This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
0 Proof. We sum over j in the first estimate (3.6), replacing u. J
by 0 and using (3.21). Thus it follows that K
115
D c
o0(g) 320
115
D# 126,129
d(x,y)
189
187
( x)
146
References
[AN1] S.Agmon and L.Nirenberg, Properties of solutions of ordinary differential equations in Banach space; Commun. Pure Appl. Math. 16 (1963) 121-239.
[Al1] W.Allegretto, On the equivalence of two types of oscillations for elliptic operators; Pac.J.Math. 55(1974) 319-328. [Al2]
,
Spectral estimates and oscillation of singular differential operators; Proc.Amer.Math.Soc.73(1979)51.
, Positive solutions and spectral properties of
[Al3]
second order elliptic operators;Pac.J.Math.92(1981) 15-25.
[APS] M.Atiyah, V.Patodi, and I.Singer, Spectral assymmetry and Riemannian geometry; Math. Proc. Phil. Cambridge Phil. Soc. 77 (1975) 43-69. [AS] M.Atiyah and I.Singer, The index of elliptic operators; I: Ann. of Math. 87 (1968) 484-530; III: Ann. of Math. 87 (1968) 546-604; IV: Ann. of Math. 92 (1970) 119138; V: Ann of Math. 92 (1970) 139-149, [BMSW] B.Barnes, G.Murphy, R.Smyth, T.West, Riesz- and Fredholm theory in Banach algebras; Pitman, Boston 1982. [BDT] P.Baum, R.Douglas, M.Taylor, Cycles and relative cycles in analytic K-homology; to appear.
[B1] R.Beals, A general calculus of pseudo-differential operators; Duke Math.J.42 (1975) 1-42. [B2]
,
Characterization of pseudodifferential operators and applications; Duke Math.J. 44 (1977) ,45-57 cor;
rection, Duke Math.J.46 (1979),215 [B31
,
.
On the boundedness of pseudodifferential.operators;
Comm.Partial Diff.Equ. 2(10) (1977) 1063-1070. [Bz11 I.M.Berezanski, Expansions in eigenfunctions of self-adjoint
operators; AMS transl. of math. monographs, vol.17, Providence 1968. [BW1] B.Booss and K Wojciechowski, Desuspension of splitting
elliptic symbols I,II; to appear. [BdM1] L.Boutet de Monvel, Boundary problems for pseudo-differential operators; Acta Math. 126 (1971) 11-51. [BS1] J.Bruening and R.Seeley, Regular singular asymptotics; Adv. [BS2]
Math. 58 (1985) 133-148. The resolvent expansion for second order regular ,
References singular operators; Preprint Augsburg 1985. [BS3]
, An index theorem for first order regular singular operators; Preprint Augsburg 1985.
[BC1] M.Breuer and H.O.Cordes,On Banach algebras with a-symbol; J.Math.Mech. 13 (1964) 313-324 .
[BC2] part 2 ; J.Math.Mech.14 (1965) 299-314 [Ca] A.Calderon, Intermediate spaces and interpolation,the complex ,
method; Studia Math.24 (1964) 113-190. [Ca1] T.Carleman, Sur la theorie mathematique de 1'equation de
Schroedinger; Arkiv f. Mat., Astr.,og Fys. 24B Nil (1934).
[Ct1] M.Cantor, Some problems of global analysis on asymptotically simple manifolds; Compos. Math. 38 (1979) 3-35. [CV1] A.Calderon and R.Vaillancourt,On the boundedness of pseudodifferential operators; J.Math.Soc.Japan 23 (1971) 374-378. [CV2]
, A class of bounded pseudodifferential operators; Proc.Nat.Acad.Sci.USA 69 (1972) 1185-1187.
