Shackelford, James F. et al “Frontmatter” Materials Science and Engineering Handbook Ed. James F. Shackelford & W. Alexa...
85 downloads
2020 Views
15MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Shackelford, James F. et al “Frontmatter” Materials Science and Engineering Handbook Ed. James F. Shackelford & W. Alexander Boca Raton: CRC Press LLC, 2001
CRC
MATERIALS SCIENCE AND
ENGINEERING HANDBOOK THIRD EDITION
©2001 CRC Press LLC
CRC
MATERIALS SCIENCE AND
ENGINEERING HANDBOOK THIRD EDITION James F. Shackelford Professor of Materials Science and Engineering Division of Materials Science and Engineering and Associate Dean of the College of Engineering University of California, Davis
William Alexander Research Engineer Division of Materials Science and Engineering University of California, Davis
CRC Press Boca Raton London New York Washington, D.C.
©2001 CRC Press LLC
disclaimer Page 1 Wednesday, October 25, 2000 1:50 PM
Library of Congress Cataloging-in-Publication Data CRC materials science and engineering handbook / [edited by] James F. Shackelford, William Alexander.—3rd ed. p. cm. Includes bibliographical references and index. ISBN 0-8493-2696-6 (alk. paper) 1. Materials—Handooks, manuals, etc. I. Shackelford, James F. II. Alexander, William, 1950 Feb. 13TA403.4 .C74 2000 620.1′1—dc21
00-048567
This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher. The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying. Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe.
© 2001 by CRC Press LLC No claim to original U.S. Government works International Standard Book Number 0-8493-2696-6 Library of Congress Card Number 00-048567 Printed in the United States of America 1 2 3 4 5 6 7 8 9 0 Printed on acid-free paper
©2001 CRC Press LLC
TABLE OF CONTENTS
CHAPTER 1
Structure of Materials Electronic Structure of Selected Elements Available Stable Isotopes of the Elements Periodic Table of the Elements Periodic Table of Elements in Metallic Materials Periodic Table of Elements in Ceramic Materials Periodic Table of Elements in Polymeric Materials Periodic Table of Elements in Semiconducting Materials Periodic Table of Elements in Superconducting Metals Atomic and Ionic Radii of the Elements Bond Length Values Between Elements Periodic Table of Carbon Bond Lengths (Å) Carbon Bond Lengths Carbon Bond Lengths in Polymers Bond Angle Values Between Elements Key to Tables of Crystal Structure of the Elements The Seven Crystal Systems The Fourteen Bravais Lattices Periodic Table of the Body Centered Cubic Elements Periodic Table of the Face Centered Cubic Elements Periodic Table of the Hexagonal Close Packed Elements Periodic Table of the Hexagonal Elements
©2001 CRC Press LLC
Table of Contents Structure of Ceramics Atomic Mass of Selected Elements Solid Density of Selected Elements Density of Iron and Iron Alloys Density of Wrought Stainless Steels Density of Stainless Steels and Heat-Resistant Alloys Density of Aluminum Alloys Density of Copper and Copper Alloys Density of Magnesium and Magnesium Alloys Density of Nickel and Nickel Alloys Density of Lead and Lead Alloys Density of Tin and Tin Alloys Density of Wrought Titanium Alloys Density of Titanium and Titanium alloys Density of Zinc and Zinc Alloys Density of Permanent Magnet Materials Density of Precious Metals Density of Superalloys Density of Selected Ceramics Density of Glasses Specific Gravity of Polymers Density of 55MSI Graphite/6061 Aluminum Composites Density of Graphite Fiber Reinforced Metals Density of Si3N4 Composites CHAPTER 2
Composition of Materials Composition Limits of Tool Steels Composition Limits of Gray Cast Irons Composition Limits of Ductile Irons Composition Ranges for Malleable Irons Composition Ranges for Carbon Steels Composition Ranges for Resulfurized Carbon Steels Composition Ranges for Alloy Steels
©2001 CRC Press LLC CRC Handbook of Materials Science & Engineering
Table of Contents Composition of Stainless Steels Composition of Wrought Coppers and Copper Alloys Classification of Copper and Copper Alloys Composition Ranges for Cast Aluminum Alloys Composition Ranges for Wrought Aluminum Alloys Composition of Tin and Tin Alloys Compositions of ACI Heat-Resistant Casting Alloys Composition of Zinc Die Casting Alloys Compositions of Wrought Superalloys Typical Composition of Glass-Ceramics CHAPTER 3
Phase Diagram Sources Phase Diagram Sources
CHAPTER 4
Thermodynamic and Kinetic Data Bond Strengths in Diatomic Molecules Bond Strengths of Polyatomic Molecules Solubility of Copper and Copper Alloys Heat of Formation of Inorganic Oxides Phase Change Thermodynamic Properties for The Elements Phase Change Thermodynamic Properties of Oxides Melting Points of the Elements Melting Points of Elements and Inorganic Compounds Melting Points Of Ceramics Heat of Fusion For Elements and Inorganic Compounds Heats of Sublimation of Metals and Their Oxides Key to Tables of Thermodynamic Coefficients Thermodynamic Coefficients for Selected Elements Thermodynamic Coefficients for Oxides Entropy of the Elements Vapor Pressure of the Elements at Very Low Pressures Vapor Pressure of the Elements at Moderate Pressures Vapor Pressure of the Elements at High Pressures Vapor Pressure of Elements and Inorganic Compounds
©2001 CRC Press LLC Shackelford & Alexander
Table of Contents Values of The Error Function Diffusion in Metallic Systems Diffusion of Metals into Metals Diffusion in Semiconductors CHAPTER 5
Thermal Properties of Materials Specific Heat of the Elements at 25 ˚C Heat Capacity of Ceramics Specific Heat of Polymers Specific Heat of Fiberglass Reinforced Plastics Thermal Conductivity of Metals (Part 1) Thermal Conductivity of Metals (Part 2) Thermal Conductivity of Metals (Part 3) Thermal Conductivity of Metals (Part 4) Thermal Conductivity of Alloy Cast Irons Thermal Conductivity of Iron and Iron Alloys Thermal Conductivity of Aluminum and aluminum alloys Thermal Conductivity of Copper and Copper Alloys Thermal Conductivity of Magnesium and Magnesium Alloys Thermal Conductivity of Nickel and Nickel Alloys Thermal Conductivity of Lead and Lead Alloys Thermal Conductivity of Tin, Titanium, Zinc and their Alloys Thermal Conductivity of Pure Metals Thermal Conductivity of Ceramics Thermal Conductivity of Glasses Thermal Conductivity of Cryogenic Insulation Thermal Conductivity of Cryogenic Supports Thermal Conductivity of Special Concretes Thermal Conductivity of SiC-Whisker-Reinforced Ceramics Thermal Conductivity of Polymers Thermal Conductivity of Fiberglass Reinforced Plastics Thermal Expansion of Wrought Stainless Steels Thermal Expansion of Wrought Titanium Alloys
©2001 CRC Press LLC CRC Handbook of Materials Science & Engineering
Table of Contents Thermal Expansion of Graphite Magnesium Castings Linear Thermal Expansion of Metals and Alloys Thermal Expansion of Ceramics Thermal Expansion of SiC-Whisker-Reinforced Ceramics Thermal Expansion of Glasses Thermal Expansion of Polymers Thermal Expansion Coefficients of Materials for Integrated Circuits Thermal Expansion of Silicon Carbide SCS–2–Al ASTM B 601 Temper Designation Codes for Copper and Copper Alloys Temper Designation System for Aluminum Alloys Tool Steel Softening After 100 Hours Thermoplastic Polyester Softening with Temperature Heat-Deflection Temperature of Carbon- and Glass-Reinforced Engineering Thermoplastics CHAPTER 6
Mechanical Properties of Materials Tensile Strength of Tool Steels Tensile Strength of Gray Cast Irons Tensile Strength of Gray Cast Iron Bars Tensile Strength of Ductile Irons Tensile Strength of Malleable Iron Castings Tensile Strength of Austenitic Stainless Steels Tensile Strength of Ferritic Stainless Steels Tensile Strength of Precipitation-Hardening Austenitic Stainless Steels Tensile Strength of High–Nitrogen Austenitic Stainless Steels Tensile Strength of Martensitic Stainless Steels Tensile Strength of Wrought Coppers and Copper Alloys Tensile Strength of Aluminum Casting Alloys Tensile Strength of Wrought Aluminum Alloys Tensile Strength of Cobalt-Base Superalloys Tensile Strength of Nickel-Base Superalloys
©2001 CRC Press LLC Shackelford & Alexander
Table of Contents Tensile Strength of Wrought Titanium Alloys at Room Temperature Tensile Strength of Wrought Titanium Alloys at High Temperature Tensile Strength of Refractory Metal Alloys Tensile Strength of Ceramics Tensile Strength of Glass Tensile Strength of Polymers Tensile Strength of Fiberglass Reinforced Plastics Tensile Strength of Carbon- and Glass-Reinforced Engineering Thermoplastics Strength of Graphite Fiber Reinforced Metals Tensile Strength of Graphite/Magnesium Castings Tensile Strength of Graphite/Aluminum Composites Tensile Strength of Graphite/Aluminum Composites Tensile Strength of Silicon Carbide SCS–2–Al Ultimate Tensile Strength of Investment Cast Silicon Carbide SCS–Al Ultimate Tensile Strength of Silicon Carbide–Aluminum Alloy Composites Tensile Strength of SiC-Whisker–Reinforced Aluminum Alloy Ultimate Tensile Strength of Aluminum Alloy Reinforced with SiC Whiskers vs. Temperature Ultimate Tensile Strength of Reinforced Aluminum Alloy vs. Temperature Tensile Strength of Polycrystalline–Alumina–Reinforced Aluminum Alloy Tensile Strength of Boron/Aluminum Composites Compressive Strength of Gray Cast Iron Bars Compressive Strength of Ceramics Compressive Strength of Fiberglass Reinforced Plastic Ultimate Compressive Strength of Investment Cast Silicon Carbide SCS–Al Yield Strength of Tool Steels Yield Strength of Ductile Irons Yield Strength of Malleable Iron Castings Yield Strength of Austenitic Stainless Steels
©2001 CRC Press LLC CRC Handbook of Materials Science & Engineering
Table of Contents Yield Strength of Ferritic Stainless Steels Yield Strength of Martensitic Stainless Steels Yield Strength of Precipitation-Hardening Austenitic Stainless Steels Yield Strength of High–Nitrogen Austenitic Stainless Steels Yield Strength of Wrought Coppers and Copper Alloys Yield Strength of Cast Aluminum Alloys Yield Strength of Wrought Aluminum Alloys Yield Strength of Wrought Titanium Alloys at Room Temperature Yield Strength of Wrought Titanium Alloys at High Temperature Yield Strength of Cobalt-Base Superalloys Yield Strength of Nickel-Base Superalloys Yield Strength of Commercially Pure Tin Yield Strength of Polymers Yield Strength of SiC-Whisker–Reinforced Aluminum Alloy Yield Strength of Reinforced Aluminum Alloy vs. Temperature Yield Strength of Polycrystalline–Alumina–Reinforced Aluminum Alloy Compressive Yield Strength of Polymers Flexural Strength of Polymers Flextural Strength of Fiberglass Reinforced Plastics Shear Strength of Wrought Aluminum Alloys Torsion Shear Strength of Gray Cast Fe Hardness of Gray Cast Irons Hardness of Gray Cast Iron Bars Hardness of Malleable Iron Castings Hardness of Ductile Irons Hardness of Tool Steels Hardness of Austenitic Stainless Steels Hardness of Ferritic Stainless Steels Hardness of Martensitic Stainless Steels Hardness of Precipitation-Hardening Austenitic Stainless Steels Machinability Rating of Wrought Coppers and Copper Alloys Hardness of Wrought Aluminum Alloys Hardness of Wrought Titanium Alloys at Room Temperature
©2001 CRC Press LLC Shackelford & Alexander
Table of Contents Hardness of Ceramics Microhardness of Glass Hardness of Polymers Hardness of Si3N4 and Al2O3 Composites Coefficient of Static Friction for Polymers Abrasion Resistance of Polymers Fatigue Strength of Wrought Aluminum Alloys Reversed Bending Fatigue Limit of Gray Cast Iron Bars Impact Energy of Tool Steels Impact Strength of Wrought Titanium Alloys at Room Temperature Impact Strength of Polymers Impact Strength of Fiberglass Reinforced Plastics Impact Strength of Carbon- and Glass-Reinforced Engineering Thermoplastics Fracture Toughness of Si3N4 and Al2O3 Composites Tensile Modulus of Gray Cast Irons Tension Modulus of Treated Ductile Irons Tensile Modulus of Fiberglass Reinforced Plastics Tensile Modulus of Graphite/Aluminum Composites Tensile Modulus of Investment Cast Silicon Carbide SCS–Al Tensile Modulus of Silicon Carbide SCS–2–Al Young’s Modulus of Ceramics Young’s Modulus of Glass Elastic Modulus of Wrought Stainless Steels Modulus of Elasticity of Wrought Titanium Alloys Modulus of Elasticity in Tension for Polymers Modulus of Elasticity of 55MSI Graphite/6061 Aluminum Composites Modulus of Elasticity of Graphite/Magnesium Castings Modulus of Elasticity of Graphite/Aluminum Composites Modulus of Elasticity of Graphite Fiber Reinforced Metals Modulus of Elasticity of SiC-Whisker–Reinforced Aluminum Alloy
©2001 CRC Press LLC CRC Handbook of Materials Science & Engineering
Table of Contents Modulus of Elasticity of Polycrystalline–Alumina–Reinforced Aluminum Alloy Modulus of Elasticity of Boron/Aluminum Composites Compression Modulus of Treated Ductile Irons Modulus of Elasticity in Compression for Polymers Bulk Modulus of Glass Shear Modulus of Glass Torsional Modulus of Gray Cast Irons Torsion Modulus of Treated Ductile Irons Modulus of Elasticity in Flexure for Polymers Flexural Modulus of Fiberglass Reinforced Plastics Flexural Modulus of Carbon- and Glass-Reinforced Engineering Thermoplastics Modulus of Rupture for Ceramics Rupture Strength of Refractory Metal Alloys Rupture Strength of Superalloys Modulus of Rupture for Si3N4 and Al2O3Composites Poisson's Ratio of Wrought Titanium Alloys Poisson’s Ratio for Ceramics Poisson’s Ratio of Glass Poisson's Ratio of Silicon Carbide SCS–2–Al Compression Poisson’s Ratio of Treated Ductile Irons Torsion Poisson’s Ratio of Treated Ductile Irons Elongation of Tool Steels Elongation of Ductile Irons Elongation of Malleable Iron Castings Elongation of Ferritic Stainless Steels Elongation of Martensitic Stainless Steels Elongation of Precipitation-Hardening Austenitic Stainless Steels Elongation of High–Nitrogen Austenitic Stainless Steels Total Elongation of Cast Aluminum Alloys Elongation of Wrought Coppers and Copper Alloys Elongation of Commercially Pure Tin
©2001 CRC Press LLC Shackelford & Alexander
Table of Contents Elongation of Cobalt-Base Superalloys Elongation of Nickel-Base Superalloys Ductility of Refractory Metal Alloys Elongation of Wrought Titanium Alloys at Room Temperature Elongation of Wrought Titanium Alloys at High Temperature Total Elongation of Polymers Elongation at Yield for Polymers Ultimate Tensile Elongation of Fiberglass Reinforced Plastics Total Strain of Silicon Carbide SCS–2–Al Area Reduction of Tool Steels Reduction in Area of Austenitic Stainless Steels Reduction in Area of Ferritic Stainless Steels Reduction in Area of High–Nitrogen Austenitic Stainless Steels Reduction in Area of Precipitation-Hardening Austenitic Stainless Steels Reduction in Area of Martensitic Stainless Steels Reduction in Area of Commercially Pure Tin Area Reduction of Wrought Titanium Alloys at Room Temperature Area Reduction of Wrought Titanium Alloys at High Temperature Strength Density Ratio of Graphite Fiber Reinforced Metals Modulus Density Ratio of Graphite Fiber Reinforced Metals Viscosity of Glasses Internal Friction of SiO2 Glass Surface Tension of Elements at Melting Surface Tension of Liquid Elements CHAPTER 7
Electrical Properties of Materials Electrical Conductivity of Metals Electrical Resistivity of Metals Electrical Resistivity of Alloy Cast Irons Resistivity of Ceramics Volume Resistivity of Glass Volume Resistivity of Polymers
©2001 CRC Press LLC CRC Handbook of Materials Science & Engineering
Table of Contents Critical Temperature of Superconductive Elements Dissipation Factor for Polymers Dielectric Strength of Polymers Step Dielectric Strength of Polymers Dielectric Constant of Polymers Dielectric Breakdown of Polymers Dielectric Breakdown of Polymers Tangent Loss in Glass Electrical Permittivity of Glass Arc Resistance of Polymers CHAPTER 8
Optical Properties of Materials Transmission Range of Optical Materials Transparency of Polymers Refractive Index of Polymers Dispersion of Optical Materials
CHAPTER 9
Chemical Properties of Materials Water Absorption of Polymers Standard Electromotive Force Potentials Galvanic Series of Metals Galvanic Series of Metals in Sea Water Corrosion Rate of Metals in Acidic Solutions Corrosion Rate of Metals in Neutral and Alkaline Solutions Corrosion Rate of Metals in Air Corrosion Rates of 1020 Steel at 70˚F Corrosion Rates of Grey Cast Iron at 70˚F Corrosion Rates of Ni–Resist Cast Iron at 70˚F Corrosion Rates of 12% Cr Steel at 70˚ Corrosion Rates of 17% Cr Steel at 70˚F Corrosion Rates of 14% Si Iron at 70˚F Corrosion Rates of Stainless Steel 301 at 70˚F Corrosion Rates of Stainless Steel 316 at 70˚F Corrosion Rates of Aluminum at 70˚F
©2001 CRC Press LLC Shackelford & Alexander
Table of Contents Corrosion Resistance of Wrought Coppers and Copper Alloys Corrosion Rates of 70-30 Brass at 70˚F Corrosion Rates of Copper, Sn-Braze, Al-Braze at 70˚F Corrosion Rates of Silicon Bronze at 70˚F Corrosion Rates of Hastelloy at 70˚F Corrosion Rates of Inconel at 70˚F Corrosion Rates of Nickel at 70˚F Corrosion Rates of Monel at 70˚F Corrosion Rates of Lead at 70˚F Corrosion Rates of Titanium at 70˚F Corrosion Rates of ACI Heat–Resistant Castings Alloys in Air Corrosion Rates for ACI Heat–Resistant Castings Alloys in Flue Gas Flammability of Polymers Flammability of Fiberglass Reinforced Plastics CHAPTER 10
Selecting Structural Properties Selecting Atomic Radii of the Elements Selecting Ionic Radii of the Elements Selecting Bond Lengths Between Elements Selecting Bond Angles Between Elements Selecting Density of the Elements
CHAPTER 11
Selecting Thermodynamic and Kinetic Properties Selecting Bond Strengths in Diatomic Molecules Selecting Bond Strengths of Polyatomic Molecules Selecting Heat of Formation of Inorganic Oxides Selecting Specific Heat of Elements Selecting Specific Heat of Polymers Selecting Melting Points of The Elements Selecting Melting Points of Elements and Inorganic Compounds Selecting Melting Points of Ceramics Selecting Heat of Fusion For Elements and Inorganic Compounds Selecting Entropy of the Elements
©2001 CRC Press LLC CRC Handbook of Materials Science & Engineering
Table of Contents Selecting Diffusion Activation Energy in Metallic Systems CHAPTER 12
Selecting Thermal Properties Selecting Thermal Conductivity of Metals Selecting Thermal Conductivity of Metals at Temperature Selecting Thermal Conductivity of Alloy Cast Irons Selecting Thermal Conductivity of Ceramics Selecting Thermal Conductivity of Ceramics at Temperature Selecting Thermal Conductivity of Polymers Selecting Thermal Expansion of Tool Steels Selecting Thermal Expansion of Tool Steels at Temperature Selecting Thermal Expansion of Alloy Cast Irons Selecting Thermal Expansion of Ceramics Selecting Thermal Expansion of Glasses Selecting Thermal Expansion of Polymers Selecting Thermal Expansion Coefficients for Materials used in Integrated Circuits Selecting Thermal Expansion Coefficients for Materials used in Integrated Circuits at Temperature
CHAPTER 13
Selecting Mechanical Properties Selecting Tensile Strength of Tool Steels Selecting Tensile Strength of Gray Cast Irons Selecting Tensile Strength of Ductile Irons Selecting Tensile Strengths of Malleable Iron Castings Selecting Tensile Strengths of Aluminum Casting Alloys Selecting Tensile Strengths of Wrought Aluminum Alloys Selecting Tensile Strengths of Ceramics Selecting Tensile Strengths of Glass Selecting Tensile Strengths of Polymers Selecting Compressive Strengths of Gray Cast Iron Bars Selecting Compressive Strengths of Ceramics Selecting Compressive Strengths of Polymers Selecting Yield Strengths of Tool Steels
©2001 CRC Press LLC Shackelford & Alexander
Table of Contents Selecting Yield Strengths of Ductile Irons Selecting Yield Strengths of Malleable Iron Castings Selecting Yield Strengths of Cast Aluminum Alloys Selecting Yield Strengths of Wrought Aluminum Alloys Selecting Yield Strengths of Polymers Selecting Compressive Yield Strengths of Polymers Selecting Flexural Strengths of Polymers Selecting Shear Strengths of Wrought Aluminum Alloys Selecting Torsional Shear Strengths of Gray Cast Iron Bars Selecting Hardness of Tool Steels Selecting Hardness of Gray Cast Irons Selecting Hardness of Gray Cast Iron Bars Selecting Hardness of Ductile Irons Selecting Hardness of Malleable Iron Castings Selecting Hardness of Wrought Aluminum Alloys Selecting Hardness of Ceramics Selecting Microhardness of Glass Selecting Hardness of Polymers Selecting Coefficients of Static Friction for Polymers Selecting Abrasion Resistance of Polymers Selecting Fatigue Strengths of Wrought Aluminum Alloys Selecting Reversed Bending Fatigue Limits of Gray Cast Iron Bars Selecting Impact Energy of Tool Steels Selecting Impact Strengths of Polymers Selecting Tensile Moduli of Gray Cast Irons Selecting Tensile Moduli of Treated Ductile Irons Selecting Young’s Moduli of Ceramics Selecting Young’s Moduli of Glass Selecting Moduli of Elasticity in Tension for Polymers Selecting Compression Moduli of Treated Ductile Irons Selecting Modulus of Elasticity in Compression for Polymers Selecting Bulk Moduli of Glass
©2001 CRC Press LLC CRC Handbook of Materials Science & Engineering
Table of Contents Selecting Moduli of Elasticity in Flexure of Polymers Selecting Shear Moduli of Glass Selecting Torsional Moduli of Gray Cast Irons Selecting Torsional Moduli of Treated Ductile Irons Selecting Moduli of Rupture for Ceramics Selecting Poisson’s Ratios for Ceramics Selecting Poisson’s Ratios of Glass Selecting Compression Poisson’s Ratios of Treated Ductile Irons Selecting Torsion Poisson’s Ratios of Treated Ductile Irons Selecting Elongation of Tool Steels Selecting Elongation of Ductile Irons Selecting Elongation of Malleable Iron Castings Selecting Total Elongation of Cast Aluminum Alloys Selecting Total Elongation of Polymers Selecting Elongation at Yield of Polymers Selecting Area Reduction of Tool Steels CHAPTER 14
Selecting Electrical Properties Selecting Electrical Resistivity of Alloy Cast Irons Selecting Resistivity of Ceramics Selecting Volume Resistivity of Glass Selecting Volume Resistivity of Polymers Selecting Critical Temperature of Superconductive Elements Selecting Dissipation Factor for Polymers at 60 Hz Selecting Dissipation Factor for Polymers at 1 MHz Selecting Dielectric Strength of Polymers Selecting Dielectric Constants of Polymers at 60 Hz Selecting Dielectric Constants of Polymers at 1 MHz Selecting Tangent Loss in Glass Selecting Tangent Loss in Glass by Temperature Selecting Tangent Loss in Glass by Frequency Selecting Electrical Permittivity of Glass Selecting Electrical Permittivity of Glass by Frequency
©2001 CRC Press LLC Shackelford & Alexander
Table of Contents Selecting Arc Resistance of Polymers CHAPTER 15
Selecting Optical Properties Selecting Transmission Range of Optical Materials Selecting Transparency of Polymers Selecting Refractive Indices of Glasses Selecting Refractive Indices of Polymers
CHAPTER 16
Selecting Chemical Properties Selecting Water Absorption of Polymers Selecting Iron Alloys in 10% Corrosive Medium Selecting Iron Alloys in 100% Corrosive Medium Selecting Nonferrous Metals for use in a 10% Corrosive Medium Selecting Nonferrous Metals for use in a 100% Corrosive Medium Selecting Corrosion Rates of Metals Selecting Corrosion Rates of Metals in Corrosive Environments Selecting Flammability of Polymers
©2001 CRC Press LLC CRC Handbook of Materials Science & Engineering
2.1 Front Matter Page xvii Wednesday, December 31, 1969 17:00
Dedication
To Penelope and Scott Li-Li and Cassie
©2001 CRC Press LLC Shackelford & Alexander
Shackelford, James F. et al “Structure of Materials” Materials Science and Engineering Handbook Ed. James F. Shackelford & W. Alexander Boca Raton: CRC Press LLC, 2001
3.0 Structure Page 1 Wednesday, December 31, 1969 17:00
CHAPTER 1
Structure of Materials
List of Tables
Subatomic Structure Electronic Structure of Selected Elements Available Stable Isotopes of the Elements Atomic Structure Periodic Table of the Elements Periodic Table of Elements in Metallic Materials Periodic Table of Elements in Ceramic Materials Periodic Table of Elements in Polymeric Materials Periodic Table of Elements in Semiconducting Materials Periodic Table of Elements in Superconducting Metals Bond Structure Atomic and Ionic Radii of the Elements Bond Length Values Between Elements Periodic Table of Carbon Bond Lengths (Å) Carbon Bond Lengths Carbon Bond Lengths in Polymers Bond Angle Values Between Elements Crystal Structure Key to Tables of Crystal Structure of the Elements The Seven Crystal Systems
©2001 CRC Press LLC
1
3.0 Structure Page 2 Wednesday, December 31, 1969 17:00
Structural Properties List of Tables (Continued)
The Fourteen Bravais Lattices Periodic Table of the Body Centered Cubic Elements Periodic Table of the Face Centered Cubic Elements Periodic Table of the Hexagonal Close Packed Elements Periodic Table of the Hexagonal Elements Structure of Ceramics Density Atomic Mass of Selected Elements Solid Density of Selected Elements Density of Iron and Iron Alloys Density of Wrought Stainless Steels Density of Stainless Steels and Heat-Resistant Alloys Density of Aluminum Alloys Density of Copper and Copper Alloys Density of Magnesium and Magnesium Alloys Density of Nickel and Nickel Alloys Density of Lead and Lead Alloys Density of Tin and Tin Alloys Density of Wrought Titanium Alloys Density of Titanium and Titanium alloys Density of Zinc and Zinc Alloys Density of Permanent Magnet Materials Density of Precious Metals Density of Superalloys Density of Selected Ceramics Density of Glasses Specific Gravity of Polymers Density of 55MSI Graphite/6061 Aluminum Composites Density of Graphite Fiber Reinforced Metals Density of Si3N4 Composites
©2001 CRC Press LLC
2
CRC Handbook of Materials Science & Engineering
3.1 Structure Page 3 Wednesday, December 31, 1969 17:00
Structural Properties
Table 1. ELECTRONIC
At. Element No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
Hydrogen Helium Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon Sodium Magnesium Aluminum Silicon Phosphorus Sulfur Chlorine Argon Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
STRUCTURE OF SELECTED ELEMENTS
Sym H He Li Be B C N O F N Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Electronic Configuration 1s 2s 2p 3s 3p 1 2 . 1 . 2 . 2 1 . 2 2 . 2 3 . 2 4 . 2 5 . 2 6 . . . 1 . . . 2 . . . 2 1 . . . 2 2 . . . 2 3 . . . 2 4 . . . 2 5 . . . 2 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3d 4s
1 2 3 5 5 6 7 8 10 10 10 10 10 10 10 10 . . . . . . . . . . . . . . . . . .
1 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 2 2 . . . . . . . . . . . . . . . . . .
4p 4d
1 2 3 4 5 6 . . . . . . . . . . . . . . . . . .
1 2 4 5 6 7 8 10 10 10 10 10 10 10 10 10
4f
5s
5p 5d
5f
6s
6p 6d 7s
1 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2
1 2 3 5 5 6
©2001 CRC Press LLC Shackelford & Alexander
3
3.1 Structure Page 4 Wednesday, December 31, 1969 17:00
Structural Properties
At. Element No.
Sym
Electronic Configuration 1s
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
Cesium Barium Lantium Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury Thallium Lead Bismuth Polonium Asatine Radon Francium Radium Actinium Thorium Protoactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium
Ce Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lw
2s
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2p 3s
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3p 3d 4s
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4p 4d
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4f
5s
2 3 4 5 6 7 7 9 10 11 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5p 5d
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5f
6p 6d 7s
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1
1
1 2 3 4 5 6 9 9 10 10 10 10 10 10 10 10 . . . . . . . . . . . . . . . . .
6s
2 3 4 6 7 7 9 10 11 12 13 14 14
1 1 2 2 2 2 2 2 2 . . . . . . . . . . . . . . . . .
1 2 3 4 5 6 . . . . . . . . . . . . . . . . .
1 2 1 1 1 1
1
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
©2001 CRC Press LLC
4
CRC Handbook of Materials Science & Engineering
3.1 Structure Page 5 Wednesday, December 31, 1969 17:00
Structural Properties
Table 2. AVAILABLE
STABLE ISOTOPES OF THE ELEMENTS (SHEET 1 OF 11) Natural
Element
Mass No.
Abundance (%)
Hydrogen
1
99.985
2
0.015
Helium
3 4
0.00013 ≈100.0
Lithium
6 7
7.42 92.58
Beryllium
9
100.0
Boron
10 11
19.78 80.22
Carbon
12 13
98.89 1.11
Nitrogen
14 15
99.63 0.37
Oxygen
16 17 18
99.76 0.04 0.20
Fluorine
19
100.0
Neon
20 21 22
90.92 0.26 8.82
Sodium
23
100.0
Magnesium
24 25 26
78.70 10.13 11.17
Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25.
©2001 CRC Press LLC Shackelford & Alexander
5
3.1 Structure Page 6 Wednesday, December 31, 1969 17:00
Structural Properties
Table 2. AVAILABLE
STABLE ISOTOPES OF THE ELEMENTS (SHEET 2 OF 11) Natural
Element
Mass No.
Abundance (%)
Aluminum
27
100.0
Silicon
28 29 30
92.21 4.70 3.09
Phosphorus
31
100.0
Sulfur
32 33 34 36
95.0 0.76 4.22 0.014
Chlorine
35 37
75.53 24.47
Argon
36 38 40
0.34 0.06 99.60
Potassium
39 40a 41
93.1
0.01
Calcium
40 42 43 44 46 48
96.97 0.64 0.14 2.06 0.003 0.18
Scandium
45
100.0
6.9
Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25.
©2001 CRC Press LLC
6
CRC Handbook of Materials Science & Engineering
3.1 Structure Page 7 Wednesday, December 31, 1969 17:00
Structural Properties
Table 2. AVAILABLE
STABLE ISOTOPES OF THE ELEMENTS (SHEET 3 OF 11) Natural Mass No.
Abundance (%)
Titanium
46 47 48 49 50
7.93 7.28 73.94 5.51 5.34
Vanadium
50 51
0.24 99.76
Chromium
50 52 53 54
4.31 83.76 9.55 2.38
Manganese
55
100.0
Iron
54 56 57 58
5.82 91.66 2.19 0.33
Cobalt
59
100.0
Nickel
58 60 61 62 64
67.84 26.23 1.19 3.66 1.08
Copper
63 65
69.09 30.91
Element
Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25.
©2001 CRC Press LLC Shackelford & Alexander
7
3.1 Structure Page 8 Wednesday, December 31, 1969 17:00
Structural Properties
Table 2. AVAILABLE
STABLE ISOTOPES OF THE ELEMENTS (SHEET 4 OF 11) Natural Mass No.
Abundance (%)
Zinc
64 66 67 68 70
48.89 27.81 4.11 18.57 0.62
Gallium
69 71
60.4 39.6
Germanium
70 72 73 74 76
20.52 27.43 7.76 36.54 7.76
Arsenic
75
100.0
Selenium
74 76 77 78 80 82
0.87 9.02 7.58 23.52 49.82 9.19
Bromine
79 81
50.54 49.46
Krypton
78 80 82 83 84 86
0.35 2.27 11.56 11.55 56.90 17.37
Rubidium
85 87
72.15 27.85
Element
Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25.
©2001 CRC Press LLC
8
CRC Handbook of Materials Science & Engineering
3.1 Structure Page 9 Wednesday, December 31, 1969 17:00
Structural Properties
Table 2. AVAILABLE
STABLE ISOTOPES OF THE ELEMENTS (SHEET 5 OF 11) Natural Mass No.
Abundance (%)
Strontium
84 86 87 88
0.56 9.86 7.02 82.56
Yttrium
89
100.0
Zirconium
90 91 92 94 96
51.46 11.23 17.11 17.40 2.80
Niobium
93
100.0
Molybdenum
92 94 95 96 97 98 100
15.84 9.04 15.72 16.53 9.46 23.78 9.63
Ruthenium
96 98 99 100 101 102 104
5.51 1.87 12.72 12.62 17.07 31.61 18.60
Rhodium
103
100.0
Element
Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25.
©2001 CRC Press LLC Shackelford & Alexander
9
3.1 Structure Page 10 Wednesday, December 31, 1969 17:00
Structural Properties
Table 2. AVAILABLE
STABLE ISOTOPES OF THE ELEMENTS (SHEET 6 OF 11) Natural Mass No.
Abundance (%)
Palladium
102 104 105 106 108 110
0.96 10.97 22.23 27.33 26.71 11.81
Silver
107 109
51.82 48.18
Cadmium
106 108 110 111 112 113 114 116
1.22 0.88 12.39 12.75 24.07 12.26 28.86 7.58
Indium
113 115
4.28 95.72
Tin
112 114 115 116 117 118 119 120 122 124
0.96 0.66 0.35 14.30 7.61 24.03 8.58 32.85 4.72 5.94
Antimony
121 123
57.25 42.75
Element
Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25.
©2001 CRC Press LLC
10
CRC Handbook of Materials Science & Engineering
3.1 Structure Page 11 Wednesday, December 31, 1969 17:00
Structural Properties
Table 2. AVAILABLE
STABLE ISOTOPES OF THE ELEMENTS (SHEET 7 OF 11) Natural Mass No.
Abundance (%)
Tellurium
120 122 123 124 125 126 128 130
0.09 2.46 0.87 4.61 6.99 18.71 31.79 34.48
Iodine
127
100.0
Xenon
124 126 128 129 130 131 132 134 136
0.096 0.090 1.92 26.44 4.08 21.18 26.89 10.44 8.87
Cesium
133
100.0
Barium
130 132 134 135 136 137 138
0.101 0.097 2.42 6.59 7.81 11.30 71.66
Lanthanum
138 139
0.09 99.91
Element
Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25.
©2001 CRC Press LLC Shackelford & Alexander
11
3.1 Structure Page 12 Wednesday, December 31, 1969 17:00
Structural Properties
Table 2. AVAILABLE
STABLE ISOTOPES OF THE ELEMENTS (SHEET 8 OF 11) Natural Mass No.
Abundance (%)
136 138 140 142d
0.193 0.250 88.48
11.07
141
100.0
Neodymium
142 143 144 146 148 150
27.11 12.17 23.85 17.22 5.73 5.62
Samarium
144 147e 148f 149g 150 152 154
Element Cerium
Praseodymium
3.09
14.97 11.24 13.83 7.44 26.72 22.71
Europium
151 153
47.82 52.18
Gadolinium
152h 154 155 156 157 158 160
0.20 2.15 14.73 20.47 15.68 24.87 21.90
159
100.0
Terbium
Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25.
©2001 CRC Press LLC
12
CRC Handbook of Materials Science & Engineering
3.1 Structure Page 13 Wednesday, December 31, 1969 17:00
Structural Properties
Table 2. AVAILABLE
STABLE ISOTOPES OF THE ELEMENTS (SHEET 9 OF 11) Natural Mass No.
Abundance (%)
156i 158 160 161 162 163 164
0.052
Holmium
165 186
100.0 28.41
Erbium
162 164 166 167 168 170 186
0.136 1.56 33.41 22.94 27.07 14.88 1.59
Thulium
169 189
100.0 16.1
Ytterbium
168 170 171 172 173 174 176
0.135 3.03 14.31 21.82 16.13 31.84 12.73
Lutetium
175 176j
97.40
Element
Dysprosium
0.090 2.29 18.88 25.53 24.97 28.18
2.60
Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25.
©2001 CRC Press LLC Shackelford & Alexander
13
3.1 Structure Page 14 Wednesday, December 31, 1969 17:00
Structural Properties
Table 2. AVAILABLE
STABLE ISOTOPES OF THE ELEMENTS (SHEET 10 OF 11) Natural Mass No.
Abundance (%)
174k 176 177 178 179 180
0.18 5.20 18.50 27.14 13.75 35.24
Tantalum
180 181
0.012 99.988
Tungsten
180 182 183 184
0.14 26.41 14.40 30.64
Rhenium
185 187
37.07 62.93
Osmium
184 187 188 190 192
0.018 1.64 13.3 26.4 41.0
Iridium
191 193
37.3 62.7
Platinum
190m 192 194 195 196 198
0.013
197
100.0
Element
Haffiium
Gold
0.78 32.9 33.8 25.3 7.2
Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25.
©2001 CRC Press LLC
14
CRC Handbook of Materials Science & Engineering
3.1 Structure Page 15 Wednesday, December 31, 1969 17:00
Structural Properties
Table 2. AVAILABLE
STABLE ISOTOPES OF THE ELEMENTS (SHEET 11 OF 11) Natural Mass No.
Abundance (%)
Mercury
196 198 199 200 201 202 204
0.146 10.02 16.84 23.13 13.22 29.80 6.85
Thallium
203 205
29.50 70.50
Lead
204 206 207 208
1.48 23.6 22.6 52.3
Bismuth
209
100.0
Thorium
232n†
100.0
Uranium
234o† 235p† 238q†
0.0006 0.72 99.27
Element
Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25.
a b c d e f g h
i
half-life = 1.3 x 109 y. half-life > 1015 y half-life = 5 x 1014 y half-life = 5 x 1014 y half-life = 1.06 x 1011 y half-life = 1.2 x 1013 y half-life = 1.2 x 1014 y half-life = 1.1 x 1014 y half-life = 2 x 1014 y
j
half-life = 2.2 x 1010 y k half-life = 4.3 x 1015 y l half-life = 4 x 1010 y m half-life = 6 x 1011 y n half-life = 1.4 x 1010 y o half-life = 2.5 x 105 y p half-life = 7.1 x 108 y q half-life = 4.5 x 109 y † naturally occurring.
©2001 CRC Press LLC Shackelford & Alexander
15
3.2 Structure L Page 16 Wednesday, December 31, 1969 17:00
1 IA
2
3
4
5
Table 3. PERIODIC
TABLE OF THE ELEMENTS
6
9
7
8
10
11
12
13
14
15
16
17
18 VIIA
1 H
IIA
IIIA
IVA
VA
VIA
VIIA
2 He
3 Li
4 Be
5 B
6 C
7 N
8 O
9 F
10 Ne
11 Na
12 Mg
IIIB
IVB
VB
VIB
VIIB
-----
VIII
-----
IB
IIB
13 Al
14 Si
15 P
16 S
17 Cl
18 Ar
19 K
20 Ca
21 Sc
22 Ti
23 V
24 Cr
25 Mn
26 Fe
27 Co
28 Ni
29 Cu
30 Zn
31 Ga
32 Ge
33 As
34 Se
35 Br
36 Kr
37 Rb
38 Sr
39 Y
40 Zr
41 Nb
42 Mo
43 Tc
44 Ru
45 Rh
46 Pd
47 Ag
48 Cd
49 In
50 Sn
51 Sb
52 Te
53 I
54 Xe
55 Cs
56 Ba
72 Hf
73 Ta
74 W
75 Re
76 Os
77 Ir
78 Pt
79 Au
80 Hg
81 Tl
82 Pb
83 Bi
84 Po
85 At
86 Rn
87 Fr
88 Ra
57 La
58 Ce
59 Pr
60 Nd
61 Pm
62 Sm
63 Eu
64 Gd
65 Tb
66 Dy
67 Ho
68 Er
69 Tm
70 Yb
71 Lu
89 Ac
90 Th
91 Pa
92 U
93 Np
94 Pu
95 Am
96 Cm
97 Bk
98 Cf
99 Es
100 Fm
101 Md
102 No
103 Lw
©2001 CRC Press LLC
3.2 Structure L Page 17 Wednesday, December 31, 1969 17:00
Table 4. PERIODIC 1 IA
2
3
4
5
6
TABLE OF ELEMENTS IN METALLIC MATERIALS 7
8
9
10
11
12
13
14
15
16
17
IIA
IIIA
IVA
VA
VIA
VIIA
3 Li
4 Be
5 B
11 Na
12 Mg
IIIB
IVB
VB
VIB
VIIB
-----
VIII
-----
IB
IIB
13 Al
19 K
20 Ca
21 Sc
22 Ti
23 V
24 Cr
25 Mn
26 Fe
27 Co
28 Ni
29 Cu
30 Zn
31 Ga
37 Rb
38 Sr
39 Y
40 Zr
41 Nb
42 Mo
43 Tc
44 Ru
45 Rh
46 Pd
47 Ag
48 Cd
49 In
50 Sn
51 Sb
55 Cs
56 Ba
72 Hf
73 Ta
74 W
75 Re
76 Os
77 Ir
78 Pt
79 Au
80 Hg
81 Tl
82 Pb
83 Bi
87 Fr
88 Ra
57 La
58 Ce
59 Pr
60 Nd
61 Pm
62 Sm
63 Eu
64 Gd
65 Tb
66 Dy
67 Ho
68 Er
69 Tm
70 Yb
71 Lu
89 Ac
90 Th
91 Pa
92 U
93 Np
94 Pu
95 Am
96 Cm
97 Bk
98 Cf
99 Es
100 Fm
101 Md
102 No
103 Lw
©2001 CRC Press LLC
18 VIIA
3.2 Structure L Page 18 Wednesday, December 31, 1969 17:00
Table 5. PERIODIC 1 IA
2
3
4
5
6
TABLE OF ELEMENTS IN CERAMIC MATERIALS
7
8
9
10
11
12
13
14
15
16
17
IIA
IIIA
IVA
VA
VIA
VIIA
3 Li
4 Be
5 B
6 C
7 N
8 O
11 Na
12 Mg
IIIB
IVB
VB
VIB
VIIB
-----
VIII
-----
IB
IIB
13 Al
14 Si
15 P
16 S
19 K
20 Ca
21 Sc
22 Ti
23 V
24 Cr
25 Mn
26 Fe
27 Co
28 Ni
29 Cu
30 Zn
31 Ga
32 Ge
37 Rb
38 Sr
39 Y
40 Zr
41 Nb
42 Mo
43 Tc
44 Ru
45 Rh
46 Pd
47 Ag
48 Cd
49 In
50 Sn
51 Sb
55 Cs
56 Ba
72 Hf
73 Ta
74 W
75 Re
76 Os
77 Ir
78 Pt
79 Au
80 Hg
81 Tl
82 Pb
83 Bi
87 Fr
88 Ra
57 La
58 Ce
59 Pr
60 Nd
61 Pm
62 Sm
63 Eu
64 Gd
65 Tb
66 Dy
67 Ho
68 Er
69 Tm
70 Yb
71 Lu
89 Ac
90 Th
91 Pa
92 U
93 Np
94 Pu
95 Am
96 Cm
97 Bk
98 Cf
99 Es
100 Fm
101 Md
102 No
103 Lw
©2001 CRC Press LLC
18 VIIA
3.2 Structure L Page 19 Wednesday, December 31, 1969 17:00
1 IA 1 H
2
3
Table 6. PERIODIC
TABLE OF ELEMENTS IN POLYMERIC MATERIALS
4
7
5
6
8
9
10
11
12
IIA
IIIB
©2001 CRC Press LLC
IVB
VB
VIB
VIIB
-----
VIII
-----
IB
IIB
13
14
15
16
17
IIIA
IVA
VA
VIA
VIIA
6 C
7 N
8 O
9 F
14 Si
18 VIIA
3.2 Structure L Page 20 Wednesday, December 31, 1969 17:00
Table 7. PERIODIC 1 IA
2
3
4
5
6
TABLE OF ELEMENTS IN SEMICONDUCTING MATERIALS 7
8
9
10
11
12
IIA
13
14
15
16
17
IIIA
IVA
VA
VIA
VIIA
8 O IIIB
IVB
VB
VIB
VIIB
-----
VIII
-----
IB
IIB
13 Al
14 Si
15 P
16 S
30 Zn
31 Ga
32 Ge
33 As
34 Se
48 Cd
49 In
50 Sn
51 Sb
52 Te
80 Hg
©2001 CRC Press LLC
18 VIIA
3.2 Structure L Page 21 Wednesday, December 31, 1969 17:00
Table 8. PERIODIC 1 IA
2
3
4
5
6
TABLE OF ELEMENTS IN SUPERCONDUCTING METALS 7
8
9
10
11
12
IIA
13
14
15
16
17
IIIA
IVA
VA
VIA
VIIA
50 Sn
51 Sb
4 Be IIIB
IVB
VB
22 Ti
23 V
40 Zr
41 Nb
42 Mo
43 Tc
44 Ru
73 Ta
74 W
75 Re
76 Os
57 La 90 Th
©2001 CRC Press LLC
91 Pa
VIB
VIIB
-----
VIII
77 Ir
-----
IB
IIB
13 Al
30 Zn
31 Ga
48 Cd
49 In
80 Hg
82 Pb
18 VIIA
3.3 Structure Page 22 Wednesday, December 31, 1969 17:00
Structural Properties
Table 9. ATOMIC AND IONIC RADII OF THE (SHEET 1 OF 5)
ELEMENTS
Atomic Number
Symbol
Atomic Radius (nm)
Ion
Ionic Radius (nm)
1 2 3 4
H He Li Be
0.046 – 0.152 0.114
H– – Li+ Be2+
0.154 – 0.078 0.054
5 6 7 8
B C N O
0.097 0.077 0.071 0.060
B3+ C4+ N5+ 02–
0.02 <0.02 0.01–0.2 0.132
9 10 11 12
F Ne Na Mg
– 0.160 0.186 0.160
F– – Na+ Mg2+
0.133 – 0.098 0.078
13 14 . 15
Al Si
0.143 0.117
P
0.109
Al3+ Si4– Si4+ P5+
0.057 0.198 0.039 0.03–0.04
16
S
0.106
17 18
Cl Ar
0.107 0.192
S2– S6+ Cl– –
0.174 0.034 0.181 –
19 20 21
K Ca Sc
0.231 0.197 0.160
K+ Ca2+ Sc2+
0.133 0.106 0.083
Source: Data from R. A. Flinn and P. K. Trojan, Engineering Materials and Their Applications, Houghton Mifflin Company, Boston, 1975. The ionic radii are based on the calculations of V. M. Goldschmidt, who assigned radii based on known interatomic distances in various ionic crystals.
©2001 CRC Press LLC
22
CRC Handbook of Materials Science & Engineering
3.3 Structure Page 23 Wednesday, December 31, 1969 17:00
Structural Properties
Table 9. ATOMIC AND IONIC RADII OF THE (SHEET 2 OF 5) Atomic Number
Symbol
Atomic Radius (nm)
22
Ti
23
ELEMENTS
Ion
Ionic Radius (nm)
0.147
Ti2+ Ti3+ Ti4+
0.076 0.069 0.064
V
0.132
V3+ V4+ V5+
0.065 0.061 0.04
24
Cr
0.125
Cr3+ Cr6+
0.064 0.03–0.04
25
Mn
0.112
Mn2+ Mn3+ Mn4+
0.091 0.070 0.052
26
Fe
0.124
27
Co
0.125
Fe2+ Fe2+ Co2+ Co3+
0.087 0.067 0.082 0.065
28 29 30 31
Ni Cu Zn Ga
0.125 0.128 0.133 0.135
Ni2+ Cu+ Zn2+ Ga3+
0.078 0.096 0.083 0.062
32 33
Ge As
0.122 0.125
Ge4+ As3+ As5+
0.044 0.069 ~0.04
34
Se
0.116
35 36
Br Kr
0.119 0.197
Se2– Se6+ Br– –
0.191 0.03–0.04 0.196 –
Source: Data from R. A. Flinn and P. K. Trojan, Engineering Materials and Their Applications, Houghton Mifflin Company, Boston, 1975. The ionic radii are based on the calculations of V. M. Goldschmidt, who assigned radii based on known interatomic distances in various ionic crystals.
©2001 CRC Press LLC Shackelford & Alexander
23
3.3 Structure Page 24 Wednesday, December 31, 1969 17:00
Structural Properties
Table 9. ATOMIC AND IONIC RADII OF THE (SHEET 3 OF 5)
ELEMENTS
Atomic Number
Symbol
Atomic Radius (nm)
Ion
Ionic Radius (nm)
37 38 39
Rb Sr Y
0.251 0.215 0.181
Rb+ Sr2+ Y3+
0.149 0.127 0.106
40
Zr
0.158
Zr4+
0.087
41
Nb
0.143
42
Mo
0.136
Nb4+ Nb5+ Mo4+ Mo6+
0.074 0.069 0.068 0.065
43 44 45
Tc Ru Rh
– 0.134 0.134
– Ru4+ Rh3+ Rh4+
– 0.065 0.068 0.065
46 47 48 49
Pd Ag Cd In
0.137 0.144 0.150 0.157
Pd2+ Ag+ Cd2+ In3+
0.050 0.113 0.103 0.091
50
Sn
0.158
51
Sb
0.161
Sn4– Sn4+ Sb3+
0.215 0.074 0.090
52
Te
0.143
Te2– Te4+
0.211 0.089
53
I
0.136
54 55
Xe Cs
0.218 0.265
I– I5+ – Cs+
0.220 0.094 – 0.165
Source: Data from R. A. Flinn and P. K. Trojan, Engineering Materials and Their Applications, Houghton Mifflin Company, Boston, 1975. The ionic radii are based on the calculations of V. M. Goldschmidt, who assigned radii based on known interatomic distances in various ionic crystals.
©2001 CRC Press LLC
24
CRC Handbook of Materials Science & Engineering
3.3 Structure Page 25 Wednesday, December 31, 1969 17:00
Structural Properties
Table 9. ATOMIC AND IONIC RADII OF THE (SHEET 4 OF 5) Atomic Number
Symbol
Atomic Radius (nm)
56 57 58
Ba La Ce
59
ELEMENTS
Ion
Ionic Radius (nm)
0.217 0.187 0.182
Ba2+ La3+ Ce3+ Ce4+
0.13 0.122 0.118 0.102
Pr
0.183
Pr3+ Pr4+
0.116 0.100
60 61
Nd Pm
0.182 –
Nd3+ Pm3+
0.115 0.106
62 63 64
Sm Eu Gd
0.181 0.204 0.180
Sm3+ Eu3+ Gd3+
0.113 0.113 0.111
65
Tb
0.177
66 67
Dy Ho
0.177 0.176
Tb3+ Tb4+ Dy3+ Ho3+
0.109 0.089 0.107 0.105
68 69 70 71
Er Tm Yb Lu
0.175 0.174 0.193 0.173
Er3+ Tm3+ Yb3+ Lu3+
0.104 0.104 0.100 0.099
72 73 74
Hf Ta W
0.159 0.147 0.137
Hf4+ Ta5+ W4+ W6+
0.084 0.068 0.068 0.065
75 76 77
Re Os Ir
0.138 0.135 0.135
Re4+ Os4+ Ir4+
0.072 0.067 0.066
Source: Data from R. A. Flinn and P. K. Trojan, Engineering Materials and Their Applications, Houghton Mifflin Company, Boston, 1975. The ionic radii are based on the calculations of V. M. Goldschmidt, who assigned radii based on known interatomic distances in various ionic crystals.
©2001 CRC Press LLC Shackelford & Alexander
25
3.3 Structure Page 26 Wednesday, December 31, 1969 17:00
Structural Properties
Table 9. ATOMIC AND IONIC RADII OF THE (SHEET 5 OF 5) Atomic Number
Symbol
Atomic Radius (nm)
78
Pt
0.138
79 80
Au Hg
0.144 0.150
81
Tl
82
ELEMENTS
Ion
Ionic Radius (nm)
Pt2+ Pt4+ Au+ Hg2+
0.052 0.055 0.137 0.112
0.171
Tl+ Tl3+
0.149 0.106
Pb
0.175
83
Bi
0.182
Pb4– Pb2+ Pb4+ Bi3+
0.215 0.132 0.084 0.120
84 85 86 87
Po At Rn Fr
0.140 – – –
Po6+ At7+ – Fr+
0.067 0.062 – 0.180
88 89 90 91
Ra Ac Th Pa
– – 0.180 –
Ra+ Ac3+ Th4+ –
0.152 0.118 0.110 –
92
U
0.138
U4+
0.105
Source: Data from R. A. Flinn and P. K. Trojan, Engineering Materials and Their Applications, Houghton Mifflin Company, Boston, 1975. The ionic radii are based on the calculations of V. M. Goldschmidt, who assigned radii based on known interatomic distances in various ionic crystals.
©2001 CRC Press LLC
26
CRC Handbook of Materials Science & Engineering
3.3 Structure Page 27 Wednesday, December 31, 1969 17:00
Structural Properties
Table 10. BOND
LENGTH VALUES BETWEEN ELEMENTS (SHEET 1 OF 4)
Elements
Compound
B-B B-Br
B2H6 BBF BBr3
1.770 1.88 1.87
B-Cl
BCl BCl3
B-F
BF BF3
1.715 1.72 1.262 1.29
B-H B-H bridge B-N
Hydrides Hydrides (BClNH)3
1.21 1.39 1.42
B-0
BO B(OH)3
N-Cl
NO2Cl
N-F N-H
N-N
N-O
Bond length (Å)
±
0.013
±
0.02
±
0.01
±
0.01
± ± ±
.02 .02 .01
1.2049 1.362
±
0.005 (av)
NF3
1.79 1.36
± ±
0.02 0.02
[NH4]+ NH ND HNCS
1.034 1.038 1.041 1.013
±
0.003
±
0.005
N 3H N 2O
1.02 1.126
± ±
0.01 0.002
[N2]+
1.116
NO2Cl NO2
1.24 1.188
± ±
0.01 0.005
To convert Å to nm, multiply by 10-1 Source: from Kennard, O., in Handbook of Chemistry and Physics, 69th ed., Weast, R. C., Ed., CRC Press, Boca Raton, Fla., 1988, F-167.
©2001 CRC Press LLC Shackelford & Alexander
27
3.3 Structure Page 28 Wednesday, December 31, 1969 17:00
Structural Properties
Table 10. BOND
LENGTH VALUES BETWEEN ELEMENTS (SHEET 2 OF 4)
Elements
Compound
N=O
N2O
Bond length (Å)
[NO]+
1.186 1.0619
N-Si
SiN
1.572
O-H
[OH]+ OD H2O2
1.0289 0.9699 0.960
B2H6
1.770 1.88 1.87
B-B B-Br
BBF BBr3
B-Cl
BCl BCl3
B-F
±
0.002
±
0.005
±
0.013
±
0.02
±
0.01
BF BF3
1.715 1.72 1.262 1.29
±
0.01
B-H B-H bridge B-N
Hydrides Hydrides (BClNH)3
1.21 1.39 1.42
± ± ±
.02 .02 .01
B-0
BO B(OH)3
1.2049 1.362
±
0.005 (av)
N-Cl
NO2Cl
N-F
NF3
1.79 1.36
± ±
0.02 0.02
N-H
[NH4]+ NH ND HNCS
1.034 1.038 1.041 1.013
±
0.003
±
0.005
To convert Å to nm, multiply by 10-1 Source: from Kennard, O., in Handbook of Chemistry and Physics, 69th ed., Weast, R. C., Ed., CRC Press, Boca Raton, Fla., 1988, F-167.
©2001 CRC Press LLC
28
CRC Handbook of Materials Science & Engineering
3.3 Structure Page 29 Wednesday, December 31, 1969 17:00
Structural Properties
Table 10. BOND
LENGTH VALUES BETWEEN ELEMENTS (SHEET 3 OF 4)
Elements
Compound
N-N
N 3H
Bond length (Å)
N 2O
1.02 1.126
± ±
0.01 0.002
[N2]+
1.116
N-O
NO2Cl NO2
1.24 1.188
± ±
0.01 0.005
N=O
N 2O
±
0.002
[NO]
1.186 1.0619
N-Si
SiN
1.572
O-H
[OH]+ OD H2O2
1.0289 0.9699 0.960
±
0.005
H2O2
1.48
±
0.01
[O2]+
1.227
[O2]-
1.26
±
0.2
1.49
±
0.02
±
0.02
±
0.02
± ±
0.02 0.005
+
O-O
--
[O2] P-D P-H P-N P-S
PD [PH4]+ PN PSBr3 (Cl3,F3)
1.429 1.42 1.4910 1.86
S-Br
SOBr2
S-F S-D
SOF2 SD SD2
2.27 1.585 1.3473 1.345
To convert Å to nm, multiply by 10-1 Source: from Kennard, O., in Handbook of Chemistry and Physics, 69th ed., Weast, R. C., Ed., CRC Press, Boca Raton, Fla., 1988, F-167.
©2001 CRC Press LLC Shackelford & Alexander
29
3.3 Structure Page 30 Wednesday, December 31, 1969 17:00
Structural Properties
Table 10. BOND
LENGTH VALUES BETWEEN ELEMENTS (SHEET 4 OF 4)
Elements
Compound
Bond length (Å)
S-O S-S
SO2 SOCl2 S2Cl2
1.4321 1.45 2.04
± ±
0.02 0.01
Si-Br
SiBr4
Si-Cl Si-F
SiCl4 SiF4
2.17 2.03 1.561
± ± ±
1.01 1.01 (av) 0.003 (av)
Si-H
SiH4
1.480
±
0.005
Si-O Si-Si
[SiO]+ Si2Cl2
1.504 2.30
±
0.02
To convert Å to nm, multiply by 10-1 Source: from Kennard, O., in Handbook of Chemistry and Physics, 69th ed., Weast, R. C., Ed., CRC Press, Boca Raton, Fla., 1988, F-167.
©2001 CRC Press LLC
30
CRC Handbook of Materials Science & Engineering
3.4 Structure L Page 31 Wednesday, December 31, 1969 17:00
Table 11. PERIODIC 1 IA H 1.06
2
3
13
14
15
16
17
IIA
IIIA
IVA
VA
VIA
VIIA
Be 1.93
B 1.56
C 1.2
N 1.47
O 1.43
F 1.55
Al 2.24
Si 1.8
P 1.87
S 1.81
Cl 1.7
Ge 1.98
As 1.98
Se 1.98
Br 1.9
Sn 2.15
Sb 2.16
Te 2.05
I 2.1
Pb 2.29
Bi 2.30
IIIB
4
IVB
5
VB
6
VIB Cr 1.92 Mo 2.08 W 2.06
©2001 CRC Press LLC
7
TABLE OF CARBON BOND LENGTHS (Å)
VIIB
8
9
10
-----
VIII
-----
Fe 1.94
Co 1.93
Ni 18.2
11
IB
12
IIB
Pd 2.27
In 2.16 Hg 2.07
18 VIIA
3.5 Structure Page 32 Wednesday, December 31, 1969 17:00
Structural Properties
Table 12. CARBON BOND (SHEET 1 OF 3)
LENGTHS
Group No.
Element.
At. No.
Sym.
1 2
Hydrogen Beryllium
1 4
H Be
1.056 1.93
± 1.115
6
Chromium Molybdenum Tungsten
24 42 74
Cr Mo W
1.92 2.08 2.06
± 0.04 ± 0.04 ± 0.01
8 9 10
Iron Cobalt Nickel Palladium Mercury
26 27 28 46 80
Fe Co Ni Pd Hg
1.94 1.93 1.82 2.27 2 .07
± 0.02 ± 0.02 ± 0.03 ± 0.04 ± 0.01
13
Aluminum Boron Indium
13 5 49
Al B In
2.24 1. 56 2.16
± 0.04 ± 0.01 ± 0.04
14
Carbon Germanium Lead Silicon
6 32 82 14
C Ge Pb Si
1.20 1.98 2.29 1.865 1.84
± 1.54 ± 0.03 ± 0.05 ± 0.008 ± 0.01
1.88
± 0.01
2.143
± 0.008
2.18
± 0.02
1.98 2.30 1 .47 1.87 2.202
± 0.02
12
Tin
15
Arsenic Bismuth Nitrogen Phosphorus Antimony
50
33 83 7 15 51
Sn
As Bi N P Sb
Bond Length (Å)
± 1.1 ± 0.02 ± 0.016
Bond Type
Alkyls (CH3XH3) Alkyls (CH3XH3) Alkyls (CH3XH3) Alkyls (CH3XH3) Aryls (C6H5XH3) Neg. Subst. (CH3XCI3) Alkyls (CH3XH3) Neg. Subst. (CH3XCI3) Paraffinic (CH3)3X Paraffinic (CH3)3X Paraffinic (CH3)3X Paraffinic (CH3)3X
Source: data from Lide, David R., Ed., CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, (1990); and “Tables of interatomic distances” Chem. Soc. of London, 1958.
©2001 CRC Press LLC
32
CRC Handbook of Materials Science & Engineering
3.5 Structure Page 33 Wednesday, December 31, 1969 17:00
Structural Properties
Table 12. CARBON BOND (SHEET 2 OF 3) Group No.
LENGTHS
Element.
At. No.
Sym.
16
Oxygen Sulfur Selenium Tellurium
8 16 34 52
O S Se Te
1.43 1.81 1 .98 2.05
± 1.15 ± 1.55 ± 1.71 ± 0.14
17
Bromine
35
Br
1.937
± 0.003
Paraffinic (mono. substituted) (CH3X)
Br
1.937
± 0.003
Paraffinic (disubstituted) (CH2X2)
Br
1.89 1.85 1.79
± 0.01 ± 0.01 ± 0.01
Olfinic(CH2:CHX) Aromatic (C6H3X) Acetylenic (HC:CX)
Cl
1.767
± 0.002
Paraffinic (mono. substituted) (CH3X)
Cl
1.767
± 0.002
Paraffinic (disubstituted) (CH2X2)
Cl
1.72 1.70 1.79
± 0.01 ± 0.01 ± 0.01
Olfinic(CH2:CHX) Aromatic (C6H3X) Acetylenic (HC:CX)
F
1.831
± 0.005
Paraffinic (mono. substituted) (CH3X)
F
1.334
± 0.004
Paraffinic (disubstituted) (CH2X2)
Chlorine
Fluorine
17
9
Bond Length (Å)
Bond Type
Source: data from Lide, David R., Ed., CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, (1990); and “Tables of interatomic distances” Chem. Soc. of London, 1958.
©2001 CRC Press LLC Shackelford & Alexander
33
3.5 Structure Page 34 Wednesday, December 31, 1969 17:00
Structural Properties
Table 12. CARBON BOND (SHEET 3 OF 3) Group No.
Element.
At. No.
Fluorine con’t
Iodine
Sym.
Bond Length (Å)
Bond Type
1.325
± 0.1
Olfinic(CH2:CHX)
1.30 1.635
± 0.01 ± 0.004
Aromatic (C6H3X) Acetylenic (HC:CX)
I
2.13
± 0.1
Paraffinic (mono. substituted) (CH3X)
I
2.13
± 0.1
Paraffinic (disubstituted) (CH2X2)
I
2.092 2.05 1.99
± 0.005 ± 0.01 ± 0.02
Olfinic(CH2:CHX) Aromatic (C6H3X) Acetylenic (HC:CX)
F
53
LENGTHS
Source: data from Lide, David R., Ed., CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, (1990); and “Tables of interatomic distances” Chem. Soc. of London, 1958.
Table 13. CARBON
BOND LENGTHS IN POLYMERS (SHEET 1 OF 3)
Bond Type
Polymer Type
Bond Length (Å)
CARBONCARBON Single Bond
Paraffinic In diamond (18˚C)
1.541 1.54452
± 0.003 ± 0.00014
Source: data from CRC Handbook of Chemistry and Physics, David R. Lide, Ed., CRC Press, Boca Raton, (1990) and “Tables of interatomic distances” Chem. Soc. of London, (1958).
©2001 CRC Press LLC
34
CRC Handbook of Materials Science & Engineering
3.5 Structure Page 35 Wednesday, December 31, 1969 17:00
Structural Properties
Table 13. CARBON
BOND LENGTHS IN POLYMERS (SHEET 2 OF 3)
Bond Type
Polymer Type
Bond Length (Å)
CARBONCARBON cont’t Partial Double Bond
Double Bonds
Triple Bond
(1) Shortening of single bond in presence of carbon carbon double bond, e.g. (CH2),C3CH2; or of aromatic ring e.g. C6H5 CH3
1.53
± 0.01
(2) Shortening in presence of a carbon oxygen double bond e.g. CH3CHO
1.516
± 0.005
(3) Shortening in presence of two carbon oxygen double bonds, e.g. (CO2H)2
1.49
± 0.01
(4) Shortening in presence of a carbon oxygen triple bond, e.g. CH3C:CH
1.460
± 0.003
(5) In compounds with tendency to dipole formation, e.g. C:C.C:N
1.44
± 0.01
(6) In graphite(at 15 ˚C)
1.4210
± 0.0001
(7) In aromatic compounds
1.395
± 0.003
(8) in presence of a carbon carbon triple bonds, e.g. HC=C-C=CH
1.373
± 0.004
(1) simple
1.337
± 0.006
(2) Part triple bond, e.g. CH2:C:CH2
1.309
± 0.005
(1) Simple, e.g. C2H2
1.204
± 0.002
(2) Conjugated, e.g. CH3.(C:C)2.H e.g. C5H5N
1.206
± 0.004
Source: data from CRC Handbook of Chemistry and Physics, David R. Lide, Ed., CRC Press, Boca Raton, (1990) and “Tables of interatomic distances” Chem. Soc. of London, (1958).
©2001 CRC Press LLC Shackelford & Alexander
35
3.5 Structure Page 36 Wednesday, December 31, 1969 17:00
Structural Properties
Table 13. CARBON
BOND LENGTHS IN POLYMERS (SHEET 3 OF 3)
Bond Type CARBONHYDROGEN
CARBONNITROGEN Single Bond
Triple Bond
Polymer Type
Bond Length (Å)
(1) Paraffinic (a) in methane (b) in monosubstituted carbon (c) in disubstituted carbon (d) in trisubstituted carbon
1.091 1.101 1.073 1.070
(2) Olefinic, c.g. CH2:CH2
1.07
± 0.01
(3) Aromatic in C6H6
1.094
± 0.006
(4) Acetylenic, e.g. CH2:C.X
1.056
± 0.003
(5) Shortening in presence of a carbon oxygen triple bond, e.g.CH3CN
1.115
± 0.004
(6) In small rings, e.g. (CH2)2S
1.081
± 0.007
(1) Paraffinic (a) 4 co-valent nitrogen (b) 3 co-valent nitrogen
1.479 1.472
(2) in C-N= e.g. CH3NO2
1.475
± 0.010
(3) Aromatic in C6H5NHCOCH3
1.426
± 0.012
(4) Shortened (partial double bond) in h.heterocyclic systems,
1.352
± 0.005
(5) Shortened (partial double bond) in NC=O e.g. HCONH2
1.322
± 0.003
(1) in R.C:N
1.158
± 0.002
Source: data from CRC Handbook of Chemistry and Physics, David R. Lide, Ed., CRC Press, Boca Raton, (1990) and “Tables of interatomic distances” Chem. Soc. of London, (1958).
©2001 CRC Press LLC
36
CRC Handbook of Materials Science & Engineering
3.5 Structure Page 37 Wednesday, December 31, 1969 17:00
Structural Properties
Table 14. BOND
ANGLE VALUES BETWEEN ELEMENTS
Element
Bond
Compound
Bond angle (°)
B B B B B
H–B–H Br–B–Br Cl– B–Cl F–B–F O–B–O
B2H6 BBr3 BCl3 BF3 B(OH)3
121.5 120 120 120 119.7
N N N N N N
B–N–B F–N–F H–N–C H–N–N’ O–N–O O–N–O
(BClNH)3 NF3 HNCS N3H NO2Cl NO2
O
O–O–H
S S S
Br–S–Br F–S–F O–S–O
± ± ±
7.5 6 3
121 102.5 130.25 112.65 126 134.1
± ± ± ± ±
1.5 0.25 0.5 2 0.25
H2O2
100
±
2
SOBr2 SOF2 SO2
96 92.8 119.54
± ±
2 1
Source: Kennard, O., in Handbook of Chemistry and Physics, 69th ed., Weast, R. C., Ed., CRC Press, Boca Raton, Fla., 1988, F–167.
©2001 CRC Press LLC Shackelford & Alexander
37
3.5 Structure Page 38 Wednesday, December 31, 1969 17:00
Structural Properties
Table 15. KEY TO
TABLES OF CRYSTAL STRUCTURE OF THE ELEMENTS Table Number
Page Number
The Seven Crystal Systems The Fourteen Bravais Lattices
Table 16 Table 17
Page 39 Page 40
Periodic Table of the Body Centered Cubic Elements Periodic Table of the Face Centered Cubic Elements Periodic Table of the Hexagonal Close Packed Elements Periodic Table of the Hexagonal Elements
Table 18 Table 19 Table 20 Table 21
Page 41 Page 42 Page 43 Page 44
Table Title
©2001 CRC Press LLC
38
CRC Handbook of Materials Science & Engineering
3.5 Structure Page 39 Wednesday, December 31, 1969 17:00
Structural Properties
Table 16. THE
System
SEVEN CRYSTAL SYSTEMS
Axial Lengths and Angles
Unit Cell Geometry
Source: James F. Shackelford, Introduction to Materials Science for Engineers, 4th ed., Prentice-Hall, Upper Saddle River, NJ, 1996.
©2001 CRC Press LLC Shackelford & Alexander
39
3.5 Structure Page 40 Wednesday, December 31, 1969 17:00
Structural Properties
Table 17. THE
FOURTEEN BRAVAIS LATTICES
Source: James F. Shackelford, Introduction to Materials Science for Engineers, 4th ed., Prentice-Hall, Upper Saddle River, NJ, 1996.
©2001 CRC Press LLC
40
CRC Handbook of Materials Science & Engineering
3.6 Structure L Page 41 Wednesday, December 31, 1969 17:00
Table 18. PERIODIC 1 IA
2
3
4
5
6
TABLE OF THE BODY CENTERED CUBIC ELEMENTS 7
8
9
10
11
12
IIA 3 Li 11 Na
IIIB
VB
VIB
VIIB
-----
19 K
23 V
24 Cr
25 Mn
26 Fe
37 Rb
41 Nb
42 Mo
73 Ta
74 W
55 Cs
56 Ba
87 Fr
88 Ra
IVB
63 Eu
©2001 CRC Press LLC
VIII
-----
IB
IIB
13
14
15
16
17
IIIA
IVA
VA
VIA
VIIA
18 VIIA
3.6 Structure L Page 42 Wednesday, December 31, 1969 17:00
Table 19. PERIODIC 1 IA
2
3
4
5
6
TABLE OF THE FACE CENTERED CUBIC ELEMENTS 7
8
9
10
11
12
IIA
13
14
15
16
17
IIIA
IVA
VA
VIA
VIIA
18 VIIA
10 Ne IIIB
IVB
VB
VIB
VIIB
-----
VIII
-----
IB
28 Ni
29 Cu
45 Rh
46 Pd
47 Ag
77 Ir
78 Pt
79 Au
20 Ca 38 Sr
57 La 89 Ac
©2001 CRC Press LLC
IIB
13 Al
14 Si
18 Ar
32 Ge
36 Kr 54 Xe
82 Pb
86 Rn
3.6 Structure L Page 43 Wednesday, December 31, 1969 17:00
Table 20. PERIODIC 1 IA
2
3
4
5
6
TABLE OF THE HEXAGONAL CLOSE PACKED ELEMENTS 7
8
9
10
11
12
IIA
13
14
15
16
17
IIIA
IVA
VA
VIA
VIIA
4 Be 12 Mg
IIIB
IVB
VB
VIB
VIIB
-----
22 Ti 39 Y
VIII
IB
27 Co
40 Zr
43 Tc
44 Ru
72 Hf
75 Re
76 Os
IIB 30 Zn 48 Cd 81 Tl
64 Gd
©2001 CRC Press LLC
-----
65 Tb
66 Dy
67 Ho
68 Er
69 Tm
71 Lu
18 VIIA
3.6 Structure L Page 44 Wednesday, December 31, 1969 17:00
Table 21. PERIODIC 1 IA
2
3
4
5
6
7
TABLE OF THE HEXAGONAL ELEMENTS 8
9
10
11
12
IIA
13
14
15
16
17
IIIA
IVA
VA
VIA
VIIA
6 C IIIB
IVB
VB
VIB
VIIB
-----
VIII
-----
IB
IIB 34 Se 52 Te
57 La
59 Pr
60 Nd
61 Pm 95 Am
©2001 CRC Press LLC
96 Cm
97 Bk
18 VIIA
3.7 Structure Page 45 Wednesday, December 31, 1969 17:00
Structural Properties
Table 22. STRUCTURE OF (SHEET 1 OF 6) Ceramic
CERAMICS
Structure
Borides Chromium Diboride (CrB2)
hexagonal, AlB2 structure (C-32 type) isomorphous with other transition metal diborides a=2.969Å; c=3.066Å; c/a=1.03
Hafnium Diboride (HfB2)
hexagonal, AlB2 structure (C-32 type) isomorphous with TiB2 and ZrB2 a=3.141 ± 0.002 Å; c=3.470 ± 0.002 Å; c/a=1.105
Tantalum Diboride (TaB2)
hexagonal, AlB2 structure (C-32 type) isomorphous with other transition metal diborides a=3.078-3.088Å; c=3.241-3.265Å; c/a=1.06-1.074 low boron composition (64 atom % boron) a=3.097-3.099Å; c=3.244-3.277Å high boron composition :(72 atom % boron) a=3.057-3.060Å; c=3.291-3.290Å
Titanium Diboride (TiB2)
Zirconium Diboride (ZrB2)
hexagonal, AlB2 structure (C-32 type) isomorphous with ZrB2 a=3.028-3.030Å; c=3.227-3.228Å; c/a=1.064 hexagonal, AlB2 structure (C-32 type) isomorphous with TiB2 a=3.1694-3.170Å; c=3.528-3.5365Å; c/a=1.114
Carbides Boron Carbide (B4C)
rhombic, C3 chains and B12 icosahedral in a NaCl structure, extended along a body diagonal
To convert Å to nm, multiply by 10-1. Source: Data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC Shackelford & Alexander
45
3.7 Structure Page 46 Wednesday, December 31, 1969 17:00
Structural Properties
Table 22. STRUCTURE OF (SHEET 2 OF 6) Ceramic Hafnium Monocarbide (HfC)
CERAMICS
Structure
FCC(B1), NaCl type isomorphous with HfB and HfN a=4.46-4.643Å
Silicon Carbide (SiC)
low temperature form (β) cubic high temperature form (α) hexagonal β-SiC F43m space group a=4.349-4.358Å α-SiC C6MC space group a=3.073Å; c=15.07Å; c/a=4.899
Tantalum Monocarbide (TaC)
FCC, NaCl type (B1) a=4.42-4.456Å
Titanium Monocarbide (TiC)
FCC, NaCl type (B1) isomorphous with TiO and TiN a=4.315-4.3316Å
Trichromium Dicarbide (Cr3C2)
orthorhombic D510 type a=2.82Å, b=5.53Å, c=11.47Å
Tungsten Monocarbide (WC)
Hexagonal a=2.2897-2.90Å
To convert Å to nm, multiply by 10-1. Source: Data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
46
CRC Handbook of Materials Science & Engineering
3.7 Structure Page 47 Wednesday, December 31, 1969 17:00
Structural Properties
Table 22. STRUCTURE OF (SHEET 3 OF 6) Ceramic Zirconium Monocarbide (ZrC)
CERAMICS
Structure
FCC(B1), NaCl type isomorphous with ZrB and ZrN a=4.669-4.694Å
Nitrides Aluminum Nitride (AlN)
hexagonal, Wurtzite structure a=3.10-3.114Å; c=4.96-4.981Å
Boron Nitride (BN)
hexagonal (common type) graphite type structure a=2.5038±0.0001Å; c=6.60±0.01Å B-N distance 1.45Å cubic zinc blende structure a=3.615Å B-N distance 1.57Å
Titanium Mononitride (TiN)
cubic a=4.23Å homogeneity range: TiN0.42-TiN1.16 yields a=4.213 to 4.24Å
Trisilicon tetranitride (Si3N4)
α hexagonal a=7.748-7.758Å; c=5.617-5.623Å β hexagonal a=7.608Å; c=2.911Å
To convert Å to nm, multiply by 10-1. Source: Data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC Shackelford & Alexander
47
3.7 Structure Page 48 Wednesday, December 31, 1969 17:00
Structural Properties
Table 22. STRUCTURE OF (SHEET 4 OF 6) Ceramic Zirconium Mononitride (ZrN)
CERAMICS
Structure
cubic, NaCl type, B1 a=4.567-4.63Å
Oxides Aluminum Oxide (Al2O3)
hexagonal a=4.785Å; c=12.991Å; c/a=2.72
Beryllium Oxide (BeO)
hexagonal a=2.690-2.698Å; c=4.370-4.380Å
Calcium Oxide (CaO)
cubic, NaCl type a=4.8105Å
Cerium Dioxide (CeO2)
cubic
Dichromium Trioxide (Cr2O3)
trigonal rhombic
Hafnium Dioxide (HfO2)
monoclinic to 1700 °C tetragonal above 1700 °C a=5.1170Å; b=5.1754Å; c=5.2915Å β = 99.216o
Magnesium Oxide (MgO)
cubic, Fm3m space group a=4.313Å
Nickel monoxide (NiO)
face centered cubic, NaCl type
Silicon Dioxide (SiO2)
hexagonal
To convert Å to nm, multiply by 10-1. Source: Data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
48
CRC Handbook of Materials Science & Engineering
3.7 Structure Page 49 Wednesday, December 31, 1969 17:00
Structural Properties
Table 22. STRUCTURE OF (SHEET 5 OF 6) Ceramic
CERAMICS
Structure
Thorium Dioxide (ThO2)
cubic, fluorite type a=5.59525-5.5997Å
Titanium Oxide (TiO2)
tetragonal (rutile) a=4.594Å; c=2.958Å at 26 °C tetragonal (anatase) rhombic (brookite)
Uranium Dioxide (UO2)
cubic, fluorite type a=5.471Å
Zircoium Oxide (ZrO2)
to 1050 °C monoclinic a=5.1505Å; b=5.2031Å; c=5.3154 β=99.194o at room temp. 1050—2100˚C tetragonal above 2100˚C cubic (stabilized) a=5.132±0.006Å (8.13 mol% Y2O3) a=5.145±0.006Å (11.09 mol% Y2O3) a=5.146±0.006Å (12.08 mol% Y2O3) a=5.153±0.006Å (15.52 mol% Y2O3) a=5.162±0.006Å (17.88 mol% Y2O3)
Cordierite (2MgO 2Al2O3 5SiO2)
0rthorhombic
Mullite (3Al2O3 2SiO2)
0rthorhombic a=7.54±0.03Å; b=7.693±0.03Å;c=2.890±0.01
Sillimanite (Al2O3 SiO2)
0rthorhombic
To convert Å to nm, multiply by 10-1. Source: Data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
Shackelford & Alexander
49
3.7 Structure Page 50 Wednesday, December 31, 1969 17:00
Structural Properties
Table 22. STRUCTURE OF (SHEET 6 OF 6) Ceramic Spinel (Al2O3 MgO)
CERAMICS
Structure
cubic a=8.0844Å
Silicides Molybdenum Disilicide (MoSi2) tetragonal, D4h17 space group isomorphous with WSi2 a=3.197-3.20Å; c=7.85-7.871 Tungsten Disilicide (WSi2)
tetragonal, D4h17 space group isomorphous with MoSi2 a=3.212±0.005Å; c=7.880±0.005
To convert Å to nm, multiply by 10-1. Source: Data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
50
CRC Handbook of Materials Science & Engineering
3.7 Structure Page 51 Wednesday, December 31, 1969 17:00
Structural Properties
Table 23. ATOMIC
MASS OF SELECTED ELEMENTS (SHEET 1 OF 4)
At omic Number
Element
Symbol
Atomic Mass
1 2 3 4
Hydrogen Helium Lithium Beryllium
H He Li Be
1.008 4.003 6.941 9.012
5 6 7 8
Boron Carbon Nitrogen Oxygen
B C N O
10.81 12.01 14.01 16.00
9 10 11 12
Fluorine Neon Sodium Magnesium
F N Na Mg
19.00 20.18 22.99 24.31
13 14 15
Aluminum Silicon Phosphorus (White)
Al Si P
26.98 28.09 30.97
16 17 18 19
Sulfur Chlorine Argon Potassium
S Cl Ar K
32.06 35.45 39.95 39.1
20 21 22 23
Calcium Scandium Titanium Vanadium
Ca Sc Ti V
40.08 44.96 47.9 50.94
24 25 26 27
Chromium Manganese Iron Cobalt
Cr Mn Fe Co
52.00 54.94 55.85 58.93
Source: data from James F. Shackelford, Introduction to Materials Science for Engineers, Second Edition, Macmillian Publishing Company, New York, pp.686-688, (1988).
©2001 CRC Press LLC Shackelford & Alexander
51
3.7 Structure Page 52 Wednesday, December 31, 1969 17:00
Structural Properties
Table 23. ATOMIC
MASS OF SELECTED ELEMENTS (SHEET 2 OF 4)
At omic Number
Element
Symbol
Atomic Mass
28 29 30 31
Nickel Copper Zinc Gallium
Ni Cu Zn Ga
58.71 63.55 65.38 69.72
32 33 34 35
Germanium Arsenic Selenium Bromine
Ge As Se Br
72.59 74.92 78.96 79.9
36 37 38 39
Krypton Rubidium Strontium Yttrium
Kr Rb Sr Y
83.8 85.47 87.62 88.91
40 41 42 43
Zirconium Niobium Molybdenum Technetium
Zr Nb Mo Tc
91.22 92.91 95.94 98.91
44 45 46 47
Ruthenium Rhodium Palladium Silver
Ru Rh Pd Ag
101.07 102.91 106.4 107.87
48 49 50 51
Cadmium Indium Tin Antimony
Cd In Sn Sb
112.4 114.82 118.69 121.75
52 53 54 55
Tellurium Iodine Xenon Cesium (-10˚)
Te I Xe Ce
127.6 126.9 131.3 132.91
Source: data from James F. Shackelford, Introduction to Materials Science for Engineers, Second Edition, Macmillian Publishing Company, New York, pp.686-688, (1988).
©2001 CRC Press LLC
52
CRC Handbook of Materials Science & Engineering
3.7 Structure Page 53 Wednesday, December 31, 1969 17:00
Structural Properties
Table 23. ATOMIC
MASS OF SELECTED ELEMENTS (SHEET 3 OF 4)
At omic Number
Element
Symbol
Atomic Mass
56 57 58 59
Barium Lantium Cerium Praseodymium
Ba La Ce Pr
137.33 138.91 140.12 140.91
60 61 62 63
Neodymium Promethium Samarium Europium
Nd Pm Sm Eu
144.24 (145) 150.4 151.96
64 65 66 67
Gadolinium Terbium Dysprosium Holmium
Gd Tb Dy Ho
157.25 158.93 162.5 164.93
68 69 70 71
Erbium Thulium Ytterbium Lutetium
Er Tm Yb Lu
167.26 168.93 173.04 174.97
72 73 74 75
Hafnium Tantalum Tungsten Rhenium
Hf Ta W Re
178.49 180.95 183.85 186.2
76 77 78 79
Osmium Iridium Platinum Gold
Os Ir Pt Au
190.2 192.22 195.09 196.97
80 81 82 83
Mercury Thallium Lead Bismuth
Hg Tl Pb Bi
200.59 204.37 207.2 208.98
Source: data from James F. Shackelford, Introduction to Materials Science for Engineers, Second Edition, Macmillian Publishing Company, New York, pp.686-688, (1988).
©2001 CRC Press LLC Shackelford & Alexander
53
3.7 Structure Page 54 Wednesday, December 31, 1969 17:00
Structural Properties
Table 23. ATOMIC
MASS OF SELECTED ELEMENTS (SHEET 4 OF 4)
At omic Number
Element
Symbol
Atomic Mass
84 85 86 87
Polonium Asatine Radon Francium
Po At Rn Fr
(~210) (210) (222) (223)
88 89 90 91
Radium Actinium Thorium Protoactinium
Ra Ac Th Pa
226.03 (227) 232.04 231.04
92 93 94 95
Uranium Neptunium Plutonium Americium
U Np Pu Am
238.03 237.05 (244) (243)
96 97 98 99
Curium Berkelium Californium Einsteinium
Cm Bk Cf Es
(247) (247) (251) (254)
100 101 102 103
Fermium Mendelevium Nobelium Lawrencium
Fm Md No Lw
(257) (258) (259) (260)
Source: data from James F. Shackelford, Introduction to Materials Science for Engineers, Second Edition, Macmillian Publishing Company, New York, pp.686-688, (1988).
©2001 CRC Press LLC
54
CRC Handbook of Materials Science & Engineering
3.7 Structure Page 55 Wednesday, December 31, 1969 17:00
Structural Properties
Table 24. SOLID
DENSITY OF SELECTED ELEMENTS (SHEET 1 OF 3)
Atomic Number
Element
Symbol
Solid Density (Mg/m3)
3 4 5 6
Lithium Beryllium Boron Carbon
Li Be B C
0.533 1.85 2.47 2.27
11 12 13 14 zz 15 16 19 20
Sodium Magnesium Aluminum Silicon
Na Mg Al Si
0.966 1.74 2.7 2.33
Phosphorus (White) Sulfur Potassium Calcium
P S K Ca
1.82 2.09 0.862 1.53
21 22 23 24
Scandium Titanium Vanadium Chromium
Sc Ti V Cr
2.99 4.51 6.09 7.19
25 26 27 28
Manganese Iron Cobalt Nickel
Mn Fe Co Ni
7.47 7.87 8.8 8.91
29 30 31 32
Copper Zinc Gallium Germanium
Cu Zn Ga Ge
8.93 7.13 5.91 5.32
33 34 37 38
Arsenic Selenium Rubidium Strontium
As Se Rb Sr
5.78 4.81 1.53 2.58
Source: data from James F. Shackelford, Introduction to Materials Science for Engineers, Second Edition, Macmillian Publishing Company, New York, pp.686688, (1988).
©2001 CRC Press LLC Shackelford & Alexander
55
3.7 Structure Page 56 Wednesday, December 31, 1969 17:00
Structural Properties
Table 24. SOLID
DENSITY OF SELECTED ELEMENTS (SHEET 2 OF 3)
Atomic Number
Element
Symbol
Solid Density (Mg/m3)
39 40 41 42
Yttrium Zirconium Niobium Molybdenum
Y Zr Nb Mo
4.48 6.51 8.58 10.22
43 44 45 46
Technetium Ruthenium Rhodium Palladium
Tc Ru Rh Pd
11.5 12.36 12.42 12.00
47 48 49 50
Silver Cadmium Indium Tin
Ag Cd In Sn
10.50 8.65 7.29 7.29
51 52 53 55
Antimony Tellurium Iodine Cesium (-10˚)
Sb Te I Ce
6.69 6.25 4.95 1.91
56 57 58 59
Barium Lantium Cerium Praseodymium
Ba La Ce Pr
3.59 6.17 6.77 6.78
60 62 63 64
Neodymium Samarium Europium Gadolinium
Nd Sm Eu Gd
7.00 7.54 5.25 7.87
65 66 67 68
Terbium Dysprosium Holmium Erbium
Tb Dy Ho Er
8.27 8.53 8.80 9.04
Source: data from James F. Shackelford, Introduction to Materials Science for Engineers, Second Edition, Macmillian Publishing Company, New York, pp.686688, (1988).
©2001 CRC Press LLC
56
CRC Handbook of Materials Science & Engineering
3.7 Structure Page 57 Wednesday, December 31, 1969 17:00
Structural Properties
Table 24. SOLID
DENSITY OF SELECTED ELEMENTS (SHEET 3 OF 3)
Atomic Number
Element
Symbol
Solid Density (Mg/m3)
69 70 71 72
Thulium Ytterbium Lutetium Hafnium
Tm Yb Lu Hf
9.33 6.97 9.84 13.28
73 74 75 76
Tantalum Tungsten Rhenium Osmium
Ta W Re Os
16.67 19.25 21.02 22.58
77 78 79 81
Iridium Platinum Gold Thallium
Ir Pt Au Tl
22.55 21.44 19.28 11.87
82 83 84 90
Lead Bismuth Polonium Thorium
Pb Bi Po Th
11.34 9.80 9.2 11.72
92 94
Uranium Plutonium
U Pu
19.05 19.81
Source: data from James F. Shackelford, Introduction to Materials Science for Engineers, Second Edition, Macmillian Publishing Company, New York, pp.686688, (1988).
©2001 CRC Press LLC Shackelford & Alexander
57
3.7 Structure Page 58 Wednesday, December 31, 1969 17:00
Structural Properties
Table 25. DENSITY OF IRON AND IRON (SHEET 1 OF 2)
ALLOYS
Class
Metal or Alloy
Density g/cm3
Iron and Iron Alloys
Pure iron Ingot iron Wrought iron Gray cast iron
7.874 7.866 7.7 7.15
Malleable iron 0.06% C steel 0.23% C steel
7.27 7.871 7.859
0.435% C steel 1.22% C steel
7.844 7.830
0.5% Mo steel 1Cr-0.5Mo steel 1.25Cr-0.5Mo steel 2.25Cr-1.0Mo steel
7.86 7.86 7.86 7.86
5Cr-0.5Mo steel 7Cr-0.5Mo steel 9Cr-1Mo steel
7.78 7.78 7.67
Medium-carbon alloy steels
1Cr-0.35Mo-0.25V steel H11 die steel (5Cr-1.5Mo-0.4V)
7.86 7.79
Other Iron-base alloys
A-286 16-25-6 alloy RA-330 Incoloy
7.94 8.08 8.03 8.02
Low-carbon chromiummolybdenum steels
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p152 (1993).
©2001 CRC Press LLC
58
CRC Handbook of Materials Science & Engineering
3.7 Structure Page 59 Wednesday, December 31, 1969 17:00
Structural Properties
Table 25. DENSITY OF IRON AND IRON (SHEET 2 OF 2)
ALLOYS
Class
Metal or Alloy
Density g/cm3
Other Iron-base alloys (Con’t)
Incoloy T Incoloy 901 T1 tool steel M2 tool steel
7.98 8.23 8.67 8.16
H41 tool steel 20W-4Cr-2V-12Co steel Invar (36% Ni) Hipernik (50% Ni)
7.88 8.89 8.00 8.25
4% Si 10.27%Si Si
7.6 6.97
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p152 (1993).
©2001 CRC Press LLC Shackelford & Alexander
59
3.7 Structure Page 60 Wednesday, December 31, 1969 17:00
Structural Properties
Table 26. DENSITY OF
WROUGHT STAINLESS STEELS * (SHEET 1 OF 2) Type
UNS Designation
Density (Mg/m3)
201 202 205 301
S20100 S20200 S20500 S30100
7.8 7.8 7.8 8.0
302 302B 303 304
S30200 S30215 S30300 S30400
8.0 8.0 8.0 8.0
304L S30430 304N 305
S30403 S30430 S30451 S30500
8.0 8.0 8.0 8.0
308 309 310 314
S30800 S30900 S31000 S31400
8.0 8.0 8.0 7.8
316 316L 316N 317
S31600 S31603 S31651 S31700
8.0 8.0 8.0 8.0
317L 321 329 330
S31703 S32100 S32900 N08330
8.0 8.0 7.8 8.0
347 384 405 409
S34700 S38400 S40500 S40900
8.0 8.0 7.8 7.8
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p360, (1993).
©2001 CRC Press LLC
60
CRC Handbook of Materials Science & Engineering
3.7 Structure Page 61 Wednesday, December 31, 1969 17:00
Structural Properties
Table 26. DENSITY OF
WROUGHT STAINLESS STEELS * (SHEET 2 OF 2) Type
UNS Designation
Density (Mg/m3)
410 414 416 420
S41000 S41400 S41600 S42000
7.8 7.8 7.8 7.8
422 429 430 430F
S42200 S42900 S43000 S43020
7.8 7.8 7.8 7.8
431 434 436 440A
S43100 S43400 S43600 S44002
7.8 7.8 7.8 7.8
440C 444 446 PH 13–8 Mo
S44004 S44400 S44600 S13800
7.8 7.8 7.5 7.8
15–5 PH 17–4 PH 17–7 PH
S15500 S17400 S17700
7.8 7.8 7.8
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p360, (1993). *
Annealed Condition.
©2001 CRC Press LLC
Shackelford & Alexander
61
3.7 Structure Page 62 Wednesday, December 31, 1969 17:00
Structural Properties
Table 27. DENSITY OF
STAINLESS STEELS AND HEAT-RESISTANT ALLOYS (SHEET 1 OF 3) Class
Metal or Alloy
Density g/cm3
Corrrosion-resistant steel castings
CA-15 CA-40 CB-30 CC-50
7.612 7.612 7.53 7.53
CE-30 CF-8 CF-20 CF-8M, CF-12M
7.67 7.75 7.75 7.75
CF-8C CF-16F CH-20 CK-20
7.75 7.75 7.72 7.75
CN-7M
8.00
HA HC HD HE
7.72 7.53 7.58 7.67
HF HH HI HK
7.75 7.72 7.72 7.75
HL HN HT HU
7.72 7.83 7.92 8.04
HW HX
8.14 8.14
Heat resistant alloy castings
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p152-153 (1993).
©2001 CRC Press LLC
62
CRC Handbook of Materials Science & Engineering
3.7 Structure Page 63 Wednesday, December 31, 1969 17:00
Structural Properties
Table 27. DENSITY OF
STAINLESS STEELS AND HEAT-RESISTANT ALLOYS (SHEET 2 OF 3) Class
Metal or Alloy
Density g/cm3
Wrought stainless and heat-resisting steels
Type 301
7.9
Type 302 Type 302B Type 303
7.9 8.0 7.9
Type 304 Type 305 Type 308 Type 309
7.9 8.0 8.0 7.9
Type 310 Type 314 Type 316 Type 317
7.9 7.72 8.0 8.0
Type 321 Type 347 Type 403 Type 405
7.9 8.0 7.7 7.7
Type 410 Type 416 Type 420 Type 430
7.7 7.7 7.7 7.7
Type 430F Type 431 Types 440A, 440B, 440C Type 446
7.7 7.7 7.7 7.6
Type 501 Type 502 19-9DL
7.7 7.8 7.97
PH15-7 Mo 17-4 PH 17-7 PH
7.804 7.8 7.81
precipitation-hardening stainless steels
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p152-153 (1993).
©2001 CRC Press LLC Shackelford & Alexander
63
3.7 Structure Page 64 Wednesday, December 31, 1969 17:00
Structural Properties
Table 27. DENSITY OF
STAINLESS STEELS AND HEAT-RESISTANT ALLOYS (SHEET 3 OF 3) Class
Metal or Alloy
Density g/cm3
Nickel-base alloys
D-979 Nimonic 80A Nimonic 90 M-252
8.27 8.25 8.27 8.27
Inconel Inconel "x" 550 Inconel 700 Inconel "713C"
8.51 8.30 8.17 7.913
Waspaloy René 41 Hastelloy alloy B Hastelloy alloy C
8.23 8.27 9.24 8.94
Hastelloy alloy X Udimet 500 GMR-235
8.23 8.07 8.03
Cobalt-chromium-nickel-base alloys
N-155 (HS-95) S-590
8.23 8.36
Cobalt-base alloys
S-816 V-36 HS-25 HS-36
8.68 8.60 9.13 9.04
HS-31 HS-21
8.61 8.30
Mo-0.5Ti
10.2
Molybdenmun-base alloy
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p152-153 (1993).
©2001 CRC Press LLC
64
CRC Handbook of Materials Science & Engineering
3.7 Structure Page 65 Wednesday, December 31, 1969 17:00
Structural Properties
Table 28. DENSITY OF ALUMINUM (SHEET 1 OF 2)
ALLOYS
Class
Metal or Alloy
Density g/cm3
Pure Aluminum
Aluminum (99.996%)
2.6989
Wrought alloys
EC, 1060 alloys 1100 2011 2014
2.70 2.71 2.82 2.80
2024 2218 3003 4032
2.77 2.81 2.73 2.69
5005 5050 5052 5056
2.70 2.69 2.68 2.64
5083 5086 5154 5357
2.66 2.65 2.66 2.70
5456 6061, 6063 6101, 6151 7075
2.66 2.70 2.70 2.80
7079 7178
2.74 2.82
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p152 (1993).
©2001 CRC Press LLC Shackelford & Alexander
65
3.7 Structure Page 66 Wednesday, December 31, 1969 17:00
Structural Properties
Table 28. DENSITY OF ALUMINUM (SHEET 2 OF 2)
ALLOYS
Class
Metal or Alloy
Density g/cm3
Casting Alloys
A13 43 108, A108 A132
2.66 2.69 2.79 2.72
D132 F132 138 142
2.76 2.74 2.95 2.81
195, B195 214 220 319
2.81 2.65 2.57 2.79
355 356 360 380
2.71 2.68 2.64 2.71
750 40E
2.88 2.81
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p152 (1993).
©2001 CRC Press LLC
66
CRC Handbook of Materials Science & Engineering
3.7 Structure Page 67 Wednesday, December 31, 1969 17:00
Structural Properties
Table 29. DENSITY OF
COPPER AND COPPER ALLOYS (SHEET 1 OF 3)
Class
Metal or Alloy
Density g/cm3
Wrought coppers
Pure copper
8.96
Electrolytic tough pitch copper (ETP) Deoxidized copper, high residual phosphorus (DHP) Free-machining copper, 0.5% Te Free-machining copper, 1.0% Pb
8.89 8.94 8.94 8.94
Gilding, 95% Commercial bronze 90% Jewelry bronze, 87.5% Red brass, 85%
8.86 8.80 8.78 8.75
Low brass, 80% Cartridge brass, 70% Yellow brass Muntz metal
8.67 8.53 8.47 8.39
Leaded commercial bronze Low-leaded brass (tube) Medium-leaded brass High-leaded brass (tube)
8.83 8.50 8.47 8.53
High-leaded brass Extra-high-leaded brass Free-cutting brass Leaded Muntz metal
8.50 8.50 8.50 8.41
Forging brass Architectural bronze Inhibited admiralty Naval brass
8.44 8.47 8.53 8.41
Leaded naval brass Manganese bronze Phosphor bronze, 5% Phosphor bronze, 8%
8.44 8.36 8.86 8.80
Wrought alloys
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p152 (1993).
©2001 CRC Press LLC Shackelford & Alexander
67
3.7 Structure Page 68 Wednesday, December 31, 1969 17:00
Structural Properties
Table 29. DENSITY OF
COPPER AND COPPER ALLOYS (SHEET 2 OF 3)
Class
Metal or Alloy
Density g/cm3
Wrought alloys (Con’t)
Phosphor bronze, 10% Phosphor bronze, 1.25% Free-cutting phosphor bronze Cupro-nickel, 30%
8.78 8.89 8.89 8.94
Cupro-nickel, 10% Nickel silver,65-18 Nickel silver, 55-18 High-silicon bronze
8.94 8.73 8.70 8.53
Low-silicon bronze Aluminum bronze, 5% Al Aluminum-silicon bronze Aluminum bronze
8.75 8.17 7.69 7.78
Aluminum bronze Beryllium copper
7.58 8.23
Chromium copper (1% Cr) 88Cu-10Sn-2Z 88Cu-8Sn-4Zn 89Cu-11Sn
8.7 8.7 8.8 8.78
88Cu-6Sn-1.5Pb-4.5Zn 87Cu-8Sn-1Pb-4Zn 87Cu-10Sn-1Pb-2Zn 80Cu-10Sn-10Pb
8.7 8.8 8.8 8.95
83Cu-7Sn-7Pb-3Zn 85Cu-5Sn-9Pb-1Zn 78Cu-7Sn-15Pb 70Cu-SSn-2SPb
8.93 8.87 9.25 9.30
85Cu-5Sn-SPb-SZn 83Cu-4Sn-6Pb-7Zn 81Cu-3Sn-7Pb-9Zn 76Cu-2.5Sn-6.5Pb-15Zn
8.80 8.6 8.7 8.77
Casting alloys
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p152 (1993).
©2001 CRC Press LLC
68
CRC Handbook of Materials Science & Engineering
3.7 Structure Page 69 Wednesday, December 31, 1969 17:00
Structural Properties
Table 29. DENSITY OF
COPPER AND COPPER ALLOYS (SHEET 3 OF 3)
Class
Metal or Alloy
Density g/cm3
Casting alloys (Con’t)
72Cu-1Sn-3Pb-24Zn 67Cu-1Sn-3Pb-29Zn 61Cu-1Sn-1Pb-37Zn
8.50 8.45 8.40
Manganese bronze, 60 ksi Manganese bronze, 65 ksi Manganese bronze, 90 ksi Manganese bronze, 110 ksi
8.2 8.3 7.9 7.7
Aluminum bronze, Alloy 9A Aluminum bronze, Alloy 9B Aluminum bronze, Alloy 9C Aluminum bronze, Alloy 9D
7.8 7.55 7.5 7.7
Nickel silver, 12% Ni Nickel silver, 16% Ni Nickel silver, 20% Ni Nickel silver, 25% Ni
8.95 8.95 8.85 8.8
Silicon bronze Silicon brass
8.30 8.30
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p152 (1993).
©2001 CRC Press LLC Shackelford & Alexander
69
3.7 Structure Page 70 Wednesday, December 31, 1969 17:00
Structural Properties
Table 30. DENSITY OF
MAGNESIUM AND MAGNESIUM ALLOYS
Class
Metal or Alloy
Density g/cm3
Pure Magnesium
Magnesium (99.8%)
1.738
Casting alloys
AM100A AZ63A AZ81A AZ9lA, B, C
1.81 1.84 1.80 1.81
AZ92A HK31A HZ32A ZH42, ZH62A
1.82 1.79 1.83 1.86
ZK51A ZE41A EZ33A EK30A
1.81 1.82 1.83 1.79
EK41A
1.81
M1A A3A AZ31B PE
1.76 1.77 1.77 1.76
AZ61A AZ80A ZK60A, B ZE10A
1.80 1.80 1.83 1.76
HM21A HM31A
1.78 1.81
Wrought alloys
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p153 (1993).
©2001 CRC Press LLC
70
CRC Handbook of Materials Science & Engineering
3.7 Structure Page 71 Wednesday, December 31, 1969 17:00
Structural Properties
Table 31. DENSITY OF
NICKEL AND NICKEL ALLOYS
Class
Metal or Alloy
Density g/cm3
Pure
Nickel (99.95% Ni+Co) "A" Nickel "D" Nickel Duranickel
8.902 8.885 8.78 8.26
Cast nickel Monel "K" Mond Monel(cast)
8.34 8.84 8.47 8.63
"H" Monel(cast) "S" Monel(cast) Inconel
8.5 8.36 8.51
Inconel (cast) Ni-o-nel
8.3 7.86
Hastelloy B Hastelloy C Hastelloy D Hastelloy F
9.24 8.94 7.8 8.17
Hastelloy N Hastelloy W Hastelloy X
8.79 9.03 8.23
Nickel-chromium-molybdenum-copper alloys
Illium G Illium R
8.58 8.58
Electrical resistance alloys
80Ni-20Cr 60Ni-24Fe-16Cr 35Ni-4SFe-20Cr Constantan
8.4 8.147 7.95 8.9
Nickel-molybdenum-chromium-iron alloys
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p153 (1993).
©2001 CRC Press LLC Shackelford & Alexander
71
3.7 Structure Page 72 Wednesday, December 31, 1969 17:00
Structural Properties
Table 32. DENSITY OF
LEAD AND LEAD ALLOYS
Class
Metal or Alloy
Density g/cm3
Lead alloys
Chemical lead (99.90+% Pb) Corroding lead (99.73+% Pb) Arsenical lead Calcium lead
11.34 11.36 11.34 11.34
5-95 solder 20-80 solder 50-50 solder
11.0 10.2 8.89
Antimonial lead alloys
1% antimonial lead Hard lead (96Pb-4Sb) Hard lead (94Pb-6Sb) 8% antimonial lead 9% antimonial lead
11.27 11.04 10.88 10.74 10.66
Lead-base babbitt alloys
Lead-base babbitt, SAE 13 Lead-base babbitt, SAE 14 Lead-base babbitt, Alloy 8 Arsenical lead, Babbitt (SAE 15) Arsenical lead, "G" Babbitt
10.24 9.73 10.04 10.1 10.1
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p153 (1993).
©2001 CRC Press LLC
72
CRC Handbook of Materials Science & Engineering
3.7 Structure Page 73 Wednesday, December 31, 1969 17:00
Structural Properties
Table 33. DENSITY OF
TIN AND TIN ALLOYS
Metal or Alloy
Density g/cm3
Pure tin Soft solder (30% Pb) Soft solder (37% Pb)
7.3 8.32 8.42
Tin babbitt, Alloy 1 Tin babbitt, Alloy 2 Tin babbitt, Alloy 3 Tin babbitt, Alloy 4 Tin babbitt, Alloy S
7.34 7.39 7.46 7.53 7.75
White metal Pewter
7.28 7.28
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p153 (1993).
©2001 CRC Press LLC Shackelford & Alexander
73
3.7 Structure Page 74 Wednesday, December 31, 1969 17:00
Structural Properties
Table 34. DENSITY OF
WROUGHT TITANIUM ALLOYS
Class
Metal or Alloy
Density (Mg/m3)
Commercially Pure
99.5Ti 99.2Ti 99.1Ti
4.51 4.51 4.51
99.0Ti 99.2 Ti–0.2Pd Ti-0.8Ni-0.3Mo
4.51 4.51 4.54
Alpha Alloys
Ti-5Al-2.5Sn Ti-5Al-2.5Sn (low O2)
4.48 4.48
Near Alpha Alloys
Ti-8Al-1Mo-1V Ti-11Sn-1Mo-2.25Al-5.0Zr-1Mo-0.2Si Ti-6Al-2Sn-4Zr-2Mo
4.37 4.82 4.54
Ti-5Al-5Sn-2Zr-2Mo-0.25Si Ti-6Al-2Nb-1Ta-1Mo
4.51 4.48
Ti-8Mn Ti-3Al-2.5V Ti-6Al-4V
4.73 4.48 4.43
Ti-6Al-4V (low O2) Ti-6Al-6V-2Sn Ti-7Al-4Mo
4.43 4.54 4.48
Ti-6Al-2Sn-4Zr-6Mo Ti-6Al-2Sn-2Zr-2Mo-2Cr-0.25Si Ti-10V-2Fe-3Al
4.65 4.57 4.65
Ti-13V-11Cr-3Al Ti-8Mo-8V-2Fe-3Al Ti-3Al-8V-6Cr-4Mo-4Zr
4.84 4.84 4.82
Alpha-Beta Alloys
Beta Alloys
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p511, (1993).
©2001 CRC Press LLC
74
CRC Handbook of Materials Science & Engineering
3.7 Structure Page 75 Wednesday, December 31, 1969 17:00
Structural Properties
Table 35. DENSITY OF
TITANIUM AND TITANIUM ALLOYS
Metal or Alloy
Density g/cm3
99.9% Ti 99.2% Ti 99.0% Ti
4.507 4.507 4.52
Ti-6Al-4V Ti-5Al-2.5Sn Ti-2Fe-2Cr-2Mo Ti-8Mn
4.43 4.46 4.65 4.71
Ti-7Al-4Mo Ti-4Al-4Mn Ti-4AI-3Mo-1V Ti-2.5Al-16V
4.48 4.52 4.507 4.65
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p153 (1993).
©2001 CRC Press LLC Shackelford & Alexander
75
3.7 Structure Page 76 Wednesday, December 31, 1969 17:00
Structural Properties
Table 36. DENSITY OF
ZINC AND ZINC ALLOYS
Metal or Alloy
Density g/cm3
Pure zinc AG40A alloy AC41A alloy
7.133 6.6 6.7
Commercial rolled zinc 0.08% Pb Commercial rolled zinc 0.06 Pb, 0.06 Cd Commercial rolled zinc 0.3 Pb, 0.3 Cd
7.14 7.14 7.14
Copper-hardened, rolled zinc (1% Cu) Rolled zinc alloy (1Cu-0.010Mg) Zn-Cu-Ti alloy (0.8Cu, 0.15Ti)
7.18 7.18 7.18
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p153-154 (1993).
©2001 CRC Press LLC
76
CRC Handbook of Materials Science & Engineering
3.7 Structure Page 77 Wednesday, December 31, 1969 17:00
Structural Properties
Table 37. DENSITY OF
PERMANENT MAGNET MATERIALS
Metal or Alloy
Density g/cm3
Cunico Cunife Comol
8.30 8.61 8.16
Alnico I Alnico I Alnico III
6.89 7.09 6.89
Alnico IV Alnico V Alnico VI
7.00 7.31 7.42
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p154, (1993).
©2001 CRC Press LLC Shackelford & Alexander
77
3.7 Structure Page 78 Wednesday, December 31, 1969 17:00
Structural Properties
Table 38. DENSITY OF
PRECIOUS METALS
Metal or Alloy
Density g/cm3
Silver Gold 70Au-30Pt Platinum
10.49 19.32 19.92 21.45
Pt-3.5Rh Pt-5Rb Pt-lORh Pt-20Rb
20.9 20.65 19.97 18.74
Pt-30Rh Pt-40Rb Pt-5Ir Pt-10Ir
17.62 16.63 21.49 2153
Pt-15Ir Pt-20Ir Pt-25Ir Pt-30Ir
2157 21.61 21.66 21.70
Pt-35Ir Pt-5Ru Pt-10Ru Palladium
21.79 20.67 19.94 12.02
60Pd40Cu 95.5Pd-4.5Ru 95.5Pd-45Ru
10.6 12.07 11.62
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p154, (1993).
©2001 CRC Press LLC
78
CRC Handbook of Materials Science & Engineering
3.7 Structure Page 79 Wednesday, December 31, 1969 17:00
Structural Properties
Table 39. DENSITY OF
SUPERALLOYS
Class
Alloy
Density (Mg/m3)
Iron-base alloys
Carpenter 20-Cb3 Haynes 556 Incoloy 800 Incoloy 801
8.055 8.23 7.94 7.94
Cobalt-base alloys
Haynes 25(L-605) Haynes 188 Stellite 6B UMCo 50
9.13 9.13 8.38 8.05
Nickel-base alloys
Hastelloy B–2 Hastelloy C4 Hastelloy C–276 Hastelloy N
9.21 8.64 8.90 8.93
Hastelloy S Hastelloy W Hastelloy X Inconel 600
8.76 9.03 8.23 8.42
Inconel 625 Inconel X750 René 41 Udimet 500
8.44 8.25 8.25 8.14
Udimet 700 Waspaloy
7.92 8.20
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p386, (1993).
©2001 CRC Press LLC Shackelford & Alexander
79
3.7 Structure Page 80 Wednesday, December 31, 1969 17:00
Structural Properties
Table 40. DENSITY OF SELECTED (SHEET 1 OF 3) Class
Borides
Carbides
Nitrides
CERAMICS Density (g/cm3)
Ceramic Chromium Diboride (CrB2) Hafnium Diboride (HfB2) Tantalum Diboride (TaB2)
5.6 11.2 12.60
Titanium Diboride (TiB2) Zirconium Diboride (ZrB2)
4.5-4.62 6.09-6.102
Boron Carbide (B4C) Hafnium Monocarbide (HfC)
2.51 12.52-12.70
Silicon Carbide (SiC) (hexagonal) (cubic)
3.217 3.210
Tantalum Monocarbide (TaC) Titanium Monocarbide (TiC) Trichromium Dicarbide (Cr3C2)
14.48-14.65 4.92-4.938 6.70
Tungsten Monocarbide (WC) Zirconium Monocarbide (ZrC)
15.8 6.44-6.73
Aluminum Nitride (AlN) Boron Nitride (BN) (cubic) (hexagonal)
3.26-3.30
Titanium Mononitride (TiN) Trisilicon tetranitride (Si3N4) (α) (β)
5.43 3.184 3.187
Zirconium Mononitride (TiN)
7.349
3.49 2.27
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
80
CRC Handbook of Materials Science & Engineering
3.7 Structure Page 81 Wednesday, December 31, 1969 17:00
Structural Properties
Table 40. DENSITY OF SELECTED (SHEET 2 OF 3) Class
Density (g/cm3)
Ceramic
Oxides
CERAMICS
Aluminum Oxide (Al2O3) Beryllium Oxide (BeO) Calcium Oxide (CaO) Cerium Dioxide (CeO2) Dichromium Trioxide (Cr2O3)
3.97-3.986 3.01-3.03 3.32 7.28 5.21
Hafnium Dioxide (HfO2) Magnesium Oxide (MgO) Nickel monoxide (NiO) Thorium Dioxide (ThO2)
9.68 3.581 6.8-7.45 9.821
Titanium Oxide (TiO2) (anatase) (brookite) (rutile) Uranium Dioxide (UO2)
3.84 4.17 4.25 10.949-10.97
Zirconium Oxide (ZrO2) (monoclinic) (CaO stabilized) (MgO stabilized) (plasma sprayed)
5.56 5.5 5.43 5.6-5.7
Cordierite (2MgO 2Al2O3 5SiO2) Mullite (3Al2O3 2SiO2) (theoretical)
1.61-2.51 2.6-3.26 3.16-3.22
Sillimanite (Al2O3 SiO2) Spinel (Al2O3 MgO) Zircon (SiO2 ZrO2)
3.23-3.24 3.580 4.6
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC Shackelford & Alexander
81
3.7 Structure Page 82 Wednesday, December 31, 1969 17:00
Structural Properties
Table 40. DENSITY OF SELECTED (SHEET 3 OF 3) Class
Silicides
CERAMICS Density (g/cm3)
Ceramic Molybdenum Disilicide (MoSi2) Tungsten Disilicide (WSi2)
6.24-6.29 9.25-9.3
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
82
CRC Handbook of Materials Science & Engineering
3.7 Structure Page 83 Wednesday, December 31, 1969 17:00
Structural Properties
Table 41. DENSITY OF
GLASSES
(SHEET 1 OF 10)
Class
Density (g/cm3)
Temperature Range of Validity
2.201-2.211 2.1977
room temp. room temp.
(~1% wt impurity) (~1% wt impurity)
2.094 2.072
1935˚C 2048˚C
(~1% wt impurity) (~1% wt impurity) (~1% wt impurity)
2.057 2.045 1.929
2114˚C 2165˚C 2322˚C
(1300˚C for 1 hr then 1000˚C for 70 hr)
2.201
(1300˚C for 1 hr then 1100˚C for 22 hr)
2.198
(1300˚C for 1 hr then 1200˚C for 7 hr)
2.201
(1300˚C for 1 hr then 1400˚C for 5 min)
2.201
(5% wt Na2O) (10% wt Na2O) (14.86% wt Na2O)
2.240 2.291 2.334
20˚C 20˚C 20˚C
(19.55% wt Na2O) (25% wt Na2O) (29.20% wt Na2O)
2.383 2.431 2.459
20˚C 20˚C 20˚C
(35.25% wt Na2O) (39.66% wt Na2O) (49.20% wt Na2O)
2.498 2.521 2.563
20˚C 20˚C 20˚C
Glass
SiO2 glass (stabilized)
SiO2-Na2O glass
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC Shackelford & Alexander
83
3.7 Structure Page 84 Wednesday, December 31, 1969 17:00
Structural Properties
Table 41. DENSITY OF
GLASSES
(SHEET 2 OF 10)
Class SiO2-Na2O glass (con’t)
SiO2-CaO glass
Density (g/cm3)
Temperature Range of Validity
(20.1% wt Na2O)
2.270
987˚C
(20.1% wt Na2O) (20.1% wt Na2O)
2.240 2.220
1249˚C 1388˚C
(30.1% wt Na2O) (30.1% wt Na2O) (30.1% wt Na2O)
2.270 2.230 2.205
1004˚C 1252˚C 1400˚C
(45.6% wt Na2O) (45.6% wt Na2O) (45.6% wt Na2O)
2.260 2.225 2.190
1044˚C 1243˚C 1413˚C
(50.2% wt Na2O) (50.2% wt Na2O) (50.2% wt Na2O)
2.250 2.215 2.180
1075˚C 1259˚C 1421˚C
(55.4% wt Na2O) (55.4% wt Na2O) (55.4% wt Na2O)
2.245 2.205 2.165
1105˚C 1258˚C 1412˚C
(60.9% wt Na2O) (60.9% wt Na2O) (60.9% wt Na2O)
2.250 2.190 2.145
1052˚C 1243˚C 1413˚C
(30% mol CaO) (35% mol CaO) (39.0% mol CaO) (40% mol CaO)
2.466 2.475 2.746 2.542
1700˚C 1700˚C 20˚C 1700˚C
Glass
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
84
CRC Handbook of Materials Science & Engineering
3.7 Structure Page 85 Wednesday, December 31, 1969 17:00
Structural Properties
Table 41. DENSITY OF
GLASSES
(SHEET 3 OF 10)
Class SiO2-CaO glass (Con’t)
SiO2-PbO glass
Density (g/cm3)
Temperature Range of Validity
(42.5% mol CaO)
2.555-2.568
1700˚C
(44.6% mol CaO) (45% mol CaO) (47.5% mol CaO)
2.835 2.590-2.618 2.602-2.604
20˚C 1700˚C 1700˚C
(50.0% mol CaO) (50% mol CaO) (52.5% mol CaO) (52.9% mol CaO)
2.898 2.615-2.617 2.612-2.640 2.918
20˚C 1700˚C 1700˚C 20˚C
(57.5% mol CaO) (57.5% mol CaO) (60% mol CaO)
2.953 2.641-2.644 2.661
20˚C 1700˚C 1700˚C
(20.78% mol PbO) (24.90% mol PbO) (29.71% mol PbO)
3.6711 3.9606 4.3558
room temp. room temp. room temp.
(34.66% mol PbO) (35.0% mol PbO) (40.2% mol PbO) (40.80% mol PbO)
4.7437 5.10 5.15 5.2543
room temp. 1270K 1270K room temp.
(44.7% mol PbO) (45.56% mol PbO) (49.5% mol PbO) (50.50% mol PbO)
5.45 5.6416 5.85 6.0473
1270K room temp. 1270K room temp.
(52.7% mol PbO) (54.45% mol PbO) (58.0% mol PbO) (59.39% mol PbO)
5.90 6.3322 6.05 6.6894
1270K room temp. 1270K room temp.
Glass
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC Shackelford & Alexander
85
3.7 Structure Page 86 Wednesday, December 31, 1969 17:00
Structural Properties
Table 41. DENSITY OF
GLASSES
(SHEET 4 OF 10)
Class SiO2-PbO glass (Con’t)
SiO2-Al2O3 glass
Density (g/cm3)
Temperature Range of Validity
(65.97% mol PbO)
7.0810
room temp.
(66.7% mol PbO) (73.0% mol PbO) (80.0% mol PbO)
6.20 6.42 6.70
1270K 1270K 1270K
(84.9% mol PbO) (89.0% mol PbO) (94.2% mol PbO)
7.03 7.05 7.45
1270K 1270K 1270K
(0.04% wt Al2O3 for quintus quartz glass)
2.2000
room temp.
(0.10% wt Al2O3 for Cab-O-Sil glass)
2.2025
room temp.
(0.37% wt Al2O3 for I.R. vitreosil glass)
2.2043
room temp.
2.1977
room temp.
2.1982
room temp.
2.2047
room temp.
2.2048
room temp.
2.2006
room temp.
2.2027
room temp.
Glass
(0.38% wt Al2O3 for Cab-O-Sil glass) (0.38% wt Al2O3 for quintus quartz glass) (0.41% wt Al2O3 for Cab-O-Sil glass) (0.47% wt Al2O3 for quintus quartz glass) (0.64% wt Al2O3 for I.R. vitreosil glass) (0.77% wt Al2O3 for quintus quartz glass)
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
86
CRC Handbook of Materials Science & Engineering
3.7 Structure Page 87 Wednesday, December 31, 1969 17:00
Structural Properties
Table 41. DENSITY OF
GLASSES
(SHEET 5 OF 10)
Class SiO2-Al2O3 glass (Con’t)
Density (g/cm3)
Temperature Range of Validity
(1.22% wt Al2O3 for Cab-O-Sil glass)
2.2095
room temp.
(1.29% wt Al2O3 for I.R. vitreosil glass)
2.2072
room temp.
(2.30% wt Al2O3 for I.R. vitreosil glass)
2.2081
room temp.
(2.34% wt Al2O3 for quintus quartz glass)
2.1994
room temp.
(2.70% wt Al2O3 for Cab-O-Sil glass)
2.2031
room temp.
(5.22% wt Al2O3 for quintus quartz glass)
2.2118
room temp.
(14.82% mol Al2O3) (14.82% mol Al2O3) (14.82% mol Al2O3) (14.82% mol Al2O3)
2.319 2.320 2.313 2.302
1707˚C 1813˚C 1907˚C 2008˚C
(30.08% mol Al2O3) (30.08% mol Al2O3) (30.08% mol Al2O3) (30.08% mol Al2O3)
2.475 2.460 2.448 2.446
1758˚C 1858˚C 1909˚C 1975˚C
(46.92% mol Al2O3) (46.92% mol Al2O3) (46.92% mol Al2O3)
2.736 2.724 2.627
1755˚C 1803˚C 1859˚C
Glass
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC Shackelford & Alexander
87
3.7 Structure Page 88 Wednesday, December 31, 1969 17:00
Structural Properties
Table 41. DENSITY OF
GLASSES
(SHEET 6 OF 10)
Class SiO2-Al2O3 glass (Con’t)
SiO2-B2O3 glasss
Density (g/cm3)
Temperature Range of Validity
(46.92% mol Al2O3)
2.625
1910˚C
(46.92% mol Al2O3)
2.612
1959˚C
(70.21% mol Al2O3) (70.21% mol Al2O3)
2.811 2.791
1966˚C 1995˚C
(35.1% mol B2O3) (39.2% mol B2O3) (44.2% mol B2O3) (50.8% mol B2O3)
2.0436 2.0224 2.0031 1.9865
25˚C 25˚C 25˚C 25˚C
(53.10% mol B2O3)
1.892-0.0634 x10-3T
1653K< T <1803K
(58.4% mol B2O3)
1.9608
25˚C
(62.40% mol B2O3)
1.812-0.0475 x10-3T
1553K< T <1733K
(71.90% mol B2O3)
1.785-0.0705 x10-3T
1303K
(72.7% mol B2O3)
1.9135
25˚C
(82.50% mol B2O3)
1.737-0.0798 x10-3T
1203K< T <1633K
(83.2% mol B2O3) (88.6% mol B2O3)
1.8838 1.8682
25˚C 25˚C
Glass
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
88
CRC Handbook of Materials Science & Engineering
3.7 Structure Page 89 Wednesday, December 31, 1969 17:00
Structural Properties
Table 41. DENSITY OF
GLASSES
(SHEET 7 OF 10)
Class
SiO2-B2O3 glasss (Con’t)
Density (g/cm3)
Temperature Range of Validity
(90.00% mol B2O3)
1.680-0.0806 x10-3T
1203K< T <1633K
(92.6% mol B2O3)
1.8599
25˚C
(93.91% mol B2O3)
1.661-0.0825 x10-3T
1243K< T <1623K
1.8453
25˚C
1.844-1.859 1.693 1.671 1.648 1.626 1.609 1.580 1.559 1.541 1.528 1.518 1.509 1.503 1.498
25˚C 411˚C 450˚C 500˚C 550˚C 600˚C 700˚C 800˚C 900˚C 1000˚C 1100˚C 1200˚C 1300˚C 1400˚C
(28.8% mol CaO)
2.475-2.483
25˚C
(31.2% mol CaO) (31.2% mol CaO)
2.519-2.526 2.334-2.341
25˚C 900˚C
(31.2% mol CaO) (31.2% mol CaO) (31.2% mol CaO)
2.279-2.288 2.229-2.231 2.174
1000˚C 1100˚C 1200˚C
Glass
(100% mol B2O3) B2O3 glass
B2O3-CaO glass
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC Shackelford & Alexander
89
3.7 Structure Page 90 Wednesday, December 31, 1969 17:00
Structural Properties
Table 41. DENSITY OF
GLASSES
(SHEET 8 OF 10)
Class B2O3-CaO glass (Con’t)
B2O3-Na2O glass
Density (g/cm3)
Temperature Range of Validity
(34.7% mol CaO)
2.583-2.590
25˚C
(34.7% mol CaO) (34.7% mol CaO)
2.309 2.280
1056˚C 1105˚C
(37.1% mol CaO) (37.1% mol CaO) (37.1% mol CaO) (37.1% mol CaO)
2.622-2.629 2.306 2.282 2.259
25˚C 1105˚C 1153˚C 1200˚C
(42.5% mol CaO) (42.5% mol CaO)
2.349 2.328
1145˚C 1193˚C
(45.7% mol CaO) (45.7% mol CaO) (45.7% mol CaO)
2.403 2.379 2.359
1106˚C 1156˚C 1207˚C
(50.3% mol CaO) (50.3% mol CaO)
2.417 2.398
1156˚C 1199˚C
(3% mol Na2O) (3% mol Na2O) (3% mol Na2O)
1.608 1.601 1.587
920˚C 1000˚C 1091˚C
(6% mol Na2O) (6% mol Na2O) (6% mol Na2O) (8.21% mol Na2O)
1.705 1.691 1.660 2.0112
907˚C 1000˚C 1141˚C room temp.
(9% mol Na2O) (9% mol Na2O) (9% mol Na2O) (10.33% mol Na2O)
1.794 1.773 1.740 2.0466
890˚C 1000˚C 1109˚C room temp.
Glass
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
90
CRC Handbook of Materials Science & Engineering
3.7 Structure Page 91 Wednesday, December 31, 1969 17:00
Structural Properties
Table 41. DENSITY OF
GLASSES
(SHEET 9 OF 10)
Class B2O3-Na2O glass (Con’t)
Density (g/cm3)
Temperature Range of Validity
(12% mol Na2O)
1.872
901˚C
(12% mol Na2O) (12% mol Na2O) (12.03% mol Na2O)
1.842 1.808 2.0752
1000˚C 1106˚C room temp.
(14.12% mol Na2O) (15% mol Na2O) (15% mol Na2O) (15% mol Na2O)
2.1053 1.907 1.886 1.848
room temp. 934˚C 1000˚C 1131˚C
(16.34% mol Na2O)
2.0466
room temp.
(18% mol Na2O) (18% mol Na2O) (18% mol Na2O)
1.976 1.935 1.904
882˚C 1000˚C 1097˚C
(18.16% mol Na2O) (20.23% mol Na2O)
2.0752 2.1053
room temp. room temp.
(21% mol Na2O) (21% mol Na2O) (21% mol Na2O) (22.07% mol Na2O)
2.009 1.971 1.921 2.2146
910˚C 1000˚C 1136˚C room temp.
(24% mol Na2O) (24% mol Na2O) (24% mol Na2O) (24.33% mol Na2O)
2.054 2.000 1.958 2.2493
891˚C 1000˚C 1106˚C room temp.
(26.18% mol Na2O) (27% mol Na2O)
2.2835 2.043
room temp. 945˚C
Glass
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC Shackelford & Alexander
91
3.7 Structure Page 92 Wednesday, December 31, 1969 17:00
Structural Properties
Table 41. DENSITY OF
GLASSES
(SHEET 10 OF 10)
Class B2O3-Na2O glass (Con’t)
Density (g/cm3)
Temperature Range of Validity
(27% mol Na2O)
1.992
1077˚C
(27% mol Na2O)
1.954
1170˚C
(28.17% mol Na2O) (30% mol Na2O)
2.3141 2.059
room temp. 916˚C
(30% mol Na2O) (30% mol Na2O) (30.68% mol Na2O) (32.05% mol Na2O)
2.018 1.960 2.3488 2.3591
1000˚C 1094˚C room temp. room temp.
(33% mol Na2O) (33% mol Na2O) (33% mol Na2O) (34.20% mol Na2O)
2.055 2.008 1.963 2.3755
909˚C 1000˚C 1076˚C room temp.
(36% mol Na2O) (36% mol Na2O) (36% mol Na2O) (36% mol Na2O)
2.075 1.998 1.944 1.944
885˚C 1000˚C 1081˚C 1081˚C
Glass
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
92
CRC Handbook of Materials Science & Engineering
3.7 Structure Page 93 Wednesday, December 31, 1969 17:00
Structural Properties
Table 42. SPECIFIC
GRAVITY OF POLYMERS
(SHEET 1 OF 7) Class ABS Resins; Molded, Extruded
Acrylics; Cast, Molded, Extruded
Polymer
Medium impact
1.05—1.07
High impact
1.02—1.04
Very high impact Low temperature impact Heat resistant
1.01—1.06 1.02—1.04 1.06—1.08
Cast Resin Sheets, Rods: General purpose, type I General purpose, type II
1.17—1.19 1.18—1.20
Moldings: Grades 5, 6, 8 High impact grade
1.18—1.19 1.12—1.16
Thermoset Carbonate Allyl diglycol carbonate Alkyds; Molded Putty (encapsulating) Rope (general purpose) Granular (high speed molding) Glass reinforced (heavy duty parts) Cellulose Acetate; Molded, Extruded
Specific Gravity (ASTM D792)
1.32
2.05—2.15 2.20—2.22 2.21—2.24 2.02—2.10
ASTM Grade: H6—1 H4—1 H2—1
1.29—1.31 1.25—1.31
MH—1, MH—2 MS—1, MS—2 S2—1
1.24—1.31 1.23—1.30 1.22—1.30
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC Shackelford & Alexander
93
3.7 Structure Page 94 Wednesday, December 31, 1969 17:00
Structural Properties
Table 42. SPECIFIC
GRAVITY OF POLYMERS
(SHEET 2 OF 7) Class Cellulose Acetate Butyrate; Molded, Extruded
Polymer
ASTM Grade: H4 MH S2
Cellusose Acetate Propionate; Molded, Extruded
1.22 1.18—1.20 1.15—1.18
ASTM Grade: 1 3 6
1.22 1.20—1.21 1.19
Chlorinated Polymers: Chlorinated polyether Chlorinated polyvinyl chloride
1.4 1.54
Polycarbonates: Polycarbonate Polycarbonate (40% glass fiber reinforced)
1.51
Chlorinated Polymers Chlorinated polyether Chlorinated polyvinyl chloride
1.4 1.54
Polycarbonates Polycarbonate Polycarbonate (40% glass fiber reinforced)
Diallyl Phthalates; Molded
Specific Gravity (ASTM D792)
Orlon filled Dacron filled Asbestos filled Glass fiber filled
1.2
1.2 1.51
1.31—1.35 1.40—1.65 1.50—1.96 1.55—1.85
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
94
CRC Handbook of Materials Science & Engineering
3.7 Structure Page 95 Wednesday, December 31, 1969 17:00
Table 42. SPECIFIC
GRAVITY OF POLYMERS
(SHEET 3 OF 7) Class Fluorocarbons; Molded,Extruded
Epoxies; Cast, Molded, Reinforced
Polymer Polytrifluoro chloroethylene (PTFCE)
Melamines; Molded
2.10—2.15
Polytetrafluoroethylene (PTFE)
2.1—2.3
Ceramic reinforced (PTFE) Fluorinated ethylene propylene(FEP)
2.2—2.4 2.12—2.17
Polyvinylidene— fluoride (PVDF)
1.77
Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible
1.15 1.14-1.18
Molded General purpose glass cloth laminate High strength laminate Filament wound composite Epoxies—Molded, Extruded
Specific Gravity (ASTM D792)
High performance resins (cycloaliphatic diepoxides) Cast, rigid Molded Glass cloth laminate Epoxy novolacs Cast, rigid Glass cloth laminate Filler & type Unfilled Cellulose electrical Glass fiber Alpha cellulose and mineral
1.80-2.0 1.8 1.84 2.17-2.18
1.24 1.7 1.97 1.22 1.97
1.48 1.43—1.50 1.8—2.0 1.5(a), 1.72(mineral)
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
3.7 Structure Page 96 Wednesday, December 31, 1969 17:00
Structural Properties
Table 42. SPECIFIC
GRAVITY OF POLYMERS
(SHEET 4 OF 7) Class Nylons; Molded, Extruded
Polymer Type 6 General purpose Glass fiber (30%) reinforced Cast Flexible copolymers Type 8 Type 11 Type 12
Polyacetals
1.12—1.14 1.35—1.42 1.15 1.12—1.14 1.09 1.04 1.01
6/6 Nylon General purpose molding Glass fiber reinforced Glass fiber Molybdenum disulfide filled General purpose extrusion
Phenolics; Molded
Specific Gravity (ASTM D792)
1.13—1.15 1.37–1.47 1.37—1.41 1.13–1.15
6/10 Nylon General purpose Glass fiber (30%) reinforced
1.07—1.09 1.3
Type and filler General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber
1.32—1.46 1.34—1.46 1.36—1.43 1.75—1.90
Homopolymer: Standard 20% glass reinforced 22% TFE reinforced Copolymer: Standard 25% glass reinforced High flow
1.425 1.56 1.54 1.41 1.61 1.41
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
96
CRC Handbook of Materials Science & Engineering
3.7 Structure Page 97 Wednesday, December 31, 1969 17:00
Structural Properties
Table 42. SPECIFIC
GRAVITY OF POLYMERS
(SHEET 5 OF 7) Class Phenolics: Molded
Polymer Arc resistant—mineral Rubber phenolic—woodflour or flock Rubber phenolic—chopped fabric Rubber phenolic—asbestos ABS–Polycarbonate Alloy PVC–Acrylic Alloy PVC–acrylic sheet PVC–acrylic injection molded
Polymides
Unreinforced Glass reinforced
Polyester; Thermoplastic
Injection Moldings: General purpose grade Glass reinforced grades Glass reinforced self extinguishing General purpose grade Glass reinforced grade Asbestos—filled grade
Polyesters: Thermosets
Reinforced polyester moldings
Cast polyyester Rigid Flexible
Specific Gravity (ASTM D792) 1.5—3.0 1.24—1.35 1.30—1.35 1.60—1.65 1.14 1.35 1.3 1.19—1.47 1.60—1.95
1.31 1.52 1.58 1.31 1.45 1.46
1.12—1.46 1.06—1.25
High strength (glass fibers)
1.8—2.0
Heat and chemical resistant (asbestos)
1.5—1.75
Sheet molding compounds, general purpose
1.65—1.80
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC Shackelford & Alexander
97
3.7 Structure Page 98 Wednesday, December 31, 1969 17:00
Structural Properties
Table 42. SPECIFIC
GRAVITY OF POLYMERS
(SHEET 6 OF 7) Class
Polymer
Specific Gravity (ASTM D792)
Phenylene Oxides
SE—100 SE—1 Glass fiber reinforced
1.1 1.06 1.21–1.27
Phenylene oxides (Noryl)
Standard Glass fiber reinforced Polyarylsulfone
1.24 1.41–1.55 1.36
Polypropylene
General purpose High impact
0.900—0.910 0.900—0.910
Asbestos filled Glass reinforced Flame retardant
1.11—1.36 1.04—1.22 1.2
Polyphenylene sulfide
Standard 40% glass reinforced
1.34—1.35 1.6—1.64
Polyethylenes; Molded, Extruded
Type I—lower density (0.910—0.925) Melt index 0.3—3.6 Melt index 6—26 Melt index 200
0.910—0.925 0.918—0.925 0.91
Type II—medium density (0.926—0.940) Melt index 20 Melt index l.0—1.9
0.93 0.930—0.940
Type III—higher density (0.941—0.965) Melt index 0.2—0.9 Melt index 0.l—12.0 Melt index 1.5—15 High molecular weight
0.96 0.950—0.955 0.96 0.94
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
98
CRC Handbook of Materials Science & Engineering
3.7 Structure Page 99 Wednesday, December 31, 1969 17:00
Structural Properties
Table 42. SPECIFIC
GRAVITY OF POLYMERS
(SHEET 7 OF 7) Class Olefin Copolymers; Molded
Polymer EEA (ethylene ethyl acrylate) EVA (ethylene vinyl acetate) Ethylene butene Propylene—ethylene Ionomer Polyallomer
Polystyrenes; Molded
Polyvinyl Chloride And Copolymers; Molded, Extruded
Silicones; Molded, Laminated
Ureas; Molded
Specific Gravity (ASTM D792) 0.93 0.94 0.95 0.91 0.94 0.898—0.904
Polystyrenes General purpose Medium impact High impact
1.04 1.04—1.07 1.04—1.07
Glass fiber -30% reinforced Styrene acrylonitrile (SAN) Glass fiber (30%) reinforced SAN
1.29 1.04—1.07 1.35
Nonrigid—general
1.20—1.55
Nonrigid—electrical Rigid—normal impact Vinylidene chloride
1.16—1.40 1.32—1.44 1.68—1.75
Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate
1.88 1.86—2.00 1.75—1.8
Alpha—cellulose filled (ASTM Type l)
1.45—1.55
Cellulose filled (ASTM Type 2) Woodflour filled
1.52 1.45—1.49
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC Shackelford & Alexander
99
3.8 Structure L Page 100 Wednesday, December 31, 1969 17:00
Table 43. DENSITY OF
55MSI GRAPHITE /6061 ALUMINUM COMPOSITES
55MSI graphite/6061 aluminum composites 55MSI graphite/6061 aluminum composites
Reinforcement Content (vol % )
Fiber Orientation
Density (g/cm3 )
34 34
0° 90°
2.35 2.35
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p148,(1994).
©2001 CRC Press LLC
3.9 Structure Page 101 Wednesday, December 31, 1969 17:00
Structural Properties
Table 44. DENSITY OF
GRAPHITE FIBER REINFORCED METALS Composite
Fiber content (vol%)
Density (lb/in3)
Graphite(a)/lead Graphite(b)/lead Graphite(a)/zinc Graphite(a)/magnesium
41 35 35 42
0.270 0.280 0.191 0.064
(a) Thornel 75 fiber (b) Courtaulds HM fiber Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p148,(1994).
Table 45. DENSITY OF
SI3N4 COMPOSITES
(SHEET 1 OF 2) Matrix
Dispersed Phase
Density (g/cm3)
Si3N4+ 6 wt % Y2O3
None
3.26
Si3N4+ 6 wt % Y2O3
TiC (Ti, W) C WC
3.81 4.55 7.70
TaC HfC SiC
6.87 5.74 3.24
Containing 30 Vol % of Metal Carbide Dispersoid (2 µm average particle diameter) Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p169,(1994).
©2001 CRC Press LLC
Shackelford & Alexander
101
3.9 Structure Page 102 Wednesday, December 31, 1969 17:00
Structural Properties
Table 45. DENSITY OF
SI3N4 COMPOSITES
(SHEET 2 OF 2) Matrix
Dispersed Phase
Density (g/cm3)
Al2O3
TiC
4.28
Containing 30 Vol % of Metal Carbide Dispersoid (2 µm average particle diameter) Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p169,(1994).
©2001 CRC Press LLC
102
CRC Handbook of Materials Science & Engineering
Shackelford, James F. et al “Composition of Materials” Materials Science and Engineering Handbook Ed. James F. Shackelford & W. Alexander Boca Raton: CRC Press LLC, 2001
4.0 Composition Page 103 Wednesday, December 31, 1969 17:00
CHAPTER 2
Composition of Materials
List of Tables
Steels and Irons Composition Limits of Tool Steels Composition Limits of Gray Cast Irons Composition Limits of Ductile Irons Composition Ranges for Malleable Irons Composition Ranges for Carbon Steels Composition Ranges for Resulfurized Carbon Steels Composition Ranges for Alloy Steels Composition of Stainless Steels Copper Alloys Composition of Wrought Coppers and Copper Alloys Classification of Copper and Copper Alloys Aluminum Alloys Composition Ranges for Cast Aluminum Alloys Composition Ranges for Wrought Aluminum Alloys Tin Alloys Composition of Tin and Tin Alloys Heat Resistant Alloys Compositions of ACI Heat-Resistant Casting Alloys Zinc Alloys Composition of Zinc Die Casting Alloys
©2001 CRC Press LLC
103
4.0 Composition Page 104 Wednesday, December 31, 1969 17:00
Composition List of Tables (Continued)
Super Alloys Compositions of Wrought Superalloys Glass Ceramics Typical Composition of Glass-Ceramics
©2001 CRC Press LLC
104
CRC Handbook of Materials Science & Engineering
4.1 Composition L Page 105 Wednesday, December 31, 1969 17:00
Table 46. COMPOSITION LIMITS OF (SHEET 1 OF 3) Designations AISI
SAE
TOOL STEELS Composition (%)
UNS
C
Mn
Si
Cr
Ni
Mo
W
V
T11302.
0.78– 0.88; 0.95–1.05
0.15–0.40
0.20–0.45
3.75–4.50
0.30 max
4.50–5.50
5.50–6.75
1.75–2.20
T1 T1 T15 Chromium hot work steels
T12001 T12015
0.65–0.80 1.50–1.60
0.10–0.40 0.15–0.40
0.20–0.40 0.15–0.40
3.75–4.00 3.75–5.00
0.30 max 0.30 max
1.00 max
17.25–18.75 11.75–13.00
0.90–1.30 4.50–5.25
H11 H13
T20811 T20813
0.33–0.43 0.32–0.45
0.20–0.50 0.20–0.50
0.80–1.20 0.80–1.20
4.75–5.50 4.75–5.50
0.30 max 0.30 max
1.10–1.60 1.10–1.75
Co
Molybdenum high speed steels M2
M2
Tungsten high speed steels
H11 H13
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.239, (1984).
©2001 CRC Press LLC
0.30–0.60 0.80–1.20
4.75–5.25
4.1 Composition L Page 106 Wednesday, December 31, 1969 17:00
Table 46. COMPOSITION LIMITS OF (SHEET 2 OF 3) Designations AISI
SAE
Composition (%) UNS
C
Tungsten hot work steels H21 H21 T20821 0.26–0.36 H26 T20826 0.45–0.55 Air–hardening medium–alloy cold work steels A2 A3
TOOL STEELS
Mn
Si
Cr
Ni
0.15–0.40 0.15–0.40
0.15–0.50 0.15–0.40
3.00–3.75 3.75–4.50
0.30 max 0.30 max
Mo
A2
T30102 T30103
0.95–1.05 1.20–1.30
1.00 max 0.40–0.60
0.50 max 0.50 max
4.75–5.50 4.75–5.50
0.30 max 0.30 max
0.90–1.40 0.90–1.40
S1 S5
T41901 T41905 T41907
0.40–0.55 0.50–0.65 0.45–0.55
0.10–0.40 0.60–1.00 0.20–0.80
0.15–1.20 1.75–2.25 0.20–1.00
1.00–1.80 0.35 max 3.00–3.50
0.30 max
0.50 max 0.20–1.35 1.30–1.80
W
V
8.50–10.00 17.25–19.00
0.30–0.60 0.75–1.25
0.15–0.50 0.80–1.40
Shock–resisting steels S1 S5 S7
1.50–3.00
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.239, (1984).
©2001 CRC Press LLC
0.15–0.30 0.35 max 0.20–0.30
Co
4.1 Composition L Page 107 Wednesday, December 31, 1969 17:00
Table 46. COMPOSITION LIMITS OF (SHEET 3 OF 3) Designations AISI
SAE
TOOL STEELS Composition (%)
UNS
C
Mn
Si
Cr
Ni
Mo
T61202 T61206
0.45–1.00 0.65–0.75
0.10–0.90 0.25–0.80
0.50 max 0.50 max
0.70–1.20 0.60–1.20
1.25–2.00
0.25 max 0.50 max
T72301
0.70–1.50
0.10–0.40
0.10–0.40
0.15 max
0.20 max
0.10 max
W
V
Low–alloy special–purpose tool steels L2 L6
L6
0.10–0.30 0.20–0.30
Water–hardening tool steels W1
W108, W109, W110, W112
0.15 max
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.239, (1984).
©2001 CRC Press LLC
0.10 max
Co
4.1 Composition L Page 108 Wednesday, December 31, 1969 17:00
Table 47. COMPOSITION
LIMITS OF GRAY CAST IRONS Composition Limits (%)
UNS
SAE grade
TC
Mn
Si
P
S
F10004
G1800
3.40 to 3.70
0.50 to 0.80
2.80 to 2.30
0.15
0.15
F10005 F10009
G2500 G2500
3.20 to 3.50 3.40 min
0.60 to 0.90 0.60 to 0.90
2.40 to 2.00 1.60 to 2.10
0.12 0.12
0.15 0.12
F10006 F10007
G3000 G3500
3.10 to 3.40 3.00 to 3.30
0.60 to 0.90 0.60 to 0.90
2.30 to 1.90 2.20 to 1.80
0.10 0.08
0.16 0.16
F10010 F10011
G3500 G3500
3.40 min 3.50 min
0.60 to 0.90 0.60 to 0.90
1.30 to 1.80 1.30 to 1.80
0.08 0.08
0.12 0.12
F10008 F10012
G4000 G4000
3.00 to 3.30 3.10 to 3.60
0.70 to 1.00 0.60 to 0.90
2.10 to 1.80 1.95 to 2.40
0.07 0.07
0.16 0.12
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.166, (1984).
©2001 CRC Press LLC
4.1 Composition L Page 109 Wednesday, December 31, 1969 17:00
Table 48. COMPOSITION
LIMITS OF DUCTILE IRONS
Specification No. Grade or Class
Composition (%) UNS
TC
Si
Mn
P
S
ASTM A395 ASME SA395 60-40-18
F32800
3.00 min
2.50 max
0.08 max
ASTM A476 SAE AM55316 80-60-03
F34100
3.00 min
3.0 max
0.08 max
SAE J434c D4018
F32800
3.20–4.10
1.80-3.00
0.10-1.00
0.015-0.10
0.005–0.035
MIL-1-24137 (Ships) Class A Class B Class C
F33101 F43020 F43021
3.0 min 2.40-3.00 2.70-3.10
2.50 max 1.80-3.20 2.00-3.00
0.08 max 0.80-1.50 1.90-2.50
0.20 max 0.15 max
Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.168-169,
(1984).
©2001 CRC Press LLC
4.1 Composition L Page 110 Wednesday, December 31, 1969 17:00
Table 49. COMPOSITION
RANGES FOR MALLEABLE IRONS Composition (%)
Type
TC
Mn
Si
P
S
Ferritic Grade 32510 Grade 35018
2.30-2.70 2.00-2.45
0.25-0.55 0.25-0.55
1.00-1.75 1.00-1.35
0.05 max 0.05 max
0.03-0.18 0.03-0.18
Pearlitic
2.00-2.70
0.25-1.25
1.00-1.75
0.05 max
0.03-0.18
Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p170, (1984).
©2001 CRC Press LLC
4.1 Composition L Page 111 Wednesday, December 31, 1969 17:00
Table 50. COMPOSITION
RANGES FOR CARBON STEELS Composition Range (%)
AISI–SAE Designation
UNS Designation
C
Mn
1015 1020 1022
G10150 G10200 G10220
0.12-0.18 0.17-0.23 0.17-0.23
0.30-0.60 0.30-0.60 0.70-1.00
1030 1040 1050
G10900 G10400 G10500
0.27-0.34 0.36-0.44 0.47-0.55
0.60-0.90 0.60-0.90 0.60-0.90
1060 1080 1095
G10600 G10800 G10950
0.55-0.66 0.74-0.88 0.90-1.04
0.60-0.90 0.60-0.90 0.30-0.50
Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p184, (1984).
©2001 CRC Press LLC
4.1 Composition L Page 112 Wednesday, December 31, 1969 17:00
Table 51. COMPOSITION
RANGES FOR RESULFURIZED CARBON STEELS Composition Range (%)
AISI–SAE Designation
UNS Designation
C
Mn
S
1118 1137 1141 1144
G11180 G11370 G11410 G11440
0.14-0.20 0.32-0.39 0.37-0.45 0.40-0.48
1.30-1.60 1.35-1.65 1.35-1.65 1.35-1.65
0.08-0.13 0.08-0.13 0.08-0.13 0.24-0.33
Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p185, (1984).
©2001 CRC Press LLC
4.1 Composition L Page 113 Wednesday, December 31, 1969 17:00
Table 52. COMPOSITION RANGES FOR (SHEET 1 OF 3)
ALLOY STEELS
Composition Range (%) AISI–SAE Designation
UNS Designation
1330 1340 3140 4037
G13300 G13400
C
Mn
P (max)
S (max)
Si
Cr
Ni
1.60-1.90 1.60-1.90 0.70-0.90 0.70-0.90
0.035 0.035 0.040 0.035
0.040 0.040 0.040 0.040
0.15-0.30 0.15-0.30 0.20-0.35 0.15-0.30
0.55-0.75 0.20-0.30
1.10-1.40
G40370
0.28-0.33 0.38-0.43 0.38-0.43 0.35-0.40
4042 4130 4140 4150
G40420 G41300 G41400 G41500
0.40-0.45 0.28-0.33 0.38-0.43 0.48-0.53
0.70-0.90 0.40-0.60 0.75-1.00 0.75-1.00
0.035 0.035 0.035 0.035
0.040 0.040 0.040 0.040
0.15-0.30 0.15-0.30 0.15-0.30 0.15-0.30
0.20-0.30 0.80-1.10 0.80-1.10 0.80-1.10
4320 4340 4620 4820
G43200 G43400 G46200 G48200
0.17-0.22 0.38-0.43 0.17-0.22 0.18-0.23
0.45-0.65 0.60-0.80 0.45-0.65 0.50-0.70
0.035 0.035 0.035 0.035
0.040 0.040 0.040 0.040
0.15-0.30 0.15-0.30 0.15-0.30 0.15-0.30
0.40-0.60 0.70-0.90 1.65-2.00 3.25-3.75
0.15-0.25 0.15-0.25 0.15-0.25 1.65-2.00 1.65-2.00
(a) Contains 0.15% min vanadium. Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p186-193, (1984).
