eBooks End User License Agreement Please read this license agreement carefully before using this eBook. Your use of this eBook/chapter constitutes your agreement to the terms and conditions set forth in this License Agreement. Bentham Science Publishers agrees to grant the user of this eBook/chapter, a non-exclusive, nontransferable license to download and use this eBook/chapter under the following terms and conditions: 1. This eBook/chapter may be downloaded and used by one user on one computer. The user may make one back-up copy of this publication to avoid losing it. The user may not give copies of this publication to others, or make it available for others to copy or download. For a multi-user license contact
[email protected] 2. All rights reserved: All content in this publication is copyrighted and Bentham Science Publishers own the copyright. You may not copy, reproduce, modify, remove, delete, augment, add to, publish, transmit, sell, resell, create derivative works from, or in any way exploit any of this publication’s content, in any form by any means, in whole or in part, without the prior written permission from Bentham Science Publishers. 3. The user may print one or more copies/pages of this eBook/chapter for their personal use. The user may not print pages from this eBook/chapter or the entire printed eBook/chapter for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained from the publisher for such requirements. Requests must be sent to the permissions department at E-mail:
[email protected] 4. The unauthorized use or distribution of copyrighted or other proprietary content is illegal and could subject the purchaser to substantial money damages. The purchaser will be liable for any damage resulting from misuse of this publication or any violation of this License Agreement, including any infringement of copyrights or proprietary rights. Warranty Disclaimer: The publisher does not guarantee that the information in this publication is error-free, or warrants that it will meet the users’ requirements or that the operation of the publication will be uninterrupted or error-free. This publication is provided "as is" without warranty of any kind, either express or implied or statutory, including, without limitation, implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the results and performance of this publication is assumed by the user. In no event will the publisher be liable for any damages, including, without limitation, incidental and consequential damages and damages for lost data or profits arising out of the use or inability to use the publication. The entire liability of the publisher shall be limited to the amount actually paid by the user for the eBook or eBook license agreement. Limitation of Liability: Under no circumstances shall Bentham Science Publishers, its staff, editors and authors, be liable for any special or consequential damages that result from the use of, or the inability to use, the materials in this site. eBook Product Disclaimer: No responsibility is assumed by Bentham Science Publishers, its staff or members of the editorial board for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products instruction, advertisements or ideas contained in the publication purchased or read by the user(s). Any dispute will be governed exclusively by the laws of the U.A.E. and will be settled exclusively by the competent Court at the city of Dubai, U.A.E. You (the user) acknowledge that you have read this Agreement, and agree to be bound by its terms and conditions. Permission for Use of Material and Reproduction Photocopying Information for Users Outside the USA: Bentham Science Publishers Ltd. grants authorization for individuals to photocopy copyright material for private research use, on the sole basis that requests for such use are referred directly to the requestor's local Reproduction Rights Organization (RRO). The copyright fee is US $25.00 per copy per article exclusive of any charge or fee levied. In order to contact your local RRO, please contact the International Federation of Reproduction Rights Organisations (IFRRO), Rue du Prince Royal 87, B-I050 Brussels, Belgium; Tel: +32 2 551 08 99; Fax: +32 2 551 08 95; E-mail:
[email protected]; url: www.ifrro.org This authorization does not extend to any other kind of copying by any means, in any form, and for any purpose other than private research use. Photocopying Information for Users in the USA: Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by Bentham Science Publishers Ltd. for libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Services, provided that the appropriate fee of US $25.00 per copy per chapter is paid directly to Copyright Clearance Center, 222 Rosewood Drive, Danvers MA 01923, USA. Refer also to www.copyright.com
CONTENT Foreword
i
Preface
ii
CHAPTERS 1. Oscillation of partial difference equations with deviating arguments.
1
Patricia J. Y. Wong 2. Functional-analysis and partial difference equations.
49
Eugenia N. Petropoulou and Panayiotis D. Siafarikas 3. Partial difference equations and their application in system theory.
77
Jiri Gregor and Josef Hekrdla 4. Numerical schemes and difference equations.
111
Efstratios E. Tzirtzilakis and Nilkolaos G. Kafousalas Index
141
DEDICATION
In memory of Professor Panayiotis D. Siafarikas
i
Foreword
While “Mathematical Reviews” currently lists 1058 books containing “Partial Differential Equations” in their title and 128 books containing “Difference Equations” in their title, it only lists 3 books containing “Partial Difference Equations” in their title. On the other hand, 238 journal publications are listed containing “Partial Difference Equations” in their title, so research in this area is rather active and ongoing. This is due to the rich possibility of theoretical investigations and the numerous applications which partial difference equations enjoy. These facts illustrate that there is an urgent need to expand the availability of textbooks in the area of “Partial Difference Equations”. The book at hand, “Some Recent Advances in Partial Difference Equations”, as edited and presented by Professor Eugenia Petropoulou, is a welcome, timely, and excellent contribution filling the above described gap. Professor Petropoulou has done a terrific job in putting together this volume, offering four chapters on distinct topics of current interest in the area of partial difference equations. The first chapter covers oscillation theory of partial difference equations and is written by Professor Patricia Wong (Singapore), a world-wide leading expert in the area of differential, difference, and dynamic equations and in particular oscillation theory for these equations. Criteria for the nonexistence of positive solutions of certain partial difference equations with deviating arguments are presented and several examples are offered. The second chapter shows a connection between functional analysis and partial difference equations and is written by the late Professor Panayiotis Siafarikas (Greece), the internationally esteemed expert in this area of research, together with his student Professor Eugenia Petropoulou (Greece), who is the editor of this volume. A functional-analytic method to study partial difference equations is developed and illustrated by two fundamental examples. The third chapter discusses the connection of partial difference equations to systems theory and is written by Professor Jiˇr´ı Gregor and Professor Josef Hekrdla (Czech Republic). Existence and uniqueness results for initial value problems and boundary value problems involving linear partial difference equations are presented and extended to systems of linear partial difference equations. These results are applied to input–output relations of linear multidimensional systems. The fourth chapter offers some numerical schemes constituting partial difference equations and is written by Professor Efstratios Tzirtzilakis and Professor Nikolaos Kafoussias (Greece). Partial differential equations are discretized in order to obtain numerical schemes resulting in partial difference equations, and the connection of the solutions of these two equations is examined analytically and numerically. Of course these covered topics only scratch the surface of this exciting area of research. We look forward to future developments inspired by the publication of this volume. Martin Bohner, Rolla, Missouri (USA) October 20, 2010
ii
! " #"$ " " % & ' $ ( " $ #"$ $ " ) $ * $
" ) $ " ( ') " $ " " " $
" $ ) + $ $ " the ) ) , " ( ') % $" .$ $ * " ! " ) * ) " ) 0 ! " ) ) 0
Some Recent Advances in Partial Difference Equations, 2010, 01-48
1
CHAPTER 1
"# $# % &
' ' ' ( ! ) * ( +, ! -( & . /( & # 0 1 2 ##
! " !
Eugenia N. Petropoulou (Ed) All rights reserved - © 2010 Bentham Science Publishers Ltd.
2 Some Recent Advances in Partial Difference Equations
Patricia J. Y. Wang
( " $ " ! " $ ' $ " B C + ' $ " $ $ $ B 4
G G 1 2 E G G 1 2 E
1
1 1 2 1 222
1
1 1 2 1 222
12
1
1 1 2 1 222
142 1 1 12 1222
132 " 12 132 )" D 12 F 12 1 2 $ G " D G 1 2 F 1 E 2 1 2 12 12 1 2 $
1 2 12 162 $ 162 1 12 F 2 $ 1 12 F H 12 F 1 2Æ Æ 2 ( " 12 " * 1 2 1 2 1 2 1 2
Oscillation of Partial Differences Equations
102 F 102 F
1 2
Some Recent Advances in Partial Difference Equations 3
1 2
1 2H
1 E E 22 1 2 11 E E 22 1 1 E E 22 1 2 1 2H 11 E E 22 1
2
1
1042 B 1 2 1 2C
A " 12 * 1 2 1 2 1 2 1 2 12 F 1 2H 12 F 12
12 F
1 1 E E 22 1 2 2 11 E E 22 1 1 E E 22 1 2 1 2H 11 E E 22
1
142 1 2 1 2 $ 9 142 132 " * 1 2 1 2 1 2 1 2 12 1@2 F 12 1 2H
1@2 F 1
1 1 12 1222 1 2 2 11 12 1222
1
1 1 12 1222 2 1 2H 11 12 1222
1@42 1 2 1 2 $
4 Some Recent Advances in Partial Difference Equations
Patricia J. Y. Wang
A " "
F
F
1
2 F 1 2 1 2
12 1 12 142 1322 " $' 1 2 12 1 12 142 1322 0 1 2 12 12
1 2 1 2 12 1 2 12 0 1 2 142 132 1 2 G 1 2 G 1 2 $ 1 $2 A 1 2
1 2 1 2 12 0 12 1 12 142 1322 $ $ $ " ! 4 $ " Æ * $ $ 1 $2 " 1' 2 12 12 ( * $ $ 1 $2 1 2 142 11322 3 A ' " * 6 9 ) *' *I $ ' B < 45 4
( " "
F
F *
1
2 F 1 2 1 2
A " D
F B1 2 C $
*
B
1 E E 2 C
12
( 12 $ $ 1 $2
1 2 1 2 & 1 2 $ $ 12 9 D
Oscillation of Partial Differences Equations
F
Some Recent Advances in Partial Difference Equations 5
1 2 E 1 2 E B1 2 C 1 2
$
A " " 1042 " D
12 A $" 102 '
1 2 E 1 2 E B1 2 C 1 2
1 2 11 E E 22 E 1 2 E B1 2 C1 2 1 21 E E 2 E 1 2 E B1 2 C1 2 1 2 EEB1 2 C1 E E 2 F 142
" " $ 1 2 ! " 142
* " $ A ( D 12
2 E 1 2 B1 2 C1 2 $ # " $ B1 2 C $ " A $" 1042 " $ 1
1
2
132
(
" J ( 132 " $ 1
2 JB1 2 C1 2
1 2 JB1 2 C 1 2 7 162 152 $
JB
1
2
1
2 JB
162 152
E 2 C 1 E 2
1;2
1 E 2 C 1 E 2
1<2
1
6 Some Recent Advances in Partial Difference Equations
Patricia J. Y. Wang
1 2 1;2 "
1 E 2
JB 1
JB 1
B 1 2C
1
E E 2 C 1 E E 2
E E 2 CB 1 E E 2C
182
1 E E 2 C 1 E E 2
12
2 JB
1<2 " D
1 E 2
JB 1
JB 1
B 1 2C
" 1
2 JB
E E 2 C 1 E E 2
E E 2 CB 1 E E 2C
1 E E 2 C 1 E E 2
12
( ) JB1 E E 2 C $ " 12 12 1
2
JB1 E E 2 C
JB 1
JB 1 E F
E E 2 C
1 E E 2
E 2 C 1 E E 2
12
Oscillation of Partial Differences Equations
Some Recent Advances in Partial Difference Equations 7
" $" 102 ' 1042 " D
1 2 E 1 2 1 2 11 E E 22 E 1 2 1 2 1 E E 2 E 1 2 B 1 2C1 E E 2
1 2 E 1 2 E B1 2 C 1 E E 2 142
0 12 142 $
1 2 E 1 2 E B1 2 C
JB
1 E E 2 C 1 2
132
"
1 2 E 1 2 E B1 2 C
B J1
1 E E 2 2C
1
! " $
B J1
1 E E 2 2C
2
162
152
+ 12 * 1 2 B1 E E 2 C
! 1" F J2
B J1
J J
1 E E 2 2C
J
J
1;2
" 152 1;2
8 Some Recent Advances in Partial Difference Equations
Patricia J. Y. Wang
7 $ " J J " J1 2 1 2 @
" "
"
J
1<2
" 1 2 ( 12 & 1 2 $ $ 12 # " D
F
1 2 E 1 2 E B1 2 C 1 2
$ 9 12 12 " $ K 102 ' 1042 " 142 # * A D " 132 1 2 $ $ B1 2 C $ ( ! " 1 2
" J ( " 162 ' 1<2 A + 1;2 " 182 " $ 12 * $ ( 1;2 $ * 182 " " D
1
2 JB
1 E E 2 C 1 E E 2
F $ * 12 # " 12 &)" " $ 12 @ 12 12 " 12 K 102 ' 1042 " 142 0 12 132 162 ( " 152 " ( "
B1 E E 2 C
( (
1 E 2
182
Oscillation of Partial Differences Equations
Some Recent Advances in Partial Difference Equations 9
K "')" ' " $
B
1 E E 2 C
B1 E E 2 C
F
B1 E E 2 C
1 2 F " $
B
1 E E 2 C
" Æ
F
B1 E E 2 C
B1 E E 2 C
12 12
1 2 F 1 Æ 2
!
