This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
and, a l l o w i n g t t o vary, t h e Y f o l l o w i n g c a l c u l a t i o n s are e a s i l y checked (v denotes t h e e x t e r i o r norma 1 )
-
1
(%)don
=
r
1
A@dx
n t = -
Note i n (2.3)
that i f
1x1 5 t then t h e E-E
D-D
I
I
E
A@> =
D with
(2.5)
= 1 i n a neighborhood o f
p a i r i n g < A x ( t ) , A p E =
AAx(t)
E
E
I
p x ( t ) and t
-f
=
in a
PE
I
i s computed i n D ).
By Lemma 2.3 below, (2.3) -+
)I
@>
p a i r i n g so t h a t
(i.e.,
t
t
and (2.4)
A x ( t ) belong t o C"(Ei)
;A f l x ( t )
xd p x ( t ) = t
6
imply t h a t the functions for t > 0 with
SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPD TYPE
1.
Theorem 2.1 px(t) (i.e.,
sd!-t
Let T
E
D i be a r b i t r a r y .
Then u:(t)
=
T s a t i s f i e s t h e EPD e q u a t i o n (1.1) w i t h 2m + 1 = n - 1 n 1) and t h e i n i t i a l c o n d i t i o n s um(o) = T w i t h m =
*
-
X
P ( o ) = 0. x Proof:
We r e c a l l t h a t (S,
T) +
*
S
T:
E
I
D
x
I -+
D
I
i s s e p a r a t e l y c o n t i n u o u s so e q u a t i o n ( 1 .l)r e s u l t s i m m e d i a t e l y by
-
d i f f e r e n t i a t i n g (2.5) and u s i n g (2.5) px(t)
-+
6 ( D i r a c measure a t x = 0 ) when t
dt d (px(t) *
T) = ; t AAx(t)
t (F) ( A x ( t ) * AT)
-+
0 as t
*
T = (:)[A6
-+
0.
Evidently
(2.6).
*
0 and we n o t e t h a t
-+
Ax(t)
*
TI = QED
For i n f o r m a t i o n a b o u t d i s t r i b u t i o n s and t h e d f f e r e n t ia t ion o f v e c t o r v a l u e d f u n c t i o n s l e t us r e f e r t o C a r r o l l [141, A. Friedman [Z],
v
Garsoux [l],G e l f a n d - S i l o v [5;
6;
71
H o r v l t h [l],
Nachbin [l],Schwartz [l; 21, Treves [l].
A function f:R
D e f i n i t i o n 2.2
E, E a general l o c a l l y
-+
I
I
convex space, has a s c a l a r d e r i v a t i v e f s ( t )E (E )
d
-df t( * ) ,
I
I
I
e > =
b r a i c dual o f F).
I
E
E
I
(F
*
topology o f E then f
if
denotes t h e a l g e -
On t h e o t h e r hand i f d f = f I ( t ) I
*
E
E i n the
i s c a l l e d t h e s t r o n g d e r i v a t i v e o f f.
The f o l l o w i n g lemma i s a s p e c i a l case o f r e s u l t s i n C a r r o l l
[2; 5; 141 and Schwartz [2].
7
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
If f:R
L e m a 2.3
+
E
I
I
has a s c a l a r d e r i v a t i v e f S then f i s
strongly differentiable with f Proof: l i m i t s as t
I
I
= fs.
F i x to and s e t g ( t ) = -t
-
.
f ( t ) f ( to>
-
to
I n discussing
to i t s u f f i c e s t o c o n s i d e r sequences tn +. to s i n c e
any to has a countable fundamental system o f neighborhoods. hypothesis g ( t n )
I
+.
By
Using t h e f a c t t h a t E i s a
f s ( t o weakly. )
Monte1 space and a v e r s i o n o f t h e Banach-Steinhaus theorem ( c f . C a r r o l l [14])
i t follows t h a t g(tn)
I
+.
f;(to) s t r o n g l y i n E ' so
I
t h a t f s ( t o )= f ( t o ) . Remark 2.4
QED
A g r e a t deal o f i n f o r m a t i o n i s a v a i l a b l e r e l a t i n g
" s p h e r i c a l " mean values and d i f f e r e n t i a l equations, b o t h i n Rn and on c e r t a i n Riemannian manifolds.
I n a d d i t i o n t o references
i n c l u d e d i n t h e I n t r o d u c t i o n , Example 1.1,
Remark 1.2,
and work
on GASPT, r e l a t i v e t o such mean values, l e t us mention Asgeirsson
[l],C a r r o l l [l],Fusaro [l], Ghermanesco [l;21, G i n t h e r [l], Helgason [l;2; 3; 4; 5; 6; 7; 8; 9; 10; 111, John [l],O l e v s k i j
[l],P o r i t s k y [l], Walter [2], t h e i r bibliographies.
Weinstein [12],
Willmore [l]and
T h i s w i l l be discussed f u r t h e r i n a L i e
group c o n t e x t i n Chapter 2.
For some r e f e r e n c e s t o complex func-
t i o n t h e o r y and v a r i o u s mean values and measures r e l a t e d t o d i f f e r e n t i a l equations see Zalcman [l;21 and t h e b i b l i o g r a p h i e s there. 1.3
The F o u r i e r method.
We w i l l work w i t h a more general
e q u a t i o n than (1.1) which i n c l u d e s (1.1)
8
as a s p e c i a l case.
Thus
1.
SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPD TYPE
where the aa a r e constant (and r e a l ) and the sum i n (3.1) i s over
a f i n i t e set of mu1 t i - i n d i c e s a transform F:T
A
-+
T = FT:S
Schwartz [ l ] ) and f o r $ A
$ =
1
fm
-m
I -+
E
S
I
= (a1
. . ., a n ) .
The Fourier
i s a topological isomorphism ( c f .
S f o r example we use the form F$
$(XI exp - i<x,y>dx where <x,y>
=
A
n
1 xiyi '
=
Hence in par-
t i c u l a r F(Dk$) = ykF$ = y k $. We r e c a l l a l s o t h a t AxT = A 6 w i t h F6 = 1 and will w r i t e A(y) = F(Ax6.) = 1 aaya = 1 aayl8l a n I t w i l l be assumed t h a t A(y) s a t i s f i e s yn
*
T
...
.
Condition 3.1 IYI >
A(y)
=
1 aaya
i s real w i t h A(y) 2 a > 0 f o r
R o w
In p a r t i c u l a r Condition 3.1 holds when Ax = -A = -1 i 2D 2 -X k 2 1 0; so t h a t F(-A6) = 1 yk = lyI2. I t can a l s o hold f o r c e r t a i n h y p o e l l i p t i c operators A since then IA(y)l
-+
a s IyI
(cf.
-+
Hb'rmander [ l ] ) o r even nonhypoelliptic operators (e.g., A(y) = 2 2 a + y2 + + y n ) . One m i g h t a l s o envision a p a r a l l e l theory
...
when Re A(y) 2 a > 0 f o r IyI > Ro b u t we will not i n v e s t i g a t e t h i s here.
Let us f i r s t consider the problem f o r
on 0 5 t 5 b <
(b arbitrary)
9
~ " ( 0 )
E
C 2 ( S x' )
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
where m
2
-1/2 i s r e a l (complex m w i t h Re m > -1/2 can a l s o be
t r e a t e d b y t h e methods o f t h i s s e c t i o n ) .
Taking F o u r i e r trans-
forms i n x one o b t a i n s (3.4)
ittm + Et i y
(3.5)
w
"m
T;
(0) =
+
im = 0
A(y)
"m
W&O)
0
=
-
and when T = 6 we denote t h e s o l u t i o n o f (3.2)
so t h a t $ ( t )
s a t i s f i e s (3.4)
(3.3)
h
-
by R m ( t )
The e x p r e s s i o n s
(3.5) w i t h T = 1.
R m ( t ) and i m ( tw)i l l be c a l l e d r e s o l v a n t s and one n o t e s t h a t i f
Rm(t)
O;,
E
0;
*
then Rm(t)
3.4).
@ ( t )E OM), w i t h s u i t a b l e d i f f e r e n t i a b i l i t y i n
(i.e.,
T = w m ( t ) s a t i s f i e s (3.2)
-
(3.3)
We r e c a l l h e r e t h a t OM i s t h e space o f
COD
(see Theorem f u n c t i o n s f on
Rn such t h a t Daf i s bounded by a p o l y n o m i a l (depending perhaps on a ) w h i l e f s -+ 0 i n OM whenever gD b
a 6
any a and any g
E
S.
0;
= F-'OM
C SI
+
and i s g i v e n t h e t o p o l o g y
t r a n s p o r t e d by t h e F o u r i e r t r a n s f o r m ( i .e., FT6
-+
mapping S I
Oc
x
S
I -+
-+
S
I
S
I
-+
0 i n Oc
c-f
I t i s known t h a t Oc i s t h e space o f d i s t r i b u t i o n s I
under c o n v o l u t i o n and t h e map (S,T)
+
S
*
T:
i s hypocontinuous.
Now t h e s o l u t i o n o f (3.4) ("R"(t)
T6
I
0 i n OM). I
0 u n i f o r m l y i n IRn f o r
-
A
(3.5) when T = 1 i s g i v e n by
= F(.,t))
10
1.
SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPD TYPE
where z = t
( c f . B. Friedman [ l ] and Rosenbloom [ l ] ) .
i s i n f a c t a function of z2 so t h a t i t i s
observes t h a t $ ( y , t )
m;evidently
not necessary t o define the square root
i s an e n t i r e function of the y k f o r yk by Hartog's theorem Lemma 3.2
One
-
E
R^m(-,t)
E (and hence of y
n
E (I:
cf. Hzrmander [Z]).
The funct on t
+
"m R (-,t):[o,b]
-+
OM i s cont nuous
(m 2 -1/2). i s continuous and one Y knows t h a t on bounded s e t s in OM the topology of O,., coincides with
Clearly t
Proof:
+
$(-,t):[o,b]
+.
E
t h a t induced by E (see Schwartz [2] and r e c a l l t h a t a set B C OM
is bounded i f Daf i s bounded by the same polynomial , depending perhaps on a, f o r a l l f E B ) . Consequently one need only show t h a t each DaR"m ( y , t ) i s bounded by a polynomial i n y , independent of t f o r t
E
[o,b].
W e choose here a straightforward method o f
doing t h i s and refer t o subsequent material f o r another, much more general , technique ( c f . Carroll [5; 81).
T h u s , one knows
t h a t f o r m > -1/2 (cf. Watson [ l ] )
(the case m = -1/2 i s t r i v i a l since z '"5 Writing la1 = a, +
. . . + an and
have from (3.7)
11
-1 / 2 ( z )
=
(2/.rr)'"
c, = 2r(m+l)/JiT r(m
+ -!-)2
cos z). we
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Now f o r IyI > R
0
a
(3.9)
Am
-R ayk
and since A(y) from (3.8) (3.10)
-
(y,t)
we w r i t e
1
a “m 5 7 R (y,t)
= (tL/2m)
ayk
2 a w i t h aA(y)/ayk
= Bk(y) a polynomial we have
(3.9)
I aim(y,t) I ayk
xbcm -lBk(Y)I 4 6
= clBk(Y)I
5 1
2 2 c Bk(Y)
+
A s i m i l a r argument obviously a p p l i e s t o majorize any D RIn( y , t ) f o r a
IyI > Ro by a polynomial i n y n o t depending on t. the power s e r i e s i n (3.6) may be used, since ( y , t ) continuous on the compact s e t ( l y l bound IDaim(y,t,)l
5 Ma.
5 Ro)
x
[o,b],
In Consequently lDaR (y,t)
For I y I 5 -+
Ro
Daim(y,t) i s
t o obtain a
I5
nomial = polynomial i n y, f o r a l l y, independent o f t
HIa E
+ poly[o,b].
QE D Lenma 3.3 t
E
[o,b]
(m
The f u n c t i o n t
-+
^Rm(-,t) belongs t o Cm(O,,)
2 -1/2) and
12
for
1.
SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPD TYPE
Proof:
-
The formulas (3.11)
(3.12) a r e e a s i l y seen t o hold
i n E by u s i n g well-known recursion formulas f o r Bessel functions Y (cf. Watson [ l ] , Carroll [5]). Further we know by Schwartz [3;
? ( * , t ) E Co(OM) f'l C1(E) w i t h t +. iT(*,t)E Co(OEl) % 1 R ( - , t )E C (Old). Using (3.11) and Lemma 3.2 however we
41 t h a t i f t
then t
+.
see t h a t t
+.
+.
"m
Rt(*,t)
Co(OM) and in p a r t i c u l a r (3.11)
E
-
(3.12)
By i t e r a t i o n of this argument i t i s seen t h a t t
hold i n OM.
+.
"Rm(*,t) belongs t o Cm(On). Let T
Theorem 3.4 given by (3.6).
(3.2)
-
A
Then R m ( t )
W e know t
+.
Ah
A
the map (S,T)
+.
ST:OM x S
Using (3.11), t
E
= F
-1 R"m ( * , t )with i'"(y,t)
0; and w m ( t ) = R m ( t )
*
T satisfies
+
i'(*,t)?:[o,b]
+
S I i s continuous since
I
I
i s hypocontinuous ( c f . Schwartz +. S 2m t lAm Rt(-,t)?:[o,b] +. S I i s a l s o con-
From (3.4) i n E we see (using (3.11) again) t h a t t
tinuous. A
RFt(-,t)
S ' and R " ( t )
E
(3.3).
Proof:
[l]).
QED
=
-
A ( * ) [ W ' ( - , t )
which shows e x p l i c i t l y t h a t t Lemma 3.3) and t h a t t
+.
+
+.
A
R m ( = , t ) ] belongs t o Co(OM) 2 im(-,t) E C (OM) on [o,b] ( c f .
$(*,t)? s a t i s f i e s (3.4) in S I .
quently (3.2) holds i n S I and wT(o)
=
Conse-
0 since by (3.11) $(y,o)
=
QED
0.
To deal w i t h uniqueness we make f i r s t a few formal calculat i o n s following Carroll [8; 111; t h i s technique i s somewhat d i f -
ferent than t h a t used i n Carroll [5] b u t by c o n t r a s t i t can be generalized.
Thus f o r o <
T
5 t 5 b < 13
A
m
l e t Rm(y,t,T) and
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
^sm(y,t,-r)
be two l i n e a r l y independent s o l u t i o n s o f (3.4) w i t h
"m R (Y,T,T)
=
"m
"m
1, Rt(y,~,.r) = 0, S ( ~ , T , T ) = 0, and $(y,-r,-~) = 1.
Such (unique) numerical s o l u t i o n s e x i s t s i n c e t h e problem i s nons i n g u l a r on [ ~ , b ] f o r t > 0.
SO
that
^cm
Let
i s a fundamental m a t r i x f o r t h e f i r s t o r d e r system
corresponding t o (3.4)
+
(3.14)
ip =
w r i t t e n i n t h e form A
0; M(y,t) =
As i n Schwartz [3] i t i s e a s i l y shown t h a t
from which f o l l o w s i n p a r t i c u l a r
Given t h a t
^Rm
and
irnhave
s u i t a b l e p r o p e r t i e s ( s t a t e d and v e r i -
f i e d below) i t f o l l o w s t h a t i f
"m with w (T) = mulas (3.18)
A
T and ;"(T) t
-
(3.20)
i s a s o l u t i o n o f (3.4)
= 0 then u s i n g (3.16)
below make sense.
14
-
(3.17)
i n S' the f o r -
SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPD TYPE
1.
- ^m R (y,t,-c)?
t im(t)
-
= i m ( t ) "m R (y,t,T)?
From (3.20) i t then f o l l o w s f o r m a l l y t h a t any s o l u t i o n (3.4) i n S
I
"m with w (T) =
A
T
and
^m
w ~ ( T )=
0
(T
2 of
> 0) must be o f t h e
form i m ( t ) = i m ( y y t y T ) ? . We w i l l now proceed t o j u s t i f y t h i s and t o a t t e n d t o t h e case
T
= 0 as w e l l .
W e remark a l s o t h a t i f one
considers
w i t h i n i t i a l conditions given a t t =
A
T
as a b o v e ( f ( - ) c C o ( S I ) ) then
t h e procedure o f (3.20) f o r m a l l y y i e l d s t h e unique s o l u t i o n as (3.22)
$(t)
= i m ( y y t y T ) ?+ r ? ( y , t , < ) ? ( f ) d < T
We w i l l develop a procedure now which can a l s o be used i n o t h e r s i t u a t i o n s (see S e c t i o n 1.5).
It i s h e l p f u l t o have an ex-
p l i c i t example o f t h e technique however and hence we i n t r o d u c e i t here; i n p a r t i c u l a r t h i s w i l l make t h e considerable d e t a i l s more e a s i l y v i s i b l e and s h o r t e n t h e development l a t e r . 1/2 l e t P ( t ) = exp ( -
r y t
Thus f o r m 2
-
d5) = (t/b)2m+1 so t h a t P ( T ) / P ( t ) =
(-c/t)2m+1 5 1 f o r 0 S T 5 t 5 b and P ( t )
-+
0 as t
-+
0.
L e t us
c o n s i d e r equation (3.4) f o r km(y,t,T) w i t h i n i t i a l data a t
15
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
t = T > 0 as i n (3.13) and then, m u l t i p l y i n g by P ( t ) , we o b t a i n
(3.23)
& (Pi!)
+ PA^Rm = 0
This leads t o t h e i n t e g r a l equation (T 5 5 5 u 5 t), e q u i v a l e n t t o (3.4), w i t h i n i t i a l c o n d i t i o n s a t t = T as i n d i c a t e d ,
and e v i d e n t l y T = 0 i s p e r m i t t e d i n (3.24).
A s o l u t i o n t o (3.24)
i s given f o r m a l l y by the s e r i e s (3.25)
03
“m R (y,t,-c)
=
1
k=O
(-l)kJk
1
( c f . H i l l e [ l ] ) where Jk denotes t h e kth i t e r a t e o f the o p e r a t i o n J and Jo i s t h e i d e n t i t y . (3.26) we have R
Writing
imYp = 1 =
- ^RmYP-’
f
k=O
= (-1)’Jp-1
imYo = 1 and (-l)kJk and i f y
1 E
K C Cny w i t h K
compact, then I A ( y ) I C 5 cK and i n p a r t i c u l a r
5 cKF(t,-c) 5 cKF(t,o) = c K F ( t ) where F ( t , T) i s the double i n t e g r a l i n (3.27) and F(tl) 5 F ( t ) 5 F(b) f o r 0 S t, 5 t i b ( n o t e t h a t F ( t ) = have, using (3.27)
,
16
t2
Continuing we
SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPDTYPE
1.
-
so t h a t
1:
h
Rmy'
-
-1
F(a)
0
,..
2 2 cKF ( t ) / 2 ! s i n c e i f F ( t ) =
Ic 5
($)2m+1dSdo t h e n
F
= F F' w i t h F(o) = F ( o ) = 0.
By
i t e r a t i o n one o b t a i n s
Hence t h e s e r i e s (3.25) [O 5
T
5 t S bl
x
converges a b s o l u t e l y and u n i f o r m l y on
K and s i n c e t h e terms Jp
1 are continuous h
and a n a l y t i c i n y t h e same i s t r u e o f Rm(y,t,-r). It ^m i s c l e a r t h a t R g i v e n by (3.25) s a t i s f i e s (3.24) and we can
i n (y,t,T)
state Lemma 3.5
"m w i t h R (Y,T,T)
The s e r i e s (3.25)
"m
= 1 and Rt(y.~,-r)
The maps (y,t,-c)
+
"m R (y,t,T)
r e p r e s e n t s a s o l u t i o n o f (3.24) = 0 (0
and (y,t,-c)
5
T
-t
5 t 5 b and m > -1/2). "m Rt(y,t,T)
are contin-
"m "m uous n u m e r i c a l f u n c t i o n s w h i l e R ( * , t , ~ ) and Rt(*,t,.r)
are anal-
ytic. Proof: for
ty
E v e r y t h i n g has been p r o v e d f o r
im and t h e
f o l l o w i m m e d i a t e l y upon d i f f e r e n t i a t i n g (3.24)
We examine now ( c f .
(3.24))
17
statements i n t.
QED
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
For
> 0 t h e r e i s o b v i o u s l y no problem i n p r o v i n g c o n t i n u i t y and
T
a n a l y t i c t y as i n Lemma 3.5 so we consider
T
-+
0.
Let
(3.31) Clearly
i s n o t continuous as 2m+l "m t h e r e i s no hope t h a t (y,t,i-) * e t ( y . t , . r ) t,T)
-f
H(t,.r)
i:(y,t,o)
from (3.30)
i s continuous on [o,b]
( y o y o ) equal t o - A ( y 2m o )+. 1m 2m+l "m
7 Rt (y,t,-c)
(3.31), x
(y,t)
<-
T i t
= H(t) =
-+
K w i t h l i m i t as ( y , t )
-+
-+
These p r o p e r t i e s
5 b.
a f t e r d i f f e r e n t i a t i n g (3.24)
i s s a t i s f i e d f o r 0 <-
i n t and equation (3.4)
w i l l be continuous
F u r t h e r from (3.30) y
i s analytic f o r 0
"in are t r a n s p o r t e d t o Rtt(y,t,T)
-
so
(0,O)
-+
We w r i t e H(t,o)
on [O s T 6 t 5 b] x K ( c f . Lemma 3.5).
zoand then c l e a r l y ,
(t,T)
T
<- t
5 b.
twice Summar-
i z i n g we have Lemna 3.6 and (y,t) * and y
*
For [O 5 T 5 t 5 b] t h e maps (y,t)
2m+l "m 7Rt(y,t,T)
"+'
$(y,t,r) t
are continuous w h i l e y
are analytic.
i m ( y y t y T )s a t i s f i e s (3.4)
-f
+
"m Rtt(yytyT)
"m Rtt(y,t,T)
The numerical f u n c t i o n
w i t h i m ( y , ~ , ~ )= 1 and "m R&Y,T,T)
im, assuming t h a t r e p l a c e d by c ) by
Next we w i l l d e r i v e some bounds f o r real.
I f we m u l t i p l y (3.23)
*m
P-'(S)Rg(y.S.r) (3.32)
(with t
and i n t e g r a t e b y p a r t s i t f o l l o w s t h a t
l i ~ ( y y t y T ) 1 +2 2(2m+l)
15t 1 ~ i ~ ( y , ~ , T2 d~ )l T
+ A(y) lkm(y,t,T)
=
18
A(Y)
= 0.
y is
1.
SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPD TYPE
d since dt
"m"m
= 2R Rt and
d dt
lq12
"m"m
= 2RtRtt
( c f . a l s o Section
"m
I n p a r t i c u l a r i f IyI > Ro we can say t h a t I R t ( y y t y T ) / 2 5
1.4).
A(y) and I^Rm(y,tyT)12 5 1. can be bounded on [O 5 ( c f . Lemma 3.5)
"m "m Since I R ( y y t y . r ) l and I R t ( Y y t y T ) l
5 t 5 b]
T
i t follows t h a t
"+'
?$yytyT) t
0
[im(yytyT)12
"m I R t ( y y t y T ) 1 2 5 c2 + A(y) f o r 0 5
t h e term
t o 5 IyI 5 R } b y c o n t i n u i t y
x
T
5 c1 and
5 t 5 b and a l l y.
we r e f e r t o (3.30)
For I y I > R o y I A ( y ) l = A(y) and f o r IyI
-
;R o y
(3.31)
To bound
t o obtain
I A ( y ) I i s bounded;
t h i s leads t o
"m
Lemma 3.7
"m
I R t ( u y t y T ) 1 2 5 c2
0 2 T
<
^m
s a t i s f i e s I R ( y y t y r ) 1 25 cl,
The f u n c t i o n R +
2m+l "m A(y), and F I R t ( y y t y - c ) I 5 c4 + c3 A(y) f o r
t i band all y
E
Rn.
"m L e t us examine now some s i m i l a r p r o p e r t i e s o f S
d i f f e r e n t i a t e (3.24)
in T
= -J
T
T
5 t
<-
I f we =
1)
+ A(y)U(tp)
where f o r m 2 - l / 2 , U ( t y T ) = -[I 2m for 0 5
.
*m t h e r e r e s u l t s ( s i n c e R (y,~,.)
T 2m 3 - (t)
b (note t h a t U ( t y T )
From (3.16) we have then
19
-t
i s continuous i n ( t y T )
-T l o g ( T / t )
as m
+
0).
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
A s o l u t i o n o f (3.35) i s g i v e n
(except perhaps where A(y) = 0).
03
?= 2
(3.36)
k=O
and t h e terms J k
(-l)kJk
U
U i n (3.36)
IU(t,-c)l 2 (3.26) - (3.29))
analytic i n y with analysis (cf.
a r e continuous i n (y,t,-c) c.
I t f o l l o w s by o u r p r e v i o u s
t h a t t h e s e r i e s i n (3.36)
verges a b s o l u t e l y and u n i f o r m l y on [0
D e f i n i n g now
and
.? by
'c
5 t 5 b] x
conC Cn
K (K
t h i s s e r i e s (whether o r n o t
A(y) = 0) t h e r e r e s u l t s
m( y , t , T )
For m 2 -1/2 th e expression S
Lemma 3.8 by (3.36)
s a t i s f i e s (3.35)
and 3.4);
defined
i t i s continuous i n (y,t,-c)
"m
and a n a l y t i c i n y f o r [0 5 T 5 t 6 b] a l o n g w i t h St (y,t,-c)
for
0 < T 5 t 5 b.
and, f o r T >
0, (3.17)
"m "m One has R = A(y)S (i.e., (3.16)) T "m "m holds w h i l e S (Y,T,T) = 0 w i t h St(y,-c,-c)
= 1; finally
P(y,t,o)
=
Proof:
o
f o r m > -1/2. One notes f i r s t t h a t t h e s e r i e s o b t a i n e d by term"m i n T i s t h e same as A(y)S
wise d i f f e r e n t i a t i o n o f (3.25) where m:
i s give n by (3.36).
Since Jk
(y,t,T)
U = 0 a t t = T for k
2
1 w i t h U(T,T) = 0 i t f o l l o w s t h a t &?(y,-c,~) = 0. On t h e o t h e r "m hand S (y,t,o) = 0 f o r m > -1/2 s i n c e U(t,o) = 0 w h i l e (3.17) holds f o r T > 0 s i n d e
im clearly
m "m ( s i n c e S (y,-c,-c) = 0) ST = UT UT(t,-c)
2m+l
= ,-U(t,-c)
-
-
s a t i s f i e s (3.35)
d J d-c
?=
U
T
1 and hence f o r T > 0
20
-
and hence J
irn But T*
1. SINGULAR PARTIAL DIFFERENTIAL EQUATIONSOF EPD TYPE
( fr om (3.35) and t h e d e f i n i t i o n o f J ) , from which f o l l o w s "m St(y,~,~) = 1 f o r
$.
erties o f
> 0 and t h e c o n t i n u i t y and a n a l y t i c i t y prop-
T
To check (3.4)
one can use (3.17)
t o obtain f o r
T > O
which leads t o (3.4)
upon d i f f e r e n t i a t i o n i n t.
"m
Now ST i s determined by (3.17) and as "m
l i m ST may n o t e x i s t .
T
-+
QED 0 a priori
However l e t us l o o k f i r s t a t m
(3.40)
+s^m(y,t,r)
1 1 where 7 U ( ~ , T ) = $1 t 5 b.
=
-
1 (-l)kJk
k=I)
(c)2m3 2 T
Hence, as i n (3.26)
-
U(.,T)
*.
1
f o r m > 0 and 0 5
(3.29),
There i s l i t t l e hope t h a t (y,t,r)
5 5 5
t h e s e r i e s i n (3.40)
verges u n i f o r m l y and a b s o l u t e l y f o r 0 5 Cn.
T
T
+
5 t 5 b and y
-r1 "mS (y,t,T)
E
con-
K C
w i l l be
I 5 t 5 b ] s i n c e e.g., U(t,-r) i s n o t so T 1 continuous ( n o r i s J -r U(-,T), etc.). We can however l e t T
continuous on [0 S
0 i n (3.40)
T
f o r m > 0 t o obtain f o r t > 0
21
-f
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Consequently from (3.17)
for
Lemma 3.9 "m ST(y,t,o)
while y
+
For m > 0 and m = -1/2 th e 1 "m = -R (y,t,o) i s continuous f o r 2m "m ST(y,t,o) i s a n a l y t i c . F u rth e r ,
l y continuous f o r m
IBq(y,- t , -c)dr
Jci,
sion
2
% -1/2 w i t h S (y,t,B)
f u n c t i o n (y,t)
+
0 5 t 5 b and y "m S (y,t,?)
-
"m
K
E
i s absolute-
S (y,t,a)
=
and f o r 0 5 T 5 t S b and m 2 -1/2 t h e expres-
"m
Ts,(y,t,T)
i s continuous i n (y9t,-c) and a n a l y t i c i n y.
Proof: "m ST(y,t,o)
The c o n t i n u i t y and a n a l y t i c i t y i n d i c a t e d f o r "m and TS,(Y,t,T) f o l l o w immediately from (3.42) and
^m
(3.17). For 0 < ci, 5 B 5 t 5 b t h e formula S (y,t,B) S (y,t,a) = jb: (y ,t,r)d r "m i s obvious and by c o n t i n u i t y one can take l i m i t s as a
+
0.
I n t h e cases -1/2 < m
w i l l have an i n t e g r a b l e s i n g u l a r i t y a t f o r -1/2 < m < 0 and
-
T
5 0 we n o t e t h a t
1 U(t,-c) = 0 since T
QED
log-c f o r m = 0. A
I n o r d e r t o o b t a i n some bounds f o r Sm when
YE
m u l t i p l y (3.17) ( w i t h T re p l a c e d b y . 5 ) by im(y,t,E) d "m 2 -1s I = 2s"m"mS5 one o b ta i n s upon i n t e g r a t i o n d5
22
-
Rn we and s i n c e
1. SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPD TYPE
By Gronwall's lemma ( c f . Section 5 and Carroll [14]) there reA
s u l t s ISm(y,t,-c)12 5 c5 f o r 0 5
5 t <, b and y
T
E
Rn.
Conse-
A
quently by (3.17) and Lemma 3.7 (rS:(y,t,~)( 5 c6 on the same domain. c7
+
Finally from (3.38) we have
liyl 5
1 + bck"IA(y)l
5
c8A(y)* Lemna 3.10
For y
E
Rn and 0
S T i
t i b one has
A
ISm(y,t,r)12 5 c5 and lTiy(y,t,T)l 5 c7 + c8A(Y)*
The function t
Lemma 3.11
t
S b while ( t , T )
[0 5 T 5 t 5 b]
-+
+
Rm
(-,t,T)
J
SSF(=,t,S)
E
2
C (E ) for 0 5 Y and (t,-c)+ "m Rt(-,t,.r) :
E,, a r e continuous.
A
+
"m R
A
+
t
Co(Ey), "m
-+
-,t,T)
E
Similarly 5 ^m S (*,t,S)
E
Am S ( * , t , <E)
2 C (Ey),
C 1( E ) f o r 0
Co(E ), and 5 + R ( - , t , S ) E Y Y 1 s m ( * , t , S ) E C (Ey) and ( t L ) + q ( - , t , S )
E
-+
A
E
S
5
(t,S) r;
Co(E Y ) for
We w i l l i n d i c a t e the proof f o r some sample cases
and the rest follows i n a s i m i l a r manner. 23
To show (t,.c)+
+
t i b
0 < C 0 5 5 5 t 5 b. Proof:
T
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
"m Rt(-,t,.r) continuous w i t h values i n EY 2 while t ^R"(*,t,-r) E C (E ) f o r i n s t a n c e l e t y E KC Wn and Y enclose K i n t h e i n t e r i o r o f a compact p o l y d i s c K C Cn. If a = a a1 and l e t (al, an) w r i t e DO" = (a/ayl) (a/ayn) Y r = aK be t h e d i s t i n g u i s h e d boundary o f K. We have a Cauchy
$(.,t,.-)
and (t,-r)
-+
..
-+
. ....
... . .,
i n t e g r a l formula ( c f . Gunning-Rossi [l]) which leads t o
- Pk,tO,TO)l
P(<,t,T)
Irak!
=o"J, '
nd
ak+l
(Lk-yk)
By u n i f o r m c o n t i n u i t y i n (c,t,-r) (t,T)
-+
(to,To)
"m then R
(<,t,T)
-f
..
on K x [0 5
T
5 t 5 b] i f
"m R (c,to,-cCo)
u n i f o r m l y on
r
and
a"m a% consequently D R (y,t,-c) D R (y,to,To) u n i f o r m l y f o r y E K. I Y Y f o l l o w s t h a t (t,.r) im(*,t,T) E Co(E ). A s i m i l a r argument car Y "m o b v i o u s l y be a p p l i e d t o Rt etc. For d i f f e r e n t i a b i l i t y i n t o f -+
-+
^Rm(*,t,-r)
In
[R (*,t,T)
E
m/ A t = E f o r example one wants t o show t h a t AR Y "m - ?(-,to,T)]/At -+ Rt(-,to,-r) i n EY as A t = t to
-
-+
T h i s means t h a t we must prove t h a t D a ( A i m / A t ) Daim(y,to,r) Y t Y uniformly f o r y E K T h i s may be w r i t t e n (assuming t > tc Rn -+
.
f o r convenience)
B y t by t h e c o n t i n u i t y o f
5
^R"(*,~,T) t 5
Y E K, and hence t
-+
"m R (.,t r )
E E
24
for 1
we can make
IE-t0l
C (Ey).
s(E),
u n i f o r m l y fot
A s i m i l a r argument
SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPD TYPE
1.
"m may be a p p l i e d t o A R t / A t
For 0 5
L e m a 3.12 pointwise o r i n E
Y
of argument Q(*,t,T)
E
C
2
In Rtt,
T
5 t 5 b t h e formula (3.22)
etc.
QED
A
A
with f
E
Co(E ) where t
A
(Ev) w h i l e i n i t i a l c o n d i t i o n s
'
@(*,T,T)
J
A
-+
A
= T(*)
E
A
E and Q t ( = , ~ , ~ =)
0 are stipulated. Y s a r i l y unique b y (3.20).
Proof:
holds
i s r e p l a c e d by any numerical f u n c t i o n Q
if
s a t i s f y i n g (3.21)
(y,t,T)
A
-
P o i n t w i s e f o r (y,t,.r)
Such a f u n c t i o n $I i s neces-
f i x e d everything i s t r i v i a l
"m "m since o u r lemmas concerning p r o p e r t i e s o f R and S make a l l
-
c a l c u l a t i o n s i n (3.18) can l e t 3.8,
T +
(3.20)
legitimate f o r
T
> 0 and one
0 i n t h e r e s u l t i n g formulas ( c f . Lemnas 3.5,
1 "m
3.9 and n o t e t h a t terms - S (y,t,c)@(y,€,,T)
5
h
s i n c e @ s a t i s f i e s (3.21)
with
a r e continuous
l A
To work
@(Y,~,T) continuous).
5
3.6,
A
4
i n E we r e c a l l t h a t (S,T) + ST : x E E i s separately Y Y Y continuous w i t h E a Frechet space and hence t h i s map i s conY tinuous (see Bourbaki [2] and f o r v e c t o r valued i n t e g r a t i o n see Bourbaki [3; 41, C a r r o l l [14]). (3.18)
-
(3.20)
Lemma 3.13
Hence a l l of t h e o p e r a t i o n s i n
make sense i n E Y'
and (3.22) For 0 5
T
+
TS;(*,t,r)
C 1 (OM) w h i l e , f o r 0 <
T
S t 5 b,
Proof:
OED
5 t I. b we have (t,T)
"m Co(OM), ( t , T ) Rt(*,t,T) Em(*,t,.r) E Co(OM), T +
-+
E
Co(OM),
t E
T +
"m
+
R
E
(*,t,T)
Co(OM), Am S (*,t,.c)
"m R (-,t,-c) E
+
and E
T
2 C (OM),
-+
+
.1 R11( - , t , T )
C 1(OM).
Again we w i l l prove t h i s f o r some sample cases t o
25
E
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
i n d i c a t e a procedure which can then be a p p l i e d i n general.
t h e topology o f OM coincides
r e c a l l t h a t on bounded s e t s i n 0,
w i t h t h a t induced by E and t h a t i f t with t
[2;
-+
~ ) ~ ( - , t E) Co(OH) then t
We
+
+.
$(&,t)
+(*,t)
E
E
Co(OM)fl C1(E)
C 1 (OM) ( c f . Schwartz
I n order t o study Da^Rm f o r example Y i n (3.4) and d i f f e r e n t i a t e i n y t o o b t a i n
3; 41 and Lemma 3.3). by
we replace
im
where t h e P ( y ) a r e polynomials and Y
1.1
=
1 "k'
The i n i t i a l
c o n d i t i o n s a r e D"im(y,r,~) = D a ? ( y , ~ , ~ ) = 0 and by Lemma 3.12 Y Y t t h e unique s o l u t i o n o f (3.47) i s given by (3.22) i n the form
where the DYkm may be regarded as known f u n c t i o n s (by an i n Y d u c t i o n procedure). Now, r e f e r r i n g t o Lemmas 3.7 and 3.10, we know Is^m(y,t,S)12 IyI 5
1.1
-
5 c5 and by i n d u c t i o n t h e Dykm(y,E,r)
for Y 1 w i l l be bounded by polynomials i n y independent
(E,T).
Consequently a l l Da?(y,t,r) w i l l be bounded by p o l y Y nomials i n y depending o n l y on a so t h a t i m ( - , t , T ) i s bounded i n
of
OM f o r 0 (t,.c)
+.
5 T S t 5 b and hence from Lemma 3.11 we can say t h a t
"m R (-,t,.r)
E
Co(OM).
F u r t h e r i f one d i f f e r e n t i a t e s (3.48)
i n t there results
26
1.
for
T
SINGULAR PARTIAL DIFFERENTIAL EQUATIONSOF EPD TYPE
5 c7 + c8A(y) f o r 0 5
> 0, w i t h I?$y,t,&)I
T 5
t
s by
from which f o l l o w s t h e d e s i r e d polynomial bound f o r D"@ s i n c e Y t one can l e t T + 0 i n t h e r e s u l t i n g i n e q u a l i t y f o r Y t F i n a l l y we have from (3.49) f o r T > 0
"m s i n c e St(y,t,t)
= 1 w h i l e Stt
"m But Stt
-
0.
"m
= -A(y)@
i s continuous i n (y,t,.c) f o r
T
>
2m+l "m -S and we need o n l y check t t
I
Again t h e r e s u l t i n g e s t i m a t e on ID"^Rm will Y tt Hence D"^Rm can be bounded by polynomials i n Y tt (t,-c) f o r 0 5 T 5 t -< b and consequently t +
h o l d as -c
+
0.
y independent o f
"m R (*,t,.c)
The r e s t f o l l o w s i n a s i m i l a r manner.
E
2 C (OM). QED
We can now prove uniqueness (and w e l l posedness) f o r t h e s o l u t i o n wm(t) = Rm(t)
*
T o f (3.2)
-
(3.3) g i v e n by Theorem 3.4.
As w i l l be seen l a t e r t h e r e a r e q u i c k e r ways t o prove uniqueness when one i s working i n a H i l b e r t o r Banach space b u t i n o r d e r t o study t h e growth o f s o l u t i o n s f o r example i t i s a b s o l u t e l y necessary t o work i n " b i g " spaces such as S
I
I
o r D and f o r t h i s
a more e l a b o r a t e uniqueness technique i s r e q u i r e d , such as we have developed.
I t i s s u f f i c i e n t now t o deal w i t h t h e s o l u t i o n
27
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
= 8(y,t,r)T
p(t,T)
form (3.5)
OM
x S
I
-+
o f (3.4) (3.20)
A
o f (3.4) w i t h i n i t i a l c o n d i t i o n s o f t h e
given a t t = S
I
We r e c a l l t h a t t h e map (.S,T)
T.
i s hypocontinuous and then, g i v e n any s o l u t i o n
C),
( w i t h t replaced by
m u l t i p l y by ?(y,t,<)
t h a t (3.22)
holds i n S
I
.
2
-1/2 and t h a t A(y) = F(Ax6) s a t i s -
2m+l m wm + -wt + Axwm = f tt t
with
E
Co(Sl) and i n i t i a l data wm(,)
( 0 5 T 5 t 5 b) i s given by
wm(t,r)
=
D e f i n i t i o n 3.15 (3.53)
with f(-)
E
Rm(*,t,T)
*
T +
1
t
= T
in S
E
S I and w ' l ] ( ~ )= 0
*
Sm(-,t,g)
T
f ( g ) dg
F o l l o w i n g Schwartz [3] we w i l l say t h a t
C o ( S 1 ) , wm(.)
= T
E
S',
m and w,(T)
u n i f o r m l y w e l l posed i f t h e s o l u t i o n (3.53) I
(3.21)
Hence we have proved
(3.52)
(3.53)
$ of
Then t h e unique s o l u t i o n o f t h e equation
f i e s C o n d i t i o n 3.1.
f(2)
as i n
i s n e c e s s a r i l y o f t h e form $(y,t,T)T.
Assume m
Theorem 3.14
"m
M
A
t o conclude t h a t
The same uniqueness argument works f o r any s o l u t i o n SO
ST :
-+
= 0
is
depends c o n t i n u o u s l y
on (t,-c,T,f). Theorem 3.16
wm(-r) = T
E
S',
The problem (3.52)
and
W;(T)
with f ( * )
E
Co(Sl),
= 0 i s u n i f o r m l y w e l l posed i n S I
w i t h s o l u t i o n (3.53). Proof:
T h i s f o l l o w s by hypocontinuity.
28
QED
1.
SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPD TYPE
Remark 3.17 T
The formulas o f Lemma 3.3 can be composed with
I
A
E
S and a f t e r an inverse Fourier transformation we have
t
(3.54)
wmt ( t ) =
-
(3.55)
wp)
+w 2m m-1 ( t ) - w m ( t ) l
=
These recursion formulas a r e generalizations of formulas f i r s t developed by Weinstein [ l ; 3; 4; 6 ; 8; 9; 10; 11; 16; 181 when Ax = -A
They were systematically exploited by Carroll [2; 51
X’
i n a general existence-uniqueness theory and i t turns out t h a t
they have a group t h e o r e t i c significance (see Chapter 2 ) . 1.4
Connection formulas and p r o p e r t i e s of solutions f o r EPD I
equations i n D and S Ax = -Ax w i t h A(y)
given by (3.6).
=
I
.
Let us return now t o the case when
lyI2 =
1y i
and look a t the resolvant i m ( y , t )
We denote by s u p p S the support o f a d i s t r i b u -
tion S. Lemma 4.1
“m
The resolvant R ( y , t ) = 2mr(m+l)z-mJm(z), z =
t l y l , of (3.6) is an entire function of y type so t h a t R m ( * , t )
E
E:
and s u p p R m ( - , t )
fixed compact set lykl 5 6 f o r 0 2 t
Proof: y
E
any is
The o r d e r
p
S
E
Cn of exponential
i s contained i n a
b.
of an entire function g(y) =
given by (cf. F u k s [ l ] )
29
1 aaya,
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
where la/ =
1 ak and
i f p(g) = 1 w i t h
where
llyllC = 1 l y k l C then
5
Now l o o k i n g a t @(y,t)
y.
g i s s a i d t o be o f exponential type =
1 aZkzzk as
a f u n c t i o n o f one
v a r i a b l e z = t ( y l we have by S t i r l i n g ’ s formula ( c f . Titchmarsh [l])
t h a t p = 1.
“m This means t h a t I R ( y , t ) l
im as a f u n c t i o n
> 0 where B i s the type o f 2 1/2 lYlC = Yk) IC (1 lYk1E)1/2
any
5 6 exp(B+E)lzlC f o r
E
I Bt 5
5
ZlYklC =
Since
o f z.
llyllc
One
has then
Bb = B
The conclusion o f t h e Lemma now f o l l o w s from t h e Paley-WienerSchwartz theorem Theorem 4.2
see Schwartz [l3) I f Ax = - A x ,
then wm(t) = Rm(-,t)
*
2
QED
-1/2
E
E I
DI.
-
(3.3)
E
in
D
I
D’
I
D on (t,T).
By Lemma 4.1 supp Rm(-,t) i s contained i n a f i x e d
compact s e t f o r 0 2 t 5 b so t h a t Rm(.,t)
T
0 5 t 5 b, and T
T i s a s o l u t i o n o f (3.2)
depending continuously i n Proof:
m
.
*
T makes sense f o r
Furthermore t h e s e t {Rm(*,t); 0 i t 6 b} i s bounded i n
(cf. Ehrenpreis [3],
[l]t h a t t h e map (S,T)
Schwartz [ l ] )
*
and one knows by Schwartz
D’ i s hypocontinuous.
T : El
x
DI
To check t h e d i f f e r e n t i a b i l i t y o f t
-+
Rm(.,t)
-+
S
30
-f
i n E l we r e c a l l
SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPD TYPE
1.
t h a t on bounded s e t s i n E
I
t h e topology c o i n c i d e s w i t h t h a t i n -
I
duced by Oc ( c f . Schwartz [l], p. 274, where t h e F o u r i e r t r a n s form i s shown t o e s t a b l i s h a t o p o l o g i c a l isomorphism between E
I
M and n o t e t h a t on s e t s B C Exp OM o f bounded exponen-
and Exp 0
t i a l t y p e t h e topology i s t h a t induced by OM).
The r e s u l t f o l -
QED
lows immediately.
For uniqueness i n Theorem 4.2 we can go t o a d i r e c t express i o n f o r "R"(y,t,r)
d e r i v e d i n C a r r o l l [2;
51 and then f o l l o w
Thus one can w r i t e f o r m
t h e procedure i n v o l v i n g (3.20).
2 -1/2
n o t an i n t e g e r
where t = tm,z1 =
TM, and
y,
=
r(m+l)r(-m)/Z,
while f o r
m 2 -1/2 an i n t e g e r we have
where Nm denotes t h e Neumann f u n c t i o n ( c f . Courant-Hi1 b e r t [Z], Watson [l]).Some a n a l y s i s o f t h e Bessel and Neumann f u n c t i o n s , which we o m i t here (see C a r r o l l [2; L e m a 4.3
Wnen A(y) = I y I
2
31
51 f o r d e t a i l s ) , leads t o
^m t h e r e s o l v a n t s R (y,t,T)
are
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
e n t i r e f u n c t i o n s of bounded e x p o n e n t i a l t y p e f o r 0 5 T 5 t 5 b w i t h {Rm(*,t,=)}
a bounded s e t i n E l .
i s bounded f o r 0 5
6 5
Lemmas 3.5,
we can say t h a t given A(y) = IyIL,
C E l i s bounded f o r 0 5 6 5 t 5 b and c e r t a i n l y 3.6,
3.7,
3.8,
3.9,
3.10,
3.11,
and 3.12 remain v a l i d .
Lemma 3.13 holds w i t h OM r e p l a c e d b y Exp OM = FE
-
we t a k e i n v e r s e F o u r i e r transforms i n (3.18) i n g c o n v o l u t i o n formulas w i l l be v a l i d f o r T Theorem 4.4
E
E
S i m i l a r l y t h e problem (3.52)
D
I
, given
I
c OM
(3.20) D
.
I
*
The s o l u t i o n wm(t) = R m ( - , t )
(3.3) when Ax = -Ax and T
and W:(T)
El
t 5 b.
Using f o r example (3.39) {S"(*,t,S)l
S i m i l a r l y {R:(*,t,S)}C
T
the resultHence we have E
by Theorem 4.2,
w i t h f ( * )E Co(D1),
= 0 i s u n i f o r m l y w e l l posed i n D
I
and if
w"(T)
D I o f (3.2)i s unique. = T
E
D',
w i t h s o l u t i o n given
b y (3.53). Going back now t o t h e r e s o l v a n t e x p l o i t t h e Sonine i n t e g r a
In R (y,t)
i n OM o r Exp OM we
Watson formula ( c f . Rosenbloom [l],
[l]) t o o b t a i n f o r m > p Z -1/2
We n o t e i n passing t h a t f o r m-p i n t e g r a l (4.6) consequence o f t h e r e c u r s i o n r e l a t i o n (3.12)
i s also a d i r e c t (cf. C a r r o l l - S i l v e r
[15; 16; 171, S i l v e r [l])and t h i s w i l l be u t i l i z e d i n Chapter 2 where an e x p l i c i t d e r i v a t i o n i s given; analogous formulas i n 32
1.
SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPD TYPE
o t h e r group s i t u a t i o n s w i l l a l s o be derived.
We r e c a l l n e x t
the formula ( c f . Watson [l])
2 0 an i n t e g e r .
for p
provided m f -1, -2,
T h i s leads t o t h e formula
. . ., -p.
We observe t h a t (4.8)
g i v e s re-
s o l v a n t s f o r va ues o f m < -1/2 and i t should be noted here t h a t
zrnJ-,(z
jm(z) =
-2m+l s a t i s f i e s jm + (T)jm.+
I
jm= 0 so t h a t ( c f .
A
R-m(y,t) = 2-mr(l-m)zmJ-m(z), f o r z = t m and any
(3.6))
nonintegral m
2
A
0, s a t i s f i e s t h e equation R i F + h
( -2m+l 7)Rtm A
A
A(y)"Rm = 0 w i t h i n i t i a l data R-m(y,o)
= 1 and R-m(y,o)
t
=
+ 0.
Now
from (4.8) w i t h n o n i n t e g r a l m < -1/2 we can choose an i n t e g e r p
so t h a t m + p 2 -1/2 and express I Rn i n terms o f d e r i v a t i v e s o f A
RmP,
whose p r o p e r t i e s a r e known from S e c t i o n 1.3.
I n particular
holds i n E and a l s o i n OM o r Exp OM(cf. Lemma 3.13 and t h e Y remarks before Theorem 4.4) so we can s t a t e , r e f e r r i n g t o (3.11), (4.8)
Theorem 4.5 o f t h e form (3.6) "m o f the R f o r m
For n o n i n t e g r a l m < -1/2 r e s o l v a n t s Am R (y,t) obey (4.8)
2 -1/2.
and thus i n h e r i t t h e p r o p e r t i e s
Also (4.6)
holds i n OM o r Exp Or,,.
Taking i n v e r s e F o u r i e r transforms i n (4.6) composing t h e r e s u l t w i t h T
E
S
I
or T
obtain
33
I
E.
and (4.8)
and
D (when Ax = -Ax) we
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
(3.3)
in S
I
2
For m > p
Theorem 4.6
-1/2 t h e (.unique) s o l u t i o n o f (3.2)-
I
(or D ) f o r index m i s g i v e n by
-
where wp s a t i s f i e s (3.2)
(3.3)
i n S I ( o r 0') f o r index p.
-
S i m i l a r l y i f wm+P i s t h e (unique) s o l u t i o n o f (3.2) S
I
in
D ) f o r index m + p 2 -1/2 ( p an i n t e g e r ) then
(or
-
i s a s o l u t i o n o f (3.2)
m
(3.3)
I
+
-1,
. . ., -p.
Remark 4.7
(3.3)
in S
I
(or
I
D ) f o r index m provided
Formulas o f t h e form (4.9)
discovered by Weinstein ( l o c . c i t . ) , u s i n g d i f f e r e n t methods.
I n p a r t i c u l a r Weinstein observed t h a t
w i t h i n d e x m.
(3.54)
, leads
(4.9)
involves p = n
t o (4.10)
of descent (see e.g.,
-+
w"(t)
=
Weinstein's v e r s i o n o f
1 and i s o b t a i n e d by a g e n e r a l i z e d method
Weinstein [3]).
We n o t e a l s o here t h a t
t h e r e i s no uniqueness theorem f o r s o l u t i o n s o f (3.2) when m < -1/2 s i n c e ifm = - s (s>1/2) then t s a t i s f i e s (3.2)
-f
- (3.3)
um(t) = t
2s s w (t)
f o r i n d e x m w i t h um(o) = uF(o) = 0; here ws i s
t h e s o l u t i o n o f (3.2) Remark 4.8
t-2"CI-m(t)
This fact, plus a version o f
f o r example.
-
(4.10) were f i r s t
i n a classical setting,
i f w - ~s a t i s f i e s (3.2) w i t h i n d e x -m then t s a t i s f i e s (3.2)
-
-
(3.3)
f o r index s.
The e x c e p t i o n a l cases m = -1, -2,
34
. . . have
1.
SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPD TYPE
been t r e a t e d by Blum [l;23, Diaz-Weinberger [Z],
[lo],
Diaz-Martin
B. Friedman [l], M a r t i n [l],and Weinstein (.loc. c i t . )
we r e f e r t o these papers f o r d e t a i l s .
and
Here f o r m = -p w i t h p 2
1 an i n t e g e r we may t a k e
h
( c f . B. Friedman [ l ] ) . (3.5)
T h i s r e s o l v a n t R-p s a t i s f i e s (3.4)
f o r i n d e x m = -p w i t h T = 1 and one may w r i t e m
(4.12)
zpNp(z) =
1
k=O
ckzZk + zZp l o g z
^R'p
Consequently t h e 2pth d e r i v a t i v e o f mic s i n g u l a r i t y a t t = 0. (4.13)
-
h
w-P(t)
= R-P(-,t)
m.."
1
k=O
ckz
2k
i n t w i l l have a l o g a r i t h -
However, w r i t i n g f o r m a l l y
*
m
T
=
1
k=O
cktZk(AxS
T! we see t h a t t h e l o g a r i t h m i c term varnishes i f A
*
T)
= 0, i n which
event w - ~w i l l depend smoothly on t. We n o t e t h a t i f one takes p = 1 i n (4.8),
Remark 4.9
m r e p l a c e d by m
-
with
1, t h e r e s u l t i s e x a c t l y (3.12).
We w i l l now discuss some growth and c o n v e x i t y theorems f o r s o l u t i o n s o f (3.2)
-
(3.3)
when Ax = -Ax.
f i r s t discovered by Weinstein [9;
Such r e s u l t s were
10; 151 i n a c l a s s i c a l s e t t i n g
and subsequently g e n e r a l i z e d and improved i n c e r t a i n d i r e c t i o n s by C a r r o l l [l;2; 51 i n a d i s t r i b u t i o n framework; we w i l l f o l l o w
35
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
(Other k i n d s o f growth and c o n v e x i t y
t h e l a t t e r approach.
theorems f o r s i n g u l a r Cauchy problems were developed by C a r r o l l [18; 19; 251 and w i l l be t r e a t e d l a t e r . )
R e f e r r i n g t o (4.6),
t h e b a s i c f a c t one r e q u i r e s f o r these theorems i s t h a t Rp(*,n)
2 0 f o r some p
2 -1/2 (i.e.,
Rp(-,n)
measure), i n which case a l l Rm(-,t)
should be a p o s i t i v e
2 0 f o r m 2 p.
For general
Ax n o t t o o much i s known i n t h i s d i r e c t i o n b u t when Ax f o l l o w s from S e c t i o n 2 t h a t Rn/'-'(=,n)
=
ux(n) 2 0.
Another
case o f i n t e r e s t i n v o l v e s t h e metaharmonic o p e r a t o r Ax = -A m n where R ( - , n ) L 0 f o r m > 7 r = (1~:)"~
-
Indeed f o r m >
1.
X
-
2 a
1 and
5 t one has (see C a r r o l l [5] and c f . O s s i c i n i [ l ] )
- r ( m + l ) ( t 2 -r2 ) m-n/2 ITn/2
while
n 7 -
it
= -Ax
p(*,t)= 0
for
Irl
t2m
m
1
k=O 2
2k [a2$-r2) Ik2 0 k! r(m-$+k+l)
2 t; i n p a r t i c u l a r then R m ( * , t )
E
El.
Now, general theorems o f growth and c o n v e x i t y i n v o l v i n g ask sumptions o f t h e form (-Ax) T
;1
0 were developed i n C a r r o l l [2;
51 u s i n g t h e n o t i o n s o f value and s e c t i o n o f a d i s t r i b u t i o n i n troduced by L o j a s i e w i c z [l].T h i s can be s i m p l i f i e d somewhat i n d e a l i n g w i t h Ax = -A
X
s i n c e AT
2
0 i m p l i e s t h a t T i s an almost
subharmonic f u n c t i o n . (see Schwartz [l]) and hence T a u t o m a t i c a l l y has a "value" almost everywhere (a.e.).
We r e c a l l b r i e f l y some
n o t a t i o n s and r e s u t s o f Lojas ewicz [l].
36
1.
SINGULAR PARTIAL DIFFERENTIAL EQUATIONSOF EPD TYPE
A d i s t r i b u t i o n T i s s a i d t o have t h e value
D e f i n i t i o n 4.10 c at x
'$r+]>
i f l i m Tx +xx = c as X c:
for $
E
-+
+
0
D with
(i.e.,
=
I
0
Q ( x ) d x = 1 ) ; when T i s a
p o s i t i v e measure t h e n o t i o n o f value c o i n c i d e s w i t h t h a t o f denOne may f i x x
i n a distribution T i f l i m Tx = x,t 0 + o f T. St E D as X -+ 0 and S t i s s a i d t o be t h e s e c t i o n T xo ,t Thus one must have
I
0
1
I
I t i s proved i n L o j a s i e w i c z [l]t h a t i f
Remark 4.11
1X , t
i n x we may f i x x = xo and t h e s e c t i o n
i s a measure then a.e.
I
F u r t h e r i f xo may be f i x e d f o r T l x o ,t t' x,t then xo may be f i x e d f o r ( a / a t ) T and (a/at)Tx,t I x ,t = X ,t i s a measure i n D
0
a/atTx ,t' 0
For t h e f o l l o w i n g theorems see C a r r o l l [5]. Theorem 4.12 o f (3.2)
-
(3.3)
f y i n g AT
2
0.
L e t w:(t)
= Rm(*,t)
f o r Ax = -Ax w i t h m 2
Then a.e.
*
T
$-
i n x the section t
decreasing f u n c t i o n of t w i t h wm ( t ) > Tx ' xO
n
Proof:
Using (3.11) (2.5)
Let m >
n
2-
1 and s e t p -
E
D 1 be t h e s o l u t i o n X
1 and T -+
w!
A
E
D' s a t i s -
( t ) i s a non0
0
-2
1 i n (4.6) t o o b t a i n
(transformed) and composing w i t h T we have ( c f .
where Rn"(*,t)
= Ax(t))
37
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
i n two v a r i a b l e s Now we may consider w m ( t ) as a d i s t r i b u t i o n wm x,t I 1 I I a l g e b r a i c a l l y and t o p o l o g i c a l l y w i t h Et(Dx) (since Dt(Dx) = D x,t C Di(D;) - cf. Schwartz [5]) and here one may extend u x ( t ) I
.
I
and A x ( t ) as even f u n c t i o n s o f t f o r t < 0. I n Dx one has t wm(t) - T = wT(r)dr which, by (4.16) w i t h AT 2 0, i s a p o s i t i v e
I
measure f o r t
wm
-
0
L
0.
."
Writing T = T
It i n D
x
Y
-
I
X
,t
i t follows that
T w i l l be a p o s i t i v e measure i n D f o r t L 0 and hence x,t m we can f i x x = x a.e. i n x f o r w and T together (cf. Remark 0 x,t 4.11 and r e c a l l t h a t T i s an almost subharmonic f u n c t i o n ) . For X,t
m such xo, (a/at)wx ,t = ( ~ y ) by ~ Remark ~ , ~ 4.11,
and, by (4.6),
0
m > 0 f o r t 2 0. Hence t + w; ,t = w ( t ) w i l l be a t X0,t xO 0 nondecreasing f u n c t i o n f o r t 2 0 o f bounded v a r i a t i o n (cf. (W")
We conclude t h a t w: Schwartz [l]). s p e l l t h i s o u t l e t (p
E
Dx, (p
z
ro
,t Z Txo f o r t 2 0 and t o
0, J i ( x ) d x = 1 and s e t $ , ( E )
(cf. D e f i n i t i o n 4.10).
Then from (4.16)
=
the contin-
( < ) > i s nondecreasing f o r C,t' A t 2 0. Consequently f o r t > 0 f i x e d <wm $ (C) 2
uous f u n c t i o n t
-
+
<wm(t),$A> = <wm
X0,t
1 i s now immediate from (2.5)
0
.
and t h e remarks above.
L e t us now combine (4.8) w i t h Lemma 3.3 when A,
= -Ax
QED
in
order t o o b t a i n a formula f o r Rm(-,t) (m 2 -1/2) i n t e r n s of
38
SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPD TYPE
1.
Rm+P(*,t) and Rm+p+l(-,t),
where t h e i n t e g e r p i s chosen so t h a t
2 - 1. Some s i m p l e b u t t e d i o u s c a l c u l a t i o n s y i e l d (see C a r r o l l [2; 51 f o r d e t a i l s )
m + p 2
-
(3.2)
(3.3)
-
F o r -1/2 5 m < n/2
Lemma 4.13
T
(i.e.,
= 6
i n (3.3))
1 t h e r e s o l v a n t R"(*,t)
for
given by F-l applied t o
(4.8) can be w r i t t e n Rm(-,t) = (
(4.17)
+ (
q-1
q- 1
1
k=O
1
k=O
ak(Fl)t2k(A6)k)
Bk(n)t2k(A6)k)
*
*
Rm+P(-,t)
Rm+P+l(*,t)
where p i s an i n t e g e r chosen so t h a t m + p
[q]([u]
n 2 7 - 1,
q = 1 +
denotes t h e l a r g e s t i n t e g e r i n u ) , ak(m) 2 0,
Bk(m) 2 0, and
~1
0
(m) = 1.
n F o r - 1 / 2 5 m < 7 - 1 l e t t h e i n t e g e r p be n chosen so t h a t m + p 2 7 - 1. L e t q = 1 + and assume Theorem 4.14
T
E
D ' s a t i s f i e s (A)
-
s o l u t i o n o f (3.2) section t
+
T2
0 f o r 1 F k 5 q.
(3.3)
f o r Ax = - A ( t 2 0 ) t h e n a.e.
i n x the
rn
0
for t
->
0.
xO
Proof:
We c o n v o l u t e (4.17) w i t h
f e r e n t i a t e , u s i n g (3.11). p+p+2
T t o g e t wm(t) and d i f -
m+p+l (*,t), Since Rm+P(*,t), R
and
( - , t ) a r e p o s i t i v e measures we have a g a i n t h a t w T ( t )
Hence, as i n Theorem 4.12,
i n Dx f o r t 2 0. a.e.
I f wm(t) denotes t h e
wx ( t ) i s a nondecreasing f u n c t i o n o f t w i t h
wm ( t ) 2 T xO
k
[q]
m
for w
x,t
E
D
I
x,t
and t
+
w
X0't
39
= w
0
we may f i x x = xo
m ( t ) w i l l be a xo
->
SINGULAR AND DEGENERATE CAUCHY PROBEMS
nondecreasing f u n c t i o n o f bounded v a r i a t i o n (t
*
wm(t) = Rm+P(.,t)
+ l ( * , t ) where l ( . , t )
T
(we r e c a l l here t h a t ao(m) = 1). Rm+'(=,t)
*
w!+P(t)
L Tx
0
_> 0 i n D i f o r t L 0
From Theorem 4.12 we know t h a t
T = wm+P(t) s a t i s f i e s wm+P(t) 2 T
AT 2 0 (which holds since q 0
Further
0).
xO
L 2).
Hence, a.e.
i n x when
a.e. xO
i n x, w
m xO
.
(t) L QED
C o r o l l a r y 4.15
For -1/2 5 m <
n
7 - 1 choose p as i n
k Theorem 4.14 and assume ( A ) T 5 0 f o r 1 5 k 5 q
-
1.
i n x the section t
+
wm ( t ) s a t i s -
as i n Theorem 4.14 then a.e. f i e s wm ( t ) 2 T xO
for t
>-
Given w"(t)
xO
0.
xO
Proof:
We note f i r s t t h a t p L 1 so t h a t q
-
1 =
Then f r o m (4.17) one w r i t e s again wm(t) = Rm+P(-,t)
*
I
where l ( * , t ) 2 0 i n Dx f o r t 2 0 under our hypotheses.
L e t us w r i t e now Lm =
a /at
+2n a/at; t +
1.
T + l(*,t)
As i n a.e.
the p r o o f of Theorem 4.14 i t f o l l o w s t h a t wm ( t ) L T xO
[q] L i n x.
xO
then as noted
by Weinstein, f o r m f 0, L i = (2m)2t-2(2m+1) a2/aa(t-2m)y w h i l e
2 a 2/a 2 ( l o g t ) .
f o r m = 0, L: = t-
A
X
D
I
= -A we have Lkwm =
, for
m > n/2
-
R e f e r r i n g now t o (3.2) w i t h
awm and using (4.15), composed w i t h T
1 i t follows t h a t
40
E
SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPD TYPE
1.
since Lt = C2LCt.
Thus i f AT
t i v e measure f o r t t 0. m <
2
-
2
0 then Lh
wm(t) i s a p o s i 1 S i m i l a r l y from f4.17) w i t h - 1/2 5
--
1 we convolute w i t h T
+
q-1
1
k=1
Bk(m)t
2k
(R
E
D:
m+p+l
t o obtain
*
(-,t)
A~+’T)
k Hence ifA T 2 0 f o r 1 5 k 5 q then L i w m ( t ) i s a p o s i t i v e meal
sure i n Dx f o r t t 0. Theorem 4.16 (3.3)
f o r Ax = -A and l e t T
while, f o r
-
-
L e t wm(t) denote t h e s o l u t i o n o f (3.2)
1/2 5 m <
-
n
E
D
I
n
s a t i s f y AT 2 0 f o r m 2
-
1
1, A kT 2 0 f o r 1 i k 5 q = 1 +
[q]where t h e i n t e g e r p i s chosen so t h a t m + p t
n
-
1.
Then f o r t > 0, a.e. i n x, the s e c t i o n t wm ( t ) i s a convex xO n 2-n n function of t f o r -1/2 <, m < 7 f o r m ,t 2 - I, o f t-2m -+
f 0), and o f l o g t f o r m
(m
-
1
= 0.
By (4.18) - (4.19) we know t h a t f o r t > 0, I Z m (a /a-c )w ( t ) L 0 i n Dx under the hypotheses given, where T = n n t2+ f o r m 2 2 I, -c = t-2m f o r -1/2 I m < 7 1 (m 01,
Proof:
2
-
and T = l o g t f o r m = 0.
-
t
Now by Theorems 4.12 and 4.14 our
hypotheses i n s u r e t h a t x = xo may be f i x e d a.e.
i n x for
m w ( t 2 0) and by D e f i n i t i o n 4.10 w i t h Remark 4.11 i t f o l l o w s x,t t h a t a2wm /a? Z 0 i n D i f o r t > 0. Hence by Schwartz [l] xo ,t QED t -+ w l ( t ) i s a convex f u n c t i o n of t. 0
41
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Remark 4.17
O f p a r t i c u l a r i n t e r e s t i n t h e EPD frameword o f
course i s t h e wave e q u a t i o n when m = -1/2 and we see t h a t i n t h e hypotheses o f C o r o l l a r y 4.15 -1/2 + p
n
2 2
-
1 means p 2
-.n-12
Note here t h a t i n dimension n = 1, -1/2 5 m < -1/2 i s impossible so t h a t we are i n t h e s i t u a t i o n o f Theorem 4.12.
[q]so t h a t ,
n-1 p = 2;
1 =
g i v e n n even, p = n/2, while, f o r n odd ( n t 3),
thus f o r n even q
[!$!These I.
-
Now q
-
1 =
[-1n4+2
-
w h i l e f o r n odd q
1 =
r e s u l t s on t h e number o f p o s i t i v e Laplacians o f T
s u f f i c i e n t f o r a minimum ( o r maximum) p r i n c i p l e improve W e i n s t e i n ' s estimates and a r e comparable w i t h r e s u l t s o f D. Sather [l;2 ; 31. n even and
N
=
Sather i n [3] f o r example sets N =
n-3 for 2
n odd w i t h a =
fornodd; w h i l e a = [%'I n even w h i l e b =
1 [nI 4
=
f o r n odd.
2 T ( x ) f o r t 2 0.
for
[?If o r
N+l s i m i l a r l y he s e t s b = [T]
f o r 1 5 k 2 a and Akw;'/2(o) w-l/'(x,t)
[N+2 I 2
9
=
n even
[,In
for
Then he r e q u i r e s t h a t A kT t 0
2 0 for 0 5 k
5 b i n order t h a t
Thus our r e s u l t s seem a t l e a s t
e q u i v a l e n t and c e r t a i n l y more concise than those o f Sather.
For
f u r t h e r i n f o r m a t i o n on maximum and minimum p r i n c i p l e s f o r Cauchy t y p e problems we r e f e r t o Protter-Weinberger [l]and t h e b i b l i o graphy there; c f . a l s o Agmon-Nirenberg-Protter P r o t t e r [7],
[l],Bers [l],
Weinberger [l]. For growth and c o n v e x i t y p r o p e r t i e s
o f s o l u t i o n s o f p a r a b o l i c equations w i t h subharmonic i n i t i a l data see Pucci-Weinstein [l]. Remark 4.18
The e x i s t e n c e o f p o s i t i v e elementary s o l u t i o n s
( o r r e s o l v a n t s ) f o r second o r d e r h y p e r b o l i c equations i s i n 42
1.
SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPD TYPE
general somewhat n o n t r i v i a l and we mention i n t h i s regard D u f f
[l;21, i n a d d i t i o n t o C a r r o l l [2],
where t h e problem i s d i s -
cussed. Spectral techniques and energy methods i n H i l b e r t
1.5
F r s t we w 11 present some t y p i c a l theorems o f Lions f o r
space.
EPD t y p e equations, u s i n g "energy" methods, which were d i s cussed i n C a r r o l l [8].
Lions proved these r e s u l t s i n 1958 i n
l e c t u r e s a t t h e U n i v e r s i t y o f Maryland (unpublished).
There-
a f t e r f o l l o w some theorems i n H i l b e r t space based on a s p e c t r a l technique developed by C a r r o l l [4; 6; 8; 10; 111 (suggested by Lions as a v a r i a t i o n on C a r r o l l ' s F o u r i e r technique).
The two
approaches (energy and s p e c t r a l ) a r e n o t d i r e c t l y connected and l e a d t o weak and s t r o n g s o l u t i o n s r e s p e c t i v e l y . Thus, r e g a r d i n g energy methods ( c f . C a r r o l l [14] and Lions [5] f o r a more complete e x p o s i t i o n ) , l e t (u,v)
V
x
V
+.
B
a(t,u,v)
-+
:
be a f a m i l y o f continuous s e s q u i l i n e a r forms, V c
H,
where V and H a r e H i l b e r t spaces w i t h V dense i n H having a f i n e r topology. a(t,u,v)
D(A(t)) H).
One can d e f i n e a l i n e a r o p e r a t o r A ( t ) such t h a t
= (A(t)u,v),,
if V
+.
Assume t
a(t,u,v)
+.
a(t,u,v)
V (i.e.,
for u
E
D ( A ( t ) ) C V and
:V
-+
B i s continuous i n t h e topology o f
E.
1 C [o,b]
w i t h a(t,u,v)
V E
= a(t,v,u)
u
and
consider Problem 5.1
t
+.
A(t)u(t)
Find u ( - )
E
Co(H) on [o,b],
C2(H) on [o,b], and
43
u(t)
E
E
D(A(t)),
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
where k t
-+
E
a,
q(-)
0, and f
E
D(A(t)) f o r t
Co(o,b]
E
i s r e a l valued w i t h q ( t )
Co(H) on [o,b].
03
as
Note here t h a t i f u(o) = T
E
then v i t ) = u ( t ) - T s a t i s f i e s (5.1)
[o,b]
E
-+
w i t h f replaced b y f ( * ) - A ( - ) T (assuming t h e l a t t e r i s continuous on [o,b]
- which
w i t h values i n H
holds i f A ( t ) = A).
T h i s can be transformed i n t o a weak problem (which i s more
d = t r a c t a b l e ) as f o l l o w s (= Problem 5.2 2 L (H) on [o,b],
Find u
).
L2(V) on [o,b],
+kq(u',h)"
0
for a l l h
E
u ( o ) = 0, u l f i
E
such t h a t g i v e n f/GE: L2(H)
jbla(t,u,h)
(5.2)
E
'
L2(V) w i t h hJii
Theorem 5.3
Let t
-+
E
-
I
1
( u ,h )H
L2(H), hl/J;i
a(t,u,v)
E
E
-
(f,h)Hldt = 0
L2(H), and h(b) = 0.
C 1 [o,b],
a(t,u,v)
= a(t,v,u)
Co(o,bl, q > 0, q ( t ) -+ as t + 0, Re k > 0, and a(t,u,u) 2 2 c l l l u l l v f o r a > 0. Then t h e r e e x i s t s a s o l u t i o n o f Problem 5.2. q
E
03
Proof:
Set h = e-Yt+l
I
f o r y r e a l ( t o be determined) and
b
(5.3)
Ey(u,+)
Let
=
0
1
{a(t,u,e-Yt+l)
+
k q ( t ) ( u l ,e-Yt+l)H
-
( u ,(e Y t + l ) l ) H l d t
F be t h e space o f f u n c t i o n s u
E
L2(V), u l G
2 u(o) = 0, w h i l e G i s t h e space o f 4 E L ( V ) , I I 1 2 2 9 4 E L (H), 9 / 4 E L (H), $(o) = 0, and
44
+' E + (b)
E
L2 (H),
2 L (V),
I
= 0.
Clearly
SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPD TYPE
1.
G CF and we p u t on G t h e induced topology o f F d e f i n e d by
,f)(
IIull;
+ q l l u ' l ! i ) d t = IIuIIF 2 so t h a t G i s a p r e h i l b e r t space.
0
Then i f u
E
F s a t i s f i e s E (u,$) =
Y
/
b
( f , e Yt$')Hdt f o r a l l $
G i t f o l l o w s t h a t u i s a s o l u t i o n o f Problem 5 . 2 .
i s a s e s q u i l i n e a r form on F x G w i t h u tinuous f o r 4
G fixed.
E
-
+ 2a(t,$,e-Yt$') (5.4)
b
(5.5)
yt$)
t
4
con-
= at(t,$,e-Yt$)
+Y
at(t,$,$)e-Ytdt
I
b
[-e-yt
0
=
y
i ( $ ,(e-Yt$')l)Hdt
0
=
: F.+
E (u,$)
= a(b,$(b),$(b))e-yb
0
b
-2Re
Now Ey(u,$)
so t h a t ,
ya(t,$,e-Yt$)
I
-
-f
Further, a(t,$,e
2Re I:a(t,$,e-Yt$')dt
E
0
&11$11: b
11$'(0)11
Hence, f o r y > c/a,
+ 2ye-ytII$'lli]dt
+
IEy($,$)I
0
e-ytII
2 811$11;
$
'
2
I] H
dt
'
( n o t e t h e second term
i n 2Re E ( $ & ) ) and by t h e Lions p r o j e c t i o n theorem ( c f .
Y
C a r r o l l [14], u
E
Lions [5],
Mazumdar [l;2 ; 3; 41) t h e r e e x i s t s
F s a t i s f y i n g E (u,$) =
Y
f(f,e-yt$')Hdt
(f,e-Yt$')Hdt,
-f
i s a continuous s e m i l i n e a r form on G.
0
Remark 5.4
since $
QED
For an i n t e r e s t i n g g e n e r a l i z a t i o n of t h e Lions
45
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
p r o j e c t i o n theorem and a p p l i c a t i o n s see Mazumdar [l;2; 3; 41. We not e t h a t i n Problem 5.2 q c o u l d become i n f i n i t e a t o t h e r p o i n t s on [o,b]
p ro v i d e d t h e "weight" f u n c t i o n s h a r e s u i t a b l y t h e problem can be solved d i r e c t l y as
chosen; i f q > 0 b u t q i n Lions [5].
1 Theorem 5.5 L e t t + a(t,u,v) E C [o,b], a(t,u,v) = 1 a(t,v,u), q E C (o,b],q > 0, q ( t ) + - as t + 0, Re k > 0, and 2 a(t,u,u) 2 a l l u l l v f o r a > 0. Then a s o l u t i o n o f Problem 5.2 i s unique. Proof:
L e t h be g i v e n by h ( t ) = 0 f o r t
= u on [o,s);
E +
0, l i m a(E,h(E),h(E))
Taking r e a l p a r t s i n (5.2),
+ I
where a(t,h,h)
I
s with h
I
-
kqh
then some c a l c u l a t i o n shows t h a t h i s admissable
i n Problem 5.2 and, as
= 2Re a(t,h,h
(2aq Re k
0
and s i n c e q ( t ) t h a t 2aq Re k u = 0 i n [o,so].
-+
-
(4
as t
-
z
2 0.
= 0 I
) + at(t,h,h).
Consequently
2 c)llhllVdt 5 0
+
0 one may choose so small enough so
which w i l l i m p l y t h a t h = 0 and
c > 0 i n [o,so]
I n t h i s step o n l y q
extend t h e r e s u l t u = 0 t o [so,b] methods ( c f . Li o n s [5])
= 8
w i t h f = 0, one o b t a i n s w i t h t h i s h,
j o at(t,h.h)dt
S
(5.7)
2
where q
E
Co(o.so]
i s needed; t o
one can r e s o r t t o standard E
46
C'[s,,bl
i s used.
QED
1.
SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPD TYPE
Remark 5.6
There a r e a l s o versions of Theorems 5.3 and 5.5 2
2
due t o Lions when a ( t , v , v ) + Al1vllH 2 cill-vllv (cf. Carroll [81) b u t we will omit the d e t a i l s here.
We note t h a t no r e s t r i c t i o n s
have been placed on the growth of q ( t ) as t * 0; however the solution given by Theorem 5.3 i s a weak solution and not necess a r i l y a solution of (5.1).
We consider now the operator
for 0 5 as
T
-+
T
5 t 5 b <
0, B
E
my
Co[o,b],
where
ci E
and y
E
Co(o,b] w i t h
:I
Re a ( < ) d<
-+to
Let A be a s e l f a d j o i n t
Co[o,b].
(densely defined) operator in a separable Hilbert space H w i t h ( A u , u ) ~ + 6 1 I u l l i 2 0 and consider f o r Q
Problem 5.7
w(t) (5.9)
E
D ( A ) , and t
Find w -+
E
Aw(t)
E
Co[o,b]
2 C ( H ) on [ ~ , b ] ( 0 5 E
T
-5
t
b <
S
m),
C o ( H ) on [ ~ , b ] , such t h a t
( L + Q ( t ) A ) w = 0;
W(T) =
T
H;
E
Wt(~) =
0
I t i s t o be noted t h a t one may always assume A 1 0 since a
-
.v
change of variables A = A + 6 and y = y
-
SQ can be made.
Now
from the von Neumann spectral decomposition theorem ( c f . Dixmier [ l ] , Carroll [14]) i t follows t h a t t h e r e i s a measure v , a vmeasurable family of Hilbert sapces X an isometric isomorphism 0 : H
-+
ff =
I" -+
H ( X ) ( c f . Chapter 3 ) , and
H(A)dv(A), such t h a t A
i s transformed i n t o the diagonalizable operator of multiplication
47
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
-
IIBT(A)l[H(A)) and T
[
<
A2118Tll$A)dv
E
D ( A ) - i f and o n l y i f i n a d d i t i o n
where BT i s t h e image of T
E
H i n H ; we
w r i t e here BT f o r t h e f a m i l y (BT)(A) determined up t o a s e t o f v-measure zero.
For v a r i o u s o t h e r a p p l i c a t i o n s t o d i f f e r e n t i a l
equations see e.g., Lions [6],
Brauer [l],G i r d i n g [l],
B e r e z a n s k i j [2],
Maurin [l;2; 31.
Now by use o f t h e map 8 (5.9)
is
transformed i n t o t h e e q u i v a l e n t problem (L + AQ)Bw = 0;
(5.10) with t
-+
Bw(t)
E
ew(-c) = BT
C2(H) and t
BAw = BAB-'Bw = ABw).
-+
ABw(t)
E
E
H;
= 0
Bwt(-r)
Co(H) on [o,b]
(note t h a t
T h i s e s s e n t i a l l y reduces Problem 5.7 t o a
numerical problem, as i n t h e case o f t h e F o u r i e r transform, and we w i l l c o n s t r u c t s u i t a b l e " r e s o l v a n t s " Z(X,t,-c) ^m analogous t o t h e R (y,t,-c)
%l
and S (y,t,-c)
and Y(A,t,-c)
respectively o f Section
3 so t h a t f o r example ( L + AQ)Z = 0;
(5.11)
Z(A,T,T)
= 1;
= 0
Zt(A,-c,-r)
i n which event Bw = Z(A,t,-r)@T w i l l be a s o l u t i o n o f (5.10). Many o f t h e techniques o f Section 3 w i l l be employed and t h i s
w i l l enable us t o shorten somewhat t h e e x p o s i t i o n here.
exP and
L e t us assume Re a ?: 0 f o r 0 < t b (a(<)+ B(S))dS) (cf. (3.23)). t
(-1
48
<_
s and c o n s i d e r P ( t ) =
Then P ( t )
-+
0 as t
-+
0
1.
SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPD TYPE
55 u
for 0 5
( I n t h e terminology o f F e l l e r [2] t = 0 i s
5 b.
an entrance boundary.)
