Jaures Cecconi ( E d.)
Spectral Analysis Lectures given at a Summer School of the Centro Internazionale Matematico Estivo (C.I.M.E.), held in Varenna (Como), Italy, August 24-September 2, 1973
C.I.M.E. Foundation c/o Dipartimento di Matematica “U. Dini” Viale Morgagni n. 67/a 50134 Firenze Italy
[email protected]
ISBN 978-3-642-10953-9 e-ISBN: 978-3-642-10955-3 DOI:10.1007/978-3-642-10955-3 Springer Heidelberg Dordrecht London New York
©Springer-Verlag Berlin Heidelberg 2010 Reprint of the 1st ed. C.I.M.E., Ed. Cremonese, Roma 1974 With kind permission of C.I.M.E.
Printed on acid-free paper
Springer.com
CENTRO INTERNAZIONALE MATEMATICO ESTIVO (C.LM.E.) III Cielo - Varenna - dal 24 Agosto a1 2 Settembre 1973
SPECTRAL ANALYSIS Coordinatore: Prof.
J.
Cecconi
Quelques resultats d'analyse spectrale pour des operateurs differentiels a coefficients constants sur des domaines non bornes
Pag.
L. GARDING:
Eigenfunction expansions
»21
C. GOULAOUIC:
Valeurs propres de problemes aux limites irreguliers: applications
»
79
G . GRUBB:
Essential spectra of elliptic systems on compact manifolds
»
141
J.
Quelques resultats recents en Scattering
»
171
Theory of perturbations of partial differential operators
»
187
Spectral analysis of the Laplacian with a discontinuous coefficient
»
231
G . BOTTARO:
C. GUILLOT :
M. SCHECHTER: C. H. WILCOX :
1
CENTRO INTERNAZIONALE MATEMATICO ESTIVO (C .I.M .E.)
,
'"
.
QUELQUES RESULTATS D'ANALYSE SPECTRALE POUR DES OPERA TEURS
DIFF~RENTIELS A COEFFICIENTS
CONSTANTS SUR DES DO-
,
MAINES NON BORNES
GIANFRANCO BOTTARO
Corso tenuto
a
Varenna da1
24
agosto
a1
2
settembre 1973
GIANFRANCO
BOTTARO
Quelques resultats d ' analyse spectrale pour des op erateurs
a coefficients
differentiels
1.
constants sur des domaines non bemps
Nous connaissons Ie resultat suivant
Theor.
5i
A
est un operateur autoadjoint
espace de Hilbert c'est
a
de
domain~contenu dans un
H, il admet une diagonalisation canonique,
dire qu'il existe un operateur unitaire U
~J
H
H(A)dtt-
ou
j
H( ). )d
I:'"
est une integrale directe d
I
e space s de
6"(A)
Hilbert separables, (spectre de
U
a
(A)
U a la propriete suivante
f(A)
u( A)
j If( ').) a-(A)
c'est
@'
H( ~) est suppo se e fonction
f(
A)
U u(
f e s t une fonction de Baire sur
tels que
sur
est une mesure de Radon sur
A), la dimension des
mesurable Borel,
ou
t-
U u(
>. )
r
d
>. )
6"' (A)
~ <:
pour tous les u f H
:x>
dire cpe Uf(A)U* est 1 'operation de multiplication par
J
(T(A)
H(
x )d
r.
f
- 4 -
G. B ottaro
Garding [4] a expose une idee pour construire cette diagonalisation dans Ie cas d 'operateurs differentiels ellipt iques 2(Rn),
sur me
L
c'est
,r e e l d~fini A
a
dire
A=:, P , (i fx ,. 1
" ' i~~X
coefficients constants ) ,ou
,p 'e st urr po l.ynd-
n
'p o s i t i ~No u s savons que la t rans formee de Fourier
I I)
: L 2 (R n ,
~ L 2 (R n ,
A d'une
est une application unitaire qui diagonalise canonique.
a
En effet, si nous prenons
fa~on
non
A,
dom A =
on a
A
Au( ).) = p( )
O( )
•
La methode que Garding a propose pour construire la diagonalisa tion n
canonique est celle-ci
si
p(A) =
2..
a
i,j=l
p
defini pos itif, on considere
R(p)
= R+
ij
\
).j'
S
la variet e d'equation
H, t
on de f Lnf t;
t
p( ). ) = t , et on pose 2
H
Si
h.(t,.) J
t
= L (S
t
,w t ),
ou
dt d I,.}
t
est une base o rt.hono rmee pour
v
'~ J
R(p)
H
t
dt
- 5 -
G. Bottaro
ou (Vv)(t)
pour tous les
v
e
2
n
Vest sQrement unitaire et alors
2
W = V' /\
n
J
I) ~
: L (R ,
.
)
L (R ,
H dt t
R(p)
est aussi unitaire et on a
J5
I
(W Au)(t)
j
p().)QO)h.(t,1)dW J
t(vQ)t
.(t,A) t)h J
= t(Wu)(t)
•
t
5i nous connaissons une diagonalisation canonique, il est facile de construire une collection complete de fonctions propres generalisees pour
A, c'est
pour chaque la
fa~on
a
dire des distributions
Lf
.(t,.) > J
u t
~ (R ) .
n
Cf j
telles que
En effet 11 suffit d' exprimer (Wu) .(t) de J
suivante (Wu)/t)
pour chaque
n u ~ ~ (R ) ;
f / t , .) > et cela est possible, parce que
elliptique et par consequent
5
t
est compact.
theoreme de Fubini on a alors (Wu) .(t) J
J J -ei(x,~) u(x)ho
5
t
Rn
.(t,~)dx
J
d..>:. t
A
est
En appliquant le
J( 'f-() u x)
Rn
j
t, x dx
- 6 -
G. Bottar-o OU
'f. J
e la fonction suivante
Js
t
2.
Geci dit, voyons comment une telle idee est r~alisee pour
l'operateur dassique
-
J
2(Rn) L [2] et comment on peut laisser
sur
tomber l'hypothese que l'operateur
a coefficients
constants soit ilefini
sur tout l' e space. 11 est clair que pour un operateur 2(fi)(oun L est un ouvert de
A, ayant un domaine dense dans
n), R i l suffit de construire un
operateur unitaire 2 U : L (0.) -
2 n L (R ,
I
,
tel que p( A )(Uu)(A )
(U Au)( A)
pour chaque
u 6. dom
A parce qu ' apres cela, nous pouvons encore
appliquer l'idee que nous avons decrite: c'est d'une diagonalisation non
canoniqu~,
a
dire que nous avons besom
qui prenne la place de la
transformee de Fourier. Etudions done le cas de l'operateur de Laplace: on peut considerer comme base orthonormee pour harmoniques spheriques
2 L de la sphere unite
une collection d'
Ykj (k est le degre du polynome harmonique
- 7 -
G. Bottaro correspondant et nombre d
I
harmoniques spheriques de degre
en dimension 2 L (S
t
,~
t
n+2 k-2 n+k-2
j=l •••••••• N(k,n)
n.
k
(
n+k- 2 ) k
lineairement
est le ind~pendantes
peut prendre comme base orthonormee pour
On
) les fonctions ~
avec ).
Si alors nous faisons le calcul que nous avons decrit poor _construire une collection complete de fonctions propres gen~ralisees pour (-
4)
nous avons ik crkj(t,x) =( (2
l_n/2
) Ixl
J(n/2)+k_l
cette formule est obtenue en representant la fonction exponentielle au moyen les harmoniques spheriques et les fonctions de Bessel de premi~re espece. On
peut aussi
verifier
que
Cf k j e
n
LP(R ) si
Jv(r) = 0 (r-\);
connaissant l'expression asymptotique
Cf kj
€.
C
<»
n
(R ) , parce que Ix,k
(j x l
A
en outre
Ykj (x) est un po l ynfhne harmonique et
{t)l-k-(n/2)J
est une fonction analytique en
2n p >-n-::'::""- , en - 2
(n/2)+k-l
(Ix/[t)
(tlx~).
partir de l'operateur qui diagonalise canoniquement on peut obtenir
d'une
fa~on
naturelle l'expression 5
f(x) = lim 5-)00
J o
,
L- f
kj
kj
(t)
If k
j
2 n (t,x)dt, pour chaque f €. L (R );
- 8 -
G. Bottaro
J
ou
f(x)
5(0,s) s
P(s)f = .
J 2. 0
f
kj
kj
(t ) cPkJo(t,X)dt I
est UDe resolution de l'identite pour (-~ ). Nous avons ainsi demontre 1e Theor-
L'operateur (_
Ll )
avec domain It 2
(R
n)
admet une
diagona1isation canonique
definie par
(WOk (t ) = j
lim
s-gO
J
f(x) CfkJo(t,x)dx
5(0,s)
ou
sont des fonetions propres generalise.! pour (-I!:.) qui sont
chaque
f
e
2
n
L (R ,
I I) s
f(x) =
lim
J
s~""O
nous avons 1a synche se suivante
- 9 -
G. Bottaro
3.
Le probleme que nous etudions maintenant est celui de construire l'operateur qui diagonalise
-1:1
dans le cas ou le domain de
l'operateur n'est pas constitul de l'espace
Rn
fonctions definies sur tout
, mais seulement sur une partie
[2].
Nous etudierons
dans un premier temps quelques cas particuliers : a)
Pour le laplacien ayant comme domain
~
ox
f (x , •••••• ,x
n
1
n-
l' O)=O}ou Q =J(x •••• x )€ Rn:x > 01 (1 n n J
la transformee de Fourier est bien remplacee par l'operateur unitaire suivante
oU
si
f f C oP (.1L) ou o
b)
D'une
fa~on
1
f(x) F(x. ~ )dx 11. n-l -i Z" x A j=l j j cos x ~ F(x. ~ ) = e
(Uf)( ).) =
n
n
analogue. si le laplacien a comme ensemble de
definition
r-empLacon s L' ope ra t eu r de Fourier par
2
U : L (Q) _
2
n-l )( M)
L (R
- 10 -
G. Bottaro
0\1
t e c" (0.) et
si
o
n-1 mTT
1\
T)
F(x'~i'··· .... n-1' c)
=
Lx.:X j
-i
.12
V;
j=l
e
J
sin
mlT
-£-
x
n
Enfin nous signa Ions l'exemple suivant : Ie laplacien ayant comme
domaine
! fEH 2 (U)
: f = 0
2 = [XER : lx/=a
a
n .Q = R ,L(x , .. ·x ) f Rn : 1 n Nous
n
sur S
Ixl~
a
f
]
0\1
1.
definissons
f Eo cO> (Do) o
en posant pour
(Uf)( A) =
J
f(x) F(x, ;l )dx
!l
0\1
F(x,
A )=
e
( a
J y et
H
11
i(x,~ )
e)H
+
!4k-1 2
~
v(x, A,
(Ixl e)
0 1: );
v(x,
1, C)
=
(0\1
etant des fonctions de Bessel de premiere et t rof s i eme
- 11 -
G. Bottaro
espece.
II est interessant de noter les conditions qui sont verifiees
par
A, e)
V(x,
general.
parce qu'elles seront caracteristiques du probleme
Elles sont:
r, A )
~, ~ )
v(x,
e2 v(x, ~ , p)
=
si
xeS 2
a v(x, ).,
l}./ )
) Ixl
-
i\~lv(x, A, 1'>./ )
= o<JxJ (l-n)/2)
La derniere est connue comme "condition de Sommerfeld", ou de
radiation.
Ces
relations peuvent @tre prouvees par l'utilisation
de techniques elementaires de fonctions holomorphes et de l' expression asymptotique suivante des fonctions de Bessel de troisieme espece H
"
+
(z) = "2-)\ e i{z-\lI7T -1/4Tf)(1
CTT
0(_1_) •
z
I zl
II serait interessant de donner une idee du
Theor.
U est une diagonalisation pour (-
Si l'on suppose pour un moment que f '6
c'OO (!l),
f = 0
o
sur
S
a
(U(-ll )f)( >.)
= lAI 2
J -
f(x)F(x,A ) dx
~
=
sur Le domaine, donne.
U est unitaire on a pour chaque
2 :
=J (_ll) f(x) .n.
/1)
F(x,:\ )dx
\~ 2 (Uf)(
A)
=
=
[f(x)(-l1 )F(x, A)dx n,
(c-ar F(x, A )
=0
sur S 2)' a
- 12 -
G. Bottaro
Pour demontrer que U est une isometr1e(la demonstration est prise en pa! gEe
t1e ians [6])on note que s1
~2
alors (s1
r+1
=
R :ig(x) = (21l")
""
o
-
(.11)
E.. > 0)
(t
n/2
t
On dedu1t que s1
1t R
n,
i2
¢( ~,
f E: C""'(n)
o
f(x) g(x)dx -.
r
1
)n
R
e)
=C271
)-n/2j f(x) [ei(x,A) + v(x,~,
e»)dx,
donc
c$(~.e)
IAJ
2
-
P
Nous ut11isons alors 1'1dentite de Parceval et la premiere identite de la Tesolvante s1
0 <:
ot
<
f' <
~ -e
00
et si
E
est une resolution de
l'1dentite on a
51 nous faisons Ie passage
a la
lim1te, par des techniques d '
- 13 -
G. Bottaro
int~grales &~gulieres
1 -
-2l«EIl.+E Il
,..-0
f"
Le resultat et
~
4.
~tendons
)f,f)-«Eo{+E
J
"'-0
)f,O] =
suit · a ler s en faisant
--':> 00
techniques
on a
0< ~
j c<~I~IZ~~
P
et apre5
IUf(\)1 tJI. ~
2
d
~
•
0
La surjectlvite de l'operateur e st; prouvee par des
•
semblabtes et que nous exposerons dans le cas general.
ce que nous avons dit pour le laplacien
a
l'ext~rieur
1a sphere au cas d'un operateur quelcGnque autoadjoint elliptique
de
a
coefficients constants pour ce qui regarde le probleme exterieur [3] •
On peut demontrer le Theor.
Sin est un domaine
exterieur de front1ere 5 une fois
differentiable,compac~et
M=-L.a ij
lJ
2
~XjOXj
M est l'operateur
, (a
ij
= a j i)
et si on appelle
solution du probleme suivant (M _
v(x,
~2) v(x, ')" , l )
'\.~ V p( A ))
A,
dans
= 0
= -e i(x,'A
a10rs un operateur diagonalisant
)
n. si
x (:- 5
v
la
- 14 -
G. Bottaro
1 I (2 11 ) n
est defini pour les f (: cf"(ii,) par o
'\ 1
(Uf) ( ,,) =
~ f(x)F(x, A) dx
:n.
OU
'I ., vr----:-F(x, ,,) =e i(x,A) +v(x,;\, P (~ »
On a ainsi l'extension naturelle de ce que nous avons dit pour le laplacian
a
l'exterieur de la sphere; la condition de radiati~n peut
d
s' ~crire en utilisant la derivee conormale indiquee par
J Ix)
et la ' fenction r(x) qui est le produit scalaire x . (j";j" ,y) ou y est le point de la variete d'e'quation
p(-1) =r-
ou la normaL.exterieure a la mteme direction et orientation que x. Vu que dans la demonstration du caractere isom~trique du diagonalisant du laplacien nous avons utilise seulement les proprietes qui sont satisfaites par
v
la demonstration peut etre generalisee sans '
aucune difficulte. Nous donnons maintenant quelques idees pour la demonstration de
a
la surjectivite de
U , c' est
g().)=UU* g().).
Sil'onpose
2 n dire du fait que pour chaque g c= L (R )
*
r(~) =g(-\)-UU
g(:I) onpeut
v
definir Le s deux fonctions
J
pn)
et S (x, m
e)
s
J
pP) ~
2 m
r(A) F(x, >.) d
~
r(J) F(x,.l) 2 m
p(A)_ e
2
dA
- 15 -
G. Bottaro qui verifient les equations (M-
On a
t
2
(x,~)
) S
S (x, m
m
t)
-7'
= s (x) dansn;
m
0
en
S (x,f) = 0 m
si
s ---+ U*r = O. m
2 L , parce que
En utilisant encore des techniques d' integrales singulieres on prouve que pour chaque
J
O<.· c«p:
r(A)F(x,':\)dA=0, donc
o(~p(~)~~
J pO) =k
La fonction
rO)F(x,:\)d'A=O
p.p.enk.
2 1
u(x,k)
J
ei(x,A)rn)d)
.
pO) = k
verifie l'equation
2 (M - k )u = 0
2
et la condition de radiation.
Pour le laplacien en dimension 3 il existe un theoreme bien connu de Rellich la
(5]
qui assurej_aintenant,que
transformee de Fourier de
u
est nulle, et alors
r , et donc r, est nulle.
Le
theoreme de Rellich a ete generalise par Vainberg [7J , qui utilise pour la demonstration une solution fondamentale particuliere de 1 'operateur.
5. Nous en avons donne
[3J
une nouvelle demonstration, un peu plus
elementaire, qui nous a permis de prouver non seulement que l'equation 2 Mu - k u = 0, quand
u
verifie la condition de Sommerfeld,a seulement
- 16 -
G. Bottaro
la solution zero en tout l'espace, mais aussd , plus
. generalement
Ie Theor.
La solution du pzob Ieme exterieur (M - k
2)u
= 0
dans Q
est unique, si elle satisfait la condition de radiation et si ses valeurs ou les valeurs de sa derivee conormak sont
a
donnees
la frontiere.
Dans un premier temps on peut demontrer Theor.
Si
u
est une solution de l "quation
J
alors max lim R-7>,o ou
lui
2
Mu - k u
2 dQ"
1=
O.
si
u
1=
=0
dansll
0;
~I(y,R)
I(y,R) est une famBl.e convenable dlell~soidescentres en
Une telle relation est demontree en utilisant la formule de Green par des techniques semblables
a
celIe que l'onutilise en general pour
demontrer Ie theoreme de Stokes et par l'utllisation de deux solutions fondamentales de
J y et
e sp ece ,
M_ k
2
Ny etant des fonctions de Bessel de premiere et seconde A Ie determinant des
domain exterieur)
a
x
a i j• et
f
la distance de
y (point du
dans une metrique particuliere liee
a
- 17 -
G. Bottaro l'operateur differentiel.
Si
S
est 1a frontiere du domaine
prouve les deux egalites
D'apres une formule qui donne le Wronskien des fonctions de Bessel, on obtient les faits suivants: ou
max lim R->PO
~
luj2
d
~ f
0
.) I(y,R)
ou les seconds membres des formules que nous avons
ecrite~9
sont nuls
pour tout Y» Dans ee dernier cas on doit prouver que
u = 0 , ce qui est obtenu en
tenant oompte. de l'expression asymptotique des fonctions de Bessel, ce la nous p ermat; de montrer,lorsqueon a complexifie la variable radiale qui est dans les expressions ecrites, le caractere holomorphe au voisinage de 1'.:0 des deux fonctions
u(y) . 1- ( n/ 2) + (klyj) , ce
I YI qui
est
absurde s i
ufO.
e-
L'analyse est rendue plus
difficile, si la dimension de l'espace est pair, car dans ce cas les fonctions de Bessel sont multivoques. meme dans ce cas,l'expression de
u
Alors nous devons prouver que, est univoque. Le theoreme est
- 18 -
G. Bottaro enfin demontre si lIon prouve par un calcul facile, Ie L~~.
Si la fonction
2
u , telle que (M - k )u = 0
dans'o',ou sa
derivee conormale sont nulles sur la frontiere et
s~
la
condition de radiation est verifiee on a
J
l~
R -'!>"'"
~
\u1 2
d 6" = 0 •
I(y,R)
Comme on a dit plusieures fois la diagonalisation non canonique est rendue canonique par l'idee de G~rding.
6.
II ne semble pas inutile remarquer que, de cela, on peut d~duire pour un operateur
A = P
(~,
•••
~)( 0\1
p
est un
polynSme reel elliptique) Ie theoreme bien connu de Balslev [1J ' qui dit que 6"(A) = R(p). On a
va
que l' int~gra]e ddz e cte , image de la diagonalisation canont.que,
a comme domain l'image du polyn8me caracteristique. Alors il n'est pas difficile de prouver Ie Theo;,.
Itant donne un operateur autoadjoint
dans un espace de Hilbert U : H' ~
1:1\
HO) d
A, avec domairw dense
H, et
~
etant la dfagona H s at.fon canonique (A ferme de Neumann, alors A = 6"(A).
cr )
de Von
- 19 -
G. . Bollaro Cette remarque permet aussi de trouver nous avons et u die .
I, ( A)
dans tous les cas que
- 20 -
G. Bottaro
BIB L lOG RAP HIE 1
E. Balslev.
The essential spectrum of the elliptic differential n). operators in LP(R - Trans. Amer. Math. Soc. 116( 1965).
2
G.F. Bottaro. Alcuni risultati di analisi spettrale per l' operatore di Lap 1ace su insiemi non limitati (in corso di pubbli cazione).
3
G.F. Bottaro. Alcuni r isultati di analisi spettrale per operatori di fferenzi ali a coefficienti costanti su insiemi non limitati • (In corso di pubblicazione ).
4
• L. Garding.
Eigenfunction expansion. - Pg. 303-352 de Bers John
Schechte;~artial differential equationstllnterscience New York (1964). 5
F.Rellich.
Uber der asymptotichen Verhalten der honningen von
Au + ~
u
= O.
In - Unendlichen Gebalten Jahr
Deutsche Math. Verein. 53. (1943) page 57. 6
N.A. Shenk
Eigenfunction expansion and scattering theory f or the wave equation in an exterior region. - Arch. Rat. Mech Anal. 21 (1966) pg. 120-160.
7
B.R.Vainberg. Principles of radiation, limit absorption and limit amplitude in the general theory of partial differential equations. - Russian Math. Surve ys, 21 n.3 ( 1966 ) pg.115-193.
CENTRO INTERNAZIONALE MATEMATICO ESTIVO (C .I.M.E.)
EIGENFUNCTION EXPANSIONS
o
LARS GARDING
Corso
tenuto
a
Varenna
dal
24
agosto
al
2
settembre
1973
Preface. The
titl~
of these lecture s cover an awful lot of ground.
They oould include everything in the convex hull of Pourier series, spectral theory in Hilbert s pace
clas sic ~
and the ser ie s
expansions of classical physics, group repr es entations and quantum meohanios. I have chosen to give a general introduction and then treat the Schrodinger operator and the summation theory
ot eigenfunction expansions of selfadjoint elliptic opcratGrs in more detail. Lars
G~rding
- 24 -
L.
G~rf;ling
I. General eigenfunction expans i ons . Introduct ion.
We s hall gi v e a l eisurely expo s i t i nn of the s pe c-
tral theorem and the t h e or y of general eigenfun ction expansi ons . There will be practioally no pro of s and few references. Th e su bject is well covered in the books by Ber ezanskii (19 65 ) and Maur in
1,. Funotional analysis dict i onary.
To fix th e t erminology and
give an id ea of the prerequisites we s h all s t art by revi ewing t he basio concepts of functi on al analysis. Linear
~paoos.
A seminorm in a l i n ear s pa c e _L • {f. g •... } wi t h
scalars C is a non negative fun c t i on f-. p(f) whi ch is homogehe ous so that p(af) = lalp(i) for scalars a an d s at i sf i e s the t ri an gl e inequality. It is a norm i f p (r )=0 => f=O. A coll ection aeminonna mak es L a l i n e ar
topolog i~
(p} of
s pa c e wh er e t he neighbour-
hooda of a point f are defined by a finite numbe r of equa ti ons p(g-f)
p~and
{ql
of semi n onns give the s ame t opol oglY
(open sets) if and only if t h ey are equivalent in t he s en s e t h a t every p is •< a pos itive line ar combinat ion of the q's an d
17. A sequence
{fn lin ia aaid t o t end to zero,{fn)"O
conver se~
i f n..,_=>
p(;f'n)~O for every p, it haa :!Ih:eiiUJIlit f if fn-f.O and it i s a Cauchy sequence if f -f :+ 0 when n and m"C'O. The s pa ce L is said n m to be(sequentially)complete i f every Cauchy s equ en ce has a unique
,
.
limit. A Frechet apace is, by definition, a c ompl et e linear s pac e collection of aeminorms. A Banach s pa oe i s a completespace with just one nonn. -
- 25 -
L. Gdrding
-1
Let x= (x , ••• ,x ) be co or di n a t es in I n ,~~~ the 1 n
Examples.
en· ,~=<~ _A J 1 •••~ ...1n
gradient and xe( = %1 ••• x
spaoe ~
n
.
m onom ~a1s .
co nsis ts of all C" func t ion s f such that
The Schwar t t
supl x~(x ) l <
OOfor all~and ~. Provi de d wi th the c orresponding s emi norms i t I
is a Fr ech et s pa c e . I ts mai n virtue i s that the Fourier transf orm
ar:JP~~iS
a con tinuous linear bij ection with a c ont inuou s in-
verse. All bounded con t i nu ous f unct i ons f f r om X
= lin
t o m. con fl t i -
tute a Banach s pa c e wi t h t h e norm cu p /f (x ) / . When dfl f 0 is a me~' sure on X we put I lfll p = (
If (x) IPdr( x))1 / P
< < Ge an d f i s a Bai r e f un ct i on . The s pa c e of' all Bair e func wh en 1=p= t i ons f su ch that
Ilf II p <
Ban a ch s pac e wi t h norm I If Hi l ber t s pa c es .
(RJ
II
n odul o those with I lf II p =0 i s a
whi ch we ~~l l deno te by L P (X , ~ .
A Hi lbert s pa c e i s a Banach s pa c e H wi th a n orm. .
IIfll def ined by a s cal ar produ13t (f ,g ) with t he usual lin earity pro perties
su ch that
I If II
= (f ,f) 1/2 • Th e prime example i s
the s cal a r prd odu e t
Ix f(~)mr fd . Her e f and g a re c on pl ex value d bu t t h zy c ould alc o h av e v al u es i n a Hi l ber t s pace h v:i t h sc a'l ar- pr odu c t ab
, e .G . th e a pa c e
')
l~
of. s eque nce s a=( a , :O-2' ••• ) wi t h " components (V = OO i nc l u ded ) 1 2 2 VIi t h Ia 1 = rl ~ 1 < 00 and ab = ~~k' More gen er ally , l et
l.
'J (d t ~~i ng
be a mul ~ ipl i cityffun ct i 'J n on X , i .e . a IJai r e f un ct ion the
Ta1~s
1, 2, ••• an d OCand, cons i der func t ions '
l7i th Bai re comjion errt s cuc h theo.t
- 26 -
L . Gar-ding
Take them m~dulo tho se for whl ch the int eg ral vani~ h es ~nd u s e the scalar product (1). Then we ge t a Hilbert ~ p ace de note d by
L2eXtJ'~ which we shall call a s pec t r al s pac e for sh or t bec au se it occurs in the spectral t heor em below. Put t i ng
H~
2
=l~ ~ )
we
can write
as a kind of dire ct sum of the s eque nc e 'space s
H~.
In all this we can replace X by a loc ally compact s pa c e exhausted by ·a countable union of compact s e ts an d we shal l use t he term spectral s pa ce also then. The Hilbert spaces considered s o are separ a bl e , i.e. the y have dense countable subsets and we shal l c on sid er no others. A collection
~eJ
of unit vectors su ch tha t .(;' p => eoL,J. e"
.O_.'i s said to· be an orthonormal set.
i.e. (eJ..,e/l )
Orthonormal s et s in s e pa r a bl!e
spaoe. are countable and every maximal one i s al so a basis, i.e. eTerr t is the sum
let,,,)e~ where
Duals. Distributions,
The dual L'
1: lef,~12
=If''.''~ of
< ...
a linear to polo-
gioal space consists of all linear continu ous funct i ons
f~ < f',f>
f~c tion/
t ... L to II. When L is a Hilbert space, an y su ch -. is a s c a l ar product, t. .ef,g), for some g
L. The du al':!' of
.Y'
is called
the space of tempered dist r i bu tions. Any lo c ally int egrabl e f uncN) tion tex) on ~ whi ch is Qelxl f or s ome N as x~ .. gi ve s rise to the' tempered distribution g-. jifeX)geX)dX • In can be oonsidered to be a part of
~I.
particular,~
In some instanc e s we s ha l l
use the el ements of di stribution t h eory . The du al B' of a Ban ach
- 27 -
L.
space B with norm
II f" II
111' 11
G~rding
is a Banach space with norm
= sup 1<1", s» I
when
I Il' I I<1.
When B is a Hilbert space and =(f,g) then 11f t I/=llgll and one may identify B' wi t h
B via the identificat ion of 1"
and g.
The dual L' of a general space L can also be pr ov i ded wi t h s emi norms in various ways but we do not go into that. Linear operators.
Let TIL1~L2 be a linear operator ( f unc t i on )
from one linear space to another. The kernel of T, Ker T, con s i s t s of all l' in L 1 with Tf=O and ~L1 is called the range R(T) of T. Both are line ar s pac es . When L,=L 2 and
E:L~L,
i s t he i dentity
operator and Ker(T-zE)~O we say t hat its el ement s are e i ge nf'un ct ions of T and z. a: i s an eigenval u e of T. ',/' h en z if:; no t an ei genv alue, the r e s olvent (T_zE)-1 i s a line ar operator f rom R( T- zE) to L 1•
~h e n
L
1
and L2 are Ban a ch s pa ces then
~L,"L2
is
continu o~
if and only i f -Del > l iT I I = s up I ITf 112 ~h e r e
wh en I If 11
1
~
1
the ind ice s i ndic a t e 'no rms in B 1 and B • Such op 8r ato r s 2
ar e als o a ai d to be bounded.
According t o a theorem by Bana ch,
a b ijection between Banach sp aces is bounded both ways if it i . bound ed one way . When II 1'fl12 = IIfl11 e~ d
f or a l l
f , T i s bounded
s ai d to be i sometric. A unit ary opera tor i f:; a · line ar i sometric
bij ec t ion between Hilb ert s pa c es .
~
linear opera.tor T be t ween
Ban a ch apa e e c Ls s ni d t o be compa c t i f it map e bonnded s eque nce s i n to s equenc e s wi t h Gon e conv ergen t su bs equ enc e .
~he n
n is a
E a~a c h
apa ce and 1~' : ~B bounded linear, t he Ge t of su ch z 't"'e t ( T- zl! )- ' Lc con t Lnuouc Lc r-n op en se t in a:
c ~ ·. l ' c a.
til'. r-e r oLv en t c o t o=- .T .
- 28 -
L. Gardi.t1g Its complement is compact and called the spec*rum of T. When T is compact, its spec trum
is discrete outside the origin whlre
it consists of eigenvalues z of finite multiplicity dim Ker(T-zE). In particular we have the Fredholm alternative: z';'O is not an eigan1 . value <=) z is not in the resolvent set <=) (T-zE)- is bounded.
t e~
When B1 and B are Hilbert spaces, the sum lTI 2
2
=1[IITekI12 where
is a complete ( maximal) orthonormal s et , is independent
of this set. Operators with /T/< e-are said to be Hilbert-Schmi4~ 2 2 operators. They are comptet. If B1 = L (X1"1)' B2=L (X then 2,J'2) T is Hilbert-Schmidt if and only if (Tf)(x) = jK(X,y)f(y)dfl1(y) where
JJ IK(x,y) 12d/'2 (X)dft (y)
< po.
We say that T has a
Hilbert-Schmidt kerner. Adjoints.
When B"B 2 are Banach spaceSt any con tinuous
h as a bounded adjoint T':B 2'. . B,'
defined by
T :B,~B2
=
where f is in B, and g in B2'. When B" B2 are Hilbert s pa c es , the Hilbert adjo int T~ map T.T~
:B2~B,
is defined by (Tf,g)=(f,T~g). The
is antilinear and we have TH* = T. The main point abou~
this adjoint i s that R(T)
.l
Ker T
;where!, means orthogon al to. I's ome t r-Lc maps T : B ,.~B 2 ar e characte.rized by
T"
= E,
and unitary ones by T~T=E1' TT~ = E2
E, and E2 are the identities on B, and B2• In fact, if
I Ifj I~
where
I ITfl I~ H
for all f, then (Tf,Tg)2 = (f,g)1 for all f,g. When T = 2 T , T is said to be se l f ad j oi nt and we have I !(T-zE)fl 1 I I ( T- Rezr) 11 2 +(Imz) 21If 11 2 s o that its c,pect rum i s on the real 2=p axis. Operators P su ch that p and r= p ar-e c all ed (ortho c on al )
- 29 -
L. Gl\rding
projectiob8 and
h~e
the char a ct er i zi ng pr oper t y t hat the Hi l ber t
space H they operate on i s t he di r e c t sum
H1~
H2 of H1=PH and H2=
(E-P)H and that the se s pac es are orthogonal. For this on e ~rit es H=H 1 • H 2
and calls H1 and H orthogonal 2
comp leme ttt s o ~ n e abh,
1
other. More generally, if S is a part ?f H, the s et S
of all f
orthogonal to all g in S is a closed linear su bs pac e call ed the orthogonal complement of S. By Hahn-Banachs theorem,
~
i s t he
closed linear span of S. 2. Symmetric and selfadjoint unbounded
op er a~s.
relations in a Hilbert space H, i.e. linear '
I
ranges of t h e projec tions S. f . f 2 .... f 1 1
Consider linear
sub s e t s · S ~ o f2 H.H .
The
and f 2 are call ed the '
domain D(S) and the range R(S) of S re s pectively. By S- 1 i s mean t the set of pairs f
2.f 1
with
f1.f2~ S.
Wh en f 1=O => f 1. f 2=O ,
5 is called a function and we write f 2=Sf 1 for f1.f2cs. The subspace of D(5) defined by Sf=O is then called the kernel of S and 1 is denoted by Ker S. Clearly, Ker 5 = 0 <= > 5- is a function. The closure of 5 will be denoted by
[5].
When S is a closed function
, then D(5)aH <=> S is bounded ( special case of Banach's t h eor em) . The adjoint S· of S consists of all g1.g 2 such that
f1~2.S => (f1,g2)=i~2,g1) • This extends the definition of adjoint for bounded operators and
l.. of
means that all g2--g1 constitute the orthogonal compl ement S S in n.H and hence SlIBI = S U that
is the closure of S. It is cle ar
(5. 1). = (S·)-1 and that S·
is a funct ion <=> D(S) is de ns e
in H. Hence the adjoint of a closed densely defined funct i on is also a closed densely defined function. Densely defined linear
- 30 -
L . G~rding
linear functions wi l l be call ed lin ear oper ators for shor t . A lin ear operator A i s said to be symme t r i c i f AC:A~,
Definition
selfadjoint if A=AH and essentially s el f adj oi n t i f its closure i s selfadjoint • .That A is symmetric means' that (Af,f) is r eal f or all f in D(A) and when A,E are s ymmet r i c we s ay that A
f
B i f (Af,f)~ (Bf,f)
fo r all f in D(A)() D( B). Example. Diagonal operators. Let A be mul tipl i ca t i on by a Baire f unc t i on a(1;; )on a sp ectral space H
2
D
L
(X.)!. V)
" " . for '-almost all 1;. Then A wi t h D(A)
and assume t ha t \a ( l; ) I
{1;afwH}
closed and dens el y defined an d A* is mul ti plic a t i on by H
D(A
is
arrr
on
= D(A). We say that A i s a diagon al operator . When A=A~
)
and B=BH
ar e suc h op erat ors , A ~ ~B mean s that a(I;)~b(l;) al mos t
everywhere with re s pe ct toJ4 . Example.
If A i s clo sed an d densely de f i ne d , D(A) i s a Hilb er t
s pac e wi t h the s cal ar produ c t (( f ,g)) = (f, g ) +(Af, Ag ) and he n c e the re i s an 3: H~ D(A ) su ch that (f , e)=(( Sf ,g ) ) f or all f,H, gED(A). Cl early E S
-1
f
3
f
0, 3=3* , (E+A!EA)S=E and h ence
A~A =
- E i s selfadjo i n t wi t h domain D(A) .
Example. Diff erenti al opera tors. positiv e dens i t y '
an d II = L
2
Let Ab e a C ~ m::mifo ld Viit h a
(Jl,! )
onli. squar e integrable with re spect t o x so t ha t p
=t
f
,.ax
t he s pac e ,of compl ex funct ions
r . If
w
i:; Lebe agu e mca su r-e , a diff eren ti:>.l ope r2ltor
\c (x )r)iL , D
= ~/i ) x
wi th smo oth coeffi ci ent s and i t s f ornal ad j oint
I~
=r:r
!:l. oLJx)
- 31 -'
L. Gltrding
(Pf,g)=f,~g) when f and ~ are
then have the property that
sufficiently smooth and their p~oduct has c ompact Gu~po rt . To e et OIl
operators out of this, put e.g. A=P wi t h D(A) = C o~. Then A is
P-
densely defined and AW =
W
wi t h D(A ) = all f i n H su ch t hat
P-f belongs to H when taken in the s en s e of ditributions . This st11l does ·not say much about AW but whe n P i s elli pt ic in the sense that its characteristic polynomial p(x,d =
~ifi al4(x)~.(
has constant degree m and it s pr i n c i pal part Pm (x,d =
L:.
a~xk·
Itt/=m never vanishes wh en ~ Io is real, t he s i t ua t i on i s simple r . Then by one version of Weyl's lemma,
Pu.1t° (=>
u ~
'St m
where ~k is t~e space of distribu ti ons wh os e de rivative s of order ~k are locally square integrable. Applying t hi s to ~ we see that n(AW ) c'1(m • Hence in this case we a t least know t hat the elements of n(AW ) look locally. Wh en
.Jt
i s compact, ~=H,
and tlds solves the problem, but if Jl is not compact we have failed to oharacterize how the elements of n (AW) behave far away. To this orucial question there is also no general answer, but special oasee, e.g.JQL- ~
and P=D 1
2+
••• +dn
2 + V(x) ar e of
n considerable interest in quantum mechanic s. Finally, ifJr.l= R and dx is Lebesgue measure and P(x,D)=p(n) has constant coef f i eients
Je-ix~f(x)dX
cients all questions are answered -by the Fourier transform
lJ.f(~)
.. (2lt)-n!2
- 32 -
L. Gc'l:rding which gives a unitary map L
2(](n)""L2(](n).
In
fact,a-1p(D)~ =
pee) is then diagonal and P(D)f is square integrable if and only if p(e)dr-' f is square integrable. The theory of symmetric operators depends on the Lemma.
If ACA
w
follow~ng
and A is closed, then
D(AW) = D(A)~ Ker(A~-iE)lKer(A*+iE) wh e r e the sum is direct. Proof. Clear that
0
write (AW+iE)f = 2if
and +
H = Ker(A*-iE)&R(A+iE). Vlh en fE D(A*)
+(A+iE)f
0
in this decomposi tion. Can be
wr i tten as (A* +iE )(f-f -f )=0, i. e. f=f +f +f , f E Ker(A* +iE7. + 0 0 + If f =O, then f+ +f_'ii D(A) s o that (A-iE)(f++fJ=-2i=!:,_ J..Ker (A* +iE) => f =0 s o t h a t f =f =~ and f =0. Hence the sum i s direct. + 0 The lemma h as the follo wing corollary wh i ch we s h a l l use
wi th ou ~
reference: if A~A* i s densely def i ne d end cl os ed , t he c onditions
a r e equivalent. If A
A*
i s densely d efined, the c ondit i ons . in H (i) A is e s se self adj o int ( ii) Ker ( A~~iE ) =O (ii i) R ( A~iE ) d en s e /
a r e eq uival ent. In all thi s vie 'may of course r eplace i by ~i 'f/here
~ 3.
10 ~he
i s any r eal number. s pe c tr al theorem. A s e t
S =
~ A}Of
c omnu t i.ng ope r a t or s on
a Hil bert s pa c e H i s s a f.d t o be di f'. gonalizable i f t ho r i s a s po c t ... re.l s pa c e L
2
~J - 2 -1 2 = L (X,j4.Y) ~nd a unitary map U : H-? L such that UAU
is d LagoneL for every A in S. Whe n 3 ccn c a.c uc of jUl: t we h ave the ::r e c t r al ( i)
OYIO
op er:>.tol,
the or em of Hi l be r t and von II:eu..T1ann :
A=A~ => A d Lagona'Lf.z ab'l e pi t h Jed l , UAU-1=e •
Here e i s the co ocd inr.te of R. There i o a l e o a unici ty re sult:
- 33 -
L. G~rding any two spectral s pa c es that achieve this hav e equavo.Lon t measuresjt.and their mutipli city functions Yare equal alm ost everywhere. The th eorem i s usuaaly given in a weak er form symbolized by the formula
(ii)
A=
J1. dE)'
called the spectral resol ution of A. Her e the
E~
ar e c ommu t i ng
orthogonal projections in H uniquely det ermin ed by A such t hat
).1'
=>E~. E,. , .\.... => E,,-.E, ~ ... --=>
E,.""'" 0
and t he formul a
should be interpreted so that fED(A), g6 H => (U,g) The func t ions • ., (E....f,g) are of bounded variat i on over the real axis. The conne~tion with (i) i s given by the formula -1
Eli = U
O~
U
wher~ ~~(~)=1 when ~~~ and 0 otherwise. Bi t her f ormula (i ) or (ii) allows us to define a commutative ring of, e.g., bounded and continuous functions 1'(A) defined by
~(A)
=
u-~du
or (%(A)f,g) = J~())d(Elof,g) • There is also e.g. a version of the s pec t r al theorem dealing with a norm closed commutative ring S of bounded op erators A such that 1 Sa = S. It is diagonalizable with X = Sp S, UAU- = a(~). Here Sp S is the Gelfand spectrum of S represented by all homomorphisms S).A ..~(A)E4.. with IdA)!
logy making the a(~)
~ IIAII provided with the weakest topo-
= ~(A)
continuous.
