Pursuit Games
Academic Press Rapid Manuscript Reproduction
This is Volume 120 in MATHEMATICS IN SCIENCE AND ENGINEERING A Series of Monographs and Textbooks Edited by RICHARD BELLMAN, University of Southern California The complete listing of books in this series is available from the Publisher upon request.
Pursuit Games An Introduction to the Theory and Applications of Differential Games of Pursuit and Evasion
Otomar H6jek Department of Mathematics and Statistics Case Western Reserve University Cleveland, Ohio
Academic Press, Inc. New York San Francisco London 1975 A Subsidiary of Harcwrt Brace Jovanovich, Publishers
COPYRIGHT 0 1975,BY ACADEMIC PRESS, INC. ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER.
ACADEMIC PRESS, INC. 111 Fifth Avenue, New
York, New York 10003
United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road. London N W l
Library of Congress Cataloging in Publication Data Hijek, Otomar. Pursuit games. (Mathematics in science and engineering ; Bibliography: p. Includes index. 1. Differential games. I. Title.
QA272.H34 519.3 ISBN 0-12-317260-8
75-33342
PRINTED IN THE UNITED STATES O F AMERICA
11.
Series,
Contents
vii
Introduction Conuentions
xi
1
I EXAMPLES
1.1 1.2 1.3 1.4 1.5 1.6 1.7
Navigation Problem Simple Pursuit in the Plane One-DimensionalRocket Chase Kelley's Game: Pursuit on a Sphere Homicidal Chauffeur Two Cars Unpleasant Examples
1 3 9 10 20 23 26 33
II BASIC CONCEPTS
2.1 Differential Equations: Miscellany 2.2 Controls, Strategies, Winning Positions 2.3 Principle of Suboptimality Ill STROBOSCOPIC AND ISOCHRONOUSCAPTURE
3.1 Forcing to Origin 3.2 Unorthodox Linearisation 3.3 Affine Targets 3.4 Necessary Conditions 3.5 General Targets 3.6 Time Delays 3.7 Holding 3.8 Convex Sets, Pontrjagin Difference 3.9 Measurable Selection 3.10 Richter's Theorem 3.1 1 Reachable Sets V
33 38 47 55 58 67 78 85 89 95 100 105 117 122 125
CONTENTS
135
IV ISOCHRONOUS CAPTURE
4.1 Winning Sets 4.2 Necessary Conditions
135 140
V CAPTURE 5.1 Necessary Conditions 5.2 Sufficient Conditions 5.3 Large Targets 5.4 Invariant Targets
149 149 155 162 176 183
V I ALGEBRAIC THEORY 6.1 6.2 6.3 6.4
Game Space, Control Order Min-Max Controllability Equivalent Descriptions Invariants and Semi-Invariants
209
VII NONLINEAR GAMES 7.1 7.2 7.3 7.4
183 190 195 204
Essential Points Essential Points on Large Targets Necessary Conditions for Small Targets Isochronous Capture
209 213 223 235
Vlll STRATEGIES 8.1 Compactness Lemma 8.2 Optimal Strategies 8.3 Design of Strategies
239 239 246 252
Index
263
vi
Introduction
The purpose of this book is to present systematic methods for winning in differential games of pursuit and evasion, and to illustrate the scope and application of the developed procedures. These games appear in the abbreviated schema stochastic.
< '<<
..
discrete.
1
two-player zero-sum
..
eterministic
of degre
multi-objective
pursuit
differentia
of kin
evasion
ixed
Many interesting games involve the attainment of some primary objective (capture), followed by a minimization of cost (zero-sum); pursuit is one stage of a structured real game. In treating a pursuit game one may address a series of problems of increasing complexity: decide whether there are any winning positions a t all (absence of complete evasion); decide whether all initial points are in position to win (complete capture); find all winning positions (capture region); for each winning position construct a winning strategy ("solution"); find all winning strategies, or proceed to an optimization problem. (The terms used here will subsequently acquire technical meanings.) Analogously for evasion games, where the last two questions are often more difficult. Since we desire to obtain general procedures, applicable to quite extensive classes of games (rather than t o devise ingenious solutions to individual games), the Law of Conservation of Triviality will exact i t s price: only the first question is answered to any degree of completeness; while, for linear games, some progress is made on the fourth. A test that might be applied t o any theory aspiring to respectability is whether, in addition to i t s professed purpose, it also furnishes unforeseen solutions to problems not obviously within i t s scope-the degree of unexpectedness could be the measure; or whether (like many an established bureaucracy) it is entirely self-sufficient, even solving only the problems it itself creates. vii
INTRODUCTION
It may be too early to require this of pursuit game theory. Nonetheless, one natural application is to control systems with persistent but unpredictable disturbances (e.g., in the Navigation Problem of 1.1, the pilot steers an aircraft between two points, against the effect of a variable wind current): the disturbance, error, or perturbing term may be viewed as the control action of a second player. A less obvious application is the unorthodox linearization of 3.2; there the nonlinearity, although perfectly deterministic, is usefully interpreted as the action of a completely fictitious opponent. For these and similar applications it is quite essential that a solution to the games be provided (whereasother interesting questions, such as whether the game has Value, or what happens if both players use inconsistent strategies, are irrelevant). To say that we wish to solve games rather than to study them would, of course, be simplistic; on the other hand, it seems both necessary and healthy to emphasize the "practical" aspect of pursuit games. Chapter I collects some basic examples. Linear games are treated in Chapters Ill-Vl, nonlinear ones in Chapter VII; Chapters II and V l l l are common. For linear games, in Chapters III-V progressively weaker' assumptions are made on the winning strategies; Chapter V I contains the elements of an algebraic structure theory. The last four sections of Chapter III are appendices, introducing some of the needed concepts that do not properly belong to game theory. The form is that of a graduate level text for students interested in applied mathematics and systems engineering. This may explain several features of the style. There are rather extensive exercise sections; these (together with examples in the text proper) serve to concretize and verify; they also contain minor or simple extensions of the results. The references are rudimentary, and obviously not in monograph style. There is considerable overlap, in that special results are obtained and their applications illustrated first, and more general ones later. Thus, the First Reciprocity Theorem is a special case of the Second (see 3.1 and 3.3); similarly for the results of 3.4 and 4.2,5.1 and 7.3,4.2and 7.4.This even applies to concepts; e.g., the notion of player's control order appears naturally before it is formally introduced. It would have been far more elegant to proceed deductively, beginning with Chapter II, followed by Chapters VI II-I II in reverse order. Finally, the proofs are rather detailed, and it was attempted to keep them a t one level of difficulty; similarly for the worked examples, and the quite detailed hints to the exercises. The facile "Exercises: provide proofs for Theorems 1-8" has largely been avoided. Cognoscenti may remark on the absence, in our treatment, of Value, Hamiltonians, Isaacs' equation, etc. Some of this is present implicitly (the time derivative Scp of 7.3 is a Hamiltonian, the minimal time function of 2.3 may, with some distortion, be viewed as the Value), but there is good reason for the omission. Pursuit and evasion games do not involve, either explicitly or implicitly, any cost (penalty function, payoff): the desired outcome is, simply, capture or i t s avoidance. One may, of course, inquire into questions of minimal capture time; but one is not forced into this (and, indeed, much of our development concerns winning strategies that are not time optimal). Similarly, in the Examples 1.1 and
viii
lNTROOUCTlON
3.2 mentioned earlier, and also in collision avoidance problems, it is rather unnatural to speak of antagonistic players ("zerosum" games). The discomforts of a Procrustean bedding of pursuit game theory may be illustrated on the case of Issacs' equation. This should probably be confined to cost-optimal games of fixed duration. I t s indiscriminate use elsewhere is open to serious objections: these are easiest stated in the simplified case of a time-optimal linear control problem in n-space, i=Ax-u;
u(t)eU;
end: x = O .
The assertion is that the minimal time function x * T ( x ) satisfies
.
min DT(x) (AX - U ) = -1 UE
u
at points of differentiability of T; and, if T satisfies a local Lipschitz condition, then indeed it is differentiable almost everywhere (Rademacher's theorem). One then obtains T by solving the partial differential equation. Unfortunately, usually this is science fiction. For proper systems and compact U containing 0, T is never differentiable a t the origin. T is not locally Lipschitzian unless U is a neighborhood of 0 (whereupon U must have dimension n, precluding most of the interesting applications). The "almost everywhere" refers to ndimensional Lebesgue measure; if U is a parallelepiped, then the set where T is not differentiable is an (n - 1)-manifold S, and, far worse, every optimal trajectory meets S and remains there for an entire time interval. Are there any general results which, for pursuit games, would be as incisive as is the Principle of Maximality for control problems? The "principle" of suboptimality in 2.3 is probably too shallow: however, there is a reasonable candidate in the principle of constant bearing navigation in 7.3. In these days of mounting demands on one's time, some reviewers find it difficult to read much further than the introductions. For their convenience, all of Chapter I and Section 3.2 are devoted to examples and applications; numerous further examples, worked in the text, and some 200 exercises (with detailed hints where appropriate) serve to illustrate the material presented in the main text. The present text was developed from a set of notes (Lectures on Linear Pursuit Games, Case Western Reserve University, 1973) for a one-semester seminar course. I am indebted to the participants for their patience and comments. The study of differential games is in a period of explosive growth; thus is is difficult tolgauge the moment a t whichthe development achievedlmerits an account in book form without being quickly outdated by new results. I am most grateful to the publishers for having decided on this venture. In addition, their professional competence and assistance must be experienced to be really appreciated. It is a pleasure to acknowledge support from Case Western Reserve University during a sabbatical leave in which work on the manuscript was completed. The Department of Mathematics and Statistics furnished the assistance of i t s capable
ix
INTRODUCTION
staff. Miss Shirline Williams prepared the preliminary and final versions of the typescript with her usual, and obvious, competence.
0.Hajek March, 1975
X
CONVENTIONS
i s the positive r e a l axis
R+
i s Euclidean
R
[O,+m);
i t s elements a r e , c o n s i s t e n t l y , column vectors; occan-1 sionally, S denotes t h e (n-1)-dimensional u n i t sphere i n
n-space, Rn.
Matrices (and v e c t o r s , matrix-valued f u n c t i o n s , e t c . ) have
r e a l e n t r i e s u n l e s s otherwise noted. t i o n ; e.g.,
x'y
Primes denote t r a n s p o s i -
i s t h e standard i n n e r product of column v e c t o r s
Dots, one or two, above a l e t t e r symbol denote d i f f e r e n -
x,y.
t i a t i o n with r e s p e c t t o an implied t i m e v a r i a b l e . For unions, i n t e r s e c t i o n s , e t c . ,
of sets t h e standard
symbols a r e used, with an i n v e r t e d s l a s h f o r s e t - t h e o r e t i c difference, A\B = {x:
x
E
A, x
4
B}
I f t h e sets a r e i n a f i x e d Euclidean space, then standard ' o p e r a t o r ' n o t a t i o n i s used, a s i n
A +B A
-B=
= {a+b: a
{a-b: a
E
E A,b E
+
B} : a
B = {a+b: b
1 A,b E B}, R A = { t a : t
E
R
,a
1
E B],
E
A],
etc. The ' l i t t l e and b i g 0' symbols occasionally used have t h e u s u a l meaning:
u(cp(x))
denotes a f u n c t i o n
$
such t h a t
Jr/q + 0, and e(cp(x)) one w i t h $/cp bounded. E.g., 2 ex = 1 + x + U ( X ) and ex = 1 + x + e ( x ) a r e b o t h t r u e , t h e second providing more information. I n t e g r a l s of set-valued mappings a r e defined a s follows. If
t n F,
s u b s e t s of t h e form gable and
is a mapping from R~
I,
b a
b
t o t h e c o l l e c t i o n of a l l
Ftdt denotes t h e set of a l l p o i n t s of a f ( t ) d t , where f : [a,b] -+ Rn i s Lebesgue i n t e -
Rn,
f(t)
then
E
Ft
f o r almost a l l
xi
t
E
[a,bl.
CONVENTIONS
It w i l l be necessary t o d i s t i n g u i s h between a mapping, say f , and i t s value f ( x ) a t a p o i n t X j however, we s h a l l a l s o
t n u ( t ) , f o r t h e mapping f o r t h e mapping whose value a t any x i s T(x,a).
use harmless abbreviations, such a s Uj
or
T(*,o)
Rarely,
' i f and only i f ' i s abbreviated t o ' i f f ' .
In
d e f i n i t i o n s we conform t o t h e curious custom of using an ' i f ' clause when ' i f and only i f ' i s meant, a s i n : s a i d t o be symmetric i f
A = A*.
ed t o denote t h e end of a proof.
a matrix
A
I n c o r o l l a r i e s t o an a s s e r -
t i o n , t h e assumptions of t h e l a t t e r a r e t o be taken over. I n t e r n a l references have t h e s t y l e 'Lemma 2 ' , r e f e r r i n g t o t h e c u r r e n t s e c t i o n j 'Lemma 2 i n 3.4' r e f e r s t o t h e t h i r d chapter and f o u r t h s e c t i o n .
xii
is
The meaning of &ED i s extend-
CHAPTER I
This chapter c o n s i s t s of Several examples, worked t o not a t a l l ) ; it contains only one aethem a t i c a l result, t h e Lemma i n 1.4, and this does not even men-
various degree (e.g., t i o n games.
I n s p i t e of t h i s , t h e reader i s s t r o n g l y urged t o t a c k l e t h e chapter.
Game theory cannot claim t o any redeeming inner
elegance or beauty:
&.re.
t h e a p p l i c a t i o n s a r e i t s only r a i s o n d ’
They a l s o serve t o i n t e r p r e t t h e meaning, and check on
t h e u t i l i t y , of t h e g e n e r a l r e s u l t s t o be obtained.
The Navig-
a t i o n Problem i s t h e prototype of games t r e a t e d i n Chapters I11 and IV; and one-dimensional Iiocket Chase of those i n Chapters V and V I I .
Generally applicable theorems tend t o make unnecessary t h e considerable ingenuity needed t o reduce, e.g.,
t h e Homicid-
a l Chauffeur and Two Car games, t o workable low dimension, where i n s i g h t and a reasonable amount of a n a l y s i s make a solut i o n possible.
Nevertheless, however much success one has with
general theory, t h e examples r e t a i n t h e i r usef‘ulness and freshness. 1.1 Navigation Problem
I n 1931 E. Zermelo suggested and solved t h e following problem ( i n loose t r a n s l a t i o n ) : “In an unbounded plane l e t t h e wind be given a s a vectorvalued f’unction of p o s i t i o n and t i m e ; and consider an a i r p l a n e whose speed i s constant r e l a t i v e t o t h e moving a i r mass. 1
How
PURSUIT GAMES
should t h e a i r p l a n e be s t e e r e d so a s t o a r r i v e , i n s h o r t e s t t i m e , a t a given t a r g e t from a given s t a r t i n g point?''
The equation of motion i s r e a d i l y seen t o be z = w + ei c p
(1) i n complex n o t a t i o n .
Here
is t h e p o s i t i o n of t h e a i r -
z(t)
t, w ( z , t ) = u + i v t h e wind v e l o c i t y v e c t o r a t point z = x + i y and t i m e t, and cp(t) t h e p i l o t s ' s t e e r i n g action, i n t r p r e t e d a s t h e angle t o an appropriate semi-axis i n 2 (The a i r c r a f t speed has been normalised t o 1.) The p i l o t R i s t o choose t H cp(t) so a s t o a r r i v e a t p o i n t b = z(T) from p o i n t a = z ( 0 ) while minimising T 2 0. Zermelo uses t h e calculus of v a r i a t i o n s t o a r r i v e a t h i s s o l u t i o n : optimal (and even extremal) cp ) s a t i s f i e s
plane a t time
.
( 0
thus
-$-_ - au ay
i f the reference a x i s i s so chosen t h a t
(p =
0
t : p i l o t steers t o t h e l e f t (cp > 0 ) i f t h e wind component i n t h e d i r e c t i o n of motion i s smaller t h e r e . This a l s o i n d i c a t e s t h e mild i m p l i c i t assumptions, and i l l u s t r a t e s t h e reasonable 'information p a t t e r n ' employed: a t t i m e t and p o s i t i o n z, t h e p i l o t bases h i s decision on t h e knowledge of t h e wind v e l o c i t y v e c t o r a t t h e same time t (and at time
i n p o s i t i o n s close t o
2).
We w i l l change t h e problem somewhat. eiCp i n (1)w i l l be replaced by
p
F i r s t , t h e term
subject t o
(PI
< 1. Since
it i s i n t u i t i v e l y obvious t h a t p i l o t should use maximal a v a i l able c o n t r o l t o minimise a r r i v a l time, t h i s modification i s i n s i g n i f i c a n t , while t h e advantages of having a convex set a s c o n t r o l c o n s t r a i n t s e t ( t h e u n i t d i s c i n place of t h e u n i t c i r c l e ) a r e immense. A major change w i l l be t h e replacement of
w(z,t)
by
w ( t ) , independent of t h e s t a t e v a r i a b l e ("gleichformigen Winde2
EXAMPLES
feld").
Condition (2) t h e n s t a t e s t h a t optimal s t e e r i n g main-
t a i n s a constant d i r e c t i o n ; and t h i s i s a complete mystery:
a
wind gust u n r e s t r i c t e d i n magnitude can, of course, blow t h e a i r p l a n e o f f any s t r a i g h t path.
For a p p r o p r i a t e l y bounded wind
v e l o c i t i e s , t h e conclusion does make sense (Exercise 1 i n 3.1). Another paradox may not be apparent a t f i r s t glance. Optimal s t e e r i n g
of
cp(t)
a t time
t
i s determined on t h e b a s i s
w(z,t); i f t h e p i l o t could p r e d i c t t h e future wind behav-
iour, w h y can no advantage be gained from such knowledge? answer i s provided i n 5.4:
An
t h i s i s indeed t h e case f o r a some-
what s p e c i a l c l a s s of gnmes, t o which t h e navigation problem belongs. For Zermelo's problem and s o l u t i o n see E . Zermelo : iiber das Navigationsproblem b e i ruhender oder v e r k i l e r l i c h e r Windverteilung, Zeitschr. f . angew. Math. u. Mech. 11 (1931) 114-124.
The case of constant wind i s an i l l u s t r a t i v e example i n Section
1.17 of G. Leitmann, An Introduction t o Optimal Control, McGrawH i l l , New York, e t c . , 1966. 1.2
Simple Pursuit i n t h e Plane Two players move i n t h e Euclidean plane
motion:
R2 with simple
each has a bound on h i s speed, b u t t h e r e a r e no
f u r t h e r r e s t r i c t i o n s (e .g., allowed).
abrupt d i r e c t i o n a l changes a r e
One, t h e pursuer, wishes t o capture t h e other,
quarry, i.e., a t t a i n perfect coincidence of t h e i r t e r m i n a l positions. The answer i s obvious: i f u > fl holds f o r t h e pursuer's speed -bound. a and t h e quarry's p, then termination i s assured i n f i n i t e t i m e , whatever t h e i n i t i a l p o s i t i o n s and a c t i o n of quarry; on t h e o t h e r hand, i n t h e case a s P
3
PURSUIT GAMES
quarry can avoid capture forever from any positions not i n contact initially. Let us discuss b r i e f l y some aspects of simple motion,
f i r s t f o r a single player ( f o r the flm of it, t o make possible the analysis below, and t o prepare an analogy f o r subsequent sections). I f the player's position a t time t E R1 is denoted by speed
x(t) E R
l & ( t )I.
2
, then t h e
velocity vector is
;(t),
Thus the dynamical constraint i s
and the 5
a;
actually, another formulation i s preferable, v i z 1 2 (1) = u; measurable u: R + R (U(t)l L a. t What i s r e a l l y meant here i s t h a t x ( t ) = x(0) + u(s)ds J
u(.)
a s indicated.
place the origin a t
x(O), so t h a t
some Punction
0
for
Just t o simplif'y matters x(0) = 0.
Where can the player get t o a t time
t ? The constraint
on u ( - ) yields (x(t)l s Conversely, any point control u, e.g.,
y
u(s) =
t 0
with
(u(s)lds s at. IyI
(;&
L
ut
can be 'attained' by
for 0 s s
IYI
f o r lyl < s s t. Thus t h e a t t a i n a b i l i t y s e t Ao(t) = {y: (yI < at] (Unfortunately, current terminology reserves 'reachable s e t ' f o r a d i f f e r e n t use).
See f i g . 1.
4
EXAMPLES
Point
F i g . 1 Simple motion i n t h e plane. x moves anywhere within Ax(3) a t
time t = 3; i f i t s p o s i t i o n y a t t = 1 o r z a t t = 2 is known, t h e p o s s i b i l i t i e s reduce t o A ( 2 ) o r A Z ( l ) . Y L e t us r e t u r n t o t h e game, i n t h e case
a
> p.
Probably
t h e f i r s t capture stratepy t h a t comes t o mind i s f o r t h e pursuer t o aim, constantly, a t t h e quarry, thereby following an appropriate curve of pursuit (Huygens t r a c t r i x , i f quarry's motion is uniform).
It would be a formidable and boring t a s k
t o obtain t h i s curve e x p l i c i t y ; f o r t u n a t e l y t h i s may be 1 avoided. If t h e pursuer's motion i s x: R 4 R2 and t h e 1 2 t h e equations of motion a r e quarry's y: R + R
,
(2)
.
x = u , y = v
f o r s u i t a b l e measurable c o n t r o l s
5
u,v: R
1
-+
R2
with a l l
PURSUIT GAMES
values
l u ( t ) l s a , / v ( t ) l s p.
e r s ' distance by
1 * Ix
r; = Adt
(3)
r
- yI .
Ix
=
- YI 2
A t any time denote t h e play-
Then
= (x-y)'(k-$)
-
= (x-y)'u
(x-y)'v.
The procedure suggested f o r t h e pursuer i s t o take
-2
rE = a rr
by Cauchy's inequality. have
(x-y)'v s -ar + r p = -(a-p)r
Therefore, as long as
r
>
0, we
s -(a-P),
r(t)s.r(o) This shaws t h a t capture with
-
(a-p)t = (xo-y0I
( r = 0)
-
(a-p)t.
m u s t occur, a t some time
8
I X0-Yo I a-p
Ekercises 1. For a mapping x: R1
lu(t)( s a
t h e two conditions
Rn
almost everywhere; x ( t ) = x(0)
l u ( t ) { s a a.e.
+
= u,
Jtu(s)ds, 0
a r e often t r e a t e d a s i f they were synonymous.
Prove c a r e f u l l y t h a t t h i s i s so i f ' x ( * ) absolutely continuous' i s added t o t h e f i r s t , but mere continuity i s i n s u f f i cient.
(Hint:
t h i s involves some simple but r a t h e r d e l i c a t e
r e a l analysis. ) Exercises 2 t o
7 concern t h e case
a
>p
of simple pur-
s u i t i n t h e plane. (Cutting Corners) The pursuer, s t a r t i n g a t xo, f i r s t s t e e r s t o quarry's i n i t i a l position yoj on reaching 2.
it, he (she?) repeats t h e process. Set up an accounting of times tk and positions 5, yk, with t h e requirement xk+l = k'
determining tk+l and an estimate of
6
lyk+l-ykI.
EXAMPLES
Prove t h a t (4) holds.
3.
The pursuer f i r s t steers t o
( F o l l m t h e Leader)
quarry's i n i t i a l position, and t h e n follows h i s path, using Show t h a t , again, (4) holds.
excess speed t o catch up.
4.
(Neutralisation)
Referring t o (l), t h e pursuer
f i r s t n e u t r a l i s e s quarry's action, and then uses l e f t - o v e r c a p a b i l i t y t o f o r c e termination: direction
y
-x
and magnitude
t i o n always occurs a t time
Jxo
u = v + w
lu-Bl.
w
with
i n the
Prove t h a t termina-
- yol/(a-p)
p r e c i s e l y (even
i f quarry cooperates).
5.
(A Moveable F e a s t )
Take a moving coordinate system,
with o r i g i n a t t h e quarry's p o s i t i o n y ( t ) : z = y(t)
satisfies
condition.
=
u
- v(t),
with
The new c o n t r o l v a r i a b l e is
new coordinate
z = 0 a s termination w = u v ( t ) , with
-
constraint
w E [u
-
v(t):
or, i f constant bounds a r e desired,
IUI
s a],
Iwl s a
- p.
Show t h a t
e i t h e r choice i s equivalent t o one of t h e capture procedures already outlined.
w
where
6.
i n t h e second case l e t
(Hint:
has magnitude
a
u = v and d i r e c t i o n yo xo.)
-p
-
+w
(Capture with A n t i c i p a t i o n ) The quarry announces h i s
future policy
v: R + R2 t o t h e pursuer; based on t h i s i n f o r -
mation, t h e pursuer proceeds with capture.
Prove t h a t (4)
holds.
7.
(Approximate Capture under Time Delays)
A t any time
t 2 0 t h e pursuer is allowed information on quarry's c o n t r o l v ( s ) o r p o s i t i o n y ( s ) only f o r s s t 6 (6 > o i s a
-
given c o n s t a n t ) .
Prove t h a t approach t o within a d$stance p6
can be guaranteed, and estimate t h e needed time.
8. pursuer:
Show t h a t t h e case
as p
i s unfavourdble t o t h e
t h e r e i s an extremely simple evasion c o n t r o l f o r t h e
quarry. 7
PURSUIT GAMES
9.
Treat simple p u r s u i t on a s t r a i g h t l i n e ; i n particu-
lar,show t h a t again capture always occurs i f otherwise.
u
> p,
and never
Prove t h a t , by a ' n e u t r a l i s a t i o n technique,'
cap-
ture t i m e can be prescribed, but not capture p o s i t i o n . 10. Consider pursuit on a s t r a i g h t l i n e , by two pursuers, of one quarry, a l l moving with simple motion.
Prove t h a t ,
from same i n i t i a l p o s i t i o n s , capture occurs even i f t h e pur-
suers a r e both slower t h a n t h e quarry, b u t t h e capture t irne cannot be prescribed; and sketch t h e corresponding set i n
2
f o r which 'bracketing' occurs. Remarks The reader i s encouraged t o experiment with other reasonable pursuit strategies.
E.g.,
t h e method of c u t t i n g corners
(Exercise 2 ) might be modified, with t h e pursuer only reaching half way a t each step, bringing t h e method c l o s e r t o t h e curve-of-pursuit
s t r a t e g y from t h e text (which then suggests
further questions).
O r , t h e pursuer might overshoot, e.g. by
a f a c t o r 1.1, i n an attempt t o p r e d i c t quarry's motion.
An-
other analogue of t h i s involves 'programed' time i n s t a n t s
to = 0 < t 1 < t2 <
..., given
i n advance r a t h e r than evolved
It i s paradoxical t h n t a l l t h e winning procedures proposed ( t e x t , and Exercises 2 t o 6 ) have t h e same capture time bound.
O f course, some of t h e s e can make use of quarry's
mistakes, t o a g r e a t e r o r l e s s e r extent, and one i s tempted t o say t h a t t h e curve-of-pursuit
method i s b e s t i n t h i s res-
pect, and n e u t r a l i s a t i o n (Exercise 4 ) worst.
It i s highly
p l a u s i b l e t h a t t h e r e e x i s t winning s t r a t e g i e s which a r e incomparable, and possibly even i r r e d u c i b l e .
(The notions can
EXAMPLES
formalised i n terms of t h e t h r e e types of termination time T ( * ) defined i n 2.3.)
1.3 One-Dimensional Rocket Chase Two players move on a s t r a i g h t l i n e , t h e pursuer having a bound on h i s a c c e l e r a t i o n , t h e quarry a bound on h i s speed.
The game ends when t h e pursuer a t t a i n s a previously given d i s tance from t h e quarry. There i s an obvious s o l u t i o n :
t h e pursuer uses a l l h i s
c a p a b i l i t i e s t o move toward t h e quarry, who i s then captured w i t h i n a bounded time i n t e r v a l .
(The p r e c i s e t i m e bound w i l l
depend on t h e parameters of t h e game, and on t h e i n i t i a l Notwithstanding i t s almost rudimentary character,
positions. )
t h i s game e x h i b i t s most of t h e phenomena present i n f a r more g e n e r a l games, and w i l l be repeatedly r e f e r r e d t o i n t h e subsequent t e x t . If
1
y: R
-b
x: R
R1
1
4
R1 describes t h e pursuer's motion, and
.
t h a t of t h e quarry, t h e equetions of motion a r e x=u, y = v
f o r measurable
u, v : R1
f o r both controls, and 0s e
<+
m.)
4
e
[-1,1].
(We a r e taking 1 as bound
as t h e capture distance,
Thus t h e quarry moves on
t i o n , i n t h e sense of 1.2.
R1 with simple moThe pursuer's motion is described
x ( t ) = x ( 0 ) + G(O)t + = ~ ( 0 +) x(O)t
t s u ( r ) d r ds
0 0
t + J (t-S)u(s)dS 0
and suggested by some of t h e a t t a i n a b i l i t y s e t s i n Fig. 1.
9
PURSUIT GAMES
Fig. 1 Phase p o r t r a i t of motion i n x = U j a t t a i n a b i l i t y sets a t f. = 2 / 3 , 4/3, 2, 8 / 3 f o r i n i t i a l values x = 0, x = 2. The v e r t e x l o c i a r e 2
parabolas y = 2(2 x i2 ) ; t h e lower describes motion i n a doubling back manoeuvre. The f i r s t - o r d e r v e r s i o n of t h e motion equation i s t h e dynamical equation f o r t h e two-player system:
;r1 =
x2,
i2 =
u,
5
= v.
Subsequently t h e matrix form of t h i s w i l l be t r e a t e d ,
t h e termination condition
Ix-yl s c
10
translating t o
EXAMPLES
R3
.
ables
Thus t h e n a t u r a l (immediate, ' r e a l i s t i c ' ) phase space i s This i s r e a d i l y reduced t o
x = x
- 3,y
= x2:
mination condition a r e
G
(1)
= y
-
V,
R2
by introducing new v a r i -
t h e r e s u l t i n g equations and t e r -
$
= U j end:
1x1 s c .
For a preliminary o r i e n t a t i o n , assume t h a t both p l a y e r s ' c o n t r o l s a r e constant on some time i n t e r v a ' l . equation f o r t h e t r a j e c t o r i e s , with
dy/dx =
The d i f f e r e n t i a l
$/G,
is
t h e p o i n t then moves along t h e parabola, upward f o r and down i f
u C 0
h a l f plane, and
( s e e f i g . 2, with
u
>
0
u = v = 1 i n the left
u = v = -1 i n t h e r i g h t ) .
Suppose now t h a t , a t some p o i n t t o t h e l e f t of t h e t a r -
get, t h e quarry chooses a c o n t r o l o t h e r than suer s t i c k s with
u
=
l.
v
=
1, and pur-
The motion then proceeds along
another parabola (with a x i s
y = v, see f i g . 3 f o r
v = -1).
This suggests, q u i t e c o r r e c t l y , t h a t capture, even with
g
can be ensured from a l l i n i t i a l positions, e.g. by taking u = 1 q u i t e i n d i f f e r e n t t o quarry's a c t i o n .
11
= 0,
PURSUIT GAMES
x=F,
=-€
-
.
Fig. 2 Trajectories of 2 = Y V) Y = u = v 6 2 1 outside target 1x1 s c .
12
U
with
EXAMPLES
.
Fig. 3 Trajectories i n = y v, y = u. From point a, quarry mistakenly chooses v = -1, but reverses h i s choice a t b; capture occurs a t c ( l a t e r than it would have a t d ) . Exercises
1. Prove that, i n (l), x(t) = (Mnt:
Xo
+ Yot
solve f o r y, then f o r 13
x.)
t
v(s)ds
+
t SU(t-S)dS. 0
PURSUIT GAMES
C
.‘. ‘2‘. \
’.
- x
----.--. ---.
F i g . 4 S e t s W(t) of p o i n t s i n p o s i t i o n t o win a t time t > 0, i n x 5 -F. As t + 0, t h e boundaries (having a p a r a b o l i c envelope i n x 2 - E ) approach x = -E, y 2 1. 2.
On t a k i n g
u
4
1, show t h a t
-
x ( t > 2 xo + (yo
f o r any quarry c o n t r o l then t h e r e e x i s t s
some
~ ( 0 ) . Conclude t h a t , i f
>0
such t h a t
x(t) = 0
xo < 0,
occurs f o r
t E [ O , e ] j and a c t u a l l y o b t a i n t h e l e a s t v a l u e of
( i n dependence on
(Yo
8
- 1)t + 2 tz
- 1).) 3.
xo, y o ) .
(Answer:
,/((yo
-
1)2
-
2xo)
The above e x e r c i s e e x h i b i t s a capture time bound
obtained on t a k i n g a p a r t i c u l a r pursuer c o n t r o l .
14
8
0,
Show t h a t
EXAMPLES
it i s a c t u a l l y independent of t h i s : c o n t r o l v(.),
such t h a t
<
x(t)
0
t h e r e e x i s t s a quarry
t
for
E
[O,@) and a l l
xo < 0 and yo a r e f i x e d ) . Prove t h a t , i f a point i n t h e l e f t half plane i s
pursuer c o n t r o l s
4.
u ( * ) (here
forced t o t h e t a r g e t , and ends up a t t h e point
(-c,ye), then i n any case y 2 -1, and quarry can always a t t a i n y > 1. e e5 . Experiment w i t h g r a p h i c a l s o l u t i o n f o r o t h e r shapes
of t a r g e t (e.g.,
a u n i t c i r c l e a t t h e o r i g i n ) ; granting t h a t
u =
pursuer's responses a r e piecewise constant
2
1, motion
w i l l be along t h e parabolas ( 2 ) with v e r t e x ordinates -1 < v < 1, and
v
=
2
1 a s t h e i n t e r e s t i n g cases.
Obtain,
h e u r i s t i c a l l y , t h e boundary of t h e s e t of winning positions. Consider t h e two-dimensional version of t h e game 1 t r e a t e d , and, i n p a r t i c u l a r , t h e motion x : R -b R2 of a
6.
player with
= u,
l u ( t ) l s 1. If t h e o r i g i n i s placed a t
x(O), with t h e r e a l a x i s i n t h e d i r e c t i o n of
G(O), show t h a t i s a d i s c with IG(0) It; t h a t t h e r e i s a doubling-
t h e s e t of possible p o s i t i o n s a t t i m e
t 2/2
radius
and c e n t r e
back e f f e c t s t a r t i n g a t t i m e
@ =
t i o n regained a t doubled time 28.
t
2
0
IG(0) I, with i n i t i a l posi(Warning:
c o n t r o l - t h e o r e t i c concept of a t t a i n a b l e set
4
l a t t e r i s i n R , not not o c c w f o r t h e s e . )
7.
R2
-
-
t h i s i s not t h e i n our case t h e
and a c t u a l l y t h e phenomenon can-
..x + A .x + B x = u , Y
For t h e game with n-dimensional equations of motion
=
~
s e t up t h e appropriate f i r s t - o r d e r equation, i n case
B = 0 = C, with
i s a reduction, with
x = y R2n
v
2".
In the
a t termination, show t h a t t h e r e
a s s t a t e space, and equations
analogous t o (1) ( t h e s p e c i a l case A = UI, B = 0
+
n = 3, s c a l a r matrix
i s t h e so-called I s o t r o p i c Rocket Game).
(Answer : x = y 15
V,
$
= -Ay +
u.)
PURSUIT GAMES
on changing n o t a t i o n . ) Remarks The game t r e a t e d i s t h e one-dimensional v e r s i o n ( f r i c t i o n l e s s c a s e ) of t h e i s o t r o p i c rocket game, and a l s o of t h e homicidal chauffeur game; s e e R. I e a a c s :
D i f f e r e n t i a l Games, Wiley, New York, e t c . ,
1%-7 -
For g e n e r a l dimensions, t h i s i s c a l l e d t h e Boy and Crocodile game i n J. F. Mizbenko: P u r s u i t and evasion problems i n d i f f e r e n t i a l games, I z v e s t i a Akad. Nauk
SSSR 5 (1971)3-9.
1 . 4 Kelley's Game:
P u r s u i t on a Sphere
2,
Two p l a y e r s move on t h e two-sphere S2 i n each with a f i x e d bound on h i s speed; t h e game ends a t coincidence of p o s i t i o n s . The motivation is t h a t " i n a dogfight, t h e planes t e n d t o move i n a c i r c u l a r fashion" ( i n a w r i t t e n text one cannot adequately convey t h e a p p r o p r i a t e hand motions).
The simpli-
f i c a t i o n does away w i t h one s i g n i f i c i a n t a s p e c t of a c t u a l combat:
t h a t t h e r o l e s of pursuer and quarry a r e not fixed,
b u t may w e l l switch back and f o r t h . The outcome i s not t o o s u r p r i s i n g (denote t h e p u r s u e r ' s
p ) : i f a > p, t h e purs u e r can f o r c e t e r m i n a t i o n from any i n i t i a l p o s i t i o n , w i t h i n speed bound by
a, t h e quarry's by
a bounded t i m e i n t e r v a l ; i n t h e case avoid c a p t u r e a t a l l times tion
a = p
t >0
a
< B t h e quarry can
(and t h e stand-off s i t u a -
i s rather too sensitive t o d e t a i l s i n the
s p e c i f i c a t i o n of t h e p l a y e r s ' s t r a t e g i e s ) . This i s r e a d i l y seen a s follows.
I n t h e case a > p
f i r s t assume t h a t t h e p l a y e r s a r e not a t d i a m e t r i c a l l y
16
EXAMPLES
opposite p o i n t s i n i t i a l l y .
Then t h e r e i s a unique s h o r t e r a r c
y of a g r e a t c i r c l e j o i n i n g t h e i r p o s i t i o n s . By a p a r a l l e l s h i f t along y, m e a neighbourhood of quarry's p o s i t i o n t o t h e pursuer's ( t h i s ' a c t i o n a t a d i s t a n c e ' serves t o i d e n t i f y t h e quarry c o n t r o l ) . u = v
t h e f i r s t component n e u t r a l i s e s quarry's action,
f W j
t h e second, w of a
-
The pursuer t h e n uses t h e c o n t r o l
IwI = u
with magnitude
-
p
i n the direction
y, serves t o decrease t h e players' d i s t a n c e ( a t a r a t e If t h e i r i n i t i a l posi-
p, see 1.3) u n t i l capture occurs.
t i o n s a r e opposite, then any constant c o n t r o l u
>
IuI = u
with
applied over a s h o r t i n t e r v a l w i l l achieve non-
f3
opposing p o s i t i o n s .
By a l i k e reasoning, i n t h e case
a
t h e quarry can maintain forever an i n i t i a l distance from t h e pursuer. The idea i s probably c l e a r enough, and w i l l apply equally w e l l t o simple p u r s u i t on an n-dimensional Riemannian manifold (thus, t h e ' d i a m e t r i c a l l y opposite p o i n t s ' would be replaced by conjugate p o i n t s ) .
However, an ad hoc treatment of our
s p e c i a l case w i l l be u s e f u l l a t e r . Consider t h e motion of R Sn-l s i n g l e player over t h e u n i t sphere of Rn. His motion 1 is described by x: R + R n j i f x(0) E Sn'l, then x ( t ) w i l l n- 1 remain on S i f f l x ( t ) I 2 i s constant, i . e . , x i s perpendicular t o
= dx/dt.
Further, motion w i l l be 'simple' i f
t h e only f u r t h e r dynamical r e s t r i c t i o n i s a magnitude bound on
x.
We wish t o express t h i s as a r e l a t i o n between
suitable LEMMA
arbitrary' controls For any p o i n t s
u. a =/
2
mapping x , y ~E(x,y), defined f o r
b
n-1 on S x,y
near
and
there is a a,b
and with
( n , n - l ) matrices a s values, a n a l y t i c i n t h e coordinates of x,y, and such t h a t
17
PURSUIT GAMES
where
i s t h e angle between
rp
and
Sn'l
E(x), whose values a r e
X H
matrices, and E ( t x ) = E(x) f o r t
x'E(x) = 0, E'(x) E(x) = I n-1'
(3)
y.
On t h e neighbourhood of any point on
COROLLARY
t h e r e i s an a n a l y t i c mapping (n,n-1)
x
(Proof)
The c o r o l l a r y w i l l follow on t a k i n g y = b
p o s i t i v e homogeneity i s ensured by extending
E(*)
> 0.
4 2 a; i n the
obvious manner. By assumption, t h e v e c t o r s
t h e r e i s a b a s i s for
a,b
of t h e form a,b,c3,
Rn
(4)
X,Y,C3,.
remain independent i f
a r e independent, so t h a t
x,y
*
...,cn.
Then
*,cn
a r e c l o s e enough t o
a,b.
Apply
t h e Gram-Schmidt orthogonalization process t o t h e sequence
(4), obtaining orthonormal v e c t o r s el,e2,. 1x1 = 1, we have
since
..,e n .
el = x, and, i n t h e second s t e p ,
- ( x # y ) x l * = 1 - (x'y)2 = 1 - 2'9. colunn v e c t o r s e2,. ..,en i n t o t h e (n,n-1) matrix Iy
Collect t h e E(x,y);
COB
(1) holds s i n c e (x,E(x,y)) is orthonormal.
coordinate of
y'E(x,y)
is
el
=
x
and
The f i r s t
y'e2 = Isim( f r o n ( 5 ) ; t h e r e -
0, s i n c e
maining coordinates a r e both
Since
ek
e2, and hence t o
y
is perpendicular t o also.
QZD
Returning t o Kelley ' s game ( a c t u a l l y , f o r dimensions n
2
2), we may chmse t h e s t a t e space d e s c r i p t i o n = E(x,y)u,
The c o n t r o l values i n
R
n-1
$
= E(y,x)v.
a r e constrained 5 y
( u ( t )I s a.
t h e i n i t i a l p o s i t i o n s a r e on t h e u n i t sphere. Iv(t)l s 0 i s the angle between x,y, and r = Isimp(, then 18
If
EXAMPLES
rc
(6 1
=
+
w
IwI
r;
u = -v
subject t o
t (1
+ y':)
= -(x';
Write
a
d 2 +s i n cp = dt
with
w
E
-
(x'y)
R
t o be chosen subsequently,
Then, using ( 2 ) ,
a-p.
rE = (-x'E(Y,x) + Y'E(X,Y))V =
o
-
lsi*1(1,0,
)
- y'E(x,y)u.
= -x'E(y,x)v
n-1
2
...,O)W s
- Y'E(X,Y)W -r (a-a)
,...,
on t a k i n g w' = (u-p)(l,O 0 ) . Thus $ s -(u-p) < 0, and s i 9 = 0 can be a t t a i n e d i n f i n i t e t i m e ( f o r obtuse angles cp
an abvious modification must be employed).
Exercises 1. I n t h e c o r o l l a r y show that t h e neighbourhood of t h e n-1 point a E S on which E( ) i s defined may be taken a s
t h e e n t i r e hemisphere with apex a t b,c3,
. . ., c n
Note t h a t here
complex notation, so t h a t X H E(x) 1 2 S + R Furthermore, i n ( 6 ) ,
.
r; = -1m
3 . Assume t h a t a continuous el
R3
E(x) = i x
in
is a well-defined mapping
G(u xw
E(x)
v) satisfies ( 3 ) .
be t h e f i r s t b a s i c u n i t vector i n
x w E(x)el
Conclude t h a t in
choose
The a n a l y s i s remains v a l i d i n t h e t r i v a l case of
2.
that
(Hint:
suitably.)
n = 2 ( p u r s u i t on t h e c i r c l e ) .
Letting
a.
verify
Rn-',
defines a continuous ( t a n g e n t ) vector f i e l d .
x b E(x)
cannot be defined over a l l of
S2
(you may use Poincarg's theorem on continuous vector
f i e l d s , t h e Hedgehog Theorem. ) Extend t h e negative result of Exercise 3 t o a l l n-1 with an dimensions n 2 3 . (Hint: i n t e r s e c t S 2 appropriate l i n e a r space, thereby reducing t o S .)
4.
5.
For
n = 3 use standard polar coordinates
19
b'9
of
PURSUIT GAMES
a point
with
x E F?
1x1 = 1, and show t h a t cosecosp
sine
-sing This s a t i s f i e s conditions (3) f o r a l l
how does t h i s
9,'p;
match up with Exercise 3?
k
6. Verify t h a t , i n t h e preceding s i t u a t i o n , t h e equation = E(X)U reduces t o
6 7.
Carry out t h e preceding two exercises f o r
(Answer: c
k
= ul,-sinrp*B = u2'
f o r polar coordinates
= cos 9
k
and
ek,
sk = s i n
8 ,8 ,9
c s c 1 2 3
-S2S38,
8.
=
1
2
3
on
n =
4.
S3, with
c c 1 2
5 , s3Q2= u2,
h3
= ul.)
The solution of Kelley's game proposed i n t h e t e x t
would s t e e r
x
t o t h e point diametrically opposite y
a t t h e i n i t i a l time, the angle
i s obtuse.
if,
Obtain a
solution f o r t h i s case.
1 . 5 Homicidal Chauffeur A consituent p a r t of s e v e r a l games is t h e motion
x: R1
+
R"
constraints:
of a point i n n-space subject t o two dynamical t h e speed i s constant, and t h e curvature i s
bounded a p r i o r i . metrised curve
t
Recall t h a t t h e curvature pb
x(t)
i s t h e magnitude of
H
of a para-
EXAMPLES
a d i r e c t computation of
i s constant i f f
Now, i,w =
2
then y i e l d s
u2
x
remains perpendicular t o
u s l / p reduces t o The perpendicularity requirement
3112; then t h e c o n s t r a i n t
5 s2/p
for
s
=
I;().
can be expressed i n terms of t h e mapping
E(m) ( s e e Corollary
i n 1.4) j we then obtain t h e c o n t r o l - t h e o r e t i c formulation
..x = E(;)u,
(1)
1 n-1 measurable u: R + R
,
2
lu(t)l
5
s 7
9
( x ( 0 )I = s. I n t h e homicidal chauffeur game t h e pursuer has such a
i n i t i a l conditions including motion (parameters : with speed bound
sl,pl),
s2
t h e quarry has simple motion,
( a s i n 1.3); t h e game ends if Ix-Yl
f o r a given capture radius
c
2
0.
S
The primary equations of
motion a r e = E(~)u,
(2)
with f i r s t - o r d e r version
i1=
x2,i2 = E(x2)u,
thus t h e n a t u r a l phase space i s s i o n 3n
- 1.
5
= v; end:
Rn
x Sn'l x Rn with dimen-
Ix, - $ 1
s e;
An obvious reduction i s obtained i n terms of
new coordinates ( 31
= V,
=
k
= y
- 3'
- v,
$
= x2
(not those of ( 2 ) ) :
= E(y)u; end: 1x1
control constraints
21
5
E,
PURSUIT GAMES
and a requirement on i n i t i a l values, phase space i s
Rn x S n'l,
The reduced
Iy(0)l = sl.
with dimension
-
2n
1.
Exercises I n 1.4 t h e
1. (Two-Dimensional Homicidal Chauffeur)
case
n
able
8
= 2
here it is n o t .
was t r i v i a l :
ie
.
y = s e 1
t o replace
i n (3):
- "1
x1 = s1c0se
- v2
x = s sine 2
e constraints: (Hint:
1
= u,
IuI < sl/pl,
Exercise 2 i n 1.5.)
2.
The dimension
i l y large.
Use a new v a r i -
2n
2 2 v1 + v s s2, end: 2
- 1=3
2
2
X1+X2<
E
2
.
above i s s t i l l u n n e c e s s a r -
Use a new complex coordinate z = e
(41
-if3
( x1+ix2)
t o obtain = -izu
(5) w i t h real-valued
3.
1.1
u,
+ s1 + v;
Ivl s s2.
and complex v,
s sl/ol,
Obtain t h e dimension-less version of ( 5 ) )
'z
=
-izu + 1 +
with u n i t y c o n t r o l c o n s t r a i n t s .
4.
end: IzI < E
-12 v; S S
end: IzI
g
(Three-dimensional Homicidal ChauPfeur)
v e r s i o n of ( 3 ) f o r y; eliminate
n = 3
use p o l a r coordinates
.
E -
p 1
I n the 8,(9
for
e a s i n (4) t o obtain t h e following dynamicel
equations f o r t h e s t a t e v a r i a b l e s
.
+2 z = - i z -sinQ
4'
z9
U
s
1
v3 = ul.
22
??
'p:
sirq + ( v1+iv2)
EXAMPLES
<
Here t h e c o n t r o l components s a t i s f y
+ u22
2
5 Sl/PI,
and t h e termination condition is
2
2
2
v1 + v + v 2 3 12 l2 + 3 2 5 e2
.
5
2 s2.
Remarks We have not even attempted a s o l u t i o n t o t h e homicidal For a considerable a n a l y s i s (and a senguin-
chauffeur game.
a r y i n t e r p r e t a t i o n ) see R. I s s a c s :
D i f f e r e n t i a l Games, Wiely, New York, etc.,
1967,
i n p a r t i c u l a r , Sections 2.2 ( f o r our ( 5 ) ) , 9.1, 10.2, 10.3. It i s shown t h e r e t h a t , i f s2 < s and 0 i s defined by 1 s i n e = s2/sl, 0 < 8 < n/2, then 1+
E 01
2
e + case
i s necessary (and t h e sharp inequality, suf'ficient) f o r cap-
ture t o occur from a l l i n i t i a l p o s i t i o n s . For dimension n = 2, t h e set of p o i n t s x ( t ) i n t h e c o n t r o l system (1) (i.e., t h e p r o j e c t i o n of t h e 4-dimensional a t t a i n a b l e set A ( t ) ) has been studied i n E. J. Cockayne, G. W. C. Hall:
Plane motion of a p a r t i c l e subject t o curvature c o n s t r a i n t s , SIAM J. Control 13 (1975) 197-220.
1.6
Two Cars I n t h i s game b o t h players have t h e type of motion t r e a t -
ed i n (1)bf
with c o n t r o l s
IvI
5
s:/D2,
1.5:
t h e equations a r e
..x = E(&)u,
$ = E(>)v,
1 n-1 2 u,v: R + R constrained by IuI s s1/p 1' and w i t h termination condition involving only
X,Y.
The corresponding f i r s t - o r d e r dynamical equation i s
23
PURSUIT GAMES
e a s i l y obtained, w i n g
Y
- 2,
space has dimension 4n formal dimension 4n.
il= iJy4 = i3 = $;
the s t a t e
with t h e dynamical equation of
I n terms of new s t a t e v a r i a b l e s = Y1
t h i s reduces t o
i1 = X2
(1)
=
2
- Y3> x2
- 3JG2
with s t a t e space dimension
= Y2J
5=
E(X2)U,
=
5'4,
5
= E(?)V,
To apply t h i s we must
3n-2.
assume t h a t t h e o r i g i n a l termination condition depends on x
-y
only ( r a t h e r t h a n on
x,y
separately).
Let u s consider, s p e c i f i c a l l y , t h e case of dimension n = 2J and proceed t o lower t h e s t a t e space dimension (from
4 t o 3) i n t h e manner suggested by Exercises 1 and
2 in
1.5;
f o r t h e moment t h i s formal reason s h a l l be our s o l e justification.
The n o t a t i o n i s s i m p l i f i e d by using new ( r e a l valued)
control variables
p,q: u = s p, v = s2qJ with c o n s t r a i n t s S 2 l s1 IP(t)I ->, Is(t)l *
a
p 1
2
The one-dimensional ' c i r c u l a r ' v a r i a b l e s w i l l be w r i t t e n a s x2 = sle icp ,
3=
s2eit;
then, from t h e l a t t e r two r e l a t i o n s i n (l),
(31
P, 4
cp =
= 9.
F i n a l l y , new s t a t e v a r i a b l e s a r e introduced:
e = e-icpx and r e a l 1
8 = cp = -izp
(4 1
.
Alternately, w = e-iJrx
(5)
1
and
w = -iwq
- $. -
sl
complex
Then, from (1)t o ( 3 ) ,
+
eeie, 5
s
2
= p
8 satisfy
+ s1eie
-
s2,
8
= p
-
q.
- q.
I n e i t h e r s e t , t h e three r e a l equations a r e e a s i l y obtainedj
( 4 ) corresponds, modulo n o t a t i o n a l changes, t o t h e 'kinematic equation', p. 238 of 24
EXAMPLES
R. I s s a c s :
D i f f e r e n t i a l Games, Wiley, New York, e t c . ,
1957
-
This r e v e a l s another i n t e r p r e t a t i o n ( r e a d i l y v e r i f i e d by ret r a c i n g t h e successive s u b s t i t u t i o n s ) :
( 4 ) d e p i c t s t h e game
on t h e pursuer's radar screen, i . e . , i n a movable coordinate system which has i t s o r i g i n a t t h e pursuer's c u r r e n t position, and with r e a l a x i s i n t h e d i r e c t i o n of h i s motion; s i m i l a r l y ,
( 5 ) shows t h e game on t h e quarry's r a d a r screen. Suppose t h e t a r g e t There i s a f u r t h e r use f o r (b), (5). i s not c i r c u l a r , b u t r a t h e r ship-shaped, with a chosen point a s t h e quarry p o s i t i o n .
The bow w i l l then ccmstantly point i n
t h e quarry's d i r e c t i o n of notion (say, side thrusters a r e not allawed f o r ) j t h e termination condition w i l l then involve not only
x,y
but a l s o
i.
Analogously,
i f t h e pursuer i s an
a i r p l a n e with f i x e d guns, t h e t a r g e t set i s a fan-shaped region with a x i s i n t h e p u r s u e r ' s d i r e c t i o n of motion.
In
t h e s e cases we of (5) o r (4) w i l l profoundly simplify t h e termination condition. Remarks The game i s t r e a t e d i n Section 9 . 2 of I s s a c s ' book, f o r circular targets.
More d e t a i l , together with extensive (and
i n t r i g u i n g ) p l o t s of t h e results, appear i n T. L. Vincent, E. M. C l i f f , W. J. Grantham, W. Y. Fkng: A problem of c o l l i s o n avoidance, EES S e r i e s Report 39, Engineering Experiment S t a t i o n , The University of Arizona, 1972.
The r e s u l t s a r e summarised i n T. L. Vincent, E. M. C l i f f , W. J. Grantham, W. Y. Fkng: Some aspects of c o l l i s i o n avoidance, AIAA Journal 1 2 (1974) 3-4, T. L. Vincent: Avoidance of guided p r o j e c t i l e s , p. 267-279 i n The Theory and Application of D i f f e r e n t i a l Games (ed. J. D. Grote), Reidel, Dordrecht and Boston, 1975. 25
PURSUIT GAMES
The case of a ship-shaped (or rather, lens shaped) t a r g e t i s t r e a t e d i n t h e l a s t reference.
A preliminary treatment, with
t h e t a r g e t replaced by a d i s c displaced i n the direction opposite t o the velocity vector, appears i n T. L. Vincent, W. Y. Peng: Ship c o l l i s i o n avoidance, Navy Workshop i n D i f f e r e n t i a l Games, Annapolis,
1973
The case of perfect capture i s t r e a t e d i n E. Cockayne: Plane [ s i c ] pursuit with curvature cons t r a i n t s , SIAM J. Appl. Math. 15 (1967)
1511-1516.
The a s s e r t i o n t h e r e i s t h a t pursuer can force capture from any i n i t i a l position i f , and only i f ,
In G. T . Rublein: On pursuit with curvature constraints, SIAM J. Control 10 (1972) 37-39
t h e method i s extended t o t h e case of dimension
n = 35 sharp
i n e q u a l i t i e s i n (6) ensure perfect capture from a= i n i t i a l positions.
See a l s o t h e remarks folluwing 7.3.
1.7 Unpleasant Examples The reason f o r t h e section heading i s t h a t t h e examples described here, simple instances of f a r more general situations, cannot be t r e a t e d by t h e methods t o be developed l a t e r i n t h e book (surely t h e r e i s an obligation t h a t the reader be made aware of t h i s circumstance). The f i r s t i s t h e celebrated Lion and Man game; it i s probably b e s t t o reproduce, with t h e kind pelmission of t h e publisher, two pages from J. E. Littlewood: A Mathematician's Hiscellally, Methuen, London, 19
26
EXAMPLES
'Lion and Man' ' A l i o n and a man i n a closed arena have e q u a l maximum speeds. What t a c t i c s should t h e l i o n employ t o b e sure of h i s 1 meal?
It was s a i d t h a t t h e 'weighing-pennies' problem wasted of war-work, and t h a t t h e r e was a pro-
10,000 s c i e n t i s t - h o u r s
p o s a l t o drop it over Germany. This one,2 though 25 y e a r s old, has r e c e n t l y swept t h e country; b u t most of us were t e a s e d no more t h a n enough t o a p p r e c i a t e a happy idea b e f o r e a r r i v i n g a t t h e answer, ' L keeps on t h e r a d i u s OM'. I f L i s o f f OM t h e asymmetry helps M. So L keeps OM, M a c t s t o conform, and i r r e g u l a r i t y on h i s p a r t helps L. L e t u s t h e n s i m p l i f y t o make M run i n a c i r c l e C of r a d i u s a w i t h angular v e l o c i t y W . Then L (keeping t o t h e on
r a d i u s ) runs i n a c i r c l e touching C', a t P, say, and M i s caught i n time less t h a n n/W. This follows e a s i l y from t h e 2 2
equations of motion of L, namely = w, G2+r2W2 = a w It i s , however, i n s t r u c t i v e t o analyse t h e motion near P. For t h i s
E2
(a-r)*/K,
and t
.
< c o n s t . + Kj(a-r)-$dr.
-
The i n t e g r a l converges ( a s r + a ) with p l e n t y t o s p a r e p l e n t y , one would guess, t o cover t h e use of t h e simplifying hypothesis.
* The p r o f e s s i o n a l w i l l e a s i l y v e r i f y t h a t when
M s p i r a l s outwards t o a c i r c l e , and, w i t h obvious n o t a t i o n x = rM rL, w e have (W varying), we w r i t e
-
-2 > (W 2rL )(x/GL) = X, where X/x + m. Then t < c o n s t . + X -1dx, and i n t h i s t h e i n t e g r a l i n c r e a s e s more slowly than
s
X
x-ldx:
X
it i s a g e n e r a l l y s a f e guess i n such a case t h a t t h e
i n t e g r a l converges.
*
1 'The 2
3
curve of p u r s u i t ' ( L running always s t r a i g h t a t M) t a k e s an i n f i n i t e time, s o t h e wording has i t s p o i n t . Invented by R . Rado (unpublished). The c a s e when L s t a r t s a t 0 i s p a r t i c u l a r l y obvious, on geometrical grounds.
27
PURSUIT GAMES
A l l t h i s notwithstanding, t h e 'answer' i s wrong, and M
can escape capture, (no matter what L does).4 This has just been discovered by Professor A . S. B e s i c w i t c h ; here i s t h e f i r s t (and only) version i n p r i n t . I begih with t h e case i n which L does keep on OM; very easy t o follow, t h i s has a l l t h e e s s e n t i a l s i n it (and anyhow shows t h a t t h e 'answer' is wrong). S t a r t i n g from M ' s p o s i t i o n % a t t = 0 t h e r e i s a polygonal path Mo%M 2... with t h e pro-
perties:
(i)
MnMn+l
i s perpendicular t o OM,,
( i i ) the t o t a l
lew - h i s i n f i n i t e -, (.i i i ) t h e -path s t a g s i n s i d e a c i r c l e round 0 infijide t h e arena. I n f a c t , i f 4, = Mn,lMn w e have I
h i , and a l l i s secured i f we t a k e fin = cn-314 with a s u i t a b l e c. L e t M run along t h i s path ( L keeping, i s perpendicular t o LoMo, a s agreed, on OM). Since Mo% L z s not catch M while M Ls o," Mo%. Since L i s on 1 0%) M1M2 i s perpendicular t o Ll%, and L does not catch M while M is on M1M2. This continues f o r each successive Of
,
= 0% +
and f o r an i n f i n i t e t i m e s i n c e t h e t o t a l length i s
MnMn+l,
infinite.