+
(PZt)t
(5.11) (5.13)
As i n (3.23)
-
= 1
Z(A,t,T)
/llP(5)/P(o)ldgdo
F(t,-r)
5 F(t,o)
of (5.13)
-
rt
1
1, rn 1, P (5)[Y (51 1'5
+AQ
( c f . (3.27))
-
y~
Setting F(t,r)
we have F(t,-c) <
h
=
(51I Z ( A ,5 1
Z.
J
F ( t ) 5 F ( t ) S F(b) f o r t 5 t 5 b.
The s o l u t i o n .
m
=
=
with
03
h
i s g i v e n again f o r m a l l y b y Z(A,t,T)
( c f . (3.25))
we o b t a i n from
P(y+AQ)Z = 0 and
which we w r i t e again i n t h e form Z = 1
:1
(3.24)
.
1 (-l)kJk 1
k =n
and one may proceed as i n S e c t i o n 113-to prove m
Lemma 5.8
Given Re
CL
2 0 on (o,s]
converges a b s o l u t e l y and u n i f o r m l y on (0 i
$ compact ( A of
r),
T
i s continuous i n (A,t,.c)
Proof: t i a t i n g (5.13)
and a n a l y t i c i n A.
The statements f o r Zt(A,t,-r) i n t ( c f . Lemma 3.5).
Sim
f o l l o w upon d i f f e r e n -
We n o t e a l s o t h a t i f
QED
S e c t i o n 3. NOW, as i n (3.30), a(t)Zt(A,t,o)
1
and represents a continuous f u n c t i o n
a n a l y t i c i n A , which s a t i s f i e s (5. 3).
(A,t,T),
Zt(A,t,-c)
E
1 (-l)kJk k=O t i b l x
the series
as t
-+
0.
we must examine t h e behavior o f Thus ( c f . (3.31))
49
we s e t
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
a ( t ) jt(P(<)/P(t))df T
now t h a t a
[o,sl, and
C (o,b]
E
H(t,T)
=
1
'
2 = a /a
E
0 then c l e a r l y ( c f . (5.13)
-+
L e t us assume
la1 2 kRe a on
Co[o,sl,
5 N f o r 0 5 5 5 t 5 s.
a(t)/a(S)I
H(o) e x i s t s as t
0
with
w i t h H ( t ) = H(t,o).
If l i m H(t) =
upon d i f f e r e n t i a -
t i o n ) l i m a t ) Z (X,t,o) = -H(o)[y(o) + AQ(o)]. Now c o n s i d e r tt dn) d5 = H(t,T) w i t h H ( t ) = H(t,o). Since JT
(-jga(n)
A
A
A
-
H ( t ) l can be made
a r b i t r a r i l y small f o r t s u f f i c i e n t l y small.
Indeed i f B(t,S)
B
Co[o,bl
E
(-1 5 rt
exp
A
i t i s e a s i l y seen t h a t I H ( t )
B(q) dn) ther;,
by c o n t i n u i t y , g i v e n
- 1I 5
such t h a t l B ( t , 5 )
E
E
=
there e x i s t s 6 ( ~ )
f o r t 5 ti(&). Hence f o r t 5
min(s,b(&)) one has
1
-15Rea(n)dn t
t
lG(t)-H(t)l 5
(5.14)
la(t)l
-
B(t,S)l
e
dS
-lSRea(n t )dn
t
5 EkN
11
0
dS = skN
Rea(5)e 0
A
To f i n d now H(o)
A
=
l i m H ( t ) as t
-+
A
of
H(t,T)
by p a r t s t o o b t a i n
Letting T
-+
0 we have
50
0 we i n t e g r a t e t h e d e f i n i t i o n
SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPDTYPE
1.
so (5.16)
t
i
t But H(.t) = f(t,S)dS t 0 can be w r i t t e n as h ( t ) 5 1 = f(t,<)(l-@(S))dS. Evi-
where f(t,S)
h
= a ( t ) exp ( - / c r ( o ) d n ) .
10
A
d e n t l y h ( * ) i s continuous as t
-+
0 and choosing t smal
enough 4) 1
n
Hence ( 1 - @ ( o ) ) H ( t ) h
l i m H(t)
1 as t
-+
0 and i f @ ( o ) f 1 t h i s means
H ( t ) = H(o) = l / ( l - @ ( o ) ) as t
= l i m
follows t h a t t
-+
-+
w.
a(t)Zt(A,t,o)
l i m a(t)Zt(A,t,o)
=
0 from which
-+
i s continuous i n t as t
-+
0 with
I t may then a l s o be shown
f o r T >_ 0
i s continuous i n (A,t)
e a s i l y t h a t a(t)Zt(A,t,r)
f i x e d and a n a l y t i c i n A f o r ( t , r )
f i x e d (0 5 T 5 t 5 b); s i m i by (5.11).
l a r p r o p e r t i e s a r e then t r a n s p o r t e d t o Ztt(A,t,-c) Consequently Lemma 5.9
L e t ct
la1 2 kRea on [o,s], Then Z(A,-,T)
E
E
' 2 with 6 = a /a
E
and s a t i s f i e s (5.11)
and Ztt(A,t,r)
0
C [o,s],
<5
and l a ( t ) / a ( < ) l 5 N f o r 0 5
2 C [o,bl
w h i l e ct(t)Zt(X,t,r)
1 C (o,b]
for 0 5
t 5 s.
5
2 t 5 b
a r e continuous i n (A,t)
and a n a l y t i c i n A. Proof:
I t remains t o prove t h a t @ ( o )
t h e contrary. I R e @ ( t ) - 11
Then Re @
5
E
-+
1 and I m @
f o r t 5 B(E).
Now
51
-+
1
1 and we suppose
0 and we can make
-
1
-
-
-i
t
T
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
$(S)dS ( z < t ) w i t h lim r t
Hence l / a ( t ) =
= 0 as T
@(S)dSand f o r t
5
+
0 since Rea(-c) +
rnin(s,d(E)) and
E
m.
< 1 we
-10
can write
which v i o l a t e s the f a c t t h a t Rea(t) > 0 f o r t small.
QED
We can now derive some bounds f o r the resolvant Z a s i n Section 3 ( c f . (3.32)
-
(3.33) and Lemna 3 . 7 ) .
Here one mul-
t i p l i e s (PZ5)5 + P(y+hQ)Z = 0 by P - ' ( g ) T 5 ( h , 5 , ~ ) and i n t e g r a t e s from
T
t o t t o obtain
+
t
(y+hQ)ZF5dS = 0
T
Assume now t h a t Q
E
1 C [o,b] w i t h Q real and 0 < q 5 Q ( t ) .
Adding (5.19) t o i t s complex conjugate and noting t h a t d d 2 = - I Z [ we have 2Re(Z 7 ) = - I Z 1' with 2Re
5 55
(5.20)
d5
Zz5
5
IZt(h,t,e)12
d5
+ 2
-
I t i s convenient now t o write a + B = a + a where a1 = a on 1 2 . " (o,s], s < s , a1 = 0 on [s,b], and a1 = a [ ( ~ - t ) / ( s - s ) ]on [s,s]. Y
Then a1
E
Co(o,b] w i t h :[all 5 klReal on (o,s] and l a l ( t ) / a l ( 5 ) l 5
52
SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPD TYPE
1.
Then from (5.20) we obtain
N~ f o r 0 5 5 5 t 5 b.
I d5 + IZ 1') 5 c1
=
2 s u p IRea21, c 2
=
sup Iyl, and c3 =
SUP
IQ'I
and set
(on Co,bl).
I t may be assumed t h a t A 2 l / q s i n c e t h i s can always be assured by adding i f necessary a constant multiple of Q t o y (e.g., set A' = A
A'
+ 1 / q aed yl
2 l/q).
= y
-
($)a
so t h a t y l + X ' Q
=
y + AQ with
Then from (5.21) we have
+ (c2+c It +
where c
4
=
c4JTI
c1 + c2.
Now l e t us s t a t e a version of Gronwall's
l e n a which w i l l be useful ( s e e Carroll [14] o r Sansone-Conti [ l ] f o r proof).
Lemma 5.10 continuous.
Let u
E
Co, R
E
L 1 w i t h R L 0, and
Assume u ( t ) 5 + ( t )+
53
t
t
R(o)u(q)dn.
+ absolutely
Then
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Applying Lemma 5.10 t o (5.22) w i t h R = c4, t = + X Q ( t ) l z l 2 , and $ ( t ) = XQ(.r) + (IC3+c2)j:l;12dS
IZtI2
T~
u(t) = it fol-
lows t h a t (5.24)
IZt12
+
X Q ( t ) l Z I 2 <_ hQ(.r) exp c4(t--r)
where c5 = exp c4b.
I n particular
1 5 1 and u s i n g Lemma 5.10 again t h e r e l / q we have Aq r e s u l t s from (5.25)
2
Since X
1ZI2 < -
(5.26)
c5 where c6 = -(c
c5Q(-c) exp q +c ).
q 3 2
lZtlL 5
(5.27)
Lemma 5.11
-
(5.26)
c8X + c 9
Assume Q
IQI
for 0 5
E
1 C [o,b] $ =
N on [o,s].
(5.27)
Proof: sup
5
7
P u t t i n g t h i s i n (5.24) we o b t a i n
w h i l e la1 5 kRea on [o,s], la(t)/a(S)l
c6b = c
w i t h Q r e a l and O < q 5 Q ( t )
a '/a2 E Co[o,s],
and
Then Z g i v e n by Lemma 5.8 s a t i s f i e s T
5 t 5 b w h i l e l a ( t ) Z t l <_ clOA
There remains o n l y t h e l a s t statement.
on [o,b],
c13
= sup la21 on [o,b]
54
+ cll.
L e t c12 =
(recall that a + 6 =
1.
al
+
SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPD TYPE
a 2 ) , and c14 = sup exp
Then d i f f e r e n t i a t e (5.13)
(-
:I
Re a2(q)drl) f o r 0 5 5 5 t 5 b.
i n t and f o r t
5 s we have ( c f .
(5.12))
5 c 15A + where (5.26)
has been used.
Remark 5.12 assumption $I
C16
E
QED
Under c e r t a i n m i l d a d d i t i o n a l hypotheses t h e
Co[o,s]
i s s u f f i c i e n t t o insure t h a t
l a ( t ) / a ( T ) l 5 N f o r 0 5 T 5 t 5 s (c f.
Lemmas 5.9 and 5.11).
I n p a r t i c u l a r t h i s holds i f $(o) f 0 o r i f
,.
$ / / @ IE
Co[o,s]
for
some s 5 s (see C a r r o l l [8] f o r d e t a i l s ) . We c o n s t r u c t an "associate" r e s o l v a n t Y(A,t,T)
"m ponding t o S (y,t,-c)
-
t a i n ( c f . (3.16)
i n S e c ti o n 3, by t h e same technique t o ob(3.17))
Then given Rea 2 0 on (o,s], t i a t e (5.13) where U
in
T
, corres-
(5.12)
t o o b t a i n Y(X,t,-c)
i s give n as i n (3.34)
holds and one can d i f f e r e n = U(t,.r)
by U(t,.r)
55
=
-
(J
Y)(A,t,-r)
(P(T)/P(a))do =
SINGULAR A N D DEGENERATE CAUCHY PROBLEMS
tI(u,T)du
and J i s d e f i n e d by (5.13).
'T
The formal s o l u t i o n i s
00
1
U (cf.
(-l)kJk k=O i s continuous i n ( t , T )
again Y =
(3.36))
we need o n l y c o n s i d e r t h e c r i t i c a l p o i n t
Thus d e f i n i n g e v i d e n t l y U(t,o)
T = 0.
and t o show t h a t U(t,T)
= 0 for t
2
0 (note t h a t
o u r assumptions p r e c l u d e a case where a ( t ) = 0 as when m = -1/2 i n S e c t i o n 3) one has l I ( u , ~ ) l 5 M f o r 0 5 T 5 u 5 b (cf. (5.12))
:1
and we w r i t e U(t,-c) Now l e t (t,T) as
T
-+
-+
,..
=
where I(u,T)
-+
Hence t h e terms Jk
0.
-+
u <
T.
0 f o r any u
9
0
M and we may invoke t h e Lebesque
bounded convergence theorem ( c f . Bourbaki [3]) U(t,T)
= 0 for
w
f o r to -> 0; then I(o,T)
(to,o)
1 I(o,T) 1 5
0 with
,.
I(u,.r)do
t o conclude t h a t
U w i l l be continuous i n (A,t,T)
and a n a l y t i c i n A w i t h lU(t,-c)l
5 Mb.
By p r e v i o u s a n a l y s i s (cf.
Lemmas 3.8 and 5.8) we have Given
Lemma 5.13
Recl
L 0 on (o,s]
the series Y =
00
1
(-l)kJk k=O t 5 b l x r,
U converges a b s o l u t e l y and u n i f o r m l y on (0 5 T 5
r cF
f u n c t i o n Y(A,t,-c) U
-
J
(5.30)
compact ( A
E
o f (A,t,-c),
r),
a n a l y t i c i n A , which s a t i s f i e s Y = One has (5.29)
Y (J g i v e n as i n (5.13)). Moreover Y(A,T,T)
holds.
T > 0, Yt(A,T,T)
Proof: t h a t Ut =
and represents a continuous
= 0, Y(A,t,o)
and f o r T > 0
= 0,
and, f o r
= 1.
T h i s goes as i n t h e p r o o f o f Lemma 3.8
P(T)/P(t),
UT
rt
= -1
( n o t e here
+ (a+B)U, and from (5.301,
56
cf.
1.
SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPD TYPE
Now YT i s d e f i n e d b y (5.30) t o i n f i n i t y as T
and does n o t n e c e s s a r i l y tend
o r a,(-c)Y(A,t,T),
a(T)Y(A,t,T),
We need o n l y examine
0 ( c f . (3.42)).
-+
as
T
As i n (3.40)
0.
-+
m1
al(T)Y(h,t,T)
=
I
where B 2 ( o , ~ ) =
1 (-l)kJk
C X ~ ( T ) U ( * , T so ) we l o o k f i r s t a t
k=O
aB2( 0 ,
and $1 = a;/a:
a0
small arguments (e.g.,
Lemma 5.11).
al(q)dn)
f i r s t t h e term A(t;-c) =
can compare here w i t h S e c t i o n 3 where a ( t ) = = (T/t)2m
-+
Thus assume A(t,-c)
0 as -+
o
t 5 s ) ; here B 2 ( o , ~ ) = exp
i s Cm i n ( a , ~ w ) i t h I B 2 ( o , ~ ) I 5 c14 (cf.
A(t,.r)
(-i
= $ for sufficiently
w
T
-+
0 as T
as
+
aZ(rl)do) We examine 0 and one
2m 7 and +
f o r m > 0 (Bz(t,r) -+
T
T
1 i n Section 3).
0 i n which event, from (5.31)
I
t h e r e r e s u l t s ( s i n c e B2/Bz = -az(.)) (5.32)
a,(.)
t
Bz(o,~)C1 +
az(4
+
(+:a1
$(o)le
(
0
do
~ +
1
T
as
T
-+
0, independently o f t.
But a,(a)/a,(o)
+
@ ( o ) (and B2(a,.r) 1 1) we have
(5.33)
l i m al(T)U(t,T) T-+O
=
0 as u
-+
0 and
+ $(a)
t a k i n g t small enough so t h a t 1
-+
1
rn 57
SINGULAR AND DEGENERATECAUCHY PROBLEMS
provided $(o) $ -1.
This checks w i t h Section 1 . 3 ( f o r m > 0) where 1/(1+$(0)) = o r 2m + 1 U ( t , T ) -t 2m T h u s when 2m T A ( t , - c ) * 0 a s T * 0 w i t h $ ( o ) $ -1 we have by (5.30) as T * 0
-
-. +
YT(X,t,o) = - ( $ ( o ) / ( l + $ ( o ) ) Z ( X , t , o ) ( c f . (3.42) and the d e f i n i t i o n o f Z i n Lemma 5.8). In general we cannot expect of course t h a t
A(t,T)
-t
0 as
* 0 o r t h a t $(o) $ -1 ( c f . Section 1.3). However, as w i t h ?(y,t,.r), ye can show t h a t YT(A,t,r) E L 1 in T ( w i t h Y ( A , t , . ) T
absolutely continuous) and we follow again Carroll [8]. m
consider al(T)Y(X,t,-r)
=
T
5
f o r some upper l i m i t
1
1(-l)kal(~)Jk
k=O
U(-,T)
Thus
and define
2
..,
(5.34)
where J n
Kn =
t
0
U(*,T)
0 by d e f i n i t i o n i f
a l ( ~ J)n =
U(0,T)d-c ..,
(Jn
T >
=
U)(t,-c)
(note here t h a t ( J n
U)(t,.c)
t). W e s e t again 1B2(u,~)1 5 c14 and
lal(~)l5 k l R e a l ( T ) so t h a t
..,
( f o r Fubini-Tonelli theorems see McShane [ l ] ) .
Similarly, s e t -
t i n g [ X I C 5 R and ( c 2 + Rc12) = c , we have ( c f . (5.13) f o r J )
58
=
1.
SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPD TYPE
. "
5 c,4k,cbF(t) 5 c14klcbF(b) Upon i t e r a t i o n we obtain ( c f . Section 3)
and t h u s
m
1 (-1)"'
m
1 (-l)n
jt
a l ( ~ ) ( J n U ) ( i , T ) d T converges n=O n=O 0 uniformly and absolutely. An elementary argument ( c f . Carroll =
[8]) then shows t h a t al(*)Y(A,t,*)E L1 w i t h
I
. "
(5.38)
t
m
..,
al(T)Y(A,tyT)dT
0
1 (-l)"Kn
=
n=O
. "
Lemna 5.14 -Z(A,t,T)
I f [ a l l 5 klReal on [o,s] 1 + (a+@)(T)Y(A,t,T) E L for 0 5
i s absolutely continuous w i t h Y ( h , t , - r )
+ = a'/,*
E
Co[o,s] and +(o)
4
=
then
I
T 5 T
T
-+
YT(X,t,.r) =
t <- b and Y ( X , t , * )
Yg(X,t,<)d<.
0
-1 with h ( t , T ) =
continuous w i t h YT(A,t,o) = - ( + ( o ) / ( l + + ( o ) ) ) Z ( A , t , o ) .
59
If
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Proof:
The a b s o l u t e c o n t i n u i t y f o l l o w s as i n Lemma 3.9
and we r e c a l l t h a t Y(A,t,o)
= 0 by Lerlima 5.13.
Bounds f o r Y can be o b t a i n e d as f o r Z. (5.30),
with
T
replaced by
4 , by V(X,t,<),
p l e x conjugate, and i n t e g r a t e i n
4 from
QED We simply m u l t i p l y
add t h i s t o i t s comT
t o t, u s i n g t h e r e -
d l a t i o n - l Y 1 2 = 2Re(Y V), t o o b t a i n ( r e c a l l t h a t d4 5
c1
+ B
= a1 + a 2 )
(5.39)
'T
R e c a l l i n g t h a t c1 = 2 sup
IY12
(5.40)
Rw2I we have, assuming Lemma 5.11, YI2d4
+
+ (cl
Under t h e hypotheses o f Lemma 5.11 5 c for 0 r; t b and X > 0.
Lemma 5.15
IYl
(X,t,T)
Proof:
1ZI2d4
T
5 c7b
2
1
t
5 (c
5 T
we have
r;
One a p p l i e s G r o n w a l l ' s lemma (Lemma 5.10) t o (5.40).
QED Now l e t us go t o t h e s o l u t i o n o f t h e Cauchy problem (5.9) (5.10),
r e c a l l i n g t h a t X can always be made l a r g e r than zero.
60
-
1.
SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPD TYPE
L e t Ls(E,F)
be t h e space o f c o n t i n u o u s l i n e a r maps E
t h e t o p o l o g y o f s i m p l e convergence, i.e., Ave * 0 i n F f o r each e
E
r e c a l l t h a t OH = ff =
ff(A)dv(A).
\
0
E.
Av
We w r i t e L,(E)
-+
F with
0 i n Ls(E,F) i f
-+
f o r LS(E,E) and
Now Z(-,t,T)
and Y(.,t,-r)
b e l o n g t o Ls(@D(A),ff), LS(ff), and, LS(eD(A)) s i n c e t h e y a r e
c2
bounded b y Lemmas 5.11 and 5.15 (on eD(A) we p u t t h e norm 2 " 2 I I ~ T l l H ( X ) d v Ywhere I l e T I I q X ) delle T II = IleTll;(,)dv . I
j
notes
0
IleT(x)II
Ifnow eT
-
A(eW)(X) = [Z(A,t,T) t
-+
Z(*,t,-c)BT
hence t h a t t
: [o,b] -f
Z ( A , t o y T ) ] ( ~ T ) ( X ) = (AZ)(BT)(X). -+
Z(-,t,T)
8D(A) i s "strongly"
: [o,b]
+
uous, one must show t h a t as t + t IlhA(ew)
Ilff
+
0.
e D ( A ) c o n s i d e r f o r example
E
continuous, and
Ls(eD(A)) i s "simply" continIIA(OW)llff
-+
0 and
But, f o r example, IIA(ew)llff
+
0 means
0
2 1 I l A ( e ~ ) ( X ) l l ~ -+ ( ~ 0) i n L ( v ) and s i n c e A(Bw)(X) 2 everywhere (cf. Lemma 5.8) w i t h IlA(Ow)(X) llff(X) 1 L (v) (cf.
(5.26)
i n Lemma 5.11)
IIA(ew)llH
-+
H(X)
E
one can a p p l y t h e Lebesgue
5.11,
t o conclude
to ( n o t e t h a t lleTl12
L 1 ( v ) ; t h u s one has shown t h a t t
CO(Ls(eD(A))) on [o,b]. Lemmas 5.8,
E
i s finite v H(X) A s i m i l a r argument a p p l i e s t o IlXA(ew) Ilff
0 as t
a l m o s t everywhere). 2 s i n c e X lleT/12
*
0 v almost 2 5 2c711eT11ff(h)
+
dominated convergence theorem ( c f . Bourbaki [3]) that
TO Show
5.13,
+
Z(*,t,T)
Analogous reasoning, u s i n g (5.29) w i t h and 5.15,
l e a d s t o ( c f . a l s o Remark
5.22) Lemma 5.16 0 L
T
2 t 5 b, t
Under t h e hypotheses o f Lemna 5.11 we have, f o r -+
Z(-,t,T)
E
CO(Ls(eD(A)) o r Co(Ls(ff)) (and
61
E
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
CO(Ls(eD(A),H))
trivially);
T
Y(*,t,-c)
-+
o r Co(LS(OD(A))); while t
Co(Ls(ff))
and
a(t)Z,(*,t,T),
T
+
ZT(*,t,.r)
E
-+
and
T
-+
Z(.,t,T)
t
Zt(*,t,T),
E
-+
CO(Ls(eD(A),H)).
We w i s h t o show now t h a t i n f a c t a / a t ( e w ) = a / a t ( z e T ) =
(1,
Z 8T i n H.
tt
For fixed ( A , T )
[Zq(X,q,r)
-
-
one has evidently A Z / A t
Zt(A,toT)
=
Zq(X,to,~)]dq)/At. Hence i n H ( h ) we have, v Y
alm8st everywhere, i n an obvious n o t a t i o n , Ah = ( A ( e w ) / A t ) t Z t ( h , t o , T ) e T ( h ) = [( l / A t ) l AZndnleT(h) and consequently
-
Now IleTIIH(,l = I / e T ( h ) l l H ( h l i s f i n i t e v almost everywhere and for (X,T) Irl-tol
fixed we can make (by Lemma 5.8) lAZ,l
5 6 ( ~ ) . Hence, f o r Y
so t h a t IIAhll
+
"
5 It-tol 5 6 ( ~ ) ,I l A A l 1 2 5
0 v almost everywhere a s t
we know t h a t llAh112 5 [ ( 2 / A t ) ( I 2 (c17X
+
a/at(ew)
t
-+
for
E E
2
2 ~~eT(A)~~H(h)
to. Also by (5.27)
(Cgx + ~ ~ ) ~ / ~ d ~ ] ~ I l e5T l l i ( ~ ) t ." 1 c i a ) I l e T ( h ) IIH(h)* Therafore l l A A I l 2 0 i n L ( v ) and = ZteT i n H. Similarly one checks a 2/ a t 2 ( O w ) , u s i n g -+
estimates f o r a ( t ) Z , ( h , t , T )
and X Z ( X , t , - c )
indicated above ( c f .
a l s o Lemma 5.9), t o e s t a b l i s h Theorem 5.17 Under t h e hypotheses o f Lemma 5.11, t -+ 2 Z ( = , t , - r ) E C ( L S ( e D ( A ) ) , H ) and there e x i s t s a solution of the Cauchy problem 5.9 (Problem 5.7) given by w ( t )
e-'[Z(=,t,~)eT(*)]
for T
E
D ( A ) ( 0 <-
62
T 5
=
t 5 b).
SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPD TYPE
1.
One notes a l s o t h a t by (5.30), ences thereto, T for
and Lemna 5.16 w i t h r e f e r -
(l/a(T))YT(*,t,T) cC0(LS(ff)) o r CO(Ls(OD(A)) 1 1 small w i t h T -+ Yf,-,t,~) E C (Ls(ff)) o r C (L,(OD(A)) f o r
T
T > 0.
-+
Now we note t h a t i f F i s b a r r e l e d then any separately
continuous b i l i n e a r map E
x F
-+
G i s hypocontinuous r e l a t i v e t o
bounded s e t s i n E (see Bourbaki [2]). b a r r e l e d so t h e map u : (A,h) uous on bounded sets
But a H i l b e r t space i s
Ah : Ls(F,G)
-+
Bc Ls(F,G).
Since 0 5
G i s contin-
x
F
T
5 5 S t 5 b is
-+
compact and t h e continuous image o f a compact s e t i s bounded we may s t a t e f o r example t h a t 5 Y(-,t,c)ew$). Yg(*,t,S)0w5(S),
5
+
(46)
and 5
-+
+
-+
Y(*,t,t)ew(<),
5
B(S))Y(-,~,S)@W~,5
Y(*,t,S)Bw
55
.
-
(3.20)
and see C a r r o l l
[a]
for
{Yewc5 + Y 0w I d 5 = 0
(5.42)
5 5
where 0w s a t i s f i e s (5.9).
(cf.
i s given by
The f o l l o w i n g formulas are then e a s i l y v e r i f i e d
using Lemna 5.14 ( c f . (3.18) de t a i 1s )
+
(5) are continuous (note
t h a t Y5eW5 = ( l / a ( < ) ) Y 5 a 0w5 and e w ( 5 ) = ew(5,T) Theorem 5.17).
-+
(5.30)).
Hence m u l t i p l y i n g (5.10)
by Y we have
Hence 0w(t) i s n e c e s s a r i l y o f t h e form Z(X,t,T)BT
and we have proved
63
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Theorem 5.18
The s o l u t i o n o f Problem 5.7 given by Theorem
5.17 i s unique.
As b e f o r e ( c f . (3.22) and Theorem 3.14) we have ( c f . C a r r o l l [8] f o r d e t a i l s and cf. a l s o Remark 5.22). Theorem 5.19
The unique s o l u t i o n o f (L+Q(t)A)w = f
Co(D(A)), W ( T ) = T
E
D(A),
E
wt(-c) = 0 i s given (under t h e hypo-
As i n D e f i n i t i o n 3.15 we w i l l say t h a t t h e problem (L+Q(t)A)w = f,
W(T)
= T
E
D(A), w ~ ( T =) 0, and f
E
0
C (D(A))
i s u n i f o r m l y w e l l posed i f w depends c o n t i n u o u s l y i n H on By h y p o c o n t i n u i t y and Lemmas 5.8 and 5.13 we can
(t,T,T,f). state
Theorem 5.20 W(T)
= T
D(A),
E
The problem (L+Q(t)A)w = f and w,(T)
=
2
T
5 t 5 b).
We can g e n e r a l i z e some o f t h e r e s u l t s o f Sec-
a2/at2 +
t i o n 1.3 t o t h e case o f L = place o f 3
Co(D(A)),
0 i s u n i f o r m l y w e l l posed under
t h e hypotheses o f Lemma 5.11 ( 0 5 Remark 5.21
E
(a(t)+B(t))
a/at + y(t) i n
2m+l / a t 2 + (7) a / a t ; t h e d e t a i l s are i n C a r r o l l [8].
Thus one considers f o r 0 5
T
5 t 5 b e.g.,
Lw + Q ( t ) A x
*
w
=
I
S , and w ~ ( T =) 0 w i t h C o n d i t i o n 3.1 on A(y) f u l -
W(T) = T
E
filled.
I t i s i n t h i s problem t h a t t h e a n a l y t i c i t y o f Z, Y,
etc. i n A i s u t i l i z e d ( c f . Lemmas 5.8,
64
5.9,
and 5.13).
0,
SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPD TYPE
1.
One proves t h a t t h e unique s o l u t i o n w
*
problem i s g i v e n by w ( t ) = Z(t,-c)
2 ' C ( S ) o f t h i s general
E
T where Z(t,-r)
=
F-'Z(A(y),t,-r)
and t h e problem i s u n i f o r m l y w e l l posed. Remark 5.22
I n C a r r o l l [ l o ; 111 some s e m i l i n e a r versions
o f t h e s i n g u l a r Cauchy problem were t r e a t e d by s p e c t r a l methods. L e t L be as above and c o n s t r u c t , under t h e hypotheses o f Lemma 5.11,
r e s o l v a n t s Z(A,t,-r)
Then consider
as above.
and Y(A,t,-c)
in H (L+Q(t)A)w+ f(t,w)
(5.45)
(0 5
T
5 t 5 b).
w,(T)
= 0
and
= e-'Z(-,t,T)e
Y(t,T)
=
belong t o Ls(H))
w ( t ) = Z(t,r)T
(5.46)
D(A);
E
F o l l o w i n g Theorem 5.19 t h i s leads t o t h e i n t e -
g r a l e q u a t i o n (where Z(t,T) e-'Y(-,t,r)O
w(T.) = T
= 0;
-
i:
Y(t,S)f(S,w(S))dS
Tw
=
Now p a r t s o f Lemma 5.16 can be somewhat improved by u s i n g e s t i mates a l r e a d y e s t a b l i s h e d p l u s some s t r o n g e r v a r i a t i o n s ; f o r example one can show t h a t ( t , t ) t
-f
Z(t,.r)
E
C 1(Ls(D(A 112 ),H)
can produce an e s t i m a t e T
+
Y(t,<)
( c f . (5.27)
I Y I 2 (A,t,-c)
Co(Ls(H,D(A 112 ) ) ) and
E
f o r Z and f o r Y one
h
5 c/A f o r A > 0 and 0 5
5 t 5 b, s t r o n g e r than t h a t o f L e m a 5.15
3).
c f . a l s o Chapter
One l o o k s f o r f i x e d p o i n t s of T u s i n g some m o d i f i c a t i o n s o f
a technique o f FoiaT-Gussi-Poenaru [l;21. assume [/;(S,V)
-
5
For example i f we
-, +.
f(S,v)
-f(<,U)l[
= A112f(SyA-1v)
E
Co(H) f o r v
5 k l ( < ) w l ( ~ ~ v - u ~where ~) kl 65
E
E
L
1
Co(H) w i t h and w1 i s an
SINGULAR AND DEGENERATE CAUCHY PROBLEMS E
Osgood f u n c t i o n (i.e.,
dp/wl(p)
-
Ilf(C,V)ll 5 k 2 ( E , ) ~ 2 ( j l v l l )where k2
P
f u n c t i o n ( i .e.,
e x i s t s a unique s o l u t i o n w
E
E
L 1 and w2 i s a Wintner
posed.
E
E
> 0) , then t h e r e
on [o,b].
with w
Co(D(A)) w h i l e (5.45)
Fur-
C2(H), w
E
E
i s uniformly well
The improved estimate on Y a l s o leads t o a s t r o n g e r ver-
s i o n o f Theorem 5.19 where o n l y f w
E
E
Co(D(A)) o f (5.46)
thermore, t h i s s o l u t i o n s a t i s f i e s (5.45) C1(D(A1l2)), and w
> 0) w h i l e
00
for
dp/w2(p) =
JE
for
=
0
2 C (H), w
E
C’(D(A’/2)),
a n o n l i n e a r term t o f(t,w)
and w
E
Co(D(A’/2))
E
Co(D(A)).
i s required while One can a l s o add
i n (5.45) which generates a compact
operator i n H and o b t a i n another existence r e s u l t f o r (5.45).
EPD equations i n general spaces.
1.6
We go now t o a
technique o f Hersh [l;21 i n Banach spaces which was generalized by C a r r o l l [18; 19; 24; 251 t o more general l o c a l l y convex spaces ( c f . a1so Bragg
[lo] , Carrol l-Dona1 dson
[203 , Dona1dson 11 ; 51 ,
Thus l e t E be a complete
Donaldson-Hersh 161, Hersh [ 3 ] ) .
separated l o c a l l y convex space and A a closed densely defined l i n e a r o p e r a t o r i n E which generates a l o c a l l y equicontinuous group T ( * ) i n E ( c f . remarks a f t e r D e f i n i t i o n 6.3). that T(t) T(t)e
E
E
This means
L(E) f o r t E R , T ( t ) T ( s ) = T ( t + s ) , T(o) = I , t
Co(E) f o r e
E
+
E, and given any (continuous) seminorm
p on E t h e r e e x i s t s a (continuous) seminorm q such t h a t p ( T ( t ) e ) 5 q(e) f o r
t
+
0 for e
It\ 5 E
t o<
00
(any to); a l s o l i m ( T ( t )
D(A) (dense).
-
I ) e / t = Ae as
We r e f e r here t o Komura [ l l and
Dembart [ll f o r l o c a l l y equicontinuous semigroups or groups and 66
SINGULAR PARTIALOIFFERENTIALEQUATIONSOF EPD TYPE
1.
remark t h a t i t i s a b s o l u t e l y necessary t o consider such groups i n " l a r g e " spaces E i n o r d e r t o deal f o r example w i t h growth propert i e s o f t h e s o l u t i o n s of c e r t a i n d i f f e r e n t i a l equations (see a l s o f o r example Babalola [l] , Komatsu [l]a Lions [71 a Miyadera 111 , O u c i i [ll, Schwartz [6]
a
Waelbroeck [l] , Yosida [ll, e t c . f o r
o t h e r "general" semigroups
-
f o r s t r o n g l y continuous semigroups
i n Banach spaces see H i l l e - P h i l l i p s [21). L e t us consider now t h e problem
wTt +
(6.1)
f o r wcC'(E).
2m+l
m = A2wm. wt , w"(0) = eED(A2);
wY(0) = 0
Following Hersh [l]one replaces A by a/ax and
looks a t
which i s a r e s o l v a n t equation as i n Section 3 whose s o l u t i o n
^Rm
= FRm i s given by (3.6) w i t h z = ty.
We r e c a l l t h e Sonine
i n t e g r a l formula (4.6) and p i c k p = -1/2, 2p + 1 = 0 = n Theorem 4.12).
-
which corresponds t o n 1, as t h e p i v o t a l index (note p = 7 - 1 as i n
C l e a r l y t h e unique s o l u t i o n o f (6.2) w i t h m =
-1/2 i s R - ' / 2 ( * , t ) (4.6),
u x ( t ) = 1/2[&(x+t) + ~ S ( x - t ) ] so t h a t , from
f o r m > -1/2
(6.3)
where c,
=
; I' ,e
Rm(=,t) =
1 ( 1 - A m - 7 vx(St)d6
2 r (m+l)
r(1/2)r(m o 2m-= cm] (1-6 ) 2 6(x-ct)d< -1
=
(note t h a t b(x?Ct) could be used i n the 67
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
l a s t expression i n (6.3) because o f symmetry i n v o l v e d i n vx - c f . (6.6)). (6.4)
Now one w r i t e s f o r m a l l y wm(t) =
T(=)e>
as t h e s o l u t i o n of (6.1) where f o r t f i x e d <, > denotes a p a i r i n g between t h e d i s t r i b u t i o n Rm(*,t) E
Co(E).
Note here t h a t f o r e
E
E
EI( o f order zero and T ( - ) e
2 D(A ), T ( - ) e
T ( x ) e = AT(x)e = T(x)Ae, and o f course t Section 1.3.
-+
E
2 C (E) w i t h
Rm(*,t)
E
d
Cm(Ei) from
I f we w r i t e o u t (6.4) i n terms o f (6.3) t h e r e
results (6.5)
1 2 ) m-- 2
wm(t) = C,,,/;~(~-S
< s(x-St),
T(x)e > dS
which coincides w i t h the formula e s t a b l i s h e d by Donaldson [l] using a d i f f e r e n t technique. wrn(t) = 2cm
/
2 m - -1 (1-S ) 2 cosh(A
where cosh A S t = 1 / 2 [ T ( S t ) cosh (ASt)e.
We can a l s o use t h e formula
+ T(-St)l w i t h < u x ( S t ) , T(x)e
> =
To v e r i f y t h a t (6.4) represents a s o l u t i o n o f (6.1)
one can o f course work d i r e c t l y w i t h the v e c t o r i n t e g r a l s (6.5)
or (6.6) b u t we f o l l o w Hersh [l]and C a r r o l l [18; 19; 24; 251 i n t r e a t i n g (6.4) as a c e r t a i n d i s t r i b u t i o n p a i r i n g . R:(*,t),
= AxRm(*,t) a r e a l l o f order less than o r
and R:,(-,t)
equal t o two i n E
Thus Rm(*,t),
I
w i t h supports contained i n a f i x e d compact
68
StNGULAR PARTtAL DIFFERENTIAL EQUATIONS OF EPD TYPE
1.
set
K
xo +
=
Bl
Ix;
1x1 5
xol
for 0 5 t 2 b <
If S
f o r any f3 > 0.
E
m
and we l e t
A
K
1x1 5
= {x;
I
i s o f o r d e r l e s s than o’r equal Z A 1 t o two w i t h supp S C K we can t h i n k o f S E C (K) ( c f . Schwartz E
ill). Recall f u r t h e r t h a t on *K,C 2 ( E ) = C Z gA) E (see e.g., E
111) where t h e
E
Treves
2 topology on C @ E i s t h e topology o f u n i f o r m
convergence on p r o d u c t s o f equicontinuous s e t s i n ( C 2 ) ’ x E
I
.
It
i s easy t o show (see C a r r o l l [18] f o r d e t a i l s ) a
Lemma 6.1 tinuous f o r
The composition S + <S,p-: C 2 ( i ) ’
$E
C2(E) f i x e d .
(defined by (A x I )
1 $i
-+
E i s con-
The map A @ 1 : C2(E) = C O G E E
8ei =
1
8’ei)
i s continuous.
L e t us i n d i c a t e f i r s t t h e formal c a l c u l a t i o n s necessary t o show t h a t (6.4) i s a s o l u t i o n o f (6.1), t h e same t i m e some r e c u r s i o n r e l a t i o n s .
while establishing a t Their v a l i d i t y i s
e s s e n t i a l l y obvious upon s u i t a b l e i n t e r p r e t a t i o n ( c f . below). Thus, from (6.4) and (3.11) transformed,
w F ( t ) =
-2(m+lJ t
T(-)e> =
T(ii3-T
T(-)A2e>
1 (1-5 2 ) m+- 2
T(Ct)A*edE
S i m i l a r l y from (6.4) and (3.12) transformed
69
,t ) , T (
) e>
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
-
, T( * ) e > ]
=
2mt
-
[wm-l ( t )
Then d i f f e r e n t i a t i n g (6.7) and using (6.7)
-
wm( t ) l (6.8) we
The c a l c u l a t i o n s under t h e b r a c k e t <, > can be
o b t a i n (6.1).
j u s t i f i e d using Lemna 6.1 and i n o r d e r t o t r a n s p o r t A around i n (6.7) one can t h i n k of <, > as a d i s t r i b u t i o n p a i r i n g over the h
i n t e r i o r o f K (cf. Carroll [l8]). 2 and E as above ( e E D(A ) ) Theorem 6.2
The e q u i v a l e n t formulas (6.4) - (6.6) g i v e a
s o l u t i o n t o (6.1) f o r m 2 d i c a t e d by (6.7)
This proves, given A, T ( t ) ,
-
-
1/2 and t h e irecursion r e l a t i o n s i n -
(6.8) a r e v a l i d .
The q u e s t i o n o f uniqueness f o r (6.1) had seemed t o be r a t h e r more complicated than t h a t o f e x i s t e n c e b u t a new theorem o f C a r r o l l [26] (Theorem 6.5) gives a s a t i s f a c t o r y r e sponse.
There a r e several types o f theorems a v a i l a b l e ( c f .
C a r r o l l [18; 24; 25; 261, Carroll-Donaldson [201, Donaldson 111, Donaldson-Goldstein [2], Hersh [ l ] ) .
The f i r s t one we discuss
( f o r completeness) i s based on a v a r i a t i o n o f t h e c l a s s i c a l " a d j o i n t " method and simp1 i f i e s somewhat t h e p r e s e n t a t i o n i n C a r r o l l [18]; i t i s n o t as s t r o n g however, as Theorem 6.5. D e f i n i t i o n 6.3 adapted i f E
I
The space E (as above) w i l l be c a l l e d A-
*
i s complete and D(A ) i s dense.
When E i s A-adapted (A being t h e generator o f a l o c a l l y
70
SINGULAR PARTIAL DIFFERKNTIAL EQUATIONSOF EPD TYPE
1.
equicontinuous group i n E) i t f o l l o w s ( c f . Komura [ll)t h a t
*
generates a l o c a l l y equicontinuous group T ( t ) i n E
I
.
A*
The r e -
quirement o f completeness i s a l u x u r y which we p e r m i t ourselves for simplicity.
Indeed, f o r t h e d i s c u s s i o n o f l o c a l l y equi-
continuous semigroups s e q u e n t i a l completeness i s s u f f i c i e n t ( i n view o f t h e Riemann t y p e i n t e g r a l s employed f o r example).
Thus,
i n p a r t i c u l a r , i f E i s r e f l e x i v e ( n o t n e c e s s a r i l y complete) hence s e q u e n t i a l l y t h e n i t i s quasicomplete ( c f . S c h a e f f e r [l]), complete, as i s t h e r e f l e x i v e space E
I
*
, and
A
*
w i l l generate a
*
I
l o c a l l y equicontinuous group T ( t ) i n E w i t h D(A ) dense ( c f . Komura [ll).We remark a l s o t h a t i f E i s b o r n o l o g i c a l then E
I
i s i n f a c t complete ( c f . Schaeffer [l]). We use completeness
2 2 ^ b a s i c a l l y o n l y i n a s s e r t i n g t h a t C ( E ) = C BEE b u t a v e r s i o n o f t h i s i s p r o b a b l y t r u e f o r E s e q u e n t i a l l y complete; t h e i n crease i n d e t a i l and e x p l a n a t i o n throughout our d i s c u s s i o n does n o t seem t o j u s t i f y t h e refinement however. We c o n s i d e r now t h e r e s o l v a n t s Rm(-,t,.r) S e c t i o n 3 when A(y) = y S e c t i o n 4). Sm(*,t,T)
2
w i t h Ax = -A
and 2
X
= - 3 /ax
2
Sm(*,t,T)
of
(cf. also
We r e c a l l ( c f . Lemma 4.3) t h a t R m ( - , t , r )
and
belong t o E i , w i t h s u i t a b l e o r d e r s ( e x e r c i s e ) , and
Lemna 3.13 h o l d s w i t h OM replaced by Exp OM = F E
I
.
Thus l e t
w m ( t ) s a t i s f y (6.1) w i t h wm(0) = wF(0) = 0 and consider ( f o r an A-adapted E) (6.9)
um(t,<) = <Sm(*,t,<),
T*(*)el>
71
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
where el
E
"2 D ( ( A ) ) (dense); wm i s any-
necessarily a r i s i n g from ( 6 . 4 ) . (6.10)
uF(t,<)
<(-Rm(-,t,<)
=
-vrn(tL)
+
+
*
I
(*)e>
2m+l m S ( - , t , < ) )T, ( * ) e > 5 *
*
T ( - ) e l > . Further, from (3.16),
*
v m ( t , < ) = -
5
-
< and
has been replaced by
wm i s any-
i n i t i a l data; then i n t e g r a t e i n
(6.12) (6.13)
f:1
<
from 0 t o t ( c f . (3.18)
0
FE
2m W
= +
um(tY<)>Ed< =
( < I S
-1
(51, um(t,E)>EdE =
-1
t
1
t
i n (6.1), where t
solution of (6.1 ) w i t h zero
We note f i r s t t h a t
<w
um(t,<)
< S m ( - , t , < ) , AT*(-)e'> = -(A*)2
Now take (E, E l ) brackets <, >E with u " ( t , < )
(3.20)).
I
2m+l m 7 u (t,<)
where v m ( t , < ) = < R m ( - , t , < ) , (6.11)
Then from (3.17)
= < S ~ ( - , t , 5 ) .T
=
solution of ( 6 . 1 ) , not
t
I
<wF(<)Y
0
t
<Wm(<),
0
-
uT(tY<)>Ed5 (A
* 2 m U
(tY<)'Ed<
m
< w m ( < ) , vF(t,S)>EdS = - < w ( t ) ,
0
0
w;(<)Y
vm(tY<)>Ed<
E 0 f o r any el E Consequently, u s i n g (6.10), < w m ( t ) , " 2 D ( ( A ) ) (dense) - which implies t h a t w m ( t ) E 0 - s i n c e we w i l l
have from ( 6 . 1 ) , (6.12), and (6.13)
72
SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPD TYPE
1.
Theorem 6.4
I f E i s A-adapted then t h e s o l u t i o n t o (6.1),
g i v e n by Theorem 6.2,
i s unique.
This uniqueness theorem has been i n c l u d e d p r i m a r i l y t o i l l u s t r a t e t h e a d j o i n t method.
I f can be supplanted by t h e
f o l l o w i n g r e c e n t r e s u l t of C a r r o l l [26] which was motivated by (and improves) a r e s u l t i n C a r r o l l [18] based p a r t i a l l y on a technique o f F a t t o r i n i [l]. Theorem 6.5
For Rem >
-
1/2 l e t wm be any s o l u t i o n of
6.1)
w i t h zero i n i t i a l data and l e t A generate a l o c a l l y equicont nuous group T ( x ) i n E as above. Proof:
Then wm(t)
5
0.
We n o t e f i r s t t h a t o u r existence-uniqueness c a l -
c u l a t i o n s i n Sections 3-4 a r e v a l i d f o r s u i t a b l e complex m (Rem 2
-
1/2), as i n d i c a t e d p a r t i a l l y i n Section 5, b u t we w i l l
not s p e l l out the details.
Thus o u r demonstration i s s t r i c t l y
j u s t i f i e d only f o r real m 2
-
Sm(*, t, s ) w i t h Ax = 6.4.
-
1/2.
We use R m ( * , t ,
s ) and
2 2 Ax = - a /ax as i n t h e p r o o f of Theorem
Define, w i t h b r a c k e t s as i n (6.4),
(6.15)
R(t,s)
=
T ( - ) wm(s)>
(6.16)
S(t,s)
= <Sm(-,t,s),
T ( * ) w:(s)>
73
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
-
Then e v i d e n t l y ( c f . (3.16)
(3.17) and t h e c a l c u l a t i o n s l e a d i n g
t o Theorem 6.4) (6.17)
RS(t,s) =
-
<Sm(*,t,s),
+
Ss(t,s)
(6.19)
(R+S),(t,s)
Consequently $ ( t , o )
m
R (*,t,t)
T(*)W:(S)>
= <-Rm(-,t,s)
+ <Sm(*,t,s),
+ 2m+l
m
S (-,t,s),
T(*)w;(s)>
T(*)w;,(s)> =
=
T ( * ) A2wm(s)>
$,(t,s)
$(t,t)
= 6 we have $(t,o)
=
0
and r e c a l l i n g t h a t S"(-,t,t) = 0 = $(t,t)
=
0 with
= wm(t).
We sketch here i n passing some r e l a t i o n s o f (4.6)
(IED
and (4.10)
t o t h e Riemann-Liouville (R-L) i n t e g r a l ( c f . C a r r o l l [18; 191, Donaldson [l], and Rosenbloom [l]); questions o f uniqueness f o r i n E can be t r e a t e d i n t h i s c o n t e x t b u t Theorem 6.5 i n -
(6.1)
cludes e v e r y t h i n g known.
The r e l a t i o n o f
EPD equations t o R-L
i n t e g r a l s was o f course known by Diaz, Weinberger, Weinstein, etc. many years ago and some f a c t s a r e o f obvious general i n t e r We r e c a l l f i r s t ( c f . Riesz [l]) t h a t t h e R-L i n t e g r a l o f
est. f
E
Co o r " s u i t a b l e " f
(6.20)
(Iaf)(t) =
E
L1 i s d e f i n e d f o r Re a > 0 b y
t m1 io ( t - s ) a - ' f ( s ) d s
74
1.
SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPD TYPE
One can o b v i o u s l y deal w i t h f
E
Co(E) f o r example i n the same
manner and we w i l l assume f i s E valued i n what follows. Re a > -p (p
for f
E
2
For
1 an i n t e g e r ) t h e " c o n t i n u a t i o n " o f I' i s given by
Cp(E) o r f
CP-'(E) w i t h f ( ' ) ( = )
E
E
L 1 (E) " s u i t a b l y " .
= IatBa except p o s s i b l y when B i s a negative One knows t h a t IaIB
i n t e g e r B = - p a where IqPf= f(')a f('-')(o)
i n which case f ( o ) =
i s r e q u i r e d i n order t h a t
= 0
...=
i n general,
=
i s d e f i n e d t o be t h e i d e n t i t y . E v i d e n t l y ( d / d t ) ( I " f ) = and Io I"-1 f f o r any a. We record now some e a s i l y e s t a b l i s h e d f a c t s . Lemna 6.6
If f
E
Cn+'(E) w i t h -n < Re a 5 -n
+ 1 and
a
n o n i n t e g r a l then (6.22)
(I"f)'(t)
= (Ia-'f)(t)
I f f ( o ) = 0 o r a = -n w i t h f (6.23)
(Iaf)l =
-*-+
Cn+'(E)
(Iafl)(t) then
= Ia-lf
Iafl
(when Re a > 0 (6.22) w i t h -n < Re a 5 -n
E
=
-
(6.23) h o l d f o r f
+ 1 or
a = -n ( o r f
E
E
1 C (E)).
If f
E
Cn(E)
Co(E) when Re a > 0)
then (6.24)
t(I"f)(t)
Proof:
= (I"(sf))(t) + a(Iat'f)(t)
Routine computation y i e l d s (6.22)
(6.24) f o l l o w s by an i n d u c t i o n argument.
75
-
(6.23) and
QED
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Now, r e f e r r i n g t o t h e Sonine i n t e g r a l formula (4.6) ( c f . a l s o (6.3) and (6.6)), (6.25)
Rm(*,-r1/')
we can w r i t e , a f t e r a change o f v a r i a b l e s ,
I
m- 1
f
=
(T-S)
's
_1_ _1_ 'R
2(-,s1/2)ds
0
as before.
where cm =* . (6.26)
p(t) =
w i t h wm(t1/')
m m
L e t then
1/2
=
i t f o l l o w s from (6.25) t h a t
f o r Re m > -1/2 1 (6.27)
Wm(t) = (I?W-')(t)
S e t t i n g i m ( t ) = wm(t'/')
zt'/'
1
i t i s easy t o show (note t h a t
=
( a/ a t ) *
Lemma 6.7
Given wm, w",
and Wm as above, where wm s a t i s f i e s
t h e d i f f e r e n t i a l equation i n (6.1), (6.28)
4tqt
+ 4(m+l)wy
= A2im
(6.29)
4tWyt
-
= A2Wm
Remark 6.8 [18;
a/at'/*
4(m-l)W:
one has f o r Wm
E
C2(E)
A previous uniqueness argument ( c f . C a r r o l l
191) f o r n o t n e c e s s a r i l y A-adapted E proceeded from w" any
s o l u t i o n - o f (6.1) w i t h zero i n i t i a l data t o Wm determined by 1 (6.26) and d e f i n e d W - l " = I-m-'i W", t o g e t h e r w i t h t h e corresponding w-'".
Then, u s i n g Lemma 6.6,
given s u i t a b l e ( b u t ex-
cessive) hypotheses of d i f f e r e n t i a b i l i t y and " r e g u l a r i t y " on Wm,
76
SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPD TYPE
1.
W-l"
was shown t o s a t i s f y (6.29) w i t h index -1/2,
and a unique-
ness theorem f o r t h e corresponding w - l l 2 was e s t a b l i s h e d (weaker This l e d t o uniqueness f o r wm under s u i t a b l e
than Theorem 6.5). hypotheses.
One f e a t u r e o f t h e technique i n v o l v e d embedding Wm
i n a "Weinstein complex'' determined by ( c f . (4.10)
where p i s an i n t e g e r ( 0 5 p S c1
a r e chosen so t h a t -1/2 = m
1 7 < Re
m < k +
R = k + 2). hold.
3 7, k
(4.10)
fl+a-p(o)
= -1,
a ) and Re
+
a
0, 1, 2,
-
a > 0 or a = 0
( a and
R which means t h a t i f k +
. . ., then
3 a = k +7
propagates i n i t i a l values and (6.7)
and WT+a-P(o) (m+a-p 2
-
and t o study t h i s one notes from (6.28)
T1 )
-
- m with - (6.8)
are c r i t i c a l i n (6.30)
(6.29) t h a t Wm cor-
responds t o some w - ~( f o r any index m) which we w r i t e i n the form (6.31 )
Wn ( t ) = i - n ( t ' l 2 ) / r (n+l )
f o r some i - n ( * ) s a t i s f y i n g the d i f f e r e n t i a l equation i n (6.1) w i t h index -n.
The connection i s somewhat i n t e r e s t i n g and i t i s
s u f f i c i e n t t o i n d i c a t e t h i s f o r t h e c r u c i a l index 1/2 (note w1/2 = w-1/2 and i n (6.26) W-'"(O) t i n s u r e W-'/2(o)
= 0).
= 0 does n o t a u t o m a t i c a l l y
Thus d i f f e r e n t i a t i n g (6.31) w i t h index 1/2
and n o t i n g t h e obvious d i f f e r e n c e between f t ( t ' / ' ) (d/dt)f(t'/') (6.32)
and f ( t 1 / 2 ) t =
we o b t a i n ( c f . (6.26))
Ft 1 -1/2w1/2(t1/2)
+
t 1/2w1/2(t1/2)
77
= ;-l/2(t1/2)t
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
whereas from (6.8) w i t h index 1/2 we have ( s i n c e
(6.33)
2t
=
1/2( p ) ,
-
Consequently from (6.32) (6.34)
a / a t 112
we have
= 2 t1 / 2 w Y 2 ( t1/2)
w-1’2(t1’2)
and thus given
(6.33)
W-’/~(O)
= 0 there results
0
Therefore i-1’2(t1’2)t0 as t -+
means b y (6.31)
-t
0 s i n c e w;’/’(<)
= W-l/‘(t)
t h a t W;/‘(t)
-t
-+
0 as t
-f
0 which
0, as desired.
In any event we have e x i s t e n c e and uniqueness determined by Theorems 6.2 and 6.5 and some new growth and c o n v e x i t y theorems w i l l f o l l o w , w i t h r e a l i s t i c examples, o f a t y p e f i r s t developed by C a r r o l l [18;
19; 251.
Thus, r e f e r r i n g t o (6.6)
-
and t a k i n g now m r e a l so t h a t cm > 0 f o r m > -1/2 we
(6.7),
have under t h e hypotheses o f Theorem 6.2 Theorem 6.9
Let
E be a space o f f u n c t i o n s o r equivalence
classes o f f u n c t i o n s and assume e 0 ( m >_ -1/2).
Proof: (6.36)
2 D(A2) w i t h cosh (At)A e >_
Then w m ( * ) i s a nondecreasing f u n c t i o n o f t. From (6.6)
m
E
wt(t)
=
-
(6.7) we have f o r m
tA’ 2(m+17 w“+’(t)
1
m-+ 1
m+l 78
t
-1/2
2 cosh(A6t)A e dS 2 0
QED
SINGULAR PARTIAL DIFFERENTIAL EQUATIONSOF EPD TYPE
1.
Next we r e c a l l t h a t ( f r o m S e c t i o n 4) L i =
2m
a/at
+
t
a 2/ a t 2
= (2m) t -2(2m+1) a2/a2(t-2m) f o r m
t
0 w h i l e Lot =
t-2 a2/a2(10g t ) . The d i f f e r e n t i a l equation i n (6.1) can be
w r i t t e n as L k P = A2wm so we have from (6.6) 1 1 ni-(6.37)
Lmw t m ( t ) = 2cm
1
(1-5
w i t h m > -1/2 r e a l
cosh(A5t)A2e d5
0
Theorem 6.10
Under t h e hypotheses o f Theorem 6.9,
a convex f u n c t i o n o f t-2m for m Proof:
+ 0 and o f l o g t f o r m
~"(0)i s = 0.
The r e s u l t f o r m = -1/2 i s obvious s i n c e w - ' l 2 ( t )
cosh(At)e and t h e r e s t f o l l o w s from (6.37).
=
QED
L e t E = Co(IR) w i t h t h e topology o f u n i f o r m
Example 6.11
The o p e r a t o r A = d/dx generates a
convergence on compact sets.
l o c a l l y equicontinuous group ( T ( t ) f ) ( x ) = f ( x + t ) which i s n o t
I f f L 0 then e v i d e n t l y T ( t ) f 2 0 f o r t
equicontinuous.
t o f u l f i l l t h e hypotheses o f Theorems 6.9 f i n d e = f such t h a t A 2 f = f
I I
we need o n l y
and we do indeed want t o
+
E t o p e r m i t such growth.
L e t E = C"( R3)
Example 6.12
R so
2 0; such f u n c t i o n s are abundant,
b u t o f course t h e y increase as t work i n " l a r g e " enough spaces
- 6.10
E
x
C"( R3) where C"( R3) has
the Schwartz topology and r e c a l l t h e mean value operators p,(t) and A x ( t ) d e f i n e d i n S e c t i o n 2 which we extend as even f u n c t i o n s f o r t negative. (6.38)
A
=
Define 0 (A
1
) ; A 2 =
79
A (0
0 A1
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
where A i s the three-dimensional Laplacian.
Then A generates a
l o c a l l y equicontinuous group T ( t ) i n E a c t i n g by convolution (i.e., T ( t ) ?
=
T(t)
* 1) determined
by
One notes again t h a t T ( t ) i s not equicontinuous.
From (6.39) i t
follows t h a t cash A t
(6.40)
so t h a t cosh A t
=
72
u,(t) + gt 2 A 2A x ( t ) 0 provided
?2
0 and A2? 2 0.
Given
7
=
fl ( f ) t h i s means t h a t f i 2 0 w i t h A f i 2 0. T h u s i n order t o apply 2 Theorems 6.9 - 6.10 we want ? such t h a t A 2' f 2 0 and A4? 2 0 (i.e., 2 A f i 2 0 and A f i 2 0) w h i c h i s possible e.g., when f i ( x ) = i exp l y j x j . Again the necessity of using "large" spaces E i s apparent.
W e note a l s o from (6.39) t h a t T ( t ) and T ( - t ) behave
q u i t e d i f f e r e n t l y r e l a t i v e t o the preservation of p o s i t i v i t y . Analogues of these growth and convexity theorems f o r other "canonical" singular Cauchy problems appear i n Carroll [18; 19; 251 ( c f . a l s o Chapter 2 ) . 1.7
Transmutation.
The idea of transmutation of operators
goes back t o Delsarte and Lions ( c f . Delsarte [ l ] , DelsarteLions [2; 31, Lions [ l ; 2 ; 3; 4;
51) with subsequent contributions 80
1.
SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPD TYPE
by Carroll-Donaldson [ZO],
Hersh 131, Thyssen [l;23, e t c .
The
s u b j e c t has many y e t unexplored r a m i f i c a t i o n s and i s connected w i t h t h e q u e s t i o n o f r e l a t e d d i f f e r e n t i a l equations ( c f . BraggDettman, l o c . c i t . ,
Carroll-Donaldsoc [20],
Hersh [3]); we expect
t o examine t h i s more e x t e n s i v e l y i n C a r r o l l [24].
This section
t h e r e f o r e w i 11 be p a r t i a1 l y h e u r i s t i c and t h e word " s u i tab1 e"
w i l l be used o c c a s i o n a l l y when convenient w i t h p r e c i s e domains of d e f i n i t i o n u n s p e c i f i e d a t times. One f o r u m l a t i o n goes as f o l l o w s .
L e t Dx = a/ax and Dt =
a / a t and c o n s i d e r polynomial d i f f e r e n t i a l operators P Q = Q(D)
(D = D, o r Dt).
= P(D) and
One says t h a t an o p e r a t o r B transmutes
P i n t o Q i f ( f o r m a l l y ) QB = BP.
B w i l l u s u a l l y be an i n t e g r a l
o p e r a t o r w i t h a f u n c t i o n o r d i s t r i b u t i o n k e r n e l and i n f a c t one o f t e n assumes t h i s a p r i o r i , a l t h o u g h i t i s perhaps t o o r e s t r i c t i v e ( c f . Remark 7.3).
One p i c k s a space o f f u n c t i o n s f ( t h e
choice i s v e r y i m p o r t a n t ) and considers t h e problem
(7.2)
@(x,o) = f ( x ) ;
where 1 5 k 5 m
-
k Dt@(x,o) = 0
1 w i t h m = o r d e r Q.
p u t @ ( o , t ) = ( B f ) ( t ) and w r i t i n g $ ( x , t ) sul t s
81
x,t
2
0
I n o r d e r t o d e f i n e B we = P(Dx)@(x,t) t h e r e r e -
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
One may w i s h t o extend f and P (D )f a p p r o p r i a t e l y f o r x < 0 when d e s i r a b l e o r necessary. (7.5)
There r e s u l t s f o r m a l l y
uJ(o,t)
and e v i d e n t l y i t have const ant c o e f f i c i e n t s .
-
t h a t (7.1)
(7.2)
I t i s however necessary t o suppose
have a unique s o l u t i o n i n o r d e r t o w e l l d e f i n e
-
B; t h e same uniqueness c r i t e r i o n a p p l i e s t o (7.3)
(7.4)
but
t h i s w i l l o f t e n be t r i v i a l i f f i s chosen i n t h e r i g h t space. Theorem 7.1 (7.4))
Suppose t h e problem (7.1)
has a unique s o l u t i o n
+
-
(7.2)
(resp. (7.3)
(resp. $) w i t h f i n a s u i t a b l e
space so t h a t (7.5) makes sense and d e f i n e g e n e r i c a l l y ( B f ) ( t ) = +(o,t).
Then B transmutes P(D) i n t o Q(D). 2 L e t P(D) = D
L e t us i n d i c a t e some simple a p p l i c a t i o n s .
-
and Q(D) = D so t h a t (7.1)
(7.2)
become
We prolong f as an even f u n c t i o n and take p a r t i a l F o u r i e r t r a n s A 2^ s ( F f = f ) t o o b t a i n +t = - s @ w i t h i ( s , o ) = f ( s ) . A
forms x
+
A
The s o l u t i o n i s + (s ,t)
2 f ( s ) exp ( - s t ) and i f A
=
A
82
A
-
1.
SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPD TYPE
(7.7)
2
i t i s known t h a t FxR(x,t) Hence ( R ( * , t )
*
= exp ( - s t ) ( c f . Titchmarsh [Z]).
f ( - ) ) ( x ) = @(x,t) and r e c a l l i n g t h a t f i s even
there r e s u l t s
(7.8)
@ ( o y t )= ( B f ) ( t ) =
( c f . Carroll-Donaldson [ZO]).
(7.5) w i l l h o l d provided f
I
c
f(S)K(S,t)dS
An easy c a l c u l a t i o n shows t h a t
(0) =
0 and o f course f, f
I
, and
f
I 1
must have s u i t a b l e growth a t i n f i n i t y .
Now t h e r e i s no d i f f i c u l t y i n extending t h e transmutation i d e a t o v e c t o r f u n c t i o n s f w i t h values i n a complete separated l o c a l l y convex space E.
For example suppose t h a t A i s a s u i t a b l e
(closed, densely d e f i n e d ) o p e r a t o r i n E w i t h g(A) a reasonable o p e r a t o r f u n c t i o n and l e t P(D)w = g(A)w where w takes values i n E ( a c t u a l l y i n D(g(A)) s i n c e A may n o t be everywhere defined).
I f B transmutes P i n t o Q then f o r m a l l y Q(D)Bw = BP(D)w = Bg(A)w = g(A)Bw p r o v i d e d t h a t w s a t i s f i e s t h e c o n d i t i o n s necessary f o r t h e t r a n s m u t a t i o n and t h a t Bw
E
D(g(A)).
I n t h i s event u = Bw w i l l
s a t i s f y Q(D)u = g(A)u and t h e r e a r i s e s t h e general q u e s t i o n o f when t h i s s i t u a t i o n can p r e v a i l .
I f B i s an i n t e g r a l o p e r a t o r o f
Riemann type w i t h a f u n c t i o n k e r n e l then g(A) can be passed under t h e i n t e g r a l s i g n and t h i s p a r t o f t h e q u e s t i o n i s t r i v i a l up t o t h e p o i n t where i n i t i a l o r boundary values a r i s e .
As an ex-
ample l e t us consider t h e case ( c f . Carroll-Donaldson [ZO])
83
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
(7.9)
2 2 P(D)w = D w = A w;
(7.10)
2 Q(D)u = Du = A u;
w(o) = uo;
wt(o) = 0
u ( 0 ) = uo
IfA2 = B t h e s e a r e o f c o u r s e wave and h e a t e q u a t i o n s and t h e
c o n n e c t i n g f o r m u l a i s w e l l known, b u t we w i l l d e r i v e i t v i a t r a n s mutation.
F i r s t f o r m a l l y we use (7.8)
obtain u = Bw =
(7.11)
t r a n s m u t i n g D2 i n t o D t o
c
w(<)K(S,t)dS I
and we n o t e t h a t wt(o) = 0, c o r r e s p o n d i n g t o f ( 0 ) = 0, as r e q u i r e d i n (7.8). sumed.
S u i t a b l e g r o w t h o f w, wt, and wtt w i l l be as2 2 F u r t h e r A Bw = aA w f o r t > 0 w h i l e f o r t = 0 one must
require u
0
E
D ( A ~ ) . Consequently
Theorem 7.2 g i v e n by ( 7 . U )
wt,
and wtt
Given w a s o l u t i o n o f (7.9) s a t i s f i e s (7.10),
p r o v i d e d uo
i t follows t h a t u E
2 D(A ) w h i l e w,
grow s u i t a b l y a t i n f i n i t y .
Such r e s u l t s a r e n o t new o f course, a t l e a s t i n more c a s s i c a l forms, and we r e f e r t o Bragg-Dettman, Donaldson [ZO], Remark 7.3
Hersh [3],
loc. cit.,
Lions, l o c . c i t . ,
One can r e l a x (7.2)
Carrol
-
and r e f e r e n c e s t h e r e .
and s t u d y n o t w e l l posed
Cauchy problems ( o r o t h e r problems) w h i c h l e a d t o a unique s o l u t i o n @ ( c f . C a r r o l l - D o n a l d s o n [ZO]);
f o r example growth c o n d i -
t i o n s on @ and f c o u l d be imposed (see h e r e C a r r o l l [24]).
Lions
i n h i s e x t e n s i v e i n v e s t i g a t i o n s , chooses spaces o f f u n c t i o n s f 84
1.
SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPD TYPE
where the transmutation i s an isomorphism in the sense t h a t
there i s an inverse transmutation B - ' sending Q ( D ) i n t o P ( D ) ( i . e . PB-
era
=
B-lQ) b u t t h i s seems t o be an unnecessary luxury in gen-
, although obviously of g r e a t i n t e r e s t ( c f . Section 4 . 3 ) .
The choice of spaces f o r f i s i n any event of paramount importance f o r the transmutation method t o work.
I f B i s an i n t e g r a l opera-
t o r w i t h a function o r d i s t r i b u t i o n kernel one can begin with this a s a s t i p u l a t i o n and then discover the d i f f e r e n t i a l problem w h i c h the kernel must s a t i s f y ( n o t necessarily a simple Cauchy
problem), and we r e f e r t o Carroll [24; 251, Carroll-Donaldson [20],
Hersh [3], Lions, loc. c i t . , e t c . f o r f u r t h e r information
( c f . a l s o (7.25)).
We w i l l conclude this section w i t h a version of Lions trans2 2 mutation method sending P(D) = D i n t o Lm = D + t D (cf. a l s o Section 4.3). T h u s we look f o r a function $ ( x , t ) s a t i s f y ing
(7.12)
@xx = 4 t t
+
?m + 1 t t ;
and again we extend f t o be even w i t h f
I
(0)=
0.
This i s of
course t h e one dimensional EPD equation whose solution is given by ( 6 . 3 ) a s ( c f . Theorem 4.2)
(7.14)
$(o,t) = (Bf)(t)
=
2cmt-2m
1
t
0
85
( t -T
1 ) m-Ff(-r)d.r
SINGULAR AND DEGENERATE CAUCHY PROBEMS
which agrees w i t h Lions [l;2; 3; 51. (7.15)
1
t u = Bw = 2c t-2m ( t m
Consequently
1 ) m-Pw(-c)d-c
-T
0
i s t h e v e c t o r v e r s i o n o f (7.14) and we have Theorem 7.4 g i ven by (7.15) Proof:
I f w s a t i s f i e s (7.9) w i t h uo
E
D(A2) then u
s a t i s f i e s Lmu = A 2u w i t h u ( o ) = uo and u t ( o ) = 0. I
E v i d e n t l y (Bw)(o) = w(o) and (Bw) ( 0 ) = 0 ( c f . L i o n s
[l]where an e x p l i c i t v e r i f i c a t i o n o f (7.5)
i s also given
-
the
I
c o n d i t i o n w (0) corresponding t o f ( 0 ) = 0 i s c r u c i a l here as i n t Again A2 can be passed under t h e i n t e g r a l (7.8) and (7.11)). s i g n i n (7.15) as b e fo re i n (7.11). Remark 7.5
QED
Changing v a r i a b l e s i n (7.15) we o b t a i n (6.6)
when W (T ) i s w r i t t e n as W(T ) = cosh
Awe.
A c t u a l l y i n t h i s case t h e r e i s a l s o an i n v e r s e t r a n s m u t a t i o n o p erat or B - l b u t we w i l l n o t go i n t o d e t a i l s here (see Lions, l o c . cit.. f o r an exhaustive study o f t h e m a t t e r ) . I n Lions [3] 2 i t i s a l s o shown how t o transmute P(D) = D i n t o Q(D) = Mm = 2 D + D + p ( t ) D + q ( t ) and v i c e versa, and we w i l l sketch t some o f t h e c a l c u l a t i o n s here (p and q a r e assumed t o be conti n uous) ( c f . a l s o Hersh [S]).
Thus l e t $(x,t)
be t h e s o l u t i o n
of
(7.16) (7.17)
$(x,o)
= f(x);
$ t ( ~ , ~ =) 0
86
(x,t 2 0 )
1.
SINGULAR PARTIAL DIFFERENTIAL EQUATIONS OF EPD TYPE I
w'here f i s extended as an even f u n c t i o n w i t h f ( 0 ) = 0.
Then
again t he t rans mu ta ti o n o p e ra to r B i s determined by ( B f ) ( t ) = and s a t i s f i e s f o r m a l l y t h e tra n s m u t a t i o n r e l a t i o n MmB =
r$(o,t)
BD2, w h i l e t o c o n s t r u c t B L i o n s uses t h e f o l l o w i n g ingenious
"trick."
He sets
(7.18)
B(cos x s ) ( t ) = 0 (s ,t)
and from t h e t r a n s mu ta ti o n r e l a t i o n p l u s t h e f a c t t h a t ( B f ) ( o ) = f ( o ) we o b t a i n (7.19) w i t h e(s,o)
2 MmO(s,t) + s 0 ( s , t ) = 1 , w h i l e et(s,o)
s o l u t i o n s e(s, t )
= 0 = 0 a u t o m a t i c a l l y (.for unique
see Section 5).
Assuming now (we o m i t v e r i f i -
c a t i o n ) t h a t B i s d e fi n e d by a ( d i s t r i b u t i o n ) k e r n e l b ( t , x ) w i t h support i n t h e r e g i o n
1x1
5 t, which i s l e g i t i m a t e here b u t i s
i n p a r t i n c i d e n t a l t o t h e tra n s mu ta ti o n concept, one obtains, s i n c e f ( x ) = cos xs i s even, and b ( t , * ) w i l l be even ( v e r i f i c a t i o n f o l l o w s from (7.25) f o r example) (7.20)
0(s,t)
= 2
t
b(t,x)
cos xs dx = 2
b(t,x)
cos xs dx
0
from which f o l l o w s , by F o u r i e r i n v e r s i o n i n a d i s t r i b u t i o n sense, (7.21)
b(t,x)
Theorem 7.6
=
1
O(s,t)
cos xs ds
0
The tra n s mu ta ti o n o f D
2
i n t o Mm i s determined
by an operat or B w i t h k e rn e l d e fi n e d by (7.21),
87
where €Ii s known.
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
F u r t h e r p r o p e r t i e s a r e developed by Lions [3;
51 and a gen-
e r a l t ransmut ati o n t h e o r y w i l l be developed i n C a r r o l l [24]. Hersh's technique ( c f . Hersh 131) i s based on s p e c i a l f u n c t i o n s and k e r n e l s and leads f o r m a l l y t o t h e same r e s u l t as t h a t o f Theorem 7.6. w(t,A)
L e t us sketch t h i s f o r completeness.
Thus l e t
be t h e s o l u t i o n o f 2 Mmw + A w = 0;
(7.22)
w(o,A)
= 1;
wt(oyA) = 0
w h i l e u s a t i s f i e s ( c f . (7.10)) 2 2 D u + A u = 0;
(7.23) THen u(t,A)
=
u(0,A)
= 1;
ut(o,A)
=
0
cos A t and Hersh proposes a formula m
(7.24)
w(t,A)
b(t,x)u(x,A)dx
=
b(t,x)
=
cos Ax dx
m ,
Since (7.22) hol d s we have, p ro v i d e d b ( t , - ) w i t h reasonable smoothness (7.25)
,
Mmb(t,x) = bxx(t,x)
Th i s shows symmetry o f b (t,x ) (7.26)
has compact support
w(t,A)
=
2
[
b (t,x )
i n x and (7.24) becomes ( c f . (7.20)) cos Ax dx
Again (7.25) can be solved, as can (7.19),
by t h e methods o f
L
D e f i n i n g now B by ( B f ) ( t ) = b(t,x) f ( x ) dx we 2 have f o r m a l l y from (7.25) MmB = BD The i d e a then i s t o r e p l a c e Section 1.5.
.
A 2 by s u i t a b l e o p e ra to r f u n c t i o n s -g(A).
88
Chapter 2 Canonical Sequences of Singular Cauchy Problems 2.1
The rank one situation.
In t h i s chapter we will
develop the group theoretic version of the EPD equations studied i n Chapter 1.
This leads t o many new classes of equations and
results parallel t o those of Chapter 1 as well as t o some i n teresting new situations.
Moreover i t exhibits the main results
of Chapter 1 i n t h e i r natural group theoretic context.
The
ideas of spherical symmetry, radial mean val'ues and Laplacians, etc. inherent i n EPD theory have natural counterparts i n terms of geodesic coordinates and one can obtain recursion relations,
Sonine formulas, etc. group theoretically.
The results are
based on Carroll [21; 221 in the semisimple case and were anticipated i n p a r t by e a r l i e r work of Carroll [18; 191, CarrollSilver [l5; 16; 17) and Silver [ l ] f o r some semisimple and Euclidean cases.
The group theory i s "routine" a t the present
time and r e l i e s heavily on Helgason's work (cf. Helgason [ l ; 2 ; 3; 4 ; 5; 6; 7; 8; 9; 101) b u t one must of course refer t o basic
material of Harish-Chandra (cf. Warner [ l ;
21
for a sumnary) as
well as lecture notes by Varadarajan, Ranga Rao, e t c . ) ; other specific references t o Bargmann [ l ] , Bargmann-Wigner [2], Bhanu-Munti [l], Carroll [27; 281, Coifman-Weiss [l], EhrenpreisMautner [ l ] , Flensted-Jensen [1], Furstenberg [ l ] , Gangolli [ l ] , Gelbart [ l ] , Gelfand e t a l , [ l ; 2 ; 3; 41, Godement [ l ] , Hermann 89
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
[ l ] , Jacquet-Langlands [l], Jehle-Parke [l], Kamber-Tondeur [l], Karpelevic" [ l ] , Knapp-Stein [l], Kostant [l], Kunze-Stein [ l ; 23, Lyubarskij [ l ] , Maurin [l], McKerrell [l], Miller [ l ; 23, Naimark [ l ] , Pukansky [ l ] , RGhl [l], Sally [ l ; 23, S i m s [ l ] , Smoke [ l ] , Stein
113,
Takahashi [l], Talman [ l ] , Tinkham [ l ] ,
Vilenkin [ l ] , Wallach [ l ] , Wigner [ l ] , etc., as well as the fundamental work of E. Cartan and H. Weyl, are t o be taken f o r granted, even i f n o t mentioned explicitly.
The basic Lie theory
i s developed somewhat concisely i n t h i s section; for a rather more leisurely treatment we refer t o Bourbaki [5], Carroll [23], Hausner-Schwartz [l], Helgason [ l ; 2; 31, Hochschild [ l ] , Jacobson [1], Loos [ l ] , Serre [ l ;
21,
V
Tondeur [ l ] , Zelobenko
Ell, etc. W e will s t a r t o u t w i t h the f u l l machinery f o r the rank one semisimple case, following Carroll [21; 221, and l a t e r will give extremely detailed examples f o r special cases.
T h i s avoids
some repetition and presents a "clean" theory immediately; the reader unfamiliar w i t h Lie theory m i g h t look a t the examples f i r s t where many d e t a i l s and definitions are covered.
We delib-
erately omit the treatment of invariant differential operators acting in sheaves o r i n sections of vector bundles even t h o u g h t h i s i s one of the more important subjects i n modern work (some references are mentioned above).
The preliminary material will
be expository and specific theorems will n o t be proved here. The Eucl idean group cases have been covered in Carroll -Si 1 ver [15; 16; 171 and especially Silver [ l ] s o that we will only give
90
2.
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
a few remarks l a t e r about t h i s a t t h e end o f t h e chapter; t h e b a s i c r e s u l t s a r e i n any event i n c l u d e d i n Chapter 1.
Thus
l e t G be a r e a l connected noncompact semisimple L i e group w i t h f i n i t e c e n t e r and K a maximal compact subgroup so t h a t V = G/K -
.
-
d
L e t g = k + p be a
i s a symmetric space o f noncompact type.
Cartan decomposition, a c p a maximal a b e l i a n subspace, and we
-
-
w i l l suppose u n t i l f u r t h e r n o t i c e t h a t dim a = rank V = 1. One s e t s A = exp a, K = exp k, and
IsA for
N
-
= exp n where n =
A > 0 where t h e gA a r e t h e standard r o o t spaces corres-
ponding t o p o s i t i v e r o o t s a and p o s s i b l y 2a i n t h e rank one case.
1
One s e t s p = - c m A f o r 2 x element Ho
E
X > 0 where mA
= dim gA and we p i c k an
a such t h a t a(Ho) = 1. Thus p =
1 (H ma
+ m2a)a and
we can i d e n t i f y a Weyl chamber as a connected component a + C I
a c a w i t h (o,m) to
u
E
*
a
i n w r i t i n g a ( t H o ) = t where
by u ( t H o ) = U t .
u
E
R corresponds
The Iwasawa decomposition o f G i s G =
KAN which we w r i t e i n t h e form g = k ( g ) exp H(g) n ( g ) where t h e n o t a t i o n at = exp t H o i s used.
I
L e t M (resp. M ) denote t h e
c e n t r a l i z e r (resp. n o r m a l i z e r ) o f A i n K so t h a t t h e Weyl group I
i s W = M /M and t h e maximal boundary o f V i s B = K/M ( t h u s M = {k
E
H
K; AdkH = H f o r
E
a) and M
I
=
{k
E
K; Adka c a )
-
see
t h e examples f o r s p e c i f i c d e t a i l s ) . There are n a t u r a l p o l a r c o o r d i n a t e s i n a dense submanifold o f V a r i s i n g from t h e decomposition G = (kM,a)
-+
G+K (A+
=
exp a+) p r o v i d e d by t h e diffeomorphism
kaK : B x A+-+ V (one c o u l d a l s o work w i t h t h e decom-
p o s i t i o n G = KAK).
Thus t h e p o l a r coordinates o f ~ ( g )=
91
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
ak2)
V a r e (klM,a)
E
g i v e n v = gK -1
E
where
:G
IT
V and b = kM
+ .
V i s t h e n a t u r a l map.