[Che1]J.Cheeger, Spectral geometry of spaces with cone-like singularities;Proc.Nat.Acad.Sci. USA (1979) 2103. , M.Gromov, and M.Taylor, Finite propagation speed, ker[CGT] nel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds; J. Diff. Geom. 17 (1982) 15-53. [Ch] P.Chernoff, Essential selfadjointness of powers of generators of hyperbolic equations 12 (1973) 402-414
;
J.Functional Analysis
.
[CBC] Y.Choquet-Bruhat,and D.Christadolou, Elliptic systems in Ns 6-spaces on manifolds, elliptic at infinity; Acta Math.146 (1981) 129-150. [Cb1,2 1
L.Coburn, The C -algebra generated by an isometry, I:Bull. Amer.Math.Soc.73 (1967) 722-726; II: Transactions Amer.Math.Soc.137 (1969) 211-217.
[CL1]
L.Coburn and A.Lebow, Algebraic theory of Fredfholm opera-
tors; J.Math.Mech.15,577-584. [CM] R.Coifman and Y.Meyer, Au dela des operateurs pseudodifferentielles; Asterisque 57 (1979) 1-184.
[CC1] P.Colella and H.O.Cordes,The C -algebra of the elliptic boundary problem;Rocky Mtn.J.Math. 10 (1980) 217-238
.
329
References
[Cd1] E.A.Coddington,The spectral representation of ordinary selfadjoint differential operators;Ann.of Math.60 [CdL1]
(1954) 192-211. and N.Levinson, Theory of ordinary differential
equations,McGraw Hill,New York 1955.
[C1] H.O.Cordes,Elliptic pseudo-differential operators,an abstract theory.Springer Lecture Notes in Math.Vol.756, Berlin,Heidelberg,New York 1979. [C3]
,Techniques in pseudodifferential operators;mono-
[Cu]
,
[CQ]
, A matrix inequality, Proc.Amer.Math.Soc.ll (1960)
[CC]
,
graph,to appear.
On some C -algebras and Frechet-*-algebras of pseudodifferential operators; Proc.Sympos.P.Appl. Math.43 (1985) 79-104. 206-210.
[CD]
[CE]
On compactness of commutators of multiplications and convolutions,and boundedness of pseudodiffe-
rential operators; J.Functional Analysis,l8 (1975) 115-131. , A pseudo-algebra of observables for the Dirac equation; Manuscripta Math.45 (1983) 77-105. , A version of Egorov's theorem for systems of
hyperbolic pseudo-differential equations;J.of Functional Analysis 48 (1982) 285-300. [CEd]
, Ueber die Eigenwertdichte von Sturm-Liouville Problemen am unteren Rande des Spectrums; Math. Nachr.l9(1958), 64-71.
[CF]
, A pseudodifferential Foldy-Wouthuysen transform; Comm.in Partial Differential Equations, 8(13) (1983) 1475-1485.
[CFo]
,
[CG]
,
[CI]
,
[CL]
,
On maximal first order partial differential operators; Amer.J.Math.82 (1960) 63-91. On geometrical optics;lecture notes,Berkeley,1982 The algebra of singular integral operators in in; J.Math.Mech.14 (1965) 1007-1032.
On pseudodifferential operators and smoothness of special Lie-group representations;Manuscripta math. 28 (1979) 51-69
[CP]
.
, A global parametrix for pseudodifferential operators over In ;Preprint SFB 72 (Bonn) (1976)
330
References
(available as preprint from the author). [CS]
, Banach algebras,singular integral operators and
partial differential equations;Lecture Notes Lund,1971.(Available from the author). [CTJ
, An algebra of singular integral operators with two symbol homomorphisms;Bulletin AMS ,75 (1969) 37-42
[CWS]
,
.
Selfadjointness of powers of elliptic operators on noncompact manifolds;Math.Ann. 195 (1972) 257-272
[CPo]
,
On the two-fold symbol chain of a C -algebra of singular integral operators on a polycylinder; Revista Mat.Iberoamericana 1986, to appear.
