Structuralism and Structures
Published b y World Scientific Publishing C o . Pie. Ltd. P O Box 128, Farter Road, Singa...
78 downloads
1034 Views
39MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Structuralism and Structures
Published b y World Scientific Publishing C o . Pie. Ltd. P O Box 128, Farter Road, Singapore 9128 USA UK
office: office:
Suite I B , 1060 Main Street, River Edge, NJ 07661 57 Shelton Street, Covent Garden, London W C 2 H 9 H E
L i b r a r y of Congress Cataloging-in-Publication D a l a Rickart, C . E . (Charles Earl), 1913Structuralism and structures / Charles E . Rickart p.
cm. — {Series in pure mathematics ; v. 21)
Includes bibliographical references and index ISBN 9810218605 I. Mathematics. QA39.2.R535
2. Structuralism.
I. Title.
II. Series.
1995
510-dc20
94-28563 CIP
Copyright © 1995 by World Scientific Publishing C o . Pte. Ltd. A l l rights
r e s e r v e d . This
b o o k , o r p a n s thereof,
o r b y a n y m e a n s , e l e c t r o n i c o r m e c h a n i c a l , including information written
For
m a y nut b e r e p r o d u c e d in a n y f o r m photocopying, recording or any
s t o r a g e and r e t r i e v a l s y s t e m n o w k n o w n o r t o b e invented,
without
permission f r o m ihe Publisher.
photocopying of material in this volume, please pay a copying fee through
theCopyrightClearanceCenter,Inc.,27 Congress Street, Salem, M A 01970. U S A .
P r i n t e d i n S i n g a p o r e by U t o - P r i n t
Series in Pure Mathematics - Volume 21
STRUCTURALISM AND STRUCTURES
A Mathematical Perspective
Charles E Rickart Department of Mathematics Yale University USA
Y ( b World Scientific w l Singapore • New Jersey • London • Hong Kong
A l b c r s . M U L T I P L E X B . 1948 Yale University A r t Gallery
" I m a g i n a t i o n is m o r e powerful t h a n knowledge.™ - Albert Einstein.
PREFACE
I w i s h to emphasize at the outset t h a t the t i t l e phrase, " A M a t h e m a t i c a l P e r s p e c t i v e , " d o e s n o t m e a n a f o r m a l m a t h e m a t i c a l t r e a t m e n t of the s u b j e c t . W h a t i t does m e a n is t h a t m a n y of the ideas c o n c e r n i n g s t r u c t u r e s a n d s t r u c t u r a l i s m that are developed here were suggested i n one way or a n other by m a t h e m a t i c s , a l t h o u g h the connection is u s u a l l y not spelled o u t . M a t h e m a t i c s , i n other words, generally serves as a m o d e l not as a t o o l . T h e t i t l e m i g h t also suggest a discussion of various examples i l l u s t r a t i n g a p p l i cations of m a t h e m a t i c s to diverse fields. T h e r e exist, of course, m a n y such a p p l i c a t i o n s , a n d they are indeed very m u c h concerned w i t h s t r u c t u r e s . A t the s a m e t i m e , their t r e a t m e n t w o u l d require an e x p l a n a t i o n of technical m a t e r i a l f r o m b o t h m a t h e m a t i c s a n d the involved field, so w o u l d c o n s t i t u t e a m a j o r digression, f r o m our m a i n goal to expose the n a t u r e of s t r u c t u r e s themselves. Therefore, i n d i v i d u a l a p p l i c a t i o n s o f m a t h e m a t i c s are a v o i d e d , a l t h o u g h the general character of such a p p l i c a t i o n s is discussed i n C h a p t e r VII. W e w i l l n o r m a l l y use the t e r m " s t r u c t u r a l i s m " to m e a n "any m e t h o d o f a n a l y z i n g a b o d y of i n f o r m a t i o n w i t h respect to its inherent s t r u c t u r e " (p. 1). A t the same t i m e , the t e r m often refers to a s p e c i a l " i n t e l l e c t u a l m o v e m e n t " t h a t emerged i n the 1950's a n d developed r a p i d l y i n t o the 1970's. T h e l a t t e r was based o n the use of s t r u c t u r e notions a p p l i e d most often to a s t u d y of c e r t a i n social science a n d h u m a n i t i e s subjects, a n d is c o m m o n l y associated w i t h the two names, C l a u d e L e v i - S t r a u s s ( a n t h r o p o l o g i s t ) a n d J e a n P i a g e t (psychologist, philosopher). T h e r e were, of course, m a n y other c o n t r i b u t o r s , i n c l u d i n g numerous workers i n a variety of fields r a n g i n g f r o m a n t h r o p o l o g y to poetry. L i n g u i s t i c s , i n p a r t i c u l a r , p l a y e d a key role, because s t r u c t u r e is so basic and also accessible i n the s t u d y of languages. In t h i s c o n n e c t i o n , the work of F e r d i n a n d de Saussure (done early i n the 1900's) was especially i m p o r t a n t . A n o t h e r early c o n t r i b u t o r was the s o c i a l a n t h r o p o l o g i s t A . R . R a d c l i f f e - B r o w n , who stands out i n the context of the present work m a i n l y because of his s y s t e m a t i c a n d u n u s u a l l y e x p l i c i t a p p e a l to s t r u c t u r e , based on a s t r a i g h t f o r w a r d definition t h a t is not essentially
v
vi
PREFACE
different f r o m the one we have chosen (Section 7). P e r h a p s as a result of r a p i d g r o w t h , some of the c o n t r i b u t i o n s to the s t r u c t u r a l i s t movement began to show an increase i n s u p e r f i c i a l i t y a n d a decrease i n awareness o f genuine s t r u c t u r e , t h u s suggesting a developing f a d r a t h e r t h a n a serious d i s c i p l i n e . I n the e n d , the m o v e m e n t receded i n p o p u l a r i t y a l m o s t as fast as it had g r o w n , a n d was displaced i n c e r t a i n areas by other even more transient " i s m s . " Nevertheless, the o v e r a l l c o n t r i b u t i o n s are i m p o r t a n t and the general s t r u c t u r a l i s t a p p r o a c h r e m a i n s v a l i d . A f t e r a l l , the basic ideas are not new but e x t e n d at least as far back as P l a t o w i t h his e m p h a s i s o n f o r m a n d p a t t e r n , so the m a i n ideas continue, at least i n d i r e c t l y , t o exert their influence. F o r some general accounts of s t r u c t u r a l i s m , the reader is referred to b o o k s by C a w s [C2], D e G e o r g e [D3], G a r d n e r [G2], a n d P i a g e t [P3]. T h e e m p h a s i s is quite different i n each, but together they p r o v i d e a g o o d p i c t u r e of the subject a n d its o r i g i n s . T h e b o o k by C a w s , " S t r u c t u r a l i s m : the A r t of the I n t e l l i g i b l e , " is the most recent a n d is especially g o o d , because, i n a d d i t i o n to i n c l u d i n g a t h o r o u g h b a c k g r o u n d discussion of the m o v e m e n t , it contains an extensive p h i l o s o p h i c a l account of the s u b j e c t . A n o t h e r b o o k , by R o b e r t Scholes o n " S t r u c t u r a l i s m i n L i t e r a t u r e " [S2], deals w i t h one of the m o s t conspicuous, a n d perhaps the most c o m p l e x , areas i n w h i c h s t r u c t u r a l i s m t h r i v e d i n its heyday. A t the same t i m e , despite its i m p o r t a n c e i n the development o f s t r u c t u r a l i s m , l i t e r a t u r e w i l l not play a direct role i n w h a t follows. T h i s is m a i n l y due to the fact t h a t l i t e r a t u r e , as c o m p a r e d t o subjects less removed f r o m the n a t u r a l sciences, does not e x h i b i t very clearly some o f the basic s t r u c t u r e properties t h a t are essential to our p o i n t of v i e w . T h e r e is m u c h v a r i a t i o n i n the degree t o w h i c h s t r u c t u r e s are e x p l i c i t l y recognized i n different fields. T h e y are u s u a l l y rather easy to detect i n m a t h e m a t i c s a n d the n a t u r a l sciences, b u t i n m a n y other fields the dependence o n structures is not so clear. In fact, the p r o b l e m o f e x p o s i n g the role of s t r u c t u r e s i n some o f these fields was the d r i v i n g force b e h i n d the s t r u c t u r a l i s t movement. Q u i t e a p a r t f r o m the s t r u c t u r a l i s t m o v e m e n t , it is o b v i o u s t h a t an u n d e r s t a n d i n g of any b o d y of i n f o r m a t i o n m u s t i n e v i t a b l y involve the u n d e r l y i n g s t r u c t u r e i n some f o r m or other. In other words, a necessary c o n d i t i o n for dealing i n t e l l i g e n t l y w i t h i n f o r m a t i o n is to organize i t i n a w a y t h a t recognizes its essential s t r u c t u r e . T h i s fact is reflected, b o t h i n the t i t l e o f the C a w s b o o k a n d i n its chapter 8, w h i c h is called " S t r u c t u r e as a Necessary and Sufficient C o n d i t i o n o f I n t e l l i g i b i l i t y . " It follows t h a t s t r u c t u r e s are not
PREFACE
vii
o n l y essential to the u n d e r s t a n d i n g of any subject at whatever level, b u t t h a t anyone w h o has h a d a conscious experience of u n d e r s t a n d i n g s o m e t h i n g of substance w i l l also have h a d a significant experience w i t h s t r u c t u r e . O n the other h a n d , a n awareness o f the s t r u c t u r e s themselves as objects to be u n d e r s t o o d is m u c h less c o m m o n . In fact, because s t r u c t u r e s are so ever present a n d enter so a u t o m a t i c a l l y i n the process o f u n d e r s t a n d i n g , they tend to be neglected, eclipsed by whatever topic happens to be the center o f a t t e n t i o n . T h i s occurs regularly even i n the s t r u c t u r a l i s t l i t e r a t u r e , a n d suggests t h a t m a n y s t r u c t u r a l i s t s , despite a perception of s t r u c t u r e w i t h i n their special fields, s t i l l do not t h i n k of a s t r u c t u r e as an independent e n t i t y . W h i l e naive encounters w i t h structures are n o r m a l l y u n s y s t e m a t i c and q u i t e unconscious, s t r u c t u r a l i s m proper is a d i s c i p l i n e d a p p r o a c h i n w h i c h s t r u c t u r a l a n a l y s i s is used as a t o o l to discover a n d u n d e r s t a n d f u n d a m e n t a l p r i n c i p l e s w i t h i n a subject. A t the same t i m e , a closer look at the w a y notions of s t r u c t u r e enter i n t o even o u r everyday t h i n k i n g , conscious or unconscious, suggests t h a t w h a t a c t u a l l y occurs is neither o b v i o u s nor simple. A s suggested by the above r e m a r k s , the a p p r o a c h t o s t r u c t u r a l i s m i n w h a t follows is p r i m a r i l y t h r o u g h the structures themselves. Therefore, the m a i n emphasis tends t o be o n general structures a n d t h e i r properties. T h e i n v e s t i g a t i o n , however, goes beyond the structures proper t o the way they evolve a n d relate t o other structures. T h e result is a conceptual basis for d e a l i n g more e x p l i c i t l y w i t h the special structures w i t h i n a p a r t i c u l a r s u b j e c t . A prerequisite for a l l of t h i s is a general awareness of s t r u c t u r e , w h i c h must be developed by an e x t r a c t i o n f r o m f a m i l i a r experiences some i d e a o f the n a t u r e a n d properties of structures. A s m i g h t be expected, examples p l a y a c e n t r a l role t h r o u g h o u t . In C h a p t e r I I , a general d e f i n i t i o n of s t r u c t u r e is a b s t r a c t e d f r o m p r o p erties o f a very s i m p l e example, a n d , i n C h a p t e r I I I , some of the general properties o f structures are i l l u s t r a t e d t h r o u g h a variety of carefully chosen examples. These examples, as well as the various topics discussed t h r o u g h out the b o o k , o b v i o u s l y reflect the personal interests ( a n d biases) of one professional m a t h e m a t i c i a n . A n o t h e r person, especially one t r a i n e d i n a different field, w o u l d no d o u b t make very different choices for the same purposes. T h e discussion of s t r u c t u r e s necessarily varies greatly i n d e p t h , r a n g i n g f r o m a relatively precise t r e a t m e n t of a few special topics, i n order to b r i n g out some of the f u n d a m e n t a l properties of structures, t o a c e r t a i n a m o u n t of " b a n d w a v i n g " over structures i n general. S o m e degree o f vagueness and
viii
PREFACE
o v e r - s i m p l i f i c a t i o n here is a l m o s t u n a v o i d a b l e , because m a n y structures of interest are so e x t r e m e l y c o m p l e x t h a t a detailed t r e a t m e n t is v i r t u a l l y ruled o u t . T h e r e are also s u b s t a n t i a l v a r i a t i o n s i n technical level of the m a t e r i a l u n d e r d i s c u s s i o n . T h o u g h perhaps a b i t u n u s u a l , these are a c t u a l l y quite a p p r o p r i a t e to the s u b j e c t , because they reflect the i m p o r t a n t fact t h a t m a n y o f the properties o f structures are manifest i n a w i d e v a r i e t y of contexts, r a n g i n g f r o m the h i g h l y technical to the c o m m o n p l a c e . F i n a l l y , c o n c e r n i n g the question of j u s t how structures m i g h t be i n v o l v e d i n c e r t a i n m e n t a l processes, such as those i n v o l v e d i n u n d e r s t a n d i n g or c r e a t i v i t y , eve r y t h i n g becomes q u i t e speculative, m a i n l y because there are so few details k n o w n a b o u t the way structures are a c t u a l l y recorded a n d processed i n the brain. A l t h o u g h an independent t r e a t m e n t of s t r u c t u r a l i s m i l l u m i n a t e s m a n y aspects o f the subject, it cannot serve as a "how t o " m a n u a l for a c t u a l a p p l i c a t i o n s . T h e l a t t e r can be very s u b t l e a n d require e x p e r t knowledge of the target field. F o r this reason, no a t t e m p t is m a d e t o offer a significant s t r u c t u r a l analysis of any p a r t i c u l a r subject. I n fact, the m a i n purpose of c o n s i d e r i n g s p e c i a l examples is almost always to b r i n g out c e r t a i n properties of general s t r u c t u r e s rather t h a n to i l l u m i n a t e the e x a m p l e itself, a l t h o u g h the result m a y expose an u n c o n v e n t i o n a l view of the s u b j e c t . T h e r e are also subjects, such as m u s i c , t h a t are replete w i t h s t r u c t u r e b u t are not t o u c h e d u p o n at a l l , m a i n l y because of a personal lack o f the expertise needed to deal adequately w i t h t h e m . A t the same t i m e , m a n y of the features o f s t r u c t u r a l i s m present i n a l m o s t any a p p l i c a t i o n are made e x p l i c i t i n one way or another by our t r e a t m e n t . Despite the general avoidance of technical m a t h e m a t i c s , a n e x a m i n a t i o n of a few genuine m a t h e m a t i c a l i l l u s t r a t i o n s is desirable, especially i n a work where m a t h e m a t i c s p l a y s a definite, i f largely i n d i r e c t , role. T h e m a t e r i a l chosen for t h i s purpose constitutes a r e l a t i v e l y s m a l l p o r t i o n of the w h o l e , and is concentrated i n the last chapter plus three short sections (10, 2 1 , 28) c o n c e r n i n g groups. C h a p t e r V I I , o n " M a t h e m a t i c a l S t r u c t u r e s , " is a n o n t e c h n i c a l c o m m e n t a r y a b o u t m a t h e m a t i c s a n d is definitely not m a t h e m a t i c s proper. Readers w i t h a m i n i m a l knowledge of e l e m e n t a r y m a t h e m a t i c s s h o u l d be able t o e x t r a c t the m a i n ideas out of the m o r e t e c h n i c a l m a t e r i a l w i t h out b e c o m i n g bogged d o w n i n the details. In order to ease the process, an a t t e m p t is m a d e to i n d i c a t e where feasible w h a t the m a i n ideas are a n d to suggest how they are established. O n the other h a n d , some m a y w i s h to scan or even o m i t the f o r m a l details altogether. E v e n m a t h e m a t i c i a n s
PREFACE
r o u t i n e l y m u s t decide i n a given case j u s t how deeply they need t o delve i n t o t e c h n i c a l m a t e r i a l . Nevertheless, w o r k i n g t h r o u g h such m a t e r i a l m a y deepen ones u n d e r s t a n d i n g of a topic a n d perhaps settle questions t h a t m i g h t otherwise r e m a i n unclear. Despite the i n c l u s i o n of a few i t e m s t h a t some m a y f i n d d i f f i c u l t , I sincerely hope ( a n d also intend) t h a t a l l o f the m a i n ideas w i l l be accessible to every interested reader, w i t h or w i t h o u t benefit o f s p e c i a l m a t h e m a t i c a l s k i l l s . S o m e readers, i n order to o b t a i n a clearer idea o f the character of serious m a t h e m a t i c s , m a y w i s h t o read a n excellent article on the subject b y P a u l H a l m o s [H2]. It is called " M a t h e m a t i c s a s a C r e a t i v e A r t " a n d is q u i t e accessible to the general reader. A n y s t u d y of general structures is b o u n d t o be rather abstract. M o r e o v e r , because it is necessary to deal early w i t h the general concepts, the a b s t r a c t m a t e r i a l a l r e a d y occurs i n p a r t s o f C h a p t e r s II a n d III. A l t h o u g h the s u b ject is a m p l y i l l u s t r a t e d i n a v a r i e t y of concrete e x a m p l e s t h a t s h o u l d be accessible to everyone, the fact r e m a i n s t h a t m a n y w h o have t r o u b l e w i t h m a t h e m a t i c s w i l l consistently (though often needlessly!) shy away f r o m a n y t h i n g a b s t r a c t . O n the other h a n d , this m a t e r i a l is n o n t y p i c a l because the r o a d t o u n d e r s t a n d i n g is not o b s t r u c t e d b y an u n a v o i d a b l e technical b a r r i e r , a n d t h a n k s a g a i n to the u n i v e r s a l s t r u c t u r e experience, anyone w i l l i n g t o m a k e a reasonable effort s h o u l d be able t o u n d e r s t a n d it despite the abstractness. A l t h o u g h there is not a lot of discussion devoted specifically to p h i l o s o p h i c a l questions, it m u s t be a d m i t t e d t h a t a general t r e a t m e n t o f s t r u c t u r e s , m o s t l y because of t h e i r abstract character, does have s o m e t h i n g i n c o m m o n w i t h a t y p i c a l p h i l o s o p h i c a l discussion: N e i t h e r one "bakes any b r e a d . " I n fact, as i l l u m i n a t i n g as a general s t r u c t u r a l p o i n t of view m i g h t be, i t does not b e g i n to suggest the difficult t e c h n i c a l p r o b l e m s dealt w i t h b y e x p e r t s i n a p a r t i c u l a r f i e l d . T h i s is especially true of fields such as m a t h e m a t i c s and the sciences. Y e t , an awareness of structures and some i d e a of the m a n ner i n w h i c h they enter i n t o a subject adds an element o f u n d e r s t a n d i n g t h a t extends w e l l beyond the technicalities. F u r t h e r m o r e , because of the u n i v e r s a l occurrence of structures and the fact t h a t an abstract s t r u c t u r e is essentially independent o f a p a r t i c u l a r r e a l i z a t i o n , structures c a n p r o v i d e a bridge between fields u s u a l l y regarded as unrelated a n d also give a deeper u n d e r s t a n d i n g of their a c t u a l differences. One venture e r y " of danger
of the p i t f a l l s t h a t lies i n the way o f an i n d i v i d u a l w h o dares to o u t s i d e the security of his o w n area of competence, is the " d i s c o v ideas t h a t are already obvious or w e l l - k n o w n to the e x p e r t s . T h e is especially great for m a t h e m a t i c i a n s , w h o , because of the v i v i d -
X
PREFACE
ness a n d p u r i t y o f their o w n creative experiences, often i m a g i n e t h a t the G o d s have given t h e m a s p e c i a l glimpse of the T r u t h . A t the same t i m e , the m a t h e m a t i c a l experience not o n l y abounds i n s t r u c t u r e s but is unique i n i t s way, so m a y cast a b i t of new l i g h t even o n certain t h i n g s t h a t are already k n o w n . I take this o p p o r t u n i t y t o t h a n k colleagues, f a m i l y , a n d friends for their advice, c r i t i c i s m s , a n d encouragement. O f the m a n y i n d i v i d u a l s w i t h w h o m I have discussed ideas developed here, I w i s h t o single o u t several of m y present a n d former Y a l e colleagues. W e have first, a n d perhaps most i m p o r t a n t , the late Professors R o b e r t B r u m b a u g h ( P h i l o s o p h y ) a n d G . E v e l y n H u t c h i n s o n ( B i o l o g y ) . N e x t there are Professors S a m u e l E . M a r t i n ( L i n guistics), Robert J . Sternberg (Psychology), and T h o m a s Schatt (Sociolo g y ) . I a m i n d e b t e d t o Professor S c h a t t , w h o is now at the U n i v e r s i t y of P i t t s b u r g , for c a l l i n g m y a t t e n t i o n to the work of A . R . R a d c l i f f e - B r o w n , m e n t i o n e d earlier. I also w a n t to give s p e c i a l t h a n k s t o t w o of m y sons, M a r k ( w h o figures i n the two personal examples i n c l u d e d i n Sections 26 a n d 39) a n d E r i c , b o t h of w h o m read p o r t i o n s of the m a n u s c r i p t at v a r ious stages a n d offered valuable suggestions for i m p r o v e m e n t . C o m m e n t s b y E r i c , w h o is a biologist b y profession, were especially h e l p f u l i n C h a p t e r V I I I . H e , o f course, cannot be held responsible for any of the errors or other defects. F i n a l l y , I w a n t t o express m y a d m i r a t i o n a n d g r a t i t u d e to D o n n a B e l l i for her s p e c i a l skills i n p u t t i n g this m a n u s c r i p t i n t o A M S T e X a n d her great patience i n d e a l i n g w i t h the m a n y changes I p l a g u e d her w i t h d u r i n g the process. T h e m a t e r i a l is o r g a n i z e d i n t o seventy sections of v a r y i n g lengths, w h i c h are g r o u p e d i n t o nine separate chapters. T e x t references to the b i b l i o g r a p h y at the end o f the b o o k are enclosed i n square brackets. Yale University M a y , 1994
CONTENTS v
PREFACE I.
INTRODUCTION 1. T h e S t r u c t u r a l i s t A p p r o a c h 2. T h e S p e c i a l R o l e of M a t h e m a t i c s 3. P l a t o ' s L e c t u r e on T h e G o o d
1 . 7 8
II. G E N E R A L S T R U C T U R E C O N C E P T S 4. 5. 6. 7. 8. 9. 10.
T h e Definition Problem S t r u c t u r a l i s t N o t i o n s of S t r u c t u r e A Simple Example T h e Basic Definitions I s o m o r p h i s m s of S t r u c t u r e s Analogies and Isomorphisms A n Analysis of P o i n t - L i n e Structures
11 11 15 17 -21 23 27
11. S p e c i a l K i n d s of R e l a t i o n s 12. S t r u c t u r a l S t a b i l i t y
29 30
13. S t r u c t u r a l I n f o r m a t i o n 14. O n A b s t r a c t S t r u c t u r e s
33 35
III. S O M E E X A M P L E S O F S T R U C T U R E S 15. 16. 17. 18. 19. 20. 21. 22.
Introduction A t o m s and M a c h i n e s L i n e D r a w i n g s by Josef A l b e r s Configurations T h e Pascal Configuration The Triangle G r o u p G r o u p Structures The Real Number System
39 40 42 44 46 48 50 54
IV. M A N A G E M E N T O F C O M P L E X S T R U C T U R E S 23. T h e A n a l y s i s of S t r u c t u r e s
57
24. 25. 26. 27. 28.
58 58 60 65 71
T h e A p p r o x i m a t i o n of S t r u c t u r e s Axiomatics and Approximation Structural Determinism and Reductionism Contractions C o n t r a c t i o n of G r o u p S t r u c t u r e s xi
CONTENTS
V. L A N G U A G E AND S T R U C T U R E 29. T h e R o l e of L a n g u a g e 30. S i m p l e C o m m u n i c a t i o n
73 75
31. Structural Linguistics 32. S e m i o t i c s
77 82
33. T h e L a n g u a g e F a c u l t y
88
V L S T R U C T U R E S IN M E N T A L P H E N O M E N A 34. 35. 36. 37. 38.
Introduction T h e C e n t r a l R o l e of S t r u c t u r e s T h e D r i v e for I n t e l l i g i b i l i t y Philosophical Questions T h e B a c k g r o u n d S t r u c t u r e and U n d e r s t a n d i n g
39. T e a c h i n g and L e a r n i n g
93 94 97 100 105 108
VTI. M A T H E M A T I C A L S T R U C T U R E S 40. I n t r o d u c t i o n 41. M a t h e m a t i c a l Language 42. H o w to Recognize a M a t h e m a t i c a l S t r u c t u r e
115 116 119
4 3 . Research a n d D e v e l o p m e n t o f M a t h e m a t i c s
120
44. 45. 46. 47. 48.
122 128 131 133 138
T h e R o l e o f Insight i n Research A S t r u c t u r a l I n t e r p r e t a t i o n of C r e a t i v i t y H o w M a t h e m a t i c s is A p p l i e d T h e Effectiveness of M a t h e m a t i c s i n P h y s i c s Other Applications of Mathematics
VIII. B I O L O G I C A L S T R U C T U R E S 49. 50. 51. 52.
Introduction C l a s s i f i c a t i o n of O r g a n i s m s T h e Genetic Structure T h e E n v i r o n m e n t of a S t r u c t u r e
145 146 148 152
53. 54. 55. 56. 57. 58. 59.
T h e E v o l u t i o n a r y Process Complexity in Evolution Multiple Function Biological Catastrophes Determining Structures Convergent E v o l u t i o n Anthropomorphism
153 157 163 168 173 174 175
CONTENTS
IX. S P A C E S T R U C T U R E S A N D
Jtiii
STABILITY
60. 61. 62. 63. 64. 65. 66.
Introduction E u c l i d e a n Spaces S u b s t r u c t u r e s o f E u c l i d e a n Space T h e C o n i c Sections S t a b i l i t y in a F a m i l y of C o n i e s Catastrophe Theory Zeeman's Catastrophe Machine
179 180 181 182 186 188 190
67. 68. 69. 70.
A Mathematical Example A t t a c k or R e t r e a t M e t r i c Spaces S t a b i l i t y of P o i n t - L i n e S t r u c t u r e s
191 196 199 201
BIBLIOGRAPHY
207
INDEX
211
CHAPTER
I
INTRODUCTION
1. T h e S t r u c t u r a l i s t A p p r o a c h For our purposes, " s t r u c t u r a l i s m " m a y be defined f o r m a l l y as a m e t h o d of a n a l y z i n g a b o d y of i n f o r m a t i o n w i t h r e s p e c t t o i t s i n h e r e n t s t r u c t u r e . T h i s d e f i n i t i o n is somewhat more a b b r e v i a t e d (and less specific) t h a n the ones u s u a l l y encountered i n discussions o f s t r u c t u r a l i s m . C o n s i d e r , for e x a m p l e , the f o l l o w i n g statement by H o w a r d G a r d n e r i n his i n f o r m a t i v e b o o k , " T h e Quest for M i n d " , [G2, p. 170]. A m e t h o d or a p p r o a c h rather t h a n a carefully f o r m u l a t e d c a t e c h i s m , s t r u c t u r a l i s m is a n a t t e m p t to discern the arrangements of elements u n d e r l y i n g a g i v e n d o m a i n isolated by an a n a l y s t . T h e s t r u c t u r a l i s t notes v a r i a t i o n s i n these arrangements; he then a t t e m p t s to relate the v a r i a t i o n s b y specifying rules whereby one can be t r a n s f o r m e d to another. T h e first sentence does not differ essentially f r o m the d e f i n i t i o n given above, since an " a r r a n g e m e n t of elements" is j u s t another i n f o r m a l expression for the i d e a o f " s t r u c t u r e " . T h e second sentence refers to the ways in w h i c h the perceived structures change a n d the i n t e r r e l a t i o n s h i p s a m o n g these changes. It is influenced by the L e v i - S t r a u s s definition w h i c h is stated in Section 5. N o m a t t e r h o w a d e f i n i t i o n is f o r m u l a t e d , the s t r u c t u r a l i s t o b jective is t o identify a n d u n d e r s t a n d u n d e r l y i n g structures w i t h i n a g i v e n field of interest, a n d so p r o v i d e a unified a p p r o a c h to a v a r i e t y o f phen o m e n a t h a t otherwise w o u l d be treated more or less i n d e p e n d e n t l y w i t h i n t h e i r special c o n t e x t s . E x a c t l y w h a t a l l o f this means i n a c t u a l practice w i l l become clearer as we proceed. T h e m a n n e r i n w h i c h structures are dealt w i t h m a y change d r a s t i c a l l y as one passes f r o m one field of i n v e s t i g a t i o n to another, as for e x a m p l e f r o m a p h y s i c a l science to one of the social sciences. F u r t h e r m o r e , a s t r u c t u r a l a n a l y s i s i n a g i v e n field m a y take place at several levels r a n g i n g f r o m a d i rect analysis o f the g i v e n i n f o r m a t i o n (perhaps i n v o l v i n g o n l y a s u p e r f i c i a l o r g a n i z a t i o n of the m a t e r i a l ) to the i d e n t i f i c a t i o n of d e e p - l y i n g s t r u c t u r e s w h i c h m a y b e q u i t e abstract a n d not at a l l i n t u i t i v e . T h e p r o b l e m of u n c o v e r i n g n o n t r i v i a l s t r u c t u r e is d o u b l y difficult i n areas where the t r a d i t i o n a l
]
2
STRUCTURALISM
AND STRUCTURES
e m p h a s i s is o n other t h i n g s . In most cases, an i d e n t i f i c a t i o n of genuinely significant s t r u c t u r e w i t h i n a field w i l l require expert knowledge a n d u n d e r s t a n d i n g of t h a t field. A n y o n e w h o t h i n k s seriously a b o u t structures cannot avoid b e i n g i m pressed b y the o v e r w h e l m i n g c o m p l e x i t y of c o m m o n p l a c e s t r u c t u r e s t h a t o r d i n a r y i n d i v i d u a l s r o u t i n e l y process w i t h o u t even b e i n g aware t h a t they are d o i n g so. A l t h o u g h the m i n d is somehow able to manage these s t r u c tures, the c o m p l e x i t y is frequently so great t h a t m o s t of w h a t one m i g h t say c o n c e r n i n g t h e m is b o u n d t o be an o v e r s i m p l i f i c a t i o n of w h a t a c t u a l l y is true. Nevertheless, the g o a l here is to p r o v i d e an a p p r o a c h t o the s u b ject t h a t w i l l help one to deal i n t e l l i g e n t l y w i t h general s t r u c t u r e s , some o f w h i c h m a y be far too c o m p l e x to a d m i t a detailed d e s c r i p t i o n or a n a l y s i s . T h e b r a i n ( h u m a n or otherwise) a u t o m a t i c a l l y s t r u c t u r e s i n some way or other i n f o r m a t i o n c o n c e r n i n g every object t h a t is perceived by i t , a n d the c o r r e s p o n d i n g structures are recorded i n m e m o r y to represent t h a t o b ject. T h e basic s t r u c t u r e p r o b l e m here is the q u e s t i o n of j u s t how s t r u c t u r e s are a c t u a l l y r e c o r d e d a n d p r o c e s s e d i n the b r a i n . T h i s is o b v i o u s l y an exceedingly c o m p l e x p h e n o m o n e n t h a t is s t i l l very p o o r l y u n d e r s t o o d , despite m u c h work done o n related issues. F o r e x a m p l e , neurobiologists a n d psychologists have devoted a great deal of research to the s t u d y of b r a i n a c t i v i t y associated w i t h certain p e r c e p t u a l p h e n o m e n a , m u c h of it i n v o l v i n g v i s i o n [Z2]. T h e last reference, w h i c h emphasizes v i s i o n , is to an a r t i c l e b y S e m i r Z e k i t h a t appeared i n Scientific A m e r i c a n , V o l u m e 267, N u m b e r 3. T h i s was a s p e c i a l issue of the magazine devoted to " m i n d a n d b r a i n " , a n d contains a n u m b e r of other very interesting articles relevant to the general p r o b l e m . Despite their general interest, such c o n t r i b u t i o n s t h r o w l i t t l e l i g h t o n the basic s t r u c t u r e p r o b l e m itself. F u r t h e r m o r e , the enormous c o m p l e x i t y of the b r a i n itself presents a f o r m i d a b l e b a r r i e r t o a n u n d e r s t a n d i n g o f the p r o b l e m . A t t e m p t s to penetrate it . a n g e f r o m s t u d ies o f a c t u a l n e u r a l systems {or c o m p u t e r s i m u l a t i o n s of such), t h a t m a y be observed i n r e l a t i v e l y s i m p l e o r g a n i s m s , to s o p h i s t i c a t e d f o r m a l m a t h e m a t i c a l treatments of c o m p l e x systems presumed t o resemble the b i o l o g i c a l case [S3]. W h a t e v e r the u l t i m a t e e x p l a n a t i o n t u r n s out t o be, it w i l l surely involve a deeper a n d more e x p l i c i t t r e a t m e n t o f general structures t h a n is u s u a l l y f o u n d i n such discussions. Because o f the c e n t r a l role t h a t structures m u s t p l a y i n the m e n t a l p r o cesses o f a l l i n d i v i d u a l s , it is reasonable to assume t h a t an u n d e r s t a n d i n g of s t r u c t u r e s h o u l d be more or less accessible to v i r t u a l l y everyone. T h i s a s s u m p t i o n , i n fact, is i n v o l v e d directly or i n d i r e c t l y i n a large p a r t of eve r y t h i n g t h a t follows. S t r u c t u r e is a n o t i o n of w h i c h every t h i n k i n g person is at least p o t e n t i a l l y aware, a n d a m a j o r o b j e c t i v e o f t h i s work is t o b r i n g out t h a t awareness.
I. I N T R O D U C T I O N
3
T h e thesis t h a t everyone is p o t e n t i a l l y aware of the general n o t i o n o f s t r u c t u r e , is s u p p o r t e d d i r e c t l y by the fact t h a t p e r c e p t i o n at any level is inconceivable w i t h o u t some o r g a n i z a t i o n of m a t e r i a l . It is also s u p p o r t e d b y m a n y specific examples, some of t h e m so c o m m o n p l a c e t h a t t h e i r s i g nificance is easily overlooked. Here we w i l l m e n t i o n o n l y t w o . T h e first concerns the general a b i l i t y to recognize v a r i o u s categories of o r d i n a r y objects. F o r e x a m p l e , a c h i l d q u i c k l y learns t o recognize a l l k i n d s of dogs, i n c l u d i n g breeds t h a t he has never seen before, a n d also t o d i s t i n guish t h e m f r o m other four-legged a n i m a l s . H e is also able t o i d e n t i f y dogs i n pictures or cartoons, a n d even i n crude d r a w i n g s . T h i s is a r e m a r k a b l e feat, a n d one is at a loss t o e x p l a i n e x a c t l y how it is a c c o m p l i s h e d . R e g a r d less of details, however, the process o b v i o u s l y m u s t involve the recognition of a " d o g s t r u c t u r e " c o m m o n to the various d o g e x a m p l e s . T h e mystery r e m a i n s as t o how such structures are perceived, a p r o b l e m t h a t w i l l be touched u p o n a g a i n i n C h a p t e r V I . T h e second e x a m p l e , w h i c h also involves c o m m o n s t r u c t u r e s , concerns the p e r c e p t i o n of r e l a t i o n s h i p s between two or more t h i n g s (or systems, or s i t u a t i o n s ) w h i c h are deemed to be s i m i l a r or t o resemble one another. T h e first q u e s t i o n i n each case is, " W h a t does it m e a n for t w o t h i n g s t o resemble or be s i m i l a r to one a n o t h e r " ? A n obvious answer, w h i c h is general enough to cover a l l cases, is t h a t they possess some " c o m m o n s t r u c t u r e " . T h a t this is a viable answer w i l l become clearer as we proceed. A l t h o u g h one c o u l d m e n t i o n m a n y c o m p l e x a n d subtle examples of such comparisons, we w i l l concentrate o n the case of s i m p l e analogies, w h i c h are o b v i o u s l y based on a perceived s i m i l a r i t y . A n a l o g i e s , as w i t h so m a n y other m e n t a l p h e n o m e n a , have been subjected to considerable s t u d y and analysis by psychologists (see, for e x a m p l e , [9]). It seems to be t y p i c a l , however, t h a t such studies n o r m a l l y do not e x a m i n e the u n d e r l y i n g basic r e c o r d i n g a n d processing o f s t r u c t u r e s , t h a t interest us, b u t concentrate instead o n higher level m e n t a l s t r u c t u r e p h e n o m e n a l o n g s t u d i e d i n psychology. T h e fact a b o u t analogies, t h a t bears o n our thesis, is t h a t they are a regular part of everyday exchanges between o r d i n a r y people. Moreover, they are not o n l y easy to f o r m u l a t e b u t are also i m m e d i a t e l y u n d e r s t o o d by v i r t u a l l y everyone t o w h o m they are presented. In other words, the shared s t r u c t u r e s w i l l u s u a l l y be perceived a l m o s t i n s t a n t l y and w i t h essentially no effort. T h i s fact appears even more s t r i k i n g w h e n one notices t h a t m a n y analogies involve objects t a k e n f r o m entirely different c o n t e x t s , so the c o m m o n s t r u c t u r e is necessarily quite a b s t r a c t . Despite the ease w i t h w h i c h we deal w i t h analogies, the subtle m e n t a l a c t i v i t y i n the process is n e a r l y i m p o s s i b l e t o capture because i t is so r a p i d a n d m u c h of i t is u n c o n scious. A l s o , the exposure a n d description of the c o m m o n s t r u c t u r e is often difficult, p a r t l y because an analysis may u s u a l l y be m a d e i n several ways
STRUCTURALISM AND STRUCTURES
and there does not exist a s t a n d a r d m e t h o d o f d e s c r i p t i o n . A m o d e r a t e l y c o m p l e x e x a m p l e of an analogy w i l l be a n a l y z e d completely i n Section 8 of the next c h a p t e r , after some o f the e l e m e n t a r y ideas a b o u t s t r u c t u r e s are i n t r o d u c e d . T h e o v e r a l l picture w i l l become progressively clearer as our s t u d y o f structures a n d t h e i r properties develops. A p r i m a r y m o t i v e b e h i n d the s t r u c t u r a l i s t m o v e m e n t , at least i n the key fields, e v i d e n t l y was to develop a more scientific a p p r o a c h to the s u b j e c t s i n v o l v e d . Since some o f the m a i n p a r t i c i p a n t s were d i r e c t l y influenced b y science a n d m a t h e m a t i c s , one w o u l d expect considerable i n t e r a c t i o n w i t h scientists. Nevertheless, there appears a c t u a l l y t o have been very l i t t l e gene r a l c o n t a c t between most s t r u c t u r a l i s t s a n d n a t u r a l scientists. I n fact, the m e n t i o n of " s t r u c t u r a l i s m " to the scientist, or a m a t h e m a t i c i a n , u s u a l l y d r a w s a complete b l a n k , followed b y the q u e s t i o n , " W h a t do y o u m e a n b y s t r u c t u r a l i s m ? " T h a t the expected contacts a p p a r e n t l y d i d not occur is p r o b a b l y due, i n a d d i t i o n to the u s u a l p a r o c h i a l i s m , t o the fact t h a t s t r u c t u r e is so r o u t i n e l y a p a r t of science t h a t the p r a c t i t i o n e r s use a s t r u c t u r a l i s t a p p r o a c h w i t h o u t h a v i n g to t h i n k a b o u t i t . M o s t scientists w o u l d p r o b a b l y regard the s t r u c t u r a l i s t m o v e m e n t , i f it c a m e u p , as " m u c h a d o a b o u t the o b v i o u s , " so w o u l d have l i t t l e reason t o consider it seriously. S o m e such d e s c r i p t i o n w o u l d c e r t a i n l y a p p l y to m y o w n first impressions of the subject. T h e r e is another " c u l t u r a l " b a r r i e r t h a t tends to t u r n scientists away f r o m s t r u c t u r a l i s m . It is the s i m p l e fact t h a t so m u c h of the basic m a t e r i a l was w r i t t e n by nonscientists, w h o are prone t o adopt a l i t e r a r y style t h a t exploits the flexibility a n d richness of content of the language. Ideas m a y a c c o r d i n g l y be suggested b y the use of association a n d l i t e r a r y reference a l o n g w i t h the sounds and c o n n o t a t i o n s , as w e l l as the u s u a l m e a n i n g s of words. T h e result contrasts w i t h the more f o r m a l (and sometimes r a t h e r pedestrian) s t y l e n o r m a l l y adopted b y m a t h e m a t i c i a n s a n d scientists, even when d e a l i n g w i t h n o n t e c h n i c a l subjects. T h i s is not to say, o f course, t h a t a n i d e a developed i n the l i t e r a r y style necessarily lacks p r e c i s i o n , t h o u g h t o e x t r a c t t h a t p r e c i s i o n f r o m the ambient verbiage is sometimes rather difficult. D e s p i t e such differences, the fact remains t h a t s t r u c t u r a l i s m does represent a l e g i t i m a t e a t t e m p t t o a p p l y scientific m e t h o d to c e r t a i n fields t h a t are u s u a l l y regarded (at least b y m a n y scientists) as nonscientific i n character. M a n y of the t r a d i t i o n a l a t t e m p t s to i m i t a t e the scientific m e t h o d are based o n the n o t i o n , advanced for e x a m p l e by Descarte and K a n t , t h a t the c r i t e r i o n of t r u e science lies i n its r e l a t i o n t o m a t h e m a t i c s . Therefore, the u l t i m a t e g o a l is often to involve i n one way or another some m a t h e m a t ics, the ideal m o d e l b e i n g physics. F u r t h e r m o r e , a c o m m o n i n t e r p r e t a t i o n of this p o i n t of v i e w is t h a t a true science m u s t first of a l l be based o n n u m e r i c a l measurements. O n e response t o this i n t e r p r e t a t i o n has been
I. I N T R O D U C T I O N
5
the extensive use of statistics i n the a n a l y s i s and presentation of results. A l t h o u g h statistics is a n i m p o r t a n t a n d useful t o o l i n d e a l i n g w i t h large a m o u n t s of c e r t a i n k i n d s of n u m e r i c a l d a t a a n d m a y help i n the i d e n t i fication of s t r u c t u r e , i t is not a s u b s t i t u t e for the a c t u a l i n t r o d u c t i o n of m a t h e m a t i c s . I n any case, a subject does not become m a t h e m a t i c a l , a n d hence more " s c i e n t i f i c " , s i m p l y t h r o u g h the measurement of certain of its parameters. T h e c h a r a c t e r i z a t i o n of key properties of a s y s t e m i n t e r m s o f the values of a few parameters is o b v i o u s l y very i m p o r t a n t whenever it is possible. Nevertheless, the emphasis o n n u m b e r a n d measurement has a tendency to d i s t r a c t a t t e n t i o n f r o m a more f u n d a m e n t a l m a t t e r : the parameters t h e m selves a n d their i n t e r r e l a t i o n s h i p s . In other words, i t is the s t r u c t u r e of the set of parameters t h a t is i m p o r t a n t . It is here t h a t m a t h e m a t i c a l s t r u c t u r e m a y i n some cases be i n t r o d u c e d . T h e n u m e r i c a l values o f the p a r a m e t e r s , however i m p o r t a n t they m i g h t be i n specific instances, do not represent the essence of the subject. T h e preceding r e m a r k s i n d i c a t e why a serious s t r u c t u r a l i s t a p p r o a c h to any subject has s o m e t h i n g i n c o m m o n w i t h a general scientific a p p r o a c h . A first goal for b o t h is to search out and expose the essential s t r u c t u r e (or structures) i m p l i c i t i n the g i v e n subject i n f o r m a t i o n . T h i s is genuinely scientific i n s p i r i t even when the structures o b t a i n e d are not m a t h e m a t i c a l i n character. If the exposed structures are indeed essential, they w i l l p r o vide a basis for o r g a n i z i n g a n d u n d e r s t a n d i n g properties of the s u b j e c t a n d perhaps also suggest (or predict) new properties as w e l l . T h e latter role, i n c i d e n t a l l y , is often regarded as a n essential feature o f a science. In special cases, such as i n m u c h of physics, the structures w i l l a d m i t a m a t h e m a t i c a l d e s c r i p t i o n a n d some of their c r u c i a l properties may be expressible i n n u m e r i c a l terms. O n the other h a n d , there are m a n y m a t h e m a t i c a l s t r u c t u r e s t h a t do not depend o n n u m e r i c a l measurements (groups, for e x a m p l e ) , but are no less m a t h e m a t i c a l because of this fact. W h e t h e r or not n u m b e r s are i n v o l v e d , the power of the m a t h e m a t i c s is t h a t its f o r m a l i s m provides a t o o l for m a n i p u l a t i n g the s t r u c t u r e , e n a b l i n g one, for e x a m p l e , t o m a k e precise predictions c o n c e r n i n g the subject i n q u e s t i o n . A m o r e t h o r o u g h description of how m a t h e m a t i c s is a p p l i e d w i l l be found i n Sections 46-48. A l t h o u g h the ideal m o d e l for s t r u c t u r a l i s m m i g h t be the a p p l i c a t i o n of m a t h e m a t i c s , the h a r d fact is t h a t m a t h e m a t i c a l s t r u c t u r e s a p p r o p r i a t e to m a n y fields s i m p l y do not exist. F o r t u n a t e l y , an independent s t r u c t u r a l a n a l y s i s of languages was already i n an advanced stage of development w h e n the m o d e r n s t r u c t u r a l i s t movement arose. A t the same t i m e , it a p pears t h a t a l l social p h e n o m e n a m a y to some degree be s t r u c t u r e d like a language (Section 31). T h i s , a l o n g w i t h the fact t h a t l i n g u i s t i c s t r u c tures are generally more accessible t h a n m a t h e m a t i c a l ones, e x p l a i n s why
6
STRUCTURALISM
AND STRUCTURES
s t r u c t u r a l l i n g u i s t i c s has h a d a m o r e direct influence o n the development of s t r u c t u r a l i s m t h a n has m a t h e m a t i c s . Some s t r u c t u r a l i s t s , for e x a m p l e L e v i - S t r a u s s [L6] a n d the French psychoanalyst Jacques L a c a n (see [ D 3 , C h . 3], [ L I ] , a n d [L3]), place great e m p h a s i s u p o n l i n g u i s t i c s . P i a g e t , however, tended to m i n i m i z e its i m p o r t a n c e i n his work [P3], preferring to emphasize mathematics instead. L i n g u i s t i c structures are i n v o l v e d directly and i n d i r e c t l y w i t h s t r u c t u r a l i s m i n a variety of ways. T h i s r e l a t i o n s h i p is b o t h i n t e r e s t i n g a n d i n s t r u c t i v e , a n d w i l l be m u c h easier to u n d e r s t a n d after a f o r m a l d e f i n i t i o n of s t r u c t u r e a n d some f u n d a m e n t a l s of the theory of general structures have been developed i n the next several chapters. It w i l l be dealt w i t h i n C h a p t e r V , w h i c h is concerned w i t h the way language enters i n t o the m a n a g e m e n t a n d c o m m u n i c a t i o n of s t r u c t u r e s , a n d w i t h c e r t a i n aspects o f language s t r u c t u r e itself. A l t h o u g h structures are necessarily involved i n a n y t h i n g concerned w i t h i n t e l l i g i b i l i t y , a n a c t u a l i d e n t i f i c a t i o n and d e s c r i p t i o n of the structures t h e m selves m a y be difficult to o b t a i n . A molecule, or a l i v i n g o r g a n i s m , or a k i n s h i p s y s t e m does not e x h i b i t i n any obvious way its c h a r a c t e r i s t i c s t r u c t u r e . T h e s i t u a t i o n is further c o m p l i c a t e d by the fact t h a t an o b j e c t often m a y be a n a l y z e d i n m o r e t h a n one way w i t h respect t o s t r u c t u r e . These p r o b l e m s m a y arise even i n a science, where s t r u c t u r e s tend to lie rather close to the surface, a n d they are m u c h more prevalent i n certain other fields, where a search for u n d e r l y i n g s t r u c t u r e m a y be u n c o n v e n t i o n a l . D e s p i t e a l l of t h i s , a s t r u c t u r a l approach is so characteristic of t r a d i t i o n a l science t h a t s t r u c t u r a l i s m , t h o u g h perhaps m i s u n d e r s t o o d a n d sometimes m i s u s e d , represents a l e g i t i m a t e a t t e m p t to i n t r o d u c e scientific m e t h o d s i n t o nonscientific fields. A t the same t i m e , a n a t u r a l science, because o f its special r e l a t i o n s h i p t o the real w o r l d t h r o u g h e x p e r i m e n t a n d p r e d i c t i o n , o b v i o u s l y involves m o r e t h a n j u s t the i d e n t i f i c a t i o n of s t r u c t u r e . T h e most basic question t h a t must be faced i n d e a l i n g w i t h s t r u c t u r e s is the obvious one, " W h a t a c t u a l l y is a s t r u c t u r e ! " A l t h o u g h a s i m p l e w o r k i n g definition is offered i n Section 7 of the next chapter, the concept itself covers such a wide variety o f objects t h a t m u c h discussion a n d analysis of examples is needed t o expose a reasonably adequate idea of w h a t is i n v o l v e d . I n fact, the next three chapters m a y be regarded as an extended answer to the a b o v e question. A s is p o i n t e d out i n the next s e c t i o n , m a t h e m a t i c s occupies a u n i q u e l y c e n t r a ! p o s i t i o n a m o n g a l l other fields w i t h respect to the s t u d y of s t r u c t u r e . Therefore, m u c h of w h a t we have to say is based ( d i r e c t l y or i n d i r e c t l y ) o n various s t r u c t u r e notions f r o m m a t h e m a t i c s . A l t h o u g h m a t h e m a t i c s is a key source for structures and t h e i r properties, it is o b v i o u s l y not the o n l y one. I n fact, we w i l l have occasion t o e x a m i n e i n some d e t a i l s t r u c t u r e s as they o c c u r i n other fields, especially i n l i n g u i s t i c s
I. I N T R O D U C T I O N
7
a n d biology. In a l l cases, however, the purpose is s t r i c t l y t o expose c e r t a i n general s t r u c t u r e ideas a n d is not to give a s t r u c t u r a l analysis of the field itself. A t the same t i m e , a c o n c e n t r a t i o n o n structures sometimes h i g h l i g h t s c e r t a i n features o f a s u b j e c t t h a t are not u s u a l l y e m p h a s i z e d . 2. T h e S p e c i a l R o l e o f
Mathematics
T h e most o b v i o u s feature of m a t h e m a t i c s , to n o n m a t h e m a t i c i a n s , is the general use o f a f o r m a l "language" of s y m b o l s . C o n s e q u e n t l y , more often t h a n n o t , the casual observer w i l l identify m a t h e m a t i c s w i t h its f o r m a l i s m . T h e r e are also a few m a t h e m a t i c i a n s and logicians w h o , for very t e c h n i c a l p h i l o s o p h i c a l reasons, make the same i d e n t i f i c a t i o n . T h e s e are the f o r m a l ists. But most m a t h e m a t i c i a n s are not f o r m a l i s t s a n d regard m a t h e m a t i c s as h a v i n g a content independent o f the language. T h i s is also the p o i n t o f view i n a l l t h a t follows. It is a c c o r d i n g l y assumed t h a t , a l t h o u g h a s p e c i a l language (or l a n guages) does indeed p l a y a v i t a l role i n m a t h e m a t i c s , the a c t u a l content of m a t h e m a t i c s consists of special structures representing m a t h e m a t i c a l concepts. T h i s is w h a t sets m a t h e m a t i c s a p a r t f r o m other fields of s t u d y . In most areas, the p r o b l e m is first to i d e n t i f y u n d e r l y i n g s t r u c t u r a l p r o p erties of the g i v e n subject m a t t e r , w h i c h is then s t u d i e d i n the l i g h t of these s t r u c t u r e s , w h i l e i n m a t h e m a t i c s the subject m a t t e r already consists of s t r u c t u r e s . F r o m t h i s p o i n t of v i e w , the f o r m a l i s m is j u s t an e x t r e m e l y efficient language for representing a n d m a n i p u l a t i n g m a t h e m a t i c a l s t r u c tures. T h e s p e c i a l character o f these s t r u c t u r e s , d e t e r m i n e d i n p a r t by their s u s c e p t i b i l i t y t o f o r m a l t r e a t m e n t , w i l l be discussed i n C h a p t e r V I I . Since the s t r u c t u r e s t h a t constitute the subject m a t t e r of m a t h e m a t i c s occur i n a r e l a t i v e l y pure f o r m , unencumbered b y extraneous i n f o r m a t i o n , they m a y be s t u d i e d a n d u n d e r s t o o d (as structures!) to a degree difficult t o a t t a i n i n other fields. F u r t h e r m o r e , m a t h e m a t i c a l s t r u c t u r e s , despite t h e i r special character, o c c u r w i t h great variety a n d c o m p l e x i t y , e x h i b i t i n g m a n y i m p o r t a n t properties c o m m o n to a l l s t r u c t u r e s . It is for these reasons t h a t m a t h e m a t i c a l structures p r o v i d e an especially good a p p r o a c h to the s t u d y of general s t r u c t u r e s a n d their properties. T h e i n v o l v e m e n t of m a t h e m a t i c s w i t h other fields, i m p l i e d here, is different f r o m the u s u a l a p p l i c a t i o n s of m a t h e m a t i c s , as for e x a m p l e i n physics. T h e l a t t e r depend on the i d e n t i f i c a t i o n of a p o r t i o n of the target subject as h a v i n g s t r u c t u r e s i m i l a r to a k n o w n m a t h e m a t i c a l s t r u c t u r e , so t h a t i t m a y a c c o r d i n g l y be s t u d i e d using m a t h e m a t i c a l techniques. (See S e c t i o n 47.) Here, o n the other h a n d , the idea is to extract or generalize f r o m m a t h e m a t i c a l structures c e r t a i n characteristics t h a t w i l l c a r r y over t o , a n d t h u s help to u n d e r s t a n d , structures of a l l k i n d s . A s suggested e a r l i e r , a s i m i l a r t h o u g h less specific g o a l is i m p l i c i t i n o u r consideration o f other subjects
8
STRUCTURALISM
AND STRUCTURES
as w e l l . S o m e o f the f o l l o w i n g discussion of s t r u c t u r e s is influenced by m a t h e m a t i c a l m a t e r i a l w h i c h is p r o b a b l y not f a m i l i a r to m a n y readers w h o m i g h t be interested i n the subject. A s a rule, however, such m a t e r i a l of a nonelem e n t a r y character is presented i n f o r m a l l y or enters only i n d i r e c t l y t h r o u g h the a u t h o r ' s o w n experience as a m a t h e m a t i c i a n , so s h o u l d not cause i n s u r m o u n t a b l e difficulties. M o s t readers w i l l be able, i f necessary, t o d r a w f r o m a l t e r n a t e sources most of the knowledge a n d experience of s t r u c t u r e s required to follow the discussion. W e a c c o r d i n g l y believe t h a t a perceptive reader, despite m a t h e m a t i c a l deficiencies, w i l l w i n d u p w i t h a m u c h better i d e a , not o n l y of s t r u c t u r e , but also of the nature of m a t h e m a t i c s a n d the way it develops. T h e i d e a t h a t a knowledge of m a t h e m a t i c s m a y f a c i l i t a t e one's unders t a n d i n g of another q u i t e different subject is very o l d , g o i n g back at least to P l a t o . F u r t h e r m o r e , the connection also t u r n s out to be t h r o u g h s t r u c t u r e ! 3. P l a t o ' s L e c t u r e o n T h e
Good
P l a t o is reported to have delivered i n A t h e n s a lecture (or lectures) o n " T h e N o t i o n of T h e G o o d " . A r i s t o t l e , w h o a t t e n d e d the lecture, discussed it later i n his w r i t i n g s on the same subject. U n f o r t u n a t e l y , this p o r t i o n of A r i s t o t l e ' s work has not s u r v i v e d , so the report o n P l a t o ' s lecture is second h a n d t h r o u g h A r i s t o t l e ' s o w n students. Nevertheless, it seems t o be generally agreed t h a t P l a t o devoted most of the lecture to a discussion of m a t h e m a t i c s , a n d a p p a r e n t l y took the p o s i t i o n t h a t the n a t u r e o f T h e G o o d c o u l d be u n d e r s t o o d t h r o u g h m a t h e m a t i c s . T h i s unexpected thesis caused a great deal of confusion, a n d over the years has given rise t o m u c h controversy a m o n g philosophers as to w h a t P l a t o a c t u a l l y m e a n t . S o m e even went so far as to conjecture t h a t A r i s t o t l e ' s account of the lecture was incorrect. A l f r e d N o r t h W h i t e h e a d , one of those philosophers w h o accepted the r e p o r t e d content of P l a t o ' s lecture, discussed the question i n an article entitled " M a t h e m a t i c s a n d T h e G o o d " , where he makes the following c o m ments c o n c e r n i n g the famous lecture [ W 4 , p. 75]; B u t u n d o u b t e d l y his lecture was a failure; for he d i d not succeed i n m a k i n g evident to future generations his i n t u i t i o n of m a t h e m a t i c s as e l u c i d a t i n g T h e G o o d . M a n y m a t h e m a t i c i a n s have been g o o d men for e x a m p l e , P a s c a l a n d N e w t o n . A l s o m a n y philosophers have been m a t h e m a t i c i a n s . B u t the peculiar associations of m a t h e m a t i c s a n d T h e G o o d r e m a i n s an undeveloped t o p i c , since its first i n t r o d u c t i o n by P l a t o . T h e r e have been researches i n t o the topic conceived as an interesting characteristic of P l a t o ' s m i n d . B u t the d o c t r i n e conceived as a basic t r u t h of philosophy, faded f r o m active thought after the first
I. I N T R O D U C T I O N
9
i m m e d i a t e P l a t o n i c epoch. T h r o u g h o u t the various ages of E u r o p e a n c i v i l i z a t i o n , m o r a l p h i l o s o p h y and m a t h e m a t i c s have been assigned to separate departments of u n i v e r s i t y life. W h i t e h e a d goes on to p o i n t out t h a t it is possible, i n the l i g h t of our m o d e r n knowledge, to clarify "ideas w h i c h P l a t o could o n l y express w i t h obscure sentences a n d m i s l e a d i n g m y t h s " . T h e m a i n topic i n the a r t i c l e is "the c o n n e c t i o n between m o d e r n m a t h e m a t i c s a n d the n o t i o n of T h e G o o d " , and he u l t i m a t e l y makes the point t h a t " m a t h e m a t i c s is now b e i n g t r a n s f o r m e d i n t o the i n t e l l e c t u a l analysis of types of p a t t e r n " . (Note t h a t we w o u l d s u b s t i t u t e " s t r u c t u r e " for the w o r d " p a t t e r n " t h r o u g h o u t these remarks.) T h e r e follows W h i t e h e a d ' s c l a r i f i c a t i o n of P l a t o ' s association of mathematics with The G o o d : T h e n o t i o n of the i m p o r t a n c e of p a t t e r n is as o l d as c i v i l i z a t i o n . E v ery art is founded on the study of p a t t e r n . A l s o the cohesion of s o c i a l systems depends on the maintenance of patterns of b e h a v i o r ; a n d a d vances i n c i v i l i z a t i o n depend on the fortunate m o d i f i c a t i o n of such b e h a v i o r patterns. T h u s the infusion of p a t t e r n i n t o n a t u r a l occurrences, and the s t a b i l i t y of such patterns, and the m o d i f i c a t i o n of such p a t t e r n s , is the necessary c o n d i t i o n for the r e a l i z a t i o n of T h e G o o d . M a t h e m a t i c s is the most powerful technique for the u n d e r s t a n d i n g of p a t t e r n , a n d for the a n a l y s i s of the r e l a t i o n s h i p s of patterns. Here we reach the f u n d a m e n t a l j u s t i f i c a t i o n for the topic of P l a t o ' s lecture. H a v i n g regard to the i m m e n s i t y of its s u b j e c t - m a t t e r m a t h e m a t i c s , even m o d e r n m a t h e m a t i c s , is a science i n its b a b y h o o d . If c i v i l i z a t i o n continues to advance, i n the next two t h o u s a n d years the o v e r w h e l m ing novelty i n h u m a n thought w i l l be the d o m i n a n c e of m a t h e m a t i c a l understanding. T h e essence of t h i s generalized m a t h e m a t i c s is the s t u d y of the most observable examples of the relevant p a t t e r n s ; and a p p l i e d m a t h ematics is the transference of this s t u d y to other e x a m p l e s of the r e a l i z a t i o n of these p a t t e r n s . [ W 4 , pp. 83,84] In these comments, W h i t e h e a d observes the u n i v e r s a l occurrence of p a t terns, or s t r u c t u r e s , and identifies t h e m as the n a t u r a l d o m a i n of m a t h ematics, thereby c h a l l e n g i n g future m a t h e m a t i c i a n s w i t h the t r u l y enorm o u s task of g i v i n g a m a t h e m a t i c a l t r e a t m e n t of structures as they arise i n m a n y different areas. W h e t h e r or not this w i l l h a p p e n m a y d e p e n d o n how " s t r u c t u r e " is a c t u a l l y defined a n d on the i n t e r p r e t a t i o n of " m a t h e m a t i c a l t r e a t m e n t " . If the o b j e c t i v e is to involve m a t h e m a t i c s i n a s u b s t a n t i a l way, as opposed to a use of m a t h e m a t i c a l language i n a purely d e s c r i p t i v e role, then it is difficult to v i s u a l i z e how the goal m i g h t be a t t a i n e d , at least w i t h out rather severe restrictions on the a d m i t t e d s t r u c t u r e s , or some presently
10
unpredictable t a n t question w i l l be t a k e n the n a t u r e of
STRUCTURALISM
AND STRUCTURES
developments i n m a t h e m a t i c s . T h i s raises a g a i n the i m p o r of w h a t it means to a p p l y m a t h e m a t i c s t o other fields, w h i c h up i n C h a p t e r V I I f o l l o w i n g a more careful e x a m i n a t i o n of m a t h e m a t i c a l structures a n d how they are dealt w i t h .
CHAPTER
GENERAL
II
STRUCTURE
CONCEPTS
4. T h e D e f i n i t i o n P r o b l e m A l t h o u g h c e r t a i n special k i n d s of structures are reasonably m a n a g e a b l e , it is difficult t o p i n d o w n the general n o t i o n because i t appears i n so m a n y guises a n d contexts. T h i s is already i n d i c a t e d by the variety of words t h a t are c o m m o n l y used t o suggest s t r u c t u r e . These i n c l u d e , for e x a m ple, " c o m p l e x " , " c o n s t r u c t i o n " , " f i g u r e " , " f o r m " , " f r a m e w o r k " , " m o d e l " , " o r g a n i s m " , " p a t t e r n " , " p l a n " , " s y s t e m " , a n d m a n y more. O n e of the p r o b l e m s i n d e a l i n g w i t h a concept as general a n d i n c l u s i v e as t h a t of a s t r u c t u r e is t h a t no single e x a m p l e can suggest more t h a n a fragment of the f u l l concept, so any g o o d e x a m p l e is i n danger of b e i n g perceived as more representative t h a n i t possibly c a n be. T h e r e is a c c o r d i n g l y not m u c h hope for s t a t i n g i n a few lines a precise and complete d e f i n i t i o n of s t r u c t u r e . O n the other h a n d , there is a n a l t e r n a t i v e a p p r o a c h to p r o b l e m s o f this k i n d , more c o m m o n i n the h u m a n i t i e s t h a n i n the sciences, t h a t emphasizes a n extended discussion of the subject rather t h a n a f o r m a l t r e a t m e n t . I n the present case, i t involves the f o r m u l a t i o n of an a d m i t t e d l y imprecise a p p r o x i m a t e d e f i n i t i o n , w h i c h is then e l a b o r a t e d a n d made i n c r e a s i n g l y more complete t h r o u g h e x a m p l e s a n d e x p l a n a t i o n s . A t the same t i m e , the concept suggested by the d e f i n i t i o n , perhaps rather vague a n d l i m i t e d at the outset, becomes progressively sharper and m o r e i n c l u s i v e as the discussion proceeds. Before f o r m u l a t i n g our s t a r t i n g d e f i n i t i o n for " s t r u c t u r e " i n Sect i o n 7, we consider some definitions i n the next section t h a t have appeared i n the s t r u c t u r a l i s t l i t e r a t u r e , and e x a m i n e carefully i n Section 6 a s i m p l e object t h a t everyone w i l l no doubt accept as an e x a m p l e of a s t r u c t u r e . 5. S t r u c t u r a l i s t N o t i o n s o f S t r u c t u r e S t r u c t u r a l i s t w r i t i n g s n a t u r a l l y contain n u m e r o u s references to s t r u c tures b u t s e l d o m deal e x p l i c i t l y , let alone s y s t e m a t i c a l l y , w i t h the n o t i o n of s t r u c t u r e itself. E v e n when a d e f i n i t i o n of s t r u c t u r e is offered, i t tends t o be t a i l o r e d t o the subject being s t u d i e d a n d often p l a y s o n l y an i n d i r e c t role i n the w o r k . F o u r representative definitions are reviewed below. T h e w i d e differences a m o n g the definitions emphasize further the very b r o a d character of the s t r u c t u r e concept. 11
12
STRUCTURALISM
AND STRUCTURES
W e begin w i t h a definition by A . R . R a d c l i f f e - B r o w n , one a m o n g several a n t h r o p o l o g i s t s whose use of s t r u c t u r e ideas a n t i c i p a t e d w h a t is u s u a l l y regarded as the s t r u c t u r a l i s t m o v e m e n t . T h e f o l l o w i n g d e f i n i t i o n appears i n the i n t r o d u c t i o n to his b o o k , " S t r u c t u r e a n d F u n c t i o n i n P r i m i t i v e S o c i e t y " [ R l ] , w h i c h is a collection of essays and lectures. W h e n we use the t e r m s t r u c t u r e we are referring to some sort o f ordered arrangement of parts or components. A m u s i c a l c o m p o s i t i o n has a s t r u c t u r e , a n d so does a sentence. A b u i l d i n g has a s t r u c t u r e , so does a molecule or an a n i m a l . T h e c o m p o n e n t s or u n i t s of social s t r u c t u r e are persons, and a person is a h u m a n b e i n g considered not as an o r g a n i s m b u t as o c c u p y i n g p o s i t i o n i n a s o c i a l s t r u c t u r e , [p. 9] T h e purpose of t h i s d e f i n i t i o n was to help c l a r i f y some of the a u t h o r ' s ideas o u t l i n e d earlier i n a presidential address delivered to the R o y a l A n t h r o p o l o g i c a l I n s t i t u t e . It is not only by far the simplest of the four, but is closest to our general d e f i n i t i o n given i n Section 7. T h e address, " O n S o c i a l S t r u c t u r e " , first p u b l i s h e d i n 1940, is C h a p t e r X of his b o o k . It exp l a i n s the a u t h o r ' s v i e w of social a n t h r o p o l o g y "as the t h e o r e t i c a l n a t u r a l science of h u m a n society, t h a t is, the i n v e s t i g a t i o n of s o c i a l p h e n o m e n a by m e t h o d s essentially s i m i l a r to those used i n the p h y s i c a l a n d b i o l o g i c a l s c i ences" , and is not o n l y a c o n v i n c i n g defense of the a u t h o r ' s p o s i t i o n b u t also a r e m a r k a b l y clear statement of w h a t s t r u c t u r a l i s m is a l l a b o u t . T h e other three definitions are m u c h less clear as t o j u s t w h a t the a u t h o r s h a d in m i n d . T h e next d e f i n i t i o n , by L e v i - S t r a u s s , is quoted f r o m his book on " S t r u c t u r a l A n t h r o p o l o g y " [L6, p. 279], It was offered i n the course of a discussion of "social s t r u c t u r e s " as an answer to the q u e s t i o n , " W h a t k i n d of m o d e l deserves the name ' s t r u c t u r e ' ? " He also points out t h a t " T h i s is not an a n t h r o p o l o g i c a l question, b u t one w h i c h belongs to the m e t h o d o l o g y of science i n g e n e r a l " . . . . a s t r u c t u r e consists of a m o d e l meeting w i t h several requirements. F i r s t , the structure e x h i b i t s the characteristics of a s y s t e m . It is m a d e u p of several elements, none of w h i c h can undergo a change w i t h o u t effecting changes i n a l l of the other elements. Second, for any given m o d e l there should be a p o s s i b i l i t y of o r d e r i n g a series of transform a t i o n s r e s u l t i n g i n a group of models of the same type. T h i r d , the above properties make it possible to predict how the m o d e l w i l l react if one or more of its elements are s u b m i t t e d to certain m o d i f i c a t i o n s . F i n a l l y , the models should be c o n s t i t u t e d so as to m a k e i m m e d i a t e l y intelligible a l l of the observed facts. T h e t h i r d d e f i n i t i o n is due to P i a g e t . It is quoted f r o m his b o o k , " S t r u c t u r a l i s m " [P3,p.5], a n d is o b v i o u s l y colored by his intent to confine a t t e n t i o n
II. G E N E R A L
STRUCTURE CONCEPTS
to "the k i n d s o f structures t h a t are to be met i n m a t h e m a t i c s a n d the several e m p i r i c a l sciences". T h i s r e s t r i c t i o n does not m e a n , of course, t h a t his a t t e n t i o n was confined to these subjects, since a m a j o r o b j e c t i v e was to identify such structures i n other areas. A s a first a p p r o x i m a t i o n , we m a y say t h a t a s t r u c t u r e is a s y s t e m of t r a n s f o r m a t i o n s . In as m u c h as i t is a s y s t e m a n d not a mere collect i o n of elements a n d their properties, these t r a n s f o r m a t i o n s involve laws: the s t r u c t u r e is preserved or enriched by the i n t e r p l a y of its t r a n s f o r m a t i o n laws, w h i c h never y i e l d results e x t e r n a l t o the s y s t e m nor e m p l o y elements t h a t are e x t e r n a l to i t . In short, the n o t i o n of s t r u c t u r e is comprised of three key ideas: the i d e a of wholeness, the idea of t r a n s f o r m a t i o n , a n d the idea of self-regulation. T h e f o u r t h d e f i n i t i o n , w h i c h is m u c h more recent t h a n the others, is by Peter C a w s , and is t a k e n f r o m his b o o k o n " S t r u c t u r a l i s m " [C2, p p . 1 2 , 13]. H i s a p p r o a c h to s t r u c t u r a l i s m is different i n t h a t it includes considerable discussion of related p h i l o s o p h i c a l questions. W e w i l l r e t u r n to some of these m a t t e r s i n Section 14 at the end of this chapter a n d i n Section 37 i n C h a p t e r V I . H i s d e f i n i t i o n of " s t r u c t u r e " also depends on a p r e l i m i n a r y n o t i o n of a " s y s t e m " . B y a s y s t e m I s h a l l u n d e r s t a n d a set of entities (called the e l e m e n t s of the system) m u t u a l l y related i n such a way t h a t the state of each element determines a n d / o r is d e t e r m i n e d b y the state of some other element or elements, and every element is connected to every other by a c h a i n of such d e t e r m i n a t i o n s , t h a t is, the s y s t e m has no isolated elements [p. 12]. B y a s t r u c t u r e , finally, I s h a l l u n d e r s t a n d a set of r e l a t i o n s entities t h a t f o r m the elements of a s y s t e m ; the s t r u c t u r e w i l l to be c o n c r e t e i f the relations are a c t u a l l y e m b o d i e d i n some a b s t r a c t i f they are m e r e l y specified b u t not so e m b o d i e d [p.
among be s a i d system, 13].
A l t h o u g h C a w s identifies a s t r u c t u r e w i t h a set of r e l a t i o n s , his d e f i n i t i o n o f a concrete s t r u c t u r e also suggests the one we give i n Section 7. A s already suggested, it is not feasible to require a great deal o f precision in any reasonably general d e f i n i t i o n of s t r u c t u r e . Nevertheless, w i t h o u t considerable a d d i t i o n a l subject i n f o r m a t i o n , it is difficult t o f o r m w i t h m u c h confidence a very clear n o t i o n of w h a t is b e i n g specified i n any o f the last three definitions, let alone to correlate t h e m . T h e p r o b l e m is t h a t the defi n i t i o n s e v i d e n t l y were abstracted f r o m rather specific e x a m p l e s t h a t the a u t h o r s h a d i n m i n d . T h i s is, i n fact, a c o m m o n a p p r o a c h t o a b s t r a c t i o n . It consists i n t a k i n g a description of a " t y p i c a l " concrete e x a m p l e a n d s y s t e m a t i c a l l y suppressing the concreteness by s u b s t i t u t i n g general t e r m i n o l o g y for the concrete. T h e idea seems to be t h a t the " a b s t r a c t " f o r m u l a t i o n so
14
STRUCTURALISM
AND STRUCTURES
o b t a i n e d w i l l c a p t u r e the "essence"of the s y s t e m . T h e a p p r o a c h m a y work, b u t i t is often difficult to see w h a t is intended w i t h o u t considerable k n o w l edge of the o r i g i n a l concrete o b j e c t . In other words, the desired abstract concept fails t o a t t a i n an independent existence. T h i s is not the place to a t t e m p t a detailed analysis of the s p e c i a l features of the above definitions, since t h a t w o u l d require a review of the subject m a t t e r w i t h w h i c h the a u t h o r s are concerned, a task t h a t w o u l d be a digression for us. T h e r e f o r e , the f o l l o w i n g r e m a r k s , directed o n l y to the L e v i - S t r a u s s and P i a g e t definitions, are restricted t o a few of the i m m e d i ately relevant features. Despite their obvious differences, the two definitions do involve some c o m m o n ideas. In the first place, each requires a s t r u c t u r e to be a s y s t e m . S i n c e , by c o m m o n usage, the word " s y s t e m " is almost s y n o n y m o u s w i t h " s t r u c t u r e " (though the former is perhaps somewhat more i n c l u s i v e ) , i t follows t h a t the definitions are intended to single out s p e c i a l classes of structures. Observe also t h a t the notion of a t r a n s f o r m a t i o n enters i n t o b o t h the L e v i - S t r a u s s and P i a g e t definitions, t h o u g h the m a n n e r i n w h i c h i t is i n volved is different. For L e v i - S t r a u s s , a t r a n s f o r m a t i o n is a p p a r e n t l y a m e t h o d of r e l a t i n g two models of the same type. In the t e r m i n o l o g y t h a t w i l l be i n t r o d u c e d i n Section 7, a m o d e l is a " r e p r e s e n t a t i o n " of an u n d e r l y i n g s t r u c t u r e , a n d two models w o u l d be of the same type i f they represent the s a m e s t r u c t u r e . T h e L e v i - S t r a u s s t r a n s f o r m a t i o n m i g h t a c c o r d i n g l y be interpreted as a process, associated w i t h the u n d e r l y i n g s t r u c t u r e , of passi n g f r o m one representing model to another. A d d i t i o n a l r e m a r k s c o n c e r n i n g t r a n s f o r m a t i o n s of this k i n d w i l l be found i n Section 8. In the P i a g e t d e f i n i t i o n , the system itself consists of t r a n s f o r m a t i o n s w h i l e L e v i - S t r a u s s ' s system consists of elements, so P i a g e t ' s t r a n s f o r m a tions correspond to L e v i - S t r a u s s ' s elements. T h u s , for P i a g e t the transform a t i o n s are, so to speak, i n t e r n a l to the s t r u c t u r e w h i l e for L e v i - S t r a u s s they are e x t e r n a l . P i a g e t also asserts [ P 3 , p. I l j t h a t " a l l k n o w n structures - f r o m m a t h e m a t i c a l groups t o k i n s h i p systems - are, w i t h o u t e x c e p t i o n , systems of t r a n s f o r m a t i o n s " ! In spite of (or perhaps, because of) this s t r o n g s t a t e m e n t , it is not very clear j u s t w h a t P i a g e t means by a " t r a n s f o r m a t i o n " . It is also not clear w h a t e x a c t l y is b e i n g " t r a n s f o r m e d " . He perhaps h a d i n m i n d a n o t i o n of t r a n s f o r m a t i o n analogous to t h a t associated w i t h the elements of a " g r o u p " i n m a t h e m a t i c s , where each element of the group may be regarded, v i a the group o p e r a t i o n , as a t r a n s f o r m a t i o n a c t i n g o n the set of a l l the group elements. P a r t of the difficulty i n b o t h definitions may be an a t t e m p t to incorporate i n t h e m more t h a n j u s t the n o t i o n of s t r u c t u r e itself. D o t h L e v i - S t r a u s s and P i a g e t were influenced i n a general way by m o d e r n
II. G E N E R A L
STRUCTURE CONCEPTS
15
m a t h e m a t i c s (as w e l l as n a t u r a l science), and P i a g e t was p a r t i c u l a r l y t a k e n b y m o d e r n a l g e b r a . T h e algebra influence is also evident i n his s t u d y of the m e n t a l development of c h i l d r e n , where he identifies a n d follows the developm e n t of m e n t a l processes t h a t suggest operations analogous t o group o p e r a t i o n s . T h e a p p r o a c h was developed i n some d e t a i l i n his b o o k o n " G e n e t i c E p i s t e m o l o g y " [P2] and underlies m u c h of the discussion i n " S t r u c t u r a l i s m " . S o m e o f the m a t h e m a t i c a l ideas t h a t a p p a r e n t l y influenced P i a g e t are discussed i n C h a p t e r I X o n space structures a n d i n Section 21 o n group s t r u c t u r e s . D e s p i t e the m a t h e m a t i c a l n o t i o n s t h a t color these two definit i o n s , neither one is adequate for our purposes. A s m a n y of the e x a m p l e s and the discussion below i n d i c a t e , a m u c h broader n o t i o n of s t r u c t u r e is needed even i n science and m a t h e m a t i c s . L e v i - S t r a u s s , i n c o m p a r i s o n t o P i a g e t , does not a t t e m p t e x p l i c i t use of special m a t h e m a t i c a l concepts i n his work (at least i n " S t r u c t u r a l A n t h r o p o l o g y " ) , a n d perhaps for t h i s reason is less v u l n e r a b l e to c r i t i c i s m . F u r t h e r m o r e , i n the f o l l o w i n g perceptive comment on s t r u c t u r e a n d measure [L6, p . 283], he offers an especially clear d e s c r i p t i o n of the p o t e n t i a l role of m a t h e m a t i c s i n the social sciences. H i s ideas mesh w i t h some of those offered i n S e c t i o n 1. However, one s h o u l d keep i n m i n d t h a t there is no necessary connection between m e a s u r e a n d s t r u c t u r e . S t r u c t u r a l studies are, i n the social sciences, the indirect o u t c o m e of m o d e r n developments i n m a t h e m a t i c s w h i c h have given increasing i m p o r t a n c e to the q u a l i t a t i v e p o i n t of view i n c o n t r a d i s t i n c t i o n to the q u a n t i t a t i v e p o i n t of v i e w of t r a d i t i o n a l m a t h e m a t i c s . It has become possible, therefore, i n fields such as m a t h e m a t i c a l logic, set theory, group theory, a n d t o p o l ogy, to develop a rigorous a p p r o a c h to p r o b l e m s w h i c h do not a d m i t of a metrical solution. T h e above definitions o f s t r u c t u r e b r i n g out a general p r o b l e m w i t h respect t o s t r u c t u r a l i s m . It is t h a t the accepted n o t i o n o f s t r u c t u r e w i t h i n a p a r t i c u l a r field is u s u a l l y so colored by the special features o f t h a t field t h a t one m a y have difficulty i n d i s c e r n i n g j u s t w h a t the structures i n one field have i n c o m m o n w i t h those i n another. T h e e l i m i n a t i o n of this p r o b l e m is a m a j o r benefit derived f r o m a s y s t e m a t i c s t u d y o f general s t r u c t u r e s a n d the a c c o m p a n y i n g development of a language for d e a l i n g w i t h t h e m . 6. A S i m p l e E x a m p l e T h e w o r d " s t r u c t u r e " by itself i m m e d i a t e l y calls t o m i n d s o m e t h i n g l i k e a b u i l d i n g f r a m e w o r k (already m e n t i o n e d b y R a d c l i f f e - B r o w n ) . I n fact, a c o m m o n t e r m for a f r a m e w o r k of this k i n d is " s t r u c t u r e " . T h o u g h everyone w i l l surely agree t h a t this is a s t r u c t u r e (or t h a t it h a s s t r u c t u r e ) , one m i g h t s t i l l ask j u s t w h i c h of the various properties of an a c t u a l framework are
16
STRUCTURALISM
AND STRUCTURES
essential to i t s s t r u c t u r e . C e r t a i n l y the weights of the i n d i v i d u a l c o m p o n e n t s a n d the m a t e r i a l of w h i c h t h e y are m a d e are i r r e l e v a n t . T h e i r cross sectional shape, as well as the p a r t i c u l a r m a n n e r of f a s t e n i n g t h e m together, m u s t also be u n i m p o r t a n t . E l i m i n a t i o n o f other such properties leaves f i n a l l y the bare fact t h a t c e r t a i n girders or p i l l a r s are j o i n e d to c e r t a i n others. F u r t h e r m o r e , a scale m o d e l (constructed, say, o f wire segments) w i l l also be s a i d t o have the s a m e s t r u c t u r e as the f r a m e w o r k . A m o r e a b s t r a c t geometric m o d e l , also h a v i n g the same s t r u c t u r e , is o b t a i n e d b y representing the j o i n t s i n the wire m o d e l b y p o i n t s i n space, and representing the wires themselves b y l i n e segments c o n n e c t i n g these p o i n t s . T h i s s t r u c t u r e is c o m p l e t e l y d e t e r m i n e d as s o o n as the p o i n t s are g i v e n a n d the connections between t h e m are specified. A n e x a m p l e of such a s t r u c t u r e is i l l u s t r a t e d i n F i g u r e 6.1.
^ 1
f\_
I .
;
1 1>
A
i
TV
i
T\
1
1 ' p
1
Fig.
6.1
T h e assertion t h a t the b u i l d i n g f r a m e w o r k a n d the m o d e l s "have the s a m e s t r u c t u r e " suggests t h a t " s t r u c t u r e " is a c t u a l l y s o m e t h i n g associated w i t h a t h i n g r a t h e r t h a n the t h i n g itself. W e s h a l l continue, however, to refer t o a n y t h i n g h a v i n g s t r u c t u r e as " a s t r u c t u r e " , r e l y i n g o n context to m a k e the d i s t i n c t i o n wherever possible. W h e n i t is necessary t o a v o i d confusion t h e " t h i n g " w i t h s t r u c t u r e w i l l be c a l l e d a "concrete s t r u c t u r e " . A precise d e f i n i t i o n of w h a t i t means for t w o concrete structures t o have the " s a m e s t r u c t u r e " w i l l be g i v e n i n S e c t i o n 8. W e have considered here some p r o t o t y p e s of the s i m p l e s t a n d most i n t u i t i v e k i n d of s t r u c t u r e . M a n y m o r e such e x a m p l e s c o u l d be g i v e n , a n d there is m u c h m o r e t o be learned f r o m t h e m . T h e y are also very s p e c i a l , however, a n d do not b e g i n to suggest the great v a r i e t y a n d c o m p l e x i t y of structures t h a t occur i n v i r t u a l l y a l l areas of s t u d y . M o r e e x a m p l e s w i l l
II. G E N E R A L
17
STRUCTURE CONCEPTS
be i n t r o d u c e d below and i n C h a p t e r III. W e r e t u r n now to the p r o b l e m o f definition. 7. T h e B a s i c D e f i n i t i o n s Despite their s i m p l i c i t y , the s t r u c t u r e s associated w i t h a b u i l d i n g framework already suggest a useful a p p r o x i m a t e d e f i n i t i o n of the general n o t i o n o f s t r u c t u r e , as w e l l as some associated concepts. Observe, for e x a m p l e , t h a t the s t r u c t u r e depicted i n F i g u r e 6.1 m a y be thought of as c o n s i s t i n g o f a collection of o b j e c t s (points i n space), c e r t a i n subsets of w h i c h are r e l a t e d because they lie o n a (designated) s t r a i g h t line. T h i s observation suggests the general d e f i n i t i o n of s t r u c t u r e given below. It is not essentially different f r o m one given by W . Hodges [H4] i n a purely m a t h e m a t i c a l context. A s we shall see, the definition is considerably more subtle t h a n its s i m p l e f o r m might indicate. A s t r u c t u r e is any set o f o b j e c t s (also called e l e m e n t s ) c e r t a i n r e l a t i o n s a m o n g those objects.
along with
A s u b s t r u c t u r e of a given s t r u c t u r e is any subset of the objects of t h a t s t r u c t u r e , plus restrictions of some or a l l of the given relations to the subset. In p a r t i c u l a r , the s t r u c t u r e itself is i n c l u d e d a m o n g its s u b s t r u c t u r e s . A l l other s u b s t r u c t u r e s are said to be p r o p e r . E v e r y s u b s t r u c t u r e is o b v i o u s l y a s t r u c t u r e i n its o w n r i g h t . A s t r u c t u r e is called an e x t e n s i o n of each of its substructures. A s t r u c t u r e may involve an infinity of b o t h objects a n d r e l a t i o n s . If, however, b o t h objects a n d relations are finite i n n u m b e r , the s t r u c t u r e itself is said to be f i n i t e . O b s e r v e t h a t a proper s u b s t r u c t u r e c o u l d consist of a l l the given objects and o n l y some of the relations. P e r h a p s the most n a t u r a l s u b s t r u c t u r e , however, consists of a subset of the objects plus a l l relations o b t a i n e d by r e s t r i c t i n g the given relations to t h a t subset. A n o b j e c t may be thought of as a n y t h i n g whatsoever a n d a r e l a t i o n as any " a s s o c i a t i o n " or " c o n n e c t i o n " i n v o l v i n g some of the objects. A n object, s t r i c t l y as a n element of the s t r u c t u r e , has o n l y those properties t h a t it derives f r o m the s t r u c t u r e . T h i s means t h a t a l l of its s t r u c t u r a l properties are u l t i m a t e l y expressed i n the relations t h a t involve i t . T h e r e f o r e , any independent q u a l i t i e s t h a t an o b j e c t m i g h t possess are irrelevant as far as the s t r u c t u r e is concerned. T h i s fact is u l t i m a t e l y the basis for the d e f i n i t i o n of a s t r u c t u r e s i m p l y as a collection of r e l a t i o n s . In such a d e f i n i t i o n , an object, as perceived i n our d e f i n i t i o n , w o u l d be regarded at most as i m p l i c i t in the relations. For our purposes, however, it w i l l be m o r e convenient t o deal e x p l i c i t l y w i t h the objects. A l t h o u g h there are m a n y more features of the d e f i n i t i o n t o be discussed, it w i l l be helpful to describe first, i n the l i g h t of the d e f i n i t i o n , a s i m p l e e x a m p l e q u i t e different f r o m a b u i l d i n g framework. T h e e x a m p l e is the
18
STRUCTURALISM
AND
STRUCTURES
s t r u c t u r e i n the real n u m b e r s y s t e m associated w i t h the concept o f one n u m b e r b e i n g less t h a n a n o t h e r . It w i l l i n c i d e n t a l l y i l l u s t r a t e a n i m p o r t a n t convention i n the way we describe r e l a t i o n s . T h e s t r u c t u r e consists o f i n d i v i d u a l r e a l n u m b e r s as objects (infinite i n n u m b e r ) a l o n g w i t h "less t h a n " relations i n w h i c h a n u m b e r x is r e l a t e d to a n u m b e r y i f i t is less t h a n y , w r i t t e n x < y . I n p a r t i c u l a r , 2 < 3. N o t i c e t h a t " x < y " here represents a n i n f i n i t y o f r e l a t i o n s , one for each a p p r o p r i a t e choice of values for x a n d y . A t the same t i m e , i t is convenient t o t h i n k of the expression " x < y " as s t a n d i n g for a l l of the relations a n d refer to i t i n the s i n g u l a r as " t h e less t h a n r e l a t i o n " . S i m i l a r conventions o c c u r i n other contexts. T h e set of a l l o r d e r e d p a i r s ( x , y ) such t h a t the n u m b e r x is less t h a n the n u m b e r y is called the " d o m a i n of definition of the r e l a t i o n x < y " . Because the d o m a i n consists of pairs of n u m b e r s , the r e l a t i o n is called a "binary" relation. T h e objects of the s t r u c t u r e (real n u m b e r s ) m a y be represented by p o i n t s o n the " n u m b e r l i n e " , as i l l u s t r a t e d below, where x < y i f x lies t o the left of y o n the n u m b e r l i n e . T h e "less t h a n " r e l a t i o n is a n e x a m p l e of an "order relation".
x< y
.
•
Fig.
•
>
7.1.
T h e characteristic properties of an order r e l a t i o n m a y be t r a n s l a t e d i n t o conditions o n its d o m a i n of d e f i n i t i o n . F o r e x a m p l e , the a n t i s y m m e t r y p r o p e r t y , w h i c h asserts t h a t b o t h x < y a n d y < x cannot h o l d (i.e., one cannot have b o t h " x r e l a t e d t o y " a n d " y related t o x " ) , translates i n t o the c o n d i t i o n t h a t b o t h ( x , y ) a n d ( y , x ) cannot b e l o n g to the d o m a i n . T h e t r a n s i t i v i t y p r o p e r t y , w h i c h asserts t h a t x < y a n d y < z i m p l y x < z , translates i n t o the c o n d i t i o n t h a t , i f ( x , y ) a n d ( y , z ) b e l o n g to the d o m a i n , t h e n ( x , z ) m u s t also belong. I n the case o f the r e a l n u m b e r s , there are also properties t h a t relate order t o a d d i t i o n a n d m u l t i p l i c a t i o n , b u t w h i c h we w i l l not b o t h e r n o w to t r a n s l a t e . T h e r a t i o n a l n u m b e r s , under the "less t h a n " r e l a t i o n , constitute a s u b s t r u c t u r e of the ordered reals. T h e integers i n t u r n c o n s t i t u t e a substructure of the r a t i o n a l s , a n d hence also of the reals. T h e n o t i o n of structure suggested by our d e f i n i t i o n is not essentially different f r o m t h a t u n d e r l y i n g the R a d c l i f f e - B r o w n d e f i n i t i o n quoted i n Section 5. A t the same t i m e , i t is m o r e i n c l u s i v e t h a n either of the L e v i - S t r a u s s or P i a g e t definitions. I n each of the l a t t e r , a s t r u c t u r e is defined as a s y s t e m p l u s restrictions suggested by the p a r t i c u l a r field of interest. A s already
II. G E N E R A L S T R U C T U R E C O N C E P T S
19
p o i n t e d o u t , the w o r d " s y s t e m " is a c t u a l l y a n i m p l i c i t reference t o a more i n c l u s i v e n o t i o n of s t r u c t u r e . It w i l l be convenient for our purposes, h o w ever, to m a k e a f o r m a l d i s t i n c t i o n between the n o t i o n of a " s t r u c t u r e " , as defined above, a n d a " s y s t e m " . T h e difference is i l l u s t r a t e d by the real n u m b e r s y s t e m , w h i c h possesses structures associated w i t h the o p e r a t i o n s of a d d i t i o n a n d m u l t i p l i c a t i o n as well as the order s t r u c t u r e . T h e f o l l o w i n g definition of a s y s t e m is o b v i o u s l y consistent w i t h o r d i n a r y usage o f the term. A s y s t e m is any collection of i n t e r r e l a t e d objects a l o n g w i t h a l l of the p o t e n t i a l structures t h a t m i g h t be identified w i t h i n i t . A s u b s y s t e m o f a g i v e n s y s t e m is any subset of the objects of t h a t s y s t e m a l o n g w i t h the p o t e n t i a l structures d e t e r m i n e d i n the subset by the s y s t e m . A s i n the case of s t r u c t u r e s , a s y s t e m is called a n e x t e n s i o n of each o f its subsystems. E v e r y s t r u c t u r e , a l o n g w i t h its s u b s t r u c t u r e s , is o b v i o u s l y a s y s t e m , b u t a s y s t e m is o n l y " p o t e n t i a l l y " s t r u c t u r e d . It w i l l e x h i b i t s t r u c t u r e as soon as any of its p o t e n t i a l structures are made e x p l i c i t . A s suggested b y the d e f i n i t i o n , a s y s t e m m a y be perceived i n more t h a n one way as h a v i n g s t r u c t u r e , d e p e n d i n g on w h i c h properties are singled out for a t t e n t i o n . I n the extreme case, when a l l p o t e n t i a l structures are identified, the s y s t e m is u n a m b i g u o u s l y a s t r u c t u r e a c c o r d i n g t o the general d e f i n i t i o n , hence the occasional confusion of the t e r m s . T y p i c a l l y , however, a s y s t e m m a y be recognized to possess m a n y properties t h a t are neither i n v o l v e d i n nor i m p l i e d by a p a r t i c u l a r one of its perceived s t r u c t u r e s . T h i s does not o c c u r i n a s t r u c t u r e proper, because a l l of its properties are d e t e r m i n e d i n one way or another by the specified objects and r e l a t i o n s . N o t e t h a t any concrete s t r u c t u r e may also have properties irrelevant t o its perceived s t r u c t u r e , b u t these are suppressed i n its role as a s t r u c t u r e . A l t h o u g h the specification of a s t r u c t u r e m a y ignore m u c h o f the a v a i l able i n f o r m a t i o n i n a s y s t e m , it m a y nevertheless involve the essential i n f o r m a t i o n . ( T h e m e a n i n g of "essential i n f o r m a t i o n " is, of course, a relative m a t t e r . ) T h e o b j e c t i v e of a s t r u c t u r a l i s t a p p r o a c h to a subject is to e x t r a c t the essential i n f o r m a t i o n f r o m the b a c k g r o u n d of irrelevant or u n i m p o r t a n t i n f o r m a t i o n . A n y loss of essential i n f o r m a t i o n i n this process w i l l i n d i c a t e a n inadequate s t r u c t u r a l analysis. W e m a y t h i n k of the relations i n a s t r u c t u r e as " b i n d i n g " the given objects i n t o a unified whole. T h e wholeness of any s t r u c t u r e w i l l depend u p o n the degree o f interrelatedness a m o n g its objects. It is by v i r t u e of "wholeness" t h a t one s t r u c t u r e m a y serve as an o b j e c t i n a second. Despite t h i s p o s s i b i l i t y , a specified structure u s u a l l y does not "recognize" e x p l i c i t l y any i n t e r n a l s t r u c t u r e t h a t one of its object m i g h t have. T h e i n i t i a l s t r u c -
20
STRUCTURALISM AND STRUCTURES
t u r e c o u l d , however, be extended so as to i n c o r p o r a t e some o f the i n t e r n a l s t r u c t u r e of its objects. T h e case o f relations is analogous t o t h a t o f objects, a l t h o u g h the s i t u a t i o n for t h e m is somewhat more c o m p l e x . In a given s y s t e m , a r e l a t i o n m a y possess properties not recognized b y a specified s t r u c t u r e w i t h i n the syst e m . A s i n the case of o b j e c t s , however, such properties m a y be recovered by respecifying the s t r u c t u r e . T h e a p p r o x i m a t e nature of the d e f i n i t i o n of s t r u c t u r e resides to a large extent i n the i m p r e c i s i o n of the n o t i o n of a r e l a t i o n , a n d the m a i n p r o b l e m s encountered i n the analysis of a s y s t e m u s u a l l y involve the relations. F u r t h e r m o r e , even i n o r d i n a r y systems, relations are often c o m p l e x a n d difficult t o describe. M e t h o d s of d e a l i n g w i t h these p r o b l e m s i n a n u m b e r of special s i t u a t i o n s w i l l be discussed i n later sections. T h e d e f i n i t i o n of s t r u c t u r e , t h o u g h s i m p l e i n f o r m a n d very general, serves the purpose o f p o i n t i n g us i n the desired d i r e c t i o n . It also has the v i r t u e o f not e x c l u d i n g a n y t h i n g t h a t m i g h t conceivably be regarded as a s t r u c t u r e , a fact t h a t is i m p o r t a n t i n our general a p p r o a c h . Its p r i n c i p a l role, however, is t o p r o v i d e a focus for o u r efforts to expose a n d to f o r m u late some of the i m p o r t a n t general characteristics of structures. Therefore, m u c h o f the discussion here and i n the succeeding sections is more or less s y s t e m a t i c u n f o l d i n g of the d e f i n i t i o n . A l t h o u g h a general definition is essential to any f o r m a l t r e a t m e n t of s t r u c t u r e s , it m a y fail to convey the whole p i c t u r e i n some cases. T h e reason is t h a t a p a r t i c u l a r s t r u c t u r e is u s u a l l y not presented i n i s o l a t i o n b u t as a s u b s t r u c t u r e o f a larger "universe" s t r u c t u r e . T h e l a t t e r , w h i c h m a y also c o n t a i n n u m e r o u s other s t r u c t u r e s relevant t o the subject b e i n g s t u d i e d , is often not recognized e x p l i c i t l y when a t t e n t i o n is fixed on a p a r t i c u l a r s u b s t r u c t u r e . For e x a m p l e , m a n y structures, such as those associated w i t h the b u i l d i n g f r a m e w o r k , appear as substructures of p h y s i c a l or (the more a b s t r a c t ) E u c l i d e a n space. T h i s is an i m p o r t a n t and generally u n a v o i d a b l e p r o b l e m w h i c h w i l l be considered i n some d e t a i l later. T h e r e is one m o r e p o i n t concerning the a p p l i c a b i l i t y of a general theory of s t r u c t u r e s t h a t must be m e n t i o n e d . I n any g i v e n s u b j e c t , s t r u c t u r e s are n a t u r a l l y dealt w i t h f r o m the p o i n t of v i e w a n d i n the a p p r o p r i a t e language of t h a t s u b j e c t , a fact already noted i n c o n n e c t i o n w i t h the L e v i Strauss and P i a g e t definitions. A l t h o u g h t h i s practice tends t o obscure the i n d e p e n d e n t l y i m p o r t a n t u n i v e r s a l role of s t r u c t u r e s , it suggests t h a t the general view m a y be p r i m a r i l y of t h e o r e t i c a l , rather t h a n p r a c t i c a l , significance i n c e r t a i n subjects. A t the same t i m e , a general theory of s t r u c t u r e s can p r o v i d e special insights i n t o v i r t u a l l y any subject a n d its connections w i t h other subjects.