*
I add a sketch, which t h e p r o f e s s i o n a l can e a s i l y complete, of t h e astonishingly concise proof f o r t h e q u i t e general case. Given Mo and Lo, M s e l e c t s a s u i t a b l e 0
( t o secure t h a t t h e boundary does not i n t e r f e r e with what follows), and ' c o n s t r u c t s ' t h e polygon MoM1M2.. . described above, b u t runs along another one, MOM;M;.
. ., associated
i s drawn with it, but depending on what L does. MOM: perpendicular t o LoMo, No i s t h e f o o t of t h e perpendicular
from
0
so t h a t
M;,
on
MOM;,
NoM;
=
MiM;
i t so t h a t an)
4
OMi2
5
and
Mi
i s taken beyond
fil(=MoY). If
L
is at
when
L1
i s drawn perpendicular t o
LIM;,
and
N M' = fi2; and so on. 1 2
Clearly
OM:
Of,
from M
No
Mi -
2
M
0
is a t
taken on
OMk-12 s
and t h e new polygon i s i n s i d e t h e same c i r c l e
I used t h e comma i n 1. 9, [previous page]
does not a c t u a l l y cheat.
28
t o mislead; it
EXAMPLES
a s t h e o l d one.
Since
again i. n f i n i t e length.
M' M' t h e new polygon has n-1 n an And a s before L f a i l s t o catch M.*
L i t t l e can be added
- t h e exposition i s eminently c l e a r
and concise (even though t h e discussion of convergence of S(a-r$dr
=
1
-2(a-r)f,
and t h e l a s t footnote, may leave t h e
reader s l i g h t l y uncomfortable). For an account of subsequent developaents, and f u r t h e r references, s e e J. Flynn:
Pursuit i n t h e c i r c l e : l i o n versus man, pp. 99-124 i n D i f f e r e n t i a l Games and Control Theory (ed. E. 0. Roxin, P. T. Liu, R. L. Sternberg), Dekker, New York, 1974.
Games s i m i l a r t o t h i s w i l l not be t r e a t e d i n t h i s book. It i s s i n g u l a r i n t h a t t h e p l a y e r s ' c a p a b i l i t i e s a r e perfectly balanced; t h e confinement of play t o t h e d i s c induces con-
s t r a i n t s on t h e s t a t e v a r i a b l e j and it i s p r e c i s e l y t h e i n t e r play of t h e s e two e f f e c t s t h a t makes t h e game i n t e r e s t i n g . The next game, Obstacle Tag, i s due t o Isaecs.
The two
players move, with simple motion, i n Euclidean n-space, n e i t h e r being allowed t o e n t e r t h e ' o b s t a c l e ' , an open subset G
of
R n j equivalently, t h e s t a t e v a r i a b l e s of both players
a r e constrained t o l i e i n t h e closed set
RqG.
This g e n e r a l i s e s s e v e r a l of t h e games already mentioned:
simple pursuit, G = fl; Kelley's game, G = I s \ S 2 j and Lion and 2 Man, G = {x E R : 1x1 > 1). We s h a l l only t r e a t a very s p e c i a l case: n = 2, G i s 2 t h e i n t e r i o r of t h e u n i t d i s c i n R , and a > p holds f o r t h e pursuer's and quarry's speed bounds. f o r , e.g.,
The s t a t e c o n s t r a i n t
t h e pursuer can be t r e a t e d by a somewhat clumsy
equation of motion:
29
PURSUIT GAMES
11
x = u,
i f 1x1
and
x'u2
>
1
0 i f 1x1 = 1.
> p) is
A t h r e e s t a g e procedure f o r capture ( i n our case a
The pursuer f i r s t c a r r i e s out simple pur-
e a s i l y described.
s u i t , u n t i l t h e f i r s t t i m e t h a t he meets t h e obstacle; then he moves a s i n simple p u r s u i t on t h e c i r c l e ( s e e Exercise 2 i n 1.4) w i t h
y/lyl
a s n o t i o n a l opponent; f i n a l l y , he proceeds
a s i n simple p u r s u i t again. Any one of t h e s e s t a g e s may be t r i v i a l , of time duration 0.
It i s r e a d i l y v e r i f i e d t h a t , from any i n i t i a l positions,
each p u r s u i t s t a g e terminates a t a f i n i t e t i m e , whatever t h e a c t i o n of t h e quarry.
Rather obviously t h e s t r a t e g y i s not
time optimal, t h e f i r s t two s t a g e s being maintained f a r t o o long. A paradoxial game, i n
:=
R I , has dynamical equation
(P-q)
2
1
-8
with p l a y e r s ' c o n t r o l s constrained by
3
0
5
p,q s 1; t h e pur-
s u e r wishes t o a t t a i n (and t h e quarry, t o avoid) x an i n i t i a l p o s i t i o n
xo
>
5
0
from
0, e . g . , xo = 1. I f pursuer chooses
p = q, then
t h e s t a t e v a r i a b l e moves towards t h e o r i g i n , with t h e game ending a t t i m e
t
=
8. Apparently t h i s i s t h e b e s t choice
f o r t h e pursuer, i n terms of minimising t h e termination time. Second, suppose t h a t t h e quarry chooses h i s c o n t r o l
q
thus : q = 1whenever p s Then (p-q)
2
1
,q
=
0 if p
r 1/4, b e s t quarry's estimate, so t h a t
1 >2
$
2
1
8
,
EXAMPLES
t 8
x ( t ) z 1+
:
t h e s t a t e variable constantly mwes away from
t h e origin. What happens i f both players simultaneously make t h e indicated choices? The paradox is not i n t h i s , since such incompatible s t r a t e g i e s can be s e t up i n almost a l l games (quarry counters pursuer's choice
p = q by
q = -p), but i n
t h a t t h e s t r a t e g i e s a r e optimal.
A
Fig. 1 Obstacle Tag. Three stages i n t h e capture of quarry by pursuer avoiding a c i r c u l a r obstacle. 31
PURSUIT GAMES
Exercise,
Prwe t h a t t h e obvious analogue of Exercise 3 i n 1 . 2 provides a s o l u t i o n t o o b s t a c l e t a g w i t h minimal time t o capture. Remarks The p r e s e n t author has t h e impression t h a t t h e paradoxic a l game i s due t o L. D. Berkovitz, but has been unable t o t r a c e t h e reference.
The o b s t a c l e t a g game appears on p. 152
of R. I s s a c s :
D i f f e r e n t i a l Games, Wiely, New York, e t c . ,
1967 *
PROBLEM Generalise 1.2, 1.4 and t h e Exercise above, and solve t h e simple p u r s u i t problem on n-dimensional Riemannian manifolds with boundary. (The appropriate form of t h e equation of motion i s
= u,
u'G(x)u defining t h e d i s t a n c e . )
g
2
a.
32
, where
G(*)
is t h e matrix
CHAPTER I1 BASIC CONCEPrS This i s a very dry chapter:
it introduces, and coments
upon, t h e concepts subsequently used:
player controls, s t r a t -
Other than t h i s , t h e r e i s some
egies, and winning p o s i t i o n s .
minor pedagogical content t o a number of t h e exercises; and mathematicial, i n t h e two propositions from 2.3 needed t o s t a r t o f f Chapters IV, V, and VII.
-- t h e s e a r e
The standard
assumptions introduced i n 2 . 1 a r e not r e a l l y used u n t i l nonl i n e a r games a r e t r e a t e d i n Chapter VII.
Thus a cursory f i r s t
reading might be confined t o t h e main text of 2.2, returning when and a s need i s f e l t . 2.1
D i f f e r e n t i a l Equations:
Miscellany
With minor exceptions, we s h a l l be t r e a t i n g a game whose
s t a t e space i s Euclidean, -
say Rn
f o r some n; with dynamical
equation of t h e form
players' control constraints
t h e data being pursuer's c o n s t r a i n t set s t r a i n t set tion
Qi and a t a r g e t s e t
R
P, and quarry's con-
( o r termination condi-
x E a). Usually t h e above w i l l be abbreviated, a s i n
end:
x
E 33
Rj
s t a t e space:
RL'.
PURSUIT GAMES
I n (2) t h e data a r e t,q
are
dumnly
so
a, and n; t h e symbols x,p,
variables ( i . e . , bound variables, j u s t as t h e and
'3dS)j
in
f , P, Q,
is is
a convention.
The data c o n s t i t u t e
a p a r t i a l description of t h e game; i t s s p e c i f i c a t i o n w i l l be completed implicitly, by studying only winning s t r a t e g i e s , The i n i t i a l point i s not p a r t of t h e data:
etc.
t h e same
game is played from various i n i t i a l positions. U n t i l t h e i n t e r p l a y between t h e two players' controls p,q
becomes e s s e n t i a l , one could w e l l t r e a t t h e p a i r as a
s i n g l e e n t i t y u = (p,q), a control u with values i n a given subset of some Euclidean space. The following w i l l be referred t o as standard aeeump-
tions : -
ASSUMPTIONS
The players' constraint s e t s , P Ra ; t h e
a r e nonvoid and compact subsets of a closed subset of
Rn.
The mapping
and
target s e t
f : R n+2a
+ R"
Q, R
is
i s con-
First, a
t i n u m a , and s a t i s f i e s two f u r t h e r requirements.
l o c a l Lipschitz condition, uniformly i n t h e control variables: every point c
> 0,
xo E Rn
has a neighbourhood U =
{X:
IX-XoI
4
such t h a t If(X,P,d
f o r some X
E
R1
and a l l
-
f(y,p,q)I
x E U, y E U, p
XlX-Yl
E
P, and q
E Q.
Second, t h e growth condition limSup sup IXl+ P,q
-<+m,
IXl2
i.e.,
(3 )
x'f(x,p,q)
f o r sane p E R1
and a l l
x E Rn,
4
IL(1 + 1Xl2)
p E P, and q
The reason f o r these requirements on one:
f
E Q.
is t h e customary
they ensure, i n turn, l o c a l existence of solutions,
34
BASIC CONCEPTS
uniqueness ( f o r t h e i n i t i a l value problem), and g l o b a l e x i s t ence of s o l u t i o n s i n t o p o s i t i v e time.
E x p l i c i t l y , f o r any 1 and any measurable p : R + P and
i n i t i a l p o s i t i o n xo E Rn, 1 Q, t h e r e is a ( g e n e r a l i s e d ) s o l u t i o n x(.) q: R defined on t h e e n t i r e h a l f - a x i s
R+ =
determined by t h e i n i t i a l condition
t
x ( t ) = xo + Equivalently, x: 'R
4
and completely
[O,+m),
x(0) = xo: f o r all t z 0.
f(x(s),p(s),q(s))ds
0
Rn
compact s u b i n t e r v a l [O,e],
of (l),
i s a b s o l u t e l y continuous on each s a t i s f i e s t h e d i f f e r e n t i a l equa-
t i o n almost everywhere,
and has
x(0) = x
0'
This i s admittedly lengthy, and (1)
w i l l be used as a convenient abbreviation; i n t h e r a r e case t h a t both p ( - ) , q ( - ) a r e continuous, equation (1)a c t u a l l y holds, and one may s u b s t i t u t e i n t o it. One important consequence of compactness of t h e cons t r a i n t sets and of t h e growth condition i s t h a t s o l u t i o n s a r e acervate (grow i n compact c l u s t e r s ) : [O,e]
LEMMA
For any compact s e t
S c Rn
c R1,
t h e s e t of all values
x(t)
s o l u t i o n s x of (1) with i n i t i a l data i n 1 1 p: R + P, q: R + Q, i s bounded.
and compact i n t e r v a l for S
0 c t <
e
of
and measurable
Occasionally it will be u s e f u l t o t r e a t o t h e r versions of (1). I n = f(X,P)
- g(x,q)
t h e p l a y e r s ' dynamical e f f e c t s separate.
Their controls
appear l i n e a r l y i n
i (where, e.g.,
each
B(x)
+ B ( x ) ~+ c ( x ) q
= a(.)
i s an (n,k) m a t r i x ) . 35
The allono-
PURSUIT GAMES
mous version of (1) i s
:=
(41
f(x,t,p,q);
it i s customary t o i n t e r p r e t t h i s v i a
;r
c
= f(x,5,p,q),
= 1
i . e . , an (n+l)-dimensional instance of (1)(thus, once l i n e a r -
i t y i s abandoned, t h e r e i s l i t t l e formal d i f f e r e n c e between autonomous and allonomous systems).
Second-order games have
= f(x,i,p,q)
(5)
a s n-dimensional equation of motion; a s usual, t h i s i s i n t e r preted a s t h e 2n-dimensional case of (l),
;r
= Y,
i=
f(x,y,p,q).
Naturally, mixed types a r e e a s i l y concocted. Sometimes t h e standard assumptions a r e unnecessarily confining.
Thus, f o r autonomous l i n e a r equations
;c
= Ax
-p
+ q,
t h e s o l u t i o n i s provided by t h e variation-of constants formula
whenever
p( )
and
q( )
a r e l o c a l l y i n t e g r a b l e , and t h e r e
i s no need t o assume that t h e i r values a r e constrained t o compact set 8 , For an ordinary d i f f e r e n t i a l equation
I?
= f(x)
in
Rn,
t h e concept of associated v e c t o r f i e l d i s q u i t e f a m i l i a r (formally, t h i s i s j u s t t h e mapping
x M f(x)).
Correspond-
i n g t o (2), t h e p u r s u e r ' s vectogram a t a point (x,q) i s t h e
set x
+
f(x,P,q)
= {x
+
f(x,p,q):
analogously, q u a r r y ' s vectogram a t (X,p) i s
36
P
E p);
x + f(x,p,Q),
BASIC CONCEPTS
and t h e full vectogram a t
x
is
Exercises
1. Show t h a t t h e growth condition appropriate t o ( 5 ) i s limsup JXl+lYl+
2.
<
, -y
sup P,9
1x1
+
+
o3
IYI
Find, and then simplify, t h e version of t h e growth
condition f o r (4).
3.
Prove t h a t , i f
(7)
f
admits a l i n e a r estimate i n
Jf(x,p,q)l
Pl
+
x,
P2M,
t h e n ( 3 ) holds.
4.
Show t h a t (7), and hence a l s o ( 3 ) , holds i f
sat-
f
isfies a g l o b a l Lipschitz condition, If(x,p,q) f o r some X E R1
- f(Y,P,dl n
and a l l x,y E R
,p E
AlX-YI
P, q E Q,
5. There i s a good reason t o p r e f e r ( 3 ) over t h e simple r (7). Verify t h a t van d e r Pol's equation,
f +
2c(x2
-
1). + x =
o
o r r a t h e r i t s f i r s t - o r d e r equivalent i n but not (7).
(const. E R
2
> 01,
,satisfies
(3)
Moreover, a s concerns develupment i n t o negative
time, obtained formally on replacing
c by -c, n e i t h e r of t h e conditions i s s a t i s f i e d ( i n point of f a c t , Points outside t h e unique limit cycle do have f i n i t e negative escape times). Remarks For t h e m a t e r i a l on d i f f e r e n t i a l equations see, e.g., G. Sansone, R. Conti:
Equazioni d i f f e r e n t i a l i non l i n e a r i , Edizioni Cremonese, Roma 1956j and revised t r a n s l a t i o n , Non-Linear Diffe r e n t i a l Equations, Macmillan, New York, 1964.
37
PURSUIT GAMES
According t o t h i s source, t h e growth condition (3) for global existence i s due t o L. Amerio. Vectograms, i n t h e sense of x
+
f(x,P,q) instead of our f(x,P,q)
were introduced i n Chapter 2 of R. Issacs:
D i f f e r e n t i a l Games, Wiley, New York, e t c . ,
1967
0
A glance a t t h e diagrams t h e r e shows t h a t it i s t h e present
d e f i n i t i o n t h a t was intended. 2.2
Controls, s t r a t e g i e s , winning positions The game w i l l be indicated i n t h e abbreviated form
introduced i n 2.1:
~ ( tE )P, q ( t ) € Qi x E R, s t a t e space: Rn.
= f(x,p,q):
(1)
end:
This given, a pursuer control i s any measurable mapping 1 + P, a quarry control i s any measurable mapping 1 q: R + Q; i f P,Q a r e not presupposed compact., w e a l s o re-
p: R
quire t h a t
p,q
be l o c a l l y integrable ( i . e . ,
able on every bounded i n t e r v a l i n
Lebesgue integr-
R1).
F r a t h e standard assumptions i n 2.1 it follows t h a t a solution
x: R+
I)
Rn
ing an i n i t i a l value q( ) : x( ) (2)
is well and uniquely defined by specifyand player controls
xo € Rn
satisfies
t x ( t ) = xo + J' f ( x ( s ) , p ( s ) , q ( s ) ) d s f o r t 0
We w i l l usually c a l l t H x ( t ) i n i t i a l position that
p(*),
xo.
2
0.
t h e s t a t e response, with
From ( 2 ) and uniqueness it follows
x ( * ) i s unchanged i f t h e values of the player controls
are a l t e r e d on a s e t of measure zero.
38
BASIC CONCEPTS
N e x t , consider a mapping quarry c o n t r o l s
R
1
+
1
from t h e c o l l e c t i o n of a l l
0,
Its
Q t o t h a t of t h e pursuer controls.
i n i t s domain w i l l be denoted by 1 U [ q ] j t h i s is t h e n a function R -b P, and thus has values, value a t any
q: R + Q
denoted by u [ q ] ( t )
(3 1
i n t h e u s u a l manner. ~ [ q I ( t =)
t
J10
For example,
(t-S)q(s)dS.
The square-bracket n o t a t i o n i s only a mnemotechnical device;
it is, of course, i n c o n s i s t e n t , and one ought t o write o ( q ) ( s ) ; b u t i n t h i s book it i s q u i t e harmless. The mapping Q w i l l be c a l l e d a pursuer s t r a t e g y i f it is non-anticipatory i n t h e following sense: whenever two quarry c o n t r o l s qk have q1 = p2 a . e . on acme (-m,e), then a l s o u[q,]
= u[%]
synonymously :
(-,el.
8.e. on
(Other terms used
causal, hereditary, d e t e r m i n i s t i c , s a t i s f y i n g
t h e information c o n s t r a i n t . )
Thus, t h e mapping
defined
(5
by (3) i s non-anticipatory,
while t h a t determined by 1 ~[qI(t= ) J (t-s)q(s)ds 0
i t s value a t time t
i s not:
depends on t h e behaviour of
over [0,1] e n t i r e , not only over [O,t]. implicitly r e q u i r e s t h a t
The d e f i n i t i o n
preserve measurability:
i s measurable, then so i s u [ q ] .
q
Sometimes u [ q ]
c a l l e d t h e pursuer response, t o quarry c o n t r o l
q
if
w i l l be
q.
A s p e c i a l type of s t r a t e g y w i l l be studied i n Chapter
111.
Consider a mapping 7 : Q x R
point i n
P whenever
-b
P
is a point i n
q
d e f i n e an induced mapping trols
1
6,
(thus, T(q,t) Q
and
is a
t E R1).
Now
on t h e c o l l e c t i o n of quarry con-
q ( * ) , by s e t t i n g
(4) If t h i s u
o[ql(t) = 7(q(t),t). preserves measurability, it is automatically non-
a n t i c i p a t o r y , and w i l l then be c a l l e d a stroboscopic s t r a t e g y
39
PURSUIT GAMES
(snap-decision, o r memory-less); t h e term may then a l s o be applied t o
T.
i n advance, then
i s a mapping given
t H u(t)
For example, i f u,
o[ql(t) = q(t)
+
dt),
i s a stroboscopic s t r a t e g y ( i f
u i s measurable and Q + u ( t ) c P f o r a l l t ) j however, t h e s t r a t e g y of (3) i s not stroboscopic, since i t s value a t time t strongly depends on the behaviour of q ( - ) a t times s previous t o t . One f u r t h e r c l a s s of s t r a t e g i e s may be mentioned here ( f o r others, see t h e exercises): i s independent of
u
i s indifferent if
u[q]
q.
We w i l l always have t o distinguish carefully between, say quarry controls q and quarry control values q ( t ) . Thus, i n 1 (l), p ( t ) E P i s an abbreviation f o r p ( t ) E P f o r a l l t E R, and cannot be replaced by t h e careless t o even mention) p ( t ) c P.
p(*)
E
P nor (horrible
The reader not used t o t h i s w i l l ,
(4).
obviously, have q u i t e unnecessary d i f f i c u l t i e s with, e.g.,
Analogous d e f i n i t i o n s apply t o quarry s t r a t e g i e s , taking pursuer controls t o quarry controls (always so named; but t h e q u a l i f i e r i n 'pursuer s t r a t e g y ' w i l l often be dropped). occasion we w i l l speak of capture
with
On
(allowed) anticipation:
t h i s r e f e r s t o mappings between t h e player controls which i s not necessarily non-anticipatory. Referring t o t h e game ( l ) , a point p o s i t i o n t o win within time strategy a
which forces
8
xo
E
R"
xo
E
Rn
is i n
i f t h e r e i s a pursuer
t o t h e t a r g e t within t h e time
i n t e r v a l [O,f3] against a l l action of quarry.
A t length, and
l e s s picturesquely put, t h e condition i s as follows. quarry control position
q ( * ) , t h e s t a t e response
xo, t o t h e controls
t a r g e t , i.e.,
40
p = o[q]
For any
x(*), from i n i t i a l and
q, meets t h e
BASIC CONCEPTS
x(t)
(5) f o r some t with
E
E R t
[ 0 , 8 ] ; t h e termination times
may well vary
q(.) (but t h e d e f i n i t i o n requires t h a t they a l l belong
t o the same time-interval [O,O]).
It may be noticed t h a t t h i s
excludes, purposely, t h e case t h a t f o r each quarry control sup t = +
03.
a t which (5) holds, but t h a t
t
q ( * ) t h e r e i s a f i n i t e time
It is useful not t o be pinned down t o one turn
of phrase; we may speak of winning positions (within some unspecified time i n t e r v a l ) , of winning s t r a t e g i e s forcing termination o r capture within
[O,el,
etc.
The s e t of a l l such winning positions
set W(0,e).
We have R =
(6 ) for
0 s s .s
i s the winni%
xo
tj
w(o,o)
W(O,S)
C_
E
w(o,t)
u
E
w(o,e)
820
t h e l a r g e s t term is the set of a l l winning
positions. If t h e termination times
t
i n ( 5 ) can be taken equal,
we speak of isochronous capture and strategy. winning set
W(@)
consists of a l l points
forced t o t h e t a r g e t t h e r e i s a strategy response endpoint
Explicitly, the
xo which can be
(rather than within) time (5
2
0:
such t h a t the corresponding s t a t e
x ( e ) E R.
fixed duration or horizon.)
(Other t e r m used:
games of
Analogously, i f the strategy
can be taken stroboscopic, we speak of stroboscopic capture. Obviously W(0) = R, and
w(o,e)
(7)
2
u{w(t): o < t s el.
However, inequality can occur i n (7) even i n t h e extreme sense t h a t one s e t i s void while t h e other i s not:
i.e., nontrivial
capture i s possible, but not isochronous. Exercises These serve t o introduce several f u r t h e r classes of 41
PURSUIT GAMES
strategies.
The condition t h a t a mapping
0,
taking quarry
controls t o pursuer controls, be non-anticipatory is t h a t q1 =
(8)
~2
hold f o r a l l sets
a.e.
S implies u [ q
of t h e form
S
1
1
= a's21 a.e.
s
(-ca,e).
(completely) deterministic i f (8) holds f o r a l l
Call u
S, and almost stroboscopic i f (8) holds
unbounded i n t e r v a l s
f o r a l l measurable s e t s
S.
1. For a given strategy u, consider t h e collection
of a l l subsets
S1,S 2,... S1
S1\N,
of
S
belong t o
u
N
f o r which (8) holds.
R1
8 Sk, S1 k=1 of measure zero.
8, then so do
f o r any s e t
N
the assertion on intersections, i f q be
ql 2.
>
Prove t h a t i f and a l s o
S2
(Hint:
for
a.e. S n S2, l e t 1 and consider u[q].)
%
and 92 outside S1, on S 1 Prove t h a t t h e follawing are equivalent:
u
i s det-
S s a t i s f i e s (8); Were e x i s t s
erministic; every open s e t E
ql=
n
8
such t h a t (8) holds f o r a l l i n t e r v a l s of length E.
0
3.
Verify t h a t , i f (8) holds f o r a l l closed s e t s S,
then a
i s almost stroboscopic.
surable s e t from below by
F
(Hint:
approximate a mea-
s e t s , and use Exercise 1.)
U
Exercises 2 and 3 provide a h i n t f o r showing t h a t deterministic s t r a t e g i e s need not be almost stroboscopic. mapping u a s follows. I t s arguments a r e functions 1 1 1 q: R + R i t s values a r e functions u[q]: R + {O,l];
,
u[q](t) = 1 if f o r some set
4.
{s: q ( s )
p
O]
u
N
and
i s a neighbowhood of
t
N with measure zero, and 0 otherwise.
Prove t h a t t h e mapping a
measurability.
Define a
(Hint:
setting
j u s t described preserves
S = {s: q ( s )
#
03, show t h a t
{t: u [ q ] ( t ) = 11 i s t h e countable union of s e t s where meas(S
5.
n
(t-k-l,t+k-')) Shaw t h a t
= 2k'l.)
i s deterministic (e.g. using Ekercise
2).
42
BASIC CONCEPTS
6.
Choose any set
which i s closed, nowhere
F c 'R
dense, and has s t r i c t l y p o s i t i v e measure; and l e t c h a r a c t e r i s t i c function of defined above has a [ q ] almost stroboscopic:
I
q be t h e
Verify t h a t t h e s t r a t e g y a
F.
i s not u [ q ] every-
This shows t h a t a
0.
q = 1 on
F but
0[11
#
where.
i s s a i d t o have time l a g
A strategy a
q1 = q2 a.e.
7.
(-m,t-c)
implies
at
8
o[qll = u[q,l
t a.e
if
(-m,t).
i s an i n d i f f e r e n t s t r a t e g y i f f it has t i m e l a g +oa a t a l l times t . 8. For a s t r a t e g y 0 and t E R1 l e t € ( t ) be t h e supremum of t h e t i m e l a g s a t t . Prave t h a t c ( t ) 2 0, and A t h a t t n E ( t ) i s measurable. (Hint: i f C ( t ) < a, then a l s o G(s) < a f o r s < t close t o t j t h u s {t:e ( t ) < a ] i s a union of non-degenerate i n t e r v a l s , hence a countable Check t h a t
u
union of i n t e r v a l s , and t h e r e f o r e (open)
9.
u
(countable).)
Show t h a t t h e s o l u t i o n of simple p u r s u i t described
i n Exercise 3 of 1.2 i s e f f e c t e d by a s t r a t e g y with time l a g s t e a d i l y converging t o
0.
10. Prove c a r e f u l l y t h a t e q u a l i t y holds i n
(7)
i f , and
only i f , capture i s isochronous ( i n an appropriate s e n s e ) . 11. Consider a non-anticipatory s t r a t e g y u, and two fixed player c o n t r o l s
tegy, a0, t h u s : largest
a
po(*),
%(*).
Define a second s t r a -
f o r any quarry c o n t r o l
such t h a t
q =
a.e.
(-m,a),
q(*) take the and then set
for s 2 a
Prove t h a t a.
i s non-anticipatory.
43
(Hint:
first verify
PURSUIT GAMES
t h e following:
i f , f o r three functions
%,
i s t h e larg-
aij
a.e. (--,a),t h e n two among a12, est a with % = q j a r e equal and t h e t h i r d i s not smaller.)
"sl
12.
I n a l i n e a r game
x = Ax
pursuer 'feedback s t r a t e g y '
F: R
n
-p +
c
~
+ q, suppose t h a t a P
i s well-behaved, i.e.,
playable a g a i n s t a l l quarry controls, i n t h e sense t h a t = AX
- F(x) +
9, x ( t o ) = x0
has a unique s o l u t i o n x ( * ) on [to,*)
f o r any
xo, to,
Show t h a t t h e r e i s a non-anticipatory s t r a t e g y u
q( ).
t h e same e f f e c t : (with
with
i n detail, i f the solution is written x(t,q)
xo, t o f i x e d ) , then
F(x(t,q)) = u [q ](t).
Remarks I n t h e l i t e r a t u r e t h e term ' s t r a t e g y ' has been used (overused, perhaps) with q u i t e d i s p a r a t e meanings.
One res-
pectable usage is t h a t employed i n t h i s book, of a non-antic i p a t i v e mapping from t h e set of quarry c o n t r o l s t o t h a t of t h e pursuer's; t h i s i s due t o P. P. Varaiya: The existence of s o l u t i o n s t o a d i f f e r e n t i a l game, SIAM J. Control 5 (1967) 153-162. A r e l a t e d b u t d i f f e r e n t usage appears i n
R. I s s a c s :
D i f f e r e n t i a l Games, Wiley, New York, etc., 1967,
but i s f a r o l d e r than t h e d a t e suggests.
Also see
Quantitative and Q u a l i t a t i v e Games, Academic Press, New York and London, lS9.
A. BlaquiGre, F. Ggrard, G. Leitmann:
There t h e term refers t o what might be described a s t h e 'feedback s t r a t e g i e s ' ; e.g.
f o r t h e pursuer, a lqapping
ICW
from t h e s t a t e p o s i t i o n s t o pursuer's c o n s t r a i n t set, with s t a t e responses
t H x(t)
satiseing
44
p
~
~
,
BASIC CONCEPTS
(9)
= f ( x ( t ) , p(x(t)),q(x(t)))
0
Among t h e advantages i s t h a t t h i s l a t t e r notion seems p a r t i c u l a r i l y n a t u r a l and appropriate (see, e.g.,
1.2, 1.4, 1.7).
Unfortunately, a t t h e present stage of development of d i f f e r e n t i a l equation theory, t h e concept i s almost completely intractable:
i n i n t e r e s t i n g cases
p ( * ) i s not continuous, so
t h a t t h e right-hand s i d e i n ( 9 ) depends discontinuously on t h e s t a t e variable, and thus we do not even have existence
results (even i f t h e equation i s l i n e a r , and quarry absent). Uniqueness i s i n even worse shape: q(x)
with
q(x) = 0 and
e.g., i n
R
1 . x = p(x)
,
-
p(x> = m i n 1x12/3). ~
The t h r u s t of our approach may be i l l u s t r a t e d on t h e 'decoupling' of t h e analogous problem i n l i n e a r control theory.
For t h e control syatem
optimal control
t
I+ u ( t ) ,
f
= Ax
-u
one f i r s t finds an
and only then, a s a separate ques-
tion, does one attempt t o synthesise t h i s by a feedback device
4 = Ax
F: x n u
such t h a t optimal t r a j e c t o r i e s s a t i s f y
- F(x) (i.e.,
F ( x ( t ) ) = u ( t ) optimal).
The object
studied i s then not ( 9 ) but
G(t and d i s c o n t i n u i t i e s i n
t
= f(x(t),p(t),q(t) ) j
p(t)
no longer pose any concept-
u a l problem. The over-all e f f e c t i s t h a t t h e question of feedback s t r a t e g i e s is avoided.
I f t h e game is such t h a t one of
our
r e c i p r o c i t y theorems applies (see 3.1, 3.3, 3.7, 5.4) then t h e feedback problem i s s h i f t e d i n t o control theory, where, probably, it properly belongs. Another question which we s h a l l avoid i s t h a t suggested by t h e paradox i n 1.7:
t h e e f f e c t of both players using
s t r a t e g i e s simultaneously.
Quite reasonable resolutions of
t h i s have been proposed (e.g., 45
a r t i f i c a l time lags
6
are
PURSUIT GAMES
introduced a t appropriate places i n t h e information flow diagram, and subsequently one takes 6 + O+). The a t t i t u d e adopted i n t h i s book is that, however t h i s is resolved, the quarry chooses a control t
H
q ( t ) , which the pursuer count-
ers, systematically, via a strategy. That t h e so posed prablem i s interesting is shown by the application t o control under unpredictable perturbations, and t h e 'unorthodox l i n e r i s a t i o n ' of 3.2; there the second player i s purely notional nature i n t h e first case, and s t u p i d i t y i n t h e second. This d e f i n i t e l y prefers t h e pursuer t o t h e quarry. O f course, t h e quarry's winning positions are precisely those which a r e I & winning f o r the pursuer, so t h a t a determinat i o n of t h e l a t t e r fixes the former. However, the specificet i o n of a successf'ul quarry strategy involves a construction
-
f o r a l l times t 2 0: often f a r more d i f f i c u l t than t h a t of a pursuer strategy, over a bounded time i n t e r v a l . Entering t h e plea of greater simplicity, we s h a l l t r e a t , almost exclusively, the pursuer's problem; our position i s weakened by legitimate instances of i n t e r e s t i n g evader's problems, as i n c o l l i s i o n avoidance between a i r c r a f t treated i n T . L. Vincent, E. M. Cliff, W. J. Grantham, W. Y. Peng: A problem of c o l l i s i o n avoidance, Engineering Experiment Station Report No. 39, The Univers i t y of Arizona, 19'72. A s i t u a t i o n i n which the roles of t h e two players are
symmetric might be indicated by t h e following. I n addition t o t h e dynamicel equation and control constraint s e t s , l e t there be given three s e t s i n s t a t e space: pursuer's t a r g e t R, quarry's ' l i f e - l i n e ' , and s t a t e constraint r . The pursuer desires t o reach R a t f i n i t e time while remaining
c
i n r \ c a t a l l previous times; the quarry wishes t o reach c,remaining i n r\R i n t h e meanwhile. A t present t h i s
46
BASIC CONCEPTS
One complication i s t h a t , i n
problem seem8 t o o d i f f i c u l t . i n t e r e s t i n g cases, a l l of
r / c , r\n
c,r
a,
a r e closed, whereupon
a r e not ( t r i v i a l i t i e s excepted); and, b a r r i n g some i n c i s i v e new approach, even t h e s i m p l i f i e d problem of a or even c o n t r o l system with (pointwise) s t a t e congame s t r a i n t s A i s unrewarding unless A is, a t l e a s t , closed.
-
2.3
-
P r i n c i p l e of Suboptimality I n t h e l a s t s e c t i o n t h e b a s i c terminology and notation
was e s t a b l i s h e d .
It i s w i t h reluctance t h a t we introduce
f u r t h e r notation here, namely fi(t,X,P,d,
T(x,p,q),
As usual, one must s t r i k e
T(X,U),
Tb).
some balance between cumbersome (and,
often, i n a c c u r a t e ) d e s c r i p t i v e phrases, and a r i s i n g t i d e of
symbols o r abbreviations t h a t t h e reader deciphers with i n creasing impatience. The game i s indicated by ~ ( t E) PI q ( t ) E Qj x E R; s t a t e space: Rn.
= f(x,p,d;
(1)
end:
x E Rn
Under t h e standard assumptions, an i n i t i a l p o s i t i o n and player c o n t r o l s
p ( - ) , q ( * ) determine uniquely a (gen-
+
e r a l i s e d ) s o l u t i o n t o t h e d i f f e r e n t i a l equation on R ; l e t US denote its value a t n(O,x,p,q)
t
0 by
2
fi(t,x,p,q).
E.g.,
always
= x i and, i f t h e dynamical equation i s l i n e a r , t h e
variation-of-constants formula provides t h e e x p l i c i t s i o n (6) of 2 . 1 for
expres-
YC(*). n and player c o n t r o l s p ( * ) , Given ( l ) , a p o s i t i o n x E R q(.), define t h e f i r s t termination t .
,
T(x,p,q) = i n f i t
2 0:
n(t,xdbq)
E 01.
The set involved may be empty, and then, of coursej i t s infimum i s
+m.
Since
R
i s closed and t h e s o l u t i o n 47
PURSUIT GAMES
t w n(t,x,p,q)
continuous, t h e infimum ( i f f i n i t e ) i s a c t u a l l y
a t t a i n e d : thus
E
fi(e,X,P,d fi(t,x,p,q)
4R
for
e o
= T(x,p,q),
s t s e.
and (pursuer) s t r a t e g y
x E Rn
Given (l), a p o s i t i o n
one has t h e termination times controls
R for
T(x,a[q],q)
0,
f o r various quarry
q ( * ); t h e 'worst' of t h e s e i s T(x#) =
F i n a l l y , w e define t h e minimum
SUP
9('
time
T(x,C"qI,q).
1
T(x) = i n f T(x,a), U
infimum taken over a l l s t r a t e g i e s
0.
Thus, i f the intermed-
i a t e concepts a r e eliminated,
T(x) = i n f sup i n f { t : n(t,x,a[q u 4') As mentioned above, t h e innermost infimum i s a minimum; so i s t h e outermost, under reasonable conditions (see 8.1)j no comment on t h e middle supremum.
It i s almost immediate t h a t
T(x)
is f i n i t e iff
x
is
a winning p o s i t i o n (see Exercise 1); thus
x)., T(x) i s a real-valued function on t h e s e t of a l l winning p o s i t i o n s .
In
analogy with c o n t r o l theory, T ( * ) w i l l be c a l l e d t h e minimal
time function; it makes a convenient reference concept, but seldom i s it a v a i l a b l e computationally. PROPOSITION 1
q
a quarry control.
s T (x,o[ql,q),
x be a position, u
For any f i n i t e time for
a s t r a t e g y , end
t
t h e s t a t e response endpoint
belongs t o W(0,e-t) (2)
Let
with
8 = T(x,a), so t h a t
T(y) s T(x,o)
48
- t.
0c t
<
y = fi(t,x,a[ql,q)
BASIC CONCEPTS
PROPOSITION 2 Let s t r a t e g y forcing y
=
x
For any t i m e
trol.
fi(t,xp[ql,q)
x
E
W(e), with u
an isochronous
8 , and q
t o termination a t
8
quarry Con-
t € [ O , e ] , t h e s t a t e response endpoint
belongs t o W(e-t).
The a s s e r t i o n culminating with ( 2 ) w i l l be c a l l e d t h e
-
p r i n c i p l e of suboptimality (even though t h e r e is no reference t o optimal s t r a t e g i e s o r c o n t r o l s ) . the entries
y
and
t
It should be noted t h a t
depend on t h e quarry c o n t r o l
q.
A
proof f o r t h e first r e s u l t only w i l l be presented; it is r e a d i l y modified t o apply t o t h e second.
i s eAremely simple:
The underlying idea
formally, one decomposes i n t e g r a l s ,
e t e x+Jof= ( x + J f ) + f f 0 t conceptually, a winning s t r a t e g y ,yo f o r y i s not used (since t h e p o r t i o n of u Over [t,+m) see f i g . a n t i c i p a t o r y ) i n reaching y from x
-
i
obtained from
i s non-
u 1.
Fig. 1 P r i n c i p l e of Suboptimality (schematic). Af'ter reaching p a r t way, y, t o t a r g e t 0 from x, t h e unused p o r t i o n of t h e o r i g i n a l s t r a t e g y may be u t i l i s e d t o complete t h e motion; o t h e r options may a l s o be a v a i l a b l e .
(Froof) strategy
Obviously (2) follows from y E W(O,e-t), 0
and t h e
needed t o e s t a b l i s h t h i s i s constructed a s 49
PURSUIT GAMES
follows.
%(*)
For any quarry control
set
then l e t
From
=
Uo[%](S)
(4)
u [ q ](S + t ) f o r 1
6 S
0.
(4), u0 i s a pursuer strategy; we wish t o verify t h a t it
forces y
t o termination within 8-t. I n the nontrivial case T(x,g) < +
quarry control
ql
as above (with = T(x,U[ql1q1)
t o t h e admissible
90 arbitrary
there corresponds a f i n i t e termination 7
m,
but fixed)
7,
s T(XP) = 8,
a t which the s t a t e response endpoint meets the t a r g e t : t
(5) Since
q1 = q
on [ O , t ) ,
and therefore, i n (2),
1 = ~ [ q ]a.e. [O,t), lt t h e term x t f = y satisfies we have u [ q
0
7
+
J
=
y +
So
= y +
So
a3y
with y(s) = x ( s + t )
t
f(x(s)r~[sll(s),ql(s>)ds 7-t
7-t
f(~(~+t)p[qlI(s+t),ql(s+t))ds
fcY(s),.or~l(s),~(s))ds,
an appropriate solution w i t h i n i t i a l
point y(0) = x(O+t) = y.
Since
90
wa8 arbitrary, we have that
termination time
7
-t
COROLLARY 1 If
0
4
-
u
0
forces t o
R, with
t. QED i s a winning strategy f o r a point 0
BASIC CONCEPTS
x
4 R,
then some point i n t h e closure of t h e s e t of s t a t e
response values
(6) { n ( t , x , ~ [ s l , q ) : q ( * ) quarry control, 0 s t s .T(xp lql,q)] l i m (W(O,t)\R).
belongs t o
tdO+
(Proof) From monotonicity i n (6) of 2.2, t h e s e t s W ( O , t ) \ n Since u is a winning s t r a t e g y and x 4 R,
have coinciding limsup and liminf. 0
(7)
< T(x,u) < +
m.
Now choose quarry controls termination times
ek
qk( ) so t h a t t h e corresponding = T(x,u[qk!,qk) satisfy
T(x#u),
ek a l s o choose times
T(x,u);
0k
tk 2 0 ( c f . (7)) with
ek
tk c ek,
(8)
- tk
4
0;
and denote the s t a t e response endpoint6
5= These
%
“(tl,>X,ulqJrqk)* From Proposition 1 and tk < Bk
are i n t h e s e t (6).
we have
”k E W(o,ek-q\n’ Hence and from ( 8 ) , i f a subsequence of t h e the limit w i l l belong t o compact closure, i.e., 2.1 with, e.g.,
converges,
lim(W(O,t\n).
i s bounded, follows from t h e lermna i n
W
0 = T(x,u).
COROLLARY 2 If x
%
That t h e s e t (6) has
E
W(0) with
isochronuous strategy forcing
x
0
> 0,
and
Q
i s an
t o termination a t time
then some point i n t h e closure of the s e t (6) belongs t o limsup W(t).
t+o+
51
0,
PURSUIT GAMES
analogous t o t h e preceding, using t h e second proposi-
(Proof: tion. ) Exercises
1. Prove t h a t
{x: T(x)
<
03
c W(O,8) c {x: T(x) s 01.
(For a more p r e c i s e r e s u l t s e e t h e p r o p o s i t i o n i n 8.1).
Under t h e standard assumptions show t h a t t o each
2.
4
point 2
x R t h e r e corresponds c; i n p a r t i c u l a r , conclude t h a t
t h e continuous function
x(*)
then ob.tain uniform bounds on
t
small
2
> 0 so t h a t a l l T(x,p,q) L T > 0 outside R. (Hint:
i s l o c a l l y b m d e d j one can x ( t ) - x = rr(t,x,p,q) x for
-
0.)
3. With t h e standard assumptions retained, prove t h a t l i m W(O,t) = R, liminf ~ ( y > )
ho+
4.
for x
4
R.
Check t h a t , i f compactness of t h e c o n s t r a i n t sets i s
i s possible f o r points n s i m p l i e a s f a r a s possible; e.g., P = R
omitted, t h e n (Hint:
o
Y+X
T(x,a) = 0
x
4 R.
,Q =
0,
l i n e a r dynamics, e t c . ) Remarks The two propositions a r e obviously r e l a t e d t o Bellman's P r i n c i p l e of Optimality, s u i t a b l y extended t o d i f f e r e n t i a l games.
For t h i s , p r i o r i t y is claimed i n
R. Isaacs:
The p a s t and some b i t s of t h e future, pp. 1-11i n The Theory and Application of D i f f e r e n t i a l Games (ed. J. D. Grate), Reidel, Dordrecht and Boston, 19'75,
r e f e r r i n g t o a 'Tenet of T r a n s i t i o n ' i n a 1951Rand r e p o r t e n t i t l e d Games of Pursuit; a l s o see p . 67 of t h e second p r i n t i n g of
52
BASIC CONCEPTS
R. I e a a c s :
D i f f e r e n t i a l Games, Wiley, New York, e t c . ,
1967.
Another instance appears on p. 128 of A. Friedman:
D i f f e r e n t i a l Games, Wiley-Interscience,
New York, 1971.
53
This page intentionally left blank
CHAPTER I11
The main r e s u l t s of t h i s chapter a r e i n Sections 3.3 and
3.4.
An i n s t r u c t i v e s p e c i a l case i s t r e a t e d f i r s t , i n 3.1, and
applied i n 3.2 (another appears i n 5.4).
Sections 3.6 and 3.7
concern modifications of t h e b a s i c problem, 3.5 exhibits some l i m i t a t i o n s of t h e method.
Supporting material i s presented i n
Sections 3.8 t o 3.11, t o be consluted as needed. The t h r u s t i s i n t h e Reciprocity Theorems of 3.1, 3.3 (and 3.7) : a pursuit problem i s reduced t o one i n control theory. The l a t t e r i s usually simpler, because control theory has been developed much f a r t h e r ; a consequence i s t h a t evolut i o n of p r a c t i c a l control-theoretic methods w i l l have an immediate impact within pursuit games. The c l a s s of games t o which t h e Reciprocity Theorems apply, and t h e type of answer they provide, may or may not be acceptable i n p r a c t i c e .
Thus, i n most games one r a r e l y s t e e r s
t o t h e o r i g i n of s t a t e apace a s i n 3.1; and subsequent sections t r e a t t h e more general problem and t h e ensuing complications. O r t h e Necessary Conditions (3.1,
fied:
3.4, 4.2) may not be setis-
t h e conclusion i s t h a t winning s t r a t e g i e s cannot then
be isochronous.
Finally, it may not be practicable t o observe,
and r e a c t to, t h e second player’s control changes instantaneouslyj i n 3.6 an attempt i s made t o t r e a t t h e case of delays i n t h e information flow. We w i l l address here one objection, sometimes brought up i n connection with t h e otherwise v a l i d d i s t i n c t i o n between s t a t e and control v a r i a b l e s .
The solution of t h e games t r e a t e d 55
PURSUIT GAMES
i n 3.1 i s a s follows.
From knowledge of t h e i n i t i a l p o s i t i o n
t
alone, one c o n s t r u c t s a vector-valued function i f t h e opponent chooses any c o n t r o l function
u ( t ) ; then,
q(* ), t h e pursuer
p ( t ) = u ( t ) + q ( t ) , and thereby
responds by taking t h e c o n t r o l
The objection i s t o t h e instantaneous, strobo-
wins t h e game.
scopic, n a t u r e of t h e pursuer response; one might accept dependence on p a s t values
q(s)
with
s < t, but t h e snap decision
i s t o o much. Suppose t h a t t h e pursuer i s allowed t o observe and r e t a i n t h e p a s t h i s t o r y of h i s own c o n t r o l able
x
governed by t h e dynamical equation
(warning:
time
p, and of t h e s t a t e v a r i -
t h i s i s t h e p o i n t of t h e m a t t e r ) .
t, he has a v a i l a b l e x(S-h)
s < t, and thus a l s o
for a l l tion,
.-
2(s) = l i m ho+
q = x
Ax + p.
q(s)
= Ax
-p+q
Then, a t each
- X(S)
-h
from t h e dynamical equa-
Now, bounded measurable functions a r e
l o c a l l y i n t e g r a b l e , and t h u s they a r e d e t e r m i n i s t i c i n t h e sense t h a t p a s t behaviour completely determines t h e p r e s e n t : q(t)
=
1
t
l i m r;s q ( s ) d s bO+ t - h
almost everywhere, by Lebesgue's Theorem. a l l times
t
Therefore, a t almost
t h e pursuer has a v a i l a b l e t h e c u r r e n t value q ( t )
of h i s opponent's c o n t r o l choice f o r setting up his own policy. If t h i s conclusion i s found unacceptable, then e i t h e r t h e r e
must be r e a l i s t i c t i m e delays involved, o r t h e pursuer's i n f o r mation i s incomplete, o r t h e quarry has succeeded i n constructing a non-measurable function. Section 3 . 1 concerns games with f o r c i n g t o t h e o r i g i n by stroboscopic and isochronous s t r a t e g i e s .
Although it i s super-
seded by 3.3, ( t h e F i r s t Reciprocity Theorem being a s p e c i a l case of t h e Second), some readers may f i n d t h i s manner of 56
STROBOSCOPIC AND ISOCHRONOUS CAPTURE
exposition less p a i n f u l .
Section 3 . 2 presents one application,
and, by implication, suggests o t h e r s :
t h a t one might make up
f o r l a c k of p r e c i s i o n o r over-simplification (e.g.,
linerisa-
t i o n ) by t r e a t i n g t h e i r p e r t u r b a t i o n e f f e c t s a s t h e c o n t r o l of a n o t i o n a l opponent.
O f course t h e a t t i t u d e i s p l a u s i b l e :
the
p o i n t i s whether it i s ever u s e f u l . The m a t e r i a l i n t h e appendices 3.8 t o 3.11 f a l l s i n t o two categories:
s u p e r f i c i a l and l e s s so.
I n 3.8 we emphasise one
concept i n convex s e t theory, t h e e x t e r i o r normals, and then t r e a t t h e r e l a t i v e l y recent concept of Pontrjagin difference i n some d e t a i l .
The theorems of Liapunov, Richter and Aumann a r e
presented i n a r a t h e r weak form i n 3.10, t h e reachable s e t s of c o n t r o l systems a r e t r e a t e d c u r s o r i l y i n 3.11; however, F i l i p p w ' s Lemma i s painstakingly analysed i n 3.9.
The excuse
i s reference t o t h e present purposes and requirements. A p a r t of t h e mathematicialbackground of l i n e a r control
theory may be summarised t h u s ;
Krein-milt man Thm.
-
/"
Bang-Bang P r i n c i p l e
\
Liapunov' B Thm.
L
Richter's Thm.
\
Thm.
end a l l of t h e s e a r e of fundamental importance.
For t h e more
r e s t r i c t e d purposes of t h i s book, a modification of Filippov's 57
PURSUIT GAMES
Lemma i s used several times f o r t h e construction of s t r a t e g i e s , and a weak version of Richter's Theorem i s needed f o r PrOpOSit i o n 1 i n 3.5. It seemed appropriate t o present a 8 l i t t l e of the above graph a s possible.
3.1 Forcing t o Origin Consider t h e problem of forcing t o t h e origin, i n the game described by =
AX
- p + q, p ( t ) E P,
E Q;
q(t)
s t a t e space:
R*.
Specifically, we propose t o study isochronous forcing t o
0
by stroboscopic s t r a t e g i e s ( t h e assertion being proved w i l l be formulated subsequently, assumptions including
P =
Y).
Assume t h a t one has a stroboscopic strategy u forces an i n i t i a l position a l l actions of quarry. f o r each integrable
x
to
0
a t time
e
which
2 0
against
Reducing t h e definitions, we have t h a t ,
q: [ O , e ]
+
Q, t h e mapping
t n p(t)
=
u ( q ( t ) , t ) i s integrable LO,@] + P, and t h e corresponding s t a t e response s a t i s f i e s x ( e ) = 0. From t h e variation-ofconstants formula, the l a s t condition i s e Since
-At
(u(q(t),t)
- q(t))dt).
eAe i s nonsingular,
Here t h e r e i s considerable freedom i n choosing Begin by fixing a reference point qo 0, it is tempting t o take
c+, =
E Q
(if, e 4 . j
0). There i s a corresponding
constant quarry controlj define
u(t) = an integrable mapping [O,e]
+
R
q(0).
Q contains
n
58
U(q.o,t)
.
-
90,
Then (1)y i e l d s
STROBOSCOPIC AND ISOCHRONOUS CAPTURE
x
=
e
f;-Atu(t)dt.
Q, choose a time s E [O,e], and Second, t a k e any point q consider t h e admissible piecewise constant quarry c o n t r o l with value q i n [O,s] and value i n (s,81. Since u i s
stroboscopic (and t h i s i s t h e c r u c i a l p o i n t of t h e reasoning),
-
t h e pursuer response has u
= u
in
so t h a t , i n
(s,8],
(11,
=
e 0
8
e-Atu(t)dt
e-At ( u ( t ) + q
- so
- u(q,t))dt.
We s u b s t r a c t from ( 2 ) t o obtain 8
-At
(u(t) - u(q,t))dt. J,e Here t h e integrand i s indepent of s (as u i s non-anticipa+
O =
t o r y ) , and
9
s i s f r e e t o vary Over [ 0 , 8 ] .
grand vanishes almost everywhere i n nonsingular and u
has values i n
Hence t h e i n t e -
[O,el, and ( s i n c e
is
P)
(almost a l l t ) . Now, q
Q j b u t we cannot u ( t ) + Qc P, s i n c e the set of
i s s t i l l free t o vary over
d i r e c t l y conclude t h a t
exceptional times t may w e l l depend on t h e point q chosen. Actually, t h e d i f f i c u l t y can be overcome; s i n c e t h e argument w i l l be used again, we excerpt it a s follows.
LEMMA f : R1
+
Rn
n and Yt = Yt a r e subsets of R and has t h e property t h a t , f o r each x E X, f ( t ) + x If
,
X
for almost a l l t, when f ( t ) + X c Yt 8.e. (:Proof) X has a countable dense subset, say
E yt
(5:k
= 1,2,
...] .
For each k there i s
59
A
set
Ek of
E
PURSUlT GAMES
f(t) +
measure z e r o such t h a t E = uEk
4E
t
5E
and a l l
k.
To prove
f(t) +
+x E
f(t)
4 %.
for a l l t
Yt
s t i l l has measure zero, and
Yt
5E
Yt
for
t
4
Then
for E
an?
all
x E X, merely t a k e limits over an a p p r o p r i a t e subsequence of t h e xk converging t o x. QED Resuming t h e n a r r a t i v e , we now have u ( t ) + Q cP a.e.;
o r , i n terms of t h e Pontrjagin d i f f e r e n c e ( s e e 3 . 8 ) ,
E P f Q a.e., so t h a t u i s an i n t e g r a b l e [ 0 , 6 ] + P 4, Q. F i n a l l y , ( 2 ) may be i n t e r p r e t e d
u(t)
mapping as s t a t i n g
x belongs t o t h e reachable set ( c f . 3.11) a t time 6 of
that
a l i n e a r c o n t r o l system, namely
i = Ay - U;
E
u(t)
P
Q.
It t u r n s out t h a t our s t e p s can b e r e - t r a c e d , so t h a t t h e
property j u s t e s t a b l i s h e d i s a complete c h a r a c t e r i e a t i o n : FIRST RECIPROCITY THEOREM With t h e game
(4) in
= Ax
-P
and assume t h a t
E
P
i s closed.
RLL can be forced t o
strategy a ed t o
q; P ( t )
E P,
q(t) E Q
a s s o c i a t e t h e c o n t r o l system
R"
i = Ay x
+
0
at
0
-
U; u ( t )
E
P
Then an i n i t i a l p o s i t i o n
a t time
8 2 0
by a stroboscopic
w i t h i n t h e game i f , and only i f , x 6
Q;
by an admissible c o n t r o l
can be s t e e r -
u within t h e con-
t r o l system. Furthermore, e i t h e r of
a
and
u
can b e determined from
t h e o t h e r by t h e r e l a t i o n
(5) (Proof)
o(q,t) = u(t)
+
9.
I n one d i r e c t i o n t h i s has a l r e a d y been e s t a b l i s h e d
( 3 ) i s ( 5 ) a . e . ) . I n t h e other, assume t h a t an i n t e g r a b l e c o n t r o l u steers x t o 0 a t 8 within t h e (e.g.,
c o n t r o l system, so t h a t ( 2 ) holds.
60
Define a stroboscopic
STROBOSCOPIC A N D ISOCHRONOUS CAPTURE
strategy u
by ( 5 ) ; f o r any i n t e g r a b l e
P ( t ) = a ( q ( t > , t >= u ( t ) defines an i n t e g r a b l e mapping
P.
To v e r i f y t h a t
+
q: [0,81 +
q(t)
p, with values i n ( P
Q,
* Q) + Q
f o r c e s a s asserted, note t h a t p
u
-
E
q = u,
so t h a t indeed
A8 e (x
-'
A8 ( p ( t ) - q ( t ) ) d t = e (x
-At
foek
- Joe - A t u ( t ) d t )
= 0
by (2). Q P There a r e many consequences of t h e r e c i p r o c i t y j u s t established.
The a s s e r t i o n is t h a t t h e s e t of points which
can be forced t o
0
t h e reachable set
stroboscopically a t time
R(8)
i s precisely
8
Thus t h e set
of t h e c o n t r o l system.
i s convex (see R i c h t e r ' s Theorem); i f whereupon t h e reachable sets
Q c P, then 0 E P Q, increase with 8. Most
R(8)
important, t h e minimal time problems coincide. I n t h e game ( 4 ) l e t
NECESSARY CONDITION
P
be closed.
If t h e r e a r e any p o i n t s which can be forced t o t h e o r i g i n
stroboscopically a t s t r i c t l y p o s i t i v e time, then
Q
- Q C P - P.
If such points e x i s t , then, a t l e a s t , t h e c o n s t r a i n t
(Proof)
set of t h e c o n t r o l system must be nonvoid: some
u.
Take any points
P, and hence
-
q1
-
, q2
in
q2 = p1 p2 E P q1 COROLLARY 1 I n ( 4 ) assume t h a t
vex, and symmetric.
Then
Q cP i s
-
Q for Q; then u + qk = pk E
P.
P,Q
u
E P
QED
a r e nonvoid, con-
a necessary and s u f f i -
c i e n t condition f o r presence of p o s i t i o n s which can be forced to
stroboscopically a t s t r i c t l y p o s i t i v e time.
0
(Proof)
Q i s convex and symmetric; t h u s it i s nonvoid 0, i . e . , Qc P. Conversely, i f Q c P, then Q i s an admissible control, s t e e r i n g 0 t o 0. QED P
f
i f f it contains
0
P
*
COROLLARY 2
If
Q c I n t P , then f o r every t > 0, t h e
61
PURSUIT GAMES
set of p o s i t i o n s which can be forced t o a t time
i s a neighbourhood of
t
(Proof) P
0
stroboscopically
0.
contains a neighbourhood of t h e origin; t h u s
Q
t h e c o n t r o l system i s c o n t r o l l a b l e , i t s reachable a r e neighbourhoods of Example
0
and increase with
sets
t > 0.
R(t)
QP)
A s e r v i c e t r o l l e y moves on a s t r a i g h t track;
the
operator a c t u a t e s an accelerating/braking mechanism t o b.ring t h e t r o l l e y t o rest a t t h e p o i n t of demand; t h e mechanism funct i o n s somewhat imperfectly, with a small and slowly varying It i s desired t o i n s t r u c t t h e operator ( o r design a
error.
device t o c a r r y out automatically) t o f u n c t i o n with minimal time of t r a v e l i f provided with t h e appropriate information. Let
denote t h e t r o l l e y ' s p o s i t i o n a t t i m e
x(t)
Its s t a t e i s then completely
measured from t h e demand p o i n t . determined by
..x = a -
x(t)
e, with
a
and
t,
G(t); i t s equation of motion i s
t h e o p e r a t o r ' s action, and
e the error
term; t h e c o n s t r a i n t s a r e
l4t)l
a, l e ( t ) l
5
E0?
