Smithells Light Metals Handbook
This Page Intentionally Left Blank
Smithells Light Metals Handbook Edited by
E. A...
56 downloads
1508 Views
5MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Smithells Light Metals Handbook
This Page Intentionally Left Blank
Smithells Light Metals Handbook Edited by
E. A. Brandes CEng, BSc(Lond), ARCS, FIM and
G. B. Brook DMet(Sheff), FEng, FIM
I~E
1 N
E
M
A
N
N
Butterworth-Heinemann Linacre House, Jordan Hill, Oxford OX2 8DP 225 Wildwood Avenue, Woburn, MA 01801-2041 A division of Reed Educational and Professional Publishing Ltd @A
member of the Reed Elsevier plc group
OXFORD BOSTON JOHANNESBURG MELBOURNE NEW DELHI SINGAPORE First published 1998 Transferred to digital printing 2004 9 Reed Educational and Professional Publishing Ltd 1998 All rights reserved. No part of this publication may be reproduced in any material form (including photocopying or storing in any medium by electronic means and whether or not transiently or incidentally to some other use of this publication) without the written permission of the copyright holder except in accordance with the provisions of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London, England W1P 9HE. Applications for the copyright holder's written permission to reproduce any part of this publication should be addressed to the publishers
British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library ISBN 0 7506 3625 4
Library of Congress Cataloguing in Publication Data A catalogue record for this book is available from the Library of Congress
Typeset by Laser Words, Madras, India
Contents
Preface
vii
1 Related specifications Related specifications for wrought aluminium alloys Related specifications for magnesium alloys Titanium and titanium alloys -corresponding grades or specifications
2 General physical properties of light metal alloys and pure light metals 2.1 2.2 2.3 2.4
General physical properties of pure light metals and their alloys The physical properties of aluminium and aluminium alloys The physical properties of magnesium and magnesium alloys The physical properties of titanium and titanium alloys
3 Mechanical properties of light metals and alloys 3.1 Mechanical properties of aluminium and aluminium alloys Alloy designation system for wrought aluminium Temper designation system for aluminium alloys 3.2 Mechanical properties of magnesium and magnesium alloys 3.3 Mechanical properties of titanium and titanium alloys
4 Aluminium and magnesium casting alloys 4.1 Aluminium casting alloys 4.2 Magnesium alloys
5 6 10 13
14 14 14 15 40 55
67 68 80
vi
Contents
5 Equilibrium diagrams 5.1 Index of binary diagrams
6 Metallography of light alloys 6.1 Metallographic methods for aluminium alloys 6.2 Metallographic methods for magnesium alloys 6.3 Metallographic methods for titanium alloys
7 Heat treatment of light alloys 7.1 Aluminium alloys Annealing Stabilizing Hardening 7.2 Magnesium alloys Safety requirements Environment Conditions for heat treatment of magnesium alloys castings
8 Metal finishing 8.1 Cleaning and pickling processes Vapour degreasing Emulsion cleaning 8.2 Anodizing and plating processes 8.3 Plating processes for magnesium alloys Dow process (H. K. Delong) Conditions Electroless plating on magnesium 'Gas plating' of magnesium (vapour plating)
9 Superplasticity of light metal alloys
93 93
163 163 168 171
173 173 173 173 173 176 176 176 176
179 179 179 179 182 185 185 185 185 185
186
10 Light metal-matrix composites
188
Index
193
Preface
The light metals covered by this handbook are only those of industrial importance- aluminium, magnesium and titanium. The values given have been updated to the time of publication. They are intended for all those working with light metals; for research or design purposes Reference to source material may be found in Smithells Metals Reference Book (revised 7th edition). For design purpose values of mechanical prolYerties must be obtained from the relevant specifications. Equilibrium diagrams are taken to be the most suitable for general work. For specialist work on any system, original sources should be consulted. E.A .B . Chalfont St Peter, Bucks
This Page Intentionally Left Blank
1
Related specifications
h)
Table 1.1 RELATED SPECIFICATION9 FOR WROUGHT ALUMINIUM ALLOYS
BS international
Nominal composition old I S 0 No.
Al-
1050A 1080A 1200
99.5
1350 201 1 2014A 2017A 2024
99.5 Cu6BiPb Cu4SiMg Cu4MgSi Cu4Mg 1
2031 2117 26 18A
Cu2NiMgFeSi Cu2Mg Cu2Mg1.5 FelNil Mnl MnMg Si5 Si12 Mgl Mg5 Mg4.5Mn Mg3.5 Mg2 Mg3.6 Mg3Mn MglSiCu MgOSSi SiIMgMn Zn4.5Mg Zn6MgCu
3 103 3 105 4043 4047 5005
5056A 5083 5154A 525 1
5454
5554 6061
6063 6082 7020 7075
99.8 99
co r?.. -
UK former BS designation
France former NF
W. Germany Wk. No.
g
Italy Canada
Sweden
USSR
OldUNI
New UNI
Japan
9001R 900114
A1050 A1080 A1200
P
0;i‘
%
1B 1A 1c
A5 A8 A4
3.0255 3.0285 3.0205
1E FCI HI5
A516 PbBi A-U5 A-U4SG A- UK A-UK1
3.0257 3.1655 3.1255 3.1325 3.1355
A-U2N A-U2G A-U2GN
3.1305
-
2L97,2L98, L109, L110, DTDS l00A HI2 3L86 H16 N3 N3 1 N2 1 N2 N4 I N6 N8 N5 N4 N5 1 N52 H20 H9 H30 HI7 2L95, L160, L161, L162
-
-
3.0515 3.0505
-
A-SS A-S12 A-(30.6 A-GSM A-G4.5MC
3.3555 3.3547
A-G2M A-G2.5MC
3.3525 3.3537
-
-
-
-
3.3211 -
A-SGM0.7 A-ZSG A-ZSGU
3.2315 3.4335 3.4365
A-GSUC
-
E
-
990
4 007 4004 4010
CB60 CS4IN
AK 8
6 362 3581
900115 m215
4 338
mu3
A2011 A2014
-
D 16
3 583
900214
A2024
3 577 3578
900211 9oou6
A22 17
3 568
* ” 9003R
AGO5 A4043
900511
-
-
CG42
-
CG30
-
-
GM41 GR40
-
GM31N GM31P CSIIN GSlO
-
-
zG62
-
4 355
-
4054
-
-
4106 4140
-
4104 4212 4 425 SM6958
-
4 507 4 509 3 567
-
900111
-
-
D 18 AK 4-1
AMG3 -
-
5 764
-
900515 -
A5005
3 574 7 789
9005/3
A5454 A5554 A6061 A6063 A7075
AD3 AD31
6 170
-
-
3571 7791 3 735
900614 9007/1 9007R
V95
-
7 790 -
9006R -
-
-
-
-
A5083
--
6
6
3
3
8
B
Related specifications Table 1.2
3
RELATED SPECIFICATIONS FOR MAGNESIUM ALLOYS
Cast alloys
Nominal composition
UK designation
UK BS2970 MAG
RE3Zn2.5 Zr0.6
ZRE1
Zn4.2REI.3 ZrO.7
USA ASTM
USA AMS
France AFNOR
Standard AECMA
W. Germany aircraft
6-TE
EZ33A-T5
4442B
G-TR3Z2
MG-C-91
3.6204
3.5103
RZ5
5-TE
ZE41A-T5
4439A
G-Z4TR
MG-C-43
3.6104
3.5101
Th3Zn2.2 Zr0.7
ZTI
8-TE
HZ32A-T5
4447B
G-Th3Z2
MG-C-81
3.6254
3.5105
Zn5.5Thl.8 ZrO.7
TZ6
9-TE
ZH62A-T5
4438B
-
MG-C-41
3.5114
3.5102
AIgZn0.5 Mn0,3
A8
1-M
AZ81A-F
-
G-A9
MG-C-61
-
3.5812
AI9.5Zn0.5 Mn0.3
AZ91
3-7B
AZ91 C-T4
-
G-A9Z 1
AI7.5D.5 Zn0.3/1.5 Mn0.15min
C
7-M
.
.
.
.
-
W. Germany DIN 1729
3.5194
.
3.5912
1.4.2 Wrought alloys Zn3Zr0.6
ZW3
E- 151M
-
-
-
MG-P-43
Al6ZnlMn0.3
AZM
E-121M
AZ61A-F
4350H
G-A6ZI
MG-P-63
W.3510
3.5612
Al8.5Zn0.5 Mn0.12min
AZ80
-
AZ80A
4360D
-
MG-P-61
W.3515
3.5812
Al3ZnlMn0.3
AZ31
S-1110
AZ31B-0
4375F
MG-P-62
W.3504
3.5312
Table 1.3
IMI designation
G-A2ZI
TITANIUM AND TITANIUM ALLOYS. CORRESPONDING GRADES OR SPECIFICATIONS
tlK British Standards (Aerospace series) and Min. olDer DTD series*
France AIR-9182, 9183, 9184
Germany BWB seriest
AECMA recom. mendations
[MI 115
BS TA 1, DTD 5013
T-35
3.7024
Ti-POI
IMI 125
BS TA 2,3,4,5
T-40
3.7034
Ti-PO2
IMI 130
DTD 5023, 5273, 5283, 5293 BS TA 6 BS TA 7,8,9 BS TA 21, 22, 23, 24, BS TA 52-55, 58 DTD 5043 BS TA 14, 15, 16, 17 BS TA 10, I I, 12, 13, 28, 56
T-50
IMI 155 IMI 160 IMI 230
IMI 315 IMI 317 IMI 318 IMI 318 ELI (extra low
interstitial)
-
T-60
3.7064
Tt-PO4
T-U2.
3.7124
Ti-Pl i
T-A5E T-A6V
T-A6VELI
Ti-P65 3.7164
I"i-I'63
USA AMS series:~
USA ASTM series ASTM grade I
AMS 4902, 4941, 4942, 4951
ASTM grade 2
AMS 49O0
ASTM grade 3
AMS 4901 AMS 4921
ASTM grade 4
AMS 4909, 4910, 4926, 4924, 4953, 4966 AMS 4911, 4928, 4934, 4935, 4954, 4965, 4967
AMS 4907, 4930, 4931
ASTM grade 5
ASTM grade 3, F. 136.
continued overleaf
4
Smithells Light Metals Handbook
Table 1.3
(continued) UK British Standards (Aerospace series) and Min. of Def
France
DTD series*
AIR-9182, 9183, 9184
Germany BWB seriest
IMI 325
-
T-A3V2.5
3.7194
IMI 550 IMI 551 IMI 624
BS TA 45-51, 57 BS TA 39-42
T-A4DE
3.7184
T-A6Zr4 DE
3.7144
IMI designation
IMI 646 IMI 662
IMI 679 IMI680 IMI 685 IMISII IMI 834
AECMA recommendations
AMS 4943 4944
-
T-EIlDA T-A6ZD T-A8DV
3.7154
USA ASTM series ASTM grade 9
Ti-P68 AMS 4919, 4975, 4976 AMS 4981 AMS 4918, 4971, 4978, 4979 AMS 4974
3.7174
BS TA 18-20, 25-27 DTD5213 BS TA 43,44
USA AMS series~i
Ti-P67 AMS 4915, 4916
T-A6E Zr4Nb
*UK BS 3531 Part I (Metal Implants in Bone Surgery), and Draft British Standard for Lining of Vessels and Equipment for Chemical Processes, Part 9, also refer. tGermany DIN 17850, 17860, 17862, 17863, 17864 (3.7025/35/55/65), and TUV 230-1-68 Group I, II, III and IV also refer. ~USA MIL-T-9011, 9046, 9047, 14577, 46038, 46077, 05-10737 and ASTM B265-69, B338-65, B348-59T, B367-61T. B381-61T, B382-61T also refer.
2
General physical properties of light metal alloys and pure light metals
2.1
General physical properties of pure light metals and their alloys
Table 2.1
PHYSICALPROPERTIES OF ALUMINIUM, MAGNESIUM AND TITANIUM
Property
Aluminium
Magnesium . . . . . . . . . . . . . . . . . . . . . .
Atomic weight C = 12 Atomic number Density (g cm - l ) liquid at 660 ~ AI, 651 ~ Mg, 1685 ~ Ti Melting point ~ Boiling point ~ Thermal conductivity W m - I K - I at ~
26.98154 13 2.70 2.385 660.323 (fixed pt ITS-90) 2520
0-100 2OO 4OO 6OO 8OO
238 238 238
20 0-100 200 30O 40O 600 800 Coefficient of expansion 10-6K - I at ~ 0-100 100 200 3OO 400 600 800 Electrical resistivity ~t$2 at ~ 20 100 200 300 400
900 917 984 1030 1076
24.305 12 1.74
1.590 649 1090 155.5 167 130
m
Titanium .
.
.
.
47.88 22 4.5 4.11 1667 3285 16 15 14 13 (13)
Specific heat J k g - I K -1 at ~
Temp. coefficient of resistivity 0 - 1 0 0 ~
-
1022 1038 1110 1197 -
23.5 23.9 24.3 25.3 26.49 -
26.0 26.1 27.0 28.9 -
2.67 3.55 4.78 5.99 7.30
4.2 5.6 7.2 12.1
600
--
--
800 10-3K - I
-
-
4.5
4.25
Note: For surface tension and viscosity of liquid metals see Metal Reference Book 7th ed. pp. 14-7 to 14-8
519 528 569 619 636 682
8.9 8.8 9.1 9.4 9.7 9.9 54 70 88 119 152 165 3.8
6
Smithells Light Metals Handbook
2.2
The physical properties of aluminium and aluminium alloys
Table 2.2
THE PHYSICAL PROPERTIES OF ALUMINIUM AND ALUMINIUM ALLOYS AT NORMAL TEMPERATURES
sand cast
Density
%
Material AI AI-Cu
A1-Mg
Al - Si AI-Si-Cu
AI-Si-Cu-Mg*
AI-Cu-Mg-Ni (Yalloy) Al - Cu - Fe - Mg
AI-Si-Cu-Mg-Ni (Lo-Ex)
*Die cast.
Coefficient of expansion
Nominal composition
AI AI Cu Cu Cu Mg Mg Mg Si Si Si Cu Si Cu Si Cu Mg Cu Mg Ni Cu Fe Mg Si Cu Mg Ni Si Cu Mg Ni
99.5 99.0 4.5 8 12 3.75 5 10 5 11.5 10 1.5 4.5 3 17 4.5 0.5 4 1.5 2 10 1.25 0.25 12 1 1 2 23 1 1 1
Thermal conductivity 100 ~C W m - I K -1
Resistivity
Modulus of elasticity
gem -3
2 0 - 1 0 0 *C 10 - 6 K -1
i.tflm
MPa x 103
2.70 2.70 2.75 2.83 2.93 2.66 2.65 2.57 2.67 2.65 2.74
24.0 24.0 22.5 22.5 22.5 22.0 23.0 25.0 21.0 20.0 20.0
218 209 180 138 130 134 130 88 159 142 100
3.0 3.1 3.6 4.7 4.9 5. l 5.6 8.6 4. l 4.6 6.6
69 71 71 71 7l
2.76
21.0
134
4.9
71
2.73
18.0
134
8.6
88
2.78
22.5
126
5.2
71
2.88
22.0
138
4.7
71
2.71
19.0
121
5.3
71
2.65
16.5
107
-
88
Table 23 THE PHYSICAL PROPERTIES OF ALUMINIUM AND ALUMINIUM AUOYS AT NORMAL TEMPERATURES wmuglu ~
~~
Coeflcient
of
9%
1199
Al
Sheet
Extruded 1080A 105OA
I200 2014A
2024
Al
Al Al
995
Extruded shect
99
Extruded Sheet
Extruded
HI11 H18
2.70
23.5
HI11 H18
2.71
23.5
HI11 H18
2.11
23.5
2.8 2.8
22 22
239 234 239 234 230 230 230 230 226 226 226 226 142 I59
T6
2.11 2.n
23 23
151
5.1 5.1
13 73
T8
259
23.6
88.2
9.59
76
T8
258
23.9
84
9.59
15
Hlll H12 H14 HI6 H18
2.14
23.0
180
3.9
0.0030
69
151
4.8
O.oM4
-
gg
0.8 0.15 45
n
cu Li
hill
15
69
235
0.1
0.6 2.1 2.3 0.12 2. I 2.0 1.50
O.Oo40
2.70
T4 T6
Mn cu
O.OO40
69 69 69 69 69 69 69 69 69 69 69
HI11 HI8
4.4
Mg
3103
Sheet
0.0042 0.0042 0.0042 0.0042 0.0042 0.0041 0.0041 0.0041 0.0041 O.Oo40
10-6 K-'
cu
Mn
2090
99.8
Modvlvr of elasticity MPa x l d
g cm-3
Condition*
99.992
Temp. of resistance 20- 100°C
Density
composition Speczjication
Thermal conductivity 100-c Wm-1 K-I
expansion 20-100"c
NoI~~MI
Resistivity PO
2.68 2.10 2.68 2.14 2.76 2.19 2.80 2.82 2.85 2.81 2.89 2.86 5.3
c *
14
45
0.1
1.25
shect
Extruded
continued overleaf
4
Table 23
(continued) WlUUghI
Spec$cation
5083 525 I
5154A 5454 A1-Li Al-Mg-Li
Al-Li-Mg 6061
6063 6063A 6082 6082
Nominal composition 96
4.5 0.7 0.15 2.0 0.3 3.5 2.7 0.75 0.12 2.0 3.0 2.0 3.0 2.0 1.o 0.6 0.2 0.25 0.5 0.5 0.5 0.5
1.o 1.o 0.7 1.o
1.o
Density gm-3
Condition* sheet
Hlll H12 H14 Hlll H13 H16
2.67
a.
Co&cient of expansion 20- I00"C
Thermal conductivity 100°C
K-'
Wm-' K-'
24.5
109
Temp.
Resistivity PQ
6. I
c o g . of resistance 20- 100°C
Moddwof elasticity MPaxld
p
0.0019
71
2
155
4.7
0.0025
2.67
23.5
2.68
24
4.9 5.3 5.4 5.7 5. I
0.0023 0.0021 0.0021 0.0019
Sheet Sheet
HI11 H22 H24 T6 T6
147 142 138 134 147
Sheet
T6
2.46
-
-
-
BiU
Hlll T4 T6
2.7 2.7 2.7
23.6 23.6 23.6
I80 154 167
2.70
23.0
2.7 2.7 2.7
24 24 24 23 23
193 201 197 209 201 172 184
3.5 3.3 3.5 3.2 3.3 4.1 3.7
0.003 1 0.003 1
2.69
23.0
188 193
3.6 3.4
0.0033 0.0035
Extruded Sheet Extruded Sheet
Hlll H14
Extruded
T4 T6 BiU T4 T5 T6 Bar/Extruded T4 T6 Sheet
T4 T6
L?
E
24
Sheet
5 1 6
2.69
2.56 2.52
70
-
70
70
71 79 84
68.9 68.9 68.9 0.0033 0.0035
71
-
69 69 69 69 69 69
-
6463 Al-Cu-Mg-Si (--)
Mi! Si cu Mg
Mg Ni
Ms Si
Mn Al-Cu-Mg-Ni (YdOY)
Al-Si-Cu-Mg
(Lo-&)
Al-Zn-Mg
cu
cu
zn cu
Mn
8090
0.oOU
225
147 159
5.2 4.5
0.0022
73
2.78
22.5
151
4.9
0.0023
72
2.66
19.5
151
4.9
0.oOU
79
Forgings
2.91
23.5
151
4.9
0.oOU
-
Extrusion T6
2.80
23.5
130
5.1
O.oO20
72
Platc
2.55
21.4
935
959
Sheet
1.0 1.o 1
Mn
cu
5.0
4.0
Mg Ni Si
Si
147
Bar
0.6 0.4 0.6 4.5 0.5 0.75 0.75 4.0 1.5 2.0 12.0
.o 1.o
10.0
0.7 0.4 5.7 2.6 1.6 0.25 25 1.3 0.95
T5 T6 T6
2.71 2.71 2.80
225
Sheet
T4 T6
2.81
Forgings
T6
Forgings
T6
0.1 H l l l =Aorrr*d
H122 =Quarter hard HI424 = Half hard HI626 = l l n u z q w had. HI828 =Hard
3.I 3.3
69 69 73
0.65 0.4
T4 = Solutioa htaIedand ".nosily agca T6 = Solution fmcd and oti6cially &
23.4 23.4
209
mi
0.0026
-
n
2 3 The physical properties of magnesium and magnesium alloys
F,
Table 2.4 THE PHYSICAL PROPERTIES OF SOME MAGNESIUM AND MAGNESIUM ALLOYS AT NORMAL TEMPERATURE ~
Material
Pure Mag Mg-Mn Mg-A1 Mg-Al-Zn
Nominal composition? 96
Mg 99.97
Mg-Zn-Zr
TI
(MN70)Mn (AM503)Mn AL8OAl
0.75 approx. TI 1.5 T1 0.75 approx. T1 Be 0.005 TI (AZ31)AI 3 Z n 1 AC (A8)AI 8 AC T4 zn 0.5 AC (AZ91)AI 9.5 AC T4 Zn 0.5 AC T6 (AZM)Al 6 TI a l l T1 (AZ855)Al 8
Zn
Mg-Zn-Mn
Condition
Density at 20°C g~m-~
Melting point "C Sol. Liq.
Coefl of thermal expansion 20-200°C K-'
Thermal conductivity Wrn-'K-'
650
27.0
167
3.9
1050
A
1.74
Electrical resistivity pncm
Specific heat 20-200" C Jkg-'K-'
Weldabiliry by argon arc
Relative damping
process$
capacity5
6.50 650 630
651 651 640
26.9 26.9 26.5
146
5
142
5.0
I 050 1050
117
6
1050
A A A
1.78
575
630
26.0
(84)
10.0
1050
A
600
84
13.4
C
A
C
14.3
1000 1000 1000 1000 1000 14000
A
84 84 84 84 79
A
79
14.3
1000
A
475'
1.83 1.83 1.83 1.80
470'
510
610
27.2 27.2 27.0 27.0 27.0 27.3
1.80
47s
600
27.2
1.81
595
-
14.1
-
C
0.5
(ZM21)B 2 M n l (ZW1)Zn 1.3 Zr 0.6 (ZW3)Zn 3 Zr 0.6 (U2)Zn 4.5 Zr 0.7 (ZW6)Zn 5.5 Zr 0.6
TI
1.78
27.0
T1
1.80
625
645
27.0
134
5.3
1000
A
TI
1.80
600
635
27.0
125
5.5
960
C
AC T6
1.81
560
640
27.3
113
6.6
960
C
T5
1.83
530
630
26.0
I17
6.0
1050
C
3
I .
2
$
5ii
t;
1.75 1.76 1.75
1.81
-gr
A A
a 8
Mg-Y-RE-Zr
AC T6
I .84
550
640
26.7
51
14.8
966
A
AC T6
1.85
550
640
24.6
52
17.3
960
A
AC T5
1.80
545
640
26.8
100
7.3
I050
A
M Zr
4.0 3.4 0.6 5.1 3.0 0.6 2.7 2.2 0.7
(Ru)Zn
4.0
AC T5
1.84
510
640
27.1
I13
6.8
960
B
RE
1.2 0.7 6 2.5 0.7 0.8 0.5 0.6 3.0 2.2
AC T6
1.87
515
630
21.0
109
5.6
960
A
TI
1.76
600
645
26.4
121
6.3
960
A
AC T5
1.83
550
647
26.7
105
7.2
960
A
AC T5
1.87
500
630
27.6
113
6.6
960
B
AC T6
1.82
550
640
26.7
113
6.85
lo00
A
AC T6
1.81
540
640
26.6
113
6.85
lo00
A
(WE43)Y RE(A)
Zr
W 4 ) Y RE(A)
Zr
Mg-RE-Zn-Zr
(ZRE1)RE
Zr
(m3)Zn
RE
Zr
Mg-Th-Zn-ZT
(2TY)Th
Zn Zr
(2Tl)Th
zn
Zr
0.7
cIz6)zn Th
Mg-Ag-RE-Zr
5.5 1.8 Zr 0.7 (QE22)Ag 25 RE@)2.0 Zr 0.6
(EQWRE(D) Ag cu
zr
2.2 I5 0.07 0.1
continued overleaf
Table 2.4
I
(com'wdJ
h)
condition
Density at2O"C gcm-3
AC T6
.87
465
600
T6
.87
465
AC T6
1.82
AC
1.75
Nominal compositiont Material
%
Mg-Zn-Cu-Mn
MG-Ag-RE-** Th-zr
Mg-n
(ZC63)Zn Cu Mn (ZC71)Zn Cu Mn
(QH21)Ag 2.5 FE(D) 1.0 Th 1.0 zr 0.7 (ZA)Zr 0.6
AC Sand cast. T4 Solution heat treated.
T5 hipitation heat mated. T6 Fully heat mated.
t
6.0 2.7 0.5 6.5 1.3 0.8
Mg-AI type alloys normally contain 0.2-0.4% Mn to improve nxmsim resistance. ** Thorium containing alloys arc being replaced by allcmative Mg alloys.
Melting point "C SOL Liq.
Thermal conductivity
Specifrc heat 20-200°C Jkg-' K-'
wrn-'~-I
Electrical resistivity pS2 cm
26.0
122
5.4
962
B
600
26.0
122
5.4
62
B
540
640
26.7
113
6.85
1005
A
-
650
651
27.0
(146)
(4.5)
1050
A
A
TI Extruded. rolled or forged. RE Cerium mischmctal containing appmx. 50% Ce. Non-equilibrium solidus 420'C. () Estimated value. RQD) Mischmetal enriched in necdynium.
=(A) Neodynium + Heavy R a n EanhS.
CoeE of thermal expansion 20-200°C K-I
*
Weldobility by argon arc process*
Weldability rating: A Fully weldable.
5 Damping capacity rating:
B Weldable. C Not recommended where fusion welding is involved.
B Equivalent to cast iron.
Relative dnmping capacity5
A Outstanding.
C Inferior to cast iron but better than Al-base cast alloys.
.E
B
General physical properties of light metal alloys and pure light metals
13
2.4 The physical properties of titanium and titanium alloys Table 2.S
Material 11141 designation
PHYSICALPROPERTIESOF TITANIUM AND TITANIUM ALLOYSAT NORMALTEMPERATURES
Coefficient of expansion
Temp. Thermal coefficient conof ductivity Resistivity resistivity
Nominal composition Density 20-100*C 20-100*C %
gcm -3 10- 6 K -1 W m -1 K -1
CP Titanium Commercially 4.51 pure IMI 230 Cu 2.5 4.56 IMI 260/261 Pd 0.2 4.52 IMI 315 AI 2.0 4.51 Mn 2.0 IMI 317 AI 5.0 4.46 Sn 2.5 IMI 318 AI 6.0 4.42 V 4.0 IMI 550 AI 4.0 4.60 Mo 4.0 Sn 2.0 Si 0.5 IMI 551 AI 4.0 4.62 Mo 4.0 Sn 4.0 Si O.5 IMI 679 Sn 11.0 4.84 Zr 5.0 AI 2.25 Mo 1.0 Si 0.2 IMI 680 11.0 4.86 Sn Mo 4.0 AI 2.25 Si 0.2 IMI 685 AI 6.0 4.45 Zr 5.0 Mo 0.5 Si 0.25 IMI 829 AI 5.5 4.53 Sn 3.5 Zr 3.0 Nb 1.0 Mo 0.3 Si 0.3 IMI 834 AI 5.8 4.55 Sn 4.0 Zr 3.5 Nb 0.7 Mo 0.5 Si 0.35 C 0.06
20 *C ttflcrn
Specific heat
Magnetic suscept.
10-6 20-100 *C 50 *C cgs units g-I ttflcmK - I Jkg - 1 K -1
7.6
16
48.2
0.0022
528
+3.4
9.0 7.6 6.7
13 16 8.4
70 48.2 101.5
0.0026 0.0022 0.0003
528 460,
+4.1
7.9
6.3
163
0.0006
470
+3.2
8.0
5.8
168
0.0004
610
+3.3
8.8
7.9
159
0.0004
-
8.4
5.7
170
0.0003
400
8.0
7.1
163
0.0O04
-
8.9
7.5
165
0.0003
-
9.8
4.8
167
0.0004
-
9.45
7.8
10.6
530
+3.1
3
Mechanical properties of light metals and alloys
The following tables summarize the mechanical properties of the more important industrial light metals and alloys. In the tables of tensile properties at normal temperature the nominal composition of the alloys is given, followed by the appropriate British and other specification numbers. Most specifications permit considerable latitude in both composition and properties, but the data given in these tables represent typical average values which would be expected from materials of the nominal composition quoted, unless otherwise stated. For design purposes it is essential to consult the appropriate specifications to obtain minimum and maximum values and special conditions where these apply. The data in the tables referring to properties at elevated and at sub-normal temperatures, and for creep, fatigue and impact strength have been obtained from a more limited number of tests and sometimes from a single example. In these cases the data refer to the particular specimens tested and cannot be relied upon as so generally applicable to other samples of material of the same nominal composition.
3.1
Mechanical properties of aluminium and aluminium alloys
The compositional specifications for wrought aluminium alloys are now internationally agreed throughout Europe, Australia, Japan and the USA. The system involves a four-digit description of the alloy and is now specified in the UK as BS EN 573, 1995. Registration of wrought alloys is administered by the Aluminum Association in Washington, DC. International agreement on temper designations has been achieved, and the standards agreed for the European Union, the Euro-Norms, are replacing the former British Standards. Thus BS EN 515. 1995 specifies in more detail the temper designations to be used for wrought alloys in the UK. At present, there is no Euro-Norm for cast alloys and the old temper designations are still used for cast alloys. In the following tables the four-digit system is used, wherever possible, for wrought materials.
3.1.1 Alloy designation system for wrought aluminium The first of the four digits in the designation indicates the alloy group according to the major alloying elements, as follow: 1XXX 2XXX 3XXX 4XXX 5XXX 6XXX 7XXX 8XXX 9XXX
aluminium of 99.0% minimum purity and higher copper manganese silicon magnesium magnesium and silicon zinc other element, incl. lithium unused
Mechanical properties of light metals and alloys
15
I XXX Group:
In this group the last two digits indicate the minimum aluminium percentage. Thus 1099 indicates aluminium with a minimum purity of 99.99%. The second digit indicates modifications in impurity or alloying element limits. 0 signifies unalloyed aluminium and integers 1 to 9 are allocated to specific additions. 2XXX-8XXX Groups: In these groups the last two digits are simply used to identify the different alloys in the groups and have no special significance. The second digit indicates alloy modifications, zero being allotted to the original alloy.
National variations of existing compositions are indicated by a letter after the numerical designation, allotted in alphabetical sequence, starting with A for the first national variation registered. The specifications and properties for Cast Aluminium Alloys are tabulated in Chapter 4.
3.1.2 Temperdesignation system for aluminium alloys The following tables use the internationally agreed temper designations for wrought alloys, (BS EN 515. 1995) and the more frequently used ones are listed below. The old ones still used for existing BS specifications e.g. BS 1490. 1989 for castings are compared with the new ones at the end of this section.
U.K.
Meaning
F HIll
As manufactured or fabricated Fully soft annealed condition
Strain-hardened alloys .
H Hlx H2x H3x H12,H22,H32 HI4,H24,H34 HI6,H26,H36 HI8,H28,H38 Heat-treatable alloys TI T2 T3 T4 T5 T6 T7 T8 T9 TI0
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
L
Strain hardened non-heat-treatable material Strain hardened only Strain hardened only and partially annealed to achieve required temper Strain hardened only and stabilized by low temperature heat treatment to achieve required temper Quarter hard, equivalent to about 20-25% cold reduction Half hard. equivalent to about 35% cold reduction Three-quarter hard, equivalent to 50-55% cold reduction Fully hard, equivalent to about 75% cold reduction Cooled from an Elevated Temperature Shaping Process and aged naturally to a substantially stable condition Cooled from an Elevated Temperature Shaping Process, cold worked and aged naturally to a substantially stable condition Solution heat-treated, cold worked and aged naturally to a substantially stable condition Solution heat-treated and aged naturally to a substantially stable condition Cooled from an Elevated Temperature Shaping Process and then artificially aged Solution heat-treated and then artificially aged Solution heat-treated and then stabilized (over-aged) Solution heat-treated, cold worked and then artificially aged Solution heat-treated, artificially aged and then cold worked Cooled from an Elevated Temperature Shaping Process, artificially aged and then cold worked
A large number of variants in these tempers has been introduced by adding additional digits to the above designations. For example, the addition of the digit 5 after T1-9 signifies that a stress relieving treatment by stretching has been applied after solution heat-treatment.
16
Smithells Light Metals Handbook
A full list is given in BS EN 515. 1995 but some of the more common ones used in the following tables are given below. T351
Solution heat-treated, stress-relieved by stretching a controlled amount (usually 1-3% permanent set) and then naturally aged. There is no further straightening after stretching. This applies to sheet, plate, rolled rod and bar and ring forging. T3510 The same as T351 but applied to extruded rod, bar, shapes and tubes. T3511 As T3510, except that minor straightening is allowed to meet tolerances. T352 Solution heat-treated, stress-relieved by compressing (1-5% permanent set) and then naturally aged. T651 Solution heat-treated, stress-relieved by stretching a controlled amount (usually 1-3% permanent set) and then artificially aged. There is no further straightening after stretching. This applies to sheet, plate, rolled rod and bar and ring forging. T6510 The same as T651 but applied to extruded rod, bar, shapes and tubes. T6511 As T6510, except that minor straightening is allowed to meet tolerances. T73 Solution heat-treated and then artificially overaged to improve corrosion resistance. T7651 Solution heat-treated, stress-relieved by stretching a controlled amount (Again about 1-3% permanent set) and then artificially over-aged in order to obtain a good resistance to exfoliation corrosion. There is no further straightening after stretching. This applies to sheet, plate, rolled rod and bar and to ring forging. T76510 As T7651 but applied to extruded rod, bar, shapes and tubes. T76511 As T7510, except that minor straightening is allowed to meet tolerances. In some specifications, the old system is still being applied. The equivalents between old and new are as follows. BS EN 515 BS1470D0 Pre-1969 BS F M Hill 0 0 T3 TD WD T4 TB W T5 TE P T6 TF WP T8 TH WDP TH7 is as TH and then stabilised. F/M is as manufactured or fabricated.
lhbk 3.2 ALUMINIUM AND ALUMINIUM ALulysMEcHAMcAL PROPERTIES AT ROOM TEMPERATURE Wrought Alloys
02%
Proof
Naminol composition
Speci&mrion 1199
1080A
IOSOA
1350
stress
Form
%
Al99.99 Al99.8
Al99.5
Al995
Condition
pa
Elong. % Tensile m50 mm Shear strength (22.6 mm) strength pa a5.656 m a
HI11 m 55 60 85 H14 HI8 85 110 Sh&t Hlll 25 10 HI4 95 100 HI8 125 135 W U C Hlll 10 HI4 90 105 HI8 110-140 130-160 shar Hlll 35 80 H 14 105 I10 HI8 130 I45 Bars and sections as extruded 50 75 140 125 Rivetstock HI5 lulcs Hlll 75 120 125 HI8 < 7 5 mm HI8 z 75 mm 110 115 Wm Hlll 42 75 HI4 la0 1I5 HI8 115-170 140-195
sheet
wm
Hlll HI4 H18
97
83 110
165
186
28
55
Brinfll hardness
(~=502)
m
60
50
15 23
12
10
28
50
60
19
17 11
10 70
29 29
60
19
-
47 15
10
38
-
-
-
-
-
-
10
30
-
35-41
65
21
15 85 65
30 40 z2
65 75
21
10 65 75
21
-
-
Fa.gue smngth (unnotched) Impacy Fracture 500 M H z engery toughness pa I (warn'/*)
-
-
-
--
-
-
-
38-48
--
55
-
-
69 103
30
-
48
-
-
-
--
Remarks
Highcstquality reflators
Domestictrim, chrmicalplant
%
Generalpurpose
formnble alloy
-
3. a 2
3. 2
- .
*
-u
-
-
rn n
.o,
=
ElecaiCal COnduCtOrS
9 2a
i ;
continued overleaf
Table 3.2
w
(continued)
00
Wrought Alloys
Nominal composition Specification
1200
2011 2014
2014A
Form
%
A1 99.0
c u 5.5 Bi 0.5 Pb 0.5
cu 4.4
Mg 0.7 Si 0.8 Mn 0.75 c u 4.4 Mg 0.7 Si 0.8 Mn 0.75
Condition
c u 4.5
Mg 1.5 Mn 0.6
Remark
-.. s
General purpose, slightly higher strength than lO5A
g c a B
35
43 20 12 11 9 38 40 6 6 14 16
70 75 80 90 95 70 70 100 95 240 240
-
-
-
Free machining alloy
100
22 10 8
260 290
108 139
140 125
450 480 425
20 10 22
115 135
IN*
440 465 500
10
260 295 250 260
T4 T6
270 430 250 385 315 465 310 415 340 425 340 425
Heavy duty applications in m s port and aerospace, e.g. large parts, wings Aircraft applications (cladding when used 1070A)
460
T3 T35 1
345 325
485 470
Hlll HI3 H14 HI6 H18 Bars and sections as extruded Tubes Hlll H > 75 m m H -= 75 m m T325 mm Extrudedbar T6 50-75 m m T3~lOmm wm Plate T45 1 T65 1 Barltube T6510 Sheet
T4 T6 Clad sheet T4 T6 Bars and sections T4 T6 Tubes T4 T6 wire T4
T6
2024
s.
90 105 120 135 160 85 90 131 124 340 370 365 425 485 490
Sheet
River stock Bolt and screw stock Plate
0.2% Elong. 45 Proof Tensile on 50 mm stress strength (22.6 mm) MPa MPa or5.65,&
cr,
Fatigue strength Shear Brine11 (unnotched) Impacy Fracture strength hardness 500 MHz engery toughness MPa (P=5d) MPa J (MPam'I2)
35 95 1 I5 125 145 40
-
128 120 295 260 350 290 415 440
425 480 445 465
450
-
-
-
22 31 35 38 42 23 21 34 32 95
-
-
40 50 60 60 45*
130* 95' 95' 140 124
115 135
-
--
-
-
18 19
285 285
120 120
140 140
17 10 12 9 15
-
115 135 115 135
-
%
-
-
8
0
-
Structural applications, especially transport and aerospace.
2024
21 17
2090
2091
cu 4.5 Mg 1.5 Mn 0.6 Cu 2.5 Si 0.6 Mg 0.4 Cu 2.7 Li 2.7 Zr 0.12 cu 2.1 Li 2.0 Mg 1.50
zr 0.1
PIate/sheet extrusions sheet
Cu 6 Mn 0.3
v 0.1 2004 2031 Mg 0.9 Si 0.9 Fe 0.9 2618A
Cu 6
Zr 0.4 Cu 2 3 N l 1.0
cu 2.0
Mg 1.5 Si 0.9 Fe 0.9 Ni 1.0
20 20 10 24
Aircraft
165
185 470 475 295
517 535
550 565
8 11
High strength, low density -alloy
T8x51 T851
310 310 505
420 430 580
14 6 7
Medium sangth, low density acm-alloy in damage-tolerant
T85 1
465
520
11
T851 T851 Ts
460
525 495 495
10
Hlll 1-4 T6
75 185 290
360
170
18 20
415
10
15 12 22
Medium strmgth. low density -alloy Medium strengrh, low density -alloy Weldable, creep mistant, hightelnpemture aerospace applications Superplastically deformable sheet Aerwngines, missile
15
tills
20 8
Aircraft engines
Pfate T81 Plate (12.5 nun) T81 Plate (12 nun) Plate(4Onun) Extrusion (10 m) Extrusion (30 m) Plate(12 nun) Plate (38 nun) Sheet
2219
Hlll T4 T6 T4
plate/sheet/
forEings Sheet
Forginss
T8 x 51
HI11 T6 T4
T6
75 325 395
430 390
150
230
300 235 340
420 355 420
70 330
170 430
8 10
SINCnUCS
Vehicle body shea
f?.
continued overlt-4
2
8
Table 3.2 (continued) Wrought Alloys
Nominal composition Specification 3103
%
Mn 1.25
Form Sheet
Wire
Mn 0.35 Mg 0.6
Sheet
3004
Mn 1.2 Mg 1.0
Sheet
3008
Mn 1.6
Sheet
3105
Fe 0.7 Zr 0.3 3003 Mn 1.2 clad with 4343 Si 7.5
Mn 1.2 3003 clad with 4004 Si 1.0 Mg 1.5
Sheet
Sheet
Condition HI11 H12 HI4 HI6 HI8 Hlll H14 H18 HI11 HI4 HI8 HI11 HI4 H18 Hlll H18
0.2% Pmof stress MF'a 65 125 140 160
Tensile strength Mpa 110 130 155 180 200
185 60 115 135 155 170-200 205-245 115 55 150 170 195 215 180 70 200 240 250 285 120 50 270 280
Hlll 40 HI2 125 HI4 145 HI6 170 Physical propemes
Elong.% on 50 nun (22.6 nun) or5.65,&
40 17 11 8 7
-
24 5 3 20 9 5 23 4
110 30 10 130 150 8 I75 5 as for 3003 clad with 4343
Shear Brine11 strength hardness MF'a (P=5$) 80
90 95 105 110
-
85 105 115 110 125 145
-
75 85 95 105
30 40
44
Fatigue strength (unnotched) Impacy Fracture 500 MHz energy toughness MPa J (Warn'/*)
Bz
Remarks General purpose, holloware, building sheet
47 51 30 45 55-65
-
Building cladding sheet
45 63 77
Sheet metal work, storage tanks
-
-
-
s
sc
a B
?%!