©2001 CRC Press LLC
Mo
0.20-0.30 0.20-0.30 0.20-0.30 0.20-0.30
4.1 Composition L Page 114 Wednesday, December 31, 1969 17:00
Table 52. COMPOSITION RANGES FOR (SHEET 2 OF 3)
ALLOY STEELS
Composition Range (%) AISI–SAE Designation
UNS Designation
C
Mn
P (max)
S (max)
Si
Cr
5046 50B46 5060 50B60
G50460 G50461 G50600 G50461
0.43-0.48 0.44-0.49 0.56-0.64 0.56-0.64
0.75-1.00 0.75-1.00 0.75-1.00 0.75-1.00
0.035 0.035 0.035 0.035
0.040 0.040 0.040 0.040
0.15-0.30 0.15-0.30 0.15-0.30 0.15-0.30
0.20-0.35 0.20-0.35 0.40-0.60 0.40-0.60
5130 5140 5150 5160
G51300 G51400 G51500 G51600
0.28-0.33 0.38-0.43 0.48-0.53 0.56-0.64
0.70-0.90 0.70-0.90 0.70-0.90 0.75-1.00
0.035 0.035 0.035 0.035
0.040 0.040 0.040 0.040
0.15-0.30 0.15-0.30 0.15-0.30 0.15-0.30
0.80-1.10 0.70-0.90 0.70-0.90 0.70-0.90
51B60 6150(a) 81B45 8620
G51601 G61500 G81451 G86200
0.56-0.64 0.48-0.53 0.43-0.48 0.18-0.23
0.75-1.00 0.70-0.90 0.75-1.00 0.70-0.90
0.035 0.035 0.035 0.035
0.040 0.040 0.040 0.040
0.15-0.30 0.15-0.30 0.15-0.30 0.15-0.30
8630 8640
G86300 G86400
0.28-0.33 0.38-0.43
0.70-0.90 0.75-1.00
0.035 0.035
0.040 0.040
0.15-0.30 0.15-0.30
Ni
Mo
0.70-0.90 0.80-1.10 0.35-0.55 0.40-0.60
0.20-0.40 0.40-0.70
0.08-0.15 0.15-0.25
0.40-0.60 0.40-0.60
0.40-0.70 0.40-0.70
0.15-0.25 0.15-0.25
(a) Contains 0.15% min vanadium. Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p186-193, (1984).
©2001 CRC Press LLC
4.1 Composition L Page 115 Wednesday, December 31, 1969 17:00
Table 52. COMPOSITION RANGES FOR (SHEET 3 OF 3)
ALLOY STEELS
Composition Range (%) AISI–SAE Designation
UNS Designation
C
Mn
P (max)
S (max)
Si
Cr
Ni
Mo
86B45 8650
G86451 G86500
0.43-0.48 0.48-0.53
0.75-1.00 0.75-1.00
0.035 0.035
0.040 0.040
0.15-0.30 0.15-0.30
0.40-0.60 0.40-0.60
0.40-0.70 0.40-0.70
0.15-0.25 0.15-0.25
8660 8740 9255 9260
G86600 G87400 G92550 G92600
0.56-0.64 0.38-0.43 0.51-0.59 0.56-0.64
0.75-1.00 0.75-1.00 0.70-0.95 0.75-1.00
0.035 0.035 0.035 0.035
0.040 0.040 0.040 0.040
0.15-0.30 0.15-0.30 1.80-2.20 1.80-2.20
0.40-0.60 0.40-0.60
0.40-0.70 0.40-0.70
0.15-0.25 0.20-0.30
9310 94B30
G93106 G94301
0.08-0.13 0.28-0.33
0.45-0.65 0.75-1.00
0.025 0.035
0.025 0.040
0.15-0.30 0.15-0.30
1.00-1.40 0.30-0.50
3.00-3.50 0.30-0.60
0.08-0.15 0.08-0.15
(a) Contains 0.15% min vanadium. Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p186-193, (1984).
©2001 CRC Press LLC
4.1 Composition L Page 116 Wednesday, December 31, 1969 17:00
Table 53. COMPOSITION OF STAINLESS (SHEET 1 OF 8)
STEELS
Composition (%) UNS Number
C
Mn
Si
Cr
Ni
P
S
Others
201 202 205 301
S20100 S20200 S20500 S30100
0.15 0.15 0.12–0.25 0.15
5.5–7.5 7.5-10.0 14.0–15.5 2.00
1.00 1.00 1.00 1.00
16.0–18.0 17.0–19.0 16.5–18.0 16.0–18.0
3.5–5.5 4.0–6.0 1.0–1.75 6.0–8.0
0.06 0.06 0.06 0.045
0.03 0.03 0.03 0.03
0.25 N 0.25 N 0.32–0.40 N —
302 302B 303 303Se
S30200 S30215 S30300 S30323
0.15 0.15 0.15 0.15
2.00 2.00 2.00 2.00
1.00 2.0–3.0 1.00 1.00
17.0–19.0 17.0–19.0 17.0–19.0 17.0–19.0
8.0–10.0 8.0–10.0 8.0–10.0 8.0–10.0
0.045 0.045 0.20 0.20
0.03 0.03 0.15 min 0.06
— — 0.6 Mo(c) 0.15 Se min
304 304H 304L 304LN
S30400 S30409 S30403 —
0.08 0.04-0.10 0.03 0.03
2.00 2.00 2.00 2.00
1.00 1.00 1.00 1.00
18.0–20.0 18.0–20.0 18.0–20.0 18.0–20.0
8.0–10.5 8.0–10.5 8.0–12.0 8.0–10.5
0.045 0.045 0.045 0.045
0.03 0.03 0.03 0.03
— — 0.10-0.15 N
Type Austenitic
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p357-358, (1993).
©2001 CRC Press LLC
4.1 Composition L Page 117 Wednesday, December 31, 1969 17:00
Table 53. COMPOSITION OF STAINLESS (SHEET 2 OF 8)
STEELS
Composition (%) Type
UNS Number
C
Mn
Si
Cr
Ni
P
S
Others
S30430 304N 30S 308
S30430 S30451 S30500 S30800
0.08 0.08 0.12 0.08
2.00 2.00 2.00 2.00
1.00 1.00 1.00 1.00
17.0–19.0 18.0-20.0 17.0–19.0 19.0–21.0
8.0–10.0 8.0–10.5 10.S–13.0 10.0–12.0
0.045 0.045 0.045 0.045
0.03 0.03 0.03 0.03
3.0–4.0 Cu 0.10–0.16 N — —
309 309S 310 310S
S30900 S30908 S31000 S31008
0.20 0.08 0.25 0.08
2.00 2.00 2.00 2.00
1.00 1.00 1.50 1.50
22.0–24.0 22.0–24.0 24.0–26.0 24.0–26.0
12.0 15.0 12.0–15.0 19.0–22.0 19.0–22.0
0.045 0.045 0.045 0.045
0.03 0.03 0.03 0.03
— — — —
314 316 316F 316H
S31400 S31600 S31620 S31609
0.25 0.08 0.08 0.04-0.10
2.00 2.00 2.00 2.00
1.5–3.0 1.00 1.00 1.00
23.0–26.0 16.0–18.0 16.0–18.0 16.0–18.0
19.0–22.0 10.0–14.0 10.0–14.0 10.0–14.0
0.045 0.045 0.20 0.045
0.03 0.03 0.10 min 0.03
— 2.0–3.0 Mo 1.75–2.5 Mo 2.0–3.0 Mo
316L 316LN 316N 317
S31603 — S31651 S31700
0.03 0.03 0.08 0.08
2.00 2.00 2.00 2.00
1.00 1.00 1.00 1.00
16.0-18.0 16.0–18.0 16.0–18.0 18.0–20.0
10.0–14.0 10.0–14.0 10.0–14.0 11.0–15.0
0.045 0.045 0.045 0.045
0.03 0.03 0.03 0.03
2.0–3.0 Mo 2.0–3.0 Mo;0.10–0.30 N 2.0–3.0 Mo;0.10–0.16 N 3.0–4.0 Mo
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p357-358, (1993).
©2001 CRC Press LLC
4.1 Composition L Page 118 Wednesday, December 31, 1969 17:00
Table 53. COMPOSITION OF STAINLESS (SHEET 3 OF 8)
STEELS
Composition (%) Type
UNS Number
C
Mn
Si
Cr
Ni
P
S
Others
317L 321 321H 329
S31703 S32100 S32109 S32900
0.03 0.08 0.04–0.10 0.10
2.00 2.00 2.00 2.00
1.00 1.00 1.00 1.00
18.0–20.0 17.0–19.0 17.0–19.0 25.0–30.0
11.0–15.0 9.0–12.0 9.0–12.0 3.0–6.0
0.045 0.045 0.045 0.045
0.03 0.03 0.03 0.03
3.0–4.0 Mo 5 x %C Ti min 5 x %C Ti min 1.0–2.0 Mo
330 347 347H
N08330 S34700 S34709
0.08 0.08 0.04–0.10
2.00 2.00 2.00
0.75–1.5 1.00 1.00
17.0–20.0 17.0–19.0 17.0–19.0
34.0–37.0 9.0–13.0 9.0–13.0
0.04 0.045 0.045
0.03 0.03 0.03
348
S34800
0.08
2.00
1.00
17.0–19.0
9.0–13.0
0.045
0.03
— 10 x %C Nb + Ta(d)min 10 x %C Nb + Ta min 0.2 Cu; 10 x %C Nb + Ta(d) min
348H
S34809
0.04–0.10
2.00
1.00
17.0–19.0
9.0–13.0
0.045
0.03
384
S38400
0.08
2.00
1.00
15.0–17.0
17.0–19.0
0.045
0.03
0.2 Cu; 10 x %C Nb + Ta(d) min —
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p357-358, (1993).
©2001 CRC Press LLC
4.1 Composition L Page 119 Wednesday, December 31, 1969 17:00
Table 53. COMPOSITION OF STAINLESS (SHEET 4 OF 8)
STEELS
Composition (%) UNS Number
C
Mn
Si
Cr
Ni
P
S
Others
405 409 429
S40500 S40900 S42900
0.08 0.08 0.12
1.00 1.00 1.00
1.00 1.00 1.00
11.5–14.5 10.5–11.75 14.0–16.0
— — —
0.04 0.045 0.04
0.03 0.045 0.03
0.10-0.30 Al 6 x %C Ti(e)min —
430 430F 430FSe
S43000 S43020 S43023
0.12 0.12 0.12
1.00 1.25 1.25
1.00 1.00 1.00
16.0–18.0 16.0–18.0 16.0–18.0
— — —
0.04 0.06 0.06
0.03 0.15 0.06
— 0.6 Mo(c) 0.15 Se min
434
S43400
0.12
1.00
1.00
16.0–18.0
—
0.04
0.03
0.75–1.25 Mo
436
S43600
0.12
1.00
1.00
16.0–18.0
—
0.04
0.03
0.75–1.25 Mo;5 x %C Nb + Ta(f) min
442 446
S44200 S44600
0.20 0.20
1.00 1.50
1.00 1.00
18.0–23.0 23.0–27.0
— —
0.04 0.04
0.03 0.03
— 0.25 N
Type Ferritic
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p357-358, (1993).
©2001 CRC Press LLC
4.1 Composition L Page 120 Wednesday, December 31, 1969 17:00
Table 53. COMPOSITION OF STAINLESS (SHEET 5 OF 8)
STEELS
Composition (%) UNS Number
C
Mn
Si
Cr
Ni
P
S
Others
403 410
S40300 S41000
0.15 0.15
1.00 1.00
0.50 1.00
11.5–13.0 11.5–13.0
— —
0.04 0.04
0.03 0.03
—
414 416 416Se 420
S41400 S41600 S41623 S42000
0.15 0.15 0.15 0.15 min
1.00 1.25 1.25 1.00
1.00 1.00 1.00 1.00
11.5–13.5 12.0–14.0 12.0–14.0 12.0–14.0
1.25–2.50 — — —
0.04 0.04 0.06 0.04
0.03 0.03 0.06 0.03
— 0.6 Mo(c) 0.15 Se min —
420F
S42020
0.15 min
1.25
1.00
12.0–14.0
—
0.06
0.15 min
422
S42200
0.2–0.25
1.00
0.75
11.0–13.0
0.5–1.0
0.025
0.025
431 440A
S43100 S44002
0.20 0.60–0.75
1.00 1.00
1.00 1.00
15.0–17.0 16.0–18.0
1.25–2.50 —
0.04 0.04
0.03 0.03
0.6Mo(c) 0.75–1.25 Mo;0.75–1.25 W; 0.15–0.3 V — 0.75 Mo
Type Martensitic
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p357-358, (1993).
©2001 CRC Press LLC
4.1 Composition L Page 121 Wednesday, December 31, 1969 17:00
Table 53. COMPOSITION OF STAINLESS (SHEET 6 OF 8)
STEELS
Composition (%) Type
UNS Number
C
Mn
Si
Cr
Ni
P
S
Others
440B 440C 501 501A
S44003 S44004 S50100 S50300
0.75–0.95 0.95–1.20 0.10 min 0.15
1.00 1.00 1.00 0.30–0.60
1.00 1.00 1.00 0.50–1.00
16.0–18.0 16.0–18.0 4.0–6.0 6.0–8.0
— — — —
0.04 0.04 0.04 0.03
0.03 0.03 0.03 0.03
0.75 Mo 0.75 Mo 0.40–0.65Mo 0.45–0.65Mo
501B 502 503 504
S50400 S50200 S50300 S50400
0.15 0.10 0.15 0.15
0.30–0.60 1.00 1.00 1.00
0.50–1.00 1.00 1.00 1.00
8.0–10.0 4.0–6.0 6.0–8.0 8.0–10.0
— — — —
0.03 0.04 0.04 0.04
0.03 0.03 0.04 0.04
0.9–1.1 Mo 0.40–4.65Mo 0.45–0.65Mo 0.9–1.1 Mo
PH 13–8Mo
S13800
0.05
0.10
0.10
12.25–13.25
7.5–8.5
0.01
0.008
2.0–2.5 Mo; 0.90–1.35 Al; 0.01 N
15–5 PH
S15500
0.07
1.00
1.00
14.0–15.5
3.5–5.5
0.04
0.03
2.5–4.5 Cu;0.15–0.45 Nb+Ta
Precipitation– hardening
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p357-358, (1993).
©2001 CRC Press LLC
4.1 Composition L Page 122 Wednesday, December 31, 1969 17:00
Table 53. COMPOSITION OF STAINLESS (SHEET 7 OF 8)
STEELS
Composition (%) Type
UNS Number
C
Mn
Si
Cr
Ni
P
S
Others
17–4 PH
S17400
0.07
1.00
1.00
15.5–17.5
3.0–5.0
0.04
0.03
17–7 PH
S17700
0.09
1.00
1.00
16.0–18.0
6.5–7.75
0.04
0.03
3.0–5.0 Cu;0.15–0.45 Nb+Ta 0.75–1.5 Al
414 416 416Se 420
S41400 S41600 S41623 S42000
0.15 0.15 0.15 0.15 min
1.00 1.25 1.25 1.00
1.00 1.00 1.00 1.00
11.5–13.5 12.0–14.0 12.0–14.0 12.0–14.0
1.25–2.50 — — —
0.04 0.04 0.06 0.04
0.03 0.03 0.06 0.03
— 0.6 Mo(c) 0.15 Se min —
420F
S42020
0.15 min
1.25
1.00
12.0–14.0
—
0.06
0.15 min
422
S42200
0.2–0.25
1.00
0.75
11.0–13.0
0.5–1.0
0.025
0.025
431 440A
S43100 S44002
0.20 0.60–0.75
1.00 1.00
1.00 1.00
15.0–17.0 16.0–18.0
1.25–2.50 —
0.04 0.04
0.03 0.03
0.6Mo(c) 0.75–1.25 Mo;0.75–1.25 W; 0.15–0.3 V — 0.75 Mo
440B 440C 501 501A
S44003 S44004 S50100 S50300
0.75–4.95 0.95–1.20 0.10 min 0.15
1.00 1.00 1.00 0.30–0.60
1.00 1.00 1.00 0.50–1.00
16.0–18.0 16.0–18.0 4.0–6.0 6.0–8.0
— — — —
0.04 0.04 0.04 0.03
0.03 0.03 0.03 0.03
0.75 Mo 0.75 Mo 0.40–0.65Mo 0.45–0.65Mo
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p357-358, (1993).
©2001 CRC Press LLC
4.1 Composition L Page 123 Wednesday, December 31, 1969 17:00
Table 53. COMPOSITION OF STAINLESS (SHEET 8 OF 8)
STEELS
Composition (%) Type
UNS Number
C
Mn
Si
Cr
Ni
P
S
Others
501B 502 503 504
S50400 S50200 S50300 S50400
0.15 0.10 0.15 0.15
0.30–0.60 1.00 1.00 1.00
0.50–1.00 1.00 1.00 1.00
8.0–10.0 4.0–6.0 6.0–8.0 8.0–10.0
— — — —
0.03 0.04 0.04 0.04
0.03 0.03 0.04 0.04
0.9–1.1 Mo 0.40–4.65Mo 0.45–0.65Mo 0.9–1.1 Mo
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p357-358, (1993).
©2001 CRC Press LLC
4.1 Composition L Page 124 Wednesday, December 31, 1969 17:00
Table 54. COMPOSITION OF
WROUGHT COPPERS AND COPPER ALLOYS * (SHEET 1 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
C10100 Oxygen-free electronic C10200 Oxygen-free copper C10300 Oxygen-free extra-low phosporus C10400, C10500, C10700 Oxygen-free, silver-bearing
99.99 Cu 99.95 Cu 99.95 Cu, 0.003 P 99.95 Cu(b)
F, R, W, T, P, S F, R, W, T, P, S F, R, T, P, S F, R, W, S
C10800 Oxygen-free, low phosporus CS11000 Electrolytic tough pitch copper C11100 Electrolytic tough pitch, anneal resistant C11300, C11400, C11500, C11600 Silver-bearing tough pitch copper
99.95 Cu, 0.009 P 99.90 Cu, 0.04 O 99.90 Cu, 0.04 O, 0.01 Cd 99.90 Cu, 0.04 O, Ag(c)
F, R, T, P F, R, W, T, P, S W F, R, W, T, S
C12000, C12100 C12200 Phosphorus deoxidized copper, high residual phosphorus C12500, C12700, C12800, C12900, C13000 Fire-refined tough pitch with silver C14200 Phosphorus deoxidized, arsenical
99.9 Cu(d) 99.90 Cu, 0.02 P 99.88 Cu(e) 99.68 Cu, 0.3 As, 0.02 P
F, T, P F, R, T, P F, R, W, S F, R, T
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
4.1 Composition L Page 125 Wednesday, December 31, 1969 17:00
Table 54. COMPOSITION OF
WROUGHT COPPERS AND COPPER ALLOYS * (SHEET 2 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
C19200 C14300 C14310 C14500 Phosphorus deoxidized, tellurium bearing
98.97 Cu, 1.0 Fe, 0.03 P 99.9 Cu, 0.1 Cd 99.8 Cu, 0.2 Cd 99.5 Cu, 0.50 Te, 0.008 P
F, T F F F, R, W, T
C14700 Sulfur bearing C15000 Zirconium copper C15500 C15710
99.6 Cu, 0.40 S 99.8 Cu, 0.15 Zr 99.75 Cu, 0.06 P, 0.11 Mg, Ag(f) 99.8 Cu, 0.2 Al2O3
R, W R, W F R, W
C15720 C15735 C15760 C16200 Cadmium copper
99.6 Cu, 0.4 Al2O3 99.3 Cu, 0.7 Al2O3 98.9 Cu, 1.1 Al2O3 99.0 Cu, 1.0 Cd
F, R R F, R F, R, W
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
4.1 Composition L Page 126 Wednesday, December 31, 1969 17:00
Table 54. COMPOSITION OF
WROUGHT COPPERS AND COPPER ALLOYS * (SHEET 3 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
C16500 C17000 Beryllium copper C17200 Beryllium copper C17300 Beryllium copper
98.6 Cu, 0.8 Cd, 0.6 Sn 99.5 Cu, 1.7 Be, 0.20 Co 99.5 Cu, 1.9 Be , 0.20 Co 99.5 Cu, 1.9 Be, 0.40 Pb
F, R, W F, R F, R, W, T, P, S R
C17500 Copper-cobalt-beryllium alloy C18200, C18400, C18500 Chromium copper C18700 leaded copper C18900
99.5 Cu, 2.5 Co, 0.6 Be 99.5 Cu(g) 99.0 Cu, 1.0 Pb 98.75 Cu, 0.75 Sn, 0.3 Si, 0.20 Mn
F, R F, W, R, S, T R R, W
C19000 Copper-nickel-phosphorus alloy C19100 Copper-nickel-phosphorus-tellurium alloy C19400
98.7 Cu, 1.1 Ni, 0.25 P 98.15 Cu, 1.1 Ni, 0.50 Te, 0.25 P 97.5 Cu, 2.4 Fe, 0.13 Zn, 0.03 P
F, R, W R, F F
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
4.1 Composition L Page 127 Wednesday, December 31, 1969 17:00
Table 54. COMPOSITION OF
WROUGHT COPPERS AND COPPER ALLOYS * (SHEET 4 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
C19500 C21000 Gilding, 95% C22000 Commercial bronze, 90% C22600 Jewelry bronze, 87.5%
97.0 Cu, 1.5 Fe, 0.6 Sn, 0.10 P, 0.80 Co 95.0 Cu, 5.0 Zn 90.0 Cu, 10.0 Zn 87.5 Cu, 12.5 Zn
F F, W F, R, W, T F, W
C23000 Red brass, 85% C24000 Low brass, 80% C26000 Cartridge brass, 70% C26800, C27000 Yellow brass
85.0 Cu, 15.0 Zn 80.0 Cu, 20.0 Zn 70.0 Cu, 30.0 Zn 65.0 Cu, 35.0 Zn
F, W, T, P F, W F, R, W, T F, R, W
C28000 Muntz metal C31400 Leaded commercial bronze C31600 Leaded commercial bronze, nickel-bearing C33000 Low-leaded brass tube
60.0 Cu, 40.0 Zn 89.0 Cu, 1.75 Pb, 9.25 Zn 89.0 Cu, 1.9 Pb, 1.0 Ni, 8.1 Zn 66.0 Cu, 0.5 Pb, 33.5 Zn
F, R, T F, R F, R T
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
4.1 Composition L Page 128 Wednesday, December 31, 1969 17:00
Table 54. COMPOSITION OF
WROUGHT COPPERS AND COPPER ALLOYS * (SHEET 5 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
C33200 High-leaded brass tube C33500 Low-leaded brass C34000 Medium-leaded brass C34200 High-leaded brass
66.0 Cu, 1.6 Pb, 32.4 Zn 65.0 Cu, 0.5 Pb, 34.5 Zn 65.0 Cu, 1.0 Pb, 34.0 Zn 64.5 Cu, 2.0 Pb, 33.5 Zn
T F F, R, W, S F, R
C34900 C35000 Medium-leaded brass C35300 High-leaded brass C35600 Extra-high-leaded brass
62.2 Cu, 0.35 Pb, 37.45 Zn 62.5 Cu, 1.1 Pb, 36.4 Zn 62.0 Cu, 1.8 Pb, 36.2 Zn 63.0 Cu, 2.5 Pb, 34.5 Zn
R, W F, R F, R F
C36000 Free-cutting brass C36500 to C36800 Leaded Muntz metal C37000 Free-cutting Muntz metal C37700 Forging brass
61.5 Cu, 3.0 Pb, 35.5 Zn 60.0 Cu(h), 0.6 Pb, 39.4 Zn 60.0 Cu, 1.0 Pb, 39.0 Zn 59.0 Cu, 2.0 Pb, 39.0 Zn
F, R, S F T R, S
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
4.1 Composition L Page 129 Wednesday, December 31, 1969 17:00
Table 54. COMPOSITION OF
WROUGHT COPPERS AND COPPER ALLOYS * (SHEET 6 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
C38500 Architectural bronze C40500 C40800 C41100
57.0 Cu, 3.0 Pb, 40.0 Zn 95 Cu, 1 Sn, 4 Zn 95 Cu, 2Sn, 3 Zn 91 Cu, 0.5 Sn, 8.5 Zn
R, S F F F, W
C41300 C41500 C42200 C42500
90.0 Cu, 1.0 Sn, 9.0 Zn 91 Cu, 1.8 Sn, 7.2 Zn 87.5 Cu, 1.1 Sn, 11.4 Zn 88.5 Cu, 2.0 Sn, 9.5 Zn
F, R, W F F F
C43000 C43400 C43500 C44300, C44400, C44500 Inhibited admiralty
87.0 Cu, 2.2 Sn, 10.8 Zn 85.0 Cu, 0.7 Sn, 14.3 Zn 81.0 Cu, 0.9 Sn, 18.1 Zn 71.0 Cu, 28.0 Zn, 1.0 Sn
F F F, T F, W, T
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
4.1 Composition L Page 130 Wednesday, December 31, 1969 17:00
Table 54. COMPOSITION OF
WROUGHT COPPERS AND COPPER ALLOYS * (SHEET 7 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
C46400 to C46700 Naval brass C48200 Naval brass, medium-leaded C48500 Leaded naval brass C50500 Phosphor bronze, 1.25% E
60.0 Cu, 39.25 Zn, 0.75 Sn 60.5 Cu, 0.7 Pb, 0.8 Sn, 38.0 Zn 60.0 Cu, 1.75 Pb, 37.5 Zn, 0.75 Sn 98.75 Cu, 1.25 Sn, trace P
F, R, T, S F, R, S F, R, S F, W
C51000 Phosphor bronze, 5% A C51100 C52100 Phosphor bronze, 8% C C52400 Phosphor bronze, 10% D
95.0 Cu, 5.0 Sn, trace P 95.6 Cu, 4.2 Sn, 0.2 P 92.0 Cu, 8.0 Sn, trace P 90.0 Cu, 10.0 Sn, trace P
F, R, W, T F F, R, W F, R, W
C54400 Free-cutting phosphor bronze C60800 Aluminum bronze, 5% C61000 C61300
88.0 Cu, 4.0 Pb, 4.0 Zn, 4.0 Sn 95.0 Cu, 5.0 Al 92.0 Cu, 8.0 Al 92.65 Cu, 0.35 Sn, 7.0 Al
F, R T R, W F, R, T, P, S
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
4.1 Composition L Page 131 Wednesday, December 31, 1969 17:00
Table 54. COMPOSITION OF
WROUGHT COPPERS AND COPPER ALLOYS * (SHEET 8 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
C61400 Aluminum bronze, D C61500 C61800 C61900
91.0 Cu, 7.0 Al, 2.0 Fe 90.0 Cu, 8.0 Al, 2.0 Ni 89.0 Cu, 1.0 Fe, 10.0 Al 86.5 Cu, 4.0 Fe, 9.5 Al
F, R, W, T, P, S F R F
C62300 C62400 C62500 C63000
87.0 Cu, 10.0 Al, 3.0 Fe 86.0 Cu, 3.0 Fe, 11.0 Al 82.7 Cu, 4.3 Fe, 13.0 Al 82.0 Cu, 3.0 Fe, 10.0 Al, 5.0 Ni
F, R F, R F, R F, R
C63200 C63600 C63800 C64200
82.0 Cu, 4.0 Fe, 9.0 Al, 5.0 Ni 95.5 Cu, 3.5 Al, 1.0 Si 99.5 Cu, 2.8 Al, 1.8 Si, 0.40 Co 91.2 Cu, 7.0 Al
F, R R, W F F, R
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
4.1 Composition L Page 132 Wednesday, December 31, 1969 17:00
Table 54. COMPOSITION OF
WROUGHT COPPERS AND COPPER ALLOYS * (SHEET 9 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
C65100 Low-silicon bronze, B C65500 High-silicon bronze, A C66700 Manganese brass C67400
98.5 Cu, 1.5 Si 97.0 Cu, 3.0 Si 70.0 Cu, 28.8 Zn, 1.2 Mn 58.5 Cu, 36.5 Zn, 1.2 Al, 2.8 Mn, 1.0 Sn
R, W, T F, R, W, T F, W F, R
C67500 Manganese bronze, A C68700 Aluninum brass, arsenical C68800 C69000
58.5 Cu, 1.4 Fe, 39.0 Zn, 1.0 Sn, 0.1 Mn 77.5 Cu, 20.5 Zn, 2.0 Al, 0.1 As 73.5 Cu, 22.7 Zn, 3.4 Al, 0.40 Co 73.3 Cu, 3.4 Al, 0.6 Ni, 22.7 Zn
R, S T F F
C69400 Silicon red brass C70400 C70600 Copper nickel, 10% C71000 Copper nickel, 20%
81.5 Cu, 14.5 Zn, 4.0 Si 92.4 Cu, 1.5 Fe, 5.5 Ni, 0.6 Mn 88.7 Cu, 1.3 Fe, 10.0 Ni 79.0 Cu, 21.0 Ni
R F, T F, T F, W, T
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
4.1 Composition L Page 133 Wednesday, December 31, 1969 17:00
Table 54. COMPOSITION OF
WROUGHT COPPERS AND COPPER ALLOYS * (SHEET 10 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
C71500 Copper nickel, 30% C71700 C72500 C73500
70.0 Cu, 30.0 Ni 67.8 Cu, 0.7 Fe, 31.0 Ni, 0.5 Be 88.20 Cu, 9.5 Ni, 2.3 Sn 72.0 Cu, 18.0 Ni , 10.0 Zn
F, R, T F, R, W F, R, W, T F, R, W, T
C74500 Nickel silver, 65-10 C75200 Nickel silver, 65-18 C75400 Nickel silver, 65-15 C75700 Nickel silver, 65-12
65.0 Cu, 25.0 Zn, 10.0 Ni 65.0 Cu, 17.0 Zn, 18.0 Ni 65.0 Cu, 20.0 Zn, 15.0 Ni 65.0 Cu, 23.0 Zn, 12.0 Ni
F, W F, R, W F F, W
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
4.1 Composition L Page 134 Wednesday, December 31, 1969 17:00
Table 54. COMPOSITION OF
WROUGHT COPPERS AND COPPER ALLOYS * (SHEET 11 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
C76200 C77000 Nickel silver, 55-18 C72200 C78200 Leaded nickel silver, 65-8-2
59.0 Cu, 29.0 Zn, 12.0 Ni 55.0 Cu, 27.0 Zn, 18.0 Ni 82.0 Cu, 16.0 Ni, 0.5 Cr, 0.8 Fe, 0.5 Mn 65.0 Cu, 2.0 Pb, 25.0 Zn, 8.0 Ni
F, T F, R, W F, T F
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). *
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. (b) C10400, 8 oz/ton Ag, C10500, 10 oz/ton C10700, 25 oz/ton . (c) C11300, 8 oz/ton Ag, C11400,10 oz/ton, C11500, 16 oz/ton C11600, 25 oz/ton (d) C12000, 0.008 P; C12100, 0.008 P and 4 oz/ton Ag; (e) C12700, 8 oz/ton Ag; C12800,10 oz/ton; C12900,16 oz/ton; C13000, 25 oz/ton. (f) 8.30 oz/ton Ag. (g) C18200, 0.9 Cr, C18400, 0.9 Cr; C18500, 0.7 Cr (h) Rod, 61.0 Cu min.
©2001 CRC Press LLC
4.1 Composition L Page 135 Wednesday, December 31, 1969 17:00
Table 55. CLASSIFICATION OF
COPPER AND COPPER ALLOYS
Family
Wrought Alloys UNS Numbers
Principal Alloying Element
Coppers, high copper alloys Brasses Phosphor bronzes Aluminum bronzes
C10000 C20000, C30000, C40000, C66400 to C69800 C50000 C60600 to C64200
< 8 at % Zn Sn Al
Silicon bronzes Copper nickels, nickel silvers
C64700 to C66100 C70000
Si Ni
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p439, (1993).
©2001 CRC Press LLC
4.1 Composition L Page 136 Wednesday, December 31, 1969 17:00
Table 56. COMPOSITION
RANGES FOR CAST ALUMINUM ALLOYS (SHEET 1 OF 3) Composition, (%)
AA Number
Cu
Mg
Mn
Si
Others
201.0 206.0 A206.0 208.0
4.6 4.6 4.6 4.0
0.35 0.25 0.25 —
0.35 0.35 0.35 —
— 0.10 (max) 0.05 (max) 3.0
0.7 Ag, 0.25 Ti 0.22 Ti, 0.15 Fe (max) 0.22 Ti, 0.10 Fe (max) —
242.0 295.0 296.0 308.0
4.0 4.5 4.5 4.5
1.5 — — —
— — — —
0.8 2.5 5.5
319.0 336.0 354.0 355.0
3.5 1.0 1.8 1.2
— 1.0 0.50 0.50
—
C355.0 356.0
1.2 0.25 (max)
0.50 0.32
2.0 Ni — —
— 0.50 (max)
6.0 12.0 9.0 5.0
— 2.5 Ni — 0.6 Fe (max), 0.35 Zn (max)
0.10 (max) 0.35 (max)
5.0 7.0
0.20 Fe (max), 0.10 Zn (max) 0.6 Fe (max), 0.35 Zn (max)
Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.303 (1984).
©2001 CRC Press LLC
4.1 Composition L Page 137 Wednesday, December 31, 1969 17:00
Table 56. COMPOSITION
RANGES FOR CAST ALUMINUM ALLOYS (SHEET 2 OF 3) Composition, (%)
AA Number
Cu
Mg
Mn
Si
Others
A356.0 357.0
0.20 (max) —
0.35 0.50
0.10 (max) —
7.0 7.0
0.20 Fe (max), 0.10 Zn (max) —
A357.0 359.0 360.0 A360.0
— — — —
0.6 0.6 0.50 0.50
— — —
7.0 9.0 9.5 9.5
0.15 Ti, 0.005 Be — 2.0 Fe (max) 1.3 Fe (max)
380.0 A380.0 383.0 384.0
3.5 3.5 2.5 3.8
— — —
— — — —
8.5 8.5 10.5 11.2
2.0 Fe (max) 1.3 Fe (max) — 3.0 Zn (max)
A384.0 390.0 A390.0 413.0
3.8 4.5 4.5 —
— 0.6 0.6 —
— — — —
11.2 17.0 17.0 12.0
1.0 Zn (max) 1.3 Zn (max) 0.5 Zn (max) 2.0 Fe (max)
Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.303 (1984).
©2001 CRC Press LLC
4.1 Composition L Page 138 Wednesday, December 31, 1969 17:00
Table 56. COMPOSITION
RANGES FOR CAST ALUMINUM ALLOYS (SHEET 3 OF 3) Composition, (%)
AA Number
Cu
Mg
Mn
Si
Others
A413.0 4430 A443.0 B443.0
0.6 (max) 0.30 (max) 0.15 (max)
— — — —
— — — —
12.0 5.2 5.2 5.2
1.3 Fe (max) — — —
C443.0 514.0 518.0 520.0
0.6 (max) — — —
— 4.0 8.0 10.0
— — — —
5.2 —
2.0 Fe (max) —
—
—
535.0 A535.0 B535.0 712.0
— — —
6.8 7.0 7.0 0.6
0.18 0.18 — —
— — — —
0.18 Ti — 0.18 Ti 5.8 Zn, 0.5 Cr, 0.20 Ti
713.0 771.0 850.0
0.7 — 1.0
0.35 0.9 —
— — —
— — —
7.5 Zn, 0.7 Cu 7.0 Zn, 0.13 Cr, 0.15 Ti 6.2 Sn, 1.0 Ni
Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.303 (1984).
©2001 CRC Press LLC
4.1 Composition L Page 139 Wednesday, December 31, 1969 17:00
Table 57. COMPOSITION
RANGES FOR WROUGHT ALUMINUM ALLOYS (SHEET 1 OF 3)
AA
Composition (%)
Number
Al
Si
Cu
Mn
Mg
Cr
Zn
Other
1060 1100 2011 2014
99.60 min 99.00 min 93.7 93.5
— — — 0.8
— 0.12 5.5 4.4
— — — 0.8
— — — 0.5
— — — —
— — — —
— — 0.4Bi; 0.4Pb —
2024 2219 2319 2618
93.5 93.0 93.0 93.7
— — — 0.18
4.4 6.3 6.3 2.3
0.6 0.3 0.3 —
1.5 — — 1.6
— — — —
— — — —
— 0.06Ti; 0.10V; 0.18Zr 0.18Zn, 0.15Ti; 0.10V 1.1Fe; 1.0Ni; 0.07Ti
3003 3004 3105
98.6 97.8 99.0
— —
— — —
0.12 1.2 0.55
1.2 1.0 0.50
— — —
— — —
— — —
4032 4043
85.0 94.8
12.2 5.2
0.9 —
—
1.0 —
— —
— —
0.9Ni —
Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.292, (1984).
©2001 CRC Press LLC
4.1 Composition L Page 140 Wednesday, December 31, 1969 17:00
Table 57. COMPOSITION
RANGES FOR WROUGHT ALUMINUM ALLOYS (SHEET 2 OF 3)
AA
Composition (%)
Number
Al
Si
Cu
Mn
Mg
Cr
Zn
Other
5005 5050 5052 5056
99.2 98.6 97.2 95.0
— — — —
— — — —
— — — 0.12
0.8 1.4 2.5 5.0
— — 0.25 0.12
— — — —
— — — —
5083 5086 5154 5182
94.7 95.4 96.2 95.2
— — — —
— — — —
0.7 0.4 — 0.35
4.4 4.0 3.5 4.5
0.15 0.15 0.25 —
— — — —
— — — —
5252 5254 5356 5454
97.5 96.2 94.6 96.3
— — —
— — — —
— — 0.12 0.8
2.5 3.5 5.0 2.7
— 0.25 0.12 0.12
— — — —
— — 0.13Ti —
5456 5457 5652 5657
93.9 98.7 97.2 99.2
— — — —
— — — —
0.8 0.3 — —
5.1 1.0 2.5 0.8
0.12 — 0.25 —
— — — —
— — — —
Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.292, (1984).
©2001 CRC Press LLC
4.1 Composition L Page 141 Wednesday, December 31, 1969 17:00
Table 57. COMPOSITION
RANGES FOR WROUGHT ALUMINUM ALLOYS (SHEET 3 OF 3)
AA
Composition (%)
Number
Al
Si
Cu
Mn
Mg
Cr
Zn
Other
6005 6009 6010 6061
98.7 97.7 97.3 97.9
0.8 0.8 1.0 0.6
— 0.35 0.35 0.28
— 0.5 0.5 —
0.5 0.6 0.8 1.0
— — — 0.2
— — — —
— — — —
6063 6066 6070 6101
98.9 95.7 96.8 98.9
0.4 1.4 1.4 0.5
— 1.0 0.28 —
— 0.8 0.7 —
0.7 1.1 0.8 0.6
— — — —
— — — —
— — — —
6151 6201 6205
98.2 98.5 98.4
0.9 0.7 0.8
— — —
— — 0.1
0.6 0.8 0.5
0.25 — 0.1
— — —
— — 0.1Zr
7049 7075
88.2 90.0
— —
1.5 1.6
— —
2.5 2.5
0.15 0.23
7.6 5.6
— —
Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.292, (1984).
©2001 CRC Press LLC
4.1 Composition L Page 142 Wednesday, December 31, 1969 17:00
Table 58. COMPOSITION OF
TIN AND TIN ALLOYS
Grade
Composition (% max)
ASTM B339
Designation
Class
Sn
Sb
As
Bi
Cd
Cu
Fe
Pb
Ni + Co
S
Zn
AAA
Electrolytic
Extra-high purity
99.98
0.008
0.0005
0.001
0.001
0.002
0.005
0.010
0.005
0.002
0.001
AA
Electrolytic
High purity
99.95
0.02
0.01
0.01
0.01
0.02
0.01
0.02
0.01
0.01
0.005
A
A. Straits
High purity; commercial
99.80
0.04
0.05
0.015
0.001
0.04
0.015
0.05
0.01
0.01
0.005
B
B
General purpose
99.80
—
0.05
—
—
—
—
—
—
—
—
C
C
Intermediate grade
99.65
—
—
—
—
—
—
—
—
—
—
D
D
Lower intermediate grade
99.50
—
—
—
—
—
—
—
—
—
—
E
E
Common
99.00
—
—
—
—
—
—
—
—
—
—
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p488, (1993).
©2001 CRC Press LLC
4.1 Composition L Page 143 Wednesday, December 31, 1969 17:00
Table 59. COMPOSITIONS OF
ACI HEAT-RESISTANT CASTING ALLOYS (SHEET 1 OF 2) Composition (%) †
ACI Designation
UNS Number
HC HD HE HF
J92605 J93005 J93403 J92603
HH HI HK HL HN HP HT HU
ASTM specification
*
C
Cr
Ni
Si (max)
Mn
P&S
Mb
A297, A608 A297, A608 A297, A608 A297, A608
0.50 max 0.50 max 0.20 to 0.50 0.20 to 0.40
26 to 30 26 to 30 26 to 30 19 to 23
4 max 4 to 7 8 to 11 9 to 12
2.00 2.00 2.00 2.00
1 1.5 2 2
0.04 max 0.04 max 0.04 max 0.04 max
0.5 max 0.5 max 0.5 max 0.5 max
J93503 J94003 J94224 J94604
A297, A608 A297, A567, A608 A297, A351, A567, A608 A297, A608
0.20 to 0.50 0.20 to 0.50 0.20 to 0.60 0.20 to 0.60
24 to 28 26 to 30 24 to 28 28 to 32
11 to 14 14 to 18 18 to 22 18 to 22
2.00 2.00 2.00 2.00
2 2 2 2
0.04 max 0.04 max 0.04 max 0.04 max
0.5 max 0.5 max 0.5 max 0.5 max
J94213 — J94605 —
A297, A608 A297 A297,A351,A567,A608 A297, A608
0.20 to 0.50 0.35 to 0.75 0.35 to 0.75 0.35 to 0.75
19 to 32 24 to 28 13 to17 17 to 21
23 to 27 33 to 37 33 to37 37 to 41
2.00 2.00 2.50 2.50
2 2 2 2
0.04 max 0.04 max 0.04 max 0.04 max
0.5 max 0.5 max 0.5 max 0.5 max
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p384, (1993).
©2001 CRC Press LLC
Other
0.2 N max
4.1 Composition L Page 144 Wednesday, December 31, 1969 17:00
Table 59. COMPOSITIONS OF
ACI HEAT-RESISTANT CASTING ALLOYS (SHEET 2 OF 2) Composition (%) †
ACI Designation
UNS Number
HW HX
— —
ASTM specification A297, A608 A297, A608
*
C
Cr
Ni
Si (max)
Mn
P&S
Mb
0.35 to 0.75 0.35 to 0.75
10 to 14 15 to 19
58 to 62 64 to 68
2.50 2.50
2 2
0.04 max 0.04 max
0.5 max 0.5 max
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p384, (1993). *
ASTM designations are same as ACI designations.
†
Rem Fe in all compositions.
©2001 CRC Press LLC
Other
4.1 Composition L Page 145 Wednesday, December 31, 1969 17:00
Table 60. COMPOSITION OF
ZINC DIE CASTING ALLOYS Composition (% max)
Alloy
Form
Cu
Al
Mg
Pb
Cd
Sn
Fe
Others
Zn
AG40A AC41A Alloy 7
Ingot Die castings Ingot
0.10 0.25 to 0.75 0.75 to 1.25
3.9 to 4.3 3.5 to 4.3 3.9 to 4.3
0.025 to 0.05 0.020 to 0.05(a) 0.03 to 0.06
0.004 0.005 0.004
0.003 0.004 0.003
0.002 0.003 0.002
0.075 0.100 0.075
Ni 0.02, Cr 0.02, Si 0.035, Mn 0.5 Ni 0.02, Cr 0.02, Si 0.035, Mn 0.5 Ni 0.02, Cr 0.02, Si 0.035, Mn 0.5
rem rem rem
ILZRO 16
Die castings Die castings
0.75 to 1.25 0.25
3.5 to 4.3 3.5 to 4.3
0.03 to 0.08(a) 0.010 to 0.02
0.005 0.0020
0.004 0.0020
0.003 0.0010
0.100 0.050
rem rem
Die castings
1.0 to 1.5
0.01 to 0.04
—
—
—
—
Ni 0.02, Cr 0.02, Si 0.035, Mn 0.5 — Ti 0.15–0.25, Cr 0.10–0.20, Ti + Cr 0.30–0.40
(a) Magnesium content may be as low as 0.015% provided that lead, cadmium and tin contents do not exceed 0.003. 0.003 and 0.001%, respectively. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p490, (1993).
©2001 CRC Press LLC
rem
4.1 Composition L Page 146 Wednesday, December 31, 1969 17:00
Table 61. COMPOSITIONS OF WROUGHT (SHEET 1 OF 2)
SUPERALLOYS
Composition (%) Alloy
UNS number
Cr
Ni
Co
Mo
W
Nb
Ti
Al
Fe
C
Other
Astroloy D–979 IN 102 Inconel 706
— N09979 N06102 N09706
15.0 15.0 15.0 16.0
56.5 45.0 67.0 41.5
15.0 — — —
5.25 4.0 2.9 —
— 4.0 3.0 —
— — 2.9 —
3.5 3.0 0.5 1.75
4.4 1.0 0.5 0.2
<0.3 27.0 7.0 37.5
0.06 0.05 0.06 0.03
0.03 B; 0.06 Zr 0.01 B 0.005 B; 0.02 Mg; 0.03 Zr 2.9(Nb+Ta); 0.15 Cu max
Inconel 718 Inconel 751 Inconel X750 M252
N07718 — N07750 N07252
19.0 15.5 15.5 19.0
52.5 72.5 73.0 56.5
— — — 10.0
3.0 — — 10.0
— — — —
5.1 1.0 1.0 —
0.9 2.3 2.5 2.6
0.5 1.2 0.7 1.0
18.5 7.0 7.0 <0.75
0.08 max 0.05 0.04 0.15
0.15 Cu max 0.25 Cu max 0.25 Cu max 0.005 B
Nimonic 80A Nimonic 90 Nimonic 95 Nimonic 100
N07080 N07090 — —
19.5 19.5 19.5 11.0
73.0 55.5 53.5 56.0
1.0 18.0 18.0 20.0
— — — 5.0
— — — —
— — — —
2.25 2.4 2.9 1.5
1.4 1.4 2.0 5.0
1.5 1.5 5.0 max 2.0 max
0.05 0.06 0.15 max 0.30 max
0.10 Cu max — +B; +Zr +B; +Zr
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p382-383, (1993).
©2001 CRC Press LLC
4.1 Composition L Page 147 Wednesday, December 31, 1969 17:00
Table 61. COMPOSITIONS OF WROUGHT (SHEET 2 OF 2)
SUPERALLOYS
Composition (%) Alloy
UNS number
Cr
Ni
Co
Mo
W
Nb
Ti
Al
Fe
C
Other
Nimonic 105 Nimonic 115 Nimonic 263 Pyromet 860
— — — —
15.0 15.0 20.0 13.0
54.0 55.0 51.0 44.0
20.0 15.0 20.0 4.0
5.0 4.0 5.9 6.0
— — — —
— — — —
1.2 4.0 2.1 3.0
4.7 5.0 0.45 1.0
— 1.0 0.7 max 28.9
0.08 0.20 0.06 0.05
0.005 B 0.04 Zr — 0.01 B
René 41 René 95 Udimet 500 Udimet 520
N07041 — N07500 —
19.0 14.0 19.0 19.0
55.0 61.0 48.0 57.0
11.0 8.0 19.0 12.0
10.0 3.5 4.0 6.0
— 3.5 — 1.0
— 3.5 — —
3.1 2.5 3.0 3.0
1.5 3.5 3.0 2.0
<0.3 <0.3 4.0 max —
0.09 0.16 0.08 0.08
0.01 B 0.01 B; 0.05 Zr 0.005 B 0.005 B
Udimet 700 Udimet 710 Unitemp AF2–1DA Waspaloy
— — — N07001
15.09 18.0 12.0 19.5
53.0 55.0 59.0 57.0
18.5 14.8 10.0 13.5
5.0 3.0 3.0 4.3
— 1.5 6.0 —
— — — —
3.4 5.0 3.0 3.0
4.3 2.5 4.6 1.4
<1.0 — <0.5 2.0 max
0.07 0.07 0.35 0.07
0.03 B 0.01 B 1.5 Ta; 0.015 B; 0.1 Zr 0.006 B; 0.09 Zr
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p382-383, (1993).
©2001 CRC Press LLC
4.1 Composition L Page 148 Wednesday, December 31, 1969 17:00
Table 62. TYPICAL
COMPOSITION OF GLASS -CERAMICS Typical composition (wt %)
Glass–Ceramic
SiO2
Li2O
Al2O3
MgO
Li2O-Al2O3-SiO2 system MgO-Al2O3-SiO2 system Li2O-MgO-SiO2 system Li2O-ZnO-SiO2 system
74 65 73 58
4 — 11 23
16 19 — —
— 9 7 —
ZnO
B 2 O3
(nucleating agent)
P 2 O5 (nucleating agent)
— — — 16
— — 6 —
6 7 — —
— — 3 3
TiO2
Source: data compiled by J.S. Park from P.C. McMillan, Glass-Ceramics, 2nd edition, Academic Press, (1979).
©2001 CRC Press LLC
Shackelford, James F. & Alexander, W. “Phase Diagram Sources” Materials Science and Engineering Handbook Ed. James F. Shackelford & W. Alexander Boca Raton: CRC Press LLC, 2001
5.0 Phase Diagrams Page 149 Wednesday, December 31, 1969 17:00
CHAPTER 3
Phase Diagram Sources
List of Tables
Phase Diagram Sources
©2001 CRC Press LLC
149
5.1 Phase Diagrams Page 150 Wednesday, December 31, 1969 17:00
Phase Diagram Sources
Phase Diagrams are especially useful tools for the field of materials science and engineering. In the last decade, a substantial effort has been made within the materials community to provide a comprehensive set of accurate phase equilibria information. Cooperative efforts involving academia, industry, and government have been coordinated through the professional societies, ASM International and the American Ceramic Society. As a result, the following references are available and new updates will become available on a regular basis.
Table 63. PHASE Society
DIAGRAM SOURCES Source
American Ceramic Society
Phase Diagrams for Ceramists, Vols. 1-12, American Ceramic Society, Westerville, Ohio, 1964, 1969, 1975, 1981, 1983, 1987, 1989, 1989, 1992, 1994, 1995, and 1996.
ASM International
Binary Alloy Phase Diagrams, Second Edition, Vols. 1, 2 and 3, T.B. Massalski, et.al., ed., ASM International, Materials Park, Ohio, 1990.
ASM International
ASM Handbook, Vol. 3, ASM International, Materials Park, Ohio, 1992.
©2001 CRC Press LLC
150
CRC Handbook of Materials Science & Engineering
Shackelford, James F. & Alexander, W. “Thermodynamic and Kinetic Data” Materials Science and Engineering Handbook Ed. James F. Shackelford & W. Alexander Boca Raton: CRC Press LLC, 2001
6.0 Thermodynamics Page 151 Wednesday, December 31, 1969 17:00
CHAPTER 4
List of Tables
Thermodynamic and Kinetic Data
Bond Strengths Bond Strengths in Diatomic Molecules Bond Strengths of Polyatomic Molecules Solubility of Copper and Copper Alloys Heat of Formation of Inorganic Oxides Phase Change Phase Change Thermodynamic Properties for The Elements Phase Change Thermodynamic Properties of Oxides Melting Point Melting Points of the Elements Melting Points of Elements and Inorganic Compounds Melting Points Of Ceramics Heat of Fusion & Sublimation Heat of Fusion For Elements and Inorganic Compounds Heats of Sublimation of Metals and Their Oxides Thermodynamic Coefficients Key to Tables of Thermodynamic Coefficients Thermodynamic Coefficients for Selected Elements Thermodynamic Coefficients for Oxides Entropy Entropy of the Elements
©2001 CRC Press LLC
151
6.0 Thermodynamics Page 152 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data List of Tables (Continued)
Vapor Pressure Vapor Pressure of the Elements at Very Low Pressures Vapor Pressure of the Elements at Moderate Pressures Vapor Pressure of the Elements at High Pressures Vapor Pressure of Elements and Inorganic Compounds Diffusion Values of The Error Function Diffusion in Metallic Systems Diffusion of Metals into Metals Diffusion in Semiconductors
©2001 CRC Press LLC
152
CRC Handbook of Materials Science & Engineering
6.1 Thermodynamics Page 153 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 64. BOND
STRENGTHS IN DIATOMIC MOLECULES * (SHEET 1 OF 18) kcal • mol-1
Molecule H–H H–D D–D H–Li
104.207 105.030 106.010 56.91
± 0.001 ± 0.001 ± 0.001 ± 0.01
H–Be H–B H–C H–N
54 79 80.9 75
H–O H–F H–Na H–Mg
102.34 135.9 48 47
± 0.30 ± 0.3 ±5 ± 12
H–Al H–Si H–P H–S
68 71.4 82 82.3
±2 ± 1.2 ±7 ± 2.9
H–Cl H–K H–Ca H–Cr
103.1 43.8 40.1 67
H–Mn H–Ni H –Cu H–Zn
56 61 67 20.5
±7 ±7 ±2 ± 0.5
H –Ga H–Ge H–As H–Se
68 76.8 65 73
±5 ± 0.2 ±3 ±1
±1 ±4
± 3.5 ± 12
To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–204.
©2001 CRC Press LLC
Shackelford & Alexander
153
6.1 Thermodynamics Page 154 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 64. BOND
STRENGTHS IN DIATOMIC MOLECULES * (SHEET 2 OF 18) kcal • mol-1
Molecule H–Br H–Rb H–Sr H–Ag
87.4 40 39 59
± 0.5 ±5 ±2 ±1
H–Cd H–In H–Sn H–Te
16.5 59 63 64
± 0.1 ±2 ±1 ±1
H–I H–Cs H–Ba H–Yb
71.4 42.6 42 38
± 0.2 ± 0.9 ±4 ±1
H–Pt H–Au H–Hg H–Ti
84 75 9.5 45
±9 ±3
H–Pb H–Bi Li–Li Li–O
42 59 24.55 78
±5 ±7 ± 0.14 ±6
Li– F Li–Cl Li–Br Li–I
137.5 111.9 100.2 84.6
±1 ±2 ±2 ±2
Be–Be Be–0 Be–F Be–S
17 98 136 89
±7 ±2 ± 14
±2
To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–204.
©2001 CRC Press LLC
154
CRC Handbook of Materials Science & Engineering
6.1 Thermodynamics Page 155 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 64. BOND
STRENGTHS IN DIATOMIC MOLECULES * (SHEET 3 OF 18) kcal • mol-1
Molecule Be–Cl Be–Au B–B B–N
92.8 ~ 67 ~ 67 93
± 2.2
B–0 B–F B–S B–Cl
192.7 180 138.8 119
± 1.2 ±3 ± 2.2
B–Se B–Br B–Ru B–Rh
110 101 107 114
±4 ±5 ±5 ±5
B–Pd B–Te B–Ce B–Ir
79 85 ~ 100 123
±5 ±5
B–Pt B–Au B–Th C–C
114 82 71 144
±4 ±4 ±5
C–N C–0 C–F C–Si
184 257.26 128 104
±1 ± 0.77 ±5 ±5
C–P C–S C–Cl C–Ti
139 175 93 ~128
± 23 ±7
±5 ± 12
±4
To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–204.
©2001 CRC Press LLC Shackelford & Alexander
155
6.1 Thermodynamics Page 156 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 64. BOND
STRENGTHS IN DIATOMIC MOLECULES * (SHEET 4 OF 18) kcal • mol-1
Molecule C–V C–Ge C–Se C–Br
133 110 139 67
±5 ± 23 ±5
C–Ru C–Rh C–I C–Ce
152 139 50 109
±3 ±2 ±5 ±7
C–Ir C–Pt C–U N–N
149 146 111 226.8
±3 ±2 ±7 ± 1.5
N–O N–F N–Al N–Si
150.8 62.6 71 105
± 0.2 ± 0.8 ± 23 ±9
N–P N–S N–Cl N–Ti
148 ~ 120 93 111
±5 ±6 ± 12
N–As N–Se N–Br N–Sb
116 105 67 72
± 23 ± 23 ±5 ± 12
N–I N–Xe N–Th N–U
~.38 55 138 127
±1 ±1
To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–204.
©2001 CRC Press LLC
156
CRC Handbook of Materials Science & Engineering
6.1 Thermodynamics Page 157 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 64. BOND
STRENGTHS IN DIATOMIC MOLECULES * (SHEET 5 OF 18) kcal • mol-1
Molecule O–O O–F O–Na O–Mg
118.86 56 61 79
± 0.04 ±9 ±4 ±7
O–Al O–Si
116 184
±5 ±3
O–P O–S
119.6 124.69
±3 ± 0.03
O–Cl O–K O–Ca O–Sc
64.29 57 84 155
± 0.03 ±8 ±7 ±5
O–Ti O–V O–Cr O–Mn
158 154 110 96
±8 ±5 ± 10 ±8
O–Fe O–Co O–Ni O–Cu
96 88 89 82
±5 ±5 ±5 ± 15
O–Zn O–Ga O–Ge O–As
≤ 66 68 158.2 115
± 15 ±3 ±3
O–Se O–Br O–Rb O–Sr
101 56.2 (61) 93
± 0.6 ± 20 ±6
To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–204.
©2001 CRC Press LLC Shackelford & Alexander
157
6.1 Thermodynamics Page 158 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 64. BOND
STRENGTHS IN DIATOMIC MOLECULES * (SHEET 6 OF 18) kcal • mol-1
Molecule O–Y O–Zr O–Nb O–Mo
162 181 189 115
±5 ± 10 ± 10 ± 12
O–Ru O–Rh O–Pd O–Ag
115 90 56 51
± 15 ± 15 ±7 ± 20
O–Cd O–In O–Sn O–Sb
≤ 67 ≤ 77 127 89
±2 ± 20
O–Fe O–I O–Xe O–Cs
93.4 47 9 67
±2 ±7 ±5 ±8
O–Ba O–La O–Ce O–Pr
131 188 188 183.7
±6 ±5 ±6
O–Nd O–Sm O–Eu O–Gd
168 134 130 162
±8 ±8 ± 10 ±6
O–Tb O–Dy O–Ho O–Er
165 146 149 147
±8 ± 10 ± 10 ± 10
To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–204.
©2001 CRC Press LLC
158
CRC Handbook of Materials Science & Engineering
6.1 Thermodynamics Page 159 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 64. BOND
STRENGTHS IN DIATOMIC MOLECULES * (SHEET 7 OF 18) kcal • mol-1
Molecule O–Tm O–Yb O–Lu O–Hf
122 98 159 185
± 15 ± 15 ±8 ± 10
O–Ta O–W O–Os O–Ir
183 156 < 142 ≤ 94
± 15 ±6
O–Pt O–Pb O–Bi O–Th
83 90.3 81.9 192
±8 ± 1.0 ± 1.5 ± 10
O–U O–Np O–Pu O–Cm
182 172 163 ≤ 134
±8 ±7 ± 15
F–F F–Na F–Mg F–Al
37.5 114 110 159:
± 2.3 ±1 ±1 ±3
F–Si F–P F–Cl F–K
116 105 59.9 118.9
± 12 ± 23 ± 0.1 ± 0.6
F–Ca F–Sc F–Ti F–Cr
125 141 136 104.5
±5 ±3 ±8 ± 4.7
To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–204.
©2001 CRC Press LLC Shackelford & Alexander
159
6.1 Thermodynamics Page 160 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 64. BOND
STRENGTHS IN DIATOMIC MOLECULES * (SHEET 8 OF 18) kcal • mol-1
Molecule F–Mn F–Ni F–Cu F–Ga
101.2 89 88 138
± 3.5 ±4 ±9 ±4
F–Ge F–Br F–Rb F–Sr
116 55.9 116.1 129.5
±5
F–Y Mg–I Mg–Au Al–Al
144 ~.68 59 44
Al–P Al–S Al–Cl Al–Br
52 79 119.0 103.1
Al–I Al–Au Al–U Si–Si
88 65 78 76
±7 ±5
Si–S Si–Cl Si–Fe Si–Co
148 105 71 66
±3 ± 12 ±6 ±4
Si–Ni Si–Ge Si–Se Si–Br
76 72 127 82
±4 ±5 ±4 ± 12
±1 ± 1.6 ±5 ± 23
±3 ±1
To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–204.
©2001 CRC Press LLC
160
CRC Handbook of Materials Science & Engineering
6.1 Thermodynamics Page 161 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 64. BOND
STRENGTHS IN DIATOMIC MOLECULES * (SHEET 9 OF 18) kcal • mol-1
Molecule Si–Ru Si–Rh Si–Pd Si–Te
95 95 75 121
±5 ±5 ±4 ±9
Si–Ir Si–Pt Si–Au P–P
110 120 75 117
±5 ±5 ±3 ±3
F–Ag F–Cd F–In F–Sn
84.7 73 121 111.5
± 3.9 ±5 ±4 ±3
F–Sb F–I F–Xe F–Cs
105 67? 11 119.6
± 23
F–Ba F–Nd F–Sm F–Eu
140.3 130 126.9 126.1
± 1.6 ±3 ± 4.4 ± 4.4
F–Gd F–Hg F–Ti F–Pb
141. 31 106.4 85
± 46.5 ±9 ± 4.6 ±2
F–Bi F–Pu Na–Na Na–Cl
62 129 18.4 97.5
±1
±7 ± 0.5
To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–204.
©2001 CRC Press LLC Shackelford & Alexander
161
6.1 Thermodynamics Page 162 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 64. BOND
STRENGTHS IN DIATOMIC MOLECULES * (SHEET 10 OF 18) kcal • mol-1
Molecule Na–K Na–Br Na–Rb Na–I
15.2 86.7 14 72.7
± 0.7 ±1 ±1 ±1
Mg–Mg Mg–S Mg–Cl Mg–Br
8? 56? 76 75
±3 ± 23
P–S P–Ga P–W P–Th
70 56 73 90
S–S S–Ca S–Sc S–Mn
101.9 75 114 72
± 2.5 ±5 ±3 ±4
S–Fe S–Cu S–Zn S–Ge
78 72 49 131.7
± 12 ±3 ± 0.6
S–Se S–Sr S–Y S–Cd
91 75 127 48
±5 ±5 ±3
S–In S–Sn S–Te S–Ba
69 111 81 96
±4 ±1 ±5 ±5
±1
To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–204.
©2001 CRC Press LLC
162
CRC Handbook of Materials Science & Engineering
6.1 Thermodynamics Page 163 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 64. BOND
STRENGTHS IN DIATOMIC MOLECULES * (SHEET 11 OF 18) kcal • mol-1
Molecule S–La S–Ce S–Pr S– Nd
137 137 122.7 113
±3 ±3
S–Eu S–Gd S–Ho S–Lu
87 126 102 121
±4 ±4 ±4 ±4
S–Au S–Hg S–Pb S–Bi
100 51 82.7 75.4
±6 ± 0.4 ± 1.1
S–U Cl–Cl Cl–K Cl–Ca
135 58.066 101.3 95
±2 ± 0.001 ± 0.5 ±3
Cl–Sc Cl–Ti Cl–Cr Cl–Mn
79 26 87.5 86.2
± 2 ± 5.8 ± 2.3
Cl–Fe Cl–Ni Cl–Cu Cl–Zn
84? 89 84 54.7
±5 ±6 ± 4.7
Cl–Ga Cl–Ge Cl–Br Cl–Rb
114.5 82? 52.3 100.7
± 0.2 ±1
±4
To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–204.
©2001 CRC Press LLC Shackelford & Alexander
163
6.1 Thermodynamics Page 164 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 64. BOND
STRENGTHS IN DIATOMIC MOLECULES * (SHEET 12 OF 18) kcal • mol-1
Molecule Cl–Sr Cl–Y Cl–Ag Cl–Cd
97 82 75 49.9
±3 ± 23 ±9
Cl–In CI–Sn Cl–Sb Cl–I
103.3 75? 86 50.5
± 12 ± 0.1
Cl–Cs Cl–Ba Cl–Au Cl–Hg
106.2 106 82 24
± 1 ±3 ± 2 ± 2
Cl–Ti Cl–Pb Cl–Bi Cl–Ra
89.0 72 72 82
± 0.5 ±7 ±1 ± 18
Ar–Ar K–K K–Br K–I
0.2 12.8 90.9 76.8
± 0.5 ± 0.5
Ca–I Ca–Au Sc–Sc Ti–Ti
70 18 25.9 34
± 23
V–V Cr–Cr Cr –Cu Cr–Ge
58 <37 37 41
±5
±5 ±5
±5 ±7
To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–204.
©2001 CRC Press LLC
164
CRC Handbook of Materials Science & Engineering
6.1 Thermodynamics Page 165 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 64. BOND
STRENGTHS IN DIATOMIC MOLECULES * (SHEET 13 OF 18) kcal • mol-1
Molecule Cr–Br Cr–I Cr–Au Mn–Mn
78.4 68.6 51.3 4
±5 ± 5.8 ± 3.5 ±3
Mn–Se Mn–Br Mn–I Mn–Au
48 75.1 67.6 44
±3 ± 23 ± 2.3 ±3
Fe–Fe Fe–Ge Fe–Br Fe–Au
24 50 59 45
±5 ±7 ± 23 ±4
Co–Co Co–Cu Co–Ge Co–Au
40 39 57 51
±6 ±5 ±6 ±3
Ni–Ni Ni–Cu Ni–Ge Ni–Br
55.5 48 67.3 86
±5 ±5 ±4 ±3
Ni–I Ni–Au Cu–Cu Cu–Ge
70 59 46.6 49
±5 ±5 ± 2.2 ±5
Cu–Se Cu–Br Cu–Ag Cu–Sn
70 79 41.6 42.3
±9 ±65 ± 2.2 ±4
To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–204.
©2001 CRC Press LLC Shackelford & Alexander
165
6.1 Thermodynamics Page 166 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 64. BOND
STRENGTHS IN DIATOMIC MOLECULES * (SHEET 14 OF 18) kcal • mol-1
Molecule Cu–Te Cu–I Cu–Au Zn–Zn
42 47? 55.4 7
±9
Zn–Se Zn–Te Zn–I Ga–Ga
33 49? 33 3
±3
Ga–As Ga–Br Ga–Ag Ga–Te
50.1 101 4 60
± 0.3 ±4 ±3 ± 6
Ga–I Ga–Au Ge–Ge Ge–Se
81 51 65.8 114
±2 ± 23 ±3 ±
Ge–Br Ge–Te Ge–Au As–As
61 93 70 91.7
±7 ±2 ± 23
As–Se Se–Se Se–Cd Se–in
23 79.5 ~75 59
Se–Sn Se–Te Se–La Se–Nd
95.9 64 114 92
± 2.2
±7 ±3
± 0.1 ±4 ± 1.4 ±2 ±4 ±4
To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–204.
©2001 CRC Press LLC
166
CRC Handbook of Materials Science & Engineering
6.1 Thermodynamics Page 167 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 64. BOND
STRENGTHS IN DIATOMIC MOLECULES * (SHEET 15 OF 18) kcal • mol-1
Molecule Se–Eu Se–Gd Se–Ho Se–Lu
72 103 80 100
±4 ±4 ±4 ±4
Se–Pb Se–Bi Bi–Br Br–Rb
72.4 67.0 46.336 90.4
±1 ± 1.5 ± 0.001 ±1
Br–Ag Br–Cd Br–In Bi–Sn
70 ~38 93 47
±7
Br–Sb Br–I Br–Cs Br–Hg
75 42.8 96.5 17.3
± 14 ± 0.1 ±1
Br–Ti Br–Pb Br–Bi Rb–Rb
79.8 59 63.9 12.2
± 0.4 ±9 ±1
Rb–I Sr–Au Y–Y Y–La
76.7 63 38.3 48.3
±1 ± 23
Pd–Pd Pd–Au Ag–Ag Ag–Sn
33? 34.2 41 32.5
± 23
±5 ±2 ±5
To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–204.
©2001 CRC Press LLC
Shackelford & Alexander
167
6.1 Thermodynamics Page 168 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 64. BOND
STRENGTHS IN DIATOMIC MOLECULES * (SHEET 16 OF 18) kcal • mol-1
Molecule Ag–Te Ag–I Ag–Au Cd–Cd
70 56 48.5 2.7
± 23 ±7 ± 2.2 ± 0.2
Cd–I In–In In–Sb In–Te
33 23.3 36.3 52
±5 ± 2.5 ± 2.5 ±4
In–I Sn–Sn Sn–Te Sn–Au
80 46.7 76 58.4
±4 ±1 ±4
Sb–Sb Sb–Te Sb–Bi Te–Te
71.5 61 60 63.2
± 1.5 ±4 ±1 ± 0.2
Te–La Te–Nd Te–Eu Te–Gd
91 73 58 82
±4 ±4 ±4 ±4
Te–Ho Te–Lu Te–Au Te–Pb
62 78 59 60
±4 ±4 ± 16 ±3
Te–Bi I–I I–Cs I–Hg
56 36.460 82.4 9
±3 ± 0.002 ±1
To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–204.
©2001 CRC Press LLC
168
CRC Handbook of Materials Science & Engineering
6.1 Thermodynamics Page 169 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 64. BOND
STRENGTHS IN DIATOMIC MOLECULES * (SHEET 17 OF 18) kcal • mol-1
Molecule I–Ti I–Pb I–Bi Xe–Xe
65 47 52 ~ 0.7
±2 ±9 ±1
Cs–Cs Ba–Au La–Ld La–Au
11.3 38 58.6 80
Ce–Ce Ce–Au Pr–Au Nd–Au
66 76 74 70
±1 ±4 ±5 ±6
Au–Au Au–Pb Au–U Hg–Hg
52.4 31 76 4.1
± 2.2 ± 23 ±7 ± 0.5
Hg–Tl Tl–Tl Pb–Pb Pb–Bi
1 15? 24 32
±5 ±5
± 14 ±5
To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–204.
©2001 CRC Press LLC Shackelford & Alexander
169
6.1 Thermodynamics Page 170 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 64. BOND
STRENGTHS IN DIATOMIC MOLECULES * (SHEET 18 OF 18) kcal • mol-1
Molecule Bi–Bi Po–Po At–At Th–Th
45 44.4 19 <69
±2 ± 2.3
To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–204. *
Notes for Table of Bond Strengths in Diatomic Molecules The strength of a chemical bond, D (R–X), often known as the bond dissociation energy, is defined as the heat of the reaction: RX –> R + X. It is given by: D(R–X) = ∆Ηf˚(R) + ∆Hf˚(X) – ∆Hf˚(RX). Some authors list bond strengths for 0K, but here the values for 298K are given because more thermodynamic data are available for this temperature. Bond strengths, or bond dissociation energies, are not equal to, and may differ considerable from, mean bond energies derived solely from thermochemical data on molecules and atoms. The values in this table have usually been measured spectroscopically or by mass spectrometric analysis of hot gases effusing from a Knudsen cell.
©2001 CRC Press LLC
170
CRC Handbook of Materials Science & Engineering
6.1 Thermodynamics Page 171 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 65. BOND
STRENGTHS OF POLYATOMIC MOLECULES * (SHEET 1 OF 7) Kcal • mol -1
Molecule H–CH H–CH2 H–CH3 H–ethynyl
Value
Error
102
±2
110 104
±2 ±1
128
±5
H–vinyl H–C2H5 H–propargyl H–allyl
≥ 108
±2
98
±1
93.9 89
± 1.2 ±1
H–cyclopropyl H–n–C3H7
100.7
±1
98 95
±1 ±1
96.5
±1
97.4 83
± 1.6 ±1
95 92
±1 ± 1.2
81.2 80 119
± 1.2 ±1 ±1
103.6
±1
103.9 104.7 88 90
±1 ±1 ±5 ±2
H–i–C3H7 H–cyclobutyl H–cyclopropycarbinyl H–methdllyl H–s–C4H9 H–t–C4H9 H–cyclopentadien–1,3–yl–5 H–pentadien–1,4–yi–3 H–OH H–OCH3 H–OC2H5 H–OC(CH3)3 H–OC6H5 H–O2H To convert kcal to KJ, multiply by 4.184.
Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–213.
©2001 CRC Press LLC Shackelford & Alexander
171
6.1 Thermodynamics Page 172 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 65. BOND
STRENGTHS OF POLYATOMIC MOLECULES * (SHEET 2 OF 7) Kcal • mol -1
Molecule H–O2CCH3 H–O2CC2H3 H–O2Cn–C3H7 H–ONO H–ONO2 H–SH H–SCH H–SiH3 H–Si(CH3)3 BH3–BH3 HC=CH H2C=CH2 H3C–CH3 CH3–C(CH3)2CH:CH2 C6H5CH2–C2H5 C6H5CH(CH3)– CH3 C6H5CH2–n–C3H7 CH3–CH2CN CH3–C(CH3)2CN C6H5C(CH3 )(CN)–CH3 NC–CN C6H5CH2CO– CH2C6H5 C6H5CO– CF3 CH3CO– COCH3
Value
Error
112 110 103
±4 ±4 ±4
78.3
± 0.5
101.2
± 0.5
90 ≥ 88
±2
94
±3
90 35
±3
230
± 2
172
±2
88 69.4 69 71
±2
67 72.7 70.2 59.9
±2 ±2 ±2
128
±1
65.4 73.8 67.4
± 2.3
±2
To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–213.
©2001 CRC Press LLC
172
CRC Handbook of Materials Science & Engineering
6.1 Thermodynamics Page 173 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 65. BOND
STRENGTHS OF POLYATOMIC MOLECULES * (SHEET 3 OF 7) Kcal • mol -1
Molecule C6H5CH2– COOH C6H5CH2– O2CCH3 C6H5CO– COC6H5 C6H5CH2– O2CC6H5 (C6H5CH2)2CH–COOH CH2F–CH2F CF2=CF2 CF3–CF3 C6H5CH2–NH2 C6H5NH–CH3 C6H5CH2–NHCH3 C6H5N(CH2)–CH3 C6H5CH2–N(CH3)2 CF3–NF2 CH2 = N2 CH3N:N–CH3 C2H5N:N–C2H5 i –C3H7N:N–i –C3H7 n –C4H9N:N–n –C4H9 i –C4H9N:N–i –C4H9
Value
Error
68.1 67 66.4 69 59.4 88 76.3 96.9 71.9 67.7 68.7 65.2 60.9 65 ≤ 41.7 52.5
±2 ±3 ±2 ±1 ±1
±1 ± 2.5 ±1
50.0 47.5 50.0 49.0
To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–213.
©2001 CRC Press LLC Shackelford & Alexander
173
6.1 Thermodynamics Page 174 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 65. BOND
STRENGTHS OF POLYATOMIC MOLECULES * (SHEET 4 OF 7) Kcal • mol -1
Molecule s –C4H9N:N–s –C4H9 t –C4H9N:N–t –C4H9 C6H5CH2N:N–C6H5CH2 CF3N:N–CF3 C2H5–NO2 O=CO CH3–O2SCH3 Allyl–O2SCH3 C6H5CH2–O2SCH3 C6H5S–CH3 C6H5CH2–SCH3 F–CH3 Cl–CN Cl–COC6H5 Cl–CF3 Cl–CCl2F Cl–C2F5 Br–CH3 Br–CN Br–COC6H5 Br–CF3 Br–CBr3 Br–C2F5 Br –n –C3F
Value
Error
46.7 43.5 37.6 55.2 62 127.2
± 0.1
66.8 49.6 52.9 60 53.8 103
±3
97
±1
74 86.1 73
±3 ± 0.8 ±2
82.7 70.0
± 1.7 ± 1.2
83
±1
64.2 70.6 56.2 68.7 66.5
± 1.0 ± 1.8 ± 1.5 ± 2.5
To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–213.
©2001 CRC Press LLC
174
CRC Handbook of Materials Science & Engineering
6.1 Thermodynamics Page 175 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 65. BOND
STRENGTHS OF POLYATOMIC MOLECULES * (SHEET 5 OF 7) Kcal • mol -1
Molecule
Value
Error
I–CH3 1–norbornyl I–CN I–CF3
56.3
±1
62.5 73
± 2.5 ±1
53.5
±2
CH3–Ga(CH3)2
59.5 54.4 57.5 43.7
±1
47.1 40.7 68 36.4
± 0.6
CH3–CdCH3 CH3–HgCH3 C2H5–HgC2H5 n –C3H7–Hg n –C3H7 i –C3H7–Hg i –C3H7 C6H5–HgC6H5 CH3 –Tl(CH3)2 CH3–Pb(CH3)3 NH2–NH2 NH2–NHCH3 NH2 –N(CH3)2 NH2 –NHC6H5 NO–NO2 NO2–NO2 NF2–NF2 O–N2 O–NO HO–N:CHCH3 Cl–NF2
49.4 70.8 64.8 62.7 51.1 9.5 12.9 21
±1 ±2
± 0.5 ± 0.5 ±1
40 73
49.7 ≈ 32
To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–213.
©2001 CRC Press LLC Shackelford & Alexander
175
6.1 Thermodynamics Page 176 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 65. BOND
STRENGTHS OF POLYATOMIC MOLECULES * (SHEET 6 OF 7) Kcal • mol -1
Molecule HO–OH CH3O–OCH3 HO–OC(CH3)3 C2H5O–OC2H5 n –C3H7O–O n –C3H7 i –C3H7O–O i –C3H7 s –C4H9O–O s –C4H9 t –C4H9O–O t –C4H9 (CH3)3CCH2O–OCH2C(CH3)3 O–O2CIF CH3CO2–O2CCH3 C2H5CO2–O2CC2H5 n –C3H7CO2–O2Cn –C3H7 O–SO F–OCF3 Cl–OH O–ClO Br–OH I–OH ClO3–ClO4
Value
Error
51
±1
36.9 42.5 37.3
±1 ± 1.2
37.2 37.0 36.4 37.4
±1 ±1 ±1 ±1
36.4 58.4 30.4 30.4
±1
30.4
±2
±2 ±2
132
±2
43.5
± 0.5
60
±3
59 56 56
±3 ±3 ±3
58.4
To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–213.
©2001 CRC Press LLC
176
CRC Handbook of Materials Science & Engineering
6.1 Thermodynamics Page 177 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 65. BOND
STRENGTHS OF POLYATOMIC MOLECULES * (SHEET 7 OF 7) Kcal • mol -1
Molecule
Value
Error
SiH3–SiH3
130 122 119 81
±5 ±5 ±5 ±4
(CH3)3Si–Si(CH3)3
80.5
O = PF3 O = PCl3 O = PBr3
To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–213. *
The values refer to a temperature of 298 K and have mostly been determined by kinetic methods. Some have been calculated from formation of the species involved according to equations:
D(R–X) = ∆Hf˚ (R•) + ∆Hf˚(X•) – ∆Hf˚ (RX)
or
D(R–X) = 2∆Hf˚ (R•) – ∆Hf˚ (RR)
©2001 CRC Press LLC Shackelford & Alexander
177
6.2 Thermodynamics L Page 178 Wednesday, December 31, 1969 17:00
Table 66. SOLUBILITY OF
COPPER AND COPPER ALLOYS
Family
Wrought Alloys UNS Numbers
Principal Alloying Element
Solid Solubility at 20 °C (at. %)
Brasses Phosphor bronzes Aluminum bronzes
C20000, C30000, C40000, C66400 to C69800 C50000 C60600 to C64200
Zn Sn Al
37 9 19
Silicon bronzes Copper nickels, nickel silvers
C64700 to C66100 C70000
Si Ni
8 100
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p439, (1993).
©2001 CRC Press LLC
6.2 Thermodynamics L Page 179 Wednesday, December 31, 1969 17:00
Table 67. HEAT OF
FORMATION OF INORGANIC OXIDES (SHEET 1 OF 16)
Reaction 2 Ac(c) + 3/2 O2(g) = Ac2O3(c) 2 Al(c) + 1/2 O2(g) = Al2O(g) 2 Al(l) + 1/2 O2(g) = Al2O(g) Al(c) + 1/2 O2(g) = AlO(g) Al(l) + 1/2 O2(g) = AlO(g) 2 Al(c) + 3/2 O2(g) = Al2O3 (corundum) 2 Al(l) + 3/2 O2(g) = Al2O3 (corundum) 2 Sb(c) + 3/2 O2(g) = Sb2O3 (cubic) 2 Sb(c) + 3/2 O2(g) = Sb2O3 (orthorhombic) 2 As(c) + 3/2 O2(g) = As2O3 (orthorhombic) 2 As(c) + 3/2 O2(g) = As2O3 (monoclinic) 2 As(c) + 5/2 O2(g) = As2O5(c)
Temperature range of validity
∆H0
2.303a
b
c
I
298.16–1,000K 298.16–931.7K 931.7–2,000K 298.16–931.7K
–446,090 –31,660 –38,670 +10,740
–16.12 +14.97 +10.36 +5.76
– – – –
– – – –
+109.89 –72.74 –51.53 –37.61
931.7–2,000K 298.16–931.7K 931.7–2,000K 298.16–842K
+8,170 –404,080 –407,950 –169,450
+5.76 –15.68 –6.19 +6.12
– +2.18 –0.78 –6.01
– +3.935 +3.935 –0.30
–34.85 +123.64 +102.37 +52.21
298.16–903K 298.16–542K 298.16–586K 298.16–883K
–168,060 –154,870 –150,760 –217,080
+6.12 +29.54 +29.54 +12.32
–6.01 –21.33 –21.33 –4.65
–0.30 –0.30 –0.30 –0.50
+50.56 –8.83 –16.95 +80.50
The ∆Ho values are given in gram calories per mole. The a, b, and I values listed here make it possible for one to calculate the ∆F and ∆S values by use of the following equations:
∆Ft = ∆Ηo + 2.303aT log T + b x 10–3 T2 + c x l05 T–1 + IT ∆St = – a – 2.303a log T – 2b x 10–3T + c x l05 T–2 – I
Source: data from CRC Handbook of Materials Science, Vol I, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC
6.2 Thermodynamics L Page 180 Wednesday, December 31, 1969 17:00
Table 67. HEAT OF
FORMATION OF INORGANIC OXIDES (SHEET 2 OF 16)
Temperature range of validity
∆H0
2.303a
b
c
I
298.16–648K 648–977K 298.16–1,556K 298.16–544K
–134,590 –134,140 –144,220 –50,450
–7.60 –3.34 –1.91 –4.61
+0.87 –0.56 –0.46 –
+0.42 +0.42 +1.24 –
+45.76 +34.01 +30.64 +35.51
544–1,600K 298.16–544K 544–1,090K 298.16–723K
–52,920 –139,000 –142,270 –304,690
–4.61 –11.56 +2.30 +11.72
– +2.15 –3.25 –7.55
– –0.30 –0.30 +0.355
+40.05 +96.52 +67.55 +34.25
Ca(α) + 1/2 O2(g) = CaO(c)
298.16–723K 298.16–594K 594–1,038K 298.16–673K
–298,670 –62,330 –63,240 –151,850
+26.57 –2.05 +2.07 –6.56
–15.90 +0.71 –0.76 +1.46
–0.30 –0.10 –0.10 +0.68
–10.40 +29.17 +20.14 +43.93
Ca(β) + 1/2 O2(g) = CaO(c)
673–1,124K
–151,730
–4.14
+0.41
+0.68
+37.63
Reaction Ba(α) + 1/2 O2(g) = BaO(c) Ba(β) + 1/2 O2(g) = BaO(c) Be(c) + 1/2 O2(g) = BeO(c) Bi(c) + 1/2 O2(g) = BiO(c) Bi(l) + 1/2 O2(g) = BiO(c) 2 Bi(c) + 3/2 O2(g) = Bi2O3(c) 2 Bi(l) + 3/2 O2(g) = Bi2O3(c) 2 B(c) + 3/2 O2(g) = B2O(c) 2 B(c) + 3/2 O2(g) = B2O3(gl) Cd(c) + 1/2 O2(g) = CdO(c) Cd(l) + 1/2 O2(g) = CdO(c)
The ∆Ho values are given in gram calories per mole. The a, b, and I values listed here make it possible for one to calculate the ∆F and ∆S values by use of the following equations:
∆Ft = ∆Ηo + 2.303aT log T + b x 10–3 T2 + c x l05 T–1 + IT ∆St = – a – 2.303a log T – 2b x 10–3T + c x l05 T–2 – I
Source: data from CRC Handbook of Materials Science, Vol I, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC
6.2 Thermodynamics L Page 181 Wednesday, December 31, 1969 17:00
Table 67. HEAT OF
FORMATION OF INORGANIC OXIDES (SHEET 3 OF 16)
Temperature range of validity
∆H0
2.303a
b
c
I
298.16–2,000K 298.16–2,000K 298.16–1,048K
–25,400 –93,690 –435,600
+2.05 +1.63 –4.60
+0.27 –0.7 –
–1.095 –0.23 –
–28.79 –5.64 +92.84
1,048–1,900K 298.16–1,048K 1,048–2,000K 298.16–301.5K
–440,400 –245,490 –247,930 –75,900
–4.60 –6.42 +0.71 –
– +2.34 –0.66 –
– –0.20 –0.20 –
+97.42 +67.79 +51.73 +36.60
2 Cs(c) + 3/2 O2(g) = Cs2O3(c)
301.5–763K 763–963K 963–1,500K 298.16–301.5K
–76,900 –75,370 –113,790 –112,690
– –9.21 –23.03 –11.51
– – – –
– – – –
+39.92 +64.47 +145.60 +110.10
2 Cs(l) + 3/2 O2(g) = Cs2O3(c)
301.5–775K
–113,840
–12.66
–
–
+116.77
Reaction C(graphite) + 1/2 O2(g) = CO(g) C(graphite) + O2(g) = CO2(g) 2 Ce(c) + 3/2 O2(g) = Ce2O3(c) 2 Ce(l) + 3/2 O2(g) = Ce2O3(c) Ce(c) + O2(g) = CeO2(c) Ce(l) + O2(g) = CeO2(c) 2 Cs(c) + 1/2 O2(g) = Cs2O(c) 2 Cs(l) + 1/2 O2(g) = Cs2O(c) 2 Cs(l) + 1/2 O2(g) = Cs2O(l) 2 Cs(g) + 1/2 O2(g) = Cs2O(l)
The ∆Ho values are given in gram calories per mole. The a, b, and I values listed here make it possible for one to calculate the ∆F and ∆S values by use of the following equations:
∆Ft = ∆Ηo + 2.303aT log T + b x 10–3 T2 + c x l05 T–1 + IT ∆St = – a – 2.303a log T – 2b x 10–3T + c x l05 T–2 – I
Source: data from CRC Handbook of Materials Science, Vol I, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC
6.2 Thermodynamics L Page 182 Wednesday, December 31, 1969 17:00
Table 67. HEAT OF
FORMATION OF INORGANIC OXIDES (SHEET 4 OF 16)
Reaction 2 Cs(l) + 3/2 O2(g) = Cs2O3(l) 2 Cs(g) + 3/2 O2(g) = Cs2O3(l) Cl2(g) + 1/2 O2(g) = Cl2O(g) 1/2 Cl2(g) + 1/2 O2(g) = ClO(g) 2 Cl2(g) + 3/2 O2(g) = ClO(g) 2 Cr(c) + 3/2 O2(g) = Cr2O3(β) 2 Cr(l) + 3/2 O2(g) = Cr2O3(β) Cr(c) + O2(g) = CrO2 (c) Cr(c) + 3/2 O2(g) = CrO3(c) Cr(c) + 3/2 O2(g) = Cr2O3(l)
Co(α,β) + 1/2 O2(g) = CoO(c) Co(γ) + 1/2 O2(g) = CoO(c)
2 Cu(c) + 1/2 O2(g) = Cu2O(c) 2 Cu(l) + 1/2 O2(g) = Cu2O(c)
Temperature range of validity
∆H0
2.303a
b
c
I
775–963K 963–1,500K 298.16–2,000K
–110,740 –148,680 +17,770
–26.48 –39.14 –0.71
– – –0.12
– – +0.49
+152.70 +229.87 +16.81
298.16–1,000K 298.16–500K 298.16–1,823K 1,823–2,000K
+33,000 +37,740 –274,670 –278,030
– +5.76 –14.07 +2.33
– – +2.01 –0.35
– – +0.69 +1.57
0.24 +21.42 +105.65 +58.29
298.16–1,000K 298.16–471K 471–600K 298.16–1,400K
–142,500 –141,590 –141,580 –56,910
– –13.82 –32.24 +0.69
– – – –
– – – –
+42.00 +103.90 +153.14 +16.03
1,400–1,763K 298.16–1,357K 1,357–1,502K
–58,160 +10,550 –43,880
–1.15 –1.15 +8.47
– –1.10 –2.60
– –0.10 –0.10
+22.71 +21.92 –3.72
The ∆Ho values are given in gram calories per mole. The a, b, and I values listed here make it possible for one to calculate the ∆F and ∆S values by use of the following equations:
∆Ft = ∆Ηo + 2.303aT log T + b x 10–3 T2 + c x l05 T–1 + IT ∆St = – a – 2.303a log T – 2b x 10–3T + c x l05 T–2 – I
Source: data from CRC Handbook of Materials Science, Vol I, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC
6.2 Thermodynamics L Page 183 Wednesday, December 31, 1969 17:00
Table 67. HEAT OF
FORMATION OF INORGANIC OXIDES (SHEET 5 OF 16)
Temperature range of validity
∆H0
2.303a
b
c
I
2 Cu(l) + 1/2 O2(g) = Cu2O(l)
1,502–2,000K
–37,710
–12.48
+0.25
–0.10
+54.44
Cu(c) + 1/2 O2(g) = CuO(c)
298.16–1,357K 1,357–1,720K 1,720–2,000K 298.16–500K
–37,740 –39,410 –41,060 –2,160
–0.64 +4.17 –11.35 –10.36
–1.40 –2.15 +0.25 –
–0.10 –0.10 –0.10 –
+24.87 +12.05 +59.09 +95.14
298.16–2,000K 298.16–373.16K 298.16–2,000K 298.16–374.5K
–268,380 –70,600 –56,930 –72,760
–9.74 –18.26 +6.75 –18.10
–0.28 +0.64 –0.64 –
+1.54 –0.04 –0.08 –
+78.16 +91.67 –8.74 +93.59
298.16–2,000K 298.16–1,033K 1,033–1,179K
–58,970 –65,320 –62,380
+5.50 –11.26 +4.08
–0.75 +2.61 –0.75
+0.085 +0.44 +0.235
–3.74 +48.60 +3.00
Reaction
Cu(l) + 1/2 O2(g) = CuO(c) Cu(l) + 1/2 O2(g) = CuO(l) 2 Au(c) + 3/2 O2(g) = Au2O3(c) Hf(c) + O2(g) = HfO2 (monoclinic) H2(g) + 1/2 O2(g) = H2O(l) H2(g) + 1/2 O2(g) = H2O(g) D2(g) + 1/2 O2(g) = D2O(l)
D2(g) + 1 /2 O2(g) = D2O(g)
0.947 Fe(α) + 1/2 O2(g) = Fe0.9470(c)
0.947 Fe(α) + 1/2 O2(g) = Fe0.9470(c)
The ∆Ho values are given in gram calories per mole. The a, b, and I values listed here make it possible for one to calculate the ∆F and ∆S values by use of the following equations:
∆Ft = ∆Ηo + 2.303aT log T + b x 10–3 T2 + c x l05 T–1 + IT ∆St = – a – 2.303a log T – 2b x 10–3T + c x l05 T–2 – I
Source: data from CRC Handbook of Materials Science, Vol I, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC
6.2 Thermodynamics L Page 184 Wednesday, December 31, 1969 17:00
Table 67. HEAT OF
FORMATION OF INORGANIC OXIDES (SHEET 6 OF 16)
Temperature range of validity
∆H0
2.303a
b
c
I
0.947 Fc(β) + 1/2 O2(g) = Fe0.9470(c)
1,179–1,650K
–66,750
–8.04
+0.67
–0.10
+42.28
0.947 Fe(γ) + 1/2 O2(g) = Fe0.9470(l)
1,650–1,674K 1,647–1,803K 1,803–2,000K 298.16–900K
–64,200 –59,650 –63,660 –268,310
–18.72 –6.84 –7.48 +5.87
+1.67 +0.25 +0.25 –12.45
–0.10 –0.10 –0.10 +0.245
+73.45 +34.81 +39.12 +73.11
900–1,033K 1,033–1,179K 1,179–1,674K 298.16–950K
–272,300 –262,990 –276,990 –200,000
–54.27 –5.71 ~4.05 –13.84
+11.65 +1.00 +5.50 –1.45
+0.245 –0.40 –0.40 +1.905
+233.52 +89.19 +213.52 +108.26
950–1,033K 1,033–1,050K 1,050–1,179K 1,179–1,674K
–202,960 –196,740 –193,200 –202,540
–42.64 –10.27 –0.39 –25.95
+7.85 +0.75 –0.13 +2.87
+0.13 –0.30 –0.30 –0.30
+188.48 +92.26 +59.96 +142.85
Reaction
0.947 Fe(γ) + 1/2 O2(g) = Fe0.9470(l)
0.947 Fe(δ) + 1/2 O2(g) = Fe0.9470(l)
3 Fe(α) + 2 O2(g) = Fe3O4(magnetite) 3 Fe(α) + 2 O2(g) = Fe3O4(β) 3 Fe(β) + 2 O2(g) = Fe3O4(β) 3 Fe(γ) + 2 O2(g) = Fe3O4(β)
2 Fe(α) + 3/2 O2(g) = Fe2O3(hematite) 2 Fe(α) + 3/2 O2(g) = Fe2O3(β) 2 Fe(β) + 3/2 O2(g) = Fe2O3(β) 2 Fe(β) + 3/2 O2(g) = Fe2O3(γ) 2 Fe(γ) + 3/2 O2(g) = Fe2O3(γ)
The ∆Ho values are given in gram calories per mole. The a, b, and I values listed here make it possible for one to calculate the ∆F and ∆S values by use of the following equations:
∆Ft = ∆Ηo + 2.303aT log T + b x 10–3 T2 + c x l05 T–1 + IT ∆St = – a – 2.303a log T – 2b x 10–3T + c x l05 T–2 – I
Source: data from CRC Handbook of Materials Science, Vol I, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC
6.2 Thermodynamics L Page 185 Wednesday, December 31, 1969 17:00
Table 67. HEAT OF
FORMATION OF INORGANIC OXIDES (SHEET 7 OF 16)
Reaction 2 Fe(α) + 3/2 O2(g) = Fe2O3(γ) Pb(c) + 1/2 O2(g) = PbO (red) Pb(l) + 1/2 O2(g) = PbO (red) Pb(c) + 1/2 O2(g) = PbO (yellow) Pb(l) + 1/2 O2(g) = PbO (yellow) I2(c) + 5/2 O2(g) = I2O5(c) I2(l) + 5/2 O2(g) = I2O5(c) I2(g) + 5/2 O2(g) = I2O5(c)
Ir(c) + O2(g) = IrO2(c) 3 Pb(c) + 2 O2(g) = Pb3O4(c) Pb(c) + O2(g) = PbO2(c) 2 Li(c) + 1/2 O2(g) = Li2O(c)
Temperature range of validity
∆H0
2.303a
b
c
I
1,674–1,800K 298.16–600.5K 600.5–762K 298.16–600.5K
–192,920 –52,800 –53,780 –52,040
–0.85 –2.76 –0.51 +0.81
–0.13 –0.80 –1.75 –2.00
–0.30 –0.10 –0.10 –0.10
+61.21 +32.49 +28.44 +22.13
600.5–1,159K 298.16–386.8K 386.8–456K 456–500K
–53,020 –42,040 –43,490 –58,020
+3.06 +2.30 +16.12 –6.91
–2.95 – – –
–0.10 – – –
+18.08 +113.71 +81.70 +174.79
298.16–1,300K 298.16–600.5K 298.16–600.5K 298.16–452K
–39,480 –174,920 –66,120 –142,220
+8.17 +8.82 +0.64 –3.06
–6.39 –8.20 –2.45 +5.77
–0.20 –0.40 –0.20 –0.10
+20.33 +72.78 +45.58 +34.19
The ∆Ho values are given in gram calories per mole. The a, b, and I values listed here make it possible for one to calculate the ∆F and ∆S values by use of the following equations:
∆Ft = ∆Ηo + 2.303aT log T + b x 10–3 T2 + c x l05 T–1 + IT ∆St = – a – 2.303a log T – 2b x 10–3T + c x l05 T–2 – I
Source: data from CRC Handbook of Materials Science, Vol I, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC
6.2 Thermodynamics L Page 186 Wednesday, December 31, 1969 17:00
Table 67. HEAT OF
FORMATION OF INORGANIC OXIDES (SHEET 8 OF 16)
Reaction Mg(c) + 1/2 O2(g) = MgO (periclase) Mg(l) + 1/2 O2(g) = MgO (periclase) Mg(g) + 1/2 O2(g) = MgO (periclase) Mn(α) + 1/2 O2(g) = MnO(c) Mn(β) + 1/2 O2(g) = MnO(c) Mn(γ) + 1/2 O2(g) = Mno(c)
Mn(δ) + 1/2 O2(g) = MnO(c) Mn(l) + 1/2 O2(g) = MnO(c) 3 Mn(α) + 2 O2(g) = Mn3O4(α)
2 Mn(α) + 3/2 O2(g) = Mn2O3(c) Mn(α) + O2(g) = MnO2(c)
2 Hg(l) + 1/2 O2(g) = Hg2O(c) Hg(l) + 1/2 O2(g) = HgO (red) Mo(c) + O2(g) = MoO2(c)
Temperature range of validity
∆H0
2.303a
b
c
I
298.16–923K 923–1,393K 1,393–2,000K 298.16–1,000K
–144,090 –145,810 –180,700 –92,600
–1.06 +1.84 –3.75 –4.21
+0.13 –0.62 –0.62 +0.97
+0.25 +0.64 +0.64 +0.155
+29.16 +23.07 +65.69 +29.66
1,000–1,374K 1,374–1,410K 1,410–1,517K 1,517–2,000K
–91,900 –89,810 –89,390 –93,350
+1.84 +7.30 +8.68 +7.99
–0.39 –0.72 –0.72 –0.72
+0.34 +0.34 +0.34 +0.34
+12.15 –6.05 –10.70 –5.90
298.16–1,000K 298.16–1,000K 298.16–1,000K 298.16–629.88K
–332,400 –230,610 –126,400 –22,400
–7.41 –5.96 –8.61 –4.61
+0.66 –0.06 +0.97 –
+0.145 +0.945 +1.555 –
+106.62 +80.74 +70.14 +43.29
298.16–629.88K 298.16–2,000K
–21,760 –132,910
+0.85 –3.91
–2.47 –
–0.10 –
+24.81 +47.42
The ∆Ho values are given in gram calories per mole. The a, b, and I values listed here make it possible for one to calculate the ∆F and ∆S values by use of the following equations:
∆Ft = ∆Ηo + 2.303aT log T + b x 10–3 T2 + c x l05 T–1 + IT ∆St = – a – 2.303a log T – 2b x 10–3T + c x l05 T–2 – I
Source: data from CRC Handbook of Materials Science, Vol I, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC
6.2 Thermodynamics L Page 187 Wednesday, December 31, 1969 17:00
Table 67. HEAT OF
FORMATION OF INORGANIC OXIDES (SHEET 9 OF 16)
Temperature range of validity
∆H0
2.303a
b
c
I
Mo(c) + 3/2 O2(g) = MoO3(c)
298.16–1,068K 298.16–633K
–182,650 –57,640
–8.86 –4.61
–1.55 +2.16
+1.54 –0.10
+90.07 +34.41
Ni(β) + 1/2 O2(g) = NiO(c)
633–1,725K 298.16–2,000K 298.16–1,785K 1,785–2,000K
–57,460 –382,050 –458,640 –463,630
–0.14 –9.67 –16.14 –66.04
–0.46 – –0.56 +2.21
–0.10 – +1.94 –0.50
+23.27 +116.23 +157.66 +317.84
298.16–2,000K 298.16–2,000K 298.16–317.4K 317.4–553K
18,650 +33,980 –9,370 –9,390
–1.57 +2.03 +2.53 +3.45
–0.27 –0.48 – –
+0.92 +0.36 – –
+23.47 +11.45 –25.40 –27.63
298.16–317.4K 298.16–336.4K
–711,520 –86,400
+95.67 –
–51.50 –
–1.00 –
–28.24 +33.90
Reaction Ni(α) + 1/2 O2(g) = NiO(c)
2 Nb(c) + 2 O2(g) = Nb2O4(c) 2 Nb(c) + 5/2 O2(g) = Nb2O5(c) 2 Nb(c) + 5/2 O2(g) = Nb2O5(l)
N2(g) + 1/2 O2(g) = N2O(g) 3/2 O2(g) = O3(g) P (white) + 1/2 O2(g) = PO(g) P(l) + 1/2 O2(g) = PO(g) 4 P (white) + 5 O2(g) = P4H10 (hexagonal) 2 K(c) + 1/2 O2(g) = K2O(c)
The ∆Ho values are given in gram calories per mole. The a, b, and I values listed here make it possible for one to calculate the ∆F and ∆S values by use of the following equations:
∆Ft = ∆Ηo + 2.303aT log T + b x 10–3 T2 + c x l05 T–1 + IT ∆St = – a – 2.303a log T – 2b x 10–3T + c x l05 T–2 – I
Source: data from CRC Handbook of Materials Science, Vol I, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC
6.2 Thermodynamics L Page 188 Wednesday, December 31, 1969 17:00
Table 67. HEAT OF
FORMATION OF INORGANIC OXIDES (SHEET 10 OF 16)
Reaction 2 K(l) + 1/2 O2(g) = K2O(c) 2 K(g) + 1/2 O2(g) = K2O(c) Ra(c) + 1/2 O2(g) = RaO(c) Re(c) + 3/2 O2(g) = ReO3(c) Re(c) + 3/2 O2(g) = ReO3(l) 2Re(c) + 7/2 02(g) = Re2O7(c)
2 Re(c) + 7/2 02(g) = Re2O7(l) 2 Re(c) + 4 O2(g) = Re2O8(l) 2 Rb(c) + 1/2 O2(g) = Rb2O(c) 2 Rb(l) + 1/2 O2(g) = Rb2O(c) Se(c) + 1/2 O2(g) = SeO(g) Se(l) + 1/2 O2(g) = SeO(g) 1/2 Se2(g) + 1/2 O2(g) = SeO(g) Si(c) + 1/2 O2(g) = SiO(g)
Temperature range of validity
∆H0
2.303a
b
c
I
336.4–1,049K 1,049–1,500K
–87,380 –133,090
+1.15 –16.12
– –
– –
+33.90 +129.64
298.16–1,000K 298.16–433K 433–1,000K 298.16–569K
–130,000 –149,090 –146,750 –301,470
– –16.12 –31.32 –34.64
– – – –
– – – –
+23.50 +110.49 +145.16 +250.57
569–635.5K 420–600K 298.16–312.2K 312.2–750K
–295,810 –318,470 –78,900 –79,950
–73.68 –87.50 – –
– – – –
– – – –
+348.45 +425.32 +32.20 +35.56
298.16–490K 490–1,027K 1,027–2,000K 298.16–1,683K
+9,280 +9,420 –7,400 –21,090
–3.04 +8.70 –0.37 +3.84
+4.40 – – –0.16
+0.30 +0.30 +0.19 –0.295
–14.78 –44.50 –0.80 –33.14
The ∆Ho values are given in gram calories per mole. The a, b, and I values listed here make it possible for one to calculate the ∆F and ∆S values by use of the following equations:
∆Ft = ∆Ηo + 2.303aT log T + b x 10–3 T2 + c x l05 T–1 + IT ∆St = – a – 2.303a log T – 2b x 10–3T + c x l05 T–2 – I
Source: data from CRC Handbook of Materials Science, Vol I, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC
6.2 Thermodynamics L Page 189 Wednesday, December 31, 1969 17:00
Table 67. HEAT OF
FORMATION OF INORGANIC OXIDES (SHEET 11 OF 16)
Reaction Si(l) + 1/2 O2(g) = SiO(g) Si(c) + O2(g) = SiO2(α–quartz) Si(c) + O2(g) = SiO2(β–quartz) Si(l) + O2(g) = SiO2(l)
Si(c) + O2(g) = SiO2(α–cristobalite) Si(c) + O2(g) = SiO2(β–cristobalite) Si(c) + 02(g) = SiO2(α–tridymite) Si(c) + O2(g) = SiO2(β–tridymite) 2 Ag(c) + 1/2 O2(g) = Ag2O2(c) 2 Ag(c) + O2(g) = Ag2O2(c) 2 Na(c) + 1/2 O2(g) = Na2O(c) 2 Na(l) + 1/2 O2(g) = Na2O(c)
Temperature range of validity
∆H0
2.303a
b
c
I
1,683–2,000K 298.16–848K 848–1,683K 1,883–2,000K
–30,170 –210,070 –209,920 –228,590
–7.78 +3.98 –3.36 –15.66
–0.12 –3.32 –0.19 –
+0.25 +0.605 –0.745 –
–40.01 +34.59 +53.44 +103.97
298.16–523K 523–1,683K 298.16–390K 390–1,683K
–207,330 –209,820 –207,030 –209,350
+19.96 –3.34 +22.29 –1.59
–9.75 –0.24 –11.62 –0.54
–0.745 –0.745 –0.745 –0.745
–9.78 +53.35 –15.64 +47.86
298.16–1,000K 298.16–500K 298.16–371K 371–1,187K
–7,740 –6,620 –99,820 –100,150
–4.14 –3.22 –7.51 +4.97
– – +5.47 –2.45
– – –0.10 –0.10
+27.84 +52.17 +50.43 +22.19
The ∆Ho values are given in gram calories per mole. The a, b, and I values listed here make it possible for one to calculate the ∆F and ∆S values by use of the following equations:
∆Ft = ∆Ηo + 2.303aT log T + b x 10–3 T2 + c x l05 T–1 + IT ∆St = – a – 2.303a log T – 2b x 10–3T + c x l05 T–2 – I
Source: data from CRC Handbook of Materials Science, Vol I, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC
6.2 Thermodynamics L Page 190 Wednesday, December 31, 1969 17:00
Table 67. HEAT OF
FORMATION OF INORGANIC OXIDES (SHEET 12 OF 16)
Temperature range of validity
∆H0
2.303a
b
c
I
298.16–371K 298.16–1,043K 298.16–368.6K 368.6–392K
–122,500 –142,410 +19,250 +19,200
–2.30 –6.79 –1.24 –1.29
– +0.305 +2.95 +3.31
– +0.675 +0.225 +0.225
+57.51 +44.33 –18.84 –18.72
392–718K 298.16–2,000K 298.16–368.6K 368.6–392K
+20,320 +3,890 –70,980 –71,020
+10.22 +0.07 +0.83 +0.78
–0.17 – +2.35 +2.71
+0.225 – +0.51 +0.51
–50.05 –1.50 –5.85 –5.74
S(rhombohedral) + 3/2 O2(g) = SO3(c–II)
392–718K 298.16–2,000K 298.16–335.4K 298.16–305.7K
–69,900 –86,330 –111,370 –108,680
+12.30 +2.42 –6.45 –11.97
–0.77 –0.70 – –
+0.51 +0.31 – –
–37.10 +10.71 +88.32 +94.95
S(rhombohedral) + 3/2 O2(g) = SO3(l)
298.16–335.4K
–107,430
–21.18
–
–
+113.76
Reaction 2 Na(c) + O2(g) = Na2O2(c) Sr(c) + 1/2 O2(g) = SrO(c) S(rhombohedral) + 1/2 O2(g) = SO(g) S(monoclmic) + 1/2 O2(g) = SO(g)
S(lλ,µ) + 1/2 O2(g) = SO(g) 1/2 S2 (g) + 1/2 O2(g) = SO(g) S(rhombohedral) + O2(g) = SO2(g) S(monoclinic) + O2(g) = SO2(g) S(lλ,µ) + O2(g) = SO2(g) 1/2 S2(g) + O2(g) = SO2(g) S(rhombohedral) + 3/2 O2(g) = SO3(c–I)
The ∆Ho values are given in gram calories per mole. The a, b, and I values listed here make it possible for one to calculate the ∆F and ∆S values by use of the following equations:
∆Ft = ∆Ηo + 2.303aT log T + b x 10–3 T2 + c x l05 T–1 + IT ∆St = – a – 2.303a log T – 2b x 10–3T + c x l05 T–2 – I
Source: data from CRC Handbook of Materials Science, Vol I, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC
6.2 Thermodynamics L Page 191 Wednesday, December 31, 1969 17:00
Table 67. HEAT OF
FORMATION OF INORGANIC OXIDES (SHEET 13 OF 16)
Reaction S(rhombohedral) + 3/2 O2(g) = SO3(g) S(monoclinic) + 3/2 O2(g) = SO3(g) S(lλ,µ) + 3/2 O2(g) = SO3(g)
1/2 S2(g) + 3/2 O2(g) = SO3(g) 2 Ta(c) + 5/2 O2(g) = Ta2O5(c) Te(c) + 1/2 O2(g) = TeO(g) Te(l) + 1/2 O2(g) = TeO(g) 2 Tl(α) + O2(g) = Tl2rO(c) 2 Tl(β) + O2(g) = Tl2rO(c)
2 Tl(α) + 3/2 O2(g) = Tl2rO3(c) Th(c) + O2(g) = ThO2(c) Sn(c) + 1/2 O2(g) = SnO(c)
Temperature range of validity
∆H0
2.303a
b
c
I
298.16–368.6K 368.6–392K 392–718K
–95,070 –95,120 –94,010
+1.43 +1.38 +12.89
+0.66 +1.02 –2.46
+1.26 +1.26 +126
+16.81 +16.93 –14.40
298.16–1,500K 298.16–2,000K 298.16–723K 723–1,360K
–110,420 –492,790 +43,110 +39,750
+3.02 –17.18 +1.91 +6.08
–2.39 –1.25 +0.84 +0.09
+106 +2.46 +0.315 +0.315
+33.41 +161.68 –27.22 –33.94
298.16–505.5K 505.5–573K 298.16–505.5K 298.16–2,000K
–44,110 –44,260 –99,410 –294,350
–6.91 –6.91 –16.12 –5.25
– – – +0.59
– – – +0.775
+42.30 +42.60 +119.09 +62.81
298.16–505K
–68,600
–3.57
+1.65
–0.10
+32.59
The ∆Ho values are given in gram calories per mole. The a, b, and I values listed here make it possible for one to calculate the ∆F and ∆S values by use of the following equations:
∆Ft = ∆Ηo + 2.303aT log T + b x 10–3 T2 + c x l05 T–1 + IT ∆St = – a – 2.303a log T – 2b x 10–3T + c x l05 T–2 – I
Source: data from CRC Handbook of Materials Science, Vol I, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC
6.2 Thermodynamics L Page 192 Wednesday, December 31, 1969 17:00
Table 67. HEAT OF
FORMATION OF INORGANIC OXIDES (SHEET 14 OF 16)
Reaction Sn(l) + 1/2 O2(g) = SnO(c) Sn(c) + O2(g) = SnO2(c)
Ti(α) + 1/2 O2(g) = TiO(α) Ti(α) + 1/2 O2(g) = TiO(α)
2 Ti(α) + 3/2 O2(g) = Ti2O3(α) 2 Ti(α) + 3/2 O2(g) = Ti2O3(β) Ti(α) + O2(g) = TiO2 (rutile)
Ti(α) + O2(g) = TiO2 (rutile) W(c) + O2(g) = WO2(c) 4W(c) + 11/2 O2(g) = W4O11(c) W(c) + 3/2 O2(g) = WO3(c) W(c) + 3/2 O2(g) = WO3(l) U(α) + O2(g) = UO2(c) U(β) + O2(g) = UO2(c)
Temperature range of validity
∆H0
2.303a
b
c
I
505–1,300K 298.16–505K 298.16–1,150K
–69,670 –0,142 –125,010
+3.06 –14.00 –4.01
–1.50 +2.45 –0.29
–0.10 +2.38 +0.83
+18.39 +90.74 +36.28
1,150–1,264K 298.16–473K 473–1,150K 298.16–1,150K
–125,040 –360,660 –369,710 –228,360
+1.17 +32.08 –30.95 –12.80
–1.55 –23.49 +2.62 +1.62
+0.83 –0.30 +4.80 +1.975
+21.90 –10.66 +162.79 +82.81
1,150–2,000K
–228,380
–7.62
+0.36
+1.975
+68.43
298.16–1,500K
–137,180
–1.38
–
–
+45.56
298.16–1,700K 298.16–1,743K
–745,730 –201,180
–32.70 –2.92
– –1.81
– –0.30
+321.84 +70.89
1,743–2,000K 298.16–935K 935–1,045K
–203,140 –262,880 –260,660
–35.74 –19.92 –4.28
+1.13 +3.70 –0.31
–0.30 +2.13 +1.78
+173.27 +100.54 +55.50
The ∆Ho values are given in gram calories per mole. The a, b, and I values listed here make it possible for one to calculate the ∆F and ∆S values by use of the following equations:
∆Ft = ∆Ηo + 2.303aT log T + b x 10–3 T2 + c x l05 T–1 + IT ∆St = – a – 2.303a log T – 2b x 10–3T + c x l05 T–2 – I
Source: data from CRC Handbook of Materials Science, Vol I, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC
6.2 Thermodynamics L Page 193 Wednesday, December 31, 1969 17:00
Table 67. HEAT OF
FORMATION OF INORGANIC OXIDES (SHEET 15 OF 16)
Temperature range of validity
∆H0
2.303a
b
c
I
U(γ) + O2(g) = UO2(c)
1,045–1,405K
–262,830
–6.54
–0.31
+1.78
+64.41
U(l) + O2(g) = UO2(l)
1,405–1,500K 298.16–935K 935–1,045K 1,045–1,405K
–264,790 –863,370 –856,720 –863,230
–5.92 –56.57 –9.67 –16.44
– +10.68 –1.35 –1.35
– +5.20 +4.15 +4.15
+63.50 +330.19 +195.12 +221.79
1,405–1,500K 298.16–935K 935–1,045K 1,045–1,400K
–869,460 –294,090 –291,870 –294,040
–10.91 –18.33 –2.69 –4.95
–1.35 +3.49 –0.52 –0.52
+4.15 +1.535 +1.185 +1.185
+208.82 +114.94 +69.90 +78.80
298.16–2,000K 298.16–2,000K 298.16–2,000K
–101,090 +52,090 –299,910
–5.39 +1.80 –17.98
–0.36 +1.04 +0.37
+0.53 +0.35 +2.41
+38.69 –28.42 +118.83
Reaction
3 U(α) + 4 O2(g) = U3O8(c) 3 U(β) + 4 O2(g) = U3O8(c) 3 U(γ) + 4 O2(g) = U3O8(c) 3 U(l) + 4 O2(g) = U3O8(c)
U(α) + 3/2 O2(g) = UO3 (hexagonal) U(β) + 3/2 O2(g) = UO3 (hexagonal) U(γ) + 3/2 O2(g) = UO3 (hexagonal) V(c) + 1/2 O2(g) = VO(c) V(c) + 1/2 O2(g) = VO(g) 2 V(c) + 3/2 O2(g) = V2O3(c)
The ∆Ho values are given in gram calories per mole. The a, b, and I values listed here make it possible for one to calculate the ∆F and ∆S values by use of the following equations:
∆Ft = ∆Ηo + 2.303aT log T + b x 10–3 T2 + c x l05 T–1 + IT ∆St = – a – 2.303a log T – 2b x 10–3T + c x l05 T–2 – I
Source: data from CRC Handbook of Materials Science, Vol I, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC
6.2 Thermodynamics L Page 194 Wednesday, December 31, 1969 17:00
Table 67. HEAT OF
FORMATION OF INORGANIC OXIDES (SHEET 16 OF 16)
Temperature range of validity
∆H0
2.303a
b
c
I
2 V(c) + 2 O2(g) = V2O4(α)
209.16–345K
–342,890
–11.03
+3.00
–0.40
+117.38
2 V(c) + 2 O2(g) = V2O4(β)
345–1,818K 298.16–1,000K 298.16–943K 298.16–1,773K
–345,330 –1,076,340 –381,960 –419,600
–24.36 –95.33 –41.08 +2.76
+1.30 – +5.20 –1.73
+3.545 – +6.11 –0.30
+155.55 +557.61 +228.50 +66.36
298.16–692.7K 298.16–1,135K 1,135–1,478K 1.478–2,000K
–84,670 –262,980 –264,190 –262,290
–6.40 –6.10 –5.09 –7.76
+0.84 +0.16 –0.40 +0.50
+0.99 +1.045 +1.48 –0.20
+43.25 +65.00 +63.58 +69.50
Reaction
6 V(c) + 13/2 O2(g) = V6O13(c) 2 V(c) + 5/2 O2(g) = V2O5(c) 2 Y(c) + 3/2 O2(g) = Y2O3(c) Zn(c) + 1/2 O2(g) = ZnO(c) Zr(α) + O2(g) = ZrO2(α) Zr(β) + O2(g) = ZrO2(α) Zr(β) + O2(g) = ZrO2(β)
The ∆Ho values are given in gram calories per mole. The a, b, and I values listed here make it possible for one to calculate the ∆F and ∆S values by use of the following equations:
∆Ft = ∆Ηo + 2.303aT log T + b x 10–3 T2 + c x l05 T–1 + IT ∆St = – a – 2.303a log T – 2b x 10–3T + c x l05 T–2 – I
Source: data from CRC Handbook of Materials Science, Vol I, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC
6.3 Thermodynamics Page 195 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 68. PHASE
CHANGE THERMODYNAMIC PROPERTIES FOR THE ELEMENTS (SHEET 1 OF 7) Heat of Transition (kcal • g mole-1)
Entropy of Transition
Element
Phase
Transition Temperature (K)
Ac
solid liquid
(1090) (2750)
(2.5) (70)
(2.3) (25)
Ag
solid liquid
1234 2485
2.855 60.72
2.313 24.43
Al
solid liquid
931.7 2600
2.57 67.9
2.76 26
Am
solid liquid
(1200) 2733
(2.4) 51.7
(2.0) 18.9
As
solid
883
3.25
35.25
Au
solid liquid
1336.16 2933
3.03 74.21
2.27 25.30
B
solid liquid
2313 2800
(3.8) 75
(1.6) 27
Ba
solid, α solid, β liquid
648 977
0.14 1.83
0.22 1.87
1911
35.665
18.63
Be
solid liquid
1556 –
2.919
1.501
Bi
solid liquid
544.2 1900
2.63 41.1
4.83 21.6
C
solid
–
–
–
Ca
solid, α solid, β liquid
723 1123
0.24 2.2
0.33 1.96
1755
38.6
22.0
(e.u.)
Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44.
©2001 CRC Press LLC
Shackelford & Alexander
195
6.3 Thermodynamics Page 196 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 68. PHASE
CHANGE THERMODYNAMIC PROPERTIES FOR THE ELEMENTS (SHEET 2 OF 7) Heat of Transition (kcal • g mole-1)
Entropy of Transition
Element
Phase
Transition Temperature (K)
Cd
solid liquid
594.1 1040
1.46 23.86
2.46 22.94
Ce
solid liquid
1048 2800
2.1 73
2.0 26
Cl2
gas
–
–
–
Co
solid, α solid, β solid, γ liquid
723 1398 1766
0.005 0.095 3.7
0.007 0.068 2.1
3370
93
28
Cr
solid liquid
2173 2495
3.5 72.97
1.6 29.25
Cs
solid liquid
301.9 963
0.50 16.32
1.7 17.0
Cu
solid liquid
1356.2 2868
3.11 72.8
2.29 25.4
F2
gas
–
–
–
Fe
solid, α solid, β solid, γ solid, δ liquid
1033 1180 1673 1808
0.410 0.217 0.15 3.86
0.397 0.184 0.084 2.14
3008
84.62
28.1
solid liquid
302.94 2700
1.335 –
4.407 –
Ga
(e.u.)
Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44.
©2001 CRC Press LLC
196
CRC Handbook of Materials Science & Engineering
6.3 Thermodynamics Page 197 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 68. PHASE
CHANGE THERMODYNAMIC PROPERTIES FOR THE ELEMENTS (SHEET 3 OF 7) Heat of Transition (kcal • g mole-1)
Entropy of Transition
Element
Phase
Transition Temperature (K)
Ge
solid liquid
1232 2980
8.3 68
6.7 23
H2
gas
–
–
–
Hf
solid
(2600)
(6.0)
(2.3)
Hg
liquid
629.73
13.985
22.208
In
solid liquid
430 2440
0.775 53.8
1.80 22.0
Ir
solid
2727
6.6
2.4
K
solid liquid
336.4 1052
0.5575 18.88
1.657 17.95
La
solid liquid
1153 3000
(2.3) 80
(2.0) 27
Li
solid liquid
459 1640
0.69 32.48
1.5 19.81
Mg
solid liquid
923 1393
2.2 31.5
2.4 22.6
Mn
solid, α solid, β solid, γ solid, δ liquid
1000 1374 1410 1517
0.535 0.545 0.430 3.5
0.535 0.397 0.305 2.31
2368
53.7
22.7
solid
2883
(5.8)
(2.0)
Mo
(e.u.)
Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44.
©2001 CRC Press LLC Shackelford & Alexander
197
6.3 Thermodynamics Page 198 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 68. PHASE
CHANGE THERMODYNAMIC PROPERTIES FOR THE ELEMENTS (SHEET 4 OF 7) Heat of Transition (kcal • g mole-1)
Entropy of Transition
Element
Phase
Transition Temperature (K)
N2
gas
–
–
–
Na
solid liquid
371 1187
0.63 23.4
1.7 20.1
Nb
solid
2760
(5.8)
(2.1)
Nd
solid liquid
1297 (2750)
(2.55) (61)
(197) (22)
Ni
solid α solid β liquid
626 1728
0.092 4.21
0.15 2.44
3110
90.48
29.0
Np
solid liquid
913 (2525)
(2.3) (55)
(2.5) (22)
O2
gas
–
–
–
Os
solid
2970
(6.4)
(2.2)
P4
solid, white
317.4
0.601
1.89
liquid
553
11.9
21.5
Pa
solid liquid
(18.25) (4500)
(4.0) (115)
(2.2) (26)
Pb
solid liquid
600.6 2023
1.141 42.5
1.900 21.0
Pd
solid liquid
1828 3440
4.12 89
2.25 26
(e.u.)
Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44.
©2001 CRC Press LLC
198
CRC Handbook of Materials Science & Engineering
6.3 Thermodynamics Page 199 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 68. PHASE
CHANGE THERMODYNAMIC PROPERTIES FOR THE ELEMENTS (SHEET 5 OF 7) Heat of Transition (kcal • g mole-1)
Entropy of Transition
Element
Phase
Transition Temperature (K)
Po
solid liquid
525 (1235)
(2.4) (24.6)
(4.6) (19.9)
Pr
solid liquid
1205 3563
(25) –
(2.1) –
Pt
solid liquid
2042.5 4100
5.2 122
25 29.8
Pu
solid liquid
913 –
(2.26)
(2.48)
Ra
solid liquid
1233 (1700)
(2.3) (35)
(1.9) (21)
Rb
solid liquid
312.0 952
0.525 18.11
1.68 19.0
Re
solid
3440
(7.9)
(2.3)
Rh
solid liquid
2240 4150
(5.2) 127
(2.3) 30.7
Ru
solid, α solid, β solid, γ solid, δ
1308 1473 1773 2700
0.034 0 0.23 (6.1)
0.026 – 0.13 (2.3)
S
solid, α solid, β liquid
368.6 392
0.088 0.293
0.24 0.747
717.76
2.5
3.5
Sb
solid (α, β, γ) liquid
(e.u.)
903.7
4.8
5.3
1713
46.665
27.3
Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44.
©2001 CRC Press LLC Shackelford & Alexander
199
6.3 Thermodynamics Page 200 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 68. PHASE
CHANGE THERMODYNAMIC PROPERTIES FOR THE ELEMENTS (SHEET 6 OF 7) Heat of Transition (kcal • g mole-1)
Entropy of Transition
Element
Phase
Transition Temperature (K)
Sc
solid liquid
1670 3000
(4.0) 80
(2.4) 27
Se
solid liquid
490.6 1000
1.25 14.27
2.55 14.27
Si
solid liquid
1683 2750
11.1 71
6.60 26
Sm
solid liquid
1623 (2800)
3.7 (70)
2.3 (25)
Sn
solid, α, β liquid
505.1
1.69
335
2473
(55)
(22)
Sr
solid liquid
1043 1657
2.2 33.61
2.1 20.28
Ta
solid
3250
7.5
2.3
Tc
solid liquid
(2400) (3800)
(5.5) (120)
(2.3) (32)
Te
solid, α solid, β liquid
621 723
0.13 4.28
0.21 5.92
1360
11.9
8.75
Th
solid liquid
2173 4500
(4.6) (130)
(2.1) (29)
Ti
solid, α solid, β liquid
1155 2000
0.950 (4.6)
0.822 (23)
3550
(101)
(28)
(e.u.)
Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44.
©2001 CRC Press LLC
200
CRC Handbook of Materials Science & Engineering
6.3 Thermodynamics Page 201 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 68. PHASE
CHANGE THERMODYNAMIC PROPERTIES FOR THE ELEMENTS (SHEET 7 OF 7) Transition Temperature (K)
Heat of Transition (kcal • g mole-1)
Entropy of Transition
(e.u.)
Element
Phase
Tl
solid, α solid, β liquid
508.3 576.8
0.082 1.03
0.16 1.79
1730
38.81
22.4
solid, α solid, β solid, γ liquid
938 1049 1405
0.665 1.165 (3.0)
0.709 1.111 (2.1)
3800
–
–
V
solid liquid
2003 3800
(4.0) –
(2.0) –
W
solid
3650
8.42
2.3
Y
solid liquid
1750 3500
(4.0) (90)
(2.3) (26)
Zn
solid liquid
692.7 1180
1.595 27.43
2.303 23.24
Zr
solid, α solid, β liquid
1135 2125
0.920 (4.9)
0.811 (2.3)
(3900)
(100)
(26)
U
Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44.
©2001 CRC Press LLC
Shackelford & Alexander
201
6.3 Thermodynamics Page 202 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 69. PHASE
CHANGE THERMODYNAMIC PROPERTIES OF OXIDES (SHEET 1 OF 10) Heat of Transition (kcal • g mole-1)
Entropy of Transition (e.u.)
Oxide
Phase
Transition Temperature (K)
Ac2O3
Solid Liquid
(2250) –
(20) –
(8.9) –
Ag2O
Solid Solid
dec. 460
–
–
dec.
–
–
Solid
2300 dec.
26 –
11 –
(2225) (3400) dec.
(17) (85) –
(7.6) (25) –
503 586 730
4.1 4.4 7.15
8.2 7.5 9.79
(9.0) – –
(7.5) – –
Ag2O2 Al2O3
Liquid Am2O3
Solid Liquid
AmO2
Solid
As2O3
Solid, α Solid, β Liquid
AsO2
Solid
As2O5
Solid
(1200) (dec.) dec. >1100
Au2O3
Solid
dec.
–
–
Solid
723 2520
5.27 (55)
7.29 (22)
(880) (1040) 2196 3000 723 dec. 1110
(5.2) (20) 13.8 (62) (5.7) –
(5.9) (19) 6.28 (21) (7.9) –
Liquid
B2O3
Liquid Ba2O
Solid
BaO
Liquid Solid Liquid
BaO2
Solid Liquid
Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58.
©2001 CRC Press LLC
202
CRC Handbook of Materials Science & Engineering
6.3 Thermodynamics Page 203 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 69. PHASE
CHANGE THERMODYNAMIC PROPERTIES OF OXIDES (SHEET 2 OF 10) Heat of Transition (kcal • g mole-1)
Entropy of Transition (e.u.)
Oxide
Phase
Transition Temperature (K)
BeO
Solid
dec.
–
–
BiO
Solid Liquid
(1175) (1920) 1090 (dec.)
(3.7) (54) 6.8 –
(3.1) (28) 6.2 –
Bi2O3
Solid Liquid
CO CO2
Gas
– –
– –
– –
CaO
Solid
2860
(18)
(6.3)
CdO
Solid
dec.
–
–
Solid
1960 (3500) 3000
(20) (80) (19)
(10) (23) (6.3)
2078 (2900) dec. 1240
(12) (61) –
(5.8) (21) –
2538 dec. 700 460 (1000)
(25) – (6.1) (25)
(10) – (13) (25)
763 dec. 867 dec.
(4.58) – (5.5) –
(6.0) – (6.3) –
775 dec.
(7.75) –
(10) –
Ce2O3
Gas
Liquid CeO2
Solid
CoO
Solid Liquid
Co3O4
Solid
Cr2O3 CrO2 CrO3
Solid Solid Solid Liquid
Cs2O
Solid Liquid
Cs2O2
Solid Liquid
Cs2O3
Solid Liquid
Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58.
©2001 CRC Press LLC
Shackelford & Alexander
203
6.3 Thermodynamics Page 204 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 69. PHASE
Oxide
Phase
CHANGE THERMODYNAMIC PROPERTIES OF OXIDES (SHEET 3 OF 10) Transition Temperature (K)
Heat of Transition (kcal • g mole-1)
Entropy of Transition (e.u.)
Cu2O
Solid
CuO
Liquid Solid Liquid
1503 dec. 1609 dec.
13.4 – (8.9) –
8.92 – (5.5) –
Solid Liquid Solid, α Solid, β Solid, α Solid, β Solid, γ
1641 (2700) 900 dec. 950 1050 dec.
7.5 (55) (0) – 0.16 0 –
4.6 (20) (0) – 0.17 0 –
Solid Liquid Liquid
(925) (1000) 2013 (2900)
(8.5) (20) (22) (75)
(9.2) (20) (11) (26)
GeO GeO2
Solid Solid (α,β) Liquid
983 1389 (2625)
(50) 10.5 (61)
(51) 7.56 (23)
In2O
Solid Liquid Solid Liquid
(600) (800) (1325) (2000)
(4.5) (16) (4.0) (60)
(7.5) (20) (3.0) (30)
In2O3
Solid Liquid
(2000) (3600)
(20) (85)
(10) (24)
Ir2O3
Solid Liquid Solid
(1450) (2250) dec. 1373
(10) (50) –
(6.8) (22) –
FeO Fe3O4 Fe2O3
Ga2O Ga2O3
Solid
InO
IrO2
Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58.
©2001 CRC Press LLC
204
CRC Handbook of Materials Science & Engineering
6.3 Thermodynamics Page 205 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 69. PHASE
CHANGE THERMODYNAMIC PROPERTIES OF OXIDES (SHEET 4 OF 10) Heat of Transition (kcal • g mole-1)
Entropy of Transition (e.u.)
Oxide
Phase
Transition Temperature (K)
K2O
Solid Liquid Solid Liquid Solid Liquid Solid Liquid
(980) dec. 763 (1800) 703 (975) 653 dec.
(6.8) – (7.0) (45) (6.1) (25) (4.9) –
(6.9) – (9.2) (25) (8.7) (26) (7.5) –
La2O3
Solid
2590
(18)
(7)
Li2O Li2O2
Solid Liquid Solid
2000 2600 dec.470
(14) (56) –
(7) (22) –
MgO MgO2
Solid Solid
3075 dec. 361
18.5 –
5.8 –
MnO
Solid Liquid
2058 dec.
13.0 –
6.32 –
Mn3O4
Solid, α Solid, β Liquid Solid Solid
1445 1863 (2900) dec. 1620 dec. 1120
4.97 (33) (75) – –
3.44 (18) (26) – –
Solid Liquid Solid Liquid
(2200) dec. 2250 1068 1530
(16) – 12.54 33
(7.3) – 11.74 22
Gas
–
–
–
K2O2 K2O3 KO2
Mn2O3 MnO2 MoO2 MoO3
N 2O
Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58.
©2001 CRC Press LLC
Shackelford & Alexander
205
6.3 Thermodynamics Page 206 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 69. PHASE
CHANGE THERMODYNAMIC PROPERTIES OF OXIDES (SHEET 5 OF 10) Heat of Transition (kcal • g mole-1)
Entropy of Transition (e.u.)
Oxide
Phase
Transition Temperature (K)
Na2O
Solid Liquid Solid Solid Liquid
1193 dec. dec. 919 (825) (1300)
(7.1) – – (6.2) (28)
(6.0) – – (7.5) (22)
Solid Solid Liquid Solid Liquid
(2650) (2275) (3800) 1733 (3200)
(16) (16) (85) (28) (80)
(6.0) (7.0) (22) (16) (25)
Nd2O3
Solid
2545
(22)
(8.8)
NiO
Solid Liquid
2230 dec.
(12.1) –
(5.43) –
NpO2
Solid Solid
(15) –
(5.7) –
– 3.41 9.45
– 10.9 23.4
Na2O2 NaO2
NbO NbO2 Nb2O5
OsO2 OsO4
Solid Solid Liquid
(2600) dec. 800–900 K dec. 923 313.3 403
P2O3 PO2
Liquid Solid Liquid Solid
448.5 (350) (dec.) 631
4.5 (2.7) – 8.8
10 (7.7) – 13.9
Solid Solid Liquid
(2560) (2050) (3350)
(20) (26) (95)
(7.8) (13) (28)
Np2O5
P2O5 PaO2 Pa2O5
Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58.
©2001 CRC Press LLC
206
CRC Handbook of Materials Science & Engineering
6.3 Thermodynamics Page 207 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 69. PHASE
CHANGE THERMODYNAMIC PROPERTIES OF OXIDES (SHEET 6 OF 10) Heat of Transition (kcal • g mole-1)
Entropy of Transition (e.u.)
Oxide
Phase
Transition Temperature (K)
PbO
Solid, red Solid, yellow Liquid
762 1159 1745
(0.4) 2.8 51
(0.5) 2.4 29
Pb2O4 PbO2
Solid Solid
dec. dec.
– –
– –
PdO
Solid
dec. 1150
–
–
PoO2
Solid Liquid
(825) (dec.)
(5.5) –
(6.7) –
Pr2O3
Solid Liquid
(2200) (4000
(22) (90)
(10) (23)
PrO2
Solid
dec. 700
–
–
PtO Pt3O4 PtO2
Solid Solid Solid Liquid
dec. 780 (dec.) 723 dec. 750
– – (4.6) –
– – (6.4) –
PuO
Solid Liquid
(1290) (2325)
(7.2) (47)
(5.6) (20)
Pu2O3
Solid Liquid
(1880) (3250)
(16) (75)
(8.5) (23)
PuO2
Solid Liquid
(2400) (3500)
(15) (90)
(6.2) (26)
RaO
Solid
(>2500)
–
–
Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58.
©2001 CRC Press LLC
Shackelford & Alexander
207
6.3 Thermodynamics Page 208 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 69. PHASE
CHANGE THERMODYNAMIC PROPERTIES OF OXIDES (SHEET 7 OF 10) Heat of Transition (kcal • g mole-1)
Entropy of Transition (e.u.)
Oxide
Phase
Transition Temperature (K)
Rb2O
Solid Liquid Solid Liquid
(910) dec. 843 (dec.)
(5.7) – (7.3) –
(6.3) – (8.7) –
Solid Liquid Solid Liquid
762 dec. 685 dec.
(7.6) – (4.1) –
(10) – (6.0) –
Solid Liquid Solid Liquid
(1475) (3250) 433 dec.
(12) (80) 5.2 –
(8.1) (25) 12 –
Solid Liquid Solid Liquid
569 635.5 420 (460)
15.8 17.7 (4.2) (9.3)
27.8 27.9 (10) (20)
Rh2O RhO Rh2O3
Solid Solid Solid
dec. 1400 dec. 1394 dec. 1388
– – –
– – –
RuO2 RuO4
Solid Solid Liquid
dec. 1400 300 dec.
– (3.2) –
– (11) –
SO2
Gas
–
–
Sb2O3
Solid Liquid
14.74 8.92
15.88 5.25
Rb2O2
Rb2O3 RbO2
ReO2 ReO3
Re2O7 ReO4
– 928 1698
Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58.
©2001 CRC Press LLC
208
CRC Handbook of Materials Science & Engineering
6.3 Thermodynamics Page 209 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 69. PHASE
CHANGE THERMODYNAMIC PROPERTIES OF OXIDES (SHEET 8 OF 10) Heat of Transition (kcal • g mole-1)
Entropy of Transition (e.u.)
Oxide
Phase
Transition Temperature (K)
SbO2 Sb2O5
Solid Solid
dec. dec.
– –
– –
Sc2O3
Solid
(2500)
(23)
(9.3)
SeO SeO2
Solid Liquid Solid
(1375) (2075) 603
(7.6) (45) (24.5)
(5.5) (22) (40.6)
SiO
Solid
(2550)
(12)
(4.7)
SiO2
Solid, β Solid, α Liquid
856 1883 dec. 2250
0.15 2.04 –
0.18 1.08 –
Sm2O3
Solid Liquid
(2150) (3800)
(20) (80)
(9.3) (21)
SnO
Solid Liquid Solid Liquid
(1315) (1800) 1898 (3200)
(6.4) (60) (11.39) (75)
(4.9) (33) (5.95) (23)
SrO SrO2
Solid Solid
2703 dec.488
16.7 –
6.2 –
Ta2O5
Solid Liquid
2150 –
(16) –
(7.4) –
TcO2
Solid Liquid Solid Solid Liquid
(2400) (4000) (dec. <1200) 392.7 583.8
(18) (105) – (11) (14)
(7.5) (26) – (28) (24)
SnO2
TcO3 Tc2O7
Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58.
©2001 CRC Press LLC Shackelford & Alexander
209
6.3 Thermodynamics Page 210 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 69. PHASE
CHANGE THERMODYNAMIC PROPERTIES OF OXIDES (SHEET 9 OF 10) Heat of Transition (kcal • g mole-1)
Entropy of Transition (e.u.)
Oxide
Phase
Transition Temperature (K)
TeO
Solid Liquid Solid Liquid
(1020) (1775) 1006 dec.
(7.1) (50) 3.2 –
(7.0) (28) 3.2 –
TeO2
Solid Liquid
(2150) (3250)
(13) (65)
(6.0) (20)
ThO2
Solid
3225
(18)
(5.6)
TiO
Solid, α Solid, β Solid, α Solid, β Liquid Solid, α Solid, β Liquid Solid Liquid
1264 dec. 2010 473 2400 3300 450 (2450) (3600) 2128 dec. 3200
0.82 – 0.215 (24)
0.65 – 0.455 (10)
2.24 (50) (85) (16)
4.98 (20) (24) (7.5)
Ti2O
Solid Liquid
573 773
(5.0) (17)
(8.7) (22)
Tl2O3
Solid Liquid
990 (dec.)
(12.4) –
(13) –
UO UO2
Solid Solid Solid Solid
(2750) 3000 dec. dec. 925
(14) – – –
(5.1) – – –
TeO3
Ti2O3
Ti3O5
TiO2
U3O8 UO3
Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58.
©2001 CRC Press LLC
210
CRC Handbook of Materials Science & Engineering
6.3 Thermodynamics Page 211 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 69. PHASE
Oxide
Phase
VO
Solid Liquid Solid Liquid Solid Liquid
V2O3 V3O4
VO2
V2O5
WO2 WO3
Solid, α Solid, β Liquid Solid Liquid Solid Liquid Solid Liquid
CHANGE THERMODYNAMIC PROPERTIES OF OXIDES (SHEET 10 OF 10) Transition Temperature (K)
Heat of Transition (kcal • g mole-1)
Entropy of Transition (e.u.)
(2350) (3400)
(15) (70)
(6.4) (21)
(11)
2240
(24)
dec. 3300
–
–
(2100)
(42)
(20)
(dec.)
–
–
345 1818
1.02 13.60
2.96 7.48
dec. 3300
–
–
943
15.56
16.50
(2325)
(63)
(27)
(7.45)
(1543)
(11.5)
dec. 2125
–
–
1743
(17)
(9.8)
(2100)
(43)
(20)
(25)
(10)
Y2O3
Solid
(2500)
ZnO ZrO2
Solid Solid, α Solid, β
dec.
–
–
1478 2950
1.420 20.8
0.961 7.0
Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58.
©2001 CRC Press LLC
Shackelford & Alexander
211
6.3 Thermodynamics Page 212 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 70. MELTING
POINTS OF THE ELEMENTS (SHEET 1 OF 4)
At. No.
Element
Symbol
Melting Point (˚C)
1 2 3 4
Hydrogen Helium Lithium Beryllium
H He Li Be
-259.14 -272.2 180.54 1278
5 6 7 8
Boron Carbon Nitrogen Oxygen
B C N O
2300 ~3550 -209.86 -218.4
9 10 11 12
Fluorine Neon Sodium Magnesium
F N Na Mg
-219.62 -248.67 97.81 648.8
13 14 15
Aluminum Silicon Phosphorus (White)
Al Si P
660.37 1410 44.1
16 17 18 19
Sulfur Chlorine Argon Potassium
S Cl Ar K
112.8 -100.98 -189.2 63.65
20 21 22 23
Calcium Scandium Titanium Vanadium
Ca Sc Ti V
839 1539 1660 1890
24 25 26 27
Chromium Manganese Iron Cobalt
Cr Mn Fe Co
1857 1244 1535 1495
Source: data from James F. Shackelford, Introduction to Materials Science for Engineers, Second Edition, Macmillan Publishing Company, New York, pp.686-688, (1988).
©2001 CRC Press LLC
212
CRC Handbook of Materials Science & Engineering
6.3 Thermodynamics Page 213 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 70. MELTING
POINTS OF THE ELEMENTS (SHEET 2 OF 4)
At. No.
Element
Symbol
Melting Point (˚C)
28 29 30 31
Nickel Copper Zinc Gallium
Ni Cu Zn Ga
1453 1083.4 419.58 29.78
32 33 34 35
Germanium Arsenic Selenium Bromine
Ge As Se Br
937.4 817 217 -7.2
36 37 38 39
Krypton Rubidium Strontium Yttrium
Kr Rb Sr Y
-156.6 38.89 769 1523
40 41 42 43
Zirconium Niobium Molybdenum Technetium
Zr Nb Mo Tc
1852 2408 2617 2172
44 45 46 47
Ruthenium Rhodium Palladium Silver
Ru Rh Pd Ag
2310 1966 1552 961.93
48 49 50 51
Cadmium Indium Tin Antimony
Cd In Sn Sb
320.9 156.61 231.9681 630.74
52 53 54 55
Tellurium Iodine Xenon Cesium (-10˚)
Te I Xe Ce
449.5 113.5 -111.9 28.4
Source: data from James F. Shackelford, Introduction to Materials Science for Engineers, Second Edition, Macmillan Publishing Company, New York, pp.686-688, (1988).
©2001 CRC Press LLC Shackelford & Alexander
213
6.3 Thermodynamics Page 214 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 70. MELTING
POINTS OF THE ELEMENTS (SHEET 3 OF 4)
At. No.
Element
Symbol
Melting Point (˚C)
56 57 58 59
Barium Lantium Cerium Praseodymium
Ba La Ce Pr
7.25 920 798 931
60 61 62 63
Neodymium Promethium Samarium Europium
Nd Pm Sm Eu
1010 ~1080 1072 822
64 65 66 67
Gadolinium Terbium Dysprosium Holmium
Gd Tb Dy Ho
1311 1360 1409 1470
68 69 70 71
Erbium Thulium Ytterbium Lutetium
Er Tm Yb Lu
1522 1545 824 1659
72 73 74 75
Hafnium Tantalum Tungsten Rhenium
Hf Ta W Re
2227 2996 3410 3180
76 77 78 79
Osmium Iridium Platinum Gold
Os Ir Pt Au
3045 2410 1772 1064.43
80 81 82 83
Mercury Thallium Lead Bismuth
Hg Tl Pb Bi
-38.87 303.5 327.502 271.3
Source: data from James F. Shackelford, Introduction to Materials Science for Engineers, Second Edition, Macmillan Publishing Company, New York, pp.686-688, (1988).
©2001 CRC Press LLC
214
CRC Handbook of Materials Science & Engineering
6.3 Thermodynamics Page 215 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 70. MELTING
POINTS OF THE ELEMENTS (SHEET 4 OF 4)
At. No.
Element
Symbol
Melting Point (˚C)
84 85 86 87
Polonium Asatine Radon Francium
Po At Rn Fr
254 302 -71 ~27
88 89 90 91
Radium Actinium Thorium Protoactinium
Ra Ac Th Pa
700 1050 1750 <1600
92 93 94 95
Uranium Neptunium Plutonium Americium
U Np Pu Am
1132 640 641 994
96
Curium
Cm
1340
Source: data from James F. Shackelford, Introduction to Materials Science for Engineers, Second Edition, Macmillan Publishing Company, New York, pp.686-688, (1988).
©2001 CRC Press LLC
Shackelford & Alexander
215
6.3 Thermodynamics Page 216 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 71. MELTING
POINTS OF ELEMENTS AND
INORGANIC COMPOUNDS (SHEET 1 OF 13) Formula
Melting Point ˚C
Actinium227 Aluminum Aluminum bromide
Ac Al Al2Br6
1050±50 658.5 87.4
Aluminum chloride
Al2Cl6
192.4
Compound
Aluminum iodide
Al2I6
190.9
Aluminum oxide Antimony Antimony pentachloride
Al2O3 Sb SbCl5
2045.0 630 4.0
Antimony tribromide Antimony trichloride
SbBr3 SbCl3
Antimony trioxide
Sb4O6
96.8 73.3 655.0
Antimony trisulfide
Sb4S6
546.0
Argon Arsenic Arsenic pentafluoride Arsenic tribromide
Ar As AsF5 AsBr3
190.2 816.8 80.8 30.0
Arsenic trichloride Arsenic trifluoride
AsCl3 AsF3
Arsenic trioxide Barium
As4O6 Ba
–16.0 –6.0 312.8 725
Barium bromide Barium chloride Barium fluoride Barium iodide
BaBr2 BaCl2 BaF2 BaI2
846.8 959.8 1286.8 710.8
Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 .
©2001 CRC Press LLC
216
CRC Handbook of Materials Science & Engineering
6.3 Thermodynamics Page 217 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 71. MELTING
POINTS OF ELEMENTS AND
INORGANIC COMPOUNDS (SHEET 2 OF 13) Formula
Melting Point ˚C
Barium nitrate Barium oxide Barium phosphate Barium sulfate
Ba(NO3)2 BaO Ba3(PO4)2 BaSO4
594.8 1922.8 1727 1350
Beryllium Beryllium bromide Beryllium chloride Beryllium oxide
Be BeBr2 BeCl2 BeO
1278 487.8 404.8 2550.0
Bismuth Bismuth trichloride Bismuth trifluoride
Bi BiCl3 BiF3
Bismuth trioxide
Bi2O3
271 223.8 726.0 815.8
Boron Boron tribromide Boron trichloride Boron trifluoride
B BBr3 BCl3 BF3
2300 –48.8 –107.8 –128.0
Boron trioxide Bromine Bromine pentafluoride Cadmium
B2O3 Br2 BrF5 Cd
448.8 –7.2 –61.4 320.8
Cadmium bromide Cadmium chloride Cadmium fluoride Cadmium iodide
CdBr2 CdCl2 CdF2 CdI2
567.8 567.8 1110 386.8
Compound
Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 .
©2001 CRC Press LLC Shackelford & Alexander
217
6.3 Thermodynamics Page 218 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 71. MELTING
POINTS OF ELEMENTS AND
INORGANIC COMPOUNDS (SHEET 3 OF 13) Formula
Melting Point ˚C
Cadmium sulfate Calcium Calcium bromide Calcium carbonate
CdSO4 Ca CaBr2 CaCO3
1000 851 729.8 1282
Calcium chloride Calcium fluoride Calcium metasilicate
CaCl2 CaF2 CaSiO3 Ca(NO3)2
782 1382 1512 560.8
Calcium oxide Calcium sulfate Carbon dioxide Carbon monoxide
CaO CaSO4 CO2 CO
2707 1297 –57.6 –205
Cyanogen Cyanogen chloride Cerium Cesium
C2N2 CNCl Ce Cs
–27.2 –5.2 775 28.3
Cesium chloride Cesium nitrate Chlorine Chromium
CsCl CsNO3 Cl2 Cr
38.5 406.8 –103±5 1890
Chromium (II) chloride
CrCl2
Chromium (III) sequioxide Chromium trioxide Cobalt
Cr2O3 CrO3 Co
814 2279 197 1490
Compound
Calcium nitrate
Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 .
©2001 CRC Press LLC
218
CRC Handbook of Materials Science & Engineering
6.3 Thermodynamics Page 219 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 71. MELTING
POINTS OF ELEMENTS AND
INORGANIC COMPOUNDS (SHEET 4 OF 13) Formula
Melting Point ˚C
CoCl2 Cu CuCl2 CuCl
727 1083 430 429
Copper(l) cyanide Copper (I) iodide Copper (II) oxide Copper (I) oxide
Cu2(CN)2 CuI CuO Cu2O
473 587 1446 1230
Copper (I) sulfide Dysprosium Erbium Europium
Cu2S Dy Er Eu
1129 1407 1496 826
Europium trichloride Fluorine Gadolinium Gallium
EuCl3 F2 Gd Ga
622 –219.6 1312 29
Germanium Gold Hafnium Holmium
Ge Au Hf Ho
959 1063 2214 1461
Hydrogen Hydrogen bromide Hydrogen chloride Hydrogen fluoride
H2 HBr HCl HF
–259.25 –86.96 –114.3 83.11
HI HNO3
Compound
Cobalt (II) chloride Copper Copper (II) chloride Copper (I) chloride
Hydrogen iodide Hydrogen nitrate Hydrogen oxide (water)
H2O
–50.91 –47.2 0
Deuterium oxide
D2O
3.78
Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 .
©2001 CRC Press LLC Shackelford & Alexander
219
6.3 Thermodynamics Page 220 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 71. MELTING
POINTS OF ELEMENTS AND
INORGANIC COMPOUNDS (SHEET 5 OF 13) Formula
Melting Point ˚C
Hydrogen peroxide
H2O2
–0.7
Hydrogen selenate
H2SeO4
57.8
Hydrogen sulfate
H2SO4
10.4
Hydrogen sulfide
H2S
–85.6
Hydrogen sulfide, di–
H2S2
–89.7
Hydrogen telluride Indium lodine
H2Te In I2
–49.0 156.3 112.9
lodine chloride (α) lodine chloride (β) Iron Iron carbide
ICl ICl Fe Fe3C
17.1 13.8 1530.0 1226.8
Iron (III) chloride Iron (II) chloride Iron (II) oxide Iron oxide
Fe2Cl6 FeCl2 FeO Fe3O4
303.8 677 1380 1596
Iron pentacarbonyl Iron (II) sulfide Lanthanum Lead
Fe(CO)5 FeS La Pb
–21.2 1195 920 327.3
PbBr2 PbCl2 PbF2 PbI2
487.8 497.8 823 412
Compound
Leadbromide Lead chloride Lead fluoride Lead iodide
Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 .