-
e = 6 > 0. The d e s i r e d f i n a l s t a t e of t h e t r o l l e y 0 i s t h a t of rest a t t h e demand point, x = 0 = x.
and a
The f i r s t - o r d e r version of t h e equation i s ;C=y?;T=awith t h e c o n t r o l c o n s t r a i n t s as above, and t h e o r i g i n a s t a r get.
I n applying t h e r e c i p r o c i t y theorem, t h e associated
c o n t r o l system i s
(61
;C
(Indeed, lu + E 1
eo
=
5
a
for
= y,
i
E
with
= u;
Ju(t)l s 6
le I s E o
iff
IuI L a
-
6.) For t h e c o n t r o l system t h e time-optimal c o n t r o l s a r e
well-known:
they a r e piecewise constant, with values
62
3
only,
STROBOSCOPIC AND ISOCHRONOUS CAPTURE
and a t most one d i s c o n t i n u i t y .
simple feed-back c o n t r o l :
(6) f o r constant u
=
I n point of f a c t t h e r e i s a
one solves t h e dynamical equations
26:
appropriate a r c s of t h e s e parabolas which pass through t h e o r i g i n ( v i z , y2
=
2
28x) t h e n s e p a r a t e t h e (x,;)
plane i n t o
two domains, i n which t h e feed-back c o n t r o l i s constant,
f(x,2) =
26.
f=6
F i g . 1 Optimal t r a j e c t o r i e s and feedback i n c o n t r o l system ' r e c i p r o c a l ' t o game.
Having t h i s , we conclude, from t h e theorem, t h a t the operator should use ( o r , a mechanism produce) t h e c o n t r o l
63
PURSUIT GAMES
a = u = u with
a s described.
f
+ c
= f(x,i)
+ c(t)
Apparently t h i s w i l l r e q u i r e observa-
t i o n , a t each time i n s t a n t , of t h e c u r r e n t values of t h e posit i o n and v e l o c i t y of t h e t r o l l e y and of t h e e r r o r term. Exercises 1. An i d e a l i s e d a i r c r a f t i s t o f l y between points
a,b
(over a f l a t e a r t h , a t constant a l t i t u t e ) ; it can r e g u l a t e i t s v e l o c i t y a r b i t r a r i l y , s u b j e c t t o a speed limit v e l o c i t y v e c t o r has a constant component w
a; t h e wind
and a l s o a com-
ponent unpredictable i n d i r e c t i o n but with a magnitude bound
p.
What a r r i v a l time can honestly be posted on t h e a i r l i n e
announcement board?
( P a r t i a l answer:
a r r i v a l time can be guaranteed i f f where
i s t h e angle between
(4
2.
a
t r i v i a l i t i e s expected,
a
-b
-p
2
and
( w1 w.)
ISinrp
1,
Modify t h e following game so a s t o apply t h e recipro-
c i t y theorem.
The two players i n n-space have coinciding
dynamics, ;=Ax-p,$=Ay-q; t h e termination condition i s coincidence of p o s i t i o n s , x = y.
3. Show t h a t t h e s t r a t e g i e s appearing i n t h e r e c i p r o c i t y theorem s a t i s -
(7)
o(a1q1
whenever that
qk
o(-,t)
E
Q,
%E
+
R
1
a2q2,t) = and alql
be extended Over span
( 9 p )
+
+ a2% E Q. Q
"2 ( q 2 , t ) Conclude
a s an a f f i n e mapping.
Prove directly t h a t , i f a winning s t r a t e g y s a t i s f i e s
4.
has t h e form o ( q , t ) = u ( t ) + V(t)q; t h a t
( 7 ) , then
0
V(t)q = q
for a l l
q
and almost a l l t; and t h a t then
u
is a s deecribed i n t h e theorem.
5.
Formulate and prove an analogue of t h e r e c i p r o c i t y
theorem f o r t h e case t h a t t h e t a r g e t i s a given point
64
b,
STROBOSCOPIC AND ISOCHRONOUS CAPTURE
p o s s i b l y not t h e origin.
6.
Obtain a version of t h e theorem i f s t a t e c o n s t r a i n t s
a r e present, e.g. i n t h e form x ( t ) E C set c c R", o r i n i n t e g r a l form.
7.
f o r a l l t, w i t h given
Generalise t h e r e c i p r o c i t y theorem t o t h e case of
dynamical equation = A(t)x
+ B ( t ) u + C ( t ) v + w(t),
c o n t r o l c o n s t r a i n t s u ( t ) E U, v ( t ) E V, and termination condition
( Y o u may wish t o subsume t h e term w(.)
x(e) = a(e).
i n t o one of t h e p l a y e r s ' controls.) Remarks
S e v e r a l authors have obtained t h e l a t t e r p a r t of t h e proof of t h e theorem, even i n t h e more g e n e r a l caee of l i n e a r subspaces a s t a r g e t e .
The f i r s t of a series was probably
L. S. Pontrjagin:
On l i n e a r d i f f e r e n t i a l games 2, Doklady Akad. Nauk SSSR 175 (1967)
( t h e method involving ' i n f i n i t e s i m a l pursuer p r e d i c t i o n ' ) .
A
r e l a t e d result, a c t u a l l y involving nonlinear games, was announced i n E. 0. Roxin:
Some g l o b a l problems i n d i f f e r e n t i a l games, pp. 103-116 i n Global D i f f e r e n t i a b l e Dynamics (ed. 0. Hdjek, A . J. Lohwater, R. C. McCann) Lecture Notes i n Mathematics 235, Springer, Berlin, etc., l g 0 .
I n t h i s formulation, t h e conclusion i s a s u f f i c i e n t condition f o r g e n e r a l capture, so t h a t stroboscopic and isochronous s t r a t e g i e s need not be mentioned.
The advantage of our pre-
s e n t a t i o n i s t h a t it specifies t h e sense i n which t h e method
i s necessary, and second, t h a t it i s o l a t e s t h e associated c o n t r o l system. It was announced i n
65
PURSUIT GAMES
0. Ha/jek: A r e l a t i o n between p u r s u i t games and
time-optimal control, NSF Regional Conference on Control Theory, Univ. of Maryland, Baltimore County, 1971
(but was not accepted f o r t h e conference proceedings i s s u e of t h e SIAM J. Control). I n studying uniqueness of time-optimal s t r a t e g i e s , t h e problem of whether t h e standard normality conditions f o r
P,Q
polytopes for
P
f
(and c o e f f i c i e n t matrix
A)
imply normality
Q was t r e a t e d i n
E. Rechtschaffen:
Unique winning p o l i c i e s f o r l i n e a r d i f f e r e n t i a l games ( t h e s i s ) , Case Western Reserve University, 1973
(yes f o r s t a t e space dimension n s 2, otherwise no i n general).
Results r e l a t e d t o t h e allonomous case of Exercise 7
appeared i n 0. d j e k :
Duality f o r d i f f e r e n t i a l games and optimal c o n t r o l , Math. Systems Theory 8 (1974) 1-7.
The example i n t h e text i s Example 2 i n Chapter 1 of E. B. Lee, L. Markus:
Foundations of Optimal Control Theory, Wiley, New York, etc., 1967.
According t o t h e theorem, t h e p r i n c i p l e of s o l u t i o n i s t h e method 0,r n e u t r a l i s a t i o n :
t h e pursuer n e u t r a l i s e s quarry's
a c t i o n completely ( i n a s u i t a b l e sense), and t h e n uses l e f t over p o t e n t i a l t o steer t o t a r g e t . This may seem t r i t e ; however, we s h a l l see i n 3.3 and 3.7 t h a t t h i s i s e x a c t l y what happens f o r some c l a s s e s of s t r a t e gies, and i n 5.4 t h a t sometimes n e u t r a l i s a t i o n cannot be avoided.
66
STROBOSCOPIC AND ISOCHRONOUS CAPTURE
3.2 Unorthodox L i n e a r i s a t i o n Suppose t h a t a mathematical pendulum
(not a
linear oscil-
l a t o r ) i n a constant g r a v i t a t i o n a l f i e l d can be controlled by a bounded e x t e r n a l torque; and t h a t i s i s desired t o bring t h e bob t o a s t a b l e equilibrium i n s h o r t e s t time. Assume, f o r s i m p l i c i t y , t h a t t h e motion i s f r i c t i o n l e s s
and planar; t h a t t h e equation of motion and c o n s t r a i n t a r e normalis ed,
..e + s i n e =
(1)
-1 s
T,
and t h a t t h e termination condition i s i n g t h e values tions).
e
- -
T
s 1; (disregard-
8 = 0 =
appropriate t o rapid o s c i l l a -
= +2n,+kn,...
The problem belongs t o nonlinear time-optimal c o n t r o l
theory, and i s r e a d i l y t r e a t e d by known methods Example 2 i n Chapter 7 of
- see,
e.g.,
E. B. Lee, L. Markus: Foundations of O p t i m a l Control Theory, Wiley, New York, e t c . , 1967.
We propose t o apply, somewhat s u r p r i s i n g l y , l i n e a r game theory.
The method, unorthodox l i n e a r i s a t i o n , i s e a s i l y des-
cribed.
F i r s t i s o l a t e t h e l i n e a r p a r t of (1)a s i n
,,
e + ae
=
T
-
(sin
here t h e reader may wish t o t h i n k of
- u8
- ae);
a = 1, but ( a s w i l l be
seen l a t e r ) t h i s can be imprwed upon. bracketed term, s i n 8
e
Then i n t e r p r e t t h e
= P, a s t h e a c t i o n of a notional
opponent,
F+ae=r
-
p
Here, of course, t h e quarry c o n t r o l bound P o is s t i l l t o b e determined; it w i l l depend on a, b u t a l s o on t h e i n i t i a l p o s i t i o n (obviously t h e r e i s no uniform bound on
67
P
unless
PURSUIT GAMES
u = 0).
Finally, solve t h e r e s u l t i n g l i n e a r game.
ig
Fig. 1 Mathematical pendulum with torque control. I n our case t h e F i r s t Reciprocity Theorem can be applied, reducing t h e game problem t o one i n control theory again. solution i s as follows. ing s t r a t e g y
T
= p
+
Assume
u, where
<
Po
u
i s a control which s t e e r s
t o t h e o r i g i n within t h e c o n t r o l system
( 31
The
1; then t h e r e is a winn-
..e + a e = u j
lu(t)l s 1
Indeed, i n t h e f i r s t - o r d e r version of (2) i n
R
2
-
p0.
, the
players‘
constraint s e t s a r e
so t h a t
The r e s u l t i n g control torque w i l l s t e e r t o t h e o r i g i n (precisely, not j u s t approximately)j probably not optimally, but
68
STROSOSCOPIC AND ISOCHRONOUS CAPTURE
One formulation is t h a t one chooses t o
perhaps suboptimally.
l o s e information by t r e a t i n g t h e ' d e t e r m i n i s t i c ' f'unction sine(t)
- ue(t)
a s t h e unpredictable a c t i o n
p(t)
of a f i c -
t i o n a l opponent while gaining t h e advantage of l i n e a r i t y . Another i s t h a t , while t h e optimal c o n t r o l s f o r (1)a r e q u i t e r i g i d , t h e suboptimal ones a r e not, and one can a d j u s t them
so a s t o have t h e phase v a r i a b l e t r a c k a time-optimal t r a j e c t o r y of an approximate l i n e a r c o n t r o l system.
We s h a l l compare t h e a c t u a l time-optimal s o l u t i o n s
Df
(1)
with t h e results of unorthodox l i n e a r i s a t i o n (and, I n Exercise
3, with 'ordinary' l i n e a r i s a t i o n ) . For t h e f i r s t , s e e t h e reference above. d e s c r i p t i o n begins with
x
& For
r
=
The s t a t e space
e, y = 6:
.
= y, y = - s i n x
+
7
constant on some time i n t e r v a l one concludes t h a t
y2 = 2(TX + cos x + c )
(4) f o r constant
c.
The optimal c o n t r o l s
T
always have extreme
values, l b e l o w and -1 above t h e switching locus. c o n s i s t s of t h e extreme t r a j e c t o r i e s (4) (r =
2
This l a s t
1 ) which e n t e r
the origin:
(5)
y = -sgn x J2( 1x1 + cos x
- 11,
see f i g . 2. On t h i s locus, t h e optimal t r a j e c t o r i e s a r e described by (4), with o r i e n t a t i o n determined e.g. by dx/dt = y. Graphically, t h i s i s s i m p l i f i e d i f one more adjustment i s made, 2 replacing y by 11 = y s i n c e then t h e various curves ( 4 ) a r e
,
obtained by simple t r a n s l a t i o n along t h e x-axis ( f i g . 3 ) .
69
PURSUIT GAMES
0
5
10
Fig. 2 Time-optimal switching curve (lower part) for torque-controlled pendulum. Dotted curve i s
y2 = 2(x-1).
Y
X
Fig. 3 . Schematice time-optimal t r a jectori e s and switching curve for torque-controlled pendulum.
Let us carry t h i s out i n some d e t a i l for two i n i t i a l 1 positions i n phase plane, ( ~ $ 0and ) (1,O). The coordinates
of some points on the optimal trajectories are i n tables 1,2 70
STROBOSCOPIC AND ISOCHRONOUS CAPTURE
below, with f i g .
4 as
summary.
Table 1
Points on optimal trajectory of system (1) 1 portion i s on y2 = 2(-x+cos x+c) through ( ~ ~ 0 Upper ) . with c = -0.37758; lower is on the switch curve. Table 2 x
-Y
1
0
98 -97 -95
.27100 ,33166 -42750 .60218 .a429 .97*0 .92232 .%goo .80132 .72549
.9
.8
.7?985 6
.5
.4
.31121
Points on o p t i i a l trajectory of system (1)
Upper portion i s on y2 = 2(-x+cos x+c) through (1,O). with c = .45qOj lower is on the switch curve. 71
PURSUIT GAMES
Fig. 4 Torque-controlled pendulum: timeoptimal t r a j e c t o r i e s f o r points (1/2,0) and (1,O). 1 Next, f o r t h e i n i t i a l point ( ~ ~ t h0e ) minimum ~ time t o
.
reach t h e o r i g i n was computed. tion y = - s i n x
- 1 valid
taken i n moving from (xl,yl)
Referring t o t h e s t a t e equa-
above t h e switch curve, t h e time t o (x2,y2) s a t i s f i e s
1 + s i n x1 72
t
STROBOSCOPIC AND ISOCHRONOUS CAPTURE
The extreme values appear i n Table 1, with 1
f o r t h e laver part.
Y,-Y, C
Y,-Y, - 2 -I
- sin
* * x 2
I
1 - s i n xl
The t o t a l time is then T = 1.32270
-+ 0.02541.
Now l e t us examine t h e unorthodox l i n e a r i s a t i o n (2), t h e ensuing l i n e a r control system (3). specify a.
There i s an obvious guess
The f i r s t t a s k is t o CL
-
and
= 1, a bad one
a = 0;
one naturally seeks t o make [sin e ael small. For t h e ini1 t i a l point ( ~ ~ ' l0e a ) s t ~squares' provides SL = 0.975363 t h e best uniform value i s
u = 0.9911.
Having t h i s , one finds
- a@;,
po = max Isin 0
1 &€q
determining t h e control system (3) completely.
Actually, only
the l e a s t squares value i s put forward seriously as an improvthe best uniform makes f o r a complicated computation,
ement:
and i s only included here f o r reference. The optimal t r a j e c t o r i e s are, piecewise, e l l i p t i c arcs
(7 ) with
ax2
w = 1
- Po;
+ a x + y2
= const.
the switching curve is made up of t r a n s l a t e s
of these ( f o r a = 0 t h i s consists of two parabolic a r c s ) . t h e case of a single switch one readily determines the con2 s t a n t i n (6) f o r an i n i t i a l point zo E R j then t h e i n t e r section times
z1 € R2 with the switch curve; and, f i n a l l y , t h e tl,t2 needed t o reach, from I
e-Asds b w ( -1)), Al;
0 = e
2(z,
73
-r
L
e
-AS
ds bw).
In
PURSUIT GAMES
1 For i n i t i a l p o s i t i o n ( ~ , 0 )t h e r e s u l t s appear i n Table
second coordinate of (7) being used f o r both
a method
a
00
1
-y1
a
tl
and
3, t h e t2.
at
T
1 J
2
.47943
1.96009 f i r s t guess 1 .02057 .31381 .71850 .40710 .82357 1.33067 l e a s t squares .97536 .OO825 ..31147 .72331 ,50389 .8&19 1.32450 best uniform .969ll .00512 .31088 .72451 .503& .79935 1.32298 bad guess
0
I n Table 4 there appear t h e corresponding results f o r several i n i t i a l positions (xo,O). P a r t of t h e computation was abandoned, perhaps precipitately, when it became c l e a r from the values of (x y ) t h a t the l i n e a r i s a t i o n e n t a i l e d two P P switches, i . e . , an extra swing around t h e o r i g i n . Table 4 X
o a . 5 .97536 1 .go351 1 . 5 .79234 2 .65310 2.5 .m96 3 .34568
PO
X
P
yP
X
1
-y1
T
.00825 1.01680 1.00420 .3u47 .7233i 1.32450 .74082 .94544 2.08674 .06204 1.03813 .98677 .90883 1.30093 .87401 2.24097 ,19102 1.02100 .74628 .3%90 .92344 A9144 .59803 .43957 .89592 .30110 .17703 For i n i t i a l positions (xo,O), l e a s t squares method t o obtain a. (xP,jp) a r e coordinates of t h e north pole of t h e ' f i r s t ' switching e l l i p s e ; (x,,y,) are t h e coordinates of t h e i n t e r s e c t i o n with t h e switch curve w i t h t h e o p t i m a l t r a j e c t ory; T i s t h e termination t i m e . The conclusions a r e a s follows.
The upper estimate
< 1.3245 from Table 3 i s well towards t h e c e n t r e of t h e confidence i n t e r v a l i n ( 6 ) . It was obtained,,via ( 8 ) , f a r easier than t h e 12-step i n t e g r a t i o n procedure from Table 1: even a T
74
STROBOSCOPIC AND ISOCHRONOUS CAPTURE
4-step i n t e g r a t i o n r e a d i l y dissuades one from using t h i s method.
A8 concerns t h e t r a j e c t o r i e s , they a r e i n d i s t i n g u i s h a b l e 1 i n t h e s c a l e of Fig. 4 f o r ( ~ , 0 ) , and b a r e l y d i s t i n g u i s h a b l e
for
(LO).
Assume
A more g e n e r a l case may be i n d i c a t e d a s follows.
given a c o n t r o l system i n
R ~ ,
- p;
= f(x)
(10) Rewrite
;c =
Ax
p ( t ) E P, end: x = 0.
- p + ( f ( x ) - Ax),
and consider t h e l i n e a r game t h i s suggests, (11)
=
-
Ax
(There w i l l be assumptions on t h e new data PROFOSITION I n (10) l e t P
closed nonvoid.
x = 0.
p + q; p ( t ) E P, q ( t ) E Q; end: f : Rn
A,Q.)
+ Rn b e continuous, and
Assume t h a t a subset
0c R
n
satisfies
t h e estimate
two conditions:
- Ax E Q whenever x E 0,
f (x)
(12)
t h e r e i s a winning stroboscopic and isochronf o r (11) and an i n i t i a l p o s i t i o n x O - 0~
and invariance:
ous s t r a t e g y u
such t h a t t h e corresponding s t a t e response 0 up t o t h e termination time
x(t)
remains i n
8.
Then t h e r e exists a c o n t r o l p ( * ) admissible i n (10) which steers xo t o 0 a t t i m e 8 . Furthermore, t h e corresponding s t a t e response t o i n (11) i s
x(.)
again; f i n a l l y ,
(13 1
for
p(* )
P(t) = u(s(t>,t) = u(t) q(t) = f(x(t))
- Ax(t),
where
+
q(t)
u(*) i s a s described i n
t h e F i r s t Reciprocity Theorem. (Proof) dent of X(*)j
from (131,
0
n e u t r a l i s e s , so t h a t
controls.
x(.)
Choose a constant i n
t h e n t a k e t h e admissible quarry c o n t r o l 75
Q
9,
i s indepent o obtain
PURSUIT GAMES
q(t)
f(x(t))
=
-
Ax(t), t o conclude
k
= AX =
- a ( * ) + q = AX - p + ( f ( x ) - Ax) -p
f(x)
almost everywhere. Thus indeed p s t e e r s t h e t r a j e c t o r y from X(O) = x0 t o x ( e ) = 0. The conditions on 0 (and Q) can be eliminated e n t i r e l y
w
by the following formulation. x ( * ) t o Q i n (ll), l e t t h e corresponding image:
Retaining t h e s t a t e response
0 be i t s t r a j e c t o r y a r c , and V
0 = {X(t): 0
5
t
el,
5
- AX:
V = {f(x)
However, t h e o r i g i n a l v e r s i o n i s preferable.
x E 03.
T h u s , for t h e
1
c o n t r o l l e d pendulum and i n i t i a l point ( ~ ~ it0 i)s obvious t h a t 1 e ( t ) decreases from F t o 0 monotonously (invariance), whereupon [sin e
- aeJ s
( t h e estimate) f o r t h e values of
lsin
1
-
1
u
used there.
a
From t h e F i r s t Reciprocity Theorem, Q ought t o be r a t h e r small t o make be small:
P
-Q Y
large; hence, i n (l), f ( x )
- Ax
should
linearisation.
Exercises I n t h e f i r s t t h r e e of t h e s e we examine t h e consequences of an 'ordinary' l i n e a r i s a t i o n of ( 1 ) . Assume t h a t one i n s t a l l s a device which implements t h e feedback c o n t r o l appropriate t o
..e + e =
(14 1
7;
-I< T
5
1
1. Obtain t h e switching locus f o r (14).
wer:
semicircles with radius 1 . ) 2.
( P a r t i a l ans-
1
For t h e i n i t i a l p o i n t s ( ~ , 0 )and (1,O) f i n d t h e
switch on t h e locus from Exercise 1. (Hint: 76
For o r i e n t a t i o n ,
STROBOSCOPIC AND ISOCHRONOUS CAPTURE
t h e lowest corners i n f i g . 4 have distance, from t h e c e n t r e (l,O), approximately 1.00039 and 1.01135.)
3.
Prove t h a t each t r a j e c t o r y near t h e o r i g i n ( o t h e r than on t h e curve (4)) has an end-point, on t h e locus from Exercise 1, beyond which it cannot be continued. Exercises 4 t o 7 t r e a t t h e controlled van der Pol equation
;; +
(15)
2c(x2
-
1);
+x
= u, -1 < u ( t ) < 1.
Note t h a t here t h e uncontroll'ed motion, corresponding t o u
=
0, has an unstable focus a t t h e o r i g i n .
4. There a r e two standard procedures f o r bringing (15) t h e phase plane method, beginning
t o a f i r s t - o r d e r system: with
= y, and t h a t i n t h e Lignard plane, using t h e energy
i n t e g r a l , x + 20
($ -
x ) = y.
Comment on t h e advantages of
t h e s e i n respect t o unorthodox l i n e a r i s a t i o n . The switching locus of (15) i s not obtained by ele-
5.
mentary i n t e g r a t i o n .
Obtain q u a l i t a t i v e information about i t s
d i s p o s i t i o n near t h e o r i g i n . (Answer: it enters the o r i g i n from t h e second and f o u r t h quadrants, u l t i m a t e l y tangent t o t h e y-axis.) 6. Apply unorthodox l i n e a r i s a t i o n t o (15) and show t h a t an e n t i r e neighbourhocd of the o r i g i n can be s t e e r e d t o t h e origin.
(Hint:
f o r smell t 2
x IYI
I;
7.
>
t h e associated l i n e a r c o n t r o l system i s
..x - 2 e i + x
Jw(t)l L 1
= W,
0, i t s reachable sets a r e e n t i r e l y within
6.) Obtain s p e c i f i c estimates f o r Exercise 4. e-Atbdt
with 7 =
- 6;
&?Estimate
from t h e o r i g i n of
2
x y =
=
e"'
(
(Hints:
c s i n v t + qcosvt sinqt
)
R(t)
and a l s o t h e l e a s t d i s t a n c e
2
Find an upper bound on t
6. 77
in
PURSUIT GAMES
terms of
~ , 6 , and then vary
over (O,l).)
6
Remarks Unorthodox l i n e a r i s a t i o n was described i n 0. Hgjek:
Pursuit games: a survey, pp. 281-291 i n The Theory and Application of D i f f e r e n t i a l Games (ed., J. D Grote), Reidel, Dordrecht and Boston, 1975.
.
and i t s proof s t r o n g l y depend on t h e
The
t a r g e t being t h e o r i g i n (so t h a t
u
completely n e u t r a l i s e s
q). Nevertheless it would be highly d e s i r a b l e t o extend i t s scope t o termination conditions of t h e form M x = 0, a s t r e a t ed by t h e Second Reciprocity Theorem; and possibly, t o gene r a l capture.
k
= Ax
-a
For feedback c o n t r o l s t h e r e i s no problem:
+ q one simply t a k e s
q = f(x)
in
- Ax.
3.3 Affine Targets This s e c t i o n t r e a t s t h e game
&
(1) in
Rn,
= Ax
- p + q;
E P,
p(t)
q ( t ) E Q; end: x
E
R
with t h e t a r g e t set an a f f i n e manifold R = [x:
(2)
described by an (m,n) matrix
M
M x = Mb]
and a point
b
E
Rn.
There w i l l appear an obvious analogy with t h e Reciprocity Theorem of 3.1 (which is, i n f a c t , t h e s p e c i a l case b = 0).
M = I,
To unburden t h e formulation of t h e result below, t h e
needed apparatus i s introduced f i r s t . be t h e n u l l space of M, so t h a t system associated with (l), (3 1
jr
= -Ay
Let
R = b + N.
N = [x:
Define a c o n t r o l
- v; v ( t ) E vt
with c o n s t r a i n t sets Vt = ( P
78
+ e-AtN)
Mx = O}
Q.
STROBOSCOPIC AND ISOCHRONOUS CAPTURE
SECOND RECIPROCITY THEOF@M Assume t h a t t h e c o n s t r a i n t set
i s compact.
P
Then an i n i t i a l p o s i t i o n
forced t o t h e a f f i n e manifold onously a t t i m e
can be
x 6 Rn
$ sl t r o b o s c o p i c a l l y and isochr-
w i t h i n t h e game (1) i f , and only i f ,
8
x € e-A8(R(8) + a),
(4 1 where
i s t h e reachable s e t a t
R(8)
of t h e a s s o c i a t e d
8
c o n t r o l system (3). Furthermore, u(q,t) e v(e
(5) (for a l l
q
strategy
u
E
Q, t
E
- t)
+ q modulo e
-A( 8-t
)m
[ 0 , 8 ] ) can be used t o determine a winning
from an admissible c o n t r o l f o r (3) ( s e e ( 4 ) ) and
vice versa. (Proof)
This i s an expansion of t h a t of t h e F i r s t Reciprocity
Theorem.
F i r s t , assume t h a t a stroboscopic s t r a t e g y
t e r m i n a t i o n a t time
8,
e - J;-At(o(q(t),t) r e f e r e n c e p o i n t so E
-
MeA e ( x Choose a f i x e d u ( t ) = u(%,t)
- %.
u
forces
q ( t ) ) d t ) = Mb.
Q, and d e f i n e u by
Take a r b i t r a r i l y a p o i n t
q
E Q and
time
s E [0,8]j consider t h e admissible quarry c o n t r o l u for s = 0 with v a l u e q i n [O,s] and v a l u e 90 i n ( s , e ] : we o b t a i n A8
(61
Me
and f o r g e n e r a l
MeA8 (x
-
(x
- Joe - A t u ( t ) d t )
s, af'ter rearranging,
e J:-Atu(t)dt
+ J Se'At(u(t)
= Mb.
- o ( q , t ) ) d t ) = Mb.
+ q
0
Then S
-
-At MeA8J e (u(t) + q u(q,t))dt = 0 0 by subtraction; and, a s 8 i s f r e e t o vary wer [ 0 , 8 ] ,
ReA(e-t)(u(t) + q 79
- u(q,t))
=
o
(almost a l l t ) .
PURSUIT GAMES
U s e t h e n u l l space t o r e i n t e r p r e t t h i s a s
(71
E
u(t) + q
a ( q , t ) + e-A(e-t)N.
Now, u
has values i n P; using t h e Lemma from 3.1 and t h e Pontrjagin difference, we f i n d t h a t v ( t ) = u ( e - t ) s a t i s f i e s v(t)
E
(P
+ e‘AtN) il. Q
and i s i n t e g r a b l e t o g e t h e r with
Thus
u.
v
= Vt
a.e.
is an admissible
c o n t r o l f o r (3), and (6) y i e l d s MeA8x
- MJ:eAsv(s)ds
= Mb,
(4) holds; f i n a l l y , (7) provides (5). Conversely, assume t h a t ( 4 ) holds, and v is a c o n t r o l appropriate t o t h e p o i n t i n R(8). S e t t i n g u ( t ) = v ( 8 - t ) one obtains (6); and v ( t ) E Vt y i e l d s
so t h a t
u(t) To construct t h e s t r a t e g y u
+
q
E P + e-A(e’t)N.
apply Filippov’s Lemma (3.9);
t h e r e result measurability preserving mappings 1 u : Q X R -+ P, w : Q ~ R ’ + N such t h a t u ( t > + q = a ( q , t ) + e-A(e-t)V(q,t).
i s a winning s t r a t e g y . -A(@-t) we have u q = e V J so
It now only remains t o v e r i f y t h a t For any quarry c o n t r o l
q(0 )
that
u
-
U
A0
= Me
(x
-
w
=Mb+o.
The theorem, though simple enough i n p r i n c i p l e , has q u i t e complicated d e t a i l s .
It seems appropriate t o i l l u s t r a t e i t s
workings on an elementary example. 80
STROBOSCOPIC AND ISOCHRONOUS CAPTURE
W e t r e a t t h e game
Example
= y
in
- p,
$
= q j end: x = y
0
Rc, with -0th control values i n [ - 1 J 1 ] . This resetn-3s
t h e reduced description of t h e one-dimensional rocket chase i n
1.3 except f o r t h e t a r g e t s e t . A sketch of t h e players' vectograms f o r several points i n
R2
suggests t h a t points above t h e t a r g e t
forced upward:
x = y
can be
possibly away from t h e t a r g e t i n i t i a l l y , but
ultimately toward it; and symmetrically below t h e t a r g e t . Again t h i s i s reminiscent of rocket chase; but t h e resemblance ends there, see Exercise 3. We have A
=( 0" i),
M = (l,-l)J b = 0; eAt =
(: 1).
The constraint s e t of t h e associated control system i s determined via Exercise 1: MeAt( so t h a t
Vt
;)=
+ (t-l)y,
x
consists of a l l points whose coordinates
vk
satisfy v for a l l
1
+ (t-l)v2 + ( t - l ) q
q, 191 s 1, i.e., Jvl + (t-l)v21
E.g*
= p
5;
1
E
[-1,11
- It-11.
, v1 = v2 f o r t = 0, (vl-v2/21 < 1/2 f o r t = 1/2, (vll s 1 f o r t = 1, Ivl+v2/21
s 1/2 f o r t
= 3/2,
vl= -v2 f o r t = 2, and
Vt =
for
t > 2.
Subsequent computations a r e simpli-
f i e d i f we apply Exercise 2 (with
81
90 =
0 ) , and use only
PURSUIT GAMES
P
These c o n s t r a i n t sets a r e segments on t h e x-axis,
n Vt.
symmetric about t h e origin; denoting t h e r i g h t endpoints by p ( t ) , we have p(t) = t for
os t
f o r 1 4 t s 2.
s 1, p ( t ) = 2-t
The associated c o n t r o l system may t h e n be w r i t t e n a s
G
= -y
The reachable set
e Thus
R(8)
endpoint
-
i=
J w ( t ) l s 1.
0;
c o n s i s t s of a l l points
R(B)
eAtp(t)
p(t)w,
8
(wf))
dt =
(Jo
i s a symmetric segment on t h e y-axis, with r i g h t y (t )
,
for 0 4 e s 1 for 1 s e s 2 ,
v ( t ) = {:::1-2)2/2 (obviously t h e extremal c o n t r o l s w
a r e constants
2
1). The
sets of winning p o s i t i o n s from (4) are, using (8) and Exercise 1, determined by
IX
(9)
v(e).
+ (e-i)yJ 4
These a r e p a r a l l e l s t r i p s , based on t h e segments x = y for
e
= 0, J x
- y/2(
4
1
for
e
R(8):
= 1/2
1x1 5 $ f o r 8 = 1, Ix + y/21 s 7/8 f o r e J x + yI s 1 f o r e = 2.
= 3/2
Exercises Vt
1. Show t h a t another d e s c r i p t i o n of t h e c o n s t r a i n t set v E Vt i f f At Me v E (MeAtP) f (MeAtQ);
i n t h e theorem i s t h a t
and t h a t (4) i s equivalent t o
MeAex E MR(8) + Mb.
82
STROBOSCOPIC AND ISOCHRONOUS CAPTURE
2.
p if
The c o n s t r a i n t sets
need not be compact even i f
Vt
i s such. Verify t h a t both p a r t s of t h e proof c a r r y through Vt i s replaced by t h e compact set
n
(P-%) here
90
i s any fixed point i n
((P+e'AtN) 5 Q);
Q.
around (7), con-
(Hint:
s i d e r t h e s e t of values of
3.
u.) I n t h e example determine t h e set of a l l winning
points, and decide whether it i s open or closed.
(Hint:
t h e enveloping curve t o t h e p a r a l l e l s t r i p s i n (9). answer:
find
Partial
t h e boundary of t h e set of
t h i s comprises f o u r a r c s :
winning p o s i t i o n s c o n s i s t s of two curves, each being two half rays connected by a parabolic a r c . )
4.
Assume t h a t t h e sets
pact, convex, and s y m e t r i c . which can be forced t o
P,Q
i n (1)a r e nonvoid, com-
Prove t h a t t h e set of p o s i t i o n s
stroboscopically a t t i m e
R
closed, convex, and symmetric about
e'Aeb.
8
is
(Hint : you w i l l
need Exercise 2 . )
5.
Obtain a version of t h e r e c i p r o c i t y theorem more
c l o s e l y r e l a t e d t o t h a t of 3.1 by t r e a t i n g t h e c o n t r o l system
5
= Ax
- u;
u(t) E
u p ,
U,(t) = (pce'A(e't)N)
Q;
note t h a t t h i s depends on t h e termination t i m e t h e r parameter.
(Hint:
r a t h e r than
P a r t i a l answer:
v.
a s a fur-
i n t h e proof of t h e theorem, use
t i o n on a winning p o s i t i o n i s
6.
8
u
t h e c o n t r o l - t h e o r e t i c condi-A8
x E Re(t) + e R.) Make appropriate simplications i n t h e preceding f o r
t h e case t h a t t h e n u l l space
N
i s i n v a r i a n t under A.
7 . I n t h e game (1)assume t h a t t h e pursuer i s allowed t o choose a l i n e a r feedback component i n h i s controls, replacing and
p by u(t)
Fx + u
E U c span
with, however, both values P.
Show t h a t t h e matrix
Fx E span P F
can be
PURSUIT GAMES
chosen so a s t o make
N = {x:
new c o e f f i c i e n t matrix
I n 3.2 we t r e a t e d
8.
F, i f f
i n v a r i a n t , under t h e
ANc N
+ span P.
a game induced by t h e one-dimen-
..x + x = u
s i o n a l equation
k
-
A
M x = O}
- v.
Show t h a t n e i t h e r
x = 0
nor
y i e l d s an i n v a r i a n t t a r g e t ; apply t h e condition from
= 0
t h e preceding exercise; i f possible, design an appropriate feedback s t r a t e g y component.
(Answer:
F
0 0 =(-1 a ) .)
Generalise t h e r e c i p r o c i t y theorem t o allonomous
9.
games, i n t h e form t r e a t e d i n 3.1, Exercise 8, and with termination condition
M x = Mb.
( P a r t i a l answer:
i n t h e approach
approach of Exercise 6, t h e c o n s t r a i n t set f o r t h e associated c o n t r o l system i s
where
X(.)
i s t h e fundamental matrix s o l u t i o n . )
Remarks That t h e present formulation of t h e Second Reciprocity Theorem i s p r e f e r a b l e t o t h e more involved one of Exercise 5,
i s due t o E. Rechtschaffen (personal communication). There a r e s e v e r a l d i s s i m i l a r i t i e s with t h e F i r s t Reciproc i t y Theorem.
F i r s t , t h e associated c o n t r o l system i s not
autonomous, s i n c e t h e c o n s t r a i n t s e t s It w i l l be autonomous i f
A
Vt
may depend on time.
i s a s c a l a r matrix (e.g.,
simple motion); or, more generally, i f t h e n u l l space i n v a r i a n t under for a l l
A.
Indeed, then
A N c N, so t h a t
A = 0, N
e-AtN
is =
t, and
=V=(P+N)&Q t ( s e e Exercises 6-8, and a l s o t h e e x e r c i s e i n 7.3 f o r f u r t h e r V
developments). Second, it i s p o s s i b l e t o have
Vt
nonvoid f o r some t
and empty f o r others, a s a c t u a l l y happened I n t h e example.
84
N
STROBOSCOPIC AND ISOCHRONOUS CAPTURE
This w i l l be examined i n t h e next s e c t i o n . A less spectacular phenomenon i s t h a t even t h e dimension of t h e epan of may Vt
change discontinuously:
i n t h e i l l u s t r a t i o n , t h e dimensions
a r e , i n t u r n , 0, 1, 0, -1. Finally, t h e associated c o n t r o l system w i l l steer one point t o another, b u t , notwithstanding t h e r e c i p r o c i t y , a winning s t r a t e g y does not f o r c e t h e i n i t i a l p o s i t i o n t o a
it does f o r c e t o t h e t a r g e t set, b u t not t o
terminal p o i n t :
a s i n g l e point i n t h e t a r g e t . sence of t h e term w control.
in
This may be t r a c e d t o t h e pre-
(5), which may vary with t h e quarry
More f o r c i b l y , however, t h e Necessary Condition from
3 . 1 f o r f o r c i n g t o a s i n g l e t o n w i l l u s u a l l y f a i l i n t h e games treated
3.4
.
Necessary Conditions
W e refer again t o t h e game
4
(1)
-P
+
q; P ( t > E PI q ( t ) E Q
Rn, and t a r g e t set
with s t a t e space R = {x:
= Ax
ll
an a f f i n e manifold
Mx = Mb].
I n (1) l e t
PROWITION
P be compact.
A necessary and
s u f f i c i e n t condition f o r presence of i n i t i a l p o s i t i o n s which can be forced t o t h e t a r g e t s t r o b o s c o p i a l l y a t time
8
is
that (2)
(MeAtP)
(MeAtQ)
4 fi whenever
0
s t s
0;
and a necessary condition i s t h a t
( 31 I n case
At
Me
At (Q-Q) c Me (P-P) whenever 0 s t s 8.
P i s compact and convex, and both
P,Q a r e symme-
t r i c , (2) may be replaced by
(4 1
At At Me Q c Me P whenever 0 s t s 8.
(Proof) According t o t h e Second Reciprocity Theorem of 3.3,
PURSUIT GAMES
such positions e x i s t i f f
R ( B ) =/
fl,
R(8) =
i.e., -At
4 $.
e Vtdt 0 By Filippov's Lemma, t h i s i s equivalent t o all
4 fl
Vt
f o r almost
t E [ O , e ] , and thence, f o r a l l t E [0,01. ( 2 ) is now a reformulation of t h i s (see Exercise 1 i n
3 . 3 ) , and t h e remaining assertions are then e a s i l y obtained (see 3 .l, Necessary Condition and Corollary 1). QE ,D COROLLARY 1 I n (l), i f t h e r e e x i s t
positions which can
e,
be forced t o t a r g e t stroboscopically a t one time t h e r e a l s o e x i s t such positions a t a l l times
then
t E [O,e].
The proposition involves t h e flrndamental matrix solution eAt, so t h a t t h e conditions are usually not d i r e c t l y v e r i f i able; however, they are a source of working c r i t e r i a . COROLLARY 2
M(Q-Q)
c M(P-P) i s necessary, and ( i f Q
M Q c I n t MP
i s compact)
s u f f i c i e n t , f o r presence of poei-
t i o n s which can be forced t o t h e t a r g e t stroboscopically a t s t r i c t l y positive times. (Proof) The f i r s t inclusion is t h e case
t
MQ, there i s a
t h e second holds, then, from compactness of ball
t B
H
B
eAt
about t h e o r i g i n such t h a t
i s continuous with value
+ MeA t Q cMeAtP
1 ball
B1.
Then
B + M Q c MP. I
for small t > 0
at
Since
0, we w i l l have
and a possibly smaller
(MeAtP) 2 (MeAtQ) z,B1 =/
so t h a t ( 2 ) holds.
of ( 3 ) . I f
= 0
fl
for small t > 0,
&ED
A more precise r e s u l t i s presented below.
The player
control orders are defined i n 6.1; under our assumptions, pursuer has control order
k if
consisting of t h e zero vector, j = 0,. ..,k-2
but not f o r
NECESSARY CONDITION
MA'(P-P)
not t h e
j = k
- 1.
= 0
( t h e set
empty s e t ) holds f o r
I n (1)assume t h a t
P i s compact.
A necessary condition f o r presence of points which can be
forced t o termination stroboscopically a t a s t r i c t l y positive 86
STROBOSCOPIC AND ISOCHRONOUS CAPTURE
t i m e is that
(5)
quarry c o n t r o l order
and, i f
k
2
pursuer c o n t r o l order,
denotes t h e l a t t e r , t h a t
(6 1
MA~-’(Q-Q)c MA
k-1 (P-P).
eAt i n t o a power series. If k denotes t h e pursuer c o n t r o l order, then, f o r t i n some (Proof)
I n ( 3 ) expand
i n t e r v a l (0,e)
e>
with
0.
MeAt(Q-Q) c MeAt(P-P) = O ( t k-1 ); hence, by induction on
j = 0
y i e l d s ( 5 ) , and a l s o (6) f o r
,...,k-2, MAj(Q-Q) = 0. j = k - 1. &ED
This
3 Let P,Q be compact, convex, s y m t r i c . If ( 5 ) holds and (6) is replaced by COROLLARY
(7)
M A ~ - ’ Q ~ I n t MA
k- 1 P,
e > 0, t h e set of p o s i t i o n s
then, f o r s u f f i c i e n t l y small
which can be forced t o termination, stroboscopically a t time
e, has nonvoid i n t e r i o r . (Proof)
Now we have MAJP = 0 = MAJ&
f o r j = 0,...,k-2
by ( 5 ) and t h e assumptions on P,Q; with (7), t h i s ensures At At t h a t Me Qc Int(Me P) f o r small t > 0, again by power s e r i e s expansion.
It follows t h a t t h e s e t s
i n t e r i o r (compactness used h e r e ) . sets
Vt
have nonvoid
Hence so do t h e reachable
R(B), and, by t h e r e c i p r o c i t y theorem, t h e s e t s of
winning p o s i t i o n s a l s o . Example
Q,ED
Consider t h e game with n-dimensional equations
1+
A
i-
1
u(t)
E
A x = 2
U,
7 + B1;
U, v ( t ) E V; end:
Both t h e pursuer’s c o n s t r a i n t set 87
U
i-
B$
=
V;
x = y.
and t h e quarry‘s
V
are
PURSUIT GAMES
non-void,
compact, convex, and symmetric.
The case of A2 = 0 = B2 i s t h e l i n e a r analogue of t h e game of two c a r s ( j u s t a s rocket chase i s t h e l i n e a r version of t h e homicidal chauffeur game); a l s o s e e 8.3. The formula4n i s simple: t h e t i o n i n terms of a f i r s t - o r d e r system, i n R
,
result has
M = (I 0
-I
0).
i s always s a t i s f i e d , b u t no choice of t h e data w i l l y i e l d t h e s u f f i c i e n t condition The necessary condition of Corollary 2 (since both c o n t r o l orders a r e 2:
-i2-i17( ;)”’
thus, (5) holds).
containment r e l a t i o n (4) i s
(8)
(I,O)exp(
(I,O)exp(
o2
The
;7.
Conditions (6) and (7) a r e V c U and V c I n t U respectiven ly ( i n t e r i o r i n R ), independent of t h e c o e f f i c i e n t matrices. F’urther developments appear i n t h e e x e r c i s e s . Exercises
1. For t h e n-dimensional rocket chase, v e r i f y t h a t one of t h e necessary conditions f a i l s . 2.
I n t h e example, write
f o r t h e matrix appearing i n (12), and analogously f o r with t h e matrices
Bk.
Re-interpret
88
( 8 ) a6
D(t),
STROBOSCOPIC AND ISOCHRONOUS CAPTURE
V
c D’l(t)C(t)U
(Answer: and obtain t h e f i r s t three terms of D’k. 1 = I + D-’(t)C(t) (B1-Al)t + 1 2 + I 2 (Bf+2Al-3AlB, + 2(B2-A2))t 2 +
. ..
-
3.
I n t h e preceding s i t u a t i o n , assume t h a t
V = {x: x‘Hx
s u]. Prove t h a t (8) holds f o r small t > 0 ( i . e . , t h e condit i o n from t h e lemma i s s a t i s f i e d ) i f V c U and e i t h e r
i s negative d e f i n i t e , o r (A2
A1=
B1
- B2)‘H
and
+ H(A2
- B2)
i s negative d e f i n i t e .
4.
Specify t h e preceding conditions i n t h e case of t h e
example, with both
5.
b a l l s about t h e o r i g i n .
U,V
Generalise t h e example t o t h e following s i t u a t i o n .
The game is induced by d i f f e r e n t i a l equations
u(t)
E
U, v ( t ) E Vj end:
x = y
( a l l involving r-dimensional vectors, e t c . ).
Apply Corollary
3 , t r e a t i n g s e p a r a t e l y t h e cases n > m, n = m, n < m, and making s u i t a b l e assumptions where appropriate.
3.5
General Targets
I n t h i s s e c t i o n we examine f u r t h e r consequences of adopting stroboscopic and isochronous capture. t h e used p o r t i o n of t h e t a r g e t set
R
One is t h a t
must be f l a t (Proposi-
t i o n 1); t h e implication i s t h a t , i f t h e s u r f a c e of
R
is
w e l l rounded, a s u c c e s s f u l s t r a t e g y must f o r c e t h e s t a t e response w e l l i n t o
R.
For a game of simple capture with s e v e r a l p u r s u e r s , t h e
89
PURSUIT GAMES
t a r g e t set obviously decomposes i n t o l i n e a r subspaces.
More
generally, one might consider games whose t a r g e t set is a countable union of simpler sets.
A second result i s t h a t , i n
t h e context of stroboscop$c end isochronous capture, t h i s type of problem i s i r r e l e v a n t . The game i s
with
- P + 9i
= Ax
(1)
P(t)
E
PJ q ( t )
E Q
a s s t a t e space.
Rn
PROPOSITION 1 If t h e player c o n s t r a i n t s e t s a r e compact,
then, f o r any i n i t i a l p o s i t i o n and stroboscopic s t r a t e g y , t h e
set of a l l s t a t e responses a t each f i x e d end-time ( t o t h e various quarry choices) has convex closure. (Proof)
The s e t i n question c o n s i s t s of a l l p o i n t s At
e with
(x
- J0e-As ( f J ( s ( s > , s-) s ( s > ) d s >
varying and a l l o t h e r e n t r i e s fixed.
q( )
Apparently
it i s t h e image, under a p a r a l l e l s h i f t and nonsingular l i n e a r mapping ( t h e e f f e c t of x and eAt), of t h e set of a l l points Jie-As(o(q(s),s)
- q(s))ds.
Each such point belongs t o
t
Jo
FsJ where
FS
=
-AS
{e
(fJ(q,x)
-
E
9):
which has convex closure by Eemma 2 i n 3.10.
Q}J
Thus, t o com-
p l e t e t h e proof, it i s s u f f i c i e n t t o v e r i f y t h e converse inclusion.
t
w(s)ds
SO
By d e f i n i t i o n , each p o i n t of
with measurable
s
Fs
0
i s of t h e form
W ( S )E Fsj from F i l i p p w ’ s
Lemma, t h e r e e x i s t s a measurable w(s) =
t
6
-AS
q(s)
E
Q such t h a t
(a(q(s)Js)-q(s))
( i n t e g r a b i l i t y follows from compactness of t h e c o n s t r a i n t
STROBOSCOPIC AND ISOCHRONOUS CAPTURE
sets).
QED
I n (1)assume t h a t
COROLLARY
Q
- Qd P -
P.
If t h e t a r g e t set
then no p o s i t i o n outside
R
a r e compact, and t h a t
P,Q
contains no segments,
R
can be forced t o
stroboscopi-
R
c a l l y and isochronously. (Proof)
By assumption, t h e only convex subsets of
single points.
are
R
From t h e Necessary Condition of 3.1, no
i n i t i a l p o s i t i o n can be forced t o a point t a r g e t i n p o s i t i v e game.
QJD
PROPOSITION 2 I n game (1)assume t h a t t h e c o n s t r a i n t sets a r e compact, and t h a t t h e closed t a r g e t set R =
where each
%
is an i n t e r s e c t i o n of sets
4
k=l
which a r e
Z
a n a l y t i c i n t h e sense t h a t Z = {x: @ ( x ) = O},
(2)
with
Rn+ R
@:
@ ( x ) a n a l y t i c i n t h e coordinates of
i n i t i a l p o s i t i o n which i s forced t o
R
x
E
,
1
Rn.
Then each
stroboscopically and
isochronously i s a c t u a l l y forced t o an a f f i n e manifold e n t i r e -
4 of
l y contained i n one of t h e portions
(Proof)
R.
This w i l l follow d i r e c t l y from Proposition 1 once we
v e r i f y t h a t , whenever a convex s e t
C
i s contained i n R
4.
= US-&,
i s i n some Note t h a t t h e a f f i n e span of C c Rn is t h e a f f i n e span of a t most n + 1 p o i n t s of C. We s h a l l prove, by induction on m, t h a t t h e a f f i n e span of any m points of C i s e n t i r e l y i n some 4. The a s s e r t i o n i s true t r i v i a l l y f o r m = 0 o r 1; assume it holds f o r any m points, end consider m + 1
t h e a f f i n e span of
points
xo,
...,xm
-
C
in
C.
For a f i x e d a
E [0,11, t h e m
ax + (1 a)xo a r e i n C j by assumption, t h e r e j 1 e x i s t s an index k such t h a t , f o r any tl, tm i n R with = 1, we have points
(3 1
x t3
43 ct j (axj +
...,
(1'U)X0)
91
=
x0 + a C t j ( X j
- xo).
PURSUIT GAMES
Keeping t h e
t
many values
a but only countably many i n d i c e s
v a r i a b l e , note t h a t there a r e uncountably
j
holds f o r some fixed a l l t E R1 w i t h 3 determine t h e sets Setting a E [0,11.
C t . = 1 ) . Since t h e functions
a
J
l i m i t argument).
Q
which
eo = 1
- a,
e j = atJ we f i n d t h a t , f o r ejxj E $ f o r a l l 8 with 3 8
QE ,D
0
= 1 is
t r e a t e d by an- obvious
I n ( 1 ) assume t h a t P,Q a r e compact and If t h e t a r g e t s e t R i s a s i n Proposition 2
COROLLARY
Q
Thus ( 3 )
a r e a n a l y t i c , ( 3 ) must hold f o r a l l
t h e appropriate index k, = 1 ( t h e exceptional case
C e3
k.
and i n f i n i t e l y many a ' s (and,again,
k
- Qc/ P - P.
but contains no s t r a i g h t l i n e s (e.g., R i s compact), t h e n no p o i n t outside R can be forced t o R stroboscopically and isochronously
.
The remainder of t h i s s e c t i o n is devoted t o an elementary
The s u b j e c t
examination of a f f i n e subsets of a n a l y t i c t a r g e t s .
properly belong6 t o a n a l y t i c geometry but, because of Proposit i o n 2, it i s of considerable i n t e r e s t f o r game theory. The very s p e c i a l case of quadratic hypersurfaces i s t r e a t e d i n the exercises. Consider a set
Z c Rn
of the form (2), and any f i x e d
a E Z. Expand @ i n t o a power series centered a t a; t h i s converges absolutely, so one may group terms t o obtain
point
m
@(a + x ) where
ipk(x)
=
C @,(XI
k=l
i s a k-ary form i n t h e coordinates of
(we a r e suppressing n o t a t i o n a l dependence on a ) .
x E R"
Now, one
may always write
(4) where
yk(xl,.
variables
xi
..,%)
E
Rn.
is a symmetric k - l i n e a r form i n t h e k I n p o i n t of f a c t (omitting t h e indices
k; f o r d e t a i l s Bee t h e exercises), 92
STROBOSCOPIC AND ISOCHRONOUS CAPTURE
(5)
Y(X1
+
1 ,...,"k) ".+\ ) - C@(X1+ . . . + xi+...+\) k! i c *( ...+ xi+ . . . + j z . +J. . .+%I - ...+(-1)k- 1C + ( x , ) A
MX1+
=
A
Xl+
a
i<j
(circumflexes i n d i c a t i n g omitted terms).
LEMMA If a f f i n e manifold
L
( 61
yk(xl,.
(Proof) have
i s a l i n e a r subspace of Rn, then t h e a + L i s contained i n Z i f f
First l e t
a
..,\)
= 0 f o r a l l k and xi E L.
+ L c Z; for
any
x E L and t E R1 we
a + t x E a + L c Z, so t h a t 0 = +(a + t x ) =
But then all t h e c o e f f i c i e n t s
Cm , t k@.,(XI.
+k(x) = 0 whenever
x
L:
thus (6) follows from ( 5 ) .
Conversely, i f (6) holds, then @(a+
from (4), so t h a t
for a l l x k( x ) = 0 x ) = 0, i.e., a + L c Z. QE ,D
As an i l l u s t r a t i o n , l e t
g'x
+ @o,
and choose
symmetric.
a
E
Rn
E L
have degree 2, + ( x ) = X'HX +
@
with
,+(a) = 0; t a k e
H
Then @ ( a + x) = (2a'H
+
g')x + x'Hx,
so t h a t Y1(x) = (2a'H + g ' h , Y2(%9x2) = x1'm2* Then a l i n e a r subspace
L
has
a
+ L c @-l(O)
iff
(2a'H + g')x = 0, y'Hx = 0 for a l l
x,y
E
L.
p o s s i b l e only f o r
If, e.g.,
H is positive definite, t h i s is
L = 0.
We formalise p a r t of t h i s i n t h e following d e f i n i t i o n :
Rc Rn, an i s o t r o p i c subspace of R i s any a f f i n e manifold a + L c R which cannot be increased (i.e., such t h a t t h e d i e n s i o n of t h e l i n e a r subspace L i s maximal).
given a subset
93
PURSUIT GAMES
I n p a r t i c u l a r , every set
i s t h e union of i t s i s o t r o p i c
R
subspaces; t h e s e need not be d i s j o i n t and my w e l l be s i n g l e tons
.
Exercises 1. For n-dimensional rocket chase i n reduced form,
i=
- v, i
y
= u j end:
v(t) E V
with quarry‘s c o n s t r a i n t
=/
0, and
1x1
=
e
0, prove t h a t
2
e
n o n t r i v i a l isochronous and strobo8copic capture i s impossible. (Hint:
f i n d t h e i s o t r o p i c subspaces of t h e t a r g e t set; apply,
t o aach of these, t h e Necessary Condition from 3.4.) 2.
m
Prove t h a t t h e i s o t r o p i c subspaces of
%
U k=1 p r e c i s e l y t h e unions of i s o t r o p i c subspaces of t h e
i s o t r o p i c subspace of t r o p i c subspsces of
.Qln R2
4.
are
9j
each
i s t h e i n t e r s e c t i o n of i s o -
Exercises 3 t o 6 e s t a b l i s h formula ( 5 ) , deternining a k-linear x).
y
f r o n i t s associated k-ary form
I n any case, d e f i n e y
3.
Prove
complex t.
k
j=o
if
@ ( x ) = y(x,
...,
by ( 5 ) . k
( t - j ) = k!
(-I)’(:)
(Hint:
@,
Af(t) = f ( t + l )
for
-
f(t)
k = 0,1,
-
... and
i s t h e forward
d i f f e r e n c e op%rator, and A i s w r i t t e n a s E I, conclude a k binomial formula f o r , and then apply t o f ( t ) = t k , f o r k which obviously A f = k!)
4. 5.
*we
y(x,
..., x )
@ ( x ) . (Hint: previous exercise.)
~ ( x ) i s a polynornial of degree s k i n n i s t h e forward d i f f e r e n c e x f R and
Show t h a t i f
t h e coordinates of
=
4.
,
uperator with fixed s t e p y f Rn, then sk
- 1.
Conclude t h a t
has degree sl i n t h e coordinates of 94
x.
,y(x)
has degree
STROBOSCOPIC AND ISOCHRONOUS CAPTURE
6.
Conplete t h e v e r i f i c a t i o n t h a t symmetric k - l i n e a r form.
. .,%)
y(xl,.
7. Given t h e quadratic form @ = S12 + 2 + 0 5; i n R6, show t h a t - t h e rows of
0
0
span an i s o t r o p i c subspece of
0 @
t i o n of maximality - 1
0
0
+
2 13
is a
- 142 - 552
1
= 0.
(Do not omit v e r i f i c a -
&
- q+lck
r 2 s 2 Extend t o t h e form @ = Sj i n Rn (0 c r .< s s n ) . Conjecture a fornula f o r t h e dimension of
8.
a l l i s o t r o p i c subspaces, involving if
@
Q! only.
( P a r t i a l answer:
has f'ull rank, t h e dimension i s (n-]signature1)/2).
Remarks The following converse t o Exercise 8 can be proved for a i n n-space:
nonsingular quadratic f o r a Q!
any b a s i s of an
i s o t r o p i c subspace of @ can be augmented t o a b a s i s f o r r e l a t i v e t o which @ has t h e matrix
Rn,
( i f 0 i s singular, t h e r e i s an a d d i t i o n a l bordering by zero matrices). The idea and d e t a i l s of Exercises 3 t o 6 a r e due t o
Prof'. L. Takics ( p r i v a t e communication).
3.6
T i m e Delays
I n a l i n e a r game consider t h e added complication t h a t t h e r e a r e delays i n t h e transmission of information: delay 6
2
a time
0 i n t h e p u r s u e r ' s observation of quarry's action,
and a t i m e l a g X
2
0
i n t h e system r e a c t i o n t o p w s u e r ' s
c o n t r o l s ( i t i s convenient t o t r e a t t h e s e diverse e f f e c t s 95
PURSUIT GAMES
The f i r s t i s adequately t r e a t e d by t h e con-
simultaneously).
for
cept of t h e time-lag pursuer s t r a t e g i e s , exercises i n 2.2;
t h e stroboscopic s t r a t e g i e s used here, t h i s s i m p l i f i e s f u r t h e r , The second appears a s a s suggested by p ( t ) = a ( q ( t 6),t).
