " phaoll"m.:' Although Ihis Sttms 10 be a very seWr. appro,imalion. many experimemai resulu arc nOI in .(arlling dilagretn'enl wilh theori<:. b;osed on this highly iMali,cd a$Sump!io". These (hwrie, ass-ociair Ihe l(>[a! Helmholtz free energy of a d~formM nelwork with the sum of the free energies of the individual chains-an important assump. tion adopted throughout the book. T hey t",at the ,ingle chain in iI' maximum simplicity, as a Gau,,;.n chain, which i. a type of "structu",kss" chain (where the ooly ehemi':al con'titulion spe.;itiw is the number of bond, in the nelwork chain) In Ihi. respe<:1. lhe dassicallheories foo:us on itka{ networks and, in fael, are also referrwlo a$ "k inetic" Ihrori" I:>oca use of th.ir res<:mblancc to ideal 11"$ t!w,o,i.,., Chain fte. ibilily and mobility arc lhe ..sential features of these models, according to which lhe network chain. Can ""pericore. 1I possiblt oonfonnatio n. or _pati.1 arrangemem. subj<>cl 10 the n,,,wNk '. connectivity, One of the prediction! of the elassical theori" is th31 the clastic modulus <1f the network i. inocpendcn t of strain, T hi. r•• u lt ~ from lhe assumplion Ihat on ly the entropy a l the chain Ic>'el conuibules 10 lhe Hdmhoh.., free bperimenl81 evidence. on 1M other hand, indieales Ihat Ihe modulus decre ..... significanlly ,,-it l1 incre"~.i ng lension or OOnl!'re",on, implica ling interehain in leraclion>, .""h a. enlanglemen," of some type or other, T his has ltd 10 the more modem theories of rubber ciasticily, $uch a. Ihe constrained-ju nction or the slip.lin k thc'Orics, which go bey<md the singlechain Itnglh scale "oJ inlroduce oddilional entropy to l~e Iklmhoil~ fr~.., energy al the .ub<;~"in Ie, d , T~i. appmach is supported by "",enl compu,er si mulalions on networks, using molecular d~n"mic>, which or" in ,u!'pon of cntropic con·
am""
''''''gy.
,
• STR UCTURE S AN D PR OPER TIES OF RUBBE RLI KE NETWORK S tribut;ons at sealts btlow the chain_length level. These topics, within the Gaussian chain fonnali,m, are diseussed in chapter! 3. 4, and 8. One important prediction of the molecutar th.ori .... especially the more modern on<:'$, is th. dependence of the modulus on 'itr.in .• nd thiS is discussed in chaplcr 5. TIl(: successful descriplion of the .tress-strain relationship that has ~n achie"ed i. one of the major achic."""nts of the mot<xular theories, wilh good agreo:ment betwttn theory a nd c,perimcn t being achievtd o,-cr a t"c"tyrold I'(Cgion of tensile and cumpressive strains. The type of defonnation most widely u«-'1.l to charneteri,e elastomers in til<: stfl:SS-5train ""periments just mentioned i•• implc clongation , It i. the ea,iest to impose, and seems to be the ca.iest to thin k about intuiti\'Cly. It is for t~ reasons that it is discussed so frequently throughoutthc bonk. I/owev.r. networks also deform by imbibing sol,.. nt. that is, by ."",lIing. to yield fragile but none' theles, solid mater;als called .. gel •. ·• As might be anticipated. for their characteri,.ation they require sume of the methodology used to st udy polymer SOlutions, The swelling prOttSS and the prope"i.. or Ihe "",ulting gels are discu>sed in chapters 6 and 7. M<:>r. srecilically. chap\cr 6 provido:s a detailed analysis of the chemical potential of $wollen 'I<;t ,,·orks. paving Ihe way to Ihe stnd)" of their large-scale volume changes in phase tr~nsit io"s. as presented in chapter 7. Some additional. less <:Qmrnon types of deforma tion. lueh as biaxial cdcnsi"". torsion. and shear. are described elsewhere, particularly in chapters 13 and 16, Departures from Gaussian beha,io. may ~ome significant in networks haying unusually short chains. such as those inteUlionally introduced into some of the ,,'ell-characteri7.ed. end-lin ked model ""tworks disc ... scd in chapl." 10 and 13, Alsu •• 'udi.. or rubbers at the segmental or the subehain k,-cl .-equirc .Irueln",l inf"rmation bey"nd that of the Gau"ia n chain , F"r these rea",n•. ch'p\er ~ Koe> beyond the Gaussian chain model to diseuss the properties of the isolated chain from the Yicwpoint of the 'Olational iso"'eric state (R1 S) fo"nali ,m. This apprn.ach ta kcs into account the usual structural features of interest in any molecule (i .... bond lengths, bond "n<s. and the locations and energies of bond rotational states). Specific application" of the R1 S seheme to problems of rubber elasticity are gi"en lale. in tbe chapter. along with \he expressions of the end-toend ."",tor distribution fun<:lion5 for sh"rlcr chains, Some of the m010cular d)'nami"" simulatiOn! mcnlioned earlier are discussed 31 Ihc cnd of chapter 8S<.'Vcral controvcrsial i,sue> of the 1?70s and the 1980i may, in principle be. resol,'ed by such simulation •. Thi. t""hniquc should therefore nol be undoresti_ maled. c,'en though Ihe size of the networks thai may be lrealed by molecular dynamic. i., at prescnt. very small. Some initial " lle,npt. to model 1110 l'(Cinforcement of elastomers by the incorporation of fillers are also described in chapter 8. Although Ih. toO" important relationship in rubberlike elasticity is thaI bctwttn Itres' and strain. the relalionships bet""",,n stn'S<. str~in. and tcmper~IU'" arc also of great intert$L They can be used. for example. to rcsol>e tlaSIOmeric quantitie, into cntropic ~nd energetic components, a nd to lest some of Ihe major postulate, or ,"" 'nolccular theory deseribed ill chapter 2. Thi . ,uhject or nctwork "thcm,oeb$ticity" il th~refof< co,-crcd scpam tcly. in chapter~,
OVE RVI EW A N D SO ME FUN DAM ENTA L INf OR MATION
5
Nea rly all of the remaining cha plers are more s~ialized . For example, chapler 10 is ~boullh e already meolioo«l model elaslomers oblained by carr,'ing oul nelw",k.fonn>llion r~aclions ,nUC'h more <'arcfully and specific>lUy Ihan in 1m: uSual tochnolog}'. The fu ndamental ad"."'age of lhese elastome r. i. Ihe fact thallhey have known structures, p."ticulatly network chains of known mok:<:ular ,,-eight. and mO~\l lar weight di.lribulion., and junctions of ~nown fUI>Clionalily. Chapler 10 describes the prepllralion of such "elworks, and Iheir use in clarifying a number of SlrUClu rt>- pTopeny relalionships . Uhimalc properties are touched upon, and.", then considem:i furlher in chapters 12 and 13. ChaplcT II f""u$CO on chain segmenlal orienlation acwmpanying ""fonn.lio n of an elaslomeric "etworx. An c""mplc of ilS fundame",al importance is in""Ili. galion of lhe mok:<:ular deformalion ansing from an imposed macroscopic slrain. the importance of which i$ sl"'<Sed in chaplcrs 2. 3. and 4. A more frequently applied c.ample of in importance i, ils ronnection to sl .. in·induced cryslalliza· lion, and the "'inforcement il provid"" in Ihe cas< of nelworks Ihal can undergo il The classical lheorieS of ",bbcr elaslicity are nf>! valid when Ihe cbains ma king up Ihc nelwork h••'c ",miflexible ",gmenl$. This is Ihe area of liquid-cryilalline nelwork,. and great advances have now been made;n Ihi. field. The trcaln1C111 of such networks requires the descriplion of the packing enlropy of semirigid chains in a deformed lanlet, Thi. is covered in chapler 12. as is slrain·induced cryslal. 1i7-l1tion of networks in general. Cbapler 13 describes a particular lyre of model n.lwork, th.1 is, one in which the diSl ribulion of network chains is intenlionally made mu lti modal . 6 imodal elaslomer! a", Ihe .implesl and most imporlanl example of Ihi' type, and have been much siudied beeause Ihey have unusually good mO\Ohanical properli"", s~iFJeally simuhaneo usly large values of the .1""" ~nd exlensibilily. Th is, in lurn, gives la rge energies for Tuplure. lhe standard measure of the 10ught>eSS of a malerial. T he u", of Ihese nClwOfks in bolh fund.menul and applied slooies is oovcm:i, usi ng Ihi, as an OIXa,ion 10 MiiCribc mochani.al properly '<:su ll-! in a varkt)' of olh.. mochanical deformaliuns: biaxial eXlen,ion. shear. lorsion. lear, and cyclic defonn"lions. The u'" of neulron scallering measuremenls in Ihe . ",a of elaslomeric maleri. a ls i. described in chapler 14. T he cover-age ronsists of Ihe general fealures of lhe lechnique, Ihcorclica l lrealmenlO, and comparisons belween lheory and experi· ment. " Biod. slomer<." or elaslomen; in which lhe nel"'ork chain, art biopolymeric and produced by nature, arc the suhject of chapter I~. Again, this lopic is inhcrCally inleresling. but il can .lso provide practical informalion; for example. how .ynthetic chemistS mighl mimic na' ure in . he wa)'$ il produttS elastomeric malo· riab. The fina l chapler discusses " ~ubjec1 on which Ihere has !leen relalively lillie molecular inlerpretation, namely Ihe reinforctmenl of eluSlomehc networks by fillers. Some theoretical approache, are describo..-d. hUI mosl or lhe informalion concern, c,peri,""n t ~1 r",ult, on da,lomcrs in which the rcinfon:ing pba", i, generaled in .i.u through a sui'abl)' choscn chemical rc~clion . The justificalion otTer<'d is Iha ' under 'hc.'I<: rondilion. it may be I"'s;iblc to oh,ain relali",ly .implc
IUUO!I!PP" .oj =U""'J"')O =nos (npSn ~ ""I Plno~, pUU '~ooq '"'I'"" mo U! p,p!",ud ~uo '~I)O uoo=, p"l"pdn II~ AUF! IU,,""" I! II ·p.>pnpu! "'I" '! AI!~!li"l" '''''Iqns uo jl"P!lJ~ .""!h~' puc s~ooq <"!1 ' ''''U''"0J''' IU,:)Uoi JO '(~d ... io!lq!q V 's:x:>!PU! 1»fqus pu~ '01(10" I"nm "'II ",. "'"~I '~II~U!;1 j""'! lnp ''''''In, JO UQu>wOU:>4d 041 01 P~$:lJpP" ~',,, :x:>U"~ J>W.(lod)o II" "' ""P""I(I ""11"1!IIl "nb l'<JU;>ojl 'I'"J II I 'iuu:x:>uliuo pu~ ,.:'!".~ J,m'IOO ""I"I!IUCnb JO dUluuli>q "'''' ,~! 01 P~ 08 .. u.>wdol"~'p ='lI. ''''''ld'''''lP OI(l JO uo!w,=dd. J'll""l ~ JOpC'" '1(1 ""'~ "'[" pu~ '""'C INI U! ~Jo." Ap"' JO /I\,!.<,','o lie ,p!hoJd lI!/I\ UO!I"WlOJU! '!41 1"1(1 0<101( OM · .(I!~!"UI' ' l 'IJoqqnJ puc ""wo,""p ~U!AIO"'U' I1U'.<' [C,OJo"!1( ':""O~!P H ~!pu>ddV ''(I!''IISCI" ' l !I'Jqqn, '''J I"'!ni>:u AI!I!'l!" U '1(1 SlIIj ~UI·)[\JlS "!"I(~ "'A!1' " 1('!4·" 01 ,U)Ir;) "41 ~U!guo:'iI h! ·pn",'" 'Sl:>:>ds:u JO J""wnu" "' InJ""" 'I pun " ppow "C)! ,!"W""! I""O"CIOJ 110 t»S'1ddu "! u,... ,S "I 'U!~I() ')"'/."IOOjo =uU1S IP PUo-<)1'PU' ~"U'" ·uu,w puc StllI1U)[ :x:>\"IS'Uo.l[qns ''11)0 lU)WI":Ul "1"'OO~ '141 Aq P",oJSJ,puu i! ;):luel'odw! '!"I(' P"" 'Al!'!,""p '~ !jl""qn' JO A'<»I(' J"I"""IOW AU" 011"lU,,,mpUn) ,J. -Ol'PU' U'"~~ '41 JO 'UO!lnq!'lS!P \noqu I! ~ "!pu:Kld" '" x,puodd~ y, POlUos:ud so "do, ~!41 JO u"!$ln"'l!p P"I!"'~P ~ '>'''0'4) A1"'''~IO uJOpow JO .)UJW,p IUIU"'''"pUn) OJB .UOlSUOW'p U'"~~ JO .UO,,""'''''~ """'S -AI!,,!"UP ~~'jJ>qqru 01 ""UC."I'" JeIO"'lJOO JO ' 1:>:>dIQ UO I! I!S~4d,," '4' ·p.11""!0!,U8 >q Plno,,, I V '0 ' !puolu ..",d I! !o:l!u ~I(""w IB,,!iIIIBII puc S'IW"U~poUlloql)O u"'u '1(1 U! Sidx.uo, JO "'Bwwn~ 'IS!"UOJ V 'UO!SU'1 ~Idw!. I"nln ~4' Se [p." S~ 'fI"J~~O) :uu JU'I(' 3Jnd pu~ 'U01<".", I~! ' "!OddV 'IL[l1!'U! JO lIu'PU"IU,'pUn Jeln""low ,u,M lSSO'll ~" ""4 1""''''00 ~o '"1(1 ..:>:>dso "41 ' ~ooq <141)0 ~"IIJ'[qO poI"IS "41 411-" lu."fSuoJ -IBJ,uJlI u, NOIOUI("'" JX[qnJ gUI~ 'lo~U! 1.J)41O 1"''''$ pUB '";).IB '!41 U! "d>Juo.:> )41)0 ow", ",,!J:>SOP 01 .. dUL>U" \I .. ptJ:KldB pu~ 'IU"UOOu11 I~'I('JUOU J'" s;>nb!U4:"" ~4.1 'wopue, A1411!4 puc P"IIOJIUOOUn "'. 1"4' 'UO,,8",'U",[n... Se 4'"W 's;>obIUI(""1 SU1~u'I-SWJJ IBnsn '~1 Aq poU!",qo u""I suI( ~JO/l\PU '1(1 u'4·" llu,'U,P AjJ~ln"lJ"" so "",""nJ1S ~"". JO UO!lB'!l)jJBJ" 4:J '1''''1,''0'411" II"" IC 1"1"'W)J>dX, 'SUO!,o:'iI!)SO" U111" AU"U""'., )0 '!S~ 'I(IIW)OJ lB~l :un,,,,,,,, lJON.IO" ""1 )0 uo"d,,:>s>p t"'l,epp" '.p",oJd V ' !pu:Kld. '''OS"lJ S!~1 '0.1 'P""I0.:!u"pmS J""P Ino~,c" 'I""'~JP IP," 'I "'''I:>OJ1I ~JOM1"" "'II 1"'11 ~wnSl~ ~'!,,!lS.l~ "''Iqn, JO .. U"""~,,, ll~ !SOW[" I"~I l~.J 01(' APOW'" 01 P"pnIJuI'1 'X.IPu)(ldo)o ~,,~ '1() JO lSJ~ ~U ',w'lds ~)ql J" 'wos n' poU!tlqO 'I)OJP 8u!:l.J0Ju1>j ~q' )1&.I1I"1I! 0, popnpu! S! IUO!I~WlOl'P JO ,(P!,U~ 'P'M 0 'uoriV 'A1""""1,' ~I"q 48!1( AI~u!puodm,<)(> r. pUB i\(1l!~M JOIO""[OW \(11'1( " •• ~ AII"JOuJll Q"l4," ,"WOI 'S"P U~ O)UI (UO!I'":U ~11lJ.d:>s • U! p"WJOJ) ""I" JO P"lq uoqJ"" t""IU"WOjllll~ AIP~ l,u'lq 01 lIundw'l1. Aq p""'B1qo <>&Qql 0) p;>W
S ~ 1I0MHN
nll1l 388m:l
~O
S31.11! 3dOlld ONI>' S311n l :lnlllS 9
2 Cla ssica l Th eo ri es of Rubber Ela sticity
Thi. chapler desc , ibes Ihm: mok'Cula, theories or rubber c1aSl;city. Scc1ion 2. 1 outl;n", lhe elementary theory of Kuhn 1-' and Tr<:loar"', which i. of particular imponancc si""" il presenls Ihe basic elements or rubberlike elasticity in a very ,run'parent way. Section 2.2 prescnt' th. phantom network model developed by Jame, and Gulh6 oJ. aM section ::'-3 pr=nls 'he affine ne,wor k modd de"eloped by Wall and Flory" 1O. Uis!Orical as"""ls of the theories have been given in an article by GUlh and Mark". and in a book l'Il'paml " •• memon.lto GUlh"". Finally. the major f~a {u re, of both th..."ics are bricny summarizcries: the pnantom nclwor~ and the affine net,,·o.k theories. Despite their diff.",ncn. th..., Iwo theories and the corresponding mol.,. cular modets ha"• ..".,xxI a. Nosump'i'ms and the predictions of the two models have led to .. riou. di .. grc-ements during their de"elopment. as may be .... n from the original papers ci too carlier. The main roim ()f disagree. ment was tne magni1Ude of the (ront facI", th" t appeared in Ihe eXltression for Ihe elastic free energy and the stress, For tcttafunct ional nelwork •• the Jame,·Gulh phantom nttwork lhwry prediNs one-half thc value of Ihe fro nl facto r Ohtained by the Wall . Flory affine network ,heo'y . A<"';II he di<eus""", in g"'~ te' de' ail, in later "haplers a, ,,·cll ,IS in this "nc. Ihe pktur" has hccom< cle",.r "nd it is now well CSlabli5hed th" the ph. llt onl nClwQr~ "'odd i, the appropri",,, one for , wolkn network>. for networks in tho un,wolkn ,tatc. the problem is Slill not
,
8 STRUCTU RE S AND PROPERTIES Of RUBBER LI KE NETWORKS
unambiguously senlN. and III.re is di"'greem.m among re .. arch." as 10 Ih. nalure of intcrmolocular correlations contributing to th.c clastic froc energy of the nel work al equilibrium. According to one group of =rcl\<,,,. II\<, action of entanglement. in the unswolkn network C'~n ultimalely suppress /luctuations of Ih. junctions. and Ihe network Il\<,n approaches Ihc Wa ll_Flory model , Ollie" maintai n Ihal entanglements further CQ"lrihule as chemical jU""lio" .. a nd Ihercfore inerease lhe elastic free .nergy and lhe modulus of tl\<, nel"'"or k alx",e 1hat of Ihe affine network . These qllCslions will be addressed in furlher del ail in chaplers ) and 4 in relation 10 differenl enlanglemenl theorie'S of rubber elasticity. In Ih. final secl;on of Ihi' chapter, Ihe basic feal ures of the Ikam -Et! ",·ard. lrealment l ' are qualitalively oUllined. and severa l other Ibrories related 10 lhe cla",;';.1 theories of elasticily are discussed. T h. Ihcory of Ik~m and Edwards unifies Ihe ph ysical picture I\<,hind the ' ames-Ont h and Wall_Flory theories .nJ may be regarded as constiluting the starling point of >ome of Ih. mosl modem Ihrories of rubberli ke elasticity.
2.1 The Kuhn-Treloar Theory The theory of Kuhn. as improved subsequenlly by T reloar. is based on Ih. following fundamenlal a" umption5
v fr .. ly.join led Gau"i.n ch.in,. whl:r<....:II • network chain i. < ..... "'1>1< of ne."'ork chai ... in ti>< "","",. f""ned nelwork are lhe same a•• h.,.. for an "nsemble of chains in ,he bulk. "n_ cross_linked ". Ie, The mean·sq""" eo.d·lo-cnd dimen""", of ,he lall.,.. in 1",n. are ~ .. I." ,hose of "'" ,; ngk <""-in in ,hi: unperturbed ........ p",n in eq. (F.9) of appendi' F, Thi, '"U'''pl;''''' i, , ul'f'O'led by neutron scanorinll .. perimen,,'''' by ""'"rari.."" of chain dimen,ion. in ,he bulk un..,ross-linktin1.. bu, don TIO\ impo>e any «mm. ints 01 poin ts along lhe chain ""n,ou" In thi, respelogy i. u,ually rese< I. The nO'''''ork ""n,;", of
_.,.,-sq...
seq"""'"
.,'id."",""'.
Jomeo.Quth ItIrory,
4. Thc lotal cia";' •• "'BY of lhe network i, the 'um of the elastic cnerVos of ,hi: ir>di,'id ... 1cru.in •. Due to the .",umpti"" ttul the ohains are {=Iy join,ed•• 11 spotial arra ngements arc or lhe same .... rgy. lhe netwnr ~ < rel .. i~ n ;l,ol .. a 6£ _ TtlS b«:<»neo ;l.... ~ - T6S. 11>< '",.tm.nt m.y be 1I'no.. lizcd 10 nnn-f,tcly-rinted ch.in .. h",,'C,'Cr, t 'oU"",i"'8 131« diSCU""'"' by ... " Ike,.,,,",o'" "nd Floo"y' • 'he fro<: energy or Ihe ol... ic fftC onergy,
CtASSICAt THEORIES OF RUBBE R EtASTICITY
9
The elaslic f"", .n.rgy of an isolaled deformed Gaussian chain wilh ilS Iwo ends fixed 31 r is givcn by eq. (F.14). Summing Ih,s equalion over all chains oflhe nccwork. lhe change .:lA,! in Inc 10lal c!aslic energy at conStanl ICmper.l1urc (relati'"e to Ihal of lhe undeformed
~ 2(;{ ~: - (?).)
"' 2~Vk7"( (r). {?)
(2. I)
-I)
In going from Ihe first 10 lhe """"nd C<.jualily in «I. (2.1). lhe rdalion,hip (,.l ) = L. ,.lIft i. used 10 repre""nl lhe average of Ihe s.qua ...:d .nd_lo.cnd >"octorS. Wriling Ihe cnd·lo.cnd >"eeior in lerms of lhe Carlesian C<)mp
+ V) + (?)
(2.2)
Dividing both sid .. of lhis equal ion by (,.') • . using Ih. isolroPY of Ihe nclwork chain. in Ihe undeformed ~ale. and using Ihe .»umplion (see seo:tion 11.2) Ihal Ihe chain ends are di'placed in prop
(2.3) Here. ),•. .l.y> and )" are Ihe conlp
(24) 11 sho uld be: nOlod Iha1 imefmolccular inleraclion' are zero in Ihis modd: Ih al is. {he .y.lem is e&"'nl;.lIy like an We.l g~s_ The expres,ion for lhe fo.-.;efaCling on a prismal;e .. mple under unia, i~1 len$'O" along the x directi,," i. oblained from Ihe lhermodynamic e'pression ("". (D.S)!:
f _ (iJ~A") ,J/.
IY
_..., (:' ~ A,, ) iJ~
(2 .~) TV
",-here ), = .I., = L/ Lo (with Land Lo denoting Ih~ le nglh, "f lhe .. mple along (he direel;on of slrelch ill Ihe ddurmoo and ""dcfofll1ed 'lates. respeclively). Following the a>sumpl;on Ihm the volume of (he .. mplc re mains coo,lanl during deformation. Ihe y and ! comp
(26) Eq ual;"n! 0 .4) and t 2.6) aft· Ihc mo_'1 i,nporlam a,~ic,·cn,cnt.< or lhe ele",e" · lary Ihc"Ory of ruhber dasli;:il y_ I, sh"uld hi, cml'h".j"~l {ha, ahllough {he modd
10 STRUCTURES A ND PROPERTIES OF RUBBERLI KE NETWORKS
m!, On "uump!ion, ,uch a, the ,imple additivity of !he fr« ene rgies of !h. individual chains and !he lack of in!cnnole<::ular interactions, il< predictions approximate e. perimen!al data within reasonable bound •. a. will be: outlined in more de!ail in laler chaplers.
2,2 Th e Phantom Networl< Theory of James and Guth 2,2.1 General Aspec!s The James-Gulh Iheo!), is based on !hc following . .. ump!ion.: I. Tb< ""twolk duin, ore G. wr,ian 2. Son.. of lhe iUnc1ion. al the .una<:<: of Ih. "",work. a", fi.<ed and doform amn.ly ,",'ilh lhe"~ ",..i", J. 1ll< chain. a .. , u\ljoc<1 only 10 con""aints th., ori .. ~ i ""' ly from ,he conrl an.cl>eod at i" end •. Thi, eh."",,.rillic of 0 p .... nlom 1IC"',ork booto al . 11 defo"",,,tion.
'wo
The second assumption. according'" ""hich Ihe m"cro,",opic conSlr.i nlS are inlrodua:d by fixing micro:;copic variables. h'" been criticized by Edward. a nd f'l<.'<.'d j , . Fr=l .... and Floryl. Placing the fixed june,ion; a' Ih. , utfa"" has no significa r>ee and Ihey could be inside the body instead. Fixing a 'Ubscl of microscopic varia bles. howt:""r. is n O! strict ly a rigur<.>u~ appr(>;}ch in sta!iM;';.1 mechaniC1j]j. Ne,,,,,he!.,.,.. the theo!)' based on these " "umplions leads to significanl imp",,,,men!> in the underst,nd ing of Ihc properties of I>ct",-orks. such a. microscopic " "", ua!ion, "nd neUlron sca llering behavior. A, a result of lhe third assumption. Ih. configur;nional panition function Z~, of 'he nctw"rk may be wriuen as ,Ix prOOUCI of lhe configurational part;!ion fU<>Ctions of il. indi"idu.1 chains, A$ described d"'wherc~'. each of Ihc taller pan ilion functions is fully determined by Ihc cnd_Io.end "tetor ' " for Ihe chain connecting junctions j .ndj. Thus.
z '" =
I1 Z,. = r.n W{r~) ~
(2.7)
,"
wht:rc i" is ,ht: partit ion function for Ihe Chain wilh end_Io-.nd veclor , 'I' and Z is Ibe parlil;On funclion corresponding '0 the frC'C chain . and IV is defined in <XI. (2.8). F urther descripli<)n is given in appendix O. The second eq ualily in <XI . (2 -1) folio .... , from the faet that Ihe dislribu lion funelion is C<j uallo Ibe ratio of the partition fun<,ions i" and Z . T h. produCI" in "'I . (2.7) include all pa irs of Ju",,'io", eonneelc'
t"
X-"'" o>f ,ub>«l """"y "ilh-
,,,,". om,,, '-
( '_ _ 1'1<,.,1<> by
~lorj
in I%< .rod ~- . . .'iokl,' ej".ial",J ..
,h.o, limo::_
,,~ .,
r""" """,.""", ioo f,~ ""","",, ""'_ ,,., ,.,...1., ""'" ··,.to.on".. "'-.~-,~ I " ij ' " OJ'!'<" «'_
,I .. n
CLASSICAL THEORIES OF RUBBER ELASTICI TY
11
tOI'$ in the undefonned network is idenlicalto thai of. free chain. This distribution may be thought of by conceptually f"""ing the network in,;tantanffiu,ly and counting the number of chains with end-to-end voctorS of specified IlliIgnitude and direction. In rrality. the in
m '" c>p(.-,.~ )
(U)
W(,,) = GJ where
(2.9)
Substituting cq. (2.~) into eq. (2 .7). and Mnoting the position. of junction. i and j by It, and It; . eq. (2.7) may be written
ZN - e n 1<)
Hi
e,p(-~LL 1;IR, ,
(2.10)
Itlf )
I
i~ the square of the magnitude of the chain ,'octor rii ' and J oonnected by a cha in. and ,.,0 othcrwi ... Lowercase ,)"mix>ls denote chain vectors and upflCrca .. letters denOle positions of points in the network. The specification of ,.; th~i introduces the iIr<>eturc and topology of the network into the statistic~1 thffiry. an aspect thaI is mi<sing in tile Kuhn-Trcioar (hcoT)' Equation (2. )0) e>pouses Ihe parI it ion function in tennS of the positions of junction point' ralher than in lenns of the chain voctors. The position of Ihe network may be fi~ed in Spa«: by 10<31ing one of the junetio". at the origin of a la ooratory·fixcd COIlfdinate s)'stem and measuring all olher Ri values relati"e to thi , ~ ystem. The po,ition vectors R/ (with i ranging from I to the 10lal number of junctiollS. I') m~y he ~rrangru in column form. repl"C$Cntcd as {lt l· I"!quation (2. 10) may tben be written
Her<:.
lit, -
,.~ _ J / (2 (1;).) if I and
.r<,
z,. ~ eex p(- { R J , r{ It ))
(2,11)
where Ihe . uperscript T !knotes the tran'pOse. The c!ement. 1~' of the s}'mmetr;c matrix r ar<: obtained hy expanding the quadratic form &i.'en by cq. (2. 11) as
,... z_,.;. r '" ( -rt '" ~:>;
,
i"j
'" L, . ,.;
(2,1 2)
In expanding~ . (l.11 J. product> such a. Mi lt, arc to be tre3,ed a ....alar products. The matri .. r complete I)' describes the conn,-cth'ity of thc network. If all ~'ha;ns of the network are idenlical and arc ,'naraderi'cd b}' the $limo ,.Iue of then all non?ero element. of r arc C.lucos to Ihc Kirchoff adjacency
<
12 STRUCTUR ES AN D PROPERT IES OF RU BB ERLI KE NE TWO RKS
malri. ~dopted l>y Eichinger" in the study of perfect phantom networks by graph theory. A small "'t 1"'1 of the I' nelwork juoctioni ar. assumed to be n:qui~ by the s«ond assumption ~tated pre,·iou,ly. T hese may be thought 10 be junction< al th. surface of the nelwork. describing lhe size and Iht shape of Ihe ""t work and directly subject 10 macroscopic manipulations. The rem..ining sci !,.) of junctions are assumed 10 Ix free 10 fluclu", • . The t ...o "'ts of junctions may nOW ht used to partition the quadratic fQrm ofeq. (2. 11) as
fi.e
{ M)' I" { R) _
{R.- ) (( R, )
)'(r..r.
r .....
r,
)() {II, } { II~ }
(2.1l)
or equivalently as (2. 14) where {R. ) and {M, ) arc the column ,'eetors for the position ,'oclors of the f,xed and fr.,. junctions. rtSpcClivcly. Th. q""nlity r. i. a squar.: ma!fix eompris.ing row; and rolumns of r for fixed j unctions . AnalQgQusly. r , is a square matri x charactcn,.jng f= junel;Qn•. aoo I".. ~ I":;' ;.the ",,:tangular malri. whose ro"'.. rorf't"S]">
(2. (5) G.~ r. - I".....;
'r ..
(2.16)
{A M, ) _ {R,) -{ it, )
(2.17)
- r; 'r _ { R~ }
(2.18)
{il , ) _
The .. t Qf va,iables defined by "'-I . (2. 17) indicates the Huctuat;ons Qf tnc free junclions from Ihei, equilibrium ]">
(2.19)
Equalio" (2. 19) thus lead, to the partition functiQ" where term! relaling to fi xed and f= vari"hics are ..,p.rated . The two product, of the CX]">
CLASSICAL THEORIES OF RUBBER ELASTICITY LNo _
LN,
..
C' C~P(~{ K. ) TGo{ R. })
C· e~p( ~· I6. M, ) Tr , {6. M, )
(2.21)
The product of the ft""tualions of two junctiQns i and j. 3vcragc:d network, may be ohtainc:d from e'
O\'~r
thc
(2.22)
8 102 _ __ I).,.
..,
13
(2 .23)
,
,II .u R, ) "" d 6. RI . d 6.K" ... d "' K~,
(2 .24)
2, _ ]cxpl-1.u R, j" ', II.'!. K, ildII.'!. R, ) _ (d:;-r ,) 'fl
(2.2S)
Equation (2.13) is an identity obtained by noting that the denominator of eq. (2.22) is Z , . and the Gaussian prO[1
+ I.'!..~
Here, r,,· is the mean chain """to,. and I.'!.' ij is its fluctuation. The of chain """toTS ' il an: thcr<:foT<: nonalT,"e.
(2.27) trun iform3lio n~
2.2.2 The Ela$lil' F"", E""'gy In ord"r to rctate the .tati,tica l prop<"rties of th~ network to mc
t4
STRUCT URES AND PROPERTIES OF RUBBERLI KE NETWOR KS
juneli(>n•. Inlegralion o,,,,r ftuctuations of the I' , frc<; junctions in eq, (2 . 19) kads 10 Ihe confIguration ~rlition funeti"n "f the network. as determine<.! by the I"',iti"n, "f Ihe sel kl "f fixed j unel;"n, (, .. in number). l1Ic result is
(228) The ela'lie free energy tiA" "f the nel"-o,k is "blaine<.! by substiluling cq . (2.2S) inl" <:<J. (0 .8) of appendi, O. multing in
The sel "f "<'CIOI'$ 'pCCif~ by {R.. ! represent. Ihe I"'.ilion, or Ihe f, .• ed junNion,. which traRSionn aflindy wilh maer<>-'iCopie strain . Ocnoti!lj! the po,ition of Ihe fi xed ju nclion i in Ihe und.formcd sW Ic by R~.. and using the relation R_J = ~ R~J for Ihe pmition of til< junclion in Ihe dcforme<.! statc (,,'hkh holds fo, all fixed junctions I). eq (2 .29) may be wrillen as (2.30)
The factOf in the square br.ICkct. in eq. (2,30) depends only Qn network SIr...:tu,..,. Its evaluation in ctO>Od form secm, to be diffICult. but one may use m;cron.t. worh"'" tngether ",;th computer Monte Carlo simulation. ro, il!; evalualion. In the following ~ragraph'. the '-al"" of Ihi. faelor for a unimooal phantom net· work will be obtai<>td by considering the statistics of forming. network with " chains and I' junctions, The instantaneous conflgur~tion of. network chain OCt"l."tn junctions i and j is shown in figure 2.1. The quantilY ' Ii is Ihe inSla ntaneou, cnd.tn-<:nd ''eCtor. and i ij rerresen .. til< tim<; aV1;r.>g
f
, .••
':::';;;'' ' ',..... T fil:... l . t 'rl>< instantaneou, '"""('M"tatiO" "r. ;_ TI>o I,.ri,bles ,"","'II.tt defined in the ,.AI,
-"
,-
..
r ,""w",\
ch';n bet"'""" junc1;',,,,, , ""d
CLASS ICAL THEORIES OF RUBBER ElASTICITY
15
(2.]1 ) " 'here O-' v = O- Rj - 0- 1{, rep,..,..,"t. the instantaneous fluctuation in the chain vector ' (i hom it. average value i ii' T he instantaneous distribution of the mea" vectors in the network and Au.;{uati<)ns O- r~ ate ~r>rescnloo hy l (rQ) and ", (0-, ,). respectivC!y. T hey a'e related to W(' q) b)' lhe con"olution C' I't=lon
'jf
W(•• ) = l('~) • "' (~ri/l !!"
1x(ri')"'(o.r~)dru
(2.32)
H e~. lhe a$,~risk denotes til<: ronvolution e, pre<.,,-"
I,
; c_,p( _ 01>(.1 , .)1) (.)'" X)'""~p( - l~ ) X(i •.) .. (-;
.jI (01' ul "'
where
.-
x
"
2«(01,.) ) X
r __
(2..13)
(2.34 )
. 2«••)')
Replac;ng ( 0-. ;) in "'I . (2 .33) by the square of the magnitude of r. - i'~ and performing th~ in!~gn"ion "'~d$ to til<: following rdation,hip bf,twttn the p"ca' ITIC!CfS 'Y. X. and ~!;
J/IIl+
I/ X -
Ih
(2. 35 )
which is equiv.knt to (2 36) Thus. the magnitudes of the inst" "t"neous "0.1 "Verdge chain .""tor~ and their AUCluat;ons all; not independent. hul arC ~Iated through C. the mean chain d i m ~ "sions and ftuotuat;ons a re rdatoo to nNwork ~h"i n d;monsio'" by the relat;ons:
(2.H)
16 STRU CTURES AND PROPERTIES Of RUBBERLIKE NETWORKS
. '" {U8) Eq~.tions (2.37) and (2,38) follow from the work of Eichinger", Gr~essley". and flory"- A detailoroach of Edwards" and ,.."" pUl'lucd in the latcr th«>ri« of f.dwards and his collabomtors. Ahemali~l)..o.."may<. a .twith a giam "C)'die tree, as is .hown in figure A.I of 'Pl"'ndix A, Formation and deformation ofa network in this man""r i. shown in figure 2.2. As ,hOI''''' in this figure, one may obtain the deformed phantom network following either tile palh 2. J', and 6. or the path 4. 5, and 6. In tlte latter ""se, lhe clastic f"", energy ll.lI " of the deformed phantom network rdati,.. to tho undcform«l network i,
{2.39)
Tile clastic r"", energy for each of the stagC!l will I>t: described separately in this section.