[CDgl]
, and S.H.Doong, The Laplace comparison algebra of
a space with conical and cylindrical ends; To appear; Proceedings, Topics in pseudodifferential operators; Oberwolfach 1986; Springer LN.
[CEr] _,and A.Erkip, The N-th order elliptic boundary problem for non-compact boundaries;Rocky Mtn.J.of Math. 10 (1980) 7-24 .
[CHel]
,and E.Herman , Gelfand theory of pseudo-differential
operators; American J.of Math. 90 (1968)681-717. [CHe2]
[CLa]
[CM1]
Singular integral operators on a half-line; Proceedings Nat. Acad. Sci. (1966) 1668-1673. , and J.Labrousse, The invariance of the index in the metric space of closed operators;J.Math.Mech. 15 (1963) 693-720. and R.McOwen The C -algebra of a singular elliptic ,
problem on a non-compact Riemannian manifold; Math.Zeitschrift 153 (1977) 101-116 .
[CM2J
Remarks on singular elliptic theory for complete Riemannian manifolds; Pacific J.Math. 70 (1977) 133-141 , and S.Melo, An algebra of singular integral opera.
[CMe1]
tors with coefficients of bounded osecillation; To appear. [CSch]
and E.Schrohe, On the symbol homomorphism of a certain Frechet algebra of singular integral operators; Integral equ. and operator theory 120-133.
(1985)
331
References
[CW] _,and D.Williams, An algebra of pseudo-differential operators with non-smooth symbol ;Pacific J.Math. 78 (1978) 279-290
.
[CH] R.Courant and D.Hilbert,Methods of mathematical physics,I: Interscience Pub. ltd. New York 1955; II: Interscience Pub. New York 1966.
[Dd1] J.Dieudonne, Foundations of modern analysis,Acad.Press New York 1964
.
[Do1] H.Donnelly, Stability theorems for the continuous spectrum of a negatively curved manifold; Transactions AMS 264 (1981) 431-450. [Dgl] R.Douglas, Banach algebra techniques in operator theory; Academic Press, New York 1972. [Dg2]
,
Banach algebra techniques in the theory of Toeplitz operators, Expository Lec. CBMS Regional Conf. held at U. of Georgia, June 1972, AMS, Providence, 1973.
[Dg3]
,
C -algebra extensions and K-homology; Princeton Univ.Press and Tokyo Univ.Press, Princeton 1980.
[DG1] J.Duistermat and V.Guillemin, The spectrum of positive ellip tic operators and periodic bicharacteristics; [DS1,2,3 1
Inventiones Math. 29 (1975) 39-79. N.Dunford and J.Schwarz, Linear operators, Vol.I,II,III,
Wiley Interscience,New York 1958,1963,1971. [Dx1] Dixmier, Les C-algebres et leurs representations; GauthierVillars, Paris 1964. Sur une inegalite de E.Heinz, Math.Ann.l25 (1952)
[Dx2]
75-78.
[Dv1] A.Devinatz, Essential self-adjointness of Schroedinger operators; J.Functional Analysis 25 (1977) 51-69. [Du1] R.Duduchava, On integral equations of convolutions with dis[Du2]
continuous coefficients; Math. Nachr. 79 (1977) 75-98. , An application of singular integral equations to some problems of elasticity; Integral Equ. and Operator theory 5 (1982) 475-489.