- 34 -
L . Garding
4. Eigenfunction expans ions.
Consider (i ) 'an d ass ume t h at}4i s
a disorete mea sur e co n cebtr'at e4 t o a dis cre t e se t { I;} • Then , if gj(~) .i S t h e jl t h c ompone nt of g(I; ) , t he expansion g
='t F
g j(l;) e jl; ,
defines a basis{ ejl;} of
1~j~V ( I;)
2 L (X,f' 't/) with paiI'\'1i se orthogonal
elements. In particular f 'H
' ~f
=
-,.=-
t;j
Uf j (I; )U- \ jI;
so that the value s Uf j(l;) of Uf are s i mpl y t he co ll ec ti on of
s e~je "1 J, (I; )=
ooefficients of f relat iv e t o the comple te ort hogon . al
u-1ej~lin
H of eigen f u nc t i on s of A. Now in c ase of a ge ne r al mea-
sure, the Uf j (I;) still ex i s t almo st -ev e r ywh er-e , but the ei genfunot ions are miss i ng. The exampl e A =d/ i dx an d U t he Fouri er transform, wh er e the ei genf unc tions i f an y t h ing so uld be the exponentials .iXI;, indic at es that we shou ld l ook fo r the mi ssing eigenfunctions ou t side t h e
Hilbe~t
s pac e H bu t al s o in s ome way
conneoted wi t h it. Once this thought has caugh t on , t he r e are several ways open t o
co nst~ct
e i genf unc t i ons .
Suppose for i ns t anc e t ha t G i s a dens e linear subspac e of H and that G i s itself a Hi lbert s pa ce wi t h a dif fe r ent s c al ar pr o-
duct such that t h e inj e ct i on Then i t
~j
gCG
G~H
is a
Hi l b~ rt-Sc hmi d t
op erator.
i s a compl et e orthono rmal set in G we hav e
=> g =t(g"j )~j
and
L l lfj
II~ <
00
•
The indioes G and H i ndicat e the spac e wh er e the scalar produo ,s ~d
the norms ar e taken. Then the sum
- 35 -
L . G~rding is finite almost everywhere on X and
Ug(e) =!.(g,fj)GUfj(l;), IUg(l;)I Henoe, for almost all
e,
g-'lJg~(1;)
(1)
s h(l;)llgII G•
the coef f i c i ent s
=
are continuous functions of
g~ G.
ej(I;)6-GI ,
If also AG CG whe r e A is dia-
= a(I;)
gonalized to a(l;) by U, then ~~J~j(~»
for all
g in G and almost all I; in X so t h at (2)
Alej(l;)
where A': G '~G I
= a(l;)ej(l;)
is the adj oint of A: G~G. Hence the e j (d E GI
are a sUbstitute for the eigenfunctions in the discrete case. Our construction i s made more us'ef'u L if we replac e G by the intersec... tion of count ably many Hilbert s pa c es G wi t h Ialbert-Schmidt imn
beddings into H. Then it is eas ier to achieve that AG<:G
f or a
g i ven collec tion of op erato r s t ha t are diaGonalized by U. It is a ls o pos sibl e t o pa ss t o inductive limit s of such s pa c es G. In this way on e pr oves e. g. the follo win g r e Gutt due to K. Maurin. Say that a di~tributi on in~n
is of ord er k if loc ally a sum
of der i vat i v es of ord er =< k of loc ally sq u are integrable functi ona. Then e .(I;,x) are dis t r ibut ions of order J
a t mo st
tn/2]
+1•
.In parti cular, if A i s rm e:ct en s ion of a C"'dif f ,-,rf'nti al oper a tor
P(~ , D )
on
c~~
and A i s
di '-'eon~lized
t o a (; ) , then for
almos t ali ; ,"'i th r e '::?eet to)A, P(x,D)ej ( e, x) = a ( ; ) e j (l;, x ) in the di str ibuti on ~e n B e . If, in ad~ i ti ,-,n , p (x , n ) i s ell iptic,
- 36 -
L. G1I.rding
then by Weyl' s lemma , t h e eig enfunctions x ~ e .( ~ ,x) a r e in
c·c.ft)
J
for almo s t all e. Furt h er r esul t s of this ki nd can be
found in the book s by Berezanskii (1965) and Mauring (1 968). Their we ak point i s the non-uni queness of the s pa ce G an d the v agu e nature of the ei ge nfunc tion s . But i n the c lass i cal cas e of differe n tial opera t or s i n on e v ari able, the e igens pa c es are f i n i t edim en sional and the gen eral r esul t i s hel pf ul . To be more .p r e ci s e , suppos e t hat P ha s ord er m an d t ha t Jt is an int erval an d l et be a s el f -ad j oi nt ex t en si on of P. Let s1 ( z, x), ••• , sm( z, x) a basis for
~h~
s ol u t i on s of Ps= zs,
z~~
A
be
, which behav e s nic ely
i n z an d x , Put
(Uf)k(~) =~k(~'X)
and let L
2(R,r)
f( x) dx , fE Go ~ ,
be t he Hilbert s pac e of f un ctions F: RO+ cr ·::ith
the s c alar pr oduct (F , G) = wh e r-e the m.)tm ma t rix
2: Fj ( d GkCe )d fj k ( d f(d
=
(r
jk( ~ ) ) i s hermi t i an and i n cre as es
wi t h e. Then , by the ? pect ral theo r em 2nd the r e su lts jus t s t a t ed , there i s a
f
ou c h that U:
L2 GJl) ~ L2(R,
r) is unitary and dL a g orie.Lf. z ee
t o mult ipl i cati on bye . The pr obl em tha t
A
r cn ~ in ~
i~
then t o com-
pu te t' . Thi s i s don e by t h e Ti t chmar sh-Lodaira f o ~u1a f or ~hi ch we r efer t o Maurin ( 1968 ) . It sett le s ev er y t hi ng in pr i nc iple . If,
.
2 e. g., P=D +V(X) with. a r eal pot en tial V we are i n a cas e trel".ted by H. Weyl in hi s t i ne f eatur es,
c 1 a ss i c ~1
e.e.
2 a pe r fr om 1910. I t has many interes -
that/if .Jl, i s the wh ol,e line and V is ~,ma1 l in
t h e sense of havd.nr : compa ct ::uI' ;;J or t th en P i s di ag on e.1ize d by a u ·.i t :>.ry map '::hose main ;;Jart i s cl ose t o the Pour- Lr r- tr['.n sform. ;'! e
- 37 -
L . G!rding
shall not elaborate t his eni gmat ic st at ement h er e . It wi l l be olArified in the second part of the se l ectures wher e we treat the corre sponding case in X3•
- 38 -
L. G~rding
II. Spec tral t heory of t he Schro di nse r
o p e r ~to r
Introduction. The on e pa r t i cl e Sch rod i nGer ope rat or or H = H
o
where H
o
Ha~ i lto n i an
+ V
is the L&pleceopp~raior in 1 3 an d V a r e al pot enti al,
is the basic object of non-relativistic, quantum mechanic s . The operator H is diagonaliz ed by the Fouri er t r an s f orm and we s h al l o prove that if V is small f ar away, then H i s diagonali zed by a unitary map oloce to the Fouri er transform. We sh al l als o deal with scat tering theory. Its cl as sical coun t erpart i s t he s t u dy of particles entering the pot ential f i el d wi thou t being captured by it. Our narrative is based on t wo papers by Ik ebe (196°,1965) and a seminar exposition by Horman der of t h e f i rs t of t he m. It is just
a simple introduct ion to a well develpped field of ma t hema tical physics. The theory of one particle ·Hamiltonians i s wel l covered by B. Simon . (1970) who. also gi v es a long list of r eferences. Two papers by Kuroda (1973) should be added to t his list. The extensiun to many . particle Hamiltonians was pioneered by Fadeev (1963) and has many open prbblems ( see e.g. Hepp (1969)). Some int ere sting deTelopments in scattering theory of two ap rticles are due to BalsleT and Combes (1971) and Simon (1973).
1. The Laplace operator.
2
A = D1 \+D2
2
2
+D and l et H be the o 3 i 2 2 3 corresponding selfadjoint operator on L =L (R ). If F is the o Put
Fourier transform defined by
(1.1)
Fou(~)
=
Jre-iX~u(X)dX
-1 then F oH0 F 0 is multiplicati on by
- 39 -
L. Gllrding
.( 1. 2)
"f II;; 14 IFoU(I;; ) 12dl;;
that~
'Not e
wi t h domain
=
< ~,
Since Jr(1+ 11;/4)-1 dl',;
<
~e
00 •
Schwa r t z s pa ceJPis dense in
it fol lows fr om (1.2).that
Ho•
Fou is
integrable and h ence u(x)
= Jeixl',;F 0 u(l;)dl; I
bounded and unifo rmly c ontinu ou s when uE: D(Ho). Later we shal l n e ed a more pre cise r esult that fol lows from Sobolev' s inequalities, namely that to every e>O there i s a Ce>O such that
I l u ,KII_ ~ elIAu,L I I + ce l lu,LI I
(1.3)
wher e K and L are co n centr ic bal l s of rad i i 1 an d 2. Her e 2 ( 2 /Iu, KI/ = ) K'u (x)! dx and t he l eft s i d e of (1. 3) i s def ined an al ogou sly. Th e s olu t i on 2 u=u o of t he Schr odinger equ a t ion Dtu=-Hou, u(O,x)=f (x)S L i s e i v en by the f ormu l a
(1.4)
uo( t,x ) = e-itHof (x) = f e- i t II',; 12+i XI; :J ;) dl',;
"'"o
wi t h f
f::~
(1.5)
:::
::(" X) . 0 ,gn ' 1'1- 3/ 2jI,-i(X-r)2/ 4' f (y )dY
wh e r e c i s a c ons tant. We shall n e e d two pro pe riies of u
ly tha t
t.., Of
and tha t if
A
f
o
=>
u ( t ,x ) .... 0 we akl y in L o
o'
n?me-
2
=F f has compact su ppor-t , t her e i s a K su ch that 0
Ix /f Klt / =>
u o( t, x ) =
Q( /x /-n) ,
all n.
To pr ove ( 1. 7 ) we ' shall UGe the Me t h od of the s t a t i 1'J nan-.. phase,
J
no ting t hat ~( t/ 1',;1 2+xl',;) = O ~hen 1; =- x/ 2t . ?u t t i nc l;=n- x/ 2t we get
" 2/ 4t u ( t , x ) = e-~x o
If
I x l~K /t 1 ~7i th
"t
e~ n
2~ f (n-x/2t )d n.
a l arge enough K
0
v-e
e an take
I n ; ~ IX/4 t l
i n t he
- 40 -
L. G£rding A
integral. In fact, n-x/2t is bounded on the sup port of f o i t n2 i t n2• 1 e The n , by intePut LT} =. n1t/i so that t- Inl-2L e
n
grations by parts
[u (t,x) I
~
[uo
(t , X)g(i1
It
r n flLnn ;
(TJ-x/2t) Idn=O( It 2, To proTe (1.6), note that if gCL then o
\!jt
0
r n Ix/t I-n)=o ( [x rr,). -
= Jeite2~(e)l;JfY de.
When f,~ are in ~ and vanish close to the oriGin, t he int egral o 0 1 is Q(ltl- ) ( Use L once) and the re st follows by a density
e
argument. 2. The SchrOdinger operator.
Consider H = H +V = o
4
-v
wher e V
is real and
w.
shall see that H is selfadjoint on D(R)=D(Ho)' that
(~.2)
and that the function
is uniformly continuous when
fe D(R).
To prove this we shall use
(1.:S). According to (2.1), Ilvu.,KII ~ C Ilu,KII_ and a summation OTer balls covering X3
(2.4)
so that (1.3)
gives
IIVul1 ~ e IIAull +cellull.
This proTes (2.2) and that IIHul1 + Ilull and IIHoul1 + llull are equiTalent norms on D(H Hence H is closed an d the fact that o). u,TeD(H ) => (HU,T) .. (Au,v) + (Vu,v) = (u,Rv) o shows that ac..B'I • That H=ii rfJ can be seen as follows. If 0
A:f
is real, then
- 41 -
L . G!rding
(H+~E)(H +~E)-1 = E + V(H +~)-1 o
0
and, according to (2.4), Ilv(HO +i"E)-\11
if"
(e: +
s e ] IHO(Ho+i»:)-1 u II +
OJ I)./)Ilu"
~
0e
I I(Ho+i"E)-\1 I
<
Ilu 11/2
is large enough and E<1/2. Hence R(H+:I,\E) = L
2
s o that H is
indeed selfadjoint. The statement (2.3) follws sinc e (2.3) gives Ilv(ei(t+s)Ho
_ eltHo)fll
~
cll(eiSHo _
E)~fll+cll~isHo_E)fl
3. The wave operators and the scatterine matrix. The wave operators W+ are defined by W+f = lim
eitHe-itHo f
t ...~
wh en the limits~Exis~. If they exist for f in a dense part of L 2, they exist for all f since the operator product on the right, = e i t He-itH0 is unitary and then the wave operators are i sometric. Since (U(t)f,g) = (e-itHof,e-itHg) = e- i t (e-itHof,g) when g is an ei genfunction of H, Hg=~, (1.6) shows that
wh er e N is the span of eigenfunctions of H. Hence, if H h a s discrete s pe ct rum , W+f exists only when f=O. In ord er for W+ to exist on L2 , the operators Hand H must be s o cl os e that the o scalar product
(U(t)f,g) tend s to zero only exc ep t i onally. If
the wave operators ex i st on L (3.3)
2
I
then (3.1) shows i~~ediately that
eit~, = W eitHo +
+
for all t . The te chnic al t erm for thi 8 i s that both intertwine e i t H ~~d eitHo
W+
an~
W·
- 42 -
L . Ghding The wave operators have a quantum mechanical i nt er pret Qti on. The time dependence of states f,gErL~ in the free (kinematical) c ase wi th Hamiltonian H and in the perturbed cas e wi t h Hamf.L t on i an o H are giTen by t
~ e-HHof, e -itHg.
AocOrding to
(3.3),
the wave operators map state s of th e first
past respectively. The classical analugues of the s t a t es W+f are the states ( position and momentum) at t ime 0 of a particle comi ng with in or going out a given rectilinear motion f or l arg e t ( cor r esponding to f). In view of this one u ses the expressive notation
f~Rt
W+f.
fhe soalar product
defines the scattering operator or S- matrix
S="'W + Its matrix elements can be measured experimentally theoretical importance. We note that by virtue of with eitHo
Bn~
it has als o
(3.2), S
c ommu t e ~
and henoe with all funct ions of the free Hamiltonian
Ho • Starting again from (3.~) and noting that H i s digonaliz ed by a the Fourier transform
F = F Wo -
~o
=>
we get
.itH F~
= F~
- 43 -
L. Gdrdihg
=>
W_ unitary
e i t H i s diag onalized by F .
This formula s h ows t hat there i s a clo se c onnection between t he wave operators and the di agonaliz a ti on of H and we s hall explo:l!t this later. For the momen t we only g i ve a condit i on on t he po t en tial V tha t guaran t e es that t h e wav e operato r s ex is t . Lemma 1.
(3.5)
If V satsif i es (2.1 ) and
Joc;-312
(J
IxI
v (x) 2dx) 1/ 2 dt
<-"
in parti cular if V = Q (l x l- 1- £), £>0, t h e wave opera t or s exis t . Proof . We fir s t prov e t hat f 6 D(H) implies
(3.6 )
u '(t) r = ieitHve- i tHo r
and
(3.7) II (u( b ) -U(a))f ll= l l .fabu 'Ct)f·d tll~
-C llve- i t Ho r
l]
dt
'tH The jpectral t h eorem shows t ha t t ~ e ~ f i s un iformly continuous and that
d ei tHf
i Hei t Hf dt s o that
(ei ( t+ S)H _ ei t H)f = s i Hi t Hr + 2 ( s) and anal oe ou sly for:Ho • Hence . U( t +s )f _ U( t )f = e i( t +S)H( e-i ( t+S)H o e i t H.~ s He - itH0 r +
_ e-i t Ho )f +
- itH0 s ( s ) = se i t H(.) ~V e
r + 2 (s ) •
Si nce t he de riv ativ e U' ( t )f i s cpnt inuo u s we c an i nt egrat e it and thi s prov~ s wav e
(3. 6)
o p e r ~ to rs
j
and
exist .,.
--
(3.7).
Hen ce , i n ord e r to prov e that the
i t suf f i c e s t o
I lv-i t Ho f lldt
<
when f bel on~s t o s on e dense pa r t of L ar'gumerrt gives
t ha t
sh o~
~ x I >1 V ( x ) 21 x ,- 4dx
2
<.QtO
•
N OTI
( 2.1 ) and a s i mpl e
- 44 -
L . Ghding
so that by (1.5) Ilve-itHo fl1 2 ~ cit
,-3 IX~Kltl
r
( V ( x)2 dX +
Here, by (1.7), the last term is Q(t4-n)
v(x)2Ixl- 4dx = Q(t 4-n)
Ix1'>K It I for all n when ~oe (fI"O • Taking e.g. 1l=8 this gives 0 IIVe-itHo fll Cltr 3/2 ( f . . V(x)2 dx)1/2 IxT
s
Consider the resolvents G (z)=(H ~ZE)-1 o 0 and G(z)=(H_zE)-1 when Im z ~ O. A direct computation shows that 4. Green's function.
Go (z) has the kernel
Go(~;YfZ)
= eiofilx-yl/41tlx_yl
, Im 'h
> O.
We shall investigate the properties of the kernel G(x,y;z) of G(z) and state them in Lemma 2. ~t Go =,G o (z), G = G(z), Imz ·
4 o.
Then
G0 = G +G VG = G + GVG 0 0 b) The operators VGo,G~.,GVGo are Hilbert-Schmidt operators. In particular,
G(x,y"z) = Go (x,y,fz) + Halbert-Schmidt kernel 0) GIL~L12 , L2 ... L 1 provid ed V.. L2 • oc comp d) Le'" :B .. all bounded continuous ,(x), \ . those which are
o at ....
Then
Im z~O .. > GoV :~:B. . compact and z"Go(z)VfltB_continUous Re z>O, 1m z ~O .. > Ker(E+GoV) in \ . vanishes provided V = Q(lxl- 2- E ) tor some E)O.
- 45 -
L. G£rding Proot.a) is obtained by multiplying
the identity H-zE
Ho~ZE+V from the left by G=(H_zE)-1 and from the right by Go =
lr
(H or conversely. To prove b) note that o-ZE)-1 V(x)2I G ,2dx dy o(x,y"z)
< cae
also with V(y) in the integral. Hence VG
o
and G V and hence also 0
GVGoare Hilbert-Schmidt operators. c ) Since Go:L
_
-
L
~
..
, V:L-.L
2
2 are bounded . operators so are VG 0 :L"~ L and 2" 2 2 G _G = GVG : L--",* L and G( z ) : L-' L L"C L and, by duality, o 0 loc 2 G(;}: L . ... L1. To prove d) note that . comp and G:L 2_L2 or
f6B
=> (GoVcr)(x) =
Since V(y) =
~Go(X,y"Z)V(y)cr(Y)dY.
Q(/y/-2-e)
we get absolute convergen~e, continui ty
e
in x and Q( Ixr ) as x . . . . . Hence GoV:B-.B..
is compac t by the
\I
Arzela-Asco11 theorem. Also,the function z-.GoVf "
>
tinuous when lm z = O. If Ira z>O then G V: B~L =0 => G oG-
1,
B_is con'
,
so that (E +G V)(I~
0 0 1
= 0 =>'=0 so t h a t Ker(E+GoV) = 0 in that case.
I f Imz=O this al so holds since
=>'= Q(lxl-
2
2e)
crEE,
=> ••• => f= Q(/xl-
(E+GoV) f= Q(lxl-
n)
e)
for all n and a r e sult by
Kato ap plies. 5. The perturbed e i genf un c t ion s . a r e bounded e i g e nf un c t i on s of
The func ti on s
Awi t h
eigenvalues
cro(x,~) = eix~
~ 2,
A,o =~ 2'0.
We s h all c on s truct perturbed eigenfunct i ons ~(x, ~) sati sfying
i n the dist ri bution s ens e fr om wh i ch a unitary map F wi l l be cons t ru c t ed that diagonalizes
when t his operato r has no
H= ~ +V
d i s cret e s pe c t rum . Heuri stically
vre
have
- 46 -
L . Garding
'f(x,~,z) .. (~2_z)G(z) fo , Im z => O,and put
q> (x,/;) = Cf (x,/;,/;2) The most convincing
r easo~
•
for thi s choice are the manipul ations
with Parseval's formula in section 7 below, in particular the formula (7.6). Lemma 3. The functions (S.2) are bounded and continuous when ' Im B
~
0 arid
the functions (S.3) satisfy (S.1) in the distribution
sense. Proof'. We have and
'f"
E
G(zHA-z)
= e_EX
cf = G~z)(A -z)
2
'f'o(x,/; )E:L
•
Then b7 Lemme. 2. a,
Cf: . 'Go (z)G(z)-1 <:p
80
E: ..
(Ei
o
that
(E+G (z)V)(
a:.J, 0
I
o
10
0
10
this giTeB
(E+G V)(m _ o
I
CJ) )
10
so that an appeal to Lemma
..
~
~G
0
V to
10
finishes the proof. Later we shall
use (5.4) in the form (S.5)
~O .. > Go(~2+idCf(x'~)~
100al17 uniformly when e~O.
-rex,/;)
2
- 47 -
L. GAl'Qing 6~
The discrete spectrum of H and the discrete part of its
diagonalization. By Kato's theorem, H h as no positive eigenvalues and we shall see that the spectrum of H is discrete below zero • . Assume the contrary. Then there is a of unit vectors f
such ' that Hf ..., Af
n
n
:and hence G(z)f ~ (). _z)-1 f n n
n
A <0
and a sequence
• Then (H-z)f ..., ()-z)f n
n
wh en Im z =+0. But G(z) and G (z) 0
differ by a compact operator ( Lemma 2.b ) so that also G (z)f o n /' ~ (tft -:a)-1 f n • If f denotes the ordinary Fourier transform this means that ((A -z )-1
A<0,
,A
.
fn...,Oin L
2,
_(l;2_ z )- 1);
n
(d~o
in L 2
s~
that, since
a contradiction.
-L
be a maximal orthonormal s e t of 2 2 eigenfunctions of H and define F d: L ~ 1 by (Fdf)n = (f'4Pn) In t h e s equ el , let
by
(AlP ) = In
H (!)
In
= I). cp • Then, if N i s t h e span n In
is unitary and (6.2)
IIFdf l12
=
f
d(E~f,f)
(I ~O
wher e ) Ad~ i s the s pec t r al re s olut i on of H. 7. The Poiss on ke rnel and Parseval's f ormula.
The Pois s on k er n el
for the upper half-plane is
an d we have
in the
d i str ibu~i on
s ens e .
~e
list t wo mor e pre cis e v er s i ons of
(7.1 ) whi ch wi l l be u s ed l ~t er. Fi r s t
- 4H -
L. Garding
(7.2) .
~-lt 0 => SP~-'X,~)~(oI.)cJc(
11'
~ )'X-(?')d«' (,,)
and C\' i s of bounded v ari at i on . Se condl y ,
i f 1J:C: (7.3)
dCf ()..)
~-1t 0
=>
5P (1;2_d, ~)f(ol, P,I; )dl;dJ~
I f ( 1; 2, ?, d dl;
i s continu ou s an d boun ded on Ii )li~f 0}XR3
t(~.~,I;)
an d
vanishe s wh en <X i s l arg e en ough , We l eav e the proofs t o t he r e ad er and
l~st
solTent
= r)dE~ ~ith
r e-
G(z), namely
0'"
(7.4)
when t£L (7.5' when
t wo consequ enc es for the oper ator H
2
=>
0
J~3t"11 I G(ol_i~) f I I21--(ri.) dd.. ~ j1-C~)d(Etf, f )
, and<j..€'Co(R)
= S't-<1; 2)I (:f,
<';J(H)f,f)
te Co (1(3)
and
and
«« C (1(+).
/Y
0
(The index 0 mean s compa c t sUPPor t )
Here (7.4) i s an immediate cons equ enc e of (7. 2 ) and the i dent i t y
S~1t-1ILG(ol-i~)fll~(O()d~ 5 =
p (oL-l'f) d (E>.f, f ).
The proof of (7.5) s t a r t s f r om Pars eval' s fo rmula I/Gc;)f/l
2
= SIFoGG)f(l;) / 2dl;
where F o is the Fou r ier trans form s o t hat F GG)f(1;)
o
= )( 'GG)f(X) ct)\0 (x,ddx
•
By Lemma 2.0 ( and thi s is a ver y crucial point) we may move G(Z ) from f to
fo
(7.6)
l'oGG)f(1;) = (1;2_z)-1 )f(X) f( x, l;,z) dx ,
in the int egr al sO that by (5. 2),
Combining Lemma 3 and (7. 3) gives t h e desired r es ult (7.5).
- 49 -
L . Garding
8. Diagonal izati on.
(8.1)
J
Putt i ng
f( x, c;)f(x )dx
we hav e a ma p
and we shall prove The or em 1.
rr
V € L 2 is r e al an d Q( l x l~ 2- e ) for s ome e)O, t he
nlpsure :of , (8.21 ois a unitary map H so that,j- HI -1
3
f r om L
J
2
'2.
is multiplication by
on
t hat diagon al i z es ~2 k
•
'l
2
and bY/Ion 1 •
Corollary. The linear span N of the ei ge nfunctions of H is als o the k ernel of F and FF- = E, F-F = the proj eQtion on L
2
e N.
Proo:f. Th e f ormul as (6. 1) and (7.S) show -Tto be i so met ri c and , by Lemma 3,
Hence we get the theorem by obv ious closure pro cesses provided 2
2
we kno w that F is sU; jec t i v e , FL =L • To pr ov e this cruc i al r e sult we f irst note that H i s the cl osure of its -cr-e s t r i c t i on t o
cO" o
Hen c e (8.3) holds when :f.t.D(H) s o tha t
<X- e
C (11) , g = ryA H)f o
=>
FP(H)g(1;) = p(;;2)Fg( ;; )
for every polynomial P. Hence
(8.4)
when'X~ Co (If) and also,
.by an obv ious cl osure argumen t wh en
~ is
continuous and bounded. Next we sh all prove Lemma 4.
FW
= F
o
2 2 which implies the desired r esul t that FL =L • Her e W is one of the wave operators of Section 3. Note the connec t i on with ( 3. 4) .
- 50 -
L.
The
G~rding
of the lemma depends on, the following formula -itH connecting F -F with the unitary operators e itH and e o, o proo~
(8.5)
°
(Fo-F)f(e)=lim
= i
0
o
where
f~
(8.5)
of
5~x,e)v(x)Go(~2_iE)f(X)dX=
f Feit~e-itHo f(~)dt E
.....
#)
Co
• In
~act,
according to Section 2, the las t member
equal~ ....
~(d/dt)FU(t)f(e)dt
= FW_f - Ff o and this proves the lemma. The first equality
(5.5) Vex)
if
J
follows from
we note that G (~2_iE) can be moved to the product o
() (
'fC;x:,d.
(8.6)
(8.5)
Next we shall see that -..., 2 ) ( ) Et+i tEL -i tH0 f () ~)V x Go e -iE f x dx = i oFe "v« I; d~ •
S
This suffices to establish the second equality (8.S) ' s i nce the last integral of this fornula is absolutely convergent in the L 2 norm. To prove (8.6), note that (8.4) shows that its second member equals
_po
eEt+i~2FVe~itHo f(~)dt
iJ o
J
whi ch we can write as an absolutely convergent int egral i
1.DO
F)V(x) eEt+iI;2(e-itHof)(X)dX dt •
Performing the i n t egr a t i on wi t h re spect to t first we cet -~
i
Jo
·tH · !'2 e Et +~~ (e~~ 0 f)(x)dt = i
j
-~
(o,,2 .2)t o " e E+~~ -~n +~~nf (n)dndt =
0
_~2)-1 eixn;o (,1)dn
=j(iE+n2
and this proves (8.6).
Go
0
(~2-iE)f (x)
- 51 -
L. Garding
9. The perturbed Fourier transform, the wave operators and the scattering operat or, us to express the
The results of the prec eding s ect ion allow
w~ve
opez-a'tor-s
and the s cat t er i ng operator in
terms of the Fourier transforms F 0 and F. The comjugat e A ,
of
a linear transformation is defined by Au = Au • In particular,
Ha
Ho
Hand
=
HO
, par t of the formula
so that, by
(9.1)
(3.1), w
=
W+ •
This explains
below.
Theorem 2, Under the hypothes es of Theorem 1, one has ::I W = ~ + 0 The scattering operator S =
W
(9.2)
(Su,v)
w: W_
i s unitary and
=JJ S(I;,I;')~o(d~o(I;')
is given by the distribu tion k ernel
where
J
v(x)'fo(x,d
of Theorem 1, F*F i s the project ion on L2 FiiF o ' the last equality by Lemma
4.
. ,H.
Hen ce
Thi s proves
~
=FHFW =
(9.1),
in par-
t icul ar that W L 2 = L2 e N. Sinc e N i s invari ant un Ler c onj ugatio~, 2
2
being the sp~n of eigenfuncti ons of H, we also have W L = WL = + 2 L tile N s o that the s cat t er i ng operator S ",ii \1 i s unitary. To 11+ _ prove
(9.2)
(Su,v)
note that (~
u,W v) = « W - w+ ) u, ~ +v) -
+ = (u,v) +
«',1_
~ ','l + )u , ",+v )
+
- 52 -
J (eitF-Ve-itHo~u,W+V)dt -rOO
- i
-
A
<Xl
J\
L. G8.rdiqg
.()O
when u 6 cO" and v e e vanish close to the origin. In view o 0 o 0 of (3.2) the integrand can be written as ) • ( Ve-itH 0 u, W+e i t H 0 v Inserting e-e!tl of
1\
J\
U
o
and v 0
as a damping factor, writing u and v in terms
and notin"g that
W+u(x) = ?F'ou(x) =::
Jf
(x,1;') v o(1;')d1;'
which follows from ' (8.1), we can perform the integration ~ith respect to t explicitly. Letting e~O this gives the factor
J
e- i t (1; 2 - 1;,2)dt = 210 0(1;2 _ 1;,2) •
Hence (9.2) is proved modulo some technical details.
- 53 -
L. G~rding
III Summation theory of eigenfuncti on expan ci ons conn ecte d wi t h elliptic dif fer ential operators.
Introduction,
Th e partial sums
s (x)
n
=
L ~e1kx Ik l
of the Fourier s er i es
2. aneinx
of a function f can be wri t t en as
where e(x,n) =
.
Y IkT
1 = s in (n+2- )x
e i kx
I
~
sin x/2
1s the Dirichlet kernel. The more general kernel s
tX
~
e (x,n) = L.
Ikl
correspond to the
s~ a tion
.
(1 - k/ ln l)
0(
e
ikx
>
,o{=O,
of the Fouri er series by Ri esz'
means
Alll this has a natural conn ection wi t h the s pectral t h eory of, e,s" the elliptic non-neg ative dif f eren t ial opera~or D2, D=d/idx. In fact, this operator i s selfadjoint on L 2(o, 2~) i f we take n2 in its distribution sense on func t ions of
p~od 2~ .
It i s dia-
gonalized by the Fourier transform
(~f)n from L
2
2
~n .~inxf(x)dx
.. L (o, 2n ) to the space].
the inverse
2
of sequences a
=
t an} with
- 54 -
L.
(d- 1a )(x )
= (2lt)-1
>
in such a way that
if
J" d~
~ D2:;-
-1
I. an
partial sum s (x) when n
E~
t'
n
=
f
"t <)
(1
e inx
is multiplication by n 2 • Hence;
is the spectral resolution of D 2
G~rding
2,
E~f
is the
== A and if eX
-'t/A ) dE'(" ,
the Riesz mean can be written as Sn(x)
0(
= E).. f(x)
, n
2
=/1 •
Henoe all the classical results on the convergence and Riesz summability of Fourier series can be stated as properties of the convergence 0(
E>.f(X)-.,.f(X) More generally, if x=(x 1 ' ••• ,xn) are n real .va~iables, is the imaginary gradient and
A= D12+••• +dn 2
is
Laplace's operator, the convergence of the spherical means
of a Fourier series
L
al;e~';x , (
1;=(';1' ••• ,I;n) \'lith integral com-
ponents) or 'the spherical means
-f
(1 _
II; 1<" of a Fourier integral
II;I/~)
S
a,;ei,;xdl;
a,;eL-cl;d'; , (1;6
z"),
amount to the con-
vergenc e (1) wh er e nov! the E). are the proj ec t Lons of the c pe ctral re s ol ut i on of a su i table selfadjoint version of the La pl ace op erator. For a nunber of y e ars there \'las a sustained effort by many writ ers to extend the basic results on the conv er ge nce and summability of Fouri er se r i e s and int egral s t o t h e eigenf un ct i on
- 55 -
L . G£rding expansions connected with elliptic differ 8ntial
op 8r~ tors.
Tha
crovming effort s o far is · 'CilO~ "in e d in two papers by Hormand er
(1966,1968) TIhi ch shall form the basis of the third part of t h es e lectures. To describe the general s ituat i on , l et
e'"
II
be a para-
compactVmanifold and P an elliptic differen tial operator in~ wi th
Cpt'
coefficients. Assume that
the scalar product
P
,f c>O on
C.,.,
o
functions in
•
(u,v) = [u(X)v(X)dX where dx is a fixed
C~ den sity and let ~ ~ c be a selfadjoint
extension of P with spectral r esolution
( J~dE)
EftpN
it follows easily that
are bounded operators for all
E'}. has a C
cD
N,
·N
• Since P
E~
and
hermitian k ernel e(x,y,f. ). c3Xis ealleg. the!lpectr~
function. It h as the property that )le(x,y,A) 12dY is a con tinuous function of x and f6.
C:
""'> E;>.f(x) =
By 11he abstract
f
e(x,y,/')f(y )dy =
theo~y , ;>..., CO => E~f~f in
e(x,f,~) L
2
, say.
2
= L (Jl.) when f is
2
and sincs C~ is in the domain of all powers of P o co
0( dE). f(x) = e (x,f,).)
where
0(
E~
=
j (1 - 7./;>-.)0( dE.r,
cl e (x,y,'A) =
J
0(
(1 -"II).) de(x,y,7).
"Z.<~ . -z: 0The object is now to study the kind and rate of convergence t< '\ . (2) ~f...,f and e (x,y,lI) -'?' &(x,y) when ~ ~ 00
where &(x,y) is the Dirac kernel defined by f(x) =
j &(x,y )f (y )dy.
The starting point will be to estimate the kernel of the op erator
- 56 -
e
-itA
f
=Je
L. Ghding
-itA 11m
dE~
. ' , A
• 11m
=P
, m
= deg f,
for small real t and t h en ap ply a suit a bl e Tau berian argum ent . In the first part of this proc ess we s hal l use the f act that
u(t)
= .-itAu
satisfies the hyp erbolic equ ation
and construct ap proxim ate s ol u t i ons of i t by me an s of t he methoq of geometrical optics. Thi s fit s into t he no w curr en t t he ory of Pourier int egral op erators ( see Hormand er (1971), Duis t ermat and Hormand er (197 2 )) whi ch i s a 'v er y s oph i s t i c at ed tool of analysis. We s hall s t ar t by go i ng t hr oug h wha t we n e ed f r om t hi s theory ~nd then pro c ee d t o i t s a pplicat ions to ( 2). The out come i s t ha t , r oughl y s peruci ng , the conve r gen ces (2) are the same for al l el liptic opera t ors with t he s ame number of vari ab les and the s ame degree. The precis e r esults ' are f ormu lat ed in Theor em 2 of Section 5, the f ormulas (6. 4) and (6.5) an d t he 'cl os i ng s en-. t enc e s of Se c t ion 6. 1. The eal culus of psedd6d1fferentialopperators. We s hal l cons i der
linear operat or s u (1.1)
Fu(x)
Fu defi ne d by s ymbol ic i nt egrals
=~~ f(x,y,~)eif<X, y'~)U(y)dYd~
,
i . e . Fu(x) =j K(x ,Y )U(Y)dY wi t h t he di s t r i bu t i on k er n el (1. 2) ~h e r e ~
K(x,y):::-
Jf(x,y,deicr(X'Y'~) dl';
r ang es ov er
of ~1 -an d ~ 2
~T
R~
an d x ,y ov er op en
n
8~ b s e t s ~ L 1
r esp e ctivel y. Thc f un c t i on
an d
52 2
has bounde d i maginary
part an d i s ca l l ed a phas e f unc t i sn ~hil e f (x ,y ,~ ) i s c o~ pl e x and c alled an ampli t u de . Opera tors Cu(x)
= ~c(x, ; )U ( Y )dY
- 57 -
L . G~rding
defined by C~kernels o(x,y) are said to be smoot h and in t h e calculus that we are going to develop, su ch op erators are disregarded. Example. When Jl
=.n 2
1
=11 and
n 1=2=N a typical phase functi on
is the soalar product (x-y)~. Then if p(x, d -l>oc(x)~ is a polynomiRl in
~
0<.
and
P(x,D):.I.P«.(X)Do(., D = D = ix
1
0x
='1/i dx ,
i s the corre sponding diff eren tial operator we have
55 P{x,~)ei(X-Y)~
where
u(y) dyde =
fp(x,~)eiX~~(~)d~ =( 2~)np(x,D)u(x)
-rn, the s econd integral int erprets the. first an d
uECo~'
~(~) = Je-iY~u(Y)dY
is the Fourier transform of u. Henc e t h e
diff erential operator P(x;D) i s expres sible in t h e fo rm (1.1) wi t h ph as e f un ct ion (x-y)~ and amplitu de ( 2~)-np( x,~) indep end en t of y. Di sregarding the f actor (2~)-n , operators F wi t h phase functi on
(x-Y)~ and ampiitud~ p(x,d .ar e wr i t t en as p(x,D) and
t ho se of the form p(x,D) + C wi t h a smoot h C are called pseudodi ff er enti al op erators. () }T) To classify the amplitud es we shall u se s pa c es Sm =Smro ~1~~~,R cD
l ab elled by a r eal paramet er m and consisting of C fun c ti ons f su ch that all product s
D~ D~ f(x, y, ~ )(1+1 ~/)lpl-m x,y <,
ar-e bounded on c onpac t su be e-bs Of..ll1)(~
po
• Any C
f un ct i on whi ch
i s homog en eou s of deg re e m in ~ for l arge Z; is in Sm but e . g . c overs c ases of s l o\'l oscilla t i ons for large ~. ITe have SmSpC:S m+p
and d iff e r ~n t iati on
- 58 -
L. G~rding
wi t h respect to I; maps Sm into Sm-1 • An amplitude f in Sm and the porresponding operator F are s ai d to be of ord er m. The space of operators of the form F+C with F of order m given by
(1.1)
C smooth
and
will be denoted by Lm(f). Amplitudes in S-PO=
() Sm , e.g. those whi ch .v an i s h f or large I; gi ve COOk ernel s and hence smoot h operators. For t his r eason, amplitude s n e ed only b e s,pecified modulo S
-cD
and we agree to let t h em vanish f or small 1;.
In oTder to define the right side of
formulas (1.3)
i
(1.4)
i
obtained by
SJ:r~yei
udydl; = - fS(fyU +
J5:r~ei udydl; ~~gration
(1.1)
we shall u se the
:ruy)e~dYdl;
=' - JJfl;~1IfudYde
by parts when l' vani sh es for l arg e 1;. Here
the indices y and e denote the respective g radients. Si n ce
L=_11;1-2(~y
(1.5)
has .Q( Ie /-1) coefficients and the prop erty that L'f = 1 when f = (x-y)l; , the first of these fo rmulas shows that we can exp r es s Fu as a sum of operators of one lower order operating ,on u an d
its first derivatives. A repetition of this proc ess define s Fu when :r~ Sm provided the integral i s interpreted as the limit lim e:~O
iJIO
JJI
('j..(el; )fe
i
udydl;
where X~ Coequals 1 close to the o\rigin. In fact, when m+h
,the integral of (1.1) is ab solut ely conv ergent.
Defined in this way, F gives linear maps
(1.6)
sm~cY(~)--,.c1(~
end b;r dual1 t;r
o
- 59 -
L. G~rding
when m+n+ f
sets of Sm ( which is a Frechet space). The dif fer ential operator
also has ' the property that L
=
1 and used in (1.2) shows t h at
the kernel K(x,y) is a ~function wh en x4y. Henc e the pseudodifferential operators P have the property that (1.9)
si~supp. Pu~sing supp u.
We shall now present the cal culus of psendod1fferenti21
operato~s
under five headings: sums, uniqueness and symbols , product s, adjoints, other phase functions. Sumsa Let m > m >••• -+ - co and let f j 6 Sm j be an amplitude of 1 o po F j • Let Xf: C have the prop erty that
. Then, if the numbers t
/1:1<1~ =>~(FJ=O,
f = .
j
11;/>2 =>'f(f.) = 1•
tend to infinity SUf f i cien t l y f ast, '
L"Iif./t j
)f j
e
Smo
and the corresponding operator F has the property that for all j. order(F-F _ ••• _F.) ~ m' +1 o J J The proof is by direct verification. In the sequel we shall write
~~!~j for the last displayed property and analogously f~~fj • When f j has order m-j and is homogeneous in I; of that order f or large I; we say that .! is an Sm amplitude of homogeneous type. Such amplitudes were the first to be considered in the calculus of pseudodifferential operators.
- 60 -
L. G8rding Uniqueness and symbols.
The diff erence of t wo pseudodiffe-
rential operators P1(x,D) and P2(x,D) is smooth only if the difference
P1(x'~)-P2(x,~) is in S-~ • This statement is made
plausible by a formal Fourier inversion of the f ormul a (1. 2~ wi t h f =. p(x,~),~=(x-y)~ , x being considered as a param et er. The pro of i s not difficult but too long to be given here. Wh en P is a pseudodiff erential op erator we shall say that p(x,~) i s a s ymbol of P if P - p(x,D) is smoot h . Products.