F Æ 12 * 12 F Æ 1 E 2 1 E 2 " " $ 182 @ 12 12 " 12 " 4 *
B
B
1 E E 2 C H
1 E E 2 C
B
1 E E 2 C
142
10 Some Recent Advances in Partial Difference Equations
B
Patricia J. Y. Wang
1 E E 2 C
132
( ( & 1 2 $ $ 12 9 " 1 2 $ $ 12 & J " D 12 0 " $ 132 " " 1 2 1 E 2E 1 E2 JB1 E E2 C 1 E E2
JB1 E E 2 C1 E E 2 7 162 1
1
2
JB 2
" D
1 E E 2 C 1 E E 2
F (
1 E E 2
162
J1
152
A 162
1 E E 2 2 1 E E 2
" " 152 1
JB 2
JB
1 E E 2 C
1 E E 2 C 1 E E 2
1;2
! $" 102 ' 1042 " $ 142 0 1;2 142 "
1 2 E 1 2 E B1 2 C 1 2
B J11 E
"
B J1 E 2 2C
1 E E 2 2C
Oscillation of Partial Differences Equations
Some Recent Advances in Partial Difference Equations 11
B J1
B J1
1 E E 2 2C
1 E E 2 2C
+ 142 * J
JB 1
E
JB E 2 C
B J1
B J1
1 2
1 E E 2 C
1 E E 2 2C
1<2
1 E E 2 2C
J
182
! " " 1<2 182 J 7 $ " J J " J1 2 " 1 2 @ " 1<2 "
3 1 2
1 E 2
E
( (
& Æ
F B1 2 C 1 2 F 1 Æ 2
! $" 142 " D * 12 F
1 E 2
Æ
142
12 Some Recent Advances in Partial Difference Equations
#
Patricia J. Y. Wang
1 Æ 2
142
142 142 132 " " (' 4 6 *
B
1 E 2 C
B
1 E E 2 C
142
( ( + " " 1 2 $ $ 12 & J " D 12 ( 1;2 " 1 E
2 JB
1 E E 2 C 1 E E 2
1442
0 1<2 1442 1
2 JB
1 E
2 C JB
1 E E 2 C 1 E E 2
" " 142 $ 1 2 E 1 2 E B1 2 C1 2
B J11 E
2 2C B J1
1 E E 2 2C
1432
! " 1432
B J1
1 E
2 2C B J1
1 E E 2 2C
1462 + $" 142 * 1 2
J JB
1 E
2 C JB
1 E E 2 C
Oscillation of Partial Differences Equations
Some Recent Advances in Partial Difference Equations 13
( " 1462 J ( ' ( " 1<2 "
5 1
2
1 E 2 E 1 E E 2
1452
( (
&
1 2 F B 1 2C
(
1 E 2 14;2 1 21 E E 2 " " $ 1452 A 14;2 " * 12 F
B 1 2C
14<2
! $" 14<2 " D
B
2 C B
1 E
1 E E 2 C
B 1 2C
( " " ( 6
4 B4C ( "
F
¼ ¼
1
¼ ¼
2 E
B 1 2 E 1 2 1 2C
¼
1
2 E 1 2 1 2
14 Some Recent Advances in Partial Difference Equations
Patricia J. Y. Wang
4 H 1 2 F 1 2 F H
1 2
1 E 2
142 142
" F ( 12 $ $ 1 $2 1 2 & 1 2 $ $ 12 9 1 2 $ $ A " 1 2 F
1 2 F ! $" 12 ' 142 12 " $ 1 2
B 1 2 1 2C 1 1 E E 22
( ) D 1442 1 2 1 2 E 1 2 "
1442
1 2 F 1 2
1 2 12
" # 1 2 F
* " 1 2 F 1 2 1 2 1 2 " $ 1 2 F 1 2 E 1 2 1 2 1 2 1 2 1 2121 2 1432 F 1 2 1432 $ 1 2 1 2 1 2 B1 2 1 2C 11E12 E 22
1 1 E E 22 B 1 2 1 2C 1 2
Oscillation of Partial Differences Equations
Some Recent Advances in Partial Difference Equations 15
1
1 1 E E 22 E ! E !2 1462 1 E E 2 ! " 1462 1 2 " " ' & " F 1 2 ( " B 2 ( ) D 1462 $ 1 2" 1 2 1452
F
B 1 2 1 2C
"
" " $ 142 A 1452 " " 7" 1452 " " 14;2 1 2 " & # 1"2 F " 1" 2 ( # 1"2 F #
E F 1 E 2
14<2
( 14<2 14;2
1 2
1 E 2
" 142 44
¼
¼
B 1 2 1 2C E
1482
" F F ( ( 4 + " 1 2 $ $
12 12 & 4 "
¼
B 1 1 E E 22 1 1 E E 22C
¼
F
¼
¼
1 2
16 Some Recent Advances in Partial Difference Equations
F
¼
B 1 2 1 2 1 2 E 1 2C ¼
F 1 2 1 2 E
1 2 E
Patricia J. Y. Wang
¼
1
1
1
2
¼
2 E
¼
¼
1
2
¼
2
¼
2
¼
1 2 E 1 E 21 2 F 1 E 21 2 K 1 E 2 1 2
1
¼
¼
¼
¼
142 " 142
B 1 2 1 2C 1 1 E E 22 B 1 2 1 2C 1 1 22
$
1 1 22 B 1 2 1 2C E 142 1 2 ( ) 142 " 1482
¼
¼
9 B4C 3 & 1 2 $ $ 1 $2 ' * $ 1 E 2 E 1 E 2 $ 1 2 12
( 1
" F
2 12 $
1 2
132 132
Oscillation of Partial Differences Equations
Some Recent Advances in Partial Difference Equations 17
3 ( "
G G 1 2 F 1 E 2 1 2 E 1 E 2 1 E E 2 1342
34 ! 1342 1 2
1 2
G G 1 2 12 1 E 2 1 2
1332
G G 1 2 12 1 E 2 1 2
1362
33 & 1 2 $ $ 1 $2 ' 1 2 142 11322
2 F
1
1352
( 1 2 % D 36 & 1 2 $ $ 1 $2 ' 1 2 142 11322 * Æ
(
1
2
13;2
1
2 12 1% & 2 E 1% E 2
13<2
1
2 12 1% & 2 E 1 & E 2
1382
35 & 1 2 $ $ 1 $2 1 2 142 11322 * 1 C
1
2
132
18 Some Recent Advances in Partial Difference Equations
Patricia J. Y. Wang
( ! '
' 2 12 1! E ' E 2 132 " F 1 E 2 3; & 1 2 $ $ 1 $2 1
!
1 2 142 11322 * 132 ( ! ' 5 132 1! ' 2 12 1! E ' E 2 3< & F 1 2 $ $ 1 ' $2 1 2 142 11322 * 1 C
( ! ' 1
!
1
2
'2 12 1! E '2
1342 1332
" D & 35 38 & F 1 2 $ $ 1 ' $2 1 2 142 11322 * 1 C
( ! ' 1
! '
1
2
2 12 1! ' E 2
1362 1352
" D & 35 3 & F 1 2 $ $ 1 ' $2 1 2 142 11322 * 1342 ( ! ' 3 13;2 1! '2 12 1! E '2
Oscillation of Partial Differences Equations
Some Recent Advances in Partial Difference Equations 19
3 & F 1 2 $ $ 1 ' 1 2 142 11322 * 1362 ( ! ' 3 13<2 1! ' 2 12 1! ' E 2
$2
3
$
& E 1 2 (
EE "F 1 E 2 (
E
1382
" F F ( 12 142 $ $ H 12 132 $ $ H 12 " $ $ $ $ G G 1 2 E
1
1 1 2 1 222 F
1
1 1 2 1 222
12 142 $ $ ' 1 2 & )
F
G G 1 $
2E1 $2 1 2E 1 E E2 $
9 ) ! 142 1@2 1@42 162 " D Æ
G
G 1 2
B 1 1 12 1222 1 1 12 1222C 1
2 1 1 1 2 1 222
1
2 1 1 2 1 22
20 Some Recent Advances in Partial Difference Equations
Patricia J. Y. Wang
1
21
2
1
21
2
132
K 132 " G G1 2 E 1 21 2 E 1 E E 2
1
21
2 1 2 E 1 E E 2
1
21
2
( ) A $ ) " D $
* 1 2 " D G G1 2 1 2 E 1 E E 2 G G 1 2
1
21
(
)
132
2
$ 1 2
132
" $ ) " $ & 3
" * 12 F E ( ! * 12 F *
1 E 2 F
(
"
! $ ) " $ * 1$2 " " $ $
(
" E $
132
K 132 132 " D G G 1 2 1 2 E 1 E E 2 1" E $21 2
Oscillation of Partial Differences Equations
Some Recent Advances in Partial Difference Equations 21
G 1 2 E B 1$ "2C 1 2 E 1 E E 2 " 1$ "2 ) $ " 1$ "2 ) F 4 3 #"$ " Æ " $ $ " ( ) $ 12 ( 12 12 ( " 12 12 34 F F
G
2
1
1342
$ ( ( 3 0 " $ 12 A 142 $' $ 1 2 0 " $ 132 "
G
G 1 2
1
1
21
E2E 1E 2 1E E2
1
2
2 1 2 1332
! $" 1342 1332 $ $ " $ $ 1 2 33
1
2
1362
( ( 3 + " $ 12 & 1 2 $ $ 142 ( " $ 132 " 1332 $
G
G 1 2 E
1
21
2
22 Some Recent Advances in Partial Difference Equations
1 E E 2 1 2 E
F 1 E E 2 E
Patricia J. Y. Wang
1
1
2 1 E E 2
2 1 2
1352
! $" 1362 1352 $ # " ' 36 & * 1 C 132 A
1
2
13;2
" D & 35 ( ( 3 + 142 $ $ ' 1 2 0 " $ 132 "
G
1 2 1 2
1 2 1 2 13<2
G 1 2
+ 1332 & 35 $ " D
G
G 1 2
1 E 2 1 2
1 E E 2 1 2
1 2 1 E E 2 @ 13<2 1382 "
1
21
1382
2
1 2 1 E E 2
1 2 1 2
Oscillation of Partial Differences Equations
$
Some Recent Advances in Partial Difference Equations 23
1
2
" 13;2 35 & * 1 C 132 A
5 1 2 1342
( ( 3 ( ( 36 " D " & 3; & 35 3; & F * 1 C 1342 A
1342 1 2
" D & 35 ( ( 4 & 1 2 $ $ 142 ( " 132
1
21
2
G
G 1 2 F 1 E 2 E 1 E 2 1 E E 2 1 2 1 E 2 1 2 K $ " D 1 E 2 1 2 F
1342
B 1 E 2 1 2C
1
21
2
1
21
2
24 Some Recent Advances in Partial Difference Equations
"
1 E 2
Patricia J. Y. Wang
1
2 1 2
13442
+ & 3< " $ " 1 2 1 E 2 " 13442 $
# "
1
2
1
2
1
2
" 1342 3< & F * 1362 A
1
2
1 C
13432
" D & 35 ( ( 4 1 2 $ $ ' 142 ( 132
1
21
2 G
G 1 2 1 E 2 1 2
0 $ " D 1
E 2 1 2 F
B 1 E 2 1 2C
1
21
2
1
21
2
Oscillation of Partial Differences Equations
Some Recent Advances in Partial Difference Equations 25
" $" & 38
1
2
1
2
@ $" 13432 38 & F * 1342 A
1
2
3
13462
( ( 3 ( ( 3; " D & 3 & 3< 3 & F * 1362 A
2
1
3
13452
( ( 3 ( ( 3< " D & 3 & 38 3 &
1
2
134;2
+
" + F 1, 2 1, E 2 , F 1 E 2 ( ( 3 + 142 $ $ ' 1 2 0 " $ 132 " " 1 E 2 E 1 E 2 1 E E 2 1 2
1
21
2
1
21
2
134<2
26 Some Recent Advances in Partial Difference Equations
Patricia J. Y. Wang
1 E E 2 1 2
$ 134<2 1 2 " D 1 E 2 E 1 E 2 1 2 1 2 1 E 2C B1 E 12 2
13482
* $" 134;2 "
1
2 +
1332
K 13482
B 1
E 2 1 E 2C 1 2
B 1 E 2 1 E 2C 1 2
" " "
B 1 E 2 1 E 2C 1 2
1
1
1332
2
2
! ' " D
B 1 E 2 1 E 2C
1 2
B 1 E 2 1 E 2C 1 2
B 1 E 2 1 E 2C
1 F
1
2
E 2 1 E 2 1 2
1 2
1332
Oscillation of Partial Differences Equations
Some Recent Advances in Partial Difference Equations 27
1 2 1 E 2 F 2 1 2
1 1 2 1 E 2 F 2 1 2
1 1 2 1 2 F 2 1 2
1 1 2 1 2 2 1 2
1 1 2 F
1
2
1332 1332 "
1
1
1
2 2
2
1
2
13342
( " 1 2 A * 12 F 1 2 * * 12 F *
F ,
E
+
! " $ * 12 + " $
+
13332
K 13332 13342 $ 1 2 13362 1 2 +
" " 13362 132 " " " 134<2
28 Some Recent Advances in Partial Difference Equations
1 E 2 E 1 E 2 1 E E 2 1 2
Patricia J. Y. Wang
1
21
2
1
2
+
1
2
134<2
" " +
1
2
B 1 E 2 1 E 2C 1 2
B 1 E 2 1 E 2C 1 2
1 2
+
1
1
+
2 2 +
+
1332
13342
13332
13482
13362 1 2 + " D 1 2 13352 1 2 + " F + " 1 2
1 2 #"$ & 3; " $ 132 " 1 2 5 1 2 1 2 1 E E 2 # " 3 & F
1
2
+
133;2
" + F 1 E 2 ( ( 3
Oscillation of Partial Differences Equations
142
Some Recent Advances in Partial Difference Equations 29
& 1 2 $ $ ( " $ 1342 " $
1 E 2 1 2
1
2
21
1
21
2
133<2
1 E 2 13382 1 2
* 133;2 * 1 2 + 1362 2
1
1
K 13382 1362
E 2 1 2
2
1 E 1 2 F 1 2
1 2 ( " D 1 2 A * 12 F 1 2 * * 12 F * F +
E
1362
! " $ * 12 + " " 1362 1
+
2
1362 1 2 +
" 1362 1342 " " "
1 E 2 1 2
1
21
2
1
2
+
1
2
133<2
30 Some Recent Advances in Partial Difference Equations
+
+
1
Patricia J. Y. Wang
2
1 2
2 1
2
1
1 E 2 1 2
1
2
1
2
1362
1 2 + # " D
13382
1362
+
" F + " 1
1
2
#"$
13642
2
& 3 " $ 1
2 1 2
1
" 13642 34 & F
2
1 E 2
3
1 2 + 13632
" + F 1 E 2 ( ( 3
( ( 3 " D & 3 & 3 33 &
1 2 F -
1
2E
( ( 3
-
3
13662 13652
Oscillation of Partial Differences Equations
142
G
Some Recent Advances in Partial Difference Equations 31
& 1 2 $ $ ( 132 " D
G 1 2E 1E E2
1
" $
1 E 2E 1 E2 1 2E
21
2E1 2
2 1 2 136;2
1
136;2 $ $ 1
2
2 1
2
B1 2 E C 1
2
1
1
2 1 2
" $" 13662 $ 1
2
F
-
.