(Du3]
,
On multi-dimensional singular integral operators,I:
The half-space case; J.Operator theory 11 (1984) 41-76
II: The case of a compact manifold; J. Operator theory 11 (1984) 199-214. [Du4]
,
;
Integral equations with fixed singularities; Teub-
332
References
ner Texte zur Math.,Teubner,Leizig,1979. [D11 J.Dunau ,Fonctions d'un operateur elliptique sur une variete compacte; J.Math.pures et appl. 56 (1977) 367-391
[Dyl] Dynin, Multivariable Wiener-Hopf operators; I: Integ.eq. and operator theory 9 (1986), 937-556; II: To appear. [Ei11 L.P.Eisenhart, Riemannian geometry; Princeton 1960. [Er1] A.Erkip, The elliptic boundary problem on the half-space; Comm. PDE 4(5) (1979) 537-554. [Er2]
, Normal solvability of boundary value problems in
half-space; to appear. [Es1] G.Eskin, Boundary problems for elliptic pseudo-differen-
tial equations; AMS Transl. Math. Monogr. 52 Providence 1981 (Russian edition 1973). [Fe I] C.Fefferman, The multiplier problem for the ball; Ann. Math. 94 (1971) 330-336.
[F11 J.Frehse,Essential selfadjointness of singular elliptic operators;Bol.Soc.Bras.Mat. 8.2(1977),87-107 [Fr1] K.O.Friedrichs, Symmetric positive linear differential equations; Commun.P.Appl.Math.11 (1958) 333-418. [Fr21
Spectraltheorie halbbeschraenkter Operatoren Math.Ann.109 (1934) 465-487 ,685-713 and 110 (1935) 777-779
.
[FL] K.O.Friedrichs and P.D.Lax,Proc.Sypos.Pure Math.Chicago,1966.
[Fh11 I.Fredholm, Sur une classe d'equations fonctionelles; Acta Math.27 (1903) 365-390. [Ga1] L.Garding,Linear hyperbolic partial differential equations with constant coefficients;Acta Math.85 (1-62) 1950 [Gf1] M.P.Gaffney, A special Stoke's theorem for complete Riemannian manifolds; Annals of Math. 60 (1954) 140-145 [GT1] D.Gilbarg,and N.Trudinger, Elliptic partial differential
equations of second order; 2-nd edition; Springer New York 1983. [GS] I.Gelfand and G.E.Silov, Generalized functions; Vol.1,Acad. Press, New York 1964.
[Gl1] I.M.Glazman, Direct methods of qualitative spectral analysis of singular differential operators; translated by Israel Prog. f. scientific transl. Davey, New York 1965.
[Gb] I.Gohberg, On the theory of multi-dimensional singular inte-
333
References
gral operators; Soviet Math. 1 (1960) 960-963. [GK] I.Gohberg and N.Krupnik, Einfuehrung in die Theorie der eindimensionalen singulaeren Integraloperatoren; Birkhaeuser, Basel 1979 (Russian ed. 1973).
[G1] B.Gramsch, Relative inversion in der Stoerungstheorie von Operatoren and ip-Algebren; Math. Ann. 269 (1984) 27-71. [G2J
, Meromorphie in der Theorie der Fredholm Operatoren mit Anwendungen auf elliptische Differentialopera-
toren; Math. Ann. 188 (1970) 97-112. [Gr1] G.Grubb, Problemes aux limites pseudo-differentiels depen-
dent d'un parametre; C.R.Acad.Sci.Paris 292 (1981) 581-583.
[Guil] V.Guillemin, A new proof of Weyl's formula on the asymptotic distribution of eigenvalues; Adv. Math. 55 (1985) 131-160. [GP1] V.Guillemin and A.Pollack, Differential topology; Prentice Hall, 1974. [GK] I.Gohberg and N.Krupnik,Einfuehrung in die Theorie der ein-
dimensionalen singulaeren Integrale; Birkhaeuser, Basel,Boston,Stuttgart 1979. [GLS] A.Grossmann,G.Loupias,and E.Stein, An algebra of pseudodifferential operators and quantum mechanics in phase space; Ann.Inst. Fourier,Grenoble 18 (1968) 343-368.
[Hgl] S.Helgason, Differential geometry, Lie groups, and symmetric spaces; Acad. Press, New York 1978.
[Hz1] E.Heinz, Beitraege zur Stoerungstheorie der Spektralzerlegung; Math.Ann.123 (1951) 415-438.