©2001 CRC Press LLC
220
CRC Handbook of Materials Science & Engineering
6.3 Thermodynamics Page 221 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 71. MELTING
POINTS OF ELEMENTS AND
INORGANIC COMPOUNDS (SHEET 6 OF 13) Formula
Melting Point ˚C
Lead molybdate Lead oxide Lead sulfate Lead sulfide
PbMoO4 PbO PbSO4 PbS
1065 890 1087 1114
Lithium Lithium bromide Lithium chloride Lithium fluoride
Li LiBr LiCl LiF
178.8 552 614 896
Lithium hydroxide Lithium iodide Lithium metasilicate
LiOH LiI Li2SiO3
462 440 1177
Lithium molybdate
Li2MoO4
705
Lithium nitrate
LiNO3
Lithium orthosilicate
Li4SiO4
250 1249
Lithium sulfate
Li2SO4
857
Lithium tungstate
Li2WO4
742
Lutetium Magnesium Magnesium bromide Magnesium chloride
Lu Mg MgBr2 MgCl2
1651 650 711 712
Magnesium fluoride Magnesium oxide Magnesium silicate Magnesium sulfate
MgF2 MgO MgSiO3 MgSO4
1221 2642 1524 1327
Compound
Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 .
©2001 CRC Press LLC Shackelford & Alexander
221
6.3 Thermodynamics Page 222 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 71. MELTING
POINTS OF ELEMENTS AND
INORGANIC COMPOUNDS (SHEET 7 OF 13) Formula
Melting Point ˚C
Manganese Manganese dichloride Manganese metasilicate Manganese (II) oxide
Mn MnCl2 MnSiO3 MnO
1220 650 1274 1784
Manganese oxide Mercury Mercury bromide Mercury chloride
Mn3O4 Hg HgBr2 HgCl2
1590 –39 241 276.8
Mercury iodide Mercury sulfate Molybdenum Molybdenum dichloride
HgI2 HgSO4 Mo MoCl2
250 850 2622 726.8
Molybdenum hexafluoride Molybdenum trioxide Neodymium Neon
MoF6 MoO3 Nd Ne
17 795 1020 – 248.6
Nickel Nickel chloride
Ni NiCl2
Nickel subsulfide Niobium
Ni3S2 Nb
1452 1030 790 2496
Niobium pentachloride
NbCl5
Niobium pentoxide Nitric oxide Nitrogen
Nb2O5 NO N2
Compound
21 l 1511 –163.7 –210
Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 .
©2001 CRC Press LLC
222
CRC Handbook of Materials Science & Engineering
6.3 Thermodynamics Page 223 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 71. MELTING
POINTS OF ELEMENTS AND
INORGANIC COMPOUNDS (SHEET 8 OF 13) Formula
Melting Point ˚C
Nitrogen tetroxide
N2O4
–13.2
Nitrous oxide Osmium Osmium tetroxide (white)
N2O Os OsO4
–90.9 2700 41.8
Osmium tetroxide (yellow) Oxygen Palladium Phosphoric acid
OsO4 O2 Pd H3PO4
55.8 –218.8 1555 42.3
Phosphoric acid. hypo–
H4P2O6
54.8
Phosphorus acid, hypo–
H3PO2
17.3
Phosphorus acid, ortho– Phosphorus oxychloride
H3PO3 POCl3
73.8 1.0
Phosphorus pentoxide
P4O10
569.0
Phosphorus trioxide Phosphorus, yellow Platinum
P4O6 P4 Pt
23.7 44.1 1770
K KBO2 KBr K2CO3
63.4 947 742 897
KCl K2CrO4 KCN K2Cr2O7
770 984 623 398
Compound
Potassium Potassium borate, meta– Potassium bromide Potassium carbonate Potassium chloride Potassium chromate Potassium cyanide Potassium dichromate
Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 .
©2001 CRC Press LLC
Shackelford & Alexander
223
6.3 Thermodynamics Page 224 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 71. MELTING
POINTS OF ELEMENTS AND
INORGANIC COMPOUNDS (SHEET 9 OF 13) Formula
Melting Point ˚C
Potassium fluoride Potassium hydroxide Potassium iodide Potassium nitrate
KF KOH Kl KNO3
875 360 682 338
Potassium peroxide
K2O2
490
Compound
Potassium phosphate
K3PO4
1340
Potassium pyro– phosphate
K4P2O7
1092
Potassium sulfate
K2SO4
1074
Potassium thiocyanate Praseodymium Rhenium Rhenium heptoxide
KSCN Pr Re Re2O7
179 931 3167±60 296
Rhenium hexafluoride Rubidium Rubidium bromide Rubidium chloride
ReF6 Rb RbBr RbCl
19.0 38 .9 677 717
Rubidium fluoride Rubidium iodide Rubidium nitrate Samarium
RbF Rbl RbNO3 Sm
833 638 305 1072
Scandium Selenium Seleniumoxychloride
Sc Se SeOCl3
Silane, hexaHuoro–
Si2F6
1538 217 9.8 –28.6
Silicon Silicon dioxide (Cristobalite) Silicon tetrachloride
Si SiO2 SiCl4
1427 1723 –67.7
Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 .
©2001 CRC Press LLC
224
CRC Handbook of Materials Science & Engineering
6.3 Thermodynamics Page 225 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 71. MELTING
POINTS OF ELEMENTS AND
INORGANIC COMPOUNDS (SHEET 10 OF 13) Formula
Melting Point ˚C
Silver Silver bromide Silver chloride Silver cyanide
Ag AgBr AgCl AgCN
961 430 455 350
Silver iodide Silver nitrate
Agl AgNO3
Silver sulfate
Ag2SO4
557 209 657
Silver sulfide
Ag2S
841
Sodium Sodium borate, meta– Sodium bromide Sodium carbonate
Na NaBO2 NaBr Na2CO3
97.8 966 747 854
Sodium chlorate Sodium chloride Sodium cyanide Sodium fluoride
NaClO3 NaCl NaCN NaF
255 800 562 992
NaOH Nal Na2MoO4 NaNO3
322 662 687 310
Na2O2 NaPO3
Compound
Sodium hydroxide Sodium iodide Sodium molybdate Sodium nitrate Sodium peroxide Sodium phosphate, meta– Sodium pyrophosphate
Na4P2O7
460 988 970
Sodiumsilicate,aluminum–
NaAlSi3O8
1107
Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 .
©2001 CRC Press LLC
Shackelford & Alexander
225
6.3 Thermodynamics Page 226 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 71. MELTING
POINTS OF ELEMENTS AND
INORGANIC COMPOUNDS (SHEET 11 OF 13) Formula
Melting Point ˚C
Sodium silicate, di–
Na2Si2O5
884
Sodium silicate, meta–
Na2SiO3
1087
Sodium sulfate
Na2SO4
884
Sodium sulfide
Na2S
920
Sodium thiocyanate Sodium tungstate Strontium Strontium bromide
NaSCN Na2WO4 Sr SrBr2
323 702 757 643
Strontium chloride Strontium fluoride Strontium oxide Sulfur (monatomic)
SrCl2 SrF2 SrO S
872 1400 2430 119,
Sulfur dioxide Sulfur trioxide (α) Sulfur trioxide (β) Sulfur trioxide (γ)
SO2 SO3 SO3 SO3
– 73.2 16.8 32.3 62.1
Tantalum Tantalum pentachloride
Ta TaCl5
Tantalum pentoxide Tellurium
Ta2O5 Te
2996 ± 50 206.8 1877 453
Tb Tl TlBr Tl2CO3
1356 302.4 460 273
Compound
Terbium Thallium Thallium bromide, mono– Thallium carbonate
Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 .
©2001 CRC Press LLC
226
CRC Handbook of Materials Science & Engineering
6.3 Thermodynamics Page 227 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 71. MELTING
POINTS OF ELEMENTS AND
INORGANIC COMPOUNDS (SHEET 12 OF 13) Compound
Formula
Melting Point ˚C
Thallium chloride, mono– Thallium iodide, mono– Thallium nitrate
TICl TlI TINO3
Thallium sulfate
Tl2SO4
427 440 207 632
Thallium sulfide Thorium Thorium chloride Thorium dioxide
Tl2S Th ThCl4 ThO2
449 1845 765 2952
Thulium Tin Tin bromide, di– Tin bromide, tetra–
Tm Sn SnBr2 SnBr4
1545 231.7 231.8 29.8
Tin chloride, di– Tinchloride,tetra– Tin iodide, tetra– Tin oxide
SnCl2 SnCl4 SnI4 SnO
247 –33.3 143.4 1042
Titanium Titanium bromide, tetra– Titanium chloride, tetra– Titanium dioxide
Ti TiBr4 TiCl4 TiO2
1800 38 –23.2 1825
Titanium oxide Tungsten Tungsten dioxide Tungsten hexafluoride
TiO W WO2 WF6
991 3387 1270 –0.5
Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 .
©2001 CRC Press LLC
Shackelford & Alexander
227
6.3 Thermodynamics Page 228 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 71. MELTING
POINTS OF ELEMENTS AND
INORGANIC COMPOUNDS (SHEET 13 OF 13) Formula
Melting Point ˚C
Tungsten tetrachloride Tungsten trioxide
WCl4 WO3
327 1470
Uranium235 Uranium tetrachloride
U UCl4
~1133
Vanadium Vanadium dichloride Vanadium oxide Vanadium pentoxide
V VCl2 VO V2O5
1917 1027 2077 670
Xenon Ytterbium Yttrium Yttrium oxide
Xe Yb Y Y2O3
–111.6 823 1504 2227
Zinc Zincchloride Zinc oxide Zinc sulfide
Zn ZnCl2 ZnO ZnS
419.4 283 1975 1745
Zirconium Zirconium dichloride Zirconium oxide
Zr ZrCl2 ZrO2
1857 727 2715
Compound
590
Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 .
©2001 CRC Press LLC
228
CRC Handbook of Materials Science & Engineering
6.3 Thermodynamics Page 229 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 72. MELTING POINTS OF (SHEET 1 OF 11) Compound
CERAMICS
(K)
AgBr AgCl AgF AgI
703 728 708 831
AgNO3 Ag2O
483
Ag2SO4 Ag2S
933 1098
AlBr3 Al4C3
2000
AlCl3 AlF3
1564
AlI AlN Al2O3
464 >2475 2322
573
371 465
Al2(SO4)3
1043
Al2S3 BBr3
1373
B4C BCl3
2720
BF3 BN B2O3
146 3000 723
BS4
663
227 166
Source: data from: Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348.
©2001 CRC Press LLC
Shackelford & Alexander
229
6.3 Thermodynamics Page 230 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 72. MELTING POINTS OF (SHEET 2 OF 11) Compound
CERAMICS
(K)
BaB4 BaBr2 BaCl2
2543
BaF2
1627
BaI2 Ba(NO3)2
1013
BaO BaSO4
1123 1235
865 2283 1853
BaS BeB2
1473 >2243
BeBr2 Be2C
793 >2375
BeCl2 BeF2 BeI2
713
Be3N2
2513
BeO BeSO4
2725 848 491
BiBr3 BiCl3
813 783
507
BiF3 BiI3 B2O3
1000
Bi(SO4)3
678
681 1098
Source: data from: Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348.
©2001 CRC Press LLC
230
CRC Handbook of Materials Science & Engineering
6.3 Thermodynamics Page 231 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 72. MELTING POINTS OF (SHEET 3 OF 11) Compound
CERAMICS
(K)
Bi2S3 CaBr2 CaCl2
1020
CaF2
1675
CaI2 Ca(NO3)2
848
Ca3N2 CaO
1468 3183
CaSO4 CdBr2
1723
CdCl2 CdF2
841
CdI2 Cd(NO3)2
1003 1055
623
841 1373 423
CdO CdSO4
834 1773 1273
CdS CeB6
2023 2463
CeCl3 CeF2
1095
CeI3 CeO2
1025
CeS Ce(SO4)2
1710
>2873 2400 468
Source: data from: Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348.
©2001 CRC Press LLC
Shackelford & Alexander
231
6.3 Thermodynamics Page 232 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 72. MELTING POINTS OF (SHEET 4 OF 11) Compound
CERAMICS
(K)
CrB2 Cr3C2 CrN Cr2O3
2168 1770 >2603
CrSi2 CuBr CuCl CuF2
1843 777 695 1129
CuI Cu3N
878 573
Cu2O Cu4Si
1508
Cu2S FeBr2
1400
Fe3C FeCl2
2110
FeF3 Fe2O3
>1275
Fe2(SO4)3 FeS InBr3
2123
1123
955 945
1864 753 1468
InCl InF3
709 498 1443
InI3
483
Source: data from: Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348.
©2001 CRC Press LLC
232
CRC Handbook of Materials Science & Engineering
6.3 Thermodynamics Page 233 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 72. MELTING POINTS OF (SHEET 5 OF 11) Compound
CERAMICS
(K)
In2O3
2183
In2S3 KBr KCl
1323 1008 1043
KF KI KNO3
1131 958 610
K2O3
703
K2SO4
1342
K2S LiBr LiCl
1113 823 883
LiF LiI LiNO3
1119 722 527
Li3N
1118
Li2O Li2SO4
>1975
Li2S MgBr2
1198
MgCl2 MgF2 MgI2 MgO Mg2Si MgS MgSO4 MnCl2
1132 984 987 1535 <910 3098 1375 >2275 1397 923
Source: data from: Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348.
©2001 CRC Press LLC Shackelford & Alexander
233
6.3 Thermodynamics Page 234 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 72. MELTING POINTS OF (SHEET 6 OF 11) Compound
CERAMICS
(K)
MnF2 MnO MoB Mo2C
1129 1840 2625 2963
MoF6 MoI4
290
MoO3 MoSi2
1068
MoS2 NaBr NaC2 NaCl
1458 1023 973 1073
NaF NaI NaNO3
1267 935 583
Na2N
573
Na2SO4 Na2S
1157
NbB NbC
373 2553
1453 >2270 3770
NbN Nb2O5
2323 1764
NbSi2 NiBr2
2203
NiCl3 NiF2
1274 1273
NiI2
1070 2257
NiO
1236
Source: data from: Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348.
©2001 CRC Press LLC
234
CRC Handbook of Materials Science & Engineering
6.3 Thermodynamics Page 235 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 72. MELTING POINTS OF (SHEET 7 OF 11) Compound
CERAMICS
(K)
NiSO4 NiS PbBr2 PbCl2
1121 1070 643
PbF2 PbI2 Pb(NO3)2
1095 675
PbO PbSO4
771
743 1159
PbS PtBr2
1443 1387 523
PtCl2
854
PtI2 PtS2
633 508
SbBr3 SbCl3
370
SbF3 SbI3
565 443
Sb2O3 SbS3
928
SiC SiF4
2970 183
Si3N4 SiO2
2715
346
820
1978
Source: data from: Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348.
©2001 CRC Press LLC
Shackelford & Alexander
235
6.3 Thermodynamics Page 236 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 72. MELTING POINTS OF (SHEET 8 OF 11) Compound
CERAMICS
(K)
SnBr2 SnCl2 SnF4
488
SnI2
788
SnO SnSO4
581 978
SnS SrB6
1353 >635 1153 2508
SrBr2 SrC2
916 >1970
SrCl2 SrF2
1148
SrI2 Sr(NO3)2
593
SrO SrSO4 SrS TaB TaBr5 TaC
1736
643 2933 1878 >2275 >2270 538 3813
TaCl5 TaF5
489
Ta2N Ta2O5
3360
370 2100
Source: data from: Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348.
©2001 CRC Press LLC
236
CRC Handbook of Materials Science & Engineering
6.3 Thermodynamics Page 237 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 72. MELTING POINTS OF (SHEET 9 OF 11) Compound
CERAMICS
(K)
TaSi2 TaS4 TeBr2
>1575
TeCl2
448
TeO2 ThB4 ThBr4
>2270
ThC ThCl4 ThF4
2670 612
1006 883 2898 1043
ThN ThO2
1375 2903 3493
ThS2 TiB2
2198 3253
TiBr4
312 3433
TiC TiCl4 TiF3 TiI2 TiN TiO2 TiSi2 UB2 UBr4
250 1475 873 3200 2113 1813 >1770 789
Source: data from: Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348.
©2001 CRC Press LLC
Shackelford & Alexander
237
6.3 Thermodynamics Page 238 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 72. MELTING POINTS OF (SHEET 10 OF 11) Compound
CERAMICS
(K)
UC UCl4
2863 843
UF4 UI4
1233
UN UO2
3123 3151 1970
779
USi2 US2
>1375
VB2 VC VCl4
2373 3600 245
VF3
>1075
FI2 VN V2O5
1048 2593 947
VSi2
2023
V2S3
>875 3133 2900 548
WB WC WCl6 WO3 WSi2 WS2
1744
ZnBr2
667
ZnCl2 ZnF2 ZnI2 ZnO
2320 1523
548 1145 719 2248
Source: data from: Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348.
©2001 CRC Press LLC
238
CRC Handbook of Materials Science & Engineering
6.3 Thermodynamics Page 239 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 72. MELTING POINTS OF (SHEET 11 OF 11) Compound ZnSO4 ZrB2 ZrBr2 ZrC ZrCl2 ZrF4 ZrI4 ZrN ZrO2 Zr(SO4)2 ZrS2
CERAMICS
(K)
873 3313 >625 3533 623 873 772 3250 3123 683 1823
Source: data from: Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348.
©2001 CRC Press LLC
Shackelford & Alexander
239
6.3 Thermodynamics Page 240 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 73. HEAT OF
FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 1 OF 16) Heat of fusion
Compound
Formula
Melting point ˚C
Actinium227 Aluminum Aluminum bromide
Ac
1050±50
(11.0)
Al
658.5
94.5
2550
Al2Br6
Aluminum chloride
Al2Cl6
87.4 192.4
10.1 63.6
5420 19600
Aluminum iodide
Al2I6
Aluminum oxide Antimony Antimony pentachloride
Al2O3 Sb SbCl5
190.9 2045.0
9.8 (256.0)
7960 (26000)
630
39.1
4770
4.0
8.0
2400
Antimony tribromide Antimony trichloride Antimony trioxide
SbBr3 SbCl3 Sb4O6
Antimony trisulfide
Sb4S6
96.8 73.3 655.0 546.0
9.7 13.3 (46.3) 33.0
3510 3030 (26990) 11200
Argon Arsenic Arsenic pentafluoride Arsenic tribromide
Ar As AsF5 AsBr3
190.2 816.8
7.25 (22.0)
290 (6620)
80.8 30.0
16.5 8.9
2800 2810
Arsenic trichloride Arsenic trifluoride Arsenic trioxide Barium
AsCl3 AsF3
–16.0 –6.0 312.8
13.3 18.9 22.2
2420 2486 8000
725
13.3
1830
As4O6 Ba
cal/g
cal/g mole
(3400)
For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
240
CRC Handbook of Materials Science & Engineering
6.3 Thermodynamics Page 241 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 73. HEAT OF
FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 2 OF 16) Heat of fusion
Compound
Formula
Melting point ˚C
Barium bromide Barium chloride Barium fluoride Barium iodide
BaBr2 BaCl2 BaF2 BaI2
846.8 959.8 1286.8 710.8
21.9 25.9 17.1 (17.3)
6000 5370 3000 (6800)
Barium nitrate Barium oxide Barium phosphate Barium sulfate
Ba(NO3)2 BaO Ba3(PO4)2 BaSO4
(5900)
Beryllium Beryllium bromide Beryllium chloride Beryllium oxide
Be BeBr2 BeCl2 BeO
Bismuth Bismuth trichloride Bismuth trifluoride Bismuth trioxide
Bi BiCl3 BiF3
Boron Boron tribromide Boron trichloride Boron trifluoride
cal/g
cal/g mole
594.8
(22.6)
1922.8
93.2
13800
1727 1350
30.9 41.6
18600 9700
1278
260.0
–
487.8
(26.6)
(4500)
404.8 2550.0
(30) 679.7
(3000) 17000
271
12.0
2505
Bi2O3
223.8 726.0 815.8
8.2 (23.3) 14.6
2600 (6200) 6800
B BBr3 BCl3 BF3
2300
(490)
(5300)
–48.8 –107.8 –128.0
(2.9) (4.3) 7.0
(700) (500) 480
For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
Shackelford & Alexander
241
6.3 Thermodynamics Page 242 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 73. HEAT OF
FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 3 OF 16) Heat of fusion
Melting point ˚C
cal/g
cal/g mole
Compound
Formula
Boron trioxide Bromine Bromine pentafluoride Cadmium
B2O3 Br2 BrF5 Cd
448.8 –7.2 –61.4
78.9 16.1 7.07
5500 2580 1355
320.8
12.9
1460
Cadmium bromide Cadmium chloride Cadmium fluoride Cadmium iodide
CdBr2 CdCl2 CdF2 CdI2
567.8 567.8 1110 386.8
(18.4) 28.8 (35.9) 10.0
(5000) 5300 (5400) 3660
Cadmium sulfate Calcium Calcium bromide Calcium carbonate
CdSO4 Ca CaBr2 CaCO3
1000
22.9
4790
851
55.7
2230
729.8 1282
20.9 (126)
4180 (12700)
Calcium chloride Calcium fluoride Calcium metasilicate Calcium nitrate
CaCl2 CaF2 CaSiO3 Ca(NO3)2
782 1382 1512 560.8
55 52.5 115.4 31.2
6100 4100 13400 5120
Calcium oxide Calcium sulfate Carbon dioxide Carbon monoxide
CaO CaSO4 CO2 CO
2707
(218.1)
(12240)
1297 –57.6
49.2 43.2
6700 1900
–205
7.13
199.7
For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
242
CRC Handbook of Materials Science & Engineering
6.3 Thermodynamics Page 243 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 73. HEAT OF
FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 4 OF 16)
Compound
Formula
Cyanogen Cyanogen chloride Cerium Cesium
C2N2 CNCl Ce Cs
Cesium chloride Cesium nitrate Chlorine Chromium
CsCl CsNO3 Cl2 Cr
Chromium (II) chloride Chromium (III) sequioxide Chromium trioxide Cobalt
CrCl2 Cr2O3 CrO3 Co
Cobalt (II) chloride Copper Copper (II) chloride Copper (I) chloride
CoCl2 Cu CuCl2 CuCl
Copper(l) cyanide Copper (I) iodide Copper (II) oxide Copper (I) oxide
Cu2(CN)2 CuI CuO Cu2O
Heat of fusion
Melting point ˚C
cal/g
cal/g mole
–27.2
39.6
2060
–5.2 775 28.3
36.4 27.2 3.7
2240 2120 500
38.5
21.4
3600
406.8 –103±5
16.6 22.8
3250 1531
1890
62.1
3660
814 2279 197
65.9 27.6 37.7
7700 4200 3770
1490
62.1
3640
7390
727
56.9
1083
49.0
3110
430
24.7
4890
429
26.4
2620
473
(30.1)
(5400)
587 1446
(13.6) 35.4
(2600) 2820
1230
(93.6)
(l3400)
For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC Shackelford & Alexander
243
6.3 Thermodynamics Page 244 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 73. HEAT OF
FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 5 OF 16) Heat of fusion
Melting point ˚C
cal/g
cal/g mole
Compound
Formula
Copper (I) sulfide Dysprosium Erbium Europium
Cu2S Dy Er Eu
1129
62.3
5500
1407 1496 826
25.2 24.5 16.4
4100 4100 2500
Europium trichloride Fluorine Gadolinium Gallium
EuCl3 F2 Gd Ga
622 –219.6
(20.9) 6.4
(8000) 244.0
1312 29
23.8 19.1
3700 1336
Germanium Gold Hafnium Holmium
Ge Au Hf Ho
959 1063 2214 1461
(114.3) (15.3) (34.1) 24.8
(8300) 3030 (6000) 4100
Hydrogen Hydrogen bromide Hydrogen chloride Hydrogen fluoride
H2 HBr HCl HF
–259.25
13.8
28
–86.96 –114.3 83.11
7.1 13.0 54.7
575.1 476.0 1094
Hydrogen iodide Hydrogen nitrate
HI HNO3
–50.91
5.4
686.3
Hydrogen oxide (water)
H2O
Deuterium oxide
D2O
–47.2 0 3.78
9.5 79.72 75.8
601 1436 1516
For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
244
CRC Handbook of Materials Science & Engineering
6.3 Thermodynamics Page 245 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 73. HEAT OF
FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 6 OF 16)
Compound
Formula
Hydrogen peroxide
H2O2
Hydrogen selenate
H2SeO4
Hydrogen sulfate
H2SO4
Hydrogen sulfide
H2S
Hydrogen sulfide, di–
H2S2
Hydrogen telluride Indium lodine
H2Te In I2
lodine chloride (α) lodine chloride (β) Iron Iron carbide Iron (III) chloride Iron (II) chloride Iron (II) oxide Iron oxide Iron pentacarbonyl Iron (II) sulfide Lanthanum Lead
Heat of fusion
Melting point ˚C
cal/g
cal/g mole
–0.7 57.8 10.4 –85.6
8.58 23.8 24.0 16.8
2920 3450 2360 5683
–89.7 –49.0
27.3 12.9
1805 1670
156.3
6.8
781
112.9
14.3
3650
ICl ICl
17.1 13.8
16.4 13.3
2660 2270
Fe Fe3C
1530.0
63.7
3560
1226.8
68.6
12330
Fe2Cl6 FeCl2 FeO Fe3O4
303.8 677
63.2 61.5
20500 7800
1380
(107.2)
(7700)
1596
142.5
33000
Fe(CO)5 FeS La Pb
–21.2
16.5
3250
1195 920 327.3
56.9 17.4 5.9
5000 2400 1224
For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC Shackelford & Alexander
245
6.3 Thermodynamics Page 246 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 73. HEAT OF
FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 7 OF 16) Heat of fusion
Compound
Formula
Melting point ˚C
Leadbromide Lead chloride Lead fluoride Lead iodide
PbBr2 PbCl2 PbF2 PbI2
487.8 497 8 823 412
11 7 20.3 7.6 17.9
4290 5650 1860 5970
Lead molybdate Lead oxide Lead sulfate Lead sulfide
PbMoO4 PbO PbSO4 PbS
1065
70.8
(25800)
890
12.6
2820
1087
31.6
9600
1114
17.3
4150
Lithium Lithium bromide Lithium chloride Lithium fluoride
Li LiBr LiCl LiF
178.8 552 614 896
158.5 33 4 75.5 (91.1)
1100 2900 3200 (2360)
Lithium hydroxide Lithium iodide Lithium metasilicate
LiOH LiI Li2SiO3
462 440
103.3 (10.6)
2480 (1420)
Lithium molybdate
Li2MoO4
1177 705
80.2 24.1
7210 4200
Lithium nitrate Lithium orthosilicate
LiNO3 Li4SiO4
Lithium sulfate
Li2SO4
Lithium tungstate
Li2WO4
250 1249 857 742
87.8 60.5 27.6 (25.6)
6060 7430 3040 (6700)
cal/g
cal/g mole
For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
246
CRC Handbook of Materials Science & Engineering
6.3 Thermodynamics Page 247 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 73. HEAT OF
FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 8 OF 16) Heat of fusion
Melting point ˚C
cal/g
cal/g mole
Compound
Formula
Lutetium Magnesium Magnesium bromide Magnesium chloride
Lu Mg MgBr2 MgCl2
1651 650
26.3 88.9
4600 2160
711 712
45.0 82.9
8300 8100
Magnesium fluoride Magnesium oxide Magnesium silicate Magnesium sulfate
MgF2 MgO MgSiO3 MgSO4
1221
94.7
5900
2642
459.0
18500
1524 1327
146.4 28.9
14700 3500
Manganese Manganese dichloride Manganese metasilicate Manganese (II) oxide
Mn MnCl2 MnSiO3 MnO
1220
62.7
3450
650 1274
58.4 (62.6)
7340 (8200)
1784
183.3
13000
Manganese oxide Mercury Mercury bromide Mercury chloride
Mn3O4 Hg HgBr2 HgCl2
1590
(170.4)
(39000)
–39
2.7
557.2
241 276.8
10.9 15.3
3960 4150
Mercury iodide Mercury sulfate Molybdenum Molybdenum dichloride
HgI2 HgSO4 Mo MoCl2
250 850
9.9 (4.8)
4500 (1440)
2622
(68.4)
(6600)
726.8
3.58
6000
For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
Shackelford & Alexander
247
6.3 Thermodynamics Page 248 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 73. HEAT OF
FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 9 OF 16)
Compound
Formula
Molybdenum hexafluoride Molybdenum trioxide Neodymium Neon
MoF6 MoO3 Nd Ne
Nickel Nickel chloride
Ni NiCl2
Nickel subsulfide Niobium
Ni3S2 Nb
Niobium pentachloride
NbCl5
Niobium pentoxide Nitric oxide Nitrogen
Nb2O5 NO N2
Nitrogen tetroxide
N2O4
Nitrous oxide Osmium Osmium tetroxide (white)
N 2O Os OsO4
Osmium tetroxide (yellow) Oxygen Palladium Phosphoric acid
OsO4 O2 Pd H3PO4
Heat of fusion
Melting point ˚C
cal/g
cal/g mole
17 795
11.9 (17.3)
2500 (2500)
1020 – 248.6
11.8 3.83
1700 77.4
1452
71.5
4200
1030 790
142 5 25.8 1
18470 5800
2496
(68.9)
(6500)
21.1 1511
30 8 91.0
8400 24200
–163.7
18.3
549.5
–210
6.15
172.3
–13.2 –90.9
60.2 35.5
5540 1563
2700
(36.7)
(7000)
41.8
9.2
2340
55.8 –218.8
15.5 3.3
4060 106.3
1555
38.6
4120
42.3
25.8
2520
For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
248
CRC Handbook of Materials Science & Engineering
6.3 Thermodynamics Page 249 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 73. HEAT OF
FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 10 OF 16)
Compound
Formula
Phosphoric acid. hypo–
H4P2O6
Phosphorus acid, hypo–
H3PO2
Phosphorus acid, ortho– Phosphorus oxychloride
H3PO3 POCl3
Phosphorus pentoxide
P4O10
Phosphorus trioxide Phosphorus, yellow Platinum
P4O6 P4 Pt
Potassium Potassium borate, meta– Potassium bromide Potassium carbonate
K KBO2 KBr K2CO3
Potassium chloride Potassium chromate Potassium cyanide Potassium dichromate
KCl K2CrO4 KCN K2Cr2O7
Potassium fluoride Potassium hydroxide Potassium iodide Potassium nitrate
KF KOH Kl KNO3
Heat of fusion
Melting point ˚C
cal/g
cal/g mole
54.8 17.3 73.8 1.0
51.2 35.0 37.4 20.3
8300 2310 3070 3110
569.0 23.7 44.1
60.1 15.3 4.8
17080 3360 600
1770
24.1
4700
63.4
14.6
574
947
(69.1)
(5660)
742
42.0
5000
897
56.4
7800
770
85.9
6410
984
35.6
6920
623
(53.7)
(3500)
398
29.8
8770
875 360 682
111.9 (35.3) 24.7
6500 (1980) 4100
338
78.1
2840
For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
Shackelford & Alexander
249
6.3 Thermodynamics Page 250 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 73. HEAT OF
FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 11 OF 16)
Compound
cal/g
cal/g mole
490 1340 1092 1074
55.3 41.9 42.4 46.4
6100 8900 14000 8100
179 931 3167±60
23.1 19.0 (42.4)
2250 2700 (7900)
296
30.1
15340
Formula
Potassium peroxide
K2O2
Potassium phosphate
K3PO4
Potassium pyro– phosphate
K4P2O7
Potassium sulfate
K2SO4
Potassium thiocyanate Praseodymium Rhenium Rhenium heptoxide
KSCN Pr Re Re2O7
Rhenium hexafluoride Rubidium Rubidium bromide Rubidium chloride
ReF6 Rb RbBr RbCl
Rubidium fluoride Rubidium iodide Rubidium nitrate Samarium
RbF Rbl RbNO3 Sm
Scandium Selenium Seleniumoxychloride
Sc Se SeOCl3
Silane, hexaHuoro–
Si2F6
Heat of fusion
Melting point ˚C
19.0
16.6
5000
38 .9 677 717
6. 1 22.4 36.4
525 3700 4400
833 638
39.5 14.0
4130 2990
305
9.1
1340
1072
17.3
2600
1538 217
84.4 15.4
3800 1220
9.8 –28.6
6.1 22.9
1010 3900
For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
250
CRC Handbook of Materials Science & Engineering
6.3 Thermodynamics Page 251 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 73. HEAT OF
FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 12 OF 16)
Compound
Heat of fusion
Formula
Melting point ˚C
cal/g
cal/g mole
Silicon Silicon dioxide (Cristobalite) Silicon tetrachloride Silver
Si
1427
337.0
9470
SiO2
1723
35.0
2100
SiCl4 Ag
–67.7
10.8
1845
961
25.0
2700
Silver bromide Silver chloride Silver cyanide Silver iodide
AgBr AgCl AgCN AgI
430 455 350 557
11.6 22.0 20.5 9.5
2180 3155 2750 2250
Silver nitrate
AgNO3
209 657 841
16.2 (13.7) 13.5
2755 (4280) 3360
97.8
27.4
630
8660
Silver sulfate
Ag2SO4
Silver sulfide Sodium
Ag2S Na
Sodium borate, meta– Sodium bromide Sodium carbonate
966
134.6
747
59.7
6140
Sodium chlorate
NaBO2 NaBr Na2CO3 NaClO3
854 255
66.0 49.7
7000 5290
Sodium chloride Sodium cyanide Sodium fluoride Sodium hydroxide
NaCl NaCN NaF NaOH
800 562 992 322
123.5 (88.9) 166.7 50.0
7220 (4360) 7000 2000
For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC Shackelford & Alexander
251
6.3 Thermodynamics Page 252 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 73. HEAT OF
FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 13 OF 16)
Compound
Formula
Sodium iodide Sodium molybdate Sodium nitrate Sodium peroxide
NaI Na2MoO4 NaNO3
Sodium phosphate, meta– Sodium pyrophosphate
NaPO3 Na4P2O7
Sodiumsilicate,aluminum–
NaAlSi3O8
Sodium silicate, di–
Na2Si2O5
Sodium silicate, meta–
Na2SiO3
Na2O2
Melting point ˚C
Heat of fusion cal/g
cal/g mole
662
35.1
5340
687 310 460
17.5 44.2 75.1
3600 3760 5860
988 970 1107 884
(48.6) (51.5) 50.1 46.4
(4960) (13700) 13150 8460
1087 884 920
84.4 41.0 15.4
10300 5830 (1200)
323
54.8
4450
5800
Sodium sulfate
Na2SO4
Sodium sulfide Sodium thiocyanate
Na2S NaSCN
Sodium tungstate Strontium Strontium bromide Strontium chloride
Na2WO4 Sr SrBr2 SrCl2
702
19.6
757
25.0
2190
643 872
19.3 26.5
4780 4100
Strontium fluoride Strontium oxide Sulfur (monatomic) Sulfur dioxide
SrF2 SrO S SO2
1400
34.0
4260
2430 119
161.2 9.2
16700 295
–73.2
32.2
2060
For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
252
CRC Handbook of Materials Science & Engineering
6.3 Thermodynamics Page 253 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 73. HEAT OF
FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 14 OF 16) Heat of fusion
Compound
Formula
Melting point ˚C
Sulfur trioxide (α)
SO3 SO3 SO3
16.8 32.3 62.1
25.8 36.1 79.0
2060 2890 6310
Ta
2996 ± 50
34.6–41.5
(7500)
TaCl5
206.8 1877
25.1 108.6
9000 48000
453 1356
25.3 24.6
3230 3900
302.4 460
5.0 21.0
1030 5990
273
9.5
4400
427
17.7
4260
Sulfur trioxide (β) Sulfur trioxide (γ) Tantalum Tantalum pentachloride Tantalum pentoxide Tellurium Terbium
Ta2O5 Te Tb
Thallium Thallium bromide, mono– Thallium carbonate Thallium chloride, mono–
Tl TlBr Tl2CO3 TICl
Thallium iodide, mono– Thallium nitrate
TlI TINO3
Thallium sulfate
Tl2SO4
Thallium sulfide
Tl2S
Thorium Thorium chloride Thorium dioxide Thulium
Th ThCl4 ThO2 Tm
cal/g
cal/g mole
440
9.4
3125
207 632 449
8.6 10.9 6.8
2290 5500 3000
1845
(<19.8)
(<4600)
765 2952
61.6 1102.0
22500 291100
1545
26.0
4400
For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
Shackelford & Alexander
253
6.3 Thermodynamics Page 254 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 73. HEAT OF
FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 15 OF 16) Heat of fusion
Compound
Formula
Melting point ˚C
Tin Tin bromide, di– Tin bromide, tetra– Tin chloride, di–
Sn SnBr2 SnBr4 SnCl2
231.7
14.4
1720
231.8 29.8 247
(6.1) 6.8 16.0
(1720) 3000 3050
Tin chloride,tetra– Tin iodide, tetra– Tin oxide Titanium
SnCl4 SnI4 SnO Ti
–33.3 143.4
8.4 (6.9)
2190 (4330)
1042 1800
(46.8) (104.4)
(6400) (5000)
Titanium bromide, tetra– Titanium chloride, tetra– Titanium dioxide Titanium oxide
TiBr4 TiCl4 TiO2 TiO
38 –23.2 1825
(5.6) 11.9 (142.7)
(2060) 2240 (11400)
991
219
14000
Tungsten Tungsten dioxide Tungsten hexafluoride Tungsten tetrachloride
W WO2 WF6 WCl4
Tungsten trioxide
WO3
Uranium235
U
Uranium tetrachloride Vanadium
UCl4 V
cal/g
cal/g mole
3387
(45.8)
(8420)
1270 –0.5 327
60 1 6.0 18.4
13940 1800 6000
1470 ~1133 590
60 1 20 27.1
13940 3700 10300
1917
(70)
(4200)
For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
254
CRC Handbook of Materials Science & Engineering
6.3 Thermodynamics Page 255 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 73. HEAT OF
FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 16 OF 16) Melting point ˚C
Compound
Formula
Vanadium dichloride Vanadium oxide Vanadium pentoxide Xenon
VCl2 VO V2O5 Xe
Ytterbium Yttrium Yttrium oxide Zinc
Yb Y Y2O3 Zn
Zinc chloride Zinc oxide Zinc sulfide Zirconium
ZnCl2 ZnO ZnS Zr
Zirconium dichloride Zirconium oxide
ZrCl2 ZrO2
727 2715
Heat of fusion cal/g
cal/g mole
1027
65.6
8000
2077
224.0
15000
670
85.5
15560
–111.6
5.6
740
823 1504
12.7 46.1
2200 4100
2227
110.7
25000
419.4
24.4
1595
283
(406)
(5540)
1975 1745 1857
54.9 (93.3) (60)
4470 (9100) (5500)
45.0 168.8
7300 20800
For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC Shackelford & Alexander
255
6.3 Thermodynamics Page 256 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 74. HEATS OF
SUBLIMATION OF METALS AND THEIR OXIDES
Metal
kcal/mole (25˚C)
kJ/mole (25˚C)
Al Cu Fe Mg
78 81 100 113
326 338 416 473
122 145 143
509 605 597
153
639
Metal Oxide FeO MgO α-TiO TiO2 (rutile)
Data from: JANAF Thermochemical Tables, 2nd ed., National Standard Reference Data Series, Natl. Bur. Std. (U.S.), 37 (1971) and Supplement in J. Phys. Chem. Ref. Data 4(1), 1175 (1975).
©2001 CRC Press LLC
256
CRC Handbook of Materials Science & Engineering
Table 75. KEY TO
TABLES OF THERMODYNAMIC COEFFICIENTS (SHEET 1 OF 4)
Thermodynamic calculations over a wide range of temperatures are generally made with the aid of algebraic equations representing the characteristic properties of the substances being considered. The necessary integrations and differentiations, or other mathematical manipulations, are then most easily effected. The most convenient starting point in making such calculations for a given substance is the heat capacity at constant pressure. From this quantity and a knowledge of the properties of any phase transitions, the other thermodynamic properties may be computed by the well-known equations given in standard texts on thermodynamics. Please note that the units for a, b, c, and d are cal/g mole, whereas those for A are kcal/g mole. The necessary adjustment must be made when the data are substituted into the equations. Empirical heat capacity equations are generated in the form of a power series, with the absolute temperature T as the independent variable:
Since both forms are used in the following, let
©2001 CRC Press LLC
Table 75. KEY TO
TABLES OF THERMODYNAMIC COEFFICIENTS (SHEET 2 OF 4)
The constants a, b, c, and d are to be determined either experimentally or by some theoretical or semi-empirical approach. The heat content, or enthalpy (H), is determined from the heat capacity by a simple integration of the range of temperatures for which the formula for cp is valid. Thus, if 298K is taken as a reference temperature,
where all the constants on the right-hand side of the equation have been incorporated in the term –A. In general, the enthalpy is given by a sum of terms for each phase of the substance involved in the temperature range considered plus terms that represent the heats of transitions:
In a similar manner, the entropy S is obtained by performing the integration
©2001 CRC Press LLC
Table 75. KEY TO
TABLES OF THERMODYNAMIC COEFFICIENTS (SHEET 3 OF 4)
where
From the definition of free energy (F):
the quantity
©2001 CRC Press LLC
Table 75. KEY TO
TABLES OF THERMODYNAMIC COEFFICIENTS (SHEET 4 OF 4)
may be written as:
and also the free energy function
Values of these thermodynamic coefficients are given in the following tables. The first column in each table lists the material. The second column gives the phase to which the coefficients are applicable. The remaining columns list the values of the constants a, b, c, d, A, and B required in the thermodynamic equations. All values that represent estimates are enclosed in parentheses. The heat capacities at temperatures beyond the range of experimental determination were estimated by extrapolation. Where no experimental values were found, analogy with compounds of neighboring elements in the periodic table was used.
©2001 CRC Press LLC
Table 76. THERMODYNAMIC
COEFFICIENTS FOR SELECTED ELEMENTS * (SHEET 1 OF 14)
Element
Phase
a –
b –
c (cal • g mole-1 )
–
(kcal • g mole-1)
(e.u.)
Ac
solid liquid
(5.4) (8)
(3.0) –
– –
– –
(1.743) (0.295)
(18.7) (31.3)
Ag
solid liquid gas
5.09 7.30 (4.97)
1.02 – –
– – –
0.36 – –
1.488 0.164 (–66.34)
19.21 30.12 (–12.52)
Al
solid liquid
4.94 7.0
2.96 –
– –
– –
1.604 0.33
22.26 30.83
Am
solid liquid
(4.9) (8.5)
(4.4) –
– –
– –
(1.657) (0.409)
(16.2) (34.5)
As
solid
5.17
2.34
–
–
1.646
21.8
Au
solid liquid
6.14 7.00
–0.175 –
0.92 –
– –
1.831 –0.631
23.65 26.99
B
solid liquid
1.54 (6.0)
4.40 –
– –
– –
0.655 (–4.599)
8.67 (31.4)
d
A
Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44.
©2001 CRC Press LLC
B
Table 76. THERMODYNAMIC
COEFFICIENTS FOR SELECTED ELEMENTS * (SHEET 2 OF 14)
a –
b –
c (cal • g mole-1 )
–
(kcal • g mole-1)
(e.u.)
5.55 5.55
4.50 1.50
– –
– –
1.722 1.582
16.1 15.9
(7.4) (497)
– –
– –
– –
(0.843) (–39.65)
(25.3) (–11.7)
solid liquid
5.07 5.27
1.21 –
– –
–1.15 –
1.951 –1.611
27.62 25.68
Bi
solid liquid gas
5.38 7.60 (4.97)
2.60 – –
– – –
– – –
1.720 –0.087 (–46.19)
17.8 25.6 (–15.9)
C
solid
4.10
1.02
–
–2.10
1.972
23.484
Ca
solid, α solid, β liquid gas
5.24 6.29
3.50 1.40
– –
– –
1.718 1.689
2095 26.01
7.4 (4.97)
– –
– –
– –
–0.147 (–43.015)
30.28 (–9.88)
Element
Phase
Ba
solid, α solid, β liquid gas
Be
d
A
Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44.
©2001 CRC Press LLC
B
Table 76. THERMODYNAMIC
COEFFICIENTS FOR SELECTED ELEMENTS * (SHEET 3 OF 14)
Element
Phase
a –
b –
c (cal • g mole-1 )
–
(kcal • g mole-1)
(e.u.)
Cd
solid liquid gas
5.31 7.10 (4.97)
2.94 – –
– – –
– – –
1.714 0.798 (–25.28)
18.8 26.1 (–11.7)
Ce
solid liquid
4.40 (7.9)
6.0 –
– –
– –
1.579 (–0.148)
13.1 (29.1)
Cl2
gas
8.76
0.27
–
–0.65
2.845
–2.929
Co
solid, α solid, β solid, γ liquid
4.72 3.30 9.60
4.30 5.86 –
– – –
– – –
1.598 0.974 3.961
21.4 3.1 50.5
8.30
–
–
–
–2.034
38.7
solid liquid gas
5.35 9.40 (4.97)
2.36 – –
– – –
–0.44 – –
1.848 1.556 (–82.47)
25.75 50.13 (–13.8)
Cr
d
A
Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44.
©2001 CRC Press LLC
B
Table 76. THERMODYNAMIC
COEFFICIENTS FOR SELECTED ELEMENTS * (SHEET 4 OF 14)
Element
Phase
a –
b –
c (cal • g mole-1 )
–
(kcal • g mole-1)
(e.u.)
Cs
solid liquid gas
7.42 8.00 (4.97)
– – –
– – –
– – –
2.212 1.887 (–17.35)
22.5 24.1 (–13.6)
Cu
solid liquid
5.41 7.50
1.50 –
– –
– –
1.680 0.024
23.30 34.05
F2
gas
8.29
0.44
–
–0.80
2.760
–0.76
Fe
solid, α solid, β solid, γ solid, δ liquid
3.37 10.40 4.85 10.30
7.10 – 3.00 –
– – – –
0.43 – – –
1.176 4.281 0.396 4.382
14.59 55.66 19.76 55.11
10.00
–
–
–
–0.021
50.73
solid liquid
5.237 (6.645)
3.33 –
– –
– –
1.710 (0.648)
21.01 (23.64)
Ga
d
A
Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44.
©2001 CRC Press LLC
B
Table 76. THERMODYNAMIC
COEFFICIENTS FOR SELECTED ELEMENTS * (SHEET 5 OF 14)
Element
Phase
a –
b –
c (cal • g mole-1 )
–
(kcal • g mole-1)
(e.u.)
Ge
solid liquid
5.90 (7.3)
1.13 –
– –
– –
1.764 (–5.668)
23.8 (25.7)
H2
gas
6.62
0.81
–
–
2.010
6.75
Hf
solid
(6.00)
(0.52)
–
–
(1.812)
(21.2)
Hg
liquid gas
6.61 4.969
– –
– –
– –
1.971 –13.048
19.20 –13.54
In
solid liquid gas
5.81 7.50 (4.97)
2.50 – –
– – –
– – –
1.844 1.564 (–58.42)
19.97 27.34 (–14.46)
Ir
solid
5.56
1.42
–
–
1.721
23.4
K
solid liquid gas
1.3264 8.8825 (4.97)
19.405 4.565 –
– 2.9369 –
– – –
1.258 1.923 (–19.689)
–1.86 32.55 (–9.46)
d
A
Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44.
©2001 CRC Press LLC
B
Table 76. THERMODYNAMIC
COEFFICIENTS FOR SELECTED ELEMENTS * (SHEET 6 OF 14)
Element
Phase
a –
b –
c (cal • g mole-1 )
–
(kcal • g mole-1)
(e.u.)
La
solid liquid
6.17 (7.3)
1.60 –
– –
– –
1.911 (–0.15)
21.9 (26.0)
Li
solid liquid gas
3.05 7.0 (4.97)
8.60 – –
– – –
– – –
1.292 1.509 (–34.30)
12.92 32.00 (–2.84)
Mg
solid liquid gas
5.33 (8.0) (4.97)
2.45 – –
– – –
–0.103 – –
1.733 0.942 (–34.78)
23.39 36.967 (–7.60)
Mn
solid, α solid, β solid, γ solid, δ liquid gas
6.70 8.33 10.70 11.30
3.38 0.66 – –
– – – –
–0.37 – – –
1.974 2.672 4.760 5.176
26.11 41.02 56.84 60.88
11.00 6.26
– –
–
–
1.221 –63.704
56.38 –3.13
solid
5.48
1.30
–
–
1.692
24.78
Mo
d
A
Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44.
©2001 CRC Press LLC
B
Table 76. THERMODYNAMIC
COEFFICIENTS FOR SELECTED ELEMENTS * (SHEET 7 OF 14)
Element
Phase
a –
b –
c (cal • g mole-1 )
–
(kcal • g mole-1)
(e.u.)
N2
gas
6.76
0.606
0.13
–
2.044
–7.064
Na
solid liquid
5.657 8.954 (4.97)
3.252 –4.577 –
0.5785 2.540 –
– – –
1.836 1.924 (–24.40)
20.92 36.0 (–8.7)
Nb
solid
5.66
0.96
–
–
1.730
24.24
Nd
solid liquid
5.61 (9.1)
5.34 –
– –
– –
1.910 (–0.606)
19.7 35.8
Ni
solid α solid β liquid
4.06 6.00
7.04 1.80
– –
– –
1.523 1.619
18.095 27.16
9.20
–
–
–
0.251
45.47
Np
solid liquid
(5.3) (9.0)
(3.4) –
– –
– –
(1.731) (1.392)
(17.9) (37.5)
O2
gas
8.27
0.258
–
–1.877
3.007
–0.750
d
A
Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44.
©2001 CRC Press LLC
B
Table 76. THERMODYNAMIC
COEFFICIENTS FOR SELECTED ELEMENTS * (SHEET 8 OF 14)
Element
Phase
a –
b –
c (cal • g mole-1 )
–
(kcal • g mole-1)
(e.u.)
Os
solid
5.69
0.88
–
–
1.736
24.9
P4
solid, white
13.62
28.72
–
–
5.338
43.8
liquid gas
19.23 (19.5)
0.51 (–0.4)
– (1.3)
–2.98 –
6.035 (–6.32)
66.7 (46.1)
Pa
solid liquid
(5.2) (8.0)
(4.0) –
– –
– –
(1.728) (–3.823)
(17.3) (28.8)
Pb
solid liquid gas
5.64 7.75 (4.97)
2.30 –0.73 –
– – –
– – –
1.784 1.362 (–45.25)
17.33 27.11 (–13.6)
Pd
solid liquid
5.80 (9.0)
1.38 –
– –
– –
1.791 (1.215)
24.6 (43.8)
Po
solid liquid gas
(5.2) (9.0) (4.97)
(3.2) – –
– – –
– – –
(1.693) (0.847) (–28.73)
(17.6) (35.2) (–13.5)
d
A
Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44.
©2001 CRC Press LLC
B
Table 76. THERMODYNAMIC
COEFFICIENTS FOR SELECTED ELEMENTS * (SHEET 9 OF 14)
Element
Phase
a –
b –
c (cal • g mole-1 )
–
(kcal • g mole-1)
(e.u.)
Pr
solid liquid
(5.0) (8.0)
(4.6) –
– –
– –
(1.705) (–0.519)
(16.4) (30.0)
Pt
solid liquid
5.74 (9.0)
1.34 –
– –
0.10 –
1.737 (0.406)
23.0 (42.6)
Pu
solid liquid
(5.2) (8.0)
(3.6) –
– –
– –
(1.710) (0.506)
(17.7) (31.0)
Ra
solid liquid gas
(5.8) (8.0) (4.97)
(1.2) – –
– – –
– – –
(1.783) (1.284) (–38.87)
(16.4) (28.6) (–14.5)
Rb
solid liquid gas
3.27 7.85 (4.97)
13.1 – –
– – –
– – –
1.557 1.814 (–19.04)
5.9 26.5 (–12.3)
Re
solid
(5.85)
(0.8)
–
–
(1.780)
(24.7)
d
A
Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44.
©2001 CRC Press LLC
B
Table 76. THERMODYNAMIC
COEFFICIENTS FOR SELECTED ELEMENTS * (SHEET 10 OF 14)
Element
Phase
a –
b –
c (cal • g mole-1 )
–
(kcal • g mole-1)
(e.u.)
Rh
solid liquid
5.40 (9.0)
2.19 –
– –
– –
1.707 (–0.923)
23.8 (44.4)
Ru
solid, α solid, β solid, γ solid, δ
5.25 7.20 7.20 7.50
1.50 – – –
– – – –
– – – –
1.632 2.867 2.867 3.169
23.5 35.5 35.5 37.6
S
solid, α solid, β liquid
3.58 3.56
6.24 6.95
– –
– –
1.345 1.298
14.64 14.54
5.4
5.0
–
–
1.576
24.02
/2 S2
gas
(4.25)
(0.15)
–
(–1.0)
(–2.859)
(9.57)
Sb
solid, α, β, γ liquid
5.51
1.74
–
–
1.720
21.4
7.50
–
–
–
1.992
28.1
gas
4.47
–
–
–0.11
–53.876
–21.7
1
1/2 Sb2
d
A
Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44.
©2001 CRC Press LLC
B
Table 76. THERMODYNAMIC
COEFFICIENTS FOR SELECTED ELEMENTS * (SHEET 11 OF 14)
Element
Phase
a –
b –
c (cal • g mole-1 )
–
(kcal • g mole-1)
(e.u.)
Sc
solid liquid
(5.13) (7.50)
(3.0) –
–
–
1.663 (–2.563)
21.1 31.3
Se
solid liquid
3.30 7.0
8.80 –
– –
– –
1.375 0.881
11.28 27.34
Si
solid liquid
5.70 7.4
1.02 –
–
–1.06
2.100 7.646
28.88 33.17
Sm
solid liquid
(6.7) (9.0)
(3.4) –
– –
– –
(2.149) (–2.296)
(24.2) (33.4)
Sn
solid, α, β liquid gas
4.42
6.30
–
–
1.598
14.8
7.30 (4.97)
– –
– –
– –
0.559 60.21)
26.2 (–14.3)
solid liquid gas
(5.60) (7.7) (4.97)
(1.37) – –
– – –
– – –
(1.731) (0.976) (37.16)
(19.3) (30.4) (–10.2)
Sr
d
A
Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44.
©2001 CRC Press LLC
B
Table 76. THERMODYNAMIC
COEFFICIENTS FOR SELECTED ELEMENTS * (SHEET 12 OF 14)
Element
Phase
a –
b –
c (cal • g mole-1 )
–
(kcal • g mole-1)
(e.u.)
Ta
solid
5.82
0.78
–
–
1.770
23.4
Tc
solid liquid
(5.6) –
(2.0) –
– –
– –
(1.759) (3.459)
(24.5) (59.4)
Te
solid, α solid, β liquid
4.58 4.58
5.25 5.25
– –
– –
1.599 1.469
15.78 15.57
9.0
–
–
–
–0.988
34.96
/2 Te2
gas
4.47
–
–
–0.10
–19.048
–6.47
Th
solid liquid
8.2 (8.0)
–0.77 –
2.04 –
– –
2.591 (–7.602)
33.64 (26.84)
Ti
solid, α solid, β liquid
5.25 7.50
2.52 –
– –
– –
1.677 1.645
23.33 35.46
(7.8)
–
–
–
(–2.355)
(35.45)
1
d
A
Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44.
©2001 CRC Press LLC
B
Table 76. THERMODYNAMIC
COEFFICIENTS FOR SELECTED ELEMENTS * (SHEET 13 OF 14)
Element
Phase
Tl
solid, α solid, β liquid gas
a –
b –
c (cal • g mole-1 )
–
(kcal • g mole-1)
(e.u.)
5.26 7.30
3.46 –
– –
– –
1.722 2.230
15.6 26.4
7.50 (4.97)
– –
– –
– –
1.315 (–41.88)
25.9 (–15.4)
d
A
B
solid, α solid, β solid, γ liquid
3.25 10.28 9.12
8.15 – –
– – –
0.80 – –
1.063 3.493 1.110
8.47 48.27 39.09
(8.99)
–
–
–
(–2.073)
36.01
V
solid liquid
5.57 (8.6)
0.97 –
– –
– –
1.704 1.827
24.97 44.06
W
solid
5.74
0.76
–
–
1.745
24.9
Y
solid liquid
(5.6) (7.5)
(2.2) –
– –
– –
(1.767) 2.277)
(21.6) (29.6)
U
Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44.
©2001 CRC Press LLC
Table 76. THERMODYNAMIC
COEFFICIENTS FOR SELECTED ELEMENTS * (SHEET 14 OF 14)
a –
b –
c (cal • g mole-1 )
–
(kcal • g mole-1)
(e.u.)
solid liquid
5.35 7.50 (4.97)
2.40 – –
– – –
– – –
1.702 1.020 (–29.407)
21.25 31.35 (–9.81)
solid, α solid, β liquid
6.83 7.27
1.12 –
– –
–0.87 –
2.378 1.159
30.45 31.43
(8.0)
–
–
–
(–2.190)
(34.7)
Element
Phase
Zn
Zr
d
A
Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44. *
Please refer to Table 75, ”Key to Tables of Thermodynamic Coefficients” on page 257 for an explanation of the coefficients.
©2001 CRC Press LLC
B
Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 1 OF 23)
OXIDES
Oxide
Phase
a –
b (cal • g mole-1 )
c –
–
(kcal • g mole-1)
(e.u.)
Ac2O3
Solid Liquid
(20.0) (40)
(20.4) –
– –
– –
(6.870) (–19.767)
(80.9) (180.5)
Ag2O
Solid
13.26
7.04
–
–
4.266
48.56
Ag2O2
Solid
(16.4)
(12.2)
–
–
(5.432)
(76.7)
Al2O3
Solid Liquid
26.12 (33)
4.388 –
– –
–7.269 –
10.422 (– 11.655)
142.03 (174.1)
Am2O3
Solid Liquid Solid
(20.0) (38.5) (14.0)
(15.6) – (6.8)
– – –
– – –
(6.657) (–7.796) (4.477)
(81.6) (181.8) (61.8)
AmO2
d
A
For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58.
©2001 CRC Press LLC
B
Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 2 OF 23)
OXIDES
Oxide
Phase
a –
b (cal • g mole-1 )
c –
–
(kcal • g mole-1)
(e.u.)
As2O3
Solid, α Solid, β Liquid Gas
8.37 8.37 (39) (21.5)
48.6 48.6 – –
– – – –
– – – –
4.656 0.556 (5.760) (–14.164)
36.6 28.4 (187.6) (62.5)
AsO2 As2O5
Solid Liquid Solid
(8.5) (21) (31.1)
(9.4) – (16.4)
– – –
– – (–5.4)
(2.952) (2.184) (11.813)
(38.2) (108.0) (159.9)
Au2O3
Solid
(23.5)
(4.8)
–
–
(7.220)
(105.3)
B2O3
Solid Liquid
8.73 30.50
25.40 –
– –
–1.31 –
4.171 7.822
45.04 161.59
Ba2O
Solid Liquid Gas
(20.0) (22) (15)
(2.2) – –
– – –
– – –
(6.061) (1.769) (–25.51)
(91.1) (96.8) (29.0)
d
A
For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58.
©2001 CRC Press LLC
B
Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 3 OF 23)
OXIDES
Oxide
Phase
a –
b (cal • g mole-1 )
c –
–
(kcal • g mole-1)
(e.u.)
BaO
Solid Liquid Solid Liquid
12.74 (13.9) (13.6) (21)
1.040 – (2.0) –
– – – –
–1.984 – – –
4.510 (–9.341) (4.144) (3.241)
57.2 (57.5) (59.6) (99.0)
BeO
Solid
8.69
3.65
–
–3.13
3.803
48.99
BiO
Solid Liquid Gas Solid Liquid
(9.7) (14) (8.9) 23.27 (35.7)
(3.0) – – 11.05 –
– – – – –
– – – – –
(3.025) (2.306) (–61.49) 7.429 (7.614)
(41.2) (64.9) (–1.8) 99.7 (168.3)
CO
Gas
6.60
1.2
–
–
2.021
–9.34
CO2
Gas
7.70
5.3
–0.83
–
2.490
–5.64
CaO
Solid
10.00
4.84
–
–1.08
3.559
49.5
BaO2
Bi2O3
d
A
For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58.
©2001 CRC Press LLC
B
Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 4 OF 23)
OXIDES
Oxide
Phase
a –
b (cal • g mole-1 )
c –
–
(kcal • g mole-1)
(e.u.)
CdO
Solid
9.65
2.08
–
–
2.970
42.5
Ce2O3
Solid Liquid Solid
(–23.0) (37) 15.0
(9.0) – 2.5
– – –
– – –
(7.258) (–2.591) 4.579
(100.2) (178.5) 68.5
Co3O4
Solid Liquid Solid
(9.8) (15.5) (29.5)
(2.2) – (17.0)
– – –
– – –
(3.020) (–1.886) (9.551)
(46.0) (79.2) (137.6)
Cr2O3
Solid
28.53
2.20
–
–3.736
9.857
145.9
CrO2
Solid
(16.1)
(3.0)
–
(–3.0)
(5.946)
(82.8)
CrO3
Solid Liquid Gas
(18.1) (27) (20)
(4.0) – –
– – –
(–2.0) – –
(6.245) (3.381) (–28.62)
(87.9) (127.0) (53.6)
CeO2 CoO
d
A
For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58.
©2001 CRC Press LLC
B
Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 5 OF 23)
OXIDES
Oxide
Phase
a –
b (cal • g mole-1 )
c –
–
(kcal • g mole-1)
(e.u.)
Cs2O
Solid Liquid Solid Liquid
(16.51) (22) (21.4) (29.5)
(5.4) – (11.4) –
– – – –
– – – –
(5.160) (3.205) (6.887) (4.125)
(72.6) (99.0) (85.3) (123.8)
Cs2O3
Solid Liquid
(24.0) (35)
(22.6) –
– –
– –
(8.160) (2.148)
(96.5) (142.2)
Cu2O
Solid Liquid Solid Liquid
(13.4) (21.5) 14.34 (22)
(8.6) – 6.2 –
– – – –
– – – –
(4.378) (3.721) 4.551 (–4.339)
(96.0) (54.9) 61.11 (98.91)
Solid Liquid Solid, α Solid, β
9.27 (14.5) 12.38 (14.5)
4.80 – 1.62 –
– – – –
– – –0.38 –
(2.977) (–3.721) 3.826 (–2.399)
(43.8) (69.2) 58.3 (66.7)
Cs2O2
CuO
FeO Fe3O4
d
A
For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58.
©2001 CRC Press LLC
B
Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 6 OF 23)
OXIDES
Oxide
Phase
a –
b (cal • g mole-1 )
c –
–
(kcal • g mole-1)
(e.u.)
Fe2O3
Solid, α Solid, β Solid, γ
21.88 48.00
48.20 18.6
– –
– –
8.666 12.652
104.0 238.3
Solid Liquid Gas Solid
23.49 36.00 31.71 (13.8)
18.6 – 1.8 –
– – – –
–3.55 – – –
9.021 11.979 8.467 (4.497)
119.9 187.6 159.7 (58.7)
Liquid Solid Gas
(21.5) (14) 11.77
– – 25.2
– – –
– – –
(–0.559) (–28.06) (4.630)
(94.1) (22.3) (54.35)
Solid (α,β) Liquid
(35.5) (10.4)
– (2.6)
– –
– (–0.5)
(–20.66) (3.3)
(173.2) (47.8)
Ga2O
Ga2O3
GeO
GeO2
d
A
For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58.
©2001 CRC Press LLC
B
Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 7 OF 23)
OXIDES
Oxide
Phase
a –
b (cal • g mole-1 )
c –
–
(kcal • g mole-1)
(e.u.)
In2O
Solid Liquid Gas
(14.7) (22) (15)
(7.8) – –
– – –
– – –
(4.730) (3.206) (–18.39)
(58.1) (92.6) (25.8)
InO
Solid Liquid Gas
(10.0) (14) (9.0)
(3.2) – –
– – –
– – –
(3.124) (1.615) (–68.38)
(43.4) (64.9) (–3.1)
In2O3
Solid Liquid
(22.6) (35)
(6.0) –
– –
– –
(7.005) (–0.195)
(100.5) (172.8)
Ir2O3
Solid Liquid Gas Solid
(21.8) (35) (20) 9.17
(14.4) – (10) 15.20
– – – –
– – – –
(7.140) (0.706) (–57.73) 3.410
(102.0) (170.3) (54.8) 40.9
Solid Liquid
(15.9) (22)
(6.4) –
– –
– –
(5.025) (1.130)
(69.5) (98.3)
IrO2 K2O
d
A
For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58.
©2001 CRC Press LLC
B
Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 8 OF 23)
OXIDES
Oxide
Phase
a –
b (cal • g mole-1 )
c –
–
(kcal • g mole-1)
(e.u.)
K2O2
Solid Liquid Gas
(20.8) (29) (20)
(5.4) – –
– – –
– – –
(6.442) (4.127) (–57.07)
(93.1) (134.2) (41.7)
K2O3
Solid Liquid Gas
(19.1) (35.5) (20)
(23.2) – (5.0)
– – –
– – –
(6.750) (6.447) (–31.29)
(82.2) (164.7) (37.3)
KO2
Solid Liquid
(15.0) (24)
(12.0) –
– –
– –
(5.006) (3.424)
(61.1) (105.5)
La2O3
Solid
28.86
3.076
–
–3.275
9.840
(130.7)
Li2O
Solid Liquid
(11.4) (21)
(5.4) –
– –
– –
(3.639) (–1.961)
(57.5) (112.7)
Li2O2
Solid
(17.0)
(5.4)
–
–
(5.309)
(82.0)
d
A
For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58.
©2001 CRC Press LLC
B
Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 9 OF 23)
OXIDES
Oxide
Phase
a –
b (cal • g mole-1 )
c –
–
(kcal • g mole-1)
(e.u.)
MgO
Solid
10.86
1.197
–
–2.087
3.991
57.0
MgO2
Solid
(12.1)
(2A)
–
–
(3.714)
(49.2)
MnO
Solid Liquid
11.11 (13.5)
1.94 –
– –
–0.88 –
3.689 (–8.543)
50.10 (58.02)
Mn3O4
Solid, α Solid, β Liquid
34.64 50.20 (49)
10.82 – –
– – –
–2.20 – –
11.312 17.376 (–17.86)
166.3 260.4 (233.4)
Mn2O3
Solid
24.73
8.38
–
–3.23
8.829
118.8
MnO2
Solid
16.60
2.44
–
–3.88
6.359
84.8
MoO2
Solid Liquid
(16.2) (23)
(3.0) –
– –
(–3.0) –
(5.973) (–2.463)
(80.4) (118.4)
d
A
For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58.
©2001 CRC Press LLC
B
Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 10 OF 23)
OXIDES
Oxide
Phase
a –
b (cal • g mole-1 )
c –
–
(kcal • g mole-1)
(e.u.)
MoO3
Solid Liquid Gas
13.6 (28.4) (18.1)
13.5 – –
– – –
– – –
4.655 (0.222) (–48.54)
62.83 (139.88) (42.8)
N2O
Gas
(10.92)
2.06
–
–2.04
4.032
11.40
Na2O
Solid Liquid
15.70 (22)
5.40 –
– –
– –
4.921 (1.494)
73.7 (105.9)
Na2O2
Solid
(20.2)
(3.8)
–
–
(6.192)
(93.6)
NaO2
Solid Liquid Gas
(16.2) (23) (15)
(3.6) – –
– – –
– – –
(4.990) (3.175) (–35.22)
(65.7) (100.9) (22.0)
NbO
Solid
(9.6)
(4.4)
–
–
(3.058)
(44.0)
d
A
For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58.
©2001 CRC Press LLC
B
Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 11 OF 23)
OXIDES
Oxide
Phase
a –
b (cal • g mole-1 )
c –
–
(kcal • g mole-1)
(e.u.)
NbO2
Solid Liquid
(17.1) (24)
(1.6) –
– –
(–2.8) –
(6.109) (1.033)
(84.6) (127.2)
Nb2O5
Solid Liquid
21.88 (44.2)
28.2 –
– –
– –
7.776 (–24.09)
100.3 (201.6)
Nd2O3
Solid
28.99
5.760
–
(–4.159)
10.295
(133.9)
NiO
Solid Liquid
13.69 (14.3)
0.83 –
– –
–2.915 –
5.097 (–7.861)
70.67 (67.91)
NpO2 Np2O5
Solid Solid
(17.7) (32.4)
(3.2) (12.6)
– –
(–2.6) –
(6.292) (10.22)
(84.08) (145.4)
OsO2
Solid
(11.5)
(6.0)
–
–
(3.696)
(52.8)
d
A
For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58.
©2001 CRC Press LLC
B
Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 12 OF 23)
OXIDES
Oxide
Phase
a –
b (cal • g mole-1 )
c –
–
(kcal • g mole-1)
(e.u.)
OsO4
Solid Liquid Gas
(16.4) (33) 16.46
(23.1) – 8.60
– – –
(–2.4) – –4.6
(6.726) (6.612) (–7.644)
(67.0) (143.0) (25.3)
P2O3
Liquid Gas
(34.5) (153)
– (10)
– –
– –
(10.287) (–1.953)
(162.6) (38.0)
PO2
Solid Liquid
(11.3) (20)
(5.0) –
– –
– –
(3.591) (3.640)
(54.4) (95.9)
P2O5
Solid Gas
8.375 36.80
5.40 –
– –
– –
4.897 3.284
30.3 165.6
PaO2
Solid
(14.4)
(2.6)
–
–
(4.409)
(65.0)
Pa2O5
Solid Liquid
(28.4) (48)
(11.4) –
– –
– –
(8.975) (–0.800)
(127.7) (241.1)
d
A
For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58.
©2001 CRC Press LLC
B
Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 13 OF 23)
OXIDES
Oxide
Phase
a –
b (cal • g mole-1 )
c –
–
(kcal • g mole-1)
(e.u.)
PbO
Solid, red Solid, yellow Liquid Gas
10.60 9.05 (14.6) (8.1)
4.00 6.40 – (0.4)
– – – –
– – – –
3.338 2.454 1.788 (–59.94)
45.4 36.4 65.7 (–11.0)
Pb2O4 PbO2 PdO
Solid Solid Solid
(31.1) 12.7 3.30
(17.6) 7.80 14.2
– – –
– – –
(10.055) 4.133 1.615
(132.0) 56.4 (13.9)
PoO2
Solid Liquid
(14.3) (22)
(5.6) –
– –
– –
(4.513) (3.460)
(66.1) (106.5)
Pr2O3
Solid Liquid
(29.0) (36)
(4.0) –
– –
(–4.0) –
(10.166) (–6.298)
(133.2) (168.3)
PrO2
Solid
(17.6)
(3.4)
–
(–2.8)
(6.338)
(85.9)
d
A
For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58.
©2001 CRC Press LLC
B
Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 14 OF 23)
OXIDES
Oxide
Phase
a –
b (cal • g mole-1 )
c –
–
(kcal • g mole-1)
(e.u.)
PtO Pt3O4
Solid Solid
(9.0) (30.8)
(6.4) (17.4)
– –
– –
(2.968) (9.957)
(39.7) (139.7)
PtO2
Solid Liquid
(11.1) (21)
(9.6) –
– –
– –
(3.736) (3.785)
(49.6) (101.5)
PuO
Solid Liquid Gas
(12.0) (14.5) (8.9)
(2.4) – –
– – –
– – –
(3.685) (–2.287) (–62.307)
(49.1) (58.3) (–5.3)
Pu2O3
Solid Liquid
(21.2) (40)
(18.2) –
– –
– –
(7.130) (–5.691)
(88.2) (187.2)
PuO2
Solid Liquid
(17.1) (20.5)
(3.4) –
– –
(–2.6) –
(6.122) (–10.62)
(80.2) (92.2)
RaO
Solid
(10.5)
(2.0)
–
–
(3.220)
(43.4)
d
A
For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58.
©2001 CRC Press LLC
B
Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 15 OF 23)
OXIDES
Oxide
Phase
a –
b (cal • g mole-1 )
c –
–
(kcal • g mole-1)
(e.u.)
Rb2O
Solid Liquid
(15.4) (22)
(5.8) –
– –
– –
(4.850) (2.754)
(62.5) (95.9)
Rb2O2
Solid Liquid
(20.9) (29)
(8.0) –
– –
– –
(6.587) (3.273)
(94.0) (133.2)
Rb2O3
Solid Liquid
(20.5) (34)
(13.0) –
– –
– –
(6.690) (5.603)
(88.2) (157.8)
RbO2
Solid Liquid
(13.8) (21)
(6.4) –
– –
– –
(4.399) (3.720)
(59.0) (95.7)
ReO2
Solid Liquid
(10.8) (24.5)
(9.8) –
– –
– –
(3.656) (1.204)
(49.5) (127.0)
ReO3
Solid Liquid
(18.0) 29
(5.8) –
– –
– –
(5.625) (4.644)
(84.5) (136.8)
d
A
For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58.
©2001 CRC Press LLC
B
Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 16 OF 23)
OXIDES
Oxide
Phase
a –
b (cal • g mole-1 )
c –
–
(kcal • g mole-1)
(e.u.)
Re2O7
Solid Liquid Gas
(41.8) (65.7) (38.2)
(14.8) – –
– – –
(–3.0) – –
(14.127) (9.203) (–25.97)
(200.3) (314.7) (109.3)
ReO4
Solid Liquid Gas
(21.4) (33) (16.5)
(10.8) – (8.6)
– – –
(–2.0) – (–5.0)
(7.531) (6.775) (–8.118)
(91.8) (146.7) (30.6)
Rh2O RhO Rh2O3 RuO2
Solid Solid Solid Solid
15.59 (9.84) 20.73 (11.4)
6.47 (553) 13.80 (6.0)
– – – –
– – – –
4.936 (3.179) 6.794 3.666
(65.3) (45.7) (99.2) (54.2)
RuO4
Solid Liquid
(20) (33)
– –
– –
– –
(5.963) (6.663)
(81.5) (144.9)
SO2
Gas
11.4
1.414
–
–2.045
4.148
7.12
d
A
For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58.
©2001 CRC Press LLC
B
Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 17 OF 23)
OXIDES
Oxide
Phase
a –
b (cal • g mole-1 )
c –
–
(kcal • g mole-1)
(e.u.)
Sb2O3
Solid Liquid Gas
19.10 (36) (20.8)
17.1 – –
– – –
– – –
6.455 (0.035) (–34.70)
84.5 (168.2) (49.9)
SbO2 Sb2O5
Solid Solid
11.30 (22.4)
8.1 (23.6)
– –
– –
3.725 (7.723)
51.6 (104.8)
Sc2O3
Solid
23.17
5.64
–
–
7.159
1089
SeO
Solid Liquid Gas
(9.1) (15.5) 8.20
(3.8) – 0.50
– – –
– – –0.80
(2.882) (0.490) (–58.54)
(42.0) (77.5) (0.7)
SeO2
Solid Gas
(12.8) (14.5)
(6.1) –
– –
(–0.2) –
(4.150) (–20.45)
(59.9) (26.4)
SiO
Solid
(7.3)
(2.4)
–
–
(2.283)
(35.8)
d
A
For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58.
©2001 CRC Press LLC
B
Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 18 OF 23)
OXIDES
Oxide
Phase
a –
b (cal • g mole-1 )
c –
–
(kcal • g mole-1)
(e.u.)
SiO2
Solid, β Solid, α Liquid
11.22 14.41 (20)
8.20 1.94 –
– – –
–2.70 – –
4.615 4.602 (9.649)
57.83 73.67 (111.08)
Sm2O3
Solid Liquid
(25.9) (36)
(7.0) –
– –
– –
(8.033) (–6.431)
(113.2) (166.3)
SnO
Solid Liquid Gas
9.40 (14.5) (9.0)
3.62 – –
– – –
– – –
2.964 (0.141) (–69.76)
41.1 (68.1) (–6.4)
SnO2
Solid Liquid
17.66 (22.5)
2.40 –
– –
–5.16 –
7.103 (0.304)
91.7 (117.7)
SrO SrO2
Solid Solid
12.34 (16.8)
1.120 (2.2)
– –
–1.806 (–3.0)
4.335 (6.113)
58.7 (83.3)
d
A
For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58.
©2001 CRC Press LLC
B
Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 19 OF 23)
OXIDES
Oxide
Phase
a –
b (cal • g mole-1 )
c –
–
(kcal • g mole-1)
(e.u.)
Ta2O5
Solid Liquid
29.2 (46)
10.0 –
– –
– –
9.151 (6.158)
135.2 (235.1)
TcO2
Solid Liquid
(10.4) (25)
(9.2) –
– –
– –
(3.510) (–5.946)
(48.6) (132.7)
TcO3
Solid
(19.4)
(5.2)
–
(–2.0)
(6.686)
(93.7)
Tc2O7
Solid Liquid Gas
(39.1) (64) (25)
(18.6) – (28)
– – –
(–2.4) – –
(13.29) (10.02) (–21.98)
(187.2) (299.8) (43.8)
TeO
Solid Liquid Gas
(8.6) (15.5) (8.9)
(6.2) – –
– – –
– – –
(2.840) (–0.448) (–62.16)
(37.8) (72.3) (–5.2)
TeO3
Solid Liquid
13.85 (20)
6.87 –
– –
– –
4.435 (3.940)
63.97 (96.4)
d
A
For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58.
©2001 CRC Press LLC
B
Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 20 OF 23)
OXIDES
Oxide
Phase
a –
b (cal • g mole-1 )
c –
–
(kcal • g mole-1)
(e.u.)
TeO2
Solid Liquid
(11.0) (15)
(2.4) –
– –
– –
(3.386) (–6.561)
(47.4) (66.9)
ThO2
Solid
16.45
2.346
–
–2.124
5.721
80.03
TiO
Solid, α Solid, β
10.57 11.85
3.60 3.00
– –
–1.86 –
3.935 4.108
54.03 61.71
Ti2O3
Solid, α Solid, β Liquid
7.31 34.68 (37.5)
53.52 1.30 –
– – –
– –10.20 –
4.559 13.605 (–7.796)
38.78 184.48 (193.2)
Ti3O5
Solid, α Solid, β Liquid
35.47 41.60 (60)
29.50 8.00 –
– – –
– – –
11.887 10.230 (–18.701)
179.98 202.80 (306.4)
d
A
For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58.
©2001 CRC Press LLC
B
Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 21 OF 23)
OXIDES
Oxide
Phase
a –
b (cal • g mole-1 )
c –
–
(kcal • g mole-1)
(e.u.)
TiO2
Solid Liquid
17.97 (21.4)
0.28 –
– –
–4.35 –
6.829 (–2.610)
92.92 (111.08
Ti2O
Solid Liquid Gas
(15.8) (22.1) (13.7)
(6.0) – –
– – –
(–0.3) – –
(5.078) (2.651) (–20.94)
(68.2) (96.0) (18.0)
Tl2O3
Solid Liquid
(23.0) (35.5)
(5.0) –
– –
– –
(7.080) (4.604)
(99.0) (167.8)
UO UO2
Solid Solid Solid Solid
(10.6) 19.20 (65) 22.09
(2.0) 1.62 (7.5) 2.54
– – – –
– –3.957 (–10.9) –2.973
(3.249) 7.124 (23.37) 7.969
(45.0) 93.37 (312.7) 104.72
Solid Liquid
11.32 (14.5)
1.61 –
– –
–1.26 –
3.869 (–8.157)
56.4 (70.9)
U3O8 UO3 VO
d
A
For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58.
©2001 CRC Press LLC
B
Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 22 OF 23)
OXIDES
Oxide
Phase
a –
b (cal • g mole-1 )
c –
–
(kcal • g mole-1)
(e.u.)
V2O3
Solid Liquid
29.35 (38)
4.76 –
– –
–5.42 –
10.780 (–6.028)
148.12 (193.4)
V3O4
Solid Liquid
(36) (55.6)
(30) –
– –
– –
(12.07) (–54.72)
(182.1) (249.1)
VO2
Solid, α Solid, β Liquid
14.96 17.85 25.50
– 1.70 –
– – –
– –3.94 –
4.460 5.680 2.962
72.92 89.09 135.87
V2O5
Solid Liquid Gas
46.54 45.60 (40)
–390 – –
– – –
–13.22 – –
18.136 2.122 (–73.90)
240.2 220.1 (149.6)
WO2
Solid Liquid
(17.6) (24)
(4.2) –
– –
(–4.0) –
(6.772) (–0.112)
(88.8) (121.8)
d
A
For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58.
©2001 CRC Press LLC
B
Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 23 OF 23)
OXIDES
Oxide
Phase
a –
b (cal • g mole-1 )
c –
–
(kcal • g mole-1)
(e.u.)
WO3
Solid Liquid Gas
17.33 (30) (18)
7.74 – –
– – –
– – –
5.511 (–1.162) (–69.36)
81.15 (152.5) (40.2)
Y2O3
Solid
(26.0)
(8.2)
–
(–2.2)
(8.846)
(122.3)
ZnO ZrO2
Solid Solid, α Solid, β
11.71 16.64 17.80
1.22 1.80 –
– – –
–2.18 –3.36 –
4.277 6.168 4.270
57.88 85.21 89.96
d
A
For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58.
©2001 CRC Press LLC
B
6.5 Thermodynamics Page 298 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 78. ENTROPY OF THE (SHEET 1 OF 3)
ELEMENTS
Element
Phase
Entropy at 298K (e.u.)
Ac Ag Al Am
solid solid solid solid
(13) 10.20 6.769 (13)
As Au B Ba
solid solid solid solid, α
8.4 11.32 1.42 16
Be Bi C Ca
solid solid solid solid, α
2.28 13.6 1.3609 9.95
Cd Ce Cl2 Co
solid solid gas solid, α
12.3 13.8 53.286 6.8
Cr Cs Cu F2
solid solid solid gas
5.68 19.8 7.97 48.58
Fe Ga Ge H2
solid, α solid solid gas
6.491 9.82 10.1 31.211
Hf Hg In Ir
solid liquid solid solid
13.1 18.46 13.88 8.7
Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44.
©2001 CRC Press LLC
298
CRC Handbook of Materials Science & Engineering
6.5 Thermodynamics Page 299 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 78. ENTROPY OF THE (SHEET 2 OF 3)
ELEMENTS
Element
Phase
Entropy at 298K (e.u.)
K La Li Mg
solid solid solid solid
15.2 13.7 6.70 7.77
Mn Mo N2 Na
solid, α solid gas solid
7.59 6.83 45.767 12.31
Nb Nd Ni Np
solid solid solid, α solid
8.3 13.9 7.137 (14)
O2 Os P4 Pa
gas solid solid, white solid
49.003 7.8 42.4 (13.5)
Pb Pd Po Pr
solid solid solid solid
15.49 8.9 13 (13.5)
Pt Pu Ra Rb
solid solid solid solid
10.0 (13.0) (17) 16.6
Re Rh Ru S
solid solid solid, α solid, α
(8.89) 7.6 6.9 7.62
Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44.
©2001 CRC Press LLC
Shackelford & Alexander
299
6.5 Thermodynamics Page 300 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 78. ENTROPY OF THE (SHEET 3 OF 3)
ELEMENTS
Element
Phase
Entropy at 298K (e.u.)
Sb Sc Se Si
solid (α, β, γ) solid solid solid
10.5 (9.0) 10.144 4.50
Sm Sn Sr Ta
solid solid (α, β) solid solid
(15) 12.3 13.0 9.9
Tc Te Th Ti
solid solid, α solid solid, α
(8.0) 11.88 12.76 7.334
Tl U V W
solid, α solid, α solid solid
15.4 12.03 7.05 8.0
Y Zn Zr
solid solid solid, α
(11) 9.95 9.29
Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44.
©2001 CRC Press LLC
300
CRC Handbook of Materials Science & Engineering
6.5 Thermodynamics Page 301 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 79. VAPOR
PRESSURE OF THE ELEMENTS AT VERY LOW PRESSURES (SHEET 1 OF 2) Pressure (mm Hg)
Element
Melting point (˚C)
10 -5
10-4
10-3
10-2
10-1
1
Ag Al Au Ba
961 660 1063 717
767 724 1083 418
848 808 1190 476
936 889 1316 546
1047 996 1465 629
1184 1123 1646 730
1353 1279 1867 858
Be Bi C Cd
1284 271
1029 536 2288 180
1130 609 2471 220
1246 698 2681 264
1395 802 2926 321
1582 934 3214
321
942 474 2129 148
Co Cr Cu Fe
1478 1900 1083 1535
1249 907 946 1094
1362 992 1035 1195
1494 1090 1141 1310
1649 1205 1273 1447
1833 1342 1432 1602
2056 1504 1628 1783
Hg In Ir Mg
–38.9 157 2454 651
–23.9 667 1993 287
–5.5 746 2154 331
18.0 840 2340 383
48.0 952 2556 443
82.0 1088 2811 515
126 1260 3118 605
Mn Mo Ni Os
1244 2622 1455 2697
717 1923 1157 2101
791 2095 1257 2264
878 2295 1371 2451
980 2533 1510 2667
1103
1251
1679 2920
1884 3221
To convert mm Hg (torr) to N/m2, divide by 133.3 To convert atm to MN/m2, divide by 0.1013 This table lists the temperature in degrees Celsius (Centigrade) at which an element has a vapor pressure indicated by the headings of the columns. The values given in this table are from a variety of sources that are not always in agreement; for that reason, the table should be used only as a general guide. Source: from Dushman, S., Scientific Foundations of Vacuum Technique, John Wiley & Sons, New York, (1949)
©2001 CRC Press LLC
Shackelford & Alexander
301
6.5 Thermodynamics Page 302 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 79. VAPOR
PRESSURE OF THE ELEMENTS AT VERY LOW PRESSURES (SHEET 2 OF 2) Pressure (mm Hg)
Element
Melting point (˚C)
10 -5
10-4
10-3
10-2
10-1
1
Pb Pd Pt Sb
328 1555 1774 630
483 1156 1606 466
548 1271 1744 525
625 1405 1904 595
718 1566 2090 678
832 1759 2313 779
975 2000 2582 904
Si Sn Ta W
1410 232 2996 3382
1024 823 2407 2554
1116 922 2599 2767
1223 1042 2820 3016
1343 1189
1485 1373
1670 1609
Zn Zr
419 2127
211 1527
248 1660
292 1816
343 2001
405 2212
2459
3309
To convert mm Hg (torr) to N/m2, divide by 133.3 To convert atm to MN/m2, divide by 0.1013 This table lists the temperature in degrees Celsius (Centigrade) at which an element has a vapor pressure indicated by the headings of the columns. The values given in this table are from a variety of sources that are not always in agreement; for that reason, the table should be used only as a general guide. Source: from Dushman, S., Scientific Foundations of Vacuum Technique, John Wiley & Sons, New York, (1949)
©2001 CRC Press LLC
302
CRC Handbook of Materials Science & Engineering
6.5 Thermodynamics Page 303 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 80. VAPOR
PRESSURE OF THE ELEMENTS AT MODERATE PRESSURES (SHEET 1 OF 3) Pressure (mm Hg)
Element
Symbol
1
10
100
400
760
Aluminum Antimony Arsenic Barium
Al Sb As Ba
1540
1780 960 440 1050
2080 1280 510 1300
2320 1570 580 1520
2467 1750 610 1640
Beryllium Bismuth Boron Bromine
Be Bi B Br
1520
1860 1060 3030 –30
2300 1280 3460 +9
2770 1450 3810 39
2970 1560 4000 59
Cadmium Calcium Cesium Chlorine
Cd Ca Cl Cl
486 970 373 –101
610 1200 513 –71
710 1390 624 –46
765 1490 690 –34
Chromium Cobalt Copper Fluorine
Cr Co Cu F
1610 1910
1840 2170 1870
2140 2500 2190 –203
2360 2760 2440 –193
2480 2870 2600 –188
Gallium Germanium Gold Indium
Ca Ge Au In
1350
1570 2080 2160
1850 2440 2520
2060 2710 2800 1960
2180 2830 2940 2080
380 860
2660 –60 393 800 –123
1880
To convert mm Hg (torr) to N/m2, divide by 133.3 To convert atm to MN/m2, divide by 0.1013 This table lists the temperature in degrees Celsius (Centigrade) at which an element has a vapor pressure indicated by the headings of the columns. The values given in this table are from a variety of sources that are not always in agreement; for that reason, the table should be used only as a general guide. Source: from Dushman, S., Scientific Foundations of Vacuum Technique, John Wiley & Sons, New York, (1949)
©2001 CRC Press LLC
Shackelford & Alexander
303
6.5 Thermodynamics Page 304 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 80. VAPOR
PRESSURE OF THE ELEMENTS AT MODERATE PRESSURES (SHEET 2 OF 3) Pressure (mm Hg)
Element
Symbol
1
10
100
400
760
Iodine Iridium Iron Lanthanum
I Ir Fe La
40 2830 1780
72 3170 2040
115 3630 2370
160 3960 2620 3230
185 4130 2750 3420
Lead Lithium Magnesium Manganese
Pb Li Mg Mn
970 750 620
1160 890 740 1510
1420 1080 900 1810
1630 1240 1040 2050
1740 1310 1110 2100
Mercury Molybdenum Neodymium Nickel
Hg Mo Nd Ni
3300
3770
260 4200
1800
2090
2370
330 4580 2870 2620
356.9 4830 3100 2730
Palladium Phosphorus Platinum Polonium
Pd P Pt Po
1470
2290 127 2940 587
2670 199 3360 752
2950 253 3650 890
3140 283 3830 960
Potassium Rhodium Rubidium Selenium
K Rh Rb Se
2850 390 429
590 3260 527 547
710 3590 640 640
770 3760 700 685
2600 472
2530
To convert mm Hg (torr) to N/m2, divide by 133.3 To convert atm to MN/m2, divide by 0.1013 This table lists the temperature in degrees Celsius (Centigrade) at which an element has a vapor pressure indicated by the headings of the columns. The values given in this table are from a variety of sources that are not always in agreement; for that reason, the table should be used only as a general guide. Source: from Dushman, S., Scientific Foundations of Vacuum Technique, John Wiley & Sons, New York, (1949)
©2001 CRC Press LLC
304
CRC Handbook of Materials Science & Engineering
6.5 Thermodynamics Page 305 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 80. VAPOR
PRESSURE OF THE ELEMENTS AT MODERATE PRESSURES (SHEET 3 OF 3) Pressure (mm Hg)
Element
Symbol
1
10
100
400
760
Silver Sodium Strontium Sulfur
Ag Na Sr S
1310 440 740
1540 546 900 246
1850 700 1100 333
2060 830 1280 407
2210 890 1380 445
Tellurium Thallium Tin Titanium
Te Tl Sn Ti
520
633 1000 1890 2480
792 1210 2270 2860
900 1370 2580 3100
962 1470 2750 3260
Tungsten Uranium Vanadium Zinc
W U V Zn
4490 2800 2570 590
5160 3270 2950 730
5470 3620 3220 840
5940 3800 3380 907
1610 2180 3980 2450 2290
To convert mm Hg (torr) to N/m2, divide by 133.3 To convert atm to MN/m2, divide by 0.1013 This table lists the temperature in degrees Celsius (Centigrade) at which an element has a vapor pressure indicated by the headings of the columns. The values given in this table are from a variety of sources that are not always in agreement; for that reason, the table should be used only as a general guide. Source: from Dushman, S., Scientific Foundations of Vacuum Technique, John Wiley & Sons, New York, (1949)
©2001 CRC Press LLC
Shackelford & Alexander
305
6.5 Thermodynamics Page 306 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 81. VAPOR
PRESSURE OF THE ELEMENTS AT HIGH PRESSURES (SHEET 1 OF 3) Pressure (atm)
Element
Symbol
2
5
10
20
40
Aluminum Antimony Arsenic Barium
Al Sb As Ba
2610 1960
2850 2490
3050
3270
3530
1790
2030
2230
Beryllium Bismuth Boron Bromine
Be Bi B Br
3240 1660
3730 1850
4110 2000
4720 2180
5610
78
110
Cadmium Calcium Cesium Chlorine
Cd Ca Cl Cl
830 1630
930 1850
1030 2020
1120 2290
1240
–17
+9
30
55
97
Chromium Cobalt Copper Fluorine
Cr Co Cu F
2630 3040 2760 –180.7
2850 3270 3010 –169.1
3010
3180
3500 –159.6
3460
Gallium Germanium Gold Indium
Ca Ge Au In
2320 2970 3120 2230
2560 3200 3490 2440
2730 3430 3630 2600
Iodine Iridium Iron Lanthanum
I Ir Fe La
216 4310 2900 3620
265 4650 3150 3960
3360 4270
3740
3890
3570
To convert atm to MN/m2 divide by 0.1013 This table lists the temperature in degrees Celsius (Centigrade) at which an element has a vapor pressure indicated by the headings of the columns. Source: from Loebel, R., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, (1974)
©2001 CRC Press LLC
306
CRC Handbook of Materials Science & Engineering
6.5 Thermodynamics Page 307 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 81. VAPOR
PRESSURE OF THE ELEMENTS AT HIGH PRESSURES (SHEET 2 OF 3) Pressure (atm)
Element
Symbol
2
5
10
20
40
Lead Lithium Magnesium Manganese
Pb Li Mg Mn
1880 1420 1190 2360
2140 1518 1330 2580
2320
2620
1430 2850
1560
Mercury Molybdenum Neodymium Nickel
Hg Mo Nd Ni
398 5050 3300 2880
465 5340 3680 3120
517 5680 3990 3300
581 5980
Palladium Phosphorus Platinum Polonium
Pd P Pt Po
3270 319 4000 1060
3560
3840
4310 1200
4570 1340
4860
Potassium Rhodium Rubidium Selenium
K Rh Rb Se
850 3930
950 4230
1110 4440
1240
1420
750
850
920
1010
1120
Silver Sodium Strontium Sulfur
Ag Na Sr S
2360 980 1480 493
2600 1120 1670 574
2850 1230 1850 640
3050 1370 2030 720
3300
Tellurium Thallium Tin Titanium
Te Tl Sn Ti
1030 1560 2950 3400
1160 1750 3270 3650
1250 1900 3540 3800
2050 3890
2260
657
3310
To convert atm to MN/m2 divide by 0.1013 This table lists the temperature in degrees Celsius (Centigrade) at which an element has a vapor pressure indicated by the headings of the columns. Source: from Loebel, R., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, (1974)
©2001 CRC Press LLC
Shackelford & Alexander
307
6.5 Thermodynamics Page 308 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 81. VAPOR
PRESSURE OF THE ELEMENTS AT HIGH PRESSURES (SHEET 3 OF 3) Pressure (atm)
Element
Symbol
2
5
10
20
Tungsten Uranium Vanadium Zinc
W U V Zn
6260 4040 3540 970
6670 4420 3800 1090
7250
7670
1180
1290
40
To convert atm to MN/m2 divide by 0.1013 This table lists the temperature in degrees Celsius (Centigrade) at which an element has a vapor pressure indicated by the headings of the columns. Source: from Loebel, R., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, (1974)
©2001 CRC Press LLC
308
CRC Handbook of Materials Science & Engineering
6.5 Thermodynamics Page 309 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 82. VAPOR
PRESSURE OF ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 1 OF 5) Formula
a
b
Temperature. Range of Validity ˚C
Al2O3
540000 31211 90208 83486
14.22 9.9974 9.9404 10.0164
1840 to 2200 liq. –127 to –78 sol. 250 to 400 sol. 100 to 400 sol.
41484 95730 46025 189000
9.978 10.2700 10.7500 9.051
7 to 17 sol. 300 to 400 sol. 6 to 40 sol. 1070 to 1325 liq.
7814.5 6826 47100 133000
7.5741 6.9605 6.692 10.800
–208 to –189 sol. –189 to –183 liq. 800 to 860 liq. 440 to 815 sol.
As2O3
111350 52120
12.127 6.513
100 to 315 sol. 315 to 490 liq.
Ba Bi
350000 200000 13125
15.765 8.876 2.681
930 to 1130 liq. 1210 to 1420 liq. 91 to 213 sol.
Cd
10900 99900
8.564 7.897
150 to 320.9 sol.. 500 to 840 liq
Cadimium Iodide
CdI2
122200
9.269
385 to 450 liq.
Cesium Cesium Chloride Calcium Carbon
Cs CsCl Ca C
73400 163200 370000 540000
6.949 8.340 16.240 9.596
200 to 350 liq. 986 to 1295 liq. 960 to 1110 liq. 3880 to 4430 liq.
Carbon Dioxide Carbon Monooxide Chlorine Cobalt
CO2
26179.3 6354 29293 309000
9.9082 6.976 9.950 7.571
–135 to –56.7 liq. –220 to –206 liq. –154 to –103 liq. 2375 liq.
Compound Aluminum Oxide Ammonia Ammonium Bromide Ammonium Chloride Ammonium Cyanide Ammonium Iodide Ammonium Sulfhydrate Antimony
NH3 NH4Br NH4Cl NH4CN NH4I NH4HS
Sb
Argon
Ar
Arsenic
As
Arsenous Oxide
Barium Bismuth Bismuth Trichloride Cadimium
BiCl3
CO Cl Co
Source: data compiled by J.S. Park from CRC Handbook of Chemistry and Physics, David R. Lide, Ed., CRC Press, Boca Raton, (1990).
©2001 CRC Press LLC
Shackelford & Alexander
309
6.5 Thermodynamics Page 310 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 82. VAPOR
PRESSURE OF ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 2 OF 5)
Compound
Formula
a
b
Temperature. Range of Validity ˚C
Cu
468000 80700
12.344 5.454
2100 to 2310 liq. 878 to 1369 liq.
Copper Cuprous Chloride
Cu2Cl2
Cyanogen
(CN)2
32437 23750
9.6539 7.808
–72 to –28 sol. –32 to –6 liq.
Ferrous Chloride Gold
FeCl2
135200 385000
8.33 9.853
700 to 390 sol. 2315 to 2500 liq.
HI
24160 21580
8.259 7.630
–97 to –51 sol. –50 to –34 liq.
Hydrobromic Acid
HBr
22420 17960
8.734 7.427
–114 to –86 sol. –86 ot –66 liq.
Hydrochloric Acid Hydrocyanic Acid Hydrofluoric Acid Hydrogen Peroxide
HCl HCN HF H2O2
19588 27830 25180 48530
8.4430 7.7446 7.370 8.853
–158 to –110 sol. –8 to 27 liq. –83 to 48 liq. 10 to 90 liq.
Hydrogen Sulfide Iron
H2S
20690 309000
7.880 7.482
–110 to –83 sol. 2220 to 2450 liq.
Krypton
Kr
10065 9377
7.1770 6.92387
–189 to –169 sol. –169 to –150 liq.
Pb
LiBr
188500 118000 141900 152700
7.827 7.827 8.961 8.068
525 to 1325 liq. 735 to 918 liq. 500 to 950 liq. 1010 to 1265 liq.
LiCl LiF LiI
155900 218400 143600
7.939 8.753 8.011
1045 to 1325 liq. 1398 to 1666 liq. 940 to 1140 liq.
Hydriodic Acid
Lead Lead Bromide Lead Chloride Lithium Bromide Lithium Chloride Lithium Fluoride Lithium Iodide
Au
Fe
PbBr2 PbCl2
Source: data compiled by J.S. Park from CRC Handbook of Chemistry and Physics, David R. Lide, Ed., CRC Press, Boca Raton, (1990).
©2001 CRC Press LLC
310
CRC Handbook of Materials Science & Engineering
6.5 Thermodynamics Page 311 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 82. VAPOR
PRESSURE OF ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 3 OF 5) Formula
a
b
Temperature. Range of Validity ˚C
Mg Mn
260000 267000
12.993 9.300
900 to 1070 liq. 1510 to 1900 liq.
Mercuric Bromide
HgBr2
79800 61250
10.181 8.284
111 to 235 sol. 238 to 331 lig.
Mercuric Chloride
HgCl2
85030 78850 61020
10.888 10.094 8.409
60 to 130 sol. 130 to 270 sol. 275 to 309 liq.
Mercuric Iodide
HgI2
82340 62770
10.057 8.115
100 to 250 sol. 266 to 360 liq.
Mercury
Hg
73000 58700
10.383 7.752
–80 to –38.87 sol. 400 to 1300 liq.
Molybdenum Nitrogen
Mo
680000 6881.3
10.844 7.66558
1800 to 2240 sol. –215 to –210 sol.
Nitrogen Dioxide
NO
16423 13040
10.048 8.440
–200 to –161 sol. –163.7 to –148 liq.
Nitrogen Monoxide
N2O
23590 16440
9.579 7.535
–144 to –90 sol. –90.1 to –88.7 liq.
Nitrogen Pentoxide
N2O5
57180
12.647
–30 to 30 sol.
Nitrogen Tetroxide
N2O4
55160 45440 33430
13.400 11.214 8.814
–100 to –40 sol. –40 to –10 sol. –8 to 43.2 liq.
Nitrogen Trioxide Phosphorus (White) Phosphorus (Violet) Platinum Potassium
N2O3
39400 63123 108510 486000 84900
10.30 9.6511 11.0842 7.786 7.183
–25 to 0 liq. 20 to 44.1 sol. 380 to 590 sol. 1425 to 1765 sol. 260 to 760 liq.
Compound Magnesium Magnase
N2
P P Pt K
Source: data compiled by J.S. Park from CRC Handbook of Chemistry and Physics, David R. Lide, Ed., CRC Press, Boca Raton, (1990).
©2001 CRC Press LLC
Shackelford & Alexander
311
6.5 Thermodynamics Page 312 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 82. VAPOR
PRESSURE OF ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 4 OF 5) Formula
a
b
Temperature. Range of Validity ˚C
Potassium Bromide
KBr
168100 163800
8.2470 7.936
906 to 1063 liq. 1095 to 1375 liq.
Potassium Chloride
KCl
174500 169700
8.3526 8.130
906 to 1105 liq. 1116 to 1428 liq.
KF KOH
207500 136000
9.000 7.330
1278 to 1500 liq. 1170 to 1327 liq.
KI
157600 155700
8.0957 7.949
843 to 1028 liq. 1063 to 1333 liq.
Rubidium Rubidium Chloride Silicon Silicon Dioxide
Rb RbCl Si SiO2
76000 198600 170000 506000
6.976 9.111 5.950 13.43
250 to 370 liq. 1142 to 1395 liq. 1200 to 1320 sol. 1860 to 2230 liq.
Silver Silver Chloride Sodium Sodium Bromide
Ag AgCl Na NaBr
250000 185500 103300 161600
8.762 8.179 7.553 7.948
1650 to 1950 liq. 1255 to 1442 liq. 180 to 883 liq. 1138 to 1394 liq.
Sodium Chloride
NaCl
Sodium Cyanide Sodium Fluoride
NaCN NaF
180300 185800 155520 218200
8.3297 8.548 7.472 8.640
976 to 1155 liq. 1156 to 1430 liq. 800 to 1360 liq. 1562 to 1701 liq.
Sodium Hydroxide Sodium Iodide Stannic Chloride Stronium
NaOH NaI
132000 165100 46740 360000
7.030 8.371 9.824 16.056
1010 to 1042 liq. 1063 to 1307 liq. –52 to –38 liq. 940 to 1140 liq.
Compound
Potassium Flouride Potassium Hydroxide Potassium Iodide
SnCl4
Sr
Source: data compiled by J.S. Park from CRC Handbook of Chemistry and Physics, David R. Lide, Ed., CRC Press, Boca Raton, (1990).
©2001 CRC Press LLC
312
CRC Handbook of Materials Science & Engineering
6.5 Thermodynamics Page 313 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 82. VAPOR
PRESSURE OF ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 5 OF 5) Formula
a
b
Temperature. Range of Validity ˚C
SO2
Tl TlCl
35827 43450 120000 105200
10.5916 10.022 6.140 7.947
–95 to –75 liq. 24 to 48 liq. 950 to 1200 liq. 665 to 807 liq.
Tin Tungsten
Sn W
328000 897000
9.643 9.920
1950 to 2270 liq. 2230 to 2770 liq.
Zinc
Zn
133000 118000
9.200 8.108
250 to 491.4 sol. 600 to 985 liq.
Compound Sulfur Dioxide Sulfur Trioxide Thallium Thallium Chloride
SO3
Source: data compiled by J.S. Park from CRC Handbook of Chemistry and Physics, David R. Lide, Ed., CRC Press, Boca Raton, (1990). *
The vapor pressure with respect to temperature may be represented by the following equation: log10 p = –0.05223a/T + b where p is the pressure in mm of mercury of the saturated vapor at the absolute temperature T. (T = t˚C + 273.1) The values obtained by the use of the equation given above are valid within the temperature ranges indicated for each of the compounds.
©2001 CRC Press LLC
Shackelford & Alexander
313
6.5 Thermodynamics Page 314 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 83. VALUES OF THE ERROR (SHEET 1 OF 2)
FUNCTION
z
erf (z)
0.00 0.01 0.02 0.03
0.0000 0.0113 0.0226 0.0338
0.04 0.05 0.10 0.15
0.0451 0.0564 0.1125 0.1680
0.20 0.25 0.30 0.35
0.2227 0.2763 0.3286 0.3794
0.40 0.45 0.50 0.55
0.4284 0.4755 0.5205 0.5633
0.60 0.65 0.70 0.75
0.6039 0.6420 0.6778 0.7112
0.80 0.85 0.90 0.95
0.7421 0.7707 0.7969 0.8209
1.00 1.10 1.20 1.30
0.8427 0.8802 0.9103 0.9340
Source: from: Handbook of Mathematical Functions, M. Abramowitz and I. A. Stegun, eds., National Bureau of Standards, Applied Mathematics Series 55, Washington, D.C., 1972.
©2001 CRC Press LLC
314
CRC Handbook of Materials Science & Engineering
6.5 Thermodynamics Page 315 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 83. VALUES OF THE ERROR (SHEET 2 OF 2)
FUNCTION
z
erf (z)
1.40 1.50 1.60 1.70
0.9523 0.9661 0.9763 0.9838
1.80 1.90 2.00
0.9891 0.9928 0.9953
Source: from: Handbook of Mathematical Functions, M. Abramowitz and I. A. Stegun, eds., National Bureau of Standards, Applied Mathematics Series 55, Washington, D.C., 1972.
©2001 CRC Press LLC
Shackelford & Alexander
315
Table 84. DIFFUSION IN METALLIC (SHEET 1 OF 34)
Metal
Tracer
Aluminum
Ag110 Al27 Au198 Cd115 Ce141 60
Co Cr51 Cu64 Fe59 Ga72 Ge71 In114
SYSTEMS *
Temperature Range (˚C)
Activation energy, Q (kcal • mol–1)
Frequency factor, D o
99.999 99.999
371–655 450–650 423–609 441–631
27.83 34.0 27.0 29.7
0.118 1.71 0.077 1.04
P S S S
99.995 99.999 99.999 99.999
450–630 369–655 422–654 433–652
26.60 27.79 41.74 32.27
1.9 x 10–6 0.131 464 0.647
S S S P
99.99 99.999 99.999 99.99
550–636 406–652 401–653 400–600
46.0 29.24 28.98 27.6
135 0.49 0.481 0.123
Crystalline Form
Purity (%)
S S S S
99.999
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
(cm2 • s–1)
Table 84. DIFFUSION IN METALLIC (SHEET 2 OF 34)
SYSTEMS *
Crystalline Form
Purity (%)
Temperature Range (˚C)
Activation energy, Q (kcal • mol–1)
Frequency factor, D o
Nb
99.995 99.99 99.995 99.95
500–630 450–650 400–630 350–480
27.0 28.8 13.1 19.65
1.4 x 10–6 0.22
95
P P P P
Nd147 Ni63 Pd103 Pr142
P P P P
99.995 99.99 99.995 99.995
450–630 360–630 400–630 520–630
25.0 15.7 20.2 23.87
Sb124 Sm153
P P P P
448–620 450–630 400–600 400–630
29.1 22.88 28.5 19.6
Metal
Tracer
Aluminum (con’t)
La140 Mn54 Mo99
113
Sn V48
99.995 99.995
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
(cm2 • s–1)
1.04 x 10–9 1.66 x 10–7 4.8 x 10–7 2.9 x 10–8 1.92 x 10–7 3.58 x 10–7 0.09 3.45 x 10–7 0.245 6.05 x 10–8
Table 84. DIFFUSION IN METALLIC (SHEET 3 OF 34)
SYSTEMS * Activation energy, Q (kcal • mol–1)
Frequency factor, D o
Metal
Tracer
Crystalline Form
Purity (%)
Temperature Range (˚C)
Aluminum (con’t)
Zn65
S
99.999
357–653
28.86
0.259
Beryllium
Ag110
S⊥c
99.75
650–900
43.2
1.76
Ag110
S||c S⊥c
99.75 99.75
650–900 565–1065
39.3 37.6
0.43 0.52
S||c S P
99.75 99.75
565–1065 700–1076 800–1250
39.4 51.6 58.0
0.62 0.67 0.2
S S S
99.99 99.95 99.99
180–300 110–283 180–300
25.4 19.3 19.0
2.21 0.14 0.0016
Be7 Be7 Fe59 Ni63 Cadmium
Ag110 Cd115 Zn65
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
(cm2 • s–1)
Table 84. DIFFUSION IN METALLIC (SHEET 4 OF 34)
Metal
Tracer
Calcium
C14 Ca45 Fe59
Purity (%)
Temperature Range (˚C)
Activation energy, Q (kcal • mol–1)
Frequency factor, D o
99.95 99.95 99.95 99.95 99.95
550–800 500–800 500–800 550–800 500–700
29.8 38.5 23.3 28.9 34.8
3.2 x 10–5 8.3
⊥c ||c
750–1050 2000–2200 540–920 750–1060
64.3 163 47.2 53.3
9280 5 102 2.2
⊥c ||c ⊥c ||c
1400–2200 1800–2200 140~2200 1400 1820
145.4 114.7 115.0 129.5
1.33 x 10–5 2.48 6760 385
Crystalline Form
63
Ni U235 Carbon
Ag110 C14 Ni63 Ni
63
Th228 228
Th U232 U232
SYSTEMS *
⊥c
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
(cm2 • s–1)
2.7 x 10–3 1.0 x 10–6 l.l x 10–5
Table 84. DIFFUSION IN METALLIC (SHEET 5 OF 34)
Metal
Tracer
Chromium
C14 Cr51 Fe59 Mo99
Cobalt
C14 Co60 Fe59 Ni63 S35
Copper
Ag110 76
As Au193 Cd115
Crystalline Form
P P P P P P P P P S, P P S, P S
SYSTEMS *
Temperature Range (˚C)
Activation energy, Q (kcal • mol–1)
Frequency factor, D o
120–1500 1030–1545 980–1420 1100–1420
26.5 73.7 79.3 58.0
9.0 x 10–3 0.2 0.47
99.99
600–1400 1100–1405 1104–1303 1192–1297 1150–1250
34.0 67.7 62.7 60.2 5.4
0.21 0.83 0.21 0.10 1.3
99.98
580–980 810–1075 400–1050 725–950
46.5 42.13 42.6 45.7
0.61 0.20 0.03 0.935
Purity (%)
99.98 99.8
99.82 99.9 99.9
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
(cm2 • s–1)
2.7 x 10–3
Table 84. DIFFUSION IN METALLIC (SHEET 6 OF 34)
Metal
Tracer
Copper (Con’t)
Ce141 Cr51 Co60 Cu67 Eu152 59
Fe Ga72 Ge68 Hg203 Lu177 54
Mn Nb95
Temperature Range (˚C)
Activation energy, Q (kcal • mol–1)
Frequency factor, D o
766–947 800–1070 701–1077 698–1061
27.6 53.5 54.1 50.5
2.17 x 10–3 1.02 1.93 0.78
99.998
750–970 460–1070 _ 653–1015
26.85 52.0 45.90 44.76
1.17 x 10–7 1.36 0.55 0.397
44.0 26.15 91.4 60.06
0.35
99.999 99.99 99.999
_ 857–1010 754–950 807–906
Crystalline Form
Purity (%)
P S, P S S
99.999
P S. P
99.999
S P P S P
SYSTEMS *
99.998 99.999
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
(cm2 • s–1)
4.3 x 10–9 107 2.04
Table 84. DIFFUSION IN METALLIC (SHEET 7 OF 34)
Metal
Tracer
Copper (Con’t)
Ni63 Pd102 Pm147 195
Pt
S35 124
Sb Sn113 Tb160 Tl204 Tm170 Zn65
Crystalline Form
P S P P
Purity (%)
99.999 99.999
SYSTEMS *
Temperature Range (˚C)
Activation energy, Q (kcal • mol–1)
Frequency factor, D o
620–1080 807–1056 720–955 843–997
53.8 54.37 27.5 37.5
1.1 1.71
49.2 42.0 45.0 27.45
8.96 x 10–9
43.3 24.15 47.50
7.28 x 10–9 0.73
S S P P
99.999 99.999 99.999
800–1000 600–1000 680–910 770–980
S P P
99.999 99.999 99.999
785–996 705–950 890–1000
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
(cm2 • s–1)
3.62 x 10–8 4.8 x 10–4
23 0.34 0.11
0.71
Table 84. DIFFUSION IN METALLIC (SHEET 8 OF 34)
Metal
Tracer
Germanium
Cd115 Fe59 Ge71 In114 Sb124 125
Te Tl204 Gold
Ag110 198
Au Co60 Fe59
SYSTEMS *
Temperature Range (˚C)
Activation energy, Q (kcal • mol–1)
Frequency factor, D o
S S S S
750–950 775–930 766–928 600–920
102.0 24.8 68.5 39.9
1.75 x 109 0.13 7.8
S S S
720–900 770–900 800–930
50.2 56.0 78.4
0.22 2.0 1700
699–1007 850–1050 702–948 701–948
40.2 42.26 41.6 41.6
0.072 0.107 0.068 0.082
Crystalline Form
S S P P
Purity (%)
99.99 99.97 99.93 99.93
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
(cm2 • s–1)
2.9 x 10–4
Table 84. DIFFUSION IN METALLIC (SHEET 9 OF 34)
SYSTEMS * Activation energy, Q (kcal • mol–1)
Frequency factor, D o
Metal
Tracer
Crystalline Form
Purity (%)
Temperature Range (˚C)
Gold (Con’t)
Hg203 Ni63 Pt195
S P P, S
99.994 99.96 99.98
600–1027 880–940 800–1060
37.38 46.0 60.9
0.116 0.30 7.6
β–Hafnium
Hf181
P
97.9
1795–1995
38.7
1.2 x10–3
Indium
Ag110 Ag110 Au198
S⊥c S||c S
99.99 99.99 99.99
25–140 25–140 25–140
12.8 11.5 6.7
0.52 0.11 9 x 10–3
In114
S⊥c S||c S
99.99 99.99 99.99
44–144 44–144 49–157
18.7 18.7 15.5
3.7 2.7 0.049
114
In Tl204
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
(cm2 • s–1)
Table 84. DIFFUSION IN METALLIC (SHEET 10 OF 34)
Metal
Tracer
α-Iron
Ag110 Au198 C14 Co60 Cr51 64
Cu Fe55 K42
Mn54 Mo99 Ni63 P32
SYSTEMS *
Crystalline Form
Purity (%)
Temperature Range (˚C)
Activation energy, Q (kcal • mol–1)
Frequency factor, D o
P P P P
99.999 99.98 99.995
748–888 800–900 616–844 638–768
69.0 62.4 29.3 62.2
1950 31 2.2 7.19
P P P P
99.95 99.9 99.92 99.92
775–875 800 1050 809–889 500–800
57.5 57.0 60.3 42.3
2.53 0.57 5.4 0.036
P P P P
99.97
800–900 750–875 680–800 860–900
52.5 73.0 56.0 55.0
0.35 7800 1.3 2.9
99.97
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
(cm2 • s–1)
Table 84. DIFFUSION IN METALLIC (SHEET 11 OF 34)
Temperature Range (˚C)
Activation energy, Q (kcal • mol–1)
Frequency factor, D o
800–900 755–875 755–875
66.6 55.4 55.1
1100 1.43 0.29
Metal
Tracer
Crystalline Form
α-Iron (Con’t)
Sb124 V48 W185
P P P
γ-Iron
Be7 C14
P P P P
99.9 99.34 99.98 99.99
1100–1350 800–1400 1138–1340 950–1400
57.6 34.0 72.9 69.7
0.1 0.15 1.25 10.8
P P P P
99.98 99.99 99.97 99.97
1171–1361 1110–1360 920–1280 930–2050
67.86 97.3 62.5 67.0
0.49 3600 0.16 0.77
Co60 Cr51 Fe59 181
Hf Mn54 Ni63
Purity (%)
SYSTEMS *
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
(cm2 • s–1)
Table 84. DIFFUSION IN METALLIC (SHEET 12 OF 34)
Metal γ-Iron (Con’t)
δ-Iron
Purity (%)
Temperature Range (˚C)
Activation energy, Q (kcal • mol–1)
Frequency factor, D o
Tracer
Crystalline Form
P32
P
99.99
950–1200
43.7
0.01
35
S V48 W185
P P P
99.99 99.5
900–1250 1120–1380 1050–1250
53.0 69.3 90.0
1.7 0.28 1000
Co60 Fe59
P P P
99.995 99.95 99.99
1428–1521 1428–1492 1370–1460
61.4 57.5 55.0
6.38 2.01 2.9
P P
99.97 99.97
600–800 690–850
45.1 18.1
2.2 x 10–2
P S S
99.9 99.999 99.999
200–310 190–320 150–320
14.4 10.0 21.23
P32 Lanthanum
Au198 La140
Lead
SYSTEMS *
Ag110 Au198 115
Cd
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
(cm2 • s–1)
1.5
0.064 8.7 x 10–3 0.409
Table 84. DIFFUSION IN METALLIC (SHEET 13 OF 34)
SYSTEMS *
Purity (%)
Temperature Range (˚C)
Activation energy, Q (kcal • mol–1)
Frequency factor, D o
14.44 25.52 24.33
0.046 0.887 0.511 0.37 0.21
Metal
Tracer
Crystalline Form
Lead (Con’t)
Cu64 Pb204 Tl205
S S P
99.999 99.999
150–320 150–320 207–322
Ag110 Au195 Bi
P P P P
92.5 92.5 99.95 92.5
65–161 47–153 141–177 80–174
12.83 10.49 47.3 16.05
5.3 x 1013 2.35
P P P P
99.98 99.98 99.98 92.5
51–120 58–173 58–173 80–175
9.22 12.9 14.18 15.87
0.47 0.21 1.04 0.39
Lithium
Cd115 Cu64 72
Ga Hg203 In114
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
(cm2 • s–1)
Table 84. DIFFUSION IN METALLIC (SHEET 14 OF 34)
Metal
Tracer
Lithium (Con’t)
Li6 Na22 Pb204 Sb124 Sn113 65
Zn Magnesium
Ag110 Fe59 In114 Mg28
SYSTEMS *
Crystalline Form
Purity (%)
Temperature Range (˚C)
Activation energy, Q (kcal • mol–1)
Frequency factor, D o
P P P P
99.98 92.5 99.95 99.95
35–178 52–176 129–169 141–176
12.60 12.61 25.2 41.5
0.14 0.41 160 1.6 x 1010
P P
99.95 92.5
108–174 60–175
15.0 12.98
0.62 0.57
P P P S⊥c
99.9 99.95 99.9
476–621 400–600 472–610 467–635
28.50 21.2 28.4 32.5
4 x 10–6 5.2 x 10–2 1.5
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
(cm2 • s–1)
0.34
Table 84. DIFFUSION IN METALLIC (SHEET 15 OF 34)
Metal
Tracer
Magnesium (Con’t)
Mg28 Ni63 U235 Zn65
Molybdenum
C14 60
Co Cr51 Cs134 K42 Mo99 Na24 Nb95
Crystalline Form
S||c P P P P P P S S P S P
SYSTEMS *
Purity (%)
Temperature Range (˚C)
Activation energy, Q (kcal • mol–1)
Frequency factor, D o
32.2 22.9 27.4 28.6
1.0
99.95 99.95 99.9
467–635 400 600 500–620 467–620
41.0 106.7 54.0 28.0
2.04 x 10–2 18 2.5 x 10–4
99.99
1200–1600 1850–2350 1000–1500 1000–1470
25.04 96.9 21.25 108.1
5.5 x 10–9 0.5
99.98
800–1100 1850–2350 800–1100 1850–2350
99.98 99.98
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
(cm2 • s–1)
1.2 x 10–5 1.6 x 10–5 0.41
8.7 x 10–11
2.95 x 10–9 14
Table 84. DIFFUSION IN METALLIC (SHEET 16 OF 34)
Activation energy, Q (kcal • mol–1)
Frequency factor, D o
2000–2200 1700–2100 2220–2470 1700–2150
80.5 94.7 101.0 83.0
0.19 0.097 320 3.5 x 10–4
99.98 99.98
1500–2000 1700–2260
76.4 110
7.6 x 10–3 1.7
99.999 99.9 99.86 99.97
700–1075 1020–1400 600–1400 1149–1390
55.0 46.2 34.0 65.9
0.02 0.019 0.012 1.39
Purity (%)
99.97
Ta182
P P S P
U235 Wl85
P P
Au198
S,P P P P
Tracer
Molybdenum (Con’t)
P32 Re186 S35
Nickel
Temperature Range (˚C)
Crystalline Form
Metal
Be7 Cl4 Co60
SYSTEMS *
99.97
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
(cm2 • s–1)
Table 84. DIFFUSION IN METALLIC (SHEET 17 OF 34)
SYSTEMS *
Temperature Range (˚C)
Activation energy, Q (kcal • mol–1)
Frequency factor, D o
1100–1270 1050–1360 1020–1263 900–1200
65.1 61.7 58.6 51.0
1.1 0.57 0.074
68.0 51.0 27.0 58.0
1.8 x 10–5 0.83
66.5 71.5
0.87 2.0
Crystalline Form
Purity (%)
P P P P
99.95 99.95
99.95
Sn113
P P P P
99.97 99.8
1042–1404 1025–1125 1020–1220 700–1350
V48 W185
P P
99.99 99.95
800–1300 1100–1300
Metal
Tracer
Nickel (Con’t)
Cr51 Cu64 Fe59 Mo99 Ni63 Pu238 Sb124
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
(cm2 • s–1)
1.6 x 10–3 1.9 0.5
Table 84. DIFFUSION IN METALLIC (SHEET 18 OF 34)
Metal
Tracer
Niobium
C14 Co60 Cr51 Fe51 K42 95
Nb P32 S35
Sn113 Ta182
Crystalline Form
P P S P S P, S P S P P, S
SYSTEMS *
Temperature Range (˚C)
Activation energy, Q (kcal • mol–1)
Frequency factor, D o
99.85
800–1250 1500–2100 943–1435 1400–2100
32.0 70.5 83.5 77.7
1.09 x 10–5 0.74 0.30 1.5
99.99 99.0 99.9 99.85 99.997
900–1100 878–2395 1300–1800 1100–1500 1850–2400 878–2395
22.10 96.0 51.5 73.1 78.9 99.3
2.38 x 10–7 1.1
Purity (%)
99.85
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
(cm2 • s–1)
5.1 x 10–2 2600 0.14 1.0
Table 84. DIFFUSION IN METALLIC (SHEET 19 OF 34) Purity (%)
SYSTEMS *
Temperature Range (˚C)
Activation energy, Q (kcal • mol–1)
Frequency factor, D o
994–1492
86.9
0.099
Metal
Tracer
Crystalline Form
Niobium (Cont)
Ti44
S
U235 V48 W185
P S P
99.55 99.99 99.8
1500–2000 1000–1400 1800–2200
76.8 85.0 91.7
8.9 x10–3 2.21
Palladium
Pd103
S
99.999
1060–1500
63.6
0.205
Phosphorus
P32
P
0–44
9.4
1.07 x 10–3
Platinum
Co60 Cu64 Pt195
P P P
900–1050 1098–1375 1325–1600
74.2 59.5 68.2
19.6 0.074 0.33
99.99 99.99
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
(cm2 • s–1)
5 x 10–4
Table 84. DIFFUSION IN METALLIC (SHEET 20 OF 34)
SYSTEMS *
Crystalline Form
Purity (%)
Temperature Range (˚C)
Activation energy, Q (kcal • mol–1)
Frequency factor, D o
Rb86
P S P P
99.95 99.7 99.7 99.95
5.6–52.5 –52–61 0–62 0.1–59.9
3.23 9.36 7.45 8.78
1.29 x10–3 0.16 0.058 0.090
γ–Plutonium
Pu238
P
190–310
16.7
2.1 x 10–5
δ–Plutonium
Pu238
P
350–440
23.8
4.5 x 10–3
ε-Plutonium
Pu238
P
500–612
18.5
2.0 x 10–2
α-Praseodymium
Ag110 Au195 Co60 Zn65
P P P P
610–730 650–780 660–780 766–603
25.4 19.7 16.4 24.8
0.14
Metal
Tracer
Potassium
Au198 K42 Na22
99.93 99.93 99.93 99.96
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
(cm2 • s–1)
4.3 x 10–2 4.7 x 10–2 0.18
Table 84. DIFFUSION IN METALLIC (SHEET 21 OF 34)
Metal
Tracer
β-Praseodymium
Ag110 Au195 Ho166 In114 La140 Pr142 Zn65
Selenium
Fe59
Activation energy, Q (kcal • mol–1)
Frequency factor, D o
Crystalline Form
Purity (%)
Temperature Range (˚C)
P P P P
99.93 99.93 99.96 99.96
800–900 800–910 800–930 800–930
21.5 20.1 26.3 28.9
3.2 x 10–2 3.3 x 10–2 9.5 9.6
P P P
99.96 99.93 99.96
800–930 800–900 822–921
25.7 29.4 27.0
1.8 8.7 0.63
99.996
40–100 25–100 60–90
8.88 1.2 29.9
— — 1700
60–90 35–140
15.6 11.7
1100
Hg S35
P P S⊥c
S35 Se75
S||c P
203
SYSTEMS *
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
(cm2 • s–1)
1.4 x 10–4
Table 84. DIFFUSION IN METALLIC (SHEET 22 OF 34)
Metal
Tracer
Silicon
Au198 C14 Cu64 59
Fe
Ni63 32
P Sb124 Si31 Silver
Au198 Ag110 Cd115 Co60
SYSTEMS *
Temperature Range (˚C)
Activation energy, Q (kcal • mol–1)
Frequency factor, D o
S P P S
700–1300 1070–1400 800–1100 1000–1200
47.0 67.2 23.0 20.0
2.75 x 10–3 0.33
P S S S
99.99999
450–800 1100–1250 1190–1398 1225–1400
97.5 41.5 91.7 110.0
1000 – 12.9 1800
P S S S
99.99 99.999 99.99 99.999
718–942 640–955 592–937 700–940
48.28 45.2 41.69 48.75
0.85 0.67 0.44 1.9
Crystalline Form
Purity (%)
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
(cm2 • s–1)
4 x 10–2 6.2 x 10–3
Table 84. DIFFUSION IN METALLIC (SHEET 23 OF 34)
Metal
Tracer
Silver (Con’t)
Cu64 Fe59 Ge77 Hg203 In114 Ni63 Pb210 Pd102 Ru103 S35 Sb124 Sn113
SYSTEMS *
Temperature Range (˚C)
Activation energy, Q (kcal • mol–1)
Frequency factor, D o
717–945 720–930 640–870 653–948
46.1 49.04 36.5 38.1
1.23 2.42 0.084 0.079
40.80 54.8 38.1 56.75
0.41 21.9 0.22 9.56
65.8 40.0 39.07 39.30
180 1.65 0.234 0.255
Crystalline Form
Purity (%)
P S P P
99.99 99.99
S S P S
99.99 99.99 99.999
592–937 749–950 700–865 736–939
S S P S
99.99 99.999 99.999 99.99
793–945 600–900 780–950 592–937
99.99
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
(cm2 • s–1)
Table 84. DIFFUSION IN METALLIC (SHEET 24 OF 34)
SYSTEMS *
Purity (%)
Temperature Range (˚C)
Activation energy, Q (kcal • mol–1)
Frequency factor, D o
38.90 37.9 41.7
0.47 0.15 0.54
Metal
Tracer
Crystalline Form
Silver (Con’t)
Te125 Tl204 Zn65
P P S
99.99
770–940 640–870 640–925
Au198 K42
P P P P
99.99 99.99 99.99 99.99
1.0–77 0–91 0–98 0–85
2.21 8.43 10.09 8.49
3.34 x l0–4 0.08 0.145 0.15
1450–2200 930–1240 1750–2220
40.3 71.4 81.0
1.2 x 10–2 0.505
921–2484 1970–2110 1250–2200
98.7 70.0 98.7
0.23 100 1.24
Sodium
Na22 Rb86 Tantalum
C14 Fe59 Mo99
P P P
Nb95 S35 Ta182
P, S P P, S
99.996 99.0 99.996
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
(cm2 • s–1)
1.8 x 10–3
Table 84. DIFFUSION IN METALLIC (SHEET 25 OF 34)
Temperature Range (˚C)
Activation energy, Q (kcal • mol–1)
Frequency factor, D o
270–440 320–440 360–430
18.7 28.6 41.0
3.14 x 10–5 2.6 x 10–2 320
Metal
Tracer
Crystalline Form
Tellurium
Hg203 Se75 Tl204
P P P
Te127 Te127
S⊥c S||c
99.9999 99.9999
300–400 300–400
46.7 35.5
3.91 x 104 130
Ag110 Ag110 Au198
P⊥c P||c P⊥c
99.999 99.999 99.999
80–250 80–250 110–260
11.8 11.2 2.8
3.8 x 10–2 2.7 x 10–2
Au198 Tl204
P||c S⊥c S||c
99.999 99.9 99.9
110–260 135–230 135–230
5.2 22.6 22.9
5.3 x 10–4 0.4 0.4
α-Thallium
Tl204
Purity (%)
SYSTEMS *
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
(cm2 • s–1)
2.0 x 10–5
Table 84. DIFFUSION IN METALLIC (SHEET 26 OF 34)
SYSTEMS *
Purity (%)
Temperature Range (˚C)
Activation energy, Q (kcal • mol–1)
Frequency factor, D o
Metal
Tracer
Crystalline Form
β-Thallium
Ag110 Au198 Tl204
P P S
99.999 99.999 99.9
230–310 230–310 230–280
11.9 6.0 20.7
4.2 x 10–2 5.2 x 10–4 0.7
α-Thorium
Pa231 Th228
P P P
99.85 99.85 99.85
770–910 720–880 700–880
74.7 716 79.3
126 395 2210
135–225 135–225 135–225 135–225
18.4 12.3 17.7 11.0
7.1 x 10–3 0.16
140–217 181–221
22.0 25.8
5.5 34.1
U233 Tin
Ag110 Au198 Au198
S⊥c S||c S⊥c S||c
Co60 In114
S,P S⊥c
Ag110
99.998
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
(cm2 • s–1)
0.18
5.8 x 10–3
Table 84. DIFFUSION IN METALLIC (SHEET 27 OF 34)
SYSTEMS * Activation energy, Q (kcal • mol–1)
Frequency factor, D o
12.2 10.7 7.7
Crystalline Form
Purity (%)
Temperature Range (˚C)
Tl204
S||c S⊥c S||c P
99.998 99.999 99.999 99.999
181–221 160–226 160–226 137–216
25.6 25.1 25.6 14.7
1.2 x 10–3
α-Titanium
Ti44
P
99.99
700–850
35.9
8.6 x 10–6
β-Titanium
Ag110 Be7 C14
99.95 99.96 99.62 99.7
940 1570 915–1300 1100–1600 950–1600
43.2 40.2 20.0 35.1
3 x 10–3 0.8
51
P P P P
Co60 Fe59 Mo99 Mn54
P P P P
99.7 99.7 99.7 99.7
900–1600 900–1600 900–1600 900–1600
30.6 31.6 43.0 33.7
Metal
Tracer
Tin (Con’t)
In114 Sn113 Sn113
Cr
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
(cm2 • s–1)
3.02 x 10–3 5 x 10–3 1.2 x 10–2 7.8 x 10–3 8.0 x 10–3 6.1 x 10–3
Table 84. DIFFUSION IN METALLIC (SHEET 28 OF 34)
SYSTEMS *
Purity (%)
Temperature Range (˚C)
Activation energy, Q (kcal • mol–1)
Frequency factor, D o
5.0 x 10–3 9.2 x 10–3
Metal
Tracer
Crystalline Form
β-Titanium (Con’t)
Nb95 Ni63 P32 Sc46
P P P P
99.7 99.7 99.7 99.95
1000–1600 925–1600 950–1600 940–1590
39.3 29.6 24.1 32.4
3.62x10–3 4.0 x 10–3
Sn113 Ti44 U235
P P P
99.7 99.95 99.9
950–1600 900–1540 900–400
31.6 31.2 29.3
3.8 x 10–4 3.58 x 10–4 5.1 x 10–4
V48 W185 Zr95
P P P
99.95 99.94 98.94
900–1545 900–1250 920–1500
32.2 43.9 35.4
3.1 x 10–4 3.6 x 10–3 4.7 x 10–3
C14 Fe59 Mo99
P P P
99.51
1200–1600 940–1240 1700–2100
53.5 66.0 101.0
8.91 x 10–3 1.4 x 10–2 0.3
Tungsten
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
(cm2 • s–1)
Table 84. DIFFUSION IN METALLIC (SHEET 29 OF 34)
SYSTEMS *
Temperature Range (˚C)
Activation energy, Q (kcal • mol–1)
Frequency factor, D o
1305–2367 2100–2400 1305–2375 1800–2403
137.6 141.0 139.9 140.3
3.01 19.5 3.05 1.88
580–650
40.0
2 x 10–3
Crystalline Form
Purity (%)
99.99
185
W
P S P P
α–Uranium
U234
P
β–Uranium
Co60 U235
P P
99.999
692–763 690–750
27.45 44.2
1.5 x 10–2 2.8 x10–3
γ-Uranium
Au195 Co60 Cr51 Cu64
P P P P
99.99 99.99 99.99 99.99
785–1007 783–989 797–1037 787–1039
30.4 12.57 24.46 24.06
4.86 x 10–3 3.51 x 10–4 5.37 X 10–3 1.96 x 10–3
Metal
Tracer
Tungsten (Con’t)
Nb95 Re186 Ta182
99.99 99.99
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
(cm2 • s–1)
Table 84. DIFFUSION IN METALLIC (SHEET 30 OF 34)
SYSTEMS *
Purity (%)
Temperature Range (˚C)
Activation energy, Q (kcal • mol–1)
Frequency factor, D o
Metal
Tracer
Crystalline Form
γ-Uranium (Con’t)
Fe55 Mn54 Nb95 Ni63
P P P P
99.99 99.99 99.99 99.99
787–990 787–939 791–1102 787–1039
12.0 13.88 39.65 15.66
2.69 x 10–4 1.81 x 10–4
U233 Zr95
P P
99.99
800–1070 800–1000
28.5 16.5
2.33 x 10–3 3.9 x 10–4
C14
99.7 99.8 99.8
845–1130 960–1200 960–1350 1200–1450
27.3 64.6 71.0 49.8
4.9 x 10–3
Fe59 P32
P P P P
2.45 x l0–2
S35 V48 V48
P S,P S,P
99.8 99.99 99.99
1320–1520 880–1360 1360–1830
34.0 73.65 94.14
3.1 x l0–2 0.36 214.0
Vanadium
Cr51
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
(cm2 • s–1)
4.87 x 10–2 5.36 x10–4
9.54 x10–3 0.373
Table 84. DIFFUSION IN METALLIC (SHEET 31 OF 34)
Temperature Range (˚C)
Activation energy, Q (kcal • mol–1)
Frequency factor, D o
900–1300 900–1300
67.1 60.3
5.2 0.82
Metal
Tracer
Crystalline Form
Yttrium
Y90 Y90
S⊥c S||c
Zinc
Ag110
S⊥c S||c S⊥c S||c
99.999 99.999 99.999 99.999
271–413 271–413 315–415 315–415
27.6 26.0 29.72 29.73
0.45 0.32 0.29 0.97
S⊥c S||c S⊥c S||c
99.999 99.999 99.999 99.999
225–416 225–416 338–415 338–415
20.12 20.54 ~20 29.53
0.117 0.114 ~2 2.22
110
Ag Au198 Au198 Cd115 Cd115 Cu64 Cu64
Purity (%)
SYSTEMS *
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
(cm2 • s–1)
Table 84. DIFFUSION IN METALLIC (SHEET 32 OF 34)
SYSTEMS *
Temperature Range (˚C)
Activation energy, Q (kcal • mol–1)
Frequency factor, D o
S⊥c S||c S⊥c S||c
240–403 240 403 260–413 260–413
18.15 18.4 20.18 19.70
0.018 0.016 0.073 0.056
In Sn113 Sn113
S⊥c S||c S⊥c S||c
271–413 271–413 298–400 298–400
19.60 19.10 18.4 19.4
0.14 0.062 0.13 0.15
Zn65 Zn65
S⊥c S||c
240–418 240–418
23.0 21.9
0.18 0.13
Metal
Tracer
Zinc (Con’t)
Ga72 Ga72 Hg203 Hg203 In114 114
Crystalline Form
Purity (%)
99.999 99.999
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
(cm2 • s–1)
Table 84. DIFFUSION IN METALLIC (SHEET 33 OF 34)
Temperature Range (˚C)
Activation energy, Q (kcal • mol–1)
Frequency factor, D o
18.0 48.0 24.76 31.5
1.19 x 10–8 2.5 x 10–2
99.99
700–850 750–840 600–850 740–857
99.6 99.99 99.95
300–700 700–800 600–850 750–850
22.0 70.0 22.9 45.5
1.0 x 10–8 100
915–1300 1100–1600 880–1600 920–1600
31.1 34.2 41.4 21.82
Metal
Tracer
Crystalline Form
Purity (%)
α-Zirconium
Cr51 Fe55 Mo99 Nb95
P P P P
99.9
Sn113 Ta182 V48 Zr95
P P P P
Be7 C14 Ce141 Co60
P P P P
β–Zirconium
SYSTEMS *
99.7 96.6 99.99
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
(cm2 • s–1)
6.22 x 10–8 6.6 x 10–6
1.12 x 10–8 5.6 x 10–4 8.33 x 10–2 3.57 x 10–2 3.16 3.26 x 10–3
Table 84. DIFFUSION IN METALLIC (SHEET 34 OF 34)
Metal
Tracer
Crystalline Form
β–Zirconium (Con’t)
Cr51 Fe55 Mo99 Nb95
P P P P
99.9
P32
P P P P
99.94
P P P P
99.99 99.99 99.7
113
Sn Ta182 U235 V48 V48
W185 Zr95
Purity (%)
99.6
SYSTEMS *
Temperature Range (˚C)
Activation energy, Q (kcal • mol–1)
Frequency factor, D o
700–850 750–840 900–1635 1230–1635
18.0 48.0 35.2 36.6
1.19 x 10–8 2.5 x 10–2
950–1200 300–700 900–1200 900–1065
33.3 22.0 27.0 30.5
0.33
870–1200 1200–1400 900–1250 1100–1500
45.8 57.7 55.8 30.1
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
(cm2 • s–1)
1.99 x 10–6 7.8 x 10–4
1 x 10–8 5.5 x 10–5 5.7 x 10–4 7.59 x 10–3 0.32 0.41 2.4 x 10–4
*
The diffusion coefficient DT at a temperature T(K) is given by the following: DT =Do e–Q/RT For activation energy in KJ/mol, multiply values in Kcal/mol by 4.184. For frequency factor in m2/s, multiply values in cm2/s by 10–4. Abbreviations: P= polycrystalline S = single crystal ⊥ c = perpendicular to c direction || c = parallel to c direction
©2001 CRC Press LLC
6.7 Thermodynamics Page 351 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 85. DIFFUSION OF METALS INTO (SHEET 1 OF 11)
METALS
Diffusion Temperature (˚C)
Coefficient (cm2 • hr–1)
Al
466 500 573
6.84–8.1 x10–7 7.2–3.96 x 10–8 1.26 x 10–5
Pb
220 250 285
5.40 x 10–5
Sn
500
1.73 x 10–1
Al
Cu
500 850
6.12 x 10–9 7.92 x 10–6
As
Si
Au
Ag
Diffusing Metal
Matrix Metal
Ag
1.08 x 10–4 3.29 x 10–4
0.32 e–82,000⁄RT 456 491 585 601
1.76 x 10–9 0.92–2.38 x 10–13 3.6 x 10–8 3.96 x 10–8
624 717 729 767
2.5–5 x 10–11 1.04–2.25 x 10–9 1.76 x 10–9 1.15 x 10–6
For diffusion coefficients in m2/s, multiply values in cm2/hr by 2.778 x 10–8. Source: data from Loebel, R., in Handbook of Chemistry and Physics, 51st ed., Weast, R. C., Ed., Chemical Rubber, Cleveland, 1970, F-55.
©2001 CRC Press LLC
Shackelford & Alexander
351
6.7 Thermodynamics Page 352 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 85. DIFFUSION OF METALS INTO (SHEET 2 OF 11) Diffusing Metal
Au (Con’t)
Diffusion Temperature (˚C)
Coefficient (cm2 • hr–1)
847 858 861 874
2.30 x 10–6 3.63 x 10–8 3.92 x 10–8 3.92 x 10–8
916 1040 1120 1189
5.40 x 10–6 1.17 x 10–6 2.29 x 10–5 5.42 x 10–6
800 900 1020
1.17 x 10–8
Bi Cu Hg
500 970 11
1.88 x 10–1 5.04 x 10–6 3 x10–2
Pb
100 150 200 240
8.28 x 10–8 1.80 x 10–4 3.10 x 10–4 1.58 x 10–3
300 500
5.40 x 10–3
Matrix Metal Ag (Con’t)
Au
Sn B
METALS
Si
500
9 x 10–8 5.4 x 10–7
1.33 x 10–1 0.001e–25,000⁄RT 1.94 x 10–1 10.5 e–85,000⁄RT
For diffusion coefficients in m2/s, multiply values in cm2/hr by 2.778 x 10–8. Source: data from Loebel, R., in Handbook of Chemistry and Physics, 51st ed., Weast, R. C., Ed., Chemical Rubber, Cleveland, 1970, F-55.
©2001 CRC Press LLC
352
CRC Handbook of Materials Science & Engineering
6.7 Thermodynamics Page 353 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 85. DIFFUSION OF METALS INTO (SHEET 3 OF 11)
METALS
Diffusing Metal
Matrix Metal
Diffusion Temperature (˚C)
Coefficient (cm2 • hr–1)
Ba
Hg
7.8
2.17 x 10–2
Bi
Si Pb
220 250 285
1030e–107,000⁄RT 1.73 x 10–7 1.33 x 10–6 1.58 x 10–6
C
W Fe
1700 930
1.87 x 10–3 7.51–9.18 x 10–9
Ca
Hg
10.2
2.25 x 10–2
Cd
Ag
650 800 900
9.36 x 10–7
8.7 15 20 99.1
6.05 x 10–2 6.51 x 10–2 5.47 x 10–2
Pb
200 252
4.59 x 10–7 3.10 x 10–6
Cd, 1 atom%
Pb
167
1.66 x 10–7
Ce
W
1727
3.42 x 10–6
Hg
4.68 x 10–6 2.23 x 10–5
1.23 x 10–1
For diffusion coefficients in m2/s, multiply values in cm2/hr by 2.778 x 10–8. Source: data from Loebel, R., in Handbook of Chemistry and Physics, 51st ed., Weast, R. C., Ed., Chemical Rubber, Cleveland, 1970, F-55.
©2001 CRC Press LLC
Shackelford & Alexander
353
6.7 Thermodynamics Page 354 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 85. DIFFUSION OF METALS INTO (SHEET 4 OF 11)
METALS
Diffusing Metal
Matrix Metal
Diffusion Temperature (˚C)
Coefficient (cm2 • hr–1)
Cs
Hg
7.3
1.88 x 10–2
W
27 227 427 540
4.32 x 10–3 5.40 x 10–4 2.88 x 10–2
Al
440 457 540 565
1.8 x 10–7 2.88 x 10–7 5.04 x 10–6 4.68–5.00 x 10–4
Ag
650 760 895
1.04 x 10–6 1.30 x 10–6 3.38 x 10–6
Au
301 443 560
5.40 x 10–10 8.64 x 10–9
604 616 740
5.10 x 10–7 7.92 x 10–7 3.35 x 10–6
650 750 830
1.15 x 10–5
Cu
Cu
1.44 x 10–1
3.38 x 10–7
2.34 x 10–8 1 .44 x 10–7
For diffusion coefficients in m2/s, multiply values in cm2/hr by 2.778 x 10–8. Source: data from Loebel, R., in Handbook of Chemistry and Physics, 51st ed., Weast, R. C., Ed., Chemical Rubber, Cleveland, 1970, F-55.
©2001 CRC Press LLC
354
CRC Handbook of Materials Science & Engineering
6.7 Thermodynamics Page 355 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 85. DIFFUSION OF METALS INTO (SHEET 5 OF 11) Diffusion Temperature (˚C)
Coefficient (cm2 • hr–1)
Cu (Con’t)
850 950 1030
9.36 x 10–7 2.30 x 10–6 1.01 x 10–5
Ge
700–900
1.01± 0.1 x 10–1
Pt
1041 1213 1401
7.83–9 x 10–8 5.04 x 10–7 6.12 x 10–6
Au
753 1003
1.94 x 10–6 2.70 x 10–5
Diffusing Metal
Matrix Metal
Cu (Con’t)
Fe
METALS
0.0062 e–20,000⁄RT 3.6 e–81,000⁄RT
Ga
Si
Ge
Al
630
3.31 x 10–1
Au
529 563
1.84 x 10–1 2.80 x 10–1
Ge
766–928 1060–1200•K
7.8 e–68,509⁄RT 87 e–73,000⁄RT
Cd
156 176 202
9.36 x 10–7 2.55 x 10–6 9 x 10–6
Pb
177 197
8.34 x 10–8 2.09 x 10–5
Hg
For diffusion coefficients in m2/s, multiply values in cm2/hr by 2.778 x 10–8. Source: data from Loebel, R., in Handbook of Chemistry and Physics, 51st ed., Weast, R. C., Ed., Chemical Rubber, Cleveland, 1970, F-55.
©2001 CRC Press LLC
Shackelford & Alexander
355
6.7 Thermodynamics Page 356 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 85. DIFFUSION OF METALS INTO (SHEET 6 OF 11) Diffusion Temperature (˚C)
METALS Coefficient (cm2 • hr–1)
Diffusing Metal
Matrix Metal
In
Ag
650 800 895
1.04 x 10–6 6.84 x 10–6 4.68 x 10–5 16.5 e–90,000⁄RT
K
Hg
10.5
2.21 x 10–2
W
207 317 507
2.05 x 10–2 3.6 x 10–1 1.1 x 10+1
Li
Hg
8.2
2.75 x 10–2
Mg
Al
365
3.96 x 10–8
395 420 440
1.98–2.41 x 10–7 2.38–2.74 x 10–7 1.19 x 10–7
447 450 500 577
9.36 x 10–7 6.84 x 10–6 3.96–7.56 x 10–6 1.58 x 10–5
Pb
220
4.32 x 10–7
Cu
400 850
7.2 x 10–10
Mn
4.68 x 10–7
For diffusion coefficients in m2/s, multiply values in cm2/hr by 2.778 x 10–8. Source: data from Loebel, R., in Handbook of Chemistry and Physics, 51st ed., Weast, R. C., Ed., Chemical Rubber, Cleveland, 1970, F-55.
©2001 CRC Press LLC
356
CRC Handbook of Materials Science & Engineering
6.7 Thermodynamics Page 357 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 85. DIFFUSION OF METALS INTO (SHEET 7 OF 11)
METALS
Diffusion Temperature (˚C)
Coefficient (cm2 • hr–1)
W
1533 1770 2010 2260
9.36 x 10–10 4.32 x 10–9 7.92 x 10–8 2.81 x 10–7
Na
W
20 227 417 527
2.88 x 10–2 1.80 9.72 1.19 x 10–1
Ni
Au
800 1003
2.77 x 10–6 2.48 x 10–5
Cu
550 950 320
2.56 x 10–9
Pt
1043 1241 1401
1.81 x 10–8 1.73 x 10–6 5.40 x 10–6
Ni, 1 atom %
Pb
285
8.34 x 10–7
Ni, 3 atom%
Pb
252
1.25 x 10–7
Pb
Cd
252
2.88 x 10–8
Pb
250 285
5.42 x 10–8 2.92 x 10–7
Sn
500
1.33 x 10–1
Diffusing Metal
Matrix Metal
Mo
7.56 x 10–7 1.26 x 10–6
For diffusion coefficients in m2/s, multiply values in cm2/hr by 2.778 x 10–8. Source: data from Loebel, R., in Handbook of Chemistry and Physics, 51st ed., Weast, R. C., Ed., Chemical Rubber, Cleveland, 1970, F-55.
©2001 CRC Press LLC
Shackelford & Alexander
357
6.7 Thermodynamics Page 358 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 85. DIFFUSION OF METALS INTO (SHEET 8 OF 11) Diffusion Temperature (˚C)
Coefficient (cm2 • hr–1)
Hg
9.4 15.6 99.2
6.46 x 10–9 5.71 x 10–2 8 x 10–2
Ag
444 571 642 917
4.68 x 10–9 1.33 x 10–7 4.32 x 10–7 4.32 x 10–6
Au
727 970
2.09 x 10–8 1.15 x 10–6
Cu
490 950
3.24 x 10–9 9.0–10.44 x 10–7
Au
470
4.59 x 10–11
Al
20 500
1.08 x 10–9 1.80 x 10–7
Bi
150 200
1.80 x 10–7 1.80 x 10–6
Pb
150 200 310
4.59 x 10–11 4.59 x 10–9 5.41 x 10–7
Au
740 986
1.69 x 10–8 6.12–10.08 x 10–7
Diffusing Metal
Matrix Metal
Pb, 2 atom %
Pd
Po
Pt
METALS
For diffusion coefficients in m2/s, multiply values in cm2/hr by 2.778 x 10–8. Source: data from Loebel, R., in Handbook of Chemistry and Physics, 51st ed., Weast, R. C., Ed., Chemical Rubber, Cleveland, 1970, F-55.
©2001 CRC Press LLC
358
CRC Handbook of Materials Science & Engineering
6.7 Thermodynamics Page 359 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 85. DIFFUSION OF METALS INTO (SHEET 9 OF 11)
METALS
Diffusion Temperature (˚C)
Coefficient (cm2 • hr–1)
Cu
490 960
2.01 x 10–9 3.96–8.28 x 10–7
Pb
490
7.04 x 10–2
Au
470
1.42 x 10–8
Pt
470
3.42 x 10–8
Ra(β+γ)
Ag
470
1.57 x 10–8
Rb
Hg
7.3
1.92 x 10–9
Rh
Pb
500
1.27 x 10–1
Sb
Ag
650 760 895
1.37 x 10–6 5.40 x 10–6
Diffusing Metal
Matrix Metal
Pt (Con’t)
Ra
Si
Sn
1.55 x 10–5 5.6 e–91,000⁄RT
465 510 600
1.22 x 10–6 7.2 x 10–6 3.35 x 10–5
667 697
1.44 x 10–1 3.13 x 10–1
Fe+C*
1400–1600
3.24–5.4 x 10–2
Ag
650 895
2.23 x 10–6 2.63 x 10–6
Al
For diffusion coefficients in m2/s, multiply values in cm2/hr by 2.778 x 10–8. Source: data from Loebel, R., in Handbook of Chemistry and Physics, 51st ed., Weast, R. C., Ed., Chemical Rubber, Cleveland, 1970, F-55.