1- .2 E 1 2
" . 1 - 2 ! 136<2 1 E 2
1
E 2
1- .2 E 1 2
1- .2 E 1 2
136<2
1- .2 E 1 2
1- .2 E 1 2
" 132 13682 1352 " 142
13682
1352
B 1 1 12 1222 1 1 12 1222C G G 1 2
32 Some Recent Advances in Partial Difference Equations
F
21
1
21
2 E 1 E 2 E 1 E 2 1 2 1 E E 2
1
1
1
Patricia J. Y. Wang
2E
2E
2 E 1 E 2 E 1 E 2 1 2 1 2
1- .2 E
1
2
1- .2 E 3 1 2
( " $
1
2E
1- .2 E 3
" 13652 36 & ( " 13662 $ 13652 D 1 $ $2 # 13662 ( 3 "
35 1 2 F
1 E 2
1352 1352
" F F ( ( 3 142 $ $ 1 2 =D 1 2 1 2 / 1 2 F 1 E E 2 ( 1
E 2 E 1 E 2 1 E E 2 E 1 E E 2 F 1 2 1 2 / 1 2 13542
Oscillation of Partial Differences Equations
Some Recent Advances in Partial Difference Equations 33
" $ 132 1 2
1
E 2 E 1 E 2 1 2 1 2 1 2 / 1 2 1 2
F
1
1
2
1
2 1
2 1
2
/
2
! $" 13542 $ $ 1
2
/
1 2
1
/
2
13532
F " 13532 $
/1 2
1
2
" 1352
A / 1 2 " 13532 " = / F / 1 2 1 2 " 13532
/
"
/
/
* 12 F 1 2 $D
* 12 F *
/
E F 1 E 2
13562
13552
34 Some Recent Advances in Partial Difference Equations
( 13562
Patricia J. Y. Wang
1 E 2
" 1352 3; 1352
0
135;2
10 E 2
" 0 F F ( ( 3 0 1 2 $ $ 142 0 ( 35 " 13562 " " )" "
/ /
/
/
F
/
/
! $" 13552 $
10 E 2 0
" 135;2 3< 1352
1 E 2
135<2
" F F ( ( 3 + 142 $ $ ' 1 2 0 ( 35 " $ 13562 / 13562
/ /
Oscillation of Partial Differences Equations
Some Recent Advances in Partial Difference Equations 35
" $" 13552 $
1 E 2
# " 135<2
( * " 3 " " D D " * " " $ D 6 @ 1 21 E 42 1 E E 42 162 1 2 F 1 2 # F F 4 F F 4 @ 12 F " $ F A 1 1 E E 422 1 21 E 42 F 1 1 E E 422 1 2 1 1 E E 422 F 1 1 E E 422 " ) 1 21 E 42 1 2 F 1 2 F 1 2 F 1 2 F 1 2 ( 102 ' 1042 D
@ @ ( 182
11 E 2 21 E E 42 F 8F4 4 1 E 21 E 2 4 " 1F ;652
36 Some Recent Advances in Partial Difference Equations
@ @ 3 9 D
1 2 F 3
Patricia J. Y. Wang
1 E 2
E F
4 E 3
142 D @ 4 @ 5 9 $ 3 1 21 E 42 F E F4 1 2 F 1 2 1 E 2 E F <8 1 E E 2 # 1452 D @ 3 ( 4 # F F 3 F ( 142 5 " @ 6 ( 44 9 1482
1 21 E 42 1 2 1 21 E 42
F
1
2
F 4 E F 6
# " @ 3 5 ( 4 44 162 ! 162 $ 1 2 F 12
6 @ 1 21 E 21 21 E 32 1 E E 32 1 2 F 1 21 2
162
Oscillation of Partial Differences Equations
Some Recent Advances in Partial Difference Equations 37
( ) 12 F " $ F A "
1 21 E 21 21 E 32 1 2 F 1 2 F 1 2 F 1 2 F 1 21 2
@ 102 ' 1042 D ! ) @ 3 5 ( 4 44 D ( " 162 ! 162 $ 1 2 F 12
64 @ 1 2 F
1 E 2 1 E E 2E
1 E 2 1 E E 2 " 1 E 2 1 E 2 $ # F @ 12 F 12 F " $ F F & 2 F 1 2 F
1
1 E 2
1
2 F 1 2 F
1642
1 E 2
1 2 F 1 2 F F ( " $ F F ! " $ 142 @ 1482
¼
F
¼
B 1 2 1 2C
1 E
¼
¼
2 E 1 E 2
F 31 E 21 E 2 E # ( 4 44 1642 ' ! 1642 $ 1 2 F 12
38 Some Recent Advances in Partial Difference Equations
Patricia J. Y. Wang
63 @ 1 E 2 1 E E 2E 1 2 F
1 E 2 1 E E 2 1632 " 1 E 2 1 E 2 $ 12 F 12 F 1 E 2 1 E 2 1 2 F 1 2 F 1 2 F 1 2 F 1 2 F 1 2 F F " ) ( 4 44 D ( 1632 ! 1632 $ 1 2 F 12 E
66 @ 1 2 F
1 21 E 21 E 2 1 E E 2 1 2
1 21 E 21 E 2 1 E E 2 1 21 2 " 1 E 2 1 E 2 $ 9 ) 12 F 12 F 1 21 E 21 E 2 1 2 F 1 2 F 1 2 1 21 E 21 E 2 1 2 F 1 2 F 1 21 2 1 2 F 1 2 F F ! " F F @ 142 D A 1482 E
¼
¼
1662
B 1 2 1 2C F 31 E 21 E 2 E
Oscillation of Partial Differences Equations
Some Recent Advances in Partial Difference Equations 39
9 ( 4 44 1662 ! 1662 $ 1 2 F 12
65 @ 1 E 2 1 E 2 1 2 F 1 21 2 B 1 E E 2C
1652
" 1 42 ( ) 12 F " 2 F 1 2 F
1
1 E 2 1 E 2 1 21 2
2 F 1 2 F
1
( B 1 2 1 2C F ! ) ' @ ' 5 ( 4 44 D # 1652 ! 1652 $' $ 1 2 $ 1 2 F
6; @ 1 2 F 1 E 21 E 2 1 E E 2
16;2
& 12 F 1
2 F 1 2 F
1 E 21 E 2
1
2 F 1 2 F
B 1 2 1 2C F 1042 $ ! 16;2 $ $ $ 1 2 F 1 E 121 E 2 " 1
6< @ 1 E 2 1 2 G G 1 2 E 1 E 2 F
1 E 2 1 2 E
E
16<2
40 Some Recent Advances in Partial Difference Equations
Patricia J. Y. Wang
" $ I$ # F 12 F 12 F @ 12 F " $ F A 1 E 2 1 1 12 1222 F 1 1 12 1222 1 E 2 1 E 2 1 1 12 1222 F 1 1 12 1222 E " ) 1 E 2 1 E 2 1 2 F 1 2 F 1 2 F 1 2 F 1 E 2 E ( 1@2 1@42 D ! E 1 2 F 1 2 1 2 F E E
3 E F 3
@ ( 3 @ 1382
E
E
(
3 EE 1 E 2 1682
E E # 16<2 $ $ $ $ 1682 *
1 2 F 14 2 1 2 ! I$ " D 16<2 $ 1 2 F 12
@ ( 34 9 F F " D 1 2 ( F 1342 D ( ( 312 " @ 4 ( 33 9 $
1
2 F 31 E 21 E 2
Oscillation of Partial Differences Equations
Some Recent Advances in Partial Difference Equations 41
1362 D # ( 312 I$ @ 3 ( 36
E 1 2 F E E
E E E
E F E
E
" 132 " F 9 F 3 13;2 31 E 21 E 2 6 " $ ( " @ 4 @ 6 ( 35 A @ 3 $ 132 " F ( 1342 D " @ 4 @ 5 ( 3; & F (
1 E 2 1 2 F
E
1342 " F 9 F 3
1
2 F 31 E 2
( 1342 D ( 312 $ @ ; ( 3< & F
1 E 2 1 2 F E
42 Some Recent Advances in Partial Difference Equations
Patricia J. Y. Wang
" D 1362 " F 9 F 3 $ 13432 D ( ( 312 $ @ < ( 38 & F A @ 5 1342 F ! " 13462 D 31 E 21 2 $ # " @ 5 @ 8 ( 3 & F A @ ; 1362 F ( 13452 D " @ ; @ ( 3 ( 134;2 3 + 162 ( ( 312 D 162 1 2 F 1 32 13 2 1 62 16 2 @ ( 3 & F ( 133;2 3 " # " @ 5 @ ( 34 & F 0 13632 3 " ( " @ ; @ 4 ( 33 # " $ - F 4 13652 1 2 E - F 3 E 142 F 3 F 3 F
( " @ 4 @ 3 ( 35 3< 9 $ F 3 1352 1 E 2½ 162 ½ 3 " $ ! ) 135;2 135<2 162 ( " @ 4
Oscillation of Partial Differences Equations
Some Recent Advances in Partial Difference Equations 43
68 @ 1 E 21 E 21 21 2 G G 1 2 F 1 2 61 E 21 E 2 41 E 21 E 21 21 2 E 1 2 61 E 21 E 2 E E E E 162 " F $ I$ ! * F 12 F 12 F F ( )
12 F 12 F " $ F F A " 1 E 21 E 21 21 2 1 2 F 1 2 F 61 E 21 E 2 41 E 21 E 21 21 2 1 2 F 1 2 F 61 E 21 E 2 1 2 F 1 2 F 1 2 F 1 2 F 1@2 1@42 D
1 2 F 6 E E
1
2F
1
2
/
1
/
E E E E 2
(
4 4 / 1 2 / 1 E E E E 2 (
@ ( 3 162 $ $ 1 $2
1 2 1382 D 0 * 1382 ' D " F F 4 F 3 F ! I$ F 162 $ 1 2 F 12
@ ( 3 9 D 134;2 162 " D * F F 3 F 4 F 6
44 Some Recent Advances in Partial Difference Equations
Patricia J. Y. Wang
@ 4 ( 34 3 3 33 35 3< ! ) $ D ( ( 312 I$
F
6 @
G G 1 2 F 1 E 2B1 2 CB1 2 C 1B1 2 C B1 2 C2
E E
1642
" BC $ # F 12 F B1 2 C 12 F B1 2 C @ 12 F " ) 1
2 F 1 2 F
1
2 F 1 2 F 1 E 2B1 2 CB1 2 C
( 1 2 ! ) ( 3 3< D # 1642 $ $ $ $ ! " 1642 $ $
$ 1 2 F 6 @ G G 1 2 F 1 2B1 2 C 1 B1 2 C2 3 4 E B1 2 C1 2 1B1 2 C 2 3
E E E E
1632
" BC F $ @ 12 F 12 F B1 2 C 12 F B1
2 C 12 F 9 ) 12 F 12 F 1 2 F 1 2 F 1 2 F 1 2 F 1 2B1 2 C 3 4 1 2 F 1 2 F B1 2 C1 2 1 2 F 1 2 F 3
Oscillation of Partial Differences Equations
Some Recent Advances in Partial Difference Equations 45
1 2 F 0 ( 3 33 35 3< ' D # " * 6 ! 1632 $ $ $ 1 2 F
)
6 @ 1 21 2 1 2 G G 1 2 F 41 E 21 E 2 1 21 2 E 1 2 41 E 21 E 2
E E E E
1662
" F $ # 12 F 12 F F A " 12 F 12 F 1 21 2 1 2 F 1 2 F 1 2 F 1 2 F 41 E 21 E 2 1 21 2 1 2 F 1 2 F 1 2 F 1 2 F 41 E 21 E 2 1 2 F ! ) ( 3 33 35 3< $ # " 1662 $ $ 1 $2 ' 1 2 ! 1662 $ $ $ $ 1 2 F
BC 7 0 "
. =)) 88 BC 7 0 " = 0 $
! " # $ %&&'( )
( " * 8 <
B4C 7 0 " . . . ( + $ + + 36 885
46 Some Recent Advances in Partial Difference Equations
Patricia J. Y. Wang
B3C 7 0 " ( + $ $ $ # @ ( . 0 6 > 0 885
B6C 7 0 " ( L M 9 + $ +
; ;< 88; B5C @ 9 ( 0 * ' # $ 84 4 884 B;C ! >N > & , -
$ @ +* 88 B
O 0@ . $ / -
$ 0 " M) 88 B8C P & O > & *0 1 # 2 , -
$ O " = 884 BC P & )) = ( -
$
# $ 0 " M) 8<< BC L L & @ @ M * $ # $ ; <3 883 BC L ( + $ <; ;8 883 B4C 0 )$) M & . ) M 7 ) O " 0 884 B3C ( + + $ <48 45 883 B6C L M 9 7 0 " + * $ + + 54 <3 886 B5C L M 9 7 0 " + 3 + $ $ 3<4 <8 885 B;C L M 9 7 0 " + ! 4 4 4838 6; 885
Oscillation of Partial Differences Equations
Some Recent Advances in Partial Difference Equations 47
B
B8C L M 9 7 0 " $ + + 3 46 885 BC L M 9 7 0 " @ " $ + + 348 3< 885 BC L M 9 7 0 " + ' $ + $ 45 5 88< BC @ & Q > R S $ 12 + $ $ 3 + 556 ;8 886 B4C @ & Q > R S $ ' 12 A 3 + 5;; 8 886 B3C @ & Q > R S $ 1$2 A 3 + 544; 45 886 B6C @ & Q > R S $ 1$2 3 + ;<8 8; 885 B5C @ > R S $ ' 12 + 3 + 6;8 << 883 B;C @ A & M ( + + $ 4584 88< B
48 Some Recent Advances in Partial Difference Equations
Patricia J. Y. Wang
B4C L M 9 7 0 " + " + $ 46; <5 885
B4C L M 9 7 0 " * 3 + $ $ 364 64 88; B4C L M 9 $ $ + $ 4646 6< 88< B44C L M 9 7 0 " + $ $ + 2 ;8 8 88< B43C L M 9 7 0 " 0 $ " $
$ + 8;48 53 88< B46C L M 9 0 $ ' $ 678$/!! &9 88< B45C > R ( & + $ + 3 65 ; 886 B4;C > R ( & + " $ Æ + $ 4546 3 88< B4 R ( & @ + 3 $ 6 5 886 B48C L @ )" !
