..
SP SS
Ve r si o n 1 0
...
6 downloads
185 Views
9MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
..
SP SS
Ve r si o n 1 0
/
2003
! " #$
. % & ' ( ) ! % ! & !
+ ) , & ) - . / ) 0 1 2 . 3 ) "4 2 #
# ) !) ) + -
# 6 " . - 5 SPSS 4 )
. # 7 ) " #
# 8 9 4 % - 0 1 2 - : ) ; ! 0 ) 6 4 # 4
. < /
) -
. ! #" . ,
) 0 1 2 % # 6 #$ 4
. 3 = #
2003 /
2
SPSS , * $ !
" # $ % & ' ( ) * + # * &
' " $ % * * ' ) % $ - . (
/ / 0 ' + # 1
- * $ 2 $ % 1 , * $ % + ' , 34 * " ' 5
' * + 6 , / 7
- ' " # & 6
. ' % *
- " # - # 7 9 # / SPSS , * " 34
3 : 7
7 2 ; < # " # ; * 6
0 ' + # 1 ? 0 > * ' ( 1 , + #
* & = 3* >
. ' ( ) * + # *
' % > 6 9 - ) % SPSS 0 6 3> 6 7 $ @ 7 A
$ ( 4 ;
' 9 ? " / > < <
/ : , % # 9 > * * (
>
+ > - # 7 , + 6 * B = 4 6 * 3 37 $ 6
D + * * D ' 7 > % ' " & C
'
, 7 E ( D * D * < ' (
- " ( G " * !
& * < ' " & : , . > F " E 7 , $ / $ ; H * 0 2 ; , 4 % " ' &
. *
% ' > * I * # ' / $ " , + 6 7 - , " = %
. ? 0 : ' ' (
6 ; $
+ % + 6 & 3
I < = % ; , % J
= & .3 6 ' .
E 2 % 4
' 4 < 2 * / 1 $ 2 1 K
. " + , % * # , % , % 4 < ; 1 K = % + # / 0 1 < . E / / > L & ; I "
2003 / N
3
. I # + M
H 3
I-III 1 1 3 4 5 6 6 6 7 7 8 9 9 11 13 16
16
20 20 21 21 21 21 23 24 24 26 31 35
37 40 42 42 45 45 47 47
4
................................ S P S S
......................................................
21
.....................................................
11
.................................................. : ................................................. " : !
................................................ #
$ : ! !
....................................... ' % & $ : % ............................................. ( $ :
.............................................. ) ( $ :
........................................ * ) ) + % : % ................................................ % # ............................................... ,
$ : !
* - . : %
..................................................... / ) : ' $ ......... D a t a E d i t o r 1 2 3 4
0 $ %
............................... ( 5 6 7 6 % ..................................... D a t a V i e w
................................................ V i e w
................................................ D a t a
31
41
( )
)
22
)
12
.................. D e f i n e D a t e 5 8 + % .1
........................................ In s e r t V a r i a b l e 9 .2 ............................................ In s e r t C a s e 9 .3 ............................................ G o t o C a s e 9 .4
............................................. S o r t C a s e s 9 .5 ............................................. Tr a n s p o s e 9 .6
.....................................M e r g e F i l e s .7 .................................... A d d C a s e s . 3 : .
............................ A d d V a r i a b l e s 3 : . & ........................... S p l i t F i l e s
( 5 6 ) 4 3 .8
............................. A g g r e g a t e D a t a 7 6 .9
................................. Select Cases . 10
............................. W e i g h t C a s e s . = 6 .11
......................... D a t a Tr a n s f o r m a t i o n
.
............................................... C o m p u t e 9 .1
............................. R a n d o m
N u m b e r S e e d 9 .2
.................................................. C o u n t 9 .3 ................................................. R e c o d e 9 .4 ...................... R e c o d e i n t o S a m e v a r i a b l e s 9 .
49 50 51 52 56
................................ C a t e g o r i z e V a r i a b l e s 9 .5 ......................... A u t o m a t i c r e c o d e
2 ) 5 .6
............................................ R a n k C a s e s 9 .7 ................................ Ti m e S e r i e s 5
>
.8
6 0
...............R e p l a c e m i s s i n g V a l u e s * ) ) ) .9
62
............................................... F r e q u e n c i e s 9
62 66 68 68
........................... ? 6 4 @ 4 .
.............................................. D e s c r i p t i v e s 9
................................. P i v o t Ta b l e s . 6
................................... P i v o t Ta b l e A . 6
6 8
....................... E d i t P i v o t Ta b l e . 6 = )
74
................................. E x p l o r e 9 + ' ?
72 74 79 79
7 9
80
81 81 82 82
8 2 82 83 84 86 86 89 89 92 9 6
10 3 10 3 10 8 111 113 115 115
5
................... R e c o d e i n t o d i f f e r e n t V a r i a b l e 9 .&
..................................... B o o k M a r k s % '
................................. E x p l o r e 9 + ' ?
µ
7 6 C
24 15
25
.................................. S t a n d a r d e r r o r A % B C
................................
14
35
16
) ! * 3 ( ?
........................ Tr i m m e d M e a n &- ' 2 . C
................................................. % ............ @ % ( 2 % C 7 5
.......................................... S t e m -a n d -L e a f C C ..................................... H i s t o g r a m
A ? D
.................................................. B o x p l o t C C
........................... N o r m a l i t y P l o t s w i t h Te s t s
............................... Ko l m o g r o v -S m i r n o v .1
................................... N o r m a l Q -Q P l o t C C .2 ..................... D e t r e n d e d N o r m a l Q -Q P l o t C C .3 .... Te s t o f H o m o g n e i t y o f V a r i a n c e s ( / 6
26
................... S p r e a d v s . L e v e l w i t h L e v e n Te s t .. L e v e n e 4 . C
( / 6 2 4 . .1
...S p r e a d v s . L e v e l P l o t C C > ( ( / 6 .2 ............................................ * ) ) 7 %
......................................... C r o s s t a b s 7 C ) 6 ............................ C o m p a r e M e a n s C
......................................... M e a n s C
)
.
36 18
..................... O n e S a m p l e T-Te s t * . % T
28
........ P a i r e d S a m p l e s T-Te s t 6 5 F ' T
48
In d e p e n d e n t S a m p l e s T-Te s t ( $ 2 C
( E T
............................A n a l y s i s o f V a r i a n c e
.................. O n e w a y A N O V A
( .
. % ( .
38
19
119 122 123 129 132
132
................. O r t h o g o n a l C o m p a r i s o n s ) ) ............................... Tr e n d A n a l y s i s F 6 . ...................To w
.............................................C o r r e l a t i o n .......... S i m p l e L i n e a r C o r r e l a t i o n
171 171 175 177 180 180 192 193 195 20 5 20 8 213 214 218 220 221 223 223 230 233 233 233 233 235
6
C 2 C C
110
210
310
410
1410
..................................... % 2 C . D -
3410
5 H 4 % ) C
2410
................................ F a c t o r A n a l y s i s 2 % .
..................................................... 2 % .
39
..................................... C 2 C . D -
...W e i g h t e d L e a s t S q u a r e s M e t h o d
159
168
C
......................... R e g r e s s i o n A n a l y s i s . .
159
159
29
.......................... P a r t i a l C o r r e l a t i o n 2 5 6 C
138
149
219
( % ( .
C o r r e l a t i o n a n d R e g r e s s i o n A n a l y s i s . C .
135
146
W a y A N O V A
.................. C o v a r i a n c e A n a l y s i s G ' ( .
132
138
119
111
... P r i n c i p a l C o m p o n e n t s M e t h o d 9 ? ) C
211
............... F a c t o r A n a l y s i s M e t h o d s 2 % . E C
...................N o n P a r a m e t r i c Te s t s % >
...............................................C h i -S q u a r e
311
112
To w In d e p e n d e n t S a m p l e s Te s t s ( ) ( $ K-R e l a t e d S a m p l e s Te s t s C % ( K
.................................... C H A R TS
C C
..................................... B a r C h a r t s * $ 9
........................C h a r t Te m p l a t e ............................... L i n e
................................ P i e
2 C C & 1 $
C C 0 B a r C C
A ? D
................................................ B o x P l o t C C ............................... S c a t t e r p l o t ' ? ' C C
.................................. S i m p l e
C ' ? ' .1
.......................................... O v e r l a y
.......................................... M a t r i x .................................3-D
113
413
213
513
613
713
' ? ' .3
................................... D a t a E x c h a n g e
......................... Im p o r t i n g D a t a F i l e s ......................... E x p o r t i n g D a t a F i l e s 4
.............................. S y n t a x C o m m a n d s 9 ? ....................................... S y n t a x F i l e
9 +
( 9 ? ( 9 8
114
214
...... C o m m a n d S y n t a x 9 @ 2 3 * $ E C ...................... 6 2 3 L o g
' ? ' .2
% 9 2 ! > ! ' ? ' .4
................ D i a l o g B o x e s . E 4
312
313
C C 0 B a r C C
.................................... H i s t o g r a m
212
115
215
1215
2215
................................... J o u r n a l F i l e
236
.............. To R u n C o m m a n d S y n t a x
237
241 243 245
7
9 + '
..... M u l t i p l e R e s p o n s e A n a l y s i s * % 6 .
241 241
( 9 8
M u l t i p l e R e s p o n s e F r e q u e n c i e s 6 * % ? &
3215 315
116
.... M u l t i p l e d i c h o t o m y m e t h o d ( - * % & .1 ........M u l t i p l e C a t e g o r y M e t h o d
* % & .2
........ M u l t i p l e R e s p o n s e C r o s s t a b s 7 C ) 6 &
216
I n tr o d u c tio n
spss
( st a t i st i ca l pa ck a g e fo r so ci a l sci e n ce s ) spss
! " ! # $ % . & ' " ' ( )
* # &
2 % M S-DO S $ 1 , 2 3 " $ 4 . 2 3 . / 0 ( spss) , " - %
7 " " 8 . # ' 1993 2 # W I N DO W S $ 1 , 2 3 # $ 5 6
/ - 2 3 . " " % . M S-DO S # 2 3 . / 9 ( ( " ' ( ( ! 2 3 . / # ; 1999/ 11 /27 #
4 . spss 10.0 ,
$ % * # ) $ # ( " 6 6 ." / = L O T U S EX C EL " % < "
S P S S
; " C ( " D
.. # > ? SP SS # #
@ . # 5 . / B: Da t a Ed i t o r " @ . #
$ 1 , ) E ( F @ . # 5 . / C ( - " 6 6 $ ! ) 4 G $
< D
" D
.1
C ( .
@ . # 5 . / B: V i e w e r / , @ . #
.2
F @ . # 5 . / B: Dra ft v i e w e r / , @ @ . #
.3
. & F E ; ch a rt s
.@ . # 5 . / # " 6 6 $ ! . ( ( $
* F @ . # 5 . / B: P i v o t T a b l e Ed i t o r 4 $ @ . #
.4
.H 6 @
." 6 6 * @ . # 5 . / F B: C h a rt Ed i t o r " 6 6 @ . #
! " * @ . # 5 . / F B: T e xt o u t pu t Ed i t o r G H
@ . #
. $ D
" & * . # 5 . / F B: Syn t a x Ed i t o r E @ . #
.5
. SP SS E ! # # ! " & - # I / ;
. ? 6 6 H ( * @ . # 5 . / F B: Scri pt Ed i t o r 6 6 @ . #
.6
.7 .8
S P S S
: " ( > ? SP SS # #
8
Da t a Ed i t o r " 2 " ( / B: Da t a F i l e s " " (
.1
6 ! " ( > . $ ( # 2 " 9 ( 4 / . SA V
$ ( " 9 ( 4 " ( / B: O u t pu t F i l e s " " (
.2
9 ( & " )
.3
. SP O
6 ! " . " 6 6 -
4 " ( / B: ( syn t a x ) " ( " (
. SP S 6 " . - $ , S P S S
B: E 6 J SP SS $ 1 ,
$ # ) SP SS E - 9 ( ? K & Do u b l e -cl i ck E H 6
.1
.( L F 6 9 ( /
$ ( L St a rt & $ ' S ta rt P rog ra m s S P S S V .1 0 .0 .( 1B1 ) $ , E ( Da t a Ed i t o r @ . # 3 ;
.2
M ous e
.( ' ) E 8 . 9 * , % ? K & E B: cl i ck E
•
E 8 . 9 * , % ? K & E B:Do u b l e -cl i ck M & E sh o rt co mma n d
. ( ' )
@ ? % 3 * # B: ? K & cl i ck
E
# N I - o ffi ce $ / C o n t e xt L i st I E N I - C l i st . $ # L , O 4 - - H
/ $ - * $ * / I &
. # @ . # $ M e n u b a r 2 E 6 , I
# G
• •
4 ? H ( 3 *
@ E 5 . / : H e l p %
.1
C o n t e n t s 6 @ > - ' # 2 ' T o pi cs I . SP SS H
. SP SS 9 N ( N' # T u t o ri a l I . F i n d I n d e x
L( = - # & . / Di a l o g b o x h e l p b u t t o n H
# @ &
.2
H H ( > I " ( 9 ( $ 7 ' SP SS
9 ( $ : Di a l o g b o x co n t e xt me n u h e l p H
R i g h t -C l i ck ? K & G
8 . E H
.G
.
# I @
# G
.3
4 - @
8 . C D
$ : P i v o t t a b l e co n t e xt me n u h e l p 4 $ # I @
L a b e l E 2 7 ( ? K & 4 $ E @ 5 . / 9 (
.4
# ? K & ( $ ' 7 2 N , O $ 7 - # ) - C
9
2 ( $
/ SP SS " 2 3 - N ( ) SP SS V i e w e r , , # 4 $
. C " C D
I E W h a t ’s t h i s
4 $ E @ > . / 9 ( $ : R e su l t R e su l t
C o a ch ,
.5
C o a ch ? K & $ E 2 7 ( ? K &
@ $ ' $ # I ( 6 * D
I E . ( ( . #
4 - # h e l p % T u t o ri a l @ 5 . / 9 ( $ : T u t o ri a l ,
. ( ( ( . # $ , ( $ 9 $ ( @ . #
.6
S P S S !
< $ ( $ / B SP SS # Di a l o g B o x H
7 ( " ' ( )
-
- # L= " 1 F – W i n d o w s 2 3
$ / ) * L( - & * C @ E ? N'
: H ( M S- DO S $ 1 , 2 3 < $ 4 . SP SS
C ( # @ " 1 # $ , : So u rse V a ri a b l e s L i st " 1 % . L( Q 2 ! > ? " .
I 2 E - - @ : T a rg e t V a ri a b l e s L i st (s)C " 1 (2 % -) %
. $ ( ( @ " 1 ) -
N' $ . 2 ' 0 2 E & ! 5 . / : C o mma n d F re q u e n ci e s Q H
pu sh b u t t o n s ? &
# F I / R @ 9 ( $ - ,
Source V a ri a b l e l i s t
T a rg et V a ri a b l e lis t
!
" #
! " $ % !
& ' ( ) * s ub d i a l og p us h b ut t on s
+ ,
10
s ps s Data Entry
(1 – 1)
/ R Da t a Ed i t o r " C 6 . spss # " ( F " @ . # - Exce l # $ % 7 , Spre a d B: " ( D
" 1 $ @ ? ) C
sh e e t % @
" # $ 1 , E ( @ - 9 * E % @ / B: Da t a
v ie w
.1
( ? L $ J # $ $ 9 ( # ( C a se s " ! $ C V a ri a b l e s
. < 1 < 6 E @ / ce l l ( $ - ( $
5 . / # " C ( # 1 $ " I B: V a ri a b l e v i e w
R 7 R 1 2 ) " $ , 1 "
. (1B1) $ , 3 ." 1 "
$ @ ? " 1 / C
- C . - # I * ; ( T ..… & - 2 % ? (11) ? '
s p s s D a t a E d i t o r . V a ria b le N a m e M e n u To o l B (S ta n d C a se N V a ria b
C e ll E d ito r
A c tiv e c e ll
B a r a r a rd ) O . le N a m e
C a se N O .
D a t a V i e w Ta b
11
.2
V a r i a b l e V i e w Ta b
S ta tu s B a r
D a t a E d i t o r ! 1 S t a n d a r d To o l B a r 2
) 9 C ' : (21) ? '
I
( %
+ = 3
O p e n file
+ ( 5
S a v e F ile
+ 7 C
P rin t
@ 6 ( $ 6 12 I
D ia lo g R e c a ll
( $ 7 6
U n d o
@ 6 * $
R e d o
C C 0 )
G o To C h a r t
. 0 )
G o to C a s e
( $ % # ( : .
$
. ( $ J . 3:
V a ria b le s F in d In s e r t C a s e
3:
In s e r t V a r i a b l e
+ 5 6
S p lit F ile
. ( 5 .
W e ig h t C a s e s
.
S e le c t C a s e s
) ( $ @ I
V a lu e L a b e ls
* 3 ( 5 6 $ 6 D a ta E d ito r 2 3
) 9
U s e S e ts
- .
12
% $ v a ri a b l e v i e w % $ - Da t a v i e w
! "
( t a b ) @ H 6 V a ri a b l e v i e w
.Da t a v i e w
% 3 *
.1
% $ E'
.2
% # ( 9 ( - ) 1 2 - E - - Da t a v i e w
@ E - Da t a v i e w
.V a ri a b l e v i e w
% 9 * V a ri a b l e v i e w
# ( 6 ) 2 % E - - V a ri a b l e v i e w
( 2 1 )
! "
id
g e n d e r
b d a te
G ra d e
A h m a d
1
15 . 7 . 6 9
76
Kh a d i m
1
12. 4. 70
80
S a b a h
2
1. 6. 68
83
M a h d i
1
9. 5. 72
90
Z a in a b
2
20 . 9. 74
80
N a b il
1
5. 1. 67
78
2 - " % - ) Da t a V i e w
% # * 2 " 5 . / -
% # $ )" 1 @ / % 5 . / # " - ( ( % 9 * " # I *
B: ( E 5 ' - " 1 ( # (" 1 N 1 $ . st ri n g v a ri a b l e 4 & 1 / ( i d ) 2 ! 1 – $ ? 1
% 1 / ; $ 2 2 % . $ 1 2 % ( g e n d e r ) K 1 – 1 . N u me ri c v a ri a b l e
. d a t e T 1 / 1 . / > ( b d a t e ) ' T 1 – ; 1 . % 1 / ( G ra d e
? " 1 " 2 - C 2 E Da t a V i e w V a ri a b l e
@ E H 6 V a ri a b l e V i e w
) ! 1 – < 1
% # " 2 % $ 0 2 E - $ %
% 9 * $ E 8 . N a me a n d A t t ri b u t e s
N 1 # 6 $ $ (3B1) $ , # % 3 ; Da t a V i e w
13
% $ -V ie w
. " 1
(31) ? '
V a ria b le V ie w V a ria b le s N a m e s &
! 1
A ttrib u te s
: ( $ , V a ri a b l e N a me &
A t t ri b u t e s 1 " 2 - -
R " 1 ( , L .4 R 1 D
. K E .10R G
@ . .9R D
.3R 1 > .2R 1 2 - .1
.8 R @ E 2 E .7 R 2 E .6R 1 .5
: ( V a ri a b l e V i e w
% # ? " 1 ( 2 ;
Variable Name :
6 # I d 2 ! ' 1 2 - L - 2 N a me $ 4 . # ( 4 - E -
# E > L 7 ( " 1 E . / 6 # G e n d e r 2 ! $ ? B: SP SS # " 1 ) -
.ch a ra ct e rs & 2 ! $ 6 & !
B1
& pe ri o d @ # - % - - # - E # & E - C 1 2 - - L B2 .$ RBR# R@
.*R‘ R?
n e w v a r N EW V A R
& E - ( . )
. ( . ) @ 1 2 - - !
R ! $ & D
" = # 1 2 - I !
) ? # @ 1 C @ C SP SS & !
. " 1 ) ? @ 1 C Y $ E ! - ; (
14
B3
B4
B5
T ype $ 4 . I
Variable Type :
.: ( Di a l o g b o x H
< E @ ( 9 * $ E 1 2 $ * 3 7 ( E b u t t o n
V a r i a b l e Ty p e . E 4
'
. Da t a V i e w
& 3 ( C %
B: " 1 > ? ;
% # " 1 ( I # ! > / 4 1 : N u me ri c
L ' $ $ ( ( , ) ( # # I * < 4 1 / : C o mma
. > . / L 722, 667. 123 L 722667. 123
$ ( ( , ) ( 2
L ' $ $ ( . ) 2 < 4 1 / : Do t
L 10 ' E-n o t a t i o n
1 L & / : Sci e n t i fi c N o t a t i o n
.> . / L 722. 667, 123 L 5 ' - # 4 , ) &
7
F ) &
.1.2E+03 L 1234 1.0E+07
. ' " " % - T $ 1 : Da t e 7 6 I
. ? ! ( & $ : Do l l a r
( 9 ( ! ( C 1 : C u st o m C u rre n cy . Ed i t
O pt i o n s
C u rre n cy
.( ' ) - ) 4 & 1 / : St ri n g
. 1 L # W i d t h < -
.6 E # " 1 ( , L $ # : De ci ma l P l a ce s < -
De ci ma l < 5 . / # 4 & 1 7 st ri n g > # i d 1 ( > # G ra d e g e n d e r 1 -. V a ri a b l e R a n k H
H
15
P l a ce s
3 ; Da t e > # b d a t e ' T 1 -. $ N u me ri c :
L ( 6 > d d .mm .yy % T > - - ;
.T (
N u me ri c > ) " 1 # . N u me ri c / 1 > I # ! > -
- (4 1 7 J ) 1 > Da t a V i e w 16
, , # @ , 2 % ? $ * ( 6 E #
.$ $ % 1 > L ( n u me ri c ) 4 = 1 #
1 ) , L $ * # Do t C o mma N u me ri c " 1 (
, L " . 2 E , L ( D ( # D
Da t a V i e w
.2
2 E (
." # 2 ( E ( 9 ( ?
9 ( - 1 E # ( & " 1 ) st ri n g .“N O ” 9 * " " N o
, ( ( & & 4 , ) &
C $ '
" & N o ( # w i d t h = 6 4 & 1 (
# ; / v a ri a b l e t ype H
Variable w id t h
# 7 / )W i d t h 1 D
D
.3
:
-
( & $ # (V a ri a b l e V i e w
= " 1 ( - " 1 # F ( G (
.1
%
& 9 E
N' . 4 = 1 ( L 1 D
$ #
E # (2- 1) & G e n d e r 1 2 % - .10 / C o mma > 333, 333.02
- ( - - 2 % 4 - ) 1 4 W i d t h # 1 D
9
\ ! " ? 3 4 W i d t h
4 . T > & 8 / 7 I # ! W i d t h
# . 8 / W i d t h I # ! E " E # i d % # 2 ! ) &
E # g ra d e " 1
J # T 1 100
2 ! 1 -. d d .mm.yy$ . / # 5 -
) 3 ' W i d t h = 4 N' i d 2 ! 1 & $ ( % . 4 & (C ) & 9 ( 4 . * Da t a V i e w
D ec im als :
R N u me ri c) " 1 # 4 , ( , L $ N ( $ ? 9 9 ( ? 9 2 ? 6 , L G . I - V a ri a b l e T ype
H
E * @ & ( Do t R C o mma
/ , L -
Variable L abel :
9 6 ' # 1 C $ & 256 9 * 5 & $ N 1 9 6 -
16
1 2 ! $ ; b d a t e 1 ( Da t e o f b i rt h
.s p s s ( )
Value Labels :
= 2 % ( % $ 1 E ( 9 * & -
; ( 2 2 % M a l e s . ( 1 2 % $ G e n d e r 1 ' V a lu 1 2 : " 6 < .
.V a ri a b l e v i e w v a lu e v a lu e
: $ # / F e ma l e s e V a lu e L a b e l m f $ L g e n d e r 1 2 E ) 6
# G e n d e r 1 6 # V a l u e " < E ( E .d e fi n e L a b e l s H
.1
3
.2
( $ 6 E 2 1 2 % 7 # L v a l u e ( $ 6 E
.3
. # I a d d & E 2 m L l a b e l
( $ 6 E 2 7 # 2 2 % L v a l u e ( $ 6 E
.( # I F I $ , ) # I A d d & E 2 7 # f L l a b e l
.4
- R e mo v e & E $ ? $ 6 # 9 ( C % & * 7 (
. ch a n g e & E 1
.O K
& E ) ! . 5
.& 60 9 E $ 6 $
2 2 % m . ( 1 2 % ' = % $ % E ? 9 ( E - Da t a v i e w
.2
% # v a l u e l a b e l E 3 *
.3
. SP SS ($ ) " # E N! E 3
.4
.2 E 6 , # v i e w
17
.f ; ]
.1
E v a l u e l a b e l , J - " ? 6 , #
M is s in g Valu es
! ' - @ 2 E 5 . / * 4 -) @ E 2 % J 1 2 % D
! " # ! $ :
C # L= -
.( L 9 ( H 6 ! $ O L - ' @ . , N % $ ( # * L= H
3 v a ri a b l e
v ie w
: 1 @ E 2 E C
% # 1 . mi ssi n g # < E ( & E
: " 4 4 . mi ssi n g v a l u e s n o mi ssi n g v a l u e s @ E 2 % 2
•
12 R 10 R 100 2 E ' 9 ( - @ E 2 % ' Di scre t e mi ssi n g v a l u e s Y I
H
•
. / # @ E C
% @ E 2 E 2 ' R a n g e pl u s o n e d i scre t e mi ssi n g v a l u e s
•
# 15 E @ @ E % * 9 * # I 10. 3 9 * 7. 5 .O K
:
& E @ E 2 E $ *
spss # @ E 2 E
.1
/ ) u se r- d e fi n e d mi ssi n g v a l u e s $ % @ E 2 E / : $ ? > . mi ssi n g v a l u e s H
6 2 (@ E " $ ?
$ # ! 2 ( = # ' * 4 - ) ' - @ E 1 2 % / : >
2 % 9 * E ( $ = ' # 5 . / # # $ O G
, ? D
" 1 ( * " 1 9 ( H 6 . / syst e m – mi ssi n g v a l u e s 2 3 ( @ E .@ E % ! - 4 - v a l i d
= ' # st ri n g v a ri a b l e s &
" 1 ( @ E 2 E $ mi ssi n g v a l u e s H
# R a n g e s " .2
. Di scre t e mi ssi n g v a l u e s $ # & " 1 - 6 E #
co l u mn I
% ( 9 ( C % 1 D
$ ? - 9 ( ? 9 * 2 ? 6 D
18
c o lu m n w id t h
:
$ ( E - @ & ; v a ri a b l e
.(@ , D
v ie w
% #
-)
D
- L ( & $ C o l u mn D
L E H 6 @ , Da t a
v a ri a b l e v i e w
v ie w
. 7 # I 1 D
% # 1 D
:
.1
4 - 1
.cl i ck i n g a n d d ra g g i n g A lig n m en t &
% # 1 ( E 1 ' $ G
B: ( - ! $ Q 7 2 E 2 A l i g n
' : %
@ . 6 I
I
. ( 9 * G
. ( 6 9 * G
. ( 9 * G
.2
%
@ . : L e ft
@ . : C e n t e r @ . : R i g h t
.( R i g h t ) / I # ! @ . ( % # me a su re I
Measurement % & : " #
< E 1 ( E 1 K E C D
1
" ; ' 3 ; v a ri a b l e v i e w
K E . / - @ # K % # ( K E ( ( E ) " ( $ : sca l e
.1
" . 1 . / - ; " 1 K E $ : o rd i n a l
.2
. … & R $ 6 " 1 K E =
$
# L 6 E ' % H ! & -
- & 1 - ( C I
R $ E R 6 R R
R & )
.( 4 ) ? $ I 7 9 (
( I # - " " 1 / ! " 1 K E $ :n o mi n a l
' # ; * . 9 * < 2 E $ (N & - N ! )Y ? 9 ( / !
.3
. E E 9 6 ! % . / # ; ] 2 2 % . ( 1 2 % & . *
> . / " 1 > . / 9 ( " ( )
* ! 1
7 $ ( @ R $ R 1 ) 3 # 1 N I - N' . & - " 1 : ( v a ri a b l e v i e w
19
. E J " 3 # L * 2 n o mi n a l
, , 3 $ # @ . ? " 1 ( " ( C
" $ * ; % 5 . / # " $ * 9 * $ E ' Da t a v i e w
@ E /
( F 1 # 9 ? ( 9 ( K C % 8 . " ! L - " 1 L ( 9 * $ E ! 2 ? F - e n t e r \ 6 1 I : ( Da t a v i e w
H
3 # F i l e
% 3 $ ( 2 * . . /
Sa v e A s 2 E t e st
2 C ( & 2 ; Sa v e & E 2 fi l e n a me
2 E $ * A ct i v e ce l l
2 7 2 4 . C ( &
: ( Sa v e Da t a A s
$ 6 # T e st C ( 2 2 E
. spo 6 ! " . # " " ( - sa v " ' " ( 6 ! ; t e st .sa v
2 L 2 fi l e
)
O pe n 2 E 6 , 2 E E & C ( F
s
F 6 F i l e
* 2 E 2 ! K (\ )C ( & . o pe n H
ct rl
1 20
+
# 7 & C (
Sa v e ? 8 . 2 7 ( " 1
.F ile
Sa v e a s 2 E
Data Editor ' ( ! ) # * ( 3 – 1)
# 1 2 9 ( ( E v a ri a b l e K & Da t a
v ie w
2 J C ( &
1 ( $ ( 3 - ) se l e ct ! .1
. ? K & Da t a v i e w
% # 9 ( -
% # 2 % 9 ( ( E ( J ca se ! .2 . ?
@ " 1 !
. sh i ft \ 6 1 I
.$ ? 1 2 9 ( ( E
.3
? 1 2 9 ( ( E
.5 ! $ ? 1 2 9 ( ( ? K & E
E 2 . / 5 ! ct rl \ 6 1 I
@ " 1 ! .4
1 2 9 ( ( E ." 1
@ = - @ " 1 ! E 6 K .5 .@ = - @ ca se s " ! ! Da t a v i e w
# 1
1 # I .6
< % 9 * < E 4 . ( 1 ' ( 4 - - ) 1 2 - ? K & E : H 6 Y 0 1 # I * / 7 - 1 # I *
. ( Da t a E " $ , ) Da t a E 2 E 6 , : 9 ? 6
; 1 9 9
21
1 C I #
1 C I # i n se rt
T o o l B a r " ? 6 , #
v a ri a b l e 5 ' - E
.7 1
E ? E - : E 6
. 1
1 # I * < % 9 < E 4 . 1 2 E
1 # I *
: sh o rt l i st @ E 3 # ? K & 7 *
. 1 9 *
1 C I # i n se rt v a ri a b l e ?
) @ (9 ( -) H # ca se # I * 1 # I / E 6 K .7 .( /
1 C . .8
. 5 ! ? K & Da t a v i e w
% # 1 2 E
" 2 I Ed i t E 2 E 6 ,
. Da t a v i e w
% 1 C . 2 # cl e a r ? -
. De l \ $ @ , 5 1 C .
: 1 C . Y - E 6
! sh o rt l i st @ E 3 # ! K & 1 2 E . 1 C . 2 # cl e a r
F
. ca se C . # 8 @ E # @ 1 C . H 6 K .9
: " 6 < co py 1 $ .10
7 * 1 T 4 . 1 2 - E - 2
. Ed i t
22
. 5 ( ) 1 2 E
co py Ed i t 2 E 6 , pa st e
2 E 6 ,
1 T E 6
2 ( sh o rt l i st @ E 3 ) ? K & ( ) 1 2 E
pa st e 2 ? K & 7 ( ) 1 T 4 . 1 2 E
.@ E co py . @ E
1 < I 1 .11
Ed i t
. 5 ( ) 1 2 E
cu t 2 E 6 ,
pa st e 2 E 6 ,
.7 * ( ) 1 8 4 . 1 2 E Ed i t
. co py T # / @ E $ 1 8 E 6 .Da t a
9 $ E ' .12
G o t o ca se 2 E 6 ,
. o k & E 2 % $ 0 2 E
. G o t o ca se H
.
3
E ? E E & *
R t ype > ) $ , ( Y - " 1 -) 1 9 A t t ri b u t e s 1 "
T .13
: " 6 > ( T ……… , L R w i d t h D
. ^ 1 9 * 7
T 4 . 1 2 E - v a ri a b l e v i e w . Ed i t
% #
co py 2 E 6 ,
.7 * " T 4 . 1 2 E
. Ed i t
9 ( 4 &
2 E 6 ,
. 1 ( t ype > ' ( E
.7 * T 1 ( ( E
pa st e
: ( 1 ( @
. 2 E 6 , Ed i t
N
T
co py
. Ed i t pa st e
N Da t a Ed i t o r % # " 1 ? D
#
+ , - . - / ( 4 – 1)
< $ I . " 1 . / < $ . 8 . 2 & ' " % $ ( E / * ( $ " 1 1
# g ra d e R b d a t e R g e n d e r R i d / " 1 - % I
E # H $ (
N' # So u rce L i st E # 3 " 1 5 . / # J # * L( - 4 - 2
23
J # A n a l yz e De scri pt i v e St a t i st i cs F re q u e n ci e s L( ? 2 E 6 , : ( 3 F re q u e n ci e s ? H
Y # So u rce L i st E # " 3 % " 1 < - ;
( " ( )
So u rce
# 6 E # g ra d e i d 1 3 - - . * .
- ( Da t a V i e w
24
* # L= " 1 4 - $ E 2 E - ; H
- V a ri a b l e V i e w
& E V a ri a b l e s % 9
: " 6 < 5 ' - L i st
ا ة او
2 ! ) Da t a Ed i t o r , , # 2 E 6 ,
: H
3 # U t i l i t i e s
De fi n e se t s
?
: " 6 < g ra d e i d 1 4 G ro u p1 2 C . 5 ' - H
# Se t N a me
% # G ro u p1 2 - L
K & 1 $ E V a ri a b l e s i n se t % 9 g ra d e i d 1 $ * .
& E-
. (
: ( L 5 ' - H
G ro u p1 2 " 1 &
& E 2 ?
1 C h a n g e & C . R e mo v e se t & ) .A d d Se t 4
9 ( $ C l o se & E
3 #
. g e n d e r i d 1
ا ة ا + , " ! د ا ا ت ا ا ا ) و ه أ ر# $ ا ة او% & ' أ ن ! # , د ا ا ت# ً 6 ' آ ر أ7 اF req u en c ies و ق ا ر1 آ ه3 4 & " ا ت ( وا : ا ا ت ا9 , ' g rad e وid ! ه8 ا
4 . U se Se t s H
25
3 # U t i l i t i e s U se Se t s 2 E 6 ,
: ( 7
N I - ( E Se t s i n U se % 9 H # E G ro u p1 $ E % E # 4 ) N e w .
V a ri a b l e s (" 1 # 4 ) A l l v a ri a b l e s
# E 9 Se t s i n U se % ( ( # 2 @ " 1
$ (g e n d e r i d ) 6 E # G ro u p1 # I " 1 J # O K J # N' A n a l yz e
& E
. $ ( #
De scri pt i v e St a t i st i cs F re q u e n ci e s ?
" 1 - 9 ( 7 N! 6 E # g e n d e r i d 1 4 fre q u e n ci e s H
: (
26
Data View : " 2 I v i e w
View
+ ! 0 ( 1 . 2 )
% 2 ( " # & *
. ? K & 5 E ( , , $ -) 6 , D
: - ;
: st a t u s b a r
? E # Da t a Ed i t o r , , # $ 6 > 2 1 : F o n t : F o n t H
3 ? K & F o n t
.1
.2
: - ;
@ ! 6 6 @ > - # : $ 6 > :F o n t E . A k h b a r M T R A n d a l u s R A ra b i c T ra n spa re n t R A ri a l $ 1 ( ( 6 6 #
: 6 6 : F o n t St yl e E 4
/
/ + 1 2
R e g u la r I t alic
B ol d
B o ld I t alic
. 6 2 : si z e E
27
$ ( L st a rt St a rt N u mb e r
% ( I R / R ) ( 2 % ? > 1 : ' 0 1
Se t t i n g s
:
C o n t ro l pa n e l R e g i o n a l se t t i n g N u mb e r st yl e .(co n t e xt , H i n d i , A ra b i c) 2 % ? > /
. Da t a Ed i t o r # , 6 6 D
$ 7 - N ( . ( $ # ) 1 2 E D .Da t a v i e w
.4
% 9 * $ E ' : v a ri a b l e s
.5
. st a n d a rd t o o l b a r E " ? 6 , 9 * " E - # I *
.-
% 9 * > 4 - K v a ri a b l e v i e w
.D
:v a lu e 1 K
E ?
# / - H E ? . / $ : t o o l b a rs .6
E . ( Da t a Ed i t o r % /
H
. ( E = ) 3 v ie w
" - 6 , ) , *
% # t o o l b a rs E
.L
: - ;
# E ) E > : Do cu me n t T ype
: H > ? - - $ Q 7 2 .H # a l l
.1
, , V ie w e r
.3
." E Da t a Ed i t o r
. D .D
, , @ Dra ft V i e w e r ." 6 6 D
, , ch a rt
. E syn t a x
28
.3
la b e ls
: Sh o w T o o l b a rs H
: G ri d l i n e s
.H scri pt Ed i t o r
.2
.4
.5
.6
.7
" ? 6 , - 5 ' - (" , , - H ? )H > $ - ;
.7
Da t a
% ' # E > ? $ @ # E " ? 6 , - : T o o l b a rs
F I / Da t a Ed i t o r " - 6 , / 6 E # % " - 6 , # Ed i t o r C h e ck b o x E H 6 6 , . / & * ; H H
.
#
' & * 4 - Da t a Ed i t o r
T o o l b a r" ? 6 , " E - 9 ( K I H ( 3 : Sh o w . H ( 3 * 2 9 * 4 O
' & * .(@ ? ) E ? 3 F I
T o o l T i ps
6 , " E - 3 0 2 E ? K & ch e ck b o x E : L a rg e B u t t o n s . 2 " . " ?
: " 6 < Da t a Ed i t o r % E " ? 6 , 9 * C o py E - # I :1 2
H sh o w
t o o l b a rs H
cu st o mi z e
H
3 # 2 E 6 , v i e w
3 # sh o w
to o lb a r
t o o l b a rs H
# cu st o mi z e & E
$ " I % "7 , 9 * K , O $ ; Ed i t " I
.
.to o lb a r
C o py E - E
: $ , # $ ? # " ? 6 , 9 * E ? L # I E 5 . /
.C o py E - 7 * " I - % " ? 6 , 3 O K
& E
. / # ) t o o l b a r 6 , , J ( C o py ) E " ? 6 , > * B: ' 0 1
& E 2 Sh o w
T o o l b a rs H
# T o o l b a rs % # ( Da t a Ed i t o r 6 , $ (N e w T o o l b a r
F a ct o r L i n e a r R e g re ssi o n * ( 4
.O K
& R e se t
" - 6 , -) : 2 2
" - 6 , # I * D
1
: " 6 < Da t a Ed i t o r T o o l b a r / % 6 , 4 Da t a Ed i t o r E . H Sh o w T o o l b a rs H
29
3 v ie w
t o o l b a r 2 E
6 , 2 2 E ; . T o o l b a r :pro pe rt i e s H
3 N e w
T o o l & E
6 , . / # 3 E 2 T o o l b a r N a me $ E # st a t i st i cs / " ? : $ , # 6 E # Da t a Ed i t o r E # 7 I * D
E - L 2 E ; cu st o mi z e : T o o l b a r H
3 cu st o mi z e & E
( st a t i st i cs ) " ? 6 , 9 * ? K & F a ct o r E - L i n e a r R e g re ssi o n
: $ , # H $
F 4 - Da t a
Ed i t o r E * st a t i st i c 2
st a t i st i cs " - 6 , / % = " - 6 , Da t a
Standard Toolbar N e w Toolbar ( Stati s ti c s )
30
" - 6 , C I O K
& E
Ed i t o r 6 , / % " - 6 ,
$ , #
:
d a te
: ? Da t a E 2 I : D at a + ! 0 ( 2 . 2 )
T " 1 ? . / 2 E : De fi n e Da t e & ( ( ( T C
.1
" ( # $ ! T 1 - 4 - 6 E # & ( ( 2 E T $ V a ri a b l e s . T ra n sfo rm E < C re a t e T i me se ri e s ? 2 &
& ( ( 9 (
, 1 2000/ K , ) @ ( @ J , " $ re v e n u e 1
2
:1 $ , # Da t a e d i t o r , , # 3 ( 2002/
. @ . @ $ ' , $ L re v e n u e 1 ( T C L( 6
re v e n u e 117 120 130 145 150 19 0 220 250 243 257 260 340 360 362 38 0 340 350 420 38 9 400
H
3 # Da t a
: " 6 < 8 . .
De fi n e Da t e s 2 E 6 ,
: ( 7 2 E 4 .
ca se s a re % Y e a rs, q u a rt e rs, mo n t h s * 3 !
: ( @ # Y ? "
. 6 E # " L & ( ( 2 % D
. $ " L & ( ( 2 % D
. , ? " L & ( ( 2 % D
I
: ye a rs
: ye a rs, q u a rt e rs : ye a rs, mo n t h s
. 7 H T 1 4 - & : N o t d a t e d
# = ) $ % T L & ( ( 2 % D
- 2 J @ 2 . / $ 2 ( - - > - N' (C a se s a re
2 K K ? / K Data Editor K ' ' 2 3 1 ! 2 3 * ( %
: C u st o m % "
. Syn t a x
) ! 9 ! - F 2 3
1
M % - F ! Data Editor ' ' 2 3 R e v e n u e B . $ ( : L > $ + 3 : % . . 20 F $ . ! 3 1 9 R e v e n u e
31
$ $ E # : & ( ( # 9 ? ( T C 2 E F i rst C a se i s % #
. 2000
. ( $ # < E & , ) 2 $ # $ $ $ E # 3 $ $ N' , ? $ D
. 6 , $ , $ E #
# ? . ! 7 - 3 !
. & , 2 $ N!
/ & % - 6 7 - T # P e ri o d i ci t y a t h i g h e r l e v e l -
. 2 / , Q 9 ( 4 / $ ( 9 ( - ' (
Da t a Ed i t o r9 T " 1 C I De fi n e Da t e s H
re v e n u e 117 120 130 145 150 19 0 220 250 243 257 260 340 360 362 38 0 340 350 420 38 9 400
ye a r_ 2000 2000 2000 2000 2000 2000 2000 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2002
q u a rt e r_ 2 3 3 3 4 4 4 1 1 1 2 2 2 3 3 3 4 4 4 1
mo n t h _ 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1
d a te _ J U N 2000 J U L 2000 A U G 2000 SEP 2000 O C T 2000 N O V 2000 DEC 2000 J A N 2001 F EB 2001 M A R 2001 A P R 2001 M A Y 2001 J U N 2001 J U L 2001 A U G 2001 SEP 2001 O C T 2001 N O V 2001 DEC 2001 J A N 2002
# O K
E
: (
K / Da t a Ed i t o r # , O 9 1 # I $ : I n se rt V a ri a b l e ?
.2
K / Da t a Ed i t o r # , O 9 ( - C a se # I ? $ : I n se rt C a se ?
.3
K / C a se N u mb e r % 9 L / . ( $ : G o t o C a se ?
.4
L N & - N N C ( " ! L $ : So rt C a se s ?
.5
. ($ ? $ < ) E " ? 6 , # . ($ ? $ < )
E ? O 3
.
. So rt i n g V a ri a b l e
32
E ? O 3
E ? O 3
L (" 1 ) 1
4 ,
: ( S ort 3 ) # ) 2
? d e g re e 3 2 3 ) - 4 sa l a ry C (
: $ , # Da t a Ed i t o r , , # 3 sa l a ry
& 1 S al ary + n am e de g re e s al ary A h m ad 3 4 0 S am e r 3 3 5 L oay 3 5 0 M ah m ood 1 8 0 A y ad 1 7 0 Y as s in 2 6 6 S atar 1 8 5 R az ak 1 7 7 K am al 2 5 9 A b as 3 4 5 M ah di 1 9 0 S al im 2 6 2 S ab ah 2 5 7 F al ah 2 5 5 I m ad 1 8 2
: C ( L . J
1 L N C ( L : ) 3 '
.-
3 # Da t a
: " 6 < Sa l a ry
So rt C a se s - 2 E 6 ,
: 2 9 ? M A - S ort C as e s
H
: ( Sa l a ry 1 L N C ( L 2 o k & E
" # I
Sa l a ry 1 L N sa l a ry C ( L : ' 4 2 ' .L
M
s al ary & . & +
R
A
Y
S
K
S
F
L
A
A
n S
I
am e de g re e s al ary am e r 3 3 5 h m ad 3 4 0 b as 3 4 5 oay 3 5 0 al ah 2 5 5 ab ah 2 5 7 am al 2 5 9 al im 2 6 2 as s in 2 6 6 y ad 1 7 0 az ak 1 7 7 ah m ood 1 8 0 m ad 1 8 2
33
3 # Da t a
: " 6 < d e g re e 3
So rt C a se s - 2 E 6 ,
: 2 9 ? M A -
So rt C as e s H
: L 9 ( $ O K & E
V a ri a b l e s " 1 $ 4 - K @ - 9 * C L( E $ : T ra n spo se ?
