\ 1 4 6 4 1 \/1; 1% / \\ '65 *0 *0 B6! 6 A/XA 55 1 15 20 I5 1 59 172155552171 /5 A0 /x0 /5 /5 'E\’¢'I'y1‘!1II')1' {H 11 1{11I1]0Il11] i.
Euuéiis Foiuvium 61 proof p7'L£7’ll7”Lg A cut diamond is a solid without indentations all of whose faces are flat polygons. Leonhard Euler (1707- 1783) discovered the neat formula that relates the numbers of vertices, edges, and faces of such a solid: I/(ertices) + F(aces)—E(dges) = 2 For example, in the case of a cube we count 8 vertices, 6 faces, and 12 edges and, indeed, V+F—E= 8+6—12 = 2. PROOF: Start by opening out the network of vertices and edges to get a plane picture of the solid (opposite, top) in the form of a map with the same numbers of vertices, edges, and faces (the outside counts as one face). We notice that inserting a diagonal into a face yields a map with the same V+ F—E (opposite, second row) and so insert diagonals until a map consisting solely of triangles is produced. Finally, working around the outer border of the map and eliminating one triangle at a time (opposite, lower two rows) we are left with a map consisting of just one triangle (3 vertices, 2 faces, 3 edges). Since at every step the value of V + F—E does not change, then V+ F—E I 3+2-3 = 2. Q.E.D. It is also not hard to show that Euler’s formula holds true for any connected plane network of vertices and curve segments (below). { (VME =s9+;r-55 _cv+¢-@:6+;-7:2 :2. .i.· ( . 44
Opening outa cube _gives a map with the same (V+ (F — (E, Unserting a diagonal increases both the number of faces and edges by one, leaving (V+ G: — (E unchanged. (Hence the (V+ (F — (E of the triangulated map is the same as that if the orginal. " .5 `°""''`‘ - li Q <<$s>¤>=is-~‘ ·- . \ `Tf -·:s ` Q A ·‘—" · (Pruning a triangle from the outside if a triangulated map leaves (V+ (F — (E unchanged. (For example, in the lg? diagram we lose one edge and one]€1ce; (V+ (F- (E = (V+ ( (F - 1) - ((E - 1 Serious pruning shows that(V+ Q: — (E if the original solid eguals that of a single triangle. 1- 45
Possnsua Irvwossisiurirs doubling, squaring, and trisecting Socrates (469-399 B.c.E.) once used the Hrst two diagrams below to show how to double a square, and the oracle of Delphi predicted that a plague could be stopped by doubling the cubical altar of Apollo. In the nineteenth century it was proved that “doubling a cube” as well as the other two notorious geometry problems of “squaring a circle" and “trisecting a general angle" are impossible if we require, like the ancient Greeks, that we use only a compass and unmarked ruler. IQ however, we are allowed to use other tools, all three problems can be solved. To square a circle, roll it half a revolution on a horizontal (opposite, top) to construct the long rectangle, which has the same area as the circle. Now, using compass and ruler as indicated, construct the square, which has exactly the same