5
9 " ) 8<8
49
Some Recent Advances in Partial Difference Equations, 2010, 49-76
CHAPTER 2
' !# ½
3# & 4 ¾ 3 ' & ( 3
- 5
5 ( * ( .+,, ( 6# 0 1 2 # # ¾ 3 5 ( 3
- - ( *
( .+,, ( 6# 0 2 # # ½
# $ % ! & ! At $ ( ! ! "#$% "#&$' "#&(( )*+## ,
1G 2 $ I $ ( " G " ½
Eugenia N. Petropoulou (Ed) All rights reserved - © 2010 Bentham Science Publishers Ltd.
Functional-analysis and Partial Difference
Some Recent Advances in Partial Difference Equations 50
1= 2 ' $ $ $ " = $ / 1" ) & A = 2 1 * B 6C2 " % = $ 1 2 $ 1 * B5
51 Some Recent Advances in Partial Difference Equations
Petropoulou and Siafarikas
, G " * $ 12 * * 142 * 132 * $ 1 $2 162 * 152 $ 1;2 " 1<2 $ 182 12 $ + $ $$ D* ! $ G " $
12
F
F
1 2
1 2
"
"
1 2
1 2
12
12
" V 1 2 10
% G $ $ BC2 ! $ $ D* G " $ ! 3 $ " 6 5 " * .$ 4 $ $ " $ G D 12 12 $
!
! $ " $ G " A D 1 2 ) ' " " " ) D*
Functional-analysis and Partial Difference
Some Recent Advances in Partial Difference Equations 52
+ T U " * ( $ $ $ A * " 1 )' 2 1 $ 2 0 %
G + G " ) " $ " T U 1 * ) 2 0 " 1 2 #"$ $ '
$ D D D " % ' A T U 0 ") ' BC & 7 B4C " D " 0 " " 46 $ 0 " $ T0' A 0 ( 7 U !.0 P 0 8;3 " " ' " $ = % ! " " D* $ G ( " $ G " " 3 $ ( $ * G D 12 12 $ ! " 12 0 $ $ G 1 152 2 .$ $ " D " " 1 1;2 2 A " $ G " $ $ 1$ 2 " ( 142 1<2 1A $ 32
53 Some Recent Advances in Partial Difference Equations
Petropoulou and Siafarikas
( G $ # 12 2 12 2 " 2 2 ! " G $ " G + " G ' $ $ * $ ! ") R MR B6C 1 2 $ D* O ( ) D* $ $ $ $ $ G ! D* ") D " D " $ D* 0 B3C $ * I $ A B6 8C D $ D* O ' ?) D* B C ! " * $ $ ' $
" # $ 0 " 3 " G D 12 12 $ ( $ ) G $ " 2 6
7
½ ( ¾ # ! $ 12 12
Functional-analysis and Partial Difference
F
Some Recent Advances in Partial Difference Equations 54
1 "
" 1
&
&
F
2
3 "3"
3 2 "3"
" 4 " " 0 $ 12 12 1 2 F G $ 2 8
# ! $ # D $ 3 3 1 23 3 ( $
" " D A ?
% Æ 1 2 * A #? " 1 2 B4 ;5C
42
# 2 ! B3C " = G " $ A G 1 2( $
( +$ ( F 2 + $ = $ $ ( $ $ ' $ ( ' $ " " A Æ 1 2 "
32 !
3' # 2 ! = $ G ( 13 '2
55 Some Recent Advances in Partial Difference Equations
Petropoulou and Siafarikas
= 1 2 G 3 F 3 ' F ' " 5 E 6 E 0 .1 2 ! .1 2 F
142
! G G " 1 2 ( 1 .1 22 $ 142 D 2 ! B8C & * = " $ " % = 0 B8C " 1 2 ¾ F 1 2 62 6
9 : # ( # 1/ / 2 1 2 D 1
# / /
2F
/ /
1 2
( & / 7 1 1 22 1 2 ' D 7 1 1 22 F 8 1+ + 2 F 1 2+ +
/ " " * $ ' 1 * BC2 ( 1 2 $ $ / / + +
52 ;
# ! ) = $ 1 * 3 2 1 * 9 9 2 9 $ $ % $ 13 'H 9 9 2 " % $ D* A *
Functional-analysis and Partial Difference
Some Recent Advances in Partial Difference Equations 56
$ 13 'H 9 9 2 F 19 9 2 " ' 19 9 2
$ " )" 1( 2 ( * 19 9 2 19 9 2 1
9 9
2F
1 2 1
2
9 9
142
" 1 2 Æ B6C ( *
19 92 142 $ 1 2 ;2
# ! $ D " <2 < # ( . %
F
1 2
1 2 F
! " " %
F
1 2
1 2 F
" $ 1 2 0 $ G G $$ ' * 1 162 2 ")
57 Some Recent Advances in Partial Difference Equations
Petropoulou and Siafarikas
%
! $ G " ( % $ ! " D B5C * 1 E 2 E 1 2 F B :12C 12
#"$ " 8<; " B;C ( B< 4C " * ) B4C " * ( % G " $ " $ B4C G B44C G " % G $ " $ BC 7 " $ B43C @ D 12 ( " " " " * " 1 1 2 1 22 F
1 21 2
1 2 1 2
132
# ( 132
1 2
¾ F
.$
1 2
: : #
F
1 2
"
12
" : F 3 : F 3 3 1 * * ; 38 B46C2 ! " $ # ! " D 12 " " " " *
Functional-analysis and Partial Difference
"
1 2
½
Some Recent Advances in Partial Difference Equations 58
F
1 2
1 2
132
& 2 # " ; 2 " $ F 1 ; 2; " F
1 ; 2
0 2
2 " 2 F
1 ; 2
1 ; 2 E (
=D " 2 ) ) " ) ;
F ; ) ; F ;
F
+ $ ) ) ) F ) F 2 ! ) 1 2 F 2 ; F 4
< )
) 1 2 F 2 ; F 4
< ) ;
1A * ; <1) 2 ! <1) 2 * 2 ) F ; ( )
1 ; 2; F ;
1 ; 2; F ;
1 ;2; E 1 ;2; E E 1 ; 2; E E
E1 ; 2; E 1 ; 2; E E 1 ; 2; E E F ; ) $ " ; F -2 $ ) ) " % "
59 Some Recent Advances in Partial Difference Equations
Petropoulou and Siafarikas
3 ( , ) ) ) ) D
) ; F ; ) ; F ;
F 4 F
) ;
F F 4
) ;
F
F
F
F
A $ 2 1) ; 2 F " F 1 ) ; 2 F ( $ 2 " F ) ; " $ ) ; F ) ; F F ! " $ ) ; F F 0
)
F 1 ; 2; E 1 ; 2; E E 1 ; 2; E E
E1 ; 2; E 1 ; 2; E E 1 ; 2; E E F $ " ; $ 1) ; 2 F 1 ; 2 1 ) ; 2 F 1 ; 2
1 ) ; ;
2 F ) ; F ; ! " $ ) ; F ; F
3 ( " " ) ) ) ) ) ) F 5 ) ) F ) ) F 5 ) ) F
" ,$
) F ) F ) F ) F
! *-
A D , ,$ ) * B46C B45C 0 ' $ G ' 2 2 D ( " "
Functional-analysis and Partial Difference
Some Recent Advances in Partial Difference Equations 60
34 ( : 2 D
1 2 F 1 ; 2 F 1 2
1342
:
2 2 " $
2
A D 1342 "'D !
1 2
¾ F
1 2 F
1 ; 2 F E
$ : 0 : ! 2 2 " :1 2 F :1 2 1 ; 2 F F ; 2 .$ 1 2 * 2 :1 2 F 1 2 ( $ F
1 2;
2
F
1 2 F 1 2
¾
E
A : $
:1 2
F ¾
1 2 F
1 ; 2 F
33 ( : 2 D 1 2 F 1 ; 2 F 1 2
:
2 ( 34
1332
61 Some Recent Advances in Partial Difference Equations
Petropoulou and Siafarikas
( D 1342 1332 1 2 ! = 1 2 0 =1 1 22
0 2 2
1 1 22 F 1 1 2 ; 2
=
A G $ B4C " B44C 1 " 2 ! " $ $ " " 5
36 6 9 ( 1 E E 2 1) 2 1) 2 F 1) 21) 2 1 2 ) ) F ) )
4 1 E 2 1) 2 ) F )1) 2 3 1 E 2 ) 1) 2 F 1) 2 ) 6 11 2 1 2 >
" > >; F 11 2;
! 1 E E 2 F 1 ; 2 F 1 )) ; 2 F
F 11) 2 1) 2 ; 2 F 11) 2 1) 2 ; 2 ) ) !
1
2 F 1 1) 2 1) 2 ; 2 F F 1) ) ; 2 F 1) ) ; 2
2 F 1 ;
) ) 4 !
1
2 F 1 1) 2 ) ; 2 F F 11) 2 ) ; 2 F 1) 1) 2 ; 2
E 2 F 1 ;
) )
Functional-analysis and Partial Difference
3 !
Some Recent Advances in Partial Difference Equations 62
1 E 2 F 1 ; 2 F 1 )1) 2 ; 2 F
F 1) 1) 2 ; 2 F 11) 2 ) ; 2 ) ) 6 !