-
a modification of t h e dynamical equation:
k
(1)
= AX
- p(t-X)
+ q(t);
t h e remaining data a r e formally unchanged: constraints
p(t)
players' control
E P, q ( t ) E Q, and an appropriate terminaNote t h a t we a r e not allowing any t i m e delays
t i o n condition.
within t h e system i t s e l f (such a s k ( t )
=
.
Ax(t) + Bx(t-8)+. .);
t h i s would lead t o problems of a q u i t e d i f f e r e n t nature. The formulation suggests t h a t , i f t h e game i s played over an i n t e r v a l [O,t], t h e pursuer i s q u i t e i n e f f e c t i v e Over t h e l a s t i n t e r v a l [t
- h,t],
and cannot counter quarry's moves
over a f u r t h e r i n t e r v a l of l e n g t h 6 . tion-of-constants
Referring t o t h e v a r i a -
formula f o r t h e s t a t e response
x(t),
t h e pursuer has no influence on t h e component
eAt{
e -AS q ( s ) d s =
t-X-6 As
eAs q(t-s)ds. 0
q ( * ) v a r i e s over t h e quarry controls, t h e point8 (3)
make up t h e set
(4) independent of i n i t i a l p o s i t i o n and terminal time. Now, i f pursuer aims a t a t a r g e t s e t
+ A; or,
R, he can ensure
is strict* A, ly required, pursuer may aim a t t h e a u x i l i a r y t a r g e t R
a t l e a s t t h e outcone
R
i f t h e outcome
R
s i n c e then he can ensure t h e outcome ( R % A ) + Ac R. As w i l l be seen immediately, t h i s q u i t e p l a u s i b l e
96
-
STROBOSCOPIC AND ISOCHRONOUS CAPTURE
reasoning does provide a moderately s u c c e s s f u l r e s u l t .
But it
does not resolve t h e problem completely ( t h e proposition prov i d e s a s u f f i c i e n t condition f o r winning t h e game, but not a necessary o n e ) j and obviously it i s i r r e l e v a n t i f t h e r e i s a constant winning pursuer s t r a t e g y .
W e r e f e r t o (l), data including X compact and contain 0. position t o target
0, 6 r 0, and ( 4 ) .
R
Then pursuer can f o r c e an i n i t i a l
+
at time
= AX
-
t r o l system
(5) x
2
Assume t h a t t h e player c o n s t r a i n t s e t s a r e
PROPOSITION
can be steered t o
u(t)
U,
2
E
i f , within t h e con-
0
U = P
- ,A(X+8) Q, Y
t by an admissible c o n t r o l ~ ( 0 ) .
at
R
t
Furthermore, t h e r e i s a stroboscopic winning s t r a t e g y u with delay
6,
(6 1 for
u(q,s+6) q E Q, 0 s s
(Proof) Since
u
+
h
+
=
6 s t.
steers
x
to
system, eA t (x Abbreviate
A(X+6) u(s+h+6) + e 9 R
at
t within t h e c o n t r o l
t - J,e"'u(s)d.)
E
h + 6 = 9 ; f o r any quarry c o n t r o l
t o define a pursuer response P(S) = u ( q ( 8 (interpreting
q(s) = 0
R.
q(*)
use (6)
p, r
6 ) , ~ )= U ( S
s < 0).
for
+
A)
+ eA0q(s
- 6)
Then t h e corresponding
s t a t e response ( 2 ) has
t At x ( t ) = e (x-s e-Asp(s-X)ds 0
At
= e
If
(x P
+
st-e
- J' 0e-As u ( s ) d s ) + and
Q
e-A8q(s)ds
0
As
e
0
q(t-s)ds
+
eAtl
E
R + A.
t-e
e
-As
q(s)ds)
&ED
a r e convex a i d symmetric about 0, then a
97
PURSUIT GAMES
necessary and s u f f i c i e n t condition f o r t h e c o n s t r a i n t set
U
of t h e c o n t r o l system ( 5 ) t o be non-void is t h a t
Neither of t h e time delays a c t u a l l y involves t h e s t a t e v a r i a b l e d i r e c t l y ; t h i s makes it p o s s i b l e t o avoid t h e d i f f i c u l t i e s inherent i n d i f f e r e n t i a l equations with time l a g . Note, however, t h a t a quarry c o n t r o l on [O,t] determines t h e
- XI.
pursuer response on [ - X , t
If quarry i s i n e f f e c t i v e , Q = 0, t h e n
a
= 0
a l s o : para-
doxically, a pursuer c o n t r o l f o r c e s an e r r o r - l e s s outcome a
time
X
i n t o t h e future.
Example
Consider t h e game, i n
R2, with dynamical
equation w
x = y + q, y = -x + p, I q ( t ) l s 1 (without t h e quarry c o n s t r a i n t t h i s would be r e l a t e d t o % + x = p + h ) . and player c o n s t r a i n t s I p ( t ) l s 2, It follaws from Corollary 1 i n
3.1 t h a t t h e o r i g i n of R2
is
not a possible t a r g e t f o r stroboscopic and isochronous cap-
ture; it w i l l t u r n out t h a t non-stroboscopic isochronous capt u r e , and even g e n e r a l capture, a r e a l s o ruled out. Assume t h a t , nevertheless, it i s a t l e a s t d e s i r e d t o f o r c e t h e s t a t e v a r i a b l e c l o s e t o t h e origin.
Retracing our
s t e p s , t h e reason t h a t stroboscopic and isochronous capture f a i l s i s t h a t t h e necessary condition Q cP is not s a t i s f i e d : P
i s a segment on t h e x-axis, and
Q
one on t h e y-axis. Now,
t h e y could be aligned by a r o t a t i o n by a r i g h t angle; and one n a t u r a l l y thinks of condition (7). Introduce an a r t i f i c i a l t i m e l a g
6
i n t h e quarry
+ pur-
suer l e g of t h e information p a t t e r n (keeping X = 0 ) i n such a way t h a t
AS
e Q c P.
A simple computation y i e l d s 6 = n/2 (or,
a l l odd multiples); and then
98
STROBOSCOPIC AND ISOCHRONOUS CAPTURE
+
with
x = u
a s t h e a s s o c i a t e d c o n t r o l system ( 5 ) .
It i s
e a s i l y e s t a b l i s h e d t h a t a l l i n i t i a l p o s i t i o n can be s t e e r e d t o 0 w i t h i n t h i s c o n t r o l system.
Thus, r e t u r n i n g t o our game,
a l l p o s i t i o n s can b e forced t o t h e s e t 0 + ( w i t h time l a g x/2) and isochronously.
a
stroboscopically
Another simple compu-
t a t i o n d e s c r i b e s t h e e r r o r term A, a s t h e reachable s e t
R(n/2) of t h e a s s o c i a t e d c o n t r o l system:
a lens-shaped s e t
bounded by a r c s of two c i r c l e s , with r a d i u s 2 and c e n t r e s a t
-+ (1+ i ) .
1. ( S t i r r e d t a n k )
A hopper feeds m a t e r i a l t o a long
conveyor, which d e l i v e r s t h e m a t e r i a l i n t o a l a r g e tank; solvent i s c o n t i n u a l l y added, and an e q u a l volume of s o l u t i o n l e d t h e c o n c e n t r a t i o n i s measured, as a guide f o r a d j u s t i n g
Offj
t h e hopper feed r a t e .
Taking account of t h e t i m e l a g , and
small system e r r o r s , o b t a i n t h e dynamical equation of t h e system; use t h e v a r i a b l e s suggested i n t h e f i g . 1. I n terms (Partial
of t h e chosen parameters, determine t h e e r r o r term. 1 answer: = kc + a(t to) + c(t).)
-
Consider e x t e r n a l c o n t r o l
2.
u
of a harmonic o s c i l l a -
t o r s u b j e c t t o small b u t u n p r e d i c t a b l e p e r t u r b a t i o n s
..x + x
a
>
=
+
u
2 0.
v, w i t h c o n s t r a i n t s I u ( t ) l
g
.a, I v ( t ) ( s j3
Given t h a t t h e o p e r a t o r has time-delay
i n r e a c t i n g t o t h e p e r t u r b a t i o n s , how s m a l l can Assume
er:
6 i
IT.
(Hint:
6
E
and (O,n]
x ( t ) be made?
u s e t h e a r t i f i c i a l time delay n; answ-
J x ( t ) I s 28.)
3.
Prove an analogue of t h e proposition, w i t h a time-
dependent c o n s t r a i n t s e t i n t h e c o n t r o l system: 05;
v,
t r A c 6 ,
ut=
P
E
~ )Q
for
t > A + 6.
Ut = P
for
PURSUIT GAMES
Remarks The material is based on 0. Ha'jek:
Pursuit games with delays, Funkcialaj Ekvacioj (to appear).
3.7 Holding Suppose that one of the players in a game wishes to maintain some favourable configuration over an interval of time; pausing to catch one's breath is a pleasing but irrelevant interpretation. We modify slightly (but see Exercise l), and replace 'maintaining state configuration' by the notion of holding within some (possibly auxiliary) target set. Explicitly, a point x E R is held within R by a strategy if the state response endpoints satisfy x(t) E R for 100
STROBOSCOPIC AND ISOCHRONOUS CAPTURE
t
all
0
2
and a l l quarry controls.
Capture with holding w i l l c o n s i s t , f i r s t , of f o r c i n g t h e s t a t e v a r i a b l e t o t h e t a r g e t w i t h i n a bounded t i n e i n t e r v a l
[O,eI,
and of subsequent holding within t h e t a r g e t a t a l l t i n e s Note t h a t nothing changes i f we r e q u i r e iso-
after capture.
chronous capture a t t h e
8 , and holding f o r a l l
t
2
If
8.
stroboscopic s t r a t e g i e s a r e t o be used, t h e n t h e results of
3.5 suggest t h a t t h e a f f i n e manifolds a r e appropriate a s t a r gets. Thus, consider t h e game i n
- p + q;
k = AX
(1)
where
M
and
b
Rn,
p ( t ) E P, q ( t ) E
Qj
a r e given, and t h e t a r g e t
M x = Mb,
end:
R
is t h e i n d i c a t -
Anticipating t h e r e s u l t below, we i n t r o -
ed a f f i n e manifold.
duce t h e associated c o n t r o l system
9
(2)
where
Thus =
- u;
u(t)
E
U;
end:
Mx = Mb,
a r e a s above, and
U = (P
(3)
N
A, M, b
= Ay
+
L ) 2 Q, L = [x:
.I.
~ = jo f x o r j = 0~1,. ,
~
L i s t h e l a r g e s t A-invariant subspace of t h e n u l l space [x: M x = O} of M ( c f . 6.3, Exercises 16 and l 7 ) i t h e
obvious property A L c L 1 for a l l t E R .
has t h e consequence t h a t
eAtL = L
If pursuer's c o n s t r a i n t set
THIRD N C I P R O C I T Y THEOREM
i s compact, t h e n t h e holding problems f o r t h e game ( 1 ) and t h e c o n t r o l system ( 2 ) a r e equivalent. In detail, a pmition i n (1)a t t i n e
8
2
0
x
E
Rn
can be forced t o
R
with-
and held t h e r e subsequently, by a
stroboscopic s t r a t e g y u, i f , and only i f , x to
R
within (2) a t tine
8
can be s t e e r e d
and held t h e r e subsequently, by
an admissible c o n t r o l u. 8
Moreover, t h e r e l a t i o n 101
PURSUIT GAMES
(41
o(q,t)
PF
u ( t ) + q modulo L
may be used t o determine e i t h e r of (Proof)
u,u from t h e o t h e r . The techniques from t h e two r e c i p r o c i t y theorems w i l l
be put t o a y e t f u r t h e r use. F i r s t , l e t u be a s u c c e s s f u l s t r a t e g y ; s e l e c t 90 E QY 90; choose a r b i t r a r i l y h 2 8 , and set u ( t ) = o ( Q , t )
-
q E Q, s E [ O , h ] ; and consider t h e piecewise constant quarry The s t a t e c o n t r o l with values i n [O,s], q i n (s,+m). response has
x ( h ) E R, h l;-Atu(t)dt
-
S
e-At(u(t) + q - a ( q , t ) ) d t ) = Mb. 0 On s u b s t r a c t i n g t h e version of ( 5 ) with s = 0, we obtain
(5)
MeAx(,
+
-
Ah -At (u(t) + q u ( q , t ) ) d t = 0. Me Joe Here one may keep s f i x e d while varying h ( t h e r e s t r i c -
tions are
h
5: 8 ,
h z s only).
(6) holds f o r a l l h E R1
By a n a l y t i c i t y of
(and
AX hw e
,
s 2 0); t h e r e f o r e t h e i n -
t e g r a l term i n (6) s a t i s f i e s S
J0
E n {e-*'N:
x E
RL) = L,
and thus t h e integrand u(t) + q
- u(q,t)
At
E e
L = L
a.e.
q E Q. An a p p l i c a t i o n of t h e lemma from 3 . 1 y i e l d s (4); s i n c e q was a r b i t r a r y and u has values i n P,
for a l l
(P
u(t) f i n a l l y , ( 5 ) with point
x(h)
E
R
Second, l e t
+
L)
s = 0 shows t h a t for a l l h u
2
iL Q u(.)
=
U;
steers
x
t o the
8.
be an appropriate c o n t r o l within ( 2 ) .
Use (4) and F i l i p p u v ' s L e m from 3.9 t o define a stroboscopic strategy u
with values i n
a u x i l i a r y mapping w
P
(by d e f i n i t i o n of U ) , and an
with values i n
102
L.
Then t h e assumption
STROBOSCOPIC A N D ISOCHRONOUS CAPTURE
Me
Ax
x - Joe-Atu(t)dt)
= Mb f o r X 2
e
i s a successful strategy:
u
easily yields that
(x
h
e-Atw(*)dt = Mb + 0. Assume t h a t t h e d a t a i n (1) s a t i s f y t h e following
LEMMA
t h r e e requirements : The t a r g e t s e t and rank
R = {x:
Mx
with
= 01
of type (m,n)
M
mj
P,Q a r e compact and b o t h contained i n an m-dimensional f o r an (n,m) matrix B; subspace {By: y E d e t M(X1 A)-$ does not v a n i s h i d e n t i c a l l y ( e . g . , d e t ME
-
4 0).
within
R4
I n this situation, i f a point by a s t r a t e g y
R
u, t h e n
u
x E R
can be held
i s n e c e s s a r i l y strobo-
scopic and of t h e form
(7)
~ [ q l ( t =) q ( t ) + u ( t ) x
a.e.
with
U(*) independent of x and q. (Proof) Let a be a s t r a t e g y holding t h e p o i n t
R.
The s t a t e responses
for a l l
t
2
xo
within
x ( * ) w i l l , t h e r e f o r e , have Mx(t) = 0
0, so t h q t t h e i r Laplace transforms xh(s) s a t i s f y
(8)
&(s)
= 0.
From t h e d i f f e r e n t i a l equation,
(9) (note t h a t
Sqs)
q,u[ q ]
- xo = &(s) - $ [ q l ( s )
a r e measurable and bounded,
have Laplace transforms).
We solve ( 9 ) f o r
i n (8) (omitting most e n t r i e s M(SI
M(~I
- A>-%
+ $(s) 80
x^
t h e y do
and replace
s):
- A )-1(-8 = M(~I
+ ^s + x0)
- A>-%
+
M(~I
According t o t h e second assumption one may write 103
= 0,
8
- A)”.~.
=
&,
PURSUIT GAMES
From t h e l a s t assumption, t h e m-square matrix
^u
1,
=
- A)-%
s) has an inverse a t
( e n t r i e s a r e r a t i o n a l functions of l e a s t f o r l a r g e 1s
M(s1
so t h a t
- A ) - $ ) - h ( s I - A ) -1xo
$ + (M(s1
which, pre-multiplied by
B, y i e l d s
8
=
6
+ O(S)Xo
with t h e i n c i d e n t a l information
G(e)
-
= B ( M ( ~ I A)"B)-'(~I
- ~1-l.
Inverse Laplace transforms now provide (7); U(t)x
i s a func-
t i o n ( r a t h e r than an operator) s i n c e both o [ q ] J q a r e such.
BED Exercises 1. I n (1)shuw t h a t holding a point
over an i n t e r v a l [0,9] entire.
over LO,+-)
with
(Hint:
9
> 0 is
x E R
within
R
equivalent t o holding
t h e point i s a n a l y t i c i t y i n t h e
.
argument following (6 ) ) 2. P = {bu:
(An'$
,...,
4
P
-
verify t h a t m ' ( s 1 A)'$ 4 0 f o r some row m' 0, and solve (10) f o r t h a t row.)
(Hints: M
i s one-dimensional, n such t h a t rank -1 g u s l}, f o r a v e c t o r b E R Ab,b) = n. Prove t h a t u is, again, l i n e a r i n x.
I n t h e lemma, assume t h a t
of
Remarks I n connection with t h e c o n t r o l - t h e o r e t i c side, see references under 'core of t a r g e t ' i n E. B. Lee, L. Markus: Foundations of Optimal Control Theory, Wiley, New York, etc., 1967;
104
STROBOSCOPIC AND ISOCHRONOUS CAPTURE
and a l s o 0. Hijek:
Cores of t a r g e t s i n l i n e a r c o n t r o l system, Math. Systems Theory 8 (1974) 203-206.
It would be d e s i r a b l e t o Simplify t h e l a s t assumption of t h e
lemma, t h a t det M(h1 observable case:
- A)-$ 4 0,
a t t h e very l e a s t f o r t h e
an observed c o n t r o l system i n
;C
-
= AX
U,
5
= bj
u(t)
E
Rn, U,
i s s a i d t o be observable i f t h e p a r t i t i o n e d (nm,n) matrix
n; t h e condition i s independent of U ) .
has maximal rank ( i . e . ,
From ( 3 ) it follows t h a t o b s e r v a b i l i t y i s equivalent t o L = 0. Compactness of t h e c o n s t r a i n t sets may be ommitted i f , i n t h e proof, one uses Mikusi6ski's operators, A r e s u l t analogous t o t h e theorem holds f o r s t r a t e g i e s which have t h e added property t h a t u [ q ] is piecewise con-
tinuous whenever
q
i s such
E. Rechtschaffen:
Equivalences between d i f f e r e n t i a l games and optimal c o n t r o l s ( p r e p r i n t ) , P o n t i f f c i a Univ. Cat6lica do Rio de Janeiro
(1975).
3.8 Convex S e t s , Pontrjagin Difference A set
in
S
Rn
i s convex i f it contains t h e e n t i r e
segment between any two of i t s points, owc
+ (1-a.)~ E
S
whenever x,y
E S,
0 s u s 1.
,
n a Given a t r i p l e S,a,c c o n s i s t i n g of a set Sc R n n and a v e c t o r c E R we s h a l l say t h a t c i s point a E R
,
,
an e x t e r i o r normal t o S
at
a 105
if
PURSUIT GAMES
c'x
(1)
5
c'a
for a l l x
x
The geometry of t h i s i s t h a t t h e v e c t o r obtuse angle t o
c
E
-a
S.
b e a r s an
( t h e cosine being nonpositive); and a l s o
t h a t t h e 'supporting' hyperplane {x: c'x = c'a} through w i t h normal
c
determines two half-spaces, contains t h e set
{x: c'x s c'a}
subspace, (1) implies t h a t x
E
c'tx
5
of which
I n case
S.
c'a
S, so t h a t t h e only p o s s i b i l i t y is
a
is a linear
S
t E R1
f o r all c'x = 0:
and
t h e concept
then coincides with t h a t of t h e orthogonal complement A
s
= ~y
LEMMA 1
nonvoid s e t
o
y'x =
E R":
If a point
S, and
t h e vector
c = b
-
a
E S].
for a l l x
E
a
b S
not
is
i n a convex, closed,
i s t h e p o i n t c l o s e s t t o b, then i s an e x t e r i o r normal t o
0
S
a t a.
Moreover, t h e corresponding supporting hyperplane separates S
and
Convexity is not needed f o r t h e existence of a point
(Proof)
a E S any
i n a d d i t i o n t o (l), c'a < c'b.
b:
closest t o
b (but it does imply uniqueness).
Take
x E S; then, f o r a E [0,11, t h e point a x + ( 1 a ) a E S,
so it i s no c l o s e r t o
b
than
a:
lax + (1-z)a
- b(
- bl.
la
2
Rearrange and t a k e squares,
d i v i d e by
2a
Thus indeed from b
w
4
>
0
c = b = S
and t a k e
-a
(a
it
+
0,
- b)'(x - a ) 2
0.
c
s a t i s f i e s (1). That
3 a, and then
lcI2 > 0 y i e l d s
COROLLARY 1 Every closed, convex set i n
i n t e r s e c t i o n of half-spaces (Proof)
40 c'b
n R
follows
>
c'a.
is the
{x: c'x s u}.
Excluding t h e t r i v i a l cases of 106
pt'
or
Rn,
Lemma 1
STROBOSCOPIC A N D ISOCHRONOUS CAPTURE
s h m s t h a t t h e r e e x i s t half-spaces
H containing
S, and a l s o
that
Sc i s a c t u a l l y an e q u a l i t y . By s e p a r a b i l i t y of t i o n countable.
n
{H:
half-space H 2 S]
Q,ED
one may always t a k e t h e i n t e r s e c -
Rn,
The polyhedra a r e t h e f i n i t e i n t e r s e c t i o n s of
half-spaces. If a set-valued mapping
COROLLARY 2
t
TS,
s
7 J 0 So s edeas c c, 2
etc.
By Corollary 1, it s u f f i c e s t o prove t h a t t h e mean
(Proof)
H
c'f(e) s a
a.e.,
then c+
t
A t every boundary point, S
t
0
0
0
S.,
(Proof)
4 F;
a w i t h bk
nearest t o a
S, a t some point of
Consider any p o i n t
k
+
bk
a
E as.
i s an
S.
Then t h e r e e x i s t s points
according t o Lemma 1, t h e points
have e x t e r i o r normals
= bk
a, s i n c e lak-al s la k-b k I + lbk-aI s la-b k
The u n i t v e c t o r s
S.
has a n o n t r i v i a l e x t e r i o r normal.
is a l s o compact, t h e n every v e c t o r i n Rn
e x t e r i o r normal t o
also
%S S
Let t h e r e be given a nonvoid, convex s e t
LEMMA 2 S
if
J;(e)ae
analogously f o r t h e second moments
+
whenever
= {x: c'x s a]
This i s an elementary e x e r c i s e i n i n t e g r a t i o n :
H = J C.
bk
has a l l
s ea e c c f o r t > 0,
values a r e i n t h e half-space
If
H St
C, then
values i n a closed, convex s e t
t
t
dk = ck/ Ick I
I
- ak =/
ak 0.
+ Ibk-aI
E S
Now,
+
0.
a r e a l s o e x t e r i o r normals t o
107
PURSUIT GAMES
ak'
dk'x s
dpk, f o r a l l x E
S,
nce hey a r e on t h e compact u n i t sphere [x: 1x1 = 11, they have a subsequence converging t o some vector d =/ 0. On taking limits i n ( 2 ) f o r fixed x E S we find t h a t indeed d'x
5
d'a
for a l l x E S
For the second assertion, note that the continuous r e a l -
valued f'unction x w c'x, when r e s t r i c t e d t o t h e compsct set S, a t t a i n s i t s m a x i m a t some point
w
PROPOGITION 1 For subsets of A
+
a E S: Rn,
+ X implies
X =, B
thus (1)holds.
A
3
B
i s cloaed and convex, and X compact, convex, nonvoid. (Proof) Proceed by contradiction: the conclusion f a i l s , and some point b E B i s not i n A. By Lemma 1, the point a E A closest t o b yields c = b a as non-zero exterior normal t o A a t a . By Lemma 2, t h i s c i s an exterior n o m l t o X a t some point x E X. Since A + X 2 B + X, we have b + x = a f x1 f o r some a1 E A and x1 E Xj thus 1 if
A
-
c'b contradicting
c
For any s e t
4
5
,
c'a + 0,
&ED
0. S
-
c'al + c'xl c'x 2 0 s c'(a-b) = -Icl =
t h e r e e x i s t s a l e a s t convex set
i n Rn
containing S. It can be obtained e i t h e r a8 the interesection of a l l convex s e t s C containing S, o r as t h e s e t of a l l convex co5binations of points i n S,
(3)
{
r
k=1
akYk: Yk E
ak
2
r
3%=
'8
= 1,2,"']
The usual term is convex span ( o r h u l l ) of Sj our notation w i l l be cvx S .
108
STROSOSCOPIC AND ISOCHRONOUS CAPTURE
If
i s c a l l e d a polytope; it can be
i s f i n i t e , cvx S
S
shown t h a t t h e polytopes a r e p r e c i s e l y t h e compact polyhedra.
r s n
Obviously one cannot r e s t r i c t t h e case
n = 2).
always t a k e
i n (3) (consider, e.g.,
By Carathebdory's Theorem one may, however,
r = n
+
1j
a consequence i s t h a t t h e convex span
of a compact s e t i s again compact (while, e.g.,
t h e convex
2
y = l/(l+x ) i n
span of t h e bell-shaped curve
i s not a
R2
closed s e t ) . A point
a
of a convex s e t
S
i s extreme if it i s not
an i n t e r i o r point of any t r u e segment i n with
x,y
in
S
and
0
S:
a = ax + (1-a)y
< a < 1 implies t h a t
x = a = y.
By
t h e Krefn-Milfman Theorem, every compact, convex s e t is t h e convex span of i t s extreme points.
%2
i s not required i n ( 3 ) , t h e r e s u l t is t h e S (and i f = 1 is also omitted, one obtains t h e l i n e a r span of, or l i n e a r space gene r a t e d by, s ) . Each convex set has non-void i n t e r i o r within If
0
c&,
a f f i n e manifold generated by
t h e generated a f f i n e manifold. The reader i s r e f e r r e d t o many e x c e l l e n t books on convex
sets, e.g. H. G. Eggleston: Convexity, Cambridge University Press, New York, London, 1958; B. Grunbaum:
etc.,
Convex Polytopes, Interscience, London,
1967;
T. Bonnensen, W. Fenschel: Theorie d e r Konvexen K6rper, Springer, Berlin, 1934.
The second t o p i c of t h i s s e c t i o n i s t h e Pontrjagin d i f f erence operation.
Consider t h e problem of c u t t i n g out a
shaped p r o f i l e by a m i l l i n g machine with c u t t e r head diameter 26; it i s desired t o determine t h e p o s i t i o n s of t h e c u t t e r
head centre, admitting t h a t c e r t a i n moderately sharp inner corners w i l l not be shaped p e r f e c t l y .
R2
t o be milled off, and
D
If
denotes [d
109
S
E R2:
is t h e s e t i n Id/
5
61, then
PURSUIT GAMES
t h e c u t t e r head p o s i t i o n s
c
must have
c + d E S
for a l l
d E D: 2
C = { c c R :
c+DcS}
A c l o s e l y r e l a t e d problem i s t h a t of finding t h e curve a t a
distance
6
from a given curve (above, t h e boundary of
Generalising only s l i g h t l y , given two subsets
S).
in
P,Q
Rn, t h e i r Pontrjagin d i f f e r e n c e i s
(4 )
P C Q = {x: x + Q c P } ,
t h e l a r g e s t set
X
with
X
+
Q c P.
Note t h a t here t h e con-
tainment may be proper, a s i n f i g . 1. By inspection one ob-
tains the a l t e r n a t i v e description
(5) Thus
PfQ
n
(P-9). q€Q i n h e r i t s various p r o p e r t i e s from P%Q=
P:
if
is
P
closed, o r compact, convex, an a f f i n e manifold, t h e n so i s P i t Q.
i s symmetric i f both
From ( 3 ) , P 5 Q
P
and
Q
are;
thus we have U M M A 3
nonvoid; t h e (Proof:
Assume t h a t P
Q
P,Q
a r e convex,
symmetric, and
i s nonvoid i f , and o m i f , Q C P.
a convex symmetric s e t i s nonvoid i f f it contains 0 . )
The following two r e s u l t s j u s t i f y t h e d i f f e r e n c e nota-
t ion. PROPOSITION 2 (on Cancellation)
For subsets of
Rn
we
have
(6 1 if
( P + X) P
i s closed, convex and X
(Q
+ X)
= Pf Q
i s compact, convex, and non-
void.
(Proof) Referring t o (4), conditions
equivalence i s a s s e r t e d f o r t h e two
x + Q +X c P
110
+
X,
x
+ Q c P.
STROBOSCOPIC AND ISOCHRONOUS CAPTURE
One implication is inmediate; t h e other follows from Proposit i o n 1. &ED
3
If U i s closed, convex, and Q is compact, convex, and nonvoid, then COROLLARY
(U + Q) 2 Q = U.
(7)
Thus, if Q i s a d i r e c t summand of P, i n the sense t h a t P = U + Q f o r some closed, convex s e t U, then necessarily U = PrQ.
(Proof) (7) is a s p e c i a l case of (6), with 0 as one of the sets.
The second assertion follows a s P 2 Q = (U + Q) 2 Q = U.
&eD A c l a s s i c a l concept i n convex s e t theory i s t h a t of asymptotic directions: a vector c E Rn is an asymptotic
direction of a convex s e t S
+
if t h e ray
X + R C =
{x+ec:
era]
l i e s e n t i r e l y i n S. Note t h a t necessarily x E S; i f S i s closed (or open), then t h e condition is independent of the end point x, and S i s compact i f f 0 is i t s only asymptotic direction (or S = g). PROPOSITION 3 If P is closed and convex, then P P + is a closed wedge (W, with W = w’= cvx W = R W), and coincides with t h e s e t of asymptotic directions of P. If P i s closed, convex, and symmetric, then P P i s the l a r g e s t l i n e a r subspace L with P + Lc Pj moreover,
*
P = (PrP) + Q with Q compact, convex, and symmetric. (Proof) P f P is closed and convex since x,y a r e i n P P then so is x + y:
thus
P
*P
(x
P is such; i f
+ y ) + P = x + (y + P) c x + P c P;
i s a closed wedge. 111
Each element of P
P is an
PURSUIT GAMES
asymptotic d i r e c t i o n :
+
P + R (PEP) = P + (P*P)=
P.
i s an asymptotic d i r e c t i o n , then P + R c c P, so t h a t c E P f P.
Conversely, i f
c
+
P is, i n addition, symmetric, then so i s
If
P it P i s a l i n e a r subspace, L, t h e l a r g e s t with
thus P
+
*
P - P;
L c P.
Q = P
Set
, so t h a t
L
nL
i s closed, convex,
Q
and symmetric; we propose t o show t h a t
P= L
+
Q
and t h a t
i s compact.
Q
Obviously L + Q c ( P k P ) + P c P . Conversely, every
I
can be w r i t t e n a s
x E Rn
with
y -+ z
-
E L ; here, i f x E P, then z = y x E ( P f P) I + P c P, and so z E L n P = Q. Finally, consider any asymptotic d i r e c t i o n c of Q (we wish t o show t h a t c = 0 ) .
y
E
and
L
z
Then 0 + R l c c Qc P,
c
i s an asymptotic d i r e c t i o n of
Since simultaneously
,this
I
c E L
P also, c
E P
c
* P = L.
= 0.
QED
yields
Exercises 1. The r e l a t i o n
defined by t h e concept of e x t e r i o r
normal i s a closed r e l a t i o n :
show t h a t , i f
S c limsup Sk,
a, c + c, and ck i s an e x t e r i o r normal t o k then c i s an e x t e r i o r normal t o S a t a. ak
+
2.
Prove t h a t t h e e x t e r i o r normals t o
S
at
Sk a t a
ak,
form a
closed wedge.
3 . Prove t h a t t h e set of p o i n t s of S a t which c i s an e x t e r i o r normal forms a closed, convex set contained i n 3s and perpendicular t o normal t o
S
c.
Then show t h a t
a t a l l p o i n t s of 112
L
c
n
3s.
c
i s an e x t e r i o r
STROBOSCOPIC AND ISOCHRONOUS CAPTURE
P
0 sets is
4.
Fig. 1 Pontrjagin d i f f e r e n c e P Q, of , P and Q; t h e square with rounded corners (P
Q)
+
Q, properly contained i n
Given a compact, convex s e t
P.
S, assume t h a t e i t h e r
t h e r e i s a unique e x t e r i o r normal a t each boundary point (S
is smooth) o r each supporting hyperplane i n t e r s e c t s one point only (S i s s t r i c t l y convex).
S
at
Prove t h a t t h e
correspondence between boundary p o i n t s of
S
and u n i t exter-
i o r normals i s continuous.
5. Show t h a t asymptotic d i r e c t i o n s a r e independent of + end-point: i f S i s closed and convex, x + R c c S and
+
y E S, then a l s o y + R c c S.
obtain any y + 8c points y
and
(Hint:
r e f e r t o f i g . 2;
a s t h e limit of convex combinations of
x + tc.)
6. Prove t h a t a closed, convex, nonvoid set i s compact iff
0
i s i t s only asymptotic d i r e c t i o n .
find w i n t s
xk
+
m
(Hint:
i f one can
i n t h e set, then any l i m i t of t h e i r
u n i t d i r e c t i o n s i s an asymptotic d i r e c t i o n . )
113
PURSUIT GAMES
Fig. 2 Asymptotic directions a r e independent of end-point (Exercise 5).
7.
Prove t h a t p f ( Q 1 + Q2) = ( P r
8.
Prove t h a t (P1 + P2>
'Q
3
'%.
P1 + (P2
Q),
and obtain simple counterexamples t o equality.
9.
Show t h a t (P
+ u(P f
f o r compact, convex s e t s
10.
Q = (a + 1 ) ( P iL Q)
Q))
P,Q and
Show t h a t t h e set
a 2 0.
P2Q
is unchanged i f P and a r e subjected t o a t r a n s l a t i o n x w x + a . I n exercises ll and 12, t h e (m,n) matrix T i s a l s o interpreted as t h e l i n e a r mapping
ll. For subset8 P and Q (TP)
f
XH
fl
of
Tx. Rn
show t h a t
(TQ) = T ( P + n u l l T ) f Q);
hence,
114
Q
STROBOSCOPIC AND ISOCHRONOUS CAPTURE
(TP) 2 (TQ) = T ( P f Q)
i s one-to-one, rank T = n. t h e n P @ and x E range T.) if
T
4
12.
For subsets
P,Q T'l( P
of
T
and s y m e t r i c .
f
n
range T) j
T-'(Q>
T = m.
maps onto, rank
13. Assume t h a t
P) ik T-l(Q
* Q) = T-'(P>
T-'(P
x + T Q c TP,
if
show t h a t
Rm
* Q) = T'l(
hence,
if
(Hint:
P i s a l i n e a r subspace, and
Prove t h a t
P
f
Q
convex
Q cP, and
P if
is
Q
fl
if
not.
14. Show t h a t ,
P i s a polyhedron or a polytope, then
if
P f Q a l s o has t h e corresponding property, without any assumption on Q.
15. This e x e r c i s e c o n s i s t s of v e r i f y i n g t h e s e r i e s of a s s e r t i o n s below. For t h e c o l l e c t i o n of compact, convex subsets of
R
n
,
a d d i t i o n is a commutative and a s s o c i a t i v e operation; thus one has an Abelian semigroup, with zero element 0.
The operation
i s a l s o c a n c e l l a t i v e according t o Proposition 2; thus t h e r e i s a corresponding ' s u b t r a c t i o n group'.
The elements of t h i s a r e
p a i r s (P,Q) of compact, convex s e t s i n (P,Q) and ( P
+ U,
Q
+
(PI,$>
(8)
Rn,
and t h e p a i r s
U) a r e equivalent; more generally
-
CP2,Q2> iff P1
+
%=
P2 + Q1.
The group operation i s a s indicated i n (PliQl)
+
( P p % , > = (P1
independent of r e p r e s e n t a t i o n .
+
P2, Q1 + Q2>,
The zero element i s (O,O),
t h e element opposite t o (P,Q) i s (Q,P); t h e n a t u r a l i d e n t i f i cation i s
P W (P,O).
115
PURSUIT GAMES
M u l t i p l i c a t i o n by n-square matrices of sets extends t o t h e p a i r s , d e f i n i n g a set of operators on t h e group:
A(P,Q) = Analogously, containment c a r r i e s over, v i a an
(AP,AQ). analogue of
(a),
(P,,%>
2
(P2jQ2) iff P1
+
%2
P2
+
Ql,
again independent of r e p r e s e n t a t i o n j and t h i s behaves w e l l under both t h e group a d d i t i o n and t h e set of operators. (An i n t e r e s t i n g p r o j e c t would be t o t r e a t t h e l a t t i c e - t h e o r e t i c properties. ) There i s a n a t u r a l mapping (P,Q) I+ P
Q independent of
representation, from t h e group t o t h e semigroup ( a l e f t in-
verse t o t h e embedding); it i s isotone but probably not a semigroup homomorphism. There i s a n a t u r a l decomposition (p,Q> = (P,O)
+
(0,Q)
i n t o ' r e a l ' and 'imaginary' p a r t s ; t h i s defines homomorphisms from t h e group t o t h e semigroup (which a r e not i s o t o n e ) . For given n-square matrix
A
and r e a l t, and f o r each
p a i r (P,Q), d e f i n e a generalised reachable set
t h i s i s independent of r e p r e s e n t a t i o n i n t h e group, and t h e corresponding mapping i s an isotone honmorphism (not i n v a r i a n t under t h e n a t u r a l operators). Remarks The notion of t h e Pontrjagin d i f f e r e n c e is p r e - h i s t o r i c : f o r i n t e r v a l s on t h e p o s i t i v e half-axis,
[o~uI
f
[o,PI = [O,U
-
~ l j
and claims f o r p r i o r i t y may (and, probably, w i l l ) be made f o r analogues t h e r e o f .
However, t h e concept (and n o t a t i o n ) f i r s t
appeared i n 116
STROBOSCOPIC A N D ISOCHRONOUS CAPTURE
L. S. Pontrjagin: Linear differential games 2, Doklady Akad. Nauk SSSR 175 (197)721-723. Several further properties of the operation were summerised in E. Rechtschaffen, Unique winning policies for linear differential pursuit games (thesis), Case Western Reserve University, 1973. One of these, our Exercise 11, has the consequence
This remained in the form on the left in Pontrjagin's paper; the second describes the essence of the First Reciprocity Theorem. The idea of the 'subtraction group' in Exercise 15 is due to Mr. S. E. Claws (personal communication),. Experimentation with planar figures suggests that, if P is a polytope, then each face of P Q is parallel to one of P (even though not all faces of P need be utilised thus); (Rechte.g., fig. 1. The assertion is false already in
2
schaffen's thesis).
3.9 Measurable Selection Consider the following problem. Given two sets P,Q in Rn, for every point x E P + Q there exists, by definition, a decomposition x = y + z with y E P and z E Q; this might be interpreted in terms of appropriate 'eelection' mappings P + Q-, P, etc. The question is whether one can choose these mappings so as to preserve measurability: if t n x is measurable, is t w y also such? Apparently the selections will have to be made canonically, in some sense. The definition of measurability of a set-valued mapping t w Ft, from R1
to the collection of subsets of Rn, is that be Lebesgue measurable for every compact {t: Ft u C =/ @} subset of C of Rnj apparently this is a legitmate 117
PURSUIT GAMES
g e n e r a l i s a t i o n of t h e c l a s s i c a l concept. I n t h e r e s u l t below it might seem n a t u r a l t o r e s t r i c t oneself from t h e o u t s e t t o nonvoid s u b s e t s of
curiously
Rn;
enough, t h i s l e a d s t o i r r e l e v a n t t e c h n i c a l d i f f i c u l t i e s . There e x i s t s a mapping
MEASURABLE SELECTION THEOREM S:
on t h e c o l l e c t i o n
9 -+ Rn
5
of a l l closed subsets of
Rn, which i s a s e l e c t i o n ,
S(F) E F
(1)
whenever
and preserves measurability: so i s t H S(Ft). (Proof)
if
$
+F
t w Ft
=
F c Rn,
i s measurable, then
The underlying idea i s extremely simple:
one can
choose a p o i n t i n a given set by f i r s t s e l e c t i n g i t s first coordinate, then an appropriate second coordinate, e t c . Second, one of t h e n a t u r a l choices of a p o i n t w i t h i n a compact subset of
RL
We e x h i b i t Sn.
Here
So
S
i s t h e left-most one. as t h e composition of mappings
So,S1,...,
i s t h e operation of taking points c l o s e s t t o
origin,
s ~ ( F )= {x E F: 1x1 = min J y ) ] ; and, f o r
k
2
coordinate,
(here e.g.,
ek
1, S k
Sk(F) = {x E F: ek'x = min e $1 Y@ is t h e k-th u n i t b a s i c v e c t o r j f o r F =
So(@) = 0 ) .
subset of Sk(F)
YEF i s t h e operation of minimizing t h e k-th
F
Obviously So(F)
whenever
and compact
F
@
4 8.
4
S
i s a nonvoid, compact
Fc Rn,
Since Sk
and s i m i l a r l y f o r f i x e s t h e k-th
S i s single-point1 0 i s a s e l e c t i o n i n t h e sense of (1).
coordinate, t h e composition valued; thus indeed
F =
$ take,
S = Sn...S
The proof i s completed by v e r i f y i n g t h a t each serves measurability; we s h a l l c a r r y t h i s out f o r
118
Sk So
preonly.
STROBOSCOPIC AND ISOCHRONOUS CAPTURE
t w Ft
Take any measurable t h e set either
[t: So(Ft)
Ft = fd and
n C 4 fl.
C c Rn,
and compact
and consider
The requirement unwinds thus:
0 E C, o r
C
contains a point of
Ft
with minimal norm, i.e.,
minlxl s min 1x1 Ft Ftw Now, t h e second condition i s 'measurable' ( f o r t h e first, see Exercise 3), since t h e mappings appearing t h e r e are such. E.g., f o r t H minlxl and r e a l a, a time t s a t i s f i e s Ft minIxJ s a iff F~ i n t e r s e c t s t h e compact a - b a l l about t h e Ft origin.
QED
FILIPPOV'S LEMMA e x i s t s a mapping u
Given continuous
f:
Rn
+
Rm, there
with t h e following properties:
-
n n 1. o(x,F) E R whenever x E Rm, F = F c R . 2.
If x E f(F), then f(u(x,F)) = x; thus a ( * , F ) :
+ F is a r i g h t inverse t o f . t c, x ( t ) and t c, Ft a r e measurable, and a l l
f(F)
3.
If
f(Ft), then t n u ( x ( t ) , F t ) is a l s o measurable; x(t) thus t h e r e is a measurable solution y ( . ) t o x ( t > = f ( Y ( t ) ) , Y(t)
(2)
n
(Proof) Set a(x,F) = S ( f - l ( x ) able s e l e c t i o n from t h e theorem. v e r i f i e d easily.
F)
the s e t s
S i s t h e measur-
For t h e l a s t one need only r e f e r t o t h e
Indeed, f-'(x(t))
C, f(C)
where
Ft'
The f i r s t two assertions are
theorem again, once it i s shown t h a t measurable.
E
compact.
t n f-'(x(t))
n C =/ #
iff
is
x ( t ) E f(C), with
&ED
Example L e t us r e t u r n t o t h e problem described i n t h e
f i r s t paragraph.
We apply Filippov's Lemma, with addition as
t h e continuous mapping f : Rn x Rn .) Rn, and Ft = p x Q. 1 Then f o r any measurable x: R 4 P + Q we obtain measurable 119
PURSUIT GAMES
1 1 y : R + P, z: R
Q
x(t) = y(t) + z(t)
such t h a t
a r e t h e two coordinates of
'y,z
Exercises
a(x,F)
E
(here
Rn x R").
1 1 f o r i n t e g r a l s of (Ft + Gt) = J0Ft + JOGt 0 set-valued mappings, assuming t h a t t h e values Ft,Gt are 1 ~
1. Prove
closed, and, e.g.,
all
Ft
admit a common bound.
(Hint:
it
i s , of course, t h e ' d i f f i c u l t ' i n c l u s i o n t h a t i s t h e h e a r t of
t h e exercise.
R e c a l l a l s o t h a t t h e d e f i n i t i o n of JFt involves
i n t e g r a b l e functions. ) 2.
Show t h a t , i f
M
is an (m,n) matrix, t h e r e i s a
measurable s o l u t i o n x ( * ) of able
a(-)
Mx(t) = a ( t )
mapping i n t o t h e row space of
f o r every measur(mnt:
M.
you may
wish t o apply generalised inverses r a t h e r t h a n Filippov's
Lemma.) Prove t h a t , f o r measurable
3. t
with
F = @
t
i s measurable.
t
H Ft,
t h e set of times
consider i t s comple-
(Hint:
ment, and use compact b a l l s with r a d i i 1,2,.
..)
is measurable, then so i s t H Ft n C ( t h i s i s a d e t a i l needed i n t h e proof of t h e Theorem; Exercise 8 g e n e r a l i s e s t h i s ) . Show t h a t i f t n Ft n C i s measurable f o r each compact C, then so i s
4.
If
t n Ft
f o r fixed compact
t
H
Ft*
t
H
Fk(t)
C
5. Show t h a t t n Fl(t) u F p ( t ) i s measurable i f both a r e such; and s i m i l a r l y f o r
continuous
6.
f : R"
+
t
r)
f(Ft)
with
R".
I n t h e d e f i n i t i o n of mensurability, t h e test sets
C
may, equivalently,be replaced by closed sets. Prove t h e more u s e f u l r e s u l t t h a t they may be replaced by any b a s i s of t h e open sets.
(Hint: write an open set a s t h e union of compact sets, and a compact set a s t h e i n t e r s e c t i o n of open, bounded
sets. ) 120
STROBOSCOPIC AND ISOCHRONOUS CAPTURE
7. Show that if Fk: R1 +
9 are measurable, then so are
(Hint : Exercise 6.) 8. Prove that t Fl(t) n F2(t) is measurable if both Fk are such. (Hint: F1 n (F2 n C) @ iff F1 x (F2 n C) intersects the diagonal.) 9. If X I + f(x,t) is continuous and t H f(x,t) measurable, then t f(C,t) is measurable for fixed compact C. 10. Obtain analogous concepts and results for the case of Borel-measurable set-valued mappings.
+
Remarks Filippov'e Lemma, essentially in the form (2) but for compact-valued maps, appeared in A . F. Filippov, On certain questions in the theory of optimal control, SIAM J. Control 1 (1952)
76-84.
The extension to closed-valued mappings is easily effected by the preliminary operation So in the proof of the theorem; it is needed to treat, e.g., the continuously moving linear subspaces in the Second Reciprocity Theorem. The point of isolating the Measurable Selection Theorem is that is shows, e.g. in (2), that y(t) depends on x(t) only, rather than
on This is implicitly contained in Filippov's proof, and of fundamental importance for our purposes of constructing stroboscopic strategies. The modifications appeared in the proof of Theorem 2 in ~
(
0
)
.
0. djek, Duality for differential games and optimal control, Math. Systems Theory 8 (194) 1-7.
121
PURSUIT GAMES
3.10
Richter's Theorem LEMMA 1
(1)
If
f : [0,1]+ R
lf:
{
n
i s integrable, then the s e t
measurable M c [0,11]
M has compact and convex closure. (Proof) The set i s bounded, since each member has
IJfI
1
JI'I
4
4
J If1 0
M Obviously
M thus i t s closure is compact.
<+
"i
- on choosing f o r
u
a characteristic function( 2 ) {Sf: measurable M) c {J fu: measurable U: [0,11 + [0,11} 0
j
M equally obviously, t h e larger s e t i s convex. As t h e next step, we s h a l l show thaz equality holds i f f i s a s t e p fhnction. Thus, l e t f = ckvk, where t h e ck are constants i n Rn, vk the set
k=1
i s t h e characteristic function of Nk =
{t: f ( t ) = ck],
and [0,1] = Wk is a d i s j o i n t measurable decomposition. sider any member of the larger set i n (21,
Con-
1
and t h e k-th term there. M,,=
There e x i s t s a measurable set
Nk whose measure is su precisely.
Indeed, t h e real-
Nk
valued function t w meas (Nk n ( 0 , t ) ) i s continuous, w i t h extreme values 0 and meas Nk: 0 s Ju s /1 = meas Nki Nk
k '
thus, f o r some intermediate value 122
t
[0,1], the fbnction
STROBOSCOPIC AND ISOCHRONOUS CAPTURE
value coincides with J'u.
Then M = @&
Nk able d i s j o i n t decomposition, and 1 f u = C C k Ju =
is again a measur-
p =J f .
C C k
SO
Nk % M t h i s e s t a b l i s h e s t h e opposite containment i n ( 2 ) . Returning t o general mappings f , choose any e > 0 and 1 point fu i n t h e l a r g e r s e t . There e x i s t s a s t e p function g with
0
If
- gl
e.
5;
Then 1
1
J' gu f o r some measurable s e t as
1
1
= Jg,
IJg
M
M
- Jfl M
5;
Jlg-fl
5
M
M c [0,1]. Hence
lJofi
- lf ' J
2c;
M c > 0 was a r b i t r a r y , t h i s shows t h a t t h e smaller s e t i n
( 1 ) i s dense i n t h e l a r g e r .
We have already shown t h a t t h e smaller s e t has compact closure, and t h e l a r g e r is convex, and thus has convex closure.
By density, t h e closures coincide.
QE ,D
Liapunov's Theorem i s a stronger version of Lema 1: i n Analogously, Richter's Theorem
(1)t h e s e t i t s e l f is convex.
s t a t e s t h a t t h e s e t i n (3) i s convex; it is one of t h e r a r e r e s u l t s i n which t h e r e a r e no assumptions, and a spectacular consequence appears. LEMMA 2
s e t s of
(3)
For any mapping t w St
Rn, t h e s e t 1 1 Sost = f(t)dt: 0
{s
whose values a r e sub-
f integrable, f ( t )
E
St a.e.1
has convex closure.
(Proof) Take any two elements 123
x,y
i n t h e closure of t h e
PURSUIT GAMES
set i n ( 3 ) j we wish t o show t h a t c l o s u r e f o r each a
E
ax + (1-a.)~ i s a l s o i n t h e
[0,1].
Choose an a r b i t r a r i l y s m a l l 1 1 points f , f g €-close t o x,y "0 "0 fixed, consider t h e set, i n R2n,
C
r
M
M.
f o r a measurable set
Define h
measurable M c [0,11].
M 1 (f,g),
M,
h: [0,1]+ Rn
1
as
is i n t e g r a b l e , h ( t )
0
E
1
on
f
+
lo A
2c-close t o
1
"Sof
and
M
g
on [O,ll\M.
Then
St a . e . , and
1 h = r f
is
Keeping t h e s e
f o r t h e obvious choices 1 Thus, by Lemma 1, i t s c l o s u r e m u s t c o n t a i n
It contains b o t h (0,O) and of
s
and f i n d a p p r o p r i a t e
respectively.
{J(f,g) = (Jf,Sg): M
> 0,
+
1 Jog
1 = J f + J g -
fg
J
[Oll\M
-
UJ
M
1 g = 0
1
"so' +
O
sg
M
1 (1-a)J g . 0
1 1 h E St i s 3€-close t o a x + ( 1 - z ) ~ . The 0 0 a s s e r t i o n follows on t a k i n g € t o 0. QE ,D
Hence, f i n a l l y , COROLLARY
J
If
S
i s compact, t h e n t h e sets 1 $Jtds,
have t h e same c l o s u r e s f o r a l l (Proof)
F i r s t note t h a t
cvx S
124
ss [ t
t
0
s
Sdrds 0
t > 0, namely
cvx S .
is compact, by C a r a t h 6 d o r y ' s
SrROBOSCOPlC AND ISOCHRONOUS CAPTURE
Theorem.
S c t -1 tSds, and t h e r e f o r e 0 I cvx S c closure soSds
Obviously
7
t
by Lemma 1.
t I n t h e opposite d i r e c t i o n , t-'J Sds c cvx S
follows from
0 S i m i l a r l y f o r t h e second moments; a l t e r t s t J i J i S d rd s = I - ( t - s ) S d s . Q,FD 0
Corollary 2 i n 3.8. n a t e l y , one may use
3.11 Reachable Sets
With a l i n e a r c o n t r o l system
i=
(1)
i n Rn
- u j U(t) E u
AX
one may a s s o c i a t e i t s reachable R(t)
=
[/ e-As u ( s ) d s :
sets
i n t e g r a b l e u : R1
+
to
= /;-AsUds.
Properly speaking, one ought t o refer t o t h e mapping t p R ( t ) ( t h e 'performance' of (1)). These sets a r e important f o r two r e l a t e d reasons. For any admissible c o n t r o l u ( * ) , t h e s o l u t i o n t o t h e equation i n (1)with i n i t i a l value x a t t = 0 i s x(t)
=
At
e
(x
- JO e-As u ( s ) d s )
by t h e variation-of-constants formula. p o i n t s t o which
x
Thus t h e s e t of a l l
can be steered a t t i m e
t
within (1)
( t h e set of a t t a i n a b i l i t y ) i s Ax(t)
=
At
e
(x
- R(t));
t h e e f f e c t of l i n e a r i t y i n (1)i s t h a t t h e second term i s
independent of x. Second, t h e i n i t i a l p o s i t i o n x can be s t e e r e d t o 0 a t t i m e t i f f x ( t ) = 0 f o r some u ( * ) i n
125
PURSUIT GAMES
(2); since x
eAt
ia nonsingular, the condition reduces t o
E R ( t ) . More generally, a point x can be steered t o a
target
R C R"
at
time t x
iff
E R(t) +
e-Ati2.
Obviously, i f U i n (1) i s nonvoid, or convex, symmetric or bounded, then so i s each R ( t ) j e.g., i f a. i s a bound on U and ( A 1 a matrix norm f o r A, then each point x i n R(t) has
If
U
i s compact and convex, then, by an obvious weak com-
pactness argument i n ' t h e space of controls, each R(t)
is
compact. I n point of f a c t , convexity i s not needed here (Richter's and Aumann's theorems). I n the next r e s u l t , 'span' denotes t h e l i n e a r span (the s e t of a l l l i n e a r combinations of elements i n the set, o r equivalently, t h e intersection of a l l l i n e a r subspaces containing the given s e t ) . I n (1) assume t h a t U i s convex and For s t r i c t l y positive t the following s e t s coin-
PROPOGITION 1
symmetric. cide :
span R ( t ) -AS
span {e
=
span
u: s E R
k
span {A u: k = 0, L
e
0 1
-As
Uds,
, u E q,
...,n-1,
u E
q,
-As
J,e
span
ds*
The middle two terms do not depend on t > 0; the resulting concept is the c o n t r o l l a b i l i t y space of (1). The t h i r d term provides an a l t e r n a t e characterisation: the Remarks
126
STROBOSCOPIC AND ISOCHRONOUS CAPTURE
s m a l l e s t l i n e a r subspace
which is i n v a r i a n t under t h e
L
c o e f f i c i e n t matrix of (1)and contains
The
U, A L c L 2 U.
l a s t %erm j u s t i f i e s t h e a p p e a l l a t i o n reachable s e t with 'unbounded c o n t r o l s ' .
If
U = {Bv:
t h e n t h e columns of
i s a parallelepiped,
U
i n u n i t cube of
v
span t h e s e t
B
R?,
Uj t h e t h i r d term above
shows t h a t t h e c o n t r o l l a b i l i t y space i s t h e column space of t h e (n,nm) matrix (A"-$,
...,AB,B),
An"%,
t h e ' c o n t r o l l a b i l i t y matrix' of (1). Denote t h e i n d i c a t e d sets by
(Proof)
The only
C1,C2,C3,C4.
obvious inclusions a r e
The subsequent proof proceeds by t h e f a m i l i a r technique Xc Y
orthogonal complementation:
if
and
= [y
x
u
X
A
= span X
(here X
E x)). c
Consider any
e
E
in
Rn,
then
of
Rn: y'x = 0 f o r a l l
,
I
R(t)
c'JOe -As u ( s ) d s = 0 f o r a l l admissible c o n t r o l s t r o l with constant value Then from ( 3 ) ,
(e,t].
e
u
u(-).
e
U
One p o s s i b i l i t y i s a con-
i n [O,e], and value
in
0
f c'e-*'dsu
= 0 , f o r a l l u E U and 0 By continuity, c'e A 8 ~= 0; s i n c e t h e function of
e E [O,t].
e i s a n a l y t i c , we have c'e-ABu = 0 f o r a l l u e U and 1 I I a l l e E R . T h i s shows t h a t C 1 c C2 . Repeated d i f f e r e n t i a t i o n of A
A
C2c C
3'
k = O,l,
If
c
e
C
..., since,
, then
I
3
@
k
c'e-Aeu = 0 y i e l d s
c'A u = 0
for
u
E
U
and a l l
by t h e Cayley-Hamilton Theorem, An
l i n e e r combination of
I,A,
...,An-', 127
,
& . I .
X 2 Y
is a
and hence so a r e a l l A
k
PURSUIT GAMES
for
k
n.
for
u E U
2
From t h i s ,
s E R1. This proves t h e second containment L A L C2. F i n a l l y , C 2 c C4 i s verified e a s i l y .
and A
needed f o r
C
3
=
Thus a l l t h e
coincide; hence so do t h e i r orthogonal
Ci
complements, t h e l i n e a r spaces ci. QED COROLLARY 1 The system (1)i s s a i d t o be c o n t r o l l a b l e
i f e i t h e r of t h e following equivalent conditions obtains : some
R(t)
has nonvoid i n t e r i o r ; a l l
.
(Proof)
t > 0 are
with
0; t h e c o n t r o l l a b i l i t y space coincides with
neighbourhoods of R"
R(t)
Every nonvoid, convex, symmetric s e t
neighbourhood of
within t h e l i n e a r space span
0
merely a p p l i e s t h i s i n t h e preceding r e s u l t . Symmetry i s e s s e n t i a l here: asymmetry, t h e l i n e a r span of space b u t
0
U M M A 1
t,s
0
2
U{R(t):
t
R(t)
2
QED
01
is t h e e n t i r e f o r small t > 0.
we have t h e a d d i t i o n formula
R ( t + s) = R ( t ) + e (Proof)
is a
i n t h e t y p i c a l case of
is on t h e boundary of For
s
S; one
-At
R(s).
The two needed containment r e l a t i o n s a r e obtained by
reading
so so st t
t+s
=
t+s
+
i n t h e two d i r e c t i o n s . COROLLARY 2
If
QED
i f (1) i s c o n t r o l l a b l e , then even
O r t r (Proof)
6.
For
theref ore
E = s
-t
R ( t ) c R(s) f o r 0 c t s s;
0 E U, t h e n
w e have
128
R(t) c Int R ( s ) 0
E
R(E), 0
for
E e-At R(E),
and
STROBOSCOPIC AND ISOCHRONOUS CAPTURE
R(t) = R ( t ) + O c R ( t ) + e-AtR(c) = R(s). Similarly i n t h e second assertion.
QED
According t o Proposition 3 i n 3.8, s e t s which a r e closed, convex, and symmetric may be w r i t t e n a s t h e d i r e c t sum of a l i n e a r subspace and a compact s e t .