-
-
s6 t: B
Thermally reistant alloy. Vitreous enamelling Flux brazing sheet
Vacuum brazing sheet
4032
4043A 4047A 5657
5005
5251 525I
Si 12.0 cu 1.0 Mg 1.0 Ni 1.0 Si 5.0 Si 12.0
Forginss
T6
Rolled wire Wm
F
Mg 0.8
ShCCt
Mg 0.8
sheet
Mg 2.25 Mn 0.25
Skt
Mg 2.0 Mn 0.3
Bar Sheet
5
130
20 8 25 12 7 25
225
150 195 95 230 275
HI11 H22
60 60 I30
H28
175 215
250 270
95 100 230 255 95 260-290
F
Bars and sections as extruded (F)
Wm
75 189 40 140 165
325
Hlll HI4 HI8 Hlll H14 HI8 HI11 HI4 HI8
H24
Tubes
240
HI11
HI4 HI8 Hlll HI8
40
110
160 195 125 160 200 I85 245 285 170 180
220
6
4 22 1 2 16
20 8 5
-
75 95 105 75 95 110 12.5 145 I75
Sheet metal work Marineandtransport applications; good workability combined with good corrosion resistance and high fatigue resistance
139
125
200 250
20
5
aim
-
20
-
Architcaural him. commercial vehicle
125 132
185
-
Pistons
Welding filler wire Brazing rod High base purity, bright him alloy
-
-
6
I10
-
4
270 200 280-310
I I5
45
-
958
48
-
75-85
-
sr n
2. B
b
G
.o, continued overled
=
"",
h) h)
Table 3 3 (continued)
WroughtAlloys
Nominal composition Specificorion 5 154A
%
Mg 3.5
5083 5083 5556A 5056A
Condition
24 10 9 25 20 7
200 225
240 295 310 230 225 280 240 295 355 250 290 250 277 297
170 290
310 370
HI11 H22 H24 Bars and sections as extruded (F) Tubes Hlll HI4 Wirc Hill HI4 HI8 Rivet stock HI 11 HI2 Sheet HI11 H22 H24
125 245 275 125 125 220 125 265 310 125
Mg 4.5 Mn 0.7 Cr 0.15 Mg 4.5 Mn 0.7 Cr 0.15
Sheet
Mg 5
HI4 Hlll HI4 HI8 Rivet stock HI11 HI2 Bolt and screw HI4 stock
Mn 0.5
5454
Form
0.2% Proof stress MPa
Mg 2.7 Mn 0.75 Cr 0.12
Mg 5.0
Mn 0.5
Sheet
HI11 H24 Bars and sections as extruded (F) Tube HI11 H14 Wirc
Wirc
-
105
180
315
180 300
320 375
250 140 300 340-400 140
330 300 340 400-450 300 350
300
340
-
-
55 80 95 55 55
Remarks
Welded structures, storage tanks,salt water service
-
90 100
22 7
65
5
85
21 9 19 20 7
72 110 77 77
77
Higher strength alloy for marine and transport, pressure vessels and welded structures Marine applications, cryogenics, welded pressure vessels.
-
-
65 95 110- 120
65
-
-
g P s 58
c
$$! a
-
12
-
2.
55
-
-
m
Fatigue Elong.% strength Tensile on 50 mm Shear Brine11 (unnotched) Impacy Fracture strength (22.6 nun) strength hardness 500 MHz energy toughness MPa or5.65& MPa ( P = 5 d ) MPa J (MParn'l2)
Weld filler wire Rivets, bolts, screws
6060
Mg 0.5
Bar
Si 0.4
T4
n
90 130 190
F
85 115 210
T6
6063
Mg 0.5 Si 0.5
Bars, sections and forgings
Wm
6063A
6061
6082
Mg 1.0 Si 05
M g 1.0 Si 0.6 Cr 0.25 cu 0.2
Mg 1.0 Si 1.0 Mn 0.7
Mg
1.0
Si 1.0 Mn 05
B m and seaions W i r c
Bia Bolt aod scrcw stock Barlextrusion
Plate
T4 T6 Hlll T4 T6 T65 10 T5 T6
-
I15 195 280 160
210
T4 145 T6 280 T856 310-400 T8 (6-10 m) 295-385 T6510 280 T8 290
Medium strength exmion alloy for doon, windows, pipes. architectural use; weldable and
150
175 220
I55 180 245 I t5 180 230 310 200 240
30 30 20
--
35 52 75
100 130 160
-
-
5
0 70 50 65 78
22 12 12
129 117 152
230 310 385-430 380-415 310 340
20 13
200
60 90
13
-
205
-
100
185
85
-
T5 T65 10 T45 1 T65 I T6 T4
260 285 150 289 285 160
3cQ
15
315 240 315 315 240
11
T6 T4 T6
285 160 285
310 245 325
19 12 12 25 13 20
ia
160
-
205 180 215
-
Transport, windows, fumiturc, doors and architeaurrl uses, pipes (irxigation)
-
-
-
-
mmi-stilllt Architcetural extrusions (fast extnding)
-
6
8 I04 100
65
100 65 95
s 4
E 3
m ij h'
n
Table 3.2
(conrinurd)
!i2 Wrought Alloys
Specification
6463
6009
7020
7075
7050
7475
7016
7021
Nominal composition
Form
%
Mg 0.55 Si 0.4 Si 0.8 Mg 0.6 Mn 0.5 Cu 0.4 zn 4.5 Mg 1.2 Zr 0.15 Zn 5.6 Mg 2.5 Cu 1.6 Cr 0.25 Zn 6.2 Mg 2.2 Cu 2.3 zr 0.12 zn 5.7 Mg 2.2 cu 1.5 Cr 0.2 zn 4.5 Mg 1.1 Cu 0.75 zn 5.5 Mg 1.5 cu 0.25 zr 0.12
Condition
0.2% Proof stress MPa
Tensile strength Mp
Fatigue Elong.% strength on 50 mm Shear Brine11 (unnotched) Impacy Fracture (22.6 mm) strength hardness 500 MHz energy toughness or5.65& MPa ( P = 5 d ) MPa J (MPam'/2)
-
h
t.
g P-
Remarks
T4
130
180
T4 T6
215 130 325
240 235 345
16 12 24 12
Bars and sections T4 T6
225 310
340 370
18 I5
Transportable bridging
T6 Sheet
Sheet/plate/ forgings/ extrusion
Hlll T4 m3
105 505 435
230 570 505
17 11 13
Ainraft
Thick section plate/ forgings
I736
455
515
11
Low quench sensitivity, high stress corrosion resistance. Aimraft struchves
Sheet/plate/ forgings
T6 I T7351
525
Exausions
T6
315
360
12
Extrusion
HI11 T6
115 395
235 435
16
-
13
ShUCtUES
High base purity. High fracture toughness. Aircraft structures Bright anodized vehicle bumpers Bumper backing bars
6' f
8079
8090
Fe 0.7 Li25 Cu 13 Mg0.95
zro.1
Foii
Hlll HI8
Plate
483
Plate(38/65 nun) T8151 T8nl
Shea
Exbusion Extrusion (10 =) Exbush
(30 =) Plate(12 mm)
Li 2.4 cu 1.2 Mg 0.50
Forging
35 160
387 483
95 175 518
26 2 4.3
476
65
518
43
8091
Li25 cu 1.2
Mg 0.66 Zr 0.12 Li 24 Cu 1.9 MP0.85
--
--
-
-
-
-
-
-
-
-
Domcsticfoil
-
-
42
As2090butlowci
425 42
T81
360
420
T6 T8
373 436
472 503
75
T81551
440
510
45
T82551 T85 1
460 515
515 580
30
T85 I
460
520
40
T851 T651
455 468
500
517
33 28.1
T651
400
453
36-7
420
499
-
-
11
Forging
-
42
-
39
Zr 0.14
8090
--
711
-
-
16.98
as c
Table 3.2 (continued)
N
ch
Wrought Alloys
". h
2.
Fatigue
Nominal composition
96
Specification
Li 2.4 cu 2.0 Mg 0.70 Zr 0.08
8091
Form
0.2% Elong.% strength Proof Tensile on 50 nun Shear Brinell (unnotched) Impacy Fracture stress strength (22.6 nun) strength hardness 500 MHz energy toughness Condition MPa MPa or 5 . 6 5 6 MPa (P= 5s) MPa J (MParn'12)
460
Plate (40 mm)
408 408
8091
Li 2.3 Cu 1.7 Mg 0.64 210.13
Forging
Al
Al99.0
Sand cast Chill cast Sand cast chill cast Sand cast Chill cast Sand cast chill Cast Sand cast
-
436
503
80 80 160 215 295 340 125
8.2
-
164
158
-
-
-
-
-
-
55 55
25 25
30*
I59
20.72
R F 6
Remarks Peak-aged(696 stretch, 32 h at 170°C Peak aged (no stretch, 100 h at 170°C) Duplex-aged (ditto, 24 h at RT. 48 h at 170°C) soh. M.530°C.WQ, aged 20 h at 170°C
Cast alloys
Al-MI
(LMO)
(LM5)
Mg5.0
Mn 0.5
(LMlO) Mg 10.0 Al-Si
(LM18) Si 5.0
Al-Si-Mg (2L99)
Si 7 Mg 0.4
F F
30 30 100
F
100
T4 T4
180
F F F
60 70 65
chill cast
F
Sand cast chill cast
T6 T6
F
190
30 40 6 10 12 18 5
30.
95
-
40
55
High conductivity, high ductility Very high corrosion resistance Stnngth + corrosion resistance Intricate castings
110
50 55
85 45*
Very similar alloys,
-
-
230 230 90 120
60 65 85
45
95 55
170
6 8
75
21s
10
130
60
60*
195 210
240 290
3 6
-
90
56 90
15s
excellent casting characteristics and COIm i o n resistance. LM6 has slightly supperior cormsion mistance. Good strength in fairly difficult castings. Cast vehicle wheels
9
s
c $
3-
Al-Cu-Si
6154) Cu4.2 (L155)
Al-Cu-Si
(LM24)
(LM4)
Si 12
cu35 Si 8.0 Cu 3.0 Si 5.0
Al-Cu-Mg
AI-cu AI-Zn-Mg Al-Cu-Si-Zn
A1-Si-Cu-Mg
(LM22)
Cu 3.0 Si 5.0 Mn 0.5
W)
cuIJ
Si 10.0 (LM12) c u 10.0 Mg 0.25 (L119) Cu 5.0 Ni 1.5 (DTn
5008B
zn 5.3
Mg 0.6 Cr 0.5 (LM27) c u 2.0 Si 7.0 (LM30) Si 17.0
cu 45
Mg 0.6
(LM16) Si 5.0 c u 1.0 Mg 0.5
Sandcast T4 Chillcast T4 Sandcast T6 Chillcast T6 Chillcast F Dieeast F Sandcast F Chillcast F Sandcast T6 Chillcast T6 Chillcast T4
170 175 215 215 110 I50 90
Sandcast F Chillcast F Chillcast F Chillcast T6 Sandcast T6
85 95
100 230
260 I15
225
280 295 320 200 320 155 170 260 330 260
8 15 5 10 3 2 3 3 1 3 9
85 90 85 85 70 80 105
110 75
285 200
185 185 310 225
-
2
70 80 85 130 90
Sandcast T4
-
220
5
-
Sandcast F
85
I55
2
75
F F F 0
100 160
240 265
180 180 275 295
3 0.5 1
80 110 120
Sandcast T4 Chillcast T4
130 130
210 245
3 6
80 85
Sandcast T6 Chillcast T6
245
255
1
100 110
Chillcast Chillcast Diecast Diecast
155
275
140
310
1 2 1
I
2
Aircraft castings
-
Y
Table 3.2 (conrinwd)
W N
Cast Alloys
$
. s
Nominal composition Specifrcotion Al-Si-Mg-Mn
%
(LM9)
Si 12.0 Mg 0.4 Mn 0.5
(LM25) Si 7.0 Mg 0.3
Al-Cu-Mg-Ni (YAlloy) Al-Si-CuMg-Zn Al-Si-CuMg-Ni
(L35)
Cu 4.0
Mg 1.5 Ni 2.0 (LM21) Si 6.0 Cu 4.0 Mg 0.2 zn 1.0 Si 23.0 cu 1.0 (LM29) Mg 1.0 Ni 1.0
Form
Fatigue 0.2% Elong.96 strength Proof Tensile on 50 mm Shear Brine11 (unnotched) Impacy stress strength (22.6 mm) strength hardness 500 M H z energy Condition MPa Mpa or5.65& Mpa ( P = 5 d ) MPa J
Sandcast T5 Chillcast T5
120 160
185 255
2 2.5
70 80
55*
70*
235 275 90 90 135 165 95 100 225 240 220 240
255
1
310 140 180 165 220 170 230 255 310 235 290
1
Sandcast F Chillcast F
I30 130
180 200
1 2
85
-
Sandcast T5 Chillcast T5
120 170
I30 210
0.3 0.3
120 120
Sandcast T6 Chillcast T6
120 170
130 210
0.3 0.3
120 120
-
Sandcast Chillcast Sandcast Chillcast Sandcast Chiicast Sandcast Chillcast Sandcast Chillcast Sandcast Chillcast
T6 T6
F F TS T5
I7
n
T6 T6 T6 T6
2.5 4 I .5
2.5 3 8 1
3 1
2
100 110 60 60 75 85
65 70 105 105 115 115
90
z
6
Fracture toughness
t:
Remarh Fluidity, corrosion resistance and high sangth. Extensive use fa low-pressure castings
70* The most widely used general purpose, highsangth casting alloy
-
75 60 95 80*
I10*
-
-
. . I
3 6
L;
3
& g. g
85*
55 -
9
Highly sassed cornponents operating at elevated temperaGeneral engineering applications, particular crankcases Pistons for high performance internal combustion engines High performance piston alloy
(LM28)
Si 19.0
Cu 15 Mg 1.0 Ni 1.0 Si 11.0
cu 1.0
(LM13) Mg 1.0 Ni 1.0
Lo-Ex
-
120
lu)
130
05
170
200
0.5
120 120 105
-
115 125
858 100.
I I
190 -
75 75
-
1.4 -
Sandcast T6 Chillcast T6
T5
Sandcast
T6
Chillcast T6
T7 T7 Chillcast T5 sandcast Chillfast
(LM26) Si 9.0
0.5
170
Chillcast
-
190
Chillcast T5
-
220
1
-
-
-
-
Low expansion piston alloy
190 200 280290 140 I50 200 210 180 230
05
1
-
105
-
1A
1
--
120
80
-
-
Aimaftengine castingsforelevated tempenuure smrice
70
-
-
-
Aimaftenginecastings
1
-
-
Pistonalloy
Cu 3.0
Mg 1.0 Ni 0.7 Al-Cu-SiMg-Fe-Ni
(3L52)
Al-Cu-SiFe-Ni-Mg
(3L51)
Cu 2.0
Si 15 Mg 1.0 Fe 1.0 Ni 1.25 Cu 15 Si 2.0
Fe 1.0
Sandcast Chillcast
T6 T6
260
305
285 335
Sandcast
T5 T5
135 I50
170 210
Chillcast
1
2.5
3.5
-
Ni 1.4 Mg 0.15 Limit faSO x M = s manufxnmd
4
i t 9 cyc*s.
H111=anaeakd t12 intmncdiantempns.
H6 H8 = fully hprd tanper.
125
75
-
-
-
-G
a
( I ) specirl t e m p for maximum sfnu camSim ~sistance(US designation 773). (2) Special heat ueafmcnt for cmnbinatimof pmpcrtia (UScksignation l736). (3) Special heat fRarmmt f a canbination of plopcfiics (USdnignation T61).
(4) Special heat maoumt for combinntion of poprties (USdaignation77351).
P a 2
30
Smithells Light Metals Handbook
Table 3.3
ALUMINIUM AND ALUMINIUM ALLOYS - MECHANICAL PROPERTIES AT ELEVATEDTEMPERATURES
Nominal composition %
Condition
AI (1095)
AI 99.95
Rolled rod
(1200)
A1 99
Material (specification)
Temp.
Time at temp.
Proof stress
Tensile strength
Elong. % on 50 mm or
*C
h
MPa
MPa
5.65vr~
-
55 45 25 12 5
61 63 80 105 131
0.2%
WroughtAlloys
AI-Mn (3103)
Mn 1.25
Hill
24 93 203 316 427
-
Hill
24 100 148 203 260 316 371
10000 10000 10000 10000 10000 10000 10000
35 35 30 25 14 11 6
90 75 60 40 30 17 14
45 45 55 65 75 80 85
HI4
24 100 148 203 260 316 371
10000 10000 10000 10000 10000 10000 10000
115 105 85 50 17 11 6
125 110 90 65 30 17 14
20 20 22 25 75 80 85
HI8
24 100 148 203 260 316 371
10000 10000 10000 10000 10000 10000 10000
150 125 95 30 14 11 6
165 150 125 40 30 17 14
15 15 20 65 75 80 85
Hill
24 100 148 203 260 316 371 24 100 148 203 260 316 371 24 148 203 260 316 371
10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
40 37 34 30 25 17 14 145 130 ll0 60 30 17 14 185 110 60 30 17 14
110 90 75 60 40 30 20 150 145 125 95 50 30 20 200 155 95 50 30 20
40 43 47 60 65 70 70 16 16 16 20 60 70 70 10 11 18 60 70 70
24 100 148 203 260 316 371
10000 10000 10000 10000 10000 10000 10000
55 55 55 50 40 30 20
145 145 130 95 60 40 30
-
HI4
HI8
AI-Mg (5050)
Mg 1.4
Hill
Mechanical properties of light metals and alloys Table 3.3
Material (specification)
Nominal composition %
AI-Mg (cont.)
AI-Mg-Cr (5052)
(5154)
31
(continued)
Mg 2.25 Cr 0.25
Mg 3.5 Cr 0.25
Time at temp.
Proof stress
Tensile strength
EIong. % on 50 mm or
~
h
MPa
MPa
5.65V~
HI4
24 100 148 203 260 316 371
10000 10000 10000 10000 10000 10000 10000
165 165 150 50 40 35 20
195 195 165 95 60 4O 30
-
HI8
24 160 148 203 260 316 371
10000 10000 10600 10000 10000 10600 10600
200 200 175 60 40 35 20
220 215 180 95 60 40 30
-
Hill
24 100 148 203 260 316 371
10060 10000 10000 10000 10000 10000 10000
90 90 90 75 5O 35 20
195 190 165 125 80 50 35
30 35 50 65 80 100 130
HI4
24 100 148 203 26O 316 317
10000 10000 10000 10000 10O60 10000 10000
215 205 185 105 50 35 20
260 260 215 155 8O 50 35
14 16 25 40 8O 100 130
H18
24 100 148 203 260 316 371
10000 10000 10000 10000 10000 10060 10000
255 255 200 105 50 35 20
290 285 235 155 80 50 35
8 9 20 40 80 100 130
Hill
24 160 148 203 260 316 371
10000 10000 10000 10000 10000 10000 10000
125 125 125 95 60 40 30
240 240 195 145 110 70 40
25 30 40 55 70 100 130
HI4
24 100 148 203 260 316 371
10060 10000 10000 10000 10000 10000 10000
225 220 195 110 60 40 30
290 285 235 175 110 70 40
12 16 25 35 70 100 130
HI8
24 100 148 203 260 316 371
10000 10600 10000 10000 10060 10060 10000
270 255 220 105 60 40 30
330 310 270 155 110 70 40
8 13 20 35 70 100 130
Temp. Condition
0.2%
continued overleaf
32
Smithells Light Metals Handbook
Table 3.3
(continued) T~me
Material (specification)
Nominal composition %
AI-Mg-Mn (5056A)
Mg 5.0 Mn 0.3
AI-Mg-Si
(6O63)
Mg 0.7 Si 0.4
1"6
(6082)
Mg 0.6 Si 1.0 Cr 0.25
T6
(6o61)
Mg 1.0 Si 0.6 Cu 0.25 Cr 0.25
T6
AI-Cu-Mn (2219)
Cu 6.0 Mn 0.25
Condition As extruded
Forgings
F
T6
AI-Cu-Pb-Bi (2011)
Cu 5.5 Pb 0.5 Bi 0.5
T4
AI-Cu-Mg-Mn
Cu 4.0 Mg 0.5 Mn 0.5
T4
Cu 4.5 Mg 1.5 Mn 0.6
T4
(2o17)
(2024)
Elong. % on 50 mm
Temp.
at temp.
0.2% Proof stress
Tensile strength
*C
h
MPa
MPa
5.65,/~
2O 50 100 150 200 25O 300 350 24 100 148 203 26O 316 371 24 10O 148 203 206 316 371 24 10O 148 2O3 260 316 371 2O 10O 150 200 25O 30O 35O 4OO 24 10O 148 2O3 260 316 371 24 10O 148 203 26O 316 371 24 10O 148 2O3 260 316 371
100O 1000 10130 10t30 10O0 10O0 1 0O0 1 0O0 100O0 100O0 100o0 1000O 10000 100o0 100O0 100O0 100O0 10000 100O0 100o0 100O0 100O0 1000o 10000 10000 100o0 1000o 100O0 100O0 100 10O 10O 100 10O 10O 10O 10O 100O0 10000 100O0 1000O 100o0 1000O 100O0 100O0 100O0 10000 100O0 10000 100O0 100O0 100o0 10 0O0 10000 10000 100O0 I0000 10000
145 145 145 135 111 75 50 20 215 195 135 45 25 17 14 230 270 175 65 35 30 25 275 260 213 105 35 17 14 230 220 185 135 110 45 20 295 235 130 75 30 14 11 275 255 205 115 65 35 25 340 305 245 145 65 35 25
300 300 300 245 215 130 95 60 240 215 145 60 30 20 17 330 290 185 80 45 35 30 310 290 235 130 50 30 20 385 365 325 280 205 145 70 30 375 320 195 110 45 25 17 430 385 274 150 80 45 30 470 422 295 180 95 50 35
25 27 32 45 56 77 10O 140 18 15 2O 4O 75 80 105 17 19 22 4O 50 50 50 17 18 2O 28 6O 85 95 8
or
m
D
15 16 25 35 45 90 125 22 18 16 28 45 95 10O 19 17 17 22 45 75 10O
Mechanical properties of light metals and alloys Table 3.3 (continued)
Material (specqication) Wrought alloys AI-Cu-Mg-SiMn (2014)
AI-Cu-M8-Ni (2618)
Nominal composition %
,
Temp. Condition
Cu 2.2
~
T6
Cu 4.4 Mg 0.4 Si O.8 Mn 0.8
'Mg 1.5
,
Forgings
T6
Forgings
T6
Ni 1.2
Fe 1.0
(2031)
Cu 2.2 Mg 1.5 Ni 1.2 Fe 1.0 Si O.8
Forgings
T6
AI-Si-Cu-MgNi (4032)
Si 12.2 Cu 0.9 MS 1.1 Ni 0.9
Forgings
T6
(4032)
AI-Zn-Mg-Cu (7075)
Zn 5.6
AI-Mg (LM 5)
Mg 5.0 Mn 0.5
Sand cast
F
(LM I0)
Mg 10.0
Sand cast
T4
AI-Si (LM 18)
Si 5.0
Pressure die cast
F
T6
Cu 1.6 Mg 2.5 Cr 0.3
24 100 148 203 260 316 371 20 100 150 200 25O 3OO 350 20 150 20O 250 3OO 35O 40O 20 100 200 250 3OO 35O
24
100 148 2O3 26O 316 371 24 100 148 203 26O 316 371
,,
,,
,,
33
,
,
Time Elong. % at 0.2% Tensile on 50 mm temp. Proof stress strength or h
MPa
MPa
5.65~
10O00 10000 10000 1OO00 10000 10O00 1000O 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 1O000 1OO00 10000 10000 1OO00 1OO00 10000 10 000 10000 10000 10O00 10000 10000 10000
415 385 275 80 60 35 25 415" 410 400 260 85 45 35 325* 340 260 170 70 30 20 325* 310 255 110 45 30 32O 3O5 225 60 35 2O 14 505 430 145 80 60 45 30
485 455 325 125 75 45 30 480 465 430 295 110 70 50 430 440 300 210 115 50 30 430 400 310 155 75 40 38O 345 255 90 55 35 25 570 455 175 95 75 60 45
13 14 15 35 45 64 20 10 8 13 9 9 9 30 5O 70 90 11 15 30 6O 65 80 65
1 000 1000 1 000 1 000 1 000 1 000 1 000 1 000 1000 1 00O 1 000 10000 10000 10000 10000 10000
95 100 95 55 15 180 205 154 105 4O 11 110 I10 103 80 40
160 160 13O 95 30 340 350 270 185 9O 45 205 175 135 110 55
4 3 3 4 4 16 10 0 42 85 100 9 9 10 17 23
Cast alloys
,
,,
,,,,
20 100 2OO 30O 4O0 20 100 150 2OO 3OO 400 24 100 148 2O3 260 , ,
continued 'overleaf
34
Smithells Light Metals Handbook
Table 3.3
(continued)
*C
h
24 100 148 206 260
Proof stress
Elong. % on 50mm or
MPa
MPa
5.65vc$~
10000 10000 10000 10000 10000
145 145 125 105 40
270 225 185 150 75
20 100 200 300 400 20 100 200 300 400
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
95* 140 110 40 20 270* 255 60 25 12
155 180 135 60 30 325 290 90 40 25
20
1000
200*
275
I
Mg 1.5
100
1000
255
325
I
Ni 2.0
200 300 400
1000 1000 1000
150 30 15
135 55 40
T6
20
1000
275*
285
1 1
T6
Material (specification) (LM 6)
Si 1 2 . 0
Condition Pressure die cast
F
AI-Si-Cu (LM 4)
Si 5.0 Cu 3.0 Mn 0.5
Sand cast
F
AI-Si-Mg (LM 25)
Si 5.0 Mg 0.5
Chill cast
T6
AI-Cu-Mg-Ni
Cu 4.0
Sand cast
T6
(4L 35)
Temp.
Time at temp.
Tensile strength
Nominal composition %
Chill cast
0.2%
AI-Si-Ni-Cu-Mg
Si 12.0
(LM 13)
Ni 2.5
100
1000
280
320
Cu 1.0 Mg 1.0
200 300 400 20 100 200 300 400
1000 1000 1000 1000 1000 1000 1000 1000
110 30 15 200* 195 110 35 15
165 60 35 275 250 170 60 35
Chill cast Special
2
289 3 7 13 2 2 2 12 27 2 2 25 65 65
1
32 60
1
15 25 1 1
3 15 50
*0.1% Proof stress. Table 3.4
ALUMINIUMAND ALUMINIUM ALLOYS- MECHANICALPROPERTIES AT LOW TEMPERATURES
Material (speci1ication)
Nominal composi tion %
AI (1200)
AI 9.0
0.2%
Condition Rolled and drawn rod
Hill
HI8
AI-Mn (3103)
Mn 1.25
Rolled and drawn rod
Hill
Temp.
Proof stress
Tensile strength
*C
MPa
MPa
Elong. % on 50 mm or 50 mm
24 -28 -80 -196 24 -28 -80 -196 24 -28 -80 -196
34 34 37 43 140 144 147 165 40 40 50 60
90 95 100 170 155 155 165 225 110 115 130 220
42.5 43.0 47.5 56 16 152 18.0 35.2 43.0 44.0 45.0 48.8
Reduction in area
Fracture toughness
%
MPa m I/2
76.4 76.4 77.0 74.4 59.8 59.4 65.3 67.0 80.6 80.6 79.9 71.2
Mechanical properties of light metals and alloys Table 3.4
(continued)
Material (speci~cation)
Nominal composi tion %
AI-Mg (5052)
(5154)
Mg 2.5 Cr 0.25
Mg 3.5 Cr 0.25
0.2%
Temp. ~
Condition
Tensile Elon8.% strength on 50 mm MPa or 50 mm
MPa
Reduction in area
Fracture toughness
%
MPa m l / 2
24 28 -80 -196
180 185 195 220
195 205 215 290
15.0 15.0 16.5 32.0
63.5 64.4 66.5 62.3
-
24 -28 -80 -196
97 99 97 115
199 201 210 330
33.2 35.8 40.8 50.0
72.0 74.2 76.4 69.0
-
HI8
24 -28 -80 -196
235 230 236 275
275 280 290 400
16.6 18.3 20.6 30.9
59.1 63.2 64.5 57.4
-
Hill
26 -28 -80 -196
115 115 115 135
240 240 250 350
28 32 35 42
66 72 73 60
-
HI8
26 -80 -196 -253
275 280 325 370
33O 340 455 645
9 14 30 35
-
-
Rolled and drawn rod
HI8
Rolled and drawn rod
Hill
Sheet
Proof stress
35
(5056A)
Mg 5.0 Mn 0.2
Plate
Hill
20 -75 -196
130 130 145
290 290 420
30.5 38.2 50.0
32.0 48.2 36.2
-
AI-MgSi (6O63)
Mg 0.7 Si 0.4
Extrusion
T4
26 -28 -80 -196
90 105 115 115
175 190 200 260
32 33 36 42
78 75 75 73
-
Extrusion
T6
26 -28 -80 -196
215 220 225 250
240 250 260 330
16 16 17 21
36 36 38 40
-
24 -28 -80 -196
300 310 305 330
320 352 330 385
15.2 12.0 14.9 18.3
38.8 34.0 38.7 34.7
-
24 -28 -80 -196
270 280 290 315
315 330 345 425
21.8 21.5 22.5 26.5
56.4 52.5 53.7 46.5
-
24 -28 -80 -196
300 305 320 400
480 500 510 615
23.3 24.4 25.3 26.7
31.8 33.1 30.8 26.3
-
24 -28 -80 -196
400 405 415 460
500 502 514 605
14.5 12.7 13.3 14.0
25.8 21.5 22.0 19.7
-
26 -28 -80 -196 26 -28 -80 -196
290 290 302 380 415 415 420 470
430 440 440 545 485 485 495 565
20 22 22 20 13 13 14 14
28 28 26 20 31 29 28 26
-
AI-MgSi-Cr (6151)
Mg 0.7 Si 1.0 Cr 0.25
Forging
T6
AI-MgSi-CuCr (6061 )
Mg 1.0 Si 0.6 Cu 0.25 Cr 0.25
Rolled and drawn rod
T6
AI-CuMg-Mn (2024)
Cu 4.5 Mg 1.5 Mn 0.6
Rolled and drawn rod
T4
Rolled and drawn rod
T8
Rod
T4
AI-CuSi-MgMn (2014)
Cu 4.5 Si 0.8 Mg 0.5 Mn 0.8
Rod
T6
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
continued overleaf
36
Smithells Light Metals Handbook
Table 3.4
(continued)
Material (specification)
Nominal composition %
(2090)
(2091)
AI-ZnM g - Cu (7075)
0.2%
Reduction in area
Fracture toughness
%
MPa ml/2
Temp.
Proof stress
Tensile strength
Condition
*C
MPa
MPa
Elong. % on 50 mm or 50 mm
Forging T6
26 -80 - 196 -253
410 460 530 590
465 510 610 715
12 14 11 7
27 -196 -269
535 600 615
565 715 820
11 13.5 17.5
-
34 57 72
27 -73 - 196 -269
440 460 495 550
480 495 565 630
6 7 10 7
-
24 32 32 32
24 -28 -80 - 196
485 490 505 570
560 570 590 670
15.0 15.3 15.3 16.0
29.1 26.2 23.6 20.1
-
Cu 2.7 Li 2.3 Zr 0.12
Plate (12.5mm)
TSI
Cu 2.1 Li 2.0 Mg 1.50 Zr 0.1
Plate (38 ram)
T8
Zn 5.6 Mg 2.5 Cu 1.6
Rolled and drawn rod
T6
24 24 22 22
-
HI 11 = Annealed. HI8 = Fully hard temper. I " 4 - Solution treated and naturally aged. "i"6= Solution treated and precipitation treated.
Table 3.5
ALUMINIUM ALLOYS - CREEP DATA
Temp.
Stress
Minimum creep rate % per
*C
MPa
1000 h
1000 h
20 20 80 80 250 250 250 250
24.1 27.6 7.0 8.3 1.4 2.1 2.8 4.1
0.005 0.045 0.005 0.01 0.005 0.01 0.015 0.055
0.39 1.28 0.045 0.065 0.047 0.047 0.052 0.152
45
0.005
0.085
110 115 125 30 45 60 3.90 7.7 15
0.055 0.17 0.21 0.08 0.20 0.62 0.045 0.12 0.35
0.33 0.57 1.19 0.21 0.39 0.92 0.10 0.25 0.60
100 100 100 150 150 200 200
40 55 75 7.5 15 7.5 15
0.013 0.022 0.046 0.126 0.147 0.107 0.273
0.126 0.107 0.174 0.413 0.647 0.341 0.658
205 205 205
17 34 51
0.04 0.09 0.14
-
Nominal composition %
Condition
A! (1080)
99.8
Sheet
HI 11
AI-Mg (5052) (LM 5)
Mg
Sheet
Hill
Mg 5.6
Cast
100 100 100 200 200 200 300 300 300
(LM 10)
Mg 10
Cast
AI-Cu
Cu 4
Cast
Material (specification)
80
Total extension % in
-
Mechanical properties of light metals and alloys Table 3.5
37
(continued)
Material (specification)
Nominal composition %
Stress
Minimum creep rate % per
~
MPa
1000 h
205 315 315
70 8.90 13.1
0.69 0.13 0.29
-
Temp. Condition
Total extension % in 1000 h
Cu 10
Cast
205 205 315 315 315
34 68 8.90 13.1 17
0.01 O. ! 1 0.12 0.43 0.99
-
(LM 13)
Si 13 Ni 1.7 Mg 1.3
Sandcast (modified)
AI-Mn
Mn 1.25
Extruded rod
100 100 200 200 200 300 300 300 200 200 200 200 200 200 200 300 300
45 60 15 23 30 3.8 7.7 15 15 31 34.8 38.6 42.5 46 54 7.5 15
0.016 0.06 0.016 0.054 0.14 0.013 0.047 0.223 0.001 0.022 0.040 0.060 O. 13 0.15 0.73 0.007 0.39
0.190 0.675 0.096 0.179 0.432 0.026 0.098 0.428 -
Cu 4 Si 0.8
Extruded T4
AI -Cu - M g - Mn
Cu 4.5
Clad sheet T4
(2024)
Mg 1.5 Mn 0.6
0.340 0.395 0.722 0.107 0.204 0.700 0.156 0.176 -
AI-Si
(3103)
AI-Cu-Si (2025)
AI-Cu-Mg-Ni (2218)
Cu 4 Mg 1.5 Ni 2.2
150 150 150 200 200 200 250 250 250 35 100 100 150 150 190 190
90 125 155 30 45 60 15 23 30 415 344 385 276 327 140 200
0.03 0.045 0.325 0.035 O. 1 0.040 0.02 0.07 2.36 10.0 1.0 10.0 1.0 10.0 1.0 10.0
Clad sheet T6
35 35 100 100 150 150 190 190
424 430 347 363 242 289 117 193
1.0 10.0 1.0 10.0 1.0 10.0 1.0 10.0
Forged T4
100 100 100 200 200 300 300 400
193 232 270 77 108 7 15 1.5
-
0.01 0.02 0.04 0.028 0.16 0.037 0.5 0.05
0.394 0.440 0.835 0.173 0.345 0.078 0.640 O. I I 0
continued overleaf
38
Smitheils Light Metals Handbook
Table 3.5
(continued)
Material (specification)
AI-Cu-Mg--Zn (7075)
AI- M g - S i - Mn (6351)
Nominal composition %
Zn 5.6 Cu 1.6 Mg 2.5
Mg 0.7 Si 1.0 Mn 0.6
Temp. ~
Condition
Stress MPa
Cast T4
200 200 300 300 4O0
77 116 7 15
Clad sheet T6
35 35 35 100 100 100 150 150 150 190 190 190
430 480 495 295 355 370 70 170 245 45 75 125
100 100 100 100 150 150 150 200 200 200 200
193 201 232 255 93 108 154 31 46 62 77
Extruded rod
Minimum creep rate % per 1000 h
Total extension % in 1000 h
0.01 0.08 0.018 0.08 0.06
0.153 0.287 0.072 0.151 0.132
1.50
0.1 1.0 10.0 0.1 1.0 10.0 0.1 1.0 10.0 0.1 1.0 10.0
m
0.007 0.010 0.11 1.6 0.0087 0.023 0.22 0.011 0.040 0.13 0.28
m
w
H I 11 -- Annealed. T4 = Solution treated and naturally aged, will respond to precipitation treatment. "1"6= Solution treated and artificially aged.
Table 3.6
ALUMINIUMALLOYS- FATIGUESTRENGTH AT VARIOUSTEMPERATURES
Material (specification)
Nominal composition %
Condition
Temp. *C
Endurance (unnotched) MPa
MHz
Remarks
Mg 5.0
Extruded
-65 -35 +20
184 164 133
20
Rotating beam
Mg 7.0
Extruded rod
-65 -35 +20
182 178 173
20
Rotating beam
(LM 10)
Mg 10.0
Sand cast (oil quenched)
20 150 200
93 77 40
30
Rotating beam
AI-Si (LM 6)
Si 12.0
Sand cast (modified)
20 100 200 300
51 43 35 25
50
Rotating beam, 24 h at temp.
AI- Cu (2219)
Cu 6.0
Forged T6
20 150 200 250 300 350
117 65 62 46 39 23
120
AI - Mg (5056)
Reverse bending stresses
Mechanical properties of light metals and alloys Table 3.6
39
(continued)
Material (specification)
Nominal composition %
Endurance Temp. Condition
(unnotched) ~
MPa
MHz
Remarks
AI-Si-Cu (LM 22)
Si 4.6 Cu 2.8
Sand cast
20 100 200 300
62 54 60 42
50
Rotatingbeam
AI-Cu-Si-Mn (2014)
Cu 4.5 Si 0.8 Mn 0.8
Forgings T6
148 203 260
65 45 25
100
Rotatingbeam
AI-Cu-Mn-Mg (2014)
Cu 4.0 Mn 0.5 Mg 0.5
Extruded T4 rod
25 148 2O3 260
103 93 65 31
500
Rotatingbeam, I00 days at temp.
Al-Cu-Mg-Si-Mn (2014)
Cu 4.4 Mg 0.7 Si O.8 Mn 0.8
Forgings T4
20 150 20O 250 3OO
119 90 62 54 39
120
Reversedbending
Forgings T6
20 150 200 250 3OO
130 79 57 39 39
120
Reversedbending
Forged
20 148 2O3 260
117 103 65 45
500 100 100 100
Rotatingbeam after prolongedheating
Chill cast T6
20 100 200 300
50
Rotatingbeam, 24 h at temp.
20 150 2OO 25O 300 35O 20 100 200 300
100 105 108 80
113 82 7O 59 39 39 97 107 97 54
120
24 149 2O4 260
151 83 59 48
500
AI-Cu-Mg-Ni (2218)
Cu 4.0 M g 1.5 Ni 2.0
AI-Ni-Cu
Ni 2.5 Cu 2.2
Forged T6
AI-Si-Cu-Mg-Ni (LM 13)
Si 12.0 Cu 1.0 M g 1.0
Chill cast (Lo-Ex)
AI - Z n (7075)
Zn 5.6
Plate T6
Mg - Cu
Mg 2.5 Cu 1.6 Cr 0.2
T4 = Solution treated and naturally aged, will respond to precipitation treatment. T6 -- Solution treated and artificiallyaged.
50
Reversedbending
Rotatingbeam, 24 h at temp.
Reversedbending
3.2 Mechanical properties of magnesium and magnesium alloys Table 3.7
MAGNESIUM AND h4AGNESlUM ALLOYS (WROUGHT) -TYPICAL MECHANICAL PROPERTIES AT ROOM TEMPERATURE
h
-a
Speci&ations
DTD
Nominal+ composition Materid
Mg 99.9
Mg-Mn
Mn 1.5
Mg-4-2
43.0 zn 1.0 Mn 0.3 Al 6.0
zn 1.0
Mn 0.3 Al 8.0 Zn 0.5 Mg-Zn-Mn Mg-2-Zr
Form
5%
Mg
Mn 0.3 2112.0 Mn 1.0
Tension
sheet annealed Bar, extruded Sheet Extruded bar (I in dim.) Extruded tube Sheet. annealed half hard Extruded bar and sections Fwgings Extruded bar and sections
Extruded tube Forgings
Zo1.0 Zr 0.6
sheet,annealed half breed Extruded bar sections sheet Extruded bar and sections
Zo 3.0
sheet
E x w tube
or BS (Air)
BS (Gem Eng.)