. K C a se s " ! 9 *
y 1 9 * # I * x1, x2, x3 " 1 - # # 4 C (
.6
: 2
: ( Da t a Ed i t o r , , # " " ( - % x1 3 4 5
& . $ 4 & + I 6 ( :
! . A y ad R az ak M ah m ood I m ad S atar 1 M ah di F al ah S ab ah K am al S al im Y as s in S am e r A h m ad A b as L oay
s al ary
3
1
1
3
3
3
2
2
2
2
2
1
1
1
8 5
7 0 7 7 8 0 8 2 9 0 5 5 5 7 5 9 6 2 6 6 3 5 4 0 4 5 5 0
x2 6 7 8
x3 9 10 11
y y1 y2 y3
y 1 - x # ( - L( 6
Da t a
: " 6 < 8 . .
T ra n spo se
2 E 6 ,
: ( 7 4 . T ra n spo se
: ( Da t a Ed i t o r , , # 3 # 9 ( ca se _ l b l y1 y2 X 1 3 4 X 2 6 7 X 3 9 10 N E ( 4 & 1 / ca se _ l b l - # @ -
H
3 #
$ 2 O K & E y3 5 8 11 ) - $ y1, y2, y3 ;
.
. ( M $ % # @ -) E " 1 ) - $
" @ E SP SS 2 # N
34
M e rg e fi l e s " (
( 5 . / ( ? . / $
.7
: E 6 Y 0 2 -
A d d V a ri a b l e s " 1 # I * .L
A d d C a se s " ! # I *
.-
( " ! " 1 K ( F ? . / - : A d d C a se s " ! # I *
.-
; ( 7 , ; L , ( 6 " C ( < - , ( 6 " C ( N' . (" ! ) , $ # ( 6 ; ( K
G ro u p2 C ( (v a ri a b l e s) - # ( ) 6 " 4 G ro u p1 C ( : 2
, , # ( $ 3 - # (" ! ' )L' 6 " 4 n a me Sa mi r L u b n a
ma t h 100 9 5
n a me ma t h Y o u si f 8 5 A mma r 9 5 Si n a n 9 0 : " 6 < ($
G ro u p1 ch e m 9 0 8 7
: Da t a Ed i t o r
ph ysc 9 5 9 0
mu si c 8 7 8 5
G ro u p2 ch e m ph ysc pa i n t 9 0 7 7 8 8 8 3 8 2 9 0 9 2 8 6 9 5 ? C ( " ! 9 * C ( " ! # I * ) (
$ C ( 2 J C ( . / C G ro u p1 C ( (o pe n ? ) ( - F # -
H
3 # Da t a
M e rg e F i l e s
. w o rk i n g d a t a fi l e
- 2 E 6 ,
A d d C a se s
C ( C N E & G ro u p2 C ( 7 A d d C a se s : R e a d F i l e
C ( # mu si c / @ @ # ( ( - 3 ' R Ext e rn a l Da t a F i l e : H
. C ( # pa i n t $ ?
3 A d d C a se s : R e a d F i l e H
# o pe n & E
: " H $ ,
C ( # I C " 1 / : V ariab l es in N ew
W
ork ing Data F il e
1 > 2 ! H 6 ( ' " 1 # I 2 ; (
. C ( # 7 I 2 E 5 . / 1 4 - C . 7 - ; R (4 & 2 - 4 )
35
C ( # I C " 1 ) - E 5 . / 4 : U np aired V ariab l es ∗ & W o rk i n g Da t a F i l e
+ & Ext e rn a l Da t a F i l e
. me rg e d F i l e (
$ C ( " 1 ( &
C ( " 1 ( &
: " 1 U n pa i re d V a ri a b l e s E $ ,
. 2 ! H 6 ! ( " 1
•
; ? C ( # & " 1 ( - # " 1 2 " 1
•
. ( ' # U n e q u a l W i d t h = $ 6 - & " 1
•
. & " 1 " 1 !
% G ro u p2 C ( # pa i n t G ro u p1 C ( # mu si c
1 - 3 ' $ . / #
. ( # - H 6 2 L E 5 . / # I
& E 2 ( ? K & 5 E ) 1 , J E 5 . / % 1 4 - 2 - 1 :1 3 ' # So u rce 01 2 J
.
. 1 .
2 - ) 6 * R e n a me
1 # I * 2 . / , J : I ndic ate C ase sourc e v ariab l e
C ( " ! 1 E $ C ( " ! 0 E . J C (
# C ( 3 ( 2 A d d C a se s F ro m H
# o k
& E
: (Sa v e A s ? ) L= 2 ! 7 6 * ; ( Da t a e d i t o r , ,
M e rg e d F i l e n a me ma t h ch e m Sa mi r 100 9 0 L u b n a 9 5 8 7 Y o u si f 8 5 9 0 A mma r 9 5 8 3 Si n a n 9 0 9 2 V a ri a b l e s i n N e w % 9 * U n pa i re
ph ysc 9 5 9 0 7 7 8 2 8 6 d % # " 1 M & 4 - $ E :2 3 '
C ( ? ∗ $ C ( 1 - - 6 , 9 ( W o rk i n g Da t a F i l e
A d d ` H
# U n pa i re d % # 3 . ( pa i n t mu si c ( $ E ( # +
: " 6 < C a se s fro m
. ( 1 2 - 9 ( E < C T R L \ 6 1 I - 2 $ ? 1 E -) 1 ' .1
A d d C a se s H
36
3 ; mu si c &
pa i n t /
2 ( 1 $ E P a i r & E - .2 : (
fro m
n a me Sa mi r L u b n a Y o u si f A mma r Si n a n
ma t h 100 9 5 8 5 9 5 9 0
V a ri a b l e s i n N e w #
: ( ( 2 5 ' - H = O K & E M e rg e d F i l e ch e m ph ysc mu si c 9 0 9 5 8 7 8 7 9 0 8 5 9 0 7 7 8 8 8 3 8 2 9 0 9 2 8 6 9 5 . ( 1 ( mu si c 2 - ) 6 * 2 7 - 3 '
.3
% # / ' - pa i n t mu si c 1 4 - I : 3 3 '
& E 2 ( ? K & 5 E ) L( 6 1 W o rk i n g Da t a F i l e
9 ( $ ( 1 ' I = . -) O K
& E / A d d
C a se s F ro m H
1 4 ! 4 . C ( # I " ! ( @ E % 4 4 . C (
n a me Sa mi r L u b n a Y o u si f A mma r Si n a n
ma t h 100 9 5 8 5 9 5 9 0
" ! K . (
M e rg e d F i l e ch e m ph ysc 9 0 9 5 8 7 9 0 9 0 7 7 8 3 8 2 9 2 8 6
: (
. . .
mu si c 8 7 8 5
pa i n t . . 8 8 9 0 9 5 A d d V a ri a b l e s " 1 # I - .L
C ( < ( ) $ C ( * ? . / F
. ( " 1 1 2
# 6 K " 4 Su b 2 C ( < I - # 6 " I G ro u p1 C (
: ( - I
37
n a me Sa mi r L u b n a
ma t h 100 9 5
G ro u p1 ch e m 9 0 8 7
ph ysc 9 5 9 0
mu si c 8 7 8 5
su b 2 n a me a ra b i c e n g l i sh Sa mi r 8 0 9 8 L u b n a 8 5 9 5 : " 6 < ($ ? C ( " 1 9 C ( " 1 # I * ) ( 3 # Da t a
. ($ C ( ) o pe n ? N E & G ro u p1 C ( F # -
M e rg e F i l e s
A d d
- 2 E 6 ,
V a ri a b l e s
C ( ) N E & Su b 2 C ( 7 A d d V a ri a b l e s : R e a d F i l e H
A d d
H
3 A d d V a ri a b l e s : R e a d F i l e H
. (
# o pe n & E
: ( V a ri a b l e s F ro m
: ( H I
C ( # I C " 1 ) J % / : N ew W
ork ing data F il e
. ( ' # 2 ! 7 , ! " 1 # I 2
@ C ( " 1 ) J % / : Ex c l uded V ariab l es
G ro u p1 $ C ( " 1 ) - 7 , su b 2
C ( " 1 ) - I
. ( ' # 5 N 3 (+ 5 & ) Su b 2 C ( n a me 1 I E 3 '
6 ( > ? 2 3 . #
% E C $ . 2 3 L - F % : Key Variables
# L 7 - N ( . @ E " ! - , = " ! D
9 ( ( ) N'
. K e y V a ri a b l e s # 6 ,
. 2 ! K ( ' # K e y V a ri a b l e I - L
38
.1
.K e y V a ri a b l e
L So rt i n g A sce n d i n g N ( L L
.K e y V a ri a b l e \ 1 9 * M ! $ .
( C ( 3 A d d V a ri a b l e s F ro m H
# O K & E
: (
M e rg e d F i l e n a me Sa mi r L u b n a
ma t h 100 9 5
ch e m 9 0 8 7
ph ysc 9 5 9 0
mu si c 8 7 8 5
a ra b i c 8 0 8 5
.2
e n g l i sh 9 8 9 5
(K ey v ariab l e * 5 6 ) : 2 2
C ( < (5 ' -1 $ ) 6 " 4 4 . G ro u p1 C ( - D n a me Y o u si f A mma r Si n a n Sa mi r L u b n a n a me Sa mi r L u b n a . . . "
Su b 3 a ra b i c 9 0 8 7 8 5 8 0 8 5 ma t h 100 9 5 . . . . . .
#
: ( L' 6 " 4 4 . Su b 3
e n g l i sh 8 5 9 2 9 1 9 8 9 5
: ( 3 K e y V a ri a b l e $ 2 # ch e m ph ysc mu si c a ra b i c e n g l i sh 9 0 9 5 8 7 9 0 8 5 8 7 9 0 8 5 8 7 9 2 . 8 5 9 1 . 8 0 9 8 . 8 5 9 5
9 * Su b 3 C ( # ( 6 " C I 2 ;
= ( - 3 '
: " 6 L K e y V a ri a b l e $ L 7 ( R G ro u p1 C ( # ( 6 K
? 6 n a me 1 L So rt A sce n d i n g N su b 3 G ro u p1 ( L SSu b 3 SG ru o p1 2 ( & < Da t a
39
So rt C a se s
: (
SG ro u p1 n a me ma t h ch e m ph ysc mu si c L u b n a 9 5 8 7 9 0 8 5 Sa mi r 100 9 0 9 5 8 7 SSu b 3 n a me a ra b i c e n g l i sh A mma r 8 7 9 2 L u b n a 8 5 9 5 Sa mi r 8 0 9 8 Si n a n 8 5 9 1 Y o u si f 9 0 8 5 1 / (L 1 ) n a me 1 ? ? C L % ( - 3 ! H
3 # Da t a
M e rg e F i l e s
. SG ro u p1 L C ( F # -
. 4 &
- 2 E
A d d V a ri a b l e s
: $ , 9 ( 7 2 E 4 . A d d V a ri a b l e s F ro m
B o t h F i l e s < M a t ch C a se s o n K e y V a ri a b l e i n So rt e d fi l e s , J
•
9 *
n a me A mma r L u b n a Sa mi r Si n a n Y o u si f
40
6 7 ( E - 2 @ , J n a me 1 E Excl u d e
V a ri a b l e s % #
•
: ( ( 2 5 ' - H
M e rg e d F i l e ch e m ph ysc mu si c a . . 8 7 9 0 8 5 9 0 9 5 8 7 . . . .
# o k & E
: $ , 9 ( A d d V a ri a b l e s fro m H
. . .
. P ro v i d e ca se s
ma t h
. 9 5 100 . .
3 # K e y V a ri a b l e s
ra b 8 8 8 8 9
ic
7 5 0 5 0
e n g l i sh 9 2 9 5 9 8 9 1 8 5
; C a se s " ! @ 4 C ( / : K ey ed T ab l e T ab l e L ook up f il e 7 8
# . C ( @ ! ; - C ( # " ! @ (H 6 ) $ E - $ -
# - " ( @ / N' @ " ( 6 " - " .@ ?
( 7 8 ) 3 2
$ R A g e R n a me 2 ! ) @ ? # - " ( 4 h o u se h o l d C (
: ( ( h o u sn o 2 % R Ed u
h o u se h o l d A g e 20 35 30 15 17 40 36
n a me A h ma d Z e k i Sa b a h Z a in a b I b ra h i m Sa mi r Se l ma
Ed u Se c B sc se c P ri m Se c M a B sc
h o u sn o 10 10 10 10 12 12 12
( ?
1 0
( ?
1 2
< % R Si z e @ ? 2 I ( @ ? " ( 4 # h o u se C ( Si z e 4 3 k e y V a ri a b
h o u L o ca B a g h B a g h l e /
se tio d a d a 4
: h o u sn o
2 % RL o ca t i o n
n
h o u sn o d 10 d 12 . h o u sn o 1 L N 5 ' - ( % - N (
. ( # 6 E 5 . / Da t a
so rt C a se s ?
# - # $ (h o u se C ( ) " ( % - ( 5 ' - ( -
: " 6 L 8 . . h o u se h o l d $ ? C ( # @ ?
W o rk i n g F i l e $ C ( F 4 . h o u se h o l d C ( F # -
C ( - 2 Da t a
M e rg e F i l e s
A d d V a ri a b l e s
Ext e rn a l F i l e 4 . A d d V a ri a b l e s : R e a d F i l e ` H
H
3 A d d V a ri a b l e s : R e a d F i l e ` H
Excl u d e d V a ri a b l e s % I Ext e rn a l F i l e
2 E h o u se
# o pe n & E
h o u sn o 1 9 ( 4 4 . A d d V a ri a b l e s F ro m : ( )
J 2 E ;
< M a t ch C a se s o n K e y V a ri a b l e s i n So rt e d F i l e s , J
. T a b l e L o o k U p fi l e ; C ( /
41
C ( - i s K e ye d T a b l e
•
7 ( E 2 5 , J
H
C ( h o u sn o 1 E - Excl u d e d
3 ; \ 1 5 K e y V a ri a b l e s 9 : ( @ . " )
*
n a me A h ma d Z e k i Sa b a h Z a in a b I b ra h i m Sa mi r Se l ma
A g e 20 35 30 15 17 40 36
M e rg e d F i l e Ed u h o u sn o Se c 10 B sc 10 se c 10 P ri m 10 Se c 12 M a 12 B sc 12
. $ ( D
# O K
& E
= ? " C ( ($ # ) &
L o ca t i o n B a g h d a d B a g h d a d B a g h d a d B a g h d a d B a g h d a d B a g h d a d B a g h d a d
Spl i t F i l e s (" ( &
: K L G
D
) $ #
1 ? . / $
.8
1 2
, ? L $ $
g e n d e r m f m f m f
" 6 < f ;
? L $ m . L $ $ ? -& Da t a
42
Si z e 4 4 4 4 3 3 3
6
•
A d d V a ri a b l e s F ro m
: ( ( 2 H H
w a g e 60 30 7 0 35 65 40
V a ri a b l e s % #
Spl i t F i l e
9 * C ( &
2 E 6 ,
:
: $ , 9 ( 7 % 4 . Spl i t F i l e
. C ( &
2
3
: - ;
: A nal y se A l l C ases, do not C reat G roup s
- 1 . / ) 1 " # L C ( &
E $ , 9 ( * ( D
H
2 : C omp are G roup s
2 ( G ro u ps B a se d o n # " 1 . &
1 ( <
2 C o mpa re G ro u ps E K / . / : O rg aniz e O utp ut b y G roup s
. / 2 $ . / # ) &
1 < $ ( E @ D
$ E 6 7 , . / L C ( $ # E 6 -. ( g e n d e r &
? N' " ( D (" 1 ) 1 <
1 ( %
E 6 # C ' ! C o mpa re
G ro u ps
. F re q u e n ci e s
L C ( L 2 : S ort T h e F il e b y G roup ing V ariab l e . &
@ " - 9 5 ! L L 9 M ! C ( :F il e is A l ready S orted
9 ( So rt L ( 2 & ' " % ! / . / @ # . &
1 L
. ( So rt T h e F i l e b y G ro u pi n g V a ri a b l e ) H * . / 2 ! L( = ?
m . ( / - -&
9 * C ( &
2 Spl i t F i l e H
# O K
& E
: ( g e n d e r 1 ( ? C L So rt L 2 % f ; ] ? w a g e g e n d e r 30 f 35 f 40 f 60 m 7 0 m 65 m
43
H C o mpa re g ro u ps , J # L K 9 $ - N (
? w a g e 1 ( 6 L ( # " ( " # 3
L $
< $ 3 -)A n a l yz e
De scri pt i v e St a t i st i cs
F re q u e n ci e s
: " ( F re q u e n ci e s ? 6
Frequencies G E N D E R = f
O rg a n i z e O u t pu t b y G ro u ps "
.1
: co mpa re g ro u ps "
.2
Statisticsa WAGE N V a lid M is s in g M e a n
a . GEND ER = f
3 0 35 . 00
G E N D E R = m Statisticsa WAGE N V a lid M is s in g M e a n
a . GEND ER = m
3 0 6 5 . 00
Frequencies Statistics WAGE f
N
m
M e a n N M e a n
V a lid M is s in g V a lid M is s in g
3 0 35 . 00 3 0 6 5 . 00
H 6 L 2001 2000 # $ M ? $ : 2 2 pro d 800 600 1400 900
44
ye a r 2000 2000 2001 2000
re g i o n N o rt h So u t h N o rt h N o rt h
( R , )
1090 950 1350 1180 700 975 1290 1000 750 1310 1150
2001 2000 2001 2001 2000 2000 2001 2001 2000 2001 2001
So u t h N o rt h N o rt h So u t h So u t h N o rt h N o rt h So u t h So u t h N o rt h So u t h . E 6 L (pro d M 1 ) C ( &
< $ I
H 6 L $ pro d 1 " ! - ; C ( &
2 E 4 . Spl i t F i l e
H
3 # Da t a
: $ pro d 8 00 9 00 9 50 _ _ _ _ _ _ _ _ _ 9 7 5 600 7 00 7 50 _ _ _ _ _ _ _ _ _ 1400 1350 129 0 1310 _ _ _ _ _ _ _ _ _ 109 0
< re g i o n N o rt h N o rt h N o rt h _ _ _ _ _ _ _ _ _ N o rt h So u t h So u t h So u t h _ _ _ _ _ _ _ _ _ N o rt h N o rt h N o rt h N o rt h _ _ _ _ _ _ _ _ _ So u t h
- 9 C ( &
45
, # ye a r 2000 2000 2000 _ _ _ _ _ _ _ _ 2000 2000 2000 2000 _ _ _ _ _ _ _ _ 2001 2001 2001 2001 _ _ _ _ _ _ _ _ 2001
Spl i t F i l e
_ _ _ _ _ _ _ _ _ _ _ _
1
: " 6
: $ , 9 ( 7
& E
1st G ro u p
_ _ _ _ _ _ _ _ _ _
D
- 2 E
2 5 ' - H # O K
_ _ _ _ _ _ _
L( 6
2n d G ro u p
3rd G ro u p
4t h G ro u p
118 0 1000 1150
2001 2001 2001
So u t h So u t h So u t h
$ ( . / J # pro d 1 6 M ! fre q u e n ci e s ? $ ( )
-
: ( O rg a n i z e O u t pu t b y G ro u ps ? < 9 ( &
F r e q u e n c ie s Y E A R = 2 0 0 0 , R E IG O N
= N o rth
Statisticsa PROD N V a lid M is s in g M e a n
4 0 9 06 . 2 5
a . Y E A R = 2 000, RE I G ON = No r t h
Y E A R
= 2 0 0 0 , R E IG O N
= S o u th
Statisticsa PROD N V a lid M is s in g M e a n
3 0 6 8 3. 33
a . Y E A R = 2 000, RE I G ON = S o u t h
Y E A R
= 2 0 0 1 , R E IG O N
= N o rth
Statisticsa PROD N V a lid M is s in g M e a n
4 0 1 3 3 7 .5 0
a . Y E A R = 2 001 , RE I G ON = No r t h
Y E A R
= 2 0 0 1 , R E IG O N
= S o u th
Statisticsa PROD N V a lid M is s in g M e a n
4 0 1 1 05 . 00
a . Y E A R = 2 001 , RE I G ON = S o u t h
46
A g g reg ate Data 9
@ # ca se s " ! E ( " ( G
( ? . / $
L' 6 " ! 4 % " # . - $ $ 9 ( # .
.9
C (
- # L 6 N! ( @ / ) < $ # L= E # K
C ( # N' 4 C ! - $ # L' 6 " ! 6 D
4 ,
. K # L' 6 < " ! D
N!
? d e g re e 3 2 3 ) - 4 sa l a ry C (
2
: ( Da t a Ed i t o r , , # 3 sa l a ry
sa l a ry C ( n a me d e g re e sa l a ry A h ma d 3 40 Sa me r 3 35 L o a y 3 50 M a h mo o d 1 8 0 A ya d 1 7 0 Y a ssi n 2 66 Sa t a r 1 8 5 R a z a k 1 7 7 K a ma l 2 59 A b a s 3 45 M a h d i 1 9 0 Sa l i m 2 62 Sa b a h 2 57 F a la h 2 55 I ma d 1 8 2 .d e g re e 3 L ( 6 M ) L 1 < L( 6 A g g re g a t e ` H
47
3 # Da t a
: " 6 < 8 . .
A g g re g a t e
- 2 E 6 ,
: ( 7 4 . Da t a
(" ! ) < C $ b re a k d o w n V a ri a b l e (s) &
: - ;
(" 1 ) 1 / :B reak
. < d e g re e 3 1 ( $ . / #
" ! < # L= 4 . (" 1 ) 1 / : A g g reg ate V ariab l e(s) . &
1 L
A g g re g a t e V a ri a b l e (s) % 9 7 ( E sa l a ry / 1 J # $ . / # : 7 N ( 3 $ 4 ,
2 E N a me &
Q 6 $ sa l a ry_ 1 / I # 2 J 3 7 J #
L a b e l & $ 7 1 ( I # ! 2 ? 1
•
1 2 E F u n ct i o n & E ( M e a n 6 ) I # ! 1
•
. A g g re g a t e V a ri a b l e s % % 1
Su m R St a n d a rd De v i a t i o n $ Y - $ - ; A g g re g a t e V a ri a b l e s % %
. T …N o . o f C a se s Ro f C a se s
2 7 < , J : S av e N umb er of c ases in b reak G roup as v ariab l e
9 ? 3 ( N' # $ " ! N _ B re a k / I # 2 J
1
. 4 ( 5 3 ( 6 E 1 . J
I # 2 J " ( 4
C ( F . / : C reat new
Data F il e
1 7 N ( . : ( sa l a ry ( ? C ( 7 # < E 4 . $ K # A g g r/
. F i l e & E 7 % C ( 2 -
8 . - N ( sa l a ry C ( $ C ( $ ' ! : R ep l ac e W
ork ing Data F il e
. 2 J 7 & 2 2 & ! C ( - ( ? C ( & 1 ( !
? 7 # L 7 @ ) E R A G G R C ( & 2 O k & E : ( C ( 3 F i l e
O pe n
Da t a
A G G R C ( d e g re e sa l a ry 1 8 0.67 2 59 .8 0 3 42.50 ; " % K # " @ A g g re g a t e V a ri a b l e (s) % 9 * sa l a ry 1 $ *
L " ! < $ sa l a ry_ 1 1 N' … sa l a ry_ 2 R sa l a ry_ 1 ( ( 2 % . J . . / … 4 C ? L < $ sa l a ry_ 2 1 6
48
$ ( # I " ! ) & ( ( D
# ? . / :Se l e ct C a se s " ! - .10
. " ? 6 , #
E ? O 3 K / .
. 2002 – 1990 @ $ ' , " $ &
B: " 6 < 8 . . R 2002B1997 " $ E " ! - # L=
Se l e ct C a se s H
3 # Da t a
Se l e ct C a se s
- 2 E 6 ,
B: (
C ( " ! # - A l l C a se s - ;
49
2 I f C o n d i t i o n i s Sa t i sfi e d E - 2002B1997 " $ E " ! ? : ( 7 2 E 4 . H
3 # I F
& E-
# & ? $ ? K & 5 ' - H # & ? 9 ( E 8 # " ! E - (2002B1997) ( 6 " ! 2 O K
" ! ( 1 E . J 4 . fi l t e r_ $
2 J C ( 9
.
& E
1 # I * 2 Da sh e d 6 ,
B: ( @ " ! ( 0 E @
% - ; $ ( $ ! C ( C . 2 @ " ! - 3 !
- . * Se l e ct C a se s H
50
# U n se l e ct e d C a se s A re # F i l t e re d , J
B: 9 ( $ ; De l e t e d , J 2 E N @ " ! C . B a se d o n
, J N I - 2 (2002B1997 )" $ E " ! - -
@ " ! ; H
3 # R a n g e
" ! ( 1 E 6 ; C ( 9 fi l t e r v a ri a b l e
& E 2 T i me o r C a se R a n g e
. (13B8)
: 0 1
# I * $ ' " ! -
.1
2 % H $ ( # / # L= ! " ! ( 0 E / % L= B: ( ( N' X ) 1 . /
51
B: ( Se l e ct C a se s H
i f co n d i t i o n i s sa t i sfi e d
L 2
( . 9 ( $ ;
8 . 2 " ! 6 , F R a n d o m N u mb e r o f C a se s
.2
. " ! ( F - (" ! % 5 N' ) ( -
. Se l e ct C a se s H
# A l l C a se s , J 2 E " ! ) 1
C ( C a se s " ! & - ) 6 * * ? . / F : W e i g h t C a se s " ! F 6 , #
.3
.11
E ? O 3 K / / ? # ' ! N 3
. E " ?
/ - - N & $ - N ( ) @ # ( 6 - $ 2 E : 2
.SP SS Da t a Ed i t o r , , # " ( - % "
w e i g h t &
d e g re e
!
30
60
10
10
50
52
7 0
75
55
$ ?
;
<
: ( L( 6
. ? " ' 6 L
. ? " ' F
6 L
.1
.2
2 E 6 , 6 L .1 A n a l yz e De scri pt i v e St a t i st i cs F re q u e n ci e s 9 ( $ ; M e a n , J < (F re q u e n ci e s ? $ < $ < ) :
Frequencies Statistics DEGREE N V a lid M is s in g M e a n
4 0 6 5 . 00
: " 6 < < ? " ' w e i g h t 1 F
W e i g h t C a se s H
3 # Da t a
6 L
W e i g h t C a se s 2 E 6 ,
.2
: $ , 7 2 E 4 .
, , # 1 4 - 3 ' 8 - N ( ) w e i g h t 1 C ( " ! & 2 O K
& E
: 9 ( $ C F re q u e n ci e s ? 6 L
. ( Da t a Ed i t o r
F r e q u e n c ie s Statistics DEGREE N V a lid M is s in g M e a n
H
53
1 00 0 6 0. 00
# Do n o t w e i g h t ca se s , J 2 E C ( " ! F ) 1 : 3 ' .W e i g h t C a se s
" # # " < \ R o w
Data T ransf ormation Da t a ( ? " 9 ( $ &
. 6 , b
70 2 @
" ! 9 ( ! @
" 1 9 *
: ? 3 T ra n sfo rm % 2 I
" 1 L * ? . / F : C o mpu t e ?
. ( " & R * R $ ) I
: ( Da t a Ed i t o r , , 9 * * 2 . ( x2 x1 1 $ $ x1 x2 60 9 0 8 7 8 8 7 0 43 9 0 8 0 57 55 7 3 47 9 5 9 0 66 50 40 55 55 8 0 8 5 7 5 8 8 8 6 35 7 0 2 % # x2 x1 1 " ! ( * ) M e a n 6 L L( 6 H
54
3 # Transform
.1
: 2
: " 6 < 8 . . . X 1, X 2 ≥ 50
comp u te
2 E 6 ,
: $ , 9 ( 7 2 E 4 . comp u te variab l e
: " (
-%
. X2 X1 6 @ / 4 . Targ et Variab l e C 1 2
.-
.( X3 C 1 2 L - 2 Targ et Variab l e $ - $ 6 E - )
# typ e &
H
.
& 6 1I
2 F u nctions % M ean /
.L
& E 2 @ 9 ( $ X2 X1 / ( " 1
. 5 ' - H
3 # Typ e &
# F I / @ < % # M ean
L ab el & E - C 1 >
: ( 5 % L ab el
." .;
: - ;
- ) l ab el ( @ @ E X3 1 ( ) 6 * 7 ' : label - M ean(x1, x2) % ( & 120 1 $ 6
u se exp ression @ @ E X3 1 / N u meric exp ression . as l ab el
N & 1 # - nu meric 4 / 1 ( I # ! > -: t y p e " ( ( Y
comp u te H
55
. w id th 1 $ 6 > L # S tring
cases "! ) &
! .continu e & E ) !
# if E ( x1, x 2 ≥ 50 # "! L ) L ! if cases H
3 variab l e
incl u d e al l cases E "! # I
incl u d e if case satisfies cond ition E "! ) &
6 , $ * 2 ? E 2 E "! ) &
$ 6 , G
H
# O K
I
L -
$ C DF
•
$ 6 $ # @ & ? ! ( x 2 ≥ 50 x1, ) : $ , 7 if C ases H
& 2 I f C ases H
3 ; @ #
# continu e & E
x3 / - 1 # I * 2 ; L ! 9 ( $ 2 C omp u te Variab l e x1 60 8 7 70 90 57 73 95 66 40 55 8 5 8 8 35 9 ( $
•
x2 90 8 8 43 8 0 55 47 90 50 55 8 0 75 8 6 70 *
. . .
: ( Data E d itor 9 * ( x2 x1 1 ( 6 ) x3 75 8 8 8 5 56 93 58 68 8 0 8 7
. F S P S S # @ # ! " & $ : ' 0 1
2 1 # 8 . # ? " & 4 - 1 2 E ( E "! ! 9 ( $ ' # (T … t < & R 6 < & $ ) " &
8 . p arameters 2 H 6 < & , 1 2 % % 4 ? ( E : $ , # < &
56
CDFZ=CDFN O R M [Z]
CDFt=CDF.T[t,15]
CDFb i n o m =CDF.B I N O M [x , 10 , 0 .5 ] b i n o m i a l r .v .
n
p
t-d i s t. r .v .
d f
: . Deg rees of F reed om " $ : d f
. , ? 6 I $ : R and om N u mb er S eed ? : C ou nt ?
E K " L " ! # / - ? . *
4 - # "'
1 ; ! / 2 $ O L ; E "' . $ @ ) E "'
y2 8 3 7 1 1 10 7 6 9 1 6 9 3
# yes "
# ( Data E d itor # " $ * 2 ) y2 y1 1 D
57
.3
$ > ' 6 . $ $ 9 ( # . $ " 1
L 4 .
y1 1 15 14 9 1 4 6 11 15 9 6 20 16
.2
: 2
: $
25
22 8 5 7 7 # # 20 6 1 2 % ? " L 4 . y3 ; 1 # L= Transform
B: " 6 H 6 8 . . . 1
C ou nt
2 E 6 ,
7 2 E 4 . C ou nt O ccu rrence of val u es w ithin cases
H
3 : (
: ( L( 6 ;
1 $ * y3 / Targ et variab l e C 1 2 $ *
.-
9 ( " 1 - ) " 1 % y2 y1 1
.L
3 Define val u es & E / " L 2 E C D
."
.( ) C
. N u meric variab l e $ 6 9 * ( E 2 ( & - ) > K
2 J # 1، 6، 20 2 E $ J L= - ; Val u es to cou nt 2 E G # I A d d
1
H
: " 6 L 8 .
& E 2 1 E $ val u e ( $ 6 E 1 E $
•
E # I A d d & E 6 E $ val u e ( < E 6 E $
•
( $ $ 6 E 2 ( H $ - ) R ang e @ E # 20 E $
•
. # val u e to C ou nt $ 6 9 * E . # Val u es to cou nt % 9
: $ , 9 ( - 4 - 20 L R ang e
58
; . # Val u es to C ou nt % 9 * J # 20 Y # I A d d : (
& E 2
val u es to C ou nt H
$ ,
K & / , J % C . R emove & % 1 $ C hang e & - N ( cou nt occu rrence of val u es w ithin H
. Val u es to cou nt % # ?
9 * > ( C ontinu e & E
y1 y2 y3 1 C I ? . / # O K & E 2 cases 1 8 1 : Da t a E d i t o r y3 15 3 0 14 7 0 9 1 1 1 1 2 4 10 0 6 7 1 11 6 1 15 9 0 9 1 1 6 6 2 20 9 1 16 3 0 25 22 2 8 5 0 7 7 0 ; 1 2 % % $ (& ) cod e ) 6 * # ? . / : R ecod e ?
.4
@ 7 %
.
: & ? I " $ #
1 # ? . / : R ecod e into same variab l es ? . 2 E 1 2 - K 1 . / . J 2 % 1 2 E &
2 E . J 4 . sal ary 1 D : 2 sal ary : 20 16 95 8 8 65 53 35 46 90 22 30 28 51 60 8 5 % $ C od e & ) 6 * / L( 6 . Data E d itor , , # 1 2 % "( - % : L L 1 2 %
= 1 2
59
' <
$ % # 24 49-25
74 B50
3
# 75
4 Transform
R ecod e
: " 6 < 8 . .
into same variab l es
2 E
: ( 7 4 . R ecod e into same variab l es H
3 #
9 ( 1 7 N ( ) % & 4 . sal ary 1 E H
.( & ) > K (
3 # 2 E & E 6 O l d and N ew Val u es & E
: 2 E 3 ' ; O l d and N ew Val u es
H 6 - @ E 2 % - @ % ) % & ) 6 * 2 E / : o ld
v alu e .( 2 E
.@ E N % - E 2 E ( 9 6 & / : n ew v alu e
$ * 2 rang e @ @ E ol d
val u e % # $ % # 24 9 ? $
( $ % # 24) ( $ E & $ val u e $ 6 E N ew
ol d and new
6 0
. ol d
H
new
: ( "
•
Val u e % #
•
% 9 * $ E & < # I * 2 # A d d ` & E
•
.1 /
3 ; / - < " E $ * 2 E 6 K
: ( val u es
: " & * # , J 7 N (
E $ - O l d Val u e % # E E $ - / , J # 1 C hang e & .N ew
F ; & &
O ld
. N ew Val u e % # @
% # / , J # C . R emove &
C ontinu e & E " $ * ) !
B: $ , 9 ( Data E d itor # sal ary 1 sal ary : 1 1 4 4 3 3 2 2 4 1 2 2 3 3 4 & ( $ Data E d itor E C & $ % S al ary ( ? 1 2 % - 4
C ( 2 - K C ( 3 2 2 E ( ? 1 4 4 . C ( - N ( R C od es & 1 & ) 6 * ? . / : R eced e into d ifferent variab l e ?
. 2 E
K 9 * & < < 7 / L( ? 2 E 1 9 ( 3 < ^ 1 #
.>
. 1
& & @ . " L H $ # S al ary 1 & # L= : 2
. C ( 1 #
" 6 < C ( 1 9 * sal ary 1 & Transform
R eced e
into d ifferent variab l es
2 E
: ( 7 4 . R ecod e in to d ifferent variab l es H
2 - ( - / N u meric Variab l e
3 #
O u tp u t % 9 S al ary 1 $ E % %
& E < sal cat 2 ! 2 N ame # $ 6 E H 6 1
. 8 . = 2 ? 1 E 6 K C hang e
E 6 K @ E 2 E $ * 2 O l d and N ew
$ R ecod e into d ifferent variab l es H
6 1
Val u es & E
•
3 " 1 K 9 * & : (
H 6 ( 9 6 2 ) 1 ( E 2 E 3 ! : ' 0 1
.new val u e cop y ol d val u es ol d val u e A l l other val u es
s a la ry 2 0 16 9 5 8 8 6 5 5 3 35 4 6 9 0 2 2 30 2 8 5 1 6 0 8 5
R ecod e into H
Data # sal cat 2
s a lc a t 1 1 4 4 3 3 2 2 4 1 2 2 3 3 4
# C ontinu e E
1 C I d ifferent variab l es
: $ , # E d itor
(" 1 L ) categ oriz e variab l es ?
" $ 9 1 $ 2 E )
6 2
. /
C ? ( " 1 ) 1 2 H
.5 L( 6
sal ary 1 ( 4 9 * " 2 . * ' # categ ories
$ % 2 E L ) $ ? < # 1 2 E 1 2 % G
2 #
.( % 25
% 50 9 % 25 ) 1 2 E 2 2 % G
.( % 75 9 % 50 ) 1 2 E 3 2 % G
.( # % 75 ) 2 E 4 2 % G
Transform
: " 6 < (sal ary 1 ) H $ K 5 . / .
C ateg oriz e variab l es
2 E
: ( 7 4 . categ oriz e Variab l es H
3 #
.(
: ( Data E d itor 9 nsal ary 1 # I * 2 O K nsal ary 1 1 4 4 3 3 2 2 4 1 2 2 3 3 4
3 #
& E
. ! :
@ 7 %
A u tomatic R ecod e E ( &
1 E ( & # 2
.6
" 1 " ) ) 2 E 1 ( ( & - ) % ( & 2 -
1 ) name ( 4 1 ) sal ary 1 I C ( : 2
name A hmad S amer L oay M ahmood A yad Y assin S atar
: ( ( 4 &
sal ary 40 35 50 8 0 70 66 8 5
: " 6 < 8 . . . E ( & # L 1 & L( 6
Transform
2 E
A u tomatic R ecod e
# name sal ary 1 $ 0 2 E ; A u tomatic R ecod e H
N' (& ) 1 - 6 2 Variab l e
N ew
N ame %
rname rsal ary
$ * 2 ? K & 1 , J H 6 1 2 ( 1 -) $ *
. N ew N ame & E 2 N ew N ame & $ 6 # 1 2
•
-
R ecod e starting from L ow est val u e "
R ecod e starting from H ig hest val u e & "
H @ C - C ( ? $ ( L & " 1 & 2
. @ 1 C
6 3
: ( 3 Data E d itor 9 * 1 C I O K name sal ary A hmad 40 S amer 35 L oay 50 M ahmood 8 0 A yad 70 Y assin 66 S atar 8 5
rname rsal ary 1 2 5 1 3 3 4 6 2 5 7 4 6 7
5 . / " 1 L @ / @
& E
R ank C ases: ?
" 1 5 . / 6
.7
. Y - " 1 6 1 L ) 6 * . & L
reg ion E 6 g end er reg ion g end er sal ary 1 2 30 1 1 70 1 1 100 1 1 50 1 2 45 1 2 36 1 1 70 1 2 25 1 2 22 1 1 42 2 2 15 2 1 100 2 1 110 2 1 8 8 2 1 92 2 2 55 2 2 32 2 1 47 2 2 20
K sal ary
? " 1 4 C ( : 2
: Data E d itor # 3
? 1 N ) 6 * - D
" # I
Transform
g end er K
" # I
sal ary
. reg ionE 6
: " 6 < 8 . . C ases 2 E
7 4 . R ank C ases H
3 # R ank
: (
G end er 1 - Variab l es # S al ary N 5 O 6 * 4 . 1 $ 0 % E
# * 2 # G rou p ing Variab l es < " 1 # L 2 . ( reg ion . N L ) 6 S mal l est Val u e , - A ssig n R ank 1 to # B y
6 4
H
3 R ank cases H
# R ank Typ es & E > !
R ank L ( 6 > 7 R ank C ases:Typ es
9 * rsal ary 2 ( L 1 )
1 C I O K
reg ion g end er sal ary rsal ary 1 2 30 3 1 1 70 4 1 1 100 5 1 1 50 2 1 2 45 5 1 2 36 4 1 1 70 4 1 2 25 2 1 2 22 1 1 1 42 1 2 2 15 1 2 1 100 4 2 1 110 5 2 1 8 8 2 2 1 92 3 2 2 55 4 2 2 32 3 2 1 47 1 2 2 20 2 R eg ion " # I (; -R . ) G end er " # I
& 2 continu e & E
: $ # Data E d itor
sal ary 1 ( L ) 6 * 2 7 - 3 !
:" 3 '
& " 1 ( L ) 6 * ! 6 E # " 1 ( L ) 6 * G rou p ing
. ^ # 4 1 ?
L ) 6 *
< " 1 $ 9 * 1 L ) 6 *
. (2 1 ) .1 .2
< 4 1 $ S al ary 1 ( L ) 6 * H $ # Variab l es
6 5
R ank C ases H
# B y 5 . / # reg ion g end er . " 1
% 4 - ) ( ? 1 ( 2 E K "! ( L 2 3 D H
3 ; R ank
cases H
1
# Ties & E 2 ( " @ 1 (
.3
: @ 2 E ( " - 4 4 .
: , 2 E ( ? H 6 L G $ Val u e M ean L ow H ig h seq u ential 10 1 1 1 1 15 3 2 4 2 15 3 2 4 2 15 3 2 4 2 16 5 5 5 3 20 6 6 6 4 R ank C ases : Typ es H # / L > ? I
7 1 2 % % $ ) 6 * 2 ; ) 6 / : R ank
.4
. (
. 9 ? < & L 1 2 E L 6 : S avag e S cores
& ? > 9 ( 1 2 E 6 % / : F ractional R ank
.( 9 * & 4 - & - 2 # "! - ) "! #
. 100 # E L I
$ 5 . / 9 ( $ 2 : F ractional R ank as %
"! # & ? > $ "! # : su m of cases w eig hts . ( & - 2 # "! - )
) $ 9 6 < 9 * 1 2 % 2 E L ) 6 * 2 : N til es
2 E ( 1 ) 6 * 2 7 # (4 L ) 4N til es . 0 # ( & -
% 75 9 * % 50 2 E ( 3 % 50 9 * % 25 2 E ( 2 9 6 % 25 $ %
.H # # % 75 4
: > - - / " E : p rop ortion estimates
1 L 1 2 E ) 6 * 2 : B l om
(r − 3 8) ( w + 1 4)
$ r "! & - > $ w
6 6
* ;
1 L ) 6 * 2 : Tu k ey
( r − 1 3) ( w + 1 3) ( r − 1 2) w
1 L 9 6 : R anK it
/ r " / , / w
;
1 L 9 6 : Vand er w aerd en
r ( w + 1)
$ r "! & - > / w
;
x 1 ( "! ) 2 E ( H 6 L F I $
X : Variab l e 1 rx : R ank (simp l e) sx : S avag e S core nx : N til es rfr001 : F ractional R ank p er001 : F ractional R ank as % n001 : S u m of case W eig hts p x : P rop ortion E stimate (B l om)
- ;
6/7= 0.8 571
( (N' ) L
0.8 571*100= 8 5.71
(6-3/8 )/(7+1/4) =0.7759 P ro001 : P rop ortion E stimate (Tu k ey) (6-1/3)/(7+1/3) =0.7727 P ro002 : P rop ortion E stimate (R ank it) (6-1/2)/7 = 0.78 57 P ro003 : P rop ortion E stimate (Vand er W aed en) 6/(7+1) = 0.7500
( L
( L
( L
( L
( L
1 2 % @ / N ormal S cores L - : N ormal S cores
E stimated C u mu l ative " E $ E Z S cores E 6
@ . ? H 6 " - H "! @ / P rop ortions : ? H 6 N ormal S cores L $ $ (… R Tu k y R B l oom )
6 7
B lo m
T u k e y
R a n k it
V a n d e r W a e d e n
P rop ortion " E 9 ( ! B l om 1 N ormal S cores L - N' "! @ / 1 . / 2 % - ; ( p x 1 ) B l om 1 E stimates
C u mu l ative p rob ab il ities
( "! ! ) 2 E 5 . ( E Z E 6 < & 1 2 % - 6 6 < & ( I DF 2 2 E 6 , Transform
C omp u te
9 ( $ ; I DF .N O R M A L (p x, 0, 1) ( ( 4 4 C ( 4 . 5 ' - $ # nx 1 2 % K
: C reate Time S eries & $ '
- 2 ? & " # $ ' 1 2 % @ / Time S eries & ( (
.8
? $ ' & ( ( ) , * ( % . - , ? Data Define Dates * $ @ $ ' & ( ( 9 ( " ( D ) * # c L=
" 6 R M oving A verag es 6 ? R Differences H B: I . l ead fu nctionR l ag
& " 1 R ru nning M ed ians
O # , 17 $ ' & ( @ & - , " $ tv 1 * D
: 1 $
H # $ # L= ( Data Define Date ? & ( ( ( T ) , * 2 ) year_ 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2003 2003 2003
6 8
. 1 month_ d ate_ 1 J A N 2002 2 F E B 2002 3 M A R 2002 4 A P R 2002 5 M A Y 2002 6 J U N 2002 7 J U L 2002 8 A U G 2002 9 S E P 2002 10O C T 2002 11N O V 2002 12DE C 2002 1 J A N 2003 2 F E B 2003 3 M A R 2003
. 9 ? Differences tv 274 207 255 350 38 2 38 3 351 268 38 0 409 445 455 460 48 2 449
2003 2003
4 A P R 2003 5 M A Y 2003
H
3 #
38 9 398
Transform
: " 6 < 8 . .