II. G E N E R A L
8. I s o m o r p h i s m s
STRUCTURE CONCEPTS
21
of Structures
W e have already encountered at an i n t u i t i v e level the i d e a t h a t two concrete s t r u c t u r e s , such as a b u i l d i n g f r a m e w o r k a n d a m o d e l of i t , m a y "have the same s t r u c t u r e " . T h a n k s t o the f o r m a l d e f i n i t i o n of " s t r u c t u r e " , i t is n o w possible to give a precise m e a n i n g to this idea as well as t h a t of an a b s t r a c t s t r u c t u r e . It is based on the concept of an " i s o m o r p h i s m " of s t r u c t u r e s , a concept t h a t is i n t i m a t e l y b o u n d up w i t h the idea of s t r u c t u r e itself, a n d is essential t o the precise f o r m u l a t i o n of c e r t a i n basic properties of s t r u c t u r e s . T h e d e f i n i t i o n is i n s p i r e d b y s i m i l a r ideas f r o m m a t h e m a t i c s . A n i s o m o r p h i s m between two structures consists of a one-to-one correspondence between the collections of objects of the two s t r u c tures, such t h a t a, p o s s i b l y ordered, set o f objects f r o m one s t r u c t u r e w i l l be related if, a n d only if, the corresponding o b j e c t s o f the other s t r u c t u r e are also r e l a t e d . I n this case, the t w o structures are said to be i s o m o r p h i c . A n i s o m o r p h i s m between one s t r u c t u r e a n d a subs t r u c t u r e of another is called an e m b e d d i n g of the first w i t h i n the second. A "one-to-one correspondence" between the elements of two sets (or c o l lections) is s i m p l y an a s s o c i a t i o n , or "correspondence", of a l l elements f r o m one set w i t h the elements of the other i n such a way t h a t each element of the second is associated w i t h one, and only, element of the first. T h i s last cond i t i o n is the "one-to-one" requirement. T h e d e f i n i t i o n of an i s o m o r p h i s m m a y be a p p l i e d to either concrete or abstract s t r u c t u r e s . If two structures are i s o m o r p h i c , they are s a i d to have the "same s t r u c t u r e " . T h i s is s o m e t h i n g c o m m o n t o any collection of m u t u a l l y i s o m o r p h i c s t r u c t u r e s , a n d is precisely w h a t we w i l l m e a n by an " a b s t r a c t s t r u c t u r e " . It is o b v i o u s l y preserved by i s o m o r p h i s m s , a n d is assumed t o exist i n its o w n r i g h t . (Some of the p h i l o s o p h i c a l p r o b l e m s raised by t h i s p o i n t of view w i l l be discussed briefly i n Section 14.) A n abstract s t r u c t u r e is regarded as i s o m o r p h i c t o the associated concrete structures a n d is s a i d to be represented b y the l a t t e r . Conversely, d e p e n d i n g o n the p o i n t of v i e w , an a b s t r a c t s t r u c t u r e m a y also be s a i d to represent a concrete s t r u c t u r e . G e n e r a l l y s p e a k i n g , a representation could be any s y s t e m t h a t contains a s t r u c t u r e i s o m o r p h i c to the given one. S u c h a s y s t e m w i l l n o r m a l l y i n v o l v e m u c h irrelevant i n f o r m a t i o n w h i c h might therefore be changed more or less a r b i t r a r i l y w i t h o u t d e s t r o y i n g the representation. A s far as an abstract s t r u c t u r e is concerned, relations are c o m p l e t e l y d e t e r m i n e d b y the collection o f (possibly ordered!) sets of objects t h a t are connected b y t h e m . T h e reason for this is t h a t a general i s o m o r p h i s m preserves o n l y the s i m p l e fact t h a t objects are r e l a t e d . T h e r e f o r e , the assoc i a t e d collection of sets m a y even be taken as the d e f i n i t i o n of the r e l a t i o n .
12
STRUCTURALISM AND
STRUCTURES
W e h a d a g l i m p s e of this i n our brief look at the order structure of the real n u m b e r s i n Section 7. It is w o r t h n o t i n g here t h a t the elements of a set of objects connected by a r e l a t i o n need not be d i s t i n c t . In other words, a p a r t i c u l a r o b j e c t may appear i n m o r e t h a n one way i n a g i v e n a p p l i c a t i o n of the r e l a t i o n . T h e above definition o f i s o m o r p h i s m of s t r u c t u r e s ignores a l l of the extraneous i n f o r m a t i o n u s u a l l y c o n t a i n e d i n the various realizations of the u n d e r l y i n g abstract s t r u c t u r e . T h i s includes, for e x a m p l e , a n y t h i n g associated w i t h a larger s t r u c t u r e t h a t m i g h t c o n t a i n the representing s t r u c t u r e as a s u b s t r u c t u r e . T h e r e are i m p o r t a n t cases, however, such as the b u i l d i n g structures e m b e d d e d i n E u c l i d e a n space, i n w h i c h i t is necessary t o preserve some of the e x t r a i n f o r m a t i o n . T h e p r o b l e m m a y sometimes be avoided by a more careful specification of the s t r u c t u r e (so t h a t an isomorp h i s m w i l l carry more i n f o r m a t i o n ) , or by r e s t r i c t i n g the t y p e of r e a l i z a t i o n p e r m i t t e d (say, to substructures of E u c l i d e a n space). T h e r e are also i n stances i n w h i c h it is n a t u r a l to formulate a more restrictive definition of an i s o m o r p h i s m . T h i s i d e a is touched u p o n i n Section 10 a n d is i m p l i c i t i n the definition of " e x t e r n a l " properties g i v e n below. It w i l l be t a k e n up s y s t e m a t i c a l l y for a special case i n C h a p t e r I X . U n t i l then, the u n r e s t r i c t e d definition w i l l serve o u r purposes. N e x t , we d i s t i n g u i s h t w o k i n d s of properties t h a t m a y be associated w i t h an abstract s t r u c t u r e . T h e first concerns o n l y the s t r u c t u r e , w h i l e the second involves e m b e d d i n g s of the given s t r u c t u r e i n larger s t r u c t u r e s . A p r o p e r t y of a s t r u c t u r e is s a i d to be i n t e r n a l i f it depends o n l y o n relations w i t h i n the s t r u c t u r e itself. It is said to be e x t e r n a l if it is not i n t e r n a l a n d depends on relations t h a t involve objects of the s t r u c t u r e w h e n i t is realized as a s u b s t r u c t u r e of some larger s t r u c t u r e . E a c h e x t e r n a l p r o p e r t y is always associated w i t h a specific e m b e d d i n g o f the given s t r u c t u r e i n a larger one. T h i s concept is p a r t i c u l a r l y relevant t o biological s t r u c t u r e s , w h i c h are considered i n C h a p t e r V I I I . In the case of an i s o m o r p h i s m of concrete structures, i t m a y be i m p o r t a n t t o consider w h a t effect the i s o m o r p h i s m has o n some of those special properties of objects and relations t h a t are not d i r e c t l y recognized by the i n volved structures a n d therefore need not be preserved by the i s o m o r p h i s m . O n the other h a n d , because a u x i l i a r y properties can depend to some degree on the given structures, there m a y be some r e g u l a r i t y i n the way they are t r a n s f o r m e d . Such p h e n o m e n a are i m p l i c i t , for e x a m p l e , i n L e v i - S t r a u s s ' c o m p a r i s o n o f m y t h s a n d k i n s h i p structures w i t h i n different cultures [L5]. H e e v i d e n t l y also h a d t h e m i n m i n d i n f o r m u l a t i n g the definition of s t r u c ture quoted i n Section 5. Dependencies of this k i n d are also covered by the concept of " s t r u c t u r a l d e t e r m i n i s m " discussed i n Sections 26 and 57. It is necessary i n some s i t u a t i o n s to consider s t r u c t u r e t r a n s f o r m a t i o n s
II. G E N E R A L
STRUCTURE CONCEPTS
23
m o r e general t h a n i s o m o r p h i s m s . O n e i m p o r t a n t instance concerns the way in w h i c h m e n t a l images (structures) are recorded i n the b r a i n , a process t h a t c l e a r l y m u s t i n v o l v e m o r e t h a n a s i m p l e i s o m o r p h i s m . T h e r e are also m a n y e x a m p l e s i n m a t h e m a t i c s , one of w h i c h is t h e F o u r i e r t r a n s f o r m . A l t h o u g h most of the m a t h e m a t i c a l e x a m p l e s are m u c h too t e c h n i c a l t o be dealt w i t h here, i t is p e r h a p s w o r t h w h i l e t o l o o k at one very s i m p l e case i n v o l v i n g the p a i r of p o i n t - l i n e structures i l l u s t r a t e d i n the n e x t figure. T h e p o i n t s (objects) i n s t r u c t u r e (1), l a b e l e d A , B , C, D are supposed to represent the vertices of a t e t r a h e d r o n i n space. T h e l i n e (relation) determ i n e d b y t w o p o i n t s , say A a n d B , is denoted b y the p a i r A B . S t r u c t u r e (2) is o b t a i n e d b y t a k i n g the lines i n (1) as the objects a n d the p o i n t s where t h e y intersect as the r e l a t i o n s . T h u s , we have s i x (line) o b j e c t s a n d four (point) relations f r o m (1), represented i n (2) as s i x p o i n t s a n d f o u r lines respectively. T h e t r a n s f o r m a t i o n f r o m (1) to (2) o b t a i n e d i n this w a y is o b v i o u s l y not a s t r u c t u r e i s o m o r p h i s m . It is a s p e c i a l case of w h a t is c a l l e d a "duality".
Fig. 9. A n a l o g i e s arid
8.1
Isomorphisms
In Section 1, the e x a m p l e of analogies was g i v e n as a n i l l u s t r a t i o n of the fact t h a t the n o t i o n of s t r u c t u r e is i m p l i c i t i n m a n y everyday experiences. T h e p o i n t was t h a t the i m p l i e d s i m i l a r i t y between a g i v e n s t r u c t u r e a n d an analogous s t r u c t u r e a c t u a l l y m e a n s t h a t the two "possess some c o m m o n s t r u c t u r e " . I n other words, t h e t w o s t r u c t u r e s c o n t a i n s u b s t r u c t u r e s t h a t a r e i s o m o r p h i c . T h e purpose of a n a n a l o g y is t o c a l l a t t e n t i o n t o , or to emphasize, some aspect of the g i v e n s t r u c t u r e (as represented b y one of its substructures). It is i n s t r u c t i v e to l o o k m o r e closely at a p a r t i c u l a r analogy t h a t most people w i l l have l i t t l e difficulty u n d e r s t a n d i n g . W e choose as a n e x a m p l e a news s t o r y t h a t a p p e a r e d i n the N e w H a v e n R e g i s t e r j u s t before the second debate between George B u s h a n d M i c h a e l D u k a k i s d u r i n g the 1988 p r e s i d e n t i a l c a m p a i g n . It b o r e the h e a d l i n e , " D u k a k i s needs to score k n o c k o u t
24
STRUCTURALISM
AND STRUCTURES
i n debate t o n i g h t " , and the l e a d i n g sentence r e a d , " M i c h a e l D u k a k i s needs t o h i t a home r u n i n t o n i g h t ' s debate, w h i l e G e o r g e B u s h can lose it a n d s t i l l w i n the W h i t e House — as long as he doesn't strike o u t " . T h e reference, of course, is to the relative s t a n d i n g s of the two candidates going i n t o the debate. W e w i l l ignore the prize fight r e m a r k a n d concentrate o n the baseball reference. In this case the debate s t r u c t u r e is the g i v e n , a n d the baseball s t r u c t u r e is the analogy. T h e purpose o f the analogy was t o emphasize the effect of the debate o u t c o m e o n the c a n d i d a t e s ' relative s t a n d i n g i n the c a m p a i g n . O u r o b j e c t i v e then is to make e x p l i c i t the i m p l i e d s t r u c t u r e i s o m o r p h i s m between the baseball a n d debate contexts. A s it t u r n s o u t , the a n a l y s i s is s o m e w h a t more complex t h a n m i g h t be expected f r o m the obviousness of the e x a m p l e . It must also be understood t h a t the details, w h i c h are rather tedious, do not represent the a c t u a l t h o u g h t process experienced b y anyone w h o u n d e r s t a n d s the analogy. O n the other h a n d , they do make e x p l i c i t the s t r u c t u r a l content o f the e x a m p l e and at the same t i m e serve t o b r i n g out some very i m p o r t a n t features o f general structures. W e w i l l not a t t e m p t t o give a d e s c r i p t i o n o f either o f the f u l l structures, b u t w i l l concentrate o n the p o r t i o n s of these s t r u c t u r e s i n v o l v e d i n the analogy. T h e basic picture, o n w h i c h e v e r y t h i n g depends, consists of the debate setting w i t h B u s h l e a d i n g D u k a k i s i n the polls a n d slated t o w i n the election, plus the i m a g i n a r y baseball s e t t i n g , w h i c h m i g h t be a best player c o m p e t i t i o n i n w h i c h B u s h and D u k a k i s are l e a d i n g candidates, w i t h B u s h presently o n t o p . In the latter case, we m a y t h i n k of the c o m p e t i t i o n as consisting of a one t i m e at b a t for each. A t this p r e l i m i n a r y stage, the s t r u c t u r e s are t r i v i a l , each consisting of o n l y t w o objects ( B u s h a n d D u k a k i s ) , and one r e l a t i o n (that of one person b e i n g ahead of the o t h e r ) . T h e basic p i c t u r e is clear enough, b u t some of the i m p l i e d properties of the two s i t u a t i o n s need to be m a d e e x p l i c i t . C o n s i d e r first the baseball sett i n g . A c c o r d i n g t o our a n a l y s i s , w h i c h is by no means unique, the s t r u c t u r e m u s t c o n t a i n five objects and one rather c o m p l e x r e l a t i o n i n order t o represent the desired i n f o r m a t i o n . W e denote these i t e m s by suggestive s y m b o l s whose " m e a n i n g s " wilt be specified below. T h e objects w i l l be denoted b y B , D , H , N , S, a n d the relation(s) by B u -r D v
=> x
> y,
where x , y , u , t> are variables whose values are objects. Observe t h a t denoti n g (or n a m i n g ) objects and relations b y s y m b o l s need not be a p a r t of the p e r c e p t i o n o f the s t r u c t u r e , b u t o n l y serves to facilitate the d e s c r i p t i o n (or c o m m u n i c a t i o n ) of i t . In s i m p l e cases such as this, the s t r u c t u r e w o u l d u s u a l l y be perceived more or less directly as a " p i c t u r e " . T h i s is an i m p o r t a n t p o i n t , w h i c h is e l a b o r a t e d i n C h a p t e r V .
II. G E N E R A L S T R U C T U R E C O N C E P T S
25
B a s e b a l l meanings must now be assigned t o b o t h objects a n d relations, a n d the values of the r e l a t i o n a l variables must be restricted to fit the i m a g i n a r y baseball s e t t i n g : B a n d D s t a n d for B u s h a n d D u k a k i s . H a n d S s t a n d for " H o m e r u n " a n d " S t r i k e o u t " , w h i l e N s t a n d s for a performance different f r o m either of these. T h u s , H is a better performance t h a n either JV or S, w h i l e S is worse t h a n either H or N . T h e variables x a n d y m a y take either S o r D a s values, w h i l e u and v take the performance values H , N , or S. In the r e l a t i o n , B u + D v stands for the performances of B a n d D . For e x a m p l e , B N + D H means t h a t B neither h i t a h o m e r u n nor s t r u c k out, while D hit a home run. x > y means t h a t x r a n k s above y, so is restricted t o the two cases B > D and D > B . B u + D v => x > y means t h a t the i n d i c a t e d performances i m p l y (or w i l l result in) the i n d i c a t e d r a n k i n g . T h e values of the variables i n the r e l a t i o n are restricted as follows: B H
+ Dv
=>
B N B S
+ Dv + D S + Dv + D H
=>
B B
=> =*• =>
B D D
B S B N
> D , for v = H , N , or S. > D , for v = N or S > D . > B , for v = H or N . > B .
T h e reasons for these restrictions are o b v i o u s f r o m the prescribed m e a n i n g s . T h e first three express the fact t h a t B u s h w i l l r e t a i n the higher r a n k i n g p r o v i d e d he t u r n s i n a performance at least as good as t h a t of D u k a k i s . T h e f o u r t h says t h a t i f B u s h strikes out then D u k a k i s w i l l g a i n the l e a d , p r o v i d e d , of course, t h a t he does not also strike out. T h e last one says t h a t a h o m e r u n w i l l give D u k a k i s the lead unless B u s h also h i t s a h o m e r u n . T h i s is a c o m p l e t e d e s c r i p t i o n of the s t r u c t u r e for the baseball s e t t i n g . It consists of five objects plus nine d i s t i n c t relations a m o n g t h e m i m p l i e d by the five r e s t r i c t i o n statements. ( N o t e t h a t the first statement accounts for three r e l a t i o n s , one for each value of the variable v , w h i l e the second a n d f o u r t h each accounts for two.) In s p e c i f y i n g objects a n d relations for the debate s e t t i n g , we choose n o t a t i o n s t h a t w i l l suggest i m m e d i a t e l y the i s o m o r p h i s m t h a t i m p l e m e n t s the a n a l o g y : T h e objects are B , D , E , M , P , a n d the relations are i d e n t i c a l w i t h those i n the baseball case, except H , N , a n d S are replaced respectively by E , M , a n d P . B a n d D s t a n d , as before, for B u s h a n d D u k a k i s , w h i l e E , M , P are debate performances, s t a n d i n g for E x c e l l e n t , M e d i o c r e , a n d P o o r , respectively. B y v i r t u e of the i s o m o r p h i s m , the baseball analogy serves t o emphasize
26
STRUCTURALISM
AND
STRUCTURES
the fact t h a t B u s h ' s o u t r a n k i n g of D u k a k i s w i l l be changed b y the debate o n l y i f D u k a k i s ' performance is excellent w h i l e B u s h ' s is n o t , or B u s h ' s performance is p o o r w h i l e D u k a k i s ' is n o t . Let us consider now the a b s t r a c t s t r u c t u r e t h a t the debate and b a s e b a l l settings have i n c o m m o n . If the suggested m e a n i n g s are i g n o r e d , either of the s y m b o l i c representations of the t w o structures g i v e n above m a y be t h o u g h t o f as a representation o f the abstract s t r u c t u r e . Because the m e a n ings are irrelevant as far as the abstract s t r u c t u r e is concerned, we i n t r o d u c e new n o t a t i o n s t h a t are not associated i n any way w i t h the e x a m p l e s . D e n o t e the five objects and the v a r i a b l e r e l a t i o n respectively b y the (neutral) symbols, I , J , K , L , M ,
and
(u,v;x,y),
where the letters i n the r e l a t i o n are variables whose values (as before) are objects yet to be d e t e r m i n e d . In other words, the d o m a i n of the r e l a t i o n r e m a i n s to be denned. T h e d o m a i n c o u l d t h e o r e t i c a l l y be p r e s c r i b e d i n a completely a r b i t r a r y m a n n e r , y i e l d i n g a different s t r u c t u r e for each choice. B u t because we are interested i n the special structures i n v o l v e d i n the a n a l ogy, i t m u s t be specified so t h a t the abstract s t r u c t u r e is i s o m o r p h i c w i t h each o f the concrete s t r u c t u r e s . C o n s i d e r , for e x a m p l e , the correspondence t h a t associates the g i v e n abstract objects 7, J , K , L , M respectively w i t h the b a s e b a l l objects B , D , H , N , S ; and the abstract r e l a t i o n ( u , v ; x , y ) w i t h the baseball r e l a t i o n , B u -+ D v =3- x > y . T h e n u a n d v w i l l t a k e o n the values K , L , M w h i l e x and y take values 7, J . In order for the correspondence to determine a s t r u c t u r e i s o m o r p h i s m , the following restrictions o n the v a r i ables i n the abstract r e l a t i o n are also needed: ( K , v\ I , J ) , where the value of v is K , L , or M . ( L , v ; I , J ) , where the value of v is L or M . ( M , M ; I , J ) . (A7, v ; J , I ) , where the value of v is K or L . (LJ<;J,I). T h i s set of nine ordered q u a d r u p l e s of objects is called the d o m a i n of the abstract r e l a t i o n and m a y be t a k e n as a d e f i n i t i o n of t h a t r e l a t i o n . A l t h o u g h abstract structures are t h e o r e t i c a l l y q u i t e independent of concrete representations, they do not j u s t appear out o f nowhere, b u t are u s u a l l y a b s t r a c t e d f r o m concrete settings, as i n the above e x a m p l e . O u r a t t e m p t here t o focus o n an abstract s t r u c t u r e i l l u s t r a t e s some of the d i f ficulties i n discussing abstract structures a p a r t f r o m concrete settings. I n fact, i t m a y be v i r t u a l l y i m p o s s i b l e to consider an abstract s t r u c t u r e i n itself. P e r h a p s the best t h a t can be done is to p r o d u c e , as we d i d here, a s y m b o l i c representation for w h i c h the s y m b o l s have no m e a n i n g a p a r t f r o m the representation itself. Some such representation is o b v i o u s l y es-
II. G E N E R A L
STRUCTURE CONCEPTS
27
sential for discussing or c o m m u n i c a t i n g a n y t h i n g a b o u t the s t r u c t u r e . A t the same t i m e , c e r t a i n f o r m a l l y presented (abstract) structures, such as m a t h e m a t i c a l s t r u c t u r e s , can possess a k i n d o f i n t e g r i t y t h a t enables one u l t i m a t e l y t o f o r m m e n t a l representations of t h e m i n d e p e n d e n t l y of their i n i t i a l p r e s e n t a t i o n . Such representations, t h o u g h t e c h n i c a l l y concrete, are often regarded as a b s t r a c t , p a r t l y because they appear t o depend o n l y on the given a b s t r a c t s t r u c t u r e . S o m e p h i l o s o p h i c a l aspects of the p r o b l e m s concerning abstract structures discussed here are considered i n S e c t i o n 14. A f t e r a l l of t h i s , the fact r e m a i n s t h a t v i r t u a l l y everyone w h o sees the analogy w i l l u n d e r s t a n d it i m m e d i a t e l y w i t h o u t benefit of any e x p l a n a t i o n whatsoever. In other words, the m i n d deals w i t h the p r o b l e m a u t o m a t i c a l l y a n d unconsciously a n d w i t h no apparent effort. T h e c o m p l e x i t y of o u r a n a l y s i s o n l y accentuates the mystery as to how the m i n d accomplishes feats of this k i n d . A t the same t i m e , i n t r o s p e c t i o n suggests t h a t the a c t u a l process depends i n one way or another on v i s u a l or geometric representat i o n s of the relevant s t r u c t u r e s , thus p r o v i d i n g the advantage of p i c t u r e s over s y m b o l s . U n f o r t u n a t e l y , i t is v i r t u a l l y impossible to c a p t u r e such p i c tures except t h r o u g h i n t r o s p e c t i o n , a l t h o u g h their existence w o u l d seem t o be m o r e or less essential to e x p l a i n the relevant p h e n o m e n a . A s far as the p a r t i c u l a r e x a m p l e is concerned, the above a n a l y s i s is o b v i o u s l y not w o r t h a l l the t r o u b l e , especially since i t c o n t r i b u t e s l i t t l e or n o t h i n g to an u n d e r s t a n d i n g of the analogy itself. O n the other h a n d , it e x h i b i t s the fact t h a t an analogy does indeed d e p e n d o n a s t r u c t u r e isom o r p h i s m . It also brings out some i m p o r t a n t features of general structures, i n c l u d i n g , for e x a m p l e , the fact t h a t a f o r m a l i d e n t i f i c a t i o n of s t r u c t u r e i n some relatively s i m p l e cases m a y be rather difficult. T h e role played b y structures i n an analogy also occurs i n the more i n c l u sive case of " a s s o c i a t i o n s " , as when one object or s i t u a t i o n suggests another. T h e c o n n e c t i o n m a y be quite superficial w i t h no apparent s t r u c t u r a l content, as i n a s i m p l e coincidence, b u t is often made t h r o u g h a n o n t r i v i a l s t r u c t u r e i s o m o r p h i s m , t h o u g h the latter m a y not be as easy t o i d e n t i f y as i n an analogy. These c o m m o n occurrences of s t r u c t u r e , especially the r o u t i n e a p p e a l to analogies and the ease w i t h w h i c h everyone u n d e r s t a n d s t h e m , gives s t r o n g s u p p o r t to the c l a i m t h a t m u c h , i f not a l l , of o u r m e n t a l a c t i v i t y u l t i m a t e l y consists of the processing of structures. S u c h a v i e w , w h i c h is not new a n d s o m e w h a t c o n t r o v e r s i a l , o b v i o u s l y raises an i m p o r t a n t a n d f u n d a m e n t a l question concerning m e n t a l a c t i v i t y i n general a n d c o g n i t i o n i n p a r t i c u l a r . W e w i l l r e t u r n to the subject i n C h a p t e r V I . 10.
A n A n a l y s i s of P o i n t - L i n e S t r u c t u r e s
Let us look a g a i n , i n the l i g h t of our d e f i n i t i o n , at two o f the s i m p l e s t r u c t u r e s associated w i t h a b u i l d i n g f r a m e w o r k , the s t r u c t u r e represented
28
STRUCTURALISM
AND STRUCTURES
b y the three d i m e n s i o n a l p o i n t - l i n e m o d e l a n d the t w o d i m e n s i o n a l p o i n t line s t r u c t u r e o b t a i n e d by i g n o r i n g a l l properties o f the former except the p r o p e r t y t h a t c e r t a i n sets of p o i n t s lie o n a c o m m o n l i n e segment. A s a l r e a d y suggested, the objects i n these structures m a y he t a k e n to consist o n l y of the p o i n t s , w i t h t w o or more p o i n t s related p r o v i d e d they lie o n a c o m m o n line segment. It is o b v i o u s t h a t the two s t r u c t u r e s , w h e n described i n this way, are i s o m o r p h i c . T h i s means t h a t differences, such as the fact t h a t one is t h r e e - d i m e n s i o n a l w h i l e the other is o n l y t w o - d i m e n s i o n a l , or t h a t the relative distances between points m a y be different, are p r o p e r ties of the concrete representations rather t h a n of the associated a b s t r a c t structures. In order to i n c l u d e t h r e e - d i m e n s i o n a l i t y i n the d e s c r i p t i o n of the b u i l d i n g s t r u c t u r e , i t is necessary t o specify the relative p o s i t i o n s of the p o i n t s i n space, as w e l l as w h i c h p o i n t s are j o i n e d b y lines. O n e m e t h o d of d o i n g t h i s m i g h t be i n t e r m s of a c o o r d i n a t e s y s t e m . W h a t e v e r m e t h o d is used, the result is a r e a l i z a t i o n of the b u i l d i n g s t r u c t u r e as a s u b s t r u c t u r e of E u c l i d e a n three-space. T h e l a t t e r is regarded as a s t r u c t u r e whose objects (infinite i n n u m b e r ) consist of p o i n t s , lines, and planes, and whose relations are p r e s c r i b e d b y the E u c l i d e a n space a x i o m s . A s these r e m a r k s suggest, an assertion t h a t a s t r u c t u r e is " t h r e e - d i m e n s i o n a l " is equivalent to s a y i n g t h a t i t is a s u b s t r u c t u r e of E u c l i d e a n three-space (and is not c o n t a i n e d i n a p l a n e ) . T h e y also suggest t h a t , i n order for an i s o m o r p h i s m to preserve the t h r e e - d i m e n s i o n a l character of a s t r u c t u r e , as a n t i c i p a t e d i n Section 8, it m u s t be restricted i n some way or other. T h i s p r o b l e m , w h i c h involves s o m e m a t h e m a t i c s t h a t is a b i t o n the technical side and a d d i t i o n a l properties of s t r u c t u r e s , w i l l be dealt w i t h i n C h a p t e r I X . Because of the a d d i t i o n a l i n f o r m a t i o n contained i n the t h r e e - d i m e n s i o n a l representation of the b u i l d i n g s t r u c t u r e , several l i n e segments m a y c o m b i n e to f o r m a larger segment (for e x a m p l e , a representative of a full girder or p i l l a r ) , so a d d i t i o n a l relations a m o n g the points m a y be i n t r o d u c e d b y defining sets o f p o i n t s to be related i f they lie o n one o f the extended segments. T h e s u b s t r u c t u r e s d e t e r m i n e d by these sets of p o i n t s m i g h t also be regarded as new objects c o r r e s p o n d i n g t o girders a n d p i l l a r s . T h e new objects a n d relations are " i m p l i e d " , so to speak, by the " e x t r a " i n f o r m a t i o n c o n t a i n e d i n the s t r u c t u r e as presented. N e i t h e r of the two representations of the b u i l d i n g s t r u c t u r e recognizes the l i n e segments, except as i n d i c a t o r s of r e l a t i o n s . S t r u c t u r e s w h i c h do recognize the line segments are o b t a i n e d by defining the objects t o consist o f b o t h the p o i n t s a n d the line segments, i n w h i c h case the relations are between lines and p o i n t s , w i t h a l i n e b e i n g related to a p o i n t i f it meets the p o i n t i n the a p p r o p r i a t e m a n n e r . O n e c o u l d also consider a s t r u c t u r e i n w h i c h o n l y the l i n e segments are objects. I n t h i s case the relations are
II. G E N E R A L
STRUCTURE CONCEPTS
29
represented by the p o i n t s , w i t h a set o f lines b e i n g related by a p o i n t i f t h e y intersect i n t h a t p o i n t . (See F i g u r e 8.1 i n Section 8.) It w i l l be recalled t h a t we presented F i g u r e 6.1 as an i l l u s t r a t i o n of a b u i l d i n g s t r u c t u r e . It is, i n fact, o n l y a t w o - d i m e n s i o n a l figure so does not c o n t a i n e x p l i c i t l y the t h r e e - d i m e n s i o n a l i n f o r m a t i o n . Few people w i l l have any difficulty, however, i n p e r c e i v i n g it as " r e p r e s e n t i n g " a threed i m e n s i o n a l o b j e c t . T h e p o i n t here is t h a t , t h r o u g h the i n t e r v e n t i o n of the m i n d , a t w o - d i m e n s i o n a l figure c a n a c t u a l l y represent a t h r e e - d i m e n s i o n a l s t r u c t u r e . T h i s p h e n o m e n o n is so c o m m o n p l a c e t h a t our emphasis on i t may seem unnecessary. B u t the way i t enters i n t o the A l b e r s e x a m p l e discussed i n Section 17 suggests t h a t the whole t h i n g m a y not be q u i t e as s i m p l e as m i g h t first appear. F u r t h e r m o r e , the a b i l i t y of the m i n d t o read i n t o c e r t a i n s t r u c t u r e s significant i n f o r m a t i o n not o b v i o u s l y c o n t a i n e d i n those s t r u c t u r e s is expressed i n m a n y s i t u a t i o n s considerably more subtle t h a n the one considered here. T h e s t r u c t u r e i n F i g u r e 6.1 could be a n a l y z e d as a s u b s t r u c t u r e of the E u c l i d e a n p l a n e so t h a t its i m p l i c i t t h r e e - d i m e n s i o n a l content w o u l d be i n c l u d e d . T h i s m i g h t be done, for e x a m p l e , by u s i n g m e t h o d s of descriptive g e o m e t r y to locate precisely the p o i n t s i n the p l a n e , say by s p e c i f y i n g their coordinates. T h e weakest p o i n t - l i n e s t r u c t u r e represented by F i g u r e 6.1 (that is, the one c a r r y i n g the least i n f o r m a t i o n ) is the s t r u c t u r e o b t a i n e d by i g n o r i n g e v e r y t h i n g a b o u t the figure except t h a t there is a finite set of p o i n t s , some of w h i c h are connected by line-segments. In this case, F i g u r e 6.1 c o u l d be greatly d i s t o r t e d a n d s t i l l represent the associated abstract s t r u c t u r e . It is n o t e w o r t h y t h a t figures as s i m p l e as those considered here already e x h i b i t i m p o r t a n t general properties of structures, such as a d m i t t i n g a v a riety of i n t e r p r e t a t i o n s as structures, i n v o l v i n g s t r u c t u r e d objects, and i m p l y i n g a d d i t i o n a l relations a m o n g objects. T h e y also i l l u s t r a t e the fact t h a t any e x p l i c i t representation o f an abstract s t r u c t u r e w i l l i n e v i t a b l y c o n t a i n e x t r a i n f o r m a t i o n irrelevant to the latter. T h e various s t r u c t u r a l i n t e r p r e t a t i o n s of a given s y s t e m represent different p o r t i o n s or different aspects o f the i n f o r m a t i o n i n v o l v e d i n the s y s t e m . T h e s t r u c t u r a l i s t ' s p r o b l e m is to discover the most significant of the v a r i ous possible s t r u c t u r a l interpretations. W h a t is "most s i g n i f i c a n t " m a y , of course, depend o n the observer as well as o n the general state of knowledge a n d u n d e r s t a n d i n g of the subject. Therefore, a serious s t r u c t u r a l a n a l y s i s is n o r m a l l y a difficult process r e q u i r i n g m u c h knowledge a n d experience w i t h the field i n question. 11. S p e c i a l K i n d s o f R e l a t i o n s A s already r e m a r k e d , the relations i n a given s t r u c t u r e m a y be quite
30
STRUCTURALISM.AND STRUCTURES
c o m p l i c a t e d . For e x a m p l e , a r e l a t i o n may i n v o l v e m a n y o b j e c t s , or the same objects m a y be i n v o l v e d i n a v a r i e t y o f different r e l a t i o n s . I n our general t h i n k i n g a n d discussion of s t r u c t u r e s , we t r y to a v o i d as far as possible any r e s t r i c t i o n s o n the r e l a t i o n s , so as not to exclude i n advance u n a n t i c i p a t e d structures t h a t m i g h t be i m p o r t a n t . T h e s t u d y of c e r t a i n properties of s t r u c t u r e w i l l be easier, however, i f we do r e s t r i c t a t t e n t i o n to a s p e c i a l class of relations. R e c a l l t h a t , i n the case of an abstract s t r u c t u r e , a r e l a t i o n is d e t e r m i n e d , or defined, as soon as the sets of objects w h i c h i t involves are specified. T h e collection of these sets is the d o m a i n of d e f i n i t i o n of the r e l a t i o n . A r e l a t i o n is finite p r o v i d e d each of the sets i n its d o m a i n is finite. I n most of our r e m a r k s a b o u t r e l a t i o n s , it w o u l d be sufficient t o consider o n l y finite relations. If a r e l a t i o n is independent of o r d e r i n g (that is, it relates the objects i n a g i v e n set regardless of how they are a r r a n g e d ) , t h e n the r e l a t i o n is s a i d to be s y m m e t r i c . A finite r e l a t i o n is called a b i n a r y r e l a t i o n i f i t involves o n l y (ordered) pairs of the objects. N o t e t h a t because the pairs are o r d e r e d , an o b j e c t x m a y be related to an o b j e c t y w h i l e y m a y not he related to x , j u s t as for the "less t h a n " r e l a t i o n a m o n g n u m b e r s . If the d o m a i n of the r e l a t i o n contains ( y , x ) whenever i t contains ( x , y ) (i.e., b o t h y is related t o x a n d x is related to y), then i t is s y m m e t r i c , and an e x a m p l e is the r e l a t i o n of congruence a m o n g geometric figures. R e c a l l t h a t the (less t h a n ) order r e l a t i o n discussed i n Section 7 was a f i i i s e m m e t r i c . A r e l a t i o n t h a t o n l y involves ordered t r i p l e s of the objects is c a l l e d a t e r n a r y r e l a t i o n , a n d , i n general, a r e l a t i o n t h a t involves ordered n-tuples is a n n - a r y r e l a t i o n . R e l a t i o n s are often subjected to a d d i t i o n a l c o n d i t i o n s , w h i c h m a y be expressed as (structure) c o n d i t i o n s on the defining collections of ordered sets. E x a m p l e s of this w i l l be seen below. A given s t r u c t u r e m i g h t , of course, have a m o n g its relations several of these s p e c i a l types. W i t h a few exceptions, we w i l l have occasion to deal e x p l i c i t l y o n l y w i t h b i n a r y a n d t e r n a r y relations. A s t r u c t u r e is s a i d to be e l e m e n t a r y i f its o n l y r e l a t i o n is a single b i n a r y r e l a t i o n . A n elementary s t r u c t u r e w i t h a finite n u m b e r of o b j e c t s m a y a l ways be represented by a p o i n t - l i n e s t r u c t u r e i n a plane, where o b j e c t s are represented b y points a n d relations b y " d i r e c t e d " line segments (arrows) goi n g f r o m one o b j e c t to a related one. Conversely, such p o i n t - l i n e structures are o b v i o u s l y elementary. 12.
Structural Stability If an a b s t r a c t s t r u c t u r e changes i n any way, then the new s t r u c t u r e o b v i -
ously m u s t be n o n i s o m o r p h i c to the o r i g i n a l . T h i s means t h a t an abstract
II. G E N E R A L
31
STRUCTURE CONCEPTS
s t r u c t u r e is b y d e f i n i t i o n s t a b l e , i n the sense t h a t i t cannot change i n t o another s t r u c t u r e w i t h o u t the a d d i t i o n or s u b t r a c t i o n of objects a n d / o r rel a t i o n s . O n the other h a n d , a s y s t e m t h a t represents a s t r u c t u r e m a y change a great deal i n i t s other structures w i t h o u t ceasing to be a representation o f the first. A s a representation, however, i t cannot change " s m o o t h l y " i n t o a representation o f a different n o n i s o m o r p h i c s t r u c t u r e . S u c h a change w o u l d require a r e s t r u c t u r i n g of the representing s y s t e m i n v o l v i n g a n a b r u p t redefinition of objects a n d / o r relations. T h e suggestion is t h a t two s t r u c t u r e representations cannot be very " n e a r " t o one another w i t h o u t b e i n g i s o m o r p h i c . T h i s is the general idea i n the " p r i n c i p l e of s t r u c t u r a l s t a b i l i t y " w h i c h we w i l l r e t u r n t o i n C h a p t e r I X , where the i d e a is e x p l o r e d i n a n e l e m e n t a r y m a t h e m a t i c a l s e t t i n g . I n a d d i t i o n , C h a p t e r I X contains a n elem e n t a r y account of R e n e T h o r n ' s C a t a s t r o p h e T h e o r y , w h i c h also involves stability phenomena. A s a s i m p l e i l l u s t r a t i o n of s t a b i l i t y i n v o l v i n g p e r c e p t i o n (or "object r e c o g n i t i o n " , ) consider a d r a w i n g of a circle. T h e o b j e c t o f interest here is a n a b s t r a c t c i r c l e , w h i c h is a s u b s t r u c t u r e of (abstract) E u c l i d e a n space. Therefore, no chalk or p e n c i l d r a w i n g , or any other concrete p i c t u r e , c a n p o s s i b l y he a n e x a c t representation of i t . O n the other h a n d , such drawings m a y be very crude a n d yet, i n a n a p p r o p r i a t e context, say i n a g e o m e t r y s e t t i n g , w i l l c a l l u p for a viewer the precise n o t i o n of a circle. M o r e o v e r , i f a c e r t a i n d r a w i n g is perceived as representing a c i r c l e , t h e n d r a w i n g s t h a t do n o t deviate g r e a t l y f r o m the g i v e n one w i l l also be perceived as representing a c i r c l e . T h e r e are m a n y other e x a m p l e s of " p e r c e p t u a l s t a b i l i t y " , some of w h i c h w i l l come u p l a t e r . A n o t h e r e x a m p l e o f s t r u c t u r a l s t a b i l i t y , w h i c h is a n obvious case b u t difficult t o a n a l y z e a n d e x p l a i n , is c o n t a i n e d i n the t w o s i g n a t u r e samples i n F i g u r e 12.1. T h e first s a m p l e , w h i c h goes back to 1935, is a X e r o x c o p y f r o m one of the a u t h o r ' s college t e x t b o o k s , w h i l e the second, fifty years l a t e r , was w r i t t e n (not copied!) q u i t e i n d e p e n d e n t l y o f the first. A l s o , use of the a b b r e v i a t e d first n a m e , w h i c h appears i n b o t h s a m p l e s , was a b a n d o n e d over t h i r t y years ago.
1935
1985 Fig.
12.1
32
STRUCTURALISM
AND STRUCTURES
T h e m a i n p r o b l e m w i t h the above n o t i o n o f s t a b i l i t y is t h a t we do not have a general definition of "nearness" t h a t m i g h t a p p l y to a r b i t r a r y s t r u c t u r e representations. It may even be i m p r a c t i c a l to t r y t o f o r m u l a t e such a d e f i n i t i o n , since the w o r d m a y be interpreted i n a variety of ways. T h e r e are, however, m a t h e m a t i c a l examples for w h i c h a satisfactory s o l u t i o n of the p r o b l e m exists. (See C h a p t e r I X . ) Despite the lack of a d e f i n i t i o n of nearness for a r b i t r a r y s t r u c t u r e s , there are i m p o r t a n t n o n m a t h e m a t i c a l settings, as i n the above e x a m p l e s , i n w h i c h a general s t a b i l i t y p r i n c i p l e definitely seems to operate. A d d i t i o n a l e x a m ples o c c u r i n gestalt p h e n o m e n a , the c o m m u n i c a t i o n of ideas, a n d the p r o cess of u n d e r s t a n d i n g . F o r n o w , we can only conjecture, t h r o u g h a n a l o g y w i t h e x a m p l e s s i m p l e enough to be a n a l y z e d completely, w h a t is a c t u a l l y h a p p e n i n g i n such cases. In most of these " n o n a n a l y z a b l e " e x a m p l e s , the nature o f the i s o m o r p h i s m , a l o n g w i t h the nearness c r i t e r i o n , m a y also be unclear a n d perhaps needs to be replaced by some n o t i o n of an " a p p r o x i m a t e i s o m o r p h i s m " i n v o l v i n g ideas s i m i l a r to those associated w i t h a p p r o x i m a t i o n of s t r u c t u r e s discussed later i n Section 24. T h e s t a b i l i t y p h e n o m e n a suggested by the preceding r e m a r k s , b e i n g more or less direct consequences of the definition of s t r u c t u r e , are of a rather f o r m a l n a t u r e . In the case of concrete s t r u c t u r e s , however, we m a y also have s t r u c t u r a l s t a b i l i t y associated w i t h p h y s i c a l p h e n o m e n a . F o r exa m p l e , a s t r u c t u r e w h i c h depends o n p h y s i c a l forces, m a y be stable because it embodies a m i n i m a l energy state. C h a n g e s t h a t d o not increase the energy of such a s y s t e m by too m u c h w i l l not alter the u n d e r l y i n g s t r u c t u r e . T h e r e are m a n y instances of this k i n d of s t a b i l i t y , i n c l u d i n g such t h i n g s as a t o m i c and m o l e c u l a r structures, c r y s t a l s , phase lock p h e n o m e n a i n elect r o n i c s , c h e m i c a l processes, fluid flow, and so f o r t h . A t a n o t h e r level of c o m p l e x i t y , we have the b i o l o g i c a l s t r u c t u r e s , w h i c h e x h i b i t a h i g h degree o f " d y n a m i c " s t a b i l i t y w i t h the e n v i r o n m e n t . T h i s k i n d o f s t a b i l i t y is t h e o r e t i c a l l y reducible t o p h y s i c a l a n d c h e m i c a l t e r m s , a l t h o u g h i t is often difficult t o see j u s t how the r e d u c t i o n m i g h t be made. Some o f these questions are t a k e n u p i n C h a p t e r V I I I . A s y s t e m a t i c discussion of the role of p h y s i c a l forces i n the s h a p i n g of c e r t a i n b i o l o g i c a l s t r u c t u r e s w i l l be f o u n d i n the classic work by D ' A r c y T h o m p s o n , " O n G r o w t h a n d F o r m " [T2]. T h e remarkable fact is t h a t a relatively s m a l l n u m b e r of basic f o r m s o c c u r i n a wide v a r i e t y of o r g a n i s m s . T h e s e p a r a t i o n between abstract and concrete s t a b i l i t y p h e n o m e n a m a y not be quite as great as m i g h t first a p p e a r , since some of the l a t t e r are a m e n a b l e to a purely m a t h e m a t i c a l t r e a t m e n t . I n other words, the s t r u c tures i n v o l v e d m a y be identified w i t h m a t h e m a t i c a l structures, b r i n g i n g us back t o a n essentially f o r m a l t r e a t m e n t . In fact, it is not unreasonable t o expect t h a t a theory of general structures w i l l eventually be developed
II. G E N E R A L
STRUCTURE CONCEPTS
33
( t h o u g h perhaps not i n a s t r i c t l y m a t h e m a t i c a l f o r m ) by w h i c h m a n y more of these s t r u c t u r a l p h e n o m e n a may be dealt w i t h i n a s y s t e m a t i c way. A n analogous conjecture r e g a r d i n g C a t a s t r o p h e T h e o r y has been proposed by R e n e T h o r n . (See his statement quoted i n Section 65.) 13.
Structural
Information
In this section we consider the concept of " i n f o r m a t i o n " c o n t a i n e d i n a s t r u c t u r e . In an a b s t r a c t s t r u c t u r e , an i t e m of i n f o r m a t i o n is equivalent to a p r o p e r t y of the s t r u c t u r e , and is represented by one of its s u b s t r u c t u r e s . T h i s applies to b o t h i n t e r n a l and e x t e r n a l properties, t h o u g h , i n the first case, specification of the s u b s t r u c t u r e occurs, so to speak, w i t h i n the g i v e n s t r u c t u r e , w h i l e i n the second it depends o n e x t e r n a l considerations. W e sometimes refer t o the external properties as "higher level p r o p e r t i e s " of the g i v e n s t r u c t u r e . For reasons t h a t w i l l become clearer i n S e c t i o n 35 of C h a p t e r V I , t h i s t e r m i n o l o g y is suggested b y the n o t i o n o f "higher level mental phenomena". T h e r e m a i n d e r of this section is devoted t o the question o f " c o m p a r a b i l i t y " of structures w i t h respect to the " a m o u n t " of (internal) s t r u c t u r a l i n f o r m a t i o n t h a t they c o n t a i n . T h e n o t i o n of c o m p a r a b i l i t y also has a b e a r i n g o n the question of " c o m p l e x i t y " o f structures, w h i c h is discussed i n Section 54 i n connection w i t h biological structures. T h e o b j e c t i v e is to define w h a t it s h o u l d m e a n for one s t r u c t u r e to c o n t a i n more s t r u c t u r a l i n f o r m a t i o n t h a n another. A s m i g h t be expected the d e f i n i t i o n depends o n the n o t i o n of an i s o m o r p h i s m . O n e s t r u c t u r e is s a i d to contain more (internal) i n f o r m a t i o n t h a n another i f there exists an i s o m o r p h i s m of the second s t r u c t u r e w i t h a s u b s t r u c t u r e of the first. T h e d e f i n i t i o n asserts, i n effect, t h a t the first s t r u c t u r e contains a l l of the (internal) s t r u c t u r a l i n f o r m a t i o n carried by the second. ( T h e r e s t r i c t i o n to i n t e r n a l properties is necessary because the second s t r u c t u r e may a d m i t embeddings i n larger structures not c o m p a t i b l e w i t h embeddings of the first.) T h e second s t r u c t u r e is also s a i d to c o n t a i n l e s s i n f o r m a t i o n t h a n the first. A n y two structures t h a t s t a n d i n this r e l a t i o n t o one another are said to be " c o m p a r a b l e " ( w i t h respect t o i n f o r m a t i o n ) . It w i l l be convenient to express the fact t h a t "the s t r u c t u r e B contains more i n f o r m a t i o n t h a n the s t r u c t u r e A " by the n o t a t i o n , " A < B " . A l t h o u g h the s y m b o l " < " used here suggests the o r d i n a r y "less t h a n " s y m b o l for n u m b e r s , it is not to be construed as suggesting t h a t one m i g h t assign a n u m e r i c a l value t o the " a m o u n t " of i n f o r m a t i o n i n a given s t r u c t u r e . O n the other h a n d , " < " is t r a n s i t i v e , w h i c h means t h a t A < B and B < C i m p l y A <
C.
34
STRUCTURALISM AND
STRUCTURES
T h i s is one of the requirements for a n order r e l a t i o n a n d is a n easy consequence o f the d e f i n i t i o n of a n i s o m o r p h i s m . A t the s a m e t i m e , " < " is (at best) a " p a r t i a l " o r d e r i n g (Section 48), because not a l l structures are c o m p a r a b l e . I n other words, there exist p a i r s of s i m p l e structures n e i t h e r of w h i c h is i s o m o r p h i c to a s u b s t r u c t u r e of the other! F o r e x a m p l e , consider the structures A a n d B i l l u s t r a t e d i n F i g u r e 13.1. c
a
c
b
a Fig.
b
13.1
T h e s t r u c t u r e A consists of three objects, a , b , c, a n d an ordered b i n a r y r e l a t i o n : ( a , b ) , ( b , c), (c, a ) . S i m i l a r l y , B consists of three o b j e c t s , also denoted b y a , b , c , a n d a n ordered b i n a r y r e l a t i o n : (a, &), ( b , c ) , ( a , c). T h e key i d e a i n s h o w i n g t h a t A a n d B are not c o m p a r a b l e is t h a t , since A a n d B have the same finite n u m b e r of objects, a n y i s o m o r p h i s m of e i t h e r o n e w i t h a s u b s t r u c t u r e of t h e o t h e r w o u l d r e q u i r e a o n e - t o - o n e c o r r e s p o n d e n c e between t h e s e t s of a l l o b j e c t s i n t h e t w o s t r u c t u r e s . F u r t h e r m o r e , ( i n t h i s e x a m p l e ) one need o n l y consider the correspondence t h a t associates elements w i t h the s a m e l a b e l , a n d observe t h a t ( a , c) is a r e l a t i o n i n A b u t n o t i n B , w h i l e (c, a ) is a r e l a t i o n i n B b u t not i n A , so the s t r u c t u r e s are not c o m p a r a b l e . In a d d i t i o n to t r a n s i t i v i t y , any order r e l a t i o n is also r e q u i r e d to be " a n t i s y m m e t r i c " . T h i s means t h a t , i f two objects are d i s t i n c t , t h e n o n l y one of t h e m c a n be r e l a t e d to the other. It t u r n s out t h a t the r e l a t i o n " < " f a i l s to be " a n t i s y m m e t r i c " , so it not a n order r e l a t i o n for s t r u c t u r e s . I n other words, there exist structures A a n d B such t h a t b o t h A < B a n d B < A , b u t A a n d B are d i s t i n c t i n the sense t h a t t h e y are not i s o m o r p h i c . A l t h o u g h t h i s is not a c r u c i a l m a t t e r for w h a t follows, we sketch a n e x a m p l e s i m p l y because i t t h r o w s a d d i t i o n a l l i g h t o n the general s t r u c t u r e concept. In t h i s case, the structures m u s t be i n f i n i t e . T h e e x a m p l e is based o n the s t r u c t u r e N of a l l p o s i t i v e integers u n d e r t h e i r n a t u r a l "less t h a n " o r d e r i n g " < " . O n e s t r u c t u r e A is t a k e n t o be i d e n t i c a l w i t h N , a n d the second s t r u c t u r e B is also i d e n t i c a l w i t h N except t h a t a l l r e l a t i o n s i n N t h a t i n v o l v e the integer 1 are suppressed. I n other words, 1 is, so to speak, " i s o l a t e d " i n B . T h i s setup suggests the f o l l o w i n g
II. G E N E R A L
STRUCTURE CONCEPTS
35
diagrams: A : B :
1, (1),
2, 2,
3 3
4,
where the r e l a t i o n is u n d e r s t o o d to be " < " i n b o t h cases, except the n o t a t i o n (1) is supposed to suggest the i s o l a t i o n of 1 i n B . It is obvious t h a t B < A because B is a s u b s t r u c t u r e of A o b t a i n e d by s i m p l y d r o p p i n g the relations i n A t h a t involve 1. It is also easy to see t h a t A is i s o m o r p h i c to the s u b s t r u c t u r e o f B d e t e r m i n e d b y a l l o f the integers except 1. F i n a l l y , the fact t h a t 1 is i s o l a t e d i n B , w h i l e no o b j e c t i n A is i s o l a t e d , is a n o b s t r u c t i o n t o the existence of a n i s o m o r p h i s m between A and B . 14.
O n Abstract
Structures
T h i s section is devoted t o a few r e m a r k s c o n c e r n i n g p h i l o s o p h i c a l quest i o n s raised by the assumed existence of abstract s t r u c t u r e s . T h e m a i n e m p h a s i s is o n a t t e m p t s t o deal w i t h such questions f r o m the p o i n t o f v i e w of s t r i c t m a t e r i a l i s m . A l t h o u g h m a t t e r s of this k i n d m i g h t be ignored as far as our m a i n objectives are concerned, the concept of an a b s t r a c t s t r u c t u r e is so i m p o r t a n t to o u r general a p p r o a c h , t h a t i t is desirable to pay a t t e n t i o n to some o f the questions i t generates. Needless t o say, there are m a n y persons, especially i n the n a t u r a l s c i ences, w h o do not accept the suggestion of p h i l o s o p h i c a l i d e a l i s m i m p l i c i t i n the a s s u m p t i o n t h a t abstract structures do exist. I n c l u d e d are m a n y m a t h e m a t i c i a n s , w h o , p r o b a b l y because of the l o n g association o f m a t h e m a t i c s w i t h physics, w o u l d , i f pressed, classify themselves as m a t e r i a l i s t s . A t the same t i m e , m a t h e m a t i c i a n s r o u t i n e l y treat m a t h e m a t i c a l s t r u c t u r e s as entities t h a t exist i n d e p e n d e n t l y of m a t e r i a l t h i n g s , t h a t is, as abstract s t r u c t u r e s . T h i s p r a c t i c e , whether or not i t derives f r o m a conscious p h i l o s o p h i c a l p o s i t i o n , is consistent w i t h general m a t h e m a t i c a l experience and w o u l d be a w k w a r d to a v o i d . I n any case, p h i l o s o p h i c a l views s e l d o m enter i n t o the way m a t h e m a t i c i a n s t h i n k a b o u t m a t h e m a t i c s , a n d r e l a t i v e l y few are either interested i n or sensitive enough t o p h i l o s o p h i c a l m a t t e r s to w o r r y seriously a b o u t the p r o b l e m . T h e y are a c c o r d i n g l y able to shift easily f r o m one p o i n t of v i e w t o the other. F o r a s t r i c t m a t e r i a l i s t , however, abstract structures do not e x i s t . E v e r y s t r u c t u r e is assumed to be concrete and t o exist i n the m a t e r i a l w o r l d . A l t h o u g h a concrete s t r u c t u r e obviously m u s t consist of m a t e r i a l objects, the s t a t u s of the relations is not so clear. A r e l a t i o n is o b v i o u s l y not i n the same category as a m a t e r i a l o b j e c t . It m u s t , of course, relate s o m e t h i n g , t h o u g h t h a t s o m e t h i n g m a y be different o n different occasions. C o n s e q u e n t l y , it is not u n c o m m o n , regardless of p h i l o s o p h i c a l c o n v i c t i o n s , for i n d i v i d u a l s t o t h i n k and speak o f a r e l a t i o n as t h o u g h i t were s o m e t h i n g a p a r t f r o m the
36
STRUCTURALISM
AND STRUCTURES
objects t h a t it relates. T h i s practice, of course, m a y be regarded as an a r t i f a c t o f language, a l t h o u g h i t suggests a step i n the d i r e c t i o n of a d m i t t i n g the existence o f abstract relations. O n e m e t h o d of a v o i d i n g the a d m i s s i o n of abstract r e l a t i o n s , at least i n some cases, is t o assume t h a t the relations i n a concrete s t r u c t u r e are u l t i m a t e l y d e t e r m i n e d by p h y s i c a l forces analogous t o the forces t h a t determine the s t r u c t u r e o f atoms a n d molecules. It is also possible to declare a r e l a t i o n t o be concrete s i m p l y because it involves o n l y m a t e r i a l objects. A n o t h e r m e t h o d , w h i c h was o u t l i n e d i n Section 8, consists i n r e d u c i n g the r e l a t i o n to a specification of (possibly ordered) subsets of objects, so c e r t a i n objects are related p r o v i d e d they constitute one of the specified subsets. A g a i n , i n order t o a v o i d the u s u a l practice of r e g a r d i n g sets t o be a b s t r a c t , i t is necessary to declare a set to be concrete p r o v i d e d i t consists of m a t e r i a l objects. T h i s is o b v i o u s l y a special case of the s i m i l a r convention for r e l a t i o n s . W e come now to the m a i n question of how one m i g h t deal w i t h the n o t i o n of an abstract s t r u c t u r e f r o m a m a t e r i a l i s t p o i n t o f v i e w . R e c a l l first t h a t i n Section 8 we defined an abstract s t r u c t u r e to be the " t h i n g " c o m m o n to a collection of i s o m o r p h i c (concrete) structures. Hence, i n any concrete s t r u c t u r e , there is i m p l i c i t an abstract s t r u c t u r e t h a t represents those features t h a t d i s t i n g u i s h the former as a s t r u c t u r e . F u r t h e r m o r e , we regard an a b s t r a c t s t r u c t u r e as e x i s t i n g i n d e p e n d e n t l y of any concrete s t r u c t u r e i n w h i c h it m i g h t be perceived. It w i l l consist not only of abstract relations b u t also o f abstract objects. For an abstract concept t h a t depends o n the i d e n t i f i c a t i o n of properties c o m m o n t o a collection of concrete entities (as do s t r u c t u r e s ) , one of the most c o m m o n m e t h o d s of a v o i d i n g the a s s u m p t i o n t h a t a c o r r e s p o n d i n g abstract o b j e c t a c t u a l l y exists, is to identify the concept w i t h the class of a l l concrete t h i n g s t h a t e x h i b i t the property. B y this m e t h o d , w h i c h is sometimes used to deal w i t h m a t h e m a t i c a l s t r u c t u r e s (e.g., the concept of a g r o u p ) , an " a b s t r a c t " structure w o u l d be identified w i t h a n " i s o m o r p h i s m class" of concrete s t r u c t u r e s , i.e., the collection of a l l concrete structures i s o m o r p h i c to a given one. A l t h o u g h t h i s has a n appearance of concreteness, i t depends o n the general n o t i o n of i s o m o r p h i s m , w h i c h has an abstract character s i m i l a r to t h a t of a r e l a t i o n , as m e n t i o n e d above. F u r t h e r m o r e , the n o t i o n of the class of a l l concrete representations o f a g i v e n s t r u c t u r e is also o p e n to challenge, because i t is u s u a l l y i m p o s s i b l e t o k n o w or specify a l l members of the class. T h e a p p r o a c h , nevertheless, has a p r a c t i c a l a p p e a l , because it is i m p o s sible to c o m m u n i c a t e any i n f o r m a t i o n a b o u t a s t r u c t u r e w i t h o u t e m p l o y i n g i n one way or another a concrete representation (say b y the use of language, d i a g r a m s , etc.). I n the same way, one cannot even t h i n k o f a s t r u c t u r e w i t h out f o r m i n g a m e n t a l representation, w h i c h also m i g h t be identified w i t h a
II. G E N E R A L
STRUCTURE CONCEPTS
37
(concrete) b r a i n s t r u c t u r e . These facts also m i g h t be used to argue t h a t , for a l l p r a c t i c a l purposes, an abstract s t r u c t u r e cannot exist [ C 2 , p. 221]. A n o t h e r way of dealing w i t h some of the p r o b l e m s is s i m p l y to a v o i d any reference to "objects" i n the d e f i n i t i o n of s t r u c t u r e . A s t r u c t u r e then consists o n l y of a collection of relations, w i t h no direct m e n t i o n o f the t h i n g s t h a t are r e l a t e d . A s noted i n S e c t i o n 5, Peter C a w s gives such a d e f i n i t i o n , a n d i t is i m p l i c i t i n P i a g e t ' s d e f i n i t i o n . T h e a p p r o a c h o b v i o u s l y ignores the p r o b l e m s already m e n t i o n e d c o n c e r n i n g the n a t u r e of relations, t h o u g h an idealist w o u l d no doubt take i t for granted t h a t relations enjoy an independent existence, a n d so w o u l d have no trouble w i t h the d e f i n i t i o n . O u r final c o m m e n t s o n the p r o b l e m of abstract structures concern the fact, m e n t i o n e d at the end of Section 9, t h a t they are sometimes identified w i t h m e n t a l s t r u c t u r e s . F r o m the idealist p o i n t o f v i e w , m e n t a l p h e n o m e n a o b v i o u s l y occur i n the " m i n d " , so m e n t a l structures are a f o r t i o r i ideal objects, b u t f r o m the m a t e r i a l i s t p o i n t of v i e w , they m u s t be concrete brain structures. E v e n when m e n t a l structures are identified w i t h concrete b r a i n / n e r v e s t r u c t u r e s , they nevertheless have a c e r t a i n s p e c i a l character t h a t sets t h e m a p a r t . T h i s stems p a r t l y f r o m the fact t h a t so l i t t l e is k n o w n of how m e n t a l s t r u c t u r e s are a c t u a l l y f o r m e d , a n d also f r o m the fact t h a t they are i n v o l v e d in consciousness, an even greater m y s t e r y . W h a t e v e r the reason, they t e n d t o be treated as t h o u g h they were different f r o m t y p i c a l concrete s t r u c t u r e s . T h e u n i q u e character of m e n t a l s t r u c t u r e s is a basis for the i d e a t h a t they are neither i d e a l nor m a t e r i a l objects, b u t lie somewhere between these extremes. S u c h ideas appear i n discussions t h a t a t t e m p t to a v o i d s o m e o f the familiar problems in both materialism and idealism. A n o t h e r compromise accepts m e n t a l structures as ideal i n character but rejects the e x t r e m e idealist concept of a u n i v e r s a l " M i n d " . T h i s is a p p a r e n t l y the p o s i t i o n of Peter C a w s , w h o describes h i m s e l f i n his b o o k on S t r u c t u r a l i s m [p. 234] as " a m a t e r i a l i s t i n the r e a l m of the n a t u r a l sciences a n d an idealist i n the r e a l m of the social sciences". I find myself i n an analogously a m b i g u o u s p o s i t i o n , b e i n g a t least a m a t h e m a t i c a l i d e a l i s t i c but u n a b l e to accept a c o m p l e t e l y idealist p o i n t of v i e w . M e n t a l structures are discussed more t h o r o u g h l y i n C h a p t e r V I . T h e y are of s p e c i a l interest to us because of the m y s t e r y as to how the m i n d processes so easily enormously c o m p l e x s t r u c t u r e s .
CHAPTER
SOME
15.
EXAMPLES
III
OF
STRUCTURES
Introduction
In order to clarify further the concept of s t r u c t u r e a n d t o give a better i d e a of w h a t it involves, a n u m b e r of special examples of s t r u c t u r e s w i l l now be described a n d at least p a r t i a l l y a n a l y z e d i n the l i g h t of the d e f i n i t i o n . T h e examples also serve t o b r i n g out some o f the less obvious characteristics of s t r u c t u r e s . I n c l u d e d are some i l l u s t r a t i o n s of ways t h a t s t r u c t u r e s m a y change or evolve. W e already k n o w (Section 12) t h a t a concrete representation o f an a b stract s t r u c t u r e m a y change a great deal w i t h o u t losing the p r o p e r t y of b e i n g a representation, b u t , a s a s t r u c t u r e , it cannot shift " s m o o t h l y " i n t o a representation of a different s t r u c t u r e . T h i s is a c o r o l l a r y o f the fact t h a t , for a b s t r a c t s t r u c t u r e s , "different" m e a n s " n o n i s o m o r p h i c " , so a shift f r o m one s t r u c t u r e t o a n o n i s o m o r p h i c one must involve a c t u a l a d d i t i o n s or deletions of some of the objects a n d / o r relations i n the i n i t i a l s t r u c t u r e . In spite of the inherent s t a b i l i t y suggested by the above r e m a r k , s t r u c tures (or their representations) can a n d do change i n t o n o n i s o m o r p h i c s t r u c tures. A n d the p o t e n t i a l for change often occurs i n the most i m p o r t a n t a n d u s u a l l y more complex structures. I n c l u d e d , for e x a m p l e , is a t e n d e n c y for c e r t a i n k i n d s of structures t o evolve and to grow i n c o m p l e x i t y u n d e r a p p r o p r i a t e circumstances. These properties m a y be observed i n concrete s t r u c t u r e s , as i n c r y s t a l g r o w t h or the development of a l i v i n g o r g a n i s m , and i n m e n t a l structures, as i n the development of concepts i n the process of u n d e r s t a n d i n g some subject of s t u d y . T h e y are of great i m p o r t a n c e a n d w i l l t u r n u p frequently i n m u c h of w h a t we have to say a b o u t s t r u c t u r e s . As is often the case, e x a m p l e s s i m p l e enough t o be described i n reasonable d e t a i l can o n l y suggest the full significance of such p h e n o m e n a . A m a j o r i t y of the following examples are m a t h e m a t i c a l i n character. Nevertheless, except possibly for the somewhat more t e c h n i c a l group s t r u c tures, a l l of the examples are relatively s i m p l e and easy to u n d e r s t a n d w i t h l i t t l e or no m a t h e m a t i c a l b a c k g r o u n d . In presenting the m a t h e m a t i c a l exa m p l e s , we have relied wherever possible on geometric " p i c t u r e s " , o m i t t e d all proofs, a n d have avoided v i r t u a l l y a l l of the technical m a t h e m a t i c a l det a i l s . T h e n o n m a t h e m a t i c a l e x a m p l e s , w h i c h e x h i b i t various " d y n a m i c " 39
40
STRUCTURALISM
AND STRUCTURES
properties of s t r u c t u r e s , include the classical B o h r m o d e l o f the a t o m , a t y p i c a l m a c h i n e , a n d line drawings by Josef A l b e r s . A l b e r s ' s w o r k , w h i c h brings out a r e m a r k a b l e q u a l i t y o f the h u m a n m i n d w i t h respect to the way i t deals w i t h certain s t r u c t u r e s , is a n a l y z e d i n m o r e d e t a i l elsewhere [R3]. 16.
Atoms and Machines C o n s i d e r first the B o h r a t o m , i l l u s t r a t e d i n F i g u r e 16.1 o n the f o l l o w i n g page. T h e a t o m consists of a nucleus s u r r o u n d e d by o r b i t i n g electrons. Despite the s p i n n i n g electrons, the a t o m is m o r e often t h a n not t h o u g h t o f as a " f i x e d " object, i n w h i c h the m o v i n g electrons are represented by their o r b i t s . T h i s e x a m p l e illustrates one way of representing a c h a n g i n g s t r u c t u r e as a single " t i m e - i n d e p e n d e n t " s t r u c t u r e . N o t e t h a t i n e l e m e n t a r y c h e m i s t r y a molecule is also a d y n a m i c space s t r u c t u r e w h i c h is regarded as essentially independent of t i m e a n d whose objects are a t o m s . T h e e l e m e n t a r y c h e m i s t r y p i c t u r e of m o l e c u l a r s t r u c t u r e w i l l be e x a m i n e d later (Section 27) i n a very different context. C o n s i d e r next a t y p i c a l m a c h i n e such as an a u t o m o b i l e engine. T h i s is a r e l a t i v e l y c o m p l e x m e c h a n i s m consisting of various p a r t s i n c l u d i n g an engine b l o c k , c y l i n d e r h e a d , pistons, c o n n e c t i n g rods, c r a n k shaft, gears, p u l l e y s , b e l t s , and so f o r t h . A s s e m b l e d i n their proper r e l a t i o n s h i p s , these objects o b v i o u s l y c o n s t i t u t e a p h y s i c a l s t r u c t u r e , each of whose p a r t s (objects) m a y also be seen as a s t r u c t u r e . A s the engine r u n s , its p a r t s change their r e l a t i v e p o s i t i o n s , r e t u r n i n g u l t i m a t e l y t o their s t a r t i n g p o s i t i o n s , so the m o t i o n is c y c l i c , a property u s u a l l y expected i n a m a c h i n e . It is the nature of a m a c h i n e of this k i n d t h a t its essential i d e n t i t y is preserved t h r o u g h o u t the f u n c t i o n i n g cycle. In t e r m s o f s t r u c t u r e s , this means t h a t the concrete structures at two different t i m e s are i s o m o r p h i c . In other words, there is associated w i t h the machine a fixed abstract s t r u c ture w h i c h is represented at each p o i n t of t i m e b y the concrete s t r u c t u r e . It w o u l d be possible t o a n a l y z e a sufficiently s i m p l e m a c h i n e - s t r u c t u r e i n t e r m s o f objects a n d r e l a t i o n s , using some of the ideas already e m p l o y e d i n a n a l y z i n g the b u i l d i n g s t r u c t u r e s . B u t because an a n a l y s i s w o u l d be q u i t e tedious a n d not so very i n s t r u c t i v e , it is o m i t t e d . A l t h o u g h a machine exists i n p h y s i c a l t h r e e - d i m e n s i o n a l space, a r u n n i n g m a c h i n e m a y be regarded as a concrete s t r u c t u r e e x i s t i n g i n p h y s i c a l / o w r - d i m e n s i o n a l space, where three of the d i m e n s i o n s represent o r d i n a r y space a n d the f o u r t h represents t i m e . A p h y s i c a l space "cross s e c t i o n " at a p a r t i c u l a r t i m e w i l l give the engine i n its state at t h a t t i m e . T h e f o u r - d i m e n s i o n a l concrete s t r u c t u r e is i s o m o r p h i c w i t h a s u b s t r u c t u r e of m a t h e m a t i c a l space-time ( w h i c h is an abstract f o u r - d i m e n s i o n a l E u c l i d e a n space). T h i s s t r u c t u r e has cross sections " p e r p e n d i c u l a r " to the t i m e axis w h i c h are i s o m o r p h i c to the fixed abstract machine s t r u c t u r e described above.
III.
SOME EXAMPLES OF
STRUCTURES
B o h r ' s R a d i u m A t o m [B2] F i g . 16.1
42
STRUCTURALISM
AND
STRUCTURES
17. L i n e D r a w i n g s b y J o s e f A l b e r s T h e f o l l o w i n g p a i r of d r a w i n g s is t a k e n f r o m a d e l i g h t f u l b o o k , " D e s p i t e S t r a i g h t L i n e s " , b y the l a t e a r t i s t , Josef A l b e r s [ A l , p . 52]. It is the second o f four p a i r s w h i c h bear the t i t l e , "4 P a i r s of S t r u c t u r a l C o n s t e l l a t i o n s " . A n y one of the r e m a i n i n g p a i r s , as well as m a n y other e x a m p l e s f r o m the A l b e r s b o o k , c o u l d have been used as a n i l l u s t r a t i o n i n place of the one we have chosen.
Fig.
17.1
A l b e r s ' s p o e t i c b u t revealing c o m m e n t s a b o u t these figures are quoted below. " W i t h i n a f o r m a l l i m i t a t i o n of e q u a l contours as m u t u a l s i l h o u ette, these p a i r s show different but related p l a s t i c m o v e m e n t s of lines, planes, volumes. T h u s , they change i n m o t i o n : f r o m c o m i n g to g o i n g , i n e x t e n s i o n : f r o m i n w a r d to o u t w a r d , i n g r o u p i n g : f r o m together t o separated, i n v o l u m e : f r o m f u l l to e m p t y , or reversed. A n d a l l t h i s , i n order t o show extended f l e x i b i l i t y " . A s suggested b y his c o m m e n t s , one of A l b e r s ' s objectives i n these d r a w ings is t o create a n i l l u s i o n o f m o t i o n for the observer. H e accomplishes this t h r o u g h a r e m a r k a b l y clever use of l i n e arrangements. N o t e t h a t the d r a w ings themselves are t w o d i m e n s i o n a l structures c o n s i s t i n g s i m p l y of several s t r a i g h t lines l y i n g i n a p l a n e . T h e a r r a n g e m e n t o f lines is s u c h , however, t h a t m o s t i n d i v i d u a l s w i l l first perceive the d r a w i n g s as representations of three d i m e n i s o n a l objects i n space. O n the other h a n d , the viewer w i l l q u i c k l y realize t h a t no such objects c a n p o s s i b l y exist i n space. A l t h o u g h different p a r t s o f a d r a w i n g m a y each be given two or m o r e s p a t i a l i n t e r -
III.
SOME EXAMPLES OF STRUCTURES
43
p r e t a t i o n s , these are o b v i o u s l y inconsistent w i t h one another. A p a r t i c u l a r i n t e r p r e t a t i o n i n one p a r t cannot be extended t o the whole d r a w i n g . O n e m i g h t t h i n k , w h e n presented w i t h such an o b v i o u s c o n t r a d i c t i o n , a r a t i o n a l m i n d w o u l d a b a n d o n any a t t e m p t at a s p a c i a l i n t e r p r e t a t i o n , a n d s i m p l y r e t u r n to a two d i m e n s i o n a l reading. Instead, the m i n d insists o n r e s o l v i n g the c o n t r a d i c t i o n . T h i s is done by i n t r o d u c i n g m o t i o n i n t o the i n t e r p r e t a t i o n . So the perceived three d i m e n s i o n a l s t r u c t u r e changes its shape as one's a t t e n t i o n moves f r o m one p o r t i o n of the d r a w i n g to another. T h e s a m e p h e n o m e n o n also occurs w i t h the f a m i l i a r g e o m e t r i c a l " o p t i c a l i l l u s i o n s " . T h e s e , however, tend s i m p l y t o " f l i p - f l o p " , w h i l e the m o r e s u b t l e A l b e r s constructions, i f observed carefully, e x h i b i t a more or less continuous motion. A l b e r s o b t a i n s s i m i l a r effects i n some of his paintings by e x p l o i t i n g the fact t h a t we tend t o see c e r t a i n colors as either foreground or as b a c k g r o u n d i n the presence of c e r t a i n other colors. I n these p a i n t i n g s , w h i c h are even more s u b t l e t h a n the l i n e d r a w i n g s , the c o n t r a d i c t i o n u s u a l l y involves the relative depths of certain parts of a p a i n t i n g , as suggested by their c o l o r i n g , as opposed to the relative depths suggested by the arrangement of parts i n the p a i n t i n g itself. T h e most subtle use of this technique is f o u n d i n A l b e r s ' s m a n y " H o m a g e to the S q u a r e " p a i n t i n g s . A p e n e t r a t i n g a n a l y s i s of how the v i s u a l s y s t e m a p p a r e n t l y organizes ambiguous i n f o r m a t i o n , backed up by some serious m a t h e m a t i c s , w i l l be found i n a n article by D o n a l d D . H o f f m a n [H5], (See also [M3].) T h e m a i n purpose o f the above e x a m p l e is to show t h a t the m i n d is able to f o r m d y n a m i c s t r u c t u r e s t h a t , as far as the " r e a l " w o r l d is concerned, i n c o r p o r a t e ostensibly c o n t r a d i c t o r y sets of i n f o r m a t i o n . T h i s is a r e m a r k able f a c i l i t y w h i c h suggests a general p r i n c i p l e , t h a t "the m i n d a b h o r s a c o n t r a d i c t i o n " a n d w i l l a t t e m p t i n one way or another to resolve an a p p a r ent c o n t r a d i c t i o n i n t o s o m e t h i n g m e a n i n g f u l . D e s p i t e the " u n r e a l " results in some cases, it is perhaps not too s u r p r i s i n g t h a t such a f a c i l i t y m i g h t evolve i n response to the p r o b l e m of s u r v i v a l i n a c o m p l e x e n v i r o n m e n t . A n o b j e c t - r e l a t i o n a n a l y s i s of the s t r u c t u r e represented by the A l b e r s d r a w i n g s w o u l d require m e t h o d s s i m i l a r to those o u t l i n e d for the t w o d i m e n s i o n a l representation of the three d i m e n s i o n a l b u i l d i n g s t r u c t u r e , and the r e l a t i v e p o s i t i o n s of the points a n d even the relative w i d t h s o f the lines i n v o l v e d must be carefully specified i n order to p r o d u c e the desired effect. A n a n a l y s i s of the color constructions w o u l d he considerably more c o m p l e x . W e find i n physics a different t y p e of c o n t r a d i c t i o n r e s o l u t i o n d e m a n d e d by the various elementary particles. A n electron, for e x a m p l e , n o r m a l l y behaves like a p a r t i c l e but may also be diffracted as though i t were a wave p h e n o m e n o n . It is j u s t as difficult to resolve this p a r a d o x i n t r a d i t i o n a l p h y s i c a l terms as it is to v i s u a l i z e the o b j e c t suggested by an A l b e r s d r a w i n g
44
STRUCTURALISM
AND STRUCTURES
i n o r d i n a r y space. A d d i t i o n a l examples c o u l d be c i t e d f r o m m a t h e m a t i c s as w e l l as a l m o s t any other field of i n t e l l e c t u a l endeavor. T h e s e p h e n o m e n a are, i n fact, so c o m m o n t h a t they have been regarded as c h a r a c t e r i s t i c , not o n l y of m u c h m e n t a l a c t i v i t y b u t of s t r u c t u r a l e v o l u t i o n i n general. A l t h o u g h the great b u l k of e x a m p l e s m a y be far m o r e c o m p l e x a n d less t r a n s p a r e n t t h a n the A l b e r s d r a w i n g s , i t is p l a u s i b l e to conjecture t h a t a n a p p r o p r i a t e a n a l y s i s w o u l d reveal i n most cases t h a t the m i n d ' s r e s o l u t i o n (or synthesis) of the perceived c o n t r a d i c t i o n is at least analogous t o the i n t r o d u c t i o n of the d y n a m i c s t r u c t u r e i n the A l b e r s e x a m p l e s . 18.
Configurations
A s i m p l e c o n f i g u r a t i o n is a m a t h e m a t i c a l o b j e c t w h i c h consists of m p o i n t s a n d n lines such t h a t e x a c t l y j p o i n t s lie o n each l i n e a n d e x a c t l y k l i n e s lie o n each p o i n t , where m , n , j , a n d k are p o s i t i v e integers. W e c a l l the t w o pairs of integers, [ m , n ; j , k ] , the t y p e o f the c o n f i g u r a t i o n . A c o n f i g u r a t i o n is t h u s a s p e c i a l k i n d of p o i n t - l i n e s t r u c t u r e . A s i m p l e e x a m p l e of a c o n f i g u r a t i o n consists o f a finite n u m b e r of p o i n t s , no three of w h i c h lie o n a l i n e , p l u s a l l of the lines d e t e r m i n e d b y the p o i n t s . T h i s is the " c o m p l e t e " c o n f i g u r a t i o n d e t e r m i n e d b y the p o i n t s . I f there are m p o i n t s , such a c o n f i g u r a t i o n w i l l be o f t y p e [m, m ( m — l ) / 2 ; 2, m — 1]. C o n s i d e r , for e x a m p l e , the c o m p l e t e h e x a g o n i l l u s t r a t e d i n the n e x t figure. T h i s is a c o n f i g u r a t i o n d e t e r m i n e d b y s i x p o i n t s , n o three o f w h i c h l i e o n a l i n e , so is of t y p e [ 6 , 1 5 ; 2,5]. T h e r e are 60 different s i m p l e hexagons t h a t m a y b e f o r m e d b y t a k i n g the s i x p o i n t s i n v a r i o u s orders as vertices of a h e x a g o n . T h e i r (extended) sides account for the 15 lines i n the c o n f i g u r a tion.
Fig.
18.1
45
III. S O M E E X A M P L E S O F S T R U C T U R E S
T h e simplest o b j e c t - r e l a t i o n d e s c r i p t i o n of a n a r b i t r a r y c o n f i g u r a t i o n of type [ m , n ; j , k] is to take the m points as objects and the n lines as r e l a t i o n s ; t h a t is, any j - t u p l e of p o i n t s t h a t lie on one of the lines is a related set. In this case, we have a single ( s y m m e t r i c ) j - n a r y r e l a t i o n defined i n the s t r u c t u r e . T h e p r o p e r t y of being a c o n f i g u r a t i o n of the i n d i c a t e d t y p e requires the a d d i t i o n a l c o n d i t i o n t h a t each o b j e c t be involved i n e x a c t l y k relations. T h e r e is also a " d u a l " d e s c r i p t i o n i n w h i c h the lines are objects and the points are relations, as w e l l as one i n w h i c h b o t h points and lines are objects. T h e i n f o r m a t i o n c o n t a i n e d i n a given c o n f i g u r a t i o n m a y be recorded b y an a l i g n m e n t t a b l e i n w h i c h b o t h p o i n t s a n d lines are listed a l o n g w i t h an i n d i c a t i o n o f w h i c h points lie o n each line. T h i s is a k i n d of " s y m b o l i c " representation of the p o i n t - l i n e s t r u c t u r e version of the configuration. S u c h f o r m a l s t r u c t u r e representations come i n m a n y different forms and are i m p o r t a n t i n a l l contexts, especially i n m a t h e m a t i c s . T h e f o l l o w i n g table is for the complete hexagon i l l u s t r a t e d i n F i g . 18.1. T h e points are numbered f r o m 1 to 6 and each line is i n d i c a t e d by the p a i r of points t h a t determine i t . For e x a m p l e , the line d e t e r m i n e d b y the points 1 a n d 2 is denoted by 12. A l i g n m e n t T a b l e for a C o m p l e t e H e x a g o n ( p 0 i n t s
12
13
14
15
16
1
X
X
X
X
X
2 3 4 5 6
X X
i 24
n
e
23
25
26
X
X
X
X
X X
X X
35
36
X
X
X
X
X X
a 34
X X
45
46
X
X
X X
56
X X
X
T h e collection of lines i n a c o n f i g u r a t i o n w i l l , i n general, determine a n u m b e r of a d d i t i o n a l points not i n c l u d e d i n the configuration. S i m i l a r l y , the new points may d e t e r m i n e a d d i t i o n a l lines. T h e s e e x t r a points a n d lines m a y i n t u r n determine a d d i t i o n a l lines and p o i n t s , and the process m a y continue indefinitely. A l t h o u g h a r b i t r a r y e x a m p l e s of this k i n d are u s u a l l y not very i n t e r e s t i n g , the i n d i c a t e d process suggests one type of s t r u c t u r e e v o l u t i o n . M o r e interesting examples m a y be o b t a i n e d by a p p r o p r i a t e l y r e s t r i c t i n g the given p o i n t s , and being s o m e w h a t more selective i n the choice of the lines a n d points to be added to the s t r u c t u r e . T h i s is shown b y the next e x a m p l e .
46
STRUCTURALISM AND
STRUCTURES
19. T h e P a s c a l C o n f i g u r a t i o n The
classical c o n f i g u r a t i o n , w h i c h is described below, is c a l l e d the P a s c a l
C o n f i g u r a t i o n because i t rests o n the f o l l o w i n g t h e o r e m due t o P a s c a l : If a s i m p l e h e x a g o n is i n s c r i b e d i n a conic, t h e n the three p o i n t s d e t e r m i n e d b y p a i r s of opposite sides are c o l l i n e a r . T h e three p o i n t s are k n o w n as the P a s c a l p o i n t s a n d the l i n e c o n t a i n i n g t h e m as the P a s c a l L i n e of t h e h e x a g o n . T h e conic m a y b e either a p a r a b o l a , ellipse ( i n c l u d i n g a circle), or h y p e r b o l a . T w o e x a m p l e s of the t h e o r e m are i l l u s t r a t e d i n the next figure, where s i x p o i n t s o n a n ellipse are t a k e n i n two different ways as the vertices of a s i m p l e h e x a g o n . T h e t w o hexagons have vertices 123456 a n d a b c d e f respectively, where the vertices o f the second h e x a g o n coincide w i t h those of the first b u t i n the order 132654. T h e P a s c a l p o i n t s for the first h e x a g o n are P \ , P 2 , P 3 , a n d its P a s c a l l i n e is L . T h e first p o i n t , for e x a m p l e , is d e t e r m i n e d b y sides 12 a n d 4 5 . S i m i l a r l y , the P a s c a l p o i n t s of the second h e x a g o n are Q \ , Q i , Q z , a n d i t s P a s c a l l i n e is the d o t t e d l i n e M . Pascal's T h e o r e m
Fig.
19.1
For the sake of accuracy, i t m u s t be added here t h a t the a p p r o p r i a t e s e t t i n g for the P a s c a l t h e o r e m , a n d hence the c o n f i g u r a t i o n defined b e l o w , is a p r o j e c t i v e p l a n e , r a t h e r t h a n a E u c l i d e a n p l a n e . I n fact, the P a s c a l p o i n t s need not exist i n the E u c l i d e a n plane. T h i s is s h o w n b y the e x a m p l e of a regular h e x a g o n i n s c r i b e d i n a circle, where opposite sides of the h e x a g o n are p a r a l l e l so do not intersect. O n the other h a n d , a projective p l a n e
III. S O M E E X A M P L E S O F S T R U C T U R E S
47
m a y be represented as an extension of the E u c l i d e a n plane o b t a i n e d b y the a d d i t i o n of a " l i n e at i n f i n i t y " consisting o f " p o i n t s at i n f i n i t y " . W i t h this extension, every pair of lines intersect a n d , i n p a r t i c u l a r , p a r a l l e l lines intersect i n a p o i n t at infinity. T h u s , for the regular h e x a g o n , the P a s c a l line coincides w i t h the l i n e at infinity. It w i l l not be necessary for us to become more deeply i n v o l v e d w i t h details c o n c e r n i n g projective planes at this time. Six points o n a conic m a y be regarded i n 60 different ways as vertices of a s i m p l e h e x a g o n , so there are 60 d i s t i n c t P a s c a l lines. T h e r e are n o t , h o w ever, 180 P a s c a l p o i n t s , since some of t h e m necessarily coincide, r e d u c i n g the n u m b e r to at most o n l y 45. In special cases, there m a y be a d d i t i o n a l coincidences, but these o c c u r only by threes a n d there can be at most four such t r i p l e p o i n t s . T h e m a x i m u m n u m b e r occurs for a regular hexagon i n s c r i b e d i n a circle, three o f the t r i p l e p o i n t s b e i n g at i n f i n i t y a n d one at the center of the circle. It t u r n s out t h a t , i n general, t h e P a s c a l p o i n t s l i e by t h r e e s o n t h e P a s c a l l i n e s a n d t h e P a s c a l l i n e s i n t e r s e c t by f o u r s o n t h e P a s c a l p o i n t s . B y d e f i n i t i o n , the P a s c a l c o n f i g u r a t i o n consists of the 60 P a s c a l lines together w i t h the 45 P a s c a l p o i n t s ( b a r r i n g coincidences), so is of type [45,60; 3,4]. N o t e t h a t it does not contain any of the vertices or sides of the 60 hexagons. T h e c o n f i g u r a t i o n is o b v i o u s l y too c o m p l e x t o be i l l u s t r a t e d here i n its entirety. T h e s t r u c t u r e represented by the P a s c a l c o n f i g u r a t i o n extends i n a n i n teresting a n d n o n t r i v i a l m a n n e r t h r o u g h the a d d i t i o n of c e r t a i n new points and lines d e t e r m i n e d b y the given points and lines of the c o n f i g u r a t i o n . W e list below some o f the p r i n c i p a l results o b t a i n e d by m a t h e m a t i c i a n s w h o have s t u d i e d the c o n f i g u r a t i o n . T h e s p e c i a l points a n d lines are n a m e d for the m a t h e m a t i c i a n s w h o discovered t h e m . T h e 60 P a s c a l lines intersect by threes i n 20 Steiner p o i n t s . T h e 20 Steiner points lie by fours o n 15 Steiner- PIiicker lines. T h e 60 P a s c a l lines also intersect by threes i n 60 K i r k m a n p o i n t s . T h e r e are 20 C a y l e y - S a l m o n lines each of w h i c h contains one Steiner p o i n t and three K i r k m a n p o i n t s . T h e 20 C a y l e y - S a l m o n lines intersect by fours o n 15 S a l m o n p o i n t s . It is not p r a c t i c a l to t r y to i n d i c a t e how these properties m i g h t be obt a i n e d , but some i d e a of w h a t is going o n is suggested b y the fact t h a t a K i r k m a n p o i n t is d e t e r m i n e d by the three P a s c a l lines associated w i t h the three hexagons t h a t can be formed w i t h o u t using any o f the sides of one specified hexagon. A s suggested by the respective n u m b e r s of the s p e c i a l p o i n t s a n d lines (20 Steiner points a n d 20 C a l e y - S a l m o n lines, 15 S a l m o n points a n d 15 S t e i n e r - P l i i c k e r lines, 60 K i r k m a n points a n d 60 P a s c a l lines), there exists a p o i n t - l i n e d u a l i t y given by relevant one-to-one correspondences between
48
STRUCTURALISM AND STRUCTURES
t h e associated classes of p o i n t s a n d lines. T h e s e correspondences m a y he described i n r e l a t i v e l y s i m p l e t e r m s , b u t we w i l l n o t pursue the m a t t e r . A few m o r e details, a l o n g w i t h references a n d s o m e results for the configur a t i o n i n a p r o j e c t i v e p l a n e h a v i n g o n l y a f i n i t e n u m b e r of p o i n t s , w i l l be f o u n d i n [R2]. A l t h o u g h the s t u d y o f configurations is n o longer f a s h i o n a b l e , as i t was s i x t y t o one h u n d r e d years ago, the above properties o f the P a s c a l configur a t i o n a n d its extensions are nonetheless genuine m a t h e m a t i c a l results w i t h n o n t r i v i a l proofs. T h e s y s t e m a t i c discovery of s p e c i a l structures w i t h i n the m y r i a d of p o i n t s a n d lines t h a t c a n be generated f r o m the basic h e x a g o n , is another e x a m p l e o f s t r u c t u r a l i s m i n a c t i o n . T h e m a i n p o i n t o f interest i n t h i s case is the w a y the s t r u c t u r e evolves i n t o m o r e a n d m o r e c o m p l e x structures u n d e r the d r i v i n g force o f i n q u i r i n g m i n d s . T h i s p o t e n t i a l for g r o w t h is n o t restricted t o g e o m e t r i c a l s t r u c t u r e s , n o r even t o a r b i t r a r y m a t h e m a t i c a l s t r u c t u r e s , b u t is a general p r o p e r t y o f a l l s t r u c t u r e s , except perhaps the most t r i v i a l a n d u n i n t e r e s t i n g ones. 20. T h e T r i a n g l e G r o u p T h i s s i m p l e e x a m p l e is based o n a n e q u i l a t e r i a l t r i a n g l e whose vertices are l a b e l e d w i t h the n u m b e r s 1 , 2 , 3 (as i n F i g u r e 20.1(a)). A l t h o u g h the t r i a n g l e is another c o n f i g u r a t i o n , we are not p r i m a r i l y interested i n i t as such, b u t r a t h e r i n the set of r o t a t i o n s t h a t t r a n s f o r m the t r i a n g l e i n t o itself. T w o r o t a t i o n s are defined t o be e q u i v a l e n t ( o r e q u a l ) i f each takes the t r i a n g l e i n t o e x a c t l y the s a m e p o s i t i o n . I n other words, the end p o s i t i o n s of the l a b e l e d vertices are the s a m e i n b o t h cases. T h e r e are two k i n d s of r o t a t i o n s corresponding respectively t o the t w o m e t h o d s o f choosing a n a x i s o f r o t a t i o n . O n e choice is the l i n e p e r p e n d i c u l a r t o the t r i a n g l e at its center, a n d the other is a l i n e t h r o u g h one v e r t e x p e r p e n d i c u l a r t o the opposite side. T h e t w o k i n d s of r o t a t i o n s are i l l u s t r a t e d i n F i g u r e 20.1 (b) a n d (c). i
i i Fig.
20.1
III. S O M E E X A M P L E S O F S T R U C T U R E S
49
Since the t r i a n g l e is e q u i l a t e r a l , every r o t a t i o n o f the first k i n d is e q u i v alent to either a clockwise or counter clockwise r o t a t i o n t h r o u g h a n angle of 120°. T h e counter clockwise r o t a t i o n ( u s u a l l y regarded as positive) is denoted by the s y m b o l ft a n d the clockwise by R - . T h e results o f t h e i r a p p l i c a t i o n t o t r i a n g l e 20.1(a) are i n d i c a t e d i n F i g u r e 20.2 (a) a n d (b). +
A r o t a t i o n a x i s o f the second k i n d is d e t e r m i n e d by the v e r t e x t h a t contains i t , so there are three of t h e m . A r o t a t i o n a b o u t one of these axes w i l l at m o s t interchange the endpoints of the side opposite the d e t e r m i n i n g vertex a n d is therefore equivalent to a r o t a t i o n of 180° ( i n either d i r e c t i o n ) . T h e s e w i l l be d e n o t e d respectively by S , S t , a n d S , a c c o r d i n g as the vertex w h i c h determines the a x i s o f r o t a t i o n is at the t o p , left, or r i g h t o n the r o t a t e d t r i a n g l e . T h e result o f a p p l y i n g S to t r i a n g l e 20.1(a) is i n d i c a t e d i n F i g u r e 20.2(c). Observe t h a t each o f these r o t a t i o n s acts i n the same w a y regardless of the l a b e l i n g of the vertices. F o r e x a m p l e , i f the t o p vertex has the l a b e l 3, a n a p p l i c a t i o n of S w i l l r o t a t e the t r i a n g l e a b o u t the line t h r o u g h vertex 3 p e r p e n d i c u l a r to the side d e t e r m i n e d by vertices 1 a n d 2. t
T
t
t
3
2
R.
R .
Fig.
1
S
t
20.2
For reasons t h a t w i l l become clear i n a m o m e n t , we i n c l u d e as a r o t a t i o n the t r i v i a l t r a n s f o r m a t i o n t h a t does not change the t r i a n g l e at a l l . It is called t h e i d e n t i t y r o t a t i o n a n d is d e n o t e d by the s y m b o l / . W i t h the i d e n t i t y , we have identified s i x n o n e q u i v a l e n t r o t a t i o n s . It t u r n s out t h a t every r o t a t i o n of the t r i a n g l e i n t o itself is equivalent to one o f the s i x . R o t a t i o n s are i n t e r r e l a t e d t h r o u g h the n o t i o n o f a " p r o d u c t " , w h i c h we n o w define. T h e p r o d u c t ( o r c o m p o s i t i o n ) of t w o r o t a t i o n s is defined as the result of a p p l y i n g first one t h e n the other. T h e process is also called " m u l t i p l i c a t i o n " . T h e p r o d u c t is always another r o t a t i o n , so is equivalent to one of the above s i x . I n v i e w of t h i s fact, the s i x r o t a t i o n s are s a i d t o be "closed under the o p e r a t i o n of f o r m i n g p r o d u c t s " . F o r e x a m p l e , the p r o d u c t of
STRUCTURALISM
50
AND STRUCTURES
R a n d S t , w h i c h is w r i t t e n as R + S t a n d means " f i r s t a p p l y R and then a p p l y S t " , is a r o t a t i o n equivalent to S t , as is i n d i c a t e d i n F i g u r e 20.3. +
+
1
3
3
Fig. 20.3 T h e v a r i o u s p r o d u c t s of the s i x basic r o t a t i o n s are recorded i n the f o l l o w ing m u l t i p l i c a t i o n t a b l e , where the first factor i n a p r o d u c t is t a k e n f r o m the left h a n d c o l u m n , the second f r o m the top r o w , a n d the p r o d u c t is e q u i v alent to the c o r r e s p o n d i n g t a b l e entry. F o r e x a m p l e , the p r o d u c t is equivalent to S t , the entry i n the R + row a n d the S t c o l u m n . Multiplication Table I R R -
R RI
R1
St Si Sr
Sr s
Si
t
Sr
s
s,
+
+
t
R
+
s
s
St Sr I
S
R-
R-
R
t
S
t
r
T
s
t
s,
Si R+
1
RI
+
T h e m a i n reason for c o n s i d e r i n g t h i s e x a m p l e is t h a t i t is one of m a n y classic e x a m p l e s of a " g r o u p " i n m a t h e m a t i c s . A l t h o u g h there is m o r e t o be s a i d a b o u t i t , we need the general d e f i n i t i o n o f a g r o u p a n d the associated n o t i o n of a "group s t r u c t u r e " , before c o n t i n u i n g w i t h the s p e c i a l case. 21. G r o u p S t r u c t u r e s T h e general concept o f a group is one o f the most i m p o r t a n t a n d most s t u d i e d concepts i n m a t h e m a t i c s . It covers a w i d e v a r i e t y o f e x a m p l e s t a k e n f r o m v i r t u a l l y every b r a n c h of m a t h e m a t i c s a n d also f r o m other fields t h a t depend o n m a t h e m a t i c s , such as physics. T h e c u s t o m a r y d e f i n i t i o n of a group is i n t e r m s of a s y s t e m of a x i o m s .