The product PQ of t wo differen tial operators P and
Q with symbols p(x,~) and q(x, ~) has the s ymbol
e-tx~p(x,D)q(x,D)eix~ = p(x,D+~)q(x,~) where we may expand the f irs t f a ctor on t he r i ght in powers of D. Thi s i s the background t o the fact t hat the produ ct PF wi t h F gi v en by (1.1) an d P = p(x,D) a ps eudodiff er en t ial operator wi t h c ompac t su pport h a s t he ampl i tude
p(x, D+df(x, y, ~) N
(1.10) wher-e
p~)
pO
{S~J1
=10(p
wh er e
~
~
Lp (ol) (x, ~ )Dx f( x, y,d/od 0{
•
an d the r i gh t s i de has an exp an s i on- by the s cal a = or der p' + or der f +1-k. Th e pr oof i s by dire ct
v erif ic ation. In ord er to handl e products PQ wh er e P an d Q ar e ps eudodiffe-
r en tial we introduc e t he conce pt of compa ctly su ppor ted op erators A from ~ 'c.5l) to ha~ inG
:it' (J)J
behavin:; lik e convo l utions "Ii th fun cti ons
su ppor t cl ose t o t h e origin. The g en eral c ondi t i on i s that
t o ever y compact K
t h er e i s anot he r c ompac t K'
such that
supp uc K => su pp AuC K' , u=O in K' => Au = 0 in K • Such op ere.to r e ex t end in an obv-iou s '::a y t o S) I (JL). Th e point of
- 61 -
L. G&rding
this i s now that every pseudodiff erential P h a s symbols p( x,;) •
flO
()
such that, p (x, D) is compactly suppor t ed. In fact, if9JE:C (Jl.)C.,JL.) equals 1 on the diagonal but vanishes suitably cl ose t o it , the operator Q wi t h kernel~(x,y)K(X,y) wh er e K i s the ke r n el of P,
Q.
is compactly supported and P.;.Q is smooth. But
extends to " .(S})
and putting 1\
the continuity properties 'of Q allow u s to multiply by u(e),
u~ C~ o
that Q
(jD,
and integrate under t he operator s i gn . Thi s shows
= q(x,n).
The formula (1.10) has an i mmed i ate applic ati on to ps eudodifferential P .... p(x, D) whi ch are elliptic in t he sens e that
iocally uniformly i n x wi t h equivalence in t he s en s e of bounded quotients. For such a P there i s a
r-m ej(x,e)
_10
e(x,d'" in S-m such that
In fact, this amounts to a r ecursive system of
L
P<1+;l=k
'/1l·)(x,dDo(ej(x,~).k~"'(2~)-n
~na~~ans
0k _m
'
(x,~)rJ ~~)-n , all of them s ol v a bl e -m ) in view of (1.11). Hence, to ev er y P satisfying (1.11) there is with first member p(x,e)e
a compactly supported E(x,D) of order -m such tha t
PE = I + C where I is the id en tity and C is smooth. Suc h an E i s called a
- 62 -
L. Garding
right parametrix of P and a left parametrix i s def ined analogous17. What we have no w seen combined wi t h the sec t i on on adjoints
(1.11)
~hat follows shows that any P satisfying
has parametrices
of both kinds. Adjointe. Let us pu t
=~JLU (~X )dX
is then defined by t h e prop erty that
, t
(F
• The adjoint F t of F
u,v ) =
u,v£ c()O (~. If the phase functi on is (x-y)/;, then F t exists o andi.t: bU;·the:iiJIlP1U'.tiia-. ft(x,y,d
= f(y,x,-d.
This i s obvious,
but a les s obvious fact i s that the adjoint p~ ot' a p$eudO~ifte~
s.
rential P..-p(x,D) is pseudodiff eren tial wi t h the s ymbol f"V
L
(-D
x
(ol) (x,-I;)/ol!
just as if P wer e a di f fe r en tial operator. This i s a s pecial case of a more general re sult, viz. that F as gi v en by
(1.1)
with
(x-y)1; i s in t a ct ps eu dodi f f eren tial wi t h the symbol
L a I;
)
~O(O«
I
Dy f x , y,1; 10<. , y=x • The fo rmal proof i s t o r ep re s ent f by its Taylor s er i es
(1.12)
(i (y_ x))o<. D: t
(x,~, d lot !
and then use (1. 4) t o conv ert (i(y-x)) Oth er phas e f unc t i ons . of operators
(1.1)
01.
0< into~1; •
An import an t fact i s t hat t h e s pa c e Lm(f)
of or der m modulo smoot h ones r emains the same
f or al l phase functi ons
wi t h Im~So
wh i ch cl os e to th~
diagonal have the form
and are su ch t hat 1'1;=0 =) x=y
~h en
I; i s l arge. We shal l make a
rough sk et ch of t he proof . It suff i ce s t o wor k di ag onal and t he r e
l oc al ~ y
at t h e
- 63 -
L. Gltrdlhg
-t -I. 't/j'k(X, y, I;)(Xj-Yj)(Xk-Yk ) wi th
'frj k tE. S1•
Acco rding to (1.4), multiplic e.tion by x-y Lower-s
the order by 1 and henc e the se r i es expa n s ion of valent to a SO amplitude. Putting
r
=
CPo
ei~
i s equ i -
wh en ~= O this woul d
show that Lm(~)C·Lm(~o).and t h e op posite inclusion i s pr oved in the same way if we expres s jOo as a sum of pr odu cts of two c omponents of
1'l;.'
2. Pseudodiffer ential operators om manifolds. Ths s pa ces H • s
Let.Q. be a c.,cJ parac ompact manifold . In view of (1.13 ) i t makes sense to s ay t hat a linear oparator F fr om ~ 'CJl.) to;b' ~
is
pseudodiff erential if it is so when r estricted to any co ordi nat e patch. In su ch a patch wi t h coordinates x and canonic al c oor di nates l;. of the ootangent s pa ce at x , F t hen has a ke r n el
~f(x,~)ei(X-Y)l;.d~
+ smooth
where f€Sm for ~ome m. The symbol f (x, ~) transforms i n a complicated way under coordinate , coanges, but the paramet er m is inTariant and homogeneous type goes into homogen eous type and then the principal part of the symbol repre s ented by t he funct i ons lim t-mf(x,t~)
~-'t GO
of homogeneity m in ~ is s i mpl y a f un ction on the cot an ge n t bundle T- (.st) of 5l.
•
A pseudodiff erential operator F of ord er 0 on ~ h as t he re2 markable property that it maps L conti nu ousl y into L 2 • The loc proof is simple. We have Pu(x)
=~f(X' ~) eix~ ~(~)d~
- 64 -
L. G£rding and, assuming f(x,~) to vanish for large x it has Fourier trans-
....
form t(~,~)
such that
-
:r(x,l;)
=
(2rr.)-i:(~,t.)"eix'fld~
Hence,if vc Co we have
~ru~X)V(X)dX
(2.1)
and the estimate
~(~-I;,d
11;-1) I )-N) integrals ~K(I;,~)d~ andjK(F.,~)dl; of
= .2( (1 +
for any N shows that the
"
~...
<
K = (2rr.)-nf(~_I;,I;) are bounded. Inserting the estimate 2/vul = " " clvl +0- 1 lui and v arying
c>O shows that the right side of (2.1)
i s majoriz ed by a constant times
f'
l lvl l
1\
Ilull
where the double
2
bars denote the L norm. Hence, by Parseval's formula, FueL 2 l oc 2 wh en ueL • Say no w that a di stribution UE.&'(.5l), 5l.. an open part n
of X i s in H if s
j (1+1F.1 2) S
(2.2)
1~(F.)l2dF. < 00
Then the re sult above and a little reflecti on shows . t ha t 2
<=> FuE:: L f or all F of order s • l oc Here the right s i de make s sense also on a mani fold wh en U6-!.' ({L) uEH
s
and we t ake t h is as a definition of H (Sl). CorrespondinG to s
we then have F ell i pt ic inj ective Qf order s => wh en 2
n. i s
GL CL
2
c ompa c t .
I IFul I
i s a norm on H s
To prove thi s not e t ha t by t he l oc al t h eory ,
<'
whe n order G = o. Als o by t he loc al th eory, F ha s an
elliptic parametrix E su ch that EF=I +C vri th a smooth C. Since F i s inj ec tive, 1+C is nls o inj e ctive s o that by Fr edholm t he or y , Hence if Fu€:L 2 [mel order ( 1+C)- 1 = 1+C with a snoo th C 1• 1
Q~s ,
- 65 -
then Qu
= Q(I+C)-1 EFu
L. G£rding
is in L2 • In fact, t h e order of the pro-
duct of t he f i r s t three factor s on t he r ight is ~ O. Hence uEH s
(=)
and t hi s t ogeth e r with the cl osed graph t h eo-
FIlE H
0
rem proves (2.3). When.Q.. i s not compac t , this re sult has tobe rephrased to t ake i n t o account the suppo rts, bu t we do not gi v e t h e details. Powers. I f P is pseudodifferenti al .an d ell i ptic i n the (1.11) on a manifol d as when
!L
n,
s ~ ns e
of
the cons truct ion of a paname t rdx goes
i s a part of ~ and thi s shows tha t P has pseudod if-
f eren t ial ell iptic integral pos it ive and nega tive powers pk such that pkpj~pk+j
f or all k and j. Following Se el ey ' ( 196S ) one
can als o con struct ps eu dod i f f er en tial compl ex powers pS at l east in the special cas e when wh en Re
A~
i s, compac t; , P - ~ I
i s i nvertible
0 an d , e. g.,
; l arg e
Re p(x, d
= )
) 0
whe r e p i s the s ymbol of P. This c on s t ruc t i on i s based on the fo llowing wel l - kn own formu l a AS
=
(2ni)-1j /lS(A_/)I)-1
J
dA
fo r the power s AS wi th Re s < 0 of a closed dens ely d efine d inv ertibl e ope r a t or
A
on a Banach spa c e whos e spectrum does not
c ontain an angular neighbourhood of the neg ative r e al axis . Here
If
i s a c ount er clockwi s e l oop around t h e oriGin i n t h is n eigh-
bour h ood. Put ting A = P we defin e pS by thi s formul a . I t then turns ou t t ha t p S i s p e eu dodLf'I'e r -en t La'l, wi t h ilynbol (2ni )- 1
l. AS ir
e (x, ;,/\) -m
v:he r e t he s yn boL ~E S
dA
i s comput ed r-ecu r-s Lve Ly fr om t he syst em
- 66 -
(p(x,D+d -
A)e(x,I;,). )..v(2T1:)-n
•
MultiPl~cations by P extend the se mi gr ou p
s ~ps
with Re s < 0
to a ,group s-+p s , se~, of pseudodifferential operato rs. 3. Fourier integral operators. An op er2,tor F of the type (1.1) with ke rnel (1.2) is sai d to be a Fourier ,i nt egr al operator ,i f S1 , 1m SO and (11f'xl +
(3.1)
Id
1'f1;1)!11;1
and (Iepyl + 11;1 If~I)!11;1
keep away from 0 for large I; on compact subsets of
St 1'i-J1 2
•
Replacing the op erator (1.5) by
,Jj::,"
L
(I(l~l
,t
q>;):a; )
which still has the property that L = 1, a little calculation shovis that (-1.1) gives bilinear maps Sm)<.
c: (Jl2).-. c~(.n1)
Sm", ftf'- ~2)-~t" (~) continuous on bounded subsets of Sm Example. Let N=n-1, 1;=(e
2,
when m+N+~< ~ •
••• ,e n) • Then if
A(e)
is real and
homogeneous of degree 1,'1'=X (x 1- Y1) + (x2-Y2)1;2+ ... (xn-Yn)en .bel ongs to S
-~~but
cr
1
,
vanishes when
'
(x 2-y 2"" )!(x 1-y 1) equals
Ifx' = 1(A'~2, ••• ,en)1 is as large as I~I and hence
haa the property (3.1).
Singular support.
As intthe preceding example,
ife
can vanish
for some x,y and arbitrarily large e and the differential operator
'% ,-2 ~~d~
which is the analogue of (1.8) can be used- only for such x,y that
Ife l
keeps away from 0 for large enough e. Since f~x
and
- 67 -
L. G£rding
complement Sf is the singular support of the kernel of F
and (1.9) is replaoed b~ sing supp FuC
S1 sing
supp u
with an obvious interpretation af the right s i de . Calculus.
Sums of Pouri er integral operators behave like sums
of pseudodifferential operators but products of Pourier integral operators is a
ve~
complicated affair. What we shall need is
a simple result about the prOduct of a pseudodifferential operator and a Fourier integral operator. Let Lm(f) denote the space of operators (1.1) with a
flO
OIl
C o~2)-+ C~) which can fixed f satiSfying (3.1).
be written in the form Then if a(x,D) is a com-
pactly supported pseudodifferential operator in order a =
r- '
F GLm(
Jl 1
'
=> aF6 Lm-tf(f)
and aF has the amplitude
intepreted as (3.3)
.....,
La (0<) (X''fx)D z
f(z,y,1; )e i f /
ol..~
lz=x
where r(x,y,z,l;) =~(z,y,l;) - f(x,y,l;) -
proof is again rather straightforward. One
v~i t e s
F = F
where F 1 is smooth and F 2 is' such that zero for large I; wh er e the amplitude of F
does not vanish. In 2 the latter case one can calculate as fOr products of pseudodif-
ferential operators. 4. Asymptotic prop erties of the pseudodiff er entialoperator.
function of an elliptic m Let a(I;)ES , m>O, be r eal, ellipspectr?~
- 68 -
L. Ggrding
tic and po s itive f or l arge a(D) on xn is
~.
The pseudodiff er ent ial operatqr
th~/selfadjoint in
L2 (xn)
~ith'
domain Hm• It is co
diagonalised by the Fourier transform and the C funct i ons (4.1)
e(x,y,).) =
( 2~)-n
J
a(I;)<)
are the ke r nels of the proj ect ions
J)
d,E>.
of a(D).
in the s pect r al r esolution
Vie shall get a similar formul a when A i s a
formally selfadjoint order
E~
ei(x-y)1; 'dl;
~lliptic
pseudodifferen tial operator of
on a compact manifoldJl su"tlh that the limits '
(4.2)
,.l im t- 1a(x,tl;) , t ..... t:tD, u
where a is the symbol of
If.:,
exist and are po.s i tive. Th e s pa c e
L2~ with norm Ilull is taken wi t h a fix ed positive C<X> density dx. The closure! of A in L2 is
th~/selfadjOint
and bounded from below, ! ~ c. Let
J) dE~
wi t h ' doma in H 1 be its s pe ct r al re-
solution. Following Hormander (1968) ~e shall i nv estigate the C,. kernel.e(x,y,)
of E)o. for large/- by s tudying t h e Fouri er
transform
. ~ (t )
=
5.-it~
dE'). = e- i t A
for small t. Since, for every re~ s,
'"
II (A-c+1)BU II
in Hs ' all E(t) are strongly continuous maps Hs ~Hs • E(t)U o with u o e H1 is the unique H1 solution of (4.3) Dtu + Au 0, t=O => u=u o •
is a norm and u(t)
!l!he main step is now to show that locally inJ2, for small t
'"
and modulo smooth operators, E(t) equals a certain Fourier inte. ~ral operator Q(t) which can be constructed explicitly. Let x,y ,
be coordinates close to the diagonal chosen s o that dx is Lebesgue measure, let a(x,l;) be the local symbol of 4 and wr i t e
- 69 -
(4.· 4')
Q(x,t,y )
r(
L. G~rding
)
=)q x,t,y,e e i (x,t,y,e)d ~e
for the kernel of Q(t)~ In view of (4.3) we shall try to achieve that, modulo smooth operators, (1)t + A)li(t)"" 0, Q(O)tvidentity• . The first condition leads to
(4.5)
(ft + Dt + a(x,Di'x))q(x,t,y,d '" 0 which should be interpreted like (3~2). Hence it is n aturalto which makes the fi~st term in
require that crt + a(x'fx)E SO
the expansion harmless. To be able to control Q(O) we also require that ~= (x-y)1; + 0(lx-yJ
211;1)
when t=O. These require-
ments 5til1 give some leeway 'and it turns
ou~
that one should
put
cp'
(4.6)
-y(x,y,d - ta'(y,d
where a'(y,l;) is a real S1 function congruent to a(y,e) mod SO ( e.g. a' = Re a(y,I;)) and require that a'(x,'tk) x = a'(y,l;), "f:t(x,y,l;) = (x-y)1; +.Q(!x-y/2IH). ~his is a non-lin~ar Cauchy problem for~ and some reasoning using
(4.2)
shows that it has a unique
real solution in S1.
We shall describe this situation by saying that a" and ~are
adapted to A. An appeal to
(4.5) and (1.13) and some calculations which we
will pass over show that there is a SO amplitude q(x,t,y,l;) vanishing exoept when x and y ~ close such that Q(t) has the required property, namely that
(4.7)
A
X(x, t,y) -
.
'
Q (x, t,y)€
where A E(x,t,y) =
J
C
pO
~ e -itAde(x,y,~)
- 70 -
L. G!J:"ding
'"
1s the distribution k ernel of E(t), t i s smal l and y in a coor4inate patch. Inserting (4.6) into (4.4) and r eplacing q by its main term (21t)-n when t =O and x=y, we get in some s o far
J
unspecified sense
(4.9)
Q(x,t,y)
where
~
e-it"df(X,y,'A)
f(x,y,~) = (21t)-n~
a' (y,d<)
ei~x,y,~) d~
•
In view of this it seems natural to compare e and f and we have
Theorem 1. It A satisfies (4.2) and the phase function and the _.Pl1tb~ a'(y,~) are adapted to A, t hen , as
>. ~,.o,
e(.x,y,).) _ r(x,y,)) = Q(An-1) n ear the diagonal and e (x , y ,}. ) = Q(~ n-1) away from the
d~agonal.
In particular,
e(x,x,'}.) _ f(x,x,~) = Q~n-1) uniformly. The pr oof de part s from (4.7) and we s hal l sketch it. Consider convolutions
(4.11)
Jr ("A -~)de
(x,y,/<)
It?".... "") ) we with f.C ,.r(o) =; and 'p(t =0 exc ept for small t. By ..J 1''1
then know that (4.11) differs from (4.1 2)
(21t)-1~}d(t)
eit>Q(x,t,y)dt
by a rapidly decre asing fun ction of A. Hence the differenoe
(4.1 2)
Jf(~ -f-)de(x,y,{'f) -jR(x,j,_a'(Y,d,y,~).I.+<x,y,dd1;
i s also rapidly dec reasing
~h e r e
R(x,~,y,~) = (21t)-~ji(t)q(x,t,y,1;)eitA
dt
- 71 -
L. GArding
is a SO func tion rapidly d e c r' e aad.ng in ~. Rough estimat es sh ow that the second t erm of ( 4.1) 2 is
f
f
f\n-1 ) and henc e, cho sing
Q~
0 we get
(4.13)
n- 1) e(x,X,ft+1) _ e(x,x,}.) =Q(A
and the s'ame estimate for .e(x,y;/J. A new a t tack on (4.12) using (4.13) then brings ~he desired r es ul t . 5. The Sase of diff erential operator§. The pre cedine t he or em carries over to .di f f er en t i al op erators. As in the introduction, let P be an elliptic differential operator of ord er m>O on a paracompact manifold.!l of. dimensi on n and suppose t ha t P is formally selfadjoint. In a coordinate patch t.J wher e the gi v en density dx onJlcoancides with Lebe sgue measure we choose a funct ion
~x,y,~) , homogeneous of degree 1 in. e such that
(5.1)
p(x,~) .. p(y,d ,'o/=(x-Y)I; +.Q(/x_y/2/ e l)
.
where p is the principal symbol of p. Lete(x,y,)) be the spectralfUnction of a selfadjoint ext ension P of P bounded from below. Then we have HOrmander's main result Theorem 2. The s pe ct r al fUnction is QCl\(n-1 )/m) locally uniform. ly outside the diagonal while close to the diagonal
(5.2)
e(x,y,~) -
(2lt)-n
J
a i (x,y,dde = O().(n-1)/m) p(x,~)<) -
locally uniformly.
!
When .Q is compact, this follo ws from Theorem 1 if we put ·1/m = P which is pseudodifferential and hab the s pect r al func-
tion
A~e(x,y,~1/m). In
fact, (5.1) shows that p(x,e)1/m
and
~are adapted to A. The non-c~mpact case follo ws fr om t h e com·
- 72 -
L. G§ rding - compact case f ol l ows f rom the compact c ase 'an d on e of the
compariso n an d summa bili t y ·the orems in H8rmander . (19 66) whi ch we will summarize in t he nex t se ction . We
end this sect ion
s h~ l
by showing that ' (5.2) as a general r esult is be s t pos sibl e . When
11
is compaot,
P'has
a compl ete orthonormal s et
[fk~
of eigen-
functions and we have
Hence N
OJ =
J
e (x,x,).)dx
is the numbe r of eigenval ues
(5.3)
N().) _ . ( 2n; )-n
<)
/.J
p (x ,1; )<)
and (5. 2) s ay s t hat dxd l; = Q(
:>. (n-1 )/m ).
. n+ 1 When P i s La pl ac e I s ope rator on t he uni t s ph ere in lr , t h i s result i s be s t pos s ible. In f ac t, then the eig envalues are A = k k (k+n-1) with multiplicities (n +k ) _ (n +k- 2) '" kn - \ Hen c e t h e n n jump of N('A ) a t A i s of t h e ord er of magnitUde ).~n- 1 )/ 2 and k henc e equal t o the error t erm of ( 5.3). 6. Riesz means an d s unma bi l i t y. The Ries z mean of
ord er~
of a
f un cti on f(t) v anishing f or t~O an d l ocally of bounded v aria tion i s def i n ed by the fo rmula let)
=J:;
0(
(1 - si t ) dfCs )
whe r e Re d.. >-1. When Re ol >0 t his c an be . .·cri tten aa f d.() . t =o(t'~- 1 In
particu~ar,
if f
fo{( t ) =
at least wh en
«.
ft f (s )r,1 0
= ~~it
01t0
- s I t )0£-1 ds •
, a chan g e of
J~ e i tX:J ( 1_x )ol. -1 dx
and ~ ar-e i nt eGers 3.-1'1d
eof
0(
vari~bles s
= Q(t~
= t x gi ves
- Re O( )
+1. In f act , t hen 0<
integrations by part s ~how t he int eGral t o be Q(t~) . T~is sinpl e
- 73 -
L. Garding
example indicates that, taking the Riesz mean of order 0( of a function should diminish it s growth at infinity by a factor -ReD( of t provided the f un ct i on i s not too large and oscill ates suffi ci ently. Thi s i s als o t h e general picture. Th e f ol l owi ng precise r esult due to Hormand er (1966) i s s pe ci al l y ada pted to the s tudy of spgctf'al
' flinnUoi!s dhf :', ~ ll i p,t ic :' o pe rat o rs ~ Of :c' o:l'der
m. One as sumes that f = Q(t N) for s ome N and introduces the Fouri er-Laplace transform
whos e bound?xy v alue : in th e sens e of di stributions i s t h e Fouri er transform Ofdf(t m). That f os cillates suff i c i ent ly for large t i s then expre ssed by the condition that F(~) be an alytic cl os e to the ori gin and that F (Ink) ( 0 )
=0
for k=O,1, ••
There is al so a Taub erian condition
giv ing a nne-sided bound on the amplitude of the os cill ations of f. The conclus i on i s then t ha t
provided Reo( >0 oro{=O. We shall no w s et the s tage f or the a ppl i cat ion of (6.3). Let
J2 1
and
51 2
be t wo mani f olds and W a char t of both , i dentifie d
wi t h an op en su bs et of
xn.
Let P1 and P 2 be formal l y po s itive
elliptic diff eren tial op era tors in5L andJl 2 which are equal 1 in t..J • Sinc e
onl~'
constants c omnu t c ':'i t h ell ip t i c op era tors,
t he den si tie s Of~1 and
Jl
2
a re pro)or t ional ~nd wc QSOQDe
th 2m to be Leb e r-gu o mer.su r e inW. Le t ='1 ' P2 be t ':iO :;>o r: itive
- 74 -
L. G£rding
selfadjoint ext ensions of P1,P2 and e 1,e2 the s pect r al f un ctions. Then both e and e ar e of the form 2 1 dl;; + (n-1 )/m) p(x,d
J
s«
when x=y and, if Re 0()0 ortX = 0, 0( ) «n-1- Ree( )/m) e~ X,1,t ) - e~( 2 x,y,t = Q ~ where all estimates are locally uniform in x and y. We shall
(6.5 )
sketch the proof of this basic result. In the first Rl~ce,
(6.4)
follows from Theorem 2 when the
corresponding manifold i s compact and hence we may u se for one of the spectral 'funct i on s when provin~ in passing that the restriction
t~
(6.5).
(6.4)
We note
positive pperators rather
than ones bounded from below can be removed by changing the origin in the Riesz means. The proof ~f
(6.5)
depends on classical properties of Green's •
function G(x,yjz), i.e. the kernel of the resolvent (p -zI)where P
= P l' P2.
It is a C"'" function except when x=y or z ~
some c)O and analytic in z and we have G(X,y,i z) =
J o.~z)-1de(x,y,).)
and - 1( - ( 2~i ) -l~
i;;
e
-f3z 11m (
j
) G x,y,iz dz =
e
in the sense of kernels. Here Im3 '< 0 and of the angle Ze:: larg zl <
E:<~/2
-itS ( m) de x,y,t
ie
is the boundary
• Now the difference H=G 1-G2 11m
of the two Green's functi ons turns out to be Q(e- C I Z 1
),
(c)o ), outside Ze and hence if f=e the corresponding 1-e 2 is
1
- 75 -
L. G~rfting difference of the spectral functions vre get .~ 1/m -e• -.l.,.)Z -~UJ m -(2~~) . e H(x,Y,iZ)dz = e df(x,y,t).
=} . .
~trE
It i s then clear that t he left side i s an alytic at the origin and that i tsj -derivatives of order mk wi t h k=O, 1,. •• vanish forJ =0. m) It i s immediate to see t hat f(x,x,t h as the p~op erty (6.2) ·i f e 1 h as t h e prop erty (6.4) an~ this proves (6.5) wh en x=y which is suff i ci en t . The s ame line of ar gu ing gives s tat ement s about the Ri esz means
ro f) ) dy ec< (x,f,~) = je (x,y,~ r(y of the eigenfunction expansion of a func tion f. Here we s hall only n ention that if f~ LP(SlJ , 1~p~2 and if f h as conp ac t support, when
P<2i t hen (6.6) converges to zero locally uniformly outside the support of r when Reo( ~
(n-1 )/p and to f(x) at t he Leb esgue
points of f ( in the LP sense) wh en 2e~>(n-1)/p. For the details t h e r ead er i s rerer~ed to Ho rnander (1966).
- 76 -
Referenc es. E. Balslev and J.M. Combes. Spe ctral pr operti es Schrodinger operators wi t h di latat i on
Ju. M. Berezanskii.
Exp~~ si on s
o ~ m <~y-bodJ
in t e r ~cti ons.
Co~n .
rJ~th .
in ei g cni'unction£ of £elf2.Lj oi n c
operators. AMS translations 17 (196 8). L.D. Faddeev. Mathematic al probl ems of the qu antum s ce,tt e r i nc
theory of the three body probl em. Trudi Stekl LXIX(1963)1-120 ( In Russian )
L. Hormander. On the Riesz means of s pe ct ral f un ct ions an d eig enfunction expasions for elliptic differ en tial
op cr~to rs.
Rec ent
Advances in the Basic Scienc es. Yeshiva Univ. Coni' . Nov . 1966. 155-202. - ' • The spectral function of an ellipt i c oper at or . Acta Ma t h . 121(1968)193-218. T. Ikebe. Eigenfunct i on expansions
ass o c i ~ted
wi t h Schr odinc er
operators and their applicat i ons t o Sc att erinc The ory. Arch . Rat. Mech. Anal. 5(1960)1-34. -.
On the Phase-shift formula for the Sca tt er i nC oper a t or .
Pac. J. Math. 15(1965)511-523.
5.1. Kuroda. Scattering theory for differential opera t ors I,II. Journ. Math. Soc. Japah 25,1 and 25.2 (1973)7 5-1 04 and 222-2 34. K.
Maurin~
General eigenfunction
expans~ons
an d unitary r ep-
resentations of topological groups. Mon, llat .48 ( 1 9 68 )~ arszawa . R.T. Seeley. Complex Powers of an Kath. 10 (1968) 288-307. (AMS).
Elli p t~c
Operator. Symp. Pure
- 77 -
L . Garding B. Simon. Quantum Mechanic s f or Hamiltonians defined as quad-
ratic fDrms. Princeton Series in Physics (1971) • • Resonances in n-body qu antum systems and the
founda~i ons
of time-dependent perturbat i on theory. Annals of Math. 247-271. ~.
Weyl. Uber gewohnliche Differentialgleichungen mit
Singulari~
taten und die zugehorige Entwicklung wi l l kUr l i cher Funk tionen.
CENTRO INTERNAZIONALE MATEMATICO ESTIVO (C. I. M. E.)
VALEURS PROPRES DE PROBLEMES AUX LIMITES IRREGULIERS: APPLICATIONS
CHARLES GOULAOUIC
Cor sot e nut 0
a
V are n n a
da1 24
ago s t
0
al
2
set t e m b r e I 9 7 3
VALEURS PROPRES DE PROBLEMES AUX LIMITES IRREGULIERS par
APPLICATIONS.
C. GOULAOUIC (*)
UNIVERSITE DE PARIS XI 91- ORSAY
PRELIMINAIRES
1.- Introduction.-
- Ce cours comporte essentiellement deux parties. - D'abord on donne quelques methodes d' etude du comportement
asym~
totique des valeurs propres de prob.Lsmee aux limi tes plus ou moins irreguliers ; on demontre quelques resultats sans pretendre faire une etude systematique et exhautive ; les principaux exemples traites Ie sont en vue des applications; les idees de base sont dues A.N. KOLMOGOROV [25]
et ont conduit
a de
a H.WEYL[36]
et
nombreux resultats recents
([ 12] [13] [18] [20] [29] [31] [35] ... ). On s' est beaucoup inspire ici d'un travail de
G. METIVIER [29].
- Dans une deuxieme partie, on s'interesse surtout
a donnees
a des
analytiques ; on etudie certains espaces de vecteurs
problemes 00
C
et
analytiques" 1*~La-Cont;IbUtion de l'auteur aux resultats exposes a ete obtenue en
collaboration avec M.S. BAOUENDI (Purdue University).
- 82 -
C. C.olll aOllj c dont on montre l' isomorphisme ave c des es paces de su ites (grace aux r esultats precedents de theor i e spectrale) . On met en evidence des relations entre, d'une part la r egularite analytique et, d'autre part, la croissance des valeurs propres et des inegali t es (di t es "de BERNSTEIN" et "de MARKOV") sur les fonctions propres ~t leurs prolongements. -
~plan
suivi est:
1 .- Formule du min-max ; epai s s eurs suecessives et localisation. 11.- Comportement asymptotique precise des valeurs propres de problemes irreguliers. 111.- Espaces de vect eurs
ceo
et analytiques •
IV.- Fonctions propres de "bons" prob.Iemes aux limites
inegalites
de BERNSTEIN et de MARKOV. - Les methodes utili s ees reposent es s ent i e l l ement sur des notions s imples d'analyse fon ctionnelle (en par t iculier la proprie t e de BAIRE) et des proprietes de certains es pac es hi l ber t iens de distributions.
-On commence par que l ques rappels et r emarques tres el emen t air es afin, ess entiellement, de pr eci ser Ie cadre dans l equel on se place et de fix er les notations et le s definit ions. 2 . - Compacite et espaces de SOBOLEV._ Soit
H un es pace de HILBERT de dimension infinie (ce sera en
gene r al ' L2 (Q) ou t eur
Q
e st un ouvert de
(A,D(A)) lineaire n on borne dans
mn
) ; on considere un opera-
H e t f erme
ral la r ealisation d'un probleme aux limites associe f er enti el
ce s era en gene-
a un
operateur dif-
• ~ suppo s era t oujours ~ l'inj ection ~ D(A) ~ H
- 83 -
. C. Goulaouic etant muni d'une norme equivalente a celle
D(A)
compacte, l'espace
~
du graphe. - Avant de donner quelques exemples, precisons les notations et defi. nitions que nous dOnnons des espaces de SOBOLEV
I a .' -- a f'·
a
D
= D~1
h I · ~n ·
••••• D~
et
DEFINITION 0.1.
I\: = -i
.
n
Q un ouvert de R
Soient
o
.
o~
et. m € pour
IN
; on note
Iexl
smI
et on le munit de la norme hibertienne evidente. ~(Q)
l'adherence dans
Lorsgue l'eepace
0
~(Q)
a support
e~
tions
nf) a support
de FOURIER) aux cas
tion dans
a
a
Q
0
de classe
tout ouvert
m€
0
IR •
=0
~(C1)' On note aussi
support compact dans
Q d'ele-
peut se prolonger (par la transformation
l'espace des distributions sur
1
a
em)
s'identifie avec l'espace des elements de
~(lRn)
~oc(Q)
des fonc-
0
dans
La definition de
On note
compact dans
s'identifie avec l'espace des restrictions o
~(
o
de l'esp~ce ~(Q) = e~(Q) o
est assez regulier ( par exemple
~(Q)
gID(Q)
(i.e :
Q dont la restric-
01 compact contenu dans Q) est
~omp(Q)
l'espace des elements de
gID(Q)
Q
11 est facile d'etendre toutes ces definitions aux cas de varietes
- 84 -
C.
assez regulieres (au lieu de
0) ; nous aurons
a y revenir
Goulaouic et nous
donnerons a.mesure des besoins les resultats utilises sur ces espaces (cf.[27] ~ar exemple) ; signalons une forme de l'inegalite de POINCARE Si
Q
est borne, il existe
u (
~(o)
II u II ~2(0) et
C(O»O
tel que l'sn ait, pour tout
< C(O)
C(O) tendant vers 0
quand le diametre de
Q
tend vers 0
- Voici quelques resultats elementaires de compacite de l'injection
• Lorsque de
Q
~(O) dans • Soit
~ompacte,
m>
a une infinite de composantes connexes. l'injection
2 L (0)
n'est pas compacte •
• Pour que l 'injection de
s.oit
il est necessaire que lim
dist(x,6o) = 0
IX 1-400 x(Q
Cette condition est d'ailleurs suffisente lorsque
Q
est un ouvert de
~(Q)
se
m
n (mais pas de IR ) grace a l'inegalite de POINCARE. • Des resultats plus fins de compacite de
o
trouvent dans des travaux, par exemple, de R. ADAMS, C. CLARKS, P.J. ARANDA et E.P. CATTANEO [2] ••• et repo~ent essentiellement sur un raffine ~ent
de l'inegalite de POINCARE. • L'injection de
lorsque C1 et
Q
~(O) dens
2 L (Q)
est compacte pour
est un ouvert borne assez regulier (par exemple
cf . [1] pour des cas plus generaux); mais si
0
m~ 1
Q de classe
est borne et
- 85 -
trop
il se peut que cette
irregul~er,
C . Goulaouic ne soit plus compacte •
in~ction
• (Espaces de SOBOLEV avec poids). On peut considerer
de nombreux
types d'espaces de SOBOLEV avec poids ; signalons seulement pour Ie moment un exemple Soit
0:>0
{u €
et
:15' (Rn )
; D u € L2(IRn) i
pour
i=l, • •••• , n
et
2 2 (1 + Ix1 ) 0: u € L (JRn ) I
II est facile de voir que l'espace 1 I injection de
E
L2(~n) vn
dans
0:
E
etant muni de sa norme naturelle,
0:
est compacte •
.Par contre, on verifie aisement que l'injection de
2 2 [u € L (1R) ; xu' € L (1R ) } dans
3.- Operateurs
auto~adjoints
2 L (rn.)
positifs et problemes variationnels.
En plus de la compacite de l'injection de suppose que
D(A) dans
H
A est auto-adjoint strictement positif, c'est
D(A) est dense dans D(A*) = {u € H
H
; ~
(Au,v) = (u,Av) u € D(A)
n.'est pas compacte.
et egal
dire:
a
(Av,u) soit continu sur
pour tous
a
on
,
u,v
dans
D(A) pour la norme de H
D(A) et
(iu,u)
>0
pour
, uFO
On sait qu'alors Ie spectre de A € ( tels que
A (clest
a dire
A-AI ne soit pas un isomorphisme de
constitue par une suite
l' ensemble des D(A) ~ H)
est
(A) j€ IN de valeurs propres de multiplici te
~ (repetees avec leurs multiplicites) que l'on ordonne en une suite
non decroissante et qui t end vers
(lp j ) j c IN
orthonormee dans
associees aux
~
• On peut trouver une base
H consti tuee par des f onctions propres
(Aj) j E IN • On a
- 86 -
C. Goulaouic
= {u =.E J=O
D(A)
u
m
jTj
si
et • Lorsque
A est seulemerit auto-adjoint borne super-Leur-emen t ou
inferieurement, on se r amsne au cas ci-dessus en prenant A +A o
avec
A o
ou
A -A
o
convenanble .
A es t auto-adjoint, on peu t, pour les proprietes des valeurs
Lorsque
propres et fonctions propres, le remplacer par
2+I A
qui est strictement
positif. D'autres reductions sont possibles et des arguments de perturbation permettraient anssi d'etendre
a des
cas non auto-adjoints les resultats
obtenus dans le cadre precise ci-dessus. Formulation variationnelle.- Soient que
V,H deux espaces de HILBERT tels
V ~ H avec image dense (*) • Soit
continue et
coercitiv~
sur
V
a
une forme sesquilineaire
a dire
c'est
qu'il existe
M et
a>0
tels que l 'on ait a(u,v) ~ Mlul~ l/vl~ pour 2
la(u,u)1 ~ a~u~v En identifiant
H
a son
pour
u
et
v
dans
V
u (V
antidual, on a
V G H G V'
de LAX et MILGRAM di t que l' on definit un isomorphisme V'
A de
V sur
par (Au,v)
= V' xV = a(u,v)
On definit un operabeur- non borne
D(A)
= {u
pour tous
(A,D(A»
Ci
F
dans
V H par
( V ; Au ( HI
Pour deui espaces vectoriels topologiques
par E
u,v
correspond ant dans
-------- - - - - - (*)
et le lemme
l' inclusion continue de
E de
F
E et
F
,on designera
- 8·7 -
II est immediat que, si l'injection
V c+H
C. Goulaouic est compacte, l'injection
D(A) ~ H est compacte. De meme,OIl montre aisement que L'operateur
A est auto-adjoint lre,p. auto-adjoint strictement positif)si
et seulement si la forme
a
est hermitienne (resp. hermitienne positive) .
II suffit pour ce La de voir que I' on a aussi v ~ (Av,u) de
H
sur
D(A)
soit continue pour la topologie
I .
On se placera dans la suite dans une formulation variationnelle, d'abord parce que cela permet de considerer des problemes "aux limites" dans des cas tres irreguliers (~o aux traces)
trop irregulier pour donner un Bans
et aussi parce que ce n ',est pas une restriction pour I' etude
que nous avons en vue, etsnt donne qu'a un operateur on peut associer
f
V
1
= D(A)
a (u , v ) 1
V
1
(Au,Av)
~
H
pour
u
et
v
dans
(A,D(A))
dans
H
-ss -
CHAPITRE 1.- FORMULE DU MIN-MAX
C. Goulaouic EPAISSEURS SUCCESSlVE3
ET LOCALISATION •
On donne d'abord les proprietes plus ou moins
cl~ssiques
des epaisseurs
successives d'un sous-ensemble d'un espace norme, qui nous s erviront par la suite; puis on fait I e lien avec les valeurs propres d 'operateurs, et on montre comment on peut en deduire des encadrements de ces valeurs propres. I.- Epaisseurs successives (cf.[25]) DEFINITION 1.1. - Soient et
k E IN
E un espace norme,
; on appelle
B une partie de
k-d eme epaisseur de
B dans
E
E Le
nombre (eventuellement 00)
II
inf sup inf X-"j liE EkE lh x E B y E Ek . designe l'ensemole des sous-espaces de E de dimension
En notant
d(x,~)
la distance de
x
a
E k
,on peut encore
ecrire inf
sup
E k
x E B
On peut -obs er ver aisement que La suite· k~ 0k(B,E) • Pour en
0
k=O
, 0 (B,E) o
et cont enan t
• l' application
est non cr cissante . est Ie rayon de la pl us petite boule c entree
B
B 1-+ 0k(B,E)
est non decrof.ss ante .
- 89 -
C. • Pour tout
a) 0
et tout
Ok
aB,E) = aOk(B,E) •
B
• En designant par
disquee de
B
Goulaouic
k E IN
l'adherence de
on a pour
k E
B et par
r(B)
l'enveloppe
~
Sont egalement classiques mais un peu moins evidentes les proprietes suivantes PROPOSITION 1.1.- Soit
F un sous-espace dense de
~neede
F
I
, k E
E,
B
une
; on a :
~
°k(B,E) = °k(B,F)
Demonstration : Soit
£)0
montrons que l'on a pour tout
!