area as this rectangle (see page 7). Archimedes discovered an ingenious method for trisecting an angle oc between two intersecting lines (opposite, center) using a compass and a ruler with two marks on it: just draw a circle and align the ruler as in the diagram. Then the angle 8 is exactly one third of the angle ot. Doubling a square amounts to constructing */2 from 1 (below, right), and doubling a cube involves constructing W2 from 1 (opposite, bottom). just trisect and fold the paper unit square, as indicated, to construct 3\l2. Easy to describe but tricky to prove. Can you do it? *e.2 i. .` iiie .it. ie‘....—.» 46
- °"‘` it- —_V, .-;;Z?·.=:.¢·";‘ _ ,-2.;·.=;:,;_.#‘.-‘.·.T‘-.-ri ·.tz=- :..2* _ . -..--.;.21 ey ‘ · -::.·-= ·‘ -` . -‘ :-5;: '.;"·YZ.j_;;;?:.·`Z.z·;_'__ *.7.-T·· ,; r'}_ ‘ ` " ’;_:‘"£.·$ > _ - *-5. .·::—-;;—- . ._ ``’ - ? . "`i·-·¥--·I-‘i`--’--e¤?;¤‘-I .-=. * . . ·. Y? 12-;- - :¤ ·.~= - ·»... --5 - ·."$: " ·f§j‘.;%.}{e.‘;Q‘ -‘;é‘,.;'E_=$, 2-E-F-1;-___ ‘ f·_i2<.J?=,.¢;jj"£ `;E`+‘·?·=·=&-·..j§t¤-‘§.i_- n _. . —· f17_’?'=°E·?€;CE,‘?#§ _- _,·_+i · ‘ -11. ..1.-*;- ‘ *4-:% *..*==? If -7 ._-2,%;-.:f‘ , ’*-:‘=-i --*7 vt. · -,;.*-.--7,.;* »;» ,. ,_ ‘ - L;;Zji;-.·- ,;;.*-:--2;- -yi.-·--;.·¢5:§ . - ·; .—. · --‘,--· -.- 1:. ····f.· , ·· */2% -·' ,»·.Z—· - ‘· · ‘ - -- .·.-‘: .· · ·;- ·/·,\{%;. ’· ·‘.’· ., -.;' iu-·-2** . ·-·;—. ··--: Z -¤— · ‘ ·=:&·•L— -:.:5-we-·. jq .- -‘r- , . <-'<-=. ¤‘,<.<-5.-·-‘. .1-:- .. I-,‘.--3,.;;: z.;¤-, ;-;¤;e&, Mz-.--. -:;z=?=-:.2--.·-1-P.-==;;_??;:J--,-.:-·,.·;:‘5 _-· .;._ .;_·_:_ · ji. -_ _ z --·,._‘ ‘ _-_ ga. -gi-?.-·. -_,.};:.§$é=_ .-; .. ‘;:: · ,- yf?9 5; {$1 ‘/ ’·;$}¢ ·=.; ·?:·‘-··T¤¢.r`·`·`;J·"—:·"'*-':7r -·‘; 1-}*57%:* #=·--" -=-’:; *5; ·=·.=:=.; =E-‘ ‘--*4,; 1*1%-.-:,-- -;:*'='¢£‘-· · . ·--. -T< ·. - ="*·‘- ,. ’*’-< ;‘ C,Zf·€‘€' ·-·;'.`.*.£i¢·-J .-.=2%E?$;¥..-.2--Ezléiifé . ·- `*-".‘JF_'*`·i5jé£2C,f-·. j -",I_"-5;%;, °%‘ ` -· ‘? " -:7 M2 ·-€s ¥'=§-*i€§:{.J* .=.-;*·‘eE:1E:F§ -"‘=AJ- r' ,‘:$§_;.a5-3-*, . Q--` jé.;-5.-.‘-Q ,;-*··;‘g;-,--, _/, I ; Z-}; 1 - .. . = ·.-A-·.5>-5.;* . .--vi`:-,-=,=--;=.·.‘ ::*11;.-* - ··:# :.*= -: :2-,,.. , :5.---· ..==¥:¢·- Z’;¢ -¤·=-zi-.--·vr'5¢·.,é.-$.=·’€E€‘-?--‘-·' Z: Ti'- '$===i.`-E-F? ·· . _.=_`-:;;*1-.-.:5.-·;.-_·- ·: ‘ -- -;‘--,= ·@',;f2‘?{ 4%*.;-2,:-;*;·,-·_· >-·.%*‘-£=;.;v.,·.;::· :1-- gg ,: ·::=·.·. ‘-:--=··€-..a?;=;_T·= 5.-.: _. ·_ r_·;s; =··.-=_. ·. -. - .. . ,,.1//. .3-¤=v:·:¥§,;¤-yg-:4,;.:..‘/-.--;¢;..< ,. , ·;-¢».<‘- =;;,;¢~%-it-; - .-@:.-;*3-r-·-“-·‘»=-.,:.=·,-;' ·.:; :-:;;%.5 . :.‘ -· =· .— ·-?~‘ ,- :-,-;;·-= .· »:# 4 ;:"-·;p-‘·.-··---;·.r .·.·//. -4*-; . ·- '-:-i,,»x‘·. ‘ ‘. =<'=;= :.,·.--:;‘.·.1.··. =:··.i‘;': -‘* -' -· ·__‘7'_::·¤:'.f_;.;:·;-_;?` -- Z‘.· ,`- _- · ':· _ . _;_.· gran`; '_;?1;';. _·:` .. I J. ‘ »*· ’;.·‘,;.(/{{.2 Q- ·-·;E:- _;_E.E_ A ;,—T.,_£;_,fk,£§§.·::f__ ,3:L--5;_;;.' ‘ ‘ I .-Q Ll.-=*T ·=§-:I . r,,Z · ’ --' ‘. -· '. --· ··f·=" T. F5 =°?