©2001 CRC Press LLC
Shackelford & Alexander
359
6.7 Thermodynamics Page 360 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 85. DIFFUSION OF METALS INTO (SHEET 10 OF 11)
METALS
Diffusion Temperature (˚C)
Coefficient (cm2 • hr–1)
Cu
400 650 850
1.69 x 10–9 2.48 x 10–7 1.40 x 10–5
Hg
10.7
6.38 x 10–2
Pb
245 250 285
1.12 x 10–7 1.83 x 10–7 5.76 x 10–7
Sr
Hg
9.4
1.96 x 10–2
Th
Mo
1615 2000
1.30 x 10–6
Tl
285
8.76 x 10–7
W
1782 2027 2127 2227
3.96 x 10–7 4.03 x 10–6 1 .29 x 10–5
165
2.54 x 10–12
260 324
2.54 x 10–8 5.84 x 10–6
11.5
3.63 x 10–2
Diffusing Metal
Matrix Metal
Sn (Con’t)
Th (β)
Tl
Pb
Hg
3.60 x 10–3
2.45 x 10–5
For diffusion coefficients in m2/s, multiply values in cm2/hr by 2.778 x 10–8. Source: data from Loebel, R., in Handbook of Chemistry and Physics, 51st ed., Weast, R. C., Ed., Chemical Rubber, Cleveland, 1970, F-55.
©2001 CRC Press LLC
360
CRC Handbook of Materials Science & Engineering
6.7 Thermodynamics Page 361 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 85. DIFFUSION OF METALS INTO (SHEET 11 OF 11) Diffusing Metal
Matrix Metal
Tl (Con’t)
Pb
METALS
Diffusion Temperature (˚C)
Coefficient (cm2 • hr–1)
220 250 270
1.01 x 10–7 7.92 x 10–7 3.96 x 10–7
285 315
1.12 x 10–6 2.09 x 10–6 16.5 e–85,000⁄RT
U
W
1727
4.68 x 10–8
Y
W
1727
6.55 x 10–5
Zn
Ag
750 850
1.66 x 10–5
Al
415 473 500 555
9 x 10–7 1.91 x 10–6 7.2–13.68 x 10–6 1.8 x 10–5
Hg
11.5 15 99.2
9.09 x 10–2 8.72 x 10–2 1.20 x 10–1
Pb
285
5.84
W
1727
1.17 x 10–5
Zr
4.37 x 10–5
For diffusion coefficients in m2/s, multiply values in cm2/hr by 2.778 x 10–8. Source: data from Loebel, R., in Handbook of Chemistry and Physics, 51st ed., Weast, R. C., Ed., Chemical Rubber, Cleveland, 1970, F-55. *
Saturated FeC Alloy.
©2001 CRC Press LLC
Shackelford & Alexander
361
6.7 Thermodynamics Page 362 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 86. DIFFUSION IN SEMICONDUCTORS (SHEET 1 OF 8)
Semiconductor
Diffusing Element
Aluminum antimonide (AlSb)
Al Cu Sb Zn
Cadmium selenide (CdSe)
Do 2 (cm • s–1)
∆E (eV)
*
Temperature Range
of Validity (˚C)
~1.8 –3
150–500
0.33±.15
0.36 ~1.5 1.93±0.04
Se
2.6x10–3
1.55
700–1800
Cadmium sulfide (CdS)
Ag Cd Cu
2.5x10+1 3.4 1.5x10–3
1.2 2.0 0.76
250–500 750–1000 450–750
Cadmium telluride (CdTe)
Au
6.7x10+1
2.0
600–1000
In
4.1x10–1
1.6
450–1000
Ca
30
3.7
Fe
0.4
3.1
α-Calcium metasilicate (CaSiO3)
Ca
7.4x10+4
4.8
Gallium antimonide (GaSb)
Ga
3.2x10+3
3.15
650–700
In
1.2x10–7
0.53
400–650
Sb
3.4x10+4 8.7x10+2
3.44 1.13
650–700 470–570
Sn
2.4x10–5
Te
–4
0.80 1.2
320–570 400–650
Calcium ferrate (III) (CaFe2O4)
3.5x10
3.8x10
660–860
Source: from Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, 1973, 251.
©2001 CRC Press LLC
362
CRC Handbook of Materials Science & Engineering
6.7 Thermodynamics Page 363 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 86. DIFFUSION IN SEMICONDUCTORS (SHEET 2 OF 8)
Semiconductor Gallium arsenide (GaAs)
Do
*
Temperature Range
Diffusing Element
(cm2 • s–1)
∆E (eV)
Ag
2.5x10–3
1.5
4x10–4
0.8±0.05
500–1160
As
4x1021
Au
10–3
10.2±1.2 1.0±0.2
1200–1250 740–1024
Cd
0.05±0.04 b50x10–2
2.43±0.06 2.8a
868–1149
Cu Ga Li
0.03 1x10+7 0.53
0.52 5.60±0.32 1.0
100–600 1125–1250 250–400
Mg
1.4x10–4 2.3x10–2
1.89 2.6
740–1024
b
–2
2.6x10
b6.5x10–1
8.5x10–3 S
1.2x10–4 b1.6x10–5 2.6x10–5 4x103 3x103
Se Sn
b
–2
3.8x10 6x10–4
of Validity (˚C)
a
2.7 2.49a 1.7
740–1024
1.8 1.63a 1.86 4.04±0.15 4.16±0.16 2.7 2.5
1000–1200 1000–1200 1069–1215
Source: from Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, 1973, 251.
©2001 CRC Press LLC
Shackelford & Alexander
363
6.7 Thermodynamics Page 364 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 86. DIFFUSION IN SEMICONDUCTORS (SHEET 3 OF 8)
Semiconductor Gallium arsenide (GaAs) (Con’t)
Diffusing Element
Zn
Do (cm2 • s–1)
b
∆E (eV)
*
Temperature Range
of Validity (˚C)
2.5x10–1
3.0a
3.0x10–7 6.0x10–7 15±7
1.0 0.6 2.49±0.05
800
Gallium phosphide (GaP)
Zn
1.0
2.1
700–1300
Germanium (Ge)
Ag As Au B
4.4x10–2 6.3 2.2x10–2
1.0 2.4 2.5 4.6
700–900 600–850
Cu Fe
1.9x10–4 1.3x10–1
Ga Ge
4.0x10+1 8.7x10+1
0.18 1.1 3.1 3.2
600–850 750–850 600–850 750–920
He
6.1x10–3
750–850 600–850 200–600 700–875
1.6x10–9
600–850
In Li
3x10 1.3x10-4
Ni
8x10–1
0.69 2.4 0.47 0.9
P Pb Sb Sn
2.5 – 4.0 1.7x10–2
2.5 3.6 2.4 1.9
600–850 600–850 600–850 600–850
Zn
1.0x10+1
2.5
600–850
–2
Source: from Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, 1973, 251.
©2001 CRC Press LLC
364
CRC Handbook of Materials Science & Engineering
6.7 Thermodynamics Page 365 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 86. DIFFUSION IN SEMICONDUCTORS (SHEET 4 OF 8)
Semiconductor Indium antimonide (InSb)
Do
*
Temperature Range
Diffusing Element
(cm2 • s–1)
∆E (eV)
Ag
1.0x10–7
0.25
Au
b
7x10–4
0.32a
140–510
b1.0x10–5
1.1a 0.52 1.75 1.2
250–500 442–519
Cd
–9
1.23x10 1.26 1.3x10–4 Co
2.7x10–11 –7
Cu
10 3.0x10–5 b
0.39 0.25 0.37
9.0x10–4
1.08a
of Validity (˚C)
360–500
440–510
10–7
0.25
b4.0x10–6
1.17a
0.05 1.8x10–9
1.81 0.28
450–500
Ni Sb
10–7 0.05 1.4x10–6
0.25 1.94 0.75
440–510 450–500
Sn Te Zn
5.5x10–8 0.5 1.6x10–6 5.5
0.75 0.57 1.35 2.3±0.3 1.6
390–512 300–500 360–500 360–500 360–500
1.7x10–7 5.3x10+7
0.85 2.61
390–512
Fe Hb In
(Polycrystal)
1.7x10–7
b
440–510
Source: from Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, 1973, 251.
©2001 CRC Press LLC
Shackelford & Alexander
365
6.7 Thermodynamics Page 366 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 86. DIFFUSION IN SEMICONDUCTORS (SHEET 5 OF 8)
Semiconductor
Indium antimonide (InSb) (Con’t)
Do
Diffusing Element
(cm2 • s–1)
∆E (eV)
Zinc (con’t) (High concentration)
6.3x10+8
2.61
b
*
Temperature Range
of Validity (˚C)
3.7x10–10
0.7a
9.0x10–10
~0
1.4x10–7
0.86
390–512
Cd Cu
4.35x10–4
1.17 0.52a
600–900
Ge
3.74x10–6
Mg
–6
1.98x10
1.17 1.17
600–900 600–900
S Se
6.78 12.55
2.20 2.20
600–900 600–900
Sn
1.49x10–6
Te Zn
–5
3.43x10 3.11x10–3
1.17 1.28 1.17
600–900 600–900 600–900
In
1x10+5
3.85
850–1000
p
7x10+10
5.65
850–1000
Iron oxide (Fe3O4)
Fe
5.2
2.4
Lead metasilicate (PbSiO3)
Pb
85
2.6
Lead orthosilicate (PbSiO4)
Pb
8.2
2.0
(Conc. = 2.2 x 1020 cm–3) (Single crystal) Indium arsenide (InAs)
Indium phosphide (InP)
Source: from Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, 1973, 251.
©2001 CRC Press LLC
366
CRC Handbook of Materials Science & Engineering
6.7 Thermodynamics Page 367 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 86. DIFFUSION IN SEMICONDUCTORS (SHEET 6 OF 8)
Do
*
Temperature Range
Diffusing Element
(cm2 • s–1)
∆E (eV)
Mercury selenide (HgSe)
Sb
6.3x10–5
0.85
Nickel aluminate (NiAl2O4)
Cr
1.17x10–3
2.2
Fe
1.33
3.5
Cr
0.74
3.1
Cr Fe Ni
2.03x10–5 1.35x10–3 0.85
1.9 2.6 3.2
Fe
1.1x10–5
0.38
300–400
Ge
9.4x10–6
In
–6
5.2x10
0.39 0.32
300–400 300–400
Sb
2.8x10–8
Se Sn
–10
7.6x10 4.8x10–8
0.29 0.14 0.39
300–400 300–400 300–400
Te
5.4x10–6
Tl Zn
–6
1.4x10 3.8x10–7
0.53 0.35 0.29
300–400 300–400 300–400
Al Ag
8.0 2x10–3 3.2x10–1 1.1x10–3
3.5 1.6 3.5 1.1
1100–1400 1100–1350 1100–1350 800–1200
Semiconductor
Nickel chromate (III) (NiCr2O4)
Selenium (Se) (amorphous)
Silicon (Si)
As Au
of Validity (˚C)
540–630
Source: from Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, 1973, 251.
©2001 CRC Press LLC
Shackelford & Alexander
367
6.7 Thermodynamics Page 368 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 86. DIFFUSION IN SEMICONDUCTORS (SHEET 7 OF 8)
Semiconductor
Silicon (Si) (Con’t)
Do
Diffusing Element
(cm2 • s–1)
B Bi
1.0x10+1 1.04x10+3
Cu Fe
∆E (eV)
*
Temperature Range
of Validity (˚C)
4x10–1 6.2x10–3
3.7 4.6 1.0 0.86
950–1200 1100–1350 800–1100 1000–1200
Ga Hl He In
3.6 9.4x10–3 1.1x10–1 1.65x10+1
3.5 0.47 0.86 3.9
1150–1350 1000–1200 1000–1200 1100–1350
Li P Sb Tl
9.4x10–3 1.0x10+1 5.6 1.65x10+1
0.78 3.7 3.9 3.9
100–800 1100–1350 1100–1350 1100–1350
Al B
2.0x10–1 1.6x10+1
Cr
2.3x10–1
4.9 5.6 4.8
1800–2250 1850–2250 1700–1900
Sulfur (S)
S
2.8x10+13
2.0
>100
Tin zinc oxide (SnZn2O4)
Sn
2x10+5
4.7
Zn
37
3.3
Zinc aluminate (ZnAl2O4)
Zn
2.5x10+2
3.4
Zinc chromate (III) (ZnCr2O4)
Cr
8.5
3.5
Zn
60
3.7
Silicon carbide (SiC)
Source: from Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, 1973, 251.
©2001 CRC Press LLC
368
CRC Handbook of Materials Science & Engineering
6.7 Thermodynamics Page 369 Wednesday, December 31, 1969 17:00
Thermodynamic and Kinetic Data
Table 86. DIFFUSION IN SEMICONDUCTORS (SHEET 8 OF 8)
Do
*
Temperature Range
Diffusing Element
(cm2 • s–1)
∆E (eV)
Fe
8.5x10+2
3.5
Zn
8.8x10+2
3.7
Zinc selenide (ZnSe)
Cu
1.7x10–5
0.56
200–570
Zinc sulfide (ZnS)
Zn
1.0x10+16
6.50 3.25 1.52
>1030 940–1030 <940
Semiconductor Zinc ferrate (III) (ZnFe2O4)
1.5x10+4 3.0x10–4
of Validity (˚C)
Source: from Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, 1973, 251. *
The diffusion coefficient D at a temperature T(K) is given by the following: D=Doe-∆E/kT For Do in m2/s, multiply values in cm2/s by 10–4.
a
Values obtained at the low concentration limit.
©2001 CRC Press LLC
Shackelford & Alexander
369
Shackelford, James F. & Alexander, W. “Thermal Properties of Materials” Materials Science and Engineering Handbook Ed. James F. Shackelford and W. Alexander Boca Raton: CRC Press LLC, 2001
7.00 Thermal Page 371 Wednesday, December 31, 1969 17:00
CHAPTER 5
List of Tables
Thermal Properties of Materials
Specific Heat & Heat Capacity Specific Heat of the Elements at 25 ˚C Heat Capacity of Ceramics Specific Heat of Polymers Specific Heat of Fiberglass Reinforced Plastics Thermal Conductivity Thermal Conductivity of Metals (Part 1) Thermal Conductivity of Metals (Part 2) Thermal Conductivity of Metals (Part 3) Thermal Conductivity of Metals (Part 4) Thermal Conductivity of Alloy Cast Irons Thermal Conductivity of Iron and Iron Alloys Thermal Conductivity of Aluminum and aluminum alloys Thermal Conductivity of Copper and Copper Alloys Thermal Conductivity of Magnesium and Magnesium Alloys Thermal Conductivity of Nickel and Nickel Alloys Thermal Conductivity of Lead and Lead Alloys Thermal Conductivity of Tin, Titanium, Zinc and their Alloys Thermal Conductivity of Pure Metals (Continued)
©2001 CRC Press LLC
371
7.00 Thermal Page 372 Wednesday, December 31, 1969 17:00
Thermal Properties List of Tables
Thermal Conductivity of Ceramics
(Continued)
Thermal Conductivity of Glasses Thermal Conductivity of Cryogenic Insulation Thermal Conductivity of Cryogenic Supports Thermal Conductivity of Special Concretes Thermal Conductivity of SiC-Whisker-Reinforced Ceramics Thermal Conductivity of Polymers Thermal Conductivity of Fiberglass Reinforced Plastics Thermal Expansion Thermal Expansion of Wrought Stainless Steels Thermal Expansion of Wrought Titanium Alloys Thermal Expansion of Graphite Magnesium Castings Linear Thermal Expansion of Metals and Alloys Thermal Expansion of Ceramics Thermal Expansion of SiC-Whisker-Reinforced Ceramics Thermal Expansion of Glasses Thermal Expansion of Polymers Thermal Expansion Coefficients of Materials for Integrated Circuits Thermal Expansion of Silicon Carbide SCS–2–Al Tempering & Softening ASTM B 601 Temper Designation Codes for Copper and Copper Alloys Temper Designation System for Aluminum Alloys Tool Steel Softening After 100 Hours Thermoplastic Polyester Softening with Temperature Heat-Deflection Temperature of Carbon- and Glass-Reinforced Engineering Thermoplastics
©2001 CRC Press LLC Shackelford & Alexander
372
7.01 Thermal Page 373 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 87. SPECIFIC
HEAT OF THE ELEMENTS AT 25 ˚C (SHEET 1 OF 4) Cp
Element
(cal • g-l • K–1)
Aluminum Antimony Argon Arsenic
0.215 0.049 0.124 0.0785
Barium Beryllium Bismuth Boron
0.046 0.436 0.0296 0.245
Bromine (Br2) Cadmium Calcium Carbon, diamond
0.113 0.0555 0.156 0.124
Carbon, graphite Cerium Cesium Chlorine (Cl2)
0.170 0.049 0.057 0.114
Chromium Cobalt Columbium (see Niobium) Copper
0.107 0.109
Dysprosium Erbium Europium Fluorine (F2)
0.0414 0.0401 0.0421 0.197
Gadolinium Gallium Germanium Gold
0.055 0.089 0.077 0.0308
0.092
Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-144., Kelly, K. K., Bulletin 592, Bureau of Mines, Washington, D. C., 1961.and Hultgren, R., Orr, R L., Anderson, P. D., and Kelly, K. K., Selected Values of Thermodynamic Properties of Metals and Alloys, John Wiley & Sons, New York, (1963).
©2001 CRC Press LLC
Shackelford & Alexander
373
7.01 Thermal Page 374 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 87. SPECIFIC
HEAT OF THE ELEMENTS AT 25 ˚C (SHEET 2 OF 4) Cp
Element
(cal • g-l • K–1)
Hafnium Helium Hollnium Hydrogen (H2)
0.035 1.24 0.0393 3.41
Indium lodine (I2) Iridium Iron (α)
0.056 0.102 0.0317 0.106
Krypton Lanthanum Lead Lithium
0.059 0.047 0.038 0.85
Lutetium Magnesium Manganese, α Manganese, β
0.037 0.243 0.114 1.119
Mercury Molybdenum Neodymium Neon
0.0331 0.599 0.049 0.246
Nickel Niobium Nitrogen (N2) Osmium
0.106 0.064 0.249 0.03127
Oxygen (O2) Palladium Phosphorus, white Phosphorus, red, triclinic
0.219 0.0584 0.181 0.160
Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-144., Kelly, K. K., Bulletin 592, Bureau of Mines, Washington, D. C., 1961.and Hultgren, R., Orr, R L., Anderson, P. D., and Kelly, K. K., Selected Values of Thermodynamic Properties of Metals and Alloys, John Wiley & Sons, New York, (1963).
©2001 CRC Press LLC
374
CRC Handbook of Materials Science & Engineering
7.01 Thermal Page 375 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 87. SPECIFIC
HEAT OF THE ELEMENTS AT 25 ˚C (SHEET 3 OF 4) Cp
Element
(cal • g-l • K–1)
Platinum Polonium Potassium Praseodymium
0.0317 0.030 0.180 0.046
Promethium Protactinium Radium Radon
0.0442 0.029 0.0288 0.0224
Rhenium Rhodium Rubidium Ruthenium
0.0329 0.0583 0.0861 0.057
Samarium Scandium Selenium (Se2) Silicon
0.043 0.133 0.0767 0.168
Silver Sodium Strontium Sulfur, yellow
0.0566 0.293 0.0719 0.175
Tantalum Technetium Tellurium Terbium
0.0334 0.058 0.0481 0.0437
Thallium Thorium Thulium Tin (α)
0.0307 0.0271 0.0382 0.0510
Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-144., Kelly, K. K., Bulletin 592, Bureau of Mines, Washington, D. C., 1961.and Hultgren, R., Orr, R L., Anderson, P. D., and Kelly, K. K., Selected Values of Thermodynamic Properties of Metals and Alloys, John Wiley & Sons, New York, (1963).
©2001 CRC Press LLC
Shackelford & Alexander
375
7.01 Thermal Page 376 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 87. SPECIFIC
HEAT OF THE ELEMENTS AT 25 ˚C (SHEET 4 OF 4) Cp
Element
(cal • g-l • K–1)
Tin (β) Titanium Tungsten Uranium
0.0530 0.125 0.0317 0.0276
Vanadium Xenon Ytterbium Yttrium
0.116 0.0378 0.0346 0.068
Zinc Zirconium
0.0928 0.0671
Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-144., Kelly, K. K., Bulletin 592, Bureau of Mines, Washington, D. C., 1961.and Hultgren, R., Orr, R L., Anderson, P. D., and Kelly, K. K., Selected Values of Thermodynamic Properties of Metals and Alloys, John Wiley & Sons, New York, (1963).
©2001 CRC Press LLC
376
CRC Handbook of Materials Science & Engineering
7.01 Thermal Page 377 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 88. HEAT
CAPACITY OF CERAMICS (SHEET 1 OF 2) Heat Capacity, C p (cal/mole/K)
Class
Borides
Ceramic
Chromium Diboride (CrB2)
9.61 + 10.72x10-3T cal/mole at 494-1010K
Hafnium Diboride (HfB2)
9.61 + 10.72x10-3T cal/mole at 494-1010K
Tantalum Diboride (TaB2)
0.04 cal/g˚C
Titanium Diboride (TiB2)
10.93 + 7.08x10-3T cal/mole at 420-1180 K
Zirconium Diboride (ZrB2)
Carbides
Hafnium Monocarbide (HfC)
Silicon Carbide (SiC)
Titanium MonoCarbide (TiC)
15.81T + 4.20x10-3T - 3.52x105T–2 for 429-1171K 0.05 at room temp. 15 ± 0.15 at 925˚C 16 ± 0.16 at 1525˚C 0.26 at 540˚C 0.27 at 700˚C 0.30 at 1000˚C 0.32 at 1200˚C 0.33 at 1350˚C 0.35 at 1550˚C 0.150-0.170 cal/g at 150˚C 0.170-0.187 cal/g at 300˚C 0.183-0.196 cal/g at 450˚C 0.192-0.201 cal/g at 600˚C 0.20-0.207 cal/g at 750˚C 0.209 cal/g at 900˚C 0.210 cal/g at 1000˚C 0.211 cal/g at 1100˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); SmithellsBrandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
Shackelford & Alexander
377
7.01 Thermal Page 378 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 88. HEAT
CAPACITY OF CERAMICS (SHEET 2 OF 2) Heat Capacity, C p (cal/mole/K)
Class Nitrides
Ceramic Aluminum Nitride (AlN)
Trisilicon tetranitride (Si3N4)
Oxides
Cerium Dioxide (CeO2)
Silicides
Molybdenum Disilicide (MoSi2) Tungsten Disilicide (WSi2)
0.1961 cal/g/˚C ; 0-100˚C 0.2277 cal/g/˚C ; 0-420˚C 0.2399 cal/g/˚C ; 0-598˚C 0.17 cal/g/˚C
14.24T + 5.62x10-3T 491-1140K
10-14 cal/g/˚C; 425-1000˚C 8 cal/g/˚C; 425-1450˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); SmithellsBrandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
378
CRC Handbook of Materials Science & Engineering
7.01 Thermal Page 379 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 89. SPECIFIC HEAT OF (SHEET 1 OF 4) Polymer Class
POLYMERS
Polymer Subclass
Specific heat (Btu/lb/°F)
ABS Resins; Molded, Extruded
Medium impact High impact Very high impact Low temperature impact Heat resistant
0.36—0.38 0.36—0.38 0.36—0.38 0.35—0.38 0.37—0.39
Acrylics; Cast, Molded, Extruded
Cast Resin Sheets, Rods: General purpose, type I General purpose, type II
0.35 0.35
Moldings: Grades 5, 6, 8 High impact grade
0.35 0.34
Thermoset Carbonate
Allyl diglycol carbonate
0.3
Cellulose Acetate; Molded, Extruded
ASTM Grade: H6—1 H4—1 H2—1 MH—1, MH—2 MS—1, MS—2 S2—1
Cellulose Acetate Butyrate; Molded, Extruded
ASTM Grade: H4 MH S2
Cellusose Acetate Propionate; Molded, Extruded
0.3—0.42 0.3—0.42 0.3—0.42 0.3—0.42 0.3—0.42 0.3—0.42
0.3—0.4 0.3—0.4 0.3—0.4
ASTM Grade: 1 3 6
0.3—0.4 0.3—0.4 0.3—0.4
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
379
7.01 Thermal Page 380 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 89. SPECIFIC HEAT OF (SHEET 2 OF 4) Polymer Class Chlorinated polyvinyl chloride
POLYMERS
Polymer Subclass Chlorinated polyvinyl chloride
Polycarbonate Fluorocarbons; Molded,Extruded
Epoxies; Cast, Molded, Reinforced
Nylons; Molded, Extruded
Nylons; Molded, Extruded
Specific heat (Btu/lb/°F) 0.3 0.3
Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF) Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid High strength laminate Filament wound composite
0.22 0.25 0.28 0.33
0.4-0.5 0.21 0.24
Type 6 General purpose Cast
0.4 0.4
Type 8 Type 11 Type 12
0.4 0.58 0.28
6/6 Nylon General purpose molding General purpose extrusion
0.3—0.5 0.3—0.5
6/10 Nylon General purpose
0.3—0.5
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
380
CRC Handbook of Materials Science & Engineering
7.01 Thermal Page 381 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 89. SPECIFIC HEAT OF (SHEET 3 OF 4) Polymer Class Phenolics; Molded
Phenolics: Molded
POLYMERS
Polymer Subclass Type and filler: General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber Arc resistant—mineral Rubber phenolic—woodflour or flock PVC—Acrylic Alloy PVC—acrylic sheet
Polymides
Unreinforced Unreinforced 2nd value Glass reinforced
Polyacetals
Standard Copolymer: Standard High flow
Polyesters: Thermosets
Cast polyyester Rigid Reinforced polyester moldings High strength (glass fibers) Sheet molding compounds, general purpose
Phenylene oxides (Noryl)
Standard
Polypropylene:
General purpose High impact
Polyphenylene sulfide:
Standard
Specific heat (Btu/lb/°F)
0.35—0.40 — 0.30—0.35 0.28—0.32 0.27—0.37 0.33
0.293 0.31 0.25—0.35 0.15—0.27 0.35 0.35 0.35
0.30—0.55 0.25—0.35 0.20—0.25 0.24 0.45 0.45—0.48 0.26
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
381
7.01 Thermal Page 382 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 89. SPECIFIC HEAT OF (SHEET 4 OF 4) Polymer Class
Polyethylenes; Molded, Extruded
Polystyrenes; Molded
POLYMERS
Polymer Subclass
Specific heat (Btu/lb/°F)
Type I—lower density (0.910— 0.925) Melt index 0.3—3.6 Melt index 6—26 Melt index 200
0.53—0.55 0.53—0.55 0.53—0.55
Type II—medium density (0.926—0.940) Melt index 20 Melt index l.0—1.9
0.53—0.55 0.53—0.55
Type III—higher density (0.941— 0.965) Melt index 0.2—0.9 Melt Melt index 0.l—12.0 Melt index 1.5—15
0.46—0.55 0.46—0.55 0.46—0.55
Polystyrenes General purpose Medium impact High impact Glass fiber -30% reinforced Styrene acrylonitrile (SAN)
0.30—0.35 0.30—0.35 0.30—0.35 0.256 0.33
Polyvinyl Chloride And Copolymers; Molded, Extruded
Vinylidene chloride
0.32
Silicones; Molded, Laminated
Woven glass fabric/ silicone laminate
0.246
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
382
CRC Handbook of Materials Science & Engineering
7.01 Thermal Page 383 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 90. SPECIFIC
HEAT OF FIBERGLASS REINFORCED PLASTICS Class
Material
Glass fiber content (wt%)
Glass fiber reinforced thermosets
Sheet molding compound (SMC)
15 to 30
0.30 to 0.35
Bulk molding compound(BMC) Preform/mat(compression molded) Cold press molding–polyester
15 to 35 25 to 50 20 to 30
0.30 to 0.35 0.30 to 0.33 0.30 to 0.33
Spray–up–polyester Filament wound–epoxy Rod stock–polyester Molding compound–phenolic
30 to 50 30 to 80 40 to 80 5 to 25
0.30 to 0.34 0.23 to 0.25 0.22 to 0.25 0.20 to 0.30
Nylon
6 to 60
0.30 to 0.35
Polystyrene
20 to 35
0.23 to 0.35
Glass–fiber–reinforced thermoplastics
Specific heat (Btu/lb–˚F)
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p106, (1994).
©2001 CRC Press LLC
Shackelford & Alexander
383
7.01 Thermal Page 384 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 91. THERMAL
CONDUCTIVITY OF METALS (PART 1) (SHEET 1 OF 2)
T (K)
Aluminum
Cadmium
Chromium
Copper
Gold
1 2 3 4 5
7.8 15.5 23.2 30.8 38.1
48.7 89.3 104 92.0 69.0
0.401 0.802 1.20 1.60 1.99
28.7 57.3 85.5 113 138
4.4 8.9 13.1 17.1 20.7
6 7 8 9 10
45.1 51.5 57.3 62.2 66.1
44.2 28.0 18.0 12.2 8.87
2.38 2.77 3.14 3.50 3.85
159 177 189 195 196
23.7 26.0 27.5 28.2 28.2
11 12 13 14 15
69.0 70.8 71.5 71.3 70.2
6.91 5.56 4.67 4.01 3.55
4.18 4.49 4.78 5.04 5.27
193 185 176 166 156
27.7 26.7 25.5 24.1 22.6
16 18 20 25 30
68.4 63.5 56.5 40.0 28.5
3.16 2.62 2.26 1.79 1.56
5.48 5.81 6.01 6.07 5.58
145 124 105 68 43
20.9 17.7 15.0 10.2 7.6
35 40 45 50 60
21.0 16.0 12.5 10.0 6.7
1.41 1.32 1.25 1.20 1.13
5.03 4.30 3.67 3.17 2.48
29 20.5 15.3 12.2 8.5
6.1 5.2 4.6 4.2 3.8
Values are in watt • cm-1 • K-1. Note: Values in parentheses are for liquid state These data apply only to metals of purity of at least 99.9%. The third significant figure may not be accurate. Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
384
CRC Handbook of Materials Science & Engineering
7.01 Thermal Page 385 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 91. THERMAL
CONDUCTIVITY OF METALS (PART 1) (SHEET 2 OF 2)
T (K)
Aluminum
Cadmium
Chromium
Copper
Gold
70 80 90 100
5.0 4.0 3.4 3.0
1.08 1.06 1.04 1.03
2.08 1.82 1.68 1.58
6.7 5.7 5.14 4.83
3.58 3.52 3.48 3.45
200 273 300 400
2.37 2.36 2.37 2.4
0.993 0.975 0.968 0.947
1.11 0.948 0.903 0.873
4.13 4.01 3.98 3.92
3.27 3.18 3.15 3.12
500 600 700 800
2.37 2.32 2.26 2.2
0.92 (0.42) (0.49) (0.559)
0.848 0.805 0.757 0.713
3.88 3.83 3.77 3.71
3.09 3.04 2.98 2.92
900 1000 1100 1200
2.13 (0.93) (0.96) (0.99)
0.678 0.653 0.636 0.624
3.64 3.57 3.5 3.42
2.85 2.78 2.71 2.62
1400
0.611
Values are in watt • cm-1 • K-1. Note: Values in parentheses are for liquid state These data apply only to metals of purity of at least 99.9%. The third significant figure may not be accurate. Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC Shackelford & Alexander
385
7.01 Thermal Page 386 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 92. THERMAL
CONDUCTIVITY OF METALS (PART 2) (SHEET 1 OF 2)
T (K)
Iron
Lead
Magnesium
Mercury
Molybdenum
1 2 3 4 5
0.75 1.49 2.24 2.97 3.71
27.7 42.4 34.0 22.4 13.8
1.30 2.59 3.88 5.15 6.39
0.146 0.292 0.438 0.584 0.730
6 7 8 9 10
4.42 5.13 5.80 6.45 7.05
8.2 4.9 3.2 2.3 1.78
7.60 8.75 9.83 10.8 11.7
0.876 1.02 1.17 1.31 1.45
11 12 13 14 15
7.62 8.13 8.58 8.97 9.30
1.46 1.23 1.07 0.94 0.84
12.5 13.1 13.6 14.0 14.3
1.60 1.74 1.88 2.01 2.15
16 18 20 25 30
9.56 9.88 9.97 9.36 8.14
0.77 0.66 0.59 0.507 0.477
14.4 14.3 13.9 12.0 9.5
2.28 2.53 2.77 3.25 3.55
35 40 45 50 60
6.81 5.55 4.50 3.72 2.65
0.462 0.451 0.442 0.435 0.424
7.4 5.7 4.57 3.75 2.74
3.62 3.51 3.26 3.00 2.60
70 80
2.04 1.68
0.415 0.407
2.23 1.95
2.30 2.09
Values are in watt • cm-1 • K-1. Note: Values in parentheses are for liquid state These data apply only to metals of purity of at least 99.9%. The third significant figure may not be accurate.
©2001 CRC Press LLC
386
CRC Handbook of Materials Science & Engineering
7.01 Thermal Page 387 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 92. THERMAL
CONDUCTIVITY OF METALS (PART 2) (SHEET 2 OF 2)
T (K)
Iron
Lead
Magnesium
90 100
1.46 1.32
0.401 0.396
1.78 1.69
200 273 300 400
0.94 0.835 0.803 0.694
0.366 0.355 0.352 0.338
1.59 1.57 1.56 1.53
(0.078) (0.084) (0.098)
1.43 1.39 1.38 1.34
500 600 700 800
0.613 0.547 0.487 0.433
0.325 0.312 (0.174) (0.19)
1.51 1.49 1.47 1.46
(0.109) (0.12) (0.127) (0.13)
1.3 1.26 1.22 1.18
900 1000 1100 1200
0.38 0.326 0.297 0.282
(0.203) (0.215)
1.45 (0.84) (0.91) (0.98)
1400 1600 1800 2000
0.309 0.327
2200 2600
Mercury
Molybdenum 1.92 1.79
1.15 1.12 1.08 1.05 0.996 0.946 0.907 0.88 0.858 0.825
Values are in watt • cm-1 • K-1. Note: Values in parentheses are for liquid state These data apply only to metals of purity of at least 99.9%. The third significant figure may not be accurate.
©2001 CRC Press LLC
Shackelford & Alexander
387
7.01 Thermal Page 388 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 93. THERMAL
CONDUCTIVITY OF METALS (PART 3) (SHEET 1 OF 2)
T (K)
Nickel
Niobium
Platinum
Silver
Tantalum
1 2 3 4 5
0.64 1.27 1.91 2.54 3.16
0.251 0.501 0.749 0.993 1.23
2.31 4.60 6.79 8.8 10.5
39.4 78.3 115 147 172
0.115 0.230 0.345 0.459 0.571
6 7 8 9 10
3.77 4.36 4.94 5.49 6.00
1.46 1.67 1.86 2.04 2.18
11.8 12.6 12.9 12.8 12.3
187 193 190 181 168
0.681 0.788 0.891 0.989 1.08
11 12 13 14 15
6.48 6.91 7.30 7.64 7.92
2.30 2.39 2.46 2.49 2.50
11.7 10.9 10.1 9.3 8.4
154 139 124 109 96
1.16 1.24 1.30 1.36 1.40
16 18 20 25 30
8.15 8.45 8.56 8.15 6.95
2.49 2.42 2.29 1.87 1.45
7.6 6.1 4.9 3.15 2.28
85 66 51 29.5 19.3
1.44 1.47 1.47 1.36 1.16
35 40 45 50 60
5.62 4.63 3.91 3.36 2.63
1.16 0.97 0.84 0.76 0.66
1.80 1.51 1.32 1.18 1.01
13.7 10.5 8.4 7.0 5.5
0.99 0.87 0.78 0.72 0.651
Values are in watt • cm-1 • K-1. Note: Values in parentheses are for liquid state These data apply only to metals of purity of at least 99.9%. The third significant figure may not be accurate.
©2001 CRC Press LLC
388
CRC Handbook of Materials Science & Engineering
7.01 Thermal Page 389 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 93. THERMAL
CONDUCTIVITY OF METALS (PART 3) (SHEET 2 OF 2)
T (K)
Nickel
Niobium
Platinum
Silver
Tantalum
70 80 90 100
2.21 1.93 1.72 1.58
0.61 0.58 0.563 0.552
0.90 0.84 0.81 0.79
4.97 4.71 4.60 4.50
0.616 0.603 0.596 0.592
200 273 300 400
1.06 0.94 0.905 0.801
0.526 0.533 0.537 0.552
0.748 0.734 0.73 0.722
4.3 4.28 4.27 4.2
0.575 0.574 0.575 0.578
500 600 700 800
0.721 0.655 0.653 0.674
0.567 0.582 0.598 0.613
0.719 0.72 0.723 0.729
4.13 4.05 3.97 3.89
0.582 0.586 0.59 0.594
900 1000 1100 1200
0.696 0.718 0.739 0.761
0.629 0.644 0.659 0.675
0.737 0.748 0.76 0.775
3.82 3.74 3.66 3.58
0.598 0.602 0.606 0.610
1400 1600 1800 2000
0.804
0.705 0.735 0.764 0.791
0.807 0.842 0.877 0.913
2200 2600 3000
0.815
0.618 0.626 0.634 0.640 0.647 0.658 0.665
Values are in watt • cm-1 • K-1. Note: Values in parentheses are for liquid state These data apply only to metals of purity of at least 99.9%. The third significant figure may not be accurate.
©2001 CRC Press LLC
Shackelford & Alexander
389
7.01 Thermal Page 390 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 94. THERMAL
CONDUCTIVITY OF METALS (PART 4) (SHEET 1 OF 2)
T (K)
Tin
Titanium
Tungsten
Zinc
Zirconium
1 2 3 4 5
297 181 117
0.0144 0.0288 0.0432 0.0576 0.0719
14.4 28.7 42.6 55.6 67.1
19.0 37.9 55.5 69.7 77.8
0.111 0.223 0.333 0.442 0.549
6 7 8 9 10
76 52 36 26 19.3
0.0863 0.101 0.115 0.129 0.144
76.2 82.4 85.3 85.1 82.4
78.0 71.7 61.8 51.9 43.2
0.652 0.748 0.837 0.916 0.984
11 12 13 14 15
14.8 11.6 9.3 7.6 6.3
0.158 0.172 0.186 0.200 0.214
77.9 72.4 66.4 60.4 54.8
36.4 30.8 26.1 22.4 19.4
1.04 1.08 1.11 1.13 1.13
16 18 20 25 30
5.3 4.0 3.2 2.22 1.76
0.227 0.254 0.279 0.337 0.382
49.3 40.0 32.6 20.4 13.1
16.9 13.3 10.7 6.9 4.9
1.12 1.08 1.01 0.85 0.74
35 40 45 50 60
1.50 1.35 1.23 1.15 1.04
0.411 0.422 0.416 0.401 0.377
8.9 6.5 5.07 4.17 3.18
3.72 2.97 2.48 2.13 1.71
0.65 0.58 0.535 0.497 0.442
Values are in watt • cm-1 • K-1. Note: Values in parentheses are for liquid state These data apply only to metals of purity of at least 99.9%. The third significant figure may not be accurate.
©2001 CRC Press LLC
390
CRC Handbook of Materials Science & Engineering
7.01 Thermal Page 391 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 94. THERMAL
CONDUCTIVITY OF METALS (PART 4) (SHEET 2 OF 2)
T (K)
Tin
Titanium
Tungsten
Zinc
Zirconium
70 80 90 100
0.96 0.91 0.88 0.85
0.356 0.339 0.324 0.312
2.76 2.56 2.44 2.35
1.48 1.38 1.34 1.32
0.403 0.373 0.350 0.332
200 273 300 400
0.733 0.682 0.666 0.622
0.245 0.224 0.219 0.204
1.97 1.82 1.78 1.62
1.26 1.22 1.21 1.16
0.252 0.232 0.227 0.216
500 600 700 800
0.596 (0.323) (0.343) (0.364)
0.197 0.194 0.194 0.197
1.49 1.39 1.33 1.28
1.11 1.05 (0.499) (0.557)
0.210 0.207 0.209 0.216
900 1000 1100 1200
(0.384) (0.405) (0.425) (0.446)
0.202 0.207 0.213 0.220
1.24 1.21 1.18 1.15
(0.615) (0.673) (0.73)
0.226 0.237 0.248 0.257
1400 1600 1800 2000
(0.487)
0.236 0.253 0.271
1.11 1.07 1.03 1.00
2200 2600 3000
0.275 0.290 0.302 0.313
0.98 0.94 0.915
Values are in watt • cm-1 • K-1. Note: Values in parentheses are for liquid state These data apply only to metals of purity of at least 99.9%. The third significant figure may not be accurate.
©2001 CRC Press LLC
Shackelford & Alexander
391
7.01 Thermal Page 392 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 95. THERMAL
CONDUCTIVITY OF ALLOY CAST IRONS Thermal Conductivity W/(m • K)
Description
Description
Abrasion–Resistant White Irons
Low–C white iron Martensitic nickel–chromium iron
22
Corrosion–Resistant Irons
High–nickel gray iron High–nickel ductile iron
38 to 40 13.4
Heat–Resistant Gray Irons
Medium–silicon iron High–chromium iron High–nickel iron Nickel–chromium–silicon iron
37 20 37 to 40 30
Heat–Resistant Ductile Iron
High–nickel ductile (20 Ni)
13
30
Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p172, (1984).
©2001 CRC Press LLC
392
CRC Handbook of Materials Science & Engineering
7.01 Thermal Page 393 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 96. THERMAL
CONDUCTIVITY OF IRON AND IRON ALLOYS
Metal or alloy
Thermal Conductivity near room temperature (cal / cm2 • cm • s • °C)
Pure iron Cast iron (3.16C, 1.54Si, 0.57Mn) Carbon steel(0.23C, 0.64Mn) Carbon steel(1.22 C, 0.35 Mn)
0.178 0.112 0.124 0.108
Alloy steel (0.34 C, 0.55 Mn, 0.78 Cr, 3.53 Ni, 0.39 Mo, 0.05 Cu) Type 410 Type 304 T1 tool steel
0.079 0.057 0.036 0.058
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p156, (1993).
©2001 CRC Press LLC
Shackelford & Alexander
393
7.01 Thermal Page 394 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 97. THERMAL
CONDUCTIVITY OF ALUMINUM
AND ALUMINUM ALLOYS (SHEET 1 OF 2)
Metal or alloy
Designation
Thermal Conductivity near room temperature (cal / cm2 • cm • s • °C)
Wrought alloys
EC(O) 1060(O) 1100 2011(T3)
0.57 0.56 0.53 0.34
2014(O) 2024(O) 2218(T72) 3003(O)
0.46 0.45 0.37 0.46
4032(O) 5005 5050(O) 5052(O)
0.37 0.48 0.46 0.33
5056(O) 5083 5086 5154
0.28 0.28 0.30 0.30
5357 5456 6061(O) 6063(O)
0.40 0.28 0.41 0.52
6101(T6) 6151(O) 7075(T6) 7079(T6)
0.52 0.49 0.29 0.29
7178
0.29
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p156, (1993).
©2001 CRC Press LLC
394
CRC Handbook of Materials Science & Engineering
7.01 Thermal Page 395 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 97. THERMAL
CONDUCTIVITY OF ALUMINUM
AND ALUMINUM ALLOYS (SHEET 2 OF 2)
Metal or alloy
Designation
Thermal Conductivity near room temperature (cal / cm2 • cm • s • °C)
Casting alloys
A13 43(F) 108(F) A108
0.29 0.34 0.29 0.34
A132(T551) D132(T5) F132 138
0.28 0.25 0.25 0.24
142 (T21, sand) 195 (T4, T62) B195 (T4, T6) 214
0.40 0.33 0.31 0.33
200(T4) 319 355(T51, sand) 356(T51, sand)
0.21 0.26 0.40 0.40
360 380 750 40E
0.35 0.23 0.44 0.33
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p156, (1993).
©2001 CRC Press LLC Shackelford & Alexander
395
7.01 Thermal Page 396 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 98. THERMAL
CONDUCTIVITY OF COPPER AND COPPER ALLOYS (SHEET 1 OF 3) Thermal Conductivity near room temperature (cal / cm2 • cm • s • °C)
Metal or alloy
Designation
Wrought coppers
Pure Copper Electrolytic tough pitch copper (ETP) Deoxidized copper high residual phosphorus (DHP)
0.941 0.934
Free–machining copper (0.5% Te) Free–machining copper (1% Pb)
0.88 0.92
Gilding, 95% Commercial bronze, 90% Jewelry bronze, 87.5% Red brass, 85%
0.56 0.45 0.41 0.38
Low brass, 80% Cartridge brass, 70% Yellow brass Muntz metal
0.33 0.29 0.28 0.29
Leaded commercial bronze Low–leaded brass (tube) Medium leaded brass High–leaded brass (tube)
0.43 0.28 0.28 0.28
High–leaded brass Extra–high–leaded brass Leaded Muntz metal Forging brass
0.28 0.28 0.29 0.28
Architectual bronze Inhibited admiralty Naval brass
0.29 0.26 0.28
Wrought alloys
0.81
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p156, (1993).
©2001 CRC Press LLC
396
CRC Handbook of Materials Science & Engineering
7.01 Thermal Page 397 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 98. THERMAL
CONDUCTIVITY OF COPPER AND COPPER ALLOYS (SHEET 2 OF 3)
Metal or alloy
Designation
Thermal Conductivity near room temperature (cal / cm2 • cm • s • °C)
Wrought alloys (Con’t)
Leaded naval brass
0.28
Manganese bronze Phosphor bronze,5% Pbosphor bronze, 8%
0.26 0.17 0.15
Phosphor bronze, 10% Phosphor bronze, 1.25% Free cutting phosphor bronze Cupro-nickel,30%
0.12 0.49 0.18 0.07
Cupro-nickel,10% Nickel silver, 65–18 Nickel silver, 55–18 Nickel silver, 65–12
0.095 0.08 0.07 0.10
High–silicon bronze Low–silicon bronze Aluminum bronze, 5%Al Aluminum bronze
0.09 0.14 0.198 0.18
Aluminum–silicon bronze Aluminum bronze Aluminum bronze Beryllium copper
0.108 0.144 0.091 0.20
Chromium copper (1% Cr) 89cu–11Sn 88Cu–6Sn–1.5Pb–4.5Zn 87Cu–8Sn–1Pb–4Zn
0.4 0.121 18% of Cu 12% of Cu
87Cu–10Sn–1Pb–2Zn 80Cu–10Sn–10Pb Manganese bronze, 110 ksi
12% of Cu 12% of Cu 9.05% of Cu
Casting alloys
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p156, (1993).
©2001 CRC Press LLC
Shackelford & Alexander
397
7.01 Thermal Page 398 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 98. THERMAL
CONDUCTIVITY OF COPPER AND COPPER ALLOYS (SHEET 3 OF 3)
Metal or alloy
Designation
Thermal Conductivity near room temperature (cal / cm2 • cm • s • °C)
Casting alloys (Con’t)
Aluminum bronze, Alloy 9A
15% of Cu
Aluminum bronze, Alloy 9B Aluminum bronze, Alloy 9C Aluminum bronze, Alloy 9D
16% of Cu 18% of Cu 12% of Cu
Propeller bronze Nickel silver, 12% Ni Nickel silver, 16% Ni Nickel silver, 20% Ni
11% of Cu 7% of Cu 7% of Cu 6% of Cu
Nickel silver. 25% Ni Silicon bronze
6.5% of Cu 7% of Cu
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p156, (1993).
©2001 CRC Press LLC
398
CRC Handbook of Materials Science & Engineering
7.01 Thermal Page 399 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 99. THERMAL
CONDUCTIVITY OF MAGNESIUM AND MAGNESIUM ALLOYS Metal or alloy
Designation
Thermal Conductivity near room temperature (cal / cm2 • cm • s • °C)
Pure
Magnesium (99.8%)
0.367
Casting alloys
AM100A AZ63A AZ81A(T4)
0.17 0.18 0.12
AZ91A, B, C AZ92A HK31A (T6, sand cast)
0.17 0.17 0.22
HZ32A ZH42 ZH62A ZK51A
0.26 0.27 0.26 0.26
ZE41A(T5) EZ33A EK30A EK41A(T5)
0.27 0.24 0.26 0.24
M1A AZ31B AZ61A AZ80A
0.33 0.23 0.19 0.18
ZK60A,B(F) ZE10A(O) HM21A(O) HM31A
0.28 0.33 0.33 0.25
Wrought alloys
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p156, (1993).
©2001 CRC Press LLC
Shackelford & Alexander
399
7.01 Thermal Page 400 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 100. THERMAL
CONDUCTIVITY OF NICKEL AND NICKEL ALLOYS
Metal or alloy
Thermal Conductivity near room temperature (cal / cm2 • cm • s • °C)
Nickel (99.95% Ni + Co) “A” nickel “D” nickel Monel
0.22 0.145 0.115 0.062
“K” Monel Inconel Hastelloy B Hastelloy C
0.045 0.036 0.027 0.03
Hastelloy D Illium G Illium R 60Ni–24Fe–16Cr
0.05 0.029 0.031 0.032
35Ni–45Fe–20Cr Constantan
0.031 0.051
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p156, (1993).
©2001 CRC Press LLC
400
CRC Handbook of Materials Science & Engineering
7.01 Thermal Page 401 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 101. THERMAL
CONDUCTIVITY OF LEAD AND LEAD ALLOYS
Metal or alloy
Thermal Conductivity near room temperature (cal / cm2 • cm • s • °C)
Corroding lead (99.73 + % Pb) 5–95 solder 20–80 solder 50-50 solder
0.083 0.085 0.089 0.111
1% antimonial lead Hard lead (96Pb-4Sb) Hard lead (94Pb–6Sb) 8% antimonial lead
0.080 0.073 0.069 0.065
9% antimonial lead Lead-base babbitt (SAE 14) Lead-base babbitt (alloy 8)
0.064 0.057 0.058
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p156, (1993).
©2001 CRC Press LLC
Shackelford & Alexander
401
7.01 Thermal Page 402 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 102. THERMAL
CONDUCTIVITY OF TIN, TITANIUM , ZINC AND THEIR ALLOYS
Metal or alloy
Designation
Thermal Conductivity near room temperature (cal / cm2 • cm • s • °C)
Tin and Tin Alloys
Pure tin Soft solder (63Sn–37Pb) Tin foil (92Sn–8Zn)
0.15 0.12 0.14
Titanium and Titanium Alloys
Titanium(99.0%) Ti–5Al–2.5Sn Ti–2Fe-2Cr–2Mo Ti–8Mn
0.043 0.019 0.028 0.026
Zinc and Zinc Alloys
Pure zinc AG40A alloy AC41A alloy Commercial rolled zinc 0.08 Pb
0.27 0.27 0.26 0.257
Commercial rolled zinc 0.06 Pb, 0.06 Cd Rolled zinc alloy (1 CU, 0.010 Mg) Zn-Cu–Ti alloy (0.8 Cu, 0.15 Ti)
0.257 0.25 0.25
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p156, (1993).
©2001 CRC Press LLC
402
CRC Handbook of Materials Science & Engineering
7.01 Thermal Page 403 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 103. THERMAL
CONDUCTIVITY OF PURE METALS
Metal or alloy
Thermal Conductivity near room temperature (cal / cm2 • cm • s • °C)
Beryllium Cadmium Chromium Cobalt
0.35 0.22 0.16 0.165
Germanium Gold Indium Iridium
0.14 0.71 0.057 0.14
Lithium Molybdenum Niobium Palladium
0.17 0.34 0.13 0.168
Platinum Plutonium Rhenium Rhodium
0.165 0.020 0.17 0.21
Silicon Silver Sodium Tantalum
0.20 1.0 0.32 0.130
Thallium Thorium Tungsten Uranium
0.093 0.090 0.397 0.071
Vanadium Yttrium
0.074 0.035
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p156, (1993).
©2001 CRC Press LLC
Shackelford & Alexander
403
7.01 Thermal Page 404 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 104. THERMAL
CONDUCTIVITY OF CERAMICS (SHEET 1 OF 12)
Class
Ceramic
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
Borides
Chromium Diboride (CrB2) Hafnium Diboride (HfB2)
0.049-0.076 at room temp. 0.015 at room temp.
Tantalum Diboride (TaB2)
0.026 at room temp. 0.033 at 200 oC.
Titanium Diboride (TiB2)
0.058-0.062 at room temp. 0.063 at 200 oC
Carbides
Zirconium Diboride (ZrB2)
0.055-0.058 at room temp.
Boron Carbide (B4C)
0.055-0.060 at 200 oC 0.065-0.069 at room temp. 0.198 at 425 oC
Hafnium Monocarbide (HfC)
0.053 at room temp. 0.15 + 1.20x10 T watts cm-1 K-1 from 1000-2000K
Silicon Carbide (SiC) (with 1 wt% Be addictive) (with 1 wt% B addictive) (with 1 wt% Al addictive)
0.621 0.406 0.143
(with 2 wt% BN addictive) (with 1.6 wt% BeO addictive) (with 3.2 wt% BeO addictive)
0.263 0.645 at room temp. 0.645 at room temp. 0.098-0.10 at 20oC
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
404
CRC Handbook of Materials Science & Engineering
7.01 Thermal Page 405 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 104. THERMAL
CONDUCTIVITY OF CERAMICS (SHEET 2 OF 12)
Class
Ceramic
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
(cubic, CVD)
0.289 at 127oC 0.049-0.080 at 600oC 0.061 at 800oC 0.051 at 1000oC 0.0059 at 1250oC 0.0827 at 1327oC 0.0032 at 1530oC
Tantalum Monocarbide (TaC)
0.053 at room temp.
Titanium Monocarbide (TiC)
0.041-0.074 at room temp. 0.0135 at 1000 oC
Trichromium Dicarbide (Cr3C2)
0.454
Tungsten Monocarbide (WC) (6% Co, 1-3µm grain size) (12% Co, 1-3µm grain size) (24% Co, 1-3µm grain size)
0.201 at 20 oC 0.239 0.251 0.239
(6% Co, 2-4µm grain size) (6% Co, 3-6µm grain size)
0.251 0.256
Zirconium Monocarbide (ZrC)
0.049 at room temp. 0.098 at 50oC 0.069 at 150oC 0.065 at 188oC
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
Shackelford & Alexander
405
7.01 Thermal Page 406 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 104. THERMAL
CONDUCTIVITY OF CERAMICS (SHEET 3 OF 12)
Class
Ceramic
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
0.061 at 288oC 0.080 at 600oC 0.083 at 800oC 0.086 at 1000oC 0.089 at 1200oC 0.092 at 1400oC 0.096 at 1600oC 0.099 at 1800oC 0.103 at 2000oC 0.105 at 2200oC Nitrides
Aluminum Nitride (AlN)
0.072 at 25oC 0.060 at 200oC 0.053 at 400oC 0.048 at 600oC 0.042 at 800oC
Boron Nitride (BN) parallel to c axis
0.0687 at 300oC 0.0646 at 700oC 0.0637 at 1000oC
parallel to a axis
0.0362 at 300oC 0.0318 at 700oC 0.0295 at 1000oC
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
406
CRC Handbook of Materials Science & Engineering
7.01 Thermal Page 407 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 104. THERMAL
CONDUCTIVITY OF CERAMICS (SHEET 4 OF 12)
Ceramic
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
Titanium Mononitride (TiN)
0.069 at 25 oC
Class
0.057 at 127 oC 0.040 at 200 oC 0.027 at 650 oC 0.020 at 1000 oC 0.162 at 1500 oC 0.136 at 2300 oC Trisilicon tetranitride (Si3N4) (pressureless sintered)
0.072 at room temp. 0.022-0.072 at 127 oC 0.041 at 200-750 oC 0.036-0.042 at 500 oC
(pressureless sintered)
0.038 at 1000 oC 0.033-0.034 at 1200 oC
Zirconium Mononitride (ZrN)
0.040 at 200 oC 0.025 at 425 oC 0.018 at 650 oC 0.016 at 875 oC 0.015 at 1100 oC
Oxides
Aluminum Oxide (Al2O3)
0.06 at room temp. 0.04-0.069 at 100oC 0.03-0.064 at 200oC 0.037 at 315oC
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
Shackelford & Alexander
407
7.01 Thermal Page 408 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 104. THERMAL
CONDUCTIVITY OF CERAMICS (SHEET 5 OF 12)
Class
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
Ceramic
0.02-0.031 at 400oC 0.035 at 500oC 0.021-0.022 at 600oC 0.015-0.017 at 800oC 0.014-0.016 at 1000oC 0.013-0.015 at 1200oC 0.013 at 1400oC 0.014 at 1600oC 0.017 at 1800oC Aluminum Oxide (Al2O3) (single crystal)
0.103 at 20oC 0.047 at 300oC 0.029 at 800oC
Beryllium Oxide (BeO)
0.038-0.47 at 20oC 0.032-0.34 at 100oC 0.14-0.16 at 400oC 0.089-0.1137 at 600oC 0.060-0.093 at 800oC 0.043 at 1100oC 0.041-0.054 at 1200oC 0.038 at 1300oC
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
408
CRC Handbook of Materials Science & Engineering
7.01 Thermal Page 409 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 104. THERMAL
CONDUCTIVITY OF CERAMICS (SHEET 6 OF 12)
Class
Ceramic
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
0.036 at 1400oC 0.034 at 1500oC 0.033-0.039 at 1600oC 0.033 at 1700oC 0.036 at 1800oC 0.036 at 1900oC 0.036 at 2000oC Calcium Oxide (CaO)
0.037 at 100oC 0.027 at 200oC 0.022 at 400oC 0.020 at 600oC 0.019 at 800oC 0.0186-0.019 at 1000oC
Cerium Dioxide (CeO2)
0.0229 at 400K 0.00287 at 1400K
Dichromium Trioxide (Cr2O3)
0.0239-0.0788
Hafnium Dioxide (HfO2)
0.0273 at 25-425oC
Magnesium Oxide (MgO)
0.097 at room temp. 0.078-0.082 at 100oC 0.064-0.065 at 200oC 0.038-0.045 at 400oC
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
Shackelford & Alexander
409
7.01 Thermal Page 410 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 104. THERMAL
CONDUCTIVITY OF CERAMICS (SHEET 7 OF 12)
Class
Ceramic
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
0.0198-0.026 at 800oC 0.016-0.020 at 1000oC 0.0139-0.0148 at 1200oC 0.012-0.014 at 1400oC 0.0108-0.016 at 1600oC 0.0096-0.0191 at 1800oC Nickel monoxide (NiO) (0% porosity)
0.029 at 100oC
(0% porosity)
0.024 at 200oC
(0% porosity)
0.017 at 400oC
(0% porosity)
0.012 at 800oC
(0% porosity)
0.011 at 1000oC
Silicon Dioxide (SiO2)
0.0025 at 200oC 0.003 at 400oC 0.004 at 800oC 0.005 at 1200oC 0.006 at 1600oC
Thorium Dioxide (ThO2) (0% porosity) (0% porosity)
0.024 at room temp.
(0% porosity)
0.019 at 200oC
(0% porosity)
0.014 at 400oC
(0% porosity)
0.010 at 600oC
(0% porosity)
0.008 at 800oC
0.020 at 100oC
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
410
CRC Handbook of Materials Science & Engineering
7.01 Thermal Page 411 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 104. THERMAL
CONDUCTIVITY OF CERAMICS (SHEET 8 OF 12)
Class
Ceramic
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
(0% porosity)
0.007-0.0074 at 1000oC
(0% porosity)
0.006-0.0076 at 1200oC
(0% porosity)
0.006 at 1400oC
Titanium Oxide (TiO2) (0% porosity)
0.016 at 100oC
(0% porosity)
0.012 at 200oC
(0% porosity)
0.009 at 400oC
(0% porosity)
0.008 at 600oC
(0% porosity)
0.008 at 800oC
(0% porosity)
0.008 at 1000oC
(0% porosity)
0.008 at 1200oC
Uranium Dioxide (UO2) (0% porosity)
0.025 at 100oC
(0% porosity)
0.020 at 200oC
(0% porosity)
0.015 at 400oC
(0% porosity)
0.010 at 600oC
(0% porosity)
0.009 at 800oC
(0% porosity)
0.008 at 1000oC 0.018 at 100oC 0.012 at 400oC 0.008 at 600oC
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
Shackelford & Alexander
411
7.01 Thermal Page 412 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 104. THERMAL
CONDUCTIVITY OF CERAMICS (SHEET 9 OF 12)
Class
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
Ceramic
0.008 at 700oC 0.006 at 1000oC 0.006 at 1200oC Zirconium Oxide (ZrO2) (stabilized, 0% porosity)
0.005 at 100oC
(stabilized, 0% porosity)
0.005 at 200oC
(stabilized, 0% porosity)
0.005 at 400oC
(stabilized, 0% porosity)
0.0055 at 800oC
(stabilized, 0% porosity)
0.006 at 1200oC
(stabilized, 0% porosity)
0.0065 at 1400oC
(stabilized)
0.004 at 100oC
(stabilized)
0.0044 at 500oC
(stabilized)
0.0048-0.0055 at 1000oC
(stabilized)
0.0049-0.0050 at 1200oC
(MgO stabilized) (MgO stabilized)
0.0076 at room temp.
(Y2O3 stabilized)
0.0055 at room temp.
(Y2O3 stabilized)
0.0053 at 800oC
(plasma sprayed) (plasma sprayed)
0.0019-0.0031 at room temp.
(plasma sprayed and coated with Cr2O3)
0.0033 at room temp.
(plasma sprayed and coated with Cr2O3)
0.0033 at 800oC
0.0057 at 800oC
0.0019-0.0022 at 800oC
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
412
CRC Handbook of Materials Science & Engineering
7.01 Thermal Page 413 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 104. THERMAL
CONDUCTIVITY OF CERAMICS (SHEET 10 OF 12)
Ceramic
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
(5-10% CaO stabilized)
0.0045 at 400oC
(5-10% CaO stabilized)
0.0049 at 800oC
(5-10% CaO stabilized)
0.0057 at 1200oC
Class
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3)
0.0077 at 20oC
ρ=2.3g/cm3)
(
0.0062 at 300oC
(ρ=2.3g/cm3)
0.0055 at 500oC
(ρ=2.3g/cm3)
0.0055 at 800oC
(ρ=2.1g/cm3)
0.0043 at 20oC
(ρ=2.1g/cm3)
0.0041 at 300oC
ρ=2.1g/cm3)
0.0040 at 500oC
ρ=2.1g/cm3)
0.0038 at 800oC
( (
Mullite (3Al2O3 2SiO2) (0% porosity)
0.0145 at 100oC
(0% porosity)
0.013 at 200oC
(0% porosity)
0.011 at 400oC
(0% porosity)
0.010 at 600oC
(0% porosity)
0.0095 at 800oC
(0% porosity)
0.009 at 1000oC
(0% porosity)
0.009 at 1200oC
(0% porosity)
0.009 at 1400oC
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
Shackelford & Alexander
413
7.01 Thermal Page 414 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 104. THERMAL
CONDUCTIVITY OF CERAMICS (SHEET 11 OF 12)
Class
Ceramic
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
Sillimanite (Al2O3 SiO2) (0% porosity)
0.0042 at 100oC
(0% porosity)
0.004 at 400oC
(0% porosity)
0.0035 at 800oC
(0% porosity)
0.0035 at 1200oC
(0% porosity)
0.003 at 1500oC
Spinel (Al2O3 MgO) (0% porosity)
0.035 at 100oC
(0% porosity)
0.031 at 200oC
(0% porosity)
0.024 at 400oC
(0% porosity)
0.019 at 600oC
(0% porosity)
0.015 at 800oC
(0% porosity)
0.013-0.0138 at 1000oC
(0% porosity)
0.013 at 1200oC
Zircon (SiO2 ZrO2) (0% porosity)
0.0145 at 100oC
(0% porosity)
0.0135 at 200oC
(0% porosity)
0.012 at 400oC
(0% porosity)
0.010 at 800oC
(0% porosity)
0.0095 at 1200oC
(0% porosity)
0.0095 at 1400oC
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
414
CRC Handbook of Materials Science & Engineering
7.01 Thermal Page 415 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 104. THERMAL
CONDUCTIVITY OF CERAMICS (SHEET 12 OF 12)
Class
Ceramic
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
Silicides
Molybdenum Disilicide (MoSi2)
0.129 at 150oC 0.074 at 425oC 0.053 at 540oC 0.057 at 650oC 0.046 at 875oC 0.041 at 1100oC
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
Shackelford & Alexander
415
7.02 Thermal L Page 416 Wednesday, December 31, 1969 17:00
Table 105. THERMAL
CONDUCTIVITY OF GLASSES (SHEET 1 OF 5)
Glass SiO2 glass
Description
Thermal Conductivity
Units
Temperature Range of Validity
0.00329 0.59 0.67 0.88
cal/cm s K W/m K W/m K W/m K
20˚C 80˚C 100˚C 150˚C
1.10 1.28 1.32 1.36
W/m K W/m K W/m K W/m K
200˚C 250˚C 273.1˚C 300˚C
1.43 1.50 1.62
W/m K W/m K W/m K
350˚C 400˚C 500˚C
1.72 1.80
W/m K W/m K
600˚C 700˚C
Source: compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko-Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
7.02 Thermal L Page 417 Wednesday, December 31, 1969 17:00
Table 105. THERMAL
CONDUCTIVITY OF GLASSES (SHEET 2 OF 5) Thermal Conductivity
Units
Temperature Range of Validity
(22% mol Na2O) (22% mol Na2O) (22% mol Na2O) (22% mol Na2O) (22% mol Na2O)
0.70
kcal/m hr K
450˚C
0.90 1.20 1.55 2.25
kcal/m hr K kcal/m hr K kcal/m hr K kcal/m hr K
850˚C 1050˚C 1250˚C 1500˚C
(25% mol Na2O)
0.15 0.25 0.40 0.50
W/m K W/m K W/m K W/m K
35 K 60 K 80 K 100 K
0.60 0.65 0.80 0.85
W/m K W/m K W/m K W/m K
140 K 150 K 190 K 240 K
Glass
Description
SiO2-Na2O glass
(25% mol Na2O) (25% mol Na2O) (25% mol Na2O) (25% mol Na2O) (25% mol Na2O) (25% mol Na2O) (25% mol Na2O)
Source: compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko-Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
7.02 Thermal L Page 418 Wednesday, December 31, 1969 17:00
Table 105. THERMAL
CONDUCTIVITY OF GLASSES (SHEET 3 OF 5) Thermal Conductivity
Units
Temperature Range of Validity
0.90 0.95
W/m K W/m K
280 K 300 K
(27% mol Na2O) (27% mol Na2O) (27% mol Na2O)
0.68
kcal/m hr K
450˚C
0.85 1.10
kcal/m hr K kcal/m hr K
850˚C 1050˚C
(27% mol Na2O) (27% mol Na2O)
1.45
kcal/m hr K
1250˚C
1.80
kcal/m hr K
1500˚C
(34.05% mol Na2O) (34.05% mol Na2O) (34.05% mol Na2O)
0.5
kcal/m hr K
450˚C
0.75 0.75
kcal/m hr K kcal/m hr K
850˚C 1050˚C
1.20
kcal/m hr K
1250˚C
1.5
kcal/m hr K
1500˚C
Glass
Description
SiO2-Na2O glass (Con’t)
(25% mol Na2O) (25% mol Na2O)
(34.05% mol Na2O) (34.05% mol Na2O)
Source: compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko-Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
7.02 Thermal L Page 419 Wednesday, December 31, 1969 17:00
Table 105. THERMAL
CONDUCTIVITY OF GLASSES (SHEET 4 OF 5)
Glass
Description
Thermal Conductivity
Units
Temperature Range of Validity
SiO2-PbO glass
(51.9% mol PbO) (51.9% mol PbO) (51.9% mol PbO) (51.9% mol PbO)
0.00089 0.00100 0.00111 0.00123
cal/cm s K cal/cm s K cal/cm s K cal/cm s K
-150˚C -100˚C -50˚C 0˚C
(51.9% mol PbO) (51.9% mol PbO) (49.3% mol PbO) (66.2% mol PbO)
0.00134 0.00146 0.00130 0.00112
cal/cm s K cal/cm s K cal/cm s K cal/cm s K
50˚C 100˚C 40˚C 40˚C
0.5 0.75 1.5
mW/cm K mW/cm K mW/cm K
2K 5K 20K
1.7 + 0.0054 (T-900) 1.5 + 0.0045 (T-900) 1.25 + 0.0037 (T-900)
W/m K W/m K W/m K
1173-1373 K 1173-1373 K 1173-1373 K
B2O3 glass
B2O3-Na2O glass
(3% mol Na2O) (7% mol Na2O) (11% mol Na2O)
Source: compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko-Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
7.02 Thermal L Page 420 Wednesday, December 31, 1969 17:00
Table 105. THERMAL
CONDUCTIVITY OF GLASSES (SHEET 5 OF 5) Thermal Conductivity
Units
Temperature Range of Validity
(31% mol Na2O)
1.15 + 0.0020 (T-900) 1.0 + 0.0012 (T-900) 0.85 + 0.00075 (T-900) 0.9 + 0.00080 (T-900)
W/m K W/m K W/m K W/m K
1173-1373 K 1173-1373 K 1173-1373 K 1173-1373 K
(27.6% mol PbO) (31.9% mol PbO) (36.7% mol PbO)
0.522±0.022 0.483±0.016 0.464±0.010
W/m K W/m K W/m K
30˚C 30˚C 30˚C
(42.1% mol PbO) (48.3% mol PbO) (55.5% mol PbO) (64.0% mol PbO)
0.433±0.018 0.406±0.020 0.381±0.015 0.351±0.011
W/m K W/m K W/m K W/m K
30˚C 30˚C 30˚C 30˚C
Glass
Description
B2O3-Na2O glass (Con’t)
(14% mol Na2O) (19% mol Na2O) (25% mol Na2O)
B2O3-PbO glass
Source: compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko-Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
7.03 Thermal Page 421 Wednesday, December 31, 1969 17:00
Thermal Properties
z
Table 106. THERMAL
CONDUCTIVITY OF CRYOGENIC INSULATION
Cryogenic
Thermal Conductivity Range
Interspace Pressure
Class *
Insulation
(mW • m–1 • K–1)
(mm Hg)
2
Multilayer
0.04—0.2
10–4
3
Opacified powder
0.26—0.7
10–4
4
Evacuated powder
1.0—2.0
10–4
5
Vacuum flask
5.0
10–6
6 7 8
Gas–filled powder Expanded foam Fiber blanket
1.7—7.0 5.0—35 35—45
760 760 760
To convert mm Hg to N • m–2 multiply by 133.32. Source: From Boltz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, 1973, 529. *
1. Liquid and vapor shields – Very low–temperature, valuable, or dangerous liquids such as helium or fluorine are often shielded by an intermediate cryogenic liquid or vapor container that must in turn be insulated by one of the methods described below. 2. Multilayer reflecting shields – Foil or aluminized plastic alternated with paper-thin glass or plastic-fiber sheets; lowest conductivity, low density, and heat storage; good stability; minimum support structure. 3. Opacified evacuated powders - Contain metallic flakes to reduce radiation; conform to irregular shapes. 4. Evacuated dielectric powders - Very fine powders of low-conductivity adsorbent; moderate vacuum requirement; minimum fire hazard in oxygen. 5. Vacuum flasks (Dewar) - Tight shield-space with highly. reflecting walls and high vacuum; minimum heat capacity; rugged; small thickness. 6. Gas-filled powders – Same powders as Class 4 but with air or inert gas; low cost; easy application; no vacuum requirement. 7. Expanded foams – Very light foamed plastic; inexpensive; minimum weight but bulky; self supporting. 8. Porous fiber blankets – Blanket material of fine fibers, usually glass; minimum cost and easy installation but not an adequate insulation for most cryogenic applications.
©2001 CRC Press LLC
Shackelford & Alexander
421
7.03 Thermal Page 422 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 107. THERMAL
CONDUCTIVITY OF CRYOGENIC SUPPORTS
Insulation Support
Mean Thermal Conductivity * (W • m–1 • K–1)
Aluminum alloy
86
“K” Monel®
17
Stainbss steel
9.3
Titanhm alloy Nylon Teflon
6.1 0.29 0.24
Source: From Boltz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, 1973, 529. *Range of Validity is 20–300 K.
©2001 CRC Press LLC
422
CRC Handbook of Materials Science & Engineering
7.03 Thermal Page 423 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 108. THERMAL
CONDUCTIVITY OF SPECIAL CONCRETES *
Description; type of aggregate
Thermal Conductivity Btu / (hr • ft • ˚F)
Frost resisting; 1% CaCl2; normal aggregates Frost-resisting porous;6% air entrainment Lightweight; with expanded shale or clay
1.0 0.85 0.25
Lightweight; with foamed slag Cinder concrete; fine and coarse Pulverized fuel ash
0.20 0.25 0.25
Lightweight refractory concrete with aluminous cement Lightweight; insulating, with perlite Lightweight; insulating, with expanded vermiculite
0.20 0.15 0.10
Source: from Bolz, R. E. and Tuve, C. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, 1973, p.645. *
A great many varieties of aggregates have been used for concrete, dependent largely on the materials available. In general, high density concretes have high strength and high thermal conductivity, although such variables as water/cement ratio, percentage of fines, and curing conditions may result in wide differences in properties with the same materials.
©2001 CRC Press LLC
Shackelford & Alexander
423
7.03 Thermal Page 424 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 109. THERMAL
CONDUCTIVITY OF SIC-WHISKER -REINFORCED CERAMICS Thermal Conductivity (W/m • K) Composite
at 22 °C
at 600 °C
Alumina Alumina with 20 vol% SiC whiskers SiC Mullite with 20 vol% SiC whiskers
36 ± 5 32 95 7.2
12 ± 3 16 50 —
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p173,(1994).
©2001 CRC Press LLC
424
CRC Handbook of Materials Science & Engineering
7.04 Thermal L Page 425 Wednesday, December 31, 1969 17:00
Table 110. THERMAL
CONDUCTIVITY OF POLYMERS (SHEET 1 OF 10)
Class ABS Resins; Molded, Extruded
Acrylics; Cast, Molded, Extruded
Thermoset Carbonate
Polymer
Thermal Conductivity (ASTM C177) Btu / (hr • ft • ˚F)
Medium impact High impact
0.08—0.18 0.12—0.16
Very high impact Low temperature impact Heat resistant
0.01—0.14 0.08—0.14 0.12—0.20
Cast Resin Sheets, Rods: General purpose, type I
0.12
General purpose, type II Moldings: Grades 5, 6, 8 High impact grade
0.12 0.12 0.12
Allyl diglycol carbonate
1.45
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
7.04 Thermal L Page 426 Wednesday, December 31, 1969 17:00
Table 110. THERMAL
CONDUCTIVITY OF POLYMERS (SHEET 2 OF 10)
Class
Polymer
Thermal Conductivity (ASTM C177) Btu / (hr • ft • ˚F)
Alkyds; Molded
Putty (encapsulating) Rope (general purpose) Granular (high speed molding) Glass reinforced (heavy duty parts)
0.35—0.60 0.35—0.60 0.35—0.60 0.20—0.30
Cellulose Acetate; Molded, Extruded
ASTM Grade: H6—1 H4—1 H2—1
0.10—0.19 0.10—0.19 0.10—0.19
MH—1, MH—2 MS—1, MS—2 S2—1
0.10—0.19 0.10—0.19 0.10—0.19
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
7.04 Thermal L Page 427 Wednesday, December 31, 1969 17:00
Table 110. THERMAL
CONDUCTIVITY OF POLYMERS (SHEET 3 OF 10)
Class Cellulose Acetate Butyrate; Molded, Extruded
Cellulose Acetate Propionate; Molded, Extruded
Polymer
Thermal Conductivity (ASTM C177) Btu / (hr • ft • ˚F)
ASTM Grade: H4 MH S2
0.10—0.19 0.10—0.19 0.10—0.19
ASTM Grade: 1 3 6
0.10—0.19 0.10—0.19 0.10—0.19
Chlorinated Polymers
Chlorinated polyether Chlorinated polyvinyl chloride
0.91 0.95
Polycarbonates
Polycarbonate Polycarbonate (40% glass fiber reinforced)
0.11 0.13
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
7.04 Thermal L Page 428 Wednesday, December 31, 1969 17:00
Table 110. THERMAL
CONDUCTIVITY OF POLYMERS (SHEET 4 OF 10)
Class
Polymer
Fluorocarbons; Molded,Extruded
Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF)
Epoxies; Cast, Molded, Reinforced
Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Molded High strength laminate
Melamines; Molded
Nylons; Molded, Extruded
Thermal Conductivity (ASTM C177) Btu / (hr • ft • ˚F) 0.145 0.14 0.12 0.14
0.1—0.3 0.1—0.5 2.35
Filler & type Cellulose electrical Glass fiber
0.17—0.20 0.28
Type 6 General purpose Glass fiber (30%) reinforced Cast
1.2—1.69 1.69—3.27 1.2—1.7
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
7.04 Thermal L Page 429 Wednesday, December 31, 1969 17:00
Table 110. THERMAL
CONDUCTIVITY OF POLYMERS (SHEET 5 OF 10)
Class
Nylons; Molded, Extruded (Con’t)
Polymer
Type 11 Type 12 6/6 Nylon General purpose molding Glass fiber reinforced General purpose extrusion 6/10 Nylon General purpose Glass fiber (30%) reinforced
Phenolics; Molded
Type and filler General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber
Thermal Conductivity (ASTM C177) Btu / (hr • ft • ˚F)
1.5 1.7
1.69—1.7 1.5— 3.3 1.7
1.5 3.5
0.097—0.3 0.1—0.16 0.097—0.170 0.2
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
7.04 Thermal L Page 430 Wednesday, December 31, 1969 17:00
Table 110. THERMAL
CONDUCTIVITY OF POLYMERS (SHEET 6 OF 10)
Class Phenolics: Molded
Polymer
Thermal Conductivity (ASTM C177) Btu / (hr • ft • ˚F)
Arc resistant—mineral Rubber phenolic—woodflour or flock Rubber phenolic—chopped fabric Rubber phenolic—asbestos
0.24—0.34 0.12 0.05 0.04
ABS–Polycarbonate Alloy
2.46 (per ft)
PVC–Acrylic Alloy
PVC–acrylic sheet PVC–acrylic injection molded
1.01 0.98
Polymides
Unreinforced Unreinforced 2nd value Glass reinforced
6.78 3.8 3.59
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
7.04 Thermal L Page 431 Wednesday, December 31, 1969 17:00
Table 110. THERMAL
CONDUCTIVITY OF POLYMERS (SHEET 7 OF 10)
Class Polyacetals
Polyester; Thermoplastic
Polyesters: Thermosets
Phenylene Oxides
Polymer Homopolymer: Standard Copolymer: Standard High flow Injection Moldings: General purpose grade Cast polyyester Rigid Reinforced polyester moldings High strength (glass fibers)
SE—100 SE—1 Glass fiber reinforced
Thermal Conductivity (ASTM C177) Btu / (hr • ft • ˚F)
0.13 0.16 1.6
0.36—0.55
0.10—0.12 1.32—1.68
1.1 1.5 1.15,1.1
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
7.04 Thermal L Page 432 Wednesday, December 31, 1969 17:00
Table 110. THERMAL
CONDUCTIVITY OF POLYMERS (SHEET 8 OF 10)
Class Phenylene oxides (Noryl)
Polypropylene:
Polyethylenes; Molded, Extruded
Polymer
Thermal Conductivity (ASTM C177) Btu / (hr • ft • ˚F)
Standard
1.8
Polyarylsulfone
1.1
General purpose High impact Polyphenylene sulfide: Standard 40% glass reinforced
Type I—lower density (0.910—0.925) Melt index 0.3—3.6 Melt index 6—26 Melt index 200
1.21—1.36 1.72 2 2
0.19 0.19 0.19
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
7.04 Thermal L Page 433 Wednesday, December 31, 1969 17:00
Table 110. THERMAL
CONDUCTIVITY OF POLYMERS (SHEET 9 OF 10)
Class Polyethylenes; Molded, Extruded (Con’t)
Polystyrenes; Molded
Polymer
Thermal Conductivity (ASTM C177) Btu / (hr • ft • ˚F)
Type II—medium density (0.926—0.940) Melt index 20 Melt index l.0—1.9
0.19 0.19
Type III—higher density (0.941—0.965) Melt index 0.2—0.9 Melt Melt index 0.l—12.0 Melt index 1.5—15 High molecular weight
0.19 0.19 0.19 0.19
Polystyrenes General purpose Medium impact High impact Glass fiber -30% reinforced
0.058—0.090 0.024—0.090 0.024—0.090 0.117
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
7.04 Thermal L Page 434 Wednesday, December 31, 1969 17:00
Table 110. THERMAL
CONDUCTIVITY OF POLYMERS (SHEET 10 OF 10)
Class Polyvinyl Chloride And Copolymers; Molded, Extruded
Polymer
Thermal Conductivity (ASTM C177) Btu / (hr • ft • ˚F)
Nonrigid—general
0.07—0.10
Nonrigid—electrical Rigid—normal impact
0.07—0.10 0.07—0.10
Vinylidene chloride
0.053
Silicones; Molded, Laminated
Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate
0.18 0.25—0.5 0.075—0.125
Ureas; Molded
Alpha—cellulose filled (ASTM Type l)
0.17—0.244
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
7.05 Thermal Page 435 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 111. THERMAL
CONDUCTIVITY OF FIBERGLASS REINFORCED PLASTICS Thermal conductivity (Btu • in/ft 2 • h •˚F)
Class
Material
Glass fiber content (wt%)
Glass fiber reinforced thermosets
Sheet molding compound (SMC)
15 to 30
1.3 to 1.7
Bulk molding compound(BMC) Preform/mat(compression molded) Cold press molding–polyester
15 to 35 25 to 50 20 to 30
1.3 to 1.7 1.3 to 1.8 1.3 to 1.8
Spray–up–polyester Filament wound–epoxy Rod stock–polyester Molding compound–phenolic
30 to 50 30 to 80 40 to 80 5 to 25
1.2 to 1.6 1.92 to 2.28 1.92 to 2.28 1.1 to 2.0
Thermoplastic polyester
20 to 35
1.3
Glass–fiber–reinforced thermoplastic
To convert (Btu • in/ft2 • h •˚F) to (W/m • K), multiply by 0.144 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p106, (1994).
©2001 CRC Press LLC
Shackelford & Alexander
435
7.05 Thermal Page 436 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 112. THERMAL
EXPANSION OF WROUGHT STAINLESS STEELS * (SHEET 1 OF 2) Coefficient of Thermal Expansion (µm/m • °C) Type
UNS Designation
0-100°C
100-315°C
0-538°C
201 202 205 301
S20100 S20200 S20500 S30100
15.7 17.5 — 17.0
17.5 18.4 17.9 17.2
18.4 19.2 19.1 18.2
302 302B 303 304
S30200 S30215 S30300 S30400
17.2 16.2 17.2 17.2
17.8 18.0 17.8 17.8
18.4 19.4 18.4 18.4
S30430 305 308 309
S30430 S30500 S30800 S30900
17.2 17.2 17.2 15.0
17.8 17.8 17.8 16.6
— 18.4 18.4 17.2
310 314 316 317
S31000 S31400 S31600 S31700
15.9 — 15.9 15.9
16.2 15.1 16.2 16.2
17.0 — 17.5 17.5
317L 321 330 347
S31703 S32100 N08330 S34700
16.5 16.6 14.4 16.6
— 17.2 16.0 17.2
18.1 18.6 16.7 18.6
384 405 409 410
S38400 S40500 S40900 S41000
17.2 10.8 11.7 9.9
17.8 11.6 — 11.4
18.4 12.1 — 11.6
414 416 420
S41400 S41600 S42000
10.4 9.9 10.3
11.0 11.0 10.8
12.1 11.6 11.7
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p360, (1993).
©2001 CRC Press LLC
436
CRC Handbook of Materials Science & Engineering
7.05 Thermal Page 437 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 112. THERMAL
EXPANSION OF WROUGHT STAINLESS STEELS * (SHEET 2 OF 2) Coefficient of Thermal Expansion (µm/m • °C) Type
UNS Designation
0-100°C
100-315°C
0-538°C
422 429 430 430F
S42200 S42900 S43000 S43020
11.2 10.3 10.4 10.4
11.4 — 11.0 11.0
11.9 — 11.4 11.4
431 434 436 440A
S43100 S43400 S43600 S44002
10.2 10.4 9.3 10.2
12.1 11.0 — —
— 11.4 — —
440C 444 446 PH 13–8 Mo
S44004 S44400 S44600 S13800
10.2 10.0 10.4 10.6
— 10.6 10.8 11.2
— 11.4 11.2 11.9
15–5 PH 17–4 PH 17–7 PH
S15500 S17400 S17700
10.8 10.8 11.0
11.4 11.6 11.6
— — —
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p360, (1993). *
Annealed Condition.
©2001 CRC Press LLC
Shackelford & Alexander
437
7.06 Thermal L Page 438 Wednesday, December 31, 1969 17:00
Table 113. THERMAL
EXPANSION OF WROUGHT TITANIUM ALLOYS (SHEET 1 OF 2) Coefficient of Linear Thermal Expansion (µm/m • K)
Class
Metal or Alloy
20-100 °C
20-205 °C
20-315 °C
20-425 °C
20-540 °C
20-650 °C
20-815 °C
Commercially Pure
99.5Ti 99.2Ti 99.1Ti
8.6 8.6 8.6
— — —
9.2 9.2 9.2
— — —
9.7 9.7 9.7
10.1 10.1 10.1
10.1 10.1 10.1
99.0Ti 99.2 Ti–0.2Pd
8.6 8.6
— —
9.2 9.2
— —
9.7 9.7
10.1 10.1
10.1 10.1
Alpha Alloys
Ti-5Al-2.5Sn Ti-5Al-2.5Sn (low O2)
9.4 9.4
— —
9.5 9.5
— —
9.5 9.7
9.7 9.9
10.1 10.1
Near Alpha Alloys
Ti-8Al-1Mo-1V Ti-11Sn-1Mo-2.25Al-5.0Zr-1Mo-0.2Si Ti-6Al-2Sn-4Zr-2Mo
8.5 8.5 7.7
— — —
9.0 9.2 8.1
— — —
10.1 9.4 8.1
10.3 — —
— — —
Ti-5Al-5Sn-2Zr-2Mo-0.25Si Ti-6Al-2Nb-1Ta-1Mo
— —
— —
— —
— —
— —
— 9.0
10.3 —
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p511, (1993).
©2001 CRC Press LLC
7.06 Thermal L Page 439 Wednesday, December 31, 1969 17:00
Table 113. THERMAL
EXPANSION OF WROUGHT TITANIUM ALLOYS (SHEET 2 OF 2) Coefficient of Linear Thermal Expansion (µm/m • K)
Class
Metal or Alloy
20-100 °C
20-205 °C
20-315 °C
20-425 °C
20-540 °C
20-650 °C
20-815 °C
Alpha-Beta Alloys
Ti-8Mn Ti-3Al-2.5V Ti-6Al-4V Ti-6Al-4V (low O2)
8.6 9.5 8.6 8.6
9.2 — 9.0 9.0
9.7 9.9 9.2 9.2
10.3 — 9.4 9.4
10.8 9.9 9.5 9.5
11.7 — 9.7 9.7
12.6 — — —
Ti-6Al-6V-2Sn Ti-7Al-4Mo Ti-6Al-2Sn-4Zr-6Mo Ti-6Al-2Sn-2Zr-2Mo-2Cr-0.25Si
9.0 9.0 9.0 —
— 9.2 9.2 —
9.4 9.4 9.4 9.2
— 9.7 9.5 —
9.5 10.1 9.5 —
— 10.4 — —
— 11.2 — —
Ti-13V-11Cr-3Al Ti-8Mo-8V-2Fe-3Al
9.4 —
— —
10.1 —
10.6 —
— —
— —
Ti-3Al-8V-6Cr-4Mo-4Zr
—
—
—
— — 9.68 (to 900 •F)
—
—
—
Beta Alloys
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p511, (1993).
©2001 CRC Press LLC
7.06 Thermal L Page 440 Wednesday, December 31, 1969 17:00
Table 114. THERMAL
EXPANSION OF GRAPHITE MAGNESIUM CASTINGS *
Fiber Type
Fiber content
Fiber orientation
Casting
Fiber Preform Method
Coefficient of Thermal Expansion (10-6/K)
P75
40% plus 9% 40%
±16° 90° ± 16°
Hollow cylinder Hollow cylinder Hollow cylinder
Filament wound Filament wound Filament wound
1.3 1.3 –0.07
40% 30% 10%
0° 0° plus 90°
Plate Plate Plate
Prepreg Prepreg Prepreg
2.3 4.5 4.5
P100 P55
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p148,(1994). *
Pitch-base fibers
©2001 CRC Press LLC
7.07 Thermal Page 441 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 115. LINEAR
THERMAL EXPANSION OF METALS AND ALLOYS (SHEET 1 OF 8) Coefficient of Thermal Expansion (µm/m • °C)
Class
Metal or Alloy
Temperature (°C)
Aluminum and Aluminum Alloys
Aluminum (99.996%)
20 to 100
23.6
Wrought Alloys
EC, 1060, 1100 2011, 2014 2024 2218
20 to 100 20 to 100 20 to 100 20 to 100
23.6 23.0 22.8 22.3
3003 4032 5005, 5050, 5052 5056
20 to 100 20 to 100 20 to 100 20 to 100
23.2 19.4 23.8 24.1
5083 5086 5154 5357
20 to 100 60 to 300 20 to 100 20 to 100
23.4 23.9 23.9 23.7
5456 6061, 6063 6101, 6151
20 to 100 20 to 100 20 to 100
23.9 23.4 23.0
7075 7079, 7178
20 to 100 20 to 100
23.2 23.4
A13 43 and 108 A108 A132
20 to 100 20 to 100 20 to 100 20 to 100
20.4 22.0 21.5 19.0
D132 F132 138 142
20 to 100 20 to 100 20 to 100 20 to 100
20.05 20.7 21.4 22.5
Casting Alloys
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p154-155, (1993).
©2001 CRC Press LLC
Shackelford & Alexander
441
7.07 Thermal Page 442 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 115. LINEAR
THERMAL EXPANSION OF METALS AND ALLOYS (SHEET 2 OF 8)
Class
Metal or Alloy
Temperature (°C)
Coefficient of Thermal Expansion (µm/m • °C)
195 B195 214 220
20 to 100 20 to 100 20 to 100 20 to 100
23.0 22.0 24.0 25.0
319 355 356 360
20 to 100 20 to 100 20 to 100 20 to 100
21.5 22.0 21.5 21.0
750 40E
20 to 100 21 to 93
23.1 24.7
Pure copper Electrolytic tough pitch copper (ETP) Deoxidized copper, high residual phosphorus (DHP)
20
16.5
20 to 100
16.8
20 to 300
17.7
Copper and Copper Alloys Wrought Coppers
Wrought Alloys
Oxygen-free copper Free machining copper, 0.5% Te or 1% Pb
20 to 300
17.7
20 to 300
17.7
Gilding, 95% Commercial bronze, 90% Jewelry bronze, 87.5%
20 to 300 20 to 300 20 to 300
18.1 18.4 18.6
Red brass, 85% Low brass, 80% Cartridge brass, 70% Yellow brass
20 to 300 20 to 300 20 to 300 20 to 300
18.7 19.1 19.9 20.3
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p154-155, (1993).
©2001 CRC Press LLC
442
CRC Handbook of Materials Science & Engineering
7.07 Thermal Page 443 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 115. LINEAR
THERMAL EXPANSION OF METALS AND ALLOYS (SHEET 3 OF 8)
Class
Metal or Alloy
Temperature (°C)
Coefficient of Thermal Expansion (µm/m • °C)
Muntz metal Leaded commercial bronze Low-leaded brass Medium-leaded brass
20 to 300 20 to 300 20 to 300 20 to 300
20.8 18.4 20.2 20.3
High-leaded brass Extra-high-leaded brass Free-cutting brass Leaded Muntz metal
20 to 300 20 to 300 20 to 300 20 to 300
20.3 20.5 20.5 20.8
Forging brass Architectural bronze Inhibited admiralty Naval brass
20 to 300 20 to 300 20 to 300 20 to 300
20.7 20.9 20.2 21.2
Leaded naval brass Manganese bronze (longitudinal) Manganese bronze (transverse)
20 to 300
21.2
20 to 300
21.2
20 to 300
23.4
Phosphor bronze, 5% (longitudinal) Phosphor bronze, 5% (transverse) Phosphor bronze, 8% (longitudinal) Phosphor bronze, 8% (transverse)
20 to 300
17.8
20 to 300
23.4
20 to 300
18.2
20 to 300
19.4
Phosphor bronze, 10% (longitudinal) Phosphor bronze, 1.25% Free-cutting phosphor bronze
20 to300
18.4
20 to 300
17.8
20 to 300
17.3
Cupro-nickel, 30% Cupro-nickel, 10%
20 to 300 20 to 300
16.2 17.1
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p154-155, (1993).
©2001 CRC Press LLC
Shackelford & Alexander
443
7.07 Thermal Page 444 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 115. LINEAR
THERMAL EXPANSION OF METALS AND ALLOYS (SHEET 4 OF 8)
Class
Casting Alloys
Manganese bronze
Metal or Alloy
Temperature (°C)
Coefficient of Thermal Expansion (µm/m • °C)
Nickel silver, 65-18 Nickel silver, 55-18 Nickel silver, 65-12
20 to 300 20 to 300 20 to 300
16.2 16.7 16.2
High-silicon bronze (longitudinal) High-silicon bronze (transverse) Low-silicon bronze (longitudinal) Low-silicon bronze (transverse)
20 to 300
18.0
20 to 300
23.4
20 to 300
17.9
20 to 300
21.1
Aluminum bronze Aluminum-silicon bronze Aluminum bronze Beryllium copper
20 to 300 20 to 300 20 to 300 20 to 300
16.4 18.0 16.8 17.8
88Cu-8Sn-4Zn 89Cu-11Sn 88Cu-6Sn-1.5Pb-4 .5Zn 87Cu-8Sn-1Pb-4Zn
21 to 177 20 to 300 21 to 260 21 to 177
18.0 18.4 18.5 18.0
87Cu-10Sn-1Pb-2Zn 80Cu-10Sn-10Pb 78Cu-7Sn-15Pb 85Cu-5Sn-5Pb- 5Zn
21 to 177 21 to 204 21 to 204 21 to 204
18.0 18.5 18.5 18.1
72Cu-1Sn-3Pb-24Zn 67Cu-1Sn-3Pb-29Zn 61Cu-1Sn-1Pb-37Zn
21 to 93 21 to 93 21 to 260
20.7 20.2 21.6
Manganese bronze, 60 ksi Manganese bronze, 65 ksi Manganese bronze, 110 ksi
21 to 204 21 to 93 21 to 260
20.5 21.6 19.8
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p154-155, (1993).
©2001 CRC Press LLC
444
CRC Handbook of Materials Science & Engineering
7.07 Thermal Page 445 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 115. LINEAR
THERMAL EXPANSION OF METALS AND ALLOYS (SHEET 5 OF 8) Coefficient of Thermal Expansion (µm/m • °C)
Class
Metal or Alloy
Temperature (°C)
Iron and Iron Alloys
Pure iron Fe-C alloy 0.06% C Fe-C alloy 0.22% C Fe-C alloy 0.40% C Fe-C alloy 0.56% C
20 20 to 100 20 to 100 20 to 100 20 to 100
11.7 11.7 11.7 11.3 11.0
Fe-C alloy 1.08% C Fe-C alloy 1.45% C Invar (36% Ni) 13Mn-1.2C
20 to 100 20 to 100 20 20
10.8 10.1 0-2 18.0
13Cr-0.35C 12.3Cr-0.4Ni-0.09C 17.7Cr-9.6Ni-0.06C
20 to 100 20 to 100 20 to 100
10.0 9.8 16.5
18W-4Cr-1V Gray cast iron Malleable iron (pearlitic)
0 to 100 0 to 100 20 to 400
11.2 10.5 12
Corroding lead (99.73 + % Pb) 5-95 solder 20-80 solder 50-50 solder
17 to 100
29.3
15 to 110 15 to 110 15 to 110
28.7 26.5 23.4
1% antimonial lead 8% antimonial lead 9% antimonial lead
20 to 100 20 to 100 20 to 100
28.8 26.7 26.4
Hard lead(96Pb-4Sb) Hard lead(94Pb-6Sb) Lead-base babbitt SAE 14 Lead-base babbitt Alloy 8
20 to 100 20 to 100 20 to 100 20 to 100
27.8 27.2 19.6 24.0
Magnesium (99.8%)
20
25.2
Lead and Lead Alloys
Magnesium and Magnesium Alloys
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p154-155, (1993).
©2001 CRC Press LLC
Shackelford & Alexander
445
7.07 Thermal Page 446 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 115. LINEAR
THERMAL EXPANSION OF METALS AND ALLOYS (SHEET 6 OF 8) Coefficient of Thermal Expansion (µm/m • °C)
Class
Metal or Alloy
Temperature (°C)
Casting alloys
AM100A AZ63A AZ91A,B,C AZ92A
18 to 100 20 to 100 20 to 100 18 to 100
25.2 26.1 26 25.2
HZ32A ZH42 ZH62A ZK51A
20 to 200 20 to 200 20 to 200 20
26.7 27 27.1 26.1
EZ33A EK30A, EK41A
20 to 100 20 to 100
26.1 26.1
M1A, A3A AZ31B,PE AZ61A, Z80A
20 to 100 20 to 100 20 to 100
26 26 26
ZK60A, B HM31A
20 to 100 20 to 93
26 26.1
Nickel (99.95% Ni + Co)
0 to 100
13.3
Duranickel Monel Monel (cast) Inconel
0 to 100 0 to 100 25 to 100 20 to 100
13.0 14.0 12.9 11.5
Ni-o-nel Hastelloy B Hastelloy C Hastelloy D
27 to 93 0 to 100 0 to 100 0 to 100
12.9 10.0 11.3 11.0
Hastelloy F Hastelloy N Hastelloy W Hastelloy X
20 to 100 21 to 204 23 to 100 26 to 100
14.2 10.4 11.3 13.8
Wrought Alloys
Nickel and Nickel Alloys
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p154-155, (1993).
©2001 CRC Press LLC
446
CRC Handbook of Materials Science & Engineering
7.07 Thermal Page 447 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 115. LINEAR
THERMAL EXPANSION OF METALS AND ALLOYS (SHEET 7 OF 8)
Class
Tin and Tin Alloys
Titanium and Titanium Alloys
Zinc and Zinc Alloys
Pure Metals
Metal or Alloy
Temperature (°C)
Coefficient of Thermal Expansion (µm/m • °C)
Illium G Illium R 80Ni-20Cr 60Ni-24Fc-l6Cr
0 to 100 0 to 100 20 to 1000 20 to 1000
12.19 12.02 17.3 17.0
35Ni-45Fe-20Cr Constantan
20 to 500 20 to 1000
15.8 18.8
Pure tin
0 to 100
23
Solder (70Sn-30Pb) Solder (63Sn-37Pb)
15 to 110 15 to 110
21.6 24.7
99.9% Ti
20
8.41
99.0% Ti Ti-5Al-2.5Sn Ti-8Mn
93 93 93
8.55 9.36 8.64
Pure zinc AG40A alloy AC41A alloy
20 to 250 20 to 100 20 to 100
39.7 27.4 27.4
Commercial rolled zinc 0.08 Pb Commercial rolled zinc 0.3 Pb, 0.3 Cd Rolled zinc alloy (1 Cu, 0.010 Mg) Zn-Cu-Ti alloy (0.8 Cu, 0.15 Ti)
20 to 40
32.5
20 to 98
33.9
20 to 100
34.8
20 to 100
24.9
25 to 100 20 0 to 400 20
11.6 29.8 22.3 6.2
Beryllium Cadmium Calcium Chromium
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p154-155, (1993).
©2001 CRC Press LLC
Shackelford & Alexander
447
7.07 Thermal Page 448 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 115. LINEAR
THERMAL EXPANSION OF METALS AND ALLOYS (SHEET 8 OF 8)
Class
Metal or Alloy
Temperature (°C)
Coefficient of Thermal Expansion (µm/m • °C)
Cobalt Gold Iridium Lithium
20 20 20 20
13.8 14.2 6.8 56
Manganese Palladium Platinum Rhenium
0 to 100 20 20 20 to 500
22 11.76 8.9 6.7
Rhodium Ruthenium Silicon Silver
20 to 100 20 0 to 1400 0 to 100
8.3 9.1 5 19.68
Tungsten Vanadium Zirconium
27 23 to 100 —
4.6 8.3 5.85
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p154-155, (1993).
©2001 CRC Press LLC
448
CRC Handbook of Materials Science & Engineering
7.08 Thermal L Page 449 Wednesday, December 31, 1969 17:00
Table 116. THERMAL EXPANSION OF (SHEET 1 OF 34)
CERAMICS
Class
Ceramic
Thermal Expansion (˚C–1)
Borides
Chromium Diboride (CrB2)
4.6–11.1 x 10–6 for 20–1000˚C
Hafnium Diboride (HfB2)
5.5 –5.54 x 10–6 for room temp.–1000˚C
Tantalum Diboride (TaB2)
5.1 x 10–6 at room temp.
Titanium Diboride (TiB2)
4.6–8.1 x 10–6
Zirconium Diboride (ZrB2)
5.69 x 10–6 for 25–500˚C 5.5–6.57 x 10–6 ˚C for 25–1000˚C 6.98 x 10–6 for 20–1500˚C
Carbides
Boron Carbide (B4C)
4.5 x 10–6 for room temp.–800˚C 4.78 x 10–6 for 25–500˚C 5.54 x 10–6 for 25–1000˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
7.08 Thermal L Page 450 Wednesday, December 31, 1969 17:00
Table 116. THERMAL EXPANSION OF (SHEET 2 OF 34)
CERAMICS
Class
Ceramic
Thermal Expansion (˚C–1)
Carbides (Con’t)
Boron Carbide (B4C) (Con’t)
6.02 x 10–6 for 25–1500˚C 6.53 x 10–6 for 25–2000˚C 7.08 x 10–6 for 25–2500˚C
Hafnium Monocarbide (HfC)
6.27–6.59 x 10–6 for 25–650˚C 6.25 x 10–6 for 25–1000˚C
Silicon Carbide (SiC)
4.63 x 10–6 for 25–500˚C 5.12 x 10–6 for 25–1000˚C 5.48 x 10–6 for 25–1500˚C 5.77 x 10–6 for 25–2000˚C 5.94 x 10–6 for 25–2500˚C 4.70 x 10–6 for 20–1500˚C 4.70 x 10–6 for 0–1700˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
7.08 Thermal L Page 451 Wednesday, December 31, 1969 17:00
Table 116. THERMAL EXPANSION OF (SHEET 3 OF 34)
CERAMICS
Class
Ceramic
Thermal Expansion (˚C–1)
Carbides (Con’t)
Tantalum Monocarbide (TaC)
6.29–6.32 x 10–6 for 25–500˚C 6.67 x 10–6 for 25–1000˚C 7.12 x 10–6 for 25–1500˚C 7.64 x 10–6 for 25–2000˚C 8.40 x 10–6 for 25–2500˚C 6.50 x 10–6 for 0–1000˚C 6.64 x 10–6 for 0–1200˚C
Titanium Monocarbide (TiC)
6.52–7.15 x 10–6 for 25–500˚C 7.18–7.45 x 10–6 for 25–750˚C 7.40–8.82 x 10–6 for 25–1000˚C 9.32 x 10–6 for 25–1250˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
7.08 Thermal L Page 452 Wednesday, December 31, 1969 17:00
Table 116. THERMAL EXPANSION OF (SHEET 4 OF 34)
CERAMICS
Class
Ceramic
Thermal Expansion (˚C–1)
Carbides (Con’t)
Titanium Monocarbide (TiC) (Con’t)
8.15–9.45 x 10–6 for 25–1500˚C 8.81 x 10–6 for 25–2000˚C 7.90 x 10–6 for 0–2500˚C 7.08 x 10–6 for 0–750˚C 7.85–7.86 x 10–6 for 0–1000˚C 8.02 x 10–6 for 0–1275˚C 8.29 x 10–6 for 0–1400˚C 8.26 x 10–6 for 0–1525˚C 8.40 x 10–6 for 0–1775˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
7.08 Thermal L Page 453 Wednesday, December 31, 1969 17:00
Table 116. THERMAL EXPANSION OF (SHEET 5 OF 34)
CERAMICS
Class
Ceramic
Thermal Expansion (˚C–1)
Carbides (Con’t)
Trichromium Dicarbide (Cr3C2)
8.00 x 10–6 for 25–500˚C 9.95 x 10–6 for 25–500˚C 8.8 x 10–6 for 25–120˚C 10.9 x 10–6 for 150–980˚C
Tungsten Monocarbide (WC)
4.42 x 10–6 for 25–500˚C 4.84–4.92 x 10–6 for 25–1000˚C 5.35–5.8 x 10–6 for 25–1500˚C 5.82–7.4 x 10–6 for 25–2000˚C
Zirconium Monocarbide (ZrC)
6.10x 10–6 for 25–500˚C 6.65x 10–6 for 25–800˚C 6.56x 10–6 for 25–1000˚C 7.06x 10–6 for 25–1500˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
7.08 Thermal L Page 454 Wednesday, December 31, 1969 17:00
Table 116. THERMAL EXPANSION OF (SHEET 6 OF 34)
CERAMICS
Class
Ceramic
Thermal Expansion (˚C–1)
Carbides (Con’t)
Zirconium Monocarbide (ZrC) (Con’t)
7.65x 10–6 for 25–650˚C 6.10–6.73 x 10–6 for 25–650˚C 6.32x 10–6 for 0–750˚C 6.46–6.66x 10–6 for 0–1000˚C 6.68x 10–6 for 0–1275˚C 6.83x 10–6 for 0–1525˚C 6.98x 10–6 for 0–1775˚C 9.0x 10–6 for 1000–2000˚C
Nitrides
Aluminum Nitride (AlN)
4.03 x 10–6 for 25 to 200˚C 4.84 x 10–6 for 25 to 500˚C 4.83 x 10–6 for 25 to 600˚C 5.54–5.64 x 10–6 for 25 to 1000˚C 6.09 x 10–6 for 25 to 1350˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
7.08 Thermal L Page 455 Wednesday, December 31, 1969 17:00
Table 116. THERMAL EXPANSION OF (SHEET 7 OF 34)
CERAMICS
Class
Ceramic
Thermal Expansion (˚C–1)
Nitrides (Con’t)
Boron Nitride (BN)
12.2 x 10–6 for 25 to 500˚C 13.3 x 10–6 for 25 to 1000˚C
parallel to c axis
10.15 x 10–6 for 25 to 350˚C 8.06 x 10–6 for 25 to 700˚C 7.15 x 10–6 for 25 to 1000˚C
parallel to a axis
0.59 x 10–6 for 25 to 350˚C 0.89 x 10–6 for 25 to 700˚C 0.77 x 10–6 for 25 to 1000˚C
Titanium Mononitride (TiN)
9.35 x 10–6
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
7.08 Thermal L Page 456 Wednesday, December 31, 1969 17:00
Table 116. THERMAL EXPANSION OF (SHEET 8 OF 34)
CERAMICS
Class
Ceramic
Thermal Expansion (˚C–1)
Nitrides (Con’t)
Trisilicon tetranitride (Si3N4)
2.11 x 10–6 for 25 to 500˚C 2.87 x 10–6 for 25 to 1000˚C 3.66 x 10–6 for 25 to 1500˚C
(hot pressed)
3–3.9 x 10–6 for 20 to 1000˚C
(sintered)
3.5 x 10–6 for 20 to 1000˚C
(reaction sintered)
2.9 x 10–6 for 20 to 1000˚C
(pressureless sintered)
3.7 x 10–6 for 40 to 1000˚C
Zirconium Mononitride (TiN)
6.13 x 10–6 for 20–450˚C 7.03 x 10–6 for 20–680˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
7.08 Thermal L Page 457 Wednesday, December 31, 1969 17:00
Table 116. THERMAL EXPANSION OF (SHEET 9 OF 34) Class
Ceramic
Oxides
Aluminum Oxide (Al2O3) parallel to c axis
CERAMICS Thermal Expansion (˚C–1)
1.95 x 10–6 for 0 to –273˚C 3.01 x 10–6 for 0 to –173˚C 4.39 x 10–6 for 0 to –73˚C 5.31 x 10–6 for 0 to 27˚C 6.26 x 10–6 for 0 to 127˚C 6.86 x 10–6 for 0 to 227˚C 7.31 x 10–6 for 0 to 327˚C 7.68 x 10–6 for 0 to 427˚C 7.96 x 10–6 for 0 to 527˚C 8.19 x 10–6 for 0 to 627˚C 8.38 x 10–6 for 0 to 727˚C 8.52 x 10–6 for 0 to 827˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
7.08 Thermal L Page 458 Wednesday, December 31, 1969 17:00
Table 116. THERMAL EXPANSION OF (SHEET 10 OF 34)
CERAMICS
Class
Ceramic
Thermal Expansion (˚C–1)
Oxides (Con’t)
Aluminum Oxide (Al2O3) parallel to c axis (Con’t)
8.65 x 10–6 for 0 to 927˚C 8.75 x 10–6 for 0 to 1027˚C 8.84 x 10–6 for 0 to 1127˚C 8.92 x 10–6 for 0 to 1227˚C 8.98 x 10–6 for 0 to 1327˚C 9.02 x 10–6 for 0 to 1427˚C 9.08 x 10–6 for 0 to 1527˚C 9.13 x 10–6 for 0 to 1627˚C 9.18 x 10–6 for 0 to 1727˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
7.08 Thermal L Page 459 Wednesday, December 31, 1969 17:00
Table 116. THERMAL EXPANSION OF (SHEET 11 OF 34) Class
Ceramic
Oxides (Con’t)
Aluminum Oxide (Al2O3) (single crystal) perpendicular to c axis
CERAMICS Thermal Expansion (˚C–1)
1.65 x 10–6 for 0 to –273˚C 2.55 x 10–6 for 0 to –173˚C 3.75 x 10–6 for 0 to –73˚C 4.78 x 10–6 for 0 to 27˚C 5.51 x 10–6 for 0 to 127˚C 6.10 x 10–6 for 0 to 227˚C 6.52 x 10–6 for 0 to 327˚C 6.88 x 10–6 for 0 to 427˚C 7.15 x 10–6 for 0 to 527˚C 7.35 x 10–6 for 0 to 627˚C 7.53 x 10–6 for 0 to 727˚C 7.67 x 10–6 for 0 to 827˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
7.08 Thermal L Page 460 Wednesday, December 31, 1969 17:00
Table 116. THERMAL EXPANSION OF (SHEET 12 OF 34)
CERAMICS
Class
Ceramic
Thermal Expansion (˚C–1)
Oxides (Con’t)
Aluminum Oxide (Al2O3) (single crystal) (Con’t)
7.80 x 10–6 for 0 to 927˚C
perpendicular to c axis (Con’t)
7.88 x 10–6 for 0 to 1027˚C 7.96 x 10–6 for 0 to 1127˚C 8.05 x 10–6 for 0 to 1227˚C 8.12 x 10–6 for 0 to 1327˚C 8.16 x 10–6 for 0 to 1427˚C 8.20 x 10–6 for 0 to 1527˚C 8.26 x 10–6 for 0 to 1627˚C 8.30 x 10–6 for 0 to 1727˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
7.08 Thermal L Page 461 Wednesday, December 31, 1969 17:00
Table 116. THERMAL EXPANSION OF (SHEET 13 OF 34)
CERAMICS
Class
Ceramic
Thermal Expansion (˚C–1)
Oxides (Con’t)
Aluminum Oxide (Al2O3) (Con’t)
1.89 x 10–6 for 0 to –273˚C
(polycrystalline)
2.91 x 10–6 for 0 to –173˚C 4.10 x 10–6 for 0 to –73˚C 5.60 x 10–6 for 0 to 27˚C 6.03 x 10–6 for 0 to 127˚C 6.55 x 10–6 for 0 to 227˚C 6.93 x 10–6 for 0 to 327˚C 7.24 x 10–6 for 0 to 427˚C 7.50 x 10–6 for 0 to 527˚C 7.69 x 10–6 for 0 to 627˚C 7.83 x 10–6 for 0 to 727˚C 7.97 x 10–6 for 0 to 827˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
7.08 Thermal L Page 462 Wednesday, December 31, 1969 17:00
Table 116. THERMAL EXPANSION OF (SHEET 14 OF 34)
CERAMICS
Class
Ceramic
Thermal Expansion (˚C–1)
Oxides (Con’t)
Aluminum Oxide (Al2O3) (Con’t)
8.08 x 10–6 for 0 to 927˚C
(polycrystalline) (Con’t)
8.18 x 10–6 for 0 to 1027˚C 8.25 x 10–6 for 0 to 1127˚C 8.32 x 10–6 for 0 to 1227˚C 8.39 x 10–6 for 0 to 1327˚C 8.45 x 10–6 for 0 to 1427˚C 8.49 x 10–6 for 0 to 1527˚C 8.53 x 10–6 for 0 to 1627˚C 8.58 x 10–6 for 0 to 1727˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
7.08 Thermal L Page 463 Wednesday, December 31, 1969 17:00
Table 116. THERMAL EXPANSION OF (SHEET 15 OF 34) Class
Ceramic
Oxides (Con’t)
Beryllium Oxide (BeO) (single crystal) parallel to c axis
CERAMICS Thermal Expansion (˚C–1)
6.3 x 10–6 for 28 to 252˚C 6.7 x 10–6 for 28 to 474˚C 7.8 x 10–6 for 28 to 749˚C 8.2 x 10–6 for 28 to 872˚C 8.9 x 10–6 for 28 to 1132˚C
Beryllium Oxide (BeO) (single crystal) perpendicular to c axis
7.1 x 10–6 for 28 to 252˚C 7.8 x 10–6 for 28 to 474˚C 8.5 x 10–6 for 28 to 749˚C 9.2 x 10–6 for 28 to 872˚C 9.9 x 10–6 for 28 to 1132˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
7.08 Thermal L Page 464 Wednesday, December 31, 1969 17:00
Table 116. THERMAL EXPANSION OF (SHEET 16 OF 34)
CERAMICS
Class
Ceramic
Thermal Expansion (˚C–1)
Oxides (Con’t)
Beryllium Oxide (BeO) (single crystal)
6.83 x 10–6 for 28 to 252˚C
average for (2a+c)/3
7.43 x 10–6 for 28 to 474˚C 8.27 x 10–6 for 28 to 749˚C 8.87 x 10–6 for 28 to 872˚C 9.57 x 10–6 for 28 to 1132˚C
Beryllium Oxide (BeO) (polycrystalline)
2.4 x 10–6 for 25–200˚C 6.3–6.4 x 10–6 for 25–300˚C 7.59 x 10–6 for 25–500˚C 8.4–8.5 x 10–6 for 25–800˚C 9.03 x 10–6 for 25–1000˚C 9.18 x 10–6 for 25–1250˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
7.08 Thermal L Page 465 Wednesday, December 31, 1969 17:00
Table 116. THERMAL EXPANSION OF (SHEET 17 OF 34)
CERAMICS
Class
Ceramic
Thermal Expansion (˚C–1)
Oxides (Con’t)
Beryllium Oxide (BeO) (polycrystalline) (Con’t)
10.3 x 10–6 for 25–1500˚C 11.1 x 10–6 for 25–2000˚C 9.40 x 10–6 for 500–1200˚C
Cerium Dioxide (CeO2)
8.22 x 10–6 for 25–500˚C 8.92 x 10–6 for 25–1000˚C 8.5 + 0.54T for 0–1000˚C
Dichromium Trioxide (Cr2O3)
8.43 x 10–6 for 25–500˚C 8.62 x 10–6 for 25–1000˚C 8.82 x 10–6 for 25–1500˚C 9.55 x 10–6 for 20–1400˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
7.08 Thermal L Page 466 Wednesday, December 31, 1969 17:00
Table 116. THERMAL EXPANSION OF (SHEET 18 OF 34)
CERAMICS
Class
Ceramic
Thermal Expansion (˚C–1)
Oxides (Con’t)
Hafnium Dioxide (HfO2) (monoclinic single crystal)
6.8x10–6 for 28–262˚C
parallel to a axis
6.2x10–6 for 28–494˚C 6.7x10–6 for 28–697˚C 7.5x10–6 for 28–903˚C 7.9x10–6 for 28–1098˚C
parallel to b axis
0 for 28–262˚C 0.9x10–6 for 28–494˚C 1.3x10–6 for 28–697˚C 1.4x10–6 for 28–903˚C 2.1x10–6 for 28–1098˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
7.08 Thermal L Page 467 Wednesday, December 31, 1969 17:00
Table 116. THERMAL EXPANSION OF (SHEET 19 OF 34)
CERAMICS
Class
Ceramic
Thermal Expansion (˚C–1)
Oxides (Con’t)
Hafnium Dioxide (HfO2) (monoclinic single crystal)
11x10–6 for 28–262˚C
parallel to c axis
11.4x10–6 for 28–494˚C 10.8x10–6 for 28–697˚C 11.9x10–6 for 28–903˚C 12.1x10–6 for 28–1098˚C
Hafnium Dioxide (HfO2)
5.47 x 10–6 for 25–500˚C
(monoclinic polycrystalline)
5.85 x 10–6 for 25–1000˚C 5.8 x 10–6 for 25–1300˚C 6.30 x 10–6 for 25–1500˚C 6.45 x 10–6 for 20–1700˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
7.08 Thermal L Page 468 Wednesday, December 31, 1969 17:00
Table 116. THERMAL EXPANSION OF (SHEET 20 OF 34)
CERAMICS
Class
Ceramic
Thermal Expansion (˚C–1)
Oxides (Con’t)
Hafnium Dioxide (HfO2)
1.31 x 10–6 for 25–1700˚C
(tetragonal polycrystalline)
3.03 x 10–6 for 25–2000˚C
Magnesium Oxide (MgO)
12.83 x 10–6 for 25–500˚C 13.63 x 10–6 for 25–1000˚C 15.11 x 10–6 for 25–1500˚C 15.89 x 10–6 for 25–1800˚C 14.0 x 10–6 for 20–1400˚C 14.2–14.9 x 10–6 for 20–1700˚C 13.3 x 10–6 for 20–1700˚C 13.90 x 10–6 for 0–1000˚C 14.46 x 10–6 for 0–1200˚C 15.06 x 10–6 for 0–1400˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
7.08 Thermal L Page 469 Wednesday, December 31, 1969 17:00
Table 116. THERMAL EXPANSION OF (SHEET 21 OF 34)
CERAMICS
Class
Ceramic
Thermal Expansion (˚C–1)
Oxides (Con’t)
Silicon Dioxide (SiO2)
19.35 x 10–6 for 25–500˚C
α quartz
22.2 x 10–6 for 25–575˚C
β quartz
27.8 x 10–6 for 25–575˚C 14.58 x 10–6 for 25–1000˚C
α tridymite
18.5 x 10–6 for 25–117˚C
β1 tridymite
25.0 x 10–6 for 25–117˚C 27.5 x 10–6 for 25–163˚C
β2 tridymite
31.9 x 10–6 for 25–163˚C 19.35 x 10–6 for 25–500˚C 10.45 x 10–6 for 25–1000˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
7.08 Thermal L Page 470 Wednesday, December 31, 1969 17:00
Table 116. THERMAL EXPANSION OF (SHEET 22 OF 34)
CERAMICS Thermal Expansion (˚C–1)
Class
Ceramic
Oxides (Con’t)
Silicon Dioxide (SiO2) (Con’t)
0.527 x 10–6 for 25–500˚C
Vitreous
0.564 x 10–6 for 25–1000˚C 0.5 x 10–6 for 20–1250˚C
Thorium Dioxide (ThO2)
3.67 x 10–6 for 0 to –273˚C 5.32 x 10–6 for 0 to –173˚C 6.47 x 10–6 for 0 to –73˚C 8.10 x 10–6 for 0 to 27˚C 8.06 x 10–6 for 0 to 127˚C 8.31 x 10–6 for 0 to 227˚C 8.53 x 10–6 for 0 to 327˚C 8.71 x 10–6 for 0 to 427˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
7.08 Thermal L Page 471 Wednesday, December 31, 1969 17:00
Table 116. THERMAL EXPANSION OF (SHEET 23 OF 34)
CERAMICS
Class
Ceramic
Thermal Expansion (˚C–1)
Oxides (Con’t)
Thorium Dioxide (ThO2) (Con’t)
8.87 x 10–6 for 0 to 527˚C 9.00 x 10–6 for 0 to 627˚C 9.14 x 10–6 for 0 to 727˚C 9.24 x 10–6 for 0 to 827˚C 9.34 x 10–6 for 0 to 927˚C 9.42 x 10–6 for 0 to 1027˚C 9.53 x 10–6 for 0 to 1127˚C 9.60 x 10–6 for 0 to 1227˚C 9.68 x 10–6 for 0 to 1327˚C 9.76 x 10–6 for 0 to 1427˚C 9.83 x 10–6 for 0 to 1527˚C 9.91 x 10–6 for 0 to 1627˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
7.08 Thermal L Page 472 Wednesday, December 31, 1969 17:00
Table 116. THERMAL EXPANSION OF (SHEET 24 OF 34)
CERAMICS
Class
Ceramic
Thermal Expansion (˚C–1)
Oxides (Con’t)
Thorium Dioxide (ThO2) (Con’t)
9.97 x 10–6 for 0 to 1727˚C 8.63 x 10–6 for 25 to 500˚C 9.44 x 10–6 for 25 to 1000˚C 10.17 x 10–6 for 25 to 1500˚C 10.43 x 10–6 for 25 to 1700˚C 9.55 x 10–6 for 20 to 800˚C 9.55 x 10–6 for 20 to 1400˚C 7.8 x 10–6 for 27 to 223˚C 8.7 x 10–6 for 27 to 498˚C 8.9 x 10–6 for 27 to 755˚C 9.2 x 10–6 for 27 to 994˚C 9.1 x 10–6 for 27 to 1087˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
7.08 Thermal L Page 473 Wednesday, December 31, 1969 17:00
Table 116. THERMAL EXPANSION OF (SHEET 25 OF 34)
CERAMICS
Class
Ceramic
Thermal Expansion (˚C–1)
Oxides (Con’t)
Thorium Dioxide (ThO2) (Con’t)
8.96 x 10–6 for 0 to 1000˚C 9.35 x 10–6 for 0 to 1200˚C 9.84 x 10–6 for 0 to 1400˚C
αl (linear expansion coefficient)
0.6216x10–5 +3.541x10–9T–0.1124T–2 from 298–1073K
αv (volume expansion coefficient)
1.85x10–5 +10.96x10–9T–0.3375T–2 from 298–1073K
Titanium Oxide (TiO2) (polycrystalline)
8.22 x 10–6 for 25–500˚C 8.83 x 10–6 for 25–1000˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
7.08 Thermal L Page 474 Wednesday, December 31, 1969 17:00
Table 116. THERMAL EXPANSION OF (SHEET 26 OF 34)
CERAMICS
Class
Ceramic
Thermal Expansion (˚C–1)
Oxides (Con’t)
Titanium Oxide (TiO2) (polycrystalline) (Con’t)
9.50 x 10–6 for 25–1500˚C 7.8 x 10–6 for 20–600˚C 8.98 x 10–6 for 0–1000˚C
Titanium Oxide (TiO2) (single crystal) parallel to c axis
9.8 x 10–6 for 26 to 240˚C 10.5 x 10–6 for 26 to 455˚C 10.6 x 10–6 for 26 to 670˚C 10.5 x 10–6 for 26 to 940˚C 10.8 x 10–6 for 26 to 1110˚C
Titanium Oxide (TiO2) (single crystal))
7.9 x 10–6 for 26 to 240˚C
perpendicular to a axis
8.2 x 10–6 for 26 to 455˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
7.08 Thermal L Page 475 Wednesday, December 31, 1969 17:00
Table 116. THERMAL EXPANSION OF (SHEET 27 OF 34)
CERAMICS
Class
Ceramic
Thermal Expansion (˚C–1)
Oxides (Con’t)
Titanium Oxide (TiO2) (single crystal)) (Con’t)
8.1 x 10–6 for 26 to 670˚C
perpendicular to a axis (Con’t)
8.2 x 10–6 for 26 to 940˚C 8.3 x 10–6 for 26 to 1110˚C
Titanium Oxide (TiO2) (single crystal)) average for (2a+c)/3
8.53 x 10–6 for 26 to 240˚C 8.97 x 10–6 for 26 to 455˚C 8.93 x 10–6 for 26 to 670˚C 8.97 x 10–6 for 26 to 940˚C 9.13 x 10–6 for 26 to 1110˚C
Uranium Dioxide (UO2)
9.47 x 10–6 for 25 to 500˚C 11.19 x 10–6 for 25 to 1000˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
7.08 Thermal L Page 476 Wednesday, December 31, 1969 17:00
Table 116. THERMAL EXPANSION OF (SHEET 28 OF 34)
CERAMICS
Class
Ceramic
Thermal Expansion (˚C–1)
Oxides (Con’t)
Uranium Dioxide (UO2) (Con’t)
12.19 x 10–6 for 25 to 1200˚C 11.15 x 10–6 for 25 to 1750˚C 9.18 x 10–6 for 27 to 400˚C
(heating)
9.07 x 10–6 for 27 to 400˚C 11.1 x 10–6 for 400 to 800˚C 13.0 x 10–6 for 800 to 1200˚C
(cooling)
9.28 x 10–6 for 27 to 400˚C 10.8 x 10–6 for 400 to 800˚C 10.8 x 10–6 for 400 to 800˚C 12.6 x 10–6 for 800 to 1250˚C 12.9 x 10–6 for 800 to 1200˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
7.08 Thermal L Page 477 Wednesday, December 31, 1969 17:00
Table 116. THERMAL EXPANSION OF (SHEET 29 OF 34)
CERAMICS
Class
Ceramic
Thermal Expansion (˚C–1)
Oxides (Con’t)
Zirconium Oxide (ZrO2) (monoclinic)
6.53 x 10–6 for 25 to 500˚C 7.59 x 10–6 for 25 to 1000˚C 7.72 x 10–6 for 25 to 1050˚C 8.0 x 10–6 for 25 to 1080˚C
Zirconium Oxide (ZrO2) (tetragonal)
–21.7 x 10–6 for 25 to 1050˚C –11.11 x 10–6 for 25 to 1500˚C –9.53 x 10–6 for 25 to 1600˚C 4.0 x 10–6 for 0 to 500˚C 10.5 x 10–6 for 0 to 1000˚C 10.52 x 10–6 for 0 to 1000˚C (MgO) 10.6 x 10–6 for 0 to 1200˚C (CaO) 5.0 x 10–6 for 0 to 1400˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
7.08 Thermal L Page 478 Wednesday, December 31, 1969 17:00
Table 116. THERMAL EXPANSION OF (SHEET 30 OF 34)
CERAMICS
Class
Ceramic
Thermal Expansion (˚C–1)
Oxides (Con’t)
Zirconium Oxide (ZrO2) (tetragonal) (Con’t)
11.0 x 10–6 for 0 to 1500˚C 5.5–5.58 x 10–6 for 20 to 1200˚C 7.2 x 10–6 for –10 to 1000˚C 8.64 x 10–6 for –20 to 600˚C
Zirconium Oxide (ZrO2) (tetragonal, single crystal)
8.4 x 10–6 for 27 to 264˚C
parallel to a axis
7.5 x 10–6 for 27 to 504˚C 6.8 x 10–6 for 27 to 759˚C 7.8 x 10–6 for 27 to 964˚C 8.7 x 10–6 for 27 to 1110˚C
Zirconium Oxide (ZrO2) (tetragonal, single crystal)
3 x 10–6 for 27 to 264˚C
parallel to b axis
2 x 10–6 for 27 to 504˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
7.08 Thermal L Page 479 Wednesday, December 31, 1969 17:00
Table 116. THERMAL EXPANSION OF (SHEET 31 OF 34) Class
Oxides (Con’t)
Ceramic
CERAMICS Thermal Expansion (˚C–1)
Zirconium Oxide (ZrO2) (tetragonal, single crystal) (Con’t) parallel to b axis
1.1 x 10–6 for 27 to 759˚C
Zirconium Oxide (ZrO2) (tetragonal, single crystal)
14 x 10–6 for 27 to 264˚C 13 x 10–6 for 27 to 504˚C
parallel to c axis
1.5 x 10–6 for 27 to 964˚C 1.9 x 10–6 for 27 to 1110˚C
11.9 x 10–6 for 27 to 759˚C 12.8 x 10–6 for 27 to 964˚C 13.6 x 10–6 for 27 to 1110˚C Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.51g/cm3)
2.7 x 10–6 for 25 to 1100˚C
(ρ=2.3g/cm3)
2.3 x 10–6 for 25 to 400˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
7.08 Thermal L Page 480 Wednesday, December 31, 1969 17:00
Table 116. THERMAL EXPANSION OF (SHEET 32 OF 34)
CERAMICS
Class
Ceramic
Thermal Expansion (˚C–1)
Oxides (Con’t)
(ρ=2.3g/cm3) (ρ=2.3g/cm3)
3.3 x 10–6 for 25 to 700˚C 3.7 x 10–6 for 25 to 900˚C
(ρ=2.1g/cm3)
2.2 x 10–6 for 25 to 400˚C
(ρ=2.1g/cm3) (ρ=2.1g/cm3)
2.8 x 10–6 for 25 to 700˚C 2.8 x 10–6 for 25 to 900˚C
(ρ=1.8g/cm3)
0.6 x 10–6 for 25 to 400˚C
(ρ=1.8g/cm3) (ρ=1.8g/cm3)
1.5 x 10–6 for 25 to 700˚C 1.7 x 10–6 for 25 to 900˚C
(glass)
3.7–3.8 x 10–6 for 25 to 900˚C
Mullite (3Al2O3 2SiO2)
4.5 x 10–6 for 20 to 1325˚C 4.63 x 10–6 for 25 to 500˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
7.08 Thermal L Page 481 Wednesday, December 31, 1969 17:00
Table 116. THERMAL EXPANSION OF (SHEET 33 OF 34)
CERAMICS
Class
Ceramic
Thermal Expansion (˚C–1)
Oxides (Con’t)
Mullite (3Al2O3 2SiO2) (Con’t)
5.0 x 10–6 for 25 to 800˚C 5.13 x 10–6 for 25 to 1000˚C 5.62 x 10–6 for 20 to 1500˚C
Sillimanite (Al2O3 SiO2)
6.58 x 10–6 at 20˚C
Spinel (Al2O3 MgO)
7.79 x 10–6 for 25 to 500˚C 8.41 x 10–6 for 25 to 1000˚C 9.17 x 10–6 for 25 to 1500˚C 9.0 x 10–6 for 20 to 1250˚C
Zircon (SiO2 ZrO2)
5.5 x 10–6 for 20 to 1200˚C 3.79 x 10–6 for 25 to 500˚C 4.62 x 10–6 for 25 to 1000˚C 5.63 x 10–6 for 20 to 1500˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
7.08 Thermal L Page 482 Wednesday, December 31, 1969 17:00
Table 116. THERMAL EXPANSION OF (SHEET 34 OF 34)
CERAMICS
Class
Ceramic
Thermal Expansion (˚C–1)
Silicides
Molybdenum Disilicide (MoSi2) Molybdenum Disilicide (MoSi2)
7.79 x 10–6 for 25–500˚C 8.51 x 10–6 for 25–1000˚C 9.00–9.18 x 10–6 for 25–1500˚C 8.41 x 10–6 for 0–1000˚C 8.56 x 10–6 for 0–1400˚C
Tungsten Disilicide (WSi2)
7.79 x 10–6 for 25–500˚C 8.31 x 10–6 for 25–1000˚C 8.21 x 10–6 for 0–1000˚C 8.81 x 10–6 for 0–1400˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
7.09 Thermal Page 483 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 117. THERMAL
EXPANSION OF SIC-WHISKER -REINFORCED CERAMICS Composite
Linear Coefficient of Thermal Expansion at 22 to 1100 °C (10-6/K)
Alumina Alumina with 20 vol% SiC whiskers Alumina with 30 vol% SiC whiskers Alumina with 60 vol% SiC whiskers
7.8 to 8.2 7.35 6.70 5.82
SiC Mullite with 20 vol% SiC whiskers
4.8 5.60
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p173,(1994).
©2001 CRC Press LLC
Shackelford & Alexander
483
7.10 Thermal L Page 484 Wednesday, December 31, 1969 17:00
Table 118. THERMAL EXPANSION OF (SHEET 1 OF 21)
GLASSES
Glass
Composition
Thermal Expansion
Temperature Range of Validity
SiO2 glass
Pure
3.50x10–7/K
–60—20˚C
3.80x10–7/K 4.00x10–7/K
–40—20˚C –20—20˚C
4.30x10–7/K
0–20˚C
5.35x10–7/K 5.75x10–7/K 5.85x10–7/K
20–100˚C 20–150˚C
5.92x10–7/K
20–250˚C
–7
5.94x10 /K 5.90x10–7/K
20–200˚C
20–300˚C 20–350˚C
Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
7.10 Thermal L Page 485 Wednesday, December 31, 1969 17:00
Table 118. THERMAL EXPANSION OF (SHEET 2 OF 21) Glass
Composition
SiO2–B2O3 glass
(39.2% mol B2O3 ) (39.2% mol B2O3 ) (39.2% mol B2O3 ) (44.2% mol B2O3 ) (44.2% mol B2O3 ) (44.2% mol B2O3 ) (50.8% mol B2O3 ) (50.8% mol B2O3 ) (50.8% mol B2O3 ) (58.4% mol B2O3 ) (58.4% mol B2O3 ) (58.4% mol B2O3 )
GLASSES
Thermal Expansion
Temperature Range of Validity
47.5x10–7/K 44.9x10–7/K 301x10–7/K
0–100˚C 100–200˚C 390–410˚C
49.8x10–7/K 50.8x10–7/K 450x10–7/K
0–100˚C 100–200˚C 380–400˚C
57.6x10–7/K 54.8x10–7/K 579x10–7/K
0–100˚C 100–200˚C 350–370˚C
71.9x10–7/K 70.1x10–7/K 694x10–7/K
0–100˚C 100–200˚C 320–340˚C
Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
7.10 Thermal L Page 486 Wednesday, December 31, 1969 17:00
Table 118. THERMAL EXPANSION OF (SHEET 3 OF 21) Glass
Composition
SiO2–B2O3 glass (Con’t)
(72.7% mol B2O3 ) (72.7% mol B2O3 ) (72.7% mol B2O3 ) (83.2% mol B2O3 ) (83.2% mol B2O3 ) (83.2% mol B2O3 ) (88.6% mol B2O3 ) (88.6% mol B2O3 ) (88.6% mol B2O3 ) (94.0% mol B2O3 ) (94.0% mol B2O3 ) (94.0% mol B2O3 )
GLASSES
Thermal Expansion
Temperature Range of Validity
87.0x10–7/K 89.7x10–7/K 899x10–7/K
0–100˚C 100–200˚C 300–320˚C
111.4x10–7/K 116.6x10–7/K 970x10–7/K
0–100˚C 100–200˚C 280–300˚C
118.1x10–7/K 126.0x10–7/K 1023x10–7/K
0–100˚C 100–200˚C 280–300˚C
131.7x10–7/K 141.9x10–7/K 1200x10–7/K
0–100˚C 100–200˚C 270–290˚C
Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
7.10 Thermal L Page 487 Wednesday, December 31, 1969 17:00
Table 118. THERMAL EXPANSION OF (SHEET 4 OF 21) Glass
SiO2–Al2O3 glass
GLASSES
Thermal Expansion
Temperature Range of Validity
for 115 hr)
22.7x10–7/K
20–900˚C
(13.9% mol Al2O3, water quenching)
17.2x10–7/K
20–600˚C
(17.4% mol Al2O3, 1000˚C for 115 hr) (17.4% mol Al2O3, water quenching)
28.3x10–7/K
20–800˚C
20.7x10–7/K
20–700˚C
for 115 hr)
6.2x10–7/K
20–980˚C
(3.1% mol Al2O3, water quenching)
6.2x10–7/K
20–980˚C
12.2x10–7/K
20–350˚C
Composition (13.9% mol Al2O3, 1000˚C
(3.1% mol Al2O3, 1000˚C
(5.4% mol Al2O3, 1130˚C
for 20 hr)
Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
7.10 Thermal L Page 488 Wednesday, December 31, 1969 17:00
Table 118. THERMAL EXPANSION OF (SHEET 5 OF 21) Glass
SiO2–Al2O3 glass
SiO2–CaO glass
GLASSES
Thermal Expansion
Temperature Range of Validity
for 115 hr)
14.5x10–7/K
20–950˚C
(8.2% mol Al2O3, water quenching)
8.8x10–7/K
20–800˚C
(30% mol CaO)
66±5x10–6/K
1700˚C
(35% mol CaO) (40% mol CaO) (42.5% mol CaO)
53±5x10–6/K 64±4x10–6/K 76±4x10–6/K
1700˚C 1700˚C
(45% mol CaO)
85–100±4x10–6/K
1700˚C
(47.5% mol CaO) (50% mol CaO)
76±4x10–6/K 84–85±4x10–6/K
(52.5% mol CaO)
76–107±4x10–6/K
1700˚C 1700˚C 1700˚C
Composition (8.2% mol Al2O3, 1000˚C
1700˚C
Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
7.10 Thermal L Page 489 Wednesday, December 31, 1969 17:00
Table 118. THERMAL EXPANSION OF (SHEET 6 OF 21)
GLASSES
Glass
Composition
Thermal Expansion
Temperature Range of Validity
SiO2–CaO glass
(55% mol CaO)
94–95±4x10–6/K
1700˚C
(57.5% mol CaO) (60% mol CaO)
95±4x10–6/K 103±4x10–6/K
1700˚C 1700˚C
(25.7% mol PbO)
51.45–52.23x10–7/K
20–170˚C
(30.0% mol PbO) (32.5% mol PbO) (33.2% mol PbO)
57.68–59.08x10–7/K 60.62–62.31x10–7/K 61.58–63.33x10–7/K
20–170˚C 20–170˚C
(35.0% mol PbO)
63.99–66.17x10–7/K
20–170˚C
SiO2–PbO glass
–7
(37.5% mol PbO) (42.6% mol PbO)
68.75–71.44x10 /K 75.16–78.58x10–7/K
(45.8% mol PbO)
78.85–82.60x10–7/K
20–170˚C
20–170˚C 20–170˚C 20–170˚C
Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
7.10 Thermal L Page 490 Wednesday, December 31, 1969 17:00
Table 118. THERMAL EXPANSION OF (SHEET 7 OF 21)
GLASSES
Glass
Composition
Thermal Expansion
Temperature Range of Validity
SiO2–PbO glass
(47.8% mol PbO)
83.03–87.03x10–7/K
20–170˚C
(49.8% mol PbO) (50% mol PbO) (53.8% mol PbO)
85.57–89.82x10–7/K 723x10 /K 90.62–95.25x10–7/K
20–170˚C 1100˚C
(57.5% mol PbO)
95.64–100.45x10–7/K
–7
–7
20–170˚C
20–170˚C 20–170˚C
(59.0% mol PbO) (61.0% mol PbO) (61.75% mol PbO)
97.00–101.90x10 /K 100.66–105.58x10–7/K
(66.7% mol PbO)
867x10–7/K
1100˚C
(67.7% mol PbO)
110.38–115.48x10–7/K
20–170˚C
101.36–106.30x10–7/K
20–170˚C 20–170˚C
Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
7.10 Thermal L Page 491 Wednesday, December 31, 1969 17:00
Table 118. THERMAL EXPANSION OF (SHEET 8 OF 21)
GLASSES
Glass
Composition
Thermal Expansion
Temperature Range of Validity
SiO2–Na2O glass
(20% mol Na2O)
6.7x10–5/K
liquidus temp. to 1400˚C
120x10–7/K
below Tg
315x10–7/K
above Tg
97.5x10–7/K
room temp–100˚C
(20% mol Na2O, Tg = 478˚C) (20% mol Na2O,
Tg = 478˚C) (20.3% mol Na2O)
–7
(20.3% mol Na2O) (20.3% mol Na2O) (20.3% mol Na2O)
99.3x10 /K 100.6x10–7/K 106.9x10–7/K
100–200˚C
(24.0% mol Na2O)
109.7x10–7/K
room temp–100˚C
(24.0% mol Na2O) (24.0% mol Na2O) (24.0% mol Na2O)
114.3x10–7/K 116.6x10–7/K 121.7x10–7/K
100–200˚C 200–300˚C
200–300˚C 300–400˚C
300–400˚C
Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
7.10 Thermal L Page 492 Wednesday, December 31, 1969 17:00
Table 118. THERMAL EXPANSION OF (SHEET 9 OF 21) Glass
SiO2–Na2O glass
GLASSES
Thermal Expansion
Temperature Range of Validity
152x10–7/K
below Tg
402x10–7/K
above Tg
(31.1% mol Na2O)
136.0x10–7/K
room temp–100˚C
(31.1% mol Na2O) (31.1% mol Na2O) (31.1% mol Na2O)
142.5x10–7/K 148.3x10–7/K 160.0x10–7/K
100–200˚C 200–300˚C 300–400˚C
165x10–7/K
below Tg
465x10–7/K
above Tg
17.2x10–5/K
liquidus temp.to 1400˚C
Composition (30% mol Na2O,
Tg = 455˚C) (30% mol Na2O, Tg = 455˚C)
(33% mol Na2O,
Tg = 445˚C) (33% mol Na2O, Tg = 445˚C) (33.3% mol Na2O)
Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
7.10 Thermal L Page 493 Wednesday, December 31, 1969 17:00
Table 118. THERMAL EXPANSION OF (SHEET 10 OF 21)
GLASSES
Glass
Composition
Thermal Expansion
Temperature Range of Validity
SiO2–Na2O glass
(33.8% mol Na2O)
143.9x10–7/K
room temp–100˚C
(33.8% mol Na2O) (33.8% mol Na2O) (33.8% mol Na2O)
153.6x10–7/K 159.1x10–7/K 173.6x10–7/K
100–200˚C 200–300˚C
(37.2% mol Na2O)
152.1x10–7/K
room temp–100˚C
–7
300–400˚C
(37.2% mol Na2O) (37.2% mol Na2O) (37.2% mol Na2O)
160.9x10 /K 171.6x10–7/K 187.7x10–7/K
100–200˚C
(40% mol Na2O)
20.0x10–5/K
liquidus temp. to 1400˚C
179x10–7/K
below Tg
500x10–7/K
above Tg
(40% mol Na2O, Tg = 421˚C) (40% mol Na2O,
Tg = 421˚C)
200–300˚C 300–400˚C
Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
7.10 Thermal L Page 494 Wednesday, December 31, 1969 17:00
Table 118. THERMAL EXPANSION OF (SHEET 11 OF 21) Glass
SiO2–Na2O glass
Thermal Expansion
Temperature Range of Validity
219x10–7/K
below Tg
574x10–7/K
above Tg
23.7x10–5/K
liquidus temp. to 1400˚C
154.5–183x10–7/K
0–100˚C
154.5–169x10–7/K 150±3–158±3x10–7/K
100–200˚C 20–200˚C
(0.01% mol Na2O)
140x10–7/K
–196—25˚C
(0.01% mol Na2O)
149.3x10–7/K
(0.01% mol Na2O)
149.0x10–7/K
20–50˚C 20–150˚C
Composition (45% mol Na2O,
Tg = 417˚C) (45% mol Na2O, Tg = 417˚C) (50% mol Na2O)
B2O3 glass
B2O3–Na2O glass
GLASSES
Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
7.10 Thermal L Page 495 Wednesday, December 31, 1969 17:00
Table 118. THERMAL EXPANSION OF (SHEET 12 OF 21) Glass
Composition
B2O3–Na2O glass
(4.4% mol Na2O) (4.4% mol Na2O) (4.4% mol Na2O) (4.4% mol Na2O) (5% mol Na2O,
Tg = 318˚C) (5% mol Na2O, Tg = 318˚C) (8.7% mol Na2O) (8.7% mol Na2O) (8.7% mol Na2O)
GLASSES
Thermal Expansion
Temperature Range of Validity
94.6x10–7/K 103.0x10–7/K 109.9x10–7/K 116.0x10–7/K
–196—25˚C 20–50˚C 20–150˚C 20–250˚C
115x10–7/K
below Tg
1400x10–7/K
above Tg
98.8x10–7/K 100.5x10–7/K 105.3x10–7/K
20–50˚C 20–150˚C 20–250˚C
Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
7.10 Thermal L Page 496 Wednesday, December 31, 1969 17:00
Table 118. THERMAL EXPANSION OF (SHEET 13 OF 21) Glass
B2O3–Na2O glass
Composition (10% mol Na2O,
Tg = 354˚C) (10% mol Na2O, Tg = 354˚C) (11.5% mol Na2O) (11.5% mol Na2O) (11.5% mol Na2O) (11.5% mol Na2O) (13.7% mol Na2O) (13.7% mol Na2O) (13.7% mol Na2O) (13.7% mol Na2O)
GLASSES
Thermal Expansion
Temperature Range of Validity
77x10–7/K
below Tg
1230x10–7/K
above Tg
71.5x10–7/K 88.7x10–7/K 94.9x10–7/K 97.9x10–7/K
–196—25˚C 20–50˚C 20–150˚C 20–250˚C
69.3x10–7/K 87.5x10–7/K 92.3x10–7/K 90.9x10–7/K
–196—25˚C 20–50˚C 20–150˚C 20–250˚C
Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
7.10 Thermal L Page 497 Wednesday, December 31, 1969 17:00
Table 118. THERMAL EXPANSION OF (SHEET 14 OF 21) Glass
B2O3–Na2O glass
Composition (15% mol Na2O,
Tg = 407˚C) (15% mol Na2O, Tg = 407˚C) (15.8% mol Na2O) (15.8% mol Na2O) (15.8% mol Na2O) (15.8% mol Na2O) (15.8% mol Na2O) (16.2% mol Na2O) (16.2% mol Na2O)
GLASSES
Thermal Expansion
Temperature Range of Validity
69x10–7/K
below Tg
761x10–7/K
above Tg
67.4x10–7/K 80.7x10–7/K
–196—25˚C 20–50˚C
87.8x10–7/K 93.3x10–7/K 97.9x10–7/K
20–150˚C 20–250˚C 20–350˚C
65.9x10–7/K 86.0x10–7/K
–196—25˚C 20–50˚C
Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
7.10 Thermal L Page 498 Wednesday, December 31, 1969 17:00
Table 118. THERMAL EXPANSION OF (SHEET 15 OF 21) Glass
Composition
B2O3–Na2O glass
(16.2% mol Na2O) (16.2% mol Na2O) (16.2% mol Na2O) (17.4% mol Na2O) (17.4% mol Na2O) (17.4% mol Na2O) (17.4% mol Na2O) (18.4% mol Na2O) (18.4% mol Na2O) (18.4% mol Na2O) (18.4% mol Na2O) (18.4% mol Na2O)
GLASSES
Thermal Expansion
Temperature Range of Validity
87.7x10–7/K 90.9x10–7/K 96.9x10–7/K
20–150˚C 20–250˚C 20–350˚C
85.6x10–7/K 89.1x10–7/K 92.4x10–7/K 96.3x10–7/K
20–50˚C 20–150˚C 20–250˚C 20–350˚C
69.1x10–7/K 86.2x10–7/K
–196—25˚C 20–50˚C
89.2x10–7/K 94.1x10–7/K 96.2x10–7/K
20–150˚C 20–250˚C 20–350˚C
Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
7.10 Thermal L Page 499 Wednesday, December 31, 1969 17:00
Table 118. THERMAL EXPANSION OF (SHEET 16 OF 21)
GLASSES
Thermal Expansion
Temperature Range of Validity
86.8x10–7/K 91.2x10–7/K 95.3x10–7/K 99.6x10–7/K
20–50˚C 20–150˚C 20–250˚C 20–350˚C
(20.0% mol Na2O)
87.6x10–7/K 91.6x10–7/K 97.6x10–7/K
20–50˚C 20–150˚C 20–250˚C
(20.0% mol Na2O)
101.3x10–7/K
20–350˚C
86x10–7/K
below Tg
586x10–7/K
above Tg
Glass
Composition
B2O3–Na2O glass
(19.6% mol Na2O) (19.6% mol Na2O) (19.6% mol Na2O) (19.6% mol Na2O) (20.0% mol Na2O) (20.0% mol Na2O)
(20% mol Na2O,
Tg = 456˚C) (20% mol Na2O, Tg = 456˚C)
Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
7.10 Thermal L Page 500 Wednesday, December 31, 1969 17:00
Table 118. THERMAL EXPANSION OF (SHEET 17 OF 21) Glass
Composition
B2O3–Na2O glass
(22.5% mol Na2O) (22.5% mol Na2O) (22.5% mol Na2O) (22.5% mol Na2O) (22.5% mol Na2O) (23.6% mol Na2O) (23.6% mol Na2O) (23.6% mol Na2O) (23.6% mol Na2O)
GLASSES
Thermal Expansion
Temperature Range of Validity
71.9x10–7/K 90.4x10–7/K
–196—25˚C 20–50˚C
94.7x10–7/K 98.7x10–7/K 104.0x10–7/K
20–150˚C 20–250˚C 20–350˚C
90.4x10–7/K 96.7x10–7/K 101.2x10–7/K 106.5x10–7/K
20–50˚C 20–150˚C 20–250˚C 20–350˚C
Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
7.10 Thermal L Page 501 Wednesday, December 31, 1969 17:00
Table 118. THERMAL EXPANSION OF (SHEET 18 OF 21) Glass
Composition
B2O3–Na2O glass
(25% mol Na2O,
Tg = 466˚C) (25% mol Na2O, Tg = 466˚C) (28.9% mol Na2O) (28.9% mol Na2O) (28.9% mol Na2O) (28.9% mol Na2O) (28.9% mol Na2O) (30% mol Na2O,
Tg = 468˚C) (30% mol Na2O, Tg = 468˚C)
GLASSES
Thermal Expansion
Temperature Range of Validity
95x10–7/K
below Tg
834x10–7/K
above Tg
81.4x10–7/K
–196—25˚C
102.1x10–7/K 107.4x10–7/K 112.8x10–7/K 117.1x10–7/K
20–50˚C 20–150˚C 20–250˚C 20–350˚C
128x10–7/K
below Tg
1150x10–7/K
above Tg
Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
7.10 Thermal L Page 502 Wednesday, December 31, 1969 17:00
Table 118. THERMAL EXPANSION OF (SHEET 19 OF 21)
GLASSES
Glass
Composition
Thermal Expansion
Temperature Range of Validity
B2O3–CaO glass
(29.3% mol CaO) (29.3% mol CaO)
54.9–56.4x10–7/K 60.2–60.8x10–7/K
(29.3% mol CaO)
63.9–65.4x10–7/K
room temp. to 100˚C 100–200˚C 200–300˚C
(29.3% mol CaO) (29.3% mol CaO) (29.3% mol CaO)
71.3–71.6x10–7/K 76.9–77.1x10–7/K 80.9–86.8x10–7/K
300–400˚C 400–500˚C 500–600˚C
(31.4% mol CaO)
57.3–58.2x10–7/K
room temp. to 100˚C
(31.4% mol CaO) (31.4% mol CaO)
63.5–65.1x10–7/K 67.4–68.1x10–7/K
100–200˚C
(31.4% mol CaO)
76.5–76.7x10–7/K
300–400˚C
(31.4% mol CaO) (31.4% mol CaO)
–7
79.2–81.0x10 /K 83.1–88.5x10–7/K
200–300˚C
400–500˚C 500–600˚C
Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
7.10 Thermal L Page 503 Wednesday, December 31, 1969 17:00
Table 118. THERMAL EXPANSION OF (SHEET 20 OF 21)
GLASSES
Glass
Composition
Thermal Expansion
Temperature Range of Validity
B2O3–CaO glass
(34.9% mol CaO)
60.1–66.2x10–7/K
room temp. to 100˚C
(34.9% mol CaO) (34.9% mol CaO)
67.5–67.6x10–7/K 74.7–75.2x10–7/K
100–200˚C 200–300˚C
(34.9% mol CaO)
77.8–78.5x10–7/K
300–400˚C
(34.9% mol CaO) (34.9% mol CaO)
83.8–95.0x10–7/K 91.8–92.1x10–7/K
400–500˚C 500–600˚C
(37.1% mol CaO)
63.1–64.0x10–7/K
room temp. to 100˚C
(37.1% mol CaO) (37.1% mol CaO)
68.4–70.4x10–7/K
100–200˚C 200–300˚C
–7
74.6–75.8x10 /K
Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
7.10 Thermal L Page 504 Wednesday, December 31, 1969 17:00
Table 118. THERMAL EXPANSION OF (SHEET 21 OF 21)
GLASSES
Glass
Composition
Thermal Expansion
Temperature Range of Validity
B2O3–CaO glass
(37.1% mol CaO)
81.6–82.2x10–7/K
300–400˚C
(37.1% mol CaO) (37.1% mol CaO)
86.9–87.6x10–7/K
400–500˚C 500–600˚C
–7
93.5–95.5x10 /K
Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
7.10 Thermal L Page 505 Wednesday, December 31, 1969 17:00
Table 119. THERMAL EXPANSION OF (SHEET 1 OF 13)
POLYMERS
Polymer
Thermal Expansion Coefficient ASTM D696 (•F–1)
Medium impact
3.2—4.8 x 10–6
High impact
5.5—6.0 x 10–6
Very high impact
5.0—6.0 x 10–6
Low temperature impact
5.0—6.0 x 10–6
Heat resistant
3.0—4.0 x 10–6
Cast Resin Sheets, Rods: General purpose, type I
4.5 x 10–6
General purpose, type II
4.5 x 10–6
Moldings: Grades 5, 6, 8
3—4 x 10–6
High impact grade
4—6 x 10–6
Type
ABS Resins; Molded, Extruded
Acrylics; Cast, Molded, Extruded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
7.10 Thermal L Page 506 Wednesday, December 31, 1969 17:00
Table 119. THERMAL EXPANSION OF (SHEET 2 OF 13)
POLYMERS
Polymer
Thermal Expansion Coefficient ASTM D696 (•F–1)
Thermoset Carbonate
Allyl diglycol carbonate
6 x 10–5
Alkyds; Molded
Putty (encapsulating)
1.3 x 10–5
Rope (general purpose)
1.3 x 10–5
Granular (high speed molding)
1.3 x 10–5
Glass reinforced (heavy duty parts)
1.3 x 10–5
ASTM Grade: H6—1
4.4—9.0 x 10–5
H4—1
4.4—9.0 x 10–5
H2—1
4.4—9.0 x 10–5
MH—1, MH—2
4.4—9.0 x 10–5
MS—1, MS—2
4.4—9.0 x 10–5
S2—1
4.4—9.0 x 10–5
Type
Cellulose Acetate; Molded, Extruded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
7.10 Thermal L Page 507 Wednesday, December 31, 1969 17:00
Table 119. THERMAL EXPANSION OF (SHEET 3 OF 13)
POLYMERS
Polymer
Thermal Expansion Coefficient ASTM D696 (•F–1)
ASTM Grade: H4
6—9 x 10–5
MH
6—9 x 10–5
S2
6—9 x 10–5
ASTM Grade: 1
6—9 x 10–5
3
6—9 x 10–5
6
6—9 x 10–5
Chlorinated polyether
6.6 x 10–6
Chlorinated polyvinyl chloride
4.4 x 10–6
Polycarbonate
3.75 x 10–6
Polycarbonate (40% glass fiber reinforced)
1.0—1.1 x 10–6
Type
Cellulose Acetate Butyrate; Molded, Extruded
Cellusose Acetate Propionate; Molded, Extruded
Chlorinated Polymers
Polycarbonates
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
7.10 Thermal L Page 508 Wednesday, December 31, 1969 17:00
Table 119. THERMAL EXPANSION OF (SHEET 4 OF 13)
POLYMERS
Polymer
Thermal Expansion Coefficient ASTM D696 (•F–1)
Orlon filled
5.0 x 10–5
Dacron filled
5.2 x 10–5
Asbestos filled
4.0 x 10–5
Glass fiber filled
2.2—2.6 x 10–5
Polytrifluoro chloroethylene (PTFCE)
3.88 x 10–5
Polytetrafluoroethylene (PTFE)
55 x 10–5
Ceramic reinforced (PTFE)
1.7—2.0 x 10–5
Fluorinated ethylene propylene(FEP)
8.3—10.5 x 10–5
Polyvinylidene— fluoride (PVDF)
8.5 x 10–5
Type
Diallyl Phthalates; Molded
Fluorocarbons; Molded,Extruded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
7.10 Thermal L Page 509 Wednesday, December 31, 1969 17:00
Table 119. THERMAL EXPANSION OF (SHEET 5 OF 13)
POLYMERS
Polymer
Thermal Expansion Coefficient ASTM D696 (•F–1)
Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid
3.3 x 10–5
Cast flexible
3—5 x 10–5
Molded
1—2 x 10–5
General purpose glass cloth laminate
3.3—4.8 x 10–6
High strength laminate
3.3—4.8 x 10–6
Filament wound composite
2—6 x 10–5
High performance resins (cycloaliphatic diepoxides) Molded Epoxy novolacs Cast, rigid
1.7—2.2 x 10–6
Type
Epoxies; Cast, Molded, Reinforced
Epoxies—Molded, Extruded
1.6—3.0 x 10–6
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
7.10 Thermal L Page 510 Wednesday, December 31, 1969 17:00
Table 119. THERMAL EXPANSION OF (SHEET 6 OF 13)
POLYMERS
Polymer
Thermal Expansion Coefficient ASTM D696 (•F–1)
Filler & type Cellulose electrical
1.11—2.78 x 10–5
Glass fiber
0.82 x 10–5
General purpose
4.8 x 10–5
Glass fiber (30%) reinforced
1.2 x 10–5
Cast
4.4 x 10–5
Type 11
5.5 x 10–5
Type 12
7.2 x 10–5
General purpose molding
1.69—1.7 x 10–5
Glass fiber reinforced
1.5–3.3 x 10–5
General purpose extrusion
1.7 x 10–5
Type
Melamines; Molded
Nylons; Molded, Extruded Type 6 Nylon
6/6 Nylon
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
7.10 Thermal L Page 511 Wednesday, December 31, 1969 17:00
Table 119. THERMAL EXPANSION OF (SHEET 7 OF 13)
POLYMERS
Polymer
Thermal Expansion Coefficient ASTM D696 (•F–1)
General purpose
1.5 x 10–5
Glass fiber (30%) reinforced
3.5 x 10–5
Type and filler General: woodflour and flock
1.66—2.50 x 10–5
Shock: paper, flock, or pulp
1.6—2.3 x 10–5
High shock: chopped fabric or cord
1.60—2.22 x 10–5
Very high shock: glass fiber
0.88 x 10–5
Rubber phenolic—woodflour or flock
0.83—2.20 x 10–5
Rubber phenolic—chopped fabric
1.7 x 10–5
Rubber phenolic—asbestos
2.2 x 10–5
ABS–Polycarbonate Alloy
6.12 x 10–5
Type
6/10 Nylon
Phenolics; Molded
Phenolics: Molded
ABS–Polycarbonate Alloy
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
7.10 Thermal L Page 512 Wednesday, December 31, 1969 17:00
Table 119. THERMAL EXPANSION OF (SHEET 8 OF 13)
POLYMERS
Polymer
Thermal Expansion Coefficient ASTM D696 (•F–1)
PVC–Acrylic Alloy PVC–acrylic sheet
3.5 x 10–5
Unreinforced
2.5 x 10–6
Unreinforced 2nd value
3.0—4.5 x 10–6
Glass reinforced
0.8 x 10–6
Standard
4.5 x 10–5
20% glass reinforced
2.0—4.5 x 10–5
22% TFE reinforced Copolymer: Standard
4.5 x 10–5
25% glass reinforced
2.2—4.7 x 10–5
High flow
4.7 x 10–5
Type
PVC–Acrylic
Polymides
Homopolymer
4.7 x 10–5
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
7.10 Thermal L Page 513 Wednesday, December 31, 1969 17:00
Table 119. THERMAL EXPANSION OF (SHEET 9 OF 13)
POLYMERS
Polymer
Thermal Expansion Coefficient ASTM D696 (•F–1)
Injection Moldings: General purpose grade
5.3 x 10–5
Glass reinforced grades
2.7—3.3 x 10–5
Glass reinforced self extinguishing
3.5 x 10–5
General purpose grade
4.9—13.0 x 10–5
Type
Polyester; Thermoplastic
Polyesters: Thermosets
Phenylene Oxides
Cast polyyester Rigid Reinforced polyester moldings High strength (glass fibers)
3.9—5.6 x 10–5 13—19 x 10–6
SE—100
3.8 x 10–5
SE—1
3.3 x 10–5
Glass fiber reinforced
1.4–2.0 x 10–5
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
7.10 Thermal L Page 514 Wednesday, December 31, 1969 17:00
Table 119. THERMAL EXPANSION OF (SHEET 10 OF 13)
POLYMERS
Polymer
Thermal Expansion Coefficient ASTM D696 (•F–1)
Phenylene oxides (Noryl) Standard
3.1 x 10–5
Glass fiber reinforced
1.2–1.6 x 10–5
Polyarylsulfone
Polyarylsulfone
2.6 x 10–5
Polypropylene
General purpose
3.8—5.8 x 10–5
High impact
4.0—5.9 x 10–5
Asbestos filled
2—3 x 10–5
Glass reinforced
1.6—2.4 x 10–5
Standard
3.0—4.9 x 10–5
40% glass reinforced
4 x 10–5
Type
Phenylene Oxides (Con’t)
Polyphenylene sulfide
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
7.10 Thermal L Page 515 Wednesday, December 31, 1969 17:00
Table 119. THERMAL EXPANSION OF (SHEET 11 OF 13)
POLYMERS
Polymer
Thermal Expansion Coefficient ASTM D696 (•F–1)
Type I—lower density (0.910–0.925) Melt index 0.3—3.6
8.9—11.0 x 10–5
Melt index 6—26
8.9—11.0 x 10–5
Melt index 200
11 x 10–5
Type II—medium density (0.926—0.940) Melt index 20
8.3—16.7 x 10–5
Melt index l.0—1.9
8.3—16.7 x 10–5
Type III—higher density (0.941—0.965) Melt index 0.2—0.9
8.3—16.7 x 10–5
Melt Melt index 0.l—12.0
8.3—16.7 x 10–5
Melt index 1.5—15
8.3—16.7 x 10–5
Type
Polyethylenes; Molded, Extruded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
7.10 Thermal L Page 516 Wednesday, December 31, 1969 17:00
Table 119. THERMAL EXPANSION OF (SHEET 12 OF 13)
POLYMERS
Polymer
Thermal Expansion Coefficient ASTM D696 (•F–1)
General purpose
3.3—4.8 x 10–5
Medium impact
3.3—4.7 x 10–5
High impact
2.2—5.6 x 10–5
Glass fiber -30% reinforced
1.8 x 10–5
Styrene acrylonitrile (SAN)
3.6—3.7 x 10–5
Glass fiber (30%) reinforced SAN
1.6 x 10–5
Rigid—normal impact
2.8—3 .3 x 10–5
Vinylidene chloride
8.78 x 10–5
Type
Polystyrenes; Molded
Polyvinyl Chloride And Copolymers; Molded, Extruded
Vinylidene chloride
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
7.10 Thermal L Page 517 Wednesday, December 31, 1969 17:00
Table 119. THERMAL EXPANSION OF (SHEET 13 OF 13)
POLYMERS
Polymer
Thermal Expansion Coefficient ASTM D696 (•F–1)
Fibrous (glass) reinforced silicones
3.17—3.23 x 10–5
Granular (silica) reinforced silicones
2.5—5.0 x 10–5
Alpha—cellulose filled (ASTM Type l)
1.22—1 .50 x 10–5
Type
Silicones; Molded, Laminated
Ureas; Molded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
7.11 Thermal Page 518 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 120. THERMAL
EXPANSION COEFFICIENTS OF MATERIALS FOR INTEGRATED CIRCUITS Material
Coefficient Range
Temperature Range (˚C)
Aluminum oxide ceramic Brass Kanthal A Kovar
6.0–7.0 17.7–21.2 13.9–15.1 5.0
25–300 25–300 20–900 25–300
Pyrex glass Pyroceram (#9608)
3.2 420
25–300 25–300
Pyroceram cement (Vitreous #45) Pyroceram cement (Devitrified) Pyroceram cement (#89, #95)
4 2.4 8–10
0–300 25–300 —
Silicon carbide Silicon nitride (α) Silicon nitride (β) Solder glass (Kimble CV-101)
4.8
0–1,000
2.9 2.25
25–1,000 25–1,000
809
0–300
Coefficient of Linear Thermal Expansion of Selected Materials per K Note: Multiply all values by 10–6. Source: from Beadles, R. L., Interconnections and Encapsulation, Integrated Silicon Device Technology, Vol. 14, Research Triangle Institute, Research Triangle Park, N. C., 1967. in CRC Handbook of Materials Science, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC
518
CRC Handbook of Materials Science & Engineering
7.11 Thermal Page 519 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 121. THERMAL
EXPANSION OF SILICON CARBIDE SCS–2–AL
Fiber orientation
No. of plies
Coefficient of Thermal Expansion, (10-6/K)
0° 90°
6, 8, 12 6, 12,40
6.6 21.3
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p149,(1994).