C reate time series 2 E
8 . N ew variab l es $ 6 # tv 1 2 $ 0 2 E ; C reate time series . ( 9 ? " % 4 - ) ( O rd er Difference t v _ 1% &
t v # $
o rd e r
( ? 1 2 9 ? L @ / 1 ( I # ! 2 ! * .( tv_ 1 7 - 4 -) ( ( 2 % 7 ( ( u nd erscore )
year_ 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2003 2003 2003
6 9
: ( Data E d itor 9 * tv_ 1 2 month_ d ate_ tv tv_ 1 1 J A N 2002 274 . 2 F E B 2002 207 -67 3 M A R 2002 255 48 4 A P R 2002 350 95 5 M A Y 2002 38 2 32 6 J U N 2002 38 3 1 7 J U L 2002 351 -32 8 A U G 2002 268 -8 3 9 S E P 2002 38 0 112 10O C T 2002 409 29 11N O V 2002 445 36 12DE C 2002 455 10 1 J A N 2003 460 5 2 F E B 2003 48 2 22 3 M A R 2003 449 -33
1 C I O K
E
N tv
2003 2003
4 A P R 2003 5 M A Y 2003
38 9 398
-60 9
@ K # ( ? 1 % @ / & @ # # H 1 % -
0 1 .1
H 4 - 1 4 " . * E @ ( ( ? 1 % 7 N 6 1 / tv 9 ? H 1 / tv ∗ ) tvt∗ = tvt − tvt −1 $ , . * - . 9 ? # @ E % H 1 . ( & @ $ t ( ?
N! 9 ? H 1 9 ( H 6 H J # 2 4 H "
. 9 ? # E % H 1 . ( ? 2 E
& E 2 N ame # 2 ! H 6 tv _ 1 H 1 2 - 1
.2
F u nction # 2 E F u nction > 1 . C hang e . O rd er 1 2 E 6 K C hang e & E 2 E
3 = c & * # M oving ( year_ 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 & (
A verag es 6 ? $
.S p an @ $ 6 E L( 6 6 E # 2 5 ! N
2000B1990 " ( P rod u ct M E & ( ( 9 ( 4 C ( d ate_ p rod u ct 1990 50.0 1991 36.5 1992 43.0 1993 44.5 1994 38 .9 1995 38 .1 1996 32.6 1997 38 .7 1998 41.7 1999 41.1 2000 33.8 ( ( C entered M oving A verag es & 6 ? L L( 6
C reate H
7 0
: ( ' = ? 3 ) 2 2
: " 6 < 8 . . . S p an=5 @ $ 6 -
3 # Transform
C reate Time series 2 E
: 9 ( 7 4 . Time series
" 6 $ Data E d itor 9 P rod u c_ 1 2 J year_ 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 7 - 3 ' (S
1 C I O K
& E
: ( p rod u ct ( ( (
d ate_ p rod u ct p rod u c_ 1 1990 50.0 . 1991 36.5 . 1992 43.0 42.6 1993 44.5 40.2 1994 38 .9 39.4 1995 38 .1 38 .6 1996 32.6 38 .0 1997 38 .7 38 .4 1998 41.7 37.6 1999 41.1 . 2000 33.8 . p an @ $ 6 $ n ) n/2 / ( ( # @ E 2 E - ;
( 5= @ $ 6 - # ) 8 6 L . ? ? 8 2 M1 =
50 + 36.5 + 43 + 44.5 + 38.9 212.9 = = 42.6 5 5
: (
36.5 + 43 + 44.5 + 38.9 + 38.1 201 212.9 − 50 + 38.1 = = = 40.2 5 5 5 @ $ 6 # L ( 6 E 8 6 $ E ; M2 =
H 6 L 8 6 J # sp an is even
$
# U ncentered M eans & = " 6 M & $ 6 L 2 % 4 6
p rod u ct
50.0 36.5 43.0 44.5 38 .9 38 .1 32.6 38 .7 41.7 41.1 33.8
7 1
& @ $ 6 # - 4 #
4 & =
. .
. .
43.500 40.725 41.125 38 .525 37.075 37.775 38 .525 38 .8 25
p rod u ct_ 1
% 6 S p an=4 8 6
42.113 40.925 39.8 25 37.8 00 37.425 38 .150 38 .675
. ( S p an = 4 - # )
R ep l ace M issing Val u es @ E 2 E E
* L( - H 6 7 @ E N - " 1 D
.9
@ E 2 % -
. 5 . / S P S S # ; @ E E E 5 . / # L : $
: ( E % income 1 4
.
.
in c o m e 9 5 10 0 11 12 0 10 0 14 0
: " 6 < 8 . . . 1 . E E E L( 6 Transform R ep l ace M issing Val u es - 2 E : ' ( ) *
R ep l ace M i s s i n g V a l u e s H
Method
3 #
14 5 14 7 15 0 16 6 17 0 19 0 2 10 19 9 2 15 2 17 2 30
@ / 1 ( I # 2 - ) 6 0 2 E ;
( ( 2 % 7 ( ( u nd erscore )
N ( ? 1 2 9 ? L
. C hang e & E 2 N ame # 2 ! 2 ! . / 1
: $ Q 7 2 E E > - - M ethod # ; @
. & ( ( ( ( 6 @ E 2 E E 2 : S eries M ean .1
2 E 6 9 ( ! @ E E E 2 : M ean of N earb y P oints .2
. @ E E $ - 9 ( - 6 L # @ 2 E $ 4 . S p an L
. @ 2 E ( 6 9 ( E : M ed ian of nearb y p oints .3
. @ E 2 E E # 6 $ ! L( - : l inear I nterp ol ation .4
( P red icted Val u es O 2 E @ E 2 E E : l inear trend at p oint .5 ( ( N % . J 4 . ($ E 1 ) 9 ( ( 1 ) @ # ( ( 2 %
. n 9 * 1
. E # M ean of nearb y p oints L( ? %
: I E # ( @ 2 E $ : S p an of nearb y p oints
7 2
. @ 2 E : N u mb er
$ $ @ % 8 / 7 - . / E # ( ( 2 % # $ : A l l . & ( ( # @ E 2 E #
. S p an =2 2 $ . / #
2 J 1 C I R ep l ace M issing Val u es H
# O K
& E
: ( Data E d itor % 9 income_ 1
income 95 100 11 120 100 140 . 145 147 150 166 170 190 210 199 . 215 217 230
7 3
income_ 1 95.0 100.0 11.0 120.0 100.0 140.0 133.0 145.0 147.0 150.0 166.0 170.0 190.0 210.0 199.0 210.3 215.0 217.0 230.0
: 7 + .
+ , -
(100 + 140 + 145 + 147) / 4 = 133
.1
.2
T a l l Tall 8 0 8 4 7 1 7 2 3 5 9 3 9 1 7 4 6 0 6 3 7 9 8 0 7 0 6 8 9 0 9 2 8 0 7 0 6 3 7 6 4 8 9 0 9 2 8 5 8 3 7 6 6 1 9 9 8 3 8 8 7 4 7 0 6 5 5 1 7 3 7 1 7 2 9 5 8 2 7 0 3 3 3 7 3 2 4 1 4 4 4 9 4 7 5 0 5 9 5 5 5 3 5 6 5 2 6 4 6 0 6 6
7 4
D
D e s c r i p ti v e S ta ti s ti c s Frequencies ( 1 4 )
L 1 % $ D D
? . / $
< " " " , & K E D
. " 6 6 : 1 $
" @ E 6 E " N 80 $ 6 - $ Tal l 1 D
< " / , " L # F req u encies ? 2
: " 6 L 1 . K E
- 2 E 6 , A nal yz e Descrip tive S tatistics F req u encies $ , 9 ( 3 4 . F req u encies H 3 # K & 5 E H 6 Variab l es % # Tal l & E 2 (
, J 4 $ D
1 $ *
9 E # ) ?
: - ;
: Display frequency table
L " , O D
D
% S tatistics H
. 7 <
: S tatistics
3 5 E R
: ( D
( " , O : - ;
B oxp l ots 6 6 < ) p ercentil es " Q u artil es " $ , P ercentile V alues
% . ( L ! E 6 $ K $ ( 1 B 6) # " "(
< # 2 % L N' $ ? . R R K R $ ?
& $ P ercentil es $ - $ 6 9 * 1 2 % # I * 2 # A d d
& E 2 P ercentil es
. & R emove & % 1 C hang e
" 9 * " 2 E 2 E # C u t p oints for E q u al
G rou p s -
. " , K E D
: Dispersio n
. $ % $ 6 #
. & & K E D
:C entral T end ency
. F 6 ) ! $ , < & K E D
: Distributio n
2 E S P S S J # Val u es are g rou p mid p oints < , J # :3 ' " ( " & $ 1 " - P ercentil es Val u es M ed ian L … P ie R B ar " 6 6 D
: H
.
: ch art
3 5 E : fo rm at
: - ;
- val u es 2 E L N & - N 4 $ # " / , L : O rd ered by . 2 E L 4 L $ . / # C ou nts "
7 5
variables : Multiple Variables : " # $ F req u en c ies !
. # % " ! & % $ ' ( . # # # % $ ' (
) : C o mp are variables
) :O rg an iz e o u t p u t by variables
. . + , - #
% " + # / 0 - :supress tables w ith m o re th an
c ateg o ries
. 0 # 12 ) 3 , 3 4
: 5 , 6 F req u en c ies !
O K
4 3
Frequencies Statistics TALL N M e a n S td . E rro r M e d ia n M o d e S td . D e v ia S k e w n e s s S td . E rro r K u r to s is S td . E rro r M in im u m M a x im u m S u m P e r c e n tile
V a lid M is s in g o f M e a n tio n o f S k e w n e s s
s
o f K u r to s is
1 5
2 5 50 7 5 9 0
56 0 6 8 . 16 2 .2 9 7 0. 00 7 0 17 . 17 - . 3 14 . 3 19 -.6 3 9 .6 2 8 3 2 9 9 3 8 17 3 2 . 00 3 4 .7 0 55. 2 5 7 0. 00 8 1. 50 9 1. 3 0
Q u a r tile s ( 2 5 ,5 0 ,7 5 ) P e r c e n tile s ( 1 ,5 ,5 0 ,9 0 )
: 7
( 9 0 ) ! # : V alid .
76
9 0 # : Missin g
TALL
V a lid
32 33 35 37 41 44 47 48 49 5 0 5 1 5 2 5 3 5 5 5 6 5 9 6 0 6 1 6 3 6 4 6 5 6 6 6 8 7 0 7 1 7 2 7 3 7 4 7 6 7 9 8 0 8 2 8 3 8 4 8 5 8 8 9 0 9 1 9 2 9 3 9 5 9 9 T o ta l
F re q u e n c y 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 4 2 2 1 2 2 1 3 1 2 1 1 1 2 1 2 1 1 1 5 6
P e rc e n t 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 3. 6 1. 8 3. 6 1. 8 1. 8 1. 8 1. 8 7 .1 3. 6 3. 6 1. 8 3. 6 3. 6 1. 8 5 .4 1. 8 3. 6 1. 8 1. 8 1. 8 3. 6 1. 8 3. 6 1. 8 1. 8 1. 8 10 0 . 0
V a lid P e r c e n t 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 3. 6 1. 8 3. 6 1. 8 1. 8 1. 8 1. 8 7 .1 3. 6 3. 6 1. 8 3. 6 3. 6 1. 8 5 .4 1. 8 3. 6 1. 8 1. 8 1. 8 3. 6 1. 8 3. 6 1. 8 1. 8 1. 8 10 0 . 0
C u m u la tiv e P e rc e n t 1. 8 3. 6 5 .4 7 .1 8 .9 10 . 7 12. 5 14. 3 16 . 1 17 . 9 19 . 6 21. 4 23. 2 25 . 0 26 . 8 28 . 6 32. 1 33. 9 37 . 5 39 . 3 41. 1 42. 9 44. 6 5 1. 8 5 5 .4 5 8 .9 6 0 .7 6 4. 3 6 7 .9 6 9 .6 7 5 .0 7 6 .8 8 0 .4 8 2. 1 8 3. 9 8 5 .7 8 9 .3 9 1. 1 9 4. 6 9 6 .4 9 8 .2 10 0 . 0
. t all 2 ; < 3 ! % 1 2 # % $ 6 =
77
? # % 3 0 ! / ! & > (
Descriptives ( 2 4 ) 3 0
. z sc o res ) % (
S P S S 5 1 D at a E d it o r , A x1, x2, x3 % @ # x1 x2 9 0 50 12 7 0 52 15 56 55 19 6 5 6 0 22 8 5 6 5 20 6 0 6 9 57 50 7 5 6 2 51 8 5 An aly z e
D at a C
: % . ? 1 D esc rip t ives 1 0 ! > B ( D esc rip t ive st at ist ic s
D esc rip t ives
. $
: # $ C " 3 D 1 1 + D esc rip t ives !
2 #
x3
, 6
: 7
x−x ) % @ & : S av e stan d ard iz ed v alues as v ariables s . ? 1 ( ) $ E 3 E d it o r
: !
78
3
, 6 F 3 : O ptio n s
C " 3 # ) D isp lay
O rd er 1 G 0 ! % $ ' 7 : % ; % " 0 ! > (
variables % # " ; 0 ! > (
3 ;
) : V ariable L ist
. D esc rip t ives !
. % " 1 H ; ; 0 ! > (
. % " 1 . I + 3 ! ; ; 0 ! > ( . % " 1 . I 4 ; ; 0 ! > ( : B (
D e s c r ip tiv e s
) D esc rip t ives !
) : Alp h abet ic
) :Asc en d in g mean s
) : D esc en d in g mean s O K
4 3
Descriptive Statistics N
X 3 X 2 X 1
V a lid N( lis tw is e )
5 5 1 3 5
M in im u m 1 2 .0 0 50 50 . 0 0
M a x im u m 2 2 .0 0 6 5 9 0 .0 0
M e a n 1 7 .6 0 0 0 56 . 4 0 6 7 .3 0 7 7
S td . D e v ia tio 4 .0 3 7 6 .1 1 3 .2 1 8
variables % ; ; 9 0 ! % $ ' ( : " D at a E x1 9 0 7 0 56 6 5 8 5 6 0 . 6 9 . 57 . 50 . 7 5 . 6 2 . 51 . 8 5 .
79
1
n 3 6
3 7
d it o r C A % " ) % @ A J D esc rip t ives ! x2 x3 z x3 z x2 z x1 50 12 -1.38 7 -1.0 4 8 1.7 17 52 15 -.6 4 4 -.7 20 .20 4 55 19 .34 7 -.229 -.8 55 6 0 22 1.0 9 0 .58 9 -.17 5 6 5 20 .59 4 1.4 0 8 1.338 . . . -.553 . . . .128 . . . -.7 8 0 . . . -1.30 9 . . . .58 2 . . . -.4 0 2 . . . -1.234 . . . 1.338
Pivot Tables
S P S S
Pivot Table ( 1 – 5 )
$ $ , 6 , " # S P S S 5 1 % # 6 )
= 3 9 ! 1 + # # ) 0 5 V iew er : %
. R o w s H 0!
.1
. C o lu mn s 9 3 . L ay ers % 1 .
+ - < 0 !
.2
+ , " F = 3 % + # + + @ >
.3
7 " 3 0 # + # . , < % 1 . + 2 > ) 1 9 3 % # F E D % 1 . 9 3 J H 0 ! ; 9 3 A
( @ ) # % 1 . 9 3 H 0 ! 1 ; K S P S S 5 1 )
5 1 # J 0 , ! 1 (D 1 9 3 A ) # 9
, K 1 0 # 1 2 <- , ! ;" . S P S S # D 1 $ , E xc el . <= 1
# L # ) 0 S P S S
E d it P ivo t T a b l es ( 2– 5 )
V iew er $ $ F 1 + # L
9 ! > 4 1 # . P ivo t T ables E d it o r
# C " 3 9 3 % ) / 7 ; " . " ) An aly z e D esc rip t ives
S P S S P ivo t T able O bj ec t
E d it
. + : 1
C ro sst abs 5 #
.S P S S V iew er $ $ , 6 ( ? 1 # ! 0 # # #
TREAT * RECOVER Crosstabulation Count
T R E A T T otal
8 0
a b
a1
R E CO V E R 8 3 1 1
b1
2 9 1 1
T otal
1 0
1 2 22
: % . ? 1 F = 3 # L
. D " ) 0 #
9 ! , 6 - P ivo t
P ivo t in g T ray s + # 2 . $
: " P ivo t in g T ray s
5
5
C o lum n ic o n
L ay er ic o n
C o lum n tray
L ay er tray
R o w ic o n
R o w tray
: = ) 1 + #
.# , T reat % H ! (% ) C " 3 + H 0 ! !
.# , R ec o ver % ) (% ) C " 3 + 9 3 !
9 1 . # 1 . (% ) C " 3 + L ay ers % 1 . !
E xp ec t ed 2 - # ) 2 # 1 . O bserved 9 $
.1
.2
.3
# 7 . (? 1 # ! 0 1 # # ; " . ) 1 5 2 6 = ? )
1 . M 9 (9 3 H 0 ! ) ) 1 % 1 . 3 9 1 3 D E 1 # P ivo t in g
. " )
" 1 1 % 1 . 9 3 H 0 ! <= 3 , 6 A & 1 :
? ) 3 R ec o ver ) , 6 A " ) 5 <= # 0 C A ; ? t ray s . # 0 I ;
: (# # ) 0 ) 1 ) . 1 > ) 1 H 0 ! 1 9 3 # 1 1
4 1 ) ! P ivo t
C H ! ; P ivo t in g
T ran sp o se R o w s &
T ray s 9 !
. H ! !
C ) ; > "
C o lu mn s + # 2 . $ : . : # . # 5
TREAT * RECOVER Crosstabulation Count
R E CO V E R T otal
8 1
a1 b1
a
T R E A T 8 2 1 0
1 : C .
b
3 9 1 2
T otal
1 1
1 1 22
T ray s H ! !
P ivo t in g
C (T reat ) ) " A F = 3 #
: # , 6
TREAT * RECOVER Crosstabulation Count R E CO V E R
a1
T R E A T
b1
T otal T R E A T T otal T R E A T
T otal
T otal
a b
8 3 1 1 2 9 1 1 1 0 1 2 22
a b a b
( > 4 1 F 1 D " ) 0 ) 1 )# " " ! % 3 & N A : .S P S S V iew er $ $ . $ P ivo t
)
An aly z e
D esc rip t ives
R eset P ivo t s t o d efau lt s
C ro sst abs 5 #
: 2
.S P S S V iew er $ $ , 6 ( ? 1 # ! 0 # # ; " . "
TREAT * RECOVER * GENDER Crosstabulation Count G E N D E R f
T R E A T
m
T otal T R E A T T otal
a b a b
R E CO V E R a1 b1 2 1 3 6 2 8
1 4 5 1 5 6
T otal
3 5 8 7 7 14
: " # , P ivo t in g T ray s , 6 9 3
% 1.
(R ec o ver )
(S t at ist ic s )
H 0!
(G en d er )
8 2
H 0!
(T reat )
; . T reat " M G en d er " A H 0 ! " 6 =
G en d er ; 1 E f 7 O M m " A 1 . K 7 1 #
1 . !
L 1 ! % 1 . !
C H 0! !
1 . G en d er - C o u n t 1 . 9 1 . S t at ist ic s : "
(D " ) 0 ) 1 )# , 6 7 I M - "
N 1 m 1 . <= ) 1 . , 6 & f 7 O # , 6 1 .
: .
F = 3 # G en d er " f 0 " # 0 I D , : C . 1 . # = # ) , , % 1 . ! (# ) 1 . C # - % 1 . !
. m 1.
# 6 = : .
G en d er , ) M C
. ( 1 1 . C # = , = 1 . C # = , ) m
( # # ) 0 ) 1 ) S P S S
V iew er $ $ 2 . $ : .
1 D G o t o L ay e r C at e g o r y ! ( 1 . ) 0 f 7 & 1 . < (
, 6 P i v o t
G o t o L ay e r
) ( 1 . ) 0 D @ 1 (G e n d e r ) . m 1 . , @ 3 ;G
: # F = 3 . + 5
: (# # ) 0 ) 1 ) % . ? 1 + # 3 H !
/ 0 - :
# " a ) @ + H ! <= D 0 P 1 ;G H ! ) " 0 3
5
.<= F = 3
. ) H ! # " 6 C t r l +A l t +C l i c k 1 .
8 3
5
. a 0" ? 1 H ! 0 . V ie w
H id e
+ # 2
. L 0 D e l Q 0 H ! H
: % . ? 1 D 0 A 1 + H ! , 6 &
. T r e at " b ) 1 # " . ( ) 1 ) > 0 3 +
5
. V ie w
5
5
S h o w A l l c at e g o r i e s i n T r e at + # 2
+ # 2 J > 0 3 1 M .
V ie w S h o w A ll Book Marks ( 3 – 5 )
# % 1 . 1 . 4 + # " 0 " N @ 4 " ) % $ A 0 . ) H ! @
5
! ) 1 9 3 H 0 ! " ) ; : 3
x1, x2, x3 % = ! A % $ ' + # An aly z e d esc rip t ive st at ist ic s F req u en c ies Descriptive Statistics N
X 1 X 2 X 3
+ # @
13 5 5
M in im u m 50 . 0 0 50 12 . 0 0
M a x im u m 9 0 .0 0 6 5 2 2 .0 0
M e a n 6 7 . 30 7 7 56 . 4 0 17 . 6 0 0 0
S td . D e v ia tio n 13. 2 18 6 6 . 11 4 . 0 37 3
1 . > % $ ' $ ' # # 7 1 # 9 1 2 2
: (K 0 1 K 0 # ) "
: % . ? 1 Mean 1 . B o o k mark s " ) 9 $ A ? @
. S P S S V iew er $ $ # 1 + # # ) 0 1 2 : " Mean
8 4
# 1 . , 6 P 1 2
5
5
!
, 6 P i v o t
B o o k mark s S P S S V i e w e r $ $ 2
- H @ A d d 4 (<= me an - ) " ) 9 $ - # J B o o k mar k s : " bo o k mar k s !
5
, 6 # 0 C me an
C 1 . F N . mean 1 " ) 9 $ P Mean 1 . 4 2 K 1
. # $ + C # 9
: % . ? 1 (mean 1 . ) " ) 9 $ A (N ) (
)
. S P S S V iew er $ $ # 1 + # # ) 0 1 2
. B o o k mark s !
, 6 P ivo t
. !
B o o k mark s
# mean " ) 9 $ A .G O T O
. mean 1 . (
8 5
4
) 1 5 1
5
5
5
5
Explore
E x plore ( 1 6)
% 1 " ! A < ! " , % 1 ? # ) C 9 . ) E xp lo re ; "
. , ) ? % - # % . . 3
1 J 0 ! > J 9 $ J S c reen in g % 1 R
0 ) D 7
<= - < = ! & K A # - - " ) F # = % @ 0 ! & 6 % A T ran sfo rmat io n % 1 # C C H $ - 1 $ . ; ! 7 1 % = ) 1 >
(
J % 1 " ) 1 . ? 4 (
# ! 0 (1S4) 1 " ? 1 # > 0 ) T all (
0
0
:1 #
: % . ? 1 7 C " 3 E xp lo re H $ - 1 . (? 1
An aly z e
D esc rip t ive S t at ist ic s E xp lo re
. $
: " D 1 1 + E xp lo re !
, 6
: 7
. , " 3 ! & # " / ;G 9 ) (% ) :d epen d en t L ist
9 ) ! & # " / D . 1 B reak d o w n variable 4 :F ac to r L ist . (< - D @ + ) " 9 ! 1 ) % - ?
1 ) 4 . ) , 4 ) 4 # )
# 6 - . # # " 4 . #
< 3 . ! ? C , 4 1 T all 2 # " ; % - (
) 7 ) . 1 % - " H ) / . 3 A :L abel C ases by
" 3 / . 3 A H ) (
8 6
. < 4
( 2 ) % 1 H " , " "
. B o x p lo t . . 9 $ .
: !
, 6 F 3 :S tatistic s
: % 0 +
… % 9 9 % 9 5 1 G ; 9 : C o n f id en c e I n terv al f o r Mean
J S k ew n ess J S t an d ard
D eviat io n J Mean 0 ! / ! & % $ ' , 6 & :D esc riptiv es
R o bu st maximu m L ik elih o o d
.… K u rt o sis
4 3 4 " ! % : M-estim ato rs
K . D 1 # 2 4 4 3 9 ) 1 / . 3 A 7 E st imat o rs . T u k ey , H amp le, An d rew , H u ber % N ) 1
E xt reme 1 , $ ) 2 # 2 2 1 % - , 6 & :O utliers . S P S S 5 1 B
<= > 5، 10 ، 25، 50 ، 7 5، 9 0 ، 9 5 (
V alu es
) 1 : P erc en tiles
% - % 9 5 , " % - % 5 , 1 ) 2 5t h P erc en t ile . < 3 ! 2 ; ) 1
. C h ec k B o xD ? 1 $ E 1 % $ ' F B 1 G 3 : !
, 6 F 3 : P lo ts
: % 0 +
B o x plo ts .1
: / 4 = . . bo x –an d -w h isk er p lo t < @ D " 3 " .
: % # $
: B o x ! .
. < 3 ! , 1 3 ) % $ % 25 , 1 : Q1 # ? 1
8 7
3 % $ % 50 , 1 + 2 C % 1 : Q2 ? 1 . Med ian
. F < 3 ! , 1
. < 3 ! , 1 3 ) % $ % 7 5 , 1 : Q3 7 ? 1
Q3-Q1 , ! # . . h in g es
, " 3 " . ! = Q3 Q1
. . . I n t er Qu art ile R an g e ) 1 M 1 H ) h sp read D " 3 " .
Med ian . , ! #
. 9 $ G 2 # 2 C " 3 C ! : W h isk ers ! B % - . .;
: E xt remes . o u t liers 9 $ .B
. ! # . 1. 5 ! 3 ) 1 9 $ 7
: # $ ! # . 3 ! 3 ) 1 E x tre m e s
∗
o u tlie rs
Q 3 (h in g e ) w h is k e rs
M e d ia n Q 1 (h in g e )
hspread
L a rg e s t V a lu e (n o t o u tlie r)
s m a lle s t v a lu e (n o t o u tlie r) o u tlie rs
E x tre m e s
. (S k ew n ess/ - ) % $ ? 4 3 9 . ) . .
C " ? 4 E # ? 1 C ;2 . A " ? 4 E ! H !
(/ - ; ) C " ? 4 E 7 ? 1 C ;2 . A (/ - ; ) . ? 4 # # . 3 9 . ) W h isk ers # $
8 8
" ?4
/ # ) ?4
" ?4
: % B o xp o lt s
. ) # 4 ? " . . (
. . @
3 : F ac to r L ev els to g eth er
. 4 3 # # 9 ) % " . . (
3 :D epen d en t to g eth er
. B o xp lo t . . (
3 3 :N o n e
F ac t o r 4 ) K # + $ E #
. V ariable
D esc riptiv e .2
: % . . (
3
(N ) S t em # 4 C 2 + 2 . . : S t em-an d -leaf . . S
% . / 4 leaf / 4 S t em # ( 2 ) L eaf
% $ ) # + S t em # 4 C , E 5، 7 ، 12، 15، 16 ، 20 ، 21، 23، 30
. . 6 = % 10 , # # . % C 2 E V # + L eaf
1 # 9 3 E 1 # H ist o g ram
% , 1 0 h ist o g ram . . D 1 $
. 9 ) 1 . 3 % " ) > ) D E K S t em-an d -L eaf
VAR1 Stem-a n d -L ea f F r eq u en c y 2 . 0 3 . 0 3 . 0 1. 0
8 9
0
0
Stem &
0
0 0
Stem w i d th : E a c h l ea f :
. 1 . 2 . 3 .
P l o t L ea f 5 7
2 5 6 0 13 0
10 . 0 0 1 c a s e( s )
. + B (
)
: H i s to g r a m
+ B S;
. % 1 " )1 . ?4 1 - % . . #3 : Normality Plots with Tests.3
<"3 . ; ! 1 > L @ ). F a c to r V a r i a bl e
1 - : sp read v s. L ev el with L ev en e Test .4
4 K 3 - (<. $ ) <- ) - -
: 5 , 6 E x pl o r e
E x p lo r e
. ( 3 # #! 0 1
!
OK 4 3
Case Processing Summary
T A L L
N
V a lid 56
P e rc e n t 1 00. 0%
C a s e s M is s in g N P e rc e n t 0 . 0%
N
T o ta l 56
P e rc e n t 1 00. 0%
Descriptives T A L L
M e a n 9 5 % C o n fid e n c e In te rv a l fo r M e a n
L o w e r B o u n d U p p e r B o u n d
5 %
T r im m e d M e a n M e d ia n V a r ia n c e S td .D e v ia tio n M in im u m M a x im u m R a n g e In te r q u a r tile R a n g e S k e w n e s s K u r to s is
S ta tis tic 68.1607 63 .5 618
S td .E rro r 2 .2 9 4 8
72 .75 9 6 68.5 63 5 70.0000 2 9 4 .9 01 17.172 7 3 2 .00 9 9 .00 67.00 2 6.2 5 00 - .3 14 - .63 9
S ta nd a r d E r r o r
.3 19 .62 8
. I + ) E .
Me a n = 6 8 .16 07 , S td .De v i a ti o n = 17 .17 27 , S td . E r r o r = SD / n = 17.1727/ 56 = 2.2948 . ( ) 1 1 . I + ) H - ) + ) E . S td . E r r o r 7 : " B : µ " # $ % 9 5
X m t.0.025,55 * Std .Error ( t 2 C ) 0.025 #- t ?4 # B t 7
#= # C N S PS S Co m pu te V a r i a bl e !
5 1 9 $ 1 , n-1=5 5
I DF .T(p,d f ) Tr a ns f o r m
Co m pu te
I DF .T(0.9 7 5 ,5 5 ) = E D "3 d f = 5 5 p = 1-0.025 = 0.9 7 5 ) # # p 7 : " . " % 95 9 D "3 = t.0.025,55 2
90
U ppe r Bo u nd = 6 8 .16 07 +2*2.29 4 8 =7 2.7 5 L o w e r Bo u nd = 6 8 .16 07 -2*2.29 4 8 =6 3.5 7 : 9 ! C "3 9 ;
Pr ( 63.57 < µ < 72.57 ) = 9 5 %
% 95 + 7 2. 57 6 3. 57 1 ? . N 2 # + #- # Pr 7 7 F = 3 De s c r i pti v e s
:
# <= S PS S 5 1 % C "3 % )0 ) 4 A
J 1 D F o nt . N J De c i m a l s $ ) ; 3 J # S PS S V i e w e r
; ". # 1 K ..… 9 3 (
3 J Al i g nm e nt ?2
C "3 % ) / F o r m a t Ta bl e Pr o pe r ti e s (% (
3 $ $ )
) " C "3 H 2
)1 # ) " % 0 ! # # . F o r m a t Ce l l Pr o pe r ti e s
Trimmed Mean % & ' ( ) $ $
#0 % 5 C "3 % 5 H < 3 ! ; )1 B
. 9 $ 1 + 1 " . ;
; D + 2. 8 + % 5 2 56 ta l l 2 3 #
2 5 6 *0.9 0= 5 0.4
, H )1 1 #0 2 2. 8 C "3 2 2. 8 H
: " ; $ .
2 B 7 68.1607* 56 − 99 − 95 − 32 − 33 − 0.8 * 93 − 0.8 * 35 3455.5992 TrimmedMean = = = 68.5635 50.4 50.4 C = 33 32 2 C "3 = 95 99 2 56 N # 6 8 .16 07 *5 6 7 C "3 "! 2 . ; C "3 ") " ") = 35 93 : #
E x tr e m e s . " S PS S 5 1 % F Extreme Values
T A L L
H ig h e s t
L o w e s t
91
2
1 2 3 4 5 1 2 3 4 5
C a s e N u m b e r 28 38 6 16 23 43 41 5 42 44
V a lu e 9 9 .0 9 5. 0 9 3. 0 9 2. 0 9 2. 0 32. 0 33. 0 35. 0 37 . 0 41. 0 0
0
0
0
0
0
0
0
0
0
*+ , )
2 )1 C 3 Q1,Q2,Q3 2 = Qu a r ti l e s % )1
2 C 3 Pe r c e nti l e s % ( % )1 H ) # Bo x pl o t . . ? ) % 1 % 95 D " < 3 ! , 3 % 1 % 5 D 1 > + . … % 1 % 90 D " < 3 ! , 1 3 % 1 % 10 D 1 $ ) (25 th Pe r c e nti l e ) 25 #1 Q1 # ?1 <"3
(5 0th Pe r c e nti l e ) 50 #1 Q2 (.
) ?1
(7 5 th Pe r c e nti l e ) 7 5 #1 Q3 7 ?1
: % " 5 1 % # #
Percentiles 5
T A L L
2 5
P e r c e n tile s 50
75 9 0 9 5 W e ig h te d T A L L 34.7000 43.1 000 55.2 500 70.0000 8 1 .5000 9 1 .3000 9 3.3000 A v e r a g e ( D e fin itio n 1 ) T u k e y 's H in g e s
1 0
55.5000 70.0000 8 1 .0000
Q1= 5 5 . 2 , Q2= M e d i a n = 7 0 I n t e r q u a r t i l e R a n g e = 8 1. 5 - 5 5 . 2 = 26 . 25
W e i g h te d Av e r a g e
,
Q3= 8 1. 5
4 . . % ; )1 .
+ (n+1)*P = 5 7 *0.05 = 2.8 5 ! #) <= > ; ;" Me th o d
1 ? > 2 E D "3 . < 3 ! ; 3 2. 8 5 > ; # ! D "3 ( E x tr e m e
V a l u e s # ) 35 3 , 1 33 2 , 1
: " 1 I nte r po l a ti o n . # / E 1 2 C "3 5 th Pe r c e nti l e = 33 * 0.15 + 35 * 0.8 5 = 34 .7
D + ) E . C S k e w ne s s / - #) 1 6 = )1 . ?4 1 F 1 –0.314 / 0.319 = - 0.9 8
" 1 % # ( De s c r i pti v e s # )
. )1 . ?4 ?1 Ta l l E 1 " ) @ #1 E (-2,2) M @
–2
? 1
#2 1 % ( C ) <1 </ " ?4 ) , 2 1 1 %
. ( C ) <1 W / " ?4 ) ,
. )1 E 1 1 M-E s ti m a to r s 1 . " ! % 1 B
. 1 ; . . F ; 1 ; . 1 > 3 6 =
.ta l l " 3
92
M-Estimators H u b e r 's M - E s tim a to ra 69.1469
T A L L
a .T h e w b .T h e w c .T h e w d .T h e w
T u k e y 's B iw e ig h tb 69.3 8 5 9
e i g h t i n g c o n s t a n t i s 1.3 3 9.
H a m p e l's M - E s tim a to rc 68 .97 5 4
A n d re w s ' W a v e d 69.3 7 49
e i g h t i n g c o n s t a n t i s 4.68 5 .
e i g h t i n g c o n s t a n t s a r e 1.7 0 0 , 3 .40 0 , a n d 8 .5 0 0 e i g h t i n g c o n s t a n t i s 1.3 40 * p i .
? 4 ? 1 # D # . S te m -a nd -L e a f
S t em-and-L eaf
. . # B
. . # <1 <= 1 , )1 .
TALL Stem-a n d -Lea f
P l o t
F r eq u en c y
Stem &
4 . 5 . 7 . 9 . 1 4 . 9 . 8 .
3
0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 5 7
9
Stem w i d th : E a c h l ea f :
6
.
8 .
. .
.
Lea f 2 3 1 4 0 1 0 0 0 0 0 0 0 0
. .
5 7 7 8 2 3 1 3 0 0 0 2 1 2
9 5 6 3 4 1 1 3 3 2 3
9
5 6 8 2 2 3 4 4 6 6 9 4 5 8 5 9
1 0 . 0 0 1 c a s e( s )
H is t o g ram - . /
+ )1 . ?4 C D H @ 2 # . + B # . .
. ( + B # #! 0 4 % . . #! ? ) . # <= 1 16
Histogram
14 12 10 8
Frequency
6 4
Std. Dev = 17.17
2
Mean = 68.2 N = 56.00
0
97
.5
.5
.5 87
77
.5
.5 67
57
5
5
.5
7. -9
07 -1
7.
5
-8
5
5
7. -7
5
7.
7. -5
-6
7.
5
-4
7.
-3
93
.5 47
.5 37
.5 27
TALL
B o x p lo ts
9 $ . 2 3 6 = D Ta l l " Bo x pl o ts . . # B
. ( / 3 ) <)1 . N 4 C $ <1 ! . .
?2
120
100
80
60
40
20
N=
56
TALL
1 % 1 " )1 . ?4 1 A L : N o rmal it y P l o t s w it h Tes t 3 1 % 1 " )1 . ?4 1 C @ & 1 Ko l m o g r o v -S e m i r no v
1
: % . . N o r m a l Q-Q Pl o t De tr e nd e d N o r m a l Q-Q Pl o t )1 . ? 4 " ")= % 1 - ) : ( , ) " 0 K o mo g ro v -S mirno v ) .1
) % $ E 1 " ) @ 1 7 N o n-Pa r a m e tr i c G o o d ne s s o f F i t Te s t
B C "3 # ! 2 . <)1 . N 4 - % 1 E 1 " " 1 @ 0 @
)1 . ?4 ?1
. ta l l % $ )1 . ?4 1 -
Tests of Normality
T A L L
K o lm o g o r o v - S m ir n o v a S ta tis tic d f S ig . .096 5 6 .2 00*
*. T h i s i s a l o w e r b o u n d o f t h e t r u e s i g n i f i c a n c e . a . L illie fo r s S ig n ific a n c e C o r r e c tio n
?4 # Fs (x) 7 D = sup FS ( x ) − FT ( x ) 1 - D ! & 7 x ? (# )1 . ?4 ) + 6 ?4 # FT (x) )" )
6 =
. ( ) ) n % ) - M 1 Ko l m o g r o v # D 6
M 1 ) @ # 1 2 C 3 P-V a l u e = 0.20>0.05 D= .09 6 #
. )1 . ?4 ?1 # . ?4 + % 5 - N o rmal Q -Q
94
P lo t
.2
?4 2 #1 C "3 "! % 1 9 $ # . .
; . # R a nk Ca s e s ? ) E x pe c te d Z S c o r e
, )2 )1 .
. ta l l " . . ( )2
Normal Q-Q Plot of TALL 3 2
Expected Normal
1 0 -1 -2 -3
20
40
60
80
100
120
Observed Value
? 4 % )2 . 1 # F = 3 . . . C "3 . #
C "3 C "3 % 1 " )1 . ?4 " ) % #1 + ) C "3 )1 .
<)1 . N 4 ? 1 ) % . … (1.5 ,1.5 ),(0,0),(-1.5 ,-1.5 ) # $
, . 3 9 )1 ? % . 9 1 <1 ? $ - # $ . E
C $ . 9 1 F = 3 # $ . $ . )1 . ?4 ?1 - % 1 ) . )1 . ?4 ?1 ta l l % $
D et rended N o rmal Q -Q
P lo t
.3
E . 9 1 % $ $ 3 D 1 . . " 1 1
. 3 % - M + C Q . + #' )1 . ?4 ?1 - % 1 5 . . (
) S PS S 5 1 . < )1 . N 4 - % $
C "3 "! % $ # 7 (
, De tr e nd e d N o r m a l Q-Q Pl o t
., )2 )1 . ?4 2 3 % $ " ) % # 1 + )
(-2,2) M @
? ( % 90 % 95 1 ) $ - # $ . 6 ) % P
. 3 (-2,2) M @
. L !
> ) % 1 " )1 . ?4
? Ta l l " % - 6 ) 6 =
F . .
< )4 N 4 # . D "3 ( % - % 90 ; + ) <1 . <)1 .
95
.2
Detrended Normal Q-Q Plot of TALL
.1
Dev from Normal
0.0 -.1 -.2 -.3 -.4
30
40
50
60
70
80
90
100
Observed Value
! "3 . 1 Ch a r t E d i to r L i ne a r I nte r po l a ti o n #= . . . . 1
. > 41 . . 1 D # + % -
% 1 " % = # 3 D E <)1 . N 4 - % $ E 1 B - : tall
96
8 0 8 4 7 1 7 2 3 5 9 3 9 1 7 4 60 63 7 9 8 0 7 0 68 9 0 9 2 8 0 7 0 63 7 6 48 9 0 9 2 8 5 8 3 7 6 61 9 9 8 3 8 8 7 4 7 0 65 51 7 3 7 1 7 2 9 5 8 2 7 0 3 3 3 7 3 2 41 44 49 47 50 59 55 53 56 52 64 60 66
factor A A A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B
. (3 # )1 . > 0 ) )1 . ?4 #) (
Tr a ns f o r m a ti o n
0 # . # C 22 1 3
Ta l l " 1 #
2
;G % 1 0 # . # 34 % 1 C # A ; F 9 C "3 3 # ! A #" /
+ E x pl o r e
% 1
!
F a c to r L i s t 2 (F a c to r D ) 4 : # $ 1 D 1
: " Da ta E d i to r % 1 ;
9 ! 1 B A 0 # (
D at a E dit o r ( * )
) % E E x pl o r e : " (
0 3
) . <= "
Extreme Values F AC T O R A
T AL L
H ig h e s t
L o w e s t
B
C a s e N u m b e r
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
H ig h e s t
L o w e s t
:
Bo x pl o ts
6 16 7 15 22 5 21 9 19 10 28 38 23 30 24 43 41 42 44 45
V a lu e
93 92 91 90 90 35 48 60 63 63 99 95 92 8 8 8 5 32 33 37 41 44
120
100
80
60
TALL
40
20
5
N=
22
34
A
B
FACTOR
?1 3 )1 , 7 35 , 2 5 2 A 0 Ou tl i e r 9 $ 2 6 =
4 1 , 4 18 . 7 5 ! # . 3 3 # 1. 5 3 4 1 Q1=6 6 .7 5 C
L a be l 3 @ - 5 2 ( . ( E x pl o r e !
1 + >
L a be l Ca s e s by
) 4 ; 1 Bo x pl o ts . .
Test of Homogeneity of Variances
2 D A ) "
( 2 – 6 )
AN OV A 1 #" / 3 1 % @ 0
. % 2 C #! " + ' H K E . $ 3 0 (% = ) ) % ) . ( % ) . + ) % = ) E + 1 ! @ 0 1 3
" ) @ 1 7 L e v e ne Te s t 1 >
1 S PS S 5 1
G % 1 3 <1 G . 1 >
)1 " " 1 @ 0 @
# ) % = F , 1 1 >
@ Tr a ns f o r m a ti o n % 1 C "3 % = /
1 - + @
% ) 1 >
1
. $ % ) # )1 . ?4 . $ 3 C + ' K E ; F . ε ~ N (0, σ 2 ) )1 . ?4 D $ ) E . ( 0 7 % @ 0
97
. <@ ) # # )1 . ; ?4
>
% = 3 2 C # ! " ! $ 9 Bo x &
Co x Q 2
; ) ) , % ) . 1 2 = 3 C "3 9 ) . % 1 G
# ; 7 . ( 1 >
@ + ) H - 3 " .
; % 1 " Po w e r Tr a ns f o r m a ti o n % ) . G
C "3 . 3 % -
% = (
)1 F Po w e r > # 1-b "! % 1 # y 7 y1-b !