%·.' ' ‘ ;"-:2.:-`· ..-=§ *-ii.&.£-" ’v‘5.-53'i¤5:l$` -`·_-'Frléi:. `-‘Y·'."=·.L"--‘_?‘:¥.?._.-’,b-E; ` .- . T ·,`=E :3,- i,·f::;` , -;- ‘ ·r xg? B `@{Z‘- 5-r'·.‘;, =`?"·i *-7 T -FET;—=1:` ‘-,·:te..·:..E¢. s_.·>jg:.--·.:-·‘ _-:· ,-_ Jn. = ¢,,’K; ,4-15 -,-Z' 5'<.·§§: . ‘ . .:1* EN >&¤ · - , , -C-¢·'-rT§E :-—.;¤-Z€- - 'e=·`-iii? »—‘·¤ . ‘ = -T--~-=·,-_ -.+5:---5;:5: 5;.; -ar;.-5. ;. .;-=--.g·,e.¤—,=.+>;.-.- : ’ ··* ‘¢-:.- -y;,-ir-. .· . ‘ = -:;;.:1:-F?·.`--*551;··?*;‘€..=h5;=%T.i` :.- T-.--,·-.-.=-+‘.s;_.·:a-=--::21 ··:= . ==-. .= ·..-‘...;:;= *;-51 ‘/-·· ’ ?:?·?;-v>é/ P--&==i‘Fi-=£--J?1+=*,‘T§;=-:.1:;;:* -·-P:,=;—;>.·-e1=.-·?:#·‘;,-;-·— ·¥. #-‘r*: -=:.=53:.€:i==r5¢,--· -¤¢ ';-.-=;= --55: -1---: :·. ; [ • ’ '·’ ·<-'. .· ‘=· ’=; .-T-.-.5;-===-s-·-=-·=.=;’;i=-.=: az"-- .*71 li 2 ‘ C IT (um ' “ -.-·.-— .2:- -,.· * · "1f?Z--$53 ’ .. UUTCG {irc] `>_.' ‘ ` ‘`°‘ 6 ‘‘¤¤ %F=·ii?¥;]i?*-;. -ii:--§§ -.‘`’_ · -, , -·`-7-* .·.- *-’·?--i.`:- X`-`*`T'r`i.·%"-=-.‘?2-%-‘e?-%€‘-`·?=arm WC]-! = arm r i- ·.=‘ *-·; -Q-= ,,-=-.,=.-··- .. ., ,- 5-;s=»,= .-,- _· , .· - ., ,:-- . .= .-,:-5: -r-=-·s...--=. · :,4--:, .-:--`.".T-.·`-=··.=-':*f’*$_’2*57i:;-1·.·_-`,`·-T:-5, i·-;>$r-==~>:;=·5¤··1-rl=v`>T.;¤·‘=-=—.i1:- - =.2I=- : :4:%*-Sr;-‘ -=,··-r:.#‘.‘ -‘-=.? · -- #+2L--31:- -T-J.4*.-i-1>-··&‘:=..=·‘:@s-2-rr-Z*.=T-·s*-· Z- -‘-·--:.—=. - #2* :; :1; -;·-=.>::<:.· . r ;..-,:;;?..· ----:.:-;;:---5 :-,-:-:.---.;_--;·.-Q.·- -= -·.-4 --·=--=-·;:;. -;-:-;.;:-.-1..-,- . — ,. -:--g ., -;¤:.·.,i;-.-:,;-.=p__:.- ; =» -.7-5:--{pj. ._: , -<.- -._·¤·::?:—j.--55;¤;;‘· -.-*1 ff'-. .; ‘:. *.--;-.,5 iv; nt ;‘:_·.-_ -.,5;.- ., -- gw- 7 j,f_‘:, ··-S__=_r=1.=,··-r:;3>};·- 33:-; ‘ .5;*;--, ..=r.-:3;-.=-.· — :‘F"f·`·‘=I-.‘r?;=·-:=5=*=·.` ` -‘ ‘·¤—‘-- ·‘ `·;·?*"`¢2--; 7**:% Z-5--`ii-.’?.<‘.‘j’-LT;-.2 :3-‘.=‘=...>-; iii-*2.5-i‘i*‘ -·= .- -’.‘¤’· ‘.i'%--"‘·7;< ’=-Frsii-·i ·.* :`:}i&`§ 'l"::.=}; ;. ;`·i·;`.;€ ii ` = :‘5"¥* AF-;`-'=? ‘:1E‘=?.-·f;:··.‘r-_= -?=-.‘,:}=§ii =Z·:Z` `F ;.-.7 r -·-· - -- ‘i- . ·‘ ‘ r$5-¢.#»s1rS+é-2-=?*‘ie-¢s§=.;<¤*; --‘.;- —:· ‘· - - · ',· T, Q`;. _ ·-'¥.—· '--:34-ZT` ·-L'. i' · ;‘ I `~:`l' `- `- 'L— ' . 'L;'1-. '. . " _—_. ·` ..-. -' Z ' -` ."’1';'·- T" ' 'r.,‘··' ' I .'· . -i·:J:-~_ J—7.;_;t;&=;E· ‘ ,_·Z.s-_: --1"·:—.;£.t--',_.‘ _-.;··1_’.¤ -.7 -. ` . . ‘*• . $ ··r;·'..‘.;'- .T·;';·`.. ‘ _·:g'·‘:- ' ."§.1¤;;Z . Tg}- `-‘.a;`g`·f-‘¥€·?-`·. ‘ A ·x.— ‘»·. ¢5--.$g;\-i _. -7;*.11-}---¢;sY;f=*‘ ·; ,·‘‘ -.J‘_—— L'.-11* ·‘ .?`;;‘ tz-- ·‘ , ., .- = —. 4 · Y-‘,, -,._.,,-.,,`.. ,_ ._. _ .. ...- ., . l v x-., ,.,$,_.\>•~4$\. .. ,. -,.,...-,5;...,..., ;:‘r:=·-¢;i#"· +---2 ‘~==?-5. ·-'¢;.=·¤‘. 17-- · * -. · =. ‘· -si.-. "— Y:-fav---1-xx-:< ‘ — " ` :-1. .i~:-FH,$:~:-.=?·‘-.;·.==.‘; ·.é1_f .‘ .;-_-·‘-;;..·_., ' · .‘ 1,-"_;; ·,;;· —· . . - . · y;..g;.j-;`\· ~5_:·¢•·€<_Qs?.— _ _I5·§·\\j:·,i .}:*`j,p.·.’ 5*5- · :_ ..r;,=._g·:g·_¤;5·.‘. $_—_- 5;..--5;;;i{.