L e t us apply t h i s decompo-
s i t i o n t o t h e control constraint s e t of (1): If
PROPOSITION 2
+L
= V
U
with V
a l i n e a r subspace, then
compact and
L
*
q t >= % ( t > + L where
Y
L i s t h e l e a s t A-invariant subspace containing L. (Proof) From Ekercise 1 i n 3.9, % ( t ) = lf,(t) + R L ( t ) * Since L i s a l i n e a r subspace, t t and
RL(t) =
0
e-AsLds = Joe-Asspan IdSj
thus, by Proposition 1 applied t o
L, RL(t)
LIMIT THEOREM ( f o r reachable s e t s )
Y
= L
If
U
.
&ED
i s compact and
convex, then
EM= U.
lim
t+o+ (Proof)
This w i l l follow from t h e estimate
t
r emAsdsUcR ( t ) c f on dividing by
t
and taking
t + 0:
The f i r s t term i n (4) describes points constant controls i n
e
-As
dsU
t-lJoe x
+ o(t2)
-As
+
0 e = I.
steered t o
0 by
U; t h i s establishes t h e f i r s t contain-
ment. For t h e second, f i r s t write 129
PURSUIT GAMES
-As
t
Given
t
+ J0emAs(u(s)-v)ds
-As ds v
e-Asds v +
t
[
0
+ J (e -As - I ) ( u ( s ) - v ) d s .
(u(s)-v)ds
0
v E U, t h e f i r s t term belongs t o J'le-AsdslJ;
u ( * ) and
t h e l a s t i s estimated by
t J' (elAlS-1)6ds = o ( t 2 ) 0
with
6 = diam U
t
<+
m;
t h e middle term vanishes i f we t a k e
-1 t Jnu(s)ds, and t h i s
by Corollary 2 of 3.8. 1 -At COROLLARY 3 l i m g (R(t+h) R(t)) = e U. hO+ (Proof) From Lemma 1,and Corollary 3 i n 3.8,
v
=
v
E
U
*
U
now merely apply Proposition 2.
QED
I n t h e Limit Theorem, boundedness of if
U
R(t)/t
contains a l i n e a r subspace
i s essential:
U
L, then
R ( t ) , and hence
a l s o , contains t h e f a r l a r g e r space
s i t i o n 2.
&ED
L*
as i n Propo-
I n Chapter 7 we w i l l need a version applying t o
nonlinear equations; f o r t h e s e t h e concept of reachable s e t i s not available. Consider t h e c o n t r o l system i n
;=
(5) Here
f : Rn x Rm
subset of
R".
terminal time
+
Rn
Rn
f(x,u); u ( t )
E u
i s continuous, md
U
For given i n i t i a l p o s i t i o n t3 2 0
x
define t h e a t t a i n a b l e g&
s i s t i n g of a l l s t a t e response endpoints
i s a compact
E
Rn
and
Ax(e), con-
x ( e ) , where
i s a (generalised) s o l u t i o n of (5) with i n i t i a l value
dt)= x + 130
t.
f(x(s),u(s))ds,
0
x(* )
x,
STROBOSCOPIC AND ISOCHRONOUS CAPTURE
u: R1 + U is measurable.
and
(Thus t h e c o n t r o l s
u(*) a r e
u(*) t h e r e may be s e v e r a l s o l u t i o n s
v a r i e d j even f o r a f i x e d
4.1
t o (61.) LIMIT THEOREM ( f o r a t t a i n a b l e s e t s ) With t h e above n assumptions and notation, f o r each xo E R we have
limr1 ( A x ( t ) - x ) =
cvx f(xo,U).
mxO
t+O+
(Proof) Given any
E
>
0, t h e r e e x i s t s
6
>0
f ( x, u) c f(xo,u) + B f o r Ix
(7)
C
where
B
e
x n f(x,u)
is the
- xo1
E-ball about t h e o r i g i n i n
,
6
Rm, s i n c e
x uniformly f o r u E U. h a i n 0 and compactness of U, t h e r e e x i s t s
i s continuous a t
from c o n t i n u i t y of
7>0
such t h a t
f
so t h a t t h e s o l u t i o n s
x ( * ) have
- xo/ s
Ix(s) i f t h e i r i n i t i a l values
x(0)
From ( 6 ) , each p o i n t
y
are
E
s
os
for
7-close t o
(Ax(t)
- x)/t
t Y = 7 1J o f ( x ( s ) t u ( s ) ) d s E
;
(8 1
ct l Jof(xo,U)ds t
t J0f(x(s),U)ds
s s 7 xo.
has
t
+
1 JOBEdS
by ( 7 ) and Exercise 1 i n 3.9, a t l e a s t f o r s m a l l t
and
-
Ix x o / . From t h e assumptions, f(xo,U) is compact, hence s o i s cvx f(xo,U) by Caratheodory’s Theorem; thus Corollary 2 i n 3.8, applied t o t h e terms i n ( 8 ) y i e l d s
E
y Now, f i r s t t a k e
x
+ xo
and
t
cvx f(xo,U) + B
+
obtain
131
O+,
E
.
and then l e t
E
+
O+ t o
PURSUIT GAMES
1
limaup
For the second containment use
i n 3.10.
x = x and t h e Corollary 0
&ED e >0
For each
COROLUFtY 4
- x) c cvx f(xo,U).
(A(t,x)
there e x i s t s
that, whenever 0
then, f o r every y E A x ( t ) ,
6,
-
f o r each such
ZI
>
0
such
- xol s 6,
there e x i s t s
(9) and conversely:
Ix
6
z E cvx f(xo,U) with
s e,
z there i s a
y
with
(9).
Exercises The f i r s t three of these concern a rudimentary i d e n t i f i cation problem; given two l i n e a r control systems, (1)and also = BX
(10)
-
V;
v ( t ) E V,
t o determine under what circumstances they have coinciding reachable s e t s (i.e., the same performance). t h a t both the constraint s e t s 1. Prove t h a t 2.
(Hint: at
t
Show t h a t e-AteBt
=
3.
4.
are polytopes.
U,V
Bt
U = V, and, more generally, eAtU = e U . At Bt e u = e u f o r each vertex u of U.
depends continuously on t, and has value
I
0.)
Prove t h a t
Ax = Bx
i t y space of (1). (Hint: edly a t
We w i l l assume
for a l l x
i n t h e controllabil-
In Exercise 2 d i f f e r e n t i a t e repeat-
O j then apply Proposition 1.)
Deduce t h e L i m i t Theorem f o r reachable s e t s from t h a t
f o r t h e attainable sets. 5. I n t h e notation preceding t h e l a s t theorem, prove t h a t t h e set of a l l points
5 so so -
t
132
s
f (x(r),u(r))drds
STROBOSCOPIC AND ISOCHRONOUS CAPTURE
cvx f ( x ,U) a s x + x and t + O+. 0 0 I n t h e L i m i t Theorems compactness i s r a t h e r e s s e n t i a l .
has limsup i n
6.
Prove t h a t , i f
U = V
+L
with
V
compact and convex, and
L
a l i n e a r subspace, t h e n l i m R(t) hO+ t
where
L*
+
L*
i s t h e l e a s t A-invariant subspace containing
L.
Remarks The a d d i t i o n formula f o r reachable sets belongs t o cont r o l - t h e o r e t i c folk-lore;
e.g., one i n c l u s i o n appeared within
t h e proof of Corollary 15 of 0. Ha/jek, Geometric theory of time-optimal control, SIAM J. Control 9 (1971)339-350.
Our u s u a l n o t a t i o n f o r c o n t r o l systems, ;t = s t i l t e d t o readers used t o
k
= Ax
+ Bu.
- u,
may seem
F i r s t , t h e unorthodox
minus s i g n i s t h e r i g h t one i n cases where it r e a l l y matters, i f t h e c o n s t r a i n t set i s not symmetric; t h e formula f o r reach-
a b l e sets is j u s t t h e beginning of an unnecessary t r a c k i n g of minus s i g n s ( s i m i l a r remarks apply t o game equations
Z
=
AX
-p+q
or
t h e c o n t r o l matrix
i = f(x,p)
- g(x,q),
etc).
AS
concerns
B, t h e r e i s no point i n representing one
g e n e r a l set a s t h e l i n e a r image of another, unless t h e r e a r e f b r t h e r compelling reasons (and t h e r e a r e none i n t h i s book).
133
This page intentionally left blank
CHAPTER I V
ISOCHRONOUS CAPTURE I n t h i s chapter we t r e a t isochronous capture i n l i n e a r games, without t h e a d d i t i o n a l r e s t r i c t i o n of Chapter I11 t h a t t h e winning s t r g t e g i e s be stroboscopic.
It turns out t h a t a
l a r g e p o r t i o n of t h e necessary conditions can be c a r r i e d over t o t h i s more g e n e r a l case. It i s an open question whether omission of stroboscopic i t y ever a c t u a l l y results i n any r e a l gain, i n t h e sense of obtaining f u r t h e r winning p o s i t i o n s o r achieving f a s t e r cap-
ture (see t h e conjectures a t t h e end of t h e chapter).
Thus,
a s i n g l e theorem would render t h e e n t i r e chapter superfluous:
i n any case, t h e t r e n d of t h e presented r e s u l t s i s t h a t , once one has decided on isochronous capture, l i t t l e f u r t h e r harm i s p e r p e r t r a t e d by r e q u i r i n g t h a t t h e s t r a t e g i e s be stroboscopic. The theorem i n 4 . 1 i s r a t h e r s u r p r i s i n g :
under moderate-
l y severe conditions on t h e shape and p o s i t i o n of t h e players'
c o n s t r a i n t sets, but without any assumptions on t h e dynamics o r on t h e t a r g e t , all t h e f i n i c k y d i s t i n c t i o n s between s t r a t e g i e s disappear, and a c t u a l l y nothing i s gained even i f t h e pursuer i s granted complete information on t h e future behaviour of h i s opponent.
4 . 1 Winning S e t s I n 2.2 t h e 'isochronous' winning s e t s duced.
W(t) were i n t r o -
For t h e case of a l i n e a r game = Ax
-P
end:
135
+ q i ~ ( t E)
x
E
P, q ( t ) E Q;
R; s t a t e space:
Rn
PURSUIT GAMES
The set
t h e d e f i n i t i o n may be paraphrased a s follows.
such t h a t , f o r some s t r a t e -
c o n s i s t s of a l l p o s i t i o n s
x E Rn
gy
q: [O,t]
and a l l i n t e g r a b l e
u
W(t)
.*
Q, w e have
Next, pursuer's reachable set i s Rp(t) =
J
t
e-AsWs =
0
[sot
I
and analogously f o r quarry's reachable set Somewhat more generally, f o r any subset
Jo
e
-As
Uds.
9;
emASp(s)ds: i n t e g r a b l e p: [O,tl + 5
R (t) =
Q
J e 0
let
U c R"
-AS
Qds.
F$,(t)
=
(Observe t h a t i n t h i s n o t a t i o n some of t h e depend-
ence on t h e data i s indicated, some suppressed.) One important property, t h a t
i s closed i f
W(t)
is
P
compact and convex, w i l l be p r w e d i n 8.1. LEMMA 1
If
P,Q,R
a r e convex and symmetric, then so i s
each W(t)j i n p a r t i c u l a r , 0 E W(t) (Proof) i n W(t)
a r e forced t o
0 5: a. 5 1, then
at
whenever
This i s q u i t e straightforward. aul
+
R
at
t
W(t)
by s t r a t e g i e s
( 1 - u ) ~forces ~
t, and ~ [ q =] -~,[-q] f o r c e s LEMMA 2 For 0 g t c e,
-xl
=/ #.
If p o s i t i o n s
x1,x2
u1,u2,
and
ax1 + (1-a)x 2 t o t o R a t t.
R
w(e) + R Q ( t ) c R p ( t ) + e-AtW(e-t).
(3 1 (Proof)
This reformulation of t h e p r i n c i p l e of suboptimality
is t h e counter-part t o t h e a d d i t i o n formula f o r reachable s e t s . Take any
x E W(e), and an appropriate s t r a t e g y
Proposition 2 i n 2.2, t h e p o i n t
Here
so t h a t 136
y
=
fi(t,x,a[q],q)
E
6.
By
W(e-t).
ISOCHRONOUS CAPTURE
If
q(*)
is varied, we obtain ( 3 ) . QED I f some W(e)
COROLLARY 1
t E
all
(Proof:
[o,el.
Rp
(Proof)
=/
@ for
For a l l t
0,
2
,(t) + e - A t R c
W(t) c (Rp(t) +
iL RQ(t).
The second inclusion i s a re,-interpretation of ( 3 )
8 = t.
with
@, then a l s o W(t)
i n ( 3 ) , t h e l e f t s i d e is nonvoid.)
COROLLARY 2
(4 1
4
As for t h e f i r s t , i f
t
x = J;-A6u(s)ds
+ e-Aty,u(s)
then t h e stroboscopic s t r a t e g y eA t (x
- J'
t
i s i n t h e f i r s t member,
x
Q
=
u
+q
e'A8(a-q)ds)
=
E P it Qr Y E 0, s a t i s f i e s (2),
eAt(0+emAty) E 0.
QED
0
I n (4) t h e l a r g e s t set has a pleasing geometric interpretation:
The smallest s e t consists of points
see Exercise 2.
t by stroboscopic s t r a t e g i e s which, furthermore, a r e required t o have values i n P r, Q a s which can be forced t o
at
R
i n t h e F i r s t Reciprocity Theorem (thus, by t h e Second Reciproc i t y Theorem, t h e r e w i l l probably be i'urther positions f o r stroboscopic isochronous capture).
@.
p"QS We w i l l say t h a t P= Q
t.
U = P
rc
R
It i s not implied t h a t
i s a d i r e c t summand of P i f U f o r some U c R Here t h e r e i s a unique choice, Q, i f P,Q a r e a s below (see Corollary 3 i n 3.9). Q
n
.
THEOREM Assume t h a t P,Q a r e compact and convex, and i s closed and convex. I f Q i s a d i r e c t summand of P,
then w(t) =
RPz,(t)
= (Rp(t) +
137
+ e
-At
e- A t i2)
R
'
RQ(t).
PURSUIT GAMES
Thus capture with a n t i c i p a t i o n , capture, stroboscopic capture, and stroboscopic f o r c i n g t o a s i n g l e point of t h e t a r g e t ( a l l a t given time t ) a r e equivalent.
Fhrthermore, for each
t h e r e i s a winning stroboscopic s t r a t e g y a s describ-
x E W(t)
ed i n t h e F i r s t Reciprocity Theorem.
(Proof) The a s s e r t i o n is t h a t t h e containment r e l a t i o n s i n (6) a r e e q u a l i t i e s . From t h e assumption, P = Q + (P Q), so t h a t R = R + Rp 1~ Q; t h e n i n (6)
'
P
Q
(Rp(t) + e
-At
RQ(t) = (RQ(t) + Rp
R)
,(t)
+ e
-At
n)
RQ(t)
For t h e l a s t a s s e r t i o n , see t h e remark
by "cancellation".
following Corollary 2.
QED
Exercises 1. Show t h a t each point i n t h e i n t e r i o r of
W(t)
f o r small 2.
is in
R
t > 0.
Observe t h a t t h e l a s t member i n (4) coincides with
-
t h e s e t of p o s i t i o n s which can be captured with a n t i c i p a t i o n at time
t
precisely.
Prove:
3.
(P + R+R) 2 Q. ( m n t :
l i m sup 'Uc bO+
one
p o s s i b i l i t y i s t o use t h e L i m i t Theorem f o r reachable sets.)
4. Assume and
P
then
0
P,Q,R
i s compact.
E
a r e nonvoid, convex, and symmetric,
Prove t h a t , i f
limeup W ( t ) / t ,
necessary condition.
W(e)
and conclude
(Note:
=/ fif f o r some .9
Q cP
+ + R R
> 0,
as a
a sharper r e s u l t appears i n
Proposition 1 of 4.2.)
5.
Prove
w(2t) c ( R J ~ )+ e
-At
-At 0) ( ( ~ ~ (+t e)
and generate an analogous formula f o r
138
* ~ ~ ( t ) ) ~)
W(3t).
f
~ ( t ) ,
ISOCHRONOUS CAPTURE
*
6. Setting W ( t ) t,s
for
2
= eA%(t),
show
O j conclude t h a t
l i m sup
W*(t+s) it W(t) S
wo+
l i m sup W + ( s ) c p % Q . Ewe+
7.
Prove t h a t , i f
8. Suppose t h a t
P c Q + V with
V
compact, then
P i s t h e square -1 s x,y s 1 i n
R
,
2
Q a symmetric segment w i t h i n P. Construct sets V such t h a t P c Q + V. Observe t h a t t h e r e a r e i r r e d u c i b l e sets and
V, and e x k i b i t a t l e a s t two q u i t e d i s t i n c t ones.
9.
Show t h a t i f
d i r e c t summand of
P3Q
L e t t h e t a r g e t set
10.
a r e both segments, then
Q is a
P. R be t h e a f f i n e manifold
b + N.
Prove t h a t W(t) + e'AtNc
W(t).
Caref'ully prove t h e following a l t e r n a t i v e : W(t) =
$ ,or
R
either a l l
i s a single point, or a l l W ( t )
a r e non-com-
pact. 11. Assume t h a t a winning set W ( t ) contains an e n t i r e + n ray x + R c ( x E W(t), c E R ), R = b + N i s an a f f i n e
manifold, and P,Q c E e- A t N (Hint:
.
by
8
and t a k e
8
a r e compact.
Prove t h a t n e c e s s a r i l y
i n the relation
++
x
+ 8c E W(t) divide
m.)
Remarks A s mentioned i n t h e proof of Lemma 2, t h e i n c l u s i o n (3)
i s a s e t - t h e o r e t i c v e r s i o n of t h e p r i n c i p l e of suboptimality; and t h e r e i s a corresponding statement involving ofiimel 139
PURSUIT GAMES
s t r a t e g i e s and minimal times. Exercise 5 extended t o W(kt) f o r general k = O,l, corresponds s i m i l a r l y t o ‘repeated
...
min-max’ constructions a s i n Section 1.3 of A. Friedman:
D i f f e r e n t i a l Games, Wiley-Interscience, New York, e t c . , 1971.
Returning t o Lemma 2, assume R = 0 t o simplify matters, and c a l l (3) t h e hereditary property f o r the s e t s W(e). According t o ( 6 ) , W ( t ) c Rp 4, R p ( t ) , but the l a t t e r s e t s do not have the hereditary property.
Indeed, f o r the harmonic
o s c i l l a t o r w i t h unit segments f o r excepted) reachable s e t s a t time
P and Q, ( t r i v i a l cases TI coincide with t h e unit
c i r c l e , so Rp(t)” but
RQ(?) = 0
$3
t E (0,n).
R p ( t ) E R ( t ) = fd f o r a l l
Q
4
The isochronous winning s e t s f o r the game
CONJECTURE
(1)are the largest s e t s with t h e hereditary property: t h e set-valued mapping t H St s a t i s f i e s So = 0 and So
then St
+
R (t)
Q
St c W ( t )
c Rp(t)
e
+
for a l l t
2
-AtS
0.
e-t
whenever 0 s t
if
5 -9,
(Note t h a t automatically
c Rp(t) ii R Q ( t ) . )
4.2
Necessary Conditions Here we develop two variants of a necessary condition
f o r isochronous capture.
The first, Proposition 1, i s obtain-
ed by simply omitting the q u a l i f i e r ‘stroboscopically’ i n t h e Necessary Condition from 3.4.
The second, Propositions 2 and
3, i s related t o t h e results of 3.5 on unions of target s e t s . The notation of 4.1, and the underlying game, i s retained.
It w i l l be convenient t o i s o l a t e a technical portion of
t h e reasoning. LEMMA Assume t h a t a strategy u 140
and a terminal time
ISOCHRONOUS CAPTURE
e
5
0
have been fixed.
and time t E [O,e],
For any two points
let
st
q,
90
in
Q,
be the piecewise constant quarry
control,
st
=
90 i n
~t
[o,e-tl,
= q i n (e-t,el;
the pursuer response; and, f o r an i n i t i a l posi-
pt = a [ % ] tion x,
Yt =
(1)
t h e s t a t e response endpoint a t
*
At
where R ( t ) = e P
-
Rp(t)
8.
Then
i s t h e reachable s e t of the control
p, p ( t ) E P. system G = -AX (Proof) The e s s e n t i a l point here i s t h a t
u
is non-anticipa-
tory, so t h a t Pt =
“[%I
u[%I
=
=
po a.e.
[o,e-tl;
the v e r i f i c a t i o n i s then straightforward, using
e
e-t
e
so = s o - se-t
*
QJm
An obvioue but important observation i s t h a t the assertion i s vacuous unless so t h a t
yt
=
yo
8
>
0:
e
if
= 0,
the only possible t = 0,
i n (2).
is compact and convex, and t h e t a r g e t s e t i s contained i n t h e affine manifold [x: Mx = Mb]. If n o n t r i v i a l isochronous capture i s possible, NECESSARY CONDITION
i.e.,
if
W(e)
4
Assume t h a t
f o r some
8
M(Q
P
> 0, then necessarily
- Q) z M(P - P).
141
PURSUIT GAMES
Moreover,
( 31
quarry c o n t r o l order 2 pursuer c o n t r o l order,
and, i f
k
denotes t h e l a t t e r ,
(41
-
MAk”(Q
Q) c MAk-’(
P
- P).
(Proof)
BY assumption, some s t r a t e g y u f o r c e s a point x E W(@) t o R a t time 8. Then, i n ( 2 ) , t h e endpoints belong t o by
R, so t h a t
M(yt
- yo)
=
and l e t t h e q ’ s range Over
M
(5)
t E (o,el. Here divide by
Thus, i f we premultiply
Q,
- Q) c M(R*p(t) - R*p ( t ) )
(Q
Ml:eAeds
0.
yt
for a l l
t
t -+ 0.
and t a k e
Theorem f o r t h e reachable sets
(6 1
M(Q
*
Rp,
- Q ) c M(P - P).
I n case t h e pursuer c o n t r o l order
result (4) p r e c i s e l y .
(7) hence
M(Q
- Q)
For
Returning t o (5),
k = 1, t h i s i s t h e required
k = 2 we have M(P
= 0
Using t h e L i m i t
-
P) = 0,
from (5); i n p a r t i c u l a r , (3) holds. p o i n t s i n t h e second member may be
w r i tten
with t h e first term vanishing according t o (7).
with l i m i t i n
1 lii; MA(P-P).
Hence
A simpler argument f o r t h e f i r s t
142
ISOCHRONOUSCAPTURE
member of (5) t h e n y i e l d s
-12 MA(Q - Q ) i . e . , (4). induction.
C
The case of g e n e r a l k
1
MA(P
- P),
i s obtained by an obvious
QED
The l a s t r e s u l t s t r e a t t a r g e t sets of t h e form
r where each Fk: Rn
%.
hood of
near any Y
+
i s of c l a s s
Rm
Then each
E
Fk
9,
(9 1
F ~ ( x )=
o
has a f i n i t e Taylor expansion
+ D F ~ ( Y ) ( X - Y+)a( [ r - y l ) a s x + y .
is t h e Jacobian matrix of
Here DFk
i n some neighbour-
C1
Fk
(of type (%,n),
e n t r i e s a r e p a r t i a l d e r i v a t i v e of t h e coordinates of
Fk).
L e t us a l s o denote Nk(Y) =
{X:
Fk(Y)x = 0 ) )
t h e tangent space of {Fk = O} a t y. PROPOSITION 1 Assume t h a t P i s compact and convex, and
Q
Fk E C1 near \. If t h e r e x E W(e) with 8 > 0, and y E R
i s a s i n (8) with
e x i s t winning p o s i t i o n s
i s a s t a t e response endpoint t o a constant quarry c o n t r o l € Q, then
r
(Proof) Referring t o (1) and (2), l e t (2),
yt
+
y
I n (2),
t
+
= q, yo = y .
0, so t h a t ( 9 ) w i l l apply if y d i v i d e by t > 0. Obviously t h e term
as
E
From
4.
A s f o r t h e elements of t h e next term there, t h e L i m i t Theorem 143
PURSUIT GAMES
%Y
applied t o t h e reachable sets
t P
=
-
t . + Ot J
such t h a t t h e e n t r i e s converge t o a point of
- y)/t
But then (yt
P.
y i e l d s a sequence
w i l l a l s o have a f i n i t e limit, i n
q,-q+P-P.
belong t o R = u $. Then, j f o r some f i x e d k and subsequence t = t we have a l l i’ y t E Rk whereupon y = l i m yt E a l s o . Then ( 9 ) holds f o r with F (y ) = 0. Divide by t t o o b t a i n x = y t k t Yt-Y IYt-Y o = DF~(Y) + t lJ(l), Finally, the points
yt = yt
,
\
,
I
-
w i t h t h e l a s t term vanishing i n t h e limit.
Thus lim(yt-y)/t
E
r
Now merely l e t Example
q,
Q.
vary over
Q,ED
(Capture with two pursuers)
Consider a game with
p a r t i t i o n e d dynamical equation
= y o r x2 = y, and player con1 U1, U2, V (nonvoid, compact, convex, symmetric).
termination condition s t r a i n t sets
x
We need not assume t h a t t h e dynamical equation i s a c t u a l l y uncoupled (i.e., t h a t
.
is appropriately block-diagonal) The Necessary Condition i s not d i r e c t l y applicable, s i n c e t h e t a r g e t set R = L u L2 i s a union of l i n e a r subspaces, 1 and hence i s not convex ( t r i v i a l cases expected). Enlarging R t o i t s convex h u l l y i e l d s no information a t a l l : cvx R i s A
t h e e n t i r e s t a t e space. I n applying Proposition 1, l e t endpoint t o any f i x e d constant
y E R
v € V.
144
be a s t a t e response
Then
Nk(y) =
4 is
ISOCHRONOUS CAPTURE
independent of
y, so t h a t Proposition 1 y i e l d s
Q (we have l e t
q
-
vary Over
QC
P
-
also).
Q
P + (L1 U L2>
By convexity and
symmetry, then QC P +
(L1 U L2> = (P
+
4)U ( P
+
L2>*
Here
so t h a t , i n t h e n a t a t i o n of our game,
vc
u1
u
u2
i s a necessary condition f o r isochronous capture.
In particu-
l a r , i f U1 = U2 = U, then isochronous capture by t h e two pursuers i s ruled out u n l e s s t h e necessary condition V c U for a single pursuer ( t h e o t h e r i n a c t i v e ) is s a t i s f i e d . F i n a l l y we t r e a t one case where (10) provides no informat i o n because, i n a sense, t h e players have c o n t r o l orders higher than 1. PROPOSITION 2
and
r R = U (bk + $) k=1
Assume t h a t
P i s a compact and convex,
a f i n i t e union of a f f i n e manifolds.
Q - Q cn $ 2 P - P , k=1
then (12)
A(Q
r
- Q ) c A(P - P) + k=l u $
i s a necessary condition f o r n o n t r i v i a l isochronous termination.
(Proof) Choose matrices
l$
so t h a t
whereupon (11)y i e l d s 145
4=
{x: l$x
= 0’)
,
If
PURSUIT GAMES
-
%(Q
Q)
= 0 = %(P
- P)
t = t. + 0 J and an index k such t h a t a l l yt E R belong t o bk + $. Then so does y = l i m yt, and Z ( y t y ) = 0. I n ( 2 ) premultiply by Z, d i v i d e by t2 and t a k e t = t . + 0: J for a l l
k.
Referring t o ( 2 ) , f i n d a sequence
-
(with
k
p o s s i b l y depending on
qe,
and one need only l e t
90
q,,
q).
vary Over
I n any case r Q t o obtain (12).
BED Exercises 1. I n Proposition 1 omit t h e assumption on
R, and con-
clude, i n place of (lo), t h a t Q
where
Ry,
t h e tangent set of
f i n i t e limits of 2.
- q C P - P + RY
%(yk
Prove t h a t
R Y
- y)
R
as
at
y E R, c o n s i s t i n g of a l l
% + + 03. i s such; show t h a t ,
yk + Y, yk E
i s convex i f
R
f o r g e n e r a l t a r g e t s , t h e tangent s e t need not be convex.
3.
Show t h a t , i n ( l o ) , one need only t a k e unions over
those indices
4.
k
f o r which y E
%.
Consider a game with two pursers and one quarry, with
n-dimensional equations of motion
..5 = %, ..y = v,
and termin-
o r y = x2' Show t h a t V c U1 u U2 i s a necessary condition on t h e c o n s t r a i n t s e t s (compact, cona t i o n condition y = x1
vex, symmetric) f o r n o n t r i v i a l isochronous capture. mediate answer:
(Inter-
%A = (0 I 0 0 0 -I) i n t h e n o t a t i o n from
t h e proof of t h e lemma.)
5. Treat games analogous t o t h e preceding, with one o r two of t h e players having c o n t r o l order 1 r a t h e r than 2. 146
ISOCHRONOUS CAPTURE
6 . Consider yet another type of game with two pursuers and one quarry, = Ax
- p1 - p2
+
9; pk(t> E Pk, q(t) E Q,
with x E 4, as the k-th pursuer goal. Assume that 4, are linear subspaces, and Pk,Q nonvoid, compact, convex, symetric. In terms of the first-order necessary conditions (i.e., (4) for k = 1) compare the following situations: the first pursuer decides to treat the other as added nuisance; both pursuers do this; the pursuers cooperate. (Warning: the last implies that both goals are reached simultaneously.) Remarks The exposition in 4.1 and 4.2 is based on two eponymous sections of 0. Ha’jek:
Lectures on Linear Pursuit Games (unpublished) Case Western Reserve University,
1973*
,
-
The reader of these lecture notes should be warned that a questionable assertion appears there: Q c P + R1R is necessary for isochronous capture if P,Q are compact, convex and symmetric, but R is not necessarily convex. If true, this would provide a simpler apparatus for treating the example of several pursuers in 4.2; the proof is certainly false. As for further developments, it would be desirable to treat the situation of (8), i.e., finite unions of C1 targets, for higher player control orders than 1 and 2; even the case r = 1 is interesting. A more ambitious project is suggested by CONJECTURE 1 Isochronous capture is stroboscopic: if a position can be forced to termination at time t > 0, then some stroboscopic strategy has the same effect. CONJECTURE 2 For each non-anticipatory strategy, the 147
ISOCHRONOUSCAPTURE
set of a l l s t a t e response endpoints, a t given time and from g i v e n i n i t i a l p o s i t i o n , i s convex ( o r a t l e a s t has convex closure )
.
For t h e first, it might b e useful t o experiment w i t h affine strategies,
t
~ [ q I ( t )=
U(t>
for g i v e n u, and matrix-valued
148
W.
+
J
dsW(t,s) 0
q(6)
CHAPTER V
I n a game it may happen t h a t some p o s i t i o n s can be forced t o the t a r g e t , but not isochronously.
A p a r t i c u l a r l y simple
case i s t h e one-dimensional rocket chase of 1.3: every point can be forced t o termination, b u t none isochronously (see Exercise 1 i n 3.4 and t h e Necessary Condition of 4.2). Thus, t h e r e i s a need t o study g e n e r a l capture.
That
t h i s i s not a simple extension of previous results is s i g n a l l -
ed by the f a c t t h a t t h e sets of winning p o s i t i o n s a r e not convex even when t h e y n a t u r a l l y ought t o be: compare Lemma 1 of 4.1 with Exercise 7 i n 5.1. Our results here are, necess a r i l y , much more modest. Material analogous t o t h a t of Sections 4.2 and 3.4 i s presented i n 5.1 and 5.2. The remaining two s e c t i o n s concern s p e c i a l cases:
t a r g e t s e t s which a r e e i t h e r very large,
namely e n t i r e half-spaces, 0
a s one p o s s i b l i t y .
o r s p e c i a l l i n e a r subspaces, with
I n both s i t u a t i o n s it t u r n s out t h a t
capture i s n e c e s s a r i l y isochronous, w(o,e) =
u
cktse
w(t>
i n t h e n o t a t i o n of 2.2. The two cases are, i n a sense, opposite extremes: i n the f i r s t i t sometimes happens t h a t W(0,e) = Rn
for a finite time
8; i n t h e second, u s u a l l y
W(0,t) = W ( t ) .
5.1 Necessary Conditions For t h e study of g e n e r a l capture, t h e appropriate concept is t h a t
of winning position, and w i n n i n g s e t W(O,B), 149
PURSUIT GAMES
introduced i n 2.2.
For l i n e a r games
-
= Ax P + qi ~ ( tE )PI q ( t ) E Qi end: x E R: state space: R",
(1) t h e winning s e t
c o n s i s t s of a l l p o s i t i o n s
W(0,B)
x
E
Rn
to
such
which t h e r e corresponds a non-anticipatory s t r a t e g y u that At x ( t ) = e (x
(2)
SO
e
-As
(u[ql(s)
- q(s))ds) E R
q ( * ) and some termination time
f o r each quarry c o n t r o l
t E
-
[o.el.
The attempt t o o b t a i n r e s u l t s p a r a l l e l t o Lemma 2 and Corollary 1 from 4.1 n a t u r a l l y l e a d s to t h e conaept of minimilm time of winning, and t o t h e p r i n c i p l e of suboptimality i n 2.3.
4
x a r e those w i t h x R (usage d i f f e r i n g from t h a t of Chapter 4, where t h e term refer-
The n o n t r i v i a l winning p o s i t i o n s red t o
x € W(e)
LEMMA
with
0
> 0,
but
P,Q
a r e compact, and
Assume t h a t
x
E
R
allowed). R
closed.
I f t h e r e e x i s t n o n t r i v i a l winning p o s i t i o n s , then even l i m (wto,t)\n>
t+O+ (Proof:
4 $.
d i r e c t consequence of Corollary 1 i n 2.3.)
Consider again t h e one-dimensional homicidal chauffeur game; i n p a r t i c u l a r , t h e d i s p o s i t i o n of i t s winning sets W(0,t)
f o r small t i m e s
t
> 0,
f i g . 4 i n 1.3.
We w i l l show
t h a t , i n an appropriate sense, t h i s s i t u a t i o n i s q u i t e genera l ( s e e t h e Corollary, and Exercise
7).
f o r n o n t r i v i a l capture w i l l be developed
A necessary condition
- obviously t h i s must
be weaker than t h e v e r s i o n i n 4.2 applying t o isochronous capture.
Then, by modifying it s l i g h t l y , a s u f f i c i e n t ' l o c a l '
condition w i l l be obtained i n 5.2. THEORFlM
I n t h e game ( 1 ) assume t h a t t h e p l a y e r s '
150
CAPTURE
c o n s t r a i n t sets a r e compact, convex, and symmetric, and t h a t t h e t a r g e t i s contained w i t h i n t h e a f f i n e manifold [x:
Mx = Mb]
.
Then
(3 1
MQc
holds f o r every point
MP
+ [-1,1] MAX
x E l i m (w(o,t)\n).
ho+
(Proof) F i r s t consider any point x E w(o,B)\R, and quarry c o n t r o l value q E Q. On choosing a winning s t r a t e g y , f o r t h e constant quarry c o n t r o l q we have, from (2), t h a t a.
MeAt(,
+ SbemAsds q ) 0
4
R (see Exert E [O,e]j f'urthermore, t > 0 s i n c e x cise 2 i n 2.3). Analogously for the quarry c o n t r o l -9: r MeAr(x Joe -AS ds q) E Mb + MeArRp(r), 0 5 r s 0.
with
-
NOW
t + r > 0 and rearrange, using
s u b t r a c t , d i v i d e by E [0,11:
A = t/(t+r)
+
t
M(eA thF 1 J e-Asas q + eAr(l-h)$ 0 A t Rp(t) M(e A
t - e
&
Jr e-Asas
Rp(r 1 (1-h) -). r
q)
E
0
Now r e t u r n t o t h e a s s e r t i o n ; take a point
Apply (4) t o t h e verge t o
0
5; t h e
since
Ok
+
tk,rk con[O,ll w i l l The Limit
r e s u l t i n g capture times 0.
The weights
X = Xk
have a convergent subsequence h . + 11 E [0,11. J Theorem f o r reachable s e t s then y i e l d s
151
e
PURSUIT GAMES
- (l-P)Ax)
M(W&
+
M(C19
+
(l-P)q)
(&-1)MAx + M q from t h e assumptions on and
0
-1 s
x
- (l-P)P),
MP
and
q
a r e independent,
1 y i e l d s constant bounds f o r t h e s c a l a r factor,
g CL L
a-14
Here
P.
E
E M(WP
1. &ED
NECESSARY CONDITIONS
Under t h e assumptions of t h e
theorem, [ - i , i ~ c f o r some
M Q CMP +
aim
MQ s 1
E
c
R ~ ,
+ aim MP
a r e necessary f o r n o n t r i v i a l capture.
(Proof) I f some W(0,e) points
x
=/
E l i m (W(O,e)\R,
Example
R, then, by t h e lemma, there e x i s t
and we may take
c
=
MAX.
QJ3D
The n-dimensional equations of motion a r e
..x + A ~ + B x = u ,
with pursuer's constraint s e t
U
$=
Q-V,
and quarry's
The t e r -
V.
mination condition i s perfect capture, x = y. The appropriate s t a t e space i s X,k,y)j t h e matrix
M
(with coordinates
F?"
is then ( I 0 -I); P consists of vect-
ors with components O,u,O,
and
Q
of those with
O,O,v.
MQ = V, MP = 0, so t h a t by t h e condition above, non-
Thus
t r i v i a l capture cannot occur unless
V
i s a segment.
A very
.
s p e c i a l case of t h i s i s t h e i s o t r o p i c rocket game
..
x + a x = u, y = v in
R2, with t h e d i s c f o r quarry's constraint s e t :
perfect
capture i s impossible. COROLLARY
l i n e a r subspace tives:
I f , i n t h e theorem, t h e t a r g e t s e t i s t h e [x: Mx = O}, w e have t h e following alterna-
e i t h e r t h e necessary condition M Q c MP f o r iso-
chronous capture obtains, or, f o r small capture times, t h e r e a r e no n o n t r i v i a l winning positions near t h e origin: 152
CAPTURE
(5)
nG
W(0,c)
f o r some
c
(Proof)
>
0
and neighbourhood
Indeed, e i t h e r
x = 0
c R
G
of
0.
i s allowed i n ( 3 ) , o r
so t h a t ( 5 ) holds.
not belong t o l i m (W(O,t)\R),
does
0
Q,ED
Exercises 1. Show t h a t , i f
W(0,t)
and
P,Q,R and
W(O,t)\R,
a r e symmetric, then so a r e If
T(x) = T(-x).
P,Q,R
a r e com-
i s bounded, and an e x p l i c i t bound i s
pact, then each W(0,t) e a s i l y exhibited. Assume t h a t
2.
{x: M x = Mb], j N = {x: Mx = 01, L = {x: MA x = 0 f o r j = 0,1, 3.
and set
Prove t h a t W(s)
=/
i s t h e a f f i n e manifold
R
W(0,t) + L c W(0,t); i f
W(0,t)
...
contains some
$, t h e n even W(0,t) + e - A s N c W(0,t).
3.
Let
R,N
be a s i n Exercise 2, and
P,Q
+ R+c
Show t h a t , i f W(0,B) contains a r a y x -At then c E e N f o r some t E (O,e]. (Hint:
compact.
with
x
4
R,
Exercise 11 i n
4.13 be r a t h e r c a r e f u l i n checking t h a t t > 0 . ) 4. Obtain a version of Lemma 2 from 4 . 1 applying t o g e n e r a l capture: each point
x
P,Q
if
i n W(O,e)\R X
f o r small t
5. that, i f Md = 0
6.
2
0.
+
(Hint:
a r e compact and
R
closed, then
satisfies
RQ ( t ) c Rp(t) + e-
At
W(0,e-t)
Exercise 2 i n 2 . 3 )
Discover unused assumptions i n t h e theorem, and prove Q contains a r a y with d i r e c t i o n or a U W(O,t) = R.
d, then e i t h e r
Sharpen t h e second a l t e r n a t i v e i n t h e c o r o l l a r y t o :
t h e r e a r e no winning p o s i t i o n s c l o s e t o t h e set
7.
Prove t h a t , i f t h e f i r s t a l t e r n a t i v e i s t h e c o r o l l a r y
does not apply, t h e n t h e winning sets
153
W(0,t)
cannot be
PURSUIT GAMES
convex f o r small t
>0
unless t h e y a r e t r i v i a l .
(Hint:
Exercise 1.) Remarks The elements of t h e a e t
l i m (W(O,t)\n),
hc+
which appeared
n a t u r a l l y i n t h e course of developing t h e Necessary Condition,
w i l l be s t u d i e d i n g r e a t e r d e t a i l and g e n e r a l i t y i n Chapter VII
.
I n t h e game with n-dimensional equations of motion
..x = y
- q,
y = p; end: x = y
a l l p o s i t i o n s a r e winning ones i f
n = 1 ( t h e one-dimensional
homicidal chauffeur), but, according t o t h e example, f o r n
>1
t h e r e a r e no winning p o a i t i o n s o t h e r t h m t r i v i a l ones. Though t h i s might be blamed on t h e n a t u r a l p e r v e r s i t y of t h e number 1, probably a b e t t e r reason i s t h a t t h e t a r g e t set
n = 1 but not otherwise; t h e case of s e p a r a t i o n w i l l be t r e a t e d i n 5.3. (For a nonlinear s i t u a t i o n see Example 1 i n 7.3 and 7 . 2 . )
s e p a r a t e s t h e s t a t e spece i f
The second a l t e r n a t i v e of t h e c o r o l l a r y requires t h a t , i n t h e t e r m i n a l s t a g e of s u c c e s s f u l capture, t h e s t a t e v a r i a b l e b e r e l a t i v e l y large; e.g.,
i n one-dimensional rocket chase,
t h e speed is a t l e a s t 1 terminally.
Actually, t h e phenomenon
r e c u r s i n proposed winning s t r a t e g i e s f o r specific games. See, e . g . , references under 'swerve manoeuvre' i n R. Isaacs:
D i f f e r e n t i a l Games, Wiley, New York, e t c . ,
1967
CONJECTURE
I n t h e game (1)assume t h a t
P,R a r e comis a l i n e a r subl i m (W(O,t)\n), then so
pact, convex, and symmetric, and t h a t space.
If a point
x belongs t o
does t h e e n t i r e r a y [l,+m)x.
R
ho+
A d i f f e r e n t type of necessary condition was presented i n
154
CAPTURE
L. S. Pontrjagin, E. F. Migzenko:
The problem of escape of one c o n t r o l l e d object from another, Doklady Akad. Nauk SSSR 189 (1$9), 721-723;
i n our n o t a t i o n it can be formulated a s follows.
I n (1)l e t
P,Q be compact and convex, and t h e t a r g e t t h e l i n e a r subspace Ex: Mx = O}, with M of type (m,n) and m 2 2. If
t h e n n o n t r i v i a l capture is impossible (furthermore, t o every position
x w i t h small Mx
t h e r e corresponds an i n d i f f e r e n t
evasion strategy, and lower estimates of Note t h e unexpected order of
and
Q
P
IMx(t)
I
a r e given).
i n (6); and a l s o t h e
innocuous b u t s i g n i f i c a n t assumption m 2 2: i n t h e case m = 1 n o n t r i v i a l capture i s u s u a l l y p o s s i b l e according t o 5.3.
5.2 S u f f i c i e n t Conditions I n t h e preceding s e c t i o n a necessary condition f o r nont r i v i a l capture was obtained, applying t o t h e l i n e a r game (1)
= Ax
-P
+ q; ~ ( t E) P, q ( t ) E Q Mx = Mb; s t a t e space: Rn
end: (M i s an (m,n) matrix).
The condition may be r e w r i t t e n as
M Q c M(P
with x
d =
-
Ax
+
[0,2]Ax) c M(P
- Ax - R'd)
-AX; t h i s i s t o hold f o r a l l p o i n t s
E lim(W(O,t)\n).
The t r a n s i t i o n from t h i s t o a s u f f i c i e n t
condition is modelled on t h e f a r simpler case of Corollary 2 i n 3.4.
The b a s i c idea i n t h e proof i s 'constant bearing
navigation,'
properly formulated i n Corollary 1.
THEOREM I n t h e game (1)l e t t h e p l a y e r s ' c o n s t r a i n t sets be nonvoid and compact. If a point x E R s a t i s f i e s (2)
M Q c I n t M(P
155
- Ax - R"d)
PURSUIT GAMES
( i n t e r i o r i n Rm) f o r some vector t r i v i a l winning positions near Md
4 0,
d E Rn,
then t h e r e a r e non-
More precisely, i f a l s o
x.
then
(3)
+ ( 0 , 6 ) d c I n t (W(O,e)\R)
x
holds f o r small (Proof)
~
>6 0.
9
is compact, t h e term R+d
Since MQ
i n ( 2 ) can be
replaced by [a,P]d w i t h 0 C a C p + 0 0 . For t h e same reason, t h e containment i s preserved i f t h e e n t r i e s a r e varied slightly:
x
replaced by
y
small; note t h a t then perturbed :
y
6
t
4
x + cd
R ) j and t h e term
- Ay) -
MeAeQcMeAe(P
[0,9] and 7\ >
(for 0 < 5 < 6 Q
and
P
-
Ay
[a,P]Md
for a l l
8 E
small enough.
is t h a t = 0.
8 H eAe i s continuous, w i t h i n i t i a l value
0
with
The point here I
at
e
Thus, f o r each
q E Q
p E P and h E [a,P]
and
8 E [0,91,
such t h a t A8
Me
A8
q = Me
(p
-
Ay)
there e x i s t s
- AMd.
Now use Filippov's Lemma from 3.9 t o describe these solutions p,k
as values of suitable mappings 0:
Qx R
1
4
P,
which preserve measurability.
(9:
1
Q x R + [a,Pl
We propose t o show t h a t o
is
a winning strategy (stroboscopic but not isochronous) f o r y as i n i t i a l position. If
0L s L t
L
t
7
and
Now integrate, JOdS, using
y = x + Cd, Mx = Mb
q(-)
J
t
i s any quarry control, then
eA(t-S)(-Ay)ds = eAty
0
t o obtain
156
-y
and
CAPTURE
= Mb
- J0~(q(S),t-s)dS)Md.
+ (5
This has been assembled i n t o t h e form
(4 1
w ( t ) = Mb + Jl(t)Md, y ( * ) i s t h e s t a t e response f’rom i n i t i a l p o s i t i o n yo
where and
Jl
Obviously JI
denotes t h e bracketed term.
=/
valued, continuous s i n c e y(.)
i s such and
remains t o show t h a t
f o r small t > 0
pending on t(t) = 5
-
It
0.
(possibly de-
q(0)). Since u g c p ( - ) 5 p, t h e function t J’cp(*) s a t i s f i e s $(o) = > 0, $ ( t ) 5 5 at.
Thus indeed
7).
$(t) = 0
Md
i s real-
0
-
$(t) = 0
for some t E (O,E], where
This shows t h a t t h e p o i n t s
i n W(0,E) and o u t s i d e R.
x
Letting
+ d
sd
with 0
E
= min(6/u,
<5 <
are
6
vary s l i g h t l y so t h a t
( 2 ) i s preserved, we o b t a i n an open set of winning positions,
as asserted i n (3).
QED
An i n t e r e s t i n g effect appeared a s (4) i n t h e preceding proof:
if
Mb = 0
f o r s i m p l i c i t y , t h e observations
My(t) of
t h e s t a t e responses maintain a constant d i r e c t i o n ( f i g . 1).
COROLLARY 1 To t h e p o s i t i o n s y on x + (0,6)d t h e r e correspond winning s t r a t e g i e s such t h a t t h e s t a t e responses y(*) satisfy My(t)
E
Mb + R’Md
f o r a l l times up t o termination.
COROLLARY 2 If t h e t a r g e t i s a l i n e a r subspace and a point x i n it s a t i s f i e s 1 MQ c I n t M( P + R A x ) , t h e n a l l points ex with l a r g e belong t o l i m Int(W(O,t)\R). {x: Mx = O}
157
1.9
1
PURSUIT GAMES
Fig. 1 (schematic) Constant Bearing Navigation: various state response6 project onto a single direction. Q c Int M(P + [a.,P}Ax) (Proof) From compactness, M finite ct p; then
MQ c Int M( P
- Aex -
158
[ct-e,p-el~x)
for
CAPTURE
yields (2) for the point 8 , direction d = Ax, and a l l 8 5 a. Analogously f o r -x i n place of x. QED Example Consider t h e two-dimensional game with highly mobile quarry, x1 = x2 '
x2 =
.
Y l = "1, Y2 = v2
and perfect capture x l = yl, x2 = y2 as termination condition. The quarry's control constraint s e t is the unit disc, 2 v: + v2 s 1. The only aavantage t h a t t h e pursuer has i s h i s s l i g h t l y greater capability i n one direction only! I u ( t > l s 1.1. 4 The s t a t e space i s R , t h e observation matrix M = (I,-I) With t h e notation from the theorem, the sets has t y p e (2,4). MP and MQ a r e as indicated i n f i g . 2 j i n particular, isochronous capture i s impossible (see 4.2). Next, MA=
(
1
o
0
1
-1
o)(,o 0
0 - 1
1
o o)=(o
0
0
0
0
1
o
0)j
0
0
0
0 0 0 0 0 0 0 0
thus a point 39x4
x
i n the t a r g e t set, w i t h coordinates x1,x2,
has
Fig. 2 I l l u s t r a t i o n of necessary, sufficient conditions f o r capture. 159
PURSUIT GAMES
For the Necessary Condition of 5.1 we investigate all the shifts of MP by vectors between MAX and -MAX. Referring to fig. 2 again, these will cover MA if Ix21 2 1: the necesary condition for capture. The sufficient condition from the theorem is also illustrated there; 1x21 > 1 is needed, and the directions d are obvious. Mere presence of nontrivial winning positions is easiest obtained from Corollary 2. Exercise For the game with n-dimensional equations of motion
x
=
Ax
- p,
= By
- q; end:
x
=
y
find conditions for presence of nontrivial winning positions. (Remark: the case A = B is treated separately as Exercise 2 of 3.1.)
Remarks This section is based on 0. Ha'jek:
The principle of constant observation (submitted)
The form of the sufficient condition in the theorem suggests that the necessary condition from 5.1 is reasonably sharp, that there are no further independent necessary conditions (for presence of nontrivial winning positions; if one also demands complete capture, further requirements will appear). The geometric interpretation (fig. 1) is that, in the terminal stage of capture, the pursuer adopt8 constant bear3navigation, of maintaining constant direction of the observed velocity vector &(t). E.g., (3) in 5.1 may be read as I&=
M(Ax
160
- p + q) E dM'R
CAPTURE
for
a
=
-AX.
The p r i n c i p l e extends t o nonlinear games: see 7.3 and 7 . 2 j t h e formulation applying t o games without separation of t h e players is somewhat unexpected (Theorem 1 i n 7.3). Neither result a p p l i e s w e l l t o second-order games, f o r instance t o t h e example i n 3.4. A necessary condition follows from more g e n e r a l considerations i n 7.3: f o r t h e l i n e a r game
(5)
..x + A .x + B x = p - q j e n d :
with assumptions on
P
and
Q, t h i s reads
M Q c MP + [-l,l](&+Bx)
f o r points ( x , : )
in
Mx=Mb,
lim(w(o,t)\n);
+R
k
i n particular,
dim MQ < 2 + dim MP. A s u f f i c i e n t condition f o r t h i s game i s attempted i n t h e re-
ference.
It would be very d e s i r a b l e t o obtain usef'ul condi-
t i o n s f o r a r b i t r a r y player orders, a s was c a r r i e d out i n t h e case of isochronous capture. A second p r o j e c t concerns 'bracketing' of quarry by
Thus, l e t t h e n-dimensional (n
s e v e r a l weaker pursuers.
> 1)
equations of motion be ;(k =
%
(1s k
5
r),
$
= v,
I \ ( t ) l s 1, I v ( t ) ( s 2, and some 5 = y Are t h e r e any n o n t r i v i a l winning p o s i t i o n s ?
say with c o n s t r a i n t s
a t termination.
Isochronous capture has been r u l e d out by t h e example i n 4.2. One conclusion from 5.1 and 5.2 i s t h a t many one-dimensional ('rectilinear',
i . e . , with rank M
= 1) games a r e
winn-
able, while most planar games a r e not unless they a r e of s p e c i a l form such a s (5).
This might be made more p r e c i s e by
defining an appropriate manifold, whose elements a r e games i n
fixed dimensions, and showing t h a t t h e winnable games constit u t e a set which does, o r does not, have nonvoid i n t e r i o r . 161
PURSUIT GAMES
5.3
Large Targets The games t r e a t e d i n t h i s section, = AX
(1)
- P + qi
have r a t h e r large t a r g e t s :
P ( t ) E P, q ( t ) E Q;
e n t i r e half spaces of the s t a t e
space. Obviously t h e r e is a closely r e l a t e d s i t u a t i o n where the t a r g e t i s the boundary hyperplane {x: c'x = u} (or the s l a b described by
Ic'xI s
C,
etc.)
Indeed, every n o n t r i v i a l
position is forced t o t h e hyperplane; conversely, forcing t o the hyperplane i s equivalent t o forcing t o one of t h e halfspaces {x:
c'x
5
u}, {x:
c'x
2
u]
depending on t h e i n i t i a l position. I n the terminology of 6.1 t h e hyperplane t a r g e t s correspond t o game spaces of dimension
5.1 i s no r e s t r i c t i o n no information). It w i l l be convenient t o introduce a t the outset some common assumptions and notation. 1; f o r these t h e Necessary Condition of
. ., provides
(i e
ASSUMPMONS
I n (1) the player constraint sets are non-
void and compact; t h e normal vector
c
4 0.
Using Filippav's Lemma, choose player controls :(a), 1 q(.) which maximise i n t h e sense t h a t , f o r a l l t E R AtAt t At(2) c'e p ( t ) = max c t e p, c e q ( t ) = max cteAtq. PEP qEQ 1 Define ct 0 i n Rn and ut E R by t At c' = c'e t ' "t = u + ~ o c : ~ ( s ) ';i(s))de.
-
,
-
,
eAsr not our usual e-AS. one reason f o r this is t h a t t h e condition f o r s t a t e response endpoint x ( t ) E R may usef'ully be rewritten 8s
Note t h R t t h e integrand contains
162
CAPTURE
t
(4)
t
I n t h i s notation, ( 2 ) i s
(5)
LEMMA 1 For each t
2
0, the isochronous winning s e t
W(t) = {x:
CCX
5;
ut’l;
f’urthermore, u ( s ) = p ( t - s ) defines an indifferent (hence, stroboscopic) isochronous winning strategy, independent of positions x E W(t). (Proof) F i r s t take any x E Rn i n t h e indicated half-space, and use t h e strategy u . Then the s t a t e endpoint x ( t ) , responding t o any qunrry control q ( * ) , has t
t
(we have estimated the l a s t term via (5)); continue, using ( 3 ) , t o obtain = u
+ (c{x
- at) s u +
0.
R a t t. This establishes one inclusion i n t h e assertion. For the other, take any x E W(t), and consider any winning isochronous strategy u . Then x ( t ) E 0, so t h a t (4) holds with p = u[q] f o r each admissible quarry control. I n particular, we may use q ( s ) = T(t-s), and estimate the second term v l a (5) t o obtain Thus indeed
u
forces x
T h u s indeed
ut
2 CCX.
to
163
PURSUIT GAMES
LEMMA 2
For each winning p o s i t i o n x
outside
R, t h e
m i n i m t i m e T(x) concides with t h e first time t 2 0 f o r which c'x = a t' t (Proof) We s h a l l e s t a b l i s h t h e two i n e q u a l i t i e s T(x) s min t T(x). T h e ' f i r s t follows quickly from Lemma 1: i f c'x t = ut'
4
x E W(t), so t h a t T(x) s t . The proof of t h e second i s considerably more complicated, s i n c e we cannot assume t h a t t h e t e r m i n a l times a r e independent
then
of quarry's choices.
Choose any point
x
4
win, and t h e n a s t r a t e g y u which f o r c e s x Then (4) holds w i t h
bounded time i n t e r v a l .
t
=
i n position t o
R
T(x,p,q) s T(x,u)
to p
=
R
within a
u [ q ] , and
<+ =
f o r any quarry c o n t r o l q ( * ) ( t h e T-notation was introduced i n 2 . 3 ) . Use (5) t o estimate t h e f i r s t i n t e g r a l term; and, 1 f o r any E R choose t h e quarry c o n t r o l qes qe(s) = :(+a): t t u 2 C ~ X J,C; p(s)ds + q(B-t+s)ds (6 1
,
S,C~-
-
t = T(x,u[q e 1Jqe). Thus t h e f i r s t time t ( e ) t h a t (6) holds s a t i s f i e s for
(7) (Observe t h a t
0 s t ( e ) s T(x,u[qel,qe)
2
0
such
s T(x,a).
t ( e ) depends on qe and hence on e, but not
on u . ) For reasons possibly obvious from ( 6 ) , we wish t o f i n d a f i x e d p o i n t 8 = t ( e ) of t ( * ) ; f i r s t we show t h a t t h e Punction t ( . ) , bounded according t o (7), i s lower semi-continuous. For any eo E R1 f i n d a sequence ek + e0 such t h a t t(e,) converges t o liminf t ( e ) = t. Taking limits i n *eO
(6) with e = ek and t = t(Bk), we f i n d t h a t (6) a l s o holds f o r 8 = eo and t = to, and hence t h e first time t ( e o ) 4 to a s a s s e r t e d (you may wish t o r e w r i t e t h e second i n t e g r a l term
164
CAPTURE
t
c'eA(t-s) <(e-s)ds 0 weakly: f o r any a s p, as
q(ek-s) + :(e-6)
and note t h a t
has norm bounded by 2 Iek-c3 ldiam Q
+
0. )
With t h i s established, consider t h e s e t 0
1
= {e E R : t(e) s
It i s bounded, a s a l l
8 i T(x,u)].
i s lower semi-continuousj and nonvoid, s i n c e i t contains a t l e a s t the 8 = T(x,a).
point
t(e)
0; closed, s i n c e
2
e0
It follows t h a t
= inf 0
t(.)
i t s e l f be-
longs t o @, t(@,) g Go; and s t r i c t i n e q u a l i t y i s precluded by semi-continuity.
We have shown t h a t
t(eo) Now, i n (6) with a
eo
2
c ' x.
t
first
eo f o r some eo E [O,T(x,u)l.
=
t = t ( e ) , choose
(note
a
<
c'x
as
4 n)
x
t h e second i n e q u a l i t y . THEOREM
eo; t h e r e r e s u l t s
Thus, i n t h e o r i g i n a l a s s e r t i o n , t h e r e e x i s t s a
a l l y , t a k e i n f i a a Over s t r a t e g i e s T(x):
8 =
u
and t I; T(x,u). Fint o obtain t s i n f T(x,u)=
QED
I n t h e game (1) assume t h a t t h e p l a y e r s ' con-
s t r a i n t sets a r e nonvoid compacta, and t h e t a r g e t s e t a nont r i v i a l half-space.
Then capture i s isochronous and strobo-
scopic,
(8)
w(o,e) = u[w(t):
os
t
i
e}
= {x: T(X) s
e]
and, i n t h e previous notation,
(9)
w ( t ) = {x:
C;X
s ut), aw(t) = {x:
165
C'X
t
= a
t
3.