III. S O M E E X A M P L E S
OF
STRUCTURES
51
Group Axioms A n a r b i t r a r y set G of elements (denoted by letters g , h , k . . . ) is called a g r o u p i f it satisfies the f o l l o w i n g a x i o m s : (1) T h e r e is defined for each p a i r of elements g a n d h , a u n i q u e element g h , called the p r o d u c t of g a n d h . (2) T h e p r o d u c t satisfies an associative p r o p e r t y g ( h k ) = ( g h ) k for all g , h , a n d fc, where the p r o d u c t s w i t h i n the parentheses are t a k e n first. (3) T h e r e exists an element e such t h a t e g — g e = g for a l l g . It is c a l l e d an i d e n t i t y e l e m e n t . (4) F o r each g , there exists an element g " It is called an i n v e r s e of g .
99~
y
= 9 ~ 9 1
1
such t h a t
= e.
It r e a d i l y follows f r o m the a x i o m s t h a t the i d e n t i t y element and inverses are u n i q u e l y d e t e r m i n e d . P a s s i n g f r o m a p a i r of elements t o their p r o d u c t is c a l l e d a g r o u p o p e r a t i o n a n d is s a i d to be c o m m u t a t i v e i f g h = h g for a l l g a n d h . In s p e c i a l cases, the g r o u p o p e r a t i o n m a y be denoted b y a s p e c i a l s y m b o l (such as " + " for the o p e r a t i o n of a d d i t i o n ) . T w o groups are s a i d to be i s o m o r p h i c i f there exists a one-to-one correspondence between their elements t h a t preserves the g r o u p p r o d u c t s . T h e n u m b e r of elements i n a g r o u p , w h i c h may be either finite or i n f i n i t e , is c a l l e d the o r d e r of the g r o u p . A subset of a g r o u p is called a s u b g r o u p i f i t is closed under p r o d u c t s ( t h a t is, contains a l l p r o d u c t s i n v o l v i n g its elements) a n d also contains the inverses of its elements. A s u b g r o u p is o b v i o u s l y a g r o u p i n its o w n r i g h t . T h e set c o n s i s t i n g of only the i d e n t i t y element is t r i v i a l l y a s u b g r o u p . S u b g r o u p s different f r o m the f u l l group a n d the i d e n t i t y element are s a i d to be p r o p e r . A subset of a g r o u p is s a i d to g e n e r a t e the g r o u p i f the smallest s u b g r o u p t h a t c o n t a i n s the subset is the g r o u p itself. In t h i s case, each element o f the g r o u p m a y be o b t a i n e d by a finite succession of p r o d u c t s i n v o l v i n g elements of the subset and their inverses. T h e subset is c a l l e d a s y s t e m of g e n e r a t o r s for the g r o u p . T w o of the m o s t f a m i l i a r e x a m p l e s of a g r o u p are the real n u m b e r s under a d d i t i o n , and the nonzero real numbers u n d e r m u l t i p l i c a t i o n . A s already n o t e d , the o p e r a t i o n of a d d i t i o n is denoted by " + " , t h e i d e n t i t y element is 0, a n d the inverse of a n u m b e r x is its negative — x . F o r m u l t i p l i c a t i o n , the p r o d u c t is u s u a l l y w r i t t e n as x x y (or x y ) , the i d e n t i t y element is 1, a n d the inverse of a nonzero n u m b e r x is its r e c i p r o c a l l / x , w h i c h m a y also be w r i t t e n as x ~ . B o t h groups are c o m m u t a t i v e . l
52
STRUCTURALISM
AND
STRUCTURES
W e r e t u r n n o w to the t r i a n g l e g r o u p . It m a y be verified f r o m the m u l t i p l i c a t i o n table t h a t the rotations of an e q u i l a t e r a l t r i a n g l e , w i t h the p r o d u c t w h i c h was defined for t h e m , constitute a finite ( n o n c o m m u t a t i v e ) g r o u p of order 6. T h e existence of a n i d e n t i t y and inverses are o b v i o u s f r o m the t a b l e . F o r e x a m p l e , the inverse of R + is R _ , a n d the inverse of S is itself. T h a t the associative p r o p e r t y is satisfied is m o r e tedious b u t not difficult t o verify. A n e q u i l a t e r a l t r i a n g l e is the simplest of the n o n t r i v i a l regular geometric figures, a l l of w h i c h have interesting groups of r o t a t i o n s . t
F u r t h e r e x a m i n a t i o n of its m u l t i p l i c a t i o n table w i l l show t h a t the t r i a n g l e g r o u p also has the f o l l o w i n g s p e c i a l g r o u p p r o p e r t i e s . T h e r o t a t i o n s of the first k i n d (/, R , a n d R - ) c o n s t i t u t e a s u b g r o u p of order three, w h i l e r o t a t i o n s a b o u t a fixed a x i s o f the second k i n d (for e x a m p l e , I a n d S ) constitute a s u b g r o u p of order t w o , of w h i c h there are three. T h e s e four are a l l o f the proper subgroups of the full g r o u p . ( N o t e t h a t the set of a l l r o t a t i o n s of the second k i n d is not a subgroup.) F u r t h e r m o r e , any two elements w h i c h do not b o t h b e l o n g to one of the four subgroups a c t u a l l y generate the f u l l g r o u p . These properties are only a few of the m a n y t h a t are r o u t i n e l y s t u d i e d i n g r o u p theory. +
t
E l e m e n t s of m a n y g r o u p s , such as the t r i a n g l e g r o u p , are n a t u r a l l y presented as one-to-one m a p p i n g s of a g i v e n fixed set onto itself. S u c h a m a p p i n g is called a t r a n s f o r m a t i o n , a n d the g r o u p a t r a n s f o r m a t i o n g r o u p . T h e successive a p p l i c a t i o n of any t w o t r a n s f o r m a t i o n s is also a t r a n s f o r m a t i o n a n d is defined as the p r o d u c t of the two. It is easy to verify t h a t the collection o f all t r a n s f o r m a t i o n s of the given set o n t o itself constitutes a g r o u p under the p r o d u c t as defined. T h e i d e n t i t y is the m a p p i n g t h a t takes each p o i n t onto itself, a n d the inverse of a t r a n s f o r m a t i o n is s i m p l y the reverse one-to-one m a p p i n g . T h e t r a n s f o r m a t i o n g r o u p on a finite set w i t h n elements has order n f a c t o r i a l . T h e t r i a n g l e g r o u p a c t u a l l y coincides w i t h the f u l l t r a n s f o r m a t i o n g r o u p o n the three vertices o f the t r i a n g l e . T h i s is not generally the case for the r o t a t i o n groups, but h a p p e n s to be t r u e here because the t r a n s f o r m e d set contains o n l y three elements. A n a r b i t r a r y g r o u p G , regardless of i t s n a t u r a l p r e s e n t a t i o n , is i s o m o r p h i c t o a s u b g r o u p of the t r a n s f o r m a t i o n g r o u p o n the set G itself. T h e i s o m o r p h i s m associates each group element g w i t h the t r a n s f o r m a t i o n T t h a t m a p s a n a r b i t r a r y element x of G to the element g x . If G c o n t a i n s more t h a n t w o elements, t h i s representation o f G is always a proper s u b g r o u p o f the f u l l t r a n s f o r m a t i o n group o n G , b u t is often not a " n a t u r a l " representation of G . s
A n y set w h i c h satisfies the group a x i o m s is said t o have g r o u p s t r u c t u r e . It r e m a i n s to give an o b j e c t - r e l a t i o n analysis of a n a r b i t r a r y g r o u p s t r u c ture. T h e objects m a y o b v i o u s l y be t a k e n to be the g r o u p elements, a n d we need o n l y one r e l a t i o n to complete the s t r u c t u r e . It is a t e r n a r y r e l a t i o n
HI.
SOME EXAMPLES
OF
STRUCTURES
S3
a n d is defined i n t e r m s of the g r o u p p r o d u c t as follows: T h e group elements i n an ordered t r i p l e , [ g , h , k ) , are r e l a t e d i f g h = k . T h i s is, of course, not an a r b i t r a r y t e r n a r y r e l a t i o n , but m u s t be res t r i c t e d so t h a t the g r o u p a x i o m s are satisfied. In other words, the d o m a i n of d e f i n i t i o n o f the r e l a t i o n m u s t also satisfy " a x i o m " c o n d i t i o n s , one for each of the four g r o u p a x i o m s . F o r e x a m p l e , the c o n d i t i o n c o r r e s p o n d i n g t o the first g r o u p a x i o m requires t h a t there exist for every p a i r o f elements g , h i n the g r o u p a unique element k such t h a t { g , k , k ) is i n the d o m a i n of the r e l a t i o n . C o n d i t i o n s c o r r e s p o n d i n g t o the other a x i o m s are also easy to f o r m u l a t e . Conversely, any set of ordered t r i p l e s t h a t satisfies these a x i o m c o n d i t i o n s is associated w i t h a g r o u p whose p r o d u c t o p e r a t i o n " o " is defined b y the e q u a t i o n g o h = t , where ( g , h , k ) is the t r i p l e required by the first c o n d i t i o n . P r o o f s of the above assertions are s t r a i g h t f o r w a r d enough t h a t the interested reader m a y w i s h to s u p p l y the d e t a i l s . It is also not difficult to prove t h a t two g r o u p s t r u c t u r e s w i l l be isom o r p h i c as s t r u c t u r e s if, and o n l y if, they are i s o m o r p h i c as groups. I n other words, an abstract g r o u p is d e t e r m i n e d by its associated a b s t r a c t g r o u p s t r u c t u r e . F o r more or less o b v i o u s reasons, g r o u p s t r u c t u r e s are n o r m a l l y considered i n t e r m s of the group o p e r a t i o n r a t h e r t h a n the assoc i a t e d t e r n a r y r e l a t i o n . T h e o n l y purpose i n defining the r e l a t i o n here is s i m p l y to show t h a t g r o u p structures are covered by o u r general d e f i n i t i o n o f s t r u c t u r e s . T h e g r o u p example also illustrates the fact t h a t m a n y s t r u c tures are associated w i t h special definitions t h a t are " n a t u r a l " for t h e m . A s i n the case o f the s i m p l e structures considered previously, a g r o u p s t r u c t u r e m a y be looked at, or represented, i n a variety of ways. A l t h o u g h m a n y g r o u p s , such as the t r i a n g l e g r o u p , m a y be defined geom e t r i c a l l y , thus p r o v i d i n g a k i n d of geometric representation o f their g r o u p s t r u c t u r e , groups i n general m a y not a d m i t a convenient geometric type representation. O n the other h a n d , there is associated w i t h each finite g r o u p its m u l t i p l i c a t i o n table w h i c h records s y s t e m a t i c a l l y each of the ordered triples involved i n the r e l a t i o n a n d a c c o r d i n g l y provides, at least t h e o r e t i cally, a representation of the given group s t r u c t u r e . W e have already seen how this works i n the case of the t r i a n g l e g r o u p . If the order of a g r o u p is very large or infinite, then it w i l l be i m p o s s i b l e to write d o w n its full t a b l e , so the s t r u c t u r e i n f o r m a t i o n m u s t be recorded i n some other m a n n e r d e p e n d i n g u p o n the p a r t i c u l a r g r o u p i n v o l v e d . F o r e x a m p l e , the g r o u p of all r o t a t i o n s of a sphere i n t o itself is an infinite g r o u p . In order to s t u d y it (that is, discover its various s t r u c t u r a l properties) one m u s t either work directly w i t h the geometry or o b t a i n formulas for a r b i t r a r y r o t a t i o n s and a p p l y general algebraic m e t h o d s . A l s o , some infinite groups are generated b y a finite n u m b e r of elements, w h i c h therefore d e t e r m i n e
54
STRUCTURALISM AND
STRUCTURES
the g r o u p . T h e generators thus m a y provide a " m a n a g e a b l e " base f r o m w h i c h to s t u d y the f u l l g r o u p . It is also possible i n s o m e cases to s t u d y a given g r o u p t h r o u g h its subgroups. T h e v a r i o u s m e t h o d s for s t u d y i n g large groups i l l u s t r a t e some o f the techniques for o b t a i n i n g properties of structures too large or too c o m p l i c a t e d to be dealt w i t h i n their entirety. O u r discussion o f groups is perhaps longer and c o n t a i n s more t e c h n i c a l d e t a i l t h a n w o u l d n o r m a l l y be desirable i n a w o r k o f t h i s k i n d . G r o u p s , however, are of such great i m p o r t a n c e a n d e x h i b i t so m a n y o f the characteristics, as well as the p r o b l e m s , associated w i t h general s t r u c t u r e s , t h a t t i m e is well spent i n t r y i n g to o b t a i n some u n d e r s t a n d i n g o f t h e m . A l t h o u g h the triangle g r o u p served well as a vehicle for b r i n g i n g out i m p o r t a n t g r o u p properties, there are m a n y other examples t h a t c o u l d have served the same purpose. T h e i d e n t i f i c a t i o n and study of the g r o u p structures i n these n a t u r a l l y o c c u r r i n g objects is an excellent e x a m p l e of the s t r u c t u r a l i s t a p p r o a c h . 22.
The Real Number System
O u r final i l l u s t r a t i v e e x a m p l e of a s t r u c t u r e (or system) is the set of a l l r e a l n u m b e r s . It is a n infinite set w h i c h contains a l l of the o r d i n a r y n u m b e r s t h a t one takes for granted i n elementary m a t h e m a t i c s courses. T h i s set, however, is not s i m p l y a collection of " t h i n g s " , b u t , as the w o r d " s y s t e m " suggests, i t also has s t r u c t u r e . T h i s is by v i r t u e of the a r i t h m e t i c o p e r a t i o n s ( a d d i t i o n , s u b t r a c t i o n , m u l t i p l i c a t i o n , and d i v i s i o n ) a n d the order r e l a t i o n "less t h a n " (or, e q u i v a l e n t l y , "greater t h a n " ) . T h e s t r u c t u r e associated w i t h the order r e l a t i o n was o u t l i n e d i n Section 7, a n d , as was p o i n t e d out i n Section 2 1 , there are two group structures associated respectively w i t h the o p e r a t i o n s of a d d i t i o n and ( w i t h 0 excluded) m u l t i p l i c a t i o n . T h e real n u m b e r s y s t e m contains as subsystems the s y s t e m o f r a t i o n a l n u m b e r s and the s y s t e m of integers. A s u b s y s t e m of the real n u m b e r s is u s u a l l y u n d e r s t o o d to be a subset w h i c h is closed under the o p e r a t i o n s of a d d i t i o n a n d m u l t i p l i c a t i o n . It is c u s t o m a r i l y r e q u i r e d to be a g r o u p under a d d i t i o n b u t not necessarily under m u l t i p l i c a t i o n (even w i t h o u t 0). F o r e x a m p l e , the r a t i o n a l numbers f o r m a g r o u p under b o t h a d d i t i o n a n d m u l t i p l i c a t i o n ( w i t h o u t 0), but the integers f o r m a g r o u p o n l y u n d e r a d d i t i o n . T h e real n u m b e r s y s t e m itself is a s u b s y s t e m o f a larger n u m b e r s y s t e m consisting of the c o m p l e x n u m b e r s . T h e base objects i n the real n u m b e r s y s t e m are, of course, the i n d i v i d u a l n u m b e r s , so constitute an infinite set. T h e r e l a t i o n s i n c l u d e the t e r n a r y g r o u p r e l a t i o n s , given by the a d d i t i v e a n d m u l t i p l i c a t i v e g r o u p s , p l u s the b i n a r y order r e l a t i o n a n d the various r e l a t i o n s t h a t l i n k the above. O n e s i m p l i f y i n g feature is the fact that the groups i n v o l v e d are c o m m u t a t i v e . T h e f a m i l i a r number line provides a satisfactory geometric representation of the order s t r u c t u r e of the real numbers. T h e a d d i t i v e g r o u p m a y also be
III. S O M E E X A M P L E S
OF
STRUCTURES
55
so represented i n a fairly s t r a i g h t f o r w a r d way, b u t the m u l t i p l i c a t i v e group is not so clearly represented. T h e r e are a great m a n y s t r u c t u r e s associated i n one way or another w i t h the real n u m b e r s y s t e m a n d c e r t a i n s p e c i a l ones do a d m i t nice geometric representations, t h r o u g h a n a l y t i c geometry, for e x a m p l e . T h e most precise m e t h o d of defining the f u n d a m e n t a l s t r u c t u r e of the real numbers is by means of a s y s t e m of a x i o m s . T h e a x i o m s , a m o n g other things, specify the basic properties of the operations a n d the order r e l a t i o n . In p a r t i c u l a r , the a x i o m s assert t h a t the real n u m b e r s c o n s t i t u t e a group under a d d i t i o n a n d , i f 0 is o m i t t e d , a g r o u p under m u l t i p l i c a t i o n . T h e y specify t h a t b o t h groups are c o m m u t a t i v e , a n d i n c l u d e a n a x i o m of d i s t r i b u t i v i t y w h i c h connects a d d i t i o n a n d m u l t i p l i c a t i o n . T h e r e are also a x i o m s t h a t characterize the order r e l a t i o n a n d connect i t to the g r o u p o p erations, p l u s a s p e c i a l "completeness" a x i o m , w h i c h ensures the existence of certain n u m b e r s , such as the square root of 2, for e x a m p l e . T h e f u n d a m e n t a l s t r u c t u r e and the m a n y associated s t r u c t u r e s m a y then be b u i l t u p o n the a x i o m base t h r o u g h a process i n v o l v i n g definitions and c h a i n s of logical deductions. A s y s t e m of a x i o m s m a y be regarded as a ( p a r t i a l ) representation of the extended s t r u c t u r e t h a t it defines. A l s o , the development o f an a x i o m a t i c a l l y defined s t r u c t u r e f r o m the a x i o m s is another i l l u s t r a t i o n o f the e v o l u t i o n of structures m e n t i o n e d i n connection w i t h the P a s c a l C o n f i g u r a t i o n i n Section 19. W e w i l l have m u c h more t o say i n S e c t i o n 25 c o n c e r n i n g the a x i o m a t i c definition of m a t h e m a t i c a l s t r u c t u r e s a n d the general p r i n c i p l e s t h a t guide the b u i l d i n g of such a s t r u c t u r e u p o n its a x i o m a t i c base. A l t h o u g h the s y s t e m of real n u m b e r s m a y be p a r t i a l l y represented by the f a m i l i a r n u m b e r l i n e , its s t r u c t u r e is u l t i m a t e l y " a n a l y t i c " , as o p p o s e d to g e o m e t r i c , i n character. In other words, its properties are u s u a l l y expressed in the f o r m a l s y m b o l i c language c o m m o n l y associated w i t h m a t h e m a t i c s . T h e same r e m a r k is also true for m a n y groups. These structures are a c c o r d i n g l y more difficult to v i s u a l i z e t h a n are the other structures t h a t we have e x a m i n e d . O n the other h a n d , m o s t people have a fairly accurate i n t u i t i v e u n d e r s t a n d i n g o f the basic s t r u c t u r e of the real n u m b e r s y s t e m f r o m their experiences w i t h o r d i n a r y a r i t h m e t i c a n d elementary a l g e b r a , a l t h o u g h they perhaps have not thought of numbers as c o n s t i t u t i n g a s t r u c t u r e , or s y s t e m . In any case, there is no such t h i n g as a c o m p l e t e u n d e r s t a n d i n g of the f u l l s t r u c t u r e since i t is p o t e n t i a l l y infinite i n extent a n d s u p p o r t s e n o r m o u s l y c o m p l e x structures i m p o r t a n t i n their o w n r i g h t . These "super s t r u c t u r e s " encompass a very large p a r t of m a t h e m a t i c s a n d are c o n s t a n t l y b e i n g developed and extended t h r o u g h m a t h e m a t i c a l research.
CHAPTER
MANAGEMENT
IV
OF COMPLEX STRUCTURES
23.
T h e Analysis of Structures M a n y of the structures t h a t are e x p l i c i t l y dealt w i t h i n m a t h e m a t i c s and the sciences are far more c o m p l e x t h a n the examples of s t r u c t u r e s t h a t we have e x a m i n e d so far. T h e same is true o f structures i m p l i c i t i n m a n y other fields a n d those r o u t i n e l y a n d a u t o m a t i c a l l y processed by the m i n d . D e spite t h e i r relative s i m p l i c i t y , however, o u r e x a m p l e s i l l u s t r a t e i m p o r t a n t properties of the o b j e c t s a n d relations i n v o l v e d i n any s t r u c t u r e . T h e y also u n d e r l i n e the fact t h a t structures are u s u a l l y not presented i n a n a n a l y z e d f o r m , a n d t h a t except for very special or s i m p l e cases, the a n a l y s i s of cert a i n structures i n t o objects a n d relations m a y be q u i t e difficult. F i n a l l y , the examples show t h a t a given s y s t e m m a y be a n a l y z a b l e i n more t h a n one way, d e p e n d i n g u p o n w h i c h p o r t i o n s or aspects of the i n f o r m a t i o n cont a i n e d i n the s y s t e m one wishes to emphasize. It is fortunate t h a t i n a general discussion of structures as presented here, the a n a l y s i s is p r i m a r i l y of t h e o r e t i c a l i m p o r t a n c e . It is u t i l i z e d m a i n l y t o i l l u s t r a t e p r i n c i p l e s a n d t o suggest ways o f t h i n k i n g a b o u t very c o m p l e x structures for w h i c h detailed analyses m a y not be p r a c t i c a l . In a c t u a l practice, we tend to deal w i t h most s t r u c t u r e s o n an i n t u i t i v e level w i t h o u t need for a detailed analysis. T h i s is a very i m p o r t a n t a b i l i t y t h a t o b v i o u s l y suggests a g a i n t h a t the m i n d (or b r a i n ) is s p e c i a l l y o r g a nized for d e a l i n g d i r e c t l y w i t h s t r u c t u r e s . Nevertheless, an a n a l y s i s i n t o objects a n d r e l a t i o n s , or s o m e t h i n g analogous t o i t , is s o m e t i m e s required for a deeper a n d more s u b t l e u n d e r s t a n d i n g of a subject. F o r e x a m p l e , such analyses, t h o u g h often disguised i n one way or another, are c o m m o n t o m a t h e m a t i c s . T h e same is true o f any serious, n o n s u p e r f i c i a l a p p l i c a t i o n of s t r u c t u r a l i s m to other fields. T h i s is the technical side o f the s u b j e c t , a n d its appearance w i l l vary greatly w i t h the field. A l t h o u g h such a n a l y ses are n a t u r a l i n m a t h e m a t i c s a n d closely related subjects, the p r o b l e m m a y be more difficult i n certain other areas, because the s t r u c t u r e s m a y be concealed w i t h i n m a t e r i a l t h a t contains large a m o u n t s o f s t r u c t u r a l l y irrelevant i n f o r m a t i o n .
57
58
24.
STRUCTURALISM
A p p r o x i m a t i o n of
AND
STRUCTURES
Structures
O n e o f the most difficult t h i n g s t o u n d e r s t a n d a b o u t m e n t a l a c t i v i t y is how the m i n d c a n manage, b o t h a u t o m a t i c a l l y a n d efficiently, so m a n y ext r e m e l y c o m p l e x s t r u c t u r e s . F u r t h e r m o r e , t h i s is a f a c u l t y e x h i b i t e d by a l l h u m a n s ( a n d perhaps also some a n i m a l s ) i n their everyday encounters w i t h things a r o u n d t h e m . A t y p i c a l e x a m p l e is the a b i l i t y to recognize almost i n s t a n t l y a f a m i l i a r face, even when i t has not been observed recently and has perhaps changed s u b s t a n t i a l l y i n the i n t e r i m . It is a deep mystery as to how the mass of i n f o r m a t i o n necessarily i n v o l v e d i n such cases is recorded and processed, t h o u g h structures m u s t c e r t a i n l y p l a y a f u n d a m e n t a l role t h r o u g h o u t . It appears v i r t u a l l y hopeless to do more t h a n suggest w h a t m i g h t conceivably take place, by e x a m i n i n g c e r t a i n r e l a t i v e l y s i m p l e but general m e t h o d s of d e a l i n g w i t h c o m p l e x s t r u c t u r e s . T h e m e t h o d s are m a i n l y ways of " a p p r o x i m a t i n g " or " r e d u c i n g " s t r u c tures, the general i d e a b e i n g to derive f r o m a given s t r u c t u r e a s i m p l e r a n d m o r e manageable one t h a t contains a significant p o r t i o n of the c r u c i a l i n f o r m a t i o n carried by the o r i g i n a l . T h e y are i n s p i r e d by techniques f r o m m a t h e m a t i c s and other more or less f o r m a l l y organized subjects. A l t h o u g h such techniques are c e r t a i n l y not e x p l i c i t i n everyday experience, it is nevertheless p l a u s i b l e t o assume t h a t s i m i l a r or analogous a p p r o x i m a t i o n s are p r o d u c e d a u t o m a t i c a l l y i n the m e n t a l processing of quite a r b i t r a r y s t r u c tures. T h e u n d e r l y i n g i d e a is t h a t the m i n d , when confronted w i t h the p r o b l e m of c o m p r e h e n d i n g a very c o m p l e x s t r u c t u r e , w i l l a u t o m a t i c a l l y replace t h a t structure by certain s i m p l e r a p p r o x i m a t i n g s u b s t r u c t u r e s . O n e possible choice is a "skeleton s t r u c t u r e " , w h i c h is a s u b s t r u c t u r e o b t a i n e d by o m i t t i n g the "fine" (or " l o c a l " ) details of the o r i g i n a l . A n e x a m p l e w o u l d be the s t r u c t u r e o b t a i n e d by o m i t t i n g a l l but the t r u n k and m a i n branches of a tree. A skeleton is p r e s u m e d to be s i m p l e r t h a n the given s t r u c t u r e , a n d t o share some of its characteristic " g l o b a l " properties. In this sense, it is a k i n d o f inner a p p r o x i m a t i o n to the o r i g i n a l . O n c e a s u b s t r u c t u r e is identified, by whatever m e t h o d , one is d r i v e n to " i m p r o v e " the a p p r o x i m a t i o n by e x t e n d i n g it t o i n c o r p o r a t e more of the i n f o r m a t i o n contained i n the o r i g i n a l . T h i s process m a y be m o r e or less a u t o m a t i c , as i n c o m m o n experience, or m a y be h i g h l y d i s c i p l i n e d , as i n the case o f scientists a n d scholars w o r k i n g o n problems i n their respective fields. T h e extension process may involve more or less i n f o r m a l g r o w t h processes, analogous to those observed i n s o m e of our examples, or m a y he q u i t e f o r m a l , as i n the a x i o m a t i c process discussed i n the next section. 25. A x i o m a t i c s a n d
Approximation
T h e a x i o m a t i c m e t h o d , also called the m e t h o d of " i m p l i c i t d e f i n i t i o n " ,
IV. M A N A G E M E N T O F C O M P L E X
STRUCTURES
59
is n o r m a l l y associated w i t h m a t h e m a t i c s a n d is o b v i o u s l y not a n everyday technique. It nevertheless has a n u m b e r of features t h a t are a l m o s t c e r t a i n l y present i n m o r e i n f o r m a l a n d i n t u i t i v e m e t h o d s o f d e a l i n g w i t h c o m p l e x s t r u c t u r e s . T h e o b j e c t i v e here is to give a d e s c r i p t i o n o f the m e t h o d f r o m the p o i n t of v i e w of a p p r o x i m a t i o n of structures. A very different m e t h o d of a p p r o x i m a t i o n , w h i c h we c a l l a " c o n t r a c t i o n " , w i l l be i n t r o d u c e d i n S e c t i o n 27. T h e s t a r t i n g p o i n t for an a x i o m a t i c setup is a more or less i n f o r m a l l y u n d e r s t o o d s y s t e m , a n d the goal is to define or describe the l a t t e r as precisely as possible. T h e idea is t o f o r m u l a t e a x i o m s t h a t express c e r t a i n basic properties of the s y s t e m a n d w h i c h " c h a r a c t e r i z e " i t , i n the sense t h a t " a l l " of its "expected" properties are derivable f r o m the basic ones t h r o u g h l o g i c a l d e d u c t i o n . A g o o d a x i o m s y s t e m thus s h o u l d define a basic system w h i c h p o t e n t i a l l y determines the full s y s t e m t h r o u g h successive extensions of the basic one. T h e requirement t h a t the a x i o m s d e t e r m i n e the f u l l s y s t e m m u s t , of course, be q u a l i f i e d , because the o r i g i n a l s y s t e m m a y not be s h a r p l y defined a n d the extension process m a y continue indefinitely. In other words, i t m a y not be m e a n i n g f u l or possible t o describe the f u l l s y s t e m i n this f o r m a l sense. A n e x a m p l e of the a x i o m a t i c m e t h o d , t h a t is f a m i l i a r to everyone, is given b y the geometry o f o r d i n a r y " p h y s i c a l s p a c e " , w h i c h we " k n o w " f r o m direct experience and w h i c h is described t h r o u g h E u c l i d ' s a x i o m s . A n o t h e r e x a m p l e is the real n u m b e r s y s t e m (as described i n S e c t i o n 22), w h i c h we " k n o w " f r o m e l e m e n t a r y m a t h e m a t i c s p r i o r to the s t a n d a r d a x i o m a t i c t r e a t m e n t . T h e reader w i l l note t h a t these classical e x a m p l e s , i n w h i c h an a p p r o p r i a t e s y s t e m of a x i o m s is f o r m u l a t e d t o describe an e x i s t i n g inform a l l y u n d e r s t o o d s y s t e m , are also excellent i l l u s t r a t i o n s o f the s t r u c t u r a l i s t approach. W h e t h e r or not a given set of a x i o m s does indeed characterize a p a r t i c u l a r , i n t u i t i v e l y u n d e r s t o o d s y s t e m , is o b v i o u s l y s o m e t h i n g t h a t is also i n t u i t i v e a n d m u s t be agreed u p o n by everyone concerned. T h e a x i o m s c o u l d t u r n out to be i n a d e q u a t e at any t i m e , a n d w o u l d a c c o r d i n g l y have t o be a u g m e n t e d or replaced. O n the other h a n d , i f they p r o d u c e enough of the i m p o r t a n t expected properties, they w i l l be t a k e n , at least t e n t a t i v e l y , as a w o r k i n g d e f i n i t i o n for the given s y s t e m . If no " u n a c c e p t a b l e " properties are deduced, the a x i o m s w i l l e v e n t u a l l y become the preferred d e f i n i t i o n of the s y s t e m . A l t h o u g h a x i o m s can p r o v i d e a p r e c i s e d e f i n i t i o n , they u s u a l l y w i l l not c o n s t i t u t e a c o m p l e t e d e f i n i t i o n , i n the sense a l l u d e d t o i n Section 4 i n c o n n e c t i o n w i t h the definition o f s t r u c t u r e . T h e y nevertheless do c o n t a i n i m p l i c i t l y a l l properties of the s y s t e m d e t e r m i n e d by t h e m , because these properties are p r e s u m e d t o be either already c o n t a i n e d i n the a x i o m s or
<>(•>
STRUCTURALISM
AND STRUCTURES
derivable f r o m t h e m . T h e d e d u c t i o n process, w h i c h is analogous t o the e l a b o r a t i o n discussion for an a p p r o x i m a t e d e f i n i t i o n (Section 4), is o b v i o u s l y a process of successive a p p r o x i m a t i o n . T h e s y s t e m o f a x i o m s defines d i r e c t l y a basic s t r u c t u r e , w h i c h is a s u b s t r u c t u r e o f the desired one a n d a first a p p r o x i m a t i o n to i t . T h e basic s t r u c t u r e is then developed i n t o successively larger substructures. T h e l a t t e r grow t h r o u g h discovery or c o n s t r u c t i o n of new objects a n d relations i m p l i e d b y the a x i o m s a n d their consequences. T h e r o u g h idea here is t h a t the larger the s u b s t r u c t u r e the m o r e i n f o r m a t i o n i t w i l l i n c l u d e , a n d the more i n f o r m a t i o n t h a t a s u b s t r u c t u r e contains the better it w i l l a p p r o x i m a t e the f u l l s t r u c t u r e . In a c t u a l practice t h i s assertion needs to be qualified b y some m e t h o d of w e i g h t i n g the i n f o r m a t i o n , because some i t e m s of i n f o r m a t i o n w i l l generally be more i m p o r t a n t t h a n others. F o r e x a m p l e , properties are not derived at r a n d o m f r o m a set of a x i o m s b u t are n o r m a l l y a i m e d t o w a r d some g o a l and s u b j e c t to c e r t a i n s t a n d a r d s of q u a l i t y . T h e l a t t e r m a y involve c r i t e r i a such as "usefulness", or "relevance t o the b o d y of e x i s t i n g k n o w l e d g e " , or s i m p l y "elegance". It is no d o u b t possible t o f o r m u l a t e a s y s t e m o f a x i o m s t h a t m i g h t capt u r e , at least for a very wide class of abstract s t r u c t u r e s , a general n o t i o n of s t r u c t u r e consistent w i t h t h a t b e i n g developed here. O u r d e f i n i t i o n of s t r u c t u r e , a l o n g w i t h certain f o r m a l properties such as the ones already discussed a n d others t h a t w i l l c o m e u p l a t e r , are a step i n t h a t d i r e c t i o n . A n a t u r a l a p p r o a c h m i g h t be t h r o u g h category theory, w h i c h s h o u l d be general enough to a c c o m m o d a t e the desired result. O n the other h a n d , f r o m o u r current p o i n t o f v i e w , a completely f o r m a l t r e a t m e n t s t i l l seems s o m e w h a t p r e m a t u r e at t h i s stage o f development. T h e r e r e m a i n s t o o m u c h yet to be exposed a b o u t general s t r u c t u r e s . 26.
Structural Determinism and Reductionism
T h e topics considered i n this section, t h o u g h not d i r e c t l y concerned w i t h the m a i n t h e m e o f the chapter, are i m p l i c i t i n the a p p r o x i m a t i o n m e t h o d s discussed i n the preceding two sections. In a d d i t i o n , the n o t i o n of s t r u c t u r a l d e t e r m i n i s m is of f u n d a m e n t a l i m p o r t a n c e a n d w i l l a p p e a r later i n a variety of different contexts. Before b e g i n n i n g a f o r m a l discussion o f d e t e r m i n i s m , we describe a very s i m p l e e x a m p l e t o i l l u s t r a t e i n concrete t e r m s w h a t is i n v o l v e d . T h e e x a m ple, w h i c h is d r a w n f r o m personal experiences, w i l l no d o u b t suggest m a n y s i m i l a r e x a m p l e s to the reader. O n e day years ago w h e n m y eldest son was q u i t e y o u n g , a neighbor gave h i m a toy g u n as a present. T h e g u n made a l o u d p o p p i n g noise when fired, but by the t i m e I a r r i v e d h o m e t h a t evening it h a d ceased to o p e r a t e . In an a t t e m p t to relieve the crisis, I i m m e d i a t e l y took the g u n a p a r t h o p i n g to
IV. M A N A G E M E N T O F C O M P L E X S T R U C T U R E S
61
fix i t . It was easy to see how the g u n was supposed t o w o r k , a n d also to see w h y i t h a d f a i l e d — there was a p a r t m i s s i n g . T h e r e u p o n , I asked m y wife i f she h a d seen a s m a l l piece o f m e t a l " a b o u t so b i g " , and I drew a sketch o f i t . It so h a p p e n e d t h a t she d i d remember p i c k i n g up a m e t a l o b j e c t f r o m the floor, w o n d e r i n g at the t i m e w h a t it was. She was also p u z z l e d t h a t I c o u l d k n o w a b o u t the existence a n d more or less exact appearance o f s o m e t h i n g t h a t I h a d never seen. T h e m y s t e r y was not very deep, of course, since the gun s t r u c t u r e , m i n u s the m i s s i n g piece, a c t u a l l y d e t e r m i n e d i n a n o b v i o u s way the m i s s i n g p a r t . D e s p i t e the t r i v i a l i t y , " M r . F i x i t " was credited w i t h another success a n d everyone was h a p p y . N o w let us t r y t o define m o r e precisely a general n o t i o n of s t r u c t u r a l det e r m i n i s m . It w i l l be useful t o consider a setup considerably more i n c l u s i v e t h a n t h a t suggested by the e x a m p l e . C o n s i d e r a s t r u c t u r e S and t w o of its s u b s t r u c t u r e s , S' a n d S". If it is possible t o construct ( w i t h i n S ) the s t r u c t u r e S" f r o m S', then we say t h a t S" d e t e r m i n e s S" w i t h i n S. If S" contains S', i n p a r t i c u l a r i f S" = S, then S' determines S" i n t e r n a l l y . If S' a n d S" are d i s j o i n t , then S' determines S" e x t e r n a l l y w i t h i n S. A n y s u b s t r u c t u r e contains a p o r t i o n of the i n f o r m a t i o n i n c o r p o r a t e d i n its parent s t r u c t u r e . A l s o , a s t r u c t u r e w h i c h determines another contains i m p l i c i t l y a l l of the i n f o r m a t i o n possessed b y the l a t t e r . I n c i d e n t a l l y , the toy g u n e x a m p l e , as described above, is a case of e x t e r n a l d e t e r m i n i s m , because the m i s s i n g p a r t (substructure) was d e t e r m i n e d by the s u b s t r u c t u r e consisting of the g u n m i n u s the p a r t . A t the same t i m e , i t c o u l d be regarded as i n t e r n a l , because the full s t r u c t u r e was d e t e r m i n e d by a s u b s t r u c t u r e . Because the m e a n i n g of the w o r d " c o n s t r u c t " is not e n t i r e l y clear, the above d e f i n i t i o n is more or less a m b i g u o u s , so is not a c t u a l l y c o m p l e t e . A s i m i l a r p r o b l e m is also present i n the n o t i o n o f " e v o l u t i o n " , or " e x t e n s i o n " , of a s t r u c t u r e , s i m p l y because the a c t u a l m e t h o d o f g r o w t h is often not specified. These details, t h o u g h often not c r u c i a l i n p a r t i c u l a r cases, are sometimes rather tedious to s u p p l y . T h e general i d e a is we 11-illustrated, however, by a n a x i o m s y s t e m . T h e s t r u c t u r e d i r e c t l y associated w i t h the set of a x i o m s d e t e r m i n e s the full s t r u c t u r e , i n the sense t h a t the l a t t e r is p o t e n t i a l l y c o n s t r u c t i b l e f r o m the former t h r o u g h a general process of d e d u c t i o n r e s u l t i n g i n the discovery or creation o f new o b j e c t s a n d relations i m p l i e d b y the a x i o m s a n d their consequences. T h i s is also an e x a m p l e of internal determinism. A n o t h e r e x a m p l e of external d e t e r m i n i s m is p r o v i d e d by the P a s c a l configuration (Section 19), w h i c h is d e t e r m i n e d by a complete hexagon i n s c r i b e d i n a conic. R e c a l l t h a t the 45 p o i n t s a n d 60 lines of the P a s c a l c o n f i g u r a t i o n are disjoint f r o m the 6 points and 15 lines of the complete
62
STRUCTURALISM
AND STRUCTURES
h e x a g o n . T h e p o i n t - l i n e s t r u c t u r e c o n s i s t i n g o f the u n i o n of these t w o conf i g u r a t i o n s m a y be t a k e n as the parent s t r u c t u r e S, so the P a s c a l configur a t i o n is d e t e r m i n e d w i t h i n S b y the complete h e x a g o n . I n t h i s e x a m p l e , the m e t h o d of c o n s t r u c t i o n is essentially geometric. M a n y a d d i t i o n a l exa m p l e s exist a m o n g p h y s i c a l s t r u c t u r e s , a n o b v i o u s one b e i n g the g r o w t h of a c r y s t a l . S o m e b i o l o g i c a l e x a m p l e s w i l l be discussed i n C h a p t e r V I I I . A s already observed i n the preceding section, a n a t u r a l a n d m o r e or less a u t o m a t i c a p p r o a c h to u n d e r s t a n d i n g a c o m p l e x s t r u c t u r e is t h r o u g h its substructures. I n a given case, the effectiveness of the a p p r o a c h w i l l d e p e n d u p o n the degree t o w h i c h the chosen s u b s t r u c t u r e determines the f u l l s t r u c t u r e . A n especially desirable case, f o u n d p r i m a r i l y i n the p h y s i c a l sciences, is a d e t e r m i n i n g s u b s t r u c t u r e w h i c h a d m i t s a m a t h e m a t i c a l repres e n t a t i o n , a n d m a y a c c o r d i n g l y be developed m a t h e m a t i c a l l y t o give precise i n f o r m a t i o n c o n c e r n i n g the parent s t r u c t u r e . T h e concept o f s t r u c t u r a l det e r m i n i s m also casts some l i g h t o n p r o b l e m s associated w i t h " r e d u c t i o n i s m " as an a p p r o a c h t o u n d e r s t a n d i n g c o m p l e x systems. R o u g h l y s p e a k i n g , red u c t i o n i s m is a n a t t e m p t t o u n d e r s t a n d a s y s t e m b y r e d u c i n g i t t o c e r t a i n basic p r i n c i p l e s w h i c h are a l r e a d y u n d e r s t o o d . T h e a p p r o a c h w i l l o b v i o u s l y be effective i n s i t u a t i o n s , such as those described above, i n w h i c h a r e l a t i v e l y s i m p l e s u b s t r u c t u r e determines the whole s t r u c t u r e . P h y s i c a l science serves, d i r e c t l y or i n d i r e c t l y , as the p r i n c i p l e m o d e l for r e d u c t i o n i s m of this kind. D e s p i t e the u n i v e r s a l success of the a p p r o a c h i n science a n d technology, the w o r d " r e d u c t i o n i s m " carries a negative c o n n o t a t i o n . T h e m e t h o d is frequently c r i t i c i z e d i n other contexts, because i t ignores the p r i n c i p l e t h a t "the w h o l e is greater t h a n the s u m of i t s p a r t s " . It m a y also be regarded, often w i t h g o o d reason, as d o i n g violence t o a subject b y either i g n o r i n g or d i s t o r t i n g the very t h i n g s t h a t need to be u n d e r s t o o d . F r o m the s t r u c t u r e p o i n t of v i e w , the difficulties i n these cases result i n one w a y or another f r o m r e d u c t i o n s to s u b s t r u c t u r e s t h a t are not d e t e r m i n i n g . T h o u g h a n o n d e t e r m i n i n g s u b s t r u c t u r e m a y be i n t e r e s t i n g i n its o w n r i g h t , p o s s i b l y i m p o r t a n t i n f o r m a t i o n carried b y the f u l l s t r u c t u r e m a y be inaccessible f r o m i t , so w i l l be i r r e t r i e v a b l y lost i n the r e d u c t i o n . I n other words, the general o b j e c t i o n t o such r e d u c t i o n s is n o t s i m p l y a loss of i n f o r m a t i o n , w h i c h m a y be m o r e or less i n e v i t a b l e , b u t r a t h e r the i r r e t r i e v a b l e loss of essentia? i n f o r m a t i o n . Defects of t h i s k i n d are often present i n efforts t o describe p h e n o m e n a outside of the p h y s i c a l sciences i n p u r e l y p h y s i c a l t e r m s . W e m e n t i o n , i n p a s s i n g , another t y p e of r e d u c t i o n i s m w h i c h is a s p e c i a l -case of the c o n t r a c t i o n process discussed i n the next section. It is i l l u s t r a t e d b y the e x a m p l e of h u m a n society a n d based o n the fact t h a t the l a t t e r is c o m p o s e d of very c o m p l e x i n d i v i d u a l s . T h e i d e a is t h a t i n d i v i d u a l h u m a n beings have c o m p l e x i n t e r n a l structures t h a t o b v i o u s l y p l a y a n essential
IV. M A N A G E M E N T O F C O M P L E X
STRUCTURES
63
role i n m a n y aspects of the society to w h i c h they b e l o n g . F u r t h e r m o r e , the i n t e r n a l m a k e u p of the i n d i v i d u a l s cannot be deduced s t r i c t l y f r o m the o v e r a l l s o c i a l s t r u c t u r e . A t the same t i m e , sociologists, and also a n t h r o p o l ogists (e.g., R a d c l i f f e - B r o w n ) , regard h u m a n society as a s t r u c t u r e whose o b j e c t s are i n d i v i d u a l h u m a n beings, a r e d u c t i o n t h a t a c c o r d i n g l y excludes e x p l i c i t c o n s i d e r a t i o n of the i n t e r n a l structures of the i n d i v i d u a l members of society. T h e result is therefore an irretrievable loss of i n f o r m a t i o n essent i a l for the u n d e r s t a n d i n g of a variety of h u m a n social p r o b l e m s . T h i s does not m e a n , o f course, t h a t such r e d u c t i o n s are necessarily w i t h o u t value. Some of these p r o b l e m s w i t h social structures are discussed by Peter C a w s [C2, Sec. 40]. M a n y examples of r e d u c t i o n i s t failures result f r o m i g n o r i n g a n i m p o r t a n t feature of c e r t a i n s t r u c t u r e representations. A n extreme e x a m p l e of w h a t we have i n m i n d is p r o v i d e d by the c o m m o n practice of i l l u s t r a t i n g properties of a geometric figure by d r a w i n g s on a piece of paper. I n t h i s case, no one i n t h e i r r i g h t m i n d w o u l d try t o deduce those properties f r o m the physi c a l properties of the paper. Y e t , it is easy to f a l l i n t o e x a c t l y this t y p e of error i n more subtle examples. T h e difficulty lies i n the fact t h a t , a l t h o u g h one s t r u c t u r e m a y be representable as a s u b s t r u c t u r e of another, one c a n not expect to be able to describe, or recover, the s u b s t r u c t u r e s t r i c t l y i n t e r m s of the second s t r u c t u r e . T h e point is t h a t specification of the s u b s t r u c t u r e requires i n f o r m a t i o n external to the representing s t r u c t u r e . T h i s is a s p e c i a l case of the following more general p h e n o m e n o n . G i v e n any n o n t r i v i a l s t r u c t u r e , it is always possible t o b u i l d on it other s t r u c t u r e s whose objects a n d relations may be formed more or less a r b i t r a r i l y out of the objects, substructures, and relations w i t h i n the given s t r u c t u r e . T h i s process m a y be repeated as often as desired, y i e l d i n g an h i erarchical s t r u c t u r e t h a t m a y be q u a l i t a t i v e l y very different f r o m the i n i t i a l s t r u c t u r e . Observe t h a t the c o n s t r u c t i o n w i l l generally fail to be d e t e r m i n e d b y the o r i g i n a l s t r u c t u r e , s i m p l y because the choices at each stage c a n be quite independent of the l a t t e r . In other words, i n d e t e r m i n a t e e x t e r n a l factors m a y enter i n t o the c o n s t r u c t i o n . B i o l o g i c a l s y s t e m s o b v i o u s l y i n v o l v e c o m p l e x s t r u c t u r e s b u i l t o n u n d e r l y i n g c h e m i c a l - p h y s i c a l s t r u c t u r e s i n this m a n n e r , the d r i v i n g force b e i n g the process of e v o l u t i o n . A n o t h e r e x a m p l e is the higher m e n t a l p h e n o m e n a associated w i t h b r a i n s t r u c t u r e , also discussed i n Section 36. Ideas s i m i l a r t o some of the above w i l l be found i n the first a r t i c l e by F o d o r a n d P y l y s h y n i n the b o o k , C o n n e c t i o n s a n d S y m b o l s , edited by P i n k e r a n d M e h l e r [P5, p. 63], If a c o n s t r u c t i o n involves i n d e t e r m i n a t e e x t e r n a l factors, t h e n a reductionist a t t e m p t t o derive i t f r o m the u n d e r l y i n g s t r u c t u r e is l i k e l y to f a i l . O n the other h a n d , it is possible t h a t a r e d u c t i o n f r o m one hierarchy i n the c o n s t r u c t i o n to a lower one w i l l be successful. In fact, this is a c o m m o n
64
STRUCTURALISM
AND STRUCTURES
m e t h o d of s t u d y i n g such c o n s t r u c t i o n s . F o r e x a m p l e , t h o u g h it m a y be i m possible to make a satisfactory analysis of higher m e n t a l functions s t r i c t l y in t e r m s of b r a i n physiology, i t is often possible to f o r m u l a t e a m e a n i n g f u l analysis at a psychological level. A general m i s u n d e r s t a n d i n g of the successes of r e d u c t i o n i s m i n science (and technology) versus its failures i n the h u m a n i t i e s is an i m p o r t a n t factor i n the " T w o C u l t u r e s " gap described by C P . S n o w [S6]. T h i s is a serious s p l i t , not w e l l - u n d e r s t o o d by m a n y on either side. M a n y scientists look w i t h s u s p i c i o n o n any subject t h a t is inaccessible to a precise s t r a i g h t f o r w a r d t r e a t m e n t , a n d w i l l regard it as not w o r t h their serious a t t e n t i o n . T h e y also have l i t t l e patience w i t h the w o r d y discussion style t h a t is so t y p i c a l of the h u m a n i t i e s . T h e i r p r o b l e m is clearly an i n a b i l i t y to see any c o n n e c t i o n between scientific m e t h o d a n d the necessarily different approaches i n the h u m a n i t i e s . M a n y h u m a n i s t s , o n the other h a n d , regard the scientific m e t h o d as c r u d e l y m e c h a n i c a l , a n d , despite the p r o f o u n d i m p a c t t h a t t e c h n o l o g i c a l developments have h a d o n m o d e r n society, u n w o r t h y o f the h u m a n i n t e l lect. A s c o m p a r e d to t r a d i t i o n a l scholars, scientists are often regarded as r e s e m b l i n g robots. T h e p r o b l e m i n this case seems to be s i m p l e ignorance o f the true n a t u r e o f science as a p r o f o u n d l y creative endeavor. A n extreme version of t h i s h u m a n i s t v i e w of science is i l l u s t r a t e d by the f o l l o w i n g r e m a r k made by h i s t o r i a n , S i r I s a i a h B e r l i n [ B l ] , a n d q u o t e d i n an a r t i c l e b y P . J . D a v i s [D2]: " A person w h o lacks c o m m o n intelligence c a n be a physicist of genius, but not even a mediocre h i s t o r i a n " . T h i s s t a t e m e n t , w h i c h is based on a m u c h d i s t o r t e d view of physics, is perhaps not representative o f the m a j o r i t y of h u m a n i s t s , t h o u g h m i l d e r versions are c e r t a i n l y not u n c o m m o n . Despite the a b s u r d i t y of the l i t e r a l s t a t e m e n t , it contains a g e r m of t r u t h , w h i c h is expressed more cogently, interestingly enough, b y a p h y s i c i s t , E . D . C . C o h e n . T h e C o h e n r e m a r k , w h i c h follows, was m a d e i n reference to the c a n d i d a c y of D a v i d B a l t i m o r e , a N o b e l laureate i n biology, for the presidency o f Rockefeller U n i v e r s i t y [C5]: " W h a t Rockefeller needs is a president w h o is wise i n the b i b l i c a l sense. T o w i n a N o b e l P r i z e doesn't m e a n t h a t y o u are wise even t h o u g h y o u are s m a r t and clever. W e w i l l see how wise D a v i d B a l t i m o r e i s " . T h e images of a dedicated scientist projected b y the two s t a t e m e n t s have a c o m m o n element, t h o u g h the second contains far m o r e w i s d o m t h a t the first. A l t h o u g h the c u l t u r e gap is very real a n d the extreme views o n b o t h sides are u n d e r s t a n d a b l e , I believe t h a t a serious s t r u c t u r a l analysis of c e r t a i n p o r t i o n s of the o p p o s i n g d i s c i p l i n e s , a l o n g w i t h an i n d i c a t i o n of how workers deal w i t h the s t r u c t u r e s , w o u l d reveal m u c h t h a t they have i n c o m m o n . T h e r e is n o question t h a t the role of structures is more difficult t o d o c u -
IV. M A N A G E M E N T O F C O M P L E X S T R U C T U R E S
65
ment i n the h u m a n i t i e s t h a n i n science and technology, a n d t h a t the s t r u c tures a p p e a r i n g i n the latter are s p e c i a l , often b e i n g o f m a t h e m a t i c a l t y p e . It is also true t h a t these special "scientific" s t r u c t u r e s have m a n y p r o p e r ties t h a t one cannot hope to f i n d elsewhere, and a t t e m p t s to a p p l y t h e m to nonscientific subjects are the source of m a n y r e d u c t i o n i s t f a i l u r e s . Nevertheless, s t r u c t u r e s must be dealt w i t h consciously or u n c o n s c i o u s l y in a l l areas, a n d an awareness of some o f their u n i v e r s a l properties w o u l d d o m u c h t o b r i n g out s i m i l a r i t i e s as opposed to differences between fields. A s y s t e m a t i c exposure o f these s t r u c t u r a l s i m i l a r i t i e s w o u l d do m u c h t o bridge the w i d e n i n g c u l t u r e g a p , a n d m i g h t also help t o reduce the widespread scientific i l l i t e r a c y t h a t plagues our society. 27.
Contractions
T h e a p p r o x i m a t i o n process discussed i n Section 25 m a y be t h o u g h t o f as a n a p p r o a c h t o s t r u c t u r e s " f r o m b e l o w " , or " f r o m w i t h i n " , because it begins w i t h a relatively " s m a l l " part and proceeds to increasingly larger p o r t i o n s of the given s t r u c t u r e . It m a y a p p l y t o structures t h a t are inaccessible as a whole, p o s s i b l y because of their i n f i n i t e extent. A t the other e x t r e m e , there are structures t h a t are l o c a l l y rather t h a n g l o b a l l y inaccessible, perhaps because of u n c e r t a i n or c o m p l e x l o c a l s t r u c t u r e . In such cases, it m a y be possible to d i s t i n g u i s h an o v e r a l l s t r u c t u r e t h a t effectively ignores the l o c a l p r o b l e m s . T h e basic i d e a is t h a t a subs t r u c t u r e ( c o n t a i n i n g , say, the troublesome local i n f o r m a t i o n ) m a y , because of "wholeness", be regarded as an o b j e c t a p a r t f r o m its i n t e r n a l s t r u c t u r e . F u r t h e r m o r e , a given s t r u c t u r e w h i c h is decomposed i n t o (disjoint) s u b structures, w i l l d e t e r m i n e , as we s h a l l see, a second s t r u c t u r e h a v i n g the s u b s t r u c t u r e s as objects. T h e second is a k i n d of a p p r o x i m a t i o n " f r o m a b o v e " , w h i c h ignores the l o c a l i n f o r m a t i o n contained i n the s u b s t r u c t u r e s . T h i s is a very i m p o r t a n t concept w h i c h we c a l l a c o n t r a c t i o n because of the way i t is c o n s t r u c t e d . Its relevance to social s t r u c t u r e s m e n t i o n e d i n the preceding section w i l l become apparent. C o n s i d e r any d e c o m p o s i t i o n o f the objects of the g i v e n s t r u c t u r e i n t o disjoint s u b s t r u c t u r e s . A s far as theory is concerned, such a d e c o m p o s i t i o n c o u l d be d e t e r m i n e d b y a q u i t e a r b i t r a r y d e c o m p o s i t i o n o f the set of objects. T h i s , however, w o u l d generally result i n s o m e t h i n g more or less irrelevant a n d u n i n t e r e s t i n g , so i n a c t u a l p r a c t i c e the d e c o m p o s i t i o n w o u l d n o r m a l l y recognize some key properties of the i n i t i a l s t r u c t u r e . I n any case, (Ae s e t of d i s j o i n t s u b s t r u c t u r e s b e c o m e s t h e s e t of o b j e c t s i n t h e c o n t r a c t i o n , so it o n l y r e m a i n s to give an a p p r o p r i a t e d e f i n i t i o n of the relations i n t e r m s of those i n the g i v e n s t r u c t u r e . F i r s t , we define a c o n t r a c t i o n m a p p i n g f r o m the g i v e n s t r u c t u r e to the c o n t r a c t i o n , b y associating w i t h each object of the g i v e n s t r u c t u r e the s u b -
66
STRUCTURALISM
A N DSTRUCTURES
s t r u c t u r e t h a t contains i t . E x c e p t i n the case o f a t r i v i a l d e c o m p o s i t i o n , this m a p p i n g w i l l be m a n y - t o - o n e , because at least some o f the substructures w i l l c o n t a i n m o r e t h a n one object. N o w , v i a the c o n t r a c t i o n m a p p i n g , we transfer relations f r o m t h e given s t r u c t u r e t o t h e c o n t r a c t i o n , thus o b t a i n i n g t h e f o l l o w i n g d e f i n i t i o n o f rel a t i o n s for substructures: A collection o f substructures is defined t o be related p r o v i d e d i t is the i m a g e , u n d e r t h e c o n t r a c t i o n m a p p i n g , o f a set o f related o b j e c t s in the given structure. W i t h t h i s d e f i n i t i o n , t h e c o n t r a c t i o n f i n a l l y becomes a b o n a fide s t r u c t u r e . I t w i l l b e c a l l e d t h e c o n t r a c t i o n of t h e g i v e n s t r u c t u r e w i t h r e s p e c t t o t h e p r e s c r i b e d d e c o m p o s i t i o n i n t o s u b s t r u c t u r e s . In passing to a c o n t r a c t i o n , relations t e n d to s i m p l i f y , o r lose some o f t h e i r properties, o r even d i s a p p e a r . T h i s results f r o m t h e i d e n t i f i c a t i o n o f o b j e c t s w i t h i n t h e substructures. W e give n e x t a brief d e s c r i p t i o n o f five s i m p l e b u t very i n s t r u c t i v e exa m p l e s . T h e y w i l l show clearly w h a t is going on a n d suggest t h e w i d e a p p l i c a b i l i t y o f the c o n t r a c t i o n n o t i o n . A m o r e f o r m a l e x a m p l e f r o m group theory, w h i c h i l l u s t r a t e s t h e m a t h e m a t i c a l m o t i v a t i o n for t h e d e f i n i t i o n o f a c o n t r a c t i o n , i s discussed i n the n e x t section. A Geometric Example T h i s e x a m p l e is i l l u s t r a t e d i n F i g u r e 27.1 (a,b,c). T h o u g h i t is n o t i m p o r t a n t i n itself, i t does p r o v i d e a very s i m p l e i l l u s t r a t i o n o f h o w t h e c o n t r a c t i o n process w o r k s . T h e i n i t i a l s t r u c t u r e (a) is a complete h e x a g o n (See F i g . 18.1.), i n w h i c h each i n f i n i t e l i n e is replaced b y a l i n e segment d e t e r m i n e d b y t w o vertices. It i s a p o i n t - l i n e s t r u c t u r e w i t h t h e s i x vertices as objects a n d l i n e segments as r e l a t i o n s .
to]
lb) Fig.
(c)
27.1
A s suggested b y t h e d o t t e d contours, t h e s t r u c t u r e is d e c o m p o s e d i n t o three disjoint substructures, P , L , a n d T (for " p o i n t " , " l i n e " , a n d " t r i a n g l e " ) , d e t e r m i n e d respectively b y t h e three sets o f vertices, {5}, { 1 , 6 } , a n d { 2 , 3 , 4 } w i t h i n the contours.
67
IV. M A N A G E M E N T O F C O M P L E X S T R U C T U R E S
T h e c o n t r a c t i o n w i t h respect t o these substructures is represented i n (c), w h i l e (b) represents a n i n t e r m e d i a t e stage. T h e r e l a t i o n i n the c o n t r a c t i o n is also a ( s y m m e t r i c ) b i n a r y r e l a t i o n , whose d o m a i n of d e f i n i t i o n consists of a l l the d i s t i n c t p a i r s of the substructures P , L , a n d T, (P,L),(P,T),(P,T), p l u s ( L , L ) a n d ( T , T ) , w h i c h are images of p a i r s of objects c o n t a i n e d i n L a n d T, respectively. T h e l a t t e r two do not c a r r y any essential structure i n f o r m a t i o n , so m i g h t as w e l l be o m i t t e d . T h e i n t e r m e d i a t e figure (b) suggests h o w several relations i n the i n i t i a l s t r u c t u r e m a y collapse i n t o a single one i n the c o n t r a c t i o n . Block Diagrams T h e next e x a m p l e , w h i c h is t o t a l l y n o n m a t h e m a t i c a l i n character, m a k e s use o f a t y p i c a l "block d i a g r a m " . N o t e t h a t block d i a g r a m s are h i g h l y s i m plified versions of r e l a t i v e l y c o m p l e x structures, a n d are often used, for e x a m p l e , to present s c h e m a t i c versions o f such t h i n g s as e l e c t r i c a l c i r c u i t s a n d flow chart representations of c o m p l e x c o m p u t e r p r o g r a m s . A n y block d i a g r a m is essentially a d i a g r a m o f a c o n t r a c t i o n , a n d , conversely, m a n y contractions m i g h t be conveniently represented as block d i a g r a m s . T h e exa m p l e , i l l u s t r a t e d i n F i g u r e 27.2, represents a possible c o m p u t e r s y s t e m for a n office c o m p l e x . T h e blocks represent, o f course, the c o n t r a c t e d s u b s t r u c tures of a n i n i t i a l s t r u c t u r e .
Typical office. microcomputer local printer
N. <—>
remote micro. interface
communications controller remote Terminal
terminal
central disc
storage
central computer facilities
central printer backup storage
F i g . 27.2 A p l a n , such as the one suggested, m a y be f o r m u l a t e d w i t h p r a c t i c a l l y no t e c h n i c a l knowledge as to h o w i t m i g h t be i m p l e m e n t e d . I n other words, the detailed i n f o r m a t i o n i m p l i c i t i n the i n d i v i d u a l b l o c k s does not enter
(58
STRUCTURALISM
AND STRUCTURES
d i r e c t l y i n t o the o v e r a l l p l a n . T h e a c t u a l w o r k i n g out of the i n t e r n a l s t r u c tures of the blocks, a l o n g w i t h the details of the relations a m o n g t h e m (that i s , p r o d u c i n g the s t r u c t u r e of w h i c h t h i s is a c o n t r a c t i o n ) , w o u l d require considerable knowledge of c o m p u t e r technology. E x a m p l e s of this k i n d , o f w h i c h there are m a n y , i l l u s t r a t e the general fact t h a t , an u n d e r s t a n d ing o f a c o n t r a c t i o n m a y be r e l a t i v e l y u n s o p h i s t i c a t e d as c o m p a r e d t o a n u n d e r s t a n d i n g of the i n i t i a l s t r u c t u r e . Black Boxes A n o t h e r rather different k i n d of c o n t r a c t i o n is i l l u s t r a t e d by w h a t m i g h t be called the "black box" a p p r o a c h t o a complex m a c h i n e . F r o m t h i s p o i n t of v i e w , the m a c h i n e is regarded as consisting of a c o l l e c t i o n of parts (the " b l a c k b o x e s " ) each of w h i c h performs a p a r t i c u l a r f u n c t i o n i n the o v e r a l l o p e r a t i o n of the m a c h i n e . K n o w l e d g e of the various p a r t s , a l o n g w i t h their special functions and their f u n c t i o n a l r e l a t i o n s h i p s , w o u l d c o n s t i t u t e one level of u n d e r s t a n d i n g of the m a c h i n e a n d its f u n c t i o n . S u c h u n d e r s t a n d i n g need not involve any knowledge of the i n t e r n a l structure of the p a r t s , hence the t e r m "black b o x e s " . O n e m a y be t o t a l l y i g n o r a n t of how the a c t i o n of each p a r t is p r o d u c e d a n d yet u n d e r s t a n d i n a very p r a c t i c a l sense how the whole m a c h i n e works. T h i s is the k i n d of u n d e r s t a n d i n g w h i c h the great m a j o r i t y of us depend o n i n d e a l i n g w i t h the m a n y machines t h a t are taken for g r a n t e d i n our m o d e r n society. C o n s i d e r , for e x a m p l e , the level of u n d e r s t a n d i n g t h a t a n average person must possess i n order t o operate a n a u t o m o b i l e a n d keep it i n reasonable r u n n i n g c o n d i t i o n . A possible collection o f (black box) a u t o m o b i l e parts m i g h t consist o f the engine, fuel t a n k , b a t t e r y , gear shift, c l u t c h , accelerator, steering m e c h a n i s m , wheels, brakes, etc. E a c h person w i l l have some i d e a , perhaps rather vague, o f the functions of the various parts a n d how they interact to produce a w o r k i n g a u t o m o b i l e , but m a y not u n d e r s t a n d a n y t h i n g concerning the parts themselves. T h e black box a p p r o a c h m a y , of course, be rather s o p h i s t i c a t e d . For e x a m p l e , an expert a u t o m o b i l e m e c h a n i c w o u l d have some u n d e r s t a n d i n g of the i n t e r n a l w o r k i n g s of each p a r t a n d precisely how the various parts i n t e r a c t , a n d his o v e r a l l u n d e r s t a n d i n g w o u l d be such t h a t he c o u l d trace a m a l f u n c t i o n to a defective p a r t and replace it w i t h a g o o d one. A t the same t i m e , he m i g h t have l i t t l e or no knowledge of the p r i n c i p l e s of m e chanics, physics, and c h e m i s t r y u p o n w h i c h the o p e r a t i o n of an a u t o m o b i l e u l t i m a t e l y depends. Elementary Chemistry O u r f o u r t h e x a m p l e o f a c o n t r a c t i o n , w h i c h is a b i t more t e c h n i c a l t h a n the others, is a m u c h s i m p l i f i e d account of the way t h a t a t o m s and molecules enter i n t o the s u b j e c t of elementary chemistry. A s b a c k g r o u n d , i t is interest-
IV. M A N A G E M E N T O F C O M P L E X
STRUCTURES
69
i n g f r o m the p o i n t of v i e w of s t r u c t u r a l i s m t o k n o w t h a t , u n t i l the l a t t e r h a l f of the 19th century, the t e r m " a t o m " was c o m m o n l y used t o i n c l u d e b o t h a t o m s a n d molecules. F u r t h e r m o r e , even as l a t e as the 1890's, there were disagreements a m o n g chemists concerning the a c t u a l existence o f a t o m s . S o m e believed t h a t they were n o t h i n g m o r e t h a n convenient artifacts of the theory, a m o u n t i n g o n l y t o an efficient m e t h o d o f o r g a n i z i n g c h e m i c a l k n o w l e d g e . F o r a b r i e f account of this controversy, see the b i o g r a p h y of E i n s t e i n b y A b r a h a m P a i s [ P I , C h a p t e r 5]. G e n e r a l l y s p e a k i n g , e l e m e n t a r y c h e m i s t r y is concerned w i t h t w o k i n d s of structures: (1) m o l e c u l a r s t r u c t u r e s , i n w h i c h the objects are a t o m s a n d the relations are d e t e r m i n e d b y the forces between a t o m s , a n d (2) the structures represented b y c h e m i c a l substances, i n w h i c h the objects are molecules a n d the r e l a t i o n s are d e t e r m i n e d b y the forces t h a t b i n d molecules together. B e y o n d these are the structures o f a t o m s themselves, the s t u d y o f w h i c h lies i n the p r o v i n c e of a t o m i c physics. A t o m s appear as substructures of the general p h y s i c a l s t r u c t u r e w h i c h underlies a t o m i c theory. A c o n t r a c t i o n of the l a t t e r therefore produces the basic c h e m i c a l s t r u c t u r e w i t h a t o m s as objects. It m a y be t h o u g h t of as c o n s i s t i n g of a l l the a t o m s i n the universe a n d described w i t h o u t reference t o the i n t e r n a l s t r u c t u r e o f the a t o m s . M o l e c u l e s a p p e a r as substructures of the basic c h e m i c a l s t r u c t u r e , so another c o n t r a c t i o n produces the s t r u c t u r e w i t h molecules as o b j e c t s , t h a t underlies m o l e c u l a r chemistry. It m a y be described w i t h o u t reference t o the i n t e r n a l a t o m i c s t r u c t u r e of molecules. C h e m i c a l substances a p p e a r as substructures of the m o l e c u l e s t r u c t u r e , so a f i n a l c o n t r a c t i o n produces a s t r u c t u r e w i t h substances as objects. A C o n t r a c t i o n of the Plane V
[<>,«>.
Each point (x,y) is mapped into the point x on the x-axis.
to, M. (o,6) (o,6)
< <
(c,d)0 (o,e)
l e d )
| Fig.
27.3
C o n s i d e r the r e a l c o o r d i n a t e p l a n e represented i n F i g u r e 27.3. It has a n a t u r a l l e x i c o g r a p h i c order s t r u c t u r e derived f r o m the "less t h a n " order r e l a t i o n " < " o n the r e a l n u m b e r s . M o r e precisely, let ( a , b) a n d (c,d") be the coordinates of any t w o d i s t i n c t p o i n t s i n the p l a n e , a n d define (a,b)<(c,d)
70
STRUCTURALISM
AND STRUCTURES
if a < c, or , i n case a = c, i f 6 < d . T h e v e r t i c a l lines i n the p l a n e constitute a d e c o m p o s i t i o n of the latter i n t o disjoint s u b s t r u c t u r e s . It is easy t o see t h a t the c o n t r a c t i o n s t r u c t u r e , associated w i t h this d e c o m p o s i t i o n , is i s o m o r p h i c w i t h the " l e s s - t h a n " s t r u c t u r e o n the x - a x i s , where the i s o m o r p h i s m is g i v e n b y the correspondence t h a t associates a v e r t i c a l l i n e (substructure) w i t h the p o i n t where the l i n e intersects the x - a x i s . In our general d e s c r i p t i o n , a c o n t r a c t i o n is u s u a l l y presented as the e n d r e s u l t of a process, w h i l e i n m a n y cases, such as i n the previous three examples, the a c t u a l process goes i n the o p p o s i t e d i r e c t i o n ! T h e c o n t r a c t i o n s t r u c t u r e is perceived first, w h i l e the i n t e r n a l s t r u c t u r e of its o b j e c t s must be exposed later t h r o u g h further i n v e s t i g a t i o n . T h i s reverse process, c o m b i n e d w i t h the extension processes o u t l i n e d i n Section 25, provides a fair d e s c r i p t i o n of how a scientific field is r o u t i n e l y developed. B e y o n d this, of course, i t is possible for an advance i n knowledge or u n d e r s t a n d i n g to force a n o v e r a l l r e s t r u c t u r i n g of a s u b s t a n t i a l p o r t i o n o f the whole field. T h e result is a "scientific r e v o l u t i o n " and also an " i n f o r m a l " e x a m p l e of a "catastrophe" (Chapter I X ) . Despite the prevalence of processes opposite t o c o n t r a c t i o n s , our general d e s c r i p t i o n is a p p r o p r i a t e for m a n y m a t h e m a t i c a l e x a m p l e s , a n d also serves to b r i n g out the c o m p l e t e p i c t u r e i n every case. F u r t h e r m o r e , cont r a c t i o n m a p p i n g s are i n c l u d e d i n the s o m e w h a t m o r e general n o t i o n of a " h o m o m o r p h i s m " of s t r u c t u r e s , w h i c h we now define. H o m o m o r p h i s m s include the i s o m o r p h i s m s defined i n S e c t i o n 8, a n d dep e n d o n the general i d e a of a " m a p p i n g " . T h e l a t t e r is s i m p l y an association of each element of a g i v e n set w i t h an element of a second set. Since several elements o f the i n i t i a l set m a y go i n t o the same element o f the second set, m a p p i n g s are generally m a n y - t o - o n e . T h e y also need not involve every e l ement o f the target set. C o n t r a c t i o n m a p p i n g s are o b v i o u s l y special cases of general m a p p i n g s . A h o m o m o r p h i s m o f one s t r u c t u r e i n t o another is a m a p p i n g o f the o b j e c t s of the first i n t o those of the second so t h a t relations are preserved. T h e requirement t h a t the m a p p i n g preserve relations means s i m p l y t h a t related o b j e c t s of the first s t r u c t u r e m a p i n t o related objects of the seco n d . Observe t h a t the definition of relations a m o n g s u b s t r u c t u r e s is precisely w h a t is needed for the c o n t r a c t i o n m a p p i n g to preserve r e l a t i o n s . Therefore, c o n t r a c t i o n m a p p i n g s are s t r u c t u r e h o m o m o r p h i s m s . A l s o , a h o m o m o r p h i s m , whose m a p p i n g is one-to-one, is an i s o m o r p h i s m . N o w let h denote a h o m o m o r p h i s m of one s t r u c t u r e S\ i n t o a second s t r u c t u r e S%. T h e n the set of "values" i n S i of the m a p p i n g h is o b v i o u s l y
IV. M A N A G E M E N T
OF COMPLEX
STRUCTURES
71
a s u b s t r u c t u r e of 52 w i t h respect to those r e l a t i o n s i n S r e q u i r e d by the h o m o m o r p h i s m . It is c a l l e d a " h o m o m o r p h i c i m a g e " of S i . A c o n t r a c t i o n of a s t r u c t u r e S is thus a h o m o m o r p h i c image of S . C o n v e r s e l y , any hom o m o r p h i c image of S is i s o m o r p h i c t o a c o n t r a c t i o n o f S. I n the l a t t e r case, the c o n t r a c t i o n is w i t h respect to those s u b s t r u c t u r e s o f S d e t e r m i n e d by sets of its objects t h a t are m a p p e d by the h o m o m o r p h i s m o n t o a single o b j e c t of the image. 2
28. C o n t r a c t i o n o f G r o u p S t r u c t u r e s A n i n t e r e s t i n g a n d i m p o r t a n t m a t h e m a t i c a l e x a m p l e of a c o n t r a c t i o n is given by c e r t a i n g r o u p structures. C o n s i d e r first an a r b i t r a r y ( m u l t i p l i c a tive) g r o u p G , a n d let S denote a p a r t i c u l a r s u b g r o u p of G . T h e n the g r o u p s t r u c t u r e o f S is a s u b s t r u c t u r e of the group s t r u c t u r e of G . T h e i d e a is to decompose the G s t r u c t u r e i n a " n a t u r a l " way w i t h respect to the s u b g r o u p S a n d to f o r m the associated c o n t r a c t i o n . O n e such d e c o m p o s i t i o n consists of sets of the f o r m g S , c o n s i s t i n g of a l l p r o d u c t s g s where g is a fixed element of G a n d s ranges over S. A set g S is called a left c o s e t of S, and it follows f r o m the g r o u p a x i o m s t h a t two such cosets either coincide or are d i s j o i n t . Since the i d e n t i t y element e o f G belongs t o the s u b g r o u p S , g o b v i o u s l y belongs to g S , so the left cosets c o n s t i t u t e a d e c o m p o s i t i o n of G i n t o d i s j o i n t subsets. F u r t h e r m o r e , S is one o f these sets because S = t S . A s i m i l a r d e c o m p o s i t i o n o f G is given by the right cosets o f S , namely, sets of the f o r m S g . The G s t r u c t u r e m a y be c o n t r a c t e d w i t h respect t o either of the coset dec o m p o s i t i o n s . A l t h o u g h these contractions are s o m e t i m e s needed i n m a t h e m a t i c s , they are generally not g r o u p s t r u c t u r e s , so are not very i n t e r e s t i n g in the present c o n t e x t . In order to o b t a i n a g r o u p , it is necessary to restrict S. T h e r e s t r i c t i o n is a u t o m a t i c a l l y satisfied i f G is c o m m u t a t i v e . A s u b g r o u p S is called a n o r m a l ( o r i n v a r i a n t ) s u b g r o u p of G i f gSg-
1
= S
for each element g o f the g r o u p G . The g r o u p S w i l l be n o r m a l p r o v i d e d t h a t g S = S g for each g . In other words, the right a n d left cosets associated w i t h each element g are e q u a l . In p a r t i c u l a r , the t w o coset d e c o m p o s i t i o n s of G d e t e r m i n e d b y S are i d e n t i c a l , so there is a unique coset c o n t r a c t i o n o f the G s t r u c t u r e w i t h respect to S. N o t i c e t h a t i n the t r i a n g l e g r o u p (Section 20), r o t a t i o n s of the first k i n d ( i n c l u d i n g /) is a n o r m a l subgroup of order three. A l s o , each of the subgroups o f order t w o , c o n s i s t i n g of r o t a t i o n s o f the second k i n d a b o u t a fixed a x i s , is n o r m a l .
72
STRUCTURALISM
AND STRUCTURES
It m a y now be proved t h a t the coset c o n t r a c t i o n d e t e r m i n e d by a n o r m a l subgroup is indeed a group s t r u c t u r e . In fact, consider two a r b i t r a r y elem e n t s g a n d g ' of G . T h e n the ordered t r i p l e [ g , g ' , g g ' ) is i n the d o m a i n of the ternary r e l a t i o n for the G s t r u c t u r e . Hence, by d e f i n i t i o n , the ordered t r i p l e ( S g , S g ' , S g g ' ) is i n the d o m a i n of the r e l a t i o n for the c o n t r a c t i o n . Therefore we m a y define the coset p r o d u c t , (Sg)(Sg') =
Sgg'.
T h e p r o o f t h a t this p r o d u c t is well-defined (i.e., i f S g = S h a n d S g ' = S h ' , t h e n S g g ' = S h h ' ) a n d t h a t it satisfies the group a x i o m s , t h o u g h not difficult, w i l l be o m i t t e d . O b s e r v e , for e x a m p l e , t h a t S itself, w h i c h is e q u a l to S e , is an i d e n t i t y element, a n d S g ' is an inverse for S g . T h e coset group o b t a i n e d i n the above c o n t r a c t i o n is called the q u o t i e n t of the given group by the n o r m a l s u b g r o u p . 1
CHAPTER
LANGUAGE
AND
V
STRUCTURE
29. T h e R o l e o f L a n g u a g e A s we have repeatedly m a i n t a i n e d , higher m e n t a l a c t i v i t y m u s t consist p r i m a r i l y of the c o n s t r u c t i o n a n d m a n i p u l a t i o n o f s t r u c t u r e s . T h i s process, w h i c h m a y be either conscious or unconscious, often involves the use of language, at least for the conscious p o r t i o n . M o r e o v e r , i t is o b v i o u s t h a t language, i n some f o r m or other, is generally required for the c o m m u n i c a t i o n o f ideas to others, a n d also m a y enter i n t o the s t r i c t l y i n t e r n a l m e n t a l a c t i v i t y i n v o l v e d i n t h i n k i n g . In fact, language is so prevalent i n o u r m e n t a l processes t h a t it has been c l a i m e d t h a t a l l t h o u g h t is dependent o n language. T h e idea is t h a t a t h i n k i n g i n d i v i d u a l is s i m p l y c o m m u n i c a t i n g w i t h himself, and t h a t the associated awareness a n d use of ideas a l w a y s i n volves words, a l o n g w i t h their interrelations based o n m e a n i n g and language structure. W h e t h e r or not such a c l a i m is i n any sense l i t e r a l l y true m a y d e p e n d u l t i m a t e l y o n the definitions of b o t h t h i n k i n g a n d language. A t any r a t e , the m a t t e r is d e b a t a b l e , because the m i n d is c l e a r l y able t o deal d i r e c t l y w i t h m a n y s t r u c t u r e s a p p a r e n t l y w i t h o u t the i n t e r v e n t i o n of language. F o r e x a m p l e , i t is difficult t o see h o w o r d i n a r y language can be seriously i n volved i n the sudden deep insights a c c o m p a n y i n g creative experiences, nor i n the very s i m i l a r "face r e c o g n i t i o n " experience f a m i l i a r to everyone. T h e r e are also m a n y less s p e c t a c u l a r cases, such as the use of analogies, i n w h i c h u n d e r s t a n d i n g of r e l a t i v e l y c o m p l e x p h e n o m e n a seems to precede v e r b a l i z a t i o n . It r e m a i n s t r u e , of course, t h a t i n c o m m u n i c a t i n g or r e c a l l i n g these experiences a person w i l l n o r m a l l y use some f o r m of language. F u r t h e r more, language is a very special powerful t o o l for d e a l i n g w i t h s t r u c t u r e s , whatever i t s degree o f involvement i n m e n t a l a c t i v i t y c o n c e r n i n g t h e m . O u r u l t i m a t e objective is t o t r y to u n d e r s t a n d , i n s t r u c t u r a l t e r m s , s o m e t h i n g of how language enters i n t o the management of s t r u c t u r e s . L a n g u a g e i t s e l f is a r e l a t i v e l y c o m p l e x s t r u c t u r e a n d m a y be a n a l y z e d at different levels, represented, for e x a m p l e , b y the v a r i o u s l i n g u i s t i c a n a l yses at one e x t r e m e a n d the f a m i l i a r sentence s t r u c t u r e t y p e of a n a l y s i s at the other. Its effectiveness as a t o o l for m a n a g i n g s t r u c t u r e s is o b v i o u s l y dependent o n its o w n s t r u c t u r e , b u t e x a c t l y how e v e r y t h i n g w o r k s is not 73
74
STRUCTURALISM
AND STRUCTURES
at a l l clear. A careful analysis of the c o m m u n i c a t i o n process i n t e r m s of the m a n n e r i n w h i c h structures are broken d o w n , represented piecewise i n the language s t r u c t u r e , a n d then c o m m u n i c a t e d i n a l i n e a r sequential fashion w o u l d be difficult b u t revealing for b o t h language a n d s t r u c t u r e s . I n any case, the general p r o b l e m of language is o b v i o u s l y very c o m p l e x , a n d involves m a n y t e c h n i c a l aspects of b o t h language and c o g n i t i o n . A l t h o u g h some of these technicalities w i l l be dealt w i t h l a t e r , this section is l i m i t e d to general c o m m e n t s o n a few rather obvious ways t h a t language enters i n t o the m a n a g e m e n t of s t r u c t u r e s . In its simplest f o r m , a language t r e a t m e n t of a s t r u c t u r e m i g h t b e g i n w i t h n a m i n g of the various objects a n d relations, w h i c h then m a y be represented b y t h e i r names. I n some cases, however, relations need not be recognized e x p l i c i t l y but m a y be d e t e r m i n e d b y k n o w n properties of the objects i n a concrete representation or carried by the b u i l t i n s t r u c t u r e o f the language itself. F u r t h e r m o r e , these methods of s p e c i f y i n g relations m a y overlap a n d v a r y c o n s i d e r a b l y w i t h i n a g i v e n t r e a t m e n t of a s t r u c t u r e . C o m p l i c a t i o n s of t h i s k i n d , a l o n g w i t h the fact t h a t a large part of the process is unconscious, c o n t r i b u t e t o the difficulty of d e t e r m i n i n g e x a c t l y how language is i n v o l v e d in d e a l i n g w i t h s t r u c t u r e s . A n o t h e r o b v i o u s , but f u n d a m e n t a l , use o f language is i n the n a m i n g of s t r u c t u r e s themselves. T h i s is a f o r m a l recognition of a s t r u c t u r e as an o b j e c t . T h e s t r u c t u r e m a y thereafter be represented by its n a m e i n the language t r e a t m e n t of larger structures w h i c h involve the first as an o b j e c t . T h e p o t e n t i a l i m p o r t a n c e of language i n the c o n t r a c t i o n process is t h u s clear. F i x i n g the perception of the substructures as o b j e c t s , a n d u n d e r s t a n d i n g the c o n t r a c t i o n itself, are g r e a t l y f a c i l i t a t e d by the n a m i n g process a n d the subsequent language representation of the c o n t r a c t i o n . T h e p e r c e p t i o n a n d n a m i n g of a s t r u c t u r e as an o b j e c t b r i n g s up a n i n t e r esting p o i n t c o n c e r n i n g a possible loss of i n f o r m a t i o n t h r o u g h the process. T h i s i d e a , or rather its reverse, is b e a u t i f u l l y expressed i n the c o m m e n t , " S e e i n g is f o r g e t t i n g the n a m e o f the t h i n g one sees", It appears as the t i t l e of a b i o g r a p h y of the a r t i s t , R o b e r t I r w i n , w r i t t e n by L a w r e n c e Weschler [W3]. A s i m i l a r o b s e r v a t i o n c o n c e r n i n g the use of words is expressed b y L e v i - S t r a u s s i n " T h e E l e m e n t a r y S t r u c t u r e s of K i n s h i p " [ L 5 , p. 496]; B u t to the extent t h a t words have become c o m m o n p r o p e r t y , a n d their s i g n i f y i n g f u n c t i o n has s u p p l a n t e d their character as values, language, a l o n g w i t h scientific c i v i l i z a t i o n , has helped to i m p o v e r i s h p e r c e p t i o n and t o s t r i p it of its affective, aesthetic a n d m a g i c a l i m p l i c a t i o n s , as well as t o schematize t h o u g h t . T h i s is a curious c o m m e n t f r o m one w h o has e m p h a s i z e d the f u n d a m e n t a l role of language t h r o u g h o u t m u c h of his w r i t i n g s , a n d w h o regards
V. L A N G U A G E
AND
STRUCTURE
75
s t r u c t u r a l l i n g u i s t i c s as the m o d e l for s t r u c t u r a l a n a l y s i s i n a l l o f the soc i a l sciences. H i s views o n the subject are i l l u s t r a t e d i n s t a t e m e n t s q u o t e d in Section 32. A l t h o u g h these views are not inconsistent w i t h the above c o m m e n t , they do focus a t t e n t i o n o n i t a n d c a l l for some c l a r i f i c a t i o n . A possible, t h o u g h a b s t r a c t , s t r u c t u r a l e x p l a n a t i o n o f the m a i n i d e a c o n t a i n e d i n the statement is suggested by the p r e c e d i n g d i s c u s s i o n . In the first place, as soon as a s t r u c t u r e is perceived as a n object, its i n t e r n a l properties tend to be pushed i n t o the b a c k g r o u n d . A l t h o u g h an alert m i n d does not suppress these properties c o m p l e t e l y , there is nevertheless s o m e loss of p e r c e p t i o n . B e y o n d this, n a m i n g the s t r u c t u r e tends to b r i n g about a d d i t i o n a l loss. In extreme cases, the n a m e m a y reduce to l i t t l e more t h a n an e m p t y s y m b o l , no longer able t o c a l l up the o r i g i n a l s t r u c t u r e i n its entirety. A more c o m p l e x version of the s a m e t h i n g is represented by a cliche, an expression whose o r i g i n a l content has been lost or d i s t o r t e d by thoughtless r e p e t i t i o n so t h a t it is no longer m e a n i n g f u l . It is a fact t h a t m u c h of e v e r y d a y conversation consists of cliches, a l o n g w i t h m a n y words a n d expressions l a c k i n g i n any genuine content. T h i s does not m e a n , however, t h a t such exchanges are necessarily devoid of content, b u t o n l y t h a t whatever i n f o r m a t i o n is exchanged i n the process is not o n the o b v i o u s v e r b a l level. A more extensive c o m m e n t a r y o n l i n g u i s t i c s t r u c t u r e , a l o n g w i t h its i n v o l v e m e n t w i t h general s t r u c t u r e s a n d w i t h the s t r u c t u r a l i s t m o v e m e n t , is c o n t a i n e d i n Sections 31 a n d 32. 30.
Simple Communication
C o m m u n i c a t i o n is a general social p h e n o m e n o n i n v o l v i n g the transfer of m e n t a l s t r u c t u r e s (i.e., concepts or ideas), u s u a l l y f r o m one person to another. A l t h o u g h the m o s t c o m m o n a n d generally most accurate f o r m of c o m m u n i c a t i o n between h u m a n s is t h r o u g h a spoken or w r i t t e n language, pictures a n d even b o d y language are also used, a l o n g w i t h various c o m b i n a t i o n s of these forms. T h e p i c t u r e m e t h o d , where the word " p i c t u r e " is u n d e r s t o o d t o m e a n a representation of a whole s t r u c t u r e , reduces u l t i m a t e l y to the transference of the m e n t a l s t r u c t u r e by means of such a r e p r e s e n t a t i o n . It i n c l u d e s , for e x a m p l e , the use of analogy, w h i c h norm a l l y involves c a l l i n g a t t e n t i o n to a s i m i l a r i t y between a f a m i l i a r s t r u c t u r e a n d another less f a m i l i a r one. In the case of b o d y language, certain f a c i a l expressions and b o d y postures or movements have come t o be associated w i t h special a t t i t u d e s , so m a y serve (often unconsciously) to represent the latter to a n observer. O r d i n a r y language constitutes a s p e c i a l k i n d of s y s t e m w i t h i n w h i c h a g i v e n m e n t a l s t r u c t u r e (idea) m a y be represented i n a f o r m t h a t m a y be t r a n s m i t t e d f r o m one i n d i v i d u a l to another. L a n g u a g e c o m m u n i c a t i o n
76
STRUCTURALISM AND STRUCTURES
differs f r o m the p i c t u r e m e t h o d i n t h a t the s t r u c t u r e is not u s u a l l y t r a n s ferred as a whole, b u t is broken d o w n by the sender i n t o s i m p l e p a r t s , each o f w h i c h may be m o d e l e d i n the language s t r u c t u r e a n d passed on to be reconstructed b y the recipient. A n i m p o r t a n t feature of language c o m m u n i c a t i o n is t h a t the m a t e r i a l is s t r u n g out l i n e a r l y i n t i m e . T h e recipient m u s t f o r m his copy of the s t r u c ture, piece-by-piece as i t is presented, w i t h o u t the p r i o r benefit of a t o t a l v i e w of the m a t e r i a l . It follows f r o m the d e v e l o p m e n t a l n a t u r e of the p r o cess, t h a t an effective s t r u c t u r e c o m m u n i c a t i o n m u s t be c o o r d i n a t e d w i t h s o m e of the n a t u r a l or p o t e n t i a l g r o w t h properties of s t r u c t u r e s discussed i n previous sections. T h i s t y p e of c o o r d i n a t i o n , w h i c h is o b v i o u s l y a necessary feature o f any good p r e s e n t a t i o n , depends o n a reasonably accurate n o t i o n of the s t a t u s of the g r o w i n g s t r u c t u r e at each stage of the process. W h e n it is i g n o r e d , the result is a c e r t a i n a m o u n t of confusion and a possible b r e a k d o w n of c o m m u n i c a t i o n . T o w h a t degree the received s t r u c t u r e is i s o m o r p h i c to the o r i g i n a l w i l l d e p e n d o n the receiver's knowledge and u n d e r s t a n d i n g as w e l l as the accuracy o f the language representation. F o r e x a m p l e , i f one were to relate s o m e t h i n g a b o u t the work of a c e r t a i n f e m a l e m a t h e m a t i c i a n , w i t h o u t m e n t i o n i n g the sex, t h e n another ( m a n or woman!) m i g h t very w e l l w i n d up w i t h the i m a g e of a m a l e m a t h e m a t i c i a n . In order for a t r a n s a c t i o n of this k i n d to be successful, the recipient m u s t possess knowledge w h i c h either already c o n t a i n s , or is capable of c o n t a i n i n g , the i d e a . A t the same t i m e , i n order t o f o r m u l a t e an a p p r o p r i a t e language s t r u c t u r e representation o f the i d e a , a sender m u s t be t o some degree aware of the status of t h a t p o r t i o n of a recipient's knowledge where the concept is supposed to find its place. (See Section 38.) T h e c o m m u n i c a t i o n process becomes m u c h more interesting w h e n the s t r u c t u r e s i n question are more c o m p l e x , and represent ideas t h a t are u n f a m i l i a r to the recipient. I n this case, the c o m m u n i c a t i o n m a y take the f o r m of a discussion i n v o l v i n g definitions, examples, e x p l a n a t i o n s , and so f o r t h . F o r a successful c o m m u n i c a t i o n , a recipient m u s t be more or less f a m i l i a r w i t h the objects a n d k i n d s of relations i n v o l v e d i n the given s t r u c t u r e s . For e x a m p l e , the objects m u s t have names w i t h the same meanings for b o t h , i n the sense t h a t a n a m e m u s t call u p p r e s u m a b l y i s o m o r p h i c o b j e c t s t r u c t u r e s i n the m i n d s of b o t h . G i v e n these c o n d i t i o n s , the sender can t h e n n a m e the objects and describe t h e i r m u t u a l r e l a t i o n s , e n a b l i n g the recipient to f o r m the desired m e n t a l s t r u c t u r e . F u r t h e r e m b e l l i s h m e n t s o n this process are easy to i m a g i n e . In the process described above, language takes on the character of a "dev i c e " by w h i c h one person o b t a i n s p a r t i a l control of the m e n t a l e q u i p m e n t of a n o t h e r , for the purpose of b u i l d i n g a certain s t r u c t u r e w i t h i n the l a t t e r ' s
V.