B one w r i t e s A(v,b)
E
k ) and t h e F o u r i e r t r a n s f o r m o f f
=
2 L ( V ) i s d e f i n e d by
E
Y
F f = f where ( u s i n g Warner's n o t a t i o n ) Y
f(u,b)
(1.1) for
u
E
a
*
and b
= E
r 1, f(v) B.
exp (iu+p)A(v,b)dv
--
A l l measures a r e s u i t a b l y normalized i n
t h i s treatment. T h i s s e t s up an i s o m e t r i c isomorphism f f 2 * between L ( V ) and t h e space L2(a: x B) ( c f . here below f o r a+) w i t h i n v e r s i o n formula
Here t h e 1 / 2 comes from t h e o r d e r o f t h e Weyl group (which i s two) and c ( u ) i s t h e standard Harish-Chandra f u n c t i o n .
For a
general expression o f C(M) we can w r i t e ( c f . a l s o (3.14)) c ( u ) = I(ip)/I(p)
where ( c f . G i n d i k i n - K a r p e l e v i c [l],Helgason
[3; 81, Warner [l;21)
Here B(x,y)
= I'(x)r(y)/I'(x+y)
i s t h e Beta f u n c t i o n and one
d e f i n e s (v,a) i n t h i s c o n t e x t i n terms o f t h e K i l l i n g form B(-,*)
as B(H ,Ha)
A(h) = B ( j , H )
V
where f o r X
for H
E
l i n e a r maps o f a i n t o
E
*
aC, HA
E
*
aC i s determined by
a ( n o t e here t h a t aC i s t h e space of R w h i l e aC i s t h e c o m p l e x i f i c a t i o n o f a
which i s f o r m a l l y t h e s e t o f a l l sums A + i u f o r
92
A,u
E
a).
Then
2.
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
*
a+ i s t h e preimage o f a+ under t h e map A chamber i n a later.
* . *
HA and i s a Weyl
S p e c i f i c examples o f c ( p ) w i l l be w r i t t e n down
Now a / W
- a+* (.recall W
= (1,s)
o r e q u i v a l e n t l y sat = a-t = a t ’ )
where, f o r $
+.
where sH = -H f o r
H
E
a
and one can w r i t e
L2 (B),
E
The q u a s i r e g u l a r r e p r e s e n t a t i o n L o f G on L2 (V), d e f i n e d by L ( g ) f ( v ) = f(g-’v)
(1.5)
L =
decomposes i n t h e form
r Ja*,W
‘plC(w)
dp
where L a c t s i n H by t h e same r u l e as L. L i s i n f a c t i r P Fc 1-1 r e d u c i b l e and u n i t a r y and i s e q u i v a l e n t t o t h e s o - c a l l e d c l a s s one p r i n c i p a l s e r i e s r e p r e s e n t a t i o n induced from t h e p a r a b o l i c subgroup MAN by means o f t h e c h a r a c t e r man
-f
a”
= exp i p l o g a.
We r e c a l l here a l s o t h e d e f i n i t i o n o f t h e mean value o f a f u n c t i o n @ over t h e o r b i t o f g r ( h ) = gu under t h e i s o t r o p y = gKg-’ subgroup Iv
Thus w r i t i n g MhC$ = Mu$ we have
a t v = .rr(g).
( r e c a l l i n g t h a t r ( h ) = u)
93
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
( c f . Helgason [l]) when D
D(G/K).
E
The symbol D(G/K) denotes
t h e l e f t i n v a r i a n t d i f f e r e n t i a l o p e r a t o r s on G/K which a r e d e f i n e d as follows.
If $ : G
G i s a diffeomorphism and f i s
-+
a f u n c t i o n on G one sets f $ ( g ) = ( f
while i f D i s a -1 l i n e a r d i f f e r e n t i a l o p e r a t o r we w r i t e DQ : f + (Of$ )$. Thus
G o r on V = G/K.
$-')(g)
W r i t i n g akg = gk f o r g
G and k T
space of d i f f e r e n t i a l o p e r a t o r s on G such t h a t D D i s denoted by D(G/K);
E
K, t h e
= D and D"k =
t h i s i s i d e n t i c a l w i t h t h e space o f
l i n e a r d i f f e r e n t i a l o p e r a t o r s on G/K ( c a l l e d l e f t i n v a r i a n t ) such t h a t
T
D
= D (the condition
proof obvious).
Dak
D i s automatic on G/K
=
-
Now t h e zonal s p h e r i c a l f u n c t i o n s on G a r e
d e f i n e d by t h e formula
(u
E
*
a )
. ..,
and we can w r i t e by i n v a r i a n t i n t e g r a t i o n 41 (9) = $ (gK) (ac-
u
..,
u
..,
t u a l l y t h e $ (9) a r e K b i i n v a r i a n t i n t h e sense t h a t $ ( 9 ) =
u
* -
..,
$ ( k g k ) ) and K i s u n i m d u l a r
u
-
u
c f . Helgason [l], Maurin [l],
-
Nachbin [2], Wallach [l],o r Weil [l] and thus
.,K CI$
f(k-')dk
-u
f(ikk)dk = ..,
f(k)dk. I t i s known f u r t h e r t h a t $,(g) = K ( g - l ) ( c f . Harish-Chandra [2] o r Warner [l;21) w h i l e t h e
E
=
C"(G/K),
@u X ($ ) u ..,u of
1
I,
for D
and a r e c h a r a c t e r i z e d b y t h e i r eigenvalues AD = E
D(G/K), w i t h $u(n(e)) = 1, p l u s t h e b i i n v a r i a n c e
(I~.We now demonstrate a lemma which has some i n t e r e s t i n g
consequences.
94
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
2.
h The F o u r i e r t r a n s f o r m o f 1.1 = MU
Lemma 1.1
.rr(h)) i s g i v e n b y FMh = (M‘f)(v)
-
A
1-I
(h) and i f h = kak w i t h a
Proof:
A+ then
o f u = .rr(h).
h The a c t i o n o f M o r MU as a d i s t r i b u t i o n i n E ’ ( V )
determined by ( c f . (1.6)) b e i n g t h e i d e n t i t y i n G).
<M h ,$>
=
h (14 $ ) ( w ) where w
Thus i n (1.6)
A
is
r ( e ) (e
=
take Q = exp (ill+ p )
A
where b = kM.
Since A(ekhK,kM)
t h e u n i m o d u l a r i t y o f K ( c f . (1.8) (1 -9)
E
(u =
( M a f ) ( v ) so t h a t (Muf)(v) depends o n l y on t h e r a d i a l
=
component a i n t h e p o l a r decomposition (kM,a)
A(w,b)
E’(V)
E
-
(Mh$)(w) =
I
= -H((kh)-’;)
one has by
and comments t h e r e a f t e r )
exp [-(ip+p)H(h -1 k -1,- k)dk
K
j
=
exp [-(ip+p)H(h -1 kk)dk =
K
,. = $
-1-1
(h-’)
=
-
0
1-I
j
e-(i’+p)H(h-lk)dk
K h (h) = FM
h One notes here t h a t M = MU works on f u n c t i o n s i n V such as exp (i’+p)A(v,b) placed by 14‘
= $
h
= M
h and <M ,I$> i s p r e c i s e l y (1.1) w i t h f r e -
and $ = exp (iu+p)A(w,b);
no i n t e g r a t i o n over
V i s i n v o l v e d s i n c e v = w i n $, o n l y a d i s t r i b u t i o n e v a l u a t i o n A
i s o f concern here.
-
F i n a l l y we n o t e t h a t w i t h h = kak as above
t h e r e f o l l o w s from (1.6) (1.10)
(Mhf)(v) =
J K f(gkiaK)dk
=
i,
f(gkaK)dk = (Maf)(v)
T h i s l e a d s t o a symmetric space v e r s i o n o f theorem o f Zalcman [l],g e n e r a l i z i n g an o l d formula o f P i z z e t t i ; here G/K
95
QED
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
i s of a r b i t r a r y rank and we refer t o Helgason [l ; 23 o r Warner [ l ; 23 f o r general information on h i g h e r rank s i t u a t i o n s . Theorem 1.2
Suppose the o p e r a t o r s
(Pizzetti-Zalcman).
A k w i t h eigenvalues X k g e n e r a t e D(G/K) as an a l g e b r a ; then l o -
cal l y (1.11)
(MUf)(V)
=
bqu,
Ak)f)(V)
00
1 Pn(u,X k ( 4 v ) ) i s expressed i n terms o f i t s n=l eigenvalues a s $ (u,Xk).
where $,(u)
= 1 +
P
Zalcman [ l ] , i n an Rn c o n t e x t , has g e n e r a l i z e d t h i s kind o f theorem considerably Proof:
.
h
One n o t e s from Helgason [ l ] t h a t (M @,)(v)
-
i,
=
= z X ( g ) $ X ( h ) and the l o c a l expres$X(gk.rr(h))dk = ;Jgkh)dk K O3 sion (Muf)(v) = ([1 + 1 Pn(u,Ak)]f)(v) holds. Consequently n=l we o b t a i n $ X ( h ) = applying t h i s l o c a l e x p r e s s i o n t o
-
m
1 P , ( U , A ~ ( $ ~ ) =) $,(u) and (1.11) follows. One should n=l remark a l s o t h a t the polynomials P a r e without cons t a n t terms. 1 +
n
2.2
Resolvants.
The o b j e c t s o f interest n a g e n e r a l i z e d
EPD theory a r e the r a d i a l components o f a b a s i s f o r the H
v spaces
of (1.4), m u l t i p l i e d by a s u i t a b l e weight funct on, the r e s u l t
o f w h i c h we w i l l denote by @ ( t , u ) ( c f . C a r r o l l [21; 221, C a r r o l l S i l v e r [15; 16; 171, S i l v e r [ l ] ) and we mention t h a t m can denote
96
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
2.
a m u l t i i n d e x here.
F i r s t we remark t h a t V i s endowed w i t h t h e
Riemannian s t r u c t u r e induced by t h e K i l l i n g form B ( * , * )
(but
t h e Riemannian s t r u c t u r e does n o t p l a y an i m p o r t a n t r o l e here, e.g.,
$(*,*)
c o u l d serve
-
see Example 3.2) and f o r rank
V
=
1, D(G/K) i s g e n e r a t e d by a s i n g l e Laplacian A, determined by
-
t h e standard Casimir o p e r a t o r C i n t h e enveloping algebra o f g ( c f . Remark 3.15 about C).
We l o o k a t t h e r a d i a l component AR o f
passing t h i s from t h e coord n a t e t i n at E A t o r ( A ) i n an a obvious manner, and s e t t i n g Mt = M w i t h Ro(t,p) = FMt = $,,(at) A,
-
A
one o b t a i n s an eigenvalue e q u a t i o n ( c f . Helgason [5]) (2.1)
[of. +
(ma+mZa)cotht Dt + mZatanht D
141
t u
The s o l u t i o n o f (2.1), a n a l y t i c a t t = 0, i s e.g., A
(2.2)
^Ro(tyu) = (I (exp t H o ) = F(G,B,y,
u
"0
"0
where e v i d e n t l y R ( 0 , ~ =) 1 and Rt(o,p)
B
=
-
2
sh t )
0 ( 6 = (ma+2m2a+ 2 i p ) / 4 ,
= ( m +2mZa-2iu)/4,
and y =(ma+m2a+1)/2). The general EPD a "0 s i t u a t i o n i n v o l v e s embedding R i n a "canonical" sequence o f "m l l r e s o l v a n t s " R (t,p), f o r m > 0 a p o s i t i v e i n t e g e r o r a m u l t i index, such t h a t t h e r e s o l v a n t i n i t i a l c o n d i t i o n s (2.3)
"m R ( 0 , ~ =) 1;
are s a t i s f i e d .
"m Rt(oYp) = 0
There w i l l a l s o be "canonical" r e c u r s i o n r e l a t i o n s
97
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
“m between t h e R of i n d i c e s d i f f e r i n g by k1 o r k 2 which w i l l a r i s e group t h e o r e t i c a l l y f r o m c o n s i d e r i n g a f u l l s e t o f b a s i s elements i n the H
spaces.
1-I
2 Thus we must f i r s t determine a b a s i s f o r L ( B ) and t h i s i s w e l l known (thanks a r e due here t o R. Ranga Rao f o r some h e l p f u l information).
We l e t { I T ~ , V ~ Iw i t h dim VT = dT be a complete s e t
o f i n e q u i v a l e n t i r r e d u c i b l e u n i t a r y r e p r e s e n t a t i o n s o f K and l e t
M VT C V T be t h e s e t o f elements f i x e d by M.
One knows by a r e -
s u l t o f Kostant [l]t h a t dim V y = 1 o r 0 i n t h e rank one case ( c f . a l s o Helgason [5]) and f o r t h e s e t
T E
we l e t w i be a b a s i s v e c t o r f o r VTM w i t h
T where dim
wY(1
2
normal b a s i s f o r VT under a s c a l a r p r o d u c t < example t h e c o l l e c t i o n o f f u n c t i o n s
(T E
T)kM
= 1
i 5 dT) an o r t h o >T.
-+
!V
Then f o r
<wi,aT(k)w;>T
is
2 known t o be a b a s i s f o r L ( B ) and we d e f i n e ( c f . (1.4) w i t h v = atK and b = kM) n -
(2.4)
$;,(atK)
= El 9T(BT:-ip:a -1 )w T
t
where BT
E
j
HomM(VT9$) i s determined by t h e r u l e Bw‘:
= 61,s
(Kronecker symbol) so t h a t B T r T ( k )-1 wT. = <W:,IT (k)w;>T = J J T <~~(k)-’w;,w;>~ (note t h a t $(k)dk = $(km)dm)db and K B M
J
I (I
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
2.
H(g-’km)
= H(g-’k)
w i t h nT(km) = nT(k)nT(m)).
above
The
are E i s e n s t e i n i n t e g r a l s as d e f i n e d i n Wallach [l]and t h e A .
( a K) a r e t h e r a d i a l components o f b a s i s elements i n H t FC ( c f . below). I t i s p o s s i b l e t o o b t a i n an e x p l i c i t e v a l u a t i o n o f M,T
these f u n c t i o n s , u s i n g r e s u l t s o f Helgason [5;
111 as f o l l o w s .
One d e f i n e s ( c f . Helgason 151)
Then i t i s proved i n Helgason [5;
f o r x = gK.
111 ( t o whom we
g r a t e f u l l y acknowledge some conversation .on t h e m a t t e r ) t h a t
where Y
,T
( x ) i s d e f i n e d by
j
e (-iA-p)H(g-’k) < wl,T a T ( k ) w i >T dk K Thus r e c a l l i n g t h e p o l a r decomposition (kM,a) + kaK we have yA,T(x) =
(2.7)
Theorem 2.1
;’
(2.8)
MrT
h
General b a s i s elements i n
(iatK) =
1
K
e (iu-p)H(at k
dT- l l 2 fT,J -’.(katK)
I n p a r t i c u l a r one has s i n c e ti1
H me FC
-1^-1
A
=
A
G’
k ) <wi,aT(k)w1>., T
dk
A T = < w i , ~ ~ ( k ) w Y-FC,T(atK) ~>~
;’
-’
( a K) = ( a K) = Y (atK) t 1-I.T t ,T ( t h i s “ c o l l a p s e ” was observed i n VaT
= <W?,IT ( l ) w T > ,j J T 1 T s p e c i a l cases by S i l v e r [l]). A
Now l e t KO = {nT,VTl f o r T ET (i.e.,
dim VTM = 1 ) and f o l l o w -
i n g Helgason [5] we use a p a r a m e t r i z a t i o n due t o Johnson and
99
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Wallach (see Helgason [5] f o r references and c f . a l s o Kostant h
[l]).I f mZcl = 0, KO = {(p,q)> w i t h p ..
1, KO = {(p,q)> w i t h (p,q)
E
E
Z+ and q = 0; i f mZa =
Z+ x Z where p
f
q
E
i f mZa =
22,;
h
3 o r 7, KO = {(p,q)>
w i t h (p,q)
E
Z+ x Z+ where p
&
q
E
One
22.,
s e t s R = (ip+p)(HO) and then ( c f . Helgason [5; 111) Theorem 2.2
The r a d i a l components o f b a s i s elements i n
H
IJ
are given by
= cI.1'
STt h P t
ch-'tF(-,--p
R+
where t h = tanh, ch = cosh, and
+
R+p-q+l -m2a
+
ma+m
+1
,th2t)
F i s t h e standard hypergeometric
function. Note here t h a t o u r R i s t h e n e g a t i v e o f t h e R i n Helgason [5;
111 where R = ( i A - p ) ( H ) = ( - i p - p ) ( H
i n (1.1))
0
0
) ( c f . here o u r n o t a t i o n
and r e c a l l t h a t a(Ho) = 1 w i t h at = exp tHo.
now sets dZa = -4q(q+mZcl-1) and da = -p(p+m +mZa-l) i t i s shown i n Helgason [5] t h a t Y ( t ) = Y
the d i f f e r e n t i a l equation
100
-1-I ,T
I f one
+ q(q+mZcl-l)
(atK) a l s o s a t i s f i e s
2.
(2.11)
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
ytt
+ (ma+in2a)coth t Yt + m2a tanh t i t
+
[d sh-2t + d2ash-22t + p(Ho) 2 + v(Ho) 2 19' = 0 a
where sh = s i n h , and we have used t h e i d e n t i t y c o t h 2 t = h c o t h t + tanh t). R e c a l l i n g t h a t p ."(-in21 a+m 2a ) one sees t h a t the t r i v i a l representation 1 g i v e s r i s e t o (2.1),
T, corresponding t o p = q = 0,
E
so t h a t (since c
R+I-M,
.w
1) we should have +I 2a , a 2a , t h t). This =
m +m
(atK) = +(at) = ch-'t F(L/2, ,1 i s borne o u t b y t h e Kummer r e l a t i o n F(a,b,c,z)
y-lJ
w i t h z = -sh 2 t, a = 6
c,z/z-1)
( l - ~ ) -= ~ch-'t
and c
-
b = y
B
=
(l-z)-aF(a,c-b,
b , = 8 , and c = y, so t h a t
= R/2,
-
=
(ma+2+2iv)/4 = (R+1-m2a)/2;
. "
hence Y
-v,1
2.3 h
(atK) = +(a ) as i n d i c a t e d . t = 0.
Examples w i t h
Now t o c o n s t r u c t r e s o l v a n t s
A
( a K) one m u l t i p l i e s t h e t by a s u i t a b l e f a c t o r i n o r d e r t o o b t a i n t h e r e s o l v a n t i n i -
Rm(t,v) = RPsq(t,p) from t h e Y
y-v ,T
-!J,T
. "
t i a l c o n d i t i o n s (2.3)
and t o produce I$ (a,)
v
when p = q = 0.
These requirements are n o t alone s u f f i c i e n t t o produce t h e "cano n i c a l " r e s o l v a n t s s i n c e one needs t o i n c o r p o r a t e c e r t a i n group t h e o r e t i c r e c u r s i o n r e l a t i o n s i n t o t h e t h e o r y which serve t o " s p l i t " t h e second o r d e r s i n g u l a r d i f f e r e n t i a l equation f o r t h e A
Rp,q
a r i s i n g from (2.11)
i n t o a composition o f two f i r s t o r d e r
equations ( c f . here I n f e l d - H u l l [ l ] ) .
Even then we remark t h a t
t h e r e s o l v a n t s w i l l n o t be unique since one can always m u l t i p l y ^Rm(t,p) by a f u n c t i o n $, I+
0
( t ) E 1.
E
C2 such t h a t $,(o)
=
1, $ i ( o ) = 0,
T h i s w i l l simply g i v e a d i f f e r e n t second o r d e r
101
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
s i n g u l a r d i f f e r e n t i a l equation f o r t h e new r e s o l v a n t and d i f -
-
ferent s p l i t t i n g recursion r e l a t i o n s b u t the resolvant i n i t i a l c o n d i t i o n s w i l l remain v a l i d and t h e r e d u c t i o n t o 0 (a ) f o r m = U
0 i s unaltered.
t
Thus we w i l l choose the s i m p l e s t form o f r e s o l -
vant f u l f i l l i n g t h e s t i p u l a t i o n s imposed w h i l e r e f e r r i n g t o these r e s o l v a n t s and equations as canonical. Example 3.1 -p
2
, d2,
Take t h e case where ma = 1 , mZa = 0, da =
= 0, and p = 1/2.
T h i s corresponds t o G = SL(2,IR)
with
K = S O ( 2 ) and t h e r e s o l v a n t s a r e given i n C a r r o l l [18; 19; 223,
C a r r o l l - S i l v e r [15; 16; 171, S i l v e r [l]as
where 5 = c h t and P i m denotes t h e standard associated Legendre f u n c t i o n o f t h e f i r s t kind.
Now we r e c a l l a formula ( c f . Snow
111, P. 18)
2 S e t t i n g z = t h t i n (3.2) and n o t i n g t h a t 1 have fi = sech t and 1 as above.
-
-
2 2 t h t = sech t we
n / ( l + Z ) = 5-1/<+1 w i t h 5 = c h t
Now one observes t h a t
102
(t,U)
i n (3.1)
i s symmetric
2.
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
t h i s i s e x h i b i t e d f o r example i n the form of
i.n !J (and t ) and
t h e r e s o l v a n t (3.1) when one uses t h e formula ( c f . Robin [l]) 1 1 2-mshmt m+-+ip m+--ip 2 2 (3.3) P-m (cht) = F( , ,m+l,-sh t ) ip-
'2
z
= F(b,a,c,z))
Hence (3.1) can be w r i t t e n ( r e c a l l t h a t F(a,b,c,z) (3.4)
1 1 "m m+T+ip m+q-ip R (t,u) =F( , , m + 1, -sh 2 t ) Now, r e t u r n i n g t o (3.2) and (2.9)
T
-
-
(2.10), we w r i t e f o r and R = i u
( p , ~ ) w i t h ct = i d 2 , B = 1/2(p + 1/2),
= c
R
-!J,T
t h P t ch- t (
1 t sech t ) -
1/2
2(ct+B)
1
+2 + p,
= c-!J ,Ts h P t ( y ) - ' - P F ( i p
+
ill +
1
7, p+l,
5- 1
5+1)
R e w r i t i n g t h e f i r s t equation i n (3.1) w i t h p replaced by -!J i n t h e r i g h t hand s i d e we o b t a i n (3.6)
i m ( t , p ) = ($!-)
-R-m F (1z + ip,z+ 1 ip+m,m+l,-) 5-1
5+1
Then i d e n t i f y i n g p w i t h m we can say from (3.5) h
(3.7)
RP(t,p) =
sh-Pt Y
-!J,T
103
( a K) t
-
(3.6)
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
For completeness we check t h e d i f f e r e n t i a l e q u a t i o n s a t i s f i e d by t h e Rp o f (3.7),
g i v e n t h a t (2.11) holds.
An elementary c a l c u l a -
t i o n y i e l d s then
which agrees w i t h p r e v i o u s c a l c u l a t i o n s ( c f . C a r r o l l [21; C a r r o l l - S i l v e r [15;
223,
16; 171, S i l v e r [l]).The canonical r e c u r s i o n A
r e l a t i o n s a s s o c i a t e d t o t h e Rp o f (3.1),
(3.4),
(3.6),
o r (3.7)
can o f course be r e a d o f f from known formulas f o r t h e associated Legendre f u n c t i o n s f o r example b u t t h e y can a l s o be o b t a i n e d group t h e o r e t i c a l l y ( c f . Example 3.5 o f b a s i s elements i n t h e
-
Theorem 3.8)
H spaces. P
by u s i n g a f u l l s e t
For now we s i m p l y l i s t them
i n t h e form
i!
+ 2p c o t h t
^Rp
= 2p csch t
iP-'
E v i d e n t l y t h e composition o f these two r e l a t i o n s y i e l d s (3.8) and t h i s i s t h e sense i n which we speak o f " s p l i t t i n g " t h e r e s o l v a n t equation (3.8). Example 3.2 Example 3.1.
We g i v e now e x p l i c i t m a t r i x d e t a i l s t o c l a r i f y
(The E u c l i d i a n case can a l s o be t r e a t e d group
t h e o r e t i c a l l y as i n C a r r o l l - S i l v e r [15;
16; 171 and e s p e c i a l l y
S i l v e r [1] and a s i m p l e example i s worked o u t a t t h e end o f t h i s chapter; t h e r e s u l t s o f course agree w i t h those o f Chapter 1.)
104
2.
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
-
Thus l e t G = SL(2,lR)
-
and K = SO(2) w i t h L i e algebras g = sR(2,R)
We r e c a l l t h a t G i s connected and semisimple,
and k = so(2).
-
c o n s i s t i n g o f r e a l 2 x 2 matrices o f determinant one, w h i l e the
- -
matrices i n t h e compact subgroup K a r e orthogonal; g consists o f r e a l 2 x 2 m a t r i c e s o f t r a c e zero and k c g i s composed o f skew We w r i t e V = G/K and s e t
symmetric matrices.
X =
(3.10)
1 7
-
O
1 1 ., Y = 1z
1
0
so t h a t k = lR Z and we w r i t e p = { J R X +.lRY) f o r the subspace
-
--
( o f v e c t o r spaces) w i t h [k,k] Cartan i n v o l u t i o n 8 :
-
5 +n
b r a automorphism o f g.
- -
One has a Cartan decomposition g = k + p
o f g spanned by X and Y.
-t
-
- -
c k, [p,p] c k , [k,p] c p and the
6-
Q
-
(6 E
k,
n
E
p ) i s a L i e alge-
Recall here t h a t i f P = exp p then G =
PK i s t h e standard p o l a r decomposition o f g
E
G i n t o a product The K i l l i n g
o f a p o s i t i v e d e f i n i t e and an orthogonal m a t r i x . form B(5,n) = t r a c e ad5
adn
(=4 t r a c e
"
CQ)
-
i s negative d e f i n i t e
on k and p o s i t i v e d e f i n i t e on p ( w i t h B(k,p) = 0).
One checks
e a s i l y t h a t X and Y form an orthonormal basis i n p f o r t h e s c a l a r product
1 ((6,~))= p(5,n); we
repeat t h a t t h e 1/2 f a c t o r
i s o f no p a r t i c u l a r s i g n i f i c a n c e here i n c o n s t r u c t i n g resolvants, etc. and i s used mainly t o be c o n s i s t e n t w i t h some previous work and w i t h t h e e x p o s i t i o n i n Helgason [l]. Now s e t t i n g Xa = X
+
Z, X-a
= X
- Z, and Ha
standard ( o r "canonical") t r i p l e ( c f . Serre [ l ] )
105
= 2Y we have a
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
= RX,
where t h e r o o t subspaces g,
(5
i z e d by t h e r u l e gA = w h i l e t h e map a : t Y r o o t ) i n t h e dual a
*
and g
.-E
-a
RX
=
are character-,
g; ad H< = X(H)S f o r a l l H
a = RY),
E
t determines then an element ( c a l l e d a
-+
( n o t e t h a t ,(Ha)
-a i s a l s o a Cartan subalgebra of g.
= 2 and
R
N
a
*
=
Ra).
Here a i s a maximal a b e l i a n subspace o f p and i n t h i s case a = .--
{I,,g,
> 01,
.--
N = exp n, and A
g = k a n
(3.13)
e t t
-
< IT)
= exp B Z exp t Y exp
[b
=
The Iwasawa decomposi-
= exp a.
e
t i o n o f G can be w r i t t e n ( 0 2
-.
Set now n = g,
exa
which we express as b e f o r e i n t h e form g = k(g) exp H(g)n(g).
[-:
Next we s e t M = {+ 1
I4 = M {k
E
u {+
:]I
f o r t h e c e n t r a l i z e r o f A i n K and
w i l l be t h e n o r m a l i z e r o f A i n K ( t h u s M =
K; AdkH = H f o r H
- . - -
I
E
a and M = { k
E
K; Adk a c a) ).
Again
I
W = M /I4 has o r d e r two and B = K/M i s e s s e n t i a l l y K w i t h t h e angle v a r i a t i o n c u t i n h a l f . b = kM
E
B A(v,b)
= -H(g-lk)
We r e c a l l t h a t f o r v = gK and here p = 1/2
106
l m A A (A>O)
E
V and equals
2. CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
1
Thus p ( t Y ) = t / 2 and f o r 1-1
p.
R, 1-1
E
"* a
E
i s determined again
-*
by t h e r u l e u ( t Y ) = tu(Y) = 1-1t (such l~ o f course exhaust a ct
- 1-1
(1.1)
= 1).
The F o u r i e r t r a n s f o r m F f o f f
E
and
L2 ( V ) i s given by
and a+ i s d e f i n e d as i n S e c t i o n 1, as i s t h e s c a l a r prod-
u c t (X,v) = B(HA,HV).
When 1-1
E
-* a
= 2 i t follows t h a t H
s i n c e B(Y,Y)
i s c h a r a c t e r i z e d as above then = p1
*
Y
and o b v i o u s l y a+ can 1-1 "*" thus be i d e n t i f i e d w i t h ( 0 , ~ ) . E v i d e n t l y f o r 1-1, v E a one has
Example 3.3
A geometrical r e a l i z a t i o n o f t h e present s i t u a -
t i o n can be described i n terms o f G a c t i n g on t h e upper h a l f a b p l a n e I m z > 0 by t h e r u l e g z = (az+b)/(cz+d) f o r g = ( c d) G.
E
Then K i s t h e i s o t r o p y subgroup o f G a t t h e p o i n t z = i
(i.e.,
K
i = i ) and t h e upper h a l f plane can be i d e n t i f i e d
w i t h G/K under t h e map gK d e s i c p o l a r coordinates
-+
g
(T,e)
i ( c f . Helgason [ l ] ) .
I n geo-
a t i t h e Riemannian s t r u c t u r e i s
2 2 2 2 described by ds =d-c + s i n h .cde where we use t h e m e t r i c tensor determined by gv(<,q)
for
= $(C,q)
5,
q
E
p.
I f w = r ( e ) (which
corresponds t o i under o u r i d e n t i f i c a t i o n s i n c e r ( e ) = K) then, denoting l e f t t r a n s l a t i o n i n G by
t h e Riemannian s t r u c t u r e i s g' determined b y g V ( ( T )*<,(T~)*T-I) = gw(S,q) ( f o r t h e n o t a t i o n ( T )* 9 9 see e.g. Kobayashi-Nomizu [ l ; 21). The geodesics on V through
w =.rr(e) a r e o f t h e form y : s
t h e square .rr(exp
T'
-+
T
(exp sC)w and i f
5
= aX
+ BY
E
o f t h e geodesic d i s t a n c e from w t o (exp <)w =
5 ) i s equal t o
a2
+ B2 ( s i n c e X and Y form an orthonormal
b a s i s f o r p under t h e s c a l a r product ((<,q)) = 1/2 B(5,n)) 107
and
p
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
the polar angle i s determined by tan 8 = B/a.
Many calculations
can easily be made using standard formulas and one can describe the action g
i for example i n general (relevant material for
the computations appears i n Gangolli [l], Helgason [ l ; 2 ; 31, and
21).
Kobayashi-Nomizu [ l ;
We will spare the reader the results
of o u r computations since they are essentially routine.
Let us
however remark that the volume element dv i n (1.1) can be written i n this example as dv = shT d.r d8 ( u p t o a normalization factor). F i r s t we refer back t o the formula for c(v)
Example 3.4
given a f t e r ( 1 . 2 ) and mention t h a t i n general (cf. Helgason [2; 31, Warner [Z])
where
n=
Y
On = g-ahere,
c(-ip) = 1.
for 5
exp
n, and
dii i s normalized by
Here 8 i s the Cartan involution 8 : 5 + rl
Y
E
K=
k and rl
E
+
E
- rl
p and one observes t h a t i t is an involutive
Y
automorphism of g such that
-.-.
(c,rl)
-+
-B(€,,Orl)
i s s t r i c t l y positive
definite on g
x
Since
1 / 2 , ( i p , a ) = i p , and ( p , a ) = 1/4 there results
(cl,a) =
g.
In terms of Beta functions we obtain
(cf. Bhanu Murti [l])
108
2.
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
-
Thus we can r e c o v e r f ( v ) f r o m f ( u , b ) Example 3.5
u s i n g (3.16)
and (1.2).
We now want t o show how t h e r e s o l v a n t s (3.1)
can be o b t a i n e d by a cumbersome and " c l a s s i c a l " method i n o r d e r t o f u r t h e r c o n f i r m (.3.7) as a l e g i t i m a t e r e s o l v a n t ( t h e equival e n c e o f (3.1)
and (3.7)
has a l r e a d y been e s t a b l i s h e d ) .
The
t e c h n i q u e has a c e r t a i n i n t e r e s t and moreover we w i l l o b t a i n a
H
w h i l e showing how t h e r e c u r s i o n r e l a t i o n s (3.9) 1-1 can be o b t a i n e d group t h e o r e t i c a l l y . Some o f t h e more t e d i o u s f u l l basis f o r
c a l c u l a t i o n s w i l l be o m i t t e d .
We remark t h a t Theorem 2.1
does
n o t seem c o n v e n i e n t h e r e t o o b t a i n a f u l l s e t o f b a s i s elements
in
Hu s i n c e t h e u n i t a r y i r r e d u c i b l e r e p r e s e n t a t i o n s o f K
(see V i l e n k i n [l]).Thus
a r e one dimensional o f t h e form ein4 h
h
= SO(2)
h
h
f i r s t we can remark t h a t atk0 = k a n where a = as w i t h (3.17)
es = ( c h t t sh t cos 0 )
(cf..Helgason
[l]and Warner [l;23).
Thus pH(atke) = p(sY) =
s/2 and f o r ~ ( s V ) = us one has (iu-p)H(atkg) (3.18)
e
(i1-1-
2I) s
= e
=
(ch t
-+ sh
t
COS
0)
ill-
I
Now, g i v e n b a s i s v e c t o r s $m(b) = exp im(0-n) f o r example i n
LL(B) (recall t h a t B t i o n o f (3.13), in
-
K w i t h t h e a n g l e v a r i a t i o n , i n o u r nota-
c u t f r o m ( 0 , 4n) t o (0, IT)), we g e t b a s i s v e c t o r s
H by means o f (1.4) ( t h e f a c t o r o f exp ( - i m ) i s i n s e r t e d f o r
u
convenience i n c a l c u l a t i o n ) . o b j e c t s " when v = atK i n (1.4)
I n p a r t i c u l a r we o b t a i n " r a d i a l and s i n c e A(gK,kOM) = -H(g-'kO)
109
we
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
where s ' i s determined as i n
consider H(ailkg) = s'Y i n (1.4). (3.17) b u t w i t h t replaced by -t. b a s i s vactors i n H
(3.19)
9
u =
u
w i l l be I
( i u - p ) s Yeimede
e
-imr
=
Thus the r a d i a l p a r t o f the
21T
1
TT
(ch t
-lT
-
I iv- 7 e irned0 sh t cos 0 )
'
iv- 1 - m' .o (ch t ) (see V i l e n k i n [ l ] ) .
%l
I n order now t o produce r e s o l v a n t s R ( t a u )
as i n Section 2.2 from Pm
a0
-
1/2(ch t ) o f (3.19)
consider t h e growth o f these f u n c t i o n s as t
+ .
one must f i r s t
0 and i n t r o d u c e
s u i t a b l e weight f a c t o r s i n o r d e r t o s a t i s f y t h e r e s o l v a n t i n i t i a l c o n d i t i o n s (2.3)
(note t h a t
a / a t = ( ~ ~ - 1 ) 3/22). l/~
L e t us r e c a l l
i n t h i s d i r e c t i o n t h a t ( c f . V i l e n k i n [l]and Robin [l]) (3.20)
where P!
P:am(~) =
r ( k t m t l ) r ('R-mtl r2(R+i)
)
R
pm,o(z)
i s the standard associated Legendre f u n c t i o n o f the
f i r s t kind.
Then we can e x h i b i t t h e r e s o l v a n t s i n t h e form
110
2.
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
z + l R-m
z-1 F( -R ,m-R ,m+l -,)z+l
= (T)
where z = c h t, R = -1/2 + i p , rn
2 0 i s an i n t e g e r , and F denotes
a standard hypergeometric f u n c t i o n ( c f . C a r r o l l - S i l v e r [15; 171 and C a r r o l l [18;
191).
16;
R e c a l l i n g t h a t r(R+m+l)Pim(z) =
r ( a - m + l ) P ~ ( z ) f o r m 2 0 an i n t e g e r , we remark i n passing t h a t , for m
E
C n o t a n e g a t i v e i n t e g e r , r e s o l v a n t s can be determined
b y t h e formula
(which reduces t o (3.21)
when m i s an i n t e g e r ) and t h i s should be *
taken as t h e generic expression f o r Rm i n t h i s case ( c f . (3.1)). Evidently the
^Rm
o f (3.21)
s a t i s f y (2.3).
We r e c a l l t h e n e x t w e l l known formulas
(3.23)
,
dP! mz ( ~ ~ - 1 )" ~ + /2 dz (22-1)
P!
=
(a+m) (R-m+l )P!-'
( c f . V i l e n k i n [l]and Robin [l])and these, w i t h (3.22), (3.9),
where p i s r e p l a c e d by m ( n o t e t h a t R(R+1) =
lead t o
- ( 1B + u 2 ) ) ;
consequently (3.8) w i l l f o l l o w as before. The most i n t e r e s t i n g f a c t however about (3.9)
i s t h a t these
r e c u r s i o n r e l a t i o n s have a group t h e o r e t i c s i g n i f i c a n c e (cf. 111
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
-
C a r r o l l - S i l v e r [15; 16; 171) and t h e v a r i a b l e t i n (3.8)
(3.9)
may be i d e n t i f i e d w i t h t h e geodesic d i s t a n c e T o f Example 3.3. For purposes o f c a l c u l a t i o n i t i s convenient t o c o n s i d e r X+ = -X + i Y ;
(3.25)
X
and t o n o t e t h a t (H, X+,
-
-
= -X
iY;
-
H = -2iZ
X-) form a "canonical" t r i p l e r e l a t i v e -.
t o t h e r o o t space decomposition gt = kt
Y
+ t X + + CX - , kt
= (CH, i n
t h e sense t h a t (3.26)
= 2X+;
[H,X+]
[H,X-]
= -2X
[X+,X-]
;
(one notes t h e d i f f e r e n c e here between (3.12) -.
9Q; = Q;Ha
+ t$ +
(H,X+,X-)
tX,
= H
c o m p l e x i f i e d as
and t h e decomposition above r e l a t i v e t o
based on (3.26)
-
such decompositions occur r e l a t i v e
t o any Cartan subalgebra such as (CH o r ICY as i n d i c a t e d i n Serre
[l]f o r example).
It w i l l be u s e f u l t o e x p l o i t t h e isomorphism
Q between S L ( 2 , R ) and t h e group SU(1,l)
o f unimodular q u a s i u n i 1 i t a r y m a t r i c e s g i v e n by Q(g) = g = m-lg m where m = (i l). Thus A
g =
(y E)
+
6
=
a b (6:)
w i t h a = 1/2[a+6+i(B-y)]
and b =
A
1 / 2 [ ~ + y + i ( a - 6 ) ] w h i l e d e t g = d e t g = 1 ( c f . V i l e n k i n [l]). There i s a n a t u r a l p a r a m e t r i z a t i o n o f SU(1,l) a l i z e d E u l e r angles
h
(I$,T,$)
so t h a t any g
w r i t t e n i n t h e form
112
E
i n terms o f gener-
SU(1,l)
can be
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
2.
where 0 I cp < ZIT, 0 5
<
T
h
pressed as g = (cp,~,$).
I: $ < ZIT;
and -2n
m,
t h i s w i l l be ex-
I n p a r t i c u l a r , s e t t i n g wl(s)
=
exp sX,
wz(s) = exp sY, and w3(s) = exp sZ, we have Qwl(s) = (o,s,o), = (IT/Z, s, -v/Z),
Qw,(s) that
to,.,$)-’
and Qw ( s ) =(s,o,o) 3
= (o,o,s).
We n o t e
and ( ~ ~ , o , o ) ( o , T , o )(o,o,$)
= (IT-$,T,-IT-@) A
A
(+,T,$) w h i l e ifg1 = (0, T ~ , O ) and g2 =
(cp2,~2,~)
= A
h
t h e n gigz =
with
(cp,T,$)
t a n cp = ch
(3.28)
= chTl
ch T
’
tan
T~
sh -rz s i n cpz sh -r2 cos cp + sh T 1 ch 2
+ sh
ch T~
T~
sh
T~
Tz ’
cos cpZ ;
sh T, s i n cpz = sh -r1 ch T~ cos
cpZ + ch
T~
sh
‘c2
A
Now g o i n g t o t h e n o t a t i o n o f Example 3.3 w i t h p = exp (ax = a2 +
T‘
$,
and t a n
e
= @ / aan
+
BY),
easy c a l c u l a t i o n shows t h a t
A
Q ( p ) = (O,-r,-O). A
Consequently t h e geodesic p o l a r c o o r d i n a t e s o f A
h
~ ( p )= pK can be r e a d o f f d i r e c t l y f r o m t h e E u l e r angles o f Q(p). Now t h e r e p r e s e n t a t i o n L
!J
H
o f G on
u
a r e p r e s e n t a t i o n , which we a g a i n c a l l L
W
u’
u
E
( c f . (1.5))
induces
o f i o n dense subspaces
H o f d i f f e r e n t i a b l e f u n c t i o n s by t h e r u l e
u
R e c a l l h e r e t h a t L,,(h)f(n(g)) a p p l y (3.29) f(n(gi(s)))
= f(h-lv(g))
=
f(v(h-lg))
and t o
f o r 5 = X, Y , o r Z one wants t h e n t o d i f f e r e n t i a t e w i t h r e s p e c t t o s where gi(s) 113
= wi(-s)g
=
wil(s)g
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
(and v
=
W e work i n the geodesic polar coordinates
T(g)).
( ~ ( s ) , e(s)) o f .rr(g(s))
A
=
A
T ( p ( s ) k ( s ) ) = ~ ( p ( s ) )and consider
therefore Q ( g ( s ) ) = Q ( ; ( s ) ) Q ( k ( s ) ) = (e(s), ~ ( s ) , -e(s))
(o,o,ds)) =
(W, ~ ( s ) ,+(s)-e(s))
=
( e ( s ), T ( s ) ,$ts)).
In par-
t i c u l a r Q ( g l ( s ) ) = Q(exp(-sX))Q(g)=(o,-s,o)(8,T,o)(o,o,u-8) where Q ( g ) = Q ( p ) Q ( k ) = (O,T,-e)(o,o,u).
Then one uses (3.28)
t o compute (o,-s,o)(O,T,o) w i t h
T =
T~ = T,
and 0,
e
=
S imi 1arly Q( g2 ( s ) )
$ = e(s),
~ ( s ) , T~ = -s,
(evidently $ ( s ) i s of no i n t e r e s t here). ( ~ / ,-s 2 ,- ~ / 2 )(8, T ,-8) ( o ,o,
=
U)
= ( ~ / ,o 2 ,o)
(o,-s,o)(~-T/~,T,o)(o,o,u-~) and (3.28) can be applied t o the middle two terms.
Finally Q ( g 3 ( s ) ) = (-s,o,o)(B,T,o)(o,o,u-8)
e write H+ = which lends i t s e l f immediately t o calculation. W 1 Lv(X+), H- = L ( X ), and H3 = 4 ( H ) and using the relation u 2 v I d/ds f(T(s),e(s))ls=O = f T T ( 0 ) + f e 0 ( 0 ) a routine calcula-
tion yields (cf. Carroll-Silver [16]) In geodesic polar coordinates (.r,8) on V
Proposition 3.6 one has (3.30)
H+ = e-ie [-i coth
T
a/ae
+
a/aT]
(3.31)
H- = e i e
T
a/ae
+
a1a-c-j
(3.32)
H3
=
i
From genera
[i coth
a/ ae known facts about irreducib e unitary principal
series representations o f G , o r SU(1,1), and t h e i r complexifications (see e.g.
Miller [ l ;
21 o r
Vilenkin [l])
114
-
other
2.
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
representations contribute nothing new i n t h i s context
-
it is
natural now t o look f o r "canonical" dense d i f f e r e n t i a b l e basis vectors in H of the form
u
(3.33)
H+f:
satisfying
fk(T,e)
= (m-R)f:+
H3fi = mfi
where R = -1/2 + i p ( u > 0 ) and m = 0 , k l , k2,
....
( I t seems
excessive here t o go i n t o the general representation theory of SL(2, R ), o r SU(1,l); the references c i t e d here -and previously a t the b e g i n n i n g of t h e chapter
-
a r e adequate and accessible.)
I t i s then easy t o v e r i f y , using (3.30)
-
(3.32), t h a t the f o l -
lowing proposition holds. Proposition 3.7
Canonical b a s i s vectors i n H can be taken
u
i n the form
(3.34)
f i ( T , e ) = ( - l ) m exp(-im8) P
where R = -1/2
t
R 0 ,m
(ch
ip(u > 0) and m = 0, 21,
T)
k2,
....
In view of (3.20) and the d e f i n i t i o n (3.21) ( o r (3.22)) of
8 we
can write f o r m 2 0, z = ch
Using (3.30)
-
T,
and R = -1/2 + iu
(3.31) one can then e a s i l y prove ( c f . Carroll-
S i l v e r [16])
115
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Theorem 3.8
The " c a n o n i c a l " r e l a t i o n s (3.33)
a r e e q u i v a l e n t t o t h e r e c u r s i o n r e l a t i o n s (3.9)
and H-
f o r H,
"m for R
.
I n par-
t i c u l a r t h e v a r i a b l e t i n Example 3.1 can be i d e n t i f i e d w i t h t h e geodesic d i s t a n c e Proof:
T,
from w = K t o k a K. UJt
The r e c u r s i o n r e l a t i o n s (3.9)
low immediately from (3.30)
-
(3.31)
(and hence (3.8))
and (3.34)
suggests o f course t h e i d e n t i f i c a t i o n o f
T
-
(3.35).
A
n
This
and t b u t one can g i v e
We w r i t e k , a k 2 = pk
a computational p r o o f also.
fol-
n
so t h a t kla =
3
pk4 and f o r p = exp (aX+BY) we o b t a i n from Example 3.3 t h e d i s -
tance r 2 = a2 + B
2
n
between w = T ( e ) = K and pK t o g e t h e r w i t h
angle measurements cos
e
=
a/T
and s i n 8 =
B/T.
Set now kl =
a = aty and k4 = kg, u s i n g t h e n o t a t i o n o f (3.13); kJ, r e s u l t a number o f equations connecting t h e v a r i a b l e s
there
( T y t , $ y $ y a y f 3 ) y t h e s o l u t i o n o f which i n v o l v e s t h e i d e n t i f i c a t i o n o f t w i t h T.
Thus t h e r a d i a l v a r i a b l e t i n t h e n a t u r a l p o l a r
expression ( k M y a ) f o r u = T(h) = kUJatK i s i n f a c t t h e geoJ , t d e s i c r a d i u s T o f T ( h ) = pK. The a c t u a l c a l c u l a t i o n s a r e someA
what t e d i o u s b u t completely r o u t i n e so we w i l l o m i t them. We n o t e now t h a t t h e second e q u a t i o n i n (3.9) i n t h e form (shZmt @ ) ' = 2mshzm-lt.
QED
can be w r i t t e n
8-l which y i e l d s ,
i n view
of (2.3), (3.36)
shZmt i m ( t y u )= 2m
1:
sh2m-1
One r e w r i t e s t h e i n t e g r a n d i n (3.36),
116
rl
In-1 R (rlyil)drl
i n terms o f (3.36)m-1
and
2.
CANONICAL SEQUENCES OF SINGUALR CAUCHY PROBLEMS
i n t e g r a t e s o u t t h e rl v a r i a b l e ; i t e r a t i n g t h i s procedure we o b t a i n I f in 2 k 2 1 a r e i n t e g e r s t h e "Sonine" formula
Theorem 3.9 (3.37)
shZmt km(t,p) =
r
m-k+l
r
i s a d i r e c t consequence o f (3.9). have
jt(cht-chrl)k-'
I n p a r t i c u l a r f o r m = k we
t
(3.38)
shZmt @(t,p)
=
2%
0
(cht-chn)m-lsho
s p h e r i c a l f u n c t i o n s (1.8)
and u s i n g t h e n o t a t i o n o f (3.17)
we see t h a t ( c f . (3.19))
,.,
(3.39)
+v(at)
where P
=
&
I
ip-
27T
( c h t + s h t cose)
ip-
0
'
-
1
dB = P o
,(cht)
1v-7
1 -
i s t h e standard Legendre f u n c t i o n . ,.. a l s o by Lemma 1.1 t h a t FMat = FMt = ( a ), which
'p-7l ( c h t )
We r e c a l l
io(q,u)do
R e f e r r i n g back t o t h e formula f o r t h e zonal
Remark 3.10
(3.18)
I
k
= Po
SO
'(cht)
+U
t
equals i o ( t , p ) . Using (3.38)
we can d e f i n e Rm(t,-)
integrating i n E'(V)
=
F
-l*m
R (t,v)
E I ( V ) and
E
( c f . C a r r o l l 1141) we have f o r m
2
1 an
integer, (3.40)
shZmt Rm(t,-) = Zmm
(cht-cho)m-lshn
We r e c a l l t h a t i n t h e p r e s e n t s i t u a t i o n D(G/K)
M drl rl
i s generated by
t h e Laplace-Beltrami o p e r a t o r A which a r i s e s from t h e Casimir
117
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
.
o p e r a t o r C i n t h e enveloping a l g e b r a E(g) (here A corresponds t o 2C due t o o u r choice o f Riemiannian s t r u c t u r e determined by 2 2 2 and C = 1/2(X +Y -Z )
1/2B(-,*)
-
see Remark 3.15 below on Casi-
-3
m i r operators).
I n E(g ) we have then a l s o 2C = ($1)'
B
+ X-X,)
$X+X-
+
and i n geodesic p o l a r coordinates ( c f . Proposi-
t i o n 3.6) (3.41)
A = H:
+ $H+H-
+ H-H,)
a2
=
+ coth
T
a/a-c
+ csch2T a2/ a 0 2 We n o t e here t h a t an a l t e r n a t e expression f o r A i s given by A = H+H
.
+ H'3 -
-
H3 (cf.
Theorem 3.11
C a r r o l l - S i l v e r [15;
16; 171 and S i l v e r
Ill).
For v f i x e d (Muf)(v) depends o n l y on t h e geo-
d e s i c r a d i u s T = t o f u = n ( h ) = k a K and can be i d e n t i f i e d
9 t
w i t h t h e geodesic mean value M(v,t,f). Proof:
T h i s can be proved b y t e d i o u s c a l c u l a t i o n based on
t h e coordinates i n t r o d u c e d i n p r e v i o u s examples b u t i t i s simply a consequence o f Lemma 1.1 and Theorem 3.8. A
Indeed, s e t t i n g
AA
A
h
g = k ak w i t h h = k a k we have v = n ( g ) = k aK and u = n ( h ) = 1 2 1 t 2 1 klatK w i t h (3.42)
a ( M u f ) ( v ) = (M t f ) ( v ) = ( M t f ) ( v )
A
A
A
A
We n o t e t h a t t h e d i s t a n c e from v = klaK t o k aka K i s t h e same as 1 t
118
2. CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS A
t h e d i s t a n c e from w = n ( e ) = K t o katK = (exp E ) w = pw, which as
n d i c a t e d i n Theorem 3.8, ~n
V '
Hence as k
d e s c r i b e a geodesic " c i r c l e " around
v a r es t h e p o i n t s klak.rr(at) n
w i l l s i m p l y be T = t.
h
k aw o f r a d i u s T = t; (3.42) i s , upon s u i t a b l e normal z a t i o n
1 a l r e a d y provided, t h e d e f i n i t i o n o f M(v,t,f). Remark 3.12
QED
The v a l i d i t y o f t h e Darboux equation ( .7) f o r and D = A i n spaces o f constant
geodesic mean values M(v,t,f)
n e g a t i v e curvature, harmonic spaces, etc. has been discussed, u s i n g p u r e l y geometrical arguments by G h t h e r [l],O l e v s k i j [l], and Willmore [l]( c f . a l s o Fusaro [l],G'u'nther [2;
31, Weinstein
and Remark 5.6).
[12],
We can now define, f o r m c o n v o l u t i o n ) o f Rm(t,.) means o f (3.40).
E
2 1 an i n t e g e r , a composition ( o r
E'(V) w i t h a f u n c t i o n f ( - ) on V by
Thus f o r v = n ( g ) we w r i t e
(3.43) where <
,>
denotes a d i s t r i b u t i o n p a i r i n g as i n Lemma
( c f . He gason [2] f o r a s i m i l a r n o t a t i o n ) . (Rm(t,=
1.1
Then, s e t t i n g
# f ( * ) ) ( v ) = um(t,v), we have from (3.40) a Sonine
formula (3.44)
sh2mt urn(t,v)
Since F
= R(R+l)FT w i h
Ehrenpre s-Mautner [1])
R
=
-1/2 + i u when T
I
E
t h e r e f o l l o w s from (3.8),
119
E (V) (cf. (3.9),
(3.43)
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
and t h e d e f i n i t i o n o f u" = u"(t,v)
F o r m 2 1 an i n t e g e r and f
Theorem 3.13
= um(t,v)
t i o n um(t,v,f)
= um(t,v,f)
=
(Rm(t,-)
E
2 C ( V ) t h e func-
# f(*))(v) satisfies
qq)sh [A-m(m+l)]~"+~
(3.45)
u;
(3.46)
uy + 2m c o th t um = 2m csch t urn-'
(.3.47)
utt + (2m+l) c o th t uy + m(m+l)um = Aum
(3.48)
um(o,v) = f ( v ) ;
=
m
where (3.45),
and (3.48)
=
0
h o l d f o r m 2 0.
The n o t a t i o n here d i r e c t s t h a t (AMt # f ) ( v ) =
Proof: Av(Mtf)(v)
(3.47),
uT(o,v)
= (MtAf)(v)
(see e.g.
(1.7)
and r e c a l l a l s o t h a t A =
6d + d6 i n t h e n o t a t i o n o f de Rham [1] i s f o r m a l l y symmetric) w h i l e (3.48) example.
i s immediate fro m t h e d e f i n i t i o n s and (3.45)
for
One can a l s o prove Theorem 3.13 d i r e c t l y from t h e de-
f i n i t i o n (3.44)
and t h e Darboux e q u a ti o n (1.7) w i t h o u t u s i n g t h e
F o u r i e r t r a n s f o r m a t i o n ( c f . C a r r o l l - S i l v e r [15; (3.46)
f o l l o w s immediately from (3.44)
(3.45)
and (3.47)
16; 173).
by d i f f e r e n t i a t i o n w h i l e
r e s u l t then by i n d u c t i o n u s i n g (1.7)
r a d i a l Laplacian DU = A = m = 0 t oget her w i t h (3.46)
a 2/ a t 2 +
Indeed
coth t
and t h e
a / a t ( c f . (3.41)) f o r
(see C a r r o l l - S i l v e r [16] f o r d e t a i l s ) . QED
D e f i n i t i o n 3.14
The sequence o f s i n g u l a r Cauchy problems
120
2.
(3.47)
-
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
sequence. (3.8)
f o r m 2 0 an i n t e g e r w i l l be c a l l e d a canonical
(3.48)
The canonical r e s o l v a n t sequence corresponding t o
under i n v e r s e F o u r i e r t r a n s f o r m a t i o n i s ( c f . a l s o (2.3))
+ ( 2 1 ~ 1 c) o t h
(3.49)
RTt
(3.50)
Rm(o,*) = 6 ;
t RY + rn(m+l)Rm = ARm m
= 0
Rt(0,*)
where 6 i s a D i r a c measure a t w = .rr(e). t i o n s (3.9)
S i m i l a r l y from t h e equa-
we have
2(m+l) sh [A-m(m+l)]Rm+’
(3.51)
Rt =
(3.52)
R Y + 2m c o t h t R” = 2m csch t Rm-’ Remark 3.15
We r e c a l l a t t h i s p o i n t a few f a c t s about .-.
Casimir o p e r a t o r s f o r a semisimple L i e algebra g ( c f . Warner [l]).
. . ., Xn i s any b a s i s f o r gE l e t gij .-.
I f X1,
= B(Xi,X.)
where J be t h e elements o f
B(=,*) denotes t h e K i l l i n g form and l e t gij the matrix (g’j)
i n v e r s e t o (g..). 1J
The Casimir o p e r a t o r i s then
d e f i n e d as
T h i s o p e r a t o r C i s independent o f t h e b a s i s {Xi} .-.
c e n t e r Z o f t h e enveloping algebra E(gt).
Another f o r m u l a t i o n
. “ -
can be based on a Cartan decomposition g = k
Cartan subalgebra j o f g
.-.
.
such j always e x i s t .
(i.e.,
. - . . - . - . . - .
j = j f) k +
L e t a b a s i s Hi
121
and l i e s i n t h e
+ p and a e s t a b l e
jfl p
= j- + jp);
k ( 1 <, i 5 m) f o r j-. and a k
SINGULAR AND DEGENERATE CAUCHY PROBLEMS = -6ij for b a s i s H.(m+l<jlR) f o r j be chosen so t h a t B(Hi,H.) J P J 1 5 i, j 5 m and B(Hi,H.) = fiij f o r m + 1 5 i,j 5 R. Pick r o o t J ,. vectors Xa i n g so t h a t B(Xa,X,a) = 1 (where [Xa,X-,] = Ha).
t
Then
When G has f i n i t e c e n t e r w i t h K a maximal compact subgroup then the operator i n D ( G / K )
determined by C i s the Laplace-Beltrami
operator f o r the Riemannian s t r u c t u r e induced by t h e K i l l i n g form B(*,-)
(see Helgason [l]and cf.
Example 3.16
(3.41)).
We consider now the case where G = SOO(3,1) =
SH(4) i s the connected component o f the i d e n t i t y i n t h e Lorentz group L = SO(3,l)
and K = SO(3) x SO(1) Z SO(3).
The r e s u l t i n g
Lobazevskij space V = G/K has dimension 3 and rank 1.
I n R4 G
c o n s i s t s o f so c a l l e d proper Lorentz transformations which do n o t
2 2 reverse the time d i r e c t i o n . Thus s e t [x,x] = -r (x,x) = -xo + 2 2 2 + x2 + x3 and t h i n k o f xo as time. Then G corresponds t o 4 x 4 x1 matrices o f determinant one l e a v i n g [x,x] t h e s i g n o f xo.
I n particular i f
2 p o s i t i v e l i g h t cone r (x,x)
i n v a r i a n t and p r e s e r v i n g
n4 denotes
the i n t e r i o r o f the
> 0, xo > 0, then G : R4
+
R4.
The
LobaEevskij space V can be i d e n t i f i e d w i t h t h e p o i n t s o f t h e 2 "pseudosphere" r (x,x) = 1, xo > 0 (which l i e s w i t h i n R4). coordinates
122
If
2.
(3.55)
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
x1 = r sh
e3
s i n €I2 s i n
-
e 1’
x3 = r sh €I3 cos €I
x2 = r sh €I3 s i n €I2 cos €I1; with 0
5
€I1 <
ZIT, 0 5 O 2 <
IT, 0
s c r i b e d i n R4 then coordinates
5
ei(i
x0 = r ch €I3
e3
<
m,
and 0 5 r <
= 1,2,3)
m
are pre-
can be used on V and
t h e i n v a r i a n t measure dv on V i s g i v e n by dv = sh
(i= 1,2,3).
2;
2
e3
s i n O2lIdei
We w i l l now f o l l o w Takahashi [l]i n n o t a t i o n because
o f h i s more “canonical” f o r m u l a t i o n b u t r e f e r a l s o t o V i l e n k i n
[l]f o r many i n t e r e s t i n g geometrical i n s i g h t s . ,.. Thus as a b a s i s o f t h e L i e algebra g o f G we t a k e
Io (3.56)
Y1 =
Y3 =
‘1 3
1
0
O 0
0’ 0 Y
Y2 =
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0)
0
0
0
1’
0
0
0’
0
0
0
0
0
1
0
-1
0
0
3
‘12
=
0
0
0
0
1
0
0
0,
0
0
0,
0
0
0
0’
0. 0
0’
0
0
0
1
0
0
0
0
0
1
0
-1
0,
0
0
0
0
0
-1
0
0,
Y
‘23
Y
3
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Note t h a t i f E
denotes the matlrix w i t h 1 i n the (p,q) Pq (pth row and qth column) w i t h zeros elsewhere then Y P E ( p = 1,2,3) and X E (p
-
position
+
EoP Then
Y
R Y 3 we
~
Y
.
.
,
+ p and K
have a Cartan decomposition g = k
Y
= exp k.
Take now
a = R Y 1 as a maximal a b e l i a n subspace o f p and s e t X
P
+ X
= Yp
1P
(p = 2,3) so t h a t
(3.57)
x2
=
’0
0
1
0’
0
0
1
0
1 - 1
0
0
0
0,
,o
0
;
x3 =
0
0
0
1
0
0
0
0
1
-1
0
0,
-
Then w r i t i n g n = RX, + R X an Iwasawa decomposition o f g i s 3 ,.L given b y g = k + a t n and w r i t i n g A = exp a w i t h N = exp n one
- -
has G =
KAN.
We w i l l use the n o t a t i o n at = exp t Y 1 so t h a t
-
sh t
0
0
sh t
ch t
0
0
0
0
1
0
( 0
0
0
1
‘ch
(3.58)
at =
One can take Y1 = Ho i n the general rank one p i c t u r e w i t h a(Ho) = 1 since [Yl,X2]
= X2 and [Y, ,X3]
= X3.
Thus a, which i s the
1 o n l y p o s i t i v e r o o t , has m u l t i p l i c i t y two and p = -in a = a 2 a p(tY1) = t.
We r e c a l l t h a t M = (kek; AdkH = H f o r H
t h a t Mi = (kEk; Adka C a).
E
with
a1 and
Since exp AdkH = k exp Hk-’ we see
124
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
2.
t h a t AdkH = H f o r H a for H
E
a i m p l i e s k exp Hk-l = exp H w h i l e AdkH
a i m p l i e s k exp Hk”
E
mediate t h a t M = {exp
m =
(3.59)
0
= exp Hi f o r H I
E
a.
E
It i s im-
c o n s i s t s o f matrices
1
0
A
m
;
E
SO(2)
A
whereas M
I
exp I T X ~ ~ ) where , exp ITX
= M U {exp vXl2,
( p = 2,3) 1P Thus W = M /M has the p r o p e r t i e s i n d i c a t e d beI
sends at t o a,t.
f o r e i n t h e general rank one s i t u a t i o n and B = K/M can be i d e n t i -
2
f i e d w i t h the two sphere S c R
3
.
This i d e n t i f i c a t i o n can be
s p e l l e d o u t i n a t l e a s t two ways and we w i l l adopt the one leadi n g t o the s i m p l e s t i n t e g r a l expressions l a t e r .
Thus, f o l l o w i n g
Takahashi [l], we w r i t e u = exp 0X12 and v = exp I$X23 f o r 0 5 0 I$ 0 5 IT and -IT < I$ 5 TI ( i n p a r t i c u l a r v E M). Then any k E K can
0
be w r i t t e n i n t h e form k = m u v f o r m E M so t h a t i f m = v 0 0 JI then kll = cos 0 , k12 = s i n 8 c o s b k13 = s i n 0 s i n I$, kZ1 = -sin 8
COSI),
(kll,k21,k31)
and k31 = s i n 8 s i n +
:k
+
One can pass the map k
R3 t o q u o t i e n t s t o o b t a i n a map K/M
+
+
S
x =
2
v u M and x + ( J I , 0 ) ; here -IT < JI < TI and 0 < 0 < IT $ 0 2 on the domain o f uniqueness. The i n v a r i a n t measure on S corres-
where k
+
l ponding t o t h i s i d e n t i f i c a t i o n i s given by ds = ( 4 1 ~ ) - sined0dJI and the f u n c t i o n s
125
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
with c = [(2n+l)(n-1n)!/(n+m)!]"~, -n 5 m 5 n, and n = 0,1,2, m ,n 2 2 form a complete orthanormal system i n L ( S ) ( c f . Talman
. . .,
[l]and V i l e n k i n [ l ] ) . We can now g i v e e x p l i c i t formulas f o r a canonical s e t o f radial objects i n
H, ( c f . (1.4)).
Thus l e t v = atK and b = kM
w i t h k = v+ue and consider ( c f . (3.19)) IT
A
(3.61)
@;"(atK)
=
-IT
I
(iP-l)H(a;'k)
IT 0
e
'n ,m
( e , $ ) s i n 8 dOd$
It f o l l o w s from general formulas i n Takahashi [l]t h a t
-
exp H(a-'v u ) = ch t t $ 0
I
1
2
IT
(ch t
-
sh t cos e)ip-lPn(cos
f 0 and P:(cos
reduces t o R (t,w)
=
u
io(t,p)
."
0 ) = Pn(cos 0 ) .
FMt = @ (a,)
= 1 and Po(cos 0 ) = 1 whereas,
calling that @
e ) s i n e de
o
"0
t h a t (3.62)
(3.63)
IT
= 0 for m
eimd$
-IT
0 3 0
,
h~
= 2 '0 n
c
becomes
"m 0', n (atK) = @ 'n (atK) = Z n ( t ) 1-I
(3.62)
since
sh t cos 8 and t h e r e f o r e (3.61)
1-I
when n = 0 since
s e t t i n g k = v, u v
+ @ @
and r e -
i s an even f u n c t i o n o f t, t h e expression f o r
can be w r i t t e n i n t h e form ( c f . Takahashi [l])
"0
We n o t e
R (t,p) =
I
(iu-l)H(ai'k)
e K
126
dk
2.
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
=
1 JrO( c h t - s h t
cose)iv-l sinede = Z o ( t )
v
-
2ipsh t [(cht + s h t ) ”
=
sinpt/vsht
-
(cht
-
~ht)~’]
To evaluate (3.62) i n general one has recourse t o various formulas for special functions and we are grateful here t o R. G. Langebartel for indicating a general formula for such integrals i n terms of Meijer G functions (cf. Luke [l]).
The details are some-
what complicated so we simply s t a t e the r e s u l t here.
We note that f o r n
=
Thus, since
0 t h i s formula yields (cf. Magnus-
Oberhettinger-Soni [l])
(3.65)
=q
Z;(t)
sh-’t
=
1
1
l(ch t ) i v-7L
P-’
(L) sh-’t[(ch 21 v 1 21U
= (-)
t + sh t ) i v
sh-’t(e i v t
i n accordance w i t h (3.63).
-
-
(ch t + sh t)-iv]
e-ivt)
Further l e t us remark that (cf.
Robin [l])
127
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
(3.66)
P
--1
1/2 t F l +( i vv 7 l-ill 2, 3 -sh 2 t )
l(ch t)=&sh 2
ill7
and hence from (3.65)
one has Z E ( t ) =
F(Y),Y, $
-sh 2 t)
as r e q u i r e d by (2.2). "n To o b t a i n re s o l v a n ts R (t,p) m u l t i p l y t he Z n ( t ) o f (3.64) ll Since one has f o r example
(3.67) (cf.
P
--
:(ch
t) =
ip-7
n+21
'sh(t3)
2
r(n +
$
F (n +r l,+Fi p, n ++l - -i p, - s 3h 2
-
i t i s n a t u r a l t o ta k e ( c f . (3.21) n+l+iu n+l-iu
h
Rn(t,u)
We now use (3.23) Some r o u t i n e in. Theorem 3.17
3
= F ( T F n + p h
-
(3.24)
2
t o obtain recursion relations f o r the
c a l c u l a t i o n y i e l d s then The re s o l v a n ts
in for the
case o f t h r e e dimen-
iu-1)
^R!
(3.22)
t)
s i o n a l Lobazevskij space a re d e fi n e d by (3.68)
(3.69)
2t )
Robin [l]), i n o r d e r t o s a t i s f y t h e r e s o l v a n t i n i t i a l condi-
t i o n s (2.3), (3.68)
by an a p p ro p r i a t e w e i g h t f a c t o r .
-n 1
-n- 1
. . . we now
f o r n = 1, 2,
+ (2n+l) c o t h t
in = (2 n + l ) 128
csch t
and s a t i s f y (v
=
2. CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
h
Rt:
(3.71)
+(2n+2) c o th t
s:
+ n(n+2)^Rn = v(v+2)^Rn
These equations a re i n agreement w i t h S i l v e r [l]where they are obt ained i n a d i f f e r e n t manner and t h e r e s o l v a n t s a r e exof B ,Y V i l e n k i n [l]. One can now proceed as b e f o r e t o determine r e s o l -
pressed somewhat d i f f e r e n t l y i n terms o f t h e f u n c t i o n s Pa
vants Rn and canonical sequences o f s i n g u l a r Cauchy problems. S i m i l a r l y one can expand t h e m a t r i x th e o r y t o deal w i t h h i g h e r dimensional Lobazevskij spaces ( c f . S i l v e r [l])b u t we w i l l n o t s p e l l t h i s o u t here ( c f . Se c ti o n 4). i n g t h e r e c u r s i o n r e l a t i o n s (3.69)
-
The q u e s t i o n o f deduc-
(3.70)
from group t h e o r e t i c
i n f o r m a t i o n about t h e i r r e d u c i b l e u n i t a r y r e p r e s e n t a t i o n s o f G i n t h e f-l
u
w i l l be d e f e r r e d f o r t h e moment.
Remark 3.18 2.1
-
Going back t o th e general format o f Sections
2.2, Example 3.16 corresponds t o t h e case ma = 2 , mZa = 0,
p = 1, da = -p(p+l),
dpa = 0, and n = p.
Then u s i n g t h e Kumner
r e l a t i o n i n d i c a t e d a t t h e end o f S e c ti o n 2.2 w i t h z = t h L t now,
- (p,o)
2 we have z/z-1 = -sh t and f o r T (3.72
Y
-u,T
(a K) t = c
-uYT
t h P t ch-iu-lt
129
F(+,
ip+l+
iu+2+p
3 2 ,p+Z,th t )
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Hence we can write from (3.68) (3.73)
A
R P ( t , u ) = c-l
-uYT
exactly as i n (3.7).
shePt Y
-u ,'c (atK)
P u t t i n g this i n (2.11) yields (3.71) and
the recurrence relations follow as before from (3.23)
2.4
Expressions f o r general resolvants.
m and m2a = 0 so t h a t d2a = 0, while
T
Theorem 4.1
p =
- (p,o).
m/2, R = i v +
T, da
-
(3.24).
Let f i r s t ma = = -p( p+m-1)
, and
Resolvants f o r the case ma = m and m2a = 0 are
given by A
(4.1)
R P ( t , u ) = c-l
-uYT
= ch-P-R
s h w P t Y -u
,f(atK)
R+p+l +m+l 2 ,p 7 t h t )
t F(+,R+
These s a t i s f y the resolvant i n i t i a l conditions as well as the differential equation and sDlittinq recursion relations below. (4.2)
A
A
(4.4)
A
RtPt + (2p+m) coth t R! + [p(p+m) + p
A
2
+ ($m 2 ]R" p - - 0
A
R! + (2p+m-1) coth t Rp = (2p+m-l)csch t RP-'
130
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
2.
Proof: and (3.73)
Equation (4.1)
f o l l o w s from d e f i n i t i o n s ( c f .
f o r m o t i v a t i o n ) , (2.9)
(3.7)
t h e Kumner r e l a t i o n F(a,b,c,z)=
(l-z)-aF(a,c-b,c,z/z-l),
and an extended v e r s i o n o f (3.67);
r e c u r s i o n formulas (4.3)
-
( c f. Robin [l]f o r d e t a i l s ) . o r (4.3)
-
(4.4)
the
f o l l o w from t h e known r e l a t i o n s
F i n a l l y (4.2)
r e s u l t s from (2.11)
(4.4).
QE D
I n t h e s i t u a t i o n now when mZa = 1 t h e s i t u a t i o n becomes somewhat d i f f e r e n t .
We r e c a l l t h a t
T
-+
(p,q) w i t h (p,q)
E
Z+
x
Z and
2 We take ma = m so t h a t da = -p(p+m) + q and dpa = q E 22., 2 m For t h e r e s o l v a n t s we use (3.7) again ( c f . -4q w i t h p = 2 + 1.
p
2
(3.73)
a l s o ) w i t h (2.9)
t o obtain
= ch-P-2XF(x+y,
x +
y,
y, t h 2 t )
where x = -1( i p + 2 + 1 ) = R and y = p + 2 + 1. An elementary 2 2 2 computation now y i e l d s th e re s o l v a n t e q u a t i o n from (2.11) i n t h e form (4.8)
*R;iq
+ [(Pp+m+l)coth t + tht]c!7q
+ [p(p+m+2) + p 2 + (!)+1)2 131
+ q 2 ~ e c h 2 t ] " R 9 q= 0
SINGULAR AND DEGENERATE CAUCHY PROBEMS
Theorem 4.2 given’by (4.7)
For the case
= 1 with
%
= in resolvants a r e
s a t i s f y i n g the resolvant i n i t i a l conditions
a
(2.3) and (4.8).
There a r e various spl i t t i n g recursion r e l a t i o n s
which we l i s t below.
(4.9)
p
-
^Rp’q
2x1 t h t
sh2t t h t
(4.10)
A
RPtYq = 2(y-l)coth t sech2t
ip-2sq
2(x+-l)(y-x
+ [ 2 ( 1 - 6 ) ~ 0 t ht + 1
-y-1)
Y-2
(4.11)
(4.12)
A
Rp’q
t
= -q t h
t
SPsq -Z(y-l)coth tiPsq
+ Z(y-l)csch t ^Rp-lSq-’ (4.13)
(4.14)
A
Rp’q
t
= qth
t
iPsq -Z(y-l)coth
+ E(y-l)csch t
t
iPsq
ip-l’q+l 132
6p+zq
- qlth
t]
2.
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
2 coth t iPsq + -=x+y) 9+ 1
h
RPtSq = q t h t
(4.15)
h
R!’q
(4.16)
= -q t h t
(y-x Proof: mula
d
iPsq + 2 coth t ( X + Y ) q-1
-
The r e c u r s i o n r e l a t i o n s are derived using the f o r -
F(a,b,c,z)
= (ab/c)F+ = (ab/c)F(a+l ,b+l ,c+1 ,z)
and var-
i o u s c o n t i g u i t y r e l a t i o n s f o r hypergeometric f u n c t i o n s ( c f . Magnus-Oberhettinger-Soni
[l].Thus t o o b t a i n (4.9)
-
(4.10) one
uses the e a s i l y derived formulas (4.17)
( l - z ) F + = F + w ,cz c+l F(a+l,b+l,c+2,z)
(4.18)
abz(1-z)F+ = c(c-l)F(a-1 ,b-1 , c - ~ , z )
+ For (4.11)
-
c
[
J
-
( z
-
(c-bz-l)]F
(4.12) one uses t h e formulas
(4.19)
b(1-z)F+ = CF + (b-c)F(a+l ,b,c+l ,z)
(4.20)
abz(1-z)F+ = c ( c - l ) F ( a - 1 ,b,c-1,z)-c(c-bz-l)F
whereas f o r (4.13) (4.21)
-
(4.14)
we u t i l i z e
abz(1-z)F+ = c(c-l)F(a,b-1,c-1
133
,z)
-
c(c-aa-1)F
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
(4.22)
-
a(1-z)F+ = CF
and f i n a l l y f o r (4.15)
-
(c-a)F(a,b+l ,c+1 ,z) (4.16) one has
(4.23)
bZ(l-z)F+ = c ( z (b-c))F + ~ - ~ +- ~
(4.24)
abz(1-z)F+
=
F(a+l ,b-1 ,c,z)
-bco F(aa-b-1
Let us a l s o remark b r i e f l y about the s p l i t t i n g phenomenon.
Thus
f o r example (4.19) y i e l d s (4.25)
F
I
=
c(1 a -z)-[cF
+ (b-c)F(a+
whereas (4.20), a f t e r an index change (4.26)
I
[cF
F (a+l,b,c+l ,z) = z ( l
gives
-
(c-bz)F(a+l ,b,c+l ,z)]
Now d i f f e r e n t i a t e (4.25), insert (4.26), and then use (4.25)
Multiplying by z(1-z) one
again t o eliminate F ( a + l , b , c + l , z ) .
obtains then the hypergeometric equation z(1-z)F [c
-
(a+b+l)z]F
I
-
abF
=
I 1
+
I t i s easy t o show t h a t i f t h e
0.
hypergeometric equation s p l i t s i n t h i s manner then so does (4.8) under the composition of (4.11)
-
(4.12), f o r example.
QED
For completeness we will write down some formulas f o r t h e = 3 o r 7 b u t will omit t h e recursion r e l a t i o n s s i n c e 2a the pattern i s exactly as above. T h u s f o r m2a = 3 we s e t ma = m
cases m
and r e c a l l t h a t (p,q)
E
Z+
x
Z+ w i t h p
134
?
q
E
22.,
One has
2. CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
p =
-m2 + 3 and R
q(q+2).
(2.9)
=
iu +
We use (3.7)
p w i t h d2a = -4q(q+2) and da = -p(p+m+2) + h
and (3.73)
again t o d e f i n e R p y q and from
this yields
1 where x = R/2 = $ i u
+%+ 3)
and y = p +
e q uat ion a r i s i n g from (2.11) *
R!tq
(4.28)
m -i+
2.
The d i f f e r e n t i a l
i s then
+ [(2p+m+3)coth t + 3 t h t]i!yq = [p(p+m+6)
+ p 2 + =(!)+3)
For mZa = 7 one has p = !+
2 + q(q+2)sech2t]RPyq = 0 A
7 and s e t t i n g ma = m i t f o l l o w s
2
t h a t da = -p(p+m+6) + q ( q t 6 ) w i t h dZa = -4q(q+6). and (2.9)
from (3.7)
again R+
h
(4.29)
+
RPYq(t,u) = ch-P-a t F ( 9 ,
R;tq
,p+%+4,
2 th t )
th e d i f f e r e n t i a l e q u a ti o n f o r R P y q i s
h
+ [(Ep+m+7)coth t + 7th 2
+ [p(p+m+l4) + p +
Theorem 4.3 by (4.27)
Rtp-q-6
*
and from (2.11) (4.30)
I n t h i s case
t]6!’q
m 2 (9+ 7) + q ( q + 6 ) s e ~ h ~ t ]= ~0~ ’ ~
For m2a = 3 (resp. 7) t h e r e s o l v a n t s a r e given
(resp. (4.29))
and s a t i s f y (4.28)
135
(resp. 4.30)).
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
These r e s u l t s completely s o l v e t h e rank 1 case and t h e conn e c t i o n o f t h e F o u r i e r t h e o r y t o t h e associated s i n g u l a r p a r t i a l d i f f e r e n t i a l equations has been i n d i c a t e d a l r e a d y ( c f . Theorem 3.13 and Chapter 1). 2.5
The Euclidean case p l u s g e n e r a l i z a t i o n s .
here C a r r o l l - S i l v e r [15;
We f o l l o w
16; 171 and w i l l i n d i c a t e r e s u l t s o n l y
f o r one simple Euclidean case; a complete e x p o s i t i o n appears i n S i l v e r [l]. Thus l e t G = R2xySO(2) and K = SO(2) where (;,a)
(;,8)
=
(&y(ct)?,ct+B)
i s a semidirect product w i t h
( c f . Helgason [l], M i l l e r [l;21, and V i l e n k i n [l]) ground information).
f o r back-
Thus G = M(2) i s t h e group o f o r i e n t a t i o n
and distance preserving motions o f R2 and i s a s p l i t extension o f R2 ( w i t h a d d i t i v e s t r u c t u r e ) by K so t h a t R 2 and K are subgroups o f G w i t h K compact and
R2 normal ( c f . Rotman [l]).
Elements g = (;,a) can be represented i n t h e form 'cos ct (5.2)
g =
s i n ct
, o
- s i n ct cos
ct
0
and m u l t i p l i c a t i o n i s f a i t h f u l .
."
xl' x2
1, As generators o f t h e L i e alge-
b r a g o f G we t a k e
136
2.
1 l;i 1; ; b;; j
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
0
(5.3)
al =
0
0
0
0
0
a2
0
a3 =
0
0
-1
0'
1
0
0
0
0
0,
with multiplication table
."
Thus g i s s o l v a b l e ( b u t n o t n i l p o t e n t , n o r semisimple).
Now s e t
V = G/K and s i n c e (;,a)(;,@) = (z,a+B) t h e r e i s an obvious g l o b a l a n a l y t i c diffeomorphism V f(g-%)
g-';
R
2
.
One d e f i n e s as b e f o r e L ( g ) f ( x ) =
where g = (;,a) and g - l = (y(-a)(-;),-a).
= f(y(-a)(;-;))
One t h i n k s here o f
-+
;;as
= g - l r ( h ) = IT(g-'h)
r ( h ) = IT(;,@) = = r(y(-a)(-;)
so t h a t
IT((;,O)(O,@))
+ y(-a);,@-a)
= y(-a)(;-G). . "
If f i s d i f f e r e n t i a b l e then L induces a r e p r e s e n t a t i o n o f g as i n we have f i r s t , f o r $ = ( x1 ) = x2 +. ( f o r s i m p l i c i t y o f n o t a t i o n ) , exp(-tal)x =
W r i t i n g Ai
(3.29). -+
r ( x , @ ) = (xl,x2) (xl-t,x2),
= L(ai)
e x p ( - t a 2 ) z = (xl,x2-t),
Consequently we o b t a i n A1 = -a/axl, x2 a/axl-xl
a/ax2.