[H1] E.Herman, The symbol of the algebra of singular integral operators; J.Math.Mech. 15 (1966) 147-156 .
[H11] E.Hilb, Ueber Integraldarstellungen willkuerlicher Funktionen; Math.Ann. 66 (1908) 1-66. [HP] E.Hille,and R.S.Phillips, Functional analysis and semi-groups
Amer.Math.Soc.Coll.Publ. Providence, 1957. [Hz1] F.Hirzebruch, Topological methods in algebraic geometry; Springer, Grundlehren, Vol. 131, 1966, Berlin Heidelberg, New York.
[Ho1] L.Hoermander,Linear partial differential operators;Springer, Berlin, Heidelberg, NewYork 1963.
334
References
[Ho] L.Hoermander, Pseudo-differential operators and hypoelliptic equations; Proceedings Symposia in pure and appl. Math. Vol 10 (1966) 138-183. [Ho3]
, The analysis of linear partial differential operators; Springer New York I: distribution theory and Fourier analysis, 1983; II: diff. operators pseudo-
with constant coefficients, 1983; III:
differential operators, 1985; IV, Fourier inteoperators, 1985. [I1] R.Illner, On algebras of pseudodifferential operators in LP (,n); Comm.Part.Diff.Equ. 2 (1977) 133-141. [Kpl] I.Kaplanski, The structure of certain operator algebras; Transactions Amer.Math.Soc.70 (1951) 219-255. [K1] T.Kato, Perturbation theory for linear operators; Springer New York 1966. [K2]
, Perturbation theory for nullity, deficiency and other quantities of linear operators; Journal
[K3,
, Notes on some inequalities for linear operators;
d'Analyse Math. 6 (1958) 261-322. Math.Ann.125 (1952) 208-212. [Ke1] J.L.Kelley, General topology; Van Nostrand, Princeton 1955.
[KG1] W.Klingenberg, D.Grommol, and W.Meyer, Riemannsche Geometrie in Grossen; Springer Lecture Notes Math. Vol. 55 New York 1968. [Ko1] K.Kodaira, On ordinary differential equations of any even
order and the corresponding eigenfunction expansions; Amer.J.Math. 72 (1950) 502-544. [Kr1] M.G.Krein,On hermitian operators with direction functionals; Sbornik Praz. Inst. Mat. Akad. Nauk Ukr. SSR 10 (1948) 83-105. [Ku1] H.Kumano-go, Pseudodifferential operators; MIT-Press 1982.
[Le1] N.Levinson, The expansion theorem for singular self-adjoint linear differential operators; Ann.o.f Math.ser.2 59 (1954) 300-315 [Lk] R.Lockhart, Fredholm properties of a class of elliptic ope.
rators on noncompact manifolds; Duke Math.J. 48 (1981) 289-312. [LMgl] J.Lions and E.Magenes, Non-homogeneous boundary value problems and applications; I, II, Springer,
335
References New York 1972.
[LM] R.Lockhart and R.McOwen, Elliptic differential operators on noncompact manifolds; Acta Math.151 (1984) 123-234.
[Lw1] K.Loewner, Ueber monotone Matrixfunktionen; Math.Zeitschr. 38 (1934) 177-216. [MaM] R.Mazzeo and R.Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature; preprint Dept.Math.MIT, 1986.
[M0] R.McOwen, Fredholm theory of partial differential equations on complete Riemannian manifolds; Ph.D. Thesis, [M1] R.McOwen
Berkeley 1978. Fredholm theory of partial differential equations
on complete Riemannian manifolds;Pacific J.Math. 87 (1980) 169-185 .
[M2] R.McOwen
On elliptic operators in In ;Comm. Partial Diff.
equations, 5(9) (1980) 913-933. [MS1] E.Meister and F.O.Speck, The Moore-Penrose inverse of Wiener
Hopf operators on the half-axis and the quarter plane; J. Integral equations 9 (1985) 45-61. [Me1] R.Melrose, Transformation of boundary problems, Acta Math. 147 (149-236).