—‘-;f.5-., -;=7_-· -.--. fif - `· Q_ ,H_\é _ , ’=·"-“- ·"' ,-; ,Q'-*r.;;",if,Q.iT%-**7_?· -="= .· 5;=_§’-i`.-‘i;§ ‘;;5-;j_---·; a=-·,i-- =- ‘ - ‘ _ .g$,. Yyy. ~ -. `x _`,· gx-._.*.; ‘=· -~ ’ _ -;g;;;;i;,.:=··=;·; _. :L';¥f`:-fJ§.i:"`;.'f= ·r ·‘ ¢=:-%‘=·.::. . . . .<·-@*:-14:-·~:-*· $:* ‘ -·r·>‘--r `<—·¤·" · YEj?;¢*?.e".*- JN, .-_?=?}Z=':, ;`,=’._- 4 ,. :":°'£{.:` Z` ”`éM"` _ `..‘ : -il; ·‘ . ei - ` ` $5 '€Fl· Y; 5-‘=j ii} " ‘,{??`{-TY`:Lf:.j Z‘--` -.j;j,. ‘·-=- L _ _ I 0..26 ‘- _.€,e—·?·.j-I-= g- ·-, _ 5--€;;.;2·;-·'.# _ =‘, .- , - ._,·- ,_ . " ¤----`, _-:-_.,€;;. ‘ -"Z·_é‘·Lr}_ j'=E;g;-§ti§§ ,‘.’ V "* Y-°‘ ’."` = ’··w‘ -";·`i;’ --3-,,.. Y ' ,` `-‘ ,5- ,· · -’-.C (nig ' , ` —- ,· ; .___ {TT -.-. , . . -. _q!V€$ IB: 8 ·‘ ] `*?-§,?,E?F'i*:l` ;;_.` ,3 .. ‘·-·- ·. .— . I O"' --_:‘.Z?T_-J.;‘¤%`. .- I. -. . :~ . .. 2€)=2€ and rh S- ‘-`·· €*-*.3 2.-ir -·.·— ` ‘ ‘-- . ·- . E $€C0nd - · ` ..-._ ; . 0-180-(E.,( I 8 `· '_-‘ . ._·- = .=-` - ‘ 0 '2,B))= .‘._ - - .i;_5· _;;;_;_-_;1E;g§;q;:;;=?·.:g ii;-i5j.·;, _=-j_e;`-. -__-j_ _ ;. ‘ . I 36. =;-=-:-,1'.=— ,--·—.·--.’ ·:. ·--· ‘. --:—· ‘ · · j:· ·‘:- ; ‘=: . .-5.: --·r. -F;-‘,`·-T-Y.;} . '. .—— ·¢ .; ‘ ,- -· r . · . -,2--._::»`-:;:1 § ,Q__-}._;;_,-_. ._ _ ,, . -_.jf 2:,+,; _- [EE L_ ___:._r,_ __ _ _ _ __ _ __ _ `_ -‘¤ .=;:·· - : - -".T=¢-i ':¤`- ·. ;;, ..= =.·‘=;-;·‘:·=,::*-·.- .-.=-ci-=.; . =;·‘-?é>:;- -si-;1 —;··.=1¤*.:‘~=.-‘==....;=:;?‘ .· - :1----* " =--=.-2:-2 , '-$,'.`:--;.‘.T.?§:` -. *4*+ - Q {T3;. -·5ij::‘<‘-zi.; ;"--5,-::-}-Q--;-j} __LJj.L_ ?‘-‘€éELE,f§¥;LQ .?·"" ‘ I F 3;--`<}'·.?gi.E?T. .‘ *·.-?5·;:§‘,·- =-· " -’;--zi-P--,*,:$‘;€1-‘+ _ :.-2-;..- ‘- _. qs-;·%_..;._ :.;-.4; :.-·r ,;_ 5<,=:-_--·;1··-- -.5-:,,1:;;; 1-::-;--+ ·£--=-· — ----.1 ..‘ -‘ FJ,=s·.·‘.—` --:`·.-=i .- ` · -·‘-- :.-T-·-`.s;.’s.-· {3:, _ ·;Q;`=g¤, g- _,`·_, -_ _ r_ _Z · ‘ .**::2-:*; .*3;. ·Zj‘,.2·. -*55-+:?;§5;.·5;5;;gg{;;j‘,"‘ " -. " 1 ``‘. `- “ `“ _ ` ;;1;:..—'.‘ ` ‘ · ' · .,- . · ‘1-.--A' if -" 1iz¥· ·"· -‘T‘.,·- .,'-';-" -1--"'.t·`·i .*.5 ‘$:·-2.-13* . .;1` ,‘-···/,- ’,--, . .. ‘ JH- j=.- - ‘-'. _= -,:j:.r?- :=.,- ~_‘:-.1;.::, TFF-i — · ·· .-`·:¥.¤i.- ·. -'·/I *65*/r.·:»!·` .' 'f :·, . ,-`-. ..-—· ‘·%*-'r`..’-;‘+i-—..>E> I- -. -:3 7.: I ,2:-:--;.--.- 5.:};-· .·.- ;@'gt»j··i;‘,,".·,·-.*l:`=.!-·=·.3./·‘}§·,’-· ., , .,:·?. .- .·¤;-; -- /·,_.-,.-_W;,ggéggimzgfiff-j//4.-Q,}-{,_-». ;_._-; -5;-_-._. - . -· .· FE?-1-`;" .1' - ` - ‘,,-. - ' ' ·';J',&4.'.';"' —; J-·,‘].,·'.'f:P,»·`b 4%}*/ .'. { ‘ t? ·",~ ··7,"( ‘· ·-·, ' ·'·' ··* Q7 ·;‘· ,. .._·.: ‘ -, ‘.=._··.j!@j,}·-j--_ _(*g.,Ig:;;;q»`•_,,,»?\~;;;}y;-_4{. {3;;; ;,%;-Q'-,_’v6.-__,_,,_.._,.H - 5;.,;-; 5:-.-‘=¢:;=. - . z = 5 ’·.. . -. ., ·. .L ‘·=·'/, ‘·N*E'· ·. =·-! ··-·:‘F- ‘, 'l··¤l,/y_ ‘//r[·:h·, ii-:-/' -¤-·:?.2"i ;;:;7::?.`J'.f _. _ V'. ‘ - _ ` . Q/%A:’.`;_£' J/I, ir`- .5 -":{'l·1`/Qglt J .3;:;.,;; ' , II'!. ":;l§|!, I, ,/· T I -:.:;-5- -_ r r __ V _. 