(3.12)
and (3.26))
(5.5)
[H,H+]
A2 = -a/ax2,
W r i t i n g H+ = A1 + i A 2 , H
2iA3 i t f o l l o w s from (5.4)
= 2H+;
+.
and exp (-ta3);
= y(-t)x.
and A3 =
- = A1 -
iA2, and H =
t h a t ( n o t e t h e c o n t r a s t here w i t h
[H,H-]
= -2H ;
[H+,H-]
= 0
The Riemannian s t r u c t u r e on V i s described i n (geodesic) p o l a r c o o r d i n a t e s by ds2 = d t 2 + t 2d8 2 ( c f . Helgason [ l ] ) geometry i s " t r i v i a l . "
and t h e
There f o l l o w s immediately ( c f . V i l e n k i n
137
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Lemma 5.1 (5.6)
I n p o l a r coordinates ( t , e ) it3
H+ = -e
[a/at +
H- = -e (5.7)
A = H H
+-
[a/at
-
i
H = -2i
a/ae;
a/ael
1 a/at + a 2/ a t 2 + t
=
As b e f o r e (cf.
-i0
Lt a/ael;
on V
1 t
a 2/ae 2
P r o p o s i t i o n 3.7) we work w i t h (dense) d i f f e r -
e n t i a b l e b a s i s " v e c t o r s " f i i n H i l b e r t spaces tl a u n i t a r y i r r e d u c i b l e representation L
u
u
where G provides
and these are c h a r a c t e r -
i z e d by t h e c o n d i t i o n s ( c f . M i l l e r [l;23, V i l e n k i n [I]) =
iuf;+l;
H-f;
= ipfi-l;
= mfi
H3f;
where H3 = 1/2 H and 1-1 i s r e a l (see C a r r o l l - S i l v e r [15;
16; 171
Here we can w r i t e L =
and S i l v e r [ l ] f o r f u r t h e r d e t a i l s ) .
(1.5) ) , b u t emphasize t h a t t h e semi simp1 e t h e o r y does n o t apply. Theroem 5.2
There r e s u l t s (cf.
Vilenkin [l])
Canonical b a s i s v e c t o r s i n H
u
i n t h e form (5.9)
can be w r i t t e n
f i = (-i)m exp (ime)Jm(pt)
Proof:
Take f i = eimOwL(t)
requirement i n (5.8).
which w i l l assure t h e t h i r d
Then t h e w i must s a t i s f y
138
2.
(cf. (5.7
CANONICAL SEQUENCES OF SINGULAR CAUCHY PROBLEMS
-
The solutions J,(ut)
(5.8)).
are chosen for f i n i t e -
ness cond tions and the factor ( - i ) mmakes valid the recursion relations indicated i n (5.8) (cf. Vilenkin [l]); the resolvants and s a t i s f y age given by "R(1-I,t)= (i)m2mr(m+l)(pt)-mwi(t) 2 (1.3.11) - (1.3.12) with A(y) replaced by u (resp. y by 1-11 similarly (1.3.4) Remark 5.3
-
(1.3.5) hold f o r
^Rm
with
?=
1.
QED
I t i s easy t o show that the mean value as de-
fined by (1.6) coincides i n t h i s case with the mean value u X ( t ) (cf. formula (1.2.1)
-
and see Carroll-Silver [16] for d e t a i l s ) .
Thus the results of Chapter 1 may be carried over t o t h i s group theoretic situation , which i s equivalent. W e conclude t h i s chapter with some "generalizations" of the
growth and convexity theorems (1.4.12) and (1.4.16) in the special case V = SL(2,R) /SO(2) Silver [15; 16; 173).
(cf. Theorem 3.13 and Carroll-
F i r s t i t i s clear that i f f _> 0 then,
referring t o (3.43), ( M t # f ) ( v ) teger (here we assume f
E
C'(V)
=
(Mtf)(v) 2 0 for m 2 0 an in-
f o r convenience l a t e r ) .
Hence
u m ( t , v , f ) = u m ( t , v ) 2 0 when f 2 0 by (3.44) f o r m > 0 an integer. Now write Am = A a M t, Theorem 5.4
- m(m+l) so Let A,f
t h a t by
3.45) we have
recall Mt
=
L 0, m 2 0 an integer; then u m ( t , v ) i s
monotone nondecreasing i n t f o r t 2 0. 139
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
AM f = M ( A f ) by (1.7)
Proof:
rl
rl
and Lemma 1.1.
QED
Now l e t $ be any f u n c t i o n such t h a t d$/dt = csch2m+1t so t h a t d/d$ = sh2m+1t d / d t ( c f . Weinstein [12]).
Then (3.47) can
be w r i t t e n
a 2/a$ 2 um ( t , v , f )
(5.11)
= ~
h um(t,v,A,f) ~
~
~
t
Consequently t h e r e f o l lows
L
Iff,A,,
Theorem 5.5
0 then um(t,v,f)
i s a convex f u n c t i o n
o f $. Working i n a harmonic space Hm(cf. Ruse-Walker-
Remark 5.6 Willmore [ l ] ) ,
Fusaro [l]proves (M = M(v,t,f)
3.11) (5.12)
Mtt
+
(w
+ log' g(t)'l2)Mt
where g = d e t (9. .), gij 1J
as i n Theorem
= AM
denoting t h e m e t r i c tensor, and g depends
on the geodesic distance t alone (A denotes t h e Laplace-Beltrami
I f A f 2 0, M w i l l be nondecreasing i n t and a convex
operator).
f u n c t i o n of $ where $ ' ( t ) = t'-m/g(t)'/2.
Weinstein 1123 works
2 i n spaces o f constant negative c u r v a t u r e -a (which a r e harmonic) and proves s i m i l a r theorems f o r (5.13)
Mtt
+
a(m-1) c o t h (at)Mt = A M
We r e f e r t o Helgason [4] f o r such "Darboux" equations i n a group context; t h e extension t o "canonical sequences" i s due t o C a r r o l l
140
2.
CANONICAL SEQUENCES OF SINGUALR CAUCHY PROBLEMS
[21; 221, Carroll-Silver [15; 16; 171, and Silver
141
113.
This page intentionally left blank
Chapter 3 Degenerate Equations w i t h Operator Coefficients 3.1
Introduction.
In the preceding chapters we were con-
cerned w i t h Cauchy problems f o r evolution equations with operator c o e f f i c i e n t s t h a t were permitted t o become i n f i n i t e o r singular. We turn now t o the dual s i t u a t i o n i n which the operator c o e f f i -
cients a r e permitted t o degenerate i n some sense.
The examples
t o follow w i l l i l l u s t r a t e some typical p a r t i a l d i f f e r e n t i a l equat i o n s t h a t occur i n the i n i t i a l boundary. value problems t o which our a b s t r a c t r e s u l t s will apply. Example 1.1
Various diffusion and f l u i d flow models lead t o
the p a r t i a l d i f f e r e n t i a l equation
with nonnegative real c o e f f i c i e n t s .
This equation can be e l l i p -
t i c (ml = m2 = 0 ) , parabolic (ml > 0, m2 = 0 ) , o r of pseudoparab o l i c o r Sobolev type (m2 > 0 ) , and the type may change w i t h position = x and time
=
t.
The equation (1.1) w i t h m2 > 0 was
proposed i n 1926 by Milne [l].
Similar equations have been pro-
posed f o r numerous o t h e r a p p l i c a t i o n s by Barenblat-ZheltovKochina [ l ]
, Benjamin
Nachman-Ting [ l ] ,
[ l ] , Benjamin-Bona-Mahoney [2],
Buckmaster-
Chen-Gurtin [ l ] , Coleman-No11 [1], Huilgol
[l], Lighthill [ l ] , Peregrine [ l ; 21, Taylor [ l ] , and Ting [2].
T h i s equation appears below i n Examples 3.5, 4.5, 4.6, 4.7, 5.10, 143
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
5.13,
5.14,
5.15,
Example 1.2
6.21 and 7.6.
A p a r t i a l d i f f e r e n t i a l e q u a t i o n analogous t o
(1.1) b u t c o n t a i n i n g a second o r d e r t i m e d e r i v a t i v e was i n t r o duced i n 1885 b y Poincarg.
S i m i l a r equations o f t h e form
= f(x,t)
w i t h nonnegative c o e f f i c i e n t s have been proposed; here An i s t h e Laplacian i n x
E
Rn and An,1
A p p l i c a t i o n s o f (1.2)
denotes t h e f i r s t n-1 terms o f An.
a r e g i v e n by Boussinesq [l], L i g h t h i l l [l],
Love [l],and Sobolev [l]. Equations o f t h e form (1.2) s i d e r e d below as Examples 3.9, Remark 1.3
4.8 and 6.22
(cf.,
a r e con-
Theorem 3.8).
The name SoboZev equation has been used exten-
s i v e l y t o designate p a r t i a l d i f f e r e n t i a l equations o r , more gene r a l l y , e v o l u t i o n equations w i t h a n o n t r i v i a l o p e r a t o r a c t i n g on the highest order time derivative.
This operator i s usually--not
always--el l i p t i c i n t h e space v a r i a b l e . Example 1.4
C e r t a i n a p p l i c a t i o n s l e a d t o problems w i t h
standard e v o l u t i o n o r s t a t i o n a r y equations i n a r e g i o n G o f Rn b u t w i t h a c o n s t r a i n t i n t h e form o f a p a r t i a l d i f f e r e n t i a l equat i o n on a lower dimensional submanifold (e.g., G.
Thus one may seek a s o l u t i o n o f
144
t h e boundary) o f
3. DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
DtU(xyt)
- AnU(X,t)
= f(x,t),
x
E
G,
(1.3) Dtu(syt) +
au/aN
= d i v ( a ( x ) grad u(s,t)),
where S i s a n-1 dimensional submanifold,
s
E
S
N denotes a normal,
and t h e divergence and g r a d i e n t a r e given i n l o c a l coordinates Such a problem was g i v e n by Cannon-Meyer [l]t o describe
on S.
a d i f f u s i o n process which was " s i n g u l a r " on S ( c f . Example 6.21). Example 1.5
Problems s i m i l a r t o t h e above b u t o f second
o r d e r i n time occur i n t h e form -Anu(x,t)
= f(x,t),
x
E
G,
s
E
aG
(1.4) 2 D t u ( s y t ) + au/aN = 0,
t o d e s c r i b e g r a v i t y waves ( c f . Whitham [l]).One can view t h i s as a degenerate problem i n which t h e c o e f f i c i e n t o f utt i s t h e boundary t r a c e operator.
I t can be handled as t h e preceding
( c f . Showalter [5]) o r d i r e c t l y as by Friedman-Shinbrot [S] o r Lions
[lo],
Ch. 1.11.
Example 1.6
Degenerate p a r a b o l i c equations a r i s e i n various
forms o t h e r than (1.1).
Problems from mathematical genetics
lead t o
where t h e l e a d i n g o p e r a t o r degenerates a t t = 0 and t h e second
145
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
degenerates on t h e boundary o f t h e i n t e r v a l [ O , l ] Rosenkratz-Singer [2],
Friedman-Schuss [l],Kimura-Ohta [l],
Levikson-Schuss [l], and Schuss [l;23 f o r (1.5) problems). Also, (1.5)
(cf. Brezis-
and r e l a t e d
i s considered below i n Example 5.15.
De-
generacies can occur i n p a r a b o l i c problems as t h e r e s u l t o f nonlinearities.
This i s the s i t u a t i o n f o r the equation
of flow through porous media ( c f . Aronson [l]and Example 6.23). Example 1.7
Wave equations occur w i t h degeneracies, t y p i c a l -
l y e i t h e r i n t h e form o f (1.2)
t h e form o f (1.1.4).
w i t h cl(x,t)
? 0 and c2 z 0 o r i n
The l a t t e r s i t u a t i o n w i l l be discussed i n
S e ct ion 3.2 below. Each o f t h e preceding examples i s a r e a l i z a t i o n i n an app r o p r i a t e f u n c t i o n space o f one o f t h e a b s t r a c t Sobolev equations (1.7)
~d ( M ( u ) ) + L ( u ) = f
f o r c e r t a i n choices o f t h e operators.
These two equations w i l l
be considered i n v a ri o u s forms i n t h i s chapter.
I n S e c t i o n 3.2
we use s p e c t r a l and energy methods t o discuss (1.8)
when C i s
t h e i d e n t i t y and B and A a re ( p o s s i b l y degenerate) o p e r a t o r p o l y nomials i n v o l v i n g a c l o s e d densely d e f i n e d s e l f a d j o i n t operator. This covers t h e s i t u a t i o n o f (1.1.4). 146
The e q u a t i o n (1.7)
is
3. DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
c a l l e d s t r o n g l y regular when M i s i n v e r t i b l e and M-lL i s c o n t i n uous on some space.
S i m i l a r l y , (1.8)
C - l B and C - l A a r e continuous. i e d i n Section 3.3;
i s s t r o n g l y r e g u l a r when
The s t r o n g l y r e g u l a r case i s stud-
t h e o p e r a t o r s a r e p e r m i t t e d t o be time-
dependent and n o n l i n e a r .
We c a l l t h e equations weakly regular
when t h e i r l e a d i n g o p e r a t o r s are o n l y i n v e r t i b l e .
We s h a l l g i v e
w e l l -posedness r e s u l t s i n Section 3.4 f o r 1i n e a r weakly r e g u l a r equations by means o f t h e c l a s s i c a l generation t h e o r y f o r l i n e a r semigroups i n Hi1 b e r t space.
S e c t i o n 3.5 t r e a t s degenerate
l i n e a r time-dependent equations by t h e energy methods o f Lions [5].
A p p l i c a t i o n s i n c l u d e Examples 1.1,
1.4,
1.6,
second o r d e r
e v o l u t i o n equations o f p a r a b o l i c t y p e ( c f . Theorem 5.9), many o t h e r s ( c f . Showalter
[Z]).
and
Related n o n l i n e a r problems a r e
discussed i n Sections 3.6 and 3.7 by methods o f monotone n o n l i n e a r operators.
These techniques a l s o a l l o w t h e treatment o f r e l a t e d
v a r i a t i o n a l i n e q u a l i t i e s ( c f . Theorems 3.12 and 6.6). t i o n contains a l i s t o f references t o r e l a t e d work.
Each secThe p a r t i -
t i o n o f these references i s inexact, so one should check a l l sect i o n s f o r completeness. 3.2
The Cauchy problem by s p e c t r a l techniques.
t o Remarks 1.1.3
and 1.1.4
Referring
we w i l l deal f i r s t w i t h an a b s t r a c t
v e r s i o n o f t h e degenerate Cauchy problem i n t h e h y p e r b o l i c r e g i o n w i t h data g i v e n on t h e p a r a b o l i c l i n e , f o l l o w i n g Carroll-Wang [12]
C a r r o l l [7; 9; ( c f . a l s o f o r example Berezin [l],Bers [l],
341, Conti [3],
Krasnov [l;2; 31, Lacomblex [l], F r a n k ' l [l],
147
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Walker [l;2; 31, Wang [l;21 as w e l l as o t h e r p r e -
P r o t t e r [2],
v i b u s c i t a t i o n s i n Remark 1.1.4). I I
(2.1)
+
U
Thus c o n s i d e r
+ Aq(1)u
AaS(t)ul + A'R(t)u
( I
denotes d / d t )
= f
where A i s a c l o s e d densely d e f i n e d s e l f a d j o i n t o p e r a t o r i n a
t
separable H i l b e r t space H w i t h (Ah,h)
1=
A-'
(B(t)
E E
L(H), q(1) = a ( t ) + B ( t ) l where a ( t ) vanishes as t
L(H), S ( t )
(see below). seek u(*)
cllh112, c > 0, a,@ 2 0,
E
E
L(H), and R ( t )
E
0
-+
L(H)) w h i l e f i s " s u i t a b l e "
I t i s assumed t h a t a l l o p e r a t o r s comnute and we 2
I
w i t h u(o) = u ( 0 ) = 0 ( o t h e r
C ( H ) s a t i s f y i n g (2.1)
-
i n i t i a l c o n d i t i o n s can a l s o be t r e a t e d b u t we o m i t t h i s here cf. however (2.32)).
We w i l l use f i r s t t h e technique o f Banach
algebras and s p e c t r a l methods developed i n C a r r o l l E 4 ; 6; 8; 10; 11; 14; 29; 30; 311, Carroll-Wang [12],
and C a r r o l l - N e u w i r t h [32;
A r e n s - C a l d e r h [l], 331; c f . a l s o references t h e r e t o Arens [l], Dixmier [l],Foias [3],
V
Gelfand-Raikov-Silov
and Waelbroeck [2]. R i c k a r t [l],
[8],
Lions [5; 61,
We o b t a i n r e s u l t s " s i m i l a r " t o
those o f Krasnov [l;2; 31 and P r o t t e r [2] b u t i n a more general o p e r a t o r t h e o r e t i c a l frameword; moreover i n o u r development a(
0 )
need n o t be monotone and some new f e a t u r e s a r i s e (see Remarks 2.10
- 2.12
and c f . a l s o Theorems 2.16 and 2.17).
L e t us assume f o r i l u s t r a t i v e purposes t h a t S ( t ) = S s ( t ) , R(t) = R r ( t ) ,
and B ( t ) = B b ( t ) where B, R, S , and
1 commute
in
L(H) and a r e normal; hen e by a r e s u l t o f Fuglede [l](l,B,R,S,
* * *
B ,R ,S ) a r e a commuting f a m i l y and we denote by A t h e u n i f o r m l y
148
3. DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
closed
*
algebra generated by t h i s f a m i l y and t h e i d e n t i t y I.
Note t h a t f o r any h
E
H, ABlh = AlBh = Bh a u t o m a t i c a l l y f o r ex-
ample, and t h e c o m n u t a t i v i t y o f say A w i t h B means t h a t f o r h
E
D ( A ) , Bh
D(A) w i t h ABh = BAh.
E
r, and s belong t o Co[o,T] Remark 2.1
and a
E
It w i l l be assumed t h a t b,
1
C [o,T]
where T <
m.
A few remarks about f i n i t e l y generated commuta-
t i v e Banach algebras A w i t h i d e n t i t y w i l l perhaps be u s e f u l i n what f o l l o w s (cf.
A
+
$
C a r r o l l [14] and references t h e r e ) .
be a continuous homomorphism so t h a t k e r
maximal i d e a l i n A w i t h A/ker ker
+Z 6
+
Let
+
:
i s a (closed)
and one i d e n t i f i e s I$ w i t h
+. The s e t QA ( c a l l e d t h e c a r r i e r space)
o f maximal i d e a l s
can then be i d e n t i f i e d w i t h a weakly closed subset o f t h e u n i t ball i n A
I
A
and we w r i t e +(a) = a(+) for a
i f A i s a commutative al,
. . ., an,
*
al,
A.
A
Since I(+) = 1,
a l g e b r a i n L(H) w i t h generators ao,
. . ., an,*
*
E
and I (ao s e l f a d j o i n t ) , one can
show t h a t QA i s homeomorphic t o t h e (compact) j o i n t spectrum A
UA A*
a,(+)
=
A
ak(O)
and a,(+)
continuous on QA
. . ., "*a n ( + ) ) > C $2nt1
A
= {a(+)>= {(ao(+),
al(+),
i s real.
- uA and A w i l l
where
A
The f u n c t i o n s ak w i l l then be be i s o m e t r i c a l l y isomorphic t o
C(QA) where C(QA) has t h e u n i f o r m norm.
I n o u r s i t u a t i o n above
7 and we a s s o c i a t e t h e complex v a r i a b l e s ( z
we have u A C$
z),
A
. . .,S
A
t o (I(+),B(+),
c1 = max(IIBII,IIRII,IISII) responds t o X C(U,)
-+
-+
m
A*
for k
2
1.
One notes t h a t zo
and we w i l l c a l l t h e map
A t h e Gelfand map.
0'
' *'
( + ) ) w i t h h = l / z o 2 c and l z k l 5
r
:
+
-+
0 cor-
a : C(QA) =
A f u r t h e r n o t i o n o f use here ( c f . also
149
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
i s t h a t o f decomposing H by an i s o m e t r i c isomor-
Section 1.5) phism 0 : H
-+
H =
I@ H(z)dv which d i a g o n a l i z e s A and r may be uA
extended, as an i s o m e t r i c isomorphism, f o r example t o a l l bounded B a i r e f u n c t i o n s B(uA) w i t h values i n t h e von Neumann algebra A (here A ’ l C L(H
i s t h e bicommutant o f A and i s t h e c l o s u r e o f
A i n say Ls(H))
we w i l l use uA f o r convenience i n measure
t h e o r e t i c arguments i n s t e a d o f QA.
I I
The so c a l l e d b a s i c measure
v a r i s e s n a t u r a l l y ( c f . Dixmier [l]o r Maurin [l;31) and we w i l l n o t g i v e d e t a i l s here. A v-measurable f a m i l y o f H i l b e r t spaces H(z) on uA c o n s i s t s o f a c o l l e c t i o n o f f u n c t i o n s z E
h(z)
-+
H(z) such t h a t t h e r e i s a v e c t o r subspace F C I I H ( z ) w i t h z
1) h ( z ) Ilff(z)measurable all h
E
F implies g
E
(h
E
F), ( h ( * ) , g ( - ) )
H(z)
-+
measurable f o r
F, and t h e r e i s a fundamental sequence hn
E
F such t h a t t h e c l o s e d subspace o f H(z) generated by hn(z) i s H(z).
2 Now under t h e p r e s e n t circumstances ff = L,,(uA,ff(z))
H i l b e r t space w i t h norm
[I
-
I l h ( ~ ) 1 ) ~ d v ]=~ l’l ~ h l l H and a Lebesque
0-
Diagonalizable
dominated convergence t h e o r h w i l l be v a l i d . operators G
E
is a
..
L(H) are d e f i n e d i n t h e obvious manner ( c f . Section
1.5) w i t h G = 0-lG0
E
- G(z)
L(H) where G
E
L(H(z)), a l l argu-
ments being c a r r i e d o u t i n Ls(H) f o r example. Now i n connection w i t h (2.1)
we c o n s i d e r t h e equation (under
our assumptions S ( t ) = s ( t ) S , etc.),
o b t a i n e d by a p p l y i n g 0 t o
(2.1) (2.2)
A l
u
I
n
ni
+ haz3s(t)u + h b z 2 r ( t ) u + h[a(t)+zozlb(t)]u
150
n
= 0
3.
where
^u
DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
- z3'
= eu and f o r example
We w r i t e z = ( z
1' ' [l]( c f . a l s o
z6) and by Coddington-Levinson [l]o r Dieudonn; Chapter 1 ) t h e r e e x i s t unique s o l u t i o n s Z(t,-r,z,A) o f (2.2)
such t h a t Z(T,T,Z,X)
= 1, Z (T,T,z,A)
0, and Yt(TyTyzyX) = 1 f o r 0 5 c 5 X <
S t 5
T
<
00,
l z k l 5 cl,
and
The f u n c t i o n s Z and Y w i l l be continuous i n (t,T,z,h)
a.
i n t h i s r e g i o n and we need o n l y check t h e i r behavior as A *
a.
To t h i s end we c o n s t r u c t a "Green's" m a t r i x as i n Sections 1.3 and 1.5 ( c f . (1.3.13))
i n t h e form
which w i l l s a t i s f y t h e e q u a t i o n ~a A ( t y T y z Y A )+ A 1 ~ 2 H A ( t y Z , h ) G A ( t , ~ ~ Z y X ) = 0
(2.4)
(2.5)
HA(
Y
Y
A) =
1
As i n Chapter 1 i t f o l l o w s t h a t ( c f .
a
(2.6)
ea(t,T,Z,A)
1
0
a(t)+zozl b ( t ) + A B - l z p r ( t )
a-1 X 'z3s(-l t )
(1.3.15))
-X1/ZGA(ty~,z,X)H (T,z,X) A
= 0
A
A
A
*
with $
S e t t i n g u1 = u and u2 = X-'/2c' from
zt
+ ~ ' / 2 H A ( t , z , ~ ) i i=
-i t h e
) we o b t a i n f o r m a l l y
s o l u t i o n of (2.1)
151
' )
and Y(t,-c,z,A)
= 0, Y(T,T,z,X)
t
T
-
i n t h e form
=
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
f = ef.
I n o r d e r t o check t h e behavior o f Y we r e p l a c e t by (2.2)
f o r Y and m u l t i p l y by
v5 (<,-c,z,X);
5 in
upon t a k i n g r e a l p a r t s
and assuming now t h a t a ( t ) i s r e a l valued one o b t a i n s
Now note t h a t IrhBYy I
5
i n t e g r a t i o n from
T
5
w i l l apply
X2'
-
2 28
X
lYI2
+
I Y5 I 2 )
so t h a t , upon
t o t,
Assume now t h a t Re(z3s(<)) 1 so t h a t
(Irl
2 0 i f a > 0 w i t h 28 <, 1 and t a k e X >-
5 X ( r e c a l l X >, c and i f c < 1 a f u r t h e r argument see below).
If
= 0 then t h e A"
corporated i n t o t h e r i g h t hand s i d e o f (2.9) obvious manner.
term can be i n -
o r (2.10)
i n an
We have then ( s i n c e l z k l 5 c1 f o r k 2 1 )
152
3. DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
t
( Y t I 2 + Aa(.t)IYI2 5 1 + 2cl
(2.10)
1YS12dS
T
It
Aa(S)IY12dS t o t h e r g h t hand s i d e o f
u s i n g G r o n w a l l ' s lemma (Lemma 1.5.10)
E(t,S)
=
IYtI2
and
one obtains, s e t t ng
exp 2cl(t-S),
(2.12)
2.10)
+ Aa(t)lYI2 5 E(t,r) +
I
t
AP(S)E(t,S)lY12dt
T
The f o l l o w i n g lemma now g i v e s a somewhat sharper e s t i m a t e on
IYI2
than can be o b t a i n e d b y a d i r e c t a p p l i c a t i o n o f t h e Gronwall
lemma; t h e p r o o f however i s a simple v a r i a t i o n . Lemma 2.2 for 0 <
m
and A
Aa(t)lYI2 5
E(t,T)
T 5
(2.13)
Given (2.12) w i t h P
t 5
T<
'1 exp
2 0 and a > 0
(1: #
i t follows t h a t
da)
We f i r s t o m i t t h e term I Y t I 2 on t h e l e f t hand s i d e t and s e t X(t,T) = AP(S)E(t,S)lY12dg so t h a t X+(t,r) =
Proof: of (2.12)
AP(t)lY12 +
I
t
[
'9 AP(S)Et(t,S)IYI dS
r
m u l t i p l y i n g (i.12)
(with
-
lYtlZ
L
= A P ( t ) l Y 1 2 + 2clX(t,T).
d e l e t e d ) by P ( t ) and u s i n g t h e
l a s t r e l a t i o n f o r Xt we o b t a i n (2.14)
.a(Xt-2clX)
Then
5 PE + PX 153
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
T h u s defining F ( t , T ) = exp ( from (2.14), (FX)t
2cl]dS) f o r
2 (P/a)EF.
0 we have
B u t E(t,T)F(t,T) = exp(-/:[:]dt)
and hence (FX)t 5 -(e~p(-l:[:]dS))~
since F(T,T)X(T,T) = 0.
T >
from which follows
T h i s may be written
w h i c h proves the lemna
QED
We observe from (2.11) t h a t P/a so t h a t exp
(2.17)
(I
t
T
[:Id<)
= #exp
=
c1 a ' / a + (,)[lrl
( j t c l [ & +a
2 +xlb12] 1
&Id<) Aa
T
I f c < 1 we can c a r r y through the e s t i m a t e s w i t h lrlz replaced by
I r I 2A28-1
when A < 1 ( r e c a l l 28 5 1 ) and from Lemma 2.2 we ob-
t a i n , u s i n g (2.17), Lema 2 . 3
Given (2.12) w i t h P 2 0 and a(-c) > 0 f o r
T
> 0
we have f o r 28 5 1
."
where c1 = c 1 max (1, c"-l)
exp
Define now +(t,.)
" -
d ..
A
T
-kf a
=
dg and a s
and c2 = exp 2clT.
-
exp c T
-F
'
1' T
a
and $(t,T,A) =
0 these f u n c t i o n s may o f course
154
3. DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
become i n f i n i t e . $(T,T,c)
N o t i n g t h a t $(t,T)
5 $(T,T) and $(t,T,A)
5
we can s t a t e
C o r o l l a r y 2.4
Let
= $-’(T,T)
$(T)
and
= $-’(T,T,c);
$(T)
then
where Y = Y(t,.r,z,A) a(.)
> 0 for
T
i s the unique s o l u t i o n o f (2.2) w i t h
P 2 0,
2 0 satisfying
> 0, 2 8 5 1, A 2 c, and Re(z3s(<))
= 0 w i t h Y t ( ~ , ~ , z Y A ) = 1.
Y(T,T,z,A)
We s e t now W(t,T,z,A)
=
Q(T)
Y(t,-c,’z,A)
and observe t h a t t h e e s t i m a t e (2.19)
(Q(T)
W i s continuous i n (t,T,z,A)
I
then ( c f . Remark 2.1) continuous since
(t,.r)
-+
+
W(t,T)
where Q = ($$a) 1/2
holds f o r 0 as
T
= 0-lWB
-+
T =
0 also while
If h
0). :. h
+
E
H then
A1/‘Wh
2 1/2 I l A W0hlI dv w i l l converge a p p r o p r i a t e l y by
Lebesque dominatedaA convergence f o r example ( i n f a c t A’/’W can be demonstrated, so r(A1/2W) needed
-
is
E
A
I I
B(aA)
E
b u t t h i s w i l l n o t be
n o t e here t h a t A l l 2 and W a l s o c o n u t e on uA). One can
now prove Theorem 2.5
Under t h e assumptions o f Coro l a r y 2.4 (and
Lemma 2.3) we have, w i t h y = max (l/Z,cx)
155
and 0 5
T
5 t 5 T <
m,
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Proof:
We need o n l y check t h e bounds s i n c e t h e r e s t w i l l From
f o l l o w from t h e Lebesque dominated convergence theorem.
-
(2.12) and (2.16)
IYtI2 5
(2.21) SO
that
[o,T]); T
+
lWtl
2
=
(2.17)
#
IQYtI2
a c t u a l l y (t,.r)
one has
E(t,Y)$(t,T)$(t,T,x)
5 c3 where c 3 -f
Wt(t,.r)
E
0 and t h i s i s u s e f u l l a t e r .
= c2 max a ( t ) (max on
Co(Ls(H)) s i n c e
Q(T)
-t
0 as
For t h e l a s t e s t i m a t e we go
back t o (2.2) t o o b t a i n t h e i n e q u a l i t y ( r e c a l l t h a t 2f3 5 1)
5 c4xa + c5x 1/2 follows.
We again observe t h a t (t,.r)
-t
Wtt(t,T)
E
QED Now we consider (2.7)
and w i l l show t h a t i t r e p r e s e n t s a
s o l u t i o n o f t h e Cauchy problem (2.1) when f
E
Co(D(Ay)).
Thus
s e t t i n g h(c) = f ( < ) / Q ( c ) (2.7) may be w r i t t e n i n t h e form t W(t,<)h(c)d< and we can c o n s i d e r t h i s as a Riemann t y p e u(t) = 0
( v e c t o r valued) i n t e g r a l ( i n o r d e r t o c a r r y t h e c l o s e d o p e r a t o r s
Aa, A',
and A under t h e i n t e g r a l s i g n s ) .
The f o l l o w i n g computa-
t i o n s are then j u s t i f i e d by Theorem 2.5 and remarks i n i t s proof.
F i r s t u ( o ) = 0 and
156
3.
DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
Theorem 2.6
Assume a
a ( o ) = 0, b y r, s 0, P
E
E
Co[o,T],
1
C [o,T],
a ( t ) > 0 r e a l f o r t > 0,
28 5 1, y = max(a,l/2),
2 0, and f / QE Co(D(Ay)). and u
C'(D(Ay)),
E
2 C (H), u
(2.25)
E
C0(D(Ay+'I2)).
E
F o r uniqueness we w i l l g i v e s e v e r a l r e s u l t s . (2.6)
F i r s t from
one o b t a i n s ( c f . 1.3.17) Y
T
= -Z+A"Z~S(T)Y
Duplicating our esti-
and some bounds f o r Z must be e s t a b l i s h e d . mates l e a d i n g t o (2.9) we have (2.26)
t
IZtI2 +
2Re(Xaz3s(S
T
and under t h e same assumptions and procedures as b e f o r e i t f o l lows t h a t ( c f . (2.27)
2
Then t h e r e e x i s t s a s o l u t i o n o f
g i v e n b y (2.7) w i t h u ( o ) = u t ( o ) = 0, u
(2.1)
Re(z3s(t))
(2.9)
-
(2.12))
l
JT
157
1
t
A a ( t ) l Z 1 2 + lZtL2 5 Aa(-r) + 2c
T
1Z512dE
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Then by a v e r s i o n o f Lemmas 2.2 and 2 . 3 one o b t a i n s
Consequently we have proved Lemna 2.7
Under t h e hypotheses o f C o r o l l a r y 2.4,
@ ( T ) v J ( T ) l Z l 25 c2. We s e t q = (@vJ)”‘
with
V(t,T)
=
e-1q(T)Z(t,T,z,A)8
by Lebesque dominated convergence again V(t,T) V(t,T)
E
A
I I
1/2 w i t h
lY,l
Next we
again t h a t
so t h a t I Q ( T ) Z ~5 ~c7A1l2 w h i l e from (2.25)
5
L(H) (and
can be shown b u t again t h i s i s n o t needed).
observe from (2.6)
a
E
so t h a t
.“
5 c6 f o r a 2 1/2.
lYTl
5 c&
a-7
for
The case a 5 1/2 i s essen-
t i a l l y t r i v i a l and w i l l n o t be discussed f u r t h e r .
Thus u s i n g
Lebesque dominated convergence again we can s t a t e t h a t f o r T > 0, a- 1 1 T +. Y(t,.r) = e”Ye E C (Ls(D(A z),H)) while T + Z(t,r) = e-lZ0
E
C 1 (Ls(D(A 1/2 ),H)).
Therefore i f u i s a s o l u t i o n o f (2.1)
w i t h data p r e s c r i b e d a t T > 0 we operate on (2.1) w i t h Y(t,C) (changing t t o 5 i n (2.1)) and i n t e g r a t e t o o b t a i n f o r u y t -.1 Co(D(A ’I), u E C’(D(Ay)), and u E C 2 ( H )
158
E
DEGENERATE EQUATIONSWITH OPERATOR COEFFICIENTS
3.
JT
JT
Our hypotheses and lemmas i n s u r e t h a t e v e r y t h i n g makes sense and u s i n g (2.25) w i t h (2.30)
p l u s a n o t h e r i n t e g r a t i o n by p a r t s t h e r e
r e s u l t s f r o m (2.31) u ( t ) = Z(t,-clu(r) + Y ( t y T ) u t ( T ) +
(2.32)
i:
Y(t,S)f(S)dS
As i n S e c t i o n 1.5 f o r example we a r e making use i n (2.31) and
o f t h e h y p o c o n t i n u i t y o f s e p a r a t e l y c o n t i n u o u s maps E
(2.32)
F
+.
F i s barreled.
G when
Now as T
+.
x
0, b y h y p o c o n t i n u i t y again
we have ( n o t e t h a t t h i s i s s t a t e d b a d l y i n Carroll-Wang [12]) Theorem 2.8 t i n u o u s u/q (2.1)
Assume t h e hypotheses of Theorem 2.6 w i t h conI
+
0 and u /Q
-f
0 as
T
-f
0.
Then t h e s o l u t i o n o f
g i v e n b y Theorem 2.6 i s unique.
I n t h e e v e n t t h a t q ( t ) > 0 f o r 0 5 t 2 T a somewhat s t r o n g e r uniqueness theorem f o r (2.1)
can be p r o v e d ( c f . Carroll-Wang
I
1121).
Assume u ( o ) = u ( 0 ) = f = 0, w i t h u s a t i s f y i n g t h e con-
c l u s i o n s o f Theorem 2.6,
and t h e n we d e f i n e t h e o p e r a t o r i n
L(H) by (2.33)
1
t
L(t,.r)
O p e r a t i n g on (2.1)
= 0 - l exp(-Aaz3
w i t h L(t,S),
T
s(S)d<)e
where t has been changed t o 5 i n
159
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
(2.1) we o b t a i n (2.34)
u ’ (t) =
-1
t
0
L(t,E)CABRr(E)+Aa(E)+Bb(S)lu(.C)dE
Since IlAull and IIABuII a r e bounded i n Theorem 2.6 we have by a we1 1 known i n e q u a l i t y
( r e c a l l t h a t q > 0 means Z(t,T)u(T)
0
-+
lr21 a dC <
0 a u t o m a t i c a l l y i n (2.32)
bounded and u
+
w
and as
T
0 +
hd.!a
dc <
NOW
a).
0 s i n c e qZ i s
w h i l e t h e term Y(t3?)ut(T) can be w r i t t e n
0
’0
But Q = q a 1 j 2 so q > 0 i m p l i e s a(T)’I2Y(t,T)
where 6 < 1/2.
Ls(H,D(A 1/2 ) ) by C o r o l l a r y 2.4 and u’(.)/(radE)6
-+
0 as
T
-+
0.
E
heorem 2.5 w h i l e by (2.35)
Hence we have
0
Theorem 2.9
L e t u be a s o l u t on o f (2.1)
satisfying the
c o n d i t i o n s of Theorem 2.6 w i t h q ( t ) > O f o r O < t < T < m and (ra(E)dE)6/a(r)’/2
bounded ( 6 < 1/2).
160
Then u i s unique.
DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
3.
Remark 2.10
We emphasize here t h a t a ( - ) i s n o t r e q u i r e d t o
be monotone, i n c o n t r a s t t o P r o t t e r [2] o r Krasnov [l],since by P(t) 2 0 for a l l
(2.111,
x
merely i m p l i e s a
I
2
-cllrl
2
(examples
o f nonmonotone a are given i n Carroll-Wang 1123 and Wang [l;23). The c o n d i t i o n o f P r o t t e r [2]
( c f . a l s o Berezin 111, Bers [ l ] ) ,
phrased here i n t h e form t r ( t ) / a ( t ) ’ / ’
-+
0 as t
-+
0 (with a(-)
monotone), f o r s o l u t i o n s o f a numerical version o f (2.1)
t o be
w e l l posed i n a l o c a l uniform m e t r i c , has i t s analogue here i n t h e c o n d i t i o n s on + ( t ) .
Thus f o r example i f A
tm,A B R ( t ) u = r ( t ) u x = tnux, and A”S(t)
A
-.-32/ax 2 , a ( t )
= s(x,t)
- b ( t ) then i t f o l l o w s t h a t t rT( t ) / a ( t ) ” ‘
1 B(t)
0 if n > m (?n-m+l
-
:1
1 whereas j;lr,‘/a
t2n-ni+l
-.21
d< =
) so t h a t + ( t )
=
with = t
=
n + l ~ -+
2n-mdS = (1/2n-m+l)
k exp (c,t 2n -m+l /Zn-m+l) > 0
2 c o n d i t i o n o f Krasnov [l]involvesmonotone -- 1 a ( t ) = O(tm) and r ( t ) = O ( t 2 0 but y ( t ) ) where y ( t ) * 0 as t
when n >
Tm -
The L
-+
Krasnov i s d e a l i n g w i t h weak solutions.
Now our existence and
uniqueness c o n d i t i o n s are phrased i n terms o f u/q, u-/Q, and f/Q where q2 = +$ and Q
2
= $$a which permits a r a t h e r p r e c i s e com-
parison between t h e behavior o f f, u, and u
I
as t
+
The 9
0.
term seems somewhat curious however since f o r example i f h
Ibl
2 k
<
m
then
:1
I b l /a de
2
( i 2 / - m + l ) ( T -m+l-t-m+’)
tmso t h a t $ ( t ) = 0 (exp k t-mtl/-m+l) 1
+
for a(t) =
0. f o r m > 1 which i m -
poses growth c o n d i t i o n s on b ( t ) i n order t h a t $ ( t ) > 0. seems t o i n d i c a t e t h a t t h e r o l e o f the
i)
This
term should be i n v e s t i -
gated f u r t h e r and some comnents on t h i s a r e made i n Remark 2.12.
161
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Walker, i n as y e t unpublished work, i n v e s t i g a t e s b y s p e c t r a l methods ( u s i n g Riesz o p e r a t o r s Rk d e f i n e d by a/axk = i ( - A ) 1/ 2
Rk)
t h e q u e s t i o n o f d i r e c t i o n a l o s c i l l a t i o n s and w e l l posedness ( c f . a l s o Walker 11; 2; 31) I n Wang [2] i t i s p o i n t e d o u t t h a t i f a ( - )
Remark 2.11
i s monotone near t = 0 ( l o c a l l y monotone) then (2.35)
can be
*
r e p l a c e d by I l u l ( t ) l I 5 c 1 0 t 1 / Z a ( t ) 1 / 2 f o r small t so t h a t i n (2.36)
a1/2(T)Y(t,.r)-l/2 with (TI a T h i s produces a somewhat s t r o n g e r
one c o u l d w r i t e Y(t,T)ul(T)
ul(s)/a1/2(T)
+.
0 as
T
+.
0.
=
v e r s i o n o f Theorem 2.9 when a ( - ) i s l o c a l l y monotone. a r e given i n Wang [2] t o show t h a t A ( t ) =
Examples
a ( S ) d S / a ( t ) may n o t
even be bounded f o r nonmonotone a ( t ) = O ( t m ) . Remark 2.12 (2.9)
F i r s t we assume z1 and b ( t ) a r e r e a l so t h a t
becomes, a f t e r e l i m i n a t i o n o f t h e A" term as before, and
adding a term clX
I
Now assume I b ( t ) / b ( t ) l
5 c 3 on [o,T]
162
h
and s e t c = max(cl,c3);
3. DEGENERATE EQUATIONSWITH OPERATOR COEFFICIENTS
then, i f zlb(S)
?
0 one can w r i t e (for 2f3
A
A
S e t t i n g E(t,<) (cf.
5 1 and A 2 1 )
= exp c ( t - C ) we o b t a i n from Gronwall's lemma again
(2.12))
(2.41)
t A
E ( t ) 5 k(t,T)
A
+ A / P(C)E(t,S)jY12dC T
*
Assuming P 2 0 Lemma 2.2 a p p l i e s t o (2.41) term l Y t l 2 + z l b ( t ) l Y / 2 i n B ( t ) ) t o y i e l d
(upon o m i t t i n g the
and as i n Lemna 2.3 one o b t a i n s ( c f . (2.17)) Lemna 2.13 A
P
I
Assume I b /bl
2 0, a 2 0, and zlb
2 0.
A
5 c3 w i t h c
= max(cl,c3) A
while Y
Then f o r c4 = exp cT and c1 =
max( 1 ,c 28-1 )
C o r o l l a r y 2.14
D e f i n i n g $(t,T)
the hypotheses o f Lemma 2.13 imply
163
and $(T) as i n C o r o l l a r y 2.4
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Thus i t i s p o s s i b l e t o e l i m i n a t e t h e JI t e r m i n Q and q ( c f . Theorems 2.5,
2.6,
i f one assumes zlb
and 2.8,
Remarks 2.10 and 2.11,
1 0 w i t h I b l / b l <, c3 i n a d d i t i o n t o a ' 2 T h i s means l o c a l l y (i.e.,
(cf . Remark 2.10).
-cllrl'
and Lemma 2.7)
t h a t i f z1 2 0 then b L 0 with e i t h e r b b(T) exp c3(t--r) o r b
I
5
0 with b(t)
F
I
near t =
T)
1 0 and 0 5 b ( t ) 5
b(-r) exp ( - c 3 ( t - ~ ) ) ; I
s u i t a b l e o s c i l l a t i o n s i n t h e s i g n o f b a r e o f course allowed. On t he o t h e r hand i f z1 5 0 then b 5 0 w i t h
= -b so e i t h e r
o r b' i 0 w i t h b ( t ) 5
b' L 0 w i t h 0 L b ( t ) 2 b(T) exp (-c 3 (t--r) ) b(-r) exp c3(t--r).
Ib l
We r e f e r t o C a r r o l l [34] f o r f u r t h e r remarks.
Remark 2.15
I n C a r r o l l [7; 91 some weak degenerate problems The n o t a t i o n i s
a r e solved usin g Lions type energy methods.
chosen here t o conform t o these a r t i c l e s r a t h e r than t o e a r l i e r p a r t s o f t h i s s e c t i o n and most t e c h n i c a l d e t a i l s w i l l be omitted. Thus l e t Q > 0 be a numerical f u n c t i o n i n Co(o,T], i n c r e a s i n g as t
-+
t
-+
0.
m;
with
)I
0 (a p r i o r i Q need n o t approach i n f i n i t y b u t 1 L e t q > 0 belong t o C (o,T]
i t usually w i l l ) .
T <
with q(t)
-+
0 as
L e t V c H be H i l b e r t spaces ( H separab e f o r s i m p l i c i t y ) ,
V dense i n
H w i t h a f i n e r topology, and a(t,-,
continuous s e s q u i l i n e a r forms on V and a(t,u,u)
2 ,> a l l u l l v .
f i x e d and l e t t
-+
B(t)
Hermitian operators.
Assume t E
-+
x
) a family o f
V w i t h a(t,v,u)
a(t,u,v)
C'(Ls(H)) on [o,T]
E
1
C [o,T]
=
'm
f o r (u,v)
be a f a m i l y o f
L e t w > 0 be a numerical f u n c t i o n t o be
determined such t h a t w ( t )
-+
00
as t
164
-+
0.
L e t Fs be t h e H i l b e r t
3. DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
s 5 T t o be determined, such t h a t
space o f f u n c t i o n s u on [o,s], U ( O ) = 0, Jlu
1
2 2 = L (H), and wu E L (V) w i t h norm I 2 FT $u I H ) d t ; a l l d e r i v a t i v e s are taken i n D (H) ( c f . .
E
C a r r o l l [14] o r Schwartz [5]).
h s a t i s f y i n g h ( s ) = 0, h/$
..
LL(V).
We d e f i n e
..
(2.45)
ES(u,h) =
..
I
S
0
Ls(h) =
E
L e t HS be the space o f functions
L2( H), h ' / $
E
L2( H), and qh/w
-
+ (B(t)u',h)
{qa(t,u,h)
I
E
I
( u ,h ) ) d t ;
fS
-(f,h)dt
JO
where f i s given w i t h Jlf
E
L2 (H) (here (
,
notes the s c a l a r product i n H (resp. V)). to find u
E
..
Fs such t h a t Es(u,h)
since q > 0 on say [s/2,T]
..
find u
E
, 1))
de-
The f i r s t problem i s
= Ls(h) f o r a l l h
E
Hs.
Then
one can apply standard techniques f o r
nondegenerate problems ( c f . Lions [5])
..
(resp. ( (
..
t o proceed stepwi se and
FT s a t i s f y i n g ET(u,h) = LT(h) f o r a l l h
s e r i e s o f t e c h n i c a l lemmas such a u
E
E
HT.
After a
FT can be found using the
Lions p r o j e c t i o n theorem (see C a r r o l l [9] f o r d e t a i l s ) .
Another
s e r i e s o f t e c h n i c a l lemnas w i l l y i e l d uniqueness and one can state Assume t h e c o n d i t i o n s above w i t h q ( t ) 2 t (( d V $ 2 ( < ) ) ' - E ( 0 < E < 1 ) w h i l e Q = (q'VJ2/q)I d W 2 ( E ; ) 0 o . . . e x i s t s . Then t h e r e e x i s t s a unique s o l u t i o n u E FT of ET(u,h) = t
..
Theorem 2.16
L (h) for a l l h T
:$
E
HT, based on a f u n c t i o n w
165
4
L2 (w
E
Co(o,T]).
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
We remark t h a t w measures t h e r a t e o f how r a p i d l y u ( t ) as t
+
+
0
0 b u t i t s p r e c i s e d e s c r i p t i o n i s somewhat complicated
( c f . below).
Another theorem based on energy methods can be
o b t ained as f oll o w s .
rt
k(t) = on (o,s]
JO
@hdS f o r h
E
We d e f i n e K- t o be t h e space o f f u n c t i o n s 5 1 E C [o,s] where @ > 0 Hs w i t h s u i t a b l e
while @(+ t )0 as t
+
For s u i t a b l e choice o f t h e
0.
numerical f u n c t i o n 6 > 0 w i t h b ( t )
+ m
as t
+
0 we p u t a p r e h i l -
(We not e t h a t i f v = @/q then o u r w above can be taken t o be I 2-E1 w2 = v / v ( 0 < E, < l).)F o r s u i t a b l e $,6as above (e.g.,
2 (5) and'b 2 = - "c ( l / v )
j:d$
@ =
Theorem 2.17
E
), Ks C Fs and one can s t a t e A
Under t h e hypotheses o f Theorem 2.16 t h e r e
e x i s t s a unique s o l u t i o n u all h
I
"
n
E
KT s a t i s f y i n g ET(u,h) 1
.,
= LT(h) f o r
HT such t h a t I l u l l A 5 c ( / l $ f l i d t ) 1 / 2 KT 0
3.3
S t r o n g l y r e g u l a r equations.
We consider f i r s t t h e
n o n l i n e a r equation I
(3.1)
Fl(t)u ( t ) = f ( t , u ( t ) )
i n a separable and r e f l e x i v e Banach space V. Ia :[o,a] I
L(V,V
).
For each t
we a re g i v e n a continuous l i n e a r o p e r a t o r M ( t )
E
E
Denote by Bb(uo) t h e c l o s e d b a l l i n V centered a t uo
w i t h r a d i u s b > 0, and suppose we are g i v e n a f u n c t i o n f : I ,x I
.
A s o l u t i o n o f (3.1)
i s a f u n c t i o n u : 1,
y ) a b s o l u t e l y continuous, d i f f e r e n t i a b e a.e.
166
-f
V which on I,,
DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
3.
has i t s range i n B ( u ) , and s a t i s f i e s (3.1) b o
a.e.
on I,.
f i c i e n t c o n d i t i o n s f o r t h e Cauchy Problem f o r (3.1)
Suf-
t o be w e l l -
posed a r e g i v e n i n t h e f o l l o w i n g . Theorem 3.1 k ( - ) : 1,
+
Assume t h e r e i s a p a i r o f measurable f u n c t i o n s 1 ( o , m ) and Q ( - ) : Ia [ l , m ) w i t h Q ( * ) / k ( - ) E L ( I a , R ) -f
such t h a t
Then any two s o l u t i o n s u 1 ( * ) , u 2 ( - ) o f (3.1) w i l l s a t i s f y t h e estimate
I n p a r t i c u l a r , t h e Cauchy problem o f (3.1) w i t h u ( o ) = uo has
a t most one s o l u t i o n . Proof: M(t) : V
+
Since k ( t ) > 0, t h e c o e r c i v e e s t i m a t e (3.2) i m p l i e s V I i s a b i j e c t i o n and
11
M(t)-’
Thus, we o b t a i n from (3.1) llu;(t)-u;(t)
11
f(t,ul(t))-f(t,u2(t))
t
E
11
V
I
IIL(,,lYv)
/Iv
S k(t1-l.
5 k(t1-l
5 k ( t ) - l Q ( t ) ~ ~ U l ( t ) - u 2 ( t ) ~ ~,, ,a.e.
I,. Since u l ( * )
-
u
2
(
0
)
i s absolutely continuous w i t h a 167
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
I
summable d e r i v a t i v e , we have Ilul(t)-u2(t)llV 5 t l ~ / U ~ ( O ) - U ~+ ( O I() ul(s)-u;(S)IIVds. ~~~ Therefore t h e bounded function Z ( t ) Z(o)
+
0
= Ilul(t)-u2(t)llv
Itk(s)-’g(s)Z(s)dsy
t
s a t i s f i e s the i n e q u a l i t y Z ( t ) 5 E
Ia. The e s t i m a t e (3.4)
follows
0
i n m e d i a t e l y by t h e Gronwall i n e q u a l i t y .
I n a d d i t i o n t o t h e hypotheses o f Theorem 3.1
Theorem 3.2 assume t h a t t and t h a t t
+
+.
QED
<M(t)x,y>
i s measurable f o r each p a i r x, y
i s measurable f o r x
Bb(u0) and y
E
F i n a l l y , l e t bo > 0 and c > 0 s a t i s f y Ilf(t,uo)II
V’
rC
t
E
Icy and
k ( t ) - ’ Q ( t ) d t 5 b/(bo+b).
E
V
E
V.
,
5 Q ( t ) b o y a.e.
Then t h e r e e x i s t s a
0
which s a t i s f i e s u ( o ) = uo. (unique) s o l u t i o n u ( * ) of (3.1) on Ic Proof:
We f i r s t show t h a t f o r every f u n c t i o n u : Ic +
Bb(uo) which i s s t r o n g l y (= weakly) measurable i n V, t h e f u n c t i o n t
+
Ll(t)-l
0
f(t,u(t))
: Ic V i s measurable.
we have < I $ , M ( t ) - l f ( t , u ( t ) ) >
For each I$
-+
=
cated a d j o i n t i s measurable when M ( t ) - ’
-1
*
) cp>.
E
VI
The i n d i -
i s , and so i t s u f f i c e s
t o show t h e m e a s u r a b i l i t y o f each f a c t o r .
To show f ( t , u ( t ) )
i s measurable we consider f i r s t t h e case where u ( * ) i s countablywhere { G : j 2 1) i s a valued; thus u . ( t ) = x . f o r t E G J J j’ j measurable p a r t i t i o n o f I,. L e t t i n g @ . denote t h e c h a r a c t e r i s t i c J function o f G we o b t a i n f ( t , u ( t ) ) = l { f ( t , x . ) I $ . ( t ) : j f 1) jy J J on I and t h i s i s c l e a r l y measurable. The case o f general C’
u ( * ) f o l l o w s from t h e s t r o n g c o n t i n u i t y o f x
+
P(t,x),
s i n c e any
measurable u i s t h e s t r o n g l i r r i t o f countably-valued rlieasurable
168
3. DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
functions.
To show t h e second f a c t o r i s measurable, l e t m 2 1
and c o n s i d e r t h e r e s t r i c t i o n o f M : 1,
+
L(V,V’)
t o t h e s e t Jm o f
Since M i s measurable on t h i s s e t ,
t h o s e t €IC w i t h k ( t ) 2 l/m.
t h e r e i s a sequence o f c o u n t a b l y - v a l u e d f u n c t i o n s Mk : Jm M(J,)
C L(V,V’)
such t h a t
Lz
-+
Mk(t) = M(t) strongly f o r t V
I
Jm.
E
we have
on o f 14-l
to
desired re-
The p r o o f o f Theorem 3.2 now f o l l o w s s t a n d a r d arguments. L e t X be t h e s e t o f u
E
C(Ic,V)
w i t h range i n Bb(uo).
the function t * M ( t ) - l f ( t , u ( t ) ) and i t s a t i s f i e s t h e e s t i m a t e
For u
E
i s measurable Ic + V ( f r o m above)
IIM(t)-’
0
2 k(t1-l
f(t,u(t))lIv
-
Q ( t ) (bo+b) on I,. Hence, we can d e f i n e F : X + X by [ F u ] ( t ) t M(s)-lf(s,u(s))ds, t E I,, and i t s a t i s f i e s t h e e s t i m a t e uo + 0
(3.5)
11 [ F u l ( t ) - [ F v l ( t ) l l v
X
I
=
t
5
0
k ( s ) - l Q ( ~ ) l ~ U ( S ) - V ( S ) I ~ ~ds,
u,v
E
x,
t
E
B u t any map F o f a c l o s e d and bounded subset X o f Lm(Ic,V)
I,. into
i t s e l f which s a t i s f i e s (3.5)
i s known t o have a unique f i x e d -
p o i n t , u ( c f . C a r r o l l [14]).
This fixed-point i s c l e a r l y the
OED
d e s i r e d s o l u t i on.
A s o l u t i o n e x i s t s on t h e e n t i r e i n t e r v a l 1, i n c e r t a i n 169
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Two such s i t u a t i o n s a r e g i v e n below.
situations.
Theorem 3.3 w i t h Bb(uo) = V.
Assume a l l t h e hypotheses o f Theorem 3.1 h o l d Also, suppose t
+
<M(t)x,y>
a r e measurable Ia + R f o r e v e r y p a i r x,y bo > 0 be g i v e n and s a t i s f y I l f ( t , u o ) l l V I
functions u I,.
If u
E
Set g ( t ) = bo exp{ E
C(Ia,V)
rt
5 Q ( t ) b o a.e.
f o r which ]lu(t)-udl,
E
V,
on I,.
and l e t X be t h o s e
5 g(t)
X, t h e e s t i m a t e I l ~ l ( s ) - l f ( s , u ( s ) ) I I V
k(s)-’Q(s)(llu(s)-udlv
on I, w i t h u ( o ) = uo.
k(s)-’Q(s)dsI
JO
+
V, and l e t uo
E
Then t h e r e e x i s t s a unique s o l u t i o n o f (3.1) Proof:
and t
-
bo f o r t
E
5
+ bo) shows t h a t Fu d e f i n e d as above belongs
t o C(Ia,V) and f u r t h e r m o r e s a t i s f i e s 11 [ F u ] ( t ) - u d l v 5 t k ( s ) - l Q ( s ) g ( s ) d s = g ( t ) - b o , so Fu E X. Thus F has a unique 0
fixed-point u
E
X which i s t h e s o l u t i o n o f t h e Cauchy problem
f o r (3.1).
QED
Remark 3.4
The p r e c e d i n g r e s u l t s p e r m i t t h e l e a d i n g opera-
That i s , t o r s t o degenerate i n a v e r y weak sense a t any to E I a’ 1 (3.2) must be m a i n t a i n e d w i t h k ( * ) - ’ E L ( I a , R ) On t h e o t h e r
.
hand we have p l a c e d no upper bounds on t h e f a m i l y { M ( t ) t h e y may be s i n g u l a r ( c f .
I n t r o d u c t i o n ) on a s u i t a b l e
: t
E
Ial;
s e t of
p o i n t s i n Ia. The L i p s c h i t z c o n d i t i o n (3.3) f(t,uo)
t o g e t h e r w i t h t h e e s t i m a t e on
i n Theorem 3.3 impose a g r o w t h r a t e on f ( t , u )
l i n e a r i n u.
which i s
Such hypotheses a r e f r e q u e n t l y a p p r o p r i a t e , espec-
i a l l y i n l i n e a r problems such as Example 1.1 which o c c u r
170
DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
3.
However they a r e not appropriate f o r
frequently in practice.
nonlinear wave propagation models, and these applications c a l l f o r solutions global in time. The t h i r d order nonlinear equation
Example 3.5 (3.6)
Ut
-
+ ux + uux = 0
Uxxt
provides a model f o r the propagation of long waves of sma 1 amplitude.
The interest here i s i n solutions of (3.6) f o r a l l t 2 0.
Similarly, models with other forms of n.on1inearity i n add tion t o dispersion and dissipation occur i n the form (3.7)
u
t
-
u
xxt
l u l q + buPux = cu
+ a sgn(u)
xx'
W e r e f e r t o Benjamin [ l , 2 3 , Dona [2,3, 4, 51, and Showalter [ l o , 19, 211 f o r discussion of such models and r e l a t e d systems. I n i t i a l boundary value problems f o r (3.6) and (3.7) can be resolved in the following a b s t r a c t forni. Theorem 3.6
Let a > 0 and assume given f o r each t
[O,a] an operator M ( t ) Banach space.
E
L(V,V
I
+
1,
Assume there i s a k > 0 such t h a t
E
V the function
E
I,,
<M(t)x,y> i s absolutely continuous w i t h
(3.9)
d dt <M(t)x,x>
=
), where V i s a separable reflexive
each M(t) i s symmetric, and f o r each p a i r x,y
t
E
5 m(t)llxll
2
,
171
a.e. t
x
E
V,
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
f o r some m ( - )
E
1 L (Ia,R).
f o r each p a i r x,y
E
L e t f: 1, x V
V the function t
-+
-+
v~
Ilf(t,x)-f(t,y))I
f o r x,y
B and a.e.
E
t
I
be g i v e n such t h a t
and f o r each bounded s e t B i n V t h e r e i s a that
V
a(-)
E
i s measurable, 1 L ( I a y R ) such
5 Q ( t ) Ilx-Alv, and I l f ( t , x ) I I I,.
E
5 O(t),
F i n a l l y , assume t h e r e e x i s t K ( - )
and L ( * )
E
1 L (Ia) with L ( t )
2 0 a.e. such t h a t < f ( t , x ) , x > 5
K(t)/Ixlf
+
L(t)llXll, x
Then f o r each uo
unique s o l u t i o n u : 1, Proof:
E
V.
+
V there e x i s t s a
E
V o f ( 3 1 ) w i t h u ( o ) = uo.
Uniqueness and l o c a
from Theorem 3.1 and Theorem 3.2,
e x i s t e n c e f o l l o w immediately respectively.
The e x i s t e n c e
o f a ( g l o b a l ) s o l u t i o n on 1, can be o b t a i n e d by standard c o n t i n u a t i o n arguments i f we can e s t a b l i s h an a p r i o r i bound on a s o l u tion.
But i n t h e present s i t u a t i o n t h e a b s o l u t e l y continuous
function a ( t )
I
5
Z
< M ( t ) u ( t ) , u ( t ) > s a t i s f i e s ( c f . Lemma 5.1) a ( t ) =
+ <Ml(t)u(t),u(t)> 5 [(ZK(t)+m(t))/k] a ( t ) +
o(t)”*;
hence we o b t a i n
’0
with H ( t )
=
’0
(K+(t) + (1/2)m(t))/k.
The estimates (3.10) and
(3.8) p r o v i d e t h e d e s i r e d bound on a l l s o l u t i o n s o f (3.1) w i t h given i n i t i a l data uo. Remark 3.7
on 1, OED
Equations s i m i l a r i n form t o (3.G) have been
used t o “ r e g u l a r i z e ” h i g h e r o r d e r equations as a f i r s t s t e p i n s o l v i n g them ( c f . Bona [4],
Showalter [17]).
172
The advantage over
3. DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
standard (e.g.
, parabolic)
r e g u l a r i z a t i o n s i s t h a t the order o f
t h e problem i s n o t increased by t h e r e g u l a r i z a t i o n . case o f t h i s i s t h e "Yosida
An i m p o r t a n t
approximation" AE o f a maximal ac-
c r e t i v e ( l i n e a r ) A i n Banach space g i v e n by AE = ( I + E A ) - ~ A , E > I
Thereby, one approximates t h e e q u a t i o n u ( t ) + A u ( t ) = 0 by
0.
one w i t h A r e p l a c e d by t h e bbunded A E y or, e q u i v a l e n t l y , solves I
t h e equation (I+EA)uE(t) + AuE(t) = 0 and then l o o k s f o r u(t) =
1i m
E4+
T h i s technique was used f o r a
u E ( t ) i n some sense.
n o n l i n e a r time-dependent e q u a t i o n by Kato [2] and t o study t h e nonwell-posed backward Cauchy problem i n Showalter [ l G ,
201;
a l s o see B r e z i s [3]. The preceding r e s u l t s immediately y i e l d corresponding r e s u l t s f o r second o r d e r e v o l u t i o n equations o f t h e form (3.11)
M(t)u
I 1
( t ) = F(t,u(t),ul(t)) L e t t h e f a m i l y o f operators ( M ( t ) > and t h e
Theorem 3.8
L e t uoyul
f u n c t i o n s k ( - ) and Q(*) be g i v e n as i n Theorem 3.2. V and t h e f u n c t i o n F : 1, x Bb(uo)
t V.
1)
+
measurable f o r x1
Suppose we have IIF(t,x)-F(t,y)ll F(t,uoyul)l~v,
f o r x = (xl,x2)
x
VI
Bb(ul)
+
V
I
be given w i t h
Bb(ul). y E 2 2 5 Q(t)[llxl-YIIlv + IIx2-YdIv1~
E
Bb(u0), x2
E
E
5 c l ( t ) , and
a n d y = (y1,y2) i n B ( u ) x Bb(ul) b o
and a.e.
t
E
Then t h e r e e x i s t s c > 0 and a unique u : Ic + V which i s Ia. 173
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
continuously d i f f e r e n t i a b l e w i t h u ( t ) u
I
I
E
Bb(uo). u ( t )
E
Bb(ul),
,
i s ( s t r o n g l y ) a b s o l u t e l y continuous and d i f f e r e n t i a b l e a.e.
(3.11)
I
holds a.e.
on Ic and u ( o ) = u o y u ( 0 ) = ul.
The preceding f o l l o w s from Theorem 3.2 a p p l i e d t o t h e equation M(t)U'(t) = f(t,U(t))
in V z
[M(t)xlyM(t)x2]
5
and f ( t , x )
V x V w i t h M(t)x
[M(t)x2,F(t,xl
!
The e s t i m a t e
,x,)].
l i m i t s t h e growth r a t e o f t h e l e a d i n g o p e r a t o r ( c f . Re-
(3.12)
T h i s hypothesis can be d e l e t e d when V i s a H i l b e r t
mark 3.4).
space; we need o n l y r e p l a c e M ( t ) by t h e Riesz map V
-+
V ' i n the
f i r s t f a c t o r o f each o f M ( t ) and f. I n i t i a l boundary value problems f o r p a r t i a l d i f f e r e n t i a l equations a r i s e i n t h e form (3.11)
i n various applications.
Tww
c l a s s i c a l cases a r e g i v e n below; see L i g h t h i l l [l]o r Whitham
[l]f o r a d d i t i o n a l examples o f t h i s type. The equation o f S. Sobolev [l]
Example 3.9 (3.13)
+ uzz = 0
A3utt
describes t h e f l u i d motion i n a r o t a t i n g vessel.
I t i s on ac-
count o f t h i s equation t h a t t h e term "Sobolev equation" i s used i n the Russian l i t e r a t u r e t o r e f e r t o any equation w i t h s p a t i a l d e r i v a t i v e s on t h e h i g h e s t o r d e r t i m e d e r i v a t i v e (cf., Example 1 .2). Example 3.10 (3.14)
u
tt
-
The equation
aA3utt
-
A3u = f ( x , t )
174
however,
DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
3.
was i n t r o d u c e d by A.E.H. t i o n s i n a beam.
Love [l]t o d e s c r i b e t r a n s v e r s e v i b r a -
The second t e r m i n (3.14)
represents r a d i a l
i n e r t i a i n t h e model. F i n a l l y , we d e s c r i b e how c e r t a i n d o u b l y - n o n l i n e a r e v o l u t i o n equations (3.15)
M(t,u’(t))
=
f(t,u(t)),
0 5 t < _ T ,
i n H i l b e r t space can be s o l v e d d i r e c t l y b y s t a n d a r d r e s u l t s on monotone n o n l i n e a r o p e r a t o r s .
The t e c h n i q u e a p p l i e s as w e l l t o
t h e corresponding v a r i a t i o n a l i n e q u a l i t y I
<M(t,u ( t ) )
(3.16)
-
f(t,u(t)),
v
-
I
u (t).
2 0,
v
E
K(t),
w i t h a p r e s c r bed fami y o f c l o s e d convex subsets K ( t ) c V, so we c o n s i d e r t h i s more general s i t u a t i o n . L e t V be r e a l H i l b e r t space and f o r each a 2 0 we l e t Va be t h e H i l b e r t space o f square summable f u n c t i o n s from [O,T] i n t o T V w i t h t h e norm I l v l l a = I l v ( t ) l l i e - 2 a t dt)”2. F o r each t E
(1
[O,T]
0
we a r e g i v e n a p a i r o f ( p o s s i b l y n o n l i n e a r ) f u n c t i o n s f ( t , * ) ,
M(t,*) from V i n t o V
I
.
The f o l l o w i n g elementary r e s u l t i s funda-
mental f o r t h i s technique. Lemma 3.11 uous M : Va
Assume [Mv](t)
E M(t,v(t))
I
+
d e f i n e s a hemicontin-
V a and t h a t t h e r e i s a k > 0 w i t h
175
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
(3.17) L e t uo Va
+
V
2 2 kllx-yllv,
<M(t,x)-M(t,y),x-y> E I
a
=
V and assume [ f ( v ) ] ( t )
f(t,uo+
a.e.
t
E
[O,T],
x,y
E
V.
v(s)ds) defines f :
and t h a t t h e r e i s a Q > 0 w i t h
(3.18)
<- Q (1 X-Y 11 v >
11 f ( t , x ) - f ( t > Y ) l l
Then t h e o p e r a t o r T
=M-
f : Va
a.e.
t
E
[O,T],
x,y
E
V.
I
-+
Va i s hemicontinuous and
s t r o n g l y monotone f o r "a" s u f f i c i e n t l y large. Proof:
For u,v
E
Va we have
The c o n d i t i o n o f u n i f o r m s t r o n g m o n o t o n i c i t y on M ( t , - ) <Mu-Mv,u-v>
2 c IIu-vII,
2
, u,v
E
Va,
gives
2
hence we obtai'n
E c - Q ( T / ~ ~ ) ~ / ~ I ~u,v ~ u E- vV a' ~ ~ ~The , d e s i r e d r e s u l t holds f o r a >
QED
TQ~/ZC~.
176
3. DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
Theorem 3.12
L e t t h e hypotheses o f Lemma 3.11 h o l d and as-
sume i n a d d i t i o n t h a t we a r e g i v e n a f a m i l y o f nonempty c l o s e d convex subsets K ( t ) o f V f o r w h i c h t h e c o r r e s p o n d i n g p r o j e c t i o n s P(t) : V
+
K ( t ) a r e a measurable f a m i l y i n L(V) ( c f . C a r r o l l
Then t h e r e e x i s t s a unique a b s o l u t e l y c o n t i n u o u s u [14]). I 2 L (0,T;V) w i t h u E Vo, u ( o ) = uo, and s a t i s f y i n g (3.16). Proof: Va * V {v
E
I
a
W i t h a chosen as i n Lemma 3.11
E
K ( t ) , a.e.
and nonempty i n Va,
t
E
[O,T]).
(3.19)
Define K 5
Then K i s closed, convex
so i t f o l l o w s f r o m Browder [5]
t h a t t h e r e e x i s t s a unique w
E
Vo =
operator T :
i s hemicontinuous and s t r o n g l y monotone.
Va : v ( t )
[14])
, the
E
(cf. Carroll
K such t h a t v
E
K.
F i n a l l y , t h e measurable f a m i l y o f p r o j e c t i o n s ( P ( t ) > i s used t o show t h a t (3.19)
i s e q u i v a l e n t t o (3.16) w i t h u ( t ) = uo
rt
J o w ( s ) d s , 0 5 t 5 T.
i.
QED
The p r e c e d i n g r e s u l t i s f a r from b e i n g b e s t p o s s i b l e , b u t s e r v e s t o i l l u s t r a t e t h e a p p l i c a b i l i t y o f t h e t h e o r y o f monotone nonlinear operators t o t h e situation. t h e doubly-nonl i n e a r e q u a t i o n
and more genera l y , t h e
neq ua it y
177
A s i m i l a r r e s u l t holds f o r
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
(3.21)
-
<M(t,u(t)) u(t)
E
'0
K(t),
-
rt
1, f(S,u(S))dS,
v-u(t)> a.e.
2 0, v
M(t,-)
K(t),
t E COYTI,
under e s s e n t i a l l y t h e same hypotheses as Theorem 3.12. be d e s i r a b l e t o have such r e s u l t s on e i t h e r (3.16)
E
I t would
o r (3.21) w i t h
p e r m i t t e d t o be degenerate, o r a t l e a s t n o t u n i f o r m l y
bounded ( c f . Remark 3.4).
We s h a l l r e t u r n t o s i m i l a r problems
i n Banach space w i t h a s i n g l e l i n e a r o p e r a t o r ( p o s s i b l y degenera t e ) i n S e c t i o n 3.6 below. ng Theorem 3.12)
A l s o , a v a r i a t i o n on Theorem 3.8
g i v e s e x i s t e n c e r e s u l t s f o r second o r d e r
u t i o n e q u a t i o n s and i n e q u a l i t i e s . Remark 3.13
Theorems 3.1,
3.2 and 3.3 a r e f r o m S h o w a l t e r
and Theorem 3.4 i s f r o m S h o w a l t e r [18,
191.
Theorem 3.8 was
u n p u b l i s h e d and Theorem 3.12 i s due t o Kluge and Bruckner [l]. F o r a d d i t i o n a l m a t e r i a l on s p e c i f i c p a r t i a l d i f f e r e n t i a l e q u a t i o n s and on general e v o l u t i o n e q u a t i o n s o f t h e t y p e c o n s i d e r e d i n t h i s s e c t i o n we c i t e t h e above r e f e r e n c e s and Amos [l],Bardos-BrezisB r e z i s [Z],
Bhatnager [l],Bochner-von Nuemann [l],Bona [l],
B r i l l [l],Brown [l],C a l v e r t [l],Coleman-Duffin-Plizel
[23,
C o l t o n [l,2, 31, Davis [l,23, Derguzov [l],Dunninger-Levine 111, E s k i n [l],Ewing [l,2, 31, W. H. F o r d [l,21, Fox [31, Gajewski-Zacharius [1,
2, 31, Galpern [l,2, 3, 4, 51, Grabmuller
[l],tiorgan-Wheeler [l],I l i n [l],Kostyuzenko-Eskin [l],Lagnese
[l,2, 3, 4, 5, 6, 7, 8, 91, Lebedev [l],L e v i n e [3, 5, 6, 7, 8,
91,
Lezhnev [l],L i o n s [5,
9,
lo], 178
Maslennikova [l,2, 3, 4, 5,
3. DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
61, tkdeiros-Menzala [l],M i k h l i n [Z],
Fliranda [l],Neves [l],
Prokopenko [l],Rao [l,2, 4, 51, Rundell [l,2, 31, Selezneva
[l],Showalter [l,7, 8, 9, 11, 12, 13, 141, S i g i l l i t o [l,2, 31, Stecher-Rundell [l],T i n g [l,31, Ton [l],Wahlbin [l],Zalenyak One c o u l d a l s o i n c l u d e c e r t a i n r e f e r e n c e s f r o m
[l,2, 3, 41. Remarks 4.10,
5.18,
6.24 and 7.10 t o which we r e f e r f o r a d d i t i o n -
a l material. 3.4
Weakly r e g u l a r e q u a t i o n s
We r e s t r i c t o u r a t t e n t i o n
t o a c l a s s o f l i n e a r e v o l u t i o n e q u a t i o n s o f t h e form Mul(t) t L u ( t ) = f ( t ) ,
(4.1)
and o b t a i n we1 1-posedness r e s u l t s when as s t r o n g as L.
t > 0,
M i s not (necessarily)
A l t h o u g h t h e semigroup techniques employed h e r e
w i l l be used f o r n o n l i n e a r degenerate problems i n S e c t i o n 3.6 below, we i n t r o d u c e them i n t h e s i m p l e r s i t u a t i o n o f (4.1) where we s h a l l be a b l e t o d i s t i n g u i s h t h e a n a l y t i c s i t u a t i o n from t h e s t r o n g 1y-continuous case. L e t Vm be a complex H i l b e r t space w i t h s c a l a r - p r o d u c t (-,*), and d e f i n e t h e isomorphism ( o f R i e s z ) f r o m V , o n t o i t s a n t i d u a l V,
I
x,y
of c o n j u g a t e - l i n e a r continuous f u n c t i o n a l s by <Mx,y> E
I
-f
(x,y),,
Suppose D i s a subspace o f Vm and t h e l i n e a r map
. ,V
I f u E V and f o m c o n s i d e r t h e problem o f f i n d i n g a u ( * )
L :D
=
Vm i s given.
E
C((o,m),Vm)
E
C([o,m),
I
a r e g i v e n , we 1 Vm) f ) C ((o,m),
Vm) which s a t i s f i e s (4.1) and u ( o ) = uo.
To o b t a i n an elementary uniqueness r e s u l t , l e t u ( * ) be a 179
SINGULAR AND DEGENERATE CAUCHY PROBEMS
s o l u t i o n o f (4.1)
with f
-2Re
t > 0.
( u ( t ) , u(t))A’2 tained.
0 and n o t e t h a t D,(u(t),u(t)),,,
=
Hence, if L i s monotone then I l u ( t ) I l m =
i s nonincreasing and a uniqueness r e s u l t i s ob-
Recall t h a t L monotone means Re
Z
0, x
E
D.
This
computation suggests t h a t Vm i s an a p p r o p r i a t e space i n which t o The equation i n V
seek well-posedness r e s u l t s .
-1 u l ( t ) + M oLu(t) = M-lf(t),
(4.2)
lil
t > O
i s e q u i v a l e n t t o (4.1) and suggests c o n s i d e r a t i o n o f t h e o p e r a t o r -1 A = M OL w i t h domain D ( A ) = D. We see from (4.3)
(Ax.Y),
,
=
x
E
D, y
E
Vm
t h a t L i s monotone i f and o n l y i f A i s a c c r e t i v e i n t h e t l i l b e r t space Vm.
I n t h i s case, -A generates a c o n t r a c t i o n semigroup
on Vm i f I + A i s s u r j e c t i v e ; then t h e Cauchy problem i s w e l l posed f o r (4.2). C a r r o l l [14],
These o b s e r v a t i o n s prove t h e f o l l o w i n g ( c f .
H i l l e [2],
Theorem 4.1 H i l b e r t space Vm,
o r Kato [l]).
L e t M : Vn, L : D
-t
V,
I
* Vm be t h e Riesz map o f t h e complex
I
be g i v e n monotone and l i n e a r w i t h I
domain i n V m y and assume M + L : D each f
E
C([O,m),V,)
I
and uo
E
+
Vm i s s u r j e c t i v e .
Then f o r
D t h e r e i s a unique s o l u t i o n u ( - )
o f (4.1) w i t h u(o) = uo. The Cauchy problem f o r (4.1)
i s solved above by a s t r o n g l y
continuous semigroup o f c o n t r a c t i o n s .
T h i s semigroup i s a n a l y t i c
when t h e o p e r a t o r A i s s e c t o r i a l (Kato [1]) 180
and we describe t h i s
3. DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
s i t u a t i o n i n the following. Theorem 4.2
Suppose M i s t h e Riesz map o f t h e H i l b e r t space
Vm, V i s a H i l b e r t space dense and continuous i n Vm, and L : V V ' i s continuous, l i n e a r and coercive: f o r some c > 0. and uo
E
V,
Re
x
Then f o r e v e r y Hb'lder continuous f: O[).,
-+
-+
V,
E
V,
I
w i t h u(o) =
t h e r e i s aunique, s o l u t i o n u ( = ) o f (4.1)
uO*
Each o f t h e two preceding r e s u l t s i m p l i e s well-posedness of t h e Cauchy problem f o r a l i n e a r second-order e v o l u t i o n equation (4.4)
Cu
I 1
I
( t ) + Bu ( t ) + A u ( t ) = f ( t ) ,
The i d h a i s t o w r i t e (4.4)
Theorem 4.3
as a f i r s t - o r d e r system i n t h e form
L e t Va and Vc be complex H i l b e r t spaces w i t h
Va dense and continuous i n Vc,
Vc
and denote by A : Va
I
-f
' 0.
t
I
Va and C :
-+
L e t B be l i n e a r and monotone
Vc t h e r e s p e c t i v e Riesz maps. I
from D(B) C Va i n t o V a and assume A + B + C : D(B) -+ V i i s sur1 j e c t i v e . Then f o r each f E C ( C O , ~ ) , V L ) and p a i r uo E Va, u1 D(B) w i t h Auo + Bul c([o,m),va)
E
Vc t h e r e i s a unique s o l u t i o n u ( * )
n c 1((oym),va) n
cl([o,m),vc)
n c2((o,m),vc)
E
of (4.4)
I
w i t h u ( o ) ) = u o and u ( 0 ) = ul. Proof:
E
I
Define Vm = Va x Vc;
then we have V,
181
I
I
I
= Va x Vc and
SINGULAR AND DEGENERATE CAUCHY PROBLEMS I
t h e Riesz map M : Vm [xl,x2]
E
I
I
[xl,x2]
I
+
Vm by L([xl ,x2])
I n o r d e r t o a p p l y Theorem 4.1 we need o n l y t o v e r i f y t h a t
L i s monotone.
E
Va and C : Vc
fly x2
E E
I
Va and f2 E Vc, D(B),
then s e t x1 = x2 + A - ’ f l
D w i t h (M+L)[xl ,x2] = [fl ,f2].
I
-+
then we can
QE D
L e t t h e H i l b e r t spaces and operators A: Va
Theorem 4.4 I
-
so B monotone i m p l i e s
I
F i n a l l y , i f fl
t o o b t a i n [x, ,x2]
But an easy computation
[x, ,x2]> = Re
s o l v e (A+B+C)x2 = f2
L e t B : Va
Vc be g i v e n as i n Theorem 4.3.
be continuous and l i n e a r w i t h B + AC : Va
E
=
I
shows Re
uo
Vc),
i s c l e a r l y e q u i v a l e n t t o Mw ( t ) + L w ( t ) = [O,f(t)],
L i s monotone and M + L i s s u r j e c t i v e .
A > 0.
I
E
With M and L so defined, t h e
I).
E
= [Axl,Cx2],
V a x D(B) : Axl + Bx2
E
and d e f i n e L : D
+ Bx2],
system (4.5) t > 0.