©2001 CRC Press LLC
Shackelford & Alexander
519
7.11 Thermal Page 520 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 122. ASTM
B 601 T EMPER DESIGNATION CODES FOR COPPER AND COPPER ALLOYS (SHEET 1 OF 2) Class
Cold-worked tempers(a)
Cold-worked tempers(b)
Temper Designation
Temper Name or Material Condition
H00 H01 H02 H03
1/8 hard 1/4 hard 1/2 hard 3/4 hard
H04 H06 H08 H10
Hard Extra hard Spring Extra spring
H12 H13 H14
Special Spring Ultra Spring Super Spring
H50 H52 H55 H58
Extruded and drawn Pierced and drawn Light drawn, light cold rolled Drawn general purpose
H60 H63 H64 H66
Cold heading; forming Rivet Screw Bolt
H70 H80 H85
Bending Hard drawn Medium-hard-drawn electrical wire
H86 H90
Hard-drawn electrical wire As-finned
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p439, (1993).
©2001 CRC Press LLC
520
CRC Handbook of Materials Science & Engineering
7.11 Thermal Page 521 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 122. ASTM
B 601 T EMPER DESIGNATION CODES FOR COPPER AND COPPER ALLOYS (SHEET 2 OF 2) Class
Temper Designation
Temper Name or Material Condition
Cold-worked and stress-relieved tempers
HR01
H01 and stress relieved
HR02 HR04 HR08
H02 and stress relieved H04 and stress relieved H08 and stress relieved
HR10 HR20 HR50
H10 and stress relieved As-finned Drawn and stress relieved
HT04
H04 and order heat treated
HT08
H08 and order heat treated
Cold-rolled and orderstrengthened tempers(c)
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p439, (1993). (a) Cold-worked tempers to meet standard requirements based on cold rolling or cold drawing. (b) Cold-worked tempers to meet standard requirements based on temper names applicable to specific processes. (c) Tempers produced by controlled amounts of cold work following by thermal treatment to produce order strengthening.
©2001 CRC Press LLC
Shackelford & Alexander
521
7.11 Thermal Page 522 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 123. TEMPER
DESIGNATION SYSTEM FOR ALUMINUM ALLOYS
Temper
Definition
F O
As fabricated Annealed
H1 H2
Strain-hardened only Strain-hardened and partially annealed Strain-hardened and stabilized (mechanical properties stabilized by lowtemperature thermal treatment)
H3
T3
Cooled from an elevated-temperature shaping process and naturally aged to a substantially stable condition Cooled from an elevated temperature shaping process, cold-worked, and naturally aged to a substantially stable condition Solution heat-treated, cold-worked, and naturally aged to a substantially stable condition
T4 T5 T6
Solution heat-treated and naturally aged to a substantially stable condition Cooled from an elevated-temperature shaping process and artificially aged Solution heat-treated and artificially aged
T7 T8 T9
Solution heat-treated and stabilized Solution heat-treated, cold-worked, and artificially aged Solution heat-treated, artificially aged, and cold-worked Cooled from an elevated temperature shaping process, cold-worked, and artificially aged
T1 T2
T10
Source: data from Metals Handbook, 9th ed., Vol. 2, American Society for Metals, Metals Park, Ohio, 1979, 24-27.
©2001 CRC Press LLC
522
CRC Handbook of Materials Science & Engineering
7.12 Thermal L Page 523 Wednesday, December 31, 1969 17:00
Table 124. TOOL
STEEL SOFTENING AFTER 100 HOURS Hardness (HRC) after 100 h at
Original Hardness (HRC)
480˚C
540˚C
600˚C
650˚C
700˚C
760˚C
H13
60.2 41.7
48.7 38.6
46.3 39.3
29.0 27.7
22.7 23.7
20.1 20.2
13.9 13.2
H21
49.2 36.7
48.7 34.8
47.6 34.9
37.2 32.6
27.4 27.1
19.8 19.8
16.2 14.9
H23
40.8 38.9
40.0 38.9
40.6 38.0
40.8 38.0
38.6 37.1
33.2 32.6
26.8 26.6
H26
61.0 42.9
60.6 42.4
60.3 42.3
47.1 41.3
38.4 34.9
26.9 26.4
21.3 21.1
Type
Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.426, (1984). See also: Mechanical Properties of Tool Steels
©2001 CRC Press LLC
7.12 Thermal L Page 524 Wednesday, December 31, 1969 17:00
Table 125. THERMOPLASTIC
Polymer
Flexural modulus 106 psi
Injection Molding Types: General purpose grade Glass reinforced grades Glass reinforced grades
1.2—1.5
POLYESTER SOFTENING WITH TEMPERATURE Tensile strength 103 psi D638
212•F
302• F
7.5—8 17—25
7
5.5
0.63
0.53
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. See also: Mechanical Properties of Polymers
©2001 CRC Press LLC
7.13 Thermal Page 525 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 126. HEAT-DEFLECTION
TEMPERATURE OF CARBON - AND GLASS -REINFORCED ENGINEERING THERMOPLASTICS (SHEET 1 OF 2) Class
Resin Type
Composition
Heat-Deflection Temperature (°C)
Amorphous
Acrylonitrile-butadiene-styrene(ABS)
30% glass fiber 30% carbon fiber
105 105
Nylon
30% glass fiber 30% carbon fiber
140 145
Polycarbonate
30% glass fiber 30% carbon fiber
150 150
Polyetherimide
30% glass fiber 30% carbon fiber
215 215
Polyphenylene oxide (PPO)
30% glass fiber 30% carbon fiber
155 155
Polysulfone
30% glass fiber 30% carbon fiber
185 185
30% glass fiber
120
30% glass fiber
170
Styrene-maleic-anhydride (SMA)
Thermoplastic polyurethane
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p111–112, (1994).
©2001 CRC Press LLC
Shackelford & Alexander
525
7.13 Thermal Page 526 Wednesday, December 31, 1969 17:00
Thermal Properties
Table 126. HEAT-DEFLECTION
TEMPERATURE OF CARBON - AND GLASS -REINFORCED ENGINEERING THERMOPLASTICS (SHEET 2 OF 2) Class
Resin Type
Composition
Heat-Deflection Temperature (°C)
Crystalline
Acetal
30% glass fiber 20% carbon fiber
165 160
Nylon 66%
30% glass fiber 30% carbon fiber
255 257
Polybutylene terephthalate (PBT)
30% glass fiber 30% carbon fiber
210 210
Polythylene terephthalate (PET)
30% glass fiber
225
Polyphenylene sulfide (PPS)
30% glass fiber 30% carbon fiber
260 265
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p111–112, (1994).
©2001 CRC Press LLC
526
CRC Handbook of Materials Science & Engineering
Shackelford, James F. and Alexander, W. “Mechanical Properties of Materials” Materials Science and Engineering Handbook Ed. James F. Shackelford & W. Alexander Boca Raton: CRC Press LLC, 2001
8.00 Mechanical Page 527 Wednesday, December 31, 1969 17:00
CHAPTER 6
List of Tables
Mechanical Properties of Materials
Tensile Strength Tensile Strength of Tool Steels Tensile Strength of Gray Cast Tensile Strength of Gray Cast Iron Bars Tensile Strength of Ductile Irons Tensile Strength of Malleable Iron Castings Tensile Strength of Austenitic Stainless Steels Tensile Strength of Ferritic Stainless Steels Tensile Strength of Precipitation-Hardening Austenitic Stainless Steels Tensile Strength of High–Nitrogen Austenitic Stainless Steels Tensile Strength of Martensitic Stainless Steels Tensile Strength of Wrought Coppers and Copper Alloys Tensile Strength of Aluminum Casting Alloys Tensile Strength of Wrought Aluminum Alloys Tensile Strength of Cobalt-Base Superalloys Tensile Strength of Nickel-Base Superalloys Tensile Strength of Wrought Titanium Alloys at Room Temperature Tensile Strength of Wrought Titanium Alloys at High Temperature (continued)
©2001 CRC Press LLC
527
8.00 Mechanical Page 528 Wednesday, December 31, 1969 17:00
Mechanical Properties List of Tables (Continued)
Tensile Strength (continued) Tensile Strength of Refractory Metal Alloys Tensile Strength of Ceramics Tensile Strength of Glass Tensile Strength of Polymers Tensile Strength of Fiberglass Reinforced Plastics Tensile Strength of Carbon- and Glass-Reinforced Engineering Thermoplastics Strength of Graphite Fiber Reinforced Metals Tensile Strength of Graphite/Magnesium Castings Tensile Strength of Graphite/Aluminum Composites Tensile Strength of Graphite/Aluminum Composites Tensile Strength of Silicon Carbide SCS–2–Al Ultimate Tensile Strength of Investment Cast Silicon Carbide SCS–Al Ultimate Tensile Strength of Silicon Carbide–Aluminum Alloy Composites Tensile Strength of SiC-Whisker–Reinforced Aluminum Alloy Ultimate Tensile Strength of Aluminum Alloy Reinforced with SiC Whiskers vs. Temperature Ultimate Tensile Strength of Reinforced Aluminum Alloy vs. Temperature Tensile Strength of Polycrystalline–Alumina–Reinforced Aluminum Alloy Tensile Strength of Boron/Aluminum Composites Compressive Strength Compressive Strength of Gray Cast Iron Bars Compressive Strength of Ceramics Compressive Strength of Fiberglass Reinforced Plastic Ultimate Compressive Strength of Investment Cast Silicon Carbide SCS–Al
©2001 CRC Press LLC
528
CRC Handbook of Materials Science & Engineering
8.00 Mechanical Page 529 Wednesday, December 31, 1969 17:00
Mechanical Properties List of Tables
Yield Strength
(Continued)
Yield Strength of Tool Steels Yield Strength of Ductile Irons Yield Strength of Malleable Iron Castings Yield Strength of Austenitic Stainless Steels Yield Strength of Ferritic Stainless Steels Yield Strength of Martensitic Stainless Steels Yield Strength of Precipitation-Hardening Austenitic Stainless Steels Yield Strength of High–Nitrogen Austenitic Stainless Steels Yield Strength of Wrought Coppers and Copper Alloys Yield Strength of Cast Aluminum Alloys Yield Strength of Wrought Aluminum Alloys Yield Strength of Wrought Titanium Alloys at Room Temperature Yield Strength of Wrought Titanium Alloys at High Temperature Yield Strength of Cobalt-Base Superalloys Yield Strength of Nickel-Base Superalloys Yield Strength of Commercially Pure Tin Yield Strength of Polymers Yield Strength of SiC-Whisker–Reinforced Aluminum Alloy Yield Strength of Reinforced Aluminum Alloy vs. Temperature Yield Strength of Polycrystalline–Alumina–Reinforced Aluminum Alloy Compressive Yield Strength of Polymers Flextural Strength Flexural Strength of Polymers Flextural Strength of Fiberglass Reinforced Plastics
©2001 CRC Press LLC Shackelford & Alexander
529
8.00 Mechanical Page 530 Wednesday, December 31, 1969 17:00
Mechanical Properties List of Tables (Continued)
Shear Strength Shear Strength of Wrought Aluminum Alloys Torsion Shear Strength of Gray Cast Fe Hardness Hardness of Gray Cast Irons Hardness of Gray Cast Iron Bars Hardness of Malleable Iron Castings Hardness of Ductile Irons Hardness of Tool Steels Hardness of Austenitic Stainless Steels Hardness of Ferritic Stainless Steels Hardness of Martensitic Stainless Steels Hardness of Precipitation-Hardening Austenitic Stainless Steels Machinability Rating of Wrought Coppers and Copper Alloys Hardness of Wrought Aluminum Alloys Hardness of Wrought Titanium Alloys at Room Temperature Hardness of Ceramics Microhardness of Glass Hardness of Polymers Hardness of Si3N4 and Al2O3 Composites Coefficient of Friction Coefficient of Static Friction for Polymers Abrasion Resistance Abrasion Resistance of Polymers Fatique Fatigue Strength of Wrought Aluminum Alloys Reversed Bending Fatigue Limit of Gray Cast Iron Bars
©2001 CRC Press LLC
530
CRC Handbook of Materials Science & Engineering
8.00 Mechanical Page 531 Wednesday, December 31, 1969 17:00
Mechanical Properties List of Tables
Impact
(Continued)
Impact Energy of Tool Steels Impact Strength of Wrought Titanium Alloys at Room Temperature Impact Strength of Polymers Impact Strength of Fiberglass Reinforced Plastics Impact Strength of Carbon- and Glass-Reinforced Engineering Thermoplastics Fracture Toughness Fracture Toughness of Si3N4 and Al2O3 Composites Tensile Modulus Tensile Modulus of Gray Cast Irons Tension Modulus of Treated Ductile Irons Tensile Modulus of Fiberglass Reinforced Plastics Tensile Modulus of Graphite/Aluminum Composites Tensile Modulus of Investment Cast Silicon Carbide SCS–Al Tensile Modulus of Silicon Carbide SCS–2–Al Young’s Modulus Young’s Modulus of Ceramics Young’s Modulus of Glass (continues)
©2001 CRC Press LLC Shackelford & Alexander
531
8.00 Mechanical Page 532 Wednesday, December 31, 1969 17:00
Mechanical Properties List of Tables (Continued)
Elastic Modulus Elastic Modulus of Wrought Stainless Steels Modulus of Elasticity of Wrought Titanium Alloys Modulus of Elasticity in Tension for Polymers Modulus of Elasticity of 55MSI Graphite/6061 Aluminum Composites Modulus of Elasticity of Graphite/Magnesium Castings Modulus of Elasticity of Graphite/Aluminum Composites Modulus of Elasticity of Graphite Fiber Reinforced Metals Modulus of Elasticity of SiC-Whisker–Reinforced Aluminum Alloy Modulus of Elasticity of Polycrystalline–Alumina–Reinforced Aluminum Alloy Modulus of Elasticity of Boron/Aluminum Composites Compression Modulus Compression Modulus of Treated Ductile Irons Modulus of Elasticity in Compression for Polymers Bulk Modulus Bulk Modulus of Glass Sheer Modulus Shear Modulus of Glass Torsion Modulus Torsional Modulus of Gray Cast Irons Torsion Modulus of Treated Ductile Irons Flexural Modulus Modulus of Elasticity in Flexure for Polymers Flexural Modulus of Fiberglass Reinforced Plastics Flexural Modulus of Carbon- and Glass-Reinforced Engineering Thermoplastics Modulus of Rupture Modulus of Rupture for Ceramics Rupture Strength of Refractory Metal Alloys Rupture Strength of Superalloys Modulus of Rupture for Si3N4 and Al2O3Composites
©2001 CRC Press LLC
532
CRC Handbook of Materials Science & Engineering
8.00 Mechanical Page 533 Wednesday, December 31, 1969 17:00
Mechanical Properties List of Tables
Poisson’s Ratio
(Continued)
Poisson's Ratio of Wrought Titanium Alloys Poisson’s Ratio for Ceramics Poisson’s Ratio of Glass Poisson's Ratio of Silicon Carbide SCS–2–Al Compression Poisson’s Ratio of Treated Ductile Irons Torsion Poisson’s Ratio of Treated Ductile Irons Elongation Elongation of Tool Steels Elongation of Ductile Irons Elongation of Malleable Iron Castings Elongation of Ferritic Stainless Steels Elongation of Martensitic Stainless Steels Elongation of Precipitation-Hardening Austenitic Stainless Steels Elongation of High–Nitrogen Austenitic Stainless Steels Total Elongation of Cast Aluminum Alloys Elongation of Wrought Coppers and Copper Alloys Elongation of Commercially Pure Tin Elongation of Cobalt-Base Superalloys Elongation of Nickel-Base Superalloys Ductility of Refractory Metal Alloys Elongation of Wrought Titanium Alloys at Room Temperature Elongation of Wrought Titanium Alloys at High Temperature Total Elongation of Polymers Elongation at Yield for Polymers Ultimate Tensile Elongation of Fiberglass Reinforced Plastics Total Strain of Silicon Carbide SCS–2–Al
©2001 CRC Press LLC Shackelford & Alexander
533
8.00 Mechanical Page 534 Wednesday, December 31, 1969 17:00
Mechanical Properties List of Tables (Continued)
Area Reduction Area Reduction of Tool Steels Reduction in Area of Austenitic Stainless Steels Reduction in Area of Ferritic Stainless Steels Reduction in Area of High–Nitrogen Austenitic Stainless Steels Reduction in Area of Precipitation-Hardening Austenitic Stainless Steels Reduction in Area of Martensitic Stainless Steels Reduction in Area of Commercially Pure Tin Area Reduction of Wrought Titanium Alloys at Room Temperature Area Reduction of Wrought Titanium Alloys at High Temperature Ratios Strength Density Ratio of Graphite Fiber Reinforced Metals Modulus Density Ratio of Graphite Fiber Reinforced Metals Viscosity Viscosity of Glasses Internal Friction of SiO2 Glass Surface Tension Surface Tension of Elements at Melting Surface Tension of Liquid Elements
©2001 CRC Press LLC
534
CRC Handbook of Materials Science & Engineering
8.01 Mechanical Page 535 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 127. TENSILE
STRENGTH OF TOOL STEELS (SHEET 1 OF 2) Tensile Strength (MPa)
Type
Condition
L2
Annealed Oil quenched from 855 •C and single tempered at: 205 •C 315 •C
2000 1790
425 •C 540 •C 650 •C
1550 1275 930
Annealed Oil quenched from 845 •C and single tempered at: 315 •C 425 •C 540 •C 650 •C
655
L6
S1
S5
710
2000 1585 1345 965
Annealed Oil quenched from 930 •C and single tempered at: 205 •C 315 •C
690 2070 2030
425 •C 540 •C 650 •C
1790 1680 1345
Annealed Oil quenched from 870 •C and single tempered at: 205 •C 315 •C
725 2345 2240
425 •C 540 •C 650 •C
1895 1520 1035
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984).
©2001 CRC Press LLC Shackelford & Alexander
535
8.01 Mechanical Page 536 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 127. TENSILE
STRENGTH OF TOOL STEELS (SHEET 2 OF 2) Tensile Strength (MPa)
Type
Condition
S7
Annealed Fan cooled from 940 •C and single tempered at: 205 •C 315 •C
2170 1965
425 •C 540 •C 650 •C
1895 1820 1240
640
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984).
©2001 CRC Press LLC
536
CRC Handbook of Materials Science & Engineering
8.01 Mechanical Page 537 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 128. TENSILE
STRENGTH OF GRAY CAST IRONS
SAE grade
Maximum Tensile Strength (MPa)
G1800 G2500 G2500a
118 173 173
G3000 C3500 G3500b
207 241 1241
G3500c G4000 G4000d
1241 276 1276
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984).
Table 129. TENSILE
STRENGTH OF GRAY CAST IRON BARS
ASTM Class
Tensile Strength (MPa)
ASTM Class
Tensile Strength (MPa)
20 25 30
152 179 214
35 40 50
252 293 362
60
431
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
537
8.01 Mechanical Page 538 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 130. TENSILE
STRENGTH OF DUCTILE IRONS
Specification Number
Grade or Class
Tensile Strength (MPa)
ASTM A395-76 ASME SA395
60-40-18
414
ASTM A476-70(d); SAE AMS5316
80-60-03
552
60-40-18 65-45-12
414 448
80-55-06 100-70-03 120-90-02
552 689 827
SAE J434c
D4018 D4512 D5506 D7003
414 448 552 689
MlL-I-24137(Ships)
Class A Class B Class C
414 379 345
ASTM A536-72, MIL-1-11466B(MR)
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169, (1984).
©2001 CRC Press LLC
538
CRC Handbook of Materials Science & Engineering
8.01 Mechanical Page 539 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 131. TENSILE
STRENGTH OF MALLEABLE IRON CASTINGS
Specification Number Ferritic ASTM A47, A338; ANSI G48.1; FED QQ–I–666c
Grade or Class
32510 35018
345 365 276
40010 45008 45006 50005
414 448 448 483
60004 70003 80002 90001
552 586 655 724
M3210 M4504(a) M5003(a)
345 448 517
M5503(b) M7002(b) M8501(b)
517 621 724
ASTM A197 Pearlitic and Martensitic ASTM A220; ANSI C48.2; MIL–I–11444B
Automotive ASTM A602; SAE J158
Tensile Strength (MPa)
(a) Air quenched and tempered (b) Liquid quenched and tempered Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p171, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
539
8.02 Mechanical L Page 540 Wednesday, December 31, 1969 17:00
Table 132. TENSILE
STRENGTH OF AUSTENITIC STAINLESS STEELS (SHEET 1 OF 5)
Type
Form
Condition
ASTM Specification
Tensile Strength (MPa)
Type 301(UNS S30100)
Bar,Wire,Plate,Sheet, Strip
Annealed
A167
515
Type 302 (UNS S30200)
Bar
Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b)
A276 A276 A276
515 620 515
Type 302B (UNS S30215)
Bar
Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b)
A276 A276 A276
515 620 515
Type 302Cu(UNS S30430)
Bar
Annealed
A493
450 to 585
Types 303 (UNS S30300) and 303Se (UNS S30323)
Bar
Annealed
A581
585
Wire
Annealed Cold worked
A581 A581
585 to 860 790 to 1000
(a) Up to 13 mm thick (b) Over 13 mm thick. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p364-366 (1993).
©2001 CRC Press LLC
8.02 Mechanical L Page 541 Wednesday, December 31, 1969 17:00
Table 132. TENSILE
STRENGTH OF AUSTENITIC STAINLESS STEELS (SHEET 2 OF 5)
Type
Form
Condition
ASTM Specification
Tensile Strength (MPa)
Type 304(UNS S30400)
Bar
Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b)
A276 A276 A276
515 620 515
Type 304L (UNS S30403)
Bar
Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b)
A276 A276 A276
480 620 480
Types 304N (UNS S30451) and 316N(UNS S31651)
Bar
Annealed
A276
550
Type 304LN
Bar
Annealed
—
515
Type 305 (UNS S30500)
Bar
Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b)
A276 A276 A276
515 260 515
(a) Up to 13 mm thick (b) Over 13 mm thick. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p364-366 (1993).
©2001 CRC Press LLC
8.02 Mechanical L Page 542 Wednesday, December 31, 1969 17:00
Table 132. TENSILE
STRENGTH OF AUSTENITIC STAINLESS STEELS (SHEET 3 OF 5)
Type
Form
Condition
ASTM Specification
Tensile Strength (MPa)
Types 308 (UNS S30800),321(UNS S32100),347(UNS34700) and 348 (UNS S34800)
Bar
Hot finished and annealed
A276
515
Cold finished and annealed(a) Cold finished and annealed(b)
A276 A276
620 515
Type 308L
Bar
Annealed
—
550
Types 309 (UNS S30900), 309S (UNS S30908), 310 (UNS S31000) and 310S (UNS S31008)
Bar
Hot finished and annealed
A276
515
Cold finished and annealed(a) Cold finished and annealed(b)
A276 A276
620 515
(a) Up to 13 mm thick (b) Over 13 mm thick. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p364-366 (1993).
©2001 CRC Press LLC
8.02 Mechanical L Page 543 Wednesday, December 31, 1969 17:00
Table 132. TENSILE
STRENGTH OF AUSTENITIC STAINLESS STEELS (SHEET 4 OF 5) ASTM Specification
Tensile Strength (MPa)
MIL–E–19933
655
Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b)
A276 A276 A276
515 620 515
Bar
Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b)
A276 A276 A276
515 620 515
Type 316F (UNS S31620)
Bar
Annealed
—
585
Type 316L (UNS S31603)
Bar
Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b)
A276 A276 A276
480 620 480
Type
Form
Type 312 Weld metal
—
Type 314 (UNS S31400)
Bar
Type 316 (UNS S31600)
Condition
(a) Up to 13 mm thick (b) Over 13 mm thick. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p364-366 (1993).
©2001 CRC Press LLC
8.02 Mechanical L Page 544 Wednesday, December 31, 1969 17:00
Table 132. TENSILE
STRENGTH OF AUSTENITIC STAINLESS STEELS (SHEET 5 OF 5)
Type
Form
Condition
ASTM Specification
Tensile Strength (MPa)
Type 316LN
Bar
Annealed
—
515
Type 317 (UNS S31700)
Bar
Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b)
A276 A276 A276
515 620 515
Type 317L (UNS S31703)
Bar
Annealed
—
585
Type 317LM
Bar,Plate,Sheet, Strip
Annealed
—
515
Type 329 (UNS S32900)
Bar
Annealed
—
724
Type 330 (UNS N08330)
Bar
Annealed
B511
480
Type 330HC
Bar,Wire,Strip
Annealed
—
585
Types 384 (UNS S38400) Types 385 (UNS38500)
Bar Bar
Annealed Annealed
A493 A493
415 to 550 415 to 550
(a) Up to 13 mm thick (b) Over 13 mm thick. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p364-366 (1993).
©2001 CRC Press LLC
8.02 Mechanical L Page 545 Wednesday, December 31, 1969 17:00
Table 133. TENSILE
STRENGTH OF FERRITIC STAINLESS STEELS (SHEET 1 OF 2)
Type
ASTM Specification
Form
Condition
Tensile Strength (MPa)
Type 405 (UNS S40500)
A580 A580
Wire
Annealed Annealed, Cold Finished
480 480
Type 409 (UNS S40900) Type 429 (UNS S42900)
— —
Bar Bar
Annealed Annealed
450(a) 490(a)
Type 430 (UNS S43000)
A276 A276
Bar
Annealed, Hot Finished Annealed, Cold Finished
480 480
Type 430F (UNS S43020) Type 430Ti(UNS S43036)
A581 —
Wire Bar
Annealed Annealed
585 to 860 515(a)
Type 434 (UNS S43400) Type 436 (UNS S43600)
— —
Wire Sheet, Strip
Annealed Annealed
545(a) 530(a)
(a) Typical Values Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p368 (1993).
©2001 CRC Press LLC
8.02 Mechanical L Page 546 Wednesday, December 31, 1969 17:00
Table 133. TENSILE
STRENGTH OF FERRITIC STAINLESS STEELS (SHEET 2 OF 2)
Type
ASTM Specification
Form
Condition
Tensile Strength (MPa)
Type 442 (UNS S44200) Type 444 (UNS S44400)
— A176
Bar Plate, Sheet, Strip
Annealed Annealed
550(a) 415
Type 446 (UNS S44600)
A276 A276
Bar
Annealed, Hot Finished Annealed, Cold Finished
480 480
(a) Typical Values Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p368 (1993).
©2001 CRC Press LLC
8.02 Mechanical L Page 547 Wednesday, December 31, 1969 17:00
Table 134. TENSILE
STRENGTH OF PRECIPITATION -HARDENING AUSTENITIC STAINLESS STEELS Type
Form
Condition
Tensile Strength (MPa)
PH 13–8 Mo (UNS S13800)
Bar, Plate, Sheet, Strip
H950 H1000
1520 1380
15–5 PH (UNS S15500) and 17–4 PH (UNS S17400)
Bar, Plate, Sheet, Stript
H900 H925 H1025 H1075
1310 1170 1070 1000
H1100 H1150 H1150M
965 930 795
RH950 TH1050
1275 1170
17–7 PH (UNS S17700)
Bar
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p371 (1993).
©2001 CRC Press LLC
8.02 Mechanical L Page 548 Wednesday, December 31, 1969 17:00
Table 135. TENSILE
STRENGTH OF HIGH–NITROGEN AUSTENITIC STAINLESS STEELS Type
ASTM Specification
Form
Condition
Tensile Strength (MPa)
Type 201 (UNS S20100)
A276
Bar
Annealed
515
Type 202 (UNS S20200)
A276
Bar
Annealed
515
Type 205 (UNS S20500)
—
Plate
Annealed*
830
Type 304N (UNS S30451)
A276
Bar
Annealed
550
Type 304HN (UNS S30452)
—
Bar
Annealed
620
Type 316N (UNS S31651)
A276
Bar
Annealed
550
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p367 (1993). *
Typical Values.
©2001 CRC Press LLC
8.02 Mechanical L Page 549 Wednesday, December 31, 1969 17:00
Table 136. TENSILE
STRENGTH OF MARTENSITIC STAINLESS STEELS (SHEET 1 OF 3)
Type
ASTM Specification
Form
Condition
Tensile Strength (MPa)
Type 403 (UNS S40300)
A276 A276 A276 A276 A276 A276
Bar
Annealed, hot finished Annealed, cold finished Intermediate temper, hot finished Intermediate temper, cold finished Hard temper, hot finished Hard temper, cold finished
485 485 690 690 825 825
Type 410 (UNS S41000)
A276 A276 A276 A276 A276 A276
Bar
Annealed, hot finished Annealed, cold finished Intermediate temper, hot finished Intermediate temper, cold finished Hard temper, hot finished Hard temper, cold finished
485 485 690 690 825 825
Type 410S (UNS S41008)
A176
Plate, Sheet, Strip
Annealed
415
Type 410Cb (UNS S41040)
A276 A276 A276 A276
Bar
Annealed, hot finished Annealed, cold finished Intermediate temper, hot finished Intermediate temper, cold finished
485 485 860 860
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p369-370 (1993).
©2001 CRC Press LLC
8.02 Mechanical L Page 550 Wednesday, December 31, 1969 17:00
Table 136. TENSILE
STRENGTH OF MARTENSITIC STAINLESS STEELS (SHEET 2 OF 3)
Type
ASTM Specification
Form
Condition
Tensile Strength (MPa)
Type 414 (UNS S41400)
A276 A276
Bar
Intermediate temper, hot finished Intermediate temper, cold finished
795 795
Type 414L
—
Bar
Annealed
795
Types 416 (UNS S41600) and 416Se (UNS S41623)
A581
Wire
Annealed
585 to 860
Intermediate temper Hard temper
795 to 1000 965 to 1210
A581 A581 Type 420 (UNS S42000)
— A580
Bar Wire
Tempered 205 °C Annealed, cold finished
1720 860 max
Type 422 (UNS S42200)
A565
Bar
Intermediate and hard tempers*
965
Type 431 (UNS S43100)
— —
Bar
Tempered 260 °C Tempered 595 °C
1370 965
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p369-370 (1993).
©2001 CRC Press LLC
8.02 Mechanical L Page 551 Wednesday, December 31, 1969 17:00
Table 136. TENSILE
STRENGTH OF MARTENSITIC STAINLESS STEELS (SHEET 3 OF 3)
Type
ASTM Specification
Form
Condition
Tensile Strength (MPa)
Type 440A (UNS S44002)
— — — —
Bar
Annealed Tempered 315 °C Annealed Tempered 315 °C
725 1790 740 1930
Type 440B (UNS S44003)
Bar
Type 440C (UNS S44004)
— —
Bar
Annealed Tempered 315 °C
760 1970
Type 501 (UNS S50100)
— —
Bar, Plate
Annealed Tempered 540 °C
485 1210
Type 502 (UNS S50200)
—
Bar, Plate
Annealed
485
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p369-370 (1993). *
Heat treated for high-temperature service
©2001 CRC Press LLC
8.02 Mechanical L Page 552 Wednesday, December 31, 1969 17:00
Table 137. TENSILE
STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 1 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Tensile Strength (MPa)
C10100 Oxygen-free electronic C10200 Oxygen-free copper C10300 Oxygen-free extra-low phosporus C10400, C10500, C10700 Oxygen-free, silver-bearing
99.99 Cu 99.95 Cu 99.95 Cu, 0.003 P 99.95 Cu(e)
F, R, W, T, P, S F, R, W, T, P, S F, R, T, P, S F, R, W, S
221-455 221-455 221-379 221-455
C10800 Oxygen-free, low phosporus CS11000 Electrolytic tough pitch copper C11100 Electrolytic tough pitch, anneal resistant C11300, C11400, C11500, C11600 Silver-bearing tough pitch copper
99.95 Cu, 0.009 P 99.90 Cu, 0.04 O 99.90 Cu, 0.04 O, 0.01 Cd 99.90 Cu, 0.04 O, Ag(f)
F, R, T, P F, R, W, T, P, S W F, R, W, T, S
221-379 221-455 455 221-455
C12000, C12100 C12200 Phosphorus deoxidized copper, high residual phosphorus C12500, C12700, C12800, C12900, C13000 Fire-refined tough pitch with silver C14200 Phosphorus deoxidized, arsenical
99.9 Cu(g) 99.90 Cu, 0.02 P
F, T, P F, R, T, P
221-393 221-379
99.88 Cu(h)
F, R, W, S
221-462
99.68 Cu, 0.3 As, 0.02 P
F, R, T
221-379
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.02 Mechanical L Page 553 Wednesday, December 31, 1969 17:00
Table 137. TENSILE
STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 2 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Tensile Strength (MPa)
C19200 C14300 C14310 C14500 Phosphorus deoxidized, tellurium bearing
98.97 Cu, 1.0 Fe, 0.03 P 99.9 Cu, 0.1 Cd 99.8 Cu, 0.2 Cd 99.5 Cu, 0.50 Te, 0.008 P
F, T F F F, R, W, T
255-531 221-400 221-400 221-386
C14700 Sulfur bearing C15000 Zirconium copper C15500 C15710
99.6 Cu, 0.40 S 99.8 Cu, 0.15 Zr 99.75 Cu, 0.06 P, 0.11 Mg, Ag(i) 99.8 Cu, 0.2 Al2O3
R, W R, W F R, W
221-393 200-524 276-552 324-724
C15720 C15735 C15760 C16200 Cadmium copper
99.6 Cu, 0.4 Al2O3 99.3 Cu, 0.7 Al2O3 98.9 Cu, 1.1 Al2O3 99.0 Cu, 1.0 Cd
F, R R F, R F, R, W
462-614 483-586 483-648 241-689
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.02 Mechanical L Page 554 Wednesday, December 31, 1969 17:00
Table 137. TENSILE
STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 3 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Tensile Strength (MPa)
C16500 C17000 Beryllium copper C17200 Beryllium copper C17300 Beryllium copper
98.6 Cu, 0.8 Cd, 0.6 Sn 99.5 Cu, 1.7 Be, 0.20 Co 99.5 Cu, 1.9 Be , 0.20 Co 99.5 Cu, 1.9 Be, 0.40 Pb
F, R, W F, R F, R, W, T, P, S R
276-655 483-1310 469-1462 469-1479
C17500 Copper-cobalt-beryllium alloy C18200, C18400, C18500 Chromium copper C18700 leaded copper C18900
99.5 Cu, 2.5 Co, 0.6 Be 99.5 Cu(j) 99.0 Cu, 1.0 Pb 98.75 Cu, 0.75 Sn, 0.3 Si, 0.20 Mn
F, R F, W, R, S, T R R, W
310-793 234-593 221-379 262-655
C19000 Copper-nickel-phosphorus alloy C19100 Copper-nickel-phosphorus-tellurium alloy C19400
98.7 Cu, 1.1 Ni, 0.25 P 98.15 Cu, 1.1 Ni, 0.50 Te, 0.25 P 97.5 Cu, 2.4 Fe, 0.13 Zn, 0.03 P
F, R, W R, F F
262-793 248-717 310-524
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.02 Mechanical L Page 555 Wednesday, December 31, 1969 17:00
Table 137. TENSILE
STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 4 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Tensile Strength (MPa)
C19500 C21000 Gilding, 95% C22000 Commercial bronze, 90% C22600 Jewelry bronze, 87.5%
97.0 Cu, 1.5 Fe, 0.6 Sn, 0.10 P, 0.80 Co 95.0 Cu, 5.0 Zn 90.0 Cu, 10.0 Zn 87.5 Cu, 12.5 Zn
F F, W F, R, W, T F, W
552-669 234-441 255-496 269-669
C23000 Red brass, 85% C24000 Low brass, 80% C26000 Cartridge brass, 70% C26800, C27000 Yellow brass
85.0 Cu, 15.0 Zn 80.0 Cu, 20.0 Zn 70.0 Cu, 30.0 Zn 65.0 Cu, 35.0 Zn
F, W, T, P F, W F, R, W, T F, R, W
269-724 290-862 303-896 317-883
C28000 Muntz metal C31400 Leaded commercial bronze C31600 Leaded commercial bronze, nickel-bearing C33000 Low-leaded brass tube
60.0 Cu, 40.0 Zn 89.0 Cu, 1.75 Pb, 9.25 Zn 89.0 Cu, 1.9 Pb, 1.0 Ni, 8.1 Zn 66.0 Cu, 0.5 Pb, 33.5 Zn
F, R, T F, R F, R T
372-510 255-414 255-462 324-517
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.02 Mechanical L Page 556 Wednesday, December 31, 1969 17:00
Table 137. TENSILE
STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 5 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Tensile Strength (MPa)
C33200 High-leaded brass tube C33500 Low-leaded brass C34000 Medium-leaded brass C34200 High-leaded brass
66.0 Cu, 1.6 Pb, 32.4 Zn 65.0 Cu, 0.5 Pb, 34.5 Zn 65.0 Cu, 1.0 Pb, 34.0 Zn 64.5 Cu, 2.0 Pb, 33.5 Zn
T F F, R, W, S F, R
359-517 317-510 324-607 338-586
C34900 C35000 Medium-leaded brass C35300 High-leaded brass C35600 Extra-high-leaded brass
62.2 Cu, 0.35 Pb, 37.45 Zn 62.5 Cu, 1.1 Pb, 36.4 Zn 62.0 Cu, 1.8 Pb, 36.2 Zn 63.0 Cu, 2.5 Pb, 34.5 Zn
R, W F, R F, R F
365-469 310-655 338-586 338-510
C36000 Free-cutting brass C36500 to C36800 Leaded Muntz metal C37000 Free-cutting Muntz metal C37700 Forging brass
61.5 Cu, 3.0 Pb, 35.5 Zn 60.0 Cu(k), 0.6 Pb, 39.4 Zn 60.0 Cu, 1.0 Pb, 39.0 Zn 59.0 Cu, 2.0 Pb, 39.0 Zn
F, R, S F T R, S
339-469 372 (As hot rolled) 372-552 359 (as extruded)
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.02 Mechanical L Page 557 Wednesday, December 31, 1969 17:00
Table 137. TENSILE
STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 6 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Tensile Strength (MPa)
C38500 Architectural bronze C40500 C40800 C41100
57.0 Cu, 3.0 Pb, 40.0 Zn 95 Cu, 1 Sn, 4 Zn 95 Cu, 2 Sn, 3 Zn 91 Cu, 0.5 Sn, 8.5 Zn
R, S F F F, W
414 (as extruded) 269-538 290-545 269-731
C41300 C41500 C42200 C42500
90.0 Cu, 1.0 Sn, 9.0 Zn 91 Cu, 1.8 Sn, 7.2 Zn 87.5 Cu, 1.1 Sn, 11.4 Zn 88.5 Cu, 2.0 Sn, 9.5 Zn
F, R, W F F F
283-724 317-558 296-607 310-634
C43000 C43400 C43500 C44300, C44400, C44500 Inhibited admiralty
87.0 Cu, 2.2 Sn, 10.8 Zn 85.0 Cu, 0.7 Sn, 14.3 Zn 81.0 Cu, 0.9 Sn, 18.1 Zn 71.0 Cu, 28.0 Zn, 1.0 Sn
F F F, T F, W, T
317-648 310-607 317-552 331-379
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.02 Mechanical L Page 558 Wednesday, December 31, 1969 17:00
Table 137. TENSILE
STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 7 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Tensile Strength (MPa)
C46400 to C46700 Naval brass C48200 Naval brass, medium-leaded C48500 Leaded naval brass C50500 Phosphor bronze, 1.25% E
60.0 Cu, 39.25 Zn, 0.75 Sn 60.5 Cu, 0.7 Pb, 0.8 Sn, 38.0 Zn 60.0 Cu, 1.75 Pb, 37.5 Zn, 0.75 Sn 98.75 Cu, 1.25 Sn, trace P
F, R, T, S F, R, S F, R, S F, W
379-607 386-517 379-531 276-545
C51000 Phosphor bronze, 5% A C51100 C52100 Phosphor bronze, 8% C C52400 Phosphor bronze, 10% D
95.0 Cu, 5.0 Sn, trace P 95.6 Cu, 4.2 Sn, 0.2 P 92.0 Cu, 8.0 Sn, trace P 90.0 Cu, 10.0 Sn, trace P
F, R, W, T F F, R, W F, R, W
324-965 317-710 379-965 455-1014
C54400 Free-cutting phosphor bronze C60800 Aluminum bronze, 5% C61000 C61300
88.0 Cu, 4.0 Pb, 4.0 Zn, 4.0 Sn 95.0 Cu, 5.0 Al 92.0 Cu, 8.0 Al 92.65 Cu, 0.35 Sn, 7.0 Al
F, R T R, W F, R, T, P, S
303-517 414 483-552 483-586
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.02 Mechanical L Page 559 Wednesday, December 31, 1969 17:00
Table 137. TENSILE
STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 8 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Tensile Strength (MPa)
C61400 Aluminum bronze, D C61500 C61800 C61900
91.0 Cu, 7.0 Al, 2.0 Fe 90.0 Cu, 8.0 Al, 2.0 Ni 89.0 Cu, 1.0 Fe, 10.0 Al 86.5 Cu, 4.0 Fe, 9.5 Al
F, R, W, T, P, S F R F
524-614 483-1000 552-586 634-1048
C62300 C62400 C62500 C63000
87.0 Cu, 10.0 Al, 3.0 Fe 86.0 Cu, 3.0 Fe, 11.0 Al 82.7 Cu, 4.3 Fe, 13.0 Al 82.0 Cu, 3.0 Fe, 10.0 Al, 5.0 Ni
F, R F, R F, R F, R
517-676 621-724 689 621-814
C63200 C63600 C63800 C64200
82.0 Cu, 4.0 Fe, 9.0 Al, 5.0 Ni 95.5 Cu, 3.5 Al, 1.0 Si 99.5 Cu, 2.8 Al, 1.8 Si, 0.40 Co 91.2 Cu, 7.0 Al
F, R R, W F F, R
621-724 414-579 565-896 517-703
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.02 Mechanical L Page 560 Wednesday, December 31, 1969 17:00
Table 137. TENSILE
STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 9 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Tensile Strength (MPa)
C65100 Low-silicon bronze, B C65500 High-silicon bronze, A C66700 Manganese brass C67400
98.5 Cu, 1.5 Si 97.0 Cu, 3.0 Si 70.0 Cu, 28.8 Zn, 1.2 Mn 58.5 Cu, 36.5 Zn, 1.2 Al, 2.8 Mn, 1.0 Sn
R, W, T F, R, W, T F, W F, R
276-655 386-1000 315-689 483-634
C67500 Manganese bronze, A C68700 Aluninum brass, arsenical C68800 C69000
58.5 Cu, 1.4 Fe, 39.0 Zn, 1.0 Sn, 0.1 Mn 77.5 Cu, 20.5 Zn, 2.0 Al, 0.1 As 73.5 Cu, 22.7 Zn, 3.4 Al, 0.40 Co 73.3 Cu, 3.4 Al, 0.6 Ni, 22.7 Zn
R, S T F F
448-579 414 565-889 496-896
C69400 Silicon red brass C70400 C70600 Copper nickel, 10% C71000 Copper nickel, 20%
81.5 Cu, 14.5 Zn, 4.0 Si 92.4 Cu, 1.5 Fe, 5.5 Ni, 0.6 Mn 88.7 Cu, 1.3 Fe, 10.0 Ni 79.00 Cu, 21.0 Ni
R F, T F, T F, W, T
552-689 262-531 303-414 338-655
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.02 Mechanical L Page 561 Wednesday, December 31, 1969 17:00
Table 137. TENSILE
STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 10 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Tensile Strength (MPa)
C71500 Copper nickel, 30% C71700 C72500 C73500
70.0 Cu, 30.0 Ni 67.8 Cu, 0.7 Fe, 31.0 Ni, 0.5 Be 88.20 Cu, 9.5 Ni, 2.3 Sn 72.0 Cu, 18.0 Ni , 10.0 Zn
F, R, T F, R, W F, R, W, T F, R, W, T
372-517 483-1379 379-827 345-758
C74500 Nickel silver, 65-10 C75200 Nickel silver, 65-18 C75400 Nickel silver, 65-15 C75700 Nickel silver, 65-12
65.0 Cu, 25.0 Zn, 10.0 Ni 65.0 Cu, 17.0 Zn, 18.0 Ni 65.0 Cu, 20.0 Zn, 15.0 Ni 65.0 Cu, 23.0 Zn, 12.0 Ni
F, W F, R, W F F, W
338-896 386-710 365-634 359-641
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.02 Mechanical L Page 562 Wednesday, December 31, 1969 17:00
Table 137. TENSILE
STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 11 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Tensile Strength (MPa)
C76200 C77000 Nickel silver, 55-18 C72200 C78200 Leaded nickel silver, 65-8-2
59.0 Cu, 29.0 Zn, 12.0 Ni 55.0 Cu, 27.0 Zn, 18.0 Ni 82.0 Cu, 16.0 Ni, 0.5 Cr, 0.8 Fe, 0.5 Mn 65.0 Cu, 2.0 Pb, 25.0 Zn, 8.0 Ni
F, T F, R, W F, T F
393-841 414-1000 317-483 365-627
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). (d) Based on 100% for C360000. (e) C10400, 8 oz/ton Ag; C10500, 10 oz/ton; C10700, 25 oz/ton . (f) C11300, 8 oz/ton Ag; C11400,10 oz/ton; C11500, 16 oz/ton; C11600, 25 oz/ton (g) C12000, 0.008 P; C12100, 0.008 P and 4 oz/ton Ag; (h) C12700, 8 oz/ton Ag; C12800,10 oz/ton; C12900,16 oz/ton; C13000, 25 oz/ton. (i) 8.30 oz/ton Ag. (j) C18200, 0.9 Cr; C18400, 0.8 Cr; C18500, 0.7 Cr (k) Rod, 61.0 Cu min.
©2001 CRC Press LLC
8.03 Mechanical Page 563 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 138. TENSILE
STRENGTH OF ALUMINUM CASTING ALLOYS (SHEET 1 OF 3) Alloy AA No.
Temper
Tensile Strength (MPa )
201.0
T4 T6 T7
365 485 460
206.0, A206.0 208.0
T7 F
435 145
242.0
T21 T571 T77 T571 T61
185 220 205 275 325
295.0
T4 T6 T62
220 250 285
296.0
T4 T6 T7
255 275 270
308.0
F
195
319.0
F T6 F T6
185 250 235 280
336.0
T551 T65
250 325
354.0
T61
380
355.0
T51 T6 T61 T7
195 240 270 265
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
563
8.03 Mechanical Page 564 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 138. TENSILE
STRENGTH OF ALUMINUM CASTING ALLOYS (SHEET 2 OF 3) Alloy AA No.
Temper
Tensile Strength (MPa )
T71 T51 T6
175 210 290
T62 T7 T71
310 280 250
T51 T6 T7
175 230 235
T71 T6 T7
195 265 220
357.0, A357.0
T62
360
359.0
T61 T62
330 345
360.0 A360.0 380.0
F F F
325 320 330
383.0 384.0, A384.0
F F
310 330
390.0
F T5
280 300
A390.0
F,T5 T6 T7
180 280 250
F,T5 T6 T7
200 310 260
355.0 (Con’t)
356.0
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
564
CRC Handbook of Materials Science & Engineering
8.03 Mechanical Page 565 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 138. TENSILE
STRENGTH OF ALUMINUM CASTING ALLOYS (SHEET 3 OF 3) Alloy AA No.
Temper
Tensile Strength (MPa )
413.0 A413.0 443.0 B443.0
F F F F
300 290 130 159
C443.0 514.0 518.0
F F F
228 170 310
520.0 535.0 712.0
T4 F F
330 275 240
713.0
T5 T5
210 220
771.0 850.0
T6 T5
345 160
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
565
8.03 Mechanical Page 566 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 139. TENSILE
STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 1 OF 7) Alloy
Temper
Tensile Strength (MPa)
1050
0 H14 H16 H18
76 110 130 160
1060
0 H12 H14 H16 H18
69 83 97 110 130
1100
0 H12 H14 H16 H18
90 110 125 145 165
1350
0 H12 H14 H16 H19
83 97 110 125 185
2011
T3 T8
380 405
2014
0 T4 T6
185 425 485
Alclad 2014
0 T3 T4 T6
170 435 420 470
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299—302, (1984).
©2001 CRC Press LLC
566
CRC Handbook of Materials Science & Engineering
8.03 Mechanical Page 567 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 139. TENSILE
STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 2 OF 7) Alloy
Temper
Tensile Strength (MPa)
2024
0 T3 T4, T351 T361
185 485 470 495
Alclad 2024
0 T T4, T351 T361 T81, T851 T861
180 450 440 460 450 485
2036 2048 2124
T4 T851
340 455 490
2218
T61 T71 T72
405 345 330
2219
0 T42 T31, T351 T37 T62 T81, T851 T87
170 360 360 395 415 455 475
2618 3003 Alclad
All 0 H12
440 110 130
3003
H14 H16 H18
150 180 200
3004 Alclad
0 H32
180 215
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299—302, (1984).
©2001 CRC Press LLC Shackelford & Alexander
567
8.03 Mechanical Page 568 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 139. TENSILE
STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 3 OF 7) Alloy
Temper
Tensile Strength (MPa)
3004
H34 H36 H38
240 260 285
3105
0 H12 H14 H16 H18 H25
115 150 170 195 215 180
4032
T6
380
4043
0 H18
145 285
5005
0 H12 H14 H16 H18
125 140 160 180 200
H32 H34 H36 H38
140 160 180 200
5050
0 H32 H34 H36 H38
145 170 195 205 220
5052
0 H32 H34 H36 H38
195 230 260 275 290
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299—302, (1984).
©2001 CRC Press LLC
568
CRC Handbook of Materials Science & Engineering
8.03 Mechanical Page 569 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 139. TENSILE
STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 4 OF 7) Alloy
Temper
Tensile Strength (MPa)
5056
0 H18 H38
290 435 415
5083
0 H112 H113 H321 H323, H32 H343, H34
290 305 315 315 325 345
5086
0 H32, H116, H117 H34 H112
260 290 325 270
5154
0 H32 H34 H36 H38 H112
240 270 290 310 330 240
5182
0 H32 H34 H19(n)
275 315 340 420
5252
H25 H28, H38
235 285
5254
0
240
5254
H32 H34 H36 H38 H112
270 290 310 330 240
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299—302, (1984).
©2001 CRC Press LLC Shackelford & Alexander
569
8.03 Mechanical Page 570 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 139. TENSILE
STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 5 OF 7) Alloy
Temper
Tensile Strength (MPa)
5454
0 H32 H34 H36
250 275 305 340
H38 H111 H112 H311
370 260 250 260
5456
0 H111 H112 H321, H116
310 325 310 350
5457
0 H25 H28, H38
130 180 205
5652
0 H32 H34 H36 H38
195 230 260 275 290
5657
H25 H28, H38
160 195
6005
T1 T5
170 260
6009
T4 T6
235 345
6010
T4
255
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299—302, (1984).
©2001 CRC Press LLC
570
CRC Handbook of Materials Science & Engineering
8.03 Mechanical Page 571 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 139. TENSILE
STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 6 OF 7) Alloy
Temper
Tensile Strength (MPa)
6061
0 T4, T451 T6, T651
125 240 310
Alclad 6061
0 T4, T451 T6, T651
115 230 290
6063
0 T1 T4 T5
90 150 170 185
T6 T83 T831 T832
240 255 205 290
6066
0 T4, T451 T6, T651
150 360 395
6070
0 T4 T6
145 315 380
6101 6151
Hlll T6
97 220
6201
T6 T81
330 330
6205
Tl T5
260 310
6262
T9
400
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299—302, (1984).
©2001 CRC Press LLC Shackelford & Alexander
571
8.03 Mechanical Page 572 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 139. TENSILE
STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 7 OF 7) Alloy
Temper
Tensile Strength (MPa)
6351
T4 T6
250 310
6463
Tl T5 T6
150 185 240
7005
0 T53 T6,T63,T6351
193 393 372
7050
T736
515
7075
0 T6,T651 T73
230 570 505
Alclad 7075
0 T6,T651
220 525
7175
T66 T736
595 525
7475
T61
525
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299—302, (1984).
©2001 CRC Press LLC
572
CRC Handbook of Materials Science & Engineering
8.03 Mechanical Page 573 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 140. TENSILE
STRENGTH OF COBALT -BASE SUPERALLOYS Temperature (°C)
Tensile Strength (MPa)
Haynes 25 (L–605) sheet
21 540 650 760 870
1010 800 710 455 325
Haynes 188, sheet
21 540 650 760 870
960 740 710 635 420
S-816, bar
21 540 650 760 870
965 840 765 650 360
Alloy
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p387, (1993).
©2001 CRC Press LLC Shackelford & Alexander
573
8.03 Mechanical Page 574 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 141. TENSILE
STRENGTH OF
NICKEL -BASE SUPERALLOYS (SHEET 1 OF 5) Temperature (°C)
Tensile Strength (MPa)
Astroloy, bar
21 540 650 760 870
1410 1240 1310 1160 770
D–979, bar
21 540 650 760 870
1410 1300 1100 7 345
Hastelloy X, sheet
21 540 650 760 870
785 650 570 435 255
IN–102, bar
21 540 650 760 870
960 825 710 440 215
Inconel 600, bar
21 540 650 760 870
620 580 450 185 105
Inconel 601, sheet
21 540 650 760 870
740 725 525 290 160
Alloy
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p387-389, (1993).
©2001 CRC Press LLC
574
CRC Handbook of Materials Science & Engineering
8.03 Mechanical Page 575 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 141. TENSILE
STRENGTH OF
NICKEL -BASE SUPERALLOYS (SHEET 2 OF 5) Temperature (°C)
Tensile Strength (MPa)
Inconel 625, bar
21 540 650 760 870
855 745 710 505 285
Inconel 706, bar
21 540 650 760
1300 1120 1010 690
Inconel 718, bar
21 540 650 760 870
1430 1280 1230 950 340
Inconel 718, sheet
21 540 650 760
1280 1140 1030 675
Inconel X-750, bar
21 540 650 760 870
1120 965 825 485 235
M-252, bar
21 540 650 760 870
1240 1230 1160 945 510
Alloy
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p387-389, (1993).
©2001 CRC Press LLC
Shackelford & Alexander
575
8.03 Mechanical Page 576 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 141. TENSILE
STRENGTH OF
NICKEL -BASE SUPERALLOYS (SHEET 3 OF 5) Temperature (°C)
Tensile Strength (MPa)
Nimonic 75, bar
21 540 650 760 870
750 635 538 290 145
Nimonic 80A, bar
21 540 650 760 870
1240 1100 1000 760 400
Nimonic 90, bar
21 540 650 760 870
1240 1100 1030 825 430
Nimonic 105, bar
21 540 650 760 870
1140 1100 1080 965 605
Nimonic 115, bar
21 540 650 760 870
1240 1090 1120 1080 825
Pyromet 860, bar
21 540 650 760
1300 1250 1110 910
Alloy
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p387-389, (1993).
©2001 CRC Press LLC
576
CRC Handbook of Materials Science & Engineering
8.03 Mechanical Page 577 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 141. TENSILE
STRENGTH OF
NICKEL -BASE SUPERALLOYS (SHEET 4 OF 5) Temperature (°C)
Tensile Strength (MPa)
René 41, bar
21 540 650 760 870
1420 1400 1340 1100 620
René 95, bar
21 540 650 760
1620 1540 1460 1170
Udimet 500, bar
21 540 650 760 870
1310 1240 1210 1040 640
Udimet 520, bar
21 540 650 760 870
1310 1240 1170 725 515
Udimet 700, bar
21 540 650 760 870
1410 1280 1240 1030 690
Udimet 710, bar
21 540 650 760 870
1190 1150 1290 1020 705
Alloy
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p387-389, (1993).
©2001 CRC Press LLC Shackelford & Alexander
577
8.03 Mechanical Page 578 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 141. TENSILE
STRENGTH OF
NICKEL -BASE SUPERALLOYS (SHEET 5 OF 5) Temperature (°C)
Tensile Strength (MPa)
Unitemp AF2–1DA, bar
21 540 650 760 870
1290 1340 1360 1150 830
Waspaloy, bar
21 540 650 760 870
1280 1170 1120 795 525
Alloy
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p387-389, (1993).
©2001 CRC Press LLC
578
CRC Handbook of Materials Science & Engineering
8.04 Mechanical L Page 579 Wednesday, December 31, 1969 17:00
Table 142. TENSILE
STRENGTH OF WROUGHT TITANIUM ALLOYS AT ROOM TEMPERATURE (SHEET 1 OF 3)
Class
Alloy
Condition
Tensile Strength (MPa)
Commercially Pure
99.5 Ti 99.2 Ti 99.1 Ti
Annealed Annealed Annealed
331 434 517
99.0 Ti 99.2Ti-0.2Pd Ti-0.8Ni-0.3Mo
Annealed Annealed Annealed
662 434 517
Alpha Alloys
Ti-5Al-2.5Sn Ti-5Al-2.5Sn (low O2)
Annealed Annealed
862 807
Near Alpha Alloys
Ti-8Al-1Mo-1V
Duplex Annealed
1000
Ti-11Sn-1Mo-2.25Al-5.0Zr-1Mo-0.2Si Ti-6Al-2Sn-4Zr-2Mo Ti-5Al-2Sn-2Zr-2Mo-0.25Si Ti-6Al-2Nb-1Ta-1Mo Ti-6Al-2Sn-1.5Zr-1Mo- 0.35Bi-0.1Si
Duplex Annealed Duplex Annealed 975 ˚C (1/2h), AC + 595˚C (2h), AC As rolled 2.5 cm (1 in.) plate Beta forge + duplex anneal
1103 979 1048 855 1014
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993).
©2001 CRC Press LLC
8.04 Mechanical L Page 580 Wednesday, December 31, 1969 17:00
Table 142. TENSILE
STRENGTH OF WROUGHT TITANIUM ALLOYS AT ROOM TEMPERATURE (SHEET 2 OF 3)
Class
Alloy
Condition
Tensile Strength (MPa)
Alpha-Beta Alloys
Ti-8Mn Ti-3Al-2.5V
Annealed Annealed
945 689
Ti-6Al-4V
Annealed Solution + age
993 1172
Ti-6Al-4V(low O2)
Annealed
896
Ti-6Al-6V-2Sn
Annealed Solution + age
1069 1276
Ti-7Al-4Mo Ti-6Al-2Sn-4Zr-6Mo Ti-6Al-2Sn-2Zr-2Mo- 2Cr-0.25Si Ti-10V-2Fe-3Al
Solution + age Solution + age Solution + age Solution + age
1103 1269 1276 1276
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993).
©2001 CRC Press LLC
8.04 Mechanical L Page 581 Wednesday, December 31, 1969 17:00
Table 142. TENSILE
STRENGTH OF WROUGHT TITANIUM ALLOYS AT ROOM TEMPERATURE (SHEET 3 OF 3)
Class
Alloy
Condition
Beta Alloys
Ti-13V-1Cr-3Al
Solution + age
Ti-8Mo-8V-2Fe-3Al Ti-3Al-8V-6Cr-4Mo-4Zr
Solution + age Solution + age Annealed Solution + age
Ti-11.5Mo-6Zr-4.5Sn
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993).
©2001 CRC Press LLC
Tensile Strength (MPa) 1220 1276 1310 1448 883 1386
8.04 Mechanical L Page 582 Wednesday, December 31, 1969 17:00
Table 143. TENSILE
STRENGTH OF WROUGHT TITANIUM ALLOYS AT HIGH TEMPERATURE (SHEET 1 OF 4)
Class
Alloy
Condition
Test Temperature (°C)
Commercially Pure
99.5 Ti 99.2 Ti 99.1 Ti
Annealed Annealed Annealed
315 315 315
152 193 234
99.0 Ti 99.2Ti-0.2Pd Ti-0.8Ni-0.3Mo Ti-0.8Ni-0.3Mo
Annealed Annealed Annealed Annealed
315 315 205 315
310 186 345 324
Alpha Alloys
Ti-5Al-2.5Sn Ti-5Al-2.5Sn (low O2)
Annealed Annealed
315 -195 -255
565 1241 1579
Near Alpha Alloys
Ti-8Al-1Mo-1V
Duplex Annealed
315 425 540
793 738 621
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993).
©2001 CRC Press LLC
Tensile Strength (MPa)
8.04 Mechanical L Page 583 Wednesday, December 31, 1969 17:00
Table 143. TENSILE
STRENGTH OF WROUGHT TITANIUM ALLOYS AT HIGH TEMPERATURE (SHEET 2 OF 4)
Class
Test Temperature (°C)
Tensile Strength (MPa)
Alloy
Condition
Ti-11Sn-1Mo-2.25Al-5.0Zr-1Mo-0.2Si
Duplex Annealed
315 425 540
896 827 758
Ti-6Al-2Sn-4Zr-2Mo
Duplex Annealed
315 425 540
772 703 648
Ti-5Al-2Sn-2Zr-2Mo-0.25Si
975 ˚C (1/2h), AC + 595 ˚C (2h), AC
315 425 540
793 779 689
Ti-6Al-2Nb-1Ta-1Mo
As rolled 2.5 cm (1 in.) plate
315 425 540
586 517 483
Ti-6Al-2Sn-1.5Zr-1Mo- 0.35Bi-0.1Si
Beta forge + duplex anneal
480
724
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993).
©2001 CRC Press LLC
8.04 Mechanical L Page 584 Wednesday, December 31, 1969 17:00
Table 143. TENSILE
STRENGTH OF WROUGHT TITANIUM ALLOYS AT HIGH TEMPERATURE (SHEET 3 OF 4)
Class
Alloy
Condition
Test Temperature (°C)
Alpha-Beta Alloys
Ti-8Mn Ti-3Al-2.5V
Annealed Annealed
315 315
717 483
Ti-6Al-4V
Annealed Annealed Annealed
315 425 540
724 669 531
Solution + age Solution + age Solution + age
315 425 540
862 800 655
Ti-6Al-4V(low O2) Ti-6Al-6V-2Sn
Annealed Annealed Solution + age
160 315 315
1517 931 979
Ti-7Al-4Mo
Solution + age
315 425
976 848
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993).
©2001 CRC Press LLC
Tensile Strength (MPa)
8.04 Mechanical L Page 585 Wednesday, December 31, 1969 17:00
Table 143. TENSILE
STRENGTH OF WROUGHT TITANIUM ALLOYS AT HIGH TEMPERATURE (SHEET 4 OF 4)
Class
Beta Alloys
Test Temperature (°C)
Tensile Strength (MPa)
Alloy
Condition
Ti-6Al-2Sn-4Zr-6Mo
Solution + age
315 425 540
1020 951 848
Ti-6Al-2Sn-2Zr-2Mo- 2Cr-0.25Si
Solution + age
315
979
Ti-10V-2Fe-3Al
Solution + age
205 315
1117 1103
Ti-13V-1Cr-3Al
Solution + age
315 425
883 1103
Ti-8Mo-8V-2Fe-3Al Ti-3Al-8V-6Cr-4Mo-4Zr
Solution + age Solution + age
315 315 425
1131 1034 938
Ti-11.5Mo-6Zr-4.5Sn
Annealed Solution + age
315 315
724 903
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993).
©2001 CRC Press LLC
8.04 Mechanical L Page 586 Wednesday, December 31, 1969 17:00
Table 144. TENSILE
STRENGTH OF REFRACTORY METAL ALLOYS (SHEET 1 OF 3)
Form
Condition
Tensile Strength (ksi)
Class
Alloy
Niobium and Niobium Alloys
Pure Niobium
—
All
Recrystallized
2000
10
Nb–1Zr C103(KbI–3) SCb291
1 Zr 10 Hf, 1 Ti 0.7 Zr 10 Ta, 10 W
All All Bar, Sheet
Recrystallized Recrystallized Recrystallized
2000 2000 2000
23 27 32
C129 FS85 SU31
10 W, 10 Hf, 0.1 Y 28 Ta, 11 W, 0.8 Zr 17 W, 3.5 Hf, 0.12 C, 0.03 Si
Sheet Sheet Bar, Sheet
Recrystallized Recrystallized Special Thermal Processing
2400 2400 2400
26 23 40
Molybdenum and Molybdenum Alloys
Alloying Additions (%)
Temperature (°F)
Pure Molybdenum
—
All
Stress-relieved Annealed
1800
52
Doped Mo Low C Mo TZM
K, Si; ppm levels None 0.5 Ti, 0.08 Zr, 0.015 C
Wire, Sheet All All
Cold Worked Stress-relieved Annealed Stress-relieved Annealed
3000 1800 2400
30 50 45
TZC Mo–5Re Mo–30W
1.0 Ti, 0.14 Zr, 0.02 to 0.08 C 5 Re 30 W
All All All
Stress-relieved Annealed Stress-relieved Annealed Stress-relieved Annealed
2400 3000 2000
55 2 50
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p390, (1993).
©2001 CRC Press LLC
8.04 Mechanical L Page 587 Wednesday, December 31, 1969 17:00
Table 144. TENSILE
STRENGTH OF REFRACTORY METAL ALLOYS (SHEET 2 OF 3) Tensile Strength (ksi)
Class
Alloy
Alloying Additions (%)
Form
Condition
Temperature (°F)
Tantalum Alloys
Unalloyed FS61 FS63
None 7.5 W(P/M) 2.5 W, 0.15 Nb
All Wire, Sheet All
Recrystallized Cold Worked Recrystallized
2400 75 200
8.5 165 46
TA–10W KBI–40
10 W 40 Nb
All All
Recrystallized Recrystallized
2400 500
50 42
Unalloyed
None
Stress-relieved Annealed
3000
25
Doped
K, Si, Al; ppm levels
Bar, Sheet, Wire Wire
Cold Worked
3000
94
W–1 ThO2
1ThO2
Stress-relieved Annealed
3000
37
W–2 ThO2
2 ThO2
Stress-relieved Annealed
3000
30
W–3 ThO2 W–4 ThO2
3 ThO2 4 ThO2
Bar, Sheet, Wire Bar, Sheet, Wire Bar, Wire Bar
Stress-relieved Annealed Stress-relieved Annealed
3000 3000
30 30
Tungsten Alloys
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p390, (1993).
©2001 CRC Press LLC
8.04 Mechanical L Page 588 Wednesday, December 31, 1969 17:00
Table 144. TENSILE
STRENGTH OF REFRACTORY METAL ALLOYS (SHEET 3 OF 3)
Class
Alloy
Alloying Additions (%)
Form
Condition
W–15 Mo W–50 Mo W–3 Re
15 Mo 50 Mo 3 Re
Stress-relieved Annealed Stress-relieved Annealed Cold Worked
3000 3000 —
36 20 —
W–25 Re
25 Re
Bar, Wire Bar, Wire Wire Bar, Sheet, Wire
Stress-relieved Annealed
3000
33
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p390, (1993).
©2001 CRC Press LLC
Tensile Strength (ksi)
Temperature (°F)
8.05 Mechanical Page 589 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 145. TENSILE STRENGTH OF (SHEET 1 OF 4) Type
Ceramic
Borides
Chromium Diboride (CrB2)
Carbides
CERAMICS
Tensile Strength (psi)
Titanium Diboride (TiB2)
10.6x104 18.4x103
Zirconium Diboride (ZrB2)
28.7x103
Boron Carbide (B4C)
22.5x103
980˚C
Silicon Carbide (SiC)
5-20x103 psi
25˚C
(hot pressed) (hot pressed)
3 psi
20˚C
29x10
3 psi
5.75-21.75 x10
(reaction bonded)
11.17x103 psi
Tantalum Monocarbide (TaC)
2-42x103 psi
Titanium Monocarbide (TiC)
17.2x103
Tungsten Monocarbide (WC) Zirconium Monocarbide (ZrC)
1000˚C
3 psi
50x10
16.0x103
room temp. 3
980˚C
3
1250˚C
12.95-15.85x10 Boron Nitride (BN)
1400˚C 20˚C
11.7-14.45x10
Nitrides
Temperature
0.35x103
1000˚C
0.35x103
1500˚C
1.15x103
1800˚C
3
2.25x10
2000˚C
6.80x103
2400˚C
Trisilicon tetranitride (Si3N4) (hot pressed)
54.4 x103
20˚C
(hot pressed)
21.8 x103
1400˚C
(reaction bonded)
24.7 x103
20˚C
(reaction bonded)
20.3 x103
1400˚C
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
Shackelford & Alexander
589
8.05 Mechanical Page 590 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 145. TENSILE STRENGTH OF (SHEET 2 OF 4)
CERAMICS
Type
Ceramic
Tensile Strength (psi)
Temperature
Oxides
Aluminum Oxide (Al2O3)
37-37.8 x103
room temp.
33.6 x103
300˚C
3
40 x10
3
34.6 x10
800˚C
3
1000˚C
35 x10
33.9 x103
1050˚C
3
31.4 x10
1140˚C
18.5-20 x103
1200˚C
3
1300˚C
3
1400˚C
3
1460˚C
6.4 x10 4.3 x10 1.5 x10 Beryllium Oxide (BeO)
13.5-20 x103
room temp.
3
11.1 x10
500˚C
3
900˚C
3
1000˚C
3
1140˚C
3
0.6 x10
1300˚C
14 x103
room temp.
7.0 x10 5.0 x10
2.0 x10
Magnesium Oxide (MgO)
500˚C
3
14 x10
3
200˚C
15.2 x10
400˚C
3
800˚C
16 x10
3
11.5 x10
1000˚C
3
10 x10
1100˚C
3
1200˚C
3
1300˚C
8 x10 6 x10 To convert psi to MPa, multiply by 145.
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
590
CRC Handbook of Materials Science & Engineering
8.05 Mechanical Page 591 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 145. TENSILE STRENGTH OF (SHEET 3 OF 4)
CERAMICS
Type
Ceramic
Tensile Strength (psi)
Temperature
Oxides (Con’t)
Thorium Dioxide (ThO2)
14x103
room temp.
Zircoium Oxide (ZrO2)
17.9-20x103
room temp.
16.8x103
200˚C
3
400˚C
17.5x10
3
500˚C
3
600˚C
20.0x10 17.6x10
16.0x103
800˚C 3
6.75-17.0x10
13.0-13.5x103
(MgO stabilized)
1000˚C 1100˚C
3
12.1x10
1200˚C
10.2x103
1300˚C
6 psi
21x10
room temp.
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.51g/cm3)
7.8x103
25˚C
ρ=2.1g/cm3)
(
3.5x103
800˚C
(ρ=1.8g/cm3)
2.5x103
1200˚C
Mullite (3Al2O3 2SiO2)
16x103
25˚C
Spinel (Al2O3 MgO)
19.2x103
room temp.
13.7x103
550˚C
3
110.8x10
900˚C
3
6.1x10
1150˚C
1.1x103
1300˚C
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC Shackelford & Alexander
591
8.05 Mechanical Page 592 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 145. TENSILE STRENGTH OF (SHEET 4 OF 4)
CERAMICS
Type
Ceramic
Tensile Strength (psi)
Temperature
Oxides (Con’t)
Zircon (SiO2 ZrO2)
12.7x103
room temp.
8.7x103
1050˚C
3
1200˚C
3.6x10 Silicide
Molybdenum Disilicide (MoSi2)
40x103
980˚C
42.16x103
1090˚C
42.8x103
1200˚C
3
1300˚C
41.07x10 To convert psi to MPa, multiply by 145.
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
592
CRC Handbook of Materials Science & Engineering
8.06 Mechanical L Page 593 Wednesday, December 31, 1969 17:00
Table 146. TENSILE STRENGTH OF (SHEET 1 OF 3)
GLASS
Type
Glass
Tensile Strength (Kg • mm–2)
SiO2 glass
(48 µm diameter fiber) (56 µm diameter fiber) (60 µm diameter fiber) (65 µm diameter fiber)
49.6 44.3 42.3 39.7
(74 µm diameter fiber) (78 µm diameter fiber) (108 µm diameter fiber) (112 µm diameter fiber)
36.5 35.8 28.8 28.3
(1.5 mm diameter rod, 0.5 g/mm2•s stress rate) (1.5 mm diameter rod, 54 g/mm2•s stress rate)
5.84–7.08 9.73±2.13 8.52±2.52
(Corning 7940 silica glass) (Corning 7940 silica glass) (Corning 7940 silica glass)
5.6 6.2 6.6
(1.5 mm diameter rod, 50 g/mm2•s stress rate)
Temperature
100˚C 300˚C 500˚C
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
8.06 Mechanical L Page 594 Wednesday, December 31, 1969 17:00
Table 146. TENSILE STRENGTH OF (SHEET 2 OF 3)
GLASS
Type
Glass
Tensile Strength (Kg • mm–2)
SiO2 glass (Con’t)
(Corning 7940 silica glass) (Corning 7940 silica glass)
7.1 7.6
SiO2–Na2O glass
(6.0µm diameter fiber, 19.5% mol Na2O) (8.6µm diameter fiber, 19.5% mol Na2O)
(25.7µm diameter fiber, 19.5% mol Na2O)
173±1.36 134±1.34 92.5±10.08
(5 mm diameter rod, 20% mol Na2O)
15
(3.6µm diameter fiber, 25.5% mol Na2O)
142±0.189 127±0.259 103±1.020
(6.3µm diameter fiber, 25.5% mol Na2O)
(12.8µm diameter fiber, 25.5% mol Na2O) (5.4µm diameter fiber, 36.3% mol Na2O)
(8.6µm diameter fiber, 36.3% mol Na2O)
(11.4µm diameter fiber, 36.3% mol Na2O)
Temperature 700˚C 900˚C
107.6±0.308 98.0±0.344 91.2±1.480
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
8.06 Mechanical L Page 595 Wednesday, December 31, 1969 17:00
Table 146. TENSILE STRENGTH OF (SHEET 3 OF 3)
GLASS
Type
Glass
Tensile Strength (Kg • mm–2)
SiO2–PbO glass
(3.0 µm diameter fiber, 50% mol PbO) (4.3 µm diameter fiber, 50% mol PbO) (5.7 µm diameter fiber, 50% mol PbO) (7.1 µm diameter fiber, 50% mol PbO)
70.8 64 66–67.2 62–71.3
(8.0 µm diameter fiber, 50% mol PbO) (11.4 µm diameter fiber, 50% mol PbO) (17.2 µm diameter fiber, 50% mol PbO)
64.5 51.9–56 43–51.6
B2O3 glass
(10–30 µm diameter fiber)
60
B2O3–Na2O glass
(10–30 µm diameter fiber, 10% mol Na2O)
102 137 152
(10–30 µm diameter fiber, 20% mol Na2O)
(10–30 µm diameter fiber, 30% mol Na2O)
Temperature
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
8.06 Mechanical L Page 596 Wednesday, December 31, 1969 17:00
Table 147. TENSILE STRENGTH OF (SHEET 1 OF 12)
POLYMERS
Class
Polymer
Tensile Strength, (ASTM D638) (103 psi)
ABS Resins; Molded, Extruded
Medium impact High impact Very high impact Low temperature impact Heat resistant
6.3—8.0 5.0—6.0 4.5—6.0 4—6 7.0—8.0
Acrylics; Cast, Molded, Extruded
Cast Resin Sheets, Rods: General purpose, type I General purpose, type II Moldings: Grades 5, 6, 8 High impact grade
8.8—10.5 5.5—8.0
Allyl diglycol carbonate
5—6
Thermoset Carbonate
6—9 8—10
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.06 Mechanical L Page 597 Wednesday, December 31, 1969 17:00
Table 147. TENSILE STRENGTH OF (SHEET 2 OF 12)
POLYMERS
Class
Polymer
Tensile Strength, (ASTM D638) (103 psi)
Alkyds; Molded
Putty (encapsulating) Rope (general purpose) Granular (high speed molding) Glass reinforced (heavy duty parts)
4—5 7—8 3—4 5—9
Cellulose Acetate; Molded, Extruded
ASTM Grade: H4—1 H2—1 MH—1, MH—2 MS—1, MS—2 S2—1
(Tensile Strength at Fracture) 7—8 5.8—7.2 4.8—6.3 3.9—5.3 3.0—4.4
Cellulose Acetate Butyrate;
Molded, Extruded ASTM Grade: H4 MH S2
(Tensile Strength at Fracture) 6.9 5.0—6.0 3.0—4.0
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.06 Mechanical L Page 598 Wednesday, December 31, 1969 17:00
Table 147. TENSILE STRENGTH OF (SHEET 3 OF 12)
POLYMERS
Class
Polymer
Tensile Strength, (ASTM D638) (103 psi)
Cellusose Acetate Propionate; Molded, Extruded
ASTM Grade: 1 3 6
5.9—6.5 5.1—5.9 4
Chlorinated Polymers
Chlorinated polyether Chlorinated polyvinyl chloride
6 7.3
Polycarbonates
Polycarbonate Polycarbonate (40% glass fiber reinforced)
9.5 18
Diallyl Phthalates; Molded
Orlon filled Dacron filled Asbestos filled Glass fiber filled
4.5—6 4.6—6.2 4—6.5 5.5—11
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.06 Mechanical L Page 599 Wednesday, December 31, 1969 17:00
Table 147. TENSILE STRENGTH OF (SHEET 4 OF 12)
POLYMERS
Class
Polymer
Tensile Strength, (ASTM D638) (103 psi)
Fluorocarbons; Molded,Extruded
Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Ceramic reinforced (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF)
4.6—5.7 2.5—6.5 0.75—2.5 2.5—4.0 5.2—8.6
Epoxies; Cast, Molded, Reinforced
Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible Molded
9.5-11.5 1.4—7.6 8—11
General purpose glass cloth laminate High strength laminate Filament wound composite
50-58 160 230-240 (hoop)
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.06 Mechanical L Page 600 Wednesday, December 31, 1969 17:00
Table 147. TENSILE STRENGTH OF (SHEET 5 OF 12)
POLYMERS Tensile Strength, (ASTM D638) (103 psi)
Class
Polymer
Epoxies—Molded, Extruded
High performance resins (cycloaliphatic diepoxides) Cast, rigid Molded Glass cloth laminate Epoxy novolacs Cast, rigid Glass cloth laminate
9.6—12.0 59.2
Filler & type Cellulose electrical Glass fiber Alpha cellulose and mineral
5—9 6—9 5—8
Melamines; Molded
8—12 5.2—5.3 50—52
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.06 Mechanical L Page 601 Wednesday, December 31, 1969 17:00
Table 147. TENSILE STRENGTH OF (SHEET 6 OF 12)
POLYMERS
Class
Polymer
Tensile Strength, (ASTM D638) (103 psi)
Nylons; Molded, Extruded
Type 6 General purpose Glass fiber (30%) reinforced Cast Flexible copolymers
9.5—12.5 21—24 12.8 7.5—10.0
Type 12
7.1—8.5
6/6 Nylon General purpose molding Glass fiber reinforced Glass fiber Molybdenum disulfide filled General purpose extrusion
11.2—11.8 25—30 19—22 1.26–8.6
6/10 Nylon General purpose Glass fiber (30%) reinforced
7.1—8.5 19
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.06 Mechanical L Page 602 Wednesday, December 31, 1969 17:00
Table 147. TENSILE STRENGTH OF (SHEET 7 OF 12)
POLYMERS Tensile Strength, (ASTM D638) (103 psi)
Class
Polymer
Phenolics; Molded
Phenolics; Molded Type and filler General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber
(ASTM D651)
Arc resistant—mineral Rubber phenolic—woodflour or flock Rubber phenolic—chopped fabric Rubber phenolic—asbestos
6 4.5—9 3—5 4
ABS–Polycarbonate Alloy
8.2
5.0—8.5 5.0—8.5 5—9 5—10
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.06 Mechanical L Page 603 Wednesday, December 31, 1969 17:00
Table 147. TENSILE STRENGTH OF (SHEET 8 OF 12)
POLYMERS
Class
Polymer
Tensile Strength, (ASTM D638) (103 psi)
Polyacetals
Homopolymer: Standard 20% glass reinforced 22% TFE reinforced
10 8.5 6.9
Copolymer: Standard 25% glass reinforced High flow
8.8 18.5 8.8
Cast polyyester Rigid Flexible
5—15 1—8
High strength (glass fibers) Heat and chemical resistant (asbestos) Sheet molding compounds, general purpose
5—10 4—6 15—17
Polyesters: Thermosets
Reinforced polyester moldings
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.06 Mechanical L Page 604 Wednesday, December 31, 1969 17:00
Table 147. TENSILE STRENGTH OF (SHEET 9 OF 12)
POLYMERS
Class
Polymer
Tensile Strength, (ASTM D638) (103 psi)
Polyarylsulfone
Polyarylsulfone
13
Polypropylene:
General purpose
4.5—6.0
Polyethylenes; Molded, Extruded
Type I—lower density (0.910—0.925) Melt index 0.3—3.6 Melt index 6—26 Melt index 200
(ASTM D412) 1.4—2.5 1.4—2.0 0.9—1.1
Type II—medium density (0.926—0.940) Melt index 20 Melt index l.0—1.9
2 2.3—2.4
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.06 Mechanical L Page 605 Wednesday, December 31, 1969 17:00
Table 147. TENSILE STRENGTH OF (SHEET 10 OF 12)
POLYMERS
Class
Polymer
Tensile Strength, (ASTM D638) (103 psi)
Polyethylenes; Molded, Extruded (Con’t)
Type III—higher density (0.941—0.965) Melt index 0.2—0.9 Melt Melt index 0.l—12.0 Melt index 1.5—15 High molecular weight
4.4 2.9—4.0 4.4 5.4
Olefin Copolymers; Molded
EEA (ethylene ethyl acrylate) EVA (ethylene vinyl acetate) Ethylene butene
0.2 0.36 0.35
Propylene—ethylene
Propylene—ethylene Ionomer Polyallomer
0.4 0.4 3—4.3
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.06 Mechanical L Page 606 Wednesday, December 31, 1969 17:00
Table 147. TENSILE STRENGTH OF (SHEET 11 OF 12)
POLYMERS
Class
Polymer
Tensile Strength, (ASTM D638) (103 psi)
Polystyrenes
Polystyrenes; Molded General purpose Medium impact High impact
5.0—10 4.0—6.0 3.3—5.1
Glass fiber -30% reinforced Styrene acrylonitrile (SAN) Glass fiber (30%) reinforced SAN
14 8.3—12.0 18
Polyvinyl Chloride And Copolymers; Molded, Extruded Nonrigid—general Nonrigid—electrical Rigid—normal impact Vinylidene chloride
D412 1—3.5 2—3.2 5.5—8 4—40
Polyvinyl Chloride And Copolymers;
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.06 Mechanical L Page 607 Wednesday, December 31, 1969 17:00
Table 147. TENSILE STRENGTH OF (SHEET 12 OF 12)
POLYMERS
Class
Polymer
Tensile Strength, (ASTM D638) (103 psi)
Silicones
Silicones; Molded, Laminated Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate
(ASTM D651) 6.5 4—6 30—35
Ureas; Molded
Alpha—cellulose filled (ASTM Type l)
5—10
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.07 Mechanical Page 608 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 148. TENSILE
STRENGTH OF FIBERGLASS REINFORCED PLASTICS Class
Material
Glass fiber content (wt%)
Glass fiber reinforced thermosets
Sheet molding compound (SMC)
15 to 30
8 to 20
Bulk molding compound(BMC) Preform/mat(compression molded) Cold press molding–polyester
15 to 35 25 to 50 20 to 30
4 to 10 25 to 30 12 to 20
Spray–up–polyester Filament wound–epoxy Rod stock–polyester Molding compound–phenolic
30 to 50 30 to 80 40 to 80 5 to 25
9 to 18 80 to 250 60 to 180 7 to 17
Glass–fiber–reinforced thermoplastics
Tensile strength at yield (ksi)
Acetal
20 to 40
9 to 18
Nylon Polycarbonate Polyethylene
6 to 60 20 to 40 10 to 40
13 to 33 12 to 25 6.5 to 11
Polypropylene Polystyrene Polysulfone ABS(acrylonitrile butadiene styrene)
20 to 40 20 to 35 20 to 40 20 to 40
5.5 to 10.5 10 to 15 13 to 20 11 to 16
PVC (polyvinyl chloride) Polyphenylene oxide(modified) SAN (styrene acrylonitrile) Thermoplastic polyester
15 to 35 20 to 40 20 to 40 20 to 35
14 to 18 15 to 22 13 to 18 14 to 19
To convert (ksi) to (MPa), multiply by 6.89 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p106, (1994).
©2001 CRC Press LLC
608
CRC Handbook of Materials Science & Engineering
8.07 Mechanical Page 609 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 149. TENSILE
STRENGTH OF CARBON - AND GLASS REINFORCED ENGINEERING THERMOPLASTICS (SHEET 1 OF 2) Class
Resin Type
Composition
Tensile Strength (MPa)
Amorphous
Acrylonitrile-butadiene-styrene(ABS)
30% glass fiber 30% carbon fiber
100 130
Nylon
30% glass fiber 30% carbon fiber
148 207
Polycarbonate
30% glass fiber 30% carbon fiber
128 165
Polyetherimide
30% glass fiber 30% carbon fiber
197 234
Polyphenylene oxide (PPO)
30% glass fiber 30% carbon fiber
145 159
Polysulfone
30% glass fiber 30% carbon fiber
124 159
Styrene-maleic-anhydride (SMA)
30% glass fiber
103
Thermoplastic polyurethane
30% glass fiber
57
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p111–112, (1994).
©2001 CRC Press LLC
Shackelford & Alexander
609
8.07 Mechanical Page 610 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 149. TENSILE
STRENGTH OF CARBON - AND GLASS REINFORCED ENGINEERING THERMOPLASTICS (SHEET 2 OF 2) Class
Resin Type
Composition
Tensile Strength (MPa)
Crystalline
Acetal
30% glass fiber 20% carbon fiber
134 81
Nylon 66
30% glass fiber 30% carbon fiber
179 241
Polybutylene telphthalate (PBT)
30% glass fiber 30% carbon fiber
134 152
Polythylene terephthalate (PET)
30% glass fiber
159
Polyphenylene sulfide (PPS)
30% glass fiber 30% carbon fiber
138 186
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p111–112, (1994).
©2001 CRC Press LLC
610
CRC Handbook of Materials Science & Engineering
8.07 Mechanical Page 611 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 150. STRENGTH OF
GRAPHITE FIBER REINFORCED METALS Composite
Fiber content (vol%)
Strength (ksi)
Graphite(a)/lead Graphite(b)/lead Graphite(a)/zinc Graphite(a)/magnesium
41 35 35 42
104 72 110.9 65
(a) Thornel 75 fiber (b) Courtaulds HM fiber To convert psi to MPa, multiply by 145. Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p148,(1994).
©2001 CRC Press LLC
Shackelford & Alexander
611
8.08 Mechanical L Page 612 Wednesday, December 31, 1969 17:00
Table 151. TENSILE
STRENGTH OF GRAPHITE /MAGNESIUM CASTINGS * Tensile Strength (GPa)
Tensile Strength,90° (GPa)
Fiber Type
Fiber content
Fiber orientation
P75
40% plus 9% 40%
±16° 90° ± 16°
Hollow cylinder Hollow cylinder Hollow cylinder
Filament wound Filament wound Filament wound
0.45 0.45 0.56
0.061 0.061 0.38
40% 30% 10% 20% 20%
0° 0° plus 90° 0° plus 90°
Plate Plate Plate Plate Plate
Prepreg Prepreg Prepreg Prepreg Prepreg
0.48 0.28 0.28 8.45 8.45
0.02 0.010 0.010 0.24 0.24
P100 P55
Casting
Fiber Preform Method
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p148,(1994). *
Pitch-base fibers
©2001 CRC Press LLC
8.09 Mechanical Page 613 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 152. TENSILE
STRENGTH OF GRAPHITE /ALUMINUM COMPOSITES Composite
Fiber loading (vol %)
Wire diameter (mm)
Tensile Strength (MPa)
VS0054/201 Al GY70SE/201 Al
48 to 52 37 to 38
0.64 (2-strand) 0.71(8-strand)
1035 to 1070 793 to 827
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p148,(1994).
Table 153. TENSILE
STRENGTH OF GRAPHITE /ALUMINUM COMPOSITES Thornel Fiber
Longitudinal Tensile Strength (MPa)
Transverse Tensile Strength (MPa)
P55 P75 P100
517 to 621 621 to 724 552 to 834
28 to 48 28 to 48 28 to ~48
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p148,(1994).
©2001 CRC Press LLC Shackelford & Alexander
613
8.09 Mechanical Page 614 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 154. TENSILE
STRENGTH OF SILICON CARBIDE SCS–2–AL
Fiber orientation
No. of plies
Tensile Strength (MPa)
0° 90°
6, 8, 12 6, 12,40
1462 86.2
[0°/90°/0°/90°]s [02 °90°20°]s [902/0°/90°]s
8 8 8
673 1144 341.3
± 45° [0°±45°/0°]s+2s [0°±45°/90°]s
8, 12, 40 8, 16 8
309.5 800.0 572.3
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p149,(1994).
Table 155. ULTIMATE
TENSILE STRENGTH OF INVESTMENT CAST SILICON CARBIDE SCS–AL
Fiber orientation
Fiber vol (%)
Ultimate Tensile Strength (MPa)
0°3/90°6/0°3 90°3/0°6/90°3 0°
33 33 34
458.5 584.0 1034.2
Range of Measurement (%)
75 95 85
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p149,(1994).
©2001 CRC Press LLC
614
CRC Handbook of Materials Science & Engineering
8.09 Mechanical Page 615 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 156. ULTIMATE
TENSILE STRENGTH OF SILICON CARBIDE –ALUMINUM ALLOY COMPOSITES * Ultimate Tensile Strength (MPa)
Material
Fiber (vol %)
Base
Reinforced
Pure Aluminum 6061–T6 2024–T4
11 16 20
59 300 470
235 441 565
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p149,(1994). *
Room Temperature
Table 157. TENSILE
STRENGTH OF SIC-WHISKER –REINFORCED ALUMINUM ALLOY Tensile Strength Fiber Content (vol %)
( MPa)
Standard Deviation
Range of Measurement
0 12 16 20
297 359 374 383.6
1.8 33.6 8.0 15.2
3.5 85.6 23.0 38.8
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p150,(1994).
©2001 CRC Press LLC Shackelford & Alexander
615
8.09 Mechanical Page 616 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 158. ULTIMATE
TENSILE STRENGTH OF ALUMINUM ALLOY REINFORCED WITH SIC WHISKERS VS. TEMPERATURE Ultimate Tensile Strength (MPa) Fiber (Vol%)
350 °C
300 °C
250 °C
Polycrystalline alumina 0 0.05 0.12 0.20
55 63 74 112
70 88 — 155
115 134 — 198
SiC whiskers 0 0.12 0.16 0.20
55 124 147 184
70 180 — 235
115 226 — 284
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p150,(1994).
©2001 CRC Press LLC
616
CRC Handbook of Materials Science & Engineering
8.09 Mechanical Page 617 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 159. ULTIMATE
TENSILE STRENGTH OF REINFORCED ALUMINUM ALLOY VS. TEMPERATURE Ultimate Tensile Strength (MPa) Vol %
350°C
300°C
250°C
Polycrystalline alumina
0 5 12 20
55 63 74 112
70 88 — 155
115 134 — 198
SiC whiskers
0 12 16 20
55 124 147 184
70 180 — 235
115 226 — 284
Fiber
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p154,(1994).
©2001 CRC Press LLC Shackelford & Alexander
617
8.09 Mechanical Page 618 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 160. TENSILE
STRENGTH OF POLYCRYSTALLINE –ALUMINA–REINFORCED ALUMINUM ALLOY Tensile Strength Fiber Content (vol %)
(MPa)
Standard Deviation
Range of Measurement
0 5 12 20
297 282 273 312
1.8 6.5 19.6 16.0
3.5 15.1 49.6 42.3
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p154,(1994).
Table 161. TENSILE
STRENGTH OF BORON/ALUMINUM COMPOSITES * Matrix
Fiber Orientation
Tensile Strength ( MPa)
Al-6061
0° 90°
1515 138
Al-2024
0° 90°
1550 214
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p157,(1994). *
These samples contain 48% Avco (142 µm) boron. Longitudinal tensile specimens are 152 mm by 7.9 mm by 6 ply. Transverse tensile bars are 152 mm by 12.7 mm by 6 ply.
©2001 CRC Press LLC
618
CRC Handbook of Materials Science & Engineering
8.09 Mechanical Page 619 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 162. COMPRESSIVE
STRENGTH OF GRAY CAST IRON BARS
ASTM Class
Compressive Strength (MPa)
20 25 30
572 669 752
35 40 50 60
855 965 1130 1293
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984).
©2001 CRC Press LLC Shackelford & Alexander
619
8.09 Mechanical Page 620 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 163. COMPRESSIVE STRENGTH OF (SHEET 1 OF 3)
CERAMICS
Class
Ceramic
Compressive Strength (psi)
Boride
Titanium Diboride (TiB2)
47-97x103
Carbides
Boron Carbide (B4C)
41.4x104
room temp.
Silicon Carbide (SiC)
82-200x103
25˚C
Titanium Monocarbide (TiC) Trichromium Dicarbide (Cr3C2)
10.9-19x104
room temp.
Zirconium Monocarbide (ZrC)
238x103
Boron Nitride (BN) parallel to c axis
34.0x103
parallel to a axis
45x103
Titanium Mononitirde (TiN)
141x103
Trisilicon tetranitride (Si3N4)
10-100x103
Nitrides
Oxides
Aluminum Oxide (Al2O3)
Temperature
60x104 room temp.
10-30x103
25˚C 1000˚C
427 x103
room temp.
214 x103
400˚C 600˚C 800˚C
199 x103 183 x103 128 x103 85 x103 71 x103
1000˚C 1100˚C 1200˚C
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
620
CRC Handbook of Materials Science & Engineering
8.09 Mechanical Page 621 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 163. COMPRESSIVE STRENGTH OF (SHEET 2 OF 3)
CERAMICS
Class
Ceramic
Compressive Strength (psi)
Oxides (Con’t)
Aluminum Oxide (Al2O3) (Con’t)
35.6 x103 14 x103 7 x103
Oxides (Con’t)
Beryllium Oxide (BeO)
114-310 x103 71 x103 64 x103 35.5-40 x103 28.5 x103
Temperature
1400˚C 1500˚C 1600˚C room temp. 500˚C 800˚C 1000˚C
7 x103
1145˚C 1400˚C 1500˚C 1600˚C
Magnesium Oxide (MgO)
112 x103
room temp.
Thorium Dioxide (ThO2)
146-214x103
room temp. 400˚C 600˚C 800˚C
24 x103 17 x103
156x103 85x103 71x103 51x103 28.5x103 5.7x103 1.5x103
1000˚C 1200˚C 1400˚C 1500˚C
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC Shackelford & Alexander
621
8.09 Mechanical Page 622 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 163. COMPRESSIVE STRENGTH OF (SHEET 3 OF 3)
CERAMICS
Class
Ceramic
Compressive Strength (psi)
Oxides (Con’t)
Zircoium Oxide (ZrO2)
205-300x103 228x103 171x103 114x103
Temperature
room temp. 500˚C 1000˚C
2.8x103
1200˚C 1400˚C 1500˚C
85-190x106
room temp.
(ρ=1.8g/cm3)
50x103 50x103 30x103 18.5x103
25oC 400oC 800oC 1200oC
Mullite (3Al2O3 2SiO2)
80-190x103
25˚C
Spinel (Al2O3 MgO)
270x103
room temp. 500˚C 800˚C
18.5x103
(CaO stabilized) Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.51g/cm3) (ρ=2.3g/cm3) (ρ=2.1g/cm3)
199x103 171x103 85.5x103 71x103 21.4x103 8.5x103
1100˚C 1200˚C 1400˚C 1600˚C
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
622
CRC Handbook of Materials Science & Engineering
8.09 Mechanical Page 623 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 164. COMPRESSIVE
STRENGTH OF FIBERGLASS REINFORCED PLASTIC
Class
Material
Glass fiber content (wt%)
Glass fiber reinforced thermosets
Sheet molding compound (SMC)
15 to 30
15 to 30
Bulk molding compound(BMC) Preform/mat(compression molded) Spray–up–polyester
15 to 35 25 to 50 30 to 50
20 to 30 15 to 30 15 to 25
Filament wound–epoxy Rod stock–polyester Molding compound–phenolic
30 to 80 40 to 80 5 to 25
45 to 70 30 to 70 14 to 35
Acetal
20 to 40
11 to 17
Nylon Polycarbonate Polyethylene
6 to 60 20 to 40 10 to 40
13 to 24 14 to 24 4 to 8
Polypropylene Polystyrene Polysulfone ABS(acrylonitrile butadiene styrene)
20 to 40 20 to 35 20 to 40 20 to 40
6 to 8 13.5 to 19 21 to 26 12 to 22
PVC (polyvinyl chloride) Polyphenylene oxide(modified) SAN (styrene acrylonitrile) Thermoplastic polyester
15 to 35 20 to 40 20 to 40 20 to 35
13.4 to 16.8 18 to 20 12 to 23 16 to 18
Glass–fiber–reinforced thermoplastics
Compressive strength (ksi)
To convert (ksi) to (Mpa), multiply by 6.89 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p106, (1994).
©2001 CRC Press LLC Shackelford & Alexander
623
8.09 Mechanical Page 624 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 165. ULTIMATE
COMPRESSIVE STRENGTH OF INVESTMENT CAST SILICON CARBIDE SCS–AL
Fiber orientation
Fiber vol (%)
Ultimate Compressive Strength (MPa)
0°3/90°6/0°3 90°3/0°6/90°3 0°
33 33 34
1378 9 1378.9 1896.1
Compressive Modulus (GPa)
— — 186.2
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p149,(1994).
©2001 CRC Press LLC
624
CRC Handbook of Materials Science & Engineering
8.09 Mechanical Page 625 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 166. YIELD
STRENGTH OF TOOL STEELS
Type
Condition
L2
Annealed Oil quenched from 855 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C
L6
S1
S5
S7
Annealed Oil quenched from 845 •C and single tempered at: 315 •C 425 •C 540 •C 650 •C Annealed Oil quenched from 930 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C Annealed Oil quenched from 870 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C Annealed Fan cooled from 940 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C
0.2% Yield Strength (MPa) 510 1790 1655 1380 1170 760 380 1790 1380 1100 830 415 1895 1860 1690 1525 1240 440 1930 1860 1690 1380 1170 380 1450 1585 1410 1380 1035
Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984).
©2001 CRC Press LLC Shackelford & Alexander
625
8.09 Mechanical Page 626 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 167. YIELD
STRENGTH OF DUCTILE IRONS
Specification Number
Grade or Class
Yield Strength (MPa)
ASTM A395-76; ASME SA395
60-40-18
276
ASTM A476-70(d); SAE AMS5316
80-60-03
414
ASTM A536-72, MIL-1-11466B(MR)
60-40-18 65-45-12
276 310
80-55-06 100-70-03 120-90-02
379 483 621
SAE J434c
D4018 D4512 D5506 D7003
276 310 379 483
MlL-I-24137(Ships)
Class A Class B Class C
310 207 172
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169, (1984).
©2001 CRC Press LLC
626
CRC Handbook of Materials Science & Engineering
8.09 Mechanical Page 627 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 168. YIELD
STRENGTH OF MALLEABLE IRON CASTINGS
Specification Number Ferritic ASTM A47, A338; ANSI G48.1; FED QQ–I–666c
Grade or Class
32510 35018
224 241 207
40010 45008 45006 50005
276 310 310 345
60004 70003 80002 90001
414 483 552 621
M3210 M4504(a) M5003(a)
224 310 345
M5503(b)
379
M7002(b) M8501(b)
483 586
ASTM A197 Pearlitic and Martensitic ASTM A220; ANSI C48.2; MIL–I–11444B
Automotive ASTM A602; SAE J158
Yield Strength (MPa)
(a) Air quenched and tempered (b) Liquid quenched and tempered Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p171, (1984).
©2001 CRC Press LLC Shackelford & Alexander
627
8.10 Mechanical L Page 628 Wednesday, December 31, 1969 17:00
Table 169. YIELD
STRENGTH OF AUSTENITIC STAINLESS STEELS (SHEET 1 OF 5)
Type
Form
Condition
ASTM Specification
0.2% Yield Strength (MPa)
Type 301(UNS S30100)
Bar,Wire,Plate, Sheet,Strip
Annealed
A167
205
Type 302 (UNS S30200)
Bar
Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b)
A276 A276 A276
205 310 205
Type 302B (UNS S30215)
Bar
Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b)
A276 A276 A276
205 310 205
Type 302Cu(UNS S30430)
Bar
Annealed
A493
—
Types 303 (UNS S30300) and 303Se (UNS S30323)
Bar
Annealed
A581
240
Wire
Annealed Cold worked
A581 A581
— —
(a) Up to 13 mm thick (b) Over 13 mm thick. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p364-366 (1993).
©2001 CRC Press LLC
8.10 Mechanical L Page 629 Wednesday, December 31, 1969 17:00
Table 169. YIELD
STRENGTH OF AUSTENITIC STAINLESS STEELS (SHEET 2 OF 5)
Type
Form
Condition
ASTM Specification
0.2% Yield Strength (MPa)
Type 304(UNS S30400)
Bar
Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b)
A276 A276 A276
205 310 205
Type 304L (UNS S30403)
Bar
Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b)
A276 A276 A276
170 310 170
Types 304N (UNS S30451) and 316N(UNS S31651)
Bar
Annealed
A276
240
Type 304LN
Bar
Annealed
—
205
Type 305 (UNS S30500)
Bar
Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b)
A276 A276 A276
205 310 205
(a) Up to 13 mm thick (b) Over 13 mm thick. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p364-366 (1993).
©2001 CRC Press LLC
8.10 Mechanical L Page 630 Wednesday, December 31, 1969 17:00
Table 169. YIELD
STRENGTH OF AUSTENITIC STAINLESS STEELS (SHEET 3 OF 5)
Type
Form
Condition
ASTM Specification
0.2% Yield Strength (MPa)
Types 308 (UNS S30800),321(UNS S32100),347(UNS34700) and 348 (UNS S34800)
Bar
Hot finished and annealed
A276
205
Cold finished and annealed(a) Cold finished and annealed(b)
A276 A276
310 205
Annealed
—
207
Hot finished and annealed
A276
205
Cold finished and annealed(a) Cold finished and annealed(b)
A276 A276
310 205
Type 308L
Bar
Types 309 (UNS S30900), 309S (UNS S30908), 310 (UNS S31000) and 310S (UNS S31008)
Bar
(a) Up to 13 mm thick (b) Over 13 mm thick. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p364-366 (1993).
©2001 CRC Press LLC
8.10 Mechanical L Page 631 Wednesday, December 31, 1969 17:00
Table 169. YIELD
STRENGTH OF AUSTENITIC STAINLESS STEELS (SHEET 4 OF 5)
Type
Form
Condition
ASTM Specification
0.2% Yield Strength (MPa)
Type 314 (UNS S31400)
Bar
Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b)
A276 A276 A276
205 310 205
Type 316 (UNS S31600)
Bar
Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b)
A276 A276 A276
205 310 205
Type 316F (UNS S31620)
Bar
Annealed
—
240
Type 316L (UNS S31603)
Bar
Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b)
A276 A276 A276
170 310 170
Type 316LN
Bar
Annealed
—
205
(a) Up to 13 mm thick (b) Over 13 mm thick. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p364-366 (1993).
©2001 CRC Press LLC
8.10 Mechanical L Page 632 Wednesday, December 31, 1969 17:00
Table 169. YIELD
STRENGTH OF AUSTENITIC STAINLESS STEELS (SHEET 5 OF 5)
Type
Form
Condition
ASTM Specification
0.2% Yield Strength (MPa)
Type 317 (UNS S31700)
Bar
Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b)
A276 A276 A276
205 310 205
Type 317L (UNS S31703)
Bar
Annealed
—
240
Type 317LM
Bar,Plate,Sheet, Strip
Annealed
—
205
Type 329 (UNS S32900)
Bar
Annealed
—
550
Type 330 (UNS N08330)
Bar
Annealed
B511
210
Type 330HC
Bar,Wire,Strip
Annealed
—
290
Types 384 (UNS S38400)
Bar
Annealed
A493
—
Types 385 (UNS38500)
Bar
Annealed
A493
—
(a) Up to 13 mm thick (b) Over 13 mm thick. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p364-366 (1993).
©2001 CRC Press LLC
8.10 Mechanical L Page 633 Wednesday, December 31, 1969 17:00
Table 170. YIELD
STRENGTH OF FERRITIC STAINLESS STEELS (SHEET 1 OF 2)
Type
ASTM Specification
Form
Condition
0.2% Yield Strength (MPa)
Type 405 (UNS S40500)
A580 A580
Wire
Annealed Annealed, Cold Finished
275 275
Type 409 (UNS S40900) Type 429 (UNS S42900)
— —
Bar Bar
Annealed Annealed
240(a) 310(a)
Type 430 (UNS S43000)
A276 A276
Bar
Annealed, Hot Finished Annealed, Cold Finished
275 275
Type 430Ti(UNS S43036)
—
Bar
Annealed
310(a)
Type 434 (UNS S43400) Type 436 (UNS S43600)
— —
Wire Sheet, Strip
Annealed Annealed
415(a) 365(a)
(a) Typical Values Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p368 (1993).
©2001 CRC Press LLC
8.10 Mechanical L Page 634 Wednesday, December 31, 1969 17:00
Table 170. YIELD
STRENGTH OF FERRITIC STAINLESS STEELS (SHEET 2 OF 2)
Type
ASTM Specification
Form
Condition
0.2% Yield Strength (MPa)
Type 442 (UNS S44200) Type 444 (UNS S44400)
— A176
Bar Plate, Sheet, Strip
Annealed Annealed
310(a) 275
Type 446 (UNS S44600)
A276 A276
Bar
Annealed, Hot Finished Annealed, Cold Finished
275 275
(a) Typical Values Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p368 (1993).
©2001 CRC Press LLC
8.10 Mechanical L Page 635 Wednesday, December 31, 1969 17:00
Table 171. YIELD
STRENGTH OF MARTENSITIC STAINLESS STEELS (SHEET 1 OF 3)
Type
ASTM Specification
Form
Condition
0.2% Yield Strength (MPa)
Type 403 (UNS S40300)
A276 A276 A276 A276 A276 A276
Bar
Annealed, hot finished Annealed, cold finished Intermediate temper, hot finished Intermediate temper, cold finished Hard temper, hot finished Hard temper, cold finished
275 275 550 550 620 620
Type 410 (UNS S41000)
A276 A276 A276 A276 A276 A276
Bar
Annealed, hot finished Annealed, cold finished Intermediate temper, hot finished Intermediate temper, cold finished Hard temper, hot finished Hard temper, cold finished
275 275 550 550 620 620
Type 410S (UNS S41008)
A176
Plate, Sheet, Strip
Annealed
205
Type 410Cb (UNS S41040)
A276 A276 A276 A276
Bar
Annealed, hot finished Annealed, cold finished Intermediate temper, hot finished Intermediate temper, cold finished
275 275 690 690
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p369-370 (1993).
©2001 CRC Press LLC
8.10 Mechanical L Page 636 Wednesday, December 31, 1969 17:00
Table 171. YIELD
STRENGTH OF MARTENSITIC STAINLESS STEELS (SHEET 2 OF 3)
Type
ASTM Specification
Form
Condition
0.2% Yield Strength (MPa)
Type 414 (UNS S41400)
A276 A276
Bar
Intermediate temper, hot finished Intermediate temper, cold finished
620 620
Type 414L Type 420 (UNS S42000)
— —
Bar Bar
Annealed Tempered 205 °C
550 1480
Type 422 (UNS S42200)
A565
Bar
for high-temperature service
760
Type 431 (UNS S43100)
— —
Bar
Tempered 260 °C Tempered 595 °C
1030 795
Type 440A (UNS S44002)
— —
Bar
Annealed Tempered 315 °C
415 1650
Type 440B (UNS S44003)
— —
Bar
Annealed Tempered 315 °C
425 1860
Type 440C (UNS S44004)
— —
Bar
Annealed Tempered 315 °C
450 1900
Intermediate and hard tempers
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p369-370 (1993).
©2001 CRC Press LLC
8.10 Mechanical L Page 637 Wednesday, December 31, 1969 17:00
Table 171. YIELD
STRENGTH OF MARTENSITIC STAINLESS STEELS (SHEET 3 OF 3)
Type
ASTM Specification
Form
Condition
0.2% Yield Strength (MPa)
Type 501 (UNS S50100)
— —
Bar, Plate
Annealed Tempered 540 °C
205 965
Type 502 (UNS S50200)
—
Bar, Plate
Annealed
205
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p369-370 (1993).
©2001 CRC Press LLC
8.10 Mechanical L Page 638 Wednesday, December 31, 1969 17:00
Table 172. YIELD
STRENGTH OF PRECIPITATION -HARDENING AUSTENITIC STAINLESS STEELS
Type
Form
Condition
0.2% Yield Strength (MPa)
PH 13–8 Mo (UNS S13800)
Bar, Plate, Sheet, Strip
H950 H1000
1410 1310
15–5 PH (UNS S15500) and 17–4 PH (UNS S17400)
Bar, Plate, Sheet, Stript
H900 H925 H1025 H1075
1170 1070 1000 860
H1100 H1150 H1150M
795 725 515
RH950 TH1050
1030 965
17–7 PH (UNS S17700)
Bar
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p371 (1993).
©2001 CRC Press LLC
8.10 Mechanical L Page 639 Wednesday, December 31, 1969 17:00
Table 173. YIELD
STRENGTH OF HIGH–NITROGEN AUSTENITIC STAINLESS STEELS Type
ASTM Specification
Form
Condition
0.2% Yield Strength (MPa)
Type 201 (UNS S20100)
A276
Bar
Annealed
275
Type 202 (UNS S20200)
A276
Bar
Annealed
275
Type 205 (UNS S20500)
—
Plate
Annealed*
475
Type 304N (UNS S30451)
A276
Bar
Annealed
240
Type 304HN (UNS S30452)
—
Bar
Annealed
345
Type 316N (UNS S31651)
A276
Bar
Annealed
240
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p367 (1993). *
Typical Values
©2001 CRC Press LLC
8.10 Mechanical L Page 640 Wednesday, December 31, 1969 17:00
Table 174. YIELD
STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 1 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Yield Strength (MPa)
C10100 Oxygen-free electronic C10200 Oxygen-free copper C10300 Oxygen-free extra-low phosporus C10400, C10500, C10700 Oxygen-free, silver-bearing
99.99 Cu 99.95 Cu 99.95 Cu, 0.003 P 99.95 Cu(e)
F, R, W, T, P, S F, R, W, T, P, S F, R, T, P, S F, R, W, S
69-365 69-365 69-345 69-365
C10800 Oxygen-free, low phosporus CS11000 Electrolytic tough pitch copper C11100 Electrolytic tough pitch, anneal resistant C11300, C11400, C11500, C11600 Silver-bearing tough pitch copper
99.95 Cu, 0.009 P 99.90 Cu, 0.04 O 99.90 Cu, 0.04 O, 0.01 Cd 99.90 Cu, 0.04 O, Ag(f)
F, R, T, P F, R, W, T, P, S W F, R, W, T, S
69-345 69-365 — 69-365
C12000, C12100 C12200 Phosphorus deoxidized copper, high residual phosphorus C12500, C12700, C12800, C12900, C13000 Fire-refined tough pitch with silver C14200 Phosphorus deoxidized, arsenical
99.9 Cu(g) 99.90 Cu, 0.02 P
F, T, P F, R, T, P
69-365 69-345
99.88 Cu(h)
F, R, W, S
69-365
99.68 Cu, 0.3 As, 0.02 P
F, R, T
69-345
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.10 Mechanical L Page 641 Wednesday, December 31, 1969 17:00
Table 174. YIELD
STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 2 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Yield Strength (MPa)
C19200 C14300 C14310 C14500 Phosphorus deoxidized, tellurium bearing
98.97 Cu, 1.0 Fe, 0.03 P 99.9 Cu, 0.1 Cd 99.8 Cu, 0.2 Cd 99.5 Cu, 0.50 Te, 0.008 P
F, T F F F, R, W, T
76-510 76-386 76-386 69-352
C14700 Sulfur bearing C15000 Zirconium copper C15500 C15710
99.6 Cu, 0.40 S 99.8 Cu, 0.15 Zr 99.75 Cu, 0.06 P, 0.11 Mg, Ag(i) 99.8 Cu, 0.2 Al2O3
R, W R, W F R, W
69-379 41-496 124-496 268-689
C15720 C15735 C15760 C16200 Cadmium copper
99.6 Cu, 0.4 Al2O3 99.3 Cu, 0.7 Al2O3 98.9 Cu, 1.1 Al2O3 99.0 Cu, 1.0 Cd
F, R R F, R F, R, W
365-586 414-565 386-552 48-476
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.10 Mechanical L Page 642 Wednesday, December 31, 1969 17:00
Table 174. YIELD
STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 3 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Yield Strength (MPa)
C16500 C17000 Beryllium copper C17200 Beryllium copper C17300 Beryllium copper
98.6 Cu, 0.8 Cd, 0.6 Sn 99.5 Cu, 1.7 Be, 0.20 Co 99.5 Cu, 1.9 Be , 0.20 Co 99.5 Cu, 1.9 Be, 0.40 Pb
F, R, W F, R F, R, W, T, P, S R
97-490 221-1172 172-1344 172-1255
C17500 Copper-cobalt-beryllium alloy C18200, C18400, C18500 Chromium copper C18700 leaded copper C18900
99.5 Cu, 2.5 Co, 0.6 Be 99.5 Cu(j) 99.0 Cu, 1.0 Pb 98.75 Cu, 0.75 Sn, 0.3 Si, 0.20 Mn
F, R F, W, R, S, T R R, W
172-758 97-531 69-345 62-359
C19000 Copper-nickel-phosphorus alloy C19100 Copper-nickel-phosphorus-tellurium alloy C19400
98.7 Cu, 1.1 Ni, 0.25 P 98.15 Cu, 1.1 Ni, 0.50 Te, 0.25 P 97.5 Cu, 2.4 Fe, 0.13 Zn, 0.03 P
F, R, W R, F F
138-552 69-634 165-503
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.10 Mechanical L Page 643 Wednesday, December 31, 1969 17:00
Table 174. YIELD
STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 4 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Yield Strength (MPa)
C19500 C21000 Gilding, 95% C22000 Commercial bronze, 90% C22600 Jewelry bronze, 87.5%
97.0 Cu, 1.5 Fe, 0.6 Sn, 0.10 P, 0.80 Co 95.0 Cu, 5.0 Zn 90.0 Cu, 10.0 Zn 87.5 Cu, 12.5 Zn
F F, W F, R, W, T F, W
448-655 69-400 69-427 76-427
C23000 Red brass, 85% C24000 Low brass, 80% C26000 Cartridge brass, 70% C26800, C27000 Yellow brass
85.0 Cu, 15.0 Zn 80.0 Cu, 20.0 Zn 70.0 Cu, 30.0 Zn 65.0 Cu, 35.0 Zn
F, W, T, P F, W F, R, W, T F, R, W
69-434 83-448 76-448 97-427
C28000 Muntz metal C31400 Leaded commercial bronze C31600 Leaded commercial bronze, nickel-bearing C33000 Low-leaded brass tube
60.0 Cu, 40.0 Zn 89.0 Cu, 1.75 Pb, 9.25 Zn 89.0 Cu, 1.9 Pb, 1.0 Ni, 8.1 Zn 66.0 Cu, 0.5 Pb, 33.5 Zn
F, R, T F, R F, R T
145-379 83-379 83-407 103-414
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.10 Mechanical L Page 644 Wednesday, December 31, 1969 17:00
Table 174. YIELD
STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 5 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Yield Strength (MPa)
C33200 High-leaded brass tube C33500 Low-leaded brass C34000 Medium-leaded brass C34200 High-leaded brass
66.0 Cu, 1.6 Pb, 32.4 Zn 65.0 Cu, 0.5 Pb, 34.5 Zn 65.0 Cu, 1.0 Pb, 34.0 Zn 64.5 Cu, 2.0 Pb, 33.5 Zn
T F F, R, W, S F, R
138-414 97-414 103-414 117-427
C34900 C35000 Medium-leaded brass C35300 High-leaded brass C35600 Extra-high-leaded brass
62.2 Cu, 0.35 Pb, 37.45 Zn 62.5 Cu, 1.1 Pb, 36.4 Zn 62.0 Cu, 1.8 Pb, 36.2 Zn 63.0 Cu, 2.5 Pb, 34.5 Zn
R, W F, R F, R F
110-379 90-483 117-427 117-414
C36000 Free-cutting brass C36500 to C36800 Leaded Muntz metal C37000 Free-cutting Muntz metal C37700 Forging brass
61.5 Cu, 3.0 Pb, 35.5 Zn 60.0 Cu(k), 0.6 Pb, 39.4 Zn 60.0 Cu, 1.0 Pb, 39.0 Zn 59.0 Cu, 2.0 Pb, 39.0 Zn
F, R, S F T R, S
124-310 138 138-414 138
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.10 Mechanical L Page 645 Wednesday, December 31, 1969 17:00
Table 174. YIELD
STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 6 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Yield Strength (MPa)
C38500 Architectural bronze C40500 C40800 C41100
57.0 Cu, 3.0 Pb, 40.0 Zn 95 Cu, 1 Sn, 4 Zn 95 Cu, 2 Sn, 3 Zn 91 Cu, 0.5 Sn, 8.5 Zn
R, S F F F, W
138 83-483 90-517 76-496
C41300 C41500 C42200 C42500
90.0 Cu, 1.0 Sn, 9.0 Zn 91 Cu, 1.8 Sn, 7.2 Zn 87.5 Cu, 1.1 Sn, 11.4 Zn 88.5 Cu, 2.0 Sn, 9.5 Zn
F, R, W F F F
83-565 117-517 103-517 124-524
C43000 C43400 C43500 C44300, C44400, C44500 Inhibited admiralty
87.0 Cu, 2.2 Sn, 10.8 Zn 85.0 Cu, 0.7 Sn, 14.3 Zn 81.0 Cu, 0.9 Sn, 18.1 Zn 71.0 Cu, 28.0 Zn, 1.0 Sn
F F F, T F, W, T
124-503 103-517 110-469 124-152
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.10 Mechanical L Page 646 Wednesday, December 31, 1969 17:00
Table 174. YIELD
STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 7 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Yield Strength (MPa)
C46400 to C46700 Naval brass C48200 Naval brass, medium-leaded C48500 Leaded naval brass C50500 Phosphor bronze, 1.25% E
60.0 Cu, 39.25 Zn, 0.75 Sn 60.5 Cu, 0.7 Pb, 0.8 Sn, 38.0 Zn 60.0 Cu, 1.75 Pb, 37.5 Zn, 0.75 Sn 98.75 Cu, 1.25 Sn, trace P
F, R, T, S F, R, S F, R, S F, W
172-455 172-365 172-365 97-345
C51000 Phosphor bronze, 5% A C51100 C52100 Phosphor bronze, 8% C C52400 Phosphor bronze, 10% D
95.0 Cu, 5.0 Sn, trace P 95.6 Cu, 4.2 Sn, 0.2 P 92.0 Cu, 8.0 Sn, trace P 90.0 Cu, 10.0 Sn, trace P
F, R, W, T F F, R, W F, R, W
131-552 345-552 165-552 193 (Annealed)
C54400 Free-cutting phosphor bronze C60800 Aluminum bronze, 5% C61000 C61300
88.0 Cu, 4.0 Pb, 4.0 Zn, 4.0 Sn 95.0 Cu, 5.0 Al 92.0 Cu, 8.0 Al 92.65 Cu, 0.35 Sn, 7.0 Al
F, R T R, W F, R, T, P, S
131-434 186 207-379 207-400
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.10 Mechanical L Page 647 Wednesday, December 31, 1969 17:00
Table 174. YIELD
STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 8 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Yield Strength (MPa)
C61400 Aluminum bronze, D C61500 C61800 C61900
91.0 Cu, 7.0 Al, 2.0 Fe 90.0 Cu, 8.0 Al, 2.0 Ni 89.0 Cu, 1.0 Fe, 10.0 Al 86.5 Cu, 4.0 Fe, 9.5 Al
F, R, W, T, P, S F R F
228-414 152-965 269-293 338-1000
C62300 C62400 C62500 C63000
87.0 Cu, 10.0 Al, 3.0 Fe 86.0 Cu, 3.0 Fe, 11.0 Al 82.7 Cu, 4.3 Fe, 13.0 Al 82.0 Cu, 3.0 Fe, 10.0 Al, 5.0 Ni
F, R F, R F, R F, R
241-359 276-359 379 345-517
C63200 C63600 C63800 C64200
82.0 Cu, 4.0 Fe, 9.0 Al, 5.0 Ni 95.5 Cu, 3.5 Al, 1.0 Si 99.5 Cu, 2.8 Al, 1.8 Si, 0.40 Co 91.2 Cu, 7.0 Al
F, R R, W F F, R
310-365 — 372-786 241-469
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.10 Mechanical L Page 648 Wednesday, December 31, 1969 17:00
Table 174. YIELD
STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 9 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Yield Strength (MPa)
C65100 Low-silicon bronze, B C65500 High-silicon bronze, A C66700 Manganese brass C67400
98.5 Cu, 1.5 Si 97.0 Cu, 3.0 Si 70.0 Cu, 28.8 Zn, 1.2 Mn 58.5 Cu, 36.5 Zn, 1.2 Al, 2.8 Mn, 1.0 Sn
R, W, T F, R, W, T F, W F, R
1 03-476 145-483 83-638 234-379
C67500 Manganese bronze, A C68700 Aluninum brass, arsenical C68800 C69000
58.5 Cu, 1.4 Fe, 39.0 Zn, 1.0 Sn, 0.1 Mn 77.5 Cu, 20.5 Zn, 2.0 Al, 0.1 As 73.5 Cu, 22.7 Zn, 3.4 Al, 0.40 Co 73.3 Cu, 3.4 Al, 0.6 Ni, 22.7 Zn
R, S T F F
207-414 186 379-786 345-807
C69400 Silicon red brass C70400 C70600 Copper nickel, 10% C71000 Copper nickel, 20%
81.5 Cu, 14.5 Zn, 4.0 Si 92.4 Cu, 1.5 Fe, 5.5 Ni, 0.6 Mn 88.7 Cu, 1.3 Fe, 10.0 Ni 79.00 Cu, 21.0 Ni
R F, T F, T F, W, T
276-393 276-524 110-393 90-586
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.10 Mechanical L Page 649 Wednesday, December 31, 1969 17:00
Table 174. YIELD
STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 10 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Yield Strength (MPa)
C71500 Copper nickel, 30% C71700 C72500 C73500
70.0 Cu, 30.0 Ni 67.8 Cu, 0.7 Fe, 31.0 Ni, 0.5 Be 88.20 Cu, 9.5 Ni, 2.3 Sn 72.0 Cu, 18.0 Ni , 10.0 Zn
F, R, T F, R, W F, R, W, T F, R, W, T
138-483 207-1241 152-745 103-579
C74500 Nickel silver, 65-10 C75200 Nickel silver, 65-18 C75400 Nickel silver, 65-15 C75700 Nickel silver, 65-12
65.0 Cu, 25.0 Zn, 10.0 Ni 65.0 Cu, 17.0 Zn, 18.0 Ni 65.0 Cu, 20.0 Zn, 15.0 Ni 65.0 Cu, 23.0 Zn, 12.0 Ni
F, W F, R, W F F, W
124-524 172-621 124-545 124-545
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.10 Mechanical L Page 650 Wednesday, December 31, 1969 17:00
Table 174. YIELD
STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 11 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Yield Strength (MPa)
C76200 C77000 Nickel silver, 55-18 C72200 C78200 Leaded nickel silver, 65-8-2
59.0 Cu, 29.0 Zn, 12.0 Ni 55.0 Cu, 27.0 Zn, 18.0 Ni 82.0 Cu, 16.0 Ni, 0.5 Cr, 0.8 Fe, 0.5 Mn 65.0 Cu, 2.0 Pb, 25.0 Zn, 8.0 Ni
F, T F, R, W F, T F
145-758 186-621 124-455 159-524
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). (d) Based on 100% for C360000. (e) C10400, 8 oz/ton Ag; C10500, 10 oz/ton; C10700, 25 oz/ton . (f) C11300, 8 oz/ton Ag; C11400,10 oz/ton; C11500, 16 oz/ton; C11600, 25 oz/ton (g) C12000, 0.008 P; C12100, 0.008 P and 4 oz/ton Ag; (h) C12700, 8 oz/ton Ag; C12800,10 oz/ton; C12900,16 oz/ton; C13000, 25 oz/ton. (i) 8.30 oz/ton Ag. (j) C18200, 0.9 Cr; C18400, 0.8 Cr; C18500, 0.7 Cr (k) Rod, 61.0 Cu min.
©2001 CRC Press LLC
8.11 Mechanical Page 651 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 175. YIELD
STRENGTH OF CAST ALUMINUM ALLOYS (SHEET 1 OF 3)
Alloy AA No.
Temper
Yield Strength (MPa)
201.0
T4 T6 T7
215 435 415
206.0, A206.0 208.0
T7 F
345 97
242.0
T21 T571 T77 T571 T61
125 205 160 235 290
295.0
T4 T6 T62
110 165 220
296.0
T4 T6 T7
130 180 140
308.0
F
110
319.0
F T6 F T6
125 165 130 185
336.0
T551 T65 T61
195 295 285
T51 T6 T61 T7
160 175 240 250
354.0 355.0
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC Shackelford & Alexander
651
8.11 Mechanical Page 652 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 175. YIELD
STRENGTH OF CAST ALUMINUM ALLOYS (SHEET 2 OF 3)
Alloy AA No.
Temper
Yield Strength (MPa)
355.0 (Con’t)
T71 T51 T6
200 165 190
T62 T7 T71
280 210 215
T51 T6 T7
140 165 210
T71 T6 T7
145 185 165
357.0, A357.0 359.0
T62 T61 T62
290 255 290
360.0 A360.0 380.0
F F F
170 165 165
383.0 384.0, A384.0 390.0
F F F T5
150 165 240 260
A390.0
F,T5 T6 T7
180 280 250
F,T5 T6 T7
200 310 260
356.0
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
652
CRC Handbook of Materials Science & Engineering
8.11 Mechanical Page 653 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 175. YIELD
STRENGTH OF CAST ALUMINUM ALLOYS (SHEET 3 OF 3)
Alloy AA No.
Temper
Yield Strength (MPa)
413.0 A413.0 443.0 B443.0
F F F F
140 130 55 62
C443.0 514.0 518.0
F F F
110 85 190
520.0 535.0 712.0
T4 F F
180 140 170
713.0
T5 T5
150 150
771.0 850.0
T6 T5
275 75
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC Shackelford & Alexander
653
8.11 Mechanical Page 654 Wednesday, December 31, 1969 17:00
Mechanical Properties
.
Table 176. YIELD
STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 1 OF 7) Alloy
Temper
Yield Strength (MPa)
1050
0 H14 H16 H18
28 105 125 145
1060
0 H12 H14 H16 H18
28 76 90 105 125
1100
0 H12 H14 H16 H18
34 105 115 140 150
1350
0 H12 H14 H16 H19
28 83 97 110 165
2011
T3 T8
295 310
2014
0 T4 T6
97 290 415
Alclad 2014
0 T3 T4 T6
69 275 255 415
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299–302, (1984)
©2001 CRC Press LLC
654
CRC Handbook of Materials Science & Engineering
8.11 Mechanical Page 655 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 176. YIELD
STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 2 OF 7) Alloy
Temper
Yield Strength (MPa)
2024
0 T3 T4, T351 T361
76 345 325 395
Alclad 2024
0 T T4, T351
76 310 290
T361 T81, T851 T861
365 415 455
2036 2048
T4
195 415
2124 2218
T851 T61 T71 T72
440 305 275 255
2219
0 T42 T31, T351 T37
76 185 250 315
T62 T81, T851 T87
290 350 395
2618 3003 Alclad
All 0 H12
370 42 125
3003
H14 H16 H18
145 170 185
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299–302, (1984)
©2001 CRC Press LLC Shackelford & Alexander
655
8.11 Mechanical Page 656 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 176. YIELD
STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 3 OF 7) Alloy
Temper
Yield Strength (MPa)
3004 Alclad
0 H32
69 170
3004
H34 H36 H38
200 230 250
3105
0 H12 H14
55 130 150
H16 H18 H25
170 195 160
4032 4043
T6 0 H18
315 69 270
5005
0 H12 H14
41 130 150
H16 H18 H32
170 195 115
H34 H36 H38
140 165 185
0 H32 H34 H36 H38
55 145 165 180 200
5050
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299–302, (1984)
©2001 CRC Press LLC
656
CRC Handbook of Materials Science & Engineering
8.11 Mechanical Page 657 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 176. YIELD
STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 4 OF 7) Alloy
Temper
Yield Strength (MPa)
5052
0 H32 H34 H36 H38
90 195 215 240 255
5056
0 H18 H38
150 405 345
5083
0 H112 H113
145 195 230
H321 H323, H32 H343, H34
230 250 285
5086
0 H32, H116, H117 H34 H112
115 205 255 130
5154
0 H32 H34
115 205 230
H36 H38 H112
250 270 115
5182
0 H32 H34 H19(n)
140 235 285 395
5252
H25 H28, H38
170 240
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299–302, (1984)
©2001 CRC Press LLC Shackelford & Alexander
657
8.11 Mechanical Page 658 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 176. YIELD
STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 5 OF 7) Alloy
Temper
Yield Strength (MPa)
5254
0 H32 H34
115 205 230
H36 H38 H112
250 270 115
0 H32 H34 H36
115 205 240 275
H38 H111 H112 H311
310 180 125 180
5456
0 H111 H112 H321, H116
160 230 165 255
5457
0 H25 H28, H38
48 160 185
5652
0 H32 H34 H36 H38
90 195 215 240 255
5657
H25 H28, H38 T1 T5
140 165 105 240
5454
6005
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299–302, (1984)
©2001 CRC Press LLC
658
CRC Handbook of Materials Science & Engineering
8.11 Mechanical Page 659 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 176. YIELD
STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 6 OF 7) Alloy
Temper
Yield Strength (MPa)
6009
T4 T6
130 325
6010 6061
T4 0 T4, T451 T6, T651
170 55 145 275
Alclad 6061
0 T4, T451 T6, T651
48 130 255
6063
0 T1 T4 T5
48 90 90 145
T6 T83 T831 T832
215 240 185 270
6066
0 T4, T451 T6, T651
83 205 360
6070
0 T4 T6
69 170 350
6101 6151 6201
Hlll T6 T6 T81
76 195 300 310
6205
Tl T5
140 290
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299–302, (1984)
©2001 CRC Press LLC Shackelford & Alexander
659
8.11 Mechanical Page 660 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 176. YIELD
STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 7 OF 7) Alloy
Temper
Yield Strength (MPa)
6262 6351
T9 T4 T6
380 150 285
6463
Tl T5 T6
90 145 215
7005
0 T53 T6,T63,T6351
83 345 315
7049 7050
T73 T736
455
7072
0 H12 H14
7075
0 T6,T651 T73
105 505 435
Alclad 7075
0 T6,T651
95 460
7175
T66 T736 T61
525 455 460
7475
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299–302, (1984)
©2001 CRC Press LLC
660
CRC Handbook of Materials Science & Engineering
8.12 Mechanical L Page 661 Wednesday, December 31, 1969 17:00
Table 177. YIELD
STRENGTH OF WROUGHT TITANIUM ALLOYS AT ROOM TEMPERATURE (SHEET 1 OF 3)
Class
Alloy
Condition
Yield Strength (MPa)
Commercially Pure
99.5 Ti 99.2 Ti 99.1 Ti
Annealed Annealed Annealed
241 345 448
99.0 Ti 99.2Ti-0.2Pd Ti-0.8Ni-0.3Mo
Annealed Annealed Annealed
586 345 448
Alpha Alloys
Ti-5Al-2.5Sn Ti-5Al-2.5Sn (low O2)
Annealed Annealed
807 745
Near Alpha Alloys
Ti-8Al-1Mo-1V Ti-11Sn-1Mo-2.25Al-5.0Zr-1Mo-0.2Si
Duplex Annealed Duplex Annealed
951 993
Ti-6Al-2Sn-4Zr-2Mo Ti-5Al-2Sn-2Zr-2Mo-0.25Si Ti-6Al-2Nb-1Ta-1Mo Ti-6Al-2Sn-1.5Zr-1Mo- 0.35Bi-0.1Si
Duplex Annealed 975 ˚C (1/2h), AC + 595 ˚C (2h), AC As rolled 2.5 cm (1 in.) plate Beta forge + duplex anneal
896 965 758 945
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993).
©2001 CRC Press LLC
8.12 Mechanical L Page 662 Wednesday, December 31, 1969 17:00
Table 177. YIELD
STRENGTH OF WROUGHT TITANIUM ALLOYS AT ROOM TEMPERATURE (SHEET 2 OF 3)
Class
Alloy
Condition
Yield Strength (MPa)
Alpha-Beta Alloys
Ti-8Mn Ti-3Al-2.5V
Annealed Annealed
862 586
Ti-6Al-4V
Annealed Solution + age
924 1103
Ti-6Al-4V(low O2) Ti-6Al-6V-2Sn
Annealed Annealed Solution + age
827 1000 1172
Ti-7Al-4Mo Ti-6Al-2Sn-4Zr-6Mo Ti-6Al-2Sn-2Zr-2Mo- 2Cr-0.25Si Ti-10V-2Fe-3Al
Solution + age Solution + age Solution + age Solution + age
1034 1172 1138 1200
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993).
©2001 CRC Press LLC
8.12 Mechanical L Page 663 Wednesday, December 31, 1969 17:00
Table 177. YIELD
STRENGTH OF WROUGHT TITANIUM ALLOYS AT ROOM TEMPERATURE (SHEET 3 OF 3)
Class
Alloy
Condition
Beta Alloys
Ti-13V-1Cr-3Al
Solution + age
Ti-8Mo-8V-2Fe-3Al Ti-3Al-8V-6Cr-4Mo-4Zr
Solution + age Solution + age Annealed Solution + age
Ti-11.5Mo-6Zr-4.5Sn
Yield Strength (MPa)
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993).
©2001 CRC Press LLC
1172 1207 1241 1379 834 1317
8.12 Mechanical L Page 664 Wednesday, December 31, 1969 17:00
Table 178. YIELD
STRENGTH OF WROUGHT TITANIUM ALLOYS AT HIGH TEMPERATURE (SHEET 1 OF 4)
Class
Alloy
Condition
Test Temperature (°C)
Commercially Pure
99.5 Ti 99.2 Ti 99.1 Ti
Annealed Annealed Annealed
315 315 315
97 117 138
99.0 Ti 99.2Ti-0.2Pd Ti-0.8Ni-0.3Mo Ti-0.8Ni-0.3Mo
Annealed Annealed Annealed Annealed
315 315 205 315
172 110 248 207
Ti-5Al-2.5Sn
Annealed
315
448
Ti-5Al-2.5Sn (low O2)
Annealed
-195 -255
1158 1420
Ti-8Al-1Mo-1V
Duplex Annealed
315 425 540
621 565 517
Alpha Alloys
Near Alpha Alloys
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993).
©2001 CRC Press LLC
Yield Strength (MPa)
8.12 Mechanical L Page 665 Wednesday, December 31, 1969 17:00
Table 178. YIELD
STRENGTH OF WROUGHT TITANIUM ALLOYS AT HIGH TEMPERATURE (SHEET 2 OF 4)
Class
Test Temperature (°C)
Yield Strength (MPa)
Alloy
Condition
Ti-11Sn-1Mo-2.25Al-5.0Zr-1Mo-0.2Si
Duplex Annealed
315 425 540
758 676 586
Ti-6Al-2Sn-4Zr-2Mo
Duplex Annealed
315 425 540
586 586 489
Ti-5Al-2Sn-2Zr-2Mo-0.25Si
975 ˚C (1/2h), AC + 595 ˚C (2h), AC
315 425 540
565 531 503
Ti-6Al-2Nb-1Ta-1Mo
As rolled 2.5 cm (1 in.) plate
315 425 540
462 414 379
Ti-6Al-2Sn-1.5Zr-1Mo- 0.35Bi-0.1Si
Beta forge + duplex anneal
480
586
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993).
©2001 CRC Press LLC
8.12 Mechanical L Page 666 Wednesday, December 31, 1969 17:00
Table 178. YIELD
STRENGTH OF WROUGHT TITANIUM ALLOYS AT HIGH TEMPERATURE (SHEET 3 OF 4)
Class
Alloy
Condition
Test Temperature (°C)
Alpha-Beta Alloys
Ti-8Mn Ti-3Al-2.5V
Annealed Annealed
315 315
565 345
Ti-6Al-4V
Annealed Annealed Annealed
315 425 540
655 572 427
Solution + age Solution + age Solution + age
315 425 540
703 621 483
Ti-6Al-4V(low O2)
Annealed
160
1413
Ti-6Al-6V-2Sn
Annealed Solution + age
315 315
807 896
Ti-7Al-4Mo
Solution + age
315 425
745 717
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993).