1 2 1 2 F 1 21 ; 2 F 1 1 2; 2 F 1 > ; 2 F 1> ; 2
35 6# 9 ( ' 1 2 D "
1 2F
1 ; 2 ; F
B 1 2C ;
2
'
1362
B 1 2C
A D 1362 " D
1 2 F
1 1 2 ; 2 F
2 .$
1 ;
2
1 2
1 2
1 1 2 ; 2 F
B 1 2C ; ; F B 1 2C
" 1 2 B 1 2C 0 " 5 D D* D 1362 AW 2 ( $ "
3; 6!; 0
9 ( ' 1 2 ' D 1362 AW 2
63 Some Recent Advances in Partial Difference Equations
Petropoulou and Siafarikas
1 2 B 1 2C 2 33 Æ " B 1 2C AW ! AW $ $ B 1 2C 1 2
1 1 22 1 2 F 4 F 1 2 1 2
4
( 4 $ ( 4 " 4 ½ F 1 2 1 2 ½ 1 2 ½ 1 2 ½
" 4 AW $ $ B 1 2C 1 2
B 1 2 E 1 2C B 1 2C 1 2 1 2 F B 1 2C 1 2 B 1 2 E 1 2C B1 122C 1 2 1 2 1 2
B 1 2 E 1 2C B 1 2C 1 2 1 2 F
1 2 ½
½
½
½
½
½
½
½
½
& ! 3 " "
$ 1 E E 2 F 1 1 2 E 1 2
162
1 2 1 2 )" * 162 " 1 1 2 )" * ( D $ 162'162 ( " $$ 162 0 34 36 ' )" 1 2 2 1 E E2 ) ) F ) ) 2 ! 2 1 2 1D 122 ( < ( 6 ( 1342 "
1) ) ; 2 F 11 ; 2 E 1 ; 2 1) ) ; 2 11 ; 2 1 ; 2 F
Functional-analysis and Partial Difference
Some Recent Advances in Partial Difference Equations 64
1) ) 1 ; 2 F
" ; F "
) )
2
$
1 F 1) ) 15 2 F
1642
1642 $ 162 2 ( ) ) ) 3 3 1642 1) 1) 2
F ) E
15 1)) 2 F )) E
;
;
E
" ;
1632
" " " 162 " ) 1632 " ; 1 ; 2 11) ) ; 2 F 1) ) ; 2 E 1; ; 2 E 1; ; 2 E E E" 1; ; 2 E " 1; ; 2 E " ; 2 " 1 ; 2 11) ) ; 2 F 1) ) ; 2 E "
1 ;2 F " 1 2 F "
! " $ ) 1632 " ; " F 1 2 " F 1 2 ! " ) 1632 " ; 1 ; 2 11) ) ; 2 F 1) ) ; 2 E 1; ; 2 E 1; ; 2 E E E" 1; ; 2 E " 1; ; 2 E " ; 2 " 1 ; 2 11) ) ; 2 F 1) ) ; 2 E
65 Some Recent Advances in Partial Difference Equations
Petropoulou and Siafarikas
1 ; 2 11) ) ;2 F 1) ) ;2 E 1 ; 2 11) ; 2 F 1) ;2 E 1 ; 2 11 ) ;2 F 1 ) ; 2 E 1 ;2 F 1 2 F
! " $ ) 1632 " ; F 1 42 F 1 E 2 ( 1632 ) 15 1) ) 2 F ) ) E
1 E 2; E
1 2;
1662
D ' 2 1662 " 2 ( 1 2 1 2 ( ( 6 1662 $ $ 162'162 2 " ") " 1662 & F 1) ) ( 1 0 " )" 6 ! * # 2 ? " * 5 * $ " 15 * 2 * D 2 ? 1 * B46 ;';C2 ( 1 5 $ D # ( ( 6 ( 1662
F 15 2
) )
E
1 E 2; E
1 2;
1652
1662 2 $ 1652 $ $ $ 162'162 .$ 1652 . "
15 2
) )
E
1 E 2; E
1 2
;
E ! "
Functional-analysis and Partial Difference
" F
1
;
& ''' 1 2 ' %(
Some Recent Advances in Partial Difference Equations 66
1 E 2; E
#$
;
"
F F 1 E 2
F F
F " F 1 2
F F
0
F (
F
1 E 2 E
F 1 E 2
1
E ) 1
´½µ ¾
1 2
E 1 2 ´½µ ¾
E 2 ´½µ E 1 2 ´½µ ¾
¾
= $ 1 342 " 1 2 ¾ F 1 1 2 ¾ E 1 E 2 ´½µ¾ E 1 2 ´½µ¾ A $ $ " $ 6 @ $ 162'162 1 2 1 2 " D 12 12 1 2 1 2 12 1 ( $ 162'162
16;2 1 2 ¾ 1 1 2 ¾ E 1 E 2 ´½µ¾ E 1 2 ´½µ¾
)
)
67 Some Recent Advances in Partial Difference Equations
Petropoulou and Siafarikas
64 1 2 1 2 1 2 F ( $ 162'162 $ 1%2 " 63 1 * * 11 2 ! F ) ) > " > >; F 11 2; F > F 11 2 ( 1 2 12 12 11 2 16<2
16;2 1 2 ¾ 11 2 1 2 ¾ E 1 E 2 ´½µ¾ E 1 2 ´½µ¾ 66 #"$ " 11 2 ? 16<2: ! 11 2 11 2 F 1682
)
" $ 16<2 ! 1662 15 2 F ) ) E
1 E 2; E
1 2;
162
> 1 16822 ) ) ( A $ 162 0 A $ 1 * B46 34C2 162 2
15 2 F 15 ) ) >2 F 162 $ 2 ( 162
F
1 ; 2; F
B1 ; 2; E 1 ; 2; E C
162
Æ 1 ; 2 162 " " " ( 6 . ) 162 "
Functional-analysis and Partial Difference
Some Recent Advances in Partial Difference Equations 68
; 1 ; 2 1) ) > ; 2 F 1 ; 2 F F
1642
; 1 ; 2 1) ) > ; 2 F 1 ; 2 1) > ; 2 F
11 22 F 1 2 F F 11 22 F 1 21 2 F F 1 2 F F 1 2 F F ; ;
; ;
; ;
1
> ;
1
2 F
;
;
1632
; 1 ; 2 1) ) > ; 2 F 1 ; 2 1) > ; 2 F
11 22 F 1 2 F F 11 22 F 1 21 2 F F 1 2 F F 1 2 F F ; ;
;
;
;
> ;
1
1 ; 2 F
;
;
1662
" 1 ; 2 F F " 162 162 F 0 162 2 ( 1 2 12 ( 6 12 1682 16;2
1
) 2 E 1
E 2 ´½µ E 1 2 ´½µ ¾ ¾ 1652 ! $ 1682 16<2 1652 16;2 15 2 )" D
1 2 15 2 ¾
¾
69 Some Recent Advances in Partial Difference Equations
Petropoulou and Siafarikas
0 * @ 1 $ 16;2 1 E E 2 F 1 2 5 1 2 F 1 2 F 16<2 4 " 162'162 ( 1 2 F ( 4 5 1 2 F F 4 4 F $ 2
F 45
F 45
3
8
8
1 2 F 4
1 2 F 6 3;3
3
¾
" 6 " ) $ 16;2' 16<2 " " TU $ 0 1 2 12 $ D 1 2 1F 0 12 D 5 8 F 8 F 8 F
1 2 F 4 8 8 < 3 F3 F3 F 1 2 F 3 4 3 ( 6 $ 16;2'16<2
1 2 ¾ 5 1 E 2 ´½µ¾ E 1 2 ´½µ¾ 1 2 ¾ 65 < E 34 3383 " " TU $
)
*
Functional-analysis and Partial Difference
Some Recent Advances in Partial Difference Equations 70
' & (
! 3 " "
$ 1 E E 2 11 2 1 2 F 1 2 E B 1 2C 152 1 2 1 2 )" * 152 " 11 2 1 2 )" * ( D $ 152'152 0 6 152'152 2 15 2 F ) ) E
1 E 2; E
1 2; E ) ) 1 2 1542
" F ) ) > > >; F 11 2; F 1 2 D 1362 ! 1 -2 $ 5 * 2 $ & 1542 )
F 15 2
B)
) E
1 E 2; E
1 2; E ) ) 1 2C F :1 2
1532 " $ D* 1" 2 $ 1532 2 = 1 2 AW D* ! B;C " D* # B4;C 5 ! @ @ AW $ $ * 1@ 2 @ D* @ " @ 1 @ @ @ * . 3 . 3 @ @ 2 ! 5 2 ? 1 <2 F 2 < < #"$ D* 1532 7 1532 ? 1 <2 ( <
: 1 2 & B E
1 E 2; E
1 2; E 1 2 C
+
,
71 Some Recent Advances in Partial Difference Equations
Petropoulou and Siafarikas
:1 2 & E E : 1 2 & 1 E 2 E &< 1562 " D 6 =D 1<2 F < &< " * F 3& < F ( < . < " & & 1 E 2 .
3& 1 E 2
1552
1562 $ :1 2 . E &< F < &< . E &< F < . < " 5 1532 1552 1532 2 < A $ $ " $ $ 5 @ $ 152'152 1 2 1 2 " D 12 12 1 2 1 2 12 11 2 F ( * & 3&
1
E 1 2 ´½µ 2 ½ E 1 E 2 ´½µ ½ ½
15;2
$ 152'152 < F & 54 @ $ 152'152 1 2 1 2 " D 12 12 1 2 1 2 12 11 2 ( 3
1
2 ½ E 1 E 2 ´½µ E 1 2 ´½µ ½ ½
1 11 22 15<2
$ 152'152 11 2 < F
Functional-analysis and Partial Difference
Some Recent Advances in Partial Difference Equations 72
53 @ $ 152'152 " '
11 2 * 1 1 2 1 2 " D 12 12 1 2 1 2 12 1
3 1
(
2 ½ E 1 E 2 ´½µ E 1 2 ´½µ ½ ½
1 12
1582
$ 1 < F 56 7 1552 15;2 15<2 1582 G ( D " * 0 4 % D " % G " $
) * $ " = $
0 1 2
' 1 2 12 " ' $ " T0 $ $ D* U 1 " 2
1 2 O @ N% T0 $ $ D* U L . 0 0 P 44; 6 3 < 12 @ N% T0 ' U 0 . P 4; 48; 44; 8
7
3 ' 1+G 2 " " 1 2 1+= 2 " " $ ! 1!;<2 1!<; 2 1!<;2
73 Some Recent Advances in Partial Difference Equations
Petropoulou and Siafarikas
$ += ! " $ $ " " $ * += 1 1( 2 1(22 ! ' = 1!;<2 O ! T0 * ' ' U L = P 8 <5 3 8;< 1!<; 2 O ! T0 U L . 0 0 P 3 448 4< 8<; 1!<;2 O ! T> " $ U L . 0 0 P 3 4< 3 8<; 1( 2 = ) (%% ) T0 T' % U += U L . 0 0 P 44 ;8 85 ; 1(2 = ) (%% ) T0 T' % U += !!U A 0 + P 4 1 6'52 54 54 8
BC 7 0 "
( . =)) 88 BC @ $ 4 $ + $ ( X A 4 B4C 9 > O 0 @ $ -
0 88 B3C 7 .) P 7 @ 88 B6C R M R 7
$ $ 3 + / $ # " @ " M) K0 ; B5C 7 .) # <
9 D 884
Functional-analysis and Partial Difference
Some Recent Advances in Partial Difference Equations 74
B;C O 9 . A ' /+$ 1 6$ ! $ 9 132< 8;3 B O 5 $ 6 09 3 B8C = & * $ + + ;12;3 <3 856
BC 0 )$) M & . ) M 7 ) O " 0 884 BC = ) 0 ' $ 344; 3< 3 BC ! A /+$ 1 6$ ! $ 9 1328< 4 8;3 B4C & 7 0 ' /+$ 1 6$ ! $ 9 1325 ; 8;3 B3C @ 7 . $ 3 + 4124 46 B6C LM 9 ( $ , $ + $ 364; 66; B5C LM 9 7 0 " * $ " $ 3 $ 66; 63 888 B;C LM 9 7 0 " . " + + 4588 ;6 B
75 Some Recent Advances in Partial Difference Equations
Petropoulou and Siafarikas
BC # 0 A* $ 5/$+ <5 ;8 8;5
BC = > P & )) # 0 0 0 ' 8<< BC 7 9 &
& 7 9 . $ D* / 8 + 3 <5;4 5<< 8;8 B4C P P =$ 868 B3C & $ + 5 64124 66 834 B6C 0 # / 0 9 ! 884 B5C O ! 1 E2E 1 2 F B; :12C 12 3 + 1423 36 858 B;C O ! + $ "' " Æ W' ) 0 854 < 8<; B
Functional-analysis and Partial Difference
Some Recent Advances in Partial Difference Equations 76
B44C = ) ' ' $ + $ 65 /. $ /)9 3686 843 4
B43C + $ 3 $ L B46C ! > > 1 )N 8< B45C O . + 2 0 D 8; B4;C @ L 7 # 0 D* *0 $ 6 5 + ( 1( %&=> 5 56
Some Recent Advances in Partial Difference Equations, 2010, 77-110
77
CHAPTER 3
" => 6 " ?4 3 5 ( ' ' ( @: ) * ( ) 4> ( .. .( @: A; 0 12 ## #:( 42 ## #:
&
)*+, ! +
$ $ )*+, ! - . )*+,! / 0 )*+,! 1 % *% . % $ $ $ $ ( % ! # . )*+ ! " 2 ! -, , . /0/1 Eugenia N. Petropoulou (Ed) All rights reserved - © 2010 Bentham Science Publishers Ltd.
78 Some Recent Advances in Partial Difference Equations
Gregor and Hekrdla
* ( . 0 ! # 0 0 ( ! $ 0 % $ ( . 3$ 0 ! # $ $ ! - $ % 2 $
! / $ $ 4 5 06 7 8 ! ) 7 . 8! 9 ! & . . ! 1 ! & . ! - . )*+, 2 -, $ 1 : ;$ <%) ! # ( ! + 0 $ !! $ 3 3 % $ 3 !
% $
% % ! 1 ! 1 $ % ! # = ! # 0 $
0 ! - $ 7 8! " % % $ ! & $ :=;$ ! & )*+, ( $ ! & 0 .
0 " $ + ! -
Partial Difference Equations and Their Application
Some Recent Advances in Partial Difference Equations 79
$ 2 ! 9 )*+ ! " $ ! 1 )*+, Æ :>;! 1 0 ! " )*+, . !! :?$ @;$ :A;
B ! 1 2 B 7- . " " ) 8 C!
! ! #
E( , $ 0 % 7 8 0 4 4 E( ( 4 $ $ $ =$ ! # ( $ ! -! >! ! F ! 1 0 ! $ 5 ! # $ !
80 Some Recent Advances in Partial Difference Equations
Gregor and Hekrdla
# $ ! $ $ (! - $ ! -! >! != 1 & $ 1 $ $
! # ! C % ! 5 $ $ 4 3
+ ,-
F, 0 )*+ 4 -! >!=! & 3 >!=! $ =$ $ , ! & / =! # >!=!= 4 4 4 ! &
3! # 0 : ; $ >!=!= : ; >!=!> 1 4 >!=! ! & 0 . )*+, Æ ( " ! # % Æ ¾½
Partial Difference Equations and Their Application
Some Recent Advances in Partial Difference Equations 81
" 0 ( 0 ! + >!=!?
>!=!@ $ $ 3 3 $ 3 3 3 3 0 " 0 ( $ ! & >!=!=$ . 0 $ 3 4 ! & / ( $ 3 3$ 3$ ! & 0
0 ! 0$ & ! & ! # 9 >! ! 3 >!=!=
A 4 > $ ) ' ) " $ D 1 > E ? 2 " $ " $
& ( $ 0 7( 8 ! & 0! 5 = = =! & ( $ $ $
82 Some Recent Advances in Partial Difference Equations
Gregor and Hekrdla
>!=!A
& Æ Æ ! #
$ ! & 0 ! # )*+ Æ >!=!= !
# )*+,$ % )*+, ! # ! &
! & )*+, ! 6 >!=!> F >!=!= 2 . 0 G 1$ D $ D 0 $ 4 4 3 = ! & $ E$ $ $ 4 ! 1 4 4 >!=!=$ =! >!=!=
0 ! 9 :H$ I;! & >!=!> )*+, >!=!=! & & >!=!> ! 9 0 $ 4
% % /! & $ ! E $ B 7 8 ! & $ $
Partial Difference Equations and Their Application
Some Recent Advances in Partial Difference Equations 83
$ 4 3 4 3! 9 /! # 0 $ / ! - $ , 0 4 ! &
$ ! & % % ! 9 $ 0 ! & & >!=!> >!=!A 7 $ $ ! & >!=!> >!=!?$ >!=!@! 3 >!=!? / + >!=!= 4 $ $ B ( B 3$ =! " $ 4 3
4 3 ! " $ 9 >!=! &
A 4 T U
$ $ $ ! & ( ( 0! 1 0 3 ( 7 8 > ( ! # ( ! 9 $ 0 7$ 4 $ 0 !