Trans f o rmat io n P o w er S S q u a re 2 1 N o ne S q u a re R o o t 1\2 0 L o g a r i th m R e c i pr o c a l o f S q u a r e R o o t -1\2 R e c i pr o c a l -1 . ) , 1 + # 2 % 2 C 1– Q
+ 1 >
<6
: #)- ) $
lo p b -1 0
1\2 1
3\2 2
> 6 =
# C % 1 B - 1 ) , 3 " % )
E 0. 329 1-b > E 0. 6 7 1 C # ") % 0 + >
E 1 + > V 1/2 1 2 0. 329 "! % 1 " )1 "
. 10 > I G " )1 . G " #) 1 - D <"3 G " "
1 >
1 A (< 1
. . . 1 1 >
S p read v s . L ev el w it h L ev en Tes t
Pl o ts !
, 6 + ) L
1 C @ A L e v e ne S ta ti s ti c s 1 (% ) ) % = )
# 7 (. 1 1 ? Bo x &
Co x ; " > 0 # ) S pr e a d –V e r s u s L e v e l Pl o t
M G
# . . , C "3 (L e v e l M ) % )" .
G
1 2 = 3 3 0 (S pr e a d 3 1 ) + ) C "3 I nte r Qu a r ti l e R a ng e )1 1 > >
C $ + (S l o p=0) . ? . . . E 3 1 M
3 1 2 = 3 ) Tr e nd 3 F . # . ? E K > 3 % )
D < "3 . < 0 % = # ; % 1 C "3 # / 4" % ) 1
3 % 2 # "3 (
# )1 . . 1 5 1 #) & 1 . (0 ! ;2 # + ) 1 >
12 ? A,B,C,D % ) )1 , % D "3 1 5 # # :3 Tr e a tm e nts O bs
98
.
1 2 3 4 5 6 7
: ) #
A 8 9 5
540 1020 470 428 620 760
B
C
D
1520 1610 1900 1350 980 1710 1930
43300 32800 28800 34600 27800 32800 28100
11000 8600 8260 9830 7600 9650 8900
8 9 10 11 12
. 4 9R .>
537 845 1050 387 497 670. 75
1960 1840 2410 1520 1685 1701. 25
18900 31400 39500 29000 22300 30775
6060 10200 15500 9250 7900 9395. 83
Me a n S td . De v i a ti o n 233.9 2 35 6 .5 4 6 6 8 8 .6 8 2326 .04 J 1 ) J ; #" ! J , $ "3 # , $ . : !
3 % 1 " ; # ? % ) 1 >
1 ; ".
7 ( 0 ! ) S PS S 5 1 Da ta E d i to r 9 C % 1 # A
# ) " 4 tr e a t ( ) ) % $ # d e pe nd : % . ?1 % 1 >
E x pl o r e
!
1 - . A,B,C,D % )
, 6 7 Ana l yz e De s c r i pti v e S ta ti s ti c s E x pl o r e
!
Pl o ts 4
. . ?1 ( Tr e a t 4
<6
: " D 1 )1 Pl o ts !
: # $ C "3 D 1 1 +
s pr e a d v s . L e v e l w i th l e v e ne te s t E x pl o r e
99
. $
<- ) + )
, 6 7 Po w e r E s ti m a ti o n : 2 3 : 9 . F H ,
A
3 # " Da ta E d i to r % 1 ; Treat A A
A A A A A A A
A A B B B B B B B B B B B C
B C C C C C C C C C C C D D D D D D D D
D D D
D
D ep en d 8 9 5 5 4 0 1 0 2 0 4 7 0 4 2 8 6 2 0 7 6 0 5 3 7 8 4 5 1 0 5 0 3 8 7 4 9 7 1 5 2 0 1 6 1 0 1 9 0 0 1 3 5 0 9 8 0 1 7 1 0 1 9 3 0 1 9 6 0 1 8 4 0 2 4 1 0 1 5 2 0 1 6 8 5 4 3 3 0 0 3 2 8 0 0 2 8 8 0 0 3 4 6 0 0 2 7 8 0 0 3 2 8 0 0 2 8 1 0 0 1 8 9 0 0 3 1 4 0 0 3 9 5 0 0 2 9 0 0D 0 E P E N D 2 2 3 0 0 4 0 0 0 8 6 0 0 8 2 6 0 9 8 3 0 7 6 0 0 9 6 5 0 8 9 0 0 6 0 6 0 1 0 2 0 0 1 5 5 0 0 9 2 5 0 7 9 0 0
1 00
. L e v e ne
! A . 1 1 >
! & 1 - .1
? 1 #= $ - M 1 2 = ) 1 .2
Po w e r Tr a ns f o r m a ti o n . (>
% 1 " = # N
G 1 + ) 2 = 3
: 5 C "3 #! OK 4. Co nti nu e 4
L ev ene + 4 $ ) 5 * # ( + 3 ) 3 .1
( 1 >
) ) @ 1 1 F B
L e v e ne ! A 1 ( 1 >
3 ) " 1 @ 0 @
Me a n . C "3 1 ! & F 2 7
C "3 1 ! O 1 1 ; $ .
Me d i a n .
.000<0.05 ) ≈ (p-v a l u e 3 )1 10. 7 8 3 % "1 .
" 1 @ 0 ' % 5 - M 1 ) @ ( 3 , A #! > 0 % 1 >
D "3
)1 "
. ; $ .
.
C "3 1 ! & 2 3
Test of Homogeneity of Variance
B a s B a s B a s w ith
e d o n e d o n e d o n a d ju s
M e a M e d M e d te d d
n
ia n ia n a n d f
B a s e d o n tr im m e d m e a n
L e v e n e S ta tis tic 10.783 10.6 2 1
d f1
3 3
10.6 2 1
3
10.779
3
d f2
4 4 4 4
15 .85 3 4 4
S ig . .000 .000 .000 .000
S p read v s . L ev el P l o t ) 5 * # ) 4 .2
1 >
3 " $ R
$ . . #=
" $ # % 1 # ; > C @ & 1
: . . (Po w e r e s ti m a ti o n )
9.0
Spread vs. Level Plot of DEPEND By TREAT
8.5 8.0 7.5 7.0
Spread
6.5 6.0 5.5
6
7
8
9
10
11
Level
* Plot of LN of Spread vs LN of Level Slope = .744 Power for transformation = .256
% )" .
G
1 2 = 3 $ - # $ ) F - #= L @ 7
% 1 # 4= > b=0.7 4 4 # , )1 M G
A,B,C,D # ) 0 > 1 ? 0. 256 > 2
) $ % = # C N 1 1-b = 0.25 6
# 3 = 1 F ( )1 " )1/2 > 1 ( G
K 0 ( + > 0 ! ;2 #) #@ 5 . ) + # 3
. ( 9 . ) Pl o ts !
1 #) % 1 # 1 "3 >
Tr a ns f o r m e d . 1 9 $ 1
Trans f o rmed $ ) * ) : * G % ) 1 C 9 . 5
L 1 ! Tr a ns f o r m e d E x pl o r e :Pl o t ! : # $ N a tu r a l L o g
C 9 ) 1 K
" ) Po w e r #
: ( " % G " ) % 1 . . , 6 OK 4 Co nti nu e
1 01
4 3
Spread vs. Level Plot of DEPEND By TREAT
.7 .6 .5 .4
Spread
.3 .2 .1 6
7
8
9
10
11
Level
* Data transformed using P = Slope = -.087
. 4 % 1 " $ - .
1 2 = )" 3 F 3 L @ 7
2 % 1 " 1 >
3 " $ /0 C $ . #
# ?. +
;2 1-b = 1.08 7 > E D "3 b=-0.08 7 # . 1 >
3 " $ )- % 1
: . . C "3 #! )1 "
18
Spread vs. Level Plot of DEPEND By TREAT
16 14 12 10
Spread
8 6 4
20
40
60
80
100
120
140
160
180
Level
* Data transformed using P = Slope = .078
)
;2 D + 0. 922 > E D "3 0. 07 8 + # 7
D "3 % = 3 = 1 5 % 2 . )1 1 % 1 " 1 >
. , + 3
1 02
C "3 3 - 1 . . 0 D E Pl o ts !
U ntr a ns f o r m e d
" 1 1
% G
1 ( I QR ) )1 M .
1 2 = ) 1 K ( % 1 # 1 ) "! Spread vs. Level Plot of DEPEND By TREAT
7000
: # $
6000 5000 4000 3000
Spread
2000 1000 0
0
10000
20000
30000
40000
Level
* Data transformed using P = Slope = .201
#) - . .
<"3 )1 M .
1 2 = )" 3 F 6 =
.% )" )1 M G
.
G
1 2 = ) # - D # N
!
( 3– 6 )
Opti o ns 4 1 9 0 <2 + % - )1 0 : O p t i o n s !
C "3 + % (% ) , " 1 )1 - #): E x c l u d e
, 6 E x p l o r e
: 7
C a s e s
L is tw is e
F a c t o r 4 D e p e n d e n t ) + 9 0 2
. @ -
% = + 9 0 2 , % - )1 : E x c l u d e C a s e s P a i r w i s e @ & 0 F , 5 (
. ) ! ; #)
3 " 0 4 9 0 #) : R e p o r t V a l u e s
: D a t a E d i to r $ $ % " % 1 (
1 03
0 1 L @
.
d e p 1 d e p 2 1 10 2 11 . . 4 13 5 14 . 6 . 7 8 A n a ly z e D
fa c 1 1 1 2 2 2 e s c r ip tiv e S ta tis tic s
E x p lo r e
0
1
: " ?1 E x p l o r e !
. F a c t o r L i s t C D " f a c 0
•
. D e p e n d e n t L i s t C , " d e p 2 d e p 1
5
5
•
. E x c l u d e C a s e s l i s t W i s e O p t i o n s 4
•
: , 6 O K 4
5
Case Processing Summary
D E P 1 D E P 2
F A C 1 2 1 2
N
V a lid 2 2 2 2
P e rc e 6 6 6 6 6 6 6 6
n t .7 .7 .7 .7
N % % % %
C a s e s M is s in g 1 1 1 1
P e rc e n t 33. 3% 33. 3% 33. 3% 33. 3%
N
T o ta l 3 3 3 3
P e rc 10 10 10 10
e n t 0 .0 0 .0 0 .0 0 .0 % % % %
Descriptives D E P 1
D E P 2
F A C 1
M e a n
S ta tis tic 1.50
2
M e a n
5.50
1
M e a n
10.50
2
M e a n
10.50
S td .E rro r .50 . . 1.50 . . .50 . . 2.50 . .
7 E x cl u d e Cases Listwise (# # 1 C " 3 ) %. ; 0 6-
Facto r List D epend ent List 2 % + 9 0 2 C " 3 + + ) 1
C " 3 2 1 C " 3 3 -1 fac 4 1 " d ep1 " . ; <= . ; 4 1 " d ep2 . 1 1 4 2 " 7 4 %- . ... 2 1 C " 3 3 -1
: " ; %. E E x cl u d e Cases Pairwise
1 04
Case Processing Summary
D E P 1 D E P 2
F A C 1 2 1 2
N
V a lid 2 3 2 2
P e rc e n t 6 6 .7 % 100. 0% 6 6 .7 % 6 6 .7 %
N
C a s e s M is s in g 1 0 1 1
P e rc e n t 33. 3% . 0% 33. 3% 33. 3%
T o ta l
N
3 3 3 3
P e rc e n t 100. 0% 100. 0% 100. 0% 100. 0%
Descriptives D E P 1
D E P 2
F A C 1
M e a n
S ta tis tic 1.50
2
M e a n
5.6 7
1
M e a n
10.50
2
M e a n
10.50
S td .E rro r .50 . . .8 8 . .50 . . 2.50 . .
1 1 2 1 %- ; 2 fac 4 d ep1 . 6-
. d ep2 " / $ > 0 7 6 4 %- ; 4 2 " d ep1 .
? E x pl o re !
Facto r List 2 fac
# ! V
Y E x cl u d e Cases Pairwise C " 3 / 1 &
# ! 7 " 9 ! 1 # 9 0 2 C " 3 %- ) 1 1 F
. 1 %. " C " 3
Descriptives D E P 1 D E P 2
M e a n M e a n
S ta tis tic 4.17 11.2 0
S td .E rro r .9 5 1.0 7
11. 0 2 d e p 1 " 7 6 5 4 2 1 %- . 4. 17
. d e p 2 " 7 5 4 2 1 %- .
C fac ? . Repo rt V al u es 9 0 " 9 1 # !
105
Repo rt V al u es $ E ? E x pl o re ! : 5 C " 3 # ! E x pl o re !
O K
Facto r List
4 3 . O ptio ns
Case Processing Summary
D E P 1 D E P 2
F A C . ( M is s in g ) 1 2 . ( M is s in g ) 1 2
N
V a lid 1 2 2 1 2 2
P e rc e n t 100. 0% 6 6 .7 % 6 6 .7 % 100. 0% 6 6 .7 % 6 6 .7 %
C a s e s M is s in g N P e rc e n t 0 . 0% 1 33. 3% 1 33. 3% 0 . 0% 1 33. 3% 1 33. 3%
N
T o ta l 1 3 3 1 3 3
P e rc e n t 100. 0% 100. 0% 100. 0% 100. 0% 100. 0% 100. 0%
Repo rt V al u es 2 1 <= ! D Fac 4 6-
Repo rt " ( # # 1 C " 3 ) %. ; . 9 0 " M issing E 1 %0@
: " V al u es
Descriptives D E P 1
D E P 2
F A C 1
M e a n
S ta tis tic 1.50
2
M e a n
5.50
1
M e a n
10.50
2
M e a n
10.50
S td .E rro r .50 . . 1.50 . . .50 . . 2.50 . .
7 E x cl u d e Listwise . > 0 1 2 . ; 9 0 ) 1 6=
. < 5 > 0 C " 3 " !
106
( 3 0!
Crosstabs
) 2 × 2 Tabl es 2 - # # 3 Cro sstabs # )
% $ ' ; ? ( 3 0!
) M u l tiway Tabl es 9 ) #
<= 1 . 7 1 9 1 9 , . ! & % 1 - # F , .1 -
. ! & % 1 - " 9 ) # 2 - # 3 A " 3 # ,
) @ a B = ) ) @ C @ " 9 $ 22 , 3 # # : 1 3 a1 / 0$ " 4 (
/ 0$ # reco v er treat K 3 1 ) b B = )
$ $ % 1 %" 2 7 O f " m ( treat a b b b a a b a b a a b a b a b b b a b a b
reco v er a1 a1 b1 b1 a1 a1 b1 b1 b1 a1 a1 a1 a1 b1 a1 b1 b1 b1 a1 a1 b1 b1
>
# g end er b2 / 0$
g end er m m m m m m m m m m m m m m f f f f f f f f
: " D ata E d ito r
: " ;" .
1 = - 1 ? reco v er treat 1 2 = ) " 2 #
.1
1 = - 1 ? reco v er treat 1 2 = ) " 2 #
.2
: % . ? 1 # ; " . 0
.1
.(
/ 0$ B = ) .) 1 ) 2 = 3 1 + . g end er >
107
;
Anal y z e
D escriptiv e Statistics
. # < 0!
Cro sstabs
: " D 1
+ Cro sstabs !
D # ) ;G
. # 9 3 D # ) ;G . $ E 3 1 . $ (
. $
, 6
: 7
+ @ : Row(s)
+ @ : : C ol u m n (s)
) : D i sp l a y C l u st e r e d b a r C h a r t s
. $ E 3 9 ) # 2 - # / 0 -: S u p r e ss t a b l e s
: " D 1
+ Statistics !
, 6 Statistics 4 3
: 7
. 9 3 3 H 0! = 1 - , " ch i-Sq u are ! A ; : C h i -S q a r e
; D <" 3 <) Pearso n Spearman .1 - " ) ; : C or r e l a t i on
108
H 0! = 1 3 1 Spearman .1 # ) ; Nu meric 3 " % 2
$ $ M easu re ) O rd inal ) O rd ered V al u es 1 2 3 9 1 3 9 3
Pearso n . 1 # ) ; (… ; J J ) " ) <= (V ariabl e v iew
Scal e 1 , 3 1 ) Q u antitativ e V ariabl es % 9 3 H 0! = 1 3 1 .I nterv al <@ , $ V ariabl e V iew $ $ M easu re 3
H 0 ! <= (.1 ) 2 = %= ) ) 1 ; F L : N om i n a l
(7 A J ) >
<= % 1 ; A 3 C @ & 1 G # 3 9 3
. (9 ! 1 J # ! J 1 ) 6
9 3 H 0 ! = 2 = %= ) ) 1 ; F L : O r d i n a l
. 1 %
9 @
> ) 1 2 = E ta ! A ; : N om i n a l b y I n t e r v a l
Categ o ries % 0 3 D # I nco me # # I nterv al Scal e R
. g end er >
#
" ) , 6- > 4 1 1 ! % ! A 1 C " 3 H ) K
No minal , ) No minal % # 9 3 H 0! < 6
. , 1
1 - Ch i- Sq u are ! A ; 1 0 ( V ariabl e V iew $ $ M easu re 3
.No minal V ariabl es - % " 2 = Ph i and G ramer’s v > ? = -
Cro sstabs !
o k Statistics !
Co ntinu e 4 3
: % C " 3 # !
TREAT * RECOVER Crosstabulation Count
T R E A T T otal
a1
a b
R E CO V E R 8 3 1 1
b1
T otal
2 9 1 1
1 0
1 2 22
Chi-Square Tests
P e a rs o n C C o n tin u ity L ik e lih o o d F is h e r 's E N o f V a lid
h iC o R a x a c C a
S q rre tio t T s e
s
u a re c tio n e s t
a
V a lu e 6.600b 4 .5 8 3 6.9 9 4 2 2
d f
1 1 1
A s y m p .S ig . ( 2 - s id e d ) .010 .03 2 .008
a . C o m p u te d o n ly fo r a 2 x 2 ta b le b . 0 c e l l s ( .0% ) h a v e e x p e c t e d c o u n t l e s s t h a n 5 . T h e m i n i m u m 5 .00.
109
E x a c t S ig . ( 2 - s id e d )
E x a c t S ig . ( 1- s i d e d )
.03 0
e x p e c te d c o u n t is
.015
@
/ 0$ 3 B = ) = + 9 3 3 H 0! = 1 " ) @ 1
, Ch i-Sq u are ! A 1 / 0$ B = ) 1 2 = 3 1 " " 1 @ 0
: ! ; 9 3 3 c H 0! 3 # r 7 (r-1)(c-1) 2 χ 2 = (Oi − Ei ) ∑ Ei 6. 6 ! & 2 % 2 ? 2 # Ei $ # Oi 7
1 2 = 3
+ %5 - M 1 ) @ (
C 3 p-v al u e= 0.010 < 0.05 2 .(
/ 0$ B = )
Symmetric Measures
N o m in a l b y N o m in a l
N o f V a lid C a s e s
P h i C r a m e r 's V
V a lu e .548 .548 2 2
A p p r o x .S ig . .0 1 0 .0 1 0
a . N o t a s s u m in g th e n u ll h y p o th e s is . b . U s in g th e a s y m p to tic s ta n d a r d e r r o r a s s u m in g th e n u ll h y p o th e s is .
C A $ p-v al u e =0.010 2 E
χ2 = n
6 .6 = 0.548 Ph i = 2 > 22
1 = - 1 - χ 2 ! A # ) 7 J % 5 - M 1 2 - ) . (r-1)(c-1)
Co ntinu ity Co rrectio n = Y ates L ! ; : 1 2 ( Oi − Ei − 1 / 2) 2 χ . =∑ ! ; 2 × 2 # + + Ei > , ) 2*2 2 - # ? # ) <1 G Ph i 2 > : 2 : 2 = ) r*c 9 ) # ; + Cramer Co efficient C 1 H ) C=
χ2 = N ( L − 1)
6 .6 = 0.548 22
# 9 3 H 0! 1 ! ) L ) # N 7 > 2 6= (r-1)(c-1) 1 = - 1 - χ 2 ! A # ) 7
. Ph i 2 - > <
) Co nting ency Co efficient # ) 1 H ) ; > K : 3 r*c # + ; (<0 Cro sstsbs:Statistics !
110
No minal
: 2 = )
χ2 = 2 χ +N
C=
6.6 = 0.480 6.6 + 22
1 = - 1 - χ 2 ! A # ) ) # N 7
F = 3 = %= ) " , 0 = - 1 P-V al u e 2 7 . (r-1)(c-1)
D ispl ay Cl u stered Bar Ch arts Ch eck Bo x $ E 5 . 0. 010 +
: .. .) Cro sstabs !
10
8
6
4
RECOVER
Count
2
a1 0
a
b1
b
TREAT
!
: 4
Cel l s 4 1 K Cro sstab # % (
) 1
.1
: @ + Co u nts
•
: % = @ + Percentag es
•
: % + + Cel l D ispl ay
!
, 6 7 Cro sstabs
. Oi $ 1 # = I 7 @ - : O bserv ed . Ei ? 2 1 # = I ; 1 : E x pected . H ! N ' ; 1 # = I : Ro ws
. ) N ' ; 1 # = I : Co l u mns . " N ' ; 1 # = I : To tal : % = @ : Resid u al s
.
Oi − Ei ? 2 $ 1 0 1 # = I : U nstand ard ised
•
C " 3 < ? 2 $ 1 0 1 # = I : Stand ard iz ed . D + ) E .
. . 3 + ) H - % 1 D 3 < 1 ) 1 > 0 : Ad j .Stand ard ised
!
111
Fo rmat 4 1 < 4 < 3 ! # H 0!
; : 5
Cro sstabs
Anal y z e
D escriptiv e Statistics
: % . ? 1 ; " . 0 Cro sstabs
: " D 1
9 . 1 H ) ( 1 .) Lay er 2 @
. $
+ Cro sstabs !
.2
, 6
g end er # A D 6=
# 3 D ) categ o rical V ariabl e + Co ntro l V ariabl e
treat 1 2 = ) " Cro sstabs # 7 ( f m 2 g end er "
m " D + 9 . 2 2 # > ; reco v er . f 7 O
: 5 C " 3 # ! Cro sstabs !
O K
TREAT * RECOVER * GENDER Crosstabulation Count G E N D E R f
T R E A T
m
T otal T R E A T
a b
a1
a b
T otal
R E CO V E R 2 1 3 6 2 8
b1
T otal
1 4 5 1 5 6
3
3 5 8 7 7 14
Chi-Square Tests G E N D E R f
m
P e a rs o n C C o n tin u ity L ik e lih o o d F is h e r 's E N o fV a lid P e a rs o n C C o n tin u ity L ik e lih o o d F is h e r 's E N o fV a lid
h iC o R a x a c C a h iC o R a x a c C a
S q u rre c tio t T e s e s S q u rre c tio t T e s e s
a re tio na s t a re tio na s t
a . C o mp u t e d o n l y fo r a 2x 2 t a b l e
V a lu e 1.742b .3 20 1.76 2 8 4.6 6 7c 2.6 25 5 .0 0 4 14
d f
1 1 1
A s y mp . S i g . ( 2- s i d e d ) .187 .5 72 .184
1 1 1
.0 3 1 .10 5 .0 25
E x a c t S ig . ( 2- s i d e d )
E x a c t S ig . ( 1- s i d e d )
.46 4
.286
.10 3
.0 5 1
b . 4 c e l l s ( 10 0 .0 % ) h a v e e x p e c t e d c o u n t l e s s t h a n 5 . T h e mi n i mu m e x p e c t e d c o u n t i s 1.13 . c . 4 c e l l s ( 10 0 .0 % ) h a v e e x p e c t e d c o u n t l e s s t h a n 5 . T h e mi n i mu m e x p e c t e d c o u n t i s 3 .0 0 .
112
. ) 1 2 = 3 3 Pearso n Ch i-Sq u are ! & p-v al u e 2 # = 6=
1 1 2 = 3 C " 3 ! & ' 7 & C @ " 1 1 ( C " 3 R
/ 0$ /
. %5 - M C @ "
2 × 2 N # Ch i-Sq u are 1 - %@ 0 M A
5 C H 1 - E - # = + # + E 1 5 3 # - ; Ei ? 2
# %100# = 5 3 # ? 2 6=
# " " 6
. 1 - 5 3 ; 7 &
Symmetric Measures G E N D E R f
N o mi n a l b y N o mi n a l
N o fV a lid C a s e s N o mi n a l b y N o mi n a l
m
V a lu e .467 .467 8 .5 77 .5 77 1 4
P h i C r a me r ' s V P h i C r a me r ' s V
N o fV a lid C a s e s
A p p r o x .S ig . .1 87 .1 87 .0 3 1 .0 3 1
a . N o t a s s u mi n g t h e n u l l h y p o t h e s i s . b . U s i n g t h e a s y mp t o t i c s t a n d a r d e r r o r a s s u mi n g t h e n u l l h y p o t h e s i s .
GENDER=f
GENDER=m
4.5
7
4.0
6
3.5
5
3.0
4
2.5
3
2.0
2
RECOVER
1.0
a1
1
a1
.5
b1
Count
a
TREAT
113
b
Count
RECOVER
1.5
0
a
TREAT
b
b1
Compare Means
Means ( 1– 8 )
C @ & 1 ) su bg ro u ps 4 ? " %. ; # " 0
H - J # J .
J 4 3 " %- 3 J N ) # M % $ '
Test o f %= ) " . E 1 ) 1 # " / <@ (Z … + ) . eta 2 - 1 Linearity
>
1
; C J B J A 0" ? 3 C ; . 16 % ? 4 1 # : : # $ C " 3 D ata E d ito r $ $ , A G end er
d eg ree 70 90 8 8 8 6 6 8 6 4 76 8 3 79 5 5 97 100 6 4 5 9 90 73
g ro u p A B A B C C B A B C B A C C A A
g end er Femal e M al e M al e M al e M al e M al e M al e Femal e Femal e Femal e M al e M al e Femal e Femal e M al e Femal e
+ ) H - %- 3 C J B J A 3 0 ? ; % . ;
S: % . ? 1 3 #
!
114
, 6 Anal y z e
Co mpare means
M eans . $
S: # $ C " 3 D 1 1 + M eans
S: 7
F E < 6 Respo nse V ariabl e 1 - 1 H ) ) : D epend ent List
# ) . I nd epend ent V ariabl e # 1 . D eg ree 1 " . %
! Treatments %= ) # ' # : I nd epend ent List
? # # . ANO V A 1 # " ; Stand ard
. 1 " . % 4 # ) + g ro u p 4
J No . o f Cases J M eans M eans !
O ptio ns 4
? ; , 1 ; " . % $ ' M eans:O ptio ns !
D ev iatio n
S: " ; ) 1 ! , 6 7 4
S: 5 , 6 O K
115
Co ntinu e 4
Report DEGREE GRO U P A B C T o ta l
M e a n 8 4 .0 0 8 5. 60 62 . 0 0 7 7 . 63
N
6 5 5 1 6
S t d . De v i a t i o n 1 1 .1 9 8 .4 4 5. 0 5 1 3 . 65
. 4 3 # ; D eg ree " 1 " . % $ ' ; D 6= : 2 #
% + ) H - %- 3 . ; ;" . 1 # % 1 > 0
9
% . > 0 ? 1 K 0 . " 9 ! 1 g end er >
; g ro u p ? ;
: # $ C " 3 M eans !
; 1 1 #
" ; 5 , 6 DEGREE * GROUP DEGREE GRO U P A B C T o ta l
M e a n 8 4 .0 0 8 5. 60 62 . 0 0 7 7 . 63
N
6 5 5 1 6
S t d . De v i a t i o n 1 1 .1 9 8 .4 4 5. 0 5 1 3 . 65
DEGREE * GENDER DEGREE GENDER F e m a le M a le T o ta l
116
M e a n 6 9. 0 0 8 4 .3 3 77. 6 3
N
7 9 1 6
S t d . De v i a 1 0 1 2 1 3
tio .2 .4 .6
n
5
3
8
3 #
; d eg ree " + ) H - %- 3 . ; ;" . 1 # > 0
1 . 1 K 0 . C J B J A 3 0 ? # # (7 A J ) > @ 1 . g ro u p @ C 1 . M eans ! : # " ; M eans !
Lay ers
, 6 3 % 1 . F # 3 g end er
. Lay er1 C 1 . I nd epend ent List C g ro u p #
. Lay er2 1 . C # = I nd epend ent List C " 3 Nex t 4
.Lay er2 1 . I nd epend ent List C g end er # : 1 ." M eans !
1 # $
5 , 6. I nd epend ent List C " 3 Prev io u s 4 C 1 . C N " : " O K
4 3 ;
Report DEGREE GRO U P A
B
C
T o ta l
117
GENDER F e m a le M a le T o ta l F e m a le M a le T o ta l F e m a le M a le T o ta l F e m a le M a le T o ta l
M e a n 75.33 92.67 8 4.0 0 79.0 0 8 7.25 8 5.60 59.33 66.0 0 62.0 0 69.0 0 8 4.33 77.63
N
3 3 6 1 4 5 3 2 5 7 9 16
S t d . De v i a t i o n 6.8 1 6.43 11.19 . 8 .77 8 .44 4.51 2.8 3 5.0 5 10 .28 12.43 13.65
.1
.2
.3
( Test o f Linearity . E 1 ) : 4 #
% ) . + ) Linear trend . 3 F H $ 0 1 -
% 1 " %= ) " . E 1 A .O ne-W ay ANO V A : " M eans !
!
Test fo r Linearity
) 1 # "
; 1 (1S9) 1 1 # 9
ANO V A and
eta $ E 1
: " 5 , 6 7 <0
M eans : O ptio ns ANOVA Table
P R O D U C T * M E T H O B De tw e e n G ro u p s W ith in G r o u p s T o ta l
( C o m b in e d ) L in e a r ity D e v ia tio n fr o m
S u m o f S q u a re s 402.000 86 .400 L i n e a r 315 i t y .6 00 15 2.000 5 5 4.000
d f
3 1 2 8 11
M e a n S q u a re 134.000 86 .400 15 7 .800 19 .000
F 7 .05 3 4.5 47 8.305
Measures of Association P RO D U C T * M E T H O D
R -.395
RS q u a re d .1 56
E ta
.8 52
E ta S q u a re d .7 2 6
. (F=7.05 3 ) % ) %. 1 ) C $ 1 # " #
: " . 3 % - %) 1 N # ! SS D ev iatio n Fro m Linearity = SS. (Co mbined ) – SS. Linearity =402-8 6 .4=3 15 .6 : " Test fo r Linearity
1 - F 2 ;
F=M S. D ev iatio n Fro m Linearity / with in G ro u ps M S.=15 7.8 /19=8 .3 1
118
S ig . .012 .06 6 .011
% ) . E 1 " ) @ (
C A 3 0. 011 + " 1 P-v al u e 2
. 3 H . + %5 - M 1 1 - / . C " 3 ? . ( P-V al u e H ) # 2S8 1 6 )
) 1 M easu re o f asso ciatio n (.1 -) 2 = > E ta 2 $ 1 .1 - ) C $ 0 7 1 C 0 M @
? #
0 (pro d u ct) ) " % 1 1 # E ta-Sq u are J .1 C E ta-Sq u are = SS. between G ro u ps / SS. To tal = 7 (M eth o d ) # 402/5 5 4= 0.726 . (pro d u ct) 1 Simpl e Co rrel atio n .1 .1 - # ) # R 2
# 4C 1 % 1 D 3 1 ) 1 3 1 (M eth o d )
B 9 > , R-Sq u are M u l tipl e R ) .1 - # ) # R E
. Linear Reg ressio n C . -
O ne S am p l e T-Test
T ( 2 – 8 )
? . Sig nificant D ifference + ) H = H $ 1 - 0 ? . 9 A C @ A .
Co nstant 1 2 3 ) D %1 +
. (n< 3 0) 9 ! % ) " 1 - # ) Co nfid ence I nterv al
# A 2 < 52 ) 1 B 4 10 , 3 # W eig h t
#
. D ata ed ito r $ $
W E I G HT 1.10 1.10 .90 .8 0
.8 0
1.20
1.20
1.00
.90
1.20 " ;" .
@ 0 @ 1. 25 ) D %1 + ? " 1 . E 1 " ) @ 1 .1 . %1 %5 - M 1 1. 25 + - ? . E 1 " " 1
. ? " 1 . " %99 9 .2
S: " H1 " 1 H0 ) @ 1
#
H 0 : µ = 1.25 or µ - 1.25 = 0 H 1 : µ ≠ 1.25
t=
S: " 1 - t ! A x−µ
s/ n n=10 ) " + ) H - # S =.16 2 ) " 1 .
# =1.020 x 7
? 1 ! & F 1. 25 + ) @ ; 1 ? " 1 .
µ )
119
. (5 1 # 1 2 S x ! A ; ) v = n-1 = 9 1 t ? 4
: % . ? 1 1 - 0
. $ Anal y z e Co mpare M eans O ne sampl e T-Test : " D 1 1 + O ne sampl e t-Test ! , 6
: # $ D 1
+ O ptio ns !
, 6 O ptio ns 4
1 1 7 ( # ; " . ) 9 O ptio ns . 1
.Co nfid ence I nterv al # %99 9 0
T-Test / ) 9 0 ? # ) D 0 M issing V al u es #
@ O ne sampl e T-Test !
Test V ariabl es + % 3
: $ E F (
" M issing Cases 9 0 %- ) 1 : E x cl u d e Cases Anal y sis by Anal y sis
9 0 2 + - 9 0 2 C " 3 D T 1 D " 3 M +
% " < 0" ) D + T ! A ;- 2 E
. # " @
% . (9 0 G )V al id ! %- @ : E x cl u d e Cases List W ise
% ) % 1 6 2 ) 1 D E % 9 0 = 6 % P . # " @ % " < ) F ( % F , 9 0 G
- 9 0 2 ) # " " , 5 C " 3 + ' - #
. < C " 3 Test V ariabl es / -
: # " " 5 , 6 O ne sampl e T-Test !
12 0
O K
4 3
T-Te s t One-Sample Statistics
W E IG H T
N
10
M e a n 1. 02 0
S td . D e v ia tio n . 16 2
S td . E rro r M e a n 5 . 12 1E - 02
One-Sample Test T e s t V a l u e = 1 .25
W E IG H T
t -4.492
d f
9
S i g . ( 2-ta i l e d ) .0 0 1 5
M e a n D iffe r e n c e -.23 0
99% C o n f i d e n c e I n te r v a l o f th e D iffe r e n c e L o w e r U p p e r -.3 96 -6 .3 6 E -0 2
F t = ( 1.020-1.25 )/ 0.05 12 = -4.492 ! ; 1 t ! A ; 7 M v = 9 1 )
t(tab t 1 , + t(cal .) 1 t 1 H )
B ) t 2 7 t (cal.) ≥ t (tab.), v, α / 2
H0 (
7 α -
: ( Two Tail ed test . 1 -) α / 2 - M (t ? 4 # t, 9, 0.025 = 2.26 2 ( α = 5% ) t, 9, 0.005 = 3 .25 0 ( α = 1% ) E ) @ ( J 1 (4.492) 1 t " . 1
. %1 %5 - 1. 25 3 < ) H " ? " 1 .
+ " 1 @ 0
C . C " 3 4 P-v al u e
C " 3 ) 1 - .
Sig . SPSS 5 1 # 1 2 9 $ 1 , 1 %) 4 # - B - ,
7 . ) @ 3 (
α 2 # 2 , E 1 P-v al u e H ) . F = 3 #
. P-v al u e ; . L @ .. . α # 2 P-v al u e % ) @ (
T-d i s t r i b u t i o n
0.0007 5
0.0007 5 -4 . 4 9 2 4 .4 9 2
12 1
0
P-v al u e = Pr ( t ≥ 4.492 ) + Pr ( t ≤ −4.492 ) =0.0007 5 + 0.0007 5 =0.0015 Pr o babi l i ty # - # Pr %1 %5 - ) @ (
P-v al u e <0.01 P-v al u e < 0.05
1
M e an Di f f e r e n c e ? . ) . 1 0 " %9 9 9 0 1 1 : " , 1
Pr ( − 0.396 < x − µ − 0.23 < −0.0636 ) = 9 9 %
K <- 1 ! & # " # ) - # " 2 . 1 0 " 9
: " µ ? . %9 9 9 1
Pr ( x - t9 , 0.005 * (S/ n )< µ < x + t9 , 0.005 * (S/ Pr ( 0.8 5 3 6 < µ < 1.18 6 4 ) = 9 9 % (
n) )=9 9 %
D " 3 %9 9 + 1.1864 0.8536 1 ? . ? # +
1 - . 1 ) F 9 B ? 1.25 %5 - M 1 ) @
. % @ 0
I n d e p e n d e n t s a m p l e s T-Te s t T ( 3 8 )
/ T ! A # ) % - 3 . 1 " 1 - # ) H
. 1 -
!
# < 1 12 1 B A . 0 ! B
9.4 8 .4 1 1 .6 7 .2 9.7 7 .0 1 0 .4 8 .2 6 .9 1 2 .7 7 .3 9.2
- 0 ! 1 1
1
: 5 % , 1 1 A 12.5
H 1 : µA ≠ µ B
% 2
9.4 1 1 .7 1 1 .3 9.9 8 .7 9.6 1 1 .5 1 0 .3 1 0 .6 9.6 9.7
. 1 + ) 1 ; " .
H 0 : µA = µB
122
1 1
#
: @ 0 1 + . %1 %5
Pr o te n
: % . ? 1 K 0
7 # $ , 6 Data E d i to r . 4 G r o u p
Proten G rou p 12.50 9 .4 0 11.7 0 11.3 0 9 .9 0 8 .7 0 9 .6 0 11.50 10.3 0 10.6 0 9 .6 0 9 .7 0 9 .4 0 8 .4 0 11.6 0 7 .20 9 .7 0 7 .00 10.4 0 8 .20 6 .9 0 12.7 0 7 .3 0 9 .20
A A A A A A A A A A A A B B B B B B B B B B B B
% 1 # P 1
1 1
#
. $ An al y z e C o m p ar e M e an s I n d e p e n d e n t Sam p l e s T Te s t + I n d e p e n d e n t Sam p l e s T Te s t ! , 6
: " D 1
Te s t V ar i abl e s 2 Pr o te n
# P 1 2
G r o u p i n g V ar i abl e 2 ( 4 ) G r o u p
7 De f i n e G r o u p s 4 . 3 B A ? H )
C ) B A 4 2 D G r o u p
D < " 3 2 1 E ( d i c h o to m o u s V ar i abl e !
. 4 % - 9 ! 9 1 H 1 4 ;
C u t Po i n t # ! . # = ? M . K
4 10 # 2 2 , % - # ( 10 <= ) De f i n e G r o u p s
E F ) 3 10 + 1 2 , % - 9 3
. (N u m e r i c < 3 ; 4
0 6
> 0 D " I n d e p e n d e n t s am p l e T Te s t ! . 1 0 1 1 + Te s t V ar i abl e s
O p ti o n s 4
. O n e Sam p l e T Te s t !
2 # A : 6 = . < ) % 9 ) 3
: 5 , 6 I n d e p e n d e n t s am p l e T Te s t !
O K
Group Statistics
P R O T E N
123
G R O U P A B
N
12 12
M e a n 10 . 4 0 0 0 9 .0 0 0 0
S td . D e v ia tio n 1. 13 14 1. 8 7 4 2
S td . E M e a .3 .5
rro r n 26 6 4 10
4 3
Independent Samples Test L e v e n e 's T e s t f o r E q u a l i ty o f V a r ia n c e s
P R O T E N
E q u a l v a r ia n c e s a s s u m e d
F
2.776
t- te s t f o r E q u a l i ty o f M e a n s
S ig .
.1 1 0
t
d f
2.21 5
1 8 .0 8
2.21 5
E q u a l v a r ia n c e s n o ta s s u m e d
.0 3 7
1 .4 0 0
S td . E rro r D iffe r e n c e .63 20
8 .9 3 6E - 0 2
2.71 0 6
.0 4 0
1 .4 0 0
.63 20
7.267E - 0 2
2.7273
S ig . ( 2- ta i l e d )
22
9 5 % C o n fid e n c e I n te r v a l o f th e D iffe r e n c e L o w e r U p p e r
M e a n D iffe r e n c e
) , 9 E ) 1 + ( 0 C M 1 - 6 = 2 % 1 + 3 ( 0 σ 2 = σ 2 + E C 0 . σ 2A ≠ σ B B A + %5 - M 1 ) @ ( C ) P-V al u e = 0.03 7 <0.05 2 E %1 - M 1 1 - . 0 ! 1 1
. 1 )
. %1 - M 1 ) @ # 1 , P-V al u e > 0.01
) @ # 1 2 C 3 P-v al u e = 0.11>0.05
E 1 >
L e v e n 1
. ) , 9 E ) 1 (+ ) >
2
1 "
P a i r e d -S a m p l e s T-Te s t T ( 4 8 )
7 9 ( 3 ) 3 . 1 0 ) H $ - 1 - # )
. ) # 1 2 # 1
. 1 0 ) 1 <= B 4 C " 3 ) % $ . < ! $ 12 3 F ) 1 ) 3
% 3 4 . # ) . 2 % . $ 3 / 0 ! 9 (B A) 0 ! : ) . 2 # # ! # % 1 B H
A B
! 1 M % 3 4 A H
N 4
! 1 A
1
2
3
4
5
6
7
8
9
10
127 135
195 200
162 160
170 182
143 147
205 200
168 172
175 186
197 194
136 141
. %5 - M 1 ! " B & . + 1 " @ 0 1 ; " .
: % . ? 1 1 - 0
An al y z e C o m p ar e M e an s Pai r e d Sam p l e s T Te s t . $ : # $ C " 3 D 1 1 + Pai r e d Sam p l e s T Te s t !
124
:
, 6
> 0 = # A ; 7 b a 0 ! % $ = b a
: % . ; 4 % $ 1 3 1 Pai r e d v ar i abl e s 2 % 2
. F - > 4 1 a
. < ) - > 4 1 b ?
Sh i f t Q 0 . @ .2
2 C #
Pai r e d v ar i abl e s
.1
4 .3
: " 1 - 5 C " 3 # ! " O K
4
Paired Samples Statistics
P a ir 1
M e a n 167.80 171.70
A B
N
10 10
S td .D e v ia tio n 2 6.5 8 2 4 .60
S td .E rro r M e a n 8.4 0 7.78
Paired Samples Correlations P a ir 1
N
A & B
10
C o r r e la tio n .9 7 8
S ig . . 000
Paired Samples Test P a ir e d D iffe r e n c e s
P a ir 1
A-B
M e a n
-3.90
S td . D e v i a ti o n
5 .7 4
S td . E rro r M e a n
1 .8 2
9 5 % C o n fid e n c e I n te r v a l o f th e D iffe r e n c e L o w e r U p p e r -8 .01
.2 1
t
-2 .1 4 7
d f
9
S ig . ( 2 -ta i l e d )
. %1 %5 - M 1 + ) 0.9 7 8 1 . 1 - # ) ; 7
.06 0
+ H 0 : µA = µB ) @ # 1 2 C 3 P-v al u e =0.06 0>0.05 2 E T 1 - 1 1 . . 0 ! B & . 1 ) % = 3
125
Analysis of Variance
% 1 3 " % ) 1 N 1 ! @ % " ) 1 # " 1 !
. AN O V A Tabl e 1 # " # 1 H ) # # " 5 R
" 0 " F ! C
% ) 1 H ) % ) 3 % . + @ 1 # " / H ,
@ 0 1 - # ) + t 1 - < ) 1 ) , , 9 ) ( Tr e atm e n ts % = ) ) . . 3 . + 1 !
One Way ANOVA ( 1 9 ) % . # % = 1 \ ) N B - 3 !
: 1#
. ) 1 %
: # 1
.
5 0
3 4 8
2
1
47
55
61
64
64
55
52
52
49
55
45
41
44
50
1
2 3 4
J 1 ) J ; # " ! J , $ # , $ . : ! . 63R
J 19 89
: " ; " .
.%5 - M 3 ! . % . 1 0 ) 1 1 # " / : " ;" . F 1 1 3 ! . 1 0 ) , 6
+ ) 0 . 1 ( . ) ) # . 1 0 ) 1 . %5 - M L.S.D. !
. , @ 1 1 . . 1 4 3 2 . # . 1 0 ) 1 @
. Du n n e tt . 1 (9 . )
.1
.2 .
.;
. % . + 1 " ) @ 1 1 # " / H , .1
: @ 0 1 + # 2 C " 3 . . + 3 C " 3 R H 0 : µ1 = µ 2 = µ 3 = µ 4
" 1 @ 0
H 1 : µ1 ≠ µ 2 ≠ µ 3 ≠ µ 4
) . # F = 3 #
. . " ? . # µ 7
. . #
126
: % . ? 1 1 # " /
: # $ C " 3 Data E d i to r 2 % 1 # A m e th o d 1 1 1 2 2 2 3 3 3 4 4 4
p ro 5 4 4 5 6 6 5 4 5 5 4 4 5
7
d u c t 8 5
4
An al y z e 4 5
C o m p ar e M e an s
O n e -W ay N O V A
+ O n e -W ay AN O V A ! 9
: " D 1 1
2 0 4 1
, 6
: 7
< 1 ; # 1 # ) # : De p e n d e n t Li s t F Fac to r % ) > 0 (% ) ) - 1 D < " 3 . < 3 . De p e n d e n t @ % 3 1 1 # " # 3 C " 3 # !