. -...--. --2[;l; ==..... ._-" .... -_ .... ot_.. _..... __. --• N oh _
1n
... . . - _ - lot__
""'~poIn
5
_otC)
,.,..,
_,,"'"
______ __ _
,
otC)
~~=-::t
...... In ,
n il"'" 2.2 FOfm .. ion ..... deformation or . n< I"'th 2. 3'.• nd 6. or the I"'th 4. 5, and 6, The ""'W(>tk;, obt.inoo by following th. patb 2.00 l' or 4.nd S
.ffi..,
CLASSICAL THEORIES OF RUBBE R elASTICI TY
17
1.1.2.1 Caku/mioo of ll.A l Tw(> reactive groups must be within a volume ele_ menl 6V rar rcaelion 10 be possible. Of primary inleml i, Ibe probabilily Ihal any given one of Ihe v label' ha, anolher label 0"1 of lhe v ~ I remaining al'l(S Ibal is siluate
<.
( 2.40)
1.2.2.3 C,,/cu/ali<)l1 of .ction (del.l.) II'( A. ,)d. , and ",ay be laken 'IS Gaussian for sufficient ly lang chains. The probability of hlI"ing all of tho chains of the 1= in the stale
v,
v,.
0'
n
l(dcllllI'( A. ,)d.,)'"'
(2.41 )
n
Howe",r. there arc v!j v,! wa)'> of combinmg Ihc chains into lb. ' I""'ified groups. T he probability gi"en by eq. (2,41) must Ihererore be mulliplkd by this number to yield the probabilily f1, of having the slaled dimibulion of chains in thc deformed slalc, fit -
v'
n[(detl ) 1I'(1. ,)"1,j'" I",!
'" II )(v/ ",)(dCl l j W(l . ,j
(2 42)
The second line folluws from use of Stirling'> approximaiion of the facl orial. thai is. In v! _ " In v - " The r.tio of !!, in lhe deform." Ihc eonf'gurallon parlilion of lbe ,,"deformed on'" Iha t i<. runcti'",
ze
18 STR UCTU RES AND PROPERTIES Of RU BB ERLI KE NETWOR KS
Z.(l) /~ -
n
( detl )W(l· , )I W (, I))"
.. exp{ ~
L "rl [(-'!xf + -,;1, + -';=;)~ (X; + I, + z!») } (Y I v" )'
= exp{ - V)'l(-';
-
I )(~ ).
+ (-'; -
1)0),
+ (-'; -
I )(: 1).1l( 1'1v")" (2.43 )
Here. Ihe 1,.,1 line fOllow> from the relationship of average chain dimension, in the deformed slate 1o the undofwmed ones. and (dell) ha s been ,..,placed by 1'/ v". The eb stic free energy liA. of deforming the tree folio",', then. from cq. (2.43). as liA • .. (1/ 2)vk T( / , _ 3) _ "k1'1n( VI 0')
{2.44)
where the first strain invariant I , is definrd as
,
, ,
1, = -'; +-', + -',
(2.4 S)
2.1,2.4 C"lrul"lio~ of liA, Step 5 requires the joining of the { pairs of deformed chain •. The change in free energy may be wrillcn in analogy ""ith th~t in Slep 2. where nOw the •..,fCTCOCC volume is the deform,'d vol ume. Thus. OI\C o bta in,. from eq . (HO), (2,46)
2.1.2.5 C,,/ruIMiOl1 of liA. In step 6. the Huctuation. li R o f the" - { labeled poin1S are rc! .. rd to their equilibrium dist ribution. Thi s corre, pond s to t!.c rever_ $III of the p;.rt of the free energy change that took place during the affine defor, mation in step 4. Thu •. cq, (2.4 3) must be wrillen in inwn,'d form for the nuNuation< "r the V " (lal:>cled points:
4 _0 1%'(._0(1) =
11 ['I' (lir,)/(detl)"' (l lir,)j""
(2.4 7)
where the d~nom in 'lOr on the right-hand side indicates that Ihe initial $Iate "r the junctions i$ the affi nc\y Jef"rrned one . f>crf"rrning th. sub,ti tu. i"n, the di>tribution ,.. (li ••). the clast"' f",.., energy is obwined as
r",
li A. _ -(112)(" ~ ~)k T ( I, _ 3) + ("
_ ~)kT In ( VI VO )
(2.48 )
f',"
IJf ,he TOlat t:loslk l-:"agy flJ' Ihe Plwtl/Qm NrrwQ,k Substitutinll ""S. (2.40). (2 .44). (2 .46). arod (2.48) imo eq, (2.39) Icud, to the clastic free energy liA " ... of the phantom ncm'or~'
12.1.6 ('''/cll /m ien
liA",. _ ( 1/ 2)( kT(J ,
~
3)
(2.49)
One sees that the v" l~me-depend"nt term [n(V / V.) is not present in the fina l ",prc"ion for the clastic free energ)' "f 'he ph"ntom nct"""~. Thi, term ",'a. a poin t of CQntro,""n;y during the dc"cI"pment "r the amnc ,md phantom th")ric. si""c i, appeared in the rormcr but nOl the lalter (sec . e,g .. Wall and Flory"'.
ClASSICAl THEORIES OF RUBBER elAST ICITY
19
Jam", and GUlh "). T he c""",,)alion of Ihis lenn takes place in addi ng Ihe change in clastic free energy in lhe 6th slcl' 10 Ihe changes in ilCJIS 4 and S. The eia!lic free e""rgy given hy <:<.J . (2.49) i. valid for imrCtc'" (0 rdlher than Iwo (such as the lWO Lame conSlants in cla"i""llinear e"'<1icily theory) re,u lt' from Ihe a"umplion of incompressihility Ihat is buill into the Iheory in canceling the In( V/ Vo) lenn. For ordinary rubberlike material •• lhe changes in volume"", itldeed second order compared ""ith changes in linear dimeo'ions ~nd may safely be negloclCd. as ha$\>ocn pOinted Oul b)I Treloar (ref. 5. p_ 67 and (8)-
2.3 Tho Affino Network Theory of Wall and Flory In lhe amne network model. il is assumc"
t::.A"..,- .. 6 A),
~
6A, + 6 A, - 6 A,
(2 ,50)
Subsl ituling fro m "'I'. (2.4(1). (2.44), and (2.46). ic;,dl 10 the expressio "
t::.A" ..,- = (1/2)<4;T( I, -, J) - (2"NlkT ln( V/ JA')
(2 ,51 )
Equalion (2.51) is Ihc fn.'C energy e'pre"ion corresponding 10 Ihe Wall ....lory theory , The presence o f the "olume tenn .hows Ihat the m3ler;al i, nol assumed 10 bc in<."(lmpress.ibk_ Neglocling 'he ,-olume lerm and Subslituting for ~ converlS eq , (2,51) inlo
,
A A"..,- .. 2(~ _ 2) {kT(I, - 3)
(2 ,52)
Comparison of Ihi' e~pr.ssio" with e<j. (2.49) for the claSlie free cn"rgy of a phantom network ,1' 0 " -' thai the latter is .I,,·u)'. smaller th«" the el~.tie free energy of lhe affine nct " 'ork_ Fo,' " lelrafuneli onai nelwork (which is the ea>¢ trea ted mo,t extcnsively in the litermure). the elast>c free cnergy of the pha ntom network equal. on .... half of the eJastic frtt ~nerl!.\-' of lhe affine nelwor._ Equal ion (2 .52) is valid for imr> ,}'Slem, in ~e,,,,ral The amorphous rubbcr ;s taken "s " "'li d whose lopology Of con ,leuivity is conserwd ,lunng fab rication: Mmdy . nc,work forma ,i"" . Tl,~ theory r""ogni,,,,, difft're" ' topologies, ~a!"ul,, ' e' 'heir
:10 STRUCTURES A ND PROPERTIES OF RU BBE RLI KE NETWO RK S prohabilities. and formulates the conflllunllion,,1 partilion function in Ih< unde_ formed and Ihe dcformoo states_ The theory is more generallha" Ihe James-G ulh and lhe Wall-Flary Ihcories because il indudes Ih. inl ...... elion' betw.. n chains ori,ing from the dcform~tion of tl>< 'opologically conneclcd ,t ruc!U~ . These interaelio" ' arise from the discre,c entangkmenl< belween ehaim and form the b;uis of en tanglemen t Iheories. " 'hieh are treatoo in chapter, 3 and 4. In tho absence of discfCte entanglements. F.dwa . ds· theory red~ 10 either the ph.nton, or the a ffine network models depending on the .pecilk ...."mption made rega.ding the density of the polyme. confinl'
Re fe rences (I) Kuhn. W_ J_ Polym_ .'><:i 1946. 1.180_
m K uhn. W. KelloW /:. 19)6. 76.258
(1) K uhn. W. 11118""" CIu!m .. In<. t:d. tj,g. 1938.51. 640. (4) T .. I"",. l _ It . G_ 1'".",_ f;,,"'''',:><>c. I~ . 42. 17. (S) T .. lo ••• I ~ 11., G, T/Nr rh,..i<-J <>I R..M.-. EI",,;o;I),. Jrd cd. C1amtd"" Press: Q.ford. 1975 , (~) Jamn. H , M ,: Guth . E, Ind. C~'m . 1941. 614_ (7) Jamn. II M_: Gut •• E. Ind_ Eng_ CIu!m, 194,.34. 1365_ (8) jo,n... H :\t .: Gut •• E. J_ CMm_ PAy._ 1<J.I3. 10. 45S. (9) Jamt.... H , M.: Gulh. Ii. J. "pp/, Ph)" , 1944. IS. 2<J.I. (10) Jom'-'$. H 1.1 J_ CII<m_1'iI),'_ 19~J. 15. 6SI. (11) Jam... II, 1\1 ,: Gu'h.l!, J. C....". PAy,. 1'1-47. 15. 669. (12) lorn ... II 1.1 .: Gu'h. 10, J_ ""')'m, Sci. 1949. 4. ISl_ (Il) Jam",. 11 :\t .: Guth. E. J_ CMm_ Phy'. 1953.21. tOW_ (14) Wa ll. F_ T 1 CMm_ P~,.. 1')42.10.132_ (15) W~II . F. T J, CArm. p~Y'_ 1942. 10. 48S_ ( t~) W.II. P_ T_I . ClI<m . PhY" 1')43. II. $27.
f:.w,
n.
(17) FlQry. 1'_ J_ C"",,_ /I" ... 1944.lS. 51. (18) f lQry. p, J, lmi. £Itt, C/Itm, 1946. )8. 41 7. (19) Flory. p , J, J. CIN-.... Ph,•. 1950. 18. 108. (:10) W.U. 1'. T.: I ·lor~. I', J, J_ CIN .... Ph, • . 1951. \9. 143S.
(21) Gutn. Ii.: Mark. II . F. I . PoI},,,,_ .'><:;., 1'01)"". P~,., fJ, 1991.;!9. 627. (22) M" ~ . J. E.: ["',on. 8 .. (;d •. EI",,_.k Pol)",," N~t.'",h !'tont;", 11.1\: EngkwDOd Cliff,. NJ . 1992 (23) Kloczkow>ki. A, In P~y,ieQ/ I'rol'"I k. of Pol!,,",," If~ . J_ E. Mark. (;d.: A",.rican In"itute or Phy,\cs p""" Woodbury. NY . 19%; 1', (11. (24) Gut •. ~_ J . PoII"' __'><:1.: Po;( C 197(1. 31. 20;7 (21) Flory. P. J. Pm,'_ R.,;,_ St><_ 1.<JNJon. II 1976. lSI. lSI. (2~) l 'lor~ . I' l _1";"";pM' of Pol)'''''' CIN,n;",,_ Comcll l)ni\'Orsit)' p"",: Ithaca_ NY 19~1
CLASSICAL THEORIES OF RUBBER ELASTICITV
21
(21) Deam. R , T .; &J .... rd,. S, F. I'~il. Tr(PIS. R",.. S(K. WUJkt:IIk. 1974. 7. 863. (29) Chri,l R, G. : H.,. ..... C. A . J. J. P"I),,,, . Sci. 197(1. AI, 8. ISO). (30) Allen.G,; Ki ' ~ h"m. M. J,; PaJg<>. J.: Price. C. T",,,.. f,,,a4<>y SQC. 1971. 67. 12111. (31) Hindley. J. A.. H.n. C . C. Mos«. 11. . Yu. II . M"""""Q/«w/<J 19711. 11. 836, (32) Ilel,"u"g. 1>1,: I'irol. C; Her•• J. MlX'romoJr<:ul" 1984. 17. 663. (l3) Yu . H.: KilO"O. T .. Kim. Co Y .• Ami •. E. I .; o.."lI- T,; landry. M. R, ; We...., •. I . A.; Il,n. C. Co : Lodge. T. J,; Glink •• C. J, I . A ~.;" ~'ku'_TS aNI lI.ubiwr EI""i<'fly. I lal .nd J. E. Mork. l'.d •. PI"""", " res;; N<w York. 1986: p. 407. (34) VolkenSl.in. M C""fiKltTa,w-1 SID,/J,;" of P<>I),_, ('I,,,;,,.. Int.""ic:ncc: Ne ... York. 1963. 0$) W"'ard •. S. I'; I'rood. K J . Ph),<. 1~ 7(I . 0. 739. 7SO, (36) F....d. K. J. Cltn~ . fir)'• . 197 1. $~. $S88. (37) I!ich ;nll"r. R, Ii , M~(M",,*,.I.. 19n, $. 4%. (lS) 1'ca",,".D. S. Ma",m",i<cuk, 1977. IG. <\9Ii, (l9) K I()Czk,,"~ ki. A, : Ma rk . I . E, : Elma n. B. M(KI"".Q/"cul" 1989. 22. 142), (40) Gno",.Iey. W , W , M.,,:.<>mOkc.l... 1975. 8,186. (41) G ..... Ioy. w , W, M ",")mok<,.I<J 191~ .~ . 86S. (42) Ed"''lIrds. s, F, In 41h Inlel",,,ivna/ Coni'"""" "" AmtXpJwu.r .\laud,,!>, R. W. l)(ougl •• an<.! Ii, 1:11;.. Ed •. W ;Ie~. N.", Yo,k , 1910. (4J) Edward •. S, F I" PoI;'n",. N"",,,,b. S""dltTal and M{/. Sci. 1946, I . 2)$, (47) Slo""nn.o. A, J. Ad>, Pol)"", Sri. 1982. 44. 1), (48) Eichinger. B. ", AM, R.<-•• I'h •. 1983. 34> )$9 (49) F- I. E. A"". R,',. Ph.,•. CIrt .... )989. 4(1. )S I,
Co""".
C/o''''.
3
Intermolecular Effects I. The Constrained-Junction Model
The d.>Sicallheo,;c$ of rubber elasticity presented in chapler 2 are ba$<XI On a hypo!h ••;",,1 elwin which may pass freely through its neighbors as well as through it..lf. In " real chain. ho""o'",. 1he volume of a segment i. excluded 10 other segments bdons,ing c~th.r t" 1he $amt chain or 10 olhcrs in [he ""''''eM-known effecl arising from defonnation.dependenl contrihutions from en\anglem~n1S. The constrainescrvalion$. thi, mOOel
THE CONSTRAINED·JUN CTION MODE L 23
,
,,, ,, ,
.',
',
~Unswolen
•• •
•
, ,,
,,
'"i-""'; ,,
/
, , ,,,
,
--
,
00
'0
~l ..... 3.1 TI>o off."" of o""'galion 0< oomp.-eo.ion and ."",lIin, on 11>0 modulu. of . ,,,:lwork . 'The absci ... rep.-nlS lile in" ...... «",io" r.. io as ,ugge>led by lhe scmi· .mpili""l Mooney. Ri,'lin ropr<S0 C. are co,","an". 'The I"'in" «p ....", ""pc,imen,.1 nd compon.on' be'""",n ,he 'wo eunte1 show ,he of , .."Uini. The upturn in the: modul ... , hip o".,,!.ion. oould be do<
d.,•.•
&""',.
lak ... the f= ene rgy of Ill<; deformed ""Iwork a. lhe Sum of two cOnlribut;on •. one from Ihe phanlom nelwor. and II .. olher fr<>m lhe nstrained.junction modd was firsl propo>ef the Ihrory was ind<~nd.ntly givon by Flory'. and Ihi, was subsequenlly modified by Ennan and Flory'-'. The model has been further describet! in pal"''' by Flory~', ., well as in review P"~rs by Eichingcr9. Edward. and Vilgi.'''. Heinrich el and Erman and Mark ".
"I.".
3.1 The M odel and iTS AssumpTions
T h. eonstl'llined-junction model i•. in ~ sense. intcnnedialC 10 lhe Jamt'$-Gu1h phan10m m<>del anll lhe l-10ry_Wall affine ne1work model di.<eusse
"mile
24
STRUCTURES AND PROPERTtES OF RUBBERLIkE NETWOR KS
(J. t)
",here
t is the avcralf. junction functionality. Thus. for a tetrafunctional
networ~.
« AN) ) _ (3/8)(,) )• . Thederivatinn ofthi. reblion i. given in appendix E. The corresponding Hueluations ( A'}') in chain dim.n sion. (from appendix E) are (3.2) In the con.trained·junction moo.l. th. entanglement of ntt"·or~ chains with Iheir ntighbors i, assumed to diminish til<; .itt of the Huetual;on domains of the junctions. An increa.., in the constraining .ff«1 of the surroundings resullS in a decrease in the magnitude of the Huetualions of the junctions. ultin>ately leading to Ihe affme model. for which (( AR)') _ O. Co",~rsely . a decre.se in co nw"ints ffOn> the environments of junctions. such a. that obtained in stretching or swelling. result s in an incrcase in the magnitude of tilt Huctuation •. ultimately leading 10 the phanlom mooe!. It should be <mph.sited Ihat consideral;on of th. juoot;ons a. the centers being affected by the constraints. rather than points " long the chain<. i. only a maU .. of convenience since the Huet""t ion, of tl>o 1"·0 are proponional toone other. as ac~nowledged in "'I. (3.1). A mOre reoxn t trut ment . by Erman and Monneri."· ... of conmaints "pplied direclly onlO the ehaiQs ralhot Ihan to the junctions has indttd . hown thai the results do nOI change appreciably. Thi, moo.l, referred to in the lileralure as the ··cnnslrained-chai n moorr· ' s treated in some delail in chapter 4. Figure 3.2 shOWl! a nelwork junction. The rad ius of the domain in which it may Hoctu"te in the phantom nelwor k i~ ;ndicated hy the da,hed cirele. The crosscs show the o ther j unelions of thc network that share the spaec a'·ailable to Ihe ""nlno l junction: these other junclion, may Ix: topologically close 10 or ",m" le from the cenlral juncl ion under con,ide,ation . According 10 the constrained .june. tion mood. the iC'"¢rity of the entangl.ment s is measured by the degree of inter· penetration . This interpcncI .... lion is tlIC",urt"d b)· the ",·erage number C· '·lory number··)'·" N p of junctions within the nlcan T"~diu. of the . ph.re occupied by the n.lwork chain. namely. (3.3) where yO is the volume in the sla tc of reference (in which the network was formed). Since (r' )~ varies inversely with the number of nclwork juncli ons. N p must be in'·erscly proponional to the square root of Ihe degree of eross-l inkit.g. Th is is sho"'·n by the proportionality part of cq. (3.3). In lypical da.lOmerie nelworks. NF is in the range or 2$-100"' ''. The sign ificance or entanglement.< becomes immediately .... ident wlltn one considers the $pitCe available to a given junction to be shared by 25- tOO \>""funclional junction. connected to differenl points in Ihe network. The Flory number is diS(;us$C<.l further in chapler 10. T",·o types of forces ac l on a junction in a real nelwork when it insta ntaneously nllCtual~", awa)· from its mean position . ( I) The re.toring action of the phatl!om 'ICtwor~ pulls lhe ju\\Ction toward ils mcan po';lion . This effect result, from the connectivity of the ne twork. S;n"" lIuetu"t;on, "f junction, arc Gaussian in a
fHE CONSTfl .... INED·JU NCTION MO DEL
,
x
, ,
... ~ ••.......••..•.
.""
,
,
X
,
, ,
X
25
,
X···.... \X
, , , '\ , , ,
./
.~.:......~..•........•~
,
,
F"... 3.2 A cen,,..1 'c'rofu,,",i.on.1 i"",,' ioo ,uf'"unOlogically ooghboring iunc,ions and ...,.., ... 1 'I""ially neighboring iu""'ion1. Th< cro!>C< ,how ,be otltCli.on. "f ,ho .'work ,ha' , ~are 'he 'I"'<" . ..... ilablt '0 ,ho <>:"'ral iu"",;"., The flLK1uaiion. of 'he <>:"1,,,1 iu"""ion are <X>Il>lraiO>Od by 'he p.....""" of I,," '1"'t iolly .eigh· borin, 0 .... ond 'beir pendan' choi n" phantom nelwor k. 'he re<1oring for<'<: obeys 'he Iincor-.prinS law, (2) Anothe r spring-lik. force resnltins from IhI: ronm.ining effect of Ih. other junc,ion. (and chain.) pr=nt in the doma in of the choS<':n illnction, This clastic force is dir":loo (o,,-..d a ""nlU. called lho "ecnlcr of conSlr"ints :- fo r lhe chosen ju nClio n, The location of (his center i'l f. . cd dunng Ihe forma l,on of lhe nelwork One rna)' imagine lhal in the absence of nelwork CO"''''''ttVily. lhe junction would nOCI~"le around lhe «nter of constrai nt s, In fogure 3,3. variou, vectorS ",-"SCribing ,he phanlom network center and the ,enter of ""mtrain!> are shown relative 10 a laboratory-fixed coordin.te ,)'&\e01 Ox,.:. One of Ihc junctions of the network ma y
"' ~il... ).J
S<:< ,e" for
v"~O". ' -""'0'-' ,le":r;t>O"~ H ph.n!"", ' '''!''·M~ . ~"""rip,;ot, of!ho "'''''0'' ,h",",'" ,
a,ld ,II<
26 STRUCTURES ANO PROPERTIES OF RUBBERLIKE NETWORKS
be assumed to be
~~ed
at til<: origin, thereby fi>cal<$ the cen ler of fluctuation. of lhe junction oblainc'" under lhe joint action of th. phantom network and constrai nts. The ''''''tors II R, and 6s, are the instantaneous displacements of the junction from lhe phantom network center and Ihe constraint ""oter. respectively. and 6R, is the instantaneous fluctuation from Ihe joint ccnter of action of the n<:t ,,·o rk and oo","'dints. Thus. the instan. taneous position of the jUllCtion j is R, + II R" where (3.4)
The refcrence state of the network is prescribed by the temperature. volume. and 'hape prevailing during its formation . The volume V" may be adjusted as required by the !~mpernture cod1ku,nt of (r' ), if the expcrimomlil a rc c<>nducttd at a different temperature. The "ssumplion, of the oonstrained·junction model are a, followl. I. 1be distribution of chains;n the unMformrd state is unaffectffi byentan. glement. and the em.,·linking pr"""... T he instantaneous distribution of chain "oclOn in the network Ih.refore ,"quates to the Gau.ssian distribution of fn" chains:
W(r) -
(-;t~ exP{-1r' )
(35)
where 1 = 3/( 2(r')0). The flueluations of junctions in the pha nlom network are Gau"ian and independent of macroscopic dcfonn" tion. as follow. from the Iheory of Jam., and Guth . Thu~ the distribution of Auctuations 6. 1l, "f the ith jUllCtion of Ihe phantom "etwork moMI are expresstd by
(')'"cxp [-P(II R,) ~ I
R(II R,) ,. ;
(3.6)
where J' _ 3/ [2{{lI ll i ) ' )). and", _
-..1,
(3.7)
THE CONSTRAINED-JUNCTION MODE L 27
where II, is
, ,
II, " ,...,(U )
(3.8)
with '10 denoting a ocalar parameter to be '~ . where 6s? i, Ihe fluctua lion of thejuH'."tion from the COn· \lTaint center in the undcformed state. Th "", the probabil it y is wtitten as
6.,
6., .
S(.:ll,) .. .. - l/'(del (J ,)'/1 .'pl-( D.I,) T11",(64< )1 The parameter
(J ,
( 3.9 )
is
"" ,-'
0 , _ 001""
(J. IO)
where "0 is a scalar ch.racteri;jng the ",,'.. rity of the ~nt "nglement conslraints in the referen", state. Equation (3. 10) is a !1aIerncm of the ba~ic pOStulate of the theory that the cITecl of oo nstraints diminishc"S with incrcasi1lK utenlion or swel· ling. 4. The network i, of uniform structure, S. The (nla ngiement con.trainl about <,'ery jUllction i. the same.
"r
The formulation the conSlta inaJ.jllnclio n model may I>.: si mplific<J by ,;cpar· .ting Inc v'-'Ctori.1 qua ntities into their x. p. and z eomponents .• nd giving the c.pression~ for Ihe ... component. unly. T his is pOSsible inasmuch as the distribulions of chain dimcm;ons and their fluetu.tion, for the model are assumed to be Gaul'ian,. and lhe ,""ri<>", di"ribution fu nctions may be factot'e',. Additionally. 'he defomlation gratlient tensor ~ will be replaced by ~ or >.,. referring to the x component alone.
IJ, .
3.2 Probability Distribution of Fluctuations in the Deformed Network A junction in. real ""twork i. "n,kr the joint action of network conneclivi ly and entanglo:mcnlio. The probability 1'16.,,) of having the junction at ~X when its "ueluation from th~ constraint "-enter is t>.x ,s "bta;ne
J
P(.t>. X ) • R(6 X ) " S(6X - x)1 R{6 X )
~
S{6X - -,,),MX
(3.1 1)
where cq, (3.4) i. usOO for replac i,, ~ t>.s ,n the ,Iislrihution (""nction S . S,aled in Ihi. mann.; •. 1'(6,1' ) is a ",,,,Jilion,,) prnhabihl}' The product In tl>c numerator of
28 STRUCTURES AND PROPERTIES OF RUBBERLIKE NETWOR KS
eq. (3.11) i. Ihe joinl prob.bility of h".ing the junction 31 tiX. ~nd C"q . (l.II) i. wrillen On lhe basis of the Sa}·"" theorem of probability. SUbSlilUting e
(3. 12) where 6X _ 6.X - tiX 6.X _
(3.13)
I"./(p+ ".ll·.
The argument of lhc funclion P on th. left-hand side of eq, (3.12) is . ~p",sscd in term, of 6X ,i"", Ihis is the ,'ariable appearing on Ihe righl.hand side of the same ",pression_ Thu,. P represcnls Ihe pmbabilily diStribulion of Auclual;on. of the junelio" from the joint ""Oler of aClion of lhe nelwork and cntan!;lemenl 5_'111.. second I>'1rt of eq. (3.13) locales thc posilion of the joint centcr rdati"" to the average loxalion of ll>c j unetion in Ihe phanlom nClwork. Ina, much as th. conSlraint action is 'phcricall}' S)'mmelric in the undeformed stale. ". _ "0' and t"" v«.Or d X b«.-omes paralld 10 t_ S<>lving til<: ""'ond part of C
Ha ving define
I
!'(6K) x 6(ti.I')
(3.15)
The subscript astcrisk in the distrib~lion of.:l. X differentiates it from the a priori distribution /'(tiX) of vectors .olX obl.ined for the phantom n.lwork . In th. ref.rence Slate. the di,tribu.ion R. (6.X) 10 P(tiX ) and he"", is Gau"ian ;n thi' stale , From «t. (3.15). il fol1o"-, Ihat €I{.olX) i. al,o Gaussia n in Ihe referente sta tc. Finally. fI (x ) is Gaussian at alll.\,el, ofstr'din a<xording 10 lhe assumption .t"ted in eq, (3.7). 1·lenee. e
red....,.
(3, 16)
(3,17)
wbieh ca" be r.arranged to 1'/ (1., = I
+ (0' / 1')1(", / 1') (1"/"
_ I)
111 (1 + 0'/1')1
(l. 18)
THE CONSTRAINED-JU NCT IO N MOOEL
29
Compliance wit h th. requireme nt thai Ihe aCl ual distribulion R.(a.Y) should mlUet to R(aX) for the phantom model in the $tat. of ..fercnoc resullS in
OjJ ' _ p ' + o-.'
(3, 19)
Repla""me nt of /Ill" in eq , (3 , 18) by /11),1 ~ (~/'b )( 1 + (>/ 0-0)
(3 ,2(1)
lead. 10 (3,21)
where ,he dcfin;, ion (3 ,22)
has b«n adoptc-d. In the case of a phantom networ k. no constraint. operate on the jU1l<:tiooJ; IhU$. «(a.)'). i. infi"ildy large and ~ bocomes ZCro. 10 Ihe mher lim;t. constituted by t"" affine model. the nuctuali"n. of j unction s art f.ottn and «(Cu)')o equates In ,orn, leading tn an infinitely large~ . The parameler 1<, whid, rcpre""nts a mca.ure nf ent anglemenls of chain. with their ,urro un di ng' ill the .-.:al nelwnrk , is as,umod' 10 be propOrtional 10 the Flory number. namely. tile number of junetion. in the "olume ,,"upied by a gi"en j unet;on I""" eq, (3.3)]. Thus. (3.23)
where f i. the consl,nt ofpropOnionali ty, and I' i. the number of junct ions in Ihe volume 0' of the .tate of r.ferenc<:. For I
Yo here N A is A vogadw', number. d i. th' density. and M i. the mnlceula r weight of a chain who .. mean·square end·w-eoo dist~nce .. {,l)t ' Equation (3.24) rela tes the constraint parameter" to mo"","la r IMramele ... Since. for" lelnofun<:tiona! n<:\Yo·ork. Ihe cycle rank is rdu ted to tbe moi<'cul., weight M , of network chains
.,'
(3.2S) nne""", from eq, (3.24) that lhe " par.. m.ter increase, with the square rool of neh"'ork chain length . The distribution S, (l'l..r) of ,'""tor component' ~ ... in the deformed network i. giv<:n by Ihe ."n""lution of P(6X ) witk tlte dimibution of ,'ceIO" joi ning poi nt A 10 pO;nl R (""" figure ),3). De noting the .r COnlponenl~ of these ,·""IO. s by a~, one L1). ollm;n •. u,ing eq.
n
, , """"
---
(3.26)
30 STRUC TURES AND PR OPERTIES OF RU BBERLI KE NETWOR KS
The dimibution of tl.u i.the ... me as H {x). where x is related to tl.u by eq. (3.26) , Thus. S, (tl.x) _
I'(~X )
. 1I (x )
(3.27)
whe ... ~X .. i + tl.u. froon figure ) ,3. Equations (3.12) and (3.7) furnish expr(1sion. for I' and II, respecti,.. ly, Replacing in i eq. (3.27) by tl.u of eq. (3.26), cornp~ling the square in tl.u. a nd integrating over d ~u. leads to (l. 28)
{1 ,29}
3.3 The Elastic Ftee Energy ) ,3.1 Genera l Aspects The elastic f"", energy tl.A" of the network is t~ kon as the suon of the dastic free encrgy tl.A,. of the pha ntom net wo rk and tl. A, of the ron'ln. ints:
!loA" _ !loA,. ...
~A ,
(3 3(1)
The exprc.. ion for the dastic free energy of the phantom networ k model is gi''Cn by c'q, (2.49). Contribution, to the elastic free energy from oonmaint, resu lt from 1",0 effoct •. One i. from the ,pring·like action of the oonstraints o n the Huctuations 6.R of j unctions froon their ti me-avc"'ged position' in lhe network. The $OCOnd oontribution 10 the f"'" energy resulu from distortion of the domains of oonstraint . A""ording to the model, the domains of cons!",i nl are r.prtsente
EI.s~ie
Fr« Energy Du. to [)i,torlion of 6 R
The cakula lion of ~hc probability of I'j junctions having displ.«ments in ~"" range 6. :tj and AX, + 6(AXj } f"lIo",., lhe loa "" a rgum~nlS giwn in chap~CT 2 for the phan~om network. Thus. til" numher of configurations n ... x oon!istcnt .... i,h lhe distrihution V'j) of the I'j junctions is g;vcn by (3.31) He .... "'J i. Ih. a prion probabili ty <:>f <.>(>Cur",,,,,,, o f a d ispla,;"mcnt A Xj in Ihe r.nge 6(A Xj } and i. given by R(AX,} ~(AXJ) ' The: relative incidence of junctions in the Slated ra nge in tht deformed ottwork is " iii, ,, R. (AXi} ~( AXj)
(3,)2)
Using the c.' p",,,ions for R{A XJ} and R.{!lo XJ} from cqs, (.'.6) a nd (3.16), and ", king lhe loga rilhm of cq . (3.2 8). lead. In
THE CO NSTAAtNEO-J UNCTtO N MOOE l
In
n.-x '" (p / 2) In(p/p.. ) ~ (p ~ 1'•• ) L
p/(tlXJl'
'"' (p / 2}!1n(p/ p.. ) ~ {I'll' .. - 1)1
31
(l.ll)
The second line of eq. (3.33) is obtained by "sing tM u[,r=ion for tM ave"'g. fluctuation.: (3. 34) Using eq. (3.2l) for 1'/1' •• and the relation tlA /lx ~ ~kTlnn /lx. the t,[,res,ion for the elastic froc eJ\(Crg}' due 10 tluct uations of junctions from their mean 10Ct.ained as tlA M .. ~ j.ikT
L, 1°, ~ In (B, + III
(3.35)
(3.36)
3.3.3 The EIa,tic Free Energy 0 "" \0 Distortion of tl. The contributions tu the elastic free energy due to distortion of the constraint domains i, , imilarly obtained as
tlA /I, =
, ."
'2 ,.1<1 L. , ID,
- In(l), + I )J
(3.37)
where
D, " (u",lu •• ) - I .. ("~/ :":" .• ) - I _ ,,;..;( A; - I )(A;
+ "r ' =
:..; " . , 8,
(3 .38)
3.3. 4 The To,al ( Iaslic rm; Encrgy Combining "'Is. (3.H) and (3.37) leads to the total clastic free energy due to con.tnlin($. Combining the eX[,rcs$ion oblained in this man"", with eq. (2.49). re[,resenting the elastic free energy of the phantom ""twork mndd. leads to 'he 10Iai elastic Free energy for the constrained·junction model' tlA" -
4(kT L, {pI - I)"," (",/ ( )IB,
t D, - In (B, +
I) - In(D,
+ 1)1} (3.l9)
In the limit ",hert the Slrtngth of the conSl,aints ,·anish ... " _ O. 8, and D, equate to "'TO, and the clastic free encrgy given bv 00.. (3.39) reduces to that of lh. phantom netwo'~ modd. When" .... 00.
,
H, .. , '\', _ l ,
IJ,
0
(3.41))
32
STRUCT URES AND PR O PE RTIE S O F RU BBER li KE NETWORK S
and eq. (3.39) gives
I
,,.,
Ll.Arl-2 vkT(~'+~' -'- ~J-3)-
( .• 2,,/<». 1<1( In
V/ ~ ·)
(3 .41 )
which is ,he d..s,i. fr"" energy of ,he affine "",work The daslic rrtt energy or,he conSlrai ncd·junction mooel gi,,,,n hy «i (3 .4 1) i, "sed in chapler 5 for deri ving Ihe rda';onship betwttn 't",,1S and strain. The effect of the '" p"r~m.t.r on 'he m""hani.lI l properties of the nClwork is .1", ill"'Ir>, ted in
References (I) ROOClI. G ., A I]", ... , G. J . C~,,,, . /'10)'" 1915. 63. 49\10. (2) Flory. 1'. J. J. Clotnt. Phy •. \~11. 66. S120. (3) Erman, II : Flory. P. J. J. Clt"",. PhJ~. 1978 , 6&, 5)6).
(4) (S) (6) (7) (8) (9) (IO) ( 11) (t2)
(13) (14)
(15)
Hory, P. J.: EnII,n. II. M",,-""'{.. 1982. ".800 EnJI.n, II. : Flory. P. J. Mam",,,,",,,,{.. 1982. IS. 806. Flory. P. J. l'oJ,_, \97~, 20, 1317. Flory, P. J. IMI. 1'0/),"" J. I98S. 11. '16. Hory. P. J. Pol}"",. J. 1~85, 17. 1. Eiching<),,1'. J. Proc. 1(0, . S;x:. '"",don. A 1976, lSI. J~l.