ASTM
Eiekbvn
-
-
I18C 142B 737A
2L513 21512 2L503 88C
5091 5101
-
2L514 2L508 21509 21504
3370-MAG-S-101M 3373-MAG-E-10I M 3373-MAG-€- lOlM 3370-MAG-S-1I10 3370-MAG-S-I 1 IM 3373-MAG-E-lllM 3372-MAG-F-I2 IM 3373-MAG-E-121N 3373-MAG-E-121M
-
3370-MAG-S-13 10 3370-MAG-S-131M 3373-MAG-E-131M 3370-MAG-S-141M 3373-MAG-E-141M 3373-MAG-E-141M 3370-MAG-S-151M
MIA-F. B107 MIA, B107 AZ31.B90 AZ31, B90 AZ31, B107 AZ61,B91 AZ61, B107 AZ61. B107 AZ80A.B91
AM503
UTS MPa
Elong.
4 6 6 7
131 170 162 183 183 170 208
185 232 232 263 247 232 263 255 293 293 278 293
131 170 162 178 208 193 185
232 263 255 263 293 278 270
69 100 100 162 154
A231 AZM
AZ855 zM21
-
Proof stress 0.2% MPa
ZWI zw3
Compression
%
6
13 10 11
8 8 8 8
Proof stress 0.2% MPa
-
124
100
93 147 147 147 185
Hardness
VPN Mkg - __ 30-35 35-45 35-45 45-55 45-55 50-60 55-70 50-60 60-70 55-70 60-70 65-75
13 10 11 10
13 7 8
154 177
-
55-70 60-75 60-75
154
60-70
2
%
3
$
5 5
Zr 0.6
3372-NAG-F- I5 1M 3373-MAG-E-l51M
-
2.24 239
309 309
8 18
I93 213
60-80 65-75
270
340
10
255
60-80
ZC7l
340
360
6
-
-
m
147
263
18
50-70
147
232
13
-
zn 5.5 Zr 0.6 Mg-ZO-CU-Mn
Mg-Th-Zo-ZS. (crrcprcsistant)
Mg-Th-Mn** (Creepmistant)
3373-MAG-E-161TE ZK60A-T5, B107-70 ZW6
Zn 6.5
Cu 1.3 Mn 0.8 Tb 0.8
zno.5 Zr 0.6
Th20 MnO.75 Th 3.0 h b 1.2
Extrudedbarandsections 5111
Forgings 5111
Extrudedbarandsections
ZC7I-T6, B107
-
-
-
-
-
-
-
50-70
-
HM21-T8, BW
-
I65
247
9
179
-
-
HM31-TS
-
227
287
8
185
-
Table 3.8 MAGNESIUM AND MAGNESIUM ALLOYS (CAST) TYPICAL MECHANICAL. PROPERTIES AT ROOM TEMPERATURE Specifications
Tension
Compression ~
Material Mg-Zr Mg-Al-Zo
Nominap composition 9b
Zr 0.6 Al 6.0 Zn 3.0 Al 8.0 Zn 0.4 Al 9.5
Zn 0.4 A1 9.0 zn 2.0
Mg-Zn-Zr
Mg-Zn-RE-Zr
Mg-RE-Zn-Zr (Creep resistant) to 250°C) Mg-Th-Zn-Zr** (Creep resistant to 350°C) Mg-Zn-Th-Zr**
zn 4.5
Zr 0.7 Zn 4.0 RE 1.2 Zr 0.7 Zn 6.0 RE 2.5 Zr 0.7 RE 2.7 zn 2.2 Zr 0.7 Th 3.0 zn 2.2 Zr 0.7 zn 5.5 n 1.8 Zr 0.7
DTD Condition
AC AC TB TF AC TB AC TB TF Die cast AC TB TF TE
or BS (Air)
BS (Gen. Eng.)
-
ASTM
KIA, B80 AZ63A-F, 880 AZ63A-T4, B80 AZ63A-T6, B80
Elektron
ZA
Proof stress 0.2% MPa
UTS MPa
%
185 199 275 275 158 247 154 232 239 216 165 275 275 263
2.0 5 10
Elong.
Proof stress 0.2% MPa
~~
~
Brine11 hardnesst VPN3Okg
2L127
2970 MAG 4-TE
ZK51A-T5, B80
Z5Z
51 97 97 131 86 82 93 90 127 111 97 97 145 161
TE
21128
2970 MAG 5-TE
ZE41A-T5, 880
Rz5
150
216
5
139
55-75
TFP
5045
zF.63
190
295
7
190
70-80
TE
2L 126
2970 MAG 6-TE
EZ33A-T5, B80
ZREl
95
162
4.5
93
50-60
TE
5005A
2970 MAG 8-TE
HZ32A-T5, B80
ZT1
93
216
7
93
50-60
TE
50 15A
2970 MAG 9-TE
W62A-T5, B80
TZ6
167
270
8
162
65-75
-
3L122
-
3L 124 3L125
-
2970 MAG 2970 MAG 2970 MAG 2970 MAG 2970 MAG
-
1-M 1-TB 3-M 3-TB 3-TF
-
A8 AZ81A-T4, B80 AZ91C-F, B80 AZlC-T4, B80 AZ91C-T6, B80 AZ91B-F, B94 AZ92A, B80
-
AZ9 1
-
4 11 2 6 2 3 2 8 2 6
54 97 97 131 86 82 93 90 124 108 97 97 145 162
65-75
5
40-50 50 55
73 50-60
50-60 55-65 55-65 75-85 60-70 65 63 84
Mg-Th-Zru Mg- Ag-RE*-%
Th 3.0 Zr 0.7
TF
Ag 2 5
TF
RE 2d
Zr 0.6
Mg-RE(D)-AgZr-CU
Mg-Ag-Th-RE*ZP
Mg-Y-RE(A)-Zr
Ag 2 5 RE 2 . d Zr 0.6 RE(D)2.2 Ag 1 5 Zr 0.6 cu 0.07 Ag 2 5 RE l.O* Th 1.0 Y 4.0
Mg-Zn-CU-Mn
5WA 5035A
-
HK31A-T6,880
2970 MAG 12-TF
MTZ
93
208
5
93
50-60
MSR-A MSR-B
187 204
241
5
260
3
178 I93
65-80 65 -80
195
65-80
TF
5055
-
QE22A-T6, BSO
QE22
200
2 6 0 4
TF
5055
2910 MAG 13-TF
EQ21A-T6, B80
EQ21
195
261
4
-
75-90
TF
-
-
QH21A-T6, BSO
QHZlA
210
no
4
200
65-80
TF
-
-
wE43-T6, 880
WE13
185
265
7
-
15-90
Zr 0.1 RE(A)3.4 Zr 0.6 Y 5.1 RE(A)3.0 Zr 0.6 Zn 6.0 cu 2.1 Mn 0 5
-
82.
TF TF
-
9
2970MAGlQTF
WE54-T6,B80
WE54
205
280
4
-
500 kgon 10 nnn ball far30 s. *FncDimntcd nrc eartb mnals: MSR-A contains 1.7%; MSR-B conedins 25%. ~ S o l u t a Oha flcsicd in an ammsphm ofhydrogm AC= S d cut TE = Rsipitatkm ha treated TB =Solution ha acamL IF= Fully ha mcatcd "Thoriumaedining aUoys am being r e p W by alrmutive Mg alloys. DcIlE with
75-90
5
55-65
2g.
x
-
ZC63-T6, BSO
ZC63
158
242
4.5
-
2
B =:
'Ir is upual to Ad 02-0.4% Mn to a b y s containing aluminium to impmve cormaim resisuna. RE = Cerium mishmcralcontaining appox. 50% cerium.RE(A) =Neodymium plus Heavy Ran Eum tBrincll
5
RUD) = Neodymium enriched mkhnecal.
P 3
s
tb
s'
: %
2
44
Smithells Light Metals Handbook
Table 3.9 MAGNESIUM AND MAGNESIUM ALLOYS (excluding high temperature alloys for which see table 3.10) - TYPICAL TENSILE PROPERTIES AT ELEVATED TEMPERATURES
"Short-time' tension t
Material
Nominal composition* %
Form and condition
Mg
Mg 99.95
Forged
Mg-AI-Zn
Mg-Zn-Zr
Mg-Zn-RE-Zr
Test temp. *C
Young' s modulus
proof stress
UTS
Elong.
GPa
MPa
MPa
%
20 100 150 200
45
-
170
5
-
-
128
8
-
-
93 54
16 43
Sand cast
20 100 150 200 250
45 34 32 25 -
86 76 65 62 -
158 154 145 100 75
4 5 11 20 27
Sand cast and solution treated
20 100 150 200 250
45 34 33 28 -
82 73 65 62 -
247 202 154 116 85
11 16 21 25 21
(AZ855)
Forged
20 150 200
45 -
221 153 102
309 216 154
8 25 28
AI 9.5 Zn 0.4 (AZ91)
Sand cast
20 100 150 200 250
45 -
93 -
154 131 122 108 77
Sand cast and solution treated
20 100 150 200
45 -
90 -
232 222 196 139
6 12 16 20
Sand east and fully heat treated
20 100 150 200 250
45 40 37 28 19
127 91 77 62 46
239 232 185 133 103
2 6 25 34 30
Zn 4.5 Zr 0.7 (Z5Z)
Sand east and heat treated
20 100 150 200 250
45 34 28 22 19
161 124 102 79 57
263 185 145 113 85
6 14 20 23 20
Zn 3.0 Zr 0.6 (ZW3)
Extruded
20 100 200 250
45 40 22 12
255 162 46 11
309 182 127 100
18 33 56 71
Sheet
20 100 150 200 250
45 40 33 -
195 120 74 -
270 165 116 76 49
10 33 42 51 59
Sand east Sand cast treated
20 20 150 200 250
45 41 40 38 33
150 134 120 99 74
216 195 167 131 99
4 6 19 29 35
AI 8.0 Zn 0.4 (AS)
Zn 4.0 Re 1.2 Zr 0.7 (RZ5)
0.2%
2 2
6 25 34
Mechanical properties of light metals and alloys Table 3.9
45
(continued)
'Short-time' tension t
Material
Nominal composition* %
Form and condition
Test temp. ~
Young' s modulus
proof stress
UTS
Elong.
GPa
MPa
MPa
%
0.2%
Mg-Zn-Th-Zr**
Zn 5.5 Th 1.8 Zr 0.7 (TZ 6)
Sand cast and heat treated
20 100 150 200 250
45 34 31 28 26
161 134 110 82 52
270 224 178 130 91
9 22 26 26 25
Mg-AgRE-Zr (D)
Ag 2.5 RE(D)2.0 Zr 0.6 (QE22)
Sand cast and fully heat treated
20 100 150 200 250 300
45 41 40 38 34 31
201 185 171 154 102 68
259 232 210 185 142 88
4 12 16 20 27 59
Mg-RE(D)Ag-Zr-Cu
Re(D)2.2 Ag 1.5 Zr 0.6 Cu 0.07 (EQ21)
Sand cast and fully heat treated
20 100 150 200 250 300
45 43 42 41 39 35
195 189 180 170 152 117
261 230 211 191 169 132
4 10 16 16 15 10
Mg-Ag-Re(D)** h-Zr
Ag 2.6 RE(D)I.0 Th 1.0 Zr 0.6 (OH21)
Sand cast and fully heat treated
20 100 150 200 250 300
45 41 40 38 37 33
210 199 190 183 167 120
270 242 224 205 185 131
4 17 20 18 19 20
Mg-Y-RE(A)-Zr
Y 4.0 RE(A)3.4 Zr 0.6 (WE43)
Sand cast and fully heat treated
20 150 200 250 300
45 42 39 37 35
185 175 170 160 120
265 250 245 220 160
7 6 11 18 40
Y 5.1 RE(A)3.0 Zr 0.6 (WE54)
Sand cast and fully heat treated
Zn 6.0 Cu 2.7 Mn 0.5 (Zc63)
Sand cast and fully heat treated
20 100 150 200 250 300 20 100 150 200
45 43 42 41 39 36 45
205 197 195 183 175 117 158 141 134 118
280 260 255 241 230 184 242 215 179 142
4 4.5 5 6.5 9 14.5 4.5 9 14 11
Zn 6.5 Cu 1.3 Mn 0.8 (Zc71)
Extruded and fully heat treated
20 100 200
45 40 32
325 206 115
350 259 163
6 16 14
Mg-Zn-Cu-Mn
*It is usual to add 0.2-0.4% Mn to alloys containing alumlnium to improve corrosion resistance. ?In accordance with B51094: 1943; I h at temperature and strain rate 0.1-0.25 in In-I rain-I. tTested according to BS4A4. RE = Cerium mischmetal containing approx. 50% Ce. RE(D) = Neodymium enriched mischmetal. RE(A) = Neodymium plus Heavy Rare Earth metals. **Thorium-containing alloys are being replaced by alternative Mg alloys.
46
Smithells Light Metals Handbook
Table 3.10
HIGHTEMPERATURE MAGNESIUM ALLOYS - TENSILE PROPERTIES AT ELEVATEDTEMPERATURE
"Short-time' tension t
Material
Nominal composition* %
Form and condition
Test temp.
Young's modulus
proof stress
UTS
Elong.
~C
GPa
MPa
MPa
%
0.2%
Mg-RE-Zn
RE 2.7 Zn 2.2 Zr 0.7 (ZREI)
Sand cast and heat treated
20 100 150 200 25O 300 350
45 40 38 36 33 28 21
93 79 76 74 65 48 26
162 150 139 125 107 85 56
4.5 11 19 26 35 51 90
Mg-Th-Zr**
Th 3.0 Zr 0.7 (HK31) (MTZ)
Sand cast and fully heat treated
20 100 150 200 250 300 350
45 40 38 38 36 34 29
93 88 86 85 83 73 56
208 188 174 162 150 136 103
4 10 13 17 20 22 23
Mg-Th-Zn-Zr**
Th 3.0 Zn 2.2 Zr 0.7 (ZTI)
Sand cast. and heat treated
20 100 150 200 250 300 350
45 36 34 33 33 31 28
93 88 79 65 56 49 45
216 159 131 108 9O 76 63
9 23 27 33 38 41 34
Th 0.8 Zn 0.5 Zr 0.6 (ZTY)
Sheet
20 100 150 200 250 300 350
45 41 41 40 40 34 29
181 179 176 165 124 73 17
266 224 201 171 134 96 56
10 10 11 15 20 27 38
Mg-AgRE(D)-Zr
Ag 2.5 RE(D)2.0 Zr 0.6 (QE22)
Sand cast and fully heat treated
Mg-RE(D)Ag-Zr-Cu
RE(D)2.2 Ag 1.5 Zr 0.6 Cu 0.07 (EQ21)
Sand cast and fully heat treated
Mg-Ag-RE(D)Th-Zr**
Ag 2.5 RE(D)I.0 Th 1.0 Zr 0.6 (QH21)
Sand cast and fully heat treated
Mg-Y-RE(A)-Zr
Y 4.0 RE(A)3.4 (WFA3)
Sand cast and fully treated
Y 5.1 RE(A)3.0 Zr 0.6 (WE54)
Sand cast and fully eat treated
High strength cast alloys with good elevated temperature properties - for which see Table 3.9
*It is usual to add 0.2-0.4% Mn to alloys containing aluminium to improve corrosion resistance. tln accordance with BS 1094: 1943; I h at temperature; strain rate 0.I-0.25 in in-I min-t . RE - Cerium mischmetal containing approx. 50% Ce. RE(D) -- neodymium-enrichedmischmetal. RE(A) -----.Neodymium plus Heavy Rare Earths. **Thorium containing alloys are being replaced by alternative Mg alloys.
Mechanical properties of light metals and alloys Table 3.11
47
HIGH-TEMPERATURE MAGNESIUM ALLOYS - LONG-TERM CREEP RESISTANCE
Stress to produce specijfed creep strains% Nominal composition
Formand
%
Condition
~C
h
Sand cast and heat treated
200
Ma~r~i Mg-RE-Zn-Zr
RE 2.7 Zn 2.2 Zr 0.7 CZRE l )
Zn 4.0 RE 1.2 Zr 0.7 (RZS)
Mg-Th-Zr**
Mg-Th-Zn-Zr**
Mg-Th-Zn-Zr*
Sand cast and heat treated
Temp. Timet
0.05
0.1
0.2
0.5
MPa
MPa
MPa
MPa
1.0 MPa
100 500 1 000
52 41 36
66 54 47
71 65 58
-
-
250
100 500 1 000
23 11 -
28 19 14
32 24 20
36 30 26
34 30
315
100 50O 1 000
5.6 -
-
-
100
100 500 1 000
-
97 -
111 106 103
117 117 116
-
150
100 500 1 000
77 -
86 75 70
97 88 83
101 96 91
107 100 97
200
100 500 1 000
29 22 20
43 28 23
52 37 31
67 52 43
73 64 53
250
100 500 1 000
12 6.2 5.4
19 8.6 6.9
32 15 12
39 19 15
7.4 5.2 4.3
6.2 4.3 3.9
8 6.5 5.6
-
Th 3.0 Zr 0.7 (HK31) (M'I2)
Sand cast and fully heat treated
200
315
100
Th Zn
Sheet
250
100
Zr 0.6 (ZTY) Th 3.0
Sand cast
250
Zn
and heat
100 500 1 000
42 35 31
300
100 500 1000 100 500 1000
23 19 17 14 12 10
28 21 19 19 13 12
35 25 21 24 16 13
46 36 32 29 21 15
52 41 36 36 25 20
350
100 500 1000
10 -
12 9 8
18 10 8
21 12 9
23 14 10
375
100 500 1000
.
8 -
II .
12
13
8
9
150
100 500 1000
51 36 26
66 56 51
82 69 63
96 85 80
102 94 90
200
100 500 1 000
26 15 11
32 22 17
45 26 20
56 40 31
62 49 40
0.8 0.5
2.2
Zr 0.7 (ZTI)
260
treated
325
Zn Th Zr
(TZ6)
5.5 1.8 0.7
Sand cast and heat treated
31"
45*
-
-
63* 62*
97* 100'
111'
1 100
100
100 1 000
-
28* -
43* 29*
65* 45*
-
14'
19'
27*
32*
9.3*
Stress of 46 MPa produced 0.03% Stress of 46 MPa produced 0.03% 5O 56 43 51 39 48
.
.
-
(3 tonf in - 2 ) creep strain (3 tonf in - 2 ) creep strain 66 63 63 58 61 56
8
48
Smithells Light Metals Handbook
Table 3.11
(continued) Stress to produce specified creep strains%
Material Mg-Ag-
RE(D)-Zr
Nominal composition % Ag RE(D) Zr (QE22)
2.5 2.0 0.6
Form and Condition Sand cast and fully heat treated
Temp. Time? oC
h
0.05 MPa
200
100 500
55 -
1000
250
100 500 1000
Mg-RE(D)-AgZr-Cu
RE(D) Ag Zr Cu (EQ21)
2.2 1.5 0.6 0.07
Sand cast and fully heat treated
200
100 500 1000
250
Mg-Y-RE(A)-Zr
Ag
RE(D) Th Zr (QH21) Y RE(A) Zr
(WE43)
2.5 1.0 1.0 0.6
Sand cast and fully heat treated
250
4.0 3.4 0.6
Sand cast and fully heat treated
200
(WE54)
Mg-Zn-Cu-Mn
Zn Cu Mn (ZC63)
5.1 3.0 0.6
6.0 2.7 0.5
Sand cast and fully heat treated
Sand cast and fully heat treated
-
-
100
-
-
100
500 1000
-
22 -
0.2 MPa
0.5 MPa
1.0 MPa
74 54 46
88 65 56
82 73
89 79
26 15 10
33 22 16
28 22
31 26
78 57 48
95 71 62
116 88 76
29 18 14
36 22 19
42 30 24
32 20
39 26 21
32 26
-
161 115
173 148
-
96
-
100 500 1000
148
100 500 1000
44 -
61 46 39
200
100 500 1000
160 120 120
165 140 132
250
100 500 1000
47 43 16
61 40 32
81 58 48
150
100 500 1000
94 82 74
99 92 89
104 98 95
200
100 500 1000
60 51 42
63 55 49
67 61 55
250
Y RE(A) Zr
18 -
500 1000
Mg-Ag-RE(D)Th-Zr**
-
0.1 MPa
*Total strains. t 4 - 6 h heating to test temperature followed by 16 h soaking at test temperature. RE -- Cerium mischmetal containing approx. 50% Ce. RE(D) = Neodymium-enrichedmischmetal. RE(A) = Neodymium plus Heavy Rare Earth metals. **Tlumum-containing alloys are being replaced by alternative Mg alloys.
-
139
-
-
36 30
Mechanical properties of light metals and alloys Table 3,12
49
HIGH-TEMPERATUREMAGNESIUM ALLOYS - SHORT-TERM CREEP RESISTANCE
Stress to produce speciJied creep strains% Material
Nominal composition Form and Temp. Timet % condition ~ s .
Mg-RE-. Z n - Zr
.
'Re 2.7 Zn 2.2 Zr 0.7 (ZREI)
.
.
Sand cast and heat treated
.
.
200
Mg-Th-Zr*
Th 3.0 Zr 0.7 (HK31)
Sand cast and fully heat treated
(MTZ)
Th Zn Zr
(ZTY)
0.8 0.5 0.6
Sheet
Th 3.0 Zn 2.2 Zr 0.7 (ZTI)
Sand cast and heat treated
(I26)
Sand cast and heat treated
134 129
30 60 600 30 60 60O 30 60 600
76 74 73 52 51 42 100 99 86
84 83 82 59 58 49 107 105 99
92 91 89 73 69 56 116 114 103
111 I10 108 80 76 62 127 124 114
123 120 114 85 83 68 -
130 129 125 90 88 73 136 134 125
250
30 60 600
86 83 71
90 88 76
94 91 81
99 96 86
-
116 113 93
315
30 60 600 30 60 600
62 59 48 96 95 94
69 66 53 103 103 102
76 73 59 119 118 117
79 76 64 138 137 137
83 79 67 -
86 82 69 145 145 144
30 60 600 30 60 600
80 78 74 -
88 86 82 -
103 102 96 110 95 -
117 116 107 159 157 145
163 160 149
128 127 120 165 162 151
30 60 60O 30 60 600
20 18 -
32 28 15 -
48 40 20 -
80 67 31 100 96 85
93 82 42 118 114 103
102 98 66 125 123 114
30 60 600 30 60 600 30 60 600
58 57 56 55 53 50 96 93 63
65 64 63 60 59 59 113 109 90
71 69 68 64 63 61 120 117 102
84 81 74 73 72 71 128 124 110
102 99 86 76 76 74 137 133 114
111 107 98 82 80 77 144 137 119
30 60 600 30 60 600
70 65 56 54 52 44
77 74 60 59 57 49
85 80 66 64 62 53
96 90 74 70 66 56
99 94 77 74 70 58
107 99 82 76 73 59
200
250
250
200
200
250
315
.....
,
,
,,
,
,
MPa
,
130 128 125
315
5.5 1.8 0.7
Stress to fracture
1i8 117 116
250
Zn Th Zr
10.0 MPa
98 97 96
350
Mg-ThZn-Zr*
.
5.0 MPa
-
315
Mg-ThZn-Zr*
.
2.0 MPa
-
315
Sand cast and heat treated
.
1.0 MPa
30 60 600
250
Zn 4.0 RE 1.2 Zr 0.7 (RZ3)
.
0.05 MPa
,
.
.
.
1'I h heatlnll to test temperature followed by 1 h soaking at test temperature. RE = cerium mischmetal containing approx. 50% Ce, *Therium-containing alloys me being replaced by alternative MB alloys.
.
.
.
.
.
.
.
.
.
Tpbk 3.13
MAGNESIUM AND MAGNESIUM ALLOYS
tJl
0
- FATIGUE AND W A C 3 STRENGTHS Fatigue strength? at specifred cycles
*
Nomiqf
composition
9 i
Material
Mn
Mg-Al-Zn
(AM503 Al 6.0 zn 1.0
1.5
16
5x 1 6
lo6
5 x lo6
lo7
5 x lo7
Test temp.
Unnotched
Notched
Mpa
MPa
MPa
MPa
"C
J
J
88
86 51 125 91
85
20
12-14
4-4.5
124 94
83 48 120 91
20
34-43
1-9.5
88 65 90 73 57 36 86 66 93 79
20
3-5
1.5-2
20
18-27
4.5-7
-1% 20
1.5 1.5-2.0
1-1.5
20
1-9.5
3-4
20
3-4
1-1.5
20
23-31
9.5-12
State
"C
MF'a
MF'a
U N
20
Exmded
U N
20
107 76 161 127
90 90 139 110
Sand cast
U N U N
20
108
93 80 102 86
69
90 73 97 82 66
110 124 103
52 91 83 93 82
48 89 74 93 80
88 66 91 74 59 38 88 68 93 79
117 93 151 124
90 66 137 99
80 66 134 93
79 65 128 91
77 65 127 90
76 65 124 88
Condition
Mg-Mn
temp.
Impoct strength0 for single blow fracture
Extruded
54
133 103
50
Sand cast and solution heated
Al
9.5 Zn 0.4 ~ 9 1 )
Sand cast Sand cast and solution treated
Mg-Zn-Zr
Zn ZJ (zw3)
Zn
21
Mg-Zn-RE-ZI
3.0 0.6 4.5 0.7
(UZ) Zn 4.0 RE
1.2
ZJ 0.1 (M)
zn
RE
2.2 2.7
Sand cast and fully heat treated Extruded
U
U U N U N
U
L 3
B
0
20 150 200 20 20 20
107 124 108 93 71 114
86 63 90 69 57 31 85 63
-
77
N U N
20
Sand cast and heat treated
U N
20
111 90
86 86
85 85
82 82
80 80
77 77
20 -1%
7-12 0.8
3-4
Sand cast and heat tnxtcd
U N U U U N
20
124 108 91 93 100 77
99 93 85 14 82 59
97 91 80 69 80 54
97 88 73 62 79 52
%
94 83 65 54 74 51
20 -1%
4-5.5 0.7
1-2
20
6-7.5
1-2
Sand cast and heat treated
t M-
(AZM)
A l 8 Zn 0.4 ('48)
c
s
150 200 20
86 69 59 77 52
g
0.7
6 2.5 0.6 2.5 25 0.6
U
U U U sand cast
U
Sadurstad
U
20
EM&** N fuuy heat
N N
I .o
0.6 Mg-Zn-Th-ZP
55
1.8 0.7
3.0 0.7
69 68 59 49 144 99
60 59 48 39 131 83
59 56 45 37 127 79
57 52 43 37 121 73
57 51 43 36 119 72
57 51 42 -1% 34 117 20 71
119
103 65
103
103
102 62
100 62
n
68
n -
U
200 250 20
U
250
108
Sand cast and heatemted
U
20
im
sand cast and %heat
U N
kealui
U
2.5 1.o
150
200 250 300 20
sand Cast ad fully heat
trcatcd
N
N
U U
135 86
100
20 200 250
80
-
63
-
62 90 57 109 64 56
108
63 55
n
83 76
82 76
65 36 60
63 34 59 52
62 32 58 51
111
86 86
85 80
83
74 48 74 63
68 40 68 59
12.9-17.6
23-2.7
8-11
15-3
86
51 108 62 52
1 I4 72 76
69 65
88 54
05
-1%
20
05
s n 5
t.
54
a
d 0'
B
' 3.
continued overlraf
.o,
m e
Table 3.U
u l
(continued)
h)
Fatigue strength? at specfied cycles Nominqp composition 5%
Material
Mg-Th-Zn-Zr***
Th 7h
zr
Th
zn zr
0.7 0.5 0.6 3.0 2.2 0.7
Condition Extruded
Sandcastand heat mated
RE(D)
zr-cu
Ag
Mg-Y-RE(A)-YZr
cu Y WA)
zr
zr Y
=(A)
Mg-Zn-Cu-Mn
zr 7h cu
Mn
2.2 1.5 0.6 0.07 4.0 3.4 0.6 5.9 3.0 0.6 6.0 2.7 0.5
Sandcastand
temp.
106
5 x 106
10'
5 x lo7
"C
MPa
MPa
Mpa
MPa
MPa
MPa
U N
20
100 73
86 52 74 63 82 59 60 51
83 51
76 48 59 52 71 49 52 42 34
74
U U N
U U
U U
200 250 20 200 250 325 20
-
-
43
79 49 60 54 14 51 54 43 37
103
94
93
92
91
90
114 107 107 113 118 115
101 97 81 104
98 94 74 102 90 78 0 0 62
94 87 65 100 84 67 9 4 57
93 85
91 83 62
-
80 97 76 71 66
68
59 79 56 59
46
h
Test temp. "C
2
Unnotched
Notched
J
J
46
68 48 51 39 29
20
-1%
7-8
1.5-3
0.8
treated Sandcastand
fully heat mated Sandcastand
fully heat mated Sandcastand
fully heat
U
U U
U U U U N
20
150 250 20 200 250 20
-
96 84 - 1
-
64 99
97
83 66 9 2 56
82 65 9 0 55
treated
'*Solution h a mami in an atmosphm of hydrogen. Wohler rotating bcam twts at 2960 c.p.m. u = unnotctmi. N = Notched. Semi-circular notch of 0.12 cm (0.047 in) radius. Smss correnmtion factor 1.8.
0 Hounsfield b a l d impaa test nached bar vnlues are equivalent to lzod values. = Neodymium enriched misctunetai. um-containing alloys am being rCpraccd by alternative Mg alloys. RFXA) = Neodymium plus Heavy Rare Eanhs.
..*% RE@)
2.
s
c Q
-. s a'
Do a-
6
57 51
fuuy heat
'11 is usual 10 add 0.2-0.4% Mn 10 alloys m ~ a i n i n galuminium to impmvc Oormsion resistance.
*
5 x 16
Stute
u
m-1)
Mg-RE(D)-h-
*
16
Impact strengths for single blow fracture
g% Q
Mechanical properties of light metals and alloys Table 3.14
HEATTREATMENTOF MAGNESIUMALLOYCASTINGS
Heat treatment conditions for magnesium sand castings can be varied depending on the particular components and specific properties required. The following are examples of the conditions used for each alloy which will give properties meeting current national and international specifications. --
.
.
.
.
.
,
,
...o
Material Mg-AI-Zn
,
,
Nominal* composition % (AZ80) (AZ91)
AI Zn AI Zn
8.0 0.4 9.5 0.4
(AZ91)
Mg-Zn-Zr
(ZSZ)
Mg-Zn-RE-Zr
(RZS)
(ZREI)
Mg-Th-Zrt
(HK31)
,
.
.
.
.
.
.
.
.
.
Time h
Temperature
TB
12-24
400-420
TB
16-24
400-420
TF
16-24
TE
8-16 10-20
400-420 Air cool 180-210 170-200
WE
2-4
TE
10- 20 10-20
2-4
Condition
Zn Zr Zn RE Zr RE Zn Zr
4.5 0.7 4.0 1.2 0.7 2.7 2.2 0.7
Th Zr
3.0 0.7
TF
Zn Th Zr Th Zn Zr Ag RE(D) Zr RE(D) Ag Zr Cu
5.5 1.8 0.7 3.0 2.2 0.7 2.5 2.0 0.6 2.2 1.5 0.6 0.07
TE
2-4
WE
10-20 10-20
Ag RE(D) Th Zr
2.5 1.0 1.0 0.6
10-20
Mg- Zn-Th-Zrt
(TZ6)
(ZTI)
Mg-Ag-RE(D)Zr
(QE22)
Mg-RE(D)-AgZr-Cu
(EQ21)
Mg-Ag-RE(D)Th-Zr
(QH21) t
~
320-340 Air cool 170- 200 170-200
560-570 Air cool 195-205 320-340 Air cool 170-200 310-320
TF
4-12 520-53O Water/Oil Quench 8-16 195-205
TF
4-12 515-525 Water/Oil Quench 12-16 195-205
'IF
4-12 520- 530 Water/Oil Quench 12-20 195-205
53
54
Smithells Light Metals Handbook
Table 3.14
(continued) Nominal* composition %
Material Mg-Y-RE(A)-Zr
M g - Z n - C u - Mn
Condition
Time h
Temperature ~C
(WE43)
Y RE(A) Zr
4.0 3.4 0.6
TF
4-12 520-530 Water/Oil Quench 12-20 245-255
(WE54)
Y RE(A) Zr
5.1 3.0 0.6
TF
4.12 520-530 Water/Oil Quench/Air Cool 12-20 245 -255
(ZC63)
Zn Cu Mn
6.0 2.7 0.5
TF
4-12 435-445 Water Quench 16-24 180-200
Note:- Above 350 ~ furnace atmospheres must be inhibited to prevent oxidation of magnesium alloys. This can be achieved either by: (i) adding I/2-1%SOI gas to the furnace atmosphere; or (ii) carrying out the heat treatment in an atmosphere of 100% dry CO2. *It is usual to add 0.2-0.4% Mn to alloys containing aluminium to improve corrosion resistance. RE = Cerium mischmetal containing approximately 50% cerium. TB = Solution heat treated. RE(D) = Neodymium-enriched mischmetai. TE = Precipitation heat treated. RE(A) = Neodymium plus Heavy Rare Earth metals. "iF = Fully heat treated. tThorium-containing alloys are being replaced by alternative Mg alloys.
Mechanical properties at subnormal temperatures At temperatures down to - 2 0 0 ~ tensile properties have approximately linear temperature coefficients: proof stress and UTS increase by 0 . 1 - 0 . 2 % of the RT value per ~ fall in temperature, and elongation falls at the same rate: modulus of elasticity rises approximately 19 MPa (2800 lbf in - 2 ) per ~ over the range 0 ~ to - 1 0 0 ~ No brittle-ductile transitions have been found. Tests at - 7 0 ~ have suggested that the magnesium-zinc-zirconium alloys show the best retention of ductility and notched impact resistance at this temperature.
3 3 Mechanical properties of titanium and titanium alloys Tnbk 3.U
PURE llTANIlJM, TYF'ICAL MECHANICAL PROpFRlTEs AT ROOM TEMPERATURE
Elongation %
Designation*
Grade
Codition
0.2% proofstress
Ensile strength
MPa
MPa
103 255 220
241 310 370 390 460 460 480
340 305 325 420 360 540 500
540 540 550 700
640
on
50 mm
55 33
%
Specijication b e d radius 180"bmd
c1.83 mm
-=3.25 mm
It
2t
it
a
2t+
24t
2 it
31
40
10
28
57
I
35 25
Mod. of rigidity GPa
%
R 24
48
24
105
38
I $. Et
115
-0
24 24
Mod. of elasticity GF'a
80
38 30
610
690
on5D
Red. in area
23
46
a
-0
3
2
Table 3.16 TlTANNM ALLOYS TYPICAL MECHANICAL F'ROPERTIES AT ROOM TEMPERATURE ~
NomiMI composition Designation* IMIW)
% Cu
6.0
Condition Annealed sheet Aged sheet Annealedrod Aged rod
0.2% proof stress MPa 520 670 500 580
Tensile strength
MPa 620
770 630
Annealed rod
590
720
IMI 317
Al
5.0 2.5
Annealed sheet
820
860
Sn
930
Al V
6.0 4.0
Si
0.5
IMI 551
Al
4.0
Sn
4.0
Mo 4.0
Si
2t(typical) 2t(0.5-3 mm)
Annealed sheet
1110
Annealed rod Aged rod (fastener stock)
1050
Hard-drawnwire Eh.t. rod
1070
loo0 1160 1050 1 140 1410 1200
F.h.trod
1140
1300
Mod.of rigidity GPa
15
37
10
$
-5
q.,
si;
[ $(.
4t(t2 mm) 44t(5 3 mm)
16
5. * !?
125
120
2.0
Al 4.0 Mo 4.0 Sn 2.0
24 20
50
Al
IMI 550
%
21
w
IMI 315
990
onSD
Mod.of eIarticiry GPa
125
S i l i a r to commercially Pun Titanium 115 S i l i a r to commercially Rue Titanium 125
Annealed rod
on50 nun
Specifrcnrion bemi radius 180"
740
0.2 0.2
IMI 318
Red. in area
45 41
Pd
Mn 2.0
Elongation %
27 22
IMI 260 IMI 261
VI
~~~~
120 St(5 3.25 mm)
15 15
40 40
106
14
42
116
12
40
113
46
4
43
0.5 continued overleaf
IMI 679
IMI680
IMI 685
Sn 11.0 Al 2.25 Mo 1.0 Si 02 Sn 11.0 Mo 4.0 Al 2.25 Si 0.2 Al
40
10%
12
37
14
47
II
22
124
115
Si
0.25
Al
5.5
F h t md
848
965
12
22
im
5.8
F.h.t md
931
1067
13
22
im
sa Nb Mo Si Al Sa
zr
Nb Mo Si
c
3.5 3.0 1.0 0.3 0.3
4.0 3.5 0.7 0.5 0.35 0.06
46
45
6.0 5.0 0.5
Zr
IMI 834
I3
zr
Mo
IMI 829
11
47
a
h 2
'IMI
Nanmluurr.
s. 2
58
Smithells Light Metals Handbook
Table 3.17 COMMERCIALLYPURE TITANIUM SHEET, TYPICAL VARIATION OF PROPERTIES WITH TEMPERATURE
Temperature
proof stress
Tensile strength
Elongation on 50 mm
*C
MPa
MPa
%
IMI 115
- 196 -100 20 100 200 300 400 450
442 306 207 168 99 53 42 36
641 444 337 296 218 167 131 120
34 34 40 43 38 47 52 49
IMI 125
20 100 200 300 400 450
334 250 184 142 127 119
479 397 300 232 190 175
31 32 40 45 38 35
IMI 130
- 196 -100 20 100 200 300 400 450 500 20 100 200 300 400 450
730 590 394 315 205 139 102 93
855 737 547 462 331 247 199 182.:
28 28 28 29 37 40 34 28
460 372 219 151 110 96
625 537 386 281 221 202
25 26 32 36 33 26
0.2%
Designation*
IMI 155
*IMI nomenclature.
Mod. of elasticity GPa
Transformation temperature *C
~/~ + t~ 865
108 99 91 83 65
46
915
Table 3.18
TITANIUM ALLOYS, TYPICAL VARIATION OF PROPERllEs WlTH TEMPERATURE
Nominal
composition Designatwn
IMI 230
%
Cu 2.5
Condition S.ht (mans.)
Proof stress
'C
MPa
20
100
200 300 400 500 Aged shea (mans.)
