9.9. The Case of Toeplitz and Circulanl Matrices which is (\1.32).
231
D
We n" w lum 10
inv~r",s
"fTo"l'lil'. "'~lr...
13 downloads
616 Views
85KB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
9.9. The Case of Toeplitz and Circulanl Matrices which is (\1.32).
231
D
We n" w lum 10
inv~r",s
"fTo"l'lil'. "'~lri<..,,;.
The" ....m 9.2n. If I> 1m" "" .<"m.' "n T ,,,,d .... ind " == O. t"""
for caeh E: > 0.
Pro"f . The sing u l~r \al ue~ "f T.- ' (") ~re J/ a; (j == I. . . . . n). Thus. by Theorem 9.23,
"
""j • ' (......' + •• •+ "'"')
F. X. = -a , n
" 1 Xl = •
Uj
2
n(n + 2)
".
a,_ (_":' + .. . + a:"
_ ( -'- + ... + -'-) ') . .. 1 " l
.
,
II
Si""e T (I.) is inv~nibk . we can invoke fom'u la (9.30) wilh t = - 2 and lbe Ii"'t of fonn"I'b (6,16) 10deduc" th~l
A< always " l
X; s
2/ (n + 21 , we "blain f""" Le",m~ 9.24Ih~1 ...... " -= O n+2w c1
1' ( IX. - i' I ~ c ) ::: -)
('n ) -
.
o
I f Iwind hl = t ~ I . lhcn T. (") need not be invertihle for all sufficienlly large dimensi""" ". We Iheref" re c"nsider lhe: M""",-I'enro>e in\'e""" T/ (b ). wbich c"inc ilb wilh T.-' (f» in lhe ca.", or in,-cn ibilily.
Th........m'l.27. If b 1!11,\ "" .<"m.' "n T ",UJ Iw;",l bl
~
I. II!.."/<,, ..",'I! ,- > O.
Pro"f . T1J<.o.... m 9,4 1ells us Ihal if Iwind l>] = A -==- I, It>..n l singular \'~l ues of T.(b ) converge 10 zero with e~l"~lenl ial 'I'<'ed, ,,/ ::: C.. - Y' (y > 0) for ( ::: t , while the remaining singular valu~ slay a....ay rrom ""ro. a / ~ J. > 0 f"r ( ::= + I. Thus, lhe singular val""" " f T/ (I. ) are
*
,
0.. ... 0. - . . . .. - " . -
,
".
" ; +1 " ;