LANGUAGE AND
STRUCTURE
77
m i n d . T h i s is not q u i t e as insidious as i t sounds, because the recipient w i l l s e l d o m p l a y a role q u i t e as passive as suggested b y the u n q u a l i f i e d statem e n t , a n d the a c t u a l process u s u a l l y involves m u t u a l consent, often w i t h the roles o f sender a n d receiver p e r i o d i c a l l y reversed. It is o b v i o u s t h a t these language features are i m p o r t a n t i n " t e a c h i n g a n d l e a r n i n g " , the t o p i c of Section 39 i n the next chapter. In a c t u a l p r a c t i c e , it w o u l d be s u r p r i s i n g i f words h a d e x a c t l y the same m e a n i n g t o different persons, so there is always a p o s s i b i l i t y t h a t a c o m m u n i c a t e d s t r u c t u r e w i l l not be an accurate c o p y of the o r i g i n a l . O n the other h a n d , as we have already observed (Section 12), structures t e n d to be s t a ble, so t h a t i f the two s t r u c t u r e s are sufficiently " n e a r " to one a n o t h e r , t h e n t h e y w i l l be i s o m o r p h i c . It is therefore possible t h a t less t h a n perfect c o m m u n i c a t i o n m a y s t i l l result i n essentially i s o m o r p h i c m e n t a l s t r u c t u r e s , so an imprecise c o m m u n i c a t i o n m a y nevertheless y i e l d a precise result. T h i s p h e n o m e n o n , easily identified i n m a t h e m a t i c a l c o m m u n i c a t i o n , no d o u b t p l a y s a role i n most exchanges between i n d i v i d u a l s . A l t h o u g h every concrete s t r u c t u r e is a representation of a n a b s t r a c t s t r u c ture, one is s e l d o m aware of the l a t t e r under o r d i n a r y c i r c u m s t a n c e s , because of the c h a r a c t e r i s t i c "noise" i n concrete s t r u c t u r e s . T h i s is even true i n the case of analogies t h a t involve c o m p a r i s o n s of w i d e l y different concrete objects, so the connection is genuinely a b s t r a c t . S i m i l a r e x a m p l e s are p r o v i d e d b y c e r t a i n types of poetry. Despite a n a b u n d a n c e of e x a m p l e s of this k i n d , it is very difficult for m a n y people t o conceive of a n abstract s t r u c t u r e . T h i s difficulty accounts for some of the p r o b l e m s t h a t the average person has w i t h m a t h e m a t i c s , where the a c t u a l content of the subject consists u l t i m a t e l y of a b s t r a c t structures. A concrete s t r u c t u r e m a y be " a l m o s t " a b s t r a c t , i n the sense t h a t i t c o n t a i n s a m i n i m u m of i n f o r m a t i o n a p a r t f r o m the abstract s t r u c t u r e t h a t it represents. It m a y a c c o r d i n g l y convey a q u i t e accurate n o t i o n of the a b stract s t r u c t u r e . E x a m p l e s of this k i n d include such t h i n g s as p o i n t - l i n e structures a n d carefully d r a w n geometric figures. W i t h respect to c o m m u n i c a t i o n , they are i n the p i c t u r e category. I n m o r e c o m p l e x cases, c o m p a r a b l y precise c o m m u n i c a t i o n m u s t depend a g a i n o n language. Because o r d i n a r y language, by its n a t u r e , u s u a l l y contains a great deal of " n o i s e " , precise c o m m u n i c a t i o n of abstract structures often requires the use of a very f o r m a l language, w h i c h is v i r t u a l l y free of extraneous i n f o r m a t i o n . T h e p r i m e e x a m p l e here is m a t h e m a t i c a l language, w h i c h w i l l be treated i n d e t a i l i n C h a p t e r V I I . M o r e generally, a precise l o g i c a l t r e a t m e n t of any subject serves to expose the abstract logical s t r u c t u r e of t h a t subject. 31. S t r u c t u r a l L i n g u i s t i c s In a d d i t i o n t o the s i m p l e c o m m u n i c a t i o n process, discussed i n the pre-
T8
STRUCTURALISM
AND
STRUCTURES
v i o u s s e c t i o n , language is i n v o l v e d w i t h s t r u c t u r e s and s t r u c t u r a l i s m at another level, t h r o u g h " s t r u c t u r a l l i n g u i s t i c s " . T h e l a t t e r is a s t u d y of s t r u c t u r a l properties more or less c o m m o n to a l l languages, as o p p o s e d to a t r a d i t i o n a l s t u d y of a p a r t i c u l a r l a n g u a g e . T h i s is o b v i o u s l y not the place for us t o a t t e m p t an a n a l y s i s o f this c o m p l e x a n d technical s u b j e c t , so we w i l l r e s t r i c t a t t e n t i o n here a n d i n the next section t o a few s p e c i a l topics t h a t b r i n g out s t r u c t u r a l notions relevant t o our general p r o g r a m . M o s t of the discussion i n these sections w i l l be devoted t o basic concepts due to F e r d i n a n d de Saussure, the Swiss l i n g u i s t (1857-1913), w h o is credited w i t h l a u n c h i n g m o d e r n s t r u c t u r a l l i n g u i s t i c s . Saussure's ideas, t h o u g h form u l a t e d m a n y years ago, cover very well the m a i n p o i n t s t h a t we w i s h to m a k e . M o r e recent l i n g u i s t i c developments c o u l d no d o u b t a d d to the discussion b u t w o u l d be a digression f r o m our i m m e d i a t e objectives. F i n a l l y , S e c t i o n 33 c o n t a i n s a few r e m a r k s o n the general n a t u r e a n d possible o r i g i n of l a n g u a g e . Saussure h a d a m a j o r influence o n the s t r u c t u r a l i s t m o v e m e n t , not o n l y i n language a n d l i t e r a t u r e , b u t also i n other areas a w e l l . H i s m a i n ideas are o u t l i n e d i n a b o o k w i t h the t i t l e , " C o u r s e i n G e n e r a l L i n g u i s t i c s " , and based o n notes t a k e n by his students i n lectures given at G e n e v a f r o m 1906 to 1911. T h e f o l l o w i n g excerpts f r o m the E n g l i s h t r a n s l a t i o n [SI] b r i n g out those ideas t h a t concern us. B u t w h a t is language? It is not to be confused w i t h h u m a n speech, of w h i c h i t is o n l y a definite p a r t , t h o u g h c e r t a i n l y a n essential one. It is b o t h a s o c i a l p r o d u c t o f the f a c u l t y o f speech a n d a collection of necessary conventions t h a t have been a d o p t e d by a s o c i a l b o d y t o p e r m i t i n d i v i d u a l s t o exercise t h a t f a c u l t y . T a k e n as a whole, speech is m a n y - s i d e d a n d heterogeneous; s t r a d d l i n g several areas s i m u l t a n e ously — p h y s i c a l , p h y s i o l o g i c a l , a n d p s y c h o l o g i c a l — it belongs b o t h t o the i n d i v i d u a l and t o society; we c a n n o t put it i n t o any category of h u m a n facts, for we c a n n o t discover its u n i t y , [p.9] L a n g u a g e is a well-defined object i n the heterogeneous mass of speech facts ... i t is the social side o f speech, outside the i n d i v i d u a l w h o can never create nor m o d i f y it by himself; it exists o n l y b y v i r t u e of a sort of contract signed b y the members of a c o m m u n i t y . M o r e over, the i n d i v i d u a l m u s t always serve an a p p r e n t i c e s h i p i n order to l e a r n the f u n c t i o n i n g o f language; a c h i l d assimilates it o n l y g r a d u a l l y . [p.14] ... w h a t is n a t u r a l t o m a n k i n d is not o r a l speech b u t the f a c u l t y o f c o n s t r u c t i n g a language, i.e., a s y s t e m o f d i s t i n c t signs c o r r e s p o n d i n g t o d i s t i n c t ideas, [p.10] ... b e y o n d the f u n c t i o n i n g of the various organs, there exists a m o r e general f a c u l t y w h i c h governs signs a n d w h i c h w o u l d be the l i n g u i s t i c
V. L A N G U A G E A N D
79
STRUCTURE
f a c u l t y proper, [p.11] W e s h o u l d also a d d the associative a n d c o o r d i n a t i n g f a c u l t y t h a t we f i n d as soon as we leave i s o l a t e d signs; t h i s f a c u l t y p l a y s the d o m i n a n t role i n the o r g a n i z a t i o n of language as a s y s t e m , [p.13] F r o m our p o i n t of v i e w , the last three s t a t e m e n t s i n the q u o t a t i o n s h o u l d be b r o a d e n e d to assert t h a t w h a t is n a t u r a l t o m a n k i n d (or perhaps t o any a n i m a l w i t h a sufficiently c o m p l e x b r a i n ) is the f a c u l t y of c o n s t r u c t i n g a n d m a n i p u l a t i n g ( m e n t a l ) structures. T h i s faculty, at least i n m a n , includes the p o t e n t i a l for c o n s t r u c t i n g a n d o r g a n i z i n g language as a s y s t e m . Saussure s y m b o l i z e s , by the d i a g r a m i n F i g u r e 31.1 [ S I , p.12], the process of c o m m u n i c a t i o n between t w o i n d i v i d u a l s . I n the figure, b o t h "concept" a n d " s o u n d - i m a g e " are u n d e r s t o o d t o be s t r i c t l y m e n t a l (or psychological) constructs. T h e general i d e a is t h a t the p h y s i c a l s o u n d p r o d u c e d b y speech s t i m u l a t e s the a u d i t o r y organs, t h u s g e n e r a t i n g a " s o u n d - i m a g e " (s) t h a t evokes a concept (c) b y a s s o c i a t i o n . Conversely, a concept m a y c a l l up a s o u n d - i m a g e t h a t activates the v o c a l a p p a r a t u s p r o d u c i n g speech, etc. Hence, the t r a n s f o r m a t i o n "s —* c" is " p a s s i v e " , w h i l e "c —* s" is " a c t i v e " . Audition
Phonatica
Phonation
Audition
F i g . 31.1 It is clear t h a t o r d i n a r y language is based u l t i m a t e l y u p o n speech. T h e s o u n d - i m a g e , b y d e f i n i t i o n , is p r o d u c e d b y a spoken w o r d (or m o r p h e m e ) . O n the other h a n d , a s o u n d - i m a g e , once established, m a y also be e l i c i t e d b y a w r i t t e n w o r d , or b y the m e n t a l p i c t u r e o f a w r i t t e n w o r d , or s i m p l y b y a n act of m e m o r y . It is t h r o u g h this last p o s s i b i l i t y t h a t language m a y enter i n t o t h i n k i n g , a s i t u a t i o n i n w h i c h a n i n d i v i d u a l is l i t e r a l l y " c o m m u n i c a t i n g w i t h h i m s e l f " . W h a t h a p p e n s i n " s e l f - c o m m u n i c a t i o n " is t h a t one uses language as a t o o l t o help i n the f o r m a t i o n of m o r e c o m p l e x m e n t a l s t r u c tures out of s i m p l e r ones. T h e result m a y t h e n be coded b y the language a n d stored i n m e m o r y for easy r e t r i e v a l . A n o t h e r c o m m o n i n t e r n a l use o f language is i l l u s t r a t e d b y the e x a m p l e of a person c a r r y i n g o n m e n t a l l y a n i m a g i n a r y conversation w i t h someone w h o is not present. T h i s is a s i t u a -
so
STRUCTURALISM
AND STRUCTURES
t i o n i n w h i c h the person creates a m e n t a l c o n s t r u c t o f another i n sufficient d e t a i l to produce a sense of a c t u a l presence. A c t i v i t i e s of this k i n d o b v i ously represent very c o m p l e x psychological p h e n o m e n a w i t h i m p l i c a t i o n s e x t e n d i n g far b e y o n d the mere use of language. A l t h o u g h speech is an i n d i v i d u a l a c t i v i t y , language is a s o c i a l p r o d u c t , shared b y members of a c o m m u n i t y . T h e ( c , s ) associations, p o s t u l a t e d in Saussure's d e s c r i p t i o n of c o m m u n i c a t i o n , are more or less c o m m o n to those i n d i v i d u a l s w h o are able to c o m m u n i c a t e w i t h one a n o t h e r . E a c h w i l l reproduce, a p p r o x i m a t e l y i f not e x a c t l y , the same associations between concepts a n d sound-images. T h r o u g h the f u n c t i o n i n g of the receptive a n d c o o r d i n a t i n g f a c u l ties, impressions t h a t are perceptively the same for a l l are m a d e o n the m i n d s o f speakers....If we c o u l d embrace the s u m of word images stored i n the m i n d s of all i n d i v i d u a l s , we c o u l d i d e n t i f y the s o c i a l b o n d t h a t constitutes language. It is a storehouse filled by the m e m b e r s of a given c o m m u n i t y t h r o u g h t h e i r active use of s p e a k i n g , a g r a m m a t i c a l s y s t e m t h a t has a p o t e n t i a l existence i n each b r a i n , or, m o r e specifi c a l l y , i n the brains of a group o f i n d i v i d u a l s . F o r language is not complete i n any speaker; i t exists perfectly o n l y w i t h i n a c o l l e c t i v i t y . [ S I , p p . 13, 14] T h e " l i n g u i s t i c u n i t " , w h i c h occurs i n the s i m p l e c o m m u n i c a t i o n process, consists of an association of a concept w i t h a s o u n d - i m a g e , a n d is c a l l e d a s i g n by Saussure. T h e two elements of the s i g n , b o t h of w h i c h are psychol o g i c a l , are i n t i m a t e l y u n i t e d so t h a t each recalls the other. Since there is a c e r t a i n a m o u n t o f a m b i g u i t y i n the o r d i n a r y usage of these t e r m s , Saussure proposes t h a t the concept and associated s o u n d - i m a g e , i n v o l v e d i n a s i g n , be c a l l e d the s i g n i f i e d and s i g n i f i e r respectively. In everyday terminology, the signifier is the language element, a n d the signified is its m e a n i n g . M o r e o v e r , the b a s i c signifiers are the m i n i m a l m e a n i n g f u l elements of the language, v i z . , the m o r p h e m e s . Since the most c o m m o n m o r p h e m e s are associated w i t h i n d i v i d u a l words, s i m p l e sound-images are often called " w o r d - i m a g e s " rather t h a n the more accurate " m o r p h e m e images" . A c c o r d i n g to Saussure, the l i n g u i s t i c sign has t w o " p r i m o r d i a l " characteristics: (1) T h e A r b i t r a r y N a t u r e of the S i g n , a n d (2) T h e L i n e a r N a t u r e of the Signifier [ S I , pp. 69, 70]. P r o p e r t y (2) is s i m p l y the recognition t h a t a signifier, b e i n g an a u d i t o r y p h e n o m e n o n , occupies an i n t e r v a l of t i m e , so the signifiers occur i n a linear succession of intervals s t r u n g o u t a l o n g the t i m e a x i s . T h i s is i n contrast w i t h pictures ( v i s u a l signifiers) w h i c h can exist i n several dimensions. W e have already seen the i m p o r t a n c e of the l i n e a r character o f language i n connection w i t h the c o m m u n i c a t i o n o f
V.LANGUAGE
AND
STRUCTURE
81
structures discussed i n S e c t i o n 3 0 , a n d i t w i l l not be necessary t o a d d to those r e m a r k s here. P r o p e r t y (1), however, calls for some c o m m e n t s . T h e m e a n i n g o f (1) is t h a t the a s s o c i a t i o n b e t w e e n s i g n i f i e d a n d s i g n i f i e r i s q u i t e a r b i t r a r y . T h i s does not m e a n , h o w e v e r , " t h a t the choice of the signifier is left entirely to the speaker",since "the i n d i v i d u a l does not have the power t o change a sign i n a n y w a y once i t has become established i n the l i n g u i s t i c c o m m u n i t y " . T h e p o i n t is t h a t the signifier need not have any n a t u r a l connection w i t h the signified. T h e p r i n c i p l e is q u i t e g e n e r a l , a n d is not c o n t r a d i c t e d by the occasional instances i n w h i c h there appears to be a connection, as for e x a m p l e when the s o u n d of a w o r d suggests the associated concept. T h o u g h it is conceivable t h a t such connections m i g h t have p l a y e d a role i n the b e g i n n i n g , they are not essential to the associations themselves, a n d tend to become quite irrelevant once the signs are i n c o r p o r a t e d i n t o the language t h r o u g h the s o c i a l process. M u c h of the c o m p l e x i t y a n d f l e x i b i l i t y i n use of language depends u p o n the a r b i t r a r i n e s s of its signs. In s t r u c t u r a l t e r m i n o l o g y , the sign is a s i m p l e s t r u c t u r e , "s ^ c", cons i s t i n g of t w o o b j e c t s , the s o u n d - i m a g e s a n d the concept c, c o u p l e d by t w o (ordered) b i n a r y r e l a t i o n s , "s - * c" and "s « - c", associated w i t h the p s y c h o l o g i c a l steps i n the s i m p l e c o m m u n i c a t i o n process. Because these objects w i l l generally have some s t r u c t u r e o f t h e i r o w n , we may interpret the a r b i t r a r y character of the sign as an expression of the fact t h a t its s t r u c ture does not involve i n any way the object s t r u c t u r e s . O n the other h a n d , cases w h i c h appear to violate the a r b i t r a r i n e s s , are precisely those cases i n w h i c h the t w o o b j e c t structures are s i m i l a r i n some way or o t h e r , r e s u l t i n g i n the p o s s i b i l i t y of a more c o m p l e x s i g n - s t r u c t u r e i n w h i c h these s t r u c t u r a l s i m i l a r i t i e s are recognized. T h e fact is, however, t h a t t h i s a d d i t i o n a l s t r u c ture does not n o r m a l l y enter i n t o the role of the sign as a l a n g u a g e - e l e m e n t . In other words, as the sign becomes i n c o r p o r a t e d i n t o the language, such e x t r a s t r u c t u r e w i l l tend t o be e l i m i n a t e d . A m o r e general version of this p h e n o m e n o n w i l l be considered i n the next section. W e t u r n now t o the question of j u s t w h a t constitutes a "language s t r u c t u r e " . T h e answer is suggested b y the preceding discussion a n d , i n t e r estingly e n o u g h , is stated precisely as we w o u l d have i t i n the f o l l o w i n g q u o t a t i o n f r o m the " C o u r s e " . T h e first e m p h a s i s is ours. T h e signs t h a t make up language are not a b s t r a c t i o n s but real objects; s i g n s a n d t h e i r r e l a t i o n s are w h a t l i n g u i s t i c s studies; they are the c o n c r e t e e n t i t i e s of o u r science, [p. 102] Saussure goes o n t o e m p h a s i z e t h a t the l i n g u i s t i c e n t i t y exists i n neither the signifier nor the signified p o r t i o n s o f a sign but o n l y i n their a s s o c i a t i o n . T h u s , " a succession of sounds is l i n g u i s t i c o n l y i f i t s u p p o r t s an i d e a " . S i m i l a r l y , concepts "become l i n g u i s t i c entities o n l y when associated w i t h
82
STRUCTURALISM
AND STRUCTURES
sound-images". T h e o b j e c t s w i t h i n a language s t r u c t u r e are the signs, a n d the relations consist of (or at least i n c l u d e ) those specified by the g r a m m a r a n d s y n t a x . A s i n the case of most systems, there are possibly other m e t h o d s b y w h i c h s t r u c t u r e c o u l d be reasonably identified w i t h i n the mass o f language d a t a , but the one suggested here is most n a t u r a l for our purposes. T h e r e are, of course, m a n y d i s t i n g u i s h e d substructures i n any language s t r u c t u r e t h a t m a y be s i n g l e d out and treated as objects i n their o w n r i g h t . I n other words, these substructures become objects i n new s t r u c t u r e s t h a t c o n t a i n significant i n f o r m a t i o n a b o u t the language. T h i s is one of the features t h a t make languages so very c o m p l e x . L i n g u i s t i c s (that is, s t r u c t u r a l linguistics) is therefore a s t u d y o f the general characteristics or properties c o m m o n t o these s t r u c t u r e s . 32. Semiotics In this s e c t i o n , we consider another Saussure i d e a w h i c h , t h o u g h i n s p i r e d b y language, has a m u c h broader connection w i t h o u r s t u d y of general s t r u c tures t h a n do the s p e c i a l features of a language. S t r u c t u r a l l y s p e a k i n g , it a m o u n t s to the suggestion t h a t v a r i o u s other social systems e x h i b i t s t r u c t u r e analogous to t h a t of a language. T a k i n g language as his m o d e l , Saussure proposed a new scientific field of s t u d y , a " s t u d y of s i g n s " , for w h i c h he suggested the n a m e " s e m i o l o g y " . It w o u l d n a t u r a l l y i n c l u d e the study o f language as its most i m p o r t a n t subfield. T h e idea has h a d a great deal of influence i n c e r t a i n areas (for e x a m p l e , l i t e r a t u r e , a n t h r o p o l o g y , and psychoanalysis) a n d has undergone considerable development since i t was first l a u n c h e d . W e w i l l not a t t e m p t , however, t o explore these developments i n any d e t a i l , because o u r m a i n purpose is o n l y to b r i n g out some o f the basic connections w i t h genera! s t r u c t u r e s . W e b e g i n w i t h two c o m m e n t s b y Saussure c o n c e r n i n g the p r o posal: L a n g u a g e is a s y s t e m of signs t h a t express ideas, a n d is therefore c o m p a r a b l e to a s y s t e m o f w r i t i n g , the a l p h a b e t o f deaf mutes, s y m b o l i c rites, p o l i t e f o r m u l a s , m i l i t a r y signals, etc. B u t i t is the m o s t i m p o r t a n t o f a l l these systems. A s c i e n c e t h a t s t u d i e s t h e life of s i g n s w i t h i n s o c i e t y is conceivable; it w o u l d be a part o f social psychology and consequently of general psychology; I s h a l l c a l l it s e m i o l o g y (from G r e e k s e m e i o n ' s i g n ' ) . Semiology w o u l d show w h a t constitutes signs, w h a t laws govern t h e m . [ S I , p. 16]. Before c o m m e n t i n g u p o n a "general theory of s i g n s " , we i n c l u d e two i m p o r t a n t q u o t a t i o n s f r o m L e v i - S t r a u s s , taken f r o m his b o o k c m " S t r u c t u r a l A n t h r o p o l o g y " [L6]. T h e y b r i n g out the idea suggested i n the second S a u s -
V.LANGUAGE
AND
STRUCTURE
83
sure q u o t a t i o n a n d i n d i c a t e the basis for L e v i - S t r a u s s ' s t h i n k i n g c o n c e r n i n g the r e l a t i o n s h i p o f language to s o c i a l p h e n o m e n a i n general. A m o n g a l l social p h e n o m e n a , language alone has t h u s far been s t u d i e d i n a m a n n e r w h i c h p e r m i t s it to serve as the o b j e c t o f t r u l y scientific a n a l y s i s , a l l o w i n g us to u n d e r s t a n d its f o r m a t i v e process a n d to predict its m o d e of change. T h i s results f r o m m o d e r n researches i n t o the p r o b l e m o f p h o n e m i c s , w h i c h have reached beyond the s u perficial conscious a n d h i s t o r i c a l expression of l i n g u i s t i c p h e n o m e n a to a t t a i n f u n d a m e n t a l a n d objective realities consisting of systems of relations w h i c h are the p r o d u c t s of unconscious t h o u g h t processes. T h e q u e s t i o n w h i c h now arises is this: Is it possible to effect a s i m i l a r r e d u c t i o n i n the a n a l y s i s of other forms of social p h e n o m e n a ? If so, w o u l d t h i s a n a l y s i s lead to the s a m e result? A n d i f the answer to this last question is i n the affirmative, can we conclude t h a t a l l forms of s o c i a l life are s u b s t a n t i a l l y of the same n a t u r e — t h a t is, do they consist o f systems o f behavior t h a t represent the p r o j e c t i o n , o n the level of conscious and socialized t h o u g h t , of u n i v e r s a l laws w h i c h regulate the unconscious a c t i v i t i e s of the m i n d ? [pp. 58, 59]. ...the question m a y be raised whether the different aspects of social life ( i n c l u d i n g even art a n d religion) cannot o n l y be s t u d i e d by the m e t h o d s of, a n d w i t h the help of concepts s i m i l a r to those e m p l o y e d i n l i n g u i s t i c s , but also w h e t h e r they do not c o n s t i t u t e p h e n o m e n a whose i n m o s t nature is the same as t h a t of language, [p. 62] L e v i - S t r a u s s thus suggests the p o s s i b i l i t y t h a t language, i n w h i c h the use of scientific m e t h o d s is well-established, m i g h t serve as a m o d e l for the i n t r o d u c t i o n o f these m e t h o d s i n the study of a l l social p h e n o m e n a . O b s e r v e t h a t the idea goes m u c h deeper t h a n j u s t the o b s e r v a t i o n of s i m i l a r i t i e s between language and c e r t a i n aspects of s o c i a l p h e n o m e n a . It suggests t h a t these p h e n o m e n a , along w i t h language, have a c o m m o n o r i g i n i n the " u n i v e r s a l l a w s " w h i c h govern unconscious a c t i v i t y of the m i n d . T h i s is an i m p o r t a n t p o i n t , and o b v i o u s l y relates to the suggestion t h a t the m i n d has a b u i l t - i n a u t o m a t i c a n d unconscious a b i l i t y to c o n s t r u c t and m a n a g e structures. W e w i l l r e t u r n t o the subject i n the next section. W e now have a clear statement of the c l a i m t h a t social p h e n o m e n a are s t r u c t u r e d l i k e a language, a n d a suggestion o f w h y i t m i g h t be t r u e . T h e idea has h a d a deep influence u p o n L e v i - S t r a u s s ' s w o r k , b u t , as he indicates himself, the a c t u a l extent to w h i c h the general p r o p o s i t i o n is true r e m a i n s t o be settled t h r o u g h further c o l l a b o r a t i v e research between a n t h r o p o l o g i s t s and l i n g u i s t s . H o w m u c h of this c o l l a b o r a t i o n has a c t u a l l y t a k e n place is not clear, b u t i t is p l a u s i b l e t h a t the process m i g h t be f a c i l i t a t e d by an a p p l i c a t i o n of s o m e of the theory of general s t r u c t u r e s . A n a p p r o a c h to
84
STRUCTURALISM AND STRUCTURES
the p r o b l e m f r o m the p o i n t of v i e w of l i n g u i s t i c s , based o n the thesis t h a t "language is a variety of b e h a v i o r " , has been s y s t e m a t i c a l l y developed by K e n n e t h L . P i k e . H i s b o o k , " L a n g u a g e i n R e l a t i o n t o a U n i f i e d T h e o r y of t h e S t r u c t u r e of H u m a n B e h a v i o r " [P4], also contains 51 pages of references covering a w i d e range of source m a t e r i a l r e l a t i n g i n one way or another to the subject. T h e p r o b l e m now is to t r y to u n d e r s t a n d better the sense i n w h i c h various k i n d s of social p h e n o m e n a have language-type structures. W h a t characteristics d i s t i n g u i s h a language-type s t r u c t u r e f r o m any other s t r u c t u r e ? A s already suggested i n the Saussure q u o t a t i o n s , the answer to this question w i l l i n v o l v e the general n o t i o n of a " s i g n " . T h e r e already exist w i t h i n a language a n u m b e r of psychological objects more c o m p l e x t h a n the basic sound-images (or signifiers) identified w i t h spoken (or w r i t t e n ) language u n i t s . T h e y are p r o d u c e d by various m u l t i p l e w o r d c o n s t r u c t i o n s , such as phrases, sayings, cliches, a n d so f o r t h , w h i c h m a y p l a y the role of signifiers. A s suggested by the first Saussure statement quoted above, a general theory of signs w o u l d allow a w i d e variety of s i g n i fiers i n a d d i t i o n to a l l of those associated w i t h speech. I n order t o discuss these more complex objects, we w i l l replace the t e r m , " s o u n d - i m a g e " , b y the more i n c l u s i v e t e r m , " s t i m u l u s - i m a g e " , d e n o t i n g the " m e n t a l p r o d u c t " elicited by any one of a variety of social s t i m u l i not restricted to those associated w i t h language. T h e n , as i n the case of language, a general sign w o u l d consist o f a s t i m u l u s - i m a g e signifier coupled w i t h a signified concept. Necessary req u i r e m e n t s for a general sign are t h a t the s t i m u l u s - i m a g e be evoked by a c o m m o n social act, and t h a t the c o u p l i n g be essentially the same for a l l members of the c o m m u n i t y . A l t h o u g h i n d i v i d u a l s are u s u a l l y not aware of any s t r u c t u r e possessed b y s i m p l e sound-images, a s t i m u l u s - i m a g e a n d its associated concept m a y be complex enough t h a t their structures cannot be easily i g n o r e d . So, i n case the s t r u c t u r e s were s i m i l a r , the i n i t i a l association between s t i m u l u s - i m a g e a n d concept m i g h t be expected to recognize t h a t s i m i l a r i t y . T h i s means t h a t the c o u p l i n g c o u l d involve a ( p a r t i a l ) s t r u c t u r e i s o m o r p h i s m , so m a y not be completely a r b i t r a r y . E v e n i n the general case, however, the social process w h i c h converts a s t i m u l u s - i m a g e a n d concept c o m b i n a t i o n i n t o a sign w i l l tend to e l i m i n a t e differences i n the way i n d i v i d u a l s see the r e l a t i o n s h i p between the t w o o b jects. Therefore, unless there is a clear a n d c o m m o n l y perceived s t r u c t u r a l connection, the s o c i a l process w i l l , as i n the language case, t e n d t o p r o d u c e a sign i n w h i c h the c o u p l i n g is relatively t r i v i a l . In other words, u n d e r these circumstances the p r i n c i p l e of a r b i t r a r i n e s s w i l l a p p l y . A t the same t i m e , the p o s s i b i l i t y r e m a i n s t h a t the c o u p l i n g i n an established sign could
V.LANGUAGE
AND
STRUCTURE
retain i n d e f i n i t e l y a significant s t r u c t u r a l c o m p o n e n t . T h e r e is also another feature t h a t sets general signs a p a r t f r o m the s i m p l e language signs when the s t i m u l u s - i m a g e a n d its concept possess sufficient s t r u c t u r e . I n such cases, each i n d i v i d u a l w i l l tend t o s u p p l y a s t r u c t u r a l c o n n e c t i o n consistent w i t h his o w n u n d e r s t a n d i n g of the s i t u a t i o n , quite a p a r t f r o m the s o c i a l l y d e t e r m i n e d c o u p l i n g w i t h i n the s i g n . In v i e w o f the spontaneous m a n n e r i n w h i c h the h u m a n m i n d deals w i t h s t r u c t u r e s , it w o u l d be s u r p r i s i n g indeed i f such connections were not m a d e a u t o m a t i c a l l y whenever possible, regardless of whether or not the c o u p l i n g i n the sign itself involves any s t r u c t u r e features. A s an e x a m p l e of the last p o s s i b i l i t y , consider the s a y i n g : " N e v e r look a gift horse i n the m o u t h " . T h i s expression e l i c i t s a s t i m u l u s - i m a g e w h i c h is c o u p l e d i n a purely f o r m a l way w i t h the concept t h a t " i t is generally i n a d visable for one t o e x a m i n e a gift t o o c r i t i c a l l y " . T h e s a y i n g is based o n the fact t h a t a horse's age m a y be e s t i m a t e d by o b s e r v i n g how m u c h its g u m s have receded, so the p o i n t o f an e x a m i n a t i o n w o u l d be to discover whether o r not the horse is u n d e s i r a b l y o l d . T h i s c o u l d result i n e m b a r r a s s m e n t to the giver, a n d , i n any case, w o u l d i n d i c a t e an in sensitiveness to the s p i r i t of g i v i n g . T h e p o i n t is t h a t a c r i t i c a l e x a m i n a t i o n o f any gift w o u l d tend to produce a s i m i l a r undesirable result. M o s t people w i l l no d o u b t u n d e r s t a n d the a c t u a l sign content more or less as described, but m a n y w i l l not k n o w a b o u t the m e t h o d of e s t i m a t i n g a horse's age. Nevertheless, everyone c o u l d p r o b a b l y come up w i t h a p l a u s i b l e " e x p l a n a t i o n " of the s t i m u l u s - i m a g e t h a t w o u l d serve to connect it to the concept. Such e x p l a n a t i o n s c o u l d v a r y g r e a t l y w i t h o u t v i o l a t i n g the sign content. F o r e x a m p l e , it might be argued t h a t checking the horses m o u t h , for whatever reason, is not a good idea because the horse m a y bite. Such b e h a v i o r , j u s t as b e i n g over age, w o u l d constitute an undesirable q u a l i t y i n a horse. T h e fact t h a t i n d i v i d u a l s m i g h t interpret the c o u p l i n g for a general sign in n o n t r i v i a l ways m a y be irrelevant as far as the sign i t s e l f is concerned. Unless, of course, everyone w i n d s up d o i n g i t the same way. I n w h i c h case, as already n o t e d , the c o m m o n c o u p l i n g w o u l d a u t o m a t i c a l l y become a p a r t of the s i g n . S o m e t h i n g like this is suggested by an e x a m p l e f r o m a crossword puzzle, t h a t appeared i n T h e N e w H a v e n R e g i s t e r o n O c t o b e r 30, 1987. A clue i n the p u z z l e was the single word " V i o l e n t l y " , a n d the expected s o l u t i o n was the phrase, " H a m m e r a n d t o n g s " . T h e l a t t e r o b v i o u s l y refers t o c o m m o n expressions such as, " H e attacked the p r o b l e m w i t h h a m m e r a n d t o n g s " . O n the other h a n d , i n T h e O x f o r d U n i v e r s a l D i c t i o n a r y under the w o r d " H a m m e r " , we find the phrase, " H a m m e r a n d t o n g s (colloq.): w i t h m i g h t a n d m a i n (like b l a c k s m i t h s m i t i n g the i r o n taken w i t h the tongs f r o m the forge-fire)".
86
STRUCTURALISM AND STRUCTURES
Observe t h a t the b l a c k s m i t h context suggests a v i g o r o u s a n d c o n t r o l l e d , t h o u g h perhaps very p h y s i c a l , attack o n the p r o b l e m , but there is no s u g gestion at a l l o f an u n r e s t r a i n e d a p p l i c a t i o n of force as i m p l i e d by the w o r d " v i o l e n t l y " . T h e puzzle clue t h u s appears to be at best m i s l e a d i n g , a c o n c l u sion t h a t agrees completely w i t h m y o w n c h i l d h o o d m e m o r i e s of w a t c h i n g a r u r a l K a n s a s b l a c k s m i t h repair f a r m m a c h i n e r y . I was a c c o r d i n g l y s u r p r i s e d to f i n d the f o l l o w i n g entry i n W e b s t e r ' s S e v e n t h N e w C o l l e g i a t e D i c t i o n a r y : " h a m m e r a n d t o n g s (adv.): w i t h great force a n d v i o l e n c e " . It is u n d e r s t a n d a b l e , o f course, how an i n d i v i d u a l i g n o r a n t of the art of b l a c k s m i t h i n g m i g h t confuse the s m i t h y ' s v i g o r w i t h violence. O n the other h a n d , despite the d e a r t h of b l a c k s m i t h s i n o u r m o d e r n society, it is distressing to discover i n the W e b s t e r d e f i n i t i o n the fact t h a t this false i m a g e of a venerable profession has already become fixed i n our language. W e r e t u r n now to the question of w h a t i t s h o u l d m e a n for a social s y s t e m t o e x h i b i t s t r u c t u r e analogous to t h a t of a language. O b v i o u s l y the first r e q u i r e m e n t is t h a t i t consist of a s y s t e m o f signs, where the t e r m " s i g n " refers to a coupled s t i m u l u s - i m a g e and concept as described above. A c t u ally, m u c h of the s t r u c t u r a l i s t l i t e r a t u r e is devoted, d i r e c t l y or i n d i r e c t l y , to the i d e n t i f i c a t i o n a n d d e s c r i p t i o n o f signs a n d the way they are i n v o l v e d in the i n t e r a c t i o n s of i n d i v i d u a l s w i t h i n the given society. O n c e signs have been identified, the next requirement for a language-type s t r u c t u r e m u s t be t h a t relations analogous to g r a m m a r and s y n t a x exist a m o n g those signs. B u t the description of g r a m m a r a n d s y n t a x is a l r e a d y a n o n t r i v i a l task for o r d i n a r y language, so i t is not clear to w h a t extent the existence of analogous relations has been d e m o n s t r a t e d i n more general systems. P e r h a p s systems of t h i s type, because of the i n t r i n s i c character of signs, m a y a u t o m a t i c a l l y e x h i b i t the expected r e l a t i o n a l s t r u c t u r e of a language. A t any rate, s o m e t h i n g s i m i l a r t o the p i c t u r e we have sketched appears t o be w h a t those w h o suggest t h a t a s o c i a l s y s t e m resembles a language have i n m i n d . A n o t h e r field i n w h i c h s t r u c t u r a l l i n g u i s t i c s has had a significant i n f l u ence is p s y c h o a n a l y s i s , the strongest proponent being the F r e n c h p s y c h o a n a l y s t , Jaques L a c a n . T h e s p e c i a l role of language i n p s y c h o a n a l y s i s was already u n d e r s t o o d by F r e u d , as i n d i c a t e d by his emphasis o n the i n f o r m a t i o n unconsciously revealed i n language t h r o u g h d r e a m s , slips of the tongue, p u n s , a n d so f o r t h . L a c a n , however, w h o is a follower o f the master, goes farther b y suggesting t h a t the F r e u d i a n unconscious is i t s e l f s t r u c t u r e d like a language. [ L I , p . 20; L3] T h e " F r e u d i a n unconscious" is t h a t p o r t i o n of the "general unconscious" (or "subconscious") of p r i m a r y concern i n p s y c h o a n a l y s i s , a n d is a very special p a r t of the whole. T h e general unconscious contains m u c h m a t e r i a l
V. L A N G U A G E A N D
STRUCTURE
87
t h a t is easily r e c a l l e d , a n d accounts for the great b u l k of a l l m e n t a l a c t i v i t y . B y c o m p a r i s o n , the conscious appears t o be h a r d l y m o r e t h a n a r i p p l e on the surface, p l a y i n g m a i n l y a role i n the various modes o f c o m m u n i c a t i o n . T h e unconscious a c c o m m o d a t e s most of the r o u t i n e m e n t a l f u n c t i o n s , such as the processing a n d s t o r i n g of i n f o r m a t i o n , as well as m a j o r p o r t i o n s of the highest m e n t a l functions. T h e " F r e u d i a n u n c o n s c i o u s " , o n the other h a n d , is h i g h l y r e s t r i c t e d . Peter G a y i n his recent b i o g r a p h y of F r e u d [G3, p. 128], describes it as follows: M o s t of the unconscious consists o f repressed m a t e r i a l s . T h i s u n conscious, as Freud c o n c e p t u a l i z e d i t , is not the segment o f m i n d h a r b o r i n g t h o u g h t s t e m p o r a r i l y out of sight a n d easily r e c a l l e d ; t h a t is w h a t he called the preconscious. R a t h e r , the unconscious proper resembles a m a x i m u m security p r i s o n h o l d i n g a n t i s o c i a l i n m a t e s ... forever a t t e m p t i n g to escape. A t the same t i m e , the F r e u d i a n unconscious is s o m e t h i n g more or less c o m m o n t o a l l i n d i v i d u a l s , at least w i t h i n a g i v e n c u l t u r a l g r o u p . It is also a p r o d u c t of s o c i a l i n t e r a c t i o n , and m a y be t h o u g h t o f as a s u b s t r u c t u r e of the m i n d , " p r o g r a m m e d " by c e r t a i n c o m m o n experiences of the g r o u p but u s u a l l y inaccessible t h r o u g h n o r m a l channels. In order for this special s u b s t r u c t u r e of the m i n d to be l i k e a l a n g u a g e , it m u s t consist o f a s y s t e m of general signs. A s i n a l l c o m p l e x signs, the coup l i n g of s t i m u l u s - i m a g e to concept m a y range f r o m a r b i t r a r y associations t o connections t h a t involve i n t e r n a l s t r u c t u r e o f the two. T h e r e is a m p l e evidence of the different k i n d s of c o u p l i n g i n p s y c h o a n a l y t i c p h e n o m e n a . A m o n g the various functions expected of a process s i m i l a r to a language, are the i n t e r n a l exchanges analogous t o those associated w i t h o r d i n a r y selfc o m m u n i c a t i o n . In this case, however, these exchanges cannot n o r m a l l y be m o n i t o r e d a n d c o n t r o l l e d d i r e c t l y by the conscious m i n d . I n fact, the v i r t u a l e x c l u s i o n o f conscious i n t e r v e n t i o n i n the business of the F r e u d i a n unconscious, t h o u g h it is s t r u c t u r e d like a language, s h a r p l y distinguishes it f r o m o r d i n a r y language. It is clear t h a t this unconscious is not t o t a l l y isolated f r o m either the rest of the m i n d or the e x t e r n a l w o r l d . It receives c e r t a i n outside inform a t i o n a n d gives up pieces of i n f o r m a t i o n i n one f o r m or another, as, for e x a m p l e , i n dreams and other b e h a v i o r of w h i c h the i n d i v i d u a l m a y not always be aware. T h e u t i l i z a t i o n of outside m a t e r i a l is u n p r e d i c t a b l e , and any m a t e r i a l f o r m e d i n the unconscious c a n , as a rule, enter consciousness only i n d i r e c t l y , i f at a l l . Because these exchanges are not under c o n t r o l of the conscious m i n d , they often appear o n the surface to be t o t a l l y i r r a t i o n a l and to occur s t r i c t l y by chance. T h e a c t u a l i n f o r m a t i o n t h a t they c o n t a i n is s e l d o m evident to the casual observer u n f a m i l i a r w i t h the " l a n g u a g e " ,
88
STRUCTURALISM
AND STRUCTURES
and the m e a n i n g of a g i v e n signifier as i t emerges f r o m the unconscious m a y be q u i t e obscure. In other words, it m a y be very difficult t o s u p p l y the second h a l f of the sign i n v o l v e d i n an exchange a n d to determine its r e l a t i o n s h i p to the rest of the message. D e c i p h e r i n g the messages p r o d u c e d by the unconscious, d i s c o v e r i n g the " r u l e s " w h i c h govern s t r u c t u r e f o r m a t i o n w i t h i n the unconscious, e x p l a i n ing the ways i n w h i c h the unconscious interacts w i t h the conscious, a n d e x p o s i n g the general significance of the unconscious a c t i v i t y to the i n d i v i d ual are m a j o r p r o b l e m s i n the field of p s y c h o a n a l y s i s . A serious t r e a t m e n t of these topics f r o m the p o i n t o f v i e w of structures w o u l d surely b r i n g out m a n y interesting s t r u c t u r a l p h e n o m e n a , but is beyond b o t h the scope of this w o r k a n d the a u t h o r ' s knowledge of the subject. 33.
The Language Faculty
T h e a b i l i t y to use a language of great c o m p l e x i t y a n d flexibility is one of the most obvious q u a l i t i e s t h a t set h u m a n beings a p a r t f r o m a l l other a n i m a l s . F u r t h e r m o r e , the c o m p a r a t i v e ease and s p o n t a n e i t y w i t h w h i c h a child learns a language suggests t h a t h u m a n s are equipped w i t h a n i n n a t e language faculty of some k i n d or other. A t the same t i m e , it is not clear j u s t how s p e c i a l such a language f a c u l t y m i g h t be. Is it unique to h u m a n beings, or do certain other a n i m a l s also possess a language p o t e n t i a l ? These are controversial questions w h i c h o b v i o u s l y cannot be settled by purely theoretical a r g u m e n t s . T h e r e are, however, s t r u c t u r a l considerations t h a t m a y t h r o w some l i g h t o n the s i t u a t i o n . L i n g u i s t N a o m C h o m s k y is an o u t s t a n d i n g a d v o c a t e of the v i e w t h a t h u m a n s are equipped w i t h a special i n n a t e f a c u l t y for l e a r n i n g a language. T h e following q u o t a t i o n s , w h i c h o u t l i n e C h o m s k y ' s ideas c o n c e r n i n g the significance of such a faculty to the s t u d y of l i n g u i s t i c s , are t a k e n f r o m his b o o k , " L a n g u a g e a n d P r o b l e m s of K n o w l e d g e " [C4]. .... we a t t e m p t to construct a g r a m m a r , a theory of u n i v e r s a l g r a m mar, a theory of the fixed a n d i n v a r i a n t p r i n c i p l e s t h a t c o n s t i t u t e the h u m a n language f a c u l t y a n d the parameters of v a r i a t i o n associated w i t h t h e m . W e can t h e n , i n effect, deduce p a r t i c u l a r languages b y s e t t i n g the parameters i n one or another way.... L a n g u a g e l e a r n i n g , t h e n , is the process of d e t e r m i n i n g the values of the parameters left unspecified b y u n i v e r s a l g r a m m a r , of s e t t i n g the switches t h a t m a k e the network f u n c t i o n . . . . (It) is not r e a l l y somet h i n g t h a t the c h i l d does; it is s o m e t h i n g t h a t happens t o the c h i l d placed i n an a p p r o p r i a t e e n v i r o n m e n t , m u c h as the c h i l d ' s b o d y grows and matures i n a predetermined way when p r o v i d e d w i t h a p p r o p r i a t e n u t r i t i o n and e n v i r o n m e n t a l s t i m u l a t i o n ....environment determines the way the parameters of universal g r a m m a r are set, y i e l d i n g differ-
V.
LANGUAGE
AND
STRUCTURE
89
ent languages, [pp. 133, 134] A n u m b e r of e x p e r i m e n t s t h a t tend t o s u p p o r t the existence of a n i n b o r n language f a c u l t y are described by Peter D . E i m a s i n a survey a r t i c l e , " T h e P e r c e p t i o n of S p e e c h i n E a r l y I n f a n c y " [ E l ] . A f t e r o u t l i n i n g briefly the a p p r o a c h a n d s o m e of the results of these e x p e r i m e n t s , w h i c h are concerned w i t h speech p e r c e p t i o n at the phoneme level, we w i l l m a k e a few c o m m e n t s concerning t h e m . T h e basic acoustic u n i t s , or segments, i n speech vary w i t h respect t o a n u m b e r of acoustic p a r a m e t e r s , w h i c h c a r r y the i n f o r m a t i o n necessary for the p e r c e p t i o n of phonemes. T h e r e l a t i o n s h i p between acoustic u n i t s a n d phonemes is n o t , however, a s i m p l e one. T h o u g h a s m a l l change i n a single p a r a m e t e r m a y s i g n a l a change i n the perceived phoneme, it appears t o be more c o m m o n t h a t p a r a m e t e r s c a n vary w i d e l y w i t h o u t a c o r r e s p o n d i n g p h o n e m e change. (Note the suggestion of " s t r u c t u r a l s t a b i l i t y " i n this c o m m e n t . ) T h e a u t h o r cites e x p e r i m e n t a l results c o n f i r m i n g " t h a t i n the p e r c e p t i o n of speech we are o r d i n a r i l y aware o f discrete p h o n e m i c categories rather t h a n o f the continuous v a r i a t i o n i n each acoustic p a r a m e t e r : we perceive speech c a t e g o r i c a l l y " . I n other words, a listener is able to e x t r a c t f r o m a v a r i e t y of speech segments a c o m m o n s t r u c t u r e t h a t identifies a p a r t i c u l a r phoneme. T h u s , as far as perception is concerned, t h i n g s are already q u i t e c o m p l e x even at the lowest level of language s t r u c t u r e . A l t h o u g h m a n y of the experiments o n phoneme p e r c e p t i o n have been carried out o n a d u l t s or c h i l d r e n , E i m a s , a m o n g others, s t u d i e d i n f a n t s . Because i n f a n t s cannot give v e r b a l reports, experimenters use s u c k i n g rate or heart rate as i n d i c a t o r s . F o r e x a m p l e , w h e n an i n f a n t is first presented w i t h a s o u n d , representing, say, a p a r t i c u l a r consonant, its s u c k i n g rate w i l l first increase a n d t h e n decrease w i t h f a m i l i a r i t y . U p o n presentation of a new s t i m u l u s , t h e s u c k i n g rate w i l l increase s h a r p l y , i n d i c a t i n g p e r c e p t i o n o f the change. U s i n g techniques of this k i n d , various aspects o f phoneme perception i n i n f a n t s have been s t u d i e d , l e a d i n g to the conclusion t h a t i n f a n t s also "perceive speech c a t e g o r i c a l l y " . S i m i l a r results have been o b t a i n e d for infants f r o m a v a r i e t y o f language b a c k g r o u n d s . A l t h o u g h the above i t e m s cover m o s t of the results t h a t bear o n our discussion, the e x p e r i m e n t s act u a l l y i n v o l v e d a more d e t a i l e d i n v e s t i g a t i o n of the p h e n o m e n a t h a n c a n be covered i n a b r i e f sketch. T h e results o f these experiments s u p p o r t , or at least do not c o n t r a d i c t , the existence o f an i n n a t e language f a c u l t y . P e r c e i v i n g phonemes is o b v i ously a necessary c o n d i t i o n for l e a r n i n g a spoken l a n g u a g e , b u t i t is not clear t h a t i t is necessarily peculiar to language c a p a b i l i t y . F o r e x a m p l e , there are e x p e r i m e n t s w h i c h i n d i c a t e t h a t Japanese q u a i l also are able to d i s t i n g u i s h p h o n e m i c categories [ K l ] , an a b i l i t y t h a t no one w o u l d c l a i m indicates a language p o t e n t i a l , at least i n the sense u n d e r s t o o d here. In
90
STRUCTURALISM
AND STRUCTURES
fact, some p h o n e m i c categories may s i m p l y represent a general c o n t r a c t i o n process (as described i n Section 27) t h a t facilitates d e a l i n g w i t h a mass of sound data. A n o t h e r i t e m relevant t o the n a t u r e of a language f a c u l t y is the fact t h a t i n d i v i d u a l s w h o have been deaf f r o m b i r t h are able to l e a r n a sign language. A l t h o u g h the s t r u c t u r e of a s t a n d a r d sign language closely resembles t h a t of an o r d i n a r y language (perhaps because of an influence of o r d i n a r y language o n the i n i t i a l c o n s t r u c t i o n of the f o r m e r ) , the p o i n t here is t h a t l e a r n i n g the sign language is a very different process f r o m l e a r n i n g a spoken language. So the language faculty, whatever its n a t u r e , cannot be as s p e c i a l i z e d as one m i g h t first expect. R e c a l l t h a t b o t h Saussure a n d L e v i - S t r a u s s c l a i m e d t h a t s o c i a l p h e n o m e n a were s t r u c t u r e d l i k e a language. A t t h i s p o i n t , the c l a i m appears quite reasonable, since any social p h e n o m e n a o b v i o u s l y m u s t i n v o l v e c o m m u n i c a t i o n i n s o m e f o r m or another. F u r t h e r m o r e , L e v i - S t r a u s s also conjectured t h a t the language-type s t r u c t u r e is d e t e r m i n e d b y " u n i v e r s a l laws w h i c h regulate the unconscious a c t i v i t i e s of the m i n d " . F r o m our p o i n t o f view, t h i s w o u l d m e a n t h a t the u n d e r l y i n g s t r u c t u r e of each type of c o m m u n i c a t i o n is d e t e r m i n e d b y the general laws t h a t regulate the f o r m a t i o n a n d processing of s t r u c t u r e s . T h e r e exists the p o s s i b i l i t y t h a t a language type s t r u c t u r e for any c o m m u n i c a t i o n process m i g h t eventually be deduced f r o m general properties of the s t r u c t u r i n g process itself. T h i s w o u l d require, of course, the cons t r u c t i o n of an a p p r o p r i a t e a x i o m a t i z a t i o n of the s t r u c t u r i n g process, f r o m w h i c h the desired result m i g h t be derived. A l t h o u g h it is c o m m o n to view the language f a c u l t y as a p r o d u c t of the e v o l u t i o n of language, the suggestion here is t h a t language is an a d a p t a t i o n o f a more f u n d a m e n t a l p r o d u c t of e v o l u t i o n , the general s t r u c t u r i n g a b i l i t y of the m i n d . G i v e n the l a t t e r , language proper c o u l d evolve f r o m the s i m p l e c o m m u n i c a t i o n signals t h a t m a n y a n i m a l s use for w a r n i n g and i d e n t i f i c a t i o n . T h i s d e s c r i p t i o n of the h u m a n language f a c u l t y does not d i r e c t l y c o n t r a d i c t either the innateness hypothesis or the other ideas expressed b y C h o m s k y . It o n l y suggests t h a t the language f a c u l t y is j u s t one m a n i f e s t a t i o n o f a very general c a p a b i l i t y of the m i n d . In other words, it is b o t h i n n a t e a n d s p e c i a l , t h o u g h special i n a sense rather different f r o m t h a t i m p l i e d by the usual hypothesis. T h e p o s s i b i l i t y t h a t language type structures are as u n i v e r s a l as c l a i m e d , has i m p l i c a t i o n s for a n i m a l s other t h a n h u m a n s . A f t e r a l l , any l i v i n g org a n i s m , i n order t o adjust t o its e n v i r o n m e n t , m u s t be e q u i p p e d i n some degree t o s t r u c t u r e the flood of s t i m u l i t h a t impinges o n i t . T h e r e f o r e , given a sufficient level of c o m p l e x i t y a n d the a b i l i t y t o adjust to s o c i a l s i t u a t i o n s , an a n i m a l m i g h t be expected to e x h i b i t , i n some f o r m or another, a
V.LANGUAGE
AND STRUCTURE
91
l i m i t e d language a b i l i t y . Therefore, some o f the c l a i m s for language a b i l i t y in a n i m a l s become more p l a u s i b l e . I n fact, when one considers the extent a n d i n t e n s i t y o f the experience to w h i c h a c h i l d is n o r m a l l y subjected w h i l e l e a r n i n g the language, it seems q u i t e r e m a r k a b l e t h a t a c h i m p a n z e e , for exa m p l e , i n an a r t i f i c i a l e n v i r o n m e n t i n v o l v i n g a few h u m a n s , a n d presented w i t h the task o f l e a r n i n g a r e l a t i v e l y u n n a t u r a l s i g n language, is able to a c c o m p l i s h as m u c h as i t a p p a r e n t l y does.
CHAPTER
STRUCTURES
34.
IN
VI
MENTAL
PHENOMENA
Introduction
T h i s chapter is devoted t o several rather different t h o u g h not u n r e l a t e d topics p e r t a i n i n g m o s t l y to the role of structures i n higher m e n t a l p h e n o m e n a . It depends heavily, b o t h d i r e c t l y a n d i n d i r e c t l y , o n the s t r u c t u r e ideas developed i n the preceding chapters, and the topics raise f a m i l i a r p h i l o s o p h i c a l questions t h a t have been s t u d i e d i n one f o r m or another since ancient times. A l t h o u g h some of these questions were touched u p o n i n Section 14 and others w i l l be considered i n Section 37, our m a i n o b j e c t i v e is rather different and a great deal m o r e l i m i t e d i n scope, ft is s i m p l y t o s k e t c h , f r o m the p o i n t of view of s t r u c t u r e s , a plausible description of how p e r c e i v i n g a n d u n d e r s t a n d i n g m i g h t conceivably take place. T h e scenarios are t o a large extent deduced f r o m general properties of s t r u c t u r e s a n d are not offered as an accurate account o f w h a t a c t u a l l y occurs. T h e y are nevertheless valuable for o r g a n i z i n g ones t h i n k i n g o n a subject, a n d p r o v i d e a h e l p f u l a p p r o a c h i n Section 39 to certain p r o b l e m s of t e a c h i n g a n d l e a r n i n g . For o u r i m m e d i a t e purposes, it is i m m a t e r i a l whether the m i n d is regarded as an e n t i t y e x i s t i n g apart f r o m the b r a i n , or as a s t r i c t l y secondary p h e n o m e n o n associated w i t h the p h y s i c a l f u n c t i o n i n g of the b r a i n . A l s o , e x a c t l y how m e n t a l structures are represented i n the b r a i n is a m y s t e r y t h a t we w i l l not a t t e m p t to resolve, a l t h o u g h the representations o b v i o u s l y m u s t involve the n e u r a l s t r u c t u r e i n one way or another. In some contexts i t is helpful to t h i n k of the n e u r a l representations as analogous to o r d i n a r y e l e c t r i c a l networks. F o r e x a m p l e , t h i s analogy is used i n Section 46 of the next chapter to s u p p o r t a s t r u c t u r a l d e s c r i p t i o n of the creative process as it appears t o o c c u r i n m a t h e m a t i c s . A t the same t i m e , the electrical network m o d e l , t h o u g h sometimes useful, is m u c h too s i m p l e to represent accurately the s t r u c t u r e a n d f u n c t i o n of neural networks, w h i c h involve c o m p l e x synapses a n d d e p e n d not o n l y o n e l e c t r i c a l b u t o n c h e m i c a l processes as w e l l . In S e c t i o n 35 some of the details associated w i t h the role o f s t r u c t u r e s in m e n t a l p h e n o m e n a are discussed, a n d S e c t i o n 36 consists of some observations o n the nature o f t h i s involvement w i t h s t r u c t u r e s . Section 37 is devoted to some p h i l o s o p h i c a l r e m a r k s c o n c e r n i n g the r e l a t i o n s h i p between 93
94
STRUCTURALISM AND STRUCTURES
m e n t a l s t r u c t u r e s a n d the things they represent, and the s i m i l a r i t y of m e n t a l experiences of different i n d i v i d u a l s . It also contains the suggestion of a s t r u c t u r a l s e t t i n g i n w h i c h consciousness m i g h t c o n c e i v a b l y occur. S e c t i o n 38 contains a d e s c r i p t i o n o f a person's general b a c k g r o u n d s t r u c t u r e , where each i t e m o f ones knowledge is recorded as a s u b s t r u c t u r e , a l o n g w i t h a s t r u c t u r a l d e s c r i p t i o n of the process of u n d e r s t a n d i n g . S e c t i o n 39 deals w i t h some s t r u c t u r a l aspects of teaching a n d l e a r n i n g i n the l i g h t of ideas developed i n earlier sections. 35.
T h e C e n t r a l R o l e of Structures
O u r general p o i n t of v i e w , t h a t most m e n t a l a c t i v i t y is based o n the direct processing of structures, is at least i m p l i c i t i n m u c h o f the precedi n g m a t e r i a l a n d underlies a l l t h a t we w i l l have t o say concerning m e n t a l p h e n o m e n a . W e also assume t h a t the m i n d is able t o deal d i r e c t l y w i t h n o n t r i v i a l w h o l e s t r u c t u r e s , b a s i c a l l y w i t h o u t i n t e r v e n t i o n of s y m b o l i c or other i n t e r m e d i a t e devices for representing the s t r u c t u r e s . T h e s e are l i k e c o m plex p i c t u r e s t h a t are v i s u a l i z e d a l l at once. T h e r e are m a n y c o m m o n p l a c e experiences (such as the use of analogies discussed i n S e c t i o n 9), as well as m o r e s o p h i s t i c a t e d p h e n o m e n a , t h a t are most conveniently e x p l a i n e d by this assumed a b i l i t y t o process s t r u c t u r e s . A n a l o g o u s a s s u m p t i o n s also u n d e r l i e m u c h of cognitive psychology, w i t h v a r y i n g e m p h a s i s o n structures a n d how they are processed. F o r e x a m p l e , i n a b o o k by H o w a r d M a r g o l i s , " P a t t e r n s , T h i n k i n g , a n d C o g n i t i o n " [M2] , the general s t r u c t u r a l a p p r o a c h is quite e x p l i c i t . T h e a u t h o r develops the thesis t h a t p a t t e r n (i.e. s t r u c t u r e ) recognition is f u n d a m e n t a l to t h i n k i n g a n d j u d g e m e n t , b u t rejects the more c o m m o n i d e a t h a t these processes d e p e n d p r i m a r i l y o n rules and logic. I n other words, the b r a i n is " a - r a t i o n a l " . M a r g o l i s [ C h a p t e r 4] also offers some controversial suggestions [ D l ] as to how the b r a i n a c t u a l l y deals w i t h p a t t e r n s . In a b o o k o n , M e n t a l I m a g e s a n d T h e i r T r a n s f o r m a t i o n s [S4], p . 119, Roger N . S h e p a r d a n d L y n n A . C o o p e r also give evidence for the direct processing of m e n t a l structures i n a series o f s i m p l e e x p e r i m e n t s , m a n y of t h e m i n v o l v i n g r o t a t i o n s a n d other s p a c i a l t r a n s f o r m a t i o n s o f various m e n t a l objects. It seems t h a t most cognitive psychologists adopt either a " c o n n e c t i o n i s t " or " t r a d i t i o n a l i s t " p o i n t o f v i e w . C o n n e c t i o n i s t s a p p r o a c h the subject t h r o u g h " n e u r a l n e t w o r k s " , and are m u c h influenced b y c o m p u t e r m o d els, w h i l e t r a d i t i o n a l i s t s emphasize the m a n i p u l a t i o n o f " s t r u c t u r e d s y m b o l i c e x p r e s s i o n s " . W h a t e v e r the differences, a l l such approaches a m o u n t u l t i m a t e l y to m e t h o d s of representing a n d processing s t r u c t u r e s . S t r u c t u r e processing o b v i o u s l y must o c c u r t o some degree i n a l l a n i m a l s w i t h a b r a i n , the m a i n differences b e i n g i n c o m p l e x i t y a n d s o p h i s t i c a t i o n . T h u s , the i d e n t i f i c a t i o n of basic m e n t a l a c t i v i t y w i t h pure s t r u c t u r e p r o -
V I . S T R U C T U R E S IN M E N T A L P H E N O M E N A
9J
cessing provides a sort, of bridge between h u m a n s a n d other a n i m a l s . T h e r e r e m a i n s , however, a w i d e g a p , s i m p l y because the h u m a n process is so enorm o u s l y c o m p l e x , a c c o m m o d a t i n g , a m o n g other secondary features, a h i g h l y developed language facility. D e s p i t e the fact t h a t so l i t t l e is k n o w n c o n c e r n i n g the a c t u a l process of f o r m i n g m e n t a l s t r u c t u r e s (i.e., images), there are a few general c o m m e n t s on the subject t h a t are perhaps w o r t h m a k i n g . In the first place, the f o r m a t i o n o f a m e n t a l s t r u c t u r e c o r r e s p o n d i n g t o i n c o m i n g i n f o r m a t i o n is never a s t r i c t l y passive process. For e x a m p l e i n v i s i o n , the r e t i n a l i m a g e , t h o u g h t w o - d i m e n s i o n a l , is perceived whenever possible as representing a threed i m e n s i o n a l o b j e c t . A l t h o u g h this is to be expected because we evolved i n a t h r e e - d i m e n s i o n a l e n v i r o n m e n t , i t does i l l u s t r a t e how the m i n d s y s t e m a t i c a l l y adds to the r a w d a t a . A n even more i n t e r e s t i n g e x a m p l e a l o n g these same lines is the u s u a l response t o the A l b e r s c o n s t r u c t i o n s discussed i n Section 17. R e c a l l t h a t the c o n s t r u c t i o n s are plane figures t h a t a p p e a r to represent t h r e e - d i m e n s i o n a l objects. T h e full representation, however, c a n not occur because the figures c o n t a i n c o n t r a d i c t o r y i n f o r m a t i o n . Despite this " i m p o s s i b l e " s i t u a t i o n , the m i n d is able to resolve the c o n t r a d i c t i o n by i n t r o d u c i n g m o t i o n i n t o the picture. A n o t h e r significant aspect of m e n t a l i m a g e r y arises f r o m the fact t h a t images m a y c o r r e s p o n d t o d a t a f r o m one (or m o r e ) of the senses other t h a n sight. F o r e x a m p l e , a perception of a s o l i d o b j e c t i n space m a y be derived f r o m the sense of touch as well as sight, no doubt w i t h different results i n the t w o cases. In t h i s s i t u a t i o n , a person b l i n d f r o m b i r t h is w h o l l y dependent on the sense of touch and could conceivably w i n d up w i t h a more or less nonperspective m e n t a l image of the o b j e c t . T h e r e are i n d i c a t i o n s t h a t even sighted persons m a y have s i m i l a r experiences when the sense of touch is c o m b i n e d w i t h t h a t of sight. T h i s is suggested by i n t r o s p e c t i o n as w e l l as some c h i l d r e n ' s d r a w i n g s t h a t show s i m u l t a n e o u s l y the f r o n t , back, a n d interior of a house. A t the same t i m e , because sight is so i m p o r t a n t to an a n i m a l ' s s u r v i v a l , i t is l i k e l y t h a t e v o l u t i o n e a r l y o n b u i l t i n t o a l l o f us some of the space i n t u i t i o n derived f r o m the v i s u a l experience. Therefore, a b l i n d person m a y possess some v i s u a l space i n t u i t i o n w i t h o u t ever h a v i n g experienced v i s i o n . F o r this reason, it is also conceivable t h a t a b l i n d person's m e n t a l image of a solid object, t h o u g h derived s t r i c t l y f r o m the sense of t o u c h , m a y s t i l l involve some i n t u i t i v e l y added p e r s p e c t i v i t y . It is obvious t h a t the b r a i n already e x h i b i t s at b i r t h a great deal of " h a r d w i r e d " s t r u c t u r e , w h i c h provides not o n l y c o n t r o l of o r d i n a r y b o d i l y f u n c t i o n s b u t also some n o n t r i v i a l m e n t a l functions as w e l l . In other words, h u m a n beings, a n d no d o u b t also m a n y other a n i m a l s , are b o r n w i t h a w e l l developed c a p a c i t y for d e a l i n g w i t h s t r u c t u r e s , a l o n g w i t h the p o t e n t i a l for f o r m i n g a n d m a n i p u l a t i n g new s t r u c t u r e s . T h e fact t h a t i n d i v i d u a l s
96
STRUCTURALISM AND STRUCTURES
are able r o u t i n e l y to c o m m u n i c a t e relatively c o m p l e x i n f o r m a t i o n a m o n g themselves also suggests t h a t the s t r u c t u r i n g process does not differ greatly f r o m one person t o another. T h i s is not to say, of course, t h a t everyone processes i n f o r m a t i o n i n e x a c t l y the same way, but o n l y t o c l a i m t h a t the u n d e r l y i n g m e c h a n i s m m u s t be essentially the same. T h o u g h the basic s t r u c t u r i n g process m a y i n v o l v e w h o l e s t r u c t u r e s , it is obvious t h a t s o m e structures w i l l be t o o complex or extensive t o be processed as wholes a n d w i l l require b r e a k i n g d o w n i n t o s m a l l e r structures. A s we have a l r e a d y seen i n Sections 29 a n d 30, such d e c o m p o s i t i o n s are n o r m a l l y i n v o l v e d i n language c o m m u n i c a t i o n of a s t r u c t u r e . In t h i s case, the language s t r u c t u r e provides a m e t h o d of representation t h a t enables piecewise c o m m u n i c a t i o n of the s t r u c t u r e . L a n g u a g e , however, is not l i k e l y to be the o n l y s t r u c t u r a l process by w h i c h s t r u c t u r e s m i g h t be dealt w i t h in a piecewise f a s h i o n . T h e m i n d can no d o u b t decompose and reassemble structures d i r e c t l y a n d q u i t e i n d e p e n d e n t l y of language. A l s o , the need to decompose structures for purposes of c o m m u n i c a t i o n is the p o i n t at w h i c h s y m b o l s , codes, etc., as well as language, m a y enter i n t o the p i c t u r e . Because o f our ignorance concerning the m a n n e r i n w h i c h s t r u c t u r e s are recorded and processed i n the b r a i n , we m a y as well assume t h a t the processing, i n whatever way i t is a c c o m p l i s h e d , proceeds more or less i n accordance w i t h the properties of general structures. T h i s a p p r o a c h avoids any need to speculate a b o u t a c t u a l p h y s i o l o g i c a l mechanisms t h a t m i g h t be capable of d e a l i n g a p p r o p r i a t e l y w i t h structures, and serves to focus even more a t t e n t i o n o n the structures themselves. It r e m a i n s t r u e , of course, t h a t any knowledge at the p h y s i o l o g i c a l level concerning these m a t t e r s w o u l d be b o t h i n t e r e s t i n g a n d i m p o r t a n t , t h o u g h it c o u l d not by itself reveal the essential n a t u r e o f higher m e n t a l processes. L o w level b r a i n a c t i v i t y m a y be largely devoted t o more or less routine control functions o f a type, for e x a m p l e , t h a t m i g h t be easily s i m u l a t e d o n a d i g i t a l c o m p u t e r . B y contrast, higher m e n t a l processes have a very different character, due t o the variety a n d flexibility of their involvement w i t h s t r u c t u r e s . I n whatever m a n n e r structures m i g h t be represented a n d m a n i p u l a t e d at the p h y s i o l o g i c a l level, the p h e n o m e n a t h a t are o f concern t o us must o c c u r at one of the higher levels of structure o r g a n i z a t i o n . A t this p o i n t , it is desirable to say m o r e precisely w h a t is m e a n t by expressions such as "higher level structure o r g a n i z a t i o n " . F i r s t , however, we need t o r e m i n d the reader of c e r t a i n general facts a b o u t s t r u c t u r e s . R e c a l l t h a t a s t r u c t u r e is by d e f i n i t i o n d e t e r m i n e d as soon as its objects and relations are specified. T h i s statement, t h o u g h t r u e , u n f o r t u n a t e l y tends t o encourage an oversimplified view of the s t r u c t u r e concept, p a r t l y because i t does not focus o n the p o t e n t i a l c o m p l e x i t y of the r e l a t i o n s . In p a r t i c u l a r , it is easy t o f a l l i n t o the t r a p o f v i s u a l i z i n g a general s t r u c t u r e
V I . S T R U C T U R E S IN M E N T A L P H E N O M E N A
97
more or less as a s i m p l e p o i n t - l i n e s t r u c t u r e . A l t h o u g h the p o i n t - l i n e i n t e r p r e t a t i o n serves the desired purpose i n m a n y cases, it is o b v i o u s t h a t there can be m u c h more to a s t r u c t u r e t h a n is suggested by these s i m p l e pictures. F o r e x a m p l e , as we have seen earlier, a s t r u c t u r e m a y i n v o l v e certain d y n a m i c features. It is also necessary sometimes to a p p r o a c h s t r u c t u r e s i n ways t h a t m a y even d e p e n d o n considerations t h a t extend b e y o n d the basic o b j e c t - r e l a t i o n specifications. In t h i s d i r e c t i o n , a g i v e n s t r u c t u r e m i g h t be considered f r o m one of the f o l l o w i n g v i e w p o i n t s : (1) as a s u b s t r u c t u r e of a larger s t r u c ture (not d e t e r m i n e d by i t ) , (2) i n t e r m s of one o f its c o n t r a c t i o n s , (3) t h r o u g h images under h o m o m o r p h i s m s or other more c o m p l e x t r a n s f o r m a t i o n s , (4) i n t e r m s of s p e c i a l concrete representations. N o t e t h a t each of these depends on e x t e r n a l i n f o r m a t i o n not carried by the s t r u c t u r e itself. F o r e x a m p l e , a c o n t r a c t i o n of the s t r u c t u r e (Section 27) is d e t e r m i n e d by a d i s j o i n t collection of s u b s t r u c t u r e s , possibly chosen q u i t e i n d e p e n d e n t l y of a n y o b v i o u s features o f the given s t r u c t u r e . It is these e x t e r n a l l y det e r m i n e d properties of s t r u c t u r e , as opposed t o a s i m p l e o b j e c t - r e l a t i o n properties, t h a t are referred t o i n expressions such as " h i g h e r level s t r u c t u r e o r g a n i z a t i o n " or " h i g h e r m e n t a l processes". T h e p o i n t is t h a t one cannot derive, s t r i c t l y f r o m the s t r u c t u r e s t h e m selves, higher level s t r u c t u r a l p h e n o m e n a t h a t depend o n independent external connections. E x t e r n a l factors m a y be l i m i t e d by, but generally not d e t e r m i n e d by, the u n d e r l y i n g s t r u c t u r e s . I n p a r t i c u l a r , a l t h o u g h higher m e n t a l p h e n o m e n a are somehow associated w i t h s u b s t r u c t u r e s of the general b r a i n s t r u c t u r e , they cannot be u n d e r s t o o d i n s t r i c t l y p h y s i o l o g i c a l terms. A n y effort to do so is analogous to an a t t e m p t t o u n d e r s t a n d c o m puter software o n l y i n t e r m s of the h a r d w a r e . 36.
T h e D r i v e for I n t e l l i g i b i l i t y
T h e basis for most of the discussion i n this section is the fact t h a t the h u m a n m i n d manages t o perceive s t r u c t u r e w i t h i n v i r t u a l l y any s y s t e m presented to i t . O n e t h i n g t h a t seems to be clear is t h a t the process is a u t o m a t i c a n d d r i v e n by the necessity t o m a k e sense of the given s y s t e m . In other words, we have a b u i l t - i n d r i v e for i n t e l l i g i b i l i t y . A n obvious expression of t h i s d r i v e has already been noted i n the way most people respond to an A l b e r s d r a w i n g . These ideas are also i l l u s t r a t e d b y the s i m p l e e x a m p l e presented below i n F i g u r e 36.1 w h i c h was a d a p t e d f r o m a b o o k o n " V i s i o n " by D a v i d M a r r [ M 3 , p. 50]. N o t i c e t h a t the figure consists of a r e p e t i t i o n of several s i m p l e elements t h a t are perceived to group themselves i n a variety of more c o m p l e x a n d c o n s t a n t l y c h a n g i n g patterns t h a t appear a n d disappear i n a more or less r a n d o m f a s h i o n . T h e r e is also a p e r c e p t i o n of m o t i o n , as o c c u r r e d i n the
98
STRUCTURALISM AND STRUCTURES
A l b e r s e x a m p l e s . T h e p o i n t is t h a t the c o m p l e x p a t t e r n s , a l t h o u g h they are p o t e n t i a l substructures of the complete figure, i n a sense do not r e a l l y exist u n t i l the m i n d a c t u a l l y "creates" (or discovers) t h e m i n i t s search for m e a n i n g . T h e created s t r u c t u r e s , t h o u g h realized i n the g i v e n s y s t e m , are i n s p i r e d b y the observer's previous knowledge a n d experience. T h u s , the p a t t e r n f o r m a t i o n i n the e x a m p l e does not differ i n p r i n c i p l e f r o m the conjecture f o r m a t i o n t h a t takes place i n the m o r e c o m p l e x s i t u a t i o n s w h i c h interest us. B o t h depend o n the observer for t h e i r " a c t u a l " , as opposed t o " p o t e n t i a l " , existence. A l s o , as i n the p r e v i o u s cases, one c o u l d go o n t o a n a l y z e the g i v e n s y s t e m i n order t o discover how the p a t t e r n s ( a n d their apparent m o t i o n s ) relate to the basic s t r u c t u r e .
Fig.
36.1
F r o m J . L . M a r r o q u i n M a s t e r ' s Thesis M I T Electrical Engineering l i Computer
1976 Science
A s we have a l r e a d y m e n t i o n e d , a n i d e n t i f i c a t i o n o f " S t r u c t u r a l i s m " w i t h " T h e A r t of I n t e l l i g i b i l i t y " was m a d e b y Peter C a w s i n his b o o k o n S t r u c t u r a l i s m [C2]. A t the s a m e t i m e , he makes the very curious p o i n t of e x c l u d i n g the n a t u r a l sciences f r o m "the area of s t r u c t u r a l i s t concern, because
V I . S T R U C T U R E S IN M E N T A L P H E N O M E N A
99
their structures are obliged to c o n f o r m t o those of n a t u r e ; they therefore become as c o n c e p t u a l l y a n d m a t h e m a t i c a l l y c o m p l e x as t h a t o b l i g a t i o n d i c tates a n d t h r o w n o l i g h t o n the s t r u c t u r i n g tendencies o f h u m a n t h o u g h t " [pp. 146, 147]. Because so m u c h of the s t r u c t u r a l i s t l i t e r a t u r e is associated w i t h fields outside the n a t u r a l sciences, the exclusion does not d e t r a c t greatly f r o m C a w s ' i n f o r m a t i v e discussion of the s u b j e c t . O n the other h a n d , the reason given for the e x c l u s i o n reveals the same confusion concerning the practice of science t h a t we discussed earlier i n c o n n e c t i o n w i t h the " t w o c u l t u r e " p r o b l e m (Section 26), a n d leads C a w s to conclude t h a t scientific thought Is so d o m i n a t e d by nature t h a t i t lacks the s t r u c t u r i n g freedom f o u n d i n other areas. T h a t the conclusion is u n w a r r a n t e d , can be seen f r o m a n e x a m i n a t i o n of the c r e a t i v i t y i n v o l v e d i n any s u b s t a n t i a l piece of scientific work. T h e r e are t w o i m p o r t a n t issues raised b y the C a w s s t a t e m e n t : (1) the special character o f n a t u r a l science s t r u c t u r e s , a n d (2) the w a y i n w h i c h the " s t r u c t u r i n g tendencies of h u m a n t h o u g h t " are expressed. A b r i e f d i s cussion o f these issues f r o m an e x p l i c i t s t r u c t u r a l p o i n t o f v i e w w i l l remove some o f the confusion s u r r o u n d i n g the subject a n d t h r o w a d d i t i o n a l l i g h t o n general s t r u c t u r e theory itself. It is t r u e , o f course, t h a t n a t u r a l science s t r u c t u r e s are u l t i m a t e l y det e r m i n e d by n a t u r e . A t the same t i m e , the d e s c r i p t i o n and a n a l y s i s of the s t r u c t u r e s , w h i c h constitutes the t h e o r e t i c a l side of the science, is a h u m a n p r o d u c t , as is the design a n d e x e c u t i o n of c r u c i a l e x p e r i m e n t s suggested by the theory. It is also t r u e , at least i n p r i n c i p l e , t h a t the t h e o r e t i c a l structures are i n some sense derivable f r o m a relatively s m a l l set of b a sic p r i n c i p l e s , a n d t h a t the d e r i v a t i o n is often ( t h o u g h not e x c l u s i v e l y ) m a t h e m a t i c a l i n character. In the t e r m i n o l o g y of S e c t i o n 26 (on s t r u c t u r a l d e t e r m i n i s m ) , t h i s means t h a t the t h e o r e t i c a l s t r u c t u r e is " d e t e r m i n e d " by the r e l a t i v e l y s m a l l s u b s t r u c t u r e defined b y the basic p r i n c i p l e s . It is here t h a t a nonscientist m a y get the i d e a t h a t the p r o d u c t i o n of science is a more or less m e c h a n i c a l process. A n d t h a t scientists are l i k e robots w h o b e g i n w i t h the basic p r i n c i p l e s , p l u g i n t o f o r m u l a s , a n d t u r n m a t h e m a t i c a l c r a n k s u n t i l they o b t a i n scientific results, a p i c t u r e t h a t resembles the c a r i c a t u r e o f a m o n k e y p e c k i n g away at a t y p e w r i t e r e v e n t u a l l y t o reproduce one of Shakespeare's p l a y s . T h e p i c t u r e , w h i c h has l i t t l e to do w i t h r e a l i t y , ignores the i m p o r t a n t fact t h a t a scientific result of any significance o r i g i n a t e s , not f r o m m e c h a n i c a l c a l c u l a t i o n , b u t i n a conjecture, or h y p o t h e s i s , f o r m u l a t e d by a scientist after m u c h s t u d y and t h o u g h t . Once the conjecture is f o r m u l a t e d , there follows an a t t e m p t to verify the result by e x p e r i m e n t (or observation) a n d t o derive it f r o m basic principles or p r e v i o u s l y established results. T h e
100
STRUCTURALISM
AND
STRUCTURES
latter m a t e r i a l is often the o n l y part of the entire process t h a t is recorded i n the l i t e r a t u r e . W h a t is s e l d o m recorded is the c o m p l e x , often i n t u i t i v e , process by w h i c h the conjecture is produced. T h i s can be the m o s t creative p a r t o f the w o r k , t h o u g h the final verification m a y also involve significant creative i n s i g h t s and is s e l d o m of a p u r e l y m e c h a n i c a l n a t u r e . It is i n these creative p o r t i o n s of the o v e r a l l process where " t h e s t r u c t u r i n g tendencies o f h u m a n t h o u g h t " a b o u n d . It is very d o u b t f u l t h a t a c c o m p l i s h m e n t s exist i n s o c i a l science t h a t c o m p a r e i n t h i s respect to the f o r m u l a t i o n , v e r i f i c a t i o n , a n d d e r i v a t i o n o f the m o s t significant results i n n a t u r a l science. T h e r e l a t i v e lack of precision i n social science structures a n d the fact t h a t they o r i g i n a t e i n o r g a n i z a t i o n s o f h u m a n beings give an i m p r e s s i o n o f greater h u m a n i n v o l v e m e n t t h a n exists i n n a t u r a l science. B u t the h u m a n o r g a n i z a t i o n s s t u d i e d by the social scientist are j u s t as o b j e c t i v e l y " r e a l " a n d are as independent o f the s o c i a l scientist as n a t u r a l p h e n o m e n a are of the n a t u r a l scientist. T h i s is t r u e despite the fact t h a t the s o c i a l scientist is a h u m a n b e i n g s t u d y i n g h u m a n o r g a n i z a t i o n s . In each case, the o b j e c t i v e is t o discover a n d describe the relevant s t r u c t u r e s . F u r t h e r m o r e , i t is o u r c l a i m t h a t the w a y i n w h i c h the s t r u c t u r e s are dealt w i t h is u l t i m a t e l y d e t e r m i n e d by general properties o f s t r u c t u r e s , so, except for d e t a i l s , is b a s i c a l l y the s a m e i n a l l areas of study. T h e r e may be more significant differences i n the " v e r i f i c a t i o n " process. In the s o c i a l sciences, the verification m a y t a k e the f o r m o f r e l a t i n g the new result to previous knowledge a n d checking for it i n other societies, for e x a m p l e , w h i l e i n the n a t u r a l sciences, verification m a y involve d e r i v i n g the new result f r o m e x i s t i n g theory or p e r f o r m i n g e x p e r i m e n t s to test i t . 37.
Philosophical
Questions
I n this section we consider briefly some o f the p h i l o s o p h i c a l p r o b l e m s associated w i t h the general s t r u c t u r a l a p p r o a c h t o m e n t a l p h e n o m e n a . T h e s e are not new questions, as they have been discussed at l e n g t h by m a n y t h i n k e r s . W h a t e v e r novelty there m i g h t be i n o u r t r e a t m e n t of the s u b j e c t stems f r o m a consistent a n d e x p l i c i t s t r u c t u r a l p o i n t of v i e w . T h e m e n t a l p h e n o m e n a o f interest depend u l t i m a t e l y on the p e r c e p t i o n o f o b j e c t s i n the e x t e r n a l w o r l d . A n d perceptions m a y be t h o u g h t o f as m e n t a l s t r u c t u r e s t h a t are i s o m o r p h i c w i t h characteristic s t r u c t u r a l representations of the o b j e c t s . B u i l d i n g these m e n t a l structures involves not o n l y sense d a t a f r o m the objects b u t also relevant p r e v i o u s l y a c q u i r e d i n f o r m a t i o n a b o u t the e x t e r n a l w o r l d . V e r y l i t t l e is k n o w n , of course, c o n c e r n i n g the a c t u a l f o r m a t i o n of m e n t a l s t r u c t u r e s a n d how b r a i n p h y s i o l o g y is i n v o l v e d i n the process. However, some of the p r o b l e m s are d o c u m e n t e d i n a recent a r t i c l e by S e m i r Z e k i [Z2] o n " T h e V i s u a l Image i n M i n d and B r a i n " . T h e a r t i c l e appeared i n a special issue o f Scientific A m e r i c a n devoted to a
VI. S T R U C T U R E S
IN M E N T A L P H E N O M E N A
101
variety o f " M i n d and B r a i n " questions. F o r our purposes, i t is possible t o ignore the m a n y t e c h n i c a l p r o b l e m s associated w i t h p e r c e p t i o n , a n d s i m p l y assume the existence of a process t h a t produces m e n t a l s t r u c t u r e s t h a t not o n l y represent e x t e r n a l o b j e c t s t r u c t u r e s b u t are also p r o p e r l y placed ( s t r u c t u r a l l y ) w i t h respect t o p r e v i o u s l y established knowledge s t r u c t u r e s . Despite the c o m p l e x i t y a n d lack of precise t e c h n i c a l d e t a i l s , a s t r u c t u r a l p o i n t of view based o n general p r o p erties of s t r u c t u r e s c a n nevertheless y i e l d useful i n s i g h t s i n t o the subject. S o m e of the questions t h a t interest us here concern the a c t u a l r e l a t i o n s h i p between e x t e r n a l objects a n d t h e i r m e n t a l representations. N o t i c e first t h a t the representations o f e x t e r n a l objects w i l l necessarily be more or less i n c o m p l e t e . In other words, they c a n n o t l i t e r a l l y i n c l u d e a l l o f the i n f o r m a t i o n c o n t a i n e d i n the objects. F o r e x a m p l e , consider the p e r c e p t i o n o f an o r d i n a r y c h a i r . T h e c h a i r is a concrete o b j e c t t h a t m a y be regarded as a s t r u c t u r e at v a r i o u s levels. T h e n a t u r a l l e v e l , a n d the one n o r m a l l y recorded i n p e r c e p t i o n , is as a s t r u c t u r e m a d e up o f pieces of w o o d ( m e t a l , or plastic) of various shapes (i.e., s u b s t r u c t u r e s ) . It m a y be a n a l y z e d f u r t h e r , however, as a s t r u c t u r e m a d e up of w o o d fibers, for e x a m p l e , or molecules, or a t o m s , or elementary p a r t i c l e s . T o i n c o r p o r a t e the b u l k of such i n f o r m a t i o n i n the perception o f a chair is o b v i o u s l y i m p r a c t i c a l . T h i s o b s e r v a t i o n already raises questions a b o u t the u l t i m a t e m e a n i n g a n d r e l i a b i l i t y o f our knowledge of concrete o b j e c t s . I n fact, we seem to need an a s s u m p t i o n to the effect t h a t an o b j e c t ' s very existence is somehow e m b o d i e d i n , or d e t e r m i n e d by, its various s t r u c t u r a l characteristics. A n e x t r e m e version w o u l d be t h a t a concrete o b j e c t a c t u a l l y consists of a confluence o f abstract s t r u c t u r e s . W e consider next the case o f " t h o u g h t e x p e r i m e n t s " i n physics. A famous e x a m p l e is E i n s t e i n ' s t r a i n e x p e r i m e n t w h i c h he used to conclude t h a t n e i ther absolute t i m e nor absolute space exists. A t h o u g h t e x p e r i m e n t u s u a l l y consists of an i m a g i n e d e x t r e m e s i t u a t i o n , more often t h a n not i m p o s s i b l e to realize, for w h i c h a certain o u t c o m e is more or less o b v i o u s . T h e q u e s t i o n of interest here concerns whether or not the i n f o r m a t i o n c o n t r i b u t e d b y the e x p e r i m e n t is a c t u a l l y new. S o m e of the m a n y t h o u g h t e x p e r i m e n t s (not a l l of t h e m successful!) t h a t have been proposed i n physics are discussed i n a n article b y R o y Sorensen t h a t a p p e a r e d recently i n A m e r i c a n S c i e n t i s t [S7]. M u c h of the a r t i c l e is devoted t o E r n s t M a c h ' s theory o f w h y t h o u g h t e x p e r i m e n t s m a y be expected to give v a l i d results. M a c h ' s ideas o n the s u b j e c t are i n t e r e s t i n g because he was a s t r i c t e m p i r i c i s t , w h i l e there a p p e a r to be s t r o n g r a t i o n a l i s t i m p l i c a t i o n s i n a t h o u g h t e x p e r i m e n t . H i s theory is also i n t e r e s t i n g because it depends on an a p p e a l t o e v o l u t i o n . T h e f o l l o w i n g o u t l i n e of M a c h ' s reasoning is f r o m the Sorensen a r t i c l e :
102
STRUCTURALISM
AND STRUCTURES
M a c h argues t h a t t h o u g h t e x p e r i m e n t s w o r k because biology forces t h o u g h t t o c o n f o r m t o the e n v i r o n m e n t , e n s u r i n g a s i m i l a r i t y between our inner p r i v a t e w o r l d a n d the outer p u b l i c one. A m i n d t h a t wanders t o o far f r o m the t r u t h is destroyed b y the selective forces described by D a r w i n , a n d the m i n d s of alt a n i m a l s m u s t m i m i c the p a t t e r n s of n a t u r e . L e a r n - o r - d i e e v o l u t i o n a r y pressure o n consciousness endows us w i t h a treasure-store of a c c u m u l a t e d experiences t h a t are "ever close at h a n d a n d o f w h i c h o n l y the smallest p o r t i o n is e m b o d i e d i n clear a r t i c u l a t e t h o u g h t " . M a c h c a l l e d t h i s treasure-store " i n s t i n c t i v e k n o w l e d g e " , [p. 253] B u t M a c h insists t h a t whatever i n s i g h t we o b t a i n f r o m t h o u g h t e x p e r i m e n t s is o n l y o l d i n f o r m a t i o n reorganized [p.255]. T h e last statement represents a b l a n k e t rejection of any r a t i o n a l i s t c l a i m s t h a t one m i g h t read i n t o a successful t h o u g h t e x p e r i m e n t . It also a m o u n t s to a negative answer t o the question t h a t interests us, a l t h o u g h the w o r d , " r e o r g a n i z e d " , m i g h t be general enough to a d m i t c e r t a i n i n f o r m a t i o n t h a t c o u l d p r o p e r l y be c a l l e d " n e w " . A t the same t i m e , there are cases t o w h i c h an a n a l y s i s i d e n t i c a l to t h a t used for a t h o u g h t e x p e r i m e n t w o u l d seem to a p p l y , but w h i c h give rise to new i n f o r m a t i o n t h a t is not s i m p l y a r e o r g a n i z a t i o n of o l d i n f o r m a t i o n . C o n s i d e r , for e x a m p l e , a successful p r e d i c t i o n i n a science such as p h y s i c s , as discussed i n S e c t i o n 47 i n the next c h a p t e r . In this case, a f o r m a l , often m a t h e m a t i c a l , extension o f a k n o w n theory predicts genuinely new facts before t h e y are a c t u a l l y observed. T h e theory extension is made q u i t e i n d e p e n d e n t l y o f the concrete setting o f the theory a n d is analogous t o the e x t e n s i o n i n a t h o u g h t e x p e r i m e n t . E x c e p t i n t r i v i a l cases, no one c o u l d seriously c l a i m t h a t such predictions are merely r e o r g a n i z a t i o n s o f o l d i n formation. These are s p e c i a l cases of a general q u e s t i o n : " U n d e r w h a t c i r c u m s t a n c e s w i l l an extension o f a representation of a given concrete o b j e c t y i e l d new i n f o r m a t i o n a b o u t the l a t t e r ? " T h e answer t h a t we propose is t h a t " T h e given representation m u s t d e t e r m i n e the e x t e n s i o n " . T h e w o r d " d e t e r m i n e " here refers to the n o t i o n of " s t r u c t u r a l d e t e r m i n i s m " discussed i n S e c t i o n 26. T h e idea is t h a t , u n d e r this c o n d i t i o n , the represented concrete s t r u c t u r e , b e i n g i s o m o r p h i c t o the representing s t r u c t u r e , w o u l d also d e t e r m i n e a c o n c r e t e e x t e n s i o n t h a t is i s o m o r p h i c w i t h the e x t e n s i o n o f the o r i g i nal representation. T h e r e f o r e , the a d d i t i o n a l i n f o r m a t i o n c o n t a i n e d i n the concrete extension w o u l d be new i n f o r m a t i o n " p r e d i c t e d " b y the extended representation. T h e a c t u a l existence o f the p r e d i c t e d new concrete i n f o r m a t i o n m u s t , of course, be verified e v e n t u a l l y b y o b s e r v a t i o n . A v e r i f i c a t i o n f a i l u r e is u s u a l l y t a k e n t o m e a n t h a t the o r i g i n a l representation was t o o s u p e r f i c i a l
V I . S T R U C T U R E S IN M E N T A L P H E N O M E N A
103
or was flawed i n s o m e other m a n n e r . T h e e v o l u t i o n a r y a r g u m e n t , when it applies, o n l y serves to suggest t h a t the g i v e n representing s t r u c t u r e is a g o o d one a n d w h y an e x t e n s i o n of it m i g h t also be expected t o represent the e x t e r n a l w o r l d , t h u s y i e l d i n g new i n f o r m a t i o n a b o u t the l a t t e r . T h e p h i l o s o p h y u n d e r l y i n g a r g u m e n t s o f the above t y p e a d m i t t e d l y constitutes a break w i t h M a c h ' s s t r i c t e m p i r i c i s m i n favor o f a r a t i o n a l i s t p o s i t i o n . In the case of o r d i n a r y experiences, i t is u s u a l l y t a k e n for g r a n t e d t h a t different i n d i v i d u a l s w i l l n o r m a l l y react to a given aspect of the e n v i r o n m e n t i n s i m i l a r ways. F o r e x a m p l e , i n Section 35 i t was suggested t h a t the a b i l i t y t o construct a n d process ( m e n t a l ) structures does not differ g r e a t l y f r o m one person t o another. I n p a r t i c u l a r , i t is a s s u m e d t h a t perceptions o f a g i v e n concrete s i t u a t i o n w i l l n o r m a l l y possess b a s i c a l l y the s a m e c h a r a c t e r for everyone. A l t h o u g h we t e n d a u t o m a t i c a l l y t o m a k e such a s s u m p t i o n s , i t is reasonable t o ask how they m i g h t be j u s t i f i e d . T h e simplest j u s t i f i c a t i o n is again p r o v i d e d b y an a p p e a l t o the theory o f e v o l u t i o n , a l o n g the same lines as E r n s t M a c h ' s . N o t e t h a t a n e v o l u t i o n a r y a r g u m e n t w i l l be m o r e or less relevant i n any s i t u a t i o n c o n c e r n i n g the r e l a t i o n s h i p o f i n d i v i d u a l s either t o one another or t o the e n v i r o n m e n t . T h e basic i d e a is t h a t o r g a n i s m s , closely related i n the sense of e v o l u t i o n , w i l l e x h i b i t s i m i l a r s t r u c t u r a l a d j u s t m e n t s t o the e n v i r o n m e n t . T h e r e f o r e , different h u m a n s m a y be expected t o e x h i b i t considerable s i m i l a r i t y (if not i d e n t i t y ) i n t h e i r basic responses to e x t e r n a l s t i m u l i . In p a r t i c u l a r , m e n t a l representations o f the same e n v i r o n m e n t a l m a t e r i a l c a n be e x p e c t e d t o be more or less i s o m o r p h i c . Despite the basic s i m i l a r i t y of h u m a n s a n d the c o r o l l a r y t h a t their m i n d s w o r k i n essentially the same way, there r e m a i n difficult questions c o n c e r n i n g their i n t e r a c t i o n s w i t h one another. F o r e x a m p l e , we take it for g r a n t e d t h a t one can k n o w i n m a n y cases w h a t another person is t h i n k i n g , t h o u g h there appears to be no direct access to such i n f o r m a t i o n . It is therefore reasonable t o a s k , " I s it possible for one ever to k n o w the a c t u a l content o f a n o t h e r person's m i n d ? " T h e belief t h a t such knowledge i s possible is no d o u b t based o n k n o w l edge o f ones o w n experiences plus the a s s u m p t i o n t h a t others resemble us. O n the other h a n d , the o n l y d i r e c t evidence t h a t one c a n have c o n c e r n i n g a m e n t a l experience o f another, is the s u b j e c t ' s overt b e h a v i o r ( i n c l u d i n g , e.g., use of l a n g u a g e ) , p r e s u m a b l y i n response t o t h a t experience. A l t h o u g h such p r o b l e m s have received considerable a t t e n t i o n (see, e.g., [C3]), a gene r a l l y s a t i s f a c t o r y s o l u t i o n appears t o be as elusive as ever. F r o m o u r p o i n t o f v i e w , the p r o b l e m involves two s t r u c t u r e s , representing respectively the m e n t a l experience a n d the associated b e h a v i o r . I n t h i s s e t t i n g , the general p r o b l e m takes the f o r m o f another q u e s t i o n : " T o w h a t
104
STRUCTURALISM
AND STRUCTURES
extent d o the t w o s t r u c t u r e s d e t e r m i n e one a n o t h e r ? " T h e d e t e r m i n i s m u n d e r s t o o d here is a g a i n the " s t r u c t u r a l d e t e r m i n i s m " discussed i n S e c t i o n 26. T h i s f o r m u l a t i o n suggests t h a t i f the second s t r u c t u r e determines the first then one c o u l d t h e o r e t i c a l l y discern the content of another person's m i n d . T h e confidence o f o r d i n a r y h u m a n s i n their a b i l i t y to k n o w the m i n d s o f others p r o b a b l y stems f r o m t h e i r o w n i n t u i t i v e experience w i t h two such structures w i t h i n themselves. It w o u l d be n a i v e t o expect a s i m p l e s t r u c t u r a l s o l u t i o n to a p r o b l e m t h a t has received so m u c h a t t e n t i o n f r o m philosophers over the years. I n f a c t , there are f o r m i d a b l e t e c h n i c a l difficulties t h a t m u s t be overcome i n order to c o n s t r u c t precise t h e o r e t i c a l descriptions of the relevant s t r u c t u r e s , a n d also to e s t a b l i s h the desired connections between those s t r u c t u r e s . Nevertheless, the s t r u c t u r a l f o r m u l a t i o n constitutes a general a p p r o a c h a n d , despite the t e c h n i c a l difficulties, promises to be far m o r e s y s t e m a t i c a n d manageable t h a n the t r a d i t i o n a l a t t e m p t s to deal w i t h the p r o b l e m . Regardless o f whether such a n a p p r o a c h w i l l y i e l d a satisfactory answer t o the m a i n q u e s t i o n , i t s h o u l d at least give some idea of w h a t k i n d o f an answer, i f any, one m i g h t reasonably expect to o b t a i n . It is w o r t h n o t i n g t h a t a s t a n d a r d a t t a c k on questions o f this k i n d c o n centrates o n language b e h a v i o r . T h e m e t h o d is to a n a l y z e the language expressions c o m m o n l y used to describe p a r t i c u l a r instances of the p h e n o m e n a i n q u e s t i o n . A t first sight, an a t t e m p t to get at the essence o f such an experience by e x p l o r i n g the ways we t a l k a b o u t it w o u l d a p p e a r t o be f u t i l e . T h e a t t e m p t appears m o r e reasonable, however, i f we recall f r o m the p r e c e d i n g chapter t h a t the role o f language is to p r o v i d e a c o m m u n i c a b l e s t r u c t u r e representation o f the subject of interest, a n d also recognize t h a t the g o a l here is to i d e n t i f y t h a t s t r u c t u r e . W e end t h i s section w i t h a b r i e f observation o n consciousness f r o m the p o i n t of view of s t r u c t u r e s . T h o u g h there is clearly no h o p e of o b t a i n i n g a very precise d e s c r i p t i o n of s o m e t h i n g as s u b j e c t i v e as consciousness, i t is nevertheless possible t o i m a g i n e a s t r u c t u r a l setup t h a t m i g h t a c c o m m o date the p h e n o m e n o n . Suppose, for e x a m p l e , t h a t the general s t r u c t u r i n g process were t o i n c l u d e a n a u t o m a t i c self-checking feature i n v o l v i n g a p a r allel b a c k u p copy of s t r u c t u r e s c u r r e n t l y b e i n g processed. T h e p r a c t i c a l i m p o r t a n c e o f such a f a c i l i t y is o b v i o u s , so i t is not unreasonable t o expect t h a t it m i g h t be produced i n the n o r m a l course o f e v o l u t i o n a r y developm e n t . In any case, g i v e n the f a c i l i t y , it is p l a u s i b l e t o conjecture t h a t the experience o f consciousness is p r o d u c e d b y an i n t e r a c t i o n between the m a i n flow o f m e n t a l s t r u c t u r e s a n d the p a r a l l e l b a c k u p copy i n the self-checking process. T h i s could u n d e r l i e the sense of awareness o f those s t r u c t u r e s a n d the t h i n g s they represent. If an e x p l a n a t i o n a l o n g these lines is v a l i d , t h e n one m i g h t also expect c e r t a i n a n i m a l s other t h a n h u m a n s t o experience at
V I . S T R U C T U R E S IN M E N T A L P H E N O M E N A
105
least a r u d i m e n t a r y f o r m of consciousness. 38.