# 3 ! . N # % 0 H ) # ) + # # : Fac to r
.N u m e r i c < 3 < ;
: 1 # " # 5 1 (
) O K
4 3
ANOVA PRODUCT
S u m S q u a 4 0 2 1 5 2 5 5 4
B e tw e e n G ro u p s W ith in G r o u p s To t a l
) @ (
127
? .
o re .0 .0 .0
f
s 0 0 0 0 0 0
d f
3 8 1 1
M e a n S q u a re 1 34 . 0 0 0 1 9 .0 0 0
F 7 .0 5 3
S ig . .0 1 2
, 0.05 # 2 F ! & 1 ! P-V al u e =0.012 2
. ? 1 3 ! . % . 1 ) + %5 - M
# 2 C " 3 . . + 3 ) , . % . 1 )
< 6 M u l ti p l e
9 ) % C E " % ) B 4 # 0 ) 1 -
Po s t H o c
!
: % . N 1 E 1 Du n n e tt L.S.D. . 1 C o m p ar i s o n s , 6 O n e -W ay AN O V A ! : " D 1
Po s t H o c 4
+ M u l ti p l e c o m p ar i s o n s
.2
9 I 1 1 Du n n e tt LSD $ E 1 2 7 9 ) % " 9 3 . 6 =
. Fi r s t 2 ( Fi r s t , Las t ) C o n tr o l C ate g o r y 9 . 3 ;
. H . ) 1 - N ? , 1 ;" . 9 . . C
. Si g n i f i c an c e Le v e l %5 ; " . ) M < . Te s t : % C " 3 # !
O K
4 C o n ti n u e
Multiple Comparisons
4 3
Dependent Variable: PRODUCT
( I ) M E TH OD 1
L S D
2 3 4 Du nnett t ( 2- s ided)
a
2 3 4
( J ) M E TH OD 2 3 4 1 3 4 1 2 4 1 2 3 1 1 1
*. Th e m ean dif f erenc e is s ig nif ic ant at th e . 0 5 lev el.
M ean Dif f erenc e (I-J ) - 11. 0 0 - 2. 0 0 5 .0 0 11. 0 0 9 .0 0 16 . 0 0 2. 0 0 -9 .0 0 7 .0 0 -5 .0 0 - 16 . 0 0 -7 .0 0 11. 0 0 2. 0 0 -5 .0 0
* * * * * * *
S td. E rro 3. 5 3. 5 3. 5 3. 5 3. 5 3. 5 3. 5 3. 5 3. 5 3. 5 3. 5 3. 5 3. 5 3. 5 3. 5
r 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
a. Du nnett t- tes ts treat o ne g ro u p as a c o ntro l, and c o m pare all o th er g ro u ps ag ains t it.
128
S ig .
. 0 15 .5 9 0 . 19 8 . 0 15 . 0 35 .0 0 2 .5 9 0 . 0 35 .0 8 5 . 19 8 .0 0 2 .0 8 5 . 0 37 .8 9 6 . 40 9
9 5 % L o w er B o -
-
-
-
-
-
Co nf idenc e I nterv u nd Upper B 19 . 21 10 . 21 - 3. 21 2. 7 9 .7 9 7 .7 9 - 6 . 21 17 . 21 - 1. 21 13. 21 24. 21 15 . 21 .7 5 - 8 . 25 15 . 25
al o u nd - 2. 7 9 6 . 21 13. 21 19 . 21 17 . 21 24. 21 10 . 21 -.7 9 15 . 21 3. 21 -7 .7 9 1. 21 21. 25 12. 25 5 . 25
% . 1 %5 - M 1 ) % , 6 LSD . # ) 1 D 6 =
∗ =
3 ? 0.05 # 2 Si g . P-V al u e 2 % 7 (4 2)J(3 2)J (2 1) % ) . % . C " 3
C . . 1 %5 - M 1 ) C $ Du n n e tt 1 . 9 . 3 1 3 1 C . 1 3 .
: !
, 6 O n e W ay AN O V A !
: ! "
O p ti o n s 4 3
.… + ) H - J 1 .
# 0 !
> (
1 (# . ) % ) 1 > . 1 # " / , (
)1 (
: 7
) : De s c r i p ti v e
1 - : H o m o g e n e i ty -o f -V ar i an c e
0 1 >
1 ) 7 . Le v e n e ! A
. % ) . # . . (
) : M e an s p l o t
$ % " 9 0 < 2 + % - ) 1 : E x c l u d e C as e s An al y s i s by An al y s i s
. . # " 1
. % + 9 0 < 2 + % - ) 1 : E x c l u d e C as e s Li s tw i s e O n e -W ay
. 9 0 2 C " 3 % 1 / ) + $ E , - #
!
O K
4 F = 3 !
C o n ti n u e 4 3
: 5 (
3 AN O V A
Test of Homogeneity of Variances
>
PRODUCT L e v e n e S ta tis tic .6 6 7
d f1
3
3 ) " 1 @ 0 @
d f2
8
( 1 >
S ig . .5 9 6
) ) @ 1 1 F = 3 B
@ # 1 2 C 3 P-V al u e =0.5 9 6 >0.05 2 7 Le v e n e ! A 1 ( 1 . ( Le v e n e ! A # E x p l o r e ? ).% 1 >
M e a n s Pl o t s
129
1 " )
: ) # 1 .
# . .
70
Mean of PRODUCT
60
50
40
1
2
3
4
METHOD
Orthogonal Comparisons ( 11– 9 )
. G % ) (
) 1 1 / E 1 7 1 , ; 6 )
C o n tr as t 1 H ) " % t-1 D E t 3 ( % 3 ) % )
]Q = ∑ Ci Yi. w i th
: . 2 = ) E + (% = 1 )
∑ Ci = 0
C o e f f i c i e n ts % = ) Ci i ) N # Yi. 7 O r th o g o n al ( ) ) " , E Q2 = ∑ C 2i Yi. Q1 = ∑ C1i Yi. D + SSt% ) % ) 1 N D " 3 ∑ C1i C 2i = 0
A
# ) 1 & 1 9 , # " % t-1 C t-1
: # E 1 L @ . 9 C " 3 % F :2 #
) 1 E 1 4 3 % 1 % " ^ 0 C " 3 = ) N E 1 % Yi. 16 8 18 8 16 8 17 2 144
40 42 46 43 36
W e i g h t 42 47 44 45 37
40 48 42 42 36
# % 6 N # % 46 51 36 42 35
1 2 3 4 5
: . :
. 56
: " ;" .
. % ) % . 1 0 ) 1 - 1 # " / Q1 = 4Y1. − Y2. − Y3. − Y4. − Y5. = 0
13 0
: t-1 " ) 1 % ) 1
.1
.2
Q2 = Y2. + Y3. − Y4. − Y5. = 0 Q3 = Y2. − Y3. = 0
Q4 = Y4. − Y5. = 0
tr e at 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5
: " Data E d i to r 2 C % 1 # A 1
w e ig h t : 4 6 4 0 4 2 ! " # A n a l y z e C o m p a r e M e a n s O n e -W a y A N O V A 4 0 : % & ' O n e -W a y A N O V A $ 5 1 4 8 4 7 4 2 3 6 4 2 4 4 4 6 4 2 4 2 4 5 4 3 3 5 3 6 3 7 3 6
!
, 6 O n e -W ay AN O V A !
C o n tr as ts
4
# A C " 1 1 M " 9 % # P 1 7 C o n t r a s t s
: " , = )
4# ) @ A A d d 4 4 2 ; C o e f f i c i e n ts " ? 1
. # 0 # . C
•
- # ) @ A A d d 4 C o e f f i c i e n ts " ? 1 -1 2 ;
. # 0 # . C 1
•
- # ) @ A A d d 4 C o e f f i c i e n ts " ? 1 -1 2 ;
. # 0 # . C 1
•
- # ) @ A A d d 4 C o e f f i c i e n t s " ? 1 -1 2 ;
. # 0 # . C 1
•
- # ) @ A A d d 4 C o e f f i c i e n t s " ? 1 -1 2 ;
. # 0 # . C 1
•
131
N e x t 4 % = ) # & . C % = ) " 2 , 1
, 6 . % 1 . C % = ) # A . > 0 1 % = ) # P 1 1 : " C o n t r a s t s !
<= C % = )
.P r e v i o u s 4 1 C 9 ) " N e x t 4 C # =
5 1 O n e -W a y
A N O V A !
O K 4 C o n tin u e 4 : B (
)1
ANOVA WEIGHT
S u m S q u a 2 48 1 3 0 3 7 8
B e t w e e n Gr o u p s Wi t h i n Gr o u p s To t a l
o re .0 .0 .0
f
d f
s 0 0 0 0 0 0
4 1 5 1 9
M e a n S q u a re 6 2 .0 0 0 8 .6 6 7
F 7 .1 5 4
S ig . .0 0 2
. %1 %5 - M 1 ( = ) ) % ) % . 1 0 ) C $ F 1 Contrast Coefficients C o n tra s t 1 2 3 4
1
4 0 0 0
2
-1 1 1 0
T R E A T 3
-1 1 -1 0
4
-1 -1 0 1
5
-1 -1 0 -1
% ) t 1 1 # . ) 1 % % = ) 1 F = 3 #
1 P-V al u e =1 > 0.05 %5 - M 1 (Q1=0) ) G C L @ D
P-V al u e < 0.05 %5 - M 1 ( 0 ! 3 < H " ) ) , %
: " B V al u e o f C o n tr as t 2 " ) ? . % 1 + ( V al u e o f C o n tr as t = ∑ Ci Yi. / r . 4 :
132
: r
Contrast Tests V al u e of Contrast Contrast S td . E rror W E I G H T A ssu m e e q u al v ari anc e 1s .00 6 .5 8 2 1 0.00 2 .9 4 3 5 .00 2 .08 4 7 .00 2 .08 D oe s not assu m e e q u al1 .00 6 .3 9 v ari anc e s 2 1 0.00 2 .9 7 3 5 .00 2 .8 6 4 7 .00 .8 2
7 … 1) J
3 2 3 3 1 8
t .000 .3 9 7 .4 02 .3 6 3 .000 .3 6 5 .7 5 0 .5 7 3
d f
4 .7 6 .8 5 .8 4 .8
S i g . ( 2- tai l e d ) 1 .000 1 5 .004 1 5 .03 0 1 5 .004 2 7 1 .000 2 3 .01 2 8 0 .1 3 2 00 .000 1 5
Trend Analysis ( 219)
J . % 1 C % ) % ) 1 N 4
# " 0 % ) 3 # t 7 t-1 + Polynomial ) 0 " % <= # ) % 3 9 1 3 , % ) ;
0! 1 3 9 (
0" % 1 ) 1 H , )
. > # ) # M 1 ) M
D + 5-1=4 + ) E 1 # " % ) % ) 1 N # "
7 . ) 1 J 1) J J . 1 C "3 # ! & 1 : " Contrasts !
6 - . Contrasts % % 0 !
1
> 0 , , @ ) 1 3 " % 1 F < " 3
) Polynomial ) 1 Coef f icients % = ) 1 C B C "3 # !
133
O ne-w ay AN O VA !
O K
4 Continu e 4 3 .4th
:
ANOVA WEIGHT B e tw e e n Gr o u p s
( C o m b in e d ) L i n e a r Te r m Q u a d r a tic Te r m
Wi t h i n Gr o u p s To t a l
S u m o S q u a re 248 . 0 0 10 2. 40
C o n tra s t D e v ia tio n
C o n D e v C u b i c Te r m C o n D e v 4t h - o r d e r Te r m C o n
tr ia tr ia tr
a s tio a s tio a s
t
t
t
n n
f 0
4 1
M e a n S q u a re 6 2. 0 0 0 10 2. 40 0
145 . 6 0 0
3
9 2. 5 7 1 5 3. 0 29 1. 6 0 0 5 1. 429 5 1. 429 130 . 0 0 0 37 8 . 0 0 0
1 2 1 1 1
0
s
d f
15 19
F 7 . 15 4 11. 8 15
S ig . .0 0 2 .0 0 4
48 . 5 33
5 .6 0 0
.0 0 9
9 2. 5 7 1 26 . 5 14 1. 6 0 0 5 1. 429 5 1. 429 8 .6 6 7
10 . 6 8 1 3. 0 5 9 . 18 5 5 . 9 34 5 . 9 34
.0 0 5 .0 7 7 .6 7 4 . 0 28 . 0 28
? ) 1 % 1 C " 3 Betw een Grou ps % ) 1 % ) 1 N ? 4 D 6 -
- M 1 1 3 ) % , 6 % 1 ? 1 # 9 / . 3
. Cu bic term 1 ) 1 3 % 5
Tw o W ay AN O V A (29)
C @ A # # ) % ) % . + 1 ) 1 # " 0
R CB
$ ) " % 3 . ! ; B # ) % . + 1
. ; ! Desig n : 3#
K 0 1 + # C "3 # ! $ 3 " % 3 . 2 1
(# # ) ) % . & N ) 1 % 2 ) ? . 2 ) 1 ( ) ) . : ! ( )
(
# ) 1) % 3 . ) % ) 1 %
D
C
B
A
0
-1 -1 -3 -4
1 1 0
4
-2 -2 -4
-5
1 0 0
( ) 1 2 3 4
" #
: . 83 #
1984
! "
N % . 1 0 ) 1 - ) 1 # " # 7 1 ; G
. % 5 - M 1 car% N 1 0 ) K Tyre % . & : " Data E ditor 2 % 1 # P 1 1
134
car A A A A B B B B C C C C D D D D
tyre 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 % @
th in 4 1 0 0 1 1 0 -5 -1 -1 -3 -4 0 -2 -2 -4
: $ * % : +
Analyze G ener al L i near M o d el U ni v ar i at e : % + & # ' U ni v ar i at e $ !
" # ,
2 # ) % ) 1 3 C " 3 Fixed Factors " ) "
% 1 # ) 6 - . R andom Factors # ) E # ) % ) 3
; 7 O ne-W ay AN O VA D > ) C " 3 < 4 < Fixed Factor
K Fu ll Factorial <- 1 Cu stom J M odel ! ) (car*tyre) 1 # " #
: " D 1 ) 1 M odel !
. < 3 < Factor , 6 M odel 4
I nteraction # 3 0 , 6 ; G
-
, 6 7 1 E. " %
. B % 1 @ C " 3 # ) I nclu de I ntercept in M odel $ E 7
. B F 13 1 )
# " # , 6 A E f f ects % E N ) # ) Bu ild Terms 1 M odel C Factors &
135
Cov ariates car tyre # 1 2 7 1
E ) 1 ) M ain E f f ects % E , 6
.( M ain ef f ects @ Bu ild Terms
: B C "3 # !
Between-Subjects Factors T Y R E
CAR
A B C D 1 2 3 4
4 4 1 , #
N
U niv ariate !
O K
Continu e 4 3
4 4 4 4 4 4 4 4 Tests of Between-Subjects Effects
Dependent Variable: THIN S o u rc e C o rrec ted M o del Interc ept TY R E C A R E rro r To tal C o rrec ted To tal
Ty pe III S u m o f S q u ares 69. 37 5 a 14 . 0 63 30 . 68 8 38 . 68 8 11. 5 63 95 . 0 0 0 8 0 . 938
df
6 1 3 3 9 16 15
M ean S q u are 11. 5 63 14 . 0 63 10 . 2 2 9 12 . 8 96 1. 2 8 5
F 9. 0 0 0 10 . 94 6 7 . 962 10 . 0 38
a. R S q u ared = . 8 5 7 ( A dj u s ted R S q u ared = . 7 62 )
S S . Corrected M odel = S S . TYR E + S S . CAR S S . Corrected Total = S S . Total –S S . I ntercept # . 1 B + GL M ) . B R
S ig .
.0 0 .0 0 .0 0 .0 0
2
9 7
3
: 6 #
: " Tw o-W ay AN O VA ) 1 1 # " # ( # # ! ? ) Tests of Between-Subjects Effects
Dependent Variable: THIN S o u rc e TY R E C A R E rro r C o rrec ted To tal
Ty pe III S u m o f S q u ares 30 . 6 8 8 38 . 6 8 8 1 1 .5 6 3 8 0 . 938
. % 5 . /
df
M ean S q 1 0 1 2 1
u are .2 2 9 . 8 96 .2 8 5
F 7 . 96 2 1 0 . 0 38
S ig . .0 0 7 .0 0 3
car # % , - tyer # $ % & # ' ( ) * +
0 ) # , F 2 C "3 # !
136
3 3 9 1 5
D < " 3 ) car tyre
:
1 # 3 0 , 6 &
: % . ? 1 ( %
.1
!
I nteraction Bu ild Terms # 0
tyre 1 ) % 2 > 0 Factors &
D ,
•
Cov ariates car tyre
•
.M odel
. (car ? S h if t Q 0 . @
. M odel C #
. M odel !
4
•
) . B # )
.2
Fu ll Factorial 1 4 1 / $ > 0 < " 3
. ) 1 # " / GL M
( 1 9 # 9 $ # ? ) 1 # " ) : 4 #
S h elf L ocation H ? 2 ; " " 3 1 % ) 1 # #
# $ % 2 ( # ) ) S tore S iz e ( # # ) ) S h elf L ocation H ? 2
D 48 53 60 57 7 1 7 5 # 3 % ) % . 1
C 65 7 1 7 3 8 0 8 2 8 9
0 )
B 56 63 69 7 8 7 5 8 2 1 ? )
S iz e
:
A_ 45 S mall 50 57 M ediu m 65 7 0 L arg e 7 8
1 # " # ; ".
- M 1 S iz e*L ocation # 3 0 ) 1 L ocation ? 2 % ) 1 S iz e
. < 1 K L @ ? % 5
location A S A S A M A M A L A L B S B S B M B M B L B L C S C S C M C M C L C L D S D S D M D M D L D L
137
size m all m all ed iu m ed iu m ar g e ar g e m all m all ed iu m ed iu m ar g e ar g e m all m all ed iu m ed iu m ar g e ar g e m all m all ed iu m ed iu m ar g e ar g e
sales 4 5 5 0 5 7 6 5 7 0 7 8 5 6 6 3 6 9 7 8 7 5 8 2 6 5 7 1 7 3 8 0 8 2 8 9 4 8 5 3 6 0 5 7 7 1 7 5
: " Data E ditor % 1 # P 1 1
: - . $ -
Analyze
: +
G ener al L i near M o d el U ni v ar i at e
: % + & # ' U ni v ar i at e $ !
" # ,
I nteraction # 3 0 C " 3 # ! ; G
Fu ll Factorial M odel 4
. $ ) E. " % 3
< " 3 ( 1 " . % E Cu stom % E / 4 ; G % A )
. Def au lt @ - Fu ll Factorial
# = D " 1 C " 3 siz e % D # . . 3 Plots 4
Prof ile Plots
!
, 6 L ocation " ? 1 % .
6 B ) " % . D 0 + I nteraction Plot : "
: " F = 3 ! % # A
.H oriz ontal Axis C Factors siz e # Plot
. S eparate L ines C L ocation #
•
C siz e*location # 3 0 H @ F <- ) L 1 ! Add 4 6 =
•
.# 0
. 7 # 3 % M # 3 . . # 3 , 0 S eparate Plots 2 . U niv ariate !
C N " Continu e 4
# 3 0 " E stimated M arg inal M eans % . (
: # $ 1 O ptions !
138
•
) O ptions 4
6 7 location*siz e
. 5 C "3 # !
U niv ariate !
O K
Continu e 4 3
Tests of Between-Subjects Effects
Dependent Variable: SALES So u rc e C o rrec ted M o del I nterc ept LO C AT I O N SI Z E LO C AT I O N * SI Z E Erro r T o tal C o rrec ted T o tal
T y pe I I I Su m o f Sq u ares 30 19 . 333a 10 8 27 2. 667 110 2. 333 18 28 . 0 8 3 8 8 . 9 17 25 8 . 0 0 0 1115 5 0 . 0 0 0 327 7 . 333
df
M ean Sq u are 27 4 . 4 8 5 10 8 27 2. 667 367 . 4 4 4 9 14 . 0 4 2 14 . 8 19 21. 5 0 0
11 1 3 2 6 12 24 23
F 12. 7 67 5 0 35 . 9 38 17 . 0 9 0 4 2. 5 14 . 68 9
Sig . .0 0 0 .0 0 0 .0 0 0 .0 0 0 . 663
a. R Sq u ared = . 9 21 ( Adj u s ted R Sq u ared = . 8 4 9 )
B ? < = D . 1 & 1 ) . B " - 5 # # Tests of Between-Subjects Effects
: " 1 # "
Dependent Variable: SALES So u rc e LO C AT I O N SI Z E LO C AT I O N * SI Z E Erro r C o rrec ted T o tal
T y pe I I I Su m o f Sq u ares 1 1 0 2. 333 1 8 28 . 0 8 3 8 8 .9 1 7 25 8 . 0 0 0 327 7 . 333
df
M ean Sq 367 9 1 4 1 4 21
3 2 6 1 2 23
u are .4 4 4 .0 4 2 .8 1 9 .5 0 0
% ) 1 K L ocation # ) % ) 1 ) % 2
F 1 7 .0 9 0 4 2. 5 1 4 . 68 9
Sig . .0 0 0 .0 0 0 . 663
C A $ F 1
. p-Valu e = 0. 663> 0. 05 % 5 - M 1 # 3 0 ) , 6 1 siz e # )
Esti m a te d M a r g i n a l M e a n s
LOCATION * SIZE
Dependent Variable: SALES LO CAT I O N A B C D
139
SI Z E Larg e M ediu m Sm all Larg e M ediu m Sm all Larg e M ediu m Sm all Larg e M ediu m Sm all
M ean 7 4 .0 0 6 1 .0 0 4 7 .5 0 7 8 .5 0 7 3 .5 0 5 9 .5 0 8 5 .5 0 7 6 .5 0 6 8 .0 0 7 3 .0 0 5 8 .5 0 5 0 .5 0 0
0
0
0
0
0
0
0
0
0
0
0
Std. Erro 3 .2 7 3 .2 7 3 .2 7 3 .2 7 3 .2 7 3 .2 7 3 .2 7 3 .2 7 3 .2 7 3 .2 7 3 .2 7 3 .2 7 9
9
9
9
9
9
9
9
9
9
9
9
r
9 5 % Co Lo w er Bo u 6 6 .8 5 3 .8 4 0 .3 7 1 .3 6 6 .3 5 2 .3 7 8 .3 6 9 .3 6 0 .8 6 5 .8 5 1 .3 4 3 .3
nf idenc e I nterv nd U pper Bo 5 6 8 1 5 6 6 8 5 6 5 4 5 6 8 5 5 6 8 0 5 6 6 6 5 6 9 2 5 6 8 3 5 6 7 5 5 6 8 0 5 6 6 5 5 6 5 7
al u nd .1 4 4 .1 4 4 .6 4 4 .6 4 4 .6 4 4 .6 4 4 .6 4 4 .6 4 4 .1 4 4 .1 4 4 .6 4 4 .6 4 4
. . 6 = 7 S iz e L ocation " ) 1 # 3 0 1 . .
4 . . 1 - ? 2 0 C $ < 1 4
. F 1 1 . 1 D " ! 3 location siz e " ) 1 # 3 0 3 $ '
P r o f i l e P l o ts
90
Estimated Marginal Means of SALES
Estimated Marginal Means
80
70
LOCATION 60
A B
50
C
40
Large
Medium
Small
D
SIZE
Covariance Analysis ( 3– 9)
( 1 ! ) " # 3 K ; ! 1 # " D # $ , 4 , "3 % ) E > 2 9 6 C "3 ' X
4 1 , 4 Cov ariates
(% ) ) G 3 E > 2 3 <= Dependent Variable ) Y 4 1 1 / " D 1 M C "3 ' 1 1 X 4 E Y 4 9 4 C "3
) " , 4 1 % = - % A ) ? . -
R
" (
1 , 7 1 E
. 1 1 4 3 / 3 ( 1 ,
. - 1 # " 1 ? ; " K $ 1 # "
X ; ! : 5 #
4 9 4 C " 3 0 " (% ) ) = 3 ) 1 E ^ C " 3 1 % , Y ^ 4 9 4 1 # . ) # % $
% ^
. 1 1 3 X ^ 4 1 1
140
O bserv ations 2 9 1 5 1
33 1 6 7
2 1 1 5 6
2 0 1 30
2 5 1 7 0
2 0 1 8 0
2 6 1 6 1
2 0 1 7 1
29 172 36 1 8 9
30 160 2 8 1 4 2
35 190 35 1 9 3
35 138 30 2 00
X 1 1 4 4 A ) 1 %
# 1
X Y X 31 2 4 1 6 9 1 8 0 Y 32 X 34 1 5 6 189 Y X 32 4 1 1 7 3 2 01 Y
) % . 1 0 ) 1 ; 2 7 1 7 0
30 1 6 5
141
X 30 27 20 21 33 29 24 31 20 26 20 25 34 32 35 35 30 29 41 32 30 35 28 36
Y 165 170 130 156 167 151 180 169 171 161 180 170 156 189 138 190 160 172 201 173 200 193 142 189
treat T1 T2 T3 T4 ".
. (K $ 1 # " ; " )
: # $ 1 Data E ditor 2 # % 1 ; treat T1 T1 T1 T1 T1 T1 T2 T2 T2 T2 T2 T2 T3 T3 T3 T3 T3 T3 T4 T4 T4 T4 T4 T4
(
1
: / + $ - .
Analyze G ener al L i near M o d el U ni v ar i at e : % & ' U ni v ar i at e $ !
: * 2 1 ! $ O K
0 1
" # ,
Tests of Between-Subjects Effects Dependent Variable: Y
T y pe I I I S u m o f S q u ares 2 8 45 . 9 6 9 38 . 6 6 8 2 .8 16 0 9 . 5 5 2 5 5 .0 6 9 9 32 3. 0 8 10 0 . 9
S o u rc e C o rrec ted M o del I nterc ept X T R E A T E rro r T o tal C o rrec ted T o tal
5 6
a
df
0 2 31 9 5 0 2 0 0 5 8
4 1 1 3 19 2 4 2 3
a. R S q u ared = . 35 1 ( A dj u s ted R S q u ared = . 2 15 )
M ean S q u are 7 11. 48 9 6 9 38 . 6 0 2 6 8 2 . 8 31 5 36 . 5 32 2 7 6 .5 7 9
: " K $ 1 # " 9 !
F 2 .5 7 2 2 5 .0 8 7 2 . 46 9 1. 9 40
S ig .
.0 7 1 .0 0 0 . 133 . 15 7
F = 3 # . 1 2
Tests of Between-Subjects Effects
Dependent Variable: Y S o u rc e T R E A T E rro r T o tal+ E rro r
T y pe I I I S u m o f S q u ares
a
1 6 0 9 .5 9 5 5 2 5 5 .0 0 2 6 8 6 4 .5 9 7
df
M ean S q u are
1 9 2 2
3
5 36 . 5 32 2 7 6 .5 7 9
F 1 .9 4 0
S ig . .1 5 7
a. R S q u ared = . 35 1 ( A dj u s ted R S q u ared = . 2 1 5 )
% 5 - M 1 ) @ # 1 2 C 3 P-Valu e= 0 . 157 > 0. 05 2 6 = . X ; ! 4 A ) 1 = ) ) 1 N % . + C "3 R
142
Correlation & Regression Analysis Correlat ion ( 1 10 )
, 1 K = , - # 1 2 = ) <= Correlation . 1 - 1 6 1 2 = ) C
) " ) N 0 ( . 2 = 3 ) % ? " D = , 9 4 C + ' 0 # 9 4 . G L inear < . 2 . 1 - < " 3 ( 3 2 = 3 ) , " 3 ; " . C + '
Correlation . 1 - # ) 1 H ) . 1 - > + > . N on L inear . (−1 ≤ r ≤ 1) 1 C 1– 1 D 2 Q r D 4 Coef f icients
?
S im p le L inear Correlat ion ( 2 10 )
. % 1 . 2= 3 (
1 . 1 . . 1 - # ) ;
1 2 = 3 3 ) - # ) , ( 0 ! 1 2 ) 9 !
2 C "3 # ! ")
. ( . G . 1 ) 2= 3
% @ 1 L ang " 1 ; = . 10 , % # % 1 L ang
6 0 6 8 6 0 7 4 8 0 8 4 8 0 7 2 6 2 8 2
M ath
5 6
: " S PS S 5 1 Data E ditor 2 , 6 M ath
6 0 6 4 8 2 7 6 7 2 7 4 6 6 6 4 8 6
: " ; ".
. S pearman ; . 1 # ) J Pearson . 1 . . 1 - # )
. % 5 - M 1 . 1 - # ) ) 1
!
143
:1 #
: % . ? 1 F = 3 ; . 0
, 6 Analyz e Correlate Biv ariate : " D 1
. $
.1
.2
+ Biv ariate Correlation
: % Correlation Coef f icients # @
. % " . 1 . . 1 - # ) B - : Pearson
R anks ; # ) 1 " ) = . 1 . 1 - # ) B - :K endall’s Tau
# ) + @ D . 1 9 ! 1 . 1 - # ) 1G
4 3 ! < 1 , . 3 A ( % % ) G = 6 M A . " ! <- 1 6 " 9 6 ; # A F
. K endall # ) 1 1 # ; " . 1 # ) : S pearman . S pearman Pearson $ 2
1 - . . @ 0 1 - Tw o Tailed $ Test sig nif icance #
. O ne Tailed $ ' H . @ 0
. ( S tar = 3 , 6 A ) ) % . 1 - " ) : Flag S ig nif icance Correlation : 5 , 6 O K
Correlations L A NG M A T H
P e a rs o n S ig .( 2 - ta N P e a rs o n S ig .( 2 - ta N
C o r r e la tio n ile d ) C o r r e la tio n ile d )
L A NG 1.000 . 10 .7 7 6 * * .008 10
* * . C o r r e l a t i o n i s s i g n i f i c a n t a t t h e 0.01 l e v e l ( 2 - ta ile d ) .
4 3
M A T H .7 7 6 * * .008 10 1.000 . 10
@ 0 1 - r = 0. 776 M ATH L AN G 1 1 . . 1 - # ) 2
H 0: ρ = 0
H1 : ρ ≠ 0
144
: ( . 1 )
3 k ? # n 7 n-k 1 T ? 4 ? 1 T ! A T =r P- C " 3
n−k
1− r2
= 0.776
10 − 2
1 − 0.776 2
# ! K
" T ? 4 ) # ) Transf orm
. %
= 3.48
Compu te # = Valu e
1 . 1 - C $ P-Valu e=0. 008<0. 05 1 2 . (1 − CDF .T (3.48,8)) * 2 = 0.008
+ ) H = - ) % 5 - M 1 0 ! 3 < ) H " % @ "
. (< @ % 1 - M 1
: 1 ; . 1 # ) # B
Nonparametric Correlations Correlations S p e a r m a n 's r h o
L A NG M A T H
C o S ig N C o S ig N
r r e la tio n C o e ffic ie n t .( 2 - ta ile d ) r r e la tio n C o e ffic ie n t .( 2 - ta ile d )
* * . C o r r e l a t i o n i s s i g n i f i c a n t a t t h e .01 l e v e l ( 2 - t a i l e d ) .
L A NG 1.000 . 10 .7 8 6 * * .007 10
M A T H .7 8 6 * * .007 10 1.000 . 10
S pearman # ) H1 : ρ ≠ 0 " 1 @ 0 @ H 0 : ρ = 0 ) @ 1 S pearman . 1 # ) P-Valu e 1 2 . F = 3 Pearson 1 T ! A > 0
. % 1 K % 5 - M 1 # ) ) C $
!
O ne Tailed $ '
:
H . . 1 - # ) @ 1 -
: 1 I Biv ariate Correlations
: @ 0 1 1 5 1 1 9 . 1 - # ) 2 % H 0: ρ = 0
H1 : ρ f 0
:
! " 0.766
145
.1
Correlations L A NG M A T H
P e a rs o n S i g . ( 1- t a N P e a rs o n S i g . ( 1- t a N
L A NG 1.000 . 10 .7 7 6 * * .004 10
C o r r e la tio n ile d ) C o r r e la tio n ile d )
* * . C o r r e l a t i o n i s s i g n i f i c a n t a t t h e 0.01 l e v e l ( 1- t a i l e d ) .
# ! 3. 48
+
M A T H .7 7 6 * * .004 10 1.000 . 10
. 1 - , 0
T ! A ; 7
? 4 ) # ) Transf orm Compu te # = P-Valu e C " 3 H . 1 - 2 ; @ - 6 -
(1 − CDF .T (3.48,8)) = 0.004 " T
% @ " 1 . 1 - C $ P-Valu e=0. 004<0. 05 1 2 .
. (< @ % 1 - M 1 + ) H = - ) % 5 - M 1 0 ! 1
: @ 0 1 1 5 1 1 9 . 1 - # ) 2 % H 0: ρ = 0
.2
H1 : ρ p 0
2 C "3 # !
Partial Correlation ( 3 10 )
2 <= . 7 % 1 1 1 2 = ) 9 2 4 . 1 - # ) >
1 ") 2= 3 - / " / @ 1 " ) 1 2= ) " . 1 . 1 - # ) 3
) M ) 1 ) I ) M 7 # ) 1 E =
# 2 2 C " 3 # ! / / @ 1 " ) 1 2 = ) > 2 3 (D 1 ) ) I > 2 3 % 3 + ) 1 D < " 3 . 4 . 1 - 1 H ) . 1 - # )
. 6 1 2= )
: " ; " . 13 ) ` " 1
( 3 – 4 S 10 ) 1 6 # 9 % 1 "
. X3 % 1 1 X2 Y 1 4 . 1 - # ) ;
. X4 X3 % 1 1 X2 Y 1 4 . 1 - # ) ;
:2 #
.1
.2
.% 5 - M 1 ( . ) . 1 - % = ) ) 1 .3 !
146
, 6 Analyz e
Correlate Partial
: # ; ". " " D 1
. $
+ Partial Correlation
:#
J , 4 . 1 - # ) ; % # A Variables
. F ) 1 + (% ) # A Controlling f or . C "3 # !
--- PAR TI AL
CO R R E L ATI O N
Controlling f or. .
CO E FFI CI E N TS
(
1 . 0 0 0 0 0 ) P = .
. 2 8 5 1 1 0 ) P = . 3 6 9
X 2
. 2 8 5 1 1 0 ) P = . 3 6 9
1 . 0 0 0 0 0 ) P = .
( C o e f f i c i e n t
/
(
(
"
i s
---
X 2
Y
.
X 3 Y
"
O k 4 3
(
( D . F . )
p r i n t e d
i f
a
/
2 -t a i l e d
S i g n i f i c a n c e )
c o e f f i c i e n t
c a n n o t
> 0 # ) ( . ) 4 . 1 - # ) ) 1 -
b e
c o m p u t e d
r yx 2.x3 = 0.285 7
F = 3 # , 6 + 2 # 10 2 6 - . . 1 . 1 - # ) 1 - T ! A
2 T df = n – k = 13-3 = 10 7 T 1 - 4 = % ) # T =r
147
n−k
1− r2
= (0.2851)
13 − 3
1 − 0.28512
: " % 1
= 0.941
0 ! 3 < ) H " > 0
ρ ? " ) E , P-Valu e=0. 369 >
: # $ C " 3 Partial Correlations !
CO R R E L ATI O N
Controlling f or. .
X 3
CO E FF I
1 . 0 0 0 0 ( 0 ) P = .
. 2 3 3 8 ( 9 ) P = . 4 8 9
X 2
. 2 3 3 8 9 ) P = . 4 8 9
1 . 0 0 0 0 0 ) P = .
( C o e f f i c i e n t
/
(
i s
p r i n t e d
148
: " 5 , 6
C I E N T S - -
(
( D . F . ) i f
a
/
2 -t a i l e d
c o e f f i c i e n t
S i g n i f i c a n c e ) c a n n o t
. % 5 - M 1 0 ! 3 < ) H " !
; 1 % .
X 2
Y
"
;
X 4 Y
.
. % 5 - M 1
( ; " . ) X 4 X 3 % 1 1 X 2 Y 1 4 . 1 - # )
--- PAR TI AL -
"
0. 05 2
b e
c o m p u t e d
r yx 2.x3 x 4 , 6 D
:
O ptions 4 1 Pearson . 1 . 1 - # ) B
. Z ero O rder Correlations $ E Partial Correlations
R eg res s ion A naly s is ( 4 10 )
1 Dependent Variable ) 1 2 = 3 3 1 ) - B
# C " 3 B M R eg ressors I ndependent Variables " % # M
S imple R eg ression model . 1 - B 1 H )
L inear M odel $ % & M u ltiple reg ression M odel ) - B , . N on L inear M odel . G
( 1 4 10)
Y = B0 + B1 X + e : ) ! E : 7
) : Y # : X
. I ntersection Parameter + ! ? - . ? . " ) % 1 : B0
∆Y S lop Parameter # " ) : B1 ∆X 7 residu al 1 1 H ) Yˆ Y 1 0 $ ) E . :e . e = Y − Yˆ B1 =
M ! % ) 1 . B1 B0 - ) < 1 G ) 1 .
% @ 0 ; . 1 . - B < " 3 (O L S ) L east S q u ares M eth od . X Y 1 . 2 = 3
E . 1 > + @
:
. 0! " + . 1 N 4 $ ) / .
@ ) σ 2 + % 1 1 , $ ) / .
D O L S . 1 ) < @ . B1 B0
. ( H omoscedasticity $ )
> . $ < ) 1 . N 4 / .
- % = ) 1 ") % @ 0 1 -
. $ ) / . 1 Au tocorrelation . 1 3
.1
.2
.3 .4
.5
yˆ # 1 S catter plots . . # = . 1 . B % @ 1
S tandardiz ed R esidu als ) / . e $ ) E . D " 1 ( x ) C " 3
. # $ L @ C " 3 es , 4
149
e o r es
e o r es
R es id u als
yˆ
(a
(b
e o r es
e o r es
yˆ
yˆ
(c
. ( $ ) E . 1 >
(d)
yˆ
. ( " $ 3 ) # " % @ (a ) . y 9 4 1 $ ) E . 1 9 4 (b )
3 " $ ) $ ) E. 1 R
2 9 4 (c )
. ( B <= M B # ) ; ) . 2 = ) = 3 (d) 2 R
$ 10 ) ( 1 4 " ) Y
O bs. 1 2 3 4 5 6 7 8 9 10
Y 112 128 130 138 158 162 140 175 125 142
X 35 40 38 44 67 64 59 69 25 50
: 3 #
. @ X ) # % 1
: " Data E ditor 2 % 1 # A
: " ; ".
. B ) ) 1 . 2 = ) < @ 0 Y/X ) B . B1 B0 - " ) # % 9 5 9 B
15 0
.1
.2
. ANOVA 1 # " # B
$ ) / . # " ? ( R2 # ) # ) 1 ) . B 9 1 . 1 1
. < 1 $ ) / . I ) 1 . ? 4 1
L i n ea r An a l yz e
.3
.4
.5
: #
: % . ? 1 F = 3 ; . 0 Reg res s i o n L i n ea r 5 : Reg res s i o n
: 7
. ) # :D ep en d en t
# " % 3 # A . ( " % ) : I n d ep en d en t
Next 4 1 C Bl o ck
# - " " 2 D Bl o ck @
# 3
? Z # D B X # . Prev i o u s
Z Bl o ck 1 X # A F = Y )
. Bl o ck 2
. ( E n ter 3 - . ) - . N : M eth o d
) 2 , % - ) 3 # " # ) : S el ecti o n
Va ri a b l e
(5 1 Ob s erv a t 2 , % - C " 3 - B ! 2 <= ) -
. Ru l e 4 . 1
. S ca tterp l o ts $ # $ . ) D 2 : Ca s e L eb el s
: " D 1
151
+ S ta ti s ti cs !
, 6 S ta ti s ti cs 4
5
: % $ E 2
. t % 1 - B ) : E s ti m a te
. - " ) # % 9 5 9 : Co n f i d en ce I n terv a l . ANOVA R2 (
1 - No rm a l Pro b a b i l i ty Pl o t $ Pl o ts !
) : M o d el Fi t
, 6 Pl o ts 4
5
, 6 S a v e 4
5
. (> ; " . ) ) $ ) / . I ) 1 . ? 4
: " D 1
152
+ S a v e !
S ta n d a rd i z ed
K yˆ + U n s ta n d a rd i z ed Pred i cted Va l u es
6 -
? 1 ; " . . $ " S ca tterp l o ts # ) es + Res i d u a l s X % ; C D a ta
E d i to r 2 C (5 1 $ 3 ) @ A D < " 3 J
H @ Pre_ 1 E 1 U n s ta n d a rd i z ed Pred i cted Va l u es
H @ 7 Ob s erv a t Y
. Zre_ 1 E 1 S ta n d a rd i z ed Res i d u a l s
Op ti o n s " # $ % & # ' ( ) .L i n ea r Reg res s i o n : , - . + $ L i n ea r Reg res s i o n OK " + 5 Coefficientsa
U n s ta n d a r d i z e d C o e f f i c i e n ts M o d e l 1
( C o n s ta n t) X
B 85.044 1.140
a . D e p e n d e n tV a r ia b le : Y
S td E rro 9 .9 7 .19
. r 0 5
S ta n r d iz C o e ie n
d a e d ffic ts
Be ta .9 00
9 5% t 8.53 0 5.846
S ig . .00002 7 .0003 8
C o n f i d e n c e I n te r v a l fo r B
L o w e r Bo u n d 6 2 .052 .6 9 0
U p p e r Bo u n d 108.03 6 1.589
: " B 1 F = 3 # # =
1.140 1 . @
yˆ = 85.044 + 1.140 x (9. 97) (0. 195) 9 4 C + ' 9 ) 9 4 C $ # ")
. " 1 " ) " + ) E . # > 2 # 2 . 1 4 " : B1 # " ) @ 0 1 - T 1 # ) H 0 : B1 = 0
) @
H1 : B1 ≠ 0
" 1 @ 0
H 0 : B0 = 0
) @
: B 0 (% 1 ) ? . " ) @ 0 1 - T 1 # ) H1 : B0 ≠ 0
" 1 @ 0
: " 1 - " ) " T ! & P-Va l u e 2 . % 5 - M 1 ) @ (
. % 1 - M 1 ) @ (
P-Va l u e < 0. 05 %
P-Va l u e < 0. 01 %
. ) @ # 1 > 3
" ) P-v a l u e 0 . 0 1 # 2 0 . 0 0 0 38 + # " ) P-v a l u e
= + ") # ) @ (
, 0 . 0 1 # 2 0 . 0 0 0 0 2 7 + % 1
. B ) > ) ) # " ) , 6 0 ! 3 < H " " )
153
B " # " ) , Beta 1 , $ S ta n d a rd i z ed Co ef f i ci en t " )
+ - " ! # 1 ) # # ( X − X ) / S ) # ) 1 . ) % x * yˆ * 7 yˆ * = β x * " B0 ? . " ) C " 3 B : " % 1 " % 9 5 9 1 Pr(62.052 ≤ B0 ≤ 108.036) = 95%
: " # " ) % 9 5 9 1 # - # 1 Pr 7
Pr(.690 ≤ B0 ≤ 1.589) = 95% > 0 1 - F ! A C " 3 # $ ANOVA 1 # " # 1 H ) #
6 - ) # " ) T 1 - < a 1 - B1 # " ) 1 ! @ 0 .F=T2 < " 3 ( 1 = P-Va l u e 2 ANOVAb M o d e l 1
R e g r e s s io n R e s id u a l T o ta l
S u m o f S q u a re s 2661.050 622.950 3 284 .000
a . P r e d ic to r s : ( C o n s ta n t) , X b . D e p e n d e n t V a r ia b le : Y
d f
1 8 9
M e a n S q u a re 2661.050 7 7 .869
F 3 4 .17 4
S ig . .0003 8a
Co ef f i ci en t Of # ) - B $ ' @ #
1 # " # ; . B 9 < 1 ) R2 D 4 D eterm i n a ti o n R2 =
ExplainedVariations SSR 2661.05 = = = 0.81 Total Variations SST 3284
: "
0 ≤ R2 ≤ 1
+ . 2= ) 0 ( Y 2 " % - ) % 1 % 8 1 K 0
@ , % K E $ 3 # 3 C ? % 1 % 19 - B
. B 9 C " 3 K # % 10 0 R2 2 % 1 2 " ) C " 3 . B . # ") 9 $ A > 0
r 9 $ A 1 . 1 . . 1 - # ) r 7
r = R2
Model Summary M o d e l 1
R RS q u a re .900a .8 10
a . P r e d ic to r s : ( C o n s ta n t) , X
A d ju s te d RS q u a re .7 8 7
S td .E rro r o f th e E s tim a te 8 .8 2
K
C ? 0 D 2 E B " # H @
D E 1 # ) H !