On note de fayon generaIe
Si
X est un sous-espace de
.Soi t
~
un eous-eapace
E
la boule unite de l'espace norme
de
F
X
on a
un sous-espace de dimension F k
k E IN
de dimension
d(B,Fk) ~ d(B, ~) +
k
k
de
E
on a Ii chercher
tel que
£
Grace Ii (1.2), il suffit de realiser
ce qui est immediat. PROPOSITION 1.2 .- Pour que la suite tende vers
0
quand
k-ooo
une partie precompacte de
(Ok(B,E»kEN
soit bornee et
il faut et i l suffit que E
B soit
- 90 -
C.G01!J.a01!ic Eem2~~~~~~~~ : (on rappelle que
a
est compact et equivaut
dire que : Pour tout
nombre fini de boules de rayon Soit
B precompact
£ recouvrant
et soit
(B(Xi'£»i=1, •• ,N qui recouvrent engendre par les
(Xi)
;
Inversement, soit
< £/2
E
£)0
B • Soit
E£ de
(puisque
, i l existe un
B)
B
E
l'espace vectoriel
a
E est surement Ok - 0
quand
<£
k-
E de dimension f inie tel que
. II est alors facile de recouvrir e
B
; il existe des boules
£>0 et supposons que
fini de boules de rayon -£
£)0
la distance de
il existe done un sous-espace d(B,E ) e
B precompact s ignifie que
B par un nombre et que
d(B,E ) = d(B,26 (B,E)E ) e 0-£
est compact ). PROPOSITION 1.3. - Soient
E et
F deux espaces normes et
T € ~(E,F)
(espace norme des applications lineaires continues
de
F) . Pour toute partie
E dans
B de
E et tout
k€m
on a 0k(TB,F) ~ ~TU 0k(B,E)
E~~~~~~io~
: On a
T 'k(E) C
tld
'/F)
< inf sup inf I/Tx-y/IF - Ek € lJk (E) x € B y € T~
<
II Til
COROLLAIRE ,., . - Soient soient et
E,
F, C F
et
F,
inf ~
sup x € B
inf z€E
Ilx - zl~ k
E, F des es pace s normes et des espac es de BANACH
tels que
; on suppo se que la restriction de
continue et sur j ective de
E,
dans
F,
T €~(E,F)
T
E,C E
a
E,
• Alors i l exists
est C>O
- 91 -
C.
Goulaouic
t el que pour tout
k €
m
eela r esulte i mmedi atement de l a propos ition '. 3 et du fai t que ~1
cont ient un homot he t i que de
!1
PROPOSITION 1. 4. - Soient sous-espace de
E un espace pr ehilbertien. B une partie d e
E.
F
F un
k€N
on a :
Demonstration:
On peu t suppos er que
et
F un sous-espace f erme de
de
E sur
F
puds que
"P
E
II
E es t un espac e de HI LBERT
so it et
=
P
la pro j ection orthogonale
PB = B
on en ded ui t de la
propositi on 1.3 .
L'inegalite inver se es t evi den t e . PROPOSITION 1.5 . - Soient
E.F.G
que ' E C FC G
trois esp ace s normes tels
pour tout coupl e d ' en t ier s
on a
(k , k ) 1 2
ok +k (~ .G ) ~ ok (~.F)' Ok (!,G) 1
Demonstration
cca.k (F)
et
l'
Ek
2
x € E
ok
1
c ~k
c
1
2
(~,F) < £1
(G)
et
ok
2
(~.G) < £2
, il existe
t els que
2
E
3y € E k
Vz € F
3t € E k
Yx
Done pour
2
: Si
on peut t rouver
1 2
y €
" x-y l~ 2 £, UxIIE
II z- t lb ~
~1
£21~IF
et , en pos an t
z=x.-y
- 92 -
c. on trouve
t (E
k
2
I x- y - tIl G ~ y+t(~
au plus
k
Goulaouic
eomme ei-dessus ; d'ou
E
Ilxl E
1E2 +~
1
sous espaee de
G de dimension
2
1+k 2
Ce qui implique la proposition. Donnons tout de suite un exemple fondamental pour la suite. PROPOSITION 1.6. Soit
(~j)j(N une suite non deeroissante de
reels strietement positifs. On note semble de
i
2
defini par ':
liors, pour tout Ok ( B,i
;Q~!!!~~~ati~: k
2)
Soit
B Ie sous-en-
k (IN
, on a
-1/2
= ~k
~ Ie
sous-eapece de
i
engendr-e par les
premiers veeteurs de la base hilbertienne eanonique (eonstitue par les
elements dont toutes les eomposantes
f .
pour
J
j~k
sont nul.Les )
on
a immediatement
d(B,~) = ~1/2 Soit
F ,un sous-espaee queleonque de k
trouver k
f
~=olfjI2~j
= (f = 1
0
i
•••••• ,fk,O • • • • ) ( ~+1
2
de dimension orthogonal
a
•
On a evidemment d(f ,F = Ilf k) done
d(B,F k)
~ ~1/2
~ ~ ~t/2
,ee qui termine la demonstration.
II en resulte immediatement Ie
k F k
on peut avec
- 93 -
C.
COROLLAIRE 1.2. - Soient
et
Goulaouic
v=(v .)
deux suites de
J
reels strictement positifs tels que la suite
(~j/Vj)
soit non decroissante. On note: E
!f=(f .) € (l
B
I (f J.) c «?
; IIflE ; /If.J
J
On a, pour
k € vk
11
If J.1
= I:
2
J
u, < 1 J -
2v
.
J
I
~
Ok ( B,E) = ( ------)
1/2
~k
11.- Formule du min-max
([15J[36J).
On considere la situation variationnelle
V dans
(V,H,a) ou l'injection de
H est compacte et d'image dense et ou la forme
hermitienne positive continue et coercitive sur sur
V ). On note
(Aj)j€~ et
a
est
V (en abrege
A l'operateur non borne dans
h.c.c.
H correspondant et
(~j)j€~ respectivement les valeurs propres de
base de fonctions propres correspondantes orthonormee dans
A et une H • On a
donc V = If = I: f.~ . . j J J
plou on deduit, en utilisant la proposition PROPOSITION 1.7. - Pour tout
k €
1.6. : ~
,on a
.I 0k(!,H) = ~1/2 On peut enoncer ce resultat sous d'autres formes equivalentes : En munissant
D(A) de la norme I f I D(A)= 1/ Af II H
on a, pour tout
k € IN
Ou encore une formulation classique, mais que l'on
rl'utiliser~
pas iC1
- 94 -
c. Pour tout
k € IN , on a
Goulaouic
(Af,f)
inf
Ilf'~
fEV
f.L~
On utilise la proposition 1.7. pour "estimer" Lea valeurs propres connaissant d'espaces
Vet, inversement, pour calculer les epaisseurs successives V associes
a
des operateurs dont les valeurs propres s'obtien·
nent ai semerrt , Signalons d'abord quelques criteres de comparaison (corollaires immediats de ~a proposition 1.7). a
PROPOSITION 1.8. - Soient
A
1
H associes
a
tout
,
k €
~
PROPOSITION 1.9.- Soit dans
1
et
A>O
a
-
2
deux formes h.c.c.
2(f,f)
pour tout
H ; on note
sur
f € V •
A
les operateurs non bornes dans
et
a
2
2
respectivement, on a pour
W un sous-espace ferme de
rateur defini par
Soi t
et
a (f,f) < a
V et verifiant En notant
1
(~k)
dense
V
les valeurs propres de l'ope-
(W,H, a) ; on a, pour tout
k € IN ,
on note : E
1
k)M~(~,H) ~
1
c'est Ie nombre de valeurs propres de
A inferieures ou egales
il sera aussi designe par
N(A).
N(A,A) ou
a
et
On a in~ediatement un resultat sur les sommes hilbertiennes (finies ou infinies) :
- 95 -
C . Goulaouic - Soit tvl ,Hl, al)tEL .une suite finie ou
PROPOSITION 1.1 0 inf ini e
de situat i ons variationnelles t elle s que :
Pour tout
i)
,
lE L
a
et d 'image dens e et
ii) I l exi ste M>O u/V
l
On definit
1Je =
(u=(u )
'lr={u=(u ) . u EV
t
'
et
t
iu l
V'c; :Ie et ,
pour t out
N(X.,
'lr , %)
t N(X. , Vt,H
Demons trati on :
2
V
t
l EL et tout
J,
L'in j ecti on continue de
2 Elu 1 t H
t
a (u,u)
On a
'=
t
Mal(ul , u t )
t
et
u/H l
t
t
1
IIH ~
est compacte
C+ H
est h . c . c . sur
1
es pac e s
~ es
V1
tel que pour tout
IU l
' on ait
l 'in j ect ion
< 001
t
Ea (u ., u )
1 t
t
t
< 00 l.
DO l)
tt dans
~ r e s ulte de ii ) ;
ensui t e il suff i t de r emarquer qu' on obt i ent l es .val eurs pr opres de l' ope-
('li, 1e .,
r ateur defiIli par
des operateura definia par
a)
en pi-enant toutes
(vl, Hl ,a
l)
pour
lea valeurs propres
t E L
Remarquons que dans I e cas de sommes ou pro duits fin i s non necessairement hilbertiens , on a encore aisement de s inegalites sur l e s val eurs proprea ou lea epaisseurs successives ; par exempl e , soi ent
(E ).
i J.=1, ••••• ,N
pour chaque
et
(F i)i=1, ••. • ,N des espaces normea t els que
i=1, •• ••• ,N ; on note
normes respectives
N Ilf liE
i~1 N
II f /IF
i~1
I f. J.
E =®E . et i J.
F =(±)F. i J.
, munis de s
P ) 1/1' IE. J.
I f . liP )1 / p J. F. J.
' avec
EiC:;Fi
~p~oo
- 96 -
(k.. ).
Soit
1 1=1, ••• , Ok
+ •••. • + k
1
C. Goulaouic on a :
N des entiers posi tifs ou nuls
<
n
On va appliquer ces quelques resultats
sup ok ~,F.) 1
a l'estimation
d'epaisseurs
successives dans Ie cas d'espaces de fonctions ou de distributions.
III.- Localisation et exemples.Localisation :
E
sur
tels que et
E
et
(&') ' -1 1
1- , • • • • ,
N des ouverts de
~n
1=1 1
Soient
de
Q
Q c.U &.
tels que
Q
Soient
N
et
F deux espaces de Banach de f onctions ou de distributions
Soient
E q.F
par restriction
F
a
Q
i
corollaire 1. 1. on de duit que, pour
E(Q.) 1
et
les espaces deduits
F(Q .) 1
' munis des normes quotients. Du i=1, .• •• ,N
, i1 existe
C. >O 1
tel
que l' on ait pour tout Par ailleurs N
2
t=1ei=1
dans
soit
sur
E(Q.) 1
Q
et
de
F
1
N
@
i=1
F(Q ;)
1
€ W~)
i
pour
i = 1, • ••• ,N et telles que
. On suppose que Ie produit par
continu de .e .E dans de
8
clans F
dans
E
F(Q .) 1
pour
k € IN
e
i
est continu de
E
et que Le prolongement par 0, ... , est i=1, ••. ,N
• Soit
P
l'application
definie par N
p((u.)) = I: 1 i=1
~ 1 1
On a fait l es hypotheses suf f i s ant es pour assurer que
Pest continu de
-97 -
@
i
F(O.) J.
@E(O .) 1
,1'
J.
dans' F et que sa restriction dans
a
C. Goulaouic est continue de
Ef> E(O. ) i
J.
E et surjective; il resulte encore du corollaire 1.1.
existence de
C>O
fel que lion ait. pour tqut
k€1N ,
0k~,F) ~ Cok(t E(O~), ~ F(OI)) Et en utilisant (1.6) on obtient, pour tous
<
( 1 .S)
C
sup l
k ••• • ,k dans N. 1
m
Oki (E(O.), F(O.)). __J._ J.
Les hypotheses ci-dessus sont verifiees en particulier dans le cas des espaces de SOBOLEV ou des espaces de SOBOLEV avec poids ; on pourra done obtenir, par une etude locale. une estimation dlepaisseurs successive$ dans de tels espaces. c'est
a dire
aussi une estimation des valeurs pro-
pres de problemes aux limites convenables sur un ouvert
0
de
n
R .•
Exemples d'estimation dlepaisseurs successives dans les eapaces de SOBOIEV
(cf. aussi (16]~7]) •
Pour deux suites (ou
~. ~k)
pour tout
a~(~)
~=(~k)
et
si et seulement si il exist$
k (IN
(ou du moins.
Exemple 1.1. Soit
Exemple 1.2. Soient
0
k
et
Cl~C2>O
~
tels que l'on ait
assez grand)
un ouvert borne de
m >1
a:
• on convient de noter
0
n
Il.
et
m>
un ouvart borne regulier
on a
Q de
- 98 :...
C.
c Laaae
c!')
Goulaouic
on a
On trouve ces resultats, par exemple, en utilisant la comparaison avec le cas de problemes aux limites pour lesquels on sait calculer explicitement les valeurs propres (comme le probleme de DIRICHLET ou de NEUMANN pour
II dans un pave).
Exemple 1.3. On note
I =]0,1 [
et
2 V={u € L ( I )
muni de la norme hilbertienne naturelle. On a
On utilise, pour cela, la connaissance des valeurs propres de l'operateur
de LEGENDRE
-
d · . 2 ~(l-X ) ex
d
---dx
sur
]-1,+1[
Exemple 1.4. (cf [13J[20J). Soient
(g
o
variete compacte de classe a la distance a 00 V
= {u
C2)
et
0
un ouvert regulier de
n R
~ une fonction equivalente sur
on note
2 € L (0)
norme hilbertienne naturelle. On a :
pour
n=l
pour
n=2
pour
n>2
Pour cela, on calcule les valeurs propres de l'operateur D.(l-!xj 2)D. J.
J.
sur la boule
{x
c IRn
; Ixj
2
=
n
2
i~l xi
<11
puis
- 99 -
C.
Goulaouic
on utilis e l es arguments ci-dessus de localisation. Exempl e 1.5. Soit
V
=
1(R lu € H )
hi l ber t ienne naturelle. On montre que
.. k
-1/2
, en utilisant
Ie calcul des valeurs propres de l'operat eur d' Hermite 2 d 2 +x sur dx2 Remarque 1.1. - Soient non borne dans
L
2
(Q)
Q un ouvert de
~n.
et
(A,D(A»
un operateur
auto-adjoint positif et tel que l'injectidh
2
D(A) ~ L (Q). soit compacte. Si on a
Ifcomp(Q) ~ D(A)
alors, il existe
C>O
tel que l'on ait pour
A. (A) J
< C j2m/n
-
j~
1,
•
Ceci resulte des criteres ci-dessus de comparaison et de l'exemple 1.1.
- 100 -
C . Goulaouic
CHAPI TRE 2.- COMPORTEMENT ASYMPTOTI QUE PRECISE DES VALEURS PROPRES DE PROBLEMES IRREGULIERS .
Pour les applications que l'on envi s age ici, il suffit d ' une conn aissance assez grossiere du comportement asymptotique de s valeur s pr opr e s (noMe
::I)
Cependant, on peut, dans des cas asse z generaux , donne r un
equi v alent de ce comport ement asymptoti que : On s e s ert d ' un r esultat precis de L. GARDING [19J dans le cas de problemes tres r eguliers, et d 'une localisation fine degagee par NORDIN [31 J pour I II cas d ' un operat eur elliptique degenere.
Rappelons leresultat classique ([ 19J)
~ IRn tel que
a
soit de classe
2m C ; soit
tiel formellement auto-adjoint d'ordre elliptigue sur
Q
une realisation de
2m
,de partie princ ipale
dt. auto-ad jointe
un ouvert borne
Soit
Q
dt un
operat eur differen-
,uniformement fortement
Je' (x,n )
;
soit
2 L (Q)
positive dans
(A,D(A))
,verifiant
On a .al or s (2.1)
N(~,A) _ ~( Q)~n/2m
la mesure de densite
~I (X)
= (2rr)- n
J
qU~d ~ _ ~
' d~
•
J\! (x , ~ ) < l
Les diverses methodes usuelles pour prouver un t e l r es ul t at ut i l i sent l'etude d'une famille
a un
parametre de problemes associ es
on obtient une information sur une transform ee de
N( ~)
a
A ou
ou de l a fonc-
- 101 -
C. Goulaouic
tion spectra1e
e(k,x,y) =
E lp o(x);lYT et on conc1ut par l'applicaL
.
tion de theoremes tauberiens. Voici 1e schema d'une methode ([5][14][19]) On peut toujours supposer Pour de GREEN
t )O, l'operateur
Gt(x,y)
2m)n
(quitte
(A+tI)-l
a prendre
2 L (0)
de
dans
un itere de
A).
D(A) a un noyau
aBsez regulier et verifiant
Jo
Gt(x,x)dX
1
= °ON r:+t J J
D'autre part, on a
If(x)1
l
(Af,f) + t(f,f) d'ou i1 resu1te par application du theoreme de SOBOLEV qu'i1 existe
C)O
tel que
t 1-n/2m Gt ( x,x ) Ensuite, une etude locale de
~
C
pour
t)O
et
Gt(x,x), en 1e comparant
x € 0
a 1a
n e1ementaire d'un operateur a coefficients cons t ant s dans m Rue l'on a pour .tout
•
solution , montre
x € C
lim (t1-n/2mGt(x,x» t-On en dSduit lim (t,-n/2m E 1 t) = t-j€fi h j +
J
t(x)dx
C
Un theoreme tauberien sur 1a transformee de STILTJES 1e comportement de
1e s i dees ) . Soit (c' est
a di re
• permet d'en deduire
N(h,A)
A 1a r eali sa t i on du pro bleme de DIRI CHLET pour
m V=H ( 0» u
; on a a10rs :
Jt
I
-102-
C. quand 11 suffit de remarquer que
l'o~
J..
-'>
Goulaouic
00
peut approcher
O· par des ouverts
reguliers interieurs et des ouverts reguliers exterieurs dont la differen-
;A: sur un voisinage
ee
des mesures tend vers 0 (on ad' abord pro Longe
de
"0 ). Comme N(J...,If(o) ,H) est une fonction croissance de
quand
o .
la forme
a
est fixee , le resultat est immediat.
Remarquons que l' on peut mame supprimer l' hypothese sur
00
mais la
demonstration est alors plus difficile (cf[1S][29]). L'adaptation de telles methodes mes irreguliers(cf[S][9])
evo~uees
ci-dessus aux cas de proble-
est tres compliquee, voire impraticable.
Dans le cas de .probl emes "reguliers presque partout" , on va cher¢her un equivalent de
en utilisant un resultat precis dans la partie
N(J...)
reguliere et en estimant (par les techniques du chapitre 1) la contribusi cette derniere contribution est negli-
tion des parties irregulieres
geable devant la precedente, on a obtenu l'equivalent de
em a ramene quand mame le pr-obIeme
a.
N(J...)
; sinon
une etude locale au voisinage des sin..
gularites et dans de nombreux cas on peut encore conclure. Nous allon's d'abord degager un resultat de "localisation" precis pour _e comportement asymptotique de resultats permettent
au~si
modeles tres simples
a.
N(J...)
. On pourra remarquer que de tels
de retrouver le cas tres regulier
a.
partir de
coefficients constants.
Pour fixer les idees, nous allons considerer une classe de problemes /lUX
limites sur un ouvert
\loisinage de
00
irregularite de
0
n de IR
ou les singularites se situent ~
(perte de l'ellipticite, singularites des coefficients ou
oQ... ).
11 sera aise de voir les extensions possibles.
- 103 -
c.
11.- Localisation.-
2 V Ci- H = L (0 )
Soit la situation variationnelle n ouvert de IR
Gou1aouic
oii
l'injection et ant compacte et d ' image dense
If!comp(0)
Ci- V Ci-,jD
'~oc
es t un
0
on suppose
( 0)
(ce qui signifie que les difficultes ne provi ennent que du voi s inage de 00
).
On conaddsz-e une forme a h. c.c. sur a(u,v) =
Jo
aa~(X)DaU(X)D~V(X)
E
Ial <m
a la
dx
1~I~m
oii on suppose r a les co efficients On associe
V ,
forme
a
aa~
une mesure
mes { ~ ;
COO(O)!) .
assez r eguliers (par exemple
'E
lal=m
~
de densite
a ~ (x )~a~ <1} a
1~1 =m
Pour t out ouv ert
Uc 0
on note
c' est un s ous-espace fer me de V(U) = !f eU) o
V(U) = {u€V ; u(x) =O p .p x€Q-U }
V et en parti culier pour 'U a= 0
la norme s era enc ore Ilul v (u)= a(u,u)1/2
Pour et udi er la cr oiss ance de
N(A,A) on considere de s f onctions
a ~(A)
de compara ison (on peut pense r
n/2m = A qui est la pl us importante
mai s on peut avoir besoin d 'aut re f onc ti ons t elles que s >O ••. etc) . Dans l a suite
~
~
avec
designer a donc une f oncti on de
dan s JO,oo [ ·cr oissante et tendan t v ers 1 '00 ave c
J O,~
A , et de plus te l le
que Pour tout nue au point 1.
y>O
, ~* ( y ) = l im
y -+oo
exi s t e et
~*
es t
con t i -
- 104 -
C. Goulaouic
On note
N~(U)
2) N(A..V(U).L
= lim sup
A.-oo
2) N(A., V(U). L
N;(U) = lim inf A.-oo
= inf N;(Q-Q1 ) 0 a:: 0 1 (1 n'est pas necessaire de preciser ci-dessus
2(0) L
ou
2
L (U)
puisque le resultat est 1e mame. La resultat essentie1 est 1e suivant
PROPOSITION 2.1. - La comportement asymptotique de 2(0)) N(A,V. L
verifie
.;(0) ~ [':(0) .(0) +
lB;(O) Ceci resulte immediatemen t du lemme suivant IEMME 2.1. - Soit
~+
I
Q
I
un ouvert regulier de
+1
+
N;(Q) = N;(Ol) + N;(0-Q1) •
Pour voir que le lemme 2.1. imp1ique 1a proposition 2.1 •• i l suffit de considerer une suite croissante d'ouverts que 0i
U Q.
(Qi)iEW reguliers et te1s
=Q
• d'app1iquer le resultat rappele pour les ouverts + et le fait que la fonction U~ N;(U) estcroissante. i
~
regulie~s
O =Q-Q 1 et 2 2 dans L (0 ) est
La demonstration du lemme est plus delicate ; on note on peut supposer que l'injection de compacte. On note
v ; on a
d I oil
~videmment
Vo= V(01)
@
V (ou de
V(Q2) et
V 1
V(02))
l'orthogona1 de
V dans o
- 105 -
C. Goulaouic
N;(O) ~ N;(01) + N;(02) N;(O) ~ N;(Q1) + N; (Q2) Pour avoir les inegalites inverses, on doit eonsiderer
V 1
on a
d' abord Ie LEMME 2.2. - Soient
< A < ~ ; on a
0
~'V'L2) ~ N( ~A~A : Soient
Dem£~~~~~~~
et
A
O
' vo,i}) +
A
1
N(~,V1,L2).
deux r eels >0
; pour
i=<J,1
on note
11 existe done
tel que, pour tout
~
u
1 ~i€~ :
1
€ Vi' il existe
verifiant
~
< et a(u,u)
= a(uo'u o)
+ a(u
lu-vl 2 2
<
1u-v 122
~
L
Done
; done il
1,u1)
2 . 2) + E 1 a(u,u). L 2 2 2 Ok +k (y, L) ~ . EO + E 1 o 1 (EO
AOA
et
2
2
1 N(--r--->,V,L ) < k +k = N(A ,V ,L ) "0 +"1 - 0 1) 0 0
Admettons provisoirement que l'on ait obt~nu : N( A,V
2) =
1,L
0
( An/2m)
quand
A_
an en deduit Ie lemme 2.1; en effet, du lemme 2 . 2 . avee QIldeduit:
00
•
~=YA
et
y>l
-106-
C.
a la
et on passe
limite quand
Y-
~
Goulaouic
.
On va, en, fait, demontrer mieux que (2.8).
LEMME 2.3.- On a : N~~,V1,L2(Q))
= O(~n-1/2m)
Demonstration: L'idee est de montrer que
a un
espace de trace sur
h _
00
Vest convenablement
---------
isomorphe
quand
1
r=oQ et d 'utiliser les epaisseurs 1
dans les espaces de SOBOIEV sur r (qui est une variSte de dimension m-1 Notons X = IT gm-j-1/2(r) j=O Y
m-1
= IT
n-j).
. / H- J - 1 2(r)
j=O
Ces espaces sont definis grace s €
~
a la
HSURn ) pour tout
definition de
par FOURIER; ils peuvent etre munis d'une structure d'espace de ~
HILBERT et on a aisement. pour tout
j=O••...• m-1.
m
0k(gm-j-1/2(r). H-j- 1/2(r)) : k
n-l
d'ou immediatement
On note y .u = J
oju o\lj
\I
a
ret, pour
Y = (Yo' • •• 'Ym1)
Y est precisement
lineaire continu de
V ; l'application o
mame on peut construire un relevement des traces X dans S:(O')
V tel que ou
j €
~
,
Ir • 11 es t connu (cf[27]) que l'on definit ainsi un opera-
teur "trace" noyau de
la normale exterieure
0'
YoR
= idX
V dans
X
le
Y est surjective et R lineaire cont i nu de
(en fait, on releve l es traces dans
est un ouvert regUlier tel que
0
1
cr= QI cr=Q ) •
On note
- 107 -
C. Goulaouic
lapro jection orthogonale de
F
se un isomorphisme de
sur
X
V
V sur
dont la restriction
a
L'operateur
lineai re continue de
S
0k~.L2( Q» ~
a
Y dan s
X soit PoR : On aura alors demontre,
grace au corollaire 1'.1., qu ' il existe une constante
et donc grace
PoR r eali-
1
On-va construire une appl ication 2(Q) L
V 1
C 0k(x'Y)
te l le que
C>O
pour t out
(2.9). on aura pr-euv e Le l emme 2 .3 .
k € IN
Pour con struire
S
on utilise une formule de GREEN : On note
A
I ' oper-ateur defini par
lu € Vo
Au
c
0
0
2 L (Q)
I
t out
u € D(A ) o
dans
D(A ) 0
€ V
00
Hj + 1/ 2 (r ) m- 1 E
o
-v
D(A ) a
=
t els que l'on ai t ,
P OUll
e t t out v € V _, a (u,v ) - (A u ,v )
En effe t , tout
et
0
j =O , .•.• m- 1, i l existe de s operateurs
• Pour
lineair es continus de
't j
2
(V . L (Q),a)
v € V
j =o
h .u , J
v + v o 1
peut s' ecrire
y .v) ~
L~(r )
J
avec
; et il suff i t d 'obtenir (2 . 10) pour tout
v
1
€ ~(Q I )
u € D(A )
et donc et t out
0
v € ~ ( O, ), e t cel k r esulte de la f or mule de GREEN classique (cf. [ 27]) en o r ai sonnan t success i vemen t sur
e t sur
01
On defini t une application S
O 2
lineaire c ont i nue de
Y dans
2 L (Q)
par in- 1
<'tJ.u ,gJ' > J. 1/ H + 2 ( r)
E
j=o g Maintenant, pour
g
=
(g , .••• , g o
~
1)
c
/ xH- j - 1 2(r)
Y ettout
u € D(A ) . 0
€ X , on a aus si
a (u ,(PoR) g ) - (A u , (PoR)g) o - (A u , (PoR)g) o
m-1 E
j=O
hJ.u
y . (PoR)g ) 2 J
m- 1
E ('t .u, g .) 2
j=o
J
J L (r )
L
(r)
- 108 -
C.
done
Goulaouic
Sg = (PoR)g Ce qui termine la
demonstration du lemme 2 .3 . et done aussi du
lemme 2 .1. et de la proposition 2.1. Remarque 2.1. - On a suppose ci-dessus que les coefficients de COO(o)
prendre en consideration Ie cas ou les coefficients
~oc(o) pour
sont
([10][12][29]) de
i l est possible par un argument de perturbation
lal=I~I=m et
a
sont
co (0)
pour
lal+I~I<2m.
III .- Quelques exemples.-
On a une premiere classification des problemes variationnels 2(0),a) L
(V,R
1-1(0)
verifiant les hypotheses ci-dessus, suivant la valeur de
=Jo(2II)-n mes{t;
1°) - Cas ou 1-1(0)
a al=I~I=m a
r' I:
~(x)t;a+~
<11 dx
est infini.-
Comme consequence immediate de la proposition 2. 1, on a : COROLLA.IR.E.2.1. - Lorsque
1-1(0)
lim (A- n/2mN(A,V,L2 (Q)))
A-tOO
est infini, on a
=
00
ou encore Dans ce cas, si on veut une etude pre cise du comportement asymptotique des + valeurs propres, on calcule avec una fonction ~ telle que
B;
An/2m =
O(~(A))
par~iculier
et qui est en general suggeree par l'etude d'un cas
servant de modele ; on ne detaille pas cette etape ici
Exemple 2.1.
- Soit tel que
Q
II rencon tre
.It: = D~ o
un ouvert regulier de
+
'1 ' axe QX
2
~2
(Q de classe C1)
et soit
X~D; + 1 ; on lui associe
l'operateur A defini
- 109 -
C. Goulaouic .
2
2
2
V = {uEL (0) ; D1uH (0) ;~D2UH (0) I
par {
a(u,v) =
I
et
{D 1UD1V + X?>2UD2 V + uvl dx
=
On verifie immediatement que ~(o) =
Si la frontiere de
0
seule-
ment rencontre Ox , on se trouve dans les hypotheses de ce chapitre ; .
.
.
2
si
0 rencontre
OX
' il est facile de voir que la methode sladapte ·
2
encore ; donc on a : ~=o(k) trouver un equivalent de l'intersection de
C
quand
N·(;\.)
avec
Exemple 2.2. - Soit
OX
k -
quand
;\.
= .
II est possible de
-> cc
,qui ne depend que de
2
0 un ouvert borne de
equivalente sur C a. la distance au bord
00
mn
~ Une fonction
et
• On conai.der-e l' cperateur
differentiel
~ = - div ~ grad+1
J {~
a(u,v)=
o 2(0);
V = {uH On voit que
a donc pour
nx t ,
~(O)
grad u • graav + u vi dx 2
~DiuEL (0)
est~fini pour
~=o(k)
quand
, avec
k
pour
i=1, ••• ,nl
n~2
et fini pour
)
un equivalent de
-> co
on sait deja. qu'il ne depend que de.la contribution de .00 nu dans [31] ; la fonction 20 )
-
Cas ou
~(O)
~
a utiliser est suggeree par
n = 1 N(;\.)
• On I
dont
a et e obta... l'exem~le
1.4.
est fini.-
8i Ie terme de bord
+ est nul avec
B~
, la croissance
des valeurs propres est donnee par la mame expression que dans les cas tres reguliers. II se peut que ce terme de bord ne soit pas nul (cela peut arriver par exemple pour un probleme de NEUMANN pour
-6+1
sur un
ouvert tres irregulier (cf. [18][29])) ; son etude peut encore se faire localement.
- 110 -
Goulaouic
C.
Exemple 2.3.
in
on note
~operateur
singulier).- Soit
~(x) = dist(x, 00)
It tuquel on associe
= -t. + ~a
pour
x € 0
avec
a
0
un ouvert borne dans
et on considere l'operate~
<0
A defini par
v=
[u € H1(0) o
--aa(u,v) = llgrad u .gradv+~ uV}dx
" a : N( ) ...... 1I(n),n/2 un A,A 1\
•
Q
En effet, pour voir que
i l suffit de le
comparer au terme correspondant pour -t. + 1 que l' on
~ai t
~tre
nul.
Un autre exemple moins evident sera rencontre au chapitre 3.
3°)- Remarques.- La methode ci-dessus s'adapte aisement
a d'autres
particulier au cas, ou il y a des singularites dans
Q
situations. En
(irregularite des
coefficients ou perte d'ellipticite ••• ) ; on peut aussi, par exemple, traiter le cas d'operateurs d'ordre variable 30i t
0
un ouvert borne de IRn
probleme de DIRICHLET pour
tA
et
~ € j) (0)
= lI~lI-t.+1
,~~O; on cons Lder-e le
sur
on trouve que le
0
comportement asymptotique des valeurs propres verifie : ou
O = 0 - supp 2
~
- Le corollaire 2.1. est vrai dans une situation plus generale. Soit V
2 (V,H=L (O) ,a)
et correspond
'3i on a
~(o) =
une situation variationnelle ou
a un co
operateur differentiel
dt
a
de degre
est h.c.c. sur 2m
,alors lim (A-
n/2mN(A,V,H))
=
00
•
11.-000 ~n
effet, on considere une regularisation elliptique de
a,
a =a + £
~b
- 111 -
pour
E
Bur V
E
>0 = V()
Pour tout
best h.c.c.
,OU
If'(0) 0
E>0
E
lIullv =
(a(u, u)+Eb(u, u)
1/2
E
,on a
_
est la densite de mesure associee E
o
muni. de la norme
N(~,V E ,L2(0» . ~ (0)
C. Goulaouic sUt gm(O) ; la forme a est h.c.c.
tend vera l'infini
quand
a
a
E
A -
00
,ou
quand . E tend vers 0
; d'ou Ie resultat annonce.
I.l'
E
_ 112 -
C. CHAPITRE 3.-
ESP~CES
DE VECTEURS
00
C
Goulaouic
ET ANALYTIQUES •
On s'interesse ici a des problemes elliptiques (eventuellement dege-
neres) a donnees analytiques et on montre la relation entre Ie comportement dU spectre et des proprietes de caracterisation des fonctions analytiques par les iteres d'un operateur, ou encore une propriete
d'hypoelli~
tici te analytique. 1.- Definitions et GSneralites.-
Soit, comme precedemment, un espace de HILBERT D(A)
H
un operateur non borne dans
, auto-adjoint> 0
et tel que l'injection de
H soit compacte.
dans
• On note . D (~O )
=H
et
D(A1 ) = D(A) et pour
k) D(A lui
• On note
AO
= identite A1 = A
et
k D(A +1 )
k > 0
Les espaces
pour
(A,D(A»
= {u
k) € D(A
k)} ; Au € D(A
et
k k A +1= AA •
sont munis des normes hilbertiennes
k = IAkul H ' pour k € IN D(A )
D(l"') =
tJr D(l)
et on I' appelle espace de vecteurs
COO
A; c'est un espace de FRECHET pour sa topologie evidente.
• Par la suite nona ne conatder-er ona que des·.operateurs a des operateurs differentiels d'ordre 2
A aasocaea
(pour simplifier les
notations, mais cela n'est nullement essentiel) et on notera en consequence
[u
c D(AOO
)
;
31>0
,Yk € IN
~AkUI
sup -----k2k! ie L
< 001.
- 113 -
C. Goulaouic ~ =(~ ')'€~ J J III
• Si
notera, pour
est une suite de reels strictement positifs , on .
k€fi
l i
=
(~~) jEfi J
= {(fJ€e
VIi =
fi
E
J
~
pour
b>O
, b
~
= (b
~j
E(~) = lim.ind. l2
(Vii"j) j€fi
If .12~. < J
J
00\
)j €fi
•
b>1 b~ NoUB avons alors Le resul tat :
~
PROPOSITION 3.1. - Le 'developpement
en
ser~e
de FOURIER
i)
de
(lpj)j€fi est un isomorphisme k 2 D(A ) sur lA pour k € IN 2k
ii)
de
D(l" )
sur la base
sur
i
lim.proj. k€~
Demonstration.-
.ontrer
D(AW)
de
iii)
Les points
sur
ten) .
i)
et
ii)
sont evidents. Pour
iii) on ecrit
D(AW) = lim.ind E
L
L>O .
a.f
00
k
' avec 2
IIA ullH
00
EL = {u € D(A ); E 2k 2 < 00 k=O L. (2kl)
~L
sur
at il suffit de verifier que l'on peut trouver
b1~
1'operateur
realise un isomorphisme de 00
{(f J € ~
;
J
Cb
Aj
1 1
b
1
et
b
2
00
Elf .1
2
j=O J
tels que 1 'on ait, pour
at
2k A
j
\
Ek 2) < oo} L (2kI) A2k
(
k=O
b
2>1
et
€ IN
Af
<E----
- k=O
tendant vers
L2k(2k! )2 1 quand
L tend vers l'infini.
C 1>O
- 114 -
C. Goulaouic
11.- Isomorphismes d'espaces de suites (associes On
a
et' D(AW) . _
D(A~)
a immediatement Ie resultat suivant. ~ =(~j)jSN une suite de reels posi-
PROPOSITION 3.2. - Soit tifs 'non decroissante
les proprietes suivantes sont
j
equivalentes :
i)
I am, ' pro J, • l 2k = s k€rf
~
ii) II existe
C
l'on ait Pour tout
C1ja1 On
o'est
a designe par
j € IN
1
2
,j';' 0
< ~j _< C2 J.a2 s
l'espace des suites
a decroissance
rapide,
a dire: s
=
Yk
c IN
a l'aide
des normes sur les espaces
, supllf .1
l2
J
j
ii)
Demonstration.- II est immediat que
i)
, a >O , a >O tels que
C 2>O
1>O,
<~}
implique i). En expliquant
avec poids, on trouve immedia-
tement :1.i). Dans Ie
m~me
ordre d'idees, on obtient avec plus de travail, Ie
ltesultat :
suites strictement positives, croissantes et tendant vers l'infini. On suppose que sous-espace ferme de t(~) que l' on ait pour t out ~ ,
< Ca .
J -
Demonstration.- Soi t
e
, J
j
t(a)
est isomorphe
Alors il existe
C>O
€ IN ,
•
un isomorphisme de E. (a)
sur un sous-
a tel
- 115 -
C. eBpaCe ferm e de envoie
£2 dans bC%
your t out
~(~ ) £2
k Em,
c~
; pour tout
avec une norme
, i l exi s t e c )1
L<~ ; s oit c
1
Goulaoui c tel que
E ] 1,c[
e
; on a
,2 ,2) < L 0 (,2 6k ( e ~cx'''~ k~ ~
(3.1 )
"0
d' aprea la proposition JI,e
b>1
c
b
c
1
1.3 c ~ / L( ~ k ;;l • c 1 tel que l'appl ica tion e-
membre de droi te dans (3.1) vaut d I apre s la propo sitio n 1. 6, D'autre part, il existe
b
1
E ]1 ,b[
soit continue de
Soi t
e- 1 dans ce s espaces. On a donc pour b 1 CXk/2 ( -) = b k bcx bcx 1
M la norme de
k E fl"
,
l )
° <.i
l
< MOk( -b cx
,
< Mok ( el ' bcx
l~ n e~(cx» c
l
1 )
c~
1
~ / e k 2 < ML(_1) e
.
]J)one 1 b1 1 e1 2~LO g(--b-- ) ~ Log (ML ) + 2~kLog(-c--- )
~kLog( ~1 ") ~ ~Log (
:1 ) + 2 l og ML
est une suite bornee .
done
On en deduit evidemment :
"
COROLLAl RE 3.1 . - Scient
l
cx=(cx . J' clN J J<
et
~=(~ ,) ,c~ J J«'
deux
suites strietement positives, non dee roissantes et
- 116 -
C.
tendant vers l'infini
Goulaouic
les proprietes suivantes sont
equivalentes i)
&(u:)
ii) j
&(s)
et
Il existe
sont isomorphes •
c ~ c 1 >0 tels que l' on ait, pour 2
c IN c a. <
~.
1 J -
< c 2a.
J -
J
D(A~)
Ces resultats s'appliqueront en particulier aux espaces
n(AW)
correspondant
a
A •
divers operateurs
qu'on aura une description de ces espaces
et
1ls ~seront interessants lors-
D(A~)
ou
D(AW)
;
on va le
faire .maintenant dans quelques cas. 111.- Caracterisation d'espaces
10
)
-
et applications.-
Cas d 'une variete compacte sans bord.-
•
Soit $ion
D(A~)
n
j
r une variete analytique reelle compacte sans bord de dimen-
on considere un operateur
operateur elliptique d'ordre
2
A auto-adjoint positif, associe a un
a coefficients
·Il est facile de montrer que
r ,
analytiques sur
k
D(A ) = H2k (r )
pour tout
k € If
avec
et
On sait aussi que le comportement asymptotique des valeurs' propres Terifie A. (A) J ~u
-
C .2/n J
C est une constante calculable 11 en resulte que
c~(r)
quand
a partir
j --
du symbole de
est isomorphe
Par ailleurs on sait decrire l'espace
co
a
A •
s
D(AW) (cf.[3][26]).
- 117 -
C. Goulaouic PROPOSITION 3.4. -
L' e s p8ce n(AW) es t l'espace ().(r) des
---I fonctions analytiques s ur
r
Demonstration: I l est facile de voir que o'(r)
a la
on se ramene u
tantes a.
situation suivante : soient
,
A- un
k €
~
Q
a coefficients
opera teur differentiel d I ordre 2
on demontre par recurrence sur
C >O et 1
un ouver t
Q
une fonction analytique sur un voisinage de
(notee : u € (1(0» dans a(g)
est con tenu dans
qu'il exi ste k €
C >O telles que l'on ait pour tout 2
~
2 cons-
et tout
c ttf
On conclilt W
Inversement, pour montrer que . D(A utilise une idee de [27] qui consiste
est "contenu dan s a(r)
)
a se
ramener
a un
, on
probleme plus sim-
Ple de regularite analytique avec une variable ·supplementaire : soit on note k
A
v(t,x)
at cette fonction
u(x)
2k!
vest definie et
C~
pour
x € r
et
Itl<E
assez
petit; de plus, on a
(D~
+ A) v
=0
dans
]-E,E[ x r
ce qui implique, par le .t heareJe de PETROWSKY( *) , que dana
]-E,E[
X
r
; donc
u = v(O,.)
Les propositions 3.1, 3.3
; v
est analytique dans
es t analytique
r
et 3.4 impliquent:
------------ -
(*) On peut consulter [23J pour une demonstration s imple de ce theoreme
p:Lr une ''methode d I ouverts emboites" •
- 118 -
C. Goulaouic
l
3.2. - L'espace
CORO~LAIRE
&(~)
de suites
avec
COROLLAIRE 3.3. - Soient
~j=
r
est isomorphe a l'espace
. l/ n
J
r
et
1
2
deux varietes analyti-
ques reelles compactes sans bord de dimension respective n
et
1
n
2
. Les espaces
et @,(r )
o.{r I)
morphes si et seulement si
sont iso-
2
n l=2
ao) - Operateurs uniformement elliptiques sur un ouvert regulier Soit
~n
Q un ouvert de
analytique compacte; soit
tel que
Q
A un operateur auto-adjoint >0 dans
dliptique d' ordre 2 aux limites
~
a coefficients
a coefficients
dans 0.(0)
at
cmn •
a bord
soit une variete
~ealisation d'un probleme aux limites pour un operateur
Q
2 L (Q) ,
uniformement
avec une condition
2 analytiques aussi et D(A) c H (Q)
On
peut penser, par exemple, aux problemes de DIRICHLET ou de NEUMANN pour 1'operateur
-~+1 OO
On a encore
D(A
)
= {u € C<Xl(Q) ; Vk € IN
On sait que les valeurs propres de A. (A) J
Demonstration:
quand
j
-+ co
D(AW) (cf[27])
PROPOSITION 3.5. - L'espace ferme de
I.