4
Intermolecular Effects II. Constraints al ong Network Chains
In the ",n"ruined_junction ",ode) presenl~d ,,' chapler 3. intermolecular <: !Upprcss the fluctuations of junctions. Acoording 10 this model. the dastic rn.~ energy ofa network ,'aric-s between (he f,c<: energies oftM phantom and the ~n;nc n,,(worb, In a second &roup of mood •. 10 be introduced here. there is a con.training act inn of entanglements "long Ihe chains that may fUf lher contribute 10 Ihe ciastic free energy . ~, if they wen: additional (alhe" 'ernp<Jmry) jm>Cliun •. Con ... quenll y. Ihe upper ""und of the elastic f'ee !;lle'S)' of such networks m;oy . xC«d thai of an affine ncl",·urk. SillCC the enlangj<:mcms along the ch.in wntour arc •• plicitly taken inlo account in Ihe modds. thO!}' no rcfc""ecom. peml .... nlly tra pped by lhe cross_linking and act as addilional cross_links. The .. trapped entanglements. unlike Ihe chemical cro,;s-links, ha,·. some freedom, and the t",·orh.in. forming the emangicmenl m.y .Iide rci,ui"e 10 one ol her. The 1",'0 chai", may Iherefore be rcgardc-d as bcillS allached 10 each olher by mean, of a ftClitious "slip-link: ' as is illu,tmled !lChemalically in figure 4.1. The enlangled 'ysltm of chains represenling the real , il""tiolt " ,ho""n in part (a). "nd the reprc'SCnla, ion of Iwo entangled chain, in Ihi, system joined logether by a sl iplink is shown in pari (b). The 'lip-lin k may mow along the chain, by a distance Q. which is invOnio n,,1 10 the sc,..,rily of the en'anglNn.,,'" A modd based on Ihi' picture of 'lip-link' wa. fi,..1 proposed b}' Ora ... ley'. and. more rig<mJu, I,ealnl~nl of the , lip-lin k model was giw n by Ball el a i, ' and .ubse_ q""nlly oimplified by Edw,rd. and Vilgis", SOrroach,,'_ Ihe diflusc:d-<:Qllstrailll.< model. is lhen dc""rii>cd brictly ;n >Celion 4.} Finally. "",'lion 4.4 d~""ribc , I'arious "Iher I",alments of entanglements.
3( STRUCTURES AND PROPERTIES OF RUBBER LI KE NETWORK S
,., ~i~... "-I (0) An onl.ngk e" .. ngle~ chain, joit1«l by ••l i~link. The ,lip-lin k may move alo"S lhe chai.. by a d ; 'la.-.co~. whkh i, i.'...... ly propotlion.ll0 Ihe "" .. rily of lbe en"'"gIome"" .
Two ex,dlenl ",vicw aMkles on this IOpic. in general. arc by Heinrich el al.·. and by Edwards and Vilgisio. 4.1 The Slip-link Model The probability I'[II (,}[ of the end·l
He .... . ¥ is a no'm~li"'1ion oon"anl. It i'1he posilion vee10r ill space.• is the are lengt h alonJ? 1he chain oonlour (varying b<:t""ttn ~ero and the chain conlour lenglh 1-). [1I(,lI '" ll ll (.l / Ds. and I is Ihe Kuhn lenglh (Ihe lenglh of a bond in an e(juivalcm freely jo;nted chain), Equa tion (4, I) gi'-es the dislribulion fU!>Clion for a Gau .. ian chain, A sl ip-lin k. as shown in figu r. 4.1(b). may be visu;±liwj as a slidi ng CrOSS' lin k Ihal join. a point of Ihe ilh ne1work ch. in 10 • poinl of Ihe jlh nelwork chain . This condilion is cxpm$«l as (4.2)
where II, Mnotes Ih. f>O'il;On """lor of It.. slip-lillk on Ihe 'Ih .hain. The quant ily f>O'i tion along It.. ,)h ~hain con lou r, wilh the sUPCl"I(;ript J indicaling tha1lhi. poin\ i,common 10 1he slip.tin k pos;li'>n on lbejlh ~hain, The
1, loca te, the slip- link CO"Slr-d im
n
--"
~llI.bD
-
II,(..{ )]
(4. 3)
appears in 1he network pOrlit;on funclion if Ihe slip_link s are frottn. as i. Ihe caS<: for Ihe I"'rrnancnl junclion. or .ms.·links. Il ere. 6(.~ ) represents lhe Dirac runclion . which is if x I- O. and (Xl if x ~ (I, If a link i, not permanent bm slides by
'"<0
CONSTRAINTS ALONG NETWOR K: CHAINS
35
a di,tance ±a along th. contours of Ihe 11'10 chains which il joins. then the constraint appearing in the product of eq . (4.3) becomes
-b L Ld~Jt[N,{,,, + ~,) df:,
R/';:
~~j)l
(4.4)
Tbese conSlrainli are bui ll inlo lhe lheory. by Ocam and Edwards" for crosslinks and by Bal! el al ' for slip-linb. by mean, of lhe replica fonnalism of Slalislical mechanics, As 'Iatoo by the aUlhors. 10 build Ihese constrainlS inlO Ihe Iheory is a difficult task and Ihe replica melhod has serious algebraic compltx_ ily. Subsequenl lre~lm.nl ofth. problem by Ed ....ards and Vilgi,· b)'passed these complexities by introducing Ill<: sl ip-link picture into lhe Iheory using Ih. Floryby eq (2.8) is wrinen Wall affine model. The Gaussian distribution funclion for a f=ly joimoo chain as
gi''''"
( ')'"
2JL ("')
.~p -
pe R. L ) ., hlL
(4.5)
Equalion (4.S) is oblained by Ihe Subslilution or Ihe relalion fo r a freely jointed chain:
(H ) into eq . (2.8). Hel\". L = ,,/ denOles Ibe contour Itnglh oflhe chain. The Gaus.si.n e'plession given by <"
,
P( R) ..
n
f'(X ;)
(4.7)
"
where
(4.8) For brevity. Ihe contour lenglh L is nol wril1en in Ihe argnment of P in eq. (4.1). The sl ip-link P'''''''''' is modd<:
(21 2I{1.)Xi+t)Lf1 )
u p P{X,) .. fd! p(!)
[,U H)]
(4.9 )
Here. £ i. the ,lipp"lIe Itnglh and P( ~) ;$ the pcobabi\ily of Ihe arc length of lhc .Uppage. As.suming Pic) 10 be uniform along lhe slippage knglh, Ihal is_
,
P(.} ~ ,
"
(4 . 10)
36 fq
STRUC TURE S AND PROPERTIES OF RUBBERLIKE NETWORKS
(4.9) may be writtcn
[ ", I n/
,
P(X,) ", _. 2a~xPl - 2/(L + ~) - 2 In (L 1<:)
)
(4_ 11 )
Thi s integral should be normaliz~d for every ,-a luc of f, This is n<>l easy w~n tile complete expression giyon by "'I. (4.11) i. used. For further progress. the imcgr<md i~ .xpa nd<:
["' i ' ,'-, ,[ (') (' )'1 - e,p - - L.A, X,. 1 _.2a 21f. i_ l
-
I.
+ -
I.
(4.1 2)
-l[(fH(f)'J) where,Y is the nOmlalinl1ion consl,,,1. In order to perform the inlcgr~tion o'-er t . lh. expon~nt in « 1_ (4_1 2) is further . xpand<:
5
- '2
, ts ) ( ) {;>.;x, J 211.
~"
(4_13)
J5
Hcn:, ;I denotes the """ond momenl of t defined by (4. 14) The free energy A(A) of the network at the state of dcform~I;On A is evaluated accordi ng 10 lhe expre,"ion
J
A(A) ~ - kT Jl RP(R, L) In P(~R . L)
(4.15)
The . xpres,;"" f<>r the Helmhoh froc energy givcn by "'I. (4. 15) results from the replica approach. which has been . ummarized by Vilgi. ". The argumentS are based on the ditTe",,,,,, betwcco ao un-cross-linked polymer melt and a cron-li nked one . The former is treated as an ·· annea!<:
CONSTRAINTS ALONG NETWOR K CHAINS :P
A,(Al/kT " !LAi , - 8f.;" " ~ i. '
(( LA} ' )')~ 2 ('L~:)' -lo L, ~;+ 15 (~i
,. ,
,. ,
(4.16) H."" lhe subscTipl ~ denotes COII$lrainll. This cxpttSsio" ohtain<>
a.
A,{.I) "" _,I N,U ·t ,~ ,
f .11(1+"~{) ~ ~) + In (1 + ~~;» ) 1(1
(4.17)
(4.18) A~ sho""n in chapler 2. the daSli~ frcc C"trgy of the phanlom raD k of ( is
n ~lwork
",'it h a qde
(4.19) T he 101.1 clastic tia"ic frcc energy is given as lhe . um of «I', (4.1 7) and (4.19): ~A '" ~A ...
+ A<
+',>S)] )
.. ! {ut i (>J _ I) + N, [ ~i -
i_,l
2
~
'--- + In (I ( 1 + ~~1l (1+.,)
(4.20)
Comparison of "'I. (4.2() Wilh "'I. (3.39) .how! thai the d(formalion depen. dences of the tlH' c>. pr=ion s are qillllilali~cly ,"cry similar. If one idemifies 'he 'I parameler of lhe slip-link model wi,h ,,- ', "'I . (4 20) may he wriuen' )
t.
~A ~ ~ (kT {(.I.; - I ) + ';' 18; + 0 , -
In( 8, + I),
+ J) -
In
.l.1J}
(4.21 )
wher. H, and D i are given by ""l_ I )(A}+ .(') I
(4.22)
AI$<>, eq . (4.2 1) r«luctS '0 lho: [>I'anlom nelwork result ,,·h.n N, becomes :.crO. Il o"",,,..,r. 6A of «I. (4.21) m ~ y become indefini tely large as the number of . Iif)links incrtasc<. ""hcreas th. clastic free energy obl"ined by the con"rain<> "
38 STRUCTURES AND PROPER TIES OF RUBBERLI KE NETWOR KS
4.2 The Constra ined-Chain Model In the con"ra inoo-junctioll model of rubber elasticity described in the pre_ious thaplcr. intermolecular crfecls are K\.$umcd !O act c.clusively at the junctions. Thi, a!iSumplion .implifics the way .hat (onstrai nt. are introduced in,n the for_ mu lation. How."",. the magnitudes of junction O""IUalion$ obtained from the neutron spin-«ho le of this. However. this type of generalization immediately leads to S(vtral questions. The constrained·junction modd ... umC$ a oo n",.int center . Can one introduce analogous constraint cenlers for points along the chain contour? If this can be done. how many of I~ e<>nstraint centers .hould thero be? An upper bound for the number of e<>nstrainl centers for a chain conlour may be taken to be M,/M,. where M, is Ihe molc<:ula r "'eight between Iwo entanglenlent points"·", Unfortunately. this point has remained conlro,,,,.ial e"er . ince lhe introduction of the constr4int Or entanglement concept into Ih. arca of rubber elasticity _Edwards and Vitgii h."" ta k~h the most conWtlCtivc step in this direclion by e<>llsidering a 'ingle 'lip_link th~t may slide along the chain e<>nlour. On the other hand. the eonstrained..,h.in model introduced by Efltl.n and Monnorie'~ proceeds along a different line. according 10 which the constraints operate on the ma .. center of each chain, Thi ' section outlinos the Efltlan· Monnerie theof)'_ [n figure 4.2. the instantaneous !'Osition of a rlCtwor~ chain is sbown and the vari.ble. used in the oonstraincd-chain modd arc identiflCd_ The lint A ll denolc, the instantaneous configuration of a network chain, and ii. and Ii arc the time· averaged 1)O>'itions ofth. junctions A and II, Points G and D locate the instanta. neo". ma.. center of the chain "nd of the center of constraints operating on Ihe
.1j; " ~
4.1 Th<: ;o>lant.nw.. I'<"i,,,,o or. ",, 'work o"'in .nd ,..., .... ria""" u.... in
con",·.io>ed..,hain m.xIcl, So:<: tiIC ",,' rOt ,iIC deti"it ion. of tile ,,,,;able> ,hQ"'' _
\~
CONSTRAIN TS ALO NG NETWOR K CHAI NS 39
chain . respectively. T he lime_ave. aged posilion of Ih< mass cenler in Ihe phan!om network is at poiol O. and point C is the timc-~'·.ragw posilion of the mass cenler under Ih. joint aelion of the phantom network :. nd the const.ainlS . T he qu.antitit$ a ... and b.s.;; are th. instantaneous """Iuation ,"<>CIon of the rna .. cenler from 0 and D. respectivdy. and 6Rc is tl>e /luctuation VOXto. from the joint center C. The =to<$ b. R.. and t" l<)rotc lhe posi tions of Ih. joint cenle"]" C and Ihe oonstrain! center D .•espe<:lively, from O . The nolation used in lhe derivalion of Ihe elaslic free energy fo r Ihe oonslrained-chain model follows Ihm of the constrained·junction model deseribed in th. p,""vious chapter. The distributions of the variables b.",. "0. !Is,;, a RG • and 6... . ,"" .ssumed to be Gaussian . In termS of xoomponents. they are given by
dl
R(b.XG) '" (1', )/ ~)lll .'pl- I',( AX 1f("G) = (7]'/ " jl l l uP[- 7],(.i " j'l S( a .
(<,./.-j'
,
2",p[_ u, (Ax.,)ll (9,/~ ) III • • p( - O, (b. X-Gj 'I
p(H~.J "" [(P,
(4.2)
+ ",)f"I'1l expl- {p. + o, )(6Xdl
1', - 1/ {2{(AX,, )' )) ' I> = 1/ {2{( x,,)l ))
(4.24)
" , " J/ {2{(il.
8, = 1f{2{( axd )) The subscript .\ inlpli"" that these variables an: generally funClions of deforma· tion. f ormulal ion of the elast ic free energy follows essentially the same steps tahn in ,he derivation of Ihe constrainw.junclion mod.I ". Tht rarumder " G' re/le<;ting the ",verily of constraints. is give" by lhe relationship (4.25) which i•• imilar to thai of Ihe constrained-junelion model. [)efmed in this manner. "" becomes zero when the conslrainl~ do not operate along the Chain COnlour and (( Ax,,)l ). is infinitely la rge. When Ihe conmainlS are infinitely strong. «(AxG)l)o equates 10 »:ro a nd "" then bc<:om<$ infin itely k"g<:. The ralio <7,17], or the con'trained·junetion model" is oblained fur Ihe con· slrained-ehain model as (4.26 )
where (4.27)
~o
STRUCTURES AND PROPERTIES OF RUBBERLI KE NETWOR KS
Th~ paramOlcr in
«I. (4.26) is gi"~n by Erman and Mon""rie' as
(428) wl>e functions 8~ and D, characteri,jng tl>< ela'tic free e""rgy are given by
_1 8< =1!.!. -
,,'
(4, 29)
(430) Function, for the other t",·o direction, are similarly defined. Following tl>< argu· rnenlS in dcri,-ing Ihe elastic f..., energy of the network in the ooostrained-junclion nl
,
+ (v/(){B, + /), -
In(8,
+ I) -
In ( /), + IJI)
(4 31) It should be noted that the contribution of constraints to LiA" i, proportional to 'he numller v of chains. whereas in Ihe constrained·junetion mood it is proportional 10 the number of junetion"
4.3 Th e Diffused·Constraints Model This thoory improVC$ the con'trained-ch~in modd by distributing the con,lraints continuously along lhe chain OOlllOlIr. rather than a l the chain mass cente,.>". In it> applicalion 10 ,lrc __ train isotherm. in elongation"'. it has the advantage of having only a single constraint parameter. and the \'alllC< it e.
t" n. """..1< Ikfi", """ ror ,"" .. 1""'''''''«' ... >«l on • m"",6«J r""" of ,.. «",,'r,,0<\1 , •• ,n.""""". " . 1...
~ "'"
;n
ITr,-",,~,- ~ .
I I I
I
--'
-
!
, ,,,,,",,,
..,
-----_ .. ---
I
........... ,.,
I _
_
,
...... Ion i . '
FiR. " 4..J Some "'e'<~ '''''wing dillor<..,.. in lbe
,o. con",..jn«l-J"""lIon '''''''ry, ""n"raincd-cl\>in
"'''Y lilt onnSlroin l$ arc .pplied in
,Itro'}', ~"'!
ory. ""pectivciy_ 1\ pos.>ihle fu,,"" r<~ ... mcnl in p".ilioning. b.>OTI.l " .... rimental ""ideo",,> i. ill~'l""ct1 in ,he bo Ll om graph
.2 S TflUCTUFIES AND PROPERTIES OF Ruee EfH IK E NETWORKS
suggesling how 10 position llle conmainlS along a chain in refining such model,. :;ine<: '" should ha>'C a p",nounccd .O'<:<:t on the magnitudes or the n""luation, of lhe jUl\Clions. A possible further n:fincrnent in positioning based 011 additional •.'perirnenlal ovide""" is illustrated in thc lowest graph of figu~ 4.3. 4.4 Other Treatmen ts of Enta nglemetlls
The "lip-link mod.1 i. <:$Semially an o.' ionsion of th. more gencraltubc modd of entangled polymer system,. This tube modcl'o is ~ oo,wenie", t<>ol. <sfJt"'ially for predicting lhe viscoela!lic beh.vior of polymer mclts~I.l·. and it has been c~tcnded to the st ud y of networh by >c"eral authors"'"'''''' Heinrich Cl a1" for example. r<:pr<:scntcd the tube as a harmonic pipe and deri .....-d the correspond· ing slres,---'Slrain ",Iat;ons for a rubbcr. and G ...l.... ley and !)os, in'" ".tended the Doi·F..dward" lheory to study thc viscoelastic bchavior o f netwo,ks. Ga)'lord" and Marucci " used alternative forms of the tube model to dcri>'C the Str<:l>S- stra in beh",'io, ror "",,,·orks. References (I) Langley. N. R. MIN"""""""I., 1'.1611. I. 34>1. (2 1 I.:.mgky. N R.: Polrno"ker. K E. 1. l'oI}"t", Sci.. PoI,'m. I '~,.• . f:d. 1974. t2, 1(2). 0) Graessley. W. W. Ad". Pol>,'"' Sri 1974. 16. 1 (4) Gra""ley. W. W. Ad•. 1'1)/),"" Sci. tY82. 47. ~7 . I~) 11"11. 11.. C .; Dci. M .• r:dv.'ord,. S. I' .: W.tn01. M. PuI)'",,, 1981. 22. IOltl I~) M .....d... S. F.: Vilgi •. T. II . PoI)'_r 19~6. 27. 48 3. 17) Erma". II .. M on..... ic. L. M"",,,,,,ol,,,ult. 1989. 22. 3342. (8) Erm.n. II.: Monnen.. L .\I ",,""""<'WI~. 19\12, 1'.4456. (9) lleinrich. G.: S'ra8be. E.; fl.I",;" G . lid<. I'''',·m. Se;, 19S8. 8S. 33. (10) &\ ....,d •. S. F.: Vit" •. T.II. R,p. Pr'>t. Phy•. t988. St. 24). (11) o.:a01. R,. T.: fO<>dcl\Ce. (1 4) 1Odv.'.rd •• s. I'. J. Phy" C 1%9. 2. I. (15) Il<>t:. ( I..,.u}oo) 1%7.92.9. (16) Il<>t:. 1970.49.43. (11) F.rry. J. ]). l'iKocl",'ir Prop''''' '' of Pol),,,,,,,,, 3, d ro Wi ley: New York. 1980. (22) Fette". L J .. Lohse. I). I.; Colby. R. fl . In Ph,..it:aI I'rop'''~' of PoI!'m", 11_ . J. E. Mark. Ed, IImenc:." , In>1it"1< of Phyok$ Pre": Woodbury. NY, 1996: 1'. 33S (ll) l'lory. l'. I, : Emlo". II, MQc"'mokro~" t982. IS. .wo, (24) Kloc>ko",·.ki. II.; M. ,k. J. E.: Eno.n. 11 , .If <>Ok. J, I:. M" r~. (d, Amcrk •• Institute or Ph y,,,,, lI'oodb",y, ;""y , 19\16: p. 341.
1'"""
CON STRAINTS ALO NG NETWOR K CHA INS (11) (28) (29) (30) (31) (J2)
Vilgil. T. A, p,,'1, Coil Pm"",. &1. 1987, 75, 4 vi lgis, T. A,; II.i~,i< h. O . ,f"l~". Mah "moi. Chem. 1992, 202[lfJ3. 243 Wagn... M. II.; Scha.ffor. J. J, fI~"'. 1'!'93. )1. 64). O ...... )ey. W. W.: l><»>io. t. M. 101",,,,,,,,,",,,,1,, 1979. 12. 123. Oa )'i<>,d. 11. , J. Poi" .... 8"11. 198),9.1 8 1. Ma rucci, G. M"",~~I" 1981. 14. 434
43
5 Relationsh ips between Stress and Strain
In thc first sectinn of Ihis chapler. the rciali,,"shiJ)S bet,..",," the Helmh<>lv f"", energy. thc ,\""" tensor. and th. deformalion tenso,'.1 an: &i"en for uni .. ;al
stress. These rdations folio,,' from Ihe general discussion <>f meSS and .Irain give" in apP"",lix C. and thc notation and approach d~ly follow {he classic treatmenl of Flory' , T he detailed forms of th. Sl~train relation, in simpl. ICnsion (or comp",ssionj arc given in Ihe renUlining sections of Ih. chapter for Ih. (1 ) phantom network. (2) afflno
~twor k .
(3) cuns\ rain«l-junClion modd, and (4)
slip-link model. Results of Iheo,y are then compar"" wilh expcrimen!. The drccn of swelling On the Sl",ss - sl r~in relatium are also included in th. di s<us.sion. 11 is to be nOloo thai thc stress-'Irain relations in lhis chaplcr arc oblain<Xl by lrealing the swollen netv.-orks as closed systems, The conditions for sucb s},stems are fulfilled if solvenl docs nO! mo.'C ;n and "ul of lhe nel"'ork during deform"I;On A nelwork ,wo!len wilh a nonvolalile oolvenl and m. of Ih • .ol"onl und.r incroased inlernal pressure', and is therefore not a closed system, For ",miopcn 5)'stems, ,uch a, those under oomp
5.1 General Relationships of Finite Elasticitv Theory The
(5.1 )
whtre 8A' ( 1". V ) i, a function oflemperalur. rand volume V, and denotes lhe «mlribUlion from inlermol""ular fo""" such a. tho"" in simple liquid. _ The quanlity tlA,.;( 7".1. ) is the elaslic frcc energy .ri,;ng from the el.sticily of Ihe network chain,_ The componcn. !lA ,.;( r ,l ) in eq (5.1) Wa< dcri,·,:J in Ch"Plcl'l
.
(n)
\0 (-""I've '
__ _ =1 , _ ', , ;W) (" (")" ". l
0 --_ "
I've'
:', - " X>U""~ll! 1' ~'11 S" :>Jo''':)Jd ~!1~4d.o\ul¥ '" ,,"'!'UI:)..I llO!I:>:I,III' IX ~41 hOI" ~ "".I)S ~ql ~u!l'P >:ud "'''4d,o\Ul~ :>;lU:XJ;X!YO 11'''' pu~ IX SUO,,=!P 1""1"1 "-''II 'lIU!I'OOI I~! x ","n u, ""'OJ "'11 JO UO! ,:>:J.J'P "4"" U,~"' S! 'x Jl '(u"!'U.ld """, 10) UO!'U'll"!X,,!un JO "InI' ~41 UO 'JOld"4~ '!'11 JO "('UIUtu:U ~41 U! UO'SS1\:.;!P " 41 AJ'ldwlS 0) JOp.!o U I
"'I '
'x
'"""J ""
(on)
,', [(..BL) '" _(..BL) .,,[ ;i .. "_ ""VIl ' "I've ' 1:
I,
,~t»S=dx •.: , 'UOIl"1"" JOOI"",L "'II 0) '1'"'1 SHU "\lOI,,,,,,!P 11ld,"uud "M, SU(>IU 'I JQ :>;>u"'~J.I!P '41 l!U! ~ "l Aq (n:) 'Ix> wO'J .Ii 'ICU1wlP ACw ouo -'P!ob" Oldwo, u, p;>U'Ulqo ""''II '" SU01P""\UI '"I .n""lou ... ,),,! WO'} "'''sRld :)ql 01 uO!lnq!JIUOJ "'II ~ (;le! YV (}) - '" ,Ii :>.JJq."
i,
'I""
0 = '1 (-=)..i...+ "'live :''1: .
~'l
I
(n )
s, IlnS'l1 OI[J. -J x!pu:>ddu Of p.:>.'!'~P s! J!nuo »IJ "I'~P '41 0 1 P:>1"pJ :>J. lOSUOI '=1< '41 J" SlllOUOOw"J lW!"""d "'ll .II!." '4.1
'APA!p;>
'IU=":xl~"
All"
"!I'"]" 041 !u!Jnp puo · ~Jo."I"U)O UO!I"IUJOJ !ulJnp JOW.'lud JO "011"".1) :>Otn]""' "'ll "'n <. pU~ ><. >'l!I!lu.nb :I\U. ·own lo., I~uy "41 IU P.""S •.'W 4Il1u,] p.POI "'!pun "'II 01 UO!W
(n)
'0
(~) " 'n(ll(oAIA ) " JI(
",
01 <"'J! ldw,i ([ ',) 'il:> 'WJoJ IU""<>dUtn~ Uj ·1<.>5UOI UO!""I lOP P"E ' ~JO"'IOU "Il JO UO!I"W'Oj o4111U!JOP ,wniOA '41 S! 011 'OJ,,,
" rI,(oA I II ) '" r
(n:)
:,wnIOA IU~I'UO:> I" UO!1l0,,!P" ptlv. UOII"PP :>Jnd "jO pnpo,d '41 n J»<S",du "'I AOW I( "iJl!""4J ownloA wO'J ,,"!lJOI< 01 J,PJO ul '('IUI' j»w.JoJopun '41 tI! 1"41 <>l 01"1~ p:>uuoJOP ~41 U! 'x iroo!" w, ,,d "J""P!' '41 JU 41i1U"I "41)0 011'" '41 An"'yt:l:x!S)
<, " o
In )
o " o "
I)
I '" r
"
~ls.(S
"1'. {"-!"- '''-o
'Ir,U!I"OOO " U! UO!I"UllOj"P , "oouollowoq JO ' IU'UOOWO, IW1,uud "41 "'J p:>u~op 'JO'OU01 1U:)!P"'~ (UO!I"w.J0Pl' .10) IUOW"""ld'lP ",,"I sl u~;).Jd:)J I( IU;>W "nllJ~ '41 '([' .)"!>:I Uj ·' ~JO."IOU '!'~W(l1S1lj~J" sprow IU;).J '.U 'P JOJ t ~lInOJ41 t
St
NI""~lS
ON.".
SS3~lS
N33Ml38
SdIHSNOI 1""'3~
46 STRUCTUReS AND PROPERTIES OF RUIIIIERLI KE NETWORKS
ExperirrK.'1ltal data for w~-ss-slrain experiment' are flf eq. (5.8) is obtained hy ... ing Ihe rcl~tion AJ/ A = _ill". which follows fmm eq . (5.4). In the limit of small 0, the rcduec<J foltt IFI of eq. (5.8) c~n be related 10 the elastic mexlulu, /:.' or the .hea r modulus G. The dastie mexlulu, can be obtained from Hoo ke's law, U '" f.t. ",he", Ihe cnginoxring .trest " i. con'·cnlion.lly ~fined as the foltt per unit area measured at the beginning of the e'perimen!, and . is the infinitesimal strain (defined as the change in length per unit unde· formed length). The inilial stale of lhe sample is defined as the swollen but mochanically undeformed st.te. A. Slated earlier, elastomers are ~ppro. imately iDCOmpres
1/1
~"'~ k , '" Ovj'/l
V ' ) '"
(5.9)
G - [1").;"
5.2 Stress- Strain Relations for the Phantom and Affin e Network Models under Uniaxial Stress The clastic free energies for the phantom .nd amne network models an' given by eq •. (2.49) and (2.51). respeeti'·ely. Dilferemialing the .. expression. with respeet to.l.} and sOb~litutin8 into «I. (5.7) kads to the Stress for the phantom and affine network model. in
(5. 10)
Affine
IF) "
"T, ;.<'" ~of
1 (ot>
Phamom
{kT '"
2) v~
.".
(5.11)
Am ....
It folloW! from "'I . (5. 11 ) that the reduced force, or equi",... lcmly the clastic modulus. is independent of ddormation and dcgrtt of .",-el1ing fu r both the phantom and the .ffine ne\""ork model •. SubstilOling eq. (5.11) into eq. (5.9)
RElATIONSHIPS BETWE EN STRESS AND STRAIN
n
. hows that the shear modulus of the phantom and the affi ne nctwOfls dccreases with increasing swelling. 5.3 Stress-Strain Relations for the Constrained.Junction Model under UniaKial Stress The lotal elutic frcc encrgy of Ihc eon,(rained-jun
8:,1" ~ {kT [I+ ~ K(';)]
( 5.12)
=
where
,
'
K (;I., ) ~ [B,8,(8 , + I ) '" D,D, (D,
+ 1)[
(5.13 )
wilh
(5. 14)
OD, . D.. ' ", _ "- " ("8, + 11, )
'.
Subslituting eqs. ( 5. 12) and (5 . 13) into «I. ( 5.7) I•• ds w the following expression for tile true suess;
", ) "'(0 ,- - 0 -,+1' <,"'( "« [0 K (;I., ) (i )"
T=-VO
"
( 5. 15)
Tho roduc«l foro: is obtained by u,ing eq . (5 . I5): (5.1 6)
When 1M constr aint parameter ~ beco""", '''TO, the runClion in tile sq uare brack... of «1. (5.1 6) becomes uro and Ihe red""cd fo"", equate> ' 0 ,h . , of 'he phantom networ' . In the other extreme. when" approachc< inflnity, the term in the braces "'Iualcs to I +J'/{ and the reduced fon:e becomes equa l to that of the .. mnc nell,'ork The contribut ion VO l, of 'he ~"{)II$lmintS rebli,'c 10 lb., of 'he phanlom "",wo, k. 11"1.... may ho; $tcn rmm 1he ratio
46 STRUCTURES AND PROPE RT IES DF RUBBERLI KE NETWOR KS
,
• -"
:: 05
•
•
,.
0.'
lI a .,..", '5.1 Th. d
"'I. (S. J1)
on (t ood "" V! V. fQr
~.)~ = Z [<> K(>'iJ - " - lK(>.l))(a _
(I
- I) ,
(5.1 7)
In "'I. (5.17). the efTect of ."'<'Iling i. gi'-cn in t~e argu,,,,,nt. >.1 and >.j of "ph The dependence of the ralio given in cq. (5. 17) On (I ~nd On Vl v" is ,Ito",·" in figure 5.1 r<)r" .. 10.' In lhi' figure. lh. ordinate val ues of uoilY and '''0 COrrt'pond 10 the affine and phantom network model •. rc'PI"'lh-cly. The curv~, mo'·e lOward the phanlom network ,·al.es ",;th increasing values of V/ v". in ~g.rccmen1 with lhe postulate of the C<)n.,r..ined_junclion tht!ory that ,welling de"Cre."", the e!Teets of C<)n'lraint. on jUnc1ion /luclO"tion' . Similarly. s,n;,~~ing tbe network doxrtaS($ the CQ".trainl. alo"g that dir«liQn and the rcd","'Cd fut1X approacht!s ,hal of lhe phantom network model (as ubserved from the ,,- ' _ 0 intc"."cpt~ of the ""tv ..).
5. 4 Stress- Strain Relations for the Slip-Link and Const ra inedChain Models under Unia~ial Stress ~.4.1
The Slip·lin k Model
The total cla.t;'; free energy of lhe . lip-link modd is given as the ' um of the phantom clastic free energy and the free .""fgy due to the .Iip.linh. !J.A"., !J.lI... + !J.lI, . Following I~. same prOttdurc fur oblaining the K(>.I } function outlined in the previou, se<;li'>n. onc obtains
K(>.' ) '" '
[(8, + D,)( Ii, ~ b ,) - >. 'I 8 , _/), + 1
'
(5.18 )
RelATIO NSHIPS BETWEEN STRESS AND STRA IN .9
wilh
( S.19)
The Sire... Ihe reduced fr,..:". and Ihe rJlio tFl/If·I"" all follow from nj<. (5. IS)... (S.11) by rcpladng I' wilh N,. 5.4.2 The Constrained_C hain Model
T he 101.1 el"lic free energy for Ihe oonslrained-ch. in model i. defined in chapkr 4 . Di[fercnliating II>c energy "ilb respect 10 \ ; yield. the K(Afj function as
K(A') .. 8 ,B, , t ~ B,
+ .!!.,IJ,
(S.W)
I + D,
where
.aB,( , . am,u, [, h(A,l
I
B, il aA; " S, (A, - I )
" 6
[~ - h(A,ll"')
+ h(A, ) [AI + "'(A,l]
D,"!i'i1' = fl,
(5 .21)
( 5.22)
5.5 Comparison of Stress- Strain Relati ons with Ex perimental Data T he l-onSlrained _juneti<m modd ha. bcen very .uCC<;S$f ul in pTCdie.ing the 5"es.sirain ",Ialions of c laSlOme ... The slir>-lin k modd has oot been leMed e",ensi.",ly against c~perimental ,tala but one ,1I"uid e-<,rimcntal dala . Some comparisons "f Ihe pTCdicli"ns "f Ih. conslraineecau .. ..,f "",in·induced crysla ll i,ation. and Ibe ""uli. al small deformalion, may be: susceplible 10 large o"or>. Gi,,,,, Ihcse complicalion, . lh. lhrorelical curve gi .... a n:marhbly good aocounl of Ihe c, [><,rimelllal result<. o."r an imp"""ivci )" wide r"ngc of dongalion and c" mpre" ion. Some results cmph;"i,ing lhe d Tcet< of . "",Hing on Sln:,,-. lraln isotherms in ~l "ngation an: shown in figure 5.3". All of Ihe cur".. ,hown are for Ihc SCI o f
"""It.
'0
••
••• •., •• 0
j.
•
•
' .6
• •
.,
.,
,
1.0 0 ~';gur~ 5.l
•
•
,
.,
"
Ros.l .. of Ri,-lin '00 Saunders" for nalu .. ' ,ub", vukan ,=1 .,itb •• Ifu, .
• bown by ,he d.," poinl<. in COIn!",,",," ... i,h II>< oon"raincd'j""",,,wn ,heo,et",,1 calculaled ",i,h ~ _ 12 . nd! cn"",," to lfl - I.OS kscm- ' at ),, ' .. 0.'
,i,..,
,,
•,
0.25
•
!
• •
• •
0.20
~:~~"'."A"!'
. . . ' ••••
0
<
. '.00•
•••0.11 r-
Z ~
" N.,ural RuM"" Swo llen with n-Oecane
""rYe
0.2 4
0.15
,.,
" r"""" .,.
,.
.
"
'8
.,
•1J:u~ S.l RO<Joced f""Cli"" of " 'r(}, "a,u,a' rubber , ...olkn t" , .. 'yill$ dcg><es ,.-j,b n_,I<""'I><', The poi"!> "1',,,..nl ",,,,,rimenla' ""u l" of Allen t1 aI.' f<>r $P<_
,"i,
<.""""
oin>3r>mctcr ch"",-" from amne 'ran,f" rma,ion, of """'" • prn>,; pt"b;obilil y f.''''''on. on 'he '''''''.y ''. Rep"n,." ...·;'h !""on; ,,;,," f.om ~,,""n. It, .n~ 1' 10')" p. J. (1'1112). ,1/",,,,,,,,,1<"'010>, 15 . Co!,),';g)" 1997 A,nori
50.",,,,,),,
w.".
RELATIO NSH I PS BETWEE N ST RE SS A ND STRAI N 51 par~ mc\c,S indic~tcd , ",uh th~ t~~"'Y p",viding the chang~s in 'he i;"thcnns ",;th in:0). E,cept at the lo",est "alue of . , . Ihe dq>endcncc of Sire" on >tr~in. and the effcct of ',","lIing 0'" this dependence. arc secn t" be reproduced by Ihe lhcory, Fi~ure 5.4 c"mparc. mulls from the con>I ..~i"ed·junctiOll Ihco,y with ".peri"",ntul resuhs· r"r muhia_.ial ,Ial", uf ~lr"in', The Ih"My is Sl:(:n 10 d"sely appruxima lc Ihe rxpc,imental rdaliunshlp' amung Ihe sp...><:ifi<.-d cla.lic f'e<: enc,gi<"S and Ihe principal extensiun ralius, Use of the Mooney_Fl i"lin relationship' wou ld gi,'e Ihe huriwnlal dashed lone ,huwn al Ihe lop uf the figure_ I'hanlo,n nel,,'urk re,uI1' wou ld al"" give" hor;zolll"II;",," Ihal ",,,ul,1 make li>c", eq ually "ns:uisf:ICto,y fo, c, p l ~inin g Ihc •• perin",nla' obsc,,'aliuns, S""", comparisons i,,"olving Ihc "onSI,,~i"cd-<:h"in Ihc"ry" arc giwn in figure 5,5"_ In thi, figure ,l hc mluccd rore.: fu, a "",urdl rubber nctwOfk;s .hown as ~ fun,;,ion of Ihe invers
""II
..
, •
~
...
-•" .. Z
~
•
"• . _
~2
•
•
•;; '.0 "•
• •
,
•
•
•
•
•
,
.ll'l'" s.~ Com""ri..,n of ""-""rime",,,1 and ,tIw""i<-. 1 r"'lults fo, n",ural rubb<, ,n pure shear .n~ pure sh<.. 'u pel'[>OSe!ell.ion. wllere I, and I, ar< pri''''i",,1 <,'<"ow ""ul" e.kul.led fron, li>c CO">l,"'ncd -jUDCti"" ,heory "i,h K ~ J '1.1 ..... of Illc IIth<wk ,"""Iural po""I\",ler "I.; 1'/2 .....,re .,bitrarily el\m.cn 'u ma'ch one <>I'<,ill'> o>f <.1<111"",,", r", pure ,hea, "nd ,hear ;"1"', p"••:d On """pk """"';0". ""i><",;,ely, rhe huri,,,,,,',,t d,,,h,,I TcDC .. for 100 MooOn_
, h,p',
52
STRUCT URES ANO PROPER TIES OF RUBBERLIKE NETWORI(S
.~
on
,-
"
on
;;;
.n
...
a
~
b
.,
o,le
0,'. 0 ,"
o.