20 100
m
300 400 500 20 100
200
300 400 500
IMI 260 IMI262 IMI 315
IMI 317
Pd 0.2 Pd 0.2 Al 2.0 Mn 2.0
Al 5.0 Sn 25
0.2%
Temperature
500 410 310 270
Tensile strength MPa
605 540
4% 415 361
450 410 380 380 761 704 635 607 573 468 795 76I 687 658 592 491
618 510 386 293 278 201 822 692 494 415 374 346
757 649 525 432 417 340 919 798 638 576 522 485
250 220 622 553 471 457 429 357 638 601 507
Elongation 9%
on50 m m
on 5D
Redin area
Md:qf elasticity
Tmnsfom'on
46
GPa
"C
tenqxranue
a h +B
24 29 33 31 30 33 24 23 26 23 19 21
790
a +N
895
* B10
22 21 23 20 21 27
40 39 45 50 53 57
107 100
18 21 22 19 18 22 18 19 18 19
41 46 48 50 56 72 39 40 44 42 41 57
1 LO
a + B/B
I07
915 f 20
5=
92 85
r)
1
1
8
78
71
Similar to IMI 115 Similar to IMI 125 AMcalcdrod
20 100
Annealed rod
200 300 400 500 20 100
200 300
400 500
18
21
97 86
76 62 I I2 109 105
89 84
81
a b +B 950 a + BIB 1025f20
2
3 5 ia-!
i ; D
1 B $ W u
Table 3.18
8
(continued)
Nominal composition Designation
IMI 318
%
A1 6.0 V 4.0
Temperature Condition Annealed rod
Heat-treated rod (fastener stock)
IMI 550
Al 4.0
F.h.t. rod
Mo 4.0 Sn 2.0 Si 0.5
IMI 551
IMI 679
Al
4.0 Mo 4.0 Sn 4.0 Si 0.5
11.0 zr 5.0 Al 2.25 Mo 1.0 Si 0.2 Sn
'C
- 1% - 100 20 100 200 300 400 500 600 700 20 100 200 300 400 500 20 100 200 300 400 500
600
F.h.t rod
20 100 200 300
400 Quenched and aged rod
500 600 20 100 200 300 400 450
0.2% Proof stress MPa 1560 1165 970 825 710 645 580 450 125
40
1035 925 805 710 635 540 1081 965 805 700 655 585 310 1250 1125 925 815 745 670 460
1050
940 820 740 710 680
Tensile strength MPa
1675 1265 I040 920 815 750 700 605 265 135 1145 1035 925 850 805 695 1220 1130 960 900 835 780 585 1390 1300 1145 1045 970 920 755 1230 1145 1020 990
940 910
Elongation %
on50 nun
Redin area
on 5D
%
6 12 15 17 18 18 18 26 58 127 14 I5 16 16 18 25 15 15 16 16 17 19 26 10 11 14 15 14 18 27 10 11 12 11 11 11
29 33 38 43 49 56 63 72 85 94
49 49 60 55 60 68 83 27 29 38 38 41 55 65 37 43 45 46 46 46
Mod: of
elasticity GPa
Transformation temperature "C u
+ BIB
1OOOflS
106
ir. 9 k -
rp. g 5
102 96 90 85 79
116 112 106 101 95 90 85 113 108 103 98 93 88 81
~
Q
+ B/B
980 f 10
+ B/B
1050 f 15
+ B/B
950 f 10
Air-cmkdand aged rod
20 100
SO
si
IMI 685
Al
zr
Mn Si
11.0 4.0 2.25 0.2
6.0 5.0 0.5 0.25
Qumchcdand aged rod
no
m
600
20 100
200 300 400 450
FumafecOOlCd and aged rod
-1%
F.h.1. rod
-1%
-100 20 -100 20 100
200
300
400 500
IMI 829
Al Sm
zr
Nb Mo Si
IMI 834
Al
Sn
zr
Nb Mo Si C
5.5
F.ht md
3.5 3.0
1 180 1 a20 905 835 805 725
1630 1280 1030 1480
1140 890 800 720 650 595 535
995
900 865
850 795 1 330 1190 1 105 1075 1020 975
1730 1380 1130 1 560 1270 1030
935 850 800 750 695
14 16 16 14 14 I5 12 14
15 15 14 13
84 10
I5 6 10 12 13 15 16 18 19
1 a28
lo+
192 665 653 634
142 15 16 14
200 300 400
931 840 746 700 662
1 067 962 885 832
500
609
13 13 14 14 14 15 16
600 Fh.t rod
695 665
1 095
895 622 501 487 457
20 200 500 540
I .o
0.3 0.3 5.8 4.0 3.5 0.7 05 0.35 0.06
895
200 300
400 Mo Al
lOz0
20 100
600
505
790
764 656
41 47 49 49 48 48 43 49 53 56 57
10% 103
99 94 90 85 106 100 %
54
94 90 88
36 43 49 13 18 22 22 24
I24 120 I14
n
la2 95
22 28 36 42 38
119 I10 93 91 88
22 23
I20 116 112 106
32 36 42 50
a + B/B 1a20f 10
108
31 37
n
a + B/B
945 i 15
102 % 92
a+BB
1015 f I5
I045
62
Smithells Light Metals Handbook
Table
3.19
COMMERCIALLY PURE TITANIUM
Stress IMI designation
-
TYPICAL CREEP PROPERTIES
MPa
to produce O.1% plastic strain in
Temperature ~
1000 h
10000 h
100000 h
I M I 130
20 50 100 150 200 250 300
288 243 179 140 113 96 87
270 221 165 133 116 101 83
207 165 119 96 77 66 55
I M I 155
20 50 100 150 200 250 300
309 252 188 145 116 102 93
278 232 170 131 108 97 90
260 213 157 122 104 94 86
T a b l e 3.20
TITANIUM ALLOYS - TYPICAL CREEP PROPERTIES
IMI designation
Nominal composition %
IMI 230
Cu
2.5
Stress M P a to produce O.1% total plastic strain in Temperature Condition A g e d sheet
A n n e a l e d sheet
*C
100h
300h
500h
1000h
200 300 400 450 20 100 200 300 400
435 375 220 109 360 279 235 202 125
-
-
-
I M I 317
AI Sn
5.0 2.5
A n n e a l e d rod
20 100 200 300 400 500
633 474 370 359 337 162
608 463 119
-
593 458 370 359 337 88
I M I 318
A! V
60 4.0
A n n e a l e d rod
20 100 200 300 400 500
832 704 638 576 287 32
818 680 636 568 144 18
-
788 676 635 102 -
IMI 550
AI Mo Sn Si
4.0 4.0 2.0 0.5
F u l l y heattreated b a r
300 400 450 500
724 551 254 82
718 516 174 51
-
710 471 101 31
I M I 551
AI Mo Sn
4.0 4.0 4.0
Fully heattreated rod
400 450
621 307
575 217
540 -
501 -
I M I 679
Sn Zr AI Mo
11.0 5.0 2.25 1.0 O.2
A i r - c o o l e d and a g e d rod
20 150 300 400 450 500
896 703 664 579 448 131
880 695 664 571 386 93
-
880 672 649 526 247 62
Si
-
Mechanical properties o f light metals a n d alloys
Table 3.20
IMI designation
(continued) Nominal composition %
Stress MPa to produce O. 1% total plastic strain in Condition
Temperature ~ .
IMI 680
Sn Mo AI Si
11.0 4.0 2.25 0.2
Quenched and aged rod
IMI 829
IMI 834
Table 3.21
AI Zr
6.0 5.0
Mo Si
0.5 0.25
AI Sn Zr Nb Mo Si AI Sn Zr Nb Mo Si C
5.5 3.5 3.0 1.0 0.3 0.3 5.8 4.0 3.5 O.7 0.5 O.35
.
.
.
300
loo h .
.
.
.
h
500 h .
.
.
.
1000 h .
1112 942 856 788
40O 45O 500 300 350 400
555 298 88 570 540 490
540 2O9 51 -
-
-
-
-
Heat -treated forgings
200 300 400 450 500
599 551 497 461 408
-
592 541 480 431 340
589 535 462 426 -
Fully heat treated rod
450 500 55O 6OO
478 420 3OO 130
-
-
-
Heat-treated forgings
500 550 600
461
-
339 205
-
-
-
-
0.06
TITANIUM AND TITANIUM
Nominal composition %
ALLOYS - TYPICAL FATIGUE PROPERTIES
Condition
Tensile strength MPa
Commercial purity
Annealed rod
Room
354 354
I M I 125
Commercial purity
A n n e a l e d rod
Room
417 417
IMI 130
Commercial purity
Annealed rod
Room
550 550 550
IMI 115
.
1127 945 862 804
Temperature ~C
IM! designation
.
20 150 200 300
Furnace-cooled and aged rod
IMI 685
63
550 550 550 550 589 589 589 589
Details of test Rotating bend Smooth Kt - 1 Notched Kt ffi 3 Rotating bend Smooth Kt = 1 Notched Kt - 3 Rotating bend Smooth Kt -- 1 Notched Kt - 2 Notched Kt - 3.3 Direct stress (Zero mean) Smooth K t = 1
Kt = 1,5 Kt -- 2 Kt = 3.3 Smooth Kt - 1 Notched Kt -- 2 Notched Kt = 3 Notched Kt - 4 Notched Notched Notched
Endurance limit for 107 cycles stated) MPa
4- 193 4- 123 4- 232 4- 154 4- 270 4- 170 4- 170
4. 4:t: 4:k
263 247 170 116 278
4- 147 4- 123 4- 116
continued overleaf
64
Smithells Light Metals Handbook
Table 3.21
IM! designation
IMI 160 IMI 230
(continued)
Nominal composition %
Commercial purity Cu 2.5
IMI 260
Pd
0.2
IMI 262
Pd
0.2
Temperature
Condition
~
Tensile strength
MPa
Details o f test
Direct stress (Zero mean) Smooth Kt
Annealed rod
Room
674
Annealed sheet Aged sheet
Room room
564 772
Aged sheet
room
761
Annealed rod
room 4OO
598
Annealed
Room
638
Aged rod
Room 4OO
7OO
Aged rod
Room
792
Reversed bend Reversed bend Direct stress (zero minimum) Smooth Kt - 1 Rotating bend Smooth Kt = 1 Smooth Kt = I Direct stress (zero mean) Smooth Kt = I Rotating bend Smooth Kt = I Smooth Kt = 1 Direct stress (Zero mean) Smooth Kt = 1 Notched K t = 3.3
IMI 318
AI Sn
A! V
5.0 2.5
6.0 4.0
Annealed rod
Annealed rod
Room
Room
960 96O
1015 1015
IMI 550
IM1551
AI Mo Sn Si
AI Mo Sn Si
4.0 4.0 2.0 0.5
4.0 4.0 4.0 0.5
MPa
4- 376 4- 390 4- 490
0--,560 4- 370 4- 150
+ 280 4- 450 4- 290
4- 470 4- 200
Similar to IMI 115 Similar to IMI 125 Rotating bend
IMI 317
Endurance limit f o r 107 cycles stated)
Fully heattreated rod
Fully heattreated rod
Room
Room
1180 1180
Smooth Kt -- 1.0 Notched Kt = 2.0 Notched K t - 3.3 Direct stress (Zero mean) Smooth Kt = 1.0 Notched Kt -- 1.5 Notched Kt - 2.0 Notched Kt = 3.3 Rotating bend Smooth Kt = 1 Notched Kt = 2.7 Direct stress (Zero minimum) Smooth Kt -- 1 Notched Kt = 1 Direct stress (Zero minimum) Smooth Kt = I Notched Kt = 3
Rotating bend Rotating bend Smooth Kt = 1 Notched Kt -- 2.4 Rotating bend Smooth Kt -- 1 Notched Kt = 3.2
Limits for this alloy 108 cycles -4- 371 4- 263 + 239
4- 433 4- 278 4- 201 4- 154 4- 470 4- 230
0--*750 0-~ 325
0--,850 0--,350
4- 587 4- 394 4- 750 4- 430
Mechanical properties o f light metals and alloys
65
Table 3.21 (continued) . . . . . . .
IMI designation
IMI 679
,
,
Nominal composition %
Sn Zr AI Mo Si
11.0 5.0 2.25 1.0 0.2
Temperature
Tensile strength
Condition
*C
MPa
Air-cooled and aged rod
Room 200 400 450 500
-
Endurance limit for 107 cycles stated)
Details of test Rotating bend Smooth Kt Smooth Kt -Smooth Kt = Smooth Kt -Smooth Kt =
MPa
1.0 1.0 1.0 1.0 1.0
Rotating bend IMI 680
Sn Mo AI Si
11.0 4.0 2.25 0.2
Quenched and aged rod
Room
Room
1272 1272 1272
Smooth K~ = 1 Notched Kt = 2 Notched Kt = 3.3
(Limits for 2 x 107 cycles) 4- 710 4- 340 4- 293
1272
Direct stress (Zero mean Smooth Kt -- 1 Notched Kt = 2 Notched Kt = 3.3
(Limits for 2 x 107 cycles) 4- 695 4- 371 4- 232
Rotating bend
Furnace-cooled rod
IMI 685
AI Zr Mo Si
6.0 5.0 0.5 0.25
Fully heattreated rod
Fully heattreated forging
IMI 829
IMI 834
AI Sn Zr Nb Mo Si AI Sn Zr Nb Mo Si C
*Limits for IO8 cycles.
5.5 3.5 3.0 1.0 0.3 0.3 5.8
4.0 3.5 0.7 0.5 0.35 0.06
Fully heattreated rod
Fully heattreated rod
4- 495 4- 479
1100
Direct stress (Zero Smooth Kt --" 1
4- 680
-
Direct stress (Zero mean) Smooth K t = 1 Smooth Kt = 1 Smooth Kt -- 1
4- 440 4- 300 4- 260
-
Room
450 520
-
Room Room 475 475
-
Room
Room
(Limits for 108 cycles)
Smooth Kt = 1 Smooth Kt -- 1 Smooth Kt --. 1
Room 200 400
20 450 520
4-641' 4-510" 4-510' -4- 556 4- 495
-
-
Direct stress (Zero minimum) Smooth Kt --" I Smooth Kt = 1 Direct stress (Zero minimum) Smooth Kt = 1 Notched Kt -- 3.5 Smooth Kt -- 1 Notched Kt -- 3.5
d: 648
0--,475 0--,425
0--,640 0---,220 0-*460 0-.210
Direct stress (Zero minimum) Smooth Kt --. 1 Notched Kt - 3
0-,260
Direct stress (Zero minimum) Smooth Kt - 1 Notched Kt --.-2
0--.,577 0--, 363
0-,550
66
SmitheUs Light Metals Handbook
Table 3.22
IZOD IMPACT PROPERTIES OF TITANIUM AND TITANIUM ALLOYS
1ft/11 designation
Nominal composition % Condition - 196~
IMI 130t IMI 317 IMI 318 IMI 550
IMI designation IMI 551
IMI 679
IMI 680
IMI 685
Commercially pure Sn 5.0 AI 2.5 AI 6.0 V 4.0 AI 4.0 Mo 4.0 Sn 2.0 Si 0.5
Annealed rod Annealed rod Annealed rod Fully heattreated rod
17.6 (13) 13.5 (10) -
Nominal composition % Condition - 1 9 6 ~ Ai Mo Sn Si Sn Zr AI Mo Si Sn Mo AI Si AI Zr Mo Si
4.0 Fully heat4.0 treated rod 4.0 0.5 11.0 Air-cooled 5.0 and aged 2.25 1.0 0.2 11.0 Quenched 4.0 and aged 2.25 rod 0.2 6.0 Fully heat5.0 treated rod 0.5 0.25
lzod value Joules (ft lbf)* -78~ 62.4 (46) 20.3 (15) 14.9 (11) -
20~ 61.0 (45) 27.1 (20) 20.3 (15) 19.0 (14)
IO0~
200"C
62.4 (46) 35.2 (26) 25.7 (19) .
72 (53) 52.8 (39) 40.6 (30) .
.
300"C 82 (60 89 63.7 (47) 65.0 (48) . .
400~
500"C
84 (62) 70.5 (52) 83.5 (63)
82 (60 89 71.8 (53) 92.0 (68)
Charpy value Joules (ft lbf) -78~
200C
100*C
200~
13.5 (I0)
19 (14)
20.3 (15)
21.7 (16)
24.4 (18)
10.8 (8)
13.5 (10)
14.9 (11)
16.3 (12)
8.1 (6)
8.8 (6 89
10.8 (8)
12.2 (9)
31.2 (23)
39.3 (29)
43.4 (32)
.
.
300~
400~
500~
26.5 (19 89
28.5 (21)
31.2 (23)
19 (14 89
25 (18 89
30 (22)
33.9 (25)
14.9 (11)
17.6 (13)
20.3 (15)
25.7 (19)
.
.
.
*BSS 131 (1) 0.45 in diameter straight notched test pieces, tlzod values of commercial purity titanium are appreciably affected by variation in hydrogen content within commercial limits (0.008% maximum) in Ti ! 30 rod.
4 Aluminium and magnesium casting alloys
4.1 Aluminium casting alloys
$ co 3
Table 4.1 ALUMlNRIM-SILICONALLOYS Specification BS 1490: 1988 Related British SpecifFcations
3-
%
LM6M(Ge)
BS L33
LM20M(Ge)
LM9M(SP)
LM9TE(SP)
LM9TE(SP)
LM13TE(SP)
LM13TF(SP)
Composition (%) (single figure indicates maximum)
Copper Magnesium Silicon Iron Manganese Nickel Zinc Lead
Tin
Titanium Other Properties of material Suitability for: Sand casting Chill casting (gravity die) Die casting (press die) Strength at elevated temperature Corrosion resistance F’ressurc tightness Fluidity Resistance to hot shortness Machinability Melting range, C Casting temperature range, C Specific gravity
0.1 0.2
0.i 0.2 10.0-13.0 0.6 0.3-0.7 0.1 0.1 0.1 0.05 0.2
0.7-1.5 0.8-1.5 10.0- 12.0 1.o 0.5 1.5 0.5 0.1 0.1 0.2
E E
E*
G
E
E
G G
G P
G P G
G* G
E
E
G
E
G G E F 550-575 690-740 2.68
F
0.1 0.1 10.0-13.0 0.6 0.5 0.1 0.1 0.1 0.05 0.2
0.4 0.2-0.6 10.0- 13.0 1.o 0.5 0.1 0.2 0.1
-
E E E E F 565-575 710-740 2.65
-
E
E F
565- 575 680-740 2.68
-
-
F*
G
E F 525 560 680-760 2.70
LM13TF7(SP)
Heat treatnutu
-
solution t e m m , "C
Solution time, h Quench
Precipitation temperature, "C Precipitation time. h Stabilization temperame, 'C Stabilkation time. h Special properties
-
520-535 2-8 Cold water
-
150-170 16 (minimum)
150- 170 16 (minimum)
160-180 4- 16
-
Suitablefor thin and inmcate castings,
Pressure fasting alloy
-
-
-
Suitable for low-pressure cassting High strength and hardness
515-525 8 (minimum)
w-.
70-80'C 160- 180 4-16
-
515-525 8 (minimum) Water,
70-80°C
For pistons:
200-250 4-6**
Low coefficient of expansion
Good bearing properties Piston alloy
Radiy
welded Mechanical properties - sand cast Tensile s t m s min, Mpa (tonf in-2) Elongation min.% Expected 02%proof stress,
m (tonf i n 3
SI units (Imperialunits in brackets) 1W10.4) 5 60-70 (3.9-4.5)
Mechanical properties - chill cast Tensile s w s min., MPa (tonf i n-')
Elongation, min. % Expected 02% proof sfress, m a (tmf in-2)
SFully hut-trrand
1W12.3) 7 70-80 (4.5-5.2)
f a g a i n rcfinnona the0
-
170(11.0) 1.5 110-130 (7.1-8.4)
2W15.5)
230(14.9) 2 150- 170 (9.7-11.0)
295(19.1) 0- 1 270-280 (17.5-18.1)
0- I 220-250
-
190(123) 5 70-80 (4.5-5.2)
1% 12.3)
3 75-85 (4.9-5.5)
HB 100-150
oRcfinc with phosphorus subjea to examinvion under rnierorap. -Or f a such time O I give required BHN.
Association of Light Alloy Refinm and Smelun Onding:
1q9.1) 1 13q8.4) HB 65-85 b
2 lo(13.6) 1
28q 18.1) 1 270-300
ZOO(12.9)
HB90-120
(17.5-19.4) HB 100-150
HB 65-85
-
Notes ?, 0.05%.
17q11.0) 0.5 160-190
(10.4-12.3)
(14.2-16.2)
- SI units (imperialunits in brackets)
*Na mrmnlly used in this f m .
t ~ am l is~
-
F
2.
I
1W12.3)
= ? P
3
Do (b 3
E - Excellmt. F
4,.
(Ge
E: 9
- Fair, 0 - Cooq P - Poa. U - Unsuitable. - Grrral pupoae alloy; SP - special plrpme alloy as per BS 14W1988).
i
s
Table 4.1
4 0
(continued)
Specijkation BS 1490: 1988 Reluted British Specifications
LMl 8M(SP)
LM25M(Ge)
LM25TE(Ge)
Composirion % (Single figure indicates maximum) Copper Magnesium Silicon Iron Manganese Nickel Zinc Lead Tin Titanium Other
Properties of material Suitability for: Sand casting Chill casting (gravity die) Die casting (press die) Strength at elevated temperature Corrosion resistance Pressure tightness Fluidity Resistance to hot shomess Machinability Melting range, C Casting temperature range, C Specific gravity
0.1 0.1 4.5-6.0 0.6 0.5 0.1 0.1 0.1 0.05 0.2
0.20 0.20-0.60 6.5 -7.0 0.5 0.3 0.1 0.1 0.1 0.05 0.2t
G G G* P E
G
E
G G G F 550-615 680-740 2.68
-
G E
F 565-625 700-740 2.69
-
E
G* GS
E
LM25TB7(Ge)
LM25TF(Ge)
LMZrn(SP)
.
LM29TF(SP)
g8 F
0.8-1.3 0.8-1.3 22-25 0.7 0.6 0.8- 1.3 0.2 0.1 0.1 0.2 Cr 0.6; Co 0.5, Pl
P F U G G
F
F E P 520-770 At least 830 2.65
P
c’
Heat meat men^ Solution plpamc. "C Solution tune, h Qucach
-
Stabi!iitrmpraturr,"C Stabilization time, h
-
Special pmpem.es
Readily welded
pnCipitationtcmprraturc,"C
Rezipitation time, h
-
-
-
525-545 4-12 Water,70-80°C
155-175 8-12
-
-
250 2-4
-
495 -505
185
185
8-12
TopFoduceHB
8
Rquirement
-
-
-
eenela! purpose high-strmgth casting auoy
Mechanical propem'es - sand cast SI units (Imperial units in brackets) Tensile shrss min., MPa 12q7.8) 13018.4)
-
525-545 4-12 Water,70-80°C 155-175
-
4
Air blast
-
More suited to chiU ( p v . die) casting Piston alloy
15q9.7)
160(10.4)
'23q149)
12q7.8)
lZO(7.8)
1 120-150 (7.8-9.7)
2.5
0-2 200-250 (12.9- 162)
03 12q7.8)
0.3 12q7.8)
HB 100-140
HB 100-140
( t d in-q
Elongation min. % Expected 02% pmof StTcSs,
3 55-W3.6-3.9)
2 80-1OO(5.2-6.5)
m a (tonf in-2) MechunicalpropcnicS - chill cast - SI units (lmperia! units in brackets) Tensile stress min., MPa 140(9.1) 160(10.4) (tonf i n 3 ElongaIim min. % 4 3 60-7q3.9-45) SO-!OO(5.2-65) Expected 0.2%proof stress,
80-110 (5.2-6.5)
19q12.3)
23q14.9)
280(18.I )
190(12.3)
190( 12.3)
2
5 90-11q5.8-7.1)
2 220-260 (14.2-16.8)
0.3 17q11.0)
0.3 170-190 (11.0- 12.3) HB100-140
130-
ZOO(S.4- 12.9)
m a (tonf in-2)
HB100-140
*Nanonoplly lucd in this fam. TETE alon~is u ~ fagrain d twinmat then TE + 0.05%.
Note
*Fully heat-matd 5 Refine with phosphorus-subject to eurninatim undn microscope: "Or for & rime to give m imi BHN.
(Ge
E - E x c c I I n F - Fair. G
- Good P - pmr. U - Unsuitable.
- General plrposc alloy: SP - Special purpose alloy as pa BS: 1490: 1988).
ec
s.
$ %3
32
f'
a
9
6
%
$.
72
Smithells L i g h t M e t a l s H a n d b o o k
Table 4.2
ALUMINIUM-SILICON-COPPERALLOYS
Specification BS 1490; 1988 Related British Specifications
LM2M(Ge)
LMI6TF LMI6TB (SP) (SP) 3L78
LM4MTF LM4M(Ge) (Ge)
LM21M(SP)
Composition % (Single figures indicate maximum)
Copper Magnesium Silicon iron Manganese Nickel Zinc Lead Tin Titanium
0 . 7 - 2.5 0.30 9.0-11.5 1.0 0.5 0.5 2.0 0.3 0.2 0.2
2.0:410 0.15 4.0-6.0 0.8 0.2-0.6 0.3 0.5 0.1 0.1 0.2
Properties of material Suitability for: Sand casting Chill casting (gravity die) Die casting (press die) Strength at elevated temp. Corrosion resistance Pressure tightness Fluidity Resistance to hot shortness Machinability Melting range, ~ Casting temperature range, ~ Specific gravity
Gt Gt E G~ G G G E F 525-570 2.74
G G G
Ft
Gt
G G G G G G 525 - 625 700-760 2.73
G G G G G G 550- 620 690-760 2.70
G G G G G G 5 2 0 - 615 680-760 2.81
Heat treatment Solution temperature, ~ Solution time, h Quench
Precipitation temperature, ~ Precipitation time, h Special properties
Alloy for pressure die castings
-
-
505-520 6-16 Water at 70-80~ 150-170
-
6 - 1 8
"
"
i.0-1.5 0.4-0.6 4.5-5.5 0.6 0.5 0.25 0.1 0.1 0.05 0.2*
3.0-5.0 0.1-0.3 5.0-7.0 1.0 0.2-0.6 0.3 2.0 0.2 0.1 0.2
G G
G G
520-530 520-530 12 (rain) 12 (rain) Water at Water at 70-80 ~ 70-80~ 160-170 -
8-10
engineering alloy Pressure tight. High Can tolerate relatively strength alloy in "IF high static loading in condition TF condition General
Mechanical properties - sand cast - SI units (Imperial units in brackets) Tensile stress rain. MPa (tonf in - 2 ) 140(9.1) 230(14.9) Elongation rain. % 2 Expected 0.2% proof stress, MPa (tonf in -2) 70-110 200-250 (4.5-7.1) (12.9-16.2) Mechanical properties - chill cast - SI units (Imperial units in brackets) Tensile strength rain. MPa (tonf in - 2 ) 150(9.7) 160(10.4) 280(18.1) Elongation min. % 1 2 1 Expected 0.2% proof stress, MPa (tonf in - 2 ) 90-130 80-110 200-300 (5.8-8.4) (5.2-7.1) (12.9-19.4)
*0.05% min. if Ti alone used for grain refinement. t Not normally used in this form. ~The use of die castings is usually restricted to only moderately elevated temperatures.
170(11.0) 230(14.9) 2 -
-
Equally suited to all casting processes
150(9.7) 1
120-140 220-280 80-140 (7.8-9.1) (14.2-18.1) (5.2-9.1)
230(14.9) 280(18.1) 3 -
170(11.0) 1
140-150 250-300 80-140 (9.1-9.7) (16.2-19.4) (5.2-9.1)
Aluminium a n d magnesium casting alloys
73
Table 4.2 (continued) LM22TB Specification BS 1 4 9 0 : 1 9 8 8 Related British Specifications (SP)
LM24M (Ge)
LM26TE (SP)
LM27M (Ge)
2.0-4.0 0.5-1.5 8.5-1o.5 1.2 0.5 1.0
1.5-2.5 0.3 6.0-8.0 0.8 0.2-0.6 0.3
LM30M (SP)
LM30TS (SP)
,
Composition % (Single figures indicate maximum) I
Copper Magnesium Silicon Iron Manganese Nickel Zinc Lead Tin Titanium
2.8-3.8 0.05 4.0-6.0 O.6
3.0-4.0 0.1 7.5 -9.5 1.3
0.15 0.15 0.1 0.05 0.2
0.5 3.0 0.3 0.2 0.2
0.2 -0.6
Properties of material Suitability for: gt Sand casting Chill casting (gravity die) G Gt Die casting (press die) Strength at elevated temp. o Corrosion resistance G Pressure tightness G Fluidity O Resistance to hot shortness G Machinability G Melting range, ~ 525 - 625 Casting temperature range, ~ 700-740 Specific gravity 2.77 Heat treatment Solution temperature, ~ 515-530 Solution time, h 6-9 Quench Water at 70-80 ~ Precipitation temperature, ~ Precipitation time, h
0.5
1.0
1.0
0.2 0.1 0.2
0.2 0.1 0.2
4.0~-5.0 0.4-0.7 16-18 1.1 0.3 0.1 0.2 0.1 0.1 0.2
Ft
O
g
U
Ft E
G Ft
E Gt
F G
ot
E
O
O
G
G
G
G
G
G F
G
F F
G G G
F P
520- 580 2.79
520- 580 670-740 2.76
525- 605 680-740 2.75
505- 650 Well above 650~ 2.73
O
F
G
F
G
-
200-210 7-9 Special properties Chili casting Alloy for Piston alloy, Excellent alloy (gray. pressure retains castability die) die castings strength and hardness at elevated temps. Mechanical properties - sand cast - SI units (Imperial units in brackets) Tensile stress ,in., MPa (tonf in -2) 140(9.1) Elongation min. % 1 Expected 0.2% proof stress, MPa (tonf in- 2) _ _ _ 80-90
-
Stress relief 175-225 8(minimum)
Alloy for pressure die casting automobile engine cylinder blocks
--
--
(5.2-5.8) Mechanicalproperties - chill cast - SI units (Imperial units in brackets) HB = 9 0 - 1 2 0 Tensile strength ,in., MPa (tonf in -2) 245(15.9) 180(11.7) 210(13.6) Elongation min. % 8 1.5 1 Expected 0.2% proof stress, MPa (tonf in -2) 110-120 100-120 160-190 (7.1-7.8) (6.7-7.7) (10.4-12.3) Note:
E - Excellent. F - Fair. (3 - Good. P - Poor. U - Unsuitable. (Ge - General purpose alloy; Sp-Special purpose alloy as per B$1490; 1988).
160(10.4) 150(9.7) 160(10.4) 2 0.5 0.5 90-110 150-200 160-200 (5.8-7.1) (9.7-12.9) (10.4-12.9)
Table 4 3 ALUMINIUM-COPPER ALLOYS Specifrcation BS 1490, 1988 Aerospace BSL series DTD series
A !4 .
LMl2M(SP)
LM12TF(SP)*
&M14-WF'lt
[LMIl-Wl
[LMI 1-WF']
-
-
-
4135
2L91
2L92
-
-
361B
741A
-
-
-
-
h
Composition I (Single figures indicate. maximum) 9.0- 11.0 Copper Magnesium 0.2-0.4 Silicon 2.5 Iron 1.o Manganese 0.6 Nickel 0.5 zinc 0.8 Lead 0.1 Tin 0.1 Titanium 0.2
Other Properties of material Suitability for: Sand casting Chill casting (gravity die) Die casting (press die) Strength at elevated temperature Corrosion resistance Pressure tightness Fluidity Resistance to hot shortness Machinability Melting range, C Casting temperature range, C Specific gravity
3.5-4.5 1.2-1.7 0.6$ 0.6$ 0.6 1.8-2.3 0.1 0.05 0.05
0.25
4.0-5.0 0.10
0.25 0.25 0.10 0.10 0.10 0.05
0.05
0.05 0.25
0.05 Ti+Nb 0.05 -0.30
F G
P
G
F
G
E 525-625 700-760 2.94
~~
0.5 0.5 0.1 0.1 0.1 0.1 0.05
-
CO0.5-1.0
G G
~
3.5-4.5 1.2-2.5
Nb 0.05-0.3
F U
4.0-5.0 0.10 0.25 0.25 0.10 0.10 0.10
U
E F E
G G G 530-640 700-750 2.82
F P
F P
U F
U
F P F P
F P F P
G 545-640 680-700 2.80
G 540-650 675-750 2.80
-
F G
-
F F G G G 530-640 7 10-725 2.80
5ii
G-
2x %
Heat rreatment
-
solution temp., 'C Solution time,h Quench Recipitatiw tempetame, "C Precipitation time,h SpeciaI properties
515-520 6
500-520 6
525-545 12-16
Water at
Boiling water
70-80°C 175-180 2 (minimum) Piston alloy, now supmeded by LM13 and LM26. Excellent machinabiity
95-1035 2" Excellent props. at elevated trmperanrres Grav. die alloy
495 -505
525-545 12- 16
525-545
water at
Water at
Water or oil
10 (minirnum)tt oil at 80-90°C
70-80°C 120-140 1-2 Good shock resistance
70-80°C 120- 170 12- 14
160-70 8-16
195- 205 4-5
16(minimUm)
High strength alloy
Mechanical properties - sand cast - SI (Impzral units in brackets) Tensile stress min., MPa (tonf i n 3
22N14.2)
22q 14.2)
28q18.1)
324(21.O)
Elongation % Expected 0.2% proof mia, MPa
210-240
-
7 165-200
4 200-240
31q20.1)
m16.2)
(13.6-15.5)
(10.7-12.9)
(12.9-155)
280(18.1)
265( 17.1)
31q20.1)
m(26.0)
W22.0)
13 165-200
9 200-240
4
(10.7-12.9)
(12.5- 15.5)
strcsp,
-
-
-
(tonf h-2)
Mechanical pmpem.es - chill cusr - SI units (Imperial units in brackets) Tensile s h s s min., MPa 170 278(18.0) (tonf i n 3
Elongation 7% Expected 0.2% pmof stnss, min., MF'a (tonfin-2)
*Nakludcd in BS
-
-
-
140- 170
139- 170
230-260
(9.0- 11.0) HB 100-150
(14.9-16.8) HB 100-130
3W23.3)
-
-
260(16.8)
8: 3
1490: 1988.
+I I signik ~ b m ~ spsiticatioo. ee *Si FC 1.0IMX. *or5daysagcingatmrmmnp. -can substitute slaMziog malmcnt at 200-250'C if used fapistons -Allow to cool to 480-C befm qumch.
+
-
263(17.0)
s.
3
Norr:
G2
(Gc
$.
E
- Excellent F - Fair. G - Gmd P - Poor. U - Unsuitable. - General purpose alloy: SP - S p s i a l pvpose alloy s pm BS 1490: 1988).
B
9 3 0,
76
Smithells Light Metals Handbook
Table 4.4
MISCELLANEOUS ALUMINIUM ALLOYS
Specification BS 1400; 1988 Aerospace BSL series DTD series
4L53
L99
0.2 7.4-7.9 0.25 0.35 0.1-0.3 0.1 0.9-1.4 0.05 0.05 0.25
0.1 9.5-11.0 0.25 0.35 0.10 0.10 0.10 0.05 0.O5
0.1 0.20-0.45 6.5 -7.5 0.20 0.10 0.I0 0.10 0.05 0.05 0.20
F F
G E F~
680-720 2.64
F F F~ F E P F G G 450-620 680-720 2.57
425 -435 w 8 Oil at 160*C** or boiling water
425 -435 8 Oil at no more t t than 1600C
535-545 12 Water at 65 oC min
5018A
Composition % (Single figures indicate maximum) Copper 0. I Magnesium 3.0-6.0 Silicon 0.3 Iron 0.6 Manganese 0.3-0.7 Nickel 0.1 Zinc 0.1 Lead 0.05 Tin 0.1 Titanium 0.2 Other Properties of material Suitability for: Sand casting Chill casting (gravity die) Die casting (press die) Strength at elevated temp. Corrosion resistance Pressure tightness Fluidity Resistance to hot shortness Machinability Melting range, ~ Casting temperature range, ~ Specific gravity
LMIOTB(SP)
LM5M(SP)
F F F ~: F E P F F G 580-642 680-740 2.65
Heat treatment Solution temperature, ~ Solution time, h Quench
F E P F G G
0.2?
150-160 4
Precipitation temp., "C Precipitation time, h Special properties
E G G G F 550-615 680-740 2.67
Good corrosion resistance in marine atmospheres
-
Mechanical properties- Sand cast - SI units (Imperial units in brackets) Tensile stress rain, MPa (tonf in -2) 140(9.1 ) 278 Elongation % 3 3 Expected 0.2% proof stress, rain MPa (tonf in -2) 90-110(5.8-7.1) 170(11.0) Mechanical properties - chill cast - SI units (Imperial units in brackets) Tensile stress rain, MPa (tonf in -2) 170( 11.0) 309(20.0) Elongation % 5 I0 Expected 0.2% proof stress, 90-120(5.8-7.8) 170(I 1.0) min MPa (tonf in -2)
Good shock resistance and high corrosion resistance ***
Excellent castability with good mech. props.
280(18.0) 8
230(14.9) 2
170-190 (11.0-12.3)
185(12.0)
310(20.1) 12 170-200 (11.0-12.9)
28o(18.1) 5 20o(12.9)
*[ ] obsolete. t0.05% min. if Ti alone used for grain refinement. t t N o t normally used in this form. w 8 h at 435-445 C then raise to 490-500 C for further 8 h and quench as in table. **Do not retain castings in oil for more than 1 h. ***Not generally recommended since occasional brittleness can develop over long periods.
A l u m i n i u m a n d m a g n e s i u m casting a l l o y s Table 4.4 i
77
(continued)
i
,, ,, ,,
,,,
,
,,,,
Speci:cation BS 1400:1988 LM28TE(SP) Aerospace
[LM23P]*
[LMI5WP]*
3L51 -
3L52 -
1.3-1.8 0.8- 1.5 17-20 0.7 0.6 0.8-1.5 0.2 O. 1 0.1 0.2 Cr 0.6 Co 0.5
0.8-2.0 0.05 -0.2 1.5-2.8 0.8-1.4 0.1 0.8-1.7 0.1 0.05 0.05 0,25 -
1.3-3.0 0.5-1.7 0.6-2.0 0.8-1.4 0.1 0.5-2.0 0.1 0.05 0.05 0.25 -
P F
G G
F G
LM28TF(SP)
BSL series DTD series
-
5008B
Composition % (Single figures indicate maximum) Copper Magnesium Silicon Iron Manganese Nickel Zinc Lead Tin Titanium Other
0.1 0.5-0.75 0.25 0.5 0.1 0.1 4.8-5.7 0. I 0.05 0.15-0.25 Cr 0.4-0.6
Properties of material Suitability for: Sand casting Chill casting (gravity die) Die casting (press die) Strength at elevated temp. Corrosion resistance Pressure tightness Fluidity Resistance to hot shortness Machinability Melting range, ~ Casting temp. range, ~ Specific gravity
F
P
-
O~
U
U~
F O F F
G O O F
E O F F
F E F F
G
O
O
P 520-675 ~735 2.68
O 545 -635 680 - 750 2.77
O 600-645 685 - 755 2.75
P
O 572-615 730- 770 2.81
Heat treatment
Solution temperature, ~
Solution time, h Quench
-
495 -505 4 Air blast
-
520-540 4 Water at 80-100 ~ Oil or air blast
Precipitation temp, ~
185
185
150-175
Precipitation time, h
To produce required HB
8
8 - 24
150-180 (195 -205) 8 - 24(2 - 5)
175-185~:~ (at least 24 h after cast) 10(at least 24 h after cast)
High mechanical props, at elevated temps.
Good strength without heat treatment. See ~
Piston alloy
Special properties
Aircraft engine castings
Mechanical properties- sand cast- SI units (Imperial units in brackets) Tensile stress rain, MPa (tonf in-2) Elongation % Expected 0.2% proof stress, min MPa (tonf in -2 )
-
-
120(7.8) -
160(10.4) 2
280(18.1 ) -
216(14.0) 4
HBI00-140
125(8. I )
245(15.9)
150(9.7)
Mechanical properties - chill cast - SI units (Imperial units in brackets) Tensile stress min, MPa (tonf in -2) Elongation % Expected 0.2% proof stress mtn, MPa (tonf in -2)
170(I 1.0) -
HB 90-130
190(12.3) -
200(13.0) 3
325(21.0) -
232(15.0) 5
160-190 (10.4-12.3) HB 100-140
140(19.1)
295(19.1)
180(I 1.7)
?i'Can be furnace cooled to 385-395~ before quench. Do not retain in oil for more than I h, Further quench in water or air. ~Alternative-room temp. age-harden for 3 weeks.
Note: E - Excellent. F - Fair. G - Good. P - Poor. U - Unsuitable. (Ge - General purpose alloy; SP - Special purpose alloy as per BS 1490: 1988).
Table 4 5 HIGH STRENGTH CAST AL ALLOYS BASED ON AL4.5 CU c
KO1
European
3
A-Lr5GT
F?: 0 R
Designation A1 Assoc (USA) designation
cu
Mg Si Fe
Mn Ni
zn Sn li
Ag Others each Others total
201.0 4.0-5.2 0.15-0.55 0.10 0.15 0.20-0.50
-
0.15-0.35 0.40-1.0 0.05 0.10
201.2 4.0-5.2 0.20-0.55
A201.0 4.0 -5.0 0.15-0.35 0.05 0.10 0.20-0.40
-
-
A201.2 4.0-5.0 0.20-0.35 0.05 0.07 0.20-0.40
0.15-0.35 0.40-1.0 0.05 0.10
0.15-0.35 0.40-1.0 0.03 0.10
0.15-0.35 0.40-1.0 0.03 0.10
0.10
0.10 0.20-0.50
-
-
204.0 4.2-5.0 0.15-0.35 0.20 0.35 0.10 0.05 0.10 0.05 0.15-0.30
-
0.05 0.15
204.2 4.2-4.9 0.20-0.35 0.15 0.10-0.20 0.05 0.03 0.05 0.05 0.15-0.25
-
0.05 0.15
206.0 4.2- 5.0 0.15-0.35 0.10 0.15 0.20-0.50 0.05 0.10 0.05 0.15-0.3
-
0.05 0.15
206.2 4.2 -5.0 0.20-0.35 0.10 0.10 0.20-0.50 0.03 0.05 0.05 0.15-0.25
-
0.05 0.15
A206.0 4.2 -5.0 0.15-0.35 0.05 0.10 0.20-0.50 0.05 0.10 0.05 0.15-0.30
-
0.05 0.15
A206.2 4.2-5.0 0.20-0.35 0.05 0.07 0.20-0.50 0.03 0.05 0.05 0.15-0.25
-
0.05 0.15
Aluminium and magnesium casting alloys Table 4.6
79
MINIMUMREQUIREMENTS FOR SEPARATELYCAST TEST BARS
Alloy
Sand~Die
Treatment*
UTS MPa
201.0
Sand Sand Sand Die
T6 T7 T4 T4
414 414 311 331
204.0
0.2 PS MPa
El% in 50 mm or 4 x diam
345 345 194 220
5.0 3.0 6.0 8.0
Typical HB 500 kgf 10 mm 110-140 130 95
*For temper designations see Table 7.3.
Table 4.7 .
TYPICALPROPERTIES OF SEPARATELYCAST TEST BARS .
.
.
.
.
.
.
.
.
.
Alloy
Sand~Die Treatment*
201.0
Sand Sand Sand
T4 T43 T6 T7 T7
.