A verifient :
(~(Q)r2/n}/n
On sait aussi decrire
, ~ Ic.ku = 0
D(AW)
est un sous-espace
0.('0), a savoir
II suffit de suivre la methode utilisee au 1°) en
rempla<;ant seulement Ie theoreme de PETROWSKY de "regularite analytique t 'interieur" par Le theoremede MORREY et NIRENBERG de regulari te analytique . jusqu'au bord pour de bons problemes aux limites.
a
- 119 -
~(I1)
Il en r esul t e un i s omorphisme de ferme de 0.('0) (1' espace
s ous -es pace
de l' espace 0.('0) amene
W
D(A
av ec
) )
;
I1
j=
C . Goulaouic 1 j In sur un
s i on veut un i somorphisme
lui-mElme sur un espace de su ites comme
a u tiliser
i( 11 )
, on est
Q
et degen eran t
un operateur differentiel elliptique dan s
au bord, de fa90n
a fa ire
"dispara1tre les conditi ons aux limites".
3°) - Operateurs elliptiques degeneres sur un ouvert r egulier.Soi ent t~ls
un ouvert borne de
Q
mn
et
,
une fo ncti on analytique
que
On cons idere l 'operat eur
1ft avec on lui a s socie a (u,v ) =
= - div , grad +1 + Ao
..£L D. - ...£!.... ox. J ox. J
0
~J
f' Q
r
1s i , jsn D i
~
gr ad u grad vdx +
Ai j' , Ai j
f
uv dx + Q
f
.r .s.. u A.loJov dx ~J
Q~,J
A u (L ij e t on not e
A l' operateur non borne dans
L
2
(Q)
2
(Q)
pour
1Si, j sn}.
a s s oci e a cet t e s itua t ion
varia tionnelle ; cet operateur est au t o-adjoi nt positif ; on peu t aussi voit que l 'inj ection de s ion de
V dan s
V
dans
1 2 H / (Q)
L
2
(Q)
est compac te , so i t en mon tran t l'inclu-
,soit en compar ant ave c l ' exemple 1. 4. ou on
a de j a l'in j ec t i on compacte . Notons que l 'operateur
dt
est degenere au bord mais pas dans l es
- di r ect ions tangentielles au bord , comme un operateur --D1,I.ge de
0
dan s
n-1 ] O,co[ x lR
DttD
t
+
~y
au voi s i-
- 120 -
C.
Goulaouic
Nous avons Ie resul tat :
oo
PROPOSITION 3.6. - 10/ L'espace D(A ) est COO(Q) .
l
2 0 / L' espace
D(AW )
COO a ete traite par H. TRIEBEL [33][34j;
Le cas de
Demontration :
est (1(Q)
nous allons utiliser ici une methode differente, qui convient aussi pour Ie r-aa analytique.
D'abord Ie seul probleme est au voisinage du bord et on a essen tiel-
Dans la localisation au voisinage d'uh point du bord, l'operateur:A: n (y,t) € R - 1 x ]0,00[
devient en les variables
"" itt
= D t D + t t
L 11-11 ~2
= nn + a (y, t )DI-I + L b (y, t ) t D DI-I 1-1
y
~ coefficients analytiques dans un voisinage ~u'il
existe
11-11 ~ 1
& de
0
L'espace correspondant
~ designe
dans R
n
et tel
C>O verifiant :
,TJ,tO •
pour
QU
t Y
1-1
a
Vest
2 n) 2 n) V= {u € L (R • D u € L UR pour i =l, ••• ,n- l + ' Yi + 2(Rn- 1 ) . supp u c &} VtDtU € L + / n- 1 (IR x [0 ,oo[) n ~
On effectue Ie changement de variables
On verifie que I' operateur
Ji:
se transforme en un oper'ateur
E111iptique dans un voisinage ~
. t un sous-espace .. dev~en V distributions
a support
f erme•
de l'origine dans
6)
fortement
Rn-l~2 • L'espace
2_{0})) de H1(lRn- 1 x (1D n
cronstitue par les
dans unvoisinage de l'origine (que l'on peut
- 121-
aupposer conrenu- dans
C.
0'1) .
Goulaouic
On verifie aisement, puisqu'une distribution portee par
n+1
dans IR
ne peut
u
{
~tre
eu c
L
- x
au voisinage de
fie
2
- 10}H
R
; supp u c;:
0;
2)
1(lRn 1
-
2).
x R
C~ ou analytique et l'etude des vecteurs analy-
Done la regularite
C~ pour
(1R
2(lRn 1
impliquent en fait: u € H
tiques ou
-1 (. n+1) H R , que les hypotheses
dans
c H1(Rn- 1 x
n 1 IR - xIO}
se ranenerrt au m~me probl eme pour ~ elliptique
n 1 dans IR + •
0
On termine done la demonstration comme au 1 0 )
,
enutilisant en plus Ie lemm~
suivant :
. LEMME 3.1. - Soit et
1°1 La u
est
la fonction sur IRn-1 x IR2
U
fonction
u
est
00
C
def'Lru e par
si et seulement si
C
u est analytique si et seulement si
est analytique.
La demonstration de ce lemme se ramene essentiellement que si une fonction
dans
00
2 0 1 La fonction
u
n 1 une fonction de IR - x [O,oo[
u
v , definie
par
, la fonction
v
v(z)=v(z2)
a montrer
est analytique (resp.C~)
est elle-m~me analytique (resp.C~)
au voisinage de
0
au voisinage de
0; ce qui est immediat •
Sur Ie comportement asymptotique des valeurs propres, on a Ie resultat :
- .122. -
C.
Goulaouic
PROPOSITION 3.7. - La croissance des valeurs pr opr e s de A verifie :
~(Qh n/2
N(>",A) ..
quand
f
n
11(0) = (2nr w
>" - "" , avec
\~
w
n
n o r ,\x)
de la boule unite de ~~str~~~
~(>")=>,,n/2·
E
de
~n.
: On peut appliquer la proposition 2.1. avec
, et i l s'agit de montrer que Le terme de bord B;
c'est a dire de montrer que, pour tout ,0
designant Ie volume
dans
00
E>O
est
nul,
, il ·existe un voisinage
Q tel que l' on ai t pour
>"
assez grand,
En utilisant une localisation selon un recouvrement fini d'un voisinage de
00
soient
soit
Q
dans
() >0 0
v(w
o)
et un diffeomorphisme, on se ramen~ a la situation suivante : et pour
, b>O
{u
€
pour
W
o
, on note
0<0< 0 -
0
= {(y,t) €~:
2 L (w )
o
j
.,'(t'D t u
et
Iyl
c L 2 (wo )
et
O
c L 2 (wo)
i = 1,. 00 ,n-1}
et il suffit de montrer que l'on a : 2 lim (lim sup N(>",V(w , L (w ) ) ) = 0 o) o (reo >,,-Pour .cela, on consd.dere l'operateur sur
1
:dt-1=Dt t (Oo- t )Dt
- /:;,y
, avec
v1
= {u €
~2(wo
pour on aait que asaociee
A ' defini par
)
effet ~1
2(w Vt(Oo-t)DtU € L ) oo
o i = 1'000 ,n-1}
N(>" ,.1 ) .. '11 (w )>"2/n 1 oo
a Jt1 (en
j
ou
1
11
est la densite de mesure
est la somme d'un operateur de LEGENDRE
d'un laplacien en des variables separees)
j
il en r esulte que pour
et A ' 1
- 123 -
C. Goulaouic
; on a done aussi (3.4) en comparant
on a
II resulte done des propositions 3.6
et
et 3.7. les consequences
suivantes
:r
PROPOSITION 3.8. - Le developpement
en serie de FOURIER
A r ealise
sur les foqctions propres de l'operateur un isomorphisme de cO!> ('0)
sur
s
et
de CI(O)
avec
On en deduit (d'apres la proposition 3.3) COROLLAIRE 3.2. - Soient de
~n1
et
des varietes
mn2
a bord
COROLLAIRE 3.3. "- Soit
2
associe
a un
deux ouverts bornes
2
01
et
'0
2
etant
analytiques ; alors les espaces
A
1
un operateur auto-adjoint >0
, realisation d'un probleme aux limites operateur differentiel
a coefficients
Jt1
d'ordre 2
0
, tel que
localement bornes sur
2
l' injection D(A ) c; L (0) 1 Si
0
sont isomorphes si et seulement si
2
L (0)
et
1
respectivement,
o.('O~) et a('0 )
dans
0
soi t compacte.
est un sous-espace ferme de 0.(0) , alors
D(A~)
les valeurs propres de • .2/n J
, quand
A
verifient
1 j
-+
00
•
En particulier, avec les notations ci-dessus, considerons l'operateur
A associe 1
a:
- 124. -
C.
ttl a
= - div cp grad + 1
1(u,v)
=
f
2
tp
o
grad u • grad v dz + Iuv dx ,
2
V = lu ( L (0) ; "Diu ( L (0)
pour
1
On sait que , pour
Goulaouic
n~2
i=l, ••• ,n} •
, la croissance des valeurs propres ne verifie
D(A~)j Cl(o)
, l'inclusion etant OO ~tricte.( II est possible, mais non fac ile, de montrer que D(A7)=c (0), il en resulte done que
cf.[5]) • Remarque 3.1.
En utilisant de nouveau l'idee d'ajouter une variable ([27]),
on montre ainsi qu'il existe
u(x,t) ( COO(O x ]-E,E[)
et non analytique
et telle que
On peut en deduire aussi des exemples non triviaux d'operateurs non hypoelliptiques analytiques, en utilisant des changements de variables de la forme (3.2) (par exemple, en partant de
mX] O, E[ n2 t
x ]-E,E[
avec
2+(z2 2 + D2 +D z2 ) D 1+ 2 x zl z
£ )0
qui n'est done pas hypoelliptique analytique dans
4 R ).
4°) - Generalisation.. On peut etendre les resultats precedents au cas d'ouverts irreguliers (localement diffeomorphes anal yt i quement un pro duit de droites ou de
t
vois inage de
Q
(cf[9]
dans
1x 1D1
devient , par I e change men t de
h
pour une e tude ~ c omple t e ) ;
on montre s eul ement l'idee sur "un coin" : L'operateur D ians ]0,00[ x ]0,00[
0
on con struit un''bon operateur
droites)
el l i pti que degenere sur un tel ouvert
a un
+ Dx 2 2D2
variables[Xl=Z~+Z~ x =z2+z2 2 3 4
- 125 -
C. Goulaouic
on montre encore que lIon peut le considerer dana COO
m4
et obtenir ainsi la description des vecteurs
et analytiques. Lletude de la croissance des valeurs propres se fait encore en
utilisant la localisation et en montrant que la contribution du bord est nulle. 11 enresulte done un isomorPhisme de sur Remarque ·3.2.
avec
.1/n
1lj"':J
Coo(O)
sur
s
et
de
•
On peut aussi obtenir de tels resultats (et m~me parfois
Plus generaux, cf[7][37]) en utilisant les developpements, par exemple, sur une base de polyn6mes : Ce ne sont plus les vecteurs propres d1un operateur differentiel avec une certaine croissance des valeurs propres, mais
dlaut~e-
part on a des inegalites (de MARKOV) reliant les polyn6mes et leurs deriveea- ; on verra des choses plus voisines au chapitre 4.
- 126 -
Goulaouic
C.
CHAPITRE 4.-' FONCTIONS PROPRES DE "EONS" PROBIEMES AUX LIMITES ; lNEGALITES DE BERNSTEIN ET DE MARKOV.
Nous montrons lci que la caracterisation des fonct ions analytiques du domaine d'un operateur iteres de A
a un
A elliptique ou elliptique degenere, par les
A , est equivalente au prolongement des fonctions propres de
domaine complexe, verifiant de plus des inegalites semblables
celles de BERNSTEIN
a
ou celles de MARKOV pour les polynomes.
1.- Generalites -. Soit
dont le b~rd est suppose au moins
C un ouvert borne de lRn
lipschitzien ; soit
A: un
dans 'l'espace acC)
et formellement auto-adjoint.
On note
(A,D(A))
operateur differentiel d'ordre 2
une J:8alisation auto-adjointe de
a coefficients
Je
dans
2(C) L
que nous supposons strictement positive; nous supposons que l'injection de
D(A) dans
par
(A)
et
L2 (Q) (epj)
NpuS supposons que
On nete
CO(Q)
est compacte ; nous designons comme precedemment
les valeurs propres et fonctions propres de ep , (<J.(O) J
pour
j
c IN
l'espace des fonctions continues sur
Nous supposons qu'll existe
D(i') 'G CO(Q) (on note
et que
D(!"O)
o.aD
Q
r ( IN tel que
(4.1)
a
A
M la norme de cette injection)
est ferme dans Q(Q) •
Ces .hypotheses ne sont, en fait, pas tellement restrictives : L'analyticite des fonctions propres est une hypothese bien plus faible que la
- 127 -
C.
regulari te analytique pour I' operateur
a pau D(A
)
It (l(e)
l 'inclusion (4.1) signifie
A possede un peu de regularite et enfin
pres que l ' oper at eur
oO
A
Goulaouic
est en general decrit comme Ie sous-espace de
fonctions verifiant des conditions aux limites sur
00
des
et est alors
evidemment un sous-espace ferme • • Donnons quelques exemples (plus ou moins rencontres deja, et auxquels nous refererons dans la suite). Exemple 4.1. dans un ouvert
0
Les pr ob.Iemea de DIRICHLET ou de NEUMANN
-6 + 1
pour
Q soit une variete analytique compacte.
tel que
Evidemment on peut remplacer
-6 + 1
et les conditions de traces par des
operateurs plus generaux. Exemple 4.2. -
Les problemes aux limites elliptiques degeneres ren-
contres au chapitre 3. Exemple 4,3. -
Soient
0
n un ouvert borne de R
tion analytique 'e qui v al en t e a la distance a
dt = -~6~
+ A*A
a coefficients D(A)
et
~
une fonc-
oQ • On prend
A designe un champ de vecteurs transversal
ou
dans (l(l5)
= [u
a
00
et
, avec
1 € H (Q)
o
; ~2u € H2 (Q) et A2u € L2 (Q) 1 (cf[4]).
• Nous utiliserons (4.1) aussi sous la forme suivante, qui resulte du theoreme de SOBOLEV : 11 existe
C>O
telle que l 'on ait pour tout
j €
~
sup 'I ~ .I < C"t-..~ Q
J
-
J
II.- Propriete des iteres et approximation.Designant par
~k l e sous-espace de
premieres fonctions propres de
A, on a
2(0) L
engendre par les
(k+1)
- 128 -
C. Goulaouic
les proprietes s uivantes sont equivalentes u € D(AW)
ii)
•
I I existe
d
~
2(u,wk)
On a note
d
et
2
c
JO,1[
tels que l'on ait
pour tout et
C>O
~
a
f.k
c
I I existe
dJu,W k)
et
C>O
a
c
JO, 1[
k€1i tels que I' on ait
pour tout
C jAk
k
e IN
d~ respectivement la distance dans L2 (Q) et
on pourrait d'ailleurs les remplacer par une distance dans n I importe quel
LP(O)
la suite des cas
p=2
avec et
~
j=a
lu . /
2
J
cc
,
mais nous avons besom
b
> 1 tel que
f3 <
co
•
Par ailleurs, compte tenu de (4.1), (4.3 ) equivaut (4.4)
{ I I existe
C et 1>0
IU j I ~ c1a~ Et comme
d
2(u,wk)
=
(E
j=k-+1
lu .1
a
pour
2)1/
2
1 j
a
€ JO,1[
t els que
c IN
, on a montre que (i) equi v aut
J
I I est evident que iii) implique
iO.
Montrons que i) et ii) implique iii) : on a k
d~ (u, wk ) < lu - E u .~ .1 j=o J J L~ (0 )
< MIAr(u
-
~
pour
et de ces cas seulement.
p~
si et seulement si il existe (4.3)
1
k
- E (A~u ·)~ ·1 2
j =o J J J L (Q) k MjIAru - E (A~u ·)~ ·11 2 j=o J J J L (Q)
a (i~).
- 129 -
C.
ce qui implique encore Pour la
iii) grace
a
Goulaouic
(4.1).
commodite d'expression dans la suite, donnons deux definitions: DEFINITION 4.1. - (Approximation analytique (par les (~)
une suite de reels> 0
paces (~k)
~k)) . Soit
. Nous dirons que les es-
ont la propriete d'approximation analytique
pour (~) si et seulement si : toute fonction dont la distance
doo
ce exponentielle de
aux espaces (~)
~k
CO(a),
u (
est a decroissan-
, est analytique dans
Q
Par ailleurs, nous avons deja rencontre la propriete suivante : DEFINITION 4.2. - On dit que
(A,D(A))
a la propriete des
iteres si et seulement si
On vient de voir que cette propriete est vraie dans de nombreuses situations (cf. chap .3) • On peu t exprimer le lemme 4.1. sous la forme suivante : PROPOSITION 4.1. - L'operateur
A ala propriete des iteres
si et seulement si les espaces
(~k)k(~
ont la propri-
ete d'approximation d'analytique pour la suite
(~) .
111.- Inegalite de BERNSTEIN.-
Rappelons l'inegalite cl as s i que de BERNSTEIN (cf [28] par exemple) pour les polynomes d'une variable: soient diametres
1 P+P
porte par..Rez
et
P
p>1 1
P
et
Q p
l'ellipse de
porte par ~lIlZ
•
Pour tout
- 130 -
c. polynome
P
de degre
~
sup z € Q
n
Goulaouic
, on a :
Ip(z) I ~ pn
p
I
su}> p(x)l. x € l-l ,+1 J
Les polinomes de LEGENDRE constituant une base de l'espace des polynomes et etant les fonctions propres de I' operateur de LEGENDRE d
·
- dX'( 1-x
2
d . >-ix-
sur J-1,+1[
, cette inegalite de BERNSTEIN apparaitra
comma un cas particulier (precise) des resultats ci-dessous . DEFINITION .-
(1\:) une suite dereela ,>0 ; on dit que la
Soit
suite
(~k'l\:)
verifie l'inegalite de BERNSTEIN si et
seulement si : Pour tout
o
en
dans
u € ~
b>l , il existe un ouvert tel que, pour tout
, u
ir voisinage
k € fi
se prolonge analytiquement
de
et tout
a 'lj et
verifie
sup lu(x) I < bilk suplu(x) I x€'" x€Q Nous avons alora Ie resultat suivant (susceptible d'etre generalise en ce Bans que les espaces
~k
ne sont nullement supposes dans la demons-
tration etre les espaces engendres par des fonctions propres d'un operateur) • PROPOSITION 4.2. - Soit
1l=(I\:)k€fi
une suite croissante de
reels positifs tels que l'on ait 00
pour tout La famille
a € JO,1[
E
k=O
a llk < 00
(~k'l\:)k€fi posaede la propriete d' approxi-
mation analytique si et seulement si elle posse de la propriete de BERNSTEIN.
te
Demonstration ------de BAIRE.
Elle est essentiellement un corollaire de la propriJ-
- 131 -
Goulaouic
C. -~~ab~~,
soit
supposons que la propriete de BERNSTEIN soit verifiee, et
f € CO(Q)
telle que pour
k €
m,
on ait
avec k €
Soit, pour
m
,f
k
€
W k
a € ]0,1[
telle que
d(f ,Wk) = If-fkll done
Loo(Q) < 2 d(f'~k 1) < 2 --
Ilfk-fk 1/1 - Loo(Q)
D'apres (4.6) la serie + (f
f est convergerrte dans
° CoCO)1-fo)et
On choisit
tel que
ssoeie
a
b>l
+ (f
+•••. •.•
sa somme est ab<1
et soit
f
V-
le voisinage de
H
k
_ f
_I
k-1 Loo('\)")
et done eette serie de terme general Co('/])
,ce qui montre que
mille
(W k,llk)
11
11
<
b k. 2Ca k-1
<
(ab)~ 2ca~-1-~
(f
k-fk_ 1)
est eonver~ente dans
fest anaJ.ytique dans 1)" , done que la fa-
a la propriete d'approximation anaJ.ytique.
In!~~~~~!,
supposons que la propriete d'approximation anaJ.ytique
est vraie • rour
Q
b dans l' inegali te de BERNSTEIN ; on a nf
-
2-f 1)
a € ]0,1[,
on considere E
a
= If
-~
€ CO(Q) ; sup (a k
d(f'~k»
<
00
I
c ' es t un espaee de BANACH pour la norme
L'espaee
E= lim ind E a O
s'injeete continuement dans
Remarquons que la propriete d'approximation signifie que :
c O(Q)
- 132 -
C. E c
Goulaouic
0.(0)
Par Ie theoreme du graphe ferme, on voit que cette inclusion est meme continue.
Q('Q) = lim.ind.(l('Ii) oii k€1N une base decrois.sante de voisinages de 'Q dans On peut aussi ecrire
les ('Irk)
constituent
tf
On peut alors appliquer un tneoreme classique sur la factorisation d'une ' appl i cat i on lineaire d'une limite croissante d'espace de FRECHET dans une autre limite croissante d'espaces de FRECHET (cf.[21]) que, pour tout
a € ]O,l[
, i l existe
k € IN
il en resulte
tel que l'espace
E a
soit contenu dans Ct(1!k) • II en resulte en particulier que tous les elements de V~k
se prolongent analVtiquement
a un
voisinage 'lj de
Q
~ff Nous allons maintenant supposer que les inegalites (4.5) ne sont pas verifiees, en supposant la propriete d'approximation. Soit
tf
dans
(l1 k )k €fi
un systeme fondamental de voisinages ouverts de
de croissants et contenus dans'li • On suppose done qu'il existe
tel que pour tout
b>1
0
(4.7)
il existe I-Ik· > b Jlf
j € IN
If~} LO:>(~k. )
k. J
et
I
satisfaisanJ;
f k . € ~k . J J
k j LO:>() Q
J Sans restreindre la generalite, on peut supposer que l'on a
Ilrk I
= 1 ,et que la suite k , LO:> (0) J effet il est aise de voir que si f k j ,
est strictement croissante; en reste dans un espace de dimension
j
finie, l'inegalite (4.5) est toujours vraie. Pour ' a € ]O,l[ F
,on designe par
= {u = (u.) a J
c f!1
I
I (u J. )I a = sup Ia j
-1-1 .
Ju.1 J
<
00
I
- 133 -
C . Goulaouic F = l im . ind F O
Done l 'application
(uj est c on t inue de
(}.(o)
F
~ ~ ,\ .fk .
)
J
J
J
= 'U((u j ) )
C'O) • Nous
dans
allons prouv er que son image est
,ce qui impliquera par Le t heoreme du graphe f erme que
nue de
1l
est con t i -
dans 0.(0)
F
cF
u = (u J J
Soit
est d an s <1.(0)
; pour prouver que ' U (u )
a
il
.uffit de monta-er (en utilisant la propri ete d'approximation.) qu ' il ex i ste
a
1
€ ]0,1[
et
tels que , pour t ou
C>O
d(1L (u)' ~k)
(4 .8 )
k € lN ,
s C a ~1
En fait, on a : 00
d( 'U. (u)'~k ) <
-
J
Four
E
.e=j+1
'\
.e
fk
II -< lui
.e
a
00
E
a~J,
a .e=j+1
11k · 1
J
avec
Par ailleurs, pour
k
d(U(U )' ~q )
' on a
s d (U(u )'~k .)
ce qui termine la preuve de (4.8)
J
< C a l11q
• Maintenant nous allons montrer que la c on tinui te de ~Q ) en traine une c on t r adi ct i on ave c ( 4. 7).
t
11. de
F
dan s
- 134 -
C. Goulaouic On a 0.(0)
= lim.ind g,{'lrk )
, ou g(V'k)
designe l'espace de BANACH
1tk
des fonctions snalytiques bornees sur
On utilise encore le theoreme de BAIRE qui entraine que pour tout a €
]0.1[ •
il existe
p €
N
et
1'U(u)II~1t) ~
On choisit
a
p tel que ab>l et j I-Ik' L < (ab) J et
Maintenant on prend dans (4.9)
0
L>
tels que
Llul a assez,grand pour que
'li
kj
ul=O
C
'lr
p
sauf pour
l=k .
et
J
u.K
'" 1
j
on obtient
Ifkjl~~p) < L a Ifk j
-I-Ik . J
at en utilisant -I-Ik ·
~ II fk} lJC'li ) < L a J < b p (4.7) et termina ·la demonstration
lQ.(17k)
ce qui contredit
(4.10) I-Ik· J
de la proposition
4.2.
Nous pouvons encore enoncer ces inegalites de BERNSTEIN de diverses ' fayons equivalentes en jouant sur les normes
(Cf1c)
ou
(~k)
2 L
et
00
L
et sur les
; on peut recapituler les diverses equivalences.
PROPOSITION 4.3. - Les proprietes suivsntes sont equivalentes i)
L'operateur
ii) La suite
A a la propriete des iteres.
(~k'
V\: )k€
IN a la propriete d I approxi-
mation analytique. iii) La suite
(~k'
f\:)
verifie les inegalites de
BERNSTEIN •
rv) Pour tout b>l dans
ff
• i l existe un voisinage
tel que. pour tout
analytiquement dans
'lY et
j € IN
verifie
, IJ'j
tr de 0
se prolonge
- 135 -
C.
Goulaouic
sup Icp.(x)l < bfij'sup Icp .(x)1 x(U' J x(O J
v)
Pour tout
i l existe un voisinage
b>1
C dans ff et C>O tels que, pour tout
tr
de
jEfi
se prolonge analytiquement dans 1)" et verifie
CPj
sup Icp.(x)l< C bV):j x(\t J ~~~~~~tratio~ : On a deja montre que ~ .= ~
(lemme 4.1) ; en prenant
J
J
i)
et
ii)
sont equivalents
, on a montre aussi que · iii)' impli-
que rv), D'autre part II r este Soit
iV) . implique
a montrer
i» 1
que
V)
; on choisit
b
V) grace a (4.2). implique
1
( ]1, b[
-VAk) (mes 0 )1/2
C = sup Vk+1 b ~ b 1 k(fi
(
associes li.
b
1
dans
iii): ; on note et on montre que ·s i 1iet
V), on a pour tout
sup Ir(x) I < C C b 1 'It -
r ( ~k
C sont
'
iXk sUPlr(x) I.
x(O et Ie reste de la demonstration resulte de la compaci te de la boule unite de
~.
J
pour
j
rixe.
IV. - rn egalites de MARKOV.On rappelle l'in6galite de MARKOV classique (cr[28]) polyndme
P
d Iune variable, de degre sup I pI (x) I xl~1
I
~
n
Pour tout
, on a
sup Ip(x) I Ixl ~1 Nous allons montrer que des majorations analogues sur les fonctions
2
-
pr opr es d'un operateur sont equi val ent es encore
a 1a
pr opr ie t e des iteres.
PRepOSITION 4 .4 . - Les proprietes suivante s s on t equ iv a1ente s
I
i)
A a 1a pr opr ie te des iteres (ou n' importe que 11e
- 136 -
C. Gou1aouic propriete equivalente donnee par la proposition 4.3.) ii) Pour tout lJlk
b>l
, i l existe
et tout indice
IDCllJlk IL~
C>O
uf ,
a E:
(0) ~ CI Cli Cl ., biAk
IlJlk IL~
(0)
Remarquons que lion peut encore remplacer la norme norme
2 L
en particulier et aussi
4.3, iii)) implique b>l
co
L
ii)
~k'
en utilisant la formule integrale de CAUCHY :
, i l lui correspond ~ par la proposition 4.3 iii) ; il suffit
ce qui est immediat d'apres la formule de CAUCHY, 0
a
17' ,
on a
C etant lie
a la
["li.
Inversement, supposons lJlk(Y)
=
ii)
; on ecrit :
E~
~a)(x)(y_x)Cl
Cl et cette serie est convergente pour on a psur
l~
par n'inporte quel element de
k
de montrer que pour une f'onc td.on '¥ analytique bornee sur
distance de
Ilar
On montre que l'inegalite de BERNSTEIN (proposition
Demonstration:
soit
lJl
tel que pour tout
b>l
et
Iy-xl
x E: Q et
<
E _1_, rICllcICl!Cl! b
Cl
<
Cl .
.
b'f'F:k SUpllJlk(X)I xE:O
y.E: "'"
On peut se ramener au cas
x
supllJlk(x) I
xE:Q
E (re)/al
Q
~
t el que
Lb
fAk supllJlk(x)I xE:O
1=1 en pas sant par un
en utilisant la compacite de
assez voisin de
0:
On a trouve un voisinage '\)" de sup IlJlk(Y)I
y
~l
pour
1
donne.
b
intermediaire et
- 137 -
C.
Goulaouic
BIBLIOGRAPHIE
S. AGMON - Elliptic boundary value problems, Van Nostrand 1965.P.J. ARANDA et E.P. H1 (Q) dans o
1295.N. ARONSZAJN -Sur les decompositions des fonctions analytiques ••• Acta Math. 65(1935),1-156.-
[4J
M.S BAOUENDI -Sur une classe d'operateurs elliptiques degeneres, Bull.Soc.Math.France 95(1967),45-87.M.S. BAOUENDI et C. GOULAOUIC - Regularite et theorie spectrale pour une classe d'operateurs elliptiques degenes, Arch. Rat.Mec.Anal.34(1969),361-379.-
[6J
M.S BAOUENDI et C. GOULAOUIC - Regularite analytique et iteres ••• J. of funct.Anal.9 (1972), 208-248.M.S. BAOUENDI et C. GOULAOUIC - Approximation of analytic
functions~ ..
Trans.Am~Math.Soc.I973.-
[8J
M.S. BAOUENDI et C. GOULAOUIC - Iteresd'operateurs elliptiques ••• Revue Roumaine de ~~thematiques pures et appliquees 10(1973)-
[9J
M.S.
[ 10]
R. BEALS - Classes of compact operators and eigenvalue distribution~ for elliptic operators. Amer J. Math.89(1967),10561072.-
C. GOULAOUIC et B. HANOUZET - Caracterisations de classes de fonctions COO et analytiques ••• J. Math. pures et appl , 52 (1973), 1.15-144.-
BAOUE1~I,
R. BEALS - On eigenvalue distributions •••• Bull Amer. Math.Soc.74 (1968),1022-1024.[ 12]
M.S. BIRMAN et M.Z. SOLOMJAK - Spectral asymptotics •••• Dokl.Akad. Nauk.S.S.S.R 205(1972) et Soviet Math.Dokl.13(1972),906-91a.-
[ 13J
L. BOUTET DE MO~nffiL et P. GRI SVARD -Le comportement asymptotique de s valeurs propres d'un operateur, C.R. Acad.Sc.Paris 272 (1971) ,23-25.-
[14 J
F.E. BROWDER -Asymptotic di stribution of eigenval~es and ei genfunctions •••• Amer.J.~~th.87(I965),175-195.-
- 138 -
C . Goulaouic
[ 15]
R. COURANT and D. HILBERT -Methods of Mathematical physics, vol.I, Interscience 1953.-
[ 16]
A.E] . KOLLI - n-ieme epaisseur dans les espaces de SOBOLEV,C.R. Acad.Sc.Paris 272(1971),537- 540.-
[17]
A. El .KOLLI - n-ieme epaisseur dans les espaces de SOBOLEV avec poids, C.R.Acad.Sc.Paris 273(1971),450- 453.-
[ 18]
J. FLECKINGER et G. METIVIER - Theorie spectrale •••• C.R. Acad.Sc.
[ 19]
L. GARDING - The asymptotic distribution of the eigenvalues ••• Math.Scand. (1953),237-
[20]
P. GRISVARD -Le comportement asymptotique des valeurs propres •••• Seminaire LERAY, Oollege de France (1972).-
[21]
A. GROTHENDIECK - Espaces vectoriels topologiques, sao Paulo 1958.-
[22]
M. GUILLEMOT-TEISSIER - neveloppements en serie •••• C.R. Acad.Sc. Paris 265(1967),419-421.- '
[23]
L.HORMANDER - Linear partial differential operators, Springer Verla~ 1963.
Paris (1972)
L.HORMANDER -HYpoelliptic second order differential equations, Acta Math. 119(1968),147-171.[25]
KOLMOGOROV -Uber die~este AnnMherung von Funktionen•••• Ann.of . Math.37(1936j,107-111.-
[26]
T.KOTAKE and S. NARASINHAN - Fractional powers of a linear elliptic operator,Bull.Soc.Math.France 90(1962),449-471.
[27]
J.L. LIONS et E. MAGENES - Problemes aux limites non homogenes t1 et 3, DUNOD 1968•..,.
[28]
G.G. LORENTZ - Approximation of functions, HOLT and ENEHART' and WINSTON 1966 -
[29]
G. METIVIER - Comportement asymptotique des valeurs propres de problemes irreguliers (a para1tre)-
[30]
B.S. MITIAGIN - ApProximate 'dimension and bases in nuclear spaces, Uspeki Math.Nauk 16( 1961) ,63-132.-
[31]
C. NORDIN - The &symptotic distribution of the eigenvalues ••• Arkiv ftlr Mat. 10(1972), 9-21.-
-139 . -
C.
Goulaouic
N. SHlMAKURA - Quel~ues exemple$ .de ~-fonctions d'EPSTEIN•••• Proc. Japan.Acad 45(1969),866-871 et 46(1970),1055-1069.-
[33]
H. TRIEBEL - Erzeugung des nukl'earen lokalkonvexen RMuines Math. Ann. 177(1968),247-264.-
C""(Q) • • •
H. TRIEBEL - Nukleare FunktionenrMume und singulMre el l i pt i sche Differentialoperatoren,Studia.Math.t.38(1970),285-311.[35]
I.L. VULIS and M.Z. SOLOMJAK - Spectral asymptotics of degenerate ell iptic operators, Soviet. Math.Dokl.13(1972 ),1484-1488.-
[36]
H.WEYL - Das asymptotische Verteilungsgesetz der Eigenwerte.~i~ea - - - rer parti~llerDifferentialgleichungen••• Math. Ann.71 (1911) 441-479).-
[37]
M. ZERNER - neveloppement en .ser i es ••• C.R.Acad.Sc. Paris 268(1 969), 218-220.-
CENTRO INTERNAZIONALE MATEMATICO ESTIVO
(c .r.
M . E .)
ESSENTIAL SPECTRA OF ELLIPTIC SYSTEMS ON COMPACT MANIFOLDS
GERD GRUBB
Corso
tenuto
a
Varenna
dal
24
agosto
al
2
settembre 1973
ESSENTIAL SPECTRA OF ELLIPTIC SYSTEMS ON COMPACT M..J\NIFOLDS
by Gerd Grubb (University or Copenhagen, Denmark)
1. Introduction.
These lectures report on a joint work with G. Geymonat, Torino. Let
T be a closed, densely derined
in a Hilbert space A € G ror which
H. T - A
We denote by
~(T)
line~r
operator
the set or
is a Fredholm operator, i.e.
has closed range and rinite dimensional kernel and cokernel (the index =
dim ker T - dim coker T not necesaarily being
zero), and we derine the essential spectrum or ess sp T =
m\
~(T).
T by
- 144 -
Grubb
G.
Remark 1.
In Schechter's pre~erred de~initi~n
[17], the essential spectrum is the complement o~ the part o~
where the index is zero, so our essential
~(T)
spectrum is in general smaller than
his. The properties
listed below are proved in Wol~ [21]. The two notions coincide
~or sel~adjointoperators.
A point
"
belongs to
ess sp T
there exists a singular sequence
T* -~,
m,
and only
either
~or
SUn
-+
sUbsequence.
0
f'or-
n
u -+
ess sp T
n
E: H
00,
un
or S
is
for all
with
but
i~
T -"
here a singular sequence ~or an operator
a sequence of elements n E:
i~
having no convergent
is closed and . is invariant under
the addition of a compact operator to
T.
As is well known, elliptic boundary value problems on compact manifolds
rr
let
r
defi~e
be an n-dimensional
and interior
n =IT\r
r) 0
(r
COO
~ore
precisely,
mani~old with boundary
JOL
may be empty), let operator on
n
o~
(sCalar or matrix-~ormed) and let
B
be a
be a property elliptic order
Fredholm operators.
dif~erential
di~ferential operator (usually matrix-~ormed) defined near
r.
Then
Let
~
~
-"
be the realization o~
Jt
with domain
is a Fredholm operator for all
ess sp ~= ~, i~
"E:~,
i.e.
- 145 -
G. Grubb
(i)
rr is bounded,
(ii)
.It is uniformly elliptic on rr,
(iii)
B covers
(iv)rr,r
Jt,
and the coefficients in
B
and
Jt
are smooth. When
r = \2l,
(i), (a i ) and (i v ) alone imply that the maximal realization A in L2(rr) with domain
has no essential spectrum.
An essential spectrum may appear when one of the conditions (i) - (iv) is not satisfied. As for (i), we refer to Schechter's and Garding's lectures [17], [10], where operators on IRn are studied, having a large essential spectrum. Next, consider condition (ii). Here, it is well known that for
D(~) () Hr(rr)
~
to
(or A) to be a Fredholm operator from 2(rr) L i t is necessary that A be
uniformly elliptic. But we are studying operators in 2(rr); L for these, a mildly degenerated ellipticity may still give Fredholm operators, as in the works of Baouendi and Goulaouic, ct' , [ 8 esa sp ~ ~ ¢,
l-
A stronger degeneracy, for which
was studied by Wolf [21] and Poulsen [16].
Concerning (iii), we have similar phenomena. Non-covering boundary conditions, for which
ess sp
~
=
a,
were studied
by Egorov and Kondrat' ev [ 5 ], Hormander [11], Eskin [ 6 ] and others; on the other hand Tovmasyan [19] gave examples,
- 146 -
·G . Grubb
and Vainberg and
Gru~in
(20] presented a general class,
ess sp A = ¢ even though B does not cover Jt B - We shall not be concerned with (iv).
where
We shall now look at a rirth aspect or elliptic boundary value problems which may, perhaps surprisingly, impl y the presence or an essential spectrum even when (i) (iv) are all satisried. It appears when we consider systems elliptic in the sense or Douglis and Nirenberg. A rirst sketch or the theory was presented at the Goulaouic-Schwartz Seminar 1972-73 (expose No. 27). We are still working on the development or the theory, especially ror manirolds with boundary.
2. Mixed order systems. Bet
q be an integer
>
and let {m
1,m 2,···,mq] be a set or nonnegative integers.. Let .A:. = (Jt s t) s, t-1 () - ' •.. '-a be a q x q matrix or dirrerential operators )tst of orders
Jt
ms + m respectively. The principal symbol or t, is the matrix or principal symbols or the Jist
(2.1)
cro(A,) = (a-°(Jt.a t))S,t=1,oo.,q = (o-ms+mtCA::'st))s,t=1,-,q'
here
a-°(Jtst)(x,f) is a runction on the cotangent bundle n T*(ff) (~rr x R when rr eRn), homogeneous or degree rna + mt
in
f,
SQ that the determinant
det
a-0(Jt)
is
- 147 -
G.
homogeneous or degree be elliptic on
il,
.
2(m +.·.+m ) 1
q
Jt
f.
is said to
when
il,
and strongly elliptic on
when the matrix
~O(Jt)(x,f) + iO(Jt)*(x,f)
(2.3)
in
Grubb
is positive derinite on
T* (15:)\0.
Such systems are a symmetric case or the elliptic systems introduced by Douglis and Nirenberg [ 1 ], this case seems the most interesting for questions in spectral
theory~
in s decreasing order, and we assume furthermore that some of We may, ror our purposes, arrange the
them are
~:
m1 _> m2 ->
where
1
m
~
q'
••• -> mq I > mq , +1
< q.
m = 0, q
Then, even when conditions (i)-(iv)
are satisried, the essential spectrum will be nonempty, as the folloWing examples indicate: Example 1. b
E: JR,
n = JRn, q = 2, {m 1,m 2}
{1;O}.
Let
a
and
and consider it has
Clearly,
> 0.
b
A
'Y
~
is elliptic for
Assume that
b
~
°
b ~ 0,
strongly elliptic for
and consider the realization
def ined by the Dirichlet condition
-14!l -
G. Grubb
Ay
is a Fredholm operator. However, an easy computation
(exercise!)' shows that, f'or
b ~ 0,
A..y
the spectrum of'
,,+ converging n (counting mUltiplicities)
consist of' two sequences of' eigenvalues, to
+
and
00
Thus. ess sp
,,-
converging to
n
A..y
= b!
b
Certain dif'f'eren ti al opera tors f'rom
nuclear reactor theory are generalizations of' this, with b
replaced by a matrix of' f'unctions, and the
a
replaced
by suitable f'irst order dif'f'erential operators. Example 2.
'n
= 3,. !m1,m2,m 3 l = !1,1,ol.
E: ]R2, q
The
linearized Navier-Stokes operator is
(2.6)
.it =
a
:"7-
-/::;
0
~O
.:../::;,
"
a -ax -ay Here,
Jt ..It
~
"
ay ,
(TO (-A)
with
=
0
2
+T]
2
0
~
:I:
0
(~,T])
f'or
2
if iT]
+T]
0
-iT]
-i~
det (TO(Jt) == _(~2+T]2)2
0
=t: (0,0),
so
is elliptic. It is not strongly elliptic, but + cI
is, f'or
c
> 2.
Consider
A- "I,
its principal
symbol is ~
(2.7)
0
(T (Jt -,,) ==
2
+T] 0
-i~
with
2 ~
2
0
i~
2 +T] .
iT]
-"
-iT]
0 2 2 2 det (T (J+, -,,) = ( -,,-1)(~ +T] ) •
elliptic if and only 11' ?\ 1= -1 !