0.'
••
"
.
••
~
."
••
-. ,
•l~ • • r S.S 11>< reduced force for a n" ural rubbor ne, ... or. '''' ''., a function of ,lie im'er!< e.l<:nsion ""i<>" '. Tftc cirde. ,how data pOin" obuincd fo' dilTo",nl pylil!hl 1991 American a..",lcal Socio:1Y.
Refe ren ces (I) Mumagh.n, F, I). f'i,,/"
"ow York,
1>",,,,,,,;,,,,,, of WI
1:'1~J1k
&>ii,l. John
W ilo~
&. Son.
I~SI.
c.:
(2) Truo«ldl, T oupin. R .• &.I •. T~ (;hwkal Fkld ~k.', Springor.Vetl.g: Be' lin . 1%0: Vol. III/ I. P) Fklry. !', J. 1'""", Faraday So<. 1961 . 51, 829. (4) 1'",k>a•• L. R. G . 1'''' Phpi.-s of l{uMn HIQ.• ,wil}" 3,d cd, Clarendon P..... Odor••I"",';on 10 .. r, !4). (1 4) " onlaine. F.; Noel. Monneli<, L.; Erman. 8. 1989. 22. JJS2 (>r< ",f, 13)
n"",.
,I..,
c.:
Mac,_",,",
6
Swelling of Networks
In the pn."ttding chapler. the $I.....,,-,ed &)'s\em (such lhat ",lvent molecules did not enler or leave Ihe 'I<,"'ork during dofomlalion). In this chapto" a more gcnerulthcnnodyoamic an"lysis will be given for the ca« wh.re the ne1'owrk- rolwnl sy,tenl will be rcgank<J as scm;open. In such systems. the solvent may emer Or leave the nCl,,'ork depending on lhe chcm i.,.~1 polenlia] of lhe SOI .... OI and the •• lenl of e general IMrrnodynam;c relation. for nClwork- rol"cm systems. followed by a d;>(,uss;o" of isolrollic , ...-.:lIing OJr nc1worh in Ihe second sectiun. Til;; lopi. h". alrcady Ix..,", 'reatoo in cia";'book,'·'. and II>< ....~der i. referred 10 lh.m for bru:kground infam,alian. In Ihis chapler. we discuss more ~nt impro,-erncnt< and "pproa.Ile,. and newer ex periment. ill Ihi. field. In the lhi,,! """,ti'm of the chapter. "''' will describe th" "fTeets of an exlernally applioo deformation on networks immersed in sol,·cnt. Again. 11K study of deformalioll of immersffi networks goes back !O apl'",ximalely Ihe mid.194&J·<. and only more recenl J.yclopm.n" wiUIK ind..ded in th is chapter. Also. we will consider in delail. in lhis chapler. the swel ling or non ionic networks only. The err""" of ionic groups on network cha ins are discussed in the following chapter in rdalion 10 criti<:al phenomena "nJ phase scpll rat ion in . ,,·olkn networks. We c..,ndude with" diSCUSSion of sorpl ion of linear and cyclic diluents inlO nelworks. Also c.wercd is their e. lract;on and. in Ihe case of Ihe cyelk moloculcs. th";r IraJlpin~ within Ihe net"·ork !1ructure.
6.1 Free Energy 01 a Swollen Network T he fr<:c energy ch,mgc Ll.A from s""U ing all amorphous undermmed nelwNk wilh a solvclll is gi'·en as I he Sum of Iwo Icrms: "'''. the fr<" ."ergy of mi,ing
"
5-4
STR UCTUR ES AND PROPE RTIES OF RUaaERLI KE NETWORKS il. A _ 6A ... ,
+ il.An
(6.1 )
T he c~p"'l>ion for t>A ..... is ",aolily obtained from the Jail;';'; theory of polymer solutions, ( Rigoro usly. ;t ;s the GibM free encrgy t>G"", Ihat should be u>Cd for Ihe mi.' ing "f the polyme •. instead of the Hclrnholt7. ffee ene'gy. T he differcn.cc is incons.cquemiaL howe"cr_) The result is'
il. , r... , = il.A"""b+ A ' '"' R'1'(~ l ln., ~- ~l ln', 1- xu, '::)
(62)
Here. t>A,...., and A~ denote the eombinat<>rial kod Ihe re,idual free energy. n, and a re Ihe mo!c numbers of sol"~nl and polymer. re\",,'Cti,ely. a nd " and I', are I"";r volume fra"tions. respeclively. In cq, (6.2). t>A«>n>b" kT{n , In 'I + H, In "1 ) is oblained from Ihe gcncrali'ed ideal mi. ing law·. The residual frec energy is A~ ~ XIl ] ' I ' ,,-he re Ihe quamily X is the dimensionless inloradio" parameter for the solvcnt_polymcc and i$. in general. a fune. tion of concemration. T he quantity kTX is cqualto the difference in energy of a sol""nl molttulc ImmCr1<:ol in pure pOl)"ner oomp.'n,d with a so"..,m molce,,1c in the pure Matc. T he ..,.;dual f"'" energy ha. acquired a ""~lr31 role in more rettnl studies of pOlymer;oI.'ent or pOlymer- polyme, miu ur('S bloc,use it~ COnttnlra_ tio~ and tcmpcrdture dC1"-'nc<:n ",ritlen for dilTerc nt models in Ihe previo". chapters. n.e discussion of . " "lling here ,",'ill be directed to Ihe wn_ strained.junctinn model. in gene",l. and will be given in lerm, of I~ fu nctions 8 , and D, (dcse.ibcd in Chapler J). which wt: wri le below [or convenic""":
n,
.y,'em.
~ ~ {k1'L{(~; -
,
I} + (/./0\8 , + D, - In (8 , + I ) - In (D, + I HI (6,3)
wl>ere I equales 1o x .)\ or z. An 3dvanlage of adopling Ihis general expression is Ih31 il simplifies readily inlO Ihe e.pression for the phantom nelwork I:>y equating Ihe lerms in the square bradct~ 10 "&-'ro_ liy ta kin g 8 , .. ~; _ I and D, .. O;n "'-1(6.3). On~ oblains Ihe e,pn.. ,ion for lhe affine model, T he , Ii p·,i"k and the eOnstrained·chain model' may also be dc'SCribemp"n~nl,. 1 _ (."I_,)I" E_ FOf uniaxial defOfmalion along the .,' direction. Ihe Iwo laterdl componcnts of lhe e"lension ratio in e<j . (6.4) become ~, = .\, ~ !'"I ',~ JI ' f2 '"' (.,'/",)"',,-11'. in which )' , _ -\.
SWELLING OF NETWORKS
55
0"", Ihe free energy of Ihe systc m is ddincd. sc,,,raJ uscful lhermodynamic and moxhanica l rel.tionships rna)' be ot>lained for the swolle" nel ..-ork. Relow. "" prescnl a few of lll"sc Ihal arc "[lcn ,,>Cd in dar-4elerilin8 and studying such maleri:.I •.
6 .2 The Solvent Ch emica l Pote ntial for aPl Isotrop;cal'V Swollen Network T he chemical pOlenliaL 01' , '" 1' , - I'?' of
,('A' _) iffl,
(6 5) T"
The quamil)' u, in lhe f,rsl line "f '"
(6PI ).., The faclor ,elalion':
(6,6)
X LII eq. (1).6) i. relaled 10 lhe inleraclion param.lc, X by lhe following 1
l),(R
X" :R1vJ" 11,;;0(1', .0 i)), .---a." v.)
{IU J
"' ~, t ~,", + \ )·l+ .. where th. second Ii"" of eq. (6,7) i. oblained by ditTerenlialing lhe Ihird lorm of eq. (6.2), T I>c th ird hne of "1/. (6 .7) repreStnlS lhe 1"<: pol}'mcr 'cfer~nce ;nlcradio" s;le modd' arc So"'e of Ihe lox hni que~ by which lhc illl,me'; '", pammcter III.y be ,ei"ed 10 m"l<."Cula' von· abies in a polymer ..... I'·em S)"l"III The cl'''ite p"rl of Ill< ....-aLl',,,1 dlcmi",,1 I'
56 STR UCTURES AND PROPERTIES OF RUBBERLIKE NETWOR KS
(aI',)" .. (a aA,,) (") 8). r, 1m, r
('0',) (31-" ""0" ")
- ~ r,
The first faClor on tilt right.hand side of C<j. (6.S) is obtair.c
(ap,)" ..
.
(Da~1
Rg
r,"
~: [I+ ~ K().)j
(6.9)
'11>< second factQr 0" the right_hand side ofcq . (6.S) is obtained first by wri,ins).
). .. c;;.)
t/l ..
e'
V,
ttl',,,})
III
(6,10)
when: V, is 'he moiar ~ol~me of soh..,nt, and then differentiating wi,h respect to ") L V, I V, ( 'm, r= 3 vl" 0't /' ~ 30''\}
(6
II)
Suhstitu ting C<j'. (6. 11) and «I. (6.10) into «I. (6.9) kads to the reduced soh'ent chen,ical potential due 10 lhe tiaSli<: activity of ,h. networ~'
(aj"),, =
~ [I+ ~ K('lj
(612)
when:: K('l is given by «I. ( S, 13), and
(613) Here, M , is the molecular weight of a network chain, p i. the network density and the quanlity x, i. the number of rcpo:at unilS of lh. nelwork chain, the ,'olumc of each being taken 'IS «1",,1'0 tho volume of a solvent molecuk. Subslituting C<js. (6.6). (6 .7), and (6.12) into «I. (6.5) leads '0 the total redUttd chemical potential of so)vent in a ,wollen network : (6. 14) Whe" lhe nc''''Qrk is ;nllnerscd in sol" onl , il swells by taking up !KIlo.,,1 unlil an « Iuilibrium is reached be,W«" Ihe e"tropic force.; thaI encourage Ih<: S(J lvrnt molo<:ul., 10 mi. into th<: net ....'ork. and the clastic forces of tl>c strctched chain. thaI tend to prO"onl r urlh~r ,"'eliing. At condilion. of equilibrium, the no,i"ity '" of soh'cnl C<j"alc'S 10 unitY anJ Ihe S(Jkcn, chemical potential C<juat", to >cr.,. The "cti"ily " , w;11 lhu. "" taken as Unil)' in the rollowing
SW ELLI NG OF N ETWORKS
57
The solution of C<J- (6.14) for "l gwes Ih. C<Juilibrium degree of 'wclling AII .. nali~cly. solving 0'1, (6.14) for fJ ~nd u,ing lhe exp",ssion for fJ given by C<J. (6. IJ) lead, 10 die moleeui"r weight of a nelwork chain betw,.""n cros,-link. ~,
(6.IS) ",-her(; p denoiCS the network den,i ly during fonnation, Equation (6. 15) i, " general .xpressiolt for a perfect net"'"Ork of functiona lit y <>_ It i. also gc""rdl wilh ",S"rd to Ihe funClion 1\(-\ ) being left "nsJlI."d. By proper choice of Ihis function. one may "dol" ony modd ranging from Ihe phantom nelwor k model 10 lhe con,train,.,J·junction model II) Ihe slip.lin k model, a, described in chapler 5. Below. we give ,he e.plicit expr,,-.. ion for Iwo special caW" ( I) a I.,raf"".."iooal phanl"'" network. and (2) an amne "e,work_ I'or 'he phantom nc,wo,k model . K(-I} '" 0 and C<j . (6.15) lake, the form
M,"
~
"iI PV , (::..) '" In t i
,
(6,16)
' 1) + ' ) +X"i
For 'he affine ne twork model. K (A) _ I _ A I. "nd Pv t V"
M'=-- In(i
1/'( ",tl' - ~~ I ") - '> : -;'t:;c;:'·l)+ "l+;;f"
(6_1 1)
f."
Equal ion (6.17) i. Ihe well-known Flory- Reh" •• equa.ion ". widely usW determining the crO>.S-link density of a !lClwork. As >JlI."prialc_ 6.3 Thermodynamics of a Network Uniaxially Strfj!chlld in Solvllnt When a nel "·ork at "'"elling cquilibt inm i. ""."lched "nia.ially, in e, cc", so".... nt. to a f,xrd ,,_" cn.;on ratio A. rquilibriu", ,,·ill be n,es,ablishc-d I'll' the uptake of ~".... nl by the ne'work Since Ihe len gth i_< Ii_.rd. , ,,cUing will ta ke pia", along the lateral direction" In this sec' ion. we giV
.'"It"""
58 STR UCT URES AN O PR OPE RTIE S OF RUB BERLI KE NETWO FI KS
), .. <:IV, ' I) )', "' ),l '"
The reduced 50Ivent
c~cmical
(6.18 )
vi/' (.')-'fl,,-'"
polenl;,,1 at constant
Icngt~
i. (6.19)
Irad;ng In
il.i', ~ In (1 -
,'j)~. •j + xli +tl)'j'; [l
+z
K (),,)] =
0
(6.W )
Tbc d stal. is parlly due 10 the soh"nl cnlOring Ihe ')"110m upon Ihe appl;c"';"n "r the len sile r"ott. a nd p;
(6.21 )
The pressure r may be idcmifoed wilh Ihe negali~e of lhe Sire.. along Ihe Ir"ns,-eriC dirtttions. T he finot term in «t. (6.21). designated '1-. represents the coeffi. dent for the ~o lume change of the 'y'tem "I fixe
.,- (m" ') -Q\ n ),
T~ .. ,
- ),,,~
(0,)
(6.22)
-
11)'
T, .-.. ,
when:
",- ~I (") or T.'",
(6.23)
i. Ihe isotherm al compressibility"t fI.ed Ic"glh . The """ond lerm in «t. (6.21) is tl\<: contrihution from the clt"ngc in composit,on and "alljshes for do«d by 'I" i. deri,·cd from the chemical pol.nlial of soh'em a •
., - (~) ,
On ,
•
(~) r,,,,,
r ,) il ln ),
("",,) T~~, / ,(0'",) i)ol, T~," iIIn),
(6.24)
"
The o,motic compressibility .... i. ,i mpl)' Ihe inwriC orthe bul k modulus K•• and is defined as
. '("") 1' Y,
1:..''''''.' ~>'-;:
(6.2 ~) , ~)
SWELLING OF NETWOR KS
59
whert: .. ... - til" / V, is Ihc .."molie p ....'«Ul'\" uamcl~> Ihe e,tr. pressure rCamc nloe in'ide ,md ou"ide Ihe n.... work .. Su"',ituting cq . (6.15) into cq. (6.24) yield s (6,16) Equation (6.25) gi,'cs the bul k ",odulu.", r,.<:d length. l'
-, K, , = I<..
11.1'[
or
" , - 2.A - J\ ,.,' + /J (:D A~ (z) Kpj)J
~-- 1I,-1 - . ,
"
(6,27)
when: K(Al ) - JK(Aj)/VAj. In mOSI •.• ~rim.nlal work. Ihc o;;n\o(;c wmptcssil:>il ily is measored in the ''''ollen bm undiS!orloo ","(e. Ih~ 1 i•. " = I. Thi, i, con.'cnicnl ly achicwd by dCS" 'clling Ihe n.,work by br inging Ihe s"'olle,, sySlcm inlo conlaCI wilh a ""Iu _ lion of known aCI;v ll)" Ihrough a semipermeable membmuc " . The line"r dilalion mlio Alhen A _ A, .. A, _ A, '" {'1<1, , )'1'. T he expression for Ihe 001_ "ent chemical polcmial si,-cn by <~. (6 14) has 10 be used under Ihese circum Slanccs. The ... sulling .'pr-cssion is'
bccoJ,,,,.
(6,28)
T he o;;",oti. eomprc-ssibilily .,f a n",work dcpcllds slto ngly on th. in'ocae l; on para meter, as is seen in figure 6.1 (Iaken from Ihc lilerollure " ). where Ihe con· strainM_junction modd was adoplrd wi,b fi '" 5" II} . , 1< " 1~1}. and RT / 1', = 25 N mm I, T ho solid curve show' Ihe result from C<J . (6. 28) for " .. as a funclion of \ ,. where X> .. 0 . A croSSOver from high compressi bilities for "., < O,S 10 vcry low eompres;ibiliti.s for ~' J > 0, 5 is clea rly seen. T he dashed cu"-c is oblain<:d fo"" .. 0,)81. a ' pcx;ial value chosen ,,, oblain a dis<"O" ~i nu ily in ",molic oompre"ibilily when .\ , = O.S. Inasmuch as " ..' i. proponionallo (he $NOnd der;,·.t;,·< of Ihe cias(ic fr<x energy. Ih e poim of di sco",h,ui,), in figure 6.1 ma y be regarded as (""responding 10 a spinodal point. This will he diwu,scd fUrlher in chapler 7. Tho bulk compres,;bilil)" of a s"",llon nel"'ork i; also sc nsilivcly dependenl on Ihe ikgr~'e of ~,,ccausc of changes;" 'he X p'or.mClcr. a, well ,,, bee.u..: of chall!!"; in 1he d,·g ....'C nf ,·tos._ link ing. Fig" ... 6,2 .; h " ".,. tc, ,,h, of <,pcri","n!> on poly(v inyl aco,"le) nClwork< of ditTer.n , <"'''_l ink 'kn sil ies. , ,,,,,II"n in ace1<..""
60 STflUCTU RES AND PflO PERTI ES OF RUBB ERLI KE NETWOR KS
10"
N
c
E
,.' \.
Z
• 0
~
,.' Ill "
X. _o
---~-~~
\_-- ...
0.'
-._.0.'
6.1 The <»mOlie compr<$Bibilily of. Il
>
•
N
>
-1.00 1 " 2)
6. 1 Resul" of "penmen" on poIYl\'inyl .< .....IC) ...., 1"0.... of dilTCTeo!)". Cirreocnl dat. of Zrinyi. oJ tl<".koy". The solid CUIV< i. obtoinro frum «I. (6.2 S) fo •• ph. nl"", nol_ t"i~ • ••
work. wilh X _ 0.4l7 +0.1.,."
6. 4 Ela st ic Acti vity of a Sw ollen Netwo.k T he difference belw<:c" tile chemical polenlial of a swollen network and a n uncr",~.linl:r:d bu lk polymer ~lthc same volume r.M·li o n " sho"", lhe cl~Slic con · [,ibution of lile Chains. The elaslic cOR1.i bulion of Inc nct"'M k '" the ellerllical polential of thc 5Oh'cnl is gi",n b)' eq. (1'> . 12). The aeli"ity a , of thc '''''''''Ill i. gi'-en
SW ELLI N G OF NETWOR KS
>.~
.
61
K =20 00 0
'"• ~
10
"
0 ,~
m
c
';i
,.. •
0
0
~
~
0
,.
>.00
0
0
,. ,. ,.. ,. " a," v·,
0
0
"
t13
H ~ II" 6.3 Activity fl • • nd for ,he sa"", polym<' In lhe "nC<"pIlh. r;ghHnost one
.1,'·,
"b.. ine
,n''''''''''''''''I$, Thi, rWtt.m""
"'=
p<>int "'... obuine
equilibrium ,wellin! mea.u""",,,"' .. The ri&h,.h. nd or«l in the figll"'_
Ihrough the relation In", .. til' t, If "Ui is the aCli,ily of the solvent in Ihe net· work and Uli. is its activity in Ihe un..:ros,-li"ked Ii""., 1>oIymtr 01 lhe ""me ",-,ncentratio•. lhen eq . (6. 14) may be ",nile" ti(ln", ) .. ln ( "'") .P [,
"11.
,\
(6,29)
The aCli"ity difTeren ..'CS ti(ln", ) h'" been measured for the 'lSleln rubber-ben zen." a nd ror poly(dimelhyl"loxane) In various ""1,,,nIS'" _ Releva nt c>peri· arc given in figure 6.3 by lhe opcn circles. The menIa l d"ta from Gee el experimenlal points .how a sharp maximum_ T hi. fealure i. also !;<'C n in the subwquenl e.'peri",,""," of Eichinger el aL " ". performed with more ",,",ura1e instrumenlS, Although lhe lheorc,;.:,,1 eu"", show m,,,ilna, Ihey are muc~ Ie.. pronouncro and a' higl>er dilation, Ihon IhoSt" given ~y "'perimcnl, The SOure<: of 'he diocrepOnd 10 c.,pcri. men,.1 Obsct1.'a l;Ons ha, nol yel be..,n cSlabli,bc
.1."
62
STRUCTURES AND PROPERTIES OF RUBBERLI KE NETWORKS
6.5 More Recent Tre atments o f Netwo rk SweUing lntcrprelal io~ of swetti~g dala in lerms of Ihe conmained·junction model has led 10 the conclusion" Ihal a high I)' s""olten syslem may be Irc,ned .,,.nliall)· as a phanlom nelwor •. Ncu".:>n scanering cxpcrimen« by llaSlide el al.~ have Ihown Ih.1 Ihe transfann.lion of eha in dimension. in ,wollen nClwOfks gives results dosc to. and somelimes below. Ihose pr.:dicled by Ihe phantom ""twork model. Comparison of neulron scallering dala wilh prediclions of Ihe constrained'junelion model has indeed shown " Ihal Ihe nel"'or. eh~ins deform less Iha n is pre. dieted for unswollen networks. In orMr 10 .<Xount for Ihe low degrees of ddonMlion of 111<: chains. a Iheory of d isinlcrspc",ion of netwo rk. has Ilttn proposed by Il:tslidc el al."'. This approach is along Ihe lines of Ih~ c' Ihw ..... m proposed hy de (knnes'. a<xordin~ 10 which Ihe swoUen coils e~dudc .:.ch oilier from a ,'olume del ermined by Ihe cr",,·link points. and Il,e chains arc essentially forced inlO conlact al these poinls. The ideas hve b<.'Cn discuSS<.". A tre.tment of posilively ionizc of polyelectrolyte gels ha s been con· ,id.r<;tress induces" nemalic order wilhin Ihc network, and (2) bdow Ihc lransilion l,mperalu," of the solwnl. Ihe gel colla","" 10 a deniC slale and the so""nl i. eeentra.~ on .tudies of Ihe mochanica l propcnies (modul u, and I'oi,son', ralio) of imm.~ and deformed networks. o,molic .wellins and de,welling "f nelwo,h, and ,<",,,II' angle neutron and '·"'''Y "".tlering front , "mltcn nCI"·ork,.
SWELLING Of N ETWOR KS
63
6.6 Sorption and Extraction of Diluents The 0'" ufmudel nctworh lui, gi,'cn a 8",at deal of useful information leading to " bener under, landi n8 of the pro l",rtie;; of cI~'tomcrk "'"leri~l. al a molecular ""vel. Much of this has 10 do with mechanical prorcr1ics: for e.• ampie. the evaluation of the molecular thcoric.. th" in''''ligation of 'he eff""'ls of nc,w(>Tk chain· length di,tribution , and tbe eff~I' or nctl"ork imperfections sueh liS dangling chains on uhimate .'trc nglh and maximum cxtcnsibililY. The present application i. di fferent in thai il in,'ol'es ,well ing as the claSl<>meric defonnalion. and .rccifocally addrc,>e' qllC"io ns related 10 the rale al which diluent a bsorbs into II network of known and controlled " pore size," and how rapidly i, •• " subsequently be eX lracled "-'"". The "'~Ie of absorption can be used 10 e.timate diffusion c<:>elf",icnl~. as can be the ralc of c"ra"l,o,,- e,.t .... ctio n ef(,e,cnck, eart he used lu oblain infonnalion on the extents of reaction in the end.linklng p""",dure used 10 form th. nelwork. and the deg= to which lhe e. tt'~ctabk chai n, arc en tangled with the ndwor k eba ins tlult iml>ec<SS
6.6, I Line", Diluent' 0 ". way of obtaining" nelwork .wollen "'ith d ilucnt is to form the network in a first step. a nd Ihen to absorb an unrcaCliw diluent into it . Ahernati>'Cly. th,' ""me diluent can be mi_1h Iype' "f nctworks can then be e.tracled to determine the ea", wilh which the ..ari"". diluents can he ,."moved. as a (unClio" of .II. and ,II,. S"me typkal resuhs ob'airu; as a funeli"n of .If, are shown in figure 6.4" . and with =pecl .0 M« in fi gure 6.5". The case wah "'hich a diluenl '''!tId be remo,'''';! from a nctwork was found 10 decTCa.>c with inc ...","" in M . and ,,;th cd t<> e;.t imate v;, j"c. of the oIiff",io., coefficient V. cither in sorption or in c\tradion, Such c"emden" Can also be estimated ming
• L _____.'.',_ ___ _ .'.:,_____.'.:,_-'
IQ··'.... I;S"m·' ,'OMS I>OIwon., ",Ia,ive to the amount
fi,u .. I>A Amount of diluent .,Iracled f",,,, origi ... Uy P""'""t .• hown a. 0 fu"<:Iion of til< >qua,. <001 of the <Xlroction limo (n<>rm.lizcd by , ...hick""", .... 'h. samplc)"'. In the .. ill"mal;'" ,,,,ults. at room tom· 1":011",". the diluent was pn;«nl during ne''''ork fOmlalion and the ..,Ivenl employed r", ,be ""raclion "'.. lol""ne. The dilU<1l1 had. m<>l«ol., "'
%00,
1 . . . ..
li 5 Ti .... Jof'.""lc.",. of lh, "",igl" ,,.01ion ~'. of dim
'''~A<:1.d
«, _
"'
SWELLING OF NETWO RK S 65
--"~ ~- - ~ - - - -- - ~- - _ ._-
•.
::_----:-
01
-- --- -- ------.:. -
"
.
,
•
",\-____,.:-____,.,____,.,___,"_J '0-0 M, ~'jlt1l'" 6.6 DitTc",""'" in c,,,acli<>" cfflciency f..,.. I~e '''''' tn... of PDMS 1IC'''urk •. a. dc'amil>«l {TOm reinl" .""b a. ,OOse sho,,'n in r.g"", 6.S; p«1),mtr end·linked ..i'h
nc,works a, .welling "!Iuilibrium and ci,her i""rea.ing 'he dcgr"" of s"'elling by "re,ching the nctwork 6 or decreasing th. degree of ""elhog by compressing ,(. It is also possible 10 usc pulsed gradi.n, nuckar magnClic rc.... nanee ,NMR) 10 estimate diffusion oodlkicn!s" . In an)" cas<. ,her. is particular interes, in th. difference. in v.lues obtained for linear chains and for Ihe ~-yciic, of ,h. same mok:.:ula, weight, as describe<.! in ~tion 6,6.) . 6.6.2 Brallcbe<J Dill",nt, The eXlraCli<)1I <)f dilu.nl, ,hat are branched has considerable polential impor. tance, For example, in the prepardlio" of network, by radiation cross linking. tllere are pre.'Urnably large numbers of soluble rn"Io<"le\ f"rme<J 'hal are hiJ!.hly branobM (be<:aul'< of 'he cs,",ntially unconlrolle<J (om,alion and coupling of freeradical sp<.'Cic,j"J. ,\ n
66
STRUCTURES A N D PROPERTIES Of RUBBERLIKE NETWOR KS
deliniti,'" e,periTtl<;nl$ could b<: carried out uiing model branc~ c<1 molc(:ulcs which ha'" been pttpiln-d by conlrolled syn thetic methods"'. and then purified and charac1cri7.cd by sepa ration te.hniqucs such as gel ""rmcation chromatography".
6.6.3 Cyclic Diluent, [)iluen" crm,iSling of cyclic molecul .. have """" cxtcnsivd)' studied with regard to diIT".;on. in part bec~uS" of Ihe llcnermion of such 'pecic, in muny polymer_ izalion''''·''. Aga in. , uch cyclics can be sorbod into lhe network s after Ihe end_ linking process. or they can be p",,,,nt during the process. In the lauer Case. $(1m" are perm~nently trapped. a~ will be d"",ribed separately la'.r. making difficult Ihe calcul.tion of diITusion coefflcienls {) from Ihe ,,'traclion dala. In Ih. former ca",. is ",,,dily calculable. I'or bolh the linear .nd cyclic chains. /J in~r<:a ses wilh dettasc in M " or w;lh iner<:ase;n .II .. as C,pecled. The cyclics ha,·c ,·.Iue.
00-..",,,,. {)
6.7 Trapping of CVclic$ wit hin Network Siructures 6.7. 1 Experimenlal R"'uh. As already menlione.!. if cyclic molecule. are p"""nl during Ihc end_linking of Chains. "'>Ole of Iht>o will he Impped beca use of having been threaded by Ih~ linear chain, prior to Ihc laller bting chemkally bonded ;nlO Ihe n!imaie<1 from sol,,,nl .x"aClion SIUdies. SS>ibly significant increases in I"w-deformalion modulus have, in faci. I>..n ob
SWElLING OF NETW ORK S
67
'00
•• •••• >-
~
~
.. • u
>
u
~
" 240
2110
DP (cyclic) ~i~u .. 6.7
fur.iment,,1 ( 0 ) and theoretical t,"ppin~ efficiencies. u'in~ an MrntJ/c'u/<,. lG. COI')'righl 19\17 Arne""'" Che,nical Society.
6.7 .2 ThM.clica l Inlerprel.li,,,,, The lrapping pr""""" has been .inwtll.d u,ing Mom. Carlo mel hod. based on a rolalion~1 isomeric "ale model'" for lhe cydtc chains". The ftn;! ,Iep "'"' gen_ eration of a ,ullieicm number of cyclic ,'hai", h.wi"g Ihe hOI''"" geometric fca_ lu'e. and conforma,ion,,1 p.dcn;nCC$. and Ihe d.:.i,,;d degree of rolyrncrization Thi. was done for a large number of linear ch ain~. using the method, of matrix multiplica,ion .Iand ard 10 'ol"liona\ isomeric ."". l""o.yM.l' . Up", thi, [1Oinl. lhe melhod i. idenlical wjth Ihal u>Cd 10 gener.le di"ribu, ion funelion, for a non_ Gaussian approach 10 rubberlike d'_lticil),. a. d=ribe in chaplcr 8_ In lhe prescnl applica'ion. ho,,'e,'cr. a chain h."inJl. an cnd_Io-end di"ancc R less than a 'h""hold '-al"" Ro was comidcred '0 be " cyclic, TI><: scheme is illu.,,.'<.><1 in fig ure 6.8 " fQT a chain labeled 0 alone end '1,\(1 N at the 011><: •. The coordinate. of each "cyclic" chain Ih u. gcnerau:d "-ere >10.-..><1 for detailed e,aminalion of tl><: chain', configuTOlional cha ....cleriSlics. rar,icularl)" lhe ,ilc of Ihe "hole" i, would prescnlto. threading linear chain . Of particular imeresl is Ihe sire oflhis hole in comparison wilh Ihe koo"'n diame'er. 7- 8,\. of II><: I'DMS chain. The qualily of Ihe selS of cyd,e confom,alions Ihu; gener'dled was lesled by cvalua'ing Ihe mc:,n -"l"are unrc"",bo..-d ".dius of gyra lion (I l,. for each ring si ... " . ",ing ,I><: malrix multiplica'ion melhod ..... '. The same quanlity was Clymcri7;tlion_ The mult •. in lern" of 11,e lo~"ri'hmic dependcn"" of (; )0 on Ihe degree o[ puly",cri~-'Hio". are shnwn in fi~ u re 6.9. The linea' relalwn,hips oh",,,'ed eo"[,,m previous re",llS for ;hQTtcr PD:"' S chain" T h,· r.lIio of
68
STRUCTURES AND PROPERTIES OF RUBBERLIKE NETWORKS
1!'! I SI801_ Cy~lIc n , "" 6.8 Scl>oma,ic o>f ,he cri ,mon chain" .
(Of
"c'ydi""io"" of • i"""",,«1 Monic C.. lo
cyclic< i. shown ill figure 6. 10. and is "",n 1(> approach a v"luc of 2 al large degrees of polymeri>;alion. as expeclC<J u T ile lrapping proccss "'as sim ulaled using tWo model,", tile more r~al istic of which is described here. As shown schematica lly it> figure 6 .11. a '0"" ,,'a' ""_ I give a good rep'esc" 'al ion of the e.. ""rimeni,1 ". ppin g cfficicnM. It is abo possible 10 interpret these experimenta l !"\."$ult , in lerm. of a po"'.' law for the trapping probabilities and fractal C'05' seclion, for Ihe PLJMS chain,u
• ,
A
"V• <
•
• • •,
,
•
In ( OP)
,
•
f """, 6.9 L..oprilhm;o rop"""nt",ion of the d
SWELLING OF NETWOR KS 69
.. --, , ...
0
A
"V•
••• ----<'-----------------------------------• • • • A •• • "• V •• • . ~
.~
..
~
1.0/ 0P
.i ~ "r<
6.10 R.. io or lhe m<,n""lu.", un"<,,urb«! ",diu, of pr.,ion of lin,,"r 10 <)ocl"
"DMS as. f"lI0 in"", .. dcgt .. of ~ym<'m"ion' . Roprinl<:d wil" pmni.· ";OD
from DeBolt. L. C . • nd M .. k. J. E. (1984). M""'QmQkrok••
Z(I.
Copyrighl 19\11
American Cb
fta.r< 6. lt S
""th,,, • <)"et" " •• " unit Cree of oonfticu. ,hu, POll'll"" "' .he c)"elk ' 0 1>0 ,... ppcd . Ileprin'..! "'i." ponn,";"n from DeBolt. L C . • "" M",k . J. E. (1984). Z(I. Copy,i£h. 19\17 Amenc..n Cb<mic.l Soci<.y,
M~rromok<~k,.
6,7.3 Olympic Netwo rk1 II m"y ~I"', be: t",>sible to usc ,hb ,""
70
S T RUCTURES AND PROPERTIES OF RUBBE RL IKE NETWOAKS
"Olympic" or "chain-mail" nell..'or k"". Such maleriJls would be very interesting IOpologi""II}', a,..j ..." uld 00 similar. in some ""f><'CIS. '" Ihc ClUen"nc"!; and rolaxancs Ihal h .." long been of intercsi 10 a varie1y or sciemist. and malhcmalioi"ns"" ~ " . Comp ulo, simulations". in parti~ular. <'(>uk! 00 '''ry u",(ul wi,h regard 10 eSlObh,hing Ihe condi1ions mosl likely 10 produ"" 1hese no,,,1 structu res,
References (I) Flory. P,}, PriMipks <1" PQ/p'''' CM"'islry. Co,,,,,11 Un;"'or.ily Press: Uhac.. NY. 1953, (2) T",lo,u. L, R. G. TM P~},.ks <1" R.M.>, f;iwlldIY. Jrd «:I. O ••• t>. IIhac •• NY . 1953, "'l . (10) on p. 502. (?) I'lory. I'. J. D;,04I. r",,,,/ay $or. 1970. 49. 7 (8) de G. Cornell Uni;'~rSi,y PreMo t,hac •• NY. 1919, (9) Sch~>
(2 1) No.""r1l<"r. N, 1\,: Eichioscr. Il. E.
M"'~ul<-,
1988. 21,.\060.
(22) !'lory. 1'. l. M"'''' ''''''fflIw, 197"!. 12. 119, (2l) lfall. R, c.. 1'.<1",.rd •• S. F. PoJy",,,, 1919. 20. US7. (24) B.II. R, C.; ~:d"'·,rd •. S. F. ,1/oc,omoJe1... F. M~c.l" 19%. 29 .
..
(1) 11 <>01""". H. II .: fLok
lJ. IQ%. (:(2) Ild",n. S.: It"""",. II. It .: 81>"'h. It . W. : I'rdu,n"'. J. M. J. {',.. .... I'h)'• . 1'190.