Vm i s g i v e n by M[xl,x2]
L e t D E {[x,,x,]
Vm.
r e c a l l i n g Vc C Va, [-Ax2,Axl
+
u1
E
Vc,
n c2 ((O,m),Vc)
Va
Va c o e r c i v e f o r some I
+
t h e r e i s a unique s o l u t i o n u ( = )
c 1 ((0,m),Va) f l c 1 “O,m),Vc)
I
+
I
+
Then f o r e v e r y H6lder continuous f : [O,m)
v a’
+
of (4.4)
E
Vc and p a i r
C([O,m),Va)n w i t h u(0) =
I
uo and u ( 0 ) = ul. Proof:
F o l l o w i n g t h e p r o o f o f Theorem 4.3,
can a p p l y Theorem 4.2 w i t h V i s V - e l l i p t i c f o r some X > 0.
=
we f i n d t h a t we
Va x Va i f we v e r i f y t h a t AM + L But AB
p r e c i s e l y what i s needed.
+ C being V a - e l l i p t i c i s QED
B r i e f l y we i n d i c a t e some examples o f p a r t i a l d i f f e r e n t i a l equations f o r which corresponding i n i t i a l - b o u n d a r y value problems 182
3.
DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
a r e s o l v e d by t h e preceding r e s u l t s .
The examples a r e f a r from
b e s t p o s s i b l e i n any sense and a r e d i s p l a y e d here o n l y t o suggest t h e types o f equations t o which t h e r e s u l t s apply. Let m(*)
Example 4.5
Lm(O,l) w i t h m(x) > 0 f o r a.e.
E
and d e f i n e Vm t o be t h e completion o f C;(O,l)
(0,l)
s c a l a r - p r o d u c t (u,v) s e t
=
rl
I
m
m(x)u(x)mdx.
E
0
u.(x)vl(x)dx,
u,v
V.
E
x
E
with the
L e t V = HA(0,l) and
Then Theorem 4.2 shows
JO
t h a t t h e i n i t i a l -boundary va 1ue problem m(x)Dtu(x,t) u(0,t)
=
-
u(1,t)
Dxu(x,t) z =
=
t > 0,
f(x,t),
0,
U(X,O) = uo(x),
O < X < l ,
i s well-posed f o r a p p r o p r i a t e f(-,.) and measurable uo w i t h m1/2uo
E
2 L (0,l).
The i n i t i a l c o n d i t i o n above means
lim"m(x) l u ( x , t ) - u o ( x )
ta+
Jo
I 2 dx
= 0 and t h e equation holds a t each
I
t > 0 i n t h e space Vm o f measurable f u n c t i o n s v on ( 0 , l ) w i t h
m-1'2v
E
2 L (0,l).
I 2 Note t h a t Vm C L ( 0 , l ) C V m and t h e equation
may be e l l i p t i c on a n u l l s e t (where m(x) = 0). 1 L e t Vm = Ho(O,l) w i t h t h e scalar-product
-5--J o l u ( x ) W + m u l ( x ) v l ( x ) ) d x where Exam l e 4.6
(u,~),,,
=
m > 0.
(More general
3 Set Lu = Dxu on D E c o e f f i c i e n t s c o u l d be added as above.) 2 1 {u E H (0,l)fl Ho(O,l) : c u ' ( 0 ) = ~ ' ( 1 ) )where c i s given w i t h IcI
5
1.
Then 2 Re
-
lu1(1)I2
2 0,u
E
D, s o
L i s monotone; we can show M + L i s s u r j e c t i v e , so Theorem 4.1 shows t h e problem
183
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
+ D,u(x,t) 3
(Dt-mDxDt)u(x,t) 2 u(0,t)
= u(1,t)
u(x,o)
= U,(X)
= 0,
c
0 < x < 1,
= f(x,t),
ux(O,t)
=
i s well-posed f o r a p p r o p r i a t e f ( * , * ) and u
0'
t
ux(l,t),
2
0,
T h i s equation i s a
1 i n e a r r e g u l a r i z e d Korteweg-deVries equation ( c f . Bona [4]).
2 Take Vm as above and l e t V = Ho(O,l)
Example 4.7 D:
: V
-+
1;
V ' d e f i n e d by
2 Dxu(x)Dxv(x)dx, u,v
with E
L
=
V.
Then Theorem 4.2 g i v e s existence-uniqueness r e s u l t s f o r t h e metap a r a b o l i c (Brown [l]) problem (Dt
- mDxDt)u(x,t) 2 = u(1,t)
when uo
E
H:(0,1)
and t
+ Dxu(x,t) 4
= ux(O,t)
+
=
=
f(x,t),
ux(l,t)
f ( * , t ) : [O,m)
+
O < X < l , t > 0,
= 0,
H-'(O,l)
i s H6lder
con t i nuous. Example 4.8
2 L (0,l)
1 L e t Va = Ho(O,l)
added as i n Example 4.5.
+ bul, u
E
rl
J",
dxy v c = uydx; p o s i t i v e c o e f f i c i e n t s c o u l d be
w i t h
by Bu = r u
11,
w i t h
Let r
Va.
monotone whenever Re(r)
E
$, b
E
R and d e f i n e B: Va
Since Re<Bu,u> = Re(r)
2
0.
The o p e r a t o r A + B
,B
Ilully'
+ C : Va
+
C
Vc
is I
+
Va i s
continuous, l i n e a r and coercive, hence s u r j e c t i v e , so Theorem 4.3 shows t h e problem
184
DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
3.
2 x,t)-Dxu( x,t)
t)+rDtu( x,t)+bDxDtu( y 0 , t )
(4.9)
= u(1,t) =
U(X,O)
= 0,
damped wave equation.
u1
E
0 < x < 1, 1 Ho(O,l)
and t
-+
T h i s i s a c l a s s i c a l problem f o r t h e
f(*,t) E C ([0,~),L~(0,1)).
E
= u 1( x ) ,
1 2 (O,l), Ho"H
E
1
s e t B = EA,
t > 0,
u0(x), Dtu(x,o)
i s w e l l posed w i t h uo
,
= f ( x ,t)
I f i n s t e a d o f t h e above choice f o r B we
> 0, then from Theorem 4.4
f o l l o w s well-posedness
f o r t h e " p a r a b o l i c " problem rDtU(X,t)-EDXDtU( 2 2 u(0,t)
X,t)-Dxu( 2 x,t)
= u(1,t)
= f (x,t)
,
O < X < l ,
= 0,
u(x,o) = u0(x),
t > 0,
Dtu(x,o)
=
u,(x),
o f c l a s s i c a l v i s c o e l a s t i c i t y ( c f . Albertoni-Cercignani t h e data i s chosen w i t h u
0
f(*,t)
:
[O,m) -+
L'(0,l)
E
1 H o ( O Y l ) , u1
E
2 L (O,l),
[l]).Here
and t
-t
H6lder continuous.
We r e t u r n t o consider t h e p a r a b o l i c s i t u a t i o n o f Theorem 4.2 and d e s c r i b e a b s t r a c t r e g u l a r i t y r e s u l t s on t h e s o l u t i o n . a d d i t i o n t o t h e hypotheses o f Theorem 4.2,
assume given a H i l b e r t
space H which i s i d e n t i f i e d w i t h i t s dual and i n which V, and c o n t i n u o u s l y embedded. I
I
H = H C VmCV
I
.
: Mu
E
HI.
i s dense
Thus we have t h e i n c l u s i o n s V c V m C
1 L e t M be t h e (unbounded) o p e r a t o r on H ob-
t a i n e d as t h e r e s t r i c t i o n o f M : Vm {u E V,,
In
-t
I 1 Vm t o t h e domain D(M ) =
Similarly, the r e s t r i c t i o n o f L : V
1 t h e domain D ( L ) = { u
E
V : Lu
E
185
-t
V
I
to
H I w i l l be denoted by L1. Each
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
o f D(M 1) and D(L 1 ) i s a H i l b e r t space w i t h t h e induced graph-norm and t h e y a r e dense and continuous i n Vm and V, r e s p e c t i v e l y .
We
s h a l l describe a s u f f i c i e n t condition f o r the s o l u t i o n u ( * ) o f w i t h f ( * ) = 0 t o belong t o C([O,m),Vm)/)Cm((O,m),D(L
(4.1)
1) ) .
The arguments depend on t h e t h e o r y o f i n t e r p o l a t i o n spaces and f r a c t i o n a l powers o f o p e r a t o r s ( c f . C a r r o l l [14] f o r references). S p e c i f i c a l l y , t h e o p e r a t o r L1 i s r e g u l a r l y a c c r e t i v e and c o r r e s ponding f r a c t i o n a l powers Le, 0
5
L
0
1, can be defined.
Their
corresponding domains a r e r e l a t e d t o i n t e r p o l a t i o n spaces between 1 0 5 8 5 1, D(L ) and H by t h e i d e n t i t i e s D(Llme) = [D(L),H;O], and corresponding norms a r e e q u i v a l e n t , Theorem 4.9
I n a d d i t i o n t o t h e hypotheses o f Theorem 4.2,
we assume D(L 1-e ) C D(M 1 ) f o r some 8 , 0 < 8 5 1. uo
E
V,
cm( (0,m)
t h e s o l u t i o n u ( * ) o f (4.1)
with f(*)
, ~1)d
Remark 4.10
= 0 belongs
Theorem 4.1 i s new i n t h e form given.
c l o s e l y r e l a t e d Theorem 4.2
i s from Showalter [6];
[7, 111 f o r an e a r l i e r s p e c i a l case.
Theorem
to
The
c f . Showalter
4.3 i s t h e l i n e a r
case o f a r e s u l t i n Showalter [5] and Theorem 4.4 Theorem 4.9
Then f o r each
i s new.
i s presented i n Showalter [6, p t . 111 w i t h a l a r g e
c l a s s o f a p p l i c a t i o n s t o i n i t i a l -boundary value problems,
The
a d d i t i o n a l hypothesis i n Theorem 4.9 makes L s t r i c t l y s t r o n g e r than M; t h e r e s u l t i s f a l s e i n general when
e
= 0.
M i k h l i n [2], work we r e f e r t o C o i r i e r [l],K r e i n [l],
[l]and Showalter [17]. 186
For r e a t e d Phil ips
3.
3.5
DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
L i n e a r degenerate equations.
We s h a l l consider appro-
p r i a t e Cauchy problems f o r t h e equation
whose c o e f f i c i e n t s { M ( t ) )
and { L ( t ) ) a r e bounded and measurable
f a m i l i e s o f l i n e a r operators between H i l b e r t spaces.
We show
( e s s e n t i a l l y ) t h a t t h e problem i s well-posed when t h e { M ( t ) ) are nonnegative, (L(t)+XM(t)) are c o e r c i v e f o r some X > 0, and t h e o p e r a t o r s depend smoothly on t.
Some elementary a p p l i c a t i o n s
t o i n i t i a l - b o u n d a r y value problems are presented i n o r d e r t o i n d i c a t e t h e l a r g e c l a s s o f problems t o which t h e r e s u l t s can be a p p l i e d (cf.
Examples 1.1,
case of (5.1)
1.4 and 1.6).
Consideration o f t h e
on a product space leads t o a p a r a b o l i c system
which c o n t a i n s t h e second o r d e r equation ( c f . Example 1.2) (5.2)
2 %C(t)u(t)) dt
+ $B(t)u(t))
+ A(t)u(t)
= f(t).
C e r t a i n h i g h e r o r d e r equations and systems can be handled s i m i l a r ly.
I n o r d e r t o describe t h e a b s t r a c t Cauchy problem, l e t V be a separable complex H i l b e r t space w i t h norm I l v l I ; V dual, and t h e a n t i d u a l i t y i s denoted by
I
i s the anti-
W i s a complex
H i l b e r t space c o n t a i n i n g V and t h e i n j e c t i o n i s assumed continuous w i t h norm 5 1.
L(V,W)
denotes t h e space o f continuous l i n e a r
o p e r a t o r s from V i n t o W and t h a t f o r each t
E
T i s t h e u n i t i n t e r v a l [0,1].
Assume
T we are g i v e n a continuous s e s q u i l i n e a r form
187
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
on V and t h a t f o r each p a i r x,y
a(t;*,*)
i s bounded and measurable.
E
E
2
2
L (T,V) t h e f u n c t i o n t
g r a b l e ( c f . C a r r o l l [14], f o r each t
E
measurable.
p. 168).
E
E
V
E
Let {V(t) : t
2 L (T,V)
W and f
+
a(t;u(t),v(t))
i s inte-
S i m i l a r l y , we assume g i v e n
W t h e map t E
E
+.
m(t;x,y)
on W such
i s bounded and
T I be a f a m i l y o f c l o s e d subspaces
2 o f V and denote by L ( T , V ( t ) )
uo
K R l l x l l - llyll f o r a l l x,y
T a continuous s e s q u i l i n e a r form m(t;*,*)
t h a t f o r each p a i r x,y
E
R(t;x,y)
-+
Standard m e a s u r a b i l i t y arguments then show t h a t f o r
T.
any p a i r u,v
those (I
V t h e map t
By u n i f o r m boundedness t h e r e i s a
number KR > 0 such t h a t IR(t;x,y)l and t
E
t h e H i l b e r t space c o n s i s t i n g o f
f o r which (I(t)
E
L 2 (T,V l ) be given.
V ( t ) a.e.
A
on T.
Finally, l e t
s o l u t i o n o f t h e Cauchy prob-
lem (determined by t h e preceding data) i s a u
E
L 2 (T,V(t)) such
that
=
for all v
E
lo
1 < f ( t ) , v ( t ) > d t .+ m(O;uo,v(o)
L2(T,V(t))/)
A family {a(t;-,*)
1
H (T,W) w i t h v ( 1 ) :t
E
T I o f continuous s e s q u i l i n e a r forms
on V i s c a l l e d r e g u l a r i f f o r each p a i r x,y a(t;x,y)
= 0.
E
V the function t
i s a b s o l u t e l y continuous and t h e r e i s an M ( - )
such t h a t f o r x,y
E
1 L (T)
E
V we have a.e.
188
t
E
T.
-t
3.
DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
The f o l l o w i n g " c h a i n r u l e " w i l l be used below. Lemma 5.1
Let {a(t;*,-)
Then f o r each p a i r u,v
: t
1 H (T,V)
E
E
T} be a r e g u l a r f a m i l y on V.
the function t
a(t;u(t),v(t))
-+
i s a b s o l u t e l y continuous and i t s d e r i v a t i v e i s g i v e n by I
a(t;u(t),v
( t ) ) , a.e.
Proof: Fix x
V.
E
=
E
L(V,V)
by (a(t)x,y),,
Dt(a(t)x,yn)v,
t
E
T.)
a.e:t
E
T.
a(t;x,y),
absolute c o n t i n u i t y o f t I t & ( s ) x ds, t
E
T.
+
(The e s t i m a t e
*
V
The weak
Thus a ( - ) x i s s t r o n g l y a b s o l u t e l y continuous
1 H (T,V).
( u ( t ) ,a ( t ) v I v
E
a ( t ) x t h e n shows a ( t ) x = a ( o ) x +
and s t r o n g l y d i f f e r e n t i a b l e a.e. E
E
F o r each n 2 1
shows i t i s i n L'(T,V).
'0
Let u
x,y
The map & ( * ) x i s weakly, hence s t r o n g l y , mea-
s u r a b l e and t h e e s t i m a t e (5.4)
on T.
F o r each v
E
V we have ( a ( t ) u ( t ) , v ) v
=
a b s o l u t e l y continuous, s i n c e t h e above d i s c u s -
s i o n a p p l i e s as w e l l t o t h e a d j o i n t a " ( t ) . i s weakly a b s o l u t e l y continuous.
Hence, t
-+
a(t)u(t)
The s t r o n g d i f f e r e n t i a b i l i t y o f
a ( - )f r o m above i m p l i e s D t [ a ( t ) u ( t ) ] E
=
shows ( & ( t ) x y y ) v i s d e f i n e d and continuous a t e v e r y y
and a.e.
t
+
T.
V and l e t { yn : n Z 1) be dense i n V.
define (&(t)x,yn)v (5.4)
t
Define a ( t )
E
+ a(t;ul(t),v(t))
= al(t;u(t),v(t))
uta(t;u(t),v(t))
=
i ( t ) u ( t ) + a ( t ) u l ( t ) , a.e.
T, hence t h e i n d i c a t e d s t r o n g d e r i v a t i v e i s i n L 1 (T,V).
From
t h i s i t f o l l o w s t h a t a ( * ) u ( - ) i s s t r o n g l y a b s o l u t e l y continuous and t h e d e s i r e d r e s u l t now f o l l o w s e a s i l y .
189
QED
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Our f i r s t r e s u l t g i v e s e x i s t e n c e o f a s o l u t i o n w i t h an a p r i o r i estimate. Theorem 5.2
L e t t h e H i l b e r t spaces V ( t ) C V C W , sesqui-
l i n e a r forms m(t;*,-) uo
W and f
E
: t
{m(t;-,=) m(t;x,y) x
E
W.
E
2
L (T,V
' ) be given as above.
Assume t h a t
T I i s a r e g u l a r f a m i l y o f H e r m i t i a n forms on W:
E
'my x,y W,
=
on W and V, r e s p e c t i v e l y ,
and k ( t ; - , - )
E
a.e.
t
E
T, and m(o;x,x)
2 0 for
Assume t h a t f o r some r e a l X and c > 0
(5.5)
Rek(t;x,x)
2
+ hm(t;x,x)
+ m-(t;x,x)
2
x
CllXIl"'
E
V(t),
a.e.
t
E
T.
Then t h e r e e x i s t s a s o l u t i o n u o f t h e Cauchy problem, and i t s a t i s f i e s IIuII
5 const.(IIfII
2
I
L (T,V) L (T,V where t h e constant depends on A and c. Proof:
1
+
m(o;uo,uo))
1/2
,
Note f i r s t t h a t by a standard change-of-variable
argument we may r e p l a c e k ( t ; - , - )
by !L(t;-,*)
+ Xrn(t;*,=).
There-
f o r e we may assume w i t h o u t l o s s o f g e n e r a l i t y t h a t A = 0 i n (5.5):
+ m'(t;x,x)
2 ~ 1 1 x 1 1 ~x.
ale. t E T. Now 1 2 I l u ( t ) / 1 2 d t and l e t define H = L2(T,V(t)) w i t h t h e norm IIuIIH = 0 2 F E {$ E H : $ I E L2(T,W), $ ( 1 ) = 0) w i t h t h e norm 11011, =
2Rek(t;x,x)
190
E
V(t),
3. DEGENERATE EQUATIONS WITH OEPRATOR COEFFICIENTS
sesquilinear, L : F
-+
I$ i s c o n j u g a t e - l i n e a r , and we have t h e
continuous. Finally, f o r
0
i n F we have f r o m Lemna 5.1 and 5.5 w i t h A =
These e s t i m a t e s show t h a t t h e p r o j e c t i o n theorem o f L i o n s [5, p. Thus, t h e r e i s a u
371 a p p l i e s here. L(@) f o r a l l @
E
E
H such t h a t E(u,@) =
F and i t s a t i s f i e s l l u l l H 5 ( 2 / n i i n ( ~ . l ) ) I I L ~ ~ ~ ~ .
But t h i s i s p r e c i s e l y t h e desired r e s u l t . Remark 5.3 m(t;x,x)
QED
The hypotheses o f Theorem 5.2 n o t o n l y p e r m i t
t o v a n i s h b u t a l s o t o a c t u a l l y t a k e on n e g a t i v e values.
T h i s w i l l be i l l u s t r a t e d i n t h e examples. Remark 5.4 r e p l a c e d b y 2X
(5.7)
An easy e s t i m a t e shows t h a t (5.5)
+ a) i f
ReR(t;x,x)
we assume t h a t f o r
some c > 0 and a 2 0
2 2 cllxlIv,
+ Xm(t;x,x)
T h i s p a i r of c o n d i t i o n s i s t h u s s t r o n g e r t h a n (5.5) frequently i n applications. i m p l y m(t;x,x)
2 0 for all t
Note t h a t (5.6) E
holds ( w i t h X
T.
191
b u t occurs
and m(o;x,x)
2 0
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
We p r e s e n t an elementary uniqueness r e s u l t w i t h a r a t h e r severe r e s t r i c t i o n o f m o n o t o n i c i t y on t h e subspaces { V ( t ) > .
This
h y p o t h e s i s i s c l e a r l y "ad hoc" and i s a l i m i t a t i o n o f t h e t e c h n i que which i s n o t i n d i c a t i v e o f t h e b e s t p o s s i b l e r e s u l t s .
In
p a r t i c u l a r , much b e t t e r uniqueness and r e g u l a r i t y r e s u l t s f o r t h e very
s p e c i a l case o f m(t;x,x)
C a r r o l l [14],
= (x,x),
C a r r o l l - C o o p e r [35],
have been o b t a i n e d ( c f .
C a r r o l l - S t a t e [36],
t h e n o v e l t y here i s i n t h e forms m ( t ; - , - )
L i o n s [5]);
determining t h e leading
( p o s s i b l y degenerate) o p e r a t o r s ( M ( t ) ) . L e t t h e H i l b e r t spaces V ( t ) C V C W,
Theorem 5.5
l i n e a r forms !L(t;*,-) uo
E
W and f
E
2
L (T,V
2 0, x
Rem(t;x,x)
'
) be g i v e n as above.
V ( t ) , a.e.
E
on V and W,
and m ( t ; * , * )
t
E
sesqui-
respectively,
Assume t h a t
T, t h a t {!L(t;=,*)
: t
E
T) i s
a r e g u l a r f a m i l y o f H e r m i t i a n forms on V ( t ) : x,y and f o r some r e a l A and c > 0, R(t;x,x) ~ 1 1 x 1 1 ~x.
V ( t ) , a.e.
t
E
o f subspaces { V ( t ) : t
E
TI
(5.9)
E
T
E
t >
T,
t,T
T.
E
V(t),
+ ARem(t;x,x)
a.e.
t
E
2
F i n a l l y , assume t h a t t h e f a m i l y
i s decreasing: imply V ( t ) C V ( - r ) .
Then t h e r e i s a t most one s o l u t i o n o f t h e Cauchy problem. Proof: uO
L e t u ( - ) be a s o l u t i o n o f t h e Cauchy problem w i t h
= 0 and f ( * ) = 0.
By l i n e a r i t y i t s u f f i c e s t o show t h a t
192
T
3.
u ( - ) = 0.
[o,s]
DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
Let s
E
(0,l)
and v ( t ) = 0 f o r t
shows v ( t )
E
2 L (T,W)
V ( t ) f o r each t
and v ( 1 ) = 0.
,flR(t;v'(t),v(t))dt (5.8)
rs
E
T.
(O,l),
E
S i n c e u(.)
-
1:
E
['u(r)dr
9
L (T,V)
for t
E
and (5.9)
t
Also, v ( t ) = - u ( t ) f o r t so we have v '
E
E
L2(TyV(t))C
i s a s o l u t i o n we have by (5.3)
rn(t;u(t),u(t))dt
= 0.
Lemma 5.1 and
g i v e us t h e i d e n t i t i e s
j 1 2 Rem( t ;u ( t ) ,u ( t ) ) d t =
I
Then v
[s,l].
E
and v ' ( t ) = 0 f o r s
(0,s)
-
and d e f i n e v ( t ) =
1:
Dt%( t ;v ( t ) ,v ( t ) )
+ R'(t;v(t),v(t))}dt
{ZRem(t;u(t),u(t))
- R ' ( t ;v ( t ) ,v ( t ) ) 1dt ,
+ Q(o;v(o),v(o))
0.
=
'0
L ~
As b e f o r e , we may assume %(t;x,x) D e f i n e W(t) = for t
E
cllW(s)
(0,s)
11'
1:
u(.r)d-r; t h e n W(s) = - v ( o )
1 1 x ~ E ~V ( t )~ , t~ E . T. and W(t) - W(s) = v ( t )
and we o b t a i n t h e e s t i m a t e
5 %(o;W(s),W(s))
,f M ( t ) { l l w ( t ) l 1 2
+
:j
ZRem(t;u(t),u(t))dt
S
5 2
+
I/W(s)/121dt.
0
Choose s
0
> 0 so t h a t 2
have IIW(s) 11'
-
5 (2/(c
1
S
2
M ( t ) d t < c.
0rS
Then f o r s 8 [o,so]
O M ( t ) d t ) > j S 1 4 ( t ) l l W ( t ) 1I2dt.
t h e Gronwall i n e q u a l i t y we conclude t h a t W(s) = 0 f o r s hence u ( s ) = 0 f o r s
E
[o.so].
From
0
JO
Since
E
[oyso].
M(*) i s i n t e g r a b l e on T we
c o u l d use t h e a b s o l u t e c o n t i n u i t y o f t h e i n t e g r a l
193
we
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
I
T+ So
choose so > 0 i n t h e above so t h a t T 2
0 with
T
M ( t ) d t < c/2 f o r every
T
+ so 5 1.
Then we a p p l y t h e above argument a f i n i t e
T.
number o f times t o o b t a i n u ( - ) = 0 on
QED
A fundamental problem w i t h degenerate e v o l u t i o n equations i s t o determine t h e p r e c i s e sense i n which t h e i n i t i a l c o n d i t i o n i s
A c o n s i d e r a t i o n o f t h e two cases o f m(t,x,y)
attained.
Lzt
=0
and m(t;x,y) of
:( X , Y ) ~
shows (see below) t h a t we may have t h e case
u(t) = u
0
i n an a p p r o p r i a t e space or, r e s p e c t i v e l y , t h a t These remarks
lim+ u ( t ) does n o t n e c e s s a r i l y e x i s t i n any sense. t-4 i l l u s t r a t e t h e importance o f t h e f o l l o w i n g . Theorem 5.6
L e t u ( * ) be a s o l u t i o n o f t h e Cauchy problem
and assume t h e subspaces { V ( t ) t h e r e i s a to E (0,1] Then f o r e v e r y
T E
: t
T I a r e i n i t i a l l y decreasing:
E
such t h a t (5.9)
(o,to)
and v
holds f o r
V(T) we have t
E
t,T +
E
[o,to].
m(t;u(t),v)
1 i s i n H ( 0 , ~ )(hence i s a b s o l u t e l y continuous w i t h d i s t r i b u t i o n ) m(o;u(o) d e r i v a t i v e i n L2 ( 0 , ~ ) and
:
(){V(T)
T
Proof: t
E
CT,~].
-
uo,v)
> 0) i s dense i n W, then m(o;u(o)
Define v ( t ) = Then v ( * )
E
for t
2 L (T,V(t))f)
E
= 0.
-
R(*;u(-),v)
t
Dtm(*;u(*),v)
194
uo,u(o)
-
uo) = 0.
(o,T) and v ( t ) = 0 f o r
H1(T,W)
and v ( 1 ) = 0, so
That i s , we have t h e i d e n t i t y (5.10)
Thus, i f
=
3.
DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
i n t h e space o f d i s t r i b u t i o n s on ( 0 , ~ f)o r e v e r y v
f i r s t and l a s t terms o f (5.10)
E
V(T).
The
2
) so, then, i s a r e i n L ( 0 , ~ and
t h e second and we t h u s have p o i n t w i s e v a l u e s a.e.
i n (5.10)
and
hence t h e e q u a t i o n
=
for g
E
j l < f ( t ) ,v>g( t ) d t
L2 ( 0 , ~ ) and v
E
V(r).
1 Suppose now t h a t $ E H ( 0 , ~ i)s g i v e n w i t h v ( * ) as above so as t o o b t a i n f r o m (5.3) /)(t;u(t),v)$'(t)dt v E V(T).
=
S i n c e (5.11)
these r { D t m ( t ; u ( t )
:1
:1
$(T)
0.
=
Define
-
R(t;u(t),v)$(t)dt
< f ( t ) , v > $ ( t ) d t t m(o;uo,v)$(o)
where
h o l d s w i t h g ( t ) = $ ( t ) , we o b t a i n from
,v)$(t)
t m(t;u(t),v)$'(t)Idt
= -m(o;uo,v)$(o).
0
The i n t e g r a n d i s t h e d e r i v a t i v e o f t h e f u n c t i o n t m(t;u(t),v)$(t)
-+
1 i n H ( 0 , ~ and ) $(r) = 0, so t h e d e s i r e d r e s u l t
QED
f o l l ows.
Another s i t u a t i o n which a r i s e s f r e q u e n t l y i n a p p l i c a t i o n s and t o which t h e above t e c h n i q u e i s a p p l i c a b l e i s t h e f o l l o w i n g . Theorem 5.7
L e t u ( * ) be a s o l u t i o n o f t h e Cauchy problem
and assume t h e r e i s a c l o s e d subspace Vo i n V w i t h V o C f ) { V ( t ) t
E
TI.
L(V,Vi)
Vo,
t
D e f i n e t h e two f a m i l i e s o f l i n e a r o p e r a t o r s { L ( t ) ) C and { M ( t ) I C L ( W , V i )
E
:
by
T; <M(t)x,y> = m(t;x,y),
x
195
E
W, y
= R(t;x,y), E
Vo,
t
E
x T.
E
V, y
E
Then i n
SINGULAR AND DEGENERATE CAUCHY PROBLEMS I
t h e space of Vo-valued d i s t r i b u t i o n s on T we have (5.1) function t
-f
M(t)u(t) : T
and t h e
I
-t
Vo i s continuous.
The p r o o f o f Theorem 5.7 f o l l o w s from (5.10) t h e remark t h a t each term i n (5.1),
with v
as w e l l as l . I ( - ) u ( - ) ,
E
Vo and
is in
Our l a s t r e s u l t concerns v a r i a t i o n a l boundary c o n d i t i o n s . Suppose we have t h e s i t u a t i o n of Theorem 5.7 and a l s o t h a t (5.9)
L e t H be a H i l b e r t space i n which
holds.
imbedded and Vo i s dense.
We i d e n t i f y H
E
H, v
Then from (5.11) rT
E
Vo.
and (5.1)
Dtm(t;u(t) , v ) $ ( t ) d t =
JO
each @
E
w i t h H by t h e Riesz
H 4 Vo and t h e i d e n t i t y
:1
R(t;u(t),v)@(t)dt +
( L ( t ) u ( t ) + Dt(M(t)u(t)) ,V)H$(t)dt for
This g i v e s us t h e f o l l o w i n g .
C;(O,T).
Theorem 5.8 (5.9)
Assume t h e s i t u a t i o n o f Theorem 5,7 and t h a t
holds.
L e t H be g i v e n as above and f E 2 each T > 0 and v E V(T) we have i n L ( 0 , ~ ) (5.12)
V i s continuously
I
theorem and hence o b t a i n V o + (h,v)H f o r h
I
R(t;u(t),v)
L 2 (T,H).
Then f o r
+ Dtm(t;u(t),v)
We b r i e f l y i n d i c a t e how t h e preceding theorems can g i v e c o r responding r e s u l t s f o r second o r d e r e v o l u t i o n equations which a r e "parabol i c " .
These r e s u l t s are t i m e dependent analogues o f Theo-
rem 4.4.
196
3. DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
L e t Va and Vc be separable complex H i l b e r t
Theorem 5.9
spaces w i t h Va dense and c o n t i n u o u s l y imbedded i n Vc. {a(t;=,-)
:t
E
TI, {b(t;-,-)
: t
E
{ A ( t ) l and {B(t)IcL(Va,V:)
and { C ( t ) > CL(Vc.Vi)
5.7.
: t
Assume t h a t { a ( t ; * , - )
t 0 for x
E
I
Xa(t;x,x)
+
(5.14)
2Reb(t;x,x)
f(-),g(.)
E
TI
V a y and V c y
E
as i n Theorem
T I and ( c ( t ; * , * )
a (t;x,x)
T I are
E
Assume t h a t f o r some X and c > 0
Va.
2
2 cllxllvay
+ Xc(t;x,x)
Va and a.e. 2 l L (T,Va)
: t
2 0 and
r e g u l a r f a m i l i e s o f H e r m i t i a n forms w i t h a(o;x,x)
E
E
Define corresponding fami J i e s o f 1 i n e a r operators
respectively.
f o r each x
:t
T I and { c ( t ; * , - )
be f a m i l i e s of continuous s e s q u i l i n e a r forms on Va,
c(o;x,x)
Let
t
T.
E
I
t
+ c (t;x,x) Then f o r uo
E
cIIxII 2 , 'a
Va,
vo
E
V c y and
given, t h e r e e x i s t s a p a i r u ( * ) , v ( * )
E
2
L (T,Va) which s a t i s f i e s t h e system
I
i n t h e sense o f Va-valued d i s t r i b u t i o n s on T and s a t i s f i e s t h e i n i t i a l c o n d i t i o n s A(o)u(o) = A(o)uo, C(o)v(o) = C(o)vo. Proof:
T h i s f o l l o w s d i r e c t l y from Theorem 5.2 and Theorem
5.7 w i t h m(t;X,?) and !L(t;Y,a
v
V(t)
f
a(t;xl
= a(t;x,,y2)
v0
5
va
x
,yl)
-
+ c(t;x2,y2)
a(t;x2,yl)
va.
for
X,y E
+ b(t;x2,y2)
W E Va x Vc
for
~,TE QED
197
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
There are two n a t u r a l r e d u c t i o n s o f t h e f i r s t o r d e r system (5.15)
t o a second o r d e r equation, and we s h a l l d e s c r i b e these.
F i r s t , we s e t g(
0 )
=
0 i n Theorem, 5.9 and n o t e than t h a t b o t h
C ( - ) v ( * ) and D t ( C ( * ) v ( * ) ) + B(*)v (.)
1
'
belong t o H (T,Va).
Thus
v ( = ) i s a s o l u t i o n o f t h e second o r d e r e q u a t i o n
and t h e i n i t i a l c o n d i t i o n s (Cv)(o) = C(o)vo, (Dt(Cv) + B v ) ( o ) = -A(o)uo.
Second, we s e t f ( - )
A(t)
i s independent of t, i.e., and Hermit ian A 1 H (T,Va) (5.17)
I
E
=0
L(Va,Va).
5
i n Theorem 5.9 and assume A ( t )
A f o r some n e c e s s a r i l y c o e r c i v e
From (5.15)
i t follows that u(-)
E
and i s a s o l u t i o n o f t h e second o r d e r e q u a t i o n Dt(C(t)u'(t))
+ B(t)ul(t)
t Au(t) = g ( t ) I
and t h e i n i t i a l c o n d i t i o n s u ( o ) = uo, ( C ( * ) u ) ( o ) = C(o)vo. We s h a l l pre s e n t some elementary a p p l i c a t i o n s o f t h e precedi n g r e s u l t s t o boundary value problems f o r p a r t i a l d i f f e r e n t i a l equations i n t he form (5.2).
These examples w i l l i l l u s t r a t e
some l i m i t a t i o n s on th e types o f problems t o which t h e theorems apply. Example 5.10 For o u r f i r s t example we choose Vo = V ( t ) = 1 1 V = Ho(T), W = { @ E H (T) : @ (1 ) = 03 and H = L2(T). Recall t h e est imat e
198
3. DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
Let a : T
T be a b s o l u t e l y c o n t i n u o u s and d e f i n e t h e H e r m i t i a n
+.
forms m(t;@,$)
= ~ ~ ( t ) @ ( x ) ~ @,$ d x Ey
W,
t
E
T.
Then m(*;@,$)
I
i s a b s o l u t e l y c o n t i n u o u s and s a t i s f i e s m (t;@,$) = ' 1 I @ ( a ( t ) ) 1 2 a ' ( t ) , @ E W, a.e. t E T. S i n c e a E L (T), t h e e s t i m a t e (5.18) F o r @,$
shows t h a t t h i s i s a r e g u l a r f a m i l y o f forms. 1 1 V, we s e t !L(t;@,$) = @ ( x ) $ ' ( x ) d x , t E T, From t h e
E
1
0
we1 1 -known i n e q u a l i t y
w i t h A = 0.
i t f o l l o w s t h a t t h e p r e c e d i n g f a m i l y s a t i s f i e s (5.7)
W and F
F i n a l l y , l e t uo
E
F(-,t),
Then t h e hypotheses o f Theorem 5.5
t
T.
E
ness) a r e s a t i s f i e d .
E
L 2 ( T x T) be g i v e n and s e t f ( t ) = (on unique-
Suppose a d d i t i o n a l l y t h e r e i s a number a,
0 < a < 2, such t h a t I
(5.20)
(t) 2 a
-
2,
a.e. I
Then (5.18) @
E
i t f o l l o w s t h a t (5.5)
hence, t h e hypotheses o f Theorem 5.2 Let u(*,t)
T.
I 2 1) 2 , L (TI h o l d s w i t h A = 0,
(on e x i s t e n c e ) a r e s a t i s f i e d .
= u ( t ) be t h e s o l u t i o n o f t h e Cauchy problem.
i s t h e unique g e n e r a l i z e d s o l u t i o n o f t h e e l l i p t i c -
p a r a b o l i c boundary v a l u e problem, ut a ( t ) ; -uXx = F ( x , t ) , u(x,o)
E
2 (2-0)11@ shows t h a t 2!L(t;@,@) + m (t;@,@)
V, so by (5.19)
Then u ( x , t )
t
E
T, so u ( * , t )
0 < x <
uxx = F ( x , t ) ,
a ( t ) < x < 1; u(O,t)
= uo(x), 0 < x < a ( o ) .
ti2(T) f o r each t
-
= u(l,t),
t
E
T;
The s o l u t i o n u ( t ) belongs t o and u x ( - , t )
199
a r e continuous
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
across t h e c u r v e x = a ( t ) , t Remark 5.11
E
T. p e r m i t s a ( - ) t o decrease,
The e s t i m a t e (5.20)
h o l d s i f and
b u t n o t v e r y r a p i d l y , whereas t h e e s t i m a t e (5.6) I
o n l y i f a ( t ) t 0 a.e.
on T.
The c u r v e x = a ( t ) i s noncharac-
on T; t h e example a ( t ) = 1/2 + [ ( t
t e r i s t i c a.e.
-
1 / 2 ) / 4 ] 1/ 3
shows i t may a c t u a l l y be c h a r a c t e r i s t i c a t c e r t a i n p o i n t s . Remark 5.12
The c o n c l u s i o n s o f Lemma 5.1
i s a b s o l u t e l y c o n t i n u o u s f o r each p a i r x,y
o n l y t h a t a(*;x,y) V.
h o l d ifwe assume
Hence we need n o t assume an e s t i m a t e l i k e (5.4)
{m(t;.,-)>
i n o r d e r t o o b t a i n Theorem 5.2.
a s s e r t i o n as f o l l o w s :
E
on t h e f a m i l y
One can p r o v e t h i s
( 1 ) use t h e c l o s e d graph and u n i f o r m
boundedness theorems t o o b t a i n an e s t i m a t e
'0
( 2 ) approximate u
I
2 i n L (T,V)
Lebesgue theorem w i t h (5.21) case o f c o n s t a n t v
E
by s i m p l e f u n c t i o n s and use t h e t o obtain the r e s u l t f o r the special
V; approximate v
I
by s t e p f u n c t i o n s and use
t h e r e s u l t s o f ( 1 ) and ( 2 ) t o o b t a i n t h e g e n e r a l r e s u l t .
The de-
t a i l s a r e s t a n d a r d b u t i n v o l v e some l e n g t h y computations. Example 5.13
Our second example i s s i m i l a r b u t a l l o w s t h e
e q u a t i o n t o be o f Sobolev t y p e i n p o r t i o n s o f T
x
T.
Choose t h e
spaces and t h e forms a(t;-,*)
E
W, d e f i n e
m(t;Qy+3)
E
T, where
as b e f o r e . F o r Q,$ I r@(t) I = r ( t ) Q ( x ) m d x + Jo 4 (x)+ (x)dx, t 0
200
ci
3.
DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
and B map T i n t o i t s e l f , b o t h a r e a b s o l u t e l y continuous, and B i s nondecreasing.
For $I,$
W , m(-;$I,$)
E
uous s o Remark 5.12 a p p l i e s here. sup{l$I(s)12 : 0 5 s 5 B ( t ) )
i s absolutely contin-
Using t h e e s t i m a t e
2 ~ ~ ( t ) l $ I ' ( x ) 1 2 d x ,$I E V,
show t h a t t h e e s t i m a t e (5.5)
holds i f a
I
one can
has an e s s e n t i a l lower
( 0 )
bound ( p o s s i b l y n e g a t i v e ) and i f t h e r e i s a numberu, 0 < u < 2, I
-
such t h a t a ( t ) 2 u W and F
2 where a ( t ) > B ( t ) .
Thus, f o r each uo
E
L2(T x T) i t f o l l o w s from Theorems 5.2 and 5.5 t h a t
E
t h e r e e x i s t s a unique g e n e r a l i z e d s o l u t i o n o f t h e e l l i p t i c parabolic-Sobolev boundary value problem, ut 0 < x < a ( t ) , x < B(t);
-
-Uxxt
= 0, t E T;
= u(1,t)
B(o)).
uxxt
-
uxx = F,
uxx = F, a ( t ) < x < B ( t ) ;
uXx = F, B ( t ) < x < a ( t ) ; -uXx = F, a ( t ) < u(0,t)
-
u(x,O)
X,
-
B ( t ) < x < 1;
= uo(x). 0 < x < max{a(o),
a ( t ) E 0) show t h a t i f B i s p e r m i t t e d
Examples (e.g.,
t o decrease, then a s o l u t i o n e x i s t s o n l y i f t h e i n i t i a l data uo s a t i s f i e s a c o m p a t i b i l i t y condition.
T h i s i s t o be expected
s i n c e t h e l i n e s "x=constant" a r e c h a r a c t e r i s t i c f o r t h e t h i r d o r d e r Sobolev equation. Example 5.14
We s h a l l seek c o n d i t i o n s on t h e f u n c t i o n
m(x,t) which a r e s u f f i c i e n t t o apply o u r a b s t r a c t r e s u l t s above t o t h e boundary v a l u e problem a/at(m(x,t)u(x,t)) (x,t) a.e.
E
x
E
T
x
T.
T; u(O,t)
uxx = F(x,t),
= 0; ~ ( x , o ) ( u ( x , o ) - u ~ ( x ) ) = 0,
1 We choose t h e spaces Vo = V ( t ) = V = Ho(T) and t h e
forms k ( t ; = , - ) valued m ( - , * )
= u(1,t)
-
2 as above and l e t H = W = L (T). E
Lm(T x
Assume t h e r e a l
T) i s such t h a t m ( x , - ) i s a b s o l u t e l y 201
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
continuous f o r a.e. t
E
T, where
M(-)
x
E
1 L (T).
E
H e r m i t i a n forms m(t;$,$) gular.
L e t uo
E
H, F
Then i t f o l l o w s t h a t t h e f a m i l y o f
1:
: m(x,t)$(x)mdx,
E
5 M ( t ) f o r a.e.
T and s a t i s f i e s Imt(x,t)I
2 L (T
x
$,$
E
W, i s re-
T), and s e t f ( t ) = F ( * , t ) .
Theorems 5.6 and 5.7 show t h a t t h e boundary value problem above i s t h e r e a l i z a t i o n o f our a b s t r a c t Cauchy problem. I n o r d e r t o o b t a i n uniqueness o f a g e n e r a l i z e d s o l u t i o n from Theorem 5.5, n o t e t h a t t h e forms !L(t;*,*)
are c o e r c i v e over V,
so Theorem 5.5 i s a p p l i c a b l e i f and o n l y i f a d d i t i o n a l l y we ass ume
(5.22)
m(x,t)
L
0
x,t
E
T,
2 0 for a l l
since t h i s i s equivalent t o m(t;=,-)
$
E
W, t
E
T.
To o b t a i n e x i s t e n c e from Theorem 5.2 i t s u f f i c e s t o assume m(x,o)
a.e.
2 0,
x
E
T, and
T
x
T I > -2~r
(5.23) ess i n f { m t ( x , t )
: (x,t)
E
f o r then we o b t a i n t h e e s t i m a t e m'(t;4,$)
41
E
V, f o r some number
0,
2
0 < a < ZIT
2
.
t a i n (5.5) w i t h X = 0 and c = a / 2 ~
.
2
2
(a
-
,
2~r')Il 0
Then from (5.19)
I$l 2, we ob-
Thus, (5.22) g i v e s unique-
ness and (5.23) i m p l i e s e x i s t e n c e o f a g e n e r a l i z e d s o l u t i o n o f t h e problem. C l e a r l y n e i t h e r o f t h e c o n d i t i o n s (5.22), (5.23) i m p l i e s t h e other.
I n p a r t i c u l a r (5.23) p e r m i t s m(x,t)
202
t o be negative;
3.
DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
then t h e e q u a t i o n i s backward p a r a b o l i c .
This i s t h e case f o r
t h e equation ~ ( ~ ‘ / 4 ) ( 1 - 2 t ) ~ u ( x , t ) )= uxx
(5.24)
= - ( 3 2~/2)(1-2t)‘;
f o r which mt(x,t)
and e x i s t e n c e f o l l o w s . 1/2,
0 i t terval.
But m(=,.)
hence, (5.23)
i s satisfied
i s nonnegative o n l y when
so uniqueness i s claimed o n l y on t h i s s m a l l e r i n -
To see t h a t uniqueness does n o t h o l d beyond t = 1/2, = ( ~ 2 t ) e - ~~ p { l - ( 1 - 2 t ) - ~ s} i n ( T X ) i s a solu-
n o t e t h a t u(x,t) t i o n o f (5.24);
a second s o l u t i o n i s o b t a i n e d by changing t h e t o zero f o r a l l t > 1/2.
values o f u ( x , t )
The l e a d i n g c o e f f i c i e n t i n t h e e q u a t i o n (5.25)
$$(T
2/ N ) ( 1 - t 2 ) ’ / 2 u ( x , t ) )
s a t i s f i e s (5.22),
= uxx
( N > 0) 2 > -27~
hence uniqueness f o l l o w s , b u t mt(x,t)
o n l y on t h e i n t e r v a l [0, 1-(4N)-‘).
Hence, t h e e x i s t e n c e o f a
s o l u t i o n f o l l o w s on t h e i n t e r v a l [O, 1-(4N)-2-u]
f o r any u > 0;
choosing N l a r g e makes t h e i n t e r v a l o f e x i s t e n c e as c l o s e as However t h e f u n c t i o n u(x,t)
d e s i r e d t o [O,l]. exp(2N(1-t)’/2)
sin
w i t h uo(x) = s i n
(TX)
(TX)
-1/2
= (l-t)
i s t h e unique s o l u t i o n o f t h e problem
on any i n t e r v a l [0, 1-u], u > 0, and t h i s
f u n c t i o n does n o t belong t o L
2
(T x T).
Hence, t h e r e i s no s o l u -
t i o n on t h e e n t i r e i n t e r v a l . Example 5.15
L e t G be a smooth bounded domain i n Rn and
r ( x ) be a smooth p o s i t i v e f u n c t i o n on G such t h a t f o r those x 20 3
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
near the boundary a G , r ( x ) equals t h e distance from x t o aG. Parabolic equations of the form
t u t + r(x)L(t)u
(5.26)
=
F(x,t),
X E G ,
t E T
a r i s e i n mathematical genetics ( c f . Kimura and Ohta [ l ] , Levikson They a r e t y p i c a l l y degenerate i n t ( a t t
and Schuss [ l ] ) .
and degenerate i n x ( a t x e l l i p t i c operator.
E
=
0)
3G); L ( t ) i s a strongly uniformly
W e i n d i c a t e how such problems can be inSuppose we a r e given r e a l -
cluded i n the preceding theorems.
valued absolutely continuous R. . ( t ) ( l < i, j S n ) and R . ( t ) ( O < j i n ) 1J J n 2 2 with R o ( t ) 2 0 and 1 Rij(t)ziyj 2 c ( l z l I + + I Z n / 1, i ,j=l c > 0, z E qn. Take Vo = V = H 1o ( G ) and define a regular family
...
of coercive forms by R ( t ; @ , $ )
n
1 R.(t)Dj$ J
$)dx, @,I) E V.
j=o
n
1 R i j ( t ) D i @ D . $J + G i ,j=1 The corresponding e l l i p t i c operators =
{
a r e given by
-
L(t) =
(5.27)
n
1
Rij(t)DjDi i ,j=l
+
n
1 R.(t)D j'
j=o
J
t
Let m(x,t) be given a s i n Example 5.14, set W = H 1o ( G ) , m(t;@,$)
=
1
G
ity (5.28)
( m ( x , t ) / r ( x ) 2 ) @ ( x ) m d x , $,$
II@/rll 2 5 C l l @ l l W ,
W.
T.
and define
From the inequal-
$
L
i t follows t h a t m ( t ; * , * )
E
E
E
W,
i s a regular family of Hermitian forms
T ) and define f ( t ) = F ( m , t ) / r ( * ) f o r t E T. From (5.28) i t follows t h a t f E L 2 (T,V ' ). Finally, assume uo E
on W.
Let F
E
L2(G
x
204
3.
DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
From Theorems 5.6 and 5.7 we see t h a t o u r a b s t r a c t
Hi(G).
Cauchy problem i s e q u i v a l e n t t o t h e i n i t i a l - b o u n d a r y v a l u e prob1em La t( w rl (x x , t ) )
+ r(x)L(t)u(x,t)
m(x,o)(u(x,o)-uo(x))
= F(x,t),
0,
=
x
E
G,t
s
E
aG,
x
E
G.
E
T
(The f i r s t e q u a t i o n has been m u l t i p l i e d by r ( x ) and t h e l a s t by r(x)'
E x i s t e n c e and uniqueness f o l l o w f r o m t h e a d d i t i o n a l
> 0.)
2 0, mt(x,t)
assumptions m(x,t)
2 0, a.e.
x
E
G, t
E
T.
These
a r e n o t b e s t p o s s i b l e f o r e x i s t e n c e ; t h e y can be weakened as i n Example 5.14. Remark 5.16
The e q u a t i o n (5.29)
permits t h e leading operat-
o r t o be s i n g u l a r and t h e second t o be degenerate i n t h e s p a t i a l variable,
w h i l e t h e l e a d i n g o p e r a t o r may be degenerate i n time.
Remark 5.17
A m i n o r t e c h n i c a l d i f f i c u l t y a r i s e s from t h e i s g i v e n w i t h t h e t i m e d e r i v a t i v e on u, n o t
f o r m i n which (5.26) on ( t u ) .
We f i r s t n o t e t h a t t u t = ( t u ) ,
r e s u l t i n g second o p e r a t o r L ( t )
-
C~TU
T
=
"(TU),
-
u b u t see t h a t t h e
u / r m i g h t n o t be coercive.
However, i n t h e change of v a r i a b l e given by tut =
-
T =
t" t h e l e a d i n g t e r m i s
a u and t h e second o p e r a t o r r e s u l t -
i n g as above i s g i v e n by L ( T ~ / " ) - au/r. t h a t t h i s l a s t operator i s coercive f o r
205
From (5.28) CI
i t follows
> 0 s u f f i c i e n t l y small.
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Remark 5.18 Showalter [2].
Theorems 5.2,
5.6,
5.7 and 5.8 a r e from
Theorem 5.9 which c o n t a i n s (5.16)
See Showalter [Z]
new.
5.5,
and (5.17)
is
f o r examples i n h i g h e r dimension w i t h
e l l i p t i c - p a r a b o l i c i n t e r f a c e o r boundary c o n d i t i o n s and o t h e r c o n s t r a i n t s on t h e t i m e - d i f f e r e n t i a l along a submanifold o r p o r t i o n o f t h e boundary.
For a d d i t i o n a l m a t e r i a l on s p e c i f i c par-
t i a l d i f f e r e n t i a l equations o r e v o l u t i o n equations o f t h e t y p e considered i n t h i s s e c t i o n we r e f e r t o Baiocchi [l], Browder [4], Cannon-Hi 11 [Z],
F i chera [2]
, Ford [l] , Ford-Wai d
[2]
, Friedman-
Schuss [l],Gagneux [l],Glusko-Krein [l],Kohn-Nirenberg [l], L i o n s [5, 91, O l e i n i k [2],
Schuss [l],V i c i k [110 A l s o see
references g i v e n i n preceding s e c t i o n s f o r r e l a t e d l i n e a r problems and i n t h e f o l l o w i n g s e c t i o n s f o r n o n l i n e a r problems. 3.6
S e m i l i n e a r degenerate equations.
We s h a l l present some
methods f o r o b t a i n i n g existence-uniqueness r e s u l t s f o r t h e a b s t r a c t Cauchy problem f o r t h e equation
where M i s continuous, s e l f - a d j o i n t and monotone.
The m s t we
s h a l l assume on t h e n o n l i n e a r N i s t h a t i t i s monotone, hemicontinuous, bounded and coercive.
S p e c i f i c a l l y ; 1 e t . V be a r e f l e x -
i v e r e a l Banach space w i t h dual V
V to V (6.2)
I
.
I
and l e t N be a f u n c t i o n from
Then N i s s a i d t o be monotone i f
206
u,v
E
v,
3. DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
hemicontinuous i f f o r each t r i p l e u,v,w
E
V the function s
-+
R t o R , bounded i f t h e image o f
each bounded s e t i n V i s a bounded s e t i n V - , and c o e r c i v e i f f o r each v
E
V l i m (
(6.3)
=
II u ll-
.
+a0
L e t H be a H i l b e r t space i n which V i s dense and continuously I d e n t i f y H and i t s dual and thereby o b t a i n t h e i n c l u -
imbedded.
sions V C H C V
I
.
We suppose
M i s a continuous, s e l f - a d j o i n t and
monotone o p e r a t o r o f H i n t o H; thus t h e square r o o t M112 o f M i s defined.
H = L2 (o,T;H),
LP(o,T;V), u
E
D(Lo) = { u
closure o f L
0
u
E
,> 2, l / p + l / q
Let p
V
V : du/dt
E
in V
x
D(L) then M1/2u
V'.
=
00,
and d e f i n e V =
2 = L (o,T;VI).
E
H I and denote by L : D(L)
L e t Lou = dMu/dt f o r E
V
I
the
A standard computation shows t h a t i f
C(o,T;H),
E
1, 0 < T <
'
t h e space o f continuous H-valued
f u n c t i o n s on [o,T]. Lemma 6.1
For u
E
V and f
E
V
, the
f o l l o w i n g are equiva-
lent: (a)
for all v
D(L), M1/2u(o) = 0, and L u = f,
u
E
E
V w i t h dv/dt
Proof:
E
H and v(T)
= 0.
C l e a r l y (a) i m p l i e s ( b ) :
t h a t t h e i d e n t i t y i n ( b ) holds f o r u
207
we need o n l y observe E
D(Lo), than pass t o t h e
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
general case o f u
D(L) by c o n t i n u i t y .
E
rt
Conversely, i f ( b ) i s
t r u e then we d e f i n e u n ( t ) = n e n ( s - t ) u ( s)ds, f n ( t ) = t JO n j en(s-t)f(s)ds. Then un E D(L0), Loun = fn, and we have 0
(un,fn)
(u,f)
-+
in
v
x
v
I
.
QED
The b a s i c i d e a here i s t o c o n s i d e r t h e l i n e a r o p e r a t o r A :
D(A)
-+
V ’ d e f i n e d by
AU =
Lu and D ( A ) = { u
D(L) : M1I2u(o) = 01.
E
That i s , A = ( d / d t ) M w i t h zero i n i t i a l c o n d i t i o n . closed, densely-defined and l i n e a r .
Lemna 6.1 shows A i s t h e
a d j o i n t of t h e o p e r a t o r -Md/dt w i t h domain {v
A
, be
tone.
E
V : dv/dt
E
H,
That i s , A i s t h e a d j o i n t o f a monotone o p e r a t o r , so
v(T) = 0).
*
Clearly A i s
ng t h e c l o s u r e o f a monotone operator, i s n e c e s s a r i l y monoSince t h e above i m p l i e s t h a t A i s maximal monotone by a of B r e z i s [I]we o b t a i n t h e f o l l o w i n g from Browder [l]:
theore
for N : V
I
V
-+
monotone, hemicontinuous, bounded and coercive,
the operator A + N i s surjective.
The preceding remarks g i v e t h e
following result. L e t t h e spaces V c ti C V
Theorem 6.2 and monotone M
E
-+
LP(o,T;V)
-1
for a l l v E
E
0
self-adjoint
Lq(0,T;V1)
there
and v(T) = 0.
Also
E
such t h a t
/
T rT
Lp(oYT;V) w i t h d v / d t
C(o,T;H)
For each f
V 1 be given.
rT <Mdv/dt,u> +
(6.4)
M112u
E
, the
L ( H ) and t h e monotone, hemicontinuous, bounded
and c o e r c i v e 14 : V exists a u
I
E
and M1l2u(o) = 0.
208
2 L (o,T;ti)
The s o l u t i o n i s unique i f N
3.
DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
i s s t r i c t l y monotone, i.e., Remark 6.3
i f
> 0, x,y
The c o n d i t i o n expressed by (6.4)
E
V, x
+ y.
i s equivalent
t o t h e Cauchy problem
(6.5)
$u(t)
+ N(u(t))
(M’j2u)
(0) = 0
= f(t)
i n which t h e e q u a t i o n s h o l d i n Lq(0,T;V’)
Remark 6.4 i n i t i a l data u
0
and i n H, r e s p e c t i v e l y .
The e x t e n s i o n o f Theorem 6.2 t o t h e case o f E
H ( n o t n e c e s s a r i l y homogeneous) i s g i v e n i n
B r e z i s [l]. Then a t e r m ( M ’ / 2 ~ o , M 1 / 2 ~ ( ~ ) ) Hi s added t o (6.4) and t h e i n i t i a l c o n d i t i o n i n (6.5)
becomes M’12u(o)
=
M 1/2
uo.
A l s o , t h e i n i t i a l c o n d i t i o n i n Theorem 6.2
can be r e p l a c e d by
t h e p e r i o d i c c o n d i t i o n M1/2u(o) = M1/’u(T)
by an obvious modi-
f i c a t i o n o f t h e o p e r a t o r A. We c o n s i d e r b r i e f l y t h e Cauchy problem t h a t a r i s e s when t h e s o l u t i o n i s c o n s t r a i n e d t o a s p e c i f i e d convex set. t o a variational inequality.
This leads
F o r such problems, t h e “ n a t u r a l ”
hypotheses on t h e n o n l i n e a r o p e r a t o r N : V
+
V
I
i s t h a t i t be
i f l i m u = u i n V weakly and l i m sup
pseudomonotone:
(6.6)
5 l i m i n f
The pseudomonotone o p e r a t o r s i n c l u d e t h e semi-
monotone o p e r a t o r s of Browder [6],
209
the operators o f calculus-
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
o f - v a r i a t i o n s i n t r o d u c e d by Leray and L i o n s [l],and t h e demimonotone o p e r a t o r s o f B r e z i s [4].
The pseudomonotone o p e r a t o r s
a r e p r e c i s e l y t h o s e which a r e most n a t u r a l f o r e l l i p t i c v a r i a tional inequalities. To i n d i c a t e t h e r e l a t i o n s h i p between Theorem 6.2
and r e s u l t s
t o f o l l o w , we s h a l l p r o v e t h a t e v e r y hemicontinuous and monotone operator N : V
V
I
So, suppose t h e n e t I u . 1 J i n V s a t i s f i e s l i m u . = u ( w e a k l y ) and l i m sup
i s pseudomonotone.
t o n i c i t y < N ( u . ) - N(w),u.-w> 2 0 and t h i s shows t
A v a r i a t i o n a l i n e q u a l i t y problem c o r r e s p o n d i n g t o (6.5) find u
a g i v e n convex subset K o f V i s t h e f o l l o w i n g :
E
and
K with
M1/*u(o) = 0 f o r which
MU)
(6.7)
+ N(u)
-
f,v-u>dt
for all v
E
K.
A technical d i f f i c u l t y w i t h t h i s formulation i s
t h a t t h e f u n c t i o n a l e q u a t i o n (6.7) E
V
I
2 0
0
might n o t imply t h a t (d/dt)Mu
, so we s h a l l weaken t h e problem a p p r o p r i a t e l y .
s o l u t i o n o f (6.7)
and i f v
E
K w i t h (d/dt)Mv
21 0
E
V
I
If u i s a
t h e n we o b t a i n
3.
DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
IT d
I’
IT d < d M V ) + N U - f ,V-U>dt = <-( MU)+Nu-f ,v-U>dt + dt :t Jo dt 0 2 (l/E)<M(v-u),v-u>l;. The l a s t term i s nonnegative i f we r e -
1,
q u i r e Mv(o) = Mu(o) = 0.
Under hypotheses t o be given below, we
s h a l l c o n s i d e r t h e (weak) v a r i a t i o n a l i n e q u a l i t y (6.8)
u
K,
E
I
T <&(Mv)+Nu-f,v-u>dt
2 0
0
v
for all
K such t h a t (d/dt)Mv E V
E
L e t t h e spaces V C H
C
V
I
and V
I
and Mv(o) = 0.
C
ff C V
I
be given as above.
L e t K ( t ) be a c l o s e d convex subset o f V f o r each t sume 0 {v
E
K ( t ) and K(s) c K ( t ) f o r 0 <, s
V : v(t)
E
E
<- t <, T.
E
[o,T];
as-
Define K =
K ( t ) a.e.l.
The semigroup o f r i g h t s h i f t s g i v e n by O
s
u
s < t 2 T
u(t-S),
i s s t r o n g l y continuous on each o f V , U and V
, it
I
E V
i s a contrac-
t i o n semigroup on 14, and i t s a t i s f i e s (6.10)
G(s)KC K
by t h e assumption t h a t t h e convex s e t s a r e increasing. -L t h e generator o f (G(s) : s 2 D(L,V)
( r e s p e c t i v e l y , D(L,ff),
Denote by
I
01 on V ( H , V ) and i t s domain by
D(L,V’)).
Thus, we have L = d / d t
w i t h n u l l i n i t i a l c o n d i t i o n i n each o f V , H, and
V I .
From (6.10)
and t h e r e p r e s e n t a t i o n f o r t h e r e s o l v e n t o f -L by t h e formula cw
(I+eL)-’
E-’exp(-t/E)
=
G ( t ) d t we o b t a i n
0
21 1
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
(I t EL)-~KcK,
(6.11) Suppose M
E
I
M
L(V,V
> 0,
E
E I
L(V,V ) i s nonnegative and s e l f - a d j o i n t and d e f i n e
) by [Mv](t)
defined by A = L
o
= Mv(t).
Then we consider t h e o p e r a t o r
M, D(A) = { v
E
v
: Mv
I
D(L,V )>.
E
The p l a n
i s t o a p p l y C o r o l l a r y 39 o f B r e z i s [4] t o solve t h e a b s t r a c t variational inequality (6.12)
u
E
for a l l v
E
D(A)
K,
n K.
2 0
The problems (6.8)
and (6.12)
are certain-
l y e q u i v a l e n t w i t h o u r choice o f data and we are l e d t o t h e f o l -
lowing r e s u l t . L e t t h e spaces V
Theorem 6.6 and monotone
c
H C V ' and t h e s e l f - a d j o i n t
I
M
L(V,V ) be g i v e n as above.
E
L e t K be t h e closed
convex s e t i n V o b t a i n e d as above from an i n c r e a s i n g f a m i l y { K ( t ) : 0 S t 5 T I o f c l o s e d convex subsets o f V, and assume 0 K.
Let N : V
f o r each f
E
-+
V
I
be pseudomonotone, bounded and coercive.
Lq(o,T;V')
t h e r e e x i s t s a s o l u t i o n o f (6.8).
E
Then The
s o l u t i o n i s unique i f N i s s t r i c t l y monotone. Proof:
The r e s u l t f o l l o w s i m n e d i a t e l y from B r e z i s [4] a f t e r
we v e r i f y t h a t t h e l i n e a r A i s nonnegative ( = monotone) and comp a t i b l e w i t h K. have j:$Vv,v>dt
I
Note f i r s t t h a t f o r those v E V w i t h Mv E V we = ( l / B ) < M v ( s ) , ~ ( s ) >T( ~ . Thus f o r v E D ( A ) i t
f o l 1ows
21 2
3. DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
>_ 0.
j I < A v , v > d t = (1/2)<Mv(T),v(T)>
(6.13)
T h a t A i s c o m p a t i b l e w i t h K means t h a t f o r each u
E
K there
e x i s t s Cunl C K f l D ( A ) such t h a t l i m ( u n ) = u i n V and
5 0.
l i m sup
un = ( I + n
-1
L)
-1
Thus, l e t u
We have l i m ( un ) =
u.
E
K and d e f i n e f o r n 2 1 L(,
un ( t ) = n
and (6.11)
shows un E K . The r e p r e s e n t a t i o n above g i v e s t Mun(t) = n j en(s-t)Mu(s)ds, hence, LMu, = MLun. F i n a l l y , s i n c e 0
M i s monotone we have
= -
-1
Lun> =
A i s c o m p a t i b l e - w i t h K.
QE D
I f we change t h e domain o f L a p p r o p r i a t e l y , we
can r e p l a c e t h e i n i t i a l c o n d i t i o n i m p l i c i t i n (6.8)
by a c o r r e s -
ponding p e r i o d i c c o n d i t i o n . We r e t u r n now t o t h e Cauchy problem f o r t h e e v o l u t i o n equat i o n (6.1) where M i s g i v e n a s i n Theorem 6.6 b u t w i t h weaker r e s t r i c t i o n s on t h e n o n l i n e a r o p e r a t o r N. assume N : V
+
V
I
i s o f t y p e M:
l i m (Nu.) = f i n V
I
J
S p e c i f i c a l l y , we s h a l l
i f l i m ( u . ) = u i n V weakly,
J weakly, and l i m sup
<_
then
Nu = f. Remark 6.8
The o p e r a t o r s o f t y p e M i n c l u d e weakly c o n t i n -
uous o p e r a t o r s (i.e.,
c o n t i n u o u s f r o m V weakly i n t o V ’ weakly)
and t h e pseudomonotone o p e r a t o r s , hence, t h e o p e r a t o r s o f Remark 6.5. We show t h a t pseudomonotone o p e r a t o r s a r e o f t y p e M.
21 3
Let
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
{ u . ) be a n e t ( o r sequence i f V i s separable) as i n t h e d e f i n i t i o n J above o f "type M" and assume N i s pseudomonotone. Then l i m sup
5 0, so f o r every v
5 l i m i n f
J
J
E
V we o b t a i n from (6.6)
But v
5
E
V i s arbitrary
so Nu = f f o l l o w s from t h i s i n e q u a l i t y . Much o f t h e n o t a t i o n o f Theorem 6.6 w i l l be used t o prove the following result. Theorem 6.9 self-adjoint V
-f
V
I
M
be type
Lq(o,T;VI)
E
L e t t h e spaces V L(V,V
I
C
H C V
I
and t h e monotone
) be g i v e n as i n Theorem 6.6.
M, bounded and coercive.
there e x i s t s a solution u
E
Let N :
Then f o r each f LP(o,T;V)
E
o f t h e Cauchy
problem dMU) + N(u) = f (6.14) (Mu)(o) = 0.
I f N i s s t r i c t l y monotone ( c f . Theorem 6.2) t h e s o l u t i o n o f (6.14)
i s unique. Proof:
We g i v e a f i n i t e - d i f f e r e n c e approximation t o (6.14)
o f i m p l i c i t type.
Thus, (6.14) i s approximated by a correspond-
i n g f a m i l y o f " s t a t i o n a r y " problems ( c f . Chapter 11.7 o f L i o n s
[lo]).
Note t h a t t h e Cauchy problem (6.14)
equation i n V (6.15)
i s equivalent t o the
I
A(u) + N(u) = f,
A=LoAl 21 4
3.
DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
where -L i s t h e g e n e r a t o r o f t h e s t r o n g l y - c o n t i n u o u s semigroup (6.9)
in V
I
and M
I
E
L ( V , V ) i s o b t a i n e d ( p o i n t w i s e ) f r o m M as
before. To approximate (6.15) tion i n V
S i n c e m(x,y) the estimate E
+ NuS = f.
[(I-G(s))/s]Mu,
(6.16)
v
we l e t s > 0 and c o n s i d e r t h e equa-
l
=
:1
<Mx,y> i s a s e m i - s c a l a r - p r o d u c t on V we o b t a i n
=
:1
m(v(t-s) , v ( t ) d t 5
V , which shows t h a t t h e o p e r a t o r [I-G(s)]M
6.13).
Thus, t h e o p e r a t o r [ ( I - G ( s ) ) / s ]
bounded and c o e r c i v e .
<Mv,v>dt,
i s monotone ( c f .
M + N i s o f t y p e M,
T h i s i m p l i e s by B r e z i s [4] o r L i o n s
t h a t i t i s s u r j e c t i v e , hence, (6.16) s > 0.
o
:1
[lo]
has a s o l u t i o n us f o r each
From (6.16) we o b t a i n
so t h e c o e r c i v i t y o f N shows t h a t {us : s > 0) i s bounded i n V . Since N and M a r e bounded and V i s r e f l e x i v e t h e r e i s a subset ( w h i c h we denote a l s o by {us : s > 0)) f o r which l i m ( u s ) = u, l i m N(us) = g and l i m M(us) = Mu weakly i n t h e a p p r o p r i a t e spaces.
Let L (6.16)
*
*
denote t h e a d j o i n t o f t h e o p e r a t o r L i n V
t o any v
E
*
I
.
D(L , V ) and t a k e t h e l i m i t t o o b t a i n
<Mu,L v> +
v
E
*
D(L ,U).
T h i s shows Mu
E
and t h a t (6.17)
We a p p l y
LMu + g = f
Since N i s o f t y p e M, i t s u f f i c e s f o r e x i s t e n c e t o show
21 5
I
D(L,V )
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
l i m sup
[(I-G(s))/slMweobtain <[(I-G(s))/s]Mu,us-u>.
But from (6.16)
and t h e m o n o t o n i c i t y o f
-
Since A h E D(L,V
) the l e f t factor o f the
l a s t term converges s t r o n g l y and t h i s g i v e s t h e d e s i r e d r e s u l t . Uniqueness f o l l o w s e a s i l y from t h e equivalence o f (6.14) (6.15);
we need o n l y n o t e t h a t
Remark 6.10
and
A i s monotone.
QED
The e x t e n s i o n t o nonhomogeneous i n i t i a l data
i s g i v e n i n Bardos-Brezis [l]w i t h r e l e v a n t r e g u l a r i t y r e s u l t s on t h e s o l u t i o n .
The problem w i t h p e r i o d i c c o n d i t i o n s Mu(o) =
Mu(T) i s s o l v e d s i m i l a r l y . Our n e x t c l a s s o f r e s u l t s w i l l be o b t a i n e d from t h e generat i o n t h e o r y o f n o n l i n e a r semigroups and i t s extensions t o e v o l u t i o n equations w i t h m u l t i v a l u e d operators.
The l i n e a r semigroup
t h e o r y i s inadequate f o r degenerate problems, b u t i t s p r e s e n t a t i o n above i n Section 4 p r o v i d e d an elementary m o t i v a t i o n f o r t h e techniques and c o n s t r u c t i o n s t o f o l l o w .
Specifically, i t indi-
cates t h e " o p t i m a l " hypotheses from which one m i g h t expect t h e Cauchy problem t o be well-posed and i t suggests t h e c o r r e c t space i n which t o l o o k f o r such r e s u l t s .
Also, we s h a l l n o t present
here a n o n l i n e a r v e r s i o n o f t h e a n a l y t i c s i t u a t i o n o f Theorem 4.2 and Theorem 4.4. L e t E be a v e c t o r space w i t h a l g e b r a i c dual E
E
-+
E
*
be nonnegative (monotone) and s e l f - a d j o i n t .
kernel o f M and q : E
+
*
and l e t M : L e t K be t h e
E / K t h e corresponding q u o t i e n t map.
symetric bilinear function m : E
21 6
x
E
+
R given by m(x,y)
The =
DEGENERATE EQUATIONS WITH OEPRATOR COEFFICIENTS
3.
<Mx,y> determines a s c a l a r p r o d u c t mo on E / K by
L e t W be t h e H i l k r t space completion o f E / K w i t h moy and denote by mo t h e (extended) s c a l a r product on Let E
I
W.
be t h e H i l b e r t space o b t a i n e d as t h e s t r o n g dual o f
t h e space E w i t h t h e seminorm induced by m.
Note t h a t since E / K I
i s dense i n W we may i d e n t i f y t h e dual spaces (E/K) q
*
: W
I
+
E
I
be t h e continuous dual o f q : E
dense range, q
*
i s necessarily injective.
vanishes on K, hence, g = f o q f o r some f q
*
preserving.
F i n a l l y , i f Mo : W
-f
determined by <Mox,y> = mo(x.y), (6.19)
W
W.
E
(E/K)
I
.
Let
Since q has
Also, each g
i s s u r j e c t i v e , and i t f o l l o w s from (6.18) I
-+
= W
I
.
that q
E
E
I
T h i s shows
*
i s norm-
i s t h e Riesz isomorphism
then we o b t a i n t h e i d e n t i t y
*
M = q Moq
r e l a t i n g t h e f u n c t i o n s considered above. Assume we a r e g i v e n f o r each t
[o,T] a nonempty s e t
E
D ( t ) C E and a ( n o t n e c e s s a r i l y l i n e a r ) f u n c t i o n N ( t ) : D ( t )
-+
E
I
Then f o r each such t we de’fine a m u l t i v a l u e d f u n c t i o n o r r e l a t i o n
N o ( t ) on q [ D ( t ) ] (6.20)
x
W
I
as t h e composition
No(t) = (q*)-l
0
N(t)
0
q -1
.
F i n a l l y , we d e f i n e t h e composite r e l a t i o n W x W w i t h domain q [ D ( t ) ]
f o r each t
21 7
E
[o,T].
( t ) = Mi’
o
No(t
on
Note t h a t No t )
.
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
and A ( t ) are f u n c t i o n s i f and o n l y i f x,y i m p l y N ( t ) x = N(t)y.
E
D ( t ) and Mx = My
The f o l l o w i n g diagram i l l u s t r a t e s t h e var-
ious relationships. N(t) E > D ( t ) --------tE
I
M
=
We s h a l l c o n s i d e r t h e s e m i l i n e a r e v o l u t i o n equation d x(MU(t)) + N(t,u(t))
(6.21)
A s o l u t i o n o f (6.21) I
O<_t
= 0,
i s a f u n c t i o n u : [o,T]
Mu : [o,T]
+
E
a.e.,
E
D ( t ) f o r a l l t, and (6.21)
u(t)
+
E such t h a t
i s a b s o l u t e l y continuous, hence, d i f f e r e n t i a b l e i s s a t i s f i e d a.e.
on
The Cauchy problem i s t o f i n d a s o l u t i o n o f (G.21)
[o,T].
which (Mu)(o) i s s p e c i f i e d i n E
I
for
.
We f o l l o w t h e idea from S e c t i o n 4 o f reducing (6.21) “standard” e v o l u t i o n e q u a t i o n w i t h
M
= identity.
and we d e f i n e v = q
0
u, then (6.19)
t i o n o f (6.21)
to a
I f u i s a solu-
and (6.20)
imply *
(6.22)
(q
*
Since q for t
E
MeV)
and M
0
[o,T],
I
= -N(t,U(t))
E
-
q
*
No(t,V(t)).
a r e l i n e a r isometries, we see t h a t v ( t ) v : [o,T]
+
E
q(D(t))
W i s a b s o l u t e l y continuous, and
218
3. DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS I
(6.23)
v (t)
i s s a t i s f i e d a.e.
E
- A(t,v(t)) on [o,T].
We c a l l such a v ( - ) a s o l u t i o n o f
Conversely, suppose v i s a s o l u t i o n o f (6.23).
(6.23).
each t a t which (6.23) f o r some u ( t )
E
holds, (6.20)
D ( t ) and (6.22)
Then f o r
shows t h a t q ( u ( t ) ) = v ( t )
holds,
*
By choosing u ( t )
E
D(t)
w i t h q ( u ( t ) ) = v ( t ) , hence, Mu(t) = q Mov(t), f o r a l l remaining t
E
[o,T],
we o b t a i n a s o l u t i o n u o f (6.21).
T h i s proves t h e
f o l l owing. Lemma 6.11. t
E
[o,T]
there i s a u ( t )
(6.21). v = q
I f v i s a s o l u t i o n o f (6.23), E
then f o r each
D ( t ) such t h a t u i s a s o l u t i o n o f
Conversely, f o r each s o l u t i o n u o f (6.21), 0
the function
u i s a s o l u t i o n o f (6.23).
Corol1ar.y 6.12
L e t uo
E
D(o).
There e x i s t s a s o l u t i o n v o f
w i t h v ( o ) = q(uo) i f and o n l y i f t h e r e e x i s t s a s o l u t i o n
(6.23)
w i t h (Mu)(o) = Mu.,
u of (6.21)
There i s a t most one s o l u t i o n v
of (6.23) w i t h v ( o ) = q(uo) i f and o n l y i f f o r every p a i r o f s o l u t i o n s ul, follows N(t,u,(t))
u2 o f (6.21)
t h a t Mul(t)
w i t h (Mul)(o)
= Mu2(t) f o r a l l t
= N(t,u2(t))
a.e.
= (Mu2)(o) = Muo i t E
[o,T],
hence,
on [o,Tl.
Results on t h e Cauchy problem f o r (6.21) from corresponding r e s u l t s f o r (6.23).
can now be obtained
Turning f i r s t t o t h e
q u e s t i o n o f uniqueness, we f i n d t h a t a s u f f i c i e n t c o n d i t i o n f o r t h e mo-seminorm on t h e d i f f e r e n c e o f two s o l u t i o n s t o be noninc r e a s i n g i s t h a t each A ( t ) be a c c r e t i v e : 219
i f [x,,w,]
and [x,w,]
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
belong t o A ( t ) , t h e n mo(w1-w2.x,-x2)
2 0.
above c o n s t r u c t i o n f o r which (6.21)
The success o f t h e
and (6.23)
correspond t o one
another i s r e f l e c t e d i n t h e following. The r e l a t i o n A ( t ) i s a c c r e t i v e i f and o n l y i f
Lemma 6.13
t h e f u n c t i o n N ( t ) i s monotone. Proof:
L e t w1
E
A(xl) and w2
w i t h x j = q ( u j ) and N ( t , u .J) (6.24)
m0(W1
=
q
*
E
A(x2).
M ow j y j
= 1,2.
E
D( t )
Then we have
-w2 ,xl -x2) =
so A ( t ) i s a c c r e t i v e i f N ( t ) i s monotone. D ( t ) t h e r e i s a unique p a i r w1,w2 1,2.
Choose u1 ,u2
Then [q(uj),wj]
E
E
Conversely, i f u1,u2
*
= q Mowj, j J Hence N ( t ) i s
W w i t h N(t,u.)
A ( t ) and (6.24)
holds.
monotone i f A ( t ) i s a c c r e t i v e . Remark 6.14
E
=
QED
N ( t ) i s s t r i c t l y monotone i f and o n l y i f i t i s
i n j e c t i v e and A ( t ) i s a s t r i c t l y a c c r e t i v e f u n c t i o n . Theorem 6.15 monotone f o r each t
L e t N ( t ) be monotone and M + N ( t ) s t r i c t l y E
[o,T].
Then f o r each uo
a t most one s o l u t i o n u ( - ) o f (6.21) Proof:
E
D(o) t h e r e i s
w i t h (Mu)(o) = Mu.,
Since A ( t ) i s a c c r e t i v e f o r each t by Lemma 6.13,
uniqueness h o l d s f o r (6.23).
The r e s u l t t h e n f o l l o w s f r o m QED
C o r o l l a r y 6.12. We c o n s i d e r now t h e e x i s t e n c e o f s o l u t i o n s .
220
Specifically,
3. DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
we s h a l l r e c a l l t h e e x i s t e n c e r e s u l t s o f Crandall and Pazy [l] as t h e y a p p l y t o t h e r a t h e r s p e c i a l H i l b e r t space s i t u a t i o n o f (6.23).
(The monograph o f H. B r e z i s [3] p r o v i d e s an e x c e l l e n t
i n t r o d u c t i o n t o t h i s t o p i c w i t h an e x t e n s i v e b i b l i o g r a p h y ; c f . a l s o t h e r e c e n t monograph o f Browder [7].!
The equation (6.23)
has a (unique) s o l u t i o n v w i t h v ( o ) s p e c i f i e d i n q(D(o)) under t h e f o l l o w i n g hypotheses: Each A ( t ) i s a c c r e t i v e and I + A A ( t ) i s s u r j e c t i v e f o r a l l A > 0. It follows that J A ( t )
of
(I+AA(t))-’
i s a f u n c t i o n d e f i n e d on a l l
w. i s independent o f t;
The domain o f A ( t ) , q[D(t)], we denote i t by q[D]. There i s a monotone g : [o,m)
[ o , ~ ) such t h a t
+
11 JA(t,x)-JA(s,x) 5 A [ t - s [ g ( I[xllw) .(l+ i n f rllyllw : y E A ( s , x ) I ) ,
t,s 2 0, x
E
W,
O
L e t M be nonnegative and symmetric from t h e
*
l i n e a r space E t o i t s dual E
.
I
Denote by E t h e dual o f t h e
l i n e a r t o p o l o g i c a l space E w i t h t h e seminorm <MX,X>~’~; E l i s a
IlfllEl =
H i l b e r t space w i t h norm given by x
E
E, <Mx,x> 5 1).