Thus
.it - "I
is
•
We shall see later that
- 149 -
G. Grubb
is in the essential spectrum or"any realization of this
-1
operator
Jt •
We observe that, since part or 1\
enters in the principal symbol or
interrere with the ellipticity! cussion or
(ii) in
is or order 0,
~ "
.A -
(Recal~
1\,
and thus may
however the dis-
th~ introduction.) Another ~ndication
that our operators have nonempty essential spectrum is that 2 the injection D(~) 4 L ( n ) <1 will be non-compact. We shall now try systematically to treat the rollowing problems, under the assumption that
(i)-(iv) are satisried:
1) to determine the essential spectrum or each when
r = ¢)i
~
(or A
2) to rind the asymptotic behavior or the
discrete spectrum, near inrinity and near the essential spectrum. Let us end this section with some notations. It will be userul to single out the zero order part or writing.A
..A.
by
in blocks, according to (2.4):
~
(2.8)
= [:
:]
here and and
Write
R =
(Jt s t) 8 ><1,
t<_<1 I' (they are all or positive order), • is the multiplication operator M = (~t) t> I · s s, <1 For certain purposes we also need a riner decompostion: I
- 150 -
G.
Grubb
{1 ' ••• ,1 ; 1 , ... 1 ; •... 1 ,···,1 I, 1. ~2 • 2, , 1 .. ., ~
r where 1
1
> 1 2 >••• >
I . ) r p = q - q.
1
entries
Ip = O.
r
2
~ote
entries p
that
...
.]
r. = q,
~.
According to this we write
(2.10)
r p entries
j=.1
J
.~
as
pp where each
Pjk
is an
operators or order
rjx r k ma~rix or dirrerential Ij + lk. The rollowing minors are given
special names:
... P j = [ P" P j1
Note that
Pp-1 = P
and
, P j
J
j = 1,
...
,p.
P jj Ppp = M
in the previous notation.
3. The case without boundary. 3.1
The theory is simplest in the case where
emp~y.
r
is
We present this case rirst, since it already shows
some typical f'e a tur-ea, So, assume in the rollowing that fij
on
is compact and without boundary, and let
n = n.
Then Jt.
is continuous
Jt
be elliptic
- 151 -
G.
m +a
q
n
H s
s=1 and Jt
H
s=1
s
(172) ,
all
has a continuous parametrix
site direction. The domain A
-m +a
q
(n) -. n
D(A)
Grubb
aElR,
in the o.ppothe maximal realizatio~
o~
('cf. (1.3)) is in general not a simple product o~ Sobolev
spaces, since none o~ the range spaces in (3.1) equals 2 q m L (n)q; we note, however, that D(A) CS~1H s(n), since -m n H s(n) c L 2 (n ) q . One shows that c;(n)q is dense in D(A)
by use of' .Jt(-1),
so .t he maximal realization
equals the minimal realization; extension o~
A
I
Proposition 1.
A -"
equals the Friedrichs
.it I.e"" when .:fc. is strongly elliptic, and
is sel~adjoint when
then
A
A
Jt
Eet
is ~ormally sel~adjoint.
"E:C.
I~
-:It -"
is a ·Fr edhol m operator in
is elliptic,
2
L (n ) q .
uses that when it - " is elliptic, it is q -m +a q m +a n H s (n) to S~1H s (n) ~or a Fredholm operator ~rom s=1 all aE E , the kernel consisting o~ COO ~unctions and The
proo~
being the same
~or
all
a, and the range being determined by
orthogonality to the same ~inite set o~ all
a.
Then the kernel
and the range
o~
A
COO
functions ~or
also equals that kernel,
is determined by the same set o~ 2(n)q orthogonality conditions (using that L contains the o~
A
product spaces in (3.1)
~op
large enough
tained therein ~or small enough
a,
and is con-
~or
the essential
a).
So we s ee that we only have to look
- 152
G.
~
spectrum among the It is not
a priori
ess sp A.
for which
Jt -
~
Grubb
is n o t elliptic.
evident that each such point is in
That this is indeed true will now be shown for
the case where
P
(cf.(2.8)) is elliptic; this gives a
particularly simple theory, whereas the general case requires further techniques that we
not go into here.
~hall
We shall use the following, easily verified observation
o
on matrices
and
I
denote zero resp. identity ma-
trices). TIemma 1.
Eet
H H G 1, 2, 1
and
G 2
be linear spaces,
and let H. G1 1 x. ..... x H2 ( J 2
with
and
T
bijective from
11
-1
T22 - T21T11T12
only if
T
H 1
to
G 1•
Then
is injective (r-e sp , surjective) if and
is injective (resp. surjective).
This is used to show
I
Lemma 2.
city) that
P
Assume that and
Jt
P
is elliptic and (for simpli-
are invertible. Let
- 15 3 -
G.
it is a pseudo-dirrerential operator or o rder o-°(S)(x,f) = so(X,f).
and
S
(3.6) o 0-
denote
Then
is elliptic, and invertible in
ror each
0;
Grubb
L2(n)~-~'. Moreover~
A E: Ie,
(Jt -AJ)
=
[ 0- 0 (p) 0
0-
~][~
(R)
and hence
ror all
(x,f) E: T*(rr)\O.
Now derine (3.8) w =
U
(x,f)E:T* (rr)\o
{A E:
n I
A
is an eigenvalue ror
We have as an immediate conse~uence or (3.7): W =
{AIJl - A
is not elliptic}.
The rollowing theorem completes the description or ess sp A:
- 154 -
G. Grubb
Theorem 1.
(3.10)
Under the hypotheses
o~
Lemma 2,
esB'sp A = ess sp 8 = w. It ~ollows ~om
Proo~:
(3.5)
that
Jt
has the inverse
-P
-1 -11
8
where the terms in the
is the sum A-
in
row and column are pseudo-
~irst
1_
that
[0 0
-
0 8-
1] comp~ct +
ess spvA = ess sp 8,
it
~ollows
S
are invertible. The ~irst identity in
using that
8
is in general
pseudo-di~~erBn~1al operator o~ order
~O(Q)
dif~erential
{oJ, ~rom A
which
and
(3.10) being established, we
shall now show the second one.
or
operator
ess sp A- 1 = ess sp 8- 1 u
~2(IT)q. Then
~O(R)
-1
operators o~ negative (mixed) order, thus
di~~erential
A- 1
QS
0
~
genuine
(only where
vanishes will the principal part be a
operator, i.e. mUltiplication with a matrix
~unction) •
net (in
~act
(o~ order
in
}.¢ w. II s 0
0)
L 2 ( fi ) q- q ' •
Then
- }.III
z.
sO(x,~) - }.I ~
c )0),
so
0
S - }.I
~or
alJL
(x,~)
is elliptic
which implies that i t is a Fredholm operator Thus
}. ¢ eSlll;
SD S.
Conversely, aSflUme that
- ' 155 -
G. Grubb A
is an eigenvalue for q q eigenvector 8.E c - ' .
so(xO,f
with a normalized o) As a singular sequence for S - A
we may then uSe the following sequence, often used in the literature on pseudo-differential operators (see e.g. Ho~mander
[12] p. 158-59 or Melin [15] p. 129): Consider
a local coordinate . system where with
IIvllo = 1,
x o = 0,
let
y
E ~(JP)
and set
(3.11)
w = kn/2Y(kx)ei<x,k2fo> 8. k
One finds that
Ilwklio =
for all
kE
]N,
and
supp w -+ . { 0 1, so w has no k k convergent subsequence in HO (IR n) q-q I • (Actually, wk in H- 1 ( JR n)q-q', [15].) Thus AE ess slJ S, which II(S - A)wk"o
-+
0,
but
-+
0
completes the proof of the theorem. Since
S
is a bounded operator, we have
corollary 1.
ess sp A is bounded.
(This will not in general be the case when
P
is
not elliptic.) Remark 2.
The singular sequence (3;11) for
be used to construct a singular sequence for E be a parametrix of
P,
S - A can
A - A:
Let
whose kernel (as an integral
operator) has its support close to the diagonal. Let and
- 156 -
G.
Grubb
is a singular sequence for A - A, (It is used is close to that .w -+ 0 in H- 1 and that supp EQw k k BUpp w ,) k then
uk
3.2. Having determined the essential spectrum of
A,
we
shall now discuss its discrete spectrum. Here, we restrict the attention to the case where
Jt
is strongly elliptic
and formally selfadjoint; in particular, the hypotheses of Lemma 2 are satisfied after addition of a sufficiently large constant to ~.
We need a more refined factorization,
using the notation (2.9) - (2.11): Proposition 2.
Assume that each
is invertible (holds e vg , when
Jt
P j (j
= 1""
,p)
is strongly elliptic \
and a SUfficiently large constant has been added). Then we have
where the
are invertible elliptic r x r j -matrices j j of pseUdo-differential operators . of orders 2l j, and Y1 and
Y 2
C
are triangular, of the form
with pseudo-differential operators of negative order outside
- 157 -
G . Grubb
Ithe diagonal. Proof: to
Apply Lemma 1 successively for
T = P j ',T 11 = P j-1
(the spaces
H1,H2 , CJ and 1 with the appropriate
C~(rr)k
being of the type
shows (3 .13) with bijective applied to ~o(~) order 21.).
j = p,p-1,· ·· ,2,
C j;
This
the analogous argument
showS that the
Cj
are elliptic (of
J
We note that in (3.13), Y1
=
Now,
and Y2 H2lj(rr) r. j ,
Cp = S
of Lemma 2.
are isomorphisms in
L2(rr)~,
we find as a special
conse~uence:
A is positive definite and unboUnded, and its
essential spectrUm is bounded; then it has a eigenvalues
(A~(A)).;cJN J
J- -:
ties) converging to b~havior
se~uence
~/ ~ . To determine the asymptotic
of these eigenvalues, we consider the decomposi-
!u 1 , .•• , u ~ I
as
w = {u~'+1'··· ,uq'l;
{
(3.15)
for large may set
of
(repeated according to multiplici-
tion (2.8) (where now P = p*, R = Q*, M = M*) u =
and
and write
u = {v,wl, v = {u1,·· ·,u~,I, we look for nontrivial solutions of (P-A)V + Qw = 0, .* Q v + (M-A)W = 0,
IAI > IIMII, M - A is invertible, so we -1 W = -(M - A) Q* v, reducing (3.15) to the nonA.
linear problem
When
- 158 -
G. Grubb
(p - A - Q(M - A)
(3.16)
-1 •
Here, it should be expected that the Q(M - A)-1 Q*
diminishes as
asymptotic behavior P.
~or
~irst
P,
which is usually P
increases, so that the
o~
the maximal realization
o~
o~
mixed order; the lowest order oc-
is 21p- 1·
Propesition
3.
The sequence
Aj(P)
o~ eigenvalues
(repeated according to multiplicity)behaves asympto-
tically like the sequence operator
C
p-1
-21
j
j -4~,
where
(3.18) . c(Cp_1)
-n/21
c(C
p-
the
~or
(3.13)),
(c~
A (p)j ~or
the term
the eigenvalues is similar to that
o~
determine the spectrum
P
A
e~~ect o~
This is. indeed what we shall show, but we must
curring in
o~
O.
Q)v =
i.e.,
p-1
1)
pseudo-di~~erential
/n -4
c(C
p-
1)'
is the constant determ ined by
p-1 = (2~)
-n( ) dx
J
0 tr ~ (C
n/21 p_1)
p-1 df •
n If l=1, This is proved by use
where
the
~act
that
- 1, and by using the p_1 for elliptic pseudo-differential operators given by
Y
~ormula
o~
is
o~
order
~
-21
Seeley [18] (we apologize for not trying to give a more
- 159 -
G. · Grubb reduced expression
c(Cp- 1)!)'
~or
We can now show Assume that A
Theorem 2.
>
IIMII
A greater ·t ha n
a
~ormallysel~adjoint. Let
eigenvalues
o~
A;(A) ~ A;(A) ~ •••• (3.19) Proo~.
~or
A;(A)j Let
values
a
A
-21
~or
and arrange the in an increasing sequence:
Then p-1
In
~ c(C _ p
T~ = P - Q(M-A) o~
is strongly elliptic and
-1 •
Q;
~or
1)
j ~ "".
we are then searching
which on e has the coincidence
(3.20 ) The spectrum
C(T)
o~
each
TA is a sequence o~ eigenvalues going to as ~ollows:
determined as in (3.18). For
a
< A' < A",
TAl - TAli = Q[(A'_M)-1 - (A"_M)-1]Q* ~ 0, thus f'o r' each f'Lxed
j, J.L/T A,) ~ J.Lj(TAII) (e.g. by the mini-~ax principle), so J.Lj(T A) is a decreasing ~unction o~
A.
It is moreover continuous
Now, when
~,
increases
through the interval j ' ~or which there exists a
J.Lj(P)
>
uniqu~
~rom
a
(c~.
to
Kato [13] p. 291 ) .
+ "",
J.Lj(T A)
decreases
]J.Lj(P), J.Lj(Ta)[. Considering only the a, we see that ~or each o~ t h os e j, Aj
such that
J.L
.(TA ) = A ,! j J
J
The
- 160 -
G.
numbers
Grubb
determined in this way satisfy (3.20) and
A.
J
constitute the sequence
Aj+(A)
(expect perhaps for some
of the fir~t terms and a shift in the enumeration). Finally, E ]~j(P), ~j(TA)]
since
A
~j(P)
> A,
j
for all
j
such that
> c(p) -
c(C p- 1)'
~ c(T
for each
we have
lim inf A. j j -+
-21
J
00
lif -+00 sup A . j J
-21
p-
/n
p-1
which im~lies (3.19) since
In
C(T~)
The discrete spectrum near
A)
-+
w
c(p)
A,
for
A
-+
~
•
is harder to pin down.
Let us just say this much (still for the selfadjoint case)~
w is the union of a finite number of compact intervals on the real axis. When
S
has a sequence of eigenvalues
converging to the end point of such an interval outside,
A
f~om
the
also has one (converging at the same or a
slower rate; this is seen by suitable use of the mini-max principle). This is the case in Example 1, when But even when
S
does not have such a sequence,
have one; this is the case for Example torus
~
1 = S 1 x S,
there
S = -I.
2
of
~,
and for which
may
defined on the
S
shall be sufficientlY
flat (Taylor coefficients vanish) at a point has an eigenvalue
A
A systematic criterion
seems to be that the full symbol of
Which " so(x,f)
a ~ o.
A
a-(Q)(x,f) ~ o.
(x,f),
for
that is an end point
- 161
-
G.
Grubb
4. The case or a manirold with boundary. 4.1.
We shall now study the aase where
n-dimensional is much more
manirold with boundary
C-
complica~ed
n
r ~
is a compac
¢.
The theor
than the previous theory, ror vario\
reasons that we shall explain below. Our results so rar are by no means complete, so we shall only describe them rather brierly. However, one result is easily obtained, thanks to Remark 2: Theorem 3.
Assume that
P
is elliptic on
n.
Derine
(4.1 ) ror
(x,f) E T*(n)\o,
and derine
- A is sp A ror
w by (3.8). Then
(i)
w = !AI~
no t elliptic}.
(ii)
w cess
any closed linear extension
Proor: (i) rollows rrom the rormula
o rt 0 det ~ (~-A) = det ~ (p) det (sO-A), which is still valid at each
(x,f) E T*(U)\O
(proved as
E n, and let E be o a ps eudo-dirrerential operator, which acts as a par ametrix or in Lemma 2 ) . To show (ii), l et
P
ror
C-
X
runct ions wi t h support in a nei ghborhood or
contained in n, and s ends such runc tions in to o When A is an e igenvalue or so( xo,f o) ro r some X
- 162 -
G.
the sequence
in (3.12) constructed ~rom
~
(Jt - ~)Id:'
serves as a singular sequence ~or
K
-~.
Since
ess sp
o~ the set of' such
A
w k
o
in (3.11) . and thus ~or
is closed, it contains the closure
(xo,fo)'
i.e.,
w.
Now we cannot expect to get equality in (ii), when is a realization
~
~
covers
is elliptic but
Example 2, continued.
J{ -~,
with
Jt
Jt ,
(-6-~)v
+ ow 0 ox ==
in
11,
(-6-~)v
ow + oy == 0
in
n,
-~w ==
0
in
11,
.
0
on
r,
.
2
-:~V1 _ov 2 oy ox
exclude the value
oju You == ul r , Yju == --., j == 1,2, •••• ) on J ~ .== -1 where Jt - ~ . is not elliptic.
Assume furthermore that
~
*
0,
then (4.2) may be solved ~or
and reduced to
(4.3)
l
~o~
as in Example 2, i.e., the problem
(He use the notation
~
~,
Consider the null Dirichlet problem
Y Ov1 == YOv2
~e
but ~or certain
does not cover . ..A - ~!
B
1
(4.2)
1
o~ a boundary condition (c~.(1.2))~ For
it may happen that ·B
-it -
Grubb
2 2 1 02 v 0 [ ( -1-,)"'"""2 == ~v1 - ~ =--:2. 2]v1 [ 13 oX oy oxoy 2 2 2 1 0 ( -1--)-]v == ~v2 , ~ oy2 2 oxoy + ox +
-t ~
[-~
YOv1 == YOv2 == 0
- 163 -
G. Grubb
the di ff e r enti al operat or on t he l eft is t h e
Fo r op era tor
L
which was s tudied b y Bi t sadz e [3], who showed that t he 0 i r i chle t p r oblem fo r
L
d efines a non-Fr edholm op erator; in
fac t t he Di r i c h le t c ondi tion does not cover Of
L
..A -
the b ounda ry . On t he o t h e r hand, i t c ove r s
any
A
~_12 ' -to
We s h a ll s e e l a t e r that
at any point A
for
ess
One of the d i ff iculti es i n a s yst ematic s tudy .of the r eal iza tions
is that the known Fredholm theory (Agmon-
~
Do ugli s - Nire nb e rg [ 1 ], Geymonat [ 7 ]) trea ts the operators onlly 2 In prop er sUbspaces of L (n )q. Th e methods Lions and .
or
[14] can b e ex t ended to yi eld statements in larger spa-
Ma g enes
ce s , b ut th is d o es n ot by the usual i n t e r pol a tio n te c hni que s l e a d to a s i tuat i o n where
~
maps a s ubs et o f . .L 2( n ) q
onto
-Instead of g o i ng fur ther into this and giving our partial results, l et us t u r n to an older method of defining re ali zations, nam ely v i a variational th eory. Assume f or simplici ty that ~'
Jt
= r 1,
q - q'
= r 2•
P
is of o rder 2 , so
. The sesquilinear f orms associa ted with
are the forms
(4.4)
a(u,u')
= p(v,v' )
+ (Rv,w') +(w,Q*v l
)
+ (Mw,w'),
- 164 -
G.
where
p
with
P.
runs through the sesquilinear forms associated This gives the "halfways" Greens formula
Llp
where
Grubb
and
~Q
are fixed
r,
matrices of functions on
I~1
and
x r
resp. r 1 x r 21~ runs through all
r
x r of first order differential operators on 1-matrices 1 (this is a special case of Theorem 3.3 in [9]; Yav and
tlp Y1v +
(i,Q"YOw
constitute the so-called reduced Cauchy
Av denote the operators associated, by the Lax-Milgram lemma, to the restriction of a(u,u') to 0 1 r 0 "z 1 r r 2 Vy = HO(n) 1 x H (n) , resp. Vv .= H (n) 1 x H (n) • Then data). Let
A
y
Ay
r
and
represents the Dirichlet condition '
(4.6) and
y v = 0
o
Av
represent a
-:
~umann
aP Y1 v
+
condition
aQy 0 w + ~y0 v
= O.
is invertible.) Example 2, continued.
If we to the Navier Stokes operator
associate the sesquilinear form
a(u,u') =
I) - (w,av 'lax) + (6v - (w,av21/ay) 2,6V 2') 1,6V1 1 -(av1/ax + av2/ay,w'), we find that (4.7) takes the form
(6V
= 0
- 165 -
G.
Grubb
rt
(nx,ny) is the normal to r. When A ~ -1, this condition covers Jt - A if'f' ,,~_J! Note the
where
2
dif'f'erence f'rom the Dirichlet condition. Our results are most satisf'actory f'or
Ay • We c an here
obtain a certain analogue of' Lemma 2: Proposition order 2, so
'1
1
4.
Assume f'or simplicity that
= r1,
= r2•
'1 - '1'
Let Jl
P
is of'
be strongly
n + ~ n * positive def'inite on elliptic, with ~ • . r Then P + P is posi ti ve def'ini te on c~(n) 1 ,
Py :
def'ines an isomorphism
H6(n)
r
1
r
~ H- 1(n) 1.
Def'ine
-1
(4.8)
Sy = M - RPy Q,
it is continuous on
r O H (n) 2.
(1) For all
(ii)
By
{v,w}
1 r E Ho(n) 1 x H0 (n) "z ,
is an isomorphism on
r
HS(n) 2 f'or all
s L 0,
(iii)
Proof': maps
(4.9) f'ollows using Lemma 1 and the f'act that r r r 1(n) H 1 x HO(n) 2 bijectivelyonto H-1(n) 1 x
°
this also shows (ii) f'or
s = 0.
Jt
r
HO(n) 2,
(iii) f'ollows f'rom the
- 166 -
G. Grubb
regularity theory s
2 1 by use
o~
Py ;
~or
and (ii) is shown
[1) and [7), for general
~or
s
integer
by interpola t t cn ,
This leads to Theorem the
Assumptions
Proposition
o~
4.
~orm
(4.10)
~or
4.
all
~t] ! ~ ,gl
[p-1 + p-1QS-1 RP-1 y y y y _S-1 RP-1 y
r
. ess sp
(4.11 ) in particular,
-1 Sy
y
E HO(~) 1 x HO(il) 2,
A.y
-'j[:)
-P-1 y QSy
-
r
has,
and
= ess sp Sy
is bounded.
ess sp Ay
In the proo~, (4.10) ~ollows by inverting each ~actor in (4.9), and (4.11) uses that, because
o~Proposition 4
(ii), the entries in the ~irst row and column o~ (4.10) map
°
H -spaces continuously into
H1 -spaces.
The theorem carries the problem essential spectrum
o~
This operator is not a
~
over into
equals
so(x,f)
determining the
~inding
pseudo-di~~erential
more complicated integral operator Boutet de Monvel in
o~
o~
that
o~
Sy
operator but a
the kind described by
[4); its (principal) interior symbol
but it also has a boundary symbol
O-~(Sy)
containing a term stemming from trace operators and "Poisson kernels". It ~ollows ~rom operator when
"
[4) that
Sy - "
is outside the set
is a Fredholm
wy = the closure of
- 167 -
G.
the union of' the
of'
. sp ect r-a
Grubb
We
and
remark that in f'act, by use of' the reductions in Proposition
4 on the symbol level, (4.12)
wI' =
W U
[AI A - A
is elliptic but
does not
l'
cover .A.
J.
We do not have a simpler description of' this set, except that we can ref'er to the calculus of'
:[4] .
We have
f'ound Icorollar y 4.
W
c esa, sp AI'
C
wI'.
As not ed earlier, the f'ailing of' the covering condition 2, does not necessarily give a non-Fredholm operator in L so a f'urther sharpening of' these inclusions requires special investigations. Remark 3.
In certain cases, the reduc tion analogous to .
(3.15)-(3.16) can be used to clear up the question completely: If'
W
contains all the eigenvalues of'
1
RP- Q - i s non-elliptic at each x the
A¢
W
M(x) (this holds e.g. if'
E.n), the investigation of'
can be carried out f'or the Dirichlet problem f'or
TA = P - Q(M-A) -1 R in stead of' f'or
Jt. -
A.
The Dirichlet problem f'or
well posed when it satisf'ies in Agranovi~ ['
2], in
i.e.
Then
r 1= 1.
t~e
T
A
is
condition described
p~rticular if'
T'A
(and
p)
is scalar,
- 168 -
G. Grubb
ess sp
A..;
= w.
This holds for Example 1 and for
[-~ -d/dX
A=
Example 3:
OX1] O/a
ilclR
n
, n > .1.
Here
1
w = [a-1,a] = eSB sp Ay We can also use
in
•
TA,
just as in Section 3, to investi-
gate the asymptotic behavior of the point spectrum at infini-
A
ty, when
Ay.
is formally selfadjoint, so that
is self-
adjoint. This gives Theorem
5.
Assumption of Proposition 4, with
selfadjoint. The to
+
se~uence
A;(Ay)
formally
of ei g envalues go i ng
sat isfies
~
The associated eigenfunctions . belong to 4.3
J{
C~(rr)~.
Let us finallw mention a few results concerning
A • v
One difficulty here is that the boundary condition links v
and
w
together, so that we cannot get as nice a descrip-
tion of
D(A) as in Proposition 4 (iii). But the ses~uiv linear formulation c an be us ed to show: When a(u,u') r r 1(n) (cf. (4.4 )) is coerciv e on V = H 1 x HO(n) 2, then v is bounded. Furthermore, in case a is symmeess sp A
v
tric, so that v alues g o i ng t o
A
v
is selfadjoint, the + ~
s e~uence
b e h aves like (4.1.4).
of ei gen-
- 169 -
G.
Grubb
REFERENCES [1]
S. Agmon, A. Douglis, L. Nirenberg: Estimates near the boundary ••. , II, Comm. Pure Appl . Math. 1l(1964),35-92
[2]
M.S. Agranovi~: Elliptic singular i n t eg r o- di r re ren t ial operators, Uspehi Mat. Nauk 20(1 965), 3-1 20.
[3]
A.V. Bitsadze: Uniqueness or solutions or the Dirichl et problem ror elliptic partial ,dirrerenti al e qu a t i ons , Uspehi Mat. Nauk l(1948) , 211-212.
[4]
L. Boutet de Monvel: Boundary problems ror pseudodirrerential operators, Acta Math. 126(~971), 11-51.
[5]
Ju. V. Egorov. V.A. Kondrat'ev: The oblique derivative problem, Mat. as• 78(1 20) (1969), 148-176.
[6]
G.I. Eskin: Degenerate elliptic equat ions or principal type, Mat. Sb. 82(124) (1970), 585-628.
[7]
G. Geymonat: Sui ·problemi ai limiti per i sistemi lineari ellittic i, Ann. Mat. pura ed appl. 69(1965), 207-284.
[8]
C. Goulaouic: Lectures at this CIME conrerence.
[9]
G. Grubb: Weakly semibounded boundary problems and sesquilinear rorms, Ann. Inst. Four. £2(1973), No.4.
[10]
L. Garding : Lectures at this CIME conrerence.
[11]
L. ·Hor ma nde r : Pseudo-dirrerential operators and nonelliptic boundary problems, Ann. or Math. 83(1966), 129-209.
[12]
L. Hormander: Pseudo-dirrerential operators and hypoelliptic equations, Proc. Symp . Pure Math. 10(1968), 138-183.
[13]
T. Kato: Perturbation Theory ror Linear Operators, Springer Verlag, Berlin 1966.
- 170 -
G.
Grubb
[14]
J .L. Lions, E. Magenes: Pr-ob Leme s aux limi tes non homogenes et applications, I, Ed. Dunod, Paris 1968.
[15]
A. Melin: Lower bounds for pseudo-differential Ark. f. Mat. 2(1971), 117-140.
[16]
E.T. Poulsen: On the local origin of the essential spectra of elliptic differential operators, J. Math. Mech. 11(1962), 728-748.
[17]
M. Schechter: Lectures at this CIME conference.
[18]
R. Seeley: Complex powers of an elliptic operator, Proc. Symp. Pure Math. 10(1968), 288-307.
[19]
N.E. Tovmasyan: The Dirichlet problem for an elliptic system of two second-order elliptic equations, Dokl. Akad. Nauk SSSR 122(1963), 53-56.
[20]
B.R. Vainberg, V.V.Grusin: Uniformly nonelliptic problems, II, Mat. Sb. 73(115) (1967), 126~154.
[21]
F. Wolf: On the essential spectrum of partial differential boundary problems, Comma Pure Appl. Math. ~ ( 1959), 211-228.
operato~s~
CENTRO INTERNAZIONALE MATEMATICO ESTIVO (C.I.M.E .)
QUELQUES RESULTATS RECENTS EN SCATTERING
JEAN CLAUDE GUILLOT
C orso
t enut a
a
Va r enna
dal
24
agosto
al
2
settembre
1973
QuelqUes resultats recents en scattering par
J. C. GUILIDI' oeparterrent de Mathematiques Pures et Appliquees Universite de Dijon 2l<XXl .DIJCN
FRANCE
Introduction Dans ce senu.naire, j' ai l'intention de donner quelques resultats reeents concernant; la theorie spectrale de l' operareur de SCHRODlllGER -b.
+ q(x) dans ~ ou dans un ouvert borne
(00.
q(x) est une fonction mesu-
rable sur ~n verifiant certaines ronditions) dans le cadre du scattering. Quoique ce soft;
dej~
un sujet particuliererrent vaste, ce choix ex-
clut des questions tres inportantes cornre celles se rapportant au problem:
a
N corps en Mecanique Quantique et
~
la theorie quantique des chanps ,
Ne pouvant rralheureuserrent pas etre exhaustif, je signale neanrrodns :;ru'~
la suite de la COnference qui s'est tenue en Juin 73
~
Denver, un
livre sera publie en Janvier 74 qui rontiendra les derni.eres contrdbutdons en scattering et qui offrira un panorama assez c:x:>nplet sur la question. Je tiens
~
rerrercier particuliererrent les ProfICECCCNI et L. Gl\RDlllG qui
m'ont pennis de donner ce seminaire ainsi que le Prof. M. SCHECHI'ER pour m'avoir donne une ropie de ses derniers resultats e t le Prof. C. WILCOX pour de multiples et fructueuses discussions .
- 174 -
J.e.
Guillot
Comrencons par rappeler "c ertaines notations Notations . Si H ~st un operateur autoadjoint defini dans un espace de Hilbert, on notera (1 (H) Ie spectre de H, p (H) 1 'enserrble resolvant,(1ess (H) Le spec-
tre essentiel, (1c(H) Le spectre oontinu, (1ac(H) Ie spectre absolurrent continu, (1s (H) Ie spectre singulier et (1cs (H) Le spectre oontinu singulier.
en
notera enfin Hac la partie absolurrent oontinue de H. Pour toutes ces
definitions voir RATa
(1) .
C'est un fait quasinent experinental que les spectres essentiel et absolurrent oontinu d'un operareur autoadjoint sont stables lorsqu'on Le perturbe par une grande classe de perturbations alors que Le spectre continu ne 1 'est pas. La theorie du Scattering est concernee en partie par la recherche des conditions de stabilite du spectre absolurrent continu d 'un opezateur autoadjoint lorsqu 'on Ie perturbe. C 'est une propriete beaucoup plus forte que oel.Le du spectre essentiel et par suite plus diffieile
a derrontrer.
En fait, durant ces derni.eres annees les travaux se
sont ooncentires sur L'operat.eur' de SChrOdinger -6 + q traite oorme perturbation du Laplaeien -6 Plus preciserrent Scit q une fonction definie sur IRn,
1
a valeurs
reelles et rresurables
verifiant la oondition suivante, dite de STtJMMEL : sup
xe.1If
Ix-yl s
H
Iq(y)12 dy
1
<
ex>
pour
\i
>
n - 4
- 175 -
J. C . Guillot et.
lim
dy = 0
\xl~oo
~
1
Alors on peut rrontrer que (i) L'operateur H = -IJ. + q est un operateur autoadjoint dans
(ii) a (H) est borne inferieurerrent ; de plus aess(-IJ.)
= [0, + oo[ = aess(H) .
En particulier si q est une fonction suffisamrent reguliere qui verifie
en outre q(x) = O(....L)
S >O
Ixl S
et
Ixl ;:JR
Alors q verifie Lacondi.taon de Sturnrel. Mais quelle information precise sur le spectre de H peut-on deduire de l ' assertion : ae~ (H) = [0, +
00 [
? Essentiellerrent une information sur la
.
partie du spectre qui n' est pas . contenu dans [0, + a (H) f\ (-
00,0 rest
00] ;
il. savoir :
oonstitue uniquerrent de valeurs propres isolees (dans
a (H)) de multiplicite finie et dent le seul point d' accumulation possible
est {O}. Par cantre on ne peut rien dire de precis sur la structure du spectre cantenu dans [0, +
00[.
La theorie du SCattering perrret dans cer-
tains cas de precf.ser la nature du spectre en rrontrant que le spectre absolurrent cantinu est aussi stable . Plus precisenent les problerres que 1 'on cherche il. resoudre dans ce cas se resurrent dans le programre suivant: Programre de T. lKEBE :
- 176 -
J . C . Guillot
Trouver des condf,tions sur q telles que
- Que peut-on dire sur l'ensenble des valeurs propres plonqees
dans le spectre oontinu ? - Que
peut-on dire sur
0 cs
(H) ?
b) Montrer l'existenre at la oorrplHude des operateurs d 'onde W = S +
-
-
lim eitHeiti.
t ±'"
(II) Construire deux developpenents en fonctions propres generalises pour
Hac' enqendres par deux systEmeS de fonctions propres de L'operaeeur de SCHRODINGER
(Cf ± (x;k)) k
Rn tels que
(W+f) = L . i. m _
(IO+(X;k) ~nT _
f a (k)
aU fest la transformee de Fourier usuelle de f
dk
fE-L
2(Rn)
Eo L2 (Rn) •
En ce qui ooncerne la partie (I) des resultats corrplets ont ete obtenus par
S .AGMA~,
BIRMAN, T.IKEBE, T. KATe, S.T . KURODA, P.A. REJTO et M.
SCHECHI'ER lorsque q(x) =
°(Ixl -1-£ )
e : 0, et [x] ~ Ret par T.IKEBE,
P. ALSLOM et G. SCHMIDI', T. KATO et S. T. KUR)[)A en ce qui ooncerne la partie (II). Mais les resultats les plus rerents ant ete obtenus par
S.
A
[2.1 ,
S.T. KIRODA [3J et M.SCHECHI'ER [4]'et concernent les ope-
rateurs elliptiques. Plus preciserrent, consfderons 1 'operateur differential fonnel suivant .:
Hu =
L a. (i) p . a 1a.1,lsl ~m D (aa.S + aa.s(x))D u (Dj = -1 ;x)
au a. et S sont deux multi ·indices et on les oonstantes a (1) et les fanea. S tions aa.S(x) verifient les oonditions suivantes
(1)
-::uf a Go< et
i l existe une oonstante c > 0 telle 1
- 177 -
J. C. Guillot
a (1)
~
lal=181= m as ~
a+S
~ cl I~I
zm
(2) I.es fonctions aaS (.) cIefinies sur
sont bornees et rresurab.les
Ia I=18 I= In sont
lI'outes les fonetions aaS ( .) avec sur
IIf
unifomement continues
If. (3) aaS (x) = a
Sa
(x)
(4) Il existe une constante (:2 > 0 telle que
3s
(5)
c >
1 et c 3
>
3
avec
1aaS (x) I < : - - -
0
~ (l+lxJl o
n lal'ISllf In et 'VXER Soit PI (~) Le polynorre suivant
PI (~) =
~
~€ Rn
a~~) ~a+S
OJ;l
lal,ISllfIn n associe ii PI (.) l'operateur autoadjoint, rote HI' dans L2(lR ) de dcrnai-
ne
;rn(If)
et defini par Hlu = PI (D)u
De plus A E:
tel que PI (~)
,
u
E
n) ifrnOR
Rest une valeur critique du polynOrre PI s' il .existe ~
= A et
grad PI ( ~)
= O.
S. AGDN
E:
n IR
a IlOntre que 1 'enserrble e l
des valeurs critiques est un enserrble fini. Par suite, si on pose ~ inf
A
min .
~E
rrP
Pl(~) on a a (Hl )
= [ AminI
co) et Ie spectre de HI est absolu-
rnent continuo Maintenant ii 1 'oper'ateur fornel H on associe un operareur autoadjoint, note
~,
par la methode de Friedrichs. Plus precisement,
autoadjoint de dornaine D(H2) tel que
~
est l' operareur
- 178 -
J. C. Guillot
(~u,v)
D
=
u € D(H
.((a~~)
lal,lsJl;rn
+ aaB (x) )D(ju,Dav)
2)
On note E ( .) ).a famille spectra1e asaoci.ee 2
a
H 2•
a alors dem:>ntre 1e thOOrare suivant
S.T. KURCOA
THEOREME :
(ii) L'enserrb1e {An} de toutes 1es va1eurs propres de
~
dans
valeur propre An est de rnultiplicite finie. (iii) La restriction de H ausous-espace E ( (A 2
est unitairerrent equiva1ente
a
H
1
2
rnin
, oo)- (e {An }» L2(RP) 1
• En particu1ier
crac(~) - [Aminloo) De plus les operateurs d 'onde
) = s . W+ (H 2,H1 -
¥ID
t~ '
±oo
e i tH 2 e~itH1
existent et sent ccnp1ets. Recerment, M. SCHEX::HI'ER
[4]
S.T. KUroDA et S. ~
[2]
a amHiore certains des resultats oocenus par a obtenu des resultats analogues par une appro-
che differente.
Par ailleurs on sait rnaintenant que ce sont 1es neilleurs resultats que l'on peut obtenir dans une certaine direction. I1 n 'est pas possible en effet d'ameliorer 1a condition 5). Plus precisenent, consaderons l 'ope2 rateur autoadjoint H dans L (IR3) suivant o H o
=-/:,-
~
[x ]
x E 1R3
- 179
J. C. Guillot
cet exenple se distingue du precedent par le fait que le potentiel
~ ne verifie plus la oondition Iq(x) I~ ~+ e [x] [x] e:
q(x) = -
> 0
pour [x]
suffisarment grand. Il a ete etudie du point de vue du SCattering par J. DOLIARD [5] • Ce.lui,-ci a en effet rrontre que les operateurs d' onde ordi
naires it i t ll s - lim e Ho e t ±eo n 'existent pas. Par oontre i l a rrontre que les operateurs d' onde generali-
W±(HO,-A) =
ses suivants :
e
it H
0
E
ou
(t)
e
itll
i E(t)a
e
= {+l -1
2 (-lI) 1/2
Log '(- 4 It lll) .
0
si t > si t < 0
existent et sont a:nplets. J. DOLIARD a rrontre de plus dans sa these qu'on pouvait associer il. H
oac
deux developperrents en fonctions propres, enqendres par deux systen-es
('f~ (x;k»k(,- R3
(rJ? -
:>u
(H ,-lI) f) 0
de telle serte que l'on ait (x)
=
L. Lm,
j' (n:
3T-
2 3) f (; L (R
(x; k) f (k) dk o
fest la transfonree de Fouri:r ordinaire de f f L o
Aussi definit-on les potentiels Iq(x)
et les potentiels
a
I
~
a
2
3). (R
oourte poruee comre ceux verifiant
c
Ixll+€'
e: > 0 pour
x suffisarnment grand
longue portee, c:cmre ceux verifiant Iq(x) I ~
c [x] S
s
>
0 pour
x
suffisarnment grand.
APres le travail de J. DOLIARD, les recherches se sont orientees dans trois pj.rections principales.
- 180 -
J. C. 1. Obtenir les
tiels
a
~rateurs
Guillot
d 'onde generalises FOur taus les poten-
longue FOrtee et en derrontrer l'existence.
Pour l'operateur de SCHOODINGER, c'est un prablerre qui a ete resolu par
v.s.
W. AMRETh1, P. MMl'IN et B. MISRA [6J ,
P. AISHCM et T.
KA'ro
BUSIAE.V et V.B. MATVEEV [7
J,
[8] .
2. Obtenir directerrent des resultats concernant Le spectre de I' oparateur de SCHRDINGER directerrent c' esti-a-dire sans passer par I' exis
cenoe et la cx:rrpletude des operateurs d 'onde. Dans cette direction des resultats i.I\p)rtants ont ete cbtenus par J. AGUIIAR et J .M. CCMBES [9] , R. IAVINE [10] , T. IKEBE et Y. SArro
[ul.
J. AGUIIAR et J .M. CXMBES ont introduit des methodes analytiques qui
sont
r~elees tr~s
se
utiles FOur Le prcblare 11 N corps. Mais peut-etre les
resultats les plus a:xrplets et les plus generaux FOur L'operateur de SCHRODINGER ont ete obtenus par R. IAVINE :
n Soit q (x) une fonction definie sur R 11 valeurs reeUes teUEj que
avec l:iln ql(x)
, Ixl-. eo
~
-
C
(l+r)Y
=0
avec y
>
et 1
r=
[x]
et aU q2 (x) = _1_ (q2 (x) + q2 (x) ) (l+r) y , p , eo n avec q2,p(x) E rl(R ) FOur P. > max( ¥il) q2 ,eo (x)
c
L" (Rn)
On peut associer alors 11 l'operateur
-f).
+ q(x) un operateur autoadjoint H
- 181 -
J. C.
L2 (Rn) par la m!ithode de FRIEDRICHS et
1{ =
dans I' espace de HILBERI'
Guillot
R. IAVINE a nontre que les valeurs propres positives de H de rnultipl1cite finie et ne peuvent s'aCClmUller qu'il l'origine. De plus 'itcs(H) =iO}c'est
Ii dire que rous avons la
1t. = JtP (H)
d~sition
+
en satme directe suivante
*
'Itac (H)
T. lKEBE et Y. SAITO ont generalise certi1ns des resultats de R.IAVINE a
des
~rateurs
du type .
(f
n
E
aU b (x) j
e e'
aXaj
+
b),(X»2
+
q(x)
j=l n ) et q(x) sont des potentiels il longue portee ver1fiant
(R
certaines conditions. 3. Gereral1ser Le progranme conplet d' IKEBE.