2 _ · T-_-·_· ., -· :;;{'·!$L.j-Qt.-__-_·-:··..{.._',:.,;b_.,...:,l :_ I'. U-:. ;-;,;_Lj i UWA; xd,]. /_`-,·.g\·_* ··3:;-_- F , :;___._ •·v_ ,_h.,·,.;;. '_:. __..E_-,;-7:7,:1, G; .. _ _ ,3- L ·{'f;/hsilé-_.:lGKA.g’Q0;f _l%1,._@;_.,Wé_·',_/;: _;> 1-.. ·j._'_:_7.‘..I.¤h:';)r · ` 2%-:: :_;;g‘ — €:·--nv ‘¤I== :=.5:§.?.& . ` -` "/-‘*9T?;, '*|»'$` '*.7-*.¢~'·"-'¢" $Lf#%'/Q/»(??·' -*‘ F - ` V -7*-*- ’/"’ ` ' ·"’f P "‘ ·" 52-;·.._=. ·. -_-·`;g;=.¢;s==·s---.-, , .--=.= -!;:¤.$-.-I-M.-‘i·,;.‘-rs,.‘~;§f·_.--·.--4 , z-1..’ ‘- —-- ".!lj·.·!-H .- M ;.—-Ea .- .. . . ., .. . -, .. I · ./.· l..·.`¤ . . . 1 . .. --. - . . ; z- . : ..1:,.-· ..— ., - -,- ., .- , ,, .-;. • *·· -. ·-FII-_· :·. .,-,7-p_/,..4-,,. ,_ ,4., . . - ,_ _. 4;-,7,-_ _g, .; •” ·-H . _» ;_. -_> ·.i·7s5--·l Mi`. T-.-- .:- 1.- ., "-=`T=‘=-‘1 *3- - -. ,` ·F’ ;·>;:-i€·‘i ‘·`. €’· _ l' '· · jg _ — !/I/F! Ji} h .’I ‘ _- .T· "I I FF ’ "°`." ```· - .-.-="?‘--:`J E7 5*-* *-1-*.*- -.-V- ‘*’-si?--F:-’ .- ?5·”?- *3---:. *·-S:-L " .·?-if? Oldulq sg and Q · ``lr I F-E ‘‘·· ;‘;:ui·r‘: 2-3:- `'‘" r` *-2 · U-/n/" -°"-f `'-‘ *`7¥-*' ‘·:.:-fi Y--- .`"- Om`0 the Se ` " °-TIM:}/¢’*»f·,:{§:." -=*S+2·?= 1-*,. -·?P;e,‘. -‘ -j _. .- , P -3-:,;::, ¤- ,1* ·.{j·’j.·- .·-g.-{ “`*" -*5-- ··¤*€-T? ¥€· .- · * -· 5 . . ggmemrs 0 and b W - ‘* "‘-·Z- ·* - i'-/if/i}»-* ’ ‘ *"`·¥ `-‘‘"‘-‘·‘ "°-@i- - $#5*- - results 177 J h " ` · ‘ --`- 7 . i e · 2 T·’·· ?‘·;-·‘-· —z-*:;=#;s5=-ra=.:- - . Hf ( ’ ‘--黀¢‘:z ==* z ,. L ,_ , ‘-_ . rang 1-3 *:1;: ` *‘···’Fé£a.:"i-,1,% .. . .. · -. - • 2 ' "·*‘·` -i=:-2.7.%*-‘€-=-i;Z--3-.-+2; ¢ ·· -- ` --’· +.+ =-1 -‘ -. . · ‘`‘‘ "* ·‘=.e --i· -·--7 .--`- -,;:1 ‘ , . 47 ·- *··-1-:-— ¤,, * ;;*--gjttgl-.g :,5 " ` "`° i Y’··]l`. ;_'.`Y?f_.i7Q_€Z€§E§$§s;S ·. {'_;
ONE Turoiuim, MANY PRoo1=s Many hundred different prooS for Pythagoras’s theorem (see page 4) have been discovered. Collected in this appendix are some of the most ingenious ones. Our tirst proof (ld) is based on the same diagram as the one on page 5: ` ` I, 2 2 2 3-s;H€=:&LEa=z¤$-==’» 1* ...=& ?5·A z»=‘·a€;·‘=* az + bz Z C2 A similar proof based on the diagram on ¤h¢ rightr 2..L small square + 4·triangle = big square rb - az + 4— 2 eb = cz a2 + bz = Cz 1 AA Leonardo da Vinci (1452-1519) noticed that % the shaded areas in the two diagrams on the left have the same area and each contains two copies of the right-angled triangle. Q ` Discarding the triangles gives the theorem. c Triangles JVBC, C,’li(D, and JOZ5 are similar. Thus, rmi/
i I l ;-itiaikfgi ;ze·:;2a»12@ A proof by shearing - .-L· `.’_ _ »···= Y · ·-··-*= i » ‘ o‘·‘ r¤—’ C ‘‘‘; T;-;.;=;;=‘—; ‘==‘=»w==.¤>:-=*=>‘-w-- -==’·¤¤· ·‘-- , fz .,5- Q ·` i V a lv b a A proof by dissection » r ,i.‘ = Three more proofs by dissection Ptolemy’s theorem says that for a quadrilateral inscribed in a circle a a' + b b' = d d'. This reduces to v Pythagoras’s theorem if the quadrilateral is a rectangle.