For each t
(possibly nonlinear) N ( t ) : D ( t )
sup {I
[o,T] assume we a r e given a
E
+
E
I
w i t h domain D ( t ) C E.
Assume f u r t h e r t h a t f o r each t, N ( t ) i s monotone and D(t)
+
E
I
i s surjective; M[D(t)]
:
M + AN(t) :
i s independent o f t; and f o r
221
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
some monotone i n c r e a s i n g f u n c t i o n g : [o,m)
Then f o r each uo
E
+
[o,m) we have
D(o) t h e r e e x i s t s a s o l u t i o n u o f (6.21)
with
(Mu)(o) = Muo. From C o r o l l a r y 6.12 we see t h a t i t s u f f i c e s t o show
Proof:
has a s o l u t i o n v w i t h v ( o ) = q(uo), and t h i s w i l l f o l l o w
(6.23)
i f we v e r i f y t h e hypotheses on CA(t)) above.
Also, M [ D ( t ) ]
each A ( t ) i s a c c r e t i v e by Lemma 6.13. o f t i m p l i e s t h e same f o r q[D(t)].
*
F i r s t note t h a t independent
To determine t h e range o f
*
*
I + A A ( t ) we have ( q Mo)(I+AA(t)) = q Mo + A N o ( t ) = q Mo + AN(t)q-’ I
=
*
(M+AN(t))q-l on q[D(t)].
The range o f t h e above i s
E and q Mo i s a b i j e c t i o n , so I + A A ( t ) i s n e c e s s a r i l y onto The e s t i m a t e on J A ( t , x ) f o l l o w s from (6.25)
and we r e f e r t o
Showalter [5] f o r t h e r a t h e r l e n g t h y computation. Remark 6.17
W.
QED
I n c o n t r a s t t o preceding r e s u l t s o f t h i s sec-
t i o n , N need n o t be c o e r c i v e o r even d e f i n e d everywhere on
V.
Thus i t may be a p p l i e d t o examples where N corresponds t o a n o t n e c e s s a r i l y e l l i p t i c d i f f e r e n t i a l o p e r a t o r ( c f . Theorem 4.1 and Example 4.6). Second o r d e r e v o l u t i o n equations w i t h ( p o s s i b l y degenerate) o p e r a t o r c o e f f i c i e n t s on time d e r i v a t i v e s can be r e s o l v e d by t h e preceding r e s u l t s .
These c o n t a i n as a s p e c i a l case a f i r s t 222
3. DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
o r d e r s e m i l i n e a r e q u a t i o n which i s n o n l i n e a r i n t h e time d e r i v a tive. Theorem
6.18
L e t A and C be symmetric continuous l i n e a r I
o p e r a t o r s f r o m a r e f l e x i v e Banach space V i n t o i t s dual V ; asl I
Denote by Vc t h e ( H i l b e r t
sume C i s monotone and A i s coercive.
Let B : V
space) dual o f V w i t h t h e seminorm
-+
V I be
a ( p o s s i b l y n o n l i n e a r ) monotone and hemicontinuous function. I
Then f o r each p a i r u1,u2 E V w i t h Aul + B(u2) E Vc t h e r e e x i s t s I 1 a unique v E L (o,T;V) such t h a t Cv : [o,T] -+ Vc i s a b s o l u t e l y d continuous, &Cv)
+ B(v) : [o,T]
-+
V
I
i s (a.e.
equal t o ) an ab-
s o l u t e l y continuous f u n c t i o n , Cv(o) = Cu,,[$Cv)+B(v)](o)
= Aul,
and
Proof: [Ax,Cy], Ax + B(y)
On t h e product space E E V x V consider M[x,y] I
hence, E l = V ' x Vc. I
E
Vc) and N :
D
+
Define D = ([x,yl E
I
by N[x,y]
E
=
V x D(B) :
= [-Ay,Ax+B(y)].
Then
a p p l y Theorem 6.16 t o o b t a i n e x i s t e n c e o f a s o l u t i o n u = [w,v] 2 of (6.21). Note t h a t C + AB t h A i s monotone, hemicontinuous I
and coercive, hence onto V ' ,
and t h i s shows M
( c f . p r o o f o f Theorem 4.3).
The second component v o f t h i s solu-
t i o n u w i t h Mu = M[u,,u2]
=
N[x2,y21
AN i s s u r j e c t i v e
i s t h e s o l u t i o n o f (6.26).
f o l l o w s from C o r o l l a r y 6.12 s i n c e M[xl,yl] N[xl,~ll
t
i m p l y [xl,yll
= [x2,y21.
223
= M[x2,y2]
Uniqueness and
QED
SINGULAR AND DEGENERATE CAUCHY PROBEMS
Remark 6.19
The f i r s t component o f t h e s o l u t i o n u o f (6.21)
i n t h e preceding p r o o f i s t h e unique a b s o l u t e l y continuous
w : [o,T]
-f
dw V w i t h B ( a ) : [o,T]
s a t i s f y i n g w(o) = ul,
(6.28)
+
Remark 6.20
I
V c a b s o l u t e l y continuous and
-f
I
Bw ( 0 ) = Bu2,
dw B ( a ) + Aw(t) = 0,
a.e.
E
[o,Tl.
The s p e c i a l case t h a t r e s u l t s from choosing C =
0 i s o f i n t e r e s t and should be compared w i t h (6.21). c a l l y , (6.26)
t
and (6.27)
Specifi-
become f i r s t o r d e r equations i n which
t h e time d e r i v a t i v e a c t s on t h e n o n l i n e a r term. v e r t i b i l i t y o f A was never used i n s o l v i n g (6.26). f i c i e n t f o r e x i s t e n c e o f a s o l u t i o n o f (6.26)
Also, t h e i n It i s suf-
t h a t B + AA be
c o e r c i v e f o r each A > 0; however, uniqueness may then be l o s t take A = 0).
(e.g.,
We b r i e f l y sketch some a p p l i c a t i o n s o f t h e r e s u l t s o f t h i s s e c t i o n t o i n i t i a l - b o u n d a r y value problems.
L e t G be a bounded
domain i n Rn w i t h smooth boundary aG, Wp(G) be t h e Sobolev space of u
E
Lp(G) w i t h each D.u = au/ax.
D u
= u.
g
Lq, q = p / ( p - l ) ,
J
J
E
Lp(G), 1 5 j 5 n, and
L e t f u n c t i o n s N.(x,y) be given, measurable i n x E G J Suppose f o r some C > 0, c > 0, and and continuous i n y E Rn+’ 0
E
.
p
L 2, we have
224
DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
3.
n +
for x
n}, l e t V N :
V + V
(6.32)
n+l
, and
0 5 k 5 n.
L e t Du = {D.u : 0 j J be a subspace o f Wp(G) c o n t a i n i n g Ci(G), and d e f i n e
G, y,z
E
g ( x ) 2 CIYIP,
I
R
E
by
1
1
j=o
N.(x,Du(x))D.v(x)dx, G J J
The r e s t r i c t i o n o f Nu t o C:(G)
-
-
E
v.
i s t h e d i s t r i b u t i o n on G g i v e n by
n
- 1 D.N.(.,Du)
NU =
(6.33)
u,v
+ No(*,D$).
j=1 J J
The d i v e r g e n c e theorem g i v e s t h e ( f o r m a l ) Green' s f o r m u l a
lam
v ( s ) d s , v E V, where t h e conormal d e r i v a t i v e n au on aG i s g i v e n by - = 1 N.(*.Du)nj and (nly nn) i s t h e a' j=1 J I u n i t outward normal. The o p e r a t o r N : V -t V i s bounded, hemicon-
=
. . .,
t i n u o u s , monotone and c o e r c i v e ; c f . Browder [3, 61, C a r r o l l [14] o r Lions
[lo]
f o r d e t a i l s and c o n s t r u c t i o n o f more general op-
e r at o r s . Example 6.21 define
M :V
(6.34) L e t uo
Let m(-)
-t
Lm(G), mo(x) 2 0, a.e.
x
E
G, and
E
v.
V by
<Mu,v> = E
E
I
m(x)u(x)v(x)ds, l G
V w i t h N(uo)
=
ml"h
f o r some h
225
u,v E
2 L (G).
Then each of
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Theorems 6.2,
6.6,
and 6.16 g i v e s e x i s t e n c e o f t h e s o l u t i o n t o
the e l l i p t i c - p a r a b o l i c equation (6.35)
-
+ N(u(x,t))
D,(m(x)u(x,t))
= 0
w i t h i n i t i a l c o n d i t i o n m(x)(u(x,o)-uo(x)) boundary c o n d i t i o n depending on V.
= 0, x
I f V = W:(G),
E
G, and a the D i r i c h l e t
boundary c o n d i t i o n i s obtained, w h i l e t h e ( n o n l i n e a r ) Neumann c o n d i t i o n au/aN = 0 r e s u l t s when
V
= Wp(G).
c o n d i t i o n i s o b t a i n e d by adding t o (6.32)
The t h i r d boundary
a boundary i n t e g r a l .
The assumption t h a t m ( * ) i s bounded may be relaxed; c f . BardosB r e z i s [l]o r Showalter [5].
r
J aGu ( s ) v ( s ) d s Wp(G)
t o (6.34)
and i f
I f we add t h e boundary i n t e g r a l
V i s t h e space o f f u n c t i o n s i n
which are c o n s t a n t on aG, we o b t a i n t h e boundary c o n d i t i o n
o f f o u r t h t y p e ( c f . A d l e r [l])
This problem i s s o l v e d by Theorems 6.9 and 6.16. p r o p r i a t e terms t o (6.32)
and (6.34)
By adding ap-
i n v o l v i n g i n t e g r a l s over
p o r t i o n s o f t h e boundary ( o r over a m a n i f o l d S o f dimension n-1 in
c) one o b t a i n s
s o l u t i o n s o f e q u a t i o n (6.35)
s u b j e c t t o degen-
erate parabolic constraints D,(m(s)u(s,t))
-
div(a(s)grad u(s,t))
- -
s
E
s,
where t h e i n d i c a t e d divergence and g r a d i e n t are i n l o c a l
226
3. DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
c o o r d i n a t e s on S and t h e c o e f f i c i e n t s a r e nonnegative ( c f . Showalter [2,
51). 2 Choose V = Wo(G)
Example 6.22
n
r
j=1
G
and d e f i n e
Dju(x)D.v(x)dx, J
u,v
E
v,
where each c . E Lm(G) i s nonnegative, 0 5 j 5 n. L e t B = N be J given by (6.32) and assume (6.29), (6.30) w i t h 1 < p 5 2. Then Theorem 6.18 g i v e s a unique s o l u t i o n o f ' t ' ? e equation (6.36)
n
- j =1l Dj(cjDjv)]
Dt{Dt[cov
."
+ N(v))
n
- j =11D?v = J
0,
w i t h D i r i c h l e t boundary c o n d i t i o n and a p p r o p r i a t e i n i t i a l condi. "
tions.
Note t h a t
N i s g i v e n by (6.33).
i n c l u d e t h e wave equation (4.9), (4.10),
Special cases o f (6.35)
t h e v i s c o e l a s t i c i t y equation
p a r a b o l i c equations (4.6),
and Sobolev equations w i t h
f i r s t o r second o r d e r t i m e d e r i v a t i v e s .
A s p e c i a l case o f (6.36)
Example 6.23 erable interest.
has been o f eonsid-
j S n, and NO(x,s) = m ( x ) I s I P - l sgn ( s ) where m
n e g a t i v e and 1 < p (6.37)
N
S p e c i f i c a l l y , we choose C 5 0,
I 2.
E
= 0 for 1
j
Lm(G) i s non-
This gives t h e equation
Dt(m(x)Iv(x,t)IP-l
sgn v ( x , t ) )
-
Av(x,t)
=
0.
The change o f v a r i a b l e u = I v l P - ' sgn(v) p u t s t h i s i n t h e form
227
5
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
(6.38)
D,(m(x)u(x,t))
-2=
with q
(2-p)/(.p-l)
-
n
(4-1)
2 0.
1 D.()u)q-2Dju(x,t)) j=1 J
= 0
This e q u a t i o n a r i s e s i n c e r t a i n
d i f f u s i o n processes; i t i s "doubly-degenerate"
since t h e leading
c o e f f i c i e n t may vanish and t h e power o f u may vanish independently.
Note t h a t t h e second o p e r a t o r i s n o t monotone so t h e equa-
t i o n i s n o t i n t h e form o f (6.21). Remark 6.24
[lo]
Theorem 6.2
i s from B r e z i s [l]. See Lagnese
f o r a v a r i a t i o n on Theorem 6.6 and corresponding p e r t u r b a -
t i o n r e s u l t s on such problems.
Theorem 6.9 i s contained i n t h e
r e s u l t s o f Bardos-Brezis [1] along w i t h o t h e r types o f degenerate e v o l u t i o n equations n o t covered here ( c f . Lagnese [5] f o r c o r responding p e r t u r b a t i o n r e s u l t s ) . a r e from Showalter [5]. Lions
[lo]
Theorems 6.15,
We r e f e r t o Aronson
6.16 and 6.18
[l],Dubinsky [l],
and R a v i a r t [l]f o r a d d i t i o n a l r e s u l t s on (6.38)
and, s p e c i f i c a l l y , t o Strauss [l]f o r a d i r e c t i n t e g r a t i o n o f s e m i l i n e a r equations o f t h e form ( c f . (6.37)) (6.39)
Dt(N(u)) + A ( t ) u ( t ) = f ( t )
w i t h n o n l i n e a r N and time-dependent l i n e a r { A ( t ) ) i n Banach spaces.
Cf.
B r e z i s [l],Kamenomotskaya [l],and Ladyienskaya-
Solonnikov-Uralceva [2] f o r a r e d u c t i o n o f c e r t a i n ( S t e f a n ) freeboundary value problems t o t h e form (6.39), Lions-Strauss [8] and Strauss [2, (6.28).
hence, (6.36),
and
31 f o r a d d i t i o n a l r e s u l t s on
Crandall [3] and Konishi [l]have s t u d i e d s p e c i a l cases
228
3. DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
o f (6.39)
by d i f f e r e n t methods.
3.7
Doubly n o n l i n e a r equations.
We b r i e f l y consider some
f i r s t o r d e r e v o l u t i o n equations o f t h e form (7.1)
$(u(t))
t N(u(t)) = 0
where ( p o s s i b l y ) b o t h operators are nonlinear.
Some s o r t o f de-
generacy i s d e s i r a b l e (and necessary f o r a p p l i c a t i o n s ) so we s p e c i f i c a l l y do n o t make assumptions on M o f s t r o n g monotonicity as was done i n Theorem 3.12.
Moreover, we can i n c l u d e c e r t a i n
r e l a t e d v a r i a t i o n a l i n e q u a l i t i e s (e.g.,
by l e t t i n g one o f
t h e operators be a s u b d i f f e r e n t i a l ) so we p e r m i t t h e operators t o be m u l t i v a l u e d f u n c t i o n s o r r e l a t i o n s as considered i n Section 3.6. L e t B be a r e a l r e f l e x i v e Banach space, l e t D(M) and D(N) be subsets o f B and suppose M : D(M) m u l t i v a l u e d functions.
-+
That i s , M
B and N : D(N)
c D(M)
x
-+
B are
B and N C D(N) x B.
(When M and PI a r e f u n c t i o n s , we i d e n t i f y them w i t h t h e i r respect i v e graphs.)
We c a l l t h e p a i r o f f u n c t i o n s u,v a s o l u t i o n t o
t h e d i f f e r e n t i a l " i n c l usion"
if u(t)
E
D(M)fl
D(N), v : [o,m)
-+
hence, s t r o n g l y - d i f f e r e n t i a b l e a.e.,
N are f u n c t i o n s , then (7.1) whereas i f o n l y
B i s L i p s c h i t z continuous, and (7.2)
holds.
i s c l e a r l y s a t i s f i e d a.e.
I f M and on [o,m),
M i s a f u n c t i o n we r e p l a c e t h e e q u a l i t y symbol i n 229
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
(7.1)
M[D(M) f l D ( N ) ] denote t h e
L e t D( A)
by an i n c l u s i o n .
i n d i c a t e d image i n B and d e f i n e a r e l a t i o n A : D (A ) composition A = N some z
E
D(M)
fl
t h e p a i r (u,v)
0
M- 1
.
T h a t i s , (x,y)
D ( N ) we have (z,x)
E
E
o f (7.3),
a u(t)
E
U ( A ) and (7.3)
holds.
E
N.
Thus, i f
then i t f o l l o w s t h a t
so we c a l l a L i p s c h i t z f u n c t i o n v : [ o , ~ ) if v ( t )
B by t h e
A i f and o n l y i f f o r
E
M and (z,y)
i s a s o l u t i o n o f (7.2),
-f
-f
B a s o l u t i o n o f (7.3)
Conversely, i f v i s a s o l u t i o n
t h e d e f i n i t i o n o f A shows t h e r e e x i s t s f o r each t L 0 D(M) fl D ( N ) f o r which t h e p a i r u,v
i s a solution of
(7.2). L e t M and N be m u l t i v a l u e d o p e r a t o r s on t h e
Theorem 7.1
r e a l r e f l e x i v e Banach space B; assume M + N i s o n t o B and t h a t
II (x1-x2)+s(Y1-Y*)11
2
II
x p 2
II
f o r s > 0,
Y
(7.4) and (z.,Y.) J J Then f o r each uo
E
E N , (z.,x.) J J
D ( M ) n D(N) and vo
s o l u t i o n p a i r u,v o f (7.2) Proof:
E
From (7.4)
E
j
=
1,2.
M(uo), t h e r e e x i s t s a
w i t h v ( o ) = vo.
By t h e p r e c e d i n g remarks
has a s o l u t i o n .
M,
t s u f f i c e s t o show (7.3)
i t f o l l o w s t h a t t h e sane e s t i m a t e
h o l d s f o r s > 0 whenever ( x . , y . ) E A; t h i s i s p r e c i s e l y t h e J J statement t h a t A i s a c c r e t i v e ( c f . C r a n d a l l - L i g g e t t [2]).
230
3. DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
Furthermore, i t i s easy t o check t h a t (x,y) i f f o r some z
E
D(M) n D ( N ) we have (z,y-x)
E
I + A i f and o n l y
E
N and (z,x)
E
M,
M + N.
so i t f ollows t h a t t h e range o f I + A equals t h e range o f
Thus I + A i s h y p e ra c c re ti v e and i t f o l l o w s from r e s u l t s o f C r a n d a l l - L i g g e t t [2] t h a t (7.3) vo
E
has a unique s o l u t i o n f o r each
D(A).
QED
Remark 7.2 then i t f ollows
11
If u ,v and u2,v2 a re s o l u t i o n s o f (7.2), 1 1
v l (t)-v 2 (t)
11
5 Ilv,(o)-v,(o)
11.
Ifvl(o)
=
v2(o) and e i t h e r M - l o r N - l i s a fu n c ti o n , then t h e s o l u t i o n p a i r u,v i s unique. Remark 7.3
I n a H i l b e r t space H w i t h i n n e r product (*,*),,
th e c o n d i t i o n (7.4)
i s equivalent t o whenever ( z .,x .) J J
(x1-x2Y Y1-YZ)H
E
M
(7.5) and ( z
y ) j yj
E
N
f o r j = 1,2.
For l i n e a r f u n c t i o n s t h i s i s t h e r i g h t angle c o n d i t i o n ( c f . Grabmuller [l],Lagnese [2, 4,
81,
and Showalter [6, 14, 15, 16,
201). The d i f f i c u l t y i n a p p l y i n g Theorem 7.1 t o i n i t i a l - b o u n d a r y value problems a r i s e s from t h e assumption (7.4) which r e l a t e s t h e operat ors M and N t o each other.
A desirable alternative
which we s h a l l d e s c ri b e i s t o p l a c e hypotheses on each o f t h e o perat ors independently.
The r e s u l t s o f S e c t i o n 3.6 were
231
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
o b t a i n e d when t h e l e a d i n g ( l i n e a r ) o p e r a t o r was symnetric.
The
n o n l i n e a r analogue o f t h i s i s t h a t t h i s o p e r a t o r be a d i f f e r e n t i a l o r , more g e n e r a l l y , a s u b d i f f e r e n t i a l . subdifferential a t x
E
Recall t h a t t h e
E o f an e x t e n d e d - r e a l - v a l u e d l o w e r semi-
c o n t i n u o u s convex f u n c t i o n $ on t h e l o c a l l y convex space E i s t h e s e t a$(x) o f those u
(Cf. B r e z i s [3],
E
E
I
verifying
Ekeland-Ternan [l],L i o n s
w i l l be g i v e n below.
Some examples
I n g e n e r a l , t h e s u b g r a d i e n t a$ i s a m u l t i -
valued operator from (a subset o f ) E i n t o Theorem 7.4
[lo].) E
I
.
L e t V1 and V2 be r e a l separable r e f l e x i v e
Banach spaces w i t h V1 C V2, i n c l u s i o n i s compact.
Let
V1 i s dense i n V2, (I
1
and $z be convex c o n t i n u o u s (ex-
tended) r e a l - v a l u e d f u n c t i o n s on V1 and V2, sume t h e i r s u b d i f f e r e n t i a l s
N
and assume t h e
=
a$l and M E
respectively.
As-
a$z a r e bounded ( c f .
and t h a t N i s " c o e r c i v e " i n t h e sense t h a t
S e c t i o n 3.6)
: l u l v -+ -1 > o f o r some p, 1 < p < m. v1 1 Suppose we a r e g i v e n uo E V1, vo E M(uo), and f E Lm(0,T;V;) l i m i n f I$~(U)/IUIP
with df/dt
E
a p a i r o f functions u L~(O,T;V;)
a.e.
where l / p + l / q = 1.
Lq(0,T;V;) E
Lm(o,T;V1),
satisfying
on [o,T]
and v ( o ) = vo. 232
v
E
Then t h e r e e x i s t s
Lm(0,T;V;)
w i t h dv/dt
E
3. DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
Remark 7.5
The compactness assumption above l i m i t s a p p l i c a -
t i o n o f Theorem 7.4 t o p a r a b o l i c problems; c f . examples below. We i l l u s t r a t e some a p p l i c a t i o n s o f t h e p r e c e d i n g r e s u l t s t h r o u g h some examples o f i n i t i a l - b o u n d a r y v a l u e problems.
p
W1’p(G),
T : V
-f
(6.30)
V
I
2
2 , and d e f i n e t h e n o n l i n e a r e l l i p t i c o p e r a t o r
by (6.32),
and (6.31).
2
mj(x)
V
I
, and
the closure o f Ci(G) i n
L e t V = W;”(G),
Example 7.6
0, a.e.
x
E
d e f i n e D(M)
m2T(u); D(N)
{u
2
E
where t h e f u n c t i o n s N.(x,y) s a t i s f y (6.29), J F o r j = 1,2, l e t m . ( * ) E Lm(G) be g i v e n w i t h J G, and l e t k > 0. S e t H = L 2 ( G ) so V C H
c
2
{u
E
V : mlu + m2T(u)
V : (k/ml(*))Tu
E
E
H I , M(u)
mlu +
H I , N(u) :( k / m l ( * ) ) T ( u ) .
M and N a r e ( s i n g l e - v a l u e d ) n o n l i n e a r o p e r a t o r s i n t h e
Then
H i l b e r t space H.
To a p p l y Theorem 7.1,
i n i t s e q u i v a l e n t form (7.5).
( M U - M V ~ N U - N V =) ~ k
holds.
I
F o r u,v
we f i r s t v e r i f y (7.4) E
D(M) f l D(N) we have
( km2(x)/ml ( x ) ) ( T ( u ) - T ( v ) G To show M + N i s o n t o H, l e t w E H and
consider the equation
The c o e f f i c i e n t s a l l belong t o Lm(G), so t h e o p e r a t o r on t h e l e f t s i d e o f (7.7) to V
I
, hence,
Since m,(*)
u
E
i s monotone, hemicontinuous and c o e r c i v e from V s u r j e c t i v e , so t h e r e i s a s o l u t i o n u
E
V o f (7.7).
and m 2 ( - ) a r e bounded, i t f o l l o w s from (7.7)
D ( M ) n D(N) and t h a t M(u) + N(u) = w.
that
Thus, Theorem 7.1
g i v e s e x i s t e n c e o f a weak s o l u t i o n o f an a p p r o p r i a t e i n i t i a l 233
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
boundary value problem c o n t a i n i n g t h e equation
where T[u]
i s g i v e n by (6.33).
Flote t h a t t h e c o e f f i c i e n t s m1
and m2 may vanish over c e r t a i n subsets o f G. We a p p l y Theorem 7.4 w i t h V1 = WAYp(G) and V2 = n La(G), ct 5 P, Q1(u) = l / p 1 IDju(X)IPdx, @,(u) = G j=l lu(x)j"dx, and a p p ro p ri a te f : [o,T] -+ W-lgq(G). The c o r l/ct IG responding s u b d i f f e r e n t i a l s a re g i v e n by 34, ( u ) = Example 7.7
we o b t a i n exist e n c e o f a s o l u t i o n o f an i n i t i a l - b o u n d a r y value problem f o r t h e equation
Example 7.8 define @,(u)
= l/a
@1and f be given as above b u t -c u (x)l"dx, u E V2, where u ( x ) = 0 when
L e t V1,V2,
iGl
+
u ( x) < 0 and u+(x) = u ( x ) when u ( x ) >, 0.
Theorem 7.4 g i v e s
e x i st ence f o r an i n i t i a l - b o u n d a r y value problem f o r
Example 7.9
2 max {1/2,1ulH/21.
L e t V2 be a H i l b e r t space and s e t @,(u) The s u b d i f f e r e n t i a l i s g i v e n by
lulH
<
' 9
I u I = 1,
lulH ' 234
=
3. DEGENERATE EQUATIONS WITH OPERATOR COEFFICIENTS
Ifv1 and N are g i v e n as i n Theorem 7.4,
t h e r e i s then a s o l u -
t i o n p a i r u,v which s a t i s f i e s t h e a b s t r a c t " p a r a b o l i c " equation I
-u ( t ) + f ( t ) t i o n f(t)
E
E
N ( u ( t ) ) where l u ( t ) l > 1 and t h e " e l l i p t i c " equa-
N ( u ( t ) ) where l u ( t ) l < l.
Remark 7.10
Theorem 7.1 i s an e x te n s i o n o f t h e correspond-
i n g r e s u l t o f Showalter [4] when M and N a r e f u n c t i o n s . 7.4 and Examples 7.7,
Theorem
7.8 and 7.9 a re from Grange-Mignot [l].
See Barbu [l]f o r r e l a t e d a b s t r a c t r e s u l t s and examples where M and N are s u b d i f f e r e n t i a l s which a re assumed r e l a t e d by an assumption s i m i l a r t o (7.4)
b u t d i s t i n c t from it.
(7.9) was s t u d i e d d i r e c t l y i n R a v i a r t [2]; L i o ns
[lo].
The equation
c f . Chapter IV.1.3
of
A doubly-nonl i n e a r parabolic-hyperbol i c system i s
discussed by Volpert-Hudjaev [l],and p a r a b o l i c systems a r e considered by Cannon-Ford-Lair [3].
These l a s t two references
i n d i c a t e how c e r t a i n doubly-nonl i n e a r equations a r i s e i n a p p l i c a t i o n s ; f o r a p p l i c a t i o n s o f equations o f t h e type (7.8), Gajewski-Zachari us [2].
235
cf.
This page intentionally left blank
Chapter 4 Selected Topics 4.1
Introduction.
I n t h i s chapter we w i l l discuss
b r i e f l y some f u r t h e r questions a r i s i n g i n t h e study o f s i n g u l a r o r degenerate equations.
Some o f t h e p r e s e n t a t i o n w i l l be i n a
more " c l a s s i c a l " s p i r i t and we w i l l f o l l o w t h e o r i g i n a l papers i n d e s c r i b i n g problems and r e s u l t s .
Proofs w i l l o f t e n o n l y be
sketched o r even o m i t t e d e n t i r e l y , m a i n l y f o r reasons o f space and time, b u t s u i t a b l e references w i l l be p r o v i d e d ( w i t h o u t a t tempting t o be exhaustive i n t h i s r e s p e c t ) ; f u r t h e r r e l e v a n t i n formation can o f t e n be o b t a i n e d from t h e b i b l i o g r a p h i e s i n these references.
The m a t e r i a l considered by no means covers a l l pos-
s i b l e questions and has been s e l e c t e d b a s i c a l l y t o be represent a t i v e o f t h e h i s t o r i c a l development and t o r e f l e c t some c u r r e n t research trends i n t h e area.
Thus we w i l l deal f o r example w i t h
Huygens' p r i n c i p l e , r a d i a t i o n problems, i n i t i a l - b o u n d a r y value problems, nonwellposed problems, e t c . , among o t h e r questions; t h e s e c t i o n t i t l e w i l l i n d i c a t e t h e problem under c o n s i d e r a t i o n . 4.2 and (1.4.10)
Huygens' p r i n c i p l e . with A
X
R e f e r r i n g back t o (1.4.8)
= -A l e t us suppose m t p =;
-
1 with
Ta
f u n c t i o n so t h a t wm+P(t) i s g i v e n i n terms o f a s u r f a c e mean value u x ( t ) want m 2 n
-
-
*
T o f T(<) over t h e sphere [ x - < l = t (here we a l s o
1/2 t o i n s u r e t h e uniqueness o f wm).
Thus i f
(2m+l) = 2p+l i s an odd p o s i t i v e i n t e g e r t h e value wm(t) =
wm(x,t) depends o n l y on t h e values o f T(5) on t h e s u r f a c e
237
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
I x-s
=
141.
To picture t h i s one can draw the retrograde "light" cone
t, as was noticed by Diaz-Weinberger [2] and Weinstein
from ( x , t )
E
Rn
x
R+ t o the singular hyperplane t
a t the intersection. where m =
-
= 0 and look
We note here t h a t f o r the wave equation
1/2,n = 2p + 1 is required above which reproduces a
well known fact.
This phenomenon furnishes an example of what i s
known as the minor premise i n Huygens' principle.
In general
Huygens' principle can be enunciated i n various versions involving other features as well ( c f . Baker-Copson [ l l , Courant-Hi1 bert
111, Hadamard [ l ] , Lax-Phillips [ l ] ) b u t we shall simply say here t h a t a linear second order partial differential operator
L(Dx , D t ) ( k = 1 , ...,n ) i s of Huygens' type i n a region R C k Rn x R i f the value u ( x , t ) o f the solution of Lu = 0 a t a point
(x,t)
E
R depends only upon the Cauchy data on the intersection
of the space l i k e i n i t i a l manifold with the surface of the characteristic conoid w i t h vertex ( x , t ) .
T h i s formulation and
others play an important role i n wave propagation for example and the matter has been studied extensively. ( I n addi t i o n t o the above references we c i t e here only some more o r l e s s recent work by Bureau [l], Douglis [ l ] , Fox [ l ] , Giinther [ l ; 2 ; 3; 4; 51, Helgason [4], Lagnese [ l l ; 1 2 ; 131, Lagnese-Stellmacher [141, Solomon [ l ;
21,
and Stellmacher [ l ] . )
I n dealing w i t h Huygens'
principle f o r singular problems we will follow Solomon [ l ;
21
only make a few remarks about other work on singular problems later.
Thus l e t us consider the operator 238
and
4.
(2.1
1
SELECTED TOPICS
E"' = a2/at2 +
where Rem >
-
1/2 o r m =
a/at + c(t)
-
1/2 and c ( * ) i s a complex valued
f u n c t i o n belonging t o L ' ( o , b ) (O
(2.2)
We deal here w i t h the
D'
m Emum = Au ; um(0) = T
E
D';
uF(0) = 0
where A i s the Laplace o p e r a t o r i n Rn and since c
(
0
E
)
L 1, um
i s r e q u i r e d o n l y t o s a t i s f y t h e d i f f e r e n t i a l equation almost everywhere (a.e.).
Solomon [l;23 employs t h e F o u r i e r technique
developed i n Chapter 1 and looks f o r resolvants Z;(t) (2.2) w i t h T = 6.
S e t t i n g A2 =
f u n c t i o n i m ( y , t ) = FxZ:(t) (2.3)
Em^Zm + A2^Zm = 0;
A s o l u t i o n ?(y.t)
"
1 yk2
satisfying
= l y I 2 one then looks f o r a
1 satisfying "m
Z (y,o) = 1;
iy(y,o) = 0
o f (2.3) i s obtained by c o n v e r t i n g (2.3) i n t o
an i n t e g r a l equation as i n Chapter 1 ( c f . (1.3.24)) and using a Neumann s e r i e s such as (1.3.25)
( c f . a l s o Section 1.5).
Using
techniques s i m i l a r t o those o f Chapter 1 t h e s o l u t i o n i s obtained i n the f o l l o w i n g form (see Solomon [l],pp. 226-231). Theorem 2.1 y
E
The unique s o l u t i o n o f (2.3) f o r t
E
[o,b]
and
Rn can be w r i t t e n as
(2.4) where
"m Z (y,t) = im(y,t) + i m ( y , t )
im i s given
by (1.3.6)
w i t h z = t l y l and 239
im i s a "smooth"
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
perturbation s a t i s f y i n g the estimate
f o r IyI > A0 and o S t 5 b (ko and ho a r e independent o f ( y , t ) ) . The corresponding unique r e s o l v a n t Z!(t)
E l has support con-
E
*
t a i n e d i n t h e b a l l 1x1 5 t and u m ( t ) = Z!(t) s o l u t i o n o f (2.2) i n D Remark 2.2
I
.
The e s t i m a t e (2.5) i s u s e f u l i n determining t h e i n p a r t i c u l a r f o r Rem + 1/2 >
o r d e r o f t h e d i s t r i b u t i o n Z!(t); n
-
T i s t h e unique
1 i t f o l l o w s t h a t Z!(t)
w i l l be continuous i n x f o r 0 < t i b.
We w i l l say now t h a t (2.2) i s o f Huygens' t y p e i f and o n l y i f t h e support o f Z!(t)
i s concentrated on t h e sphere 1x1 = t.
Note here t h a t t h i s d e f i n i t i o n depends on t h e choice o f i n i t i a l data when m =
-
1 / 2 and n = 1 f o r example s i n c e t h e one dimen-
s i o n a l wave o p e r a t o r i s n o t a Huygens' o p e r a t o r i n t h e sense p r e v i o u s l y d e l i m i t e d f o r a r b i t r a r y Cauchy data u(x,o) ut(x,o).
0, 1, 2,
Solomon uses t h e d i s t r i b u t i o n s 6 ( ' ) ( \ x l
..., d e f i n e d
2
and
2 -t 1, v = V
f o r t > 0 and n > 1 by ( c f . Gelfand-Silov
[51)
Here 1x1 = p , 8 denotes t h e n
-
-
1 angular v a r i a b l e s (el,
...,
i n p o l a r s p h e r i c a l coordinates w i t h + ( p , B ) = + ( x ) , and Rn i s t h e s u r f a c e o f t h e u n i t sphere i n Rn.
240
For n = 1 one w r i t e s
4.
dV)(1 x
(2.7)
SELECTED TOPICS V
=
L[& wax)
[6(x+t) + 6(x-t)]
21tl
c l e a r l y the d i s t r butions
&'((XI 2- t2 )
a r e c o n c e n t r a t e d on t h e
sphere 1x1 = t.
Then t h e main r e s u l t i n Solomon [ll i s g i v e n by
Theorem 2.3
A necessary and s u f f i c i e n t c o n d i t i o n f o r ( 2 . 2 )
-
t o be o f Huygens ' t y p e i s t h a t n
(2m+l) = 2N + 1 w i t h N L 0 an
i n t e g e r w h i l e t h e r e e x i s t s a r e s o l v a n t Z:(t)
where c,
= (-1 )Nn-n'2r(m+l),
a.
=
o f the form
1 , and f o r v = 1 ,
. . ., N
(if
N > 0 ) one has E-m(aN) = 0 w i t h 4(ta\: + vav) = E-m(av-l)
(2.9)
Remark 2.4
0, 1, 2, (2.10)
V
We r e c a l l from G e l f a n d - S i l o v [51 t h a t f o r v
... FS(')(
where c(v,n)
2v-n+221/2(n-2)-vJ 1 (2) -(2 n-2) -v and z = t l y l . Then examples t o
1x12-t2) = ;(v,n)lyl
= 7(-1/2)v(2n)n/2 1
i l l u s t r a t e Theorem 2.3 can be g i v e n as f o l l o w s . t h a t Z:(t), a
V
=
Suppose f i r s t
expressed b y (2.8), has p r e c i s e l y one t e r m ( i . e . ,
= 0 f o r v _> 1 ) .
Then by ( 2 . 9 ) E-m(ao) = c ( t ) = 0 s i n c e a.
1 and we a r e i n t h e EPD s i t u a t i o n .
i n (2.8) w i t h o f n e c e s s i t y n i n t e g e r as i n d i c a t e d .
-
=
L e t N be t h e i n t e g e r i n v o l v e d
(2m+l) = 2N + 1 an odd p o s i t i v e
To check t h e f o r m o f Z:(t)
g i v e n by ( 2 . 8 )
i n t h i s case we use (2.10) t o o b t a i n Zm(y,t) = cmt-ZmaoFG(N)
241
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
2 2 1 (1x1 - t ) and s i n c e $n-2)
- N
Am
= m t h i s y i e l d s Z (y,t)
"m 2mr(m+l)z-mJm(z) = R (y,t) as r e q u i r e d by (1.3.6).
E-m(ao) = c ( t ) o r c ( t ) = ( t a , ) '
+ al
= 0 we have ta;
and E-m(al)
+;
=
+ 1 2m)
= a;'
Combining t h e s e two e q u a t i o n s one has al
c ( t ) al = 0.
2mal
N e x t suppose
av = 0 f o r v _> 2 ) .
t h a t ( 2 . 8 ) has no more t h a n two terms ( i . e . , From (2.9) and t h e r e q u i r e m e n t E-m(al)
=
I '
t
+
9
+t2 2 al=
ct 0
for
cto
any c o n s t a n t .
' " w /w t h i s becomes w 2 (log w)' with c ( t ) = 2 (log Now i n terms o f w we have a l ( t ) = ables al(t)
=
2
Making a change o f v a r i ct 2m+l ' o 7 -2 w = 0.
w)" and s u i t a b l e w can be found as f o l l o w s .
If
= 0 we g e t
cto
w ( t ) = cr + f3t2m+2 where a and B a r e a r b i t r a r y c o n s t a n t s b u t may depend on m.
I n o r d e r t h a t t h e r e s u l t i n g a,
be such t h a t (2.8)
s a t i s f i e s t h e r e s o l v a n t i n i t i a l c o n d i t i o n s we must have
-
while f o r m =
B = 0.
1 / 2 i t i s necessary t h a t
If
cto
c1
j o
f 0 the
s o l u t i o n s w o f t h e d i f f e r e n t i a l e q u a t i o n f o r w w i l l be o f t h e k f o r m w = exp ( 4 2 ) F ( - ;T; - k;
T)
where
T
= tal/',
k = 2m+l
, and
F (y; 6; t ) i s any s o l u t i o n o f Kunnner's c o n f l u e n t hypergeometric equation tF"
+
(6
-
t ) F' + y F = 0.
Upon e x a m i n a t i o n o f t h e be-
h a v i o r o f such F(y;6; t ) as t + o i t f o l l o w s t h a t f o r t h e r e s u l t i n g a, t o s a t i s f y t h e a p p r o p r i a t e i n i t i a l c o n d i t i o n s F must be k k t a k e n i n t h e f o r m F = alF1 ( - 2; - k; T ) + f3 F2 ( - 2; - k; T) where lF1y
F2 i s any s o l u t i o n o f t h e Kumner e q u a t i o n independent o f a f
0,
and when m =
-
1/2 ( i . e .
k =
s e r v a t i o n s can be f o u n d i n Solomon [1;21.
242
0)
6 =
0.
F u r t h e r ob-
SELECTEDTOPICS
4.
We w i l l deal here e x p l i c i t l y o n l y w i t h some work
Remark 2.5
o f Fox [l]on t h e s o l u t i o n and Huygens' p r i n c i p l e f o r s i n g u l a r Cauchy problems o f t h e t y p e
w i t h data um(x,o) = T ( x ) and u;(x,o)
= 0 g i v e n on t h e s i n g u l a r
Except f o r some r e s u l t s o f Gunther ( l o c . c i t . )
hyperplane t = 0.
most o f t h e o t h e r work on Huygens' p r i n c i p l e mentioned e a r l i e r deals w i t h n o n s i n g u l a r Cauchy problems so we w i l l n o t discuss i t here; Gunther's work on t h e o t h e r hand i s expressed i n a more geometric language which r e q u i r e s some background n o t assumed o r developed i n t h i s book and hence t h e d e t a i l s w i l l be omitted. Thus l e t
r
=
r
(x,t;
C)
= t
2
- n1 ( x k -
Ck)
k= 1 L o r e n t z i a n d i s t a n c e between a p o i n t ( x , t )
(5,o) i n t h e s i n g u l a r hyperplane t =
0.
2 E
be t h e square o f t h e
Rn x R
and a p o i n t
We denote by (2.11)-,,
t h e e q u a t i o n (2.11) w i t h index -m and observe t h a t i f u - ~ satisf i e s (2.11)-,, 1.4.7).
( 5k/xk)
then um =
t-2m
-m u s a t i s f i e s (2.11) ( c f . Remark
Fox composes t h e t r a n s f o r m a t i o n s zk =
r
( k = 1,
. . ., n )
1
/4xkCk and yk =
t o produce new v a r i a b l e s (z,r,y)
p l a c e o f (x,t,C)
( s u i t a b l e regions a r e o f course d e l i n e a t e d ) . n m- s o l u t i o n o f (2.11)-,, i s sought i n t h e form u-" = r 2 V(z) where V(z) i s t o be determined.
in
A
A f t e r some computation one shows
t h a t such umma r e s o l u t i o n s i f V ( z ) s a t i s f i e s a c e r t a i n system o f n o r d i n a r y d i f f e r e n t i a l equations and such a V(z) can be found i n t h e form V = FB where FB i s t h e L a u r i c e l l a f u n c t i o n given f o r
243
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
l z k l < 1 by ( c f . Appell (2.12)
-
Kamp6 de F 6 r i e t 111)
where ak =
1
+
1
n
-
FB = FB (a, 1-a, m
+ 1, z )
and (8,s) = r(R+q)/I'(R).
(1-4Ak)'/2
The s e r i e s
d e f i n i n g FB converges u n i f o r m l y i n ( a , m , z ) on closed bounded regions where l z k l < 1 and m t h a t s i n c e ak and 1
-
-
n
. . ..
+ 1 # 0, -1, -2,
a k a r e complex conjugates f o r
Xk r e a l ,
t h e products ( a k ,p k ) ( l - a k y p k ) a r e r e a l , and thus FB
m and t h e Ak a r e r e a l .
I f Rem >
n 2 -1
and l x k l >
One notes
It1
s r e a l when > 0 it
makes sense then t o c o n s i d e r as a p o s s i b l e s o l u t i o n o
the sin-
g u l a r Cauchy problem f o r (2.11) t h e f u n c t i o n . (2.13)
m uX(x,t,T)
= k,
where km = r(mc1)/vn/2r(m-"+l) 2 i s a s o l u t i o n o f (2.11).
n
and v!(x,t,C)
=
Itl-2mrm-T FB
We assume here t h a t T ( - ) i s s u i t a b l y
d i f f e r e n t i a b l e and denote by S ( x , t )
the region o f the singular
hyperplane t = 0 c u t o u t by t h e c h a r a c t e r i s t i c conoid w i t h vertex (x,t)
( t h u s S(x,t)
i s an n-dimensional sphere o f r a d i u s
It1 and c e n t e r x i n t h i s hyperplane determined b y r ( x , t , S ) 2 0 ) . As described, w i t h l x k l >
It1
2 0, S ( x , t )
does n o t i n t e r s e c t any
o f t h e hyperplanes xk = 0 and l i e s i n an o c t a n t o f t h e hyperplane t = 0.
Note here a l s o t h a t t h e f a c t o r r(m-;+l)-l
n p l a y e d o f f a g a i n s t (m - ? +
S 1, Ipk)-'
i n k,
can be
i n FB t o remove any d i f 1 n t 1 = -p. Now f o r Rem > + 1 one checks f i c u l t i e s when m244
5
4.
e a s i l y t h a t Lyu:
SELECTEDTOPICS
T(<)L!)r(x,t,<)d<
km
=
= 0 when T
(
0
)
is
continuous, s i n c e a l l boundary i n t e g r a l s which a r i s e w i l l vanish. U s i n g a n a l y t i c c o n t i n u a t i o n and a f t e r s e v e r a l pages o f i n t e r e s t i n g a n a l y s i s Fox shows t h a t ( f o r m # -1
¶
-2,
.. .)
i f T(-)
E
n where p i s t h e s m a l l e s t i n t e g e r such t h a t Rem 2 2 - p - l \
c{2+p)
m
t h e n u A Y d e f i n e d b y (2.13),
s a t i s f i e s t h e s i n g u l a r Cauchy prob-
lem f o r (2.11) ({2+p) = 0 i f 2 + p i 0). s o l u t i o n uy(x,t,T)
i s p r o v e d f o r 2m
+ 1
Uniqueness o f t h e 2 0 and i t i s shown t h a t
Huygens' p r i n c i p l e h o l d s when, f o r some nonnegative i n t e g e r p,
- p - 1, xk = a k ( l - a k ) satisfy m = n where ak E ~ l y . . . y p t l ~ and , 1 ak i n + p. F o r m # -1, -2, 1 t h e s o l u t i o n ,u: a l t h o u g h n o t unique f o r Rem < - 1/2, i s t h e t h e parameters m and
xk
...
unique a n a l y t i c c o n t i n u a t i o n of t h e unique s o l u t i o n s uy w i t h
2m + 1
2 0 and t h e c r i t e r i a above f o r Huygens' p r i n c i p l e r e -
main v a l i d ( i n f a c t necessary and s u f f i c i e n t ) . 4.3
The g e n e r a l i z e d r a d i a t i o n problem o f Weinstein.
One
can r e a d e x t e n s i v e l y on t h e s u b j e c t o f r a d i a t i o n f o r t h e wave e q u a t i o n and we mention f o r example C o u r a n t - H i l b e r t [ll LaxP h i l l i p s [l] Somnerfeld [l] and r e f e r e n c e s t h e r e . ¶
¶
The usual
f o r m u l a t i o n ( c f . W e i n s t e i n (61) p r e s c r i b e s a f u n c t i o n f ( * ) w i t h f ( t ) = 0 f o r t < 0 and asks f o r a f u n c t i o n u s a t i s f y i n g utt = Au i n R P x I R w i t h u(x,o) = ut(xYo) = 0 and such t h a t
(3.1) where r
dun =
lim r4
2
= 1x1'
=
n
1 xi¶2 1
-
wnf(t)
w n = 2 ~ ~ / ~ / r ( n / 2 and ) , theintegral i n
245
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
(3.1) i s o v e r a sphere of r a d i u s r i n l R n .
When n = 3 f o r
example one has t h e well-known s o l u t i o n u ( x , t )
= f(t-r)/r
and
one i s l e d t o l o o k f o r s o l u t i o n s w h i c h depend o n l y on t and r. T h i s e n t a i l s a r a d i a l f o r m o f A and y i e l d s a s i n g u l a r problem i n two v a r i a b l es u
(3.2)
tt
=
'rr
+ -n
- 1 r 'r
w i t h u = 0 f o r r 2 t and f o r r = 0, u s h o u l d have a s i n g u l a r i t y o f t h e f o r m r-(n-2).
Now r e p l a c e n
-
1 by 2m
+
1 and c o n s i d e r a
g e n e r a l i z e d r a d i a t i o n problem (3.3)
tt
=
m 'rr
+
2m + 1 r r
where we r e c a l l t h a t i f urn s a t i s f i e s ( 3 . 3 ) w i t h i n d e x m t h e n uqm = r2mum s a t i s f i e s (3.3) w i t h i n d e x -m ( c f . Remark 1.4.7). I f 2m
+ 1
=
n
-
1 t h e n 2m = n - 2 so t h a t a s o l u t i o n u - ~f i n i t e
near r = 0 corresponds t o a s o l u t i o n u" w t h a s i n g u l a r i t y o f t h e d e s i r e d t y p e as r
.+
0.
Thus, t h i n k i n
o f s u i t a b l y negative
values o f Rem (see Theorem 3.2 f o r t h e p r e c i s e range Rem < 0), one l o o k s f o r a s o l u t i o n u m ( t , r ) o f (3.3) s a t i s f y i n g (3.4)
urn(t,o) = f ( t ) ; u " ( t , t )
where f ( t ) = 0 f o r t < 0.
= 0
T h i s t y p e o f problem has been s t u d i e d
i n p a r t i c u l a r by D i a z and Young [l;81 , L i e b e r s t e i n [l;21, W e i n s t e i n [ 6 ] , and Young [6; 121. L i o n s [ 4 ] , Suschowk [l], We w i l l f o l l o w L i o n s [4] h e r e i n t r e a t i n g t h e g e n e r a l i z e d
246
4.
SELECTEDTOPICS
r a d i a t i o n problem because o f t h e g e n e r a l i t y o f h i s approach and t h e use o f t r a n s m u t a t i o n operators, which serves t o augment F i r s t , as a sketch o f t h e procedure, we consider
S e c t i o n 1.7.
-
f o r Rem >
1/2
m
(3.5)
v (t,r) =
~n r z(z2-r2)m-1/2 2 m+1/2
m
um(t,z)dz
Then, i f u" s a t i s f i e s (3.3) w i t h u m ( t , r ) = 0 f o r t 5 r, i t m f o l l o w s t h a t vTt = vrr w i t h v m ( t , r ) = 0 f o r t 5 r.
v m ( t , r ) = F m ( t - r ) where Fm(s) = 0 f o r s i 0.
Consequently
Now ( c f . below)
(3.5) can be i n v e r t e d i n t h e form
For Rem <
-
1 / 2 (3.6) i s v a l i d i n t h e usual sense w h i l e b o t h
(3.5) and (3.6) can be extended by a n a l y t i c c o n t i n u a t i o n t o every m
E
C.
P u t t i n g F m ( t - z ) i n (3.6) and i n t e g r a t i n g by p a r t s
one o b t a i n s
For Rem
L
0 such u m ( t , r ) do n o t converge when r
and hence urn, i s i d e n t i c a l l y zero. hand, as r (3.8)
+
+
0 unless Fm,
For Rem < 0, on t h e o t h e r
0
um ( t , r )
+.r(-m+1/2) 1 k-2m-1(Fm)l(t-z)dz
so t h a t , r e c a l l i n g t h e d e f i n i t i o n o f t h e R S e c t i o n 1.6 ( c f . (1.6.20)
f o r example),
247
-
L integral i n
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
m u (t,o)
(3.3)
i s required.
I-2m(Fm)' = f ( t )
=
-2m-1 m S i n c e I-2m(Fm)' = I ( F ) we have Fm determined
u n i q u e l y by Fm = ( r ( - m + l / 2 ) / r ( - 2 m ) )
12m+1(f) and p u t t i n g ( 3 . 9 )
i n (3.7) one o b t a i n s m
um ( t , r )
(3.10)
1
=
-m-1/2(12mf)(t-z)dz
which i s e q u i v a l e n t t o W e i n s t e i n ' s s o l u t i o n ( c f . W e i n s t e i n [61) and demonstrates uniqueness a'l so. I n L i o n s 141 t h e f o r m a l c a l c u l a t i o n s above a r e rephrased and j u s t i f i e d i n terms o f t r a n s m u t a t i o n o p e r a t o r s as f o l l o w s . (We r e c a l l f r o m S e c t i o n 1.7 t h a t B transmutes P i n t o Q i f QB = BP.)
Now L e t R = (0, m) and D:(R)
=
D+(R)' be t h e space o f
d i s t r i b u t i o n s on R w i t h s u p p o r t l i m i t e d t o t h e r i g h t ( c f . Schwartz [l]and n o t e t h a t D+(R) s i g n i f i e s Cm f u n c t i o n s w i t h n o t n e c e s s a r i l y compact s u p p o r t b u t equal t o z e r o n e a r t h e origin).
F o r simp1 i c i t y we w i l l occasiona l y use a f u n c t i o n
n o t a t i o n f o r d i s t r i b u t i o n s i n what f o l l o w s i n w r i t i n g f o r example < T , p =
T(<)
Then f o r
T
s e t MT(S) =
E
which means t h a t <MT,p = < T ( x ) , 2x@
x2) > f o r @
i t i s easy t o see t h a t M i s an isomorphism $ ( f i x )
( o r DL(Rx)
+.
+.
E
D(RE);
D'(R5)
$ ( Q ) ) w i t h i n v e r s e M-lS(x) = S ( x 2 ) ( i . e . ,
- 5
<M-~s,$)> = <s(E,), 1
5-1/2
for
$
E
qnx)).
c a l c u l a t i o n y i e l d s M f T = ( 4 5 I? + 2D ) MT f o r
5
Dx = d/dx, e t c . ) .
5
T
A simple E
D'(Rx) ( h e r e
Now r e f e r r i n g t o t h e s t a n d a r d spaces D 248
I
,
SELECTEDTOPICS
4.
D i , and D: o v e r (l/r(p))
R as i n Schwartz [ll, we s e t f o r p
Pf(xP-’)lx>b
Schwartz [ l ] ) .
Then Y
E
P Y
E, Y
E
P D i ( t h e n o t a t i o n P f i s explained i n
$.a
= o f o r x < 0, Y-R =
=
f o r R a non-
I
: Q: -+ D+ i s a n a l y t i c and Y P P * y q = I S e t now Z ( x ) = Y ( - x ) so t h a t Z E D 9 Z = 0 f o r x > 0, yP+q P P P P Z-, = (-I)‘#& f o r R a n o n n e g a t i v e i n t e g e r , etc.; i n p a r t i c u l a r
negative integer, p
-+
.
DZ
= -Zp-l and XZ = - P Z ~ + ~ .F i n a l l y one n o t e s t h a t T S*T i s P P I a c o n t i n u o u s l i n e a r map Di(n) D-(fi) when S E D- i s z e r o f o r -+
I
-+
1 S(x-y)T(y)dy) m
x > 0 ( f o r m a l l y (S*T) ( x ) =
*
Zp
JX
L (D:(a),
E
DL(S2)) t h e map T
Now l e t Lm = DE t @-$
,L
that
D-(n) I
:
-f
Dx (L,
i n t o Lm on D
(a)
For m
(i.e.,
DH ,
2
H,
= M-
-+
1 O
E
Q: L i o n s con-
* z-ln-1/2
0
M o f D2
= LmHm) such t h a t Hm:
I
I
D-(O)
= L i i n Chapter 1 ) and n o t e
D (S2) i s continuous.
s t r u c t s a transmutation operator I
Zp*T.
I
-+
and we denote by
D ( Q ) i s an isomorphism and m
-+
H, i s an e n t i r e a n a l y t i c
The i n v e r s e H, = Hi’ = 2 M, which n e c e s s a r i l y s a t i s f i e s D H, = HmL, on
f u n c t i o n w i t h v a l u e s i n L(Dl(S2), D l ( 0 ) ) .
* zm+1/2
v-’ D- ( a ) , e n j o y s 0
0
s i m i l a r p r o p e r t i e s and i n f u n c t i o n n o t a t i o n one
can w r i t e (3.11)
ff,T(x)
(3.12)
HmT(x) =
=
mr ~x ( y ~ - x ~ ) - ~ - ~ / ~ T (Rem y ) d
F o r o t h e r values o f m continuation.
2
E
m
I:(yZ-x2)m-1/2r(r)dy;
Rem >
-
1/2
$ one extends t h e s e formulas by a n a l y t i c
I t i s important t o note t h a t i f T
249
E
Dl(n) i s
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
L i o n s phrases
zero f o r x > aT t h e n HmT = HmT = 0 f o r x > aT. t h e g e n e r a l i z e d r a d i a t i o n problem as f o l l o w s . Let P
Problem 3.1
c R x R be t h e open h a l f p l a n e ( t , r )
where r > 0 and Q
cP
Rem < 0 f i n d urn
D l ( P ) s a t i s f y i n g (3.3) w i t h supp u m c Q and
um(-,r)
+
E
be t h e s e t Q = { ( t , r )
f i n D I as r
+
0 where f
E
E
P; t 2 r ) .
:D i s g i v e n w i t h f
For
= 0 for
t < 0.
The problem i s r e s t r i c t e d t o Rem < 0 s i n c e i t i s shown n o t t o be m e a n i n g f u l f o r o t h e r m Theorem 3.2
4
E
There r e s u l t s
( c f . L i o n s [4]).
Problem 3.1 has a unique s o l u t i o n urn depending I
continuously i n D (P) 0 n . f
D,
E
I
( f as d e s c r i b e d ) .
F o r m a l l y t h e p r o o f goes as f o l l o w s .
One w r i t e s vm =
( 1 @Hm)um so t h a t vm i s g i v e n by (3.5) f o r Rem > - 1/2 say ( c f . (3.12)). v"
E
m t o (3.3) one has vtt = vrr
A p p l y i n g 1 @ H,
D ' ( P ) has i t s s u p p o r t i n Q.
as b e f o r e w i t h Fm
E
and
Consequently v m ( t , r ) = F m ( t - r )
D I and Fm(s) = 0 f o r s < 0.
Since H,
i s an
m isomorphism w i t h H i ' = Hm we have u = ( 1 C9 Hm)vm and f o r Rem <
-
1 / 2 say we o b t a i n f o r m a l l y by (3.11) ( c f . ( 3 . 6 ) )
where < S L Y @ > = ( Z / r ( - m - l / Z ) ) Rem <
-
1/2, and @
E
D-.
i:
~(z~-r~)-~-~/~@ f o(r z r) d> z0,
The f u n c t i o n m
-+
S i can i n f a c t be
extended by a n a l y t i c c o n t i n u a t i o n t o be e n t i r e w i t h v a l u e s i n
250
4.
SELECTED TOPICS
D i and, f o r Rem < 0, a s r + O , i n .D,
I
Sk
Hence f r o m (3.13) as r
+
+
(Zr(-2m-l)/r(-m-l/Z))
Y-2m-l
0
and t h i s l i m i t must equal f ( c f . ( 3 . 9 ) ) .
Consequently t h e ex-
p l i c i t s o l u t i o n o f Problem 3.1 f o r Rem < 0 i s (3.15)
um(t,r)
w h i c h can be r e w r t t e n i n a f o r m e q u i v a l e n t t o (3.10)
(cf
Lions [41). 4.4
I m p r o p e r l y posed problems.
I m p r o p e r l y posed problems
such as t h e D i r i c h l e t problem f o r t h e wave e q u a t i o n or t h e Cauchy problem f o r t h e Laplace e q u a t i o n have been s t u d i e d f o r some t i m e and have r e a l i s t i c a p p l i c a t i o n s i n p h y s i c s .
For a
n o n e x h a u s t i v e l i s t o f r e f e r e n c e s see e. g., A b d u l - L a t i f - D i a z [lI, Agmon-Nirenberg [31, B o u r g i n [ll, B o u r g i n - D u f f i n [21, B r e z i s - G o l d s t e i n [ 5 ] , Dunninger-Zachmanoglou [21, Fox-Pucci [21 , John [23, L a v r e n t i e v [ Z ] , [121, Ogawa [1;23,
L e v i n e [l;5; 10; 111, Levine-Murray
Pucci [21 , S i g i l l i t o 141
by Payne [31 ( c f . a l s o
-
and a r e c e n t survey
Symposium on nonwellposed problems and
l o g a r i t h m i c c o n v e x i t y , S p r i n g e r , L e c t u r e notes i n mathematics, Vol. 316, 1973).
I n p a r t i c u l a r t h e r e has been c o n s i d e r a b l e
i n v e s t i g a t i o n o f i m p r o p e r l y posed s i n g u l a r problems by DiazYoung
[lo]
Dunninger-Levine [lI, Dunninger-Weinacht
[31
T r a v i s [ll, Young [4; 5; 7; 8; 113, e t c . and we w i l l d i s c u s s 251
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
some o f t h i s l a t t e r work. The most general a b s t r a c t r e s u l t s seem t o appear i n Dunninger-Levine [l]and we w i l l sketch t h e i r technique f i r s t . L e t E be a r e a l Banach space and A a closed densely d e f i n e d l i n e a r o p e r a t o r i n E (as i s well-known t h e use o f spaces
R instead o f
i n v o l v e s no l o s s o f g e n e r a l i t y ) .
E over
We s h a l l denote
by cs ( A ) t h e p o i n t spectrum o f A. P D e f i n i t i o n 4.1
The E valued f u n c t i o n urn(-) i s s a i d here t o
be a s t r o n g s o l u t i o n o f
on (o,b) i f urn(-) i s norm continuous on (o,b), weakly, and f o r any e
I
E
E
urn(*)
E
C2(E)
I
m I 2m+1 rn I m '
(4.2)
t
m on ( o , b ) , where
I d2 e > = - am, e l > , etc., and w r i t i n g dt2 p ( t ) = t2m+1 11 A u m ( t ) l l f o r m > - 1/2 w i t h p ( t ) = t [I A u m ( t ) l l 1 f o r m < - 1/2, one has p ( * ) E L (o,b).
The n o n s i n g u l a r case m = 1/2 i s encompassed i n forthcoming work o f Dunninger-Levine and w i l l n o t be discussed here. now p = I m l and l e t (An)
{An)
denote t h e p o s i t i v e r o o t s o f
b) = 0 f o r m 2 0 o r m <
Jp(%
Set
-
1/2; i f - 1/2 < m < 0 l e t
denote t h e p o s i t i v e r o o t s o f J
results
252
-P
(6b )
= 0.
Then t h e r e
4.
Theorem 4.2
SELECTEDTOPICS
L e t um be a s t r o n g s o l u t i o n o f (4.1) as i n I f m > - 1 / 2 assume
D e f i n i t i o n 4.1 w i t h um(b) = 0.
11 tlI
t2m+1(
u y l l + t l I u m I I ) - + 0 as t
that
u y l l + Ilum 11
t h e sequence {An}
-+
-+
0 as t
s a t i s f i e s An
0 while f o r m < +
0.
4
S I
-
1/2 assume
Then urn :0 i f and o n l y i f
( A ) f o r a l l n. P The p r o o f can be sketched as f o l l o w s . Consider t h e eigen-
v a l u e p r o b l em
(4.3)
$ ( b ) = 0; t 1 I 2 $ ( t ) bounded
and t a k e f o r m 2 0 o r m <
-
/ 2 t h e so u t i o n s
(4.5)
$n,p ( t ) = Jp(%t,
while f o r
-
(4.6)
$n,-p
=o
1/2 < m < 0 choose t h e s o l u t i o n s (t) = J
-P
(.Ant); J
-P
Assume f i r s t t h a t , f o r some n, An
( q b ) = 0
E CJ
P
(A) w i t h Avn = hnvn and
set tmmJp(Ant)vn; (4.7)
urn(t) =
t-mJ-p(Jj;nt)vn;
m 2 0 or m <
-
1/2
-1/2 < m < 0
Such um a r e s t r o n g s o l u t i o n s o f ( 4 . 1 ) i n t h e sense o f D e f i n i t i o n
0 i s c o r r e c t , as s p e c i f i e d i n t h e
4.1 and t h e i r b e h a v i o r as t
-+
hypotheses o f Theorem 4.2.
Hence An
E
u ( A ) f o r some n i m p l i e s
P t h e e x i s t e n c e o f n o n t r i v i a l um s a t i s f y i n g t h e hypotheses o f
253
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Theorem 4.2 which means t h a t urn An
4 uP (A)
f
0 i n Theorem 4.2
f o r a l l n.
On t h e o t h e r hand suppose An
4 uP( A )
by J,n t h e a p p r o p r i a t e f u n c t i o n s $I,
t i o s n o f Theorem 4.2 and f o r some 6 (4.8)
V p ) =
The u:(6)
a r e we1
b 6
tW1J,,(
p+l
1 -while 2
11
E
-f
s a t i s f y i n g t h e condi-
(o,b)
set
0, tm1J,,(t)
O(t) f o r m <
=
1 L (o,b)
norm topology o f E as ,6
-
0(t2"+')
Hence t
and vf: = l i m $(ti)
E
D(A) and furthermore y:
-f
exists i n the
= lim
A v:(6)
For e
I
I
E
+
'n
b 6
-f
0
= yf: by
E fixed a routine calculation
y i e l d s now (4.9)
so t h a t
e x i s t s as 6
under o u r hypotheses on p ( t ) i n D e f i n i t i o n 4.1 w i t h Av: t h e closedness o f A.
for
Since A i s closed i t can be
0.
-f
=
passed under t h e (Riemann t y p e ) i n t e g r a l s i g n i n (4.8) vf:(6)
(4.6).
d e f i n e d by v i r t u e o f t h e hypotheses on u"
t"+'Qn(t)
qJn(t)llum(t)
E
-
from (4.5)
t ) u m (t ) d t
and one notes eas l y t h a t , as t
-
f o r a l l n and denote
or
Suppose urn i s a s t r o n g s o l u t i o n o f (4.1)
m >
implies
tmtlqJn(t)
~~tm''Qn(t)dt 254
,e'>dt
SELECTEDTOPICS
4.
m
1
and i n view o f t h e hypotheses one o b t a i n s as 6 -+ 0
= 0.
B u t one knows t h a t t h e Bessel f u n c t i o n s qn form
a complete o r t h o g o n a l s e t on (o,b) t i o n t ( c f . Titchmarsh [3])
f o r any e l
E
m 1 and hence f r o m
= 0 f o r a l l n i t f o l l o w s t h a t
Ibtm’$,,(t)
r e l a t i v e t o t h e w e i g h t func-
E l f r o m which r e s u l t s u m ( t )
=
0.
O t h e r boundary c o n d i t i o n s o f t h e t y p e uF(b) t a u m ( b ) = 0 a r e a l s o c o n s i d e r e d i n Dunninger-Levine [l]and uniqueness f o r weaker t y p e s o l u t i o n s i s a l s o t r e a t e d .
One n o t e s t h a t v e r y
l i t t l e i s r e q u i r e d o f t h e o p e r a t o r A i n t h e above r e s u l t .
The
t e c h n i q u e does n o t i m m e d i a t e l y e x t e n d t o more general l o c a l l y convex spaces E because o f t h e norm c o n d i t i o n s . We go now t o some more c o n c r e t e problems which a r e r e l a t e d t o Theorem 4.2
i n an o b v i o u s way.
F i r s t we s k e t c h some r e s u l t s
o f Young [4] on uniqueness o f s o l u t i o n s f o r t h e D i r i c h l e t problem r e l a t i v e t o t h e s i n g u l a r h y p e r b o l i c o p e r a t o r d e f i n e d by 2m+l uL, = u + +-A 1 1 ( a i ju ~ . ) t ~cu where c and t h e a i j tt t t 1 1 1 .i a r e s u i t a b l y smooth f u n c t i o n s o f x xn) and m i s (xly
-
Let R c
real. for x
E
R
. . .,
be bounded and open, Q =fi x(o,b),
c(x) 2 0
R, and assume t h e m a t r i x ( a i j) i s symmetric and p o s i t i v e
d e f i n i t e ; s u f f i c i e n t smoothness o f t h e boundary taken f o r granted.
255
r
o f R w i l l be
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
L e t Lmum = 0 i n Q w i t h um = 0 on rx[o,b)
Theorem 4.3 m u (x,o)
= 0.
Then um
=0
1
-
Suppose m >
and assume urn
E
and
2
C ( Q ) 0 C1(q).
q.
in
The p r o o f uses t h e f a c t t h a t any s o l u t i o n um o f Lmum = 0 belonging t o C
2
f i e s uF(x,o) =
f o r t > 0 and t o C
o
+ -2 1
f o r any m
1
for t 2 0 necessarily satis-
(cf.
[I], W a l t e r [I]).
FOX
NOW
integrate the i d e n t i t y
1
2u L u = ( u 2 t + t m
(4.10)
a i ju
i,j
o v e r t h e r e g i o n Qs = Qx(o,s),
X
Wt2
ux + c u ' ) ~ + 2 2m+l i
j
s 5 b y and use t h e d i v e r g e n c e
theorem t o o b t a i n , when Lmu = 0,
I
(4.11)
aQs
[(up.l.aiJux.ux ~ Y J 1
+ 2(2m+l)I where v = (v
,
. . .,
QS
vn,vt)
c o n d i t i o n s p l u s u"'(x,o) t (aiJ)
i,j
p1 t d2 x d t = 0 i s t h e e x t e r i o r normal on
boundary Qs. P u t t i n g o u r urn i n (4.11)
1 a i j u mxi
1 a i juxi utv J. l d a
+cu2 )vt-2 j
=
x j + c ( um ) 2 ]l:t,sdx
=
and u s i n g t h e boundary
I,
i s p o s i t i v e d e f i n i t e , c 2 0, and
J
[(u:)~ + R l( ut) d x d t = 0. S i n c e 1 m > - - both o f these
0 we have t h e e q u a t i o n
+ 2(2m1)
aQs
2
i n t e g r a l s a r e z e r o and by c o n t i n u i t y t h e f i r s t t e r m t h e n vani s h e s f o r 0 5 s 5 b. Theorem 4.4
C'(0)
Hence urn s 0 i n
If m 5
- 71 t h e n
0 since
um(x,o) = 0.
any s o l u t i o n urn
E
2
C ( Q ) fl
m o f Lmum = 0, w i t h u = 0 on t h e boundary o f Q, vanishes
256
SELECTED TOPICS
4.
f 0, where t h e
i d e n t i c a l l y i f and o n l y i f JLm(%b)
nonzero e i g e n v a l u e s o f t h e problem Av =
-
r.
$2 w i t h v = 0 on
z . ( a ij vxi iY J
An a r e t h e
xJ
t
cv i n
There i s an obvious r e l a t i o n between Theorems 4.4 and 4.2 where A corresponds t o t h e o p e r a t o r determined by Aw = cw
2
- 1 (aijwx.)x
i n E = L (L?)w i t h w = 0 on
i,j i j Theorem 4.4 goes as f o l l o w s .
r.
The p r o o f o f
F i r s t suppose t h e r e i s a nonzero
e i g e n v a l u e An such t h a t J-m(Q)
= 0 w i t h c o r r e s p o n d i n g eigen-
Then um(x,t) = t - m J - m ( ~ t ) v n ( x ) s a t ' i s f i e s
f u n c t i o n vn(x).
Lmum = 0 and t h e s p e c i f i e d boundary c o n d i t i o n s .
Conversely i f
0 f o r any An one i n t e g r a t e s t h e i d e n t i t y wLmu
J-,,(%b)
-
-
- 1 [ l a i j(
U ~ ~ W - U WOver ~ ~ t)h e] ~cy~ j i 1 b e n c l o s e d by Q between t h e p l a n e s t = s and t = b ( 0 < l i n d e r Qs
uMmw = ( u t w - u w t + - -2m+l Uw)
s < b).
Here Mm i s t h e f o r m a l a d j o i n t o f L,
(2mtl)(w/t)t
-
l(aijw
jQ:( =
By t h e divergence theorem one
'j
obtains (4.12)
+ cw.
)
g i v e n by Mmw = wtt
wLmu-uMmw) d x d t
b[(utw-uwt aQS
-+ 2mt1 w)vt-la
t"
ij
( u w-uwx )v . I d a 'i
i J
Now l e t Lmum = 0 w i t h urn = 0 on t h e boundary o f Q and s e t wm(x,t)
= tmt1J-,(%t)vn(x)
where An i s a nonzero e i g e n v a l u e
of t h e problem i n d i c a t e d i n t h e statement o f Theorem 4.4.
It
i s e a s i l y checked t h a t Mmwm = 0 so t h a t t h e l e f t hand s i d e i n (4.12)
vanishes and s i n c e wm = 0 on
257
r
we have
-
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
m l m 0 wt and p a r e bounded w i t h um(x,o) = 0 (and Now as s m - 21 ) ; t h e e v a l u a t i o n i n ( 4 . 1 3 ) a t t = s tends ut(x,o) = 0 f o r m +
t o zero and we o b t a i n
s i n c e um(x,b) = 0.
Consequently f o r n = 1, 2 ,
...
uy(x,b)vn(x)dx = 0 and by t h e completeness o f t h e vn(cf. R H e l l w i g [3]) i t f o l l o w s t h a t uF(x,b) = 0. Now one may i n t e g r a t e m b (4.10) over Qs and since u (x,b)
=
=
m ut(x,b)
=
0 there r e s u l t s
1 m 2 - ( u ) dxdt 2(2m+1)jQb t t S
Since m 5
-
1 i t f o l l o w s t h a t f o r any s, 0 5 s 5 b, 2 +c(um)']/
theorem i s immediate.
t=s
dx = 0 and t h e conclusion o f t h e
Young a l s o t r e a t s t h e Neumann problem by s i m i l a r t e c h n i ques.
T r a v i s [l]uses a d i f f e r e n t method w i t h more general
boundary c o n d i t i o n s and breaks up t h e range o f m i n t o p a r t s corresponding t h e t h e Weyl l i m i t c i r c l e and l i m i t p o i n t s i t u a t i o n s ( c f . Coddington-Levinson [ l ] ) . s i n g u l a r e i gen va 1ue problem
258
Thus one considers t h e
4.
SELECTEDTOPICS
,Itzm+’ I$( t ) I ‘dt
<
$(b) = 0
m;
I t can be shown t h a t f o r m 5 -1 o r m
L
1 t h e problem (4.16)
has
a p u r e p o i n t spectrum and t h e e i g e n f u n c t i o n s f o r m a complete 2m+l o r t h o g o n a l s e t on (o,b) r e l a t i v e t o t h e w e i g h t f u n c t i o n t
.
Furthermore i f f has f i n i t e tZm+’ norm on (o,b) (i.e.¶ b $m+l I f ( t ) l 2 d t < m ) t h e n t h e Fredholm a l t e r n a t i v e ( c f . H e l l w i g
[
’0
2m+l $’ [3]) h o l d s f o r t h e nonhomogeneous e q u a t i o n ( t = tZm+’f. I n t h e l i m i t
Atzm+’$
c i r c l e case
-
I
+
1 < m < 1 there i s
always a p u r e p o i n t spectrum w i t h a complete o r t h o g o n a l s e t o f e i g e n f u n c t i o n s $ n ( r e l a t i v e t o t h e w e i g h t f u n c t i o n tZm+’) f o r the problem (4.17)
(t
2m+l$l)’
I
where W($,J,,t)
= $J,
+
t2rn+lA$ = 0;
-
$ J, and J, = + ( t y A o ) i s a p o s s i b l y complex
$ ( b ) = 0;
I
v a l u e d s o l u t i o n o f t h e d i f f e r e n t a1 e q u a t i o n ho s a t i s f y i n g t
2m+ 1 W ( $ ¶ T y t ) + 0 as t
-f
n (4.17)
for X =
0 (such J, e x i s t ) .
The
Fredholm a1 t e r n a t i v e a l s o h o l d s a g a i n f o r t h e corresponding nonhomogeneous problem. We t a k e now a i j ( * )
E
C
s u f f i c i e n t l y smooth boundary
1
i n a bounded open s e t R
r
where aiJ
u1El2 w h i l e c ( = ) i s c o n t i n u o u s i n R. 259
= a j i and Fa
cRn ij
with
Cisj 2
L e t a/av denote t h e
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
transverse d e r i v a t i v e a/av
r
i s t h e e x t e r i o r normal t o
Let m
Theorem 4.5 E
cos (v,x.) J
and l e t Lmu = utt +
a/ax. where v 2m+l
1
-pt -
) + cu as before. x .1 'j
l(aiju
u"
laij(x)
=
C2(cx
(o,b)),
um(x,b) = 0 f o r x
4
(-1,l)
E
r
+ a ( x ) u m = 0 on
aum/av
r bt2m+l
R while
3x
and Lmum = 0 i n x
(o,b),
m 2 Iu (x,t)l d t <
a.
(o,b) w i t h and Then
JO
(9)
f 0 where p = I m l and {An) i s P t h e s e t o f p o s i t i v e eigenvalues o f - l ( a i j v x ) x + cv = hv i n u" 5 0 i f and o n l y i f J
R w i t h av/av
+ crv
= 0
on
i
r.
j
The p r o o f i s s i m i l a r i n p a r t t o t h a t o f Theorem 4.4.
Thus,
i f t h e r e e x i s t s a p o s i t i v e eigenvalue An o f t h e e l l i p t i c problem i n d i c a t e d i n t h e statement o f Theorem 4.5 such t h a t J 0 then s e t um(x,t) = tmmJ (%t)vn(x)
P f u n c t i o n corresponding t o An.
(q) =
P where vn i s t h e eigen-
E v i d e n t l y u" s a t i s f i e s Lmum = 0
and t h e r e q u i r e d boundary c o n d i t i o n s .
On t h e o t h e r hand suppose
L e t u" be a s o l u t i o n o f J ( 5 b ) 0 f o r a l l An as described. P Lmum = 0 s a t i s f y i n g t h e c o n d i t i o n s s t i p u l a t e d i n Theorem 4.5. L e t +,(t) (4.16)
and vn(x) be t h e normalized e i g e n f u n c t i o n s f o r t h e
and t h e e l l i p t i c eigenvalue problem i n t h e statement o f
Theorem 4.5 r e s p e c t i v e l y .
Then t h e s e t C+,(t)v,(x)l
is a
complete orthonormal s e t f o r t h e r e a l H i l b e r t space H = 2 L(R ,
x
(o,b))
= (h;
:1 1,
t2m+1h2(x,t)dxdt <
H we can w r i t e um(x,t) = mula f o r aij.
m)
and s i n c e urn E
la..+.(t)vi(x) w i t h t h e standard f o r 1J J um(x,t)vi(x)dx so t h a t Now d e f i n e h i ( t ) =
R
260
4.
(t2m+’h;(t))l
+
SELECTED TOPICS
Ait2m+1hi(t)
= 0, hi(b)
e i g e n v a l ue c o r r e s p o n d i n g t o vi. formula ] I t 2 m ’ h f ( t ) d t Ai
=
= 0, where Ai
By t h e P a r s e v a l - P l a n c h e r e l
r l a 1. .JI 2 <
m
and t h e r e f o r e h i ( t )
i s n o t an e i g e n v a l u e f o r t h e problem (4.16),
Jp(qb)
$ 0.
i s the
0 if
if
i.e.,
Consequently um(x,t) z 0 s i n c e t h e vi(x)
a r e com-
2
p l e t e i n L (R) and um i s c o n t i n u o u s i n R x (o,b). Remark 4.6
We remark f i r s t ( c f . T r a v i s [ l ] ) t h a t f o r m 5 -1
t h e problem t r e a t e d i n Theorem 4.5 i s e q u i v a l e n t t o Lmum = 0,
r‘
3um/3v + oum = 0 on Remark 4.7
x (o,b)
and um(x,b)
= um(x,o)
= 0.
L e t us n o t e i n p a s s i n g t h a t , i n general, i f L
i s a s i n g u l a r second o r d e r o r d i n a r y d i f f e r e n t i a l o p e r a t o r i n t such t h a t t h e n u m e r i c a l i n i t i a l v a l u e problem Lu + Anu = 0, u ( o ) = 1, u t ( o ) = 0, has a s o l u t i o n u n ( t ) , when A,
i s an e i g e n -
v a l u e o f t h e ( c l o s e d densely d e f i n e d ) o p e r a t o r A i n a H i l b e r t space E, w h i l e t h e c o r r e s p o n d i n g s e t o f e i g e n v e c t o r s {en) o f A forms a complete orthonormal s e t i n E, then f o r m a l l y t h e E valued function w ( t ) = lan(Lun++,un)en
1 anun(t)en
s a t i s f i e s Lw + Aw =
= 0 w i t h w(o) = l a n e n and wt(o)
t h e an t o be t h e F o u r i e r c o e f f i c i e n t s o f w(o) = e
Lw + Aw
a formal s o l u t i o n o f
Choosing
= 0. E
D(A) one has
= 0 w i t h w(o) = e and wt(o)
=
0.
Uniqueness q u e s t i o n s c o u l d t h e n be handled i n terms o f t h e L
2
formal a d j o i n t L
I
o f L and t h e o p e r a t o r A
t h a t Ae = A(lanen) = lanAen = CanAnen f o r e ( e y en ) we have (Ae,ek)
=
*
E
.
Indeed g i v e n
D(A) w i t h an =
~anAn(en,ek) = akAk = Ak(e,ek)
2 61
so
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
ek
*
*
A ek
D(A ) w i t h
E
=
-
Hence A
Akek.
*
has a complete o r t h o -
normal s e t o f e i g e n v e c t o r s ek w i t h eigenvalues
Tk.
Assume then
I
t h a t t h e problem L v + Tnv = 0, v(b) = 0, v ( b ) = 1 has a solut t i o n v n ( t ) on [o,b]
f o r any b.
Here, g i v e n Lu = u
I
Bu w i t h u ( o ) = u ( 0 ) = 0 and v a C
i
I
I
0 and v ( b ) = 0 we d e f i n e L v = v b t i that u v d t = -u(b) + O
I 1
I
+ au +
2 function s a t i s f y i n g v(b) =
I I
-
(w)
I
+ Bv and observe
n
Now w r i t e w = l b n v n ( t ) e n where e = w ( b ) = lbnen i s an a r b i t r a r y
*
D(A ) ) .
element o f some dense s e t (e.g.,
Then i f (L+A)w = 0
I
w i t h w(o) = w ( 0 ) = 0 we consider f o r m a l l y t h e e q u a t i o n (4.18)
0 =
b
A
((L+A)w,w)dt
= lbn
0
+
I
b
(Lw,vnen)dt
0
1
b
l (w,L v n e n ) d t l + l b
0
I t f o l l o w s t h a t w(b) = 0 f o r any b and hence w
z 0.