T h e Background Structure and Understanding
B e g i n n i n g w i t h the " c o n g e n i t a l " s t r u c t u r e , the t o t a l m e n t a l s t r u c t u r e a c q u i r e d or developed by a n i n d i v i d u a l u p t o the present, is c a l l e d the b a c k g r o u n d s t r u c t u r e . It is c o n t i n u a l l y b e i n g extended by a d d i t i o n of m a t e r i a l f r o m the e x t e r n a l w o r l d , first i n the f o r m of s t r u c t u r e s d e r i v e d s t r i c t l y f r o m sense d a t a , a n d l a t e r also i n the f o r m o f ideas f r o m others t h r o u g h language c o m m u n i c a t i o n . It also grows t h r o u g h i n t e r n a l processes such as those i n v o l v e d i n t h i n k i n g . Because i t contains a complete u p - t o - d a t e record of ones knowledge a n d experience, the b a c k g r o u n d s t r u c t u r e is not o n l y e x t r e m e l y c o m p l e x b u t is also i n a constant state of f l u x , a n d w i l l v a r y g r e a t l y f r o m one i n d i v i d u a l to another. A l l o f t h i s is based o n our general a s s u m p t i o n t h a t the b r a i n , i n response to e x t e r n a l s t i m u l i , is able t o f o r m m e n t a l s t r u c t u r e s (concepts) t h a t represent, at least a p p r o x i m a t e l y , structures inherent i n the presented d a t a . S o m e of the new s t r u c t u r e s m a y be identified d i r e c t l y w i t h e x i s t i n g s t r u c tures w i t h i n the b a c k g r o u n d ( r e c o g n i t i o n ) , w h i l e others may require an a p p r o p r i a t e extension of the b a c k g r o u n d before they can be a c c o m m o d a t e d . T h e a c t u a l end result w i l l n a t u r a l l y d e p e n d , not o n l y o n the g i v e n d a t a , b u t also on the extent a n d degree o f development o f the i n d i v i d u a l ' s backg r o u n d s t r u c t u r e . N o t e t h a t , a l t h o u g h a p o r t i o n of the b a c k g r o u n d m a y at t i m e s be an o b j e c t o f a t t e n t i o n , one is generally more or less u n a w a r e of b o t h its existence and f u n c t i o n i n g . T h e b o d y o f i n f o r m a t i o n , w h i c h is c o m m o n to the members o f a g i v e n i n t e r a c t i v e g r o u p , constitutes a k i n d o f " m u t u a l " b a c k g r o u n d s t r u c t u r e a n d provides the basis for c o m m u n i c a t i o n w i t h i n the g r o u p . A t the other ext r e m e , we have a " g l o b a l " s t r u c t u r e consisting o f the collective k n o w l e d g e a n d experience o f the entire g r o u p . A l t h o u g h the average m e m b e r o f the group m a y possess a r e l a t i v e l y s m a l l p o r t i o n of the collective s t r u c t u r e , a n " e x p e r t " w i l l have i n c o r p o r a t e d a c o m p a r a t i v e l y large p o r t i o n of i t i n t o his background. W e t u r n n o w t o the question o f w h a t i t m e a n s to " u n d e r s t a n d " somet h i n g , say a concept or a b o d y o f i n f o r m a t i o n . A s is c u s t o m a r y , we use the w o r d "concept" t o refer t o either a m e n t a l s t r u c t u r e or the abstract s t r u c t u r e t h a t i t represents. U n d e r s t a n d i n g is the end result of a subjective process, a n d therefore can o n l y be s t u d i e d either d i r e c t l y t h r o u g h i n t r o s p e c t i o n , or i n d i r e c t l y t h r o u g h observations of b e h a v i o r supposedly i n d i c a t i v e o f u n d e r s t a n d i n g . T h e p r o cess is not o n l y very c o m p l e x , but is also very fast and proceeds more or less a u t o m a t i c a l l y . T h e r e f o r e , one m u s t resort a g a i n to an over s i m p l i f i e d a n a l y sis t h a t c a n o n l y suggest w h a t m i g h t a c t u a l l y occur. A s u s u a l , a s t r u c t u r a l
106
STRUCTURALISM AND STRUCTURES
a p p r o a c h makes the task m u c h easier. It is rather obvious t h a t " u n d e r s t a n d i n g " m u s t depend first of a l l o n the c o n s t r u c t i o n o f a m e n t a l s t r u c t u r e t h a t represents the m a t e r i a l o f interest a n d is p r o p e r l y e m b e d d e d i n the person's b a c k g r o u n d . T h e result w i l l also d e p e n d o n b o t h i n t e r n a l a n d e x t e r n a l properties o f the representing s t r u c t u r e (Section 7). G i v e n these a s s u m p t i o n s , it is n a t u r a l t o m a k e the following "definition": T o u n d e r s t a n d s o m e t h i n g is to be a w a r e of t w o t h i n g s : (1) the i n t e r n a l properties o f the representing s t r u c t u r e a n d (2) the various e x t e r n a l properties o f the representation, w h i c h d e p e n d o n its i n c l u sion i n the b a c k g r o u n d s t r u c t u r e . T h e second i t e m refers to relations of the given piece o f i n f o r m a t i o n to e x i s t i n g i n f o r m a t i o n already represented i n the b a c k g r o u n d s t r u c t u r e . T h e representation of i n f o r m a t i o n w i t h i n ones b a c k g r o u n d a n d the i d e n t i f i c a t i o n of its various properties u s u a l l y cannot be separated i n a c t u a l p r a c t i c e , it is also necessary t o a l l o w for "degrees" o f u n d e r s t a n d i n g , d e p e n d i n g o n the a m o u n t of relevant knowledge one m i g h t possess a n d the q u a l i t y o f the r e p r e s e n t a t i o n . These factors w i l l o b v i o u s l y v a r y greatly f r o m one person to a n o t h e r . W h e t h e r or not t w o i n d i v i d u a l s have the " s a m e " u n d e r s t a n d i n g of s o m e t h i n g c a n o n l y be conjectured i n d i r e c t l y f r o m t h e i r actions w i t h respect t o the m a t t e r i n q u e s t i o n . I n fact, one person's " u n d e r s t a n d i n g " m a y be a " m i s u n d e r s t a n d i n g " as far as others are concerned. O n the other h a n d , since people often do agree t h a t they have a c o m m o n u n d e r s t a n d i n g , the m a t t e r o f u n d e r s t a n d i n g o b v i o u s l y cannot be as v a r i a b l e as m i g h t be i n d i c a t e d b y these r e m a r k s . Indeed, t h a n k s a g a i n to s t r u c t u r a l s t a b i l i t y , i t is q u i t e possible t h a t t w o i n d i v i d u a l s m a y conclude w i t h some confidence t h a t t h e y a c t u a l l y do have a c o m m o n u n d e r s t a n d i n g . S i n c e u n d e r s t a n d i n g is c l e a r l y a relative m a t t e r , it is n a t u r a l to ask w h a t it means for one's u n d e r s t a n d i n g of s o m e t h i n g to be "correct" or " c o m p l e t e " . E v i d e n t l y , the best t h a t can be done here is t o measure a n i n d i v i d u a l ' s u n d e r s t a n d i n g w i t h respect to the collective b a c k g r o u n d . T h u s , a definition o f "correctness" m i g h t require a n awareness of the properties o f a s t r u c t u r e , p r o p e r l y represented w i t h i n the c o l l e c t i v e b a c k g r o u n d s t r u c t u r e . A correct u n d e r s t a n d i n g w o u l d therefore d e p e n d i n part o n whether or not one's b a c k g r o u n d s t r u c t u r e incorporates enough o f the relevant p o r t i o n of the collective b a c k g r o u n d , i n other words, o n how " e x p e r t " one h a p p e n s t o be o n the s u b j e c t i n question. A l s o i n v o l v e d , of course, is the adequacy of the r e p r e s e n t a t i o n w i t h i n the b a c k g r o u n d . F o r t h i s reason, e x p e r t n e s s m a y be n e c e s s a r y b u t i s o b v i o u s l y n o t s u f f i c i e n t f o r a c o r r e c t u n d e r s t a n d i n g . A l t h o u g h correctness of u n d e r s t a n d i n g is a r e l a t i v e m a t t e r t h a t c a n o n l y
V I . S T R U C T U R E S IN M E N T A L P H E N O M E N A
107
be d e t e r m i n e d i n d i r e c t l y , s t r u c t u r a l s t a b i l i t y , as i n the case of m u t u a l u n d e r s t a n d i n g , suggests the p o s s i b i l i t y of m a k i n g f a i r l y precise j u d g e m e n t s as to w h e t h e r or not a g i v e n person's u n d e r s t a n d i n g o f s o m e t h i n g is correct. N o t e t h a t , correct or n o t , a person w i l l generally s t r u c t u r e presented m a t e r i a l i n one way or another. S u c h representations, t h o u g h perhaps not s t r i c t l y correct, m a y s t i l l serve the useful purpose of o r g a n i z i n g one's b e h a v i o r w i t h respect to the given s i t u a t i o n . P h e n o m e n a o f t h i s k i n d are analogous to the g r o w t h o f a c r y s t a l . L a r g e c r y s t a l s are s e l d o m perfect since they u s u a l l y c o n t a i n displacements or other defects caused, for e x a m p l e , b y i m p u r i t i e s . T h e y nevertheless grow i n t o r e l a t i v e l y stable s t r u c t u r e s w h i c h i n c o r p o r a t e the defects ( t h o u g h perhaps at some cost o r other) a n d m a y f u n c t i o n i n m a n y contexts as w o u l d perfect c r y s t a l s . T h e defects w i l l show up o n l y w h e n more precise d e m a n d s are placed o n the s t r u c t u r e . T h e s a m e is t r u e of defects i n u n d e r s t a n d i n g . If they are not r e a d i l y altered w h e n i n conflict w i t h r e a l i t y , t h e y w i l l r e m a i n i n d e f i n i t e l y as a block t o f u r t h e r understanding. T h e above r e m a r k s suggest t h a t u n d e r s t a n d i n g is a m o r e or less s t r a i g h t f o r w a r d process, w h i c h takes place completely a u t o m a t i c a l l y . A l t h o u g h t h i s is no d o u b t correct i n m a n y everyday s i t u a t i o n s , i t o b v i o u s l y c a n n o t be true i n a l l cases. A given t o p i c m a y be entirely new t o a p e r s o n , w h o cannot p o s s i b l y u n d e r s t a n d it w i t h o u t first a c q u i r i n g m o r e i n f o r m a t i o n o n the s u b j e c t . C o n s i d e r a b l e effort m a y therefore be r e q u i r e d , not o n l y t o c o n s t r u c t a b a c k g r o u n d representation of a new s t r u c t u r e , but also t o i d e n t i f y the properties, b o t h i n t e r n a l a n d e x t e r n a l , t h a t are needed for an u n d e r s t a n d ing. T h e p o i n t t h a t we w i s h t o m a k e here is t h a t the c o n s t r u c t i o n o f a repr e s e n t a t i o n , a l o n g w i t h the r e c o g n i t i o n o f its properties, is a process of discovery not essentially different f r o m any other discovery process. T h e r e fore, regardless of how well a subject is u n d e r s t o o d by others, an i n d i v i d u a l w h o meets i t for the first t i m e m u s t rediscover i t for himself. S i n c e the p r e s e n t a t i o n of a well u n d e r s t o o d subject w i l l n o r m a l l y i n c l u d e m a n y clues t h a t t e n d t o help one a v o i d difficulties, a rediscovery m a y not i n v o l v e as m a n y u n c e r t a i n t i e s a n d false starts as an o r i g i n a l discovery. Nevertheless, the rediscovery m u s t s t i l l i n v o l v e m a n y o f the features c h a r a c t e r i s t i c of a discovery. I n p a r t i c u l a r i t w i l l depend o n the same k i n d o f creative i n s i g h t s experienced i n an o r i g i n a l discovery. T h e beauty i n t h i s is t h a t the process o f u n d e r s t a n d i n g (if it is not obs t r u c t e d by b a c k g r o u n d defects or a defective presentation) c a n p r o v i d e a creative experience for anyone w h o pays a t t e n t i o n , regardless o f how p r o f o u n d or c o m m o n p l a c e the subject happens to be. It offers a n u n e n d i n g source o f pleasure for a l l w h o wish t o p a r t a k e . T h i s fact is o f great i m p o r tance i n e d u c a t i o n , a n d s h o u l d d o m i n a t e the presentation of every s u b j e c t
108
STRUCTURALISM AND STRUCTURES
o f s t u d y . T h e s p e c i a l role of s t r u c t u r e i n the e d u c a t i o n a l process is discussed i n the n e x t section. 39.
Teaching and Learning
T h e process o f u n d e r s t a n d i n g m u s t begin w i t h a p r e s e n t a t i o n o f a s u b j e c t , a b o d y of i n f o r m a t i o n , to the person w h o is supposed t o acquire a n u n d e r s t a n d i n g of i t . A l t h o u g h the i n f o r m a t i o n m a y consist o f raw sense d a t a , a more c o m m o n s i t u a t i o n is t h a t i t w i l l be c o m m u n i c a t e d either verb a l l y or by means of w r i t t e n m a t e r i a l . T h e most f o r m a l s e t t i n g for the l a t t e r is i n the c l a s s r o o m , where teachers a t t e m p t t o convey t h e i r o w n u n d e r s t a n d i n g o f a subject to the students, u s u a l l y w i t h the a i d o f a t e x t b o o k . W h a t a c t u a l l y takes place i n a c l a s s r o o m is a c o m p l e x a n d l i t t l e u n d e r s t o o d process, consisting of far more t h a n f o r m a l exchanges between teacher a n d students. A l s o i n v o l v e d are such things as the m a n y a n d varied i n t e r a c tions a m o n g the students themselves, events d u r i n g previous class meetings, an u p c o m i n g test, the weather outside, a n d so o n a n d o n . A l o n g w i t h v e r b a l exchanges a m o n g the p a r t i c i p a n t s , m u c h i n f o r m a t i o n is also c o m m u n i c a t e d b y nuances i n voice and b o d y language. F o r e x a m p l e , a sensitive p e r son (student or teacher) can often t e l l whether another t r u l y u n d e r s t a n d s s o m e t h i n g b y the way the l a t t e r e x p l a i n s i t , regardless o f whether or not the e x p l a n a t i o n i t s e l f is " c o r r e c t " . A n y a t t e m p t t o make a d e t a i l e d a n a l y sis of a given c l a s s r o o m t e a c h i n g - l e a r n i n g experience, reveals very q u i c k l y j u s t h o w s u b t l e the whole process can be. T h i s fact b e c a m e very clear to s o m e o f us d u r i n g the 60's w h e n we a t t e m p t e d to record the m a t e r i a l for a c a l c u l u s course o n film. M o r e recently, the advent of the c o m p u t e r has p r o m i s e d new approaches to the p r o b l e m o f i m p r o v i n g t e a c h i n g and l e a r n i n g i n the schools. T h e r e are, o f course, excellent possibilities for d o i n g some t h i n g s better w i t h the c o m p u t e r . These i n c l u d e the type of l e a r n i n g based o n r o u t i n e d r i l l , such as t h a t i n v o l v e d i n m a s t e r i n g a language or the e l e m e n t a r y techniques of m a t h e m a t i c s . T h e r e are also the recent developments i n a r t i f i c i a l i n t e l l i gence, w h i c h offer the prospects for c o m p u t e r a i d i n even m o r e s o p h i s t i c a t e d kinds of learning. D e s p i t e the obvious p o t e n t i a l of c o m p u t e r s i n e d u c a t i o n , at least i n very special a n d c o m p l e t e l y u n d e r s t o o d s i t u a t i o n s , i t is difficult to believe t h a t they c a n ever d u p l i c a t e the more s u b t l e aspects of a c t u a l i i v e i n t e r a c t i o n s of h u m a n m i n d s i n a c l a s s r o o m . Regardless o f advances i n s o p h i s t i c a t i o n a n d " i n t e l l i g e n c e " , it is d o u b t f u l t h a t a c o m p u t e r w i l l ever be able t o " r e a d " the m i n d s of students w h o cannot express i n words w h a t it is t h a t t r o u bles t h e m , s o m e t h i n g t h a t g o o d teachers do r o u t i n e l y b y o b s e r v i n g f a c i a l expressions as w e l l as l i s t e n i n g carefully t o confused r e m a r k s a n d " w r o n g " answers t o posed questions. Such things involve a large c o m p o n e n t of i n -
V I . S T R U C T U R E S IN M E N T A L P H E N O M E N A
109
t u i t i o n a n d are possible because of the teacher's k n o w l e d g e , derived f r o m previous contact, of h o w the s t u d e n t ' s m i n d " w o r k s " . N o r c a n the c o m p u t e r m i m i c a n experienced teacher's a b i l i t y to adjust a discussion t o the d e v e l o p i n g s i t u a t i o n , b y t a k i n g i n t o account the constant a n d often u n v e r b a l i z e d reactions of students t o the whole process. T h e r e is also n o s u b s t i t u t e for the i n s p i r a t i o n t h a t m a n y students w i l l derive f r o m the messages of " p l e a sure i n u n d e r s t a n d i n g " unconsciously p r o j e c t e d b y teachers w h o love a n d appreciate t h e i r subject. These are some of the m o r e s u b t l e , a n d perhaps i n the l o n g r u n the m o s t i m p o r t a n t , aspects of the t e a c h i n g - l e a r n i n g process. If such factors are neglected i n a n e d u c a t i o n a l p r o g r a m , the p r o d u c t m a y be i n d i v i d u a l s w i t h o u t a s e n s i t i v i t y a n d love for l e a r n i n g , w h o m a y possess c e r t a i n skills b u t lack the deeper u n d e r s t a n d i n g a n d m o t i v a t i o n necessary for d e a l i n g i n t e l l i g e n t l y w i t h new p r o b l e m s as t h e y arise. O n the basis of the preceding discussion, it is possible to o u t l i n e some o f the m o r e t e c h n i c a l s t r u c t u r a l requirements for the t e a c h i n g - l e a r n i n g process t o result i n the desired g o a l of knowledge a n d u n d e r s t a n d i n g . T h e c o n c l u sions, t h o u g h not l i m i t e d s t r i c t l y t o a m a t h e m a t i c a l s e t t i n g , are s t r o n g l y influenced b y the a u t h o r ' s m a n y years of experience i n t e a c h i n g m a t h e m a t ics. A l t h o u g h i t is easier to o u t l i n e the role of s t r u c t u r e i n the t e a c h i n g o f m a t h e m a t i c s t h a n i n m o s t other fields, the results s h o u l d , o n the whole, a p p l y to the t e a c h i n g of any subject at any l e v e l . T h e r e is one very f u n d a m e n t a l a n d c r u c i a l p o i n t w h i c h is often i g n o r e d or overlooked i n discussions of l e a r n i n g . It concerns the f a c t , a l r e a d y m e n t i o n e d several t i m e s before, t h a t the h u m a n m i n d , w h e n confronted w i t h m a t e r i a l of a l m o s t a n y k i n d , w i l l t e n d t o f o r m m e n t a l structures c o n s t i t u t i n g perceptions of t h a t m a t e r i a l . T h i s process, w h i c h is largely spontaneous a n d no d o u b t a p r o d u c t of e v o l u t i o n a r y a d a p t a t i o n , is d r i v e n b y a need to e x t r a c t m e a n i n g f r o m the barrage of i n f o r m a t i o n t o w h i c h we are c o n s t a n t l y b e i n g subjected, i t is n o t a b l y s t r o n g i n y o u n g c h i l d r e n , b u t m a y be d i s t o r t e d i n older c h i l d r e n b y considerations o f " w h a t the teacher or parent e x p e c t s " . A n i l l u m i n a t i n g p e r s o n a l experience, i n v o l v i n g one of the a u t h o r ' s c h i l d r e n at a b o u t the age of five, w i l l serve to i l l u s t r a t e t h i s i m p o r t a n t p o i n t . O n a f a m i l y o u t i n g one nice s p r i n g day, we c a m e u p o n a grove o f trees w h i c h were b e a u t i f u l l y green, w i t h the e x c e p t i o n of one large dead tree. O u r eldest s o n , w h o was i n t h a t w o n d e r f u l stage w h e n his interest i n t h i n g s a n d his s u p p l y of questions a b o u t t h e m seemed t o be i n e x h a u s t i b l e , n o t i c e d the grove of trees a n d asked, " D a d , w h y is t h a t tree dead?" M y rather evasive reply was to the effect t h a t there are a great m a n y t h i n g s t h a t m i g h t have k i l l e d i t , a n d we h a d no way of k n o w i n g w h a t a c t u a l l y h a p p e n e d . H i s i m m e d i a t e response was, " B u t D a d , w h y m a y b e is the tree dead?" M e m o r y fails t o s u p p l y the rest o f the conversation, b u t the desired p o i n t is adequately m a d e w i t h o u t i t .
110
STRUCTURALISM
AND STRUCTURES
I f anyone bothers t o pay a t t e n t i o n t o the way they deal w i t h the constant f l o o d of i n f o r m a t i o n t h a t comes t h e i r way, they w i l l q u i c k l y realize t h a t most o f their " e x p l a n a t i o n s " o f t h a t i n f o r m a t i o n w i l l f a l l i n t o the " m a y b e " category. S u c h e x p l a n a t i o n s are i n e v i t a b l e , especially w h e n i t comes to m o r e t e c h n i c a l m a t e r i a l . W h e t h e r the e x p l a n a t i o n s are g o o d or b a d w i l l depend t o a large extent o n the q u a l i t y of the b a c k g r o u n d k n o w l e d g e o n w h i c h they are based. It is therefore i m p o r t a n t t h a t such knowledge, t h o u g h perhaps meager, be as accurate a n d to the p o i n t as possible. T o p r o v i d e b a c k g r o u n d knowledge over w i d e areas of l e a r n i n g is the goal of a l i b e r a l a r t s e d u c a t i o n , the u n d e r l y i n g p h i l o s o p h y b e i n g t h a t the v a r i o u s fields of knowledge are i n t e r r e l a t e d a n d t h a t students m u s t not o n l y l e a r n a b o u t each one b u t s h o u l d also u n d e r s t a n d some o f the connections between t h e m . I n other w o r d s , the idea is to p r o v i d e a n e d u c a t i o n t h a t w i l l enable i n d i v i d u a l s t o organize the i n f o r m a t i o n t o w h i c h they have been exposed and t o relate the s a m e to new i n f o r m a t i o n as i t arises. Because o f the c o m m o n h u m a n experience, the goal is not so difficult t o a t t a i n w i t h i n the h u m a n i t i e s . O n the other h a n d , analogous connections w i t h i n the sciences a n d between the h u m a n i t i e s a n d sciences are more difficult t o e s t a b l i s h , because o f the everpresent t e c h n i c a l barriers i n science a n d the differences i n a p p r o a c h between the sciences a n d the h u m a n i t i e s . O n e way t o a t t a c k the p r o b l e m , as already suggested i n S e c t i o n 2 6 , m i g h t be t o p r o v i d e a basis for r e l a t i n g subjects by e x p o s i n g general s t r u c t u r a l s i m i l a r i t i e s between t h e m . T h i s w i l l not be easy t o do, because i t d e m a n d s careful a t t e n t i o n t o aspects o f the subject not o r d i n a r i l y e m p h a s i z e d w i t h i n i n d i v i d u a l d i s c i p l i n e s . N o t e t h a t we are a s k i n g for more t h a n is u s u a l l y i n v o l v e d i n a t r a d i t i o n a l s t r u c t u r a l i s t a p p r o a c h , where general n o t i o n s o f s t r u c t u r e are often o n l y i m p l i c i t i n the m e t h o d of a n a l y s i s . I n order to reveal s t r u c t u r a l s i m i l a r i t i e s between subjects, i t is necessary to focus o n s t r u c t u r e s themselves so as t o b r i n g out t h e i r u l t i m a t e independence of special subject m a t t e r . P e r h a p s a goal o f this k i n d requires, i n a d d i t i o n to i n t e r n a l a d j u s t m e n t s w i t h i n disciplines, a special i n t e r d i s c i p l i n a r y p r o g r a m to d o c u m e n t s o m e o f the s t r u c t u r a l s i m i l a r i t i e s between t h e m . I n d e p e n d e n t l y of the goal o f r e l a t i n g fields o f s t u d y , an e m p h a s i s o n s t r u c t u r e s h o u l d i m p r o v e the teaching of m a n y subjects. C e r t a i n l y , i n the case of science a n d m a t h e m a t i c s , greater a t t e n t i o n t o basic structures w o u l d have a l a s t i n g effect, s i m p l y because unused techniques a n d bare facts are soon f o r g o t t e n , w h i l e basic ideas (structures, p r i n c i p l e s ) t e n d to be r e t a i n e d . F u r t h e r m o r e , some u n d e r s t a n d i n g of the m a i n s t r u c t u r e s i n science is exa c t l y w h a t is needed i n order to deal i n t e l l i g e n t l y w i t h the mass of t e c h n i c a l i n f o r m a t i o n t h a t permeates m o d e r n society. M a t h e m a t i c s , w h i c h is o b v i o u s l y w o r t h y of b e i n g s t u d i e d i n its o w n r i g h t as a field of k n o w l e d g e , is often proposed as the key to b r i d g i n g the gap
VI.
S T R U C T U R E S IN M E N T A L P H E N O M E N A
111
between science a n d the h u m a n i t i e s . Reasons g i v e n are u s u a l l y t h a t i t is the " l a n g u a g e " of the p h y s i c a l sciences, or t h a t the s t u d y o f m a t h e m a t i c s helps students t o " t h i n k s y s t e m a t i c a l l y " . A l t h o u g h there m a y be a n e l ement of t r u t h i n these suggestions, the average l i b e r a l a r t s s t u d e n t w i l l s e l d o m master enough m a t h e m a t i c s t o deal adequately w i t h the t e c h n i c a l language o f the sciences, a n d the c l a i m for s y s t e m a t i c t h i n k i n g is difficult t o d o c u m e n t . O n the other h a n d , a s t u d y o f m a t h e m a t i c s w o u l d o b v i o u s l y s u p p o r t a s t r u c t u r a l a p p r o a c h . A l m o s t any decent m a t h e m a t i c s course (say, at the level of a n a l y t i c geometry a n d above) offers a u n i q u e o p p o r t u n i t y for students to l e a r n a b o u t general s t r u c t u r e s , especially i f the s t r u c t u r a l c o n tent is made e x p l i c i t . Needless t o say, it is necessary for students t o become s o m e w h a t f a m i l i a r w i t h the language (i.e., the techniques!) o f m a t h e m a t i c s i n order t o g a i n access t o the ideas. A l t h o u g h everyone tends a u t o m a t i c a l l y t o s t r u c t u r e whatever i n f o r m a t i o n comes their way, i t is a n u n f o r t u n a t e fact t h a t the result m a y be h i g h l y defective. F o r e x a m p l e , the b a c k g r o u n d s t r u c t u r e m a y be i n a d e q u a t e or defective, so t h a t i t c a n n o t i n c o r p o r a t e a proper representation of the presented m a t e r i a l . In this case the i n d i v i d u a l w i l l be i n c a p a b l e of p e r c e i v i n g the r e q u i r e d s t r u c t u r e , so w i l l necessarily f a l l back o n some s u p e r f i c i a l or perhaps irrelevant aspect of i t . T h e same t h i n g w i l l also h a p p e n , even w h e n the b a c k g r o u n d is adequate, i f the person is u n a b l e for s o m e other reason t o perceive the essential s t r u c t u r e i n the presented m a t e r i a l . T h u s , regardless of the desired result, false s t r u c t u r e s are often f o r m e d a n d w i l l y - n i l l y take their p e r m a n e n t place w i t h i n the i n d i v i d u a l ' s b a c k g r o u n d s t r u c t u r e . S o m e of these can be m o s t b i z a r r e , as the f o l l o w i n g e x a m p l e suggests. M a n y years ago, we owned an o l d t w o - f a m i l y house j o i n t l y w i t h some friends. It was e v e n t u a l l y sold t o a s a l e s m a n w h o m o v e d i n t o the p o r t i o n v a c a t e d b y our friends, w h i l e we s t a y e d on for a t i m e as tenants. T h e new owner was very naive (to say the least!) a b o u t t a k i n g care of a house, so I made a s p e c i a l effort t o p o i n t out t o h i m some o f the t h i n g s t h a t m i g h t be helpful for h i m t o k n o w . O n one o c c a s i o n , w h e n t r y i n g t o show h i m how the furnace w o r k e d , I opened the d o o r t o the firebox w h i l e the furnace was r u n n i n g . W h e r e u p o n , he j u m p e d back i n surprise w i t h the e x c l a m a t i o n , " T h e r e ' s fire i n there!" I never d i d f i n d out w h a t he expected t o see i n a n o i l fired furnace, b u t whatever it was h a d served h i m c o m f o r t a b l y for a g o o d fifty years. T h e false " k n o w l e d g e " c o n t a i n e d i n such incorrect representations is a c o m m o n p r o b l e m w i t h m a n y students, l e a d i n g to m u c h c o n f u s i o n , a n d s t a n d i n g as an o b s t r u c t i o n t o a c q u i r i n g further knowledge. T h e p r o b l e m is especially prevalent a m o n g m a t h e m a t i c s s t u d e n t s , w h o often are b u r dened w i t h several layers o f confusion, the result of a t t e m p t i n g t o b u i l d new concepts u p o n previous misconceptions. I n the case of m a t h e m a t i c s ,
112
STRUCTURALISM AND STRUCTURES
the first defect m a y occur e a r l y i n the s t u d y of a r i t h m e t i c . B u t for college students w h o t a k e m a t h e m a t i c s , the t r o u b l e seems t o o r i g i n a t e most often i n e l e m e n t a r y algebra. A m i n i m u m requirement for l e a r n i n g ( u n d e r s t a n d i n g ) to t a k e place is t h a t the s t u d e n t ' s b a c k g r o u n d knowledge be sufficiently developed to accept the new i n f o r m a t i o n . W i t h o u t this, l e a r n i n g w i l l be severely l i m i t e d , or even i m p o s s i b l e . T h e level o f d e v e l o p m e n t , w h i c h m a y v a r y g r e a t l y f r o m one s t u d e n t t o the next, also determines the degree or d e p t h o f u n d e r s t a n d i n g t h a t c a n take place. W h e n b a c k g r o u n d s are i n a d e q u a t e , the o b v i o u s s o l u t i o n is t o r e p a i r the deficiencies w i t h r e m e d i a l work o f some k i n d or other. O t h e r w i s e the s t u dent w i l l either w i t h d r a w completely or a u t o m a t i c a l l y develop a defective " u n d e r s t a n d i n g " of the new m a t e r i a l . U n f o r t u n a t e l y , at least i n the case of m a t h e m a t i c s , teachers often a i d a n d abet the second a l t e r n a t i v e i n order t o a v o i d the first. M a t e r i a l m a y be presented i n a f o r m irrelevant to its ess e n t i a l s t r u c t u r e i n order t o m a k e i t "easier" or more " i n t e r e s t i n g " , so t h a t m a n y students w i n d up w i t h a shared, but i n c o r r e c t , p i c t u r e o f the subject. " C o o k b o o k " m a t h e m a t i c s often falls i n t o t h i s category. E v e n s t u d e n t s who m i g h t otherwise be able to u n d e r s t a n d the m a t e r i a l can easily be m i s l e d by such ill-conceived pedagogical tactics. T o c o m p o u n d the e r r o r , an incorrect p i c t u r e m a y be certified as a t r u e u n d e r s t a n d i n g o f the m a t e r i a l by the use of " p h o n y " t e s t i n g , either t h r o u g h rigged tests or by d r i l l i n g s t u d e n t s i n advance o n the " c o r r e c t " answers to test questions. R e m e d i a l courses often consist o f o n l y a r e p e t i t i o n o f m a t e r i a l c o n t a i n e d i n an earlier course. T h e y a c c o r d i n g l y tend t o be b o r i n g a n d m a y even reinforce e x i s t i n g p r o b l e m s , so are s e l d o m very successful. F o r m a n y s t u dents, the result is no better t h a n it was the first t i m e a r o u n d a n d m a y even be worse. O n e c o m m o n difficulty is t h a t a s t u d e n t often does not have adequate b a c k g r o u n d even for the r e m e d i a l m a t e r i a l . F o r e x a m p l e , a p r o b l e m w i t h a l g e b r a m a y i n fact be a p r o b l e m w i t h a r i t h m e t i c . A n a d d i t i o n a l difficulty is t h a t , perhaps because of previous u n p l e a s a n t experiences, a s t u d e n t m a y have a psychological block w h i c h essentially precludes any f u r t h e r progress i n a subject. A l l of these p r o b l e m s are c o m m o n p l a c e i n m a t h e m a t i c s , b u t no d o u b t occur t o some degree i n other areas as w e l l , where they m a y be less easily identified. In n o case can any of t h e m be resolved unless the u n d e r l y i n g defects i n u n d e r s t a n d i n g are exposed a n d corrected. S t u d e n t s are s e l d o m able to do this for themselves, a n d it is often difficult for a teacher t o d o the j o b . Because each s t u d e n t ' s troubles tend to be s p e c i a l a n d t o lie well below the surface, u n c o v e r i n g t h e m requires i n d i v i d u a l a t t e n t i o n and extensive p r o b i n g . U n c o r r e c t e d deficiencies cause m i s c o n c e p t i o n s t h a t i n t u r n generate m o r e misconceptions, l e a d i n g e v e n t u a l l y t o a complete b l o c k i n g of
VI. S T R U C T U R E S IN M E N T A L P H E N O M E N A
113
the l e a r n i n g process. T h e i m p o r t a n c e of d e a l i n g w i t h the p r o b l e m as e a r l y as possible therefore cannot be overemphasized. A s s u m i n g t h a t students possess backgrounds adequate t o deal w i t h a g i v e n s u b j e c t , the p r o b l e m t h e n is t o present new m a t e r i a l , b o t h i n class a n d i n the t e x t b o o k , i n a f o r m t h a t w i l l enable students t o s t r u c t u r e the m a t e r i a l for themselves. Ideally, the new structures s h o u l d develop d i r e c t l y out o f the s t r u c t u r e s p r e v i o u s l y u n d e r s t o o d , a n d i n a m a n n e r consistent w i t h the n a t u r a l g r o w t h properties o f s t r u c t u r e s . T h i s is a delicate m a t t e r for b o t h teacher a n d a u t h o r , r e q u i r i n g a t h o r o u g h u n d e r s t a n d i n g o f the subject b y b o t h a n d a careful o r g a n i z a t i o n o f the t e x t b o o k m a t e r i a l b y the a u t h o r . If the teacher's view o f the subject or the t e x t b o o k ' s o r g a n i z a t i o n o f the m a t e r i a l is s t r u c t u r a l l y defective i n a n y way, t h e n the defects w i l l t e n d t o be passed o n t o the students. S i m i l a r l y , any pedagogical device or s h o r t c u t , w h i c h c o n t r a d i c t s or distorts the essential s t r u c t u r e o f the new m a t e r i a l , w i l l have the s a m e result. O n l y a gifted student a l r e a d y blessed w i t h a reliable i n t u i t i o n w i l l be able t o overcome these v i o l a t i o n s o f s u b j e c t integrity. T h e e m p h a s i s o n a s t r u c t u r a l presentation of a subject does not m e a n t h a t one s h o u l d always t r y t o teach the relevant s t r u c t u r e itself. T h i s c a n be a serious m i s t a k e , especially i n the case o f y o u n g students for w h o m the necessarily f o r m a l presentation m a y interfere w i t h the s p o n t a n e i t y o f u n d e r s t a n d i n g . V i o l a t i o n of t h i s p r i n c i p l e tended t o weaken some aspects o f a n otherwise s o u n d c u r r i c u l u m r e f o r m effort d u r i n g the 60's, m i s l e a d i n g l y labeled the " N e w M a t h e m a t i c s " . W h e n a subject is presented s t r i c t l y i n accordance w i t h its essential s t r u c t u r e , t h a t s t r u c t u r e w i l l be present, at least i m p l i c i t l y , i n the s t u d e n t ' s a c q u i r e d knowledge o f the m a t e r i a l a n d m a y be m a d e e x p l i c i t l a t e r i f desired. In the case o f m a t u r e students, w h o are more conscious of t h e i r m e n t a l processes, e x p o s i n g the s t r u c t u r e where convenient m a y f a c i l i t a t e and e n r i c h the process of u n d e r s t a n d i n g . A n o t h e r aspect o f a s t r u c t u r a l a p p r o a c h t o a subject is the level at w h i c h s t r u c t u r e s are perceived. T h i s p o i n t was i l l u s t r a t e d i n o u r discussion of c o n t r a c t i o n s (Section 27) b y the black b o x e x a m p l e c o n c e r n i n g the f u n c t i o n i n g of an a u t o m o b i l e . T h e level of u n d e r s t a n d i n g there r a n g e d f r o m t h a t needed j u s t t o d r i v e a n d m a i n t a i n the m a c h i n e , t h r o u g h the k n o w - h o w required b y a m e c h a n i c , to a f u l l a p p r e c i a t i o n of the u n d e r l y i n g p r i n c i p l e s of mechanics, physics, a n d c h e m i s t r y i n v o l v e d i n its o p e r a t i o n . A s i m i l a r a n a l y s i s m a y be a p p l i e d t o any sufficiently c o m p l e x s t r u c t u r e , and the level at w h i c h i t is perceived w i l l o b v i o u s l y depend o n the s o p h i s t i c a t i o n o f the person's b a c k g r o u n d s t r u c t u r e relative to the given s t r u c t u r e . T h e teachi n g of any s u b j e c t is a l m o s t certain t o be unsuccessful unless the s t r u c t u r a l level a t w h i c h the basic m a t e r i a l of the s u b j e c t is presented is m o r e or
114
STRUCTURALISM AND
STRUCTURES
less c o m p a t i b l e w i t h most student b a c k g r o u n d s . F i n a l l y , the goal i n every course s h o u l d c l e a r l y be one o f knowledge a n d u n d e r s t a n d i n g . Nevertheless, there is a g r o w i n g tendency ( a m o n g b o t h students a n d teachers) t o equate h i g h test scores w i t h p r o o f t h a t the goal has been a t t a i n e d . T h i s a t t i t u d e applies especially t o s t a n d a r d i z e d tests, but is not l i m i t e d t o t h e m . T h e a b s u r d i t y o f the whole t h i n g is c o m p o u n d e d , for e x a m p l e , w h e n s t u d e n t s are o n l y required to p a r r o t back p r e v i o u s l y m e m o r i z e d m a t e r i a l , o r have been "coached" for the test. T h e result is t h a t m a n y o t h e r w i s e c a p a b l e college students have respectable grade records b u t are seriously deficient in understanding. T h e r e is a c t u a l l y n o t h i n g i n t r i n s i c a l l y w r o n g w i t h s t a n d a r d i z e d tests. W h a t is w r o n g , however, is the way the e d u c a t i o n a l c o m m u n i t y ( i n c l u d i n g s t u d e n t s , teachers, professors, a n d a d m i n i s t r a t o r s alike) has responded t o t h e m . It is a p p a l l i n g to realize t h a t performance o n such tests has c o m e t o be regarded, not as for knowledge a n d u n d e r s t a n d i n g , b u t as t h e i r
definition.
evidence
A l l tests s h o u l d c o n t a i n some questions t h a t challenge a s t u d e n t ' s u n d e r s t a n d i n g . I n m a t h e m a t i c s , for e x a m p l e , this means p r o b l e m s (necessarily very s i m p l e ! ) t h a t are new to the students b u t involve i m p o r t a n t concepts already covered i n the course. It is o n l y t h r o u g h challenges of t h i s k i n d t h a t students w i l l l e a r n w h a t it means, and also how it a c t u a l l y to understand something. A l t h o u g h such goals are c e r t a i n l y desirable, they are not always easy to i m p l e m e n t i n the current e d u c a t i o n a l e n v i r o n m e n t . T h e p r o b l e m is i l l u s t r a t e d by an experience I h a d i n teaching e l e m e n t a r y C a l c u l u s . T h e students c o m p l a i n e d a b o u t questions o f the type described a b o v e , so I t r i e d t o e x p l a i n t o t h e m m y reasons for i n c l u d i n g such questions i n their tests. A l l of t h e m r e a d i l y agreed w i t h the objective a n d appeared to l i k e the i d e a , w h e r e u p o n several o f the students suggested t h a t I give t h e m a s u p p l y of " s a m p l e " questions of the i n d i c a t e d t y p e covering the test m a t e r i a l , so t h a t they c o u l d better prepare themselves for the test! In other words, the i d e a of using an a c q u i r e d u n d e r s t a n d i n g of c e r t a i n concepts to deal w i t h a novel s i t u a t i o n i n v o l v i n g those concepts was completely missed. E x p e r i e n c e s of t h i s k i n d convince m e t h a t current m e t h o d s o f t e a c h i n g , d o m i n a t e d b y d r i l l i n g a n d c o a c h i n g students for s t a n d a r d i z e d tests, or tests t h a t i m i t a t e t h e m , is an i n s u l t t o the h u m a n m i n d , a n d is t u r n i n g out generations of m e n t a l robots, w h o neither k n o w nor care w h a t i t means to u n d e r s t a n d something.
feels,
CHAPTER
MATHEMATICAL
40.
VII
STRUCTURES
Introduction
In the preceding sections, we have discussed i n considerable d e t a i l several e x a m p l e s of m a t h e m a t i c a l s t r u c t u r e s , so the reader s h o u l d already have some i d e a of w h a t such structures are like. O u r purpose now is t o i n d i c a t e more c l e a r l y ( i n terms!) w h a t i t is t h a t makes t h e m s p e c i a l . U n f o r t u n a t e l y , the class of a l l m a t h e m a t i c a l structures is s t i l l t o o b r o a d t o a d m i t a precise d e f i n i t i o n . F u r t h e r m o r e , the n o t i o n is not fixed b u t tends to change g r a d u a l l y as m a t h e m a t i c s develops, so c e r t a i n s t r u c t u r e s t h a t are recognized as m a t h e m a t i c a l at the present t i m e perhaps w o u l d have been rejected at a n earlier p e r i o d . Nevertheless, i t is possible to give a k i n d o f " o p e r a t i o n a l " d e f i n i t i o n i n t e r m s of w h i c h anyone w i t h sufficient m a t h e m a t i c a l knowledge c o u l d decide whether a given s t r u c t u r e s h o u l d be classified as m a t h e m a t i c a l or n o t . M a t h e m a t i c a l s t r u c t u r e s are t o v a r y i n g degrees i n t e r r e l a t e d , a n d together c o n s t i t u t e one a l l - i n c l u s i v e s y s t e m , the The latter is not a fixed object, since it is i n a constant state of g r o w t h t h r o u g h the creation (or discovery?) of new m a t h e m a t i c s . It also has a lesser tendency to c o n t r a c t , as certain p o r t i o n s o f o l d m a t h e m a t i c s become obsolete or irrelevant a n d are " f o r g o t t e n " . W i t h i n the whole of m a t h e m a t i c s , we have w h a t is generally called the " m a i n of m a t h e m a t i c s . T h i s is the m a t h e m a t i c s t h a t has passed the test o f t i m e a n d continues to be i m p o r t a n t b o t h i n a p p l i c a t i o n s a n d as an i n s p i r a t i o n , as well as a base, for the c r e a t i o n of new m a t h e m a t i c s . T h e m a i n b o d y also changes, but very g r a d u a l l y as a r u l e , a n d m u c h slower t h a n the whole. M a t h e m a t i c s consists o f a n u m b e r of subfields (such as, for e x a m p l e , a l g e b r a , a n a l y s i s , a n d geometry), each w i t h its d i s t i n c t i v e characteristics. D e s p i t e t h e i r differences, the various subfields overlap c o n s i d e r a b l y a n d are i n a m o r e or less constant state of i n t e r a c t i o n . These i n t e r a c t i o n s , a l o n g w i t h o c c a s i o n a l contacts w i t h disciplines outside of m a t h e m a t i c s , c o n s t i t u t e an i m p o r t a n t d r i v i n g force for the development of the subject.
nontechnical
"body of mathematics".
body"
115
116
41.
STRUCTURALISM AND STRUCTURES
Mathematical
Language
For a l i n g u i s t , the t e r m " l a n g u a g e " u s u a l l y refers to one of the " n a t u r a l " languages, spoken ( a n d perhaps w r i t t e n ) by a more or less well-defined c u l t u r a l group of h u m a n s . C o m m o n usage of the t e r m , however, is m u c h more i n c l u s i v e , referring s i m p l y t o any s y s t e m for c o m m u n i c a t i n g or r e c o r d i n g i n f o r m a t i o n . T h e l a t t e r is o b v i o u s l y the way the t e r m is used i n the expression " m a t h e m a t i c a l l a n g u a g e " . A m a t h e m a t i c a l language is a l m o s t always w r i t t e n , a n d is s e l d o m " s p o k e n " except i n fragments a n d rather i n f o r m a l l y . A s we have already noted, a conspicuous feature of m a t h e m a t i c s is its h i g h l y f o r m a l language. A l t h o u g h this u s u a l l y refers o n l y t o the collection of s y m b o l s a n d equations, such as those i n o r d i n a r y a l g e b r a , a m a t h e m a t i cal language w i l l also involve whatever other m a t e r i a l is needed for precise c o m m u n i c a t i o n of the ideas. I n c l u d e d are graphs, figures, a n d tables, a l o n g w i t h c e r t a i n p o r t i o n s of o r d i n a r y language needed to express such things as theorems a n d their proofs. I n a d d i t i o n , c o m m o n words f r o m o r d i n a r y language are frequently assigned s p e c i a l m a t h e m a t i c a l m e a n i n g s different f r o m , but perhaps suggested by, t h e i r u s u a l m e a n i n g s or c o n n o t a t i o n s . D e s p i t e the appearance of c o m p l e x i t y a n d p o t e n t i a l confusion, m a t h e m a t i c a l languages are very precise a n d r e m a r k a b l y free o f a m b i g u i t y for the c o m m u n i c a t i o n of m a t h e m a t i c a l ideas. T h i s is possible largely because o f the nature o f the ideas themselves. T h e s y m b o l s i n the more f o r m a l p a r t of a m a t h e m a t i c a l language are u s u a l l y regarded as corresponding to words i n a n a t u r a l language. In c e r t a i n cases t h i s is correct, as for e x a m p l e w i t h the s y m b o l s for special n u m b e r s (such as the integers and p i ) and the s y m b o l s for the a r i t h m e t i c o p e r a t i o n s ( + , x , —,/,=}. I n m a n y other cases, however, a n isolated s y m b o l has no m e a n i n g whatsoever, a n d w i l l acquire m e a n i n g o n l y as a p a r t of a f o r m u l a . S y m b o l s o f t h i s k i n d are not like words, since they do not correspond to the signifier i n any l i n g u i s t i c sign a n d can take o n such a role o n l y as part of a m a t h e m a t i c a l expression. T h i s is analogous i n a n a t u r a l language t o a c o n t e x t u a l d e t e r m i n a t i o n of the m e a n i n g of a w o r d . T h e r e is a difference, however, because i n the l a t t e r case the context t y p i c a l l y fixes o n one of several possible m e a n i n g s o f the word (that is, selects one sign of the seve r a l i n w h i c h the w o r d is a signifier), w h i l e i n the case of the m a t h e m a t i c a l s y m b o l there is s i m p l y no m e a n i n g a p a r t f r o m the context. A n o t h e r p r a c tice, rare i n o r d i n a r y usage but c o m m o n i n m a t h e m a t i c s , is the t e m p o r a r y assignment o f a special m e a n i n g to a p a r t i c u l a r s y m b o l b y an i n d i v i d u a l m a t h e m a t i c i a n . N o t e t h a t this c o u p l i n g is not the s a m e as i n a l i n g u i s tic s i g n , because i t is t e m p o r a r y a n d not o r d i n a r i l y s a n c t i o n e d by general usage. A s the above r e m a r k s suggest, a large p a r t of m a t h e m a t i c a l i n f o r m a t i o n is carried p r i m a r i l y by language s t r u c t u r e . T h e s i t u a t i o n is different for a
VII. M A T H E M A T I C A L
STRUCTURES
117
n a t u r a l language, where m u c h of the i n f o r m a t i o n is c a r r i e d by w o r d m e a n ings. In the l a t t e r case, however, some rather s u b t l e i n f o r m a t i o n m a y be c a r r i e d by s t r u c t u r e , especially when the language is s p o k e n . It is a p p r o p r i a t e t o recall here B e r t r a n d R u s s e l l ' s m u c h quoted d e f i n i t i o n of p u r e m a t h e m a t i c s [R5], as "the subject i n w h i c h we never k n o w w h a t we are t a l k i n g a b o u t , nor whether w h a t we are s a y i n g is t r u e " . T h i s catchy a n d clever, but m i s l e a d i n g , " d e f i n i t i o n " m a y be reassuring to l a y m e n (as suggested b y R u s s e l l ) a n d u n d o u b t e d l y u n d e r s t o o d b y m a t h e m a t i c i a n s , b u t it obscures the very i m p o r t a n t fact t h a t most m a t h e m a t i c i a n s d o indeed k n o w w h a t they are t a l k i n g a b o u t . W e refer, o f course, to F u r t h e r m o r e , t r u t h i n m a t h e m a t i c s is t r u t h , w h i c h is independent of the t r u t h or falsity of an assertion t h a t m i g h t arise f r o m an assignment o f e m p i r i c a l meanings to the s y m b o l s .
structures.
empirical
logical
mathematical
S t r u c t u r e and f o r m a l i s m tend to be l i n k e d , a n d an awareness of s t r u c t u r e leads n a t u r a l l y t o the c o n s t r u c t i o n of a f o r m a l language t o describe i t . T h i s is a consequence o f the u l t i m a t e abstract nature of s t r u c t u r e s . E s s e n t i a l l y the same idea was recognized by P i a g e t w h o expressed it as follows: T h e discovery o f s t r u c t u r e m a y , i m m e d i a t e l y or at a m u c h later stage, give rise to f o r m a l i z a t i o n . S u c h f o r m a l i z a t i o n is, however, a l ways the creature of the t h e o r e t i c i a n , whereas s t r u c t u r e i t s e l f exists a p a r t f r o m h i m . ... the m o d e of existence of the s t r u c t u r e he earlier discovered m u s t be d e t e r m i n e d separately f r o m each p a r t i c u l a r area of i n v e s t i g a t i o n . [ P 3 , p . 5] T h e last statement refers, i n our t e r m i n o l o g y , to p a r t i c u l a r representations of the abstract s t r u c t u r e . T h e use of a m o r e or less f o r m a l language is b y no means u n i q u e to m a t h e m a t i c s . E a c h field, at least i f it is at a l l technical i n n a t u r e , requires an a p p r o p r i a t e m e t h o d for the u n a m b i g u o u s c o m m u n i c a t i o n of its special subject m a t t e r . Some fields, such as theoretical physics, are even able to use the language of m a t h e m a t i c s for this purpose. T h a t such usage is possible i n these cases is an interesting fact w h i c h w i l l be discussed i n Section 46 w h e n we consider, f r o m the p o i n t of view o f s t r u c t u r e s , w h a t is i n v o l v e d i n an a p p l i c a t i o n o f m a t h e m a t i c s . A n o t h e r rather different k i n d of e x a m p l e is the professional j a r g o n associated w i t h certain s e m i t e c h n i c a l subjects. A l t h o u g h j a r g o n is sometimes used (or misused) t o exclude or m i s l e a d outsiders, it m a y also serve the l e g i t i m a t e role of i n c r e a s i n g p r e c i s i o n of c o m m u n i c a t i o n . A n interesting p o i n t , w h i c h is often confusing t o outsiders, is t h a t m a t h e m a t i c i a n s when c o m m u n i c a t i n g w i t h one another a l m o s t never use the language of m a t h e m a t i c s i n its f u l l f o r m a l i t y . I n fact, such usage w o u l d n o r m a l l y be a h i n d r a n c e to c o m m u n i c a t i o n , since it w o u l d force a t t e n t i o n
118
STRUCTURALISM AND
STRUCTURES
o n m a n y already u n d e r s t o o d details and tend to d i s t r a c t a t t e n t i o n f r o m the " l a r g e r " i d e a w h i c h is u s u a l l y the object of interest. O n the other h a n d , i f there is a m i s u n d e r s t a n d i n g or disagreement c o n c e r n i n g some p o i n t , t h e n the f o r m a l language w i l l be invoked to whatever degree is needed t o clear up the p r o b l e m . It is o b v i o u s t h a t t h i s i n f o r m a l i t y i n language use is possible o n l y when the p a r t i c i p a n t s are q u i t e f a m i l i a r w i t h one anothers k n o w l edge a n d u n d e r s t a n d i n g of the s u b j e c t under discussion. Therefore, the r e p o r t i n g of m a t h e m a t i c s i n a research j o u r n a l , for e x a m p l e , w i l l u s u a l l y be considerably more f o r m a l , since the i n d i v i d u a l reader is u n k n o w n . E v e n i n this case, however, a n a u t h o r u s u a l l y has i n m i n d a f a i r l y definite audience whose p r e s u m e d knowledge o f the subject w i l l d e t e r m i n e the liberties t h a t c a n be t a k e n w i t h the language. A more or less f u l l use of the t e c h n i c a l m a t h e m a t i c a l language is u s u a l l y called a " treatment.
rigorous"
Because o f the e x t r e m e f o r m a l i t y of m u c h of the language of m a t h e m a t ics, the i n f o r m a l i t y w i t h w h i c h m a t h e m a t i c i a n s use i t is very conspicuous. A t the same t i m e , s i m i l a r practices o b v i o u s l y m u s t o c c u r i n one f o r m or another i n a l l language c o m m u n i c a t i o n . These are i m p o r t a n t , s t r u c t u r a l l y s i g n i f i c a n t , v a r i a t i o n s i n the use of a language. L a r g e p o r t i o n s o f the m a t e r i a l (structures) f a m i l i a r t o the p a r t i c i p a n t s m a y be c o m m u n i c a t e d b y the use of t e m p o r a r y a d hoc labels, a n d c o m p l i c a t e d logical a r g u m e n t s m a y be s p a n n e d b y i n t u i t i v e leaps quite i m p o s s i b l e for outsiders t o follow. A l t h o u g h errors m a y be made by such practices, there is always the p o s s i b i l i t y , a n d also the u l t i m a t e necessity, for a more careful a n d detailed t r e a t m e n t . These t h i n g s are interesting enough, but they are not i n the m a i n l i n e of our d i s c u s s i o n , so w i l l not be p u r s u e d any farther at t h i s t i m e . W e close t h i s section w i t h an extension of the r e m a r k s i n S e c t i o n 29 c o n c e r n i n g the tendency for language representations t o degrade the perception of a s t r u c t u r e . T h i s tendency is even stronger i n the case of a f o r m a l language t h a n it is w i t h o r d i n a r y language. In fact, any f o r m a l i s m tends t o be d i a m e t r i c a l l y opposed to a direct p e r c e p t i o n of the s t r u c t u r e to w h i c h it applies, so the two approaches are essentially c o n t r a d i c t o r y . A n e x t r e m e e x a m p l e o f d e g r a d a t i o n i n m a t h e m a t i c s is the response o f m a n y students to the s t u d y of a l g e b r a . A t an e l e m e n t a r y l e v e l , a l g e b r a is a form a l i s m for d e a l i n g w i t h a n u m b e r s y s t e m . A l t h o u g h most students have at least a r u d i m e n t a r y i n t u i t i o n a b o u t o r d i n a r y n u m b e r s , they w i l l often disassociate a l g e b r a m o r e or less completely f r o m n u m b e r s a n d t r e a t i t as a collection o f rules to be mastered for their o w n sake. S o m e m a y even be rather adept at algebraic m a n i p u l a t i o n s b u t have no i d e a w h a t is b e h i n d t h e m . A c o m p l e t e d is association of t h i s k i n d is i n t e l l e c t u a l l y possible o n l y because the f o r m a l i s m has, as does o r d i n a r y language, an i n t r i n s i c s t r u c t u r e o f its o w n . A l t h o u g h an expert at t i m e s m a y also do algebraic c a l c u l a t i o n s quite m e c h a n i c a l l y , he s i m u l t a n e o u s l y m a i n t a i n s a " l a t e n t awareness" of
VII. M A T H E M A T I C A L S T R U C T U R E S
119
the rich s t r u c t u r e of the n u m b e r system (or other s y s t e m t o w h i c h a l g e b r a m i g h t a p p l y ) w h i c h m a y be called up as needed. T h i s is a t y p i c a l resol u t i o n of the basic c o n t r a d i c t i o n between f o r m a l i s m a n d p e r c e p t i o n t h a t occurs t h r o u g h o u t m a t h e m a t i c s as well as other 42.
H o w to R e c o g n i z e a M a t h e m a t i c a l
subjects.
Structure
W e are now ready to tackle the p r o b l e m of " d e f i n i n g " w h a t we m e a n by a m a t h e m a t i c a l s t r u c t u r e . O t h e r w i s e s t a t e d , the p r o b l e m is to i n d i c a t e , i f possible, j u s t w h a t q u a l i t i e s a g i v e n s t r u c t u r e must possess i n order t o be classified as a m a t h e m a t i c a l s t r u c t u r e . W e suggest t h a t it must satisfy the f o l l o w i n g two c o n d i t i o n s : (1)
T h e s t r u c t u r e must be susceptible t o f o r m a l a n a l y s i s .
I n other words, i t must be possible to use an e x i s t i n g p o r t i o n , or to create a new p o r t i o n , of m a t h e m a t i c a l language i n t e r m s of w h i c h the s t r u c t u r e m a y be described w i t h the precision d e m a n d e d i n m a t h e m a t i c s . O n e m e t h o d of a c c o m p l i s h i n g this, for e x a m p l e , is t h r o u g h an a x i o m a t i c t r e a t m e n t . (2) T h e s t r u c t u r e must have s u b s t a n t i a l connections w i t h the b o d y of mathematics. T h i s is a c r u c i a l c o n d i t i o n because it is possible t o have a quite f o r m a l t r e a t m e n t o f a s t r u c t u r e w h i c h has no c o n n e c t i o n at a l l to any e x i s t i n g m a t h e m a t i c s . In other words, it is possible t o have the f o r m w i t h o u t the content of m a t h e m a t i c s . S o m e of the more s u p e r f i c i a l , or forced, a t t e m p t s to a p p l y m a t h e m a t i c s produce results of this type. A g o o d e x a m p l e is S p i n o z a ' s " g e o m e t r i c " t r e a t m e n t of ethics. C r i t e r i a for e v a l u a t i n g connections t o e x i s t i n g m a t h e m a t i c s m a y v a r y considerably f r o m one m a t h e m a t i c i a n to another a n d f r o m one t i m e p e r i o d to another, so there m a y exist a m a r g i n a l gray area where differences of o p i n i o n as to whether or not the results s h o u l d be regarded as genuine m a t h e m a t i c s c o u l d occur. A l t h o u g h this is generally not a serious m a t t e r , m a t h e m a t i c a l developments i n connection w i t h c e r t a i n a p p l i c a t i o n s may o c c a s i o n a l l y f a l l w i t h i n the gray area. B e y o n d the question of whether a s t r u c t u r e is m a t h e m a t i c a l or not, is the question o f its i m p o r t a n c e . It is obvious t h a t not a l l of the l e g i t i m a t e m a t h e m a t i c a l results are of equal i m p o r t a n c e . S o m e m a y be t r a n s i t o r y , to be replaced l a t e r by new and better results, and some m a y be r e m e m b e r e d o n l y for h i s t o r i c a l reasons. A few c o n t r i b u t i o n s w i l l be recognized i m m e d i ately as of l a s t i n g i m p o r t a n c e . These w o u l d i n c l u d e , for e x a m p l e , s o l u t i o n s of certain f u n d a m e n t a l o u t s t a n d i n g problems t h a t have challenged m a t h e m a t i c i a n s for a long t i m e . A l s o i n c l u d e d w o u l d be m a j o r " b r e a k t h r o u g h s " t h a t clarify a n d u n i t e s u b s t a n t i a l p o r t i o n s o f m a t h e m a t i c s , perhaps r e q u i r i n g extensive r e s t r u c t u r i n g of the m a t e r i a l . O t h e r results m a y require a test
120
STRUCTURALISM
AND STRUCTURES
of t i m e . H o w l o n g w i l l they s u r v i v e as recognized p a r t s of m a t h e m a t i c s ? W i l l they eventually be i n c o r p o r a t e d i n t o the m a i n b o d y of m a t h e m a t i c s ? T h e o u t c o m e i n these cases m a y depend i n p a r t o n developing fashions or the interests of a few recognized leaders. T h e l a t t e r , t h r o u g h t h e i r i n fluence o n other m a t h e m a t i c i a n s , c a n d e t e r m i n e , at least t e m p o r a r i l y , the p r i n c i p l e directions i n w h i c h the subject w i l l develop T h e m a t t e r is o b v i ously very c o m p l e x and u n d e r s t a n d a b l y involves m a n y subjective factors. Nevertheless there is u s u a l l y r e m a r k a b l e agreement a m o n g m a t h e m a t i c i a n s c o n c e r n i n g the e v a l u a t i o n of c o n t r i b u t i o n s to their subject. 43.
Research and Development
of
Mathematics
M o s t serious i n t e l l e c t u a l a c t i v i t i e s are i n one way or another creative. In t h i s a n d the next two sections, we w i l l t r y t o b r i n g out some of the special features of the c r e a t i v i t y i n v o l v e d i n m a t h e m a t i c a l research. Research i n m a t h e m a t i c s has always m e a n t a c t i v i t y t h a t leads to new m a t h e m a t i c s , t h a t is, new m a t h e m a t i c a l s t r u c t u r e s . A research m a t h e m a t i cian n a t u r a l l y has m u c h i n c o m m o n w i t h theoretical scientists i n a l l fields, but i n some ways is more like a composer or an a r t i s t . A t the same t i m e , despite a few m a t h e m a t i c i a n s w h o are expert expositors or h i s t o r i a n s , and a n u m b e r of first rate m a t h e m a t i c i a n s w h o have an e x c e p t i o n a l l y b r o a d knowledge of m a t h e m a t i c s , the m a t h e m a t i c a l analogue of a t y p i c a l a c a d e m i c scholar, say i n the h u m a n i t i e s , is conspicuously rare. For the l a t t e r , research m a y m e a n intensive work i n the l i b r a r y to discover and c o o r d i n a t e m a t e r i a l i n the l i t e r a t u r e , p r e v i o u s l y neglected or not fully u n d e r s t o o d . A l t h o u g h the m a t h e m a t i c a l researcher n a t u r a l l y m u s t do a c e r t a i n a m o u n t of t r a d i t i o n a l l i t e r a t u r e (re)search i n order t o acquire necessary knowledge of w h a t has already been done on a p r o b l e m , the m a i n objective is new m a t h e m a t i c s , a n d the end p r o d u c t is j u d g e d a l m o s t entirely u p o n whether or not it is a significant o r i g i n a l c o n t r i b u t i o n to the e x i s t i n g b o d y of m a t h e m a t i c s . T h e b o d y o f m a t h e m a t i c s , w h i c h consists of the current collective k n o w l edge of m a t h e m a t i c s , is recorded m a i n l y i n books a n d articles a n d also i n the m i n d s of p r a c t i c i n g m a t h e m a t i c i a n s . A l t h o u g h it is v i r t u a l l y i m p o s s i ble n o w for a single i n d i v i d u a l to k n o w well a l l of even the most i m p o r t a n t p a r t s of m a t h e m a t i c s , each active m a t h e m a t i c i a n does k n o w a s u b s t a n t i a l p o r t i o n of at least his o w n s p e c i a l field. T h i s means t h a t he has i n his m e m ory a representation of a significant p o r t i o n of the structures c o n t a i n e d i n his field o f interest. M a t h e m a t i c i a n s w i l l sometimes speak of their " m a t h e m a t i c a l i n t u i t i o n " i n reference to those m a t h e m a t i c a l structures w i t h w h i c h they are especially f a m i l i a r . In this sense, i n t u i t i o n is a m e n t a l p h e n o m e n o n associated w i t h a deep u n d e r s t a n d i n g of some p o r t i o n of a subject. T h e t e r m means m o r e , however, t h a n j u s t " k n o w l e d g e " of subject m a t t e r . It is analogous to the
VII. M A T H E M A T I C A L S T R U C T U R E S
121
p e r c e p t i o n of a picture as a whole as opposed to a n a r r a t i v e d e s c r i p t i o n o f the p i c t u r e . In fact, the t e r m suggests a degree of i n t i m a c y w i t h the relevant s t r u c t u r e s t h a t enables one to "see" and u n d e r s t a n d t h e m w i t h o u t h a v i n g t o resort t o a f o r m a l a n a l y s i s . For e x a m p l e , an e x p e r t m a t h e m a t i c i a n m i g h t possess a deep u n d e r s t a n d i n g of a certain t h e o r e m and its connections to other m a t h e m a t i c s , but s t i l l require considerable effort to p r o d u c e a f o r m a l proof. A t the same t i m e , as every b e g i n n i n g g r a d u a t e student k n o w s , it is possible to u n d e r s t a n d and produce on d e m a n d the i n d i v i d u a l steps of a proof, w i t h o u t b e i n g able to appreciate fully the theorem p r o v e d .
research
Mathematical consists of e x t e n d i n g i n one way or another these personal s t r u c t u r e s a n d thus tends t o be a p r i m a r i l y i n d i v i d u a l a c t i v i t y . O n the other h a n d , it is not n o r m a l l y done i n i s o l a t i o n , but is c a r r i e d o n , d i r e c t l y or i n d i r e c t l y , i n concert w i t h workers i n the same or related fields. T h e results of these research efforts, plus their subsequent r e c o r d i n g i n the l i t e r a t u r e , c o n t r i b u t e to the general g r o w t h and development o f m a t h e m a t ics. S t r u c t u r a l extensions i n m a t h e m a t i c a l research tend to f a l l a n y w h e r e between two e x t r e m e types. T h e first is analogous to filling i n a m i s s i n g p o r t i o n of a f a b r i c h a v i n g an i n t r i c a t e p a t t e r n . For e x a m p l e , one m i g h t est a b l i s h a p r e v i o u s l y u n k n o w n connection between k n o w n results or p r o d u c e a new proof for a k n o w n theorem. H o w problems of this k i n d arise varies greatly, f r o m m o r e or less obvious gaps i n the theory, to conjectures. T h e latter may represent i n t u i t i v e insights by experts i n the field, or m a y be suggested b y analogies w i t h other p o r t i o n s of m a t h e m a t i c s or w i t h other fields such as physics. A l l of these a d d i t i o n s are " i n t e r n a l " i n the sense t h a t they shed l i g h t o n but do not change s u b s t a n t i a l l y the o r i g i n a l s t r u c t u r e . Nevertheless, some of the most i m p o r t a n t a n d s a t i s f y i n g c o n t r i b u t i o n s to m a t h e m a t i c s are o f this k i n d , because they result i n a s i g n i f i c a n t l y deeper u n d e r s t a n d i n g of the subject. T h e second type o f extension is more " e x t e r n a l " i n n a t u r e , u s u a l l y i n v o l v i n g new concepts (objects) a n d relations t h a t lie more or less outside of the given s t r u c t u r e , thus a l t e r i n g to some degree its overall character. T h i s k i n d of m a t h e m a t i c s is presently very fashionable a n d accounts for m u c h of the current research. A l t h o u g h i t includes m a n y u n i m p o r t a n t results t h a t w i l l soon be forgotten, it also includes some of the t r u l y great c o n t r i b u t i o n s , since i t can lead to vigorous new fields of research and a m u c h deeper u n d e r s t a n d i n g of broad areas of e x i s t i n g m a t h e m a t i c s . T h i s b r i n g s us finally to the m a i n questions: " H o w a n d i n w h a t f o r m do these extensions come a b o u t , a n d how are they finally i n c o r p o r a t e d i n the b o d y of m a t h e m a t i c s ? " A l t h o u g h it w o u l d be p r e s u m p t u o u s for us t o c l a i m final answers to these l o n g - s t a n d i n g questions concerning m a t h e m a t ical c r e a t i o n , a fresh look at t h e m f r o m the p o i n t of view of structures is
122
STRUCTURALISM
AND STRUCTURES
nonetheless i n s t r u c t i v e . Before d e a l i n g w i t h the m o r e subtle aspects of the above q u e s t i o n , we m e n t i o n briefly a n obvious m e t h o d b y w h i c h a m a t h e m a t i c a l s t r u c t u r e is sometimes developed. T h e s p e c i a l i m p o r t a n c e of a m a t h e m a t i c a l language stems f r o m the fact t h a t it is a p o w e r f u l t o o l for the s y s t e m a t i c m a n a g e m e n t of c o m p l e x m a t h e m a t i c a l s t r u c t u r e s , offering the p o s s i b i l i t y of d e v e l o p i n g certain o f t h e m , at least t o a l i m i t e d extent, t h r o u g h f o r m a l language m a n i p u l a t i o n . I n other words, the language s t r u c t u r e is sufficiently "close" t o the associated m a t h e m a t i c a l s t r u c t u r e t h a t a development of the former translates i n t o a development of the l a t t e r . O n the other h a n d , a " b l i n d " m a n i p u l a t i o n of s y m b o l s cannot be expected t o produce a n y t h i n g very rem a r k a b l e . T h e process m u s t a c c o r d i n g l y be directed t o w a r d some goal. T h i s u s u a l l y involves a guess or conjecture, suggested, for e x a m p l e , b y a n analogy. A goal m i g h t also arise f r o m an i n t u i t i v e i n s i g h t i n t o the s u b j e c t o f interest. S u c h i n s i g h t s , w h i c h are an i m p o r t a n t element i n creative a c t i v i t y of a l l k i n d s , are discussed i n the next section.
44. T h e R o l e of Insight i n Research T h e theme of this section is perhaps best expressed b y an often q u o t e d statement o f A l b e r t E i n s t e i n ' s t h a t " I n v e n t i o n is not the p r o d u c t of l o g i c a l t h o u g h t , even t h o u g h the final p r o d u c t is t i e d to a l o g i c a l s t r u c t u r e " . T h e i d e a i m p l i c i t i n t h i s o b s e r v a t i o n is i l l u s t r a t e d by the sudden insights t h a t seem to be an i n e v i t a b l e feature of the creative process. T h e p r o d u c t i o n of new m a t h e m a t i c s is a s p e c i a l case of a general creative process, w h i c h is expressed i n m u c h the same f o r m i n a l l fields, t h o u g h each n a t u r a l l y has i t s o w n s p e c i a l features. T h e u n i v e r s a l character o f c r e a t i v i t y is b r o u g h t out i n the p e r s o n a l accounts o f creative experiences by workers i n different fields. S o m e examples f r o m a wide variety of i n d i v i d u a l s are c o n t a i n e d i n a b o o k edited by B r e w s t e r G h i s e l i n and e n t i t l e d , " [G4]. F o r discussions of m a t h e m a t i c a l c r e a t i v i t y (or discovery), we note the famous essay b y H e n r i P o i n c a r e o n [P6, p p . 383-394], w h i c h is quoted below, and a b o o k by Jacques H a d a m a r d o n f i ' e / d " [HI]. T h e r e are also the b o o k s , and by George P o l y a [P7], [P8]. T h e P o l y a books are h i g h l y regarded b y m a t h e m a t i c i a n s , b u t are o n the t e c h n i c a l side. T h a t is, i n stead o f discussions " a b o u t " m a t h e m a t i c s , they deal d i r e c t l y w i t h specific m a t h e m a t i c a l topics, t h o u g h the first involves o n l y e l e m e n t a r y m a t e r i a l . B y c o m p a r i s o n , the following r e m a r k s are entirely n o n t e c h n i c a l a n d s t e m f r o m a very different p o i n t of v i e w . T h e y are perhaps m o r e i n the s p i r i t of P a u l H a l m o s ' article, [H2], w h i c h is also rather t h a n mathematics.
The Creative
Process"
"Mathematical Creation"
"The Psychology of Invention in the Mathematical "Mathematics and Plausible Reasoning" ical Discovery",
about,
of,
"Mathematics as a Creative Art'
"Mathemat-
VII. M A T H E M A T I C A L S T R U C T U R E S
123
M a n y d e s c r i p t i o n s of the creative process place so m u c h e m p h a s i s o n great discoveries t h a t they w i n d u p g i v i n g an i m p r e s s i o n t h a t the e x p e r i ence is more or less l i m i t e d to "great m i n d s " . B y contrast, the p o i n t t h a t we w i s h t o m a k e is t h a t c r e a t i v i t y , far f r o m b e i n g confined t o genius types, is a rather c o m m o n occurrence t h a t m a y be i d e n t i f i e d , b u t is often overl o o k e d , i n everyday experiences of o r d i n a r y people. It seems i n fact t o be an i m p o r t a n t aspect of a great deal o f m e n t a l a c t i v i t y at a l l levels, t h o u g h this o b s e r v a t i o n does not make the a n a l y s i s any easier. Despite its u n i v e r sal character, the creative experience, for reasons e x p l a i n e d b e l o w , is easier t o observe i n m a t h e m a t i c s t h a n i n a l m o s t any other s e t t i n g . A t the same t i m e , the final p r o d u c t of m a t h e m a t i c a l research, u s u a l l y a p u b l i s h e d paper, w i l l s e l d o m c o n t a i n any evidence of the creative experience t h a t b r o u g h t it i n t o existence. M o r e o v e r , the experience is often so intensely p e r s o n a l t h a t m a n y m a t h e m a t i c i a n s t e n d to be r e l u c t a n t , a n d perhaps even s o m e w h a t e m b a r r a s s e d , to discuss i t . O u r u l t i m a t e objective is to consider, i n rather general t e r m s , m a t h e m a t i c a l creation f r o m the p o i n t of v i e w of s t r u c t u r a l d e v e l o p m e n t . I n other words, we w i s h to give some idea of how m a t h e m a t i c a l structures evolve t h r o u g h research. A l t h o u g h the research process takes place i n the m i n d s of m a t h e m a t i c i a n s , the n a t u r e of m a t h e m a t i c s is such t h a t i t is possible to give at least some idea of w h a t is g o i n g o n . It is obvious t h a t any discussion of a t o p i c of t h i s k i n d w i l l be s t r o n g l y colored by an a u t h o r ' s o w n personal experiences a n d biases. T h e present one is no e x c e p t i o n . O n e o f the difficulties i n s t u d y i n g m e n t a l processes of the k i n d we have here is t h a t m u c h of the a c t i v i t y occurs i n the unconscious. T h e results of unconscious m e n t a l a c t i v i t y are injected, often s u d d e n l y a n d unexpectedly, i n t o consciousness i n the f o r m of S u d d e n insights m a y of course occur d u r i n g conscious m e n t a l a c t i v i t y , t h o u g h the unconscious is a l m o s t c e r t a i n l y i n v o l v e d i n these events as w e l l . In any case, it w i l l help to t r y t o u n d e r s t a n d s o m e t h i n g of the "insight p h e n o m e n o n " before we t a c k l e the s t r u c t u r e questions i n the next section.
"insights".
A l t h o u g h i n s i g h t is c e r t a i n l y a u n i v e r s a l p h e n o m e n o n , i t is not genera l l y recognized i n everyday experiences, such as "face r e c o g n i t i o n " . T h i s is especially true of the unconscious a c t i v i t y . O n the other h a n d , the u n conscious processing o f m a t h e m a t i c s is often experienced a n d reported b y m a t h e m a t i c i a n s . T h a t m a t h e m a t i c s is different i n t h i s respect, is no d o u b t e x p l a i n e d by its abstractness a n d the relative absence o f irrelevant d i s t r a c t i o n s , so c o m m o n i n o r d i n a r y experiences of a l l k i n d s . In other words, the p u r i t y a n d relative i s o l a t i o n of the m a t h e m a t i c a l experience makes i t easily recognized a n d recalled. F o r our purposes, i t w o u l d not be necessary to d i s t i n g u i s h between conscious and unconscious i n s i g h t . I n fact, events of this k i n d occur w i t h such speed t h a t it is often difficult to d r a w a sharp
124
STRUCTURALISM
AND
STRUCTURES
line between the two. Because the l a t t e r is so interesting i n itself, we w i l l l i m i t a t t e n t i o n to i t . A t y p i c a l " i n s i g h t s c e n a r i o " , associated, for e x a m p l e , w i t h an a t t e m p t to solve a n elusive p r o b l e m , consists o f four stages. T h e s e have been described i n one f o r m or another by other m a t h e m a t i c i a n s , i n c l u d i n g H e n r i P o i n c a r e w h o is quoted below. T h e process begins w i t h a p e r i o d of intensive work d u r i n g w h i c h the researcher becomes very f a m i l i a r w i t h the p r o b l e m , but despite persistent effort is unable to p r o d u c e a s o l u t i o n . T h i s is followed by a p e r i o d o f r e l a x a t i o n or p r e o c c u p a t i o n w i t h s o m e t h i n g t o t a l l y u n r e l a t e d to the i n t r a c t a b l e p r o b l e m . N e x t , quite u n p r e d i c t a b l y a n d often i n another context, the o u t l i n e o f a s o l u t i o n occurs to the researcher w i t h o u t any conscious effort on his p a r t . A l t h o u g h m a n y details m a y be m i s s i n g , there is u s u a l l y a feeling o f a l m o s t c o m p l e t e certainty t h a t the s o l u t i o n w i l l work out. T h e f i n a l stage consists of an a t t e m p t t o provide a f o r m a l v e r i f i c a t i o n of the s o l u t i o n . Successful verification w i l l prove the insight to be correct, an o u t c o m e w h i c h m a y be rare e a r l y o n i n research, b u t occurs s u r p r i s i n g l y often i n the later stages. O n the other h a n d , the verification a t t e m p t m a y reveal t h a t the insight is after a l l incorrect. T h i s e v e n t u a l i t y , t h o u g h negative i n character a n d i n i t i a l l y depressing, m a y a c t u a l l y result i n a s u b s t a n t i a l increase i n u n d e r s t a n d i n g of the p r o b l e m . F i n a l l y , the verification a t t e m p t may s i m p l y f a i l , w h i c h leaves one w i t h a question of whether or not the insight is correct. T h e s e are the insights t h a t m a y lead to new p r o b l e m s a n d conjectures. Insights may o c c u r w i t h varied i n t e n s i t y at a l l levels of p r o b l e m s o l v i n g . T h e experience is a m e m o r a b l e one, enjoyed frequently by m o s t m a t h e m a t i cians i n the course of their research. T h e r e are numerous v a r i a t i o n s o n the above scenario, b u t , as far as structures are concerned, a l l such insights, conscious or unconscious, m a y be " e x p l a i n e d " i n essentially the same way. T h i s depends a g a i n o n our a s s u m p t i o n t h a t the m i n d possesses the c a p a b i l ity of d e a l i n g actively a n d s y s t e m a t i c a l l y w i t h s t r u c t u r e s . R e c a l l also t h a t m o s t of the m i n d ' s processing of structures is a u t o m a t i c , w h i c h means t h a t it does not involve conscious i n t e r v e n t i o n . H e n r i P o i n c a r e (1854-1912), the author o f the f a m o u s essay m e n t i o n e d above, was one of the very great m a t h e m a t i c i a n s of o u r t i m e . T h e essay, entitled Creation",contains i n some d e t a i l an account of one of his research experiences t h a t i n v o l v e d several events of the k i n d described above. P o i n c a r e then speculates o n how the unconscious (the " s u b l i m i n a l s e l f " ) manages t o come up w i t h possible s o l u t i o n s to p r o b l e m s . H e t h i n k s of the s o l u t i o n as a " g o o d c o m b i n a t i o n " of m a t h e m a t i c a l entities already k n o w n . T h e question is how the unconscious is able t o select such a c o m b i n a t i o n f r o m the e n o r m o u s n u m b e r of possibilities. P o i n c a r e suggests t h a t
"Mathematical
VII. M A T H E M A T I C A L
STRUCTURES
125
one factor is t h a t the " g o o d " c o m b i n a t i o n s have an aesthetic value t h a t b r i n g s t h e m i n t o consciousness. N o t e the s t r u c t u r a l concepts i m p l i c i t i n the f o l l o w i n g q u o t a t i o n f r o m the essay [P6, p p . 3 9 1 , 392]: N o w , w h a t are the m a t h e m a t i c s entities to w h i c h we a t t r i b u t e this character of b e a u t y a n d elegance, a n d w h i c h are capable of developing i n us a sort o f aesthetic e m o t i o n ? T h e y are those whose elements are h a r m o n i o u s l y disposed so t h a t the m i n d w i t h o u t effort c a n embrace their t o t a l i t y w h i l e r e a l i z i n g the d e t a i l s . T h i s h a r m o n y is at once a satisfaction o f o u r aesthetic needs a n d an a i d t o the m i n d , s u s t a i n i n g a n d g u i d i n g . A n d at the same t i m e , i n p u t t i n g under our eyes a well-ordered whole, i t makes us foresee a m a t h e m a t i c a l l a w . N o w , as we have s a i d above, the o n l y m a t h e m a t i c a l facts w o r t h y o f f i x i n g o u r a t t e n t i o n a n d capable of b e i n g useful are those w h i c h c a n teach us a m a t h e m a t i c a l l a w . So t h a t we reach the f o l l o w i n g c o n c l u s i o n : T h e useful c o m b i n a t i o n s are precisely the m o s t b e a u t i f u l , I m e a n those best able t o c h a r m t h i s special s e n s i b i l i t y t h a t a l l m a t h e m a t i c i a n s k n o w , b u t of w h i c h the profane are so ignorant as often t o be t e m p t e d t o s m i l e at i t . W h a t h a p p e n s t h e n ? A m o n g the great n u m b e r s of c o m b i n a t i o n s b l i n d l y f o r m e d by the s u b l i m i n a l self, almost a l l are w i t h o u t interest a n d w i t h o u t u t i l i t y ; b u t j u s t for t h a t reason they are also w i t h o u t effect u p o n the aesthetic sensibility. Consciousness w i l l never k n o w t h e m ; only c e r t a i n ones are h a r m o n i o u s a n d , consequently, at once useful a n d b e a u t i f u l . T h e y w i l l be capable of t o u c h i n g t h i s s p e c i a l s e n s i b i l i t y o f the geometer of w h i c h I have j u s t s p o k e n , and w h i c h , once aroused, w i l l c a l l our a t t e n t i o n to t h e m , a n d t h u s give t h e m occasion to become conscious. T h e p r o b l e m r e m a i n s t h a t the unconscious is a l m o s t c e r t a i n l y u n a b l e i n most cases to consider the t o t a l i t y of possible c o m b i n a t i o n s i n the process of f i n d i n g a good one. P o i n c a r e , i n the f o l l o w i n g lengthy q u o t a t i o n [ P 6 , p . 393], suggests a n answer to t h i s p r o b l e m i n the f o r m o f an analogy. It is v i v i d enough, but less s t r u c t u r a l i n character t h a n the above. W e w i l l offer a q u i t e different a n a l o g y i n the next section. Perhaps we ought t o seek the e x p l a n a t i o n i n t h a t p r e l i m i n a r y per i o d o f conscious work w h i c h always precedes a l l f r u i t f u l unconscious l a b o r . P e r m i t me a rough c o m p a r i s o n . F i g u r e the future elements of our c o m b i n a t i o n s as s o m e t h i n g like the h o o k e d a t o m s of E p i c u r u s . D u r i n g the c o m p l e t e repose of the m i n d , these a t o m s are motionless, they are, so t o speak, hooked to the w a l l ; so this complete rest m a y be indefinitely p r o l o n g e d w i t h o u t the atoms m e e t i n g , and consequently w i t h o u t any c o m b i n a t i o n between t h e m .
126
STRUCTURALISM AND
STRUCTURES
O n the other h a n d , d u r i n g a p e r i o d o f apparent rest a n d u n c o n scious w o r k , certain of t h e m are detached f r o m the w a l l a n d put i n m o t i o n . T h e y flash i n every d i r e c t i o n t h r o u g h the space (I was a b o u t t o say the r o o m ) where they are enclosed, as w o u l d , for e x a m p l e , a s w a r m o f gnats or, i f y o u prefer a more learned c o m p a r i s o n , l i k e the molecules o f gas i n the k i n e m a t i c theory of gases. T h e n their m u t u a l i m p a c t s may p r o d u c e new c o m b i n a t i o n s . W h a t is the role o f the p r e l i m i n a r y conscious w o r k ? It is e v i d e n t l y to m o b i l i z e c e r t a i n of these a t o m s , t o u n h o o k t h e m f r o m the w a l l a n d p u t t h e m i n s w i n g . W e t h i n k we have done no g o o d , because we have m o v e d these elements a t h o u s a n d different ways i n seeking to assemble t h e m , a n d have f o u n d no satisfactory aggregate. B u t , after t h i s s h a k i n g u p i m p o s e d u p o n t h e m by our w i l l , these a t o m s do not r e t u r n t o their p r i m i t i v e rest. T h e y freely continue t h e i r dance. N o w , our w i l l d i d not choose t h e m at r a n d o m ; i t p u r s u e d a perfectly d e t e r m i n e d a i m . T h e m o b i l i z e d atoms are therefore not any atoms whatsoever; they are those f r o m w h i c h we m i g h t reasonably expect the desired s o l u t i o n . T h e n the m o b i l i z e d a t o m s undergo i m p a c t s w h i c h m a k e t h e m enter i n t o c o m b i n a t i o n s a m o n g themselves or w i t h other atoms at rest w h i c h they struck against i n their course. A g a i n I beg p a r d o n , m y c o m p a r i s o n is very r o u g h , b u t I scarcely k n o w how otherwise to make m y t h o u g h t u n d e r s t o o d . T h e r e are m a n y other interesting r e m a r k s i n the P o i n c a r e essay, b u t the above q u o t a t i o n s w i l l be sufficient for our purposes. In order t o r o u n d out the p i c t u r e , however, we report t w o rather more c o m m o n p l a c e p e r s o n a l m a t h e m a t i c a l experiences w h i c h have a s o m e w h a t different twist t o t h e m . S o m e years ago I received the p r o o f sheets for a paper t h a t was to he p u b l i s h e d i n a s t a n d a r d research j o u r n a l . Since o n l y t r i v i a l corrections were required, the n o r m a l procedure w o u l d have been to r e t u r n t h e m p r o m p t l y t o the j o u r n a l . In t h i s case, however, for no conscious reason, I delayed s e n d i n g t h e m back for a p e r i o d of a couple of weeks. In the m e a n t i m e , I g r a d u a l l y became aware of repeatedly r e v i e w i n g i n m y m i n d the p r o o f of a c e r t a i n l e m m a of the paper. T h i s w o u l d occur at o d d times a n d w i t h o u t previous t h o u g h t a b o u t the paper. T h e experience i t s e l f was not so s u r p r i s i n g , because the l e m m a was a n i m p o r t a n t one, a n d I was quite pleased w i t h its proof. A s a m a t t e r of fact, i t is not u n u s u a l for one to " r e p l a y " i n t h i s way the proofs of especially s a t i s f y i n g results, for the sheer pleasure of e x p e r i e n c i n g t h e m a g a i n . T h e practice is no different f r o m r e m e m b e r i n g at o d d t i m e s the m e l o d y i n a favorite piece o f m u s i c . O n the other h a n d , there was an element of compulsiveness a b o u t these events, i n t h a t they occurred a b i t t o o often a n d at inconvenient times. A s a result, they event u a l l y aroused m y suspicions, l e a d i n g m e to sit d o w n a n d e x a m i n e carefully
VII. M A T H E M A T I C A L S T R U C T U R E S
127
the p r o o f of the l e m m a . A s the reader has no d o u b t already guessed, there was a n error i n the p r o o f ! It was f o r t u n a t e i n this instance t h a t the error was not a deep one so was rather easy t o correct, whereupon I h a p p i l y a n d p r o m p t l y r e t u r n e d the p r o o f sheets. T h e second experience i n v o l v e d a former colleague, a n d concerned a certain w e l l - k n o w n conjecture i n our c o m m o n field o f interest. W e h a d t r i e d off a n d o n to settle the conjecture, w i t h o u t success u n t i l one day m y colleague a n n o u n c e d t h a t he h a d a s u r p r i s i n g l y s i m p l e proof. In fact, it required o n l y a few m i n u t e s for h i m to o u t l i n e the proof, w h i c h was rather elegant a n d settled the question i n a very satisfactory way. Since we were i n v o l v e d w i t h e x a m i n a t i o n s at the t i m e , it was not convenient for us to pursue the m a t t e r i m m e d i a t e l y . A couple of weeks later, a n d again for no obvious reason, I awoke i n the m i d d l e of the n i g h t and found m y s e l f r e v i e w i n g m y colleague's proof. I c o u l d r e m e m b e r it u p to a certain p o i n t where I w o u l d lose the t h r e a d of a r g u m e n t a n d have to r e t u r n to the b e g i n n i n g . T h i s occurred repeatedly d u r i n g the course of perhaps an h o u r . M y e x p l a n a t i o n o f the difficulty at the t i m e was t h a t I c o u l d not arouse myself sufficiently to s u p p l y the c r u c i a l step o f the a r g u m e n t . E v e n t u a l l y I went back t o sleep a n d p u t the whole t h i n g out of m y m i n d u n t i l a few days later when I encountered m y colleague a n d t o l d h i m t h a t I h a d been u n a b l e to recall his proof. H e t h e r e u p o n proceeded to refresh m y m e m o r y , t r a c i n g the same steps t h a t I h a d followed and b e c o m i n g s t u c k , o f course, at e x a c t l y the same p o i n t where I was s t o p p e d . T h e p r o o f was defective! In fact, several years l a t e r a clever y o u n g m a t h e m a t i c i a n c o n s t r u c t e d a c o u n t e r e x a m p l e to the conjecture, t h a t i t was a c t u a l l y false.
showing
T h e above are o n l y t w o out of a n u m b e r o f s i m i l a r experiences, each of w h i c h i n v o l v e d a c o m p u l s i v e r e v i e w i n g of some p o r t i o n of a f a m i l i a r piece of m a t h e m a t i c s . A s a result, when I catch myself i n v o l u n t a r i l y " r e p l a y i n g " any piece of m a t h e m a t i c s , I have learned to " l i s t e n " very carefully so as to be sure t h a t i t is s t r i c t l y for pleasure. E x a m p l e s such as the above suggest t h a t the unconscious is not o n l y a s o m e w h a t u n i n h i b i t e d creator but appears t o be a rather s u b t l e c r i t i c as w e l l . Nevertheless, as P o i n c a r e also points o u t , the unconscious, r e m a r k able as i t is, seems never to present one w i t h a l l the details of a s o l u t i o n . F i l l i n g i n details a p p a r e n t l y requires the d i s c i p l i n e of the conscious, p r o b a b l y because it involves (self-) c o m m u n i c a t i o n . T h e message i n each of the examples was s u b t l e a n d i n d i r e c t . T h e r e was not even a suggestion of error, o n l y a n enforced " r e p l a y i n g " of the proof. W e w i l l t r y to " e x p l a i n " i n the f o l l o w i n g section w h y messages f r o m the unconscious seem t o take this form.
128
45.
STRUCTURALISM
AND
STRUCTURES
A Structural Interpretation of Creativity
T h e p r o b l e m at this p o i n t is to t r y to give some idea of how insights m i g h t o c c u r when the m i n d deals w i t h a s t r u c t u r e . T h i s w i l l require a closer look at h o w m e n t a l structures m i g h t be represented i n the b r a i n . W e have been able to gloss over the question u n t i l now by r e g a r d i n g m e n t a l structures as more or less independent of these representations. Despite the d e a r t h of i n f o r m a t i o n on the s u b j e c t , a m o d e l o f how m e n t a l s t r u c t u r e s m i g h t be formed is s t i l l needed, t h o u g h the chances are rather s l i m t h a t it can be more t h a n a very r o u g h analogy to w h a t a c t u a l l y o c c u r s . T h e point is t h a t t h i n k i n g about a n y t h i n g , i n c l u d i n g t h i n k i n g itself, requires some k i n d of " v i s u a l i z a t i o n " of the o b j e c t . It is h o p e d t h a t the rather fuzzy and h y p o t h e t i c a l p i c t u r e of a m e n t a l s t r u c t u r e sketched here w i l l c o n t a i n e n o u g h grains of t r u t h to be of some help i n this c o n n e c t i o n . T h e h u m a n b r a i n is c o m p o s e d o f an e n o r m o u s n u m b e r o f i n d i v i d u a l nerve cells, w h i c h , t h r o u g h the synapses (100 t r i l l i o n or so i n n u m b e r ) , a d m i t the p o s s i b i l i t y of a l m o s t u n l i m i t e d interconnections. A s a l r e a d y suggested i n Section 34, we w i l l t h i n k of t h i s e x t r e m e l y c o m p l e x s t r u c t u r e as analogous t o a massive electrical network, w h i c h contains our m e n t a l structures as subnetworks. Despite its o v e r s i m p l i f i c a t i o n , the analogy provides a useful means of p i c t u r i n g the illusive m e n t a l structures. In order for a p o t e n t i a l interconnection w i t h i n the b r a i n network to be effective, it must be a c t i v a t e d i n some way or other, a c o n d i t i o n t h a t m a y or m a y not be p e r m a n e n t . T h e a c t i v a t i o n of a g r o u p of interconnections produces a s t r u c t u r e , w h i c h exists, so to speak, w i t h i n the mass of nerve cells. It is h e l p f u l to t h i n k of the a c t i v a t i o n of a s t r u c t u r e w i t h i n the b r a i n as a k i n d of " h i g h l i g h t i n g " process t h a t accentuates the s t r u c t u r e against an u n a c t i v a t e d a n d undifferentiated b a c k g r o u n d i n the nerve mass. M e n t a l structures m a y now be identified w i t h these a c t i v a t e d nerve structures. N o t e t h a t a s t r u c t u r e of t h i s k i n d is a p o t e n t i a l s u b s t r u c t u r e o f m a n y larger nerve s t r u c t u r e s t h a t are capable of being activated to c o n t a i n i t . A l t h o u g h we w i l l not t r y to guess j u s t how m e n t a l structures are formed i n the first place (say, i n response t o a set of e x t e r n a l s t i m u l i ) , it w i l l f a c i l i t a t e the discussion w h i c h follows to consider briefly the extension of a m e n t a l s t r u c t u r e t h r o u g h a c t i v a t i o n of a larger nerve s t r u c t u r e . R e c a l l t h a t we defined (in S e c t i o n 7) i n t e r n a l a n d e x t e r n a l properties o f a s t r u c t u r e . T h e first are concerned w i t h the objects and relations w i t h i n the s t r u c t u r e a n d the seco n d w i t h the various relations t h a t involve the s t r u c t u r e when it appears as an o b j e c t or a s u b s t r u c t u r e of another s t r u c t u r e , as for e x a m p l e i n a c o n t r a c t i o n (Section 27). E x t e r n a l properties, a p a r t f r o m the c o n t a i n i n g s t r u c t u r e s t h a t define t h e m , enjoy o n l y a p o t e n t i a l existence. O n the other h a d , a p o t e n t i a l e x t e r n a l p r o p e r t y s h o u l d somehow be " a n t i c i p a t e d " i n the g i v e n s t r u c t u r e
129
VII. M A T H E M A T I C A L S T R U C T U R E S
itself, at least i f the associated extension is a significant one i n the sense t h a t it does not ignore completely the i n t e r n a l s t r u c t u r e o f the f o r m e r . W e m a y t h i n k of these " p o t e n t i a l " properties as represented b y special "connector p o i n t s " o n the " p e r i p h e r y " of the o b j e c t (or " w h o l e " ) associated w i t h the given s t r u c t u r e . I n the e l e c t r i c a l network m o d e l , they m a y be t h o u g h t of as c a r r y i n g e l e c t r i c a l charges t h a t can activate possible connections near t h e m . T h e y m a y also be t h o u g h t of as analogous to b u d s o n a tree b r a n c h , w h i c h are p o t e n t i a l new branches t h a t m a y be realized as the tree s t r u c t u r e develops. W i t h the above p i c t u r e i n m i n d , let us r e t u r n t o the case of a m a t h e m a t i cian w h o is t r y i n g to extend a m a t h e m a t i c a l s t r u c t u r e already recorded i n his b r a i n as an a c t i v a t e d nerve s t r u c t u r e . In a n a c t u a l case, there w i l l be m a n y other a c t i v a t e d structures i n the " n e i g h b o r h o o d " o f the given one. These represent possibly relevant knowledge, a n d m a y or m a y not have direct connections to the structure of interest. T h e o b j e c t i v e then is to activate a larger s t r u c t u r e w h i c h contains as a s u b s t r u c t u r e the given one, perhaps a l o n g w i t h c e r t a i n n e i g h b o r i n g s t r u c t u r e s . It is reasonable t o assume t h a t an extension w i l l not be a c t i v a t e d unless triggered by one or more connector p o i n t s , t h u s e x c l u d i n g at the outset m a n y irrelevant extensions. O n e obvious m e t h o d o f extension is to t r y t o activate a series of connections t o one of the n e i g h b o r i n g structures. O t h e r extensions arise more u n p r e d i c t a b l y a n d spontaneously. T h e y are a result o f the tendency of the connector points t o activate connections t h a t grow o u t , so to speak, i n t o the nerve mass. S o m e m a y eventually coalesce i n t o the desired extension, b u t most w i l l p r o b a b l y be rejected, because they f a i l to be as m e a s u r e d b y a variety of c r i t e r i a , not the least of w h i c h is the aesthetic one described by P o i n c a r e . T r a n s i e n t extensions of this k i n d are not merely r a n d o m growths, because they involve i n an essential way the connector p o i n t s . Moreover, they tend to arise spontaneously w i t h l i t t l e or no conscious i n t e r v e n t i o n , even for the rejections.
significant,
A t this point we recall the " i n s i g h t s c e n a r i o " , w h i c h was o u t l i n e d i n the previous section, to see how it fits i n t o the above p i c t u r e . R e c a l l t h a t the first stage consisted of an intensive conscious s t u d y of the g i v e n s t r u c t u r e i n order to u n d e r s t a n d it t h o r o u g h l y a n d to extend it i f possible. T h e g o a l of the extension m i g h t be to include one of the n e i g h b o r i n g s t r u c t u r e s , as suggested b y the above r e m a r k s . T h i s m a y be successful, i n w h i c h case the i m m e d i a t e p r o b l e m is solved. If the a t t e m p t is t o t a l l y unsuccessful, t h a t is, the f a i l u r e is s t r u c t u r a l i n character, then perhaps the o n l y g a i n is the knowledge t h a t c e r t a i n k i n d s of extensions are e v i d e n t l y o f no use. In other words, c e r t a i n connector p o i n t s , or some of the connections that they a c t i v a t e , may now be " b l o c k e d " , so t h a t they w i l l not arise i n future a t t e m p t s . A n intermediate p o s s i b i l i t y m i g h t be a failure w h i c h is due t o a
130
STRUCTURALISM AND
STRUCTURES
collapse o f the extension process, perhaps because i t b e c a m e too c o m p l e x for the conscious to m a n a g e , or s i m p l y because i t encountered t o o m a n y d i s t r a c t i o n s . In such a case, there r e m a i n s a p o s i t i v e residue c o n s i s t i n g of a p o t e n t i a l route t o an e x t e n s i o n . T h e i d e a is t h a t , i f t h i s first stage has been of sufficient i n t e n s i t y , t h e n the extension process m a y a n d w i l l c o n t i n u e at the unconscious l e v e l . A n u l t i m a t e advantage w i l l be a r e d u c t i o n , d u r i n g the first stage, of the n u m b e r of p o t e n t i a l extensions t h a t need be t r i e d . U n c o n s c i o u s processes also have the advantage o f b e i n g able to proceed w i t h o u t the m a n y e x t e r n a l d i s t r a c tions t h a t c o n s t a n t l y i n t e r r u p t and i n h i b i t conscious m e n t a l a c t i v i t y . T h e unconscious c a n therefore deal w i t h s p e c t a c u l a r e x t e n s i o n forays t h a t m a y be too c o m p l e x or u n s t a b l e to be sustained i n the noisy conscious. These excursions c a n either involve an e x i s t i n g n e i g h b o r i n g s t r u c t u r e , or activate a new one, w h i c h m a y then enter as an e n t i t y i n t o consciousness. S u c h a n event constitutes one f o r m o f sudden i n s i g h t . A l t h o u g h f u l l details of the connections between the o r i g i n a l s t r u c t u r e and a new or n e i g h b o r i n g one may not enter i n t o consciousness, the fact t h a t connections were a c t u a l l y established gives rise to the s t r o n g i n t u i t i v e feeling t h a t a c o n n e c t i o n does e x i s t . T h u s , we see (1) how an i n s i g h t m a y arise, (2) the o r i g i n of the feeling t h a t i t "solves" the p r o b l e m , a n d (3) the reason t h a t feeling is so often correct. It remains for the researcher t o verify, if possible, the correctness by f i l l i n g i n step b y step the m i s s i n g connections, a n d record the result i n accepted m a t h e m a t i c a l f o r m . These final steps, w h i c h depend more or less c o m p l e t e l y o n the conscious, are n o r m a l l y the o n l y elements of the whole process t h a t are (or can be) revealed t o others. In the t w o examples i n v o l v i n g the incorrect proofs, we began w i t h w h a t was s u p p o s e d l y a correct proof, w h i c h was r o u t i n e l y s t o r e d i n m e m o r y as an i t e m of m a t h e m a t i c a l knowledge. B u t since the p r o o f was incorrect, the c o r r e s p o n d i n g s t r u c t u r e h a d to be flawed i n some way, perhaps w i t h m i s s i n g or i m p o s s i b l e connections. Because of some s t i m u l u s or o t h e r , such as c o r r e c t i n g p r o o f sheets, the unconscious is p r o m p t e d t o reactivate the s t r u c t u r e a n d is, of course, b l o c k e d b y the flaw. T h i s is a n event w h i c h m a y be t r a u m a t i c enough to force the m a t t e r i n t o consciousness, where the error m a y e v e n t u a l l y be discovered. O n e m i g h t t h e n ask w h y the event d i d not occur before, when the error was first m a d e . P e r h a p s it d i d occur, b u t the process was sidetracked b y some d i s t r a c t i o n or o t h e r , such as p r e o c c u p a t i o n w i t h the m a i n results of the paper (in the case of the l e m m a ) , or s i m p l y wishful thinking. A s s o m e o f the above r e m a r k s suggest, the s t r u c t u r e developments i n volved i n i n s i g h t p h e n o m e n a are not r e s t r i c t e d to the unconscious, a l t h o u g h unconscious processing m a y always p l a y at least an i n d i r e c t role. In any case, i n s i g h t s t h a t occur d u r i n g conscious work o n a p r o b l e m m a y be a n a -
VII. M A T H E M A T I C A L S T R U C T U R E S
131
l y z e d i n a m a n n e r s i m i l a r to the above. 46. H o w M a t h e m a t i c s is A p p l i e d T h e m a t e r i a l , or d a t a , i n any subject constitutes a " s y s t e m " , as defined in Section 7, consisting o f c e r t a i n d i s t i n g u i s h e d objects o f s t u d y a l o n g w i t h a mass of p r e v i o u s l y established i n f o r m a t i o n c o n c e r n i n g t h e m . A n i n v e s t i g a t i o n n o r m a l l y leads to the c o n s t r u c t i o n of a " t h e o r y " , designed to " o r g a n i z e " a n d perhaps " e x p l a i n " t h a t p o r t i o n o f the s y s t e m b e i n g s t u d i e d . T h e t e r m " o r g a n i z e " o b v i o u s l y means to identify s t r u c t u r e , and " e x p l a i n " means t o connect t h a t s t r u c t u r e t o other m o r e f a m i l i a r ones, or t o derive a l l or p a r t of it f r o m a relatively s i m p l e s u b s t r u c t u r e . A g o o d theory is therefore the result of a successful s t r u c t u r a l a n a l y s i s . It is a c o n c e p t u a l m o d e l a n d is tested, at least i n the sciences, by c o m p a r i s o n w i t h k n o w n facts, such as e x p e r i m e n t a l results. W e s h a l l c a l l any s t r u c t u r e w i t h i n a subject s y s t e m of this k i n d a " d a t a s t r u c t u r e " . A p p l i c a t i o n s of m a t h e m a t i c s concern theories t h a t involve s t r u c t u r e s of m a t h e m a t i c a l t y p e . In these cases, the f o r m a l statement of the theory consists of a m a t h e m a t i c a l d e s c r i p t i o n of a d a t a s t r u c t u r e . Ideally, this a m o u n t s to setting up an i s o m o r p h i s m between the d a t a s t r u c t u r e a n d a m a t h e m a t i c a l s t r u c t u r e . In a c t u a l practice, however, it is u s u a l l y necessary t o settle for an a p p r o x i m a t e i s o m o r p h i s m , one t h a t may not q u i t e fit the d a t a s t r u c t u r e or incorporates only p o r t i o n s of the two s t r u c t u r e s . F o r this reason, the general significance of an a p p l i c a t i o n w i l l depend b o t h on the i m p o r t a n c e o f the two structures a n d also o n the degree of the a p p r o x i m a t i o n . T h e l a t t e r m a y vary greatly f r o m one a p p l i c a t i o n to another, r a n g i n g f r o m near i s o m o r p h i s m d o w n to l i t t l e more t h a n a m e t a p h o r i c a l use of m a t h e m a t i c a l language. A m i n i m a l role for any theory is to describe the m a t e r i a l to w h i c h it applies. T h e r e f o r e , a first test of its effectiveness w i l l n a t u r a l l y concern the accuracy a n d completeness of the d e s c r i p t i o n . O n the other h a n d , a purely descriptive theory is o f l i m i t e d value. In fact, one u s u a l l y expects a theory w o r t h y of the n a m e t o be able, i n one way or another, t o cover m a t e r i a l outside t h a t for w h i c h it was constructed. T h i s c o u l d arise by an e x t e n s i o n of either the i n i t i a l d a t a s t r u c t u r e or the theory s t r u c t u r e t h a t represents it. In the first case, an extension amounts t o a discovery, t h r o u g h either e x p e r i m e n t or other research, of properties of the s y s t e m outside the dom a i n of the theory. T h e question then is whether or not the theory, or some extension of i t , w i l l cover the new m a t e r i a l . O n the other h a n d , an extension of the theory s t r u c t u r e (perhaps v i a an extension of an associa t e d m a t h e m a t i c a l s t r u c t u r e ) w i l l predict the existence of properties of the s y s t e m corresponding to the extension, and the question is whether or not
132
STRUCTURALISM
AND STRUCTURES
i t is possible {perhaps b y e x p e r i m e n t ) t o verify the p r e d i c t i o n . I n either case, a negative answer t o the q u e s t i o n casts doubt o n the theory w h i l e a p o s i t i v e one is evidence of its v a l i d i t y , t h o u g h the a c t u a l force of these conclusions w i l l depend o n how n e a r l y i s o m o r p h i c are the i n i t i a l s t r u c t u r e s , a n d t o w h a t extent the extensions are d e t e r m i n e d b y t h e m . T h e v a r i o u s p o s s i b i l i t i e s o u t l i n e d a b o v e are i l l u s t r a t e d i n F i g u r e 4 6 . 1 . D, and respectively represent and structures, w h i l e D', T', a n d M ' represent possible extensions of t h e m . D o u b l e ended arrows suggest associated i s o m o r p h i s m s , a n d dashed lines i n d i c a t e assumed or conjectured i s o m o r p h i s m s , w h i c h m a y or m a y not exist.