PURSUIT GAMES
Furthermore, t o each winning position
x
there corresponds an
optimal pursuer strategy which is indifferent, isochronous, and independent of positions w i t h t h e same minimum time:
-
~(T(X) 8). (Proof) For (8), quite generally
~ ( 6 = )
u
ckke
w(t) c
w(o,e)
c {x: T(X) g e]
(see 5.1, (4) and Exercise 4). If T(x) 5 8, W(0) = R, o r x R j i n t h e second case t = T(x) by Lemma 2, and then x W(t) by x
t = T(x)
then c'x t = Lemma
either t for 1, with
u
5 8.
The f i r s t r e l a t i o n i n (9) is i n Lemma 1, and implies the
second (note c 4 0 from t h e assumptions). assertions a l s o follow from Lemmas 1 and 2.
The remaining &ED
One i l l u s t r a t i o n is t h e treatment of the one-dimensional rocket chase i n 1.3; our theorem now provides proper justification for the plausible arguments used there. Example 1
I n terms of' coordinates i n R2, the game has
equations
.
x = y pursuer's control u
4.
u + v, y = -x -u
and quarry's
v
+
v;
are both constrained t o
t h e i n t e r v a l [ - l j l ] j t h e termination condition is x s 0. Explicitly, t h e data a r e a s follows: n = 2,
Then c' = cleAt = (cos t, s i n t ) J
t
166
c:
-p ( t ) = max c{(-;)u U
CAPTURE
= Isin t-cos t J , c ; t ( t ) = J s i n t+cos t J ,
Let us f i r s t t r e a t the case t s x/4, i.e., describe W(O,n/4); then (10) reduces t o t at = -2Sin 8 d6 = -2(l-C0S t ) ,
so
so t h a t
W(t)
consists of a l l points (x,y) with x COE
t + y sin t
5
-2(l-cos t ) .
The boundary l i n e s aW(t) have an enveloping curve, an arc of the c i r c l e (x-2) + y2 = 4. It follows t h a t the boundary
of aW(O,n/k) consists of two rays and a c i r c u l a r arc) see f i g . 1. For constant player controls u7v the t r a j e c t o r i e s satism
=
!, X
- v)dx + (y + u + V)dy = 0, (x + u - v12 + (y + u + v12 = const. (X
+u
Hence they a r e (arcs o f ) concentric circles; according t o the dynamical equation, the motion i s clockwise. I n particular, within W(O,a/4), f o r optimal u = -1 the centre i s a t (2,O) f o r t h e worst v = 1, and a t (0,2) f o r cooperative v = -1. What i s qualitatively d i f f e r e n t from one-dimensional rocket chase i s t h a t the enveloping curve i s outside 0.: W(rr/4)
i s properly contaihed i n W(O,rr/&). One consequence i s t h a t the minimal t i m e function is discontinuous i n a spectacular manner. Consider a position x E R2 outside W(O,rr/b) but close t o the circular arc, and use controls u = v = 1. Along the resulting trajectory, T ( x ( t ) ) > n/4 up t o the time to n when x ( t ) meets the arc; then T(x(tO)) C value 107
PURSUIT GAMES
depending on which tangent, i . e . , aW(s), i s reached.
n
Fig. 1 Forcing t o half-plane. The piecewise smooth curve i s t h e boundary of W(O,n/4); t a n g e n t s t o i t s c i r c u l a r a r c a r e boundaries of isochronous W(t) f o r 0 s t < IT/&. Returning t o (lo), W ( t )
x cos
(11) At
t = n we obtain x
i n (10) has mean value point i n
i s c h a r a c t e r i s e d by
R2
2
0
0
t + Y s i n t s at.
(note t h a t indeed t h e integrand
over [O,nI).
belongs t o some W(t) 168
for
It follows t h a t every
0 s t s n:
and t h e
CAPTURE
conclusion
sup T(x) =
IT
i s q u i t e p l a u s i b l e geometrically.
The result f o r W(O,n/k)
suggest looking f o r c i r c u l a r
enveloping curves. The condition t h a t t h e boundary l i n e of 2 2 (11)be tangent t o t h e c i r c l e ( x xo) + (y yo) = r2 i s
-
that
r
-
be i t s d i s t a n c e from t h e c e n t r e .
-
x0cos t + yo s i n t - a t = + r The c i r c l e w i l l be connuon t o t h e l i n e s i f f t h e expression on t h e l e f t i s constant; s e t t i n g t h e d e r i v a t i v e equal t o zero,
%
(12) -x 0s i n t + y 0cos t = t = Isin t-cos c 1 d
-
l s i n t+cos
tl.
t !s IT need be t r e a t e d , and t s n/4 already has; n a t u r a l l y w e simplify by breaking up a t t = 3 1 ~ / 4 . For n/4 s t !s 3n/4 w e have dat/dt = -2 cos t, (12) becomes -xo s i n t + (yo + 2)cos t = 0, and t h e c e n t r e i s Now, only
(xo,yo) = (0,-2);
analogously, f o r
i s (-2,o). Example 2
3n/4 s t <
JI
the centre
The game i s induced by t h e n-th order one-
dimensional equation ,(n) = with c o n t r o l c o n s t r a i n t s a t i o n condition
1x1
n-1 'k=O
l u ( t ) I i p,
a x(k) + u + v, k I v ( t ) I s 1, and termin-
g E.
I n t h e s t a t e space d e s c r i p t i o n , corresponding t o t h e two conditions
x c
C
or
169
PURSUIT GAMES
awWn)
F i g . 2 Forcing t o half-plane. The three circular arcs are (clockwise) envelopes of a w ( t ) for t i n [O,x/41, [n/4,3n/41, [3x/4,xI.
The fundamental matrix solution
.
eAt = (cp:’-’)(t)),
where
ql,. .,qn form a fundamental system (of solutions of (13)) a t 0, with cpL’-’)(O) = 0 for j k and c~f-l)(O) = 1 .
4
NOW,
170
CAPTURE
c't = ,reAt = (cp,(t), ...,cpn( t ) ) , At max c'e p = max c'eAtbu = p Icpn(t) 1, P€p
at -c
The equation characterising
bk of
x E Rn,
lXu (P-1)
J
t
19n{s)lds. 0 aW(t), i n terms of coordinates +
is thus
From t h e i n i t i a l values, cpn(s)
> 0 f o r small
8
> 0. Thus,
f o r small t > 0, (14) is
where we have used
The e s s e n t i a l points, i n the sense of Exercise 8 or 7.1, s a t isfy q1
=
E,C2 = 0.
Exercises 1. I n Example 1 of the main text, show t h a t points (x,y) with
y
2
close t o
t
-b
0 x.
and s m a l l x > 0 have IUiniMUIu time6 a r b i t r a r i l y (Hint:
check the positions of aW(t) with
n-.)
2.
Again i n Example 1, show t h a t t h e two s e t s a{x: T (x ) s x/4},
{x: T(x) = n/4}
do not coincide. 3 . Treat t h e game i n R2 with equations k = y + v, = -x -u, constraint s e t s [-1,11, and x s 0 a t termination. are conI n particular, show t h a t sup T(x) = n; b o t h
<,;
s t a n t s (a.e.) i n [O,n]; and the envelope of the bounding l i n e s i s e n t i r e l y within a, W(O,t) = W(t).
171
PURSUIT GAMES
4. equation
Treat analogously t h e game with one-dimensional
..x + x = u +
termination. sup T(x) =
TI;
I u ( t ) l s p,
Vj
s 0 at
at = (p-1)s lcos s l d s j 0 t h e enveloping c i r c l e f o r aW(t) with 0
Hint:
1, 0 s p < 1.)
5.
t
( P a r t i a l answers:
i s somewhat s u r p r i s i n g .
n/2 p =
I v ( t ) ( s 1, and
Show t h a t , i n ( 2 ) J t
even though every maximizing
c)
5
c’e
t r e a t separately p At
-p ( t )
t
5
5
> 1,
i s continuous,
may be discontinuous.
6 . How do t h e p r i n c i p a l a s s e r t i o n s of t h i s s e c t i o n change i f t h e t a r g e t i s a hyperplane r a t h e r than a half-space? The i n t e r e s t i n g point i s whether t h e s t r a t e g i e s a r e isochronous, stroboscopic, i n d i f f e r e n t .
7.
If t h e hyperplanes
aW(t)
with
t
near some
have no envelope, they must be p a r a l l e l but d i s t i n c t . t h a t necessarily
c
is an eigenvector of
t o a r e a l eigenvalue, and
8.
c’(5
Prove t h a t , i f p o i n t s
of
&l and
xo
E an (cf.
Show
corresponding
A’,
- 4) i s nonconstant near
xt
to.
are i n the intersection
aW(t), then every f i n i t e accumulations point e s s e n t i a l points i n 7.1) a s
t
+o
satisfies
where t h e r i g h t hand s i d e may equivalently be replaced by
Verify t h i s f o r both examples and Exercises 2 and 3 .
9.
More generally, i f
x
and an i i i f i n t e s i m a l l y c l o s e c‘e (Hint: 10.
At
is i n the intersection
aW(t)
aW(t + d t ) , then (AX
- p(t)
+ q(t))
=
0.
you may wish t o use Exercise 5.) Assume t h a t
d i s c o n t i n u i t y of
:(*
Q
):
i s a polytope, and l e t thus, f o r a constant 172
A > 0 be t h e q E Q,
CAPTURE
At cteAt y ( t ) = max c’e q f o r 0 s t s A. Prove t h e following qEQ ( f o u r t h ) r e c i p r o c i t y theorem f o r (1): A point x E Rn can be
forced t o
within [O,A] iff
R
x
can be s t e e r e d t o
a t i m e i n [O,A] within t h e c o n t r o l system
;= Ax
- u;
11. Show t h a t t h e mapping
t
u(t) E P
H at
R
at
- -q.
defined i n ( 3 ) i s
i n v a r i a n t under nonsingular l i n e a r transformations.
Assume t h a t both
12.
a r e polytopes.
c - q(O+)) s 0.
A’
and
c’(F(O+)
Prove t h a t a l l
i s a r e a l eigen-
i f , and only i f , t h e normal
W(0,t) = R v e c t o r of
P,Q
(Hint:
For small
t > 0 n e c e s s a r i l y c’x z; a implies c’x 4 a.) t t 13. Formulate and prove an a s s e r t i o n analogous t o t h e preceding i n t h e case t h a t t h e t a r g e t i s a hyperplane. 14. For a game with dynamics1 equation = f(x,p,q), t h e I s a a c s ’ (main) equation i s min max D ~ ( x f(x,p,q) ) = o P Q i t s solutions define t h e
(15) (here
Do =
(k axl
9 * * . ,
o(*)
k));
axn ‘semipermeable s u r f a c e s ’ 4 ( x ) = const.
I n t h e game from
Example 1 f i n d t h e semipermeable surfaces through t h e o r i g i n . (Hint:
from (15) a t
0, one of
a , ay ax
is
0, and t h e other
i s p o s i t i v e or negative; t h e four cases reduce t o two.
Answer:
15.
q u a r t e r c i r c l e s with c e n t r e s a t (O,+
2). )
Prozeeding a s i n Example 2, t r e a t t h e game induced
by two s c a l a r equations
1
with c o n t r o l c o n s t r a i n t s l u ( t ) I s p, l v ( t ) g v, and terminat i o n condition Ix yI s c . I n p a r t i c u l a r , describe t h e
-
e s s e n t i a l points.
16.
Apply t h e Second Reciprocity Theorem t o (1);i n
173
PURSUIT GAMES
p a r t i c u l a r show t h a t t h e c o n s t r a i n t set of t h e associated c o n t r o l system i s
if
P,Q 17.
a r e compact, convex, and symmetric. Show t h a t t h e case t h a t
i s q u i t e exceptional i f
n
2
3.
W(t)
increase monotonically
(Hint:
compare f i g . 1 with
f i g . 4 i n 1.3j show t h a t t h e i n t e r s e c t i o n s be p a r a l l e l , and then argue
RS
i n Exercise
W(t)
7.)
n W(0)
must
Remarks A s suggested by t h e examples and exercises, f o r applying t h e method it i s c r u c i a l t h a t max c I eA t p be simple t o comP pute. The geometric i n t e r p r e t a t i o n i s t h a t of a hyperplane
with normal v e c t o r
moving ( a s t v a r i e s ) but remaining
eA'tc
i n contact with t h e set
P:
t h e p o i n t s of contact maximize,
measurable s e l e c t i o n provides -Pand( * >any . If
P
i s a polytope, p( )
a maximizing mapping
may be taken piecewise con-
s t a n t , w i t h d i s c o n t i n u i t i e s having no f i n i t e accumulation p t c) at i s C1-smooth and piecewise ana-
point (whereupon lytic).
This a s s e r t i o n i s an i n t e g r a l p a r t of c o n t r o l
t h e o r e t i c l o r e ; see, e.g., N. Levinson: Minimax, Liapunov and "bang-bang", J. D i f f . Equations 2 (1966) 218-241,
(where our present a n a l y t i c matrix).
i s even replaced by a piecewise More information is a v a i l a b l e about t h e creAt
d i s p o s i t i o n of d i s c o n t i n u i t i e s of assumptions t h e r e e x i s t s a constant has less than €
n
F(
) : under f u r t h e r E
>
0
such t h a t
p(*)
d i s c o n t i n u i t i e s i n each i n t e r v a l of length
(counting m u l t i p l i c i t i e s j t h e r e a r e no f u r t h e r r e s t r i c -
tions).
See
174
CAPTURE
0. Hijek:
Terminal manifolds and switching locus, Math. Systems Theory 6 (1973)289-301;
D. S. Yeung: Synthesis of time-optimal c o n t r o l ( t h e s i s ) , Case Western Reserve University,
1974j
E. N. Chukwu and 0. d j e k :
Optimal c o n t r o l and disconjugacy (submitted).
That t h e number involved i s p r e c i s e l y
- 1 i s of fundamental
n
importance f o r construction of optimal feedback i n c o n t r o l systems:
it i s t h e c o r r e c t number of independent parameters
f o r describing t h e piecewise smooth boundaries of reachable
sets
x in
R".
It w o u l d be most welcome t o have a simple method f o r obtaining enveloping hypersurfaces f o r t h e s e t s c l a s s i c a l one i s r a t h e r unpleasant. CONJECTURE t h e hyperplanes
For aW(t)
t
i n an i n t e r v a l where have t h e envelope
aW(t):
-p
F(x) =
the
i s constant, 0, where F
i s of degree 2: F ( x ) = X'WX
+
W'X
+
u).
This i s t h e obvious f i r s t guess from t h e examples t r e a t e d ; Exercise 9 might be useful; possibly A(x
- xo)
-P
for suitable
PROBLEM
xo
Decide whether
E
Rn, P
F(x) = (x 2
- %)'A'
0:
f ( x ) = T(T(x)) i s a feedback
pursuer s t r a t e g y , possibly even optimal. I n Chapter 8 of R. I s a a c s :
D i f f e r e n t i a l Games, Wiley, New York, etc.,
1967
t h e r e a r e proposed two procedures f o r finding 'game b a r r i e r s ' ( t h e s e a r e put forward as working conjecturesj with counterexamples, and not a s u n i v e r s a l l y v a l i d r e s u l t s ) :
that the
b a r r i e r i s t h e envelope of t h e sets [x: T ( x ) = 81 ( t h e Envelope P r i n c i p l e p. 260); and t h a t it may be obtained by 175
PURSUIT GAMES
'passing a semipermeable s u r f a c e ' through t h e 'boundary of t h e useable p o r t i o n ' of t h e t a r g e t set (p. 215).
As consequence
of t h e results i n t h i s s e c t i o n , n e i t h e r p r e s c r i p t i o n works f o r Example 1 ( t h e envelope
l i n e a r games with half-space t a r g e t s :
of t h e isochrones has a t o t a t l l y d i f f e r e n t function), and Exercise 14.
5.4 I n v a r i a n t Targets We s h a l l now t r e a t games
- p + q;
= Ax
(1)
E Q;
p ( t ) E P, q ( t )
end: x
E
R
which s a t i s f y t h e following o v e r - a l l The player c o n s t r a i n t sets
ASSUMPTIONS
P
and
Q
are
nonvoid, compact, convex, and symmetric; more important, t h e t a r g e t set i s a l i n e a r subspace i n v a r i a n t under t h e coeffic i e n t matrix
A: A R C R = {x:
(2)
Mx = 0).
Subspaces i n v a r i a n t u n d e r ' t h e c o e f f i c i e n t matrix have already appeared, i n 3.7; as mentioned t h e r e , t h e r e a r e obvious s p e c i a l cases: R.
The condition
R = 0
M Q c MP
and a l l A, o r
A = 0
and all
i n t h e following theorem coincides
with a necessary condition f o r isochronous capture ( s e e 4.2). THEOREM 1 isochronous. W(0,t) = W(t)
Under t h e assumptions on (l), capture i s
F'urthermore, e i t h e r
MQ c MP, whereupon a l l
and p o s i t i o n s forced t o
subsequently; or, i n t h e t r i v i a l case W(t) = @
(Proof)
for a l l t
> 0,
can be held t h e r e
MQdMP,
we have
and W(0,t) = W(0) = R.
F i r s t assume t h a t some W ( 0 , B )
and Exercise 6 i n 5.1,
@
R
4 R.
By t h e Lemma
l i m (W(O,t)\R) c l i m W(O,t) = R.
hO+
Thus t h e r e e x i s t s a point
hO+
y
which may be used i n t h e
176
CAPTURE
p r o p o s i t i o n of 5.1: l a s t term has
M Q c MP + [-1,1]MAy; M Q C MP, Q C P
(3 )
( 3 ) holds.
Now, assume t h a t
preserving mapping u : Q
+
and, a s
E
R, t h e
+ R.
There e x i s t s a measurabilityq € u ( q ) + R.
such t h a t
P
y
Thue
MAY E M A R C Ms2 = 0.
Every
x i n W(0,B) i s forced t o R w i t h i n [O,Blj once t h e r e , it can be held i n R until t i m e e (and a l s o subsequently) by u used a s stroboscopic s t r a t e g y :
point
At e (z a s soon a s
- ;1
z E R.
isochronous.
-As
Thus
(u(q(s))
- q ( s ) ) d s ) E eAt(z - R )
= R
W(0,B) = W(e), and capture i s
This shows t h a t
W(0,e) = R
e if (3)
for a l l
f a i l s ; and, i f it does, then a l l W ( t ) =
for
t
>0
by t h e
Necessary Condition from 4.2. Second, assume t h y t ( 3 ) does not hold.
Then a l l W(t) =
t > 0 by t h e Necessary Condition from 4.2; and, a s t h e
for
counterpositive t o t h e f i r s t argument, a l l W(0,B) = R . t u r e i s again isochronous, but only t r i v i a l l y : in
can be captured, a t time
Q
LEMMA 1
For a l l
t a 0
0.
where
V
= (p
+ a)
we have +
0) iL RQ(t)
i s t h e s e t of
Q. Referring t o (l), % ( t )
winning p o s i t i o n s f o r stroboscopic capture a t if
only p o s i t i o n s
QE3
%(t> c W ( t ) c (Rp(t)
(4)
Cap-
t j
W(t) = W(0,t)
M Q c MP; and t h e l a s t term i n ( 4 ) i s t h e set of winning
positions, a t (Proof)
t, f o r capture with a n t i c i p a t i o n .
From t h e Assumptions, eAtn = R
for a l l
t j
we w i l l
use t h i s without f u r t h e r mention. The second i n c l u s i o n i n (4), and t h e i n t e r p r e t a t i o n of t h e l a s t member, i s i n Corollary 2 from 4.1.
Naturally, W(t)
contains t h e points which can be forced t o R stroboscopically a t time
t; t h a t t h i s set is p r e c i s e l y % ( t ) 177
follows from
PURSUIT GAMES
t h e Second Reciprocity Theorem i n 3 . 3 (or, preferably, from Exercise 6 t h e r e ) .
QE .D
MQdMP
I n t h e case
COROLLARY 1
t h e r e i s a constant
evasion s t r a t e g y f o r a l l p o s i t i o n s outside t h e t a r g e t (even i f pursuer i s allowed t o a n t i c i p a t e ) . Using t h e L i m i t Theorem f o r reachable s e t s , it i s
(Proof)
e a s i l y shown t h a t t h e r e e x i s t s a point
90 E
and
Q
E
>
0
such t h a t
+
e -AS ds c+,
4
M Rp(t) whenever 0
s C;
i n p a r t i c u l a r , t h e convex and symmetric set
Thus, i f
x
control
90
R, t h e n t h e s t a t e response endpoint, t o quarry
and any pursuer c o n t r o l p ( * ) , must have x ( t )
t E (O,E],
for
t = 0.
and a l s o f o r
t h e same argument t o
X(C)
4
R
4
R
Now we need only apply
and continue over [ C , 2 ~ 1 ,
etc.
&ED THEOREM 2 MQ
I n t h e game (l), under t h e Assumptions, l e t
be a d i r e c t summand of
MP:
f o r some set
S, MP = MQ + S.
Then capture w i t h i n [O,t), stroboscopic and isochronous cap-
t with subsequent holding, and capture with a n t i c i p a t i o n a t t o r w i t h i n [O,t], a l l coincide. (Proof) F i r s t we reformulate t h e condition on t h e c o n s t r a i n t
ture a t
sets.
Necessarily
(4)
S = 0
+
S c M Q + S = MP,
-
S i s bounded; a c t u a l l y one may even t a k e S compact, convex, and symmetric ( r e p l a c e S by S, e t c . ) I n particular,
so t h a t
.
0 E S, so t h a t M Q = MQ + O C MQ+ S = MP
and 178
CAPTURE
W(t) = W(0,t)
(5) by Lemma 1. From
S c range M, so t h a t
(k),
closed and convex.
U = M-$
M P = M(Q+
u),
S = MU with
Then t h e condition y i e l d s
i.e., P + R = Q + U + R,
Q,
and, operating with
U t h e set
V
+
Q = ( P + R ) 1L Q = V,
+ R)
R = (Q + U
from Lemma 1.
The main p a r t of t h e proof c o n s i s t s i n showing t h a t t h e l a s t member i n (4) coincides with t h e first.
Since
R
is a
l i n e a r subspace and i s A-invariant, R
P
+
R = R
+ RR
P
= RwR = RQ+u+n
=RQ+F$
by t h e l a s t two exhibited r e l a t i o n s (we a r e omitting n o t a t i o n f o r reachable s e t s ) . (RP + 0 )
t i n the
Thus t h e l a s t member of (4)
* RQ = (R
+
S~,+R~=F$-
F i n a l l y , V = ( P + R ) f Q, so t h a t t h e sets (Rp(t) + R ) iL R (t)
Q
increase with
[O,t] and a t
t
t : capture with a n t i c i p a t i o n within
coincide.
and ( 5 ) complete t h e proof.
The r e - i n t e r p r e t a t i o n s i n Lemma 1 QED
Assume t h a t e i t h e r t h e player c o n s t r a i n t
COROWY 2
s e t s a r e one-dimensional, o r t h e t a r g e t i s a hyperplane. either
M Q c MP
and capture is isochronous and stroboscopic
with subsequent holding; o r
MQd
MP
and t h e r e i s a constant
evasion s t r a t e g y . (Proof)
I n both cases t h e sets
M Q c MP, then
Then
MQ
MQ,MP
a r e se-ents;
i s a d i r e c t summand of
MP.
if
QED
There i s one f u r t h e r case i n which t h e first two s e t s i n (4) (but not t h e t h i r d ) coincicle, so t h a t capture i s 179
PURSUIT GAMES
stroboscopic and isochronous. LEMMA 2
in
P, and
I n (1)l e t
R = 0.
P be a polytope and
t 2 0. ( B o o f ) F i r s t we shaw t h a t t h e endpoint t e x of
P.
P; also, x = (p,
- p,)
Each vertex of
q
q = (p, + p2)/2
I f not, then
40
/2
x + Q c P, although x
4
x
has
2
q
e
Q
with
p1
s
> 0 such E [o,el:
Thus some
t h a t t h e vectors c'e
It follows t h a t
c
-AS
c
e
q
Rp(E) y + x
has non-
Therefore t h e r e e x i s t s
eA'sc
a r e e x t e r i o r normals f o r
c
P, s
c [o,~I.
If
R ( e ) = 0.
E
Q
Rp(E).
c'(y + x) < c'x, c
P at
i s an e x t e r i o r normal t o R p ( € )
then i n p a r t i c u l a r
let
in
remains an e x t e r i o r
Rn
p s c'e-ASq f o r p
us now show t h a t
By symmetry, a l s o
4 p2
P, so t h a t
i n p a r t i c u l a r , has t h e pro-
q
normal even i f perturbed s l i g h t l y . E
is a ver-
0.
P, and
Rn.
a segment for a l l
of
p e r t y t h a t t h e set of e x t e r i o r normals t o void i n t e r i o r i n
Q
P 5 Q = 0, then W(t) = 0
If
c'(-y) s 0, so t h a t
a t the
y = R
Thus
Q
(E)
c'y s 0. c'y = 0.
I f we now
vary over t h e open s e t ( t h e i n t e r i o r of t h e collec-
t i o n of e x t e r i o r normals t o
P at
q), it follows t h a t y = 0.
From Lemma I, W(c) = 0; using Lemma 2 i n 4 . 1 ( a l s o see Exercise 5 t h e r e ) one obtains
W(2C) = 0, W(3c) = 0, etc.
Finally, from Theorem 1 and monotonicity of W(t) = W(O,t), a l l W(t) = 0.
QED
Exercises 1. Verify t h a t , i f t h e coefficient matrix
180
A
is scalar,
CAPTURE
A
=
aI, then Rp(t) =
(with t h e obvious modification i f
1 - ea t Q,
P
a = 0).
Prove t h a t capture
is isochronous and stroboscopic f o r a r b i t r a r y Qc P. 2. Assume t h a t A is simple with a l l eigenvalues r e a l ; and t h a t P i s a symmetric p a r a l l e l l e p i p e d with edges paral l e l t o eigenvectors ak of A : =
[ C”kak:
lakl
pk]
t 2 0. Prove t h a t Rp(t) = e-ASds P, and conk 0 clude t h a t capture i s isochronous and stroboscopic f o r
f o r given
IJ.
arbitrary
Q cP.
3.
Consider t h e game with uncoupled players,
x = y ; = ~ x - p , i = ~ y - q end: ; Prove t h a t t h e t a r g e t i s i n v a r i a n t ( i n t h e sense of t h i s section) iff
A = B.
W(t) = Rp $, Q ( t ) i f Q i s a segment cont a i n e d i n t h e polytope P (without assuming P % Q = 0). CONJECTURE
181
This page intentionally left blank
CHAPTER V I ALGEBRAIC THEORY
This chapter contains t h e elements of an a l g e b r a i c theory of autonomous l i n e a r p u r s u i t games
-
a l g e b r a i c i n t h e sense of
depending on t h e shape of t h e c o n s t r a i n t sets b u t not on t h e i r size. The f i r s t s e c t i o n contains, primarily, d e f i n i t i o n s of t h e notions of game space, pursuer and quarry c o n t r o l orders, and uncoupled dynamics.
I n 6.2 we e x h i b i t an a l t e r n a t e i n t e r p r e t a -
t i o n of one of t h e secondary concepts, min-max c o n t r o l l a b i l i t y ; and e s t a b l i s h two necessary a l g e b r a i c conditions f o r winning. The l a s t two s e c t i o n s t r e a t games proper, a s distinguished from t h e i r various s t a t e space d e s c r i p t i o n s .
I n particular,
it i s shown t h a t t h e game space dimension, and t h e player c o n t r o l orders, a r e independent of p a r t i c u l a r s t a t e space representations.
The concept of equivalence between game
representations i s rather rich:
i n c o n t r a s t with algebraic
isomorphism, it i s highly s e n s i t i v e t o changes of t h e t a r g e t s e t ( t h e desired outcome of r e g u l a t i o n ) . The reader who i s not i n t e r e s t e d i n t h e s e t o p i c s may choose t o omit a l l of t h i s chapter, with one exception:
the
notion and formal concept of player c o n t r o l order is needed a t s e v e r a l places i n t h i s book.
6 . 1 Game Space, Control Order Consider t h e s t a t e d e s c r i p t i o n of a l i n e a r game, end:
x E R j s t a t e space: 183
RL’
PURSUIT GAMES
(occasionally not a l l of t h e data specified).
n, A, P, Q, R
need be
The example w e s h a l l r e f e r t o repeatedly is one-
dimensional rocket chase (see l.3), defined by one-dimensional equations
i
? = u,
= v.
2,t h e
Here t h e s t a t e space i s
dynamic81 equation i s
t h e c o n t r o l values a r e i n t h e i n t e r v a l [-1,1], and t h e termina t i o n condition i s
'5'
xl= With t h e game (1)t h e r e i s n a t u r a l l y associated t h e
pur-
s u e r ' s c o n t r o l system = AX
(formally:
replace
p; p ( t )
E
P; end: x
E
R
i n (1)by 0), and analogously f o r
Q
quarry's c o n t r o l system. into the picture.
-
One can t h e n bring c o n t r o l theory
I n particular, there are available the
concepts of p u r s u e r ' s reachable sets R p ( t ) = [Joe -As p ( s ) : i n t e g r a b l e p: R 1 +
q,
pursuer c o n t r o l l a b i l i t y space (see 3.11) Cp = span Rp(t)
etc.
( t > 0),
One i n t e r e s t i n g numerical c h a r a c t e r i s t i c may be i n t r o -
duced here:
pursuer's controllability defect dim Rn
-
dim C
P
= n
- dim Cp.
For t h e example, i n t h e t r s n s i t i o n t o s t a t e space one v i t a l piece of information has been obscured:
R3,
that, i n
some sense, t h e game i s played ( o r , t h e players move) i n a one-dimensional s t r a i g h t l i n e .
To recapture t h i s notion we
make t h e following d e f i n i t i o n :
r e f e r r i n g t o (l), t h e game
space i s ( 0 5 $2) subspace of
, the
I
orthogonal complement (hence a l i n e a r
Rn) of t h e Pontrjagin d i f f e r e n c e of t h e t a r g e t
set with i t s e l f ( c f . Proposition 3 i n 3.8). 184
V e r i f i c a t i o n of
ALGEbltAIC THEORY
t h i s on our example i s a s p e c i a l case of t h e following result. LEMMA 1
Assume t h a t t h e nonvoid t a r g e t set i s of t h e
form R = {x: Tx E
El,
i s a compact, convex s e t i n
where
i s an (m,n) matrix; denote by t h e n u l l space of T. Then
Rm, and
T
01
N = {x: Tx =
RE,=,;
(2)
t h u s t h e game space i s (i.e.,
, and
I
N
i s isomorphic t o t h e range
column space) of T.
(Proof) One i n c l u s i o n i n ( 2 ) i s simple: i f x E N, then x + y E R f o r a l l y E R, s i n c e T(x + y ) = Ty E E ; hence R . For t h e other, assume x 4 N, Tx =/ 0; x + Rc R, x E R and aim t o prove x R E R, i . e . , x + y 4 R f o r some y E R. Consider t h e compact, convex set fl range T; it i s nonvoid, s i n c e it contains TR = 8. One can then f i n d a point (with y E R ) a t which Tx =/ 0 i s an e x t e r i o r normal. Ty E so t h a t indeed x + y 4 R. Then Ty + Tx 4
4
c
c,
Then ( 2 ) follars by t a k i n g orthogonal complements; and t h e l a s t a s s e r t i o n by elementary l i n e a r space theory: dim(row space T ) = rank T = n
-
L
dim N = d i m N
.
QED
I n one-dimensional rocket chase, t h e primary equations
..
of motion were x = u,
= v; one i s n a t u r a l l y l e d t o say t h a t
t h e pursuer's order of c o n t r o l i s 2, s i n c e he c o n t r o l s t h e second-order d e r i v a t i v e of h i s s t a t e variable, while t h a t of quarry i s 1. This provides a rough measure of t h e p a r t i c i pants' maneuverability:
y ( *)
is continuous, while x( )
even has continuous f i r s t derivative, and so cannot negotiate sharp corners. For t h e formalization, denote by
L = span R
(3 1
A j( P
- P)
E
185
R
the
Then t h e pursuers'
orthogonal complement of t h e game space. c o n t r o l order is t h e l a r g e s t i n t e g e r k
f
4
+
m
such t h a t
L for 0 s j s k
-
2.
PURSUIT GAMES
S i m i l a r l y f o r t h e quarry c o n t r o l order, with of
The concept
P.
WRS
i n place
Q
designed so t h a t Exercise 4 would
It is t r e a t e d beluw and i n t h e theorem of 7.4; and
hold.
applied i n Chapters I11 t o VII. LEMMA 2
P contains
If
and
0
i s a s i n Lemma 1,
R
then ( 3 ) i s equivalent t o TAJP = 0 LEMMA
3
0 s j s k
The pursuer c o n t r o l order
games with s t a t e space (Proof)
for
Rn,
either
- 2.
k z 1; and, f o r
k s n
or
k = +
The condition i s s a t i s f i e d vacuously f o r AJ(P
t h e second a s s e r t i o n , i f then a l s o f o r also for a l l
j = n
j
>
n.
-
P) c L
m.
k s 1. I n
holds f o r
j c n
-
1,
by t h e Cayley-Hamilton theorem, and thus QED
I n t h e rocket chase each p l a y e r ' s c o n t r o l a f f e c t s s o l e l y t h e appropriate component of t h e s t a t e variable; t h e only connection between t h e components i s by means of t h e terminat i o n condition.
I n o t h e r games (e.g.,
1.1)t h e p l a y e r s ' con-
t r o l s a r e i n e x t r i c a b l y connected w i t h t h e s t a t e v a r i a b l e . Some i n s i g h t i s provided by a Ke'h'n-type
decomposition
theorem: DECOMPOSITION THEOREM
A=:(
Referring t o t h e game (l), t h e r e
i s a nonsingular l i n e a r coordinate transformation and a partitioning
x
of t h e new s t a t e v a r i a b l e
x
i n which
\x4/
t h e dynamical equation decomposes a s follows:
$=
A
x
33 3
+ A
x
34 4
A44X4
x4 =
186
+
329
ALGEBRAIC THEORY
f o r appropriate matrices
Furthermore,
Bij.
Aij,
3 = 0 = x4
c h a r a c t e r i s e a t h e pursuer's c o n t r o l l a b i l i t y space, and
x 2 = o = x4 t h a t of t h e quarry. (Proof) and
Begin w i t h t h e players ' c o n t r o l l a b i l i t y spaces, Cp
By augmenting a b a s i s i n
CQ.
bases f o r
and
Cp
Q'
one obtains n and R Re-
Cp fl CQ
and then f o r
C
Cp
+
C
.
Q
l a t i v e t o t h e l a t t e r , t h e r e i s a p a r t i t i o n i n g such t h a t and
C
cribes
Q
a r e c h a r a c t e r i s e d a s asserted; t h e n
+ CQ' and x2
Cp
=
5 = x4 =
0
Cp
x4 = 0 des-
c h a r a c t e r i s e s Cp
n CQ'
(For t h i s one must, of course admit t h e p o s s i b i l i t y of zerodimensional vectors:
e.g.,
Now, observe t h a t
x 6 Cp Cp
+ CQ'
and
p
e
(x
maps i n t o
-
t o i n i t i a l position
p
x
Cp
iff
E
e
n CQ
= 0.)
A, hence a l s o
-As
p ( s ) d s ) E Cp whenever SO P; and analogously f o r C and
Consider any p o i n t
and constant c o n t r o l s
- 0
1i s i n v a r i a n t under
Cp
At
eAs; thus
under a l l
dim x
x
in
P, q
Q.
Cp
+
C
Q
(thus, x4 = 0),
Q
Then t h e s t a t e response,
and player c o n t r o l s
p,q, w i l l remain
(hence, x 4 ( * ) 3 0); furthermore, it is d i f f e r e n in C + C P Q t i a b l e and thus s a t i s f i e s t h e d i f f e r e n t i a l equation everywhere (hence,
i4(*) e 0): 4
At
=
4
C A4 x 1
t = 0 t h i s yields that
j j
- B41P
41x1 + A42x2 + A 4 3 3 + A440
0 = A
Here
x1,x2,5,
choice
x = 0
and a l s o
-
Bk1p
are quite arbitrary.
+
Bk2q.
The
shows t h a t
(4 1 so t h a t
p,q,
+ B429-
-BJ+~P + B42q = 0
(all P
E
P, q E Q),
3
Akjxj = 0 f o r a l l x and hence A41 = 0, 1 j' A42 = 0, A43 = 0; f i n a l l y , from (4), t h e game i s not changed i f we replace
B41
and
B42
by zero matrices.
187
This y i e l d s
PURSUIT GAMES
G4;
t h e desired form of equation f o r simplifies those f o r
"$5.
a s i m i l a r procedure
QEII
%
I n t h e s i t u a t i o n of t h e preceding a s s e r t i o n , l e t t h e dimension of
5
for
k = l,2,3,4;
determined uniquely i s shown i n Exercise
\
t h a t these
7.
be
are
For reasons t h a t
a r e probably obvious we w i l l say t h a t t h e game ( o r t h e players' n1 = 0; i n g e n e r a l
dynamics) a r e uncoupled i f d i m Rn
- dim(Cp n CQ ) = n - "1
i s t h e degree of u n c o u p l i q .
5
If
= 0, i . e . , CQ'
game i s s a i d t o be min-max c o n f r o l l a b l e .
Cp
the
As i n c o n t r o l theory,
w e w i l l say t h a t t h e pursuer c o n t r o l system i s c o n t r o l l a b l e ... if C = R", i . e . , n1 + n2 = n, o r = n4 = 0. The game i s P Finally, t h e c o n t r o l l a b l e i f n4 = 0, i . e . , n1 + n2 + = n.
5
5
pursuer's controllability defect is
- dim Cp = n -
d i m Rn
(nl + n2),
and analogously f o r t h e quarry. Exercises 1. For one-dimensional rocket chase, e x h i b i t e x p l i c i t l y R3 (thus, f i n d t h e (3,3)
t h e s t a t e space d e s c r i p t i o n i n matrix
A, and t h e t h r e e subsets
P,Q,R
of
2).Determine
t h e game space and player c o n t r o l orders according t o t h e d e f i n i t i o n s , and v e r i f y t h a t they coincide with t h e i n t u i t i v e notions.
Find t h e p l a y e r s ' c o n t r o l l a b i l i t y spaces, t h e i r
i n t e r s e c t i o n and sum; determine t h e degree of uncoupling and c o n t r o l l a b i l i t y defects.
( P a r t i a l answer:
t h e game i s un-
coupled. ) 2.
The same assignment f o r t h e reduced d e s c r i p t i o n x = g -
in
R2.
( P a r t i a l answer:
V,
i
= u; end: x =
o
t h e game i s min-max c o n t r o l l a b l e ,
188
ALGEBRAIC THEORY
with 1 a s degree of uncoupling.)
3 . Consider an n-th order one-dimensional equation
(5) with t h e forcing term u
a s c o n t r o l v a r i a b l e , and take
1x1 s e a s termination condition (0 s E < + m ) . Show t h a t , i n terms of t h e corresponding f i r s t - o r d e r equation i n RAA, t h e control order i s precisely
n.
Extend t h e preceding r e s u l t t o t h e case of k-vectors
4.
x and k-square matrices A B e s p e c i f i c about t h e c o n t r o l 3' c o n s t r a i n t set. 5. For a game involving k-vectors x and y, governed by ( 5 ) a d , say,
Y (m) with termination condition t h a t t h e game space i s
6.
I n (1) l e t
m-1
+ c o BjY ('1
Ix
- yI
Rk.
R = [x: Tx
E
m
(0
e
3
,
=
V)
e <+
with
m),
show
a convex (but
not n e c e s s a r i l y compact) set i n R and assume t h a t k-2 j=o TAJ(P P) = 0. Prove t h a t t h e pursuer c o n t r o l order i s
-
c k
a t least.
7.
Show t h a t t h e dimensions
%=
dim
%
i n t h e Decom-
p o s i t i o n Theorem a r e independent of choice of b a s i s , and of t h e p a r t i t i o n procedure. nonsingular, then
C
(Hint:
If
x
H
Tx with T n-square
p TCp, ~ etc.)
8. Untangle t h e d e f i n i t i o n s and simplify t h e following assumption:
tr o l l a bl e
.
t h e game (1)is both uncoupled and min-max con-
The game space i s a subspace of t h e s t a t e space Rn. n Under what circumstances does it coincide with R o r reduce
9.
to
,
O? 10.
Show t h a t , i f t h e t a r g e t set i s hyperplane
189
PURSUIT GAMES
{x
E
Rn:
c'x = a] f o r given
c
0
in
and
Rn
a E R
,
1.
t h e n t h e game space i s one-dimensional. Remarks The concept of game space i s obviously an attempt t o rescue a notion, inherent i n d i r e c t d e s c r i p t i o n s of a game, from t h e complexities of t h e various state-space d e s c r i p t i o n s . The order of c o n t r o l appears t o be a r e l a t i v e l y new concept (curiously, s i n c e it is n a t u r a l enough)j it was presented i n 0. H6jek:
S t r a t e g y design i n pursuit games, pp. 71-79, i n D i f f e r e n t i a l Games and Control Theory (ed. E. 0. Roxin, P. T. Liu, R. L. Sternberg), Dekker, New York, 1974.
The Decomposition Theorem, i n statement and proof, i s an obvious analogue of well-known results i n c o n t r o l theory. Here a s t h e r e , it i s a very pleasing result, but seems t o have
l i t t l e f a c t u a l (as opposed t o conceptual) consequences. term max-min c o n t r o l l a b i l i t y i s due t o Heymann, Pachter ( s e e t h e next s e c t i o n ) . dim Cp
Stern, and
As w i l l be seen i n 6.4, it i s
preferable t o t r e a t t h e controllability defect rather than
The
n
-
d i m Cp
d i r e c t l y ; s i m i l a r l y f o r t h e degree of
uncoupling. PROBLEM
I n t h e c o n t r o l system, i n
4= (with
U
AX
- u; u ( t ) E U;
end:
m
=
o
a l i n e a r space) assume t h a t t h e order of c o n t r o l i s
a t l e a s t 2, i . e . , MU = 0. a r i s e n from one such a s s a r i l y 21n). 6.2
Rn,
I n general t h e system need not have
$+
B;
+
Cy = v
( s i n c e then neces-
Obtain a complete a n a l y s i s .
Min-Max C o n t r o l l a b i l i t y I n t h i s s e c t i o n t h e concept of min-max c o n t r o l l a b i l i t y is
examined i n g r e a t e r d e t a i l .
The s e t t i n g is t h a t of t h e game
190
ALGEBRAIC THEORY
At x ( t ) = e (...),
Observe t h a t t h e s t a t e response controls
p ( * ) and
t
o r i g i n a t time
and i n i t i a l p o s i t i o n
q(*)
t o player x, meets t h e
iff
q(s)ds J
e -AS p ( s ) d s
=
0
0
l e t u s say t h a t an i n i t i a l p o s i t i o n x
As i n 2.2,
be captured $&anticipation
can
i f , f o r every quarry c o n t r o l
i s a pursuer c o n t r o l p ( * ) such t h a t ( 2 ) holds This i m p l i c i t l y refers t o a mapping taking
q ( - ) , there
t > 0.
f o r some
quarry c o n t r o l s t o pursuer controls; i n c o n s t r a s t with t h e s t r a t e g i e s ( i n t h e sense used i n t h i s book) it i s not required t o be non-anticipatory. taken independent of
I f t h e termination time
t
can be
q ( * ) , w e w i l l say t h a t capture with
a n t i c i p a t i o n i s isochronous. These concepts provide an a l t e r n a t e formulation of minmax c o n t r o l l a b i l i t y . THEOREM
I n t h e game ( 1 ) assume t h a t t h e players' con-
s t r a i n t s e t s a r e l i n e a r subspaces.
Then t h e r e e x i s t points
capturable with a n t i c i p a t i o n i f , and only i f , t h e game i s min-max c o n t r o l l a b l e .
I n t h e p o s i t i v e case these a r e precise-
ly t h e points i n p u r s u e r ' s c o n t r o l l a b i l i t y space, and a l l of
t h e s e a r e capturable isochronously a t a r b i t r a r i l y small times
t > 0. It i s convenient t o i s o l a t e c e r t a i n p a r t s of t h e proof. LEMMA 1
position x (Proof:
4
symetric.
Q
Cp,
( 2 ) with
LEMMA 2 C c/ CP
I n t h e game ( 1 ) assume
0
E
Q.
For every
i s an i n d i f f e r e n t evasion s t r a t e g y .
0
q z 0
implies
I n (1)assume t h a t
x
E
Cp.)
Q i s closed, convex and
If t h e game i s not min-max c o n t r o l l a b l e , i . e .
t h e n t h e r e is a quarry c o n t r o l which i s an i n d i f f -
e r e n t evasion s t r a t e g y simultaneously f o r a l l i n i t i a l 191
PURSUIT GAMES
positions i n
Cp.
(Proof) Note f i r s t t h a t Q =/ fl from t h e assumption CQ 4 Cp. I I f o r the orthogonal complements Second, necessarily Cp C Q A of t h e subspaces, so t h a t there e x i s t s a vector c E Cp w i t h A Consider now t h e reduction of Q t o t h e compact s e t c CQ
4
4
.
Qo
E Q:
=
IS1
I},
4
which is again convex and symmetric. .Obviously C of course C
Qo
Q
= span R
Qo
( t ) f o r each t > 0; thus
y E R
QO
% t
(t)} s
j'
and i s not
po:
R'
qas.
+
&0 = Q,
qcQo
t
cte-Aspo(s)ds >
This is t h e desired quarry control. one cannot have ( 2 ) with perpendicular t o both x term involving t h e quarry. COROLLARY 1
x
cQo'
max cle-ASq,
=
and then
point
-AS
max c'e
0 9€&0
Now, one can find a maximizing measurable cle"s%(s)
c
(t),
perpendicular t o the symmetric s e t s R
o < max[c'y:
=
o
(all t
Indeed, i f
>
0).
x E Cp, then
f o r any t > 0, since c i s and the right side, but not t o t h e q =
QED
Under the assumptions of
Lemma 2, i f a
i s i n position t o win, then necessarily
cQ c c p 3 x .
( 31 C0ROI;LARY 2
I n the same situation, unless the pursuer
control system i s controllable, t h e s e t of winning points has
.
empty i n t e r i o r (Proof of Theorem) Having the two lemmas, it only remains t o show that, i f (3) holds, then f o r a r b i t r a r i l y s m a l l t > 0 192
ALGEBRAIC THEORY
and any quarry control
Remark
Cp = R ( t )
P
Q
t > 0.
QED
q( )
P
3
c)
p( ); here we present a
The assumptions a r e as i n t h e theorem,
constructive procedure. C c C
is a
P
since e.g.
independently of
p(.)
The preceding proof e s t a b l i s h e s t h e existence
of an appropriate mapping and
t h e r e i s a pursuer control
This is immediate:
such t h a t ( 2 ) holds. l i n e a r subspace,
q(*)
X.
Without e s s e n t i a l l o s s of generality, l e t t h e terminal
t i m e be 1. Choose bases, q l , . . . , s Cp.
Since
integrable
Cp = Rp(l), each
p
*
j'
[0,11 a
pxist c o e f f i c i e n t s
(and a c t u a l l y t h e
P.
1J
Pi ( )
3
=
?At
in
j
q E C c Cp,
Q
80
there
Ca. (t)c, 15 3
a r e continuous on [0,11).
Now con-
[0,11 +
q:
.
s
Also, e
such t h a t -At e qi =
a. . ( a )
s i d e r any integrable with i n t egrable
+
c
i n Q and c19 ...,c,, 1 edsp (s)ds f o r sane
Finally, 1
1
1
with t h e bracketed t e r m being an integrable function, having values i n
p(*),
P.
A l l this was independent of x. Since x E Cp' we have 1 x = ~oe-Aspo(s)ds f o r s u i t a b l e integrable po(*) (indepen-
dent of
q(0)).
Then (2) holds with
p =
5
f
po
and
t
= 1.
Exercises 1. Carry out t h e construction described i n t h e remark f o r t h e game
193
PURSUIT GAMES
2
in
R
ul2
3
.
.
x = y ( P a r t i a l answer:
- v,
y = u
f o r t h e obvious bases, ull
0; and one may choose, e.g.,
p,(*)
as
4 in
3
1,
[0,1/21,
-4
i n [1/2,11.) 2.
so t h a t
3.
Show t h a t , i f t h e bases a r e taken orthonormal, then
f;(*)
q( )
i s e f f e c t e d by a bounded l i n e a r operator.
Find an e r r o r i n t h e following argument, purporting
t o show t h a t , i n t h e min-max c o n t r o l l a b l e case, t h e s t r a t e g y may be taken non-anticipatory. Again choose bases q i, C j ? c o e f f i c i e n t s a. .( * ) and pi(.) a s b e f o r e j now, however, 1J
f o r each
'I
t < 1 express
I
cJ = Ste
-AS
pj(t,s)ds.
Then an in-
terchange i n t h e order of i n t e g r a t i o n y i e l d s
Joe
-At
q(t>dt=
l0e-As ( ci j
S
Pi(t)Uij(t)pj(tt")dt)ds. 0
and t h e bracketed term depends only on values
q ( t ) with
t < s.
4.
I n Lemma 1, Cp
contains t h e l i n e a r span of t h e set
of winning p o s i t i o n s . Show t h a t e q u a l i t y does not hold. 1 k = p + q with I p ( t ) l s 1, I q ( t ) / L 2.) (E.g., i n R
,
Remarks The term min-max c o n t r o l l a b i l i t y was introduced i n M. Heymann, M. Pachter, R. J. Stern:
Max-min c o n t r o l problems : a system t h e o r e t i c approach ( t o appear)
where a l a r g e p a r t of t h e theorem was a l s o presented; f u r t h e r
results concern optimisation of
194
slpl2
-
lqI2
as cost.
ALGEBRAIC THEORY
6 . 3 Equivalent Descriptions L e t us r e t u r n once again t o one-dimensional rocket chase.
Two s t a t e space d e s c r i p t i o n s of t h i s have been given: obtained by a n a t u r a l procedure i n description i n
R
2
.
2,and
one
then a reduced
The p o i n t t o be made here i s t h a t a game
may have s e v e r a l d i f f e r e n t b u t equally adequate descriptions, e f f i c i e n t o r redundant t o various degree:
but t h e game i t s e l f
should be independent of t h e d e s c r i p t i o n s . This i s resolved i n t h e u s u a l manner, by defining a game proper as an equivalence c l a s s of an appropriate equivalence relation.
To begin w e formalize t h e notion of 'reduced des-
cription'. Given games described by = Ax
-P
+
E
end: x
i
(2)
=
q i ~ ( t E) P, q ( t ) E Qi R; s t a t e space: Rn,
-
v + v j u ( t ) E U, v ( t ) E vj ; s t a t e space: Rm, end: y E
EY
we w i l l say t h a t ( 2 ) is a reduction of (1)i f t h e r e i s a linear
onto mapping
(3 1
XH
y = Tx: Rn
-t
Rm
of t h e s t a t e spaces, such t h a t TA = BT, TP = U, TQ = V, R = T-lCC>.
(4)
I n (4) t h e f i r s t t h r e e conditions r e q u i r e t h a t t h e s t a t e responses and c o n t r o l s of (1)map appropriately i n t o those of (2);
t h e l a s t i s t h e requirement t h a t
to y E
whenever
y = Tx.
x E R
be equivalent
(Occasionally t h e mapping T
w i l l a l s o be termed a r e d u c t i o n . ) With t h i s s e t t l e d it i s simple t o formalize o t h e r i n t u i t i v e notions.
Thus, ( 1 ) and ( 2 ) a r e l i n e a r l y isomorphic
i f t h e onto mapping
( 3 ) can a l s o be taken one-to-one. 195
The
PURSUIT GAMES
game (1)i s a minimal representation i f each of i t s reductions
i s l i n e a r l y isomorphic t o (1). Finally, (1)and ( 2 ) are equivalent representations ( o r descriptions) i f t h e r e i s a f i n i t e sequence of games, beginning with (1) and ending with (2),
such t h a t neighbouring terms are r e l a t e d by reduction; and
a game proper is any equivalence class (modulo t h e r e l a t i o n of being equivalent representations). A l l t h i s is n a t u r a l enough, and actually yields some
r e s u l t s (e.g.,
existence of minimal representations).
Never-
theless, without applicable r e s u l t s , it i s merely a top-heavy p i l e of definitions; thus it i s not a t a l l c l e a r whether the minimal representations of a game proper are a l l l i n e a r l y isomorphic, nor whether minimal representations are controllable ( t h e former i s t r u e , t h e l a t t e r f a l s e ) . The key appears i n focusing on one or t h e other of t h e games i n t h e r e l a t i o n of reduction. PROPOSITION 1
i t s n u l l space
If
T
is a reduction of (1)t o (2), then
N = {x: Tx = 01
satisfies
ANc N, R
(5)
Conversely, i f a l i n e a r subspace
+
N c R.
of
N
Rn
t o a game ( l ) , then t h e r e e x i s t s a mapping T
has ( 5 ) , r e l a t i v e which reduces
and ( 2 ) i s then determined uniquely up t o
(1)t o a game (2),
l i n e a r i s omorphism. (Proof)
F i r s t note t h a t , i f
(61
R = T'lE)
Now, i f
T
i s t h e n u l l space of
N
i f f TR =
T, then
c and R + N c R.
i s a reduction, then ( 5 ) follows &om t h e f i r s t
and l a s t condition6 i n ( 4 ) .
(5) holds, then
i s determined by N uniquely up t o nonsingular l e f t f a c t o r s (since it i s t o be an Conversely, i f
onto mapping). that
T
Next, Tx = 0
T
implies
i s a r i g h t f a c t o r of
TAX = 0 by ( 5 ) , so
TA, i . e . ,
196
TA = BT
for suitable
ALGEBRAIC THEORY
The s p e c i f i c a t i o n of ( 2 ) i s then completed by s e t t i n g m R = range T, U = TP, V = TQ, TR (7) (where we then use (6)). Q,ED
B.
c=
COROLLARY 1
(1)i s a minimal r e p r e s e n t a t i o n i f , and
i s t h e only subspace N
only i f , 0
of
which s a t i s f i e s
Rn
(5); and also
i f , and only i f , none of t h e minimal A-invariant
subspaces
(thus, d i m N i s 1 o r 2) s a t i s f i e s
(Proof:
N
t h e conditions a r e p r e c i s e l y t h a t
COROLLARY 2
If t h e t a r g e t set
T
R + N c R.
be one-to-one.)
of (1)i s compact, or,
R
more generally, contains no s t r a i g h t l i n e s , then (1) is mini-
mal. Example (n-dimensional rocket chase)
€?" a s
with
s t a t e space, n-dimensional p a r t i t i o n e d equation
G1
(8)
- 5I
4
e
(here 0
5
in
Rn,
e <+
(9)
G2
= x2,
specified constraint s e t s i n Ixl
Consider t h e game
m).
Y1 = Y2
5
= u,
= v,
and termination condition
.
The reduced d e s c r i p t i o n i s
- v,
Y2 = u
R 2 q with t h e same c o n s t r a i n t sets, and termination con-
dition x2)
lyll s e. The reduction process (x1,x2,xg) n i s e f f e c t e d by mapping v i a t h e p a r t i t i o n e d matrix I
0
(0
I
T =
The n u l l space of
T,
(~~-3,
-:)*
(11)
obviously s a t i s f i e s
R
iN
c R, and i s indeed i n v a r i a n t under
t h e c o e f f i c i e n t matrix of t h e f i r s t s t a t e space d e s c r i p t i o n .
Now apply Corollary 1 t o t h e reduced description. c o e f f i c i e n t matrix has a l l eigenvalues r e a l (namely, 0 ) . 197
The The
PURSUIT GAMES
minimal i n v a r i a n t subspaces a
=/
a r e of t h e form R
N
0, and none of t h e s e s a t i s f i e s
c+N
7 :)
with
; t h i i confirms
c
t h e n a t u r a l s u s p i c i o n t h a t t h e reduced d e s c r i p t i o n is minimal. Now we r e t u r n t o t h e two games i n t h e r e d u c t i o n r e l a t i o n , and focus on t h e ' s m a l l e r ' one. PROPOSITION 2
If
T
reduces (1)t o (2), then, a f t e r a
nonsingular coordinate transformation of t h e s t a t e space of
(11,
Conversely, i f ( 1 2 ) holds and
TP = U, TQ = V, t h e n
T
is a
r e d u c t i o n t o ( 2 ) of a game (1)w i t h d a t a
n,A,P,Q,R. (Proof) If T,A,R,P,V a r e a s described, t h e n obviously T reduces (1) t o ( 2 ) . Conversely, l e t T reduce (1)t o ( 2 ) .
If
is any n-square nonsingular matrix, t h e n t h e isormor-1 x w S x r e p l a c e s T by TS (and changes t h e o t h e r
S
phism
data a p p r o p r i a t e l y ) . Rm, w e have rank
n-square matrix
Since T
i s of t y p e (m,n) and maps onto
T = m, and t h e r e e x i s t s an elementary S
such t h a t
TS = (O,I), where
n-square and 0 i s of t y p e (m,n-m). i n (12) follow from (4). &ED
I
is
The remaining a s s e r t i o n s
Note t h a t , a f t e r t h e transformation, t h e d i f f e r e n t i a l equation of (1) p a r t i t i o n s ,
with the
All,
A12
e s s e n t i a l l y a r b i t r a r y ; and t h a t t h e game
( 2 ) is not subjected t o an isomorphism. COROLLARY
m
+
...
1,
t o (2).
3
Given t h e game (2), f o r every
t h e r e i s a game w i t h s t a t e space
For n = m
+
Rn
n = m,
which reduces
1 t h e r e a r e uncountably many non-isomor-
198
ALGEBRAIC THEORY
p h i c games w i t h s t a t e space dimension (Proof:
Choose
n
which reduce
t o (2).
a s t h e f i r s t equation i n (13)j and
=
observe t h a t isomorphic games have t h e i r c o e f f i c i e n t matrices similar. ) From Proposition 1 it folluws r e a d i l y t h a t any two reduct i o n s of a s i n g l e game have a common reduction ( i f N1,N2 t h e n u l l spaces, consider
N = N1 + N2).
are
Proposition 2 pro-
vides t h e means f o r proceeding i n t h e opposite d i r e c t i o n . Consider two games,
end:
x
E
5:
s t a t e space
R
( f o r k = 1,2), and a l s o a t h i r d game, with n o t a t i o n a s i n ( 2 ) :
;=
(15)
By
u + v; u ( t ) E u, v ( t ) E v; y E j s t a t e space: Rm.
-
c
end:
If t h e two games ( l k k ) have (15) a s a common n +n +m reduction, t h e n t h e r e is another game, i n R of which
LEMMA
,
both (14k) a r e reductions. (Proof)
Replace each of (14k) by an isomorphic game a s des-
cribed i n Proposition 2.
Retaining some notation, f o r
k = 1 , 2 t h e dynamical equations of (lbk ) a r e
.
Xk =
Au\+ Ak3Y - &
; =
By
- P3
+
qk
+
q3,
t h e player c o n s t r a i n t s
and t h e t a r g e t sets a r e
nk-m R x
satisfy 199
.