The c a l c u -
l a t i o n s have been formal b u t they a p p l y t o r e a l i s t i c s i t u a t i o n s . Theorem 4.8
m Assume m E (-l,l), Lmu = 0, urn
aum/av + a(x)um = 0 on
r
x
l i m t2m+1W(um,~,t) = 0 as t
(o,b),um(x,b) +
E
C2(sZx(o,b)),
= 0, and
0 where $ i s a p o s s i b l y complex
262
SELECTEDTOPICS
4.
valued s o l u t i o n o f t h e d i f f e r e n t i a l equation i n (4.17) A
0
= A s a t i s f y i n g l i m t2m+1W(q,~,t) = 0 as t
+
0.
f o r some
Then u" :0
i f and o n l y i f Rn f Ak where Rn and Ak a r e t h e eigenvalues o f (4.17)
and t h e e l l i p t i c problem i n t h e statement o f Theorem 4.5
respect iv e l y
.
The p r o o f here i s s i m i l a r t o t h a t o f Theorem 4.5.
Finally
T r a v i s [l]s t a t e s some r e s u l t s r e l a t e d t p Theorems 4.3 and 4.4 and some comparison i s i n s t r u c t i v e (see Remark 4.10). Theorem 4.9
Let u
3um/3v + a ( x ) u m = 0 on for x
E
r
x
(o,b),
w h i l e um(x,o) = um(x,b) = 0
R when m < 0 o r Ium(x,o)l <
when m 2 0.
s a t i s f y Lmum = 0 and
C2(Ex(o,b))
E
m
and um(x,b) = 0 f o r x
E
R
(q)
f 0 where t h e P An a r e t h e eigenvalues o f t h e e l l i p t i c problem i n the statement Then urn E 0 i f and o n l y i f J
of Theorem 4.5 and p = Im Remark 4.10
Theorem 4.9
-
i s independent o f Theorem 4.3 f o r example even when
0.
m I n Theorem 4.3 one assumes ut i s continuous i n
whereas Theorem 4.9 assumes o n l y c o n t i n u i t y o f u:
[o,b))
1/2 < m <
Ex
-
-
But uT(x,t) = O ( t -2m-1) as t
x
[o,b]
on E x (o,b).
Consider f o r example um(x,t) = t'mJ( t ) s i n x f o r P m 2m+l m m m which s a t i s f i e s utt + T~ uxx = 0 w i t h u (o,t)
0 and um (x,o) = 0.
r
(rephrased f o r urn = 0 on
+
1/2 < m < 0 = u"(r,t)
=
0 so t h e hy-
potheses o f Theorem 4.3 do n o t h o l d whereas Theorem 4.9 ( r e phrased) w i l l apply.
On t h e o t h e r hand Theorem 4.3 does n o t
require conditions a t t = b f o r m >
-1. S i m i l a r l y T r a v i s [l] 2
s t a t e s a r e s u l t f o r a Neumann problem (ut(x,o) 263
= ut(x.b)
= 0)
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
r e l a t e d t o a theorem o f Young [4]. 4.5
Miscellaneous problems.
Various Cauchy problems w i t h
boundary data f o r EPD equations have been s t u d i e d and we w i l l mention a few r e s u l t s .
2m urn Solve Lmum = utt + ___ t t
Problem 5.1
m >
-
1/2,
o
F i r s t c o n s i d e r ( c f . Fusaro [41)
+
< x < r , t > 0, um(x,o) = f ( x ) ( f
0, and um(o,t) = u m ( r , t ) = 0.
E
-
um = 0, where xx 2 c 1, u! (x,o) =
One assumes a l s o f ( o ) = f(n) = 0.
Then by s e p a r a t i o n o f v a r i a b l e s Fusaro [41 o b t a i n s a s o l u t i o n i n t h e form (5.1)
um(x,t) =
where bn =
]:[
I
IT
r(m+l)
[F] J m ( n t ) s i n n x -m
m
1
n=l
bn
Using t h e formula (1.3.7)
f ( x ) sinnx dx.
0
a change o f v a r i a b l e s $ = r/2
-
with
0 and p u t t i n g t h i s i n (5.1) one
obtains
cos
2m
$ d $
where 8 denotes t h e Beta f u n c t i o n .
There r e s u l t s ( c f . Fusaro
[41) Theorem 5.2
A unique s o l u t i o n o f Problem 5.1 i s g i v e n by
(5.2). The p r o o f o f Theorem 5.2 i s s t r a i g h t f o r w a r d and w i l l be omitted.
I f one s e t s 5 = s i n $ and M(x,a,f)
f ( x - o ) ] we can w r i t e (5.2) i n t h e form
264
=
21 [ f ( x + a ) +
4.
SELECTEDTOPICS
+ ~]-1~1(l-~)m-"2M(x,Et,f)dg
um(x,t) = 2 ~ [ + , m
(5.3)
0
which c o i n c i d e s w i t h (1.6.3).
We remark here t h a t f i s extended
from ( O , I T ) as an odd p e r i o d i c f u n c t i o n o f p e r i o d ZIT. Another t y p e o f such "mixed" problems i s solved by Young 191 ; here mixed problem means mixed i n i t i a l - b o u n d a r y value probThus con-
lem and does n o t mean t h a t t h e problem changes type. sider m + ___ 2m+1 Solve Lmum = utt t
Problem 5.3 f(x,y,t)
m > f
E
-
i n t h e q u a r t e r space x > 0, t > 0,
m 1/2, u (x,y,o)
C2, g
E
C
2
A t p o i n t s (x,y,t)
03
xx < y <
= 0, and u"(o,y,t)
= u:(x,y,o)
, and g(y,o)
-
t
= gt(y,o)
-
=
m,
YY where
= g(y,t) with
= 0.
where x 2 t > o t h e presence o f g i s
n o t f e l t and Young takes t h e s o l u t i o n i n t h e form given by DiazLudford [31
where D i s t h e domain bounded by T = Oandthe r e t r o g r a d e chara c t e r i s t i c cone R = v e r t e x a t (x,y,t)
(t-T)'
while
^R
-
-
(x-c)'
= (tt-r)'
-
= 0 (t-oO)
(y-0)'
(x-c)'
-
(y-n) 2
.
with I n the
r e g i o n where 0 < x < t formula (5.4) no l o n g e r g i v e s t h e s o l u t i o n s i n c e i t does n o t i n v o l v e g and Young uses a method o f M. Riesz as adapted by Young [l;21 and Davis [l;21 t o a d j o i n a d d i t i o n a l terms t o t h e um o f (5.4).
We w i l l n o t go i n t o t h e d e r i v a t i o n o f
t h e f i n a l formula b u t simply s t a t e t h e r e s u l t ; f o r s u i t a b l e m 265
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
t h e t e c h n i q u e can be extended t o more space v a r i a b l e s .
The
s o l u t i o n i s g i v e n by t h e f o r m u l a
22m+l
--_ 'lr where R,
-
= (t-.)'
I
a ax
T
(x+<) 2
I\
v a l u e o f R ( r e s p . R) f o r
D'. i s t h e domain where
<
5
-
(y-rl)',
i* =
= 0,
> 0,
Ro ( r e s p .
T
(ttT)2
-
Go)
denotes t h e 2 (x+E)2 - (y-rl) y
> 0, bounded by t h e r e t r o g r a d e
*
D C D), and
cone w i t h v e r t e x a t ( - x , y , t ) ( t h u s
T i s the region
i n t e r c e p t e d on t h e p l a n e 5 = 0 by t h e cone R = 0
*
that for x 2 t > 0 D g r a l s o v e r D and
Theorem 5.4
*
and T a r e empty w h i l e as x
D cancel each o t h e r s i n c e D
*
(T +
Note
> 0).
0 the inteh
+
D and (R,R)
+
The s o l u t i o n o f Problem 5.3 i s g i v e n by (5.5).
I t i s i n t e r e s t i n g t o n o t e what happens when a l l o f t h e d a t a
i n an EPD t y p e problem a r e a n a l y t i c .
Thus f o r example Fusaro
[3] c o n s i d e r s f o r t > 0, 1 5 k 5 n, and x = (xl,
(5.6)
. . .,
u"tt + 2m+l t um t = F(x,t,um,Dku",u~,Dku~,DkDeum); m u (x,o)
=
f(x);
m
Ut(X,O)
266
= 0
Xn)
SELECTEDTOPICS
4.
where Dk = a/axk w h i l e F and f a r e a n a l y t i c i n a l l arguments. Theorem 5.5
-1, -3/2,
for m
The problem (5.6)
....
-2,
C o r o l l a r y 5.6
has a unique a n a l y t i c s o l u t i o n
. . .)
I f F(x,t,u,
=
G(x,u,Dku,D
k Dau ) +
+ h ( t ) u t w i t h g even i n t and h odd i n t, t h e n t h e problem
g(x,t)
has f o r a l l m f -1,
(5.6)
-3/2,
...a
-2,
unique a n a l y t i c s o l u -
. . . there exists
I f m = -3/2,-5/2,
t i o n and i t i s even i n t.
a unique s o l u t i o n i n t h e c l a s s o f a n a l y t i c f u n c t i o n s which a r e even i n t. Fusaro [3] uses a Cauchy-Kowalewski t e c h n i q u e t o p r o v e these r e s u l t s and we r e f e r t o h i s paper f o r d e t a i l s .
One s h o u l d n o t e
a l s o t h e f o l l o w i n g r e s u l t s o f L i o n s [l],o b t a i n e d by transmutat i o n , which i l l u s t r a t e f u r t h e r t h e r o l e p l a y e d b y even and Cm f u n c t i o n s o f t i n t h e uniqueness q u e s t i o n f o r EPD equations. L e t E,
be t h e space o f Cm f u n c t i o n s f on [o,m)
f(2n+1)(o) = 0 (thus f (-0,m))
and g i v e E,
E
E,
such t h a t
admits an even Cm e x t e n s i o n t o
t h e topology induced by
E on
(-,a).
Let H
be a H i l b e r t space and A a s e l f a d j o i n t o p e r a t o r i n H such t h a t f o r a l l h c D(A) (Ah,h) Lm=D
*'+'
+-
t
+ allh112 Z 0 f o r some r e a l a. S e t t i n g
D and p u t t i n g t h e graph t o p o l o g y on D(A) L i o n s
proves Theorem 5.7
For any m
e x i s t s a unique s o l u t i o n um
E E
f, m =f -1, -2, E,
267
h
BT D(A)
-3,
. . ., t h e r e
o f Lmum + hum = 0 f o r
SINGULAR AND DEGENERATECAUCHY PROBLEMS
t 2 0 w i t h um(o) = h
Here
T
and uT(o) = 0.
D(A")
denotes t h e p r o j e c t i v e l i m i t t o p o l o g y o f Grothendieck
( c f . Schwartz [5]) i s nuclear.
E
which c o i n c i d e s w i t h t h e
I f m f -1,
Coo f u n c t i o n s on [o,m)
-3/2,
w i t h t h e standard E-type topology then any
s o l u t i o n urn E E + B ~ D(A) o f E
topology s i n c e E,
. . . and E+ i s t h e space o f
-2,
A
h
E
L~U"'
+ hum = o s a t i s f y i n g um(o)
=
A
D(A")
and uT(o) = 0 i s a u t o m a t i c a l l y i n E * B T D ( A ) so t h e *
corresponding problem i n E+ BT D ( A ) has a unique s o l u t i o n . t h e e x c e p t i o n a l values m = -1, -2, Theorem 5.8
For
. . . Lions [l]proves
-3,
Let m = -(p+l) with p
2
0 an i n t e g e r so t h a t h
2m + 1
There e x i s t s a unique s o l u t i o n urn E E + q D ( A ) -(2p+l). m m 2p+l m + Au = 0, um(o) = uY(0) = = Ut u ( 0 ) = 0,
of u L,
...
DZP+*um(o) = h
E
D(Am), and DZP+3um(o) = 0.
I n connection w i t h t h e uniqueness q u e s t i o n we mention a l s o t h e f o l l o w i n g r e c e n t r e s u l t o f Donaldson-Goldstein [Z].
Let H
be a H i l b e r t space and S a s e l f a d j o i n t o p e r a t o r i n H w i t h no n o n t r i v i a l n u l l space.
L e t Lm = D2
+ 2m+l D again and d e f i n e urn t
t o be a t y p e A s o l u t i o n o f m LmU + S2um = 0;
(5.7)
if urn
E
2
um(o) = h
E
D(S2);
m ut(o) = 0
and a t y p e B s o l u t i o n i f urn E C1 ([o,m),H)n
C ([o,m),H)
C2( (oYrn),HI. Theorem 5.9 solution f o r m
The problem (5.7)
2 -1. 268
can have a t most one type' A
4.
SELECTED TOPICS
F u r t h e r , by v i r t u e o f (1.4.10) ( c f . Remark 1.4.7),
and t h e formula um =
t-2mu-m
f o r m < -1/2 n o t a n e g a t i v e i n t e g e r t h e r e i s
no uniqueness f o r t y p e B s o l u t i o n s .
We n o t e here t h a t f o r -1 <
m < -1/2 we have 1 < -2m < 2 and um = t -2mu-m = O(t-2m) -+ 0 as t
+
0 w i t h u" = O(t-2m-1 t
)
-+
0 b u t uYt = O(t-2m-2)
-+
m
so such a
m 2 1 u i s n o t o f t y p e A. F o r m = -1 we l o o k a t u - l = t u w i t h -1 -1 O However from Remark u ( 0 ) = u'; ( 0 ) = 0 and utt E C ([o,m) ,H). 1.4.8
we see t h a t t h e s o l u t i o n u-' a r i s i n g from t h e r e s o l v a n t
R - l (which c o u l d be s p e c t r a l i z e d as i n S e c t i o n 1.5) does n o t have a continuous second d e r i v a t i v e i n t unless t h e l o g a r i t h m i c term 2 vanishes, which corresponds t o S h = 0 i n t h e p r e s e n t s i t u a t i o n .
does n o t seem t o have a type A s o l u t i o n f o r
Thus i n general (5.7)
2
m = -1 and i f i t does t h e s o l u t i o n a r i s e s when S h = 0.
i f L-lu-l
then U;;(O) -S2um1
[3]),
-+
+ S2u-l = 0 w i t h u - l ( o ) = h and u;l(o)
Indeed
i s well defined
+ 0 so L lu-l = u-l - 1 u-l = tt t t 2 -1 2 0 which means t h a t S u ( 0 ) = S h = 0 ( c f . Weinstein
= l i m l/t
u,'(t)
as t
which i s precluded unless h = 0.
2 -- 0 then u - ' ( t )
S h
=
h and u - ' ( t )
0 with
Note t h a t i f h
= h
+ t 2h w i l l b o t h be solu-
t i o n s o f (5.7). We go now t o some work o f Bragg [2; 3; 4; 51 on index s h i f t i n g r e l a t i o n s f o r s i n g u l a r problems.
T h i s i s connected t o t h e
i d e a o f " r e l a t e d " d i f f e r e n t i a l equations developed by Bragg and Dettman, l o c . c i t . , Section 1.7).
and described b r i e f l y i n Chapter 1 ( c f .
Consider f i r s t f o r example ( a 2 0,
269
u 2
1)
SINGULAR AND DEGENERATE CAUCHY PROBEMS
T h i s i s a r a d i a l l y symmetric form of the EPD equation when
=
n f o r example since the r a d i a l Laplacian i n R n has the form 2 +n-1
r Dr* As i n i t i a l data we take
AR = Dr
(5.9)
U (ay’)(ryo) =
u(ay’)(ryo) t = 0
T(r);
From the recursion r e l a t i o n s of Chapter 1 ( c f . (1.3.11),
(1.3.54),
(1.3.55),
(1.4.6),
(1.4.10),
(1.3.12),
and Remark 1.4.7) we
see t h a t there a r e c e r t a i n “automatic” shifts i n the a index. For example the Sonine formula (1.4.6) w i t h a l al + a 2 (5.10)
=
=
2 p + 1 and
2m + 1 y i e l d s f o r al 2 0, a2 > 0
u
(a1+a2 ,!J)
a2-2
( r , t ) = c1,2t -al -a2 It(t2-,,2) 21; 0
‘ U
(a1 YU)
( r Y r l ) drl
al+l a2 Bragg [5] obtains t h i s r e s u l t u s i n g = 2 / f 3 ( ~, 7). 1 2 Laplace transforms and a r e l a t e d r a d i a l heat equation
where c
(5.11)
v: = vyr +
$!-v;:
v’(r,o)
=
T(r)
The connection formula f o r a 2 1 i s given under s u i t a b l e hypotheses by (cf. Bragg [5], Bragg-Dettman [6])
(here L;’
2
i s the inverse Laplace transform w i t h kernel est ) arid
(5.10) follows d i r e c t l y by a convolution argument.
setting I v ( z ) = exp, ( - 1F v ~ i ) J v ( i z ) and Ku(r,S,t) 270
Similarly, =
4.
SELECTEDTOPICS
2 2 exP C - ( r +E ) / 4 t l I u / 2 - 1 ( r E / 2 t ) , one can show P t h a t v’(r,t) = r,E,t)T(E)d< s a t i s f i e s (5.11), and u s i n g oKJ (5.12) t h e r e r e s u l t s from known p r o p e r t i e s o f Iv (a)-lrl-’/2<’/2
1
Let a 2 0 w i t h u(~’’)
Theorem 5.10 o f (5.8)
-
(5.9).
s a t i s f i e s (5.8)
a continuous s o l u t i o n
Then
= (5.9)
w i t h i n d e x 1-1 + 2.
On t h e o t h e r hand a
d i r e c t s u b s t i t u t i o n shows t h a t i f u (ay4-’)(r,t)
-u
w i t h index 4
r2-’u(ay4-’)(r,t)
and u (ay4-’)(r,0) s a t i s f i e s (5.8)
=
-
s a t i s f i e s (5.8)
r’-2T(r) (5.9)
then u ( a y ’ ) ( r , t )
=
except possibly a t r =
0. Using t h e i n d e x s h i f t i n g r e l a t i o n s i n d i c a t e d on a and p
-
Bragg [5] proves a uniqueness theorem f o r (5.8)
L 1 and c o n s t r u c t s fundamental s o l u t i o n s .
a 2 0 and 1-1
o f r e l a t e d d i f f e r e n t i a l problems such as (5.8) ( o r (5.8)
-
(5.9)
mulas l i k e (5.12) 3;
(5.9) when
-
(5.9)
The i d e a and (5.11)
w i t h i n d e x changes), h a v i n g c o n n n e c t i o n f o r ( o r (5.10)),
has been e x p l o i t e d by Bragg [2;
41 t o produce a v a r i e t y o f i n d e x s h i f t i n g r e l a t i o n s i n v o l v i n g
a t t i m e s t h e g e n e r a l i z e d hypergeornetri c f u n c t i o n s
where (a),
=
a(a+l)
. . . (a+n-1),
II:(yj),,
=
1 i f p = 0, and
none o f t h e 6 . a r e nonposi t i v e i n t e g e r s ( c f . A p p e l l -Kampe/ de J 271
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
F g r i e t [l]).We w i l l mention a few r e s u l t s i n t h i s d i r e c t i o n w i t h o u t g i v i n g p r o o f s and here we r e c a l l t h a t i f 0 = zDZ then
w
F s a t i s f i e s the d i f f e r e n t i a l equation P q IOnl(O+B.-l)-zn~(O+a.)}w q = 0. Thus l e t P(x,D) = J A: ‘n Dn where Dk = a/axk and [XI = l X i raX(x)D1 =
...
5 m.
Let
= t D l l q ( t D + B . - l ) and 02(pya,t,Dt) = t I I y ( t D +a ). t 1 t J t j Then given P(x,D) and Q(x,D) o f t h e type i n d i c a t e d w i t h o r d e r s
el(qYB,t,Dt)
R1 and
R2 r e s p e c t i v e l y and r = max (p+R1 ,q+R2) w i t h p 5 q one can
prove f o r example (cf.
Bragg [4])
Let u
Theorem 5.11
E
Cr i n ( x , t )
f o r t > 0 w i t h u and a l l
i t s d e r i v a t i v e s through o r d e r r bounded and l i m u ( x , t )
t
-
P(x,D)0,(p-1,a,t,Dt)u = 0. -1 -1 rrn -0 Then f o r a > 0 t h e f u n c t i o n v(x,t) = r ( a ) e u P u(x,tu)du P p 10 P82(p,art,Dt)v = 0 and v(x,o) = T(x). s a t i s f i e s Qel(q,B,t,Dt)v +
0.
= T ( x ) as
Suppose Q(x,D)01(q,f3,t,Dt)u
-
S i m i l a r l y , under s u i t a b l e hypotheses, i f [Q0 (4-1 ,B,t,Dt) 1-Bq q P02(p,a,t,Dt)]u = 0 and w(x,t) = t r(Bq)Ui1[S u(~,l/s)]~+~
-A
then one has [Qel(q,B,tyDt)
a , and
formulas i n (p,q),
-
P02(p,a,t,Dt)]w
= 0.
Index s h i f t
are a l s o proved and when a p p l i e d t o
EPD equations f o r example w i l l y i e l d some o f t h e standard r e c u r sion relations.
5
=
We n o t e t h a t under t h e change o f v a r i a b l e s
1 t 2 t h e EPD e q u a t i o n utt + a ut = Pu becomes [
a+ 1 -1) 2
-
5
gP]u = 0.
s h i f t s i n a and
5
+
Using t h e R-L i n t e g r a l , continuous index
B f o r s i m i l a r a b s t r a c t problems are t r e a t e d i n
Bragg [3] where a more s y s t e m a t i c t h e o r y i s developed; nonhomogeneous problems a r e s t u d i e d i n Bragg [2].
272
4.
SELECTEDTOPICS
We conclude w i t h a few remarks about n o n l i n e a r EPD equations. I n K e l l e r [l]i t i s shown t h a t f o r m > 0 and c e r t a i n n o n l i n e a r f t h e Cauchy problem L u = utt + m
(5.15)
u(x,o)
"+'
u t t
2 c Au = f ( u ) ;
uo(x);
=
R2x
does n o t have g l o b a l s o l u t i o n s i n
E
R
c R n with u
= 0
on
s u f f i c i e n t l y smooth boundary t i o n and f o r each r e a l @ Set (@,I)) =
(0,m)
for arbitrary ini-
-
Levine [2] s t u d i e s t h i s problem f o r
t i a l data uo. and x
= 0
Ut(X;O)
E
r r.
1 < m 5 0
[o,T) where R i s bounded w i t h
x
L e t f be a r e a l valued C
C2(E) define G(@) =
1
R
such t h a t f o r a l l @
E
func-
(~(x)f(r)dz)dx.
1R@ ( x ) $ ( x ) d x and assume t h e r e i s a constant r
1
O
ct > 0
C2(E)
I t can be shown t h a t i f , f o r some ct > 0 and some monotone i n -
) , (5.1G) c r e a s i n g f u n c t i o n h, f ( z ) = l ~ 1 ~ ~ + ' h ( zthen
i s valid.
Assuming t h e e x i s t e n c e o f a l o c a l s o l u t i o n f o r each uo v a n i s h i n g on
r
-
-+
Let
G(uo) > as t
-+
- 21 < m 5
0 and assume (5.16)
holds.
If
R 1 i s a c l a s s i c a l s o l u t i o n o f Lmu = f ( u ) w i t h
u(x,o) = u ( x ) , ut(x,o) 0
C2(E)
Levine proves
Theorem 5.12
u : R x [o,T)
E
1 2 7 ~ R I V u o ldx,
= 0, and u = 0 on
then n e c e s s a r i l y T <
T-.
273
r
x
[o,T), w h i l e
This page intentionally left blank
REFERENCES
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
A b d u l - L a t i f , A. and Diaz, J. 1. D i r i c h l e t , Neumann, and mixed boundary value problems f o r t h e wave equation uxx-uyy = 0 f o r a r e c t a n g l e , Jour. Appl. Anal.,
1 (1971), 1-12.
Adler, G. 1. Un type nouveau des probl&nes aux l i m i t e s de l a conduct i o n de l a chaleur, Magyar Tud. Akad. Mat. Kutato I n t . K b i l . , 4 (1959), 109-127. Agmon, S., Nirenberg, L. and P r o t t e r , M. 1. A maximum p r i n c i p l e f o r a c l a s s o f h y p e r b o l i c equations and a p p l i c a t i o n s t o equations o f mixed e l l i p t i c h y p e r b o l i c type, Corn.' Pure Appl. Math., 6 (1953), 455-470. Agmon, S . 2. Boundary value problems f o r equations o f mixed type, Conv. I n t . Eq. L i n . Der. Parz., T r i e s t e , Cremonese, Rome, 1955, pp. 54-68. Agmon, S. and Nirenberg, L. 3. Lower bounds and uniqueness theorems f o r s o l u t i o n s o f d i f f e r e n t i a l equations i n a H i l b e r t space, Comm. Pure Appl. Math., 20 (1967), 207-229. A1 b e r t o n i , S. and C e r c i g r a n i 1. Sur un probl'eme m i x t e dans l a dynamique des f l u i d e s , C. R. Acad. S c i . P a r i s , 261 (1965), 312-315.
Amos, D. E. 1. On half-space s o l u t i o n s o f a m o d i f i e d heat equation, Q u a r t . Appl. Math., 27 (1969), 359-369. de F$ri,et, J. Appell, P. and Kamp!f 1. Fonctions hypergeometriques e t hypersphgriques. Polynomes d'Hermite, Gauthier - V i l l a r s , P a r i s , 1926. Arens, R. 1. The a n a l y t i c f u n c t i o n a l c a l c u l u s i n commutative t o p o l o g i c a l algebras, P a c i f i c Jour. Math., 11 (1961), 405-429. Arens, R. and C a l d e d n 2. A n a l y t i c f u n c t i o n s o f several Banach algebra elements, Annals Math., 62 (1955), 204-216. Aronson, D. 1. R e g u l a r i t y p r o p e r t i e s o f f l o w s through porous media, S I A M Jour. Appl. Math., 17 (1969), 461-467.
276
RE FERENC ES
Asgeirsson, L. 1. Uber e i n e M i t t e l w e r t e i g e n s c h a f t von Losungen homogener l i n e a r e n p a r t i e l l e n D i f f e r e n t i a l q l e i c h u n q e n z w e i t e r Ordnung m i t konstanten K o e f f i z i e n t e n , Math.-Annalen, 113 (1937), 321-346. Babalola, V. 1. Semigroups o f o p e r a t o r s on l o c a l l y convex spaces, t o appear. Babenko, K. 1. On t h e t h e o r y o f equations o f mixed type, Usp. Mat. Nauk, 8 (1953), 160. Baiocch Y c. 1. S u l l e equazioni d i f f e r e n z i a l i l i n e a r i d e l primo e del second0 o r d i n e n e g l i spazi d i H i l b e r t . Ann. Mat. Pura Appl. (4), 76 (1967), 233-304. Baker, B. and Copson, E. 1. The mathematical t h e o r y o f Huygens' p r i n c i p l e , Oxford, 1939. Baouendi, M. and Goulaouic, C. 1. Cauchy problems w i t h c h a r a c t e r i s t i c i n i t i a l hypersurface, Comm. Pure Appl Math. , 26 (1973), 455-475.
.
Baranovski j , F. 1. The Cauchy problem f o r an equation o f Euler-PoissonDarboux type and a degenerate h y p e r b o l i c equation, I z v . Vis. UE. Zaved., Matematika, 6 (19), 1960, 11-23.
2.
The Cauchy problem f o r a second o r d e r h y p e r b o l i c equation t h a t i s s t r o n g l y degenerate (case A = 1), Dopovidi Akad. Nauk Ukrain. RSR, 91 (1971), 11-16.
3.
On t h e Cauchy problem f o r a s t ongly degenerate hyperb o l i c equation, S i b i r s k . Mat. Eur., 4 (1963), 1000-1011.
4.
The mixed problem f o r a l i n e a r h y p e r b o l i c e q u a t i o t o f t h e second o r d e r degenerating on t h e i n i t i a l plane, Uc. Zap. Leningrad. Ped. I n s t . , 183 (1958) , 23-58.
5.
The mixed p5oblem f o r a h y p e r b o l i c degenerate equation, I z v . Vis. Uc. Zaved., Matematika, 3 (16), 1960, 30-42.
6.
On d i f f e r e n t i a l p r o p e r t i e s o f t h e s o l u t i o n o f t h e mixed pcoblem f o r degenerate h y p e r b o l i c equations, I z v . Vis. Uc. Zaved., Matematika, 6 (137), 1963, 15-24.
277
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
7.
The Cauchy problem f o r a l i n e a r h y e e r b o l i c e q u a t i o n deg e n e r a t i n g on t h e i n i t i a l plane, Uc. Zap. Leningrad Ped. I n s t . , 166 (1958), 227-253.
Barantzev, R. 1. Transzvukovoi gazodinamike, I z d . Leningrad. Univ., Barbu, 1.
1965.
V.
Existence theorems f o r a c l a s s o f two p o i n t boundary problems. Jour. D i f f . Eqs., 17 (1975), 236-257.
Bardos, C. and B r & i s H. 1. Sur une c l a s s e de probl&nes d ' & o l u t i o n Jour. D i f f . Eqs., 6 (1969), 345-394.
nonlingaires,
Bardos, C., B r e h s , D. and Bre/zis, H. 2. P$rtuJations s i n g u l i e r e s e t prolongements maximaux d operateurs p o s i t i f s , Arch. R a t ' l . Mech. Anal. 53 (1973), 69-100. B a r e n b l a t t , G., Zheltov, I . and Kochina, I. 1. Basic concepts i n t h e t h e o r y o f seepage o f homogeneous l i q u i d s i n f i s s u r e d rocks, Jour. Appl. Math. Mech., 24 (1 960) , 1286-1 303. B a r e n b l a t t , G. and Chernyi , G. 2. On moment r e l a t i o n s o f s u r f a c e d i s c o n t i n u i t y i n d i s s i p a t i v e media, Jour. Appl. Math. Mech., 27 (1963), 1205-1218. Bargmann, V. 1. I r r e d u c i b l e u n i t a r y r e p r e s e n t a t i o n s o f t h e L o r e n t z group, Annals Math., 48 (1947), 568-640. Bargmann, V. and Wigner, E. 2. Group t h e o r e t i c a l d i s c u s s i o n o f r e l a t i w i s t i c wave equat i o n s , Proc. N a t l l . Acad. Sci., 34 (1948), 211-223. Benjamin, T. B. 1. Lectures on n o n l i n e a r wave motion, i n N o n l i n e a r wave mot i o n , Lect. Appl. Math, 15, Amer. Math. SOC., 1972. Benjamin, T. B., Bona, J. L., Mahoney, J. J . 2. Model eauations f o r l o n a waves i n n o n l i n e a r d i s D e r s i v e systems,' P h i l . Trans. RGy. SOC. London, Ser. A,'272 (1 972) , 47-78. Berezanski j , Yu. 1. Existence of weak s o l u t i o n s o f some boundary problems f o r equations o f mixed type, Ukrain. Mat. hr., 15 (1963), 347-364.
278
REFERENCES
2.
The expansion o f s e l f a d j o i n t o p e r a t o r s i n terms o f eigenf u n c t i o n s , I z d . Nauk. Dumka, Kiev, 1965.
Berezin, I . 1. On t h e Cauchy problem f o r l i n e a r equations o f t h e second o r d e r w i t h i n i t i a l d a t a on t h e p a r a b o l i c l i n e , Mat. S b o r n i k , 24 ( 1 949), 301 -320. Bers, L. 1. Mathematical aspects o f subsonic and t r a n s o n i c gas dynamics, Wiley, N.Y., 1958. 2.
On t h e c o n t i n u a t i o n o f a p o t e n t i a l gas f l o w across t h e s o n i c l i n e , NACA Tech. Note 2058, 1950.
Bhanu M u r t i , T. 1. P l a n c h e r e l ' s f o r m u l a f o r t h e f a c t o r space SL (n, lR)/SO ( n ) , Dokl. Akad. Nauk SSSR, 133 (1960), 503-506. Bhatnager, S. C. 1. H i g h e r o r d e r pseudoparabol i c p a r t i a l d i f f e r e n t i a l equat i o n s , Thesis, I n d i a n a Univ., 1974. B i t s a d z e , A. 1 . Equations o f mixed type, I z d . Akad. Nauk SSSR, Moscow, 1959. 2.
On t h e problem o f e q u a t i o n s o f mixed type, Trudy S t e k l o v Mat. I n s t . , Akad. Nauk, SSSR, 41.
Blurn, E. 1. The Eul e r - P o i sson-Darboux e q u a t i o n i n t h e e x c e p t i o n a l cases, Proc. Amer. Math. SOC., 5 (1954), 511-520.
2.
The s o l u t i o n s o f t h e Euler-Poisson-Darboux e q u a t i o n f o r n e g a t i v e values o f t h e parameter, Duke Math. Jour., 21 ( 1 954) , 257-269.
Blyumkina, I. 1 . On t h e s o l u t i o n by t h e F o u r i e r method o f t h e boundary problem f o r t h e e q u a t i o n u - k ( y ) uxx = 0 w i t h d a t a on W a c h a r a c t e r i s t i c and on t h e degenerate l i n e , V e s t n i k LGU, 1962, NO. 1, pp. 111-115. Bochner, S. and Von Neumann, J. 1 . On compact s o l u t i o n s o f operational-differential equat i o n s I,Annals Math., 36 (1936), 255-291.
279
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Bona, J. 1. On t h e s t a b i l i t y o f s o l i t a r y waves, London, A. , 344 (1975), 363-374.
Proc. Roy., SOC.
Bona, J., Bose, D. and Benjamin, T. B. 2. S o l i t a r y wave s o l u t i o n s f o r some model equations f o r waves i n n o n l i n e a r d i s p e r s i v e media, t o appear Bona, J. L. and Bryant, P. J. 3. A mathematical model f o r l o n g waves generated by wavemakers i n n o n l i n e a r d i s p e r s i v e systems, Proc. Camb. P h i l . SOC., 73 (1973), 391-405. Bona, J. and Smith, R. 4. The i n i t i a l - v a l u e problem f o r t h e KdV equation, P h i l . Trans. Roy. SOC. London, A, 278 (1975), 555-604. 5.
A model f o r t h e two-way propogation o f water waves i n a channel, t o appear
Bourbaki, N. 1. Espaces v e c t o r i e l s top0 ogiques, Chaps. 1-2, Hermann, P a r i s , 1953. 2.
Espaces v e c t o r i e l s top0 ogiques, Chaps. 3-5, P a r i s , 1955.
3.
I n t g g r a t i o n , Chaps. 1-4
4.
I n d g r a t i o n v e c t o r i e l l e , Hermann, P a r i s , 1959.
5.
Groupes e t algGbres de L i e , Chaps. 1-6, Hermann, P a r i s 1960, 1968, 1972.
Hermann,
Hermann, Paris, 1952.
Bourgin, D. 1. The D i r i c h l e t problem f o r t h e damped wave equation, Duke Math. Jour., 7 (1940), 97-120. Bourgin, D. and D u f f i n , R. 2. The D i r i c h l e t problem f o r t h e v i b r a t i n g s t r i n g equation, B u l l . Amer. Math. SOC., 45 (1939), 851-858. Boussinesq: M. 1. Theorie g6nerale des mouvements q u i s o n t propaggs dans un canal r e c t a n g u l a i r e h o r i z o n t a l , C. R. Acad. S c i . P a r i s , 73 (1871), 256.
280
REFERENCES
B.ragg, 1.
L. and Dettman,
J. Multinomial representations o f solutions o f a class o f s i n g u l a r i n i t i a l value problems, Proc. Amer. Math. SOC., 21 (1969), 629-634.
Bragg, L. 2. Related nonhomogeneous p a r t i a l d i f f e r e n t i a l equations, Jour. Appl. Anai., 4 (1974), 161-189. 3.
The Riemann:Liouville i n t e g r a l and parameter s h i f t i n g i n a c l a s s o f l i n e a r a b s t r a c t problems, S I A M Jour. Math. Anal., t o appear
4.
Hypergeometic o p e r a t o r s e r i e s and r e l a t e d p a r t i a l d i f f e r e n t i a l equations, Trans. Amer. Math. SOC., 143 (1969), 319-336.
5.
Fundamental s o l u t i o n s and p r o p e r t i e s o f s o l u t i o n s o f t h e i n i t i a l value r a d i a l Euler-Poisson-Darboux problem, Jour. Math. Mech., 18 (1969), 607-616.
Bragg, L. and Dettman, J. 6. An o p e r a t o r c a l c u l u s f o r r e l a t e d p a r t i a l d i f f e r e n t i a l equations, Jour. Math. Anal. Appl , 22 (1968) , 261-271.
.
7.
Expansions o f s o l u t i o n s o f c e r t a i n h y p e r b o l i c and e l ipt i c problems i n terms o f Jacobi polynomials, Duke Ma h. Jour., 36 (1969), 129-144.
8.
Related p a r t i a l d i f f e r e n t i a l equations and t h e i r app ications, S I A M Jour. Appl. Math., 16 (1968), 459-467.
Bragg, L. 9. S i n q u l a r nonhomoqeneous a b s t r a c t Cauchy and D i r i c h l e t problems r e l a t e d - b y a g e n e r a l i z e d S t i d t j e s transform, I n d i a n a Univ. Math. Jour., 24 (1974) , 183-195. 10.
L i n e a r e v o l u t i o n equations t h a t i n v o l v e products o f comm u t a t i v e operators, S I A M Jour. Math. Anal., 5 (1974), 327-335.
Brauer, F. 1. S p e c t r a l t h e o r y f o r t h e d i f f e r e n t i a l equation Lu = AMu, Canad. Jour. Math., 10 (1958), 431-436. B r e s t e r s , D. 1. On t h e equation o f Euler-Poisson-Darboux, Math. Anal., 4 (1973), 31-41.
281
S I A M Jour.
SINGULAR AND DEGENERATE CAUCHY PROBLEMS 0
B r e z i s , H. 1. On some degenerate n o n - l i n e a r p a r a b o l i c e q u a t i o n s , Proc. Symp. Pure Math., 18, Amer. Math. SOC., 1970, pp. 28-38. I
B r e z i s , H., Rosenkrantz, W. and Singer, B. 2. On a degenerate e l l i p t i c - p a r a b o l i c e q u a t i o n o c c u r r i n g i n t h e t h e o r y o f p r o b a b i l i t y , Corn. Pure Appl. Math., 24 (1 971 ) , 395-41 6. 0
B r e z i s , H., 3. Operateurs maximaux monotones e t semi-groupes de c o n t r a c t i o n s dans l e s espaces de H i l b e r t , N o r t h H o l l a n d , Amsterdam, 1973. 4.
0
0
Eauations e t i n e s u a t i o n s n o n - l i n e a i r e s dans l e s espaces v e c t o r i e l s en d u a l i t g , Ann. I n s t . F o u r i e r , 1 8 (1968), 115-175.
B r e z i s , H. and G o l d s t e i n , J . 5. L i o u v i l l e theorems f o r some i m p r o p e r l y posed problems, t o appear B r i l l , H. 1. A s e m i l i n e a r Sobolev e v o l u t i o n e q u a t i o n i n a Banach space, Jour. D i f f . Eqs., t o appear Browder, F. 1. Non-1 i n e a r maximal monotone o p e r a t o r s i n Banach spaces, Math. Annalen, 175 (1968), 89-113. 2.
N o n l i n e a r i n i t i a l v a l u e problems, Annals Math. ( 2 ) , 82 (1965), 51-87.
3.
E x i s t e n c e and uniqueness theorems f o r s o l u t i o n s o f nonl i n e a r boundary v a l u e problems, Proc. Symp. Appl. Math. 17, Amer. Math. SOC., 1965, pp. 24-49.
4.
P a r a b o l i c systems o f d i f f e r e n t i a l e q u a t i o n s w i t h t i m e dependent c o e f f i c i e n t s , Prcc. N a t ' l . Acad. S c i . , 42 (1956), 9 4-917.
5.
On t h e un f i c a t i o n o f t h e c a l c u l u s o f v a r i a t i o n s and t h e t h e o r y o f monotone n o n l i n e a r o p e r a t o r s i n Banach spaces, Proc. Nat 1. Acad. S c i . , 56 (1966), 419-425.
6.
Probl&nes n o n - l i d a i r e s ,
Univ. M o n t r i a l , 1966.
2 82
,
REFERENCES
7. Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Symp. Pure Math.,28, Part 2, Amer. Math. SOC., 1976. Brown, P. M. 1. Constructive function-theoretic methods for fourth order pseudo-parabolic and metaparabolic equations, Thesis, Indiana Univ. , 1973. Buckmaster, J., Nachman, A., and Ting, L. 1. The buckling and stretching of a viscida, Jour. Fluid Mech,. 69 (1975), 1-20. Bureau, F. 1. Divergent integrals and partial differential equations, Comm. Pure Appl. Math., 8 (1955), 143-202. 2. Problems and methods in partial differential equations, Ann. Mat. Pura Appl., 51 (1960),.225-299.
Calvert, B. 1. The equation A(t, u(t))' + B(t, u(t)) Camb. Phil. SOC., to appear
=
0, Math. Proc.
Cannon, J . and Meyer, G. 1. On diffusion in a fractured medium, SIAM Jour. Appl. Math., 20 (1971), 434-448. Cannon J . and Hill, C. 2. A finite-difference method for degenerate ellipticparabolic equations, SIAM Jour. Numer. Anal. , 5 (1968), 211-218. Cannon, J . , Ford, W . and Lair, A. 3. Quasilinear parabolic systems, Jour. Diff. Eqs., 20 (1976), 441-472. Carroll, R., 1. L'equation d' Euler-Poisson-Darboux et les distributions sousharmoniques, C. R. Acad. Sci. Paris, 246 (1958), 2560-2562. 2. On some generalized Cauchy problems and the convexity of their solutions, AFOSR-TN-59-649, University of Maryland, 1959. 3. Quelques problhnes de Cauchy singuliers, C. R. Acad. Sci. Paris , 251 (1960), 498-500.
4. Some singular mixed problems, Proc. Nat'l. Acad. Sci., 46 (1960), 1594-1596. 283
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
5.
Some s i n g u l a r Cauchy problmes, Ann. Mat. Pura Appl., 56 (196 ), 1-31.
6.
Sur e p r o b l i m e de Cauchy s i n g u l i e r , C. R. Acad. S c i . P a r i s , 252 (1961), 57-59.
7.
Quelques Qrobl&mes de Cauchy degeneres avec des c o e f f i c i e n t s operateurs, C. R. Acad. S c i . P a r i s , 253 (1961), 1193- 1195.
8.
On t h e s i n g u l a r Cauchy problem, Jour. Math. Mech., (1963), 69-102.
9.
Some degenerate Cauchy problems w t h o p e r a t o r c o e f f i c i e n t s , P a c i f i c Jour. Math., 13 ( 963), 471-485.
/
/
/
I
12
10.
Some q u a s i - l i n e a r s i n g u l a r Cauchy problems , Proc. Symp. Nonlinear Probs., Univ. Wisconsin 1963, pp. 303-306.
11.
On some s i n g u l a r q u a s i l i n e a r Cauchy problems, Math. Z e i t . 81 (1963), 135-154.
C a r r o l l , R. and Wang, C. 12. On t h e degenerate Cauchy problem, Canad. Jour. Math., 17 (1 965) , 245-256. C a r r o l l , R. 13. Some growth and c o n v e x i t y theonems f o r second o r d e r equations, Jour. Math. Anal. Appl. , 17 (1967), 508-518. 14.
A b s t r a c t methods i n p a r t i a l d i f f e r e n t i a l equations, Harper-Row, N.Y., 1969.
C a r r o l l , R. and S i l v e r , H. 15. S u i t e s canoniques de probl6mes de Cauchy s i n g u l i e r s , C. R. Acad. S c i . P a r i s , 273 (1971), 979-981. 16.
Canonical sequences o f s i n g u l a r Cauchy problems, Jour. Appl Anal., 3 (1973), 247-266.
17.
Growth p r o p e r t i e s o f s o l u t i o n s o f c e r t a i n canonical h y p e r b o l i c equations w i t h subharmonic i n i t i a l data, Proc. Symp. Pure Math., 23, Amer. Math. SOC., 1973, pp. 97-104.
.
C a r r o l l , R. 18. On a c l a s s o f canonical s i n g u l a r Cauchy problems, Proc. Colloq. Anal., Univ. Fed. Rio de Janeiro, 1972, Anal. fonct. appl., Act. S c i . Ind., Hermann, P a r i s , 1975, pp. 71-90.
284
REFERENCES
19
On some h y p e r b o l i c e q u a t i o n s w i t h o p e r a t o r c o e f f i c i e n t s , Proc. Japan Acad. , 49 (1973) , 233-238.
C a r r o 1 , R. and Donaldson, J. 20. Algunos r e s u l t a d o s sobre ecuaciones d i f e r e n c i a l e s a b s t r a c t a s r e l a c i o n a d a s , Portug. Math., t o appear. C a r r o l l , R. 21. E i s e n s t e i n i n t e g r a l s and s i n g u l a r Cauchy problems, Proc. Japan Acad., 51 (1975), 691-695. 22.
S i n g u l a r Cauchy problems i n symmetric spaces, Jour. Math. Anal. Appl. , 55 (1976), t o appear.
23.
L e c t u r e s on L i e groups, U n i v e r s i t y o f I l l i n o i s , 1970.
24.
O p e r a t i o n a l c a l c u l u s and a b s t r a c t d i f f e r e n t i a l equations, Notas de Matematica, N o r t h H o l l a n d Pub. Co., i n preparation.
25.
Growth theorems f o r some h y p e r b o l i c d i f f e r e n t i a l equations w i t h operator coefficients, i n preparation
26.
A uniqueness theorem f o r EPD t y p e e q u a t i o n s i n general spaces, t o appear.
27.
L o c a l forms o f i n v a r i a n t d i f f e r e n t i a l o p e r a t o r s , Rend. Accad. L i n c e i , 48 (1970), 292-297.
28.
L o c a l forms o f i n v a r i a n t o p e r a t o r s , I , Ann. Mat. Pura Appl. 86 (1970), 189-216.
29.
On t h e s p e c t r a l d e t e r m i n a t i o n o f t h e Green’s o p e r a t o r , Jour. Math. Mech., 15 (1966), 1003-1018.
30. Some d i f f e r e n t i a l problems r e l a t e d t o s p e c t r a l t h e o r y i n s e v e r a l o p e r a t o r s , Rend. Accad. L i n c e i , 39 (1965), 170-1 74.
31.
QuelquFs problGmes d i f f & e n t , i a l s a b s t r a i t s , Eqs. d e r i v e e s p a r t . , Univ. M o n t r e a l , 1966, pp. 9-46.
C a r r o l l , R. and Neuwirth, J. 32. Some uniqueness theorems f o r d i f f e r e n t i a l e q u a t i o n s w i t h o p e r a t o r c o e f f i c i e n t s , Trans. Amer. Math. SOC., 110 ( 1964), 459-472. 33.
Quelques th,gor&nes d’unicit; pour des g q u a t i o n s d i f f 6 r e n t i e l l e s o p e r a t i o n n e l l e s , C . R. Acad. SOC. P a r i s , 255 ( 1962) , 2885-2887. 285
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
C a r r o l l , R. 34. Some remarks on degenerate Cauchy problems, t o appear C a r r o l l , R. and Cooper, J . 35. Remarks on some v a r i a b l e domain problems i n a b s t r a c t evol u t i o n equations, Math. Annalen, 188 (1970), 143-164. C a r r o l l , R and S t a t e , E. 36. E x i s t e n c e theorems f o r some weak a b s t r a c t v a r i a b l e domain h y p e r b o l i c problems, Canad. J o u r . Math., 23 (19711, 611626. Chen, P. and G u r t i n , M. 1. On a t h e o r y o f heat c o n d u c t i o n i n v o l v i n g two temperatures, Z e i t . Angew. Math. Phys., 19 (1968), 614-627. Chi Min-you 1. On t h e Cauchy problem f o r a c l a s s o f h y p e r b o l i c e q u a t i o n s w i t h d a t a g i v e n on t h e degenerate p a r a b o l i c l i n e , A c t a Math. S i n i c a , 8 (1958), 521-529. 2.
On t h e Cauchy problem f o r second o r d e r h y p e r b o l i c equat i o n s i n two v a r i a b l e s w i t h i n i t i a l d a t a on t h e parab o l i c d e g e n e r a t i n g l i n e , Acta Math. S i n i c a , 12 (1962), 68-76.
C i b r a r i o , M. 1. S u i t e o r e m i d i e s i s t e n z a e d i u n i c i t i p e r l e e q u a z i o n i l i n e a r i a l l e d e r i v a t e p a r z i a l i d e l secondo t i p o m i s t o 2m = 0, Rend. C i r . iperbol ico-parabol iche x Zxx - Z YY Mat. Palermo, 58 (1934), 217-284. 2.
S u l l a r e d u z i o n e a forma canonica d a l l e e q u a z i o n i l i n e a r i a l l e d e r i v a t e p a r z i a l i d i secondo o r d i n e d i t i p o m i s t o i p e r b o l i c o - p a r a b o l i c h e , Rend. C i r . Palermo, 56, 1932.
3.
S u l l a r e d u z i o n e a forma canonica d a l l e e q u a z i o n i l i n e a r i a l l e d e r i v a t e p a r z i a l i d i secondo o r d i n e d i t i p o m i s t o , Rend. Lombard0 , 65 ( 1 932) , 889-906.
C i n q u i n i - C i b r a r i o , M. 1. P r i m i s t u d i i a l l e equazione l i n e a r i a l l e d e r i v a t e p a r z i a l i d e l secondo o r d i n e dri t i p 0 m i s t o i p e r b o l i c o - p a r a b o l i c h e , Rend. C i r . Mat. Palerrno, 56 (1932), 1-34.
2.
Sui t e o r e m i d i e s i s t e n z a e d i u n i c i t ; p e r l e e q u a z i o n i l i n e a r i a l l e d e r i v a t e p a r z i a l i de secondo t i p 0 i p e r b o l i c o - p a r a b o l i c h e , Rend. C i r . Mat. Palermo, 58 (1934), 1-68.
286
REFERENCES
Coddington, E. and Levinson, N. 1. Theory o f o r d i n a r y d i f f e r e n t i a l e q u a t i o n s , McGraw-Hill, N.Y., 1955. Coifman, R. and Weiss, G. 1. AnalySe harmonique non-commutative s u r c e r t a i n s espaces 1971. homogenes, L e c t . Notes, 242, S p r i n g e r , N.Y., Coi r ie r , J r. 1. On an e v o l u t i o n problem i n l i n e a r a c o u s t i c s o f v i s c o u s f l u i d s , J o i n t IUTAM/IMU Symp. Appl. F n l . Anal. Probs. Mech., M a r s e i l l e , Sept., 1975. Coleman, B. and N o l l , W. 1 . An a p p r o x i m a t i o n theorem f o r f u n c t i o n a l s , w i t h a p p l i c a t i o n s t o continuum mechanics, Arch. R a t ' l . Mech. Anal., 6 (1960), 355-370. Coleman, B. D., D u f f i n , R. J . and M i z e l , V . J . 2. I n s t a b i l i t y , uniqueness and n o n e x i s t e n c e theorems f o r t h e e q u a t i o n Ut = Uxx - Uxtx on a s t r i p , Arch. R a t ' l . Mech. Anal.,
19 (1965), 100-116.
Colton, D. 1. I n t e g r a l o p e r a t o r s and t h e f i r s t i n i t i a l boundary v a l u e problem f o r pseudoparabol i c e q u a t i o n s w i t h a n a l y t i c c o e f f i c i e n t s , Jour. D i f f . Eqs., 13 (1973), 506-522. 2.
On t h e a n a l y t i c t h e o r y o f pseudoparabolic equations, Quart. Jour. Math., O x f o r d ( 2 ) , 23 (1972), 179-192.
3.
Pseudoparabolic e q u a t i o n s i n one space v a r i a b l e , Jour. D i f f . Eqs., 12 (1972), 559-565.
C o n t i , R. 1. S u l problema d i Cauchy p e r l ' e q u a z i o n i d i t i p 0 m i s t o 2 - y 2Zyy = 0, Rend. Accad. L i n c e i , 6 (1949), zxx 579-582. 2.
3.
Sul problema d i Cauchy p e r l ' e q u a z i o n i d i t i p o m i s t o 2 2 = 0, Ann. Scuola Norm. Sup., Pisa, 3 y Zxx - x Z YY ( 1 950), 105-1 30. 2a 2 Sul problema d i Cauchy p e r l ' e q u a z i o n i y k.(x,y) zxx - zyy = f(x,y,z,z ,z ) c o n i d a t i s u l l a l i n e a paraX
Y
b o l i c a , Ann. Math. Pura Appl.,
287
31 (1950), 303-326.
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Copson, E. 1. On a s i n g u l a r boundary v a l u e problem f o r an e q u a t i o n o f h y p e r b o l i c t y p e , Arch, Rat'1:Mech. Anal., 1 (1958), 349-356. Copson, E. and E r d e l y i , A. 2. On a p a r t i a l d i f f e r e n t i a l e q u a t i o n w i t h two s i n g u l a r l i n e s , Arch. R a t ' l . Mech. Anal., 2 (1959), 76-86. Courant, R. and H i l b e r t , D. 1. Methods o f mathematical p h y s i c s , V o l . 2, I n t e r s c i e n c e Wiley, N.Y., 1962. 2.
Methods o f mathematical p h y s i c s , Vol. 1, I n t e r s c i e n c e 1953. Wiley, N.Y.,
C r a n d a l l , M. and Pazy, A. 1. N o n l i n e a r e v o l u t i o n e q u a t i o n s i n Banach spaces, I s r a e l Jour. Math. , 11 (1972), 57-94. C r a n d a l l , M. and L i g g e t t , T. 2. G e n e r a t i o n o f semigroups o f n o n l i n e a r t r a n s f o r m a t i o n s i n g e n e r a l Banach spaces, Amer. J o u r . Math. , 93 (1971), 2 65 - 298. C r a n d a l l , M. 3. Semigroups o f n o n l i n e a r t r a n s f o r m a t i o n s i n Banach spaces, C o n t r i b . N o n l i n e a r F n l . Anal, Academic Press, N.Y., 1971, pp. 157-179. Darboux, G. 1. Le$ons s u r l a t h 6 o r i e ginnerale des s u r f a c e s , second e d i t i o n , G a u t h i e r - V i 11a r s , P a r i s , 1915. Davis, P. L. 1. A q u a s i l i n e a r and a r e l a t e d t h i r d o r d e r problem, Jour. Math. Anal. A p p l . , 40 (1972), 327-335. 2.
On t h e h y p e r b o l i c i t y o f t h e e q u a t i o n s o f t h e l i n e a r t h e o r y o f h e a t c o n d u c t i o n f o r m a t e r i a l s w i t h memory, S I A M Jour. Appl. Math., 30 (1976), 75-80.
Davis, R. 1. The r e g u l a r Cauchy problem f o r t h e Euler-Poisson-Darboux e q u a t i o n , B u l l . Amer. Math. SOC., 60 (1954), 338. 2.
On a r e g u l a r Cauchy problem f o r t h e Euler-Poisson-Darboux e q u a t i o n , Ann. Mat. Pura Appl. , 42 (1956) , 205-226.
2 88
REFERENCES
Delache, S. and Leray, J . 1. C a l c u l de l a s o l u t i o n glle(me/ntaire de l ' o p & a t e u r d ' E u l e r Poisson-Darboux e t de 1 ' o p e r a t e u r de T r i c o m i - C l a i r a u t , h y p e r b o l i q u e , d ' o r d r e 2, B u l l . SOC. Math. France, 99 (1 971 ) , 31 3-336. Del s a r t e , J . 1. Sur c p r t a i n s trans/formations f o n c t j o n n e l l e s r e l a t i v e s aux e q u a t i o n s l i n e a i r e s aux d e r i v e e s p a r t i e l l e s du second o r d r e , C. R. Acad. S c i . P a r i s , 206 (1938), 17801782. D e l s a r t e , J . and L i o n s , J . 2. Transmutations d ' o p 6 r a t e u r s d i f f g r e n t i e l s dans l e domaine complexe, Comm. Math. Helv., 32 (1957), 113-128. 3.
Moyennes g&&alis6es, 59-69.
Comm. Math. Helv.,
33 (1959),
Dembart, B. 1. On t h e t h e o r y o f semigroups o f o p e r a t o r s on l o c a l l y convex spaces, t o appear. Derguzov, V. I . 1. S o l u t i o n o f an a n t i c a n o n i c a l e q u a t i o n w i t h p e r i o d i c c o e f f i c i e n t s , Dokl. Akad. Nauk SSSR 193 (1970), 834-838. Dettman, J . 1. I n i t i a l - b o u n d a r y v a l u e problems r e l a t e d t h r o u g h t h e S t i e l t j e s t r a n s f o r m , J o u r . Math. Anal. Appl . , 15 (1969), 341 -349. Diaz, J . and Young, E. 1. A s i n g u l a r c h a r a c t e r i s t i c v a l u e problem f o r t h e E u l e r Poisson-Darboux e q u a t i o n , Ann. M a t . Pura Appl., 95 (1973), 115-1 29. Diaz, J . and Weinberger, H. 2. A s o l u t i o n o f t h e s i n g u l a r i n i t i a l v a l u e problem f o r t h e EPD e q u a t i o n , Proc. Amer. Math. SOC., 4 (1953), 703-718. Diaz, J . and L u d f o r d , G. 3. On t h e s i n g u l a r Cauchy problem f o r a g e n e r a l i z a t i o n o f t h e Euler-Poisson-Darboux e q u a t i o n i n two space variables, Ann. Mat. Pura Appl., 38 (1955), 33-50. 4.
On t h e Euler-Poisson-Darboux e q u a t i o n , i n t e g r a l o p e r a t o r s , and t h e method o f descent, Proc. Conf. D i f f . Eqs., Univ. Maryland, 1956, pp. 73-89.
289
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Diaz, J. 5. On s i n g u l a r and r e g u l a r Cauchy problems, Comm. Pure Appl. Math., 9 (1956), 383-390. 6.
S o l u t i o n o f t h e s i n g u l a r Cauchy problem f o r a s i n g u l a r system o f p a r t i a l d i f f e r e n t i a l i n t h e mathematical t h e o r y o f dynamical e l a s t i c i t y , e t c . , Theory o f d i s t r i b u t i o n s , Proc. Summer I n s t . , Lisbon, 1964, pp. 75-131.
Diaz, J. and Kiwan, A. 7. A remark on t h e s i n g u l a r Cauchy problem f o r a l l v a l u e s o f t i m e f o r t h e Euler-Poisson-Darboux e q u a t i o n , Jour. Math. Mech., 16 (1966), 197-202. Diaz, J. and Young, E. 8. On t h e c h a r a c t e r i s t i c i n i t i a l v a l u e problem f o r t h e wave e q u a t i o n i n odd s p a t i a l dimensions w i t h r a d i a l i n i t i a l data, Ann. Mat. Pura Appl., 94 (1972), 161-176. Diaz, J. and M a r t i n , M. 9. Riemann's method and t h e problem o f Cauchy,II. The wave e q u a t i o n i n n dimensions, Proc. Amer. Math. SOC., 3 (1952) , 476-484. Diaz, J. and Young E. 10. Uniqueness o f s o l u t i o n s o f c e r t a i n boundary v a l u e p r o b lems f o r u l t r a h y p e r b o l i c e q u a t i o n s , Proc. Amer Math. SOC., 29 (1971 ), 569-574. Dieudonn:, J. 1. Foundations o f modern a n a l y s i s , Academic Press, N.Y., 1960. D i xmi e r , J . 1. Les a l g s b r e s d'op:rateurs dans 1 'espace H i l b e r t en, G a u t h i e r - V i 11a r s , P a r i s , 1957.
Donaldson , J. 1. A s i n g u l a r a b s t r a c t Cauchy problem, Proc. N a t ' l S c i . , 66 (1970), 269-274.
Acad
.
Donaldson, J. and G o l d s t e i n , J. 2. Some remarks on uniqueness f o r a c l a s s o f s i n g u l a r a b s t r a c t Cauchy problems, Proc. Amer. Math. SOC., 54 (1976), 149-153. Dona1dson ,, J . 3. An o p e r a t i o n a l c a l c u l u s f o r a c l a s s o f a b s t r a c t o p e r a t o r e q u a t i o n s , J o u r . Math. Anal. Appl., 37 (1972), 167-184.
290
REFERENCES
4.
The Cauchy problem f o r a f i r s t o r d e r system o f a b s t r a c t o p e r a t o r e q u a t i o n s , B u l l . Amer. Math. SOC., 81 (1975), 576-578.
5.
New i n t e g r a l r e p r e s e n t a t i o n s f o r s o l u t i o n s o f Cauchy's problem f o r a b s t r a c t p a r a b o l i c equations, Proc. N a t ' l . Acad. S c i . , 68 (1971 ) , 2025-2027.
Donaldson, J. and Hersh, R. 6. A p e r t u r b a t i o n s e r i e s f o r Cauchy's problem f o r h i g h e r o r d e r a b s t r a c t p a r a b o l i c e q u a t i o n s , Proc. N a t ' l . Acad. S c i . , 67 (1970), 41-44.
.
Dona1dson, J 7. The a b s t r a c t Cauchy problem and Banach space valued d i s t r i b u t i o n s , t o appear. D o u g l i s , A. 1. A c r i t e r i o n f o r t h e v a l i d i t y o f Huygens' p r i n c i p l e , Comm. Pure Appl. Math., 9 (1956), 391-402. Dub in s ky , J . 1. Weak convergence i n n o n l i n e a r e l l i p t i c and p a r a b o l i c e q u a t i o n s , Mat. S b o r n i k , 67 (109) (1965), 609-642; Amer. Math. SOC. T r a n s l . ( Z ) , 67 (1968), 226-258. D u f f . G. positives, 1. Sur une cla/sse de s o l u t i o n s e/lgme;taires Eqs. d e r i v e e s p a r t . , Univ. M o n t r e a l , 1966, pp. 47-60. 2.
P o s i t i v e elementary s o l u t i o n s and c o m p l e t e l y monotonic f u n c t i o n s , Jour. Math. Anal. Appl., 27 (1969), 469-494.
Dunninger, D. and Levine, H. 1. Uniqueness c r i t e r i a f o r s o l u t i o n s o f s i n g u l a r boundary v a l u e problems, t o appear. Dunninger, D. and Zachmanoglou, E. 2. The c o n d i t i o n f o r uniqueness o f t h e D i r i c h l e t problem f o r h y p e r b o l i c e q u a t i o n s i n c y l i n d r i c a l domains, Jour. Math. Mech., 18 (1969), 763-766. Dunninger, D. and Weinacht, R. 3. I m p r o p e r l y posed problems f o r s i n g u l a r e q u a t i o n s of t h e f o u r t h o r d e r , Jour. Appl. Anal., 4 (1975), 331-341. E h r e n p r e i s , L. and Mautner, F. 1. Some p r o p e r t i e s o f t h e F o u r i e r t r a n s f o r m on semisimple L i e groups, 1-111, Annals Math., 61 (1955), 406-439; Trans. Amer. Math. SOC., 84 (1957), 1-55 and 90 (1959), 431 -484. 291
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Ehrenpreis, L. 2. A n a l y t i c f u n c t i o n s and t h e F o u r i e r t r a n s f o r m o f d i s t r i b u t i o n s , I, Annals Math., 63 (1956), 129-159. Ekeland, I . a n d Teman, R. 1. - A n a l y s e convexe e t proble\mes v a r i a t i o n n e l s , Dunod, P a r i s , 1974. Eskin, G. 1. Boundary v a l u e problems f o r e q u a t i o n s w i t h c o n s t a n t c o e f f i c i e n t s on t h e p l a n e , Mat. S b o r n i k (N.S.), 59 (101) ( 1 962), Suppl . , 69-1 04. 2.
A boundary v a l u e problem f o r t h e e q u a t i o n a / a t P ( a / a t , = 0, where P i s an e l l i p t i c o p e r a t o r , S i b i r s k , a/ax),u Mat. Zur., 3 (1962), 882-911.
E u l e r , L. 1. I n s t i t i o n e s c a l c u l i i n t e g r a l i s , 111, P e t r o p o l i , 1770. Ewing, R. 1. The a p p r o x i m a t i o n o f c e r t a i n p a r a b o l i c e q u a t i o n s backward i n t i m e by Sobolevequations, S I A M Jour. Math. Anal., 6 (1975), 283-294. 2.
Numerical s o l u t i o n o f Sobolev p a r t i a l d i f f e r e n t i a l equat i o n s , SIAM J o u r . Numer. Anal., 12 (1975), 345-363.
3.
D e t e r m i n a t i o n o f a p h y s i c a l parameter i n Sobolev equat i o n s , I n t . J o u r . Eng. S c i . , t o appear.
F a t t o r i n i , H. 1. O r d i n a r y d i f f e r e n t i a l e q u a t i o n s i n l i n e a r t o p o l o g i c a l spaces, I and 11, Jour. D i f f . Eqs., 5 (1968), 72-105 and 6 (1969), 50-70. F e l l e r , W. 1. Two s i n g u l a r d i f f u s i o n problems, Annals Math., 173-1 82. 2.
54 (19511,
The p a r a b o l i c d i f f e r e n t i a l e q u a t i o n and t h e a s s o c i a t e d semigroups o f t r a n s f o r m a t i o n s , Anna s Math., 55 (1952), 468-51 9.
F e r r a r i , C. and T r i c o m i , F. 1. Aerodinamica t r a n s o n i c a , Cremonese, Rome, 1962--English t r a n s l a t i o n , Academic Press, N.Y., 968.
292
REFERENCES
F i c h e r a , G. 1. S u l l e e q u a z i o n i d i f f e r e n z i a l i l i n e a r i e l l i t i c o - p a r a b o l i c h e d e l second0 o r d i n e , A t t i Accad. L i n c e i , 5 (1956), 1-30.
2.
On a u n i f i e d t h e o r y o f boundary v a l u e problems f o r e l l i p t i c - p a r a b o l i c e q u a t i o n s o f second o r d e r , Boundary problems i n d i f f e r e n t i a l e q u a t i o n s , U n i v . Wisconsin, 1960, pp. 97-120.
F i l i p o v , B. 1. S o l u t i o n o f t h e Cauchy problem f o r h y p e r b o l i ? e q u a t i o n s y i t h i n i t i a l d a t a on t h e p a r a b o l i c l i n e , Nauc. Dokl. Vys. Sk. , 4 (1958) , 69-73. Flensted-Jensen, M. 1. On t h e F o u r i e r t r a n s f o r m on a symmetric space o f r a n k one, I n s t . M i t t a g - L e f f l e r , Djursholm, 1970. Foias, C., Gussi, G., and Poenanu, V,. 1. Une m$thode d i r e c t e dans l ' e t u d e des ;quati?ns aux d e r i v e e s p a r t i e l l e s h y p e r b o l i q u e s , q u a s i l i n e a i r e s en deux v a r i a b l e s , Math. Nachr. , 15 (1956), 89-116. 2.
Sur ,les s o l u t i o n s g&(Talis6es de c e r t a i n e s g q u a t i o n s l i n e a i r e s e t q u a s i - l i n e a i r e s dans l l e s p a c e de Banach, Rev. Math. Pures Appl., Acad. Rep. Pop. R o m a i n e , 3 ( 1 958) , 283-304.
Foais, C. 3. La /mesure h a y o / n i q u e - s p e c t r a l e e t l a t h e b r i e s p e c t r a l des o p e r a t e u r s generaux d l u n espace de H i l b e r t , B u l l . SOC. Math. France, 85 (1957), 263-282. Ford, W. 1. The f i r s t i n i t i a l boundary v a l u e problem f o r a n o n u n i f o r m p a r a b o l i c e q u a t i o n , J o u r . Math. Anal. Appl., 40 (1972), 131-137. Ford, W. and Waid, M. 2. On maximum p r i n c i p l e s f o r some degenerate p a r a b o l i c opera t o r s , J o u r . Math. Anal. Appl., 40 (1972), 271-277. Ford, W. H. 1. Numerical s o l u t i o n o f pseudoparabolic p a r t i a l d i f f e r e n t i a l equations, Thesis, U n i v e r s i t y o f I l l i n o i s , 1972. Ford, W. H. and Ting, T. W. 2. U n i f o r m e r r o r e s t i m a t e s f o r d i f f e r e n c e a p p r o x i m a t i o n s t o ,nonlinear pseudoparabolic p a r t i a l d i f f e r e n t i a l e q u a t i o n s , S I A M J o u r . Numn. Anal., 11 (1974), 155-169. 293
SlNGULAR AND DEGENERATE CAUCHY PROBLEMS
Fox, D. 1. The s o l u t i o n and Huygens' p r i n c i p l e f o r a s i n g u l a r Cauchy problem, Jour. Math. Mech., 8 (1959) , 197-219. Fox, D. and Pucci, C. 2. The D i r i c h l e t problem f o r t h e wave e q u a t i o n , Ann. Mat. Pura Appl . , 45 (1958), 155-182. Fox, D. 3. T r a n s i e n t s o l u t i o n s f o r s t r a t i f i e d ' f l u i d f l o w s , t o appear. Frank1 , F. 1. On Cauchy's problem f o r e q u a t i o n s o f mixed e l l i p t i c h y p e r b o l i c t y p e w i t h i n i t i a l d a t a on t h e t r a n s i t i o n l i n e , I z v . Akad. Nauk SSSR, 8 (1944), 195-224. F r i e d l a n d e r , F. and Heins, A. 1. On a s i n g u l a r boundary v a l u e problem f o r t h e E u l e r Darboux e q u a t i o n , J o u r . D i f f . Eqs., 4 (1968), 460-491. Friedman, A. and Schuss, Z. 1. Degenerate e v o l u t i o n e q u a t i o n s i n H i l b e r t space, Trans. Arner. Math. SOC., 161 (1971), 401-427. Friedman, A. 2. G e n e r a l i z e d f u n c t i o n s and p a r t i a l d i f f e r e n t i a l e q u a t i o n s , P r e n t i c e - H a l l , Englewood C l i f f s , N.J., 1963. Friedman, A. and S h i n b r o t , M. 3. The i n i t i a l v a l u e problem f o r t h e l i n e a r i z e d e q u a t i o n s o f w a t e r waves, J o u r . Math. Mech., 19 (1967), 107-180. Friedman, B. 1. An a b s t r a c t f o r m u l a t i o n o f t h e method o f s e p a r a t i o n o f v a r i a b l e s , Proc. Conf. D i f f . Eqs. , Univ. Maryland, 1956, pp. 209-226. Fuglede, B. 1. A. c o m m u t a t i v i t y theorem f o r normal o p e r a t o r s , Proc. N a t ' l . Acad. S c i . , 36 (1950), 35-40. Fuks, B. 1. I n t r o d u c t i o n t o t h e t h e o r y o f a n a l y t i c f u n c t i o n s o f s e v e r a l complex v a r i a b l e s , Gos. I z d . Fiz.-Mat. L i t . , Moscow, 1962. Furstenberg, H. 1. A Poisson f o r m u l a f o r semisimple L i e groups, Annals Math., 77 (1963), 335-386.
294
REFERENCES
Fusaro, B. 1. S p h e r i c a l means i n harmonic spaces, J o u r . Math. Mech., 18 (1969), 603-606. 2.
A correspondence p r i n c i p l e f o r t h e Euler-Poisson-Darboux e q u a t i o n i n harmonic space, G l a s n i k M a t . , 21 (1966), 99-1 02.
3.
The Cauchy-Kowalewski theorem and a s i n g u l a r i n i t i a l v a l u e problem, S I A M Review, 10 (1968), 417-421.
4.
A s o l u t i o n o f a s i n g u l a r mixed problem f o r t h e e q u a t i o n o f Euler-Poisson-Darboux, Amer. Math. Monthly, 73 (1966), 61 0-61 3.
5.
A nonuniqueness r e s u l t f o r an Euler-Poisson-Darboux problem, Proc. Amer. Math. SOC., 18 (1967), 381-382.
6.
A s i m p l e e x i s t e n c e and uniqueness p r o o f f o r a s i n g u l a r Cauchy problem, Proc. Amer. Math. SOC., 19 (1968), 15041505.
Gagneux, G. 1.
The'se 3me c y c l e , P a r i s , t o appear.
Gajewski, H. and Zacharius, K. 1. Zur r e g u l a r i z a t i o n e i n e r Klasse n i c h t k o r r e k t e r Probleme b e i E v o l u t i o n s g l e i c h u n g e n , J o u r . Math. Anal. Appl . 38 (1972), 784-789. 2.
Uber e i n e Klasse n i c h t l i n e a r e n D i f f e r e n t i a l g l e i c h u n g e n i m H i l b e r t r a u m , Jour. Math. Anal. Appl., 44 (1973) 71 -87.
3.
Z u r s t a r k e n Konvergenz des G a l e r k i n v e r f a h r e n s b e i e i n e r Klasse p s e u d o p a r a b o l i s c h e r p a r t i e l l e r D i f f e r e n t i a l g l e i chungen, Math. Nachr., 47 (1970), 365-376.
Galpern, S. 1. Cauchy's problem f o r an e q u a t i o n o f S. L . S o b o l e v ' s type, Dokl. Akad. Nauk SSSR, 104 (1955), 815-818. 2.
The Cauchy problem f o r g e n e r a l systems o f l i n e a r p a r t i a l d i f f e r e n t i a l e q u a t i o n s , Usp. Mat. Nauk, 18 (1963), 239-249.
3.
The Cauchy problem f o r Sobolev equations, S i b i r s k . Mat. f u r . , 4 (1963), 758-774.
295
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
4.
The Cauchy problem f o r general systems o f l i n e a r p a r t i a l d i f f e r e n t i a l equations, Trudy Mosk. Mat. ObZE., 9 (1960), 401 -423.
5.
Cauchy problem f o r systems o f l i n e a r d i f f e r e n t i a l equat i o n s , Dokl. Akad. Nauk SSSR, 119 (1958), 640-643.
G a n g o l l i , R. 1. S p h e r i c a l f u n c t i o n s on semisimple L i e groups, t o appear. Garabedian, P. 1. P a r t i a l d i f f e r e n t i a l e q u a t i o n s , Wiley, N.Y.,
1964.
Garding, L. 1. A p p l i c a t i o n o f t h e t h e o r y o f d i r e c t i n t e g r a l s o f H i l b e r t spaces t o some i n t e g r a l and d i f f e r e n t i a l o p e r a t o r s , Lect u r e s , Univ. Maryland, 1954. Garsoux, J . 1. Espaces v e c t o r i e s t o p o l o g i q u e s e t d i s t r i b u t ons, Dunod, P a r i s , 1963. G e l b a r t , S. 1. F o u r i e r a n a l y s i s on m a t r i x space, Mem. Amer. Math. SOC., 108, 1971. Gelfand. I . and Naimark. M. 1. - U n i t a r y r e p r e s e n t a t i o n s o f t h e c l a s s i c a l groups, Moscow, 1950. Gelfand, I . , Graev, M. and V i l e n k i n , N. 2. G e n e r a l i z e d f u n c t i o n s , Vol. 5, I n t e g r a l geometry and r e l a t e d q u e s t i o n s o f r e p r e s e n t a t i o n t h e o r y , Moscow, 1962. Gelfand, I.,Graev, M. and P y a t e t s k i j - S h a p i r o , I . 3. G e n e r a l i z e d f u n c t i o n s , V o l . 6, R e p r e s e n t a t i o n t h e o r y and automorphic f u n c t i o n s , Moscow, 1966. Gelfand, I . , M i n l o s , R. and Shapiro, Z. 4. R e p r e s e n t a t i o n s o f t h e r o t a t i o n and L o r e n t z groups and t h e i r a p p l i c a t i o n s , Moscow, 1958. V
Gelfand, I . and S i l o v , G. 5. G e n e r a l i z e d f u n c t i o n s , Vol. 1, G e n e r a l i z e d f u n c t i o n s and o p e r a t i o n s on them, Moscow, 1958. 6.
G e n e r a l i z e d f u n c t i o n s , Vol. 2, Spaces o f b a s i c and gene r a l i z e d f u n c t i o n s , Moscow, 1958.
2 96
REFERENCES
7.
G e n e r a l i z e d f u n c t i o n s , Vol. 3, Some q u e s t i o n s i n t h e t h e o r y o f d i f f e r e n t i a l e q u a t i o n s , MOSCOW, 1958. V
Gelfand, I . , Raikov, I . and S i l o v , G. 8. Commutative normed r i n g s , MOSCOW, 1960. Germain, P. 1. Remarks on t h e t h e o r y o f p a r t i a l d i f f e r e n t i a l e q u a t i o n s of mixed t y p e and a p p l i c a t i o n s t o t h e s t u d y o f t r a n s o n i c f l o w , Corn. Pure Appl. Math., 7 (1954), 143-177. Germain, P. and Bader, R. 2. Sur quelques,probl&mes aux l i m i t e s , s i n g u l i e r s p o u r une e q u a t i o n h y p e r b o l i q u e , C. R. Acad. S c i . P a r i s , 231 (1950), 268-270. 3.
Sur l e probl2me de T r i c o m i , Rend. C i r . Mat. Palermo, 2 (1953) , 53-70.
Ghermanesco, M. 1. Sur l e s moyennes successives des f o n c t i o n s , B u l l . SOC. Math. France, 62 (1934), 245-246. 2.
Sur l e s v a l e u r s moyennes des f o n c t i o n s , Math. Annalen, 119 ( 1 944) , 288-321).
G i l b e r t , R. 1. F u n c t i o n t h e o r e t i c methods i n p a r t i a l d i f f e r e n t i a l equat i o n s , Academic Press, N.Y., 1969. G i n d i k i n , S. and Karpelevi?, F. 1. P l a n c h e r e l measure o f Riemannian symmetric spaces o f n o n p o s i t i v e c u r v a t u r e , Dokl. Akad. Nauk, SSSR, 145 (1962) , 252-255. Glu
29 7
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Grabmiller, H. 1. Relativ akkretive operatoren und approximation von Evolutionsgleichungen 2, Math. Nachr. , 66 (1975), 67-87 and 89-100. Grange, 0. and Mi,gnot, F. 1. Sur la resolution d'sne equation et d'une inlquation paraboliques non-lineaires, Jour. Fnl. Anal. 11 (1972), 77-92. #
Gunning, R. and Rossi, H. 1. Analytic functions of severalcomplex variables, PrenticeHall , Englewood Cliffs, N.J. , 1965. Ghther, P. 1. Uber einige spezielle Probleme aus der Theorie der linearen partiellen Differentialgleichungen zweiter Ordnung, Berichte Verh. Sachs. Akad. Wiss. , Leipzig, 102 (1957), 1-50. 2. Uber die Darbouxsche Differentialgleichung mit variablen Koeffizienten, Math. Nachr. , 22 (1960), 285-321. 3. Das iterierte Anfangswertproblem bei der Darbouxschen Differentialgleichung, Math. Nachr. , 25 (1963), 293-310.
4. Huygenssche D i f f e r e n t i a l g l e i c h u n g e n , die zur Wellenj gleichung infinitesimal benachbart sind, Arch. Math. , 16 (1 965) , 465-475. 5. E i n i ge SXtze uber H uyg en ssche Di fferenti a1 g 1 e i chungen , Wiss. Zeit. Univ. Leipzig, 17 (1965), 497-507. Haack, W. and Hellwig, G. 1. Lineare partielle Differentialgleichungen zweiter Ordnung von gemischtem Typus, Math. Zeit. , 61 (1954), 26-46. Hadamand , J . 1. Lectures on Cauchy's problem in linear partial differential equations, Dover, N.Y. , 1952. Hairullina, S. 1. The solution of a completely hyperbolic equation with initial data on a line of degeneracy, Diff. Urav., 3 (1967), 994-1001.
298
REFERENCES
2.
S o l u t i o n o f a hyperboLic e q u a t i o n w i t h d a t a on t h e l i n e o f degenerate t y p e , Uc. Zap. Kabardino-Balkarsk. Univ., 19 (1963), 277-283.
3.
S o l u t i o n o f t h e Cauchy problem f o r a h y p e r b o l i c e q u a t i o n w i t h data on t h e l i n e o f degenerate t y p e , D o k l . Akad. Nauk SSSR, 8 (1964), 361-364.
H a i r u l l i n , H. and N i k o l e n k o , V . 1. A mixed problem f o r an e q u a t i o n o f h y p e r b o l i c t y p e t h a t degenerates on t h e boundary o f t h e r e g i o n , Volz. M a t . Sbor. Vyp., 7 (1969), 190-193. Harish-Chandra 1. S p h e r i c a l f u n c t i o n s on a semisimple L i e group, I , Amer. J o u r . Math., 80 (1958), 241-310. Hausner, M. and Schwartz, J. 1. L i e groups; L i e a l g e b r a s , Gordon-Breach, N.Y.,
1968.