.
.
.
Sand
T4 I"7
*Elevated temperature properties.
.
.
.
.
.
.
.
.
.
.
.
UTS MPa
0.2 PS MPa 215 255 380-435 415 360 345 275
17,1% in 50 mm or 4 x diam
Room 150C*
Temp. 0.5- I00 h 1 000 h 10000 h
365 414 448 -485 460-469 380 36O 315
205C
0.5 h 100 h 1000 h ,10000 h
325 285 250 185
310 270 230 150
9 10 9 14
260C
0.5 h 100 h 1000 h 0.5 h 100 h 1000 h 10000 h
195 150 125 140 85 70 60
185 140 110 130 75 60 55
14 17 18 12 3O 39 43
20C 120C 175C
436 384 333
347 316 302
11.7 14.0 17.7
315C
A206.0
.
20 17 7-8 4.5 -5.5 6-8.5 8 7
Typical lib 500 kgf 10 mm 95 135 130
118HV 137HV
m
0
4.2 Magnesium alloys Table 4.8 ZIRCOMUM-FREEMAGNESIUM ALLOYS Grain refined (0.05-0.2 m m chill cast) when superheated ro 850-900 "C or suitably treated with carbon (as huachlorethane)
Elektron designation ASTM designation
A8 AZ81
SpecificafionsBS 2970 1989
MAGlM' (GP)?
Equivalent DTD
-
BSS L series
-
MAGITB* (GP) 3L. 112
-
h
og
s
A8 (High purity) Az8 1
3
MAGZM(SP)t
-
MAGZTB(SP)
684A
690A
-
3
B h
Composition % (Single figures indicate maximum) Aluminium 7.5-9.0 Zinc 0.3-1.0 Manganese 0.15 -0.4 Copper 0.15 Silicon 0.3 Iron 0.05 0.01 Nickel Cu+Si+Fe+Ni 0.40 Matertal pmperties Founding Good Characteristics Sand and permanents mould Tendency to hot tearing Little Tendency to micro-porosity Appmiable Castability8 A Weldability (Ar-Arc process) Good Relative damping capacity! C Snength at elevated ttmperaNE** C Corrosion resistance Moderate 1.81 Density, g 600 Liquids, "C Solidus, 'C 475 Non-equilibritun solidus, "C 420 Casting temperature range, "C 680-800
7.5-9.0 0.3-1.0 0.15 -0.7 0.005 0.01 0.003 0.001
Good Special melting technique required Little Appreciable A
Good C
c Moderate 1.81
600
475 420 680- 800
Heat trwancnt
Solution:
Ti.h
-
12 (min) 435 (max)** Air, oil 01 watcr
Tanpaaturr. ' C
cooling
Elektron &signmion ASTM designation
--
AZ91 AZ9 I
SprciJscotins BS 2970: 1989
MAG3M(GP)
--
Bss L series
Equivalent DTD ~
C alloy
MAG3TB(GP)
MAG3TF(GP)
3L.124
3L.125
-
~
_
-
_
_
MAG7M(GP)
-
MAG7l"f(GP)
-
-
~
Composition 96 (Single figures indicate maximum)
Alumini\rum zinc
7.5-9.5 0.3-15 0.15-0.8 035 0.40 0.05 0.02 0.75
=
9.0- 10.5 0.3- 1.0 0.15-0.4 0.15 0.3 0.05
NiekCl Cu Si
0.01 0.40
Material properties Founding
Good
ChnracteriJtiCs Tmcemy to hot tming Tcndency to miav-porasity
Lit&
Little
A
A Good, but some difficulty with die
castings
CaStingS
C
C
Modrraa 1.83 595 470 420
Moderate
Wganese
Ima
+ + Fe + Ni
CaSabilityQ Weldability (Ar-Arc puccss) ~ e ~ a t i &ping ve capacity1 Strmgm at ekvatcd mqmanue'* C-ionmistance Density, g cm-3 Liquidus. ' C Solidus, "C Non-equilibrium solidus, "C Casting tempcrannr range, "C
Sand, permanent mould and die (pressure)
Lw than MAGI Good, but some difficulty with die C
680-800
Good Sand,permanent mould and die (pressure)
Less man MAG1
E:3 z 2
3 0 z 3
C
B r)
1.82
600
g
475 420
$
n
680-800 continued overleaf
z
Table 4 8
m
(confinued)
Heat treatment Solution: lime, h Temperature, "C Cooling
CJ
-
16 (min) 435 (Inax)** Air, oil or water
-
-
16 (min) 435 (max)SS Air, oil or water
-
-
R%
s
ts G.
5
Elektmn designation ASTM designation
AZ91E
Sperifrcntions BS 2970: 1989 BSS L series Equivalent DTD Composition % (Single figures indicate maximum) Aluminium Zinc Manganese Copper Silicon Iron Nickel Cu + Si Fe Ni Material properties Founding Sand and permamnt mould Good characteristics Tendency to hot tearing Little Less than MAGI Tendency to micro-porosity Castability5 A Weldability (Ar-Arcprocess) Good Relative damping capacity1 C Strength at elevated temperature** C Corrosion resistance Excellent 1.83 Density, g 595 Liquidus. "C Solidus, "C 410 Non-equilibrium solidus. "C 420 Casting temperature range, "C 680-800
+ +
,4291 (HP)
AZ91D
MAGI1 (GP)
-
Little Little A Difficult C C Excellent
1.83 595 470 420 620-680
-
z P
5.5-6.5 0.25-0.75 2.4-3.0 0.20 0.05 0.01
-
Good
%
-
8.5-9.5 0.45-0.9 0.15-0.40 0.015 0.020 0.005 0.0010 High pressure die
ZC63 ZC63
-
Sand, permanent and high pressure die Good Little Little
B Good C
B Moderate
1.84 635 465
-
700-810
ilc
8
B
Heat treatment TI, h
T a w , “C COOling
16 (min) 435 (max) Air, oil or watcr
Noc suitable
Elekwon designation ASTM designation
A8
A8 (Highpurity) -1
A281 ~~
Speci&atiom BS 2970: 1989 BSS L series Eqw’valemDTD Hem trromvm - continued Precipitation:
Ti,h
Temperature, “C shss relief:
The,h
Tmpcratm, ‘C
MAGlW (GP)?
-
2-4 250-330
MAGITB* (GP) 3L.122
-
-
-
Mechanical pmpejiies - sand cast - (SI units GrS& Imperial units following in brackets) Tensile seength (min), MPa (tonfin-2) 140 (9.1) 200 (13.0) 0.2% proof s h s s (min). Mpa (tonf h-2) 85 ( 5 5 ) 80 (5.2) Elongation % (min) ( 5 . 6 5 6 ) 2 6 Mechanical propemirs - chill cast - (SI units first, Imperial units following in brackets) Tcasile strength (min), MPa (tonf in-2) 185 (12.0) 230 (14.9) 0.2% proof stress (min), MPa (tonf h- 2) 85 (5.5) 80 (5-2) Elongation % (min) ( 5 . 6 5 6 ) 4 10 Applicahons Automobile road wheels Good ductility and shock resisranee
MAGZM(SP)f
MAGZTLQP)
684A
690A
-
2-4 250-330
-
-
-
1 4 0 (9.1) 85 (5.5) 2
200 (13.0) 80 (5.2) 6
185 (12.0) 85 (5.5) 4
230 (14.9) 80 (5.2) 10
High-purity alloy
- offers good corrosion resistance continued overleaf
z: 3
B
a I 5
Do
$
3-
m w
00
P
ro
3. h
Table 4.8
z. Q
(continued)
Az9 1
EIekhvn designation ASTM designation
3 5
C alloy ~
Specifications BS 2970 1989 BSS L series Equivalent DTD
MAG3M(GP)
-
MAG3TB(GP) 3L.124
-
MAG3TF(GP) 3L.125
-
Precipitation: Time,h 8(min) Temperature, "C 2lqrnax) Stnss rclief: 2-4 Time, h 250-330 Temperature, "C Mechanical propenies - sand casf - (SIunits first, Imperial units following in brackets) 125 (8.1) 200 (13.0) 200 (13.0) Tensile strength (min), MPa (tonf 0.2% proof stress (min), MPa (tonf in-2) 95 (6.2) 85 (5.5) 130 (8.4) Elongation 46 (min) (5.65&) 4 Mechanical properties - chill cast - (SI units first, Imperial units following in brackets) 170 (11.0) 215 (13.9) 215 (13.9) Tensile strength (min), MPa (tonf in-2) 0.2% proof stress (min), m a (tonf in-2) 100 (6.5) 85 (5.5) 130 (8.4) Elongation % (min) (5.66&) 2 5 2 Applications For pressure tight applications Increased p f stress after full heat treatment
hfAG7M(GP)
-
MAG7TB(GP)
MAG7TF(GP)
-
-
-
-
8(min) 2lqmax) 2-4 250-330
-
-
125 (8.1) 85 (5.5)
185 (12.0) 80 (5.2)
185 (12.0) 110 (7.1)
-
170 (11.0) 85 (5.5)
2
4
215 (13.9)
-
215 (13.9) 110 (7.1) 2 Principal alloy for commercial usage 80 (5.2) 5
$ %
F
_______
~~
~~
~~
E l e h n designation ASTM designation
ZC63
ZC63
AZ91D
Specifiakms BS 2970: 1989 BSS L series Equivalent DTD
-
MAGI I(GP)
-
pncipitation: TI, h
8 (h)
Tcmpcratur,"C
210 (max)
stress relief:
Not suitable
-
-
Ti,h T e m m , "C
-
-
16 (min) 200 (nw
-
-
Mechanical propzrties - sund cast (SI units first, Imperial units following in brackets) T ~ S ~ I strength C (min). ma (tonf in-2) 200 0.2% proof stress (min), ma ( t d in-2) 130 Elongation % (min) ( 5 . 6 5 6 ) 2
Qpical high
210
pressure diecast propmies
3
- chill rust -
(SI units fuss Imprial units following in brackets) n 3 215 200 0.2%proof stp*Lp (min). Mpa (tonf in-2) I30 150 Elongation % (min) (5.65&) 2 1 High purity alloy offm exccucnt COrrodMn rtsisrance. Applicaionr Max. temp. 120°C Mechnical properties
125
TCIIS~IC ~trmgth (min). ma (tonf i
-
*M-asc l s t
Ts-sass rckved only.
TE-Precipitation mated only. TB-solution trcatcd only. TF-Sol~tionand pneipitation~FZUCYL TGP General pupose alloy. SP special purpose alloy. *RmuuKnt moUld=glarity die casting. SAbility to fill mould easily. A. B. C. indicate decreasing castabiiity.
210 125
3 Better foundability than AZ91 with superior elevated ternpahue propertics
bamping capacity ratings. A=Outstanding.beacrthangnycastira . B=Equivalent to cast-iron C=Infmior to cast-iron but better Al-base cast alloys. **A=Particularly recommcndcd. Bduitable but not especially recommended CsNot recommnded where sacngth at elev. temps is likely to be an impoaant considcratioa ~l MPa=I Hm-2=006475tonfin-2. $#S@ a C R .
E:3 k 3
2
1-p
E' L
00
g u
Q)
Table 4.9 MAGNESNM-ZIRCOMUMALLOYS f&rcnrlyfw
00 o\
grained (0.015-0.035 mm chill cast)
z5z
E l e b n designation ASTM designation Specifications BS 2970 1989 BSS L series Equivalent DTD
Composition % (Single figures indicate maximum) Zinc Silver Rare earth metals Thorium
Zirconium
Copper Nickel Iron Silicon Manganese Material properties Founding characteristics Tendency to hot tearing Tendency to micnporosity Castability1 Weldability (&-Arc Process) Relative damping capacity** strength at elevated temperaturett Resistance to creep at elevated temperam Corrosion resistance Density, g cm-3 ( 2 0 0 ~ ) Liquidus, "C Solidus, "C Casting temperature range, 'C
ZK51
ZE41
Rz5
ZREl Ew3
MAG4TE8 (GP)? 2L. 127
MAGSTE(SP) 2L.-128
MAG6'IE(SP) 2L.-126
-
3.5-5.5
0.4-1.0 0.03 0.005
-
3.5-5.5
0.75 - 1.75
0.4-1.0 0.03
-
0.005
Good in sand and permanent moulds5 Marked Very appreciable B Not recommended BIC C
Poor Moderate 1.81
-
0.8-3.0 2.5-4.0 0.4-1.0 0.03 0.005
-
-
Good in sand and permanent moulds Some Vutually none
Excellent in sand and permanent moulds Little None
A Moderate BIC B Moderate Moderate 1.84
A
640
640
560 720-810
510 720-810
very good B A
Good up to 250°C Moderate 1.80 640 545
720-810
2 "L
g s
9 3
sE; z 2 8
B
Heat treatment solution: TI,h
Tem~vmamt,"C Gmhg hipitation: Xme, h Temperahrrr,"C
Post - weld stmss relid: Tie, h
16 180 Air Cool
2 followed by 16 330 180 Air cool after each
" L
Rccipitation trtamvnt atfords *lief
mmax Air cool
200 (13.0) 135 (8.7) 3
140 (9.1) 95 (6.2) 3
215 (13.9) 135 (8.7)
155 (10.0) 110 (7.1)
4
3
$
For high-strength pressure-tight
High degree of pressure tighmcls at luom and elevated temperatures
fn
330 to precede precipitation
8 200
Air cool 10
trcatmmt
Mechanical properties - sand cost - SI units (Imperial units in brackets) Tensile Sacngm min, MPa (tonfinw2) 230 (14.9) 0.2% proof strcss min, MPa (tonf in-2) 145 (9.4) Elongation. 46 (5.65fi) min 5 Mechanical properties - chill cast - SI units (Imperial units in brackets) Tmsik smngth min, MPa (tonf in-2) 245 (15.9) a296 poor stnss mio, MPa (tonf h-2) 145 (9.4) Elongation 46 ( 5 . 6 5 4 ) min 7 Applications
High strmgth plus good ductility. Not suitable for spidery complex shapn
applications
continued overleaf
3.
t.
i%
8
8 2
%'
'hble 49 (continued)
W
Elektron designation
ASTM &signation Specifrcations BS 2970: 1989 BSS L series Equivalent DTD Composition 46 (Single figures indicate maximum) Zinc Silver Rare earth metals Thorium ZircOniUm
copper Nickel iron Silicon Manganese Material properties Founding characteristics Tendency to hot tearing Tendency to micro-porosity Castability1 Weldability (Ar-Arc process) Relative damping capacity** Strength at elevated temperamitt Resistance to creep at elevated temperahue Corrosion resistance knsity, g cm-3 (20') Liquidus, "C Solidus, "C Casting temperature range, "C
ZTW
WSSS
m 2
ZH62
zE63 ZE63
MAGITE(SP)
MAG9TE(SP)
-
5005A
5015A
5045
1.7-2.5
-
5.0-6.0
-
5.5-6.0
0.10 2.5 -4.0 0.4- 1.0 0.03 0.005 0.01 0.01
0.20 1.5-2.3 0.4-1.0 0.03 0.005 0.01
2.0-3.0
0.01
0.01
0.15
0.15
0.15
As per MAG7 but more sluggish Little
Similar to MAG5 Very little
None C vety
B
LOW
B Fair B
Modcratc 1.85
Fair Moderate 1.87 630
550 720 810
-
520
720
0.01
Good Negligible V i l y none very good*** B/C C
A
645
0.005
A
C
Good up to 350'C
-
0.4-1.0 0.03
- 810
Poor
Moderate 1.87 625 516 720 - 810
-
B
g %.
P
9 3s c
E8 B
Hcormotmrnr 30 f a 12 mm scm. 70fa25mmscm. 48otAir blaa a water spray
Solutioa:
Ti,h
Tempcratmt."C
coding
Recipitatioo:
Ti.h
Tempcratmt. "C
16 315
Air cool
2 followed 16 330 by 180 Aircoolaftereach
48 a 72 138 in
255 (16.5) 155 (10.0) 5
275 ( I 7.8)
255 (165) 155 (10.0) 5
sand
~ ~ V Y d u t y - U w F
High sangth with good ductility and cxccumt fatigue
r F 3.
rsistaaa. StnrnnalEUtSaircrafsCtC.
3
Aircod
postwcldstrrsrreM
Ti,h
. c T
"C
2 350
Air cool Mechanical pmpcrtes - sand cast - SI units (Imperial units in bnckts) Tcnsik strength min. MPa (tonf in-2) 185 (12.0) 0.2% poof stras min. MPa (tonf in-2) 85 (55) Elmpuios % (5.6545) mia 5 Mechanical propcmes - chill cast - SI units (Imperial units in bnckcts) T d SIIUI@ mip MPa (tmf in-2) 185 (12.0) 0.2%pmof stress min, MPa 85 (5.5) Elmgatios % (5.6545) min 5 creep nsiswt auoy Applications
170(11.0) 5
cast MOY
continued overleaf
2. c
2 4 2
E'
Table 4.9
8
(continued)
EIeknon designation ASTM Specifications BS 2910 1912 BSS L series Equivalent DTD
MSR-B
MSR-A
-
MAG12TF(SP)
-
5025A
5035A
5055
Composition % (Single figures indicate maximum) Zinc 0.2 Silver 2.0-3.0 Rare earth metals 1.2-2.0* ThOflUm 0.4-1.0 Zirconium 0.03 copper 0.005 Nickel 0.01 Iron Silicon 0.01 Manganese 0.15 Ymium
-
0.2 2.0-3.0 1.8-2.5$
0.4-1.0 0.03 0.005 0.01 0.01
0.4- 1.0
0.15
0.03 0.005
0.0 I 0.01
-
-
0.15
-
WE54 WE54
WE43
MAG13TF(SP)
MAG14TF(SP)
-
-
WE43
-
-
-
h
s. h E; 5
s
P
s
0.3
-
EQ21 EQ2 1
HK31
-
0.2 2.0-3.0 2.0 -3.0$
-
rn$$*
MSR QE2
0.1 2.5-4.0 0.4-1.0 Q.03 0.005 0.01 0.01 0.15
-
0.2 1.3-1.7 1.5-3.0t
0.2
-
0.4-1.0 0.05-0.10
-
0.005 0.01 0.01 0.15
-
a"
-
2.0-4.0~fi
2.4-4.4fff
0.4- 1.0 0.03
0.4- 1.O 0.03 0.005 0.01 0.01
-
0.005
-
0.2
0.01 0.01 0.15 4.15-5.5
-
0.15
3.1-4.3
E;
s: B
k%
E l e b n designation
MSR-A
-
MSR-B
-
MSR QE22
Sp~~ifrcmionr BS 2970 1989
MAGIZTF
BSS L series Equipment DTD
-
(SP)
-
5025A
5035A
5055
Material pmperties Founding characteristia
Good
Goal
Good
Little slight B very good BK
Little Slight B
Little Slight B very good BK A
ASTM designahon
Tendency to hot tearing Tendency to micro-porosity
cqswity1 Weldability (Ar-Arc process) Relative damping capacity" Strength at ekviaed
tempnanneff
A
Resistance to cnep at elevated temperarure
Good up to
Corrosion Rsistance Density, g m - 3 ( 2 0 " ~ ) Liquidus, 'C Solidus, "C casting tempmuure range, "C Heat treatment solution:
Modcrate
200°C 1.81
640
-
very good
BK A
WE54 WE54
WE43 WE43
-
MAG13TF(SP)
MAG14TF(SP)
-
-
-
-
-
-
-
LesseaSyto found than MSR types Very little Negligible C very good
Good Little Slight
Good Very little
Good Very little
slight B
slight
very good
very good
A
A
-
BK
B very good B/C
Good up to 350°C for short time applications
Good up to
ZOOT
Mode* 1.82
Moderate 1.81
Moderate 1.84
M&tC
640
640
720-810
550 720-810
Ti,b
8
Tempcrahlrc. 'C
525**
8 525**
cooliog Precipitation: Ti,b
Water or oil
water or oil
8 525**
16
16 200
200
Air cool
EQ21 EQ2 1
Good up to
550
m
MK31
-upto 200°C
550 720-810
Temprraturc, "C
m***
Air cool
water or oil 16
Air cool
645 590
720- 810
BK A
B
BK
A
very good up to 250°C
very good up to 250°C
Excellmt 1.85
Excellent
640
640
640
545 720-810
550 720-810
550 720-810
8
8 525** Aircod
8 525**
16
16 250 Air Cool
Ux)T
1.81
52d*
water or oil
16 200
Air cool
250 Air cool
1.85
water or oil
continued overleaf
2
Tpble 4.9 (conrinued) Elektmn designation ASTM designation Specifiations BS 2970: 1989 BSS L series Equipment DTD
8
--
MSR-B
-
MSR QE22
rnsss MK31
EQ2l EQ21
WE54
WE43 WE43
co
MAGIZTF(SP)
-
-
MAG13TF(SP)
MAGI4TF(SP)
5025A
5035A
5055
-
-
rp, 2
MSR-A
Post-weld stnss relief: Time, h Temperature, 'C
1 5 10 followed by above quench and age Mechunical properties - sand c a r - SI units (Imperial units in brackets) Tensile strength min, MPa (tonf i n 3 240 (15.5) 240 (15.5) 0.2% proof stress min. MPa (to& in-2) 170 (11.0) 185 (12.0) Elongation, % (5.65&) min 4 2 Mechunicul pmperries - chill cast - SI units (Imperial units in brackets) Tensile strength min, MPa (tonf in-2) 240 (15.5) 240 (15.5) 0.2% p f stress min, MPa (tonf i n 3 170 (11.0) 185 (12.1) Elongation, % (5.65&) min 4 2 Applicntionr High strength in thick and thin section castings. Good elevated tempem(UP to 250°C) short time tensile and fatigue - -m s- .
Repeat above cycle
-
1 505 followed by above quench and age
510 followed by above aircool and apt
1 510 followed by above quench and age
1
240 (15.5)
200 (13.0)
240
250
250
175 (11.3) 2
93 (6.0) 5
170 2
175 2
L
240
250
250
170 cast Similar to MSR alloys but leu but less
175 2 Excellent strength up to 300'C for short time applications. Excellent corrosion resistance
240 (15.5) 175 (11.3) 2 Similar to
MSRA-B
Usually sand 2 Superior short time tensile and creep resistance at temperatuns around 300°C
foawcc to W k 4.1. ?See tootnae to Tabk 4.1.
**sq or co2 atmoophcn.
*Neodymium-rich IM Mllhc (others Ce-rich).
11Castings to tc loded into fuma~cat operating tempcraturr.
1See foomote to Table 4.1. -See footnote 10Table 4.1. %See tootnae to Table 4.1.
tttJn hydrogen at annospherie p n s u ~ .
'See
-
WE54
??See fawnOD to Table 4.1.
***But only before hydridmg heamKnL ***Thorium containing alloys M being replaced by alccrnative magnesium based alloys.
111Neodymium and h v y rare uuths.
165
165 L
Excellent strength up to 250 "C for long time applications. Excellent corrosion resistance
a
5
e
P
-5 -.
3
it
8 %
5 Equilibrium diagrams 5.1 Index of binary diagrams Ag-AI Ag-Mg Ag-Ti AI-As AI-Au AI-B AI-Ba AI-Be AI-Bi AI-Ca AI-Cd AI-Ce AI-Co AI-Cr AI-Cs AI-Cu AI-Dy AI-Er AI-Fe AI-Ga AI-Gd AI-Ge AI-Hf Al - Hg AI-Ho AI - In AI-K AI-La AI-Li AI-Mg l-Mn AI-Mo AI- Na AI-Nb AI - Nd AI-Ni AI-Pb AI- Pd Al-Pr AI-Pt AI-Pu AI-Re AI-Ru AI-Sb AI-Sc AI-Se AI-Si AI-Sm AI-Sn AI-Sr
94 95 95 96 96 97 97 98 98 99 99 99 100 101 102 102 103 103 104 105 105 105 106 106 107 107 108 108 109 109 110 I10 111 111 112 112 112 113 113 114 115 116 116 117 117 118 118 118 119 119
AI-Ta AI-Te AI-Th AI-Ti AI-Tl AI-U AI-V AI-W AI-Y AI-Yb AI-Zn AI-Zr Au-Mg Au-Ti B-Ti
120 120 120 121 121 122 122 123 123 124 124 125 126 126 127
Ba-Mg Be-Ti Bi-Mg Bi-Ti
127 128 128 129
C-Ti Ca-Mg Ca- Ti Cd-Mg Cd- Ti Ce-Mg Ce-Ti Co-Mg Co-Ti Cr-Ti Cu - Mg Cu- Ti Er-Ti Fe-Mg Fe - Ti
129 130 130 131 13 l 131 132 132 133 133 134 134 135 135 136
Ga-Mg Gd-Mg Gd-Ti Ge-Ti H-Ti
136 137 137 138 138
Hf-Ti Hg-Mg ln-Mg In-Ti Ir-Ti
139 139 140 140 141
K-Mg La-Mg Li-Mg Mg-Mn Mg-Na Mg-Ni Mg-Pb Mg-Pr Mg-Pu Mg-Sb Mg-Se Mg-Si Mg-Sn Mg-Sr Mg-Th Mg-Ti Mg-TI Mg-U Mg-Y Mg-Zn Mg-Zr Mn-Ti Mo-Ti N-Ti Nb-Ti Nd-Ti Ni-Ti O-Ti Os-Ti Pb-Ti Pd-Ti Pt-Ti Pu-Ti Sc-Ti Si-Ti Sn-Ti Ta-Ti Th-Ti Ti-U Ti-V Ti-W Ti-Y Ti-Zn Ti-Zr
141 142 142 143 143 144 144 144 145 145 146 146 147 147 148 148 148 149 149 150 150 151 152 152 153 153 154 154 155 155 156 156 157 157 158 158 159 159 160 160 161 161 161 162
94
Smithells Light Metals Handbook
At.
IAg,AZl
eC iooo
I 0 JO $ 0
IIII
II
I
~_
.
40
SO
I
60
I
70
I
I
%
AI
00 I
,
_,
PO I_
96o.$. 900 .
800"---
.
.
.
.
.Lie,,i~
.
1
"
'
'
I
~
~
,.........,........,~
6LOeC
LO0,-----~
=. A!
$00 s - - -
~
~
DO
soo~ ~ 2O
I II :
I
I
:
I
,
' ,
wr.'/,
,
As
80
90
Equilibrium diagrams At % A~e
"c
I000
8OO Llqv~
?00 600
SO01-....-.4
,oo i ~ L L L _ ~ 300
ii
a o o t. _ _ . . I 0
/0
..._
.1t0
40
.To
6O
wt ~ Me
eC
70
eO
Wt. e/e A f 40 SO #0 70 eO
/0~
DO
I00
110
,,oo~, ~ L;t'uSr ! "~ ......-",.~i~', I... 141
q ~uqqq
t
_
quqbqu
___
e |
_
~,,,
~qb_
", ue~
! I,~o' ' 9
9
i
w_
I
lr.ele A t
~~
l L~ ~"~"
iiiilJ-I- I 1
95
96
SmitheUs Light Metals Handbook
aoo~ ~
"
'1
"i A"
L t~ ',rid
1740 e
sot /no{} 800
/
w
/ f l fJ
I
%
% 817 ~
/
40O
........ )
40
d:O At. Ole As
80
I00
At. % A v /0
"C
i
~~-,,4 '-..!.-, r
~.. I_
I I/
i- I l
I
I-!-
I s
t
'
I0~ _
I!
P4 _
9S ~
.
.
N .
.
.
97 Wt.~Av .
I
.
=
d
- - . - . / -II I I I -I----" I
i
I. ; f v ; d
P 700
....-, .~
. . . .
t I
- =
!
.....
400
! 3001 0
~
i l , I0
. . . . . . .
]
! .I0
30
40
.SO Wr.% Av
60
II ! 70
eO
PO
I00
Equilibrium diagrams
or
wr.% 8
Io
d?O
40
60
.........
,
]
410
Al ~ t - . -
.....
"9
~3oo 9
+~ru;,,#.AlalZ~" t.
,.oo
-
" "+'~ O~ I
....
i
"+,"+" ""(,4"" I .,
'
!
~sso+
Z
L
I Ai-B I
-
,?
i
97
"+- 14500
....
"..'., "r ..........
czqv;r , +z.,4L n/,a I
+, 9
I)73o
,,+,
~9 . 0 5 S
6C10 ..
.
ClSP'7~
,,oo +"
. . . . . . . . I
20
" 40 60 At. Olo 41
eO
tOO
AtSI~
"C 0
.
1200 . . . . 1100
.
.
I0
.
.
15
20 .
.
30 .,40 ,,50 60 . .
.
110 I00 I -+~
,
11300
~
i.i
,
~0
,
- "-"x N i
,,,,,
,
+
.i
1
,
..... "
~
'
.
\ 800
'
"
N5"C
\
700
+,.,
~
_
.._+._.
"m+,.+"~~ ........ / I._.__.~++/+
~0
9 ..,-("AO, 0
I0
1 20
30
+40
~ I ~ S lIO
80
70
80
939O.9. 1.~ 90
I00
IAi-gil
98
Smithells Light Metals Handbook "C 0
Ar. ~ Al
tO
!
.
.
.
40
~
I t 0 0 ~
so
6o
70
80
/oo
.
--,... ~ . =_
.......
mOO
9" L / W e '
~X)"
|
-
t
I
t _! ooo I .....
i
9J
_,
! ,
:.
1
!
.,
!
"i I ! I
SO0'I
,41 * 8a
I 4OO ~
I
300~
0
I0
~
40
60
30
40
SO
60
m.%A/
Wt. Olo
[Al-ai ]
oc
I0
II00
80
70
80
90
I00
8t
8S
~
9$
,
98
t
,
I
i
1
L;I U l d
poo
J ..... ,
,,
~'
t
I\i
j . . . . . . . . . . Xo..,,.,. o, ._
I, i
.
.
'
=
==
\
,,,
._
I
Al + Liqvi~
I
'
:
t 4oo .........
==~
300
"
. . . . . . . 1.
-
.
;
'' .
'
!il =i
: ..
~. :!
,
--o
,o
ao
.
... , 271 ~
,,,
3o
.
.
4o
.
.
, ' ;
1 .
.
;
.
;
"
'
'
"
.
.
_ ,
'
.
. ,
i
. "
i
~~1 =
~I li '~
! .
.
AI
.
.
.
so
olo
.
81
.
.
.
~o
~o
~;o
p'o'
ioo
Equilibrium diagrams
99
I A'-C"I
m.~,o ~ 800
IOtO
dr40 d,
,00
y
....
wo.~ c~
JO
~ .....
.
400
.
B9
-~,,
.J.~
G49 e
~O.e4.
JW
,,§
,
.
.'~.
3It*
i
,
i
~i
ja
I00 0
oc
Io
1800
SO
.
.
.
IdO0
.
wt. %
71
AljCe
.
'
'
r
#0
90
ce 8S
~
Ioo
P8
Al~tj
.,oo ~'
1480 9 1 4 0 0
l
I ,?l
~
Iooo
8001
dO0
l
/T
I .%
"
. . . . . .
/
o,,o ........ \
\
-
.
/ *~I,o,_
64L0
........
655~
400 ,~$o o , ,, zoo .
0
.
/0
.
,tO
30
.
40
,SO 60 At.Olo Ce
";'0
80
PO
/00
100
Smithells Light Metals Handbook .,~ %
*Co
I0
,~0
30
,10
,41
60
50
70 I .....
80 I
I00
90
.
I
.L i g v i # .
#co lllSel
_i
,
u O0~
-
-
"
"
\
t i I000"
,
"
"
pA$ 9 OOO.
1.
.
.oo.,
.t
....
.
.
.
. I
I.
; !
I"
I I I
700"
|
"
9
~co ! |
,,s%
7a
I I.
,oo
\
,o
;o
-
=
!
660
....
I I I
u
g
~
i
!.
40
$0 Wt.% AI
LO
7O
80
9O
tOO
9
Equilibrium diagrams I0
~0
JO
40
SO
ClO
At, o/O AI
dPO
,I'0
Pt
9
tO
"Wf.% AI
PO
I
PP
I00
I0
PO
Llqv~ 4?OOO
leO0
NO0
t400
laO0
I000
,qf~r ~00
400
I0
d?O
JO
40
$0 N~r.% AI
d~O
70
I00
1O1
102
Smithells Light Metals Handbook I0
"C
20
3O
40
.~0
At. % AI 70
60
80
IAi-cu] '
.
IJquid I
,
._
S65"
,
Se3,
0~;
500
400~
,
,~JIt
i
"
[1
-
.
d7.0
"
Joo i _ _~..
10
0
d?O
JO
dO
$o
60
wr. % At
WtSCs
I A,-Csl
4/ till
4 O 5 O 6 0 7 O 7 5 8 0 85 I_.1 I. I I 1_. I
.-.
i Uq~. d I , i
95
90 I
98
Cs
675,2"c,
6 0 ~ o C~
I
r .... I,,
~- =-i'
6OO
iI i
~AO + CXc~
O ~ ~ Cs 0
I0
20
30
40
50
At ~ CI
i 60
70
28.6 -
|
i
80 9 0 1 0 0
7O
80
. . .
,,
90
.
~0
Equilibrium diagrams oC
t#O0 o#O0
t
$
A t. O/oOy I0 t$ 20#$3055
103
[,A!-Dy I
y460
,JO0 p~
mmmm ~
mmm m
mmm mm
mm m
mmmmr~~ml mmmi~mm mmmMm~Jmi mmnmmmm|nl
mlxmmmmmml
~-_,~m.mmmI mmnmmmmmmm
,mmnmmmmmmn p '~immmmmmjmmm mnm~mm
m m m m m m m m m l
I00~---I--
aC 1030JOdO 70
Wt. O/o t r 80 ~S PO
PS
90
I' AI-Er i
0
I0
20 30 40 SO 60 70 At. olo s
80 PO 100
104
IAI'Fe l
Smithells Light Metals Handbook "C
AL % i l l
LO
\
"1 .....
~a)o!
,~c
#SO
!i ,,o,.
IlOO
I
o
L I
1050
~.%A!
At,% M
IAI'Fel "~
IX,*Ll
r I " ,',~: II
. ~ ,
....
SO0
Iiio..~.\
,
ll-~
,~00400
Ill ~
~O
"~" ~,,
~ 4 0 0 -~~", -:~M 30O to o
III
I!! ' ,'~i III6O DOI
40 Wt. % AI
-~
I00
Equilibrium diagrams ~
I
I0
\
20
/
A t. ola Cw 30 40 .SO
70
105
PC)
"\ 0/I ....
0
I0
j21 20 .TO 40
#6.4
i
9
! ! $0 60 ~ Wt.% Ge
2p.8o
-.e,' eO tK) IO0
wt. Olo G
e~ idoo
IAI-Gd I
I/o 9 14oo iJOO 1200 1100 tO00 PO0 800
60O $00 400 J~ 0
Io
~o Jo 40 $o 60 70 80 At Olo G#
oC
At. Olo Ge
700
80 .
.... j aoo
potoo
0
.....
D
-" .... SS
/0 20 JO 40 ~ dO 70 8 0 Wt Olo 6e
i
PO I00
IA',G'I
106
I AI-Hf
!
Smithells Light Metals Handbook wt. %A/
"C 2500
20
IO Lifutd
,oor
I
I
/
I I I
I
I
/$90 e I
I
l
I~0"
\
~
100~ I I I ! I # I I t I I I I I I I t I I I
50O
\
\
\
\
\
I I
I
\
\
\
\
56S"
I
I
I I
"~1
I I
20
40
30
50 At.%AI
At.'C Hg I0
~A'-HoI
2O -
" ~ ' ~
"-'-'-.--~-
,
JO
30 70 90
I
Liguld ,,I
\ L igui~l§
i
.trOt I
\
I I I
I
L--JI0
11
\
I
e
I
*1590" %
%.
I$0C -
dO
- IOOO*
I
I$10e
"...
I
I
40
30
I
", .... . 9 0 . . . . . .
I I
I
I
no .yo 40 S O 6o--m oo ~o~ou
60
70
80
PO
I00
Equilibrium diagrams /
0
I0
20
eC
30
1030
~
50
30
60
70
wt.o/o In 80
~0
80
PO
qO lO0
95
PiJ
I
L;qv;cf
/
800
100
d00
Js .
# /.;fvlcfJ ~ , dJ7 ~ _
.
.
.\
.
.
, ....
\
A t 4, l i q v i # SO0
......
400
JO0
ZOO
= ~
'
.
.
.
t
.
9
.
.
.
.
.
.
"-
' . . . . . .
tJde Al
I %
.
ZO
-
40
tS6e
.9
~ lh
60 Ar.Olo ; ,
~
80
I00
107
108
l A,-K I
Smithells Light Metals Handbook +c 8oo
!,
a?Liquids
!
t
~c
I I
~sz"
660 60O
,
. . . .
,
I
I
Sol;W Ale Liquid K I I
I 6s s" I
63.50
I
$#lid ,4"1§ j o l i a k
..... I
:
oC 1800
246810 'l'
,
I
p
8
wl. o/o A I IS .~0 3 0 4 0 1''
60 8 0 !
a
,r.a At
1400
'- :
1200,
""''
-
L
-/I /I
l
Lr
-
p, po-
!1
A//!4o ~
9oo -~ -"~'-"-" ' ~
_7L!.sSo,,_-
600 - j
..oo
400 ! 2OO; Io
ao
Jo
40
so ~o zo
At.Olo A t
e o eO ~bo
Equilibrium diagrams C9 AI
5
| .......
WtSU 15 2 0 2 5 3 0
I0
l_
.rl .... _ I . ,
! ,
~..I
/
405060
|
109
eO U
I I 41
,I
[ Ai,U !
k
.......~ " i
----
,'...... ~
I
1
[
6~"
'
~
i""
~G)
(18G69 99 ~ p
0
'
0
'.0
t 20
10
30
,tO
50
60
70
80
fO
100
At~U
*C,
Wt ~ Mg
0
tO
20
~.,~,,: '[ .
.
.
.
.
I
.
.
.
.
.
.
.
I
.10 .
.
.
.
.
.
.
.
I
40 .
.
.
.
.
I
.
60 .
.
.
.
.
.
i i_// 0 ,41
20
4O
60
.
.
.
.
.
.
.
. t .
70 I
:
#0 I
90 ,
I
I00 I
,
. . . .
100
I
/ Ae~
1o0
IAI-Mgl
110
IAZ'Mnl
Smithells Light Metals Handbook
5
/o
/5
wt. ~ m ,~o 30 4o
,to
09
60
~0
80
90
tOO
1400
1315 ~ 13oo
Mn4 ,alp M&t.
i
41(~$.4)
/t44~ ItOO 114Jo
s
i
I100'
/0790' ?.9 (~r4.~)
I000
900 040 ~
000 1"10 ~
01{341
-
p'ool
660 e
600
$00 400
0
I0
,tO
30
40
*C
,4t ~
.~
,41
60
?0
~
90
I00
A t S AI
o,o2o~o~o
~,"~,
6o
7o
ao
~. )
I
.
-'\'.~ \"
2~o
~o
~.
.
.
I !~',--.
,=
ii i ''~:a'"~
1100
I
~r ,0o
0
.....
'
[ii ~
I0
'
20
,oo
. . . .
~t, }]' " :lll
.
, , oo ~,,~ l ~i .... I-
,~
~o
.
.
.
.
l '~'
""~
i"'".1\
_,,,,,~,_ "... 30
40
-"
_ y. =_--:rz::q.-=-:----~l_..~ ~'~ ' ..,_:'": ~, I I I !i'" 50
60
70
li
80
~,--~"~ 90
100
Equilibrium
oC 800~
/0
II
m
20 S
JO
. . . . . .
I
40
+
+i
wt,% .
.
.
.
.
/~
$o
.
i
.
.
.
60
.
I
Fo
.
I
l
l 11
90
o0 ,
diagrams
i
_+
1
2 L~q~idl
q
700!
.
6(lOOj
i ,+~po
......... .
.
.
._
+ .....
.
.
.
.
u
720
SO0 . . . . .
400"
I
,
__
,
++
'
I
I
I
+
F
,
' '
+-
f
,oo
+ l
6410
JO0
d60
==
,
6590
0.14
200 I
6400I00
.
.
,
0"t .
I
i
I
O" 2
+
0"3 tWPIoO'4
97.J ~
+
+
,,
.
40
d?O
....S0
At. ~'o No
~0-
70
p~.So
. . . .
.
.... ~ 0
.
.
-
90
-
+
luO
WI.% A I "C
to .~
3000
20 ~. . . . . . . JO , ..
......
60
40 -
w-
IAi-Nb]
lO
" - [ ....
l-
|
2$0o
! /
~000
I [ r,,.o, ,,.,,
ISO0
\
I
1000
$00
mloj
"I
0 1
o
I ZO
\ "J~ I
I
(~,H.O)/J
660~v] 40 A ~ . "/, A I
60
80
tOO
112
Smithells Light Metals Handbook
Wt.~
oc ,p . p so
Nd
; c, ap a~
I Am-NI I ~o
~
~.e
A~%AI
*C 170
IAi'Ndl
90
I00
A 'qL'~ |
"~176 ~' ' !I II'~I \ 1,I ';e";~. I- --!--_L :Joo ....