T,
M
data, theory
Data
Theory
Fig.
mathematical
Mathematical
4e.l
P e r h a p s the m o s t i m p o r t a n t advantage of m a t h e m a t i c a l a p p l i c a t i o n s is the a v a i l a b i l i t y of m a t h e m a t i c a l techniques for m a n i p u l a t i n g a n d e x t e n d i n g structures. Because of the n a t u r e of m a t h e m a t i c s , m a t h e m a t i c a l p r e d i c t i o n s m a y also e x h i b i t a precision a n d extent s e l d o m f o u n d i n n o n m a t h e m a t i c a l theories. T h e a b i l i t y t o encompass new m a t e r i a l , a n d especially t o p r e d i c t , as described above, is w i d e l y regarded i n science as a n essential r e q u i r e m e n t for any theory. W h e n a theory fails t h i s test, i t is reduced t o at most a d e s c r i p t i o n of a l i m i t e d p o r t i o n of the subject, a n d its scientific s t a t u s is open to challenge. Such failures are u s u a l l y i n t e r p r e t e d t o m e a n t h a t the theory either does n o t represent essential features of the subject or t h a t the representation is flawed. A l t h o u g h t h i s c o n c l u s i o n is p r o b a b l y v a l i d i n most contexts, i t m a y be a b i t t o o severe i n some instances, such as w h e n a p o t e n t i a l c r u c i a l e x p e r i m e n t requires techniques n o t yet a v a i l a b l e . T h e r e are also the cases of e x t r e m e l y c o m p l e x systems or systems t h a t a d m i t " c h a o t i c " b e h a v i o r , for w h i c h i t is v i r t u a l l y i m p o s s i b l e to m a k e r e l i a b l e predictions. T h e m o s t successful a p p l i c a t i o n s of m a t h e m a t i c s are n a t u r a l l y of greatest
133
VII. M A T H E M A T I C A L S T R U C T U R E S
interest t o us, because they e x h i b i t m o r e significant s t r u c t u r a l p h e n o m e n a . Therefore, the e x a m p l e of physics m o t i v a t e s d i r e c t l y or i n d i r e c t l y m u c h of our t h i n k i n g o n the subject. T h e f o l l o w i n g section is devoted to the u n i q u e r e l a t i o n s h i p t h a t exists between m a t h e m a t i c s a n d physics. A p p l i c a t i o n s to n o n p h y s i c a l subjects u s u a l l y involve features q u i t e different f r o m the case of physics, and s e l d o m e x h i b i t the precision f o u n d i n the l a t t e r . S o m e of these differences a n d the special p r o b l e m s t h a t a c c o m p a n y t h e m are discussed i n Section 48. A l o n g w i t h the general p r o b l e m of a p p l y i n g m a t h e m a t i c s to other fields, is the fact t h a t m a t h e m a t i c s , because o f its h i g h l y abstract subject m a t t e r and f o r m a l language, is i n t r i n s i c a l l y different f r o m most other d i s c i p l i n e s . O n e consequence is t h a t m a t h e m a t i c i a n s tend t o a p p r o a c h another field rather differently f r o m workers i n t h a t field. T h i s difference, w h i c h stems f r o m a difference i n i n t u i t i o n , is discussed b y B a r r y C i p r a i n a magazine report o n recent m a t h e m a t i c a l approaches t o D N A [C5], H e a t t r i b u t e s to G o e t h e the r e m a r k t h a t " M a t h e m a t i c i a n s are l i k e the F r e n c h . T h e y take whatever y o u tell t h e m a n d translate i t i n t o their o w n language — a n d f r o m then o n it is s o m e t h i n g e n t i r e l y different". A l s o , i n reference to the difference between m a t h e m a t i c i a n s a n d biologists, he quotes S y l v i a Spengler, a b i o p h y s i c i s t , as s a y i n g (about m a t h e m a t i c i a n s ) t h a t " I t ' s not j u s t t h a t they are not s p e a k i n g the same language, i t ' s t h a t they are not t h i n k i n g the same w a y " . C i p r a has the final w o r d w i t h the suggestion t h a t G o e t h e ' s m a t h e m a t i c i a n m i g h t have a d d e d : " V i v e l a difference".
Research News
Science
T h e differences a l l u d e d to i n the above r e m a r k s are not necessarily l i m i t e d to r e l a t i v e l y n o n m a t h e m a t i c a l subjects. E v e n physicists a n d m a t h e m a t i c i a n s m a y approach the same p r o b l e m i n very different ways. A p h y s i cist m a y be able t o make an easy i n t u i t i v e j u m p to a f o r m a l m a t h e m a t i c a l result t h a t m i g h t be difficult for a m a t h e m a t i c i a n t o j u s t i f y . T h i s is not an u n u s u a l p h e n o m e n o n , two classical examples b e i n g the H e a v y s i d e C a l culus a n d the D i r a c d e l t a f u n c t i o n , b o t h o f w h i c h were, o n the surface, m a t h e m a t i c a l l y unjustified a n d only later placed o n a s o u n d m a t h e m a t i c a l basis. A n o t h e r f a m i l i a r e x a m p l e is the physicist's casual use o f divergent series a n d integrals as t h o u g h they were convergent. M o s t of these practices can e v e n t u a l l y be recast i n rigorous m a t h e m a t i c a l terms, t h o u g h sometimes o n l y after considerable effort. In such cases, as we have discussed a b o v e , a p h y s i c i s t m a y be able t o establish a s t r u c t u r a l extension by p u r e l y p h y s i cal a r g u m e n t s , w h i l e the corresponding m a t h e m a t i c a l extension m a y even require the creation of new m a t h e m a t i c s . 47. T h e Effectiveness o f M a t h e m a t i c s i n P h y s i c s H i s t o r i c a l l y , m a t h e m a t i c s and physics have always h a d a very close rel a t i o n s h i p based on the numerous a p p l i c a t i o n s o f m a t h e m a t i c s t o physics
134
STRUCTURALISM AND
STRUCTURES
and the role of physics as a source of new m a t h e m a t i c a l ideas. A s u b s t a n t i a l p a r t o f classical m a t h e m a t i c s was i n i t i a l l y i n s p i r e d by physics, a n d the influence of physics o n the development of m a t h e m a t i c s continues, t h o u g h g r e a t l y d i m i n i s h e d by c o m p a r i s o n . In fact, despite the o n g o i n g i n j e c t i o n of ideas f r o m physics a n d other fields, the s p e c t a c u l a r g r o w t h of m a t h e m a t i c s i n m o d e r n times has been d r i v e n largely by forces i n t e r n a l t o m a t h e m a t i c s . A t the s a m e t i m e , s o m e of the newest a n d s o p h i s t i c a t e d m a t h e m a t i c a l crea t i o n s have found a p p l i c a t i o n not o n l y i n physics b u t i n c e r t a i n other areas as w e l l . T h e case o f physics, however, r e m a i n s u n i q u e . E v e n i n m o d e r n a p p l i c a t i o n s of m a t h e m a t i c s t o physics the c o n n e c t i o n between m a t h e m a t i c a l a n d p h y s i c a l structures continues to be e x t r e m e l y close. T h i s is t r u e despite the m a n y developments t h a t have o c c u r r e d i n m a t h e m a t i c s q u i t e independently of physics. T h e c o n t i n u e d existence o f such a n i n t i m a t e r e l a t i o n s h i p between t w o u l t i m a t e l y very different subjects is s o m e w h a t of a n e n i g m a . T h e m a t t e r has been discussed b y a w e l l - k n o w n p h y s i c i s t , Eugene P . W i g n e r , i n a lecture o n [W5]. (See also a lecture b y c o m p u t e r scientist, R . W . H a m m i n g [H3].) T h e W i g n e r lecture is devoted m a i n l y to a discussion of examples t h a t illustrate how very effective m a t h e m a t i c s is i n physics. A l t h o u g h he does not deal i n d e p t h w i t h the question of j u s t w h y it is so effective, some of his r e m a r k s i n the lecture are very instructive.
"The Unreasonable Effectiveness of Mathematics in the Natural Sciences"
It is true, of course, t h a t physics chooses certain m a t h e m a t i c a l concepts for the f o r m u l a t i o n of the laws of n a t u r e , a n d surely o n l y a fract i o n of a l l m a t h e m a t i c a l concepts is used i n physics. It is t r u e also t h a t the concepts w h i c h were chosen were not selected a r b i t r a r i l y f r o m a l i s t i n g of m a t h e m a t i c a l t e r m s b u t were developed, i n m a n y i f not most cases, i n d e p e n d e n t l y b y the physicist a n d recognized t h e n as h a v i n g been conceived before by the m a t h e m a t i c i a n . It is not true, however, as is so often s t a t e d , t h a t this h a d t o h a p p e n because m a t h e m a t i c s uses the s i m p l e s t possible concepts and these were b o u n d t o occur i n any f o r m a l i s m . A s we saw before, the concepts of m a t h e m a t i c s are not chosen for their conceptual s i m p l i c i t y ... b u t for their a m e n a b i l i t y t o clever m a n i p u l a t i o n s a n d to s t r i k i n g , b r i l l i a n t a r g u m e n t s . ... It is difficult t o a v o i d the impression t h a t a m i r a c l e confronts us here, q u i t e c o m p a r a b l e i n its s t r i k i n g n a t u r e t o the m i r a c l e t h a t the h u m a n m i n d c a n s t r i n g a t h o u s a n d arguments together w i t h o u t g e t t i n g itself i n t o c o n t r a d i c t i o n s or t o the t w o m i r a c l e s of the existence of laws of n a t u r e a n d o f the h u m a n m i n d ' s c a p a c i t y to d i v i n e t h e m . T h e o b s e r v a t i o n w h i c h comes closest to an e x p l a n a t i o n for the m a t h e m a t i c a l concepts' c r o p p i n g up i n physics w h i c h I k n o w is E i n stein's statement t h a t the o n l y p h y s i c a l theories w h i c h we are w i l l i n g
VII. M A T H E M A T I C A L
STRUCTURES
135
to accept are the b e a u t i f u l ones. It stands to argue t h a t the concepts of m a t h e m a t i c s , w h i c h i n v i t e the exercise of so m u c h w i t , have the q u a l i t y of beauty, [p.7] A possible e x p l a n a t i o n of the physicists's use o f m a t h e m a t i c s to f o r m u l a t e his laws of nature is t h a t when he finds a c o n n e c t i o n between two q u a n t i t i e s w h i c h resembles a connection w e l l - k n o w n f r o m m a t h e m a t i c s , he w i l l j u m p at the conclusion t h a t the c o n n e c t i o n is t h a t discussed i n m a t h e m a t i c s s i m p l y because he does not k n o w of any other s i m i l a r connection. ... However, i t is i m p o r t a n t to p o i n t out t h a t the m a t h e m a t i c a l f o r m u l a t i o n of the p h y s i c i s t ' s often crude experience leads i n an u n c a n n y n u m b e r of cases t o an a m a z i n g l y acc u r a t e d e s c r i p t i o n of a large class of p h e n o m e n a . T h i s shows t h a t the m a t h e m a t i c a l language has more to c o m m e n d i t t h a n b e i n g the o n l y language w h i c h we can speak; i t shows t h a t it is, i n a very real sense, the correct language, [p. 8] W i g n e r goes o n t o discuss a d d i t i o n a l e x a m p l e s and some p h i l o s o p h i c a l questions i n physics. A l t h o u g h we cannot pursue the m a t t e r , it is w o r t h w h i l e t o m e n t i o n one of the questions because it is relevant to the p r o b l e m t h a t interests us here. T h e question is purely p h i l o s o p h i c a l a n d asks w h y , i n the presence of the o v e r w h e l m i n g c o m p l e x i t y of the w o r l d , there exists the r e m a r k a b l e r e g u l a r i t y expressed so efficiently i n the laws of n a t u r e ? W e w i l l not a t t e m p t t o deal w i t h the general question here, t h o u g h s t r u c t u r a l i s m w o u l d o b v i o u s l y have some b e a r i n g o n i t , b u t w i l l t r y i n s t e a d to give a s t r u c t u r a l e x p l a n a t i o n of the narrower p r o b l e m as t o w h y m a t h e m a t i c a l m e t h o d s are so u n i v e r s a l l y effective i n physics. Despite s o m e over s i m p l i f i c a t i o n , the a p p r o a c h s h o u l d shed l i g h t o n the p r o b l e m a n d remove some of the m y s t e r y . A s we see i t , the p r o b l e m may be expressed i n the f o r m of a q u e s t i o n : " W h y is it so often possible for the physicist t o find e x a c t l y the m a t h e m a t ical tools he needs a m o n g the m a n y c o n t r i b u t i o n s to m a t h e m a t i c s , when the c r e a t i o n of those tools was m o t i v a t e d b y forces t h a t h a d n o t h i n g to do with physics?" T h e general p o i n t raised by the question, v i z . , the seeming irrelevance of a b s t r a c t m a t h e m a t i c s t o the p h y s i c a l w o r l d , is already covered by the a s s u m p t i o n , stated i n Section 6, t h a t a s t r u c t u r e is u l t i m a t e l y " a n abstract entity t h a t exists q u i t e independently o f any concrete s i t u a t i o n i n w h i c h i t m i g h t be p e r c e i v e d " . T h i s ( P l a t o n i c ) a s s u m p t i o n applies t o s t r u c t u r e s f r o m b o t h physics a n d m a t h e m a t i c s , thereby r e m o v i n g any to t h e i r c o m p a t i b i l i t y . E v e n w i t h c o m p a t i b i l i t y , however, the m a i n p o i n t of the question r e m a i n s , because o f the independent o r i g i n s of p h y s i c a l a n d m a t h e m a t i c a l s t r u c t u r e s . In other words, " W h y do p h y s i c a l s t r u c t u r e s t u r n out so often t o be i s o m o r p h i c t o m a t h e m a t i c a l s t r u c t u r e s ? " A possible
jection
philosophical ob-
136
STRUCTURALISM AND STRUCTURES
answer t o the question depends o n two observations. R e c a l l first t h a t the contact between physics (or n a t u r a l p h i l o s o p h y ) a n d m a t h e m a t i c s a c t u a l l y b e g a n w i t h the representation o f p h y s i c a l space b y E u c l i d e a n geometry, a l o n g w i t h the u l t i m a t e dependence o f m e a s u r e m e n t o n n u m e r i c a l s t r u c t u r e . T h i s m e a n s t h a t the two fields were e x t r e m e l y close at the very beginnings of t h e i r existence. I n a d d i t i o n , as already m e n t i o n e d , physics has always depended h e a v i l y o n m a t h e m a t i c s a n d m u c h o f the e a r l y development of m a t h e m a t i c s was i n s p i r e d b y i t s contacts w i t h physics. Observe next t h a t a characteristic p r o p e r t y o f the s y s t e m o f m a t h e m a t i c a l structures is t h a t i t is " s t r u c t u r a l l y d e t e r m i n i s t i c " , i n the sense t h a t s u b s t a n t i a l p o r t i o n s of the s y s t e m are derivable f r o m r e l a t i v e l y s m a l l subsystems. P h y s i c s is s i m i l a r l y d e t e r m i n i s t i c w i t h s u b s t a n t i a l p o r t i o n s derivable f r o m a few basic laws or p r i n c i p l e s . F u r t h e r m o r e , the l a t t e r is not s i m p l y a reflection o f the extensive use of m a t h e m a t i c s i n physics, b u t r a t h e r is w h a t m a k e s t h a t use possible. O n the basis of these observations, a n answer t o the question m a y n o w be f o r m u l a t e d . T h e i d e a is t h a t the b u l k of m a t h e m a t i c a l s t r u c t u r e s , t h o u g h i n d e p e n d e n t l y c o n s t r u c t e d , are u l t i m a t e l y d e t e r m i n e d d i r e c t l y or i n d i r e c t l y b y m a t h e m a t i c s already associated w i t h physics. Because o f p a r a l l e l determ i n a t i o n s i n physics, i t is reasonable t o conjecture t h a t the derived m a t h e m a t i c a l structures m i g h t also a d m i t connections t o (possibly yet u n d i s covered) p h y s i c a l structures. S i m i l a r l y , a g i v e n (new) p h y s i c a l s t r u c t u r e is l i k e l y to be d e t e r m i n e d b y physics already associated w i t h m a t h e m a t i c s , so m i g h t be expected i t s e l f t o be connected t o a m a t h e m a t i c a l s t r u c t u r e (also perhaps not yet discovered) d e t e r m i n e d b y the associated m a t h e m a t i c s .
given
isomorphism physical structures
determines
determines
desired isomorphism
Fig.
- t —>
math, structures
M
47.1
A s i m p l e version of the r e l a t i o n s h i p between physics a n d m a t h e m a t i c s o u t l i n e d above is represented s c h e m a t i c a l l y i n F i g u r e 4 7 . 1 , i n w h i c h the
VII. M A T H E M A T I C A L S T R U C T U R E S
137
d o t t e d lines i n d i c a t e conjectured objects. P is a p h y s i c a l s t r u c t u r e repres e n t i n g a new p h y s i c a l result t h a t may have been suggested by an a c t u a l e x p e r i m e n t or a t h o u g h t e x p e r i m e n t or a n i n t u i t i v e i n s i g h t , b u t has yet t o be g i v e n a m a t h e m a t i c a l t r e a t m e n t . P' is a conjectured p h y s i c a l s t r u c ture assumed t o determine P ( w i t h i n physics) a n d already k n o w n to be i s o m o r p h i c w i t h a m a t h e m a t i c a l s t r u c t u r e M'. T h e i d e a then is t h a t , u n der these circumstances, M' s h o u l d determine a m a t h e m a t i c a l s t r u c t u r e M i s o m o r p h i c w i t h P. A s W i g n e r p o i n t s o u t , one does not find a s t r u c t u r e M by m a k i n g a r b i t r a r y choices f r o m a l i s t i n g of m a t h e m a t i c a l structures. I n fact, the required s t r u c t u r e m a y not exist, so our physicist m a y be forced t o p l a y the role of a m a t h e m a t i c i a n and a t t e m p t t o create a new piece o f m a t h e m a t i c s . If the s t r u c t u r e P' does not determine P , t h e n the o u t c o m e w i l l be less clear, a n d a s o l u t i o n , i f it exists, may be considerably m o r e difficult t o c o n s t r u c t . F o r e x a m p l e , it may be necessary t o t r y other choices for P'. W h a t e v e r the s i t u a t i o n m i g h t be, the g o a l , despite the u n c e r t a i n t y , is at least as well-defined as is frequently the case i n routine m a t h e m a t i c a l research. W e finish off this section w i t h a f e w a d d i t i o n a l c o m m e n t s suggested the special r e l a t i o n s h i p t h a t exists between physics and m a t h e m a t i c s . -
by
O n e consequence of the u n d e r l y i n g s t r u c t u r a l s i m i l a r i t y between the t w o fields is i m p l i c i t i n the r e m a r k at the end of the preceding section. It is the fact t h a t , up to a p o i n t , p h y s i c a l i n t u i t i o n m a y be quite adequate to s u p p o r t the f o r m a l i s m of the c o r r e s p o n d i n g m a t h e m a t i c s . A s i m p l e e x a m p l e is the practice i n elementary calculus of i n t e r p r e t i n g the d e r i v a t i v e i n t e r m s of velocity T h i s was a useful pedagogical device w h e n students b r o u g h t to C a l c u l u s a previous experience w i t h elementary physics. E v e n so, the der i v a t i v e concept needed eventually to be separated f r o m v e l o c i t y because derivatives arise i n so m a n y other contexts. B e y o n d this, i n d i c a t i o n s are t h a t s u b s t a n t i a l p o r t i o n s of some p h y s i c i s t s ' u n d e r s t a n d i n g of m a t h e m a t ics m a y a c t u a l l y be supported by p h y s i c a l concepts rather t h a n the u s u a l m a t h e m a t i c a l structures. Therefore, the presumed s e p a r a t i o n o f physics and m a t h e m a t i c s m a y not always be as complete as we sometimes take for granted. T h e above r e m a r k s also suggest another "measure" of the significance of a n a p p l i c a t i o n of m a t h e m a t i c s , n a m e l y , the degree to w h i c h the relevant m a t h e m a t i c a l f o r m a l i s m is supported by the i n t u i t i o n of an e x p e r t i n the field of a p p l i c a t i o n . A discussion o f the problems raised i n this section w o u l d not be c o m p l e t e w i t h o u t at least a b r i e f r e m a r k o n E i n s t e i n ' s s t a t e m e n t , recalled b y W i g n e r , t h a t o n l y b e a u t i f u l theories are acceptable i n physics, a n d its i m p l i c a t i o n t h a t those concepts f r o m m a t h e m a t i c s chosen by physics for the f o r m u l a t i o n
138
STRUCTURALISM AND STRUCTURES
of the l a w s of nature m u s t be b e a u t i f u l . M a t h e m a t i c i a n s w i l l often refer to c e r t a i n p u r e l y m a t h e m a t i c a l results as " b e a u t i f u l " a n d describe certain proofs a s " e l e g a n t " . O n the other h a n d , a l t h o u g h there is u s u a l l y b r o a d agreement a m o n g m a t h e m a t i c i a n s a b o u t such j u d g e m e n t s , there is very l i t t l e i n d i c a t i o n or a n a l y s i s of precisely w h a t such t e r m s m i g h t m e a n as a p p l i e d t o m a t h e m a t i c s . W h a t is there a b o u t a g i v e n m a t h e m a t i c a l s t r u c t u r e , or its e x t e n s i o n , t h a t sets i t a p a r t as b e a u t i f u l or elegant? W i g n e r concludes t h a t the m a t h e m a t i c a l concepts are chosen i n physics, not for their s i m p l i c i t y , as is often c l a i m e d , b u t "for their a m e n a b i l i t y to clever m a n i p u l a t i o n s and t o s t r i k i n g , b r i l l i a n t a r g u m e n t s " , a r g u i n g " t h a t concepts, w h i c h i n v i t e the exercise o f so m u c h w i t , have the q u a l i t y of b e a u t y " . T h i s suggests t h a t the beauty i n m a t h e m a t i c a l concepts depends on the i n t e n s i t y of the i n t e l l e c t u a l (or creative) experience i n d u c e d b y t h e m . If we a d d a requirement t h a t the concepts be significant (that is, have a s u b s t a n t i a l c o n n e c t i o n to the m a i n b o d y of m a t h e m a t i c s ) , the result is a reasonable d e f i n i t i o n of w h a t constitutes beauty i n m a t h e m a t i c s . A s u b jective element r e m a i n s , of course, i n j u d g i n g the i n t e l l e c t u a l experience, b u t this is more or less i n e v i t a b l e i n any d e f i n i t i o n of this t y p e . T h e close s i m i l a r i t y between the first p a r t of the " d e f i n i t i o n " a n d the p e r c e p t u a l experience associated w i t h the A l b e r s c o n s t r u c t i o n s discussed i n Section 17 is o b v i o u s l y no accident. 48.
O t h e r Applications of
Mathematics
A t one t i m e , the serious a p p l i c a t i o n s of m a t h e m a t i c s were l i m i t e d a l m o s t entirely to the p h y s i c a l sciences a n d engineering. N o w , however, useful a p p l i c a t i o n s are f o u n d i n m a n y other areas as w e l l . T h e m a i n purpose of this section is to o u t l i n e some of the differences a n d p r o b l e m s associated w i t h these n o n p h y s i c a l a p p l i c a t i o n s . It is an i m p o r t a n t fact t h a t physics is i n m a n y respects a m o d e l b y w h i c h a l l other sciences are measured. T h e r e f o r e , because of the close r e l a t i o n s h i p between physics and m a t h e m a t i c s , a p p l i c a t i o n s of m a t h e m a t i c s are generally looked u p o n as evidence of scientific content. T h i s p o i n t of v i e w fuels a d r i v e , a p p r o p r i a t e l y called "physics e n v y " , to i n t r o d u c e m a t h e m a t i c a l techniques i n t o any subject w h i c h c l a i m s or aspires t o be scientific. A l t h o u g h m a t h e m a t i c s is u n q u e s t i o n a b l y an i m p o r t a n t t o o l w h e n a p p l i c a b l e , i t s i n v o l v e m e n t is neither necessary nor sufficient for a subject to be scientific. A p p l i c a t i o n s o f m a t h e m a t i c s are r o u t i n e i n the v a r i o u s p h y s i c a l sciences ( i n c l u d i n g engineering), m a i n l y because these subjects depend u l t i m a t e l y u p o n physics. T h e s i t u a t i o n is very different, however, as soon as we pass to other subjects, such as the s o c i a l and b e h a v i o r a l sciences or biology. M o s t
VII. M A T H E M A T I C A L S T R U C T U R E S
139
of their development has t a k e n place quite i n d e p e n d e n t l y of m a t h e m a t i c s , so there is no general b a c k l o g of m a t h e m a t i c a l connections o n w h i c h new connections m i g h t be b u i l t . A l t h o u g h none o f this rules out the p o s s i b i l i t y of a p p l i c a t i o n s of m a t h e m a t i c s , i t reduces considerably the o p p o r t u n i t i e s for m a k i n g t h e m . For e x a m p l e , i n fields other t h a n the p h y s i c a l sciences, the a p p l i c a t i o n s t e n d to be restricted to r e l a t i v e l y s m a l l p o r t i o n s of the target m a t e r i a l w i t h l i t t l e or no p o s s i b i l i t y of extension to larger p o r t i o n s . A l t h o u g h isolated instances o f this k i n d m a y also occur i n physics, the t y p i c a l s i t u a t i o n is u s u a l l y quite different, i n t h a t an a p p r o p r i a t e m a t h e m a t i c a l s y s t e m w i l l often represent s u b s t a n t i a l p o r t i o n s o f the f i e l d . O n the other h a n d , t h a n k s to the wide v a r i e t y a n d abstractness of m a t h e m a t i c a l s t r u c t u r e s , o p p o r t u n i t i e s do exist for a p p l i c a t i o n s to areas h a v i n g no a p r i o r i connection w i t h either physics or m a t h e m a t i c s . It is not feasible for us to a t t e m p t a detailed account of specific a p p l i c a tions of m a t h e m a t i c s t o any o f the n o n p h y s i c a l sciences. T h i s w o u l d require discussions of t e c h n i c a l m a t e r i a l i n b o t h m a t h e m a t i c s a n d the target fields a n d w o u l d not c o n t r i b u t e s i g n i f i c a n t l y t o o u r m a i n objective, a deeper u n d e r s t a n d i n g of s t r u c t u r e s . Instead, therefore, our a t t e n t i o n w i l l be directed t o some of the general p r o b l e m s i n v o l v e d i n a p p l y i n g m a t h e m a t i c s to these fields as c o m p a r e d to physics. W e are interested, i n c i d e n t a l l y , o n l y i n those a p p l i c a t i o n s t h a t i n v o l v e proper use of g o o d m a t h e m a t i c s . T h i s excludes those p u r p o r t e d a p p l i c a tions i n w h i c h the m a t h e m a t i c s is either t r i v i a l or used i n c o r r e c t l y . T h e latter are i l l u s t r a t e d i n m a n y of the a t t e m p t s to use m a t h e m a t i c a l f o r m u l a s a n d s y m b o l s t o describe m a t e r i a l t h a t does not a c t u a l l y possess the necessary m a t h e m a t i c a l s t r u c t u r e . In some cases, t h i s practice m i g h t f a l l under the m e t a p h o r l a b e l , b u t the practice is often m i s l e a d i n g because i t conveys to m a n y persons a false i m p r e s s i o n of m a t h e m a t i c a l precision. It also suggests a l e g i t i m a t e scientific a p p r o a c h , w h i c h m a y or m a y not be correct. A l t h o u g h such usage is often easy t o identify, most m a t h e m a t i c i a n s , as a r u l e , have neither sufficient interest nor knowledge c o n c e r n i n g the subject m a t e r i a l to pursue the m a t t e r when it arises. T h e r e are, however, exceptions t o the r u l e . T w o of these, whose observations are relevant to the above r e m a r k s , are N e a l K o b l i t z [K2] a n d Serge L a n g [L2]. B o t h m a t h e m a t i c i a n s target a r e l a t i v e l y s m a l l p o r t i o n o f w o r k b y one p o l i t i c a l scientist, S a m u e l H u n t i n g t o n . T h e i r c r i t i c i s m s , w h i c h have i m p l i c a t i o n s t h a t e x t e n d w e l l bey o n d this p a r t i c u l a r case, have aroused m u c h controversy. T h e p r i n c i p a l d e t a i l s of the whole affair w i l l be found i n an even more c o n t r o v e r s i a l work b y C h a r l e s J . Sykes [S10], C h a p t e r 12. L a n g ' s m a n u s c r i p t u n f o r t u n a t e l y r e m a i n s u n p u b l i s h e d , but he has given i t w i d e c i r c u l a t i o n v i a an extensive m a i l i n g list. A s we k n o w , genuine a p p l i c a t i o n s depend first of a l l o n the i d e n t i f i c a -
140
STRUCTURALISM AND STRUCTURES
t i o n of m a t h e m a t i c a l type structures w i t h i n the subject field. E v e n when they exist, these structures are s e l d o m as clear-cut here as they are i n the p h y s i c a l sciences, a n d their m a t h e m a t i c a l representations u s u a l l y cannot be expected to a p p r o a c h the precision f o u n d i n the l a t t e r . T h i s is the o r i g i n of most of the p r o b l e m s encountered i n a p p l y i n g m a t h e m a t i c s o u t s i d e the p h y s i c a l sciences. In order to construct a representation, i t is often necessary to m a k e compromises. In e x t r e m e cases, this c a n result i n a p p l i c a t i o n s t h a t are forced a n d l a c k i n g i n c r e d i b i l i t y . C o m p r o m i s e s m a y take the f o r m of unverified a s s u m p t i o n s concerning the given s t r u c t u r e , or the disregard of t e c h n i c a l requirements essential for the m a t h e m a t i c s t o m a k e any sense. S i m i l a r compromises m a y also occur i n a p p l i c a t i o n s to the p h y s i c a l sciences, b u t , t h a n k s t o the m a n y connections w i t h m a t h e m a t i c s t h a t already exist, the chances are far better t h a t they w i l l eventually be j u s t i f i e d . Because m a n y of the most effective m a t h e m a t i c a l tools i n physics i n v o l v e techniques f r o m the field of a n a l y s i s , the l a t t e r is seen as a p r i m e source of m a t e r i a l for a p p l i c a t i o n s to other fields. T h e i d e a i n a n a p p l i c a t i o n of a n a l ysis to any subject is to i d e n t i f y the m a t h e m a t i c a l variables w i t h subject p a r a m e t e r s , so the given f u n c t i o n relations a m o n g the variables correspond t o m e a n i n g f u l relations a m o n g the parameters, thus e s t a b l i s h i n g an isom o r p h i s m between a m a t h e m a t i c a l s t r u c t u r e and a c o r r e s p o n d i n g subject s t r u c t u r e . In a d d i t i o n , values of the variables are u s u a l l y real n u m b e r s to w h i c h there s h o u l d correspond m e a n i n g f u l measurements of the associated parameters, it is t h i s requirement t h a t accounts i n p a r t for the pressure to i n t r o d u c e q u a n t i t a t i v e methods i n t o a subject. A n i m p o r t a n t p r o p e r t y of the real numbers is t h a t they are " s i m p l y o r d e r e d " w i t h respect to the u s u a l n o t i o n of "less t h a n " ( S e c t i o n 22). T h i s is a s p e c i a l case o f the f o l l o w i n g more inclusive n o t i o n of " p a r t i a l " order: A n y set o f objects is s a i d to be p a r t i a l l y ordered w i t h respect to an order r e l a t i o n " < " (read, " i s less t h a n " ) p r o v i d e d i t satisfies the f o l l o w i n g two c o n d i t i o n s : (1) T h e r e exist pairs of ( d i s t i n c t ) o b j e c t s , say x a n d j / , such t h a t x < y or y < x, but not b o t h . ( T h i s is called (2) If three d i s t i n c t o b j e c t s , say and z, are such t h a t x < y and y < z, then also x < z. ( T h i s is c a l l e d
"antisymmetry".)
x,y,
"transitivity".)
T h e t e r m " p a r t i a l " refers to the fact t h a t not a l l pairs are required to be c o m p a r a b l e w i t h respect to " < " . I n case a l l pairs are c o m p a r a b l e , " < " is c a l l e d a N u m e r o u s examples of p a r t i a l and s i m p l e orderings occur i n m a t h e m a t i c s , often subject t o a variety of a d d i t i o n a l c o n d i t i o n s , as i n the case o f the real numbers.
"simple ordering".
In m a n y contexts, there are properties t h a t m a y v a r y f r o m one object to another, or f r o m one t i m e to another, so t h a t it is m e a n i n g f u l to c o m -
VII. M A T H E M A T I C A L S T R U C T U R E S
141
pare the different occurrences w i t h respect to some n o t i o n of " m a g n i t u d e " . F o r e x a m p l e , one m a n u f a c t u r e d i t e m m a y be of higher " q u a l i t y " or m o r e " d e s i r a b l e " t h a n another, so one occurrence m a y be described as "greater t h a n " another w i t h respect t o the d i s t i n g u i s h e d property. I n d e a l i n g w i t h properties of t h i s type, under pressure to i n t r o d u c e measurement wherever possible, the first tendency is to identify the comparisons w i t h an o r d e r i n g of real n u m b e r s . In other words, the i d e a is t o associate w i t h each o c c u r rence of the p r o p e r t y a real n u m b e r , i n d i c a t i n g " m a g n i t u d e " , so t h a t the n a t u r a l o r d e r i n g of the real n u m b e r s expresses c o m p a r a b i l i t y . If successful, the result is a s i m p l e e x a m p l e of a m a t h e m a t i c a l representation ( i n v o l v i n g the order s t r u c t u r e of the real n u m b e r s ) , a n d is one m e t h o d of i n t r o d u c i n g numerical parameters. A p r o b l e m , w h i c h is always present i n a t t e m p t s t o i n t r o d u c e real n u m bers i n this way, is to ensure t h a t the required association is a c t u a l l y a m e a n i n g f u l one. F o r e x a m p l e , it is not always clear t h a t it is even possible to i d e n t i f y the desired c o m p a r a b i l i t y w i t h a s i m p l e o r d e r i n g . In such cases, some type of p a r t i a l o r d e r i n g m i g h t be more m e a n i n g f u l . T h e l a t t e r , of course, m a y not p r o v i d e the desired q u a n t i f i c a t i o n . F u r t h e r m o r e , even when an i d e n t i f i c a t i o n is successful, there is no assurance t h a t it involves any m o r e t h a n j u s t the order s t r u c t u r e of the n u m b e r s . In other words, one c a n not a u t o m a t i c a l l y assume, j u s t because the order s t r u c t u r e applies, t h a t i t is legitimate t o e x p l o i t the r e m a i n i n g structures of the real n u m b e r s y s t e m . A n y appeal to these s t r u c t u r e s m u s t be preceded by their proper i d e n t i f i c a t i o n w i t h i n the subject s t r u c t u r e . T h e p r o b l e m is c o m p o u n d e d when several n u m e r i c a l p a r a m e t e r s are i n v o l v e d , a n d i t is desired, for exa m p l e , to a d d , m u l t i p l y , or d i v i d e parameters. Neglect of t h i s s t r u c t u r a l l y obvious rule, is the source of m a n y f o o l i s h " a p p l i c a t i o n s " o f m a t h e m a t i c s . A s s u m e now t h a t we have a subject s t r u c t u r e consisting of several p a r a m eters a l o n g w i t h some relations a m o n g t h e m . F o r e x a m p l e , t w o p a r a m e t e r s m a y be related so t h a t one of t h e m decreases w h e n the other increases. T h e goal t h e n is to represent t h i s s t r u c t u r e m a t h e m a t i c a l l y b y a s s o c i a t i n g w i t h each p a r a m e t e r a real variable and w i t h each p a r a m e t e r r e l a t i o n a f u n c t i o n r e l a t i o n i n v o l v i n g the c o r r e s p o n d i n g variables. A t t e m p t s are o c c a s i o n a l l y m a d e to carry out the above p r o g r a m w i t h out first e s t a b l i s h i n g t h a t the parameters a c t u a l l y do take values i n the real n u m b e r s . In such a case, an a p p e a l to the m a t h e m a t i c a l s t r u c t u r e c o u l d be q u i t e meaningless. E v e n w i t h real parameters, there m a y s t i l l be p r o b lems because of restrictions on the m a t h e m a t i c s . F o r e x a m p l e , a c o m m o n r e q u i r e m e n t i n a n a l y s i s is t h a t the range of values of a v a r i a b l e be an ino f real numbers, w h i l e the associated p a r a m e t e r m i g h t take values i n a discrete set, say, the integers. A l s o , functions are often required to be continuous or even differentiable, c o n d i t i o n s t h a t m a y not c o r r e s p o n d
terval
S42
STRUCTURALISM AND
STRUCTURES
t o a n y t h i n g m e a n i n g f u l i n the subject s t r u c t u r e . W h e n there are discrepancies o f this k i n d , i t is obvious t h a t o n l y a p o r t i o n of the m a t h e m a t i c s s t r u c t u r e m a y a c t u a l l y enter i n t o the p i c t u r e . In the most e x t r e m e cases, the correspondence between s t r u c t u r e s m a y be reduced t o l i t t l e m o r e t h a n a weak analogy. N o t e t h a t discreteness, w h i c h m a y cause p r o b l e m s i n some cases, also comes up i n physics, for e x a m p l e , t h r o u g h the a t o m i c s t r u c t u r e o f m a t t e r a n d q u a n t u m effects. In classical a p p l i c a t i o n s , however, t h i s discreteness is u s u a l l y not observable under o r d i n a r y c i r c u m s t a n c e s , a l l o w i n g the i n t r o d u c t i o n of parameters h a v i n g continuous ranges. A g o o d e x a m p l e is p r o v i d e d by the gas l a w , PV = cT (c a constant), w h i c h relates the pressure, v o l u m e , a n d t e m p e r a t u r e of an " i d e a l " gas. It ignores the (discrete) m o l e c u l a r c o m p o s i t i o n o f an a c t u a l gas, but a p p r o x i m a t e s closely its g l o b a l b e h a v i o r . A s t u d y of gases w h i c h does take i n t o account t h e i r m o l e c u l a r c o m p o s i t i o n requires the use of " s t a t i s t i c a l m e c h a n i c s " . M o s t o f the above r e m a r k s are suggested b y a p p l i c a t i o n s of a n a l y s i s i n one f o r m or another. T h e s i t u a t i o n is somewhat different i n a p p l i c a t i o n s of a l g e b r a , for e x a m p l e , w h i c h does not make the same d e m a n d s for q u a n t i f i c a t i o n a n d encourages greater e m p h a s i s on general s t r u c t u r a l properties. A l t h o u g h a p p l i c a t i o n s of a l g e b r a may be less impressive t h a n some a p p l i c a tions of a n a l y s i s , perhaps because they m a y f a i l to p r o v i d e the d e m a n d for q u a n t i f i c a t i o n , the a p p r o a c h can be less forced a n d more n a t u r a l f r o m the s t r u c t u r a l p o i n t of v i e w . N o t e t h a t P i a g e t ' s s t r u c t u r a l a p p r o a c h to p s y c h o l o g y is entirely t h r o u g h algebra. A l s o , anthropologists have used algebraic s t r u c t u r e to represent k i n s h i p r e l a t i o n s , a n d economists a p p e a l r e g u l a r l y t o a l g e b r a , convexity theory, game theory, a n d even t o p o l o g y (as w e l l as analysis). D e s p i t e the difficulties associated w i t h a p p l i c a t i o n s outside the p h y s i c a l sciences, some very sophisticated m a t h e m a t i c s has been a p p l i e d t o subjects t h a t a p p a r e n t l y do not satisfy a l l o f the c o n d i t i o n s required by the m a t h ematics. Y e t , the m a t h e m a t i c a l f o r m u l a t i o n s often represent, or at least s t r o n g l y suggest, the p h e n o m e n a of interest s u r p r i s i n g l y w e l l . Nevertheless, w h e n the deeper s t r u c t u r a l connections are a c t u a l l y m i s s i n g , the represent a t i o n tends t o be reduced t o mere d e s c r i p t i o n of a very l i m i t e d fragment of the s u b j e c t . P e r h a p s because of this fact, s o m e a p p l i c a t i o n s appear t o have d e s c r i p t i o n as the m a i n g o a l , a n d regard m a t h e m a t i c a l s o p h i s t i c a t i o n as a measure o f their "significance". T h e success of such representations p r o b a b l y depends more o n the variety a n d f l e x i b i l i t y o f m a t h e m a t i c a l s t r u c t u r e s t h a n o n a serious c o n n e c t i o n w i t h m a t h e m a t i c s . T h o u g h certain of these results m a y be useful, i t is fair to ask i n some cases i f they c o n t r i b u t e more to a n u n d e r s t a n d i n g and development of a subject t h a n w o u l d a careful e x p o s i t i o n by an expert.
VII. M A T H E M A T I C A L S T R U C T U R E S
143
U n d e r l y i n g any concrete a p p l i c a t i o n of m a t h e m a t i c s is the q u e s t i o n of how a c c u r a t e l y the a p p l i c a t i o n reflects the " r e a l w o r l d " w h i c h it p u r p o r t s t o represent. A s we already k n o w , one test of this is p r e d i c t a b i l i t y . T h e r e m a r k s i n the preceding p a r a g r a p h s suggest a couple o f reasons w h y an a p p l i c a t i o n m a y give false p r e d i c t i o n s . In the first place, i f o n l y a p o r t i o n o f the m a t h e m a t i c a l s t r u c t u r e is i n v o l v e d i n a representation, t h e n it is p l a u s i ble t h a t some results deduced f r o m the m a t h e m a t i c s m a y f a i l to c o r r e s p o n d to any subject properties. A t the other e x t r e m e , a representation m a y be r e l a t i v e l y complete as far as the m a t h e m a t i c a l s t r u c t u r e is concerned, but f a i l t o involve a significant p o r t i o n of the subject s t r u c t u r e . I n fact, a s u b ject m a y be so c o m p l e x a n d involve so m a n y independent p a r a m e t e r s t h a t it is p r a c t i c a l l y i m p o s s i b l e t o represent a significant p o r t i o n of its s t r u c t u r e b y a reasonable m a t h e m a t i c a l m o d e l . Here again i t is easy to u n d e r s t a n d w h y predictions m a y f a i l . I n this c o n n e c t i o n , the reader is referred to a r e p o r t by G i n a K o l a t a p u b l i s h e d i n Science [ K 3 ] , which contains some i n t e r e s t i n g observations f r o m several economists. P e r h a p s the most reveali n g , because it suggests the k i n d of p r o b l e m s i n v o l v e d , is the r e m a r k t h a t " T h e r e are t w o t h i n g s y o u are better off not seeing i n the m a k i n g - sausages a n d econometric e s t i m a t e s " .
"Asking Impossible Questions About the Economy and Getting Impossible Answers",
A l t h o u g h representation deficiencies of the k i n d o u t l i n e d above w i l l account for m a n y of the p r e d i c t i o n p r o b l e m s associated w i t h r o u t i n e a p p l i cations of m a t h e m a t i c s , they do not cover a l l p o s s i b i l i t i e s . P r e d i c t i o n m a y also f a i l for a s y s t e m w h i c h a d m i t s " c h a o t i c " b e h a v i o r . T h e l a t t e r is a p h e n o m e n o n associated i n its purest f o r m w i t h c e r t a i n d e t e r m i n i s t i c systems w h i c h a d m i t precise m a t h e m a t i c a l f o r m u l a t i o n s a n d e x h i b i t i n i t i a l l y well-defined regular b e h a v i o r . E v e n t u a l l y , however, the r e g u l a r i t y r a p i d l y breaks d o w n a n d the s y s t e m falls i n t o a state of u n p r e d i c t a b l e chaotic beh a v i o r . T h e p h e n o m e n o n , w h i c h can occur i n r e l a t i v e l y s i m p l e systems, is not due t o incompleteness of the m a t h e m a t i c a l representation. It occurs because the s y s t e m is e x t r e m e l y sensitive t o m i n u t e changes i n values of the s y s t e m parameters. A change (or " e r r o r " ) grows e x p o n e n t i a l l y a n d results e v e n t u a l l y i n a t o t a l loss of s t a b i l i t y a n d regularity. C h a o s is by n o means a new t o p i c of s t u d y . It was considered i n connect i o n w i t h d y n a m i c a l systems by P o i n c a r e , and has been discussed r e g u l a r l y since then by m a n y other m a t h e m a t i c i a n s . R e c e n t l y , however, there has occurred a m a j o r upsurge of interest i n the subject, p a r t l y because of the general a v a i l a b i l i t y of h i g h speed computers equipped w i t h large memories, w h i c h make it possible to m o d e l the relevant systems o n a c o m p u t e r a n d to e x p e r i m e n t w i t h t h e m . T h e r e is also an increasing awareness of the w i d e occurrence of chaotic behavior. It may be observed i n v i r t u a l l y a l l fields, r a n g i n g f r o m m a t h e m a t i c s t h r o u g h the p h y s i c a l a n d b i o l o g i c a l sciences to
14-1
STRUCTURALISM AND
STRUCTURES
the s o c i a l sciences. F o r e x a m p l e , i t e x p l a i n s i n p a r t the u n r e l i a b i l i t y of l o n g range weather forecasts as w e l l as e c o n o m i c forecasts. B o t h of these cases, however, are also very c o m p l e x and depend o n large n u m b e r s of p a r a m e ters, a m a j o r p r o b l e m i n itself. A n excellent account of chaotic p h e n o m e n a w i l l be found i n a b o o k by J a m e s G l e i c k [G5]. It bears the t i t l e , a n d is directed to the general reader.
making a new science",
"Chaos:
T h e r e is one r e m a i n i n g point t h a t we w i s h to m a k e c o n c e r n i n g a p p l i c a tions o f m a t h e m a t i c s . T h i s is the fact t h a t such a p p l i c a t i o n s m a y shape a n d even define the content of a subject. P e r h a p s the most e x t r e m e exa m p l e is m a t h e m a t i c a l economics, w h i c h is so d o m i n a t e d b y m a t h e m a t i c a l techniques t h a t it often appears as m u c h a b r a n c h of m a t h e m a t i c s as of economics, t h o u g h i t is s e l d o m evaluated as s u c h . T h i s tends to separate it f r o m economics proper, a n d perhaps e x p l a i n s some o f the " i m p o s s i b l e answers" o b t a i n e d i n a t t e m p t s t o a p p l y the subject t o everyday e c o n o m ics. T h e m a t t e r has also d r a w n c r i t i c i s m f r o m some t r a d i t i o n a l economists, i n c l u d i n g J o h n K e n n e t h G a l b r a i t h [ G l ] a n d W a s s i l y L e o n t i e f [L4]. It is i n s t r u c t i v e t o c o m p a r e the case of economics w i t h t h a t of physics. M a t h e m a t i c a l physics is also d o m i n a t e d b y m a t hematics, and some of the " f a r - o u t " theories i n m o d e r n physics are v i r t u a l l y i n d i s t i n g u i s h a b l e f r o m m a t h e m a t i c s . B e y o n d t h i s , one can even argue t h a t a l l of physics is u l t i m a t e l y d e t e r m i n e d by its a m e n a b i l i t y to m a t h e m a t i c a l techniques. T h e r e is, however, a c r u c i a l difference i n this case. T h e entire content of physics depends i n the end o n observations of the m a t e r i a l w o r l d . A n d , a l t h o u g h it is true t h a t the content m a y be d e t e r m i n e d by m a t h e m a t i c s , the d e t e r m i n i n g process is one of selection rather t h a n d e f i n i t i o n . A n y p h y s i c a l theory, regardless of its m a t h e m a t i c a l beauty or s o p h i s t i c a t i o n , w i l l u l t i m a t e l y s t a n d or f a l l d e p e n d i n g o n its success i n e x p l a i n i n g a n d p r e d i c t i n g a c t u a l p h y s i c a l observations. N o p h y s i c a l theory w o u l d l o n g s u r v i v e i f i t were c o n t r a d i c t e d by a n e x p e r i m e n t or gave impossible answers to real w o r l d questions.
CHAPTER
BIOLOGICAL
49.
VIII
STRUCTURES
Introduction
In biology, as i n a l l scientific fields, notions of s t r u c t u r e are everywhere present. A l t h o u g h structures are often not the d i r e c t objects of a t t e n t i o n i n science, they t e n d to lie r e l a t i v e l y near the surface. T h i s is especially t r u e i n biology, where s t r u c t u r e stands out i n m u c h of the m a t e r i a l a n d is often dealt w i t h e x p l i c i t l y . S t r u c t u r e s are evident at a l l levels, r a n g i n g f r o m m o l e c u l a r biology, where they are perhaps m o s t e x p l i c i t a n d merge into purely chemical and physical structures, through traditional biology to p o p u l a t i o n a n d sociobiology, where they blend i n t o the general s t r u c t u r e s associated w i t h s o c i a l p h e n o m e n a . C e n t r a l i n a l l of this is the h u m a n b r a i n . It is perhaps the most c o m p l e x o f a l l the structures t h a t we ever encounter, a n d is c a p a b l e , i n a sense, of m o d e l i n g a l l of the others. A comprehensive s t r u c t u r a l analysis of any p a r t of biology w o u l d o b v i ously be interesting s t r i c t l y f r o m the p o i n t of v i e w of s t r u c t u r e s , b u t w o u l d be a difficult task even for a biologist, a n d p r o b a b l y not of great i m p o r tance to biology proper. Needless to say, o u r i m m e d i a t e o b j e c t i v e , as i n other areas t h a t we have considered, is not to a t t e m p t a serious s t r u c t u r a l analysis o f any p o r t i o n of the subject, but r a t h e r t o t r y to l e a r n more a b o u t general structures by e x a m i n i n g some o f the special ways t h a t they enter i n t o biology. A s t r u c t u r a l approach of this k i n d , t h o u g h it m a y not be r e v o l u t i o n a r y i n effect, does throw a different l i g h t o n some of the topics to w h i c h it is a p p l i e d . It is also obvious t h a t i t w i l l influence the choice of m a t e r i a l to be e x a m i n e d . In the case of biology, the result is a p r e p o n derance o f topics f r o m the theory o f e v o l u t i o n . T h e subject of e v o l u t i o n is p a r t i c u l a r l y a p p r o p r i a t e here since m u c h of its m a t e r i a l is f a i r l y accessible a n d also d i r e c t l y concerned w i t h s t r u c t u r e . A n excellent source of m a t e r i a l is the series o f elegant essays by S t e p h e n J a y G o u l d t h a t have appeared r e g u l a r l y for years i n under the general t i t l e , M a n y have been collected a n d p u b l i s h e d (often w i t h different titles) i n b o o k f o r m [G6],[G7],[G8]. M o s t o f the essays are devoted t o i n t r i g u i n g a n d easily u n d e r s t o o d questions conc e r n i n g e v o l u t i o n , and c o n t a i n n u m e r o u s i l l u s t r a t i o n s of b i o l o g i c a l s t r u c tures. T h e y have p r o v i d e d the i n s p i r a t i o n for m u c h of w h a t follows. A l s o ,
zine
"This View of Life".
145
Natural History Maga-
146
STRUCTURALISM
AND STRUCTURES
since e v o l u t i o n i s t s u s u a l l y assume a more or less e x p l i c i t s t r u c t u r a l p o i n t of view i n d e a l i n g w i t h their s u b j e c t , m a n y o f the s t r u c t u r a l ideas t h a t are e x t r a c t e d f r o m t h i s m a t e r i a l , t h o u g h f o r m u l a t e d i n general t e r m s , w i l l be f a m i l i a r i n one f o r m or another t o t h e m . 50.
Classification of
Organisms
S y s t e m a t i c s , the classification of b i o l o g i c a l o r g a n i s m s a c c o r d i n g to t h e i r s i m i l a r i t i e s , was at one t i m e more or less coincident w i t h the field of general biology, a n d continues to be a n i m p o r t a n t p a r t of the s u b j e c t . A l t h o u g h systematics tends t o be more or less descriptive i n n a t u r e , i t has t a k e n o n a m o r e theoretical character under the influence of the theory of evol u t i o n . A t the same t i m e , those features of o r g a n i s m s t h a t are considered i n j u d g i n g s i m i l a r i t y are c o n s t a n t l y b e i n g e x p a n d e d , a n d m a y range f r o m r e l a t i v e l y superficial appearances, t h r o u g h more s u b t l e a n a t o m i c a l a n d beh a v i o r a l characteristics, to the c h e m i s t r y of c e r t a i n b i o l o g i c a l processes a n d the s t r u c t u r e of the genome. It is obvious t h a t the classification p r o b l e m is not a s i m p l e one. F r o m an abstract p o i n t of v i e w , a s y s t e m of classification m i g h t be based o n any agreed-upon sets of s i m i l a r i t y c r i t e r i a , i n t e r m s of w h i c h each o r g a n i s m c o u l d , i n p r i n c i p l e , be assigned to one group or a n other. I n a c t u a l p r a c t i c e , of course, no s y s t e m of classification is ever this arbitrary. A n y set o f s i m i l a r i t y features a n d t h e i r r e l a t i o n s h i p s w i l l c o n s t i t u t e a s t r u c t u r e a c c o r d i n g to our general d e f i n i t i o n . A l s o , any o r g a n i s m t h a t exh i b i t s these features " c o n t a i n s " , b y d e f i n i t i o n , a representation o f the s t r u c t u r e . T h e r e f o r e , the class associated w i t h a set of s i m i l a r i t i e s consists precisely o f a l l those o r g a n i s m s t h a t c o n t a i n representations of the s t r u c t u r e . N o t i c e , however, t h a t various representations of a s t r u c t u r e m a y a p p e a r o n the surface t o be q u i t e different. F o r e x a m p l e , an appendage, such as a leg, m a y v a r y g r e a t l y a m o n g a group of a n i m a l s , either i n size, relative d i m e n s i o n s , or even f u n c t i o n , a n d yet be identifiable as a representation of a specific s t r u c t u r e . In c e r t a i n cases, of course, it m a y be necessary t o recognize s o m e of these v a r i a t i o n s . F o r e x a m p l e , a leg a n d a w i n g at one level are s t r u c t u r a l l y i s o m o r p h i c b u t o b v i o u s l y need t o be d i s t i n g u i s h e d i n some contexts. M a n y such e x a m p l e s e x i s t , v a r y i n g w i d e l y i n subtlety a n d c o m p l e x i t y . T h e i r t r e a t m e n t is not a r b i t r a r y nor is i t d e t e r m i n e d It w i l l d e p e n d o n the context as w e l l as the general state o f knowledge a n d u n d e r s t a n d i n g at a g i v e n t i m e , a n d m a y change s i g n i f i c a n t l y w i t h new developments. In all cases, however, any properties t h a t d i s t i n g u i s h one representation of a s t r u c t u r e f r o m another could be expressed i n t e r m s of a n a p p r o p r i a t e extension of the represented s t r u c t u r e , thus s h a r p e n i n g the classification a n d r e d u c i n g the n u m b e r of representatives.
a priori.
147
VIII. B I O L O G I C A L S T R U C T U R E S
T h e theory of e v o l u t i o n is based o n the p r i n c i p l e t h a t a l l l i v i n g o r g a n i s m s have evolved f r o m e a r l i e r , u l t i m a t e l y s i m p l e r o r g a n i s m s , m a i n l y t h r o u g h r a n d o m v a r i a t i o n and a selection process d r i v e n b y e n v i r o n m e n t a l pressures. H e n c e , the question of how ( a n d perhaps w h y ) the v a r i o u s life f o r m s evolved or differentiated f r o m earlier forms becomes of p r i m a r y interest. T h e m a i n objectives t h e n are t o reconstruct the f a m i l y tree of lifeforms, t h r o u g h a s t u d y of e x i s t i n g o r g a n i s m s plus fossils of e x t i n c t o r g a n i s m s , and t o u n d e r s t a n d , i f possible, h o w the e v o l u t i o n a r y process w o r k s . Therefore, f r o m the s t a n d p o i n t of e v o l u t i o n , a classification s y s t e m m u s t involve more t h a n the m o r p h o l o g y ( f o r m and s t r u c t u r e ) of o r g a n i s m s . It m u s t also recognize phylogeny, their e v o l u t i o n a r y history. A s i m i l a r i t y o f o r g a n i s m s w i l l be significant o n l y i f the shared features were i n h e r i t e d f r o m a c o m m o n e v o l u t i o n a r y ancestor. I n h e r i t e d characteristics of t h i s k i n d are k n o w n as m a n y of w h i c h are i m p l i c i t i n the s t a n d a r d descriptions of the various k i n d s of o r g a n i s m s . A n e x a m p l e of a s i m i l a r i t y t h a t is not a h o m o l o g y is the a b i l i t y t o fly. it is shared by some e x t i n c t reptiles, most b i r d s , bats, a n d m a n y insects, b u t was not i n herited f r o m a c o m m o n ancestor to these a n i m a l s . S i m i l a r i t i e s o f this k i n d are a p r o d u c t of convergent a n d are called T h e y are d e t e r m i n e d by s p e c i a l e n v i r o n m e n t a l c o n d i t i o n s , a n d therefore, as far as e v o l u t i o n is concerned, secondary i n i m p o r t a n c e to homologies i n the basic classification process. O n the other h a n d , as w i l l be seen i n Section 58, analogies are of s p e c i a l interest f r o m the p o i n t o f view of s t r u c t u r e s . A classification begins w i t h a set of s i m i l a r i t i e s observed i n some group of i n d i v i d u a l o r g a n i s m s . T h e collection of s i m i l a r i t i e s , or features, i n t u r n distinguishes a generally larger group consisting of a l l those o r g a n i s m s t h a t share the observed features. If the s i m i l a r i t i e s consist o f homologies, then they m a y c o n s t i t u t e a basis for classification t h a t is significant f r o m the p o i n t o f view of e v o l u t i o n . In a c t u a l practice, the question of whether a p a r t i c u l a r s i m i l a r i t y is a n analogy or a h o m o l o g y may be very difficult to settle a n d is often a m a t t e r of controversy. T h e role of homologies as opposed t o analogies, plus the use o f shared c o m p l e x i t y as a guide t o h o m o l o g y a n d some of the p r o b l e m s encountered, are clearly o u t l i n e d i n the f o l l o w i n g q u o t a t i o n f r o m one of the G o u l d essays [ G 9 , p. 14].
homologies,
evolution
analogies.
T h e d e c o d i n g o f phylogeny requires no more t h a n a m e t h o d for r e c o g n i z i n g h o m o l o g y a n d e l i m i n a t i n g analogy. B i o l o g i s t s have l o n g realized t h a t c o m p l e x i t y offers the best guide to homology. W h e n s i m ilarities between t w o species are sufficiently widespread a n d i n t r i c a t e - t h a t is, c o m p o s e d of m a n y h u n d r e d u t t e r l y u n r e l a t e d , c o m p l e x parts - they cannot arise by independent e v o l u t i o n ; they m u s t record the passive i n h e r i t a n c e of shared descent. A n a l o g o u s s i m i l a r i t y produces
148
STRUCTURALISM AND
STRUCTURES
u n c a n n y likeness - j u s t consider the m a r s u p i a l moles, dogs, a n d mice of A u s t r a l i a - but its results c a n e x t e n d o n l y so far. N a t u r a l selection m a y converge f r o m different directions u p o n the m e c h a n i c a l o p t i m a of c e r t a i n life styles (thus p r o d u c i n g a s t r i k i n g o u t w a r d s i m i l a r i t y i n s w i m m i n g machines, whether they be fish, s q u i d , or m a m m a l ) , but it cannot u n d o the h o m o l o g o u s h a n d i w o r k of ages a n d so restructure a n o r g a n i s m t h a t its ties to h i s t o r y are forever lost i n current a d a p t a t i o n s . If we can look at enough independent details, we w i l l always find h o m o l o g y i n t a c t . M o r p h o l o g y m a y be our first (and u s u a l l y adequate) g u i d e , but it j u s t doesn't p r o v i d e enough independent d e t a i l for s o r t i n g h o m o l ogy f r o m analogy i n difficult cases. M o r p h o l o g y l o o k s c o m p l e x and m u l t i f a c e t e d , b u t p a r t s do not always m a i n t a i n their apparent i n d e pendence. G r o w t h a n d development l i n k the features o f o r g a n i s m s i n t o c o m p l e x webs of c o r r e l a t i o n ; s m a l l changes m a y trigger c a s c a d i n g effects t h r o u g h o u t the b o d y . S i m i l a r i t i e s t h a t look too c o m p l e x for analogy m a y a c t u a l l y arise as consequences of single changes i n these triggers. M o r p h o l o g y also acts as the p r i m a r y b r e e d i n g g r o u n d of analogy, as n a t u r a l selection guides different lineages t o the s a m e o p t i m a for s i m i l a r roles i n c o m m o n e n v i r o n m e n t s . Because of possible confusion to those of us w h o are not experts, a b r i e f r e m a r k is i n order c o n c e r n i n g the use of the t e r m " o r g a n i s m " w i t h reference to one lifeform or another. It u s u a l l y refers to a type of b e i n g rather t h a n to a n i n d i v i d u a l , a n d , even w h e n a p p l i e d t o an i n d i v i d u a l , the reference is to the i n d i v i d u a l as an example of a certain t y p e . In other words, a single i n d i v i d u a l is a c t u a l l y a concrete (biological) as defined i n Section 7, regarded as a p a r t i c u l a r representation o f a c e r t a i n b i o l o g i c a l N o t e t h a t the b i o l o g i c a l s t r u c t u r e m a y v a r y w i t h the p o i n t of v i e w i n a p a r t i c u l a r case. T h u s , one m i g h t see a given i n d i v i d u a l as an e x a m p l e of an a n i m a l , a vertebrate, a m a m m a l , or s i m p l y a d o g , d e p e n d i n g o n the circumstances. A l t h o u g h a m b i g u i t i e s of t h i s k i n d are c o m m o n p l a c e a n d a u t o m a t i c a l l y dealt w i t h i n everyday perception of objects of a l l k i n d s , it is well t o keep t h e m i n m i n d i n references to ancestors and the i n h e r i t a n c e of characteristics. F o r e x a m p l e , an ancestor of a p a r t i c u l a r type of o r g a n i s m is generally not an i n d i v i d u a l but another t y p e o f o r g a n i s m t h a t precedes it i n a sequence of e v o l u t i o n a r y events.
system,
structure.
51. T h e Genetic Structure T h e most c o m m o n structures associated w i t h b i o l o g i c a l o r g a n i s m s , at least i n the context of e v o l u t i o n , are those complexes of features by w h i c h o r g a n i s m s are o r d i n a r i l y described a n d classified. In a d d i t i o n t o these " g l o b a l " s t r u c t u r e s , however, there are the less conspicuous cell a n d bio-
VIII. B I O L O G I C A L S T R U C T U R E S
149
c h e m i c a l s t r u c t u r e s . A m o n g these m i c r o s t r u c t u r e s , the m o s t i m p o r t a n t one for our purposes is the o r g a n i s m ' s genetic s t r u c t u r e , or a copy of w h i c h resides i n each of the o r g a n i s m ' s l i v i n g cells. T h e genetic s t r u c t u r e has become i n c r e a s i n g l y i m p o r t a n t i n the s t u d y of b i o l o g y d u r i n g the last f o r t y or fifty years, a n d m o r e recently is p l a y i n g a role i n d e t e r m i n i n g the i n t e r r e l a t i o n s of c e r t a i n o r g a n i s m s i n e v o l u t i o n a r y h i s t o r y .
genome,
T h e basic substance of the genome is DNA (deoxyribonucleic a c i d ) . DNA is a n e x a m p l e of a " m a c r o m o l e c u l e " , a " l i n e a r p o l y m e r " c o n s i s t i n g of a large n u m b e r of s i m p l e s u b u n i t s s t r u n g together i n l o n g s t r a n d s . O r d i n a r y DNA is m a d e up o f two s u c h s t r a n d s t h a t w i n d a r o u n d one another to f o r m the f a m o u s double h e l i x , the d e s c r i p t i o n of w h i c h earned J a m e s W a t s o n a n d F r a n c i s C r i c k a N o b e l p r i z e i n 1953. T h e s u b u n i t s i n t h i s case are c a l l e d nucleotides, a n d each consists of b o n d e d sugar a n d p h o s p h a t e groups p l u s one of the four bases: adenine (A), cytosine ( C ) , g u a n i n e ( G ) or t h y m i n e (T). I n each s t r a n d , successive nucleotides are connected t h r o u g h a b o n d between the sugar g r o u p of one w i t h the phosphorus g r o u p of the other. E a c h s t r a n d has a b u i l t - i n o r i e n t a t i o n , g o i n g , say, f r o m the p h o s p h o r u s of one nucleotide t o the sugar of the next. T h e c h a i n of a l t e r n a t i n g sugar a n d phosphorus (SP) groups is the " b a c k b o n e " of the s t r a n d . T w o s t r a n d s differ b y the order i n w h i c h the four bases are d i s t r i b u t e d a l o n g the s t r a n d . T h i s o b v i o u s l y a d m i t s the p o s s i b i l i t y of a v i r t u a l l y u n l i m i t e d n u m b e r of d i s t i n c t s t r a n d s . These ordered sequences o f the f o u r bases a r r a n g e d a l o n g an SP b a c k b o n e are the f u n d a m e n t a l s t r u c t u r a l u n i t s of the genome. A n u n t w i s t e d s a m p l e of DNA is s y m b o l i z e d i n F i g u r e 51.1.
nucleotide
—f-SP ^— S P \ A J G v
f
T PS
I
C PS
SP C
SP T
SP G
SP A
SP C
G PS
A PS
C PS
T PS
G PS
1
I
I
I
I
5=sugar group, F=phosphorus group. ^4=adenine, G = c y t o s i n e , G = g u a n i n e , T " = t h y m i n e . F i g . 51.1. T h e DNA is f o r m e d f r o m its t w o s t r a n d s b y j o i n i n g each base f r o m one s t r a n d to a base of the o t h e r . It t u r n s out t h a t b o n d i n g o n l y occurs between adenine a n d t h y m i n e a n d between cytosine a n d g u a n i n e . T h e r e f o r e , the two s t r a n d s i n a s a m p l e of DNA m u s t be c o m p l e m e n t a r y , w i t h each base i n one s t r a n d c o r r e s p o n d i n g to a base i n the other w i t h w h i c h i t c a n b o n d . DNA s t r u c t u r e is the r e p o s i t o r y of i n f o r m a t i o n for the synthesis of p r o teins, the w o r k i n g substances of l i v i n g o r g a n i s m s . T h e i n f o r m a t i o n needed for a p a r t i c u l a r p r o t e i n is c o n t a i n e d i n one or m o r e sections of DNA that together constitute a gene. T h e sequence of bases i n the gene determines
1.50
STRUCTURALISM
AND STRUCTURES
the order i n w h i c h the different a m i n o acids must be assembled i n the p r o tein c h a i n . T h e synthesis involves, i n a d d i t i o n t o DNA, several k i n d s of RNA (ribonucleic acid). T h e latter are also macromolecules resembling single strands of DNA. A general ( m u c h oversimplified) o u t l i n e of the p r o cesses is t h a t the relevant p o r t i o n of a s t r a n d of DNA is copied as a s t r a n d of RNA. T h e RNA i n t u r n directs the synthesis of the desired p r o t e i n . F o r more details of the complex processes by w h i c h protein synthesis is a c t u a l l y c a r r i e d o u t , we refer to an issue of devoted to the general subject of m o l e c u l a r biology. In a d d i t i o n to a general overview article on by A . W e i n b e r g [W2], it contains excellent articles on b o t h DNA a n d RNA w r i t t e n by experts i n the field. A l o n g w i t h clear general e x p l a n a t i o n s , these articles also o u t l i n e some o f the ingenious l a b o r a t o r y techniques, such as c l o n i n g and r e c o m b i n a n t DNA, by w h i c h some of the knowledge a b o u t DNA a n d its functions has been o b t a i n e d . A l t h o u g h there r e m a i n m a n y difficult questions, the a c c o m p l i s h ments so far are impressive w i t h no end of progress i n sight.
Scientific American
"The Molecules of Life",
R.
M o s t o f the necessary i n f o r m a t i o n for the development a n d f u n c t i o n i n g of the o r g a n i s m is encoded i n its DNA, w h i c h is therefore a very c o m p l e x d e t e r m i n i n g s t r u c t u r e for the o r g a n i s m . A t the same t i m e , this f u n d a m e n t a l s t r u c t u r e contains a great deal of r e d u n d a n c y a n d m a n y sections t h a t a p p a r e n t l y either have no f u n c t i o n at a l l or are not d i r e c t l y i n v o l v e d i n p r o t e i n synthesis. In a d d i t i o n t o the basic order s t r u c t u r e concerned w i t h protein s y n t h e sis, some of the more " g l o b a l " s t r u c t u r e s o f D A ' A are also of b i o l o g i c a l significance. A s i m p l e e x a m p l e is the f a m i l i a r o r g a n i z a t i o n of genes o n the chromosomes. M o r e interesting, however, are certain g l o b a l s t r u c t u r e s i n v o l v i n g the overall shape of the double h e l i x itself. F o r e x a m p l e , a s t r i n g m a y fold back u p o n itself i n c o m p l e x ways, thus f o r m i n g a v a r i e t y of closed loops, c h a i n s , and k n o t s . T h e precise d e f i n i t i o n and classification of such configurations are m a t h e m a t i c a l topics long s t u d i e d i n the field of topology. T h e classification of k n o t s , i n p a r t i c u l a r , has received a lot of a t t e n t i o n . F o r the double h e l i x , the general idea is t h a t b i o l o g i c a l significance of a c o n f i g u r a t i o n is associated w i t h its " t y p e " . T h e l a t t e r , at least for strings w i t h o u t loose ends, m a y be defined i n terms of properties t h a t are u n changed (stable) under any space deformation of the configuration t h a t can be made w i t h o u t b r e a k i n g the s t r i n g . T h e s t u d y of the b i o l o g i c a l s i g n i f i cance of such type-forms is a p p r o p r i a t e l y called " b i o l o g i c a l t o p o l o g y " [ W l ] . A s m i g h t be expected, the f u n c t i o n of some of these g l o b a l s t r u c t u r e s is more s u b t l e t h a n the role of base orderings for the synthesis of proteins. M u c h progress has been made i n recent years i n i d e n t i f y i n g the roles of a n u m b e r of genes i n the p r o d u c t i o n o f certain proteins a n d , t h r o u g h t h e m , the i n i t i a t i o n of p a r t i c u l a r chemical reactions, but there r e m a i n s m u c h to
VIII. B I O L O G I C A L S T R U C T U R E S
151
be learned as to how the process a c t u a l l y works i n its entirety. T h e whole t h i n g is c o m p l i c a t e d by the fact t h a t c h e m i c a l processes, once i n i t i a t e d , proceed a c c o r d i n g to their o w n laws, so the final result m a y be far removed f r o m the gene itself. It is also unclear e x a c t l y h o w genes are t u r n e d o n a n d off at the a p p r o p r i a t e times. T h i s e v i d e n t l y involves s p e c i a l " r e g u l a t o r y " elements, but the m e t h o d of control a n d how the necessary p r e c i s i o n of the a c t i o n is m a i n t a i n e d , are difficult t o d e t e r m i n e . A l l of these p r o b l e m s i n d i c a t e t h a t the genetic structures are not only very c o m p l e x b u t have a d y n a m i c character as w e l l . A s m i g h t be expected f r o m the key role of DNA i n heredity a n d i n the development of a n o r g a n i s m , c e r t a i n DNA segments have the p o t e n t i a l of s e r v i n g as very s p e c i a l test structures for the i d e n t i f i c a t i o n o f homology. A s w i t h other s t r u c t u r e s , however, a segment m a y be useful or not as a test o f h o m o l o g y d e p e n d i n g o n whether a case c a n be made t h a t its s i m i l a r i t y i n two o r g a n i s m s a c t u a l l y i m p l i e s relatedness. A t the s a m e t i m e , because o f the e n o r m o u s c o m p l e x i t y of DNA, the p r o b l e m o f m a k i n g such d e t e r m i n a t i o n s m a y be very difficult. In most c o m p l e x s t r u c t u r e s , one can expect t o find t i g h t l y o r g a n i z e d s u b s t r u c t u r e s . These are d i s t i n c t i v e structures t h a t are l o c a l l y d e t e r m i n e d i n the sense t h a t a s m a l l l o c a l change m a y force changes t h r o u g h o u t the s t r u c t u r e . DNA no doubt contains m a n y such components. A t the same t i m e , the DNA m a y v a r y g r e a t l y f r o m one type of o r g a n i s m t o another, w i t h some components v a r y i n g more or less independently of one another. T h i s p r o p e r t y o f independence, a l o n g w i t h c o m p l e x i t y , is the basis for a r g u i n g t h a t DNA is a g o o d c a n d i d a t e for testing homology. G o u l d [ G 9 , p. 16] expresses i t at follows: Such a l o n g s t r i n g of independent i t e m s cannot evolve detailed s i m i l a r i t y . A h i g h percentage o f i t e m - b y - i t e m m a t c h i n the DNA of two species m u s t represent h o m o l o g y and shared descent. T h i s q u o t a t i o n , as w e l l as the l o n g one i n the previous section, was t a k e n f r o m the last of a series of three of G o u l d ' s essays d e a l i n g w i t h a n o l d p r o b l e m of how t o classify the flamingo. T h e question was w h e t h e r the f l a m i n g o s h o u l d be i n c l u d e d w i t h geese or s t o r k s . S t r o n g a r g u m e n t s based o n c o m p a r i s o n of p h y s i c a l characteristics ( m o r p h o l o g y ) existed for either decision. T h e d i l e m m a , i t seems, was f i n a l l y resolved i n favor of the storks t h r o u g h a c o m p a r i s o n o f
"View of Life"
DNA's.
T h e DNA i n f o r m a t i o n t h a t is c l a i m e d to settle the f l a m i n g o question is f r o m a larger project, by C h a r l e s S i b l e y a n d J o n A h l q u i s t [S5], to cons t r u c t an e v o l u t i o n a r y tree for b i r d s . T h e i r methods, w h i c h a p p e a r t o be s t r a i g h t f o r w a r d b u t t e c h n i c a l l y difficult, are o u t l i n e d b y G o u l d i n the above essay. It w i l l be sufficient here to note t h a t the s i m i l a r i t i e s are m e a s u r e d
152
STRUCTURALISM
AND STRUCTURES
i n d i r e c t l y i n t e r m s of the degree of affinity between single strands o f genes f r o m the t w o b e i n g c o m p a r e d . T h e affinity is i n t u r n m e a s u r e d b y the t e m p e r a t u r e at w h i c h d i s s o c i a t i o n occurs, w i t h low t e m p e r a t u r e i n d i c a t i n g low affinity, or less s i m i l a r i t y , a n d hence a m o r e distant r e l a t i o n s h i p . T h e m e t h o d t h u s reduces a p r o b l e m of d e t e r m i n i n g the degree o f s i m i l a r i t y o f t w o very c o m p l e x structures to the measurement of a single p a r a m e t e r . A t the s a m e t i m e , the m e t h o d , w h i c h measures degree of r e l a t i o n s h i p , m i g h t also serve as an e v o l u t i o n a r y clock. It is w e l l - k n o w n t h a t genes m a y evolve at different rates, b u t i n d i c a t i o n s are t h a t the o v e r a l l changes, as measured here, occur at a nearly constant r a t e . If the rate is indeed constant, a l l that r e m a i n s is to c a l i b r a t e the clock, using independent t i m e checks o b t a i n e d f r o m other sources. A l t h o u g h not a l l experts agree o n the general r e l i a b i l i t y of these m e t h o d s and have seriously c r i t i c i z e d s o m e of the work [L8], the a p p r o a c h is very i n t e r e s t i n g f r o m a s t r u c t u r a l p o i n t of v i e w .
DNA's
In the next sections, we w i l l t r y t o isolate a few of the s p e c i a l s t r u c t u r a l characteristics p e c u l i a r t o l i v i n g o r g a n i s m s , a n d to a n a l y z e t h e m f r o m the p o i n t of view of general s t r u c t u r e s . U n d e r l y i n g e v e r y t h i n g t h a t we have to say is the fact t h a t b i o l o g i c a l structures are not o n l y very c o m p l e x but also have a s p e c i a l d y n a m i c character. A s s u c h , they are q u i t e different f r o m machines (Section 16), since they involve c o m p l e x i n t e r a c t i o n s w i t h the e n v i r o n m e n t i n a d d i t i o n t o their i n t e r n a l processes. T h e y also t e n d to be stable w i t h i n r e l a t i v e l y wide v a r i a t i o n s i n the e n v i r o n m e n t , one aspect of w h i c h is an a b i l i t y , w i t h i n l i m i t s , to repair themselves. A n even more s u b t l e characteristic is the p o t e n t i a l to evolve i n response to e n v i r o n m e n t a l influences. A l l of these processes depend u l t i m a t e l y o n exchanges of m a t t e r a n d / o r energy w i t h the e n v i r o n m e n t . 52. T h e E n v i r o n m e n t o f a S t r u c t u r e M o s t of the t i m e we have tended to regard a s t r u c t u r e more or less as an "object i n i t s e l f " , a p a r t f r o m possibly larger structures t h a t m i g h t c o n t a i n it. It is, of course, the wholeness of a s t r u c t u r e t h a t enables us t o regard it t h u s as an independent o b j e c t . P a r t i a l exceptions t o t h i s p o i n t o f v i e w occur i n the consideration o f s u b s t r u c t u r e s and i n the d e f i n i t i o n of e x t e r n a l , as opposed to i n t e r n a l , properties o f any s t r u c t u r e . It is obvious t h a t the general g r o w t h or e v o l u t i o n of s t r u c t u r e s must also take place w i t h i n larger s t r u c t u r e s , a l t h o u g h i n o u r earlier discussion of these processes i t was not necessary t o emphasize the p o i n t . In d e a l i n g w i t h a s u b s t r u c t u r e , there are s i t u a t i o n s i n w h i c h the ambient s t r u c t u r e cannot be ignored even w h e n we are interested i n the s u b s t r u c t u r e as an independent o b j e c t . T h i s is o b v i o u s l y the case w i t h b i o l o g i c a l s t r u c tures, w h i c h are p r a c t i c a l l y impossible to isolate because of their almost c o n t i n u o u s i n t e r a c t i o n w i t h the e n v i r o n m e n t .
VIII. B I O L O G I C A L S T R U C T U R E S
153
A s far as an abstract s t r u c t u r e is concerned, there is n o a p r i o n reason for preferring one s u b s t r u c t u r e representation over another. O n the other h a n d , for a concrete s t r u c t u r e , there exist " n a t u r a l " representations w i t h i n those p o r t i o n s of the real w o r l d t h a t contain i t , the u l t i m a t e one b e i n g the entire universe. V a r i o u s of these c o n t a i n i n g s t r u c t u r e s , d e p e n d i n g o n the p o i n t of v i e w , m a y be regarded as of the given s t r u c t u r e . In this d e f i n i t i o n , a g i v e n o r g a n i s m is a part of its e n v i r o n m e n t , w h i l e i n c o m m o n usage an e n v i r o n m e n t is u s u a l l y thought of as e x t e r n a l t o the o r g a n i s m . T h e l a t t e r m i g h t be called an a n d defined as the s u b s t r u c t u r e c o m p l e m e n t a r y t o the given s t r u c t u r e w i t h i n an e n v i r o n m e n t .
environments
external environment
E a c h concrete s t r u c t u r e w i l l n o r m a l l y be perceived i n a s e t t i n g t h a t is o b v i o u s l y a p p r o p r i a t e to i t u n d e r the given circumstances. T h a t is, it w i l l be m o r e or less a u t o m a t i c a l l y associated w i t h a p a r t i c u l a r e n v i r o n m e n t a l s t r u c t u r e t h a t we w i l l c a l l its W e also define its t o be the s u b s t r u c t u r e (of the n a t u r a l e n v i r o n m e n t ) d e t e r m i n e d by the objects "nearest" to the given s t r u c t u r e , the nearest o b jects b e i n g the ones t h a t appear i n relations i n v o l v i n g at least one o b j e c t of the s t r u c t u r e i n question. T h e i m m e d i a t e e n v i r o n m e n t clearly determines the most relevant e x t e r n a l properties of the g i v e n s t r u c t u r e . N o t e t h a t the i m m e d i a t e e n v i r o n m e n t of a b i o l o g i c a l o r g a n i s m is essentially the ecological niche t h a t i t occupies.
mediate environment
natural environment.
im-
T h e fact t h a t a s t r u c t u r e is embedded i n an e n v i r o n m e n t means t h a t it m u s t t o some degree c o n f o r m to the l a t t e r . I n the t e r m i n o l o g y of S e c t i o n 26, this means t h a t certain features o f the given s t r u c t u r e m u s t be e x t e r n a l l y d e t e r m i n e d w i t h i n its e n v i r o n m e n t . T h i s is an i m p o r t a n t p o i n t t h a t w i l l come up a g a i n i n Section 58. 53. T h e E v o l u t i o n a r y Process C o n s i d e r a b i o l o g i c a l o r g a n i s m as i t interacts w i t h its e n v i r o n m e n t . If the t w o r e m a i n e d constant w i t h i n l i m i t s , they m i g h t c o n c e i v a b l y continue indefinitely i n e q u i l i b r i u m . A static c o n d i t i o n w i l l s e l d o m p r e v a i l , however, since there is a tendency for b o t h the o r g a n i s m a n d its e n v i r o n m e n t to change. V a r i a t i o n s i n the o r g a n i s m are believed to be p r i m a r i l y a result of more or less r a n d o m changes i n the genetic m a t e r i a l . T h e s e m a y be caused, for e x a m p l e , by r a d i a t i o n , injection of foreign m a t e r i a l , such as a c h e m i c a l or a v i r u s , a n d errors i n r o u t i n e t r a n s f o r m a t i o n s o f the D N A . W h e t h e r or not the o r g a n i s m s t h a t result f r o m genetic changes c a n survive w i l l depend o n their a b i l i t y to a d a p t t o the (possibly changed) e n v i r o n m e n t . Hence, there is a p o s s i b i l i t y t h a t an o r g a n i s m w i l l be destroyed by either a genetic or a n e n v i r o n m e n t a l change. A t the same t i m e , an a d a p t a b l e o r g a n i s m is not u n i q u e l y d e t e r m i n e d , so there m i g h t be several s u r v i v i n g v a r i a n t s , each of w h i c h c o u l d t h e o r e t i c a l l y b e g i n a new l i n e . T h i s
154
STRUCTURALISM
AND STRUCTURES
process, c o n s i s t i n g of genetic v a r i a t i o n s plus n a t u r a l selection of the more a d a p t a b l e v a r i a n t s , a n d u s u a l l y c o n t i n u i n g t h r o u g h m a n y generations, constitutes the s t a n d a r d m o d e r n account of how a n o r g a n i s m m a y evolve i n t o a new f o r m u n d e r the pressure or d i r e c t i o n o f the e n v i r o n m e n t . It is k n o w n as the or the a n d is based o n the classical D a r w i n i a n n o t i o n of n a t u r a l selection plus a n i d e n t i f i c a t i o n of gene m u t a tions as the source o f the variants u p o n w h i c h n a t u r a l selection acts. I n a d d i t i o n , the theory also recognizes the i m p o r t a n c e of p o p u l a t i o n s t r u c t u r e i n the d e v e l o p m e n t o f new species. M o r e recently, the s y n t h e t i c theory has been subject t o some c r i t i c i s m s t h a t w i l l be considered i n Section 56.
synthetic theory,
modem synthesis,
A f u n d a m e n t a l , and no longer seriously challenged, p r i n c i p l e i n m o d e r n e v o l u t i o n a r y theory is t h a t the process is not i n any sense g o a l - d i r e c t e d . In other words, the process is not g u i d e d b y a p l a n or p a t t e r n (derived f r o m a " h i g h e r " p r i n c i p l e , n a t u r a l or otherwise) b y w h i c h a p r e d e t e r m i n e d o r g a n i s m w i l l result. M o s t c o n t r a r y proposals are based o n unscientific a s s u m p t i o n s t h a t are u l t i m a t e l y more c o m p l e x a n d often more difficult to e x p l a i n t h a n the p r o b l e m itself. A t the s a m e t i m e , the v a r i e t y of possible s t r u c t u r e s t h a t can occur m a y be s i g n i f i c a n t l y l i m i t e d b y c h e m i c a l or p h y s i c a l c o n d i t i o n s , e n v i r o n m e n t a l restrictions, c e r t a i n r e g u l a r i t y requirements (such as s y m m e t r y ) , associated for e x a m p l e w i t h f u n c t i o n , a n d the necessity of b u i l d i n g o n e x i s t i n g s t r u c t u r e s . Despite the absence of goals, e v o l u t i o n is s t i l l a creative force i n the very real sense t h a t the process brings i n t o existence u n p r e d i c t a b l y new types o f o r g a n i s m s . T h e basic feature of the e v o l u t i o n a r y process is t h a t i t produces s t r u c t u r a l changes i n the o r g a n i s m s o n w h i c h it acts. W h e t h e r or not the changes result i n a different k i n d of o r g a n i s m , or s i m p l y a v a r i a n t o f the o r i g i n a l , w i l l d e p e n d o n whether or not they h a p p e n to involve the defining s t r u c ture of the o r i g i n a l . T h e perceived result w i l l therefore depend o n how the classification is made. F u r t h e r m o r e , v a r i a t i o n s i n the o r g a n i s m s t h a t represent a p a r t i c u l a r defining s t r u c t u r e may be s u b s t a n t i a l , as i l l u s t r a t e d by the v a r i e t y o f a n i m a l s t h a t share a m a m m a l i a n s t r u c t u r e . R e c a l l t h a t any s t r u c t u r a l change m u s t consist of a d d i t i o n s or deletions of objects a n d / o r relations. I n p a r t i c u l a r , the objects may r e m a i n constant w h i l e relations a m o n g t h e m change. F o r e x a m p l e , a n o r g a n i s m m a y undergo o n l y t r i v i a l changes i n i t s p h y s i c a l components w h i l e e x p e r i e n c i n g significant r e l a t i o n a l changes i n i t s i n t e r n a l s t r u c t u r e or i n its r e l a t i o n s h i p to the e n v i r o n m e n t . A s we c o n t i n u e , i t is w e l l t o remember t h a t the e v o l u t i o n a r y process m a y b r i n g a b o u t any c o m b i n a t i o n of the possible k i n d s of s t r u c t u r a l change. T h e r e are m a n y different ways t h a t o r g a n i s m s m a y develop as they a d a p t t o the e n v i r o n m e n t . A t one e x t r e m e the process m a y result i n a " s p e c i a l i s t " , finely a d a p t e d to a r e l a t i v e l y stable a n d perhaps narrow e n v i r o n m e n t a l niche, a n d at the other to a " g e n e r a l i s t " , capable o f s u r v i v i n g i n a w i d e l y
VIII. B I O L O G I C A L S T R U C T U R E S
155
c h a n g i n g e n v i r o n m e n t . In b o t h cases, the o r g a n i s m s are dependent o n a stable e n v i r o n m e n t a l s u b s t r u c t u r e . I n the first case, the s u b s t r u c t u r e (the niche) is special b u t relatively stable w i t h respect to s h o r t t e r m e n v i r o n m e n t a l change. T h e longer a n a n i m a l occupies such a niche, the more specialized a n d the more v u l n e r a b l e it becomes t o disturbances of its niche. Here, for e x a m p l e , are m a n y endangered species c u r r e n t l y threatened w i t h e x t i n c t i o n by d i s r u p t i o n of their h a b i t a t s . I n the second case the s u b s t r u c ture m a y not be special (in the sense of a niche), but lies " d e e p l y " enough t o be essentially unaffected, not o n l y by " n o r m a l " e n v i r o n m e n t a l shifts, but more e x t r e m e changes t h a t m i g h t otherwise be f a t a l . T h e generalists (a f a m i l i a r e x a m p l e of w h i c h is the o r d i n a r y o p o s s u m ) m a y therefore surv i v e w i t h very l i t t l e e v o l u t i o n a r y change over e x t r a o r d i n a r i l y long periods of t i m e a n d r e l a t i v e l y extreme e n v i r o n m e n t a l changes. L a r g e l y because of t h e i r e a r l y appearance o n the "tree of l i f e " , generalists have been described as " p r i m i t i v e " or " s i m p l e " . A t the same t i m e , the specialists, because they t e n d to a p p e a r l a t e , have been described as " a d v a n c e d " or " c o m p l e x " . A s w i l l be seen i n Section 54, such labels c a n be m i s l e a d i n g . It is e v i d e n t l y the view of most e v o l u t i o n i s t s , i n c l u d i n g D a r w i n , t h a t the e v o l u t i o n a r y process must be a g r a d u a l one. T h i s stems f r o m the reasonable a s s u m p t i o n t h a t a m a j o r , genuinely v a r i a t i o n w o u l d involve extensive changes quite independent o f the e n v i r o n m e n t a n d therefore be e x p e c t e d t o result i n an o r g a n i s m w i t h l i t t l e chance of s u r v i v a l . A t the same t i m e , i t is p l a u s i b l e t h a t sufficiently s m a l l changes c o u l d p r o d u c e variants w i t h an a d a p t a b i l i t y range consistent w i t h the e x i s t i n g e n v i r o n m e n t .
random,
G r a d u a l i s m i s , of course, a relative m a t t e r , b u t appears to be an essent i a l aspect of the e v o l u t i o n a r y process i n some f o r m or another. O n the other h a n d , i t is very difficult t o e x p l a i n how a s t r i c t l y g r a d u a l process c o u l d p r o d u c e m a n y of the r e m a r k a b l e structures t h a t e x i s t . These are c o m p l e x s t r u c t u r e s t h a t are h i g h l y specialized for some p a r t i c u l a r f u n c t i o n . A s t a n d a r d e x a m p l e is the eye, w h i c h functions like a very s o p h i s t i c a t e d c a m e r a . It is not so difficult to imagine how a crude eye m i g h t be g r a d u a l l y refined b y the e v o l u t i o n a r y process i n t o the r e m a r k a b l e i n s t r u m e n t t h a t we take for g r a n t e d , t h o u g h the details o f the process m i g h t r e m a i n rather vague. W h a t is more difficult t o i m a g i n e is how even a crude s t r u c t u r e w i t h a c a m e r a - l i k e f u n c t i o n c o u l d be the result of a g r a d u a l process b e g i n n i n g w i t h s o m e t h i n g h a v i n g no resemblance to a c a m e r a . S i m i l a r questions also arise w i t h respect t o the emergence of new species (Section
56).