©2001 CRC Press LLC
Yield Strength (MPa)
8.12 Mechanical L Page 667 Wednesday, December 31, 1969 17:00
Table 178. YIELD
STRENGTH OF WROUGHT TITANIUM ALLOYS AT HIGH TEMPERATURE (SHEET 4 OF 4)
Class
Beta Alloys
Test Temperature (°C)
Yield Strength (MPa)
Alloy
Condition
Ti-6Al-2Sn-4Zr-6Mo
Solution + age
315 425 540
841 758 655
Ti-6Al-2Sn-2Zr-2Mo- 2Cr-0.25Si
Solution + age
315
807
Ti-10V-2Fe-3Al
Solution + age
205 315
1048 979
Ti-13V-1Cr-3Al
Solution + age
315 425
793 827
Ti-8Mo-8V-2Fe-3Al
Solution + age
315
979
Ti-3Al-8V-6Cr-4Mo-4Zr
Solution + age Annealed
315 425 315
896 758 655
Solution + age
315
848
Ti-11.5Mo-6Zr-4.5Sn
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993).
©2001 CRC Press LLC
8.13 Mechanical Page 668 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 179. YIELD
STRENGTH OF COBALT -BASE SUPERALLOYS Temperature (°C)
Yield Strength (MPa)
Haynes 25 (L–605) sheet
21 540 650 760 870
460 250 240 260 240
Haynes 188, sheet
21 540 650 760 870
485 305 305 290 260
S-816, bar
21 540 650 760 870
385 310 305 285 240
Alloy
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p387, (1993).
©2001 CRC Press LLC
668
CRC Handbook of Materials Science & Engineering
8.13 Mechanical Page 669 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 180. YIELD
STRENGTH OF
NICKEL -BASE SUPERALLOYS (SHEET 1 OF 5) Temperature (°C)
Yield Strength (MPa)
Astroloy, bar
21 540 650 760 870
1050 965 965 910 690
D–979, bar
21 540 650 760 870
1010 925 890 655 305
Hastelloy X, sheet
21 540 650 760 870
360 290 275 260 180
IN–102, bar
21 540 650 760 870
505 400 400 385 200
Inconel 600, bar
21 540 650 760 870
250 195 180 115 62
Inconel 601, sheet
21 540 650 760 870
340 150 180 200 140
Alloy
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p387-389, (1993).
©2001 CRC Press LLC Shackelford & Alexander
669
8.13 Mechanical Page 670 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 180. YIELD
STRENGTH OF
NICKEL -BASE SUPERALLOYS (SHEET 2 OF 5) Temperature (°C)
Yield Strength (MPa)
Inconel 625, bar
21 540 650 760 870
490 405 420 420 475
Inconel 706, bar
21 540 650 760
980 895 825 675
Inconel 718, bar
21 540 650 760 870
1190 1060 1020 740 330
Inconel 718, sheet
21 540 650 760
1050 945 870 625
Inconel X-750, bar
21 540 650 760 870
635 580 565 455 165
M-252, bar
21 540 650 760 870
840 765 745 715 485
Alloy
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p387-389, (1993).
©2001 CRC Press LLC
670
CRC Handbook of Materials Science & Engineering
8.13 Mechanical Page 671 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 180. YIELD
STRENGTH OF
NICKEL -BASE SUPERALLOYS (SHEET 3 OF 5) Temperature (°C)
Yield Strength (MPa)
Nimonic 80A, bar
21 540 650 760 870
620 530 550 505 260
Nimonic 90, bar
21 540 650 760 870
805 725 685 540 260
Nimonic 105, bar
21 540 650 760 870
815 775 800 655 365
Nimonic 115, bar
21 540 650 760 870
860 795 815 800 550
Pyromet 860, bar
21 540 650 760
835 840 850 835
René 41, bar
21 540 650 760 870
1060 1010 1000 940 550
Alloy
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p387-389, (1993).
©2001 CRC Press LLC
Shackelford & Alexander
671
8.13 Mechanical Page 672 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 180. YIELD
STRENGTH OF
NICKEL -BASE SUPERALLOYS (SHEET 4 OF 5) Temperature (°C)
Yield Strength (MPa)
René 95, bar
21 540 650 760
1310 1250 1220 1100
Udimet 500, bar
21 540 650 760 870
840 795 760 730 495
Udimet 520, bar
21 540 650 760 870
860 825 795 725 515
Udimet 700, bar
21 540 650 760 870
965 895 855 825 635
Udimet 710, bar
21 540 650 760 870
910 850 860 815 635
Unitemp AF2–1DA, bar
21 540 650 760 870
1050 1080 1080 1010 715
Alloy
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p387-389, (1993).
©2001 CRC Press LLC
672
CRC Handbook of Materials Science & Engineering
8.13 Mechanical Page 673 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 180. YIELD
STRENGTH OF
NICKEL -BASE SUPERALLOYS (SHEET 5 OF 5) Alloy Waspaloy, bar
Temperature (°C)
Yield Strength (MPa)
21 540 650 760 870
795 725 690 675 515
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p387-389, (1993).
Table 181. YIELD
STRENGTH OF COMMERCIALLY PURE TIN
Temperature (°C)
Yield Strength (MPa)
Strained at 0.2 mm/m • min -200 -160 -120 -80 -40 0 23
36.2 90.3 87.6 38.9 20.1 12.5 11.0
Strained at 0.4 mm/m • min 15 50 100 150 200
14.5 12.4 11.0 7.6 4.5
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p488, (1993).
©2001 CRC Press LLC Shackelford & Alexander
673
8.13 Mechanical Page 674 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 182. YIELD
STRENGTH OF POLYMERS (SHEET 1 OF 3)
Class
Polymer
Yield Strength, (ASTM D638) (l03 psi)
Chlorinated Polyether
Chlorinated Polyether
5.9
Polycarbonate
Polycarbonate
8.5
Nylons; Molded, Extruded
Type 6 General purpose Cast Flexible copolymers
8.5—12.5 12.8 7.5—10.0
Type 8 Type 11 Type 12
3.9 8.5 5.5—6.5
6/6 Nylon General purpose molding Glass fiber reinforced General purpose extrusion 6/10 Nylon General purpose
PVC–Acrylic Alloy
Polymides
8.0—11.8 25 8.6—12.6 7.1—8.5
ABS–Polycarbonate Alloy
8.2
PVC–acrylic sheet PVC–acrylic injection molded
6.5 5.5
Unreinforced Unreinforced 2nd value Glass reinforced
7.5 5 28
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
674
CRC Handbook of Materials Science & Engineering
8.13 Mechanical Page 675 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 182. YIELD
STRENGTH OF POLYMERS (SHEET 2 OF 3)
Class
Polymer
Yield Strength, (ASTM D638) (l03 psi)
Polyacetals
Homopolymer: Standard
10
Copolymer: Standard 25% glass reinforced High flow
8.8 18.5 8.8
Polyester; Thermoplastic
Injection Moldings: General purpose grade Glass reinforced grades Glass reinforced self extinguishing
7.5—8 17—25
General purpose grade Glass reinforced grade Asbestos—filled grade
8.2 14 12
Phenylene Oxides
SE—100 SE—1 Glass fiber reinforced
7.8 9.6 14.5—17.0
Phenylene oxides (Noryl)
Standard Glass fiber reinforced
10.2 17—19
Polyarylsulfone Polypropylene: General purpose High impact
8—12 4.5—6.0 2.8—4.3
Asbestos filled Glass reinforced Flame retardant
3.3—8.2 7—11 3.6—4.2
17
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC Shackelford & Alexander
675
8.13 Mechanical Page 676 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 182. YIELD
STRENGTH OF POLYMERS (SHEET 3 OF 3)
Class
Polymer
Yield Strength, (ASTM D638) (l03 psi)
Polyphenylene sulfide:
Standard 40% glass reinforced
9.511 20—21
Polystyrenes; Molded
Polystyrenes General purpose Medium impact High impact Glass fiber -30% reinforced
5.0—10 3.7—6.0 2.8—5.3 14
Glass fiber (30%) reinforced SAN
18
Styrene acrylonitrile (SAN)
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
Table 183. YIELD
STRENGTH OF SIC-WHISKER –REINFORCED ALUMINUM ALLOY Yield Strength (0.2%) Fiber Content (vol %)
(MPa)
Standard Deviation
Range of Measurement
0 0.12 0.16 0.20
210 266.5 264.5 298
3.8 4.2 0.6 4.0
9.5 10.6 1.6 10.2
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p150,(1994).
©2001 CRC Press LLC
676
CRC Handbook of Materials Science & Engineering
8.13 Mechanical Page 677 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 184. YIELD
STRENGTH OF REINFORCED ALUMINUM ALLOY VS. TEMPERATURE Yield Strength (MPa) Fiber
Vol %
350°C
300°C
250°C
Polycrystalline alumina
0 5 12 20
35 54 68 110
— 79 — 154
70 112 — 186
SiC whiskers
0 12 16 20
35 94 120 163
— 153 — 207
70 197 — 268
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p154,(1994).
©2001 CRC Press LLC
Shackelford & Alexander
677
8.13 Mechanical Page 678 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 185. YIELD
STRENGTH OF POLYCRYSTALLINE –ALUMINA–REINFORCED ALUMINUM ALLOY Yield Strength (0.2%) Fiber Content (vol %)
(MPa)
Standard Deviation
Range of Measurement
0 5 12 20
210 232 251.5 282.5
3.8 4.2 14.6 11.3
9.5 10.4 38.3 25.2
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p154,(1994).
©2001 CRC Press LLC
678
CRC Handbook of Materials Science & Engineering
8.14 Mechanical Page 679 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 186. COMPRESSIVE
YIELD STRENGTH OF POLYMERS (SHEET 1 OF 2)
Class
Polymer
Acrylics; Cast, Molded, Extruded
Cast Resin Sheets, Rods: General purpose, type I General purpose, type II Moldings: Grades 5, 6, 8 High impact grade
Cellulose Acetate; Molded, Extruded
6.5—10.6 4.3—9.6 4.4—8.4 3.2—7.2 3.15—6.1
8.8 5.3—7.1 2.6—4.3
ASTM Grade: 1 3
Fluorocarbons; Molded,Extruded
14.5—17 7.3—12.0
ASTM Grade: H4 MH S2
Cellusose Acetate Propionate; Molded, Extruded
12—14 14—18
ASTM Grade: H4—1 H2—1 MH—1, MH—2 MS—1, MS—2 S2—1
Cellulose Acetate Butyrate; Molded, Extruded
Compressive Yield Strength (ASTM D690 or D695) (0.1% offset, 1000 psi)
Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Ceramic reinforced (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF)
6.2—7.3 4.9—5.8 2 0.7—1.8 1.4—1.8 1.6 12.8—14.2
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
679
8.14 Mechanical Page 680 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 186. COMPRESSIVE
YIELD STRENGTH OF POLYMERS (SHEET 2 OF 2)
Class
Polymer
Compressive Yield Strength (ASTM D690 or D695) (0.1% offset, 1000 psi)
Nylons; Molded, Extruded
Type 6 General purpose Glass fiber (30%) reinforced Cast
9.7 19—20 14
Nylons; Molded, Extruded 6/6 Nylon General purpose molding Glass fiber reinforced General purpose extrusion 6/10 Nylon General purpose Glass fiber (30%) reinforced Polyacetals
Polypropylene:
Homopolymer: Standard 20% glass reinforced 22% TFE reinforced Copolymer: Standard High flow
4.9 20—24 4.9 3.0 18
5.2 5.2 4.5 4.5 4.5
General purpose High impact Asbestos filled Glass reinforced
5.5—6.5 4.4 7 6.5—7
Polyvinyl Chloride And Copolymers; Molded, Extruded
Rigid—normal impact
10—11
Vinylidene chloride
Vinylidene chloride
75—85
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
680
CRC Handbook of Materials Science & Engineering
8.14 Mechanical Page 681 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 187. FLEXURAL STRENGTH OF (SHEET 1 OF 6)
POLYMERS
Class
Polymer
Flexural Strength (ASTM D790) (103 psi)
ABS Resins; Molded, Extruded
Medium impact
9.9—11.8
High impact Very high impact Low temperature impact Heat resistant
7.5—9.5 6.0—9.8 5—8 11.0—12.0
Acrylics; Cast, Molded, Extruded
Cast Resin Sheets, Rods: General purpose, type I
12—14
General purpose, type II Moldings: Grades 5, 6, 8 High impact grade
15—17 15—16 8.7—12.0
Alkyds; Molded
Putty (encapsulating) Rope (general purpose) Granular (high speed molding) Glass reinforced (heavy duty parts)
8—11 19—20 7—10 12—17
Cellulose Acetate; Molded, Extruded
ASTM Grade:
Cellulose Acetate Butyrate; Molded, Extruded
H4—1 H2—1
8.1—11.15 (yield) 6.0—10.0 (yield)
MH—1, MH—2 MS—1, MS—2 S2—1
4.4—8.65 (yield) 3.8—7.1 (yield) 3.5—5.7 (yield)
ASTM Grade: H4 MH S2
9 (yield) 5.6—6.7 (yield) 2.5—3.95 (yield)
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC Shackelford & Alexander
681
8.14 Mechanical Page 682 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 187. FLEXURAL STRENGTH OF (SHEET 2 OF 6)
POLYMERS Flexural Strength (ASTM D790) (103 psi)
Class
Polymer
Cellusose Acetate Propionate; Molded, Extruded
ASTM Grade: 1 3
6.8—7.9 (yield) 5.6—6.2 (yield)
Chlorinated Polymers
Chlorinated polyether Chlorinated polyvinyl chloride
5 (0.1% offset) 14.5
Polycarbonates
Polycarbonate Polycarbonate (40% glass fiber reinforced)
13.5
Diallyl Phthalates; Molded
Orlon filled Dacron filled Asbestos filled Glass fiber filled
7.5—10.5 9—11.5 8—10 10—18
Fluorocarbons; Molded,Extruded
Polytrifluoro chloroethylene (PTFCE)
3.5 (0.1% offset)
Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF)
3 (0.1% offset) 8.6—10.8 (0.1% offset)
Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible Molded
14—18 1.2—12.7 19—22
General purpose glass cloth laminate High strength laminate Filament wound composite
80—90 165—177 180—170
Epoxies; Cast, Molded, Reinforced
27
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
682
CRC Handbook of Materials Science & Engineering
8.14 Mechanical Page 683 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 187. FLEXURAL STRENGTH OF (SHEET 3 OF 6)
POLYMERS Flexural Strength (ASTM D790) (103 psi)
Class
Polymer
Epoxies—Molded, Extruded
High performance resins (cycloaliphatic diepoxides) Cast, rigid Molded Glass cloth laminate Epoxy novolacs Cast, rigid Glass cloth laminate
12—13 84—89
Filler & type Unfilled Cellulose electrical Glass fiber Alpha cellulose and mineral
9.5—14 6—15 14—18 11—16, 8—10(mineral)
Type 6 General purpose Glass fiber (30%) reinforced Cast Flexible copolymers
Unbreakable 26—34 16.5 3.4—16.4
Melamines; Molded
Nylons; Molded, Extruded
6/6 Nylon General purpose molding Glass fiber reinforced Glass fiber Molybdenum disulfide filled 6/10 Nylon General purpose Glass fiber (30%) reinforced
11—16 10—12 70—72
Unbreakable 26—35 26—28
8 23
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
683
8.14 Mechanical Page 684 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 187. FLEXURAL STRENGTH OF (SHEET 4 OF 6)
POLYMERS
Class
Polymer
Flexural Strength (ASTM D790) (103 psi)
Phenolics; Molded
Type and filler General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber
8.5—12 8.0—11.5 8—15 10—45
Arc resistant—mineral Rubber phenolic—woodflour or flock Rubber phenolic—chopped fabric Rubber phenolic—asbestos
10—13 7—12 7 7
ABS–Polycarbonate Alloy
ABS–Polycarbonate Alloy
14.3
PVC–Acrylic Alloy
PVC–acrylic sheet PVC–acrylic injection molded
10.7 8.7
Polymides
Unreinforced Glass reinforced
6.6—11 56
Polyacetals
Homopolymer: Standard
14.1
Copolymer: Standard 25% glass reinforced High flow
13 28 13
Injection Moldings: General purpose grade Glass reinforced grades Glass reinforced self extinguishing
12.8 22—24 23
Polyester; Thermoplastic
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
684
CRC Handbook of Materials Science & Engineering
8.14 Mechanical Page 685 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 187. FLEXURAL STRENGTH OF (SHEET 5 OF 6)
POLYMERS
Class
Polymer
Flexural Strength (ASTM D790) (103 psi)
Polyester; Thermoplastic (Con’t)
General purpose grade
12
Glass reinforced grade Asbestos—filled grade
19 19
Cast polyyester Rigid Flexible
8—24 4—16
High strength (glass fibers)
6—26
Heat and chemical resistant (asbestos) Sheet molding compounds, general purpose
10—13 26—32
Phenylene Oxides
SE—100 SE—1 Glass fiber reinforced
12.8 13.5 20.5—22
Phenylene oxides (Noryl)
Standard Glass fiber reinforced
15.4 25—28
Polyarylsulfone
Polyarylsulfone
16.1—17.2
Polypropylene:
General purpose High impact Asbestos filled Glass reinforced
6—7 (yield) 4.1 (yield) 7.5—9 (yield) 8—11 (yield)
Polyphenylene sulfide:
Standard 40% glass reinforced
20 37
Polystyrenes; Molded
Polystyrenes General purpose Glass fiber —30% reinforced
10—15 17
Polyesters: Thermosets
Reinforced polyester moldings
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC Shackelford & Alexander
685
8.14 Mechanical Page 686 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 187. FLEXURAL STRENGTH OF (SHEET 6 OF 6)
POLYMERS
Class
Polymer
Flexural Strength (ASTM D790) (103 psi)
Styrene acrylonitrile (SAN)
Glass fiber (30%) reinforced SAN
22
Polyvinyl Chloride And Copolymers;
Molded, Extruded: Rigid—normal impact Vinylidene chloride
11—16 15—17
Silicones; Molded, Laminated
Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate
16—19 6—10 33—47
Ureas; Molded
Alpha—cellulose filled (ASTM Type l) Cellulose filled (ASTM Type 2) Woodflour filled
8—18 7.5—13 7.5—12.0
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
686
CRC Handbook of Materials Science & Engineering
8.14 Mechanical Page 687 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 188. FLEXTURAL
STRENGTH OF FIBERGLASS REINFORCED PLASTICS Material
Glass fiber content (wt%)
Flexural strength (ksi)
Sheet molding compound (SMC) Bulk molding compound(BMC) Preform/mat(compression molded) Cold press molding–polyester Spray–up–polyester
15 to 30 15 to 35 25 to 50 20 to 30 30 to 50
18 to 30 10 to 20 10 to 40 22 to 37 16 to 28
Filament wound–epoxy Rod stock–polyester Molding compound–phenolic
30 to 80 40 to 80 5 to 25
100 to 270 100 to 180 18 to 24
Acetal Nylon Polycarbonate Polyethylene
20 to 40 6 to 60 20 to 40 10 to 40
15 to 28 7 to 50 17 to 30 7 to 12
Polypropylene Polystyrene Polysulfone ABS(acrylonitrile butadiene styrene)
20 to 40 20 to 35 20 to 40 20 to 40
7 to 11 10 to 17 21 to 27 23 to 26
PVC (polyvinyl chloride) Polyphenylene oxide(modified) SAN (styrene acrylonitrile) Thermoplastic polyester
15 to 35 20 to 40 20 to 40 20 to 35
20 to 25 17 to 31 15 to 21 19 to 29
Class Glass fiber reinforced thermosets
Glass–fiber–reinforced thermoplastics
To convert (ksi) to (MPa), multiply by 6.89 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p106, (1994).
©2001 CRC Press LLC
Shackelford & Alexander
687
8.14 Mechanical Page 688 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 189. SHEAR
STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 1 OF 6) Alloy AA No.
Temper
Shear Strength (MPa)
1050
0 H14 H16 H18
62 69 76 83
1060
0 H12 H14 H16 H18
48 55 62 69 76
1100
0 H12 H14 H16 H18
62 69 76 83 90
1350
0 H12 H14 H16 H19
55 62 69 76 105
2011
T3 T8
220 240
2014
0 T4 T6
125 260 290
Alclad 2014
0 T3 T4 T6
125 255 255 285
Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
688
CRC Handbook of Materials Science & Engineering
8.14 Mechanical Page 689 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 189. SHEAR
STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 2 OF 6) Alloy AA No.
Temper
Shear Strength (MPa)
2024
0 T3 T4, T351 T361
125 285 285 290
Alclad 2024
0 T T4, T351
125 275 275
T361 T81, T851 T861
285 275 290
2218 2618 3003 Alclad
T72 All 0 H12
205 260 76 83
3003
H14 H16 H18
97 105 110
3004 Alclad
0 H32
110 115
3004
H34 H36 H38
125 140 145
3105
0 H12 H14
83 97 105
H16 H18 H25
110 115 105
T6
260
4032
Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC Shackelford & Alexander
689
8.14 Mechanical Page 690 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 189. SHEAR
STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 3 OF 6) Alloy AA No.
Temper
Shear Strength (MPa)
5005
0 H12 H14
76 97 97
H16 H18 H32
105 110 97
H34 H36 H38
97 105 110
5050
0 H32 H34 H36 H38
105 115 125 130 140
5052
0 H32 H34 H36 H38
125 140 145 160 165
5056
0 H18 H38
180 235 220
5083 5086
0 0 H34
170 160 185
5154
0 H32 H34 H36 H38
150 150 165 180 195
Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
690
CRC Handbook of Materials Science & Engineering
8.14 Mechanical Page 691 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 189. SHEAR
STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 4 OF 6) Alloy AA No.
Temper
Shear Strength (MPa)
5182
0
150
5252
H25 H28, H38 0
145 160 150
5254
H32 H34 H36 H38
150 165 180 195
5454
0 H32 H34
160 165 180
H111 H112 H311
160 160 160
5456
H321, H116
205
5457
0 H25 H28, H38
83 110 125
5652
0 H32 H34 H36 H38
125 140 145 160 165
5657
H25 H28, H38
97 105
6005 6009
T5 T4
205 150
5254
Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
691
8.14 Mechanical Page 692 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 189. SHEAR
STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 5 OF 6) Alloy AA No.
Temper
Shear Strength (MPa)
6061
0 T4, T451 T6, T651
83 165 205
Alclad 6061
0 T4, T451 T6, T651
76 150 185
6063
0 T1 T5 T6
69 97 115 150
T83 T831 T832
150 125 185
6066
0 T4, T451 T6, T651
97 200 235
6070
0 T4 T6
97 205 235
6151 6205 6262 6351
T6 T5 T9 T6
140 205 240 200
6463
Tl T5 T6
97 115 150
7005
0 T53 T6,T63,T6351
117 221 214
Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
692
CRC Handbook of Materials Science & Engineering
8.14 Mechanical Page 693 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 189. SHEAR
STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 6 OF 6) Alloy AA No.
Temper
Shear Strength (MPa)
7072
0 H12 H14
55 62 69
7075
0 T6,T651
150 330
Alclad 7075
0 T6,T651
150 315
7175
T66 T736
325 290
7475
T651 T7351 T7651
295 270 270
Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC Shackelford & Alexander
693
8.14 Mechanical Page 694 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 190. TORSION
SHEAR STRENGTH OF GRAY CAST FE
ASTM Class
Torsional Shear Strength (MPa)
20 25 30
179 220 276
35 40 50 60
334 393 503 610
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984).
©2001 CRC Press LLC
694
CRC Handbook of Materials Science & Engineering
8.14 Mechanical Page 695 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 191. HARDNESS OF
GRAY CAST IRONS
SAE grade
Hardness (HB)
G1800 G2500 G2500a
187 max 170 to 229 170 to 229
G3000 C3500 G3500b
187 to 241 207 to 255 207 to 255
G3500c G4000 G4000d
207 to 255 217 to 269 241 to 321
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984).
Table 192. HARDNESS OF
GRAY CAST IRON BARS
ASTM Class
Hardness (HB)
20 25 30
156 174 210
35 40 50 60
212 235 262 302
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
695
8.14 Mechanical Page 696 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 193. HARDNESS OF
Specification Number Ferritic ASTM A47, A338; ANSI G48.1; FED QQ–I–666c
MALLEABLE IRON CASTINGS Grade or Class
32510 35018
156 max 156 max 156 max
40010 45008 45006 50005
149–197 156–197 156–207 179–229
60004 70003 80002 90001
197–241 217–269 241–285 269–321
M3210 M4504(a) M5003(a)
156 max 163–217 187–241
M5503(b) M7002(b) M8501(b)
187–241 229–269 269–302
ASTM A197 Pearlitic and Martensitic ASTM A220; ANSI C48.2; MIL–I–11444B
Automotive ASTM A602; SAE J158
Hardness (HB)
(a) Air quenched and tempered (b) Liquid quenched and tempered Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p171, (1984).
©2001 CRC Press LLC
696
CRC Handbook of Materials Science & Engineering
8.14 Mechanical Page 697 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 194. HARDNESS OF
DUCTILE IRONS
Specification Number
Grade or Class
Hardness (HB)
ASTM A395-76 ASME SA395
60-40-18
143-187
ASTM A476-70(d); SAE AMS5316
80-60-03
201 min
ASTM A536-72, MIL-1-11466B(MR)
60-40-18 65-45-12 80-55-06 100-70-03 120-90-02
SAE J434c
D4018 D4512 D5506 D7003
170 max 156-217 187-255 241-302
MlL-I-24137(Ships)
Class A Class B Class C
190 max 190 max 175 max
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
697
8.14 Mechanical Page 698 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 195. HARDNESS OF TOOL (SHEET 1 OF 2)
STEELS
Type
Condition
Hardness (HRC)
L2
Annealed
96 HRB
Oil quenched from 855 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C
54 52 47 41 30
Oil quenched from 845 •C and single tempered at: 315 •C 425 •C 540 •C 650 •C
54 46 42 32
Annealed
96 HRB
Oil quenched from 930 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C
57.5 54 50.5 47.5 42
Annealed
96 HRB
Oil quenched from 870 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C
59 58 52 48 37
L6
S1
S5
Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984).
©2001 CRC Press LLC
698
CRC Handbook of Materials Science & Engineering
8.14 Mechanical Page 699 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 195. HARDNESS OF TOOL (SHEET 2 OF 2)
STEELS
Type
Condition
Hardness (HRC)
S7
Annealed
95 HRB
Fan cooled from 940 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C
58 55 53 51 39
Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
699
8.15 Mechanical L Page 700 Wednesday, December 31, 1969 17:00
Table 196. HARDNESS OF
AUSTENITIC STAINLESS STEELS
Type
Form
Condition
ASTM Specification
Hardness (HRB)
Type 301(UNS S30100)
Bar,Wire,Plate,Sheet,Strip
Annealed
A167
88 max
Type 317L (UNS S31703)
Bar
Annealed
—
85max
Type 317LM
Bar,Plate,Sheet, Strip
Annealed
—
95 max
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p364-366 (1993).
©2001 CRC Press LLC
8.15 Mechanical L Page 701 Wednesday, December 31, 1969 17:00
Table 197. HARDNESS OF
FERRITIC STAINLESS STEELS
Type
ASTM Specification
Form
Condition
Hardness (HRB)
Type 409 (UNS S40900)
—
Bar
Annealed
75 max(a)
Type 434 (UNS S43400) Type 436 (UNS S43600)
— —
Wire Sheet, Strip
Annealed Annealed
90 max(a) 83 max(a)
Type 442 (UNS S44200) Type 444 (UNS S44400)
— A176
Bar Plate, Sheet, Strip
Annealed Annealed
90 max(a) 95 max
(a) Typical Values Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p368 (1993).
©2001 CRC Press LLC
8.15 Mechanical L Page 702 Wednesday, December 31, 1969 17:00
Table 198. HARDNESS OF
MARTENSITIC STAINLESS STEELS
Type
ASTM Specification
Form
Condition
Rockwell Hardness
Type 410S (UNS S41008)
A176
Plate, Sheet, Strip
Annealed
95 HRB max
Type 420 (UNS S42000)
—
Bar
Tempered 205 °C
52 HRC
Type 440A (UNS S44002)
— —
Bar
Annealed Tempered 315 °C
95 HRB 51 HRC
Type 440B (UNS S44003)
— —
Bar
Annealed Tempered 315 °C
96 HRB 55 HRC
Type 440C (UNS S44004)
— —
Bar
Annealed Tempered 315 °C
97 HRB 57 HRC
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p369-370 (1993).
©2001 CRC Press LLC
8.15 Mechanical L Page 703 Wednesday, December 31, 1969 17:00
Table 199. HARDNESS OF
PRECIPITATION -HARDENING AUSTENITIC STAINLESS STEELS Hardness (HRC) Type
Form
Condition
Minimum
Maximum
PH 13–8 Mo (UNS S13800)
Bar, Plate, Sheet, Strip
H950 H1000
45 43
— —
15–5 PH (UNS S15500) and 17–4 PH (UNS S17400)
Bar, Plate, Sheet, Stript
H900 H925 H1025 H1075
40 38 35(a) 32(a)
48 47(a) 42(a) 38(a)
H1100 H1150 H1150M
31(a) 28(a) 24(a)
38(a) 36(a) 34(a)
RH950 TH1050
41 38
— —
17–7 PH (UNS S17700)
Bar
(a) For flat rolled products, value varies with thickness. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p371 (1993).
©2001 CRC Press LLC
8.15 Mechanical L Page 704 Wednesday, December 31, 1969 17:00
Table 200. MACHINABILITY
RATING OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 1 OF 9) UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Machinability Rating (d)
C10100 Oxygen-free electronic C10200 Oxygen-free copper C10300 Oxygen-free extra-low phosporus C10400, C10500, C10700 Oxygen-free, silver-bearing
99.99 Cu 99.95 Cu 99.95 Cu, 0.003 P 99.95 Cu(e)
F, R, W, T, P, S F, R, W, T, P, S F, R, T, P, S F, R, W, S
20 20 20 20
C10800 Oxygen-free, low phosporus CS11000 Electrolytic tough pitch copper C11100 Electrolytic tough pitch, anneal resistant C11300, C11400, C11500, C11600 Silver-bearing tough pitch copper
99.95 Cu, 0.009 P 99.90 Cu, 0.040 O 99.90 Cu, 0.04 O, 0.01 Cd 99.90 Cu, 0.04 O, Ag(f)
F, R, T, P F, R, W, T, P, S W F, R, W, T, S
20 20 20 20
C12000, C12100 C12200 Phosphorus deoxidized copper, high residual phosphorus C12500, C12700, C12800, C12900, C13000 Fire-refined tough pitch with silver C14200 Phosphorus deoxidized, arsenical
99.9 Cu(g) 99.90 Cu, 0.02 P
F, T, P F, R, T, P
20 20
99.88 Cu(h)
F, R, W, S
20
99.68 Cu, 0.3 As, 0.02 P
F, R, T
20
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.15 Mechanical L Page 705 Wednesday, December 31, 1969 17:00
Table 200. MACHINABILITY
RATING OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 2 OF 9) UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Machinability Rating (d)
C19200 C14300 C14310 C14500 Phosphorus deoxidized, tellurium bearing
98.97 Cu, 1.0 Fe, 0.03 P 99.9 Cu, 0.1 Cd 99.8 Cu, 0.2 Cd 99.5 Cu, 0.50 Te, 0.008 P
F, T F F F, R, W, T
20 20 20 85
C14700 Sulfur bearing C15000 Zirconium copper C15500 C16200 Cadmium copper
99.6 Cu, 0.40 S 99.8 Cu, 0.15 Zr 99.75 Cu, 0.06 P, 0.11 Mg, Ag(i) 99.0 Cu, 1.0 Cd
R, W R, W F F, R, W
85 20 20 20
C16500 C17000 Beryllium copper C17200 Beryllium copper C17300 Beryllium copper
98.6 Cu, 0.8 Cd, 0.6 Sn 99.5 Cu, 1.7 Be, 0.20 Co 99.5 Cu, 1.9 Be , 0.20 Co 99.5 Cu, 1.9 Be, 0.40 Pb
F, R, W F, R F, R, W, T, P, S R
20 20 20 50
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.15 Mechanical L Page 706 Wednesday, December 31, 1969 17:00
Table 200. MACHINABILITY
RATING OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 3 OF 9) UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Machinability Rating (d)
C18200, C18400, C18500 Chromium copper C18700 leaded copper C18900
99.5 Cu(j) 99.0 Cu, 1.0 Pb 98.75 Cu, 0.75 Sn, 0.3 Si, 0.20 Mn
F, W, R, S, T R R, W
20 85 20
C19000 Copper-nickel-phosphorus alloy C19100 Copper-nickel-phosphorus-tellurium alloy C19400
98.7 Cu, 1.1 Ni, 0.25 P 98.15 Cu, 1.1 Ni, 0.50 Te, 0.25 P 97.5 Cu, 2.4 Fe, 0.13 Zn, 0.03 P
F, R, W R, F F
30 75 20
C19500 C21000 Gilding, 95% C22000 Commercial bronze, 90% C22600 Jewelry bronze, 87.5%
97.0 Cu, 1.5 Fe, 0.6 Sn, 0.10 P, 0.80 Co 95.0 Cu, 5.0 Zn 90.0 Cu, 10.0 Zn 87.5 Cu, 12.5 Zn
F F, W F, R, W, T F, W
20 20 20 30
C23000 Red brass, 85% C24000 Low brass, 80% C26000 Cartridge brass, 70% C26800, C27000 Yellow brass
95.0 Cu, 15.0 Zn 80.0 Cu, 20.0 Zn 70.00 Cu, 30.0 Zn 65.0 Cu, 35.0 Zn
F, W, T, P F, W F, R, W, T F, R, W
30 30 30 30
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.15 Mechanical L Page 707 Wednesday, December 31, 1969 17:00
Table 200. MACHINABILITY
RATING OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 4 OF 9) UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Machinability Rating (d)
C28000 Muntz metal C31400 Leaded commercial bronze C31600 Leaded commercial bronze, nickel-bearing C33000 Low-leaded brass tube
60.0 Cu, 40.0 Zn 89.0 Cu, 1.75 Pb, 9.25 Zn 89.0 Cu, 1.9 Pb, 1.0 Ni, 8.1 Zn 66.0 Cu, 0.5 Pb, 33.5 Zn
F, R, T F, R F, R T
40 80 80 60
C33200 High-leaded brass tube C33500 Low-leaded brass C34000 Medium-leaded brass C34200 High-leaded brass
66.0 Cu, 1.6 Pb, 32.4 Zn 65.0 Cu, 0.5 Pb, 34.5 Zn 65.0 Cu, 1.0 Pb, 34.0 Zn 64.5 Cu, 2.0 Pb, 33.5 Zn
T F F, R, W, S F, R
80 60 70 90
C34900 C35000 Medium-leaded brass C35300 High-leaded brass C35600 Extra-high-leaded brass
62.2 Cu, 0.35 Pb, 37.45 Zn 62.5 Cu, 1.1 Pb, 36.4 Zn 62.0 Cu, 1.8 Pb, 36.2 Zn 63.0 Cu, 2.5 Pb, 34.5 Zn
R, W F, R F, R F
50 70 90 100
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.15 Mechanical L Page 708 Wednesday, December 31, 1969 17:00
Table 200. MACHINABILITY
RATING OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 5 OF 9) UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Machinability Rating (d)
C36000 Free-cutting brass C36500 to C36800 Leaded Muntz metal C37000 Free-cutting Muntz metal C37700 Forging brass
61.5 Cu, 3.0 Pb, 35.5 Zn 60.0 Cu(k), 0.6 Pb, 39.4 Zn 60.0 Cu, 1.0 Pb, 39.0 Zn 59.0 Cu, 2.0 Pb, 39.0 Zn
F, R, S F T R, S
100 60 70 80
C38500 Architectural bronze C40500 C40800 C41100
57.0 Cu, 3.0 Pb, 40.0 Zn 95 Cu, 1 Sn, 4 Zn 95 Cu, 2 Sn, 3 Zn 91 Cu, 0.5 Sn, 8.5 Zn
R, S F F F, W
90 20 20 20
C41300 C41500 C42200 C42500
90.0 Cu, 1.0 Sn, 9.0 Zn 91 Cu, 1.8 Sn, 7.2 Zn 87.5 Cu, 1.1 Sn, 11.4 Zn 88.5 Cu, 2.0 Sn, 9.5 Zn
F, R, W F F F
2 30 30 30
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.15 Mechanical L Page 709 Wednesday, December 31, 1969 17:00
Table 200. MACHINABILITY
RATING OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 6 OF 9) UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Machinability Rating (d)
C43000 C43400 C43500 C44300, C44400, C44500 Inhibited admiralty
87.0 Cu, 2.2 Sn, 10.8 Zn 85.0 Cu, 0.7 Sn, 14.3 Zn 81.0 Cu, 0.9 Sn, 18.1 Zn 71.0 Cu, 28.0 Zn, 1.0 Sn
F F F, T F, W, T
30 30 30 30
C46400 to C46700 Naval brass C48200 Naval brass, medium-leaded C48500 Leaded naval brass C50500 Phosphor bronze, 1.25% E
60.0 Cu, 39.25 Zn, 0.75 Sn 60.5 Cu, 0.7 Pb, 0.8 Sn, 38.0 Zn 60.0 Cu, 1.75 Pb, 37.5 Zn, 0.75 Sn 98.75 Cu, 1.25 Sn, trace P
F, R, T, S F, R, S F, R, S F, W
30 50 70 20
C51000 Phosphor bronze, 5% A C51100 C52100 Phosphor bronze, 8% C C52400 Phosphor bronze, 10% D
95.0 Cu, 5.0 Sn, trace P 95.6 Cu, 4.2 Sn, 0.2 P 92.0 Cu, 8.0 Sn, trace P 90.0 Cu, 10.0 Sn, trace P
F, R, W, T F F, R, W F, R, W
20 20 20 20
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.15 Mechanical L Page 710 Wednesday, December 31, 1969 17:00
Table 200. MACHINABILITY
RATING OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 7 OF 9) UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Machinability Rating (d)
C54400 Free-cutting phosphor bronze C60800 Aluminum bronze, 5% C61000 C61300
88.0 Cu, 4.0 Pb, 4.0 Zn, 4.0 Sn 95.0 Cu, 5.0 Al 92.0 Cu, 8.0 Al 92.65 Cu, 0.35 Sn, 7.0 Al
F, R T R, W F, R, T, P, S
80 20 20 30
C61400 Aluminum bronze, D C61500 C61800
91.0 Cu, 7.0 Al, 2.0 Fe 90.0 Cu, 8.0 Al, 2.0 Ni 89.0 Cu, 1.0 Fe, 10.0 Al
F, R, W, T, P, S F R
20 30 40
C62300 C62400 C62500 C63000
87.0 Cu, 10.0 Al, 3.0 Fe 86.0 Cu, 3.0 Fe, 11.0 Al 82.7 Cu, 4.3 Fe, 13.0 Al 82.0 Cu, 3.0 Fe, 10.0 Al, 5.0 Ni
F, R F, R F, R F, R
50 50 20 30
C63200 C63600 C64200
82.0 Cu, 4.0 Fe, 9.0 Al, 5.0 Ni 95.5 Cu, 3.5 Al, 1.0 Si 91.2 Cu, 7.0 Al
F, R R, W F, R
30 40 60
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.15 Mechanical L Page 711 Wednesday, December 31, 1969 17:00
Table 200. MACHINABILITY
RATING OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 8 OF 9) UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Machinability Rating (d)
C65100 Low-silicon bronze, B C65500 High-silicon bronze, A C66700 Manganese brass C67400
98.5 Cu, 1.5 Si 97.0 Cu, 3.0 Si 70.0 Cu, 28.8 Zn, 1.2 Mn 58.5 Cu, 36.5 Zn, 1.2 Al, 2.8 Mn, 1.0 Sn
R, W, T F, R, W, T F, W F, R
30 30 30 25
C67500 Manganese bronze, A C68700 Aluninum brass, arsenical C69400 Silicon red brass
58.5 Cu, 1.4 Fe, 39.0 Zn, 1.0 Sn, 0.1 Mn 77.5 Cu, 20.5 Zn, 2.0 Al, 0.1 As 81.5 Cu, 14.5 Zn, 4.0 Si
R, S T R
30 30 30
C70400 C70600 Copper nickel, 10% C71000 Copper nickel, 20%
92.4 Cu, 1.5 Fe, 5.5 Ni, 0.6 Mn 88.7 Cu, 1.3 Fe, 10.0 Ni 79.00 Cu, 21.0 Ni
F, T F, T F, W, T
20 20 20
C71500 Copper nickel, 30% C71700 C72500 C73500
70.0 Cu, 30.0 Ni 67.8 Cu, 0.7 Fe, 31.0 Ni, 0.5 Be 88.20 Cu, 9.5 Ni, 2.3 Sn 72.0 Cu, 18.0 Ni , 10.0 Zn
F, R, T F, R, W F, R, W, T F, R, W, T
20 20 20 20
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.15 Mechanical L Page 712 Wednesday, December 31, 1969 17:00
Table 200. MACHINABILITY
RATING OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 9 OF 9) UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Machinability Rating (d)
C74500 Nickel silver, 65-10 C75200 Nickel silver, 65-18 C75400 Nickel silver, 65-15 C75700 Nickel silver, 65-12
65.0 Cu, 25.0 Zn, 10.0 Ni 65.0 Cu, 17.0 Zn, 18.0 Ni 65.0 Cu, 20.0 Zn, 15.0 Ni 65.0 Cu, 23.0 Zn, 12.0 Ni
F, W F, R, W F F, W
20 20 20 20
C77000 Nickel silver, 55-18 C78200 Leaded nickel silver, 65-8-2
55.0 Cu, 27.0 Zn, 18.0 Ni 65.0 Cu, 2.0 Pb, 25.0 Zn, 8.0 Ni
F, R, W F
30 60
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). (d) Based on 100% for C360000. (e) C10400, 8 oz/ton Ag, C10500, 10 oz/ton C10700, 25 oz/ton . (f) C11300, 8 oz/ton Ag, C11400,10 oz/ton, C11500, 16 oz/ton C11600, 25 oz/ton (g) C12000, 0.008 P; C12100, 0.008 P and 4 oz/ton Ag; (h) C12700, 8 oz/ton Ag; C12800,10 oz/ton; C12900,16 oz/ton; C13000, 25 oz/ton. (i) 0.98.30 oz/ton Ag. (j) C18200, 0.9 Cr, C18400, 0.9 Cr; C18500, 0.7 Cr (k) Rod, 61.0 Cu min.
©2001 CRC Press LLC
8.16 Mechanical Page 713 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 201. HARDNESS OF WROUGHT (SHEET 1 OF 5)
ALUMINUM ALLOYS
Alloy AA No.
Temper
Hardness (BHN)
1060
0 H12 H14 H16 H18
19 23 26 30 35
1100
0 H12 H14 H16 H18
23 28 32 38 44
2011
T3 T8
95 100
2014
0 T4 T6
45 105 135
2024
0 T3 T4, T351 T361
47 120 120 130
2218
T61 T71 T72
115 105 95
3003 Alclad 3003
0 H12 H14 H16 H18
28 35 40 47 55
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC Shackelford & Alexander
713
8.16 Mechanical Page 714 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 201. HARDNESS OF WROUGHT (SHEET 2 OF 5)
ALUMINUM ALLOYS
Alloy AA No.
Temper
Hardness (BHN)
3004 Alclad 3004
0 H32 H34 H36 H38 T6
45 52 63 70 77 120
5005
0 H32 H34 H36 H38
28 36 41 46 51
5050
0 H32 H34 H36 H38
36 46 53 58 63
5052
0 H32 H34 H36 H38
47 60 68 73 77
5056
0 H18 H38
65 105 100
5154
0 H32 H34
58 67 73
H36 H38 H112
78 80 63
4032
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
714
CRC Handbook of Materials Science & Engineering
8.16 Mechanical Page 715 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 201. HARDNESS OF WROUGHT (SHEET 3 OF 5)
ALUMINUM ALLOYS
Alloy AA No.
Temper
Hardness (BHN)
5182 5252
0 H25 H28, H38 0
58 68 75 58
5254
H32 H34 H36 H38 H112
67 73 78 80 63
5454
0 H32 H34
62 73 81
H111 H112 H311
70 62 70
5456
H321, H116
90
5457
0 H25 H28, H38
32 48 55
5652
0 H32 H34 H36 H38
47 60 68 73 77
5657
H25 H28, H38
40 50
6005 6009 6010
T5 T4 T4
95 70 76
5254
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC Shackelford & Alexander
715
8.16 Mechanical Page 716 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 201. HARDNESS OF WROUGHT (SHEET 4 OF 5)
ALUMINUM ALLOYS
Alloy AA No.
Temper
Hardness (BHN)
6061
0 T4, T451 T6, T651
30 65 95
6063
0 T1 T5 T6
25 42 60 73
T83 T831 T832
82 70 95
6066
0 T4, T451 T6, T651
43 90 120
6070
0 T4 T6
35 90 120
6151 6201 6205
T6 T6 T1 T5
71 90 65 95
6262 6351 6463
T9 T6 T1 T5 T6
120 95 42 60 74
7049 7072
T73 0 H12 H14
135 20 28 32
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
716
CRC Handbook of Materials Science & Engineering
8.16 Mechanical Page 717 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 201. HARDNESS OF WROUGHT (SHEET 5 OF 5)
ALUMINUM ALLOYS
Alloy AA No.
Temper
Hardness (BHN)
7075
0 T6,T651
60 150
7175
T66 T736
150 145
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC Shackelford & Alexander
717
8.17 Mechanical L Page 718 Wednesday, December 31, 1969 17:00
Table 202. HARDNESS OF
AT
WROUGHT TITANIUM ALLOYS
ROOM TEMPERATURE (SHEET 1 OF 2)
Class
Alloy
Condition
Hardness (HRC)
Commercially Pure
99.5 Ti 99.2 Ti 99.1 Ti
Annealed Annealed Annealed
120(a) 200(a) 225(a)
99.0 Ti 99.2Ti-0.2Pd
Annealed Annealed
265(a) 200(a)
Alpha Alloys
Ti-5Al-2.5Sn Ti-5Al-2.5Sn (low O2)
Annealed Annealed
36 35
Near Alpha Alloys
Ti-8Al-1Mo-1V Ti-11Sn-1Mo-2.25Al-5.0Zr-1Mo-0.2Si Ti-6Al-2Sn-4Zr-2Mo Ti-6Al-2Nb-1Ta-1Mo
Duplex Annealed Duplex Annealed Duplex Annealed As rolled 2.5 cm (1 in.) plate
35 36 32 30
Alpha-Beta Alloys
Ti-6Al-4V
Annealed Solution + age
36 41
(a) Hardness, HB Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993).
©2001 CRC Press LLC
8.17 Mechanical L Page 719 Wednesday, December 31, 1969 17:00
Table 202. HARDNESS OF
AT Class
Beta Alloys
WROUGHT TITANIUM ALLOYS
ROOM TEMPERATURE (SHEET 2 OF 2) Alloy
Condition
Hardness (HRC)
Ti-6Al-4V(low O2)
Annealed
35
Ti-6Al-6V-2Sn
Annealed Solution + age
38 42
Ti-7Al-4Mo
Solution + age
38
Ti-13V-1Cr-3Al Ti-8Mo-8V-2Fe-3Al Ti-3Al-8V-6Cr-4Mo-4Zr
Solution + age Solution + age Solution + age
40 40 42
(a) Hardness, HB Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993).
©2001 CRC Press LLC
8.18 Mechanical Page 720 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 203. HARDNESS OF CERAMICS (SHEET 1 OF 6) Class
Ceramic
Hardness
Borides
Chromium Diboride (CrB2)
micro 100g: 1800 kg/mm2 Vickers 50g: 1800 kg/mm2 Knoop 100g: 1700 kg/mm2
Hafnium Diboride (HfB2) (polycrystalline)
Knoop 160g : 2400kg/mm at 24 oC
(single crystal)
Knoop 160g : 3800kg/mm at 24 oC
Tantalum Diboride (TaB2)
micro : 1700 kg/mm2 Knoop 30g: 2537 kg/mm2 Knoop 100g: 2615 ± 120 kg/mm2 Rockwell A : 89
Titanium Diboride (TiB2)
Vickers 50g: 3400 kg/mm2 Knoop 30g: 3370 kg/mm2 Knoop 100g: 2710-3000 kg/mm2 Knoop 160g: 3500 kg/mm2
(single crystal)
Knoop 100g: 3250±100 kg/mm2
Zirconium Diboride (ZrB2)
Rockwell A: 87-89 Vickers 50g: 2200 kg/mm2 Knoop 100g: 1560 kg/mm2 Knoop 160g: 2100 kg/mm2
Carbides
(single crystal)
Knoop 160g: 2000 kg/mm2
Boron Carbide (B4C)
Knoop 100g: 2800 kg/mm2 Knoop 1000g: 2230 kg/mm2 Vickers : 2400 kg/mm2
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
720
CRC Handbook of Materials Science & Engineering
8.18 Mechanical Page 721 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 203. HARDNESS OF CERAMICS (SHEET 2 OF 6) Class
Ceramic
Hardness
Carbides (Con’t)
Hafnium Monocarbide (HfC)
Knoop : 1790-1870 kg/mm2 Vickers 50g : 2533-3202 kg/mm2
Silicon Carbide (SiC)
Moh : 9.2
Vickers 25g : 3000-3500 kg/mm2 Knoop 100g : 2500-2550 kg/mm2 Knoop 100g : 2960 kg/mm2 (black) Knoop 100g : 2745 kg/mm2 (green) (cubic, CVD)
Knoop or Vickers : 2853-4483 kg/mm2
Tantalum Monocarbide (TaC)
Knoop 50g: 1800-1952 kg/mm2 Knoop 100g: 825 kg/mm2 Vickers 50g: 1800 kg/mm2 Rockwell A: 89 Brinell: 840
Titanium Monocarbide (TiC)
Knoop 100g: 2470 kg/mm2 Knoop 1000g: 1905 kg/mm2 Vickers 50g: 2900-3200 kg/mm2 Vickers 100g: 2850-3390 kg/mm2
(98.6% density) (99.5% density) (100% density)
micro 20g: 3200 kg/mm2 Rockwell A: 88-89 Rockwell A: 91-93.5 Rockwell A: 91-93.5
Trichromium Dicarbide (Cr3C2)
Knoop or Vickers : 1019-1834 kg/mm2
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
Shackelford & Alexander
721
8.18 Mechanical Page 722 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 203. HARDNESS OF CERAMICS (SHEET 3 OF 6) Class
Ceramic
Hardness
Carbides (Con’t)
Tungsten Monocarbide (WC)
Knoop 100g: 1870-1880 kg/mm2 Vickers 50g: 2400 kg/mm2
(6% Co, 1-3µm grain size) (12% Co, 1-3µm grain size) (24% Co, 1-3µm grain size) (6% Co, 2-4µm grain size) (6% Co, 3-6µm grain size) Zirconium Monocarbide (ZrC)
Vickers 100g: 1730 kg/mm2 Rockwell A: 92
Rockwell A: 81.4 ± 0.4 Rockwell A: 89.4 ± 0.5 Rockwell A: 86.9 ± 0.6 Rockwell A: 88.6 ± 0.5 Rockwell A: 87.3 ± 0.5 Knoop : 2138 kg/mm2 Vickers 50g : 2600 kg/mm2 Vickers 100g : 2836-3840 kg/mm2 micro : 2090 kg/mm2 Rockwell A: 92.5
Nitrides
Aluminum Nitride (AlN)
Mohs: 5-5.5
(thick film) (thin film)
Knoop 100g: 1225-1230 kg/mm2 Rockwell 15N: 94.5 Rockwell 15N: 94.0
Boron Nitride (BN)
Mohs: 2 (hexagonal)
Titanium Mononitirde (TiN)
Mohs: 8-10 Knoop 30g : 2160 kg/mm2
Knoop 100g : 1770 kg/mm2 Trisilicon tetranitride (Si3N4)
Mohs: 9+
(α)
Knoop or Vickers: 815-1936kg/mm2 Rockwell A: 99
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
722
CRC Handbook of Materials Science & Engineering
8.18 Mechanical Page 723 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 203. HARDNESS OF CERAMICS (SHEET 4 OF 6) Class
Ceramic
Hardness
Nitrides (Con’t)
Zirconium Mononitride (ZrN)
Mohs: 8+ Knoop 30g : 1983 kg/mm2
Knoop 100g : 1510 kg/mm2 Aluminum Oxide (Al2O3) (single crystal)
Oxides
Mohs : 9 Knoop 100g : 2000-2050 kg/mm2 Vickers 20g : 2600 kg/mm2
Vickers 50g : 2720 kg/mm2 R45N : 78-90 Beryllium Oxide (BeO)
Knoop 100g : 1300 kg/mm2 R45N : 64-67
Calcium Oxide (CaO)
Knoop 100g : 560 kg/mm2
Dichromium Trioxide (Cr2O3)
Knoop or Vickers : 2955 kg/mm2
Magnesium Oxide (MgO)
Mohs : 5.5
Silicon Dioxide (SiO2) (parallel to optical axis)
Knoop 100g : 710 kg/mm2
(normal to optical axis)
Knoop 100g : 790 kg/mm2
(parallel to optical axis)
Vickers 500g : 1260 kg/mm2
(normal to optical axis)
Vickers 500g : 1103 kg/mm2 Vickers 500g : 1120 kg/mm2
(1010 face) 10 µm diagonal
Vickers 500g :1120-1230 kg/mm2
(1011 face) 10 µm diagonal
Vickers 500g : 1040-1130 kg/mm2 Vickers 500g : 1300 kg/mm2
(polished 1010 face) 10 µm diagonal
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
Shackelford & Alexander
723
8.18 Mechanical Page 724 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 203. HARDNESS OF CERAMICS (SHEET 5 OF 6) Class
Ceramic
Hardness
Oxides (Con’t)
Thorium Dioxide (ThO2)
Mohs : 6.5 Knoop 100g : 945 kg/mm2
Titanium Oxide (TiO2)
Knoop or Vickers : 713-1121 kg/mm2
Uranium Dioxide (UO2)
Mohs : 6-7 Knoop 100g : 600 kg/mm2
Zirconium Oxide (ZrO2)
Mohs : 6.5 Knoop 100g : 1200 kg/mm2
(partially stabilized) (fully stabilized)
Knoop or Vickers : 1019-1121 kg/mm2 Knoop or Vickers : 1019-1529 kg/mm2
Cordierite (2MgO 2Al2O3 5SiO2)
Vickers : 835.6 kg/mm2
(glass)
Vickers : 672.5 kg/mm2
Mullite (3Al2O3 2SiO2)
Mohs: 7.5 Vickers : 1120 kg/mm2 R45N: 71
Silicides
Sillimanite (Al2O3 SiO2)
Mohs: 6-7
Zircon (SiO2 ZrO2)
Mohs: 7.5
Molybdenum Disilicide (MoSi2)
Knoop 100g : 1257 kg/mm2 Vickers 100g : 1290-1550 kg/mm2 Micro 50g : 1200 kg/mm2 Micro 100g : 1290 kg/mm2
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
724
CRC Handbook of Materials Science & Engineering
8.18 Mechanical Page 725 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 203. HARDNESS OF CERAMICS (SHEET 6 OF 6) Class
Ceramic
Hardness
Silicides (Con’t)
Tungsten Disilicide (WSi2)
Knoop 100g : 1090 kg/mm2 Vickers 100g : 1090 kg/mm2
Vickers 10g : 1632 kg/mm2 Micro 50g : 1260 kg/mm2 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
Shackelford & Alexander
725
8.18 Mechanical Page 726 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 204. MICROHARDNESS OF (SHEET 1 OF 2) Class
Glass
SiO2
SiO2 glass
GLASS Microhardness (Kg/mm2)
Knoop 500–679
SiO2–Na2O glass (25% mol Na2O) (30% mol Na2O) (35% mol Na2O) (40% mol Na2O) (45% mol Na2O) SiO2–B2O3 glass (60% mol B2O3) (65% mol B2O3) (70% mol B2O3) (75% mol B2O3) (80% mol B2O3) (85% mol B2O3) (90% mol B2O3) (95% mol B2O3)
Vickers 423±4 413±3 414±4 394±2 378±2 Vickers 328–345 293–297 251–279 237–269–345 239–271 239–267 231–257 227–253
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
726
CRC Handbook of Materials Science & Engineering
8.18 Mechanical Page 727 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 204. MICROHARDNESS OF (SHEET 2 OF 2) Class
Glass
B2O3
B2O3 glass
GLASS Microhardness (Kg/mm2)
Vickers 194–205
B2O3–Na2O glass (5% mol Na2O) (10% mol Na2O) (15% mol Na2O) (20% mol Na2O) (25% mol Na2O) (30% mol Na2O)
Vickers 276 292 297 380 460 503
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
Shackelford & Alexander
727
8.18 Mechanical Page 728 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 205. HARDNESS OF POLYMERS (SHEET 1 OF 7) Class
Polymer
Hardness, (ASTM D785) (Rockwell)
ABS Resins; Molded, Extruded
Medium impact
R108—115
High impact Very high impact Low temperature impact Heat resistant
R95—113 R85—105 R75—95 R107—116
Acrylics; Cast, Molded, Extruded
Cast Resin Sheets, Rods: General purpose, type I General purpose, type II Moldings: Grades 5, 6, 8 High impact grade
M80—103 M38—45
Thermoset Carbonate
Allyl diglycol carbonate
M95—M100 (Barcol)
Alkyds; Molded
Putty (encapsulating) Rope (general purpose)
60—70 (Barcol) 70—75 (Barcol)
Granular (high speed molding) Glass reinforced (heavy duty parts)
60—70 (Barcol)
Cellulose Acetate; Molded, Extruded
M80—90 M96—102
70—80 (Barcol)
ASTM Grade: H4—1 H2—1
R103—120 R89—112
MH—1, MH—2 MS—1, MS—2 S2—1
R74—104 R54—96 R49—88
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
728
CRC Handbook of Materials Science & Engineering
8.18 Mechanical Page 729 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 205. HARDNESS OF POLYMERS (SHEET 2 OF 7) Class
Polymer
Cellulose Acetate Butyrate; Molded, Extruded
ASTM Grade: H4 MH S2
Cellusose Acetate Propionate; Molded, Extruded
Chlorinated Polymers Chlorinated polyether Chlorinated polyvinyl chloride
Diallyl Phthalates; Molded
Fluorocarbons; Molded,Extruded
R114 R80—100 R23—42
ASTM Grade: 1 3 6
Polycarbonates
Hardness, (ASTM D785) (Rockwell)
100—109 92—96 57
R100 R118
Polycarbonate Polycarbonate (40% glass fiber reinforced)
M70
Orlon filled
M108
Asbestos filled Glass fiber filled
M107 M108
Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Ceramic reinforced (PTFE)
R110—115
Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF)
57—58D
M97
52D R35—55
109—110R
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
729
8.18 Mechanical Page 730 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 205. HARDNESS OF POLYMERS (SHEET 3 OF 7) Class
Polymer
Hardness, (ASTM D785) (Rockwell)
Epoxies; Cast, Molded, Reinforced
Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible Molded
106M 50-100M 75-80 (Barcol)
General purpose glass cloth laminate High strength laminate Filament wound composite Epoxies—Molded, Extruded
Melamines; Molded
Nylons; Molded, Extruded
115—117M 70—72 (Barcol) 98-120M
High performance resins (cycloaliphatic diepoxides) Cast, rigid Molded Glass cloth laminate
107—112 94—96D 75—80
Filler & type Unfilled Cellulose electrical
E110 M115—125
Type 6 General purpose Glass fiber (30%) reinforced Cast Flexible copolymers
R118—R120 R93—121 R116 R72—Rll9
Type 11 Type 12
Rl00—R108 R106
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
730
CRC Handbook of Materials Science & Engineering
8.18 Mechanical Page 731 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 205. HARDNESS OF POLYMERS (SHEET 4 OF 7) Class
Polymer
Nylons; Molded, Extruded
6/6 Nylon General purpose molding Glass fiber reinforced Glass fiber Molybdenum disulfide filled General purpose extrusion 6/10 Nylon General purpose Glass fiber (30%) reinforced
Phenolics; Molded
Type and filler General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber
Hardness, (ASTM D785) (Rockwell)
R118—120, R108 E60—E80 M95—100 R118—108
R111 E40—50
E85—100 E85—95 E80—90 E50—70
Arc resistant—mineral Rubber phenolic—woodflour or flock Rubber phenolic—chopped fabric Rubber phenolic—asbestos
M105—115
ABS–Polycarbonate Alloy
ABS–Polycarbonate Alloy
R118
PVC–Acrylic Alloy
PVC–Acrylic Alloy PVC–acrylic sheet PVC–acrylic injection molded
R105 R104
Polymide
Glass reinforced
114E
M40—90 M57 M50
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
731
8.18 Mechanical Page 732 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 205. HARDNESS OF POLYMERS (SHEET 5 OF 7) Class
Polymer
Hardness, (ASTM D785) (Rockwell)
Polyacetals
Homopolymer: Standard 20% glass reinforced 22% TFE reinforced
M94 M90 M78
Copolymer: Standard 25% glass reinforced High flow
M80 M79 M80
Polyester; Thermoplastic
Polyesters: Thermosets
Injection Moldings: General purpose grade Glass reinforced grades Glass reinforced self extinguishing
R117 R118—M90
General purpose grade Glass reinforced grade Asbestos—filled grade
R117 R117—M85 M85
Cast polyyester Rigid Flexible
35—50 (Barcol) 6—40 (Barcol)
Reinforced polyester moldings High strength (glass fibers) Heat and chemical resistant (asbestos) Sheet molding compounds, general purpose
R119
60—80 (Barcol) 40—70 (Barcol) 45—60 (Barcol)
Phenylene Oxides
SE—100 SE—1 Glass fiber reinforced
R115 R119 L106, L108
Phenylene oxides (Noryl)
Standard Glass fiber reinforced
R120 M84
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
732
CRC Handbook of Materials Science & Engineering
8.18 Mechanical Page 733 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 205. HARDNESS OF POLYMERS (SHEET 6 OF 7) Class
Polymer
Hardness, (ASTM D785) (Rockwell)
Polyarylsulfone
Polyarylsulfone
M85—110
Polypropylene:
General purpose High impact
R80—R100 R28—95
Asbestos filled Glass reinforced Flame retardant
R90—R110 R90—R115 R60—R105
Polyphenylene sulfide:
Standard 40% glass reinforced
R120—124 R123
Polyethylenes; Molded, Extruded
Type I—lower density (0.910—0.925) Melt index 0.3—3.6 Melt index 6—26 Melt index 200
C73, D50—52 (Shore) C73, D47—53 (Shore) D45 (Shore)
Type II—medium density (0.926—0.940) Melt index 20 Melt index l.0—1.9
D55 (Shore) D55—D56 (Shore)
Type III—higher density (0.941—0.965) Melt index 0.2—0.9 Melt Melt index 0.l—12.0 Melt index 1.5—15 High molecular weight
D68—70 (Shore) D60—70 (Shore) D68—70 (Shore) D60—65 (Shore)
EEA (ethylene ethyl acrylate)
D35 (Shore)
EVA (ethylene vinyl acetate) Ethylene butene Propylene—ethylene ionomer
D36 (Shore) D65 (Shore) D60 (Shore)
Olefin Copolymers; Molded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC Shackelford & Alexander
733
8.18 Mechanical Page 734 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 205. HARDNESS OF POLYMERS (SHEET 7 OF 7) Class
Polymer
Hardness, (ASTM D785) (Rockwell)
Polystyrenes; Molded
Polystyrenes General purpose Medium impact High impact
M72 M47—65 M3—43
Polyvinyl Chloride And Copolymers; Molded, Extruded
Silicones; Molded, Laminated
Ureas; Molded
Glass fiber -30% reinforced Styrene acrylonitrile (SAN) Glass fiber (30%) reinforced SAN
M90—123
Rigid—normal impact
R110—120
Vinylidene chloride
M50—65
Polyvinyl Chloride And Copolymers; Molded, Extruded: Nonrigid—general Nonrigid—electrical Rigid—normal impact Vinylidene chloride
(ASTM D676)
Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate Alpha—cellulose filled (ASTM Type l) Woodflour filled
M85—95 M75—85
A50—100 (Shore) A78—100 (Shore) D70—85 (Shore) >A95 (Shore) M87 M71—95 75 (Barcol) E94—97, M116—120 M116—120
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
734
CRC Handbook of Materials Science & Engineering
8.18 Mechanical Page 735 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 206. HARDNESS OF
SI3N4 AND AL2O3 COMPOSITES
Matrix
Dispersed Phase
Knoop Hardness (GPa)
Si3N4+ 6 wt % Y2O3
None
13.4 ± 0.3
Si3N4+ 6 wt % Y2O3
TiC (Ti, W) C WC
15.21 ± 0.3 14.06 ± 0.3 14.4 ± 0.4
TaC HfC SiC
12.6 ± 0.2 14.1 ± 0.4 13.6 ± 0.2
TiC
17.2 ± 0.2
Al2O3
Containing 30 Vol % of Metal Carbide Dispersoid (2 µm average particle diameter) Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p169,(1994).
©2001 CRC Press LLC Shackelford & Alexander
735
8.18 Mechanical Page 736 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 207. COEFFICIENT OF
STATIC FRICTION FOR POLYMERS
Class
Polymer
Coefficient of Static Friction (Against Self) (Dimensionless)
ABS–Polycarbonate Alloy
ABS–Polycarbonate Alloy
0.2
Polycarbonates
Polycarbonate
0.52
Nylons; Molded, Extruded
Type 6
Polyacetals
Cast
0.32 (dynamic )
6/6 Nylon General purpose molding
0.04—0.13
Homopolymer: Standard 20% glass reinforced 22% TFE reinforced Copolymer: Standard 25% glass reinforced High flow
Polyester; Thermoplastic
0.15 (against steel) 0.15 (against steel) 0.15 (against steel) (ASTM D1894)
Injection Moldings: General purpose grade Glass reinforced grades Glass reinforced self extinguishing Polyester; Thermoplastic
0.1—0.3 (against steel) 0.1—0.3 (against steel) 0.05—0.15 (against steel)
Injection Moldings: General purpose grade Glass reinforced grades Glass reinforced self extinguishing
0.17 0.16 0.16
0.13 (against steel) 0.14 (against steel) 0.14 (against steel)
Phenylene oxides (Noryl)
Standard
0.67
Polyarylsulfone
Polyarylsulfone
0.1—0.3
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3 , CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
736
CRC Handbook of Materials Science & Engineering
8.18 Mechanical Page 737 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 208. ABRASION RESISTANCE OF (SHEET 1 OF 2)
POLYMERS
Class
Polymer
Abrasion Resistance (Taber, CS—17 wheel, ASTM D1044) (mg / 1000 cycles)
Fluorocarbons; Molded,Extruded
Polytrifluoro chloroethylene (PTFCE)
0.008 (g/cycle)
Polyvinylidene— fluoride (PVDF)
0.0006—0.0012 (g/cycle)
Polycarbonate Polycarbonate (40% glass fiber reinforced)
10
Polycarbonates
Nylons; Molded, Extruded Type 6 General purpose Cast Nylons; Molded, Extruded
40
5 2.7
6/6 Nylon General purpose molding General purpose extrusion
3—8 3—5
PVC–Acrylic Alloy
PVC–acrylic sheet PVC–acrylic injection molded
0.073 (CS—10 wheel) 0.0058 (CS—10 wheel)
Polymides
Unreinforced Unreinforced 2nd value Glass reinforced
0.08 0.004 20
Polyacetals
Homopolymer: Standard 20% glass reinforced 22% TFE reinforced Copolymer: Standard 25% glass reinforced High flow
14—20 33 9 14 40 14
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC Shackelford & Alexander
737
8.18 Mechanical Page 738 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 208. ABRASION RESISTANCE OF (SHEET 2 OF 2)
POLYMERS Abrasion Resistance (Taber, CS—17 wheel, ASTM D1044) (mg / 1000 cycles)
Class
Polymer
Polyester; Thermoplastic
Injection Moldings: General purpose grade Glass reinforced grades Glass reinforced self extinguishing
6.5 9—50 11
Phenylene Oxides
SE—100 SE—1 Glass fiber reinforced
100 20 35
Phenylene oxides (Noryl)
Standard
20
Polyarylsulfone
Polyarylsulfone
40
Polystyrenes; Molded
Glass fiber -30% reinforced
164
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
738
CRC Handbook of Materials Science & Engineering
8.18 Mechanical Page 739 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 209. FATIGUE
STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 1 OF 4) Alloy AA No.
Temper
Fatigue Strength (MPa)
1060
0 H12 H14 H16 H18
21 28 34 45 45
1100
0 H12 H14 H16 H18
34 41 48 62 62
1350 2011
H19 T3 T8
48 125 125
2014
0 T4 T6
90 140 125
2024
0 T3 T4, T351 T361
90 140 140 125
2036 2048
T4
125 220
2219
T62 T81, T851 T87
105 105 105
2618 3003 Alclad
All 0 H12
125 48 55
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC Shackelford & Alexander
739
8.18 Mechanical Page 740 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 209. FATIGUE
STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 2 OF 4) Alloy AA No.
Temper
Fatigue Strength (MPa)
3003
H14 H16 H18
62 69 69
3004 Alclad
0 H32
97 105
3004
H34 H36 H38 T6
105 110 110 110
5050
0 H32 H34 H36 H38
83 90 90 97 97
5052
0 H32 H34 H36 H38
110 115 125 130 140
5056
0 H18 H38 H321
140 150 150 160
5154
0 H32 H34 H36 H38 H112
115 125 130 140 145 115
5182 5254
0 0
140 115
4032
5083
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
740
CRC Handbook of Materials Science & Engineering
8.18 Mechanical Page 741 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 209. FATIGUE
STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 3 OF 4) Alloy AA No.
Temper
Fatigue Strength (MPa)
5254
H32 H34 H36 H38 H112
125 130 140 145 115
5652
0 H32 H34 H36 H38
110 115 125 130 140
6005
T1 T5
97 97
6009 6010
T4 T4
115 115
6061
0 T4, T451 T6, T651
62 97 97
6063
0 T1 T5 T6
55 62 69 69
6066 6070
T6, T651 0 T4 T6
110 62 90 97
6205 6262 6351
T5 T9 T6
105 90 90
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC Shackelford & Alexander
741
8.18 Mechanical Page 742 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 209. FATIGUE
STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 4 OF 4) Alloy AA No.
Temper
Fatigue Strength (MPa)
6463
T1 T5 T6
69 69 69
7005
T53 T6,T63,T6351
140 125
7049 7050 7075
T73 T736 T6,T651
295 240 160
7175
T66 T736 T7351
160 160 220
7475
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
742
CRC Handbook of Materials Science & Engineering
8.18 Mechanical Page 743 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 210. REVERSED
BENDING FATIGUE LIMIT OF GRAY CAST IRON BARS
ASTM Class
Reversed Bending Fatigue Limit (MPa)
20 25 30
69 79 97
35 40 50 60
110 128 148 169
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984).
©2001 CRC Press LLC Shackelford & Alexander
743
8.18 Mechanical Page 744 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 211. IMPACT ENERGY OF (SHEET 1 OF 2)
TOOL STEELS
Type
Condition
Impact Energy (J)
L2
Oil quenched from 855 ˚C and single tempered at: 205 ˚C 315 ˚C 425 ˚C 540 ˚C 650 ˚C
28(a) 19(a) 26(a) 39(a) 125(a)
Annealed
93 HRB
Oil quenched from 845 ˚C and single tempered at: 315 ˚C 425 ˚C 540 ˚C 650 ˚C
12(a) 18(a) 23(a) 81(a)
L6
S1
S5
Oil quenched from 930 ˚C and single tempered at: 205 ˚C 315 ˚C 425 ˚C 540 ˚C 650 ˚C
249(b) 233(b) 203(b) 230(b)
Oil quenched from 870 ˚C and single tempered at: 205 ˚C 315 ˚C 425 ˚C 540 ˚C 650 ˚C
206(b) 232(b) 243(b) 188(b)
(a) Charpy V-notch. (b) Charpy unnotched. Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984).
©2001 CRC Press LLC
744
CRC Handbook of Materials Science & Engineering
8.18 Mechanical Page 745 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 211. IMPACT ENERGY OF (SHEET 2 OF 2)
TOOL STEELS
Type
Condition
Impact Energy (J)
S7
Fan cooled from 940 ˚C and single tempered at: 205 ˚C 315 ˚C 425 ˚C 540 ˚C 650 ˚C
244(b) 309(b) 243(b) 324(b) 358(b)
(a) Charpy V-notch. (b) Charpy unnotched. Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
745
8.19 Mechanical L Page 746 Wednesday, December 31, 1969 17:00
Table 212. IMPACT
STRENGTH OF WROUGHT TITANIUM ALLOYS AT ROOM TEMPERATURE
Class
Alloy
Condition
Charpy Impact Strength (J)
Commercially Pure
99.2Ti 99.1Ti 99.0 Ti 99.2Ti-0.2Pd
Annealed Annealed Annealed Annealed
43 38 20 43
Alpha Alloys
Ti-5Al-2.5Sn Ti-5Al-2.5Sn (low O2)
Annealed Annealed
26 27
Near alpha alloys
Ti-8Al-1Mo-1V Ti-6Al-2Nb-1Ta-1Mo
Duplex Annealed As rolled 2.5 cm (1 in.) plate
32 31
Alpha-Beta Alloys
Ti-6Al-4V Ti-6Al-4V(low O2) Ti-6Al-6V-2Sn Ti-7Al-4Mo
Annealed Annealed Annealed Solution + age
19 24 18 18
Beta Alloys
Ti-13V-1Cr-3Al Ti-3Al-8V-6Cr-4Mo-4Zr
Solution + age Solution + age
11 10
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993).
©2001 CRC Press LLC
8.20 Mechanical Page 747 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 213. IMPACT STRENGTH OF (SHEET 1 OF 7)
POLYMERS
Class
Polymer
Impact Strength (Izod notched, ASTM D256) (ft—lb / in.)
ABS Resins; Molded, Extruded
Medium impact
2.0—4.0
High impact Very high impact Low temperature impact Heat resistant
3.0—5.0 5.0—7.5 6—10 2.0—4.0
Acrylics; Cast, Molded, Extruded
Cast Resin Sheets, Rods: General purpose, type I General purpose, type II
0.4 0.4
Moldings: Grades 5, 6, 8 High impact grade
0.2—0.4 0.8—2.3
Thermoset Carbonate
Allyl diglycol carbonate
0.2—0.4
Alkyds; Molded
Putty (encapsulating) Rope (general purpose) Granular (high speed molding) Glass reinforced (heavy duty parts)
0.25—0.35 2.2
Cellulose Acetate Butyrate; Molded, Extruded
0.30—0.35 8—12
ASTM Grade: H4 MH S2
3 4.4—6.9 7.5—10.0
To convert ft—lb / in. to N•m/m, multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC Shackelford & Alexander
747
8.20 Mechanical Page 748 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 213. IMPACT STRENGTH OF (SHEET 2 OF 7)
Class
Polymer
Cellusose Acetate Propionate; Molded, Extruded
ASTM Grade:
Chlorinated Polymers
Polycarbonate Diallyl Phthalates; Molded
Fluorocarbons; Molded,Extruded
Epoxies; Cast, Molded, Reinforced
POLYMERS
Impact Strength (Izod notched, ASTM D256) (ft—lb / in.)
1 3 6
1.7—2.7 3.5—5.6 9.4
Chlorinated polyether Chlorinated polyvinyl chloride
0.4 (D758)
Polycarbonate
12—16
6.3
Orlon filled
0.5—1.2
Dacron filled Asbestos filled Glass fiber filled
1.7—5.0 0.30—0.50 0.5—15.0
Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF)
3.50—3.62
Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible
2.0—4.0 No break 3.0—10.3
0.2—0.5 0.3—0.2
To convert ft—lb / in. to N•m/m, multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
748
CRC Handbook of Materials Science & Engineering
8.20 Mechanical Page 749 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 213. IMPACT STRENGTH OF (SHEET 3 OF 7)
POLYMERS
Class
Polymer
Impact Strength (Izod notched, ASTM D256) (ft—lb / in.)
Epoxies; Cast, Molded, Reinforced (Con’t)
Molded
0.4—0.5
General purpose glass cloth laminate High strength laminate
12—15
Epoxies—Molded, Extruded
60—61
High performance resins (cycloaliphatic diepoxides) Cast, rigid Molded
0.5 0.3—0.5
Epoxy novolacs
Cast, rigid
13—17
Melamines; Molded
Filler & type Cellulose electrical Glass fiber Alpha cellulose and mineral
0.27—0.36 0.5—12.0 0.30—0.35, 0.2(mineral)
Nylons; Molded, Extruded
Type 6 General purpose Glass fiber (30%) reinforced Cast Flexible copolymers
0.6—1.2 2.2—3.4 1.2 1.5—19
Type 8 Type 11 Type 12
>16 3.3—3.6 1.2—4.2
6/6 Nylon General purpose molding Glass fiber reinforced General purpose extrusion
(ASTM D638) 0.55—1.0,2.0 2.5—3.4 1.3
To convert ft—lb / in. to N•m/m, multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC Shackelford & Alexander
749
8.20 Mechanical Page 750 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 213. IMPACT STRENGTH OF (SHEET 4 OF 7)
Class
Polymer
Nylons; Molded, Extruded (Con’t)
6/10 Nylon
Impact Strength (Izod notched, ASTM D256) (ft—lb / in.)
General purpose Glass fiber (30%) reinforced Phenolics; Molded
POLYMERS
Type and filler General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber
0.6–1.6 3.4
0.24—0.50 0.4—1.0 0.6—8.0 10—33
Arc resistant—mineral Rubber phenolic— woodflour or flock Rubber phenolic—chopped fabric Rubber phenolic—asbestos
0.30—0.45
ABS–Polycarbonate Alloy
ABS–Polycarbonate Alloy
10 (ASTM D638)
PVC–Acrylic Alloy
PVC–acrylic sheet PVC–acrylic injection molded
15
Unreinforced Unreinforced 2nd value Glass reinforced
0.5 0.5 17
Polymides
Polyacetals
0.34—1.0 2.0—2.3 0.3—0.4
15
(ASTM D638) Homopolymer: Standard 20% glass reinforced 22% TFE reinforced
1.4 0.8 0.7
To convert ft—lb / in. to N•m/m, multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
750
CRC Handbook of Materials Science & Engineering
8.20 Mechanical Page 751 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 213. IMPACT STRENGTH OF (SHEET 5 OF 7)
POLYMERS
Class
Polymer
Impact Strength (Izod notched, ASTM D256) (ft—lb / in.)
Polyacetals (Con’t)
Copolymer: Standard 25% glass reinforced High flow
1.3 1.8 1
Polyester; Thermoplastic
Polyesters: Thermosets
Injection Moldings: General purpose grade Glass reinforced grades Glass reinforced self extinguishing
1.8
General purpose grade Glass reinforced grade Asbestos—filled grade
1 1 0.5
Cast polyyester Rigid Flexible
0.18—0.40 4
Reinforced polyester moldings High strength (glass fibers) Heat and chemical resistsnt (asbestos) Sheet molding compounds, general purpose Phenylene Oxides
Phenylene oxides (Noryl)
1.0—1.2 1.3—2.2
1—10 0.45—1.0 5—15
SE—100 SE—1 Glass fiber reinforced
(ASTM D638) 5 5 2.3
Standard
1.2—1.3
Glass fiber reinforced
1.8—2.0
To convert ft—lb / in. to N•m/m, multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
751
8.20 Mechanical Page 752 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 213. IMPACT STRENGTH OF (SHEET 6 OF 7)
POLYMERS
Class
Polymer
Impact Strength (Izod notched, ASTM D256) (ft—lb / in.)
Polyarylsulfone
Polyarylsulfone
1.6—5.0
Polypropylene
General purpose High impact
0.4—2.2 1.5—12
Asbestos filled Glass reinforced Flame retardant
0.5—1.5 0.5—2 2.2
Polyphenylene sulfide
Standard 40% glass reinforced
0.3 1.09
Polyethylenes; Molded, Extruded
Type III—higher density (0.941—0.965) Melt index 0.2—0.9 Melt Melt index 0.l—12.0 Melt index 1.5—15 High molecular weight
4.0—14 0.4—6.0 1.2—2.5 >20
Ethylene butene
0.4
Propylene—ethylene Ionomer Polyallomer
1.1 9—14 1.5
Polystyrenes General purpose Medium impact High impact
(ASTM D638) 0.2—0.4 0.5—1.2 0.8—1.8
Glass fiber —30% reinforced Styrene acrylonitrile (SAN) Glass fiber (30%) reinforced SAN
2.5 0.29—0.54
Olefin Copolymers; Molded
Polystyrenes; Molded
1.35—3.0
To convert ft—lb / in. to N•m/m, multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
752
CRC Handbook of Materials Science & Engineering
8.20 Mechanical Page 753 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 213. IMPACT STRENGTH OF (SHEET 7 OF 7)
POLYMERS
Class
Polymer
Impact Strength (Izod notched, ASTM D256) (ft—lb / in.)
Polyvinyl Chloride And Copolymers; Molded, Extruded
Nonrigid—general
Variable
Nonrigid—electrical Rigid—normal impact Vinylidene chloride
Variable 0.5—10 2—8
Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate
10
Silicones; Molded, Laminated
Ureas; Molded
Alpha—cellulose filled (ASTM Type l) Cellulose filled (ASTM Type 2) Woodflour filled
0.34 10—25 0.20—0.35 0.20—0.275 0.25—0.35
To convert ft—lb / in. to N•m/m, multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC Shackelford & Alexander
753
8.20 Mechanical Page 754 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 214. IMPACT
STRENGTH OF FIBERGLASS REINFORCED PLASTICS Class
Material
Glass fiber content (wt%)
Glass fiber reinforced thermosets
Sheet molding compound (SMC)
15 to 30
8 to 22
Bulk molding compound(BMC) Preform/mat(compression molded) Cold press molding–polyester
15 to 35 25 to 50 20 to 30
2 to 10 10 to 20 9 to 12
Spray–up–polyester Filament wound–epoxy Rod stock–polyester Molding compound–phenolic
30 to 50 30 to 80 40 to 80 5 to 25
4 to 12 40 to 60 45 to 60 1 to 8
Glass–fiber–reinforced thermoplastics
Izod Impact strength (ft • Ib/in. of notch)
Acetal
20 to 40
0.8 to 2.8
Nylon Polycarbonate Polyethylene
6 to 60 20 to 40 10 to 40
0.8 to 4.5 1.5 to 3.5 1.2 to 4.0
Polypropylene Polystyrene Polysulfone ABS(acrylonitrile butadiene styrene)
20 to 40 20 to 35 20 to 40 20 to 40
1 to 4 0.4 to 4.5 1.3 to 2.5 1 to 2.4
PVC (polyvinyl chloride) Polyphenylene oxide(modified) SAN (styrene acrylonitrile) Thermoplastic polyester
15 to 35 20 to 40 20 to 40 20 to 35
0.8 to 1.6 1.6 to 2.2 0.4 to 2.4 1.0 to 2.7
To convert (ft • Ib/in. of notch) to (J/cm of notch), multiply by 0.534 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p106, (1994).
©2001 CRC Press LLC
754
CRC Handbook of Materials Science & Engineering
8.20 Mechanical Page 755 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 215. IMPACT
STRENGTH OF CARBON - AND GLASS REINFORCED ENGINEERING THERMOPLASTICS (SHEET 1 OF 2) Class
Resin Type
Composition
Impact Strength, Notched/Unnotched (J/cm)
Amorphous
Acrylonitrile-butadiene-styrene(ABS)
30% glass fiber 30% carbon fiber
0.75/3.5 0.59/2.4
Nylon
30% glass fiber 30% carbon fiber
0.64/3.7 0.64/4.3
Polycarbonate
30% glass fiber 30% carbon fiber
2.0/9.34 0.96/5.34
Polyetherimide
30% glass fiber 30% carbon fiber
0.75/5.60 0.75/6.67
Polyphenylene oxide (PPO)
30% glass fiber 30% carbon fiber
1.2/5.1 0.53/3.0
Polysulfone
30% glass fiber 30% carbon fiber
0.96/7.5 0.64/3.5
Styrene-maleic-anhydride (SMA)
30% glass fiber
0.59/2.4
Thermoplastic polyurethane
30% glass fiber
5.1/15
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p111–112, (1994).
©2001 CRC Press LLC
Shackelford & Alexander
755
8.20 Mechanical Page 756 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 215. IMPACT
STRENGTH OF CARBON - AND GLASS REINFORCED ENGINEERING THERMOPLASTICS (SHEET 2 OF 2) Class
Resin Type
Composition
Impact Strength, Notched/Unnotched (J/cm)
Crystalline
Acetal
30% glass fiber 20% carbon fiber
0.96/4.8 0.53/1.6
Nylon 66
30% glass fiber 30% carbon fiber
1.5/11 0.80/6.4
Polybutylene telphthalate (PBT)
30% glass fiber 30% carbon fiber
1.4/9.1 0.64/3.5
Polythylene terephthalate (PET)
30% glass fiber
1.0/—
Polyphenylene sulfide (PPS)
30% glass fiber 30% carbon fiber
0.75/4.5 0.59/2.9
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p111–112, (1994).
©2001 CRC Press LLC
756
CRC Handbook of Materials Science & Engineering
8.20 Mechanical Page 757 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 216. FRACTURE
TOUGHNESS OF SI3N4 AND AL2O3 COMPOSITES
Matrix
Dispersed Phase
Fracture Toughness (KIc), (MPa √m)
Si3N4+ 6 wt % Y2O3
None
4.8 ± 0.3
Si3N4+ 6 wt % Y2O3
TiC (Ti, W) C WC
4.4 ± 0.5 3.5 ± 0.3 5.2 ± 0.4
TaC HfC SiC
4.6 ± 0.4 3.6 ± 0.2 3.65 ± 0.5
TiC
3.2 ± 0.4
Al2O3
Containing 30 Vol % of Metal Carbide Dispersoid (2 µm average particle diameter) Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p169,(1994).
©2001 CRC Press LLC
Shackelford & Alexander
757
8.20 Mechanical Page 758 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 217. TENSILE
MODULUS OF GRAY CAST IRONS
ASTM Class
Tensile Modulus (GPa)
20 25 30 35
66 to 97 79 to 102 90 to 113 100 to 119
40 50 60
110 to 138 130 to 157 141 to 162
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984).
Table 218. TENSION
MODULUS OF TREATED DUCTILE IRONS
Treatment
Tension Modulus (MPa)
60-40-18 65-45-12 80-55-06 120 90-02
169 168 168 164
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169-170, (1984).
©2001 CRC Press LLC
758
CRC Handbook of Materials Science & Engineering
8.20 Mechanical Page 759 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 219. TENSILE
MODULUS OF FIBERGLASS REINFORCED PLASTICS Tensile modulus (105 psi)
Class
Material
Glass fiber content (wt%)
Glass fiber reinforced thermosets
Sheet molding compound (SMC)
15 to 30
16 to 25
Bulk molding compound(BMC) Preform/mat(compression molded)
15 to 35 25 to 50
16 to 25 9 to 20
Spray–up–polyester Filament wound–epoxy Rod stock–polyester Molding compound–phenolic
30 to 50 30 to 80 40 to 80 5 to 25
8 to l8 40 to 90 40 to 60 26 to 29
Acetal
20 to 40
8 to 15
Nylon Polycarbonate Polyethylene
6 to 60 20 to 40 10 to 40
2 to 20 7.5 to 17 4 to 9
Polypropylene Polystyrene Polysulfone ABS(acrylonitrile butadiene styrene)
20 to 40 20 to 35 20 to 40 20 to 40
4.5 to 9 8.4 to 12.1 15 6 to 10
PVC (polyvinyl chloride) Polyphenylene oxide(modified) SAN (styrene acrylonitrile) Thermoplastic polyester
15 to 35 20 to 40 20 to 40 20 to 35
10 to 18 9.5 to 15 9 to 18.5 13 to 15.5
Glass–fiber–reinforced thermoplastics
To convert from psi to MPa, multiply by 145. Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p106, (1994).
©2001 CRC Press LLC Shackelford & Alexander
759
8.20 Mechanical Page 760 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 220. TENSILE
MODULUS OF GRAPHITE /ALUMINUM COMPOSITES Composite
Fiber loading (vol %)
Wire diameter (mm)
Tensile Modulus (GPa)
VS0054/201 Al GY70SE/201 Al
48 to 52 37 to 38
0.64 (2-strand) 0.71(8-strand)
345 207
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p148,(1994).
Table 221. TENSILE
MODULUS OF INVESTMENT CAST SILICON CARBIDE SCS–AL Fiber orientation
Fiber vol (%)
Tensile Modulus (GPa)
Range of Measurement (%)
0°3/90°6/0°3 90°3/0°6/90°3 0°
33 33 34
122.0 124.8 172.4
107 110 100
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p149,(1994).
©2001 CRC Press LLC
760
CRC Handbook of Materials Science & Engineering
8.20 Mechanical Page 761 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 222. TENSILE
MODULUS OF SILICON CARBIDE SCS–2–AL
Fiber orientation
No. of plies
Tensile Modulus (GPa)
0° 90°
6, 8, 12 6, 12,40
204.1 118.0
[0°/90°/0°/90°]s [02 °99°20°]s [902/0°/90°]s
8 8 8
136.5 180.0 96.5
± 45° [0°±45°/0°]s+2s [0°±45°/90°]s
8, 12, 40 8, 16 8
94.5 146.2 127.0
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p149,(1994).
©2001 CRC Press LLC
Shackelford & Alexander
761
8.20 Mechanical Page 762 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 223. YOUNG’S MODULUS OF (SHEET 1 OF 7) Class
Ceramic
Borides
Chromium Diboride (CrB2)
CERAMICS
Young’s Modulus (psi)
Tantalum Diboride (TaB2)
30.6x106 37 x106
Titanium Diboride (TiB2)
53.2x106
(6.0 µm grain size, ρ=4.46g/cm3)
81.6x106
(3.5 µm grain size, ρ=4.37g/cm3,
75.0x106
0.8wt% Ni) (6.0 µm grain size, ρ=4.56g/cm3, 0.16wt% Ni) (12.0 µm grain size, ρ=4.66g/cm3, 9.6wt% Ni)
Carbides
Temperature
77.9x106 6.29x106
Zirconium Diboride (ZrB2)
49.8-63.8x106
(22.4% density,foam)
3.305x106
Boron Carbide (B4C)
42-65.2x106
room temp.
(ρ = 11.94 g/cm3)
61.55x106
room temp.
Silicon Carbide (SiC) (pressureless sintered)
43.9x106
room temp. room temp. room temp. room temp.
Hafnium Monocarbide (HfC)
(hot pressed)
63.8x106
(self bonded)
59.5x106
(cubic, CVD)
60.2-63.9x106
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
762
CRC Handbook of Materials Science & Engineering
8.20 Mechanical Page 763 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 223. YOUNG’S MODULUS OF (SHEET 2 OF 7)
CERAMICS
Class
Ceramic
Young’s Modulus (psi)
Temperature
Carbides (Con’t)
(ρ = 3.128 g/cm3)
58.2x106
room temp.
(ρ = 3.120 g/cm3) (hot pressed)
59.52x106 62.4-65.3x106
(sintered)
54.38-60.9x106
room temp. 20˚C 20˚C
(reaction sintered)
50.75-54.38x106 55x106 53x106 51x106 55.1x106
20˚C 400˚C 800˚C 1200˚C
(sintered)
43.5-58.0x10
(reaction sintered)
29-46.4x106
1400˚C 1400˚C 1400˚C
Tantalum Monocarbide (TaC)
41.3-91.3x106
room temp.
Titanium Monocarbide (TiC)
63.715x106
room temp. 1000˚C
(hot pressed)
6
45-55x106 Trichromium Dicarbide (Cr3C2)
54.1x106
Tungsten Monocarbide (WC)
96.91-103.5x106
Zirconium Monocarbide (ZrC)
28.3-69.6x106
room temp. room temp.
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
Shackelford & Alexander
763
8.20 Mechanical Page 764 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 223. YOUNG’S MODULUS OF (SHEET 3 OF 7) Class
Ceramic
Nitrides
Aluminum Nitride (AlN)
Boron Nitride (BN) parallel to c axis
parallel to a axis
CERAMICS
Young’s Modulus (psi)
Temperature
50x106 46x106
25˚C 1000˚C
40x106
1400˚C
4.91x106 3.47x106
23˚C 300˚C
0.51x106
700˚C
12.46x106
23˚C
8.79x106
300˚C
1.54x106
700˚C 1000˚C
1.65x106 Titanium Mononitride (TiN)
11.47-36.3x106
Trisilicon tetranitride (Si3N4)
Oxides
(hot pressed)
36.25-47.13x106
(sintered)
28.28-45.68x106
(reaction sintered)
14.5-31.9x106
20˚C 20˚C
(hot pressed)
25.38-36.25x10
(reaction sintered)
17.4-29.0x106
20˚C 1400˚C 1400˚C
Aluminum Oxide (Al2O3)
50-59.3x106
room temp.
50-57.275 x106
500˚C 800˚C 1000˚C
6
51.2 x106 45.5-50 x106 To convert from psi to MPa, multiply by 145.
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
764
CRC Handbook of Materials Science & Engineering
8.20 Mechanical Page 765 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 223. YOUNG’S MODULUS OF (SHEET 4 OF 7)
CERAMICS
Class
Ceramic
Young’s Modulus (psi)
Temperature
Oxides (Con’t)
Aluminum Oxide (Al2O3) (Con’t)
39.8-53.65 x106
1200˚C
32 x106
1250˚C 1400˚C 1500˚C
32.7 x106 25.6 x106 Beryllium Oxide (BeO)
42.8-45.5x106 40 x106 33 x106 20 x106
Cerium Dioxide (CeO2)
24.9x106
Dichromium Trioxide (Cr2O3)
>14.9x106
Hafnium Dioxide (HfO2)
8.2x106
Magnesium Oxide (MgO)
30.5-36.3x106
4 x106
room temp. 600˚C 1000˚C 1200˚C 1300˚C
42.74x106
room temp.
29.5 x106 21 x106 10 x106
(ρ = 3.506 g/cm3)
room temp. 800˚C 1000˚C 1145˚C
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC Shackelford & Alexander
765
8.20 Mechanical Page 766 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 223. YOUNG’S MODULUS OF (SHEET 5 OF 7)
CERAMICS
Class
Ceramic
Young’s Modulus (psi)
Temperature
Oxides (Con’t)
Thorium Dioxide (ThO2)
17.9-34.87x106
room temp.
18-18.5x106
800˚C 1000˚C 1200˚C
17.1x106 12.8x106 Titanium Oxide (TiO2)
41x106
Uranium Dioxide (UO2)
21x106 25x106
(ρ=10.37 g/cm3)
27.98x106
0-1000˚C 20˚C room temp.
Zirconium Oxide (ZrO2) (partially stabilized)
29.7x106
(fully stabilized)
14.1-30.0x106
(plasma sprayed)
6.96x106 24.8-27x106 36x106 2x106 18.9x106 18.5-25x106 3.05x106 17.1-18.0x106 14.2x106 12.8x106
room temp. room temp. room temp. room temp. 20˚C 500˚C 800˚C 1000˚C 1100˚C 1200˚C 1400˚C 1500˚C
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
766
CRC Handbook of Materials Science & Engineering
8.20 Mechanical Page 767 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 223. YOUNG’S MODULUS OF (SHEET 6 OF 7)
CERAMICS
Young’s Modulus (psi)
Temperature
(stabilized, ρ=5.634 g/cm3)
19.96x106
room temp.
Cordierite (2MgO 2Al2O3 5SiO2)
20.16x106
(glass)
13.92x106
Class
Ceramic
Oxides (Con’t)
Uranium Dioxide (UO2) (Con’t)
Mullite (3Al2O3 2SiO2) (ρ=2.779 g/cm3)
20.75x106
(ρ=2.77 g/cm3)
18.42x106
(ρ=2.77 g/cm3)
18.89x106
(ρ=2.77 g/cm3)
14.79x106
(ρ=2.77 g/cm3)
4.00x106
(full density)
33.35x106
Spinel (Al2O3 MgO)
34.5x106 34.4x106 34.5x106 34x106 32.9x106 30.4x106 25.0x106 20.1x106
(ρ=3.510 g/cm3)
38.23x106
room temp. 25˚C 400˚C 800˚C 1200˚C room temp. room temp. 200˚C 400˚C 600˚C 800˚C 1000˚C 1200˚C 1300˚C room temp.
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
Shackelford & Alexander
767
8.20 Mechanical Page 768 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 223. YOUNG’S MODULUS OF (SHEET 7 OF 7)
CERAMICS
Class
Ceramic
Young’s Modulus (psi)
Temperature
Oxides (Con’t)
Zircon (SiO2 ZrO2)
24x106
room temp.
Silicide
Molybdenum Disilicide (MoSi2)
39.3-56.36x106
room temp.
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
768
CRC Handbook of Materials Science & Engineering
8.20 Mechanical Page 769 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 224. YOUNG’S MODULUS OF (SHEET 1 OF 2) Class
GLASS
Young’s Modulus (GPa)
Temperature
72.76–74.15 79.87 80.80
20˚C 998˚C (annealing point) 1096˚C (straining point)
64.4 62.0
room temp. room temp.
(25% mol Na2O)
56.9 61.4 53.9
–196˚C room temp. 200–250˚C
(30% mol Na2O)
60.5
room temp.
(33% mol Na2O) (33% mol Na2O)
54.9 60.3 51.0
–196˚C room temp. 200–250˚C
(35% mol Na2O)
60.2
room temp.
(40% mol Na2O) (40% mol Na2O)
51.9 46.1
–196˚C 200–250˚C
SiO2–PbO glass (24.6% mol PbO) (30.0% mol PbO) (35.7% mol PbO)
47.1 50.1 46.3
(38.4% mol PbO) (45.0% mol PbO) (50.0% mol PbO)
52.8 51.7 44.1
(55.0% mol PbO) (60.0% mol PbO) (65.0% mol PbO)
49.3 43.6 41.2
Glass
SiO2 glass SiO2–Na2O glass (15% mol Na2O) (20% mol Na2O) (25% mol Na2O) (25% mol Na2O)
(33% mol Na2O)
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
Shackelford & Alexander
769
8.20 Mechanical Page 770 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 224. YOUNG’S MODULUS OF (SHEET 2 OF 2) Class
Glass
SiO2–B2O3 glass
(60% mol B2O3) (65% mol B2O3) (70% mol B2O3) (75% mol B2O3) (80% mol B2O3) (85% mol B2O3)
Temperature
23.3 22.5 23.5 24.1 22.8
(95% mol B2O3)
21.2 20.9 21.2
B2O3 glass
17.2–17.7
room temp.
31.4 43.2
15˚C 15˚C
53.7 59.4 57.1
15˚C 15˚C 15˚C
(90% mol B2O3)
B2O3 glass
Young’s Modulus (GPa)
GLASS
B2O3–Na2O glass (10% mol Na2O) (20% mol Na2O) (25% mol Na2O) (33.3% mol Na2O) (37% mol Na2O)
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
770
CRC Handbook of Materials Science & Engineering
8.20 Mechanical Page 771 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 225. ELASTIC
MODULUS OF WROUGHT STAINLESS STEELS * (SHEET 1 OF 2)
Type
UNS Designation
Elastic Modulus (GPa)
201 205 301 302
S20100 S20500 S30100 S30200
197 197 193 193
302B 303 304 S30430
S30215 S30300 S30400 S30430
193 193 193 193
304N 305 308 309
S30451 S30500 S30800 S30900
196 193 193 200
310 314 316 316N
S31000 S31400 S31600 S31651
200 200 193 196
317 317L 321 330
S31700 S31703 S32100 N08330
193 200 193 196
347 384 405 410
S34700 S38400 S40500 S41000
193 193 200 200
414 416 420 429
S41400 S41600 S42000 S42900
200 200 200 200
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p360, (1993).
©2001 CRC Press LLC Shackelford & Alexander
771
8.20 Mechanical Page 772 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 225. ELASTIC
MODULUS OF WROUGHT STAINLESS STEELS * (SHEET 2 OF 2)
Type
UNS Designation
Elastic Modulus (GPa)
430 430F 431 434 436 440A
S43000 S43020 S43100 S43400 S43600 S44002
200 200 200 200 200 200
440C 444 446 PH 13–8 Mo
S44004 S44400 S44600 S13800
200 200 200 203
15–5 PH 17–4 PH 17–7 PH
S15500 S17400 S17700
196 196 204
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p360, (1993). *
Annealed Condition.
©2001 CRC Press LLC
772
CRC Handbook of Materials Science & Engineering
8.20 Mechanical Page 773 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 226. MODULUS OF
ELASTICITY OF WROUGHT TITANIUM ALLOYS
Class
Metal or Alloy
Modulus of Elasticity (GPa)
Commercially Pure
99.5 Ti 99.2 Ti 99.1 Ti
102.7 102.7 103.4
99.0Ti 99.2 Ti–0.2Pd
104.1 102.7
Alpha Alloys
Ti-5Al-2.5Sn Ti-5Al-2.5Sn (low O2)
110.3 110.3
Near Alpha Alloys
Ti-8Al-1Mo-1V Ti-11Sn-1Mo-2.25Al-5.0Zr-1Mo-0.2Si Ti-6Al-2Sn-4Zr-2Mo
124.1 113.8 113.8
Ti-5Al-5Sn-2Zr-2Mo-0.25Si Ti-6Al-2Nb-1Ta-1Mo
113.8 113.8
Ti-8Mn Ti-3Al-2.5V Ti-6Al-4V Ti-6Al-4V (low O2)
113.1 106.9 113.8 113.8
Ti-6Al-6V-2Sn Ti-7Al-4Mo Ti-6Al-2Sn-4Zr-6Mo
110.3 113.8 113.8
Ti-6Al-2Sn-2Zr-2Mo-2Cr-0.25Si Ti-10V-2Fe-3Al
122.0 111.7
Ti-13V-11Cr-3Al Ti-8Mo-8V-2Fe-3Al Ti-3Al-8V-6Cr-4Mo-4Zr Ti-11.5Mo-6Zr-4.5Sn
101.4 106.9 105.5 103.4
Alpha-Beta Alloys
Beta Alloys
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p511, (1993).
©2001 CRC Press LLC Shackelford & Alexander
773
8.21 Mechanical L Page 774 Wednesday, December 31, 1969 17:00
Table 227. MODULUS OF
ELASTICITY IN TENSION FOR POLYMERS (SHEET 1 OF 6)
Class
Polymer
Modulus of Elasticity in Tension, (ASTM D638) (l05 psi)
ABS Resins; Molded, Extruded
Medium impact High impact Very high impact Low temperature impact Heat resistant
3.3—4.0 2.6—3.2 2.0—3.1 2.0—3.1 3.5—4.2
Acrylics; Cast, Molded, Extruded
Cast Resin Sheets, Rods: General purpose, type I General purpose, type II Moldings: Grades 5, 6, 8 High impact grade
3.5—5.0 2.3—3.3
Chlorinated polyether Chlorinated polyvinyl chloride
1.5 3.7
Chlorinated Polymers
3.5—4.5 4.0—5.0
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.21 Mechanical L Page 775 Wednesday, December 31, 1969 17:00
Table 227. MODULUS OF
ELASTICITY IN TENSION FOR POLYMERS (SHEET 2 OF 6)
Class
Polymer
Modulus of Elasticity in Tension, (ASTM D638) (l05 psi)
Polycarbonates
Polycarbonate Polycarbonate (40% glass fiber reinforced)
3.45 17
Diallyl Phthalates; Molded
Orlon filled Asbestos filled
6 12
Fluorocarbons; Molded,Extruded
Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Ceramic reinforced (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF)
1.9—3.0 0.38—0.65 1.5—2.0 0.5—0.7 1.7—2
Epoxies; Cast, Molded, Reinforced
Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible
4.5 0.5—2.5
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.21 Mechanical L Page 776 Wednesday, December 31, 1969 17:00
Table 227. MODULUS OF
ELASTICITY IN TENSION FOR POLYMERS (SHEET 3 OF 6)
Class
Polymer
Modulus of Elasticity in Tension, (ASTM D638) (l05 psi)
Epoxies; Cast, Molded, Reinforced (Con’t)
Molded: General purpose glass cloth laminate High strength laminate Filament wound composite
33—36 57—58 72—64
Melamines; Molded
High performance resins (cycloaliphatic diepoxides) Cast, rigid Molded Glass cloth laminate Epoxy novolacs Cast, rigid Glass cloth laminate
4.8—5.0 27.5
Unfilled Cellulose electrical
10—11
4—5 32—33
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.21 Mechanical L Page 777 Wednesday, December 31, 1969 17:00
Table 227. MODULUS OF
ELASTICITY IN TENSION FOR POLYMERS (SHEET 4 OF 6)
Class
Polymer
Modulus of Elasticity in Tension, (ASTM D638) (l05 psi)
Phenolics; Molded
Type and filler General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber
8—13 8—12 9—14 30—33
Arc resistant—mineral Rubber phenolic—woodflour or flock Rubber phenolic—chopped fabric Rubber phenolic—asbestos
10—30 4—6 3.5—6 5—9
Cast polyyester Rigid Flexible
1.5—6.5 0.001—0.10
Polyesters: Thermosets
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.21 Mechanical L Page 778 Wednesday, December 31, 1969 17:00
Table 227. MODULUS OF
ELASTICITY IN TENSION FOR POLYMERS (SHEET 5 OF 6)
Class
Polymer
Modulus of Elasticity in Tension, (ASTM D638) (l05 psi)
Polyesters: Thermosets (Con’t)
Reinforced polyester moldings High strength (glass fibers) Heat and chemical resistsnt (asbestos) Sheet molding compounds, general purpose
16—20 12—15 15—20
Type I—lower density (0.910—0.925) Melt index 0.3—3.6 Melt index 6—26
0.21—0.27 0.20—0.24
Polystyrenes General purpose Medium impact High impact Glass fiber -30% reinforced
D638 4.6—5.0 2.6—4.7 1.50—3.80 12.1
Polyethylenes; Molded, Extruded
Polystyrenes; Molded
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.21 Mechanical L Page 779 Wednesday, December 31, 1969 17:00
Table 227. MODULUS OF
ELASTICITY IN TENSION FOR POLYMERS (SHEET 6 OF 6)
Class
Polymer
Modulus of Elasticity in Tension, (ASTM D638) (l05 psi)
SAN
Styrene acrylonitrile (SAN) Glass fiber (30%) reinforced SAN
4.0—5.2 17.5
Polyvinyl Chloride And Copolymers;
ASTM D412 Molded, Extruded Nonrigid—general Nonrigid—electrical Rigid—normal impact Vinylidene chloride
0.004—0.03 0.01—0.03 3 5—4.0 0.7—2.0
Woven glass fabric/ silicone laminate
ASTM D651 28
Alpha—cellulose filled (ASTM Type l) Woodflour filled
13—16 11—14
Silicones; Molded, Laminated
Ureas; Molded
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.21 Mechanical L Page 780 Wednesday, December 31, 1969 17:00
Table 228. MODULUS OF
ELASTICITY OF 55MSI GRAPHITE /6061 ALUMINUM COMPOSITES Material
Reinforcement content (vol % )
Fiber orientation
Modulus of Elasticity (GPa)
55MSI graphite/6061 aluminum composites 55MSI graphite/6061 aluminum composites
34 34
0° 90°
182.2±6.6 33
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p148,(1994).
©2001 CRC Press LLC
8.21 Mechanical L Page 781 Wednesday, December 31, 1969 17:00
Table 229. MODULUS OF
ELASTICITY OF GRAPHITE /MAGNESIUM CASTINGS *
Fiber Type
Fiber content
Fiber orientation
P75
40% plus 9% 40%
±16° 90° ± 16°
40% 30% 10% 20% 20%
0° 0° plus 90° 0° plus 90°
P100 P55
Modulus of Elasticity, 0° (GPa)
Modulus of Elasticity,90° (GPa)
179
86
Hollow cylinder
Filament wound Filament wound Filament wound
228
30
Plate Plate
Prepreg Prepreg
159 83
21 34
Plate
Prepreg
90
90
Casting
Hollow cylinder
Fiber Preform Method
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p148,(1994). *
Pitch-base fibers
©2001 CRC Press LLC
8.22 Mechanical Page 782 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 230. MODULUS OF
ELASTICITY OF GRAPHITE /ALUMINUM COMPOSITES
Thornel Fiber
Longitudinal Modulus of Elasticity (GPa)
Transverse Modulus of Elasticity (GPa)
P55 P75 P100
207 to 221 276 to 296 379 to 414
28 to 41 28 to 41 28 to 41
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p148,(1994).
Table 231. MODULUS OF
ELASTICITY OF GRAPHITE FIBER REINFORCED METALS Composite
Fiber content (vol%)
Modulus of Elasticity (106psi)
Graphite(a)/lead Graphite(b)/lead Graphite(a)/zinc Graphite(a)/magnesium
41 35 35 42
29.0 17.4 16.9 26.6
(a) Thornel 75 fiber (b) Courtaulds HM fiber To convert from psi to MPa, multiply by 145. Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p148,(1994).
©2001 CRC Press LLC
782
CRC Handbook of Materials Science & Engineering
8.22 Mechanical Page 783 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 232. MODULUS OF
ELASTICITY OF SIC-WHISKER –REINFORCED ALUMINUM ALLOY Modulus of Elasticity Fiber Content (vol %)
(GPa)
Standard Deviation
Range of Measurement
0 12 16 20
71.9 95.3 90.0 111.0
4.5 1.6 3.7 5.0
13 6 9 13
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p150,(1994).
©2001 CRC Press LLC
Shackelford & Alexander
783
8.22 Mechanical Page 784 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 233. MODULUS OF
ELASTICITY OF POLYCRYSTALLINE –ALUMINA–REINFORCED ALUMINUM ALLOY Modulus of Elasticity Fiber Content (vol %)
(GPa)
Standard Deviation
Range of Measurement
0 5 12 20
71.9 78.4 83.0 95.2
4.5 2.3 7.8 2.7
13 6 21 7
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p154,(1994).
Table 234. MODULUS OF
ELASTICITY OF BORON/ALUMINUM COMPOSITES *
Matrix
Fiber Orientation
Modulus of Elasticity (GPa)
Al-6061
0° 90°
207 138
Al-2024
0° 90°
207 145
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p157,(1994). *
These samples contain 48% Avco (142 µm) boron. Longitudinal tensile specimens are 152 mm by 7.9 mm by 6 ply. Transverse tensile bars are 152 mm by 12.7 mm by 6 ply.
©2001 CRC Press LLC
784
CRC Handbook of Materials Science & Engineering
8.22 Mechanical Page 785 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 235. COMPRESSION
MODULUS OF TREATED DUCTILE IRONS
Treatment
Compression Modulus (MPa)
60-40-18 65-45-12 80-55-06 120 90-02
164 163 165 164
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169-170, (1984).
Table 236. MODULUS OF
ELASTICITY IN COMPRESSION FOR POLYMERS
Polymer
Modulus of Elasticity in Compression, (ASTM D638) (l05 psi)
Fluorocarbons; Molded,Extruded Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Ceramic reinforced (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF)
1.8 0 70—0.90 1.5—2.0 0.6—0.8 1.7—2
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
785
8.22 Mechanical Page 786 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 237. BULK
Glass
MODULUS OF GLASS Bulk Modulus (GPa)
Temperature
SiO2 glass SiO2-Na2O glass (15% mol Na2O) (20% mol Na2O) (25% mol Na2O)
31.01-37.62 33.8 34.8 36.5
room temp. room temp. room temp.
(30% mol Na2O) (35% mol Na2O)
38.2 40.1 39.8
room temp. room temp. room temp.
SiO2-PbO glass (24.6% mol PbO) (30.0% mol PbO) (35.7% mol PbO)
33.9 25.6 31.1
(38.4% mol PbO) (45.0% mol PbO) (50.0% mol PbO)
25.1 30.6 30.5
(55.0% mol PbO) (60.0% mol PbO) (65.0% mol PbO)
29.5 33.1 31.6
(33% mol Na2O)
B2O3-Na2O glass (10% mol Na2O) (20% mol Na2O) (25% mol Na2O) (33.3% mol Na2O) (37% mol Na2O)
23.2 33.6
15˚C 15˚C
39.2 44.4 42.1
15˚C 15˚C 15˚C
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
786
CRC Handbook of Materials Science & Engineering
8.22 Mechanical Page 787 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 238. SHEAR MODULUS OF (SHEET 1 OF 2)
GLASS
Shear Modulus (GPa)
Temperature
SiO2 glass
31.38 33.57 34.15
20˚C 998˚C (annealing point) 1096˚C (straining point)
(5% mol Na2O)
27.2 27.4 27.6 27.2
–100˚C 0˚C 80˚C 160˚C
26.9 27.2
–100—160˚C room temp.
25.8 25.0 24.8 24.2
–100˚C 0˚C 80˚C 160˚C
25.8 25.2
room temp. room temp.
24.5 24.2 24.1
room temp. room temp. room temp.
Class
Glass
SiO2 glass
SiO2–Na2O glass
(5% mol Na2O) (5% mol Na2O) (5% mol Na2O) (7.5% mol Na2O) (15% mol Na2O) (18% mol Na2O) (18% mol Na2O) (18% mol Na2O) (18% mol Na2O) (20% mol Na2O) (25% mol Na2O) (30% mol Na2O) (33% mol Na2O) (35% mol Na2O)
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC Shackelford & Alexander
787
8.22 Mechanical Page 788 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 238. SHEAR MODULUS OF (SHEET 2 OF 2) Class
Glass
Shear Modulus (GPa)
SiO2–PbO glass
(24.6% mol PbO) (30.0% mol PbO) (35.7% mol PbO)
20.4 21.4 18.5
(38.4% mol PbO) (45.0% mol PbO) (50.0% mol PbO)
23.0 21.2 17.5
(55.0% mol PbO) (60.0% mol PbO) (65.0% mol PbO)
20.2 17.0 16.1
B2O3 glass
B2O3–Na2O glass
(10% mol Na2O) (20% mol Na2O) (25% mol Na2O) (33.3% mol Na2O) (37% mol Na2O)
GLASS Temperature
6.55 6.29 6.07 5.78
room temp. 250˚C 260˚C 270˚C
5.49 5.15 4.75
280˚C 290˚C 300˚C
12.3 16.8
15˚C 15˚C
21.1 23.2 22.4
15˚C 15˚C 15˚C
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
788
CRC Handbook of Materials Science & Engineering
8.22 Mechanical Page 789 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 239. TORSIONAL
MODULUS OF GRAY CAST IRONS
ASTM Class
Torsional Modulus (GPa)
20 25 30
27 to 39 32 to 41 36 to 45
35 40 50 60
40 to 48 44 to 54 50 to 55 54 to 59
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984).
Table 240. TORSION
MODULUS OF TREATED DUCTILE IRONS
Treatment
Torsion Modulus (MPa)
60-40-18 65-45-12 80-55-06 120 90-02
63 64 62 63.4
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169-170, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
789
8.23 Mechanical L Page 790 Wednesday, December 31, 1969 17:00
Table 241. MODULUS OF
FOR
ELASTICITY IN FLEXURE
POLYMERS
(SHEET 1 OF 13)
Polymer Class
Polymer
Modulus of Elasticity in Flexure (ASTM D790) (105 psi)
ABS Resins; Molded, Extruded
Medium impact High impact Very high impact
3.5—4.0 2.5—3.2 2.0—3.2
Low temperature impact Heat resistant
2.0—3.2 3.5—4.2
Cast Resin Sheets, Rods: General purpose, type I General purpose, type II
3.5—4.5 4.0—5.0
Moldings: Grades 5, 6, 8 High impact grade
3.5—5.0 2.7—3.6
Acrylics; Cast, Molded, Extruded
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.23 Mechanical L Page 791 Wednesday, December 31, 1969 17:00
Table 241. MODULUS OF
FOR
ELASTICITY IN FLEXURE
POLYMERS
(SHEET 2 OF 13)
Polymer Class
Polymer
Modulus of Elasticity in Flexure (ASTM D790) (105 psi)
Thermoset Carbonate
Allyl diglycol carbonate
2.5—3.3
Alkyds; Molded
Rope (general purpose) Granular (high speed molding) Glass reinforced (heavy duty parts)
22—27 22—27 22—28
Cellulose Acetate; Molded, Extruded
ASTM Grade: H4—1 H2—1
(ASTM D747) 2.0—2.55 1.50—2.35
MH—1, MH—2 MS—1, MS—2 S2—1
1.50—2.15 1.25—1.90 1.05—1.65
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.23 Mechanical L Page 792 Wednesday, December 31, 1969 17:00
Table 241. MODULUS OF
FOR
Polymer Class
ELASTICITY IN FLEXURE
POLYMERS
(SHEET 3 OF 13)
Polymer
Cellulose Acetate Butyrate; Molded, Extruded
Modulus of Elasticity in Flexure (ASTM D790) (105 psi)
(ASTM D747) ASTM Grade: H4 MH S2
1.8 1.20—1.40 0.70—0.90
ASTM Grade: 1 3 6
1.7—1.8 1.45—1.55 1.1
Chlorinated Polymers
Chlorinated polyether Chlorinated polyvinyl chloride
1.3 (0.1% offset) 3.85
Polycarbonates
Polycarbonate Polycarbonate (40% glass fiber reinforced)
3.4 12
Cellusose Acetate Propionate; Molded, Extruded
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.23 Mechanical L Page 793 Wednesday, December 31, 1969 17:00
Table 241. MODULUS OF
FOR
ELASTICITY IN FLEXURE
POLYMERS
(SHEET 4 OF 13)
Polymer Class
Polymer
Modulus of Elasticity in Flexure (ASTM D790) (105 psi)
Fluorocarbons; Molded,Extruded
Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Ceramic reinforced (PTFE)
2.0—2.5 0.6—1.1 4.64
Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF)
0.8 1.75—2.0
Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible Molded
4.5—5.4 0.36—3.9 15—25
General purpose glass cloth laminate High strength laminate Filament wound composite
36—39 53—55 69—75
Epoxies; Cast, Molded, Reinforced
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.23 Mechanical L Page 794 Wednesday, December 31, 1969 17:00
Table 241. MODULUS OF
FOR
ELASTICITY IN FLEXURE
POLYMERS
(SHEET 5 OF 13) Modulus of Elasticity in Flexure (ASTM D790) (105 psi)
Polymer Class
Polymer
Epoxies—Molded, Extruded
High performance resins (cycloaliphatic diepoxides) Cast, rigid Glass cloth laminate Epoxy novolacs Cast, rigid Glass cloth laminate
4.4—4.8 32—35
Filler & type Unfilled Cellulose electrical Glass fiber
10—13 10—13 24
Melamines; Molded
4—5 28—31
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.23 Mechanical L Page 795 Wednesday, December 31, 1969 17:00
Table 241. MODULUS OF
FOR
ELASTICITY IN FLEXURE
POLYMERS
(SHEET 6 OF 13)
Polymer Class
Polymer
Modulus of Elasticity in Flexure (ASTM D790) (105 psi)
Nylons; Molded, Extruded
Type 6 General purpose Glass fiber (30%) reinforced Cast Flexible copolymers
1.4—3.9 1.0—1.4 5.05 0.92—3.2
Type 8 Type 11
0.4 1.51
6/6 Nylon General purpose molding Glass fiber reinforced Glass fiber Molybdenum disulfide filled General purpose extrusion
1.75–4.5 10—18 11—13 1.75—4.1
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.23 Mechanical L Page 796 Wednesday, December 31, 1969 17:00
Table 241. MODULUS OF
FOR
ELASTICITY IN FLEXURE
POLYMERS
(SHEET 7 OF 13)
Polymer Class
Polymer
Modulus of Elasticity in Flexure (ASTM D790) (105 psi)
Nylons; Molded, Extruded (Con’t)
6/10 Nylon General purpose Glass fiber (30%) reinforced
1.6–2.8 8.5
Type and filler General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber
8—12 8—12 9—13 30—33
Arc resistant—mineral Rubber phenolic—woodflour or flock Rubber phenolic—chopped fabric Rubber phenolic—asbestos
10—30 4—6 3.5 5
ABS–Polycarbonate Alloy
4
Phenolics; Molded
ABS–Polycarbonate Alloy To convert from psi to MPa, multiply by 145.
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.23 Mechanical L Page 797 Wednesday, December 31, 1969 17:00
Table 241. MODULUS OF
FOR
ELASTICITY IN FLEXURE
POLYMERS
(SHEET 8 OF 13)
Polymer Class
Polymer
Modulus of Elasticity in Flexure (ASTM D790) (105 psi)
PVC–Acrylic Alloy
PVC–acrylic sheet PVC–acrylic injection molded
4 3
Polymides
Unreinforced Unreinforced 2nd value Glass reinforced
7 5 38.4
Polyacetals
Homopolymer: Standard 20% glass reinforced 22% TFE reinforced
4.1 8.8 4
Copolymer: Standard 25% glass reinforced High flow
3.75 11 3.75
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.23 Mechanical L Page 798 Wednesday, December 31, 1969 17:00
Table 241. MODULUS OF
FOR
ELASTICITY IN FLEXURE
POLYMERS
(SHEET 9 OF 13)
Polymer Class
Polymer
Modulus of Elasticity in Flexure (ASTM D790) (105 psi)
Polyester; Thermoplastic
Injection Moldings: General purpose grade Glass reinforced grades Glass reinforced self extinguishing
3.4 12—15 12
General purpose grade Glass reinforced grade Asbestos—filled grade
33 87 90
Cast polyyester Rigid Flexible
1—9 0.001—0.39
Reinforced polyester moldings High strength (glass fibers) Sheet molding compounds, general purpose
15—25 15—18
Polyesters: Thermosets
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.23 Mechanical L Page 799 Wednesday, December 31, 1969 17:00
Table 241. MODULUS OF
FOR
ELASTICITY IN FLEXURE
POLYMERS
(SHEET 10 OF 13)
Polymer Class
Polymer
Modulus of Elasticity in Flexure (ASTM D790) (105 psi)
Phenylene Oxides
SE—100 SE—1 Glass fiber reinforced
3.6 3.6 7.4—10.4
Phenylene oxides (Noryl)
Standard Glass fiber reinforced
3.9 12, 15.5
Polyarylsulfone
4
General purpose High impact
1.7—2.5 1.0—2.0
Asbestos filled Glass reinforced Flame retardant
3.4—6.5 4—8.2 1.9—6.1
Polypropylene:
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.23 Mechanical L Page 800 Wednesday, December 31, 1969 17:00
Table 241. MODULUS OF
FOR
ELASTICITY IN FLEXURE
POLYMERS
(SHEET 11 OF 13)
Polymer Class
Polymer
Modulus of Elasticity in Flexure (ASTM D790) (105 psi)
Polyphenylene sulfide:
Standard 40% glass reinforced
5.5—6.0 17—22
Polyethylenes; Molded, Extruded
(ASTM D747) Type I—lower density (0.910—0.925) Melt index 0.3—3.6 Melt index 6—26 Melt index 200
0.13—0.27 0.12—0.3 0.1
Type II—medium density (0.926—0.940) Melt index 20 Melt index l.0—1.9
0.35—0.5 0.35—0.5
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.23 Mechanical L Page 801 Wednesday, December 31, 1969 17:00
Table 241. MODULUS OF
FOR
ELASTICITY IN FLEXURE
POLYMERS
(SHEET 12 OF 13)
Polymer Class
Polymer
Modulus of Elasticity in Flexure (ASTM D790) (105 psi)
Polyethylenes; Molded, Extruded (Con’t)
Type III—higher density (0.941—0.965) Melt index 0.2—0.9 Melt Melt index 0.l—12.0 Melt index 1.5—15 High molecular weight
1.3—1.5 0.9—0.25 1.5 0.75
Olefin Copolymers; Molded
Ethylene butene Propylene—ethylene Polyallomer
165 (psi) 140 (psi) 0.7—1.3
Polystyrenes; Molded
Polystyrenes: General purpose Medium impact High impact Glass fiber -30% reinforced
4—5 3.5—5.0 2.3—4.0 12
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.23 Mechanical L Page 802 Wednesday, December 31, 1969 17:00
Table 241. MODULUS OF
FOR
ELASTICITY IN FLEXURE
POLYMERS
(SHEET 13 OF 13)
Polymer Class
Polymer
Modulus of Elasticity in Flexure (ASTM D790) (105 psi)
Styrene acrylonitrile (SAN):
Glass fiber (30%) reinforced SAN
14.5
Polyvinyl Chloride And Copolymers; Molded, Extruded
Rigid—normal impact
3.8—5.4
Silicones; Molded, Laminated
Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate
25 14—17 26—32
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.24 Mechanical Page 803 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 242. FLEXURAL
MODULUS OF FIBERGLASS REINFORCED PLASTICS Flexural modulus (105 psi)
Class
Material
Glass fiber content (wt%)
Glass fiber reinforced thermosets
Sheet molding compound (SMC)
15 to 30
14 to 20
Bulk molding compound(BMC) Preform/mat(compression molded) Cold press molding–polyester
15 to 35 25 to 50 20 to 30
14 to 20 13 to 18 13 to 19
Spray–up–polyester Filament wound–epoxy Rod stock–polyester Molding compound–phenolic
30 to 50 30 to 80 40 to 80 5 to 25
10 to 12 50 to 70 40 to 60 30
Acetal
20 to 40
8 to 13
Nylon Polycarbonate Polyethylene
6 to 60 20 to 40 10 to 40
2 to 28 7.5 to 15 2.1 to 6
Polypropylene Polystyrene Polysulfone ABS(acrylonitrile butadiene styrene)
20 to 40 20 to 35 20 to 40 20 to 40
3.5 to 8.2 8 to 12 8 to 15 9.2 to 15
PVC (polyvinyl chloride) Polyphenylene oxide(modified) SAN (styrene acrylonitrile) Thermoplastic polyester
15 to 35 20 to 40 20 to 40 20 to 35
9 to 16 8 to 15 8.0 to 18 8.7 to 15
Glass–fiber–reinforced thermoplastics
To convert from psi to MPa, multiply by 145. Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p106, (1994).
©2001 CRC Press LLC
Shackelford & Alexander
803
8.24 Mechanical Page 804 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 243. FLEXURAL
MODULUS OF CARBON - AND GLASS REINFORCED ENGINEERING THERMOPLASTICS (SHEET 1 OF 2) Class
Resin Type
Composition
Flexural Modulus (GPa)
Amorphous
Acrylonitrile-butadiene-styrene(ABS)
30% glass fiber 30% carbon fiber
7.6 12.4
Nylon
30% glass fiber 30% carbon fiber
7.9 15.2
Polycarbonate
30% glass fiber 30% carbon fiber
8.3 13.1
Polyetherimide
30% glass fiber 30% carbon fiber
8.6 17.2
Polyphenylene oxide (PPO)
30% glass fiber 30% carbon fiber
9.0 11.7
Polysulfone
30% glass fiber 30% carbon fiber
8.3 14.5
Styrene-maleic-anhydride (SMA)
30% glass fiber
9.0
Thermoplastic polyurethane
30% glass fiber
1.3
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p111–112, (1994).
©2001 CRC Press LLC
804
CRC Handbook of Materials Science & Engineering
8.24 Mechanical Page 805 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 243. FLEXURAL
MODULUS OF CARBON - AND GLASS REINFORCED ENGINEERING THERMOPLASTICS (SHEET 2 OF 2) Class
Resin Type
Composition
Flexural Modulus (GPa)
Crystalline
Acetal
30% glass fiber 20% carbon fiber
9.7 9.3
Nylon 66
30% glass fiber 30% carbon fiber
9.0 20.0
Polybutylene telphthalate (PBT)
30% glass fiber 30% carbon fiber
9.7 15.9
Polythylene terephthalate (PET)
30% glass fiber
9.0
Polyphenylene sulfide (PPS)
30% glass fiber 30% carbon fiber
11.0 16.9
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p111–112, (1994).
©2001 CRC Press LLC
Shackelford & Alexander
805
8.25 Mechanical L Page 806 Wednesday, December 31, 1969 17:00
Table 244. MODULUS OF RUPTURE FOR (SHEET 1 OF 10)
CERAMICS
Class
Ceramic
Modulus of Rupture (psi)
Borides
Titanium Diboride (TiB2)
19x103
(98% dense)
5.37x103
(6.0 µm grain size, ρ=4.46g/cm3)
6.2x103
(3.5 µm grain size, ρ=4.37g/cm3, 0.8wt% Ni)
5.7x103 11.0x103 6.29x103
(6.0 µm grain size, ρ=4.56g/cm3, 0.16wt% Ni) (12.0 µm grain size, ρ=4.66g/cm3, 9.6wt% Ni) Carbides
Temperature
Hafnium Monocarbide (HfC) (ρ = 11.9 g/cm3) (ρ = 11.9 g/cm3) (ρ = 11.9 g/cm3)
34.67x103 12.64x103 4.78x103
room temp. 2000 oC 2200 oC
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
8.25 Mechanical L Page 807 Wednesday, December 31, 1969 17:00
Table 244. MODULUS OF RUPTURE FOR (SHEET 2 OF 10)
CERAMICS
Class
Ceramic
Modulus of Rupture (psi)
Temperature
Carbides (Con’t)
Silicon Carbide (SiC)
27x103
room temp.
25x103
1300 oC 1400 oC 1800 oC
11x103 15x103 (with 1 wt% Be addictive)
58x103
(with 1wt% B addictive)
42x103
(with 1wt% Al addictive)
136x103
Titanium Monocarbide (TiC) (ρ = 4.85 g/cm3) (ρ = 4.85 g/cm3)
32.67x103 13.6x103
room temp. 2000oC
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
8.25 Mechanical L Page 808 Wednesday, December 31, 1969 17:00
Table 244. MODULUS OF RUPTURE FOR (SHEET 3 OF 10)
CERAMICS
Class
Ceramic
Modulus of Rupture (psi)
Temperature
Carbides (Con’t)
Tungsten Monocarbide (WC)
55.65-84x103
room temp.
Carbides (Con’t)
Zirconium Monocarbide (ZrC)
16.6-22.5x103
room temp.
8.3x103
1250 oC 1750 oC 2000 oC
5.14x103 2.5x103 Nitrides
Aluminum Nitride (AlN) (hot pressed)
38.5x103 27x103 18.1x103
25oC 1000oC 1400oC
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
8.25 Mechanical L Page 809 Wednesday, December 31, 1969 17:00
Table 244. MODULUS OF RUPTURE FOR (SHEET 4 OF 10)
CERAMICS
Class
Ceramic
Modulus of Rupture (psi)
Nitrides (Con’t)
Boron Nitride (BN) parallel to c axis
7.28-13.2x103 7.03x103 1.90x103 1.08x103 1.25x103 1.50x103 2.45x103
Temperature
25 oC 300 oC 700 oC 1000 oC 1500 oC 1800 oC 2000 oC
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
8.25 Mechanical L Page 810 Wednesday, December 31, 1969 17:00
Table 244. MODULUS OF RUPTURE FOR (SHEET 5 OF 10)
CERAMICS
Class
Ceramic
Modulus of Rupture (psi)
Nitrides (Con’t)
parallel to a axis
15.88x103 15.14x103 3.84x103 2.18x103
Titanium Mononitride (TiN)
34x103
(10wt% AlO and 10wt% AlN)
13.34x103
(30wt% AlO and 10wt% AlN)
23.93x103
(30wt% AlO and 30wt% AlN)
33.25x103
Temperature
25 oC 300 oC 700 oC 1000 oC
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
8.25 Mechanical L Page 811 Wednesday, December 31, 1969 17:00
Table 244. MODULUS OF RUPTURE FOR (SHEET 6 OF 10) Class
Ceramic
Nitrides (Con’t)
Trisilicon Tetranitride (Si3N4)
CERAMICS Modulus of Rupture (psi)
(hot pressed)
65.3-159.5x103
(sintered)
39.9-121.8x103
(reaction sintered)
7.25-43.5x103
Temperature
20oC 20oC 20oC
Aluminum Oxide (Al2O3)
Oxides
(single crystal)
(80% dense, 3µm grain size) (80% dense, 3µm grain size) (80% dense, 3µm grain size) (80% dense, 3µm grain size)
131 x103 60 x103
room temp.
56x103 62x103 58x103 42x103
20 oC 600 oC 900 oC 1100 oC
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
8.25 Mechanical L Page 812 Wednesday, December 31, 1969 17:00
Table 244. MODULUS OF RUPTURE FOR (SHEET 7 OF 10) Class
Ceramic
Oxides (Con’t)
Aluminum Oxide (Al2O3) (Con’t) (80% dense, 20µm grain size) (80% dense, 20µm grain size) (80% dense, 20µm grain size) (80% dense, 20µm grain size) (zirconia toughened alumina, 15 vol% ZrO2) (zirconia toughened alumina, 25 vol% ZrO2) (zirconia toughened alumina, 50 vol% ZrO2)
CERAMICS Modulus of Rupture (psi)
Temperature
30x103 28x103 31x103 30x103
20 oC 600 oC 900 oC 1100 oC
137x103 139x103 145x103
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
8.25 Mechanical L Page 813 Wednesday, December 31, 1969 17:00
Table 244. MODULUS OF RUPTURE FOR (SHEET 8 OF 10)
CERAMICS
Class
Ceramic
Modulus of Rupture (psi)
Temperature
Oxides (Con’t)
Beryllium Oxide (BeO)
24-29 x103
room temp.
Dichromium Trioxide (Cr2O3)
>38x103
Hafnium Dioxide (HfO2)
10x103 10-14.9x103
Titanium Oxide (TiO2)
room temp.
Zirconium Oxide (ZrO2) (5-10 CaO stabilized)
20-35x103 3
(MgO stabilized)
30x10
(hot pressed yittria doped zirconia)
222x103
(sintered yittria doped zirconia)
148x103
room temp. room temp.
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
8.25 Mechanical L Page 814 Wednesday, December 31, 1969 17:00
Table 244. MODULUS OF RUPTURE FOR (SHEET 9 OF 10) Class
Ceramic
Oxides (Con’t)
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.51g/cm3) (ρ=2.3g/cm3) (ρ=2.1g/cm3) (ρ=1.8g/cm3) Mullite (3Al2O3 2SiO2) (ρ=2.77g/cm3) (ρ=2.77g/cm3) (ρ=2.77g/cm3) (ρ=2.77g/cm3)
CERAMICS Modulus of Rupture (psi)
Temperature
16x103 15x103 8x103 3.4x103
25oC 400oC 800oC 1200oC
6-27x103 8.5x103 13.5x103 16.7x103 11.5x103
25oC 25oC 400oC 800oC 1200oC
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
8.25 Mechanical L Page 815 Wednesday, December 31, 1969 17:00
Table 244. MODULUS OF RUPTURE FOR (SHEET 10 OF 10)
CERAMICS Modulus of Rupture (psi)
Temperature
(ρ = 5.57 g/cm3)
18.57x103
room temp.
(sintered)
50.7x103
room temp.
(sintered)
67.25x103
(sintered)
86.00x103
980oC 1090oC
(hot pressed)
36-57x103
room temp.
(hot pressed)
3
72.00x10
(hot pressed)
55.00x103
Class
Ceramic
Silicide
Molybdenum Disilicide (MoSi2)
1090oC 1200oC
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
8.25 Mechanical L Page 816 Wednesday, December 31, 1969 17:00
Table 245. RUPTURE
STRENGTH OF REFRACTORY METAL ALLOYS (SHEET 1 OF 2)
Class
Alloy
Alloying Additions (%)
Form
Condition
Temperature (°F)
10-h rupture (ksi)
Niobium and Niobium Alloys
Pure Niobium
—
All
Recrystallized
2000
5.4
Nb–1Zr SCb291
1 Zr 10 Ta, 10 W
All Bar, Sheet
Recrystallized Recrystallized
2000 2000
14 9
C129 FS85 SU31
10 W, 10 Hf, 0.1 Y 28 Ta, 11 W, 0.8 Zr 17 W, 3.5 Hf, 0.12 C, 0.03 Si
Sheet Sheet Bar, Sheet
Recrystallized Recrystallized Special Thermal Processing
2400 2400 2400
15 12 22
Pure Molybdenum
—
All
Stress-relieved Annealed
1800
25
Low C Mo TZM
None 0.5 Ti, 0.08 Zr, 0.015 C
All All
Stress-relieved Annealed Stress-relieved Annealed
1800 2400
24 23
TZC Mo–5Re Mo–30W
1.0 Ti, 0.14 Zr, 0.02 to 0.08 C 5 Re 30 W
All All All
Stress-relieved Annealed Stress-relieved Annealed Stress-relieved Annealed
2400 3000 2000
28 1 20
Molybdenum and Molybdenum Alloys
To convert (ksi) to (MPa), multiply by 6.89 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p106, (1994).
©2001 CRC Press LLC
8.25 Mechanical L Page 817 Wednesday, December 31, 1969 17:00
Table 245. RUPTURE
STRENGTH OF REFRACTORY METAL ALLOYS (SHEET 2 OF 2)
Class
Alloy
Alloying Additions (%)
Form
Condition
Temperature (°F)
10-h rupture (ksi)
Tantalum Alloys
Unalloyed TA–10W
None 10 W
All All
Recrystallized Recrystallized
2400 2400
2.5 20
Tungsten Alloys
Unalloyed
None
Stress-relieved Annealed
3000
6.8
W–2 ThO2
2 ThO2
Stress-relieved Annealed
3000
18
W–3 ThO2 W–4 ThO2
3 ThO2 4 ThO2
Bar, Sheet, Wire Bar, Sheet, Wire Bar, Wire Bar
Stress-relieved Annealed Stress-relieved Annealed
3000 3000
18 18
W–15 Mo W–50 Mo
15 Mo 50 Mo
Stress-relieved Annealed Stress-relieved Annealed
3000 3000
12 12
W–25 Re
25 Re
Bar, Wire Bar, Wire Bar, Sheet, Wire
Stress-relieved Annealed
3000
10
To convert (ksi) to (MPa), multiply by 6.89 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p106, (1994).
©2001 CRC Press LLC
8.26 Mechanical Page 818 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 246. RUPTURE
STRENGTH OF SUPERALLOYS (SHEET 1 OF 3) Stress Rupture
Alloy *
Temperature (°C)
100 h (MPa)
1000 h (MPa)
Incoloy 800
650 760 870
220 115 45
145 69 33
Incoloy 801
650 730 815
250 145 62
— — —
Incoloy 802
650 760 870
240 145 97
170 105 62
Inconel 600
815 870
55 37
39 24
Inconel 601(a)
540 870 980
— 48 23
400 30 14
Inconel 617(b)
815 925 980
140 62 41
97 — —
Inconel 625(a)
650 815 870
440 130 72
370 93 48
Inconel 718(c)
540 595 650
— 860 690
951 760 585
Inconel 751(d)
815 870
200 120
125 69
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p391, (1993).
©2001 CRC Press LLC
818
CRC Handbook of Materials Science & Engineering
8.26 Mechanical Page 819 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 246. RUPTURE
STRENGTH OF SUPERALLOYS (SHEET 2 OF 3) Stress Rupture
Alloy *
Temperature (°C)
100 h (MPa)
1000 h (MPa)
Inconel X–750(e)
540 870 925
— 83 58
827 45 21
N–155, bar(f)
650 730 870
360 195 97
295 150 66
N–155(g)
650
380
290
N–155, sheet(f)
980
39
20
Nimonic 75(h)
815 870 925 980
38 23 14 —
24 15 10 7.6
Nimonic 80A(j)
540 815 870
— 185 105
825 115 —
Nimonic 90(j)
815 870 925
240 150 69
155 69 —
Nimonic 105(k)
815 870
325 210
225 135
Nimonic 115(m)
815 870 925
425 315 205
315 205 130
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p391, (1993).
©2001 CRC Press LLC Shackelford & Alexander
819
8.26 Mechanical Page 820 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 246. RUPTURE
STRENGTH OF SUPERALLOYS (SHEET 3 OF 3) Stress Rupture
Alloy *
Temperature (°C)
100 h (MPa)
1000 h (MPa)
Nimonic 263(n)
815 870 925
170 93 45
105 46 —
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p391, (1993). *
(a) Solution treat 1150 °C. (b) Solution treat 1175 °C. (c) Heat treat to 980 °C plus 720 °C hold for 8 h, furnace cool to 620 °C hold for 8 h. (d) 730 °C hold for 2h. (e) Heat treat to 1150 °C plus 840 °C hold for 24h, plus 705 °C hold for 20h. (f) Solution treated and aged. (g) Stress-relieved forging. (h) Heat treat to 1050 °C hold for 1 h. (j) Heat treat to 1080 °C hold for 8 h, plus 700 °C hold for 16 h. (k) Heat treat to 1150 °C hold for 4 h, plus 1050 °C hold for 16 h, plus 850 °C hold for 16 h. (m) Heat treat to 1190 °C hold for 1.5 h, plus 1100 °C hold for 6 h. (n) Heat treat to 1150 °C hold for 2 h, water quench, plus 800 °C hold for 8 h.
©2001 CRC Press LLC
820
CRC Handbook of Materials Science & Engineering
8.26 Mechanical Page 821 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 247. MODULUS OF
RUPTURE FOR SI3N4 AND AL2O3COMPOSITES Modulus of Rupture (MPa)
Matrix
Dispersed Phase
RT
1000 °C
1200 °C
Si3N4+ 6 wt % Y2O3
None
110.9 ± 1.6
88.3 ± 3.5
49.2 ± 5.0
Si3N4+ 6 wt % Y2O3
TiC (Ti, W) C WC
80.6 ± 5.9 75.5 ± 3.2 89.1 ± 31.8
120.4 ± 12.2 86 ± 0 136.4 ± 1.6
64.4 ± 2.9 52.9 ± 0.5 55.7 ± 0.5
TaC HfC SiC
86.2 ± 7.3 86 ± 0.8 97.6 ± 8.5
124.5 ± 16.0 — 94.0 ± 4.9
43.2 ± 2.0 68.6 ± 0.5 52.3 ± 3.2
TiC
72.2 ± 13.0
69.4 ± 4.3
57.0 ± 4.1
Al2O3
Containing 30 Vol % of Metal Carbide Dispersoid (2 µm average particle diameter) Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p169,(1994).
©2001 CRC Press LLC Shackelford & Alexander
821
8.26 Mechanical Page 822 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 248. POISSON ' S
RATIO OF WROUGHT TITANIUM ALLOYS Class
Metal or Alloy
Poisson's Ratio
Commercially Pure
99.5 Ti 99.2 Ti 99.1 Ti
0.34 0.34 0.34
99.0Ti 99.2 Ti–0.2Pd
0.34 0.34
Near Alpha Alloys
Ti-8Al-1Mo-1V Ti-5Al-5Sn-2Zr-2Mo-0.25Si
0.32 0.326
Alpha-Beta Alloys
Ti-6Al-4V Ti-6Al-4V (low O2) Ti-6Al-2Sn-2Zr-2Mo-2Cr-0.25Si
0.342 0.342 0.327
Beta Alloys
Ti-13V-11Cr-3Al
0.304
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p511, (1993).
©2001 CRC Press LLC
822
CRC Handbook of Materials Science & Engineering
8.26 Mechanical Page 823 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 249. POISSON ’S RATIO FOR (SHEET 1 OF 2)
CERAMICS
Class
Ceramic
Poisson’s Ratio
Borides
Titanium Diboride (TiB2)
0.09-0.28
(6.0 µm grain size, ρ=4.46g/cm3)
(12.0 µm grain size, ρ=4.66g/cm3, 9.6wt% Ni)
0.10 0.12 0.11 0.15
Zirconium Diboride (ZrB2)
0.144
Boron Carbide (B4C) Hafnium Monocarbide (HfC)
0.207 0.166
(3.5 µm grain size, ρ=4.37g/cm3, 0.8wt% Ni) (6.0 µm grain size, ρ=4.56g/cm3, 0.16wt% Ni)
Carbides
Silicon Carbide (SiC) (ρ = 3.128 g/cm3)
0.183-0.192 at room temp.
Tantalum Monocarbide (TaC) Titanium Monocarbide (TiC) Tungsten Monocarbide (WC)
0.1719 -0.24 0.187-189 0.24
Zirconium Monocarbide (ZrC) (ρ = 6.118 g/cm3)
0.257
Nitrides
Trisilicon tetranitride (Si3N4) (presureless sintered)
0.24 0.22-0.27
Oxides
Aluminum Oxide (Al2O3) Beryllium Oxide (BeO) Cerium Dioxide (CeO2)
0.21-0.27 0.26-0.34
0.27-0.31
Magnesium Oxide (MgO) (ρ = 3.506 g/cm3)
0.163 at room temp.
Thorium Dioxide (ThO2) (ρ=9.722 g/cm3)
0.275
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC Shackelford & Alexander
823
8.26 Mechanical Page 824 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 249. POISSON ’S RATIO FOR (SHEET 2 OF 2)
CERAMICS
Class
Ceramic
Poisson’s Ratio
Oxides (Con’t)
Titanium Oxide (TiO2)
0.28
Uranium Dioxide (UO2) (ρ=10.37 g/cm3)
0.302
Zirconium Oxide (ZrO2) (partially stabilized) (fully stabilized) (plasma sprayed)
0.324-0.337 at room temp. 0.23 0.23-0.32 0.25
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3) (ρ=2.1g/cm3)
0.21 0.17
(glass)
0.26
Mullite (3Al2O3 2SiO2) (ρ=2.779 g/cm3)
0.238
Spinel (Al2O3 MgO)
Silicide
(ρ=3.510 g/cm3)
0.294
Molybdenum Disilicide (MoSi2)
0.158-0.172
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
824
CRC Handbook of Materials Science & Engineering
8.26 Mechanical Page 825 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 250. POISSON ’S RATIO OF (SHEET 1 OF 2) Class
Composition
Poisson’s Ratio
Temperature
0.166–0.177
room temp.
0.183 0.203 0.219
room temp. room temp. room temp.
(35% mol Na2O)
0.236 0.249 0.248
room temp. room temp. room temp.
(24.6% mol PbO) (30.0% mol PbO) (35.7% mol PbO)
0.249 0.174 0.252
(38.4% mol PbO) (45.0% mol PbO) (50.0% mol PbO)
0.150 0.219 0.259
(55.0% mol PbO) (60.0% mol PbO) (65.0% mol PbO)
0.222 0.281 0.283
SiO2 glass SiO2–Na2O glass
(15% mol Na2O) (20% mol Na2O) (25% mol Na2O) (30% mol Na2O) (33% mol Na2O)
SiO2–PbO glass
B2O3 glass
GLASS
0.288–0.309
room temp.
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC Shackelford & Alexander
825
8.26 Mechanical Page 826 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 250. POISSON ’S RATIO OF (SHEET 2 OF 2)
GLASS
Class
Composition
Poisson’s Ratio
Temperature
B2O3–Na2O glass
(5.5% mol Na2O)
0.279 0.2740 0.271
15˚C
(10% mol Na2O) (15.4% mol Na2O) (20% mol Na2O)
0.2860 0.272 0.2713 0.274
(22.8% mol Na2O) (25% mol Na2O) (29.8% mol Na2O) (33.3% mol Na2O)
15˚C 15˚C
0.2771 0.2739 0.292
(37% mol Na2O) (37.25% mol Na2O)
15˚C 15˚C
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
Table 251. POISSON ' S
RATIO OF SILICON CARBIDE SCS–2–AL Fiber orientation
No. of plies
Poisson's Ratio
0° 90° ± 45°
6, 8, 12 6, 12,40 8, 12, 40
0.268 0.124 0.395
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p149,(1994).
©2001 CRC Press LLC
826
CRC Handbook of Materials Science & Engineering
8.26 Mechanical Page 827 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 252. COMPRESSION
POISSON ’S RATIO OF TREATED DUCTILE IRONS
Treatment
Compression Poisson’s Ratio
60-40-18 65-45-12 80-55-06 120 90-02
0.26 0.31 0.31 0.27
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169-170, (1984).
Table 253. TORSION
POISSON ’S RATIO OF TREATED DUCTILE IRONS
Treatment
Torsion Poisson’s Ratio
60-40-18 65-45-12 80-55-06 120 90-02
0.29 0.29 0.31 0.28
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169-170, (1984).
©2001 CRC Press LLC Shackelford & Alexander
827
8.26 Mechanical Page 828 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 254. ELONGATION OF
TOOL STEELS Elongation (%)
Type
Condition
L2
Annealed Oil quenched from 855 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C
25
Annealed Oil quenched from 845 •C and single tempered at: 315 •C 425 •C 540 •C 650 •C
25
Annealed Oil quenched from 930 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C
24
Annealed Oil quenched from 870 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C
25
Annealed Fan cooled from 940 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C
25
L6
S1
S5
S7
5 10 12 15 25
4 8 12 20
4 5 9 12
5 7 9 10 15
7 9 10 10 14
Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984).
©2001 CRC Press LLC
828
CRC Handbook of Materials Science & Engineering
8.26 Mechanical Page 829 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 255. ELONGATION OF
DUCTILE IRONS
Specification Number
Grade or Class
Elongation (%)
ASTM A395-76 ASME SA395
60-40-18
18
ASTM A476-70(d); SAE AMS5316
80-60-03
3
60-40-18 65-45-12
18 12
80-55-06 100-70-03 120-90-02
6 3 2
SAE J434c
D4018 D4512 D5506 D7003
18 12 6 3
MlL-I-24137(Ships)
Class A Class B Class C
15 7 20
ASTM A536-72, MIL-1-11466B(MR)
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
829
8.26 Mechanical Page 830 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 256. ELONGATION OF
Specification Number Ferritic ASTM A47, A338; ANSI G48.1; FED QQ-I-666c
MALLEABLE IRON CASTINGS Grade or Class
32510 35018
10 18 5
40010 45008 45006 50005
10 8 6 5
60004 70003 80002 90001
4 3 2 1
M3210 M4504(a) M5003(a)
10 4 3
M5503(b) M7002(b) M8501(b)
3 2 1
ASTM A197 Pearlitic and Martensitic ASTM A220; ANSI C48.2; MIL-I-11444B
Automotive ASTM A602; SAE J158
Elongation (%)
(a) Air quenched and tempered (b) Liquid quenched and tempered Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p171, (1984).