91. 2061
SWELLING OF NETWOR KS
71
(l3) lt arl.oJ. R. S.: " rud·homme. R. K .. Ed< I'<JJ,"<"I«/rol,·" (;,,1,. Amelian Cb<mica l S,,-. pm;-",. Sci. I9\1J, 109. 123. (36) l'!Iilippov •• O. E,; Pi10. 195. (49) II«h •• A. M ': Ilorkay. F .. (irk.y. f, ; bi"ri. M.; Geissler. E. ; lI",bl. i\ , M.: Pr"""I, 1'. r"ly",,' 19'91. 32. 8JS. (S I) f!orkay, F ,; lI"'hl . A. M .• Moliam. S.; Gci"ler. 10, ; Ro""ie. i\ . R . .l!acromokckh>3 19\11. ~4. 211% (S2) Z,inyi. M.: 11..,. ••. J. ; Itorkay. F . .If~ r"""okc"t., 19\13. 2~ . J697. (53) Horby. F., 8"rchord. W., G, 19'93. 26. 1:!%, (54) lIorb y. I' .• 8"rcb.,d. W,; lIech,. i\ . M" Ge;.,.lcr. E, Macromokck'~' 1'/93. 26. 3375. (SS) fl «h(, i\, M : SI.""'y. fl . R.: ~ ..k,. E.: I l or k .~ . F.: Zn"),i. M l'oiJ"l'" em",,,",,,. 1993.31.11194, (56) Gci"Ie', L Ho." Y. F,; Hoch •. A. ~1. Ph .... II... 1... 11 . 1'/93. 11. (>.15 (57) Mar\; . J. E.• Zh.ng. 7_· M, J. /'01,-~,. S'-""', Ph,•. Ed. 1983.21 . 1971. (58) Garrido. L.: Ma r\; . 1. E. J. P,.!!,m. Sci. . 1'"1),",, I'h)'• . Ed. 19 ~ 5. 23. 1933. (59) Ma tI:, J. E. J . Appl. PQ!,.",. Sd .. S,I""'I'. 1\11\9.44.20'}, (60) Ma,... n, j ,; Leekf'<. ~ ,: Galandri •• N.; G. fur. I'ol)'m, J, 1995. 31. 8(13. (6 1) OA"', M. II.. On.rao. K.; Erman. 8, J, 1'01,.,... Sd.• r ill,.",. I'h,-" fd. 1990.28.
,,,,j.,,,,,.
n
CO";".,.,.
I'm . (62) Ganido. L,; Mar\; , J. E.; i\c\;enn,o. J. L.. Kon,..)'. 11. , i\ J. Pol),,,,, .'in. I'ulpfl. Ph)'" I:d. 1~~8. 26. 2367. (63) Dole. M __ Ed . 'n ". Radi,,,;,,,, Ch<mei",' ,if .I/"",,,,,,,,,,",'"b. Academic Pre»: Ne ... Y<>r\;. 1971: Yol<. I . ,HI 2. (M ) Pep!",'. N. A.: u nger. R. ~;mc~ IW4. 263.1115. (65) Co"", ..",)" W. W, I" I'hpjr~II'rop""~,, 4 1'01)'~"",,. J. E- Mark. A. h .. nbcrg. W. W. G raco>k)'. I.. M."ddk.rn. Ii. T. s..mul,' i.) . I.. Koenig •• r>, An""",,,n Chom"'al S.>Cloly; W.. h"'g'''" n c. I~J. p, 91, (66) I' "",he'.) M J. SCli" ... 19\14. 263. 171 1) (~7) Tom.Ii •. n. "'. S<'i. A",. I'N~. 1721~). bl
l.",
(6S) Rempp. P.' I' A{"",-m. Symp. 1992.62. 213. (~) fried. J. R. f'oI,mn Scklt<. mid T..,.hno/cI}', P",n,i", H.II: Engk..-ood Oiff• • Nl. ,~,
.-.ci."""
eM) Odian . U . P,i""' p/tJ cf PoI,.."",i:al;c" , 3rt! ed . Wiley·!n, • N.... York. 19\11 . (71) !\elnlyen. J. 1\. In S;Jox"",' P'>IJ'_'$, S. J, 0 • ....," and I . A. S<mt~n. 1'-<1 •. p"'"'i« lI.n , Englewood OilT" NJ, 1993; p, 13~. (72) G .. rido. 1_. Mark. J. E; CIa,,,,,n. S, J .. Scmlyen. J, i\ . PoI,..H. C""""un. 1984. 25. 218. (73) G.rrido. L ; Mark. J. E ; O • S. J.; Scr"lycn. I, i\. PoI,'n,. ClimItIun. 1985. 26.
".
....,n.
(74) Garrido. I..; Mark. J. E.: Oa...,n. S. J.; Scmlyen.
(15) (76) (77) (18)
"
j,
i\. PoI,'m. C""mlun.
1~8S.
2b.
CIa""n, S. J.; Mark. J. E.: Scml)'tn, J. A. Pol' ..... C""""",,, 19S6. 27. 244,
CO,,,,,,",,,
Clar=n. S. J.: Mark. J. E.: Scrnlyen. J, A. Pol,..... 1987.28.151. Ikllo!!. L C: Mark. J. E. Mac,omolHuk. 1984, :roo 2369. l')'\io. T. I.: f ri",b, It . l.; Scrnl)-.n. J. A.: O.""n. S. J.: M.rk, J. E. ,. Polym Sri .. CI.,-m. Ed. 1981. 25. 2503. (79) Hu.ns. W.: Fri",b. It . t .; II" •. Y.; Scrnlyen. J. A. J. Poii'm. Se;" Pol"",. Cht",. &/, 1990.26.1807, (80) Flory. P. J. S'Qli"ic"1 M O'rI,,,,,k. of Cltain MoIffu1O'3. !o1<.-..:i.""': Now York.
p,,,,..,,.
,~ .
(81) M'llie<, W L: Suter, U. W. C""/M_,.,.."ITIrror}, 0/ LargO' M,,",,""'• . Wiley' r-,..... York. 1994 (81) Ca ...... E. F. J . PoI,-",. & 1" p"" A 1%5.3.605 (83) Gali • ..",oo. V.; Eichinger. R E. Pol}·.... ( '",,"""", 1981.28. 182. (8-1) Mar •• J, E,: Erman. B. RuMtdik.. E!,/Slic-ir},. A MokI"I". P,u".,T, Wiky· In,<'><;.""': No,,' York, 1988. (8S) Fri!lCh . H, L . W._rman. Ii. J. Am. C~m. So<-, 1961 . 83. 3789. (86) Callahan. D., Frisch, 1\. L.: Klempner . I). Pol)''''' /:n8' & i. 1975. 15. 10. (8 1) Rigbi, Z.: Mat., J. E. J. Po/i'm, Sci .. 1'01>,",. Phy•. FJI. 1986. 24. 443 ( !Ill) ClaIWn. S. J. : Wonl!. Z.: Mork. J. E. J, /""'8. 0'1'''''''''''''' f'oIym. 1991 . 1.223. (89) I"'al., !'-; Oh,,".i. T, J. PoI)m, & 1.. Poly'" I'lIy• . fj/. 199), 31, 441. (90) ~· ri "' h. fI, l.. /'10k' J, C~m, 1'193. 17.697. (91) Ma,'. J. E. 10'"", J. CMm. I99J. 17. 70l. (92) Wood. B. R., Scml~n. l , A.: Hodge. P. Pol,....... 19\14. J5. 1542. (93) Gi""'n. It W.; IIh",,b, M. C ; IOn&c". 1'. 1', I'rot. Pol, ..... S
7
Critical Phenomena and Phase Transitions in Gels
Th. term "gel"" h,,, b«n usc,J in a wide variety of ....,,,,c.... and Ih.,.., have I",en difficuhics in ",achillS an all-indusivc. ,,'orkable defonition for i,' ,2 , Perhars ,!Ie simplest wa y tQ pr~ is to liS!
clastic bod)', bul ,."crall)' with. '-CTy small modulus. Ifit d~s show plaslic flow , then Ihi. occurs ab",,<, ~ Ihn'Shold valu.: of Ihe sims. with full =<>"rability below thi. limit I! lypically con';." of two or mon: romp'Oluon. mOr<" Ihan IhousanMol,t wh." immersed;n II suilabk: soh" nl The eXlenl \0 which , uch a ""Iwork will ~wcll depend' spedf""ally nOI only on lite dcgree of cros,-linking, bUI also on Itt.: ill1Cr~Clions belween the ch~ ; ", and the ...,1>'onl',I,', While Ihe dege« of ,'m.,-linking i, eSlablishc-d during thc p.ep.r~lion of" nel"o.k, Ihc extenl of Ihe inleracl;on of chains and sol"enl may be modified as desired , and thcrefor< lhe Mgrtt of swelling may be conlrolloo. A gel can be made I(} ,well (}r shrink continuou,ly by changing lhe quality of the S<)h'Cnl wilh which il is in conlact. ,\lte.nalivd)" il may go Ihrough trilical condition. and, in litct, can exhihit pha"" 'mMiti"n" depending on the \)'pe of the polymer-solvent inlcr4clion and Ihe exlcnt of cross· lin king, T he discrele s.hrink· age of Ihe gel. by changing Ihe polymer-oolvcnt interaction parameter, is a .oh,m~ pha..- I"m lition 'imil"' 10 the ga ...!i'luid lra nsition of a MnJcn,ing ga~. The pos>ibilily of sllCh ph" .. "ansitiom " 'as, nOlably. firsl JiscuS>Crl by Du.. k and c<>l1" horJto'" m,ny )'~"'S as" <'., The" trcal",ont wa, oonfinc'd 10 "on ionic n"",,,,k•. T hey showed 'hat networks p,crarc~l '0 .h"", Ihis cIT«1 sh"uld be
7(
STflUCTURES A ND PROPER TIES DF RUeeE RLI KE NETWO RKS
s),nl hesi>:<:<J in the highly di lut<:<.i slate. and the s,,-clling :\<Jlvenl shoo ld rather he ]'><>Or and h",'e an in'~l"dctio1\ parameler whkh is Slrongl)' con",nll"dl;on Mpcn_ den!. The ro<,ihi li t)· "r flrsl _order volume lran,ition. in such S}'Slem, was later shown by Tanaka' using Ihe s".. mng exp",ssion for no"ionie nel"'erks' . The general Ihermod)'namic condilions fer Ihe realil"lion of critical oondilion< and lran,ili(>n< "'eTC .ubs",!uen,ly deri",d by Ennan and Flory'_ 11 waS 5hown Ihcre Iha t ,h~ pr=nce of ioni,.abl. gr"up' on Ih. nelwork chain s " 'ould grcd,ly fadl_ ;tale Ihe Ir.. nsition. The large ",Iume of experimentallileratme on volume pbase II".
II"'. The similarily of Ihe transilio n phenomena in gel, to 'he coil globule Ir~usition of linear chainS can be obscn'ed in Ihe e.pcrimenlS of Tttnah ot at. on linear polySlyrene ehains)I ).4 _ More rcco:nlly, Ihe eiassica l lallicc II",ory (..,n which the mi,ing part of tfle free energy is based) has been mtJ
'0
7.1 T he ory o f Critical Phenomena a nd Phase Tra ns itions The re<,lmpi
CRIT ICA L PH ENOMENA AND PHASE TRANSITIONS IN GELS
6)1, = (I"
_ I'~)IRT .. In (1 - '~) + "
+ X..j I q [ I
+i
K()')] +
75
~~ _ In a, (7, I )
Ill" is 1he ,:<"'''ibulion 10 Ih" 'ot"1 ch~",i~,,1 po'en,ial by ,I>< presence of ionic group. on the ch.1in •. A, de>cribcd in ,Ielail In chapter 6. X dcpo:: nds. in general. On the oomposi lion . a. well as on tempcr"lme and p,essufi'. I< is cmpirk-.. lly e.pr<:SS<'e X I"'ramdcf on ..~,mpo.i'i"" is of .ignil;".n' importance from the ""im of view of phase Ir.n.ilion •. and Ihi, will be: discussed in mOre demil lalcr, For e., ample. the cqu~IoOn for (he symm polysI)"""1C in C)'c1"h.JUlne al 2S <.: i~ ~ '" O.l.(J5 + 0, 33., + o,29,'l. and for lhe S)"Slcm polyisobulylcne in ben,.e,,,, ,n 24S C il i, ~ .. O.SOO + 0 .)0.,) + O,.J(I..j . The linear add ilivily of lhe io nic polenti.1 lerm in Ih. c' p,<,ssion for lhe chemical potenli.1 in eq. (7. 1) i. ,'alid ".. he" the number of iOllic groups on each nCI"'orl cha ill i, , mall. In thi' case. lhe conlribution of Ihe i01,izablc gro ups 10 the el><mical potential witl be' w~rc
:::'" d RT ~ - ;"(1''/ v" N .. )( ,,:i .~} (7,2) This equation will i)r adoplcd in the foilowing dcriv;'tioll of the Ihwry. T he chemical polenlial and ;l~ f,rst and soc"nd deri"aliws, taken with rc"r«1 to oomposilion. vanish al II>< critical point or a swollen gel fo.
~ h,'-l+ · · ·+ IlM .... -
.' ,
(7.4)
and (7.5)
" 'ilI equale lO:rero a, the cri. ic~,1 poi nl, For a network ... ilb a 'pccilied 'trueture. Ihe critical condition, may bc fulfilled m ",n." unt pres,ure on ly a l • u"ique lemperature and c 1/ 3. T he fulflllmc"t of Ihe..: cond ition, fo r noni",,;" h"mo!",I),mer ,yslem. Ottm. dillk-ull .. hen one ","'iderS Ihe gc norally "bscmod ,."Iuc, "f 1he .\ parameler. Pre..:",," or ionic !' roup' on 'he "C( ..."'~ ( ham, ma ke. the f"lfillmen t of Ihc..:
1"',,,.
76 S TR UCTURES AND PROPERTIE S OF RUBBER LI KE NETWORKS crilic.ll..:mdilions easier, as .hown b}' lhC
a,
(7 .6) and
(7.7) where 6ii, is lhe reduced chemical potential of an arbitrary ,ubunil of Ihe nclwork . Wbcn Ih. soh-enl activity is unity. the oondilion given b}' eq, (7.7) i. equivalent to the integral
f:6[I, .,'d" , ..
(7 K)
0
s",)vcnl chemical polcmials for Ina, = 0 are ploued in f,gore 7.1 for Ih"'" non ionic networks ha"ing different" paramo"",. Cut\'e a ilin'trales !weUing w;th good solveni. ~u"'" b shows a critical point, and en"'" c sho,,', a triphasic equilibrium bo;t,,"« n phases with " _ 0, 0.030, a nd 0,157. Figu", 7.2 ,ho"",,, ","uit. of calculations (>f ph.se tran,ition, based on eq •. (7 .6H7 .8) fo, a
(
• • ,
•~
·V ' • ". 0.10
0 15
fl C- 1. 1 Sol,..,nt chemic. 1 p<>!enti.l. for for 'hree ""nionic ""' ,,"'Tk. lI,winS diffe",nt X para ..... t.r>, A coD"r~irltd-jun<1 L Qn ",, ' wQr~ mod; an':: 0.0,030, .nd 0,151,
CRITICAL PH E N O M ~NA A ND PHASE TRA NSIT IONS IN GELS
77
0.44
0,45
~
0.46
0.47
0.48L---,~ 0.0 0,\
.., .., "
•••
••
t1cIl' . 7. ! R.esult' of c"lculalion. of plio", Ir.",itio". baoeJ on <"
O,6)- (7,g) were oblain<:c figure is Ihe unique err"", on ph... Iransi,ions of f experiments by Tana ka" On • ,cmp",al ur.,.sensit;ve gcl. The Imnsit;on is reporl",1 10 he fully reversible. The phenomenon of phase Ir"nsilton. in , ... " Hcn gel, i. especially of imere", when Ihe WSlcm has a low degree of " r<)$S_li nl;;ng, such as in biological gcis tha , are only sl ightly p"sllhc Ihresh"I,1 point of gclal;on, In '''''h ClOses. lhe" p"rnmel", is large a .... the gel behavior is do .. \Q 'ha l of.be affine model. In Ihe limil K ,. co. II", funCl;on K (.I.) ta k", Ihe .,; mplo form K (.I.) = I
.I. I
(7.9)
7B STRUCTURES AN D PAOf>ERTIES OF RUBBERLIKE NETWORKS ,~
""
"
'"
"
-
-
•" " " " " .,
\- --------------- , -
1t E
"
~
'" ."'r
0.05
,
"
"
R""" .. of upDl:h '" tho cur", ~ '0 ,lit hqhly , ... 01· k10 1colLI,,""" "f'OII cooIi"l to 22 C. and the ripo [>OI1ioro '" ,lit <01,," Ibplo<'ll ....,• .
t1t_ 7.J
n.,~
."'1< ",. ..
Expanding Ihe lop "'hmie term up 1<:> ,he f<:>unh ordor in oq. (7. 1). 5<>uinl N ~ 0 for j > 2, and US''' !! (tis. (7.3) ( 7.5). <:>ne <:>blai ns the fol1m. injl i!IO:l of !'qual ions in lhe offille lim il :
a.,r,• _ (X, --~') -i ...( n) - --'I 01 -
" "
>, ~ "I -+:1£.. ' 2 4
-. ( ') ( ') ,
x.
a.,., _ 2 X' - 2 ' 1+ 3 Xl - 3 '"l - "l+j, ~ x, a.,._., _ 2 ( X'
- l' )
,
"'
", - (.'+2')/ x, = 0
~' " " ' _ 0 + 6 ( Xl- j' ) ", - J", - 9l -;':( 7.10)
SoIUI;on of nj. (1.10) for
x, . .\,. and "1.! ~
'"l for laoge
x, k ....h
["9"'" ]""
~,
ou
>f)
~
to
'I" (7, II )
XI"'I Xl '" i
x,.
T~ ruult>. whi~h bc<:OtllC e'act in the limil of infillilC an: indcp" IIdenl of iOll CO!IWnlr"tio " TI,i, im" ,i.,. IhJt, in the caS<: "r chuin. wi,h .mal1 ;"" ,,,n""'m,;,,n ("hlCh ,,';t, ,he ."un'!'too" of 'he modol d.sc.ib.:d aro,..,). ,onic ~nd no"'onlC nc' ''-orh ""ha w identic.lI} ;n the litll;' of infini,. ch,,,n kn~th
CRITICAL PHENOMENA AN D PHASE TRANSITIO NS IN GELS
79
More recent thcol1.~ical "naly... "r weakly charged p<Jlyelcclrol}'IC gels by Khokhlov and oollabor~lors"'''' direct attention to Ihe p<Jss;!>il;ly of fOrmal;On of mierodomain Siructures as a resuh of microphar.e SCI>"I'11lio".
7.2 Thermoreversible Gels There is another Iypc of gel Ihal undergoes a phase Im"silion. ~pocifically Ihose gel, Ihal are "Ihernlort,..,rsibk.. ' These male,i"l. a,e highly ,wollen nelw",ks in which the cro, ... I;nk. a re temporary or physical; for exampk. "')"Stall;,... 0' imer' sesmenlal aggregal""'" ''''. These types of gel' arc lhermofC'"rsihle in Ihal lhey reliquefy upon i"orcas.: in tcmj)l:mlurt , "fficic,,1 10 meh Ihe cry1talliles or break up II>< aggrcgate~ and then reform lhe gel up<Jn cooling_ The m'>'t commonpla<x e.ample of such "male rial i~ collagen in the form of gelal;n. which i. in lhe gelled form with ",·ater in ,o,ne food prodU"1O. Some olhe. """mpl,.. of biopol)'tllcrs Ih~tl e~hi!>il Ihis propc"Y are de>cribed in chapter 15 on bioc!aSlomers, A ,ariely of synlhelic polymers al"" form Ihermore,·e.,ible gels. and ""me or Ihem arc described in thi, SC(;tion. The one, lhal ha'" been sludied moSi oxlen· ,i,,,ly con,i\1 of poly;:thykne~""""!>O."·"· 'oo. and vin),ll"in}'lidcne polyme". such as ataelic pol}'slyrene"'" .. a nd poly(methyl methacrylale)". Mosl ;m'cstigalion> of loch gels ~ave empl"yed ledt"iquei ror char.ctc.i~ing !~c gelal;on process (and sUt>st:quenl liquelicali"n), the n"lure of Ihe ""regalion (particularly in Ihe """" of nOnCl)'slalli7.able polymers). lhe corre'ponding ph.se diagr~"'s. calorimclric eff""t! accompan)'ing Ihe Imn,itions. ",Id .Iruclure. and morphologies_ Some of ,I>< '''''hn iques used '0 eharac1cri~ ,h<.'S(: gels and Ihe pol)'mers rrom which Ihcy arc formed are: analytical and preparal;"e gel pernJea · lion chrOmaIOgr-dphy. rracl;onal precipitati on. "c NMR and Kaman ,peetro· scopy, viscometry. >can ning calorimelry. ,'i.ual ob .. rvati,,". of lhe initialion and CCS$3I;On of no .... ror the gelation pro,:es" ,mall.angl< x_ray and lighl sca lier_ ing. polarized light micros<:op}'. and ",anning and tmn,mi",ion el""\ron microscopy"_ Rolati"cly lil1'" ha, been done on 'he """hanical pro[>CrI;..s of lhe gels. and ..,me or it focu.... on dynamical m<."Ch."ical pro[>Crties. ralher Ihan equil. ihrium moduli"'''_ II is possible. ho"'",'cr. 10 oblain cslimal"" of Ihe moduli of lhese gel •. in ' pile of the fact thallh.ir high degrees or dilul;on make them quite fragile. One direcl "-ay of dOing th i,;, by adding kno"'n weighls to the surfa~ of Ihe gel and then mC"~,uring tbe change in heighl or the s.'",plc·'. An ahern"live is '0 enclo"" lhe ""IUlion being gelkd in a dilalomeler-,hal'.:d gI",s cell. imposing a prcs$ure "hove Ihe ~UTrac~ or I"" gel\in~ $y~l cm . and then measuring lhe change in hcigh' or" "'''''Or)' column conlacting lhe lo""r portion of tbe 1I<'1""·loo.1'hi. I'I1..,.,.u.e-pulsing approoch has the aolv~nl"gc or being al>lc to follow relali,..,ly mrld gela1io"s. and 'he tran'parency or lhe cell pcrmil> simulta,",,,u; Ka lleri"g "'ta,urcmems for monitoring ch~nge, in Slruel"r •• ''''en prior 10 Ihe ge!;Hion point . Some of tl>< results oblained by these lwo m"hods arc ,,<<o" cannol occur. The re,uhs arc ror clh)·lcnc hexen,,"1 copolyme", "'berc thc comonomer is uscd wilh Ihc elhylene to
90 STflUCTUAES AND PflDPEAT IES OF flU BB EALI KE NETWOA KS
',----------, ;
,i ,i •!-----;;-----,;-----,;------! • •• •• •• .0 To .. porOlU,. ( ' e l
I'll" '" 1.4 Critical gelation CQn<;l- I• and , .. ltICS of the mol% b .. ""hcs.rc 1.21. 1.21, .nd 1.47, """"",i,cl~_
in lroduce kn(}wn numbe", of b'-dnehe! (}f kn(}wn lenglh and slruelure [( - Cl~ ,hCH J]. The values of c' .rc gec of Ihe branch poinlS with Ihe c'ySialli~a lion proceSli that provides Ihe temporary c",... links required for gelalion, AI each molccul., "'C lim;1 as Ihe ery,ulli/,ui,m approach"" '1.' equilihrium value. T he e!TcclS of concenlration r on lhe \ow.dcformalion moo ul u. haw also been repclclcd for SOme polyc1hylenc homopol)'mers, Signiflcanl cUIValu"" is observed in the dependence of lrl on concenlralion il""lf. hUI ilS dependence on c' i. lincar wilhin e.perimenta l errOr.• 1 il Ihown in figure 7_6·'. The modulus i~ «Xn to increase sil\fliftcantly wich increasing r. and Ihe slopes of Ihe V'l ,... ,; cu"... increase asympla!ically with increase in mnlccul., weighL This is presumably dut 10 " de>:,ca.., in the number of chain ends. which ha,"C la be relegalc-d 10 Ihe interlamell.r regioo. wben cry.lalli''''lion (cross_lin king) occurs. Sucb cross·link· ing;. obvio",ly more eftidenl ,,'hen Ihe number of such chain ends is minimired .
.,-----------,
, ,•• "
• •"6
•• ~ • •• i• • • • •
•
-<>
"
.
• Tlmt
0
~
"
(m'n.)
. . .
FI,_ 1.5 Values of lilt mooJulu, in 'h" lim" "r ""'Y .,,,,,11 ! I a •• f""",ion oftime 'OO, The t<mpenllu,cs ""'rl: 15 (0 ). 21 (6). a nd JS (0). and ,he "",,,,,," . 'nI,ion ..... apflfoxlm,,,dy SOo;, higher ,h.n ''''' enhe.1 ""11«11"3Iion <••
f''''''
"
'.• .. Z
!; •0
-
• •
1 O· c~, g2 c m~
•
~lK.'" 7.~ Moou' ; of gel> 1''''''''.-00 frum p<>')'Olhyltn< in ,"" lim;' of veJy ...,all W"r· ,"";on.•~",.." ••• r""",jM of ,he "4 .... '" of Ih< 00""""''''';0<'1''. V.I,,", of 10 ""SN ftom 5.8 (1o~~'1 cu"..,) 10 800 (upre"",,"1 curve), Reprinted wilh I'crm,"';o"
' M.
f'om Li. Z .. " .1. (19"9). ,1/""''''''''''",1... 21. Soci
C'~')" ;z.h '
''''7 ,\,,,., ..... ,,
( ·~."' ..·.T
92
STRUCTURES AND PROPERTIE S OF RUBBERLI KE NETWOR KS
The? dependeno: of Ihc modulus is consiSlent wilh Ihe imporlance of pairwise encounlers between chain segmenls in Ihe gelation procc>$, More de lailed C()mrarison. of Ihe modulus in the limits a ,, - . I and r _ c· have al,o been carried OUI". If a v...,ighl.avcragc mol,;cular weight AI., Or v;>cos;ty·avcrage molecular '''''ig''l M . is used for Ihis ""rpose. then there is no correia · lion bet".-een the resu lts for unfractionaled pol~mers and fracI;oMlcd on,,,. although the lrend ......,m 10 be 'he ,"une for the tv.·o Iypes of sample •. Howe'..... , a common ~pendcncc dor;' .-.:,ull when the same valu,," of lr] .r. plotted again,t the IIOIIIIIx·'."",rage ntok.., ,, la r weight M •• as shown in ligu,"" 7.7. Specifically. when Ihe data are anal)'/.cd (,,' this ba.i •• Ihe same ,'"Iuc of lhe modulu. is obtained. irrc,pc<:li,'c of the S
,
E E
z
"-
• • ,
,
•
0
fl~ ...-..
• 0
,.. ,.' M" g mor' 7.7 I\-I<>CC"'''lion. 0
"
.-
.-
approaching lhe hown., a fu,>ction of II>e number... ,'.",,,, mol<cular "~[h' " Resul" on Ihe "nr....,o;o""led pOlymer< a.... h"",," 1»' to< 01'<" <"i,. ck>, and ",,"," "" , II.cprin'cd ,..i,h I"'" mi~,,,," (",m Li, Z., Cl . 1. (193\» . .\/(".'".~"I". n. Corrright 111'17 Amc,i<<
CRITICA L PHENOM EN A AN D PHAS E T RANS IT IO N S IN GE LS
83
M
--~--
~·ii."" 7.8 Sl:e!ch '''83CS!i"1 '1>0 "''''''"re of. ""1)"lhyk",, chain;n a go! prel""od in 'he vicinj,y of ,1\< C";lH,ol c'OOCCnor'l1OO c· , ,.. ilh lh. f .uch.
Ih~ 1
Ihe lamella r cryslall il.. acl as cms,·li nks of ,'ery high f"nclionaiily ¢ ' They Ih~n Ih~ n.u,, 1 co"alen! cTOss.l in ks, bUllh;s may nol be imporlanl al Ihc wry high dih,tions invol,'W_ The resulting calculaled valuts or lhe mol",u!ar ""ign t M , be!"'ccn cruss·links noa ke up a consider.ble fraclion of lhe 10lal nlolceular ""'igb! .II of the 1: ge1' ;Ire .. I
Reference s tl) Flo,y, P. J, f)u·c",,,,. f"IJI'Ilt/a r S
mo"
(l ~
(4) (5) (6)
(7) (8) (9)
(10)
199,,76,49. HoI)'. 1'_ J. (>" "";1*' of 1'9Il'm" C/"""'.' ''y . Co,,,,,tI Un;,'",,,)' p,..." Ith.CII. NY, t9,3. Ho,k.~. F ': M c K onna. G. I\. tn Ph"jc~/ of p(~J'Mi!" 1/<JJttibooIc. J, E. M" k. Ed . Amcri<:an I n"i t"'e of 11,y<: Woodbury. NY. t9%, Du.. \;. K,: r.Ile""". D. 1_ 1'91 .." . Sci 1%8. '\26. 1209, Du«k, K.: I',in •. W. ,1,1" I'QI)'I'" .ki. I%'I , ~. t . T.n.' •. T. I'h,-" R~ •. I... ", 1'i78, 4(1. S!O, Erman, 8. , flory. 1'. J. iollJ<'''""","u/" t9~6, 19, 1342, hn .... V. f·.: Rod,,~"c,. F .. ('011«" (' 11«,·""",Ikc.i<" 1'lBO. Il. 9 7 ~ Tana'a, T.: I"il'",o""D.: S"n S. f. 1'"I"d, I.. Sw" I ('~, Ii .; Shoh. " . Ph,.,. Rc •. 1~ ·1I. t9!!O, 4 ' . 16J~ .
""'1'<''';''
8' STRUCTURES A ND PROPER TIES OF RUBBERLI KE NETWORKS
(5 1) (52! (S))
T.naka. T, Sd. Am. \ ~S\. 244. \24, ll"",t y, .\l, Pol,.,.." \98\. 22. \687. H.o . .. J.: 11.",\;y. M" U\brkh, K.: Kopoc<:k, J. EIU. 1'01,.,,,, J, 198 \. \7.)61. l lav379. l la\OSly, M" H mu •• J" H• .,.li,:ck. J. PoIJ_T I '18~. 26. I ~ 1 4, Hoffma n. A. S .. ArraM;abj, A,; L, C, J . Cm/Tolld /(,1,,,,,, 1986. 4, 2ll. Him"u, S., l1i.ok,,,·• . Y.: T .... k• . T. J. CM,", Ph)", 1987. 87. U92. Amiya. T.' Ili'ok.,..., T" Tonaka. T. M~(Tf)mol~/" 1'187. 20. 1342. 1'''';1>. •• R.I'. S,; Cu .. k', E, l . C.... m. P"'l ' Sci. 1987. 42 .97. 1\i. I. : Sun. S, T .. Swi,low. G .: Tanaka. T, N~/_ 1m. 281. 206 , Swislow. G ., Sun. S. 1.: Nhhi<>. L: T.n.k •• T , Ph" •. 11. ... I.n<. 1980.44.796. Sun. S, T ,: Nishi<>. 1.: 5wi, low. G .: Tana ka. T J. C;M",. Ph,.• . \ 980.13. S971. NiShi<>. I.. S,,;.lo'O', G .. 5un. S. T .. Tanaka. T "'a,"" 1982. 300. 24), Pro"". M ,; 1100\><', H. II.. Pr-au'nilz, J. M. ,f/Ch£ J . \ '189.35.803. HOOf>C'. H. H.: 8a~ <,. J. P.: BI.nch. II. W.; 1'<'''ni1>, J. M. Mal:TDm<>kc"". 1990.23. 1()96. Onuki. A. J. Ph."" SIX. '''PO" 19~8. 57. 699. Li. Y.: T."" t •. T. A"". Re•. Mme<, &/. 1992. n 243. Otah. K,: Inomata. II., Konno. M. ' Saito. S. J . Chem. Ph". 1989.91. 1345. Kat,)"m • . S. J. Ph)'• . CMrn . 199Z. 96. 5209. Osad • . Y. Ad.. ,I/o'..... 1991,3,107 Hi,. i. T" Nomolo. II .; Il irai. M.' H')1I"'i . S. J. App. 1'''''-'''' Sri. 1994. 53. 79. y .,.hOda, R., IIIno. M.: ll u. y, M IR"'-.oI. SJmp. \ 995.93.125. Osada. Y.: Oku.zoli. II., Gong. J. P. TII.IP 1994, 2. 61. Kureki . V., Sekil1loto, K. J. ClI<m. Ph". 1995. 1(12. 8616. Zhang. X. : U. \ ' .: lIu. Z.' Little,. C. L. J . C"....,. Ph}". I99S. 102. 551. Osada. y, : Ma'-'uda. A. N~'"" 1995. )76.219, YoshKl •• R" Uchida. K .• Kando. Y., S-o k.i. K.' Kik llChi. A.; Sa\:uroi. Y.. Okano. T. "'~"".., WI~. )74. 240 A .. no. M., Ho,le, K.: Yam.,hi, •. T. 1'01,''''' G,/. Nn.', J995. l. 28 1, O""tova. T.: Sulcim.nov. I., Frcnkol. S. Pis/I'm. C;,h NN .... 1995.3.387. NaK"'.\:', Y.: IIc,",-,,,,,,., Ii.: K.,~ . M.' I( .tao" . K . •If,,,,,,,,,,,,I,,,,,/•.• I'!'N. 27,
(~)
Tarur k• • Y.' K.gami. \ '.' M.1>ud •. 1\" o,.da. Y M'IC"Htwh"'"/e< 19'1,. l S. 2514.
(II) (12) (13) (14) (I~)
(16) (17) (1 8) (19) (20) (2 I) (22) (2l) (24) (H) (26) (27) (28)
(29) ()(I) (ll)
(32) (l3) (34) (35) ()61
(7) (lS) (l9) (40) (41) (42) (43)
(44) (45) (46) (47) (48) (49) (S
Don,.
Hi,.,... \'.,
,.,
CRITICAL PHENOMENA AND PHASE TRANSITIONS IN GelS
AI_""""".
85
S,,,,,.
(SS) T.... b . T 0..-... .• AI~. IM1. 1GJ11. Il ($6) M. u ..... £. $., T • ...u.. T. N"".u 1992. lSi. 411. ($7) ZlIana. V. 0 .: ·r .... k... T .: SlUba,.. ...... M . HIN_ (SI) ... ....... .. M.• T .... k• • T. No'"", 1992. HS. 4.10. ($9) SulUU "'.: ·r.""b. T. NQ''''~ 1990. 3-16. J4S
1\1'92• .J60. 142.
(60) Kohf.lI. L zto.o .... v. Q., T. ... k• • T. Hili,," 1\1'91. 1$1 • .101. (6 1) Osada. V .• R...... M".pI>y. S . II. Sri. .I.... 19'\11. M8(j). 12. (61) li. Y ., It " . L: ZIlan,. X. : lit"',. C. ~ . Mort •. Sri. FAt. C 199$. 2. 221. (6l) l"'l<"bo. T.: Opoo ........ K., Vam ... k' .....: M.wok •. T., Mw.octoi. K. Mam'",oJ",..to 199$. 28. 6$79. (64) Uo.$l. (61) K. ....... ki. II ., N. kamura. T.: Mi)"llmolo. K.. Toki.... M. J. C"' ... l'Ify,. 1995. 10J. 624I . (69) s...uki. ....; V. ....... i. M .; Kubiki. Y . J.~. 1996. 11)1. I1S I. (10) Allb..... I). J. C_ " '" 1996. 11)I.4.109.
PIo,..
(7 1) lu1lan.. T" Ni",". T.: IbyaohO. T. P",,,,,. J 1996.21. 1!>9 (12) Shiboyama. M ., M .......IIi. S.: I'"", .. ra. s.. 1996. 211. lO19. (1)) K"""'M. II , Shi""ya. T .' Y....... p. H.: Ando. I. P""",,. J. 19'\16. 211. 10. (14) K.... ~.1. R.. V..... ido. M.: II, . . ...... . S.: lip..... y , yono
M"""",..,... """
(76) ".,bin.., •• II K : Fit")'. P ,. 1'....... f"'ada,!>«. 1961. 64,
(77) Flo
v.:
P,",. . .Sci. 19S7. 25, 429.
~)J S .
Kboltbl,......... R. JftJ('"",,,,,,",,,I.. 1992. 2'. ) 114 .
l)onnid"",,,,,... E. : ErulkhkJ~ ..... R. AI'''''''''k~ Sirmtl. 199oI.l. 6111.
N.
n..".,
,,,,.
(80) s..~th, 1'.: Lcm"'". I'. I.: Pijl"'r>. I. P. L.' KII)'I" Sri .• l.m, &I. 1982, 20. In. (&2) Obbe, M ~ I..,....,.. M.; M.~. II . J . .I,.". Pol'..... Sri. 19115• .10. 471S. (IJ) R. "'lomo. R.: F.d ..."rds, C. 0 ., M.noIdk...... L. M _ _• 1916. 19. Jill. (&4) Sa ..... ,.ri. E. . Ohm ...... T _ ~Ia ....... M . Pol,.... J 1916. II. 741 (IS) KoIuiJr.o. 8 " Kn ..... ,,_ Loll. M.' 1Ia/ PoI~,. S E. K~ ... 'h, R. L Mil .... . .... J K. M..... FA. 1'1c"um 1'.-: 1'1 .... YorI: 19117: p. 119. (88) MeK.""", G. II.: G l>1fm.n. II .. U,.n. G . .tJlg...... Clt.m . /"'. FA. I"gS. 27. 902 (92) M
!)om..,..
c.,
rom -'
s,.,.. .... "'mcrico"
86 STRUCTU RES ANO PROP ER TI ES OF RUBB ER LI KE NETWORKS (9-1) Klein. M.: B,. I«k¢. P. V. D .• & ' ~ n "n •. II . Ma"",,,,QJ. S,>"p. 1990.39.59.