R2 9 4 C + ' - B C # @ A 7 B # "
154
, S S T " % ) 1 N % 1 ? S S R = 9 ) % ) 1 N 9 4 ; 1 1
% # ! ! 1 3 - 1 E + Ad j u s ted R S q u a re L ! # ) ;
# , % 7 9 # (L ! G ) # ) 2 # 2 < D 2 . B
. 3 9 $ % $ > S ta n d a rd E rro r o f E s ti m a te " + ) E . # 9 1 $ ) / . !
C "3
) $ ' , 9 !
2 C " 3 # ! -
. $ - # $ . - .
yˆ # 1 S ca tterp l o ts $ - # $ < 1 $ ) / . # "
: ( 1 % . . # ! ? ) " + ) C " 3 e s ) / . ! , 6 G ra p h s S ca tter S i m p l e . $ 5 . S ca tter !
. S ca tterp l o ts
Y C D & Zre_ 1
5
. S PS S Vi ewer $ $ . . , 6 OK 4
5
. X C D & Pre_ 1
. S PS S Ch a rt E d i to r $ $ C # = . .
C Ref eren ce L i n e @ & Ch a rt Ref eren ce L i n e . $
: " . . , 6 . 0 ! #
5
5
5
1.5
1.0
.5
Standardized Residual
0.0
-.5
-1.0
-1.5 110
120
130
140
150
160
170
Unstandardized Predicted Value
# " % @ C " 3 # 0 ! # + . $ # $ 1 N 4 . 6 = - - $ ) E . 1 >
155
3 " $ B ) - 7 3 9 ! 1 . C "3 % 2= 3
:
C "3
y ) " # 1 , 1 $ . 1 < 1 $ ) / . # "
D 1
+ Pl o ts !
. . " ; . . C # ! 7 + ) C " 3 e s ) / . : " 1 , 6 L i n ea r Reg res s i o n !
Pl o ts 4
: "
5
) , % 2 ) + D E PE ND E NT # 1 2
) ( 2 1 ) / . " X & C (< " ; % F
!
O K 4 ! Co n ti n u e 4 3 Y & C Z R E S I D
" ! + B - > 0 C + $ - # $ . . (
Scatterplot
Regression Standardized Residual
1.5
: 1 . . # = D
Dependent Variable: Y
1.0 .5 0.0 -.5 -1.0 -1.5 110
Y
156
3 L i n ea r Reg res s i o n
120
130
140
150
160
170
180
C : . 1 (> ; " . ) $ ) / . I ) 1 . ? 4 1
N 4 / . E (-2, 2) M @ C "3 #
/ . % 95 % ) 2 ) / . ! # =
D (-1. 5, 1. 5) M M ) - ) / . 6 =
+ No rm a l p ro b a b i l i ty Pl o t . . (
. . J < ) 1 .
3 # . . ) 1 . N 4 / .
: 5 1 0 3 . . (
) 7 P l o t !
F $
Normal P-P Plot of Regression Standardized Residual 1.00
Dependent Variable: Y
Expected Cum Prob
.75
.50
.25
0.00
0.00
.25
.50
.75
1.00
Observed Cum Prob
/ . I ) 1 . ? 4 C " 3 # . ; 2 ? < 1 . 6 ) 6 =
. $ )
Weighted Least Squares Method ( 2 4 10 )
H o m o s ced a s ti ci ty $ ) E . 1 >
@ 3 . F
% 1 , 6 < Cro s s -S ecti o n D a ta @ ) ? . % 1 " $ F , 6 < 1 G
. 4 # =
Y Q # 4 ? 4 C K = , - 1 9 4 7 1 <= 6
1 !
7 Y # ? 1 ? < 1 ; < 1 - E . 1 E D " 3
Wei g h t 4
# W = 1 / y 2 1 3 var e = σ 2Y 2 " $ ) E . C = β 0 + β1Y + e
: ! E - B
W = 1 / Y 1 ) . L 1 $ ) E . 1 % 1 & 1
: B 1 7
C B0 e = + B1 + Y Y Y " ; B " $ ) E . 1 e 1 1 2 2 ; . $ ) E . " % 1 1 C " 3 " ! + var = var e = σ Y =σ2 Y Y2 Y2
157
" ) ? . # " ) % 1 ! 2 B0 B < 1 < % 1 ! 2
B1 6 =
B - " ! B ) F B ) ; 1 S PS S 5 1 H ) . F . % G S E E , R 2 ; 1 # " # 2 1 . G L S ) M ! % ) 1 . 1 < @
( 4 M ! % ) 1 . C " 3 ) : 4 #
# 2 .2 9 30 3 ) y Q # c K = , - # #
: ( ) 1 ; w ) " S PS S 5 1 D a ta ed i to r $ $ C c y w
10600 108 00 11100 114 00 117 00 12 100 12 3 00 12 600 13 2 00 13 000 13 3 00 13 600 13 8 00 14 000 14 2 00 14 4 00 14 9 00 15 3 00 15 000 15 7 00 164 00 15 9 00 165 00 169 00 169 00 17 5 00 18 100 17 2 00 17 8 00 18 5 00
1 >
12 000 12 000 12 000 13 000 13 000 13 000 14 000 14 000 14 000 15 000 15 000 15 000 16000 16000 16000 17 000 17 000 17 000 18 000 18 000 18 000 19 000 19 000 19 000 2 0000 2 0000 2 0000 2 1000 2 1000 2 1000
6. 9 4 4 4 E-09 6. 9 4 4 4 E-09 6. 9 4 4 4 E-09 5 . 9 17 2 E-09 5 . 9 17 2 E-09 5 . 9 17 2 E-09 5 . 102 0E-09 5 . 102 0E-09 5 . 102 0E-09 4 . 4 4 4 4 E-09 4 . 4 4 4 4 E-09 4 . 4 4 4 4 E-09 3 . 9 063 E-09 3 . 9 063 E-09 3 . 9 063 E-09 3 . 4 602 E-09 3 . 4 602 E-09 3 . 4 602 E-09 3 . 08 64 E-09 3 . 08 64 E-09 3 . 08 64 E-09 2 . 7 7 01E-09 2 . 7 7 01E-09 2 . 7 7 01E-09 2 . 5 000E-09 2 . 5 000E-09 2 . 5 000E-09 2 . 2 67 6E-09 2 . 2 67 6E-09 2 . 2 67 6E-09
: " ; ".
1 OL S 3 - M ! % ) 1 . 1 Y C " 3 C ) B .1
var e = σ 2Y 2 2 = ) 1 Y ? . 1 >
. 1 $ ) E .
G $ ) E . 1 (
1 .2
. - B 4 M ! % ) 1 .
. 217 .
158
1982
2
: #
2 1 # ) 1 % . > 0 1 OL S . 1 . 1 . - B .1 : B C # !
R 2 = 0.97 Cˆ = 1408.0 + 0.788Yd (4 4 9. 6) (0. 27) E . 1 > 3 " $ 1 - . ) " + ) E . # > 2 # 2 / . $ - # $ C " 3 Cˆ ) " ' 1 # 1 < 1 $ ) : % . ? 1 K 0 J S ta n d a rd i z ed Res i d u a l s + ) C " 3 )
L i n ea r !
L 0 . $ An a l yz e Reg res s i o n
$ ! S a v e !
" 5 1 (
L i n ea r
L 0 ! S a v e 4 Reg res s i o n
5
) Pred i cted Va l u es # U n s ta n d a rd i z ed S ta n d a rd i z ed $ ( Pre-1 E 1 $ $ , 6 ) D a ta ed i to r $ $ Cˆ ) !
. ( Zre-1 E 1 , 6 ) ) / . 5 1 (
) Res i d u a l s #
, 6 G ra p h s S ca tter S i m p l e . $
: " ! ; S ca tterPl o ts . Y-a xi s # C Zre-1 #
. X-Axi s # C Pre-1 # . OK 4
5
• • •
: " D A Ref eren ce L i n e @ A ) 1 . . , 6 3
2
1
Standardized Residual
0
-1
-2 -3
10000
12000
14000
Unstandardized Predicted Value
16000
18000
20000
E . 1 9 4 < 3 K 0 ! # 6 1 N 4 - $ - # $ . 6 = . , ) ; E . 1 > 3 " $ C $ Yˆ % 4 " $ )
159
1.
" var e = σ 2Y 2 2 = ) 1 Y # ? . 1 E . 1 ( 1 .2 ; 1 W = 1 / y 2 1 ; " 4
4 M ! % ) 1 . F = 3 # D a ta E d i to r $ $ C D @ A Tra n s f o rm ) 1 L i n ea r Reg res s i o n !
Co m p u te 1
, 6 7 . - / % . > 0 1 .
: " D 1
. WL S 4 ) 1 WL S Wei g h t W 4
# P 1 2 6 : B , 6 OK 4 3
5
Coefficientsa,b
M o d e l 1
( C o n s ta n t) Y D
U n s ta n d a r C o e ffic ie B S 1421.278 .79 2
d iz e d n ts td . E r r o r 3 9 5 .49 6 .0 25
S ta n d a r d i z e d C o e ffic ie n ts Be ta .9 86
a . D e p e n d e n tV a r ia b le : C b . W e i g h te d L e a s t S q u a r e s R e g r e s s i o n - W e i g h te d b y W
t 3 .5 9 4 3 1.5 11
S ig . .0 0 1 .0 0 0
: " 4 M ! % ) 1 . 1 9 ) 1
Cˆ = 1421.278 + 0.792Yd R 2 = 0.97 (3 95. 4 96) (0. 25) N 4 % 1 E " ) / . 1 2 = ) $ - # $ #
. $ ) E . 1 % 1 1 0 ! # . $ # $ 1
( 3– 4 10 )
: ! ) . B E y = β 0 + β1X 1 + β 2 X 2 + ... + β k X k + e
16 0
7
. % 1 # : β0 . 4 # Pa rti a l reg res s i o n Co ef f i ci en ts 4 - % = ) : β1, β 2 ,..., β k
. $ ) E . : e
" % 3 # K) P = K+1 ) . B ) 3 7
. (B
3 @ K C H @ . 1 B % @ , 0 ) . B % @
. (M u l ti co l l i n ea ri ty) " % 1 ) . . 1
1 ) x1 3 4 " ) 9 1 D a ta
y 6 8 8 7 7 12 9 8 9 10 10 11 9 10 11
? ( - H ) y 0 # @ #
: 5
$ $ % 1 % " 2 .19 8 13 15 x2 " " ) % . ( x1 9 10 8 7 10 4 5 5 6 8 7 4 9 5 8
: # E d i to r
x2 8 13 11 10 12 16 10 10 12 14 12 16 14 10 12
: ; " .
. 5 0 x2 x1 C " 3 y ) ;
. % = ) ) 1 ANOVA 1 # " #
. D W ! A 1 # " . 1 - " $ 1
!
, 6 An a l yz e
: % . ? 1 9 ; . 0
Reg res s i o n
L i n ea r
. $
: ; + L i n ea r Reg res s i o n
. D ep en d en t C D " Y
. I n d ep en d en t C , " X1, X2 $
. E n ter 3 - . - . N E M eth o d
. 17 2
16 1
.1
.2
.3 5
• • •
1982
3
7 Statistics !
, 6 L ine ar
Re g r e ssio n !
Statistics
: " # $ E 1
. % / ! & B ) : E stim ate : 5 (
.D W
.A N O V A R2 : M o d e l Fit
! A ; : D u r b in - W atso n
3 L ine ar r e g r e ssio n !
O K
4 3
Model Summaryb M o d e l 1
R .833a
RS q u a re .6 9 3
a . P r e d ic to r s : ( C o n s ta n t) , X 2 , X 1 b . D e p e n d e n t V a r ia b le : Y
A d ju s te d RS q u a re .6 4 2
S td .E rro r o f th e E s tim a te 1.0 1
D u r b in - W a ts o n .9 4 6
Coefficientsa
M o d e l 1
( C o n s ta n t) X 1 X 2
a . D e p e n d e n tV a r ia b le : Y
U n s ta n d a r d i z e d C o e f f i c i e n ts B S td . E r r o r 6.203 1.8 62 - .37 6 .133 .4 5 3 .120
S ta n d a r d i z e d C o e ffic ie n ts Be ta - .4 61 .615
t 3.331 - 2.8 34 3.7 8 6
S ig . .006 .015 .003
: " ) - B 1 ) yˆ = 6.203 − 0.376 X 1 + 0.453 X 2 R 2 = 0.64 (1.862) (0.133) (0.120) %1 1 3 4 " ) M 1 9 4 C $ X1 " )
9 4 X2 % 1 (
J X1 % 1 (
1 - 37 6 1 0 # ! C + ' " ) M
1 - 453 1 0 # 9 4 C + ' 9 " ) % . . B " . 9 C A $ R 2 2
SST " % - % ) 1 N # " 1 # " # ; (
E .
% ) 1 N SSR = 9 ) % ) 1 N C ∑ ( y − y ) 2 ) : @ 0 1 , 0 F ! A ; . SSE H 0 : β1 = β 2 = 0
H1 : β1 ≠ β 2 ≠ 0
: 1 # " # C " 3 # ! . B0 ? . " ) # $ - F 1 6 -
162
ANOVAb M o d e l 1
Re g r e s s i o n Re s i d u a l T o ta l
Su m o f Sq u a r e s (SSR)27.728 (SSE )12.272 (SST )4 0
a . P r e d i c t o r s : (C o n s t a n t ), X 2, X 1 b . D e p e n d e n t V a r ia b le : Y
d f (p - 1) 2 (n - p ) 12 (n - 1) 14
P-V al u e = 0.001< 0.05 2 . )
M e a n Sq u a r e (M SR) 13 .86 4 (M SE ) 1.0 23
F 13 .5 5 7 F = M SR/ M SE
Si g . .0 0 1a
# n ) 3 # P = 3 7
" + ) - + %5 - M 1 ) @ (
C 3
H " B2 B1 - " ) # 2 C " 3 9 - C " 3 + ) E , ) . 0 ! 3 < )
# ) t 1 C E " 0 9 ! 1 ) C " 3 # # E )
D " 3 %5 - M 1 X2 X1 # # " ) ) L @ D (C " 3 C o e f f icie nts . - B , 1 P 1 C ! ' =
1 %5 - M 1 $ ) / . I . 1 - 1 3 . $ ) / . ; . 1 C $ 1 D W
! A p = 3 n =15
( B # @ ? / . ) " $ 1 ) :6 #
2 % " X1, X2, X3 " % Y ) @ 4 # Y 43 63 71 61 81 44 58 71 72 67 64 69 68
X1 5 9 10 8 11 12 9 7 8 13 4 10 11
X2 3 5 7 4 6 5 4 7 5 8 5 9 10
X3 18 27 34 24 33 22 28 32 23 20 21 36 30
: " D ata E d ito r
X4 12 9 11 10 6 8 9 7 8 5 4 10 11
. ) . - )
. " % 1 M u l tico l l ine ar ity . ) " $ 1 . Ste pwise Re g r e ssio n ; " E 1 ) # @ : % . ? 1 # # 1 " . 0
.2 7 7 "
163
1988
.1
.2
.3
.1
! .
4
!
, 6 A nal y ze Re g r e ssio n
. $
L ine ar
5
: ; + L ine ar Re g r e ssio n
. D e pe nd e nt C D " Y $
. I nd e pe nd e nt C , " X1, X2, X3 % $
. E nte r 3 - . - . N E M e th o d
Statistics !
, 6 L ine ar Re g r e ssio n !
• • •
Statistics 4
" # $ E 1 7
5
. % / ! & B ) : E stim ate
.A N O V A R2 : M o d e l Fit
. . 1 - % = ) : Par t &
. . ) " $ R
: 5 (
Par tial C o r r e l atio ns
$ : C o l l ine ar ity D iag no stics
3 L ine ar r e g r e ssio n !
O K
4 3
Model Summary M o d e l 1
A d ju s te d RS q u a re .4 84
R RS q u a re .810a .6 5 6
a . P r e d i c t o r s : ( C o n s t a n t ) , X 4 , X 1, X 3 , X 2
S td .E rro r o f th e E s tim a te 7 .7 2
Coefficientsa
U n s ta n d a r d i z e d C o e f f i c i e n ts M o d e l 1
( C o n s ta n t) X 1 X 2 X 3 X 4
B
47.06 - .43 1.19 1.15 - 2 .03
a . D e p e n d e n t V a r i a b le : Y
0 9 3 8
S td . E rro r
13 .0
1.010 1.48 6 .476 .9 5 0
S ta n d a rd iz e d C o e f fic ie n ts Be ta - .104 .2 3 2 .63 1 - .462
t
S ig .
- .42 5 .8 07 2 .42 3 - 2 .1
.68 2 .443 .042 .064
3 .611
.007
Z e ro o rd e r
C o lli n e a r i ty S ta ti s ti c s
C o r r e la ti o n s
.2 10 .5 40 .63 4 - .3 3 1
P a r ti a l
- .149 .2 74 .65 1 - .604
P a rt
Tolerance
- .08 8 .167 .5 02 - .445
.713 .5 2 0 .63 3 .9 2 8
: " ) - B ) 1 yˆ = 47.06 − 0.43 X 1 + 1.199 X 2 + 1.153 X 3 − 2.038 X 4 R 2 = 0.48 (13) (1.01) (1.486) (0.476) (0.950) ! , 3 E $ 2 9 9 2 9 4 C $ X1 " ) 1 0 . > 0 1 . X3 X2
164
% 1 (
1 9 0.430 1 ) . B )
V IF 1.403 1.9 2 5 1.5 8 0 1.077
) % , 6 2 . X3 " ) t ! & P-v al u e 2 # = 6 = < 1
@ 0 L ! # ) 2 . (% 1 " ) C @ & 1 ) %5 - M 1
. 9 9 ! 1 . 2 = ) 3 1 ) - B C $ : " % . 1 - N = B
. ) # 1 1 . 1 . 1 - # ) : Z e r o -o r d e r C o r r e l atio n
% % 1 1 ) # ) 1 4 . 1 - # ) : Par tial C o r r e l atio n . (M "
% ) 1 1 # ) 1 / 4 . 1 - # ) :Par t C o r r e l atio n . . # 3 "
) " % # 1 4 % . 1 - ) ) - B
D " t ! & 2 C " 3 D D " 3 ) ? 4 . 1 # ) C " 3 D X3 6 =
. )
# 1 . 1 . 1 - # ) . 1 - B ) X4
# To l e r ance # ) ; 1 ) . . 1 - " $ R $ ( To l e r ance = 1- 7 " % # ) ? 1 # R 2 7 R2 X i .others X i .others
# # V I F # ) B . " % 1 i # 1 ) . 1 - 1 E < # ) 1 ) . VIF = 7 (V ar iance I nf l atio n Facto r ) Tolerance N 0 1 . ) " $ 4 ) # " ) 1 9 4 C " 3 " % 1 . 1 - G 1 t ! A 2 (
0 ) " ) , 6 3 1 B ) 1
5 3 4 " % V I F # ) 2 C " 3 # ! . (B < , 2
$ B % V I F 2 , . ) " $ 1 E " ) C $ 10
0 ! X ) . ) " $ R
, . ) " $ 1 , + E 3 C
$ X ′X 0 ! 9 4
) " $ C " 3 # , 0 ! 1 2 9 4 9 3 0 ( " %
C o nd itio n # 1 H ) # ) " % 1 . . 1 1 - . . <= 9 4 # C " 3
4 1 2 # ! ) 1 3 9 1 3 I nd e x
: " % 1 " # ;
Condition Index =
4.813 =1 4.813
: " ; X1 " 1 1
condition Index =
165
4.813 = 7.020 0.09868
3 % 4 A . . ) " $ A C " 3 $ ' , 15 3 # 2 % 4 A + 16 # " 2 1 6 =
1 1
# . " $ 9 . C " 3 $ ' , 30 . " $
# V ar iance Pr o po r tio n 1 H ) " $ " >
" $ 1 ) 7 4 # Pr incipl e C o m po ne nt . 1 0 < 1
? 0 C o nd itio n I nd e x # A 9 ' . )
> # . " % 1 9 ! 1
C " 3 1 # $ 1 9 ' . ) " $ 1 ) - , . X3 1 9 1 9 ! 1
: # L @ % 1
Collinearity Diagnosticsa
M o d e l 1
D im e n s io n 1 2 3 4 5
E ig e n v a lu e 4.813 9 .7 6 8E - 0 2 4.345E - 0 2 2.9 0 7 E - 0 2 1.6 6 9 E - 0 2
a . D e p e n d e n t V a r ia b le : Y
!
C o n d itio n In d e x 1.0 0 0 7 .0 20 10 .525 12.86 8 16 .9 83
V a r ia n c e P r o p o r tio n s (C o n s ta n t) X 1 X 2 X 3 .0 0 .0 0 .0 0 .0 0 .0 1 .0 6 .17 .0 0 .0 1 .7 1 .29 .0 8 .30 .0 5 .26 .22 .6 8 .18 .28 .7 0
X 4 .0 0 .35 .0 1 .6 3 .0 1
: " ) = 3 - % . ? 1 # 7 ; " . 0 , 6 A nal y ze
Re g r e ssio n
L ine ar
. $
: ; + L ine ar Re g r e ssio n
. D e pe nd e nt C D " Y $
. I nd e pe nd e nt C , " X1, X2, X3 % $
B # @ - % , 6 # 0 I D , M e th o d
• • •
:
. ( - 0 + 3 - ; " ) - B C " % # A : E nte r
) 1 ? B C A " " % . 1 ) 1 < % # A : Ste pwise
. % 1 1 9 ' G L 1 ! %
. B 9 9 . 1 , G % ) 1 : Re m o v e
. " " % . 1 ) 1 < 9 ' G % ) 1 : Back war d
L 1 ! % ) 1 - B C ) 1 < % # A : Fo r war d
. B ) 1 9 ' G
. ( . # @ 1 ) ) Ste pwise - . N
166
5
•
.1
.2
.3
.4
.5
Statistics !
, 6 L ine ar Re g r e ssio n !
Statistics 4
" # $ E 1 7
. % / ! & B ) : E stim ate O ptio ns !
. A N O V A R2 : M o d e l Fit
, 6 L ine ar Re g r e ssio n !
O ptio ns 4
: "
) 1 # A , 1 1 F 2 ) M C Ste pwise . B
: ; 1 K Ste pping M e th o d cr ite r ia # . B %
# & 9 . # + ) M : U se Pr o b ab il ity o f F •
) 1 - M # 2 ; % # & - M % ) 1
1 3 ) 1 - . E ntr y 2 4 B % @ . D % . Re m o v al 2 # " 2 B %
% ) 1 # & 9 . # + F 2 : U se F V al u e •
% @ . % ) 1 - F 2 C " 3 ; % # & F 2
2 4 B % 1 3 ) 1 - . E ntr y 2 # " 2 B . Re m o v al
+ Par tial F Te st 4 F 1 % ) 1 # 1 -
. 9 " ) ) 1 B ) / 4 ) 1
E $ 1 2 C # ! B C # , 0 @ % ) 1 N ) 1 -
1 # ) t 1 - < < F 1 - " 3 J B D 1 F ) 1
. . 9 " ) ) 1 - F
0.10 # O 0.05 + U se Pr o b ab il ity o f F # " @ - 3
. ) 1 =
167
: 5 (
3 L ine ar r e g r e ssio n !
O K
4 3
Variables Entered/Removeda M o d e l 1
V a r ia b le s E n te re d
V a r ia b le s R e m o v e d
X3
.
2 X4
.
a . D e p e n d e n t V a r ia b le : Y
S te P ro < = P ro e > S te P ro < = P ro e >
M e is e ( C b ility - o 0 , b ility - o = .10 0 ) . p w b a .0 5 b a
th o d r ite r ia : f-F -to -e n te r f-F -to -re m o v
p w b a .0 5 b a
is e ( C r ite r ia : b ility - o f- F - to - e n te r 0 , b ility - o f- F - to - r e m o v = .10 0 ) .
< " 3 B C ) 1 < ) 1 % # Ste pwise
. ; 1
. M % 1 D ) 3 % 1 A = % . ) 1 = @ 3 #
) ? . 1 . 1 # ) 1 D B C " % # X3
2 6 =
C o e f f icie nts = # . t ! & 2 1 1
, ( E ntr y # O - M ) 0.05 # 2 0.02 + t ! & P-V al u e
D " 3 ( 4 F 1 < a F " ) + t 1 6 - ) B C X3 # P 1 L
: " C 9 . B L 1 !
yˆ = 33.007 + 1.158 X 3
% 1 1 ) ? 4 . 1 # ) C " 3 D + # A 9 .
# ) D T ! A ; 1 ) E <- ; X4 X3
( E ntr y # O - M )0.05 # 2 0.033 + t ! & P-V al u e =
: # $ C " 3 L 1 ! B C X4 # P 1 L ,
yˆ = 46.152 + 1.345 X 3 − 2.147 X 4
1 + X4 X3 " t ! & # 2
- M ) 0.10 # 2 0.033 +
F = 3 B
X4 " % 2 t ! & P-V al u e
. B = C 1 , ( Re m o v al ) 1 =
X2 X1 @ - B # @ # , B F = 3 B
. 0.05 - M 1 ) 1 . 1 C " 3 D + ) , 6 7
. , B C # !
1 B 1 #
168
Coefficientsa
M o d e l 1 2
( C o n s ta n t) X 3 ( C o n s ta n t) X 3 X 4
S ta n d a r d i z e d C o e ffic ie n ts Be ta
U n s ta n d a r d i z e d C o e f f i c i e n ts B S td . E r r o r 33.007 11.6 4 8 1.15 8 .4 26 4 6 .15 2 11.011 1.34 5 .36 0 - 2.14 7 .8 71
.6 34 .737 - .4 8 6
a . D e p e n d e n tV a r ia b le : Y
( , ) B (2)
t 2.8 34 2.720 4 .19 1 3.735 - 2.4 6 6
S ig . .016 .020 .002 .004 .033
# B (1)
t2 1 E Ste pping M e th o d C r ite r ia U se F V al u e : 6 =
# 1 L
t2 > F (E nte r ) %
. B / 1 1 L
A # A ) ) 1 - # O F ! & 9
t2 > F(Re m o v e ) % A B A 3 . B C
: # # ) 1 % 1 # Excluded Variablesc
M o d e l 1 2
X 1 X 2 X 4 X 1 X 2
B e ta I n .027a .26 7a - .4 8 6 a - .012b .175 b
t
.108 .9 4 1 - 2.4 6 6 - .05 8 .721
S ig . .9 16 .3 6 9 .03 3 .9 5 5 .4 8 9
a . P r e d i c to r s i n th e M o d e l : ( C o n s ta n t) , X 3 b . P r e d i c to r s i n th e M o d e l : ( C o n s ta n t) , X 3 , X 4 c . D e p e n d e n tV a r ia b le : Y
P a r ti a l C o r r e l a ti o n .03 4 .28 5 - .6 15 - .019 .23 4
C o llin e a r it y S ta ti s ti c s T o le r a n c e .9 15 .6 8 2 .9 5 5 .9 09 .6 6 3
. = 9 . B C #
" ) " ) # Be ta in 7
169
Factor Analysis
( 1– 11)
3 ' Facto r s # ) 3 C " ) # " . H ,
Re spo nse
V ar iab l e s 1 - % 1 3 3 V ar iatio ns % = -
3 1 ) < 1 G Facto r s 9 # ) 3 9 $ % 3 1 ) 7
1 2 = ) 7 . 9 # ) L ine ar C o m po u nd s . ; 1 - %
. M # 3 % ? 2 = ) M 2
# ) # %
# " 2 3 # = K $ 1 . 1 - 0 ! ; , C " 3 3 " ) # "
. # )
Principal Components Method ( 211)
. E " ) # " . 9 % . Re spo nse
. , . 1
1 - % . ; 3 9 1 3 (# ) )
: " D 3 1 ) # E 1 - % p 1 3 1 . V ar iab l e s Z1 = a11 X 1 + a 21 X 2 + ....... + a p1 X p
. # # ) 1 1 - % L o ad ing s % ) 1 $ # aij 7
Z 2 = a12 X 1 + a 22 X 2 + ....... + a p 2 X p ( 1 - % % 1 # 1
: " D 3 1 )
1 0 ) V ar iance 1 6 3 D #
O r th o g o nal , 1 9 ) % F . ..… D " : . 1 % ;
1 - % V ar iance -C o v ar iance M atr ix
K $ 1 0 ! # )
.1
% . 1 - 0 ! # )
.2
. X − X 1 .
3 % - 1 D % E F
# ) F 1 - % C o r r e l atio n M atr ix > % H = < @
K Stand ar d ize d
V ar iab l e s ) % . 1 - %
: 1 #
17 0
r e g io ns . ; $ ) M 3 - % (
) 1 # % 1
5 1 D ata E d ito r $ $ , A ) 1 " , 6 19 7 7 ) (% 6 ) Re g io n g d p D o h o k 17.2 N ine v e h 24.0 A r b il 22.2 Su l ay m an 16.2 Ta' m e e m 32.3 Sal ah A L -D e e n 98.4 D ial a 23.1 A nb ar 22.7 Bag h d ad 75.0 W asit 19.5 Bab y l o n 22.8 K e r b al a 21.5 N aj af 18.7 Q ad isia 21.0 M u th ana 21.3 Th i-Q ar 18.1 M ay san 20.4 Basr ah 19.0 # l ite r acy 3 -
l ite r acy 30.1 44.2 35.2 33.5 49.4 37.9 44.1 44.3 61.6 36.7 44.1 47.7 46.2 35.2 33.5 33.8 34.4 53.6 %
h ig h e d u c 1.09 1.85 1.18 1.01 1.85 1.32 1.93 1.58 4.04 1.11 1.82 1.53 1.59 .95 .84 .73 .90 2.24 0 ; ! #
d o cto r s 17 14 13 10 18 15 10 16 36 28 18 24 27 9 18 12 11 25 ) # g d p
h o spb e d 139 172 163 115 143 80 153 144 280 199 145 173 190 195 178 144 301 219 7
: SPSS
" 3 9 , $ C " 3 " ! " 1 # h ig h e d u c 1 " ) " 1
9 3 # h o spb e d 100000 # / 1 . 3 # d o cto r s
. 100000 # % 0 $
. % . 1 9 % " % . 1 - # # " ; " . !
, 6 A nal y ze
D ata Re d u ctio n
: % . ? 1 K 0
Facto r
. $
: " D 1 + Facto r A nal y sis
.
17 1
Re g io n
: !
, 6 D e scr iptiv e s 4 3
5
: 2 @ +
Stand ar d
: " @ Statistics
J M e an # % " . 1 % ! & (
)1 (
.1
) : u niv ar iate d e scr iptiv e s
( ) J C o m m u nal itie s % $ = (
… D e v iatio n
) : I nitial so l u tio n
. 0 1 " 1 E ig e n V al u e s
9 J ) M J % . 1 - % = ) 0 ! !
, 6
(
) : C o r r e l atio n M atr ix
.2
E x tr actio n 4 3
5
.I nv e r se % . 1 - 0 ! > )
Facto r A nal y sis !
: " D 1 +
: # ! 0 ! @
@ ) % . # # " 1 " . . - : M e th o d
. ( " ) # " . . ) 1 5 1
< @
17 2
: " @ : A nal y se
K % " % . 1 - 0 ! # " : C o r r e l atio n M atr ix
. $ % " > % H =
3 % " K $ 1 1 0 ! # " : : co v ar iance
M atr ix
. > % > 0 , % K
: " (# ) ) % R
= - 1 " @ : E x tr actio n
1 ) < @ H ) , % R
= : E ig e nv al u e s O v e r
. ( + ; " G C " 3 ) 0 ) 2 3 4 ( 9 4
. 0 # 1 2 3 (# ) )% ) 3 R
4 = 4 % . ) C " 3 : M ax im u m Facto r M atr ix 9 G # ) 1 % % ) 1 $ (
. % . # )
= : N u m b e r o f Facto r s I te r atio n f o r C o nv e r g e nce
. # C # ! "
: " @ : D ispl ay
3 U nr o tate d f acto r so l u tio n C o m po ne nt M atr ix #
# + ! 2 # . . ( Ro tatio n !
, (
, 6 Facto r A nal y sis !
3 : Scr e e Pl o t
. E ig e n V al u e s
Ro tatio n 4 3
5
. 7 . C " 3 +
. # 1 2 D " 3 ! 9 ! % ) 1 $ 1 9 1 (L o ad ing s)% ) 1 $ # )
. 0 K - % - 0 ! % ) 1 $ 4 1 % ) 1 $ # "
J D ir e ct O b l im in J V ar im ax ) " . 5 1 . ? 1 $ " 1 9 $ O
3 + N o ne - $ # . ( Pr o m ax J E q u am ax J Q u ar tim ax Facto r Sco r e s !
, 6 Facto r A nal y sis !
.
Sco r e s 4 3
5
: "
: % 0 ! @
) Facto r Sco r e s# ) ; 1 5 1 $ E 3 : Sav e as V ar iab l e s D ata E d ito r $ $ 9 % C % F H @ ( % #
. ; 3 9 1 3 # Facto r Sco r e # ) < " 3
" # ) 3 ) i 2 ( ) # ) ; Z Sco r e s ) % : ) ; 1 ( p + % 3 1
17 3
p Fi = ∑ wij z j j =1
( j = 1,2,... p ) : 7
Facto r Sco r e s C o e f f icie nts # ) % = ) 4 # : w J ) % # : z
: $ E 3 , " 3 # !
. ! " # ) (
) 5 1 < " 3 D ispl ay Facto r Sco r e C o e f f icie nt M atr ix
. , = )
1 1 (A nd e r so n-Ru b in J Bar tl e ttJ Re g r e ssio n) . = 1 # ) ; :
. % = ) " D K 7 $ E 3 5 > 0 . ) = . E % "
% - ) 1 6 Facto r
) C o m po ne nts M atr ix
A nal y sis !
O ptio n 4 . 1
% 0 ! % ) 1 $ ; K 9 0 2 C " 3
. 0 # 1 2 2 3 " . , 2 # % = ) , 6 A 3 ; (< : 5 C "3 # !
Facto r A nal y sis !
O K
4 3
5
5
Communalities G D L IT H IG D O H O
P
IR A H E C T S P
C Y D U C O R S B E D
In itia l 1.000 1.000 1.000 1.000 1.000
E x tr a c tio n .7 9 7 .8 4 3 .8 9 6 .7 04 .7 7 2
E x tr a c tio n M e th o d : P r in c ip a l C o m p o n e n t A n a ly s is .
7 C o m m u nal itie s % $ = ! " # F = 3 #
% . 1 - 0 ! 3 % .
C ' % $ = R 2 # ) . 1 % 1 0 ! 3 # 1 % $ - '
. $ - ) C " 3 % 5
2 % 1 0.7 9 7 C $ <= G D P $ - ! "
1 ) 1 C 0 Q $ - 2 ( " 3 R
= ) $ # ) 0 G D P
(# ) )% ? G D P " Sq u ar e M u l tipl e C o r r e l atio n ) . 1 - # ) ? 1 3 1
# 2 7 % 1 3 1
3 C $ , % $ - 9 !
0 $ # ) 6 =
3 9 ! 1
2 C " 3 # ! . D o cto r s 0.7 04 . # " F ) 1 1 C !
1 + , 3 (% 1 ) % . 1 - 0 ! 1 #
1 ) 1 D # 7 % 3 1 5 + 0 ! : 7 3 - % " % 1
17 4
%58 0 2.9 00 + (
. %58 =
2 .9 = 100 * N / = # " 0 1 1 5
% 1 # %80.2 1
0 % 1 %22.2 0
.
3 # 0 < 6
% 1 5 1 # 2 J % "
Total Variance Explained In itia l E ig e n v a lu e s C o m p o n e n t T o ta l % o f V a r ia n c e C u m u la tiv e % 1 2.900 58 .009 58 .009 2 1.110 22.207 8 0.216 3 .523 10.457 90.6 7 3 4 .393 7 .8 6 4 98 .537 5 7 .313E - 02 1.46 3 100.000
E x tr a c tio n M e th o d : P r in c ip a l C o m p o n e n t A n a ly s is .
E x tr a c tio n S u m s o f S q u a r e d L o a d in g s T o ta l % o f V a r ia n c e C u m u la tiv e % 2.900 58 .009 58 .009 1.110 22.207 8 0.216
L o ad ing s % ) 1 $ @ C o m po ne nts M atr ix
% 0 ! # B
1 . 1 . 1 - # ) 3 9 1 3 ? 1 $ , ! = #
H I G H E D U C ) " ) # # ) 1 . 1 % M 2 . (# ) )
3 L I TE RA C Y " ) D " 0.941 # 1 ? 1 $ 7
9 3 G D P + # # ) 1 . 1 % H ) @ D O C TO RS / 1 . G D P , 1 . 1 % M 2 . H O SPBE D . % 1 1 0 ) @
% 0$
2 = ) 1 . 1 , > ) F 1 H O SPBE D S
Component Matrix a
G D L IT H IG D O H O
P
IR A H E C T S P
1 C Y D U C O R S B E D
C o m p o n e n t .477 .9 18 .9 41 .8 29 .5 0 8
2
.75 4 1.8 9 9 E - 0 2 .10 2 - .13 1 - .717
E x tr a c tio n M e th o d : P r in c ip a l C o m p o n e n t A n a ly s is . a . 2c o m p o n e n ts e x tra c te d .
:
$ ! " # ) 1 % ) 1 $ % ) 1 N $ .1 . % 2 1 0.477 2 + 0.754 2 = 0.797 + G D P
# !
17 5
<= " + (# ) ) 1 % % ) 1 $ % ) 1 N
: " # (# ) ) " C " 3 0.477 2 + 0.918 2 + 0.9412 + 0.829 2 + 0.508 2 = 2.9 . ; % " 3 ; 1 5 . 1 H = # ! 2 D 6 -
.2
; C o m po ne nt Sco r e s C o e f f icie nts (# ) ) % % = ) # B
# " G D P # ) <= C o m po ne nts M ar tix 1 % 0 ! % = ) F
0.477 = 0.165 2 2 2 2 2 0.477 + 0.918 + 0.941 + 0.829 + 0.508
: " ;
Component Score Coefficient Matrix
G D L IT H IG D O H O
P
IR A H E C T S P
1 C Y D U C O R S B E D
C o m p o n e n t .165 .3 16 .3 24 .28 6 .17 5
2
.67 9 .0 17 .0 9 2 - .118 - .64 5
E x tr a c tio n M e th o d : P r in c ip a l C o m p o n e n t A n a ly s is . C o m p o n e n t S c o re s .
: <= # " . ; 1 ; (# ) ) % 2
f ac_ 1 = 0.165*G D P+ 0.316*L I TI RA C Y+ 0.324*H I G H E D U C + 0.286*D O C TO RS+ 0.175*H O S PBE D + ) . ; Stand ar d ize d v ar iab l e s ) % # ) D < " 3 % C # ) H @ (... J L ite r acy J G D P % )
Re g io n
g d p
Dohok 1 7 .2 N in e v e h 24 . 0 A rb il 22. 2 S u la y m a n 1 6 .2 T a 'm e e m 3 2. 3 S a l a h A L -De e n 9 8 . 4 Di a l a 23 . 1 A n b a r 22. 7 B a g hd a d 7 5 .0 W a s it 1 9 .5 B a b y l on 22. 8 K e rb a la 21 . 5 N a ja f 1 8 .7 Q a d is ia 21 . 0 M u t ha n a 21 . 3 T hi -Q a r 1 8 .1 M a y sa n 20 . 4 B a sra h 1 9 .0
l ite r acy 3 0 4 4 3 5 3 3 4 9 3 7 4 4 4 4 6 1 3 6 4 4 4 7 4 6 3 5 3 3 3 3 3 4 5 3
.1 .2 .2 .5 .4 .9 .1 .3 .6 .7 .1 .7 .2 .2 .5 .8 .4 .6
, 0 + , > ( 6
: " D ata E d ito r $ $ 9 h ig h e d u c d o cto r s h o spb e d f ac_ 1 f ac_ 2 1 .0 9 1 .8 5 1 .1 8 1 .0 1 1 .8 5 1 .3 2 1 .9 3 1 .5 8 4 .0 4 1 .1 1 1 .8 2 1 .5 3 1 .5 9 .9 5 .8 4 .7 3 .9 0 2. 24
1 7 1 4 1 3 1 0 1 8 1 5 1 0 1 6 3 6 28 1 8 24 27 9 1 8 1 2 1 1 25
1 3 9 1 7 2 1 6 3 1 1 5 1 4 3 8 0 1 5 3 1 4 4 28 0 1 9 9 1 4 5 1 7 3 1 9 0 1 9 5 1 7 8 1 4 4 3 0 1 21 9
-. 8 4 8 7 3 . 0 5 26 5 -. 6 5 4 5 8 -1 . 1 0 9 3 9 .3 7 0 9 7 -. 1 1 3 6 2 -. 1 4 0 1 4 -. 0 8 3 0 3 3 . 227 4 8 . 0 4 7 21 . 0 9 229 .4 1 8 3 9 .5 3 7 0 8 -. 8 1 0 1 3 -. 6 28 6 9 -1 . 0 3 0 5 2 -. 4 4 1 3 9 1 .1 1 4 1 5
) % % < " 3
.0 0 8 6 2 -. 0 1 0 9 1 -. 0 4 0 9 5 .3 7 6 5 7 .5 4 5 0 1 3 . 3 25 0 0 . 26 3 9 1 . 223 1 4 . 21 8 5 0 -. 8 0 4 5 7 . 21 0 6 6 -. 29 1 3 3 -. 6 27 7 1 -. 4 29 0 6 -. 3 7 4 23 . 0 20 27 -1 . 7 6 8 8 6 -. 8 4 4 0 6
% 9 & J - B . ) " $ ) <= ! % - )
17 6
0 ! " . 1 ) % (# ) ) % . 9 $ % - (# ) ) ? # ) 2 1 ) D " ) ) 1 . ? 4 ? 1 # ) F % " + ) H
. 9 $ < 2 (-2, 2) M B
% - 3 # ! " " Scatte r Pl o t $ - . . Scatte r !
: % . ? 1 . . . 9 $
, 6 G r aph s
Scatte r (Sim pl e ) . $
. Y A x is : f ac_ 2 H 3
. L abe l C as e s by : R e g io n
. Pl o t
. X A x is : f ac_ 1 H3
C h ar t $ $ 2 . $ C h ar t
. OK 4
F , 6 3)
R e f e r e n ce L in e
: . . , 6 ( 0 ! 3 Y A x is X A x is # Ed it o r
4
Salah AL-Deen
REGR factor score 2 for analysis
1
3 2 1
Ta'meem Sulayman Diala Anbar Babylon Thi-Qar Dohok Arbil Nineveh Kerbala Muthana Qadisia Najaf Wasit Basrah
0 -1
Baghdad
Maysan
-2 -3 -4
-4
-3
-2
-1
REGR factor score 1 for analysis
0
1
2
3
4
1
$ - # $ . E ) 1 . ? 4 ; (# ) ) % " - ? 4
@
? . 6 =
9 $ ! . (0, 0) . # + # $ 1 N 4
(3 ; ) # # ) " 9 $ 2 , 1 6 C . 3 (-2, 2) M
% (
(< @ 3 ; ) # ) " 9 $ 2 , Q = !
6
. ? 6 % 1 1 ( ) 6 " 9 $ 3 '
% = K E 1 6 1 1 J # ) 9 1 % ) 1 $ % % " % 6 6 % 2 % 2 d o ct o r s h ig h e d u l it e r acy # # ) 1 3 1 ? 1 $
# K 1 . % 6 ) % F .
1 C " 3 1
.(3. 227 )# # ) " 1 6 9 1 2 C " 3 # ! ; 1
17 7
Case Summaries Statistics: Mean
L IT IR A C Y 6 1 .6 0 4 1 .4 2
B ag h d ad T o tal
(
H IG H E D U C 4 .0 4 1 .5 3
D O C T O R S 3 6 .0 0 1 7 .8 3
+ ) G D P ) C ? Q = !