[MM1] R.Melrose and G.Mendoza,Elliptic boundary problems on spaces with conic points; Journees des equations differentielles, St. Jean-de-Monts, 1981. , Elliptic operators of totally characteristic type;
[MM2]
MSRI-preprint, Berkeley, 1982.
[Mi1] J.Milnor, Topology from a different viewpoint; Univ.of Virginia press, 1965. [Ms1] J.Moser,
On Harnack's theorem for elliptic differential equations; Comm.P.Appl.Math.l4 (1961) 577-591.
[MP1] W.Moss and J.Piepenbrinck, Positive solutions of elliptic equations; Pac.J.Math.55(1978) 219-226. [NSz1] B.v.Sz.Nagy, Spektraldarstellung linearer Transformationen des Hilbertschen Raumes; Springer, New York 1967. [Nb1,2 1
G.Neubauer, Index abgeschlossener Operatoren in Banachraeumen I: Math.Ann.160 (1965) 93-130; II:Math.
Ann. 162 (1965) 92-119. [vN1] J.v.Neumann,Allgemeine Eigenwerttheorie Hermitescher Funk-
336
References
tionaloperatoren; Math.Ann.102 (1929) 49-131. [Ne1] M.A.Neumark, On the defect index of linear differential operators; Doklady Akad.Nauk SSSR 82 (1952) 517-520. [Ne2]
,
Lineare Differentialoperatoren; Akademie Verlag Berlin 1960.
[Nt1] F.Noether, Ueber eine Klasse singulaerer Integralgleichungen; Math. Ann. 82 (1921) 42-63. [NW1] L.Nirenberg, and H.F.Walker, The null spaces of elliptic partial differential operators in Rn J. Math. analysis and Appl. 42 (1973) 271-301. ;
[Ppl] J.Piepenbrink, Nonoscillatory elliptic equations; J.Diff.Eq. 15(1974) 541-550. [Pp2]
, A conjecture of Glazman; J.Diff.Eq.24(1977) 173-176
[P1] S.C.Power, Fredholm theory of piecewise continuous Fourier integral operators on Hilbert space; J. Operator theory 7 (1982) 52-60
.
[PW1] M.Protter, and H.Weinberger, Maximum principles in differential equations; Prentice Hall, Englewood Cliffs 1967. [RS] M.Reed and B.Simon, Methods of modern mathematical physics; Academic Press, New York. I: Functional analysis,
1975; II: self-adjointness and Fourier analysis,
1975; III: Scattering theory, 1978; IV: Spectral theory, 1978; V: Perturbation theory, 1979 [Re1] F.Rellich, Halbbeschraenkte Differentialoperatoren hoeherer Ordnung; Proceedings International Kongr. Math. Amsterdam 1954 , vol.3, 243-250. [RS1] S.Rempel and B.W.Schulze, Parametrices and boundary symbo-
lic calculus for elliptic boundary problems without the transmission property; Math.Nachr. 105 (1982) 45-149. [R1] C.E.Rickart, General theory of Banach algebras; v.Nostrand Princeton 1960. [Ril] F.Riesz, Ueber die linearen Transformationen des komplexen
Hilbertschen Raumes;Acta Sci.Math.Szeged 5 (1930) 23-54.
[RN] F.Riesz and B.Sz.-Nagy, Functional analysis; Frederic Ungar, New York 1955.
[Rol] D.Robert, Proprietes spectrales d'operateurs pseudo-differentiels; Comm. PDE 3(9) (1978) 755-826.
337
References
[Sa1] D.Sarason, Toeplitz-operators with semi-almost periodic symbols; Duke Math.J. 44 (1977) 357-364.