(''') Q""""•.I. ·M .; Klein. M
(98) Ho,ton, I. C-: l)on.old, A . M . .IIa<.-omoI. $ymp. 1990.39. HI. (99) I'hise. N .. Y.ng. Y.; I';, Z; Yuan. Q.; 101 . ,k . J. E.: O.n, 1:. K. 101 .; Alamo. R. G.: Mandolh rn. L In S"'''''-<''. CIuJ'Mr.,;,,,';"". ami 11,roq of Poll'".,i<,\'r,.wb ami G,I. , S. M A~ao"Q1lL Ed . ['knum New York . 1992; p. 211. (100) h og, Y.; k hisc. N .. Li. Z. ; Yoan. Q.: M.,k. J. E.: Cbon. E:. K. M .. Alamo. R. G .: M.ndd kcrn. L. In C",,,p1ex f·luU4. E. D. SO"",.. D. Wei", T. Winon, ond J. I""elk"vili. Ed • . M at<,ial. Rcscan:h Socic1y: I'i...l>ur~, PA. 1992; p. 32S. (I(lll Smith. P.: Lem,!,... P. J.: Pijpcr. P. l . J. Pal,..,. Sd .. Poi,-",. Ph,'" &I. 1982.2(1,
1',.,,,
2229 (1()2) Huehhok 1'. L. TrM,/j Poi,.,,,. Sci. 1994, 2. 2n
8
Calculations and Simulations
The classica l th"",;,,,, of mbbcr elastici ty are oosed on the G~u ..;"n chain mooel. The only m(>ittular paralnclcr ,h,,( enlers lhe"., lhcoric~ is the mcan_square tn d· to-<:nd separa tion of the chain. constitut ing the nc\"·ork. Howcwr. there an: various arcU of iotemt that «
function for the cnd·lo-end ,-«lor. as well as for averag<:s of lbe products of sewral vectoria l qUdnlilics. as "'ill be c,'idenl in these chaplers. The foundation, for .ueh char.ctcri,,,ti,,n •. and ",,"(r.1 oxample. of their application<. are giwn in this chapter.
8.1 Spalio l Configu ralions of an Isolated Chain Scwral a"peelS of ru!>ber elasticity (such as the dc~ndene<: uf Ihe cla .. ic free energy on network topology. number of effective j unctions. and eomributions from entanglem.n!» are successfully explai"rd by theori ... ba""d on the fr«ly joimc"crrnoclasticity. rotational isomerilll iion uf'(In stretching. sl ..... in dichroism. local <e&n,,,,,tal orienl3tion and mobilit)·. and charactcri,ation of netwo rks with sho rt chains require the use of more reali st ic network chain modo Is. In thi' ",-clion. properties of rotational isomeric sta te model. r"r the chains are dis<us..N . The notat;nn i. baoed lar~ely on IIw; Flo. )· book. Stotl. lleal MeehtmicIJ of CI",i~ Mol~cule." . More recenl infom,"tion is ",.d· ;Iy found;n the literatun:' ' . Due 10 Ihe .impli<-;!)" nf i" 't rudute. a pojycth)"lcnc~likc chain serves a$ a colwelli.nt model lor di>cus>ing the SI.ti>II~,, 1 prop"rtie< of te,,) chain,. T hi, simpl icity can be ...."en in ftg~rc 8.1. which .1>0"·' the planar form of" small portion of a f'(Il)"cth)"\ene ~hain . llond Iond anglcs may be r<:g~rded
"'
88 STRUCTURES AND PROPERTIES OF RUBBERLIKE NETWORKS HHHHHH
\/., \j \j
~"y(,
/\
~1~....
'0;''/ ,~.,y(, ~.•y'
/~
/\ /\
III Til< planar fonn of. small portion of . pol)"'(h)'I,,,,,, chain. Til< arbon
corbon backbonc bond. a rc labeled from / _ I 10 j + 4. Th.c bond anglo> ... 1.b<1OO in pa .. nlll .... from j - 2 10 i + 4. The , uppl<monlary llh bond .nso, it .hown by 6,. T<>ni""al rOl.t;"" • • bou, lho backbone bond • • rc ,hown by II>< angle ~, for II>< ith bond, (I>< VlIlue ohov... 10 0".
"",,«pond'
as
fi~ed ;n Ihe Study of rubber elaslicily because Ihcir rdpid Huctuatio n• are usually in Ihe range <:>r 'mly ±< ith bond in figure 8.1 stalionary, and changing ';'i, di'place, the carbon and the hldrogen atoms On the right of lhe ilb ca rbon, and hence ~hanges lhe distance> belWttn lh. \"a.ri<)uI al<)ml in Ih. chain. hltcracl;ons between atoms resuhing rrom change, of inleratomic distances delcnnine the energy of lbe chain as a runelion of cnnformaiion. ROlal;ons aboul each skelelal bond ar. subje<;ll<) a poltnli~1. The polenlial for bond i, fo r cxam pk, i~ shown in figure 8.2 in unilS of leT as " funclion <)f Ihe rolalion angle <1>, . This potenlial or energy results primarily from tWO ""urees. (lj The first i, the intrinsic rolalional po(cnlial of each bond. which may be repre..,nted as being Ihreefold. For Ihe Ilh bond, for example,
£(';',) - (Eo/ 2)il - cos(J';';))
(8. 1)
Thi. function indicat"" Ihree minima of equal enerllY al 0· , 1200. and - 120' , referred to a. "OIlS (/) . 80"C/u> , (g ' j. "ad "ouc/tr- (g- j, rtSpttli"dy. (2) The Olher conl ribul;on ;n~ol,"CS the non,bonded in~ra~tion, be(w",," ~ario u~ alOm 1»;1'$ separa led by Ihree or mOre bonds along the cbain. The energy of inleraction between (wo such I»irs of atom, i. u, .... lIy approximated by the Lennard-Jones potential:
(H. 2)
90 ST"UCTURES AN D PROPE RTIES OF "U88 ER LI KE N ETWO RKS
well above lhe glass IconpIhcr, From oomputcr molecula , dynamics simulation s and Ihei' correlalion wilh various C~pcnlX of these Imnsitions. Ihe chains w<}uld be f",zcn "nd the network would be devoid of Hexibihty and def(mnabilily. The two-dimensional pro';"'Clion of an inslam.nceus ceniigurat;on of an unde· formed :zoo·oond pol)"Clhylcnc chain is shown in ligure 8.l·. fl ;s an example of
""II
.0
.-
.., ,"
'.
" .c.:. )
" .Og"~ 8.3 "The; 1"-<>-ond p<>lyc(h)'lo"" Chain'. Thi • • pa(ial <XlnflKuratjon ""mputer ge".
wa.
"'in!! k"",,'n ",I "", of lhe bood 1.'1,Il(h•. bond 'I1,Ilie<. rotati"". 1angle, ,boul , k.· "tal ""0'\'. ,mo"i (h, ""r""'p',nd,ng ""al i".al ;"""""'" >lat«." nd the <"""",,"i.;'y he,,.,",,n I"" .. p,.fcl'
CM''([
P""-'''''''''''
CALCULATIO N S ANO SIMULATIONS
89
,,,,
•
:;:
w,
f\
••
•
•
V
,~
8.2 Tbo 1'0I
V
• ~,
. ~1,.....
f\
ba"";, ~ ,.
,~
fUDCtion of t.... rotation "ni!Je 6.,
wlltre T i$ tilt di"~tK:e between the t",o interacting atom., (J i. the separation betw«o the atomS when E = 0, a nd t i, Ihe depth of the pote01iat wdl .1 the minimum of E. Supe'JlO,ition of ,he energies given by (8.1) and (8.2) re.ult. in a po'enlia t ",sembJingthat shown in ftgure 8. 2. In gene"l . lhe loca tion and the energy value, of t/lt minima may be di$pJaced fr<>In the ".Iues 0' . 120". and -120" indiealed by cq , (8.1). and there may be f",,'er or more than three minima. Thi, depend" of 00".-..::. On the local chemical st ructure of the chain; for e~ample. the Ottu rrence of a double bond adjacent to the ,ingle bond undcr comidcrntion. The w311s aroun d .he energy "'c1I~ • .,.,h as th"", , hown in figu", 8.2 are generally surr",ien.ty """1>'0 oonfin. the bond rot~lion' 10 values close to the minima of lho w.:lls. Thu,. the bond rOlalional angks. in$lead of ta~ing a oonlinuum of ,,,,Iuc. bel,,'ccn -11 10 + "-, may Ilt a llowed to reside onl y in Ihe three minima represented by the I, g ' . and g - state" Representalion of chain configuration, by contining the skeletal bond angles to iwmu;,; minim. alone is ,..,rerred to ~s the rotational isomeric .tate (RIS) appro.imation. Thu,. Ih. chain conftguration i, rCI""sented a. a seqU"""" of skeletal bond,. in various disc"'te rotational ,totes. This approxima. lion was firsl proposed by Volken't"in" and waS applied mOSI .xtcn,i,oel), 10 the analysil of poly",.. chain$ hy Flory and hi' ",search group"" '. Two atom •• Io"g.he chain are called topologically distant if the)' arc scparated by se,oeral olher alom, along the chain contour. Two atom, may be 'palially dose '0 each othe< ev"n 'hough Ihey are topotogicalty distant . Exe1uded ,volume dr"",,' a re .aid 10 Ix prescnt if Ihe energy contribu.ion of twO topologically distant atoms, gi"en by cq , (8.2). is included "'hen ""alu"ting the total energy of Ihe Chain . In 'lle ahsenec of c,cluded·,'olume eIToc ... 'he ehaill c,' hibits it" SQ. called "'thet"'" di mension, or unperturbed dimen,ion s, It i, now welt established tha t Iher~ arc no ". cluded."olutn(: cIT~1S in chains in Ih. "ndeformed bul~ StaIC' and .hal the chains e., himl thei r tl"'ta or unperturbed dimens ion•. A chain v,ith n ,,"'nds. each hQ\'i ng m ',,-,meric "at",. has m" pos>ihlc rota,ion.1 "ales or configurattons, For a chain in dilu'e sol ution . as well os in .he hulk ,t.,c
'
CALCULATIONS A N D SIMULATIONS
91
one in'ta,uanC<)us "",,"figuratio" of the chsi" out of a possible 3"'" other isomeric """nfigurations, This spali,l configuration was computer gcneraloo using lnOl'ln "alu", of the bond length., bond ""l',Ie" rotalion"l angles a bolll skelel.1 bonds, prefcnon<'C>l ~mong the corresponding rol"lion,,1 i... meric Slates. and the cooJ'Cr; livily belw""n th"'" preference" The ""'thod of gcner:u ing ,nch configurations forms lhe basi' of ille Montc Carlo ( MC) technique. "'hieh i. an efficient numer· ical techn;que for evalua'ing ,,",is,ical ""raKcS for polymer chains, c,peci.lly shorter ones. A configur.'ion of a ~h3;n is fiyste"" suell a, the O1'e labelnl XYZ in figure 8.4(3), Such. coord inate s}.tem is ",fcrred to as a ··Iaboralor)'·f,xcd S)'" tern:' The bollds oflhe chain arc numben:d fro", I to" and the backbone aloms from zero to II, T he li rst , kde'ol hond i, eho",,, along the X dirn::tion. a. shown in figure 8.4(a), and Ihe second bon,l is in Ihe X l' plane. Sdocrjng Ihe firsJ IWO bonds in this way fixe, Ihe posilion of lhe chain in space . 11, figure 8.4(b), Ihe local ooordinaIC "xes for jnlemal bonds 3re iltow'". with such a local ooordinale sy>!em d~finnl for each bond. TI,e Xi axi, is in the direction of Ihe ith bond; the y;
v
,• .. .' . '
4
,
•
,
2
'., ,,
N,
,
''l , ...,.", H,4
(a) 1'1,,,,,"on' of a
nc1W"'~
chain "' •
.y'..m. (I» Oro",." ... foaou"" or. '''''''·or~ ch",".
," '<
~'+I
,;~h '. h . ,t
('.t1<si." ,'OOI'di".,<
92 STRUCTURES AND PROPERTIES OF RUBBERLIKE NETWOR KS
in the plane of bond i-I and i, a nd ii' dircclion i, cho..n 10 trulke an acUle angle wilh T~ :: uis oornplole, a righi-handed syslem , In figun: 8,4(a). 9, rep"'· senlS tnc supplementa,y bond angk and ,j in Inc ith coordinate sySlem
y,_,_
b, (11.3) where the transformation matrix Ti(O,
Ti(O, ¢» '"
~" si n 0, c,," ¢i
- cosO,cos ¢,
.in9; ,," ¢>,
- co.9, .in ""
sin8,
[
(8.4)
and Vi and Vi"" rtprt$CJt! lhe SlIme 'OttIO' in Ihe ith and i + lSI coordi""l. syslems. Il"p«tively. Using thi, transfonnalion oremtion . II>< pOsilion " or II>< ,)h atom rclali"" to the labor~tory·nxcd coordinate system i, wriuen as r, - I,
+ T, I, + T, T, I,
... ,.+ T, T1 " , T,_,I,
(8.S)
Equalion (8.5) may be wriuen in cor.ci .. form as'
,
·-'I ,,
';~ 'X' L. .... 'j
(8_6)
"
Ti'
where ' I represent' Ihe ... , ial proouct of transFormalion matrICes. 'Iarl mg wilh Ihe lirsl and conla ining (k - 1) f"lors "" identified by Ih. supe"",.i"l.
8.2 Statislica l Averages of Configu rational Variables The sci of posit ion '-cclo.. {" ) for all N kockbonc alOm, uniqllCly proscribes a given in"antanNlUS co~figuratio n of ~ chain . The", is one-Io-one corres rondcJ>Ce be1ween Ihe ...1 {r,) and Ihc SCI (4) ), of alllOrsio nal angks of the ch.in, The prnkobility of occur",,,,,,, nf each such con figu rali"'t. as explained in more detail in appendi , D. il gi ",n b)' •• p( - Ell",) ,/kT )
P( {~),) = LCXP(- I:"({¢),/kT)
(8. 7)
The average of any Funel ion or Ihe ..1 {t,) may be calculated according 10 I"" relalion,hip
(f( (r,)) ...
f
L f( { ' ;) ) ...p( - E({ ¢>!,lkT ) III r, })p( (¢),) =
{~I, !:>_
t·( I ¢),Il'/")
(8,S)
CALCULATIONS AND SIM ULATIONS
93
""here lite ,ummation. arc carried oul Over .n stlS of ~onngur alioIlS, This averaging may be carried Oul in variou, "",aci <)r appr<)~imal. ways. [n litis ~hapler. ils appro~imate .v.luali<)n by Monic Carl<) ,im uiali<)n$ will be OUllin<:, as represemed in figure 8,2. Formulations for cbains with mo", realistic inlcrdependcm bond torsional energies an: deocribed else",·here, ·,·,G. " . The MC scheme is based on generaling" chai" configur.>lion whose proixlbilily is proporlional 10 the numeralor of "'I. (8 .8). The 'Ieps "'" al follows: (I) Fi. lhe Ii",t bond olon g Ihe X axi •. and Ihe second;n lhe Xl' plane of lhe loboralory_ fi.ed coordinate ~yslem. (2) ChO<>$( the "... lue of ¢>,. This will determine lhe dire<;lion of lhe Ihird bond in space. According 10 the rOlalion.1 i""meric sla le ~lure,lh< values all he energy minima "rc assigned 10 each bond lorsionalangk, ':',. A"uming Iram (I). galldw · (g ' ). and galldw- (g- ) , slales for lhe bonds, one defines Ihe Ihree Slati,lical ,.-~igh1< u,. ~. " and w , as
u, - exp( - f::,f RT),
a• .. exp( - E,- / RT} (B.9)
whore E" E," and 1;;;, arc Ihe energies of Ihe Ihn,. Sia l"" of Ihe bond. The three .latislieal ~ighls gi\'cn in "'l. (K9) define Ihe probobililie$ p,. p", a nd p. _ or,he three .Iale, 3. p, ~ 11,/(",
+ u,' + u, )
PI' '" " ,,
flu, + U, '
-t u. _)
P, '"
J(u, -t a,'
+ ",-)
II,
(8.11))
Th. Sial. of lhe bond i•• <signed "ccording 10 lhe probabililies given in C<[. (8.11). A uniformly distribuI<:c of Ihe subpopul. lion OVer which (h. a.eflOgcs are 10 be cv.lwlled . Each of lhe N configura lions gcncraled by ,hi. ""hem< obe~ Ihe prohabilily of occurrence giV<.'n b)' eq. (8.7), Thu" Ihe .'-crage (((, ,» gi"e" by eq. (8,8) may be wrilten as
,'
(f(' ,»" N L
.<.f( r,l,
(g.ll )
Here, f( " )' i. lhe funclion o""",,;:lIe'
94 STRUCTURES ANO PROPERTIES OF RUBBERLIK E NETWOR KS
T he sample program Ii,'en in appendi, G calculales: (I) the persistence length of a chain in Ihe coordinale system of figure 8.4. (2) ils mean-square cnd-to-end ,-ector, and (3) the orientation collfigumlion funclion nf its middle skeletal bnnd. (Sec chapler 11 for Ihe definition of Ihe orienl.l ioll eonfiguralion fUtlCiion .) Applic"lions of the method for gener'ling non ·Gau .. ian dislrihulions for the end·to-end 5C]>al"dlions of network chains arc dis(:clion . Thi s is followed by the use of such distributions in predi~'ling pendix F. Going from the usual "Slruclurdess" mlOlccula, Ihcor;.s of rublxrlikc elasli. city" to the prc'$ent dctailOO repr=ntalions parallels going from the Ihwry of ideal ga$<S to the van dcr Waals tll<.'O<)' of ",,,I gases. The advantage in bnth caSCs is a mo", ",.Iistie portrayal of the system. but al til<: loss nf uni,..,,,,,,lit)' (ill that additional information spccilie to the chosen 'ystem i. ""'luircd). Some Iypical distributions calculated for poly(dimethylsilo>ane) (PDMS) nelwor~ chains having n ~ 20. 40. and 250 skelelal bnncl, are "shown in figure 8.S" . The three so lid CUC"CS show how Ihc distributions change, mo'ing to lower values of r a, " increases. The Gaussian distribulion is seen 10 be a re!atively gO<Xl apprO,im"tion to ,h. MOniC Carlo dislribution at the la'gest value of ~. as expec ted. The effect, of foing to 'till smaller ,'a lucs "f F are illustrole
,
• I • ,I
.-," ~
•
I
, •
\ 250 I
\
I
\
I
\
I
I
I
I
••I
40
~
M
M
r/nl ~· I~ .....
S.! S lou ui.alo.J d i",ibulion, of .00·1"-<00 «:para'ion, for ~1y(<1im<"lbybilo , · a n.) ch. in" . s obtoin«! fro m Monl. ClIrlo "mol;, ;on," """'" "". ro .. hon.1 isomeric sWe model' Tho POMS cha in, h"" (he sr-cificf lenglh /, .n.irnalioo for n _ 2S<1 i. sIIown by ,"" da,ht<) hne, '11>0 Mon ,e Ca'Io Co"'" '.-presonl i< •• plin< ~ .. to ,he dio.m. 'I",ulal;"" d,,,. ror Sl,l.OOO cMm" and each co",", i, "",mal i"",, (0 an of "Oily.
.k.ltl"'
.rt.
,.
•
", ,
• • , ,
'" " r lnl
Fi~.",
8.6
Monte C,,,lo dist ribu tl on,.t 298 K fn, ,,,,,,'I' ;"'d ('" each C""~"
ber of , h lo:,.,
""n
'C<)'
. I'IM' I'DM S ch"in •. 1110 num·
96 STRUCTURES AND PROPERTIES OF RUBBERtlKE NETWO RKS
f\
• ,
/ \ (,,____ _, II! \
f't..
: I: ".-\ . .1 I I, \/ / / \./ ,: , ,,, I
r\
I. "t' \ \ \ '. .f~'\i " '\
~iJ\.//
.......
.
\"
'-
.~~~~~~----~--~~~ 0.2 OA 0 .<1 0.11 , Ift l
FIR." 8.7 Mon" Corio di",ib.lion. al 4I l.2 " for.n n-alkon. chain b."';n, 10 , k.lo· 1.1 I:>ond." The >oM run'< "....,.111< ... ulU for inlond rO"'ion•. III< long-d.shed cun'< for in
curv~
for f,..., rota·
of the di,lribulion is, in fa£l. incr~aoed in going from an inlcn!cpendenl-,lale RIS modd 1(> an independeni-Slale RIS mode1lO a freely rolaling model (wilb no ,otational siales al all). This shifl belween mod~l. corresponds to an increase in chain flexibility. which eau$O.'S a marked Mood.ning of Ihe di.lIibution$. Ihrough incrca<ec PDMS chain. is seen 10 be shifted to values uf . / n/ sumcwhal1argr I'E. as would be e,pected from its larg.. val ue of the characlcn>!ic ralio' a""""jaled wilh il' unj>n.'. AI"", included in this figure ;011>0 Gaussian limil for Ihi. value of II. For SlIeh . hort chain •. the Gaussian di'!ribulion is seen to give a ,c'y poor approximation to the Monte Carlo dislribuliun •. T hi. is p"nicularly true in the region of la'ge r. which i. a ,cry important factor when interpreting Jimilc:d chain extensibility and ela'lolner mplur •. The disercpanC}' wa, found tu become wof"1( as n wa~ decrea&cd ' )·". Chains of sulfur ur selenium are known to have extreme ly high 8exibility bccau~ of the lengths of Ih.i,. bonds and Ihc lack of any chain SUbsli'ucnl. l. Distributions obtained for these chaiM a re ,b(>wn in figure 8.9. wh~h al$() , hows a corrcsrunding dislribUlion f(>r pOlyc'h}'kne and .he G au"ian li mit "''''. The ne, ibility of the S and So chain s i. dcmonstr"dlc-d by the shift. in the most_probahle "al,,", uf r (as located by Ih. ma,ima in Ihe cur,,",) lu values .ignificantly lo""r than tha, shown by 1",1)'elhylene a, the same chain length. Not surpri,ingly.
n
", ~
"
~· igu ..
• ,.
'",
".
8JI Compa,;..,n •• mon~ .he Montc carlo d istribution •• , 4 11.2 K r<>,
""I)'dh~.
\c"" (0 ) and poly(dimc'hyl,ilo,"",,) to) chain. ha,ing" m :W
"com"",.,,..,. of
"",
~' j~.... 8.9 Mo"'" Co rio di"nbuoio n, , ' 298.2 K for ,"Ifu, and «10· nium ,,-jlh polyelhy""e" for .hain; of l() , k.leta' Oo",,h". Th.c dailieJ is tnc Ga" .... . .ppw,im,uOJl ",. chain of 'he ",me r",,' _mo~n_>q"'''' ""d .ln-<:nd dis"""" .. Ihe S ,""-in.
<"""
98 STRUCTURES ANO PROPERTIES Of RUBBERLIKE NETWORKS
tile GaUlOian disuibution i•• bcttu aJ>P",.imation for these chain. than it i. fo r pol)tthyltne. Some chain meleeulei have •• tron, ttndt-ncy to fQml ""tical rcJi""~ ,,-ilhin a OOI1fonnotion that i. othervo'itiC ..~ndom-<:oil in rnu~rc. These chains ,,'ould ,,,,,,,,fore be: C' l""'l«1 10 h.,·. multimodal dimibulionl of Ihe cnd.l"""nd di$1ancc. partlc"lurly in tlk: . a", of "cry short Chains, One sueh chai n mo lecule is poly(o~}m.thyl""') (POM ). wilh rcpo:a' unit [-CH,O _ I,.l(I.21 The bimod.1 chanactOt of its distribution. at ,, _ 40 skeletal bonds ~nd al m.2 K. is >I>o" -n in 'he Uppe""...1 part of 6.",.. 8. 10"'. The """ainin' I""" ofl"" r'lUK~' , IK: COfImbu,ions of specific conformalion •. opccifically a I"'rI'ccI rod. a once-broken rod •• ,wiDe-broken rod . and 10 on. S""h ' nf""""lion CoIn Ji .... valuable insigh Ll inlO lhe oonfom>atlonal "",~cup of hclK:olICnic rei)'''''''' and !lIcir elaSlomenc rcspon5«. As c~pcc'«I. applicalion of an c~tcrnaL force '0 ,,,,, emls of Ihese chins "". fou nd In .hift Ih. COC~'Sl.ncc equilibrium ""lw.. n helic,,1 .nd f""ndom-<:oil 5<:
• • • • • 0
•
• •o
0
-
~
rod
, ...... ",n-
0
• • 0
• 0 0
• • • • • ••
3 .......
........ , ....... , ......
.. .. ..
,
R""'I., . .... or ,he: 1010'' . Caoo dl>lribullO ... rur poI)'(u. )'1nClh)'I.... ) !''OM I.' m .2 K. fOf h'''' "I40 . k.lcta' "., ...... '_ .n.. hrcoh ..--.fled r.,. .""~ ctI~lfil."'i,,n <""."pond 'u ~ ,n~. in ,II< mll< ....'''''hol'''''l t ha,"" t~
(
'. 10
CliP
,,""ift.
CALCULATIONS AND SIMULATIONS
• •
~- ~ ,'~ -
I.
,\ I \
•" ,•
I /" I
_li
, M
99
, ,
"
~
"
~
~
,~
M
"
M
r;~g .. 8.11 EIr".:, : I'OM chains de>erib: dOllc;l. ""lid. and dashed r«,;,,,ly. Rop.in'c;I wi,h pe,miMio" f,om CUffO. J. G ,. 0(,1. (1<)86). Mayrigh, 19\17 1I"""ic." Ch<mic.l Soclc'y.
Ia.,.
nificantly lhc coniribuliollS frOnt the hclic;J1 scqucn=. as identifiable b)' their larY'r values of the fractional eXl'alli'.alion of clastome.ic materials. as described in chapter 12. Montc Carlo eo"'pOlrr simul;,tions have been carried out on f,lksian characlerislics of the chai"s Of] the clastic pmpcrtie. of lhe filled .... t· works , h' th" . arl;'sl .""h I'ud),» '''. i, was assu,ned that ( I) ,ht filled poly=r network CQn,i!1S of " c
100 STRUCTURES AND PROPERTIES OF RUBBERLI KE NETWORKS
.W
--- .. ..,,...
-~
0.15
__ . _· Sll
_ • .. .• 0
0_10 ~
•
.~
'00 ~~
•••
.,
••• , ' r mn
F'¥ ... 11.12
Radial di"ribu,ion f""".ion.
"
,.
!'{.J fur 11-.. er>d-h, ·..,oJ
" .~tor
obtained by
M."" . C.rIo .\imul'I;"n •. ,h""!n ••• funcl;on of ,he relali"" chain ... o• .\ion , /,_, fo< poly(dimetbyl.. I" ..... j ....works'" In thi, figure. and in fiS.'" 8.16.nd 8.17. T .. 5OO K. ,lit cb.h,. h.ve n .. SO , k.letal bond. beI,....,n cr<>lS-linb. ,be ..-.ighl pernon' of filler i, •• ,,""'ihtd. or>< radiu. of ,lit filler ",,,,,,leo is SO nm .
partiele . The effecls of these ~h.nge ~ in the di ' lI-;buli(m s on the i""lbe.m, are discussed in Ihe following seclion.
sl~ lra;n
8." Stress-Strain Isotherms Calculated from the Non·G auss ian Distributions The Monte Carlo disuibution, Ihus obta ined can be used in Ihc st.ndard ·· throe. chain" model'" for rubberlike el.,ticily. Some typical resu l... in termS of MooneyRivlin ;""tm:nn. for networks made up of r UMS chains of ,'ariou' lengths. .r. presented in figure 8.11". As e.pecled. Ihe network con,is ling of relatiwly long chains (n = 250) gives the Gaussian result If'J/vkT = I. The upturns in [1' ) obtained at smaller n ~re very similar 10 Ih"", fou nd experimentally in bimodal nClworh containing la rge prorort;on, of very shorl network £hains"". Such ncl_ works having unusual nelwork chain ·kngth distributions are discussed in grealer detail in chapter 13. The r.sults in figure S.U also show Ihal th. shotttr the nelwork chains. the smalieT the elongation al which th. upturn occurs. The Montc Carlo simulalion. based on the 'Olalional isomeric stale model for tbe network chains have thus bttn very u",ful in interpreting lhese uplurns in modulus. It i, al"" possible to interprel Ihe upturn. in modulus in thcoe i""thenns using analylical expn:s,si,:ms. for .,am ple .he Fixman_Alocn modification " of the G .ussia n dimibUlion function. combined wilh tm: constra ined -junc ,i on thoo,y an d reasonable ,'alue, of lhe constrain, par"meter ~." Sim ilarly mcfu l dislribu -
CALCULATIONS AND SIMULATIONS
,
10
-
• :=.
-
->- , -
--
, , ,
,
•-
6
-
20
40
-
~
>
-
~
2
o
0.4
tOt
250 " ' " I 0 .5
I 0.6
I 0.7
.~ 0.6
0 .9
1.0
l /a .·iK_ 8.13 !doduli predict«i for I'DMS not ••,,,• • h".i", 11 - 20.40. ond ::10 . kel< .al_ of [1'1 -'" norm. liad ~~ ,II< G. ... ia" prediction for tbe modul .... vkT. whe,..,,, i. til< "umber of ".."""~ chain...d ~T hu tt.: ,",001 >ignif"",Dt"e.
bond,".
lion runcli'","$ ha,'<: bttn obtained by mean, of ;phe.ical hannonic ",presenlations of r<>ialional opera",rs"·'"'. R.lhcr unusual .I,..".,.."rain i$Olhenn. arc obtained f'" net",orks consiSling of Ibe highly nexibl. S or Sc ch .in,. as is illumaled in figure 8.14". The normali "-"sian net ....ork•. Thi' i, qui!e dillerenl from the isO that .he e' p"rimen!al uplurns reported in the literalure for natural rubber were morc likely due . train-induced ~r~S1al1i :t.a!ion than", limiled chain extensihili !y. The ;sothenn. f", Ihe POMS chain. in the vici ni' y of .. ndomly placed fille< particles are . howlI in figu.... 8. \6 and 8.17"". Specif>ea lly. value. of lhe slress j. reciprocal elongation arc .hown in ftl\ure 8.17. The . unstanlial 'oc ..... a..:s in Sire.. and mod· ulus wilh increase in f' llc< OO lltent and elongation are;n al leaS! '!ualila.iw agIC"C· ment with experiment. a. d=rib"d in "haplCr 16.
.0
102 STRUCTURES ANO PROPERTI ES OF RUB BER liK E NETWOR KS
rig . .. 8. 14 Compori",n, . m"ni 'he ......... "rain i""i"l
C
,.
" " •
= = ,• •
-• ,
...
. ..
." • , '.'
•••
.•• ••• ••• ••• ~
.;';. " U 5 Norm.liz«! moduli pnxlic'e<, chain' h."in, ,I>< numb
The", a", a ownber "r din.....1i..... , in ",hich such filler . imulalions could be extcnded . For example. one ,h"uld iMcs,igale difT.",n, extents of panicle.Sil."'" galion . and d ifTe",n' panicl.,.,i"" distribulions. It ",ould also be impottant t" mod. 1 physica' adsorp'ion or chains onlo Ihc fIller surfa"". IIsillg Slanda,d l..en ll;r,d·J(mc> inlerac,ion polenlial •. Chemical adSOrpli(:>n. on Ihe o,he, hand. could be moockd by randomly dimibulillg acti,·. pa"icle si le;. and then
~oo
».00
,
,"00
~
-
,>
•
,
» 00
'"00
"
,"
'00 '.00
,..
>
I..
15.0
•
10,0
• •
,.
.
•• ,
.
• • ' •• 0 ••
,.
"0°
11111'Ull!! •• ••••••
l.i
1.6
•
'.
•
dl!i!!~::····
FiK"'O 8. '6 Dopooo.o",", Qr I.... no, ..... I;,..... nominal fur tile ,"ndoody fill«lI'[)M S "",works"',
•"
, •
"..,.,.r
I~ I/r
on tho elongation"
. ,•
•
.~ $....... .....!mllnflltll .. •••
"' ". "'
1
tt
•••
It
f
,..
t1!l .... KI1 '"", "",mali"..t loro"" ;':" modulu' lr l/vllT, ,ho,.. n a,. r" ...'lion or ."" ,ecipro<> modornly [,\100 !'DMS ne,works'"
104 STRUCTU RES AND PROPERT IES OF RU BBER LIKE NETWORKS
interacting chains with them th r<)ugh a Di rac 6·function type of potential (with chain. at 1= than some .horHange interaction distance becoming chemioorbed). Of particular intereM would be .imulations for chains sufficiently long to partially adsorb Onto several liller particles.. and to modd chain-«>mour distributions between the bulk polymer and the nile. rarticlcs. T his approach could ",,,11 gi,-e importanl and moch.nc-edod insight into mo1e<;ular a.peet. of elaSlomer reinforcement. For otber MC simulalions of non·Gaussian chain configurations. the reader is referred 10 the work of Haliloglu and CQllaborators l .\l6. In these st udit$. wnlig. urati""s of pol)"t hylc"". polyoX)'elhylcne. and poly(dimcthylsiloxancj chains were generated. and segmental oricntation in highly stteleh""' . non·Gan"';an chains ",'as evaluated.
8.5 Molecular Dynamics Calculations The MoniC Carlo calculations described in lhe pr<:<:eding sections are single..:hain caiculations where the detailed behavior of Ihe single chain is studied and lhe behavior of the nelwork is predi<;tt
,-
(I) Flory. P. I . SlalislicoJ M""Mnic, 0/ CM;"
,-
MIJkc"I<~.
Inl ..",",""'" N... York .
(2) Matti<><, W L; Suter, U, W. Con/",,,,,,'iomJl T'MorJ 0/ Larg. MIJkc.I... 1M 1(ol~l;""'d
I , ,,,,,,,...
Sl~"
M """,I in M"",QmQI,nJ",
S}'SI~mJ_
Wil<:y' Ne,. yu,k
(3) Honc)'Culi. I . D . In 1'Io,"iroI f'T()p&'k~ 0/ ['()/),"'''' 1/wuJJxw/<. j, E. Mark. Ed. Amon,." In,''''''< of l'hJ"ic> 1',-.,..: Wood~"ry. NY. 1_: p. J9, (4) ll oe, II,.), In Ph,.,;""1 1""1'''';'' 0/ [,(>I)'_rl lla"~. J, ~;, M .' ~ . Ed . A.,.,,;c."
I""ilul. of Physics Press: Woodbury. r-'Y . 19%: p. SS.