II !]~
15r 14S',
~ ~ ~",,~,o,'t---~---!---~-
1200
. . . .
llO0
_
-
9
-
-
:
I000 PO0
#00
mm~Imn~. _:a_;Immg m~lmml
.ml
$00
--!-~i)!.
40O
,I
mmmM~ur~m mmmmmi_n.-~~
Ill
60G
j
I1~ '~
_
IPI~
-
11
70O $~
i~
6o -zo-'ao m 0oo
20
0
A t.Olo Nr
\
!i " "~ 11, !1 40
60 WA%AI
80
\__. , ~ o , c
I00
I A!-pb'l c9
!
OSOO
J
L
MOO
J AU-Ni I
AI%AI to
*C 0 I$00
i~1455 eC
1400
1350
J
Oleo
f
/; I~. %A/
|
/
"\
Z LtOuid~
wmmmnmnu
40
wan
m
m
m
u
m
m
Ip'Jnmnnmun
,;,,>/
I
0450
JO
0300
ir~mm~mmgB
mlL11 l
o,
0
mmmuuu~u~m 0 Wt % Pb
80POLO0
Equilibrium diagrams
113
Wt.e/e Pd
[Ai, Pd i /soo 1400
t v4__~O~
"~176
i~
!
.
'-
!
o'~ " -"
"~~'-t-T-~~~ PO0
40O
0
-___.
IO
20
0
J 0 40 .%0 GIO ,9'0 # 0 IP0O00 ,4L O/@ p(f
wt. Olo /~r
mm~mmuummmm mmmrJmmummmmm mm~mmk'1-~m mw~~mmm~mmm ,.~ammmmmmmmmm I m;immm~~mmml~z w~nnmmmmmm~
~. wJmmiimm_-~..!~Ru q~ -.nnmmnmn
-. . .-. -~' ~ ~ | m
. . . .
mnnmnmmmnmummm
200,
mmmmmmmmm.,,.__,~~_
,oo[ i j r 0
to
to
,-,
3o 40 so 60 PO eo e o t o o
At. olo /Dr
114
Smithells Light Metals Handbook lt,r. % P c
~c
I0 $ 0
70
$0
80
PO
9$
P8 1778"
.
t~oo~
ui,,~r ___•
I
!
' 1200
800'
!i
i
/
lr
.
.
I
i I.
t
I
;
_
,
I I ,
,
-
. _
I
' i
I
9
~
I
i
I,
_
I
'
i,t
t;
1
,_.
r, l
ao
so
I [
do
,4t. % P t
6o
!
!
J
i
~i
/
, -~ . . . . : "11 9
I1
!
1I
,
#, _,
l
;
~
I
',
]_ i
I I
~ :
I
,,
"
i
I I
I I
L.
I
I I t
,
I
.
L
:
i
I. I
I
J
I I _
I
t I I I I
:
I
I
I
i
,
i
~o
,
I
I I
I I L
I
I
,
I
I I
I
, ,
,-
-
,
I
,
4o
.
I
~
i '
.
I
,
l127e "
.
/$$di
;,,o,---,
I
'-"
-
,o
.
'
"
o
.
:
i!L
': 9
.
i
j
./
.
'! '
/
9
.
/
'
I I 00""
.
I.S$4"
:
"-7
;
.
i+~i,:
1400
#J'OO ............
.
, I
i
eo
,o
I i
!
,oo
Equilibrium diagrams
115
Wt.'#. A/ i C
I'AI Pull
: : : ~
l
f
!
l
! 1500
I
1[
.....
i
....
~ ....
L,iqu/e#
I
I
' I
~
--
i I I /
...............
,
;
i
, I
1i /JlXl 00
'
i
'
'' '
9
_
I
__.
# .
.
.
.
Il
#
I
/
I
.~.
ooo
/
//
/
' =:"
I
'
--///i
/ / , ' 1 1
~
I l l / I l l
~.
I
_!
I
.
7
i
.
i
,ooSl : i I ~
,
....
i o| 1
i ......
! . . . . . . .
"::
i
........
'
'
i
l
i!
l
: ........
% II
: I
i
_ i____ l
L
: _--;
I
I I;
i
-:
i . . . . .
spo = s.
,
.i
~ :
I
-:::-
_L
. . . . . .
.
.
" .
]i U
_
-
,.~
Pa'6 ~ a"
:
i
I
............. L \:
:
'
.
__
d60 e
: .
: :
I
,,o.,..; . . . . . . . . . i
_
,~
:
"
_
l
:
::
j P
:
,
I
I
! l
I I
I
il
10
lll
l
.~0
I
.I0
l
7 1-
/P3 lje
!
i
i
r
[
I I
I
0
....
s,a-_o_..
I I I
o
i
%
I
~1
I I
"
;
I
'
. . . . . . .
.,l__,...~
~
-
i
, -"
li4/. 'i / / ,,,,,. / /
4 0 0 '
-~t
%
I
"i r
. . . . .
....
i
: .... i
/ 900'
~ Ill
i
/
iJ i
/
.
<$
p
....
1000 .
~
F --I
t
#
/~00
~
r $ 4 0 +. $ 0 ~
'
1400
~ "
[
9
i
I
i i
40
SO
At.'l,
tlO
A/
"'~b" ;
80
PO
,,,,
,
I00
116
Smithells Light Metals Handbook Wt. ~ e JO 30d0 70
IA~-Re]
ill
l-l}
80
'1
90
L~./~I 'I
'
98
"[
'
.. - ~ I 3200*
jf /d
/
/
w
~k
r ,,
! /
I
I
i
i
!
__I3PO". 2 5 " 14 3~*.2S*
!
*
!
! I
I
I
!
E I 9
I i I
660
J
iI
i
I
!
I
!!
i At. ~ , q t
Nit. % Ru 7O eLf
~
92
IAi-Rul
MOO
,
,
.
9
I
!
.
l
*
i.- r ~-i 660* L.j ....
~o . o~: :|,
.,
I,II , il
I
II ii
:': , ;,
[
!
t
q ,
I -
*
J
l | II
i
At. % Ru
Equilibrium diagrams ~C 0 iIo0
~.%sa
IO
S
117
,I0
.I0
40
$0
. . . . . .
40
O0
/00
I Y"AiSb
I000
PO0
7
. . . . .
,
, ,
66o" l
i
I
H,
~
i
IH,
t
.~.
i
'
'
od~,r
1
I
$00
m i
i
ii
JO0
0
t ,50
/0
i
t .10
.
..
.
.
.
I. 40
.
i
ii
I .... $0 n t . ' / , S6
i
i dO
.
. . 70
.
wt;a, $c 410
.
oC
.
i
. . 80
.
PO
tOO
O0
b W
,,.,o'
U ~
9
;
,br, b
liPS Z pe "",.,,,..
// ,,
,,,W,S' 9
!
l
l
-..Or
ee$ z ~0
1I 1
I
I 0
! I
e - S o - - - .r
1 0
o
#o
JO
40
so 4e.*O, Se
dO
;'0
4)0
PO
700
[Al:..~j
118
Smithells Light Metals Handbook ,,t Ir,s.
I0
a?O
3O
4 0 50 L 0 7 0 ~0
]A'-Se I i
" IP
wv.~$e
lAI-S~ [
"CO
At.% AI
I0
,?0 30 40
/412~
'
~
SO 60
70 8 0
0 t00
_
"'
N
\ \
\ 900
"-
~ :
%
LJ uid . St
800
\
,'OO l 600-
9
I I I
.TOO,
)0
....
I
~_
Wt. % A I
[A,-sml
S
A t . % Srn
I0
IS 2 0 2 5
W c % S m
3S
L.,~_
Equilibrium diagrams "C
At.% $~ J~D
t0
ooo!
....
,, ,,,~
I
-
,,
4O I ....
JI O ~
DO I /00
_1
I
I r
L,~,/r I !
600!
-,
i
,,,
_
I
..__: . . . . .
-
b
i
\
X WI'.%Sn
,
,-,
7,~J"
-
, !,._ PS.,~
tO0 $olM AI + so/iN 5~
tO0
0
.
.
.
.
.
.
.
A
m.%
S,
"C N 30
4050 dO
Wlr~ l ' 70~ ~
~
qO
~
IIXX)
8OO M.P.
M.P. 769" a~y
40O 3OP
0
t
119
I AO-s~ i
120
Smithells Light Metals Handbook At. ~
"G 0
00/
. . . .
oo 9
......
500
9
00~
- - = - ~
ir
.
tOO
.....
I00
.
.
. . . . . .
004
0.05
i G t ,
/
I
-
I
'
.
/
4OO
3 0 0
r..
0.0~
.
.
/
.
/ ,
t,,; + r.,,,
- ....
o.o,o.,o
c9
o . ~ o.,o wt ~ I".
Io
0.~
,4,:1; re
20 3o4o
60 ~0
jm-'J/-/ll[
!
I W W W I I I I ~ E ~ I
,,,lmm
m m l m l l i i m ~ l l
wt. 1~ r,
OC
I
~,,oo-
........
h%
1600
,~ i~l
1400
l
Wt.~ At IO
$ I
;hi
Life, i# I
""
20
so Folio
Jo
"I2AI$'Ai2T'AIJ
"2'~17"i'AI2 %
. ~ ' _
.
,.
.
.
.
.
.
I.
.
qL
."
I~?00
i~,., ," '
--" . . . .
-- -
~176 o
I
O000
I
\
~Mge~
. . . .
I
_~
tlzOO x
I,~oo_~
\
,
I I |
800---
-
'
__
'
9~ 3 0
0
Io
20
Jo
40
.To
At. o/e AI
60
9
~,,~
,,6o
9
Equilibrium diagrams C9
121
At~/U
! A,"n '1
141~
(m'l)
iln |I;I//IIIIR HHIt/IEi|
1100 ~
Jjri
I
I
m
aunm
I (a~) !
0
I0
20
30
40 .~ MWAI
--qll
mmmm jm)im
6O
70
dO
Ar ~; rt
"C eO0
I0
~0
20
Jo
fGO
30
PO | o t
9L oqu ;r
tO0
,,
#s,';
uo o
t ,,,
,
9 I
dO0
$00 $ o l i q At
9Laqvir TO
400
.tOO
f~.~
i
300
w
Sol;r 4 ! C
i |l
,
i
sol/~ 9 TI
I asa ~ I
,I I
,
.....
to,- p,,
I"Al.l"l 'l
122
I A,, u::l
Smithells Light Metals Handbook ~
sa3o 5 o 6 o
1800
wt. ~ u ao
90
.q5
L 1600
," ' ,,- :
~'~..,
-/m..j.~ --~Oo,
1400
/
,too
....... / L. . . .
I000 :t _/~ CO00"!4
[]A,-v I
7o
,,
,
1105e
,
I
....... i i ~ ~ ~ a a
I ........ 10
~
IO
19o0
'
immmlml
S46~ .... 3O
4O
50
I I rU~ I
$0
?0
8O
At. Olo V
2_O
/73S o
1700
ISO0
IJO0
/
i
IlOO
l'l!
!
!
~------
1-
900 700 $000
1o
0~
wr.olo y
o
1c
Equilibrium diagrams $
"c IpOO /8o0
At.%W
tO
l
16oo
,
I$oo
,
,,,,
l
/
-
MOO
:
,,,
r
,SO60 O0
IAI-W_I
[I.~ ~ ~-
~ ~ - -
/3O0
40
/
..:-~
s9
l
30
"'"i:'l,
,,
/70o
,~
123
6-
Y-'-- ,!.
-
....
1200
W
II00 /000
/
/'
poo
.,/ !
6600 r
'~
~roo : I
soo 1..,,/
,
o
,
....
i
I'
I
L
'
-- " ~ I I ~I'~ 0 0
.,!1
i '
,6pz. /
I
l
r"l
?0
...... # 0
PO
~00
wt.%w
*C
At~ Y ~o
160[]
147a.c
1400
1200
I000
80O
6OO
40O
lu
20
30
40
60
Wt~ Y
60
70
80
90
100
LAI-V l
124
I A,-Ybl
Smithells L i g h t M e t a l s H a n d b o o k "C 1400 - - - A O r b i
1300
S'
[
1200 I100 r
I000 gO0 8O0
?40
700 6dO" dO0
9
500 400 300 200 0
/0
~ 0 30
40 $0
60
70 8 0
90 IO0
At.%Yb
I Al-ZnJ
oC 500
2'$
JO
At. O/o Zn 40 45
J$
~,
30
='!~!
$$
dO
dJ
70
-._
400
JO~
~
~,l 78
200. ~ 40
-. . . . . . . . . . . . . . . . . . . . . . . . . . . 30 60 20 Wt, ~
Zn
80
PO
Equilibrium diagrams eC 700
Ar. % Zn
,o 9
-
6oc-
,,
~
"J
~
~
'
~
:Lo
IO0
60
L ifuicl
,,,
$00 -
400
JOG
. . . .
, ~ ~ 0 0 "-
t0o
.~'-,~"
,.....
3s.d-'
m.'-_-
,.~
.:e~:
/
PP.J
f
/.o nO
I0 nO I0
4O
Jo
11r~A~
,~oo~
60
$0
rZ~A~,
40
so ....
70
' ~
60
,4r.ele ,r 80
oo
PO
' "
,~
9o
9S
Pe
)
~1"-1 i\,,r~---.
--6dO
s~y-.---~
.....
10
40
SO WI.%AI
60
I
I
i
70
80
PO
]
9
100
125
J'Ai-Zn i
126
IAu-Mgl
Smithells Light Metals Handbook
A+.% ug
"c 147oo
i
1100 , , .
"
9
. . . . .
+
"
i .. 850
!.J \I,,,
1064 9 1000
+P,,,"
++.
+;." |_ u_ I,, + t ~ 7 - ~ ~ |
"
P00 l J l i
I
:II
I_I
_ _J
,,..
+
;xl] -ili-I i -+-i ~ P ~+ ,tl .+,-. ....1 ....,oo l
+CO
+
.,, I
I
_-~
I
~
I
,I
,to
!\.o
I
i
~ I
o
.....
I \
I
szlr'.,-. . I
I
.
I
2o
Io "~L
.
I
i
40
SO
*c
=
,
It'
-i
,,,'1
I:)
.AvA4'f,2 + 9 +
AvMf 3
2o Wt.% M f
mr.% M r
I
.
6O
.
.I
70
',,,I
2S
30"---'--"-I _.--"
~ I . . . . . .
I
,,,,,.,+.,,. +,,,
!
+ _
'
... . . . ' ~ ~ . ] ~
I
~c
l
; ~
..1.',,r _ I'0.
is I
I
.I.
30
'~"-I I ~, +
I
i
i
-I',
$oo,
I
.I _
,;
?00
iAu-~I
!,2 l
......
+
, i
I
I.
80
JK)
100
Wt 'X, A u 0
20304O
,5O
60
7O
+
_.
8O
9O I ....
......
L .... '+'~++"+
-!, ~
!
L
I00
..... I
+~+m.~+,._ !I, _._] .......
0
95 I .......
I0
20
30
1\ 1.... \ 40
.
.
.
.
,11 .....
........
f~O
At aSA u
60
70
80
90
1013
Equilibrium diagrams ,c
127
weal II
n
J
Io
15 ~o
30
,Loso
75
! e-TI
.210~
0
't'
. ..m4o .soy ~o~s t,
40
.'~1,, ~
}0
M. %80
8$
,~O
30
AO SO
60
PJ~ll
IPO
;'0
80
90 I1~
M
Ioa-.oi
~r~,,'~
.....,,, .~-- 721~
UO"
J e.~
.
/ , %.
.......
/
I
.1'oo -~
o
~o
zo
so
,o
Lo
At. ~ 8o
6o
65
J
,
r
J,o
cO-
~0
,,oo
]
128
Smithells Light Metals Handbook
"I7,
lee-~l
1700
WtS~ 0
1600
4
6
8
10
,1670"
j,l,,-,._
\--
ii"
/~
%
I
1100
"'
/
-
\
//
,
"
iN:X},
-
i
.
.
I0
.
I
.
20
IV
AI/ J~
,-"i I,
A.p
"~
p
//
_
._
_
i1270. ~aOe)
..... .
.
30
40
6O
~0
N%b
7O
80
90
100
,,,l,~ % A @
~_.iP, m ~
[S~-Mgi
"~
i
-#
9
I
.,.-,- ('all) 7i1:I0 ' . .... I
0
,
~
j,-
=it
l
/_/ _- I c w ' c
I
~ '" ',
I,tW
4O 50 60 7O80 lOD
30
20
_
_ "4,,...
I
w~
...... I
~
_
.
__1
Ii.,l-
i -I-
]
I ..... , ~
d2.'Jl
i .... I
__ i
wt, % Mg
i
!
I
/
IN
i .1_i I ] I
Equilibrium diagrams
129
Wt. ~ #i 1800
i~7
t
s
t
i
t
9
l ei-~ I
s r/s~
\
1400
I
t
T/cW
~l O . t lifO0
sn
,,h
tO00
I
k *00 0
t
1
I I0
tO
30
$0
Ar ~ BI
"C
t~C
10
0
2O
/L
./"
,," I "
2XIO
/~'l
1
!
,;~.__.~ . . . . . 9
--
t f
~.....
i"
~, _
IfO~
..... l
9
r
,
~ .
.
.
.
,,~_n6.c ....."r,~!.
=!1
~'-~
i
I
...~, ,-
L I \\
,~a..c .
/
/
3O
.
.
I
II
ll_
~L
I
~ C
--
-,:
. . . . . . . . . . .
i.
-~':L ql
.-.i
....
,,
I
_! I
I ~
.
0
.
I0
.
.
.
.
.
.
.
,.....
20
At~ C
. . . . : ............
~J
130
Smithells Light Metals Handbook ~C
ICa-Mg1
0
Iooo,
I0
20
'.'
3O
4O
,J
Wt%Ca 6O 7O
5O
',:,
I ~
I._
8O
I.
90 .I
.I
100
0
842*(:: 8CXP~
.
i
,
--.
,---
_
..
.
, , ,
715"(::
/
/
/
r#
f
/
#
--
(pCo)---.
5~6.s.c
~'C d 1 ~ 0
-
I
(aCo)---~ 2O0
o
1o
2o
so
~o
so At 7, Ca
I Ca-Ti|
/400
l
/..TOO
12{)0
,// 7
II00
~§
----._l_ 800 ~11-~- " o
~q o.i
o.~
wt, ~ C~
~.e
~.9
mo
~
- io
~
i 9o
....
~
Equilibrium diagrams At. %C4
"C 7oo! ~ 600
"-'~ .
.
.
.
.
.
.
40
.
131
0
IC',d, Mg I
~~. I,.ieuoa
$oo S~icl ;olueion
40o JOO ,'oo
--r-I,
"': " I a n
~o
o
~o
;o We.%~
,
7
,1
6o
"c Iooo
wr Io ;Pc) ~o
40
so
I cd.T,
psr
,,so \
000
.._
\_
,B-f,
.,,.4.
, " . ~,
..r
=or~6.s ~es 9 Iso ~ ......-r; . rizcq' '
,oo~ 6SO
0
"C
.~l-T
. r,',,'cq
1"
'1' !
$ t0 I$ O0 ,:$ 30 JS
Wt1~ Ce
0
20 40CJO dO
7O
80
90
95
I00
#00
726,
50O
I~'IT, ................ III
I
I~--~-~,~
!
ill
I i I
I
I~~'d,~tq~$1
i
Iii
I
I
!
leoo;-.,
30
40
4OO
300
2OO
0
I0
20
i
60
AtKCe
60
\I
~-~j_.l
I I
;;%" .'."1 70
80
!1 90
I00
132
Smithells Light Metals Handbook
I
oC 0
I000
At. ~ C e 4 ~
z I
$ I
, I
6
l
r
,,66T o 1600
1400
-i t3_. §
/tO0
s
" rt
-
aO0
"
- -
..
.
.
.
.
.
-
.
.
~',t .
0
.
9
1 -
910 o 790~
-a r /
T /, O ; ',= 600
'
"-
/,. soo
_
'-
-
I .
.~
.
.
tO
~ -- + J' $
~§T
wt. ~5 CJ,
ll~%cu,
Air.%Co
. . . . .
I !
15
~0
Equilibrium diagrams
133
W~ %1"I
9r
1700"''-
~
-
_-
,p
--
,,p
.
t6oo
.
.
~
. . . . .
.
.
.
.
, -
.
_.,o,.
,
-
~o I
\
1300
',. ,
...'._~
,~oo.
ittl%ric~.~ " -:
, , .........
,
"~_.f__
,'i
"~176 i / I
~:_
i
_~
.... \ . . . . .
~ ~
1
I.
[
:
'
~o
,..,~.._J
'
i
__!:
i
i.
I
.
.
.
.
.
.
_,
"\
~,,,,-
L
.
//"
;
........ ' : . .................
. . . . . . '.
:'
. . _ , _~
~070~$~:~
[co'T,I
I
,
!
_
Ii it
1P ~
.
~o
..
Liful~
!
~
"','I/~:~(-"-~'-II
IL . . . . .
to00
9 ~
i
~o
*
i
.
'
8300149T"
~o
_
",.
_
L..
/
.' l .
.
_:
. . . . .
I
9
!
.
I
;
--.
.
I ~
,,~
'
~00
~oo
I Jo
40
30
60
70
- ~pa -i
80
90
tOO
At %ra
At.% cr 2ooo
,ooo
.... I .
.
.
.
[ , .
Moo . . . .
"'-
.
.
~.
l~20:
.
.
/
---[~ .Jl ,
.- - . ,
f
600' 9~ o
]
~
0
sO
Cr-TI
- -
mi
. . . .
~.%Ct
--~1-
6O
]j!
"
7oeo
]
134
Smithells Light Metals Handbook At.~, Cu
20
/0
ICu'MoI I000
.
I /
.
_/1
900
Llfutd
8OO
X)O
ugac~.
,.
~ 1
I
/
/ S,S~ e
f 48.~
.lr0-7. 400
o
IO
20
3o
"C
I cu-~l
---
I
.......
40
~.~
30 w&% Cu
60
7 0 .......
Wt S TI CU
I0
20
30
40
50
60
70
80 90
11
2OOO
1668" M,P.
1600
1200
.
.
.
.
.
.
4OO
'
0
'~
0
!0
20
30
.
.
;
li
I I I I
Ii
50
At S 11
1
I
I; I!
II I I
40
e,~._L~ ~
.
I
60
70
__
,
80
90
I00
76
p,~
m
.
.p~-p,,,
/oo
135
Equilibrium diagrams wt. ~ rs Jo 3 o 40
so
GOBO
s#O0
IGO0
-
SJJ~D ~
stoo
;
IGG7 9
--
SS
l
"It
'J'~
;
! I
L .....
,'000 I ' . . . .
9
I
!
i,
-
,,.OtDOm
I,
ooo
t, ; , rl
tO
I
40
GO
......... 10
sO0
a t ~ rt
C9 900 .
850 .
.
.
.
.
.
OO0 .
.
.
.
.
003
0'~
.
.
.
.
.
0O4
Fe-Mg]
.
Liqul# 800
. . . . . . . . . . . . /
~$0
600
1
. . . .
0"0!
0'02
0-03
0,04
O'OS
wr. % r ~
0.06
007
0.08
O.OP
O.S
136
Smithells Light Metals Handbook *r
I0
,~0
JO
r
*it. ~1"~ $0
80
70
60
PO
Iru--I
L
I
~?,v*
i
i,"/"
,/~,/
i
'/"" i.~ . i \ \'._~ .oo~'--
. . . .
1~0 ~ ;
. . . . . . . . . .
,
4
= =
=
=
10415" ~ / j "~o~s*
-
"~
/
RO0!- I
.... ~ -~: .....
..oo.~=~....., a . _ . . . - _ , . . ~ _|
~
-..SCOt L
s~
I '|
_|
I
4
...
,,,oo,. I o
_
L
to
*C
~
.
.
.
~,,,
i _.
.
.
.
.
,
-
:
jro
.to At. 116/'/
40
,o
,4L ~, Go ~pO JO 4O ~OdO 8 0 P O
I
I
0
/0
,q'O . ; 0
40
$0 r wt. % Ga
,vO 8 0
~0,~o0
~ o
.o
Po
Ioo
Equilibrium diagrams
137
"C 70
00
Gr
PO
l~
I~d'-MoJ
I
P21~
-!
IIXI~
~
__.
I
L
/
/
~~/t
.....
"
|
-
9
7oo.c aO0
',,/
. ../
.74 9 ~ a S . q ~ (a~.r
,, ,..~., 658"C
J
_
,,
8.8 4.53
I I ! 0
0
.
.
.
.
tO
l
20
.
.
.
30
.
.
.
.
.
40
.
.
.
.
.
50 ~Gd
60
tO
70
90
I00
iQd-~i
j!
04~30
,~ I000
..... "...~ ~
~-~.~-~
.....
--
L
/
1240" |0"
~
-.-.7
!
m
~r~t5"
~.~ 1
~
~o
-
4o
60
At S r i
410
/00
138
[ Ge-Ti
I
SmithellsLightMetalsHandbook "Co /700
Wt % G~
4
8
,o0"~"-.:.,
/2
~ , LdJu,d-
/SO0 1400
-
-
r,~OriO' 7
/300--
p
120o
r
/
I100
/
/
Iooo
r
I
7 7o0
300
0
~
4
6
8
At%Ge
1012'
"c
\
7OO dOO
\ ~
/ \ --*6 I
,t,o,6
=/ t00
i
....i I .,,,L
,\_j
/'
% %
,,,/
/..../0
--
P \
Joo
re
\
\
~oo 9
eA t m ~
20
4o
/
/ ,
I I I
~,
Equilibrium diagrams wt. ~S r/ JtO
/0
or
JO
~0
. . . . . . . . . . . . .
t400
50
139
60~10090
ttO0 ~
tO00
I#00
',,\
/GO0
,;,
\
/400
am
"N% %
..... "-,,~
/lO0
__,,
+p
,
c_
:
,
I000 %%
#00 GO0
/0
0
tO
30
40
i
i
~raD ~ m
i
SO
SO
PO
O0
90
/00
At. ~ r l
oc 000
1
'
I
~r
9
wt, ~S N1 t0
I~
,,,,,,,, !
TOO
t
tO
t S JO
' r
400
.
.
.
I -
. . . . .
~00
"SO00
.
. - - "Or'S--. 13s.4v
/
3OO
0
I . . . .
~,J,,,~r
300
-30.90
-.
Nts,','wt
! i' ~,oo_1
GOO ......
tO0
[ag-Mg
1 .,~,,',,w .... wt. -
4 0 .10 ?0 9 0
'
.S r
/
sro"
......
......... IO
-414) tO
JO
4r
40
,a~ N, .,1~,
rO
80
90
I00
I
140
lln-Mg i
Smithells Light Metals Handbook "C 700
sO ~'~0 JO
m.%Za
40
600
lli
$00 400
.
.
.
.
i
="'~
300
l
to
/
4
ts
,~0
,~.f As
II
I
Jo
Js
9
,eo
.es
~o
%;', ~
/
$
~sO0--
/000
:0
20
JO
40
60
$0
- -
,/
......
I
PO0
I
, .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
.
.
;'P6 ~
coo- l-
$*
9
-, 4,~ 8
I /I
[
I
=al
po
a-r;
I
....
I I
8O
I I
I ~
J
/ ! !
~oo
i 1_ L,.,
,r,,J'~r
7o
.....
i
i
J
I!
l=-r;
I
LO0 /I soo !
I
400
JO0
ISd Z I ~ I00
_
0
tO
d?O
JO
80
40 At. ~ r t
L
~
_
/00
Equilibrium diagrams "c
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
~01~
=
'~176i \
.-.-
. . . . . . . . . .
-
L/qui~
:~(
i ~ ........"\-~
,"
,
l
{ ,,.,[-.,
/"
i
I'1
/ / ,
t300
~-~=~--
.
-
I I I I I I .
,.
.
.
.
I I I I I
i
$00!1 0
I
-
:==:- =.
900
[, ,r-'r,,,, ]
a3J#\
-
1700
a, So'
141
,FO
|
40
i
i
eo
dO
too
At ~ r r
'~ "~ ,; JO
~0 J040
....
;
Ar %
so
60 ] ........
7D
80
PO | !
9L ifuir
70C-
I
Jso.
9dso...'.J
600~
~OC
tOO
-
I
~J,$" i
~o
"
..
I . . . . . . .
,,o wr.~
I
eo
M9
, ,
....
BO ..... too
i K'Mg
I
142
jLa-,Mgl
Smithells Light Metals Handbook "r /0 Jo4o 104)0
6o
7o
8O
A~ % ' W
f L
~00
.,4
800
\
ijrV_
700
600
$00
Ltfuid
/
/
|
0
I0
20
JO
J
/
..
I
I I
r
400
,
40
,.TO
w~ %Me
I I I 60
zo
eo
po
,oo
Wt. %LI
[Li-egl
$
0
700 . . . . . . .
.
K) .
.
.
.
.
I$
,?0
7
8
9
/0
II
12
.
600
.
$00
.
, %
~
_-.~_o
\
400-
'~
~
,
0
At. % L t
i
Jb
\
,,
$00
I -At
i IL ~ ! 2'2' 2 4 ,r 28 At %Li
20
,,
~
.12
Equilibriumdiagrams *c
O'S
I000
1.0
,4t. ~ M n I.S
~'0
143
~.S .l
IMg-MnJ
900 Liquid BOO
700-
.,r
; .....
.................
649 ~
! L S - ~" . . . . . .
.~/
600
~
J"
O~
SO0 /
....
I:
400
300 /
,
2000
Wt. ~ M n
"C
coo
;
At.% Ne 40 SO ~ ) '~,0 #,0 .... , 9 9
tO t O JO
l
zoo! "~ '
t
I,
600
~ Ligutr s
.
.
LJa"
.
.
?00
.
'
......... ":'#.s%; Y I
" 7 ~ L i f NO
p7.$
I00
~e~ o
90
ao
9
(a Loy..) I
I
4o 60 WC.'/.Ne
'eo
too
[Mg,Nal
144
Smithells Light Metals Handbook
At.%~
oC
[Mg-Nil I
i
,,
1' ! s ' l
/ .d
aoo
_~'~'-~
....... 0
;,~'
-
.....
a4o, -~.~.'-
10 20
.10 4 0 50
wt.%Nt
dO 7 0 8 0 J ~ 0 1 0 0
Ar
"c
IMg-Pb]
70O
I
600
$oo
/
400
/
Ueui#
j
."
/
~
~
f
/
/
A
3o0 250 e
2oo
IOO
\ I I
4o
Ar % .'~' t0 2 O 3 0 4 O 8O
[Mg-Prl
9
i
Llqui# 1100
"
'
l/ i ' - -
"--
"
4OO
~PO00 JO dX) ..10 4 0 $ 0 dO 70 80 ~OK)O
'~o
we ~, M f
60
70
8O
\ 110
I00
Equilibrium diagrams *r
4
M. ~ v
s
8
,,,
sO
40 -
I I ~,:
1
~ - ,
i L~qw/et
,:,+?
",,"m.
~
145
. . . .
'
~"
._-+
k
.
X-'x/ ,~ J
......... 2.
~;~-_-~.
.t
.i.
i
_
.--4
.
I-" . . . . . . . . . . . . . . . . I
i
I !
@+,,~& § .
.
rr+,,
.
.
.
I
,-,,,~,1,I+ t.a -~. i, I.,,
I+ .
,?0
.,,
,
"
.
.
.
.
30
I,, 7J0
.SO ,,It. ~ P v
I
i
+(V'Pv,'
,~
I I
I
I ....... ' - - - - i
..........
...........
.
40
.
,
-I
'+' ~gO i § tm-Pv)
'
.
. .j'
.........
~ i.
.
+
t-,-~-,--t
+
I
.
t
J +
"+~'j § 17. ~
,-,,-,,-
i
.
I
.__
'
I
I0
=,ii
. .
I
+
-
PvI
i I
. ~
:
l
I !
-I
i,
, .|
60
i
i
PO
00
,,,
/00
AL%Sa
.oo,.+
'
)
I
[ ........ I +
t10
IMg-Sbl
_
-++]:
7O ,oo
I \ IS
~
, , ~.
. ~
80
m ~_ ~,.
_ j,
/ + _
/
I
7~
400
++
....
+
-
,-.
9
_
:
. . . . . . .
+d +
.
.
.
__.__----------~~.___
.
_L
____-o" I-
\/
--$JP*
v
4
t10
/00
146
Smithells Light Metals Handbook ~$ 9
wt.
]Mg'sc I
~c
17.0
31.L
44.L?
1400
~"2
64.P
73.$
p
_
IOOC 8O0
a
,
., J
~
.,P
....
~
-
i
6O0
9
~,
m,j-
400 4~o0
C#CI type
. ,
!
t0
20
"c
IMg-S!l
30 At. %So
2O
I$oo
Cs CI
tyl~e
pl~se
+
I
"'~
40
3O
3O
40.
dO
At % Si SO
60.
PO
00
1300 1 1120 ~ _
_ _
I100
.
I
/
.-(
P$O o
/
~oo
4:~' |
$0~
oo
4*o
JO
40
SO
w~ % $/
6O
io
--eo
-'i,6-
0~
Equilibrium diagrams 8000
IO.X) a
i
i
SO
70
SO
A L %Mf
i.L.-i,I-! I
..|...
i
__*
147
i...
i_
---I
90
i i_ i J i
,
,,
~iemmmmmm
/ mminm ml 1
(tO0 $00 400
/ ml
7 - mlm n m m m N N mlmm mmmmmkl
nlmmmmmm ,) __jmlmmmmmm I..)I I--~--I IN)ll-) Ii~I------I
.frO0 , . . . . ~ -
_ I Ii ll ! I_ i-_1'-,I
I I
WL% MIr
'C
WII&~r 5t
/
769"C
~r
..~ -~,,.,_Ix'. ,,~I ~
;
~
~
i
"" I I I -k, 400
_
~o
_
~o
/
'N, N
-
\
II[
2o
~o
.
.
.
.
..
Ao
so
AtS~
.
70,,
.
.
6o
.
.
.
~o
li
'!
/
,
.
I
i
~
~o
~oo
148
lMg-Thl
Smithells Light Metals Handbook
~C
BOO ....
~0
wt. ~ r , 30 4O l .... I
tO l
l Mg'Ti i
5O
"c
,
/3OO
/
/ZOO
7c:::
/'
IIOC 4'00
soo
fo:,,
~. . . .
. . . . - ....... r x l l
i
I
,.o,
/ r
/- ....
_ .....
I
\
.,
!
poo
"
I
i
\
_ ....
_ ~ - . ..L
§ ~ e mwsj - - - - - -
60C
4OO Mlr
$
I0
,
0
,
0"2 0 . 4 M
At. % r i
~0
I00
At%rl
"C
IMg-TII
,,/'t
8SO
I. i
8O0
SSO
$00
450
400
350
300
,p-rl
Liq 2S0
//
./
.......
,."
. , n o~ - . ,,
P7 I00| 0
,,
~'/I
I MO 9 |
P8
,,
~-T: "
! II-N
I
!!.o.,,
~ - r,
|
PP
_
t
t00
$o Wt. % 1"1
60
70
eO
-
PO
tOO
Equilibrium diagrams i'S
eC
t400
....
At.%u
S
/0
~0 JO SO
[Mg,U,(
'
L I4P ego* U~I ~ 2 IZO0
....
#,r~,
. . . . .
Llltw!d * ) e l /
800
-
600 ~00
Uquld J
- ....
- ~
9et U
'NP
. . . . .
d $O~" J
.
.
.
.
.
= J'
....
|
.
,WJe * r
o
u
At.%v
1 t, I, J
we.%v
ao
~o
wL% r
Lo
o6
149
mo
150
Smitheils Light Metals Handbook
~.%~ C9 0
[Mg-Znl 9 f
..... ~
20
I ~1
M w
4O
II ~
~
t
-
1
5p.
60
. . . . . .
...
i . . . .
i
,
.
,
I
/
6S0 9
!i~/
.
q
,/ . . . . . . .
/
..... '..i',,,,
'
i
342*
_.
eI
r
'I
' -41 1
I00
-i ....
I (?ZnJ ....
I,.g-zfl
"C, S~O 0$0
U f t u g -[Zr ).o et Z r - -
800
750 ~ 1 ?00 d$O
,1
-
i I
!-! I1
~s~"
_
~
_
dO0 Ir 9 Zr.-J, _ _ -
$50
400"-/!-
3 0 0 " ! i- . _ ' .
o., o.J c~s o~ o'~ /~ ; l m . % Zr
~.~ ,7 ~.9
o
Equilibrium diagrams ,r
80
JO
iMn-~l
17oo
1600
~4
JP~
400
~0
.tO
40
SO
dO
70
151
410
DO
/00
e
152
Smithells Light Metals Handbook Wt~/1
Mo
I Mo,Ti !
5
I0
15202530
40
I
50 60 70 8090 TI
!
2617"
i
. . . . . . . . .
in / I I/i-q/l
1500
I
1670"
t
p ( M o . TO
I(:X:~
-
600
0
I 795o
:~fl2"
675"
....
0
-
.
lO
20
.
30
.
.
40
.
"'
50
60
.'Y)o6
"' i
I
70
80
90
AtST/
A,.%N
eC 0 JO00 2~0
~tool~ /s
J
I000
1400
I000
0
2
4
6
0
I0 12 14 Wt.%N
16
10
20
~Z ~4
IOD
Equilibrium diagrams "C
,MOO
......
At. %Nb ,,o 40
40
80
l Nb.'r,i
I
Uf~#'
9~ 0 0
---
. . . , .,- =-
00~
It,..,.,,-, .--"--
I
--
A
04O0
dO00 - - 2 0
40 dO I~N6
80 tO0
~L~N4 C 9
I
I
/667 e
$
9
S
6
?
-.......
t400
#+L
,
t~-
.......
,80 § ,8~
I0O0
.
.
.
L_
COOol .....
.
.
.
.
l
m
9
s
I
/o m ~N,r
I~
153
to
154
Smithells Light Metals Handbook WI~Ni
[ N,-T, I
1800
1"t
10 ...
2o : _,
3o I
50 . I
4o '~
~
_
1670"C
10O
k
/
1310"C
- \t-
11300
~0
1455"C
I
1200
1380~ . . . . .
Ix,~i kl
(Ni)
-942"C
\ ,
--.
"~f
765oC
. . .
~-(a/J):
0
, --:,
9
.
I I -
io-111
80
I
14(]0
"C
70
60 .I
I0
. . . .
J.
20
.
30
/1
, o , . . , . .,,. , , . . .
40
tO
.
.
,50 At ~.M
im~ m~ .
.
60
Wtg;O
.
70
20
.
.
80
90
30
100
40
I .
.
.
.
... ~ ' ~
I~o
~
I~2"c
7"-~_
.',
~6m'c
~,
'r j
/
u~oo
".
r,,~
'
'~--I
L
,
.~_~'C _
o
.
, i!1
'
_
d" _.
400.
....
~o
dO
2o
At ~, O
_ ~T/,_.O
_
i
.
Equilibrium diagrams
OS .
_~nl
vain 15 20 2 5 3 0
I0 .
.
.
.
40 5 0 6 0
80 rl
.
155
[Os-T!I
2@|3
2OOO
1655 ~
1500
~,
~.~ I
I000
,11----- +r I
I
(~rl)
1
I r
I I I
;~
I , I
I.
|
I I I i
I I I o
o
i_
_
lO
20
i 30
-:, ....
(Fro / aa2" 9 !1 (e-TO / I LN~I .L
i
7'~1 I
40 5O 60 At ~ 17
70
80
90
I
PO0
dt, % Pb
/ d?$4
1800
[
r~11)
tO
t$
~0 25 30.IS
/60C
/Jos.o.c~
140r
~ ) ,.x I
IOOC
,
~,.
#00 ~,.:
dO0
_
_:
-._
i
.
.
.
.
I
II
I I
400
I
kO0 0
.
/0
tO
.1
40
We.% l=b
I=
I
.
I I
I
so
I Pb- I
156
Smithells Light Metals Handbook i
I
I
n 4 P~
16oo~
l
~i
..l
"% 1400
I ~ 0
f
,oo\x
"C [ Pt-Ti
~_~
~
I II
I0
Pt
......
S e j "~
10
JrO
15
9.
i
~ S 4 0 "
.
20
5
e,~o~
wf~ri 20
. .__. .
i'
40
30
. _ 30
At.%p#
40 5 0 6 0
60
70
80]'/
2400
2000
1600
1200
882"
8IX)
4OO
0
.
\ _~
I
0
-
,
-
0
I-
,.oo"
.
dO0
I
nPd~ r~a.,,~~r , ~ ia rip~ ~
Jr~
10
20
30
40
50 60 At ~ 11
70
aO
90
100
80
t10
I00
Equilibrium diagrams ~,
wt %pv
,Io4o
mbo
~o ~o 80
157
~o
I// ii==
~_ ......
-\
",,,,,
-
"%_
t +AT,"
~
%
800" 600
_ !