AP PE N D IX ll ALL rox ONE AND ONE rox ALL Delving deeply into the secrets of THEOREM 2: The nth faction isfn+1/ji mathematics, one gets the feeling that where fn is the nth Fibonacci number. everything is somehow connected to everything else by a network of PROOF: The proof is by induction, as beautiful relationships. For example, described in Mathematical Dominoes. the Fibonacci numbers 1, 1, 2, 3, 5, . . . Let’s denote the nth fraction gn. We and the golden ratio ¢ = (\i5 + 1)/2 first note that gl, the first term of appear alongside many of the other our sequence, is indeedb/A = 1/1 = 1. topics covered in this little book. Next, we assume that the nth term Connections with regular figures and gn = AH/fn. Then gn+1 = 1+ 1/gn = Pascal’s triangle have already been 1 +];,/];,+1 = {fn+l +jn)/JQH. With the touched upon earlier. Here are some defining equation of the Fibonacci more in the theorem—proof style numbers, _f;1+]+fn :fn+2, this implies favored by mathematicians. that gn+] =j,+2/@+1, as desired. Q.E.D. THEOREM 1: THEOREM 3: The Fibonacci numbers Ll, j,+1,j,+2,j,+3jorm the Pythagorean triple. ¢ : ]+ 11 1+ *+1; 1+ _? PROOF: Call the infinite fraction x. Clearly, x = 1 +1/x, or x2- x- 1 = 0. ];'+12+J€1+22 This equation has the solutions Q} and 1-4). Since 1—d> is negative and both x PROOF: If a=jn, b=jn+1,then _;€,+2=a+b, and gb are not, x equals Q.E.D. fn+3:a+2b and (2b(a+b))2 + (a(a+2b))2 equals (b2+(a+b)2)2. Q.E.D. Hence, just as 0.99... gets approximated by the numbers 0, 0.9, 0.99 ,... , ep gets For example, choosing n = 1, 2, and 3 approximated by the fractions gives the triples 3:4:5, 5:12:13, and 16:30:34. From the proof it is clear 1,1.+. 1 Z 271 + QT Z 271+ .% Z that we can replace the Fibonacci 1 1 1+1 2 1+Ff 3 numbers by any a, b,a+b,a+2b. 50
THEOREM 4: $ is an irrational number. Tneomam 5: PROOF: As in The Nature of Numbers, eb : i 1+i 1+il-HT we assume that $ is a fraction a/ b of two natural numbers. PROOF; Call the inhnite expression y. d Then because of its self—similarity y:\/W, or y2—y—1 =0. Thus . y = cp. Q.E.D. b 'I 2b-d . We finish with another beautiful a—b connection between the Fibonacci numbers and Thus we have a golden rectangle with side lengths a and b. Using the self- THEOREM 6: The nth Fibonacci number is similarity property of golden rectangles (see page 40), we cut off a square to ji; Z @$-1)produce another golden rectangle. Repeating this for the smaller golden PROOF: In the proof of Theorem 2, rectangle produces a third, and so on. we saw that both $ and T = 1—$ satisfy We notice that the side lengths of these the equation x2 = x+ 1. We conclude golden rectangles form the infinitely that $2 = l$+ 1, $3 = $2+$ = 2$+ 1, decreasing sequence ofnatural numbers $4 = $3 + $2 = 3$+ 2. It follows by a > b > a—b > 2b—a > . Since any induction that $" = fn$ + fn_] and, decreasing sequence of natural numbers similarly, 1** = fnf + j;,_l. Subtracting must end (1 being the lower limit), this the second equation from the first gives is a contradiction to our assumption. $"—’t" = j,($—1’) I fn(2$—1). Finally, Hence $ is irrational. Q.E.D. dividing both sides of this equation by 2$ — 1 gives the desired formula. Q.E.D. The infinite expression Since (l—$)" = (-0.6180...)** is tiny, the $W1"w—t nth Fibonacci number is the closest 2+ 2+ 2+lT natural number to $" / (2$— 1). For is the main part of our formula for the example, $10 / (2$— 1) = 55.0036... value of 7T (see page 9, bottom). and the 10th Fibonacci number is 55. 51
AP P E N D IX I I I Loo1<s CAN B12 Drcrivmo Some of the proofs in this collection, especially the dissection ones and those involving infinity, omit a lot of detail and really only try to capture the essence of why something is true. Many of them would only count as full proofs in the eyes of a mathematician if more details were added. Here are a number of infamous fallacies that use arguments that are very similar to some used in this book. __ __ 13 DISSECTION D1sAsTE1>\: The first "proof" 5 E'.==!: EXSEEIE by dissection shows that 64 = 65. What 5 5 goes badly wrong here is that the diagonal cut in the rectangle on the 64 2 88 Z mea Square right is not really a line as suggested by I area rectangle Z 13.5 : 65 the drawing, but a very thin quadri8 lateral slit of area one. This “proof” as ·§,'§§'** 21 well as `the next is based on the fact that 5 III the square on any Fibonacci number 8 differs by one from the product of its _ Ji-!. two neighbors. In the first “proof” the ' ""'*" square has a smaller area than the oblong 169 = 13·12 = area square rectangle, in the second it is the other = area rectangle = 21·8 = 168 way around. I1~11=11~1m2 1NsAN1TY: In From Pie to Pi we argued that the regular n—gons inscribed in a circle approximate it in shape, and that hence their circumferences approach that of the circle. This is true but requires a proof; as the following fallacy shows. Starting with the large semicircle on the right, its diameter is approximated by strings of ever smaller semicircles. Hence the lengths of the strings approximate that of the diameter. However, every string is clearly exactly as long as the large S€IT1iCiI'Cl€. I‘I€I1C€, 3 semicircle is just as long as its diameter, or TE = 1. 52