Here t h e c o n s t r a i n t sets
PURSUIT GAMES
. -
and s i m i l a r l y f o r quarry. Consider now t h e game i n
R
n +n +m
with partitioned
dynamical equation
A
x2 =
x
22 2
+ A
j r =
y 23 2'
- P3
BY
+
+
% q33
where pursuer's c o n s t r a i n t set
nl-m R
and s i m i l a r y f o r quarry; and w i t h t a r g e t set
.
x R
n2-m
X
It is r e a d i l y v e r i f i e d t h a t T
=
O
I
O
( 0
0
1).
reduce t h i s game t o ( l b k ) f o r COROLIARY
4
k = 1,2.
T
=
I
O
O
(0
0
I)
Q,ED
The minimal r e p r e s e n t a t i o n s of a game prop-
er a r e l i n e a r l y isomorphic.
(Proof) Take any two minimal r e p r e s e n t a t i o n s of a game proper; thus they a r e equivalent, and t h e r e i s a chain of reduct i o n - r e l a t e d games between them. Repeated a p p l i c a t i o n of t h e lemma provides a common game, of which both t h e minimal r e p r e s e n t a t i o n s a r e reductions. For
k = 1,2
let
representations, and
Tk
Nk
be reductions t o t h e minimal t h e i r n u l l spaces.
Then
N1 + N2
provides a y e t f u r t h e r reduction ( s e e Proposition 1); from minimality, dim N = dim (N + N2), so t h a t N1 = N1 + N2 = k 1 N2, and t h e minimal r e p r e s e n t a t i o n s a r e l i n e a r l y isomorphic
200
ALGEBRAIC THEORY
w
(Proposition 1 a g a i n ) . bercises
1. Prove t h a t reduction i s t r a n s i t i v e .
If t h i s seems
t o o easy, s h u i t h a t t h e non-isomorphic r e p r e s e n t a t i o n s of a game p r o p r form a modular l a t t i c e ( i n g e n e r a l non-distribut i v e , of i n f i n i t e length, w i t h a l e a s t element, s a t i s f y i n g t h e descending chain condition, c o n d i t i o n a l l y complete). 2.
Verify t h a t minimal r e p r e s e n t a t i o n s need not be
controllable.
(E.g.,
in
t a r g e t , and [-1,11 and
3.
o
R
2
, x* = u, i = 0,
with t h e o r i g i n a s
a s c o n s t r a i n t sets.)
If two games a r e l i n e a r l y isomorphic, then t h e i r
For which games i s t h i s
c o e f f i c i e n t matrices a r e s i m i l a r .
necessary condition a l s o s u f f i c i e n t ?
4.
Given a game i n
Rn
a s i n ( l ) , construct a new game
in R ~ ~ , ;=Ax
- p,
$=Ay
-q
with t h e same player c o n s t r a i n t s , and t a r g e t set
Show t h a t t h e o r i g i n a l game i s a reduction, and t h e new game
i s uncoupled.
5.
Referring t o t h e game i n t h e Second Reciprocity Theo-
rem ( s e e 3 . 3 ) , show t h a t , i f t h e n u l l space N of M is invariA, t h e n t h e r e i s an obvious
ant under t h e c o e f f i c i e n t matrix
reduction, t o a game with s i n g l e t o n t a r g e t .
(This reduction
applied t o t h e s i t u a t i o n of 5.3 would make possible f a r more t i g h t l y organised proofs t h e r e . )
6. T
Show d i r e c t l y t h a t , i f
maps eigenvectors of
A
T
reduces (1)t o ( 2 ) , then
either t o
whereupon t h e eigenvalues coincide.
0, o r t o those of
More precisely, i f ( 2 )
i s a reduction of ( l ) , then t h e eigenvalues of 201
B,
B
a r e among
PURSUIT GAMES
those of
7.
A, counting m u l t i p l i c i t i e s .
and
spaces, both s a t i s f y i n g A N k c Nk if N 1 c
(Hint:
I n t h e context of Proposition 1, l e t N2,
R
+
Proposition 2.)
%
be two sub-
N k c R.
Show t h a t ,
then one of t h e corresponding games i s a reduc-
t i o n of t h e other.
8. I n t h e preceding, t h e r e d u c i b i l i t y requirement N1 z N2 i s not a necessary condition. (E.g., n = 2, A = 0; choose t h e Nk s u i t a b l y . ) 9. On t h e o t h e r hand, t h e r e d u c i b i l i t y condition of Exercise 7 i s necessary sometimes.
.
(Consider
n = 2, A
with
d i s t i n c t eignevalues ) 10. Every game whose s t a t e space i s R1 i s minimal; true or f a l s e ? (Hint: It i s f i r s t necessary t o overcome one's aversion t o c a l l i n g
Ro
a l i n e a r space.
Then a leading
question i s : what i s t h e necessary and s u f f i c i e n t condition on t h e t a r g e t set f o r a game i n
R1
t o be minimal?)
ll. Prove t h a t a l l games with termination condition n ( a = R i n (1))a r e equivalent. (Hint: & = 0. )
absent
12.
For t h e one-dimensional homicidal chauffeur game
we already have a minimal r e p r e s e n t a t i o n .
To check Corollary
4 on t h i s example, f i n d a l l reductions, using Proposition 1, and note which a r e minimal.
(Determine a l l subspaces of t h e
t a r g e t , and, among these, a l l which a r e i n v a r i a n t under t h e c o e f f i c i e n t matrix. ) The l a s t group of e x e r c i s e s t r e a t s t h e construction of minimal r e p r e s e n t a t i o n s (say, of t h e game ( 1 ) ) .
13.
Verify t h a t t h e following procedure w i l l y i e l d
minimal representations: of
Rn
with
R
+N c
v a r i a n t subspace
L
of
f i n a l l y , reduce, using
14. Prove:
f i r s t , f i n d t h e l a r g e s t subspace
N
R; second, determine t h e l a r g e s t A-in-
N L
( d e t a i l s i n subsequent exercises); and F'roposition 1.
for every set
202
R c Rn
t h e r e is a unique
ALGEBRA I C THEORY
maximal subspace
N
of
R + N c R.
with
Rn
n-square matrix A and subspace N of l a r g e s t subspace L with A L c L c N.
15.
I n t h e previous exercise, i f
Rn R
For every t h e r e i s a unique
is nonvoid, convex,
closed, and exhibited as t h e i n t e r s e c t i o n of hyperplanes
i s t h e solution s e t t o f o r such s e t s R, R + N c R i s
(x: c!x s a.], then t h e subspace 1 1
t h e system
c!x
equivalent t o
16.
1
=
0.
(Hint:
x + N c R
N
f o r some
x
I n Exercise 14, assume t h a t
r e a l eigenvalues ui,
aj,
is
Ni
+
N
subspaces of
17.
i s simple; find a l l
A
N. More generally, L
then
and t h e corresponding 2-dimen-
s i o n a l minimal A-invariant subspaces L
R.)
and corresponding eigenspaces Ni;
a l l non-real eigenvalues maximal space
E
j’
N
Prove t h a t t h e
j’
summation extended over
can be obtained from e i t h e r of t h e
formulas i n
Prove t h e e q u a l i t i e s here, and show t h a t they indeed provide t h e l a r g e s t A-invariant subspace of
N.
(Hint:
check t h e
orthogonal complements. ) Remarks If
T
reduces game ( 1 ) t o (2), and u
is a winning
pursuer (or evader) s t r a t e g y f o r i n i t i a l position
x
within
(l), then t h e r e i s an appropriate s t r a t e g y f o r position Tx i n game (2); t h i s is obtpined by l i f t i n g controls a s e l e c t i o n procedure, t o controls
q with
v ( * ) , by Tq = v. Similar-
l y i n t h e converse direction, i f one i s provided with a winning s t r a t e g y f o r (2).
However, it might be thought desirable
t o avoid t h i s , by requiring i n addition t h a t t h e reduction mapping T
be one-to-one on t h e player constraint s e t s
203
P
PURSUIT GAMES
and
Q
(i.e.,
N
n
(P + Q) = 0 ) .
The ensuing equivalence
classes, of course, then change d r a s t i c a l l y ; however only l i t t l e modification i s needed i n t h e r e s u l t s of t h i s section. PROBUM 1
Given two reductions of a game (1)with n u l l
Space8 Nk (as i n Exercise 7 ) , obtain a useful c r i t e r i o n f o r deciding whether one is a reduction of the other, o r a t l e a s t is ieomorphic.
PROBLEM 2
I f possible, obtain a simple algorithm f o r
finding t h e s t a t e space dimension of t h e minimal representat i o n from t h e data of (1).
6.4
Invariants and Semi-Invariants The r e s u l t s of t h e preceding section suggest t h a t t h e r e
a r e many equivalent representations of a single game proper. What i s then common t o a l l ?
The game proper i t s e l f , and i t s
minimal representation; but t h a t i s not quite t h e i n t e n t of t h e question. A l l representations of a game proper
PROWSITION 1
have t h e same player control orders, and a l s o t h e same game space (up t o a l i n e a r isomorphism).
(Proof) Of course one need only v e r i f y t h i s f o r a single reduction.
To f i x notation, l e t t h e two games be a s i n
(1)
= AX
(2)
jr = By
-
Q,
-
v;
P + 9; ~ ( t E) P, q ( t ) E end: x E flj s t a t e space: Rn,
u + v; u ( t ) E u, v ( t ) E end: y E C ; s t a t e space: R".
Let an onto l i n e a r mapping T : Rn
4
R"
be a reduction of (1)
t o ( 2 ) , so t h a t
( 3)
TA = BT, TP = U, TA = V, TO =
where t h e n u l l space
(4)
N
of
T
satisfies
T N c N, R
204
+N c
R
ALGEBRAIC THEORY
( s e e Proposition 1 i n 6 . 3 ) . For t h e pursuer c o n t r o l order ( s e e 6 . 1 ) it i s s u f f i c i e n t t o show t h a t t h e two i n c l u s i o n s Aj(P
-
P)
c span ( R
R), BJ(U
a r e equivalent f o r each i n t e g e r
t h a t TA j P -- B3 TP
=
BJ U
Indeed, T(R 2
y +
Last, i f R
- a), Y
For t h i s note, f i r s t ,
from ( 3 ) . Second, T(R 1 R) =
(5) has
j 2 0.
- U) c span (c*C)
c*c.
n) z TR 2 TR q u i t e generally; and i f y = Tx t h e n x + Rc n + N c R and so x 6 R R.
*
cc c, Bj(U
so t h a t
- U) c span c * Z , then TAJ(P - P) c T(span A ( P - P) c span. ( R rc R ) + N c span ( R j
R).
The a s s e r t i o n on t h e game spaces i s merely t h a t t h e i r dimensions coincide, R ) l = dim (c
dim ( R
* aA.
dim L = dim TL + dim ( N f o r any subspace dim
L
(c*X)l=
= (n
n
5 R)
(n 2 n ) c
PROPOSITION 2
L)
t h e n u l l space of T).
Thus
- dim (crx) = m - dim T(R *
- dim(RI* R ) ) -
= dim(R
since N C N +
(with N
n
- 0,
R 5 R.
(dim n
- dim(N n
(R
R)
* a)))
&FD
The degree of uncoupling decreases ( o r
remains unchanged) under reduction. (Proof)
We s h a l l use repeatedly two results from elementary
l i n e a r space theory: and
(6), and t h a t , f o r l i n e a r subspaces
L2,
205
L1
PURSUIT GAMES
(The first f o r obvious reasons; t h e second because
sum8
map
w e l l while intersections do not.) Retain t h e notation from t h e proof of t h e preceding re-
sult, including T space; ar.? l e t
Cp,
spaces.
for t h e reduction and
..
hence
be t h e appropriate c o n t r o l l a b i l i t y
.,Cv
and
Since TA = BT TAk = B?C
for k = O,l,.
+
Cu
+
Cv = T ( C p
for its null-
N
T P = U, we have Cu = TCp (note ..), and analogously Cv = TCQj
Application of t h e dimension
CQ).
formulas then y i e l d s
n cV) =
dim(CU
+
(dim(N
dim(Cp
n cQ )
n (cP + c,))
-
dim(N
n cP) -
and a l s o
m m = dim R = d i m TRn = n
-
6 = dim N
+
- d i m ( C U n cV)
dim(N
n
(Cp
+ CQ ) )
= n
- dim(Cp
- dim(N n
Obvious inclusions yield, f o r t h e f i r s t
dim N
(8)
+
dim(N
n(cp+cQ)) 2
+ d W (N
so t h a t
from
6 2 0
n cP)
+
(N
n
Cp)
c),
- 6,
- dim(N n
two terms of dim(N
n
c,))
d i m N.
Thus t h e degrees of uncoupling s a t i s f y n
n
dim(N
n cP n
C).
6, N
n c,)
c,)),
(7).
Exercises iff
1. Prove t h a t t h e degree of uncoupling is not changed Proposition N c Cp n CQ (notation a s i n t h e proof of
1). This i s so, i n particular, i f both players' control systems a r e controllable. 2. dim C p
-
Show t h a t , f o r min-max controllable games, dim C
Q
decreases ( o r remains unchanged) under 206
ALGEBRAIC THEORY
reduction, and t h e reduced games a r e a l s o min-max controllable. For which reductions does t h e c h a r a c t e r i s t i c remain constant? Exercise 4 i n 6.3,
3.
and a l s o one-dimensional rocket
" Q'
chase with i t s reduction, suggest t h a t t h e dimension Cp increases ( o r remains unchanged) under reduction. counterexample
4.
Provide a
.
Prove t h a t , a t l e a s t , a game with uncoupled reduc-
t i o n i s i t s e l f uncoupled.
5.
n
Show t h a t t h e p l a y e r s ' c o n t r o l l a b i l i t y d e f e c t s (e.g.,
- d i m Cp)
decrease, or a r e unchanged, by reduction.
Con-
clude t h a t t h e reductions of a c o n t r o l l a b l e game a r e c o n t r o l l able.
6. Rn
n
Referring t o ( l ) , l e t
with
R
f
L c R.
- d i m L = dim L
I
L be t h e l a r g e s t subspace of
(see Exercise 1.3 i n 6 . 3 )
Prove t h a t
i s an i n v a r i a n t under reduction.
I n (1)assume t h a t t h e player c o n s t r a i n t sets a r e
7.
convex and s w e t r i c , and t h e t a r g e t set space.
i s a l i n e a r sub-
R
Prove t h a t supCB: eAtQc eA t p + R f o r a l l t
E
[O,B]}
i s an i n v a r i a n t of a l l equivalent representations of (1).
(Note:
the characteristic is the largest
+
B 4
m
such t h a t
t h e condition from t h e proposition i n 3.4 holds).
8.
Let
L = span R
*R
( t h e complement of t h e game
space of (l)), and denote by r t h e f i r s t i n t e g e r r l such r-1 r-1 that A r L c A'L (the significance i s that A L is
c,
c,
t h e l e a s t A-invariant subspace containing by t h e Cayley-Hamilton theorem).
L; thus
Prove t h a t
r
i;
n
i s an
r
i n v a r i a n t of t h e equivalent d e s c r i p t i o n s of ( 1 ) .
9. Denote by m t h e (unknawn) dimension of t h e minimal s t a t e space representation of (1). Prove t h a t where
k
i s t h e c o n t r o l order of e i t h e r player.
207
k
s m s n, Actually,
PURSUIT GAMES
k may be replaced by the largest integer such that
for
j
5;
k
- 2.
A j (span P
+ span Q) c span R
f
R
Is it true that r < m, where r is as in
the preceding exercise?
208
CHAPTER VII NONLINEAR GAMES
This chapter t r e a t s games whose dynamics or termination conditions are not assumed t o be l i n e a r .
The p r o j e c t is,
necessarily, less ambitious t h a n t h e ' s o l u t i o n ' of p u r s u i t games, i n t h e sense of providing g e n e r a l methods for t h e construction of s u c c e s s f u l s t r a t e g i e s : we address t h e problem of d e t e c t i n g presence or absence of winning positions. The procedure i s somewhat i n d i r e c t (thus, w e do not exhibit explicit s t r a t e g i e s ) .
It i s shown i n 7 . 1 t h a t non-
t r i v i a l winning p o s i t i o n s e x i s t s i f , and only i f , t h e t a r g e t
set boundary contains ' e s s e n t i a l ' points; end then computable conditions a r e presented f o r e s s e n t i a l and i n e s s e n t i a l points (Sections 7.2 and 7.3j t h e idea was a l s o applied i n 5.1 and 5.2). The concept of e s s e n t i a l point may be defined i n s e v e r a l
One of t h e s e i s adopted f o r
approximately equivalent ways.
t h e D e f i n i t i o n i n 7.1, and t h e o t h e r s a r e then p r o p e r t i e s of t h e concept (Proposition 1 i n 7.1, t h e Theorem and f i g . 1 i n Analogous results f o r isochronous capture a r e present-
7.2). ed i n
7.4.
7.1 E s s e n t i a l Points The game t o be t r e a t e d i s indicated by (1)
2
= f(x,P,q);
end: x
E
~ ( t E) P, q ( t )
with t h e standard assumptions from 2.1.
209
E Qi
Rj s t a t e space: Rn,
PURSUIT GAMES
DEFINITION
Referring t o game (l), t h e set
ess R
of
e s s e n t i a l points i s
ess R
= l i m (w(o,t)\n)
n wo\n
=
t+O+ t 20 The limit e x i s t s ( i . e . , limsup = l i n i n f ) and t h e i n t e r s e c t i o n formula holds because
W(0,t)
see (6) i n
t:
increases w i t h
2.2.
To be s p e c i f i c , f o r t h e reduced v e r s i o n of one-dimensiona 1 rocket chase, t h e winning sets were determined i n 1.3 (with a s t r i c t j u s t i f i c a t i o n by t h e results of 5.3).
The e s s e n t i a l
p o r t i o n of t h e t a r g e t set boundary c a n e i e t s of two symmetrica l l y placed rays (see f i g . 1) One reason f o r t h e a d j e c t i v e ' e s s e n t i a l ' w i l l appear i n an a l t e r n a t e c h a r a c t e r i s a t i o n (Proposition 1)which w e s h a l l now develop.
Recall t h e n o t a t i o n from 2.3:
f o r t h e s o l u t i o n i n i t i a t i n g a t t h e point t o players' controls termination time
p(.),
q(.))i
x
t
n (t,x,p,q)
H
( s t a t e response
and t h e corresponding f i r s t
T(x,p,q).
Assume given an i n i t i a l p o s i t i o n and a l s o a winning s t r a t e g y compact time i n t e r v a l .
forcing
u
x
outside t h e t a r g e t ,
x to
within a
R
Keeping t h e s e fixed, consider a l l
points on t h e s t a t e responses t o various quarry controls, but only up t o t h e f i r s t i n t e r s e c t i o n time.
For a t e c h n i c a l rea-
son, t h e d e f i n i t i o n of t h e jet corresponding t o
x
and
u
is (2)
J (x) = closure{n(t,x,u[q],q): U
measurable q: R
1
+
Q,
0 s t S T(x,~[qI,q)]
4
To eliminate t r i v i a l jets, x
R
i s b u i l t i n t o the defini-
tion. The p a r t of t h e t a r g e t a c t u a l l y used by and one might then define t h e
used p a r t
210
J
is
J
n an,
of t h e t a r g e t a s
NONLINEAR GAMES
U(J
n an),
union over winning positions and j e t s .
Thus, i n
our i l l u s t r a t i o n , t h e used p a r t of t h e t a r g e t s t r i p i s somewhat l a r g e r than t h e e s s e n t i a l portion, see. f i g . 1. x= -€
n
(€,'I)
I I I
essential
I I I I t
I I
, I
I
!
Fig. 1 Essential and used portions of t a r g e t , for t h e game i n 1.3. Consider t h e closed sets
S which i n t e r s e c t each j e t j e.g., Rn, R, and the used portion of R are a l l such, but 211
PURSUIT GAMES
one n a t u r a l l y i n q u i r e s about s e t s S
Zorn's Lemma provides e x i s t e n c e of irreducible
as possible.
sets
which a r e a l s o a s small
S, s i n c e each j e t i s compact (see t h e lemma i n 2.1;
a c t u a l l y t h e r e i s a theorem due t o Cantor y i e l d i n g a construc-
tive proof, s i n c e Rn
i s separable).
The s u r p r i s i n g charac-
t e r i s a t i o n of e s s e n t i a l p o i n t s i s t h a t ess R i s t h e only minimal set
S:
PROPOSITION 1
Every j e t i n t e r e s e c t s
ess R; every
closed set which i n t e r s e c t s a l l j e t s contains
ess R .
(Proof) The f i r s t a s s e r t i o n was obtnined a s Corollary 1 i n 2.3. Assume t h a t t h e second f a i l s : some point x E e s s R i s not i n a closed set
S
which otherwise i n t e r s e c t s each j e t .
Choose a compact neighbourhood
s d i s j o i n t with S . A standard argument from d i f f e r e n t i a l equation theory (conU
ov
tinuous dependence on i n i t i a l d a t a ) y i e l d s a second neighbourhood
V c U
of
x
and a bound
and any player c o n t r o l s
p,q.
C
Since
y E V w i t h i n W(O,c)\R,
point forces
y
to
R
within
>
[O,E].
0
such t h a t
x E ess R, t h e r e i s a
and t h e r e f o r e some s t r a t e g y u With t h i s l i m i t on t h e ter-
mination times, t h e e n t i r e j e t intersects
&ED
J u ( y ) c U. By assumption, S J ( y ) but i s d i s j o i n t with U: a contradiction. U
COROLL4RY 1
ess R
i s a closed subset of
an.
(Proof: an i s a closed set i n t e r s e c t i n g each j e t . ) COROLLARY 2
Suppose t h a t
R =
closed; then
m
n 9 with
k=1
e s s R c liminf e s s b m
the
9
a.
(Proof: it i s e a s i l y verified t h a t t h e closed liminf i n t e r -
212
NONLINEAR GAMES
s e c t s each j e t . ) I n t h e game (l), with standard assump-
PROPOSITION 2
t i o n s , t h e r e a r e n o n t r i v i a l winning p o s i t i o n s i f , and only i f , there exist e s s e n t i a l points. (Proof)
O f course, i f a l l
ess R = lim(w(o,t)\n)
=
4 $.
x is
Conversely, i f
ess R
winning p o s i t i o n , t h e n
ess R
W(0,t) = R, t h e n
8.
a nontrivial
i n t e r s e c t s i t s j e t , and so
&ED
Exercises 1.
Prwe t h a t
2.
Show t h a t
ess R 1 z ess(R1
u
e s s R1
R2)
=
if
Rlc
R2.
ess R1 U ess R2
if t h e
4
a r e closed and d i s j o i n t . Remarks The e s s e n t i a l p o i n t s have already appeared, r a t h e r natura l l y , i n t h e Theorem of 5.1 and subsequent r e s u l t s (Proposit i o n 1 i n 2.3 i s an ex post occurence, as i s t h e j e t appearing i n (6) t h e r e ) .
Some h i s t o r i c a l remarks a r e delayed u n t i l t h e
next s e c t i o n .
7.2
E s s e n t i a l Points on Large Targets I n t h i s s e c t i o n we present and i l l u s t r a t e computable
conditions f o r e s s e n t i a l i t y .
The game
(1) s t a t e space:
R"
i s retained, t o g e t h e r w i t h t h e standard assumptions from 2.1. However, our t a r g e t sets a r e more s p e c i a l , R = {x: v ( x > s O}
(2)
where '9:
Rn
+ R1
is i n
p a r t i a l derivatives).
1 C ( i . e . , has continuous f i r s t
The gradient of
213
cp
i s i t s Jacobian
PURSUIT GAMES
row-vector, denoted a s i n Ds =
(*,...,a), and m ( x ) i s 351 Xn
i t s value a t x. The t a r g e t sets a r e l a r g e i n t h e sense t h a t t h e results become vacuous f o r p o i n t s a t which Lkp(x) = 0. We introduce one fu rt h e r useful notation: t h e formal t i m e d e r i v a t i v e , ~CP, of Cp along t r a j e c t o r i e s of t h e dynamic a l equation, i s
THEOREM I n game ( 1 ) l e t t h e standard assumptions obtain, and l e t t h e t a r g e t set R be a s described above. For a p o i n t x E a R t o be e s s e n t i a l it i s s u f f i c i e n t t h a t M = min max 6cp X F@ qEQ
(4)
<
0
and necessary t h a t
(5)
VX
= max min 6cp 5 0.
SEQ PEP (Proof) Change coordinates so t h a t x = 0, and write
d' =
W(0).
Note t h a t , s i n c e 0
is on t h e boundary of
01,
n e c e s s a r i l y ~ ( 0=) 0. Consider f i r s t t h e case Mx < 0. Necessarily d 0, s i n c e otherwise 6cp = 0 = M according t o (3) and (4). We { ~ pJ:
4
s h a l l prove t h a t t h a t indeed
X
t 2d E W(O,t)\R 2
0 = lim t d
t+O By f i n i t e Taylor expansion,
f o r small t > 0, concluding
E limsup(W(O,t)\$l)
-
ess R.
2 cp(t d ) = 0 + d't2d + o ( t 2 ) , 2 so t h a t cp(t2d)/t2 + l d I 2 > 0; hence cp(t d ) > 0 and t2d
4R
f o r small t > 0.
N e x t , f i n d a point
for
Mx
5E
i n (4) i s a t t a i n e d :
P a t which t h e o u t e r minimum
214
NONLINEAR GAMES
(6 1
s Mx < 0 f o r 9 E Q,
d'f(O,F,q)
5
We propose t o i n t e r p r e t patory) s t r a t e g y .
a s a constant (hence, non-antici-
For any quarry c o n t r o l
q(*)
let
x(*)
b e t h e corresponding s t a t e response with i n i t i a l p o s i t i o n 2
t 2d E W(0,t) it i s s u f f i c i e n t t o v e r i f y t h a t cp(x(t)) < 0 f o r 0 < t < E, with E > 0 independent of q( ). Again by Taylor expansion a t 0, x ( 0 ) = t d.
The point
To shod t h a t
x(t)
2
i s a t t a i n e d from i t s i n i t i a l value x ( 0 ) = t d
t; from t h e L i m i t Theorem f o r a t t a i n a b l e sets i n 3.11, f o r small t > 0 t h e p o i n t s at time
x(t>
&=
t
2
+
td
t a r e c l o s e t o t h e compact set cvx f(O,p,Q) + 0. I n p a r t i c u l a r , x ( t ) / t i s bounded, so t h e remainder term i n (7) i s o ( l ) o ( l ) + 0 a s t + 0. Again from t h e L i m i t Theorem, t h e accumulation p o i n t s
i n (7) belong t o d'cvx f(O,p,
cp(x(t))/t
Q), i.e., l i e i n (-m,MX] c (-00,O). Since t h e estimates a r e uniform ( c f . Corollary 4 i n 3.11), we conclude t h a t cp(x(t))/t < 0 indeed holds f o r small t pendent of q(*). For t h e necessary condition, assume t h e r e e x i s t sequences of p o i n t s
x =
5
> 0, 0
estimate inde-
E ess
R; thus
and times
t = tk
with 0
(indices
k
x
E
W(O,t)\R,
t +
ot
w i l l be suppressed where p o s s i b l e ) .
shaw t h a t (5) holds. maximum f o r
4-
px
Find a point
i s attained i n ( 5 ) .
corresponds a s t r a t e g y uk
We wish t o E Q a t which t h e outer
To each
which f o r c e s 215
x =
x to
R
%
there
within
PURSUIT GAMES
p = + = uk[T], and l e t xk( ) be t h e corresponding s t a t e responses. Thus Consider t h e pursuer c o n t r o l s
[O,t]. x(. ) =
(8)
x = x(0)
for suitable
4R
> 0,
and v ( x )
s = sk E (O,tk].
x ( s ) E R and cp(x(s)) s 0
5
The Taylor expansions a t
are ID(x(s) = d x ) with
di =
s > 0,
+
w(5) + m(0) = d';
(9)
a;
0 2
d;l(x(s)-x>
*
+
Ix(s)-xI>,
f r o n (8), a f t e r d i v i d i n g by
+
1-
a(1).
From t h e L i m i t Theorem f o r a t t a i n a b l e sets, t h e terms (x(s)-x)/s
a r e i n a neighbourhood of
cvx f(O,P,q);
thus they
a r e bounded, t h e remainder term i n ( 9 ) i s 0(1)~(1) + 0, and t h e nonpositive accumulation p o i n t s a r e i n
d'cvx f(O,P,q).
Hence indeed 0
min d'f(O,p,';i)
'L
= pk
.
Q D
Condition (4) w i l l b e used f o f i n d e s s e n t i a l points, and t h e negation
pk
of ( 5 ) f o r t h e i n e s s e n t i a l points; they
>0
a r e e a s i l y v i s u a l i s e d , as i n f i g . 1. The t e s t i n d i c e s
Mx,
px
depend continuously on
x.
Always pk s Mx, with e q u a l i t y i f t h e p l a y e r s ' c o n t r o l
effects s e p a r a t e a s i n t h e l i n e a r case with
ux
f(x,p,q) = g(x,p) + h(x,q);
Lrp(x) = d',
e.g.,
-
- max
in
d'p + max d'q = d'Ax d'(p-q) P€p qcQ i n t h e n o t a t i o n of 5.3. The a s s e r t i o n of t h e theorem i s t h a t M
X
(10)
=
= d'Ax
[x
E an: Mx < 01 c ess Rc {x E R: uk s
thus, t h e boundary of
ess R
* a ess
relative t o a R
R c {x E
an:
0);
satisfies
px s 0 s
Mx]
.
The results of t h e theorem may be sharpened s l i g h t l y : 216
NONLINEAR GAMES
Fig. 1 Geometry of e s s e n t i a l p o i n t s . The e s s e n t i a l point has some quarry vectoqram i n t h e t a r g e t s i d e of t h e tangent hyperplane (upper figure); t h e i n e s s e n t i a l point has a pursuer vectogram i n t h e opposite s i d e (lower figure).
’/
217
n
PURSUIT GAMES
M Y
IJ.
< 0 and y k + x, then x E ess R. s 0 f d r some sequence y = y + x
outside R. k The f i r s t a s s e r t i o n follows from t h e theorem, s i n c e
Y (Proof)
ess R
y = y on an with k If x E ess R, then
If t h e r e i s a sequence
COROLLARY
i s closed.
7.1 with
%=
The second follows from Corollary 2 i n
{x: cp(x)
5
k-7
and t h e theorem, s i n c e t h e
WD a d d i t i v e constant does not e f f e c t 6 q nor FL Y' Example 1 We w i l l examine t h e e s s e n t i a l points f o r t h e game i n d i c a t e d by uncoupled n-dimensional equations,
pursuer's and quarry's c o n s t r a i n t s u ( t > E U, I v ( t ) l
1;
and c-capture a s t h e termination condition, lx-Yl (here
n
2
1, U
4 $,
5
c
c > 0, and f,g
s a t i s @ appropriate
versions of t h e standard assumptions from 2.1).
Sna s
.
There i s an i n t e r p r e t a t i o n i n coordinates p a r t i t i o n e d i n t o x,x,y.
s t a t e space, with
An obvious choice f o r
describing t h e termination condition by cp Q(X,G,Y) =
1
0
5
has
- Y I 2 - c 2 1.
(1.
Then
The necessary condition describes t h e boundary of t h e Corollary: adjust
x
since
t o obtain
point s a t i s f y i n g u
5
i s also s u f f i c i e n t , and p
IJ. 5 0
ess R
>0 FL < 0
in
and thus
E
aR.
This follows from
x-y
f o r p o i n t s on
=/
0, one can
aR
c l o s e t o any
0.
To s i m p l i f y f u r t h e r , f o r
z
218
E
Rn
= 0
with
(21
= 1 set
NONLINEAR GAMES
x = y
-
CZj
then
z,;,y
(in
coordinates describing
Sn'l
x Rn x Rn) a r e independent
an, and t h e condition f o r e s s e n t i a l i t y
is
(9)
z'(k
- g(y))
1.
5
Thus t h e e s s e n t i a l point set w i l l c o n s i s t of e n t i r e half rays z,&,y
w i t h a l a r g e enough ( p o s i t i v e i f z';
if
<
2';
0 ) j and,
dimension
n
2
-n
>
i n t h e remaining manifold
0, negative
- 1, t h e condition reduces t o
= 0
2':
of
z'g(y) s -1.
One i n t e r e s t i n g point i s t h a t ( 9 ) i s independent of C
>
O j t h e r e i s no i n t e r p l a y between
meters i n t h e game.
It i s = t r u e
and t h e o t h e r parat h a t how close pursuer
can approach quarry depends on t h e game d a t a .
The conclusion
should not, however, be extrapolated v i a
E
+
0+:
and
n
2
2 t h e r e need
already seen i n 5.2 t h a t f o r
E = 0
we have
not exist any winning p o s i t i o n s . A more f o r c e f u l formulation i s t h a t , according t o (g),
t h e e s s e n t i a l point problem f o r t h e o r i g i n a l game i s equivalent t o that for
..
x = 0,
+
= g(y)
+ vj u
= O j J v ( t ) ( 5 1j end:
I n p a r t i c u l a r , taking (8) i s l i n e a r (e.g.,
1x-y) s
C.
t h e i s o t r o p i c rocket
game) provides no f u r t h e r s i m p l i f i c a t i o n . Example 2
(Homicidal Chauffeur Game)
The reduced
dynamical equation was obtained i n Exercise 2 of 15; i n r e a l coordinates
x,y
of
z = x + iy, t h i s reads
x = yu + s1 + vl,
b
y = -xu
+ v2
with control constraints
l e t x2 + y 2 s c2 be t h e termination condition.
219
A l l the
PURSUIT GAMES
parameters
sl, s2, ,pl
E
a r e t o be s t r i c t l y positive.
An obvious d e s c r i p t i o n of t h e t a r g e t s e t i s provided by cp(x,y) =
1
2 (x
+
y2
6q =
with
8
- c2). S1X
Then, e a s i l y ,
+ ( x v + yv ), p = M = 1 2 s 2 CL = s ~ ( C O S e + -) 1 S 1
t h e polar angle (x = E cos
SIX
+ s
E,
2
e).
The conclusions a r e a s follows.
The condition
s 2 s2 1 i s necessary f o r presence of n o n t r i v i a l winning p o s i t i o n s . If sl > s2, then t h e e s s e n t i a l p o i n t s on t h e E-circle a r e those with p o l a r angle
8
satisfying
cos e s -s2/sl,
l a r a r c , q u i t e independent of capture radius curvature bound
C
a l e f t circuand pursuer's
l/pl.
This agrees (modulo notation, and t h e endpoints of t h e e s s e n t i a l a r c ) with t h e results on p.
279 of I s a a c s ' book.
One i n t e r p r e t a t i o n i s t h a t t h e pursuer can wercome quarry's f a r g r e a t e r c a p a b i l i t y of manoeuvering by even a s l i g h t excess of speed. Exercises 1. I n t h e f i r s t p a r t of t h e proof of t h e theorem it was shown t h a t , f o r small t
> 0,
t h e point
t 2 d E W(O,t)\nj expand s l i g h t l y t o prove t h a t an e n t i r e neighbourhood of t h e
point i s i n t h e s e t . 2.
For allonornous games w i t h dynamical equation
&
= f(t,x,p,q) and termination condition cp(t,x) s 0 expression analogous t o M i n (4) is
a + at
the test
max D cp(t,x) f(t,x,p,q), P q x Formulate t h e appropriate assumptions and p r w e t h i s . (Hint: a short-cut
min
i s t o reduce t o an autonomous s i t u a t i o n . )
3. I n t h e reduced v e r s i o n of t h e one-dimensional 220
NONLINEAR GAMES
homicidal chauffeur game, f i n d a l l pursuer and quarry vectograms a t t h e point (-€,1.2) and a l s o e t (-e,o.8).
4. point
I n t h e theorem omit t h e assumption on
x E aR
and a b a l l
B
about
cont8ins a convex cone with v e r t e x and i f if
R
x
min nmx d'f(x,p,q) < 0, t h e n P 9 i s convex, x E ess R and
nB
max min d'f(x,p,q) 9 P For t h e game i n R2
mal, t h e n
5. = Y
x.
-
qi
j, =
pi
R, consider a
n
Prwe t h a t i f R
B
and e x t e r i o r normal d, x d
E
e s s R.
Prove t h a t
i s an e x t e r i o r nor-
s 0.
I ~ ( t ) 5;l 1 2 I q ( t ) I j end:
1x1
2 2
IYI
use t h e geometric method suggested by Fig. 1 t o f i n d t h e e s s e n t i a l and i n e s s e n t i a l portions of t h e t a r g e t set boundary. (The answer i s summarised i n f i g . 2 . )
n
Fig. 2 The L-shaped sets form t h e e s s e n t i a l p o r t i o n of t a r g e t i n t h e game of Exercise 5.
6. Treat (4) of 1.6 f o r
t h e two-dimensional game of two cars, with t h e dynamical equation. 221
Show t h a t , i n aqf
PURSUIT GAMES
configuration of the ( s t r i c t l y positive) parameters, there always
exist
nontrivial winning positions.
( P a r t i a l answer:
.
69 is independent of controls ) 7. Treat e s s e n t i a l points i n t h e case of an n-dimenaiona 1 equation of order k 2 2
,...,x(kG1!,p,q)
x(k) = f ( x
and cp(x) s 0 as termination condition; t o simplify you may assume t h a t Rp(x) 4 0 on t h e boundary of the t a r g e t set. (Check: as f a r as e s s e n t i a l i t y goes, = 0, cp(x) s 0 is an equivalent problem. ) 8. I n the special case cp(x) = X'WX
-e
of the preced-
( positive definite, e > 0 ) find the boundary of the ing W e s s e n t i a l point s e t on t h e surface of the t a r g e t .
9. Consider t h e l i n e a r game with uncoupled players i n n-space,
.
.
x = A x - p , y = By
-
q
-
player constraints I p ( t ) l s 5 , I q ( t ) l s p, and Ix yI 5 E termination (a > 0, p > 0, e > 0 ) . Prove t h a t nontrivial
at
winning positions exist i f A 4 B. (Hint: i f there are no e s s e n t i a l points, then p > 0 a t ell points of t a r g e t boundary.) 10. For t h e paradoxial game of 1.7 i = (p-qI2 g1; o s p ( t > , q ( t )
-
find px point.
and Mx; prove d i r e c t l y that
0
4
1; end: x c
i s an e s s e n t i a l
Remarks The notion of e s s e n t i a l point appears i n R. Isaacs:
Differential Games, Wiley, New York, e t c . ,
1967 (PP. 839 215)
222
o
NONLINEAR GAMES
a s point i n t h e 'useable' p a r t ; i n our notation, t h e d e f i n i -
Mx > 0 (and Mx < 0 f o r t h e 'nonuseable'
t i o n adopted t h e r e i s points).
The disadvantage of t h i s approach i s t h a t Proposi-
t i o n 2 from 7.1 does not hold.
A formulation on p.
55 of
A. Blaquigre, F. Ggrard, G. Leitman: Quantitative and Q u a l i t a t i v e Games, Academic PTess, New York and London, 1969
seems t o suggest t h a t t h e endpoints of t i m e - o p t i m a l t r a j e c t o r i e s a r e 'useable'. A r e l a t e d concept, t h e usable p o i n t s , appears on p. 88 of A. Friedman:
D i f f e r e n t i a l Games, Wiley-Interscience, New York, etc., 1971.
The d e f i n i t i o n can probably be deciphered; a subsequent s t a t e ment i s t h a t
u X < 0 i s a s u f f i c i e n t condition i n t h e case
t h a t t h e p l a y e r s ' dynamics a r e separated.
This should not be conf'used with what we have c a l l e d t h e a c t u a l l y used p a r t of t a r g e t ( f o r which a s u f f i c i e n t condition min min 6rq < 0 ) . P 9 PROBLEM Is ux < 0 s u f f i c i e n t for x
would be
t o be an
e s s e n t i a l point?
7.3 Necessary Conditions for Small Targets
our game i n R"
i s again
with t h e standard assumptions from 2.1.
The t a r g e t sets w i l l
be described by F(x) =
R = {x:
(2)
where
n m F: R + R
F
x
at
i s of c l a s s
i s denoted by
223
C
.
1
01
The Jacobian matrix of
PURSUIT GAMES
Every closed set taking as
can be described i n t h i s manner, e.g. by
R
F(x)
t h e distance-square of
t o be t r e a t e d have s p a r s e t a r g e t s :
x
from
R.
The games
-
t h e results f o r points
E a R become t r i v i a l i f DF(x) vanishes (e.g., x E I n t On t h e o t h e r hand, m > 1 i s allowed.
x
R).
I n game ( 1 ) l e t t h e standard assumptions
THEOREM 1
apply, with t h e t a r g e t set a s described above.
For a point
x
+
t o be e s s e n t i a l it i s necessary t h a t t h e r e e x i s t a ray L = R d in
Rm
such t h a t
cvx DF(X) intersects
f o r every
L
Remark
q
E
f(x,P,q)
Q.
Neater versions of t h e condition appear f o r
s p e c i a l cases, i n t h e Necessary Conditions.
It may not be
obvious t h a t t h i s i s an immediate g e n e r a l i s a t i o n of t h e necess a r y condition from t h e Theorem i n 7.2. t h e r e a r e only two rays, t h e semi-axes; either a l l
6F
6F
0, o r a l l
?:
2
There
0 ( c f . Exercise 1).
(Proof)
Consider f i r s t any winning p o s i t i o n
and l e t
u
E
x
W(0,8)\R,
b e a corresponding s t r a t e g y ; a l s o consider any
i n Q.
p a i r of quarry c o n t r o l values
q1,q2
pursuer responses
s t a t e responses
with i n i t i a l value i n (O,e].
m = 1, so
the assertion is that
p
i
= u[qil,
Then one has t h e x(-), y ( * )
x(O)= x = y(O), and termination times
F i n a l l y , both
x = x(t)
and
y = y(s)
t,s
are i n
R = {F = 01, so t h a t (Taylor's expansion, with i n t e g r a l re-
mainder term)
(3 1
0 = F(x)
-
%=1 F(Y) = [F(Y + 5(x-Y))l*=o
1 = J0DF(~+5(x-Y))d6
t + s > 0 and t a k e limits x ( t ) , y ( s ) have a common l i m i t
We w i l l subeequently divide by appropriately.
Note t h a t i f
(x-Y)
224
NONLINEAR GAMES
With t h i s prepared, assume xo sequence of points
xO
t
xk E
Then t h e r e i s a
R.
ek
such t h a t
w(o,ek)\R,
o < ek +
and times
xk
E ess
Therefore t h e r e e x i s t s t r a t e g i e s
0.
f o r each point
ak:
q
E Q,
interpreted as a constant quarry control, t h e r e a r e corresponding pursuer responses pk = ok[q1, s t a t e responses termination times tk. I n d e t a i l ,
t
5 + f(xk(s),pk(s),q)ds, 0 < tk 5 ek + 5, s ( t ) E
xk(t) = =
and
\(*)
O'
tk, t h e L i m i t Theorem f o r a t t a i n a b i l i t y s e t s (see 3.11) yields a subsequence x of
Since the
xk ( tk )
5
i s attained from xk
at
x . ( t )-x
++
2
E
j Herep of course, t h e subsequence
xk(*), t k ) . subsequence.
cvx f(xo,P,q).
xJ
w i l l depend on t h e
q E Q above ( t h i s then determines p k ( * ) , The usual t r i c k provides an almost universal
choice of t h e point
in
j
such t h a t one has convergence i n
Take a countable dense s e t
{q:
Q, and apply t h e foregoing argument t o
.
i = 1,2,. .)
ql,%,
... i n turn.
of sequences (Cantor's 'second diagonal of xk which method'), one obtains a single subsequence x By taking subsequences
works f o r a l l t h e
qi.
I n d e t a i l , f o r each
225
J
i
there exist
PURSUIT GAMES
sequences of times points
zi
t
such t h a t
ij
, points
o<
(6 1
y
= x
ij
ej +
tij s
( t . .), and a180
id
1J
0, y i j
E
R
cvx f(xo,P,qi) a r e contained i n t h e compact set cvx f(xo,P,Q), we a l s o have from (6) t h a t
Since a l l
y i j = xj +ti jz.i
+ x0+O
+
as j
uniformly f o r i.
oJ,
Now apply t h e preparatory argument t o x . E W(O,e.)\R J J and any p a i r %, q a i n t h e dense subset. The X = Xi aj in r e s u l t i n g from ( 5 ) have an accumulation p o i n t p = p ill [0,1] a s j + m. Now t a k e l i m i t s i n (3)) using (7) f o r (4), and (6) i n ( 5 ) :
holds f o r a l l
i,a
and same p
ia E
[0,11.
The conclusion i s now obvious geometrically. t h e r e a r e two a l t e r n a t i v e s . DF(X )z
or some -
o a
DF(x )z
o a
=/ 0.
Either
ray, L = DF(xO)zi
for a l l
= 0
Then p
wikh t h e s c a l a r f a c t o r (l-p)/p
+ R 0
4
ill
2
0.
0
+ F D F ( x ~ ) z ~t h; e
a
= 1,2,
...,;
from ( 8 ) , and
Let
L be t h e indicated
conclusion i s t h a t belongs t o b o t h L and DF(xO) cvx f(x,P,gi). or
L =
This proves t h e a s s e r t i o n f o r a l l of
I n detail,
q =
i n a dense subset
Q; t h e g e n e r a l case follows by c o n t i n u i t y ( L i s closed,
cvx f(x,P,Q) compact). QED A consequence i s t h e following nonlinear g e n e r a l i s a t i o n
of t h e conditions from 5.1: 226
NONLINEAR GAMES
Appropriate versions of t h e stand-
NECESSARY CONDITIONS
ard assumptions a r e t o apply: t h e t a r g e t is R = Ex: F ( x ) = 01 1 with a C map F: Rn + Rm; and l e t us write D = DF(x). If t h e p l a y e r s ' dynamical effects separate,
2
- g(x,q),
= f(X,P)
x E ess n, t h e n t h e r e i n R" such t h a t
and
16
+
L = R d
a ray
f ( x , P ) + L;
f(x,Q) c cvx D
D
from t h e o r i g i n
i n particular, g(x,Q)
dim D
1+ dim D
5
f(x,D).
If t h e players' c o n t r o l s appear l i n e a r l y ,
+ B ( x ) ~+ c ( x ) q
= a(.)
and t h e players' c o n s t r a i n t sets a r e compact, convex, and
symmetric, then C(X)QC D
D
is necessary f o r (Proof)
x
E
The a s s e r t i o n i n t h e f i r s t case is a d i r e c t conseThe second c a s e then appears a s D C Q c DA
f o r some d
E
a(.)
R.
e6S
quence of t h e theorem.
q
B(x)P + [-1,1I D
E Rm,
where
Q j then a l s o
x's
Take any
-q 6 Q, and thus -DCq = Da
pi
DBP + Rd'
have been omitted.
DCq = Da for suitable
+
E
and add: DCq = (+-1)Da
P, ui
E
+
R
.
+ +
DBpl DBp2
+ uld + u2d
Multiply by
p
-
and (1 p ) ,
+ D B ( P P ~ + ( ~ - C I ) ) ( - P+~ (Wl-(l-P)a )) 2 Id.
Now, it is always poseible t o choose IL i n [0,11
227
60
that the
PURSUIT GAMES
l a s t term vanishes.
-1 4
a-1<
Then
Example 1
E [ -1,lIDa + DBP ( a l l q E Q)
.
Qm
I n Example 1 of 7.2, t h e termination condi-
C-approach with
c
of p e r f e c t capture.
e = 0
P, and
1: DCq
t i o n was
E
ppl + ( l + ) ( - p 2 )
>
we s h a l l t r e a t t h e case The equations of motion a r e n-diOj here
mens ional,
;; =
f(x,i,u),
:= g ( y ) - v,
compact p l a y e r s ' c o n t r o l c o n s t r a i n t sets termination condition.
and
U,V
x = y
as
(This is t h e nonlinear v e r s i o n of t h e
example i n 5.2.) U s e t h e n o t a t i o n e s t a b l i s h e d i n 7.2. The theorem there, 1 Ix-y12, provides no information, with real-valued Cp(x,$,y) =
Q. Theorem 1 with F ( x , i , y ) = x-y i f (x,s,y) i s e s s e n t i a l , then x = y,
a s t h e Jacobian vanishes on y i e l d s t h e follawing: and t h e r e i s a r a y
Rd'
in
2
Rn
such t h a t
- g ( y ) + V E R'd.
Thus t h e r e a r e no winning p o s i t i o n s unless
V
i s a segment;
and i f V i s a seeplent w i t h endpoints +v point
x,;,y
= x
then each e s s e n t i a l ' 0 ( i f t h e r e a r e any a t a l l ) mst have
;c
= g ( y ) + hvo,
Iq
2
1.
Consider now a game whose n-dimensional equation is of order 2,
(9)
a.
x = f(x,f,p,q);
~ ( t E) P, q ( t ) E Q; end: F(x) = 0,
and, a s indicated, t h e termination condition depends on t h e p o s i t i o n only. O f course, on passing t o s t a t e space
R2n,
this is a
r a t h e r s p e c i a l case of a gnme of t h e form (1);one i n which, however, Theorem 1 provides no information a t a l l : 228
the
NONLINEAR GAMES
necessary condition f o r ( x , i ) t o be an e s s e n t i a l p o i n t i s t h a t DF(x)& belong t o some ray. valued
F
(The exceptional case of r e a l i s t r e a t e d i n Exercise 3 . ) Our aim i s t o obtain
sharper r e s u l t s . The second o r d e r v e r s i o n of t h e standard assumptions ( s e e 2.1) w i l l be used.
The termination condition i n ( 9 ) i s
; ; here F: Rn + Rm i s t o be of C1, w i t h Jacobian matrix DF(x) of type (m,n) ( i . e . ,
F(x) = 0, independent of class
not m x -
2n).
THEOREM 2
I n t h e game
(9) with
t h e standard assumptions
and t a r g e t as above, a necessary condition f o r a p o s i t i o n (x,;)
t o b e e s s e n t i a l i s t h a t t h e r e e x i s t a half-plane i n L = R+d
w i t h both
0
and
DF(x)i
+
R%F(x);,
on i t s boundary l i n e , such t h a t
cvx DF(x)f (x,:, intersects (Proof)
L
f o r every
Rm,
q
P,q)
E Q.
The proof folluws t h e o u t l i n e of t h a t of Theorem 1,
and we s h a l l mainly emphasise t h e needed modifications. Consider any winning p o s i t i o n s (x,;)
4
outside t h e t a r g e t
( i . e . , F(x) 0), forced t o termination by a s t r a t e g y u w i t h i n t h e time i n t e r v a l [O,e]. For any quarry c o n t r o l value q1 E Q one has a corresponding pursuer response p1 = u[ql], and s t a t e response ( x ( * ) , ;(*)); i f t h e i n i t i a l p o s i t i o n is t h e given one, x(t) = x + = x +
For another quarry c o n t r o l value
q2
E Q,
pursuer response
p2 = u[q2 1, s t a t e response ( y ( * ) , + ( * ) ) , but t h e same i n i t i a l p o s i t i o n , we have 229
PURSUIT GAMES
Now, (3) and
(4) s t i l l
A=-
hold.
I n place of (5),
tz 2 2 € [O,ll. t +s
According t o Exercise
5 i n 3.11 (a second-order version of t h e
Limit Theorem f o r a t t a i n a b l e s e t s ) t h e term
1 has a l l i t s accumulation points ( f o r t + O+) i n p cvx f(x,;,P, 1 9). I n (10) t h e term x E R x, so t h a t t h e f i n i t e
accumulation points of 1
Jo
t
+8
DF(. ,, ) d e
t-s t +s
x a r e i n RbF(x);.
The process f r o m t h e l a t t e r half of t h e proof of Theorem 1 is then applied:
t
2
+
8
2
with p
.
subsequences and limits i n (3) divided by
The r e s u l t , analogous t o (8),
ia E
[0,11
and
is
zi g cvx f(x,;,P,qi).
clusion is p l a u s i b l e geometrically.
Again t h e con-
A s o l i d proof i s by
reduction t o t h a t from Theorem 1 on applying t o (11)t h e orthogonal projection of
R"
onto t h e hyperplane perpendi-
cular t o DF(x);: t h e r i g h t hand s i d e projects t o 0. &ED 2nd ORDER NECESSARY CONDITIONS Assume appropriate versions of t h e asswnptions above, and write If players' dynamic e f f e c t s separate,
230
D = DF(x).
NONLINEAR GAMES
1=
- g(x,G,q).
f(x,G,p)
t o be e s s e n t i a l i s t h a t
then a necessary condition f o r (x,;)
D-g(x,G,Q) c cvx D.f(x,G,P) f o r some
+ Rb.;
+
R+d
d E Rm; i n p a r t i c u l a r ,
dim D.g(x,G,Q)
(12)
i;
+
2
d i m D-f(x,:,P).
I f t h e p l a y e r s ' c o n t r o l s appear l i n e a r l y ,
..x = a(.,;)
+ B ( x , ~ ) P+ c(x,;C)q,
and t h e p l a y e r s ' c o n s t r a i n t sets a r e compact, convex, and
symmetric, t h e necessary condition i s (omitting v a r i a b l e s x,;) D C Q c DBP
(Proof:
+ [-1,1]Da +
Rb;.
again, t h e first a s s e r t i o n i s a reformulation i n our
s p e c i a l case; t h e second i s obtained hence a s i n t h e proof of t h e f i r s t - o r d e r Necessary Conditions. ) Example 2
(Two c a r s i n n dimensions) The formulation appears i n 1.6; l e t us now t r e a t p e r f e c t capture. The equat i o n s of motion a r e
..x = E(&)u, ..y = E ( ~ ) v ;
(u(t)l s
Here t h e in
Rn
sk,pk and
u,v
-1 , l v ( t ) ( s S
p1
s
2 2
; end:
x = Y.
a r e s t r i c t l y p o s i t i v e parameters, x,y in
Rnel;
vary
there are i n i t i a l constraints
=.sl, = s2; t h e mapping E ( * ) was described i n 1.4. The reduction t o t h e s i t u a t i o n of Theorem 2 is r a t h e r ObViOUSj e.g., t h e termination condition i s (I, - I )
(X)
E(;)U
+
= 0
Y The Neceesary Condition (second order, second v e r s i o n ) i s
(13)
E($)Vc
231
0
+
R1(k
- i).
PURSUIT GAMES
To eliminate t h e l a s t term, choose a unit v e c t o r
I
u l a r t o both
+:
. I .
c
Rn
+
$
and
(we must assume
2
c
perpendic-
3 ) , and l e t
be t h e orthogonal p r o j e c t i o n onto t h e l i n e a r space
Rn
perpendicular t o
c.
Then, by c o n s t r u c t i o n of
+ E(k) and
n
= E(i),
+ E($)
E(-),
= E($),
= 0; t h e r e f o r e , from (13))
@(;-+)
E($)V c E(G)U.
Now, both U,V
are balls i n
thus n e c e s s a r i l y s;/P1
with c e n t r e a t t h e origin;
Rn
$,
is parallel t o
and t h e r a d i i s a t i s f y
2 SE/P2.
It follows t h a t t h e game with t h e o b j e c t i v e of f o r c i n g
$ t o be p a r a l l e l t o $ must a l s o be winnable.
5 = ;/s
9
,q 1
= $/s2,
t h e equations of motion a r e
5
= E(T()q, with termination condition
=
Setting = E(!)p,
r\, c o n t r o l con-
straints
(and i n i t i a l requirements Kelley’s game, 1.4; and
Is( = sl/pl
[ql).
1=
2
O f course, t h i s i s i s necessary f o r non-
s2/p2
t r i v i a l capture. Conclusions:
i f t h e dimension
n
2
3, t h e n t h e inequali-
ties
a r e necessary f o r presence of n o n t r i v i a l winning p o s i t i o n s ( t h e s e a r e not independent:
first i f
sl
2
e.g.,
t h e second follaws from t h e
s2).
Exercises The f i r s t t h r e e of t h e s e concern t h e case that
R = {x: cp(x) = 01
w i t h cp: Rn
232
+ R1
m = 1, i . e . ,
of c l a s s
C1; t h e
NONLINEAR GAMES
v e r s i o n of t h e assumptions from 2 . 1 i s t o apply.
&we t h a t a s u f f i c i e n t condition f o r x E an t o be essential is that 1.
min max 69 P 9
<
0 or max min 6 q P 9
> 0,
[I
and a necessary condition i s
max min 6 q s 0 o r min max 6~ Q P 9 P apply 7.2 t o 0
(Hint: 2.
(a 5 0, p 2 0,
- p + q; Ic
I
4)
lp(t)(
a, I q ( t ) l
g
2 fl
- a, except possibly
i s a l e f t eigenvalue of
end: c'x = y
is
x
i n t h e case
Df(x); i n any case, a l l
p o i n t s of t h e t a r g e t a r e e s s e n t i a l i f
3.
g 13;
Show t h a t a t a r g e t s e t p o i n t
= 1).
essential iff (c'f(x)l c
0.
Treat e s s e n t i a l p o i n t s i n t h e game
$ = f(x)
that
and
2
a
> 8.
Treat e s s e n t i a l p o i n t s i n t h e game induced by t h e
second-order n-dimensional equation
..x = f(x,;,p,q)j
end: W ( X )= 0
with nonvoid compact c o n t r o l c o n s t r a i n t sets. each
x
with
q(x) = 0
and
s t a t e space, with a r b i t r a r y
Show t h a t , f o r
m ( x ) =/ 0, t h e point (x,;)
E
Rn,
i s essential.
in
(Hint:
ess R i s closed.)
4.
Obtain t h e version of t h e Necessary Conditions i n t h e
allonomous case (e.g.,
-
0)
5.
$
= f(x,t,p)
- g(x,t,q),
end: F ( t , x ) =
Using t h e n o t a t i o n from 1.4 o r Example 2 , apply t h e
Necessary Conditions t o Kelley's game.
6. Consider t h e game i n t h e Example of 3.4.
Prove t h a t ,
i f t h e c o n s t r a i n t sets a r e b a l l s about t h e o r i g i n i n
n
2
3, then t h e necessary condition
VcU
f o r isochronous
capture i s a l s o necessary f o r g e n e r a l capture.
233
and
Rn
(Hint:
In
PURSUIT GAMES
Vc U + L with L linear and two-dimensional, consider vectors perpendicular to L.) 7. Treat the (two-dimensional) homicidal chauffeur game with perfect capture; e.g., in the formulation of Example 2 from 7.2, with termination condition x = 0 = y. (Answer: nontrivial capture is impossible.) 8 . Treat the game of two cars with perfect capture, in the formulation of (4) of 1.6. (Answer: the Necessary Condition is inconclusive.) Remarks A fascinating sequence of necessary conditions has been
obtained in the linear case (see 4.2, isochronous capture.. capture.. second-order games..
.
.
.
5.1,
(12)):
dim MQ s dim MP dim MQ s 1 + dim MP dim MQ s 2 + dim MP
under appropriate assumptions. Here the first may be extraneous; nevertheless there remains a tempting conjecture to be investigated. Computationally feasible sufficient conditions for essential points were obtained for large targets in 7.2, and for linear games (and 'small' targets) in 5.2. It would be highly desirable to extend the latter to non-linear games, possibly first for dynamical equations with the players' effects separating. One obstacle in the direct approach is that Filippov's Lemma applied to the nonlinear analogue of the proof of Theorem 2 in 5.2 only pravides state-dependent strategies. PROBLEM In Example 2 with n = 3, Cockayne asserts 2 2 that sl > s2, sl/pl > s2/p2 is sufficient for capture from
all initial positions (see reference in 1.6); but then our necessary condition sl/pl 2 s2/p2 need not be satisfied, 234
NONLINEAR GAMES
e.g. w i t h El
3, s2 = 1,
=
p1 =
4,
p 2 = 1.