600.. .
}:._=.. ,,c,
.
.
.
!
.
.
!t'-
.
_+?" :__ "s,~
d
v
"
,k6.
+ =rt
~+=.n-
At. % / = u
*r
~O
aO
JO
dO
SO
60
tO
tO
[sr
sd,r
=i
i,,,t,,t,lPa
.,.,il
, . ~
.
.
.
.
.
........../ /~'/ I
.....
9
~
!,,~4JtJ"
h?Or :
--
'\
,,~ tOl~
RO
" ~
9
\._~'~ -
.
__ ~,J . . . .
9
ps
"'"
""
J
]
m' ~ , G ,pswr~
-
__
V
\
/*
"
,
--~
-IL ~
..
'q' ~-j
I
158
Smithells Light Metals Handbook ~7,
WI ~ N Si 10
i SI-Ti
_
3O 4O
5O
dO
7O
8O
~0
Ti
L.__...I._ ._._I
I -
~
'
'
!
~ ~ , 4
I
~ ' ~ - ~
~
/1~3
. I~.9
~
f
_
I~
_
I§
1
98.9 ~
~an
I
I 0
I0
20
I
I
I
II
I
I
--srn~
II ~
30
40
50
--
+
i
c=.ro
60
70
80
90
I00
AI ~ TI 5
I0
15 20 25 30
40
I sn-l~ I
50 6 0 7 0 8 0 9 0 T I
I 'I
I
.....
1200
'
~
,
I
-;r
-"
"
i~.
~1
!' 11 :I
.
,
I
0
10
~ ]
.
~
i
"
"
J,,,.
,i
20
.!
30
.
II |
!:=? | &
~1 ~ I
uq.
400
H ~,~
~
,' , , ~ =o-u~/-..--.--t.:. .
.
: .
40
.
.
.
.
.
.
AI ~ Ti
i, 60
~i
~
I ~~ :~'' I
I
" =.
9
9
~
;:
-_..-,,- ,e
~.
, t.,I
; 50
,~
~" ) ,
I I: +
,~.
I /-i~'.~_.~s'~_ I~M'P"
L_1~nl
:
I
I It
I
70
,
9
'
80
I
"
A. ,~
"
I
90
I00
Equilibrium diagrams 9C 2
Ta
W~Tt 15 20 2 5 3 0
4 6 870
-
40 5060
159
80 Ti
I
-
2997' 2800 ~''" i
b%q
24100
2OOO
n
~mlmllmm I
iimH_l
m
t (lb. j r.~ 12001
882"
0
IO
20
30
40
50
60
70
80
90
I00
At~
ec
At.% r~
mmmmmmmu mmmmmmm~ ~~~mmmmmm nmmmmammmm ~l~zammmmmmm
!~
i
) mmmmimnmmm
II00
0000 90O 800
7OO
. '
~li
I Th-T, I
-J,~.
. . . .
. ~ ~ rl
....
~oo-2~i ....
m
! .... J'
i
i
4 0 3 0 dO 70 eO eO tOO I~.% rl
160
Smithells Light Metals Handbook "C
I~.% Ti
0
,tO
tO
$o
40
$o
60
80 too
ISO0 ~LiW.,~
1400
t~O0
900
/
000 700
,
'
(~00-o
I "TI-V
!
"uari
9
,o
.WOO
ao
Z.t~d, 9 .*~]
| solid so/c~ion
I000
--Ix
800 ~ 0
20 4 0
dO 8 0 1 0 0
Wt.% V
-i
"
At% Y as so as " I I
"C 2001 9
l
~o
40
SO At% 7"/
6o
70
80
I~:)
tOO
Equilibrium diagrams
L~o~
JO00
2500
'
'
r9 , S
ps-
,,
,.
L+B
,~
/
_..._@._@.'
~de~4"
OSO0
_.- "1 , / /
d@~~*~@
/S
0
.j//
e/
.....
.4
It$O"
,,~'-~.~
soc ~ ~ , a _ _
161
~0
40
' ....
c. +j,,,,
60
,
80
|
/00
At. % W
,,oo ; ~
.oo
il
,,oo_
;
._121j.2
,.,oo
-_r,p. . . . . . . . .
oo~
-
/000
-
~ O O - - "
-
iLl
LL
'
~
~
-
-J
--=
[
I
-
~ tO
,,
I
I Y , ~1~
soo 0
,
/
700 . . . . .
600
i
I
-
800
400
I I_
lO
........
-| . . . . 1 40
JO
SO
dO
J 70
80
PO t O 0
We.%)'
"c
.oo poo
I
,oc
/: ii
SO0
JO0
0
'
- I L,,,,, I
0~1
"~':'i~""
! Ta.zn 1
...4" . . . .
o
". ]"".
9
I
i
t0
,
#0
~
wt. % ri
$0
40
$0
162
Smithells Light Metals Handbook "~
Wt ~ lr 11102030
, r,--._,-, ,
40
50 .'
-
2000
60
70758085
'
-
--
!
Uqdd
'
'
90
-,...-*
95
Zr
..... ' ....
,
I
. . . .
'
-
I
1876"
1670"
--_.,..-.A
37 1200
lJm.~ 882"
!
'
50
865.
l
a ~ . Zt) ~" ~_
0
10
20
30
40
. . . . .
50
At ~ Zr
60
70
,
80
90
100
6 Metallography of light alloys Metallography can be defined as the study of the structure of materials and alloys by the examination of specially prepared surfaces. Its original scope was limited by the resolution and depth of field in focus by the imaging of light reflected from the metallic surface. These limitations have been overcome by both transmission and scanning electron microscopy (TEM, STEM and SEM). The analysis of X-rays generated by the interaction of electron beams with atoms at or near the surface, by wavelength or energy dispersive detectors (WDX, EDX), has added quantitative determination of local composition, e.g. of intermetallic compounds, to the deductions from the well-developed etching techniques. Surface features can also be studied by collecting and analysing electrons diffracted from the surface. A diffraction pattern of the surface can be used to determine its crystallographic structure (low-energy electron diffraction or LEED). These electrons can also be imaged as in a conventional electron microscope (Low-energy electron microscopy or LEEM). This technique is especially useful for studying dynamic surface phenomena such as those occurring in catalysis. X-rays photoelectron microscopy (XPS or ESCA) now enables the metallographer to analyse the atoms in the outermost surface layer to a depth of a few atoms (0.3-5.0 nm) and provides information about the chemical environment of the atom. Auger spectroscopy uses a low-energy electron beam instead of X-rays to excite atoms, and analysis of the Auger electrons produced provides similar information about the atoms from which the Auger electron is ejected. Nevertheless, the conventional optical techniques still have a significant role to play and their interpretation is extended and reinforced by the results of the electronic techniques.
6.1
Metallographic methods for aluminium alloys
PREPARATION Aluminium and its alloys are soft and easily scratched or distorted during preparation. For cutting specimens, sharp saw-blades should be used with light pressure to avoid local overheating. Specimens may be ground on emery papers by the usual methods, but the papers should preferably have been already well used, and lubricated or coated with a paraffin oil ('white spirit' is suitable), paraffin wax or a solution of paraffin wax in paraffin oil. Silicon carbide papers (down to 600-grit) which can be well washed with water are preferred for harder alloys, the essential point being to avoid the embedding of abrasive particles in the metal. For pure soft aluminium, a high viscosity paraffin is needed to avoid this. Polishing is carried out in two stages: initial polishing with fine o~-alumina, proprietary metal polish, or diamond, and final polishing with F-alumina or fine magnesia, using a slowly rotating wheel (not above 150 rev. min -1). It is essential to use properly graded or levigated abrasives and it is preferable to use distilled water only; it is an advantage to boil new polishing cloths in water for some hours in order to soften the fibres. Many aluminium alloys contain hard particles of various intermetallic compounds, and polishing times should in general be as short as possible owing to the danger of producing excessive relief. Relief may be minimized by experience and skill in polishing; blanket felt may with advantage be substituted for velveteen or selvyt cloth as a polishing pad, while the use of parachute silk on a cork pad is also useful for avoiding relief in the initial stages of the process, but a better general alternative is to use diamond polishing, followed by a very brief final polishing with magnesia. Many aluminium alloys contain the reactive compound Mg2Si. If this constituent is suspected, white spirit should be substituted for water during all but the initial stages of wet polishing, to avoid loss of the reactive particles by corrosion.
164
Smithells Light Metals Handbook
Table 6.1
MICROCONSTITUENTSWHICH MAY BE ENCOUNTERED IN ALUMINIUM ALLOYS
Microconstituent AI3Mg2 Mg2Si CaSi 2 CuA12 NiAI 3 Co2A19 FeAI~1) MnAI6
Appearance in unetched polished sections Faint, white. Difficult to distinguish from the matrix. Slate grey to blue. Readily tarnishes on exposure to air and may show irridescent colour effects. Often brown if poorly prepared. Forms Chinese script eutectic. Grey. Easily tarnished Whitish, with pink tinge. A little in relief; usually rounded Light grey, with a purplish pink tinge Light grey
CrA!7
Lavender to purplish grey; parallel-sided blades with longitudinal markings Flat grey. The other constituents of binary aluminium-manganese alloys (MnAI4, MnAI 3 and '8') are also grey and appear progressively darker. May form hollow parallelograms Whitish grey; polygonal. Rarely attacked by etches
Silicon a(AIMnSi)(2) fl(AIMnSi)(2) AI2CuMg AI6Mg4Cu
Slate grey. Hard, and in relief. Often primary with polygonal shape - use etch to outline Light grey, darker and more buff than MnAI6 Darker than ct(AIMnSi), with a more bluish grey tint. Usually occurs in long needles Like CuAI2 but with bluish tinge Flat, faint and similar to matrix
(AICuMn) (3) r (4) fl(AIFeSi)(4) (AICuFe) (5) (AIFeMn) (6)
Grey Purplish grey. Often occurs in Chinese-script formation. Isomorphous with a(AIMnSi) Light grey. Usually has a needle-like formation Grey a phase lighter than fl phase (see Note 5) Flat grey, like MnAI6
(AICuNi) (AIFeSiMg) (7) FeNiAI 9 (AICuFeMn) Ni 4 Mn I I AI60 MgZn2
Purplish grey Pearly grey Very similar to and difficult to distinguish from NiAI3 Light grey Purplish grey Faint white; no relief
In Table 10.1 constituents are designated by symbols denoting the compositions upon which they appear to be based, or by the elements, in parentheses, of which they are composed. The latter nomenclature is adopted where the composition is unknown, not fully established, or markedly variable. The superscript numbers in column I refer to the followingnotes: (1) On very slow cooling under some conditions, FeAI3 decomposes into Fe2A!7 and Fe2A!5. The former is micrographically indistinguishablefrom FeAI3. The simpler formula is retained for consistency with most of the original literature. (2) a(AIMnSi) is present in all slowly solidified aluminium-manganese-siliconalloys containing more than 0.3% of manganese and 0.2% of silicon, while fl(AIMnSi), a different ternary compound, occurs above approximately 3% of manganese for alloys containing more than approximately 1.5% of silicon, a(AIMnSi) has a variable composition in the region of 30% of manganese and I0-15% of silicon. The composition of fl(AIMnSi)is around 35% of manganese and 5-10% of silicon. (3) (AICuMn)is a ternary compound with a relatively large range of homogeneitybased on the composition Cu2Mn3AI20. (4) a(AIFeSi) may contain approximately30% of iron and 8% of silicon, while ~(AIFeSi) may contain approximately27% of iron and 15% of silicon. Both constituents may occur at low percentages of iron and silicon. (5) The composition of this phase is uncertain. Two ternary phases exist, a(AICuFe) resembles FeAI3; fl(AICuFe) forms long needles. (6) The phase denoted as (AIFeMn) is a solid solution of iron in MnAI6. (7) This constituent is only likely to be observed at high silicon contents.
It should be noted that some a l u m i n i u m alloys are liable to undergo precipitation reactions at the temperatures used to cure thermosetting m o u n t i n g resins; this applies particularly to a l u m i n i u m m a g n e s i u m alloys, in which grain boundary precipitates m a y be induced. ETCHING The range of a l u m i n i u m alloys now in use contains m a n y complex alloy systems. A relatively large n u m b e r of etching reagents have therefore been developed, and only those whose use has b e c o m e more or less standard practice are given in Table 6.2. M a n y etches are designed to render the distinction between the m a n y possible microconstituents easier, and the type of etching often depends on the magnification to be used. The identification o f constituents, which is best accomplished by using cast specimens where possible, depends to a large extent on distinguishing between the
Metallography of light alloys Table 6.2
No.
165
ETCHINGREAGENTS FOR ALUMINIUMAND ITS ALLOYS
Reagent
Remarks
Hydrofluoric acid (40%) 0.5 Hydrochloric acid (1.19) 1.5 Nitric acid (1.40) 2.5 Water 95.5
ml ml ml ml
(Keller's etch) t
15 s immersion is recommended. Particles of constituents are outlined. Colour indications: Mg2Si and CaSi2: o~(AIFeSi) and (AIFeMn): ~(AICuFe): MgZn 2, NiAI 3, (AICuFeMn), AI2Cu Mg and Al6CuMg: ct(AICuFe) and (AICuMn): AI3Mg2:
all common microblue to brown darkened light brown brown to black
blackened heavily outlined and pitted The colours of other constituents are little altered. Not good for high Si alloys Hydrofluoric acid (40%) 0.5 ml Water 99.5 ml
Sulphuric acid (1.84) Water
20 ml 80 ml
Nitric acid (1.40) Water
25 ml 75 ml
Sodium hydroxide Water
1 g 99 ml
15 s swabbing is recommended. This reagent removes surface flowed layers, and reveals small particles of constituents, which are usually fairly heavily outlined. There is little grain contrast in the matrix. Colour indications: Mg2Si and CaSi2: blue FeAI3 and MnAI6: slightly darkened NiAI3: brown (irregular) oe(AIFeSi): dull brown (AICrFe): light brown Co2AI9: dark brown (AIFeMn): brownish tinge o~(AICuFe), (AICuMg) and (AICuMn): blackened u(AlMnSi), ~(AIMnSi) and (AICuFeMn) may appear light brown to black /~(AIFeSi) is coloured red brown to black The remaining possible constituents are little affected 30 s immersion at 70~ the specimen is quenched in cold water. Colour indications: Mg2Si, AI3Mg2 and FeAI3: violently attacked, blackened and may be dissolved out CaSi2: blue ~(AIMnSi) and/~(AIMnSi): rough and attacked NiA!3 and (AICuNi): slightly darkened /J(AIFeSi): slightly darkened and pitted a(AIFeSi), (AICuMg) and (AICuFeMn): outlined and blackened Other constituents are not markedly affected Specimens are immersed for 40 s at 70 ~ and quenched in cold water. Most constituents (not MnAI6) are outlined. Colour indications: /~(AICuFe) is slightly darkened AI3Mg2 and AIMnSi: attacked and darkened slightly Mg2Si, CuAI2, (AICuNi) and (AICuMg) are coloured brown to black Specimens are etched by swabbing for 10 s. All usual constituents are heavily outlined, except for AI3Mg 2 (which may be lightly outlined) and (AICrFe) which is both unattacked and uncoloured. Colour indications: FeAI3 and NiAi3: slightly darkened (AICuMg): light brown c~(AIFeSi): dull brown* oe(AIMnSi): rough and attacked; slightly darkened* MnAI6 and (AIFeMn): coloured brown to blue (uneven attack) MnAI4: tends to be darkened The colours of other constituents are only slightly altered
continued overleaf
166
Smithells Light Metals Handbook
Table 6.2
(continued)
No.
Reagent Sodium hydroxide Water
Remarks
10 g 90 ml
3%-5%
Specimens immersed for 5 s at 70 ~ and quenched in cold water. Colour indications: fl(AIFeSi): slightly darkened Mnl 1 Ni4AI60: light brown fl(AlCuFe): light brown and pitted CuAI2: light to dark brown FeAI 3: dark brown (FeAI3 is more rapidly attacked in the presence of CuAI 2 than when alone) MnAI6, NiAI 3, (AIFeMn), CrAI7 and AICrFe: blue to brown a(AIFeSi), a(AlCuFe), CaSi2 and (AICuMn): blackened
Sodium hydroxide Sodium carbonate (in water)
3 % - 5%
8
Nitric acid Hydrofluoric acid Glycerol
20 ml 20 ml 60 ml
9
Nitric acid, 1% to 10% by vol. in alcohol
Recommended for aluminium-magnesium alloys. AI3Mg 2 is coloured brown. 5 - 2 0 % chromium trioxide can be used
10
Picric acid Water
4 g 96 ml
Etching for 10 min darkens CuAI 2, leaving other constituents unaffected. Like reagent 4
11
Orthophosphoric acid Water
9 ml 91 ml
Useful for sensitive etching where reproducibility is essential. In general, the effects are similar to those of Reagent 5, but the tendency towards colour variations for a given constituent is diminished. Particularly useful for distinguishing FeNiAI 9 (dark blue) from NiAI 3 brown). Potassium salts can be used. A reliable reagent for grain boundary etching, especially if the alternate polish and etch technique is adopted. The colours of particles are somewhat accentuated
The reagent is used cold. Recommended for aluminium-magnesium alloys in which it darkens any grain boundaries containing thin fl-precipitates. Specimen is immersed for a long period (up to 30 min). Mg2Si is coloured black, AI3Mg 2 a light grey, and the ternary (AIMnFe) phase a dark grey
12
Nitric acid
10 s immersion colours AI6CuMg4 greenish brown and distinguishes it from AI2CuMg, which is slightly outlined but not otherwise affected
13
Nitric acid (density 1.2) 20 ml Water 20 ml Ammonium molybdate, (NH4)6Mo7024, 4H20 3 g Sodium hydroxide (various strengths, with 1 ml of zinc chloride per 100 ml of solution)
20 ml of reagent are mixed with 80 ml alcohol. Specimens are immersed, and well washed with alcohol after etching. Brilliant and characteristic colours are developed on particles of intermetaUic compounds. The effects depend on the duration of etching, and for differentiation purposes standardisation against known specimens is advised
Hydrochloric acid (37%) Hydrofluoric acid (38%) Water
Recommended (30 s immersion at room temperature) for testing the diffusion of copper through claddings of aluminium, aluminiummanganese-silicon, or aluminium-manganese on aluminiumcopper-magnesium sheet. Zinc contents up to 2% in the clad material do not influence the result 68
14
15
16
Ammonium oxalate Ammonium hydroxide, 15% in water
15.3 ml 7.7 ml 77.0 ml 1 g
Generally useful for revealing the grain structure of commercial aluminium alloy sheet 67
Develops grain boundaries in aluminium-magnesium-silicon alloys. Specimens are etched for 5 rain at 80 ~ in a solution freshly prepared for each experiment
100 ml
*These are isomorphous and the colour depends on the proportion of Mn and Fe. t Sodium fluoride can be used in place of HF in mixed acid etches.
Metallography of light alloys
167
colours of particles, so that the illumination should be as near as possible to daylight quality. It is recommended that a set of specially prepared standard specimens, containing various known metallographic constituents, be used for comparison. It is very easy to obtain anomalous etching effects, such as ranges of colour in certain types of particles, and carefully standardized procedure is necessary. It should be remembered that the form and colour of the microconstituents may vary according to the degree of dispersion brought about by mechanical treatments, and also that the etching characteristics of a constituent may vary according to the nature of the other constituents present in the same section. Some etching reagents for aluminium require the use of a high temperature; in such cases the specimen should be preheated to this temperature by immersion in hot water before etching. For washing purposes, a liberal stream of running water is advisable.
Electrolytic etching for aluminium alloys. In addition to the reagents given for aluminium in Table 6.2 the following solutions have been found useful for a restricted range of aluminium-rich alloys: 1.
The following solution has been used for grain orientation studies: Orthophosphoric acid (density 1.65) 53 ml Distilled water 26 ml Diethylene glycol monoethyl ether 20 ml Hydrofluoric acid (48%) 1 ml The specimen should be at room temperature and electrolysis is carried out at 40 V and less than 0.1 A dm -2. An etching time of 1.5-2 min is sufficient for producing grain contrast in polarized light after electropolishing. 2. The solution below is also used for the same purpose and is more reliable for some alloys: Ethyl alcohol 49 ml Water 49 ml Hydrofluoric acid 2 ml (quantity not critical) The specimen is anodized in this solution at 30 V for 2 min at room temperature. A glass dish must be used. Not suitable for high-copper alloys. 3. For aluminium alloys containing up to 7% of magnesium: Nitric acid (density 1.42) 2 ml 40% hydrofluoric acid 0.1 ml Water 98 ml Electrolysis is carried out at a current density of 0.3 A dm -2 and a potential of 2 V. The specimen is placed 7.6 cm from a carbon cathode. 4. For cast duralumin: Citric acid 100 g Hydrochloric acid 3 ml Ethyl alcohol 20 ml Water 977 ml Electrolysis is carried out at 0.2 A dm -2 and a potential of 12 V. 5. For commercial aluminium: Hydrofluoric acid (40%) 10 ml Glycerol 55 ml Water 35 ml This reagent, used for 5 min at room temperature, with a current density of 1.5 A dm -2 and a voltage of 7 - 8 V, is suitable for revealing the grain structure after electropolishing. 72 6. For distinguishing between the phases present in aluminium-rich aluminium-coppermagnesium alloys, electrolytic etching in either ammonium molybdate solution or 0.880 ammonia has been recommended. In both cases, AI2CuMg is hardly affected, CuAI2 is blackened, AI6Mg4 Cu is coloured brown, while Mg2AI3 is thrown into relief without change of colour. 73 GRAIN-COLOURINGETCH For many aluminium alloys containing copper, and especially for binary aluminium-copper alloys, it is found that Reagent No. 1 of Table 6.2 gives copper films on cubic faces which are subject to preferential attack and greater roughening of the surface. Subsequent etching with 1% caustic soda solution converts the copper into bronze-coloured cuprous oxide, and a brilliant and contrasting
168
Smithells Light Metals Handbook
representation of the underlying surfaces is obtained. The technique is of use in orientation studies in so far as the films are dark and unbroken on (100) surfaces, but shrink on drying on other surfaces. In particular (111) faces have a bright yellow colour with a fine network on drying, which has no preferred orientation, while (110) faces develop lines (cracks in film) which are parallel to a cube edge.
6.2 Metallographic methods for magnesium alloys PREPARATION 1. Magnesium is soft and readily forms mechanical twins and so deformed layers should be avoided. 2. Abrasives and polishing media tend to become embedded. Therefore use papers well-covered with paraffin making sure the deformed layer is removed. 3. Some phases in magnesium alloys are attacked by water. If these are present use paraffin or ethanol as lubricant. 4. Some very hard intermetallics can be present. Therefore keep polishing times short to avoid relief. The recommended procedure is to grind carefully to 600-grit silicon carbide papers. Then polish with fine a-alumina slurry or 4 - 6 gm diamond paste. This is followed by polishing on a fine cloth using light magnesia paste made with distilled water or a chemical attack polish of l g MgO, 20 ml ammon, tartrate soln. (10%) in 120 ml of distilled water. In reactive alloys, white spirit replaces distilled water and chemical attack methods avoided. ETCHING The general grain structure is revealed by examination under cross-polars. This will also detect mechanical twins formed during preparation. A selection of etching reagents suitable for magnesium and its alloys is given in Table 6.3. Of these, 4 and 1 are the most generally useful reagents for cast alloys, while 16 is a useful macro-etchant and, followed by 4, is invaluable for showing up the grain structure in wrought alloys.
Table 6.3 No.
ETCHINGREAGENTSFOR MAGNESIUMAND ITS ALLOYS Etchant
Nitric acid Diethylene glycol Distilled water
Remarks 1 ml 75 ml 24 ml
Nitric acid l Glacial acetic acid 20 Water 19 Diethylene glycol 60 Citric acid 5 Water 95 Nitric acid, 2% in alcohol Nitric acid, 8% in alcohol
ml ml ml ml g ml
Nitric acid, 4% in alcohol Nitric acid, 5% in water Oxalic acid 20 g 1-1 in water Acetic acid, 10% in water
This reagent is recommended for general use, particularly with cast, die-cast and aged alloys. Specimens are immersed for 10-15 s, and washed with hot distilled water. The appearance of common constituents following this treatment is outlined in Table 6.4. Mg-RE and Mg-Th alloys also Recommended for solution-heat-treated castings, and wrought alloys. Grain boundaries are revealed. The proportions are somewhat critical. Use 1-10 s This reagent reveals grain boundaries, and should be applied by swabbing. Polarized light is an alternative A generally useful reagent Etching time 4 - 6 s. Recommended for cast, extruded and rolled magnesium-manganese alloys Used for magnesium-rich alloys containing other phases, which are coloured light to dark brown Etching time 1-3 s. Recommended for cast and forged alloys containing approximately 9% of aluminium Etching time 6-10 s. Used also for extruded magnesiummanganese alloys Etching time 3 - 4 s. Used for magnesium-aluminium alloys with 3% of aluminium
Metallography of light alloys Table 6.3
No. !0 11
12 13 14
15
Etchant
Remarks
Tartaric acid 20 g I-1 of water
Etching time 6 s ] These regants are recommended for magnesium-aluminium alloys with 3 to 6% of Orthophosphoric acid, 13% in glycerol Etching time 12 s aluminium Tartaric acid Used for wrought alloys. Mg2Si is roughened and pitted. 10 s to 100 g 1- I of water 2 min for Mg-Mn-AI-Zn alloys. Grain contrast in cast alloys Citric acid and nitric acid in Used for magnesium-cerium and magnesium-zirconium alloys. The glycerol magnesium-rich matrix is darkened and the other phases left white Orthophosphoric Recommended for solution-heat-treated castings. The specimen is acid 0.7 ml lightly swabbed, or immersed with agitation for 10-20 s. The Picric acid 4 g magnesium-rich matrix is darkened, and other phases (except Ethyl alcohol 100 ml Mg2Sn) are little affected. The maximum contrast between the matrix and MgI7AII2 is developed. The darkening of the matrix is due to the development of a film, which must not be harmed by careless drying Picric acid satuA grain boundary etching reagent; especially for Dow metal (AI 3% rated in 95% Zn 1%, Mn 0.3%). Reveals cold work and twins alcohol 10 ml Glacial acetic acid 1 ml
16
Picric acid, 5% in ethyl alcohol 50 ml Glacial acetic acid 20 ml Distilled water 20 ml
17
Picric acid, 5% in ethyl alcohol Glacial acetic acid Distilled water Picric acid, 5% in ethyl alcohol Glacial acetic acid Nitric acid (1.40) Picric acid, 5% in ethyl alcohol Distilled water Hydrofluoric acid (40%) Distilled water
18
19 20
21
22
169
(continued)
50 ml 16 ml 20 ml
Useful for magnesium-aluminium-zinc alloys. On etching for 15 s an amorphous film is produced on the polished surface. When dry, the film cracks parallel to the trace of the basal plane in each grain. The reagent may be used to reveal changes of composition within grains, and other special purposes As for Reagent 16, but suitable for a more restricted range of alloy composition
General reagent I00 ml 5 ml 3 ml 10 ml 10 ml 10 ml 90 ml
Picric acid, 5% in ethyl alcohol 100 ml Distilled water 10 ml Glacial acetic acid 5 ml Nitric acid conc.
Mg2Si is coloured dark blue and manganese-bearing constituents are left unaffected Useful for magnesium-aluminium-zinc alloys. MgI7AII2 is darkened, and Mg3Al2Zn 3 is left unetched. If the specimen is now immersed in dilute picric acid solution (1 vol. of 5% picric acid in alcohol and 9 vol. of water) the matrix turns yellow, and the ternary compound remains white Reveals grain-boundaries in both cast and wrought alloys. This reagent is useful for differentiating between grains of different orientations, and for revealing internally stressed regions Recommended for pure metal only. Specimen is immersed in the cold acid. After 1 rain a copious evolution of NO2 occurs, and then almost ceases. At the end of the violent stage, the specimen is removed, washed and dried. Surfaces of very high reflectivity result, and grain boundaries are revealed
The appearance of constituents after etching. The micrographic appearances of the commonly occurring microconstituents in cast alloys are as given in Table 6.4. ELECTROLYTIC ETCHING OF MAGNESIUM ALLOYS This has been recommended for forged alloys. The specimen is anodically treated in 10% aqueous sodium hydroxide containing 0.06 g 1- t of copper. A copper cathode is used, and a current density of
170
Smithells Light Metals Handbook
Table 6.4 THE MICROGRAPHICAPPEARANCEOF CONSTITUENTSOF MAGNESIUMALLOYS
Microconstituent
Appearance in polished sections, etched with Reagent I (zirconium-free alloys)
Mgl7Al~ 1) MgZn(22) Mg3Al2Zn~3) Mg2Si (4)
White, sharply outlined and brought into definite relief
Manganese (5) (MgMnAI)(5)
Appearance very similar to that of Mgl7AII2 Appearance similar to those of Mgl7All2 and MgZn2 Watery blue green; the phase usually has a characteristic Chinese-script formation, but may appear in massive particles. Relief less than for manganese Tan to brown or dark blue, depending on duration of etching. Individual particles may differ in colour Grey particles, usually rounded and in relief. Little affected by etching Grey particles, angular in shape and in relief. Little affected by etching
Microconstituent
Appearance in polished sections etched with Reagent 4 (zirconium-bearing alloys)
Primary Zr (undissolved in molten alloy) Zinc-rich particles (6)
Hard, coarse, pinkish grey rounded particles, readily visible before etching
Mg2Sn(4)
Mg9Ce Mg5Th Mg-Th-Zn MgZn2
Fine, dark particles, loosely clustered and comparatively inconspicuous before etching Compound or divorced eutectic in grain boundaries. Appearance hardly changed by few per cent of zinc or silver Compound or divorced eutectic in grain boundaries (bluish). Appearance hardly changed by few per cent of zinc if Zn exceeds Th Brown acicular phase. Appears in Mg-Th-Zn-Zr alloys when Th > Zn Compound or divorced eutectic in grain boundaries. Absent from alloys containing RE or Th
The superscript numbers in column I refer to the following notes: (I) This is the y-phase of the magnesium-aluminium system; it is also frequently called Mg4A!3 or Mg3AI2. (2) Although the phase MgZn may be observed in equilibrium conditions, MgZn2 is frequently encountered in cast alloys. (3) This ternary compound occurs in alloys based on the ternary system magnesium-aluminium-zinc,and may be associated with MgI7All2. (4) Blue unetched. (5) These constituents are best observed in the unetched condition. (6) Alloysof zirconium with interfering elements such as Fe, AI, Si, N and H, separating as a Zr-rich precipitate in the liquid alloy. Co-precipitation of various impurities makes the particles of indefinite composition.
Note: The microstructure of all zirconium-bearing cast alloys with satisfactory dissolved zirconium content is characterised by Zr-rich coring in the centre of most grains. In the wrought alloys zirconium is precipitated from the cored areas during preheating or working, resulting in longitudinal striations of fine precipitate which become visible on etching. 0.53 A dm -2 is applied at 4 V. After etching, the specimen is successively washed with 5% sodium hydroxide, distilled water and alcohol, and is finally dried. NON-METALLIC INCLUSIONS IN MAGNESIUM-BASE ALLOYS The detection and identification of accidental flux and other inclusions in magnesium alloys involves the exposure of a prepared surface to controlled conditions of humidity, when corrosion occurs at the site of certain inclusions, others being comparatively unaffected. The corrosion product or the inclusion may then be examined by microchemical techniques. The surface to be examined should be carefully machined and polished by standard procedures. The polishing time should be short, and alcohol or other solvent capable of dissolving flux must be avoided. As soon as possible the prepared specimens are placed in a humidity chamber, having been protected in transit by wrapping in paper. A suitable degree of humidity is provided by the air above a saturated solution of sodium thiosulphate. The presence of corrosive inclusions is indicated by the development of corrosion spots. At this stage the corroded area may be lightly ground away to expose the underlying structure for microexamination so that the micrographic features which are holding the flux become visible. With other specimens, or with the same specimens re-exposed to the humid conditions, identification of the inclusions may be pre~eeded with, as follows:
1. Detection of chloride The corrosion product is scraped off, and dissolved on a microscope slip in 5% aqueous nitric acid. A 1% silver nitrate solution is then added, and a turbidity of silver chloride indicates the presence
Metallography of light alloys
171
of the chloride ion. The solution of the corrosion product should preferably be heated before adding the silver nitrate to remove any sulphide ion, which also gives rise to turbidity. Alternatively, a 10% solution of chromium trioxide may be added directly to the corrosion spot, when chloride is indicated by an evolution of gas bubbles from the metal surface, and the development of a brown stain. This method ~s less specific than the silver nitrate method, and may give positive reactions in the presence of relatively large amounts of sulphates and nitrates. 2. Detection of calcium Scrapings of corrosion product are dissolved in a small watch glass on a hot plate in 2 ml water and one drop of glacial acetic acid. To the hot solution a few drops of saturated ammonium oxalate solution are added. The presence of calcium is indicated by turbidity or precipitation. Spectroscopic identification of calcium in the solution is also possible. 3. Detection of boric acid in inclusions Scrapings of corrosion product and metal are placed in a test tube with I ml of water. The inclusion dissolves, and complete solution of the sample is effected by adding a small portion of sulphuric acid (density 1.84) from 9 ml carefully measured and contained in a graduated cylinder. When solution is complete, the remainder of the acid is added and the mixture is well shaken; 0.5 ml of a 0.1% solution of quinalizarin in 93% (by wt.) of sulphuric acid is now added, mixed in, and allowed to stand for 5 min. A blue colour indicates the presence of boric acid. The colour in the absence of boric acid varies from bluish violet to red according to the dilution of the acid, which must thus be carefully controlled as described. 4. Detection of nitride A drop of Nessler's solution applied directly to the metal surface in the presence of nitride, gives an orange brown precipitate, which may take about 1 min to develop. This test should be made on freshly prepared surfaces on which no water has been used, since decomposition of nitride to oxide occurs in damp air. 5. Detection of sulphide The corrosion product is added to a few drops of water slightly acidified with nitric acid. A drop of the solution placed on a silver surface gives rise to a dark stain if sulphide was present in the corrosion product. Sulphur printing may also be applied. 6. Detection of iron The corrosion product is dissolved in hydrochloric acid. A drop of nitric acid is added with several drops of distilled water. In the presence of iron, the addition of a crystal of ammonium thiocyanate develops a blood-red colouration. In all the above tests, a simultaneous blank test should be carried out. Iron-printing, analogous to sulphur-printing, can be applied using cleaned photographic paper impregnated with a freshly prepared solution of potassium ferricyanide and potassium ferrocyanide acidified with nitric or hydrochloric acid.
6.3 Metallographic methods for titanium alloys PREPARATION The preparation of titanium samples by ordinary methods of grinding is straightforward but needs care; final polishing is difficult. Specimens are easily scratched, and mechanical working of the surface during polishing causes twin-formation which may obscure other metallographic features. Other 'false' structures may be caused by the presence of local, randomly dispersed areas of cold work, which give a duplex appearance to homogeneous specimens. Electrolytic polishing of surfaces ground wet by ordinary methods to the 000 grade of emery paper is therefore recommended. Mechanical polishing, if preferred, may be carried out with diamond preparation, with a final fine polish (if required) with alumina, both with a trace of hydrofluoric acid. Examination for hydride is carried out in polarised light between crossed polaroids; the hydride then appears bright and anisotropic. This also reveals the grain structure of o~-titanium.
172
Smithells Light Metals Handbook
ETCHING The presence of surface oxide films on titanium and its alloys necessitates the use of strongly acid etchants. Those given in Table 6.5 are useful.
Table 6.5
ETCHINGREAGENTS FOR TITANIUMAND ITS ALLOYS
No. I
2
3
4
5
6
7
Etchant
Conditions
Hydrofluoric acid (40%) Nitric acid (1.40) Lactic acid
1 - 3 ml
Hydrofluoric acid (40%) Nitric acid (1.40) Lactic acid
1 ml 30 ml 30 ml
Hydrofluoric acid
1 - 3 ml
Nitric acid (1.40) Water (KroU's reagent)
2 - 6 ml to 100 ml
Hydrofluoric acid (40%) Nitric acid (1.40) Lactic acid
10 ml 10 ml 30 ml
Potassium hydroxide
10 ml
(40%)
(40%)
5 - 30 s
Mainly unalloyed titanium; reveals hydrides
5-30 s
As Etchant 1
3-10 s
Most useful general etch
5-30 s
Chemical polish and g.b. etch
3 - 20 s
Useful for c~/~ alloys, c~ is attacked or stained./~ unattacked
5-15 s
General purpose, TiAISn alloys
3-20 s
TiAISn alloys
10 ml 30 ml
Hydrogen peroxide (30%) Water (can be varied to suit alloy)
20 mi
Hydrofluoric acid
20 ml
Nitric acid Glycerol
20 m! 40 ml
Hydrofluoric acid Nitric acid (1.40) Glycerol Water
1 25 45 20
(40%)
Remarks
5 ml
ml ml ml ml
7
Heat treatment of light alloys
7.1
Aluminium alloys
7.1.1
Annealing
For softening aluminium alloys that have been hardened by cold work: Alloys I080A, 1050, 1200, 5251, 5154A, 5454, 5083 - 3 6 0 ~ for 20 min. Alloys 3103, 3105 - 4 0 0 - 4 2 5 ~ for 20 min. Heat-treatable alloys that have not been heat treated - 3600C -4- 10~ for 1 h and cool in air. Alloys that have been heat treated - 400-425 ~ for 1 h and cool at 15 ~ to 300~ For AI-Zn-Mg alloys of the 7000 series, after cooling in air, reheat to 225 ~ for 2 - 4 h.
7.1.2
Stabilizing
To relieve internal stress. Normally heat to 250 ~ followed by slow cooling is adequate.
7.1.3
Hardening
Conditions for solution treatment and ageing for both cast and wrought aluminium alloys are given in Tables 7.1 and 7.2. For the alloy designation system and compositions see Chapter 3. Temper designations are given in Table 7.3.
Table 7.1 HEATTREATMENTDATAFOR ALUMINIUMCASTINGALLOYS .
Material designation and temper
.
.
.
.
,
.
.
.
.
.
.
.
.
.
.
.
Solution treatment Alloy type
Temperature ~
Time I h
505- 520 520-535 425-435 515-525 515-525 520-530 520-530 515-530
6-16 2-8 8 8 8 12 12 6-9
.
,,,,
,,
Precipitation treatment Quench 2 medium
Temperature ~
Time 3 h
150-170 150-170 150-170
6-18 16 16
160-180 160-180 200 - 250 160-179 -
4-16 f 4-16 4-16 8-10 -
BS 1490
LM 4 - TF LM 9 - TE -TF LM 10-TB LM 13-TE -'IF -TF7 LM 16-TB -TF LM 22-TB
AI Si5 Cu3 AI Si 12 Mg AI Mgl0 AI Sil I Mg Cu AI Si5 Cul Mg AI Si6 Cu3 Mn
Hot water -
Water Oil at 160~ max4 Hot water Hot water Hot water Hot water Hot water
continued overleaf
Smithells Light Metals Handbook
174
Table 7.1
(continued) Solution treatment
Material designation and temper LM 2 5 - T B 7
Alloy type AI Si7 Mg
~ T E
-TF LM 2 6 - T E LM 2 8 - T E -'IF LM 2 9 - T E -TF LM 3 0 - T S
Temperature *C
Time I h
525-545
4-12
-
Precipitation treatment Quench 2 medium
250 155-175 155-175 200-210 185 185 185 185 175-225
2-4 8-12 8-12 7-9 t 8 t 8 8
95-110 or room temperature 150-175 1 5 0 - 1 8 0 or 195 - 2 0 5
2 5 days
160-170 120-140 120-170 150-160 2154-5
8-10 1-2 12-14 4 12-16
-
140 4- 10
30 days 16
165 4- 10 130 4- 10
8-12 1-2
165 4- 10 180 4- 5
8-12 10
-
AI Sil7 Cu4 Mg
4-12 4 4 -
(4L 35)
AI Cu4 Ni2 Mg2
500-520
6
Boiling water
3L 51 (3L 52)
AI Si2 Cu Ni Fe Mg AI Cu2 Ni Si Fe Mg
520-540
4
Water at 3 0 - 1 0 0 ~
(4L 53) 3L 78 (2L 91) 2L 92 (L 99) (L 119)
Ai AI AI AI AI A!