Des resultats dans cette direction ont ete obtenus par V. GEORGESCU
et par J.e. GUILIm et K.
zrar
[1.3.1
[12] • V. GEORGESCU a considere Ie cas oil
Ie potentiel q(x) est il synetrie spMrique. En ce qui
nous concerne, rous avons considere des perturbations generales
du potentiel coulanbien. Plus preciserrent, nous avons consfdere principaLement; les deux cas suivants
n
a) Le problerre dans R
Cbnsiderons I' operateur H=
nI:
j=l
(I1 -a-a
+ b . (x»2 )
Xj
-
dans L 2(Rn)
a 1J(T + q () x IAI
n oil b (x) et q(x) sont deux fonctions definies sur R j
a
(n ~.. 3)
valeurs reelles ve-
dfiant cert.tins conditions. OOfinissons Q(x) =
~ (~~(X)+b.2(X))+q(X) ax ]
;=1
1
j
"Pour les definitions des sous-espaces
It p'
avec b],( .) Eel(Rn)
1t. ac
et
Itcs
voir T. Kl>oTO [1] "
- 182 -
J. C . Guillot
On suppose alor s que
(l + x
n
>2 ;
)a b .(x) J
L
P2 . n) ' J(R
1 ~ j < n
n
Max (2 , 2) < PI < 2n;
n < P2 . < 2n ,J 2 n) 2 alor-s H est un ope rateur autoadjoint L (R de domaine H (R pour
avec a
n)
1eque1 on peut deve loppe r une thor-ie complete en utilisant 1a theor-i e de factorisation de T KATO et S. T . KURODA
14 .
b) Le pr-obleme exter-Ieu r Soit
n
un domaine non bor-ne de R
deux var-iates
~
et
dont 1a f'ronti er-e est for-mae de 2, 2 de c1asse C disjointes et compactes . Supposons
que I' origine 0 appartient
l'interieur du compact determine Pitt' r 2.
~
$oit v 1a norma1e exter-i eur-e a1'exposant s (0 <
>
S
n
(x) une fonction ho lde r'Ierme n+l+ 2 (1 + x avec
et soit
~
< 1). Soit
=
(x)
0 fixe
$qpposons que Jr~elles
(x) q(x) soit une fonction dMinie sur
unifor-mernent holder-ienne d'exposant
(0 <
nu
~
valaur-s
< s) . Supposons
que
-
(x) q(x)
-
x
>0 >
00
Soit H l'operateur autoadjoint dans L
=-
2
(n) dMini par
g + qg et dont Ie do maine de dMinition est for-me de 2 tbute s 1es fonctions g H (n) telles que
Illg
g - - x
(x) g(x)
=0
=0
sur
sur
1 2
- 183 -
J . C.
Guillot
On peut alors en suivant la technique de N. SHENK et D THOE
15
construire des developpements en fonctions propres pour H et etudi er les ope rateur-s d'onde as socies
- 184 -
J. C.
Guillot
BIBLIOGRA PHIE 1
T KATO : Perturbation theory for linear operators, Springer (66)
2
S. AGMON
Spectral properties of Schrodinger operators , Actes du congr-es Intern Math . 1970 Tome 2 p 679-683 . Confer-ence donnee a Oberswolfach (Juin 1971)
3
S. T . KURODA : Scattering Theory for differential operators 1;11 Journal Math Soc Japan 25 . (1973)p 75-104;p . 222-,234
4
M . SCHECHTER : Scattering theory for elliptic operators of arbitrary order (Preprint)
5
J . DOLLARO : Asymptotic convergence and the Coulomb Inter-action J . Math. Phys
6
W. AMREIM . MARTIN
~
(1964) P 729 -738
el B. MISRA : On the asymptotic condition of
Scattering theory. Helv . Phys Acta 43 (1970) p . 7
313~n4
V S . BUSLAEV et V B MATVEEV : Wase operators for the Scattering Equation with a slowly decreasing potential Teoreticheskaya
Matematicheskaya 2 (1970) -
pag. 367-376 Traduction anglaise
Theo Math . Phys . ~J1970)
p . 266-274 8
P . ALSHOM et T . KATO : Scatter-ing with long range potentials Preprint , 1971.
9
J. AGUILAR et J . M. COMBES : A classe of a na l yt i c perturbations for Schrodinger- Hamiltonians I. The one body problem Comm . Math Phys. (1971) p. 269 -272.
- 185 -
J. C.
Guillot
BIBLIOGRAPHIE (suite) 10
R. LAVINE
; Absolute continuity of positive
spectrum for Schr0-
dinger operators with long range potentials. J. of Funct , Anal. 12 12
J. G. GUILLOT et K. ZIZI: Expos e (~uin 7~)
13
1973 p. 30.
sera
publi~
a
la confer-ence de Denver
en Janvier 74.
V. GEORGESCU : Expos e de W. AMREIM
a
1a Confer-ence de
Denver (Juin 73) . 14
T . KATO et S. T . KURODA : Theory of simple Scattering and eigenfunctions expansiOns. Functional Analysis and related topics. Springer (1970) .
15
N. SHENK et D. THOE : a} Outgoing solutions of ( - 6
+ q - k 2) u = f
in an exterior domain J.
Math . Anal. and App . 31 (1970) p.
81
b} Eigenfunction expansions and Scattering theory for perturbations of pl. 36 (1971) p.
313 .
- C1. J. Math Anal. and Ap-
CENTRO INTERNAZIONALE MATEMATICO ESTIVO (C.I.M.E.)
THEORY OF PERTURBATIONS OF PARTIAL DIFFERENTIAL OPERATORS
MARTIN SCHECHTER
Corso
te n u t o
a
Vare n n a
dal
24
agos to
al
2
se ttembre
19 7 3
- 189 -
M Schechter
I.
Constant Coefficient Operators Let
(l)
1J.1 IJ.n P(Sl, ••• ,Sn} = L: a Sl ••• E: be a polynomial in n 1J. +••• +IJ. < m 1J.1,···,lJ.n tr 1
n variables with complex coefficients. troduce the following compact notation.
In the interest of ecology we inWrite
S=
(E:l, ••• ,E: n),
IIJ. I = 1J.1 +••• + IJ.n and IJ. 1J.1 .. IJ.n
~
= Sl
••• Sn
Then (l) becomes (2)
Corresponding to this polynomial we can form a constant coefficient partial differential operator in En given by (3)
P(D}
= L:
a
IlJ.bm
IJ.
where D .. (Dl •••••Dn) and D = -io!ox • 1 j
-i will be given later).
j
:s j :s n
(the reason for the
Co,versely. every constant coefficient partial
differential operator can be written in the form (3) and corresponds to a polynomial of the form (l). Once we have our partial differential operator. we must decide where to apply it.
Fortunately for this purpose mathematians have invented a
very convenient class of functions - the infinitely
differentiab~e
functions with compact supports (usually taken as complex valued). We Q) Q) n denote this class by C = C (E). Every partial differential operator o
0
with constant coefficients can safely be applied to this class. However, when one desires to talk about spectral theory (which I am obliged to do at the present moment). it is customary to deal with operators in either Hilbert or Banach spaces.
And since we do not wish to
- 190 -
M Schechter break with tradition, we shall have to find such a space for our operato~. For this purpose we have chosen the LP spaces because of their popularity. versatility and convenience.
In general we shall allow 1
~
p
but
~ ~,
in many cases we shall have to let go of the end points. Since C~C LP o
= LP(E n)
tor in LP'with domain C~. o
for any p, we can consider P(D) as an operaNow we can get down to the business of descri~·
ing the operator and its spectral properties. might ask is whether our operator is closed. 'vi ous l y negative, but don't go away.
(P(D)~,t)
All is not lost, for we have
ee
Let [~kJ be a sequence of functions in C
Proof. 0 and
The answer to this is ob-
P• The Operator .P(P) . ' on"C~ 0 is closable in L
Lemma 1.•
~ ~
The first question one
o
P(D)~ ~
= (~,
If
f
such that cio
V is any function in Co' then
P(D)V) by integration by parts (here P(D) is the con-
stant coefficient operator whose coefficients are the complex conjungates of those of P(D». that f
=0
Thus (f, t) = 0 for all V E C~. o
This implies
a.e. 0
= Pop
We let P
o
by the closure of our operator in LP•
This operato~
is called the minimal or strong extension depending on ones political convictions.
If you have guessed that there is a maximal or
~
exten-
sion, you are right. Now that we have our operator snugly lodged in a Banach space, we can now take the time tp review some concepts from spectral theory. A be a closed operator on a complex Banach space X.
Let
A complex number
A is said to be in the resolvent set p(A) of A if the operatoc.A- A has a bounded inverse defined on the whole of X. trum cr(A) of A. c Ics ed ,
Otherwise i t is in the spec-
I t i s a fact of life that p(A) i s open and cr(A) i s
- 191 -
m Schechter Another fact, which may not be so widely known, is that there are basically two types of points in the spectrum -- hard core and soft core , Some points of the spectrum are so completely ingrained that nothing short of a hydrogen bomb will dislodge them, while others move or disappear at the slightest whisper.
There are several definitions of hard
core spectrum, and most of them coincide for self-adjoint operators on Hilbert space (c f , r3,p.241]).
The definition I like the best (primarily
because I invented it) is
a (A) =
(4)
e
n
K compact
a (AofoK) •
We shall call this set the essential spectrum of A.
Clearly it is the
largest closed subset of a(A) which remains invariant under compact perturbations.
We shall see that it remains invariant under perturbations
which are even worse. [3,p.15].
If there is a seguence~ of elements in D(A) such that
lIukll = 1, (A-A)u
k
... 0 and {uk}
has no convergent subsequence, then
ae (A). Proof.
Suppose A ~ a (A). e
such that A E p(AofoK). lIull~c
(5)
e
For the moment we need only the following:
Lemma 2.
A E .
A complete characterization of a (A) is given in
II
Then there is a compact operator K
This implies
(AofoK-),,)ull, u ED(A).
Since K is compact, there is a subsequence {v of {~} such that j} {KV } converges.
j
verges itself.
A simple application of (5) then shows that {v conj} This contradicts the hypothesis that {uk} has no conver-
gent subsequence. 0 We can now return to our partial differential operator. s ta tement is
Our first
- 192 -
Lemma 3.
M Schechter If there is a ~ e En such that A = P(s), then A e a (P ). e
0
In proving the lemma we shall make use of a well known generalization of Leibnitz's formula: (6)
P(D) [uv] '" E p(lJo) (D)u DlJov/lJo!,
where
and IJoI
= ~ I ••• lJon'
(simple proofs may be found in [2,p.264] and [3, p.52]) Proof of Lemma 3.
We may take A
:0
O.
Let t(x) be a function in
which vanishes in a neighborhood of the origin and has norm 1 (all
ceo
o
~orms
will be of LP unless otherwise specified). Set (7)
~(x):o
t(x I k) e iE:x - Ik nIp
,
Then C/\ (8)
IIC/\II
e C0eo
for each k and
= 1.
But by (6) P(D)C/\(X) = EP(IJo) (sHIJo(x/R)eiSX/lJolkllJol where , (x) IJo
lit
IJo
= DIJo
v(x).
(x/k)/kn/Pil =
+~
Since
lit
IJo
II,
we have (9) " P(D)Cfl .... 0 in L P as k .... eo. k
Finally note that C/\(x) .... 0 pointwise as k .... '" (for P = "', we make use of the fact that
Vvanishes
in a neighborhood of the origin).
Now if [~}
had a convergent subsequence, the limit would have norm 1 by other hand
~hpre
(~).
would bp a s ubseQuence of this su bsequence wh ich
On the
-193-
1\1 Schechter
converges to the limit a ,e ,
Thus the limit vanishes a se , and cannot
have norm 1.
This contradiction shows that {~} cannot have a convergent
subsequence.
We now apply Lemma 2. 0
Since the essential spectrum is closed, we have Corollary 4.
The closure of the set
is contained in a
e
(P). 0
- 1 94 -
II.
L P Multipliers
We now search for other points of the spectrum. slight surprise. Lemma 5.
Here we are in for a
We have
If 1
s
p < "', then A E p (Po) iff l/[P(S)->.J is an LP
multiplier. In order to prove this lemma, it will be convenient to know what an LP
50 let me describe a few
multiplier is.
conc~pts
denote the set of functions v(x) E C'" such that Ix on Enfur each'k
2: 0 and~.
from analysis.
Ik ID~v(x) I
Let 5
is bounded
The Fourier transform of such a function is
defined as Fv(e:) .. (2n) -%0
J e -isx v(x)dx.
We recall that F maps 5 into itself and that F[D~vJ .. S~v (cf.,e.g., [4J). First we note 5 CD (P ) and P v .. P(D)v for v E 5. o 0
Lenma 6.
Proof.
Let V be a function in
V(x) .. 1
fo~
Ixl
c:
such that
5: 1. For ~/~ 5 set vk(x) .. Hx/k)v(x). Then vkE
and it is easily checked that v
k
~ v in LP•
formula (6) P(D)v .. E k .. E
p(~) (D)v D~v(x/k)/~!
P(~)(D)V t (x/k)/~!kl~l. ~
Thus lip(D) (vk-v)
+ ~
E
II 5: II [V(x/k)
~\O
05: V(x) 5: 1 in En and
- lJ p(D)vll
IIp(~) (mv] lit ""'/~! kl~1
Oask~"'.
~
c:'
Moreover, by Leibnitz's
- 195 -
M. Schechter Note that the proof of Lemma 6 requires only that p(~)(D)v be in LP for
Next we note
each~.
Lemma 7.
If
(12) n
Let S be any vector in E and let V be any function in Co
Proof.
Define ~ by (7).
such that IIvil .. 1.
IIp(D)~II ....
Ip(s) I
as k .... ~.
~
Then one checks easily that
Since CPk E
1 = !I~II ~ Co I Ip (D) ~ 1 1 .... Co Ip(E:)
c;. we have
I.
This gives (12). 0 A bounded measurable function m(S) on En is called an LP multiplier if
IIF [m( E:) Fv ] 11 ~ C IIvll , v E
s,
where F is the inverse Fourier transform.
We may assume A = O.
Proof of Lemma 5. holds.
Thus I/lp(E:) -
I
We can now give the
is hounded (Lemma 7).
-1
Then w = F [P Ff] is also in S.
If 0 E p(P ), then (11) o
Let f be any function in S.
Moreover P(D)w = f.
Since 0 E p(p), we o
have Ilwil ~ C I/f !/.
(l3) Thus pin LP•
l
is an LP multiplier.
Conversely, assume that IIp is a multiplier
Thus
Let f be any function in S and set w is in Sand P(D)w
= f.
Thus R(P ) o
~
= -F[P-1Ff]. S.
H.en.c.e 0
E
is bounded, w
Moreover, (14) implies (13).
Since S is dense in LP• this shows that for each f w E D(~ such that ~ = i ,
-1
Since P
~Po).
bI
E LP there is a unique
-196-
M . Schechter' Once we have Lemma 5, the probtem of determining the spectrum
reduces to one of determining LP multipliers.
Moreover, when p
= 2,
Parseval's theorem shows that the multipliers are precisely the bounded functions.
Thus ,XEp(Po) iff
l/[p(~)-X]
tained in the closure of the set (10). Theorem 8.
If p
= 2,
is bounded, i.e., X is not conThus we have
= ae (P0 )
a(p ) '0
consists of the closure of the
set (10). The situation is more complicated when p ,2.' The reason is that there is no simple nece.sary and sufficient condition for a function to be an LP multiplier. The criterian we found the most useful is Theorem 9.
Suppose 1 < P <
greater than n Il/p-1/21. (15)
IDlJ.m(s)I~C
and let t be the smallest integer
<Xl.
Let meg) be a function such that
le:rallJol-b,
11J.1~t, Then m is an LP mul tip lier.
for some real a < 1 and b > (1-a) n Il!P-1/21.
We'shall not. prove Theorem 9 here because it would take us to far afield.
For a proof we refer to [3,p.46J.
result of Littman [5J. The.orem 10. (16)
(17)
We apply Theorem 9 to obtain
Assume 1 < P <
<Xl
and that
p(lJ.) (P/p(s) - O(!srallJ.l), as lsi
IIp(s) • o(lsr
It is a consequence of a
b
) , as lsi ....
....
<Xl,
<Xl,
where t is the smallest integer> n Il/p -1/2 1, /.!! ~ 1 and b > (l-a)n
11/p-1/21. Then a(Po ) cons is ts of the set (10). . Proof.
It suffices to show that ll[p(s)-X is an LP multiplier i f X
is not in the set (10).
We may take X - O.
p(~)-l is bounded. Now for each .o f the form
Since a
~
1, b > O.
Thus
IJ., nlJ.(l/p) consists of a sum of terms
- 197 -
M . Schechter .
Constant p(~
(18) where
~
(1)
+•••+
~
(1)
(k)
) (E:) ...p(~
=~
(k)
) (E:)!p(s)k+l
(this can be verified by a simple
induction)~
Thus
D~(l!P) .$cle:ral~I.$.(..
(19)
An application of Theorem 9 shows that p-l is an LP multiplier.
Thus
AEp(P ) by Lemma S. 0 o
Assume that 1 < P <
Corollary 11. b > O.
co
and that (17) holds for some
If
Il!p-l!2! < "!n(m-h). then a(P ) consists of the set (10). o
Proof.
p(~)(s) is of degree at most m-I~I. Hence
p(~)(s)!P(s)
=
o(lslm-I~I-b).
For I~I ~ 1. we have m-I~I-b ~ (m-b-l) I~I.
Thus we may take a
= b+l-m
in Theorem 10. 0 Corollary 12. that Il!p-l!21 < Proof. holds.
If Ip(s>
n implies
I
~
co
as lsi ~
co,
then there ,i s an
n>
0 sucq
that a(P ) consists of the set (10). o
The hypothesis implies that there is a b > 0 such that (17)
Apply Corollary 11. 0
Coro llary 13.
If Ip(E;) I ~ co as
lsi ~
co
and pep ) is not empty, thert o
a(P ) consists of the set (10). o
Proof. prove.
If the set (10) is the whole plane. there is nothing to
Otherwise. there is a A not in this set.
There is a number b > 0 such that (17) holds. By Corollary 11. OEp(Q ). o
We may take A = O.
Take k > mn!b(n+2). and Since pep ) is not empty. o
P~ is a closed operator. Since it agrees with Qo on Sand Qo is its
- 198 -
M Schechter
k
see that Po is surjective.
Thus Po is surjective as well.
that it is injective also.
For suppose vEN(p).
sequence (v
j
Jc
Then there is a
o
S such that v - v and P(D)v - O. j
there are functions wjES such that P(D)
k-l
j
Now we show
-1
Since P
w =v j• j
is bounded,
Thus
Q~D)Wj" P(D)Vj- O. Since OEp(Qo)' we have wj- O. But P(D)k-l is closable. bijective.
Hence v
j
converges to 0 as well.
Hence v
= O.
Thus P
o
is
This means that OEp(P0). 0
Coro llary 13 is due to Iha-Schubert [6 J. To summaDize, we know that a(P ) is the closure of the set (10) when .
p = 2.
If Ip(s)
I-
for p close to 2. complex plane.
I~I
-
0
=,
then a(p
consists of the set (10)
For any p, a(p ) is either the set (10) on the whole o
o)
=
Iha-Schubert [6J
is the whole complex plane when
,.222 222 (sl-Sz-s3-S4-i) (Sl+S2+s3+~4+i), n
li/p - 1121 > 3/8. Theorem 10 applied a(P ) is the set (10) when
o
o)
The latter poSSibility does ·occ~r.
showed that a(p P(s )
=as
= 4,
and
to this operator shows that
Il/p-1/21 < 1/5.
- 199 -
M.. Schechter III.
Perturbation by a Potential We now discuss expressions of the form
(20)
P.(D)
+
q (x) ,
where q(x) is a measurable function.
Our first task will' be to define a
precise operator corresponding to this expression. ways of doing this. as an operator Q. those u
e L2
There are several
One simple way ·is to consider multiplication by q The domain of Q is easy to describe: it is the set of
2• such that qu E L
We can now define the operator correspono
ding to (20) as R=Po+Q,
(21)
where D (R) = D (Po)
n D (Q).
when will R be closed. Leunna 14. (22)
[su]
The firs t ques tion one may wish to ask is
One simple answer is given by
I f A is closed. i f D(A) C D(B) and
~ c I/Au!!
+ dllull, u
for some c < 1. then A
+
e D(A),
B is closed.
The proof of Lemma 14
is simple.
We leave it as an exercise.
To
apply the lemma we must find conditions on q so that an inequality of the form (23)
IIqull ~ c IIPoull \
+ dllul/, u8>(P o)'
We shall give one set of conditions. measurable function, set (24)
M
Q',p
(V) = sup y
.r
IV(x-y)
For 1
Ik
~
p < CD, Q' > 0 and V(x) a
Ix I o-n dx ,
Ixl< 1
Let MOfP be the set of those functions V such that MOfP (V) < CD. is a polynomial, we shall say that P (25) (26)
E O(a,b) if
p(~)(E:)/P(E:) = o(lsral~l) as 11::1 .... b l/P(E;) = o(ld- ) as lsi .... CD,
CD,
I~I ~n+l
If P (E;)
- 200 -
M. Schechter for i; E En.
We have Assume that P E O(atb) with a < 1 and b > a-k!-an.
Theorem 15. k
denote the smallest nonnegative integer such that k
o
assume that q EM
o <
(27)
o
Let
a > n-b. and
for some ex satisfying
a.p
ex < p(n-k ). .
0
If P (Po) is not empty. then D(Po)
C
D(Q) and (23) holds.
Moreover. we
can take c as small as desired. In proving Theorem . 15 we shall make use of Let Q', I3t yand p satisfy 1 < P < CIO. 13 < n < y. and
Theorem 16.
o <
ex < p(n-I3).
Let G be a function satisfying
IG(x) I s Kl I xl - I3.• Ixl < 1 . Ix l -> 1. ~K2 Ixl-Y
(28)
(29)
Then there is a constant C depending only on Q', 13. y. nand p such that (30)
IIq[G*fJ II Lenma 17.
~C
(Kl-fi{2) Ma,p(q)l/p II fll f E LP•
Suppose w E CCIO and DIJo weLl for
lul=
k t with
Then there is a constant C such that
The proof of Theorem 16 will be given a bit 'l a t e r . is a simple exercise.
We now show how they can be used to give the
Proof of Theorem 15.
o
e p (Po)'
b+allJol> n by (19).
13
= n+l.
=.kQ
Without loss of generality. we may assume
Let v be any function in S. and set f = P(D)v.
Fv = wFf. where w = lip.
IIJoI
That of Lemma 17
Note that w e CCIO and that D\.Lw ELl when
In particular. this is true when I IJoI = k
Thus by Lemma 17. G(x)
and Y
= n+l.
Then
Since v
=G
= Fw
o
ahd
satisfies (2 8) and (29) with
* f. Theorem 16 gives
- 201 -
Ilqv.ll
(33)
M . Schechter
IIp(D)vll, v E s.
~C
This implies (23).
To show that we may take c as small as desired, let
t
ee
be a function in Co satisfying 0 V(x) .. 0, [x
I>
~
V(x)
~
1 and
1
.. I, lx' < \. For Ii
>
0 put
GIi(x) .. V(x/ <5)G (x)
G (x) Let
.. G(x) - G/i(x).
13 satisfy k o < 13 13 n - (alp). Then
IG/i(x) I ~<5
(34)
e-k
0
K l
[x ,-13,
Ix I ~<5 Ixl > 6
.. 0, Thus by Theorem 16
Note next that (16 E C"'.
Moreover, since GIi(x) .. G(x) for Ixl > 6, we
have (36)
P(D) G<5(x) = 0,
Ixl > 6.
Moreover
By (36), P(D) G<5 E C:.
(~8)
IIq[Go*
Thus by (37) and Theorem 16
(p(D)v)JII~c<5MO',p(q)l/P
Ilvli.
The assertion now follows from (35) and (38) by taking <5 sufficiently small. 0 In proving Theorem 16 we shall make use of three simple lemmas. first is obvious.
The
- 2 02 -
M. Sc hechte r
Leuma 18.
For a~ 13 and 1 ~p < "', MS,p(q) ~Ma,p(q).
Leuma 19.
For any g there is a constant C depending only on nand
a such that. Mn,p (q) -< C Mg.p (q).
;
For a $ n, this follows from Lemma 18.
Proof.
let y be any point of En.
J
S2a-n
If Iz- yl
= 3/4,
Assume a> n, and
t hen
Iq(x-z)I P Ixla-n ~2a-n Ma,p (q).
\
0
Lemma 20.
If G(x) satisfies (29) with y > n, then there is a
constant C depending only on nand y such that (39)
J
Iq(x-y)IP IG(x)
I
dx ~C K_ M (q). - "2 n,p
Ixl> 1 Proof.
By
'"
(29) the left hand side of (39) is less than
J k< Ixl< k+l
There is a constant C depending only on n such that for each k the shell k < Iz I < k+l can be covered by C k
J
k
Iq(x-y) I P dx
n-l
s C k n- l
spheres of radius 1.
M
n,p
Thus the left hand side of (39) is less than C~ M
n,p
(q)
'"
1::
k-l
kn- y-l
(q)
Thus
- 203 -
M . Schechter 0
The series converges because y > n , Proof of Theorem 16. functions in S.
Then by Holder's inequality
l(qrG*u],v)! u(y) vex)
First aSSlDDe 1 < p < 00, and let u,v , be any
s If
I dx
dy
Iq(x)G(x-y)
= If
If
+
Ix-yl< 1
Ix-yl > 1 t p IIp Iq(x) P IG(x-y) p lu(y) dx dy)
s (If
I
I
I
Ix-yl < 1
(s.r
I
IG(x-y) I (l-t)p' Iv(x) P
,
dx dy)
IIp' .
Ix-yl
+
If
(
I
Iq (x) IP IG(x -y)
Ix-yl> 1
If
(
IG(x-y)
I
Iv (x ) IP
lu ( y) IP dx dy)
,
IIp
IIp' dx dy)
Ix-yl> 1 where t is any number satisfying 0
~
t
~
1.
The trick is to f ind a t
in this interval such that
S
(40)
[q (x) IP IG(x-y) Itp dx ~ K~P
Ma,p (q)
Ix- yl < l and
S
(41)
Iz
IG(z) I (i-t)p' dz
~
1< 1
C K (l-t)p'
l
For b y Lemmas 19 and 20,
S
(42)
Iq(x) IP IG(x- y) I dx < C K_ M (q) -L a,p
Ix-yl > 1 and by (29) (43)
S
IG(z ) I dz
s C K2
•
Izl > 1 Inequality (30) follows from (40) - (43).
To find a t such that (40)
- 2 04 -
M . S che chter and (41) hold, note that we may assume (44)
n • Bp ::: 01::: n
as well as 0 <
< p(n-a).
01
substitute n for
For if
n, then q EM, and we may n,p
On the ';lther hand, if
01.
stronger theorem if we replace :(n- ~ lap.
01 >
01 by
01
< n-llP, we are proving a
n-ap (Lenma 18).
We take t
=.
Then 0 ::: t ::: 1 by (44) and 1 - (n/ap') < t < n/ap
by hypothesis. have
01"
Thus (l-t)ap'< n ,
n - tap.
This implies (40) for the same reason.
theorem is proved for p ~ 1. IIq [G*uJ II:::
<
SS lx-yl< 1
This implies (41) by (28).
.r.f
When p
Iq (x)G(x-y)u(y)
JJ
+
Ix-yl> 1
by (28) and Lenma 20.
0
I
= 1,
we have
dx dy
< [K 1 Mn _ a, 1 (q)
We also
Thus the
- 205 -
M. Schechter IV Relative Compactness The next question one may wish to ask is how the spectrum of the operator (21) relates to that of P.
In general they are different.
o
However, one may ask if there are conditions on q which will guarantee that Q does not disturb the essential spectrum of Po' i.e., that a (R) • a (P ).
(45)
e
e
0
A simple but very, useful criterion can be given in the following way.
We shall say that an operator B is !- compact if D {A)c D (iii) and
implies that there is a subsequence of fBUk} which converges. Lemma 21.
If A is closed and B is A-compact, then
I shall give the proof of this lemma a bit later. it can be applied to our case.
the hypotheses of Theorem 15.
J
Ix-yl < 1
Let us see how
One result is
Assume that 1 < P < "" and that PO;:) and g{x) 's atiltf y
Theorem 22,
(48)
We have
Assume also that
Iq{x)I P dx -. 0 as Iyl -.
Then Q is Po-compact.
ee
,
Thus (45) holds.
The proof of Theorem 22 is not difficult, but takes a bit of care. We first prove some lemmas. Suppose w E Sand 0
Lemma 23. the operator Af Proof.
= p*f
is a bounded open set in En.
Then
is a compact operator from LP into L""
By Young's inequality
IIAft
+
n
E
j=l
IlnjAf ll",,:: C II f ll
p
is a sequence with LP norms bounded, then fAfk} is a uniformly k} bounded, equicontinuous sequence 00 ~ Thus it has a subsequence which If (f
- 2 06 -
M Sch e cht e r
converges uniformly. 0 Lemma 24.
Suppose q EM
S
(49)
%p
and that (48) holds.
Iq(x)I P !x_yla-n+€ dx ... 0 as
Iy l ...
Then for an y
(Xl.
Ix-yl< 1 Proof..
The lemma is obvious for
t - (n-~/e > 1.
J
+ e 2: n ,
If
Ct
+ e < n, put
By Holder's inequality. Iq (x)
Ix~yl
(f
Ct
IP
Ix-y I O'-n+e, dx
/q(x) IP !x_yIO'-n dx)
s
f
Ix- yl < 1
Iq(x)I P dx)
lit
lIt'
.
Ix-yl< 1 since (a-n+€)t' .. e-n, Suppose
Le1lllUl 25.
Suppose
(50)
t Ee;
This gives (49). 0 m(~;)
satisfies 0
t(I;)" I,
satisfies (15) for some a
:s H E;):S 1
and
11;1 < 1
ao,l sl>2. For r > 0 put
If I~I
:S.(, and al~1 + b > n, then
Proof.
Note that
ID~ 'r l :sc/rl~l. Put g (E:) .. D~[(l-'" )m] - (l-t ) D~ m. ~
-
'r
r
This function consists of a sum of terms of t he form (1) (2) (1) (1) (2) constant D~ t DlJo m, lJo ~ 0, u + lJo .. ~ • r
:s 1
and
.(,2: 1.
- 207 -
Thus g vanishes outside r S ~
Ie: I S
Ig~l SClral~l+b
(here we use the fact that a S 1). (53)
IIg)l
Moreover. (54)
M. Schechter 2r and satisfies
Thus
sC'/ral~I+b-n.
l
I-tr
Ill-'r)
Ie; I '< r , Thus S ds/'slal~l+b lsi> r
vanishes for
n~m"l SC
Since al~l+b > n. the conclusion follows from (53) and (54). Lemma 26. (55)
InJ.'w(s)I
Assume that
sC/lslal~I+b. I~I
where a S 1. koa > n-b. and k
o
Sn+l.
is an integer less than n.
1 S p < '" and that q (x) is a function in M
q,p
with
Assume
01 satisfying
(27).
If (48) holds, then the operator Tf = q [F(w)*f]. f E LP
(56)
is a compact operator on LP• Proof.
Let W E C'" satisfy (50). and let ~ be defined by (51). o
For
R > O. set (57)
qR (x) = q (x) •
Ixl SR !xl > R.
= 0
For each R > 0 and r > 0 write Tx = q [F(W w)*f] + q (F [(l-~ )w]*f} + (q-q ) R r R r R
Now T
l
is a compact operator on LP •
F(~ w) is in S. r
from LP to Loo(O).
Thus the operator Af
a>
For 'rw is in Co' and consequently
= F(~r w)*f
is a compact operator
where 0 is the set Ixl
Since q is
locally in LP • multiplication by qR is a bounded operator from Loo(O) to LP•
Thus T is compact on LP for each Rand r. 1
By Lemma 25 there is a
- 2 08 -
. M. Schecht er: function pr snch that
Moreover, Lemma 17 says that
Since M
a,p
Next let M
cr,p
<M
(qR)
a be
-
a,p
(q), we see by Theorem 16 that 1 ~211
.
any number such that a < cr < p (n-k ). o
... 0 as r ... "'.
By Lemma 24
(q-q) ... 0 as R ... "'. R
Another application of Theorem 16 gives IIT311 .s C Mcr;p (q-qR) IIp ... 0 as R ... "'. Thus I~-Tlil ... 0 as R ... '"
and r ... "'.
follows that the same is true of T.
Since T
l
is a compact operator, it
0
We now can give the Proof of Theorem satisfies (55). LP•
22.
Assume 0
E p(P ), and put w o
= IIp.
By Lemma 26, the operator defined by (56) is compact on
Let {uk} be a sequence of functions in D(Po) such that
"pouk" .s c , and set f
k
• Pou
k•
Then qU • Tf k k•
Since T is a compact
operator on LP, we see that {qU has a convergent subsequence. k} is P -compact. o
ground material.
Thus Q
0
We now turn to the proof of Lemma 21.
x to
Then w
Let X,Y be Banach spaces.
Y is called Fredholm if 1)
D(A) is dense in X
2)
A is closed
3)
dim N(A) is finite
4)
R(A) is closed in Y
(5) codim R(A) is fini te •
This requires a bit of backA linear operator A from
- 209 -
M , S ch e cht er
The (58)
~
of A is defined as
i(A) = dim N(A) - codim R(A).
We denote the set of Fredholm .oper at or s from X to Y as
The
~(X,Y).
following is well known (cL,e.g., Schechter (7,8J). Lemma 27. then A+K E If Y
~
~
(X.Y) and K is a compact operator from X to Y.
(X, y) and i (A+K)
= X,
=~(X,X).
tf A E
we let
~A
= i (A).
denote the set of
A such that A-A E
~(X)
The following characterization of cr (A) is useful. e
Lemma 28. Proof.
~ .~ 9"e1A) iff A E ~A and i(A-A) = O.
If A ~ cr (A), ' then there is a compact operator K such that e
A+K-A is bijective.
In particular it is Fredholm with index
Lemma 27, the same is true of A-A. A-A is Fredholm with index O.
Let ul, ••• ,u
be a basis for N(A ').
exist functionals uj and elements v u~ (u j) = v~ (v
o.
By
Conversely, assume that the operator
We may take A = O.
basis for N(A) and let vi' ••• ,v~
(59)
~hose
j
k
be a
Then there
such that
j) = &ij
Put Ku
=
Clearly K is of finite rank and hence compact. index O(Lemma 27).
Thus A-K is Fredholm with
One easily checks that N(A-ll:) = {O}.
index is 0, A-K must be bijective.
Thus 0 E P (A-K).
Since its
Hence 0 ~ cr (A).O e
Another fact we shall need is Lemma 28.
If A is a closed operator and B is A-compact, then
(a) IIAu l1 ~C(llu ll + II(A+B)ull), u E D(A), (b) B is (A+B)-compace, Proof.
If (a) did not hold, there would be a sequence {Uk} of
- 210 -
M . Schechter
elements in D(A) such that
In particular, (46) holds. by {uk} such that BU and uk
~
O.
k
Thus there is a subsequence (also denoted
converges to an element v.
Since A is closed, we see that v
possible, since "Auk" '" 1 for each k,
Then (a) implies that (46) holds. quence.
= O.
By (60), AUk~ -v But this is im-
To prove (b), suppose
Thus {BU
k}
has a convergent subse-
~
We can now give the Proof of Lemma 21.
If A is closed, we can turn DOA) into a Banach
space with norm
!/uliA
'"
[lull + /lAu!/ •
Now suppose A is not in (Lemma 28).
(j
e
(A).
Then A-A is in Hx) and i(A-A) = 0
It is obviously also in
~(D(A),X)
B is a compact operator from D(A) to X. has index 0 (Lemma 27). Thus A is not in (je(A+B).
with the same index.
Now
Thus A+B-A is in HD(A) ,X) and
It is also clearly in
~(X) wi~h
the same index.
The converse follows from (b) of Lemma 29. 0
- 211 -
M . Schechter
v.
Elliptic Operators The operator (3) is called elliptic if p(~) = E a e:~ 1~I=m ~ -
does not vanish for SEEn unless S an operator is in O(l,m).
= o.
It is easily checked that such
For such operations we have the following
improvement of TheorelllS 15 and 22.
Throughout we assume that 1 < P <
co •
Theorem 30.
If P(D) is elliptic of order m and q is im M with q.p a <mp. then (23) holds with c as small as desired. If (48) holds as well, then Q is Po-compact. The proof of this theorem is almost identical to that given above coupled with the following observations.
From the fact that Islm/p( s)
and its reciprocal are LP multipliers, one obtains the inequalities.
IIp(D)ull ~ C ( 1Itl~u ll
+
/lull) ~ c' (1Ip(D)u ll + lIui!).
From this it follows that one need only use one particular function G(x)
= F[(1+lsI2 )
-~
].
This function can be expressed in convenient
forms, e s g , , (61)
From this it follows that (62)
IG(x)
mn [x I - , m < n, Ixl
I ~C ~C,
m > n, Ixl
~ Ce-slxl , Ixl > for some s > O.
~
I,
s I,
1,
This allows for the slightly sharper result.
We can even extend these results to non integral values of m. s real, let HS'P be the set of those distributions u such that 2 1;s F[(l+lsl) FU] is in LP• Under the norm
For
- 212 -
M . Schechter
(63)
Ilulls,p
= IIF [(l+lsI
2
~s
)
HS'P becomes a Banach space. Theorem 31. IlquIJ < C M
(64)
-
Fu J1 1p' The proof of Theorem 30 gives
If s > 0 and q EM Q',P
(q) lip Ilull
s,p
g,p
for some
01
<
S
p, then
•
If (48) holds as well, then Q is a compact operat~r
from HS'P to LP .•
So far we have defined an operator corresponding to (20) for the case D(p )c D(Q) (i,e., when (23) holds).
The next question one might
o
ask is how to define an operator corresponding to (20) when (23) does not hold.
We now give a way of doing this.
Define
(65)
b(u,v) = (P(D)u,v) + (qu,v), u sv E C: '
and assume that there is an s such that 0 < s < m and (66)
!b(u,v)
I -< C
!Iu ll s,p IIv llm-s,p I s p
We can then extend b(u,v) to be a bounded bilinear form on H'
m-s p '
XH
'
We then define the operator corresponding to b(u,v) as follows: S u E D(B) i f u E H ,p and there is an f E LP such that
(67)
b(u,v) = (f,tT), v E Hm-s,pl
Clearly f is unique.
We define Bu to be f.
operator R given by (21).
B is an extension of the
We call it the s-extension for P(D)+q.
The
following theorem holds. Theorem 32. satisfy 0 <s <m.
Let P(D) be an elliptic operator of order m. and let s Assume that q(x) = ql(x) q2(x) , where ql EM •
q2 E Ma•p " with (68)
Q'
Assume also that
f
Iq(x) I dx -+ ex> as Iyl -+ ex> Ix-yl < 1 Then P(D)+g has an s-extension B such that (69)
q p'
- 213 -
M. Schechter
a (B) C a (P ).
(70)
e
0
If p(P is not empty, then o) a (B) = a(P ).
(71)
e
0
We base the proof of Theorem 32 on a series of simple lemmas. If q E M
33.
Lenma
CI.p
with
CI
then
s,
'!qu l! ,< C M (q) lip lIuli ,. -s,p CI,P P
(72)
Lemma 34.
If p
Lemma 35.
If
2: 1,
e
2: 0, p 2:
> ct8p and q EM, then
ep, I3p
CI,P
l=L+L .g=-3:.+ ~ p
Pl
qj E M
P2' P
Pl
P2
k' j = 1,2,
j , j
Cl
then ql q2 EM ct,p • Lemma 36.
If gex) satisfies the hypotheses of Theorem 32, then
q(x) = h l(x)h2(x), where h E Mq,p' h 2 E Ma , p ' and l (73)
J Ix-yl < 1 Lemma 37 .
Ih (x) IP dx ... 0 as l
Iy I
...
0>
•
Under the same hypotheses, multiplication by 9 is a
compact operator from HS'P to Hs-m,P and from Hm-s,,'. All of these lemmas are simple applications of the definttions and Theorem 31.
We also need the following well known result concerning
Fredholm operators (c f , , e.g., [7 , 8J) .
- 214 -
M. Schechter
We now turn to the proof of Theorem 32.
We now define
extension of P(D) + q, but not as an operator on LP•
31, the hypotheses on q imply that (66)holds. in HS'P.
anoth~r
By Theorem
Let u be any function
Then F v .. b(u,v)
m- s , P ' is a bounded conjugate linear functional on H • fied that there is an element f F v .. (f,v),
v E Hm-s,P
E Hs-m,P such that
We define the operator ~ from HS'P to Hs-m,P by
Clearly f is unique. putting au .. f.
,
It is easily veri-
We call
Bthe
extended operator corresponding to b(u,v).
Let E be the operator from LP to HS'P such that D(E ) l 1 is the identity on this set.
= HS'P
and E
1
s-m p Also let E be the mapping of H ' onto 2
LP such that D(E .. LP and E is the identity on its domain. 2) 2
We note
that both E and E are bijective and that 2 l (74)
B .. E2 BEl.
In view of Lemma 38, it follows that ~ E ~(Hs,p, Hs-m,P) implies that B E ~(LP) with i(B) .. i(~).
Thus to prove (70), it suffices to show
that A E p (Po) implies that ~-A is Fredholm with index
o.
So assume
We may take A = o.
A is in p(P). o
Set (75) a(u,v)" (P(D)u,v), u,v E C"'. o
Then (76)
/a(u,v)
I -< C
Ilulls,p Ilv llm-s,p ,
Extend a(u,v) to a bounded bilinean form on HS'P
X
be the extended operator corresponding to a(u,v). jective.
Assume this for the moment.
correaponding to
Let
e be
Hm-s,P
, letA
I claim that A is bi-
the extended operator
- 215 -
M . Schechter
e is
By Lemma 37,
A+ e,
a compact operator from HS'P to Hs-m,P.
we see by Lemma 27 that it is Fredholm with index O.
what we wanted to prove.