ROUTINE RISK: In The Infinite Staircase we manipulated the following infinite sum as we would manipulate a finite one to prove that it adds up to infinity. ] + L .4. L + L + L L L L L L L L 2 3 4 s+6+7+s+9+10+H+E+ We should be careful when doing this. For example, the following similar sum adds up, 1n a precise sense, to 0.6931... = ln 2, the natural logarithm of 2. ]-L+L-L L-L L-L L-L L-L 2 3 4+5 6+7 8+9 10+11 12+ By just rearranging this sum, we can "prove" that ln 2 = lg (ln 2), or 2 = 1. ; -L-L L-L-L L-1-1 1-1 (1 2) 4+(3 6) 8+(5 wl E+(7 U)"" -L-LL-LL-L1‘ 2 4 + 6 8 + 10 12 + H -L-LL-LL-L1‘ 2( L 2 + 3 4 + 5 6 + 7 Even worse, it can be proved that for any real number, there is a rearrangement of this sum into a sum that adds up to this number. Of course, all this does not mean that you cannot do anything meaningful with infinite expressions, only that you have to follow certain rules. UNIVERSAL UNIQUENESS: Many proofs that there are exactly five regular solids start, as we did in our introduction, by showing that there are essentially five possible corners, and end by constructing five solids with these kinds of corners. These proofs are incomplete because they don’t show the uniqueness of these solids. just imagine building a hollow icosahedron such that adjacent rigid faces meet at their edges in hinges. I-low can you be sure that what you end up with is rigid? After all, in isolation every one of the corners can be flexed, so why not the whole shape? Here is a related question: If you build the skeletons of the regular solids using rigid edges only, such that adjacent edges can be flexed about a common vertex, then which of the skeletons are rigid and which are not? 53
TRIANGLES OF GEN ERALITY Deep results are not usually discovered at—a—glance but rather as a result of a process of ever—increasing generalization. In this appendix, we sketch part of such a process involving Pascal’s triangle and its relative, the Power Triangle. I2 5 cz ze *1 Q ¤ Q , ez eb- ¤ § Q E l ii;. A $` s, I- il iz; 'le’ ..e . . . _Q (wb)2 =1a2+2al2+1b2 (a+l2)3 =1a5+3a2l2+5ab2+1b3 These general formulas work for any choice of a and b. Here is how you derive a general formula for (a + b)" that works for any a and b and natural number n. I (a + lv)0 = 1 7 T (a+l2)' =1a+1l¢ 1 2 1 (a+lv)2=1a2+2ab+zb2 7 5 3 7 (a+l2)3=1a’+5a2b+3ab2+1l>’ I 4 6 4 I (a+b)‘*=1a‘*+4a’b+6a2b2+4ab3+1l2*‘ Pascal’s triangle on the left summarizes the formulas on the right. Can you prove that each of its entries (except the tip) is the sum of the numbers right above it? (O) On page 21, we saw that Pascal’s triangle neo0 incides with the triangle on the left. Here (lz) is < 5 ) the number of different ways to choose le objects 2 2 2 among n objects, which rs 1 1f le is zero and (0) (,) (2) otherwise is e-(n- 1).4,4-2)...(n-1e+ 1)/(1-2-3...1e). < 3) < 3) (3) < 5) This gives the famous Binomial Theorem: OIZ3-(a+b)”=(Q)a"+(§’)a" ll7+
Many generalities hide in Pascal’s triangle. For example, on page 43 we saw that its nth diagonal adds up to the nth Fibonacci number fn. We express this as follows: JL;] : (H5!) + (1*42) + (nf) + ° The structure of Pascal’s triangle quickly suggests the Golf Club Theorem: Highlight a golf-club-shaped in pattern of numbers in the triangle as in the examples on the left. The numbers in the handle of the club then add up to the one in its tip! Golf clubs with handles along the outside column on the left (first, white) translate into the formula: 1+1+1+...+1(nrimes) = =n [+2+3+4+5+6-=2] · • _ Golf clubs with handles in the second column I +4 + I0 _ I5 translate into the formula for the sum of the first n @ natural numbers (see also pages 32 and 34): @®® ® ® ®®®@® ®®®®®@§ 1+2 +3 + + 11 = (H?) = 1101+1)/2 e I 3 6 10 These sums are called triangular numbers because they count the numbers of circles in the triangular ._ patterns on the left. Similarly, it follows that the numbers in the next column are pyramidal numbers. _ $3 In general, the numbers in column n of Pasca.l’s I 4 10 triangle are the (n-1)—dimensional pyramidal numbers. The Power Triangle below was only recently discovered. It summarizes the general formulas on the right below, some of which we proved on page 34. This triangle grows just like Pascal’s except that you have to multiply a number by its suffix before adding it. For example, in the fourth row: 7·2 + 12·3 = 50 and 12*3 + 6*4 = 60. 1, 10+2"+}‘°+...+n0 = 1, 12 1l+2l+3l+...+1”ll=1(7)+ 11 32 25 12+22+5*--+¤* = #(7)+ $(2*)*%) 11 11 11 11 1, 72 123 64 13+23+3}+...+113 =1(,)+ 7(2)+ 12 (3) + 5(4) 1, 152 503 604 245 1‘*+2‘*+}“’+...+n‘* = 1(7)+ 15(Q)+50(g)+60(Q) 55