6 (3. 325) 9 $ ; 1
0 G C " 3 % 6 . ? 1 ( 1 3 1 ? 1 $
1 3 1 ? 1 $ - . . 1 1 6 HOSB ED
: # , @ . ( C o mpo n e n t s M at r ix % 0 ! 6 ) 1 9 $ 1
Case Summaries Mean S al ah A L - D een T o t al
G D P 9 8 .4 0 2 8 .5 2
H O S P B E D 8 0 .0 0 1 7 4 .0 6
P 1 " Eig e n 0 ! #
V =
: % 6 =
V e ct o r ( 4 ) D C " 3 # !
X 12 + X 22 + ... + X n2 ) ; NOR M
.1
D # .
# ! " No r m # . C " 3 (? 1 $ ) 2 2 # 1 K C o mpo n e n t s M at r ix
Un iq u e
D D . + No r mal iz e d V e ct o r + ) D C " 3
: " # # ) 1 G D P ? 1 $ # D " C ; <= V e ct o r 0.477 = 0.280 2 2 2 2 2 0.447 + 0.918 + 0.941 + 0.829 + 0.508
(2.9) # " # , # #
G D P
L I TER A C Y
HI G HED UC
D OC TOR S HOSPB ED
Eig e n V e ct o r 1
Eig e n V e ct o r 2
0.538845
0.018025
0.280278 0.552474 0.486656 0.29 83 7 8
. % . 1 - 0 ! (1.11)
0.715757 0.09 6 4 7 4
-0.12474 -0.68007
; @ # ! + Or t h o g o n al , 1 9 ) % # ! N +
178
fac _ 1, fac _ 2 = ∑ fac _ 1 * fac _ 2 = 0 0 !
.2
+ , D o t Pr o d u ct
% % = ) , # ; @ # ! E K . " " 1 ; @ . 0 !
+ , C o mpo n e n t s Sco r e C o e f f icie n t s
Factor Analysis Methods ( 3 – 11 )
/ 1 . 1 ) " ) # " . 9 % .
. ; - @ < 1 " ) , E 1 . 1 1 4 M . E 1 " ) # " " ) # " B , 3 1 ) 3 9 ! 1 " ) # " .
F act o r A n al y s is
# ) 3 X1, X2….Xp 1 - % # 3 1 ) + M o d e l . K 1 R
# 3 C o mmo n F act o r s ( 1 - % ) $
: " " ) # " B 1 - % ) 1 . ? 4 ( X 1 = a11Y1 + ............. + a1mYm + e1
1
......................................................... X p = a p1Y1 + ........... + a pmYm + e p
7
. ( p 1 - % 3 # 2 m # ) 3) j K $ # ) : Y j
. i 1 - ; j # ) > ) ) L o ad in g s % ) 1 $ : aij . ( Spe cif ic F act o r ) Xi 1 R
(M ax imu m L ike l ih o o d
# ) : e i
M e t h o d 6 3 & . C " 3) : 2#
, . 1 ) 6 3 & . 1 " ) # " / # 1 # % 1 . N
. % . . F 1 H= - D " ) # "
3 # # , $ , 0 % . 1 1
% , 6 7 F act o r A n al y s is : Ex t r act io n !
M ax imu m L ikl e h o o d
:
F a c to r A n a ly s is Communalities G D L IT H IG D O H O
P
IR A H E C T S P
C Y D U C O R S B E D
In itia l .350 .8 52 .8 7 0 .503 .2 8 6
E x tr a c tio n M e th o d : M a x im u m
E x tr a c tio n .9 9 9 .9 03 .9 35 .4 8 7 .2 2 7 L ik e lih o o d .
< % . 1 1 in it ial C o mmu n al it ie s
+
R
2
% ) 1 $
) . 1 - # ) ? 1 + ? 1 $ E " ) # " . 2 1
I n d e pe n d e n t ) % 1 C " 3 ( D e pe n d e n t V ar iabl e ) D " 3 # !
0 # ! " " ) 1 G D P 1 - 0.9 9 9 . (V ar iabl e s . G D P " " % = - 0. 9 9 9
179
Total Variance Explained F a c to r 1 2 3 4 5
T o ta l 2.900 1.110 .523 .393 7 .313E - 02
%
In itia l E ig e n v a lu e s o f V a r ia n c e C u m u la tiv e % 58 .009 58 .009 22.207 8 0.216 10.457 90.6 7 3 7 .8 6 4 98 .537 1.46 3 100.000
E x tr a c tio n M e th o d : M a x im u m
L ik e lih o o d .
, " 3 " ! , 0 I n it ial R
Eig e n v al u e s 1 F = 3 #
" % ) 1 $ % ) 1 N 6 =
1 1
E x tr a c tio n S u m s o f S q u a r e d L o a d in g s T o ta l % o f V a r ia n c e C u m u la tiv e % 1.413 28 .254 28 .254 2.138 42.7 56 7 1.009
% . % .
M K I n it ial e ig e n v al u e s D 0 Ex t r act io n Su ms Sq u ar e d L o ad in g s
0 1 1 # R
! " 1 H= 6 3 & . 0
" # ) % ) 1 $ % ) 1 N ; <= F = 3 # L @
: " F # ) 0 ! 0.999 2 + 0.333 2 + 0.469 2 + 0.275 2 − 8.71E − 02 2 = 1.413 1.413 / 5*100 = 28.254% # # ) F 0 1
Factor Matrixa
G D L IT H IG D O H O
P
IR A H E C T S P
1
C Y D U C O R S B E D
F a c to r
.999 .3 3 3 .4 6 9 .27 5 - 8 .7 1E - 0 2
2 - 9.4 9E .8 .8 .6 .4
0 3 90 4 6 4 1 6 8
E x tr a c tio n M e th o d : M a x im u m L ik e lih o o d . a . 2 f a c t o r s e x t r a c t e d . 14 i t e r a t i o n s r e q u i r e d .
1 # % 0 ! R
> 0 , ! " # ) 0 ! F = 3 0 !
Goodness-of-fit Test C h i- S q u a r e 1.337
d f
1
S ig . .2 4 7
% 1 # # ! " # ) 1 " ) @ 0 1 # F = 3 #
2 . % 1 # # ! " # ) 0 ) 1 " " 1 @ 0 @ (% . 1 ) ) @ # 1 2 C 3 P-v al u e =0.247 2 7 χ 2 ! ( , %
180
% % 1 # # ! " " ) 0 1 " + % 5 % 1 - M 1
. % . G 1 - . 1 - : 6 =
% . % " 1 1 # F act o r Sco r e s # ) %
% . 9 . 1 ; F act o r s co r e s C o e f f icie n t s % = ) ) 1 -
. 3 K , 6 3 & . 1 1 (# 3 ) K , ,
3 . F , 6 ) " . F
# ) " # 1 = C " 3 # !
: ( F act o r A n al y s is !
# ) 1 ) . 1 - # ) ? 1 + 1 0 ! . # 2 ! # ) % ) 1 N 0 !
0 !
181
, # ) % = ) Sco r e s 4
. , # ) : R e g r e s s io n
. # ) 9
+ . , # ) : B ar t l e t t
+ . , # ) 7 1 B ar t l e t t . : A n d e r s o n -R u bin s
. ( . 1 G ) " # ) + + ) H
Non Parametric Tests
" ) ? ) C " 3 , 1 - ! A ) - % 1 " ) = % 1 -
@ H ) , , % 1 " ? 4 (
0 - , V ar ian ce 1 M e an
.
C ) " ) = % 1 - # ) ; 1 . D is t r ibu t io n – F r e e t e s t s ? 4 % 1 1
? 4 < 1 2 ? % 1 N 4 ; <= " ) % 1 - 1 ! % @ 0 3 E " . $ 3 3 # ) - ) $ " ) % 1 - T 1 1 . 3 ) 1 .
. $ 1 # , , ; . $ , 9 F < " 3 " ) = % 1 - C
, , 1 ! . $ " ) % 1 - # ) ; D " ) % 1 - " " ) = 1 - . < < 1 < 3 SPSS 5 1 . . " ) = % 1 - 2 . % 1 - F (
Obs e r v e d
) 1 0 0 L @
C h i -Square ( 1 12 )
f r e q u e n cie s % 0 " $ 1 " C h i-Sq u ar e 1 # )
% E . ) @ > C " 3 ; Ex pe ct e d F r e q u e n cie s , ? 2
+
: " C . ) 1 - " ) C h i-Sq u ar e ! E K 3 k (Oi − Ei ) 2 2 = χ ∑ Ei i =1
1 - ? 2 # Ei $ # Oi 7
: % 0 ! C " 3 # ! ) $ 0 ! , 1 Oi t y pe 439
16 8 133 6 0
. 3 75
8 0 0
1
3
2 4
1979 : % 5 - M 1 ) @ 1 ; " .
H 0 : P1 =
182
9 3 3 1 , P2 = , P3 = , P 4 = 16 16 16 16
. k-1
:1 #
0 ! 1
# P1 <= ) ; F 3 H" 5 C " 3 R : % . ; C h i-Sq u ar e 1 1 .
t y pe 1 2 3 4 4
H1 " 1 @ 0
. ( 0 1 C
9 @ 0 1 -
: " D at a Ed it o r 2 % 1 ;
Obs e r v e d 439 168 133 60 % ? # ) A ) Ty pe + ) 1 % 0 ! 3 @ ) 6 -
C V al u e Obs e r v e d
L abe l 3 @ A & 1 D " ) ? % 0 ! / A 3 +
. " " 2 <- 1 % # 3 (
) Ty pe
. 3 K % - " 4 E 2 # ) # $ #
!
W e ig h t C as e s by $ ' ) 1 . $
D at a
W e ig h t C as e s
. (W e ig h t C as e s by ) C Obs e r v e d # A W e ig h t C as e s
, 6 A n al y z e
No n par ame t r ic Te s t s
C h i-Sq u ar e
. $
: " D 1 + C h i-Sq u ar e Te s t !
. t e s t V ar iabl e L is t C Ty pe " 6 -
: Ex pe ct e d V al u e s
. 1 > 0 , ? 2 > 0 , % 0 ? : A l l cat e g o r ie s e q u al
C ( ; H" 1 ) ? 2 H" 3 $ E : V al u e s
: " ) @ 9 ; % " # # M 9 ; V al u e " # . P1 = = 0.5625 C # 16 . ( 2 1 / $ > 0 ) v al u e " # 0 H @ A d d 4 ) 1 0. 5625 : 5 C "3 # !
183
OK 4 3
.1
.2
TYPE 1 2 3 4
T o ta l
O b s e rv e d N 439 16 8 133 6 0 8 0 0
E x n p n p n p n p
p e c te d N 1 45 0 2 15 0 3 15 0 4 5 0
R e s id u a l - 11. 0 18 . 0 - 17 . 0 10 . 0
" # N " ) 2 ; <= ) 2 9 $ # F = 3 #
D 0 ) 2 " ) E D " 3 1 + ; N 6 - n P1=800*0.5625=450 9 $ "
.
Test Statistics C h i- S q u a r e a d f A s y m p .S ig .
T Y P E 6.356 3 .0 9 6
a . 0 c e l l s ( .0 % ) h a v e e x p e c t e d f r e q u e n c i e s l e s s t h a n 5. T h e m i n i m u m e x p e c t e d c e l l f r e q u e n c y i s 50 .0 .
P-v al u e 2 6. 356 + C h i-Sq u ar e ! A 2 E F = 3 #
) @ 9
; # 1 2 + % 5 - M 1 ) @ # 1 2 C 3 0.096
!
< 1
1 3 1
? 4 # ) Tr an s f o r m
C o mpu t e P-V al u e B K . : + ? 1
1-C D F .C HI SQ (6.356, 3) =.096
: 2 #
5 % He ad ! 3 % 1 9 # 9 1 0 0 0 ? . 2 %
: ( D at a Ed it o r 2 , A ) 1 )
h e ad n o o bs e r v e d 0 38 1 144 2 342 3 287 4 164 5 25 ? 4 ? 1 9 ! , 6 % 3 E 1 " @ 0 1 C h i-Sq u ar e 1 1
. % 5 - M 1 B in o mial
# 1 . G o o d n e s s o f F it 1 . 1 1 H) C h i-Sq u ar e 1
: % . ? 1 1 # ) 1 . > 0 1 Obs e r v e d 1 % - ( 4 )
A n al y z e No n par ame t r ic Te s t s
C h i-Sq u ar e
. $
: " D 1 + ( 1 # " D 0 ) C h i-Sq u ar e Te s t !
184
, 6
. Te s t V ar iabl e L is t C h e ad n o #
% C 0 !
9 ! , 6 # ; bin o mial ? 4 # )
•
: " 5
No . o f h e ad s 0 1 2 3 4 5
•
9 F = 3 (% - - ) ; # Ex pe ct e d
Pr o babil it y 0.03125 0.15623 0.3125 0.3125 0.15623 0.03125 v al u e s v al u e s : 5 C "3 # !
•
. M ) 1
OK 4 3
5
HEADNO
O b s e rv e d N 38 144 342 287 16 4 25 1000
0 1 2 3 4 5
T o ta l
E x p e c te d N = 1000* P r 31. 2 156 . 2 312. 6 312. 6 156 . 2 31. 2 1000. 0
R e s id u a l 6 .8 - 12. 2 29 . 4 - 25. 6 7 .8 -6 .2
: " (0 ! + ! 3) <= C 0 " ? 2 B Ex pe ct e d F r e q u e n cy .= 1000*0.03125=31.25
Test Statistics C h i- S q u a r e a d f A s y m p .S ig .
H E A D N O 8.920 5 .1 1 2
a . 0 c e l l s ( .0% ) h a v e e x p e c t e d f r e q u e n c i e s l e s s t h a n 5. T h e m i n i m u m e x p e c t e d c e l l f r e q u e n c y i s 3 1 .2.
! 3 + % 5 - M 1 ) @ # 1 2 C 3 P-v al u e =.112 2
. B in o mial ? 4 ? 1 $
0 # , 1 # 0 % 0 <- 1 % 0 M
: 6 =
0 F (5S1= ! 3) 1 > % 0 1 0 (0 = ! 3)C
C h i-s q u ar e
!
Ex pe ct e d V al u e s (5S1) . % 0 F , % - - 4 1
# - H 1 - 1 # (6S0) ! ) " 1 % - - " 2 Te s t
185
4 Ex pe ct e d
V al u e s 0. 03125 + # - $ E 1 0= ! ) # 1 . R e mo v e
% 0 M 1 (5S1) % 1 % 0 1
Ex pe ct e d
Uppe r 2 1 + L o w e r 2 # A Us e Spe cif ie d R an g e $ E 1 R an g e : C "3 # !
OK 4 3 J 5 +
Frequencies C a te g o ry
1 2 3 4 5
T o ta l
1 2 3 4 5
H E A D N O O b s e rv e d N E x p e c te d N 144 155. 1 342 310 . 4 28 7 310 . 4 16 4 155. 1 25 31. 0 9 6 2 9 6 2
R e s id u a l - 11. 1 31. 6 - 23. 4 8 .9 -6 .0
Two Independent Samples tests ( 2 1 2 )
T 1 # ) 7 " 3 . T 1 - 1 % 1 - F
? 4 . $ ) 1 - # ) - K 3 T ? 4 ? 1 1 - ! A
% 1 - SPSS 5 1 7
" ) = % 1 - C E " K ) ) ) 1 .
: ") =
M an n -W h it n e y U 1
.1
M o s e s Ex t r e me R e act io n s 1
.3
Ko l mo g o r o v -Smir n o v Z 1
(1 , 4 )/ ! R
D < " 3 G r o u p , @ R
W al d -W o l f w it z R u n s 1
.2
.4
$ I 8 1 C " 3 # % 1 : 3# $ 3 (24 )C @ R
$ I 10 1
d s e as e ) , " 1 2 He al t h y ) , " 1 1 ) , V al u e L abe l @ A
, R
% 2
> 2 2 ( B & # 3 <- 1 ) , 6
D at a Ed it o r $ $ " % 1 , 6 ) R t im e
10 14 6 8 4 8 10 9 9 0 8 4 0 9 7 8 10 0 2 1110 8 6 4 6 3 6 6 3 8 7 0 8 7 8 6 6 0 0 13 20 7 5 0 5 9 4 7 5 0
186
g ro u p 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
$ # ( Time ) : SPSS 5 1
% 5 - M 1 ? > 0 1 ) E 1 " ) @ 1 ; " .
" 1 @
µ1 = µ 2 ) @ 0 1 C ) 1 ) M an n -W h it n e y 1 1 . ( µ1 ≠ µ 2 : % . ? 1 K 0
A n al y z e No n Par ame t r ic Te s t s 2 I n d e pe n d e n t s ampl e s . $ :
!
2 I n d e pe n d e n t s ampl e s Te s t , 6
Te s t V ar iabl e L is t ( ) % $ # + ) Time " 6 3 H ) 4 G r o u pin g C @
V ar iabl e G F " g r o u p
3 G r o u p1 : 1 / ! 3 H3 D e f in e G r o u p 4
. M an n -W h it n e y U 1 $ E < . G r o u p2 :2 : 5 , 6 OK 4 3
Ranks T IM E
G R O U P h e a lth y d s e a s e T o ta l
N 1 0
8
1 8
M e a n R a n k 1 2 .6 3 7 .0 0
S u m
o f R a n k s 1 0 1 .0 0 7 0 .0 0
9 3 (C @ / ! ) ) 5 7 R an ks ; C " 3 1 - )
; N ) 3 # ; N 2 # 1 / . 3 < 3 ! ) 2 ; ;
187
F = 3 # ( 7 0 C @ ; N 101 / !
: ! 1 M an n -W h it n e y U ! A N ( N 1) U = N1 N 2 + 1 1+ − T1 2
M - ) # N2 ( N1=8 C , ) ) + # N1 7
# .( T1=101) Su m o f R an ks C ) ; N # T1 (N2=10 )
! A C @ & 1 C ) % . ) C " 3 3- 1 1 U ! A 2 + U ) ? 4 ) ; Z 2 B - .U ! & W il co x o n W
: " ? 4 " + ) H - . B 7
µ=
N1 N 2 = 40 2
σ =
N1 N 2 ( N1+ N 2 + 1) = 11.25 12
B D " 3 < 1 ) " ) 1 . ? 4 ; U ) ? 4
" ) 1 . ? 4 " )
P-V al u e 2 B K Z = (U − µ ) / σ = (15 − 40 ) / 11 . 25 = − 2 .222 # ) 1 Tr an s f o r m
C o mpu t e 1 Z ! &
- M 1 ) @ (
C 3 1 ) 1 . ? 4 " P-v al u e =0.026 2 7
( . 1 - ) 2*C D F NOR M (-2.222)=0.0263
" ) 1 . ? 4
% 2
. ? > 0 1 ) + # 1 ( . C @ R
$ I % 2
. 3 < H" / ! R
0 1 % 5
$ I , R
Test Statisticsb M a n n -W h W ilc o x o n Z A s y m p .S E x a c t S ig S i g .) ]
W
itn e y U
ig .( 2 - ta ile d ) . [ 2 * ( 1- t a i l e d
T IM E 15.000 7 0.000 - 2 .2 2 2 .02 6 .02 7
a
a . N o t c o r r e c te d fo r tie s . b . G r o u p in g V a r ia b le : G R O U P
U # - 1 . # 2 / U # - . ( / 0 T2 # & # ' ( ) * * + , : # $ % : "
N 2 ( N 2 + 1) − T2 2 1 - / U ! & ) B 1 9 1 ) # N2 U = N1 N 2 +
. 1 > 0 C # !
K- Related Samples Tests K ( 3 12 )
1 " ) T 1 - " ) - . On e - W ay A NOV A
M an n -W h it n e y 1
) 1 # " " ) - 1 Kr u s kal l -W al l is
T 1 - 4 = . $ 3 K T 1 # ) G 3 1
188
" ) = % 1 - / F R an ks ; 3 9 1 3 % 1 : SPSS 5 1
. F r ie d man 1
. Ke n d al l ’s W
. C o ch r an ’s Q
1 ) c b a 1 , % 4 0 " B = ; R D at a Ed it o r $ $ , 6
5
.3
: 4 #
b 3 3 3 3 2 2 3 3 3
)
c : SPSS 5 1 1 1 1 2 1 3 1 2 2 1 " ) @ 1 ; " .
. % 5 - M 1 F r ie d man 1 1 : % . ? 1 K 0
No n par ame t r ic Te s t s K-R e l at e d s ampl e s
. $
: " D 1 + Te s t s f o r s e v e r al R e l at e d Sampl e s !
D an ie l W .W .(1978) , B io s t at is t ics : A Scie n ce s , 2nd Ed it io n , pp.398 .
189
1
.2
! 1 Th e r apis t s ! ) 2
: 5 C "3 # !
5
1
5 % ( 3 2 1 , " C # @ 0 C 1 $ 1
Th e r ap a 1 2 2 2 3 2 4 1 5 3 6 1 7 2 8 1 9 1 = B " # @ 0 ) % 2
A n al y z e
.1
F o u n d at io n
, 6
OK 4 3
f o r an al y s is in
Th e
5
5
He al t h
N P a r T e s ts F r ie d m a n T e s t Ranks A B C
M e a n R a n k 1.67 2 .78 1.5 6
# " D 1 $ F = 3 1 . = B # ; . # M e an R an k 7
R an d o miz e d
$ ) % 3 . ! 1 H ) Tw o - w ay A NOV A
) 1
# H 0 ! Tr e at me n t s % ) (B ) 9 3 # 7 B l o cks Ex pe r ime n t
; ; ) 1 # " / < = F r ie d man 1 1 ) 7
B l o cks % 3 .
? 1 F r ie d man ! A # 2 Or d in al 1 % 1 ; " . R an ks : " ; J-1 1 χ 2 ? 4 χ2 =
12 ∑ T 2 − 3K ( J + 1) = 8.2 KJ ( J + 1) i
(
# Ti (9 3 ) % ) 3 # J (%3. ) H 0 ! 3 # K 7
. J=3 K=9 + ) # ; N
C 3 P-V al u e 2 F r iedm an ! A 2 1 F #
. = B " # @ 0 ) <2 K + % 5 - M 1 ) @
Test Statisticsa N
C h i- S q u a r e d f A s y m p . S ig .
a . F r ie d m a n T e s t
190
9 8 . 222 2 .0 1 6
(
CHARTS
3 , . 1 0 !
/ ! & % , 9 1 %.. 1 )
. . B ar s 1 9 3 , %.. . 9 1 ) . 1 .1 ! & % 1 %= , % & (
)
# ! 0 # …dPies 1 Lin es 1 . 1 ) # S PS S 5 1
Bar Charts ( 113) : 1 #
y ear 1990 1991 1992 1993 1994
: Y ear % ; % ' M & S al es %) 1 1 # s al es 5 0 5 2 5 5 6 0 6 5 . B ar C har t 1 9 3 .. 3 ;" .
2 B ar C har t !
: % . ?1 K 0
, 6 .G r ap hs B ar . $
.
: F 1
F # # 1 Data in C har t ar e 2 V al u es o f in div idu al cas es 2
. %- . 1 S im p l e 2 S tack edJ C l u s ter ed J S im p l e % =
Defin e S im p l e B ar !
191
, 6 1 !
Defin e 4 3 : D 1 +
: 7
.
. .. . $ 1 # D 2 2 # + 3 : B ar s R ep r es en t
: " @ ( ) 1 .. " % 0 3 : C atego r y Label s . C " 3 " ) 2 (
) : C as e n u m ber
) C " 3 ) F 2 (
) : V ar iabl e
. ( Y ear s #
. F o o tn o te , s u btitl e,d Titl e .. 3 (
) :Titl e
. M %.. 3 3 <9 $ 1 , 1 . ) %0 ! + ; 2 # ) :Tem p l ate : " S PS S V iew er .. (
T itle L in e 1 Line2 Subtitle
F o o tn o te
192
3 O K 4 3
1 2 ..
Establishment Sales by Years for Period 1990-1994 70
Value SALES
60
50 40
1990
1991
1992
1993
1994
YEAR
Iraqi Dinars (Thousands) . . (
) 7 > 4 1 F 1 .. C " 3 %= ) / S PS S C har t E dito r
: " S PS S C har t E dito r
C har t E dito r $ $ - M %= ) ) %= ) / 7
: ( > 4 1 .. ) 1 +
C har t E dito r $ $ + %= ) ) " K 0 : 9 3
: (F = 3 # $
F o r m at C o l o r
193
. > 4 1 9 3
C har t E dito r $ $ . $
.1
: " C o l o r s !
, 6 % . $
: 7
. . $ / = A
: F il l
. . $ "
: B o r der
> 4 1 F 1 4 " <= 4 " C . $ / = A
9 3
) 1 .. , 6 . C o l o r s !
. 9 3
A p p l y 4 F il l $ E E ) 1 " C l o s e
4
: "
2 2 .. Establishment Sales by Years for Period 1990-1994 70
Value SALES
60
50 40
1990
1991
1992
1993
1994
YEAR
Iraqi Dinars (Thousands)
:
0 " 1 7 C 9 . 3) 1 % . > 0 1 <= 0 "
. (9 3 <- 1 ..
: " ?1 K 0 : B ar S ty l e 9 3 .
F o r m at B ar S ty l e C har t E dito r $ $ . $ : !
194
, 6 % . $
.2
+ 3- .. # 6 ? ..
) 1 = .. ) 1 = E # 6 3
= 9 3 , 6 A p p l y A l l 4 > 4 1 F 1 3-D effect 3
: " ) 1 3
Establishment Sales by Years for Period 1990-1994 70
Value SALES
60
50 40
1990
1991
1992
1993
1994
YEAR
Iraqi Dinars (Thousands)
: 6 =
H @ ; 2 3 . $ C E @ A Dep th ; 2 3
. . $ C E
: % . ?1 K 0 :B ar Label S ty l e 9 3 3 .
F o r m at B ar Label S ty l e % . $
195
2 3 .A ? 3
.3
. . C " 3 # ! A p p l y
:
A l l 4 > 4 1 F 1 F r am ed
:
4 2 ..
Establishment Sales by Years for Period 1990-1994 70 65
Value SALES
60
60
50
50
40
1990
52
1991
55
1992
1993
1994
YEAR
Iraqi Dinars (Thousands) " .&
.&
: %6 =
C har t E dito r $ $ . $ C har t .. " .& 4 &
.
C har t E dito r $ $ . $ C har t .. " " .& 4 &
.;
. , = ) 4 & O u ter F r am e
S cal e A xis
. , = ) 4 & I n n er F r am e
1 ! % 3&
: " % 3& % .
C har t E dito r $ $ .. " (…J40، 50، 60) 3 C " 3 : " S cal e A xis !
196
, 6
.4
, " 1 2 ; 4 & ) . 4 A (
: 7
3:Dis p l ay A xis Lin e
. (I n n er F r am e C har t 1 " .& 4 A
.a
. ( V al u e S al es ) 3 ?2 :Titl e Ju s tificatio n
.b
. % :Maj o r div is io n s
.d
. ( G
J . ) > N :S cal e . % :Min o r div is io n s
≥ Maio r I n cr em en t Min o r I n cr em en t <" 3 1 :I n cr em en t . 1 $ . . (
. Tick Mar k s (
. (…J40، 50، 60) % 3 4 A (
3:G r id
) :Tick s
3 :Dis p l ay Label s
.c
.e .f
.g
.h .i
: 4 2 .. C " 3 % ) 0 / A . C en ter .
(V al u e S al es + ) 3 ?@
% = 3 , 6 A ? 10 <- 1 5 Min o r I n cr em en t % 1 # )
.Tick Mar k s
. % C G r id Lin es 1 $ . . @ A 3 1 D " 3 # ! ) ; S cal e A xis !
E
: ( 4 = %= ) 1
197
• • •
: O K 4 ) 1 " , 6 .. 5 2 ..
Establishment Sales by Years for Period 1990-1994
Value SALES
70 65
60
60
50
50
40
1990
52
1991
55
1992
1993
1994
YEAR Iraqi Dinars (Thousands)
Axis Title
Axis Label
: % ) 0 1 D = Label s !
, 6 4 3 : Label s
; 3 ) $ ) ; 3 : Decim al Pl aces
-
3 3 # 1 C H @ 4 : Leadin g C har acter
-
3 3 # , C H @ 4 : Tr ail in g C har acter
-
9 C o m m a 9 4 ) # ! 0 1 1000 3 4 (
-
. 70. 0J 60. 0J 50. 0J 40. 0: " ) (
) + $ )
. D70 J D6 0 J D50 J D40 : " ) , 6 D 2 ) 4 @ A . % 70J6 0 % J 5 0 %J 4 0 %: " ) , 6 %
= 3 @ A
) :10 0 0 S S ep ar ato r
. (Per io d
.J
3 1 .. , 6 . O r igin Lin e # ! . : B ar O r igin Lin e .K
. H # ! . 2 C " 3 < 2 # 9 3 7 1 9 2
B ar O r igin Lin e 2 A. D H . 2 # 2 2 # 9 3
( ) 1 = E 4 A ) 1 ) 4 2 .. " S cal e A xis !
57 +
: .. C " 3 # !
198
H
6 2 ..
Establishment Sales by Years
Value SALES
70
for Period 1990-1994 65
60
60 52
50
50
40
1990
1991
1992
1993
1994
YEAR
Iraqi Dinars (Thousands)
. 57 . 3 O r igin Lin e .
. 7
" # 1 F - @ A ( !
) : Dis p l ay Der iv ed A xis
Dis p l ay Der iv ed A xis $ E 1 K H " > D " !
: " Der iv ed A xis !
, 6 Der iv ed A xis 4 S cal e A xis
Der iv ed A xis # 1 S cal e A xis " ! 9 # # ) R atio Match
: " ; F = 3 ! Defin itio n 2 E 1 2 .. " S cal e A xis Der iv ed A xis U n its E q u al U n its 1 2 0
V al u e E q u al : .. C " 3 # !
199
.L
0
V al u e
O K 4 C o n tin u e 4 3
7 2 ..
Establishment Sales by Years 70
for Period 1990-1994
140 65
Value SALES
60
60
50
50
40
120 110
55
52
130
100 90
1990
1991
1992
1993
1994
80
YEAR
Iraqi Dinars (Thousands)
C " 3 2 # 6 = . L @ (
1 $ K Label s ) 0 @ 2
. Der iv ed A xis $ C " 3 H ) @ , " 1 " !
" ! # C " 3 ( ) 0 " 2 1 L Match
70 # 1 " ! C " 3 50 # ) . ?2 > 0 , 6 7 1 $
: " Der iv ed A xis ! S cal e A xis
R atio
1
Match
Defin itio n 2 ; 1 .. " $ C " 3
U n its E q u al
Der iv ed A xis
V al u e E q u al
50
: .. C " 3 # !
1
U n its
70
V al u e
O K 4 C o n tin u e 4 3
8 2 ..
Establishment Sales by Years 70
for Period 1990-1994
90 65
Value SALES
60
60
50
40
1990
55
52
50
1991
1992
70
1993
1994
YEAR
Iraqi Dinars (Thousands)
. # $ % …
2 0 0
8 0
80
! 6 0 7 0
! 50
60
C atego r y A xis 1 ! % 3& .5
S PS S
!
> 4 1 . . 1 1 ! % 3&
, 6 C har t E dito r $ $ .. " 3 V iew er
: ( <= 1 2 .. " )
: % ) 0 1 7
4 A , " 1 2 ; 4 & ) Dis p l ay A xis Lin e 4 A ( ) 1 A xis
3
•
Titl e # . ) # " 6 1 3
•
Titl e j u s tificatio n ) ?2
•
. (I n n er F r am e C har t 1 " .& .
3 (
. 1 $ . . % 4 A , 6 A
3 D Label s !
, 6 Label s 4 3
) ? 2 = 4 1 J 9 ) J , / 4 , )
• •
S tagger ed J Diago n al J V er tical J H o r iz o n tal : % 7 O r ien tatio n : " .. , 6 1 .. " 3 (
) Diago n al ) .
9 2 ..
Establishment Sales by Years
Value SALES
70
for Period 1990-1994
60 50 40
19
19
19
19
19
94
93
92
91
90
YEAR
Iraqi Dinars (Thousands)
, 1 ) K 1 $ <1 . F , 1 " . ) (
3 + @
. F V er tical S tagger ed 9 0 -
2 0 1
> ) 1 .$ C 9 3 .. # + ;" : S w ap ; " 2 3 <= % . $
A xis ;" 2 .6
F o r m at S w ap A xis
. $
: " , 6 D E 1 2 .. 10 2 ..
Establishment Sales by Years for Period 1990-1994 1990 1991 1992 YEAR
1993 1994 40
50
60
70
Value SALES
Iraqi Dinars (Thousands)
:
$ $ 3) .. 3 + S iz e D F o n t . N
S PS S
. $ F o r m at Text ) 1 (C har t E dito r .
S PS S C har t $ $ C # " .. 1 ) " 1 1 , 6 3 F o n t 2 > 4 1 ; " . R
) 1
E dito r
. ....A r abic Tr an s p ar en t A n dal u s A r ial (A r abic) . N
.
.;
C har t $ $ 3) .. .$ 1 .$ I / = & .
.%
$ $ . $ C har t Legen d 1 Legen d Q @ A " @ A
.7
.. " " .& 1 # ) # 1 9 3 1 % 1
.B
S PS S
.
. $ F o r m at
. Legen d !
F il l Patter n
(E dito r
Dis p l ay C har t Legen d $ E C har t E dito r
. $ C har t B ar S p acin g 1 C l u s ter 2 ) 1 K I n n er F r am e : # $ %
. . 1 .$ (
2 0 2
) 1 D 1
.. C " 3 0 " % " 3 0
L @
: Chart Template (213)
" " C " 3 % " ) > 0 0 ;" . (
) 1 , D " $ E C
F % 1 3 K A ! . " 3 1 ) F %
D 1 . 7 # .. C " 3 % % " ) @ Tem p l ate ; 2 # 3 & 1
J .P 1 9 3 3 J ) 1 = ) 0 " % " 3 @ 4 2 .. <= . M % C " 3 E + ) x C " 3 % " ) F > 0 1 . ( : % . ?1
" . (… 30 " ! )
(94S90 % " 80، 88، 110، 90، 77
C har t $ $ F il e S av e C har t Tem p l ate 1 ; 2 ! 1 4 .. 4
. cht ; s ct . - ; E 7 E dito r
G r ap hs
B ar . $
; L 0 F il e 4 C har t S p ecificatio n fr o m
$ E 1 2 tem p l ate
V al u es o f I n div idu al C as es
. F V al u es o f I n div idu al C as es !
y ear x % # (s im p l e)
: " V al u es o f I n div idu al C as es !
: x " .. C " 3 # !
; 7 cht
O k
Establishment Sales by Years 120
for Period 1990-1994
110
110
100
Value X
90 80
70
1990
77 1991
YEAR
Iraqi Dinars (Thousands)
2 0 3
90
88
80
1992
1993
1994
4 3
11 2 ..
L i n e B ar ( 3– 13)
: % . ?1 Lin e . . C B ar 9 3 1 2 .. Lin e !
, 6 G al l er y
. C har t E dito r $ $ ..
S im p l e . $
Lin e
" " S al es . 9 " @ .. - S im p l e ) C har ts . ( Mu l tip l e
, ) , @ ( )
: " Lin e C .. # R ep l ace
12 2 ..
Establishment Sales by Years 70
for Period 1990-1994
Value SALES
60
50
40 1990
1991
1992
1993
1994
YEAR
Iraqi Dinars (Thousands)
% . $
: % . ?1 1 . C " 3 Mar k er s
F o r m at
: " I n ter p o l atio n !
%= ) (
I n ter p o l atio n
)
, 6 ( C har t E dito r $ $ .. 3)
A p p l y 4 F $ E Dis p l ay Mar k er s C heck B o x ! ?1
: # $ .. C %= ) H @ A l l
2 0 4
13 2 ..
Establishment Sales by Years 70
for Period 1990-1994
Value SALES
60
50
40 1990
1991
1992
1993
1994
YEAR
Iraqi Dinars (Thousands)
!
: " ?1 = ) # $
. $ E %= ) C har t E dito r $ $ .. , 6
F o r m at
Mar k er s
. , = ) N
: Mar k er s
: " = ) A p p l y 4
14 2 ..
Establishment Sales by Years for Period 1990-1994
70
Value SALES
60
50
40
1990
1991
1992
1993
1994
YEAR
.A
2 0 5
Iraqi Dinars (Thousands)
p p ly A ll
! " # ( ) :
P i e B ar ( 4 – 13 )
: % . ?1 Pie 1 9 C B ar 9 3 1 2 .. Pie C har ts !
. C har t E dito r $ $ ..
, 6 G al l er y Pie . $
: " Pie C .. # R ep l ace S im p l e
15 2 ..
Establishment Sales by Years for Period 1990-1994
1990
1994
1991 1993 1992
Iraqi Dinars (Thousands)
$ $ ( C "3 # !
: % . ?1 <= 1994 R
9 ?. # ! 0
) . . E ) 1 F 1994 1 R
?.
5
F o r m at E xp l o de S l ice . $
5
. C har t E dito r : ..
Establishment Sales
16 2 ..
by Years for Period 1990-1994 1994
1990
1991 1993 1992
Iraqi Dinars (Thousands)
> 4 1 ? . D " 3 C # ! 0 ?. 9 3 .
2 0 6
F o r m at E xp l o de s l ice
: % . ?1 I n s ide S l ice ?. # # # " 1 (
, 6 ( C har t E dito r .. E ) 1 ) C har t
O p tio n s
)
5
: " D 1 + Pie O p tio n s !
. ?. # Text 1 (
) Label s Per cen ts $ 6 -
: " ; + Label F o r m at !
, 6 F o r m at 4
in s ide O u ts ide Ju s tified) Text V al u e 2 1 (
: 7
3 ?2 # : Po s itio n
;G I n s ide 2 . ( n u m ber s in s ide Texts O u ts ide . . ) ?. 1 .1 . . (
J B es t fitJ O u ts ideJ
. ?. # 1 (
3
) : C o n n ectin g Lin e fo r O u ts ide Label s
. > , . . # ) : A r r o w head o n Lin e
. " ) # .A (
) : Dis p l ay F r am e A r o u n d
.. " $ ) ; 3 1000 3 4 3I # ! @ & : V al u es : .. C " 3 # !
2 0 7
O k 4 C o n tin u e 4 3
5
17 $ % & & '
Establishment Sales by Years for Period 1990-1994 1994 23.0% 1993 21.3%
1990 17.7% 1991 1992
18.4%
19.5%
Iraqi Dinars (Thousands)
y ear 1998 1999 2 0 0 0 2 0 0 1 2 0 0 2
E xp o r ts 190 2 2 0 2 19 2 4 5 2 5 0
. 2002S8199 % " " 1 % % ! I m p o ts 180 2 0 0 2 15 2 30 2 4 4
: 2 #
# #
: " ;" .
. C l u s ter ed B ar s 3. ( .$ - ) 9 3 .. 3
. S tack ed B ar s 9 3 .. 3
D B ar C har t ! !
2 0 8
: % . ?1 3. 9 3 3
, 6 G r ap h
B ar . $
5
.1
.2
, 6 Defin e 4 V al u es o f I n div idu al C as es / C l u s ter ed : " D 1 + C l u s ter ed B ar / V al u es o f I n div idu al C as es
.1
: .. C " 3 # ! 260
O k 4 3
18 2 ..
5
240
220
200
Value
180 EXPORTS 160
# 1 S tack ed
2 0 9
IMPORTS 1998
1999
2000
2001
2002
YEAR
7 2 2 9 . 3 , 0 1 % . ?1 S tack ed B ar .. 0 .2 : .. C " 3 # !
7 B ar C har ts !
C l u s ter ed
19 $ % & & ' 600
500
400
300
200
Value
100
IMPORTS
0
1998
1999
2000
2001
2002
EXPORTS
YEAR
< (
) E xp o r ts " " ( # 0 ) <- (
) I m p o r ts " " # ) (
0 1
.. K 0 .. 1998 4 A ;G K C @ & 1 (C " 3 )
+ S er ies Dis p l ay ed . $ C har t E dito r $ $ : !
2 10
, 6 " "
( < 1 ) (C " 3 )Dis p l ay E xp o r ts " " (. . # = ) O m it C , " ( @ ) # = ) Dis p l ay C D "
C O m it E xp o r ts " " N &
5
4
4
. Dis p l ay # = ; G 2 , 1
4 F (# 0 ) Dis p l ay
1998 )
. O m it H
: " ) 1 !
: .. (
5
, 6
) , 6 O K 4 3
20 2 ..
600
5
500
400
300
200
Value
100
/ , -
0
, . $
: & & ' (
2 11
EXPORTS
1999
2000
2001
2002
IMPORTS
YEAR
B ar + * " # ) * I m p o r ts Lin e & ' " # ) * E xp o r ts ( : B ar /Lin e/A r ea Dis p l ay ed Data
O K * E xp o r ts Lin e I m p o r ts B ar ' 0
2 1$% & & ' 260 250 240 230 220 210
Value
200
EXPORTS
190
1999
2000
2001
IMPORTS
2002
YEAR
:
C " 3 # ! # ) 1 . 1 B ar . . P ie Line . . C " 3 " !
: " B ar . . C " 3 " ! " 9 ! 1 % . . F
Line . . C " 3 # ! "
G r ap h
Line
Ar ea . . C " 3 # ! "
G r ap h
Ar ea
P ie . . C " 3 # ! "
G r ap h
P ie
(Su mmar ies o f Sep ar at e Var iabl es C " 3 ) 3 #
Dat a E d it o r $ $ % 1 % " 2 g x2 x1 # # x1 10 0 20 0 30 0 4 0 0 50 0
x2 10 20 30 4 0 50
: " SP SS 5 1
g a b a b b
: " ; " .
. x2 x1 . B ar . . 3 .1
. x2 x1 " ( b a) % . Cl u st er ed B ar 3 . 2 . . 3 .2
: % . ? 1 x2 x1 . B ar . . 0 .1
D B ar Ch ar t s !
!
2 12
, 6 G r ap h
B ar
. $
5
, 6 ! Def ine 4 3
5
. Su mmar ies o f Sep ar at e Var iabl es / Simp l e
: " D 1
+ Def ine Simp l e B ar : Su mmar ies o f Sep ar at e Var iabl es
- . 7 x2 x1 # . # 9 3 6 =
% $ ' L + Ch ange Su mmar y 4 1 . N @ - . M ed ian, M o d e, No .o f Cases , M in. Val u e, M ax. Val u e … # M : B C "3 # ! O K
400
300
4 3
5
22 2 . .
300
200
Mean
100
0
30
X1
X2
.
x2 ) N 0 300 + " 1 .
x1 ) N 0
. 30 + " 1
? 1 x2 x1 " ( b a) % . Cl u st er ed B ar 3 . . . 0 .2 D B ar Ch ar t s ! : " D 1
213
!
, 6 G r ap h
: % .
B ar
. $
. Su mmar ies o f Sep ar at e Var iabl es / Cl u st er ed
, 6 ! Def ine 4 3
+ Def ine Cl u st er ed B ar : Su mmar ies o f Sep ar at e Var iabl es
5
: . . C "3 # ! O k
4 3
23 2 . .
5
400
367 300
200
200
Mean
100
0
20
a
37
b
X1 X2
G
.
(
Su mmar ies o f G r o u p s o f Cases ' ) * ) : 4
gend er 3 d eg 2 1 2 * sal ar y 1 " " d eg gend er sal ar y F ir st M al e 9 0 F ir st F emal e 70 T h ir d M al e 56 Seco nd M al e 65 F ir st M al e 8 5 Seco nd F emal e 60 Seco nd M al e 69 T h ir d M al e 57 T h ir d F emal e 50 F ir st F emal e 75 Seco nd F emal e 62 T h ir d F emal e 51 F ir st M al e 8 5
214
: " ; " .
. 7 & 0 ; . # B ar s 1 9 3 1 . . 3
.1
# ; 7 & # ; . # B ar s 1 9 3 1 . . 3
.2
. 0 6
D B ar Ch ar t s !
Def ine Simp l e B ar : !
: % . ? 1 # ; " . 0
, 6 G r ap h s B ar
. $
5
Def ine 4 3
5
. Su mmar ies f o r G r o u p o f Cases/Simp l e
, 6 F = 3 !
: " ; + Su mmar ies f o r G r o u p o f Cases
: & & ' ) * " - 74 72
72
70 68
Mean SALARY
66 64 62 61
60
Female GENDER
215
.1
Male
O K *
24 $ % & & '
5
D B ar Ch ar t s !
: % . ? 1
, 6 G r ap h s B ar
; " . 0 . $
.2
5
C " 3 0 6
# 7 Su mmar ies f o r G r o u p o f Cases/Cl u st er ed
. Cl u st er s 7 ; . ; . 3 0 6 # # 1
!
, 6 F = 3 !