E x a m p l e s o f this type a p p e a r o n the surface t o involve an u n a v o i d a b l e d i l e m m a : E i t h e r the end result was p r o d u c e d by some k i n d of "emergent" process, c o n t r a d i c t i n g the p r i n c i p l e of g r a d u a l i s m , or the development was g r a d u a l , b u t s o m e h o w g u i d e d to the end result, c o n t r a d i c t i n g the p r i n c i p l e of no g o a l - d i r e c t i o n . Interestingly enough, the first c o n t r a d i c t i o n is o n l y
156
STRUCTURALISM AND STRUCTURES
a p p a r e n t , as w i l l be e x p l a i n e d i n Sections 55 a n d 56. A n even more f u n d a m e n t a l e x a m p l e is the genetic m a t e r i a l itself. T h i s c o m p l e x , h i g h l y s t r u c t u r e d system is u n i v e r s a l a m o n g a l l life f o r m s a n d a l m o s t i d e n t i c a l i n general f o r m a n d f u n c t i o n i n otherwise r a d i c a l l y d i f ferent o r g a n i s m s . A n o r g a n i c chemist, A . G . C a i r n s - S m i t h , i n a article e n t i t l e d [ C I ] , makes the following c o m m e n t s o n this r e m a r k a b l e " u n i t y o f b i o c h e m i s t r y " .
American
"The First Organisms"
Scientific
Surely the proper conclusions to be d r a w n f r o m such a detailed l o o k at the u n i t y of b i o c h e m i s t r y are t h a t (1) a l l life now o n the e a r t h is descended f r o m a c o m m o n ancestor, (2) this ancestor was q u i t e h i g h up the e v o l u t i o n a r y tree a n d (3) the central b i o c h e m i c a l s y s t e m was already fixed by t h a t t i m e . T h a t i t s h o u l d have r e m a i n e d fixed for so l o n g is surely because of its curious interdependent k i n d o f c o m p l e x i t y . T h i s is the c o m p l e x i t y of " h i g h t e c h " engineering where m a n y w e l l chosen c o m p o n e n t s depend so m u c h on each other t h a t they c a n n o t , any of t h e m be changed. T h a t k i n d of cleverness c o u l d o n l y have been a p r o d u c t of e v o l u t i o n . It is at least o n the cards t h a t the choice of the c o m p o n e n t s t h a t b e c a m e fixed was also a p r o d u c t of e v o l u t i o n . T o conclude, the u n i t y of b i o c h e m i s t r y does not refer to the s t a r t of e v o l u t i o n but to a m u c h later stage. T h e p r o b l e m is to e x p l a i n how such a delicately o r g a n i z e d s y s t e m c o u l d have evolved f r o m s i m p l e r s t r u c t u r e s . O t h e r s have proposed s o l u t i o n s to the p r o b l e m , but C a i r n s - S m i t h offers a p a r t i c u l a r l y i n t e r e s t i n g one f r o m the p o i n t of v i e w o f s t r u c t u r e . W e w i l l r e t u r n to this p r o b l e m i n the next section. O n e c a n not help m a r v e l i n g at the e x q u i s i t e l y elaborate d e t a i l t h a t e v o l u t i o n effects i n so m a n y o f its creations. T o e x p l a i n how the basic e v o l u t i o n ary process develops these r e m a r k a b l e creatures f r o m i n i t i a l l y very s i m p l e s t r u c t u r e s , is a f u n d a m e n t a l ( a n d difficult!) p r o b l e m i n the theory of evol u t i o n . Because the process cannot a c t u a l l y be observed i n m o s t instances, an e x p l a n a t i o n w i l l u s u a l l y take the f o r m of a p l a u s i b l e d e s c r i p t i o n of how the development m i g h t have o c c u r r e d . O b j e c t i v e evidence for the correctness of such an e x p l a n a t i o n w o u l d consist of examples of other o r g a n i s m s , either a m o n g the l i v i n g or i n the fossil record, t h a t a c t u a l l y e x h i b i t the c r u c i a l i n t e r m e d i a t e structures presumed t o have o c c u r r e d . A c c u m u l a t i o n of evidence of t h i s k i n d m a y eventually lead to general acceptance of the e x p l a n a t i o n as the "correct" one. U n f o r t u n a t e l y , even when the p i c t u r e is f a i r l y clear, it is a l m o s t i m p o s s i b l e t o c o m p r e h e n d i n any d e t a i l j u s t how the process a c t u a l l y w o r k s . T h e difficulties here are r e m i n i s c e n t o f those encountered i n the a t t e m p t to c o m p r e h e n d c o s m o l o g i c a ! p h e n o m e n a . T h e t i m e scale, plus the n u m b e r and variety of events, is so great as to rule out
VIII. B I O L O G I C A L S T R U C T U R E S
157
an i n t u i t i v e a p p r e c i a t i o n based on o r d i n a r y experiences, so the process of u n d e r s t a n d i n g tends to reduce to an i n t e l l e c t u a l exercise. 54.
Complexity in Evolution
T h e r e are m a n y casual references t o c o m p l e x i t y i n the present chapter as well as t h r o u g h o u t the rest o f this b o o k . T h e subject of e v o l u t i o n , however, raises some questions c o n c e r n i n g c o m p l e x i t y t h a t are not adequately covered b y the u s u a l i n f o r m a l t r e a t m e n t . T h e r e f o r e , it is desirable to consider the n o t i o n somewhat more carefully before we continue. It is clear t h a t " c o m p l e x i t y " is one of those c o m m o n t e r m s t h a t everyb o d y uses r o u t i n e l y w i t h o u t q u e s t i o n i n g e x a c t l y w h a t they m e a n . I n fact, c o m p l e x i t y is a h i g h l y i n t u i t i v e n o t i o n , a n d it is difficult, i f not i m p o s s i b l e , t o f o r m u l a t e a precise definition consistent w i t h i t . Nevertheless, even i n its most i n t u i t i v e versions, c o m p l e x i t y is u l t i m a t e l y concerned w i t h s t r u c ture. F o r e x a m p l e , v i r t u a l l y everyone w o u l d perceive c o m p l e x i t y s o m e h o w in t e r m s of the interconnected p a r t s of the t h i n g i n question. I n other words, the t h i n g is viewed as a F r o m the most naive p o i n t of v i e w , the i d e a is t h a t c o m p l e x i t y of a s t r u c t u r e depends u p o n the n u m b e r of its objects and relations. T h o u g h t h i s m a y at first seem f a i r l y n a t u r a l , the mere n u m b e r of objects a n d relations i n a s t r u c t u r e carries very l i t t l e a c t u a l s t r u c t u r a l i n f o r m a t i o n a b o u t t h a t s t r u c t u r e . T h e r e f o r e , any useful n o t i o n of c o m p l e x i t y , however i n t u i t i v e it m i g h t be, s h o u l d involve more s u b t l e s t r u c t u r e properties t h a n can be specified s i m p l y b y a few n u m b e r s . T h e fact t h a t we find i t so easy t o f a l l back i n t h i s way o n i n a d e q u a t e descriptions of structures arises f r o m a tendency to forget j u s t w h a t constitutes a structure.
structure.
D e s p i t e the f u n d a m e n t a l p r o b l e m o f f o r m u l a t i n g a d e f i n i t i o n o f c o m p l e x i t y , we discover o n closer e x a m i n a t i o n t h a t the most c r i t i c a l appeals to c o m p l e x i t y a c t u a l l y involve of c o m p l e x i t y rather t h a n c o m p l e x i t y itself. A n d for this, we o n l y need to be able to say precisely w h a t i t means for one s t r u c t u r e to be more t h a n another. I n other words, it is possible i n most cases t o bypass the p r o b l e m of c o n c o c t i n g a d e f i n i t i o n of c o m p l e x i t y a n d concentrate instead o n c o m p l e x i t y , for w h i c h a precise d e f i n i t i o n is rather easy to f o r m u l a t e .
comparisons
complex
relative
T h e s o l u t i o n is t o identify c o m p l e x i t y of a s t r u c t u r e w i t h the " a m o u n t " of s t r u c t u r a l i n f o r m a t i o n contained i n the s t r u c t u r e . ( I n c i d e n t a l l y , S. L l o y d [L9] suggests a s i m i l a r a p p r o a c h to c o m p l e x i t y . ) T h i s i d e a seems reasonable enough, but it does not help i n " c o m p l e x i t y " , because a precise defi n i t i o n o f the a m o u n t of s t r u c t u r a l i n f o r m a t i o n is j u s t as difficult t o devise as a d e f i n i t i o n of c o m p l e x i t y . O n the other h a n d , we m a y use the d e f i n i t i o n of c o m p a r a b i l i t y o f s t r u c t u r e s w i t h respect to s t r u c t u r a l i n f o r m a t i o n , given in Section 13, to o b t a i n a definition of relative c o m p l e x i t y .
defining
158
STRUCTURALISM
B
AND STRUCTURES
If A a n d B are structures a n d A is i s o m o r p h i c to a s u b s t r u c t u r e of (i.e., then is s a i d t o be more than
A < B),
B
complex
A.
A s u s u a l i n definitions o f t h i s k i n d , we m a y have t o a d m i t a p p r o x i m a t e i s o m o r p h i s m s . T h e d e f i n i t i o n t h e n w i l l serve o u r purposes a n d is consis tent w i t h the i n t u i t i v e n o t i o n of r e l a t i v e c o m p l e x i t y . O n the other h a n d , there m a y be structures t h a t w o u l d be regarded as c o m p a r a b l e a c c o r d i n g to i n f o r m a l usage, b u t are not covered b y the d e f i n i t i o n . A s i n the case of c o m p l e x i t y itself, however, such c o m p a r i s o n s are l i k e l y t o i n v o l v e n o n s t r u c t u r a l considerations, a n d w o u l d a c c o r d i n g l y be m i s l e a d i n g . W e are p r e p a r e d n o w t o resume the discussion o f e v o l u t i o n . A s b a c k g r o u n d , two s c h e m a t i c versions o f the e v o l u t i o n a r y "tree of l i f e " (for fauna!) are depicted i n the next figure. T h e y are f r o m a recent b o o k b y G o u l d [ G i l , p . 46], w i t h the t i t l e , and subtitle,
"Wonderful Life", Burgess Shale and the Nature of History".
T h e Cone of Increasing Diversity
Fig.
"The
Decimation and Diversification
54.1
T h e first v e r s i o n , " T h e C o n e o f i n c r e a s i n g D i v e r s i t y " , is c o n v e n t i o n a l , w h i l e the second, " D e c i m a t i o n a n d D i v e r s i f i c a t i o n " , is suggested b y the m o d e r n r e c o n s t r u c t i o n o f the Burgess Shale Fossils. T h e w o r d " d i v e r s i t y " , as n o r m a l l y used b y b i o l o g i s t s , m a y refer either t o n u m b e r s o f species or to differences i n b o d y p l a n s . G o u l d a n d colleagues suggest t h a t " d i v e r s i t y " s h o u l d be reserved for the first, a n d t h a t " d i s p a r i t y " be used for the second. I n t h i s t e r m i n o l o g y , it is " a c e n t r a l a n d s u r p r i s i n g fact o f life's h i s t o r y m a r k e d decrease i n d i s p a r i t y followed b y a n o u t s t a n d i n g increase i n d i v e r s i t y w i t h i n the few s u r v i v i n g designs" [p. 49]. T h e t e r m " d e c i m a t i o n " i n the t i t l e o f the second " t r e e " , refers t o a d r a m a t i c r e d a c t i o n i u d i s p a r i t y t h a t followed the e a r l y emergence of a p l e t h o r a o f b o d y p l a n s , as evidenced b y the B u r g e s s fossils. T h i s r e m a r k a b l e c o l l e c t i o n of fossils was discovered i n 1909 b y the A m e r i -
VIII. B I O L O G I C A L S T R U C T U R E S
153
c a n P a l e o n t o l o g i s t , C D . W a l c o t t . H e also, as G o u l d points out [p. 24], c o n sistently " m i s i n t e r p r e t e d " t h e m , " v i e w i n g the f a u n a collectively as a set of p r i m i t i v e or ancestral versions of later, i m p r o v e d f o r m s " . H i s ( m i s ) i n t e r p r e t a t i o n s t o o d u n t i l 1971 when it was challenged by H . W . W h i t t i n g t o n of C a m b r i d g e U n i v e r s i t y , w h o showed t h a t the Burgess a n i m a l s , far f r o m bei n g s i m p l y p r i m i t i v e versions of m o d e r n forms, e x h i b i t a range of a n a t o m i c a l types m u c h greater t h a n those t h a t have s u r v i v e d . " T h e sweep o f a n a t o m i c a l variety reached a m a x i m u m right after the i n i t i a l diversification of m u l t i c e l l u l a r a n i m a l s . T h e later h i s t o r y o f life proceeded by e l i m i n a t i o n , not e x p a n s i o n . T h e current e a r t h may h o l d more species t h a n ever before, but most are i t e r a t i o n s u p o n a few basic a n a t o m i c a l d e s i g n s " . It is t h i s p i c t u r e o u t l i n e d by G o u l d [p. 47], w h i c h suggests t h a t the second version of the "tree" is nearer the t r u t h t h a n the c o n v e n t i o n a l one. I n one of his c r i t i c i s m s of the conventional (inverted cone) version of the tree of life, G o u l d [p. 45] has this to say about the difficulty t h a t h u m a n beings have i n a d j u s t i n g t o the knowledge t h a t a l l life t h a t came before t h e m was not j u s t an elaborate p r e p a r a t i o n for their u l t i m a t e place i n the scheme of things: T h e o l d chain of b e i n g w o u l d provide the greatest c o m f o r t , but we now k n o w t h a t the vast m a j o r i t y of " s i m p l e r " creatures are not h u m a n ancestors or even prototypes, but o n l y c o l l a t e r a l branches o n life's tree. T h e cone of increasing progress a n d diversity therefore becomes our i c o n o g r a p h y o f choice. T h e cone implies predictable development f r o m s i m p l e to c o m p l e x , f r o m less to more. may form o n l y a t w i g , b u t i f life moves, even fitfully, t o w a r d greater c o m p l e x i t y a n d higher m e n t a l powers, then the eventual o r i g i n of self-conscious intelligence m a y be i m p l i c i t i n a l l t h a t came before. In short, I cannot u n d e r s t a n d our continued allegiance to the m a n i f e s t l y false i c o n o g r a phies of l a d d e r a n d cone except as a desperate finger i n the dike o f cosmically j u s t i f i e d hope and arrogance.
Homo sapiens
It is clear f r o m a l l of this t h a t h u m a n beings are prone to assume (perhaps unconsciously) t h a t t h e i r species represents the "highest" f o r m of life a n d , moreover, t h a t i t was a n i n e v i t a b l e o u t c o m e of the process of e v o l u t i o n . I n other words, i f the process c o u l d be s t a r t e d a g a i n , the f i n a l o u t c o m e , as well as m a n y o f the i n t e r m e d i a t e details, w o u l d be m u c h the same. T h e i d e a is t h a t e v e r y t h i n g is d e t e r m i n e d , i f not by a supreme b e i n g , t h e n a c c o r d i n g to some general law or p r i n c i p l e . A related i d e a is to equate m o v e m e n t up the tree of life w i t h progress (toward the u l t i m a t e h u m a n i d e a l ) . A n o t h e r is t o j u d g e an o r g a n i s m at a low p o s i t i o n as " p r i m i t i v e " and one at a h i g h p o s i t i o n as " a d v a n c e d " . T e r m s t h a t are related to " p r i m i t i v e " a n d " a d v a n c e d " , b u t perhaps more precise, are "generalist" a n d " s p e c i a l i s t " .
160
STRUCTURALISM AND
STRUCTURES
W e w i l l have more t o say about t h e m below. F i n a l l y , there is the i d e a t h a t p o s i t i o n o n the tree correlates w i t h c o m p l e x i t y , the higher the p o s i t i o n the greater the c o m p l e x i t y , and conversely. T h e r e are examples t h a t agree superficially w i t h each of the above ideas, b u t , as general " l a w s " , none are f u l l y j u s t i f i e d b y theory, nor s u p p o r t e d by o b s e r v a t i o n . E a c h is based to some degree o n n o n e v o l u t i o n a r y p r i n c i ples. A l s o , except p o s s i b l y for the allusions to c o m p l e x i t y , none contains significant s t r u c t u r a l content, the o n l y f o r m i n w h i c h the a c t u a l d a t a of evol u t i o n c a n reasonably be described. Because references t o c o m p l e x i t y may, however, have some s t r u c t u r a l content, they deserve a closer e x a m i n a t i o n . In a d d i t i o n t o the a t t e m p t to correlate c o m p l e x i t y w i t h p o s i t i o n o n the " t r e e " , the " i n e v i t a b i l i t y " thesis is also sometimes f o r m u l a t e d i n t e r m s of c o m p l e x i t y , w i t h a s i m u l t a n e o u s suppression of the g o a l directed a s s u m p tions u s u a l l y d e m a n d e d b y h u m a n prejudice. In this f o r m , the thesis reduces t o two basic ideas m o r e or less a m e n a b l e to s t r u c t u r a l a n a l y s i s :
tends
(1) T h e process o f e v o l u t i o n to increase c o m p l e x i t y . (2) T h e r e fore, i t m i g h t be expected eventually t o produce an o r g a n i s m of sufficient c o m p l e x i t y to e x h i b i t some f o r m of intelligence. In order to a v o i d the u s u a l h u m a n biases, it is necessary to insist t h a t "sufficiently c o m p l e x " does not necessarily m e a n " h u m a n l i k e " a n d t h a t " i n telligence" does not refer s t r i c t l y t o the h u m a n variety. O n the other h a n d , j u s t w h a t "intelligence" m i g h t mean i n this general context is not o b v i o u s , t h o u g h it m i g h t be identified w i t h c e r t a i n h i g h level s t r u c t u r a l p h e n o m e n a . For n o w , we w i l l restrict a t t e n t i o n to (1) a n d r e t u r n briefly to the more difficult question at the end of the next section. Q u i t e a p a r t f r o m the m i s d i r e c t e d a t t e m p t s to correlate degree of c o m p l e x i t y w i t h p o s i t i o n on the tree of life, the fact r e m a i n s t h a t e v o l u t i o n has m a n y t i m e s p r o d u c e d e n o r m o u s l y c o m p l e x beings f r o m e x t r e m e l y s i m ple ones. A s a m a t t e r of fact, a l l life is presumed to have evolved f r o m single-celled o r g a n i s m s . In other words, a c c o r d i n g to any reasonable n o t i o n of c o m p l e x i t y , e v o l u t i o n does indeed " t e n d t o increase c o m p l e x i t y " . I n c i d e n t a l l y , it is not c l a i m e d t h a t an increase i n c o m p l e x i t y of a g i v e n org a n i s m is a consequence o f the e v o l u t i o n a r y process, o n l y t h a t an increase m i g h t be f r o m the general nature of the process. O n the other h a n d , " s i m p l i f i c a t i o n " {a decrease i n c o m p l e x i t y ) , t h o u g h conceivable, is a p p a r e n t l y not a c o m m o n occurrence i n e v o l u t i o n even when i t w o u l d appear to be a n advantage.
necessary expected
T h e n o t i o n of increase i n c o m p l e x i t y i m p l i c i t i n these r e m a r k s w i l l o b v i o u s l y have to d e p e n d o n the above c o m p a r a b i l i t y d e f i n i t i o n o f relative c o m p l e x i t y . I n p a r t i c u l a r , each o r g a n i s m m u s t be identified as a s t r u c t u r e , a n d a p r o d u c t of e v o l u t i o n w i l l represent an increase i n c o m p l e x i t y i f it contains an i s o m o r p h i c copy of an i m m e d i a t e ancestor as a s u b s t r u c t u r e .
VIII. B I O L O G I C A L S T R U C T U R E S
161
T h e r e are some u n u s u a l aspects of s t r u c t u r e s t h a t enter i n t o this p i c ture t h a t need to be e m p h a s i z e d . In the first place, a certain a m o u n t of f l e x i b i l i t y m a y be necessary i n the s t r u c t u r a l d e s c r i p t i o n of the o r g a n i s m s , a n d the presumed i s o m o r p h i s m s may have to be replaced b y a p p r o x i m a t e i s o m o r p h i s m s . I n a d d i t i o n , i t is w e l l t o recall the variety of ways t h a t a s u b s t r u c t u r e m a y be identified w i t h i n a given s t r u c t u r e , some of w h i c h were p o i n t e d out i n Section 52. In general, the s u b s t r u c t u r e m a y involve either some or a l l o f the objects a n d / o r relations i n the given s t r u c t u r e . A n d the relations may be either i n t e r n a l or e x t e r n a l ( e n v i r o n m e n t a l ) , i n c l u d i n g any c o m b i n a t i o n of these. I n p a r t i c u l a r , a more t h a n c u s t o m a r y recognition of the e n v i r o n m e n t a l s t r u c t u r e is r e q u i r e d . T h e u s u a l o v e r s i m p l i f i e d p i c t u r e o f a m o r e or less isolated s t r u c t u r e , t h a t we tend to fall back o n i n m u c h of o u r v i s u a l i z a t i o n of s t r u c t u r a l p h e n o m e n a , m a y not be adequate i n the present case. Let us r e t u r n now to the o r i g i n a l p r o b l e m of w h y e v o l u t i o n m i g h t be expected to increase c o m p l e x i t y . W e note first t h a t the predecessor of a p r o d u c t of e v o l u t i o n d i d exist and reproduce, so its basic s t r u c t u r e w i l l tend to be stable i n the face of r o u t i n e f l u c t u a t i o n s i n its e n v i r o n m e n t . T h i s means t h a t it already possesses an advantage for s u r v i v a l , so w i l l tend t o be preserved i n some f o r m or degree under the n o r m a l a c t i o n of the evol u t i o n a r y process. It is more likely t h a t a d j u s t m e n t to an e n v i r o n m e n t a l change w o u l d be m a d e t h r o u g h e x p l o i t a t i o n of an e x i s t i n g r e l a t i v e l y s t a ble s t r u c t u r e rather t h a n b y r a d i c a l development of a new s t r u c t u r e , even t h o u g h the l a t t e r s o l u t i o n m i g h t be t h e o r e t i c a l l y more efficient. S u c h a process, i n w h i c h most of the o r i g i n a l s t r u c t u r e persists as a more or less stable core, w i l l o b v i o u s l y increase c o m p l e x i t y a c c o r d i n g to our d e f i n i t i o n . It is clear f r o m this p o i n t of view why the specialists described i n Section 53 are regarded as ( r e l a t i v e l y ) c o m p l e x . P r o d u c e d by an i n c r e a s i n g l y det a i l e d a d a p t a t i o n to a stable e n v i r o n m e n t a l niche, they are the result of progressive refinement of s t r u c t u r e . T h e above arguments a p p l y d i r e c t l y to g r a d u a l changes, b u t also cover changes t h a t seem to c o n t r a d i c t g r a d u a l i s m . T h e l a t t e r w i l l be e x p l a i n e d i n the next two sections. F u r t h e r m o r e , an increase i n c o m p l e x i t y as conceived a b o v e , because it may take a variety of forms, serves to e x p l a i n several e v o l u t i o n a r y p h e n o m e n a t h a t , o n the surface, seem to be u n r e l a t e d .
"Rube Goldberg effect".
O n e e x a m p l e is the so-called T h e reference is to a f a m o u s c a r t o o n i s t , R u b e G o l d b e r g , whose cartoons were a regular i t e m i n m a n y newspapers some years ago. G o l d b e r g presented e l a b o r a t e constructions i n v o l v i n g r i d i c u l o u s c o m b i n a t i o n s of m a c h i n e r y , a n i m a l s , and so f o r t h , t h a t were supposed to interact i n a rather u n l i k e l y m a n n e r t o produce a s i m p l e effect f r o m an e q u a l l y s i m p l e cause. A l t h o u g h m a n y e v o l u t i o n a r y a d a p t a t i o n s are elegant to say the least, others are very c u m b e r s o m e and
162
STRUCTURALISM AND
STRUCTURES
overly e l a b o r a t e , m u c h like the R u b e G o l d b e r g c o n s t r u c t i o n s . A t the same t i m e , i n d i v i d u a l p a r t s often e x h i b i t the perfection of d e t a i l t h a t one comes to expect f r o m the process. A n e x a m p l e o f the R u b e G o l d b e r g effect is p r o v i d e d b y the s u b t e r r a n e a n t e r m i t e , whose i m m a t u r e workers, because o f t h e i r lack o f a protective outer cover, m u s t b u i l d elaborate m u d t u n nels i n order t o reach f o o d . It appears o n the surface t h a t selection for a protective cover w o u l d precede the development of a c o m p l i c a t e d b e h a v i o r such as t u n n e l b u i l d i n g , especially since the analogous f o r m s of m a n y other Insects, as w e l l as the m a t u r e r e p r o d u c t i v e f o r m s o f the t e r m i t e itself, are so protected. T h e r e are m a n y other e x a m p l e s of this k i n d , i n w h i c h the end p r o d u c t appears to be overly elaborate a n d o c c a s i o n a l l y even a n inefficient solutions to a p r o b l e m o f a d a p t a t i o n . T h e p r o b l e m is to e x p l a i n h o w such seemingly a w k w a r d and inefficient a d a p t a t i o n s arise. Since previous structures tend t o be preserved, an e n d s o l u t i o n m a y carry s t r u c t u r a l features t h a t are no longer needed a n d c o u l d t h e o r e t i c a l l y be e l i m i n a t e d . F o r e x a m p l e , i f the f i n a l p r o d u c t is a r r i v e d at b y a r o u n d a b o u t route, i t m a y record the solutions to different a n d perhaps u n r e l a t e d p r o b l e m s t h a t h a d to be dealt w i t h along the way. T h e elaborate m u d t u n nels constructed by the s u b t e r r a n e a n t e r m i t e s no d o u b t represent a c a r r y over f r o m a n earlier, a n d perhaps efficient, s o l u t i o n to a n e n v i r o n m e n t a l problem. A given s t r u c t u r e m a y c o n t a i n p o r t i o n s t h a t are not relevant t o the s u r v i v a l of the o r g a n i s m , either because they have ceased t o be f u n c t i o n a l or were never f u n c t i o n a l , perhaps a result of benign m u t a t i o n s . F u r t h e r m o r e , j u s t because of their irrelevance, there may be no significant advantage for t h e m t o be e l i m i n a t e d b y n a t u r a l selection, so t h e y m a y t e n d t o a c c u m u l a t e . F o r e x a m p l e , i t appears t h a t s u b s t a n t i a l p o r t i o n s o f the genetic s t r u c t u r e m a y f a l l i n t o t h i s category.
tendency
These r e m a r k s have e m p h a s i z e d the n a t u r a l for the p r e s e r v a t i o n of structures i n the e v o l u t i o n a r y process, often even b e y o n d t h e i r usefulness. O n the other h a n d , there is no guarantee t h a t a g i v e n s t r u c t u r e w i l l be preserved i n d e f i n i t e l y , since i t could at some p o i n t b e c o m e t o t a l l y irrelevant a n d a great enough b u r d e n to the o r g a n i s m (say, i n energy cost) to be a c a n d i d a t e for e l i m i n a t i o n by n a t u r a l selection. A possible e x a m p l e o f this is contained i n the C a i r n - S m i t h account o f the o r i g i n o f the genetic s t r u c t u r e [ C I ] o u t l i n e d d i r e c t l y below. M o s t theories c o n c e r n i n g the o r i g i n of life take the f o r m of proposals as t o h o w some f o r m of the genetic m a t e r i a l m i g h t have arisen. G i v e n t h i s , one m a y t h e n speculate o n how a l l l i v i n g o r g a n i s m s m i g h t have e v o l v e d . S u c h theories are s u p p o r t e d i n part by the o b s e r v a t i o n t h a t c e r t a i n a m i n o acids (the f u n d a m e n t a l b u i l d i n g blocks of a l l p r o t e i n s ) , as w e l l as short s t r i n g s of R N A , m a y be produced by purely p h y s i c a l processes, such as a t m o s p h e r i c
VIII. B I O L O G I C A L S T R U C T U R E S
163
electrical discharges a c t i n g o n a " p r i m o r d i a l s o u p " presumed to have existed p r i o r t o the appearance of life o n the e a r t h . T h i s fact also s u p p o r t s a suggestion t h a t R N A s t r u c t u r e preceded D N A i n the e v o l u t i o n a r y sequence. C a i r n s - S m i t h , o n the other h a n d , argues t h a t the genetic s t r u c t u r e as a whole does not represent an i n i t i a l stage o f e v o l u t i o n o f life forms b u t a m u c h later stage of the process. (See the q u o t a t i o n i n the preceding section.) He insists t h a t the genetic s t r u c t u r e c o u l d not have arisen g r a d u a l l y by an a s s e m b l i n g of a m i n o acids, a n d t h a t i t o b v i o u s l y represents, even i n its simplest f o r m , a " h i g h t e c h " s y s t e m t h a t m u s t have been preceded by a "low t e c h " s y s t e m i n v o l v i n g q u i t e different basic u n i t s . He proposes t h a t the p r i m i t i v e structures c o u l d easily have been formed i n c e r t a i n clays, a n d t h a t they a c t u a l l y c o n s t i t u t e d a s u p p o r t i n g m a t r i x u p o n w h i c h the genetic s t r u c t u r e itself e v o l v e d . T h e more s o p h i s t i c a t e d s t r u c t u r e s , once created, continued t o develop i n d e p e n d e n t l y o f the m a t r i x , a n d also assumed the essential functions of the l a t t e r . Subsequently, the now irrelevant p r i m i t i v e s t r u c t u r e s were, for one reason or a n o t h e r , e l i m i n a t e d . T h e theory t h u s suggests one way i n w h i c h a h i g h l y c o m p l e x specialized ( " h i g h tech") s t r u c t u r e m i g h t have arisen t h r o u g h a g r a d u a l process. A l t h o u g h a scenario o f this k i n d is not u n i v e r s a l l y accepted, i t is a p p a r e n t l y a t t r a c t i n g considerable s u p p o r t a m o n g e v o l u t i o n i s t s a n d is also very interesting f r o m the p o i n t of view of structures. O u r e x a m p l e of the P a s c a l configuration i n S e c t i o n 19 offers a p a r t i a l analogy t o the C a i r n s - S m i t h p r o p o s a l . T h e former is d e t e r m i n e d i n a s t r a i g h t f o r w a r d way b y a complete hexagon i n s c r i b e d i n a conic. O n the other h a n d , the result does not involve any of the lines or p o i n t s of the hexagon and its conic. Therefore, i f the latter were deleted f r o m the p i c ture, the P a s c a l C o n f i g u r a t i o n itself w o u l d r e m a i n i n t a c t , but w o u l d be very difficult to " e x p l a i n " w i t h o u t knowledge of the i n i t i a l s t r u c t u r e o n w h i c h it was c o n s t r u c t e d . 55. M u l t i p l e F u n c t i o n W e have e m p h a s i z e d the d y n a m i c character of b i o l o g i c a l o r g a n i s m s , espec i a l l y w i t h respect t o their i n t e r a c t i o n w i t h the e n v i r o n m e n t . F u r t h e r m o r e , each p a r t of an o r g a n i s m w i l l p l a y its o w n special role i n this o v e r a l l i n t e r a c t i o n . S u c h a role w i l l be c a l l e d a of the s t r u c t u r e represented b y the p a r t i n question. Defined i n this way, a f u n c t i o n w i l l i n v o l v e b o t h the concrete representing s t r u c t u r e a n d its e n v i r o n m e n t . A l t h o u g h i t w o u l d be possible t o e x t e n d the d e f i n i t i o n o f the s t r u c t u r e i n question so as to i n clude w i t h i n i t a p a r t i c u l a r f u n c t i o n , this w o u l d obscure the m a i n reason for i n t r o d u c i n g the n o t i o n .
"function"
It is possible for a g i v e n s t r u c t u r e to be associated w i t h m a n y different f u n c t i o n s . A s a m a t t e r o f fact, even a p a r t i c u l a r concrete representation
164
STRUCTURALISM
AND STRUCTURES
of a s t r u c t u r e m a y interact w i t h its e n v i r o n m e n t i n more t h a n one way. I n other words,
function.
the representation may be able to support more than one "multiple function"
T h i s is the n o t i o n of referred t o i n the section h e a d i n g . F r o m the p o i n t of v i e w o f a r b i t r a r y s t r u c t u r e s , the p o s s i b i l i t y of m u l t i ple functions is not s u r p r i s i n g , because a s u b s t r u c t u r e of a larger s t r u c t u r e generally m a y be perceived i n m o r e t h a n one way i n its r e l a t i o n to the l a t t e r , d e p e n d i n g o n w h i c h of the associated e x t e r n a l properties are e m p h a s i z e d . T h e o b j e c t i v e here is to t r y t o use these ideas to e x p l a i n how c e r t a i n o r g a n i s m s t r u c t u r e s , w h i c h a p p e a r to violate the p r i n c i p l e of g r a d u a l i s m , m i g h t have e v o l v e d . W e have already seen i n the preceding section one approach to this p r o b l e m for the s p e c i a l case of the genetic s t r u c t u r e , v i z . , the p r o p o s a l by C a i r n s - S m i t h t h a t the genetic s y s t e m developed i n the context of a n earlier p r i m i t i v e s y s t e m w h i c h later was e l i m i n a t e d . T h e a p p r o a c h t h r o u g h m u l t i p l e f u n c t i o n is more t r a d i t i o n a l . Before o u t l i n i n g i n very general t e r m s the ideas i n v o l v e d , we i n c l u d e some r e m a r k s by G o u l d f r o m one of his essays [ G 7 , p . 50], i n w h i c h he discusses the " h y p e r s e l e c t i o n i s t " v i e w t h a t e v o l u t i o n proceeds t h r o u g h n a t u r a l selection l e a d i n g to an always " b e t t e r " o r g a n i s m , a v i e w t h a t was e x p l i c i t l y r e p u d i a t e d b y D a r w i n himself:
only
D a r w i n , on the other h a n d , was a consistent p l u r a l i s t g a z i n g u p o n a messier universe. H e saw m u c h fit and h a r m o n y , for he believed t h a t n a t u r a l selection holds pride of place a m o n g e v o l u t i o n a r y forces. B u t other processes w o r k as w e l l , a n d o r g a n i s m s d i s p l a y an a r r a y of features t h a t are not a d a p t a t i o n s a n d do not p r o m o t e s u r v i v a l d i rectly. D a r w i n t o o k p a r t i c u l a r interest i n t w o p r i n c i p l e s l e a d i n g to n o n a d a p t i v e change: (1) O r g a n i s m s are integrated systems a n d a d a p t i v e change i n one part can lead t o n o n a d a p t i v e m o d i f i c a t i o n s of other features (" correlations of g r o w t h " i n D a r w i n ' s phrase); (2) A n o r g a n i s m b u i l t under the influence of selection for a specific role m a y be a b l e , as a consequence o f its s t r u c t u r e , t o p e r f o r m m a n y other unselected functions as w e l l . I t e m (1) i n the q u o t a t i o n brings up an i m p o r t a n t p o i n t c o n c e r n i n g s t r u c t u r a l d e t e r m i n i s m , w h i c h we w i l l r e t u r n to i n the next section. I t e m (2) expresses e x a c t l y the n o t i o n of m u l t i p l e f u n c t i o n . It is e l a b o r a t e d later o n i n the essay i n a discussion o f A l f r e d Russel W a l l a c e ' s i n a b i l i t y to accept the h u m a n intellect as a p r o d u c t of e v o l u t i o n : B u t h y p e r s e l e c t i o n i s m is not v a l i d . It is a c a r i c a t u r e of D a r w i n ' s subtler v i e w , and it b o t h ignores a n d m i s u n d e r s t a n d s the n a t u r e of organic f o r m and f u n c t i o n . N a t u r a l selection m a y b u i l d an o r g a n " f o r " a specific function or group o f functions. B u t this purpose need not f u l l y specify the c a p a c i t y o f a s t r u c t u r e . O b j e c t s designed for definite
VTH. B I O L O G I C A L S T R U C T U R E S
165
purposes c a n , as a result of their s t r u c t u r a l c o m p l e x i t y , p e r f o r m m a n y other tasks as w e l l . A factory m a y i n s t a l l a c o m p u t e r o n l y t o issue the m o n t h l y pay checks, b u t such a machine can analyze the election r e t u r n s or w h i p anyone (or at least p e r p e t u a l l y tie t h e m ) i n t i c k - t a c k toe. O u r large brains m a y have o r i g i n a t e d for some set of necessary s k i l l s i n g a t h e r i n g f o o d , s o c i a l i z i n g , or whatever; b u t these s k i l l s do not exhaust the l i m i t s of w h a t such a complex m a c h i n e can do A s the above q u o t a t i o n s show, the n o t i o n of m u l t i p l e f u n c t i o n is an o l d a n d f a m i l i a r one i n the theory of e v o l u t i o n . Moreover, i t has been offered as an e x p l a n a t i o n for the sudden emergence o f c e r t a i n organisms or s t r u c t u r e s t h a t appear to c o n t r a d i c t the p r i n c i p l e of g r a d u a l i s m . Nevertheless, it is i l l u m i n a t i n g to o u t l i n e an e x p l i c i t s t r u c t u r a l account of these apparent c o n t r a d i c t i o n s . It t u r n s o u t , i n fact, t h a t such p h e n o m e n a m a y be regarded as genuine s t r u c t u r a l i n the development of the o r g a n i s m , w h i c h , at the same t i m e ,
discontinuities do not violate the principle of gradualism.
In order t o u n d e r s t a n d t h i s seeming p a r a d o x , let us sketch briefly the process as it is p r e s u m e d to take place. C o n s i d e r a p r i m i t i v e s t r u c t u r e w h i c h s u p p o r t s some f u n c t i o n i m p o r t a n t to the s u r v i v a l of the associated o r g a n i s m . T h e e v o l u t i o n a r y process a c t i n g i n the s t a n d a r d m a n n e r w i l l t e n d to develop and " i m p r o v e " the p r i m i t i v e s t r u c t u r e w i t h respect to its o r i g i n a l f u n c t i o n . T h e l i k e l y result w i l l be structures of increasing s o p h i s t i c a t i o n a n d c o m p l e x i t y . A t the same t i m e , the p o t e n t i a l of the structures for functions other t h a n the o r i g i n a l one w i l l also increase. A l t h o u g h some of the new functions c o u l d be very different f r o m the o r i g i n a l , they are nevertheless associated w i t h structures s h a p e d b y the e n v i r o n m e n t , a n d are therefore already more or less c o m p a t i b l e w i t h the e n v i r o n m e n t . M o r e o v e r , it is possible for a new f u n c t i o n t o be m o r e f a vorable to s u r v i v a l of the o r g a n i s m t h a n the o r i g i n a l , so a r e l a t i v e l y s m a l l change i n the basic structure or the e n v i r o n m e n t , quite consistent w i t h the p r i n c i p l e of g r a d u a l i s m , c o u l d trigger a shift to a new f u n c t i o n . F u r t h e r e more, the change i n f u n c t i o n c o u l d be d r a m a t i c a l l y a b r u p t and appear as a true d i s c o n t i n u i t y i n the process o f development. O n the other h a n d , as far as s t r u c t u r a l changes are concerned, the d i s c o n t i n u i t y does not involve the s t r u c t u r e , but rather the s t r u c t u r e c o n s i s t i n g of the p h y s i c a l s t r u c t u r e plus its f u n c t i o n . Therefore, because the e v o l u t i o n a r y process acts d i r e c t l y o n the p h y s i c a l s t r u c t u r e , so is o n l y i n d i r e c t l y i n v o l v e d w i t h f u n c t i o n , the p r i n c i p l e of g r a d u a l i s m r e m a i n s i n t a c t . T h e e v o l u t i o n a r y p r o cess m a y , of course, continue the g r a d u a l development of the basic s t r u c t u r e w i t h respect t o the new f u n c t i o n , thus a c c e n t u a t i n g the " d i s c o n t i n u i t y " . A s is p o i n t e d out i n the next section, a change of this k i n d is also a n e x a m p l e of a " c a t a s t r o p h i c " change f r o m one stable state to another.
physical
T h e above r e m a r k s b r i n g out the fact t h a t the appearance of a c o n t r a -
166
STRUCTURALISM
AND STRUCTURES
d i c t i o n i n s i t u a t i o n s of t h i s k i n d stems f r o m an unconscious replacement of one s t r u c t u r e by another, n a m e l y , the basic p h y s i c a l s t r u c t u r e b y the basic structure T h e p r i n c i p l e of g r a d u a l i s m applies s t r i c t l y to the first, w h i l e the p h e n o m e n o n o f interest involves the second.
plus function.
In the case of the eye, i t is reasonable t o conjecture t h a t the s t a r t i n g p o i n t i n v o l v e d the general s e n s i t i v i t y of l i v i n g cells t o l i g h t . O n t h i s basis, the g r a d u a l e v o l u t i o n of a s i m p l e light-sensitive o r g a n , w h i c h w o u l d be an advantage for s u r v i v a l of the parent o r g a n i s m , m i g h t be expected. Such an o r g a n m i g h t continue to " i m p r o v e " g r a d u a l l y , developing, for e x a m p l e , a very s i m p l e means for c o n c e n t r a t i n g the l i g h t to increase s e n s i t i v i t y , u n t i l its s t r u c t u r e b e c a m e c o m p l e x enough t o s u p p o r t a p r i m i t i v e c a m e r a - l i k e f u n c t i o n , a n d the obvious s u r v i v a l advantage of the latter w o u l d favor a shift o f f u n c t i o n . O n c e a camera-like f u n c t i o n takes over, the p o s s i b i l i t y of d e v e l o p i n g a genuine eye becomes p l a u s i b l e , t h o u g h a d d i t i o n a l f u n c t i o n changes w o u l d , no d o u b t , be necessary a l o n g the way. A l t h o u g h a scenario a l o n g these lines is reasonable enough, the m a n y u n k n o w n s i n the process make i t difficult to conjecture i n any d e t a i l w h a t m i g h t a c t u a l l y have o c c u r r e d , especially for s o m e t h i n g as c o m p l e x as the eye. A n o t h e r p h e n o m e n o n , w h i c h depends o n m u l t i p l e f u n c t i o n for its e x p l a n a t i o n , concerns evolved structures t h a t , at first sight, appear t o be q u i t e m a l a d a p t i v e . A n e x a m p l e , discussed b y G o u l d i n one of his essays [ G 6 , p. 79], is the Irish E l k ( a c t u a l l y a deer). A m o n g these a n i m a l s , now e x t i n c t , the males developed enormous antlers t h a t were replaced each year, o b v i ously at a h i g h cost i n energy. T h e antlers must also have been i n m a n y other respects a severe h a n d i c a p , s i m p l y because o f their great size a n d weight, a n d even have been cited as the reason the a n i m a l b e c a m e e x t i n c t ! A n e x p l a n a t i o n of their development as a shift o f f u n c t i o n is also g i v e n by G o u l d i n his essay [G6, p p . 79-90]. I n the first place, it is obvius t h a t antlers were developed i n i t i a l l y as weapons o f attack or defense, a n d , as such, p r o v i d e d the a n i m a l w i t h a greater o r less of an advantage i n c o m p e t i t i o n w i t h other a n i m a l s , p r o b a b l y for the privilege of m a t i n g . U p t o a p o i n t , the size of antlers w o u l d correlate w i t h their effectiveness as weapons. B u t eventually, as i n so m a n y cases of this k i n d , the d e t e r m i n a t i o n of s u p e r i o r i t y m i g h t be decided by a d i s p l a y or other r i t u a l e x h i b i t i n g a n t l e r size w i t h o u t a n a c t u a l test of s t r e n g t h . T h u s , we have a shift i n f u n c t i o n f r o m " a n t l e r as a w e a p o n " t o "size of antler as a s y m b o l o f s t r e n g t h " . O n c e t h i s shift is made, the e v o l u t i o n a r y process, no d o u b t t h r o u g h sexual selection, c o u l d continue the development of antlers p r i m a r i l y w i t h respect t o size, r e s u l t i n g e v e n t u a l l y i n the seemingly a b s u r d monster antlers. Y e t a n o t h e r example of m u l t i p l e f u n c t i o n , already a l l u d e d to b y G o u l d
VIII. B I O L O G I C A L S T R U C T U R E S
167
i n the above q u o t a t i o n s , is p r o v i d e d by the h u m a n b r a i n . T h e challenge i n t h i s case is to e x p l a i n how the e v o l u t i o n a r y process c o u l d produce such a s t r u c t u r e . M o r e precisely, w h a t c o m b i n a t i o n of p r i m i t i v e e n v i r o n m e n t a l pressures c o u l d possibly result i n a device capable o f c o m p o s i n g and a p p r e c i a t i n g m u s i c , creating a n d u n d e r s t a n d i n g p u r e m a t h e m a t i c s , c o n t e m p l a t i n g the n a t u r e of the universe, a n d so on? F u n c t i o n s of t h i s k i n d , few o f w h i c h c o u l d conceivably have any s u r v i v a l value for p r e h u m a n s i n their struggle w i t h the e n v i r o n m e n t , can o n l y be e x p l a i n e d i n t e r m s of m u l t i p l e function. T h e b r a i n is already a n exceedingly c o m p l e x o r g a n , even i n a n i m a l s m u c h less developed t h a n h u m a n s , as far as b r a i n f u n c t i o n is concerned. I n fact, any a n i m a l t h a t is c o m p a r a b l e t o m a n o n a s t r i c t l y b i o l o g i c a l level requires a h i g h l y developed b r a i n j u s t for c o n t r o l of its p h y s i c a l s y s t e m a n d r o u t i n e i n t e r a c t i o n s w i t h the e n v i r o n m e n t . A necessary feature o f this e q u i p m e n t is a n a b i l i t y to m a n a g e those structures w h i c h c a r r y the e n v i r o n m e n t a l i n f o r m a t i o n necessary for s u r v i v a l . T h u s , we have the beginnings of a general f a c i l i t y for the m a n a g e m e n t of s t r u c t u r e s , a n d a context for the developm e n t of higher m e n t a l processes (Section 35). These observations suggest t h a t e v o l u t i o n set the stage q u i t e e a r l y i n the g a m e for the d e v e l o p m e n t o f h u m a n l i k e m e n t a l q u a l i t i e s , i n c l u d i n g a language p o t e n t i a l (Section 33). It is also reasonable t o conjecture t h a t these qualities are already adequate t o s u p p o r t the m o r e esoteric m e n t a l p h e n o m e n a m e n t i o n e d above. A l t h o u g h the c a p a c i t y for higher m e n t a l a c t i v i t y is no d o u b t an instance of m u l t i p l e f u n c t i o n p r o d u c e d b y r o u t i n e e v o l u t i o n a r y development of the b r a i n , the new functions are f u n d a m e n t a l l y different f r o m the u s u a l i n t e r actions of an o r g a n i s m w i t h the e n v i r o n m e n t . T h e y not o n l y do not replace or interfere w i t h any o f the o r i g i n a l more r o u t i n e b i o l o g i c a l f u n c t i o n s b u t also involve a v a r i e t y o f essentially " a b s t r a c t " s t r u c t u r a l objects. F u r t h e r more, i n d i c a t i o n s are t h a t the b r a i n of p r i m i t i v e m a n p r o b a b l y d i d not differ very m u c h f r o m t h a t of m o d e r n m a n , so the impressive i n t e l l e c t u a l development e x h i b i t e d b y m o d e r n h u m a n s is to a large extent the result of c u l t u r a l rather t h a n p h y s i c a l e v o l u t i o n . A t some p o i n t i n its h i s t o r y , the b r a i n became subject t o a n entirely different type of e v o l u t i o n a r y developm e n t , one t h a t e x p l o i t e d the e n o r m o u s capacity o f a very c o m p l e x s y s t e m to f u n c t i o n i n ways t h a t had l i t t l e to do w i t h the o r i g i n a l purpose for w h i c h it was designed. T h e e x a m p l e o f the b r a i n , raises a question as to whether or not s i m i l a r p h e n o m e n a occur i n other systems. A r e there b i o l o g i c a l systems t h a t have evolved a b s t r a c t f u n c t i o n s analogous to those e x h i b i t e d by the b r a i n ? Is it conceivable t h a t such functions m i g h t a c t u a l l y appear a u t o m a t i c a l l y i n certain cases of extreme c o m p l e x i t y ? N o t e t h a t the last question is p u r e l y s t r u c t u r a l i n content. It is not intended t o i m p l y (or expect) t h a t these
168
STRUCTURALISM
AND STRUCTURES
" h i g h e r " functions w o u l d necessarily have a n y t h i n g t o do w i t h creatures r e s e m b l i n g h u m a n beings. O n the other h a n d , some of the functions m i g h t suggest intelligence, s i m p l y because intelligence is so deeply i n v o l v e d w i t h the processing of structures. It is o n l y i n this sense t h a t one c a n l e g i t i m a t e l y c l a i m t h a t increasing c o m p l e x i t y m i g h t be expected to produce intelligence. T h e various e x p l a n a t i o n s of p h e n o m e n a such as those o u t l i n e d i n this a n d the preceding t w o sections, are not o n l y based o n s t r u c t u r e concepts, but involve some o f the most interesting aspects of s t r u c t u r e s , such as complexity, stability, determinism, and multiple function. 56.
Biological
Catastrophes
R o u g h l y s p e a k i n g , the i d e a b e h i n d catastrophe theory Is t h a t c e r t a i n systems, under " c o n t i n u o u s " change of c o n d i t i o n s , t e n d t o persist i n a given state (i.e., r e m a i n stable) up to a c r i t i c a l p o i n t , at w h i c h an a d d i t i o n a l s m a l l change causes the s y s t e m to shift a b r u p t l y ( c a t a s t r o p h i c a l l y ! ) t o a different (stable) state. It is f u n d a m e n t a l l y a m a t h e m a t i c a l subject a n d w i l l be discussed f r o m t h a t p o i n t of view i n Sections 67-70 i n the next chapter. O n the other h a n d , the m a t h e m a t i c a l subject is h i g h l y suggestive o f m u c h more general p h e n o m e n a , w h i c h m a y be observed i n m a n y different contexts, b u t often w i t h o u t any obvious m a t h e m a t i c a l content. S o m e o f the examples have generated considerable controversy, not a b o u t the p h e n o m e n a themselves, a l l of w h i c h are p l a u s i b l e a n d i n t e r e s t i n g , but c o n c e r n i n g only the question o f whether or not a genuine m a t h e m a t i c a l t r e a t m e n t m i g h t be possible. W e have already considered one type o f catastrophe f r o m biology, the a b r u p t change due to a shift i n f u n c t i o n discussed i n the previous section. T o see t h a t t h i s is an example of a c a t a s t r o p h i c change, the o n l y t h i n g we need t o a d d to the previous discussion is the o b s e r v a t i o n t h a t the very existence o f a b i o l o g i c a l s t r u c t u r e is evidence of a state of e q u i l i b r i u m w i t h the e n v i r o n m e n t . Therefore, a g r a d u a l change l e a d i n g to a significant shift of r e l a t i o n s h i p w i t h the e n v i r o n m e n t , as i n a n a b r u p t change of f u n c t i o n , represents a t r a n s i t i o n f r o m one e q u i l i b r i u m state to another, so is a catastrophe. T h e r e are also catastrophe p h e n o m e n a possible i n biology t h a t are more general, i n the sense t h a t they involve shifts o f s t r u c t u r e rather t h a n j u s t f u n c t i o n . T h e r e m a i n d e r o f this section is devoted to t h i s t o p i c , w h i c h b r i n g s out some interesting aspects of structures. T h e m o d e l e x a m p l e is the concept of " p u n c t u a t e d e q u i l i b r i a " , used to e x p l a i n species f o r m a t i o n . A n o t h e r b i o l o g i c a l e x a m p l e is discussed i n Section 70 i n C h a p t e r I X . I n c i d e n t a l l y , M . M . D o d s o n [D4], [D5] has also a p p l i e d catastrophe theory to certain evolutionary phenomena. A s r e m a r k e d i n Section 53, the t r a d i t i o n a l s y n t h e t i c theory o f e v o l u -
VIII. B I O L O G I C A L
STRUCTURES
169
t i o n a r y development has i n recent years c o m e under a t t a c k . T h e f o l l o w i n g q u o t a t i o n f r o m an article o n the subject b y G . L . S t e b b e n s a n d F . J . A y a l a [S8j o u t l i n e s the issues. T h e molecular studies have ... led to two direct challenges t o the s y n t h e t i c theory. O n e is a p r o p o s a l t h a t a k i n d of m o l e c u l a r determ i n i s m , r a t h e r t h a n pure chance, i m p e l s the development o f v a r i a t i o n s in D N A . T h e other is a c o n t r a s t i n g c l a i m , k n o w n as the n e u t r a l t h e ory, t h a t chance governs not o n l y the i n i t i a l appearance o f genetic v a r i a t i o n s but also their subsequent e s t a b l i s h m e n t i n a p o p u l a t i o n . A different k i n d of challenge, based o n new i n t e r p r e t a t i o n s of the fossil r e c o r d , has emerged f r o m paleontology. K n o w n as p u n c t u a t e d e q u i l i b r i u m , i t holds t h a t e v o l u t i o n proceeds not at a steady pace b u t i r r e g u l a r l y , i n fits a n d s t a r t s . A l t h o u g h the molecular challenges suggest some interest i n s t r u c t u r a l questions, we w i l l restrict a t t e n t i o n to the case of p u n c t u a t e d e q u i l i b r i a , w h i c h was i n t r o d u c e d b y E l d r i d g e a n d G o u l d [E2]. It m a i n t a i n s t h a t "est a b l i s h e d species do not change s u b s t a n t i a l l y i n p h e n o t y p e over a l i f e t i m e t h a t m a y encompass m a n y m i l l i o n s of years (stasis), and t h a t m o s t evol u t i o n a r y change is concentrated i n geologically instantaneous events of b r a n c h i n g s p e d at i o n " . Since m o s t evolutionists t r a d i t i o n a l l y have been c o m m i t t e d i n one way or other to a g r a d u a l i s t p o i n t of view w i t h respect t o species d e v e l o p m e n t , the p r o p o s a l by E l d r i d g e a n d G o u l d has generated considerable controversy. U n f o r t u n a t e l y , the fossil r e c o r d , w h i c h is the l o g i c a l place to check such differences, generally involves a t i m e scale too coarse t o record details of changes as r a p i d as those presumed i n p u n c t u a t e d e q u i l i b r i a . A t the same t i m e , there have been m a n y examples e x t r a c t e d f r o m the record t o s u p p o r t a g r a d u a l i s t account of speciation over p u n c t u a t i o n . M o s t of these, however, have been challenged by G o u l d and E l d r i d g e [G12] as either u n s u b s t a n t i a t e d or a c t u a l l y consistent w i t h p u n c t u a t e d e q u i l i b r i a . A l t h o u g h disagreements c o n c e r n i n g i n t e r p r e t a t i o n s o f the fossil record are not likely t o be settled o n p u r e l y t h e o r e t i c a l g r o u n d s , any r e s o l u t i o n is certain t o involve s t r u c t u r e considerations i n some way or o t h e r . G o u l d , for e x a m p l e , i n a recent a r t i c l e o n [G10], where he responds t o c r i t i c i s m s o f p u n c t u a t e d e q u i l i b r i a , makes an e x p l i c i t appeal t o the idea of s t r u c t u r a l s t a b i l i t y a n d the fact t h a t b r e a k i n g the s t a b i l i t y w i l l n o r m a l l y result i n a r a p i d change to another stable state.
lutionary Theory"
"Darwinism and the Expansion of Evo-
In the largest sense, this debate is b u t one s m a l l aspect of a broader discussion a b o u t the nature o f change: Is our w o r l d (to c o n s t r u c t
170
STRUCTURALISM
AND STRUCTURES
a r i d i c u l o u s l y o v e r s i m p l i f i e d d i c h o t o m y ) p r i m a r i l y one of constant change ( w i t h s t r u c t u r e as a mere i n c a r n a t i o n of the m o m e n t ) , or is s t r u c t u r e p r i m a r y a n d c o n s t r a i n i n g , w i t h change as a difficult p h e n o m enon, u s u a l l y a c c o m p l i s h e d r a p i d l y w h e n a stable s t r u c t u r e is stressed b e y o n d its buffering capacity t o resist a n d absorb? It w o u l d be h a r d t o deny t h a t the D a r w i n i a n t r a d i t i o n , i n c l u d i n g the m o d e r n s y n t h e sis, f a v o r e d the first v i e w w h i l e " p u n c t u a t i o n a l i s t " t h o u g h t i n general, i n c l u d i n g such aspects of classical m o r p h o l o g y as D ' A r c y T h o m p s o n ' s theory of f o r m [T2], prefers the second, [p. 383] T h e E l d r i d g e - G o u l d theory o f p u n c t u a t e d e q u i l i b r i a clearly suggests t h a t s p e c i a t i o n is a c a t a s t r o p h i c event. A c t u a l l y , o n the basis o f the general p r i n c i p l e o f s t r u c t u r a l s t a b i l i t y , i t m i g h t be expected t h a t the e v o l u t i o n of one b i o l o g i c a l s y s t e m i n t o a n o t h e r w o u l d n o r m a l l y i n v o l v e d i s c o n t i n u ities. I n p a r t i c u l a r , a sufficiently fine analysis o f an ostensibly c o n t i n u ous development w o u l d p r o b a b l y show i t t o consist o f a succession o f very s m a l l d i s c o n t i n u i t i e s . S u c h a n e x a m p l e , however, w o u l d not be regarded as a c o n t r a d i c t i o n of g r a d u a l i s m . O n the other h a n d , t h e d i s c o n t i n u i t i e s i n p u n c t u a t e d e q u i l i b r i a are large, a n d so appear a g a i n t o be inconsistent with gradualism. T h e r e are m a n y special features i n s p e c i a t i o n , w h i c h we w i l l not a t t e m p t to deal w i t h . F u r t h e r m o r e , as we have already seen, the p r o b l e m o f a b r u p t , or d i s c o n t i n u o u s , e v o l u t i o n a r y development is not p e c u l i a r to s p e c i a t i o n , b u t is i n v o l v e d i n the development of m a n y b i o l o g i c a l systems. A l t h o u g h s o m e d i s c o n t i n u i t i e s o f t h i s k i n d m a y b e a n a l y z e d , for e x a m p l e , as instances of m u t i p l e f u n c t i o n , the catastrophe a p p r o a c h , o u t i n e d b e l o w , w i l l always a p p l y . T h e g o a l is to see how i t t o o is consistent w i t h the p r i n c i p l e of gradualism. _____
Fig.
56.1
VIII. B I O L O G I C A L S T R U C T U R E S
171
F i g u r e 56.1 is a n a d a p t a t i o n of the e q u i l i b r i u m surface sketched i n F i g u r e 69.1 (a) of C h a p t e r I X , where i t is a p a r t of the m a t h e m a t i c a l t r e a t m e n t of catastrophe. T h e figure is used here i n a p u r e l y s y m b o l i c way, t o help us v i s u a l i z e the r e l a t i o n s h i p between g r a d u a l i s m a n d p u n c t u a t i o n . P o i n t s of the surface are supposed to be associated w i t h possible s t r u c t u r e s , where t h e structures at n e i g h b o r i n g p o i n t s are not very different. T h e t w o p a t h s , i n d i c a t e d b y arrows, are supposed t o suggest possible routes b y w h i c h one s t r u c t u r e S i m i g h t evolve i n t o a second one S2- T h e p u n c t u a t e d case i n volves a sudden change (catastrophe) w h i l e the other avoids the a b r u p t change b y s k i r t i n g the f o l d i n the surface. A s is clear i n accounts of p u n c t u a t e d e q u i l i b r i a , stasis ( s t a b i l i t y ) is as i m p o r t a n t t o the t h e o r y as are the s u d d e n changes. I n fact, because of the n a t u r e of s t a b i l i t y p h e n o m e n a , one m i g h t expect stasis rather t h a n continuous change t o be the r u l e . W e w i l l concentrate a t t e n t i o n o n p u n c t u a t i o n because of its i n t e r e s t i n g s t r u c t u r a l implications. Needless to say, most o f the f o l l o w i n g r e m a r k s are s p e c u l a t i v e a n d a d m i t t e d l y m a y not agree i n d e t a i l w i t h w h a t a c t u a l l y h a p p e n s . T h e y nevertheless show t h a t a p l a u s i b l e general e x p l a n a t i o n of the p h e n o m e n a c a n be f o r m u l a t e d i n f a i r l y precise s t r u c t u r a l t e r m s , a g a i n w i t h o u t v i o l a t i o n of the p r i n c i p l e of g r a d u a l i s m . T h e various p o s s i b i l i t i e s are i l l u s t r a t e d i n F i g u r e 56.2, suggesting three different p a t h s of d e v e l o p m e n t .
Fig.
56.2
P a t h (a) i n the figure i l l u s t r a t e s the t r a d i t i o n a l g r a d u a l process a n d needs no f u r t h e r discussion. P a t h (b) represents a p u n c t u a t i o n w h i c h is a n a r t i fact o f a coarse t i m e scale. I n other words, a sufficiently fine a n a l y s i s w o u l d reveal a g r a d u a l process, a l b e i t a very r a p i d one as m e a s u r e d i n geological t i m e . T h i s is p l a u s i b l e enough o n p u r e l y p h y s i c a l g r o u n d s , since the d i s r u p -
172
STRUCTURALISM
AND STRUCTURES
t i o n o f a stable e q u i l i b r i u m ( t h r o u g h o r d i n a r y e v o l u t i o n a r y changes), i f it does not destroy the s t r u c t u r e , w o u l d be expected to result i n r a p i d changes of state u n t i l another r e l a t i v e l y stable e q u i l i b r i u m is e s t a b l i s h e d . T h i s poss i b i l i t y is e x p l i c i t l y i n c l u d e d b y G o u l d and E l d r i d g e [G12] as a l e g i t i m a t e e x a m p l e o f p u n c t u a t i o n . P a t h (c) represents true c a t a s t r o p h i c p u n c t u a t i o n , w h i c h is r e l a t i v e l y independent of the t i m e scale, a n d hence not reducible b y a finer analysis t o a g r a u d a l process. Case (c) is the i n t e r e s t i n g one for us, a n d o b v i o u s l y requires some a d d i t i o n a l discussion. A s u s u a l , there are two p r o b l e m s : to e x p l a i n how extreme changes of this k i n d can be consistent w i t h g r a d u a l i s m , a n d t o suggest how they m i g h t y i e l d s t r u c t u r e s t h a t s u r v i v e . T h e s o l u t i o n is a g e n e r a l i z a t i o n of t h a t i n the case of m u l t i p l e f u n c t i o n . It w i l l help to review first the n o t i o n o f a " s y s t e m " as opposed to a " s t r u c t u r e " . I n S e c t i o n 7, a s y s t e m was defined t o be "any c o l l e c t i o n o f i n t e r r e l a t e d objects a l o n g w i t h a l l of the p o t e n t i a l structures t h a t m a y be identified w i t h i n i t " . F o r our purposes, the most obvious e x a m p l e o f a b i o l o g i c a l s y s t e m is a " w h o l e o r g a n i s m " . A b i o l o g i c a l s t r u c t u r e , o n the other h a n d , is u s u a l l y a s t r u c t u r e involved i n a b i o l o g i c a l s y s t e m , and defined i n t e r m s of a c e r t a i n c o m p l e x of properties of the l a t t e r . It may also be realized i n a variety of different b i o l o g i c a l systems. T h u s i n p a r t i c u l a r , a given i n d i v i d u a l w i l l be a representative of a certain type of o r g a n i s m i f it embodies the defining t r a i t s of t h a t o r g a n i s m . F i n a l l y , a is a b i o l o g i c a l s t r u c t u r e represented by a system consisting of r e p r o d u c t i v e l y c o m p a t i b l e i n d i v i d u a l s . It is evident t h a t the d e f i n i t i o n of an e x i s t i n g b i o l o g i c a l s t r u c t u r e m u s t i n c o r p o r a t e (perhaps i m p l i c i t l y ) the fact t h a t the s t r u c t u r e is a d a p t e d to its e n v i r o n m e n t .
species
T h e general p o s s i b i l i t y for c a t a s t r o p h i c changes of a b i o l o g i c a l s y s t e m , is based o n the fact t h a t the entire s y s t e m is i n e q u i l i b r i u m w i t h the env i r o n m e n t a n d w i l l u s u a l l y a d m i t p o t e n t i a l s t r u c t u r e s different f r o m the s t r u c t u r e w i t h w h i c h i t is n o r m a l l y associated. T h e r e f o r e , a l t h o u g h the l a t t e r s t r u c t u r e m a y be d o m i n a n t and tend to be preserved because o f its greater s t a b i l i t y , a secondary s t r u c t u r e could evolve g r a d u a l l y a n d m o r e or less i n d e p e n d e n t l y t o a p o i n t where it offers s t a b i l i t y c o m p a r a b l e t o the o r i g i n a l . T h i s a g a i n w o u l d set the stage for a s m a l l change, i n v o l v i n g e i ther the o r g a n i s m or its e n v i r o n m e n t , to p r e c i p i t a t e an a b r u p t shift to the e q u i l i b r i u m state p r o v i d e d by the secondary s t r u c t u r e . A l t h o u g h a change of t h i s k i n d m a y be thought of as a shift i n f u n c t i o n of a s y s t e m , it a c t u a l l y involves a shift f r o m one defining s t r u c t u r e to another. It is o b v i o u s , of course, t h a t speculations such as these, despite their reasonableness f r o m the p o i n t of view o f s t r u c t u r e s , can be s u b s t a n t i a t e d o n l y by a c t u a l e x a m ples f r o m the record.
VIII. B I O L O G I C A L S T R U C T U R E S
173
57. D e t e r m i n i n g Structures In t h i s section, we consider yet another possible way t h a t p h e n o m e n a w h i c h a p p e a r t o c o n t r a d i c t the p r i n c i p l e of g r a d u a l i s m m i g h t arise. R e c a l l t h a t the p r i n c i p l e is based on the a s s u m p t i o n t h a t e v o l u t i o n a r y change depends o n r a n d o m v a r i a t i o n s i n the genetic m a t e r i a l of an o r g a n i s m a n d t h a t the v a r i a t i o n s m u s t be s m a l l i n order to produce a n o r g a n i s m t h a t m i g h t be c o m p a t i b l e w i t h the e n v i r o n m e n t and t h u s have a chance of s u r v i v a l . A t the s a m e t i m e , a very large r a n d o m v a r i a t i o n has a v a n i s h i n g l y s m a l l chance o f b e i n g v i a b l e . Therefore, eschewing m i r a c l e s , one cannot e x p l a i n a p p a r e n t l y n o n g r a d u a l p h e n o m e n a i n t e r m s o f such v a r i a t i o n s . Observe, however, t h a t there is a difference between j u s t a large v a r i a t i o n a n d a large v a r i a t i o n . It is possible for a s m a l l r a n d o m change i n the genetic m a t e r i a l to trigger a large s t r u c t u r a l change i n the o r g a n i s m . T h i s c o u l d occur, for e x a m p l e , i f the s m a l l change i n v o l v e d a s t r u c t u r e t h a t d e t e r m i n e d a m u c h larger one. Such changes, w h i c h were already recognized by D a r w i n (see the first G o u l d q u o t a t i o n i n S e c t i o n 55), need not be a d a p t i v e . In other words, a s m a l l (local) change c o u l d be a d a p t i v e but m i g h t engender other changes t h a t were not a d a p t i v e . O n the other h a n d , a p l a u s i b l e s t r u c t u r a l analysis suggests t h a t this need not always be the case. A large v a r i a t i o n s t r u c t u r a l l y d e t e r m i n e d b y a s m a l l Tandom v a r i a t i o n m i g h t very w e l l be a d a p t i v e . T h e basic reason is t h a t we begin w i t h an o r g a n i s m t h a t is c o m p a t i b l e w i t h the e n v i r o n m e n t . I n p a r t i c u l a r , the f u l l s t r u c t u r e d e t e r m i n e d b y the s m a l l genetic s t r u c t u r e is e n v i r o n m e n t a l l y c o m p a t i b l e , so the d e t e r m i n i n g process m u s t also involve e n v i r o n m e n t a l connections. T h e i d e a is t h a t , because of these connections, the r e s u l t i n g s t r u c t u r a l change w i l l not be independent of the e n v i r o n m e n t (as w o u l d be expected i n the case of a large r a n d o m change), so could be c o m p a t i b l e w i t h the e n v i r o n m e n t . F o r e x a m p l e , a large s t r u c t u r a l change i n d u c e d by a s m a l l genetic change c o u l d appear as a collection o f s m a l l l o c a l changes, each of w h i c h , as far as the e n v i r o n m e n t is concerned, m i g h t lie w i t h i n the a d a p t a b i l i t y range o f the o r g a n i s m . T h i s suggests t h a t a large s t r u c t u r e change of this k i n d m i g h t very well have s u r v i v a l value. It also suggests a possible c a t a s t r o p h i c evol u t i o n a r y change analogous to a shift i n f u n c t i o n . A l t h o u g h the s t r u c t u r a l relationships conjectured to exist i n the above scenario are a d m i t t e d l y rather vague, they are not unreasonable. O n the other h a n d , whether or how instances of this k i n d a c t u a l l y occur is another m a t t e r . O n e p o s s i b i l i t y is by a m u t a t i o n of regulatory genes. T h i s c o u l d trigger m a j o r changes i n the o r g a n i s m ' s ontogeny t h a t m i g h t , for the above reasons, be c o m p a t i b l e w i t h the e n v i r o n m e n t .
random
174
58.
STRUCTURALISM AND
STRUCTURES
Convergent Evolution
Convergent e v o l u t i o n is the independent development of nearly i d e n t i c a l features i n t w o different a n d essentially unrelated o r g a n i s m s . Such features are not i n h e r i t e d f r o m a c o m m o n ancestor, so are instances of the analogies (as opposed t o homologies) discussed i n Section 50. T h e r e are m a n y e x a m ples o f convergence, such as the c o m m o n f o r m e x h i b i t e d b y a n i m a l s t h a t s w i m or by a n i m a l s t h a t fly. B u t some of the most s t r i k i n g l i v i n g examples are f o u n d a m o n g the m a r s u p i a l s of A u s t r a l i a . ( T h e r e are also m a n y e x t i n c t examples f o u n d i n S o u t h A m e r i c a . ) These are the m a r s u p i a l analogues of p l a c e n t a l m a m m a l s . It is r e m a r k a b l e , to say the least, t h a t t w o v i r t u a l l y u n r e l a t e d a n i m a l s c a n , even o n the surface, be so m u c h a l i k e . It is generally believed t h a t analogies are s o m e h o w a result of e v o l u t i o n ary development w i t h i n nearly i d e n t i c a l e n v i r o n m e n t s , a l t h o u g h i t is rather difficult to u n d e r s t a n d at first how the results c a n be so precise. T h e p r o cess tends to a p p e a r a b i t m o r e p l a u s i b l e f r o m a general s t r u c t u r a l p o i n t of v i e w , w h i c h we w i l l now a t t e m p t to sketch. T h i s , as i n the case o f most of our r e m a r k s i n this c h a p t e r , is not so m u c h an e x p l a n a t i o n of convergence, b u t m e r e l y a way of l o o k i n g at the p h e n o m e n o n . C o n s i d e r , for e x a m p l e , the t h y l a c i n e , a c a r n i v o r o u s wolflike m a r s u p i a l of T a s m a n i a . E x c e p t p o s s i b l y for the black stripes across its back, a casual observer m i g h t have difficulty i n d i s t i n g u i s h i n g this a n i m a l f r o m an o r d i n a r y wolf. T h e resemblances, however, are m a i n l y e x t e r n a l . B e l o w the surface, the t w o are different i n m a n y details easily discerned by an expert. B u t this fact a c t u a l l y makes the w h o l e t h i n g even more m y s t e r i o u s . If the a n i m a l s were more a l i k e i n t e r n a l l y , then it w o u l d be easier t o u n d e r s t a n d how s i m i l a r e n v i r o n m e n t s m i g h t produce the external s i m i l a r i t i e s . It is, of course, these basic differences w h i c h u l t i m a t e l y "prove" t h a t the s i m i l a r i t i e s are indeed analogies rather t h a n homologies. It is clear t h a t a c o m m o n ancestor of m a r s u p i a l s a n d p l a c e n t a l m a m m a l s was a n e a r l y generalized m a m m a l w h i c h possessed the basic characteristics of a t y p i c a l four-legged a n i m a l . Therefore, the p o t e n t i a l to develop i n t o a " d o g l i k e " a n i m a l was present even before the d i v i s i o n . N o w suppose t h a t a l i n e of m a r s u p i a l s and a line o f p l a c e n t a l m a m m a l s undergo an e v o l u t i o n a r y development under essentially i d e n t i c a l e n v i r o n m e n t a l c o n d i t i o n s . T h u s , we have two different b i o l o g i c a l systems w h i c h have a d a p t e d t o the same e x t e r n a l e n v i r o n m e n t despite differences i n t h e i r i n t e r n a l s t r u c t u r e s . F i n a l l y , suppose t h a t a s u b s t r u c t u r e of the i m m e d i a t e e n v i r o n m e n t is d e t e r m i n i n g (Section 26). I n the present case the s u b s t r u c ture w o u l d be associated w i t h existence as a l o n g - b o d i e d , r u n n i n g p r e d a t o r . T h e n it w i l l follow t h a t the e x t e r n a l characteristics, d e t e r m i n e d i n the a n i m a l s b y t h a t s u b s t r u c t u r e , m u s t be essentially i d e n t i c a l . In other words, convergence w o u l d result as a more or less a u t o m a t i c consequence o f the
VIII. B I O L O G I C A L
STRUCTURES
175
supposed s t r u c t u r a l d e t e r m i n a t i o n . W h a t is needed for a f u l l u n d e r s t a n d i n g of convergence is a precise exp l a n a t i o n i n p h y s i c a l t e r m s of how the e n v i r o n m e n t a l s t r u c t u r e a c t u a l l y determines the e x t e r n a l properties of a g i v e n i n t e r a c t i n g o r g a n i s m . I n some cases, such as the s w i m m i n g or flying a n i m a l s , the relative s i m p l i c i t y o f the p h y s i c a l c o n d i t i o n s enables one to conjecture w i t h some confidence how the process m i g h t w o r k . I n other cases, however, the p r o b l e m is far more difficult, a n d the conjectured e x p l a n a t i o n s are c o r r e s p o n d i n g l y less precise. 59.
Anthropomorphism
A n t h r o p o m o r p h i s m , the practice of a s c r i b i n g h u m a n q u a l i t i e s t o beings or t h i n g s n o n h u m a n , has always been a factor, either consciously or u n c o n sciously, i n m a n ' s v i e w o f the w o r l d a r o u n d h i m . In m o d e r n times, h o w ever,the practice has been v i g o r o u s l y condemned as t o t a l l y unscientific. A t the same t i m e , such c o n d e m n a t i o n has p r o b a b l y h a d l i t t l e influence o n the t h i n k i n g o f o r d i n a r y people, or perhaps even o n m o s t scientists i n their everyday dealings w i t h the r e a l w o r l d . M o s t of us are prone to observe, for e x a m p l e , t h a t a pet parakeet does one of its t r i c k s because " i t wants our a t t e n t i o n " or t h a t the c o m p u t e r " t h o u g h t t h a t we d i d n ' t w a n t t o save the i t e m because we neglected to tell i t o t h e r w i s e " . T h e m a i n effect of the rejection of a n t h r o p o m o r p h i s m as unscientific has been t o suppress m o s t o f the i n f o r m a l expressions of i t i n the l i t e r a t u r e . Therefore, the appearance i n recent years o f suggestions by a few scientists t h a t i n some c i r c u m s t a n c e s the practice m a y be reasonable, comes as a definite s u r p r i s e . It w i l l be sufficient for our purposes t o l i m i t a t t e n t i o n to a single e x a m p l e , J o h n M c C a r t h y , one of the pioneers i n the field of a r t i f i c i a l intelligence. H i s views o n the subject are o u t l i n e d i n an a r t i c l e , w h i c h appeared i n
"The Little Thoughts of Thinking Machines", Today[Ml].
Psychology
M c C a r t h y begins by r e m a r k i n g o n w h a t we have called the " b l a c k b o x " a p p r o a c h to c o m p l e x systems (Section 27), by w h i c h one may be able to deal w i t h the e x t e r n a l f u n c t i o n i n g of systems, such as electric lights a n d telephones, w i t h o u t u n d e r s t a n d i n g their i n t e r n a l s t r u c t u r e s . H e then goes o n t o m a k e the f o l l o w i n g c o m m e n t s concerning future p r o b l e m s associated w i t h very c o m p l e x computer-based systems: In the next century, w e ' l l be increasingly faced w i t h m u c h more c o m p l e x c o m p u t e r - b a s e d systems. It w o n ' t be necessary for m o s t people to k n o w very m u c h about how they work i n t e r n a l l y , but w h a t we w i l l have to k n o w a b o u t t h e m i n order t o use t h e m is more c o m p l e x t h a n w h a t we need to k n o w a b o u t electric lights a n d telephones. A s o u r d a i l y lives involve more sophisticated c o m p u t e r s , we w i l l find t h a t a s c r i b i n g l i t t l e t h o u g h t s t o machines w i l l be i n c r e a s i n g l y useful i n
176
STRUCTURALISM
AND STRUCTURES
u n d e r s t a n d i n g how to get the most g o o d out of t h e m . M u c h t h a t we w i l l need to know concerns the i n f o r m a t i o n stored i n c o m p u t e r s , w h i c h is w h y we find ourselves using words l i k e " k n o w s " , " t h i n k s " a n d " w a n t s " i n referring to machines, even t h o u g h these machines are very different f r o m h u m a n s and these words arose f r o m the h u m a n need to t a l k to other h u m a n s , [p. 45] In his l i m i t e d advocacy, M c C a r t h y distinguishes between " g o o d " a n d " b a d " a n t h r o p o m o r p h i s m . It is g o o d i f " i t says s o m e t h i n g t h a t cannot as conveniently be s a i d some other w a y " , b u t is b a d i f i t ascribes e m o t i o n s or personalities to machines. W o r k e r s i n artificial intelligence, whose objective i t is t o p r o g r a m s o m e t h i n g r e s e m b l i n g intelligence i n t o c o m p u t i n g machines, believe t h a t m u c h b e h a v i o r can be u n d e r s t o o d u s i n g the " p r i n ciple of r a t i o n a l i t y " . Beliefs a n d goals are ascribed i n accordance w i t h this p r i n c i p l e , w h i c h says r o u g h l y t h a t certain behavior m a y be accounted for b y o b s e r v i n g t h a t a " m a c h i n e or person or a n i m a l does w h a t i t t h i n k s w i l l achieve its g o a l s " . M c C a r t h y discusses i n some d e t a i l the p r o b l e m s of a p p l y i n g the p r i n c i p l e i n a r t i f i c i a l intelligence a n d w i n d s up w i t h the c a u t i o n t h a t "we m u s t be careful not to ascribe properties t o a machine t h a t the p a r t i c u l a r machine doesn't have. W e h u m a n s can easily fool o u r selves when there is s o m e t h i n g we w a n t to believe". T h i s is, o f course, the s t a n d a r d c r i t i c i s m of a n t h r o p o m o r p h i s m i n general. D e s p i t e the p i t f a l l s , there seems to be no doubt t h a t a l i m i t e d practice of a n t h r o p o m o r p h i s m c a n indeed be h e l p f u l , over a n d above the superficial convenience of d e a l i n g i n f o r m a l l y w i t h n o n h u m a n systems. It is therefore n a t u r a l t o ask how any practice w h i c h appears at first t o be so c o m p l e t e l y unjustified c a n p l a y such a role. Is there more to i t t h a n j u s t a way of f o r m u l a t i n g ideas otherwise difficult to express? A s a m a t t e r of fact, there does seem to be a m u c h deeper and also more i n t e r e s t i n g e x p l a n a t i o n . A given b e h a v i o r , w h i c h is a c a n d i d a t e for a n t h r o p o m o r p h i c i n t e r p r e t a t i o n , m a y be thought o f as a s t r u c t u r e w h i c h develops f r o m a n i n i t i a l d e t e r m i n i n g s t r u c t u r e . In other words, when the i n i t i a l s t r u c t u r e is a c t i v a t e d , the b e h a v i o r w i l l follow, p r o d u c i n g a "desired" goal. Such a s t r u c t u r e m a y a d m i t a variety of representations, i n v o l v i n g machines, a n i m a l s , or h u m a n beings. T h e r e is one t h i n g , however, w h i c h sets the last representation a p a r t f r o m the others. It is the fact t h a t h u m a n beings m a y at the outset be more or less aware of the f u l l s t r u c t u r e . In other words, they m a y have a m e n t a l p i c t u r e of w h a t w i l l h a p p e n when the i n i t i a l s t r u c t u r e is a c t i v a t e d . It is because of this awareness t h a t h u m a n s c a n l e g i t i m a t e l y say t h a t they a c t i v a t e d the i n i t i a l s t r u c t u r e i n order to produce the desired g o a l . O b s e r v e , however, t h a t awareness a c t u a l l y has n o t h i n g t o do w i t h the s t r u c t u r e i t self. A s l o n g as the i n i t i a l s t r u c t u r e is a c t i v a t e d , whether b y pressing keys on a c o m p u t e r i n p u t , by a s p e c i a l s t i m u l u s or i n s t i n c t i n an a n i m a l , or by
VIII. B I O L O G I C A L S T R U C T U R E S
177
r a t i o n a l choice i n a h u m a n , the result w i l l be the same. T h i s a n a l y s i s indicates clearly when an a n t h r o p o m o r p h i c i n t e r p r e t a t i o n may help one to v i s u a l i z e more clearly the process i n question and hence to deal w i t h i t m o r e effectively. O n the other h a n d , t r o u b l e w i l l arise i f the assumed n o n h u m a n s t r u c t u r e representations do not e x i s t . It is also conceivable t h a t an i n i t i a l s t r u c t u r e m i g h t be perceived b y h u m a n s to develop t o w a r d a c e r t a i n goal i n a q u i t e different and perhaps more c o m p l e x m a n n e r t h a n is a c t u a l l y the case. I n other words, despite the c o m m o n g o a l , the t w o representations m i g h t a c t u a l l y involve different structures. I n this case, an a n t h r o p o m o r p h i c i n t e r p r e t a t i o n might read far more i n t o the n o n h u m a n b e h a v i o r t h a n a c t u a l l y exists. C o n s i d e r finally the case of w h i c h is the s t u d y of, or belief i n , evidence for design a n d purpose i n n a t u r e . It m a y also be r a t i o n a l i z e d as an a i d to c o m p r e h e n d i n g certain complex p h e n o m e n a , q u i t e a p a r t f r o m the u s u a l a p p e a l to unscientific p h i l o s o p h i c a l or religious a s s u m p t i o n s . F o r exa m p l e , teleological expressions sometimes appear even i n t e c h n i c a l scientific e x p o s i t i o n . T h e p o i n t here is t h a t teleology is u l t i m a t e l y a n t h r o p o m o r p h i c i n character a n d is s i m i l a r l y based o n a h u m a n o v e r a l l awareness of t i m e dependent p h e n o m e n a . A l t h o u g h an u n f o l d i n g of the p h e n o m e n o n is quite independent of awareness, the n a t u r a l a n t h r o p o m o r p h i c tendency to read "design a n d purpose" i n t o it m a y s t i l l help one t o v i s u a l i z e the process. A s i n the case of a n t h r o p o m o r p h i s m proper, the a p p r o a c h w i l l be nonscientific o n l y i f the design a n d purpose are assumed to be s o m e t h i n g more t h a n an expression of h u m a n awareness.
teleology,
CHAPTER
SPACE
IX
STRUCTURES AND
60.
STABILITY
Introduction M a t h e m a t i c a l ideas have p l a y e d an i m p o r t a n t role i n the preceding chapters, t h o u g h i n m o s t cases t h a t role has been i n d i r e c t a n d sometimes not at a l l obvious t o anyone other t h a n the a u t h o r . T h i s chapter is different i n t h a t the m a t h e m a i c s is m u c h m o r e d i r e c t l y involved and m u c h of the m a t e r i a l c o u l d be given a f o r m a l m a t h e m a t i c a l t r e a t m e n t . W i t h the exc e p t i o n o f the last two sections, however, we resist the t e m p t a t i o n to offer such a t r e a t m e n t a n d t r y instead to b r i n g out the u n d e r l y i n g ideas w i t h o u t the technicalities. A t the same t i m e , a serious a t t e m p t to e x p l a i n a c t u a l m a t h e m a t i c a l concepts w i l l i n e v i t a b l y involve the use o f some m a t h e m a t i c a l formalities. T h e chapter is concerned w i t h some s p e c i a l cases of t w o very general s t r u c t u r e topics: (1) certain relationships between structures a n d s u b s t r u c tures, a n d (2) s t a b i l i t y properties o f s t r u c t u r e s . T h e first concerns the fact t h a t a given s t r u c t u r e is s e l d o m isolated, b u t w i l l t y p i c a l l y exist as a s u b structure of a larger one. For e x a m p l e , a s t r u c t u r e representation of an object i n space w i l l n o r m a l l y appear as a s u b s t r u c t u r e of t h r e e - d i m e n s i o n a l E u c l i d e a n space. F u r t h e r m o r e , an i s o m o r p h i s m of the representation m u s t somehow involve the E u c l i d e a n space i f the t h r e e - d i m e n s i o n a l i t y is to be preserved. A s i m i l a r o b s e r v a t i o n applies to the more general case of any s t r u c t u r e and its e x t e r n a l properties {Section 8). In order for a n i s o m o r p h i s m of the s t r u c t u r e t o preserve a given e x t e r n a l property, it m u s t recognize the e m b e d d i n g associated w i t h the d e f i n i t i o n of t h a t property. O n e feature of the second t o p i c , o n s t a b i l i t y properties, was t o u c h e d u p o n i n S e c t i o n 12, where we called it a " p r i n c i p l e o f s t r u c t u r a l s t a b i l i t y " . T h e p r i n c i p l e asserts t h a t , i f two s t r u c t u r e representations are "sufficiently near or s i m i l a r " to one another, then they w i l l be i s o m o r p h i c . It was i l l u s t r a t e d i n Section 12 w i t h a s i m p l e e x a m p l e c o n c e r n i n g the p e r c e p t i o n o f a circle f r o m a d r a w i n g . T h e r e are m a n y other more c o m p l e x a n d subtle examples (such as precision of c o m m u n i c a t i o n m e n t i o n e d i n Section 30) w h i c h suggest a very b r o a d p r i n c i p l e of s t r u c t u r a l s t a b i l i t y . A l t h o u g h it is not at a l l clear e x a c t l y w h a t is h a p p e n i n g i n most of these cases, i t is obvious t h a t s o m e such p r i n c i p l e m u s t a p p l y despite the u n i v e r s a l difficulty of s p e l l i n g out the 179
STRUCTURALISM AND
180
STRUCTURES
d e t a i l s . A c o m m o n p r o b l e m is the f o r m u l a t i o n o f an a p p r o p r i a t e d e f i n i t i o n o f "nearness" for the structures i n v o l v e d . In order to suggest the n a t u r e o f the p r o b l e m , we offer a precise m a t h e m t i c a l t r e a t m e n t for s i m p l e p o i n t - l i n e structures i n Sections 69 a n d 70, the last two sections of the chapter. I n a d d i t i o n to the above "nearness" e x a m p l e s , there is a variety of other m o r e s u b t l e e x a m p l e s t h a t also e x h i b i t i n one way or another s t a b i l i t y p h e n o m e n a i n v o l v i n g s t r u c t u r e s . O n e of these is " c a t a s t r o p h e t h e o r y " . R o u g h l y s p e a k i n g , the idea b e h i n d the l a t t e r is t h a t c e r t a i n systems, under a c o n t i n u o u s change o f c o n d i t i o n s , tend to persist i n a given state (i.e., r e m a i n stable) up t o a c r i t i c a l p o i n t at w h i c h an a d d i t i o n a l s m a l l change causes the s y s t e m t o shift a b r u p t l y (i.e., c a t a s t r o p h i c a l l y ! ) t o a different (stable) state. A l t h o u g h the subject has its o r i g i n s i n m a t h e m a t i c s , where the p h e n o m e n a i n question m a y be described very precisely, there are m a n y examples of analogous p h e n o m e n a for systems t h a t are not m a t h e m a t i c a l in character. S o m e of the l a t t e r f r o m biology were discussed i n S e c t i o n 56. E x a m p l e s of b o t h k i n d s are i n c l u d e d i n Sections 65-68, w h i c h are devoted to a v e r y b r i e f account of the theory. T h e next section c o n t a i n s an o u t l i n e of elementary m a t e r i a l concerni n g E u c l i d e a n spaces. T h e s e spaces provide the s e t t i n g for m a n y of the e x a m p l e s discussed below. 61. E u c l i d e a n Spaces T h r e e - d i m e n s i o n a l E u c l i d e a n space is the f o r m a l m a t h e m a t i c a l represent a t i o n of the p h y s i c a l space i n w h i c h we live. It is t r a d i t i o n a l l y defined i n t e r m s of a s y s t e m o f a x i o m s not essentially different f r o m those o r i g i n a l l y l a i d d o w n by E u c l i d a n d s t u d i e d to this day i n elementary geometry. A l l of the a x i o m s , except p o s s i b l y the parallel a x i o m , represent o b v i o u s properties o f p h y s i c a l space. In other words, they are consistent w i t h the n a t u r a l space i n t u i t i o n possessed by v i r t u a l l y everyone as a result of ( b o t h i n d i v i d u a l a n d e v o l u t i o n a r y ) experiences w i t h the e n v i r o n m e n t . U n d e f i n e d t e r m s m e n t i o n e d i n the a x i o m s are the " p o i n t s " , " l i n e s " , a n d " p l a n e s " , where the lines a n d planes are s p e c i a l sets of p o i n t s . E u c l i d e a n space is a s t r u c t u r e , i n the sense of our d e f i n i t i o n , i n w h i c h p o i n t s , lines, a n d planes are the objects a n d relations are specified b y the a x i o m s . T h e s u b s t r u c t u r e o b t a i n e d b y r e s t r i c t i o n to a single plane i n the space, is called a " E u c l i d e a n p l a n e " or a " t w o - d i m e n s i o n a l E u c l i d e a n space". O n e o f the basic concepts i n o r d i n a r y E u c l i d e a n space is the n o t i o n of p o i n t s (also called a distance denoted by for any two points P a n d Q of the space. It is p o s i t i v e or zero, zero o n l y if a n d is s y m m e t r i c i n and (i.e., | P Q | = It also satisfies the i n e q u a l i t y , \PR\ < \PQ\ + \QR\, w h i c h h o l d s for any three points a n d asserts t h a t the length of one side of a t r i a n g l e is never
distance between X = Y,
P.Q.R,
function),
P
Q
\PQ\
\QP\).
IX. S P A C E S T R U C T U R E S A N D
181
STABILITY
greater t h a n the s u m o f the lengths of the other two sides. T h e e q u a l i t y holds o n l y i f the points are collinear a n d hence d e t e r m i n e a "degenerate" triangle. A E u c l i d e a n space m a y also be represented " a n a l y t i c a l l y " b y use o f a (usually C a r t e s i a n ) c o o r d i n a t e s y s t e m . T h i s leads to a r e p r e s e n t a t i o n of p o i n t s by ordered pairs (x,y) o f real n u m b e r s , i n two d i m e n s i o n s , a n d by ordered triples i n three d i m e n s i o n s . T h e real n u m b e r s are the coordinates o f the p o i n t s . L i n e s a n d planes are represented (or defined) by l i n e a r equations i n v o l v i n g the c o o r d i n a t e variables. T h e v a r i o u s relations a m o n g these objects specified by the a x i o m s (such as the intersection p r o p erties) m a y be w o r k e d out using elementary algebra. T h e distance \AA'\ between t w o p o i n t s (a,fc,c) a n d i n three d i m e n s i o n s , is given b y the f o r m u l a ,
(x,y,z),
x,y,z
A =
\AA'\
=
{{a - a')2
A' = (a',b',^),
+ (b - b')2
+ (c-
c') ] ' . 2
1
2
A s i m i l a r t w o - t e r m f o r m u l a holds i n two d i m e n s i o n s . If P is a g i v e n p o i n t of the space a n d e is an a r b i t r a r y positive n u m b e r , then the set of a l l points such t h a t < e is c a l l e d a of A subset of the space is s a i d t o be i f each of its points a d m i t s a n e i g h b o r h o o d contained w i t h i n the set.
Q
\PQ\ open
neighborhood
P.
analytic geometry,
A l l of t h i s is p a r t of the subject of a n d it m a y be verified t h a t we indeed have a representation of a E u c l i d e a n space. N o t e t h a t the i n t r o d u c t i o n o f a c o o r d i n a t e s y s t e m a m o u n t s to a representation of the geometry system i n t e r m s of the real n u m b e r s y s t e m . 62. S u b s t r u c t u r e s of E u c l i d e a n Space A given s y s t e m is u s u a l l y regarded as characterized b y c e r t a i n o f its s t r u c t u r e properties. F r o m t h i s p o i n t of v i e w , the general i s o m o r p h i s m p r o b l e m is to construct t r a n s f o r m a t i o n s of the s y s t e m t h a t preserve these characteristic properties. It is not difficult to see t h a t the c o l l e c t i o n of a l l t r a n s f o r m a t i o n s of a s y s t e m to itself, t h a t preserve specified s t r u c t u r a l properties, c o n s t i t u t e a group under the t r a n s f o r m a t i o n p r o d u c t defined i n Section 2 1 . In this a n d the next section, we describe s i m p l e examples w h i c h b r i n g out v a r i o u s aspects of the above p r o b l e m i n a E u c l i d e a n space, a n d at the same t i m e set the stage for a special e x a m p l e o f s t r u c t u r a l s t a b i l i t y i n Section 64. W e k n o w f r o m elementary geometry t h a t the m a p p i n g s , or t r a n s f o r m a tions, of a E u c l i d e a n space t h a t preserve the E u c l i d e a n s t r u c t u r e are the r i g i d m o t i o n s . T h e y preserve distances, as w e l l as lines, planes, a n d angles, a n d c o n s t i t u t e a g r o u p , the E u c l i d e a n g r o u p , w h i c h is generated ( i n the sense o f Section 21) by t r a n s l a t i o n s , r o t a t i o s , a n d reflections. These are
182
STRUCTURALISM
AND STRUCTURES
the t r a n s f o r m a t i o n s t h a t i m p l e m e n t the congruences i n E u c l i d e a n geometry. F o r e x a m p l e , a t r i a n g l e is a s p e c i a l s u b s t r u c t u r e of E u c l i d e a n space and is transformed by each element of the group i t o a congruent t r i a n g l e . A l t h o u g h the r i g i d t r a n s f o r m a t i o n s are e x a c t l y those t h a t preserve the s t r u c t u r e of E u c l i d e a n space, we concluded i n Section 6 t h a t the "size" of a b u i l d i n g s t r u c t u r e was irrelevant to its a c t u a l s t r u c t u r e . In other words, it is the " s h a p e " o f a figure t h a t is often i m p o r t a n t to s t r u c t u r e , not the d i m e n s i o n s . T h i s a m o u n t s to a l l o w i n g t r a n s f o r m a t i o n s t h a t o n l y preserve relative distances as opposed to a c t u a l distances. These are t r a n s f o r m a t i o n s such t h a t , i f d i s t i n c t p o i n t s are t a k e n i n t o p o i n t s then m u s t be e q u a l t o |AB|/|C_>|. S u c h t r a n s f o r m a t i o n s c o n s t i t u t e a g r o u p , called the g r o u p . It o b v i o u s l y contains the r i g i d t r a n s f o r m a t i o n s as a s u b g r o u p . Its elements, w h i c h s t i l l preserve lines, planes, and angles, are called s i m i l a r i t y t r a n s f o r m a t i o n s , a n d m a y take a t r i a n g l e , for e x a m p l e , i n t o a s i m i l a r rather t h a n a congruent t r i a n g l e . In a l l o w i n g i s o m o r p h i s m s o f this k i n d , we o b v i o u s l y a b a n d o n those s t r u c t u r e properties of E u c l i d e a n space t h a t are scale-dependent.