425-435 520-530 525-545 525-545 535-545 542 4- 5
8 12 12-16 12-16 12 5
L 154 L 155
Ai Cu4 Sil AI Cu4 Sil
510 4- 5 510 4- 5
16 16
A1 Si23 Cu Mg Ni
Time 3 h
Hot water
-
525-545 495-505 495-505 -
AI Si9 Cu3 Mg AI S i l 9 Cu Mg Ni
Temperature ~
Hot water Air blast Air blast -
BS ' L ' series
Mgl0 Si4 Cul Cu4 Cu4 Si6 Cu5 Nil
Oil at 160~ max 4 Hot water Hot water Hot water Hot water Boiling water or oil at 80 ~ Water ( 5 0 - 7 0 ~ Water ( 5 0 - 7 0 0 C )
8-24 8-24 2-5
D T D specifications 722B 727B
AI Si5 AI Si5
540 4- 5
4-12
735B 5008B 5018A
AI Si5 AI Zn5 Mg AI Mg7 Zn
5404-5 430 4-5
4-12 8
440 4- 5 495 4- 5
8 8
or then
Water ( 8 0 - 1 0 0 ~ or oil Water ( 8 0 - 1 0 0 ~ Oil > 160~ > 1 h then oil at room temperature, or air Boiling water
1Single figures are minimum times at temperature for average castings and may have to be increased for particular castings. 2Hot water means water at 70-80"C unless otherwise stated. 3The exact number of hours depends on the mechanical properties required. 4The castings may be allowed to cool to 385-395 *C in the furnace before quenching. The castings shall be allowed to stay in the oil for not more than I h and may then be quenched in water or cooled in air. tThe duration of the treatment shall be such as will produce the specified Brinell hardness in the castings. *For temper designation see Table 7.2. 0 Specification now withdrawn.
Table 7.2 TYPICAL HEAT TREATMENT DATA FOR WROUGHT ALUMINIUM ALLOYS Times and temperatures within the limits shown, some specifications give tighter limits
Solution treatment Material designation 2011
Alloy type
Temper~
Temperature ~C
AI Cu5.5 Pb Bi
T 3 (TD) T 6 (TF)
510 4-5 510 4- 5
Quench medium t Water Water
Ageing temperature
Time at temperature
~ Room 155-165
h 48 12
Heat treatment of light alloys Table 7.2
Solution treatment Material designation
Temperature Temper:~
Alloy type
2014A
AI Cu4 Si Mg
2024
AI Cu4 Mgl
2031 2117 2618A 6061
AI Cu2 Nil Mg Te Si AI Cu2 Mg AI Cu2 Mgl5 Tel Nil AI Mg I Si Cu
6063
AI Mg Si
6082
AI Sil Mg Mn
6101A
AI Mg Si
6463
AI Mg Si
7010
AI Zn6 Mg2 Cu2
Quench medium$
~
T 3 (TD) 505 4- 5 T 4 (TB) 505 4- 5 T 6 ('IF) 505 4- 5 505 4- 5 T 651 495 4- 5 T 351 T 4 (TB) 495 4- 5 495 4- 5 T42 T 4 (TB) 525 4- 10 T 4 (TB) 495 4- 5 T 6 (TF) 5304- 5 T 4 (TB) 5254- 15 T 6 (TF) 525 4- 15 T 4 (TB) 525 4-5 T 5 (TE) T 6 (TF) 525 4-5 T 4 (TB) 530 4- 10 T 6 (TF) 530 4- 10 525 4- 15 T 651 T 4 (TB) 525 4- 5 T 6 (TF) 525 4- 5 T 4 (TB) 525 4-5 T 6 (TF) 525 4-5 475 4- 10 T 351 T 7651 475 q- 10
Water Water Water Water Water Water Water Water or oil Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water or
7014
AI ZnS.5 Mg2 Cu Mn
7075
AI Zn6 Mg Cu
T T T T T T
73651 6 ('IF) 6510 6 (TF) 651 73
465 4- 10 4604- 10 4604- 10 460 4- 10 4604- 10 465 4- 5
T 7351
465 4- 5
T 7352
465 4- 5
followed by Water Water 85 *C or oil Water or oil Water Water Water (60-80"C) or followed by Water followed by Water 70"C or
followed by *Heating to temperature at not more than 20*C/h. tWater below 40~ unless otherwise stated. eFor temper designation see Table 7.3
Table 7.3 ALUMINIUMALLOYTEMPER DESIGNATIONS
Symbol
Condition
Casting alloys BS 1490 M TB TB7 TE TF TF7 TS
175
(continued)
As cast Solution treated and naturally aged Solution treated and stabilized Artificially aged Solution treated and artificially aged Solution treated, artificially aged and stabilized Thermally stress relieved
continued overleaf
Ageing Time at temperature temperature *C h Room Room 155-190 155-190 Room Room Room 155-205 Room 160-200 Room 165-195 Room 160-180 160-180 Room 175-185 165-195 Room 170 4- 10 Room 170 4- 10
48 48 5-20 5-20 48 48 48 2-20 96 16-24
1724-3' 120 4- 3 172 4. 3 172 4- 3* 135 4- 5 1354-5 135"1"5 1354-5 110 4- 5 120 4- 5 177 4- 5 110 4- 5 177 4- 5 110 4- 5 120 4- 5 177 4- 5
6-15 24 6-15 10-24 12 12 12 12 6-24 20-30 6-10 6-24 5-12 6-24 2 0 - 30 6-10
3-12 5-15 5-15 I 20 7-12 3-12 1 20 I 20 5-15
176
Smithells Light Metals Handbook
Table 7.3 (continued)
Symbol
Condition
BSEN515 TI T2 T 3 (TD) T 4 (TB) T 5 (TF) T6 T7 T 8 (TH) T9 T 10
Cooled from elevated temperature shaping process and naturally aged to stable condition As T 1 but cold worked after cooling from elevated temperature Solution treated, cold worked and naturally aged to stable condition Solution treated and naturally aged to stable condition Cooled from elevated temperature shaping process and artificially aged Solution treated and artificially aged Solution treated and stabilized (over-aged) Solution treated, cold worked and then artificially aged Solution treated, artificially aged and then cold worked Cooled from elevated temperature shaping process artificially aged and then cold worked
*British equivalents in parenthesis.
7.2 Magnesium alloys 7.2.1
Safety requirements
A potential fire hazard exists in the heat treatment of magnesium alloys. Overheating and direct access to radiation from heating elements must be avoided and the furnace must be provided with a safety cutout which will turn off heating and blowers if the temperature goes more than 6 ~ above the maximum permitted. In a gastight furnace a magnesium fire can be extinguished by introducing boron tdfluoride gas through a small opening in the closed furnace after the blowers have been shut down.
7.2.2 Environment For temperature over 400 ~ surface oxidation takes place in air. This can be suppressed by addition of sufficient sulphur dioxide, carbon dioxide or other suitable oxidation inhibitor. In the case of castings to MEL ZE63A and related specifications, solution treatment should be carded out in an atmosphere of hydrogen and quenching of castings from solution treatment temperature of MEL QE22 is to be done in hot water. If microscopic examination reveals eutectic melting or high temperature oxidation, rectification cannot be achieved by reheat-treatment. Quench from solution treatment should be rapid, either forced air or water quench. From ageing treatment, air cool.
7.2.3 Conditions for heat treatment of magnesium alloys castings These are shown in Table 7.4 and for some wrought magnesium alloys in Table 7.5. Stress relief treatments are given in Table 7.6. Table 7.4 HEATTREATMENTOF MAGNESIUMCASTINGALLOYS
Solution treatment Specifications
Composition
MEL ZRE1 BS 2L126 BS 2970 MAG 6 ASTM EZ33A UNS M 12330
Zn2.5 Zr0.6 RE3.5
Ageing
Temperature (~C)
Time (h) quench
-
-
Temperature (~C) 250
Time (h) quench 16 AC
Heat treatment of light alloys
177
Table 7.4 (continued)
Ageing
Solution treatment Temperature Specifications
Composition
MEL RZ5 BS 2L128 BS 2970 MAG 5 ASTM ZE41A UNS M16410
Zn4.2 Zr0.7 REI.3
MEL ZE63A DTD 5045 ASTM ZE63A MELZTI D T D 5005A BS 2970 M A G 8 A S T M I-IZ32A M E L TZ6 D T D 5015A BS 297O M A G 9 A S T M ZH62A UNS M 16620 MEL EQ21A
Zn5.8 Zr0.7 RE2.5
(~
Time (h) quench
Temperature
Time (h) quench
(~ 330 +170-180
2 AC I0-16 AC
140
48 A C
Zn2.2 Zr0.7 Th3.0
315
16 AC
Zn5.5 Zr0.7 Thl.8
330 +170-180
2 AC 10-16 AC
8 WQ
200
12-16 AC
480*
10-72 WQ
Agl.5 ZrO.7 Cu0.07 Nd(RE)2.0
520
Ag2.5 Zr0.6 Nd(RE)2.5
520- 530
4-8 WQ
200
8-16 A C
Ag2.5 Zt0.6 Nd(RE)2.0
520-530
4-8 wQ
200
8-16 A C
AI8.0 Zn0.5 Mn0.3
380-390 410-420
8 AC 16 AC
AI9.0 Zn0.5 Mn0.3 Be0.0015
380-390 410-420
8 AC 16 A C
AI9.0 Zn0.5 Mn0.3 Be0.0015
380-390 410-420
8 AC 16 AC
200
I0 A C
MEL MAG 7 (ST) BS 2970 MAG 7
A17.5/9.5 Zn0.3/1.5 Mn0.15
380- 390 410-420
8 AC 16 AC
MEL MAG 7 (ST&PT)
A17.5/9.5 Zn0.3/l.5 Mn0.15
380-390 410-420
8 AC 16 AC
200
I0 A C
MEL MSR-B DTD 5035A MEL QE22 (MSR) DTD 5055 ASTM QE22A UNS M18220 MEL A8 BS 3L122 BS 2970 MAGI ASTM AZ81A UNS M11818 MEL AZ91 (ST) BS 3L 124 BS 2970 MAG 3 ASTM AZ91C (ST&PT) UNS M11914
Hot WQ
*In hydrogen. Max 490"C. Table 7.S HEAT TREATMENT OF MAGNESIUM W R O U G H T ALLOYS
Specifications
Composition
Form
MEL AZ80 ASTM A Z 8 0 A UNS M11800
A18.5 Zn0.5 Mn0.12
Ex
Solution treatment Temperature Time (h) (*C) quench
Ageing Temperature (*c) . . . . .
F
400
2-4 WQ
~
Time (h) quench . . . .
177
16 A C
177
16-24 A C
continued overleaf
178
Smithells Light Metals Handbook
Table 7.5
(continued)
Specifications
Composition
Form
ASTM HM31A UNS 13310
Th2.5-4.0 Zn0.3 Zr0.4-1.0
Ex
ASTM 60A UNS 16600
Zn5.5
F T6 F T4 F T5
Solution treatment Temperature Time (h) quench (~
Ageing Temperature Time (h) (~ quench 232
500 500
2 WQ 2 WQ -
16 AC
150
24 AC -
-
150
24
AC
Notes: Ex - extrusions, F - forgings, T 4 - solution treated, T5 - c o o l e d and artificially aged, T6 - solution treated and artificially aged, A C - air c o o l , W Q - water quench.
Table 7.6
STRESS RELIEF TREATMENTS FOR WROUGHT MAGNESIUM ALLOYS
Temperature
Time
(~C)
(rain)
Ex&F SH SA
260 204 343
15 60 120
A18.5 Zn0.5 Mn0.12 rain
Ex&F Ex&F*
260 204
15 60
Al3.0 Znl.0 Mn0.3
Ex&F SH SA
260 149 343
15 60 120
Specifications
Composition
MEL AZM ASTM AI61A UNS 11610
AI6.0 Znl.0 Mn0.3
MEL AZ80 ASTM AZS0 UNS ll311 MEL AZ31 ASTM AZ31B UNS 11311
Form
Notes: Ex - extrusions, F - forgings, SH - sheet hard rolled, SA - sheet annealed, * - cooled and artificially aged.
Metal finishing
8
The processes and solutions described in this section are intended to give a general guide to surface finishing procedures. To operate these systems on an industrial scale would normally require recourse to one of the Chemical Supply Houses which retail properietary solutions.
8.1 Cleaning and pickling processes VAPOUR DEGREASING Used to remove excess oil and grease. Components are suspended in a solvent vapour, such as trior tetrachloroethylene. Note: Both vapours are toxic and care should be taken to ensure efficient condensation or extraction of vapours. EMULSION CLEANING An emulsion cleaner suitable for most metals can be prepared by diluting the mixture given below with a mixture of equal parts of white spirit and solvent naphtha. Pine oil Oleic acid Triethanolamine Ethylene glycol-monobutyl ether
62 g 10.8 g 7.2 g 20 g
This is used at room temperature and should be followed by thorough swilling. Table 8.1 ALKALINE CLEANING SOLUTIONS
Metal to be
oz gal- 1
cleaned
All common metals other than aluminium and zinc, but including magnesium
Temperature
Composition of solution
Sodium hydroxide (NaOH) Sodium carbonate (Na2CO3) Tribasic sodium phosphate (Na3PO4.12H20 ) Wetting agent
g1-1
~
~
Remarks
37.5
180-200
80-90
For heavy duty
25.0 1 1 4
6.2 1.5 continued overleaf
180
Smithells Light Metals Handbook
Table 8.1
(continued) Composition of solution
Metal to be cleaned
gl - l
*F
*C
2 4
12.5 25.0
180-200
80-90
For medium duty
2
12.5
2 I ~
12.5
4 4 1 ~
25.0 25.0
180-200
80-90
For light duty
2 4 1 ~
12.5 25.0
180-200
80-90
2
12.5
180-200
80-90
4
25.0
Sodium hydroxide Sodium carbonate Tribasic sodium phosphate Sodium metasilicate (Na2SiO3.5H20) Wetting agent Tribasic sodium phosphate Sodium metasilicate Wetting agent Aluminium and zinc
Tribasic sodium phosphate Sodium metasilicate Wetting agent
Most common metals
Sodium carbonate Tribasic sodium phosphate
Sodium carbonate Sodium hydroxide Tribasic sodium phosphate Sodium cyanide (NaCN) Sodium metasilicate Wetting agent
Table 8.2
Metal to be pickled Aluminium (wrought)
Aluminium (cast and wrought)
Remarks
0.75
0.75
0.75
1
Wetting agent
Most common metals
Temperature
oz gal- 1
Article to be cleaned may be made cathode or anode or both alternately
1.5
6 1
37.5 6.25
2
12.5
2 1 1 8
12.5 6.25
Electrolytic cleaner, 6 V Current density 100/A ft-2 (10/A dm -2)
Room
Room
May be used electrolytically
0.75
PICKLINGSOLUTIONS
Temperature
Composition of solution oz gal- I
~
~
Remarks
56
104-176
40-80
1 gal 1 gal
11 11
Room
Room
Articles dipped until they gas freely, then swilled, and dipped in nitric acid 1 part by vol. to 1 of water (room temperature) Articles first cleaned in solvent degreaser. Use polythene or PVC tanks
8 gal
81
For etching Sodium hydroxide (NaOH)
Nitric acid, s.g. 1.42 Hydrofluoric acid (52%) Water
gl-I
Metal finishing Table 8.2
181
(continued) Composition of solution
Metal to be pickled
Temperature
oz gal- l
gl-t
~
~
0.84 oz 0.72 oz 0.68 oz 0.04 oz 4.8 oz 1 gal
5.2 g 4.5 g 4.2 g 0.25 g 30 ml 11
195
90
Immerse for 11 min. Solution has limited life. AR chemicals and deionized or distilled water should be used
8.4 gal 0.6 gal
9.41 0.61
195
90
Immerse for several rain. Agitate work and solution. Good ventilation necessary. Addition of acetic acid
1 6 - 32
100-200
Up to b.p.
Up to b.p,
For removal of oxide films, corrosion products, etc. Should not be used on oily or painted material
Room
Room
Should be used on rough castings or heavy sheet only. Removes approx. 0.002 in. in 20-30 s
Remarks
Bright dip Chromic acid Ammonium bifluoride Cane syrup Copper nitrate Nitric acid (s.g. 1.4) Water (distilled) to Aluminium and other nonferrous metals
Bright dip
Magnesium and magnesium alloys
General cleaner
Phosphoric acid (s.g. 1.69) Nitric acid (s.g. 1.37)
Chromic acid
Sulphuric acid pickle Sulphuric acid*
3%
Nitro-sulphuric pickle Nitric acid Sulphuric acid*
8% 2%
-
Room
Room
23 4 I 8
150 25 3
Room
Room
Chromic acid Concentrated nitric acid (70%) Hydrofluoric acid (50%)
37 89 3~
235 20
Room
Room
1
6.2
Acetic acid
8 approx,
50 approx.
Room
Room
Special purpose pickles
Citric acM
8 approx,
50 approx.
Room
Room
Special purpose pickles
Bright pickle for wrought products Chromic acid Sodium nitrate Calcium or magnesium fluoride
Lustrous appearance. Involves metal removal
Bright pickle for castings
/Vote: It is almost universal practice to use an inhibitor in the pickling bath. This ensures dissolution of the scale with practically no attack on the metal. Inhibitors are usually of the long chain amine type and often proprietary materials. Examples are Galvene and Stannine made by ICI.
00
8.2 Anodizing and plating processes
N
Table 8.3 ANODIZING PROCESSES FOR ALUhNNNM Good ventilation above the bath and agitation of thc bath is advisable in all ~~~
c~ses.
~
Composition of solution
Chromic acid (CrOj), chloride content must not exceed 0.2 gl-I sulphate less than 0.5 gl-' (After Bengough- Stuart)
Temperature
ozgal-I
gl-I
"F
"C
5-16
30-100
103-108
38 42
Current density ?Xllpfi-2 (A dm-')
Cunent controlled by voltage. Average 3-4 (0.3-0.4) d.c.
F
glTime and voltage
Cathodes
tl-lomin
Tank or
0-4ov inneased in steps of 5 V 5-35 min
stainless steel
Vat
Steel (exhausted)
Hangers
Remarks
Pure aluminium or titanium
Slight agitation is required This process cannotbeused with alloys coniaining more than 5% copper
Maintain at
40 V 3-5 min InCreaSe gradually to 50 V 4-5 min
Maintain at 50 V Sulphuric acid (s.g. 1.84)
32
200
60-75
15-24
Hard anodizing Hardas process Sulphuric acid
32
200
23-41
-55
Eloxal GX process Oxalic acid
12.8
(COOH)2.2H20
80
I0
20
+
10-20 (1-2) d.c.
12-18 V 20-40 min
25-40
40-120
v
Aluminium or lead plates (tank if lead lined) Lead
Lead lined steel
Pure aluminium or titanium
Lead lied steel
Aluminium or titanium
Vat lining
Lead lined steel
Aluminium or titanium
(2.5-40) d.c.
10-20
50 V
(1 -2) d.c.
30-60 min
The current must not exceed 0.2 Al-1 of electrolyte Agitation required. Gives coating 1-3 thou. thick Oxalic acid processes are more expensive than sulphuric acid anodizing: but coatings are thicker and are co1ound
.
.. 5
i ; b-
2
B Q
Eloml WXprocess Oxalic acid Integral colour Anodizing Kalcolor process Sdphuric acid Sdphosalicylic acid
12.8
80
75-95
25-35
0.8
5
12
22
16
100
20-30 (2-3) ac. 30 (3) d.c.
20-60 v 40-60 min 25-60 v 20-45 min
Vat lining
Lead lined steel
Aluminium or
Lead
Lead lined steel
Aluminium or titanium
titanium Aluminium level in solution must be maintained between 1.5
and 3 gl-' tFwiod accading to d e w of pmteaim complete cycle normauy 40 min.
E
Table 8.4 ANODIZING PROCESSES FOR MAGNESIUM ALLOYS Composition of solution
RAE process Potassium hydroxide Aluminium Potassium fluoride Trisodium phosphate Potassium manganate Dow 17 process Ammonium bifluoride Sodium dichromate Phosphoric acid 85% H3W4 Cr 22 process Chromic acid Hydrofluoric acid (50%) Phosphoric acid H3W4 !85%) Ammonia solution MEL process Fluoride anodize AmmoNum
bifluoride
ozgal-'
g 1-1
19.2
120
1.7 5.5 5.5
10.4 34 34
3.2
20
39
232
16
100
14
88
4 13.5
25 25 84
25-30
160-180
16
100
4
Temperature
Current density
F
A ft-2 (Adm-')
Time and voltage
12-15 (1.2-1.5)
90 min at 85 V
<95
C
<35
approx. a.c. preferred
Cathodes
Hangers
Mild steel or rubber lined
Mild steel or rubber lined
Mg alloy
Matt dark green, corrosion resistant, 25 pn thick appmx., abrasion resistant
Mild steel
Mg alloy
Matt dark green, corrosion resistant, 25 pm thick approx.
Rubber lined
Mg alloy
Principally a cleaning process to improve corrosive resistance by dissolving or ejecting cathodic panicles from the surface
5-50 (0.5-5)
10- 100 min up Mg alloy for to 110 V a.c. or a.c. Mg or steel d.c. for d.c.
165-205 75-95
15 (1.5)
12 min 380V a.c.
4 6
5-100 (0.5-10)
30 min 120 V ac. pferred
-
Mg alloy for a.c. Mg or steel for d.c.
Mg alloy
Remarks
Mg alloy for &c. Mg or steel if d.c. used
160-180 70-85
<30
Vat
Matt hard, brittle, corrosion resistant, dark brown 25-50 lun thick, abrasion resistant
g z
i32
s
Metal jinishing
8.3
185
Plating processes for magnesium alloys
DOW PROCESS (H. K. DELONG) This process depends on the formation of a zinc immersion coat in a bath of the following composition:
Concentration Component Tetrasodium pyrophosphate Zinc sulphate Potassium fluoride
oz gal- 1
g 1- l
16 5.3 1.0
120 40 7
The treatment time is 3 - 5 min at a temperature of 175-185F (80-85~ The pH of the bath should be 10-10.4. The steps of the complete process are: 1. 2. 3. 4. 5.
with mild agitation.
Solvent or vapour degreasing. Hot caustic soda clean or cathodic cleaning in alkaline cleaner. Pickle ~ - 1 89min in 1% hydrochloric acid and rinse. Zinc immersion bath as above without drying off from the rinse. Cold rinse and immediately apply copper strike as under.
Concentration Component Copper cyanide Potassium cyanide Potassium carbonate Potassium hydroxide Potassium fluoride Free cyanide pH Temperature
oz gal- l 4.2 7.4 2.4 1.2 4.8 1.2 12.8-13.2 140~ (60 ~
g 1-1 26 46 15 7.5 30 7.5
CONDITIONS 30-40 Aft -2 (3-4 Adm -2) for 89 min, reducing to 15-20 Aft -2 (1.5-2 Adm -2) for 5 min or longer. If required, the copper thickness from the above strike can be built up in the usual alkaline or proprietary bright plating baths. Following the above steps, further plating may be carried out in conventional electroplating baths. ELECTROLESS PLATING ON MAGNESIUM Deposits of a compound of nickel and phosphorus can be obtained on magnesium alloy components by direct immersion in baths of suitable compositions. Details of the process may be obtained from the inventors. The Dow Chemical Co. Inc., Midland, Michigan, USA. 'GAS PLATING' OF MAGNESIUM (VAPOUR PLATING) Deposits of various metals on magnesium components (as on other metals) can be produced by heating the article in an atmosphere of a carbonyl or hydride of the metal in question.
9
Superplasticity of light metal alloys
Superplasticity is the name given to the ability of a material to sustain extremely large deformations at low flow stresses at a temperature around half the melting point expressed in Kelvin. It is only found in metals and alloys, which have, and can maintain during forming, a very fine grain structure. A parameter which indicates the degree of superplasticity is the strain rate sensitivity m, given by the high temperature flow equation: o = Kb m, o is the stress for plastic flow, ~ the applied strain rate and K is a constant. Superplastic materials have m values normally between 0.4 and 0.6, while most other metals and alloys at elevated temperatures have m values of 0.2; viscous materials (e.g. glass) behave like a Newtonian fluid and have m values of 1. A full discussion of the mechanism of superplasticity, including methods for determining m, can be found in K. A. Padmanabhan and G. J. Davies, 'Superplasticity', Berlin, Springer-Verlag, 1980. The tables in this chapter give alloy systems with the temperature range over which they show superplasticity, the maximum possible percentage elongation, and the m value. The values of about 10 -4 quoted under remarks are preferred strain rates.
Table 9.1 NON-FERROUS-SYSTEMS(LIGHTMETALALLOY)
Temperature range ~
Maximum elongation %
m
AI (commercial) A1-7.6Ca AI-7.6Ca
380- 580 400-600 ~
6 000 850 570
0.2 0.78 0.32
AI-5Ca-5Zn AI - 17Cu AI- 32:74Cu
450 400- 520 ~510
600 > 160
0.35 0.7
AI- 33Cu AI-6Cu-0.5Zr AI - 2.59Cu - 2.26Li - 0.16Zr(2090)
380- 520 400-500 450- 480
1 150 2000 1800
0.9 0.5 -
AI- 4.40Cu-0.70Mg-0.80Si0.75Mn(2014) + 15%SIC
450- 480
160
0.4
A I - 2 5 - 33Cu-7-11Mg AI-Ga-Ti AI-4Ge AI- 2.4Li- 2.0Cu-0.70Mg0.08Zr(8091 AI-2.5Li- 1.2Cu-0.6Mgo.Izr(8O90)
420-480 RT 400-500 490- 550
>600 230 1350
0.72 0.3 -0.5 0.6
520-530
660-1200
0.65
Alloy system
Remarks
Euratom alloy Optimum 500 ~ at 4.16 • 10-4 Alcan 08050 After 25% pre-deformation at 510~ TI Suprai Optimum 520"C at 5 xl0 -4 Elong% 350% at 5.25 MPa hydrostatic pressure
Optimum 530~ at 10- 3 - 10-4 2-3 mm sheet at 2-5 x 10-4
Superplasticiry of light metal alloys Table 9.1
187
(continued) Maximum
Alloy system
Temperature range ~ ,
AI - 2.4Li - 1.2Cu - 0.60Mg 0.12Zr(8090)
elongation %
m
Remarks 2 mm sheet at 5 x 10 - 4 and 5 - 1 0 micron grain size
J
"-530
> 1 000
0.68
A I - 1.56Mg- 5.6Zn AI-3Mg-6Zn AI-0.93Mg- 10.72Zn-0.42Zr AI-5.8Mg-0.37Zr + others AI-4.89 M g - 1.19Cr
530 340-360 550 520 482-520
5OO 4OO 1 550 >800 >1000
0.7 0.35 0.9 0.6
AI - 8.0Mg- 1.0Li - 0.15Zr AI-5.70Zn-2.30Mg- 1.50Cu0.22Cr(7475) + 15% SiC
3OO 495-515
>1000 97
AI - 5.70Zn - 2.30Mg- 1.50Cu 0.22Cr(7475)
~530
1300
35O-4OO 180
Mg-9Li Mg-9Li
Mg-33AI Mg-9Li
Mg-4.3AI- 3Zn-0.5Mn M g - 30.7Cd Mg-5.5Zn-0.5Zr Mg-0.5Zr Ti (commercial) Ti-4AI-0.2502 Ti-5AI-2.5Sn Ti-6AI-4V Ti - 6 A I - 5Zr- 4Mo- 1Cu- 0.25Si Ti-8Mn Ti - 15Mo Ti- 11Sn-5Zr-2.25AI- l M o 0.25Si
TI BA 480
Optimum 520~ at 1.6 • 10-2 0,43
Elong% 310% at 5.25 MPa hydrostatic pressure Optimum 530 ~ at 2.8 • 10-4
2 100 46O
0,8 0.52
20O
445
0.47
250
310
0.44
Eutectic At 3 x 10-4; 6.1 micron grain size At 1 x 10-3; 7.1 micron grain size At I x 10-4; 14.2 micron grain size Russian MA 15
450 270-310 5OO
250 1000 150
0.6 0.3
ZK 60
90O 950-1 O50 900-1100 750-1000
RC 70
450 1000
0.8 0.6 0.72 0.85
8OO 580-900 580-900 80O
300 140 45O 5OO
Commercial alloy used throughout world IMI 700
0.95 0.6 IMI 679
10
Light metal-matrix composites
Metal-matrix composites are engineered materials comprising reinforceants of high elastic modulus and high strength in a matrix of a more ductile and tougher metal of lower elastic modulus and strength. The metal-matrix composite has a better combination of properties than can be achieved by either component material by itself. The objective of adding the reinforceant is to transfer the load from the matrix to the reinforceant so that the strength and elastic modulus of the composite are increased in proportion to the strength, modulus and volume fraction of the added material. The reinforcement can take one of several forms. The least expensive and most readily available on the market are the particulates. These can be round but are usually irregular particles of ceramics, of which SiC and A1203 are most frequently used. Composites reinforced by particulates are isotropic in properties but do not make best use of the reinforceant. Fine fibres are much more effective though usually more costly to use. Most effective in load transfer are long parallel continuous fibres. Somewhat less effective are short parallel fibres. Long fibres give high axial strength and stiffness, low coefficients of thermal expansion and, in appropriate matrices, high creep strength. These properties are very anisotropic and the composites can be weak and brittle in directions normal to that of the fibres. Where high two-dimensional properties are needed, cross-ply or interwoven fibres can be used. Short or long randomly oriented fibres provide lower efficiencies in strengthening (but are still more effective than particulates). These are most frequently available as SiC whiskers or as short random alumina ('Saffil') fibres or alumino-silicate matts. Long continuous fibres include drawn metallic wires, mono-filaments deposited by CVD or multifilaments made by pyrolysis of polymers. The properties of some typical fibres are compared in Table 10.1. The relative prices are given as a very approximate guide. Because most composites are engineered materials, the matrix and the reinforceant are not in thermodynamic equilibrium and so at a high enough temperature, reaction will occur between them which can degrade the properties of the fibre in particular and reduce strength and more especially fatigue resistance. As many composites are manufactured by infiltration of the liquid metal matrix into the pack of fibres, reaction may occur at this stage. Some typical examples of interaction are listed in Table 10.2. In order to obtain load transfer in service, it is essential to ensure that the reinforceant is fully wetted by the matrix during manufacture. In many cases, this requires that the fibre is coated with a thin interlayer which is compatible with both fibre and matrix. In many cases, this also has the advantage of preventing deleterious inter-diffusion between the two component materials. The data on most coatings are proprietary knowledge. However, it is well known that silicon carbide is used as an interlayer on boron and on carbon fibres to aid wetting by aluminium alloys. The routes for manufacturing composites are still being developed but the most successful and lowest cost so far is by mixing particulates in molten metal and casting to either foundry ingot or as billets for extrusion or rolling. This is applied commercially to aluminium alloy composites. Another practicable route is co-spraying in which SiC particles are injected into an atomized stream of aluminium alloy and both are collected on a substrate as a co-deposited billet which can then be processed conventionally. This is a development of the Osprey process and can be applied more widely to aluminium and other alloys. Other routes involve the infiltration of molten metal into fibre pre-forms of the required shape often contained within a mould to ensure the correct final shape. This can be done by squeeze casting or by infiltrating semi-solid alloys to minimize interaction between the fibre and metal. Fibres can also be drawn through a melt to coat them and then be consolidated by hot-pressing.
Table 10.1
PROPERTIESOF REINFORCING FIBRES AT ROOM TEMPERATLTRE
Fibre
Sic Sic Sic -4203
-4203 C(high modulus) C(med. suength)
Diameter
Density gcm-3
Form
Preparorion route
Irm
Cont. montAlament Conr multi-filament Whisker (random, short) Multi-filament Random short fibres Conr multi-filament Con&multi-filament
chemical V a p M l r depos.
150 10-15 0.1-2.0 15-25 2-4 10
Polymer fibre pyrolysis Polymer fibre pyrolysis Oxide/salt film pyrolysis Polymer fibre pyrolysis Polymer fibre pyrolysis
8
3.4
2.6 3.2 3.9 3.5 2.0 1.9
Fracture stress MF'a 3800 2 500 10000 1 500 2000 3000 4 200
Elastic modillus
GPa 450 200 700 380 300
600 300
Coejjkienr of thermal expansion K-' x 106 4.5 4.5 45 7.o 7.0 0 0
Price relative to glassfibre 500 100 150 100
25 loo0 100
B3
190
Smithells Light Metals Handbook
Table 10.2 TYPICALINTERACTIONSIN SOME FIBRE-MATRIXSYSTEMS
System
Potential interaction
AI-C
Formation of Ai4C 3 at interface. Degradation of C fibre properties.
AI-AI203
No significant reaction at normal fabrication temperatures
Al-oxide (A1203-SiO3-B203) AI-B
B203 reacts with Al to form hordes.
AI/Li-AI203
Inteffacial layer of LiAlsO 8 on liquid infiltration.
AI-SiC
No significant reaction below melting point.
Boride formation; interlayer of SiC needed.
AI4C3 and Si can form in liquid Al.
Temperature of signijicant interaction ~ 550 --'495
770 500 ~650 m.p. 660 >700 500
Mg(AZ91)-C
Formation of iron aluminides. No significant reaction at m.p. of alloy provided O and N avoided during infiltration.
Ti-B
Formation of TiB 2.
750
Ti-SiC
Formation of TiC, TiSi 2 and TisSi 3.
700
Al-steei
T.Mt 103 MECHANICAL PROpEKllEs OF ALUMINIUM ALLOY COMPOSITES AT ROOM
Blue Alloy
NOnIiMl composiition
6061
Mg Si
cu Cr
2014A
cu
Mg Si
Mn 2219 2618
8090
% pamculate
Exbusion
T6
Nil 10% A 2 0 3 15% A 2 0 3
20% A203 13% S i c 20%Sic
4.4 0.7 0.8 0.75
T6
T6 T6
6.0 Mn 0.3 V 0.1 c11 20 M&! I5 Si 0.9 Fe 0.9
zn cu Cr
Li
cu
Mg
zr
30% Si Nil 10% 4 2 %
15% A 2 0 3
cu
N l
7075
1.o
0.6 0.2 0.25
Form
Hrot trramunt
20%4 2 % 10% S i c 8.2% S ic
Nil
02% proof mss
MPa
276 297
317 359 317 440 570 414 483 476 483 457 448 290
T6 T6 T6
-10% S ic
13% S ic
359 359 3% 320 333
T6
Nil
617
15% 4 2 0 3
20% A1203
Nil
Tensile smss MPa
Elongmon
310 338 359 319 356 585 795 483 517
20.0 7.6 5.4 2.1 4.9 4.0 2.0 13.0 3.3 23
%
Elastic
Frnnvrr
modvlvr
toughness mm-l/2
GW
69.9 81.4 87.6 98.6 895
22
1.5 02 25
1.3 0.95 0.1
Extrusion ( I 8 nun)
T6 T6
12% S ic
Nil
12% Sic
597
480 486
-
6.0
120.0 140.0 73.I 84.I 91.7 101.4 91.2 825 73.1 88.3 91.7 93.6 75.0 89.0
659 646
11.3 26
922
-
550
5.0
795 100.1
-
503 503 508
516 414 428 421 468 400 450
0.9
1.8 45 10.0 3.8 3.1 3.3
-
1.o
5.6
29.7 24.1 22 21.5 17.9
529
2.6
71.1
25.3 18.0 18.8
-
17.7
-
28.9
Density gcm-3
192
Smithells Light Metals Handbook
Table 10.4
MECHANICALPROPERTIES OF ALUMINIUMALLOY COMPOSITES AT ELEVATEDTEMPERATURES
Base Alloy
Nominal composition
6061
Mg Si Cu Cr
1.0 0.6 0.2 0.25
2014A
Cu Mg Si Mn
4.4 0.7 0.8 0.75
Heat treatment
% particulate
Extrusion
T6
15% 15% 15% 15% 15% 15% 15%
Extrusion
T6
15% 15% 15% 15% 15% 15% 15%
Form
0.2% proof Temperature stress
Tensile strength
*C
MPa
MPa
AI203 AI20 3 AI20 3 AI20 3 AI20 3 AI20 3 AI20 3
22 93 150 204 260 316 371
317 290 269 241 172 110 62
359 331 303 262 179 117 69
A1203 AI203 A1203 A1203 AI20 3 AI20 3 A1203
22 93 150 204 260 316 371
476(413) 455(393) 407(352) 317(283) 200(159) 103(62) 55(35)
503(483) 490(434) 434(379) 338(310) 214(172) 110(76) 55(41)
Figures in parentheses are for basic alloy without paniculate. Table 10.5
MECHANICALPROPERTIES OF MAGNESIUM ALLOY COMPOSITES AT ROOM TEMPERATURE
Base Alloy ZK60A
Nominal composition Mg-5.5Zn-0.5Zr
% reinforcement
%
GPa
260
325
15.0
44
330 370 450 405
420 455 570 .490
4.7 3.9 2.0 2.0
68 74 83 83
80
8.0
-
12% AI203 (fibre)
200
3.5
-
24% Al203(fibre)
280
2.0
-
75
10,0
45
338
0.8
112
Nil
Squeeze infiltration Squeeze
Elastic modulus
MPa
15% 20% 15% 20% M g - 12Li
Tensile strength Elongation
MPa
Form Extruded rod
0.2% proof stress
SiC(partic.) SiC(panic.) SiC(whisker) B4C(partic.)
Nil
infiltration
Squeeze infiltration
Extruded rod Extruded rod
Table 10.6
Base Alloy Ti-6AI-4V
Nil 20% SiC(whisker)
MECHANICALPROPERTIES OF TITANIUMALLOY COMPOSITES
Form Forging
% particulate 10% TiC 10% TiC 10% TiC 10% TiC 10% B4C
0.2% Temperature proof stress *C 21 427 538 649 21
Figures in parentheses are for basic alloy without paniculate.
MPa 800 476(393) 414(359) 369(221) -
Tensile strength
Elongation
Elastic modulus
MPa
%
GPa
806 524(510) 455(441) 317(310) 1055(890)
1.13 1.70(11.6) 2.40(8.5) 2.90(4.2)
106-120
205
Index
Alkaline cleaning solutions, 179-80 Alloy designation systems, 14-15 Aluminium: anodizing processes, 182- 3 mechanic~il properties, 17, 30, 34 physical properties, 5, 6, 7 Aluminium alloy composites, mechanical properties, 191,192 Aluminium alloys: creep data, 36-8 etching, 164- 7 fatigue strength, 38-9 heat treatment, 173-6 mechanical properties, 30-34, 34-6 metallographic methods, 163- 7 microconstituents, 164 miscellaneous, 76-8 physical properties, 6, 7-9 stabilizing treatment, 173 superplasticity properties, 186- 7 temper designation systems, 15-16, 175 see also cast and wrought aluminium alloys Aluminium-copper alloys, 74-6 Aluminium-silicon alloys, 68-71 Aluminium-silicon-copper alloys, 72-3 Annealing treatment, aluminium alloys, 173 Anodizing processes: aluminium, 182-3 magnesium alloys, 184 Binary diagrams, index, 93-4 Cast aluminium alloys: high strength, 78, 79 mechanical properties, 26-9, 33-4 Cleaning solutions, alkaline, 179-80 Delong, H.K. see Dow (plating) process Dow (plating) process, 185 Electroless plating process, magnesium, 185 Emulsion cleaning process, 179 Etching process: aluminium alloys, 164- 7 electrolytic, 169- 70
magnesium alloys, 168- 71 titanium alloys, 172 Fibre-matrix systems, 188, 190 Finishing processes, 179-85 Gas plating process, magnesium, 185 Gratn-colour etch, 167-8 Hardening treatment, aluminium alloys, 173 Heat treatment: aluminium alloys, 173-6 magnesium alloys, 173-6 Magnesium: electroless plating process, 185 gas plating process, 185 mechanical properties, 40, 44 physical properties, 5, 10-12 Magnesium alloy composites, mechanical properties, 192 Magnesium alloys: anodizing processes, 184 etching, 168-71 fatigue and impact strengths, 50-52 heat treatment of castings, 53, 176-8 heat treatment of wrought alloys, 177-8 high temperature, 46-9 long-term creep resistance, 47-8 mechanical properties, 40-41, 42-3, 44-5 metallographic methods, 168-71 microconstituents, 170 non-metallic inclusions, 170- 71 physical properties, 10-12 plating processes, 185 safety requirements, 176 short-term creep resistance, 49 specifications, 3 stress relief treatments, 178 superplasticity properties, 187 zirconium-free, 80-85 Magnesium-zirconium alloys, 86-92 Metal-matrix composites, 188 Metallography, techniques available, 163
194
Index
Pickling solutions, 180-81 Plating processes, magnesium alloys, 185 Reinforcing fibres, properties, 189 Stabilising treatment, aluminium alloys, 173 Superplasticity properties, 186-7 Temper designation systems, 15-16, 175 Test bar properties, high strength cast aluminium alloys, 79 Titanium: creep properties, 62 fatigue properties, 63-4 Izod impact properties, 66 mechanical properties, 55 physical properties, 5, 13 specifications, 3 Titanium alloy composites, mechanical properties, 192 Titanium alloys: Charpy values, 66 creep properties, 62-3
etching, 172 fatigue properties, 64-5 lzod impact properties, 66 mechanical pm~rties, 56-7 metallographic methods, 171-2 physical properties, 13 specifications, 3-4 superplasticity properties, 187 temperature effect on properties, 59-61 Titanium sheet, temperature effect on properties, 58 Vapour degreasing process, 179 Vapour plating see gas plating process Wrought aluminium alloys: compositional specifications, 14 designation system, 14-15 mechanical properties, 17-26, 30-32, 34-6 physical properties, 7-9 specifications, 2