7.4 Isochronous Capture Sections 7.2 and 7.3 may be interpreted as the extension, t o t h e nonlinear situation, of t h e results established i n 5.1 and 5.2. It is natural t o ask whether there i s an analogous generalisation of t h e treatment of isochronous capture i n Chapter 4 . The game is indicated by
with the standard assumptions.
The termination condition 1
.
of class c THEOREM Assume t h a t , i n the game j u s t described, nont r i v i a l isochronous capture is possible (W(0) jd Par some 8 > 0). Then involves F: R" + R"
lWUPW(t)
(2)
*o+
and, for every point
x
49
i n t h e limeup, the s e t s
cvx DF(x)f(x,P,q)
(Q
E Q)
have a point i n common.
(Proof) This i s analogous to, but simpler than, t h a t of Theorem 1 i n 7.3. Corollary 2 i n 2.3 s t a t e s t h a t ( 2 ) holds; t h i s w i l l be used i n place of Proposition 2 from 7.1. Take any point
xo E limeup W(t):
*O+
(3 1
5*
Let
a k be an isochronous strategy, forcing
"0,
5 E W(tk)?
t i o n a t time tk. For each element {ql,%,
...I
dense i n
Q let
%
'tk %
t o termina-
of a countable s e t
pik = uk[(4] (thus pik: R 235
1
+
P,
PURSUIT GAMES
while t h e
qi
Also, l e t
are constants).
s t a t e response, i n i t i a t i n g a t p o s i t i o n Pikj
xik(-)
be t h e
xk, t o t h e c o n t r o l s
91:
set Yik = Xik(tk)' We have (omitting fndices f o r t h e moment) t h a t
+$
7= x
t
x o
=
;f(x(s),p(s),q)ds. 0
From t h e L i m i t Theorem f o r a t t a i n a b l e sets (3.11),
yitj'xj
(4)
I)
f o r esch index
zi
E cvx
f(xoyP,qi)
and s u i t a b l e subsequence
i
as j x
j
-+
m
5.
o f the
By Cantor's diagonal method, t h e r e i s a single subsequence xj, common f o r a l l Second, t h e
qi. a r e endpoints i n t h e t a r g e t s e t .
yij
f o r any i n d i c e s
Thus,
i,J,j
Since t h e p o i n t s
y
converge t o
(use (4) with ( 3 ) ) , t h e
xo
e n t i r e i n t e g r a l term converges t o DF(xO). By adding and subtracting
x
3
i n t h e second term, t h e l i m i t i s
according t o (4):
Take, say,
a
Since t h e
%
f o r any
= 1:
q E Q
COROLLARY = f(x,p)
for a l l
i = 1,2
form a set dense i n i n place of
q
i'
zi
-
z
a
,..., Q, we f i n d t h a t ( 5 ) holds
QED
I f t h e p l a y e r s ' dynamical e f f e c t s separate,
- g(x,q),
then t h e necessary condition becomes
236
NONLINEAR GAMES
If t h e i r c o n t r o l s appear l i n e a r l y , a s i n
;c
= a(x)+B(x)p+C(x)q,
with compact, convex, and symmetric c o n s t r a i n t s e t s , t h e n t h e necessary condition i s
(7)
DF(X)C(X)Q c DF(X)B(X)P. Example
L e t us revisit t h e homicidal chauffeur game,
with t h e n o t a t i o n of Example 2 i n 7.2 (including capture radius
e
> 0). The form (7) is not applicable, b u t (6) is,
with DF(x)g(x,Q) = {€s2sin(6+v): IvI
5 IT]
= [-Cs2,Cs21,
DF(x)f(x,P) = s € s i n 6 1 f o r t h e point
x E R w i t h p o l a r angle
8.
Condition (6) i s
thus
(8)
[-2€s2,2€s21 c {O] :
isochronous capture i s impossible. Exercises 1. I n t h e h o d c i d a l chauffeur game, common sense t e l l s
us t h a t once isochronous capture i s impossible f o r radius € > 0, it must a l s o be impossible f o r E = capture; on t h e o t h e r hand, (8) would be s a t i s f i e d S e t t l e t h e matter. ( P e r t i a l answer: g(x,Q) is a with radius 2. (Answer:
3. game
s2, f(x,P)
capture 0, p e r f e c t
f o r E = 0. circle
i s a single point.)
Treat t h e game of two c a r s f o r isochronous capture. our conditions a r e inconclusive. ) Obtain a concise necessary condition f o r t h e l i n e a r
$ = Ax
-p+q
with nonlinear termination condition 1 2 f o r F(x) = c ), t h e Jacobian
-
e. (Hint: i s x'M'M.) 4. The dolichobrachistochrone game has equations of IMxl
I;
motion
237
PURSUIT GAMES
(constant quarry's
U)
1.
> 0); t h e pursuer's c o n s t r a i n t i s
IvI < 1; t h e termination condition is
Ignoring t h e s t a t e c o n s t r a i n t y
2
s n, t h e
x = 0.
0, decide on t h e p o s s i b i l -
i t y of g e n e r a l o r isochronous capture.
(Answers:
i s necessarv f o r isochronous capture, and y > 0
y
2
m2/4
sufficient
f o r capture.) Remarks This s e c t i o n was motivated by t h e suggestion on p. 191 of A . Friedman : D i f f e r e n t i a l Games, Wiley-Interscience, New York, e t c . , lgll
t o study isochronoiis capture i n t h e homicidal chauffeur game. Notwithstanding t h e negative aspect of our s o l u t i o n i n t h e example, it would b e u s e f u l t o have companion s u f f i c i e n t conditions.
An o5vious candidate t o p a r a l l e l
(7) i s
.
DF(X)C(X)Q c I n t DF(X)B(X)P
238
CHAPTER VIII
STRATEGIES The f i r s t two sections a r e concerned with optimality:
in
reasonable circumstances, t h e r e e x i s t time-optimal s t r a t e g i e s . This i s 9 non-constructive existence theorem pure and simple, and thus i s a departure from our claim t h a t t h e meteri a l i s t o contribute t o t h e solution of games r a t h e r than t o
t h e i r study.
The r e s u l t i s interesing, and generalises
r e a d i l y t o a cost-optimal problem f o r a c l a s s of nonlinear games (see 8.2); however, t h i s alone would be an i r r e l e v a n t excuse.
More important i s t h a t t h e proof y i e l d s r e s u l t s which
a r e simple and important.
5.3 and 5.4:
Finally, it applies d i r e c t l y t o
once t h e r e i s assurance t h a t some optimal
s t r a t e g y e x i s t s , t h e methods developed t h e r e p r w i d e r e l a t i v e -
l y simple constructions of other optimal s t r a t e g i e s . The l a s t section t r e a t s games f o r which t h e known procedures a r e e i t h e r t o o complicated (e.g.,
t h e Second Re-
c i p r o c i t y Theorem does cover Example 2 ) o r inapplicable; and a solution may be highly desirable and not ruled out a p r i o r i by f a i l u r e of t h e necessary conditions.
If one i s then w i l l -
ing t o accept s t r a t e g i e s which, although forcing capture, a r e not necessarily optimal, one has t h e s i t u a t i o n t r e a t e d there.
8.1 Compactness Lemma I n l i n e a r control theory, t h e s h o r t e s t proof t h a t reachable s e t s a r e closed uses a weak compactness argument on t h e control functions.
Here we present an extension of t h i s
reasoning t o game theory:
t h e bare bones i n Lemma 1, t h e
239
PURSUIT GAMES
main i n t e r p r e t a t i o n as a compactness property of pursuer's s t r a t e g i e s , and f i n a l l y t h e development of t h e consequences. To each sequence of mappings
LXMMA 1
set
t o a compact metrisable space Y
X
mapping
f: X
+
f o r any countable subset
quence
fk
fk ( x ) j
Xo c X t h e r e i s a subse-
+
f ( x ) f o r every x
E x~.
By Tychonov's Theorem, t h e r e i s a subnet, say
(Proof)
fk(i), f o r
i n a directed s e t
i
converges pointwise t o a mapping
f:
I
x+
no subnet of t h i s needs be a sequence). able s e t of points f o r each
x1,x2,
r = 1,2,.
metrisable space Y x Y x
i w yi
t h e r e corresponds a
with
3
(2)
f(xr)
... from a
which i s t h e i r limit, i n t h e following
Y
sense:
i
fl,f2,
of indices, which Y.
(Unfortunately,
Now take any count-
... i n X. Then l i m f k ( i ) ( x r ) = i .. . I n t e r p r e t i n g t h i s i n t h e ... = n Y, we find t h a t t h e net m
I=l
converges t o y, where these points a r e i n t h e product
space and have t h e appropriate r - t h coordinates:
Now choose an index
i
1
so t h a t
from yj then take an index from y
each
y
i
+ j
has distance s 1/4 1 i2 so t h a t yi has distance
k . = k ( i .) J J
have
2 k(il)
< k(i2); e t c . % < k2 < . . .; t h e
and, i n addition, t h a t
The integer indices points
yi
y, so t h a t t h e i r coordinates s a t i s f y ( 2 ) f o r
.
x = x QE ,D r I n order t o apply t h i s r e s u l t t o a sequence of s t r a t e g i e s
i n a game, it i s necessary t o recognise o r adjust t h e needed
i s a strategy, and quarry controls q1 = q2 almost everywhere, then a l s o a[qll = a[q21 a.e.; thus t h e elements.
If
u
240
STRATEGIES
s t r a t e g i e s c a r r y Over t o mappings between t h e appropriate function spaces, with t h e almost-everywhere i d e n t i f i c a t i o n . N e x t , bounded pursuer c o n t r o l s (or r a t h e r , t h e i r equivalence
c l a s s e s ) belong t o t h e Hilbert space 1 ings p: R + Rn with
If t h e c o n s t r a i n t set
P
H
of measurable mapp-
i s compact and convex, t h e pursuer
c o n t r o l s form a closed, bounded, convex subset a celebrated theorem, Y
Y
of
By
H.
i s compact i n t h e weak topology ( H
i s a Hilbert space, hence it i s r e f l e x i v e , and t h e weak-star topolcgy coincides with t h e weak topology).
i s separable and Y
Finally, as
bounded, t h e weak topology f o r
Y
H
is
metrisable.
COMPACTNESS OF STRATEGIES
I f t h e pursuer's c o n s t r a i n t
s e t i s compact and convex, then t o each sequence of s t r a t e g i e s
,...
t h e r e corresponds a s t r a t e g y a which i s t h e i r 1 2 limit i n t h e following sense: f o r any countable s e t of quarry
u ,U
,... t h e r e i s a
controls
q ,q 1 2
u
subsequence uk
k [qr3 + o[qrl weakly a s j
3
+
Thus, f o r any fixed
8 2 0, bounded measurable
and
have
as
r = 1,2,
j
+
(Proof)
. . ., we
such t h a t
j 03.
F: R1
+
Rm,
m.
A s indicated above, we reduce t o t h e s i t u a t i o n of
Lemma 1by t a k i n g f o r
X
t h e set of a l l quarry controls
(without any s t r u c t u r e ) , and f o r
Y
t h e subset, of
s i s t i n g of t h e pursuer c o n t r o l s modulo e q u a l i t y a . e . , ed with t h e weak topology.
The r e s u l t i s a mapping 241
H, con-
equippf = 0
PURSUIT GAMES
such t h a t trol
u[q]: R
1
i s measurable f o r each quarry con-
P
4
q, and s a t i s f y i n g t h e limit r e l a t i o n a s a s s e r t e d .
It
u i s non-anticaptory (00 t h a t u Assume t h a t q1 = q2 a.e. (--,a) f o r
only remains t o show t h a t
i s indeed a s t r a t e g y ) . quarry c o n t r o l s 4.. Then u k [ q 1 1 = ak[q2] a.e. ( - m , a ) j a l s o , t h e r e i s a subsequence such t h a t , f o r b o t h r = 1,2, we have uk [4.] + u [ s ] weakly ( i n (--,a) a l s o ) . Hence t h e i r limits j satisfy
u[q
3
= a[q21 a . e .
1 Non-Example
I n t h e Compactness Lemma one cannot t a k e a
subsequence common t o sequence
(-=,a).
..,
ul,u2,.
all quarry
controls.
u,[ql(t) f o r measurable constant
q: R
q's).
1
+
=
COB
Consider t h e
kq(t),
[-1,11 (however, w e w i l l only need
Now, i f constant f u n c t i o n s converge weakly,
t h e n t h e i r l i m i t i s c o n s t a n t a.e.,
and i s t h e ordinary l i m i t
of t h e c o n s t a n t s . Thus, i f a s i n g l e subsequence cp
k = k
cos k q
t o convergence f o r a l l
3
leads
cp(q); here
q E [-1,11, t h e n 3 i s measurable, and, by t h e Bounded Convergence Theorem,
P
cp(q)dqt
a
sP
U
cos k.qdq = J
1 ( s i n k.P
J
3
-t
- s i n kJ. a ) + 0
or, con k . q -t 0 for a l .J most a l l q. For t h e s e q's, say q E %, we a l s o have 2 cos k.q/2 a ~ C O Sk.q 1+ -1. J J Thus t h e s e t [q/2: q E Qo] has measure 0, although &o has full measure: a c o n t r a d i c t i o n . The consequences w e wish t o draw concern, f i r s t , a l i n e a r f o r a l l r e a l a,P.
Thus cp = 0 a.e.,
-
game
( 31
= Ax
- p + q;
p(t)
E
P, q ( t )
I n 2.2 t h e r e was introduced t h e n o t a t i o n f o r ,winning sets.
E Q;
W(0,e)
end: x E R. and
Generalising s l i g h t l y , f o r a s u b s e t 242
W(@)
STRATEGIES
O c R1
let
denote t h e s e t of positions which can be
W(0)
forced t o t h e t a r g e t with a termination time i n t h e s e t 0 c R In t h e game (3) assume t h a t
LEMMA 2
convex, and
closed.
R
i s compact and
P
For any sequence of s e t s
Ok
within
a common compact i n t e r v a l we have
(41
l i m sup ~ ( 0c ~ W(lim ) sup x E limsup W(Ok)
(Proof) Consider a w point
ok).
thus, f o r a
j
subsequence of t h e indices ( t o be denoted by k ' s again), Xk
%
To each
E
within
R
by Coapactness of S t r a t e g i e s
Ok);
It i s plausible t h a t
t h e r e i s a ' l i m i t ' s t r a t e g y a. winning s t r a t e g y f o r forces
x
to
within t h e time s e t
R
f o r some sequence
k
(5)
1
5
A s each
u
is a
x, and we proceed t o v e r i f y t h a t indeed
proving (4)). Take any quarry control again).
*
t h e r e corresponds an appropriate s t r a t e g y ak
(forcing t o
u
5*
'('k),
<
k2
<
limsup Ok
(thus
q ( * ) ; then uk [ q ] I) u [ q ] weakly j (which we w i l l denote by k
...
wins within
Ok,
s
tk Atk e (5-stk e -AS a k [ q l ( s ) d s + e-AS q ( s > d s ) E R 0 0
f o r some t
E Ok. A s a l l Ok a r e contained i n a compact k interval, by choosing a y e t f'urther subsequence (but retaining
notation) we ensure t h a t
tk+ t E limsup
Ok.
Now take limits
i n ( 5 ) t o obtain At
e
5
(x-Joe
-As
Indeed, t
and
term w r i t e
so sot + so , tk
SO
e
-As
q(6)dS),c R.
conrerge appropriately; i n t h e i n t e g r a l tk
=
u[ql(s)ds +
and use weak convergence f o r t h e
f i r s t term, and compactness of
243
P f o r t h e secondj t h e l a s t
.
1
PURSUIT GAMES
i n t e g r a l term i n (5) converges s i n c e finally, R
i s l o c a l l y integrable;
q
i s closed.
&ED PROFOSITION I n t h e game ( 3 ) l e t P be compact and convex, and R closed. Then t h e winning sets W(0,e) and W(0) a r e closed;
(6 1
W(0,e) = {x: T(x) < 01;
t h e minimum t i m e function
T(.)
i s lower semicontinuous,
T(x) s liminf T(y). Y+X
(Proof) To show, t h a t , e . g . , W(0,B) with Ok = [0,01:
‘w(o,e7= l i m k
i s closed, apply Lemma 2 W ( O , B ) c w(o,B).
Exercise 1 of 2 . 3 s t a t e s t h a t
(7 1
{x: T(x)
<
01
c W(O,0) c Ex: T(x) s 01.
To complete (6) continue t h e s e inclusions
p:
~ ( x )
m
el
c
n p: ~ ( x s) e
k= 1
+ k-4
W
c
n
W(0,e + k”) k=1
= lim
... c
W(0,e)
by t h e f i r s t r e l a t i o n i n (7) and Lemma 2. Finally, T
i s lower semicontinuaus since, by ( 6 ) , i t s
‘sublevel sets’ {T s 01
COROLLARY
a r e closed.
&ED
For every winning p o s i t i o n
time-optimal winning s t r a t e g y , f o r c i n g
x
there i s a
x
to
R
within the
minimal i n t e r v a l [O,T(x)]. (Proof) T(x)
<+
This i s now q u i t e straighforward. mj
thus
x
belongs t o
{y: T(y) c T(x)] = W(O,T(x)),
and hence t h e r e is an appropriate s t r a t e g y .
244
By assumption,
&ED
STRATEGIES
Exercises Care must be taken i n using t h e Compactness Lemma:
it i s
highly s e n s i t i v e t o even minor changes, a s i n t h e non-example of t h e text, and t h e e x e r c i s e below. 1. For l o c a l l y i n t e g r a b l e
. . define
h = 1,1/2,1/3,.
q: R
1
+
a h [ q ] by t-h)-q( -h
Strategies yields a strategy
+
a[q] = p
Hence, f o r any r e a l a
Keeping
q
tl
i s a non-anticipatory s t r a t e g y .
Obviously uh above, a h [ q ]
and each
R1
such t h a t , f o r each
u
q ( * ) as
weakly f o r a subsequence of t h e h ' s .
< P,
fixed, f o r almost a l l a,P
knm l i m i t s as
Compactness of
t h e i n t e g r a l s have
h -+ 0:
J-
P
P ( t ) d t = q(P)
a
Thus every l o c a l l y i n t e g r a b l e
q
- s(a>
i s absolutely continuous.
The e x e r c i s e i s t o f i n d t h e e r r o r . 2.
I n t h e a s s e r t i o n on Compactness of S t r a t e g i e s , prove
t h a t i f a l l uk
a r e b i l a t e r a l l y d e t e r m i n i s t i c , then s o i s
a; and s i m i l a r l y f o r almost stroboscopic, isochronous, i n -
different strategies.
What can be s a i d about
u
i f a l l uk
a r e stroboscopic, o r i f each has time-lag
3.
( P r i n c i p l e of Suboptimality)
show t h a t , whenever
0 g t
5
T(x), t h e r e e x i s t s a point
on some s t a t e response i n i t i a t i n g a t T(y) < T(x)
bk? For t h e l i n e a r game (3)
- t.
245
x, such t h a t
y,
PURSUIT GAMES
Remarks For a result analogous t o Compactness of S t r a t e g i e s , see E. Roxin:
On Varaiya's d e f i n i t i o n of a d i f f e r e n t i a l game, Proc. U.S. Japan Seminar on D i f f . and Funct. Eqs. (ed. Harris, Sibuya), Benjamin, New York, 1968.
-
The proof suggested t h e r e contains e r r o r s which have not succumbed t o repeated c o r r e c t i o n and adjustment of a s s e r t i o n . The result was intended t o g e n e r a l i s e a theorem due t o Varaiya on coapactness of s t a t e responses ( r a t h e r than s t r a t e g i e s ) . An exposition of t h e l a t t e r begins on p. 43 of A. Friedman:
D i f f e r e n t i a l Games, Wiley-Interscience, New York, e t c . , 1971
It may be noted t h a t t h i s properly concerns one-person games,
. ., c o n t r o l systems.
i e
It seems t h a t t h e a s s e r t i o n i n t h e t e x t i s t h e ' r i g h t '
one.
A r a t h e r clumsy proof was presented i n 0. G j e k :
Lectures on Linear h r s u i t Games (unpublished), Case Western Reserve Univers i t y , 1973.
The formulation of our compactness result i s somewhat cumbersome because of t h e i n s i s t e n c e on convergence of seThere i s a good reason
quences r a t h e r than of g e n e r a l n e t s . for this:
t h e s t r a t e g i e s appear under i n t e g r a l signs; and
i n t e g r a l s a r e continuous, a t b e s t , under convergence of sequences, b u t not f o r convergence of n e t s . E.g., i f cx i s 1 t h e mapping R + R1 with value 1 a t x and 0 elsewhere, then obviously
sup cx = 1 4 0 = sup X
8.2
X
sex.
Optimal Strategies
I n t h e preceding s e c t i o n , t h e existence of time-optimal s t r a t e g i e s appeared a s an easy corollary, i n t h e course of
246
STRATEGIES
e s t a b l i s h i n g some elementary p r o p e r t i e s of t h e minimum time Naturally, t h e e x i s t e n c e proof i t s e l f may be
function.
d i s s e c t e d f r o m t h i s ; an a n a l y s i s reveals t h a t it applies t o a considerably more general s i t u a t i o n . Consider a non-linear game i n
given t a r g e t set
R
Rn, with dynamical equation
c R ~ ,and cost f u n c t i o n a l C(t,x,p,q)
(where t h e arguments
x,p,q
A play of t h e
a r e flrnctions).
game proceeds froin an i n i t i a l p o s i t i o n , u n t i l t h e t a r g e t set
i s first reached, possibly not time-optimally; t h e c o s t i s then computed, with t h e pursuer attempting t o minimize, and t h e quarry, t o maximize.
The data include t h e elements
already mentioned, and also player c o n s t r a i n t sets
P,Q.
As i s u s u a l i n t h e s e complex s i t u a t i o n s , an unwieldy l i s t of assumptions and s p e c i f i c a t i o n s o b s t r u c t s t h e way t o t h e main r e s u l t .
Most of t h e assumptions a r e i n t h e category of
book-keeping;
t h e i n t e r e s t i n g ones a r e t h a t pursuer controls
appear l i n e a r l y i n t h e system dynamics (1);and t h a t t h e cost C(t,x,p,q)
t.
increase with
The d e f i n i t i o n s only serve t o
p i n down t h e obvious notion of cost-optimal pursuer s t r a t e g y . F i r s t , t h e conditions.
I n (l), f and
G
a r e mappings
f: Rn x Q + Rn, G: Rn x Q + Rm s a t i s e i n g appropriate versions of t h e standard assumptions The p l a y e r s ' c o n s t r a i n t sets
from 2.1. subsets of closed.
Rm, with
P
convex.
The cost f u n c t i o n a l
r e a l number whenever t 2 1 1 p: R + P and q: R + Q C(t,x,p,q)
The t a r g e t
C(t,x,p,q) 1 0, x: R 4 Rn
R c Rn
F'urthermore,
t, and continuous i n x,
uniformly with respect t o t h e o t h e r v a r i a b l e s . C(t,x,p,q)
is
i s a well-defined i s continuous, and
a r e measurable.
i s left-continuous i n
a r e compact
P,Q
Finally,
i s non-decreasing i n t, and quasi-convex i n p: 247
PURSUIT GAMES
ignoring t h e other variables,
( 31
C(up1+(l-u)p2) L max c(p1),c(p2) Given a winning s t r a t e g y
xo, set
position
C(u,q) = C(t,x,p,q)
P = u[ql,
X b ) =
su
5
1.
The notation from 2.3 w i l l
Second, t h e specifications. be needed again.
o
for
f o r an i n i t i a l
where
fl(s,xo,a[ql,q),
t = T(u,q),
and then c ( u ) = sup C(u,q), y = i n f c ( u ) , q(* ) supremum taken over a l l quarry controls q(- ), and infimum over winning pursuer s t r a t e g i e s .
i s then one which has
A cost-optimal s t r a t e g y
a
C(o) = Y.
Under t h e l i s t e d assumptions, t o each position
THEOREM
which can be forced t o termination within a bounded t i m e i n t e r v a l t h e r e corresponds a cost-optimal s t r a t e g y . (Proof) Assume t h a t t h e position
E Rn <+
xo
fl within t h e time i n t e r v a l [O,AI, A
00.
can be forced t o Choose s t r a t e g i e s
such t h a t
u k
(41
T(‘k#q)
5
(allq), c(uk)
* Y;
by Compactness of S t r a t e g i e s (8.1) t h e r e i s a ‘ l i m i t ’ s t r a t e g y CJ
with t h e properties described there.
expect t h a t forces
xo
u to
i s cost-optimal: R
It seems n a t u r a l t o
we wish t o v e r i f y t h a t
and provides t h e infimal cost
be s u f f i c i e n t t o prove
(5) for a l l
q, since
C(uk,q) s c(uk) 3 Y s ~ ( u ) . Keeping t h e quarry control q ( * ) fixed, s e t
248
Y.
a
It w i l l
STRATEGIES
let
xk( ) be t h e corresponding s o l u t i o n s of t h e dynamical equation (l), a l l with t h e same i n i t i a l value xo; f i n a l l y , 9
denote t h e f i r s t termination times ‘k = T(ak,q),
(ek s
h by
( b ) , but,
Now write
(6 1
as y e t , we do not even have
- ‘(‘,q>
‘(‘kjq)
= T(‘,q)
(c(e>xk,%,q)
+
(c(e>x,Pk#q)
<+
m).
- c(8>xk,Pk#q))
= (‘(‘k>\,Pk,q)
+
8
- c(e,x,Pk#q))
- c(8,x,P,q))*
If necessary, t a k e subsequences i n such a fashion t h a t each
bracketed t e r m here has a l i m i t , t h a t and t h a t t h e
ek
converge,
pk
-+
+ e0 E [O,XI.
p weakly (cf. 8.1)
I n t h e following lemmas (with present n o t a t i o n and assumptions r e t a i n e d ) we w i l l show t h a t each of t h e brackets i n (6) has a non-negative limit, and complete t h e proof of (5). LEMMA 1 [ 0,h 1.
The s o l u t i o n s
xk
-+
x uniformly i n t h e i n t e r v a l
Furthermore,
e = T(a,q)
(7) (8)
lim (c(8,xk,Pk,q)
k
(Proof)
5
h,
- c(e,x#Pk,q))
=
O*
The s o l u t i o n s satisf‘y t h e appropriate i n t e g r a l ver-
s i o n of (1); we may then s u b s t r a c t and rearrange, omitting reference t o
q(
0 )
:
t
weakly, t h e l a s t i n t e g r a l term converges t o as
k
+
03,
The Lipschitz property (2)
uniformly i n [O,Xl.
t h e n y i e l d s t h e following estimate f o r 249
4, =
1%
- XI
:
0
PURSUIT GAMES
(9)
sk(t)
t const* fock(s)ds
5
constant involving t h e Lipschitz constant P 3 pk(s).
ck + 0,
It follows t h a t
+
0(1), and a bound on
p
%
and
Gronwall's i n e q u a l i t y ( 'Bellman's Leuuna' ).
sk
x, e.g. by
For a d i r e c t proof,
s ~ $ 5 , + Ek, multiply by t h e i n t e g r a t i n g rewrite ( 9 ) a s f a c t o r e-at and i n t e g r a t e :
Then x,,(ek)
E
yields
R
t h e first i n t e r s e c t i o n time
f i r s t r e l a t i o n i n (5).
x(e0) E R
i n t h e l i m i t j thus
e f o r x ( * ) s a t i s f i e s (7), t h e
F i n a l l y , (8) follaws from xk -+ x
a c o n t i n u i t y assumption on t h e c o s t f u n c t i o n a l .
-
lim(C(Bk,xk,Pk,q) k
l i m c(ek) 2 C(e).
>
and l a r g e
0
QE ,D
c(e#\'Pk,q))
Omitting repeated v a r i a b l e s , t h e a s s e r t i o n i s t h a t
(Proof) C
and
Since k.
Thus
ek
I)
eo, we have
l i m c(ek)
ek > e0
-
C
for
l i m c(eo-e) = c(eo)
2
CI)o+
by monotonicity and l e f t - c o n t i n u i t y ; t h e a s s e r t i o n now follows from (8).
&Fs
-
l i m (c(e,X,pk,q) c(e,x,P,q)) 2 0. k U s i n g abbreviated n o t a t i o n again, we wish t o show
3
(Proof)
+
i s the 'strong' limit of f i n i t e convex combinations of t h e pk. Also weakly, so t h e convex combinations need only pk+l -+ p involve pk with k 2 2 j e t c . Thus
that
C(p) s l i m C(%).
Since
pk
p weakly, p
S
k '
for suitable
04rr
quasi-convex i n
and p,
sk
2
k.
250
Since
C
k
i s continuous and
STRATEGIES
C(P) = l i m C( k
C ~ Q ? s~ )limsup k
mex
~(p,)
ksrrsk
= limsup ~ ( p , ) = l i m ~ ( p , ) .
&ED
k
The l i m i t r e l a t i o n s i n t h e
(Proof of Theorem, conclusion)
lemmas, applied t o (6) i n s u i t a b l e order, y i e l d l i m (C(ak,q) C(o,q))
2 Oj
of ( 5 ) .
&ED
-
t h i s , t o g e t h e r with (7),complete t h e v e r i f i c a t i o n
Exercises 1. Determine whether t h e following cost f u n c t i o n a l s s a t i s f y t h e requirements of t h e theorem:
l e a s t distance t o target, inf d i s t (x(t),n);
t2O
l e a s t sustained d i s t a n c e from t a r g e t i n f sup d i s t ( x ( s ) , n ) . t 2 0 srt 2.
Show t h a t Lemma 1 f a i l s If t h e requirement t h a t
p u r s u e r ' s c o n t r o l appear l i n e a r l y i s omitted. dimensional s t a t e space t i a l condition converges t o
x ( 0 ) = 0.
:=
Ipl
with Ip,(t)l
one-
-1 s p ( t ) < 1; i n i -
Construct a sequence
0 .weakly but has
(Example:
p k ( * ) which
= 1 8.e.)
Remarks I n t h e d e f i n i t i o n of cost-optimality it was not assumed t h a t t h e optimal s t r a t e g y a
f o r c e s t o t a r g e t within a com-
pact time i n t e r v a l , but only t h a t t h e termination times T(a,q)
251
PURSUIT GAMES
b e f i n i t e f o r each quarry control.
Neverthe l e s s , (5) shows
t h a t t h e s t r a t e g y studied i n t h e proof does have t h i s property. The requirement t h a t t h e cost be computed a t t h e f i r s t termination t i m e i s t r e a t e d , i n t h e theorem, by r e q u i r i n g t h a t C(t,x,p,q)
i n c r e a s e with
t j
a s seen i n Exercise 1, t h i s
precludes s e v e r a l n a t u r a l cases.
The monotonicity condition
could be dropped i f t h e pursuer were allowed t o choose, among t h e times a t which t h e s t a t e response meets t h e t a r g e t , t h a t a t which t h e c o s t i s t o be a s c e r t a i n e d .
8.3 Design of S t r a t e g i e s Given an i n t r a c t a b l e game with t a r g e t Rn,
and s t a t e space,
R
a p l a u s i b l e a t t i t u d e f o r f i n d i n g some s o l u t i o n s i s t o
decompose, t o select intermediate t a r g e t s (gambits) Ro,R1
(1)
,...,2,Ra = R,RO
= s t a t e space,
i n such a manner t h a t f i r s t , some o r a l l p o s i t i o n s i n each f$-l
can be forced t o
Rk, and second, t h a t t h e s e intermedi-
a t e end games b e considerably simpler t h a n t h e o r i g i n a l game. Obviously t h i s i s open-ended:
t o obtain an a c t u a l procedure
one must s p e c i f y t h e c l a s s e s of gambits and end games t o be used.
As one f a c e t of an example, suppose t h a t i n a l l t h e intermediate end games but t h e l a s t we r e q u i r e t h a t capture be isochronous.
Refer t o f i g . 1; and r e c a l l t h a t f o r c i n g t o
a t a r g e t set is not t h e same a s forcing t o a point within t h e t a r g e t (see t h e remarks i n 3 . 3 ) . a c t i o n of t h e quarry, a t t i m e end a t v a r i o a s p o i n t s
3
can be forced t o s2, etc. Since t2
4
ylgt2,
tl
Thus, depending on t h e t h e position
... w i t h i n
R2.
x1 E R1
will
Each of t h e s e
isochronously; e.g., Y1 a t t2, Y2 a t s i n general, t h e durations tl + t2
3:
2
4
tl + s2 f o r t h e composite motion of x1 t o forcing t o i s not isochronous. This negative result has p o s i t i v e
5
252
STRATEGIES
impact:
hopefully some games with g e n e r a l capture can be
assembled i n this fashion frm isochronous games.
Fig. 1 (schematic) Gambits t i o n of isochronous f o r c i n g t o R2
%
9.Composi-
with t h a t t o
r e s u l t s i n non-isochronous capture.
Some remarks a r e i n p l a c e here.
One should allow f o r t h e
p o s s i b i l i t y t h a t t h e f i n i t e sequence of gambits i n (1)i s replaced by a sequence i n f i n i t e i n one o r both d i r e c t i o n s j
253
PURSUIT GAMES
thus, i n Example 1, t h e appropriate s i t u a t i o n i s suggested by
...,
...,
Rf
R1, no = 0
If, i n (l), not a l l p o i n t s i n one gambit can be forced t o t h e
next, then one might a t l e a s t r e t r a c e t h e p a t h backward f r o n n R = QR, thus obtaining winning p o s i t i o n s i n R = R The
.
0
term end game may seem inappropriate f o r a l l b u t t h e l a s t stage.
Huwever, a t our level of vagueness, l o g i c a l l y nothing
prevents us from considering a game with
R
R -1
as l a s t target,
i s t h e end game. to R R4-2 4-1 F i n a l l y , t h e t r i v i a l case a = 1 of (1)amounts t o t h e enquiry whether t h e i n i t i a l l y given game i s some elementary end game.
f o r which t h e f o r c i n g from
Obviously t h e idea i s q u i t e f a m i l i a r .
Closer t o our
i n t e r e s t s , I am t o l d it i s considerably developed i n puzzlesolving i n t h e context of a r t i f i c i a l i n t e l l i g e n c e , and i n t h e study of l a r g e and heterogenous systems i n systems engineering. Even i n value-oriented treatment of game theory, some of t h e apparatus can be i n t e r p r e t e d , i n t h e present terms, a s t h e use of end-games of f i x e d s h o r t duration, a l t e r n a t e l y i n d i f f e r e n t and having a n t i c i p a t i o n allowed (and multitudinous ramificat i o n s of t h i s ) . Consider again t h e games of 5.3, with h a l f -
Example 1
spaces a s t a r g e t s ; r e t a i n t h e n o t a t i o n developed t h e r e r e c a p i t u l a t e t h e method, f o r given i n i t i a l p o s i t i o n
f i r s t solves
c'x = a
t
t
for
t
2
x
one
0, and then wes t h e i n d i f f e r -
ent s t r a t e g y u , u ( s ) = F ( t - s ) , t o f o r c e t o against all a c t i o n of quarry.
To
Taking
t
R
t
at time
minimal i n t h e f i r s t
s t e p amounts t o a pre-computation of t h e minimal time
T(x).
A simpler procedure may be applied i f t h e p l a y e r s ' con-
s t r a i n t s e t s a r e polytopes.
Then
u = f; -
needed f o r
a
t can be taken piecewise constant, with d i s c o n t i n u i t i e s having no f i n i t e accumulation points :
254
STRATEGIES
o = eo < el < ( s e e Remarks i n 5.3).
Let
R.
,1
...
r e a d i l y described by i t s boundary {x: c'x = a ] From t h e theorem i n 5.2 applied t o R
can be forced t o
R
t
t
t
for
6j
=ej-e
e
=
, each p o s i t i o n j -1
within a t i m e
R
W(ej),
be t h e hyperplane
x
3'
in
by
1-1
a constant s t r a t e g y
3 -1 p(t), t =
t o determine
Composing t h e s e end-games, we f i n d t h a t
j
T(x).
(ej +
t h e r e i s no need
ej+1)/2;
any winning p o s i t i o n i n one of t h e hyyerplanes
forced t o
R, within a time
elementary end games. by determination of
b1 +
... + 6 j
The computation of j
in
=
ej
T(x)
W(e ) can be j using j i s replaced
x E W(6Jj).
What l o s s does t h e s i m p l i f i c a t i o n e n t a i l ?
I n Example 1
of 5.3 (please r e f e r t o Fig. 2 ) t h e gambits a r e
I n t h e method j u s t described, some p o s i t i o n s a r e forced t o
W(n/4) (and subsequently t o R ) , although obviously those i n could have been forced t o R t h e curved p o r t i o n of W(O,rr/k) d i r e c t l y and f a s t e r ; thus t h e method i s not time-optimal. Second, although it seems p l a u s i b l e t h a t a l l winning p o s i t i o n s can be t r e a t e d thus, t h e e q u a l i t y needed f o r t h i s ,
has not been e s t a b l i s h e d . Section
5.4 suggests another candidate f o r gambits: t h e
l i n e a r subspaces i n v a r i a n t under t h e c o e f f i c i e n t matrix.
Be-
f o r presenting an i l l u s t r a t i o n of t h i s , l e t us dispose of one p o s s i b l e idea. If t h e c o e f f i c i e n t matrix
values, t h e r e a r e of matrix Rn
A'
n
i s simple with r e a l eigen-
A
independent r e a l eigenvectors cl,
( t h e ' l e f t eigenvectors' of+;
a s s t a t e space).
we a r e taking
The orthogonal conplement
i n v a r i a n t subspace of dimension 255
n
-
...,cn
I
cl
i s an
1; f o r c i n g t o it i s
PURSUIT GAMES
isochronous and stroboscopic, and p o s i t i o n s can be held i n it t h e r e a f t e r (Corollary 2 i n 5.3). process: etc.,
I
c1
while holding i n
Thus one may repeat t h e
I
R ~ ,cl,
c1
c1
I
n c2,
The sequence (1)i s
stepping down t h e dimensions. L
&
one can f o r c e t o
n c2, .. .,cl n I
I
... n cnA = 0;
and t h e suspicion t h a t t h e idea i s t o o b e a u t i f u l t o l a s t under s c r u t i n y i s confirmed by t h e l a s t t a r g e t : can one hope t o f o r c e t o o r i g i n .
Qc P
only i f
Speaking somewhat vaguely,
each instance of holding uses up one degree of freddom i n t h e dim P = n
pursuer's c o n t r o l c a p a b i l i t y ; unless
a t l e a s t one
of t h e holding manoeuvres i s impossible (see Exercises 2 and 3). Example 2
(Linear analogue of two-car game)
The game i s
induced by two n-dimensional second order equations,
with t h e p l a y e r c o n s t r a i n t sets
non-void,
U,V
compact, con-
Various assumptions w i l l be placed on t h e
vex, and symmetric.
data; t h e f i r s t i s t h e s u f f i c i e n t condition f o r isochronous capture, V c I n t U ( s e e 4.2,
and t h e Example i n 3 . 4 ) .
t h e c o n s t r a i n t sets a r e b a l l s and
n
2
I n case
3, V c U i s necessary
f o r g e n e r a l capture (Exercise 6 i n 7.3). There i s a standard d e s c r i p t i o n i n s t a t e space coordinates being
x,i,y,G
obvious reduction t o
2"
R4",
the
( c f . 3.4; we w i l l not need t h e via
x
- y,
i,;).
I n attempting t h e method described e a r i l e r , l e t us f i r s t
look f o r i n v a r i a n t subspaces.
These a r e associated with t h e
eigenvalues of t h e full c o e f f i c i e n t matrix (namely, 0 and those of A,B); but Example 1 tends t o discourage t h i s approach.
There a r e two obvious 3n-dimensional i n v a r i a n t
subspaces, with equations
k
- AX 256
=
0,
$
- By = 0.
STRATEGIES
Now, we a r e i n t e r e s t e d i n t h e u l t i m a t e behaviour of t h e v a r i able
x
- y;
i s o l a t i n g t h i s from t h e above, w e a r e l e d t o
consider
( 31
-1.
x + B
x - Y - A
-1. y = O
a s t h e equation of a subspace, L; it i s r e a d i l y v e r i f i e d t h a t L
i s indeed i n v a r i a n t under t h e complete c o e f f i c i e n t matrix.
With t h i s a s t h e gambit, t h e sequence (1)i s R
4n
, L,
a;
l e t u s study t h e fi = 2 end games involved. The f i r s t c o n s i s t s i n f o r c i n g t o t h e i n v a r i a n t t a r g e t It i s formally simpler t o use t h e reduction des-
L ( c f . 5.4).
cribed i n Exercise 5 of 6 . 3 (note t h a t t h i s i s not a reduction of t h e o r i g i n a l game:
6.3, here R + L is
4
i n connection with Proposition 1 i n
a ) . The new coordinate, according t o ( 3 ) ,
-1. -1. z = x - y - A x + B y,
by
k
(4 1
= A
-1 u
and t h e reduced game i s indicated
- B-1v;
The c o e f f i c i e n t matrix i s
end: z = 0; s t a t e space: Rn.
0; t h u s capture i s isochronous and
stroboscopic (Exercise 1 i n 5.4), B-% c A - 4 .
and n o n t r i v i a l i f f
The winning sets a r e W(0,t)
and R+(A%
=
W(t) = t(A-%J
* B-%)
i s t h e set of winning p o s i t i o n s . t u r e occurs i f f
B-%
c I n t A-%,
B-%),
= span ( A - 4 2
B-4)
I n p a r t i c u l a r , complete capwhich we s h a l l assume.
This t r a n s l a t e s e a s i l y i n t o t h e o r i g i n a l coordinates. summary of assumptions t o t h i s p o i n t i s t h a t
A,B
i n v e r t i b l e and
(5)
vc
Int
u, 257
B-4 c Int
A%.
are
A
PURSUIT GAMES
N e x t , consider t h e second end game, of f o r c i n g t h e out-
come x
-y
from an i n i t i a l p o s i t i o n i n L.
D i r e c t l y from
(21,
G(t) and s i m i l a r l y f o r
=
At e (xo
-As
By a second i n t e g r a t i o n and rear-
y(t).
rangement, we f i n d
-st ((;-'eArdr)u(s) 0
-
0
(sot-s
Br e dr)v(s))ds
(e.g. by Laplace transform methods, t h e i n t e g r a l of a convolution i s t h e convolution of one f a c t o r with t h e i n t e g r a l of t h e second).
Since t h e i n i t i a l values s a t i s f y (3), t h e
first bracket vanishes.
(This i s t h e purpose of t h e f i r s t
s t e p a s shown i n Exercise 5 , it i s not advisable t o hold withThe termination condition
L.)
(7 1
e
x = y
/
dr)u(s)ds =
0
A,B
as
0
([
may now be r e w r i t t e n a s
t-s 0
eBrdr)v(s)ds +
A t -1. A x0
+ If
t
(e
. .
- eB t B-1.yo).
a r e s t a b i l i t y matrices, t h e l a s t bracket approaches
t + +
m,
f o r any
x o, yo.
The s o l u t i o n procedure i s
then t o s p l i t t h e pursuer's c o n t r o l i n t o two components, appropriately compensating t h e r i g h t hand members i n ( 7 ) . A s our f i n a l assumption, l e t
(8)
A(I
- eAt)-l(I
-
eB)B-%
(note t h a t t h e s t a b i l i t y matrix eigenvalues, so I
-
A
c Int U
258
>0
has no pure imaginary
eAt i s n o n s i m a r for
To simplify notation, define
for a l l t
t >
01.
STRATEGIES
(9)
t
- eAt)-'(I - eBt)B-l
F ( t j = A(I
0
0 for
B rd r )
= (leArdr)'l(le
t > 0, and l e t F(0) = l i m F ( t ) = I, F(m) = l i m F ( t ) = AB'l t40 tA+m
From ( 5 ) and (8) we have
F(t)V c I n t U
for
0
5
t
L
t h a t , by c o n t i n u i t y and coxpactness, t h e r e i s a b a l l the origin i n
m,
so
G
about
with
Rn
for t
F(t)V + G c U
(10)
Consider (7) again.
Choose
- eB t
A t -1. e A xo
-1.
€I yo
( t h e left-hand member approaches neighbourhood of
t
>0
E
t 0
so t h a t
(eAs
- I)A-lG
ds
0, t h e r i g h t hand one i s a
t > 0).
increasing with
0
2 0
t > 0 and a l s o an i n t e g r a b l e mapping
This determines
tt+ g ( t )
E
G
with
yo = Jo(e A s - 1 ) A -1g ( s ) d s eA tA -1x. -e Bt B -1. 0
(11)
=
t 0
t-s Ar
(l
0
e
dr)g(t-s)ds.
Finally, define a stroboscopic s t r a t e g y
0,
U ( V , X )= F(t-S)V + g(t-S);
i t s values a r e i n U according t o (10). t h e pursuer c o n t r o l
s w U(S) = u ( v ( s ) , s )
Fro2 ( 9 ) and (ll),
w i l l satisfy the
termination condition (7). Conclusions: r e l a t i o n s ' (5),and
If
(8) holds, t o g e t h e r with t h e two 'limit
A,B
a r e s t a b i l i t y matrices, then complete
capture occurs f o r t h e game ( 2 ) :
any i n i t i a l p o s i t i o n s can be
be forced t o coincidence ( a c t u a l l y , by isochronous and stroboscopic s t r a t e g i e s ) , Example 3
(The two c a r game i n t h r e e dimension) 259
The
PURSUIT GAMES
game i s a s described i n 1.6; we s h a l l merely present t h e highl i g h t s of Rublein's s o l u t i o n ( c f . references t h e r e ) of t h e case
n
=
3 and S >l,(?) 1 S
a s i n 1.6, x
2
>p2 O 1
;
2
denotes t h e p o s i t i o n of t h e pursuer, and
y
t h a t of t h e quarry. The author shows t h a t (merely from t i o n can be forced t o one with and t h e n t o one w i t h y
- x.
Iy
ly
- x(
- XI
s1 > s 2), every posi-
a r b i t r a r i l y large,
l a r g e and
parallel t o
Then, from (12) he shows t h a t t h e following outcome
can b e forced: (y
(13)
- x)';
> 0; $ ,:
and y
-
x a r e coplanarj
x,y have equal components i n (y-x)
.A
.
Another formulation of t h e l a t t e r two conditions i n (13) i s t h a t t h e d i r e c t i o n of
y
-x
can be held constant, s o t h a t
t h e f i n a l s t a g e of t h e game is, e s s e n t i a l l y , one-dimensional. That t h i s procedure i s an instance of our gambits and end games i s obvious (e.g.,
a
=
4 i.n
( 1 ) ) j note t h a t holding
occurs, b u t not a t a l l s t a g e s . Exercises The f i r s t three of t h e s e a r e r e l a t e d t o Example 1.
.
1. Verify t h e following a s s e r t i o n s f o r a game i n
R
2
,
x = x + y + u , y = - y + v , w i t h [-1,1] a s common c o n s t r a i n t s e t . and
The eigenvalues a r e
-1, with corresponding eigenvectors a' = (2,1),
b' = (0,l).
The fundamental matrix s o l u t i o n i s
260
1
STRATEGIES
2.
I n t h e game above with t a r g e t set
winning set
show t h a t t h e i s t h e s t r i p described by -t O c 2 x + y s l - e <1.
W(0,t) = k ( t )
(Intermediate r e s u l t : i n t h e n o t a t i o n of 5.2,
f o r any
3.
u = -v/2,
C
, it
I
I f a p o s i t i o n has been forced t o taking
,
I
a
a
c'eAt(F-y)
t
can be held t h e r e by
u l t i m a t e l y reaching t h e set
> 0, but not f o r
E = 0.
I n t h e game of Exercise 1 with t a r g e t
t h e winning set
= e
W(0,t) = W(t) y z 1
b
A
, show t h a t
i s described by
-
et
>
-
w.
However, no point i n t h e t a r g e t can be held there; e x h i b i t sone evasion s t r a t e g y . The l a s t group of exercises concerns t h e game of Example 2.
4.
Show t h a t a p o i n t forced i n t o
5.
Prove t h a t , i f pursuer does ahoose t o hold within
can be held t h e r e -1 subsequently by t h e stroboscopic pursuer s t r a t e g y u = AB v. L
L, then
x(t)
- y(t) = a(1) + V
from
(6), and
t h i s can be made l a r g e by quarry (A = B and
o t h e r t r i v i a l i t i e s expected.)
6. Treat t h e case of s c a l a r matrices A = aI, B = PI (a > 0 < P ) . Prove t h a t one of t h e limit r e l a t i o n s (5) > implies t h e o t h e r and a l s o (a), i n both cases a 7 P . 7.
Show t h a t f o r complete capture i n t h e second end
game alone, t h e following weaker version of t h e requirements i s sufficient:
A,B
a r e s t a b i l i t y matrices, U c I n t V, and,
i n place of ( 8 ) , 261
PURSUIT GAMES
A(I
(Hint: the
- eAt)-l(I - eBt)B'%
use t h e ' i n t e r i o r containment' a t
o(1)
t
c U. =
0
t o neutralise
t e r m i n (7).)
Remarks The idea (without t h e examples) appeared i n 0. Hijek:
S t r a t e g y design i n p u r s u i t games, pp. 71-79 i n D i f f e r e n t i a l Games and Control Theory (ed. E. 0. Roxin, P. T. Liu, R. L. Sternberg), Dekker, New York, 1974.
PROBLEM
Extend t h e method of solving Example 2 t o t h e
general case of t h e example i n 3.4.
262
INDEX
a d d i t i o n formula, 128 Amerio, L., 38 a n a l y t i c s e t , 91 assumptions, 162, 176 standard, 34 a t t a i n a b i l i t y s e t , 4, 9, 10, 15, 125, 130, 131 Aunann's theorem, 126 b a r r i e r , game, 175 Bellman's lemma, 250 a l s o see p r i n c i p l e Besicovitch, A.S., 28 Blaquiere, A., 44, 223 Bonnensen, T., lo9 bounded convergence theorem, 24 2 boy and crocodile, 16 bracketing, 8, 161
--
Cantor, G., theorem, 212 diagonal method, 225, 236 capture, 3, 4, 6 , 7 complete, lbo general, 149-172, 209-235, 253 isochronous, 41, 135-148, 176, 178, 235-238, 252 p e r f e c t , 152 region, vii stroboscopic, 41, 58-105,
138, 1.65, 176-181 w. two pursuers, 8, 144,
condition, growth, 34, 37, 38 a l s o see necessary normality, sufficient constant bearing, principle c o n s t r a i n t , 33 Conti, R., 888 Sansone control, 4, 5, 7, 38 appearing l i n e a r l y , 35, 227, 231, 237, 2471 2 5 1 feed-back, 45, 63, 78, 83,
--
84
torque, 67 controllability defect, 184, 188, 207 matrix, 127 space, 126 a l s o s e e pursuer, min-max c o n t r o l order, 86, 87, 142 a l s o see pursuer c o n t r o l system, associated w. game, 60, 78, 81, @+, 85 c o n t r o l l a b l e , 128 observed, 105 w disturbances, viii convex set, 105, lo9 smooth, 113 s t r i c t l y , 113 c o s t , iv, 194, 247, 251
,
--
-.
cp, I@+
cvx, 108 6 , 214
decomposition theorem, 186, 146, 147 189, 190 w. a n t i c i p a t i o n , 7, 40, 13 degree of uncoupling, 188, 205, 206 138, 176-181, 191
see
also holding C a r m o d o r y ' s theorem, 109 Cayley-Hamilton theorem, 127
186
Chukwu, E.N., Clauss, S.E;, C l i f f , E.M.,
175 117
see Vincent
Cockayne, E.J., 23, 26, 234 compactness lemma, 241, 246
d e r i v a t i v e along t r a j e c t o r i e s , 214 d i r e c t i o n , asymptotic, 111 dolichobrachistochrone game, 237-238 dynamical, equation dynamics, uncoupled, 188
see
263
PURSUIT GAMES
e f f e c t s , separated,
227, 230, 236
35, 216,
Ha;'ek, O.,
66, 78, 100, 105, 121, 133, 147, 160, 175, 190,
246, 261 Eggleston, H.G., lo9 H a l l G.W.C., s e e Cockayne eigenvalues, v e c t o r s , 181, 210, 255-258 half-space, 1 K 162-176, 254 Hamilt onian, ix envelope, 169, 172, 175 Harris, J r . , W.A., 246 e qua t ion, Heymann, M., 190, 194 allonomous, 3 5 holding, 100-105,178, 256, 260 a u t onornous, 35 homicidal chauffeur game, 1, 16, dynamicel, 10, 1% 20-22, 150, 202, 219-221, I s a a c s ' , ix, 173 of motion, 5, 10 234, 237, 238 Huygens' t r a c t r i x , 5 van d e r Pol's, 37 hyperplane, ess, 210 supporting , 106 e s s e n t i a l p o i n t , 171-173, 210tangent, 217 234 evasion, t a r g e t , 162, 172, 173, 255 complete, vii s t r a t e g y , 178, 191 invariant, extreme point, lo9 space, 129, 176 t a r g e t , 176-179, 181, 255-257 feed-back, controls, I s a a c s , R . , 16, 23, 25, 29, 38, strategies 44, 52, 53, 154, 175, 222 a l s o s e e equation Fenschel, W . , Bonnensen isochrone, 176 Filippov, A.F., 121 isomorphism, 195, 201, 204 lemma, 119, 121 isotropic, Flynn, J., 29 rocket game, 15, 16 Friedman, A . , 53, 140, 223, subspace, 93-95 238, 246
see
--
see
game, allonomous, 220 c o n t r o l l a b l e , 188 end, 252 evasion, vii min-max c o n t r o l l a b l e , 188,
236
proper, 196 p u r s u i t , vii second-order, 36 space, 184 uncoupled, 188, 206, 222 zero-sum, vii, x Ggrard, F., Blaquisre Grantham, W . J . , Vincent Gronwall's i n e q u a l i t y , 250 Grunbaum, B., lo9
see
j e t , 210 Jacobian,
143, 213, 214, 228
K&I& decomposition, 1% Kelley's game, 16, 29, 232, Krezn-Mil'man theorem, 57
Laplace transform,
258
103, 104,
Lebesgue ' s theorem, 56 Lee, E.B., 66, 67, 104 Leitman, G., 3, 44, 223 Levinson, N., 174 Liapunov' s theorem, 123 l i f e - l i n e , 46 l i m i t theorem, a t t a i n a b l e s e t s , 131 reachable s e t s , 129 264
233
INDEX
linearisation, ordinary, 76-77 unorthodox, 67, 75, 77 l i o n and man, 26-29 Littlewood, J.E., 126 Liu, P.T., l 9 O manifold, 93, lo9 Markus, L., Lee matrix, Jacobian, 143 s o l u t i o n , 170 s t a 9 i l i t y , 258, 259, 261 Mikusinski, J. L., 105 min-max, c o n t r o l l a b i l i t y , 191-194 repeated, 140 Migzenko, J.F., 16 a l s o aee Poktrjagin motion, simple, 3-5, 17, 84 Mx' ILx' 214
--
polyhedron, 107 polytope, 109, 172-174, 181, 254 Pontrjagin, L.S., 65, 117, 155 d i f f e r e n c e , 60, 109-117 p o s i t i o n , winning, vii, 15, 40 principle, Bellman's, 52 constant bearing, v, 155, 158, 160 envelope, 175 maximality, xi suboptimality, xi, 49, 245 a l s o see t e n e t property, hereditary, 140 pursuer, 3 c o n t r o l l a b i l i t y space, 184 c o n t r o l order, 185, 205 c o n t r o l system, 184 reachable s e t , 184 two, capture
--
see
navig3tion problem, 1-3 quarry, 3 c o n t r o l order, 186 necessary condition, c o n t r o l system, 184 e s s e n t i a l points, 227, 229, 230 highly mobile, 159 general, 152, 155 quasi -convex, 247 -248 isochronous, 141 isochronous and stroboscop- Rademacher's theorem, x stroboscopic, 6 1 Rado, R., 27 net, 240, 246 range, 115 reachable s e t , 4, 125, 136, 184 n e u t r a l i s a t i o n , 7, 66, 75 Rechtshaffen, E., 66, 84, 105, normal, e x t e r i o r , 150, 180 117 normality conditions, 66 r e c i p r o c i t y theorem, n u l l , 114 f i r s t , 60 second, 79, 83 ob servab il i t y 105 o b s t a c l e t a g , 29-31 t h i r d , 101 o s c i l l a t o r , harmonic, 99, 140 fourth, 173 reduction, 195-208 Pachter, M., Heymann representation, equivalent, 196, 204 paradoxial game, 30-32, 222 pendulum, 67-75 minimal, 196-204, 207 Peng, W.Y., s e e Vincent response , pursuer, 39 phase, 10, lis t a t e , 38 Poincarg ' s theorem, 19 point, essential, R i c h t e r ' s theorem, 123 position, used
,
see
265
PURSUIT GAMES
rocket chase, 88, 94 t e n e t of t r a n s i t i o n , 52 termination, 7 one-dimensional, 1, 9-13, 184-186, 188, 195, 207 condition, 10-11, 33 Roxin, E.D., 65, 190, 246, 262 time, 9, 47 time , R ( t ) , Rp(t), 125, 184 delay, 7, 95 Rublein, G . T . , 26, 260 lag, 44, 95 minimum, 48, 150, 164 Sansone, G., 37 a l s o s e e termination semipermeable Surface, 173, two c a r game, 1, 23-26, 221-222, 176 231-232, 237 Sibuya, Y., 246 Tychonov's theorem, 240 simple p u r s u i t , 3, 5-8, 30, 32 on c i r c l e , 19, 30 useable portion, 176, 223 span, 126 used p a r t , 89, 210-211 a f f i n e , 91 convex, 108 value, v i i i , i x , 254 l i n e a r , 109, 126 van d e r Pol, see equation s t a t e , a l s o s e e response Varaiya, P . P . ~ ,246 space, 15, 33, 38 vectogram, 36-38, 217 S t e r n , R.J., Heymann Vincent, T.L., 25, 26 Sternberg, R.L., _see Liu s t i r r e d tank, 99-100 winning set, 41, 136, 149 strategy W ( t > , 4 1 9 176 a f f i n e , 148 W ( O , t ) , 41, 176 almost stroboscopic, 42 No), 243 capture, 5 d e t e r m i n i s t i c , 42 Yeung, D.S., 175 feed-back, 44-45, 175 i n d i f f e r e n t , 40, 163 Zermelo, E., 1, 3 non-anticipatory, 39 Zorn's Lemma, 212 optimal, 166, 244, 248-252 pursuer, 39 quarry, 46 stroboscopic, 39 winning, v i i , i x w. t i m e lag, 43 s u f f i c i e n t condition, 155-161 summand, d i r e c t , 1 1 1 , 137 swerve, 154 switch- curve, locus, 69, 71-
--
71-73
Takgcs, L., 95 t a r g e t , 2, 33, 40 a l s o see half-space, -._ hyperplane, i n v a r i a n t Taylor expansion, 214-21s
A 5 8 6
c 7 D B
E F G H 1 J
266
9 O 1 2 3 4