CALCULATIONS ANO SIMULATIONS
lOS
(5) Kloczkow,b, A. In Ny.1N1 Prop"';', "I PoI,-,s IIrmJJ>oo1<, J. E. Mark, Ed. American In,,"u,. or Physics I...... : WOO<;'o= New 'Vork. 196],
(7) FIery, P. I Mac.""",/uul.. 19J4, 7, 181. (8) Flory. P. I. P,;nn CII..",,,,al Socie,y: W.shingt"'" ' DC. '993: p. 1. (!O) t1ory, r . J,: YOO", D. Y. J. CM",. I'hys, 1914,6), 53~. (II) Yoon. D. V.: Flory. P. J. J. Clot", Phys, '914,61. B66. ('2) Mark. J. E.: Curro, J. G. J. <-·M",. Phy•. '983 .19.5705 (13) CUlTo. J. G .: M.rl:. J. E. J. C""'"'. I'hy•. '984.110. 4~2L (1 4) Mark, J. E.: C urro. J. G. J . C~ . PhF'. 19114,110. 5M2 (15) M.,k . J. E.. Cu"",. J. G. In C"'"",,~,ba';,", "j'IIWhl}' C.""·V,,*-,,t Po/yr>wrs, S. S. Laban>. ond R. A, Diclie, f.d., Ame ...... n Ct.emkal Socie1y: W~ .hinston. OCt 1%4; p, 41, ( 16) M.rl:, I. E-: Cu"o, J. G. J. Potly"' . .\·(i .. P"'/Y"" Phy•. t:J. 19~5 . 23. 2629. (ll) M.,k , I . E.: Delloll . L, c.: Curro. , G, M I/Cro",ok,uI~, '986, '9. 49'. (IS) E,man. 8 ,: ~brk. J. E. A~n . Roy. P~ys . ehr", . 1989.40. lSI. (19) Mar • • I . E.: Curro, I, G, J . CINwr. Ph}", 19114, SI , 6408. (20) M.rk, I . E. C"",p. Po/ynr, Sd, 1992, 2. lJ~ . (21) Curro. I. G.: M.. k, J, E, J . Chrm. I>~,.. . I!I8S. 82, ].820, (22) Curro. J. G .: S<,;:o"" , ki, A.; Sharar. M , A.: Mark, J. E. Clrtnr. f:",. Sci. I~. 49. 2889. (25) Sh.rar, M. A.: KIoc,kow.k i. A.: M.rk. J. E. Comp, PoI,m. Sd. 1994,4. 29. (26) Yuan. Q. W.; Kloczk",,-,.ti. A .. Mark, J. E.: SIu"af, M. A. J . 1'&1>", $(i .. p&},,,,, PhY" Ed, 19%• .14. 1~74. (21) Sankara. 11 , A,: Je(hmal.,;, J. M.: " ord. w. T. Clot"" M,,,,.,. 1994.6. 362. (28) Sunka ... 11 . 11..: Jo,hm. ',ni, J, M,: " ord. W. T. In 1I.1·"'Ul O'~_;'-'I""'J""k CI)tnp;JJi"J. I. E. MOl' , C, Y·C t"". •"d 1'. A. IIi ,,,,,,,,,;' 10rJ •. Arnc:ri<:.n Chemical s.o,;"'ty: Wa .hill.([lon, OC. 1995; p. 181. (29) T rdoar, L, K. G . T,Q/IS. f"""w,' S<x, 1'N6. 42. 71. (30) M.,., J. E.: Erman. II. JilJbJxdik~ f.'/Ib,kily, II Mokcula, I',in"" Wil<}'_ Intorx;' ~: Now Vork. I9&!. (1) I'i",,,,-,,. M.o Alben, 11.. J . O,..,n. Ph,.•. 1~IJ, 5~. '553, (32) Ernl.n, It: Ma, •• I . E. J. Ch< ~, . PhJ ~. 19811. 89. 331 4. OJ) LIo"'"tc. M A.. Kubio. A. M.: " reire, J. I . MU1;'"" Sci, 1991. I. IS!. (7) G"o. J.; Wei!>.:r, J. H Mac",,,,rJkcuie> 1'1'l' , 24, ISt9, 0") Gao, J.: Weine •. J. II ..1/a,,,,,,,rJkcul,, )'191. 24. 5119 (J9) (;.0. J.: Wein,... J. H. ,If'H'''.''t>kcU/'' 1992,2;. lJ4S. (41') Goo. J .. \\'
106 STfWCTURES AND PROPERTIES OF RUBBE RLIKE NETWORKS (42) O re'l. O . S.: K"""",. K.: Dlxr;ng. E. R. t""'p~y•. Uri. IW2. 19. 19S. (43) Gr-.-.l. G. S.: Kr=K'r. K .. Ducring. E. R. Phy. iro A 1993. HO. 1993. (44) Duc,ing. E, R,: Kremer. K .. 0 ..... G . S. IWJ. 26, 3241 . (45) I)"".ins, E, R, : K"' .... " K.. G .... , G . S. j, CJ",m. PI<)" , 1994. 101. 811>9. (46) Kremer. K, : Orcsl. O. S. In ,uoo" Catlo """ M'lkcular /),'namk . Sim"lali"", ;" K Ilinder. Ed, OdOtd U ni''''-';ly i'ress: O.fOtd. IW5: ~ , 194,
M""",""",""""
"oJ,.""" *iM
9
------- -----~~~------~
Th ermoelasti city
The importu,\l po configuration to be independent of tempe,oture. Undor those cireumstances. the dependen'" of stre", on tcmpcwlUr. is mi~ingly Simple. as .hown. fM examp le. by the <'
((r\)< -',
f . - ,·k"/" V IT);
(t - <>
(9. I)
that charaCleri,." a rolymcr nctworl in elongation where. it should be ...."<:.1I1ed. (,.2):12 i. proporlionalto th~ "olume of tile network. This additional a"umplion that (,.l). i, indel)endcnt of te"'rc"'turc would lead to the prediction thaI the ela\lic Stf(:!.S determined at ~onstant volume and ci<mgation 0 is dir«U}' prorortional to IIIe absolute lemper.ture. Such netwurk chain, " 'ould be akin to Ih. particles of an ideal go •• whi<:h wn ntri bu\lons to !J.l:.d , il should be n"".lIed lhal deformation of. rolymcr nct"'or~ resu lts in an inc".,", in Ih. number nf lho>c chain conf'gum,;ons of relatively larS<' end·lo·end separation that. in .<>nfonnatioru.1 term,. T"'luircs " redistribution of rolational S,"!CS ~oout lhe ho.m,h of 'he cha in h"c koonc S",c< in"anably oo"'e. or "II. of the rotational ,'a''''' "c~~"ibk 10 the , keto!a l oond, of a chain molecuic JilTer in energy. different chaill conligumtil>ns gc ... m ll )' d" ditTer in energy"· and. cor",·
'"'
108 STRUCTURES AND PROPERTI ES OF RU99ERLI KE NETWO RKS
.pondingly. <; ). generally depend. qnite signiflCanlly on t~mp"ralur., As a con_ !o<'1uencc. c~perimenlal "alues of Ihe ciastie force or SIre.. are genecolly found nul to 1><0 proporlional to the temperature. Most importanl, as shown latcr in Ihis ch"pt~r, the c.tc,,1 to which the experimentally obscr'iC-d relationship I>lccular theories of rubberli ke elasticity rtt(>untcd <arlior. namely that the retracti ... furcc i. essentially entirely inlr~molccut"r in origin ,
'''i,
9.1 Theory The primary goal of lhermoclasticity sludies is Ihe quanlitati". resolu 'ion of the cb.tic foltt inlo iii cnlropic and ">erg~lic OOmponcnIS" '" (9 ,2)
AS di=.scd in pr~ing .bapters. the ."t,upic contribution /, is generally ."peeted to be large and positive. ari,ing from the dccreawl enlropy of the .t"'tched chains. The energetic contrihution!. may 1><0 presumed to 1><0 of either sign. depending un th~ confom,ational chara<1cristics of the network chain,. and thus may either augment Or diminish/" For oonc",lone,... the equaliuns characterizing the StreSl- temperature rel.lionship:; for a pol),mer nctwu rk arc pr... nted mOSt clearly b)' consideration of a p:;rticular type of 'train. Unia , ial deformation (elongation or compression) is chosen for this purpose here. since this Iype of defonnation is particularly simple to visuali'" and eloar.ctcri"". and il is by fa r the mosl widely siudied experimentally·· ''' ... (The thermodynamic "rgu monli leading to the ''
<3"'.
f,
ii
(fJJ::I {)Lh ,.
(9.3 )
witb Ihc 'ymOOI, h.ving their u,ual mean ing" Its fr"ction~1 contribution to 'he total fo"-,, i. given, withoul appro.in,ation and witho ut ",Iiance <>n any parlicular model of a polyn",' ncl"'ork, by llIe thc'modynamically exact equa tion'
THER MOELASTICITY
109
(9.4) This imponant ratio is th us IlCen 10 be directly atla;nable from force-temperatu re mt'asurement; at cOII,tant length "nd vntum •. , The vnlume of tl\(, n.,twork may be: held constant. as cralure S<) us 10 offsct c~acHy Ihe efT""1 of thonnal expansion""'. Allernatively. Ihe network nla y be studied , 1'101. len in equilibrium w;lh a diluent or diluenl mi , ture~ in which the ehange in pol),mor--$Olvcnl ;nteraction, wjth temperature cuetl)' nulli fy the """'" t"'rmal efleet •. In order to minim;,e •• perimenlal diffICU lties. ho,"",,,,,,. thermoelastic measu",,,,,,m,, are genera lly carried oul wilh Ihe network> al conslanl pressure ralher than al con slant volume""'" In'erpretalion of such isobaric Ihermoelastic re,ults is nlosl cO""cnienlly .cco",plishctlthrou~ adoption of a 'pecif", elastic equal ion of Slat., The uSC ofth. thcoretical equalion of ,tate derived in chapter 2 fo r nelwork, in unia_
1.11 ~ - T [btn(f / T)/bTl,,,, - fJ T/(a' - I)
(9_S)
for data obtained at conlt.nt lenglh and Pf(Cssurc.. wher<; fJ _ (b I" v IbT), is Ihe lhermal expansion ""efficient of the nelwork .' Sm,il.,ly. for oondi.ions of oon· .Ianl elongation (or compression) a"d pressu re:
f.I/ '" - nil I,,(f/ T)/(J1l"" + ,~ T/ 3
(9.6)
In the case of studies c~rricd out at constant leng. h. n1CaSun:mentS in Ihe vicinity of" _ I ineur large uneerlainli"" due 10 Ihc form of Ihe denominalor in the difference tenn /Jr/(a) - I ). Hnd the difficulty "f ohl.ining sufficiently precisc val"", of " under .hese condilions, The efT""l of Ihis Ie"" can obviously be minimiled by carrying o ut lhe (nree- temperalure mea,un:menl. al f(Cla.;""ly high ddorm"lion •. Then . P T/ (Ql - I) approaches ~ minimum ,'a l"e of ,ero in the C4>e of elongalion (a> J) and - fJT in thc casc of compression (a < I). Under Ihe alternative cundilions. Ihc elongalion or cumpression" is ilSdf main· tained al a coml~nl value by appropriate adju.tment of the lenglh of ,he deformed ... mple 10 offset e_",cily Ihe changes in the undeformrd lenglh Ihal accompan)' the changes in temperature:. rn sueh .,perimenl' al cuml.nl pressure. Ihc rc<juired term is seen 10 be simply pro. independem of o.§ T he above aller· nali,..,s by nO mcans e_,hauSI .he variely o f le<:hniquC$ .hal may be employtd 10 oblain thermoelastic d3ta . Other approaches would ;nclude the e'lr'delion of ,lreSS I"",pera'ure i"fonnalion from a .. ries of . tres<----Ction
mo-.., "I""'''''
tA, ohmo·. "' oftaI """.F '. ,n. (u= ~ It
"0< co", 0( ""''''''''. """ ..,.i.Sdil...,. , ... ,"""""I """"""" ~nt "",w,",,, ;" 0(""" ..... ""{",n,.,,,,•. fOf ,,,n,,* t ..""", 'K ......" l',,~ ,he """olaF 0( .wood,.,
th,,, of ,... ...·<>Ikn "",~ .. l §Some "' ... , 'IP<> of
'"""'Iy "",10 dHlh,,,,,,, ",m, d,p.~""
110 STRUCTURES AND PROPERTIES OF RUBBERLI KE NETWOR KS
of teml"'rature at conslJnI force". It, any case. determination of relia ble '·alu"" of acquir«l at conSlanl pressure does require inclusion of such lenn! effcc,ing the conversion to Ihe thennodynamically rcquirod condi. lion. of con,IIIm volume. sin"" Ihe faclor In· is typically of Ihe order ofO.2-{U. Implicit in the basic ["mulate of rubberlike ela'licily is lhe assumption thai in Ihe deformation of a polymer nelwork. any energy changes ar. intramolecular in origin. [n Ihiseasc. the theoretical e"u,tlion of Slate dcri,oN in chap'" 2 may a['o be usc
1.11 from thennoelastic data
f,lf
so
(9.7)
Tdln (f' )oldT
where (f'}o represcn," the un1""rturbcd dimen,jons' or the net,,"or. chains. Thi. ~uation i. of considc .... blc importan<x since ;t 1""nnilS the comparison ')·" of rtsults of thermoelastic meaSurementS On pol}·nt., chains in the bulk. in nctw<>rx structures. with re,ults of vise",it)" mcasurement, on chains of the same pol)·,ner. e.... n1ially isoblcd. in d ilute solution. It .Iso ""tablishes the r<:l.t;onship bc:twcen the t;'urtly thermodynamic quantity . f.1f and its 111<>lecula. counterpart din {r')~dT. which can be imerpret«l In term~ of thC rOtalional isomeric State theory"- of chain oonfigura';ons.
9.2 Typica l St ress-Temperature Data Detailed discussion. of the CJlperim.ntal techniques emplo)·ed in thermoelastic ,tudie, may readily be found in the origin.llitCf,tUrt. w~i(·h i, extcn,i,..,ly cited in the f"llo,,·ing $/Xtion. It is important to emphasize hert. howe.·er. that u,,", of th< thennodynami,· relationships pn:slycthylcnc nelworks at c,," .. an, prcs.sure and at conSlant iength ". i. sl,own in f'gure 9. I. As "'as done in thi' study. the el.slic force is typically di,·id«l by the erosS-....,liona' are. <>f the undistoned !.ample at a <"nvcnient lCm1""rature in order 10 facilitate C. in the calculalio~ of the diITerence term /1(0) - I) . As " gcne .. lly the casc. the stress is found to ,·ary linearly with tCOll"'r"t"re within C' 1""rimentai error. thus indicaling thaI f.lf i(.<;clf does nol v,,,y ~ignifocantl)· with tem1""r""lfe Stress teOl1""ratu", relationships ha,·" al.,,,n detenninod for a number of bio..-ia.1<>mc". a, described in ch"pler 15. Suffiei~nl ,hain mobility for cla,(omeric Ixha,ior in nelwork ,tructures of Ihi, type ge nera lly r"<1uire, the pre,.,n,,, of rci;Itiwly large amonnts of low·molecular-weighl diluent. ·I"hey are Ih
br
UO ST RUCT UR ES A ND PROPER TIES OF RUBBER LIKE NETW ORK S
"" z
5
10
IS
lO
~S
30
3S
40
~ig .'" 10.7 Comp.ri""n. be'"",n tIM: 1'1<>1)' number N. and 'he number or - for I'DMS dillin, as. fu"",ion of ,h.
Ihal in Ihe mOil commonty O<.,-,,,rring range (}I vjl'• . N p i, always iar!!"r Ihan Thus. 'oc number <.>f tnla nglcmcnl$ resul1ing r'mn Ih~ d;lpe~ inlcrpenolr.llion of chai"s in Ihc cross-lin ked sial. is fa, gTrater tha n the 11'., .pedfIC localilCd points along thc chain defmed by explicil reference to lhe plateau moo ulu s. A. shown in chapters 2 and 3. Ihe mooo l omphasi,ing 'he g
II'H.
G= (I _ 1/1~) ,4<1" [I +...l..II' ,,'(( 1+1 +,,)'~')l Y. 1/> - 2
( 10.3)
whcre Ihe 4uanlilics ha"" 'heir us".1 signifIcance T he C(}rrrsponding expression ror lhe l oca li"~I _cnlangiemenl "'00.1 i. G = G"" + G,
'I ~ =
A(It"" I n, T,) RT
{~;o
( 1O.4)
whore 1 ~ i, Ihe enlanglelmn' "lrapping faelor."' tJliliauion of "'I. (10.3) require, C(}mparison, belW<:en uperimcnlal and Iheorelical "Ilue. of lhe: modulus. ><, as \0 oblain "a!"'" "r lhe: p"ram'l~r N. Those ,.,,!u~. would lhen 1Ii"o insighl inlo lhc Iype of <"()nSlr~in(. Ih.l "'" ol""r~live. Pm cun'plc. Ihe rC$ull 11' .. I C(}rr""i>Ond~ 10 Ihe Flory_Erman C(}nSlrainC
112 STRUCTUR ES AND PROPERTIES OF RUBBERLIKE NETWORKS
•
,
,•
. ~
~
.,,.. ,...
-
-"' ". _."" _.....
, 1-
.-
1.-.-
1. ·C
'"
'"
~'xu, ,tat<, in ."''Cllin, "'Iuilibriurn wilh dirncthy-'.If". ide. Mea,.""..." "'0" earri
lion)'· ..·,,·,.· .. , A. C>.pected. Ihe e'p"rimcntal stress---!<mpc"'Jtu~ ~1ation'hiPl' obtained •• il\3 !Onioll a. lhe deformation arc very si milar 10 lhose qbto incd in elongation or comprt"ion. as is illusl"'~lcd in figures 9, I. 9,2. and 9,3.
9.3 Illustrat ive Thermoelastic Results A, was poinled oul obo"" •• 'peri,",,"la l studies of network lhermocbsli";ty mo}' be pcrformr:alues "r f.lf di,cclly from eq, (9.4). a thermodynamically exaCI equalion , Values Ihus oblained may thr:reforc be used to check resull' obtained at CQn~lanl prtSSure and in'<'1'O:led Ih rough ' he u"" of cqual;on~ such as eqs. ('1.S) and (9.6) which are based on the 'Ia' i$tirul. molecular lheory of rubberlike elaslicity_ Ikca"", of e.pc.imcnt.1 dirr."uhics asw
" .0 II'! 1" ~"'>!>
1'>""'"'' "'I' I." ." '" ""''"'! '''''''.' ""I'" '" -.0'''''1'>'1 ,...'" ,.,. 1" " >O.~,,. "" pou' . .... "I"'" ·'I'....""J '"",,, P"'I"''' ''I ""!"l......."" ..... "''''I"'!IJ'P I"'~"""I ." J<' "'"" "1'1"'1'" 'N"'~ " ,~'" ...... '''''''''''''1' .., pu> t', 1""'''1 'u II'/ q>!q .• • , " 'f'O"'w ......,p ,,-,!p .... jU '''l'""" ••" .,....,.~"'I '~~uoq,"'""",,,,, ,.,,~ ....~W ... ,{poUU>ll1 poI __ "I' "'"I"I~'.' -.>d>f'"'
A"loq~,.."., U!'~.' I"""'!I 10 U''''. ''II ''''{ '' .10
1"""'1"" -"'"'" ,,~, ..."......,.. 'fI'~ ~"'"
1" ~ • ,,,.!
"""!''' '''' """"""I """",-,n,,,.,, ~\t.,. ., ""'"'<1''''''" '""' -'''''''I'''''' q'"'' J<' 001''' • Ol"!
,,""""'",.,.. jU
"""'I 1"'"
'>«10"1
"""",,<> P'\W
uo _"",>oJ>p
,u "'J,04~
"""", ........ " .0>1' q""S ." jU ""I'"
q"'" '(0',-(' I ~ 0) , """......., " "'>pOW ..
oI,'" ".'J<' ""1""' ,""...", ' .....,_ ~q ".,....,,,,'".' " . " "" /1'/ J<' .,..~>u,.;,p • , ."""", "'1"''' ''''~ '>->UOi;"" """ "'U' 'II'J ' 11.>,.,:>;1 """"I""'" "m,o." >II' 0' ... ' , """ ""'" l u'I">I ".."..." ! '!~I JO "'m~ow U .u I""n 'lJl I"~I'UO:> !""!Jld~,"!w,,, "'U .' .... 1.. '.,!.")~1 !"~!I'!I '~IS ~41 ,('I l>.ll'!p>Jd d!~SUO!I~F>J ~~I JO WJOJ ~~1 pu~ sd!~~U'i!1el"-t ul.,,<---sI'''-tI< 1"IU"ulJ"'h~
U:>~1 01 I/,I JO "1~'!l!,''''SU! J1<11 U! SJ.JW'IOO U! SU!-'~P-''' ,eln).>r"Iill~IU! .. U~ JO »""""d J41 I'''~ '''''' 'J "'ll 01 SUO!lnqIJI ·UO~ n\o""I0""-',IU!)'i »unl'OOUI! "'II ~loq 1"'!Rh :''''''P'A" SUOJI' "".., OOlnlll~ '''0:> SO'll ~j(),"IJU "41)011"' 11 "'" J U =lI~p 41111'> 1/,1)0 :>.>IIU!,"AUI '~1. '''!Pnl' ~. ql U! qJO."'''u ~~I OlU! p.:lIUJo~S!U!Wlp "11R'lJS "I U!"IJ"" JJ~ 'U!,,~., U»."IJ<j SUO!P~JOIU! Jnl"""low"'I U! lOU!' 'SU!II~"'S ~'O."PU JO I:):>JJ~ liu\: JO :>I{1 II ""'''" UOOWI J"r""lJOO)O '''on 'UWJOpp ~JO_" pu P"" UO!II""lI~"o.' U!"~" JO lU~I"'''''~pU! .(lI~!IU~S~ lIU!:xj SUO!l ' )UJJIUI JUln:>.llo,uJ~lU! 'II!,'" ·1:>.lJJ" J~ln""loul~J1U! ue d J!,~ "'l1 JO IJoddn~ 8"'''1$ \I! '! "-"'~i>!A~ S!'IJ. ' ~JO," I'U JO SUI 10 UOII"I'P JO =1101' O~I puu ' UOII~'W".l'P JO IU'I>J pu~ Jd~l ""I ' ~U!~UII'SSOJJ JO =11,1' ~41 'lIU!~Ulr'sso,~ ~u!Jnp .UOP!PUW "'11 'Sl"""'''-t''~NW ~nl~".Jw'l ----OOJOJ ""I U! U;)$O~" 'IU!R'ISU<X> "!'""UApoW'~'ll ~41 A'w." :~U"!I!PU<X> I~IUOW -u>!J"A ~ JO ILI'[JUod"l'U! " 1/1 011"' ~"U.U.(POUUO'l1 ""I 1"'11 S:>\BJlSUOUI'I' "I'"~P "!I'0l, "'li"l""Iill~'1) IU,UJ poJ~'Ilcil "",,"Pt.\O ."oq~ ''1.1 ' p~AJ""l0 """'l <~4 I/'I "" \I0UOI'p J" I""JJ~ 1\I>J.,ld~ ou 'S"'1'4IOUON ' P;>I~S!lS"'U! lQ:lq ""-U4 8U!II.·'" JO S;>:>JS~I' J'i J~ur... ~P!'" • P""' 'SO!p" l! 4"'" U! P-1Joldw, ,,;" '" ~.'"q ' lu.,nl!1' pu~ tJ.ul"lod JO .(I~!J ~A "P!." " ',,""4"''''1' p3uOO'J il:v..Jns JAIlOW" Ul pu~ ' ''Iq''l "41)0 . uwnlOl ='11 ISJ~ 'ql U! u,,",!lI 'I!""P ~I wOJJ u= ~I! I'~'J 1! SV -.,9 '6 "1'1"1 U! P'>"!J",uwns 111"~ ICJ!d,{l '41 'q p.jP-Ie 1/'1 u" SlUml!p 4,ns J" Sl~ll' ' '1.1 " Un!lq!l!n!» h!IP_'" U! N u(>!I!'odwo, II1nl"uo:> I. J"'Ill' ' lU""I!P ~1!'" U'IIOMS q,o"'l~u ]0 "pm' ~~I '~" l<>"'! 1]l1"IU!J'-.dx, AllJIlSCpOUIJ"'lI)O Sod.'l SUII5.JJJIU! I!OUI O~I JO ]UO , .., )0 1U>puod>pu! oq 01 J I 'l ls:ollSn • .(jSuOJIs S!\h,'IJ :)0;'41. -j»PJdJJlu! ~j!p"'IJ l,owSlln,,,", "! ls"JJOWJ'41 puc poJns",w " lqW!I:)J I'OW SI" ~J.4'" ~SU"J 'ql U! '-' JO UO!I"!J •.\ lOOp!'" '41 hOldw~ 'P!4'" pur. 'pouielqo "lI nJ"' ~J I'OW u""'l ....'~4 01 modd" 4")4.'" ;)$04 1 Will; """0'1' SI I"Pl .... )I"lu"''''d''' J(l UO!I~I~ ~ 'U!~IU"-' "S'6 arqll.L .,'01 UO! I"sUOj':>I[1 J" UO!I"""J "'" 11'1 JO sonln.,)O U'iII"lnq"l ""!SU.'I" 'II!," 'p,eSv S!'11 U! I"'·"'!A"-' """'l J"~4 "'!pnl' 4JnS ',n, LUQ!I~SUOI' jnlx.,,,n JO """, ",,1 Ui HllOO 1!41 UO liup":xj "1"1')0 »U"I'
''''''' <'1'
""I
611
A11::J11S'o'1 30 ~1J3H1.
II"'"
---
T_,.!I
Ell"'"
0(
El..",
"'.....1 •• bI>«"
N.,..., "'".,.,..
0(
Dd"onruo,1OII "" "/f O'
1.11
,."
- ~,
~
_0 .• '
W
..'""
~.46
,." '" ,,., '"
- 0 .• '
..
.w 0.14 V.II
••
1.11 W
V.I. V.IO
,. 1'1 .. _ _
1.b2
0.1)
~
V,I' 0 .1 2
,. ,~
1.11
." ." ". ." ".
~ ~
0 ,"
~
N.,..,I.-.'
1. 1)
,.n
U l
,. 1.)1 1.31
." ." ." 0. 11
1.41
a.. 1.4'r><>IJ-buto
,.»
UI
0.11
."
!.OJ ,~
"." _Jb<"
"""'-d. . . b~ .. f
,~
...
~
- 0 ,1)2
'" ,." ,
'0
1.11
V.ll
~.,
,~
.~
.
1.71
'.0
1,10 • [ ' - ,..... ' )I. roo _ • ..... _ _ ' l, • '"..,. _ , .....-. '"
ro-_.. ·""" ---'" 'r....
.. .. ••
0.21 0.2'
..........,..... _ .... .. _
·'. . __
·T.... ' _ _ "', • ''''' .. ' - _ 'I '1
THE AMOE l ASTI CITY
"1
"
•
•
"
..
('
'---.' ~ 47()
".t."
c
~'il~'" 9. 1 Some the","",I"lic f,,, .morpnou< polyelhylene ntl"'''''' ;n ,he "n,,,-.,lIon "".... ""." •• t Ie~th, n .. SIre» i, «pI'<...... "'Ial;.... t" 'ho ,"\dd",me i, char· aeleri"'" by the ,'.Iue "f tho OIoo",tlOo <> at It.: .. "", ttI"per.. ture. R<print«.i "'ilh pcr· mi,,;on f,o", Of.... ,. A_.
r
tomarily studied in Iitc highly swollen Siale, Some Ihcn-noclast;c dala obla;ned on elaSiin. a cros,-linked prOiein described in ~hapler IS. at'(: pr=nled ;n figure 9,2", Thi. malcri~1 was sltldi«l in Ihe l."al ly ~m.,rphou" state. in s,,-elling equili. b,iu m, al oonSlant p'=u",. Each line . hown gkes;, good repr=nlalion of dala taken by either decreasi ng or increa,ing Ihe tempera lure. Ihus illustrating dearly th. high deg= of reproducibility "lI"inable i" ,hern,.,daslic ;"""I;g;" ;o,,, The use or . compress; .... deform.l;m, in for<:e-temperd tu re measurements i, illUSlraltd in f,gure ~,-'. which perl:!ins 10 all utn(>rpho~! polyoxy<:lltylcnc nCI' "-.,, •. ,,,,.,lIen wil h " constan l amou nl of n.,n'-olalilc diluenl a"d ,tudicJ at con· ,Iant pre~u",JO. Th~ data ,how" wen:: oblained ;nd;"",lIy fron, slt\.'SS-slrain isotherms de'en-n;ncd for a comprcSSl:d cylin(lncal sample al a number of tem· per"tun::. , The isolhe,ms had been repre>ented ;n ,uch " manner as 10 yidd lhe "'lui,-alent of Slress--tcmperature daln at eon"~t\\ lcllglh, As a final example. som.. Iypical Ihermoelastic dala ;n tors;on are shown in ligun:: 9 .4". They pe'tain 10 a natura l rubber netw",k studied in lhe amorphous unswollcn ,ta'e at constant lenglh and pressu"" In th" In'" "r deforma,ion, " nctw",~ i. cha' acle,;>:e
•
"
•
"
...-."".,-,,
,".",.~-.".----;:,
.'
.~
rrom.
FlKurt ~.J Thermoelastic dot" deri<> or """,, _,,~.jn i..,'he,m. <>btai....J for. ""m~'OO amorpho", n",work or polyo.y.thy..... ' ,"'ollon wilh . oo""anl amoun' of ncnvolotH. lIil.... ,".
~--.----,----,----r'--.
-0--<>-"
1 ,
~..-o
~
0' .
.-
~_' ,_o_~-o--o0 ' -0-
_ -Q
•••. 0 ....
~.--.--.--'.'---
L.,~.
__
~_ --.,
'.'
__
'~_-.~,~
9.4 normoci."ic data ob,",t>N , k ..,f ""u,al ,uN><:r in ,,,,,;on" The >If\">' " gi"," by 'h< ,ONi"nal """P"' M • • "d ,he ;tr.,n by ,fie I'rOOlOC' of ,he 'W;,! .. (.n r;~"'" I"" ""n k;n~lh) "", to. " 0' ''.',,,,, .... diu, ,,, . Rc ohl.;"",' upon io I<m!"',,,,,,,,, ,,'. ',"'~" by "I"''' ~I",k·' .• "" 'h"'" ,nCr\"';o: j" ,cm1"',","'0. hy .... , ~i l"'"
J.,,,,,...
"f'.'"
STR UCT UR ES AND PROPERTIES OF RUB BERLI KE NETWOR KS
11 (
The mo,1 CXlcn,ive Oflh"",,"re the siudies" 18 of Allen and coworkers, who have ctnplo~cd Inc melnOO of variable nydroslalic pressure 10 nllilify changes in lhe ,'olume of the Suld be c",,,red_ In Ihesc sludies. carried oul InUI far on networ's of natural rubber"·"*. pol)'(dimc( hyl>i\ox.nej", and polyisobuly· len."'. Ihe ""-luired oocflicicnl (fJ!I(}1'l...,- was generally obtained in 1,,"<) inde, p!urc. wilh appropriale control of Ihe nel"'or' volume. as "Iready o:kscril>cd_ The K«Ind im'olvC<J mcasu",mC""t of >·"IUI;s of Ihe c,><:fIiciel1ls (al j a'rJ'_r (ap/ a1")"" .. and ({}!lap )t,I' and uSC of Ihc Ihcm,,,,lynamic idenlily: (D/IDT ),., ,, '" (fJjji)1"),.~
+ (DI'IDT)'s({)fIDp)1.,T
(9.S)
Th= 1"'0 approaches gav" vailles of/,ll in "'Iisfactory asrttmen!. Thc network< which have be",n mosl cXlensive\y .ludic"l in Ihi' rcS,,,d arc those or "alur"1 rubber and I"'1)~dimeth)'biloxane). ,md Ihesc results are thercfore su,,,,nar;"',,! In lable 9.1' . lneluded for purposes of compan",n arc Ibc 1n",1 reliable of the cOrn"Sp'cr a narro,,' range in lempcralu,c. t Less comptelc da1a are available for pol)'isobUlylc,," nelwo",_ bU1 the rC$ults al ""nSI"nl ",)tUnIC and at ",,"\\anl pres,,"e a rc "I", in gOO<1 menl. givins Ihe average ,'nlue/,// '" ~O ,06(±O.().t) "·"'""'. Using 'he I<"$s direcl approach fo r obtaining Ihcrmoda$'Oc da'" ,,' <,:<>n"a nl 'olun'c. Sakurada"" anO$i!ion. al which ,'olume change< we'e .igl\ificanl and Ibc,cf(>rc had 1o he eorrttled for by usc "f "'1_ (9 .5). of the "ali,lical theo!)'_ 'n,e 1\\"0 Iype' of =,,11' "'''''' ogain found 10 be in S'e oomparison, slrongly indicalc Ihal re liable 'alucs of /,// may be obtained under Ihe rdali",ly simple conditioTl of constant pressur~ . ralher Ihan c'Onslant vol~me. A. is also shown in lable 9, I. a nd in more cxtcn.i,·c oompila\;ons"·". 'he res" l\; lanl pressure do "01 dcpend on Ihc choic<: of !he olhc, eons"ai"l (""n'lanl L (>. ' " j). (}' on ",helher Ihe 'YSI"'" i, Ihern,o·
"1\"""
,0(""
'll< or!.lI obt,ined .. 00II.""' ,01"" .. " 'P!'ro'"",!O.f<. 11:>< dir!',,
jlo
'Il<
b
co", or 0".,.1 .... "",,",
the
,,~rq<
"".11,
'" ...-..""n' r.,.. ,,,,,h • « •• ,,,""' ~'" to1.11 d,,.,, 'mp""~ ,'" oJ"""'" ""'~«n ,I>< ,~O L,.,.,.. or"" .. '" '" ,0.. "..'" or """"I .... ~ ... r. bu, h., 'he ON"'''''' . 'l«," .'1><. _(>pi;..! ,~ 'Il< "1",N,. <\l
.>to.,,",," "" nc,,,,,,~, or p<~)jd'm"h)·",Io"'n<'
MODEL ELASTOMERS
U9
I), ViJCQt'I(UI;" /''''PO'''~' I)'n!. xi. 1987.15. 0\9, Ronn". N .• 0"1'<'''''' 00 , W, Co/I. 1'0/)'1'" Sci. l'>91. 27(1. $27. E""an, B,; Flory. P. J. M,"'"",,*,'~'" 1%2. IS. &'16. Flory, P. J. Slati"kal M,~hanlc't' 0/ p,~ymt'T' , MoG'aw Hill , y o,k. I~ . (84) Ma ndol,em, L. In ("""'I'"Ioo: o.,rord, 1989: p, J63, (85) .\1"• • J. Ii Macront<>kc.k, 1984, 17,2924 (86) Cl • ...,n. S. J. : G.li .....",. II . 1',,1)',.,. C""",'WI. 1986.27.26(1. (87) 0;0. D. S.: Suo T.·K .; M>rk. J. E, MO<",,,,,,o/,cu"', 1911, 10. 1110. (88) MOIk. J. E.; Eiscnl:>. P n . .<;"clli"8 C()r>CfPIJ in Poll'''''' Physk•. Cor ...n Unil"C";ly J.....: It"""'. NY. 1~7'I, (92) Mar k. J. E.: Zhong. Z,·M . J l'oI)'m. S,:;. /'01)",0 . I'h)", Ed. l'll! l,l'. 1971, (93) Langk,·, N. R.; Dickie. R. A: Won,. C .• Fo"y, J. I), ; Cit;, ... " R.; Thirion, P. J. PoIJ'm. Sci .. /'a" ,1 ·1 1968. 6. 1311. (94) Yu, C. U.; M .,~ . J. E. Mac,nmo/«uie> 1974, 7. 229, (95) Hocv•• C. A. J.; O'lIricn , M K. J. l'oJ)""" Sci. Pml of 1%3. 1. 1947. (% ) 000005. A,; 1\<,\Oi!, H, ,\IU('Tcnwlrt~l" 1971. 4. 279. (91) F,i'm.n, F~ \'.; D.<.Ii." ny.n. A. K . V"Ql.OfOOoi. SM1ir:, 1%Ii. 8. IJS9, (98) Naga;' K. J. Chem Ph!", 1%7.47.469(1, (9\1) Gent. A. i':. Mac,,,,noJ«.ito. 1'169. 2. 262. (100) h~i~"w •• T .. Nagai. K. J. Pm)'"" .'Wcl.. Pu" ,j.: 1%9. 7. 112l, (10 1) IsIoib,,·• • T .. ".ga ;' K. I'o/rm. J. 1970. I. 11 6, (102) Genl . A. N.; Ku"n . T. 11 . J. 1'6/),,", Sci .• /,,,,, ..1 ·1 191 1. 9. 927. ( 103) SI<1n, K. S.: Hons. S. D, J Md. 3S I..l51 (1(19) Flory. 1'. J. }'01)'""", 197<1. 20. 1317 (110) Flory. P. J., I:"nan. fl. ,I/rluumo/"rlk.' 19~2. IS , WO,
(7:2) hrry, J,
(13) (74) (7S) (76) (1T) (18)
N.,,'
"oIp""
G,,'i.,..
""",oJ,,,,""'''' ''1'''" >J' '''14"'''.' I"",'.... u,....,, ' ""'JJ'P U"I'~
f""'''' '11'~"0.>11 "nw ' ,uow"""" ,U '''~ ' . ""'l l'P .,.." ......, ~.., U' ;am, '''U "I .(,~''''''''' "'" U..~ VO,~ ,~ , """,,.00 ..... oj " "'.I f"'" "'I'" ,,~, """J ""!""'~ "'"""'. >~, 1"",11'1)<, "" .... .>kl,,, " 1..1.1 .
<~JO " \I"" ~ OJ l"'U!~]qO
""'"" 051" ", e'l
~ll n ~(>J """"~I ' " ~~<>t
Inq '"I 'W'S
'~U!~U)I'''O'~ ""~) 01 ,o!,d """ 4~ ~, o." ,"" .>1.1' ~U!I~"~)U ""!P ~1I ~!'''xI )UJOI!P t JU ~U=.ld J4 ' JO pu~ ,",
01 ,o!,d ' ''!''4J "4' JO UOII"''''PO .10 UOII"UlJ opr JO "",\lor "4) JO )",pu:x.lJp,,, '! I I '! ',,,,,,,,, ,"!"!.II'"m ""'41 wU'J )u"f'!~J I! 'V " Iq'n U! P"")J~ww'" ,," tJ' '4' JO "UOS -,,'oSUO!)!!,llO:) I"nlnun ;).I nw ,~puo pJJ~dJ,ld S~'O"l~ IM,(0ld,uJ a.'~4 s;)!pn,s JO """unu " '~I~lS '""'Id,,,,,,r, 'l'"'w,oJ'pon ·p.>,n,'pun '41 ti l pJJ oo.Jd u~ """ 4 s;)!pt11< '!,iEj"'WJJ4' tJr po'Sn '~-'O."IJ" JJw ·,( tOO lrow ~noqllV 'l"'I'OlloLIl ' """ J,lnl""Jl' "O," "U "41 u'4'" ' l,ltU,," "4) JO J)P-)S J4) " 1/'1 uo ,," ,[p u" "'~4 ,(Iq,..,'oo plnoo 4~!4 ," ~lq~IJ~,' JUO ',lPj·( t )UI P ,., ,U I'l lJoomuno:> J"I"""IO'" SI' '" II'! uo ""lqUIJUA I"'II,-....I!'><.I •., ''''110 JO SP".lP ~lq"sOO J41 OIUi "'mlm' f>.' I'"'"P "-'OUI "J41J"J SlIW'..J MOU ,(ll"\l'~I" '~II''''I'I'U JO .uO\)c~bJ """ ).lJp ~IlU,,!lS\I"'S ·)ql 01 >SJno~ 4:;r"0-'~1 )nil !>"!-'JR., "",(IR" ~ .> !"RpOlUJ"ll JO '(1!1)4"!1" ' 4 ' JO UO!I""Y!' "'' "'li ·/ tun!-"I!I!n~ lIu!Il','" In) u><.l" JO (UOII!