AP P E N D IX V Porvromas o1= ANALoGY This book started with the regular two- and three—dimensional polytopes, the regular polygons, and Platonic solids. We end it by showing how analogy can be used to guess and prove the properties of higher-dimensional regular polytopes. BASIC POLYTOPES: Using coordinates, it is easy to see that the tetrahedron, cube, and octahedron have the following relatives in n-dimensional (or n-d) space. td Nl 3"I The rz-d simplex has n+1 vertices, two of which are the same distance apart. A 1-, 2-, { A 3-,. . . , n—d simplex is bordered by 2, 3, 4, . . . , n+1 simplices of one less dimension. ("·'·") The vertices of an rz-d cube are the points * ("·’) (L') (*1-M) J'-,) with all coordinates 1 or -1. A 1-, 2-, 3-, I . . . , n-d cube has 2, 4, 8,. . . , 2” vertices W (L_L_’) and is bordered by 2n cubes of one less (-1,-1) (i_-i) (-,_-,_,) ( ) dimension. The tesseract is the 4-d cube. i.-ii The vertices of the n-d orthoplex are the 2n end points of an n-d unit cross. A 1-, 2-, 3-,. . . , n—d orthoplex has 2, 4, 6,. . . , 2n vertices and is bordered by 2, 4, 8,. . . , 2" simplices of one less dimension. CLASSIFICATION: Ludwig Schlafli (1814-1895) proved that apart from the simplex, cube, and orthoplex, there are three more regular polytopes in four dimensions and no more in any higher dimension. The regular 3-d polytopes correspond to Q @ Q Ig the five ways of fitting at least three identical regular 2-d polytopes around a simplex orrlwplex imsalirrlran cube dodemhcdron V€1`€€X with $P2€€ l€& K0 fold UP into th€ third dimension (see page vi). The regular 4-d polytopes correspond to the six ways of fitting at least three identical regular 3-d polytopes around an edge with space simplex orrlmplrx 600-cell ressemrr 24-cell l20·C€ll l€& K0 fold UP into 4-d $P2€€56
VITAL STATISTICS: The regular 3-d polytopes have identical vertices, 1-d edges, and 2-d faces. The regular 4`d P0lYtopes also have 3-d cells. The numbers V (Ve1‘tiC€S), E (¢dg¢S), F (faces) C (¢¢US>,f/v (f2€€S per vertex), c/e (cells per edge), and c/v (cells per vertex) 31`€2 polytope] CCHS 1 C F E V I L/V C/V tetrahedron triangle 4 6 4 3 simplex tetrahedron 5 10 10 5 3 4 cube square 6 12 8 3 tcsscract cube 8 24 32 16 3 4 octahcdron triangle 8 12 6 4 orthoplex tetrahedron 16 32 24 8 4 8 icosahedron triangle 20 30 12 5 24—cell octahedron 24 96 96 24 3 6 dodecahedron pentagon 12 30 20 3 120—Cell dodecahedron 120 720 1200 600 3 4 600-Cell tetrahcdron 6001200 720 120 5 20 The bold entries are easily extracted from the information on the opposite page and, in the case of the 3-d polytopes, from some life models. Here is how you extract the numbers c/v (cells per vertex) for the 4-d polytopes by analogy. Cutting a regular 3-d polytope close to a vertex gives a regular polygon whose sides are the cuts of the faces around the vertex. Thus, no. sides if polygon = f/v cf}-d polytope Cutting a regular 4-d polytope close to a vertex gives a regular 3-d polytope whose faces are the cuts of the cells around the vertex. Hence, no. faces qi 3-d polytope = c/v if 4-d polytope f/v cf}-d polytope = c/e d4-d polytope These relationships allow one to deduce the Slmplgx mhoplex 600-{KH cuts of the different 4-d polytopes on the right and thereby also their c/v. So, for example, since the 4-d cube has a tetrahedral cut, it has four cells per vertex. F€55¢’T¤fF 24‘€€ll F20‘€€ll The numbers of cells of the three nonstandard regular 4-d polytopes are built into their names, and no one—glance way to deduce these numbers has been discovered. However, once we know these numbers, the part of the 4-d table that we have not yet touched can be easily filled in using some simple relationships such as: (1) the 4-d analogue of the Euler formula I/+F-E—C=0 (see page 44), (2) F = C- faces per cell/ 2, and last but not least, (3) E = C - edges per cell/ cells per edge. 57
VISUALIZATION: Take one of the Platonic solids, choose a point outside but very close to the center of one of the faces, and from this point project the skeleton of the solid onto the face. The resulting 2-d image contains most of the information about the solid. 5-d simplex 5 —d arrlwplex 3-d cube icosahedron dodecahedron By performing the analogous operation for the regular 4-d polytopes, we arrive at the following 3-d images. Note that the first three images above generalize to those below. The projections of the 120- and 600—cell are too complex to be reproduced here. Q \*`.`$ZéY§§{—` » 4·rlSlmpl¢’X 4·¢l0Ffl10pl¢’X resserurr (4—drul¤e) · 24-{ell CONSTRUCTION: Constructing the n—d simplex, orthoplex, and cube is easy, and we can make the other regular polytopes from these standard ones. On page 41 we constructed the icosahedron from the octahedron and a dodecahedron can be inscribed as a dual in the icosahedron (below, right) such that the midpoints ofthe faces ofthe second are the vertices of the first. This gives all the Platonic solids. T duuliries between the (Platonic solids The midpoints of the faces of a 4-d cube are the vertices of a 24—cell. By dissecting its octahedral cells as described on page 41, we get 96 points and 24 icosahedra. For each such icosahedron there is a point in 4-d at the same distance from all its vertices as the icosahedral edge length. Then the 24 points corresponding to the icosahedra plus the 96 points are the vertices of a 600—cell. Finally, a 120—cell can be inscribed as a dual into the 600—cell (the midpoints of the cells of the second are the vertices of the first). 58