©2001 CRC Press LLC
830
CRC Handbook of Materials Science & Engineering
8.27 Mechanical L Page 831 Wednesday, December 31, 1969 17:00
Table 257. ELONGATION OF FERRITIC (SHEET 1 OF 2)
STAINLESS STEELS
Type
ASTM Specification
Form
Condition
Elongation (%)
Type 405 (UNS S40500)
A580 A580
Wire
Annealed Annealed, Cold Finished
20 16
Type 409 (UNS S40900) Type 429 (UNS S42900)
— —
Bar Bar
Annealed Annealed
25(a) 30(a)
Type 430 (UNS S43000)
A276 A276
Bar
Annealed, Hot Finished Annealed, Cold Finished
20 16
Type 430Ti(UNS S43036)
—
Bar
Annealed
30(a)
Type 434 (UNS S43400) Type 436 (UNS S43600)
— —
Wire Sheet, Strip
Annealed Annealed
33(a) 23(a)
(a) Typical Values Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p368 (1993).
©2001 CRC Press LLC
8.27 Mechanical L Page 832 Wednesday, December 31, 1969 17:00
Table 257. ELONGATION OF FERRITIC (SHEET 2 OF 2)
STAINLESS STEELS
Type
ASTM Specification
Form
Condition
Elongation (%)
Type 442 (UNS S44200) Type 444 (UNS S44400)
— A176
Bar Plate, Sheet, Strip
Annealed Annealed
20(a) 20
Type 446 (UNS S44600)
A276 A276
Bar
Annealed, Hot Finished Annealed, Cold Finished
20 16
(a) Typical Values Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p368 (1993).
©2001 CRC Press LLC
8.27 Mechanical L Page 833 Wednesday, December 31, 1969 17:00
Table 258. ELONGATION OF MARTENSITIC (SHEET 1 OF 3)
STAINLESS STEELS
Type
ASTM Specification
Form
Condition
Elongation (%)
Type 403 (UNS S40300)
A276 A276 A276 A276 A276 A276
Bar
Annealed, hot finished Annealed, cold finished Intermediate temper, hot finished Intermediate temper, cold finished Hard temper, hot finished Hard temper, cold finished
20 16 15 12 12 12
Type 410 (UNS S41000)
A276 A276 A276 A276 A276 A276
Bar
Annealed, hot finished Annealed, cold finished Intermediate temper, hot finished Intermediate temper, cold finished Hard temper, hot finished Hard temper, cold finished
20 16 15 12 12 12
Type 410S (UNS S41008)
A176
Plate, Sheet, Strip
Annealed
22
Type 410Cb (UNS S41040)
A276 A276 A276 A276
Bar
Annealed, hot finished Annealed, cold finished Intermediate temper, hot finished Intermediate temper, cold finished
13 12 13 12
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p369-370 (1993).
©2001 CRC Press LLC
8.27 Mechanical L Page 834 Wednesday, December 31, 1969 17:00
Table 258. ELONGATION OF MARTENSITIC (SHEET 2 OF 3)
STAINLESS STEELS
Type
ASTM Specification
Form
Condition
Elongation (%)
Type 414 (UNS S41400)
A276 A276
Bar
Intermediate temper, hot finished Intermediate temper, cold finished
15 15
Type 414L Type 420 (UNS S42000)
— —
Bar Bar
Annealed Tempered 205 °C
20 8
Type 422 (UNS S42200)
A565
Bar
for high-temperature service
13
Type 431 (UNS S43100)
— —
Bar
Tempered 260 °C Tempered 595 °C
16 19
Type 440A (UNS S44002)
— —
Bar
Annealed Tempered 315 °C
20 5
Type 440B (UNS S44003)
— —
Bar
Annealed Tempered 315 °C
18 3
Type 440C (UNS S44004)
— —
Bar
Annealed Tempered 315 °C
14 2
Intermediate and hard tempers
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p369-370 (1993).
©2001 CRC Press LLC
8.27 Mechanical L Page 835 Wednesday, December 31, 1969 17:00
Table 258. ELONGATION OF MARTENSITIC (SHEET 3 OF 3)
STAINLESS STEELS
Type
ASTM Specification
Form
Condition
Elongation (%)
Type 501 (UNS S50100)
— —
Bar, Plate
Annealed Tempered 540 °C
28 15
Type 502 (UNS S50200)
—
Bar, Plate
Annealed
30
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p369-370 (1993).
©2001 CRC Press LLC
8.27 Mechanical L Page 836 Wednesday, December 31, 1969 17:00
Table 259. ELONGATION OF
PRECIPITATION -HARDENING AUSTENITIC STAINLESS STEELS Type
Form
Condition
Elongation (%)
PH 13–8 Mo (UNS S13800)
Bar, Plate, Sheet, Strip
H950 H1000
6-10 6-10
15–5 PH (UNS S15500) and 17–4 PH (UNS S17400)
Bar, Plate, Sheet, Stript
H900 H925 H1025 H1075
10(a) 10(a) 12(a) 13(a)
H1100 H1150 H1150M
14(a) 16(a) 18(a)
RH950 TH1050
6 6
17–7 PH (UNS S17700)
Bar
(a) For flat rolled products, value varies with thickness. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p371 (1993).
©2001 CRC Press LLC
8.27 Mechanical L Page 837 Wednesday, December 31, 1969 17:00
Table 260. ELONGATION OF
HIGH–NITROGEN AUSTENITIC STAINLESS STEELS
Type
ASTM Specification
Form
Condition
Elongation (%)
Type 201 (UNS S20100)
A276
Bar
Annealed
40
Type 202 (UNS S20200)
A276
Bar
Annealed
40
Type 205 (UNS S20500)
—
Plate
Annealed*
58
Type 304N (UNS S30451)
A276
Bar
Annealed
30
Type 304HN (UNS S30452)
—
Bar
Annealed
30
Type 316N (UNS S31651)
A276
Bar
Annealed
30
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p367 (1993). *
Typical values
©2001 CRC Press LLC
8.28 Mechanical Page 838 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 261. TOTAL
ELONGATION OF CAST ALUMINUM ALLOYS (SHEET 1 OF 3) Alloy AA No.
Temper
Elongation (in 2 in.) (%)
201.0
T4 T6 T7
20 7 4.5
206.0, A206.0 208.0
T7 F
11.7 2.5
242.0
T21 T571 T77
1.0 0.5 2.0
T571 T61
1.0 0.5
295.0
T4 T6 T62
8.5 5.0 2.0
296.0
T4 T6 T7 F
9.0 5.0 4.5 2.0
319.0
F T6 F T6
2.0 2.0 2.5 3.0
336.0
T551 T65 T61
0.5 0.5 6.0
T51 T6 T61 T7
1.5 3.0 1.0 0.5
308.0
354.0 355.0
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
838
CRC Handbook of Materials Science & Engineering
8.28 Mechanical Page 839 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 261. TOTAL
ELONGATION OF CAST ALUMINUM ALLOYS (SHEET 2 OF 3) Alloy AA No.
Temper
Elongation (in 2 in.) (%)
355.0 (Con’t)
T71 T51 T6
1.5 2.0 4.0
T62 T7 T71
1.5 2.0 3.0
T51 T6 T7
2.0 3.5 2.0
T71 T6 T7
3.5 5.0 6.0
357.0, A357.0 359.0
T62 T61 T62
8.0 6.0 5.5
360.0 A360.0 380.0
F F F
3.0 5.0 3.0
383.0 384.0, A384.0 390.0
F F F T5
3.5 2.5 1.0 1.0
A390.0
F,T5 T6 T7
<1.0 <1.0 <1.0
F,T5 T6 T7
1.0 <1.0 <1.0
356.0
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
839
8.28 Mechanical Page 840 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 261. TOTAL
ELONGATION OF CAST ALUMINUM ALLOYS (SHEET 3 OF 3) Alloy AA No.
Temper
Elongation (in 2 in.) (%)
413.0 A413.0 443.0 B443.0
F F F F
2.5 3.5 8.0 10.0
C443.0 514.0 518.0 520.0
F F F T4
9.0 9.0 5.0—8.0 16
535.0 712.0 713.0
F F T5 T5
13 5.0 3.0 4.0
771.0 850.0
T6 T5
9.0 10.0
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
840
CRC Handbook of Materials Science & Engineering
8.29 Mechanical L Page 841 Wednesday, December 31, 1969 17:00
Table 262. ELONGATION OF
WROUGHT COPPERS AND COPPER ALLOYS (SHEET 1 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Elongation in 2 In (%)
C10100 Oxygen-free electronic C10200 Oxygen-free copper C10300 Oxygen-free extra-low phosporus C10400, C10500, C10700 Oxygen-free, silver-bearing
99.99 Cu 99.95 Cu 99.95 Cu, 0.003 P 99.95 Cu(e)
F, R, W, T, P, S F, R, W, T, P, S F, R, T, P, S F, R, W, S
55(4) 55(4) 50(6) 55(4)
C10800 Oxygen-free, low phosporus CS11000 Electrolytic tough pitch copper C11100 Electrolytic tough pitch, anneal resistant C11300, C11400, C11500, C11600 Silver-bearing tough pitch copper
99.95 Cu, 0.009 P 99.90 Cu, 0.04 O 99.90 Cu, 0.04 O, 0.01 Cd 99.90 Cu, 0.04 O, Ag(f)
F, R, T, P F, R, W, T, P, S W F, R, W, T, S
50(4) 55(4) (60) 55(4)
C12000, C12100 C12200 Phosphorus deoxidized copper, high residual phosphorus C12500, C12700, C12800, C12900, C13000 Fire-refined tough pitch with silver C14200 Phosphorus deoxidized, arsenical
99.9 Cu(g) 99.90 Cu, 0.02 P 99.88 Cu(h) 99.68 Cu, 0.3 As, 0.02 P
F, T, P F, R, T, P F, R, W, S F, R, T
55(4) 45(8) 55(4) 45(8)
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.29 Mechanical L Page 842 Wednesday, December 31, 1969 17:00
Table 262. ELONGATION OF
WROUGHT COPPERS AND COPPER ALLOYS (SHEET 2 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Elongation in 2 In (%)
C19200 C14300 C14310 C14500 Phosphorus deoxidized, tellurium bearing
98.97 Cu, 1.0 Fe, 0.03 P 99.9 Cu, 0.1 Cd 99.8 Cu, 0.2 Cd 99.5 Cu, 0.50 Te, 0.008 P
F, T F F F, R, W, T
40 42(l) 42(l) 50(3)
C14700 Sulfur bearing C15000 Zirconium copper C15500 C15710
99.6 Cu, 0.40 S 99.8 Cu, 0.15 Zr 99.75 Cu, 0.06 P, 0.11 Mg, Ag(i) 99.8 Cu, 0.2 Al2O3
R, W R, W F R, W
52(8) 54(1.5) 40(3) 20(10)
C15720 C15735 C15760 C16200 Cadmium copper
99.6 Cu, 0.4 Al2O3 99.3 Cu, 0.7 Al2O3 98.9 Cu, 1.1 Al2O3 99.0 Cu, 1.0 Cd
F, R R F, R F, R, W
20(3.5) 16(10) 20(8) 57(1)
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.29 Mechanical L Page 843 Wednesday, December 31, 1969 17:00
Table 262. ELONGATION OF
WROUGHT COPPERS AND COPPER ALLOYS (SHEET 3 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Elongation in 2 In (%)
C16500 C17000 Beryllium copper C17200 Beryllium copper C17300 Beryllium copper
98.6 Cu, 0.8 Cd, 0.6 Sn 99.5 Cu, 1.7 Be, 0.20 Co 99.5 Cu, 1.9 Be , 0.20 Co 99.5 Cu, 1.9 Be, 0.40 Pb
F, R, W F, R F, R, W, T, P, S R
53(1.5) 45(3) 48(1) 48(3)
C17500 Copper-cobalt-beryllium alloy C18200, C18400, C18500 Chromium copper C18700 leaded copper C18900
99.5 Cu, 2.5 Co, 0.6 Be 99.5 Cu(j) 99.0 Cu, 1.0 Pb 98.75 Cu, 0.75 Sn, 0.3 Si, 0.20 Mn
F, R F, W, R, S, T R R, W
28(5) 40(5) 45(8) 48(14)
C19000 Copper-nickel-phosphorus alloy C19100 Copper-nickel-phosphorus-tellurium alloy C19400
98.7 Cu, 1.1 Ni, 0.25 P 98.15 Cu, 1.1 Ni, 0.50 Te, 0.25 P 97.5 Cu, 2.4 Fe, 0.13 Zn, 0.03 P
F, R, W R, F F
50 27(6) 32
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.29 Mechanical L Page 844 Wednesday, December 31, 1969 17:00
Table 262. ELONGATION OF
WROUGHT COPPERS AND COPPER ALLOYS (SHEET 4 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Elongation in 2 In (%)
C19500 C21000 Gilding, 95% C22000 Commercial bronze, 90% C22600 Jewelry bronze, 87.5%
97.0 Cu, 1.5 Fe, 0.6 Sn, 0.10 P, 0.80 Co 95.0 Cu, 5.0 Zn 90.0 Cu, 10.0 Zn 87.5 Cu, 12.5 Zn
F F, W F, R, W, T F, W
15 45(4) 50(3) 46(3)
C23000 Red brass, 85% C24000 Low brass, 80% C26000 Cartridge brass, 70% C26800, C27000 Yellow brass
85.0 Cu, 15.0 Zn 80.0 Cu, 20.0 Zn 70.0 Cu, 30.0 Zn 65.0 Cu, 35.0 Zn
F, W, T, P F, W F, R, W, T F, R, W
55(3) 55(3) 66(3) 65(3)
C28000 Muntz metal C31400 Leaded commercial bronze C31600 Leaded commercial bronze, nickel-bearing C33000 Low-leaded brass tube
60.0 Cu, 40.0 Zn 89.0 Cu, 1.75 Pb, 9.25 Zn 89.0 Cu, 1.9 Pb, 1.0 Ni, 8.1 Zn 66.0 Cu, 0.5 Pb, 33.5 Zn
F, R, T F, R F, R T
52(10) 45(10) 45(12) 60(7)
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.29 Mechanical L Page 845 Wednesday, December 31, 1969 17:00
Table 262. ELONGATION OF
WROUGHT COPPERS AND COPPER ALLOYS (SHEET 5 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Elongation in 2 In (%)
C33200 High-leaded brass tube C33500 Low-leaded brass C34000 Medium-leaded brass C34200 High-leaded brass
66.0 Cu, 1.6 Pb, 32.4 Zn 65.0 Cu, 0.5 Pb, 34.5 Zn 65.0 Cu, 1.0 Pb, 34.0 Zn 64.5 Cu, 2.0 Pb, 33.5 Zn
T F F, R, W, S F, R
50(7) 65(8) 60(7) 52(5)
C34900 C35000 Medium-leaded brass C35300 High-leaded brass C35600 Extra-high-leaded brass
62.2 Cu, 0.35 Pb, 37.45 Zn 62.5 Cu, 1.1 Pb, 36.4 Zn 62.0 Cu, 1.8 Pb, 36.2 Zn 63.0 Cu, 2.5 Pb, 34.5 Zn
R, W F, R F, R F
72(18) 66(1) 52(5) 50(7)
C36000 Free-cutting brass C36500 to C36800 Leaded Muntz metal C37000 Free-cutting Muntz metal C37700 Forging brass
61.5 Cu, 3.0 Pb, 35.5 Zn 60.0 Cu(k), 0.6 Pb, 39.4 Zn 60.0 Cu, 1.0 Pb, 39.0 Zn 59.0 Cu, 2.0 Pb, 39.0 Zn
F, R, S F T R, S
53(18) 45 40(6) 45
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.29 Mechanical L Page 846 Wednesday, December 31, 1969 17:00
Table 262. ELONGATION OF
WROUGHT COPPERS AND COPPER ALLOYS (SHEET 6 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Elongation in 2 In (%)
C38500 Architectural bronze C40500 C40800 C41100
57.0 Cu, 3.0 Pb, 40.0 Zn 95 Cu, 1 Sn, 4 Zn 95 Cu, 2 Sn, 3 Zn 91 Cu, 0.5 Sn, 8.5 Zn
R, S F F F, W
30 49(3) 43(3) 13
C41300 C41500 C42200 C42500
90.0 Cu, 1.0 Sn, 9.0 Zn 91 Cu, 1.8 Sn, 7.2 Zn 87.5 Cu, 1.1 Sn, 11.4 Zn 88.5 Cu, 2.0 Sn, 9.5 Zn
F, R, W F F F
45 44 46 49
C43000 C43400 C43500 C44300, C44400, C44500 Inhibited admiralty
87.0 Cu, 2.2 Sn, 10.8 Zn 85.0 Cu, 0.7 Sn, 14.3 Zn 81.0 Cu, 0.9 Sn, 18.1 Zn 71.0 Cu, 28.0 Zn, 1.0 Sn
F F F, T F, W, T
55(3) 49(3) 46(7) 65(0)
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.29 Mechanical L Page 847 Wednesday, December 31, 1969 17:00
Table 262. ELONGATION OF
WROUGHT COPPERS AND COPPER ALLOYS (SHEET 7 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Elongation in 2 In (%)
C46400 to C46700 Naval brass C48200 Naval brass, medium-leaded C48500 Leaded naval brass C50500 Phosphor bronze, 1.25% E
60.0 Cu, 39.25 Zn, 0.75 Sn 60.5 Cu, 0.7 Pb, 0.8 Sn, 38.0 Zn 60.0 Cu, 1.75 Pb, 37.5 Zn, 0.75 Sn 98.75 Cu, 1.25 Sn, trace P
F, R, T, S F, R, S F, R, S F, W
50(17) 43(15) 40(15) 48(4)
C51000 Phosphor bronze, 5% A C51100 C52100 Phosphor bronze, 8% C C52400 Phosphor bronze, 10% D
95.0 Cu, 5.0 Sn, trace P 95.6 Cu, 4.2 Sn, 0.2 P 92.0 Cu, 8.0 Sn, trace P 90.0 Cu, 10.0 Sn, trace P
F, R, W, T F F, R, W F, R, W
64 48 70 70(3)
C54400 Free-cutting phosphor bronze C60800 Aluminum bronze, 5% C61000 C61300
88.0 Cu, 4.0 Pb, 4.0 Zn, 4.0 Sn 95.0 Cu, 5.0 Al 92.0 Cu, 8.0 Al 92.65 Cu, 0.35 Sn, 7.0 Al
F, R T R, W F, R, T, P, S
50(15) 55 65(25) 42(35)
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.29 Mechanical L Page 848 Wednesday, December 31, 1969 17:00
Table 262. ELONGATION OF
WROUGHT COPPERS AND COPPER ALLOYS (SHEET 8 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Elongation in 2 In (%)
C61400 Aluminum bronze, D C61500 C61800 C61900
91.0 Cu, 7.0 Al, 2.0 Fe 90.0 Cu, 8.0 Al, 2.0 Ni 89.0 Cu, 1.0 Fe, 10.0 Al 86.5 Cu, 4.0 Fe, 9.5 Al
F, R, W, T, P, S F R F
45(32) 55(1) 28(23) 30(1)
C62300 C62400 C62500 C63000
87.0 Cu, 10.0 Al, 3.0 Fe 86.0 Cu, 3.0 Fe, 11.0 Al 82.7 Cu, 4.3 Fe, 13.0 Al 82.0 Cu, 3.0 Fe, 10.0 Al, 5.0 Ni
F, R F, R F, R F, R
35(22) 18(14) 1 20(15)
C63200 C63600 C63800 C64200
82.0 Cu, 4.0 Fe, 9.0 Al, 5.0 Ni 95.5 Cu, 3.5 Al, 1.0 Si 99.5 Cu, 2.8 Al, 1.8 Si, 0.40 Co 91.2 Cu, 7.0 Al
F, R R, W F F, R
25(20) 64(29) 36(4) 32(22)
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.29 Mechanical L Page 849 Wednesday, December 31, 1969 17:00
Table 262. ELONGATION OF
WROUGHT COPPERS AND COPPER ALLOYS (SHEET 9 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Elongation in 2 In (%)
C65100 Low-silicon bronze, B C65500 High-silicon bronze, A C66700 Manganese brass C67400
98.5 Cu, 1.5 Si 97.0 Cu, 3.0 Si 70.0 Cu, 28.8 Zn, 1.2 Mn 58.5 Cu, 36.5 Zn, 1.2 Al, 2.8 Mn, 1.0 Sn
R, W, T F, R, W, T F, W F, R
55(11) 63(3) 60 28(20)
C67500 Manganese bronze, A C68700 Aluninum brass, arsenical C68800 C69000
58.5 Cu, 1.4 Fe, 39.0 Zn, 1.0 Sn, 0.1 Mn 77.5 Cu, 20.5 Zn, 2.0 Al, 0.1 As 73.5 Cu, 22.7 Zn, 3.4 Al, 0.40 Co 73.3 Cu, 3.4 Al, 0.6 Ni, 22.7 Zn
R, S T F F
33(19) 55 36 40
C69400 Silicon red brass C70400 C70600 Copper nickel, 10% C71000 Copper nickel, 20%
81.5 Cu, 14.5 Zn, 4.0 Si 92.4 Cu, 1.5 Fe, 5.5 Ni, 0.6 Mn 88.7 Cu, 1.3 Fe, 10.0 Ni 79.00 Cu, 21.0 Ni
R F, T F, T F, W, T
25(20) 46 42(10) 40(3)
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.29 Mechanical L Page 850 Wednesday, December 31, 1969 17:00
Table 262. ELONGATION OF
WROUGHT COPPERS AND COPPER ALLOYS (SHEET 10 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Elongation in 2 In (%)
C71500 Copper nickel, 30% C71700 C72500 C73500
70.0 Cu, 30.0 Ni 67.8 Cu, 0.7 Fe, 31.0 Ni, 0.5 Be 88.20 Cu, 9.5 Ni, 2.3 Sn 72.0 Cu, 18.0 Ni , 10.0 Zn
F, R, T F, R, W F, R, W, T F, R, W, T
45(15) 40(4) 35(1) 37(1)
C74500 Nickel silver, 65-10 C75200 Nickel silver, 65-18 C75400 Nickel silver, 65-15 C75700 Nickel silver, 65-12
65.0 Cu, 25.0 Zn, 10.0 Ni 65.0 Cu, 17.0 Zn, 18.0 Ni 65.0 Cu, 20.0 Zn, 15.0 Ni 65.0 Cu, 23.0 Zn, 12.0 Ni
F, W F, R, W F F, W
50(1) 45(3) 43 48
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
8.29 Mechanical L Page 851 Wednesday, December 31, 1969 17:00
Table 262. ELONGATION OF
WROUGHT COPPERS AND COPPER ALLOYS (SHEET 11 OF 11)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Elongation in 2 In (%)
C76200 C77000 Nickel silver, 55-18 C72200 C78200 Leaded nickel silver, 65-8-2
59.0 Cu, 29.0 Zn, 12.0 Ni 55.0 Cu, 27.0 Zn, 18.0 Ni 82.0 Cu, 16.0 Ni, 0.5 Cr, 0.8 Fe, 0.5 Mn 65.0 Cu, 2.0 Pb, 25.0 Zn, 8.0 Ni
F, T F, R, W F, T F
50(1) 40 46(6) 40(3)
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). (d) Based on 100% for C360000. (e) C10400, 8 oz/ton Ag; C10500, 10 oz/ton; C10700, 25 oz/ton . (f) C11300, 8 oz/ton Ag; C11400,10 oz/ton; C11500, 16 oz/ton; C11600, 25 oz/ton (g) C12000, 0.008 P; C12100, 0.008 P and 4 oz/ton Ag; (h) C12700, 8 oz/ton Ag; C12800,10 oz/ton; C12900,16 oz/ton; C13000, 25 oz/ton. (i) 8.30 oz/ton Ag. (j) C18200, 0.9 Cr; C18400, 0.8 Cr; C18500, 0.7 Cr (k) Rod, 61.0 Cu min.
©2001 CRC Press LLC
8.30 Mechanical Page 852 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 263. ELONGATION OF
COMMERCIALLY PURE TIN
Temperature (°C)
Elongation in 25mm (%)
Strained at 0.2 mm/m • min -200 -160 -120 -80 -40 0 23
6 15 60 89 86 64 57
Strained at 0.4 mm/m • min 15 50 100 150 200
75 85 55 55 45
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p488, (1993).
©2001 CRC Press LLC
852
CRC Handbook of Materials Science & Engineering
8.30 Mechanical Page 853 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 264. ELONGATION OF
COBALT -BASE SUPERALLOYS Temperature (°C)
Elongation (%)
Haynes 25 (L–605) sheet
21 540 650 760 870
64 59 35 12 30
Haynes 188, sheet
21 540 650 760 870
56 70 61 43 73
S-816, bar
21 540 650 760 870
30 27 25 21 16
Alloy
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p387, (1993).
©2001 CRC Press LLC
Shackelford & Alexander
853
8.30 Mechanical Page 854 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 265. ELONGATION OF
NICKEL -BASE SUPERALLOYS (SHEET 1 OF 5) Temperature (°C)
Elongation (%)
Astroloy, bar
21 540 650 760 870
16 16 18 21 25
D–979, bar
21 540 650 760 870
15 15 21 17 18
Hastelloy X, sheet
21 540 650 760 870
43 45 37 37 50
IN–102, bar
21 540 650 760 870
47 48 64 110 110
Inconel 600, bar
21 540 650 760 870
47 47 39 46 80
Inconel 601, sheet
21 540 650 760 870
45 38 45 73 92
Alloy
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p387-389, (1993).
©2001 CRC Press LLC
854
CRC Handbook of Materials Science & Engineering
8.30 Mechanical Page 855 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 265. ELONGATION OF
NICKEL -BASE SUPERALLOYS (SHEET 2 OF 5) Temperature (°C)
Elongation (%)
Inconel 625, bar
21 540 650 760 870
50 50 35 42 125
Inconel 706, bar
21 540 650 760
19 19 21 32
Inconel 718, bar
21 540 650 760 870
21 18 19 25 88
Inconel 718, sheet
21 540 650 760
22 26 15 8
Inconel X-750, bar
21 540 650 760 870
24 22 9 9 47
M-252, bar
21 540 650 760 870
16 15 11 10 18
Alloy
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p387-389, (1993).
©2001 CRC Press LLC
Shackelford & Alexander
855
8.30 Mechanical Page 856 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 265. ELONGATION OF
NICKEL -BASE SUPERALLOYS (SHEET 3 OF 5) Temperature (°C)
Elongation (%)
Nimonic 75, bar
21 540 650 760 870
41 41 42 70 68
Nimonic 80A, bar
21 540 650 760 870
24 24 18 20 34
Nimonic 90, bar
21 540 650 760 870
23 23 20 10 16
Nimonic 105, bar
21 540 650 760 870
12 18 24 22 25
Nimonic 115, bar
21 540 650 760 870
25 26 25 22 18
Pyromet 860, bar
21 540 650 760
22 15 17 18
Alloy
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p387-389, (1993).
©2001 CRC Press LLC
856
CRC Handbook of Materials Science & Engineering
8.30 Mechanical Page 857 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 265. ELONGATION OF
NICKEL -BASE SUPERALLOYS (SHEET 4 OF 5) Temperature (°C)
Elongation (%)
René 41, bar
21 540 650 760 870
14 14 14 11 19
René 95, bar
21 540 650 760
15 12 14 15
Udimet 500, bar
21 540 650 760 870
32 28 28 39 20
Udimet 520, bar
21 540 650 760 870
21 20 17 15 20
Udimet 700, bar
21 540 650 760 870
17 16 16 20 27
Udimet 710, bar
21 540 650 760 870
7 10 15 25 29
Alloy
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p387-389, (1993).
©2001 CRC Press LLC Shackelford & Alexander
857
8.30 Mechanical Page 858 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 265. ELONGATION OF
NICKEL -BASE SUPERALLOYS (SHEET 5 OF 5) Temperature (°C)
Elongation (%)
Unitemp AF2–1DA, bar
21 540 650 760 870
10 13 13 8 8
Waspaloy, bar
21 540 650 760 870
25 23 34 28 35
Alloy
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p387-389, (1993).
©2001 CRC Press LLC
858
CRC Handbook of Materials Science & Engineering
8.31 Mechanical L Page 859 Wednesday, December 31, 1969 17:00
Table 266. DUCTILITY OF REFRACTORY (SHEET 1 OF 3)
METAL ALLOYS
Form
Condition
Low Temperature Ductility*
Class
Alloy
Alloying Additions (%)
Niobium and Niobium Alloys
Pure Niobium
—
All
Recrystallized
A
Nb–1Zr C103(KbI–3) SCb291
1 Zr 10 Hf, 1 Ti 0.7 Zr 10 Ta, 10 W
All All Bar, Sheet
Recrystallized Recrystallized Recrystallized
A A A
C129 FS85 SU31
10 W, 10 Hf, 0.1 Y 28 Ta, 11 W, 0.8 Zr 17 W, 3.5 Hf, 0.12 C, 0.03 Si
Sheet Sheet Bar, Sheet
Recrystallized Recrystallized Special Thermal Processing
A A C
Pure Molybdenum
—
All
Stress-relieved Annealed
B–C
Doped Mo Low C Mo TZM
K, Si; ppm levels None 0.5 Ti, 0.08 Zr, 0.015 C
Wire, Sheet All All
Cold Worked Stress-relieved Annealed Stress-relieved Annealed
B B B–C
Molybdenum and Molybdenum Alloys
*A B C D
excellent cryogenic ductility; excellent room-temperature ductility; may have marginal ductility at room temperature; normally brittle at room temperature.
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p390, (1993).
©2001 CRC Press LLC
8.31 Mechanical L Page 860 Wednesday, December 31, 1969 17:00
Table 266. DUCTILITY OF REFRACTORY (SHEET 2 OF 3)
Class
Tantalum Alloys
Tungsten Alloys
*A B C D
METAL ALLOYS
Alloy
Alloying Additions (%)
Form
Condition
Low Temperature Ductility*
TZC Mo–5Re Mo–30W
1.0 Ti, 0.14 Zr, 0.02 to 0.08 C 5 Re 30 W
All All All
Stress-relieved Annealed Stress-relieved Annealed Stress-relieved Annealed
B–C B B–C
Unalloyed FS61 FS63
None 7.5 W(P/M) 2.5 W, 0.15 Nb
All Wire, Sheet All
Recrystallized Cold Worked Recrystallized
A A A
TA–10W KBI–40
10 W 40 Nb
All All
Recrystallized Recrystallized
A A
Unalloyed
None
Stress-relieved Annealed
D
Doped
K, Si, Al; ppm levels
Bar, Sheet, Wire Wire
Cold Worked
C
excellent cryogenic ductility; excellent room-temperature ductility; may have marginal ductility at room temperature; normally brittle at room temperature.
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p390, (1993).
©2001 CRC Press LLC
8.31 Mechanical L Page 861 Wednesday, December 31, 1969 17:00
Table 266. DUCTILITY OF REFRACTORY (SHEET 3 OF 3)
Class
*A B C D
METAL ALLOYS
Form
Condition
Low Temperature Ductility*
Stress-relieved Annealed
D
Stress-relieved Annealed
D
3 ThO2 4 ThO2
Bar, Sheet, Wire Bar, Sheet, Wire Bar, Wire Bar
Stress-relieved Annealed Stress-relieved Annealed
D D
W–15 Mo W–50 Mo
15 Mo 50 Mo
Bar, Wire Bar, Wire
Stress-relieved Annealed Stress-relieved Annealed
D D
W–3 Re
3 Re
Cold Worked
C
W–25 Re
25 Re
Wire Bar, Sheet, Wire
Stress-relieved Annealed
B
Alloy
Alloying Additions (%)
W–1 ThO2
1ThO2
W–2 ThO2
2 ThO2
W–3 ThO2 W–4 ThO2
excellent cryogenic ductility; excellent room-temperature ductility; may have marginal ductility at room temperature; normally brittle at room temperature.
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p390, (1993).
©2001 CRC Press LLC
8.31 Mechanical L Page 862 Wednesday, December 31, 1969 17:00
Table 267. ELONGATION OF
AT
WROUGHT TITANIUM ALLOYS
ROOM TEMPERATURE (SHEET 1 OF 3)
Class
Alloy
Condition
Elongation (%)
Commercially Pure
99.5 Ti 99.2 Ti 99.1 Ti
Annealed Annealed Annealed
30 28 25
99.0 Ti 99.2Ti-0.2Pd Ti-0.8Ni-0.3Mo
Annealed Annealed Annealed
20 28 25
Alpha Alloys
Ti-5Al-2.5Sn Ti-5Al-2.5Sn (low O2)
Annealed Annealed
16 16
Near Alpha Alloys
Ti-8Al-1Mo-1V
Duplex Annealed
15
Ti-11Sn-1Mo-2.25Al-5.0Zr-1Mo-0.2Si
Duplex Annealed
15
Ti-6Al-2Sn-4Zr-2Mo Ti-5Al-2Sn-2Zr-2Mo-0.25Si
Duplex Annealed 975 ˚C (1/2h), AC + 595 ˚C (2h), AC
15 13
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993).
©2001 CRC Press LLC
8.31 Mechanical L Page 863 Wednesday, December 31, 1969 17:00
Table 267. ELONGATION OF
AT Class
Alpha-Beta Alloys
WROUGHT TITANIUM ALLOYS
ROOM TEMPERATURE (SHEET 2 OF 3)
Alloy
Condition
Elongation (%)
Ti-6Al-2Nb-1Ta-1Mo Ti-6Al-2Sn-1.5Zr-1Mo- 0.35Bi-0.1Si
As rolled 2.5 cm (1 in.) plate Beta forge + duplex anneal
13 11
Ti-8Mn Ti-3Al-2.5V
Annealed Annealed
15 20
Ti-6Al-4V
Annealed Solution + age
14 10
Ti-6Al-4V(low O2)
Annealed
15
Ti-6Al-6V-2Sn
Annealed Solution + age
14 10
Ti-7Al-4Mo
Solution + age
16
Ti-6Al-2Sn-4Zr-6Mo Ti-6Al-2Sn-2Zr-2Mo- 2Cr-0.25Si Ti-10V-2Fe-3Al
Solution + age Solution + age Solution + age
10 11 10
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993).
©2001 CRC Press LLC
8.31 Mechanical L Page 864 Wednesday, December 31, 1969 17:00
Table 267. ELONGATION OF
AT
WROUGHT TITANIUM ALLOYS
ROOM TEMPERATURE (SHEET 3 OF 3)
Class
Alloy
Condition
Elongation (%)
Beta Alloys
Ti-13V-1Cr-3Al
Solution + age
8
Ti-8Mo-8V-2Fe-3Al Ti-3Al-8V-6Cr-4Mo-4Zr
Solution + age Solution + age Annealed
8 7 15
Ti-11.5Mo-6Zr-4.5Sn
Solution + age
11
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993).
©2001 CRC Press LLC
8.31 Mechanical L Page 865 Wednesday, December 31, 1969 17:00
Table 268. ELONGATION OF
AT
WROUGHT TITANIUM ALLOYS
HIGH TEMPERATURE
(SHEET 1 OF 4)
Class
Alloy
Condition
Test Temperature (°C)
Commercially Pure
99.5 Ti 99.2 Ti 99.1 Ti
Annealed Annealed Annealed
315 315 315
32 35 34
99.0 Ti 99.2Ti-0.2Pd Ti-0.8Ni-0.3Mo Ti-0.8Ni-0.3Mo
Annealed Annealed Annealed Annealed
315 315 205 315
25 37 37 32
Ti-5Al-2.5Sn
Annealed
315
18
Ti-5Al-2.5Sn (low O2)
Annealed
-195 -255
16 15
Ti-8Al-1Mo-1V
Duplex Annealed
315 425 540
20 20 25
Alpha Alloys
Near Alpha Alloys
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993).
©2001 CRC Press LLC
Elongation (%)
8.31 Mechanical L Page 866 Wednesday, December 31, 1969 17:00
Table 268. ELONGATION OF
AT
Class
WROUGHT TITANIUM ALLOYS
HIGH TEMPERATURE
(SHEET 2 OF 4) Test Temperature (°C)
Elongation (%)
Alloy
Condition
Ti-11Sn-1Mo-2.25Al-5.0Zr-1Mo-0.2Si
Duplex Annealed
315 425 540
20 22 24
Ti-6Al-2Sn-4Zr-2Mo
Duplex Annealed
315 425 540
16 21 26
Ti-5Al-2Sn-2Zr-2Mo-0.25Si
975 ˚C (1/2h), AC + 595 ˚C (2h), AC
315 425 540
15 17 19
Ti-6Al-2Nb-1Ta-1Mo
As rolled 2.5 cm (1 in.) plate
315 425 540
20 20 20
Ti-6Al-2Sn-1.5Zr-1Mo- 0.35Bi-0.1Si
Beta forge + duplex anneal
480
15
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993).
©2001 CRC Press LLC
8.31 Mechanical L Page 867 Wednesday, December 31, 1969 17:00
Table 268. ELONGATION OF
AT
WROUGHT TITANIUM ALLOYS
HIGH TEMPERATURE
(SHEET 3 OF 4)
Class
Alloy
Condition
Test Temperature (°C)
Alpha-Beta Alloys
Ti-8Mn Ti-3Al-2.5V
Annealed Annealed
315 315
18 25
Ti-6Al-4V
Annealed Annealed Annealed
315 425 540
14 18 35
Solution + age Solution + age Solution + age
315 425 540
10 12 22
Ti-6Al-4V(low O2) Ti-6Al-6V-2Sn
Annealed Annealed Solution + age
160 315 315
14 18 12
Ti-7Al-4Mo
Solution + age
315 425
18 20
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993).
©2001 CRC Press LLC
Elongation (%)
8.31 Mechanical L Page 868 Wednesday, December 31, 1969 17:00
Table 268. ELONGATION OF
AT
Class
Beta Alloys
WROUGHT TITANIUM ALLOYS
HIGH TEMPERATURE
(SHEET 4 OF 4) Test Temperature (°C)
Elongation (%)
Alloy
Condition
Ti-6Al-2Sn-4Zr-6Mo
Solution + age
315 425 540
18 19 19
Ti-6Al-2Sn-2Zr-2Mo- 2Cr-0.25Si
Solution + age
315
14
Ti-10V-2Fe-3Al
Solution + age
205 315
13 13
Ti-13V-1Cr-3Al
Solution + age
315 425
19 12
Ti-8Mo-8V-2Fe-3Al
Solution + age
315
15
Ti-3Al-8V-6Cr-4Mo-4Zr
Solution + age
315 425
20 17
Ti-11.5Mo-6Zr-4.5Sn
Annealed Solution + age
315 315
22 16
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993).
©2001 CRC Press LLC
8.31 Mechanical L Page 869 Wednesday, December 31, 1969 17:00
Table 269. TOTAL
ELONGATION OF POLYMERS (SHEET 1 OF 10)
Class
Polymer
Elongation (in 2 in.), (ASTM D638) (%)
ABS Resins; Molded, Extruded
Medium impact High impact Very high impact
5—20 5—50 20—50
Low temperature impact Heat resistant
30—200 20
Cast Resin Sheets, Rods: General purpose, type I General purpose, type II
2—7 2—7
Moldings: Grades 5, 6, 8 High impact grade
3—5 >25
Chlorinated Polymers Chlorinated polyether
130
Acrylics; Cast, Molded, Extruded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.31 Mechanical L Page 870 Wednesday, December 31, 1969 17:00
Table 269. TOTAL
ELONGATION OF POLYMERS (SHEET 2 OF 10)
Class
Polymer
Elongation (in 2 in.), (ASTM D638) (%)
Polycarbonates
Polycarbonate Polycarbonate (40% glass fiber reinforced)
110 0—5
Fluorocarbons; Molded,Extruded
Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE)
125—175 250—350
Ceramic reinforced (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF)
10—200 250—330 200—300
Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible
4.4 1.5-60
Epoxies; Cast, Molded, Reinforced
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.31 Mechanical L Page 871 Wednesday, December 31, 1969 17:00
Table 269. TOTAL
ELONGATION OF POLYMERS (SHEET 3 OF 10) Elongation (in 2 in.), (ASTM D638) (%)
Class
Polymer
Epoxies—Molded, Extruded
High performance resins (cycloaliphatic diepoxides) Cast, rigid Epoxy novolacs Glass cloth laminate Cellulose electrical
2.2—4.8 0.6
Type 6 General purpose Glass fiber (30%) reinforced Cast Flexible copolymers
30—100 2.2—3.6 20 200—320
Type 8 Type 11 Type 12
400 100—120 120—350
Melamines; Molded Nylons; Molded, Extruded
2—5
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.31 Mechanical L Page 872 Wednesday, December 31, 1969 17:00
Table 269. TOTAL
ELONGATION OF POLYMERS (SHEET 4 OF 10)
Class
Nylons; Molded, Extruded (Con’t)
Phenolics; Molded
ABS–Polycarbonate Alloy
Polymer
Elongation (in 2 in.), (ASTM D638) (%)
6/6 Nylon General purpose molding Glass fiber reinforced Glass fiber Molybdenum disulfide filled General purpose extrusion
15—300 1.8—2.2 3 90—240
6/10 Nylon General purpose Glass fiber (30%) reinforced
85—220 1.9
Type and filler General: woodflour and flock High shock: chopped fabric or cord Very high shock: glass fiber
0.4—0.8 0.37—0.57 0.2
Rubber phenolic—woodflour or flock
0.75—2.25
ABS–Polycarbonate Alloy
110
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.31 Mechanical L Page 873 Wednesday, December 31, 1969 17:00
Table 269. TOTAL
ELONGATION OF POLYMERS (SHEET 5 OF 10)
Class
Polymer
Elongation (in 2 in.), (ASTM D638) (%)
PVC–Acrylic Alloy
PVC–acrylic sheet PVC–acrylic injection molded
>100 150
Polymides
Unreinforced Unreinforced 2nd value Glass reinforced
<1 1.2 <1
Polyacetals
Homopolymer: Standard 20% glass reinforced 22% TFE reinforced
25 7 12
Copolymer: Standard 25% glass reinforced High flow
60—75 3 40
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.31 Mechanical L Page 874 Wednesday, December 31, 1969 17:00
Table 269. TOTAL
ELONGATION OF POLYMERS (SHEET 6 OF 10)
Class
Polymer
Elongation (in 2 in.), (ASTM D638) (%)
Polyester; Thermoplastic
Injection Moldings: General purpose grade Glass reinforced grades Glass reinforced self extinguishing
300 1—5 5
General purpose grade Glass reinforced grade Asbestos—filled grade
250 <5 <5
Cast polyyester Rigid Flexible
1.7—2.6 25—300
Reinforced polyester moldings
High strength (glass fibers)
0.3—0.5
Phenylene Oxides
SE—100 SE—1 Glass fiber reinforced
50 60 4—6
Polyesters: Thermosets
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.31 Mechanical L Page 875 Wednesday, December 31, 1969 17:00
Table 269. TOTAL
ELONGATION OF POLYMERS (SHEET 7 OF 10)
Class
Polymer
Elongation (in 2 in.), (ASTM D638) (%)
Phenylene oxides (Noryl)
Standard
50—100
Polyarylsulfone
Polyarylsulfone
15—40
Polypropylene
General purpose High impact
100—600 30—>200
Polypropylene (Con’t)
Asbestos filled Glass reinforced Flame retardant
3—20 2—4 3—15
Polyphenylene sulfide
Standard 40% glass reinforced
3 3—9
Polyethylenes; Molded, Extruded
Type I—lower density (0.910—0.925) Melt index 0.3—3.6 Melt index 6—26 Melt index 200
(ASTM D412) 500—725 125—675 80—100
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.31 Mechanical L Page 876 Wednesday, December 31, 1969 17:00
Table 269. TOTAL
ELONGATION OF POLYMERS (SHEET 8 OF 10)
Class
Polyethylenes; Molded, Extruded (Con’t)
Olefin Copolymers; Molded
Polymer
Elongation (in 2 in.), (ASTM D638) (%)
Type II—medium density (0.926—0.940) Melt index 20 Melt index l.0—1.9
200 200—425
Type III—higher density (0.941—0.965) Melt index 0.2—0.9 Melt Melt index 0.l—12.0 Melt index 1.5—15 High molecular weight
700—1,000 50—l,000 100—700 400
EEA (ethylene ethyl acrylate) EVA (ethylene vinyl acetate)
650 650
Ethylene butene Ionomer Polyallomer
20 450 300—400
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.31 Mechanical L Page 877 Wednesday, December 31, 1969 17:00
Table 269. TOTAL
ELONGATION OF POLYMERS (SHEET 9 OF 10)
Class
Polymer
Elongation (in 2 in.), (ASTM D638) (%)
Polystyrenes; Molded
General purpose Medium impact
1.0—2.3 3.0—40
Glass fiber -30% reinforced Styrene acrylonitrile (SAN) Glass fiber (30%) reinforced SAN
1.1 0.5—4.5 1.4—1.6
Nonrigid—general
200—450
Nonrigid—electrical Rigid—normal impact Vinylidene chloride
220—360 1—10 15—30
Polyvinyl Chloride And Copolymers; Molded, Extruded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.31 Mechanical L Page 878 Wednesday, December 31, 1969 17:00
Table 269. TOTAL
ELONGATION OF POLYMERS (SHEET 10 OF 10)
Class
Polymer
Elongation (in 2 in.), (ASTM D638) (%)
Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones
(ASTM D651) <3 <3
Alpha—cellulose filled (ASTM Type l)
1
Silicones; Molded, Laminated
Ureas; Molded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.31 Mechanical L Page 879 Wednesday, December 31, 1969 17:00
Table 270. ELONGATION AT YIELD FOR (SHEET 1 OF 3)
POLYMERS
Class
Polymer
Elongation at Yield, (ASTM D638) (%)
Chlorinated polyether
Chlorinated polyether
15
Polycarbonates
Polycarbonate
5
Nylons; Molded, Extruded
Type 6 Cast
5
Type 12
5.8
6/6 Nylon: General purpose molding General purpose extrusion 6/10 Nylon: General purpose
5—25 5—30 5—30
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.31 Mechanical L Page 880 Wednesday, December 31, 1969 17:00
Table 270. ELONGATION AT YIELD FOR (SHEET 2 OF 3) Class
Polymer
Polyacetals
Homopolymer: Standard Copolymer: Standard 25% glass reinforced High flow
POLYMERS Elongation at Yield, (ASTM D638) (%)
12 12 3 12
Phenylene oxides (Noryl)
Standard Glass fiber reinforced
5.6 1.6—2
Polyarylsulfone
Polyarylsulfone
6.5—13
Polypropylene:
General purpose High impact Asbestos filled
9—15 7—13 5
Polyphenylene sulfide:
Standard 40% glass reinforced
1.6 1.25
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.31 Mechanical L Page 881 Wednesday, December 31, 1969 17:00
Table 270. ELONGATION AT YIELD FOR (SHEET 3 OF 3)
POLYMERS
Class
Polymer
Elongation at Yield, (ASTM D638) (%)
Polystyrenes; Molded
General purpose Medium impact High impact Glass fiber -30% reinforced Glass fiber (30%) reinforced SAN
1.0—2.3 1.2—3.0 1.5—2.0 1.1 1.4—1.6
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
8.32 Mechanical Page 882 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 271. ULTIMATE
TENSILE ELONGATION OF FIBERGLASS REINFORCED PLASTICS
Class
Material
Glass fiber content (wt%)
Glass fiber reinforced thermosets
Sheet molding compound (SMC)
15 to 30
0.3 to 1.5
Bulk molding compound(BMC) Preform/mat(compression molded) Cold press molding–polyester
15 to 35 25 to 50 20 to 30
0.3 to 5 1 to 2 1 to 2
Spray–up–polyester Filament wound–epoxy Rod stock–polyester Molding compound–phenolic
30 to 50 30 to 80 40 to 80 5 to 25
1.0 to 1.2 1.6 to 2.8 1.6 to 2.5 0.25 to 0.6
Glass–fiber–reinforced thermoplastics
Ultimate tensile elongation (%)
Acetal
20 to 40
2
Nylon Polycarbonate Polyethylene
6 to 60 20 to 40 10 to 40
2 to 10 2 1.5 to 3.5
Polypropylene Polystyrene Polysulfone ABS(acrylonitrile butadiene styrene)
20 to 40 20 to 35 20 to 40 20 to 40
1 to 3 1.0 to 1.4 2 to 3 3 to 3.4
PVC (polyvinyl chloride) Polyphenylene oxide(modified) SAN (styrene acrylonitrile) Thermoplastic polyester
15 to 35 20 to 40 20 to 40 20 to 35
2 to 4 1.7 to 5 1.1 to 1.6 1 to 5
To convert (ksi) to (Mpa), multiply by 6.89 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p106, (1994).
©2001 CRC Press LLC
882
CRC Handbook of Materials Science & Engineering
8.32 Mechanical Page 883 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 272. TOTAL
STRAIN OF SILICON CARBIDE SCS–2–AL Fiber orientation
No. of plies
Total Strain
0° 90°
6, 8, 12 6, 12,40
0.89 0.08
[0°/90°/0°/90°]s [02 °99°20°]s [902/90°/90°]s
8 8 8
0.90 0.92 1.01
± 45° [0°±45°/0°]s+2s [0°±45°/90°]s
8, 12, 40 8, 16 8
10.6 0.86 1.0
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p149,(1994).
©2001 CRC Press LLC Shackelford & Alexander
883
8.32 Mechanical Page 884 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 273. AREA
REDUCTION OF TOOL STEELS (SHEET 1 OF 2) Area Reduction (%)
Type
Condition
L2
Annealed Oil quenched from 855 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C
50
Annealed Oil quenched from 845 •C and single tempered at: 315 •C 425 •C 540 •C 650 •C
55
Annealed Oil quenched from 930 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C
52
Annealed Oil quenched from 870 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C
50
L6
S1
S5
15 30 35 45 55
9 20 30 48
12 17 23 37
20 24 28 30 40
Area Reduction in 50 mm or 2 in. Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984).
©2001 CRC Press LLC
884
CRC Handbook of Materials Science & Engineering
8.32 Mechanical Page 885 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 273. AREA
REDUCTION OF TOOL STEELS (SHEET 2 OF 2)
Type
Condition
S7
Annealed Fan cooled from 940 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C
Area Reduction (%) 55 20 25 29 33 45
Area Reduction in 50 mm or 2 in. Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984).
©2001 CRC Press LLC Shackelford & Alexander
885
8.33 Mechanical L Page 886 Wednesday, December 31, 1969 17:00
Table 274. REDUCTION IN
AREA OF AUSTENITIC STAINLESS STEELS (SHEET 1 OF 4)
Type
Form
Condition
ASTM Specification
Reduction in Area (%)
Type 302 (UNS S30200)
Bar
Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b)
A276 A276 A276
50 40 40
Type 302B (UNS S30215)
Bar
Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b)
A276 A276 A276
50 40 40
Types 303 (UNS S30300) and 303Se (UNS S30323)
Bar
Annealed
A581
55
Type 304(UNS S30400)
Bar
Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b)
A276 A276 A276
50 40 40
Type 304L (UNS S30403)
Bar
Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b)
A276 A276 A276
50 40 40
(a) Up to 13 mm thick (b) Over 13 mm thick. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p364-366 (1993).
©2001 CRC Press LLC
8.33 Mechanical L Page 887 Wednesday, December 31, 1969 17:00
Table 274. REDUCTION IN
AREA OF AUSTENITIC STAINLESS STEELS (SHEET 2 OF 4)
Type
Form
Condition
ASTM Specification
Reduction in Area (%)
Type 305 (UNS S30500)
Bar
Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b)
A276 A276 A276
50 40 40
Types 308 (UNS S30800),321(UNS S32100),347(UNS34700) and 348 (UNS S34800)
Bar
Hot finished and annealed
A276
50
Cold finished and annealed(a) Cold finished and annealed(b)
A276 A276
40 40
Type 308L
Bar
Annealed
—
70
Types 309 (UNS S30900), 309S (UNS S30908), 310 (UNS S31000) and 310S (UNS S31008)
Bar
Hot finished and annealed
A276
50
Cold finished and annealed(a) Cold finished and annealed(b)
A276 A276
40 40
(a) Up to 13 mm thick (b) Over 13 mm thick. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p364-366 (1993).
©2001 CRC Press LLC
8.33 Mechanical L Page 888 Wednesday, December 31, 1969 17:00
Table 274. REDUCTION IN
AREA OF AUSTENITIC STAINLESS STEELS (SHEET 3 OF 4)
Type
Form
Condition
ASTM Specification
Reduction in Area (%)
Type 314 (UNS S31400)
Bar
Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b)
A276 A276 A276
50 40 40
Type 316 (UNS S31600)
Bar
Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b)
A276 A276 A276
50 40 40
Type 316F (UNS S31620)
Bar
Annealed
—
55
Type 316L (UNS S31603)
Bar
Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b)
A276 A276 A276
50 40 40
Type 316LN
Bar
Annealed
—
70
(a) Up to 13 mm thick (b) Over 13 mm thick. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p364-366 (1993).
©2001 CRC Press LLC
8.33 Mechanical L Page 889 Wednesday, December 31, 1969 17:00
Table 274. REDUCTION IN
AREA OF AUSTENITIC STAINLESS STEELS (SHEET 4 OF 4)
Type
Form
Condition
ASTM Specification
Reduction in Area (%)
Type 317 (UNS S31700)
Bar
Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b)
A276 A276 A276
50 40 40
Type 317L (UNS S31703)
Bar
Annealed
—
65
Type 317LM
Bar,Plate,Sheet, Strip
Annealed
—
50
Type 329 (UNS S32900)
Bar
Annealed
—
50
Type 330HC
Bar,Wire,Strip
Annealed
—
65
(a) Up to 13 mm thick (b) Over 13 mm thick. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p364-366 (1993).
©2001 CRC Press LLC
8.33 Mechanical L Page 890 Wednesday, December 31, 1969 17:00
Table 275. REDUCTION IN
AREA OF FERRITIC STAINLESS STEELS
Type
ASTM Specification
Form
Condition
(%)
Type 405 (UNS S40500)
A580 A580
Wire
Annealed Annealed, Cold Finished
45 45
Type 429 (UNS S42900)
—
Bar
Annealed
65(a)
Type 430 (UNS S43000)
A276 A276
Bar
Annealed, Hot Finished Annealed, Cold Finished
45 45
Type 430Ti(UNS S43036) Type 434 (UNS S43400)
— —
Bar Wire
Annealed Annealed
65(a) 78(a)
Type 442 (UNS S44200)
—
Bar
Annealed
40(a)
Type 446 (UNS S44600)
A276 A276
Bar
Annealed, Hot Finished Annealed, Cold Finished
45 45
(a) Typical Values Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p368 (1993).
©2001 CRC Press LLC
8.33 Mechanical L Page 891 Wednesday, December 31, 1969 17:00
Table 276. REDUCTION IN
AREA OF HIGH–NITROGEN AUSTENITIC STAINLESS STEELS Type
ASTM Specification
Form
Condition
Reduction in Area (%)
Type 201 (UNS S20100)
A276
Bar
Annealed
45
Type 205 (UNS S20500)
—
Plate
Annealed*
62
Type 304HN (UNS S30452)
—
Bar
Annealed
50
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p367 (1993). *
Typical values
©2001 CRC Press LLC
8.33 Mechanical L Page 892 Wednesday, December 31, 1969 17:00
Table 277. REDUCTION IN
AREA OF PRECIPITATION -HARDENING AUSTENITIC STAINLESS STEELS Type
Form
Condition
Reduction in Area (%)
PH 13–8 Mo (UNS S13800)
Bar, Plate, Sheet, Strip
H950 H1000
45 45
15–5 PH (UNS S15500) and 17–4 PH (UNS S17400)
Bar, Plate, Sheet, Stript
H900 H925 H1025 H1075
35(a) 38(a) 45(a) 45(a)
H1100 H1150 H1150M
45(a) 50(a) 55(a)
RH950 TH1050
10 25
17–7 PH (UNS S17700)
Bar
(a) For flat rolled products, value generally lower and varies with thickness. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p371 (1993).
©2001 CRC Press LLC
8.33 Mechanical L Page 893 Wednesday, December 31, 1969 17:00
Table 278. REDUCTION IN
AREA OF MARTENSITIC STAINLESS STEELS (SHEET 1 OF 2)
Type
ASTM Specification
Form
Condition
Reduction in Area (%)
Type 403 (UNS S40300)
A276 A276 A276
Bar
Annealed, hot finished Annealed, cold finished Intermediate temper, hot finished
45 45 45
Intermediate temper, cold finished Hard temper, hot finished Hard temper, cold finished
40 40 40
Annealed, hot finished Annealed, cold finished Intermediate temper, hot finished
45 45 45
Intermediate temper, cold finished Hard temper, hot finished Hard temper, cold finished
40 40 40
Annealed, hot finished Annealed, cold finished Intermediate temper, hot finished Intermediate temper, cold finished
45 35 45 35
A276 A276 A276 Type 410 (UNS S41000)
A276 A276 A276
Bar
A276 A276 A276 Type 410Cb (UNS S41040)
A276 A276 A276 A276
Bar
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p369-370 (1993).
©2001 CRC Press LLC
8.33 Mechanical L Page 894 Wednesday, December 31, 1969 17:00
Table 278. REDUCTION IN
AREA OF MARTENSITIC STAINLESS STEELS (SHEET 2 OF 2)
Type
ASTM Specification
Form
Condition
Reduction in Area (%)
Type 414 (UNS S41400)
A276 A276
Bar
Intermediate temper, hot finished Intermediate temper, cold finished
45 45
Type 414L Type 420 (UNS S42000)
— —
Bar Bar
Annealed Tempered 205 °C
60 25
Type 422 (UNS S42200)
A565
Bar
for high-temperature service
30
Type 431 (UNS S43100)
— — —
Bar
Tempered 260 °C Tempered 595 °C Tempered 315 °C
55 57 20
Tempered 315 °C Tempered 315 °C
15 10
— —
Intermediate and hard tempers
Type 501 (UNS S50100)
— —
Bar, Plate
Annealed Tempered 540 °C
65 50
Type 502 (UNS S50200)
—
Bar, Plate
Annealed
70
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p369-370 (1993).
©2001 CRC Press LLC
8.34 Mechanical Page 895 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 279. REDUCTION IN
AREA OF COMMERCIALLY PURE TIN
Temperature (°C)
Reduction in Area (%)
Strained at 0.2 mm/m • min -200 -160 -120 -80 -40 0 23
6 10 97 100 100 100 100
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p488, (1993).
©2001 CRC Press LLC
Shackelford & Alexander
895
8.35 Mechanical L Page 896 Wednesday, December 31, 1969 17:00
Table 280. AREA
REDUCTION OF WROUGHT TITANIUM ALLOYS AT ROOM TEMPERATURE (SHEET 1 OF 2)
Class
Alloy
Condition
Reduction in Area (%)
Commercially Pure
99.5 Ti 99.2 Ti 99.1 Ti
Annealed Annealed Annealed
55 50 45
99.0 Ti 99.2Ti-0.2Pd Ti-0.8Ni-0.3Mo
Annealed Annealed Annealed
40 50 42
Alpha Alloys
Ti-5Al-2.5Sn
Annealed
40
Near Alpha Alloys
Ti-8Al-1Mo-1V Ti-11Sn-1Mo-2.25Al-5.0Zr-1Mo-0.2Si Ti-6Al-2Sn-4Zr-2Mo Ti-6Al-2Nb-1Ta-1Mo
Duplex Annealed Duplex Annealed Duplex Annealed As rolled 2.5 cm (1 in.) plate
28 35 35 34
Alpha-Beta Alloys
Ti-8Mn
Annealed
32
Ti-6Al-4V
Annealed Solution + age
30 25
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993).
©2001 CRC Press LLC
8.35 Mechanical L Page 897 Wednesday, December 31, 1969 17:00
Table 280. AREA
REDUCTION OF WROUGHT TITANIUM ALLOYS AT ROOM TEMPERATURE (SHEET 2 OF 2)
Class
Alloy
Condition
Reduction in Area (%)
Ti-6Al-4V(low O2)
Annealed
35
Ti-6Al-6V-2Sn
Annealed Solution + age
30 20
Ti-7Al-4Mo Ti-6Al-2Sn-4Zr-6Mo Ti-6Al-2Sn-2Zr-2Mo- 2Cr-0.25Si Ti-10V-2Fe-3Al
Solution + age Solution + age Solution + age Solution + age
22 23 33 19
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993).
©2001 CRC Press LLC
8.35 Mechanical L Page 898 Wednesday, December 31, 1969 17:00
Table 281. AREA
REDUCTION OF WROUGHT TITANIUM ALLOYS AT HIGH TEMPERATURE (SHEET 1 OF 3)
Class
Alloy
Condition
Test Temperature (°C)
Commercially Pure
99.5 Ti 99.2 Ti 99.1 Ti
Annealed Annealed Annealed
315 315 315
80 75 75
99.0 Ti 99.2Ti-0.2Pd
Annealed Annealed
315 315
70 75
Alpha Alloys
Ti-5Al-2.5Sn
Annealed
315
45
Near Alpha Alloys
Ti-8Al-1Mo-1V
Duplex Annealed
315 425 540
38 44 55
Ti-11Sn-1Mo-2.25Al-5.0Zr-1Mo-0.2Si
Duplex Annealed
315 425 540
44 48 50
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993).
©2001 CRC Press LLC
Reduction in Area (%)
8.35 Mechanical L Page 899 Wednesday, December 31, 1969 17:00
Table 281. AREA
REDUCTION OF WROUGHT TITANIUM ALLOYS AT HIGH TEMPERATURE (SHEET 2 OF 3)
Class
Alpha-Beta Alloys
Test Temperature (°C)
Reduction in Area (%)
Alloy
Condition
Ti-6Al-2Sn-4Zr-2Mo
Duplex Annealed
315 425 540
42 55 60
Ti-6Al-4V
Annealed Annealed Annealed
315 425 540
35 40 50
Solution + age Solution + age Solution + age
315 425 540
28 35 45
Ti-6Al-6V-2Sn
Annealed Solution + age
315 315
42 28
Ti-7Al-4Mo
Solution + age
315 425
50 55
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993).
©2001 CRC Press LLC
8.35 Mechanical L Page 900 Wednesday, December 31, 1969 17:00
Table 281. AREA
REDUCTION OF WROUGHT TITANIUM ALLOYS AT HIGH TEMPERATURE (SHEET 3 OF 3)
Class
Test Temperature (°C)
Reduction in Area (%)
Alloy
Condition
Ti-6Al-2Sn-4Zr-6Mo
Solution + age
315 425 540
55 67 70
Ti-6Al-2Sn-2Zr-2Mo- 2Cr-0.25Si
Solution + age
315
27
Ti-10V-2Fe-3Al
Solution + age
205 315
33 42
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993).
©2001 CRC Press LLC
8.36 Mechanical Page 901 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 282. STRENGTH
DENSITY RATIO OF GRAPHITE FIBER REINFORCED METALS Composite
Fiber content (vol%)
Strength / Density (106in)
Graphite(a)/lead Graphite(b)/lead Graphite(a)/zinc Graphite(a)/magnesium
41 35 35 42
0.385 0.260 0.580 1.016
(a) Thornel 75 fiber (b) Courtaulds HM fiber Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p148,(1994).
Table 283. MODULUS
DENSITY RATIO OF GRAPHITE FIBER REINFORCED METALS Composite
Fiber content (vol%)
Modulus/ Density (106in)
Graphite(a)/lead Graphite(b)/lead Graphite(a)/zinc Graphite(a)/magnesium
41 35 35 42
107.0 62.3 88.5 393.7
(a) Thornel 75 fiber (b) Courtaulds HM fiber Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p148,(1994).
©2001 CRC Press LLC
Shackelford & Alexander
901
8.36 Mechanical Page 902 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 284. VISCOSITY OF (SHEET 1 OF 15) Glass
Composition
SiO2 glass
SiO2-Na2O glass
GLASSES Viscosity
Temperature ˚C
12.6-14.4 logP 11.4-12.8 logP 10.4-11.83 logP 9.43-10.65 logP
1100 1200 1300 1400
8.54-9.52 logP 7.8-8.53 logP 7.1-7.65 logP
1500 1600 1700
6.43-6.9 logP 5.88-6.2 logP 5.2-5.4 logP
1800 1900 2000
(21.7 % mol Na2O)
4.28 logP
900
(21.7 % mol Na2O)
3.66 logP
1000
(21.7 % mol Na2O)
3.17 logP
1100
(21.7 % mol Na2O)
2.76 logP
1200
(21.7 % mol Na2O)
2.40 logP
1300
(21.7 % mol Na2O)
2.08 logP
1400
(23.8 % mol Na2O)
3.88 logP
900
(23.8 % mol Na2O)
3.28 logP
1000
(23.8 % mol Na2O)
2.82 logP
1100
(23.8 % mol Na2O)
2.44 logP
1200
(23.8 % mol Na2O)
2.10 logP
1300
(23.8 % mol Na2O)
1.84 logP
1400
(27.7 % mol Na2O)
4.33 logP
800
(27.7 % mol Na2O)
3.71 logP
900
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
902
CRC Handbook of Materials Science & Engineering
8.36 Mechanical Page 903 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 284. VISCOSITY OF (SHEET 2 OF 15)
GLASSES
Glass
Composition
Viscosity
Temperature ˚C
SiO2-Na2O glass
(27.7 % mol Na2O)
3.16 logP
1000
(27.7 % mol Na2O)
2.69 logP
1100
(27.7 % mol Na2O)
2.31 logP
1200
(27.7 % mol Na2O)
1.98 logP
1300
(27.7 % mol Na2O)
1.65 logP
1400
(31.7 % mol Na2O)
4.17 logP
800
(31.7 % mol Na2O)
3.45 logP
900
(31.7 % mol Na2O)
2.92 logP
1000
(31.7 % mol Na2O)
2.48 logP
1100
(31.7 % mol Na2O)
2.12 logP
1200
(31.7 % mol Na2O)
1.83 logP
1300
(31.7 % mol Na2O)
1.59 logP
1400
(33.7 % mol Na2O)
4.06 logP
800
(33.7 % mol Na2O)
3.39 logP
900
(33.7 % mol Na2O)
2.66 logP
1000
(33.7 % mol Na2O)
2.20 logP
1100
(33.7 % mol Na2O)
1.81 logP
1200
(33.7 % mol Na2O)
1.52 logP
1300
(36.3 % mol Na2O)
4.13 logP
800
(36.3 % mol Na2O)
3.40 logP
900
(36.3 % mol Na2O)
2.86 logP
1000
(36.3 % mol Na2O)
2.42 logP
1100
(36.3 % mol Na2O)
2.06 logP
1200
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC Shackelford & Alexander
903
8.36 Mechanical Page 904 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 284. VISCOSITY OF (SHEET 3 OF 15)
GLASSES
Glass
Composition
Viscosity
Temperature ˚C
SiO2-Na2O glass
(36.3 % mol Na2O)
1.76 logP
1300
(36.3 % mol Na2O)
1.51 logP
1400
(38.9 % mol Na2O)
3.91 logP
800
(38.9 % mol Na2O)
3.20 logP
900
(38.9 % mol Na2O)
2.63 logP
1000
(38.9 % mol Na2O)
2.18 logP
1100
(38.9 % mol Na2O)
1.78 logP
1200
(38.9 % mol Na2O)
1.47 logP
1300
(41.9 % mol Na2O)
3.56 logP
800
(41.9 % mol Na2O)
2.83 logP
900
(41.9 % mol Na2O)
2.29 logP
1000
(41.9 % mol Na2O)
1.85 logP
1100
(41.9 % mol Na2O)
1.50 logP
1200
(44.0 % mol Na2O)
3.65 logP
800
(44.0 % mol Na2O)
2.81 logP
900
(44.0 % mol Na2O)
2.24 logP
1000
(44.0 % mol Na2O)
1.80 logP
1100
(44.0 % mol Na2O)
1.43 logP
1200
(30.5% mol CaO) (30.5% mol CaO) (30.5% mol CaO)
13.6 P 10.4 P 8.5 P
1700 1750 1800
(34.5% mol CaO) (34.5% mol CaO)
10.0 P 7.8 P
1650 1700
SiO2-CaO glass
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
904
CRC Handbook of Materials Science & Engineering
8.36 Mechanical Page 905 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 284. VISCOSITY OF (SHEET 4 OF 15)
GLASSES
Glass
Composition
Viscosity
Temperature ˚C
SiO2-CaO glass
(34.5% mol CaO) (34.5% mol CaO)
6.05 P 4.5 P
1750 1800
(41.6% mol CaO) (41.6% mol CaO) (41.6% mol CaO)
9.35 P 6.48 P 4.68 P
1500 1550 1600
(41.6% mol CaO) (41.6% mol CaO) (41.6% mol CaO) (41.6% mol CaO)
3.57 P 2.75 P 2.16 P 1.8 P
1650 1700 1750 1800
(48.7% mol CaO) (48.7% mol CaO) (48.7% mol CaO)
4.35 P 3.17 P 2.41 P
1500 1550 1600
(48.7% mol CaO) (48.7% mol CaO) (48.7% mol CaO) (48.7% mol CaO)
1.90 P 1.50 P 1.20 P 0.99 P
1650 1700 1750 1800
(52.7% mol CaO) (52.7% mol CaO) (52.7% mol CaO)
3.03 P 2.20 P 1.66 P
1500 1550 1600
(52.7% mol CaO) (52.7% mol CaO) (52.7% mol CaO) (52.7% mol CaO)
1.28 P 1.01 P 0.83 P 0.72 P
1650 1700 1750 1800
(54.7% mol CaO) (54.7% mol CaO) (54.7% mol CaO)
2.57 P 1.39 P 1.40 P
1500 1550 1600
(54.7% mol CaO) (54.7% mol CaO)
1.10 P 0.90 P
1650 1700
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
Shackelford & Alexander
905
8.36 Mechanical Page 906 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 284. VISCOSITY OF (SHEET 5 OF 15)
GLASSES
Glass
Composition
Viscosity
Temperature ˚C
SiO2-CaO glass
(54.7% mol CaO) (54.7% mol CaO)
0.75 P 0.66 P
1750 1800
(57.7% mol CaO) (57.7% mol CaO)
1.13 P 0.90 P
1600 1650
(57.7% mol CaO) (57.7% mol CaO) (57.7% mol CaO)
0.74 P 0.62 P 0.54 P
1700 1750 1800
(35% mol PbO) (35% mol PbO) (35% mol PbO)
7380 P 1920 P 620 P
840 900 960
(35% mol PbO) (35% mol PbO) (35% mol PbO) (35% mol PbO)
302 P 164 P 100.0 P 62.0 P
1020 1080 1140 1200
(35% mol PbO) (35% mol PbO) (35% mol PbO) (35% mol PbO)
38.2 P 25.0 P 16.2 P 11.8 P
1260 1320 1380 1440
(40% mol PbO) (40% mol PbO) (40% mol PbO)
2970 P 830 P 329 P
780 840 900
(40% mol PbO) (40% mol PbO) (40% mol PbO)
164 P 91.0 P 51.8 P
960 1020 1080
(40% mol PbO) (40% mol PbO)
31.8 P 20.4 P
1140 1200
SiO2-PbO glass
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
906
CRC Handbook of Materials Science & Engineering
8.36 Mechanical Page 907 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 284. VISCOSITY OF (SHEET 6 OF 15)
GLASSES
Glass
Composition
Viscosity
Temperature ˚C
SiO2-PbO glass
(40% mol PbO) (40% mol PbO)
13.5 P 10.2 P
1260 1320
(46% mol PbO) (46% mol PbO) (46% mol PbO) (46% mol PbO)
2260 P 494 P 166 P 85.0 P
720 780 840 900
(46% mol PbO) (46% mol PbO) (46% mol PbO) (46% mol PbO)
47.4 P 29.4 P 18.6 P 12.7 P
960 1020 1080 1140
(46% mol PbO) (46% mol PbO) (46% mol PbO) (46% mol PbO)
8.8 P 6.3 P 5.2 P 4.9 P
1200 1260 1320 1380
(50% mol PbO) (50% mol PbO) (50% mol PbO)
21200 P 1600 P 292 P
600 660 720
(50% mol PbO) (50% mol PbO) (50% mol PbO) (50% mol PbO)
105 P 43.8 P 22.5 P 13.9 P
780 840 900 960
(50% mol PbO) (50% mol PbO) (50% mol PbO) (50% mol PbO)
8.8 P 6.0 P 4.3 P 2.9 P
1020 1080 1140 1200
(55% mol PbO) (55% mol PbO) (55% mol PbO)
51.0 P 22.4 P 12.6 P
720 780 840
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC Shackelford & Alexander
907
8.36 Mechanical Page 908 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 284. VISCOSITY OF (SHEET 7 OF 15)
GLASSES
Glass
Composition
Viscosity
Temperature ˚C
SiO2-PbO glass
(55% mol PbO) (55% mol PbO) (55% mol PbO)
7.10 P 4.44 P 3.00 P
900 960 1020
(55% mol PbO) (55% mol PbO) (55% mol PbO)
2.06 P 1.40 P 0.98 P
1080 1140 1200
(60% mol PbO) (60% mol PbO) (60% mol PbO) (60% mol PbO) (60% mol PbO) (60% mol PbO) (60% mol PbO) (60% mol PbO)
37.6 P 12.4 P 5.8 P 3.2 P 2.2 P 1.5 P 1.00 P 0.7 P
660 720 780 840 900 960 1020 1080
(64% mol PbO) (64% mol PbO) (64% mol PbO)
5.2 P 2.5 P 1.23 P
720 780 840
(64% mol PbO) (64% mol PbO) (64% mol PbO) (64% mol PbO)
1.00 P 0.70 P 0.50 P 0.30 P
900 960 1020 1080
(66.7% mol PbO) (66.7% mol PbO)
1.60 P 1.00 P
780 840
(66.7% mol PbO) (66.7% mol PbO) (66.7% mol PbO)
0.70 P 0.50 P 0.35 P
900 960 1020
(70% mol PbO) (70% mol PbO) (70% mol PbO)
1.80 P 1.17 P 0.80 P
720 780 840
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
908
CRC Handbook of Materials Science & Engineering
8.36 Mechanical Page 909 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 284. VISCOSITY OF (SHEET 8 OF 15)
GLASSES
Glass
Composition
Viscosity
Temperature ˚C
SiO2-PbO glass
(70% mol PbO) (70% mol PbO)
0.40 P 0.20 P
900 960
SiO2-Al2O3 glass
(37.1% mol Al2O3)
5.8 P
1850
(37.1% mol Al2O3)
4.1 P
1900
(37.1% mol Al2O3)
3.1 P
1950
(37.1% mol Al2O3)
2.5 P
2000
(37.1% mol Al2O3)
2.2 P
2050
(37.1% mol Al2O3)
1.9 P
2100
(46.9% mol Al2O3)
3.3 P
1850
(46.9% mol Al2O3)
2.4 P
1900
(46.9% mol Al2O3)
1.8 P
1950
(46.9% mol Al2O3)
1.5 P
2000
(46.9% mol Al2O3)
1.3 P
2050
(46.9% mol Al2O3)
1.2 P
2100
(70.2% mol Al2O3)
0.9 P
1950
(70.2% mol Al2O3)
0.8 P
2000
(70.2% mol Al2O3)
0.7 P
2050
(70.2% mol Al2O3)
0.6 P
2100
(6.2% mol B2O3)
33.0 kP
1763
(6.2% mol B2O3)
26.6 kP
1783
(6.2% mol B2O3)
16.9 kP
1815
(6.2% mol B2O3)
13.1 kP
1840
(10.1% mol B2O3)
13.3 kP
1727
(10.1% mol B2O3)
11.2 kP
1730
SiO2-B2O3 glass
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC Shackelford & Alexander
909
8.36 Mechanical Page 910 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 284. VISCOSITY OF (SHEET 9 OF 15) Glass SiO2-B2O3 glass
GLASSES
Composition
Viscosity
Temperature ˚C
(10.1% mol B2O3)
10.9 kP
1736
(10.1% mol B2O3)
11.4 kP
1738
(10.1% mol B2O3)
11.0 kP
1740
(10.1% mol B2O3)
9.07 kP
1757
(10.1% mol B2O3)
8.57 kP
1768
(10.1% mol B2O3)
7.78 kP
1775
(10.1% mol B2O3)
6.54 kP
1778
(10.1% mol B2O3)
5.83 kP
1792
(14.5% mol B2O3)
3.51 kP
1691
(14.5% mol B2O3)
3.37 kP
1693
(14.5% mol B2O3)
2.63 kP
1720
(14.5% mol B2O3)
2.45 kP
1725
(14.5% mol B2O3)
1.92 kP
1752
(14.5% mol B2O3)
1.85 kP
1757
(14.5% mol B2O3)
1.47 kP
1778
(14.5% mol B2O3)
1.45 kP
1783
(14.5% mol B2O3)
1.17 kP
1797
(14.5% mol B2O3)
1.14 kP
1800
(14.5% mol B2O3)
1.12 kP
1802
(14.5% mol B2O3)
1.00 kP
1812
(14.5% mol B2O3)
0.97 kP
1816
(25.2% mol B2O3)
127.0 kP
1303
(25.2% mol B2O3)
89.8 kP
1329
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
910
CRC Handbook of Materials Science & Engineering
8.36 Mechanical Page 911 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 284. VISCOSITY OF GLASSES (SHEET 10 OF 15) Glass SiO2-B2O3 glass
Composition
Viscosity
Temperature ˚C
(25.2% mol B2O3)
67.4 kP
1355
(25.2% mol B2O3)
44.5 kP
1376
(25.2% mol B2O3)
32.0 kP
1418
(25.2% mol B2O3)
21.9 kP
1444
(42.4% mol B2O3)
-2.37+9823/T log P
1100-1460
(53.1% mol B2O3)
-1.96+8239/T log P
1380-1530
(62.4% mol B2O3)
-1.99+7687/T log P
1280-1460
(71.9% mol B2O3)
-1.24+5740/T log P
1130-1410
(75.4 % mol B2O3)
119000 P
530
(75.4 % mol B2O3)
15230 P
630
(75.4 % mol B2O3)
3400 P
800
(79.7 % mol B2O3)
49500 P
530
(79.7 % mol B2O3)
9300 P
630
(79.7 % mol B2O3)
1400 P
800
(81.9% mol B2O3)
11.61-14.06 log P
243-306
(82.5% mol B2O3)
0.90+4576/T log P
1050-1360
(86.3 % mol B2O3)
17000 P
530
(86.3 % mol B2O3)
4000 P
630
(86.3 % mol B2O3)
425 P
800
(90.0% mol B2O3)
0.42+3434/T log P
1030-1360
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC Shackelford & Alexander
911
8.36 Mechanical Page 912 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 284. VISCOSITY OF GLASSES (SHEET 11 OF 15) Glass
Composition
Viscosity
Temperature ˚C
SiO2-B2O3 glass
(90.4 % mol B2O3)
15300 P
530
(90.4 % mol B2O3)
4400 P
630
(90.4 % mol B2O3)
565 P
800
(93.1 % mol B2O3)
7150 P
530
(93.1 % mol B2O3)
2200 P
630
(93.1 % mol B2O3)
420 P
800
(93.91% mol B2O3)
0.68+3655/T log P
1070-1350
(97.7 % mol B2O3)
6900 P
530
(97.7 % mol B2O3)
2730 P
630
(97.7 % mol B2O3)
410 P
800
9.799 log P 8.602 log P 7.602 log P 6.415 log P
325 350 375 411
5.484 log P 4.611 log P 4.029 log P 3.561 log P
450 500 550 600
2.959 log P 2.549 log P 2.245 log P 2.000 log P
700 800 900 1000
1.785 log P 1.603 log P 1.462 log P 1.335 log P
1100 1200 1300 1400
B2O3 glass
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
912
CRC Handbook of Materials Science & Engineering
8.36 Mechanical Page 913 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 284. VISCOSITY OF GLASSES (SHEET 12 OF 15) Glass
Viscosity
Temperature ˚C
4.65 P 3.87 P
1829 1863
(32.0 % mol CaO) (32.0 % mol CaO) (32.0 % mol CaO) (32.0 % mol CaO)
12.51 log P 12.02 log P 10.64 log P 9.17 log P
646.5 654.8 674.8 697.2
(34.0 % mol CaO) (34.0 % mol CaO) (34.0 % mol CaO) (34.0 % mol CaO)
11.32 log P 10.68 log P 9.88 log P 10.51 log P
656.1 667.1 681.3 671.3
(34.0 % mol CaO) (34.0 % mol CaO) (34.0 % mol CaO) (34.0 % mol CaO)
11.60 log P 10.48 log P 9.09 log P 11.37 log P
653.6 668.9 691.5 657.2
(55.0 % mol CaO) (55.0 % mol CaO) (55.0 % mol CaO) (55.0 % mol CaO)
12.92 log P 9.84 log P 7.32 log P 5.38 log P
650 700 750 800
(55.0 % mol CaO) (55.0 % mol CaO) (55.0 % mol CaO) (55.0 % mol CaO) (55.0 % mol CaO)
2.60 log P 1.96 log P 1.38 log P 0.96 log P 0.74 log P
900 950 1000 1050 1100
(5% mol Na2O)
7.83x1014 P
285
(5% mol Na2O)
5.86x1013 P
300
Composition
B2O3 glass
B2O3-CaO glass
B2O3-Na2O glass
(5% mol Na2O)
1.99x10 P
309
(9.9% mol Na2O)
3.371 log P
630
(9.9% mol Na2O)
3.095 log P
650
(9.9% mol Na2O)
2.586 log P
700
13
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC Shackelford & Alexander
913
8.36 Mechanical Page 914 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 284. VISCOSITY OF GLASSES (SHEET 13 OF 15) Glass
Composition
Viscosity
Temperature ˚C
B2O3-Na2O glass
(9.9% mol Na2O)
2.181 log P
750
(9.9% mol Na2O)
1.884 log P
800
(9.9% mol Na2O)
1.647 log P
850
(9.9% mol Na2O)
1.569 log P
870
(10% mol Na2O)
1.28x1015 P
328
(10% mol Na2O)
1.41x1014 P
340
(10% mol Na2O)
2.06x1013 P
351
(12.8% mol Na2O)
3.566 log P
630
(12.8% mol Na2O)
3.257 log P
650
(12.8% mol Na2O)
2.695 log P
700
(12.8% mol Na2O)
2.252 log P
750
(12.8% mol Na2O)
1.923 log P
800
(12.8% mol Na2O)
1.661 log P
850
(12.8% mol Na2O)
1.574 log P
870
(15% mol Na2O)
1.44x1015 P
381
(15% mol Na2O)
1.65x1014 P
394
(15% mol Na2O)
2.75x10 P
405
(15.1% mol Na2O)
3.825 log P
630
(15.1% mol Na2O)
3.457 log P
650
(15.1% mol Na2O)
2.818 log P
700
(15.1% mol Na2O)
2.319 log P
750
(15.1% mol Na2O)
1.942 log P
800
(15.1% mol Na2O)
1.652 log P
850
(15.1% mol Na2O)
1.560 log P
870
13
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
914
CRC Handbook of Materials Science & Engineering
8.36 Mechanical Page 915 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 284. VISCOSITY OF GLASSES (SHEET 14 OF 15) Glass
Composition
Viscosity
Temperature ˚C
B2O3-Na2O glass
(17.5% mol Na2O)
4.050 log P
630
(17.5% mol Na2O)
3.623 log P
650
(17.5% mol Na2O)
2.881 log P
700
(17.5% mol Na2O)
2.332 log P
750
(17.5% mol Na2O)
1.931 log P
800
(17.5% mol Na2O)
1.633 log P
850
(17.5% mol Na2O)
1.545 log P
870
(19.7% mol Na2O)
4.110 log P
630
(19.7% mol Na2O)
3.712 log P
650
(19.7% mol Na2O)
2.945 log P
700
(19.7% mol Na2O)
2.324 log P
750
(19.7% mol Na2O)
1.875 log P
800
(19.7% mol Na2O)
1.540 log P
850
(19.7% mol Na2O)
1.435 log P
870
(20% mol Na2O)
5.19x1015 P
435
(20% mol Na2O)
1.31x1014 P
445
(20% mol Na2O)
1.57x10 P
457
(21.9% mol Na2O)
4.185 log P
630
(21.9% mol Na2O)
3.746 log P
650
(21.9% mol Na2O)
2.951 log P
700
(21.9% mol Na2O)
2.324 log P
750
(21.9% mol Na2O)
1.810 log P
800
(21.9% mol Na2O)
1.506 log P
850
(21.9% mol Na2O)
1.392 log P
870
13
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC Shackelford & Alexander
915
8.36 Mechanical Page 916 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 284. VISCOSITY OF GLASSES (SHEET 15 OF 15) Glass
Composition
Viscosity
Temperature ˚C
B2O3-Na2O glass
(24.0% mol Na2O)
4.050 log P
630
(24.0% mol Na2O)
3.598 log P
650
(24.0% mol Na2O)
2.824 log P
700
(24.0% mol Na2O)
2.228 log P
750
(24.0% mol Na2O)
1.782 log P
800
(24.0% mol Na2O)
1.455 log P
850
(24.0% mol Na2O)
1.344 log P
870
(25% mol Na2O)
6.67x1014 P
445
(25% mol Na2O)
1.29x1014 P
455
(25% mol Na2O)
1.31x1013 P
466
(26.4% mol Na2O)
3.865 log P
630
(26.4% mol Na2O)
3.448 log P
650
(26.4% mol Na2O)
2.679 log P
700
(26.4% mol Na2O)
2.086 log P
750
(26.4% mol Na2O)
1.684 log P
800
(26.4% mol Na2O)
1.395 log P
850
(26.4% mol Na2O)
1.300 log P
870
(30% mol Na2O)
2.12x1015 P
448
(30% mol Na2O)
8.06x1014 P
457
(30% mol Na2O)
13
1.02x10 P
467
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
916
CRC Handbook of Materials Science & Engineering
8.36 Mechanical Page 917 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 285. INTERNAL
FRICTION OF SIO2 GLASS
Glass
Internal Friction
Temperature
SiO2 glass
4-80x10-7
100˚C 200˚C 300˚C 400˚C 500˚C 600˚C 700˚C 800˚C 900˚C 1000˚C
2-60x10-7 2.5-30x10-7 3.5-9x10-7 4.5-5x10-7 5.5-9x10-7 8-15x10-7 10.5-50x10-7 13.5-95x10-7 15-150x10-7
Frequency
(1.6 MHz) (1.6 MHz) (1.6 MHz) (1.6 MHz) (1.6 MHz) (1.6 MHz) (1.6 MHz) (1.6 MHz) (1.6 MHz) (1.6 MHz)
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC Shackelford & Alexander
917
8.36 Mechanical Page 918 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 286. SURFACE
TENSION OF ELEMENTS AT MELTING (SHEET 1 OF 6)
Purity
σmp
Element
(wt. %)
(dyn/cm)
Atmosphere
Ag
99.7 99.99 99.99 99.99
863±25 (785) 860±20 865
Ar vac. Ar vac.
99.99 99.99 99.999 99.999
(825) 866 (828) 873
Ar He vac. He
spect. pure spect. pure
921 918
99.999 99.999
(754) 1130 (731)
vac. He vac.
B
99.8
1060±50
vac.
Ba
99.5
276
Bi
99.9 99.98 99.98
380±10 378 380±10
Ar vac., Ar, H2 Ar
99.99 99.999 99.99995
376 380±3 375
vac. Ar
Ca
p.a.
360
Cd
99.9
(550±10) (525±30) 590±5
Au
99.9999
Ar H2 —
Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23.
©2001 CRC Press LLC
918
CRC Handbook of Materials Science & Engineering
8.36 Mechanical Page 919 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 286. SURFACE
TENSION OF ELEMENTS AT MELTING (SHEET 2 OF 6)
Purity
σmp
Element
(wt. %)
(dyn/cm)
Atmosphere
Co
99.99 99.9983
(1520) 1880
H2, He vac.
Cr
99.9997
1700±50
Ar
Cs
99.995
68.6
He
Cu
99.9 99.9 99.98 99.98
(11802±40) (1127) (1085 ) 1270
Ar vac. vac. vac.
99.997 99.997 99.997 99.99999
1352 1355 1358 1300
vac. He, H2 Ar vac.
99.69 99.85 99.93
1760±20 (1619) (1510)
He, H2 vac. vac.
99.93 99.985 99.99
1860±40 (1560) (1384)
He vac.
99.99 99.99 99.9992 99.9998
(1650) (1700) 1773 1880
He, H2 vac. He, H2 vac.
Fr
99.9998
718 650 632±5
vac., Al2O3 vac. N2, He
Hf
97.5±2.5
1630
vac.
Fe
Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23.
©2001 CRC Press LLC Shackelford & Alexander
919
8.36 Mechanical Page 920 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 286. SURFACE
TENSION OF ELEMENTS AT MELTING (SHEET 3 OF 6)
Purity
σmp
Element
(wt. %)
(dyn/cm)
Atmosphere
In
99.95 99.995
559 556.0
H2 Ar, He
Ir
99.9980
2250
vac.
K
99.895 99.895 99.895
101 110.3± 1 117
Ar — vac.
99.936 99.936 99.97±0.64 99.986
(79.2) 95 ±9.5 111.35 116.95
He — He Ar
Mg
99.5 99.91
583 (525±10)
— Ar
Mn
99.9985
1100 ± 50
Ar
Mo
99.7 99.98 99.98 99.9996
2080 2049 2130 2250
vac. vac. vac. vac.
Na
99.96 99.982 99.995 99.995 99.995
210.12 187.4 191 200.2 ±0.6 202
Ar He Ar — vac.
Nb, Cb
99.99 99.9986
2020 1900
vac. vac.
688
Ar
Nd Values in parentheses are less certain.
Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23.
©2001 CRC Press LLC
920
CRC Handbook of Materials Science & Engineering
8.36 Mechanical Page 921 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 286. SURFACE
TENSION OF ELEMENTS AT MELTING (SHEET 4 OF 6)
Purity
σmp
Element
(wt. %)
(dyn/cm)
Atmosphere
Ni
99.7 99.999 99.999
1725 1770±13 1728±10
vac. vac. vac.
99.999 99.999 99.999
1822±8 (1670) 1760
vac. vac. vac.
99.999 99.99975 –
(1687) (1977) 1809±20
vac. He H2, He,
Os
99.9998
2500
vac.
Pb
99.9 99.98 99.98
(410±5) 450 451
Ar He vac.
99.998 99.999 99.9995
480 470 470
H2 Ar
Pd
— 99.998 99.998
1470 1500 1460
vac. vac. He
Pt
— 99.84 99.9980
1869 (1740±20) 1865
CO2 vac. vac.
Rb
— — 99.92 99.997
(77±5) 99.8 91 17 85.7
vac. Ar Ar He
Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23.
©2001 CRC Press LLC Shackelford & Alexander
921
8.36 Mechanical Page 922 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 286. SURFACE
TENSION OF ELEMENTS AT MELTING (SHEET 5 OF 6)
Purity
σmp
Element
(wt. %)
(dyn/cm)
Atmosphere
Re
99.4 99.9999
2610 2700
vac. vac.
Ru
99.9980
2250
vac.
Rh
— 99.9975
1940 2000
vac. vac.
S
—
60.9
vac.
Sb
99.15 99.5 99.99
395±20 383 395±20
Ar H2, N2 Ar
Sn
99.89 99.89 99.9
543.7 562 (526±10)
— vac. Ar
99.96 99.96 99.99 99.99
552 552 537 530
vac. Ar vac. He
99.998 99.998 99.999 99.999
566 610 590 555.8±1.9
H2 vac. vac. —
Sr
99.5
303
Ta
99.9 99.9983 — — —
(1884) 2150 2360 2030 1910
vac. vac. vac. vac. vac.
Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23.
©2001 CRC Press LLC
922
CRC Handbook of Materials Science & Engineering
8.36 Mechanical Page 923 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 286. SURFACE
TENSION OF ELEMENTS AT MELTING (SHEET 6 OF 6)
Purity
σmp
Element
(wt. %)
(dyn/cm)
Atmosphere
Te
99.4 —
186±2 178
Ar —
Ti
98.7 99.69
1510 1402
vac. vac.
99.92 99.92 99.9991
1390 1460 1650
Ar vac. vac.
Tl
— 99.999
464.5 467
Ar —
U
99.94 — —
(1294) 1500±75 1550
vac. — Ar
V
99.9977 —
1950 (1760)
vac. vac.
W
99.8 99.9 99.9999 —
2220 (2000) 2500 2310
vac. vac. vac. vac.
Zn
99.9 99.99 99.999 99.9999
750 ±20 757.0±5 761.0 767.5
Ar vac. vac. vac.
Zr
— 99.5 99.7 99.9998
1400 1411±70 (1533) 1480
Ar vac. vac. vac.
Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23.
©2001 CRC Press LLC
Shackelford & Alexander
923
8.36 Mechanical Page 924 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 287. SURFACE
TENSION OF LIQUID ELEMENTS* (SHEET 1 OF 15)
Purity
σt
Temperature
Element
(wt. %)
(dyn/cm)
•C
Ag
99.7
σ = (863+25) – 0.33 (t–tmp)
99.96
Atmosphere
Ar H2
893 862 849 908
1000 1150 1250 1000
vac.
99.72
840
950
vac.
99.99
890 916
1000 1000
Ar, H2 H2
σ = 865–0.14 (t–tmp) σ = 825–0.05 (T–993) * σ = 866–0.15 (t–tmp)
vac. Ar He
99.995
907 894 876
1000 1100 1200
H2
99.999
905±10 890±10 725
980 1108 1600
Ar
σ = 1136– 0.174 T σ = 918–0.149 (t–tmp)
(valid 1300 to 2200 K)
σ = 873–0.15 (t–tmp) spect. pure
He
* T in Kelvin (t in ˚C). Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23.
©2001 CRC Press LLC
924
CRC Handbook of Materials Science & Engineering
8.36 Mechanical Page 925 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 287. SURFACE
TENSION OF LIQUID ELEMENTS* (SHEET 2 OF 15)
Purity
σt
Temperature
Element
(wt. %)
(dyn/cm)
•C
Atmosphere
Au
99.999
1130±10 1070 1020
1108 1200 1300
Ar He
Ba
–
720
Ar
224
99.5
σ = 351–0.075 T
(valid 1410 to 1880 K) *
Be
99.98
1100
1500
vac.
Bi
99.9
362 350
350 700
Ar vac.
99.90
343 328 (382)
800 1000 450
H2 vac.
380 379
450 300
– vac.
σ = 380–0.142 (t–tmp) σ = 423–0.088 T
(valid MP to 555•C) (valid 1352 to 1555 K) *
99.98
99.999 99.99995 Ca
Cd
–
337
850
Ar
Ar
p.a.
σ = 472–0.100 T
(valid 1445 to 1655 K) *
99.9
604
390
Ar
99.99
1836 1800
1550 1520
Ar vac., Al2O3
99.99 99.99
(1630) (1640)
1520 1520
He,Al2O3 He, BeO
Co
* T in Kelvin (t in ˚C). Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23.
©2001 CRC Press LLC Shackelford & Alexander
925
8.36 Mechanical Page 926 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 287. SURFACE
TENSION OF LIQUID ELEMENTS* (SHEET 3 OF 15)
Purity
σt
Temperature
Element
(wt. %)
(dyn/cm)
•C
Atmosphere
Co (Con’t)
99.99 99.99 99.99 99.99
99.99
(1560) 1780 (1620) (1590) 1870 1815 1812
1520 1520 1520 1520 1500 1600 1600
He, MgO H, Al2O3 He H2 vac. vac. vac., Al2O3
99.99 99.99
1845 1780
1550 1550
H2, He
– 99.9997
1590±50
1950
vac. Ar
68.4 67.5 62.9
62 62 146
Ar Ar
69.5 42.8 34.6
39 494 642
Ar
σ = 68.6–0.047 (t–tmp)
(valid 52 to 1100•C)
He
1269±20 1285±10
1120 1120
Ar Ar
1220 1370 (1130)
1100 1150 1183
Ar vac. Ar
Cr
Cs
99.95
99.995 Cu
99.9
* T in Kelvin (t in ˚C). Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23.
©2001 CRC Press LLC
926
CRC Handbook of Materials Science & Engineering
8.36 Mechanical Page 927 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 287. SURFACE
TENSION OF LIQUID ELEMENTS* (SHEET 4 OF 15)
Purity
σt
Temperature
Element
(wt. %)
(dyn/cm)
•C
Atmosphere
Cu (Con’t)
99.99
σ = 73.74– 1.791 • 10–2 (t– tmp)
(t–tmp)3
(valid 71 to 1011•C)
Ar
1301 1295 1287
1100 1165 1255
H2
1285 1298 1230
1120 1440 1600
vac.
1290 1300
1250 1250
He H2 He, H2
–9.610 • 10–5
(t–tmp)2 + 6.629 • 10–8
99.98
99.98 99.99 99.99 99.997
Ar
99.997
σ = 1352–0.17 (t–tmp)
vac.
99.997
σ = 1358–0.20 (t–tmp)
Ar
99.99
1285±10 1320
1120 1100
Ar, He Ar, H2
99.99
1265
1550
H2, He
99.999
1341 1338 1335
1100 1150 1200
N2
* T in Kelvin (t in ˚C). Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23.
©2001 CRC Press LLC Shackelford & Alexander
927
8.36 Mechanical Page 928 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 287. SURFACE
TENSION OF LIQUID ELEMENTS* (SHEET 5 OF 15)
Purity
σt
Temperature
Element
(wt. %)
(dyn/cm)
•C
Atmosphere
Cu (Con’t)
99.99999
1268±60
1130
vac.
Fe
Armco
1795 1754
1550 1550
Ar, N2 vac.
99.69
(1727)
1550
He, Al2O3
(1734)
1550
H2, Al2O3
σ = 1760–0.35 (t–tmp)
Fr
He, H2
99.94 99.97 99.985 99.987
(1710) 1830±6 1788 (1730)
1560 1550 1550 1550
vac., Al2O3 vac., BeO Ar vac.
99.99
(1610) (1430) (1400) 1865 (1430) (1400) (1640)
1650 1650 1650 1550 1650 1650 1650
He He H2 vac., He He H
99.9992
σ = 773+0.65 t
(valid 1550 to 1780•C)
He, H2
—
58.4
100
— —
718 559
350 1500
99.9998
σ = 718–0.101 (t–tmp)
Ar vac. He, Al2O3
vac., Al2O3
* T in Kelvin (t in ˚C). Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23.
©2001 CRC Press LLC
928
CRC Handbook of Materials Science & Engineering
8.36 Mechanical Page 929 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 287. SURFACE
TENSION OF LIQUID ELEMENTS* (SHEET 6 OF 15)
Purity
σt
Temperature
Element
(wt. %)
(dyn/cm)
•C
Atmosphere
Fr (Con’t)
99.9998 (Con’t)
530 650
1200 1000
vac. vac.
(437) (350.5)
20 21
476 472 (464) (516)
25 25 25 25
(435) 488 (498) 476
25 25 25 25
484±1.5 484.9±1.8 449.7 387.1
25 25 103 350
(410) (435.5) (454.7) (542)
16 20 20 20
air air Ar H
473 476
19 25
H2 H2
472 (402) (432) (436)
20 20 20 20
vac vac vac vac.
Hg
* T in Kelvin (t in ˚C). Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23.
©2001 CRC Press LLC Shackelford & Alexander
929
8.36 Mechanical Page 930 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 287. SURFACE
TENSION OF LIQUID ELEMENTS* (SHEET 7 OF 15)
Element
Purity
σt
Temperature
(wt. %)
(dyn/cm)
•C
Atmosphere
480 (420) (410) (455)
20 20 20 20
vac. vac. vac. vac.
(465.2) 485.5±1.0 (468) 473
20 20 22 25
vac. vac. vac. vac.
Hg (Con’t)
σ = 489.5–0.20 t 99.9 487 487.3 (500±15) 484.6±1.3
–10 16.5 20 20
482.5 ± 3.0 484.9±0.3 (465) 482.8±9.7
20 21.5 22 23–25
483.5±1.0 485.1 485.4±1.2 480
25 25 25 25
σ=468.7–1.61 • 10–1t–1.815 •10–2 t2 σ = 485.5 – 0.149 t–2.84 • 10–4 t2 * T in Kelvin (t in ˚C). Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23.
©2001 CRC Press LLC
930
CRC Handbook of Materials Science & Engineering
8.36 Mechanical Page 931 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 287. SURFACE
TENSION OF LIQUID ELEMENTS* (SHEET 8 OF 15)
Purity
σt
Temperature
Element
(wt. %)
(dyn/cm)
•C
Hg (Con’t)
99.99
475
20
In
99.95
515 540
600 623
H2
99.995
592 514 541
185 600 300
vac H2
99.999
556 535 527.8 539
200 400 550 350
Ar
99.9994
K
99.9999
σ = 568.0–0.04 t–7.08 • 10–5 t2
99.895
σ = 117– 0.66 (t–tmp)
vac.
vac.
112 80 64.8
99.986
Atmosphere
87 457 677
σ = 116.95– 6.742 •10–2 (t– tmp)
Ar
– 3.836 •10–5 (t–tmp)2 + 3.707 •10– 8(t–t )3 mp 99.936
(valid 77 to 983•C)
Ar
(valid 600 to 1126•C)
He
(σ = 76.8–70.3
• 10–4 (t–400))
* T in Kelvin (t in ˚C). Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23.
©2001 CRC Press LLC
Shackelford & Alexander
931
8.36 Mechanical Page 932 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 287. SURFACE
TENSION OF LIQUID ELEMENTS* (SHEET 9 OF 15)
Purity
σt
Temperature
Element
(wt. %)
(dyn/cm)
•C
Atmosphere
K (Con’t)
99.97±0.64
σ = 115.51– 0.0653 t
(valid 70 to 713•C)
He
Li
99.95
397.5 380 351.5
180 300 500
Ar
99.98
386 275 253
287 922 1077
Ar
σ = 721–0.149 T*
(valid 1125 to 1326•K)
99.8
552 542 528
670 700 740
N2
99.9
550±15
700
Ar
Mn
99.94
1030 1010
1550 1550
vac.
Na
99.982
σ = 144–0.108 (t–500)
(valid 400 to 1125•C)
198 198.5 190
123 129 140
σ = 202– 0.092(t–tmp)
(valid 100 to 1000˚C)
Mg
99.5
99.995
He vac.
vac
* T in Kelvin (t in ˚C). Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23.
©2001 CRC Press LLC
932
CRC Handbook of Materials Science & Engineering
8.36 Mechanical Page 933 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 287. SURFACE
TENSION OF LIQUID ELEMENTS* (SHEET 10 OF 15)
Purity
σt
Temperature
Element
(wt. %)
(dyn/cm)
•C
Atmosphere
Na (Con’t)
99.96
σ = 210.12– 8.105 • 10–2 (t– tmp)
+ 3 .380 • 10 –8 (t–tmp)3
(valid 141 to 992•C)
Ar
144 130 120.4
617 764 855
Ar
674
1186
Ar
(1615) (1570)
1470 1470
He H2
1735 1725 (1934)
1470 1475 1550
vac. vac. Ar
(1490) (1500) (1530)
1470 1470 1470
He He, BeO He, MgO
(1530)
1470
H2
(1600) (1650)
1520 1530
H2,Al2O3 H2
1700 1720 1705
1470 1500 1640
H2, He vac. vac.
– 8.064 •10–5 (t–tmp)2
p.a.
Nd Ni
99.7
99.99
* T in Kelvin (t in ˚C). Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23.
©2001 CRC Press LLC
Shackelford & Alexander
933
8.36 Mechanical Page 934 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 287. SURFACE
TENSION OF LIQUID ELEMENTS* (SHEET 11 OF 15)
Purity
σt
Temperature
Element
(wt. %)
(dyn/cm)
•C
Ni (Con’t)
99.99 (Con’t)
1740
1520
vac., Al2O3
1770
1520
He,Ar,Al2O3
1780
1550
vac., Al2O3
1810
1560
vac., Al2O3
1745
1500
He
σ = 1665 + 0.215 t
(valid 1475 to 1650•C)
He
69.7 64.95
50 68.7
99.9
388 445
1000 350
H2 Ar
99.98
448 442
340 390
H, N2
439
440
452
360
air
442 435 440 450
340 400 425 350–450
vac.
428 474 455
700 623 362
vac. H2 vac.
99.999
99.99975 P(white)
Pb
Atmosphere
99.998
σ = 1770–0.39 (t–1550)
* T in Kelvin (t in ˚C). Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23.
©2001 CRC Press LLC
934
CRC Handbook of Materials Science & Engineering
8.36 Mechanical Page 935 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 287. SURFACE
TENSION OF LIQUID ELEMENTS* (SHEET 12 OF 15)
Purity
σt
Temperature
Element
(wt. %)
(dyn/cm)
•C
Atmosphere
Pb (Con’t)
99.999
456 310
390 1600
He
σ = 470–0.164 (t–tmp)
(valid mp to 535•C)
Ar
450
vac
99.9994
Pt
438
99.9995
σ = 538–0.114 T*
(valid 1440 to 1970•K)
99.999
(1699±20)
1800
Ar
84 55 46.8
52 477 632
Ar
– 3.830 • 10–8 (t–tmp)3
(valid 1104 to 1006•C)
Ar
99.997
σ = 85.7– 0.054 (t–tmp)
(valid 53 to 1115•C)
He
–
51.1
250
vac.
349 349 368
640 700 750
H2
Rb
99.92
σ = 91.17– 9.189 10–2 (t– tmp) + 7.228 • 10–5 (t–tmp)2
S Sb
* T in Kelvin (t in ˚C). Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23.
©2001 CRC Press LLC
Shackelford & Alexander
935
8.36 Mechanical Page 936 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 287. SURFACE
TENSION OF LIQUID ELEMENTS* (SHEET 13 OF 15)
Element
Purity
σt
Temperature
(wt. %)
(dyn/cm)
•C
361 342 348
900 974 1100
367.9 364.9
640 762
vac.
99.5
384 380
675 800
H2, N2
99.995
350.2 347.6 345.0
650 700 800
Ar
99.999
359 35l 345 320
800 1000 1100 l600
N2
–
88.0±5
230–250
Ar
99.99 99.9999
725 720 750 825
l450 1550 1550 1500
He vac. vac. Ar
99.9
600
290
vac.
99.93
549 539 526
250 400 600
vac.
1000
vac.
(valid MP to 500•C)
Ar
Sb (Con’t)
Se Si
Sn
99.96
470
σ =552–0.l67 (t–tmp)
Atmosphere
He
* T in Kelvin (t in ˚C). Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23.
©2001 CRC Press LLC
936
CRC Handbook of Materials Science & Engineering
8.36 Mechanical Page 937 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 287. SURFACE
TENSION OF LIQUID ELEMENTS* (SHEET 14 OF 15)
Purity
σt
Temperature
Element
(wt. %)
(dyn/cm)
•C
Atmosphere
Sn (Con’t)
99.965
508 489.5 479.5
740 950 1115
H2
99.89 99.99
554 524 508
300 500 600
vac. vac.
543 528 503 536
489 572 692 250
H2
530 545 530
450 250 600
H2, He
99.998
559 500 538 546
623 800 300 290
H2 vac. – –
99.999
(520) (524)
290 290
H2 vac.
537 552.7
350 246
vac. H2
σ = 566.84 – 4.76 • 10–2 t 99.9994 99.9999
* T in Kelvin (t in ˚C). Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23.
©2001 CRC Press LLC Shackelford & Alexander
937
8.36 Mechanical Page 938 Wednesday, December 31, 1969 17:00
Mechanical Properties
Table 287. SURFACE
TENSION OF LIQUID ELEMENTS* (SHEET 15 OF 15)
Element
Purity
σt
Temperature
(wt. %)
(dyn/cm)
•C
Atmosphere
288 282 282
775 830 893
Ar
Sr
Te
99.5
σ = 392–0.085 T
(valid 1152 to 1602 K)
99.4 –
178±1.5 (162)
460 475
vac. vac.
σ = 178–0.024 (t–tmp)
Ti
99.0 99.99999
1576 1588
1680 1680
vac. vac.
Tl
–
450
450
vac.
99.999
450 ( σ = 536 –
450
vac.
0.119 T )*
(valid 1270 to 1695•K)
* T in Kelvin (t in ˚C). Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23. *
The data are a compilation of several studies and measurements were obtained from the “sessile drop”, “maximum bubble pressure” ,and the “pendant drop” methods. The accuracy varies with both method and the study.
©2001 CRC Press LLC
938
CRC Handbook of Materials Science & Engineering
Shackelford, James F. & Alexander, W. “Electrical Properties of Materials” Materials Science and Engineering Handbook Ed. James F. Shackelford & W. Alexander Boca Raton: CRC Press LLC, 2001
9.0 E&M Page 939 Wednesday, December 31, 1969 17:00
CHAPTER 7
List of Tables
Electrical Properties of Materials
Conductivity and Resistivity Electrical Conductivity of Metals Electrical Resistivity of Metals Electrical Resistivity of Alloy Cast Irons Resistivity of Ceramics Volume Resistivity of Glass Volume Resistivity of Polymers Critical Temperature Critical Temperature of Superconductive Elements Dissipation Factor Dissipation Factor for Polymers Dielectric Strength Dielectric Strength of Polymers Step Dielectric Strength of Polymers Dielectric Constant of Polymers Dielectric Breakdown of Polymers Dielectric Breakdown of Polymers Tangent Loss Tangent Loss in Glass Electrical Permittivity Electrical Permittivity of Glass
©2001 CRC Press LLC
939
9.0 E&M Page 940 Wednesday, December 31, 1969 17:00
Electrical Properties List of Tables (Continued)
Arc Resistance Arc Resistance of Polymers
©2001 CRC Press LLC
940
CRC Handbook of Materials Science & Engineering
9.1 E&M Page 941 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 288. ELECTRICAL CONDUCTIVITY OF (SHEET 1 OF 7)
METALS
Class
Metal or Alloy
Electrical Conductivity (%IACS)
Aluminum and Aluminum Alloys
Aluminum (99.996%) EC(O, H19) 5052 (O, H38) 5056 (H38) 6101 (T6)
64.95 62 35 27 56
Pure copper Electolytic (ETP) Oxygen–free copper (OF) Free–machining copper 0.5% Te Free–machining copper 1.0% Pb
103.06 101 101 95 98
Cartridge brass, 70%
28
Yellow brass Leaded commercial bronze Phosphor bronze,1.25% Nickel silver, 55–18
27 42 48 5.5
Low–silicon bronze(B) Beryllium copper
12 22 to 30
Chromium copper (1% Cr) 88Cu–8Sn–4Zn 87Cu–10Sn–1Pb–2Zn
80 to 90 11 11
0.04 oxide 1.25 Sn + P 5 Sn+P
100 48 18
8 Sn+P 15 Zn 20 Zn
13 37 32
Copper and Copper Alloys: Wrought Copper
Wrought Alloys
Copper and copper Alloys: Casting Alloys
Electrical Contact Materials: Copper Alloys
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p157-158, (1993).
©2001 CRC Press LLC Shackelford & Alexander
941
9.1 E&M Page 942 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 288. ELECTRICAL CONDUCTIVITY OF (SHEET 2 OF 7) Class
Electrical Contact Materials: Silver and Silver Alloys
Electrical Contact Materials: Platinum and Platinum Alloys
METALS
Metal or Alloy
Electrical Conductivity (%IACS)
35 Zn 2 Be+Ni or Co
27 17 to 21
Fine silver 92.5 Ag–7.5Cu 90Ag–10Cu 72Ag–28Cu
106 85 85 87
72Ag–26Cu–2Ni 85Ag–15Cd 97Ag–3Pt 97Ag–3Pd
60 35 50 60
90Ag–10Pd 90Ag–10Au 60Ag–40Pd 70Ag–30Pd
30 40 8 12
Platinum 95Pt–5Ir 90Pt–10Ir 85Pt–15Ir
16 9 7 6
80Pt–20Ir 75Pt–25Ir 70Pt–30Ir 65Pt–35Ir
5.6 5.5 5 5
95Pt–5Ru 90Pt–10Ru 89Pt–11Ru
5.5 4 4
86Pt–14Ru 96Pt–4W
3.5 5
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p157-158, (1993).
©2001 CRC Press LLC
942
CRC Handbook of Materials Science & Engineering
9.1 E&M Page 943 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 288. ELECTRICAL CONDUCTIVITY OF (SHEET 3 OF 7) Class Electrical Contact Materials: Palladium and Palladium Alloys
Electrical Contact Materials: Gold and Gold Alloys
METALS
Metal or Alloy
Electrical Conductivity (%IACS)
Palladium 95.5Pd–4.5Ru 90Pd–10Ru 70Pd–30Ag
16 7 6.5 4.3
60Pd 40Ag 50Pd–50Ag 72Pd–26Ag–2Ni 60Pd–40Cu
4.0 5.5 4 5
45Pd–30Ag–20Au–5Pt 35Pd–30Ag–14Cu–l0Pt–l0Au–1Zn
4.5 5
Gold 90Au–10Cu 75Au–25Ag 72.5Au–14Cu–8.5Pt–4Ag–1Zn 69Au–25Ag–6Pt 41.7Au–32.5Cu–18.8Ni–7Zn
75 16 16 10 11 4.5
78.5Ni–20Cr–1.5Si (80–20) 73.5Ni–20Cr–5Al–1.5Si 68Ni–20Cr–8.5Fe–2Si 60Ni–16Cr–22.5Fe–1.5Si 35Ni–20Cr–43.5Fe–1.5Si
1.6 1.2 1.5 1.5 1.7
72Fe–23Cr–5Al 55Fe–37.5Cr–75Al
1.3 1.2
Molybdenum Platinum Tantalum Tungsten
34 16 13.9 30
Electrical Heating Alloys: Ni–Cr and Ni–Cr–Fe Alloys
Electrical Heating Alloys: Fe–Cr–Al Alloys
Pure Metals
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p157-158, (1993).
©2001 CRC Press LLC Shackelford & Alexander
943
9.1 E&M Page 944 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 288. ELECTRICAL CONDUCTIVITY OF (SHEET 4 OF 7)
METALS
Class
Metal or Alloy
Electrical Conductivity (%IACS)
Nonmetallic Heating Element Materials
Silicon carbide, SiC
1 to 1.7
Molybdenum disilicide, MoSi2
4.5
98Cu–2Ni 94Cu–6Ni 89Cu–11Ni
35 17 11
78Cu–22Ni 55Cu–45Ni (constantan)
5.7 3.5
87Cu–13Mn(manganin) 83Cu–13Mn 4Ni(manganin) 85Cu–10Mn–4Ni (shunt manganin)
3.5 3.5 45
70Cu–20Ni–10Mn 67Cu–5Ni–27Mn
3.6 1.8
99.8 Ni 71Ni–29Fe 80Ni–20Cr 75Ni–20Cr–3Al+Cu or Fe
23 9 1.5 1.3
76Ni–17Cr–4Si–3Mn 60Ni–16Cr–24Fe 35Ni–20Cr–45Fe
1.3 1.5 1.7
Instrument and Control Alloys: Fe–Cr–Al alloy
72Fe–23Cr–5Al–0.5Co
1.3
Instrument and Control Alloys: Pure Metals
Iron(99.99%)
17.75
Instrument and Control Alloys: Cu–Ni Alloys
Instrument and Control Alloys: Cu–Mn–Ni Alloys
Instrument and Control Alloys: Ni–Base Alloys
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p157-158, (1993).
©2001 CRC Press LLC
944
CRC Handbook of Materials Science & Engineering
9.1 E&M Page 945 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 288. ELECTRICAL CONDUCTIVITY OF (SHEET 5 OF 7)
METALS
Class
Metal or Alloy
Electrical Conductivity (%IACS)
Thermostat Metals
75Fe–22Ni–3Cr 72Mn–18Cu–10Ni 67Ni–30Cu–1.4Fe–1Mn 75Fe–22Ni–3Cr 66.5Fe–22Ni–8.5Cr
3 1.5 3.5 12 3.3
Carbon Steel (0.65%) Carbon Steel (1% C) Chromium Steel (3.5% Cr) Tungsten Steel (6% W) Cobalt Steel (17% Co) Cobalt Steel (36% Co)
9.5 8 6.1 6 6.3 6.5
Cunico Cunife Comol
7.5 9.5 3.6
Alnico I Alnico II Alnico III
3.3 3.3 3.3
Alnico IV Alnico V Alnico VI
3.3 3.5 3.5
M–50 M–43 M–36 M–27
9.5 6 to 9 5.5 to 7.5 3.5 to 5.5
M–22 M–19 M–17 M–15
3.5 to 5 3.5 to 5 3 to 3.5 3 to 3.5
Permanent Magnet Materials: Steels
Permanent Magnet Materials: Intermediate Alloys
Permanent Magnet Materials: Alnico Alloys
Magnetically Soft Materials: Electrical Steel Sheet
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p157-158, (1993).
©2001 CRC Press LLC
Shackelford & Alexander
945
9.1 E&M Page 946 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 288. ELECTRICAL CONDUCTIVITY OF (SHEET 6 OF 7) Class
Moderately High–Permeability Materials
High–Permeability Materials
Relay Steels and Alloys After Annealing Low–carbon Iron and Steel
METALS
Metal or Alloy
Electrical Conductivity (%IACS)
M–14 M–7 M–6 M–5
3 to 3.5 3 to 3.5 3 to 3.5 3 to 3.5
Thermenol
0.5
16 Alfenol Sinimax Monimax
0.7 2 2.5
Supermalloy 4–79 Moly Pemalloy, Hymu 80 Mumetal 1040 alloy
3 3 3 3
High Permalloy 49, A–L 4750, Armco 48 45 Permalloy
3.6 3.6
Supermendur 2V Pamendur 35% Co, 1% Cr Ingot iron
4.5 4.5 9 17.5
0.5% Si Steel 1.75% Si Steel 3.0% Si Steel Grain–oriented 3.0% Si Steel
6 4.6 3.6 3.5
Grain–oriented 50% Ni iron 50% Ni iron
3.6 3.5
Low–carbon iron 1010 Steel
17.5 14.5
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p157-158, (1993).
©2001 CRC Press LLC
946
CRC Handbook of Materials Science & Engineering
9.1 E&M Page 947 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 288. ELECTRICAL CONDUCTIVITY OF (SHEET 7 OF 7)
METALS
Class
Metal or Alloy
Electrical Conductivity (%IACS)
Silicon Steels
1% Si 2.5% Si 3% Si 3% Si, grain–oriented 4% Si
7.5 4 3.5 3.5 3
Stainless Steels
Type 410 Type 416 Type 430 Type 443 Type 446
3 3 3 3 3
Nickel Irons
50% Ni 78% Ni 77% Ni (Cu, Cr) 79% Ni (Mo)
3.5 11 3 3
Stainless and Heat Resisting Alloys
Type 302
3
Type 309 Type 316 Type 317
2.5 2.5 2.5
Type 347 Type 403 Type 405 Type 501
2.5 3 3 4.5
HH HK HT
2.5 2 1.7
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p157-158, (1993).
©2001 CRC Press LLC
Shackelford & Alexander
947
9.1 E&M Page 948 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 289. ELECTRICAL RESISTIVITY OF (SHEET 1 OF 7)
METALS
Class
Metal or Alloy
Electrical Resistivity (µΩ • cm)
Aluminum and Aluminum Alloys
Aluminum (99.996%) EC(O, H19) 5052 (O, H38) 5056 (H38) 6101 (T6)
2.65 2.8 4.93 6.4 3.1
Pure copper Electolytic (ETP) Oxygen–free copper (OF) Free–machining copper 0.5% Te Free–machining copper 1.0% Pb
1.67 1.71 1.71 1.82 1.76
Cartridge brass, 70%
6.2
Yellow brass Leaded commercial bronze Phosphor bronze, 1.25% Nickel silver, 55–18
6.4 4.1 3.6 31
Low–silicon bronze(B) Beryllium copper
14.3 5.7 to 7.8
Chromium copper (1% Cr) 88Cu–8Sn–4Zn 87Cu–10Sn–1Pb–2Zn
2.10 15 15
0.04 oxide 1.25 Sn + P 5 Sn+P
1.72 3.6 11
8 Sn+P 15 Zn 20 Zn
13 4.7 5.4
Copper and Copper Alloys: Wrought Copper
Wrought Alloys
Copper and Copper Alloys: Casting Alloys
Electrical Contact Materials: Copper Alloys
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p157-158, (1993).
©2001 CRC Press LLC
948
CRC Handbook of Materials Science & Engineering
9.1 E&M Page 949 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 289. ELECTRICAL RESISTIVITY OF (SHEET 2 OF 7) Class
Electrical Contact Materials: Silver and Silver Alloys
Electrical Contact Materials: Platinum and Platinum Alloys
METALS
Metal or Alloy
Electrical Resistivity (µΩ • cm)
35 Zn 2 Be+Ni or Co
6.4 9.6 to 11.5
Fine silver 92.5 Ag–7.5Cu 90Ag–10Cu 72Ag–28Cu
1.59 2 2 2
72Ag–26Cu–2Ni 85Ag–15Cd 97Ag–3Pt 97Ag–3Pd
2.9 4.93 3.5 2.9
90Ag–10Pd 90Ag–10Au 60Ag–40Pd 70Ag–30Pd
5.3 4.2 23 14.3
Platinum 95Pt–5Ir 90Pt–10Ir 85Pt–15Ir
10.6 19 25 28.5
80Pt–20Ir 75Pt–25Ir 70Pt–30Ir 65Pt–35Ir
31 33 35 36
95Pt–5Ru 90Pt–10Ru 89Pt–11Ru
31.5 43 43
86Pt–14Ru 96Pt–4W
46 36
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p157-158, (1993).
©2001 CRC Press LLC
Shackelford & Alexander
949
9.1 E&M Page 950 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 289. ELECTRICAL RESISTIVITY OF (SHEET 3 OF 7) Class Electrical Contact Materials: Palladium and Palladium Alloys
Electrical Contact Materials: Gold and Gold Alloys
METALS
Metal or Alloy
Electrical Resistivity (µΩ • cm)
Palladium 95.5Pd–4.5Ru 90Pd–10Ru 70Pd–30Ag
10.8 24.2 27 40
60Pd–40Ag 50Pd–50Ag 72Pd–26Ag–2Ni 60Pd–40Cu
43 31.5 43 35
45Pd–30Ag–20Au–5Pt 35Pd–30Ag–14Cu–l0Pt–10Au–1Zn
39 35
Gold 90Au–10Cu 75Au–25Ag 72.5Au–14Cu–8.5Pt–4Ag–1Zn 69Au–25Ag–6Pt 41.7Au–32.5Cu–18.8Ni–7Zn
2.35 10.8 10.8 17 15 39
78.5Ni–20Cr–1.5Si (80–20) 73.5Ni–20Cr–5Al–1.5Si 68Ni–20Cr–8.5Fe–2Si 60Ni–16Cr–22.5Fe–1.5Si 35Ni–20Cr–43.5Fe–1.5Si
108.05 137.97 116.36 112.20 101.4
72Fe–23Cr–5Al 55Fe–37.5Cr–7.5Al
138.8 166.23
Molybdenum Platinum Tantalum Tungsten
5.2 10.64 12.45 5.65
Electrical Heating Alloys: Ni–Cr and Ni–Cr–Fe Alloys
Electrical Heating Alloys: Fe–Cr–Al Alloys
Pure Metals
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p157-158, (1993).
©2001 CRC Press LLC
950
CRC Handbook of Materials Science & Engineering
9.1 E&M Page 951 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 289. ELECTRICAL RESISTIVITY OF (SHEET 4 OF 7)
METALS
Class
Metal or Alloy
Electrical Resistivity (µΩ • cm)
Nonmetallic Heating Element Materials
Silicon carbide, SiC
100 to 200
Molybdenum disilicide, MoSi2 Graphite
37.24 910.1
98Cu–2Ni 94Cu–6Ni 89Cu–11Ni
4.99 9.93 14.96
78Cu–22Ni 55Cu–45Ni (constantan)
29.92 49.87
87Cu–13Mn(manganin) 83Cu–13Mn–4Ni(manganin) 85Cu–10Mn–4Ni (shunt manganin)
48.21 48.21 38.23
70Cu–20Ni–10Mn 67Cu–5Ni–27Mn
48.88 99.74
99.8 Ni 71Ni–29Fe 80Ni–20Cr 75Ni–20Cr–3Al+Cu or Fe
7.98 19.95 112.2 132.98
76Ni–17Cr–4Si–3Mn 60Ni–16Cr–24Fe 35Ni–20Cr–45Fe
132.98 112.2 101.4
Instrument and Control Alloys: Fe–Cr–Al alloy
72Fe–23Cr–5Al–0.5Co
135.48
Instrument and Control Alloys: Pure Metals
Iron(99.99%)
9.71
Instrument and Control Alloys: Cu–Ni Alloys
Instrument and Control Alloys: Cu–Mn–Ni Alloys
Instrument and Control Alloys: Ni–base Alloys
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p157-158, (1993).
©2001 CRC Press LLC
Shackelford & Alexander
951
9.1 E&M Page 952 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 289. ELECTRICAL RESISTIVITY OF (SHEET 5 OF 7)
METALS
Class
Metal or Alloy
Electrical Resistivity (µΩ • cm)
Thermostat Metals
75Fe–22Ni–3Cr 72Mn–18Cu–10Ni 67Ni–30Cu–1.4Fe–1Mn 75Fe–22Ni–3Cr 66.5Fe–22Ni–8.5Cr
78.13 112.2 56.52 15.79 58.18
Carbon Steel (0.65%) Carbon Steel (1% C) Chromium Steel (3.5% Cr) Tungsten Steel (6% W) Cobalt Steel (17% Co) Cobalt Steel (36% Co)
18 20 29 30 28 27
Cunico Cunife Comol
24 18 45
Alnico I Alnico II Alnico III
75 65 60
Alnico IV Alnico V Alnico VI
75 47 50
M–50 M–43 M–36 M–27
18 20 to 28 24 to 33 32 to 47
M–22 M–19 M–17 M–15
41 to 52 41 to 56 45 to 58 45 to 69
Permanent Magnet Materials: Steels
Permanent Magnet Materials: Intermediate Alloys
Permanent Magnet Materials: Alnico Alloys
Magnetically Soft Materials: Electrical Steel Sheet
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p157-158, (1993).
©2001 CRC Press LLC
952
CRC Handbook of Materials Science & Engineering
9.1 E&M Page 953 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 289. ELECTRICAL RESISTIVITY OF (SHEET 6 OF 7) Class
Moderately High–Permeability Materials
High–Permeability Materials
Relay Steels and Alloys After Annealing Low–Carbon Iron and Steel
METALS
Metal or Alloy
Electrical Resistivity (µΩ • cm)
M–14 M–7 M–6 M–5
58 to 69 45 to 52 45 to 52 45 to 52
Thermenol
162
16 Alfenol Sinimax Monimax
153 90 80
Supermalloy 4–79 Moly Pemalloy, Hymu 80 Mumetal 1040 alloy
65 58 60 56
High Permalloy 49, A–L 4750, Armco 48 45 Permalloy
48 45
Supermendur 2V Pamendur 35% Co, 1% Cr Ingot iron
40 40 20 10
0.5% Si Steel 1.75% Si Steel 3.0% Si Steel Grain–oriented 3.0% Si Steel
28 37 47 50
Grain–oriented 50% Ni iron 50% Ni iron
45 50
Low–carbon iron 1010 Steel
10 12
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p157-158, (1993).
©2001 CRC Press LLC Shackelford & Alexander
953
9.1 E&M Page 954 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 289. ELECTRICAL RESISTIVITY OF (SHEET 7 OF 7)
METALS
Class
Metal or Alloy
Electrical Resistivity (µΩ • cm)
Silicon Steels
1% Si 2.5% Si 3% Si 3% Si, grain–oriented 4% Si
23 41 48 48 59
Stainless Steels
Type 410 Type 416 Type 430 Type 443 Type 446
57 57 60 68 61
Nickel Irons
50% Ni 78% Ni 77% Ni (Cu, Cr) 79% Ni (Mo)
48 16 60 58
Stainless and Heat Resisting Alloys
Type 302 Type 309 Type 316 Type 317
72 78 74 74
Type 347 Type 403 Type 405 Type 501
73 57 60 40
HH HK HT
80 90 100
Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p157-158, (1993).
©2001 CRC Press LLC
954
CRC Handbook of Materials Science & Engineering
9.1 E&M Page 955 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 290. ELECTRICAL
RESISTIVITY OF ALLOY CAST IRONS
Class
Description
Electrical Resistivity (mΩ • m)
Abrasion–Resistant White Irons
Low–C white iron Martensitic nickel–chromium iron
0.53 0.80
Corrosion–Resistant Irons
High– Silicon iron
0.50
High–nickel gray iron
1.0a
High–nickel ductile iron
1.0a
Heat–Resistant Gray Irons
Heat–Resistant Ductile Irons
a
Heat–Resistant Gray Irons Medium–silicon iron High–chromium iron High–nickel iron Nickel–chromium–silicon iron High–aluminum iron Medium–silicon ductile iron High–nickel ductile (20 Ni) High–nickel ductile (23 Ni)
1.4 to 1.7 1.5 to 1.7 2.4 0.58 to 0.87 1.02 1.0a
Estimated.
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC Shackelford & Alexander
955
9.1 E&M Page 956 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 291. RESISTIVITY OF (SHEET 1 OF 6) Class
Borides
Ceramic
Chromium Diboride (CrB2) Hafnium Diboride (HfB2) Tantalum Diboride (TaB2)
CERAMICS Resistivity (Ω–cm)
Temperature Range of Validity
21x106 10–12 x 106 68 x106
room temp.
Titanium Diboride (TiB2)
(polycrystalline) (85% dense)
26.5–28.4x106
(85% dense)
9.0x106 3.7x106
room temp. room temp. room temp. liquid air temp.
(crystal length 5 cm, 39 deg. and 59 deg. orientation with respect to growth axis)
6.6±0.2x106
room temp.
(crystal length 1.5 cm, 16.5 deg. and 90 deg. orientation with respect to growth axis)
6.7±0.2x106
room temp.
9.2x106
20 ˚C
1.8x106
liquid air temperature
(100% dense, extrapolated values)
8.7–14.1x106
Titanium Diboride (TiB2)
(monocrystalline)
Zirconium Diboride (ZrB2)
Carbides
Boron Carbide (B4C)
0.3–0.8
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986–1991).
©2001 CRC Press LLC
956
CRC Handbook of Materials Science & Engineering
9.1 E&M Page 957 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 291. RESISTIVITY OF (SHEET 2 OF 6) Class Carbides (Con’t)
Ceramic
Hafnium Monocarbide (HfC)
CERAMICS Resistivity (Ω–cm)
Temperature Range of Validity
41x106
4.2K
41x106
80K 160K 240K 300K
45x106 49x106 60x106
Silicon Carbide (SiC)
(30 + 0.0628T) x106
300–2000K
102 –1012
20˚C
(with 1 wt% Be additive)
3x1013
(with 1 wt% B additive) (with 1 wt% Al additive) (with 1.6 wt% BeO additive)
2x104 0.8
(with 3.2 wt% BeO additive)
4x1013 1x1011
(with 2.0 wt% BN additive)
>1013
Tantalum Monocarbide (TaC) (80% dense)
8x106
(80% dense)
10x106
(80% dense)
15x106
(80% dense)
20x106
(80% dense)
25x106
Titanium Monocarbide (TiC)
0.3–0.8
4.2K 80K 160K 240K 300K
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986–1991).
©2001 CRC Press LLC
Shackelford & Alexander
957
9.1 E&M Page 958 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 291. RESISTIVITY OF (SHEET 3 OF 6) Class Carbides (Con’t)
Ceramic
Zirconium Monocarbide (ZrC)
CERAMICS Resistivity (Ω–cm)
Temperature Range of Validity
41x106
4.2K
45x106
137x106
80K 160K 240K 300K 773K 1273K
2x1011–1013
room temp.
1.7x1013
25˚C 480˚C 1000˚C 25˚C 25˚C 25˚C
47x106 53x106 61–64x106 97x106
Nitrides
Aluminum Nitride (AlN) Boron Nitride (BN)
2.3x1010 3.1x104 (20% humidity)
1.0x1012
(50% humidity)
7.0x1010
(90% humidity)
5.0x109
Titanium Mononitirde (TiN)
11.07–130x106 340x106 8.13x106
Trisilicon tetranitride (Si3N4)
>1013
Zirconium Mononitride (TiN)
11.52–160x106 320x106 3.97x106
room temp. melting temp. liquid air
room temp. melting temp. liquid air
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986–1991).
©2001 CRC Press LLC
958
CRC Handbook of Materials Science & Engineering
9.1 E&M Page 959 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 291. RESISTIVITY OF (SHEET 4 OF 6) Class
Oxides
Ceramic
Aluminum Oxide (Al2O3)
CERAMICS Resistivity (Ω–cm)
Temperature Range of Validity
>10x1014
25˚C 100˚C 300˚C 500˚C 700˚C 1000˚C
2x1013 1x1013 6.3x1010 5.0x108 2x106 Beryllium Oxide (BeO)
>1017 >1015 1–5x1015 1.5–2x1015 4–7x1015
Magnesium Oxide (MgO)
1.3x1015 4x102
27˚C 1000˚C 1727˚C
1018
room temp.
2300 77 9.4 1.6 0.59 0.37
700˚C 1200˚C 1300˚C 1700˚C 2000˚C 2200˚C
0.2–1x108
Silicon Dioxide (SiO2)
25˚C 300˚C 500˚C 700˚C 1000˚C
Zirconium Oxide (ZrO2) (stabilized) (stabilized) (stabilized) (stabilized) (stabilized) (stabilized)
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986–1991).
©2001 CRC Press LLC Shackelford & Alexander
959
9.1 E&M Page 960 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 291. RESISTIVITY OF (SHEET 5 OF 6) Class Oxides (Con’t)
Ceramic
CERAMICS Resistivity (Ω–cm)
Temperature Range of Validity
1x1014 2.5x1011 3.3x107 7.7x105 8.0x104 1.9x104
25˚C 100˚C 300˚C 500˚C 700˚C 900˚C
>1x1014 3.0x1013 2.0x1010 9.0x107 3.0x106 3.5x105
25˚C 100˚C 300˚C 500˚C 700˚C 900˚C
1.0x1014 1.0x1013 3.0x109 4.9x107 4.7x106 7.0x105
25˚C 100˚C 300˚C 500˚C 700˚C 900˚C
>1014
25˚C 300˚C 500˚C
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3) (ρ=2.3g/cm3) (ρ=2.3g/cm3) (ρ=2.3g/cm3) (ρ=2.3g/cm3) (ρ=2.3g/cm3) (ρ=2.1g/cm3) (ρ=2.1g/cm3) (ρ=2.1g/cm3) (ρ=2.1g/cm3) (ρ=2.1g/cm3) (ρ=2.1g/cm3) (ρ=1.8g/cm3) (ρ=1.8g/cm3) (ρ=1.8g/cm3) (ρ=1.8g/cm3) (ρ=1.8g/cm3) (ρ=1.8g/cm3) Mullite (3Al2O3 2SiO2)
1010 108
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986–1991).
©2001 CRC Press LLC
960
CRC Handbook of Materials Science & Engineering
9.1 E&M Page 961 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 291. RESISTIVITY OF (SHEET 6 OF 6) Class
Silicides
Ceramic
Molybdenum Disilicide (MoSi2)
CERAMICS Resistivity (Ω–cm)
Temperature Range of Validity
21.5x106
22˚C –80˚C 1600˚C
18.9x106 75–80x106 Tungsten Disilicide (WSi2)
33.4–54.9x106
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986–1991).