84 Some Recent Advances in Partial Difference Equations
Gregor and Hekrdla
8 9 >!=!@ & >!=!> $
Æ 2 $ . ! + Æ Æ 2 $ 3! # $ + >!=!?! & ( ! 9 $ % $ . $ ! & ! #, 7 8 >!=!=$ >!=!A >!=!> ! 9 )*+, >!=!H
4 ÑÑ Æ $ 4 4 % 0 $ !! = ! 6 >!=!A F >!=!H . 4 ÑÑ = & $ E$ $ $ 4 ! 1 4 4 & / >!=!H$ =!
0 ! 1 8 9 >!=!@ Æ $ ! & $ >!=!A ! 8 9 >!=!H # Æ ( $ :J;! & ! " !&
)*+,! 3 >!=!I )*+ Æ 4 ÑÑ % $ 3 3 3 3 3 3 3 3 4 >!=!I 4 $ 0 3 4 # 3 >!=!I 7 0 " ! &
Partial Difference Equations and Their Application
Some Recent Advances in Partial Difference Equations 85
# 3 >!=!I ! 9 :J;! # 3 3 ! # ! # >!=!I K K K K K K K K >!=!J K K K K K$ K$ $ ! & K K K $ . $ $ $ 0! 1 K K
K
K
$ $ $ $ $ 2 $ ( ! & $ $
! ! " 3 ! 9 !! : 3;! & >!=!J $ $ $ ( ( K $ :J;! & 0 & >!=!> >!=!A $ . >!=!A $ 0 ! 1 $ Æ & >!=!>$ >!=!A &$ / 7! & 7 8 >!=! & >!=!>$ &$ / ( $ >!=! $ $ 7 8! 1
4 # >!=!
! # $ Æ ! # :H;$ 0 &$ / 7$ >!=!= $
$ >!=!A!
86 Some Recent Advances in Partial Difference Equations
Gregor and Hekrdla
?B
# . 7 8 !
. ! / $ )*+, 0 ! & $ !! #= $ = 4 # $ ( 3 3 3 3 ( ( 9 ! >!?! C $ 7 8 ( ! 3 >!=!J F % 4 $ 9 ! >!>! 9 $ L
1$ D$ L 1$ D$ L ! A
X B
C
A 44 #*
9 L% L 1% 1 D% D % 3 >!=! 3 F 1 L$ D L$ L $ & 9 ! >!> $ ! 5 , &" ' # $ ' 4 # $ ' 3 1 0 ' ! 1 &" # $ ' $ # $ $ ' 3 L' # $ '
Partial Difference Equations and Their Application
Some Recent Advances in Partial Difference Equations 87
F 0 ( 4 &" (L L ' # $ ' >!=!
!! #= $ = ' 3 >!=! = =$ $ $=$ 3$ ! C $ >!=! 3 )*+! & B ( 4 &" ! & $
$ ! " &" # $ ' >!=! $ ! " (&" # $ ' >!=! =$ B $ ) ( ! & 9 ! >!? ! & ( 9 (&"!
A 43 #* "
C $ >!=! 3 )*+ ! F * &" L ! & ) L 0 (1 (L L 3 $ (D (L (L $ ( (L (L 3 M >!=! 3! F 0 Æ Æ ) $ % % Æ ) $ $ Æ ! % % % % 3 >!=! > (&" & )*+ Æ $ ( 3 3 3 3 0 7 8 4 #= $ = ' 3 9 ! >!?! ' $ >!=! $ >!=! = ! # !! >!=! = #= 3 $3 ' 3 >!=! ? ( (
88 Some Recent Advances in Partial Difference Equations
Gregor and Hekrdla
(K (K&" $ 9 ! >!@!
A 46 #* " !Y
# (K&" $ (K 4 &"
B (K1 (KL (KL 3$ (KD (KL (KL $ (K (KL (KL M B Æ )K $ % % Æ )K )*+ % % % >!=! @ % 3 )K (K! 5 ( 3 3 3 & >!=! > >!=! @ >!=! 3! & % % Æ ( % Æ (K Æ ( Æ (K! % % Æ ( Æ )K Æ ( Æ )K ( Æ )K = = ( Æ )K = = ! " >!=! > >!=! @ & >!=!> >!=! 3! + >!=!J )*+,! )*+, ! D )*+, ( ! !
Partial Difference Equations and Their Application
Some Recent Advances in Partial Difference Equations 89
>!=!= ! & # ! 9 0 &$ $ $ $ ! # & 0 $ 0 ! 9 $ ! & !
*
# >!=!= &$
$ 0 ( $ = $ 4 /$ Æ 2 $ !! $ 3 ! 9 $ $ $ 3! M 9 0 7 8 &
0! -! >!=! 3 & 3 & . >!=!= & 4 3! 8 9 >!=! #, *0 >!=! 3 . 0 2 4 3$ Æ $ & ! ! -! >!=! = ! / ! 9 F 4 & ! & 0 4 & 0 >!=!= 0 ( & ! #$ $ & 0 $ 7 0 8 3 >!=! A 3 + " 3$ 4 + 0 ! =! 7 4 ! F $ $ $ 4 & & ! F , 4 & &! # $ , &
90 Some Recent Advances in Partial Difference Equations
Gregor and Hekrdla
& ! & 2 0 4 & 0 >!=!= &$ , >!=! H : & 0 >!=! A! 8 9 >!=! > # #$ ( # # $ # Ú % $ # Ú $ $ # 3 $ 3
# $ " 3 & >!=! H 2 $ : ;!
>!=! ? # $ >!=! A ( >!=! I $ !! &! 8 9
8 9 >!=! @ & 2 0 ( 3 & ! 9 : ;! 6 >!=! A # >!=! J " ¼ $ & $ $ >!=!=$ 2 >!=! H $ $ >!=! A 0 1! & $ ! -! >!=! H ! & 9 .
& $ & $ $ 3 3 ! =! & & >!=!= . & (% & >!=! J 0$ 0 &
Partial Difference Equations and Their Application
Some Recent Advances in Partial Difference Equations 91
& 3 , ! 6 >!=! I # >!=!=3 ¼ $ & $ 1 -% $ >!=!=$ 2 >!=! H $ $ >!=! A 0 ! F $ 0 0 ! 3 >!=! J F & H = > = = = = > > = / ? 3 3$ $ 3$ ! F Æ >!=!= >$ 3! & : H $ & 3 3 3 3 = 3 > 3 ? 3 ? 9 >!A! # 9 $ $
A 45 7 $
: ( ( $ ( ! # ( >!=! H ! F 0 , 4 & 4 & ! & , 0$ , ! 3 3 3 3 = > ? 3 ? 3$ 3 ? 3! & 4 3 3 $ 3 ?
92 Some Recent Advances in Partial Difference Equations
Gregor and Hekrdla
>$ 3 = > 3 3$ ? 3! # 7 8 2 0 ( $ : 7 8 ( ! # $ ! & . ! & & >!=! A$ >!=! I! & 0 & >!=! J$ -% 0 = =$ $ =$ > (% 3 ?$ !
- 2 )*+,! -! >!=!=3 F Æ 0 $ 4 ! & $ >!=!= ! 4 ! Æ >!=!=
Æ 4 3 7 8 $ 0 4 Æ 3 Æ ! ! 6 >!=!= # Æ >!=!= >!=!=3 0 2 3 $ 0 ! 3 >!=!== ! # Æ $ ! 9 0 $ ! ! 2 & . >!=!= >!=!==! & / 0 3 ! & $ (% 0 $ -% ! $
2 & >!=! I!
Partial Difference Equations and Their Application
Some Recent Advances in Partial Difference Equations 93
# Æ $ 0 >!=!= >!=!== . 2 ! & ! 0! " : ; ! # >!=!= Æ $ 3 $ 7 8 ! ! $ ! Æ >!=!=>
/ ( $ : =;$ : >;$
/ ! >!=!=? =. 0/ 1/ 2 .. % $ / 2 % $ / / / 0 4 2 0 / % >!=!=@ # " >!=!=A ¼ 0/ 3 2 $ $ >!=!=? $ 0 >!=!=> 0 >!=!==$ >!=!=H ! 3
>!=!=I ¼ ! # 0/ 3 2 >!=!=? >!=!=H 0! # >!=!=@ 2
0! " 0 : >;!
'B
# & >!=! A$ >!=! I >!=!= >!=! H!
94 Some Recent Advances in Partial Difference Equations
Gregor and Hekrdla
# & 0 $ 0
% ! M & >!=! A & >!=! I$ 2 ! & $ %
! # & 0 $ ! 9 : ;! -! >!=!== F Æ 0 $ 4 ! 9 $ 0
3 >!=!= & 0 ( &$ 3$ 3 &$ & 4 3 # >!=!= Æ $ $ & ! 6 >!=!=> + F
0 ! F >!=!= 1 2 >!=! H & ; 1 0 < >!=! A 0 ; & >!=! J >!=!=3
0! " 0 2 >!=!= ! 3 & &! M $ >!=!= 1 >!=! H $ ; 1 0 <$ >!=! A! ) $ : ;!
. ,-/
D ! 9 Æ >!=!= $ & ! 9 )*+, Æ
: ?;! & : @; ! " !& 2 !
Partial Difference Equations and Their Application
Some Recent Advances in Partial Difference Equations 95
-
# ! = =! 9 Æ 3 >! & B 4 $
?! & 7 0 @! & N >!>! $ 4 N A! 1 4 >!=!= >!=!A! # $ & >!=!> 1 = 0 ! & 1 =
>!=!= >!=!A $ >%@! # $ !! 4 $ 0 ! ! & ! # 0 4 & 3 $ 3 4 & ' & ' & ' &
5 ! ! $ &' & ' & : A; ! 6 >!>! ;6 3 < >!=!= 3 1 % A! # Æ >!=!= >!>!=
4 >!=!= 0 / / ( "
96 Some Recent Advances in Partial Difference Equations
Gregor and Hekrdla
+ >!=!= >!>!= >!>!> 6 9 >!>!> "
2
N $ " >!>!? 9 0 " >!>!@ & >!>!@ &$ ! # >!>!? N F " & $ "$ "$ " "! 9 $ (. >!>!? $ "! " $ >!>!@ ! & >!>!@ ) ! " ) ! " " ! " 1 ?! 8 9 >!>!= & >!>!= Æ >!=!= . ! & ( ! # 7 4 8 4 0 87$ 8 4 0 >!=!= Æ K 7 # !! 7 #( & >!>! 4 6 >!>!> >!=!= 3 1. % A! # Æ >!=!= >!>!A # #
¼
¼
¼
¼
4 >!=!= 0 / #% # ( / ( " #% #% #% $ # ½
Partial Difference Equations and Their Application
Some Recent Advances in Partial Difference Equations 97
1 4 >!=!= 8#( ! & 8 # 3! & 8 4 K 8 3 Æ K # ! D >!>!A Æ K 0 >!>!=! 9 8 4 & >!>! 8! 8"$
! & )*+,! 6 >!>!? 9 4 $ : 4
9 9 >!>!H 2
! : >!>!I 1 %A! # Æ ! 4 $ 3 ! 3 9 : $ 3 9 : 55 2 D $ 9 3 9 " : ! " 3 9 : 9 3 9 " : ( F 9 3! & 9 3$ 9 3! " 9 3 $ 9 3! & >!>! ! !! >!>!H$ 9 3 ! 3 9 ! %! F 9 " : & 9 : 9 : " 9 : $ 9 :! & >!>! . 3 9 ! : 9 $ >!>!H$ >!>!I 9 : ! 5$ 9 : ! M $ . >!=!=! :
¼
¼
¼
¼
¼
¼
¼
¼
¼
¼
98 Some Recent Advances in Partial Difference Equations
Gregor and Hekrdla
6 >!>!@ >!=!= 1
% A! *0
# ;
!
! 04 ) ! 2 ; ! ; ; " 2
;
! ) ! "
9 >!=!A 2 ! ; ! " $ 2 ;
) ! " ) ! " ) ! "!! & ) ! ) "! 2 ! ; ) ! " ! ! & !! " 0 ! 3 >!>!A E " + >!=!= " ! D >!=!? >!=!@ 3 3$ >!=!? Æ Æ $ & >!>!= & >!>! Æ ! & >!=!@ Æ $ 9 . >!>!= 0 $ ! 1 8 9 >!>!=$ ( 8 4 8 7 (! " 0 ( ! F + >!=!= O 8 4! 9 4 8 8 1 8 8 " " & Æ & >!>! $ $ 8 " 8 D ( O 2
Partial Difference Equations and Their Application
Some Recent Advances in Partial Difference Equations 99
3 3 %! " ( ! 1 B # " 3 '
# 8 >!>!= 0! 1 >!=!@ 8 K 8 K 8
8 " "$ K * K :* ; # K K * :* ; $ ' 6 0 # $
* * # 0 # > @ > ! " $ > @ ? 3 3 ½
½
½ ¾
& (
1 $ 0 ! " # " # 0 ! + " # $ ! & ! " # ! 4 " # " #! & ( % $ ! 0 0 $ 0
! * P% $ $ 9 $ !
$ $ % $ !! & Q % $ ! / $ ! 5 0 $
0 ! 5 $ 7 8 2
100 Some Recent Advances in Partial Difference Equations
Gregor and Hekrdla
% % ! 9 % % ! ' " + 0 4 +
" 4 1 + + ! " # % ! 4 4 ! 1 ! 0 Æ ! ! & 2 $ $ ! # $ $ # ( !! P% 0 7 % 8 $ !! " ! $ 4 3 4 + % ( ! & " 2 1 0 $ $ ! 0 0 8 $
2 0 8 # ! # 4
$ !! ! & 2 ! C % ! 2 % ! & >!?!