+'.,,'6
1''''''''''
I, """" ... ' """J " " l . "'_, .....,.,.., _
'Sf ."...,.... - . .... J. ,
, '"' .,...."., ....1 .." ' ,
'," ~"""J .. ,. ~. """" ..... _J " l ' l ,
'tl
".,.=.,. ...J .... .L.
""'''¥" '....I"".l
" .,....p , """! " 1".1 ,
11 .......... _
, "'1"l •
<. --.... ' '''l • ".. ".'''' _ "l""'" ••_ .. ,......,. _ """I,..-.) . ' It; "..
-. t
V . ,,~ ' _!"I!i!"b> "'lIl""" • '" A "'H",,::O •
-........ ~'"_. ........... _
... /;:O'O'f ) 9\·O~(LO'OT) 6t'O -
.
/'~
-,>0,.
;/ ' A
,/:0'0)-1') .0·6-
,.,
I """"'. ,",",,' }(i<'
~ (O'Q'-) .''-O -
.1 ' A
,.".-'mqooo'
,('0:)'0'1 ) i 1'0
,/(O'O"J) O'U
F'
,, 'J
,(ro'o,)6I'0
'I'~
h:(ro~) sr·o
.1 'A
,(;O O'f) ~L 'O
c-
.N
,.{v)'Q'f ) '! ·O ( 10'0-;) 61 ·0
, I'"
.(<~)l ' ·O
,/ 'A
~ro'O'f) L! ·O
1/1
(""""I ~I" ~''''" ' ~ )'10..1
'I'~
<1" ...
·,'"1
,;qqru ,...... 1'1 . ~~
£P/'«,) "I P.i. - .f/'!"" ' '''''UlS'''n '"'." •.(polUJ'"U. JQ '''''JJ,1 1"6
sn
A.l,IJj.l,S ..... '30~ij3H.l,
""'J.
116 STRUCTURES AND PROPERTIES OF fl U88EfllI KE NETWORKS Tobie
~, l
EfT""l of Cr"",· lIn~i" i Condilion, on f.1f
s,'" <>loom"'" ~"""~
/,If
« .,... lioHn,
N.,."I,.t>i><,
- Ml (t O ,~ )'
Onmt«l. ",,....llioe
~ O. 4 l (-'-0,O·W
UIIOt"i
.mo'rI><>"'
00<.,«1. "'",,pho.. (}t;rn,cd, <.,...11;".
In ""'"'"'"
O.ll ('w,04)'"
I" wtu,.",
O.Il U.Omt'
U""'''nlod,
• T. . ..
r,_mn_ ".
· T .... ' _ _ . ~ °T.., . , , _ , , _ ..,
, ~ ••",r_-.... ..
O. Il I~O,OJ)·
O.IS(1.M3r O.ll (loO,UJ)' O. 14 (±O,04)·'
U _'«I, OIn""""",'
In ooIo,ion
•• T .'" f,_ t
~ O. J()'
U"""'" ,«I. '~r'><>o' U..,"""tcd . <,}".II;".
' ''''''rI><>''
0.20 (1.0,00)'
O,lS (±Q,QlJ"
• T. ... , _ -.,,,,,, )0.
•T.... 'r""" "'_ 'l. rom -...""
, T....
,..-)0.
, T.... '''''" .... , T.... ,_
..........~"
1.4·polybuladien. IJ " . ......,... .. and poly(dimclhyl'iloxanc)"·' ........ AI>o. c'S;.cn· !iatly idcn!iC"dt vatUe! of f ,/I secm 10 be ohwined for S~'lcm' cros.·lin keJ b~ chemical mean. and Ihose cross·lin ked by high.., nc. This inscmi · !;vi!~ of h ll!o cro,s-tin king <"Ondi li(,", i~ of con~id.rabl. inlere'l. ~inre change'S in .uch condilion. are Ihoughl 10 h,,,'e a markeJ effec1 on the topology of Ihe resulling lICiI>.-ork . Cross· linking in lhe prescnce or diIU<"1 . hould yidd. n.twork or rdali,'ely fcow pennan.nl enlanglen!cnl" as .ho~ld also lhe prior. tcmrorary OrienUlion or lin ing up of lhe pol~mer chains. eilher Illrongh chain cryMa llilalion or by mea," of a mecbanical deformali"n··...... ' , T he p"".iblc dep<"nden"" of f ,lf on Mg"'" of cross.hn king i. al ... of imere'l. but dala ,e\e"ant 10 lhi . poinl m. somewhal limiled by the fac l lhat. in g.:ncral. only rcialiwly narrOw r~ n g<:\ or degrc<: or cross·lin king arc sludic-d in thonno· el.,lic experiment. I), Net".-orh of rclati,'ely low degree of cross-hn king are "er~ ~t(>,,· in re""hing <:quilibrill",_ a nd are usually insufficiently .lable fo, mea,ure· me"" owr Ih. 'equin-d range of tcmp"ra1ur~ and I; me inlc",al , "--q ui 'cd in ,uch oxperimems. High degrees of cross-linking. on the olher hand. pre"en! al1ainmelll or high dcf"nnations. which . of course. h.,'c lhe ad"anlage of ln inimizing uncer· taint ies from the diffc",nce lenn (J(o' - 1) I , Table 9,3" ... m",,,ri,,,,,,, >orne resull. from lhoi<' In,;,'al lIK"01""I""lic -,!udics rell !o be ",osl pc'linenl Wilh rega,d 10 the possible dependence of!.If o n degree of cross-linking, Valu"" or the effecliw dq~rec of c,,,ss-link in g. ~ / 2 V. ci!C-d in lhi, lahle arc in ""i i' "r mole. or cfO,,·links pcr cubi<.· cenlimcler or nct work. They were eakula,c,1 [ro", .-alue< "r If''J ror the un,wotle" nelworks. e.' l r"pol"'c~IIO" t ~ 0, thai i•. f"'''' Ih. "hmne)'·lt i"lin
THERMOELAS TICITY T . .... 9.3 Elfoc' of l>ogre< of C"",.I.mkin,
0fI
117
I,ll
----~-
Pol)"".
( W'~/l"I'
/.If
O.j2l<
MI (,,-O.l"1 - MJ (.1O.Ol) -O.44 (.1(H)41
,.
1'<>lY<'~11<"'"
1. ~ 7
N.,.,., Nbb
'"'
0.11 (10.01) 0. 11 1-,0.01 ) 0.11 (.10.01)
HJ
'" '" I.U Not.", ,."""'"
0 .14 (~01)
0 .11 (-'.0.01 )
1,1 1
0.16 (-'.0 01) ",11(,,0.01 ) 0.17 (.10.011 0.17(.1002) 0.'4("-0.01)
H3 .~
,... 12.0
G •. l .4'r<>I)'"" .. dit""
6.10
0.07 (lOJll) 0.0\1 (",'10' ) 0,0.1 (±n.Ol) 0.0.1 (-I.O.ol)
w,
lU 16.3 r"..,..I.4' r><~';"""""·
,,,
0,04 (.to.Ol) - 00\1 (to.o~) O.IO (.lO.O)) - O(ll;(io.o)) 0 ,11 (1.0,04)
9 .• ' 10. 1 11.3 16 ,.\ • " ...... ,............. """ ... _ • T .... f.... """"'" 11.
... "" • . • T • • " ''''' " ' ' ' _ /S, • Tal .. (,......
r..-..,. ... "'"
oonslllnl ",',·l. ' ) 2e, .. vlr.T/ V, Altho"gh. 5cvcmlfold mn~" or ,'/2V i. COycred ;n each of these ,to- Ss_lin~ iog. Result< of iin, .l _ II>.X and 5.4 -16.5. n:specl;~cLy. haY< been analy,,,d oi"'",,'hcrc and fou",1 10 be co nf;"n,,'ory of ,he above condus'on .t Relal;,,,ly lillie ,,,,,k ha. been ,lone on 'he pOs.si hlc del1"odc""" of hi! on ne'''.-ork c~ "in·leng' ), dislribution, I,d""" nppe.r. ]',,"'Cver, ,hal pOly(dimelhylsi10,"ne) clas1Om<:rs h''''ing'' bimodal di'I,ibuli"" of en"in k:nglhs hH''C ,,,lues "f hll lhal art oOly aboll' half 'he "aluc c.
,h., ""m"""
fl' """ "I~ n. " . no .·Ir;. ' ~" 'Il«< ,," ,,,,.j"-~;" w~~· ~ 1.11 """, t.,,," t, .. ,," '~<'I~. """~. • ... I""l'("",'hyl "'" ",~·",I ..,) ,.-.J .... u,-.I
''''*'''''.
118 STRUCTUR ES AND PROPERTIES OF RUeeE RLI KE NETWORKS
Ahhough mosl Ihe,modaSlicily siudics have been carried oul on nelworks in uniaxial elongalion'). s.....·e"'l ! "nd on (lOlyo~yelhylenc""" in dongalion "nd in romprcssion. and on Irans-I.4_poly_ isoprenc W""" ) in elongalion and in IOr5ion. show equally good agr«men\" b<,"""eOn val~ of 1.11 Oblained using differenl lypes of deformalion. T wo n",rc-~nl im'estig'lion. on a ,'ariel}" of d"SlOmer"l in lorsion and in ciongalion. howc,-er. h",·. found 800d agreement bclw«n ,·aloes off{(f. in general. bul poor agrecmem in Ihe cas< of some polybuwdienc elaslorners " '. Con.idcrablc eiri. of =u ll ' rde"anllo lite possible dept:ndcnce orJ.II On exlent of dcfunnalion, There is now an abun-
T . .... 9A Err"'l ofTy!", of DcfQrrna.ion on !.11
Not.,.I,"_.
Hiunplk>n
f.11 Q,ll(t(I,02)"
Comp ~
0.I& U .0.01)"
,.-
O. I1("-O.oJ )·~·
f.i<>npl "'"
o. ll (i.M l)"
c"",~,..,;o.
O.14 (io,Ol )' O,IO (fOm)"
To,,","
lOIonp'"",
_ 0. ' I (*1).(14)(
'r",,,,,,,
~ O . 14 ("'O . (I4)'
0.16 (tOO))' O.l l("'O.OS)'
F.lonp'''''' ~".,....
O.01 (->O.OI Y O.06 (~O.OI )' 0.20 t,,"0,(14)' 0.0 (01000))' 0.1(1.0. 1)"
£JonP'''''' CO",""",,,,, I",,,,,,,",
· T .... ' _ _ " .
' r .... r"",, _ , .. • T .... r... rd"" .... Jl • T . . .. " - _ ... , 1'.... ''''''' _ ....... ,. ... '"
'T.... ' ''"" . - ') • ' .0",
'ft.. --. ,""
• ........ r,_ ".... _..:
.~~U ; O&
, y..,., f _ ..."""".,
, r.... f_ ..r.....,. ..,
.... ,- '"' ........ ''''''' ... . " " '''' ''' '" """""" .
' y.... r_ _ ..,
,,
- ~, ~
. "'eo '"'" ...."....~ I'
,
Tl-i ERMO ELASTICrT Y 121 Tab!<
~ .6
Eff«1 of I ~1"lion on f.lf [);I .. ",
J>olym<'
- ._--
,-
l'oI)'
l>Oelh>'IIo<,yl . ", .. ,<
...c..II.,
".e " lI..•
-
1'0".,,1 ,ubbor
'.00 O,80-0.JO
••
~ O. JoI
' .00
...c,.l!,. ...c,.II"
O.9)· G.J' 0.6.> Rl/i
•• ••
r.,.ffio ";1
[:>«Olin'
N""" I-Chloron>p/1 ,h.l
.... 1.4.pOl)-""' ... ;.....
o·
'00
....
0.43 (+0.110)'
0.171 ,,0.0))" O, I8 (±O.(I.O)' O. I)(.I"O.ot )' O . 19 {~ O ml·
O, I'(ro.o2)' O.l! (:W.(I.Ol"'~
O.ll
o 14 (±0.0 1)'
•• 0.14
0. 10(,,0.0 1)' 0.011 ("-0.01 J'
,-
'.00
••
_ 0 1U (,.(O OSI'~
0,[1
0.11 I M.Ol)' - 0.20 (,,0.(101)'
'.00
- O.03 (-,-O.Ol)'
P... ffio ",[
[>«Oho'
" ,~.O ...
,.
_11.
" .:l'I
• v-.. ,.......... ....,..... '" n" ""_.
. _ ., ...""'br.....
, T. ... ' '''''' "",...,."
m. .."",,,
, r.... ''''''' ---.. ... ...
'r.... ''''''' ...... _.,
OA2 (.iO.OI), OM IH .lOr
u..... (; ••
P.r.ffin ";1
• T.... '''''''
!.II
• T.t", f""" ..
-O,O)(i O.Ol)' O.1 9(±O.0l)· O.lI (±O.O})' 0.16110 ,OJ1
O. I¥(±O.Ol)'
' , .... f. - .. _ SJ. , Ttot ,.. f"," . - ,. • T .... '''''. ""'"'-
',.t.. m.. ...r.n_ •.,
'' '".fl, .... ..
dC"ialion. ha, been found (0 be markedly ,lcllCn<.Iem On each of lhe variable.. invesligated in la bk, 9.2 Ihrough 9.6$" . The nosul l. lu,,'eyed here th uS ,ugg<"S1 lhallhc ela"ic fo,ce need nOl be """,Ived inlo it> scl'"T"~te contribution! fro m leI and 2C, in thennoel~'lic ana ly"""
9,4 Relevant Calorimetr ic Studies of Elustic Deformations
Dirttl ,a lonm~lnc mr~'urc nt"nlS carn ..1 om on " polyme, nel",ork duri n!\. the deform,tion procc>s h;lve also been ,,'cd 10 delermine v;lio<"S of f,/f".$<~'- . In Ihis approacb. Ihe heat" of the defo. mation I"OCCS< i. me"""ed in , ""mili,," mic.<><.ionme,c,. ~nd Ihe " ccomp:tll),illg wor , ". in Ihi: proe<:<.< " Ohl~in"11 from Ihe dill"'.nti.1 4uantHy lelL in tcgral<"{) fro", the in Itial to Ihe fina llcnglh of the ';,mpie, Then, ~c<-...,r"i"g I" Ihe I,,,, l;iW "f lI'cnno.;!),n:,"" ••.
122 STRUCTU RES A ND PROPERTIES OF RUBBERLI KE NETWOR KS Tobit 9.7 COO'lI"'. i50n or Calorimelric aM Th"'moel.,,k .... Iues of1.1f 1)1'< of d
PoI)m
N.,""I ",bb
C.l<>ri .... ,;,; ,'01<1<>
''' ' ' 'Uon
O.l3lttl.o.)'~ 0.2II(io.02I'
O,11 I:t<:1.(1)"
lou"""
~:Ioo,.,ion
0.11 liom )"
O.121,,-OO2t' 0,10(,,-0-02)'
,'""","
O,151-'-o.~f'
0."(0<0.02)"
• Tio ... , _ " ' - '" • Tio ... ''''''' - - . ..
· T..... f_~)L , T • • ""_,*,-,,,~""'
'T.... ''''''' ........... ",
• T..... from
.,.... ,..-,.-...1)
n.",mo
me..... Sl.
... (9.9)
where Ihe energy and enthalpy clLanges are esscnlialty identical ,ince tl,(PV ) ~ 0 ro' any dcfom"lion ItOI c;>rricd Qui al eXlraordinarily high pressures. For don· galion slUdies. Ihe deri~ali,'C (Oll /OL),.., i, oblained from Ihe cxperimenl.1 value< of tl,1I pl(>1led a' " function <>f t., Vah".. of [.(f arc Ihen cakul.ted rrom"·...·7<1
f,lf " (O£ (D L) r.vlf ~ (fJlfIDLh .,If - PT /(ol _ I )
(9.10)
which is an ob'io us "nalQguc 10 cq. (9.5), Similnr '"r.--cn 10 be in good agreement wilb Ibe'moelastic result. ",ported for Ihc ,,'me IWO pol)'mo:tS.
9.5 Relevant Vis.;osity- Temperalllre Results on Dilute Polymer Solutions Conwrsion of the thermoo)mmic quantity!. lf 10 Illn {,l).ldT _ 1.lfr permilS comp"ri'll)n of values of the temperature "odlicitnt of the unp:rturbcd dimen· sion. of thl: nelwork chains JS obtained from thermoclJ"icity mca,uremelu,. with value. oblainc'
,,.
{'11- lim {(.Io-ot - Il/el ~
(9.1 I 1
,,·he ....h-ot is Ihe relati,.., ",:!Cosily (Ihe ralio of Ihe \'i!lCOsily of a solUlion of Ihe polymer .-.Ialio" 10 Ihe vi:l<:o.ily "f the pure soh'enl al Ih< same Icmpemlurc). and c is Ih. oollCCntralion of Inc polymer in "'eight per unit ""Iume. Iypically g dl- ' ACC
THERMOELASTICITV
123
in "hich 4' i, a ,:ou"a llt ~nd,, ·~ {(1)/(..'lol'l' is a chain C~p',n.ion (aclM characterizing perturbation, due 10 cxduded volume cfTN:I,. I n a" ideal or 6-solvcn t. ,ueh perturbation, arc nu llified by polymer-wlvml interactio",. () i, unily. and Ihe unperturbed d imcn,ir>n' {I>. a~ d,ottlly calculable (rom Ihe in trin sic viscosity. Corre'pond inJ(ly. viscosi ty mcasurem~"' < in a serics of wl ... "IS having epoinl$ ovc r a ,ufflciently "'ide range in telllper~III'" yield directly the coefflcienl dln (ll.ldT, It ;,. ho,,"'ever. generally req\llreJ thatlh= e-solvenl' be of very ,imil ar chemica l , 1,,'clur(!'J, Thi, is ,,,.-c,,,,,,,ry in orlvent. e' -.:n a t lhe 1'lO'ipc<:li,'c a·poi nt•. I() have a large elTeel on the rdali,-ely &ma ll t~mperalur(! c<~lTtcienl of (.-' ). Viscosily- temper.. l",e mea,,,,,,,,,enl, in a , mgle sol",nl. u,ually ooe Ihat i, a thermodynamicall y goud Wlvenl f->r th~ polymer. m"",io " f~C1or is not unily. and il is imperalive to ta ke into :lccounl ;1; ,'arial,on with tcmrcrdt ~"" ). The requin:d value of Ihe lemperat"re dependence of <> is g.""r,,1)y obla inen th .uri('S g,vin~ Ille r.lation,hip bctw«n ,J and th,- Ihcrmodynan,ic p;,rumcters char"cleri7.in~ lhe inleracl ions NI"'«n s"h'"nl moic<: ulci and pI.lymer $C8",,,nts'. This "Pproach is ,-on, ,,luably simphfieice of a SOh'enl dosely 'imi lar in tlle",ical strueture 10 thai of Ihe r;->lymcr; for ", ample. Ihe choK:c of ,,·hex;ld.,:a nc in If><: siudy of polyethy· lene '. Such solvent-solute combinalions mi. ",,"lIlially alhermally. will, a n aliendant si mpliflCa(ion of the soh'lion lhermodynamics "nd lhe as.socia lW cstimation of dln {l)ofdT"'" ". Table 9.S" Ii,,, '''''IItS Ob1 ained on Ihe 1".-..", poly"'."" tha, have hc<:n siudic'd most ca",fully w;lh rega,d to th~it viscosily tcmp"rmure coemcicm" Vuluc, of ,lln{l)o/dT oall;"I"led Iherefrom a", oomp"n:d wilh Ihe corresponding ,'alues obwined in Ihermoelastic im'l.'S,ig.nio ns ' hrough """ of "'1 . (9. 7). There IS e ~""lIent agreemcnt belWee" 1h. IWO se lS of 'alues of d In{l)oi{rr Ihus oblained. as Ihere i. in Ihe Case of '''''1:ral olher polynlCr!t studied "'ing both "f lhese lech niques". The c~""lIe"t agn-cmcnt obtained NI..-""" ,'alues of d In (.-')old1' for the ",m., polymer chain> un'! in dilule solu lion. Mosl importanl. i( is inconceivable Ih.i such agn'Cment wo uld boe oblainc m:o t<>8r.
IN STRUCTUR f S AND PROPERTIES Of RUBBERLI KE NETWOR KS T.I>I< 9.11 Compor;"'n or Values or dln (r'l./JT D.duced from ThormodaSlic M."UI<m on 1..,I.too Chain,
.-; - 12 (JoO.2)'"
119 (10,(101)'"
_u 1111.1)," l'o>Ij{o-","".,..l l
~
Po¥oobo,)lm<
0.-'"'(1 0 ....)
O,Sl (-HIM)""
_0. 19( "-0.11 )
- o.U(,,-o.OS)'"
_0.10 ('10,0-')"" _D.4 l'Q/yg')'<1n)k""
,,--
Pol )tdi"",,") I~"' .. ..,.)
0.23(",0.02)
0.2 (,,-0.2.1"
0,19("-0,14)
O,jl ("-0,10)......
. . ....-...Iho_"" .. .............,... ........... • -r. ... (_,ho ~
("I"
'J .
' -r. ... _ _ ". , " ..... _
...... _
' h b. _ _
·
,oo.0( . "", ... tt, "...., .. ",,'.. , ~
, T . . .. (""" . - .0,
~""""
...." ....... ,,-
. ,'. . .. ( _ - " 0 >, • T. . .. (roar _ , . .
-,- "'. I
To' "'_~"""""'" ,_ ._ ".
" To ... (""" _ 1 ' . • T.... , _ "<,,,,",, 1l,
I ""'" ' .... _ " 'T. . .. ,,.. ,,'''''''' tOj.
of nlOlecu(ar order .... ilb dilution". l'inaUy < optical anisotropies d.lcnnined from the dopulari1ation of (ight iCallore.! from undiluted amorphous polym'''', or from Inc Slr~in bircfrin~cncc of both di(ulcd and undi(mcd "mor phou, polymer net· ,,'ork>, arc comp;".,.ble in magnilude to lhe "'>rn:s p<:rnding qu"nlil"" mea.urcd for (o""mo(ccular-"'cighl liquids. and me "cry much .maller Ihan would be C>pcclcd from n'.leri.1s containing significan l inlermolecular ordering'''. It should also be l"C'CalkJ Ilta ! Iheoretical "rgumCnl! p""",,,,ed in chapler 2 "'ad 10 Ihe expeclalion lha l excluded , 'olume inleracli",.... lthough a",un'dly p=nl in un,wollen or swo Hen nel work•. Ita'" no effeel on Ihe end-Io-cnd dimen,ions of lite ncl"'ork chai n$.t Ihc relaliwly high pul}'rner con<;<;nlralions ".,iSling in $ucb sySlcrn,. Tha' is, 'he chain mot"",uks . hou(d be in Ihc~r unp<;f1urll<'<.1 $ta'es. char· aClcrizcd by the dimcm;on (r') •. There me 1"-0 impo'I"Itl pieces of cvide""" that bear On Ihis poin l, Ringn' mi"uI"C'S of dC"'cr~lCoi and undeulen",'d p"lyme". gi,'c "alucs of Ihe radii of 8ynuion II ... "re Ifencrally in good agI"C"",eltl willt \'alilC' ohl"in<.'d u.ing dilu'e ion, of I he ",me pol),n",.-. "''''. The polymer ,'h"i " , are
,,,It,,
THERMOELASTICITY
t25
Ihus sl".,wo (0 be in their uop;rlu,bed co nfigurati ons in the undiluted ~morphous a finding whIch a forlior; directly contradicts Ihe p,..;""nc.. of order in suc h systems, The basi" post" '.,.. or rubber cla.li<>ic moments. light scattering intensit i"". optica l aniso tropics. and eyeli""tion equilibrium con· stants. or by e"nfonnation~1 e"Tlergy calculations). This "pect of rola tio~ "1 ,SI>meric statc thoory '. cMere
9.6 Rotational Isome ric Slat" Interpretation of StressTe mperature Res ults The energetic COnirobulion J.. to th~ lotal fo"'" I .fisc.. from the fact that deforma· tion of a pOlymer n<."i"'·ork requir", a oone'r><>nd in8 change in the oo"!igu~~t;on. and dimension, of ilS constiluent chain., and t hat dilT~rcnt chain e""figura tions ha'·e. in gcner.. l. dilTe""nt ,onfurma ,io"al energies'···.... Such dilTcrences in wn· form"tional energy ~re also the o,isin or the depend.,1Ce of lhe unperturbed dimension, on teml"'ralllre, and, a, already , hown. dln{,').ldJ' has the same sign asf.lf and is directl y propOJlionalto it . It is now appropriate to comider the interpretation nr these quantities In termS equenccs arc there!'o", characterized in terms of Slatistical weights embodYing the ~ppro priatc cIT,,';':n!s, A h"cr ou!line of th. use of rotalional isom¢ric "ate ihN'y to calculate {,J). and ilS temperature cocflicicnt u ." i, 8"'''' in appendi, G . Rotational illlmc";'; Siate c"kul"tiolls thu$ serY" to make quant it.!i\'e the obviou, qu. lita1i,·c ~,,"n..,ti on tllat cham mok'Cul"~ in which conformation. of high 'I'a tial o. tensi,·n arc of higll ~onfor"'atl"'lal ellergy h"'" pOsiti,-e "allles of J..1f. ", he",,,; a Cr><>IIde"';c ""t",-cell higl, e,"ell,ion "lid 10"" eo"rorm,,,i,mal energy gi''C' ncg'il"'~ "al"",", The rorm;:r ~"sc "orrespond" of course. to chain,
126 STRUCTURES AND PROPERTIES OF RUBBERLIKE NETWOR KS
T.bIt 9.9 (l'p
1'1."",,,
PoI) |
"n"
!.II --<) .~
(CII , CH ,I 1S;(Cll,),O] ICH,CIlCIlCIl,j
1'01)(d;mrtb,' ..lo.. . ...)
1.'·PoIy""" d;"" ~
"-
1.... 1'01,;~
R" ... ,io"..1
lo'dlD I" IJ ff
(;'O_Oj )
- 1.Oj {.iO_IO)
O . 19 {~ .Oj l
0 , j9(iO_I ~ )
O,ll {J.O»! 1 - O.1S (*
O,J'/(±{I, 101 - 066 (+0_11)
0.11 (*.0))
MI! {i(l.OI]
O,lJ liO.(!'J) -0.I1{iO.161 0.23 (H.OI)
OJ,,* (±O_OlJ O.2:Z{±O.
O.(!'J (,,0-01) O . ~ (.J.(I.<>.I)
O_'l (.J.O,Ol) O_:1O {iO_OlJ
O.l«±O_<>.I) O,n (±o.oS)
1<;1< ,<:(<;H , I(:II<;H , I
'"'
,,-,
---"(l.0!> (.to .OJ J I{CH, ),Oj !CII (("~ 11 ,1(:11 ,1
PoI)'O.)
;""""i<"
.,""'" Pol" .. """" .... '1
lell (...:.:, II, 1(:11,]
""".."je
""""i<
(CIICK:II ,J
PoI" vin" cbiOOde)
--, 'r od.,...,,,,
E
PoIji..,butt"'" PoI)"( dUn<'h)w' ... 'I»· .....) Pol),\, """"hy):",, 0.*) PoI)'(I<''''''''''''r_ o.ide)
_
Elo" ;. '
"01),( l- ' )'<1'''-''),<' h, I """ h"I)1>" )
' ... ..... ... "',.... _."
I{CII, ), . CUCII, CII,J oc;{CII, I,CII,j (S;{Cl!,),CIl ,] I{C H, ),Oj
- >' (t o.l )
---"1.0 ("".J)
--<)_4J (.iO.ljJ
- ,.)
_ 0.06 (1.0_(1])
O.01 {-o.o.ol)
I(Cn, ).Oi ICIll\COl<' lj (C(C'I) ).cooc"O' «: Il, lCll,]
• ..."K'
0.01 (,,-.lOl) _ OA1 (±O_OS) O.16 (±O.!I9)
.
"
(.iO_S) - 0,19(."" II ) (1,:10 ("".:10) 0.1lI1 ±OJ") _ l.ll (±O. IS) 0.85 (iO_N )
,..
"",bo_-
,_ < ""(] . .. .
~y
, ,.,..".." . ""~ . .... . ,...."""~ _
r_.......
' " - . .._
.... , _ ... ''''' .. .... L _ _ _ ...,.
• A ....."._>
, T....
,0)<,
So. .10001..", ..
<s.
o T. _I.,. . - ,os_,. - . - . - .... f, ... to. R" ,
_t 101 po/)'C_'", _""">"ot)' , bot .... o. •
having unJlCnurbed dimensions which increa", with increasing'lemJlCrature. ,,'hil. in the lalle, Case lhey would dc<:n:aSl;. Tobl< 9.9" prc.\Cn l$ a sur"" y of thormoclos1ie = u)1$ ..-hich haw been in\crprcu:d. 10 date. in terms of rolalional isomer;'; Slate theory, It is Ihu. now poisihle 10 proviM a simple phy.kal piclu,. of lhe Ihcrmoel""h. pro"""i<:$ of lh..., and reiated polymers. Som. of llti. informal ion is 1''''''.''100 below in outline fom,. In the case of pol)'clh ylel\<:, • &«jucn,:c of ..-hich i~ shown in figure 9.5. lite nega tive values oblainetl for dln (r' ).IJT and f ,lf are primarily due 10 Ih. fact lhal ''''''S "onfo,maliona] ",ates aooul , keletal oonds arC of .ignifie
TtiE AM OELASTICITY
127
~' ia:~" 9.~ Sche"'aI~' di.~ta," of. ,,,,;(ion of. pol)~hy"'ne ,,~.in. In ,hi, fig",,,. and in Iho ",mai.inll 0""" jo> 'hi. chap'.'. ,h. choin. are , hOl,'n in ,he plan",. all _,,,,.. , ""nf~r_ ",alion "i.h the , k,,"'I.1 bond. in (1oe pl... of t"" I"'r<"", Ilon.1 ..... nd I~"'" aw.y from I"" rndcr by da$hro lincs, 'he .nQ"', .p<eiry the , kelela l bond. or ,he repc" uni( obou, ,,'hocb ro'a(ion. may occur.
;ncrca.. in IC'"IX"a ,ure dccrca .., (,2). due '0 (he incroasc in Ihe number of rdalivdy <x>mpaci KllutM 'tat~, Simil;c.;.,u,;c of Ihe increase in Ihe numocr of Iranj SlalC!l of low confotlnat","al er.ergy T he eha;~ molec ule which ha< httn moll cxl~nsi,"Cl y ,tudia.! "'ilh regard 10 il~ <x>nf'l!:ur~tional char~clcrisli<'$ is tht scmi.i1lorganic polymer poly(dimClh)"I'ilo~· ~h.) (I'OMS)" '. "hkh i. iIIu'lr~l<"SCd lig"ro, of very small end .to"""d di' ta""". T his relati.ely low energy or Ihe COmpacl "aIlS .Iates in I'DMS chain. yield. a po,ili", ."Iuc for 1-11. the opposite of lhat fo und for polyethylene. The cis and Irun" form. of 1.4-polybmadicnc and IA-pofyisoprenc h.", also been in'"C"igata.! in delail··~-"-" . Their .InICW"" are shown in flgure 9.7. in ",-hich the choice of II for R yield, polybUiadicne and lhe choice of CH, yields polyioopren. , Th< c;"'I .4 forms of polybu
/r"",
1211
STRUCTURES AND PROPERTIES OF RUBB ERLI KE NETWORKS
(.,
/'&,,/~~'"
!
'
!
(>, ~"ur< 9.7 [)ion. poll.""
pfl:CCd ing bond i, a l 180°. Ihu. providing a basi~ for Ihe ncg,.,ivc value obtained for 1.lf for these polymers'··...,;I , A number of othor. miscellaneous pol}'mers haw now !xcn it udie<J. bolh e' puimontally and tho"rttioally. We e"nsider first Ihose having posil i,.., values of f.lf. In these chai ns. lhe higher energy conformalion. a", more .'Iended Iha n th ose of lowe. energy. T he po~ili ,'c value of 1.lf rcporltd for polyoxycthyknc (CI I, - CH , - 0 - \ ,. fo, example. ,la nJs in ]kI'licularly imeresting coni ... " 10 Ihe ""gali ... cocfficknt of polyethyknc. 11 i. due 10 th. faci Ihat in Ihi' molecule ,r"•• " ateS abo ut CH, - CII, bonds arc of higher Ihan Ihe g'IICrtasc in teml"''''ture therefore itICreases the number nf Ir an. states of high spalial .".n,ion. The po,itiw "slues fcporled for hlf for isolaclic and alaclic poly(botonc-l) (C II(C,H ;) - CIL, - l, and po!y(.·l"'nle~e·!) (CH(n-C, I L,) CH, - l. Of. Ihought to ' ""o lt from the facl that .'tended I'UM. '''".. ,U tes about CI,! , ~ Cl'IR - CH , pai" of bo"d~ arc of relali,,,,ly high ~"" rgy ill Ihe'$<: chai"" because of steric repulsions belween lhe chain backbone and the articulal ed side groups R \ - Ctl ,Cl,t, and Ct I,C H,CIt ,. respectively)"-·. The following po!yme .... li'led in table 9.9". an havo negali"" "al o"" of/.lf. In th"!o< chain•. the highe' enefgy conform,,,ion, a rc k ss C~lende<J Ihall Iho!o< of lower energy. III Ihe t'a«; of pol)'(lclra mclh),lcne o~idc) {C H , - CI I, e ll, 01 , () I•. Ihfcc of Ihe Ii"" skeletal bond, exhibil a pfcf.fent-.; for !.",,,, ."lIe,
.""'IID'
TH ERMOELASnCITY
129
o""r the alter nat,,·. gauclt~ suu,,. (which bring inlo [,ro., ;",ily Ih • ..clati""ly large CI-I , groups), The increase in the pOpulation <>f oompacl gaU<"lt~ Slates aooullh<Sc: OOnds. upon increase in lempemlurly(vinyl chloride) ICHCI - CI I, - I,. or [,rcsumably high syndioI8C1idty, .rl: ,yndi"ta<~i<' form "f Ihi, pOlymer. Th. variely of chemical and stereochemical ""I""n= tha i o(",,,r in <"'polyme";c chains such as Ihe l)"n'e"!.'· makes it imp...ssible 10 givc " bricf. qwllilalive des<:riplion of 'he ",ol""ular origin of Ihis oopl:>lymcr's .-.egali,'. lemperalure roclftdenl of (;)0 (and Ih~, of .f- /f) . One in'ponanl oonlnbulio" , of course. would come from lhe ethyl .... S<'q lIenees. in which the low..,"crgy co~ fonna lions a", Ihe IraNS SlateS.~. already described . Another eonlribulion would arise from iW'actic pol}'ptopylcne ""I""nccs. for which lhe low..,,,.rgy conformalions ~r<: length L. ;n !>'lTalltl 10 Ihe !"Clic h"havi or. In Ihi' rega rd. idealilY of ela'lOmer! i, fund"n'cn lally dirICrcnt from that of gases. all of "'hich bebav<: ideally. of course. in Ihe lin,il of intinilesi",,,lIy ,,,,all pre,,"ur. , Th" •• Ih~ only type of nelwork th., wou ld he ide"l in the sense or c.hihiling purely enl",pic cla.ticity would be one made up oi" "h"in~ in which.1I conformalions were of th-e .. me energy, This highly ideali''''l oon.lrud ,s. or COu....,. Ihe "fred)' rolaling chain':' which served as one oi" 'he " mplesl model. ;n carl)' .tudic,!; of chain configuralion,. s.,'crdl ",.1 polymer chain. 31 least approacb Ihis idealized model in Ihal Ihey are ""nformal ion"l ly highly random wilh rolal;on3 1 Slales. when accessible. of almosl idenlica l conrommlional ene,gy. Polyisobutylcne· ··. ,how n in hgure 9.8, i< " po lymer of Ihis Iype . III the sim_ plost , 100>1 qu"lil~ti"c analysis. rolation, aOOul skelelal 00"'0.1. would merely interchange . kelclOl e ll , group, and p. all,t Ihese arc known 10 be n",,,l y ,denlical in !hdr int.-amok..,,,la, interaClions'" As ,hown in lahle 9,9.1./1 ,s fo und to be dose to ""ro. as would "" "~P""led fronl II>< lack of"rong ",n fnrmalional pn,r"rc"",; in Ihis moil."Cu lc. The actl",1 conformational all. lr';' of IhlS chain i. nm"h mo,,' l'omplic.",-d, howc~cr. partly lx"Cau>c of >lrong ;tc,k interaCli"n' belween meth)1 gro"p" along 'he .'hai",')''',