Helgason, S. 1. D i f f e r e n t i a l geometry and symmetric spaces, Academic Press, N.Y., 1962. 2.
A d u a l i t y f o r s y m n e t r i c spaces w i t h a p p l i c a t i o n s t o group r e p r e s e n t a t i o n s , Advances Math., 5 (1970), 1-154.
3.
L i e groups and symmetric spaces, B a t t e l l e Rencontres, 1967, Benjamin, N.Y., 1968, pp. 1-71.
4.
D i f f e r e n t i a l o p e r a t o r s on homogeneous spaces, A c t a Math., 102 (1960), 239-299.
5.
Eigenspaces o f t h e L a p l a c i a n ; i n t e g r a l r e p r e s e n t a t i o n s and i r r e d u c i b i l i t y , Jour. F n l . Anal., 17 (1974), 328-353.
6.
D u a l i t y and Radon t r a n s f o r m f o r symmetric spaces, Amer. Jour. Math., 85 (1963), 667-692.
7.
A n a l y s i s on L i e groups and homogeneous spaces, Amer. Math. SOC. Reg. Conf. Ser., 14, Providence, 1971.
8.
Fundamental s o l u t i o n s o f i n v a r i a n t d i f f e r e n t i a l o p e r a t o r s on s y m n e t r i c spaces, Amer. J o u r . Math., 86 (1964), 565-601.
9.
Paley-Wiener theorems and s u r j e c t i v i t y o f i n v a r i a n t d i f f e r e n t i a l o p e r a t o r s on symmetric spaces and L i e groups, B u l l . Amer. Math. SOC., 79 (1973), 129-132.
299
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
10.
S o l v a b i l i t y o f i n v a r i a n t d i f f e r e n t i a l o p e r a t o r s on homogeneous m a n i f o l d s , C I M E Seminar, 1975.
11.
The e i g e n f u n c t i o n s o f t h e L a p l a c i a n on a two p o i n t homogeneous space; i n t e g r a l r e p r e s e n t a t i o n s and i r r e d u c i b i l i t y , Proc. Amer. Math. SOC. Sum. I n s t . , S t a n f o r d , 1973.
H e l l w i g , G. 1. Anfangs-und Randwertprobleme b e i p a r t i e l l e n D i f f e r e n t i a l g l e i c h u n g e n von wechselndem Typus a u f dem Rzndern, Math. Z e i t . , 58 (1953) , 337-357. 2.
Anfangswertprobleme b e i p a r t i e l l e n D i f f e r e n t i a l g l e i c h u n g e n m i t S i n g u l a r i t a t e n , Jour. R a t ' l . Mech. A n a l . , 5 (1956), 395-418.
3.
P a r t i e l l e D i f f k r e n t i a l g l e i c h u n g e n , Teubner, S t u t t g a r t , 1960.
Hermann, R. 1 . L i e groups f o r p h y s i c i s t s , Benjamin, New York, 1966. Hersh, R. 1. E x p l i c i t s o l u t i o n o f a c l a s s o f h i g h e r o r d e r a b s t r a c t Cauchy problems, J o u r . D i f f . Eqs., 8 (1970), 570-579. 2.
D i r e c t s o l u t i o n o f g e n e r a l one dimensional l i n e a r parab o l i c e q u a t i o n v i a an a b s t r a c t P l a n c h e r e l f o r m u l a , Proc. N a t ' l . Acad. S c i . , 63 (1969) , 648-654.
3.
The method o f t r a n s m u t a t i o n s , P a r t . d i f f . eqs. and r e l a t e d t o p i c s , L e c t . Notes, 446, S p r i n g e r , N.Y., 1975, pp. 264-282.
H i l l e , E. 1. The a b s t r a c t Cauchy problem, Jour. Anal. Math., 54), 81-196.
3 (1953-
H i l l e , E. and P h i l l i p s , R. 2. F u n c t i o n a l a n a l y s i s and semigroups, Amer. Math. SOC. C o l l o q . Pub., Vol. 31, 1957. Hochschild, S. 1. The s t r u c t u r e o f L i e groups, Holden-Day, 1965.
San F r a n c i s c o ,
Horgan, C. 0. and Wheeler, L. T. 1. A s p a t i a l decay e s t i m a t e f o r p s e u d o p a r a b o l i c e q u a t i o n s , L e t t . Appl. Eng. Sci., 3 (1975), 237-243.
3 00
REFERENCES
HGrmander , L. 1. L i n e a r p a r t i a l d i f f e r e n t i a l o p e r a t o r s , S p r i n g e r , B e r l i n , 1963. 2.
Complex a n a l y s i s i n s e v e r a l v a r i a b l e s , Von Nostrand, P r i n c e t o n , 1966.
Horvith, J. 1. T o p o l o g i c a l v e c t o r spaces and d i s t r i b u t i o n s , AddisonWesley, Reading, Mass., 1967. H u i l g o l , R. 1. A second o r d e r f l u i d o f t h e d i f f e r e n t i a l t y p e , I n t . Jour. Nonl i n e a r Mech., 3 ( 1 968), 471 -482. I l i n , A. 1. Sur l e comportement de l a s o l u t i o n d ' u n problGme aux Mat. Sbornik, 81 (1972), 530-553. l i m i t e s pour t + 00,
I n f e l d , L. and H u l l , T. 1. The f a c t o r i z a t i o n method, Rev. Mod. Physics, 23 (1951), 21 -68. Jacobson, N. 1. L i e a l g e b r a s , I n t e r s c i e n c e , N.Y.,
1962.
Jacquet, H. and Langlands, R. 1. Automorphic forms on GL(2), S p r i n g e r L e c t . Notes 114, N.Y., 1970. J e h l e , H. and Parke, W. 1. C o v a r i a n t s p i n o r f o r m u l a t i o n o f r e l a t i v i s t i c wave equat i o n s under t h e homogeneous L o r e n t z group, L e c t . Theoret. Physics, Vol. 7a, Univ. Colorado, 1965, pp. 297-386. John, F. 1. Plane waves and s p h e r i c a l means, I n t e r s c i e n c e , N.Y., 1955. 2.
The D i r i c h l e t problem f o r a h y p e r b o l i c e q u a t i o n , Amer. Jour. Math., 63 (1941), 141-154.
Kamber, F. and Tondeur, Ph. 1. I n v a r i a n t d i f f e r e n t i a l o p e r a t o r s and t h e cohomology o f L i e a l g e b r a sheaves, Mem. Amer. Math. SOC., 113, 1971. Kamenomostskaya, S. L. 1. On t h e S t e f a n problem, Mat. Sbornik, 53 (1961), 489-514.
301
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
K a p i l e v i ? , M. 1. Equations o f mixed e l l i p t i c and h y p e r b o l i c t y p e , L i n e a r eqs. math. p h y s i c s , Ed. S. M i k h l i n , I z d . Nauka, Moscow, 1964, chap. 8. 2.
On an e q u a t i o n o f mixed e l l i p t i c - h y p e r b o l i c type, Mat. Sbornik, 30 (1952), 11-38.
3.
On t h e a n a l y t i c c o n t i n u a t i o n o f t h e complementary s o l u t i o n s o f an e q u a t i o n o f h y p e r b o l i c t y p e w i t h s i n g u l a r c o e f f i c i e n t s , Dokl. Akad. Nauk SSSR, 116 (1957), 167170.
4.
On t h e t h e o r y o f l i n e a r d i f f e r e n t i a l e q u a t i o n s w i t h two n o n p e r p e n d i c u l a r l i n e s o f p a r a b o l i c i t y , Dokl. Akad. Nauk SSSR, 125 (1959), 251-254.
5.
The s o l u t i o n o f s i n g y l a r Cauchy problems i n o p e r a t o r s e r i e s and b a s i s s e r i e s , Comment. Math. U n i v . C a r o l i n a e , 9 (1968), 27-40.
Karapetyan, K. 1. On t h e Cauchy problem f o r e q u a t i o n s o f h y p e r b o l i c t y p e , degenerating on t h e i n i t i a l plane, Dokl. Akad. Nauk, SSSR, 106 (1956), 963-966. Karimov, D. and B a i k u z i e v , K. 1. A mixed problem f o r a h y p e r b o l i c e q u a t i o n d e g e n e r a t i n g on t h e boundary o f t h e r e g i o n , Nauc'. T r . Tas'kent. I n s t . , 208 ( 1 962), 90-97. 2.
A second mixed problem f o r a h y p e r b o l i c e q u a t i o n degenera t i n g on t h e boundary o f t h e r e g i o n , I z v . Akad. Nauk Uzb. SSR 6 (1964), 27-30.
Karmanov, V. 1. On t h e e x i s t e n c e o f s o l u t i o n s o f some boundary problems f o r e q u a t i o n s o f mixed type, I z v . Akad. Nauk, SSSR, 22 (1958), 117-134. K a r o l , I. 1. On t h e t h e o r y o f e q u a t i o n s o f mixed t y p e , Dokl. Akad. Nauk SSSR, 88 (1953), 297-300. 2.
On t h e t h e o r y o f boundary problems f o r e q u a t i o n s o f mixed e l l i p t i c - h y p e r b o l i c t y p e , Mat. Sbornik, 38 (1956), 261282.
302
REFERENCES
Karpelevi?, F. 1. Geometry o f geodesics and e i g e n f u n c t i o n s o f t h e LaplaceB e l t r a m i o p e r a t o r on symmetric spaces, Trudy Mosk. Mat. ObXc'., 14 (1965), 48-185. Kato, T. 1. P e r t u r b a t i o n t h e o r y f o r l i n e a r o p e r a t o r s , S p r i n g e r , B e r l i n , 1966. 2.
N o n l i n e a r semigroups and e v o l u t i o n equations, Jour. Math. SOC. Japan, 19 (1967), 508-520.
K e l l e r , J. 1.. On s o l u t i o n s o f n o n l i n e a r wave equations, Comm. Pure A p p l . Math., 10 (1957), 523-530. Kimura, M. and Ohta, T. 1. P r o b a b i l i t y o f f i x a t i o n o f a mutant gene i n a f i n i t e p o p u l a t i o n when s e l e c t i v e advantage decreases i n time, Genetics, 65 (1970), 525-534. Kluge, R. and Bruckner, G. 1. Uber e i n i g e Klassen n i c h t l i n e a r e n D i f f e r e n t i a l g l e i c h u n g e n und -ungleichungen i m Hilbert-Raum, Math. Nachr., 64 (1974), 5-32. K o n i s h i , Y. 1. On t h e n o n l i n e a r semigroups a s s o c i a t e d w i t h ut = AB(u) and @ ( u t ) = Au, J o u r . Math. SOC. Japan, 25 (1973), 622628. Knapp, A. and S t e i n , E. 1. S i n g u l a r i n t e g r a l s and t h e p r i n c i p a l s e r i e s , Proc. N a t ' l . Acad. S c i . , 63 (1969), 281-284. Kobayashi, S. and Nomizu, K. 1. Foundations o f d i f f e r e n t i a l geometry, I , I n t e r s c i e n c e Wiley, N.Y., 1963. 2.
Foundations o f d i f f e r e n t i a l geometry, 11, I n t e r s c i e n c e 1969. Wiley, N.Y.,
Kohn, J. and N i r e n b e r g , L. 1. Degenerate e l l i p t i c - p a r a b o l i c e q u a t i o n s o f second order, Comm. Pure, Appl . Math., 20 (1967) , 797-872. Komatsu, H. 1. Semigroups o f o p e r a t o r s i n l o c a l l y convex spaces, Jour. Math. SOC. Japan, 16 (1964), 230-262.
303
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Komura, T. 1. Semigroups o f o p e r a t o r s i n l o c a l l y convex spaces, J o u r . F n l . Anal. , 2 (1968), 258-296. Kononenko, V. 1. Fundamental s o l u t i o n s o f s i n g u l a r p a r t i a l d i f f e r e n t i a l e q u a t i o n s w i t h v a r i a b l e c o e f f i c i e n t s , Sov. Mat. D o k l . , 8 (1967), 71-74. Kostant, B. 1. On t h e e x i s t e n c e and i r r e d u c i b i l i t y o f c e r t a i n s e r i e s o f r e p r e s e n t a t i o n s , B u l l . Amer. Math. SOC., 75 (1969) , 627-642. KostyuEenko, A. and E s k i n , G. 1. The Cauchy problem f o r an e q u a t i o n of Sobolev-Galpern type, Trudy Mosk. Mat. ObSc'. , 10 (19611, 273-284. Kgthe, G. 1. T o p o l o g i s c h e l i n e a r e Raume, S p r i n g e r , B e r l i n , 1960. Krasnov, M. 1. Mixed boundary v a l u e problems f o r degenerate l i n e a r hyperb o l i c d i f f e r e n t i a l e q u a t i o n s o f second o r d e r , Mat. Sbornik, 91 (1959), 29-84. 2.
The mixed boundarv oroblem and t h e Cauchv oroblem for degenerate hyperbol-ic' e q u a t i o n s , Dokl. Aka'b.' Nauk, SSSR, 107 ( 1 956) , 789-792.
3.
Mixed boundary problems f o r degenerate h y p e r b o l i c equat i o n s , Trudy Mosk. Energ. I n s t . , 28 (1956), 25-45.
K r e i n , M. G. 1. I n t r o d u c t i o n t o .geometry o f i n d e f i n i t e J-spaces, Amer. Math. SOC. T r a n s l . ( 2 ) , V o l . 93 (1970), 103-199. Krivenkov, Yu. 1. On a r e p r e s e n t a t i o n o f t h e s o l u t i o n s o f t h e Euler-PoissonDayboux, Dokl. Akad. Nauk SSSR, 116 (1957), 351-354. 2.
Some problems f o r t h e Euler-Poisson-Darboux e q u a t i o n , Dokl. Akad. Nauk SSSR, 123 (1958), 397-400.
Kunze, R. and S t e i n , E. 1. U n i f o r m l y bounded r e p r e s e n t a t i o n s and harmonic a n a l y s i s o f t h e 2 x 2 r e a l unimodular group, Amer. J o u r . Math., 82 (1960), 1-62.
304
REFERENCES
2.
U n i f o r m l y bounded r e p r e s e n t a t i o n s , 3, Amer. Jour. Math., 89 (1967), 385-442.
.,
Lacombl ez , C du second o r d r e en t coef1. Une equatio! $ ' & l u t i o n f i c i e n t s degeneres ou s i n g u l i e r s , Pub. Math. Bordeaux, Fasc. 4 (1974), 33-64.
2
0. Lady;enskaya, 1. Mixed problems f o r h y p e r b o l i c e q u a t i o n s , Gos. Tek. I z d . , Moscow, 1953. LadyFenskaya, O., Solonnikov, V . and Uralceva, N. 2. L i n e a r and q u a s i l i n e a r e q u a t i o n s o f p a r a b o l i c t y p e , I z d . Nauka, Moscow, 1967. Lagnese, J. 1. General boundary v a l u e problems f o r d i f f e r e n t i a l equat i o n s o f Sobolev type, S I A M J o u r . Math. Anal., 3 (1972), 105-1 19. 2.
E x p o n e n t i a l s t a b i l i t y o f s o l u t i o n s o f d i f f e r e n t i a l equat i o n s o f Sobolev type, S I A M J o u r . Math. Anal., 3 (1972), 625-636.
3.
Rate o f convergence i n a c l a s s o f s i n g u l a r p e r t u r b a t i o n s , J o u r . F n l . Anal., 13 (1973), 302-316.
4.
Approximation o f s o l u t i o n s o f d i f f e r e n t i a l e q u a t i o n s i n H i l b e r t - s p a c e , Jour. Math. SOC. Japan, 25 (1973), 132143.
5.
Perturbations i n a c l a s s o f nonlinear a b s t r a c t equations, S I A M Jour. Math. Anal., 6 (1975), 616-627.
6. Rate o f convergence i n s i n g u l a r p e r t u r b a t i o n s o f hyperb o l i c problems, I n d i a n a Univ. Math. J o u r . , 24 (1974), 41 7-432.
7.
E x i s t e n c e , uniqueness and l i m i t i n g b e h a v i o r o f s o l u t i o n s o f a c l a s s o f d i f f e r e n t i a l e q u a t i o n s i n Banach space, P a c i f i c J o u r . Math., t o appear.
8.
The f i n a l v a l u e problem f o r Sobolev equations, Proc. Amer. Math. SOC., t o appear.
9.
S i n g u l a r d i f f e r e n t i a l e q u a t i o n s i n H i l b e r t space, S I A M J o u r . Math. Anal., 4 (1973), 623-637.
305
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
10.
P e r t u r b a t i o n s i n v a r i a t i o n a l i n e q u a l i t i e s , Jour. Math. Anal. Appl., t o appear.
11.
The s t r u c t u r e o f a c l a s s o f Huygens' o p e r a t o r s , J o u r . Math. Mech. , 18 (1969), 1195-1201.
12.
A s o l u t i o n o f Hadamapds' problem f o r a r e s t r i c t e d c l a s s o f o p e r a t o r s , Proc. Amer. Math. SOC., 19 (19681, 981-988.
13.
The fundamental s o l u t i o n and Huygens' p r i n c i p l e f o r decom posable d i f f e r e n t i a l o p e r a t o r s , Arch. R a t ' l . Mech. Anal., 19 (1965), 299-307.
Lagnese, J. and S t e l l m a c h e r , K. 14. A method o f g e n e r a t i n g c l a s s e s o f Huygens' o p e r a t o r s , Jour. Math. Mech., 17 (1967), 461-472. L a v r e n t i e v , M. and Bitsadze, A. 1. On t h e problem o f e q u a t i o n s o f mixed t y p e , Dokl. Akad. Nauk SSSR, 70 (1950), 373-376. L a v r e n t i e v , M. 2. Some i m p r o p e r l y posed problems o f mathematical p h y s i c s , S p r i n g e r , N.Y., 1967. Lax, P. and P h i l l i p s , R. 1. S c a t t e r i n g t h e o r y , Academic Press, N.Y.,
1967.
Lebedev, V. I . 1. The use o f n e t s f o r t h e Sobolev t y p e o f e q u a t i o n , Dokl. Akad. Nauk SSSR, 114 (1957), 1166-1169. Leray, J. and Lions,, J. L. 1. Quelques, r e s u l t a t s de Vi,Eik s u r l e s probl&nes e l l i p t i q u e s non l i n e a i r e s p a r l e s methodes de Minty-Browder, B u l l . SOC. Math. France, 93 (1965), 97-107. Levikson, B. and Schuss, Z. 1. Nonhomogeneous d i f f u s i o n a p p r o x i m a t i o n t o a g e n e t i c model, Jour. Math. Pures Appl., t o appear. Levine, H. 1. Some uniquEness ?nd g r o w t h theorems i n t h e Cauchy problem f o r PU t Mu + Nu = 0 i n H i l b e r t space, Math. Z e i t . , 126 (1972), 345-360. 2.
On t h e n o n e x i s t e n c e o f g l o b a l s o l u t i o n s t o a n o n l i n e a r EPD e q u a t i o n , J o u r . Math. Anal. Appl., 48 (1974), 646651.
306
REFERENCES
3.
I n s t a b i l i t y and n o n e x i s t e n c e o f g l o b a l s o l u t i o n s t o nonl i n e a r wave e q u a t i o n s o f t h e f o r m Putt = -Au + F ( u ) , Trans. Amer. Math. SOC.,
192 (1974), 1-21.
4.
Nonexistence theorems f o r t h e heat e q u a t i o n w i t h nonl i n e a r boundary c o n d i t i o n s and f o r t h e porous medium e q u a t i o n backward i n time, Jour. D i f f . Eqs., 16 (1974), 31 9-334.
5.
L o g a r i t h m i c c o n v e x i t y and t h e Cauchy problem f o r some a b s t r a c t second o r d e r d i f f e r e n t i a l i n e q u a l i t i e s , Jour. D i f f . Eqs., 8 (1970), 34-55.
6. L o g a r i t h m i c c o n v e x i t y , f i r s t o r d e r d i f f e r e n t i a l i n e q u a l i t i e s and some a p p l i c a t i o n s , Trans. Amer. Math. SOC., ( 1 970), 299-320.
7.
152
Some n o n e x i s t e n c e and i n s t a b i l i t y theorems f o r s o l u t i o n s t o f o r m a l l y p a r a b o l i c e q u a t i o n s o f t h e f o r m Put = - Au + F ( u ) , Arch. R a t ' l . Mech. Anal.,
51 (1973), 371-386.
8.
Nonexistence o f g l o b a l weak s o l u t i o n s t o some p r o p e r l y and i m p r o p e r l y posed problems o f mathematical p h y s i c s : t h e method o f unbounded F o u r i e r c o e f f i c i e n t s , Math. Annalen. 214 (1975), 205-220.
9.
Some a d d i t i o n a l remarks on t h e n o n e x i s t e n c e o f g l o b a l s o l u t i o n s t o n o n l i n e a r wave equations, S I A M Jour. Math. Anal., 5 (1974), 138-146.
10.
Uniqueness and growth o f weak s o l u t i o n s t o c e r t a n l i n e a r d i f f e r e n t i a l e q u a t i o n s i n H i l b e r t space, Jour. D ff. Eqs., 17 (1975), 73-81.
11.
Uniqueness and g r o w t h o f weak s o l u t i o n s t o c e r t a n l i n e a r d i f f e r e n t i a l e q u a t i o n s i n H i l b e r t space, Jour. D ff. EqS., 17 (1975), 73-81.
Levine, H. and Murray, A. 12. A s y m p t o t i c b e h a v i o r and l o w e r bounds f o r s e m i l i n e a r wave e q u a t i o n s i n H i l b e r t space w i t h a p p l i c a t i o n s , S I A M J o u r . Math. Anal., 6 (1975), 846-859. Lezhnev, V. G. 1. The d e c r e a s i n g p r o p e r t y o f a s o l u t i o n f o r S o b o l e v ' s e q u a t i o n , D i f f . Eqs., 9 (1973), 389.
307
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
L i e b e r s t e i n , H. 1. A mixed problem , f o r t h e Euler-Poisson-Darboux equation, Jour. Anal. Math., 6 (1958), 357-379. 2.
On t h e g e n e r a l i z e d r a d i a t i o n problem o f A. Weinstein, P a c i f i c Jour. Math., 7 (1959), 1623-1640.
L i g h t h i l l , M. J. 1. Dynamics o f r o t a t i n g f l u i d s : 26 (1966) , 411 -431.
a survey, Jour. F l u i d Mech.
Lions, J. 1. Op&ateurs de D e l s a r t e e t probl2mes m i x t e s , B u l l . SOC. Math. France, 84 (1956), 9-95. 2.
Equations d'Euler-Poisson-Darboux ge'ngralise'es, C . R. Acad. S c i . P a r i s , 246 (1958), 208-210.
3.
Opgrateurs de transmutati?n ,singul!ers e t e(quations d'Euler-Poisson-Darboux generalisees, Rend. Sem. Mat. F i s . Milano, 28 (1959), 3-16.
4.
On t h e g e n e r a l i z e d r a d i a t i o n problem o f Weinstein, Jour. Math. Mech., 8 (1959), 873-888.
5.
Equations d i f f g r e n t i e l 1e s - o p g r a t i onnel 1es , S p r i n g e r , B e r l i n , 1961.
6.
Sur a,l regularit; e t 1 ' u n i c i t 6 des s o l u t i o n s t u r b u l e n t e s des equations de Navier-Stokes, Rend. Sem. M a t . Padova, 30 (1960), 16-23.
7.
Sur l e s semigroupes d i s t r i b u t i o n s , Portug. Math. (1960), 141-164.
, 19
Lions, J. and Strauss, W. 8. Some n o n l i n e a r e v o l u t i o n equations, B u l l . SOC. Math. France, 93 (1965), 43-96. Lions 9
J. Boundary value problems Tech. Report, Univ. Kansas, 1957.
10
Quelques, mgthodes de r 6 s o l u t i o n des proble\mes aux 1 i m i t e s n o n - l i n e a i r e s , Dunod, P a r i s , 1969.
Lojas ewicz, S . ' 1. Sur l a f i x a t i o n des v a r i a b l e s darls une d i s t r i b u t i o n , S t u d i a Math., 17 (1958), 1-64.
308
REFERENCES
Loos, 0. 1. Symmetric spaces, Vols. 1 and 2, Benjamin, N.Y.,
1969.
Love, A. E. H. 1. A t r e a t i s e on t h e mathematical t h e o r y o f e l a s t i c i t y , Dover, N . Y . , 1944. Luke, Y. 1. The s p e c i a l f u n c t i o n s and t h e i r a p p r o x i m a t i o n s , Vols. 1 and 2, Academic Press, N.Y., 1969. L y u b a r s k i j , G. 1. The t h e o r y o f groups and i t s a p p l i c a t i o n s i n p h y s i c s , Moscow, 1958. Magnus, W . , O b e r h e t t i n g e r , F. and Soni, R. 1. Formulas and theorems f o r t h e s p e c i a l f u n c t i o n s o f m t h e m a t i c a l p h y s i c s , S p r i n g e r , N.Y., 1966. Makarov, I . 1. Uniqueness theorems f o r t h e s o l u t i o n o f problem D, problem E, and a problem o f t y p e N, Volz. Mat. Sbor. Vyp., 6 (1968), 142-144. 2.
S o l u t i o n o f boundary v a l u e problems f o r e q u a t i o n s o f h y p e r b o l i c type, Volz. Mat. Sbor. Vyp., 6 (1968), 131141.
Makusina, R. 1. A l o c a l extremum p r i n c i p l e f o r an e q u a t i o n w i t h a f i r s t o r d e r s i n g u l a r i t y on t h e boundary o f t h e domain, Volz. Mat. Sbor. Vyp., 6 (1968). M a r t i n , M. 1. Riemann's method and t h e problem o f Cauchy, B u l l . Amer. Math. SOC. , 57 (1951), 238-249. Maslennikova, V. 1. An e x p l i c i t r e p r e s e n t a t i o n and a s y m p t o t i c b e h a v i o r f o r t -+ m o f t h e s o l u t i o n o f t h e Cauchy problem f o r a l i n e a r i z e d system o f a r o t a t i n g compressible f l u i d , S o v i e t Math. Dokl. 10 (1969), 978-981. 2.
S o l u t i o n i n e x p l i c i t f o r m o f t h e Cauchy problem f o r a system o f p a r t i a l d i f f e r e n t i a l e q u a t i o n s , I z v . Akad. Nauk, SSSR., 22 (1958), 135-160.
3.
The r a t e o f decrease, f o r l a r g e time, o f t h e s o l u t i o n of a Sobolev system w i t h allowance made f o r v i s c o s i t y , Mat. S b o r n i k 92 (134), 1973, 584-610.
309
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
4.
L - e s t i m a t e s and t h e a s y m p t o t i c b e h a v i o r as t -+ m o f a P s o l u t i o n o f t h e Cauchy problem f o r a Sobolev system, Proc. Stekov I n s t . Math., 103 (1969), 123-150.
5.
C o n s t r u c t i o n o f a s o l u t i o n o f Cauchy's problem f o r a system o f p a r t i a l d i f f e r e n t i a l equation, Dokl. Akad. Nauk SSSR 102 (1955), 885-888.
6.
Mixed problems f o r a system o f p a r t i a l d i f f e r e n t i a l equat i o n s o f f i r s t o r d e r , I z v . Akad. Nauk, SSSR, 22 (1958), 271 -278.
Maurin, I. 1. General e i g e n f u n c t i o n expansions and u n i t a r y r e p r e s e n t a t i o n s o f t o p o l o g i c a l groups, Monogr. mat., 48, Panst. Wydaw. Nauk, Warsaw, 1968. 2.
Uber gemischte Rand und Anfangswertprobleme i m Grossen fb'r gewisse systeme von D i f f e r e n t i a l g l e i c h u n g e n a u f d i f f e r e n z i e r b a r e n M a n n i g f a l t i g k e i t e n , S t u d i a Math., 15 ( 1 956), 31 4-327.
3.
Metody p r z e s t r z e n i H i l b e r t a , Monogr. mat., 36, Warszawa, 1959; Methods o f H i l b e r t spaces, Warsaw, 1967.
Mazumdar, T. 1. E x i s t e n c e theorems f o r n o n c o e r c i v e v a r i a b l e domain e v o l u t i o n problems, T h e s i s , U n i v e r s i t y o f I l l i n o i s , 1971. 2.
G e n e r a l i z e d p r o j e c t i o n theorem w i t h a p p l i c a t i o n t o l i n e a r e q u a t i o n s and some n o n l i n e a r s i t u a t i o n s , Jour. Math. Anal. Appl , 43 (1973), 72-100.
.
3.
G e n e r a l i z e d p r o j e c t i o n theorem and weak n o n c o e r c i v e e v o l u t i o n problems i n H i l b e r t space, Jour. Math. Anal. Appl., 46 (1974), 143-168.
4.
Regularity o f solutions o f l i n e a r coercive evolution e q u a t i o n s w i t h v a r i a b l e domain, I,J o u r . Math. A n a l . Appl., 52 (1975), 615-647.
M c K e r r e l l , A. 1. C o v a r i a n t wave e q u a t i o n s f o r massless p a r t i c l e s , Annals Physics, 40 (1966), 237-267. McShane, E. 1. I n t e g r a t i o n , P r i n c e t o n U n i v . Press, P r i n c e t o n , N.J., 1947.
31 0
REFERENCES
Medeiros, L. and Menzala, G. 1. On a m o d i f i e d KdV e q u a t i o n , t o appear. M i k h l i n , S. e t a l . 1. L i n e a r e q u a t i o n s o f mathematical physics, I z d . Nauka, Moscow, 1964. M i k h l i n , S. 2. Numerical performance o f v a r i a t i o n a l methods, W o l t e r s Noordhoff, Groningen, The Netherlands, 1971. M i l e s , E. and W i l l i a m s , E. 1. A b a s i c s e t o f p o l y n o m i a l s o l u t i o n s f o r t h e Euler-PoissonDarboux and Be1t r a m i e q u a t i o n s , Amer. Math. Monthly, 63 ( 1 956), 401 -404. M i l e s , E. and Young, E. 2. B a s i c s e t s o f p o l y n o m i a l s f o r g e n e r a l i z e d B e l t r a m i and Euler-Poisson-Darboux e q u a t i o n s and t h e i r i t e r a t e s , Proc. Amer. Math. SOC., 18 (1967), 981-986. 3.
On a Cauchy problem f o r a g e n e r a l i z e d Euler-PoissonDarboux e q u a t i o n w i t h polyharmonic data, J o u r . D i f f . Eqs., 2 (1966), 482-487.
M i l l e r , W. 1. L i e t h e o r y and s p e c i a l f u n c t i o n s , Academic Press, N.Y., 1968. 2.
On L i e a l g e b r a s and some s p e c i a l f u n c t i o n s o f mathematic a l physics, Mem. Amer. Math. SOC., 50, 1964.
M i l n e , E. A. 1. The d i f f u s i o n o f i m p r i s o n e d r a d i a t i o n t h r o u g h a gas, Jour. London Math. SOC., 1 (1926), 40-51. Miranda, M. M. 1. Weak s o l u t i o n s o f a m o d i f i e d KdV e q u a t i o n , B o l . SOC. B r a s i l e i r a Mat., t o appear. Miyadera, I. 1. Semigroups o f o p e r a t o r s i n F r e c h e t space and a p p l i c a t i o n s t o p a r t i a l d i f f e r e n t i a l equations, Tohoku Math. Jour., 11 (1959), 162-183. Morawetz, C. 1. A weak s o l u t i o n f o r a system o f e q u a t i o n s o f e l l i p t i c hyperbol i c t y p e , Comm. Pure Appl . 'Math. , 11 (1958), 31 5331.
31 1
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
2.
Note on a maximum p r i n c i p l e and a uniqueness theorem f o r an e l l i p t i c - h y p e r b o l i c e q u a t i o n , Proc. Roy. SOC., 236A (1956), 141-144.
Nachbin, L. 1. L e c t u r e s on t h e t h e o r y o f d i s t r i b u t i o n s , Textos do Matematica, 15, I n s t . F i s . Mat., Univ. R e c i f e , 1964. 2.
The Haar i n t e g r a l , Van Nostrand, P r i n c e t o n , 1965.
Naimark, M. 1. L i n e a r r e p r e s e n t a t i o n s o f t h e L o r e n t z group, MOSCOW, 1958. Nersesyan , A. 1. The Cauchy problem f o r d e g e n e r a t i n g h y p e r b o l i c e q u a t i o n s o f second o r d e r , D o k l . Akad. Nauk SSSR, 166 (1966), 1288. Neves, 1.
B.
P. Sur un problgme non l i n l a i r e d ' e / v o l u t i o n , C. S c i . P a r i s , t o appear.
R. Acad.
Nevostruev, L. 1. The l o c a l extremum f o r an e q u a t i o n o f second k i n d , Volz. Mat. Sbor. Vyp., 6 (1968), 190-197. Nosov, V. 1. The Cauchy problem and t h e second Cauchy-Goursat problem f o r a c e r t a i n e q u a t i o n o f h y p e r b o l i c t y p e , Volz. Mat. Sobr. Vyp., 6 (1968), 198-203. Ogawa, H. 1. Lower bounds f o r s o l u t i o n s o f h y p e r b o l i c i n e q u a l it i es, Proc. Amer. Math. SOC., 16 (1965), 853-857. 2.
Lower bounds f o r s o l u t i o n s o f h y p e r b o l i c i n e q u a l i t i e s on expanding domains, Jour. D i f f . Eqs., 13 (1973), 385-389.
O l e i n i k , 0. 1. On t h e smoothness o f s o l u t i o n s o f degenerate e l l i p t i c p a r a b o l i c e q u a t i o n s , Dokl. Akad. Nauk SSSR, 163 (19651, 577-580. 2.
On l i n e a r e q u a t i o n s o f t h e second o r d e r w i t h a nonnegat i v e c h a r a c t e r i s t i c form, Mat. Sbornik, 69 (1966), 111140.
31 2
REFERENCES
O l e v s k i j , M. 1. Quelques the(or&nes de l a moyenne dans l e s espaces a c o u r b u r e c o n s t a n t e , Dokl. Akad. Nauk SSSR, 45 (1944), 95-98. 2.
On t h e s o l u t i o n o f Cauchy's problem f o r a g e n e r a l i z e d Euler-Poisson-Darboux e q u a t i o n , Dokl . Akad. Nauk, SSSR, 93 (1953), 975-978.
O s s i c i n i , A. 1. Problema s i n g o l a r e d i Cauchy, r e l a t i v o ad una g e n e r a l i z a z i o n e d e l l e q u a t i o n e d i Eulero-Poisson-Darboux, Rend. Accad. L i n c e i , 35 (1963), 454-459. 2.
Problema s i n g o l a r e d i Cauchy, r e l a t i v o ad una g e n e r a l i z z a z i o n e d e l l e q u a t i o n e d i Eulero-Poisson-Darboux, 11, caso k < p-1, Rend. Mat. Appl., 23 (1964), 40-65.
O u c i i , S. 1. Semigroups o f o p e r a t o r s i n l o c a l l y convex spaces, Jour. Math. SOC. Japan, 25 (1973), 265-276. Ovsyan ikov , L . 1. On t h e T r i c o m i problem i n a c l a s s o f g e n e r a l i z e d s o l u t i o n s o f t h e Euler-Darboux e q u a t i o n , Dokl. Akad. Nauk SSSR, 91 (1953), 457-460. Payne, L. 1. R e p r e s e n t a t i o n f o r m u l a s f o r s o l u t i o n s o f a c l a s s o f p a r t i a l d i f f e r e n t i a l e q u a t i o n s , Jour. Math. Phys. , 38 (1959), 145-149. Payne, L. and Sather, D. 2. On a s i n g u l a r h y p e r b o l i c o p e r a t o r , Duke Math. Jour., 34 (1967), 147-162. Payne, L . 3. I m p r o p e r l y posed problems i n p a r t i a l d i f f e r e n t i a l equat i o n s , S I A M Reg. Conf. s e r i e s i n Appl. Math., 22, 1975. P e r e g r i n e , D. 1. C a l c u l a t i o n s o f t h e development o f an u n d u l a r bore, J o u r . F l u i d Mech., 25 (1966), 321-330. 2.
Long waves on a beach, J o u r . F l u i d Mech.,27 81 5-827.
(1967),
P h i l l i p s , R. S. 1. D i s s i p a t i v e o p e r a t o r s and h y p e r b o l i c systems o f p a r t i a l d i f f e r e n t i a l e q u a t i o n s , Trans. Amer. Math. SOC., 90 ( 1 959), 193-254. 31 3
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Poincare', H. 1. Sur l ' e q u i l i b r e d ' u n e masse f l u i d e animge d ' u n mouvement de r o t a t i o n , Acta Math., 7 (1885), 259-380. Poisson, S . 1. Memoit-s s u r 1 ' i n t e ( g r a t i o n des {quations l i n 6 a i r e s aux d e r i v e e s p a r t i e l l e s , Jour. E c o l e P o l y t e c h . , 12 (1823), No. 19. P o r i t s k y , H. 1. G e n e r a l i z a t i o n s o f t h e Gauss law o f s p h e r i c a l means, Trans.Arner. Math. SOC., 43 (1938), 147. Prokopenko, L. 1. The Cauchy problem f o r S o b o l e v ' s t y p e o f e q u a t i o n , Dokl. Akad. Nauk SSSR, 122 (1968), 990-993. P r o t t e r , M. and Weinberger, H. 1. Maximum p r i n c i p l e s i n d i f f e r e n t i a l e q u a t i o n s , P r e n t i c e H a l l , New J e r s e y , 1967. P r o t t e r , M. 2. The Cauchy problem f o r a h y p e r b o l i c second o r d e r e q u a t i o n w i t h d a t a on t h e p a r a b o l i c l i n e , Canad. Jour. Math., 6 ( 1 954), 542-553. 3.
A boundary v a l u e problem f o r an e q u a t i o n o f mixed type, Trans. Amer. Math. SOC., 71 (1951), 416-429.
4.
The two n o n c h a r a c t e r i s t i c s problem w i t h d a t a p a r t l y on t h e D a r a b o l i c l i n e . P a c i f i c J o u r . Math., 4 (1954), 99108.
5.
Uniqueness theorems f o r t h e T r i c o m i problem, 1-11, Jour. R a t ' l . Mech. Anal., 2 ( 953), 107-114; 4 (1955), 721-732.
6.
On p a r t i a l d i f f e r e n t i a l e q u a t i o n s o f mixed type, Proc. Conf. D i f f . Eqs., Univ. Maryland, 1956, pp. 91-106.
7.
A maximum P r i n c i D l e f o r h y p e r b o l i c e q u a t i o n s i n a n e i g h borhood o f ' a n i n i t i a l l i n e , Trans. Amer. Math. SOC., 87 (1958), 119-129.
Pucci, C. and Weinstein, A. 1. S u l l ' e q u a z i o n e d e l c a l o r e con d a t i subarmonici e sue g e n e r a l i z z a z i o n i , Rend. Accad. L i n c e i , 24 (1958), 493496. Pucci, C. 2. D i s c u s s i o n e d e l problema d i Cauchy p e r l e e q u a z i o n i d i t i p o e l l i t i c o , Ann. Mat. Pura Appl., 46 (19581, 131-153. 314
REFERENCES
Pukansky, L. 1. On t h e P l a n c h e r e l theorem o f t h e r e a l unimodular group, B u l l . Amer. Math. SOC., 69 (1963), 504-512. Gopala Rao, V. and Ting, T. 1. S o l u t i o n s o f pseudo-heat e q u a t i o n s i n t h e whole space, Ann. Mat. Pura Appl . , 49 (1972), 57-78.
2.
I n i t i a l v a l u e problems f o r Dseudo-Darabolic D a r t i a l d i f f e r e n t i a l e q u a t i o n s , I n d i a n a Univ. Math. Jour., 23 (1973), 131-153.
Gopala Rao, V. 3. Sobolev-Galpern e q u a t i o n s o f o r d e r n + 2 i n Rm x R, m 2 , Trans. Amer. Math. SOC., 210 (19751, 267-278. 4.
A Cauchy problem f o r pseudo-parabol i c p a r t i a l d i f f e r e n t i a l e q u a t i o n s i n t h e whole space, Thesis, U n i v . Illin o i s , 1972.
Gopala Rao, V. and Ting, T. 5. P o i n t w i s e s o l u t i o n s o f pseudo-parabolic e q u a t i o n s i n t h e whole space, J o u r . D i f f . Eqs., t o appear. R a v i a r t , P. 1. Sur l a r e / s o l u t i o n e t 1 lapp,roximatiFn,d,e , c e r t a i n e s e)quat i o n s p a r a b o l i q u e s n o n l i n e a i r e s degenerees, Arch. R a t ' l . Mech. Anal., 25 (1967) , 64-80. 2.
Sur l a r$solution de c e r t a i n e s g q u a t i o n s p a r a b o l i q u e s n o n - l i n e a i r e s , J o u r . F n l . Anal., 5 (1970), 299-328.
de Rham, G. 1. V a r i & &
diffgrentiables,
Hermann, P a r i s , 1955.
R i c k a r t , C. 1. Banach a l g e b r a s , Van Nostrand, P r i n c e t o n , 1960. Riesz, M. 1. L ' i n t e ( g r a 1 e de R i e m a n n - L i o u v i l l e e t l e probl&ne de Cauchy, A c t a Math., 81 (1949), 1-223. Robin, L. 1. F o n c t i o n s sphgriques de Legendre e t f o n c t i o n s s p h & o i d a l s , Vol s. 1-3, Gauthi e r - V i 1 l a r s , P a r i s , 1957-1 959. Rosenbloom, P. 1. N u n e r i c a l a n a l y s i s and p a r t i a l d i f f e r e n t i a l equations, coauthor, Wiley, N.Y., 1958. 31 5
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
2.
S i n g u l a r p a r t i a l d i f f e r e n t i a l e q u a t i o n s , Proc. Symp. F l u i d Dyn. Appl. Math., Gordon-Breach, N.Y., 1962, pp. 67-77.
3.
An o p e r a t i o n a l c a l c u l u s , B u l l . Amer. Math. SOC., 61 (1955), 73.
Rotman, J. 1. The t h e o r y o f groups; an i n t r o d u c t i o n , Allyn-Bacon, Boston, 1965. R i h l , W. 1. The L o r e n t z group and harmonic a n a l y s i s , Benjamin, N.Y., 1970. Rundell, W. 1. I n i t i a l boundary v a l u e problems f o r pseudo-parabolic e q u a t i o n s , Thesis, Univ. o f Glasgow, 1974. Rundell, W. and Stecher, M. 2. A method o f a s c e n t f o r p a r a b o l i c and pseudoparabolic p a r t i a l d i f f e r e n t i a l e q u a t i o n s , S I A M J o u r . Math. Anal., t o appear. 3.
A Runge a p p r o x i m a t i o n and unique c o n t i n u a t i o n theorem f o r pseudoparabol i c e q u a t i o n s , t o appear.
Ruse, H., Walker, A., and W i l l m o r e , T. 1. Harmonic spaces, Cremonese, Rome, 1961 . S a l l y , P. 1. I n t e r t w i n i n g o p e r a t o r s and t h e r e p r e s e n t a t i o n s o f SL(2,R), Jour. F n l . Anal., 6 (1970), 441-453. 2.
Analytic continuation o f t h e i r r e d u c i b l e u n i t a r y repres e n t a t i o n s o f t h e u n i v e r s a l c o v e r i n g group o f SL(2,R), Mem. Amer. Math. SOC., 69, 1967.
Sansone, G. and C o n t i , R. 1. Equazioni d i f f e r e n z i a l i non l i n e a r i , Cremonese, Rome, 1956. Sather, D. 1. Maximum p r o p e r t i e s o f Cauchy's problem i n t h r e e dimens i o n a l space time, Arch. R a t ' l . Mech. Anal., 18 (1965), 14-26. 2.
A maximum p r o p e r t y o f Cauchy's problem i n n-dimensional space t i m e , Arch. R a t ' l . Mech. Anal., 18 (1965), 27-38.
31 6
REFERENCES
3.
A maximum p r o p e r t y o f Cauchy's problem f o r t h e wave o p e r a t o r , Arch. R a t ' l . Mech. Anal., 21 (1966), 303-309.
Sather, D. and Sather, J. 4. The Cauchy problem f o r an e l l i p t i c p a r a b o l i c o p e r a t o r , Ann. Mat. Pura Appl , 80 (1968), 197-214.
.
S c h a e f f e r , H. 1. T o p o l o g i c a l v e c t o r spaces, Macmillan, New York, 1966. Schuss, Z. 1. R e g u l a r i t y theorems f o r s o l u t i o n s o f a degenerate e v o l u t i o n equation, Arch. R a t ' l . Mech. Anal., 46 (1972), 200-21 1. 2.
Backward and degenerate p a r a b o l i c equations, t o appear.
Schwartz, .L, 1. T h e o r i e des d i s t r i b u t i o n s , E d i t i o n " P a p i l l o n " , Hernann, P a r i s , 1966.
2.
Espaces de f o n c t i o n s d i f f 6 r e n t i a b l e s valeurs vectorie l l e s , Jour. Anal. Math., 4 (1954-55), 88-148.
3.
Les g q u a t i o n s d ' & o l u t i o n lie/es au p r o d u i t de composit i o n , Ann. I n s t . F o u r i e r , 2 (1950), 19-49.
4.
Un lemme s u r l a d;rivation des f o n c t i o n s v e c t o r i e l l e s d ' u n e v a r i a b l e re'ele, Ann. I n s t . F o u r i e r , 2 (1950), 1718.
5.
v a l e u r s v e c t o r i e l l e s , Ann. T h e b r i e des d i s t r i b u t i o n s I n s t . F o u r i e r , 7 and 8, 1957-58, 1-141 and 1-209.
6.
L e c t u r e s on mixed problems i n p a r t i a l d i f f e r e n t i a l equat i o n s and r e p r e s e n t a t i o n s o f semigroups, Tata I n s t t u t e , Bombay, 1957.
A
Selezneva, F. 1. An i n i t i a l v a l u e problem f o r general systems o f pa t i a l d i f f e r e n t i a l equations w i t h constant c o e f f i c i e n t s , Soviet Math. Dokl., 9 (1968), 595-598. Serre, J . 1. A1g;bres de L i e semisimples complexes, Benjamin, New York, 1966. 2.
L i e a l g e b r a s and L i e groups, Harvard l e c t u r e s , Benjamin, N.Y., 1964.
31 7
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Showalter. R. 1. Pseudo-parabolic d i f f e r e n t i a l equations, Thesis, Univ. I l l i n o i s , 1968. 2.
Degenerate e v o l u t i o n equations, I n d i a n a Univ. Math. Jour., 23 (1974), 655-677.
3.
Existence and r e p r e s e n t a t i o n theorems f o r a s e m i l i n e a r Sobolev equation i n Banach space, S I A M Jour. Math. Anal., 3 (1972), 527-543.
4.
A n o n l i n e a r parabolic-Sobolev equation, Jour. Math. Anal. Appl. , 50 (1975), 183-190.
5.
Nonlinea r degenerate e v o l u t i o n equations and p a r t i a l d i f f e r e n t i a l equations o f mixed type, S I A M Jour. Math. Anal. , 6 (1975) , 25-42.
6.
The Sobolev equation, 15-22; 11, 81-99.
7.
P a r t i a l d i f f e r e n t i a l equations o f Sobolev-Galpern type, P a c i f i c Jour. Math., 31 (1969), 787-793.
I,Jour. Appl. Anal.,
5 (1975),
Showalter, R. and Ting, T. 8. Asymptotic behavior o f s o l u t i o n s o f pseudo-parabolic d i f f e r e n t i a l equations, Ann. Mat. Pura Appl. , 90 (1971), 241 -248. 9.
Pseudo-parabolic p a r t i a l d i f f e r e n t i a l equations, S I A M Jour. Math. Anal., 1 (1970), 1-26.
Showalter, R. 10. H i 1b e r t space methods f o r p a r t i a l d i f f e r e n t i a l equations , P i ttman Press, London, 1977 ( t o appear). 11.
Local r e g u l a r i t y o f s o l u t i o n s o f p a r t i a l d i f f e r e n t i a l equations o f Sobolev-Galpern type, P a c i f i c Jour. Math. 34 (1970) , 781-787.
12.
Well-posed problems f o r a d i f f e r e n t i a l equation o f o r d e r 2m + 1, S I A M Jour. Math. Anal., 1 (1970), 214-231.
13.
Weak s o l u t i o n s o f n o n l i n e a r e v o l u t i o n equations o f Sobolev-Gal pern ty p e , Jour. D i ff. Eqs ., 11 [ 1972) , 252265.
14.
Equat ons w i t h o p e ra to rs forming a r i g h t ang e, Pac f i c Jour. Math. , 45 (1973), 357-362.
31 8
,
REFERENCES
15.
Global p e r t u r b a t i o n o f g e n e r a t o r s o f semi-groups , Proc. Second Annual U.S.L. Math. Conf. , Univ. S.W. L o u i s i a n a , L a f a y e t t e , La. , 1972.
16.
The f i n a l v a l u e problem f o r e v o l u t i o n equations, Jour. Math. Anal. Appl. , 47 (1974) , 563-572.
17.
R e g u l a r i z a t i o n and a p p r o x i m a t i o n o f second o r d e r e v o l u t i o n e q u a t i o n s , S I A M Jour. Math. Anal., 7 (1976). t o appear.
18.
A Sobolev e q u a t i o n f o r l o n g waves i n n o n l i n e a r d i s p e r s i v e systems, t o appear.
19.
Energy e s t i m a t e s f o r p e r t u r b a t i o n s o f e v o l u t i o n equations, Proc. 1 2 t h Annual Mtg. SOC. Eng. S c i . (1975), 275-278.
20.
Q u a s i - r e v e r s i b i l i t y o f f i r s t and second o r d e r e v o l u t i o n e q u a t i o n s , i n I m p r o p e r l y posed boundary v a l u e problems, Ed. A. Carasso and A. Stone, Pitman Publ., C a r l t o n , 1975.
21.
Well-posed problems f o r some n o n l i n e a r d i s p e r s i v e waves, J o u r . Math. Pures Appl. , t o appear.
S i g i l l i t o , V. G. 1. A p r i o r i i n e q u a l i t i e s and t h e d i r i c h l e t problem f o r a pseudo-parabolic e q u a t i o n , S I A M J o u r . Math. Anal., t o appear. 2.
E x p o n e n t i a l decay o f f u n c t i o n a l s o f s o l u t i o n s o f a pseudoparabolic e q u a t i o n , S I A M J o u r . Math. Anal., 5 (1974), 581-585 .
S i g i l l i t o , V. G. and P i c k l e , J . C., J r . 3. A p r i o r i i n e q u a l i t i e s and norm e r r o r bounds f o r s o l u t i o n s o f a t h i r d order d i f f u s i o n - l i k e equation, SIAM Jour. Appl. Math., 25 (1973), 69-71. S i g i l l i t o , V. G. 4. On t h e uniqueness o f s o l u t i o n s o f c e r t a i n i m p r o p e r l y posed problems, Proc. Amer. Math. SOC., 24 (1970), 828-831. S i l v e r , H. 1. Canonical sequences o f s i n g u l a r Cauchy problems, Thesis, U n i v e r s i t y o f I l l i n o i s , 1973. Simms, D. 1. L i e groups and quantum mechanics, S p r i n g e r , B e r l i n , 1968. 31 9
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Smirnov, M. 1. Degenerate e l l i p t i c and h y p e r b o l i c problems, I z d . Nauka, Glav. Red. Fiz-Mat. L i t . , MOSCOW, 1966. 2.
The Cauchy problem f o r degenerate h y p e r b o l i c e q u a t i o n s o f t h e second o r d e r , Vest. L e n i n g r a d . I n s t . , 3 (1950), 50-58.
3.
E q u a t i o n s o f mixed t y p e , I z d . Nauka, Glav. Red. Fiz.-Mat. L i t . , Moscow, 1970.
4.
Degenerate h y p e r b o l i c and e l l i p t i c e q u a t i o n s , L i n e a r e q u a t i o n s o f mathematical p h y s i c s , Ed. S. M i k h l i n , I z d . Nauka, Moscow, 1964, chap. 7.
Smoke, W. 1. I n v a r i a n t d i f f e r e n t i a l o p e r a t o r s , Trans. Amer. Math. SOC. , 127 (1967), 460-494. Snow, C. 1. Hypergeometric and Legendre f u n c t i o n s w i t h a p p l i c a t i o n s t o i n t e g r a l e q u a t i o n s o f p o t e n t i a l t h e o r y , N a t ' l . Bur. Stand., Appl. Math. Ser., 19, 1952. Sobolev, S. 1. Some new problems i n mathematical p h y s i c s , I z v . Akad. N3uk, SSSR, 1 8 (1954), 3-50. Sol omon , J . 1. Huygens' p r i n c i p l e f o r a c l a s s o f s i n g u l a r Cauchy p r o b lems, J o u r . D i f f . Eqs., 10 (1971), 219-239. 2.
The s o l u t i o n o f some s i n g u l a r Cauchy problems, US Naval Ora. Lab., NOLTR 68-105, 1968.
Sommerfeld, A. 1. P a r t i a l d i f f e r e n t i a l e q u a t i o n s , Academic Press, N.Y. 1964.
,
Stecher, M. and R u n d e l l , W. 1. Maximum p r i n c i p l e s f o r p s e u d o p a r a b o l i c p a r t i a l d i f f e r e n t i a l e q u a t i o n s , J o u r . Math. Anal. Appl., t o appear. S t e i n , E. 1. A n a l y s i s i n m a t r i x space and some new r e p r e s e n t a t i o n : o f SL(N,C), Annals Math., 86 (1967), 461-490. S t e l l m a c h e r , K. 1. E i n e K l a s s e Huyghenscher D i f f e r e n t i a l g l e i c h u n g e n und i h r e I n t e g r a t i o n , Math. Annalen, 130 (1955), 219-233. 320
REFERENCES
Strauss, W . A. 1. E v o l u t i o n e q u a t i o n s n o n l i n e a r i n t h e t i m e d e r i v a t i v e , Jour. Math. Mech., 15 (1966), 49-82. 2.
The i n i t i a l - v a l u e problem f o r c e r t a i n n o n - l i n e a r e v o l u t i o n e q u a t i o n s , Amer. J o u r . Math. , 89 (1967), 249-259.
3.
The energy method i n n o n l i n e a r p a r t i a l d i f f e r e n t i a l equat i o n s , Notas de Matematica, 47, IMPA, R i o de J a n e i r o , B r a s i l , 1969.
Sun, Hu-Hsien 1. On t h e uniqueness o f t h e s o l u t i o n o f degenerate equations and t h e r i g i d i t y o f s u r f a c e s , Dokl. Akad. Nauk SSSR, 122 (1958), 770-773. Suschowk, D. 1. On a c l a s s o f s i n g u l a r s o l u t i o n s o f t h e Euler-PoissonDarboux e q u a t i o n , Arch. R a t ' l . Mech. Anal., 11 (1962), 50-61. Takahashi, R. 1. S 3 r ,les r e p r e s e n t a t i o n s u n i t a i r e s des groupes de L o r e n t z g e n e r a l i s e s , B u l l . SOC. Math. France, 91 (1963), 289-433.
.
Ta 1man , J 1. S p e c i a l f u n c t i o n s ; a group t h e o r e t i c approach, Benjamin, N.Y., 1968. T a y l o r , D. 1. Research on c o n s o l i d a t i o n o f c l a y s , Mass. I n s t . Tech. Press, Cambridge, 1952. Tersenov, S. 1. On t h e t h e o r y o f h y p e r b o l i c e q u c t i o n s w i t h data on t h e degenerate l i n e , S i b i r s k . Mat. Zur. , 2 (1961), 913-935. 2.
On an e q u a t i o n o f h y p e r b o l i c t y p e degenerating on t h e boundary, D o k l . Akad. Nauk SSSR, 129 (1959), 276-279.
3.
A s i n g u l a r Cauchy problem, Dokl. Akad. Nauk SSSR, 196 (1971), 1032-1035.
4.
On a problem w i t h d a t a on t h e degenerate l i n e f o r systems o f e q u a t i o n s o f h y p e r b o l i c t y p e , Dokl. Akad. Nauk SSSR, 155 (1964), 285-288.
Thyssen, M,. 1. Op$rateurs de D e l s a r t e p a r t i c u l i e r s , B u l l . SOC. Roy. S c i . Liege, 26 (1957), 87-96. 321
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
2.
Sur c e r t a i n s opcfrateurs de t r a n s m u t a t i o n p a r t i c u l i e r s , Mem. SOC. Roy. S c i . Lie'ge, 6 (1961), 7-32.
Ting, T. 1. P a r a b o l i c and p s e u d o - p a r a b o l i c p a r t i a l d i f f e r e n t i a l equat i o n s , Jour. Math. SOC. Japan, 21 (1969), 440-453. 2.
C e r t a i n non-steady f l o w s o f second-order f l u i d s , Arch. R a t ' l . Mech. Anal., 14 (1963), 1-26.
3.
A c o o l i n g process a c c o r d i n g t o two-temperature t h e o r y o f h e a t c o n d u c t i o n , J o u r . Math. Anal. Appl., 45 (1974), 23-31.
Tinkham, M. 1. Group t h e o r y and quantum mechanics, McGraw-Hill, N.Y., 1964. Titchmarsh, E. 1. The t h e o r y o f f u n c t i o n s , O x f o r d Univ. Press, London, 1932. 2.
I n t r o d u c t i o n t o t h e theory o f F o u r i e r i n t e g r a l s , Oxford U n i v . Press, London, 1937.
3.
E i g e n f u n c t i o n expansions, P a r t I, O x f o r d Univ. Press, London , 1962.
Ton, B. A. 1. N o n l i n e a r evo u t i o n e q u a t i o n s o f Sobolev-Galpern type, t o appear. Tondeur, Ph. 1. I n t r o d u c t i o n t o L i e groups and t r a n s f o r m a t i o n groups, L e c t . Notes, 7, S p r i n g e r , N.Y., 1965. Tong, Kwang-Chang 1. On s i n g u l a r Cauchy problems f o r h y p e r b o l i c p a r t i a l d i f f e r e n t i a l e q u a t i o n s , Sc. Rev., 1, No. 5, 1957. Travis, C. 1. On t h e uniqueness o f s o l u t i o n s t o h y p e r b o l i c boundary v a l u e problems, Trans. Amer. Math. SOC., 216 (1976), 327-336. Treves, F. 1. T o p o l o g i c a l v e c t o r spaces, d i s t r i b u t i o n s , and k e r n e l s , Academic Press, N.Y., 1967.
322
REFERENCES
Tricomi, F. 1. S u l l e equazioni l i n e a r i a l l e d e r i v a t e p a r z i a l i d i second0 ordine, d i t i p o misto, Rend. Accad. L i n c e i , 14 (1923), 134-247. V i l e n k i n , N. 1. Special f u n c t i o n s and t h e th e o ry o f group representations, I zd. Nauka, MOSCOW, 1965. V i j i k , M. 1. The Cauchy problem f o r equations w i t h o p e r a t o r c o e f f i c i e n t s . . ., Mat. Sbornik, 39 (1956), 51-148. Vol kodavov, V. 1. The p r i n c i p l e o f l o c a l extremum f o r a general E u l e r Poisson-Darboux equation and i t s a p p l i c a t i o n s , Volz. Mat. Sbor. Vyp., 7 (1969), 6-10. V o l pert , A. I . and Hudjaev, S. I. 1. On t h e Cauchy problem f o r composite systems o f n o n l i n e a r d i f f e r e n t i a l equations, Mat. Sbornik, 87 (129) (1972); t r a n s l . Math. USSR Sbornik 16, (1972), 517-544. Wael broec k , L . 1. Les semigroupes d i f f g r e n t i a b l e s , Deux. Colloq. Anal. Fonct., CBRM (1964), pp. 97-103. 2. \
Le c a l c u l symbol i q u e dans l e s alg4bres comnutatives , Jour. Math. Pures Appl., 33 (1954), 147-186.
Wahlbin, L. 1. E r r o r estimates f o r a Ga l e rk i n me t h o d f o r a c l a s s o f model equations f o r long waves, Numer. Math., 23 (1975), 289-303. Walker, W. 1. The s t a b i l i t y o f s o l u t i o n s t o t h e Cauchy problem f o r an equation o f mixed type, t o appear. 2.
A s t a b i l i t y theorem f o r a r e a l a n a l y t i c s i n g u l a r Cauchy problem, Proc. Amer. Math. SOC., 42 (1974), 495-500.
3.
Bounds f o r s o l u t i o n s t o o r d i n a r y d i f f e r e n t i a l equations a p p l i e d t o a s i n g u l a r Cauchy problem, Proc. Amer. Math. SOC., 54 (1976), 73-79.
Wallach, N. 1. Harmonic a n a l y s i s on homogeneous spaces, Dekker, N.Y., 1973.
323
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
Walter, W. 1. Uber d i e Euler-Poisson-Darboux Gleichung, Math. Z e i t . , 67 (1957), 361-376. 2.
M i t t e l w e r t s F t z e und i h r e Verwendung z u r Lssung von Randwertaufgqben, Jahresber. Deut. Math. Ver., 59 (1957), 93-1 31.
Wang, C. 1. On t h e degenerate Cauchy problem f o r l i n e a r h y p e r b o l i c e q u a t i o n s o f t h e second o r d e r , Thesis, Rutgers, 1964. 2.
A uniqueness theorem on t h e degenerate Cauchy problem, Canad. Math. B u l l . , 18 (1975), 417-421.
Warner, G. 1. Harmonic a n a l y s i s on semisimple L i e groups, I , S p r i n g e r , N.Y., 1972. 2.
Harmonic a n a l y s i s on semisimple L i e groups, 11, S p r i n g e r , N.Y., 1972.
Watson, G. 1. A t r e a t i s e on t h e t h e o r y o f Bessel f u n c t i o n s , Cambridge Univ. Press, Second ed., Cambridge, 1944. Weil
, A.
1.
L ' i n d g r a t i o n dans l e s groupes t o p o l o g i q u e s e t ses a p p l i c a t i o n s , A c t . S c i . Ind., Hermann, P a r i s , 1953.
Weinberger, H. 1. A maximum p r o p e r t y o f Cauchy's problem, Annals Math., 64 (1956), 505-513. Weinstein, A. 1. Sur/ l e probl6me de Cauchy p o u r l ' e / q u a t i o n de Poisson e t l ' e q u a t i o n des ondes, C. R. Acad. S c i . P a r i s , 234 (19521, 2584-2585. 2.
On t h e Cauchy problem f o r t h e Euler-Poisson-Darboux equat i o n , B u l l . Amer. Math. SOC., 59 (1953), p. 454.
3.
On t h e wave e q u a t i o n and t h e e q u a t i o n o f Euler-Poisson, Proc. F i f t h Symp. Appl. Math., Amer. Math. SOC., McGrawH i l l , New York, 1954, pp. 137-1'47.
4.
The s i n g u l a r s o l u t i o n s and t h e Cauchy problem f o r genera l i z e d T r i c o m i e q u a t i o n s , Comm. Pure Appl. Math., 7 (1954), 105-116.
324
REFERENCES
5.
On a c l a s s o f p a r t i a l d i f f e r e n t i a l e q u a t i o n s o f even o r d e r , Ann. Mat. Pura Appl., 39 (1955), 245-254.
6.
The g e n e r a l i z e d r a d i a t i o n problem and t h e Euler-PoissonDarboux e q u a t i o n , Summa B r a s i l . Math., 3 (1955), 125-147.
7.
Sur un probl&me de Cauchy avec des donnges sousharmoniques, C. R. Acad. S c i . P a r i s , 243 (1956), 1193.
8.
G e n e r a l i z e d a x i a l l y symmetric p o t e n t i a l t h e o r y , B u l l . Amer. Math. SOC., 59 (1953), 20-38.
9.
S i n g u l a r p a r t i a l d i f f e r e n t i a l e q u a t i o n s and t h e i r a p p l i c a t i o n s , Proc. Symp. F l u i d Dyn. Appl. Math., GordonBreach, New York, 1962, pp. 29-49.
10.
On a Cauchy problem w i t h subharmonic i n i t i a l values, Ann. Mat. Pura Appl. , 43 (1957) , 325-340.
11.
On a s i n g u l a r d i f f e r e n t i a l o p e r a t o r , Ann. Mat. Pura Appl., 49 (1960), 349-364.
12.
S p h e r i c a l means i n spaces o f c o n s t a n t c u r v a t u r e , Ann. Mat. Pura Appl., 60 (1962), 87-91.
13.
The method o f a x i a l symmetry i n p a r t i a l d i f f e r e n t i a l e q u a t i o n s , Conv. I n t . Eq. L i n . Der. Parz., T r i e s t e , Cremonese, Rome, 1955, pp. 1-11.
14.
On T r i c o m i ' s e q u a t i o n and g e n e r a l i z e d a x i a l l y symmetric p o t e n t i a l t h e o r y , Acad. Roy. Belg., B u l l . C1. S c i , 37 (1951 ), 348-356.
15.
H y p e r b o l i c and p a r a b o l i c e q u a t i o n s w i t h subharmonic data, Proc. Rome Symp., 1959, 74-86.
16.
E l l i p t i c and h y p e r b o l i c a x i a l l y symmetric problems, Proc. I n t . Cong. Math. (1954), 3, 1956, 264-269.
17.
A p p l i c a t i o n s o f t h e t h e o r y o f f u n c t i o n s i n continuum mechanics, I n t . Symp., T b i l i s i , 1963, 440-453.
18.
Suv; une c l a s s e d ' g q u a t i o n s aux derive& p a r t e l l e s s i n g u l i e r e s , Proc. I n t . C o l l o q . P a r t . D i f f . Eqs., Nancy, 1956, pp. 179-186.
19.
Subharmonic f u n c t i o n s and g e n e r a l i z e d T r i c o m i equations, Tech. Note BN-88, AFOSR-TN-56-574, AD-110396, U n i v . Maryland, 1956.
325
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
20.
D i s c o n t i n u o u s i n t e g r a l s and g e n e r a l i z e d p o t e n t i a l t h e o r y , Trans. Amer. Math. SOC., 63 (1948), 342-354.
Whitham, G. B. 1. L i n e a r and n o n l i n e a r waves, Wiley, N.Y.,
1974.
Wigner, E. 1. On u n i t a r y r e p r e s e n t a t i o n s o f t h e inhomogeneous L o r e n t z group, Annals Math., 40 (1939), 149-204. W i 11iams, W. 1. Canchy problem f o r t h e g e n e r a l i z e d r a d i a l l y symmetric wave e q u a t i o n , Mathematika, 8 (1961), 66-68. Willmore, T. 1. Mean v a l u e theorems i n harmonic Riemannian spaces, J o u r . London Math. SOC., 25 (1950), 54-57. Yosida, K. 1. F u n c t i o n a l a n a l y s i s , S p r i n g e r , B e r l i n , 1965. Young, E. 1. On a method o f d e t e r m i n i n g t h e Riesz k e r n e l f o r t h e E u l e r Poisson-Darboux o p e r a t o r , Jour. Math. Anal. Appl., 16 (1966), 355-362. 2.
A s o l u t i o n o f t h e s i n g u l a r Cauchy problem f o r t h e nonhomogeneous Euler-Poisson-Darboux e q u a t i o n , J o u r . D i f f . Eqs. , 3 (1967), 522-545.
3.
A Cauchy problem f o r a s e m i - a x i a l l y symmetric wave equat i o n , Compositio Math., 23, 1971, pp. 297-306.
4.
Uniqueness o f s o l u t i o n s o f t h e D i r i c h l e t and Neumann problems f o r h y p e r b o l i c equations, Trans. Amer. Math. SOC., 160 (1971), 403-409.
5.
Uniqueness theorems f o r c e r t a i n i m p r o p e r l y posed problems, B u l l . Amer. Math. SOC., 77 (1971), 253-256.
6.
A c h a r a c t e r i s t i c i n i t i a l v a l u e Droblem f o r t h e E u l e r Poisson-Darboux e q u a t i o n , Ann. Mat. Pura Appl. 85 (1970), 357-367.
7.
Uniqueness o f s o l u t i o n s o f t h e D i r i c h l e t problem f o r s i n g u l a r u l t r a h y p e r b o l i c e q u a t i o n s , Proc. Amer. Math. SOC., 36 (1972), 130-136.
8.
Uniqueness o f s o l u t i o n s o f i m p r o p e r l y posed problems f o r s i n g u l a r u l t r a h y p e r b o l i c e q u a t i o n s , Jour. A u s t r a l . Math. SOC., 18 (1974), 97-103. 326
REFERENCES
9.
A mixed problem f o r t h e Euler-Poisson-Darboux e q u a t i o n i n two space v a r i a b l e s , t o appear.
10.
On a g e n e r a l i z e d EPD Equation, Jour. Math. Mech., (1969) , 1167-11 75.
11.
Uniqueness o f s o l u t i o n s o f t h e Neumann problem f o r s i n g u l a r u l t r a h y p e r b o l i c equations, Portug. Math., t o appear.
12.
The c h a r a c t e r i s t i c i n i t i a l v a l u e problem f o r t h e wave e q u a t i o n i n n dimensions, J o u r . Math. Mech., 17 (1968), 885-890.
18
Zalcman, L. 1. Mean values and d i f f e r e n t i a l e q u a t i o n s , t o appear. 2.
A n a l y t i c i t y and t h e Pompeiu problem, Arch. R a t ' l . Mech. Anal., 47 (1972), 237-254.
Zalenyak, T. 1. The b e h a v i o r as t + m o f s o l u t i o n s o f a problem o f S. L. Sobolev, S o v i e t Math., 2, No. 4 (1961), 956-958. 2.
A problem o f Sobolev, S o v i e t Math., 1756-1 759.
2.
Mixed problem f o r an e q u a t i o n n o t s o l v a b l e f o r t h e h i g h e s t t i m e d e r i v a t i v e , Dokl. Akad. Nauk SSSR, 158 (1964), 12681270.
4.
On t h e a s y m p t o t i c b e h a v i o r o f t h e s o l u t i o n s o f a mixed problem, D i f f . Urav., 2 (1966), 47-64.
3, No. 6 (1962),
V
Zelobenko, D. 1. Compact L i e groups and t h e i r r e p r e s e n t a t i o n s , I z d . Nauka, Moscow, 1970. Y
Z i t o m i r s k i , Ya. 1. Cauchy's problem f o r systems o f l i n e a r p a r t i a l d i f f e r e n t i a l w i t h d i f f e r e n t i a l o p e r a t o r s o f B e l l e 1 type, Mat. Sbornik, 36 (1955), 299-310.
327
This page intentionally left blank
Index Accretive, 180, 219, 220, 222 A adapted, 70 Adjoint method, 70 Almost subharmonic function, 36, 38 Analytic d a t a , 266 Analytic semigroup, 180 Antidual, 179, 187 A p r i o r i estimate, 190 Associate resol van t 55 Backward Cauchy pro lem, 173 Backward parabolic, 203 Baire function, 150 Basic measure, 150 Basis elements, 99, 109, 115, 126, 138 Biinvariance, 94 Boundary, 91 , 106, 25 Boundary condition of t h i r d type , 226 Boundary condition of fourth type, 226 Bounded, 207 Calculus of v a r i a t i o n s o p e r a t o r , 210 Canonical recursion r e l a t i o n s , 97, 104, 129 Canonical sequence, 97, 101, 121, 129 Canonical t r i p l e , 105, 112 C a r r i e r space, 149 Cartan decomposition, 91, 105, 121, 124 Cartan involution, 105, 108 Cartan subalgebra, 106, 112, 121 Casimir o p e r a t o r , 97, 117, 121 Cauchy i n t e g r a l formula, 24 Cauchy Kowalewski theorem, 267 Center, 121 C e n t r a l i z e r , 91, 106, 124 Character, 93 C h a r a c t e r i s t i c , 200 C h a r a c t e r i s t i c conoid, 238, 244, 265 Coercive, 181, 202, 207 Compatible o p e r a t o r , 212, 213 Connection formulas, 29 Contiguity r e l a t i o n s , 133 Composition, 119 Darboux equation, 93, 119, 120, 140 Degenerate problem, i i i Demi mono tone , 21 0 Diagonalizable operator, 47, 150 329
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
D i f f e r e n t i a l i n c l u s i o n , 219, 229 D i f f u s i o n , 143, 145 D i r e c t i o n a l o s c i l l a t i o n s , 162 D i r i c h l e t c o n d i t i o n , 226 D i r i c h l e t problem, 255 D i s t i n g u i s h e d boundary, 24 Doubly degenerate, 228 Doubly n o n l i n e a r e q u a t i o n s , 177, 229 Eigenvalue e q u a t i o n , 97, 101, 253, 257, 259, 261 E i s e n s t e i n i n t e g r a l , 99 E l l i p t i c p a r a b o l i c problem, 199, 226 E l l i p t i c p a r a b o l i c Sobolev problem, 201 E l l i p t i c region, 5 Energy methods, 43, 164 Entrance boundary, 49 E n v e l o p i n g a l g e b r a , 97, 118, 121 E u c l i d e a n case, 136 E u l e r angles, 112 E u l e r Poisson Darboux (EPD) e q u a t i o n , 1, 4, 9, 67 E x c e p t i o n a l cases, 34 E x p o n e n t i a l t y p e , 29 F i n i t e p a r t ( P f ) , 249 Flow, 143, 146 F o u r i e r t r a n s f o r m , 9, 92 F r a c t i o n a l powers, 186 Fredholm a1 t e r n a t i v e , 259 Fundamental m a t r i x , 14 Gas dynamics, 5 GASPT, 8 G e l f a n d map, 149 G e n e r a l i z e d h y p e r g e o m e t r i c f u n c t i o n , 271 G e n e r a l i z e d r a d i a t i o n problem o f W e i n s t e i n , 245 Genetics, 145, 204 Geodesic, 107, 116, 19, 137, 140 G r a v i t y waves, 145 Green's m a t r i x , 151 Gronwall ' s 1emma, 53 Growth and c o n v e x i t y theorems, 35, 42, 78, 139 H a r i s h Chandra f u n c t on, 92, 108 Harmonic space, 119, 140 H a r t o g ' s theorem, 11 Hemicontinuous. 175. 177, 207, 223 Huygen s ' o p e r a t o r , 240 Huygens' p r i n c i p l e , 237 Huygens' t y p e o p e r a t o r , 238 H y p e r a c c r e t i v e , 231 Hyperbol ic r e g i on, 4 Hypergeometric e q u a t i o n , 134, 242 Hypocontinuous, 10, 13, 28, 30, 63, 159 Hypoelliptic, 9 330
INDEX
Improperly posed problems, 251 Index s h i f t i n g , 269 Induced represe n ta ti o n , 113, 137 I n t e g r a t i n g f a c t o r , 16, 49 I n t e r p o l a t i o n spaces, 186 I n v a r i a n t d i f f e r e n t i a l operators, 90, 94, 122 I n v a r i a n t in t e g r a t ion, 94 I s o t r o p y group, 93, 107 Iwasawa decomposition, 91 , 106, 124 J o i n t spectrum, 149 K i l l i n g form, 92, 105, 122 Kortweg deVries equation , 184 Kummer r e l a t i o n , 101, 129, 131 Laplace operator, 1, 97, 117, 120, 121, 138, 270 Laplace Belt ram i o p e ra to r, 117, 122, 140 Laplace transform, 270 L a u r i c e l l a f u n c t i o n , 243 L i g h t cone, 122, 238 L i m i t c i r c l e , 258 L i m i t p o i n t , 258 L i o n s ' p r o j e c t i o n theorem, 45, 165, 191 L i p s c h i t z c o n d i t i o n , 167, 170 Lobacevs k i j space, 122 , 128 Local l y equi continuous semi group, 66, 79 Long waves, 171 Lorentz distance, 243 L o rent z group, 122 Maximal a b e l i a n subspace, 91 , 106, 124 Maximal compact subgroup, 91, 122 Maximal i d e a l , 149 Maximal monotone , 208 Maximum p r i n c i p l e , 42 Mean value, 5, 8, 93, 97, 118, 119, 139, 237 Metaharmonic, 36 Metaparabol ic , 184 Measurable f a m i l y o f H i l b e r t spaces, 47, 150 Measurable f a m i l y o f p r o j e c t i o n s , 177 M e t r i c t ensor, 107, 140 Mixed problems, 5 Monotone, 177, 180, 206, 220 M u l t i v a l u e d f u n c t i o n , 217 M u l t i v a l u e d ope ra to r, 216, 230 Negative curvatu re , 119, 140 Neumann c o n d i t i o n , 226 Neumann problem, 258, 263 Neumann series, 16, 20, 49, 56, 239 Nonlinear EPD equations, 65, 273 Nonlinear semigroup, 216 Normalizer, 91, 106, 124 Operator o f type M y 213, 215 331
SINGULAR AND DEGENERATE CAUCHY PROBLEMS
O r b i t , 93 Osgood f u n c t i o n , 66 Paley Wiener Schwartz theorem, 30 Parabolic l i n e , 4 , 147 Parabolic subgroup, 93 Parseval Plancherel formula, 261 P e r i o d i c c o n d i t i o n , 209, 216 P i z z e t t i Zalcman formula, 96 Point spectrum 252 Polar c o o r d i n a t e s , 91, 95, 99, 113, 116, 137, 240 Pol a r deoomposi t i on , 105 P o s i t i v e measure, 36 P r i n c i p a l series, 93, 114 Protter c o n d i t i o n , 161 Pseudomonotone, 209, 212 Pseudo parabol i c , 143 Pseudosphere, 122 Q u a s i r e g u l a r r e p r e s e n t a t i o n , 93 Radial component, 95, 96, 97, 99, 100, 110, 246 Radial i n e r t i a , 175 Radiation, 245 Rank, 91 Recursion formulas, 12, 29, 33, 34, 70, 120, 129, 130, 132, 272 Regular family of s e s q u i l i n e a r forms, 188, 204 Regul a r i z e , 172 Regularly a c c r e t i v e , 186 Related d i f f e r e n t i a l equations, 2 , 81, 269 R e l a t i o n , 217 Resolvant, 10, 14, 29, 31, 48, 55, 67, 71, 96, 101, 111, 115, 128, 130, 132, 135, 151, 239, 241 Resolvant i n i t i a l c o n d i t i o n s , 10, 1 7 , 97, 110, 128, 132, 139 Riernann L i o u v i l l e i n t e g r a l , 74, 272 Riemannian structure, 97, 107, 118, 137 Riesz map, 174, 179, 180, 196, 217 Riesz o p e r a t o r s , 162 Right a n g l e c o n d i t i o n , 231 Root s p a c e s , 91, 106, 122, 124 Rotating vessel , 174 Scalar derivative , 7 Section o f a d i s t r i b u t i o n , 37 S e c t o r i a l o p e r a t o r , 180 Semi d i rect product, 136 Semi 1i n e a r degenerate e q u a t i o n s , 206 , 228 Semi 1i near s i n g u l a r problems, 65 Semimonotone, 209 Semisirnple Lie group, 91 S e p a r a t e l y continuous, 7 , 63, 159 Sequential completeness, 71 Simple convergence, 61 Simply continuous , 61 332
INDEX
Singular e l l i p t i c equation, 5 S i n g u l a r problem, iii Sobolev e q u a t i o n , i v , 143, 144, 174, 200, 227 Sobolev space, 224 Sonine i n t e g r a l f o r m u l a , 32, 34, 76, 117, 119, 270 S p e c t r a l decomposition, 47, 150 S p e c t r a l techniques, 47, 147, 162 S p l i t t i n g r e l a t i o n s , 101, 104, 130, 132 S t a t i o n a r y problem, 214 S t r i c t l y monotone, 209, 214 Strong d e r i v a t i v e , 7 S t r o n g l y c o n t i n u o u s , 61, 168 S t r o n g l y monotone, 176, 229 S t r o n g l y r e g u l a r , 147, 166 S u b d i f f e r e n t i a l , 232, 234, 235 Subgradient, 232 Symmetric space, 91 Test function, 5 Topology E, 69 Topology T , 268 Transmutation, 2, 80, 248 Transverse d e r i v a t i v e , 260 Tricomi equation, 4 Type A s o l u t i o n , 268 Type B s o l u t i o n , 268 U n i f o r m l y w e l l posed, 28 Unimodular, 94 Unimodular q u a s i u n i t a r y m a t r i c e s , 112 Value o f a d i s t r i b u t i o n , 37 V a r i a b l e domains, 175, 177, 192, 194 V a r i a t i o n a l boundary c o n d i t i o n s , 196 V a r i a t i o n a l i n e q u a l i t y , 175, 178, 209, 211 V e l l i p t f c , 182 V i b r a t i o n s , 175 V i s c o e l a s t i c i t y , 185, 227 Von Neumann a l g e b r a , 150 Wave equation, 1 , 42, 146 Weak problem, 44, 47, 161, 164 Weakly c o n t i n u o u s o p e r a t o r , 213 Weakly r e g u l a r , 147, 179 W e i n s t e i n complex, 77 Weyl chamber, 91 Weyl group, 92, 106, 125 W i n t e r f u n c t i o n , 66 Yosida a p p r o x i m a t i o n , 173 Zonal s p h e r i c a l f u n c t i o n , 94 A 0 C D
6 7 8 9
F 6 H 1 1
1 2 3 4 5
E O
333
This page intentionally left blank