! >!?! 3$ ! ! ! ! & 2 % ! )*+, $ ! & 0 4 -! >!?! F
Partial Difference Equations and Their Application
Some Recent Advances in Partial Difference Equations 101
3 + ! ! + 4 ! 9 + 0 3 9 4 + ! ! $
3 + ! +
4 +
3 6
5 $ 3+ + 4+ + ! # $ !! 4 3 9 + 7 8 4 4 3 ! & ! -! >!?!=
1 ! " #+ . . + ! 3 3 ! 4 + 4 + ! ! & . $ & ! + %! %! & ! ! +
!
!
%!
!
'
!
%!
' !
+ ! Æ 3 Æ! $ !Æ 4 + 4 + Æ! $ % % $ ! 3+
1 ! "# % %
9
" 3+ " + % ! & 0
$ ! & 9 >!H !
102 Some Recent Advances in Partial Difference Equations
Gregor and Hekrdla
A 4; ( $
9 ! ! ! 0 < >!=!= % % Æ. ! & Æ ! 3 >!?!> F 4 3 Æ 3
3 3 3 3 $ 4 3 3! # 0 . 0 4 + Æ 3 . Æ ! * !! : H; Æ ! 6 >!?!? # >!?! 7 8
% ! # 0 2 %* 0 >!?! ! 1 % $ 0 ( 0 2 2 3 C ! & 0 0 4 1 - 9% 0
Partial Difference Equations and Their Application
Some Recent Advances in Partial Difference Equations 103
! # C 9% 9% 0 9% C 0 0 ! -! >!?!@ F 9% & 0 ! 4 4 & % 4 & 0 %
( , * 4 & $ !! % $ 1 & ! # 6 >!?!A F >!?! 72 8$ !! 3 # 9% $ & >!=!> 4 Æ >!?!=
3 4 & $ >!?! 4 " >!?! ! 5 & Æ 3 & 0 >!?! ! # . $ $ $ ! 9 $ D#D' $ $ $ P% $ $ P% ! D#D' 0 4 1 >!?! D#D' - !! 1 ! 6 >!?!H 1 D#D' $ !! (!
104 Some Recent Advances in Partial Difference Equations
Gregor and Hekrdla
9 4 9 $
% $ % B 0! & $ ! D 4 E ! $ ! 9 ! C !! % F 9 ! & 2 % $ 0$ ! " ( %* $ ! # & >!=!A
% 0 )*+, Æ ! # Æ %
Æ ! 1 =%*
! & 0 % . )*+, )*+, 4 3 3 !! 0 ! ' % $ 4 ! # 9 %- % $ . 1 # $ =! & / , 2 3 - 3 -
- 5 1 - : $ : 1 - 5 !
Partial Difference Equations and Their Application
Some Recent Advances in Partial Difference Equations 105
>! 1 9 %- , . 0 3 & =%* 4 Æ :@;! # ! # 4 3 = 3 R 2 1 " = Æ ! & 4 3 3 1 = ! $ ! )*+
% $ ! ' : I;$ : J;$ :@;$ :?;! # =%* %* D#D' ! # 0 $ ! - $ & >!=!> $ >!=!= 0 0
:=3;$ :>;$ :A;! + >!=!= 0 0 >!=!= 0 0! & 0 0 >!=!= ! # 0 5 0 $ 5 ! C 1 ! / ! -! >!?!I & 0 >!=!= !!! 2 3 4 >!=!= 0 2 & 0 >!=!= !!! 2 3
4 >!=!= 0 2 # K K 0 0 ) ( $ ! 2 " ! 2 ! !
106 Some Recent Advances in Partial Difference Equations
Gregor and Hekrdla
" ! 2 ! % % 0 2 0 ! C $ ! " $ ! & Æ $ ! >!?! Æ 08 9 8 8 8 8 8 8 0 >!?! ! & 0 $ !! S $ !! 08 % >!?! ! = >!?!J F ! 3 ! * 8 #/#. & !
! 2 & ! F 8 8 1 ! 8 & 8 ! ! !
2
½
¾
½
" ! 0 2 ! & ! & F >!?!J 708
!! 8 #/#. 1 ! & ! C F >!?!J $ !! & ! 0 Æ 3 # $ $ $ ! 1 !! 3
8 " 2 (! 5 ! 5 F >!?!J %*
Partial Difference Equations and Their Application
Some Recent Advances in Partial Difference Equations 107
%* $ ( %* $ ! 3 >!?! 3 = 3 3 4 4 3 1 & >!>! $ ! ! 3 C $ 2
% ! C
$ 0 & >!>! $ & >!>!@ 0! 9 D#D' 0
% >!=!A $ # $ !! & % # 4 6 >!?! F >!=!= 0 Æ 3 # " >!=!= !!! 5 % ! Æ ! - . 0 $ $ ! C Æ >!?!= ! / $ . ( " !1! * $ 2 := ;! & ! # 0 D#D' Æ >!?! $ $ ! & 0% 0 ! M 0 $ 0 )*+ ( 3 3 0 8 8 8 8 8 8 1 : I;!
¼
108 Some Recent Advances in Partial Difference Equations
Gregor and Hekrdla
>!?! = & D#D' ! 8 8 3 8 8 =! 8 8 3 8 " %* )*+,$ 2 ! ( !
6
0
) ! # . 0 $ $
$ ! #
2 % $ . & ! )*+, )*+, ! & . ! 1 %* % )*+, ! 5
%* % 7 8! &
! ( (! & )*+, Æ ! $
% !
Partial Difference Equations and Their Application
Some Recent Advances in Partial Difference Equations 109
: ; /!)! 1 ! -, 6 ! - *(( #!$ JJ=! :=; T! 5( ! # % ,! + 9$ @ 4?AJ%?I3$ JIH! :>; M! '! - ! & & & $ =34 % H@$ JJ3! :?; C! =>4==?%=>J$ JIH! :I; T! E ! & ! & & $ @>4=?H%=A>$ JJI! :J; T! E ! " ! 2 $ ?4AH%I=$ JJ>! : 3; 9! 1! E ! 6 3! C U (4 $ J@J! : ; T! R ! D ! 2 $ H4 >% >?$ JJA! : =; ! D $ 5
! > & $ 4?3>%? @$ JIJ! : >; T! R ! 9 ! ? & $ I> 4@ %@J$ =33>! : ?; 9! E! D ! 1 Æ ! > & &$ =HA4H3=%H==$ =33=! : @; T! R ! "% ! 2 $ ?4>AJ%>I@$ JJH! : A; T! E ! & ! & $ H 4IA%JJ$ =33A! : H; T! E ! ! $ ?4=3@%= A$ JJ !
110 Some Recent Advances in Partial Difference Equations
Gregor and Hekrdla
: I; D! &! ', &! "! 5 ! " % . 0!
6.- - 2 0 6 : / $ JI ! : J; *! E ! " % % 0! 0 6 $ =?4=3 %=3H$ JHH! :=3; -! *! - U! & (
! 7 ! 1 )$ C U ($ JH@! := ; C!
Some Recent Advances in Partial Difference Equations, 2010, 111-140
111
CHAPTER 4
½ ! " #¾ $%& %! '%(! ! !%%! ! )% *%%+ %(! , ! !% '%! + -. '%! + "%%% % /! &( ! ¾ $%& %! '(% + 0%! &&% ! + 1!% + .23 + "%%% %, ! / (& ½
#
! 1 $ ( 0 2 9 =90 3 . 9 3 ! & 2 $ $ ! &
! & . $ ( ! & . $ $ ! , , Eugenia N. Petropoulou (Ed) All rights reserved - © 2010 Bentham Science Publishers Ltd.
112 Some Recent Advances in Partial Difference Equations
Tzirtzilakis and Kafoussias
& - ) $ , 9$ ! & )*+ . 9 * $ 0 0 $ S ! 1 $ . 4 >9 >9 & F > > 3 $ >9 & * >9 >) > >9 >9 & >) > &
$ ! & 0! &
0 $ Æ ( ! ' $ . B ! # $ $ $
! 1 . Æ ! ' $ $ 4%%!% %5! % % %5!$ ! * . 0 ! % (% % ! 1 ( 4 9 + - 9+- " - "- 9 R - 9R-
Numerical Schemes and Difference Equations
Some Recent Advances in Partial Difference Equations 113
9 * - 9*- 1 $ $ 0 . . ! " $ $ 0 . $
! 9 4 6!% % %! '%( !! $ 0$ ( 9! & 0 9! # 9
0 ! C 2 ! 1 ( Æ ! & 0 ! ' 0 % 0 % ! - $ $ ! D Æ 0 % $
$ ( Æ! & 0 %
2$ % ! 0&% '%( ( 9 ! M ( 0 0 $ ! 1 ( ! & Æ 9
0 ( ! & ! 6!% 7 % '%( 0 . ( ! 7 % '%( 7'8!
114 Some Recent Advances in Partial Difference Equations
Tzirtzilakis and Kafoussias
6!% $4%%!% '%( )*+,! # $
4 & ! & 0 2 ! 9 * # $ !!$ Æ96Æ Æ $ #0 ! &
B $ $ ( 0 0 0 $ ! 9 * ! # 0 ! & Æ 0 % ! & Æ 4%%!% %5, ! (% % % %5! ! # $ 0 Æ ( . %! # % ! $% %($ $ Æ$ %%
2 ! # 2 ! & . 4 $ ! !%! $ 2 ! 0 . ! #
! !% %!% $ 2 2 2 ! Æ 9 : %5%!% (%%
Numerical Schemes and Difference Equations
Some Recent Advances in Partial Difference Equations 115
Æ ! 5 $ % ! #
$ Æ !
! " #
& 0 $ . $ . $ 0! & ; 4%%! ! & 0 . ! & %! $ . ( 0 ! 3 ) @
F 9V )$ 9 . ! & 0 . 9 9V 0 0 . Æ Æ) 2 ! 1 9 9V $ % $ $ ( % ! # Æ $ 0 2 9V ) 9 ) ( ! 9 $
! - ) & ;
& 0 % ! # ! # $ 0 9 ! & 9 ( !
116 Some Recent Advances in Partial Difference Equations
Tzirtzilakis and Kafoussias
& ; ; & 5 C !D E
& $ C ##$ 0 ',D $ 5 < J@ ! #
0 9 $ ) 3 7 8 ! & 9
102 !!$ W=(?.65 W( ?.65 W 5 0! $ 1 102 9 9 ! 9 ! # $ .6 5! # $ . 0 . $
!
1 "
1 # $ 9 * ! # Q 0 0 ! F $ $ 9 ) 0 ) 4 :3 ; :3 );! )
0 ) $ 0 ! F, 9 =90 3 9 3 ?!=! 9 ) =) ?!=!= >9 $ 9 >9 $ $ 9 (! !! 90 > >) > 9
! 900 > # 0 2 :3 ; :3 ) ; ) $ 9 ?! ! ' - 0 $ $ ) 0 ) ) ) ) ! & ) )!
Numerical Schemes and Difference Equations
Some Recent Advances in Partial Difference Equations 117
A 3 > D
& 9 ) ) 0 ! & 0 2 9 @ ! 9 9 ) 9 @ 9 9 ?!=!> 0 9 ) 9 9 ) 9 9 ) ) 9 9 ) ) 9 & 9 * & ! 9 9 ) >9 > 9 9 ) 9 ) =O > 0 > 0 >9 ?!=!? > 9 O > 0 O > 3 A ! 9 9 ) 9 ) >9 >9 =O > ?!=!@ > 0 0 9 ) @
¼ ¼
¼ ¼
¼ ¼
¼ ¼
¼
¼ ¼
118 Some Recent Advances in Partial Difference Equations
Tzirtzilakis and Kafoussias
M 2 $ ! " $ 9 @ 9 @ >9 4 9) = B= > 1 & + ?!=!@! & 90 , 90 0 @! & 7C8 0 9 @ 9 @ 9 @ 9 @ >9 C ?!=!A > C 4 9) = = 3 " 3 ?!=!A 79 * 8 9 @ 9 @! & ! & 90 ! $ $ & 9
@
)
9
=O >O 9 )
>9 > 0¼ ¼ > 9 > 0¼ ¼
>9 >
0 ¼ ¼
?!=!H
9 $ 90 7D ( * 8 9 @ 9 @ 9 @ 9 @ >9 C ?!=!I > - $ ?!=!H ?!=!? 0
90$
@ 9 @ C 9 @ 9 @ ?!=!J = = &
! & ! ' >9 >
9
Numerical Schemes and Difference Equations
Some Recent Advances in Partial Difference Equations 119
$ ! 9 $ 0 ?! ! 9 . >9 = >9 @ ?9= @ 9> @ C >
= >
?9- @ 9- = @ C 1 $ $ ( ! >9 >
9 - @
?!=! , 0 ! 9 7 8 9
90 ( ! 9 & 9 ) ) 9 ) ) >9 >9 =O >) >) 0 ) 0 9 ) 9 ) >9 >9 =O > 0 > 0 ?!=! $ 9 ) ) 9 ) 9 ) 9 ) = ) ) >9 > 9 =O >) 0 > 0 9 @ 9 @ 9 @ 9 @ = ) > 9 3 =O) >>)9 > 0 0 9 @ 9 @ 9 @ 9 @ = C ) C 3 ?!=! 3 ) & ) > 9 > 9 4 B =O >) 0 > 0 ¼ ¼
¼ ¼
¼ ¼
¼ ¼
¼ ¼
¼ ¼
¼ ¼
¼ ¼
¼ ¼
¼ ¼
120 Some Recent Advances in Partial Difference Equations
Tzirtzilakis and Kafoussias
C ) C ! 0 !%! 04 B 3 $ $ $ . $ 0$ !! 3 ) 3 ! 9 ?!=! 3$ C C)$
) :9 @ 9 @ ; 9 @ 9 @ = ) 9 9 ?!=! 9 9 = @ $ !! 9 @ 9 ! & 9 & D ( " 9&D" 2 ! 7 8 ( 9 @ ( 9 @! 1 2 $ ! & %
) 0 ! & % ! 5 $ ( 7 8 7 8! 9 $ % ! & ! & 9 %5%!% (%% ! 1 $ $ $ !%! ! !%% ! Æ%! !! (% !% %!% !