A,B,C,D
\A'B'\l\C'Ly\
A',B',C',D',
similarity
F i n a l l y , i f the t r a n s f o r m a t i o n s are o n l y required t o preserve lines ( a n d hence planes), the result is a larger g r o u p , the group. Afhne transform a t i o n s need not preserve either angles or ratios of distances, but o b v i o u s l y w i l l t r a n s f o r m triangles i n t o triangles. In fact, a l l (nondegenerate) t r i a n gles are equivalent under the affine g r o u p . T h i s means t h a t , g i v e n any two t r i a n g l e s , there always exists an affine t r a n s f o r m a t i o n of the space t h a t takes one i n t o the other. W i t h this step, the E u c l i d e a n space is i n effect replaced b y an whose properties depend on p o i n t s , lines, a n d their intersection properties.
affine
affine space
T h e three groups described above give progressively weaker notions of s t r u c t u r e i s o m o r p h i s m . In other words, the larger the g r o u p , the easier it is for t w o structures to be i s o m o r p h i c a l l y equivalent. These r e m a r k s w i l l be i l l u s t r a t e d by some examples f r o m a n a l y t i c geometry i n the next section. 63. T h e C o n i c Sections T h e conic sections are substructures o f a E u c l i d e a n plane a n d consist of the f a m i l i a r circles, ellipses, p a r a b o l a s , a n d h y p e r b o l a s . A l t h o u g h the conies m a y be o b t a i n e d as plane sections of a r i g h t c i r c u l a r cone, it is g e o m e t r i c a l l y more convenient t o describe t h e m i n t e r m s o f the f o c u s - d i r e c t r i x property. T h i s is a characteristic geometric p r o p e r t y and involves a fixed p o i n t F (the a fixed line (the assumed not be c o n t a i n a n d an a r b i t r a r y fixed p o s i t i v e real n u m b e r (the
focus),
L
directrix) e
eccentricity).
F,
In the plane determined by F a n d L, denote by P a n a r b i t r a r y p o i n t and by D the p e r p e n d i c u l a r p r o j e c t i o n of P onto L. I n t h i s setup, the locus of points P such t h a t \FP\ = e\DP\ is a conic w i t h d i r e c t r i x L, focus F, and
IX. S P A C E S T R U C T U R E S A N D
STABILITY
183
eccentricity e. T h e result is a n ellipse, p a r a b o l a , or h y p e r b o l a a c c o r d i n g as e < 1, e = 1, or e > 1. N o t i c e t h a t the d e f i n i t i o n suggests i m m e d i a t e l y a s t r u c t u r a l d e s c r i p t i o n of a conic. It is a s u b s t r u c t u r e of a E u c l i d e a n p l a n e whose objects consist of the focus F a n d d i r e c t r i x L p l u s the set of a l l p o i n t s P such t h a t the t e r n a r y r e l a t i o n \FP\ = e\DP\ is satisfied. T h e one defect of the d e f i n i t i o n is t h a t i t gives no circles, except p e r h a p s the degenerate p o i n t - c i r c l e "F" o b t a i n e d b y t a k i n g e = 0. Nevertheless, a r b i t r a r y circles are often i n c l u d e d a m o n g the ellipses a n d regarded as h a v i n g zero eccentricity. T h e three conies covered b y the d e f i n i t i o n are i l l u s t r a t e d i n F i g u r e 63.1.
Parabola: e = 1 .
Hyperbola: Fig.
e>1.
63.1
Because s i m i l a r i t y t r a n s f o r m a t i o n s of the p l a n e preserve lines a n d r a t i o s of distances, i t is evident t h a t t h e y w i l l t r a n s f o r m each conic i n t o a s i m i l a r one w i t h the same eccentricity. It is also t r u e t h a t , i f t w o conies possess the s a m e eccentricity, t h e n there exists a s i m i l a r i t y t h a t takes one i n t o the other. I n p a r t i c u l a r , a l l p a r a b o l a s {and also a l l circles) are s i m i l a r , b u t t w o ellipses or two h y p e r b o l a s are not s i m i l a r unless their eccentricities are equal. A l t h o u g h one c a n perceive the difference i n shape between t w o ellipses w i t h different eccentricities, we also recognize t h a t t h e y have i n c o m m o n the p r o p e r t y of b e i n g a n ellipse. I n ther words, there is a s t r u c t u r e c o m m o n
184
STRUCTURALISM AND
STRUCTURES
to a l l ellipses independent o f their eccentricities. T h e same is also true of h y p e r b o l a s a n d , o f course, p a r a b o l a s . F u r t h e r m o r e , a l t h o u g h it is not q u i t e as o b v i o u s , a s i m i l a r r e m a r k holds for all o f the conies. It t u r n s out t h a t the affine group i n the p l a n e is the group t h a t preseves the structures c o m m o n t o each o f the three classes of conies, the p a r a b o l a s , ellipses ( i n c l u d i n g circles), a n d hyperbolas. T h i s means t h a t affine t r a n s f o r m a t i o n s m a p each class i n t o itself, a n d , given any two conies i n the same class, there w i l l exist an affine t r a n s f o r m a t i o n w h i c h t r a n s f o r m s one i n t o the o t h e r . T h i s is the f o r m a l i z a t i o n of a p r o p e r t y t h a t we already expected to be t r u e a b o u t conies. For the sake o f completeness, it is desirable to give a very brief e x p l a n a t i o n of the above less obvious r e m a r k a b o u t s t r u c t u r e c o m m o n to all of the conies. T h e t r u t h of the r e m a r k m i g h t already be expected f r o m the fact, m e n t i o n e d o n the next page, t h a t each conic m a y be represented i n a n a l y t i c geometry as the g r a p h of a q u a d r a t i c e q u a t i o n . In order t o m a k e t h i n g s precise i n t e r m s o f t r a n s f o r m a t i o n s , however, we need to replace the E u c l i d e a n plane by a projective p l a n e . T h e l a t t e r m a y be defined a x i o m a t i c a l l y , t h u s p r o v i d i n g a basis for T h e a x i o m s are s i m i l a r t o the E u c l i d e a n a x i o m s (but w i t h o u t the p a r a l l e l a x i o m or a n o t i o n of distance), a n d the f u n d a m e n t a l objects are s t i l l p o i n t s and lines. T r a n s f o r m a t i o n s w h i c h m a p a projective plane pointwise onto itself a n d preserve the p r o jective geometry c o n s t i t u t e a g r o u p , the and its elements are c a l l e d In a d d i t i o n t o a p r o j e c t i v e p l a n e , there are higher d i m e n s i o n a l projective spaces.
projective geometry.
projeciivities.
projective group,
A s was r e m a r k e d i n Section 19, a projective plane m a y be represented b y a E u c l i d e a n plane plus a line at infinity consisting of points at infinity. N o t e , however, t h a t the points a n d l i n e at infinity are no different f r o m any other points and lines i n the projective plane. T h e y are d i s t i n g u i s h e d o n l y t h r o u g h their r e l a t i o n s h i p to the E u c l i d e a n p l a n e regarded as embedded i n the p r o j e c t i v e p l a n e . I n this s e t t i n g , because the graphs o f p a r a b o l a s and h y p e r b o l a s "go off t o i n f i n i t y " , i t is n a t u r a l t o e x t e n d t h e m i n the project i v e p l a n e . W h e n t h i s is p r o p e r l y done, a p a r a b o l a w i l l c o n t a i n one p o i n t at i n f i n i t y a n d a h y p e r b o l a w i l l c o n t a i n two. A n ellipse is c o n t a i n e d entirely w i t h i n the E u c l i d e a n p o r t i o n so does not involve any infinite p o i n t s . Because the designated l i n e at infinity is not generally preserved by a p r o j e c t i v i t y , the above setup m a y also f a i l to be preserved. I n p a r t i c u l a r , an ellipse m a y not be t r a n s f o r m e d i n t o another ellipse. It t u r n s out t h a t p r o j e c t i v i t i e s do m a p conies i n t o conies, a n d , given any p a i r of (nondegenerate) conies, there exists a p r o j e c t i v i t y t h a t m a p s one i n t o the o t h e r . A n y t w o conies are a c c o r d i n g l y s a i d t o be " p r o j e c t i v e l y e q u i v a l e n t " . T h u s , we o b t a i n the desired f o r m a l i z a t i o n o f the n o t i o n t h a t the conies possess a c o m m o n s t r u c t u r e . F i n a l l y , i f a p r o j e c t i v i t y leaves a
IX. S P A C E S T R U C T U R E S A N D
STABILITY
!85
" l i n e at i n f i n i t y " i n v a r i a n t , then i t induces an affine t r a n s f o r m a t i o n i n the associated E u c l i d e a n plane. Conversely, every affine t r a n s f o r m a t i o n of the given E u c l i d e a n plane is the r e s t r i c t i o n of a p r o j e c t i v i t y . In this sense the affine group is a subgroup of the projective g r o u p . N o t i c e t h a t , i n the above discussion of the conies, we have regarded t h e m as substructures of successively weaker geometric s t r u c t u r e s . F i r s t they were defined i n t e r m s of E u c l i d e a n geometry, w h i c h was i m m e d i a t e l y a b a n d o n e d for the geometry o f shapes. N e x t i n order were the affine a p r o j e c t i v e geometries of the p l a n e . A s s o c i a t e d w i t h each geometry was its c h a r a c t e r i s t i c group o f s t r u c t u r e - p r e s e r v i n g i s o m o r p h i s m s : the s i m i l a r i t y g r o u p , the affine g r o u p , a n d the projective g r o u p respectively. I n each case, the abstract structures d e t e r m i n e d by the conies were defined b y a n o t i o n of i s o m o r p h i s m p r o v i d e d by the group associated w i t h the ambient geometric s t r u c t u r e . T h u s i n the shape geometry, there is a (conic) s t r u c t u r e for each value of the eccentricity. In the affine geometry, there are three structures associated respectively w i t h the ellipses, p a r a b o l a s , and h y p e r b o l a s . F i n a l l y , i n the projective geometry there is o n l y one s t r u c t u r e c o m m o n t o a l l of the conies. It is possible ( a n d also interesting) to s t u d y conies f r o m a s t r i c t l y geom e t r i c p o i n t o f view, either as conic sections or using the f o c u s - d i r e c t r i x d e f i n i t i o n , b u t the most powerful a n d convenient a p p r o a c h is t h r o u g h an¬ geometry. In the l a t t e r , a coordinate s y s t e m is i n t r o d u c e d i n t o the p l a n e whereby a conic m a y then be represented as the g r a p h of a n equat i o n . F o r e x a m p l e , i n the o r d i n a r y C a r t e s i a n c o o r d i n a t e s y s t e m , each conic is the g r a p h of a q u a d r a t i c equation i n the c o o r d i n a t e variables x a n d y. Conversely, except for some "degenerate" cases, it m a y be proved t h a t each such e q u a t i o n represents a conic. T h e general e q u a t i o n has the f o r m ,
alytic
Ax2 + 2Bxy + Cy2 + Dx + Ey + F = 0, A,B,C,D,E,F
A,B,C
where the coefficients are real constants and are not a l l zero. T h e g r a p h of such a n e q u a t i o n m a y reduce to a single point or f a i l t o e x i s t . T h e e q u a t i o n m a y also be factorable, i n w h i c h case its g r a p h reduces to one or two s t r a i g h t lines. These are the degenerate cases. O t h e r w i s e , the g r a p h w i l l be an ellipse, p a r a b o l a , or a h y p e r b o l a , a c c o r d i n g as the " d i s c r i m i n a n t " B2 —AC of the e q u a t i o n is negative, zero, or p o s i t i v e . C i r c l e s are i n c l u d e d a m o n g the ellipses a n d are o b t a i n e d w h e n B = 0 and
A = C.
T h e r e m a i n i n g sections of this chapter are devoted t o e x a m p l e s t h a t i l l u s t r a t e a v a r i e t y of p h e n o m e n a associated w i t h the general n o t i o n of s t r u c t u r a l s t a b i l i t y . T h e first one involves a f a m i l y o f conies.
186
STRUCTURALISM AND STRUCTURES
64. Stability i n a F a m i l y of Conies T h e e x a m p l e described i n this section i l l u s t r a t e s a n aspect of s t r u c t u r a l s t a b i l i t y q u i t e different f r o m previous e x a m p e s . It is a s p e c i a l case of a general s i t u a t i o n i n w h i c h one is g i v e n a f u n c t i o n (or m a p p i n g ) / denned i n one ( u s u a l l y E u c l i d e a n ) space and taking of a second space E' as values. T h u s , / associates t o each p o i n t P of E, for w h i c h i t is defined, a s u b s t r u c t u r e f(P) of E'. N o w , i f / is denned for points P a n d Q, t h e n the structures f(P) a n d f(Q) m a y be defined t o be near to one another i f P a n d Q are near i n E. T h e s t a b i l i t y q u e s t i o n t h e n takes the form:
E
substructures
"IfQ is sufficiently near to P, then is the structure f(Q) isomorphic to f{P)?> For a general s y s t e m of t h i s k i n d , a p o i n t P of E is defined to be regular if
i t a d m i t s a n e i g h b o r h o o d such t h a t the structures c o r r e s p o n d i n g to p o i n t s of the n e i g h b o r h o o d are i s o m o r p h i c . O t h e r w i s e , is s a i d t o be T h e regular p o i n t s (if any exist) constitute the a n d the r e m a i n i n g p o i n t s , a l l of w h i c h are s i n g u l a r , c o n s t i t u t e the It w o u l d be unreasonable t o expect regular p o i n t s t o exist w i t h o u t c o n d i t i o n s o n / t h a t somehow recognize s p e c i a l properties of the t w o spaces. R a t h e r t h a n p u r s u e these general questions, we go d i r e c t l y to our e x a m p l e , w h i c h , t h o u g h very s p e c i a l , e x h i b i t s some o f the i n t e r e s t i n g p h e n o m e n a associated w i t h such systems.
P singular. region of stability, singular set.
T h e space E i n the e x a m p l e w i l l be a E u c l i d e a n p l a n e , w i t h coordinates a n d the structures w i l l be conic sections represented i n a second Euclidean plane w i t h coordinates T h e conic i n the i y - p l a n e associated w i t h the p o i n t (s, f) is g i v e n b y the s p e c i a l e q u a t i o n ,
(s,t),
E'
(x,y).
sx2 + y2 - 2tx - 2ty +12 C(s,t).
= 0,
C(s,t)
a n d denoted b y The manner i n which t h r o u g h o u t the s t - p l a n e is suggested b y F i g u r e 6 4 . 1 .
depends o n
and (
1
I! H hyperbolas
s
E
P
parabolas
ellipses circles
D" lines H hyperbolas
D' points P
parabolas
HI
£ ellipses IV
Fig.
64.1
-> s
IX. S P A C E S T R U C T U R E S A N D
STABILITY
187
O b s e r v e t h a t the s t - p l a n e is d i v i d e d i n t o five d i s j o i n t subsets denoted by ( D ' , D", P, E, H) a n d consisting respectively of those p o i n t s (s, t) for w h i c h is a p o i n t (the o r i g i n ) , a l i n e , a p a r a b o l a , an ellipse ( i n c l u d i n g the circle), or a h y p e r b o l a . D' is the r i g h t h a l f and D" is the left h a l f of the _-axis, w i t h the o r i g i n assigned to D". P is the (-axis m i n u s the o r i g i n . T h e set E consists of q u a d r a n t s I and I V , w h i l e H consists of q u a d r a n t s II a n d III, w i t h the axes o m i t t e d i n each case. N o t e t h a t E and H are open sets. T h e s i t u a t i o n m a y be described precisely as follows:
C(s,t)
t=
C(s,t)
If 0, then the conic is degenerate, r e d u c i n g t o a single p o i n t w h e n s > 0, two d i s t i n c t lines when s < 0, a n d two copies of the x - a x i s w h e n s = 0. If ( / 0, then C ( s , ( ) is always a nondegenerate conic tangent to the y - a x i s at the p o i n t (0, f), a vertex of the o c n i c . T h e type of conic depends o n the value of s: If 8 = 0, then C ( 0 , () is a p a r a b o l a w i t h vertex (0,i).
s
C(s,t)
If > 0, then is an ellipse w i t h center C ( l , t ) is a circle w i t h center ((,() and r a d i u s (.
(t/s,t).
If s < 0, then C ( s , f ) is a h y p e r b o l a w i t h center
In p a r t i c u l a r ,
(t/s,t).
If we now define s t r u c t u r e i s o m o r p h i s m s i n t e r m s o f the affine t r a n s f o r m a t i o n s of the p l a n e , then the sets E and H c o n s t i t u t e the regular p o i n t s . T h i s means t h a t each p o i n t of E (or of H) a d m i t s a n e i g h b o r h o o d in w h i c h is an ellipse (or a h y p e r b o l a ) . A l l other points of the s f - p l a n e are s i n g u l a r . A l t h o u g h every n e i g h b o r h o o d of a s i n g u l a r p o i n t contains points whose associated s t r u c t u r e s are not i s o m o r p h i c , the b e h a v i o r f r o m one s i n gular p o i n t to another may vary a great deal. T h u s C ( s , t ) degenerates to a p o i n t (the o r i g i n ) on D' and to a pair of lines o n D", but is a p a r a b o l a on
C(s,t)
P.
C(s,t)
If for each p o i n t (s, f) we replace by the abstract s t r u c t u r e defined b y the collection of conies affinely isomorphic to C ( x , f ) , the result is a s t r u c t u r e - v a l u e d f u n c t i o n C ( s , ( ) w h i c h is constant i n each of the sets E and _ / , but is not constant i n any neighborhood of a s i n g u l a r p o i n t . In other words, the s t r u c t u r e values of the function undergo "changes of f o r m " near s i n g u l a r p o i n t s . F u r t h e r m o r e , as we have already noted (Section 12), such changes must i n one way or another take place a b r u p t l y . It is therefore suggestive to describe t h i s phenomenon by s a y i n g t h a t a s t r u c t u r e - v a l u e d f u n c t i o n is " d i s c o n t i n u o u s " at its singular p o i n t s . However, as the above example already shows, this k i n d of d i s c o n t i n u i t y is generally more c o m p l e x t h a n m i g h t be s u r m i s e d f r o m the f a m i l i a r p i c t u r e of a " j u m p " d i s c o n t i n u i t y i n the g r a p h of a s i m p l e f u n c t i o n . Because a l l o f the change takes place near the s i n g u l a r p o i n t s , it is obvious t h a t properties of the s i n g u l a r set are c e n t r a l to a s t u d y of systems of this k i n d . A
18S
65.
STRUCTURALISM
Catastrophe
AND
STRUCTURES
Theory
T h e m a t h e m a t i c s u n d e r l y i n g catastrophe theory, w h i c h includes m a n y i m p o r t a n t c o n t r i b u t i o n s to pure a n d a p p l i e d m a t h e m a t i c s , goes back to work by P o i n c a r e , and is c o m m o n l y k n o w n under the less d r a m a t i c labels of " s i n g u l a r i t y " or " b i f u r c a t i o n " theory. T h e s y s t e m a t i c development of the subject i n its present f o r m , however, is due to Rene T h o r n [ T l ] , w h o suggested m a n y of the p o t e n t i a l a p p l i c a t i o n s to other fields r a n g i n g f r o m physics t h r o u g h cosmology and b i o l o g y to language and t h o u g h t . H e also i n t r o d u c e d the t e r m "catastrophe" to describe the relevant p h e n o m e n a perceived i n each of these areas. Because of the s t r o n g analogy between catastrophe theory and p h e n o m e n a i n so m a n y other fields, few other m a t h e m a t i c a l subjects have a t t r a c t e d as m u c h general a t t e n t i o n . It has been covered b y stories i n m a j o r newspapers and magazines as one of the great i n t e l l e c t u a l movements of the century, a m o u n t i n g to a m a t h e m a t i c a l r e v o l u t i o n c o m p a r a b l e to t h a t brought o n by N e w t o n ' s i n v e n t i o n of the C a l c u l u s ! A l t h o u g h m u c h of the reason for this a t t e n t i o n is due to the broad (and often m i s u n d e r s t o o d ) claims made for the subject by T h o r n himself, perhaps even more is due to its vigorous p r o m o t i o n by E . C . Z e e m a n , who has o u t l i n e d i n some d e t a i l a p p l i c a t i o n s to a wide variety of p r o b l e m s . These i n c l u d e , a l o n g w i t h t r a d i t i o n a l topics f r o m physics and engineering, developmental biology, conflicting j u d g e ments caused by stress, the stock exchange, and p r i s o n disturbances [ Z l ] . A fact w h i c h accounts for m u c h of the general interest a n d e n t h u s i a s m for catastrophe theory is t h a t the m a t h e m a t i c a l p h e n o m e n a i n the elementary theory are easy to visualize and are s t r i k i n g l y s i m i l a r to p h e n o m e n a equally easy to observe i n m a n y other fields. S i m i l a r i t i e s as s t r o n g as these cert a i n l y suggest a c o m m o n u n d e r l y i n g s t r u c t u r e of some k i n d . O n the other h a n d , it is a very large step to presume t h a t the m a t h e m a t i c a l s t r u c t u r e s , or even future generalizations of t h e m , w i l l be adequate to treat a l l such p h e n o m e n a . Y e t s o m e t h i n g close to this is suggested i n some discussions of the subject. S k e p t i c i s m at such c l a i m s need not extend to the possible value of using the m a t h e m a t i c a l s t r u c t u r e as a descriptive or m e t a p h o r i c a l device to "exp l a i n " p h e n o m e n a not yet susceptible to m a t h e m a t i c a l t r e a t m e n t . S u c h use m a y suggest a theoretical treatment a p p r o p r i a t e to the field i n question, and m i g h t even have some predictive value, quite apart f r o m the p o s s i b i l i t y or not of c o n s t r u c t i n g a q u a n t i t a t i v e m o d e l . W i t h respect to this p o i n t , i t is b o t h relevant and i l l u m i n a t i n g to see w h a t T h o r n has to say on the question of q u a n t i t a t i v e m o d e l i n g i n the s o c i a l sciences [ Z l , p. 637], H i s r e m a r k s , w h i c h refer i n d i r e c t l y to a classification of s t r u c t u r e s , are o b v i ously a p p l i c a b l e to a m u c h wider class of structures t h a n those involved i n catastrophe theory.
IX. S P A C E S T R U C T U R E S A N D S T A B I L I T Y
189
In s o c i a l sciences, s t i l l more t h a n i n exact sciences, the hope of findi n g q u a n t i t a t i v e m o d e l l i n g of catastrophes is very s l i g h t . G r a n t e d t h a t C T leads t o b a s i c a l l y q u a l i t a t i v e m o d e l l i n g , w h a t m a y be the i n t e r est of such m o d e l s ? C e r t a i n l y not e x p e r i m e n t a l c o n f i r m a t i o n , w h i c h w o u l d not be at a l l s u r p r i s i n g , since the m o d e l is c o n s t r u c t e d precisely to generate the given morphology. A first answer, I t h i n k , is as f o l l o w s : C T is ( q u i t e l i k e l y ) the first coherent a t t e m p t (since A r i s t o t e l i a n L o g i c ) to give a theory o n W h e n n a r r o w - m i n d e d scientists o b j e c t to C T t h a t it gives no more t h a n analogies, o r m e t a p h o r s , they do not realize t h a t they are s t a t i n g the proper a i m of C T , w h i c h is to classify a l l possible types of analogous s i t u a t i o n s ... N o w the posi t i v i s t o b j e c t i o n may be rephrased as follows: W h e r e a s q u a n t i t a t i v e m o d e l l i n g allows us t o use c o m p u t a t i o n , a n d therefore is more powerful t h a n c o m m o n sense i n t u i t i o n , how c o u l d q u a l i t a t i v e m o d e l l i n g be stronger t h a n u s u a l , o r d i n a r y language d e d u c t i o n ? H o w can a q u a l i t a t i v e m o d e l be s o m e t h i n g more t h a n an i d l e , superfluous geometric p i c t u r e of c o m m o n sense i n t u i t i o n ? T h i s o b j e c t i o n , I believe, has some v a l i d i t y . B u t i t w i l l lose its s t r e n g t h , precisely i n so far as a complete C T w i l l be c o n s t r u c t e d , w h i c h w i l l a l l o w f o r m a l d e d u c t i o n , and c o m b i n a t o r i a l generation of new forms f r o m a set of g i v e n forms. In as m u c h as C T develops i n t o a f o r m a l s y n t a x of ( p l u r i d i m e n s i o n a l ) c a t sastrophes, we w i l l be able t o go f r o m a purely v e r b a l d e s c r i p t i o n to an a b s t r a c t , t o p o l o g i c a l m o r p h o l o g y w h i c h we w i l l be able t o h a n d l e w i t h p u r e l y f o r m a l , algebraic tools. Hence we m i g h t p u t i n t o c o n n e c t i o n a p p a r e n t l y disjoint facts, predict unexpected s i t u a t i o n s , or, at least, reduce the a r b i t r a r i n e s s o f the d e s c r i p t i o n . A s I s a i d earlier, reducing the a r b i t r a r i n e s s of the d e s c r i p t i o n r e a l l y is the proper d e f i n i t i o n of scientific e x p l a n a t i o n . . . .
analogy.
T h e t e r m " c a t a s t r o p h e " is an extreme e x a m p l e of the use o f a word f r o m o r d i n a r y language to designate a pure m a t h e m a t i c a l concept. T h e u s u a l m o t i v a t i o n i n such usage is t h a t some aspect of the m e a n i n g or c o n n o t a t i o n of the chosen word suggests i n some way the associated m a t h e m a t i c a l concept. ( N o t i c e t h a t this practice is analogous to the m e t a p h o r i a l use of m a t h e m a t i c a l language i n n o n m a t h e m a t i c a l fields, a use sometimes c r i t i cized because it gives a false impression of scientific content!) A l t h o u g h the practice is c o m m o n t h r o u g h o u t m a t h e m a t i c s , it is sometimes confusing to outsiders, w h o often t r y to discover a t e r m ' s m a t h e m a t i c a l m e a n i n g by s t u d y i n g its etymology, or t o connect some of its irrelevant m e a n i n g s or c o n n o t a t i o n s to the m a t h e m a t i c s . F r o m the s t a n d p o i n t of s t r u c t u r e s , this approach makes a certain a m o u n t of sense, but the choice of such m a t h e m a t i c a l t e r m i n o l o g y is often so superficial t h a t n o t h i n g of m u c h significance can result. A t any r a t e , the w o r d " c a t a s t r o p h e " is c e r t a i n l y suggestive, i f
190
STRUCTURALISM
AND
STRUCTURES
s o m e w h a t overly d r a m a t i c , for some of the m a t h e m a t i c a l p h e n o m e n a o b served i n s i n g u l a r i t y theory. O n the other h a n d , i t is also different i n t h a t i t offers u n u s u a l l y s t r o n g encouragement t o the i l l u s i o n t h a t the m a t h e m a t ics i n q u e s t i o n m i g h t carry over to areas where even the p o s s i b i l i t y o f any r i g o r o u s m a t h e m a t i c a l t r e a t m e n t is d e b a t a b l e . 66.
Zeeman's Catastrophe M a c h i n e
T h e i n g e n i o u s l y s i m p l e " m a c h i n e " described here is due to E . C . Z e e m a n [ Z l ] . Since i t m a y be easily c o n s t r u c t e d b y anyone w h o is interested, it offers a n o p p o r t u n i t y t o observe the catastrophe p h e n o m e n o n first h a n d . T h e m a c h i n e , w h i c h is i l l u s t r a t e d i n F i g u r e 6 6 . 1 , consists of a r e c t a n g u l a r b o a r d , a ( r i g i d ) c i r c u l a r disc, a n d two r u b b e r b a n d s . T h e d i a m e t e r o f the disc s h o u l d be a b i t larger t h a n the n a t u r a l l e n g t h of a r u b b e r b a n d . A s i n d i c a t e d i n the figure, the center 0 of the disc is fastened t o the b o a r d so t h a t the disc m a y r o t a t e freely. T h e r u b b e r b a n d s are fastened to the disc at a p o i n t Q near its p e r i m e t e r , a n d the other end o f one b a n d is fastened t o a p o i n t A of the b o a r d , so t h a t distance AO is e q u a l t o a p p r o x i m a t e l y twice the n a t u r a l l e n g t h o f the b a n d . T h e free end C of the other b a n d m a y be m o v e d freely over the surface o f the b o a r d . T h e l a t t e r is called the " c o n t r o l space" a n d the p o i n t C is c a l l e d the " c o n t r o l p o i n t " . T h e value z of the angle between the line a n d the r a d i u s of the disc is c a l l e d the " s t a t e " of the s y s t e m .
/.AOQ,
AO
Fig.
OQ
66.1
W i t h each choice of the p o i n t C , the s y s t e m w i l l assume b y disc r o t a t i o n a state za for w h i c h the p o t e n t i a l energy c o n t a i n e d i n the stretched bands is a l o c a l m i n i m u m (i.e., a m i n i m u m a m o n g those energy values of states z near „ _ ) If the p o i n t C is m o v e d c o n t i n u o u s l y over the surface o f the b o a r d , the angle z w i l l also change continuously, except for c e r t a i n l o c a t i o n s at w h i c h a s m a l l change of p o s i t i o n m a y cause a n a b r u p t change o f state. B y experi m e n t a t i o n , one m a y locate enough of these e x c e p t i o n a l p o i n t s t o suggest t h a t they lie o n a s y m m e t r i c , d i a m o n d - s h a p e d curve w i t h four cusps, as
IX. S P A C E S T R U C T U R E S A N D
STABILITY
191
i n d i c a t e d i n the figure. W h e n C is m o v e d u p w a r d s along a v e r t i c a l line w h i c h intersects the r i g h t h a l f of the d i a m o n d , the angle z w i l l change c o n t i n u o u s l y u n t i l C reaches a p o i n t D of the u p p e r b o u n d a r y of the d i a m o n d , w h e r e u p o n the disc w i l l s u d d e n l y t u r n counter-clockwise, s h i f t i n g the p o i n t Q f r o m below to a b o v e the center line. If C is m o v e d back d o w n the v e r t i c a l line, the s u d d e n shift back w i l l take place as C crosses the lower b o u n d a r y of the d i a m o n d . If the v e r t i c a l line intersects the left h a l f of the d i a m o n d , t h e n the same t h i n g w i l l h a p p e n , except t h a t the i n i t i a l a b r u p t disc r o t a t i o n w i l l be c l o c k w i s e . T h e p o i n t C m a y be m o v e d c o n t i n u o u s l y f r o m any p o i n t outside the d i a m o n d to any other p o i n t of the b o a r d w i t h o u t sudden changes of state, p r o v i d e d a p a t h is chosen t h a t does not enter the d i a m o n d f r o m below or above a n d leave f r o m the o p p o s i t e (upper or lower) b o u n d a r y . T h e s a m e is true w h e n the s t a r t i n g p o i n t is inside the d i a m o n d , except t h a t i f the p a t h e x i t s the d i a m o n d , then i t m u s t do so by crossing the " c o r r e c t " side, d e p e n d i n g o n the i n i t i a l state o f the s y s t e m . G i v e n a fixed control p o i n t C , it is possible t o w r i t e d o w n a f o r m u l a for the p o t e n t i a l energy E i n t e r m s of the state v a r i a b l e z a n d coordinates of C , a n d t h e n to o b t a i n an e q u a t i o n i n v o l v i n g coordinates of C a n d z w h i c h m u s t be satisfied b y z i n order for the energy to be a m i n i m u m . Despite the s i m p l i c i t y of the e x a m p l e , the equations involve features t h a t do not concern us here, so we t u r n to a s i m p l e r m a t h e m a t i c a l e x a m p l e c o n s t r u c t e d expressly t o b r i n g out the desired ideas. A n e q u a l l y s i m p l e ( n o n m a t h e m a t i c a l ) e x a m p l e f r o m biology w i l l be described i n the n e x t section. 67.
A Mathematical Example T h e f o l l o w i n g basic e x a m p l e , w h i c h is i l l u s t r a t e d b y the g r a p h s i n F i g u r e 67.1 b e l o w , i n one f o r m or another is a s t a n d a r d i t e m i n most e l e m e n t a r y t r e a t m e n t s o f catastrophe. It is s t r i c t l y m a t h e m a t i c a l i n content, b u t m a y be t h o u g h t of as a r i s i n g f r o m a h y p o t h e t i c a l m e c h a n i c a l s y s t e m . S u p p o s e , as i n Z e e m a n ' s e x a m p l e , t h a t a c e r t a i n m e c h a n i c a l s y s t e m depends o n (or is " c o n t r o l l e d b y " ) two p a r a m e t e r s x a n d y. A choice o f p a r a m e t e r values m a y be represented by a p o i n t (x, y) i n a c o o r d i n a t e p l a n e . T h e collection o f a l l such p o i n t s is called the " c o n t r o l space" o f the s y s t e m . A l s o , let z be a p a r a m e t e r whose values d e t e r m i n e the " s t a t e " of the syst e m . N o w assume t h a t the " p o t e n t i a l energy" E of the s y s t e m , for a fixed p o i n t (*, If) of the control space a n d state z, is given b y the f o r m u l a ,
E= zA -2yz2
-4.xz.
T h e v a r i a b l e s x, y, z are independent of one another, a n d it is assumed t h a t the s y s t e m is free to move f r o m one state to another.
19_
STRUCTURALISM AND
Fig.
67.1
STRUCTURES
IX. S P A C E S T R U C T U R E S A N D
STABILITY
19.'1
For each p o i n t o f the c o n t r o l space, the s y s t e m w i l l a u t o m a t i c a l l y assume a state such t h a t the value of the p o t e n t i a l energy is a l o c a l m i n i m u m . F o r a g i v e n c o n t r o l p o i n t (x, y), the value (or values) of z for w h i c h E is a l o c a l e x t r e m e ( m a x i m u m or m i n i m u m ) must satisfy the f o l l o w i n g e q u a t i o n (in three v a r i a b l e s ) ,
z3 = yz + x. dE/dz
It is o b t a i n e d by s e t t i n g the p a r t i a l d e r i v a t i v e e q u a l t o zero. A p o r t i o n of the g r a p h of this e q u a t i o n , w h i c h is an infinitely extended surface in three-space, is represented below i n F i g u r e 67.1 (a). T h e front edge of the p o r t i o n of the surface represented i n the figure is the curve traced o n the surface b y a v e r t i c a l plane p e r p e n d i c u l a r to the y - a x i s at the p o i n t y = 3. Its e q u a t i o n is given by z
3
= 3z-r~,
a n d its g r a p h i n the x z - p l a n e is represented by F i g u r e 67.1 (b). N o t i c e h o w the surface folds back on itself and t h a t , to each p o i n t ( x , y) i n the x y - p l a n e , there corresponds one, two, or three points on the surface. T h e fold-back p o i n t s , such as, for e x a m p l e , the points (—2,3,1) and ( 2 , 3 , - 1 ) , are those points o n the surface where the tangent plane to the surface is v e r t i c a l . These points f o r m a curve o n the surface, a n d project onto a curve i n the x y - p l a n e w i t h the e q u a t i o n , 4y
3
= 27x . 2
Its g r a p h is i n d i c a t e d i n F i g u r e 67.1 (c), a n d , for reasons t o appear later, it is called the "catastrophe s e t " . For each c o n t r o l p o i n t ( x , y ) outside of the catastrophe set, the z - c o o r d i n a t e of the c o r r e s p o n d i n g p o i n t ( x , y , z) o n the surface determines a state for w h i c h E has a l o c a l extreme value. In order to observe the catastrophe p h e n o m e n o n i n this e x a m p l e , we note the b e h a v i o r of the point P o n the surface as its c o n t r o l p o i n t C i n the x y - p l a n e moves f r o m far left to far right a l o n g line y = 3. A s C traces the l i n e , P moves s m o o t h l y a l o n g the surface (i.e., a l o n g the curve represented i n (b)) u n t i l C reaches the p o i n t ( 2 , 3 ) , w h e r e u p o n P m u s t j u m p s u d d e n l y to the u p p e r p o r t i o n of the curve. T h i s is the catastrophe o c c u r r i n g at the p o i n t near ( 2 , 3 ) . In the same way, i f C moves f r o m far right t o far left a l o n g y = 3, a catastrophe occurs when C reaches the p o i n t (—2,3). T h e p o i n t s (2,3) a n d ( - 2 , 3 ) o b v i o u s l y belong to the catastrophe set c o n s i s t i n g of points of the curve (c). P h e n o m e n a s i m i l a r to the above w i l l o c c u r i f the c o n t r o l p o i n t C moves c o n t i n u o u s l y a l o n g any s m o o t h curve i n the x y - p l a n e t h a t crosses the " g r a y "
STRUCTURALISM AND
194
STRUCTURES
region enclosed b y the curve (c), e n t e r i n g the region f r o m one side {left or r i g h t ) a n d l e a v i n g f r o m the o t h e r , w h i l e a v o i d i n g the cusp p o i n t 0 at the o r i g i n . T h e catastrophe occurs o n l y w h e n C leaves the r e g i o n . T h e cusp p o i n t 0 is s p e c i a l , because C m a y leave t h e region at 0 w i t h o u t a d i s c o n t i n u o u s change of state. T h e effect o f e n t e r i n g at 0 is a m b i g u o u s since a curve m a y be extended c o n t i n u o u s l y f r o m the cusp p o i n t o n the surface a l o n g any one of t h e surface levels. N o t i c e t h a t , except for the m i d d l e p o r t i o n o f the f o l d i n the surface, the p o i n t P m a y be m o v e d c o n t i n u o u s l y to any p o i n t o n the surface b y m o v i n g t h e c o n t r o l p o i n t C a l o n g a s m o o t h curve t h a t p r o p e r l y avoids the catastrophe set. F o r e x a m p l e , the p o i n t B o n the u p p e r level of the surface ( F i g u r e 67.1 (a)) m a y be reached f r o m the p o i n t A o n the lower l e v e l a l o n g a curve L w h i c h projects onto the c o n t r o l space i n a curve V t h a t passes above the cusp a n d approaches the p r o j e c t i o n A' o f A f r o m the r i g h t . C r o s s i n g the catastrophe set f r o m the r i g h t i n t h i s w a y w i l l not produce a d i s c o n t i n u o u s change o f state. T h e p o i n t s o n the m i d d l e o f t h e f o l d c o r r e s p o n d t o states for w h i c h the energy f u n c t i o n has a m a x i m u m . T h e y a c c o r d i n g l y represent u n s t a b l e states a n d are inaccessible t h r o u g h stable states, except p o s s i b l y t h r o u g h the cusp. O n e of the results f r o m s i n g u l a r i t y theory is t h a t the s i n g u l a r i t y set associated w i t h a n a r b i t r a r y ( s m o o t h ) surface i n three space consists at m o s t of f o l d p o i n t s a n d cusps. T h e theory also extends t o control spaces of d i m e n s i o n s different f r o m t w o . T h u s , i f the c o n t r o l space is one d i m e n s i o n a l , t h e n the o n l y possible s i n g u l a r i t i e s are f o l d p o i n t s . A n e x a m p l e is o b t a i n e d f r o m the above e x a m p l e b y r e s t r i c t i n g e v e r y t h i n g t o the l i n e y = 3. T h e s i t u a t i o n becomes progress!vewly m o r e c o m p l e x as the d i m e n s i o n increases, b u t there are s t i l l o n l y a finite n u m b e r o f possible t y p e s o f s i n g u l a r i t i e s , l a b e l e d b y such descriptive t e r m s as " l i p s " , " b e a k s " , a n d " s w a l l o w t a i l s " , t h u s p r o v i d i n g m o r e examples of " c o l o r f u l " m a t h e m a t i c a l t e r m i n o l o g y . For another v i e w of w h a t is h a p p e n i n g here, we present i n F i g u r e 67.2 3 graphs of the energy f u n c t i o n , = z —
E
E
(-3,3)
E
(-2,31
4
2yz — 4xz.
E
[-1,31 Fig.
E
E
E
(1,3)
(2,3)
13,3)
67.2
IX. S P A C E S T R U C T U R E S A N D
STABILITY
195
T h e g r a p h s , w h i c h correspond to a few s p e c i a l c o n t r o l p o i n t s a l o n g the line y = 3, are not d r a w n t o scale since the result w o u l d be c u m b e r s o m e a n d i t is o n l y necessary t o see clearly the n u m b e r a n d t y p e of c r i t i c a l p o i n t s i n each case. T h e i d e a is t o suggest how the graphs l o c a l m i n i m a , change as the control p o i n t moves f r o m left to r i g h t along the l i n e . T h e l o c a l m i n i m u m in each case is i n d i c a t e d by a heavy " d o t " o n the curve. I n c o o r d i n a t i n g the following observations w i t h the preceding r e m a r k s , it is i m p o r t a n t to a v o i d a confusion of values of z w i t h the c o r r e s p o n d i n g values of E. I n other words, at a l o c a l m i n i m u m of the energy f u n c t i o n , i t is the value o f E t h a t is a m i n i m u m a n d not the value o f z. N o t i c e t h a t i t is the value o f z, rather t h a n the value o f E, t h a t determines a p o i n t o n the surface i n F i g u r e 67.1 (a). T h e energy f u n c t i o n has f r o m one t o three c r i t i c a l p o i n t s . W h e n the c o n t r o l p o i n t C lies i n the " g r a y " region (See F i g u r e 67.1 (c)), there are three p o i n t s , one m a x i m u m a n d t w o m i n i m a . W h e n C is i n the catastrophe set (except for the c u s p ) , there are two p o i n t s , one m i n i m u m a n d one inflection p o i n t . T h e l a t t e r is neither a m a x i m u m nor a m i n i m u m . F o r all other choices of C , there is o n l y one c r i t i c a l p o i n t , a m i n i m u m . A s C moves f r o m left to r i g h t a l o n g the l i n e y = 3, the r - c o o r d i n a t e of the m i n i m u m p o i n t changes c o n t i n u o u s l y u n t i l we reach the p o i n t ( 2 , 3 ) , where the m i n i m u m p o i n t i n question becomes an inflection p o i n t . T h i s is an u n s t a b l e s t a t e , a n d any further change i n C w i l l force z to shift a b r u p t l y f r o m the value -1 to 2 because the l a t t e r value gives the other m i n i m u m point. It is i n s t r u c t i v e t o consider the above e x a m p l e f r o m the p o i n t of v i e w of structures as discussed i n Section 64. T h e idea is to look at the g r a p h of the energy f u n c t i o n (a differentiable f u n c t i o n of z ) as a s t r u c t u r e associated w i t h each p o i n t o f the x y - p l a n e . T h e g r a p h , for a fixed control p o i n t , m a y be a n a l y z e d i n different ways as a s t r u c t u r e , d e p e n d i n g o n w h i c h p r o p e r t i e s one wishes t o e m p h a s i z e . I n the present case, it is the " c r i t i c a l p o i n t s t r u c t u r e " t h a t is i m p o r t a n t . A " c r i t i c a l p o i n t " is a p o i n t o f the g r a p h at w h i c h the tangent is h o r i z o n t a l ( t h a t is, where the d e r i v a t i v e is zero), a n d is either a l o c a l e x t r e m e p o i n t or a n inflection p o i n t . T h e " c r i t i c a l p o i n t s t r u c t u r e " is the ordered sequence of c r i t i c a l p o i n t s o f the g r a p h , a l o n g w i t h the i n f o r m a t i o n as t o whether the p o i n t is a l o c a l m a x i m u m , a l o c a l m i n i m u m , or a n inflection p o i n t . T h e o r d e r i n g of the sequence is w i t h respect to the n a t u r a l o r d e r i n g o n the z-axis.
dE/dz
If we denote a m i n i m u m p o i n t by m (or in'), a m a x i m u m p o i n t by M, a n d an i n f l e c t i o n p o i n t b y I, t h e n the six c r i t i c a l p o i n t s t r u c t u r e s of the graphs i l l u s t r a t e d i n F i g u r e 67.2 may be s y m b o l i z e d as follows: m,
m < I,
m < M < m',
m<M
< in',
I < m,
m,
196
STRUCTURALISM
where " < " means "lies to the left o f .
AND STRUCTURES
T h e r e are four n o n i s o m o r p h i c s t r u c -
tures i n t h i s collection: m,
m < I,
I < m,
m< M <
m',
w h i c h , f u r t h e r m o r e , exhaust a l l o f the possibilities i n the present e x a m p l e . T h u s , we have a s y s t e m consisting o f e x a c t l y one of these four s t r u c t u r e s associated w i t h each p o i n t of the i j / - p l a n e . R e c a l l t h a t a p o i n t of the x y - p l a n e is called a regular p o i n t of the s y s t e m if it has a n e i g h b o r h o o d i n w h i c h the associated structures are i s o m o r p h i c . O t h e r w i s e the p o i n t is called a s i n g u l a r p o i n t . T h e set of regular p o i n t s is called the a n d the set of s i n g u l a r points is c a l l e d the set. I n the present e x a m p l e , the s i n g u l a r set consists of the p o i n t s o n the g r a p h of the curve i n F i g u r e 67.1 (c), a n d the s t a b i l i t y region consists of a l l other p o i n t s . In the " g r a y " region enclosed by the g r a p h , the s t r u c t u r e s are of the type m < M < m'. O t h e r w i s e they are a l l of t y p e m outside of the g r a p h a n d at the cusp. ( T h e energy f u n c t i o n reduces t o E = z4 a t the c u s p , a n d its g r a p h has a m i n i m u m at z = 0.) O n the left h a n d b r a n c h of the g r a p h they are of type m < I, a n d o n the r i g h t h a n d b r a n c h t h e y are o f t y p e I < m. T h e reader w i l l no d o u b t notice the resemblance o f this e x a m p l e to the one i n Section 63. O n the other h a n d , i n order t o b r i n g out the c a t a s t r o p h y p h e n o m e n o n i n t h i s s e t t i n g , i t is necessary t o look at these s i m p l e s t r u c t u r e s a b i t differently.
stability region,
singular
In the first place, the catastrophe b e h a v i o r concerns o n l y the l o c a l s t r u c ture o f the graphs. In fact, i t only involves a p a r t i c u l a r l o c a l m i n i m u m p o i n t a n d the w a y the l a t t e r varies w i t h the control p o i n t In order to see this, we have o n l y to fix a t t e n t i o n either on a left h a n d m i n i m u m p o i n t or on a r i g h t h a n d m i n i m u m p o i n t , where those g r a p h s w i t h o n l y one m i n i m u m m a y be i n c l u d e d i n either case. T h e c r i t i c a l p o i n t structures are thus reduced t o o n l y t w o , w h i c h m a y be represented b y " m _ " (left h a n d m i n i m u m ) a n d " m + " (right h a n d m i n i m u m ) , respectively. T h e regular set for m _ is the x y - p l a n e m i n u s the r i g h t - h a n d b r a n c h o f the curve i n F i g ure 67.1 (c). S i m i l a r l y , the regular set for m+ is the p l a n e m i n u s the left h a n d b r a n c h of the curve. T h u s , the s i n g u l a r sets are respectively the t w o branches of the curve a n d include the cusp i n b o t h cases. T h e catastrophe p h e n o m e n o n occurs because the r e g u l a r i t y sets overlap.
(x,y).
68.
A t t a c k or R e t r e a t
N o discussion of catastrophe theory w o u l d be c o m p l e t e w i t h o u t a des c r i p t i o n of at least one of its controversial a p p l i c a t i o n s . T h e controversy is a c t u a l l y not a b o u t the p h e n o m e n a themselves, a l l o f w h i c h are p l a u sible a n d most i n t e r e s t i n g , but o n l y concerns the question of whether or
IX. S P A C E S T R U C T U R E S A N D
STABILITY
197
not a genuine m a t h e m a t i c a l t r e a t m e n t is possible. I n c i d e n t a l l y , the s u g gested catastrophes are often of the elementary cusp t y p e i l l u s t r a t e d i n the preceding section. T h e e x a m p l e o u t l i n e d here is t y p i c a l a n d is also due t o Z e e m a n [ Z l ] , w h o discusses it and a v a r i e t y of other s i m i l a r e x a m p l e s i n considerable d e t a i l . It concerns the "fight or f l i g h t " b e h a v i o r of a t e r r i t o r i a l fish t o w a r d other fish t h a t m i g h t enter the t e r r i t o r y s u r r o u n d i n g i t s nest. F o r s i m p l i c i t y , we assume t h a t the b e h a v i o r m a y range c o n t i n u o u s l y f r o m the one e x t r e m e of a n a l l out a t t a c k on a n invader t o the opposite e x t r e m e of a hasty retreat. It is also reasonable to assume t h a t the b e h a v i o r w i l l depend p r i m a r i l y o n t w o v a r i a b l e s , the size s of an invader a n d the distance r of the invader f r o m the nest. T h e general s i t u a t i o n is suggested b y F i g u r e 68.1 a n d e x p l a i n e d below.
r
0 Fig.
68.1
S m a l l values of s a n d r w i l l n o r m a l l y lead to an a t t a c k , w h i l e large values w i l l n o r m a l l y c a l l for a retreat. These conflicting m o d e s p r o v i d e the s e t t i n g for a catastrophe p h e n o m e n o n . T h e control variables are s a n d r w h i c h assume o n l y p o s i t i v e values. A c r u c i a l p o i n t i n the c o n t r o l space w i l l be ( o,rrj), e r e srj is the size o f the defending fish, a n d rn is the distance f r o m the nest to the perceived b o u n d a r y of the t e r r i t o r y . A p o t e n t i a l a c t i o n at a g i v e n p o i n t (s, r ) of the control space is represented i n the figure b y an arrow p a r a l l e l t o the r - a x i s . T h e arrow i n d i c a t e s a n a t t a c k or retreat m o d e a c c o r d i n g as i t p o i n t s i n the d i r e c t i o n of i n c r e a s i n g or decreasing r , a n d its l e n g t h suggests the i n t e n s i t y of t h p o t e n t i a l a c t i o n . It is assumed t h a t the larger of any two fish w i l l tend to a t t a c k the s m a l l e r . T h u s , i f the defender encounters a fish s m a l l e r t h a n itself (i.e. s < so), i t w i l l d r i v e the latter beyond the b o u n d a r y of its t e r r i t o r y , w i t h the i n t e n s i t y of the a t t a c k decreasing t o w a r d zero as r increases. s
w n
198
STRUCTURALISM AND
STRUCTURES
Suppose now t h a t the defender D encounters a n i n v a d e r I of m o d e r a t e size s> Sq a n d at a s m a l l value of r where the i n s t i n c t t o defend the nest is great, so t h a t D w i l l attack I i n order to d r i v e it away (See F i g . 68.1.). Since the i n s t i n c t t o defend decreases as r increases, there w i l l be a d i s t a n c e at w h i c h the fear o f the larger enemy overrides the d r i v e to a t t a c k . A t this p o i n t , D w i l l shift a b r u p t l y f r o m an a t t i t u d e of attack t o one o f r e t r e a t . T h e u p p e r curve i n the figure represents those points (s, r ) at w h i c h these shifts take place. O n the other h a n d , i f the i n i t i a l encounter o c c u r s at a distance r so t h a t the p o i n t (s, r) lies above t h i s curve, D's first response w i l l be to retreat f r o m the larger i n d i v i d u a l , a n d the retreat w i l l continue t o a p o i n t where i n s t i n c t t o defend the nest becomes s t r o n g enough t o overcome the fear. A t this p o i n t , D ' s a t t i t u d e w i l l shift a b r u p t l y f r o m retreat to a t t a c k . These p o i n t s c o n s t i t u t e the lower curve i n the figure. It is also reasonable to assume t h a t , i f s is larger t h a n some value si (greater t h a n so), the i n s t i n c t t o defend w i l l not be s t r o n g enough to overcome the fear, once the l a t t e r has t a k e n over. U n d e r these c o n d i t i o n s , D w i l l no d o u b t a b a n d o n the nest [ Z l , p . 14]. T h e catastrophe-like phenomenon occurs here because D's b e h a v i o r m o d e when s > so, whether attack or retreat, w i l l tend t o persist u n d e r changes of the v a r i a b l e r beyond a p o i n t where t h a t m o d e w o u l d be i n i t i a t e d . T h e r e fore, when s > so, the intervals of r values t h r o u g h w h i c h the i n i t i a l a t t i tudes persist w i l overlap for the two cases discussed above. T h e above d e s c r i p t i o n , t h o u g h o b v i o u s l y an o v e r s i m p l i f i c a t i o n , is a p p a r ently close enough to the a c t u a l b e h a v i o r of t e r r i t o r i a l fish t h a t i t m i g h t serve as a tentative m o d e l of t h a t b e h a v i o r . F u r t h e r m o r e , the a n a l o g y w i t h the m a t h e m a t i c a l e x a m p l e discussed i n Section 67 is so s t r o n g t h a t i t is t e m p t i n g to assume t h a t a m a t h e m a t i c a l m o d e l m i g h t exist for the present case. T h e p r o b l e m i n the c o n s t r u c t i o n of such a m o d e l is, first, the i d e n t i f i c a t i o n o f a b i o l o g i c a l s t r u c t u r e t h a t w i l l account for the b e h a v i o r i n q u e s t i o n . In a d d i t i o n , t h a t s t r u c t u r e must a d m i t a m a t h e m a t i c a l descript i o n e x h i b i t i n g its dependence on the c o n t r o l variables (s, r) a n d o n one or more i n t e r n a l parameters t h a t d e t e r m i n e the state of the s y s t e m . G i v e n a m o d e l s a t i s f y i n g these c o n d i t i o n s , i t m i g h t then be possible to " p r e d i c t " the cusp-type catastrophe suggested i n F i g u r e 6 8 . 1 . T h e p r a c t i c a l i t y , or even the p o s s i b i l i t y , of s a t i s f y i n g the above c o n d i t i o n s for the e x a m p l e of t e r r i t o r i a l fish, or for any o f the m a n y other s i m i l a r examples, is open t o question. O n the other h a n d , as suggested by T h o r n ' s r e m a r k s concerning q u a n t i t a t i v e m o d e l s for social science quoted a b o v e , i t m a y be too m u c h to d e m a n d for these examples a rigorous m a t h e m a t i c a l m o d e l o f the t r a d i t i o n a l k i n d . It m a y nevertheless be possible to construct a n o n m a t h e m a t i c a l m o d e l , w h i c h e x h i b i t s properties analogous t o those of the m a t h e m a t i c a l e x a m p l e , a n d is also precise enough for m a k i n g at least
I X . SPACE STRUCTURES AND
STABILITY
199
qualitative predictions. 69.
M e t r i c Spaces
T h i s a n d the next section are devoted to a precise m a t h e m a t i c a l t r e a t m e n t o f the " p r i n c i p l e of s t r u c t u r a l s t a b i l i t y " for the case of p o i n t - l i n e s t r u c t u r e s . A s has already been p o i n t e d o u t , the difficult p r o b l e m here is t o f o r m u l a t e a n a p p r o p r i a t e d e f i n i t i o n o f "nearness" for the s t r u c t u r e s . T h i s p r o b l e m accounts for most o f the t e c h n i c a l i t i e s t h a t d o m i n a t e the f o l l o w i n g discussion. A l t h o u g h we are p r i m a r i l y interested i n E u c l i d e a n spaces, i t t u r n s out to be n o t a t i o n a l l y easier here to deal w i t h p o i n t - l i n e s t r u c t u r e s i n a general " m e t r i c space". T h i s section a c c o r d i n g l y contains a d e f i n i t i o n a n d some properties o f m e t r i c spaces.
space
S
A metric is s i m p l y an abstract p o i n t set along with a real-valued "distance f u n c t i o n " d(p, q) defined for each p a i r (p, q) o f p o i n t s i n S. d(p, q) is also c a l l e d a " m e t r i c " a n d is subject to the f o l l o w i n g three c o n d i t i o n s suggested b y c o r r e s p o n d i n g properties of distance i n a E u c l i d e a n space: (1)
PosUiviiy. d(p, q) > 0, w i t h d(p, q) = 0 i f a n d o n l y i f p = q. Symmetry: d(p,q) = d(q,p), for a l l points p a n d q. triangle inequality: d(p,r) < d(p,q) + d(q, r ) , for any
(2) (3) T h e p o i n t s p, q, a n d r o f
three
S.
T h e n u m b e r d(p, q) is defined to be the " d i s t a n c e " between the p o i n t s , so m a y be regarded as a measure of how " n e a r " p is t o q i n S. T h e E u c l i d e a n spaces are o b v i o u s l y m e t r i c spaces, b u t there are m a n y e x a m p l e s of the l a t t e r t h a t are not E u c l i d e a n . I n other words, not a l l properties o f a E u c l i d e a n space are d e t e r m i n e d b y its m e t r i c .
neighborhoods
S
Basic of p o i n t s i n a m e t r i c space are defined e x a c t l y as i n the s p e c i a l case of a E u c l i d e a n space. A t y p i c a l such n e i g h b o r h o o d is denoted by where £ is an a r b i t r a r y p o s i t i v e n u m b e r , a n d consists of the set o f a l l p o i n t s q i n S such t h a t d(p, q) < £. N o w consider a finite p o i n t - l i n e s t r u c t u r e c o n t a i n e d i n the m e t r i c space 5". Its objects w i l l c o n s t i t u t e a set of points in a n d the s t r u c t u r e w i l l be denoted b y F . R e c a l l t h a t the s t r u c t u r e r e l a t i o n is b i n a r y a n d therefore m a y be represented by a d i s t i n g u i s h e d collection of ordered pairs of p o i n t s of F. T h u s , an o b j e c t / w i l l be related t o another o b j e c t / ' p r o v i d e d ( / , / ' ) is i n t h a t collection. It w i l l also be convenient to a d o p t the convention t h a t each object of the s t r u c t u r e is related t o itself, so the d i s t i n g u i s h e d c o l l e c t i o n w i l l c o n t a i n a l l pairs of the f o r m ( / , / ) - O b s e r v e t h a t w i t h these conventions the s t r u c t u r e A is represented as a (finite) set of of p o i n t s of T h i s m e a n s t h a t FA is represented as a subset [ F ] of the C a r t e s i a n 5 x 5 o f the space w i t h itself. T h e l a t t e r consists of pairs
N(p,e),
finite
F
S
A
F , including both objects and pairs F.
relations,
A
product
S
all
STRUCTURALISM
200
AND STRUCTURES
(p, q) of p o i n t s p a n d q f r o m S, a n d the subset consisting of a l l p o i n t s (p, q) w i t h p = q is c a l l e d the " d i a g o n a l " of 5" x S . I n the representation [F*] of F i n 5 x 5 , the objects (points of F) c o r r e s p o n d t o d i a g o n a l elements a n d every d i a g o n a l element i n [ F ] represents a n o b j e c t . I n other words, the objects of FA are i n one-to-one correspondence w i t h the d i a g o n a l elements i n [ F ] . Observe t h a t [FA] also has the p r o p e r t y t h a t , i f i t contains a p o i n t (p, q), t h e n p a n d q are p o i n t s of F so it also contains the d i a g o n a l elements (p, p) a n d (a, q). Conversely, i t is easy t o see t h a t any finite subset of S x 5 w i t h t h i s p r o p e r t y a c t u a l l y represents a p o i n t - l i n e s t r u c t u r e i n S. A
A
A
A l t h o u g h i t is i m p o s s i b l e , i n g e n e r a l , t o c o n s t r u c t a t r u e p i c t u r e of 5 x 5 , it m a y be represented s y m b o l i c a l l y i n an o r d i n a r y c o o r d i n a t e p l a n e , as suggested b y F i g u r e 6 9 . 1 , where the space 5 is represented b y the p o s i t i v e h a l f of each n u m b e r axis. The Cartesian Product,
5 x 5
I P . p ' l
p'
P . P i
! —
/
i • f
s
iaqonal
___
ip'.pl
I P'
Fig.
69.1
It t u r n s out t h a t S x S is also a m e t r i c space under the f o l l o w i n g m e t r i c : <*l(P. 3). (f*. 4')] = m a x [ d ( p , p ' ) , <%,
_01>
derived f r o m the m e t r i c i n 5 . T h e p r o o f t h a t t h i s is indeed a m e t r i c is s t r a i g h t f o r w a r d a n d w i l l be o m i t t e d . T h e representation of F* i n S x 5 thus reduces the nearness p r o b l e m to defining nearness for T h e i d e a consists i n s h o w i n g t h a t the collection of subsets of any m e t r i c space is i t s e l f a m e t r i c space. Therefore, let X denote a n a r b i t r a r y m e t r i c space w i t h m e t r i x d(x, y), a n d denote by X* the collection o f a l l finite subsets o f X. W e define the distance between two " p o i n t s " and of (i.e., finite subsets o f X) as follows:
finite subsets of a metric space. all finite d(A,B)
A
B
X*
F i r s t , let p be a fixed p o i n t of the space X a n d A any finite subset of X. T h e n define the distance d(p, A) f r o m p to the set A as the value of a l l the distances as ranges over
minimum
d(p, x)
x
A.
IX. S P A C E S T R U C T U R E S A N D
STABILITY
N e x t , for a r b i t r a r y finite subsets A a n d B o f X, be the value of a l l the distances ranges over A and y ranges over B.
maximum
d(x,B)
d{A,B)
201
define d(A, and
d(y, A)
to
B) as
x
X'.
W e prove now t h a t is indeed a m e t r i c for E v e r y t h i n g is m o r e or less obvious f r o m definitions except the t r i a n g l e i n e q u a l i t y , w h i c h asserts t h a t , for a r b i t r a r y finite subsets A, B, a n d C o f X,
d{A,C)
+ d{B,C).
B y the preceding definitions, there exists either a p o i n t a . i n A or a point c in such t h a t or T h e two 0 cases are s i m i l a r , so we w i l l concentrate o n the first.
C
0
d(A,C) = d(ao, C)
d(A,C) = d(c , A).
B y d e f i n i t i o n of _ ( _ , C ) , it is less t h a n or e q u a l to d(on, c) for a r b i t r a r y c i n the set C. H e n c e , by the t r i a n g l e i n e q u a l i t y i n X, we have, 0
d(A,C)
and c i n C.
C h o o s e 60 i n B such t h a t
d(a0,b0) = T h e n , since d(o.o, B)
< d(A,
+ d(b,c), d(a0,B).
we o b t a i n
B),
d(A,C)
+ d(b0,c),
for a r b i t r a r y c i n C . N o w choose CQ i n C such t h a t d(6 ,c ) = 0
Again,
d(bo,C) < d(B,C),
0
d(6o,C).
so it follows t h a t
d(A,C)
+ d(B,C)l
c o m p l e t i n g the proof. 70.
Stability of Point-Line Structures.
W e are now i n a p o s i t i o n to give a precise d e f i n i t i o n of distance between t w o finite p o i n t - l i n e structures F a n d G i n a m e t r i c space S a n d therefore state a n d prove the p r i n c i p l e of s t r u c t u r a l s t a b i l i t y for these s t r u c t u r e s . Because F a n d G m a y be represented as finite subsets [ F ] and [ G ] of the C a r t e s i a n p r o d u c t 5 x 5 , they m a y accordingly be regarded as points i n the space ( 5 x S)' and their distance defined i n t e r m s of the ( 5 x 5 ) * metric. A
A
A
A
A
A
STRUCTURALISM AND S T R U C T U R E S
202
objects minimum
F i n a l l y , we w i l l need a measure of the " s p a c i n g " o f b e l o n g i n g to a structure F i n O n e o b v i o u s measure is the distance i n between d i s t i n c t p o i n t s of F. For t e c h n i c a l reasons, however, we define the spacing t o be the of t h i s m i n i m u m d i s t a n c e a n d the n u m b e r 1. T h e n s(F) w i l l be a f u n c t i o n w i t h values always less t h a n or equal t o 1 and p o s i t i v e i f F contains m o r e t h a n one p o i n t .
S.
A
s(F)
S
smaller
A f t e r a l l of these technical p r e l i m i n a r i e s , it is finally possible to state the s t a b i l i t y result t o w a r d w h i c h we have been w o r k i n g . N o t i c e t h a t the c o n d i t i o n r e q u i r i n g the sets [ F ] a n d [GA] i n SxS to have the same n u m b e r of p o i n t s is o b v i o u s l y for F a n d G to be i s o m o r p h i c , so m u s t be satisfied i n one way or another. W e prefer to include it e x p l i c i t l y as p a r t of the nearness c r i t e r i o n . A
necessary
A
A
Let F be a finite point-line structure in S with (nonzero) spacing S{F), and let G 6e any finite point-line structure in S suck that [GA] and [Fn] have the same number of points and A
A
d([F ],[G ])<s(F)/2. A
(*)
A
Then G must be isomorphic with FA. A
T h e p r o o f of this s t a t e m e n t , t h o u g h n o t so very difficult, is a d m i t t e d l y rather tedious, so m a y t r y the patience of m a n y readers. It is i n c l u d e d , h o w ever, as a n accessible piece of m a t h e m a t i c s i n v o l v i n g w o r t h w h i l e s t r u c t u r e ideas. W e begin w i t h a list of the key steps i n the proof:
(1) There exists a special one-to-one mapping M of[Gn] onto [FA] such that, for each (g, g') in [G ], A
d(M{g,g'),(g,g'))<s(F)/2. (2) There exists a one-to-one mapping m of G onto F such that, for each g in G, M(g,g) = (m(g),m(g)). (3) The mapping m of G onto F defines an isomorphism between the structures FA and G " For the p r o o f of (1), let (g,g') be a n a r b i t r a r y p a i r i n [ G ] a n d observe A
t h a t , by definition of the d i s t a n c e f u n c t i o n in (S
x S)'
a n d c o n d i t i o n (*),
d{[FA],(g,g'))
(g,g')
[F ].
A A where is the distance o f t o the set A l s o , by definition of t h i s " p o i n t - t o - s e t " d i s t a n c e , there exists ( / , / ' ) i n [ F ] such that d([FA],(g,9')), A
d((f,f>),(g,g'))
=
IX.
SPACE STRUCTURES A N D STABILITY
203
a n d hence,
d({f,n(9,9'))<s(F)/2. B y d e f i n i t i o n o f distances i n S x 5", t h e last i n e q u a l i t y is equivalent to the two inequalities,
d(f,g) < *(F)/2 and d(f'g') < s(F)/2, F u r t h e r m o r e , i f (e,e') were a n y other p o i n t of [FA]
such t h a t
d(e,g) < s(F)/2 and d(e',g') < s{F)/2, t h e n , by the t r i a n g l e i n e q u a l i t y ( a n d s y m m e t r y ) , it w o u l d follow t h a t d(e, / ) < d(e,
g) < s ( / ) / 2 + s ( F ) / 2 =
g) + d(f,
s(F).
d(e,f) < s(F),
This implies that which can hold only i f e = / . A similar a r g u m e n t also gives e' = / ' . I n other words, the o b t a i n e d p o i n t ( / , / ' ) i n A T h i s means t h a t [ F ] is u n i q u e l y d e t e r m i n e d b y t h e p o i n t in the c o n d i t i o n
(g,g')
A
[G ].
d((f,n(g,g'))<s(F)/2 determines a m a p p i n g M
of [ G ] i n t o [FA],
M(g,g') = so
with
A
(fJ'),
d{M(g,g'),(gl9'))<S(F)/2.
F u r t h e r m o r e , i f (e, e') is a n y p o i n t o f [FA], t h e n , as i n the p r e c e d i n g a r g u m e n t , there exists (h, h') i n [GA] such t h a t
d((e,e'),(h,h'))<s(F)/2. M(k,h')
-
M
onto [F ].
A Therefore, ( c , c ' ) . T h i s proves t h a t maps [ G ] F u r t h e r m o r e , since [ F J a n d [GA] have the same n u m b e r of p o i n t s , t h e m a p p i n g m u s t be one-to-one, c o m p l e t i n g t h e p r o o f of statement ( 1 ) . F o r t h e p r o o f o f (2), let (g,g) be a n a r b i t r a r y d i a g o n a l element of [GA], a n d set (e, T h e n , b y the t r i a n g l e i n e q u a l i t y ( a n d s y m m e t r y ) , A
A
e') = M(g,g).
d(e, e') < d{e, g) + _(„', g) < s(F)/2 + s(F)/2 = s(F), d(e,e') < ${F),
so a n d i t follows again t h a t e = e'. I n other words, each d i a g o n a l element of [ G ] is m a p p e d b y M to a d i a g o n a l element of [ F ] . A
A
204
STRUCTURALISM
M
AND STRUCTURES
onto [F ],
A there m u s t exist for each d i a g Since m a p s [ G ] one-to-one o n a l element (/, / ) o f [ F ] a n element (g, g') i n [ G ] such t h a t M(g, g') = (/, / ) . A l s o , since M m a p s d i a g o n a l elements o f [ G ] to d i a g o n a l elements o f A say ( e , e ) , a n d [F ], is a d i a g o n a l element o f Therefore, A
A
A
A
A
M(g,g)
[F ],
d(e,g) < s(F)/2.
<*(/, e) < d(f, g) + d(e, g) < s(F)/2 + s{F)/2 = s{F), s(F)
e.
M(g,g) {g,g') = (g,g)-
so _ ( / , e ) < a n d hence / = In other words, = (/,/)• Again, since is one-to-one, i t follows t h a t T h i s proves t h a t restricts to a one-to-one m a p p i n g o f the d i a g o n a l elements o f [ G ] o n t o t h e d i a g o n a l elements o f [ F ] . T h e r e f o r e , there exists a one-to-one m a p p i n g m of G o n t o F such t h a t , for each d i a g o n a l element (g,g) of [ G ] ,
M
M
A
A
A
M(g,g) = (m(g),m(g)), proving (2). T h e p r o o f o f ( 3 ) , w h i c h w i l l complete the p r o o f o f t h e s t a b i l i t y result, a m o u n t s to s h o w i n g t h a t the m a p p i n g m o f G o n t o F preserves relations i n G a n d FA. Since the relations are represented by the ( n o n d i a g o n a l ) elements o f [ G ] a n d [ F ] , i t w i l l be sufficient t o prove t h a t A
A
A
m(g,g') = (g,g')
(m(j),
m(g'))
for each p a i r i n [ G ] . A t this p o i n t , we k n o w o n l y t h a t t h i s is t r u e for d i a g o n a l elements. Therefore, let (_,_') be a n a r b i t r a r y pair i n [ G ] a n d set A
A
M
M
=
(/,/')•
Then
d(f,g) < s(F)/2
a n d _(/',') <
s(F)/2.
We also have
M(g,g) =
(m(.),m( )) and f f
M(9'l9')
=
{m(g'),m{g')),
a n d hence
d(m{g),g) < s(F)/2 and d(m(g'),g') < s(F)/2. Therefore,
d(f, m(g)) < d(f, g) + d(m(g), g) < s(F)/2 + s(F)/2 = s(F),
IX. S P A C E S T R U C T U R E S A N D
d(f,m(g)) < s(F), m(g'),
STABILITY
205
m(g).
so which implies / = T h e same a r g u m e n t also yields / ' = a n d completes the proof t h a t p o i n t - l i n e s t r u c t u r e s i n a m e t r i c space satisfy the p r i n c i p l e of s t r u c t u r a l s t a b i l i t y . T h e above s t a b i l i t y result is c e r t a i n l y not s u r p r i s i n g a n d it is n a t u r a l to ask why the p r o o f seems t o require so m u c h tedious d e t a i l . P a r t o f the e x p l a n a t i o n is t h a t the reader was not assumed t o be f a m i l i a r w i t h most of the m a t h e m a t i c a l concepts, so m a n y o f the details spelled out c o u l d have been o m i t t e d as " o b v i o u s " to an expert. P e r h a p s m o r e relevant is the fact t h a t , even for a t o p i c t h a t is rather easily u n d e r s t o o d i n f o r m a l l y , a more or less c o m p l e t e " r i g o r o u s " t r e a t m e n t c a n t u r n out to be s u r p r i s i n g l y difficult. W e saw this early o n i n Section 9, for e x a m p l e , w h e n we gave a f o r m a l t r e a t m e n t o f analogies. In the above discussion, c o n s t r u c t i o n of an a p p r o p r i a t e d e f i n i t i o n o f "nearness" for p o i n t - l i n e structures t u r n e d out t o be less r o u t i n e t h a n one m i g h t have guessed i n advance. P a r t o f the p r o b l e m is t h a t one tends to forget t h a t any d e f i n i t i o n o f nearness for a s t r u c t u r e must recognize b o t h objects a n d relations, and the l a t t e r are a l m o s t always less manageable t h a n the former. A n o t h e r u n a n t i c i p a t e d feature of the above proof is the mass of c o m p l i c a t i o n s i n v o l v e d i n the c o n s t r u c t i o n o f a structure i s o m o r p h i s m f r o m an a p p a r e n t l y very n a t u r a l definition o f nearness.
BIBLIOGRAPHY Albers, J., Despite Straight L i n e s , Yale University Press, New Haven, C T , 1984. Berlin, I,, Against the current: E s s a y s in the H i s t o r y of Ideas, Viking, New York, 1980. Branley, F.M. (ed.), S c i e n t i s t ' s Choice, Basic Books, New York, 1958. Brinkman, C. and Porter, R., Plasticity of M o t o r B e h a v i o r in M o n k e y s and Crossed Forelimb N e r v e s , Science 220 (1983), 438-440. Cairns-Smith, A.G., The F i r s t Organisms, (1985), 90-100.
Scientific American 252 N o . 6
Caws, P., Structuralism: The A r t of the Intelligible, (Contemporary Studies in Philosophy and the Human Sciences), Humanities International Press, Atlantic Highlands, NJ, 1988. Chappell, V.C. (ed.), The Philosophy of M i n d , Prentice-Hall, Englewood Cliffs, NJ, 1962; Dover Publications, New York, NY, 1981. Chomsky, N., Language and Problems of K n o w l e d g e , The M I T Press, Cambridge,, 1988. Cipra, B., M a t h e m a t i c s Untwists the Double Helix, Research News, Science 247 (1990), 913-915. Culliton, B.J., Rockefeller Braces for B a l t i m o r e , News & Comment, Science 247 (1990), 150-151. Daston, L. and Gigerenzer, G., B o o k R e v i e w s , Science 244 (1989), 1094. Davis, P.J., Applied M a t h e m a t i c s as a Social Contract, Mathematics Magazine 61 (1988), 139-147. DeGeorge, R.T. and F.M. (ed.), The Structuralists: From Strauss, Anchor Books, Doubleday, Garden City, NY, 1972. Dodson, M.M., Quantum Evolution and the Fold Catastrophe, (1975), 107-118. phes,
, Darwin's Law of Natural Selection Math. Biosci. 28 (1976), 243-274.
Eimas, P.D., The Perception 252 N o . 1 (1985), 46-52.
of Speech
and Thorn's in Early
Infancy,
Theory
Marx
to
Levi-
Evol. Theory 1 of
Catastro-
Scientific American
Eldridge, N. and Gould, S.J., Models in Paleobiology ( J . M . Schopf, e d . ) , Freeman, Cooper, San Francisco, C A , 1972, 82. Gailbraith, J.K., Gold Card Talks to John K e n n e t h Gaibraith, The Gold Card Update, American Express, April, 1988. Gardner, H., The Quest for M i n d , Second edition, The University of Chicago Press, Chicago, IL, 1981. Gay, P., Freud: A Life f o r O u r T i m e , W.W. Norton & Co., New York, 1988. Ghiselin, B. (ed.), The Creative Process, A Mentor Book, The New American Library, New York, 1952. Gleick, J., Chaos, Penguin Books, New York, 1988. Gould, S.J., E v e r Since D a r w i n , Norton paperback, New York, 1979. , The Panda's Thumb, Norton paperback, New York, 1982. , Hen's Teeth and H o r s e ' s Toes, Norton paperback, New York, 1984. , A Clock of E v o l u t i o n , Natural History Magazine 94 (1985), 12-26. 207
STRUCTURALISM A N D STRUCTURES , Darwinism and the Expansion (1982), 380-387.
of Evolutionary
Theory,
Science 216
, Wonderful Life, (The Burgess Shale and the Nature of History), W . W . Norton & Co., New York, 1989. Gould, S . J . & Eldridge, N . , Punctuated Equilibria: the Tempo and Mode of Evolution Reconsidered, Paleobiology 3 (1977), 115-151. Guckenheimer, J . , The Catastrophe C o n t r o v e r s y , The Mathematical Intelligencer 1, N u m b e r 1 (1978), 15-20. Hadamard, J . , The Psychology of I n v e n t i o n in the Mathematical Field, Dover Publications, New York, 1954. Halmos, P., M a t h e m a t i c s as a Creatine A r t , American Scientist 56 (1968), 375-389. Hamming, R . W . , The Unreasonable Effectiveness of M a t h e m a t i c s , American Mathematical Monthly 67 (1980), 81-90. Hodges, W . , What is a Structure T h e o r y ? , Bull. London Math. Soc. 19 (1987), 209-237. Hoffman, D . D . , The Interpretation of Visual Illusions, Scientific American 249 N o . 6 (1983), 154-162. Kluender, K . R . , Diehl, R . L . , & Killeen, P.R., Japanese Quail Can Learn Phonetic C a t e g o r i e s , Science 237 (1987), 1195-1197. Koblitz, N . , A Tale of Three Equations; or The E m p e r o r s Have No C l o t h e s , The Mathematical Intelligencer 10 (1988), 4-10. Kolata, G . , Asking Impossible Q u e s t i o n s About the E c o n o m y and Getting Impossible A n s w e r s , Research News, Science 234 (1986), 545-546. Lacan, J . , The Four Fundamental Concepts of Psychoanalysis, Norton, New York, 1981. Lang, S., A Recent N o n - E l e c t i o n to the National A c a d e m y of S c i e n c e s , U n published manuscript, August 17, 1987. Leavy, S.A., The Significance of Jacques Lacan, (1977), 201-219. Leontief, W . , L e t t e r s , Science 217 (1982), 104.
Psychoanalytic Quarterly 46
Levi-Strauss, C , Elementary Structures of K i n s h i p , Beacon Press, Boston, 1969. , Structural Anthropology, Basic Books, New York, 1963. Lewin, K., Principles of "Topological P s y c h o l o g y " , (F. Heider and G . M . Heider, Trans.), McGraw Hill, New York, 1936. Lewin, R., Conflict Over D N A Clock R e s u l t s , Science 241 (1988), 1598, 1756. Lloyd, S., The Calculus of Intricacy: Can the complexity of a forest be compared to that of Finnegan's Waifcef, The Sciences (N.Y. Acad, of Science) (Sept.-Oct. 1990), 38-44. McCarthy, J . , The Little 17 (1983), 46-49.
Thoughts
Margolis, H . , P a t t e r n s , Thinking, Press, Chicago, IL, 1987.
of Thinking and Cognition,
M a c h i n e s , Psychology Today The University of Chicago
Marr, D . , Vision, W . H . Freeman, San Francisco, C A , 1982. Pais, A . , 'Subtle is the L o r d . . . * The Science and the Life of Albert Oxford University Press, New York, 1982.
Einstein,
BIBLIOGRAPHY Piaget, J., G e n e t i c Epistemology,
209
Norton, New York, 1971.
, Structuralism, Basic Books, New York, 1970, Reprinted by Harper & Row, New York. Pike, K.L., Language in Relation to a Unified Theory of the Structure of Human B e h a v i o r , Mouton & Co., The Hague, Paris, 1967. Pinker, S. & Mehler, J. (Eds.), Connections ana Symbols, The M I T Press, Cambridge, 1988. Poincare", H., Foundations of S c i e n c e , (G.H. Halstead, Trans.), The Science Press, New York, 1913. Polya, G., M a t h e m a t i c s and Plausible Reasoning, vol. I, II, Princeton University Press, Princeton, NJ, 1954. , Mathematical D i s c o v e r y , vol. I, II, John Wiley & Sons, New York, 1962. Radcliff-Brown, A.R., Structure and Function in P r i m i t i v e S o c i e t y , The Free Press, New York, 1952. Rickart, C.E., The Pascal Configuration in a Finite Projective P l a n e , American Mathematical Monthly 47 (1940), 89-96. , A Structural Analysis of S o m e of A l t e r s ' Work, Josef Albers: A Retrospective. Guggenheim Museum, 1988, pp. 58—63. Roberts, L., Are Neural Nets Like the Human B r a i n ? , Research News, Science 243 (1989), 481-482. Russell, B . , M a t h e m a t i c s and the M e t a p h y s i c i a n s , M y s t i c i s m and Logic, Norton, New York, 1929. Saussure, F. de, Course in Genera/ Linguistics, McGraw-Hill, New York, 1966. Scholes, R., Structuralism in Literature, Yale University Press, New Haven, CT, 1974. Schoner, G . & Kelso, J.A.S., Dynamical P a t t e r n G e n e r a t i o n in Behavioral and Neural S y s t e m s , Science 239 (1988), 1513-1520. Shepard, R.N. and Cooper, L.A., Menial Images and Their Transformations, The M I T Press, Cambridge,, 1982. Sibley, C.G., & Ahlquist, J.E., fleconitructtna Bird Phytogeny by Comparing D N A ' s . Scientific American 254 N o . 2 (1986), 82-92. Snow, C P . , The T w o Cultures and the Scientific Revolution, Cambridge Univ. Press, Cambridge, 1961. Sorensen, R., Thought Experiments, American Scientist 79 (1991), 250-263. Stebbins, G.L. and Ayala, F.J., The Evolution of Darwinism, Scientific American 253 N o . 1 (1985), 72-82. Sternberg, R.A., Component Processes in Analogical Reasoning, Psychological Review 84 (1977), 353-378. Sykes, C.J., Prof Scam, Regenry Gateway, Washington D C , 1988. Thorn, R., Structural Stability and Morphogenesis, Benjamin, Reading, MA, 1975. Thompson, D'Arcy, On Growth and F o r m , Abridged Edition, edited by J.T. Bonner, Cambridge University Press, Cambridge, 1961. Wasserman, S.A. and Cozzarelli, N.R., BioeAemical Topology: Applications to DNA Recombination and Replication, Science 232 (1986), 951-960. Weinberg, R .A ., The. Molecules of Life, Scientific American 253 N o . 4 (1985).
210 [W3] [W4j [W5] [Zl] [Z2]
STRUCTURALISM AND STRUCTURES Weschler, L., Seeing i i Forgetting the Name o j the Thing One S e e s , (A Life of Contemporary Artist Robert Irwin), Univ. of Calif. Press, 1982. Whitehead, A.N., Matfcemitic*
INDEX
A b s t r a c t s t r u c t u r e s , 3,21, 26, 27, 35-37, 167 almost abstract, 77 Affine space a n d g r o u p , 182 A l b e r s l i n e d r a w i n g s , 42, 43 A n a l o g i e s , 3, 23-27 in e v o l u t i o n , 147 A n a l y s i s o f structures, 57 A n t h r o p o l o g y , 12 A n t h r o p o m o r p h i s m , 175-177 A p p l i c a t i o n s of m a t h e m a t i c s , 130-133 d a t a , theory, a n d m a t h s t r u c t u r e s , 130, 133, 139 effectiveness of m a t h i n physics, 133-138 emphasis o n n u m e r i c a l methods, 4, 15, 140, 141 extension a n d p r e d i c t i o n , 131 "physics e n v y " , 138 problems i n n o n p h y s i c a l a p p l i c a t i o n s , 138-142 significance of a n a p p l i c a t i o n , 131 A p p r o x i m a t i o n s of a s t r u c t u r e , 58, 59 a x i o m a t i c a p p r o x i m a t i o n , 59 A s s o c i a t i o n s , 27 A x i o m a t i c m e t h o d , 58-60 A x i o m a t i c representation, 59 B a c k g r o u n d s t r u c t u r e , 104 B e a u t y and elegance i n m a t h e m a t i c s , 125, 137, 138 B i o l o g i c a l catastrophes, 165, 168 B i o l o g i c a l o r g a n i s m s , 146, 147 classification, 146 analogies a n d homologies, s y s t e m a t i c s , 146 B l a c k boxes, 68, 113
211
147
212
STRUCTURALISM AND STRUCTURES
B l o c k d i a g r a m s , 67 B o d y o f m a t h e m a t i c s , 115 B o h r ' s r a d i u m a t o m , 40, 41 B u i l d i n g f r a m e w o r k , 16 B u s h - D u k a k i s debate, 23-26 C a i r n s - S m i t h : the u n i t y of b i o c h e m i s t r y , 156 C a t a s t r o p h e s , 3 1 , 168, 169, 180, 188-198 m a t h e m a t i c a l e x a m p l e , 191-196 C h a o s , 132, 143 C h o m s k y : u n i v e r s a l g r a m m a r , 88 C o g n i t i o n , 2 7 , 94 C o m m u n i c a t i o n , 74-77, 79 o f structures, 75 Complexity, i n e v o l u t i o n , 156-161 and s t r u c t u r a l i n f o r m a t i o n , 157 of s t r u c t u r e s , 2, 157, 159 C o n f i g u r a t i o n s ( m a t h ) , 44, 45 C o n i c sections,
182
focus-directrix d e f i n i t i o n , 182 graphs of q u a d r a t i c equations, 185 shared s t r u c t u r e s , 184 projective equivalence, Consciousness, 104 Content of mathematics, 6 C o n t r a c t i o n s , 65, 66
184
examples, 66-72 C r e a t i v i t y , 120-130 P o i n c a r e : m a t h e m a t i c a l c r e a t i v i t y , 124-126 s t r u c t u r a l i n t e r p r e t a t i o n , 127-130 C u l t u r e g a p , 64, 65 D a t a structures ( a n d systems), 131 D e f i n i t i o n ( s ) of s t r u c t u r e general, 17 C a w s , 13 L e v i - S t r a u s s , 12 P i a g e t , 13 R a d c l i f f - B r o w n , 12 D e s c r i p t i o n vs p r e d i c t i o n , 142
INDEX
D e t e r m i n i n g s t r u c t u r e s , 6 1 , 62, 136, 172 D o u b l e h e l i x , 149 E i n s t e i n : i n v e n t i o n , 122 E l e m e n t a r y chemistry, 68 E l e m e n t a r y s t r u c t u r e s , 30 E n v i r o n m e n t of a s t r u c t u r e , 152 E u c l i d e a n spaces, 179, 180 congruences, 181 distance f u n c t i o n ( f o r m u l a ) , 180, 181 euclidean g r o u p , 181 neighborhoods, 181 r i g i d m o t i o n s , 181 s i m i l a r i t y g r o u p , 182 s u b s t r u c t u r e s , 181 three d i m e n s i o n a l structures, 28, 179 E v o l u t i o n , 95, 103, 145 analogies, 147 catastrophes, 172 c a t a s t r o p h i c vs stable state change, 165 c o m p l e x i t y , 156-161 convergent, 147, 173, 174 d i s c o n t i n u i t i e s , 165 diversity, 158 emergence, 155 e v o l u t i o n a r y process, 153 g r a d u a l i s m , 155, 164, 16, 170-172 homologies, 147, 151 h y p e r s e l e c t i o n , 164 increasing c o m p l e x i t y , 160 p u n c t u a t e d e q u i l i b r i a , 168-172 R u b e G o l d b e r g effect, 161 s t a b i l i t y , 171 s y n t h e t i c theory (or m o d e r n synthesis), 154 Face r e c o g n i t i o n , 58 Formalists, 6 F o r m a l language, 6, 77, 116, 118 F r e u d i a n unconscious, 86-88 G a y : the F r e u d i a n unconscious, 87 G e n e t i c s t r u c t u r e , 148
213
214
STRUCTURALISM AND STRUCTURES
D N A , R N A , 149, 150 genes, 149 genome, 148 g l o b a l s t r u c t u r e , 150 o r i g i n of, 156, 163 G i f t horse, 85 Gould: h o m o l o g y a n d analogy, 147, 148 h o m o l o g y i n D N A , 151 the c o n v e n t i o n a l version o f the tree of life, 159 hyperselection i s m , 164 s t r u c t u r a l s t a b i l i t y i n e v o l u t i o n , 169 Groups (math affine g r o u p , 182 c o n t r a c t i o n , 71 generators, 51 group a x i o m s , 50, 51 group m u l t i p l i c a t i o n t a b l e , 50 group s t r u c t u r e , 52, 53 projective g r o u p , 184 t r a n s f o r m a t i o n g r o u p , 52 triangle g r o u p , 48-52 H a m m e r a n d tongs, 85 H i g h e r level structure o r g a n i z a t i o n s , 63, 96-98, 167 higher m e n t a l a c t i v i t y , 96, 167 H o m o l o g i e s i n e v o l u t i o n , 147 H o m o m o r p h i s m s o f s t r u c t u r e s , 70 H u m a n awareness, 176 H u m a n b r a i n , 2, 166 H u m a n i t i e s vs n a t u r a l sciences, 98-100 I m p l i c i t d e f i n i t i o n , 58 I n f o r m a t i o n i n structures, 33, 157 Insights, 100, 122 research a n d c r e a t i v i t y , 99, 122 role of the unconscious, 123 I n t e l l i g i b i l i t y , 5, 97, 98 I s o m o r p h i s m s of structures, 20, 23 Irish e l k , 166 Japanese q u a i l , 89
INDEX
J a r g o n , 117 K i n s h i p systems, 14 Language a n d a b s t r a c t i o n , 77 m o r p h e m e s , 80 " B u t w h a t is language?" (Saussure), 78 signs, 80-82, 84-87 s t r u c t u r e , 73, 81 i n t h i n k i n g , 73 L a n g u a g e f a c u l t y , 88-90 L a n g u a g e vs p e r c e p t i o n , 74, 75, 118 Language-type structures social systems, 86 F r e u d i a n unconscious, 86 Levi-Strauss: language a n d social p h e n o m e n a , 83 measure a n d s t r u c t u r e , 15 words a n d p e r c e p t i o n , 74 Linguistics in structuralism, 5 M a c h i n e s , 40 M a r s u p i a l s , 174 M a t e r i a l i s m vs i d e a l i s m , 35-37 " M a t h e m a t i c i a n s are different", 133 M a t h e m a t i c a l i n t u i t i o n , 120 M a t h e m a t i c a l language, 116, 122 Mathematics c r e a t i v i t y , 120-124 definition of a m a t h e m a t i c a l s t r u c t u r e , 119 fields defined by use of, 144 i n s i g h t s , 122, 130 i n l i b e r a l a r t s , 110 research and development, 120, 121 rigorous t r e a t m e n t , 118 R u s s e l l d e f i n i t i o n , 117 special role, 6, 7 a n d the unconscious, 123-125, 127 M a t h e m a t i c s a n d physics abstract m a t h vs real w o r l d , 135 effectiveness of m a t h e m a t i c s , 134, 135
215
216
STRUCTURALISM AND
h i s t o r i c a l connections,
STRUCTURES
135
p h y s i c a l i n t u i t i o n m a y s u p p o r t m a t h e m a t i c s , 137 p h y s i c i s t as m a t h e m a t i c i a n , 137 special r e l a t i o n between, 133 M c C a r t h y : " t h i n k i n g m a c h i n e s " , 175 Measure a n d s t r u c t u r e , 4, 15 M e n t a l a c t i v i t y , 27 M e n t a l structures, 93-95 as electrical networds, 93, 128 extensions, 128, 129 f o r m a t i o n , 95 M e n t a l processing o f structures, 2, 2 7 , 58, 73, 7 9 , 94 M e t r i c spaces, 199 p o i n t - l i n e s t r u c t u r e s , 199 cartesian p r o d u c t ,
199
M u l t i p l e f u n c t i o n , 163, 165 i n biology, 161-168 i n higher m e n t a l a c t i v i t y , 167 N e u r a l networks, 94 " N e w M a t h " , 113 O r d e r relation(s), 18, 33, 54, 140 P a r t i a l order, 3 3 , 140 P a s c a l c o n f i g u r a t i o n , 47, 48, 6 1 , 163 P a s c a l ' s t h e o r e m , 46 P e r c e p t i o n , 101 P h i l o s o p h y and s t r u c t u r a l i s m , 35-37, 100-104, 135 P h y s i c a l i n t u i t i o n i n m a t h e m a t i c s , 137 P i a g e t : f o r m a l i z a t i o n , 117 P l a t o ' s lecture o n the G o o d , 8, 9 P o i n c a r e : m a t h e m a t i c a l creation, 124-126 P o i n t - l i n e structures, 28, 201-205 P r i n c i p l e of s t r u c t u r a l s t a b i l i t y , 3 1 , 7 7 , 106, 170 P r o j e c t i v e (group a n d plane), 184 P r o p e r t i e s of structures i n t e r n a l and e x t e r n a l , 106 P s y c h o a n a l y s i s , 8 2 , 86, 87 P u n c t u a t e d e q u i l i b r i a , 168-172 R a n d o m (genetic) v a r i a t i o n , 173 R e a l n u m b e r s y s t e m , 54, 55
INDEX
R e d u c t i o n i s m , 60-64 Relations a n t i s y m m e t r y , 18, 30 b i n a r y , 18, 30 finite, 30 n - a r y , 30 order, 18, 33, 54 p a r t i a l order, 33, 140 s y m m e t r i c , 30 ternary, 30 R e l a t i v e c o m p l e x i t y , 157 Representations, 21 d e s c r i p t i o n vs p r e d i c t i o n , 142 Research a n d c r e a t i v i t y aesthetics, 134 conjectures, 124 i n s i g h t , 122 role of the unconscious, 123, 125, 127 s t r u c t u r a l a n a l y s i s , 127-130 R u b e G o l d b e r g effect, 161 R u s s e l l d e f i n i t i o n of m a t h e m a t i c s , 117 Saussure: the n a t u r e of language, 78, 79 signs, 81 semiology, 82 Science c r e a t i v i t y , 99 discovery a n d verification, 99 influence o n s t r u c t u r a l i s m , 3 relation to mathematics, 4 theory, 99 Scientific r e v o l u t i o n , 70 S e m i o t i c s , 82 S i g n language, 90 Snow, C . P . (the t w o cultures), 64 Sorensen: M a c h ' s ideas on thought e x p e r i m e n t s , 101, 102 S t a b i l i t y , 30-32, 39, 106 c o m m u n i c a t i o n , 75 e v o l u t i o n , 170
217
218
STRUCTURALISM AND STRUCTURES
a f a m i l y of conies, 186 organisms, 161 p e r c e p t i o n , 31 p o i n t - l i n e structures, 201 p r i n c i p l e , 31 region, 186 signature, 31 Stebbens a n d A y a l a : s y n t h e t i c theory o f e v o l u t i o n , 168, 169 S t r u c t u r a l d e t e r m i n i s m , 60-62, 103 S t r u c t u r a l l i n g u i s t i c s , 77 S t r u c t u r a l i s m , 1, 3 h u m a n i t i e s vs n a t u r a l sciences, 98-100 S t r u c t u r e (s) a p p r o x i m a t i o n of, 58 b i o l o g i c a l , 145 d a t a s t r u c t u r e s , 131 d e t e r m i n i n g , 172 extensions, 58 a n d f o r m a l i s m , 117 a n d f u n c t i o n , 165 m e n t a l p h e n o m e n a , 93 m a t h e m a t i c a l , 115 objects & relations, 17, 20 order (simple a n d p a r t i a l ) , 140 p o i n t - l i n e (analysis of), 28 substructures of, 17, 179 S t r u c t u r e h o m o m o r p h i s m , 70 S t r u c t u r e i n f o r m a t i o n , 33 S t r u c t u r e properties i n t e r n a l a n d e x t e r n a l , 22 S t r u c t u r e representations, 21 S t r u c t u r e t r a n s f o r m a t i o n s , 2 2 , 23 S y s t e m , 19, 172 d a t a (or subject) s y s t e m , 130 d e f i n i t i o n , 19 real n u m b e r s , 54 s u b s y s t e m , 19 S y s t e m a t i c s ( b i o l o g y ) , 146 T e a c h i n g a n d l e a r n i n g , 107
INDEX
computers v s live i n t e r a c t i o n s , 108 defective p e r c e p t i o n f o r m a t i o n , 111, 113 drive for m e a n i n g , 109 knowledge a n d u n d e r s t a n d i n g , 113 l i b e r a l e d u c a t i o n , 110 in m a t h e m a t i c s , 110 nature of a n d p r o b l e m s i n , 108 pedagogical errors, 111-113 role of m a t h e m a t i c s , 110 spontaneous f o r m a t i o n of perceptions, 109 s t a n d a r d i z e d tests, 113 s t r u c t u r a l requirements, 109, 113 use o f c o m p u t e r s , 108 " w h y m a y b e " , 109 Teleology, 177 T e r m i t e s , 1623 T e r r i t o r i a l fish, 197 T h e o r e t i c a l s t r u c t u r e s , 131 T h e o r y systems, 131 T h o r n : q u a n t i t a t i v e m o d e l i n g i n catastrophe theory, 189 T h o u g h t e x p e r i m e n t s , 101 T h e t w o cultures ( C . P . S n o w ) , 64 T r i a n g l e g r o u p , 48-50 T h e unconscious, 123-125, 127, 130 Understanding as a creative experience, 107 b a c k g r o u n d for, 104 correct or complete, 106 definition of, 106 defects i n , 106 degrees of, 106 m u t u a l , 106 W h i t e h e a d : P l a t o ' s lecture o n the G o o d , 8 W h o l e n e s s , 19 W i g n e r : effectiveness of m a t h i n physics, 134, 135 Zeeman's catastrophe m a c h i n e , 190
219
This page is intentionally left blank
S E R I E S IN P U R E Editor:
C
C
A s s o c i a t e
MATHEMATICS
H s i u n g Editors:
S
S
a n d
C h e r n , M
S
K o b a y a s h i ,
I S a t a k e ,
Y - TS i u , W - T W u
Y a m a g u t i
Part I. M o n o g r a p h s and T e x t b o o k s Volume 10:
Compact Riemann Surfaces and Algebraic Curves
Volume 13:
Introduction to Compact Lie Groups
Kichoon Yang
Howard D Fegan Volume 16: Boundary Value Problems for Analytic Functions
Jian-Ke Lu Volume 19:
Topics in Integral Geometry
De-Lin Ren
Part II. Lecture Notes Volume 11: Topics in Mathematical Analysis
Th M Rassias (editor) Volume 12: A Concise Introduction to the Theory of Integration
Daniel W Stroock Part III. C o l l e c t e d W o r k s Selecta o! D. C. Spencer Selected Papers of Errett Bishop Collected Papers of Marston Morse Volume 14: Selected Papers of Wilhelm P. A. Klingenberg Volume 15:
Collected Papers of Y. Matsushima
Volume 17: Selected Papers of J. L. Koszul Volume 18: Selected Papers of M. Toda
M. Wadati (editor)