[Schu1] W.Schulze, Ellipticity and continuous conormal asymptotics on manifolds with conical singularities; to appear; Math. Nachrichten. , Mellin expansions of pseudo-differential opera-
[Schu2]
tors and conormal asymptotics of solutions; Proceedings, Oberwolfach conference on Topics in pseudodifferential operators 1986; to appear. [Sk1] S.Sakai, C -algebras and W -algebras; Springer, Berlin New York 1971. [Ro1l W.Roelcke, Ueber Laplaceoperatoren auf Riemannschen Mannigfaltigkeiten mit diskontintuierlichen Gruppen; Math.Nachr.21 (1960) 132-149
.
[Schr1] E.Schrohe, The symbol of an algebra of pseudo-differential operators; to appear. , Potenzen elliptischer Pseudodifferentialoperato-
[Schr2]
ren; Thesis, Mainz 1986.
[Se1] R.T.Seeley, Topics in pseudo-differential operators, CIME Conference at Stresa 1968.
Integro-differential operators on vector bundles; Transactions AMS 117 (1965) 167-204 Ca [S1] H.Sohrab, The -algebra of the n-dimensional harmonic [Se2]
.
oscillator; Manuscripta.Math.34 (1981),45-70
.
C -algebras of singular integral operators on the
[S21
line related to singular Sturm-Liouville problem; Manuscripta Math. 41 (1983) 109-138. [S3]
,
Pseudodifferential C -algebras related to Schroe-
dinger operators with radially symmetric potential; Quarterly J.Math.Oxford 37 (1986) 105-115. [So] A.Sommerfeld, Atombau and Spektrallinien; Vieweg,Braunschweig 1957
[Sp1] F.O.Speck, General Wiener-Hopf-factorization methods; Pitman London 1985. [St1] M.H.Stone, Linear transformations in Hilbert space; Amer.
Math. Soc. Coll. Publ. New York 1932
.
[T1] M.Taylor , Pseudo-differential operators; Springer Lecture Notes in Math. Vol. 416, New York 1974 .
[T2]
, Pseudodifferential operators;Princeton Univ.Press, Princeton 1981
.
338
References
[Ti1] E.C.Titchmarsh, Eigenfunction excpansions associated with second order differential equations;part I,2nded. Clarendon Oxford 1062; part II, ibid. 1958. [Tr1] F.Treves,
Introduction to pseudodifferential operators and Fourier integral operators; Plenum Press,New York and London 1980
[Up1] H.Upmeier, Toeplitz,C -algebras on bounded symmetric domains; Ann. of Math.(2) 119 (1984) 549-576. [W1] A.Weinstein, A symbol class for some Schroedinger equations on
In
; Amer.J.Math.107 (1985) 1-21.
[We1] H.Weyl, Ueber gewoehnliche Differentialgleichungen mit Singularitaeten, and die zugehoerigen Entwicklungen willkuerlicher Funktionen; Math.Ann.68 (1910) 220-269. [We2]
, The method of orthogonal projection in potential theory; Duke Math.J. 7(1940) 411-444.
[Wd1] H.Widom, Asymptotic expansions for pseudodifferential operators on bounded domains; Springer Lecture Notes No 1152, 1985. [Wi1] E.Wienholtz, Halbbeschraenkte partielle Differentialoperatoren vom elliptischen Typus; Math.Ann.135 (1958) 50-80.
[Z1] S.Zelditch, Reconstruction of singularities for solutions of Schroedinger equations;Ph.D.Thesis,Univ.of Calif. Berkeley (1981).