+2
7" 8 ! 7 8$ 7 8 $ . $
Numerical Schemes and Difference Equations
Some Recent Advances in Partial Difference Equations 121
, ! & $ . $ ! 9 , $ ! 9 9 R C
# ! F 9V @% ! F 9 $ !! 0 ! # + @ 9 9 V + ?!>! 1 $ 0
) ?!>!= & 0 $ @ @ ! 0 >9 >9 ?!>!> >) > M $
$ 2 9V 9V 9V =V9 9V ?!>!? ) 0 9V 7 8 9 ! D ?!>! +
+
= = = = )
9
+
)
9
9
9
+
)
+
9
+
+
9
9
+
9
9
+
9
+ + +
?!>!? 0 9 . + 4
122 Some Recent Advances in Partial Difference Equations
Tzirtzilakis and Kafoussias
=
?!>!@ ) + + + ?!>!? ! 1 R C $ @ ?!>!@! ) 3! F B ! 1 $
9 $
+
B
+
0
= -
?!>!A
00 0 1 ! * ?!>!>$ ! $ ?!>!A $ 0$ $ = > - ! ( ?!>!@ 0 ) 3! * ?!>!>$ + + ) + ) ( 0 ?!>!H ! & ?!>!H 0 ! # $ R C
! 5 $ . ( ! R C ?!=! $ 2 $ !
!
½
1 $ 2 ?!=! 9 . & D ( " $ 9&D" C) C ) 9 9 ?!>!I 9 9 = & $ . $
Numerical Schemes and Difference Equations
+
Some Recent Advances in Partial Difference Equations 123
+ = ) + +
< + ( 0 + ( 0 + ( 00 ) (0 (0 0 & ( 0 ( 0 = ( 0 ( 0 + +
?!>!J
) ( 0 ( 0 0 = & ( 0
= ) 0 =# 0 &
=# =( =# =#=( =# # )6 $ 0 E
, 4
: =# =#=( ; ?# & ?# I#
? I #
#
=(
D ( ?!>! 3 =( = = I# =# = & I# A# 3 # = $ 7 8 9&D" 3 # 9&D" !
124 Some Recent Advances in Partial Difference Equations
Tzirtzilakis and Kafoussias
!
D 2 ?!=!
9 & " 9&" C) C ) 9 9 ?!>! 9 9 & ) + + ?!>! = + + & ) ( 0 0 ( 0 0 & ( 0 ( 0 ) ( 00 ( 0 0 ( 0 & ( 0 ( 0 + ) 0 0 # 0 0 + & $ 0 ( 0 # =( =( =# " , ! 5 $ ?#
9&" ! 1 $ 9&D" C C $ 0 !
!!
D 2 ?!=! 9 & 9 "
9&9" C) C ) 9 9 ?!>! > 9 9 = &
Numerical Schemes and Difference Equations
Some Recent Advances in Partial Difference Equations 125
+ = ) + + & & ) ( 0 0 (0 & ( 0 ( 0 = ( 0 ) ( 0 0 ( 0 = & ( 0 ( 0 + ) 0 =# 0 & = + +
?!>! ?
=# =( =# =#=( =# & 0 : =# =#=( ; ?#
? =
?# I ? =# =( # # = $ ?# =# 9&9" ! # #
$ %!
9 $ 2 ! & (
F %9 9 7 8 9 ! & ( F 9 F99" $ C) C ) 9 9 9 9 ? ?!>! @ & ) + + + + ? ?!>! A & ) ( 0 0 (0 & ( 0 ( 0 ?
126 Some Recent Advances in Partial Difference Equations
( 0 ( 0
Tzirtzilakis and Kafoussias
) ( 00 ( 0 & ? ( 0 + ( ? ) 0 + ( ( 0 ( 0
1
( ( (
( 0
( 0 ++
0 ?# 0 3 ? # 0 1 .
$ ! # " !
( ( ( (
& " # (
1 ?!>$ ! # ! 9 (! & ( 0 B 9 B 9 9 B 9 B 9 9 ?!?! B 9 B 9 9 B 9 B 9 9
! !
9&D" 4 ) 9 9 9 9 =#9 =#9 ?!?!= 9 9 = # )6! & ?!=! 9 3 ?!?!=4 9
Numerical Schemes and Difference Equations
Some Recent Advances in Partial Difference Equations 127
+ ?!?!= @ ! # ?!=!
0 )! & $ 0 ?!?! $ ?!?!= ( B 9 9 =#9 =#B 9 B 9 =# 9 =#B 9
=# =#B ! 5 $ $ 9
9 @ =# =#B 9 # 6= 4 = # =# B & 9 @ =# =# 9 @ =# B & =# @ = # 9 @ =# =# & 9 @ =@ ) ?!?!> 9 ) =) # = = 9 @ B @ ?!?!? ?!?!> ?!?!? 9 @ =@ ) % = # " 3 ?!?!@ & ?!?!@ ?!=! ) 9 @ 0 0 = ) ) =) 9
128 Some Recent Advances in Partial Difference Equations
Tzirtzilakis and Kafoussias
!
M 9&" 9 9 # 9 9 9 9 #9 #9 # )6! & 0 @ ! D $ $ B 9 9 #B 9 #B 9 B 9 #B #B 9 9 #B #B ! 9 9 & $ ( 9 @ : # B B ; &
9 @
9 @
@
@
#
#
B B &
& =
B
B
@ # 9 @ =@ ) 9&D" ! 9 @
!!
?!?!A
9 9&9" ?!?!H 9 9 =# 9 9 9 =#9 =#9 & 0 @ 0 !
Numerical Schemes and Difference Equations
Some Recent Advances in Partial Difference Equations 129
M B 9 =# 9 =#B 9 & 9 @ =# =#B & 9 3 @ 4 9 5$ 9 @ =# =#B 9 # S= =# & 9 @ =# =#
9 @
=#
=#
9 @
@
@
=# B & =#
=# =# &
: = @ #; =@ )
9 @
?!?!I
9 # 0 =) B B @ ?!?!J & ?!?!I ?!?!J # 9 @ =@ ) 1 $ ! 9 @
130 Some Recent Advances in Partial Difference Equations
Tzirtzilakis and Kafoussias
$ %!
D F %9 $ 9 9 ?# 9 9 ?!?! 3 @ 0 ! * B 9 B 9 ?# B 9 9 ?# B 9 9 B 9 B 9 B 9 9 ?# B B9 B9 ?# B B 9 &
?# B B @ 1 $ 0 Æ ( 9 $ @! " $ 0 $ ( 9 ) =) ! & $ $ 93 ) =)$ 4 9 @ @ @ =@ ) ?!?! D ( 9 @ ?# B B =@ ) & 9 @
? = & = & ? = = 9 @
9 @
#
#
B
B
B
@
B
)
@
)
@ ?#
=@ =@ ) 9 @ ) # ?!=! ! 9 @
)
Numerical Schemes and Difference Equations
Some Recent Advances in Partial Difference Equations 131
?!=! ! & 2 . $ 2 ?!?! 1 0 4 & ?!=! $ 9 ) =)$ ! & $ 2 $ . ! & ?!? 9 @ =@ ) 2 ! & $ $ ( 0 7* 8 ! & 2 ! & ! 9 ?!= 9&D" 2 ) 3 3
3 3=! # R C 2 9&D" # 6= =) ! & $ ! & 9 ) ) 3$ 3!=$ 3!?$ 3!A$ 3!I !3! & ! 1 $ ! / 9&D" 9 ?!> ) 3 3 3 3 =@ R C ! # ! 9 ) 3 ? $ ) 3 A ! # ) ! & $ ! 9 ?!? 9&" ) 3 3 3 3=! # (
! # 9&D" ! 9 ?!@ ) 3 3 3 3 =@$ 9&D" 9 ?!>! & 9&D" ) 3 A !
132 Some Recent Advances in Partial Difference Equations
Tzirtzilakis and Kafoussias
9&" $ $ 9&D" ! 9 ?!A ) 3! ) 3 ) ) =! # $ 9&D" ! # 9&D" ) 33 ) 333! # 9&D" 9&" ) ! & 9&"$ $ ! & R C ) ! " $ $ 0 ! &
0 $ $ B 0 ) 3 0 $ 0
! 9 ?!H ) 3 3 3 3I! ) 3! & $ $ ) 3 3 3 3= ) 3 ? 9 ?!I! ) 3 3 3 3A 9 ?!J! ) 3 I ) 3 ! 9 0 ?!H$ ?!I ?!J ! 0 ) 3 3 3 3I! 1 $ ) 0 ) 0 ( ! & F %9 9 " F99" 2 ! 7 8 . 3 ) 3! 9 ?! 3 ?! ! # ( . $ )! # . 2 $ ,
Numerical Schemes and Difference Equations
Some Recent Advances in Partial Difference Equations 133
=@ ) - @ 1 ! $ 2 . $ $ @! & ?!=! 9 ) =) & $ . 9 ?! @ ) )! & 9 @ =@ )
R C ! - $
! " 2 $ $ . $ ! # . $
! $ $ !
9 @
134 Some Recent Advances in Partial Difference Equations
Tzirtzilakis and Kafoussias
A 3 7 A( G3 F G' F
A 34 7 A( G3 F 6 G' F
Numerical Schemes and Difference Equations
Some Recent Advances in Partial Difference Equations 135
A 33 7 A(@ G3 F G' F
A 36 7 A(@ G3 F 6 G' F
136 Some Recent Advances in Partial Difference Equations
Tzirtzilakis and Kafoussias
A 35 7 A(@ G3 F G' F
A 3; 7 A(A G3 F < G' F
Numerical Schemes and Difference Equations
Some Recent Advances in Partial Difference Equations 137
A 3< 7 A(A G3 F G' F
A 38 7 A(A G3 F 5 G' F
138 Some Recent Advances in Partial Difference Equations
Tzirtzilakis and Kafoussias
A 3 7 &AA G3 F G' F
A 3 7 &AA G3 F < G' F
Numerical Schemes and Difference Equations
Some Recent Advances in Partial Difference Equations 139
' 0
! ( 0 2 9=90 3 9 3 ! D 2 $ $ !
$ ! # $ 2 $ $ ! 2 ! & $ $ ! & R C $ $ ! /
$ 0 $ ! 9 $ $ ! ' $ ! # , $ ! & 9 =90 3! & $ $
$ ! & ( $ ! 9 $ ! " $ $ 0 0 !
: ; /! )! 1 ! -, 6 ! - *(($ JJ=! :=; ! 9! 1! + 2 -, ! 1 )$ JHH! :>; T!*!T! 1 ! @ - ! -E %5 $ #$ C U (!
140 Some Recent Advances in Partial Difference Equations
Tzirtzilakis and Kafoussias
:?; T! )! D ! @ ! * ) $ #C$ - $ C U ($ =33 ! :@; ! $ -!U! 5 $ 1! X $ &! 1! P !
@ - ! " %R $ C U (! :A; &! T! ! @ - ! M )$ =33=! :H; !1!T! 9 ! 6 @ - ! " %R $ C U (! :I; )! *! F ! C ! & $ H==4H?%I?$ JA@! :J; /! +! - (! -, 6 ! R C / !$ JJ3! : 3; /! +! - (! & & + . @ -, ! " 0 ) ) F$ =33@! : ; E! ! ' D $ -! 1! 5 $ "! < ! 1 ! > 2 $ =J4==>%=@ $ J@3! : =; /! * / ; E! *! " ! + , @ -, ! ' M )$ JHI! : ?; 5!
6 @ A ! F " 0 & $ JJ@!
Some Recent Advances in Partial Difference Equations, 2010, 141-142
141
!" $ @ $ @> $ @ $ @>
$ A $ A $ A= 1 $ 3@ D#D' $ 3@$ 3H ( $ I $ I $ I $ IJ 0 + 5 $ H3 9 %- $ 3? 9 Y $ A= 9 $ AH % $ @H
$ @ 0 $ H
$ IA%II $ A@ F , $ ?$ =3 $ J@ $ JJ $ =
0 $ ? 0 $ > 0 $ > $ > $ ?$ =3 $ ? ( $ =3$ ==
$ =A $ => $ =?
$ =I $ =? $ =?
$ =J $ =@ % $ =@
$ >3 $ =A $ ?$ =3 )+ $ IJ 2$ IJ 0 ( $ IJ $ AA$ H $ H=$ I= $ I? $ 3@ $ 3@ $ H= / , $ 3? $ 3 )+
Eugenia N. Petropoulou (Ed) All rights reserved - © 2010 Bentham Science Publishers Ltd.
142 Some Recent Advances in Partial Difference Equations
$ @=$ H= $ AA$ H $ H=$ J@$ JA $ ? $ ?$ 3$ =$ ?$ @$ =>$ =? $ ? $ ?$ 3$ =$ ?$ @$ =>$ =? $ J? $ J= $ JH$ JI $ H $ H= $ AA $ ? $ ?$ 3$ =$ ?$ @$ =>$ =? $ ? $ ?$ 3$ =$ ?$ @$ =>$ =? $ ? $ ? )# $ ? $ J$ = %=>$ =@$ =I$ >3$ >=$ >? $ ? $ J$ = %=>$ =@$ =I$ >3$ >=$ >? $ ? $ J$ = %=>$ =@$ =I$ >3$ >=$ >? $ ? $ J$ = %=>$ =@$ =I$ >3$ >=$ >? $ ? $ ? " $ I3 $ JI $ 3 $ I C , $ A$ =
Eugenia N. Petropoulou