Since
B=
This is
To show that A is bijective, we make use of
the inequality (77)
/lrt>ils,p
sc
/lp(D)rt> lls_m,p' cp E C;,
2\m
which comes from the fact that (1 + lsi) Now if u E HS'P, to u in HS'P.
/P(s) is an LP multiplier.
there is a sequence (~} of functions in
c; converging
Thus
Ip(D)cpk'v)
Is
~ C (/lcpk-ull s,p
la(cpk-u,v)
I + I (Au,v) I
+ IIAu/l s-m,p ) Ilvl lm-s,p ,.
Thlls
Letting k
~
=, we obtain /lu/ls,p ~ C IIJt is injective and has closed range.
To-show
that it is surjective, assume that w E Hm-s,P' and (Au,w)
S u E H ,p.
= 0,
In particular, we have (P(D)v,w)
= 0,
v E S.
Since P(s) is bounded away from 0 for SEEn, for each h E S there is a v E S such that P(D)v
= h.
Thus
(h,w) = 0, h E S.
This implies w
= O.
Thus (70) is proved.
more delicate and is omitted.
The proof of (71) is slightly
- 21 6 -
M . Schechter
VI
Operators Bounded From Below As a special case of Theorem 32 we have Iheorem 39 .
Let P(D) be an elliptic operator of order m, and let
q (x) be a function in Ma,l with a < m such that (69) holds. p
=2
Then for
the operator P Q has a closed extension B satisfying (70). o+
If
p(Po} is no t empty, then (71) ho Ids. We shall now show how one can improve this result slightly in some cases.
We illustrate the method by taking P(D)
6 is the Laplacian and r is a positive integer. (78)
GS,A(X)
= (21T)-~n F [(A+lsI 2)
= (1m) -~n
r(~s)
-1
S'"exp o
(-
-cn
l!.f 4t -
=
(A-6)r, where A> 0,
We set
] At} t
~s -~n
-1
dt ,
and for q(x) locally integrable we put (79)
Bs,A (q)
= ql~~~>
0
s~p ql~x) Slq(y) I G2S,A (x-Y)ql(y)dy.
A result one can state is Theorem 40.
Suppose q (x) and V(x) are real valued locally integra-
ble functions such that V(x) :5q(x) and Br,A(V) <1.
Then Po+Q has a
selfadjoint extension B such that cr(B) c: [0,"')'
(80)
If r
1, this means that -6 + 9 (s) has a selfadjoint extension H such
(81)
We base the proof of this t heor m on t he theory of a Hilbert space H.
~ilinear
forms on
For such a form a(u,v) we shall assume that there is
a subspace D(a) of H such that a(u,v) is defined for u,v E D(a).
We
- 217 -
imply that u E D(a) and a(u -u) k (uk}
C
D(a), uk
-00
in H, a(uj-u
-0
k)
M-fu:he_ch.te r We shall call i t closable i t
O.
imply a(u
-00
a(u) as an abbreviation of a(u,u).
k)
-0
O.
We shall use
A proof of the following lemma can
be found in [8J. Lemma 41.
Let a(u.v) be a densely defined closable bilinear form
on a Hilbert space H with (82)
Re a (u)
u E D (a) •
~ 0,
Then the operator corresponding to a(u,v) has a closed extension A such that cr(A) is contained in the halfplane Re X > O. If a(u) is real for all u E D(a), then A is selfadjoint. In applying this lemma we make use of the estimate
lev
(1\3)
v,v)/ ~Br,X(V) ([X-tltv,v), v E S,
Once we know that (83) holds, we can reason as follows.
Define
a(u,v) = ([X- tlJru,v),
(84)
wi th D(a) = D(c) = COO (note that the fact that q is lo cally integrable o
allows us to define c(u,v) for u,v E Coo). o
We note
Lemma 42. Proof. a(u k)
The bilinear form given by(84) is closable. 2 00 Suppose (Uk} C Co' ~-o 0 in Land a(uj-u k) O. -0
= a(uk,uk-u j)
Since
+ (P(D)Uk,U j),
we have
Now
for some constant K. a(uj-u Thus
k)
Let e > 0 be given, and take N so large that
22. < e /K , J,k > N.
- 218 -
M . Schechter
This gives
Let j .... "". a (uk) Thus a(u
e,
~
.... 0
k)
Ic(u)
k
as
-t
0
co•
If D(A) c D(c) and
Lellllla 43. (85)
. k > N.
ls
a la(u)
I,
u
e D(a),
holds for some a < 1, and a(u.v) is closable. then b(u.v)
= a(u.v)
+ c(u,v) is also closable. Proof. Ib(u)
Since
I~
la(u)l- Ic(u)l::: (l-a) la(u)l,
we see that the closability of a(u,v) implies that of b(u.v).
0
It follows from (83) and Lemmas 42 and 43 that the bilinear form (86)
e(u.v)" a(u,v)
is closable. (87)
+ (Vu.v)
If we set h(x)2. = q(x) -Vex). then
b(u,v)" a(u.v)
+ (qu,v) .. e(u.v) + (hu.hv).
I claim that b(u.v) is also closable. that a (U(Uk) .... O and Ijli(uj-uk)lI .... 2
Thus if Uk .... 0 in L • we have a(u that w ;: 0 a.e.
Thus
b(~)
k)
.... O.
In fact if b(uj-u
k)
.... 0. it follow9
o, 2 .... 0 and hU .... w in L • k
I t follows
Once we know that b(u,v) is closable.
we can apply Lelllll8 41 to obtain the conclusion of Theorem 40. It thus remains only to prove (83). Theorem
44~
For this purpose we use
Let K(x.y) be a nonnegative measurable function on
2n, and define E (88)
Tu(x) .. J K(x.y)u(y)dy, 2
Then T is a bounded operator on L (89)
Co" inf
if finite,
cp:>O
sup Y
if and only if
-t-> JJK(X.Y)K(x,z)~(z)dx ~ Y
dz
The value of Co is not affected if we restrict the infimum
2 2 to those cp > 0 which are in L • Moreover. lIT 11
= co •
- 219 -
M . Schechter Before we prove the theorem, let us show how it implies (83). K(x,y) .. G ,.(x-y) Iv(y) r,I'
1%,
Let e > 0 be given.
and define the operator T by (88).
Put
By (79) there is
a function V(x) > 0 such that
I G2
,(y-z) Iv(z) 1 V(z)dz
r,~
Set cp(z) .. Iv(z)
If K(x,y)
t(z) when V(z) .. 0 and .. 1 otherwise.
I [I Gr,A (x,y)
K(x,z) cp(z)dz ..
1.\
Iv(z)
s
r\
:5 (Br,~,(V)+ e) Hy)·
I G2r,A
cp(z)dz ..
Gr,A (x-a) dxJ Iv(Y)
(y-z) lv(z)
I
V(z)dz Iv(y)
true for any e > 0, we have IIT I/2 in S, and set v .. (A-6) (IVlu,u) ... (IVI G
r/2
.:S B
:5 Dr, A(V).
1.\
,*v,
G
,* v) ,(V) ([A-llJ
r,~
This is precisely (83).
r
u,u).
We now give the
Proof of Theorem 44. [9J and Gagliardo [lOJ.
Thus
r,~
2 ,(V) I/v l/ ... B
r,~
Since this is
Now let u be any function
u •. Then u .. Gr,A* v ;
r,~
2
1.\
(Br, A(V) + e) cp(y).
2 'l11us by Theorem 44, T is bounded and Irrl/ .:SBr,A(V) + e.
.. I/T*vl/
Then
We use the methods of Aronszajn-Mulla-Szeptycka Suppose C < o
co,
and let e > 0 be given.
Let W
be the set of those x E En such that K(x,z) .. 0 for aImos t all z E En. Bet V(x)
I K(x,z)
cp(z) dz,
.. I,
x EW
x~W
Note that v(x) > 0, and there is a cp > 0 such that IK(X,y) V(x) dx.:S (C e) cp (y ) o+ For ~,v E S we have I (Tu,v) I
:5
II 1«x,y) lu(y)v(x) 1 dx dy
a.e.
_ 220 -
M Schechter
~
~(y)-l
(SSK(X,y) , (x)
~(y)
X (SSK(X,y)
s (Co+ f:)~ 2
~Co.
dx
dy)~
2 t (X) - l Iv(x) 1 dx
dy)~
lu(y)
1
lI u ll llvl l.
Thus T 18" bounded on L have 1 ~1J
2
2 and 1~ 112 ~Co+
c.
Since c > 0 was arbitrary, we
Conversely, suppose T is bounded.
Then so 18 T*'r.
Let
C be any number greater than I ~*T!I , and "l et h(x) be any positive function
2• in L
Set
~o(x) ·0, and define ~
Then
~ ~
-1
• h +C
T*T
0 by induction, and
Thus (~} converges in L ~
Thus Co
~ ~
h > 0 and
.=: I ~*T I I
'k-l' k .. 1,2, •••
s
1 ~ 1I2 .
2
.. h
to a nonnegative fun ct ion ~ sa tisfying
T*T~ ~ C ~.
0
-1
+C
T*T ~
•
Thus Co is finite , and
- 221 -
M. S.chechter
VII A stronger Result We now show how to obtain information
concerni~g
the essential
spectrum of the operator constructed in Theorem 40. Theorem 45.
Let g(x) be a function satisfying the hypotheses of
Assume also that B (q) < 2r• A t(x) > 0 such that
Theorem 40.
(90)
vex) -1
J Iq (y) I G4r , A(x-y)
Then P + Q has a o
~elfadjoint
m
and that there is s function
V(y) dy ., 0 as Ix I 7"
co.
extension B such that
a (B) = [A,m).
(91)
e
Note that the theorem implies that if B has spectrum in the interval [O,A), it consists of at most a denumerable number of eigenvalues (of finite multiplicity) having A as the only possible limit point.
We shall
give the proof of Theorem 45 as a series of Lemmas. Put 6 .. B ,(V), and r,l\ define b(u,v) by (87). (92)
(1-6) IIule
By (83)
oS b(u)
s
(1+6)
IIull~,
where
Let W be the completion of
emo with
let W' denote its dual space. (94)
respect to the norm given by (93), and
Then we have with continuous inclusions
H2r,2 cw c Hr,2 c L2 CH- r,2 cw' c H-24,2
Let B be the operator associated with b(u,v) and let ed operator associated with it. P(D) • (A_A)r.
the extend-
Let Po be the minimal operator of
It is the operator corresponding to the bilinear form
a(u,v) given by (84). with it.
Bdenote
Let
P denote
the extended operator associated
The following are trivial.
Lemma 46.
-1 2 24 2 P is a bounded operator from L onto H " o
and
.....1 ~
- 222 -
M . Schechter
-2r 2 2 is a bounded operator from H ' onto L • Lemma 47.
B-
1 is a bounded operator from L2 into W, and a-I is a
bounded from W' to W. 2
Lemma 48.
is a bounded operator on L
and
2
bounded from W' to L •
If ~ E c=, then multiplication by ~ is a compact operator
Lemma 49.
o
2
from W to L • r 2
Proof.
It is compact from H'
Coro llary 50.
If
~
2 to L (Theorem 31).
=
E Co' multiplication by
~
Apply (94).
is a compact operator
2 from L to W.
= r 2 For ~ E C , ~ - ~~ is a compact operator from H' to
Lemma 51.
o
H-r,2. Proof.
c (x)D~, where each of the
[~P(D) - P(D)~Jv =
~
coefficients c (x) is in COO 0
~
Lemma 52. Proof .
~
E C=, o
I q l ~B- l~
2• is a compact operator on L
Apply Lemmas 48 and 50.
Lemma 53. Proof.
For
For
Put T
~ E C=, ~Iq I~B-l is a compact operatn . on L2• o
= Iql~.
We have
~TB -1 _ TB-lcp = TB-1 [Bcp-qi3 ]B-1 = TB-1 [Pcp-c6P]B-1.
Apply Lemmas 47, 48 and 51 as well as (94). We shall also need a few results concerning abstract operators. Lemma 54. in ~ -1' A
If 0 E p(A), then \
Moreover,
+0
is in ~A if and only if 1/\ is
- 22 3 -
M . Sche chter. Proof.
Note that
A-""A. .. _MA- I _ ""A.-I)A. The result now follows from the fsct thst A is bijective. Lemma 55.
Let A.B be closed, densely defined linear operators on a
Banach space X. (95)
(j
e
n
If 0 is in p(A)
(A) ..
(j
e
-1
pCB) and A
-1 - B is compact. then
(B). -1
-1
By Leuma 27, ~ -1 .. ~ -1 and i(A - Tj) .. i(B - T]) for A B each Tj. By Lemma 54, 'A .. 'B with i(A-""A.) .. i(B-""A.) for each ""A.. This Proof.
gives (95). We now give the Proof of Theorem 45.
o ~ ~ ~ I,
Let
~
CD
'
be a function in C ' s uch that o
~(x) .. 1 for Ixl < \, ~(x) .. 0 for Ixl > I, and set C/\(x)
.. ~(x/k).
Now -1 -1 -1 -1 Po - B .. ~ T(synq) [C/\'I'B ]
(96)
+ (P-1 T(I-C/\) ]
(sgnq) 'I'B
-1
,
where T"
\ Iq 1 • Now for each k,
(Leuma 53).
'Mor e ov e'r , sgn q and
46 and (83». each k ,
is a compact operator on L
~-IT are bounded operators on L2
2
(Lemma
Thus the first term on the right of (96) is compact for
The second term is bounded (Lemna 48 and (83».
Moreover, its
norm is less than const
B
2r,""A.
This tends to 0 as k ...
CD
by (90).
limit" in norm of compact operators. 55.
0
Thus the left hand s ide ~of (96) is the Thus it is compact.
Apply Lemma
- 224 -
M . Schechter
VIIlPerturbations by Operators Most of the results mentioned in the preceding sections can be proved when q(x) is replaced by a partial differential operator of the form
N
(97)
Q(x.D) = E qk(x) Qk(D) k=l
For instance we have Suppose 1 < P <
Theorem 56.
and that pee:) satisfies (16) for
CD
some a < 1.
Assume also that c) Q(s)/p(e:) = 0 (Ie:r as -l s I ....
(98)
for some c> (1-a)nI1/2 - I/pl. plane then D(P )
C
o
CD
If the set (10) is not the whole complex
D(Q ). 0
The proof of this theorem is similar to that of Theorem 10 provided we make use of- the following
Lemma 57. (99)
If P(g) and Q(e:) satisfy (16) and (98). then
Q(~)(s)/P
for each
o(lsral~l-c)
=
as lsi ...
CD
~.
We also have Theorem 58.
Suppose P(g) and
a ~ 1 and c > lal +n -an. such that k a > n-c. o
Let k denote the smallest nonnegative integer o
Assume that 1
~
in M for some a satisfying (27). a.p plane. then for every IlqQ (D )cpl!
s
£
satisfy (16) and (98) for some
Q(~)
p <
CD
and that q(x) is a function
If the set (10) is not the whole
> 0 there is a constant K
e lip (D )cpll + K£
!!qJlI.
(100) IIqQ(D)w:5 e IIp (D) wll + K£ IIqJlI.
qJ
E
•
such that
C;.
The proof of this theorem is similar to that of Theorem 15. consequence of it we have
As a
- 225 -
M . Schechter
Theorem 59.
Let P(e:) and each pair qk (x). Q (S) in (97) satisfy k
the hypothesds of Theorem 58.
(101)
+
Then the operator
N
E qk Qko k-l
R • P o
is closed and has the same domain as P.
If
o
Iqk(y) IP dy ... 0 as Ixl ...
(102).r
00
Ix-yl< 1 holds for each k, then (45) holds. The first statement is proved by applying Theorem 58 and Lemma 14. The proof of the second statement follows that of Theorem 22. In case peg) is elliptic of order m, we can state Theorem 60.
(103)
Suppose 0 <
Q(x,D) .. E 1111<s
Iv I< m-s
gil-v ,..
e Ma-p I11 I,p
V
D g
S
I1v
< m and (x) h
I1v
(x) DI1
'
for some ex < p s h I1vE MOlp-p 'I v IP ' for some 8 < p" (m-s)
and (104)
J Ix-yl< 1
for each 11, v.
[s
IJ,V
(y)h
I1v
(y) Idy ... 0 as Iy I
Let V be the set of those
...
CO
00
E COO such that Q(x,D)cp E LP• o
If the set (10) is not the whole plane. then the operator POD) + Q(x,D) on V has an s-extension E such that
(105)
cr (E)" cr(P ). e 0
- 226 -
M. Schechter
Scattering Theory
IX
We now describe an important application. abstract
b~ckground.
plex Hilbert space H. W+ u • lim
(106)
-
First we give the
Let S, T be two self-adjoint operators on a comIf the strong limits ei tT
e
-res u,
u c H
t-t±'"
exist, we call them the wave operators for'S, T (the ordered pair).
If
their ranges coincide, we say that they -ar e complete. The importance of completeness stems from the fact that it is
necess~ry
* W_ to be unitary. for the scattering operator S • W+ Theorem 61. that 'P(IQ
and sufficient We can state
Let peS) be a polynomial with real coefficients such
I ... '" as IsI ... "'.
form (97) such that
Let Q(x.D) be a symmetric operator of the
c; (lIp(D)cpli + Ilcpll), cp EC;
(107)
II
(108)
II psQ(x.D)'ll1l ~C
hold for some a < 1 and s > ,. where p(x) • 1 + Ixl.
Finally. assume
that
for each k.
Then the wave operators exist and are complete for the pair
Po' R. where R is given by (101) • . Sufficient conditions for (107) and (108) to hold are given by the theorems of the preceding section.
The proof of Theorem 61 can be made
to depend on the following abstract theorem. 1.
We assume
A is a self adjoint operator on a Hilbert space H.
Let
(E(A)} denote its spectral family and (E(I)} its spectral measure.
C E p (A) set R(C) • (C-H)-1.
All norms and scalar products without
For
- 227 -
M.
Schechter
subscripts will be those of H. 2.
There is an open subset A of the real line, a Hilbert space C 2
and a unitary operator F from E(A)H onto L (A,C) such that FE(I)F
-1
a
XI' leA,
holds for every Borel subset I of A, where
~
is the characteristic
function of I. 3.
There are closed operators S,T from H to a Hilbert space K such
that
for some 6 S 1. 4.
5 is injective
5. There is aCE p(A) such that the closure of o
TR(C)R(C )5* o
is a compact operator on K for ·each C E p(A).
6.
There are continuous functions Q±()') from A to B(K) such that
the closure of TR(C)S* converges in norm to Q+().) as C ~ ). from either side of the real line. 7.
There is a function M().) on A with values in B(K) which is
integrable over compact subsets of A and such that d (E(A)S*u,S *v) d). 8.
a
(M(A)U,V) a.e., u,v E D(5* )
There is a self adjoint operator B on H such that D(IB!6) .. D(IAI 6), D(!B!1-6) .. D(IAI
1- 6)
and (Bu,v) .. (Au,v) + ('ru, Sv) holds for u
ED(IAI~ and v ED( IAI 1- 6). We let [El(A)1 and [El(I)}
denote the spectral famil y and measure of B. respectively.
- 228 -
M. Schechter Theorem 62.
Under the above assumptions the wave operators for the
pair h.B exist and are complete. Unfortunately. we do not have the time to present the proof of Theorem 62 or to show how it
implies'~eorem
61.
We conclude by giving another application of Theorem 62. take P
In it we
= -6.
Assume that there is a real A such that B • (q) < 1. l A Suppose also that there are numbers Ci 2:. 0 and p :5 <Xl suth that Theorem 63.
2n
o > 1 - (n+l)p
(1+ Ix
I)Ci
S lq (y) I dy
E LP•
Ix-yl< 1 Then P o
+ Q has a self adjoint extension B such that the wave operators
exist and are complete for the pair Po' B.
- 229 -
M Schechter
Bibliography
1. 1. M .
Glazman, Direct Methods of Qualitative Spe ctral An alysis
of Singular Differential Oparators, Israel Program of Scientific Translations, Jerusalem, 1965 . 2 . Y . M . Nerezanskii, Expansions in Eigenfunctions of Selfadjoint Ope rators, Amer . Math . Soc . , Providence, 1968. 3. M . Schechter, Spectra of Partial Differential Operators, North Holland, Amsterdam,
1971.
4 . 1. M. Gelfand and G .E . Shilov, Generalized Functions, Academic Press , New York, 1964 . 5 . W. Littman, Multipliers in L P and Interpolation, BulL Amer . Ma th o Soc , , 71 (1965) 764-766.
6. F . T. Iha and F . C. Schubert, The spectrum of Partial Differential n). Oparators on LP(E Trans . Amer. Math. Soc., , 152 (1970) 215-226. 7. M. Schechter, Basic Theory of Fredholm Oparators, Ann . Scuola Norm . Sup . Pis a, 21 (1967) 361 -380 . 8. M . Schechter, Principles of Functional Analysis, Academic P ress, New York,
1971.
9. N. Aronszajn, F. Mulla and P . Szeptycki, On Spaces of Pot en tials Connected with LP Spaces, Ann. Inst , Fourier (Grenoble) 12 (1963) 2 11 - 306. 10 . E. Gagliardo, On In tegral T ransformations with P ostive Kernels, Proc. Amer. Math . Soc. , 16 (1965) 429 -4 34 .
CENTRO INTERNAZIONALE MATEMATICO ESTIVO (C.I.M .E.)
SPECTRAL ANALYSIS OF THE LAPLACIAN WITH A DISCONTINUOUS COEFFICIENT
CALVIN H. WILCOX
Corso
tenuto
a
Varenna
dal
24
agosto
al
2
settembre
1973
SPECTRAL ANALYSIS OF THE LAPLACIAN WITH A DISCO NTINUOUS COEFFICIENT by CalTin H. WILCOX (University of Utah)
In a recent paper [4] the author has
§ 1. Introduction.
presented a complete spectral analysis of a selfadjoint operator on Hilbert space induced by the differ ential operator ~u
2 2 +~+~) aX 2 _ ay 2
= -c(y) 2
n 1
acting on functions u(x
1,
••• ,x
n_1,y)
defined on the half-
space
:m. +n =
[(x
1,
••• ,x
n-
1'y) : x . J
E:m.
and y > o ]
and subject to the Dirichlet boundary condition
The coefficient c(y) in (1.1) is the disc ontinuous function defined by c(y) = {
c for 0 < Y < h 1 for
y > h
where hand c are positive constants and
·
~
2'34 -
Calvin H. Wilcox
(1 ~ 5)
0
The purpose of this lecture is to present the formulation and solution of this problem of spectral analysis.
The
proofs of the results presented here, which are too long to be included in the leoture. may be found in [4J.
To begin consider the Laplacian + ••• +
acting on functions defined on ll.n. +
selfadjoint operator 6 ned by [2
It is well-k"nown that a
D on the Hilbert space L2 (1l.: ) is defi-
J
and
(1.8 )
Moreover, the functions u E D(6
D)
all satisfy the Dirichlet
boundary condition (1.3). The Hilbert space realization of the differential operator (1.1) and b oundary condit i on (1.3) studied in [4J is the operator A defined by
D(A) and
Au
- 2 35 -
Calvin H.
A defines an operator on L
selfadjoint.
2(lB.:)
Wilcox
but this operator is not
However, A also defines an oper at or on t he
equivalent Hilbert space
with inner product defined by (u,v) = /, .. lB. h were x
n E+
= lIl.
n +
u(x,y) v(x,y) c(y)-2 dxdy
= ( x 1 ' ••• ,x n_ 1 )
n-1
n- 1 e: lB. , y ",-' '" e- lB. +
= {y
: y > 0 I,
. xlB.+' and dx .. dx ••• dx n_ 1 and dxdy denote
Le b eag ue measure in lB.
n-1
1 n and lB.+. ' respectively.
A simple calculation, based on the selfadjointness of 6
L (ll. : ) , show8 that A is selfadjoint on II. 2
n on
It is thi8 ope-
rator whose ape c t r-a I analysi8 i8 presented here.
The operator A has a
spectral representation
where {n(~)l is a spectral family on II. The spectral analysis of
A in
e o n s tir uc b Lo n of {n(~) I.
Thi8 in turn is based on an expli-
[~]
is based on an explicit
cit construction of the r-e s o Lv e rrt
Rs = (A_z)-1 ,
Im
z !
0 •
Note that Rzf = u if and only if
(1.15) '
(A-z)u = f
,
u E n(A) •
- 236 -
Calvin H. Wilcox
Thus constructing R
z
is equivalent to solving (1.15).
Equation (1.15) is solved in [~] by applying the Fourier n 1 transform to the variable x E :R - . in (1.15) and then solving the resulting ordinary differential equati on. the c on s t r-uc t Lo n of R
z
Next,
is combined with a well-known theorem
of Stone [3, p.183] to derive a construction of n(/-l).
As a
first consequence of the construction it is shown that A is spectrally cont inuous [1] with spectrum er(A)
=
{X
• A~
01.
Moreover, the construction represents n(/-l)f as a superposition of certain generalized eigenfunctions of A.
This fact
and the general properties of a spectral family are then used to derive an eigenfunct ion expansion for A.
The construction ot n(/-l) outl ined above is not derived in this lecture.
Instead, the spectral analysis of A which
was deduced from that oonstruction in
[~]
is formulated con-
cisely and discussed here. The remainder of the lecture is organized as follows.
In § 2
the generalized eigenfunctions that occur in the construction of n(A) are defined and some of their properties are disoussed.
In § 3 the generalized eigenfunctions are used
to construct a family of generalized Fourier transforms, in th~
sense of the Planoherel theory, for each function f E M.
Then the oonstruotion of n(/-l) from the generalized eigenfunctions is formulated and discussed.
In § ~ the eigen-
- 237 -
Calvin H. Wilcox
function expansion theorem for A is stated and some of its consequenoes are given.
Finally, in § 5 some
ge~eralization
and applioations of the analysis are discussed briefly.
§
2. Generalized Eigenfunctions of A.
The generalized
eigenfunctions of A that appear in the eigenfunction expansion below all have the form i p • x *( ) *( , x ,y ) = e ,y,
n 1 P E JR ,
with p.x
[4].
from the Fourier transform technique used in
These
functions are not in D(A) because A is spectrally cont inuous.
However, they are locally in D(A) ; that is, the func-
tions cp(x,y),(x,y) E D(A) for every
C:'(JR
n).
It follows
that the generalized eigenfunctions satisfy
o
o
for all
in JRn +
x E :R n - 1 ,
and ay(x,h-) for all x EJR n- 1 ay Equation (2.2) is just the equ ation
At = Af
and (2.3) i s the
Dirichlet boundary condition (1.3). Condition (2.4), which follows fr om the f act th at cally in D(A) (
t
is lo-
H2(JR~), will be c alled th e "inte rf ace c ondi-
- 238 -
Calvin H. Wilcox
tion".
It was found in (4] tha t the general ized eig enfunc-
tions that occur in the expans ion theorem are precisely the
(2.1)
bounded fURctions of the form and
(2.4).
(2 .2), (2.3)
that satisfy
Thes. properties are used here to reconstruct
the generalized eigenfunctions.
Substituting
(2.1)
in
(2.2)
gives an ordinary differen-
tial equation for t(y) ; namely, c(y)2 with [pi
2
2
2
(Q_ 1p I 2, ) dy
2
P1 + ••• +Pn-1
+ ""
= 0, y > 0,
Moreover, in the two regions
o < y < hand y > h (2.5) has the linearly independent solutions
and for respectively.
y > h wi thE;; =
~'"
_
Ip I2
Application of the boundary condition
(2.3)
and the interface conditions (2.4-) to linear combination of the solutions (2.6), (2.7) gives the solution
(2.8 ) where
y < h , for y > h ,
- 239 -
Calvin H. Wilcox
and
y+(~,~)
(2.10)
=
i
(*
sin
~h/c
z :~
cos
~h/c) e±i~h
The factor a(p,A) in (2.9) may have any value. defined below so as to normalize
'0
•
Its value is
in a convenient way.
Equati.ons (2 .8), (2.9), (2.10) define a solution 'o(X,y,p,A) of (2.2), (2.3), (2.4) for any value of p and A. ' Howe v e r , , (X,y,p,A) is a bounded solution only for certain o
values of ,t he s e variables. all p
~ ~
n-1
~(A) = {A
I
•
The factor e
i p• x
is bounded for
Moreover, it may be assumed that A
A~
oj.
~
0 because
Note that if A > Ipl2 then both ~ and ~
are real, since c < 1, and hence the square roots may be chosen so that
Thus (2.8), (2.9) and (2.10) define a bounded solution of (2.2), (2.3) and (2.4) for all A > Ipl2 and all of these functions appear in the eigenfunction expansion for A.
I f c = 1, so tha t
c (y)
1 for all y > 0, then 1;
1)
and (2.9) reduces to (2.12)
'O(y,p,A)
= a(p~A)
sin
ts
for
y > 0 •
In this case the functions '(2.8) with A > Ipl2 define a complete set of generalized eigenfunctions for A easily verif ied by Fourier analysis.
= -6 D
' as is
Moreover, if c > 1 then
-
~'±u
-
Calvin H. Wilcox
the functions (2.8) will A > Ipl2 provide a complete set see [4.] for the details.
However, if 0 < c < 1 there is a
profound change in the spectral structure of A.
In thi s
case the functions (2.8) with A > Ipl2 span a proper subspace of & and there exists a whole family of generalized eigenfunctions of a new type which are needed for the complete spectral analysis of A.
To discover the new generalized eigenfunctions look for aaditional bounded solutions of (2.2), (2.3) and (2:4.).
To
this end assume that
and define the square roots so that
In t his case
and hence 'o(X,y,p,A) is bounded for all (x,y)
E:a:
if and
only if y+(E;;,T]) = 0 or, combining (2.10) and (2.14.), i f and only i f
~
ain T]h/c +
c~,
cos T]h/c = 0 •
An equivalent form of this relation is (2.17) where
-¥
+ tan -1 (etr) = k1t , k=1, 2,3, •••
Itan-1(n/cE;;'>1 <
~/2.
Relations (2.17) defines a
- 241 -
Calvin H.WilcDX functional relationship between 1 and Ipl.
I~ is more
venient to desoribe it in terms of the variables ' and
I pl.
III
=
con-
2 11/ > 0
Thus (2.17) definell a function
(2.18)
W
= 1 1/ 2
= wk(lpl) for k=1,2, ••••
An explicit parametric representation of this relationship is given by
Elimination of ~ from (2.19) given the relation (2.18).
The
follow ing properties of ~k( Ipl) can be derived from (2.19).
(2.21) c l p ] < wk(lpl) < I p l for all Ipl ~ Pk (2.22) wk(lpl) is analytic and wk(lpl) > 0 for Ipl ~ Pk. (2 ..23) wk.(Pk) = Pk (2.24)wk(l.pl) -
and
Wk(P k) = 1 •
_ 00.
c j p ] for Ipi
Substitution of 1 =
w~(lpl)2
in (2.8), (2. 9) gives a d d i t i on a l
b ounded solution of (2.2), (2.3) and (2.4). se functio ns h ave the form e
i p • x ,I, (
' k Y,P
)
Ex plicitl y, the-
-242 -
Calvin H. Wilcox
where for 0 <' y < h ,
si n {
(sin
and
The generalized eigenfunctions 'o(x,y,p,A.) with A. > Ipl2 are parameterized by the points of the region
oo The generalized eigenfunctions 'k(x,y,P) are parameterized by the points of the region
It is shown in [4] that if 0 < c < 1 then all of these functions appear in the eigenfunction expansion for A. they form a complete
set,
spanning M.
Moreover,
These functions are
precisely the bounded solutions of (2.2), (2.3) and (2.4-), a8 was mentioned above.
The definitions of the eigenfunctions
is complete by defining
and choosing ak(p) > 0 so that
- 243 -
Calvin H . Wilco x
2 ° 'k(Y'P) J oo
c(y)
-2
' dy = 1
J
k=1,2, ••••
These choices are motivated in [4].
§ 3. The spectral family of A. the spectral family {n(ll)
1 of
An ~xplicit construction of A in terms of the generalized
eigenfunctions 'k • k=O.1 .2 ••••• was derived in [4] by the method outlined in § 1 above.
It makes use of the generali-
zed Fourier transforms of functions f E
~
with respect to
the eigenfunctions 'k I that is. the functions (3.1) fo(p.>..) ,.
J
ll.n +
t (x.y.P.>..)f(x.y)c(y)-2 dxdy • (P.>..) EO. 0
0
'
and
J
(3 • 2) f k ( p) = ll. n \ ( x •
1" p ) f ( x • y ) e (y ) - 2 dx dy • P E nk • k =1 • 2 • • ••
•
+
Of course. these integrals need not be finite because 'k
;il.
However. if f E • and has compact support in lll.n = {(x.y) +
x E ll.n-1
• y ~ O} then the integrals converge for all
(P.>..) E 00 and p E Ok • respectively. because the 'k are bounded.
In this case i t is easy to verify that
for ' k=0.1.2.....
fk
E C(Ok)
For this class of functions the oonstruc-
tion of n(ll) may be stated as follows.
Theorem }.1.
tk
Let f.g E •
have compact support.
and gk are square-integrable on compact subsets of
Then
Ok •
the
- 244 -
Calvin H. Wilcox
olosure of Ok for k=0.1.2 •••• and
for all
~
E:m.
(3.4-)
where Ak(p) =
and H(~) is Heaviside'
II
III
k
( l p l ) 2 • k=1.2.3 ••••
function
H(~) = {:
(3.5)
for
~
<
for
~
z
°.•
-1
Note that the series in (3.3) i .8 in fact finite for each ~ E JR.
This followlI from (2.20) - (2.23) which imply
that Ak(p) ~ P~ = (2k_1)2 q2 for all p E Ok •
Corollary 3.2.
For ' a l l f.g E & with compact support.
?k.ik E L2(Ok) for k=0.1.2 •• • • and
This follows immediately from (3.3) by making ~ ~ +00 and using well-known properties of n(~). g = f implie s
Corollary 3.3.
For all f E &
Next, (3.6) with
- 245 -
Calvin H. Wilcox
(3.7)
f
o
(p,A) = lim
M~
~J .. Jo Ixl~M
(X,y,p,A) f(x,y)c(y)-2 dxdy 0
exists in L2(00) and (3.8)
fk(P)
=
lim
M~
J)4 J 0
[x 1~l4
'k(x,y,P) f(x,y)c(y)-2 dxdy
Finally, since functions with compact support are dense in M, it is/easy to extend Theorem 3.1 to all of R, as follows.
Theorem 3.;'.
Equations (3.3) and (3.6) hold for all f
and g i n . where f k and gk ' k=O,1,2, ••• , are defined as in Corollary
§;..
3.3 •
The Eigenfunction Expansion for A.
the eigenfunction expansion
make~
The description of
use of the Hilbert space
that is, the .orthogonal direct sum of the sequenoe of Hilbert
then f
E
i
<
00
•
- 246 -
CAlvii' .!T. W ilcox
The inne r product in
M is
give n by
The following spaces and operators are also used.
Rk
(4-. 5)
Note that
::
Mk
R n {f
If:: (
0, ••• , 0, f k ' 0, ••• ) J , k:: 0,1 ,2 , • • • . •
is a closed subspace of
M and MklMl
for k F~.
-
The orthogonal projection of M onto M is denoted by P ; k k that is
Finally, J k denotes the unitary mapping of
&k
onto L (Ok) de2
fined by
Recall that Theorem 3.4- implies the 00
E k=O Thus a linear operator
where the functions
fk
lIfkll~ 1
2
relation
(0 ) for all f E M k
from & to
Ii
is defined by
are defined as in Corollary 3.3, and
(4-.8) is equivalent to the statement that (4-.10) Thi s proves
111fllli= Ilfll& for
all f E
JC.
- 247 -
Calvin H. Wilcox
Theorem 4 .1.
The operator
i
is i s ome t r i c from ~ to ~
that is, (4.10) holds or, equivalently
where
i*
.d e no t e a the adjoint of
i
and 1 denotes the ident ity
i
is unitary; that is, not
operator on II.
Theorem 4.2.
The operator
only does (4.10) hold but also
i;c
=
M or,
equivalently,
Theorem 4.1 was seen to be ' an immediate oorollary of Theorem 3.4.
Theorem 4.2 is an independent faot whose proof
requires more work.
[4].
A proof is given in
Now consider the' operators t k : II _ L def'ined by 2(Ok) t
k = JkPkt or, eqUivalently,
The following propositions are proved in
Theorem 4.3.
Corollary;'.;'.
The operators t
If
k are
[4].
isometrios
that is,
-
-
Calvin H. Wilcox
then M is a closed subspace with the properties k (~.16)
Mk ~ ~ for all k and i l k .
where P k is the orthogonal projection of " onto "k. Corollary +.5.
The operator P
k satisfy
00
00
E
Pk = E k=O k=O
t~tk
=
on II
or, equivalently, 00
t
~
E
k=O
=
t~tkf
00
E
k=O
t~
-
f k for all f E l l •
The last equation is the eigenfunction expansion for A in abstract torm.
(~.21)
It is made more explicit by the following
. t*f (x,y) = lim o
0
.
Il.....,
III rI 0
J
p I~.f>:
,o(x,y,p,x)to(p,X) dpdX
•
in II and for all t k ~ L , k=1 ,2, ••• , 2(Dk)
in M.
- 249 -
Calvin H. Wilcox
Combining Corollary 4. '5 and Theorem' 4.6 give s the eigenfunction expansion in explicit form as follows.
Theorem
Eaoh t
4.7.
~
• has a representation
+
1.k
oonvergent in 11.. where the functions Corollary 3.3.
Moreover. every
t
E
i
are defined as in
ge~erates by (4.23) an
tEll. ...h o s e transforms as def'inea in Corollary 3.3 are the
.c omp o ne nt s
tk
Theorem
of
t.
4.7 confirms the completeness of the generalized
eigenfunctions that were defined in § 2.
It rema ins to show
that the representati on (4.23) diagonalizes A.
Theorem 4.8.
The unitary operator
the - sense th at the operators t k
and
for a ll f E D(A) •
= JkPkt
i
diagonalizes A in
satisfy
- 250 -
Calvin H. Wilcox
It follows from Theorem 4.8 that the project ionsP duce the operator A.
4.9.
Corollary
re-
This may be stated as follows.
IP
k
1; is
a complete family of orthogonal
projections which reduce A ; that is, PkP
t
(4.19)
k
= 0ktP!
,
P
k=
Pk '
holds and
Alternatively, the s u b s pa c e s
~k
=
Pk~
form a complete family
of reducing subspaces for A ; that is, 00
E
k =O
Ell ~k
Pk AP k
(an orthogonal d irect sum)
= Ak
' k =0,1 ,2 , • ••
,
and 00
§ 5.
Concluding Remarks.
The eigenfunction expansion of
Theorem 4.7 can be used to c onstruct functions of the ope rator A.
For example, c ons ider the wave equation
o
(5.1 )
The s olution of th is equation with init ial values
U
) E ( x ,y , 0) = f ( x ,y
~,
ou(x,y,O) ( ) c ~ 0t = g x ,y "' ..
- 251 -
Calyin H. Wilcox
is
The coefficient operators in (5.3) are bounded operators on • by the spectral theorem.
It follows from Theorems 4.7 and
4.8 and Corollary 4.9 that, in the topology of Ie. 00
u(x.y.t) ::'
1:
k::O
where = lim M-..oo
J°hI M
p I.~{"A
uk(x.y.t)
.
, (x.Y.P,X) {(cos tA
1/2-
)f (p,A)
0
0
+ (1..-1/ 2 sin tA 1/ 2 )"g- (p,),,) o
1 dp d s,
and =lim M-..oo
JPk.~JpI.5.M 'k(x,y,P) + (A
for k=O.1.2 •••••
k(p)-1/2
sin tA ( p ) 1/ 2) gk ( P ) k
1 dp
Moreover, the "partial waves" uk(x,y,t)
remain orthogonal in Ie for all t dependently.
{(cos tA k ( p ) 1/ 2) f k ( P )
~ ~
and hence propagate in-
The completeness relation (4.19) guarantees
that every solution of (5.1) with initial values f.g ~ Ie is given by (5.4), (5.5). (5.6). These remarks are developed
more fully in [5J where (5.4).
(5.5), (5.6) are applied to the study of the propagation of electromagnetic waves along a dielectric-clad conducting plane.
- 252
-
Calvin H. Wil c oo
The technique develop.ed
in [4.] can be us ed to co ns-
truct eigenfunction expansions for other ope r at ors with p iece-wise c qnstant coeffic ients. 0=
It i s ev i dent that i f
c(y) has several d isc ontinu ities t he same t echnique c an
be used.
Another operator that can be tre ated in this way
is u
where
C(X ... .,x n) = 1
{:
for
x
2 2 2 h + ••• +x n < 1
for
x
2 2 2 > h + •• • +x n 1
In this case t he imp r o p e r e ig e nf u ncti o ns invo l v e Bessel f un ctio n s inste a d of e xp onential s .
Howev er, th e quali ta ti ve
f ac ts a bo u t
th e s pe ctrum a r e t he
s ame a s f o r t he case t rea -
ted a bove .
Det a ils wi ll b e giv e n el s e where.
- 253 -
Calvin H . Wilcox
REFERENCES 1.
Kato, T.,
Perturbation Theory for Linear Operators,
New-York, Springer Verlag, 1966. 2.
Lions, J.L., and Magenes, E.,
Non-Homogeneous Boundary
Value Problems and Applications, V. 1, New-York, Springer Verlag, 1972. 3.
Stone, K.H.,
Linear Transformations in Hilbert spaces,
,P r o vi de n o e , A.M.S. Colloq. Publ. V. 15, 1932.
~.
Wilcox,
C.H.,
Spectral a~alysis of the Laplacian with a
discontinuous ooefficient in a half-space and the associated eigenfunction expansion, ONR Technical Summary aept. "" 21, Univ. of Utah (January 1973).
s.
Wiloox, C.H., Transient electromagnetic wave propagation along a dielectric-clad conducting plane, ONR Technical Summary aept. ~ 22, Univ. ~f Utah (May 1973).