339
Index
condition (xj),x=a,d,... 324
A-bounded 294 A-compact 294
covariant derivatives 134f, 322 curvature (Riemannian) 279f, 323
adjoint operator 3 adjoint relation 5
defect index 7
algebra surgery 239
defect spaces 6,38 definite case 41
boundary, regular 67 boundary condition 41,68,315 ,Dirichlet 53,68 ,Neumann 315
Dirichlet condition 53,68 operator 60,68 problem 87
realization 59
boundary space 44 bounded operator 1
domain (of an
Carleman alternatives 41
E-symbol 218f
unbounded operator) 2
change of dependent variable 93f
for periodic
Christoffel symbols 134,322 closed operator 2
for polycylinder
closing 39
closure of an operator 2
coefficients 227f algebra 235f elliptic differential expression 37
co-sphere bundle 170 covariant derivative 134,322
equivalent triples 93
commutator of differential expressions 133f
essential self-adjointness 123 of H0 103, 111
, compactness 137f
commutator ideal E 126,131 commuting unbounded operators 17 compactness criteria 71f of commutators 144
essentially self-adjoint 5
of H0m
105f,lll
expresssion (differential) 36
within reach 127,155,262 extension (of an operator) 2
comparison operator 61,127f comparison algebra 127f,157 , minimal 129,161f
4 (property) 293
comparison triple 128
formal adjoint 36 Fredholm domain 302
complete spaces,
with cylindrical ends 246
folpde 126,129
index 33,293
341
operator 33,180,293 inverse 180,295
maximum principle 91 minimal operator 37 minimal comparison algebra 129
distinguished 34,180 ,
multiplication operator 134
special 295
Frehse's theorem 118f
noncompact commutators,
Friedrichs extension 11,71f
algebras with 218f normal forms 93,94
fundamental solution 42,78
Sturm-Liouville 95,151 graph (of an unbounded operator) 2 Green inverse 161,181,318
order classes 30,267,318 ordinary diff.expression 37
, distinguished 181
Green's function 78f
periodic coefficients 154f,221 poly-cylinder algebra 228f
H-compatible expresssion 157,160
positive operator 14
Hs-comparison algebra 257,267f,315f
positivity of the Green's function 100,130
Harnack inequality 87f Heinz, lemma of 24
preclosed operator 3
hermitian operator 5 HS-chain 29
principal part 36 symbol type 266 symbol space 193
hull 191
projection 14
hypo-elliptic expression 37
positive square root 12
isometry, betw.Hs-spaces 31,268
reach, expression
indefinite case 41 irreducible C -algebra 130 K-invariant under H-conjugation 33,181 Landau symbols 320 Laplace comparison operator 93
within 127,155f,186,262f algebra within 266 general 266 real operator 10
realization,of a differential expression 35,37 regular endpoint 45 regularity, boundary 67f
limit circle case 41,53
Rellich's criterion 75,77,179
limit point case 41,53
resolvent 12
Loewner, lemma of 24
compactness 71f expansion of
maximal null space 47
of H-compat. expr.158
maximal operator 37
formula for As 139,163
342
set 12
square root of an operator 12
Riesz-v.Neumann extens.thm.8
strongly hypo-elliptic 38 Sturm-Liouville problem 51,53
second order express.on 0 132 secondary symbol space 193 rel.to formal symbol 207 local charac.195,211,214
subextending triple 76 summation convention 60 surgery, algebra 239f symbol of an operator 191,137
for Schroedinger opera-
of an algebra 191
tors on In
function 170
215f
self-adjoint operator 4 semi-bounded operator 10 separated boundary cdn's 48 singular endpoint 45,49 Sobolev space 61,157,159,251f first 128 on compact Q 157 on noncompact 0 251f
of integral order 279f local 272 Sobolev estimate 181f,184 imbedding 182,217,251 ,
comparison
algebra in 253,257,315 spectral density matrix 52 spectral family 15
spectral theorem 12f spectrum 13 essential 265
formal algebra 187,206 symbol space ffi
131,189,191,145
, principal 193
, secondary 193
systems of differential expressions 303f tensor 132,322 tensor products,
topological 226,229,303 two-link ideal chains 218f,309 unbounded operator 1 Vector bundles, comparison algebras on 303f
wave front space 161f,169f Weyl's lemma 39,42,60