Def ine 4 3
: " ; + Def ine Cl u st er ed B ar : Su mmar ies f o r G r o u p o f Cases
: & & ' ) * " -
O K * 5 25 $ % & & '
90 87 80
73
70
67
Mean SALARY
60
61 57
50
51
40
First DEG
216
5
Second
Third
GENDER Female Male
- SP SS 5 1 % . . , 1 ? , 9 4 6 =
# =
B 7 % 1 " ! & ) E XCE L # M % 1 . % . .
, " ! ) < 1 , " ) % 0 <= 1 % . ! & % $ '
% 1 - % < 1 % 1 A ! % 1 ; 4 = % 2
. ! &
B Ro w Dat a % 1 ( % 1 # P 1
Histogram ( 5 – 13 )
) # ) p ie Line B ar 1 % . .
G C " 3 G r o u p ed Dat a 1 1 % 1 (
) # ) +
? 4 # C % 1 H ! 1 5 1 7 SP SS 5 1 C U ngr o u p ed , ! 1
% 3 A 7 # , + B < " F r eq u ency T abl e +
. # (… J 0 # . J % 0 3 ) . . 5 #
> 0 ) Dat a E d it o r $ $ < 1 # + t al l " + B ; " .
. (? 1 # ! 0 (1S4) 1 " ? 1 #
H ist o gr am !
217
, 6 G r ap h
: % . ? 1 + B H ist o gr am . $ 5 : " D 1
+
: 5 6 (
* $
O K *
26 $ % & & '
5
10
8
6
4
2
Std. Dev = 17.17 Mean = 68.2
0
N = 56.00 30.0
35.0
TALL
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0
80.0
85.0
90.0
95.0
100.0
Cl asses 7 8 2 " . 1 ; < ) * M id p o int s 7 8 2 " $ 9 : : 7 & ' > . ? @ @ 2 . 1 0 , . I nt er v al Wid t h 8 2 " & = 7 8 2 * = * < . Ch ar t E d it o r # # ) " H ist o gr am & & ' : / - ! < *
) *
218
!
, 6 F 3 Def ine 4 4 0 I nt er v al s Cu st o m 4 : " D 1
2 1 30 @ ) 2 # 2 " ) I nt er v al
+ Def ine Cu st o m I nt er v al s
wid t h
10 1 0 # .
: 2 = ) ; + 7 + % 0 3 E D " 3 100 @ ) Range 70 No. of Classes = = =7 Class (Interval) Width 10
Label s 4 I nt er v al axis ! : " D 1
C " 3 % 0 (
3 ; G
C N " co nt inu e 4
+ Label s !
, 6 !
: % " ) 1 2 7
T yp e M id p o int <- 1 Range
.1
. Decimal P l aces % 0 " " ) " 0 ! 1 $ ) ; 3
.2
. % 0 4 <- 1
. , 1 % 0 K 1 $ - Diago nal O r ient at io n
. . (
) O K
4 I nt er v al axis !
.3
C N " Co nt inu e 4 27 2 . .
219
•
:
16 14 12 10 8 6 4
Std. Dev = 17.17 Mean = 68
2
N = 56.00
0
90
80
-1
-9
00
0
0
0
0
0
0
-8
-7
-6
-5
-4
TALL
70
60
50
40
30
> .& ) (
No r mal Ch ar t E d it o r $ $ . . 3 H ist o gr am !
Ch ar t
O p t io ns
Disp l ay No r mal Cu r v e $ E K Disp l ay cu r v e . # ) 1 ! ; 3
B ox P l ot ( 6 – 13)
? ) M ed ian .
# % $ 3 ? 4 H !
. . # )
. ( . . % # # ! 0 4 1– 6 1
Dat a E d it o r $ $ C % " % 3 @ # x 30 20 31 35 10 0 8 0 79 55 50 60 9 5 4 5 39
y 4 7 66 77 9 0 55 62 8 0 9 9 4 3 8 7 9 2 70 4 0
cat a a a a a a b b b b b b b
z 20 60 50 8 0 10 0 70 8 9 35 65 4 0 55 69 4 0
g a b a b b a b a b a b b a
: " SP SS 5 1
gend er f f m m m m m f f f f m m . x " B o x P l o t s . . ; " .
.1
. y x " B o x p l o t . .
.2
. g (b a) z 0 B o x P l o t . .
.4
. cat b a 0 ; y x " B o x P l o t . .
220
: 6 #
.3
0 # < " 3 g ( b a ) z 0 B o x P l o t . .
. f 7 O M m " A 1 @ .
:
.
.5
: " ? 1 # ; " . 0 .1
B o xp l o t / - ! G r ap h s B o x p l o t . $
- 7 ) Simp l e ? su mmar ies o f Sep ar at e Var iabl es 6 Def ine Simp l e bo xp l o t : !
. ( x " % ) Cl u st er ed
, 6 F = 3 !
: " D 1
Def ine 4 3
+ Su mmar ies o f Sep ar at e Var iabl es
Label Cases by 2 # A B o xes Rep r esent # A
3 (. . ) , 6 ) 9 $ . " Label 3 1 G 3 . , ) 9 $ . , @
? 2 # ) # A
: . . C "3 # ! O K
221
4 3
28 $ % & & ' 120
80
M a x . = 1 0 0
Q 3 = 7 9 IQR=Q3-Q1 =4 4
100
60
40
M e d ia n = 5 0
20
Q 1 = 3 5 M in . = 2 0
0 N=
D 1
+ B o xp l o t !
13
X
, 6 G r ap h s
: " ? 1 ; " . 0 .2
B o x p l o t . $
: "
Def ine Simp l e B o x p l o t : Su mmar ies o f !
, 6 Def ine 4 3
: D 1
: . . (
222
+ Sep ar at e Var iabl es )O K
4 3
29 2 . . 120
100
80
60
40
20 0
N=
13
13
X
Y
, ' $ 8 , ,
G r ap h s
Su mmar ies o f Sep ar at e Var iabl es !
: " D 1
: 7 & ' > . : 1 & @ 2 .3
, 6 !
D B o x P l o t !
Def ined
, 6 B o xp l o t
4 3 Cl u st er ed ?
+ Def ine Cl u st er ed B o x P l o t : Su mmar ies o f Sep ar at e Var iabl es
Cat ego r y Axis # 2 @ ; B o x Rep r esent 6 -
. C " 3 D # +
: . . (
)O K
4 3
30 $ % & & '
120 100 80 60 40 20
X
0
N=
6
6 a
223
CAT
7
7 b
Y
!
D B o x P l o t ! Def ined
: % . ? 1 ? 1 ; " . 0
, 6 G r ap h s B o xp l o t
.4
4 3 Simp l e ? Su mmar ies f o r G r o u p o f Cases
Def ine Simp l e B o x P l o t : Su mmar ies f o r G r o u p o f !
, 6
: " D 1
: . . (
)O K
+ Cases
4 3
31 $ % & & '
120 100 80 60 40
Z
20 0
N=
G
!
D B o x P l o t ! Def ined
6
7
a
b
: % . ? 1 > ; " . 0 .5
, 6 G r ap h s
B o xp l o t
4 3 Cl u st er ed ? Su mmar ies f o r G r o u p o f Cases
Def ine Cl u st er ed B o x P l o t : Su mmar ies f o r G r o u p o f !
, 6
: D 1 +
224
: & & ' (
O K *
32 $ % & & '
120 100 80 60 40
GENDER
Z
20
f
0
N=
3
3 a
3
4
m
b
G
S c atte rp l ot ( 7 13)
9 . 3 1 1 2 = ) # % . . N # )
. $ - # $ N ) 1 @
SP SS 5 1 Dat a E d it o r 2 % " %
225
: 7 #
3 @ #
: "
y
79 74 10 4 8 7 9 5 10 9 10 2 72 9 3 115 8 3 113 10 9
x1 26 29 56 31 52 55 71 31 54 4 7 4 0 66 68
x2 6 15 8 8 6 9 17 22 18 4 23 9 8 : $ -
x3 mar k er 60 a 52 a 20 a 4 7 a 33 a 22 a 6 b 4 4 b 22 b 26 b 34 b 12 b 12 b # $ ) 1 N
l abel c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 3 0 L @ " #
Simp l e . 1 $ - # $
D + ) # $ " # . 1 2 = ) # )
.1
1 2 = ) " . 1 $ - # $ 3 J C " 3 ) # $ . # % A
: Scat t er p l o t !
: % . ? 1
, 6 G r ap h s Scat t er . $
x1 y
Simp l e / - ! Def ine $ A . Simp l e ' A * / - : 9 . 5 @ scat t er p l o t
: 7
. $ - # $ # + F @ : Y Axis . $ - # $ # + F @ : X Axis
226
, 1 ! M ar k er = ) 1 # # D F @ : Set M ar k er by . $ - # $
D 7 $ - # $ . Label s ) D 2 # ) F @ : Label Cases by . , 0 A ) , 6 A & 1
3 & 1 + O p t io nal l abel Cases by Set M ar k er s by < " 3 : . . (
. , + # A
)O K
4 3
33 2 . .
120
110
100
90
MARKER
80
Y
b 70
20
30
40
50
60
70
80
a
X1
Label 2 " ) G C " 3 . . , 6 % - 3 6 -
: " ? 1 ) , 6 & J % - " )
!
227
. Ch ar t E d it o r $ $ C . . # > 4 1 . . , 6 Ch ar t
O p t io ns . $ Ch ar t E d it o r $ $ : " D 1
+ O p t io ns
•
•
: % = + Case Label s% - 3 (
3 6 Case Label s 7 . % - 3 4 & : o f f
Ch ar t $ $ , 1 R
) (
. % - 3 (
. H ) % - / 4 3 (
) :o n
) : As is
) . . . + 3 I < , 1 $ > # $
L 1 ! E d it o r
. ( 9 # 3 / , & ) .
. o n % - 3 (
3 ; G
1
: ; % - 3 ! 1 So u r ce o f Label s
) ) # # ) # # ) : I D Var iabl e . Simp l e Scat t er p l o t !
F " 2 Label
. % - ) 3 ) 2 # ) : Case Nu mber : " % - 3
(
) F = 3 !
O K
4 3
34 2 . .
•
120 c10
c12 c6
110
c13
c3
c7
100 c5 90
c9
c4 c11 c1
80
MARKER
Y
c2
b
c8
70
a 20
30
40
50
60
70
80
X1
Simp l e ! !
O p t io ns 4 1 9 $ 1 % - 3 (
3 : 1 6 =
Disp l ay Ch ar t Wit h Case Label s $ E Scat t er p l o t
. O p t io ns
) Sh o w Su bgr o u p s Scat t er p l o t : O p t io ns ! a 3 # ) 3 0 ? (
228
: 2 6 =
3 < $ ' ( Disp l ay O p t io ns
(
1 ? 1 b ? 1 ) F = 3 . . , # 0 "
. . . 9 = ) 1 3 (
% = ) 1 ( b
3 $ E 3 3 ( a 35 2 . .
120
c10
c12 c6
110
c13
c3 100
c5
90
c7
c9
c4 c11 c1
80
Y
c2 70
20
MARKER
c8
30
40
50
60
70
80
Total Population
X1
ˆ = B + B X C - . @ & : 3 6 = Y 1 3 1 Y 0 1 1 ( E(Y0 ) = B 0 + B1X 0 ) Y . % 9 5 9 ? # X1 ) !
: % . ? 1 1 . . "
, 6 Ch ar t O p t io ns (Ch ar t E d it o r $ $ ) . $ : " D 1
5
+ Scat t er p l o t O p t io ns
# $ . # . @ A ) + F it Line T o t al $ E 1 2 6 -
. M ar k er . b a 4 3 1 3 - 1 E + $ -
229
D 1
+ F it Line !
, 6 1 !
F it O p t io ns 3
: "
1 ) J ) 1 ) . Linear
9 ; G
Regr essio n 6 -
1 ( - C 4 M ! % ) 1 .
I nd iv id u al 3 ) Regr essio n P r ed ict io n Line M ean . " % 9 5
. ( Y0 = B 0 + B1X 0 + e0 " " 9 5 1 ( ) : (Case Label s 4 A ) 1 ) . . ( ) O K 4 co nt inu e 4 3 5 36 2 . .
120
+ 2 ) * <
& % 95
110
100
90
+ 2 ) <
& % 95
Y
80
70
20
30
40
50
60
70
MARKER Total Population 80
Rsq = 0.6648
X1
Scat t er p l o t : O p t io ns !
F it Line Su bgr o u p s $ E : 6 =
; F ( M ar k er # . ) . (
) 5 1 E
. < $ ' Disp l ay O p t io ns Sh o w Su bgr o u p s
230
O v er l ay $ # $
Y " $ # $ # # 2 C " 3 % 4 $ - . # # )
: % . ? 1 . . X3 X2 " K X1
D Scat t er p l o t !
: " D 1
, 6 G r ap h
+ O v er l ay Scat t er p l o t !
Scat t er
5
, 6 Def ine 4 3 O v er l ay
: ( X1 Y = ) Y-X P air s % B 4 # A . F - Y
. F - X1
. Y-X P air s C #
. X3 X2 # A . > 0 1
. % - 3 (
. F ) 1 % B 4 + > ) # ) : Swap P air ) Disp l ay Ch ar t wit h Case Label s O p t io ns 4
: . . (
) O v er l ay Scat t er p l o t !
120
c10
c5c9
c4 c1
80
c2
c12 c13
c6 c3
100
O K
4 3
37 2 . .
c7
c11
c8
60
40
0
c12 c13 0
c11
c9
c7
20
10
c3c6 20
c8 c4
c5
c10 30
40
X2
c2
X3 c1
50
60
Y 70
80
X1
• •
J C " 3 # X1 + ) C " 3 D " Y 7
231
.2
5
5
•
M at r ix $ - # $
M at r ix. . <=
. # # )
D Scat t er p l o t !
: " D 1
.3
: % . ? 1 X3 X2 X1 % "
, 6 G r ap h
Scat t er
+ Scat t er p l o t M at r ix !
5
, 6 M at r ix
C " 3 , A E @ 2 7 < Label mar k er # < " 3 : . . , 6 O K 4 3
.. .
38 2 . .
5
X1
X2
X3
$ $ C # > 4 1 . . Axis T it l es_ 3 @ &
Scat t er p l o t M at r ix !
, 6 Ch ar t
Axis . $ Ch ar t E d it o r
: " ! , 6 Disp l ay Axis T it l es $ E 1 7 Scal e Axes
232
E d it Sel ect ed
!
. . C "3 # ! O K
, 6 1 !
E d it 4 ) .
Co nt inu e 4 1 J u st if icat io n Cent er D Axis :
X1
X2
X2
X1
39 $ % & & '
X3
X3
X1
X2
X3
3-D ) 1 = $ - # $ .4
Y % " 3-D. . <=
. ) 1 = . . % = # ) 3-
233
D Scat t er p l o t !
, 6 G r ap h
: " D 1
: % . ? 1 X2 X1
Scat t er
+ 3-D Scat t er p l o t !
5
, 6 D
: . . (
)O K
4 3
5
40 $ % & & '
120 110 100
Y
90 80 70 80
70
60
50
X1
40
10
30
Ch ar t E d it o r $ $ % . $
X2
30
20
:1 6 =
1 ) 1 = . .
. . $ F o r mat 3D-Ro t at io n
: 2 6 =
Ch ar t O p t io ns 1 # $ @ C $ - # $ . . . @ A
F lo o r
D 3-D Scat t er p l o t O p t io ns !
, 6 Ch ar t E d it o r $ $ 2 . $
: . . C "3 # ! O K
4 1 Sp ik es
41 2 . .
120 110 100
Y
90 80 70 80
70
60
50
X1
40
: 3-D Scat t er p l o t O p t io ns !
30
10
X2
20
30
Sp ik es D < " 3
. Cent r o id # $ . 4 C $ - # $ . . # . : Cent r o id
. O r igin # ! . C $ - # $ . . # . : O r igin
234
Data Exchange :% 0 " N ? # ) SP SS 5 1 0 " ` ! 1 E % 1 % 0 " . ASCI I R
. E xcel Lo t u s 1-2-3 1 1 !
5
!
5
. d B ase % 0 "
% 0 " M N , T ab-d el imit ed % 0 "
. M # $ 6 . 1 SP SS % 0 " . SYST AT % 0 "
. M % 1 . C % 0 " ( 4 ) ! M % 1 . % 0 " (L ) 7
5
5
5
Importing Data files ( 1 14 )
5 1 R
(E XCE L 9 7 5 H " ) : 1 #
$ 3 2 + mer ge " 4 T est H "
: # $ , 6 E xcel 9 7
. SP SS 5 1 C E xcel ! , 6 F il e O p en
235
T est H " ; " .
: % . ? 1 K 0
Dat a SP SS 5 1 . $
: " ; + O p en !
5
F il es o f T yp e J F il e Name T est H " 1 6 -
% 0 " # % 0 " 9 3 N L & 1 D 7 xl s . - % E xcel % 0 "
% 0 " ( SAV . - % Wind o ws 6 " SP SS 5 1 % 1 % 0 " ) SP SS(* .SAV) d B ase(* .d bf ) % 0 " Lo t u s(* .W* ) % 0 " SP SS/P C+ (* .SYS) DO S 6 " SP SS
. % 0 " G T ext (* .t xt ) % 0 "
: !
, 6 o p en 4 3
5
: 7
# H ! % / 9 / : Read Var iabl e Names F r o m T h e F ir st Ro w o f d at a . E xcel H "
. SP SS 5 1 C , " % 1 + 2
: Wo r k sh eet
. SP SS 5 1 C , " % 1 ) M : Range
Dat a E d it o r $ $ % 1 , 6 SP SS C E xcel H " # O K
4 3
5
: "
. SAV . - SP SS H " 1 H " 4
:
236
O p ening E xcel !
Range # % 1 ) Range 3
.1
: 5 , 6 (A1:A3 <= ) Dat a So u r ce
Wo r k sh eet Sh eet 1 <- 1 Sh eet 2 <= H " # 3 2 +
+ 2
F 9 % 1 - O p ening E xcel Dat a So u r ce !
.2
. 2
F % 1 Range
# Read Var iabl e Names F r o m T h e F ir st Ro w o f d at a $ E 3 3
.3
SP SS H " # 2 # E H @ H E xcel H " % / E 1 . , 3 <- 1 @ % / @ A
D H # E E xcel H " - > 0 1 3
.4
4 D E xcel 5 1 # SP SS 5 1 C H " 3 U niq u e
) # - @ A 4 8 - ? . 2 8 3 3 4 Ch ar act er s . SP SS 5 1 C H " 3 Label "
E xcel 5 1 , " ; " . % 1 # " 6 1 . 1 E xcel H " % 1 . $ E d it P ast e
SP SS 5 1 C # - E d it Co p y
.5
/ 6 = ; SP SS 5 1 C % 1 # Dat a View $ $
4 % 2 6 =
, 3 <- 1 @ / , 6 %
N F ; Nu mer ic + ) N SP SS % @ - N
. Z " 3 4 A # 1 2 Dat a E d it o r $ $ 4 % " St r ing ( T ext F il es R
5 1 M S-DO S E d it o r R
!
!
% 0 " ) : 2 #
5 ) . 3 , A % 1 + H "
: " % 1 # ! 0 " Sp aces % G 0 % 2 Var .t xt E 1 4 M S-DO S
237
x1 12 16 29
x2 x3 30 33 4 5 60 64 8 8
O p en F il e !
: % . ? 1 SP SS 5 1 C F = 3 H "
, 6 F il e Read T ext Dat a
F . $ F il e
. F = 3 !
T ext I mp o r t wizar d
238
O p en
. $ : " D 1
5
+
Dat a 1 9 . F 4
F il es o f t yp e # T ext H " N ;
!
, 6 F = 3 !
O p en 4 3
5
: " (st ep 1o f 6)
: 2 $ % + & ' ) " 0 $
239
Next *
5
# ) + Del imit ed $ H o w ar e yo u r Var iabl es ar r anged ? #
. (Z .… J e J . 9 4 J 9 4 ) ) N # ! , 1 # ! 0 % "
. yes $ Ar e Var iabl es Names incl u d ed at t h e t o p o f yo u r f il e?
#
: " 3 9 . C # - Next 4 3
5
/ 1 t h e f ir st Case o f d at a B egins o n Wh ich Line Nu mber ? # . % / R
! # . H " . 1 C
E ach Line Rep r esent s a $ H o w ar e Yo u r Cases r ep r esent ed ? #
( F ); 7
. Case . 9 % 3
S # $ E H o w M any Cases Do yo u want t o I mp o r t ? #
. % -
: " Wizar d ) 1 9 . C #
24 0
Next 4 3
5
% G 0 " ) 2 E Del imit er # ! 0 N 9 . F
6 = C ) Sp ace $ E 2 E d it R wizar d
!
5 ) # & 3 % 1 # ! 0
. (5 1 # 1 2 < " $ ' % 6 )
9 . C # - Next 4 3
" 1 % + Name &
5
F o r mat N 9 . F
Var iabl e Name " N 1 ! # 0 Dat a P r ev iew
. Dat a F o r mat
24 1
Wizar d 9 9 . C # - Next 4 3
% 1 C " 3 # 1 , 1 . (
% 1 !
5
4 1G
Wo u l d Yo u Lik e t o sav e T h is F o r mat f o r # ' 3 1 P Yes $ ' 9 $ 1 9 7 (t p f . ) ) H " ! 4 Sav e As F F u t u r e U se?
9 . H " 1 3 9 % 1 C " 3 , 1 . < 1 4 ! N
Do es Yo u r T ext F il e M at ch a # ' C " 3
Yes 1 1 & 7 Wizar d C
. ! H " N - B r o wse 4 P r ed ef ined F o r mat ? . NO
:
:
24 2
$ % 1 !
4 1G )
Dat a E d it o r # # ) 7 . = C $ F inish
*
5
E x porting Data F iles ( 2 14 ) ! + * D - . E ' / & * ? @ F ' 7 . & ) SP SS 7 2 -
. G . - H 7 . 7 2 I
SP SS(* .SAV) . G . > . - H 7 . 7 2 I SP SS 7.0 (* .SAV) . DO S $ SP SS 7 . 7 2 I SP SS/P C+ (* .SYS) . T ext J - 7 2 I T ab-d el imit ed (* .d at ) F ixed ASCI I (* .d at ) E xcel (* .xl s) . 1، 2، 3 7 - H Lo t u s1-2-3(* .w* ) . I V I I I I I 7 - H d B ase(* , d bf ) :
.1
.2
.3
.4
.5 .6 .7 .8
( ) : 3
SP SS G . Dat a E d it o r # # ! 5 @ h o u seh o l d .sav E
: " ; " .
. E xcel 5 C H " !
. M S-E d it o r R
D 1
, E ,
24 3
+ SAVE AS !
!
5 ) C H " !
: % . ? 1 E xcel 5 1 C H " ! , 6 F il e Sav e As . $
.1
.2 5
: "
.1
Sav e as T yp e " E L $ F il e Name " E $ K & * C $ 9 0 . xl s & 0 @ E xcel 7 2
# 3 2 C % / @ A wr it e v ar iabl e names t o sp r ead sh eet $ E 3
. # . % / 4 A C + ' $ E 3 , # . E xcel
" @
0 " + E xcel % 0 " ! 1 H " 4 Sav e 4 3
. xl s . - 1 - > 0 1 sav . - h o u seh o l d
5
mer g1
P at h H " ? 2 F il e O p en E 1 E xcel 5 1 h o u seh o l d H " L : " E xcel 2 , 6 7
(E xcel C ! 3 ) C 9 . > 0 M S-E d it o r C H " !
. ) Sav e Dat a As !
Sav e as T yp e # T ab-d el imit ed
.2
H " H @ + T ab-d el imit ed ! 1 H " 4 Sav e 4 3 . h o u seh o l d H "
H " , 6 J d at . 1 < @ h o u seh o l d E 1 mer g1 " # 1 0 " " . # $
24 4
M S-E d it o r D 3 1 # ! 0 1 h o u seh o l d
S y ntax C o m m and s
- K !
, " 3 # ! 6 )
- % ) 0 " F # = 7 Co mmand Langu age 1 -
7 Synt ax F il e H " J o bs % ) 0 4 1 L " F SP SS @ C " 3 + T ext F il e R
!
. % 3 + 0 % 2 + , 3
H " 3 9 1 3 : S y ntax F ile (115 )
: F 1 3 3 9 3 ; ( 1 ) Co mmand s 1 . ( . ) 9 0 1 , . 1 # 1 ;
•
= 3 ? @ < " 3 J ( / ) Sl ash = ) 1 # ! 0 Su b Co mmand s 3 0
•
. % " " / 1 ;
•
. < 3 # # 1 2 Sl ash
. . ; ; Q u o t at io n M ar k s > 1 2 = 3 1 ! R Wind o ws % 3 A 3 6 (
•
1 $ ) " ! 0 3 1 ) " ( . ) 9 0
•
. 4 80 3 H " . # . 4 -
. Regio nal Set t ing 9
•
. SPSS Synt ax r ef er ence G u id eC f # 5 1 1 # ! 0 C " 3 H 2 " C ommand S y ntax
( 2– 15 )
M - 5 1 1 " . " ! 0 ) C B 1
. 1 = #
E 1 ) - K 3 < @ 3 . SP SS 5 1 . Dial o g bo xes !
: H "
1
. 5 1 % Lo g Z
. J o u r nal F il e Z
H " / 1 . # , F : Dialog b ox es
•
• •
( 1 – 2 – 15 )
H " ! P ast e 4 # ) ) - !
L 0 K
: # L @ synt ax F il e
Y X # A 7 ( 1 – 4 S 10 ) 1
3 # % 1 > 0 : 1 # % ) 0 @ !
1 . 1 H " / 1 ; G Dat a E d it o r $ $ . Y/X Co ef f icient s % = ) B
. ANO VA 1 # " # B
24 5
: .1
.2
. Du r bin-Wat so n # ) B !
, 6 Anal yze
: St at ist ics !
: % . ? 1 K 0
Regr essio n Linear . $ : " D 1
.3 .1
+ Linear Regr essio n
% $ St at ist ics F = 3 !
. R2 B ANO VA 1 # " # M o d el F it
•
. B ) E st imat e
. DW # ) Du r bin - Wat so n
Synt ax F il e H " L Linear Regr essio n !
•
•
P ast e 4
: " D 9 - ! ( @ E 1 )< "
.2
.3
( ) 3
DW# ) F il e Sav e As
ANO VA_ R2 )
'
Synt ax E d it o r + @ $ 8 & # $ M . < E ' . SP S & 0 @ 5 @ ( SP SS Synt ax F il e ) 9 * E $ & * $ ! " # L og ( 2 2 15 )
<= - ! A ; " + 0 3 5 1 % Lo g Z
: " 5 1 % l o g , 6 A ; K # 12
24 6
!
, 6 E d it
.Viewer !
!
O p t io ns
Dat a E d it o r 9 . $
C # = O p t io ns !
5
. O p t io ns
Viewer 9 3
, 6 7 . < $ ' A Disp l ay Co mmand s in t h e Lo g $
5
: " Viewer
$ $ ! A ; " + % ? , 6 # ) . O K
4
5
5
.Viewer %
. Lo g Z . 1 H " ; " . 1 # > 0 Linear
24 7
!
O K
4 1 # " 2 1 . ? 1 K 0
: 2 #
5
: " v iewer $ $ - % , 6 Regr essio n
Lo g
$ $ . $ F il e
New Synt ax 1 H " L
5
. D " ) 0 > 4 1 SP SS Viewer $ $ Lo g
5
. SP SS Viewer
. ( Z 1 <= ; G ) , 1 ; G # " 6
5
. E d it P ast e Synt ax 9
5
. E d it
Co p y Viewer 2
. ) 1 D 9 0 = 5 Synt ax H " 4 D " 3 sp ss.j nl C J o u r nal
5
5
J ou rnal F ile ( 3 – 2 15 )
F il e , " " # = 0
H " L 7 ( C:\WI NDO WS\T E M P @ - ? 2 @
) H " / 3
Synt ax H " H " E 1 5 H " 4 E . # 1 " . G H 1 E d it O p t io ns G ener al 4 1 5 1 # ) (
. % 2 + D $ D 3 7 SP S . E 1
1 1 J o u r nal F il e % 3 P 1 : 6 =
. H " ? 2 1 7 Dat a E d it o r $ $ . $
(< $ ' A ) Reco r d Synt ax in J o u r nal $ E ; J o u r nal F il e 9 0 . 5 1 ; !
: 4 . 7
/ 1 1 2 ) % " 9 0 4 : Ap p end
. SP SS 5 1 . " # = 9 0 4 : O v er wr it e
24 8
Linear
. J o u r nal F il e Z . 1 H " ; " . # # "
!
O K
4 # # " 2 1 . ? 1 K 0
: 3 # 5
. SP SS Viewer $ $ - % , 6 Regr essio n E , N , $ , F il e O p en O t h er , ' SP SS Viewer , # # $ 8 & # 5 : E ! C:\WI NDO WS\T E M P > % sp ss.j nl
7 . E K * R e g r e s s io n @ 2
. H 1 3 D 1 6 0 - 1 ; G
# sp ss.j nl H " L
5
Synt ax H " H " E 1 H " 4 1 . 1 > D - ( 4 Z ) # . 3 D $ D 3 SP S . -
" + ) O v er wr it e # j o u r nal f il e 4 N : 6 =
. (.
T o R u n c ommand sy ntax $ ( 3– 15 )
F il e
: % . ? 1 D / 4 + (5 1 $ ) H " $ Synt ax 1 < 1 4 Synt ax F il e H " L
5
7 5 1 $ Ru n SP SS Synt ax E d it o r $ $ . $
5
O p en
. . $
: %
. H " $ : Al l
. H igh l igh t ed ( " " 6 ) 9 $ : Sel ect io n . Cu r so r $ ' ? 2 $ : Cu r r ent
. H " , C $ ' ? 2 $ : T o E nd
0 1 H " ; " . ( Y X @ ) # # % 1 > 0 : 4 #
: % ) 0
ANO VA 1 # " # B Y/X Co ef f icient s % = ) B
.1
. Du r bin-Wat so n # ) B
24 9
. Y X 1 2 = ) L @ + Scat t er p l o t $ - # $
. Y 2 N X 2 N B
$ $ , A 2 Y X ( : % . ; 1 !
1 Synt ax F il e H " L
5
P ast e 4 # # " , 0 2 1 . 0
5
Dat a E d it o r $ $ . $ Y X " Scat t er p l o t . .
5
Linear
Simp l e !
.3
! " . # ) ( SP SS 5 1 Dat a E d it o r
.F il e New Synt ax
!
1 ) F = 3 # " H "
.2
. < Q 0 H " - ! Regr essio n
L 0 Def ine 4 G r ap h s
Scat t er
Simp l e . Scat t er p l o t
Y Axis : 2 D " Y Simp l e Scat t er p l o t !
5
. H " C Scat t er p l o t @ A P ast e 4
5
. X Axis : 2 D " X
. $ Y X # 2 ? !
L 0 Anal yze
Descr ip t iv e St at ist ics
5
F r eq u encies
. F r eq u encies
$ E ` Var iabl e(s) 2 C Y X # F r eq u encies !
5
.Su m $ St at ist ics !
5
. St at ist ics !
L 0 St at ist ics 4 . Disp l ay F r eq u ency T abl es
H " C F r eq u encies @ A F r eq u encies !
P ast e
4
5
@ Synt ax1 @ E 1 H " C " 3 # ! Synt ax E d it o r 9
5
.
. 3 F il e Sav e As . $ H " 4 J 1 " . = : E @ I !
25 0
7 J SP S . - 1 (t h r ee j o bs <= )H "
: , G 8, ) , * " , - < @ 2 $ A * + @ $ 8 & #
Ru n Al l ' * 5 R e g r e s s io n
Model Summaryb M o d e l 1
R .900a
RS q u a re .8 10
a . P r e d ic to r s : ( C o n s ta n t) , X b . D e p e n d e n t V a r ia b le : Y
A d ju s te d RS q u a re .7 8 7
S td .E rro r o f th e E s tim a te 8 .8 2
D u r b in - W a ts o n 1.8 8 5
ANOVAb M o d e l 1
S u m o f S q u a re s 2661.050 622.950 3 284 .000
R e g r e s s io n R e s id u a l T o ta l
d f
M e a n S q u a re 2661.050 7 7 .869
1 8 9
a . P r e d ic to r s : ( C o n s ta n t) , X b . D e p e n d e n t V a r ia b le : Y
F 3 4 .17 4
S ig . .000a
Coefficientsa
M o d e l 1
U n s ta n d a r d i z e d C o e f f i c i e n ts B S td . E r r o r 85.044 9 .9 7 0 1.140 .19 5
( C o n s ta n t) X
a . D e p e n d e n tV a r ia b le : Y
G ra p h 180 170 160 150 140 130
Y
120 110
20
30
40
50
60
70
X
F r e q u e n c ie s N S u m
25 1
V a lid M is s in g
Statistics X
10 0 4 9 1
Y
10 0 14 10
S ta n d a r d i z e d C o e ffic ie n ts Be ta .9 00
t 8.53 0 5.846
S ig . .000 .000
D 1 ! # " 6 1 Regr essio n 0 <= / 4 0
5
3 0 0 # 1 F G 3 0 - D < " 3 Ru n Sel ect io n
Ru n
. I 9 )
Cu r r ent ) G r ap h C " 3 $ ' ? 2
1 . . (
3 % . $
5 1 . . (
3 Ru n
. $
5
T o E nd 3 . . Scat t er p l o t
. Su m N " F r eq u ency :
Y X <- 1 Y1 X1 C " 3 < 0 9 = 1 . 1 1 G
: % . ; K E
. Dat a E d it o r 9 Y1 X1 # A
. t h r ee j o bs E 1 < 1 4 7 = % ) 0 + + H " L
. Y1 1 Y # X1 1 X # # 1 P 1 H " L . Ru n 5 1 $
25 2
5
5
5
5
Multiple Response Analysis
) % 0 3 4 0 " 5 1 <= D # # ' 3 ; 1 A
3 ; # A . 9 7 = % 0 . 9 D P 1 E (/ + J .
% E F 9 0 !
# K E D 9 H !
: # " 1 " K 9 ) % 1 - # " . 3 F r eq u encies
C " 3 # ! D : M u l t ip l e r esp o nse F r eq u encies 1 - 9 ) % ; "
.1
C " 3 # ! D : M u l t ip l e Resp o nse Cr o sst abs 1 - 9 ) ? . # ; "
.2
. . 1 + #
. ) 1 = ) 1 1 #
Multiple response Frequencies ( 1 – 16 ) 1
J , J # 1 1 ) " H ! 9
. # @ 0 ) 1
# " @ 0 R
$ - 3 ) 0 !
# % ) (
" ( 9 J J )
: 1 " 1 - D ( H ! 0 !
. F ; 1 : Multiple dichotomy method ! (
0 !
<= ) . ( ) 2 E H ! 0 !
# R
!
E
.1
E K 3 0 ! . ) E ) 0 ! # @ 0 ; . Dat a E B abyl o n j amh o r ya 1 0 1 1 0 0 1 0 0 1 1 0 1 0
d it o r $ $ % 1 ; . 1 . 1 # . 0 ! al ir aq q ad issya t h o wr a 1 1 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 : % . ? 1 0 ! # " 1 % &
Anal yze M u l t ip l e Resp o nse Def ine Dat a E d it o r $ $ . $ : " D 1
25 3
set s + Def ine M u l t ip l e Resp o nse Set s ! , 6
: F = 3 , 6 !
; % . 1 2 2
Var iabl es in set C , " Set d ef init io n % . Dich o t o mies Co u nt ed v al u e ) 1 ( ) ) 1
•
.
Name C " 3 4 ) 1 9 ) 1 - 3 / . 3 A
• •
M u l t r esp o nse set s C 3 @ & Ad d 4
•
. ( 3 " Label 3 / . 3 A ) p ap er
9 0 = p ap er E 1 9 ) 1 - 3 4 ! !
, 6
Anal yze M u l t ip l e Resp o nse : D 1
Cl o se 4 3
. ) 1 ,
F r eq u encies
: . 1 + # C " 3 # ! F = 3 !
25 4
+ M u l t ip l e Resp o nse F r eq u encies
. T abl es f o r C $ p ap er 1 - 3 # 1 2 7
M u ltip le R e s p o n s e G r o u p $ P E P E R
O K
4 3
( V a l u e D i c h o t o m y N a m e B A J A A L Q A T H
B Y M H I R D I O W
T o t a l 0
t a b u l a t e d
l a b e l
L O N O R Y A A Q S S Y A R A
o f
P c t
o f R e s p o n s e s
5
2
c a s e s ;
1 )
C o u n t 2
r e s p o n s e s
m i s s i n g
P c t
=
3
1
4
- - - - - - 1 6 7
v a l i d
H ) Z ... J amh o r ya B abyl o n
- 1
1
1
3 1 . 3 2 . 5 2 5. 0 8 . 8 2 . 5 - - 0 0 . 0
C a s e s 7 1 2 8 . 57 42 . 2 8 . - - - 2 2 8
. 4
6 . 1 9 6 . 6
c a s e s
:
Dat a E d it o r $ $ , 6 %
E 1 H ) $ p ap er E 1 , 3 E l ement ar y Var iabl es % 1 . % 9 3 @ M u l t ip l e r esp o nse Set 9 ) % 1 - 3
, 6 Label s % F 3 E # " % " 3
# % , 6 % / E # % / <- 1 + #
.1
.2
. % " 3 . )
; D ; " 1 . : Multiple C a teg or y Method !
( ; M " @ 0 H ! 3 1 + ) # ' C " 3 % 1 & 3 1 ) - , % ) > 0 # 1 C " 3 H !
= ) (
.2
0
: % , # 2 7 X3 X2 X1 1 = B abyl o n , 2 = J amh o r ya , 3 = Al ir aq , 4 = Q ad issya , 5 = T h o wr a E X1 ) # 1 1 H ! = # @ 0 ; A <= # 1 1 0 !
# @ 0 ; 4 D X3 3 D X2 1
9 0 2 D X3 X2 " 2 X1 " 1 R
! E . ,
Dat a E d it o r $ $ X3 X2 X1 % ; E 1 # " 1 1 . M issing Val u e X1 X2 1 3 1 2. 3. . 1 4 2 3. 1 4 1 3. < 1 , 1 $
5 5 % . ? 1 ( # + ) 0 !
Analyze M u lt i p le R es p o ns e
25 5
: "
X3 4
# " 1 % &
: 0 % 9 ) % ; "
D ef i ne s et s Dat a E d it o r $ $ . $
: " D 1
+ < 0
Def ine M u l t ip l e Resp o nse Set s !
C , " Set d ef init io n X3 X2 X1 = %
•
C 1 H ! % ) Var iabl es Ar e Co d ed As Cat ego r ies
•
Name C " 3 4 ) 1 9 ) 1 - 3 / . 3 A
•
M u l t r esp o nse set s C 3 @ & Ad d 4
•
, 6
. Var iabl es in set . ( Range 1 t h r o u gh 5 ) 5
. ( 3 " Label 3 / . 3 A ) p ap er
9 0 = p ap er E 1 9 ) 1 - 3 4 ! !
, 6
Cl o se 4 3
. ) 1 ,
F r eq u encies
Anal yze M u l t ip l e Resp o nse
C $ p ap er 1 - 3 # 1 2 7 M u l t ip l e Resp o nse F r eq u encies : . 1 + # C " 3 # ! !
G r o u p
l a b e l
C o d e 1
P c t C o u n t 5
2 3 4 5
0
4 3
$ P A P E R
C a t e g o r y
3
T o t a l
O K
. T abl es f o r
r e s p o n s e s
m i s s i n g
2 4
2 - - - - - - 1 6
o f
P c t
R e s p o n s e s 3 1 . 1 2 . 2 5. 1 8 . 1 2 .
3 5
0 8 5 - - - - 1 0 0 . 0
o f C a s e s
7 1 2 8 57 42 2 8
. 4 . 6 . 1 . 9 . 6 - - - - 2 2 8 . 6
c a s e s ; 7 v a l i d c a s e s . 0 % 9 ) % ; " E 1 D " ! < , 1 $ F
3 E Val u e Label " 3 X3 X2 X1 = % 2 / . 3 A : 6 =
. + # , 0 <- 1 , 6
? "
Multiple R esponse C rossta b s ( 2 – 16 )
E l ement ar y Var iabl es % " ? . # L ; "
. < ) , " M u l t ip l e r esp o nse Set s ) : 2 #
25 6
0 ! ; 1 G 1 " ) <- ' K (
0 # # % 1 > 0
1 ) 2 @ + Co l o r ed H F (
1
1
# @ 0 # % C @ & 1 (
# @ 0 - A 0
# @ 0 ;
: " Dat a E d it o r $ $ B abyl o n j amh o r ya al ir aq q ad issya t h 1 0 1 1 1 1 0 0 0 0 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 1 0 + # ' 1 H ! # @ 0 1 (? .
% , 6 7 . H ! 0 ! # ; o wr a co l o r ed 0 1 0 0 0 0 1 1 0 0 1 1 0 1 # ) B 4 + # ; G
.
# @ 0 @
# @ 0 # + co l o r ed " B #
# @ 0 # $ p ap er 9 ) % 1 - 3 C B E l ement ar y Var iabl e % ; " E 1 # # 9 . > 0 1 3 F <- ; J H !
9 ) % 0 ; " 3 D < " 3 ) M u l t ip l e d ich o t o my met h o d 0 % 9 ) .( M u l t ip l e Cat ego r y M et h o d
# @ 0 % H 0 ! H ! # @ 0 % 7 1 ? . # !
: % . ? 1 9 3
, 6 Anal yze M u l t ip l e Resp o nse Cr o sst abs . $ : " D 1
+ M u l t ip l e Resp o nse Cr o sst abs
K (0، 1) co l o r ed % 0 C C " 3 ; D < " 3 . F = 3 !
Def ine Ranges 4 1
. # C " 3 # ! O K
*
*
*
C
R
O
S
S
$ P A P E R ( t a b u l a t i n g b y C O L O R E D
25 7
T
A
1 )
B
U
L
A
T
I
O
N
*
*
*
4 3
1 A ? . # 3 H !
# % C " 3 # !
: % 6 = .1
( C a ses % - ) respond ent s 1 1 responses % 1 - $ E M u l t i pl e R esponse C rosst a b s !
O pt i ons 4 1 K
:P erc ent a g es B a sed on
C a ses % - 1 ) H ! C " 3 # ! (
: C a ses
•
: R esponses
•
. (7 # 3 ) R espond ent s 1
% 1 - 1 ) H ! C " 3 # ! ( . ( 16
!
# % 1 - 3 )R esponses
O pt i ons 4 1 ? . # = " # 1 C " 3 # !
:C el l P erc ent a g es % $ E M u l t i pl e R esponse C rosst a b s . H ! % N 1 " (
. ) % N 1 " (
. " % N 1 " (
25 8
) : R ow
) : C ol u m n ) : T ot a l
• • •
.2
3
9 ! 1 7 & 1 # ? . ; " . 1 # > 0
D 7 1 # " D a ta
E d i t or $ $ C g end er >
@ A ; F . " ! 0
1= M a l e 7 1 V a l u e L a b el 3 . 3 2 7 & # 2 # 1 )
Babylon jamhorya aliraq qadissya thowra 1 1 0 1 0 1 1
0
1 0 0 1 0 0
1 0 1 0 1 0 1
1 0 0 1 0 1 0
0
0 0
1 0 1 0
: " $ $ , 6 ( 2 = F em a l e
colored g end er 1 0 0 1 0 1 1
2
1 2 1 1 1 2
J H ! # @ 0 # $ p ap er 9 ) % 1 - 3 C B
#
% 9 ) % ; " E 1 # # 9 . > 0 1 3 F <- ;
M u ltip le 9 ) % 0 ; " 3 D < " 3 ) M u ltip le dichotomy method 0
.( C ateg ory M ethod
# @ 0 % H 0 ! H ! # @ 0 % 7 1 ? . # !
, 6 A nalyz e
: % . ? 1 >
; 9 3
M u ltip le R esp onse C rosstabs . $ : " D 1
+ M u ltip le R esp onse C rosstabs
. 1 G ender % K C olored % 0 C C " 3 6 # !
259
F = 3 !
O K
4 3 . ) ) 1 D ef ine R ang es 4 : B C "3
by C O by G E C P
L O R E D N D E R ateg ory = 1 M ale e r c e n t s a n d t o t a l s
$ P A P E R (tabu lating 1)
b a s e d
o n
r e s p o n d e n t s
# ) 4 1 3 (% - ) 1 C " 3 1 ' ; 6 -
. ( # ) 3 7 & 1 3 ( 1
26 0
26 1