©2001 CRC Press LLC
Shackelford & Alexander
961
9.1 E&M Page 962 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 292. VOLUME RESISTIVITY OF (SHEET 1 OF 13) Glass
Description
SiO2 glass
GLASS
Resistivity
Temperature (˚C)
11.0–13.6 log Ω cm
250˚C
3.16x108 – 6.3x1010 Ω 7Ω
cm
cm
500˚C
1.0x107 Ω cm
600˚C
6.3x10
6Ω
cm cm 1.6x10 8.0x105 Ω cm
700˚C
6Ω
800˚C
4.6x105 Ω cm
1000˚C
3.6x10
5Ω
1100˚C
1.4x105 Ω cm
1300˚C
5Ω
2.0x10
5Ω
1200˚C
cm cm
1400˚C
4.6x104 Ω cm
1500˚C
1.0x10
4Ω
7.9x10
4Ω
1500˚C
1.0x10
cm cm
1600˚C
(0.5 atm Ar pressure) (0.5 atm Ar pressure)
3.0x103 Ω cm
1800˚C
(0.5 atm Ar pressure)
2.5x10
4Ω
1700˚C
3Ω
2000˚C
(0.5 atm Ar pressure)
cm cm 5.0x10 2 Ω cm 2.0x10
1900˚C
2Ω
(5% mol Na2O)
10.45–11.71 log Ω cm
150˚C
(5% mol Na2O)
7.63 log Ω cm
250˚C
(5% mol Na2O)
7.33–8.25 log Ω cm
300˚C
(5% mol Na2O)
6.37 log Ω cm
350˚C
(0.5 atm Ar pressure) (0.5 atm Ar pressure)
SiO2–Na2O glass
900˚C
cm cm
2.9x10
(0.5 atm Ar pressure)
400˚C
1.0x10
2100˚C
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
962
CRC Handbook of Materials Science & Engineering
9.1 E&M Page 963 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 292. VOLUME RESISTIVITY OF (SHEET 2 OF 13)
GLASS
Glass
Description
Resistivity
Temperature (˚C)
SiO2–Na2O glass (Con’t)
(7.5% mol Na2O)
7.59 log Ω cm
150˚C
(7.5% mol Na2O)
5.30 log Ω cm
300˚C
(7.8% mol Na2O)
7.8x109 Ω cm
100˚C
(10% mol Na2O)
7.35 log Ω cm
150˚C
(10% mol Na2O)
6.14 log Ω cm
250˚C
(10% mol Na2O)
5.18 log Ω cm
300˚C
(10% mol Na2O)
4.96 log Ω cm
350˚C
(10% mol Na2O)
1.03 log Ω cm
1500˚C
(10% mol Na2O)
0.92 log Ω cm
1600˚C
(13% mol Na2O)
6.90–6.96 log Ω cm
150˚C
(13% mol Na2O)
4.77–4.79 log Ω cm
300˚C
(15% mol Na2O)
5.44 log Ω cm
250˚C
(15% mol Na2O)
4.32 log Ω cm
350˚C
(15% mol Na2O)
0.61 log Ω cm
1400˚C
(15% mol Na2O)
0.56 log Ω cm
1500˚C
(15.1% mol Na2O)
1.4x108 Ω cm
100˚C
(19.9% mol Na2O)
1.68 log Ω cm
600˚C
(19.9% mol Na2O)
1.34 log Ω cm
700˚C
(19.9% mol Na2O)
0.96 log Ω cm
800˚C
(19.9% mol Na2O)
0.76 log Ω cm
900˚C
(19.9% mol Na2O)
0.61 log Ω cm
1000˚C
(19.9% mol Na2O)
0.48 log Ω cm
1100˚C
(19.9% mol Na2O)
0.38 log Ω cm
1200˚C
(19.9% mol Na2O)
0.30 log Ω cm
1300˚C
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC Shackelford & Alexander
963
9.1 E&M Page 964 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 292. VOLUME RESISTIVITY OF (SHEET 3 OF 13)
GLASS
Glass
Description
Resistivity
Temperature (˚C)
SiO2–Na2O glass (Con’t)
(20% mol Na2O)
6.45–6.80 log Ω cm
150˚C
(20% mol Na2O)
4.85 log Ω cm
250˚C
(20% mol Na2O)
4.36–4.64 log Ω cm
300˚C
(20% mol Na2O)
3.80 log Ω cm
350˚C
(24.8% mol Na2O)
0.52 log Ω cm
900˚C
(24.8% mol Na2O)
0.38 log Ω cm
1000˚C
(24.8% mol Na2O)
0.26 log Ω cm
1100˚C
(24.8% mol Na2O)
0.17 log Ω cm
1200˚C
(25% mol Na2O)
6.05 log Ω cm
150˚C
(25% mol Na2O)
4.50 log Ω cm
250˚C
(25% mol Na2O)
4.03 log Ω cm
300˚C
(25% mol Na2O)
3.52 log Ω cm
350˚C
(27% mol Na2O)
5.87 log Ω cm
150˚C
(27% mol Na2O)
3.94 log Ω cm
300˚C
(29.7% mol Na2O)
1.31 log Ω cm
550˚C
(29.7% mol Na2O)
1.16 log Ω cm
600˚C
(29.7% mol Na2O)
0.78 log Ω cm
700˚C
(29.7% mol Na2O)
0.52 log Ω cm
800˚C
(29.7% mol Na2O)
0.34 log Ω cm
900˚C
(29.7% mol Na2O)
0.20 log Ω cm
1000˚C
(29.7% mol Na2O)
0.08 log Ω cm
1100˚C
(29.7% mol Na2O)
–0.02 log Ω cm
1200˚C
(29.7% mol Na2O)
–0.10 log Ω cm
1300˚C
(29.7% mol Na2O)
–0.16 log Ω cm
1400˚C
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
964
CRC Handbook of Materials Science & Engineering
9.1 E&M Page 965 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 292. VOLUME RESISTIVITY OF (SHEET 4 OF 13)
GLASS
Glass
Description
Resistivity
Temperature (˚C)
SiO2–Na2O glass (Con’t)
(30% mol Na2O)
5.48–5.75 log Ω cm
150˚C
(30% mol Na2O)
4.42 log Ω cm
250˚C
(30% mol Na2O)
3.64–3.78 log Ω cm
300˚C
(30% mol Na2O)
3.46 log Ω cm
350˚C
(30.2% mol Na2O)
3.8x106 Ω cm
100˚C
(33.3% mol Na2O)
5.06 log Ω cm
150˚C
(33.3% mol Na2O)
3.34 log Ω cm
300˚C
(34.7% mol Na2O)
0.12 log Ω cm
900˚C
(34.7% mol Na2O)
0.00 log Ω cm
1000˚C
(34.7% mol Na2O)
–0.11 log Ω cm
1100˚C
(34.7% mol Na2O)
–0.20 log Ω cm
1200˚C
(34.7% mol Na2O)
–0.27 log Ω cm
1300˚C
(34.7% mol Na2O)
–0.33 log Ω cm
1400˚C
(35% mol Na2O)
3.85 log Ω cm
250˚C
(35% mol Na2O)
2.92 log Ω cm
350˚C
(36% mol Na2O)
4.89 log Ω cm
150˚C
(36% mol Na2O)
3.22 log Ω cm
300˚C
(39.5% mol Na2O)
0.91 log Ω cm
550˚C
(39.5% mol Na2O)
0.67 log Ω cm
600˚C
(39.5% mol Na2O)
0.33 log Ω cm
700˚C
(39.5% mol Na2O)
0.13 log Ω cm
800˚C
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
Shackelford & Alexander
965
9.1 E&M Page 966 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 292. VOLUME RESISTIVITY OF (SHEET 5 OF 13)
GLASS
Glass
Description
Resistivity
Temperature (˚C)
SiO2–Na2O glass (Con’t)
(39.5% mol Na2O)
0.00 log Ω cm
900˚C
(39.5% mol Na2O)
–0.13 log Ω cm
1000˚C
(39.5% mol Na2O)
–0.24 log Ω cm
1100˚C
(39.5% mol Na2O)
–0.32 log Ω cm
1200˚C
(39.5% mol Na2O)
–0.39 log Ω cm
1300˚C
(39.5% mol Na2O)
–0.45 log Ω cm
1400˚C
(40% mol Na2O)
4.58 log Ω cm
150˚C
(40% mol Na2O)
3.59 log Ω cm
250˚C
(40% mol Na2O)
2.97 log Ω cm
300˚C
(40% mol Na2O)
2.66 log Ω cm
350˚C
(44.2% mol Na2O)
1.4x105 Ω cm
100˚C
(44.5% mol Na2O)
–0.38 log Ω cm
1100˚C
(44.5% mol Na2O)
–0.46 log Ω cm
1200˚C
(44.5% mol Na2O)
–0.52 log Ω cm
1300˚C
(45% mol Na2O)
4.33 log Ω cm
150˚C
(45% mol Na2O)
3.30 log Ω cm
250˚C
(45% mol Na2O)
2.69 log Ω cm
300˚C
(45% mol Na2O)
2.35 log Ω cm
350˚C
(48% mol Na2O)
4.09 log Ω cm
150˚C
(48% mol Na2O)
2.58 log Ω cm
300˚C
(49.3% mol Na2O)
–0.47 log Ω cm
1100˚C
(49.3% mol Na2O)
–0.56 log Ω cm
1200˚C
(49.3% mol Na2O)
–0.61 log Ω cm
1300˚C
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
966
CRC Handbook of Materials Science & Engineering
9.1 E&M Page 967 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 292. VOLUME RESISTIVITY OF (SHEET 6 OF 13)
GLASS
Glass
Description
Resistivity
Temperature (˚C)
SiO2–Na2O glass (Con’t)
(57.5% mol Na2O)
–0.52 log Ω cm
1100˚C
(57.5% mol Na2O)
–0.61 log Ω cm
1200˚C
(57.5% mol Na2O)
–0.67 log Ω cm
1300˚C
(30% mol PbO) (30% mol PbO)
12.94 log Ω cm 10.44 log Ω cm
200˚C 300˚C
(33.8% mol PbO) (33.8% mol PbO)
16.14 log Ω cm 13.68 log Ω cm
66˚C 135˚C
(35% mol PbO) (35% mol PbO)
12.10 log Ω cm 9.89 log Ω cm
200˚C 300˚C
(38.5% mol PbO) (38.5% mol PbO) (38.5% mol PbO) (38.5% mol PbO)
4.40 log Ω cm 3.20 log Ω cm 2.47 log Ω cm 1.94 log Ω cm
700˚C 800˚C 900˚C 1000˚C
(38.5% mol PbO) (38.5% mol PbO) (38.5% mol PbO)
1.56 log Ω cm 1.26 log Ω cm 1.04 log Ω cm
1100˚C 1200˚C 1300˚C
(40% mol PbO) (40% mol PbO) (40.2% mol PbO) (40.2% mol PbO)
11.54 log Ω cm 9.48 log Ω cm 14.85 log Ω cm 11.70 log Ω cm
200˚C 300˚C 78˚C 175˚C
(44.7% mol PbO) (44.7% mol PbO) (44.7% mol PbO)
2.38 log Ω cm 1.82 log Ω cm 1.40 log Ω cm
800˚C 900˚C 1000˚C
(44.7% mol PbO) (44.7% mol PbO) (44.7% mol PbO)
1.15 log Ω cm 0.98 log Ω cm 0.82 log Ω cm
1100˚C 1200˚C 1300˚C
SiO2–PbO glass
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC Shackelford & Alexander
967
9.1 E&M Page 968 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 292. VOLUME RESISTIVITY OF (SHEET 7 OF 13)
GLASS
Glass
Description
Resistivity
Temperature (˚C)
SiO2–PbO glass (Con’t)
(47.3% mol PbO)
14.48 log Ω cm
79˚C
(47.3% mol PbO)
11.74 log Ω cm
149˚C
(50% mol PbO) (50% mol PbO) (50.0% mol PbO) (50.0% mol PbO)
10.69 log Ω cm 8.80–9.2 log Ω cm 1.90 log Ω cm 1.36 log Ω cm
200˚C 300˚C 800˚C 900˚C
(50.0% mol PbO) (50.0% mol PbO) (50.0% mol PbO)
1.02 log Ω cm 0.80 log Ω cm 0.60 log Ω cm
1000˚C 1100˚C 1200˚C
(51.4% mol PbO) (51.4% mol PbO)
14.52 log Ω cm 11.59 log Ω cm
65˚C 139˚C
(51.6% mol PbO) (51.6% mol PbO) (51.6% mol PbO)
1.62 log Ω cm 1.20 log Ω cm 0.92 log Ω cm
800˚C 900˚C 1000˚C
(51.6% mol PbO) (51.6% mol PbO)
0.70 log Ω cm 0.54 log Ω cm
1100˚C 1200˚C
(57.1% mol PbO) (57.1% mol PbO)
13.70 log Ω cm 10.14 log Ω cm
77˚C 172˚C
(60% mol PbO) (60% mol PbO) (60% mol PbO) (60% mol PbO)
10.04 log Ω cm 8.11 log Ω cm 1.72 log Ω cm 1.74 log Ω cm
200˚C 300˚C 650˚C 700˚C
(60% mol PbO) (60% mol PbO) (60% mol PbO)
1.07 log Ω cm 0.76 log Ω cm 0.40 log Ω cm
800˚C 900˚C 1000˚C
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
968
CRC Handbook of Materials Science & Engineering
9.1 E&M Page 969 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 292. VOLUME RESISTIVITY OF (SHEET 8 OF 13)
GLASS
Glass
Description
Resistivity
Temperature (˚C)
SiO2–PbO glass (Con’t)
(63.2% mol PbO)
14.29 log Ω cm
57˚C
(63.2% mol PbO)
10.34 log Ω cm
159˚C
(65% mol PbO) (65% mol PbO)
9.76 log Ω cm 7.81 log Ω cm
200˚C 300˚C
(66.7% mol PbO) (66.7% mol PbO) (66.7% mol PbO) (66.7% mol PbO)
1.32 log Ω cm 0.82 log Ω cm 0.50 log Ω cm 0.26 log Ω cm
700˚C 800˚C 900˚C 1000˚C
(33.6% mol CaO) (33.6% mol CaO) (33.6% mol CaO)
0.97 log Ω cm 0.93–0.94 log Ω cm 0.79–0.80 log Ω cm
1500˚C 1560˚C 1600˚C
(41.3% mol CaO) (41.3% mol CaO) (41.3% mol CaO)
0.82 log Ω cm 0.76 log Ω cm 0.67–0.68 log Ω cm
1519˚C 1550˚C 1600˚C
(45.4% mol CaO) (45.4% mol CaO) (45.4% mol CaO)
0.65 log Ω cm 0.58–0.59 log Ω cm 0.52 log Ω cm
1550˚C 1585˚C 1622˚C
(50% mol CaO) (50% mol CaO)
12.2 log Ω cm 8.70 log Ω cm
300˚C 400˚C
(51.4% mol CaO) (51.4% mol CaO) (51.4% mol CaO)
0.48–0.49 log Ω cm 0.47 log Ω cm 0.38 log Ω cm
1500˚C 1560˚C 1618˚C
(55.2% mol CaO) (55.2% mol CaO) (55.2% mol CaO)
0.51–0.53 log Ω cm 0.42–0.43 log Ω cm 0.34 log Ω cm
1499˚C 1550˚C 1600˚C
SiO2–CaO glass
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
Shackelford & Alexander
969
9.1 E&M Page 970 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 292. VOLUME RESISTIVITY OF (SHEET 9 OF 13)
GLASS
Glass
Description
Resistivity
Temperature (˚C)
SiO2–B2O3 glass
(2.74% wt B2O3)
5.30 log Ω cm
900˚C
(2.74% wt B2O3)
4.72 log Ω cm
1100˚C
(2.74% wt B2O3)
4.40 log Ω cm
1300˚C
(2.74% wt B2O3)
4.02 log Ω cm
1500˚C
(2.74% wt B2O3)
3.76 log Ω cm
1700˚C
(2.74% wt B2O3)
3.56 log Ω cm
1900˚C
(5.48% wt B2O3)
5.64 log Ω cm
900˚C
(5.48% wt B2O3)
5.16 log Ω cm
1100˚C
(5.48% wt B2O3)
4.56 log Ω cm
1300˚C
(5.48% wt B2O3)
4.30 log Ω cm
1500˚C
(5.48% wt B2O3)
4.10 log Ω cm
1700˚C
(5.48% wt B2O3)
3.94 log Ω cm
1900˚C
(10.75% wt B2O3)
5.74 log Ω cm
900˚C
(10.75% wt B2O3)
5.08 log Ω cm
1100˚C
(10.75% wt B2O3)
4.69 log Ω cm
1300˚C
(10.75% wt B2O3)
4.40 log Ω cm
1500˚C
(10.75% wt B2O3)
4.16 log Ω cm
1700˚C
(10.75% wt B2O3)
3.98 log Ω cm
1900˚C
(19.37% wt B2O3)
5.65 log Ω cm
900˚C
(19.37% wt B2O3)
4.82 log Ω cm
1100˚C
(19.37% wt B2O3)
4.48 log Ω cm
1300˚C
(19.37% wt B2O3)
4.22 log Ω cm
1500˚C
(19.37% wt B2O3)
4.00 log Ω cm
1700˚C
(19.37% wt B2O3)
3.84 log Ω cm
1900˚C
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
970
CRC Handbook of Materials Science & Engineering
9.1 E&M Page 971 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 292. VOLUME RESISTIVITY OF (SHEET 10 OF 13)
GLASS
Glass
Description
Resistivity
Temperature (˚C)
SiO2–Al2O3 glass
(2.83% wt Al2O3)
5.74 log Ω cm
700˚C
(2.83% wt Al2O3)
4.82 log Ω cm
900˚C
(2.83% wt Al2O3)
4.29 log Ω cm
1100˚C
(2.83% wt Al2O3)
3.94 log Ω cm
1300˚C
(2.83% wt Al2O3)
3.67 log Ω cm
1500˚C
(2.83% wt Al2O3)
3.46 log Ω cm
1700˚C
(2.83% wt Al2O3)
3.28 log Ω cm
1900˚C
(5.51% wt Al2O3)
5.34 log Ω cm
700˚C
(5.51% wt Al2O3)
4.65 log Ω cm
900˚C
(5.51% wt Al2O3)
4.15 log Ω cm
1100˚C
(5.51% wt Al2O3)
3.76 log Ω cm
1300˚C
(5.51% wt Al2O3)
3.56 log Ω cm
1500˚C
(5.51% wt Al2O3)
3.36 log Ω cm
1700˚C
(5.51% wt Al2O3)
3.20 log Ω cm
1900˚C
(10.86% wt Al2O3)
5.38 log Ω cm
700˚C
(10.86% wt Al2O3)
4.54 log Ω cm
900˚C
(10.86% wt Al2O3)
4.02 log Ω cm
1100˚C
(10.86% wt Al2O3)
3.74 log Ω cm
1300˚C
(10.86% wt Al2O3)
3.52 log Ω cm
1500˚C
(10.86% wt Al2O3)
3.34 log Ω cm
1700˚C
(10.86% wt Al2O3)
3.20 log Ω cm
1900˚C
7.6 log Ω cm 7.3 log Ω cm 6.9 log Ω cm
560˚C 600˚C 640˚C
B2O3 glass
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
Shackelford & Alexander
971
9.1 E&M Page 972 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 292. VOLUME RESISTIVITY OF (SHEET 11 OF 13) Glass
Resistivity
Temperature (˚C)
6.6 log Ω cm
680˚C
6.2 log Ω cm 5.8 log Ω cm 5.5 log Ω cm
730˚C 780˚C 840˚C
(3.63% mol Na2O)
2.70 log Ω cm
800˚C
(3.63% mol Na2O)
2.30 log Ω cm
900˚C
(3.63% mol Na2O)
2.00 log Ω cm
1000˚C
(10% mol Na2O)
14.20 log Ω cm
40˚C
(10% mol Na2O)
13.21 log Ω cm
60˚C
(10% mol Na2O)
12.40 log Ω cm
80˚C
(10% mol Na2O)
11.61 log Ω cm
100˚C
(12.1% mol Na2O)
2.43 log Ω cm
700˚C
(12.1% mol Na2O)
1.89 log Ω cm
800˚C
(12.1% mol Na2O)
1.48 log Ω cm
900˚C
(16% mol Na2O)
15.89 log Ω cm
40˚C
(16% mol Na2O)
15.08 log Ω cm
60˚C
(16% mol Na2O)
14.32 log Ω cm
80˚C
(16% mol Na2O)
13.58 log Ω cm
100˚C
(17.3% mol Na2O)
1.39 log Ω cm
850˚C
(17.3% mol Na2O)
1.18 log Ω cm
900˚C
(17.3% mol Na2O)
0.89 log Ω cm
1000˚C
(20% mol Na2O)
13.86 log Ω cm
40˚C
(20% mol Na2O)
12.91 log Ω cm
60˚C
(20% mol Na2O)
12.05 log Ω cm
80˚C
(20% mol Na2O)
11.28 log Ω cm
100˚C
Description
B2O3 glass (Con’t)
B2O3–Na2O glass
GLASS
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
972
CRC Handbook of Materials Science & Engineering
9.1 E&M Page 973 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 292. VOLUME RESISTIVITY OF (SHEET 12 OF 13)
GLASS
Glass
Description
Resistivity
Temperature (˚C)
B2O3–Na2O glass (Con’t)
(21.9% mol Na2O)
1.29 log Ω cm
800˚C
(21.9% mol Na2O)
0.94 log Ω cm
900˚C
(21.9% mol Na2O)
0.65 log Ω cm
1000˚C
(27.5% mol Na2O)
1.00 log Ω cm
800˚C
(27.5% mol Na2O)
0.70 log Ω cm
900˚C
(30% mol Na2O)
11.90 log Ω cm
40˚C
(30% mol Na2O)
10.14 log Ω cm
60˚C
(30% mol Na2O)
9.43 log Ω cm
80˚C
(30% mol Na2O)
8.82 log Ω cm
100˚C
(32.8% mol Na2O)
1.02 log Ω cm
700˚C
(32.8% mol Na2O)
0.60 log Ω cm
800˚C
(32.8% mol Na2O)
0.40 log Ω cm
900˚C
(40% mol Na2O)
10.48 log Ω cm
40˚C
(40% mol Na2O)
9.73 log Ω cm
60˚C
(40% mol Na2O)
9.08 log Ω cm
80˚C
(40% mol Na2O)
8.46 log Ω cm
100˚C
(33.3% mol CaO) (33.3% mol CaO) (33.3% mol CaO)
14.40 log Ω cm 13.92 log Ω cm 13.50 log Ω cm
150˚C 200˚C 250˚C
(33.3% mol CaO) (33.3% mol CaO) (33.3% mol CaO)
13.16 log Ω cm 3.10 log Ω cm 2.25 log Ω cm
300˚C 850˚C 950˚C
(33.3% mol CaO) (33.3% mol CaO) (33.3% mol CaO)
1.52 log Ω cm 1.10 log Ω cm 0.85 log Ω cm
1050˚C 1150˚C 1250˚C
B2O3–CaO glass
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
Shackelford & Alexander
973
9.1 E&M Page 974 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 292. VOLUME RESISTIVITY OF (SHEET 13 OF 13)
GLASS
Glass
Description
Resistivity
Temperature (˚C)
B2O3–CaO glass (Con’t)
(40.0% mol CaO)
2.97 log Ω cm
850˚C
(40.0% mol CaO) (40.0% mol CaO)
2.06 log Ω cm 1.40 log Ω cm
950˚C 1050˚C
(40.0% mol CaO) (40.0% mol CaO)
0.98 log Ω cm 0.75 log Ω cm
1150˚C 1250˚C
(55.4% mol CaO) (55.4% mol CaO) (55.4% mol CaO)
6.13 log Ω cm 3.86 log Ω cm 2.46 log Ω cm
750˚C 850˚C 950˚C
(55.4% mol CaO) (55.4% mol CaO)
1.70 log Ω cm 1.22 log Ω cm
1050˚C 1150˚C
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
974
CRC Handbook of Materials Science & Engineering
9.1 E&M Page 975 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 293. VOLUME
RESISTIVITY OF POLYMERS (SHEET 1 OF 8)
Polymer ABS Resins; Molded, Extruded
Acrylics; Cast, Molded, Extruded
Type
Volume Resistivity, (ASTM D257) (Ω • cm)
Medium impact
2—4 x 1015
High impact
1—4 x 1015
Very high impact
1—4 x 1015
Low temperature impact
1—4 x 1015
Heat resistant
1—5 x 1015
Cast Resin Sheets, Rods: General purpose, type I
>1015
General purpose, type II
>1015
Moldings: Grades 5, 6, 8
>1014
High impact grade
2.0 x 1016 4 x 1014
Thermoset Carbonate
Allyl diglycol carbonate
Alkyds; Molded
Putty (encapsulating)
1014
Rope (general purpose)
1014
Granular (high speed molding) Glass reinforced (heavy duty parts) Cellulose Acetate; Molded, Extruded
1014 — 1015 1014
ASTM Grade: H6—1
1010—1013
H4—1
1010—1013
H2—1
1010—1013
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC Shackelford & Alexander
975
9.1 E&M Page 976 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 293. VOLUME
RESISTIVITY OF POLYMERS (SHEET 2 OF 8)
Polymer Cellulose Acetate; Molded, Extruded (Con’t)
Cellulose Acetate Butyrate; Molded, Extruded
Cellusose Acetate Propionate; Molded, Extruded
Chlorinated Polymers
Polycarbonates
Diallyl Phthalates; Molded
Volume Resistivity, (ASTM D257) (Ω • cm)
Type
MH—1, MH—2
1010—1013
MS—1, MS—2
1010—1013
S2—1
1010—1013
ASTM Grade: H4
1011—1014
MH
1011—1014
S2
1011—1014
ASTM Grade: 1
1011—1014
3
1011—1014
6
1011—1014 1.5 x 1016
Chlorinated polyether Chlorinated polyvinyl chloride
1 x 1015—2 x 1016
Polycarbonate Polycarbonate (40% glass fiber reinforced)
2.1 x 1016 1.4 x 1015
Orlon filled
6 x 104—6 x 106
Dacron filled
102—2.5 x 104
Asbestos filled
102—5 x 103
Glass fiber filled
104—5 x 104
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
976
CRC Handbook of Materials Science & Engineering
9.1 E&M Page 977 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 293. VOLUME
RESISTIVITY OF POLYMERS (SHEET 3 OF 8)
Polymer Fluorocarbons; Molded,Extruded
Type Polytetrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Ceramic reinforced (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF)
Epoxies; Cast, Molded, Reinforced
Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible Molded High strength laminate
Epoxies—Molded, Extruded
High performance resins (cycloaliphatic diepoxides) Cast, rigid Molded
Volume Resistivity, (ASTM D257) (Ω • cm)
1018 >1018 1015 >2 x 1018 5 x 1014
6.1 x 1015 9.1 x 105—6.7 x 109 1—5 x 1015 6.6 x 107—109
2.10 x 1014 1.4—5.5 x 1014 >1016
Epoxy novolacs
Cast, rigid
Melamines; Molded
Filler & type Cellulose electrical
1012—1013
Glass fiber
1—7 x 1011
Alpha cellulose and mineral
1012
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
977
9.1 E&M Page 978 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 293. VOLUME
RESISTIVITY OF POLYMERS (SHEET 4 OF 8)
Polymer Nylons; Molded, Extruded
Volume Resistivity, (ASTM D257) (Ω • cm)
Type
Type 6 4.5 x 1013
General purpose Glass fiber (30%) reinforced Cast
2.6 x 1014
Type 8
1.5 x 1011
Type 11
2 x 1013
Type 12
1014 —1015
6/6 Nylon General purpose molding
1014—1015 2.6—5.5 x 1015
Glass fiber reinforced
Phenolics; Molded
2.8 x 1014—1.5 x 1015
General purpose extrusion
1015
6/10 Nylon General purpose
1015
Type and filler General: woodflour and flock Shock: paper, flock, or pulp
109—1013 1—50 x 1011 >1010
High shock: chopped fabric or cord
10 — 1011
Very high shock: glass fiber
10
Arc resistant—mineral Rubber phenolic—woodflour or flock Rubber phenolic—chopped fabric
1010 — 1012
Rubber phenolic—asbestos
108—1011 1011 1011
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
978
CRC Handbook of Materials Science & Engineering
9.1 E&M Page 979 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 293. VOLUME
RESISTIVITY OF POLYMERS (SHEET 5 OF 8)
Polymer Phenolics; Molded (Con’t)
Polymides
Polyacetals
Polyester; Thermoplastic
Type
ABS—Polycarbonate Alloy
2.2 x 1016
PVC—Acrylic Alloy PVC—acrylic Sheet
l—5 x 1013
PVC—acrylic injection molded
5 x l015
Unreinforced
4 x 1015
Glass reinforced
9.2 x 1015
Homopolymer: Standard
1 x 1015
20% glass reinforced
5 x 1014
Copolymer: Standard
1 x 1014
25% glass reinforced
1.2 x 1014
High flow
1.0 x 1014
Injection Moldings: General purpose grade
1—4 x 1016
Glass reinforced grades
3.2—3.3 x 1016
Glass reinforced self extinguishing
Polyesters: Thermosets
Volume Resistivity, (ASTM D257) (Ω • cm)
3.4 x 1016
General purpose grade
2 x 1015
Asbestos—filled grade
3 x 1014
Cast polyyester Rigid
1013
Flexible
1012
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
979
9.1 E&M Page 980 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 293. VOLUME
RESISTIVITY OF POLYMERS (SHEET 6 OF 8)
Polymer Polyesters: Thermosets (Con’t)
Volume Resistivity, (ASTM D257) (Ω • cm)
Type
Reinforced polyester moldings High strength (glass fibers) Heat and chemical resistant (asbestos) Sheet molding compounds, general purpose
Phenylene oxides (Noryl)
6.4 x 1015 —2.2 x 1016
1017
SE—1
1017
Glass fiber reinforced
1017
Standard
5 x 1016 1017
Polyarylsulfone
3.2—7.71 x l016
General purpose
>1017
High impact
Polyphenylene sulfide
1 x 1012 —1 x 1013
Phenylene Oxides SE—100
Glass fiber reinforced
Polypropylene
1 x 1012 —1 x 1013
1017
Asbestos filled
1.5 x 1015
Glass reinforced
1.7 x 1016
Flame retardant
4 x 1016—1017
40% glass reinforced
4.5 x 1014
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
980
CRC Handbook of Materials Science & Engineering
9.1 E&M Page 981 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 293. VOLUME
RESISTIVITY OF POLYMERS (SHEET 7 OF 8)
Polymer Polyethylenes; Molded, Extruded
Olefin Copolymers; Molded
Type Type I—lower density (0.910—0.925) Melt index 0.3—3.6
1017—1019
Melt index 6—26
1017—1019
Melt index 200
1017—1019
Type II—medium density (0.926—0.940) Melt index 20
>1015
Melt index l.0—1.9
>1015
Type III—higher density (0.941—0.965) Melt index 0.2—0.9
>1015
Melt Melt index 0.l—12.0
>1015
Melt index 1.5—15
>1015
High molecular weight
>1015
EEA (ethylene ethyl acrylate)
2.4 x 1015
EVA (ethylene vinyl acetate)
0.15 x 1015
Ionomer
Polystyrenes; Molded
Volume Resistivity, (ASTM D257) (Ω • cm)
10 x 1015
Polyallomer
>1016
Polystyrenes General purpose
>1016
Medium impact
>1016
High impact
>1016
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
981
9.1 E&M Page 982 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 293. VOLUME
RESISTIVITY OF POLYMERS (SHEET 8 OF 8)
Polymer Polystyrenes; Molded (Con’t)
Volume Resistivity, (ASTM D257) (Ω • cm)
Type
Glass fiber -30% reinforced
3.6 x 1016
Styrene acrylonitrile (SAN)
>1016
Glass fiber (30%) reinforced SAN Polyvinyl Chloride And Copolymers; Molded, Extruded
Nonrigid—general
1—700 x 1012
Nonrigid—electrical
4—300 x 1011
Rigid—normal impact
1014—1016
Vinylidene chloride
1014—1016
Silicones; Molded, Laminated Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate Ureas; Molded
4.4 x 1016
Alpha—cellulose filled (ASTM Type l) Cellulose filled (ASTM Type 2)
(dry) 9 x 1014 5 x 1014 2—5 x 1014 0.5—5 x 1011 5—8 x 1010
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
982
CRC Handbook of Materials Science & Engineering
9.1 E&M Page 983 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 294. CRITICAL
TEMPERATURE OF SUPERCONDUCTIVE ELEMENTS (SHEET 1 OF 2)
a
Element
Tc(K)
Al Be Cd
1.175 0.026 0.518-0.52
Ga Ga (β) Ga (γ) Ga (δ)
5.90-6.2 7.62 7.85
Hg (α) Hg (β)
4.154 3.949
In Ir
3.405 0.11-0.14
La (α) La (β) Mo Nb
4.88 6.00 0.916 9.25
Os Pa Pb Re
0.655 1.4 7.23 1.697
Ru Sb Sn Ta
2.6-2.7a 3.721 4.47
Tc Th
7.73-7.78 1.39
1.0833
0.493
Metastable.
Source: data from Roberts, B. W., Properties of Selected Superconductive Materials - 1974 Supplement, NBS Technical Note 825, National Bureau of Standards, U.S. Government Printing Office, Washington,D.C., 1974, 10.
©2001 CRC Press LLC
Shackelford & Alexander
983
9.1 E&M Page 984 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 294. CRITICAL
TEMPERATURE OF SUPERCONDUCTIVE ELEMENTS (SHEET 2 OF 2) Element
Tc(K)
Ti Ti
0.39 2.332-2.39
V W Zn Zr Zr (ω)
5.43-5.31 0.0154 0.875 0.53
0.65
a Metastable.
Source: data from Roberts, B. W., Properties of Selected Superconductive Materials - 1974 Supplement, NBS Technical Note 825, National Bureau of Standards, U.S. Government Printing Office, Washington,D.C., 1974, 10.
©2001 CRC Press LLC
984
CRC Handbook of Materials Science & Engineering
9.1 E&M Page 985 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 295. DISSIPATION FACTOR FOR (SHEET 1 OF 8)
POLYMERS
Dissipation Factor (ASTM D150) Class ABS Resins; Molded, Extruded
Acrylics; Cast, Molded, Extruded
60 Hz
106 Hz
Medium impact
0.003—0.006
0.008—0.009
High impact Very high impact Low temperature impact Heat resistant
0.005—0.007 0.005—0.010 0.005—0.01 0.030—0.040
0.007—0.015 0.008—0.016 0.008—0.016 0.005—0.015
Polymer
Cast Resin Sheets, Rods: General purpose, type I General purpose, type II Moldings: Grades 5, 6, 8 High impact grade
0.05—0.06 0.05—0.06
0.02—0.03 0.02—0.03
0.04—0.06 0.03—0.04
0.02—0.03 0.01—0.02
Thermoset Carbonate
Allyl diglycol carbonate
0.03—0.04
0.1—0.2
Alkyds; Molded
Putty (encapsulating) Rope (general purpose) Granular (high speed molding) Glass reinforced (heavy duty parts)
0.030—0.045 0.019
0.016—0.020 0.023
0.030—0.040
0.017—0.020
0.02—0.03
0.015—0.022
0.01—0.06 0.01—0.06 0.01—0.06 0.01—0.06 0.01—0.06
0.01—0.10 0.01—0.10 0.01—0.10 0.01—0.10 0.01—0.10
Cellulose Acetate; Molded, Extruded
ASTM Grade: H4—1 H2—1 MH—1, MH—2 MS—1, MS—2 S2—1
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
985
9.1 E&M Page 986 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 295. DISSIPATION FACTOR FOR (SHEET 2 OF 8)
POLYMERS
Dissipation Factor (ASTM D150) Class Cellulose Acetate Butyrate; Molded, Extruded
Polymer
Chlorinated Polymers Chlorinated polyether Chlorinated polyvinyl chloride
Diallyl Phthalates; Molded
0.01—0.04 0.01—0.04 0.01—0.04
0.02—0.05 0.02—0.05 0.02—0.05
0.01—0.04 0.01—0.04 0.01—0.04
0.02—0.05 0.02—0.05 0.02—0.05
0.011 0.0189— 0.0208
0.011
0.0009
0.01
0.006
0.007
0.023—0.015 (Dry) 0.004—0.016 (Dry) 0.05—0.03 (Dry) 0.004—0.015 (Dry)
0.045—0.040 (Wet) 0.009—0.017 (Wet) 0.154—0.050 (Wet) 0.012—0.020 (Wet)
ASTM Grade: 1 3 6
Polycarbonates
106 Hz
ASTM Grade: H4 MH S2
Cellulose Acetate Propionate; Molded, Extruded
60 Hz
Polycarbonate Polycarbonate (40% glass fiber reinforced) Orlon filled Dacron filled Asbestos filled Glass fiber filled
0.02
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
986
CRC Handbook of Materials Science & Engineering
9.1 E&M Page 987 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 295. DISSIPATION FACTOR FOR (SHEET 3 OF 8)
POLYMERS
Dissipation Factor (ASTM D150) Class Fluorocarbons; Molded,Extruded
Epoxies; Cast, Molded, Reinforced
Epoxies—Molded, Extruded
Polymer
60 Hz
106 Hz
Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Ceramic reinforced (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF)
0.02
0.007—0.010
0.0002
0.0002
0.0005–0.0015
0.0005–0.0015
0.0003
0.0003
0.05
0.184
Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible Molded General purpose glass cloth laminate High strength laminate
0.0074 0.0048-0.0380 0.011-0.018
0.032 0.0369-0.0622 0.013—0.020
0.004-0.006
0.024—0.026
—
0.010-0.017
0.0055— 0.0074 0.0071—0.025 —
0.029—0.028
0.001—0.007
—
High performance resins (cycloaliphatic diepoxides) Cast, rigid Molded Glass cloth laminate Epoxy novolacs Cast, rigid
— 0.0158
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
987
9.1 E&M Page 988 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 295. DISSIPATION FACTOR FOR (SHEET 4 OF 8)
POLYMERS
Dissipation Factor (ASTM D150) Class Melamines; Molded
Nylons; Molded, Extruded
Polymer Filler & type Unfilled Cellulose electrical Glass fiber Alpha cellulose Mineral
106 Hz
0.048—0.162 0.026—0.192 0.14—0.23 — —
0.031—0.040 0.032—0.12 0.020—0.03 0.028 0.030
0.06—0.014
0.03—0.04
0.022—0.008
0.019—0.015
0.015 0.007—0.010
0.05 0.010—0.015
0.19 0.03
0.08 0.02
Type 6 General purpose Glass fiber (30%) reinforced Cast Flexible copolymers Type 8 Type 11 Type 12 6/6 Nylon General purpose molding Glass fiber reinforced 6/10 Nylon General purpose
Phenolics; Molded
60 Hz
Type and filler General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber
0.04 (103 Hz)
0.014—0.04 0.009—0.018
0.04 0.017—0.018
0.04
0.05—0.30
0.03—0.07
0.08—0.35
0.03—0.07
0.08—0.45
0.03—0.09
0.02—0.03
0.02
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
988
CRC Handbook of Materials Science & Engineering
9.1 E&M Page 989 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 295. DISSIPATION FACTOR FOR (SHEET 5 OF 8)
POLYMERS
Dissipation Factor (ASTM D150) 60 Hz
106 Hz
0.13—0.16
0.1
0.15—0.60
0.1—0.2
0.5
0.09
0.15
0.13
ABS–Polycarbonate Alloy
0.0026
0.0059
PVC–acrylic sheet PVC–acrylic injection molded
0.076
0.094
0.037
0.031
Polyimides
Unreinforced Glass reinforced
0.003 0.0034
0.011 0.0055
Polyacetals
Homopolymer: Standard 20% glass reinforced Copolymer: Standard 25% glass reinforced High flow
0.0048 0.0047
0.0048 0.0036
0.001 (100 Hz) 0.003 (100 Hz) 0.001 (100 Hz)
0.006 0.006 0.006
Class Phenolics: Molded
PVC–Acrylic Alloy
Polyester; Thermoplastic
Polymer Arc resistant—mineral Rubber phenolic— woodflour or flock Rubber phenolic— chopped fabric Rubber phenolic— asbestos
Injection Moldings: General purpose grade Glass reinforced grades
0.002 (103 Hz) 0.002—0.003 (103 Hz)
Glass reinforced self extinguishing General purpose grade
0.002 (103 Hz)
Asbestos—filled grade
0.015 (103 Hz)
0.023 (103 Hz)
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
989
9.1 E&M Page 990 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 295. DISSIPATION FACTOR FOR (SHEET 6 OF 8)
POLYMERS
Dissipation Factor (ASTM D150) 60 Hz
106 Hz
0.003—0.04 0.01—0.18
0.006—0.04 0.02—0.06
0.0087—0.04
0.0086—0.022
0.0007 0.0007 0.0009
0.0024 0.0024 0.0015
0.0008 0.0019
0.0034 0.0049
Polyarylsulfone
0.0017—0.003
0.0056—0.012
General purpose
0.0005–0.0007
0.0002–0.0003 0.0002— 0.0003 0.002 0.003 0.0006–0.003
Class Polyesters: Thermosets
Polymer Cast polyyester Rigid Flexible
Reinforced polyester moldings
Sheet molding compounds, general purpose
Phenylene Oxides
SE—100 SE—1 Glass fiber reinforced Phenylene oxides (Noryl) Standard Glass fiber reinforced
Polypropylene
High impact Asbestos filled Glass reinforced Flame retardant Polyphenylene sulfide
Polyethylenes; Molded, Extruded
<0.0016 0.007 0.002 0.0007–0.017
Standard
—
40% glass reinforced
—
Type I—lower density (0.910—0.925) Melt index 0.3—3.6 Melt index 6—26 Melt index 200
<0.0005 <0.0005 <0.0005
0.0007 0.0014— 0.0041
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
990
CRC Handbook of Materials Science & Engineering
9.1 E&M Page 991 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 295. DISSIPATION FACTOR FOR (SHEET 7 OF 8)
POLYMERS
Dissipation Factor (ASTM D150) Class
Polymer
Polyethylenes; Molded, Extruded (Con’t)
Type II—medium density (0.926—0.940)
Olefin Copolymers; Molded
Polystyrenes; Molded
60 Hz
Melt index 20 Melt index l.0—1.9
<0.0005 <0.0005
Type III—higher density (0.941—0.965) Melt index 0.2—0.9 Melt Melt index 0.l—12.0 Melt index 1.5—15 High molecular weight
<0.0005 <0.0005 <0.0005 <0.0005
EEA (ethylene ethyl acrylate) EVA (ethylene vinyl acetate) Ionomer Polyallomer Polystyrenes General purpose Medium impact High impact Glass fiber -30% reinforced Styrene acrylonitrile (SAN) Glass fiber (30%) reinforced SAN
106 Hz
0.001 0.003 0.003 >0.0005
0.0001–0.0003 0.0004–0.002 0.0004–0.002 0.005
0.0001–0.0005 0.0004–0.002 0.0004–0.002 0.002
>0.006
0.007–0.010
0.005
0.009
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
991
9.1 E&M Page 992 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 295. DISSIPATION FACTOR FOR (SHEET 8 OF 8)
POLYMERS
Dissipation Factor (ASTM D150) Class Polyvinyl Chloride and Copolymers;
Polymer
Ureas; Molded
106 Hz
Molded, Extruded Nonrigid—general Nonrigid—electrical Rigid—normal impact Vinylidene chloride
Silicones; Molded, Laminated
60 Hz
Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate Alpha—cellulose filled (ASTM Type l) Cellulose filled (ASTM Type 2) Woodflour filled
0.05—0.15 0.08—0.11 0.020—0.03 0.03—0.15 0.01
0.004
0.002—0.004
0.001—0.004
0.02
0.002
0.035—0.043
0.028—0.032
0.042—0.044
0.027—0.029
0.035—0.040
0.028—0.032
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
992
CRC Handbook of Materials Science & Engineering
9.2 E&M L Page 993 Wednesday, December 31, 1969 17:00
Table 296. DIELECTRIC STRENGTH OF (SHEET 1 OF 12)
POLYMERS
Class
Polymer
Dielectric Strength (Short Time, ASTM D149) (V / mil)
ABS Resins; Molded, Extruded
Medium impact High impact Very high impact
385 350—440 300—375
Low temperature impact Heat resistant
300—415 360—400
Cast Resin Sheets, Rods: General purpose, type I General purpose, type II
450—530 450—500
Moldings: Grades 5, 6, 8 High impact grade
400 400—500
Acrylics; Cast, Molded, Extruded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.2 E&M L Page 994 Wednesday, December 31, 1969 17:00
Table 296. DIELECTRIC STRENGTH OF (SHEET 2 OF 12)
POLYMERS
Class
Polymer
Dielectric Strength (Short Time, ASTM D149) (V / mil)
Cellulose Acetate; Molded, Extruded
ASTM Grade: H6—1 H4—1 H2—1
250—600 250—600 250—600
MH—1, MH—2 MS—1, MS—2 S2—1
250—600 250—600 250—600
ASTM Grade: H4 MH S2
250—400 250—400 250—400
ASTM Grade: 1 3 6
300—450 300—450 300—450
Cellulose Acetate Butyrate; Molded, Extruded
Cellusose Acetate Propionate; Molded, Extruded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.2 E&M L Page 995 Wednesday, December 31, 1969 17:00
Table 296. DIELECTRIC STRENGTH OF (SHEET 3 OF 12)
POLYMERS
Class
Polymer
Dielectric Strength (Short Time, ASTM D149) (V / mil)
Chlorinated Polymers
Chlorinated polyether Chlorinated polyvinyl chloride
400 1,250—1,550
Polycarbonates
Polycarbonate Polycarbonate (40% glass fiber reinforced)
400 475
Diallyl Phthalates; Molded
Orlon filled
400 (dry) 375 (wet) 376—400 (dry) 360—391 (wet)
Dacron filled
Asbestos filled Glass fiber filled
350—450 (dry) 300—400 (wet) 350—430 (dry) 300—420 (wet)
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.2 E&M L Page 996 Wednesday, December 31, 1969 17:00
Table 296. DIELECTRIC STRENGTH OF (SHEET 4 OF 12)
POLYMERS
Class
Polymer
Dielectric Strength (Short Time, ASTM D149) (V / mil)
Fluorocarbons; Molded,Extruded
Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE)
530—600 1000—2000
Ceramic reinforced (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF)
300—400 2100 260
High performance resins (cycloaliphatic diepoxides) Molded
280—400 (step)
Epoxy novolacs Cast, rigid
444
Filler & type Cellulose electrical Glass fiber Alpha cellulose and mineral
350—400 250 —300 375
Epoxies—Molded, Extruded
Melamines; Molded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.2 E&M L Page 997 Wednesday, December 31, 1969 17:00
Table 296. DIELECTRIC STRENGTH OF (SHEET 5 OF 12)
POLYMERS
Class
Polymer
Dielectric Strength (Short Time, ASTM D149) (V / mil)
Nylons; Molded, Extruded
Type 6 General purpose Glass fiber (30%) reinforced Cast Flexible copolymers
385—400 400—450 380 440
Type 8 Type 11 Type 12
340 425 840
6/6 Nylon General purpose molding Glass fiber reinforced Glass fiber Molybdenum disulfide filled
385 400—480 300—400
General purpose extrusion 6/10 Nylon General purpose
470
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.2 E&M L Page 998 Wednesday, December 31, 1969 17:00
Table 296. DIELECTRIC STRENGTH OF (SHEET 6 OF 12)
POLYMERS
Class
Polymer
Dielectric Strength (Short Time, ASTM D149) (V / mil)
Phenolics; Molded
Type and filler General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber
200—425 250—350 200—350 375—425
Phenolics: Molded Arc resistant—mineral Rubber phenolic—woodflour or flock Rubber phenolic—chopped fabric Rubber phenolic—asbestos
350—425 250—375 250 350
ABS–Polycarbonate Alloy
ABS–Polycarbonate Alloy
500
PVC–Acrylic Alloy
PVC–Acrylic Alloy PVC–acrylic sheet PVC–acrylic injection molded
>429 400
Phenolics: Molded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.2 E&M L Page 999 Wednesday, December 31, 1969 17:00
Table 296. DIELECTRIC STRENGTH OF (SHEET 7 OF 12)
POLYMERS
Class
Polymer
Dielectric Strength (Short Time, ASTM D149) (V / mil)
Polyimides
Unreinforced 2nd value Glass reinforced
310 300
Polyacetals
Homopolymer: Standard 20% glass reinforced
500 500
Copolymer: Standard 25% glass reinforced High flow
500 580 500
Injection Moldings: General purpose grade Glass reinforced grades Glass reinforced self extinguishing
590 560—750 750
Polyester; Thermoplastic
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.2 E&M L Page 1000 Wednesday, December 31, 1969 17:00
Table 296. DIELECTRIC STRENGTH OF (SHEET 8 OF 12)
POLYMERS
Class
Polymer
Dielectric Strength (Short Time, ASTM D149) (V / mil)
Polyester; Thermoplastic (Con’t)
General purpose grade Glass reinforced grade Asbestos—filled grade
420—540 — 580
Polyesters: Thermosets
Cast polyyester Rigid Flexible
300—400 300—400
Reinforced polyester moldings High strength (glass fibers) Heat and chemical resistant (asbestos) Sheet molding compounds, general purpose
200—400 350 400—440
SE—100 SE—1 Glass fiber reinforced
400 (1/8 in.) 500 (1/8 in.) 1,020 (1/32 in.)
Phenylene Oxides
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.2 E&M L Page 1001 Wednesday, December 31, 1969 17:00
Table 296. DIELECTRIC STRENGTH OF (SHEET 9 OF 12)
POLYMERS
Class
Polymer
Dielectric Strength (Short Time, ASTM D149) (V / mil)
Phenylene oxides (Noryl)
Standard Glass fiber reinforced
425 480
Polyarylsulfone
Polyarylsulfone
350—383
Polypropylene
General purpose High impact Asbestos filled
650 (125 mil) 450—650 450
Glass reinforced Flame retardant
317—475 485—700
Standard 40% glass reinforced
450—595 490
Polyphenylene sulfide
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.2 E&M L Page 1002 Wednesday, December 31, 1969 17:00
Table 296. DIELECTRIC STRENGTH OF (SHEET 10 OF 12)
POLYMERS
Class
Polymer
Dielectric Strength (Short Time, ASTM D149) (V / mil)
Polyethylenes; Molded, Extruded
Type I—lower density (0.910—0.925) Melt index 0.3—3.6 Melt index 6—26 Melt index 200
480 480 480
Type II—medium density (0.926—0.940) Melt index 20 Melt index l.0—1.9
480 480
Type III—higher density (0.941—0.965) Melt index 0.2—0.9 Melt Melt index 0.l—12.0 Melt index 1.5—15 High molecular weight
480 480 480 480
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.2 E&M L Page 1003 Wednesday, December 31, 1969 17:00
Table 296. DIELECTRIC STRENGTH OF (SHEET 11 OF 12)
POLYMERS
Class
Polymer
Dielectric Strength (Short Time, ASTM D149) (V / mil)
Olefin Copolymers; Molded
EEA (ethylene ethyl acrylate) EVA (ethylene vinyl acetate) Ionomer Polyallomer
550 525 1000 500—650
Polystyrenes; Molded
Polystyrenes General purpose Medium impact High impact
>500 >425 300—650
Glass fiber -30% reinforced Styrene acrylonitrile (SAN) Glass fiber (30%) reinforced SAN
396 400—500 515
Nonrigid—electrical Rigid—normal impact
24—500 725—1,400
Polyvinyl Chloride And Copolymers; Molded, Extruded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.2 E&M L Page 1004 Wednesday, December 31, 1969 17:00
Table 296. DIELECTRIC STRENGTH OF (SHEET 12 OF 12)
POLYMERS
Class
Polymer
Dielectric Strength (Short Time, ASTM D149) (V / mil)
Silicones; Molded, Laminated
Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate
280 (in oil) 380 (in oil) 725
Ureas; Molded Alpha—cellulose filled (ASTM Type l) Cellulose filled (ASTM Type 2) Woodflour filled
300—400 340—370 300—400
Ureas; Molded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.2 E&M L Page 1005 Wednesday, December 31, 1969 17:00
Table 297. STEP
DIELECTRIC STRENGTH OF POLYMERS (SHEET 1 OF 3) Dielectric Strength, Step by Step ASTM D149 (V/mil)
Class
Polymer
(dry)
Thermoset Carbonate
Thermoset Carbonate Allyl diglycol carbonate
290
Alkyds; Molded
Putty (encapsulating) Rope (general purpose) Granular (high speed molding) Glass reinforced (heavy duty parts)
300—350 290 300—350 300—350
Diallyl Phthalates; Molded
Orlon filled Dacron filled Asbestos filled Glass fiber filled
350 350—410 300—400 300—420
(wet)
325 350—361 250—350 275—420
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.2 E&M L Page 1006 Wednesday, December 31, 1969 17:00
Table 297. STEP
DIELECTRIC STRENGTH OF POLYMERS (SHEET 2 OF 3) Dielectric Strength, Step by Step ASTM D149 (V/mil)
Class
Polymer
(dry)
Epoxies; Cast, Molded, Reinforced
Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible
>400 400—410
Molded General purpose glass cloth laminate High strength laminate
360—400 450—550 650-750
High performance resins (cycloaliphatic diepoxides) Molded
280—400
(wet)
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.2 E&M L Page 1007 Wednesday, December 31, 1969 17:00
Table 297. STEP
DIELECTRIC STRENGTH OF POLYMERS (SHEET 3 OF 3) Dielectric Strength, Step by Step ASTM D149 (V/mil)
Class
Polymer
(dry)
Polyesters: Thermosets
Cast polyyester Rigid Flexible
300—400 300—400
Reinforced polyester moldings High strength (glass fibers) Heat and chemical resistsnt (asbestos) Sheet molding compounds, general purpose
200—400 350 400—440
(wet)
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.2 E&M L Page 1008 Wednesday, December 31, 1969 17:00
Table 298. DIELECTRIC CONSTANT OF (SHEET 1 OF 14)
POLYMERS Dielectric Constant (ASTM D150)
Polymer
Type
60 Hz
106 Hz
ABS Resins; Molded, Extruded
Medium impact High impact Very high impact
2.8—3.2 2.8—3.2 2.8—3.5
2.75—3.0 2.7—3.0 2.4—3.0
Low temperature impact Heat resistant
2.5—3.5 2.7—3.5
2.4—3.0 2.8—3.2
Cast Resin Sheets, Rods: General purpose, type I General purpose, type II
3.5—4.5 3.5—4.5
2.7—3.2 2.7—3.2
Moldings: Grades 5, 6, 8 High impact grade
3.5—3.9 3.5—3.9
2.7—2.9 2.5—3.0
Allyl diglycol carbonate
4.4
3.5—3.8
Acrylics; Cast, Molded, Extruded
Thermoset Carbonate
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.2 E&M L Page 1009 Wednesday, December 31, 1969 17:00
Table 298. DIELECTRIC CONSTANT OF (SHEET 2 OF 14)
POLYMERS Dielectric Constant (ASTM D150)
Polymer
Type
60 Hz
106 Hz
Alkyds; Molded
Putty (encapsulating) Rope (general purpose) Granular (high speed molding) Glass reinforced (heavy duty parts)
5.4—5.9 7.4 5.7—6.3 5.2—6.0
4.5—4.7 6.8 4.8—5.1 4.5—5.0
Cellulose Acetate; Molded, Extruded
ASTM Grade: H6—1 H4—1 H2—1
3.5—7.5 3.5—7.5 3.5—7.5
3.2—7.0 3.2—7.0 3.2—7.0
MH—1, MH—2 MS—1, MS—2 S2—1
3.5—7.5 3.5—7.5 3.5—7.5
3.2—7.0 3.2—7.0 3.2—7.0
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.2 E&M L Page 1010 Wednesday, December 31, 1969 17:00
Table 298. DIELECTRIC CONSTANT OF (SHEET 3 OF 14)
POLYMERS Dielectric Constant (ASTM D150)
Polymer
Type
60 Hz
106 Hz
Cellulose Acetate Butyrate; Molded, Extruded
ASTM Grade: H4 MH S2
3.5—6.4 3.5—6.4 3.5—64
3.2—6.2 3.2—6.2 3.2—6.2
ASTM Grade: 1 3 6
3.7—4.0 3.7—4.0 3.7—4.0
3.4—3.7 3.4—3.7 3.7—3.4
Chlorinated Polymers
Chlorinated polyether Chlorinated polyvinyl chloride
3.1 3.08
2.92 3.2—3.6
Polycarbonates
Polycarbonate Polycarbonate (40% glass fiber reinforced)
3.17 3.8
2.96 3.58
Cellusose Acetate Propionate; Molded, Extruded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.2 E&M L Page 1011 Wednesday, December 31, 1969 17:00
Table 298. DIELECTRIC CONSTANT OF (SHEET 4 OF 14)
POLYMERS Dielectric Constant (ASTM D150)
Polymer
Type
60 Hz
106 Hz
Diallyl Phthalates; Molded
Orlon filled Dacron filled Asbestos filled Glass fiber filled
3.9(Dry), 3.3(Wet) 3.7–3.8(D), 3.5–3.6(W) 5.2(D), 4.5(W) 4.1–4.5(D), 3.5–4.5(W)
4.1(D), 3.4(W) 3.9(D), 3.7(W) 6.5 (D), 4.8(W) 4.6 (D), 4.4(W)
Fluorocarbons; Molded,Extruded
Polytrifluoro chloroethylene (PTFCE)
2.6—2.7
Polytetrafluoroethylene (PTFE) (0.01 in thickness) Ceramic reinforced (PTFE)
2.1 2.9—3.6
Fluorinated ethylene propylene(FEP) (0.01 in thickness)
2.1
Polyvinylidene— fluoride (PVDF) (0.125 in thickness)
10
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.2 E&M L Page 1012 Wednesday, December 31, 1969 17:00
Table 298. DIELECTRIC CONSTANT OF (SHEET 5 OF 14)
POLYMERS Dielectric Constant (ASTM D150)
Polymer
Type
60 Hz
106 Hz
Epoxies; Cast, Molded, Reinforced
Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible
4.02 4.43-4.79
3.42 2.78-3.52
Molded General purpose glass cloth laminate High strength laminate
4.4-5.4 5.3-5.4 —
4.1-4.6 4.7-4.8 4.8-5.2
High performance resins (cycloaliphatic diepoxides) Cast, rigid Molded Glass cloth laminate
3.96—4.02 4.7—5.7 —
3.53—3.58 4.3—4.8 5.1
Cast, rigid Glass cloth laminate
3.34—3.39 4.41—4.43
— —
Epoxies; Molded, Extruded
Epoxy novolacs
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.2 E&M L Page 1013 Wednesday, December 31, 1969 17:00
Table 298. DIELECTRIC CONSTANT OF (SHEET 6 OF 14)
POLYMERS Dielectric Constant (ASTM D150)
Polymer
Type
60 Hz
106 Hz
Melamines; Molded
Filler & type Unfilled Cellulose electrical Glass fiber
7.9—11.0 6.2—7.7 7.0—11.1
6.3—7.3 5.2—6.0 6.0—7.9
Alpha cellulose
Alpha cellulose Mineral
— —
6.4—8.1 5.6
Nylons; Molded, Extruded
Type 6 General purpose Glass fiber (30%) reinforced Cast Flexible copolymers
4.0—5.3 4.6—5.6 4 3.2—4.0
3.6—3.8 3.9—5.4 3.3 3.0—3.6
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.2 E&M L Page 1014 Wednesday, December 31, 1969 17:00
Table 298. DIELECTRIC CONSTANT OF (SHEET 7 OF 14)
POLYMERS Dielectric Constant (ASTM D150) 106 Hz
Polymer
Type
60 Hz
Nylons; Molded, Extruded (Con’t)
Type 8 Type 11
9.3 3.3 (10
Type 12
3.6 (103 Hz)
— —
6/6 Nylon General purpose molding Glass fiber reinforced
4 40—44
3.6 3.5—4.1
6/10 Nylon General purpose
3.9
3.5
Type and filler General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber
5.0—9.0 5.6—11.0 6.5—15.0 7.1—7.2
4.0—7.0 4.5—7.0 4.5—7.0 4.6—6.6
Phenolics; Molded
3 Hz)
4
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.2 E&M L Page 1015 Wednesday, December 31, 1969 17:00
Table 298. DIELECTRIC CONSTANT OF (SHEET 8 OF 14)
POLYMERS Dielectric Constant (ASTM D150)
Polymer
Type
60 Hz
106 Hz
Phenolics: Molded
Arc resistant—mineral Rubber phenolic—woodflour or flock Rubber phenolic—chopped fabric Rubber phenolic—asbestos
7.4 9—16 15 15
5 5 5 5
ABS–Polycarbonate Alloy
ABS–Polycarbonate Alloy
2.74
2.69
PVC–Acrylic Alloy
PVC–Acrylic Alloy PVC–acrylic sheet PVC–acrylic injection molded
3.86 4
3.44 3.4
Unreinforced Glass reinforced
4.12 4.84
3.96 4.74
Polyimides
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.2 E&M L Page 1016 Wednesday, December 31, 1969 17:00
Table 298. DIELECTRIC CONSTANT OF (SHEET 9 OF 14)
POLYMERS Dielectric Constant (ASTM D150)
Polymer
Type
60 Hz
106 Hz
Polyacetals
Homopolymer: Standard 20% glass reinforced
3.7 4
3.7 4.0
Copolymer: Standard 25% glass reinforced High flow
3.7 (100 Hz) 3.9 (100 Hz) 3.7 (100 Hz)
3.7 3.9 3.7
Injection Moldings: General purpose grade
3.1—3.3
—
Glass reinforced grades Glass reinforced self extinguishing General purpose grade Asbestos—filled grade
3.7—4.2 3.7—3.8 3.16 3.5—4.2
— — — —
Polyester; Thermoplastic
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.2 E&M L Page 1017 Wednesday, December 31, 1969 17:00
Table 298. DIELECTRIC CONSTANT OF (SHEET 10 OF 14)
POLYMERS Dielectric Constant (ASTM D150)
Polymer
Type
Polyesters: Thermosets
Cast polyyester Rigid Flexible Reinforced polyester moldings Sheet molding compounds, general purpose
60 Hz
106 Hz
2.8—4.4 3.18—7.0
2.8—4.4 3.7—6.1
4.62—5.0
4.55—4.75
Phenylene Oxides
SE—100 SE—1 Glass fiber reinforced
2.65 2.69 2.93
2.64 2.68 2.92
Phenylene oxides (Noryl)
Standard Glass fiber reinforced
3.06—3.15 3.55
3.03—3.10 3.41
Polyarylsulfone
Polyarylsulfone
3.51—3.94
3.54—3.7
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.2 E&M L Page 1018 Wednesday, December 31, 1969 17:00
Table 298. DIELECTRIC CONSTANT OF (SHEET 11 OF 14)
POLYMERS Dielectric Constant (ASTM D150)
Polymer
Type
60 Hz
106 Hz
Polypropylene
General purpose High impact
2.20—2.28 2.20—2.28
2.23—2.24 2.23—2.27
Asbestos filled Glass reinforced Flame retardant
2.75 2.3—2.5 2.46—2.79
2.6—3.17 2—2.25 2.45—2.70
Polyphenylene sulfide
Standard 40% glass reinforced
— —
3.22—3.8 3.88
Polyethylenes; Molded, Extruded
Type I—lower density (0.910—0.925) Melt index 0.3—3.6 Melt index 6—26 Melt index 200
2.3 2.3 2.3
— — —
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.2 E&M L Page 1019 Wednesday, December 31, 1969 17:00
Table 298. DIELECTRIC CONSTANT OF (SHEET 12 OF 14)
POLYMERS Dielectric Constant (ASTM D150)
Polymer
Type
60 Hz
106 Hz
Polyethylenes; Molded, Extruded (Con’t)
Type II—medium density (0.926—0.940) Melt index 20 Melt index l.0—1.9
2.3 2.3
— —
Type III—higher density (0.941—0.965) Melt index 0.2—0.9 Melt Melt index 0.l—12.0 Melt index 1.5—15 High molecular weight
2.3 2.3 2.3 2.3
— — — —
EEA (ethylene ethyl acrylate) EVA (ethylene vinyl acetate) Ionomer Polyallomer
2.8 3.16 2.4 2.3
Olefin Copolymers; Molded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.2 E&M L Page 1020 Wednesday, December 31, 1969 17:00
Table 298. DIELECTRIC CONSTANT OF (SHEET 13 OF 14)
POLYMERS Dielectric Constant (ASTM D150)
Polymer
Type
60 Hz
106 Hz
Polystyrenes; Molded
Polystyrenes General purpose Medium impact High impact
2.45—2.65 2.45—4.75 2.45—4.75
2.45—2.65 2.4—3.8 2.5—4.0
Glass fiber -30% reinforced Styrene acrylonitrile (SAN) Glass fiber (30%) reinforced SAN
3.1 2.6—3.4 3.5
3 2.6—3.02 3.4—3.6
Molded, Extruded Nonrigid—general Nonrigid—electrical Rigid—normal impact Vinylidene chloride
5.5—9.1 6.0—8.0 2.3—3.7 3—5
Polyvinyl Chloride And Copolymers;
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.2 E&M L Page 1021 Wednesday, December 31, 1969 17:00
Table 298. DIELECTRIC CONSTANT OF (SHEET 14 OF 14)
POLYMERS Dielectric Constant (ASTM D150)
Polymer
Type
60 Hz
106 Hz
Silicones; Molded, Laminated
Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate
4.34 4.1—4.5 3.9—4.2
4.28 3.4 —4.3 3.8—397
Ureas; Molded
Alpha—cellulose filled (ASTM Type l) Cellulose filled (ASTM Type 2) Woodflour filled
7.0—9.5 7.2—7.3 7.0—9.5
6.4—6.9 6.4—6.5 6.4—6.9
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.2 E&M L Page 1022 Wednesday, December 31, 1969 17:00
Table 299. DIELECTRIC
BREAKDOWN OF POLYMERS Dielectric Breakdown, Short Time (kV)
Polymer
Type
(dry)
(wet)
Diallyl Phthalates; Molded
Orlon filled Dacron filled Asbestos filled Glass fiber filled
65—75 65 55—80 63—70
60—65 60 55 45—65
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.2 E&M L Page 1023 Wednesday, December 31, 1969 17:00
Table 300. DIELECTRIC
BREAKDOWN OF POLYMERS Dielectric Breakdown, Step by Step (kV)
Polymer
Type
(dry)
(wet)
Diallyl Phthalates; Molded
Orlon filled Dacron filled Asbestos filled Glass fiber filled
55—60 60 38—70 55—65
46—60 55 39—60 45—65
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.3 E&M Page 1024 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 301. TANGENT LOSS IN (SHEET 1 OF 5) Frequency (Hz)
Tangent Loss (tan δ)
Temperature
100 Hz 100 Hz 100 Hz 100 Hz
0.00002 0.00052 0.080 1.0
25˚C 200˚C 300˚C 400˚C
1 kHz 1 kHz 1 kHz 1 kHz
0.00002 0.00012 0.0072 0.2
25˚C 200˚C 300˚C 400˚C
10 kHz 10 kHz 10 kHz 10 kHz
0.00002 0.00004 0.00072 0.022
25˚C 200˚C 300˚C 400˚C
9.4 GHz
1.5x10-4
9.4 GHz
-4
1.8x10
9.4 GHz
2.0x10-4
9.4 GHz
2.9x10-4
20˚C 200˚C 400˚C 600˚C
9.4 GHz
4.8x10-4
9.4 GHz
11x10-4
9.4 GHz
25x10-4
9.4 GHz
46x10-4
800˚C 1000˚C 1200˚C 1400˚C
16% mol Na2O
4.5x108 Hz
0.0058
20oC
19.5% mol Na2O
1kHz 3 kHz 5 kHz 10 kHz
0.144 0.0984 0.0832 0.0656
room temp. room temp. room temp. room temp.
Glass
Composition
SiO2 glass
Pure
SiO2-Na2O glass
GLASS
19.5% mol Na2O 19.5% mol Na2O 19.5% mol Na2O
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
1024
CRC Handbook of Materials Science & Engineering
9.3 E&M Page 1025 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 301. TANGENT LOSS IN (SHEET 2 OF 5)
GLASS
Glass
Composition
Frequency (Hz)
Tangent Loss (tan δ)
Temperature
SiO2-Na2O glass (Con’t)
19.5% mol Na2O
30 kHz
0.0492
room temp.
19.5% mol Na2O
50 kHz 100 kHz 300 kHz
0.0428 0.0364 0.0295
room temp. room temp. room temp.
4.5x108 Hz 4.5x108 Hz
0.0073 0.0081
20oC 20oC
1kHz 3 kHz 5 kHz 10 kHz
0.2207 0.1455 0.1194 0.0916
room temp. room temp. room temp. room temp.
30 kHz 50 kHz 100 kHz 300 kHz
0.0652 0.0563 0.0456 0.0369
room temp. room temp. room temp. room temp.
4.5x108 Hz 1kHz 3 kHz
0.0102 0.4923 0.3027
20oC room temp. room temp.
5 kHz 10 kHz 30 kHz
0.2426 0.1764 0.1172
room temp. room temp. room temp.
50 kHz 100 kHz 300 kHz
0.0972 0.0758 0.0568
room temp. room temp. room temp.
19.5% mol Na2O 19.5% mol Na2O 20% mol Na2O 22.2% mol Na2O 24.4% mol Na2O 24.4% mol Na2O 24.4% mol Na2O 24.4% mol Na2O 24.4% mol Na2O 24.4% mol Na2O 24.4% mol Na2O 24.4% mol Na2O 28.6% mol Na2O 29.4% mol Na2O 29.4% mol Na2O 29.4% mol Na2O 29.4% mol Na2O 29.4% mol Na2O 29.4% mol Na2O 29.4% mol Na2O 29.4% mol Na2O
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
Shackelford & Alexander
1025
9.3 E&M Page 1026 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 301. TANGENT LOSS IN (SHEET 3 OF 5)
GLASS
Glass
Composition
Frequency (Hz)
Tangent Loss (tan δ)
Temperature
SiO2-Na2O glass (Con’t)
34.3% mol Na2O
1kHz
0.10324
room temp.
34.3% mol Na2O
3 kHz 5 kHz 10 kHz
0.6520 0.5280 0.3752
room temp. room temp. room temp.
34.3% mol Na2O
30 kHz 50 kHz 100 kHz 300 kHz
0.2314 0.1864 0.1388 0.0936
room temp. room temp. room temp. room temp.
36% mol Na2O
4.5x108 Hz
0.0162
20oC
39.3% mol Na2O
10 kHz 30 kHz 50 kHz
0.6338 0.3835 0.3032
room temp. room temp. room temp.
39.3% mol Na2O
100 kHz 300 kHz
0.2144 0.1402
room temp. room temp.
40% mol PbO
32 GHz
0.015
-150oC
40% mol PbO
32 GHz
0.018
-100oC
40% mol PbO
32 GHz
0.020
-50oC
40% mol PbO
32 GHz
0.022
0oC
40% mol PbO 40% mol PbO 40% mol PbO
32 GHz 100 GHz 1000 GHz
0.024 0.005 0.050
50oC room temp. room temp.
46.3% mol B2O3
10 GHz
0.0014
34.3% mol Na2O 34.3% mol Na2O 34.3% mol Na2O 34.3% mol Na2O 34.3% mol Na2O
39.3% mol Na2O 39.3% mol Na2O 39.3% mol Na2O
SiO2-PbO glass
SiO2-B2O3 glass
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
1026
CRC Handbook of Materials Science & Engineering
9.3 E&M Page 1027 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 301. TANGENT LOSS IN (SHEET 4 OF 5) Frequency (Hz)
Tangent Loss (tan δ)
Temperature
0.5% mol Al2O3
50 K 100 K 150 K
0.0025 0.0021 0.0026
50 K 100 K 150 K
B2O3 glass
1 MHz
0.0004
100oC
1 MHz
0.0005
200oC
1 MHz
0.0009
300oC
32 kHz 32 kHz 32 kHz
0.00005 0.00011 0.0007
50K 100K 150K
32 kHz 32 kHz 32 kHz
0.0010 0.0008 0.0003
200K 250K 300K
8% mol Na2O
1MHz
0.0025
room temp.
10% mol Na2O
1MHz 1 kHz 1 kHz 1 kHz 1 kHz
0.0022 0.0003 0.0009 0.0038 0.0066
room temp.
1 kHz 1 kHz 1 kHz 1 kHz
0.0005 0.0022 0.0100 0.0170
134.5oC 214oC 277oC 298oC
Glass
Composition
SiO2-Al2O3 glass
0.5% mol Al2O3 0.5% mol Al2O3
B2O3 glass
B2O3-Na2O glass
GLASS
10% mol Na2O 10% mol Na2O 10% mol Na2O 10% mol Na2O 12.5% mol Na2O 12.5% mol Na2O 12.5% mol Na2O 12.5% mol Na2O
134.5oC 214oC 277oC 298oC
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
Shackelford & Alexander
1027
9.3 E&M Page 1028 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 301. TANGENT LOSS IN (SHEET 5 OF 5)
GLASS
Glass
Composition
Frequency (Hz)
Tangent Loss (tan δ)
Temperature
B2O3-Na2O glass (Con’t)
15% mol Na2O
1 kHz
0.0015
134.5oC
15% mol Na2O 15% mol Na2O
1 kHz 1 kHz 1 kHz
0.0064 0.0296 0.0477
214oC 277oC 298oC
16% mol Na2O
1MHz
0.0031
room temp.
20% mol Na2O
1 kHz 1 kHz 1 kHz
0.0009 0.0026 0.0149
16oC 90.5oC 157oC
1 kHz 1 kHz
0.0890 0.2480
219oC 274oC
0.0022 0.0063 0.0150 0.1080
16oC room temp.
25% mol Na2O
1 kHz 1MHz 1 kHz 1 kHz
28% mol Na2O
1MHz
0.0081
room temp.
33.3% mol CaO
2 MHz
0.001
25oC
33.3% mol CaO
2 MHz
0.002
100oC
33.3% mol CaO
2 MHz
0.0025
200oC
33.3% mol CaO
2 MHz
0.0035
300oC
33.3% mol CaO
2 MHz
0.0045
400oC
33.3% mol CaO
2 MHz
0.0055
500oC
33.3% mol CaO
2 MHz
0.007
550oC
15% mol Na2O
20% mol Na2O 20% mol Na2O 20% mol Na2O 20% mol Na2O 25% mol Na2O 25% mol Na2O 25% mol Na2O
B2O3-CaO glass
90.5oC 157oC
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
1028
CRC Handbook of Materials Science & Engineering
9.3 E&M Page 1029 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 302. ELECTRICAL PERMITTIVITY OF (SHEET 1 OF 6) Glass
Composition
SiO2 glass
Pure
GLASS
Frequency (Hz)
Electrical Permittivity
Temperature (˚C)
100 Hz 100 Hz 100 Hz 100 Hz
4.0 4.0 4.0 5.5
25 200 300 400
1 kHz 1 kHz 1 kHz 1 kHz
4.0 4.0 4.0 4.1
25 200 300 400
10 kHz 10 kHz 10 kHz 10 kHz
4.0 4.0 4.0 4.0
25 200 300 400
9.4 GHz 9.4 GHz 9.4 GHz 9.4 GHz
3.81 3.83 3.84 3.86
20 200 400 600
9.4 GHz 9.4 GHz 9.4 GHz 9.4 GHz
3.88 3.91 3.93 3.96
800 1000 1200 1400
10 GHz 10 GHz 10 GHz 10 GHz
3.82 3.82 3.91 3.98
20 220 888 1170
10 GHz 10 GHz 10 GHz 10 GHz
4.05 4.07 4.09 4.11
1335 1420 1480 1526
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
Shackelford & Alexander
1029
9.3 E&M Page 1030 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 302. ELECTRICAL PERMITTIVITY OF (SHEET 2 OF 6)
GLASS
Frequency (Hz)
Electrical Permittivity
Temperature (˚C)
Pure (Con’t)
10 GHz 10 GHz 10 GHz 10 GHz 10 GHz
4.12 4.15 4.12 4.04 4.05
1584 1602 1647 1764 1764
(16% mol Na2O)
4.5x108 Hz
6.01
20
(19.5% mol Na2O)
1kHz 3 kHz 5 kHz 10 kHz
9.40 8.97 8.56 8.26
room temp. room temp. room temp. room temp.
30 kHz 50 kHz 100 kHz 300 kHz
8.00 7.88 7.74 7.62
room temp. room temp. room temp. room temp.
4.5x108 Hz 4.5x108 Hz
6.48 6.85
20 20
1kHz 3 kHz 5 kHz 10 kHz
11.62 10.61 10.21 9.74
room temp. room temp. room temp. room temp.
(24.4% mol Na2O)
30 kHz 50 kHz 100 kHz 300 kHz
9.30 9.14 8.91 8.75
room temp. room temp. room temp. room temp.
(28.6% mol Na2O)
4.5x108 Hz
7.62
20
Glass
Composition
SiO2 glass (Con’t)
SiO2–Na2O glass
(19.5% mol Na2O) (19.5% mol Na2O) (19.5% mol Na2O) (19.5% mol Na2O) (19.5% mol Na2O) (19.5% mol Na2O) (19.5% mol Na2O) (20% mol Na2O) (22.2% mol Na2O) (24.4% mol Na2O) (24.4% mol Na2O) (24.4% mol Na2O) (24.4% mol Na2O) (24.4% mol Na2O) (24.4% mol Na2O) (24.4% mol Na2O)
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
1030
CRC Handbook of Materials Science & Engineering
9.3 E&M Page 1031 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 302. ELECTRICAL PERMITTIVITY OF (SHEET 3 OF 6)
GLASS
Glass
Composition
Frequency (Hz)
Electrical Permittivity
Temperature (˚C)
SiO2–Na2O glass (Con’t)
(29.4% mol Na2O)
1kHz
17.52
room temp.
(29.4% mol Na2O)
3 kHz 5 kHz 10 kHz
14.23 13.19 12.08
room temp. room temp. room temp.
30 kHz 50 kHz 100 kHz 300 kHz
11.21 10.86 10.47 10.15
room temp. room temp. room temp. room temp.
1kHz 3 kHz 5 kHz 10 kHz
38.61 21.30 18.13 15.22
room temp. room temp. room temp. room temp.
(34.3% mol Na2O)
30 kHz 50 kHz 100 kHz 300 kHz
13.28 12.57 11.78 11.14
room temp. room temp. room temp. room temp.
(36% mol Na2O)
4.5x108 Hz
9.40
20
(39.3% mol Na2O)
10 kHz 30 kHz
22.08 16.56
room temp. room temp.
50 kHz 100 kHz 300 kHz
15.06 13.55 12.43
room temp. room temp. room temp.
(29.4% mol Na2O) (29.4% mol Na2O) (29.4% mol Na2O) (29.4% mol Na2O) (29.4% mol Na2O) (29.4% mol Na2O) (34.3% mol Na2O) (34.3% mol Na2O) (34.3% mol Na2O) (34.3% mol Na2O) (34.3% mol Na2O) (34.3% mol Na2O) (34.3% mol Na2O)
(39.3% mol Na2O) (39.3% mol Na2O) (39.3% mol Na2O) (39.3% mol Na2O)
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
Shackelford & Alexander
1031
9.3 E&M Page 1032 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 302. ELECTRICAL PERMITTIVITY OF (SHEET 4 OF 6)
GLASS
Glass
Composition
Frequency (Hz)
Electrical Permittivity
Temperature (˚C)
SiO2–PbO glass
(40% mol PbO) (40% mol PbO)
32 GHz 32 GHz
4.25 4.30
–150 –100
(40% mol PbO) (40% mol PbO) (40% mol PbO)
32 GHz 32 GHz 32 GHz
4.40 4.45 5.00
–50 0 50
SiO2–Al2O3 glass
(46.3% mol B2O3)
10 GHz
3.55
B2O3 glass
Pure
1 kHz 1 kHz 1 kHz
3.17 3.21 3.27
500 550 580
3 kHz 3 kHz
3.15 3.17
500 550
3 kHz 3 kHz 3 kHz
3.18 3.21 3.25
580 620 650
10 kHz 10 kHz 10 kHz
3.13 3.14 3.145
500 550 580
10 kHz 10 kHz 10 kHz
3.15 3.15 3.16
620 650 700
50 kHz 50 kHz 50 kHz 50 kHz
3.10 3.12 3.115 3.05
500 550 580 620
50 kHz 50 kHz 50 kHz 50 kHz
3.10 3.09 3.06 3.04
650 700 750 800
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
1032
CRC Handbook of Materials Science & Engineering
9.3 E&M Page 1033 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 302. ELECTRICAL PERMITTIVITY OF (SHEET 5 OF 6) Glass
Composition
B2O3–Na2O glass
(4.08% mol Na2O) (7.35% mol Na2O) (14.15% mol Na2O) (17.31% mol Na2O) (24.77% mol Na2O) (31.98% mol Na2O) (10% mol Na2O) (10% mol Na2O) (10% mol Na2O) (10% mol Na2O) (10% mol Na2O) (12.5% mol Na2O) (12.5% mol Na2O) (12.5% mol Na2O) (12.5% mol Na2O) (12.5% mol Na2O) (15% mol Na2O) (15% mol Na2O) (15% mol Na2O) (15% mol Na2O) (15% mol Na2O) (20% mol Na2O) (20% mol Na2O) (20% mol Na2O)
GLASS
Frequency (Hz)
Electrical Permittivity
Temperature (˚C)
56.8 MHz 56.8 MHz 56.8 MHz
3.72 4.20 4.94
room temp. room temp. room temp.
56.8 MHz 56.8 MHz 56.8 MHz
5.27 6.24 7.03
room temp. room temp. room temp.
1 kHz 1 kHz 1 kHz 1 kHz 1 kHz
5.00 5.05 5.15 5.45 5.60
73 134.5 214 277 298
1 kHz 1 kHz 1 kHz
5.45 5.60 5.75
73 134.5 214
1 kHz 1 kHz
6.30 6.65
277 298
1 kHz 1 kHz 1 kHz
5.80 6.00 6.50
73 134.5 214
1 kHz 1 kHz
7.80 8.60
277 298
1 kHz 1 kHz 1 kHz
6.15 6.43 7.45
16 90.5 157
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
Shackelford & Alexander
1033
9.3 E&M Page 1034 Wednesday, December 31, 1969 17:00
Electrical Properties
Table 302. ELECTRICAL PERMITTIVITY OF (SHEET 6 OF 6)
GLASS
Glass
Composition
Frequency (Hz)
Electrical Permittivity
Temperature (˚C)
B2O3–Na2O glass (Con’t)
(20% mol Na2O)
1 kHz
11.85
219
(20% mol Na2O)
1 kHz
31.00
274
(25% mol Na2O)
1 kHz 1 kHz 1 kHz
7.50 8.90 17.30
16 90.5 157
(25% mol Na2O) (25% mol Na2O)
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
1034
CRC Handbook of Materials Science & Engineering
9.4 E&M L Page 1035 Wednesday, December 31, 1969 17:00
Table 303. ARC
RESISTANCE OF POLYMERS (SHEET 1 OF 8)
Polymer
Type
Arc Resistance, (ASTM D495) (seconds)
Acrylics; Cast, Molded, Extruded
Cast Resin Sheets, Rods: General purpose, type I General purpose, type II
No track No track
Moldings: Grades 5, 6, 8 High impact grade
No track No track
Thermoset Carbonate
Allyl diglycol carbonate
185
Alkyds; Molded
Putty (encapsulating) Rope (general purpose) Granular (high speed molding) Glass reinforced (heavy duty parts)
180 180 180 180
Polycarbonates
Polycarbonate Polycarbonate (40% glass fiber reinforced)
120 (tungsten electrode) 120 (tungsten electrode)
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.4 E&M L Page 1036 Wednesday, December 31, 1969 17:00
Table 303. ARC
RESISTANCE OF POLYMERS (SHEET 2 OF 8)
Polymer
Type
Arc Resistance, (ASTM D495) (seconds)
Diallyl Phthalates; Molded
Orlon filled Dacron filled Asbestos filled Glass fiber filled
85—115 105—125 125—140 125—140
Fluorocarbons; Molded,Extruded
Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE)
>360 >200
Ceramic reinforced (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF)
>165 50—60
Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible Molded General purpose glass cloth laminate
100 75—98 135—190 130—180
Epoxies; Cast, Molded, Reinforced
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.4 E&M L Page 1037 Wednesday, December 31, 1969 17:00
Table 303. ARC
RESISTANCE OF POLYMERS (SHEET 3 OF 8)
Polymer
Type
Arc Resistance, (ASTM D495) (seconds)
Epoxies—Molded, Extruded
High performance resins (cycloaliphatic diepoxides) Molded
180—185
Epoxy novolacs
Cast, rigid
120
Melamines; Molded
Filler & type Unfilled Cellulose electrical Glass fiber Alpha cellulose and mineral
100—145 70—135 180—186 125
Type 6 Glass fiber (30%) reinforced
92—81
6/6 Nylon General purpose molding Glass fiber reinforced Glass fiber Molybdenum disulfide filled General purpose extrusion
120 100—148 135 120
Nylons; Molded, Extruded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.4 E&M L Page 1038 Wednesday, December 31, 1969 17:00
Table 303. ARC
RESISTANCE OF POLYMERS (SHEET 4 OF 8)
Polymer
Type
Arc Resistance, (ASTM D495) (seconds)
Nylons; Molded, Extruded (Con’t)
6/10 Nylon General purpose
120
Type and filler General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber
5—60 5—60 5—60 60
Phenolics: Molded
Arc resistant—mineral Rubber phenolic—woodflour or flock Rubber phenolic—chopped fabric Rubber phenolic—asbestos
180 7—20 10—20 5—20
ABS–Polycarbonate Alloy
ABS–Polycarbonate Alloy
96
PVC–Acrylic Alloy
PVC–acrylic sheet PVC–acrylic injection molded
80 25
Phenolics; Molded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.4 E&M L Page 1039 Wednesday, December 31, 1969 17:00
Table 303. ARC
RESISTANCE OF POLYMERS (SHEET 5 OF 8)
Polymer
Type
Arc Resistance, (ASTM D495) (seconds)
Polyimides
Unreinforced Glass reinforced
152 50—180
Polyacetals
Homopolymer: Standard 20% glass reinforced
129 188
Copolymer: Standard 25% glass reinforced High flow
240 136 240
Injection Moldings: General purpose grade Glass reinforced grades
190 130
Glass reinforced self extinguishing General purpose grade Asbestos—filled grade
80 125 108
Polyester; Thermoplastic
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.4 E&M L Page 1040 Wednesday, December 31, 1969 17:00
Table 303. ARC
RESISTANCE OF POLYMERS (SHEET 6 OF 8)
Polymer
Type
Arc Resistance, (ASTM D495) (seconds)
Polyesters: Thermosets
Cast polyyester Rigid Flexible
115—135 125—145
Reinforced polyester moldings High strength (glass fibers) Sheet molding compounds, general purpose
130—170 130—180
Phenylene Oxides
SE—100 SE—1 Glass fiber reinforced
75 75 120
Phenylene oxides (Noryl)
Standard Glass fiber reinforced
122 114
Polyarylsulfone
Polyarylsulfone
67—81
Polypropylene
General purpose High impact
125—136 123—140
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.4 E&M L Page 1041 Wednesday, December 31, 1969 17:00
Table 303. ARC
RESISTANCE OF POLYMERS (SHEET 7 OF 8)
Polymer
Type
Arc Resistance, (ASTM D495) (seconds)
Polypropylene (Con’t)
Asbestos filled Glass reinforced Flame retardant
121—125 73—77 15—40
Polyphenylene sulfide
40% glass reinforced
34
Polystyrenes
Molded General purpose Medium impact High impact
60—135 20—135 20—100
Glass fiber -30% reinforced Styrene acrylonitrile (SAN) Glass fiber (30%) reinforced SAN
28 100—150 65
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
9.4 E&M L Page 1042 Wednesday, December 31, 1969 17:00
Table 303. ARC
RESISTANCE OF POLYMERS (SHEET 8 OF 8)
Polymer
Type
Arc Resistance, (ASTM D495) (seconds)
Silicones; Molded, Laminated
Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate
240 250—310 225—250
Ureas; Molded
Alpha—cellulose filled (ASTM Type l) Cellulose filled (ASTM Type 2) Woodflour filled
100—135 85—110 80—110
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford, James F. & Alexander, W.“Optical Properties of Materials” Materials Science and Engineering Handbook Ed. James F. Shackelford & W. Alexander Boca Raton: CRC Press LLC, 2001
10.0 Optical Page 1043 Wednesday, December 31, 1969 17:00
CHAPTER 8
List of Tables
Optical Properties of Materials
Transparency & Transmission Transmission Range of Optical Materials Transparency of Polymers Refractive Index Refractive Index of Polymers Dispersion Dispersion of Optical Materials
©2001 CRC Press LLC
1043
10.1 Optical Page 1044 Wednesday, December 31, 1969 17:00
Optical Properties
Table 304. TRANSMISSION
OPTICAL MATERIALS
RANGE OF
(SHEET 1 OF 2)
Material & Crystal Structure
Transmission Region (µm, at 298 K)
Alumina (Sapphire, Single Crystal) Ammonium Dihydrogen Phosphate (ADP, Single Crystal) Arsenic Trisulfade (Glass)
0.15 – 6.5 0.13 – 1.7 0.6 – 13
Barium Fluoride (Single Crystal) Cadmium Sulfide (Bulk and Hexagonal Single Crystal) Cadmium Telluride (Hot Pressed Polycrystalline) Calcium Carbonate (Calcite, Single Crystal) Calcium Fluoride (Single Crystal) Cesium Bromide (Single Crystal)
0.25 – 15 0.5 – 16 0.9 – 16 0.2 – 5.5 0.13 – 12 0.3 – 55
Cesium Iodide (Single Crystal) Cuprous Chloride (Single Crystal) Gallium Arsenide (Intrinsic Single Crystal)
0.25 – 80 0.4 – 19 1.0 – 15
Germanium (Intrinsic Single Crystal) Indium Arsenide (Single Crystal) Lead Sulfide (Single Crystal)
1.8 – 23 3.8 – 7.0 3.0 – 7.0
Lithium Fluoride (Single Crystal) Lithium Niobate (Single Crystal) Magnesium Fluoride (Film)
0.12 – 9.0 0.33 – 5.2 0.2 – 5.0
Magnesium Fluoride (Single Crystal) Magnesium Oxide (Single Crystal) Potassium Bromide (Single Crystal)
0.1 – 9.7 0.25 – 8.5 0.25 – 35
Potassium Iodide (Single Crystal) Selenium (Amorphous) Silica (High Purity Crystalline)
0.25 – 45 1.0 – 20 0.12 – 4.5
Silica (High Purity Fused) Silicon (Single Crystal) Silver Bromide (Single Crystal)
0.12 – 4.5 1.2 – 15 0.45 – 35
External transmittance ≥ 10% with 2.0 mm thickness. Source: Data compiled by J.S. Park.
©2001 CRC Press LLC
1044
CRC Handbook of Materials Science & Engineering
10.1 Optical Page 1045 Wednesday, December 31, 1969 17:00
Optical Properties
Table 304. TRANSMISSION
OPTICAL MATERIALS
RANGE OF
(SHEET 2 OF 2)
Material & Crystal Structure
Transmission Region (µm, at 298 K)
Silver Chloride (Single Crystal) Sodium Fluoride (Single Crystal) Strontium Titanate (Single Crystal)
0.4 – 2.8 0.19 – 15 0.39 – 6.8
Tellurium (Polycrystalline Film) Tellurium (Single Crystal) Thallium Bromoiodide (KRS–5, Mixed Crystal)
3.5 – 8.0 3.5 – 8.0 0.6 – 40
Thallium Chloribromide (KRS–6, Mixed Crystal) Titanium Dioxide (Rutile, Single Crystal) Zinc Selenide (Single Crystal, Cubic)
0.21 – 35 0.43 – 6.2 ~0.5 – 22
Zinc Sulfide (Single Crystal, Cubic)
~0.6 – 15.6
External transmittance ≥ 10% with 2.0 mm thickness. Source: Data compiled by J.S. Park.
©2001 CRC Press LLC
Shackelford & Alexander
1045
10.2 Optical L Page 1046 Wednesday, December 31, 1969 17:00
Table 305. TRANSPARENCY OF (SHEET 1 OF 7)
POLYMERS
Polymer
Type
Transparency (visible light) (ASTM D791) (%)
Acrylics; Cast, Molded, Extruded
Cast Resin Sheets, Rods: General purpose, type I General purpose, type II
(0.125 in.) 91—92 91—92
Moldings: Grades 5, 6, 8 High impact grade
>92 90
Thermoset Carbonate
Allyl diglycol carbonate
89—92
Alkyds; Molded
Putty (encapsulating) Rope (general purpose) Granular (high speed molding) Glass reinforced (heavy duty parts)
Opaque Opaque Opaque Opaque
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
10.2 Optical L Page 1047 Wednesday, December 31, 1969 17:00
Table 305. TRANSPARENCY OF (SHEET 2 OF 7)
POLYMERS
Polymer
Type
Transparency (visible light) (ASTM D791) (%)
Cellulose Acetate; Molded, Extruded
ASTM Grade: H6—1 H4—1 H2—1
75—90 75—90 80—90
MH—1, MH—2 MS—1, MS—2 S2—1
80—90 80—90 80—95
ASTM Grade: H4 MH S2
75—92 80—92 85—95
ASTM Grade: 1 3 6
80—92 80—92 80—92
Cellulose Acetate Butyrate; Molded, Extruded
Cellusose Acetate Propionate; Molded, Extruded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
10.2 Optical L Page 1048 Wednesday, December 31, 1969 17:00
Table 305. TRANSPARENCY OF (SHEET 3 OF 7)
POLYMERS
Polymer
Type
Transparency (visible light) (ASTM D791) (%)
Chlorinated Polymers
Chlorinated polyether Chlorinated polyvinyl chloride
Opaque Opaque
Polycarbonates
Polycarbonate Polycarbonate (40% glass fiber reinforced)
75—85 Translucent
Fluorocarbons; Molded,Extruded
Polytrifluoro chloroethylene (PTFCE)
80—92
Epoxies; Cast, Molded, Reinforced
Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible Molded
90 85
General purpose glass cloth laminate High strength laminate Filament wound composite
Opaque Opaque Opaque
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
10.2 Optical L Page 1049 Wednesday, December 31, 1969 17:00
Table 305. TRANSPARENCY OF (SHEET 4 OF 7)
POLYMERS
Polymer
Type
Transparency (visible light) (ASTM D791) (%)
Epoxies—Molded, Extruded
High performance resins (cycloaliphatic diepoxides) Cast, rigid Molded Glass cloth laminate
Opaque Opaque
Epoxy novolacs
Glass cloth laminate
Opaque
Melamines; Molded
Filler & type Unfilled Cellulose electrical
Good Opaque
6/6 Nylon General purpose molding Glass fiber reinforced Glass fiber Molybdenum disulfide filled General purpose extrusion
Translucent Opaque Opaque Opaque
Nylons; Molded, Extruded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
10.2 Optical L Page 1050 Wednesday, December 31, 1969 17:00
Table 305. TRANSPARENCY OF (SHEET 5 OF 7)
POLYMERS
Polymer
Type
Transparency (visible light) (ASTM D791) (%)
Nylons; Molded, Extruded (Con’t)
6/10 Nylon General purpose Glass fiber (30%) reinforced
Opaque Opaque
ABS–Polycarbonate Alloy
ABS–Polycarbonate Alloy
Opaque
PVC–Acrylic Alloy
PVC–acrylic sheet PVC–acrylic injection molded
Opaque Opaque
Poliymides
Unreinforced Unreinforced 2nd value Glass reinforced
Opaque Opaque Opaque
Polyesters: Thermosets
Reinforced polyester moldings High strength (glass fibers) Heat and chemical resistsnt (asbestos) Sheet molding compounds, general purpose
Opaque Opaque Opaque
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
10.2 Optical L Page 1051 Wednesday, December 31, 1969 17:00
Table 305. TRANSPARENCY OF (SHEET 6 OF 7)
POLYMERS
Polymer
Type
Transparency (visible light) (ASTM D791) (%)
Phenylene Oxides
SE—100 SE—1 Glass fiber reinforced
Opaque Opaque Opaque
Phenylene oxides (Noryl)
Glass fiber reinforced
Opaque
Polypropylene
General purpose High impact
Translucent—opaque Translucent—opaque
Asbestos filled Glass reinforced Flame retardant
Opaque Opaque Opaque
Standard 40% glass reinforced
Opaque Opaque
Polyphenylene sulfide
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
10.2 Optical L Page 1052 Wednesday, December 31, 1969 17:00
Table 305. TRANSPARENCY OF (SHEET 7 OF 7)
POLYMERS
Polymer
Type
Transparency (visible light) (ASTM D791) (%)
Polystyrenes; Molded
General purpose Medium impact High impact Glass fiber -30% reinforced
Transparent Opaque Opaque Opaque
Styrene acrylonitrile (SAN) Glass fiber (30%) reinforced SAN
Transparent Opaque
Silicones; Molded, Laminated
Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate
Opaque Opaque Opaque
Ureas; Molded
Alpha—cellulose filled (ASTM Type 1) Cellulose filled (ASTM Type 2) Woodflour filled
21.8 Opaque Opaque
Styrene acrylonitrile (SAN)
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
10.2 Optical L Page 1053 Wednesday, December 31, 1969 17:00
Table 306. REFRACTIVE INDEX OF (SHEET 1 OF 5)
POLYMERS
Polymer
Type
Refractive index, (ASTM D542) (nD)
Acrylics; Cast, Molded, Extruded
Cast Resin Sheets, Rods: General purpose, type I General purpose, type II
1.485—1.500 1.485—1.495
Moldings: Grades 5, 6, 8 High impact grade
1.489—1.493 1.49
Thermoset Carbonate
Allyl diglycol carbonate
1.5
Cellulose Acetate; Molded, Extruded
ASTM Grade: H6—1 H4—1 H2—1
1.46—1.50 1.46—1.50 1.46—1.50
MH—1, MH—2 MS—1, MS—2 S2—1
1.46—1.50 1.46—1.50 1.46—1.50
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
10.2 Optical L Page 1054 Wednesday, December 31, 1969 17:00
Table 306. REFRACTIVE INDEX OF (SHEET 2 OF 5)
POLYMERS
Polymer
Type
Refractive index, (ASTM D542) (nD)
Cellulose Acetate Butyrate; Molded, Extruded
ASTM Grade: H4 MH S2
(D543) 1.46—1.49 1.46—1.49 1.46—1.49
Cellusose Acetate Propionate; Molded, Extruded
ASTM Grade: 1 3 6
1.46—1.49 1.46—1.49 1.46—1.49
Polycarbonate
1.586
Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF)
1.43 1.35 1.34 1.42
Fluorocarbons; Molded,Extruded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
10.2 Optical L Page 1055 Wednesday, December 31, 1969 17:00
Table 306. REFRACTIVE INDEX OF (SHEET 3 OF 5)
POLYMERS
Polymer
Type
Refractive index, (ASTM D542) (nD)
Epoxies; Cast, Molded, Reinforced
Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible Molded
1.61 1.61
Homopolymer: Standard 20% glass reinforced 22% TFE reinforced
Opaque Opaque Opaque
Copolymer: Standard 25% glass reinforced High flow
Opaque Opaque Opaque
Cast polyyester Rigid Flexible
1.53—1.58 1.50—1.57
Polyacetals
Polyesters: Thermosets
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
10.2 Optical L Page 1056 Wednesday, December 31, 1969 17:00
Table 306. REFRACTIVE INDEX OF (SHEET 4 OF 5)
POLYMERS
Polymer
Type
Refractive index, (ASTM D542) (nD)
Phenylene oxides (Noryl)
Standard
1.63
Polyarylsulfone
Polyarylsulfone
1.651
Polyethylenes; Molded, Extruded
Type I—lower density (0.910—0.925) Melt index 0.3—3.6 Melt index 6—26 Melt index 200
1.51 1.51 1.51
Type II—medium density (0.926—0.940) Melt index 20 Melt index l.0—1.9
1.51 1.51
Type III—higher density (0.941—0.965) Melt index 0.2—0.9 Melt index 0.l—12.0 Melt index 1.5—15
1.54 1.54 1.54
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
10.2 Optical L Page 1057 Wednesday, December 31, 1969 17:00
Table 306. REFRACTIVE INDEX OF (SHEET 5 OF 5)
POLYMERS
Polymer
Type
Refractive index, (ASTM D542) (nD)
Polystyrenes; Molded
Polystyrenes General purpose Medium impact High impact
1.6 Opaque Opaque
Glass fiber -30% reinforced Styrene acrylonitrile (SAN) Glass fiber (30%) reinforced SAN
Opaque 1.565—1.569 Opaque
Vinylidene chloride
1.60—1.63
Polyvinyl Chloride And Copolymers; Molded, Extruded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
10.2 Optical L Page 1058 Wednesday, December 31, 1969 17:00
Table 307. DISPERSION OF OPTICAL (SHEET 1 OF 13) Material
Dispersion Equation at 298 K
3
Alumina (Sapphire, Single Crystal)
MATERIALS
2
n -1=
Σ i=1
Aiλ 2 λ2
-
(λ in µm)
λ2 i
where i
1 2 3 (λ in mm)
λi2 0.00377588 0.0122544 321.3616
Ai 1.023798 1.058264 5.280792
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
10.2 Optical L Page 1059 Wednesday, December 31, 1969 17:00
Table 307. DISPERSION OF OPTICAL (SHEET 2 OF 13) Material
Dispersion Equation at 298 K
5
ArsenicTrisulfide (Glass)
MATERIALS
2
n -1=
Σ i=1
Kiλ 2 λ 2 − λi2
where i
1 2 3 4 5 (λ in µm)
(λ in µm)
λi2 0.0225 0.0625 0.1225 0.2025 0.705
Ki 1.8983678 1.9222979 0.8765134 0.1188704 0.9569903
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
10.2 Optical L Page 1060 Wednesday, December 31, 1969 17:00
Table 307. DISPERSION OF OPTICAL (SHEET 3 OF 13) Material
Dispersion Equation at 298 K
3
Barium Fluoride (Single Crystal)
MATERIALS
2
n -1=
Σ
Aiλ 2
(λ in µm)
λ2 - λ2 i i=1
where i
1 2 3 (λ in µm)
λi 0.057789 0.10968 46.3864
Ai 0.643356 0.50676 3.8261
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
10.2 Optical L Page 1061 Wednesday, December 31, 1969 17:00
Table 307. DISPERSION OF OPTICAL (SHEET 4 OF 13) Material
Cadmium Sulfide (Bulk and Hexagonal Single Crystal)
MATERIALS
Dispersion Equation at 298 K
n 2o=5.235+
1.891x107 λ 2-1.651x107
for ordinary ray, and
2.076x10 7 2 ne =5.239+ λ 2-1.651x10 7 for extraordinary ray. (λ in µm)
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
10.2 Optical L Page 1062 Wednesday, December 31, 1969 17:00
Table 307. DISPERSION OF OPTICAL (SHEET 5 OF 13) Material
Dispersion Equation at 298 K
3
Calcium Fluoride (Single Crystal)
MATERIALS
2
n -1=
Aiλ 2
Σ i=1
λ2
-
(λ in µm)
λ2 i Ai 0.5675888 0.4710914 3.8484723
i 1 2 3
Cesium Bromide (Single Crystal)
2 -6 n = 5.640752–3.338x10 λ2 +
0.0018612 λ
2
λι 0.050263605 0.1003909 34.64904
41110.49 0.0290764 + 2 + 2 λ -14390.4 λ -0.024964
(λ in µm)
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
10.2 Optical L Page 1063 Wednesday, December 31, 1969 17:00
Table 307. DISPERSION OF OPTICAL (SHEET 6 OF 13) Material
Dispersion Equation at 298 K
5
Cesium Iodide (Single Crystal)
MATERIALS
2
n -1=
Σ i=1
Kiλ 2 λ 2 − λi2
where i
1 2 3 4 5 (λ in mm)
(λ in µm)
λi2 0.00052701 0.02149156 0.28551800 0.39743178 3.3605359
Ki 0.3461725 1.0080886 0.02149156 0.044944 25921
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
10.2 Optical L Page 1064 Wednesday, December 31, 1969 17:00
Table 307. DISPERSION OF OPTICAL (SHEET 7 OF 13)
MATERIALS
Material
Dispersion Equation at 298 K
Germanium (Intrinsic Single Crystal)
n = A + Bλ + Cλ2 + Dλ2 + Eλ4
where A=3.99931 B=0.391707 C=0.163492 D=–0.0000060 E=0.000000053 for 2.0µm ≤ λ ≤ 13.5 µm
Lithium Fluoride (Single Crystal)
n = A + BL + CL2 + Dλ2 + Eλ4
where A=1.38761 B=0.001796 C=–0.000041 D=–0.0023045 E=–0.00000557 for 0.5µm ≤ λ ≤ 6.0 µm Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
10.2 Optical L Page 1065 Wednesday, December 31, 1969 17:00
Table 307. DISPERSION OF OPTICAL (SHEET 8 OF 13) Material
MATERIALS
Dispersion Equation at 298 K
Magnesium Fluoride (Single Crystal)
no =1.36957 +
0.0035821 λ -0.14925
for ordinary wavelengths, and
ne =1.38100 +
0.0037415 λ -0.14947
for wavelengths within 0.4µm ≤ λ ≤ 0.7 µm
2 -5 n =2.956362-0.1062387 λ 2 –2.04968 x10 λ4
Magnesium Oxide (Single Crystal)
–
0.0219577 λ2
-0.01428322
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
10.2 Optical L Page 1066 Wednesday, December 31, 1969 17:00
Table 307. DISPERSION OF OPTICAL (SHEET 9 OF 13) Material
Potassium Bromide (Single Crystal)
Potassium Chloride (Single Crystal)
MATERIALS
Dispersion Equation at 298 K
2
n = 2.3618102–0.00058072 λ 2 +
0.02305269
λ2– 0.02425381 for 0.4µm ≤ λ ≤ 0.7 µm
n2= 2.174967+
0.08344206 λ 2-0.0119082
+
0.00698382 λ2 -0.025555
– 0.000513495 λ2 – 0.06167587 λ 4 for ultraviolet wavelengths
n2=3.866619+
0.08344206 λ 2 – 0.0119082
–
0.00698382 λ 2–
0.025555
–
5569.715 λ 2–
3292.472
for the visible light Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
10.2 Optical L Page 1067 Wednesday, December 31, 1969 17:00
Table 307. DISPERSION OF OPTICAL (SHEET 10 OF 13) Material
Silica (High Purity Fused)
Silicon (Single Crystal)
MATERIALS
Dispersion Equation at 298 K
n2=2.978645 +
0.008777808 λ 2–
0.010609
+
84.06224 λ 2–
96.0000
n = 3.41696 + 0.138497L + 0.013924L2 – 0.0000209λ2 + 0.000000148λ4
where L = (λ2 – 0.028)–1
Silver Bromide (Single Crystal)
n2 – 1 0.10279 λ2 =0.48484+ λ2– 0.0900 n2 + 2
– 0.004796 λ 2
for 0.54µm ≤ λ ≤ 0.65 µm
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
10.2 Optical L Page 1068 Wednesday, December 31, 1969 17:00
Table 307. DISPERSION OF OPTICAL (SHEET 11 OF 13)
MATERIALS
Material
Dispersion Equation at 298 K
Silver Chloride (Single Crystal)
n = 4.00804 – 0.00085111λ2 – 0.00000019762λ4 + 0.079086/(λ2 – 0.04584)
Strontium Titanate (Single Crystal)
n = A + BL + CL2 + Dλ2 + Eλ4
where A=2.28355 B=0.035906 C=0.001666 D=–0.0061355 E=–0.00001502 for 1.0 µm ≤ λ ≤ 5.3 µm
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
10.2 Optical L Page 1069 Wednesday, December 31, 1969 17:00
Table 307. DISPERSION OF OPTICAL (SHEET 12 OF 13) Material
Dispersion Equation at 298 K
5
Thallium Bromoiodide (KRS-5, Mixed Crystal)
MATERIALS
2
n -1=
Σ i=1
Kiλ 2 λ 2 − λi2
where i
1 2 3 4 5 (λ in µm)
λi2 0.0225 0.0625 0.1225 0.2025 27089.737
Ki 1.8293958 1.6675593 1.1210424 0.4513366 12.380234
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
10.2 Optical L Page 1070 Wednesday, December 31, 1969 17:00
Table 307. DISPERSION OF OPTICAL (SHEET 13 OF 13) Material
Titanium Dioxide (Rutile, Single Crystal)
MATERIALS
Dispersion Equation at 298 K
n 2o=5.913+
2.441x107 λ 2– 0.803x107
for ordinary wavelengths, and
2 n =7.197 e
+
3.322x10
7
λ 2– 0.843x107
for extraordinary wavelengths. (λ in Å) Zinc Sulfide (Single Crystal, Cubic)
7 n = 5.164+ 1.208x107 l2 – 0.732 x10 (λ in Å)
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford, James F. & Alexander, W. “Chemical Properties of Materials” Materials Science and Engineering Handbook Ed. James F. Shackelford & W. Alexander Boca Raton: CRC Press LLC, 2001
11.0 Chemical Page 1071 Wednesday, December 31, 1969 17:00
CHAPTER 9
List of Tables
Chemical Properties of Materials
Absorption Water Absorption of Polymers EMF Potentials and Galvanic Series Standard Electromotive Force Potentials Galvanic Series of Metals Galvanic Series of Metals in Sea Water Corrosion Corrosion Rate of Metals in Acidic Solutions Corrosion Rate of Metals in Neutral and Alkaline Solutions Corrosion Rate of Metals in Air Corrosion Rates of 1020 Steel at 70˚F Corrosion Rates of Grey Cast Iron at 70˚F Corrosion Rates of Ni–Resist Cast Iron at 70˚F Corrosion Rates of 12% Cr Steel at 70˚ Corrosion Rates of 17% Cr Steel at 70˚F Corrosion Rates of 14% Si Iron at 70˚F Corrosion Rates of Stainless Steel 301 at 70˚F Corrosion Rates of Stainless Steel 316 at 70˚F Corrosion Rates of Aluminum at 70˚F Corrosion Resistance of Wrought Coppers and Copper Alloys Corrosion Rates of 70-30 Brass at 70˚F
©2001 CRC Press LLC
1071
11.0 Chemical Page 1072 Wednesday, December 31, 1969 17:00
Chemical Properties List of Tables (Continued)
Corrosion (con’t) Corrosion Rates of Copper, Sn-Braze, Al-Braze at 70˚F Corrosion Rates of Silicon Bronze at 70˚F Corrosion Rates of Hastelloy at 70˚F Corrosion Rates of Inconel at 70˚F Corrosion Rates of Nickel at 70˚F Corrosion Rates of Monel at 70˚F Corrosion Rates of Lead at 70˚F Corrosion Rates of Titanium at 70˚F Corrosion Rates of ACI Heat–Resistant Castings Alloys in Air Corrosion Rates for ACI Heat–Resistant Castings Alloys in Flue Gas Flammability Flammability of Polymers Flammability of Fiberglass Reinforced Plastics
©2001 CRC Press LLC
1072
CRC Handbook of Materials Science & Engineering
11.1 Chemical L Page 1073 Wednesday, December 31, 1969 17:00
Table 308. WATER
ABSORPTION OF POLYMERS (SHEET 1 OF 12)
Polymer
Type
Water Absorption in 24 hr, ASTM D570) (%)
ABS Resins; Molded, Extruded
Medium impact High impact
0.2—0.4 0.2—0.45
Very high impact Low temperature impact Heat resistant
0.2—0.45 0.2—0.45 0.2—0.4
Cast Resin Sheets, Rods: General purpose, type I General purpose, type II
0.3—0.4 0.2—0.4
Moldings: Grades 5, 6, 8 High impact grade
0.3—0.4 0.2—0.4
Allyl diglycol carbonate
0.2
Acrylics; Cast, Molded, Extruded
Thermoset Carbonate
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
11.1 Chemical L Page 1074 Wednesday, December 31, 1969 17:00
Table 308. WATER
ABSORPTION OF POLYMERS (SHEET 2 OF 12)
Polymer
Type
Water Absorption in 24 hr, ASTM D570) (%)
Alkyds; Molded
Putty (encapsulating) Rope (general purpose) Granular (high speed molding) Glass reinforced (heavy duty parts)
0.10—0.15 0.05—0.08 0.08—0.12 0.007—0.10
Cellulose Acetate; Molded, Extruded
ASTM Grade: H4—1 H2—1
1.7—2.7 1.7—2.7
MH—1, MH—2 MS—1, MS—2 S2—1
1.8—4.0 2.1—4.0 2.3—4.0
ASTM Grade: H4 MH S2
2 1.3—1.6 0.9—1.3
Cellulose Acetate Butyrate; Molded, Extruded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
11.1 Chemical L Page 1075 Wednesday, December 31, 1969 17:00
Table 308. WATER
ABSORPTION OF POLYMERS (SHEET 3 OF 12)
Polymer
Type
Water Absorption in 24 hr, ASTM D570) (%)
Cellusose Acetate Propionate; Molded, Extruded
ASTM Grade: 1 3 6
1.6—2.0 1.3—1.8 1.6
Chlorinated Polymers
Chlorinated polyether Chlorinated polyvinyl chloride
0.01 0.11
Polycarbonates
Polycarbonate Polycarbonate (40% glass fiber reinforced)
0.15 0.08
Orlon filled Dacron filled Asbestos filled Glass fiber filled
(122 •F, 48 hr), % 0.2—0.5 0.2—0.5 0.4—0.7 0.2—0.4
Diallyl Phthalates; Molded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
11.1 Chemical L Page 1076 Wednesday, December 31, 1969 17:00
Table 308. WATER
ABSORPTION OF POLYMERS (SHEET 4 OF 12)
Polymer
Type
Water Absorption in 24 hr, ASTM D570) (%)
Fluorocarbons; Molded,Extruded
Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE)
0 0.01
Ceramic reinforced (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF)
>0.2 <0.01 0.03—0.06
Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible Molded
0.1—0.2 0.4—0.1 0.3—0.8
General purpose glass cloth laminate High strength laminate Filament wound composite
0.05—0.07 0.05 0.05—0.07
Epoxies; Cast, Molded, Reinforced
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
11.1 Chemical L Page 1077 Wednesday, December 31, 1969 17:00
Table 308. WATER
ABSORPTION OF POLYMERS (SHEET 5 OF 12)
Polymer
Type
Water Absorption in 24 hr, ASTM D570) (%)
Epoxies—Molded, Extruded
High performance resins (cycloaliphatic diepoxides) Molded Glass cloth laminate
0.11—0.2 0.04—0.06
Epoxy novolacs
Cast, rigid
0.1—0.7
Melamines; Molded
Filler & type Unfilled Cellulose electrical Glass fiber Alpha cellulose and mineral
0.2—0.5 0.27—0.80 0.09—0.60 0.3—0.5
Type 6 General purpose Glass fiber (30%) reinforced Cast Flexible copolymers
1.3—1.9 0.9—1.2 0.6 0.8—1.4
Nylons; Molded, Extruded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
11.1 Chemical L Page 1078 Wednesday, December 31, 1969 17:00
Table 308. WATER
ABSORPTION OF POLYMERS (SHEET 6 OF 12)
Polymer
Type
Water Absorption in 24 hr, ASTM D570) (%)
Nylons; Molded, Extruded (Con’t)
Type 8 Type 11 Type 12
9.5 0.4 0.25
6/6 Nylon General purpose molding Glass fiber reinforced Glass fiber Molybdenum disulfide filled General purpose extrusion
1.5 0.8—0.9 0.5—0.7 1.5
6/10 Nylon General purpose Glass fiber (30%) reinforced
0.4 0.2
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
11.1 Chemical L Page 1079 Wednesday, December 31, 1969 17:00
Table 308. WATER
ABSORPTION OF POLYMERS (SHEET 7 OF 12)
Polymer
Type
Water Absorption in 24 hr, ASTM D570) (%)
Phenolics; Molded
Type and filler General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber
0.3—0.8 0.4—1.5 0.4—1.75 0.1—1.0
Phenolics; Molded (Con’t)
Arc resistant—mineral Rubber phenolic—woodflour or flock Rubber phenolic—chopped fabric Rubber phenolic—asbestos
0.5—0.7 0.5—2.0 0.5—2.0 0.10—0.50
ABS–Polycarbonate Alloy
ABS–Polycarbonate Alloy
0.21
PVC–Acrylic Alloy
PVC–acrylic sheet PVC–acrylic injection molded
0.06 0.13
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
11.1 Chemical L Page 1080 Wednesday, December 31, 1969 17:00
Table 308. WATER
ABSORPTION OF POLYMERS (SHEET 8 OF 12)
Polymer
Type
Water Absorption in 24 hr, ASTM D570) (%)
Polyimides
Unreinforced Unreinforced 2nd value Glass reinforced
0.47 0.24—0.40 0.2
Polyacetals
Homopolymer: Standard 20% glass reinforced 22% TFE reinforced
0.25 0.25 0.2
Copolymer: Standard 25% glass reinforced High flow
0.22 0.29 0.22
Injection Moldings: General purpose grade Glass reinforced grades Glass reinforced self extinguishing
0.08 0.06—0.07 0.07
Polyacetals (Con’t)
Polyester; Thermoplastic
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
11.1 Chemical L Page 1081 Wednesday, December 31, 1969 17:00
Table 308. WATER
ABSORPTION OF POLYMERS (SHEET 9 OF 12)
Polymer
Type
Water Absorption in 24 hr, ASTM D570) (%)
Polyester; Thermoplastic (Con’t)
General purpose grade Glass reinforced grade Asbestos—filled grade
0.09 0.07 0.1
Polyesters: Thermosets
Cast polyyester Rigid Flexible
0.20—0.60 0.12—2.5
Reinforced polyester moldings High strength (glass fibers) Heat and chemical resistsnt (asbestos) Sheet molding compounds, general purpose
0.5—0.75 0.25—0.50 0.15—0.25
SE—100 SE—1 Glass fiber reinforced
0.07 0.07 0.06
Polyesters: Thermosets (Con’t)
Phenylene Oxides
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
11.1 Chemical L Page 1082 Wednesday, December 31, 1969 17:00
Table 308. WATER
ABSORPTION OF POLYMERS (SHEET 10 OF 12)
Polymer
Type
Water Absorption in 24 hr, ASTM D570) (%)
Phenylene oxides (Noryl)
Standard Glass fiber reinforced
0.22 0.22, 0.18
Polyarylsulfone
Polyarylsulfone
0.4
Polypropylene
General purpose High impact
<0.01—0.03 <0.01—0.02
Polypropylene (Con’t)
Asbestos filled Glass reinforced Flame retardant
0.02—0.04 0.02—0.05 0.02—0.03
Polyethylenes; Molded, Extruded
Type I—lower density (0.910—0.925) Melt index 0.3—3.6 Melt index 6—26 Melt index 200
<0.01 <0.01 <0.01
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
11.1 Chemical L Page 1083 Wednesday, December 31, 1969 17:00
Table 308. WATER
ABSORPTION OF POLYMERS (SHEET 11 OF 12)
Polymer
Type
Water Absorption in 24 hr, ASTM D570) (%)
Polyethylenes; Molded, Extruded (Con’t)
Type II—medium density (0.926—0.940) Melt index 20 Melt index l.0—1.9
<0.01 <0.01
Type III—higher density (0.941—0.965) Melt index 0.2—0.9 Melt Melt index 0.l—12.0 Melt index 1.5—15 High molecular weight
<0.01 <0.01 <0.01 <0.01
Polystyrenes; Molded
General purpose Medium impact High impact Glass fiber –30% reinforced
0.30—0.2 0.03—0.09 0.05—0.22 0.07
Styrene acrylonitrile (SAN)
Styrene acrylonitrile (SAN) Glass fiber (30%) reinforced SAN
0.20—0.35 0.15
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
11.1 Chemical L Page 1084 Wednesday, December 31, 1969 17:00
Table 308. WATER
ABSORPTION OF POLYMERS (SHEET 12 OF 12)
Polymer
Type
Water Absorption in 24 hr, ASTM D570) (%)
Polyvinyl Chloride And Copolymers;
Molded, Extruded Nonrigid—general Nonrigid—electrical Rigid—normal impact Vinylidene chloride
(ASTM D635) 0.2—1.0 0.40—0.75 0.03—0.40 >0.1
Silicones; Molded, Laminated
Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate
0.1—0.15 0.08—0.1 0.03—0.05
Ureas; Molded Alpha—cellulose filled (ASTM Type l)
0.4—0.8
Ureas; Molded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
11.2 Chemical Page 1085 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 309. STANDARD
ELECTROMOTIVE FORCE POTENTIALS (SHEET 1 OF 18)
Reaction
Reduction Potential E˚, (V)
F2 + 2H+ + 2 e– = 2 HF
3.053
F2 + 2 e– = 2F– H2N2O2 + 2H+ + 2 e– = N2 + 2H2O O(g) + 2H+ +2 e– = H O
2.866
FeO42– + 8H+ + 3 e– = Fe3+ + 4H2O
2.20
F2O + 2H+ + 4 e– = H2O + 2F– S2O82– + 2H+ + 2 e– = 2HSO4– O3 + 2H+ + 4 e– = O2 + H2O
2.153
OH + e– = OH–
2.02 2.010
2
S2O82– + 2 e– = 2SO42– Ag2+ + e– = Ag+
2.65 2.421
2.123 2.076
1.980
Co3+ + e– = Co2+ (2 mol /l H2SO4)
1.83
H2O2 + 2H+ +2 e– = 2 H2O
1.776
N2O + 2H+ + 2 e– = N2 +H2O CeOH3+ + H+ + e– = Ce3+ + H O
1.766
Au+ + e– = Au
1.692
PbO2 + SO42– + 4H+ + 2 e– = PbSO4 + 2H2O
1.6913
MnO4– + 4H+ + 3 e– = MnO2 + 2 H2O NiO + 4H+ + 2 e– = Ni2+ + 2 H O
1.679
2
2
2 – + HClO2 + 2H + 2 e = HClO + H2O
1.715
1.678 1.645
HClO2 + 3H+ + 3 e– = 1/2Cl2 + 2 H2O
1.628
HClO + H+ + e– = 1/2Cl2 + H2O
1.611
Source: data compiled by J.S. Park from Petr Vanysek, Handbook of Physics and Chemistry, 69th Edition, CRC Press, Boca Raton, Florida, (1988).
©2001 CRC Press LLC Shackelford & Alexander
1085
11.2 Chemical Page 1086 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 309. STANDARD
ELECTROMOTIVE FORCE POTENTIALS (SHEET 2 OF 18) Reduction Potential E˚, (V)
Reaction Ce4+ + e– = Ce3+
1.61 1.601
H5IO6 + H+ + 2 e– = IO3– + 3 H2O HBrO + H+ + e– = 1/2 Br2 (l) + H2O Bi2O4
+ 4 H+ + 2 e– =
1.596 1.593
2 BiO+ + 2 H2O
2 NO + 2 H+ + 2 e– = N2O + H2O +
1.591 1.574
–
HBrO + H + e = 1/2 Br2 (aq) + H2O HClO2 + 3 H+ + 4 e– = Cl– + H2O
Au3+ + 3 e– = Au
1.570 1.5415 1.507 1.498
HO2 + H+ + e– = H2O2
1.495
HClO + H+ + 2 e– = Cl– + H2O BrO3– + 6 H+ + 5 e– = 1/2 Br2 + 3 H2O ClO3– + 6H+ + 5 e– = 1/2 Cl 2+ 3 H2O
1.482
PbO2 + 4 H+ + 2 e– = Pb2+ + 2 H2O
1.455
ClO3– + 6 H+ + 6 e– = Cl– + H2O
1.451
Mn3+ + e– = Mn2+ MnO4– + 8 H+ + 5 e– = Mn2+ + 4 H2O
+
–
+
–
1.482 1.47
–
2 HIO + 2 H + 2 e = I2 + 2H2O
1.45 1.439
BrO3– + 6 H+ + 6 e– = Br– + 3 H2O
1.423
2 NH3OH+ + H+ + 2 e– = N2H5+ + 2 H2O Au3+ + 2 e– = Au+
1.42 1.401 1.39
Au(OH)3 + 3 H + 3 e = Au + 3 H2O
ClO4– + 8 H+ + 7 e– = 1/2 Cl2 + 4 H2O
Source: data compiled by J.S. Park from Petr Vanysek, Handbook of Physics and Chemistry, 69th Edition, CRC Press, Boca Raton, Florida, (1988).
©2001 CRC Press LLC
1086
CRC Handbook of Materials Science & Engineering
11.2 Chemical Page 1087 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 309. STANDARD
ELECTROMOTIVE FORCE POTENTIALS (SHEET 3 OF 18) Reduction Potential E˚, (V)
Reaction ClO4– + 8 H+ + 8 e– = Cl– + 4 H2O –
–
1.389
Cl2(g) + 2 e = 2Cl
1.35827
HCrO4– + 7 H+ + 3 e– = Cr3+ + 4 H2O
1.350
+
–
–
HBrO + H + 2 e = Br + H2O
1.331
PuO2(OH)2 + H+ + 3 e– = Pu(OH)4 2 HNO2 + 4 H+ + 4 e– = NO2 + 3 H2O
1.325 1.297
[PdCl6]2– + 2 e– = [PdCl4]2– + 2 Cl–
1.288
ClO2 + H+ + e– = HClO2
1.277
N2H5+ + 3 H+ + 2 e– = 2 NH4+ O3 + H2O + 2 e– = O2 + 2 OH–
1.275 1.252 1.24
Cr2O72– + 14 H+ + 3 e– = 2 Cr3+ + 7 H2O
1.232
O2 + 4 H+ + 4 e– = 2 H2O
1.229 1.224
Tl3+ + 2 e–= Tl+
MnO2 + 4 H+ + 2 e– = Mn2+ + 2 H2O ClO3– + 3 H+ + 2 e– = HClO2 + H2O 2 IO3– + 12 H+ + 10 e– = I2 + 6 H2O ClO4– + 2 H+ + 2 e– = ClO3– + H2O
1.214 1.195
ClO3– + 2 H+ + e– = ClO2 + H2O
1.189 1.156 1.152
SeO42– + 4 H+ + 2 e– = H2SeO3 + H2O
1.151
[Fe(pheneathroline)3]3+ + e– = [Fe(phen)3]2+
1.147 1.120
Ir3+ + 3 e– = Ir
RuO2 + 4 H+ + 2 e– = Ru2+ + 2 H2O
Source: data compiled by J.S. Park from Petr Vanysek, Handbook of Physics and Chemistry, 69th Edition, CRC Press, Boca Raton, Florida, (1988).
©2001 CRC Press LLC
Shackelford & Alexander
1087
11.2 Chemical Page 1088 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 309. STANDARD
ELECTROMOTIVE FORCE POTENTIALS (SHEET 4 OF 18)
Reaction
Reduction Potential E˚, (V)
Pt2– + 2 e– = Pt Pu5+ + e– = Pu4+
1.118 1.099
Br2(aq) + 2 e– = 2 Br–
1.0873
IO3– + 6 H+ + 6 e– = I– + 3 H2O
1.085
–
–
1.066 1.065
Br2(l) + 2 e = 2 Br +
–
N2O4 + 2 H + 2 e = 2 HNO2 PuO2(OH)2 + H+ + e– = PuO2OH + H2O [Fe(phen)3]3+ + e– = [Fe(phen)3]2+ (1 mol/l H2SO4) N2O4 + 4 H+ + 4 e– = 2 NO + 2 H2O H6TeO6 + 2 H+ + 2 e– = TeO2 + 4 H2O Pu4+ + e– = Pu3+ AuCl4– + 3 e– = Au + 4 Cl– V(OH)4+ + 2 H+ + e– = VO2+ + 3 H2O –
RuO4 + e
= RuO4–
VO2+ + 2 H+ + e– = VO2+ + H2O HIO + H+ + 2 e– = I– + H2O HNO2 + H+ + e– = NO + H2O AuBr2– + e– = Au + 2 Br– NO3– + 4 H+ + 3 e– = NO + 2 H2O –
ClO2(aq) + e 2+
Pd
= ClO2–
–
+ 2 e = Pd
NO3– + 3 H+ + 2 e– = HNO + H2O
1.062 1.06 1.035 1.02 1.006 1.002 1.00 1.00 0.991 0.987 0.983 0.959 0.957 0.954 0.951 0.934
Source: data compiled by J.S. Park from Petr Vanysek, Handbook of Physics and Chemistry, 69th Edition, CRC Press, Boca Raton, Florida, (1988).
©2001 CRC Press LLC
1088
CRC Handbook of Materials Science & Engineering
11.2 Chemical Page 1089 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 309. STANDARD
ELECTROMOTIVE FORCE POTENTIALS (SHEET 5 OF 18) Reduction Potential E˚, (V)
Reaction 2 Hg2+ + 2 e– = Hg22+
0.920 0.878 0.867
HO2– + H2O + 2 e– = 3 OH– N2O4 + 2 e– = 2 NO2– [IrCl6]2– + e– = [IrCl6]3–
0.8665
2 HNO2 + 4 H+ + 4 e– = H2N2O2 + H2O SiO2(quartz) + 4 H+ + 4 e– = Si + 2 H2O AuBr4– + 3 e– = Au + 4 Br– 2+ – Hg
+ 2 e = Hg
OsO4 + 8 H+ + 8 e– = Os + 4 H2O –
–
–
–
ClO + H2O + 2 e = Cl + 2 OH
2 NO3– + 4 H+ + 2 e– = N2O4 + 2 H2O Ag+ + e– = Ag Hg22+ + 2 e– = Hg
0.86 0.857 0.854 0.851 0.85 0.841 0.803 0.7996
Fe3+ + e– = Fe2+
0.7973 0.782 0.779 0.771
[IrCl6]3– + 3e = Ir + 6 Cl–
0.77
(CNS)2 + 2 e = 2 CNS–
0.77
ReO4– + 2 H+ + e– = ReO3 + H2O BrO– + H2O + 2 e– = Br– + 2 OH–
0.768 0.761
2 NO + H2O + 2 e– = N2O + 2 OH–
0.76 0.76
TcO4– + 4 H+ + 3 e– = TcO2 + 2 H2O AgF + e– = Ag + F–
–
ClO2– + 2 H2O + 4 e– = Cl– + 4 OH–
Source: data compiled by J.S. Park from Petr Vanysek, Handbook of Physics and Chemistry, 69th Edition, CRC Press, Boca Raton, Florida, (1988).
©2001 CRC Press LLC
Shackelford & Alexander
1089
11.2 Chemical Page 1090 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 309. STANDARD
ELECTROMOTIVE FORCE POTENTIALS (SHEET 6 OF 18) Reduction Potential E˚, (V)
Reaction Rh3+ + 3 e– = Rh
0.758 0.755
[PtCl4]2– + 2 e– = Pt + 4 Cl– Ag2O3 + H2O + 2 e– = 2 AgO + 2 OH– H3IO6 + 2 e– = IO3– + 3 OH– + –
p–benzoquinone + 2 H + 2 e = hydroquinone O2 + 2 H+ + 2 e– = H2O2
0.739 0.7 0.6992 0.695
[PtCl6]2– + 2 e– = [PtCl4]2– + 2 Cl–
0.68
Sb2O5(senarmontite) + 4 H+ + 4 e– = Sb2O3 + 2 H2O ClO2– + H2O + 2 e– = ClO– + 2 OH– Ag2SO4 + 2 e– = 2 Ag + SO42–
0.671
Sb2O5(valentinite) + 4 H+ + 4 e– = Sb2O3 + 2 H2O Hg2HPO4 + 2 e– = 2 Hg + HPO42–
0.649 0.643 0.6359
ClO3– + 3 H2O + 6 e– = Cl– + 6 OH–
0.62
Hg2SO4 + 2 e– = 2 Hg + SO42–
0.6125
UO2+ + 4 H+ + e– = U4+ + 2 H2O
0.612
BrO3– + 3 H2O + 6 e– = Br– + 6 OH– 2 AgO + H O + 2 e– = Ag O + 2OH–
0.61
Ag(ac) + e– = Ag + (ac)–
2
0.66 0.654
0.607
2
MnO42– + 2 H2O + 2 e– = MnO2 + 4 OH– Rh+ + e– = Rh Rh2+ + 2 e– = Rh MnO4– + 2 H2O + 3 e– = MnO2 + 4 OH–
0.60 0.600 0.600 0.595
Source: data compiled by J.S. Park from Petr Vanysek, Handbook of Physics and Chemistry, 69th Edition, CRC Press, Boca Raton, Florida, (1988).
©2001 CRC Press LLC
1090
CRC Handbook of Materials Science & Engineering
11.2 Chemical Page 1091 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 309. STANDARD
ELECTROMOTIVE FORCE POTENTIALS (SHEET 7 OF 18)
Reaction
Reduction Potential E˚, (V)
TeO2 + 4 H+ + 4 e– = Te + 2 H2O
0.593
[PdCl4]2– + 2 e– = Pd + 4 Cl–
0.591
RuO4– + e– = RuO42–
0.59
Sb2O5 + 6 H+ + 4 e– = 2 SbO+ + 3 H2O
0.581
Te4+ + 4 e– = Te
0.568
AgNO2 + e– = Ag + NO2– S2O62– + 4 H+ + 2 e– = 2 H2SO3 H3AsO4 + 2 H+ + 2 e– = HAsO2 + 2 H2O
0.564
MnO4– + e– = MnO42–
0.558
AgBrO3 + e– = Ag + BrO3–
0.546
I3– + 2 e– = 3 I–
0.536
I2 + 2 e– = 2 I–
0.5355
Cu+ + e– = Cu
0.521
Hg2(ac)2 + 2 e– = 2 Hg + 2 (ac)– ReO4– + 4 H+ + 3 e– = ReO2 + 2 H2O NiO + 2 H O + 2 e– = Ni(OH) + 2 OH–
0.51163
IO– + H2O + 2 e– = I– + 2 OH–
0.485
TeO4– + 8 H+ + 7 e– = Te + 4 H2O Ag CO + 2 e– = 2 Ag + CO 2–
0.472
Ag2WO4 + 2 e– = 2 Ag + WO42–
0.4660
Ag2C2O4 + 2 e– = 2 Ag + C2O42–
0.4647
Ag2MoO4 + 2 e– = 2 Ag + MoO42–
0.4573
2
2
2
2
3
3
0.564 0.560
0.510 0.490
0.47
Source: data compiled by J.S. Park from Petr Vanysek, Handbook of Physics and Chemistry, 69th Edition, CRC Press, Boca Raton, Florida, (1988).
©2001 CRC Press LLC
Shackelford & Alexander
1091
11.2 Chemical Page 1092 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 309. STANDARD
ELECTROMOTIVE FORCE POTENTIALS (SHEET 8 OF 18)
Reaction
Reduction Potential E˚, (V)
Ru2+ + 2 e– = Ru
0.455
H2SO3 + 4 H + 4 e– = S + 3 H2O
0.449
Ag2CrO4 + 2 e– = 2 Ag + CrO42–
0.4470
+
3–
+ 3 e– = Rh + 6 Cl–
AgOCN + e– = Ag + OCN–
0.431 0.41
O2 + H2O + 4 e– = 4 OH–
0.401
Tc2+ + 2 e– = Tc (ferricinium)+ + e– = ferrocene
0.400 0.400
(CN)2 + 2 H+ + 2 e– = 2 HCN
0.373
ReO4– + 8 H+ + 7 e– = Re + 4 H2O
0.368
Ag2SeO3 + 2 e– = 2 Ag + SeO32–
0.3629
ClO4– + H2O + 2 e– = ClO3– + 2OH– [Fe(CN) ]3– + e– = [Fe(CN) ]4–
0.36 0.358
AgIO3 + e– = Ag + IO3–
0.354
Cu2+ + 2 e– = Cu
0.3419
VO2+ + 2 H+ + e– = V3+ + H2O Calomel electrode, 0.1 mol/l KCl
0.337 0.3337
2 HCNO + 2 H+ + 2 e– = (CN)2 + 2 H2O
0.330
ClO3– + H2O + 2 e– = ClO2– + 2 OH–
0.33
UO22+ + 4 H+ + 2 e– = U4+ + 2 H2O BiO+ + 2 H+ + 3 e– = Bi + H2O Re3+ + 3 e– = Re
0.327
[RhCl6]
6
6
0.320 0.300
Source: data compiled by J.S. Park from Petr Vanysek, Handbook of Physics and Chemistry, 69th Edition, CRC Press, Boca Raton, Florida, (1988).
©2001 CRC Press LLC
1092
CRC Handbook of Materials Science & Engineering
11.2 Chemical Page 1093 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 309. STANDARD
ELECTROMOTIVE FORCE POTENTIALS (SHEET 9 OF 18)
Reaction
Reduction Potential E˚, (V)
Calomel electrode, 1 mol/l KCl (NCE) Calomel electrode, molal KCl
0.2801 0.2800
Hg2Cl2 + 2 e– = 2 Hg+ + 2 Cl–
0.26808
IO3– + 3 H2O + 6 e– = I– + 6 OH–
0.26
ReO2 + 4 H+ + 4 e– = Re + 2 H2O
0.2513
Ru3+ + e– = Ru2+
0.2487
HAsO2 + 3 H+ + 3 e– = As + 2 H2O PbO + H O + 2 e– = PbO + 2 OH–
0.248 0.247
Calomel electrode, saturated KCl
0.2412
2
2
Ge2+ + 2 e– = Ge
0.24
Calomel electrode, saturated NaCl (SSCE)
0.2360
As2O3 + 6 H+ + 6 e– = 2 As + 3 H2O
0.234
AgCl + e– = Ag + Cl–
0.22233 0.212
SbO+ + 2 H+ + 3 e– = Sb + H2O SO42– + 4 H+ + 2 e– = H2SO3 + H2O
0.172
Co(OH)3 + e– = Co(OH)2 + OH–
0.17
Bi(Cl)4– + 3 e– = Bi + 4 Cl–
0.16
BiOCl + 2 H + 3 e– = Bi + Cl– + H2O Cu2++ e– = Cu+
0.1583
+
Sb2O3 + 6 H+ + 6 e– = 2 Sb + 3 H2O Sn4+ + 2 e– = Sn2+ 2 NO2– + 3 H2O + 4 e– = N2O + 6 OH– Mn(OH) + e– = Mn(OH) + OH– 3
2
IO3– + 2 H2O + 4 e– = IO– + 4 OH–
0.153 0.152 0.151 0.15 0.15 0.15
Source: data compiled by J.S. Park from Petr Vanysek, Handbook of Physics and Chemistry, 69th Edition, CRC Press, Boca Raton, Florida, (1988).
©2001 CRC Press LLC Shackelford & Alexander
1093
11.2 Chemical Page 1094 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 309. STANDARD
ELECTROMOTIVE FORCE POTENTIALS (SHEET 10 OF 18) Reduction Potential E˚, (V)
Reaction Ag4[Fe(CN)6] + 4 e– = 4 Ag + [Fe(CN)6]4– Np4+ + e– = Np3+
0.1478 0.147
S + 2 H+ + 2 e– = H2S(aq)
0.142
Pt(OH)2 + 2 e– = Pt + 2 OH–
0.14
Hg2Br2 + 2 e– = 2 Hg + 2 Br– Ge4+ + 4 e– = Ge
0.13923 0.124
Hg2O + H2O + 2 e– = 2 Hg + 2 OH–
0.123
[Co(NH3)6]3+ + e– = [Co(NH3)6]2+
0.108
2 NO + 2 e– = N2O22–
0.10
Ir2O3 + 3 H2O + 6 e– = 2 Ir + 6 OH– HgO + H O + 2 e– = Hg + 2 OH–
0.098 0.0977
N2 + 2 H2O + 6 H+ + 6 e– = 2 NH4OH
0.092
AgSCN + e– = Ag + SCN–
0.08951
S4O62– + 2 e– = 2 S2O32–
0.08
AgBr + e– = Ag + Br– Pd(OH)2 + 2 e– = Pd + 2 OH–
0.07133 0.07
UO22+ + e– = UO2+
0.062
SeO42– + H2O + 2 e– = SeO32– + 2 OH– Tl2O3 + 3 H2O + 4 e– = 2 Tl2+ + 6 OH–
0.05
NO3– + H2O + 2 e– = NO2– + 2 OH–
0.01
Ge4+ + 2 e– = Ge2+
0.00 0.00
2
CuI2– + e– = Cu + 2 I–
0.02
Source: data compiled by J.S. Park from Petr Vanysek, Handbook of Physics and Chemistry, 69th Edition, CRC Press, Boca Raton, Florida, (1988).
©2001 CRC Press LLC
1094
CRC Handbook of Materials Science & Engineering
11.2 Chemical Page 1095 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 309. STANDARD
ELECTROMOTIVE FORCE POTENTIALS (SHEET 11 OF 18) Reduction Potential E˚, (V)
Reaction 2 H+ + 2 e– = H2 AgCN + e– = Ag + CN–
0.00000 –0.017
2 WO3 + 2 H+ + 2 e– = W2O5 + H2O
–0.029
W2O5 + 2 H + 2 e– = 2 WO2 + H2O D+ + e– = 1/2 D
–0.031
+
–0.034
2 – + Ag2S + 2 H + 2 e = 2 Ag + H2S
–0.0366
Fe3+ + 3 e– = Fe
–0.037
Hg2I2 + 2 e– = 2 Hg + 2 I– 2 D+ + 2 e– = D
–0.0405
Tl(OH)3 + 2 e– = TlOH + 2 OH–
–0.05
TiOH3+ + H+ + e– = Ti3+ + H2O
–0.055
2 H2SO3 + H+ + 2 e– = HS2O4– + 2 H2O P(white) + 3 H+ + 3 e– = PH3(g)
–0.056
O2– + H2O + 2 e– = HO2– + OH–
–0.076
2 Cu(OH)2 + 2 e– = Cu2O + 2 OH– + H2O
–0.080
WO3 + 6 H+ + 6 e– = W + 3 H2O P(red) + 3 H+ + 3 e– = PH3(g) GeO2 + 2 H+ + 2 e– = GeO + H2O
–0.090
WO2 + 4 H+ + 4 e– = W + 2 H2O
–0.119
Pb2+ + 2 e– = Pb(Hg) Pb2+ + 2 e– = Pb
–0.1205 –0.1262
CrO42– + 4 H2O + 3 e– = Cr(OH)3 + 5 OH–
–0.13
2
–0.044
–0.063
–0.111 –0.118
Source: data compiled by J.S. Park from Petr Vanysek, Handbook of Physics and Chemistry, 69th Edition, CRC Press, Boca Raton, Florida, (1988).
©2001 CRC Press LLC Shackelford & Alexander
1095
11.2 Chemical Page 1096 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 309. STANDARD
ELECTROMOTIVE FORCE POTENTIALS (SHEET 12 OF 18) Reduction Potential E˚, (V)
Reaction Sn2+ + 2 e– = Sn
–0.1375 –0.14 –0.146
In + e– = In O2 + 2 H2O + 2 e– = H2O2 + 2 OH– AgI + e– = Ag + I–
–0.15224
2 NO2– + 2 H2O + 4 e– = N2O22– + 4 OH–
–0.18
H2GeO3 + 4 H+ + 4 e– = Ge + 3 H2O CO2 + 2 H+ + 2 e– = HCOOH Mo3+ + 3 e– = Mo
–0.182
2 SO22– + 4 H+ + 2 e– = S2O62– + H2O
–0.22
Cu(OH)2 + 2 e– = Cu + 2 OH– CdSO + 2 e– = Cd + SO 2–
–0.222
V(OH)4+ + 4 H+ + 5 e– = V + 4 H2O
–0.254
V3+ + e– = V2+ Ni2+ + 2 e– = Ni
–0.255 –0.257
PbCl2 + 2 e– = Pb + 2 Cl–
–0.2675
H3PO4 + 2 H + 2 e– = H3PO3 + H2O
–0.276
Co2+ + 2 e– = Co
–0.28 –0.284
+
4
4
+
PbBr2 + 2 e– = Pb + 2 Br– Tl+ + e– = Tl(Hg) Tl+ + e– = Tl In3+ + 3 e– = In TlOH + e– = Tl + OH–
–0.199 –0.200
–0.246
–0.3338 –0.336 –0.3382 –0.34
Source: data compiled by J.S. Park from Petr Vanysek, Handbook of Physics and Chemistry, 69th Edition, CRC Press, Boca Raton, Florida, (1988).
©2001 CRC Press LLC
1096
CRC Handbook of Materials Science & Engineering
11.2 Chemical Page 1097 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 309. STANDARD
ELECTROMOTIVE FORCE POTENTIALS (SHEET 13 OF 18)
Reaction
Reduction Potential E˚, (V)
PbF2 + 2 e– = Pb + 2 F–
–0.3444
PbSO4 + 2 e– = Pb(Hg) + SO42–
–0.3505
Cd2+ + 2 e– = Cd(Hg)
–0.3521
PbSO4 + 2 e– = Pb + SO42– Cu2O + H2O + 2e– =2 Cu + 2 OH– Eu3+ + e– = Eu2+
–0.3588
PbI2 + 2 e– = Pb + 2 I–
–0.365
SeO32– + 3 H2O + 4 e– = Se + 6 OH– – 3+ 2+
–0.366
Ti
+ e = Ti
Se + 2 H+ + 2 e– = H2Se(aq) In2+ + e– = In+
–0.360 –0.36
–0.368 –0.399
2 S + 2 e– = S22–
–0.40 –0.4030 –0.407 –0.42836
Tl2SO4 + 2 e– = Tl + SO42–
–0.4360
Cd2+ + e– = Cd Cr3+ + e– = Cr2+
3+
+ 2 e– = In+
Fe2+ + 2 e– = Fe
–0.443 –0.447
H3PO3 + 3 H+ + 3 e– = P + 3 H2O
–0.454
Bi2O3 + 3 H2O + 6 e– = 2 Bi + 6 OH–
–0.46
NO2– + H2O + e– = NO + 2 OH– PbHPO + 2 e– = Pb + HPO 2–
–0.46 –0.465
S + 2 e– = S2–
–0.47627
In
4
4
Source: data compiled by J.S. Park from Petr Vanysek, Handbook of Physics and Chemistry, 69th Edition, CRC Press, Boca Raton, Florida, (1988).
©2001 CRC Press LLC
Shackelford & Alexander
1097
11.2 Chemical Page 1098 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 309. STANDARD
ELECTROMOTIVE FORCE POTENTIALS (SHEET 14 OF 18)
Reaction S + H2O + 2 e– = HS– + OH–
Reduction Potential E˚, (V)
In3+ + e– = In2+
–0.478 –0.49
H3PO3 + 2 H+ + 2 e– = H3PO2 + H2O
–0.499
TiO2 + 4 H + 2 e– = Ti2+ + 2 H2O
–0.502
H3PO2 + H+ + e– = P + 2 H2O
–0.508
Sb + 3 H+ + 3 e– = SbH3
–0.510
HPbO2– + H2O + 2 e– = Pb + 3 OH– TlCl + e– = Tl + Cl–
–0.537 –0.5568
Ga3+ + 3 e– = Ga
–0.560 –0.56
+
Fe(OH)3 + e– = Fe(OH)2 + OH– TeO 2– + 3 H O + 4 e– = Te + 6OH– 3
2
–0.57
2 SO3– + 3 H2O + 4 e– = S2O3– + 6 OH–
–0.571
PbO + H2O + 2 e– = Pb + 2 OH–
–0.580
ReO2– + 4 H2O + 7 e– = Re + 8 OH–
–0.584
SbO3– + H2O + 2 e– = SbO2– + 2 OH–
–0.59
U4+ + e– = U3+
–0.607
As + 3 H+ + 3 e– = AsH3
–0.608
Nb2O5 + 10 H + 3 e– = 2 Nb + 5 H2O TlBr + e– = Tl + Br–
–0.644
+
SbO2– + 2 H2O + 3 e– = Sb + 4 OH–
–0.658 –0.66
AsO2– + 2 H2O + 3 e– = As + 4 OH–
–0.68
Ag2S + 2 e– = 2 Ag + S2–
–0.691
Source: data compiled by J.S. Park from Petr Vanysek, Handbook of Physics and Chemistry, 69th Edition, CRC Press, Boca Raton, Florida, (1988).
©2001 CRC Press LLC
1098
CRC Handbook of Materials Science & Engineering
11.2 Chemical Page 1099 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 309. STANDARD
ELECTROMOTIVE FORCE POTENTIALS (SHEET 15 OF 18)
Reaction
Reduction Potential E˚, (V)
AsO43– + 2 H2O + 2 e– = AsO2– + 4 OH–
–0.71
Ni(OH)2 + 2 e– = Ni + 2 OH–
–0.72
Co(OH)2 + 2 e– = Co + 2 OH–
–0.73
H2SeO3 + 4 H+ + 4 e– = Se + 3 H2O Cr3+ + 3 e– = Cr
–0.74 –0.744
Ta2O5 + 10 H+ + 4 e– = 2 Ta + 5 H2O
–0.75
TlI + e– = Tl + I– Zn2+ + 2 e– = Zn(Hg)
–0.752 –0.7618 –0.7628
Te + 2 H+ + 2 e– = H2Te
–0.793
ZnSO4 7H2O + 2 e– = Zn(Hg) + SO42– (Sat’d ZnSO4)
–0.7993
Cd(OH)2 + 2 e– = Cd(Hg) + 2 OH– 2 H O + 2 e– = H + 2 OH–
–0.809 –0.8277
2 NO3– + 2 H2O + 2 e– = N2O4 + 4 OH–
–0.85
H3BO3 + 3 H+ + 3 e– = B + 3 H2O
–0.8698
P + 3 H2O + 3 e– = PH3(g) + 3 OH– HSnO – + H O + 3 e– = Sn + 3 OH–
–0.87
2+
Zn
2
+ 2 e– = Zn
2
2
2 2+
–0.909
+ 2 e– = Cr
–0.913
Se + 2 e– = Se2–
–0.924
SO42– + H2O + 2 e– = SO32– + 2 OH– Sn(OH)62– + 2 e– = HSnO2– + 3 OH– + H2O NpO2 + H2O + H+ + e– = Np(OH)3
–0.93
Cr
–0.93 –0.962
Source: data compiled by J.S. Park from Petr Vanysek, Handbook of Physics and Chemistry, 69th Edition, CRC Press, Boca Raton, Florida, (1988).
©2001 CRC Press LLC Shackelford & Alexander
1099
11.2 Chemical Page 1100 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 309. STANDARD
ELECTROMOTIVE FORCE POTENTIALS (SHEET 16 OF 18) Reduction Potential E˚, (V)
Reaction PO43– + 2 H2O + 2 e– = HPO32– + 3 OH– Nb3+ + 3 e– = Nb 2 SO32– + 2 H2O + 2 e– = S2O42– + 4 OH– – 2–
–1.05 –1.099 –1.12
Te + 2 e = Te
–1.143
V2+ + 2 e– = V Mn2+ + 2 e– = Mn
–1.175 –1.185
CrO2– + 2 H2O + 3 e– = Cr + 4 OH–
–1.2
ZnO2– + 2 H2O + 2 e– = Zn + 4 OH–
–1.215
H2GaO3– + H2O + 3 e– = Ga + 4 OH–
–1.219
H2BO3– + 5 H2O + 8 e– = BH4– + 8 OH– SiF 2– + 4 e– = Si + 6 F–
–1.24
6 Ce3+ + 3 e– = Ce(Hg)
–1.24 –1.4373
UO22+ + 4 H+ + 6 e– = U + 2 H2O
–1.444
Cr(OH)3 + 3 e– = Cr + 3 OH– HfO + 4 H+ + 4 e– = Hf + 2 H O
–1.48 –1.505
2
2 – + ZrO2 + 4 H + 4 e = Zr + 2 H2O
–1.553
Mn(OH)2 + 2 e– = Mn + 2 OH– Ba2+ + 2 e– = Ba(Hg) Ti2+ + 2 e– = Ti HPO32– + 2 H2O + 2 e– = H2PO2– + 3 OH– Al3+ + 3 e– = Al SiO3– + H2O + 4 e– = Si + 6 OH–
–1.56 –1.570 –1.63 –1.65 –1.662 –1.697
Source: data compiled by J.S. Park from Petr Vanysek, Handbook of Physics and Chemistry, 69th Edition, CRC Press, Boca Raton, Florida, (1988).
©2001 CRC Press LLC
1100
CRC Handbook of Materials Science & Engineering
11.2 Chemical Page 1101 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 309. STANDARD
ELECTROMOTIVE FORCE POTENTIALS (SHEET 17 OF 18)
Reaction
Reduction Potential E˚, (V)
HPO32– + 2 H2O + 3 e– = P + 5 OH–
–1.71
HfO2+ + 2 H+ + 4 e– = Hf + H2O
–1.724
ThO2 + 4 H+ + 4 e– = Th + 2 H2O
–1.789
H2BO3– + H2O + 3 e– = B + 4 OH– Sr2+ + 2 e– = Sr(Hg)
–1.79
U3+ + 3 e– = U
–1.793 –1.798
H2PO2– + e– = P + 2 OH–
–1.82
2+
Be
+ 2 e– = Be
Np3+ + 3 e– = Np Th4+ + 4 e– = Th Pu3+ + 3 e– = Pu AlF63– + 3 e– = Al + 6 F– Sc3+ + 3 e– = Sc
–1.847 –1.856 –1.899 –2.031 –2.069 –2.077
H2 + 2 e– = 2 H–
–2.23
H2AlO3– + H2O + 3 e– = Al + 4 OH–
–2.33
ZrO(OH)2 + H2O + 4 e– = Zr + 4 OH–
–2.36
Mg2+ + 2 e– = Mg
–2.372 –2.372
Y3+ + 3 e– = Y Eu3+ + 3 e– = Eu Nd3+ + 3 e– = Nd Th(OH)4 + 4 e– = Th + 4 OH– Ce3+ + 3 e– = Ce
–2.407 –2.431 –2.48 –2.483
Source: data compiled by J.S. Park from Petr Vanysek, Handbook of Physics and Chemistry, 69th Edition, CRC Press, Boca Raton, Florida, (1988).
©2001 CRC Press LLC Shackelford & Alexander
1101
11.2 Chemical Page 1102 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 309. STANDARD
ELECTROMOTIVE FORCE POTENTIALS (SHEET 18 OF 18)
Reaction HfO(OH)2 + H2O + 4 e– = Hf + 4 OH–
Reduction Potential E˚, (V)
La3+ + 3 e– = La
–2.50 –2.522
Be2O32– + 3 H2O + 4 e– = 2 Be + 6 OH–
–2.63
Mg(OH)2 + 2 e– = Mg + 2 OH–
–2.690
Mg+ + e– = Mg Na + e– = Na Ca2+ + 2 e– = Ca
–2.70 –2.71 –2.868
Sr(OH)2 + 2 e– = Sr + 2 OH–
–2.88
Sr2+ + 2 e– = Sr
–2.89
La(OH)3 + 3 e– = La + 3 OH– Ba2+ + 2 e– = Ba
–2.90
+
Cs+ + e– = Cs K+ + e– = K
–2.912 –2.92
Rb + e– = Rb Ba(OH) + 2 e– = Ba + 2 OH–
–2.931 –2.98 –2.99
Ca(OH)3 + 2 e– = Ca + 2 OH–
–3.02
Li+ + e– = Li
–3.0401 –3.09
+
3
3 N2 + 2 H+ + 2 e– = 2 NH3 Eu2+ + 2 e– = Eu Ca+ + e– = Ca
–3.395 –3.80
Sr+ + e– = Sr
–4.10
Source: data compiled by J.S. Park from Petr Vanysek, Handbook of Physics and Chemistry, 69th Edition, CRC Press, Boca Raton, Florida, (1988).
©2001 CRC Press LLC
1102
CRC Handbook of Materials Science & Engineering
11.2 Chemical Page 1103 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 310. GALVANIC
Metal
SERIES OF METALS Potential, volts (V) Anodic or Corroded End
Lithium Rubidium Potassium Barium
-3.04 -2.93 -2.92 -2.90
Strontium Calcium Sodium Magnesium
-2.89 -2.8 -2.71 -2.37
Beryllium Aluminum Manganese Zinc
-1.7 -1.7 -1.04 -0.76
Chromium Cadmium Titanium Cobalt
-0.6 -0.4 -0.33 -0.28
Nickel Tin Lead Hydrogen
-0.23 -0.14 -0.126 0.00
Copper Silver Mercury Palladium
0.52 0.80 0.85 1.0
Platinum Gold
1.2 1.5 Cathodic or Noble Metal End
Source: data compiled by J.S. Park from R. E. Bolz and G. L. Tuve, Eds., CRC Handbook of Tables for Applied Engineering Science, 2nd edition, CRC Press, Inc., Boca Ranton, Florida, (1973).
©2001 CRC Press LLC
Shackelford & Alexander
1103
11.2 Chemical Page 1104 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 311. GALVANIC
SERIES OF METALS IN SEA WATER (SHEET 1 OF 2) Metal
Active End (-)
Magnesium Magnesium Alloys Zinc Galvanized Steel Aluminum 1100 Aluminum 6053 Alcad Cadmium Aluminum 2024 (4.5 Cu, 1.5 Mg, 0.6 Mn) Mild Steel Wrought Iron Cast Iron 13% Chromium Stainless Steel Type 410 (Active) 18-8 Stainless Steel Type 304 (Active) 18-12-3 Stainless Steel Type 316 (Active) Lead-Tin Solders Lead Tin Muntz Metal Manganese Bronze Naval Brass Nickel (Active) 76 Ni-16 Cr-7 Fe alloy (Active) 60 Ni-30 Mo-6 Fe-1 Mn
Source: data compiled by J.Park from Standard Guide for Development and Use of a Galvanic Series for Predicting Galvanic Corrosion Performance, G 82, Annual Book of ASTM Standards, American Society for Testing and Materials, (1989).
©2001 CRC Press LLC
1104
CRC Handbook of Materials Science & Engineering
11.2 Chemical Page 1105 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 311. GALVANIC
SERIES OF METALS IN SEA WATER (SHEET 2 OF 2) Metal Yellow Brass Admirality Brass Aluminum Brass Red Brass Copper Silicon Bronze 70:30 Cupro Nickel G-Bronze M-Bronze Silver Solder Nickel (Passive) 76 Ni-16 Cr-7 Fe Alloy (Passive) 67 Ni-33 Cu Alloy (Monel) 13% Chromium Stainless Steel Type 410 (Passive) Titanium 18-8 Stainless Steel Type 304 (Passive) 18-12-3 Stainless Steel Type 316 (Passive) Silver
Noble or Passive End (+)
Graphite Gold Platinum
Source: data compiled by J.Park from Standard Guide for Development and Use of a Galvanic Series for Predicting Galvanic Corrosion Performance, G 82, Annual Book of ASTM Standards, American Society for Testing and Materials, (1989).
©2001 CRC Press LLC
Shackelford & Alexander
1105
11.2 Chemical Page 1106 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 312. CORROSION
IN
RATE OF METALS
ACIDIC SOLUTIONS Corrosive Environment
Metal
Sulfuric, 5% (Non-oxidizing)
Acetic, 5% (Non-oxidizing)
Nitric, 5% (Oxidizing)
Aluminum Copper alloys Gold
8-100
0.5-5
15-80
2-50* <0.1
2-15*
150-1500
<0.1
<0.1
Iron
10-400
Lead Molybdenum
15-400* 0-2 0-0.2
Nickel alloys Platinum Silicon iron
2-35* <0.1 0-5
Silver Stainless steel Tantalum Tin Titanium Zinc Zirconium
*
10-150 <0.1
1000-10000 100-6000 high
2-10*
0.1-1500
<0.1 0-0.2
<0.1 0-20
0-1
<0.1
high
0-100**
0-0.5
0-2
<0.1
<0.1
<0.1
2-500* 10-100 high <0.5
2-500*
100-400
<0.1 600-800 <0.1
0.1-1 high <0.1
* Aeration leads to the higher rates in the range. ** Aeration leads to passivity, scarcity of dissolved air to activity. Corrosion Rate Ranges Expressed in Mils Penetration per Year (1 Mil = 0.001 in) Note: The corrosion-rate ranges for the solutions are based on temperature up to 212 ˚F. Source: data compiled by J.S. Park from R. E. Bolz and G. L. Tuve, CRC Handbook of Tables for Applied Engineering Science, 2nd edition, CRC Press, Inc., Boca Raton, Florida, (1973).
©2001 CRC Press LLC
1106
CRC Handbook of Materials Science & Engineering
11.2 Chemical Page 1107 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 313. CORROSION
RATE OF METALS IN NEUTRAL AND ALKALINE SOLUTIONS Corrosive Environment
Metal
Sodium Hydroxide, 5%
Fresh Water
Sea Water
Aluminum Copper alloys Gold
13000 2-5 <0.1
0.1 0-1 <0.1
1-50
Iron
0-0.2
0.1-10*
Lead Molybdenum
5-500* <0.1
0.1-2
0.1-10* 0.2-15
<0.1
<0.1
Nickel alloys Platinum Silicon iron
0-0.2 <0.1 0-10
0-0.2 <0.1 0-0.2
0-1 <0.1 0-3
Silver Stainless steel Tantalum
<0.1 0-0.2 <1
<0.1 0-0.2 <0.1
0-200** <0.1
Tin Titanium Zinc Zirconium
5-20 <0.2 15-200 <0.1
0-0.5 <0.1 0.5-10 <0.1
0.2-15* <0.1
<0.1
0.1 <0.1 0.5-10* <0.1
* Aeration leads to the higher rates in the range. ** Aeration leads to passivity, scarcity of dissolved air to activity. Corrosion Rate Ranges Expressed in Mils Penetration per Year (1 Mil = 0.001 in) Note: The corrosion-rate ranges for the solutions are based on temperature up to 212 ˚F. Source: data compiled by J.S. Park from R. E. Bolz and G. L. Tuve, CRC Handbook of Tables for Applied Engineering Science, 2nd edition, CRC Press, Inc., Boca Raton, Florida, (1973).
©2001 CRC Press LLC
Shackelford & Alexander
1107
11.2 Chemical Page 1108 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 314. CORROSION
RATE OF METALS IN AIR
Metal
Normal Outdoor Air (Urban Exposure)
Aluminum Copper alloys Gold
0-0.5 0-0.2 <0.1
Iron Lead Molybdenum
1-8 0-0.2 <0.1
Nickel alloys Platinum Silicon iron
0-0.2 <0.1 0-0.2
Silver Stainless steel Tantalum
<0.1 0-0.2 <0.1
Tin Titanium Zinc Zirconium
0-0.2 <0.1 0-0.5 <0.1
Corrosion Rate Ranges Expressed in Mils Penetration per Year (1 Mil = 0.001 in) Source: data compiled by J.S. Park from R. E. Bolz and G. L. Tuve, CRC Handbook of Tables for Applied Engineering Science, 2nd edition, CRC Press, Inc., Boca Raton, Florida, (1973).
©2001 CRC Press LLC
1108
CRC Handbook of Materials Science & Engineering
11.2 Chemical Page 1109 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 315. CORROSION
RATES OF 1020 STEEL AT 70˚F * (SHEET 1 OF 8)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride
<0.05 >0.05 >0.05 —
<0.002 >0.05 >0.05 >0.05
Acetoacetic Acid Acetone Acetylene Acrolein
>0.05 <0.05 — <0.02
>0.05 <0.002 <0.002 <0.02
Acrylonitril Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl)
— <0.02 <0.02 —
<0.002 <0.002 <0.002 <0.002
Alcohol (Amyl) Alcohol (Benzyl) Alcohol (Butyl) Alcohol (Cetyl)
— — — —
<0.02 <0.002 <0.002 <0.02
Alcohol (Isopropyl) Allylamine Allyl Chloride Allyl Sulfide
— <0.02 (30%) — —
<0.002 <0.02 <0.002 <0.02
Aluminum Acetate Aluminum Chloride Aluminum Fluoride Aluminum Fluosilicate
>0.05 >0.05 <0.02 —
— <0.002 — >0.05
Aluminum Formate Aluminum Hydroxide Aluminum Nitrate Aluminum Potassium Sulfate
<0.05 <0.02 >0.05 >0.05
>0.05 — — —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1109
11.2 Chemical Page 1110 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 315. CORROSION
RATES OF 1020 STEEL AT 70˚F * (SHEET 2 OF 8)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Aluminum Sulfate Ammonia Ammonium Acetate Ammonium Bicarbonate
>0.05 <0.002 — <0.02
— <0.002 <0.002 <0.002
Ammonium Bromide Ammonium Carbonate Ammonium Chloride Ammonium Citrate
>0.05 <0.02 <0.05 >0.05
>0.05 <0.002 <0.02 <0.002
Ammonium Nitrate Ammonium Sulfate Ammonium Sulfite Ammonium Thiocyanate
<0.002 <0.02 >0.05 <0.02
<0.02 — — —
Amyl Acetate Amyl Chloride Aniline Aniline Hydro-chloride
<0.002 >0.05 — >0.05
<0.02 <0.02 <0.002 >0.05
Anthracine Antimony Trichloride Barium Carbonate Barium Chloride
— >0.05 <0.02 <0.02
<0.02 <0.05 <0.02 <0.002
Barium Hydroxide Barium Nitrate Barium Oxide Barium Peroxide
— <0.02 — <0.05
<0.02 <0.02 <0.002 <0.002
Benzaldehyde Benzene Benzoic Acid Boric Acid
>0.05 — >0.05 <0.05
<0.002 <0.02 >0.05 —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1110
CRC Handbook of Materials Science & Engineering
11.2 Chemical Page 1111 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 315. CORROSION
RATES OF 1020 STEEL AT 70˚F * (SHEET 3 OF 8)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Bromic Acid Bromine (Dry) Bromine (Wet) Butyric Acid
>0.05 — — <0.05
>0.05 <0.05 >0.05 >0.05
Cadmium Chloride Cadmium Sulfate Calcium Acetate Calcium Bicarbonate
>0.05 <0.02 <0.02 <0.02
<0.002 <0.02 <0.05 <0.02
Calcium Bromide Calcium Chlorate Calcium Chloride Calcium Hydroxide
— <0.002 <0.002 <0.02
<0.05 <0.02 <0.002 <0.02
Calcium Hypochlorite Carbon Dioxide Carbon Monoxide Carbon Tetrachloride
<0.05 — — —
<0.02 <0.002 <0.002 <0.002
Carbon Acid (Air Free) Chloroacetic Acid Chlorine Gas Chlorine Liquid
<0.02 >0.05 >0.05 —
<0.02 >0.05 <0.02 <0.02
Chloroform (Dry) Chromic Acid Chromic Hydroxide Chromic Sulfates
— >0.05 — >0.05
<0.002 <0.002 <0.02 >0.05
Citric Acid Copper Nitrate Copper Sulfate Diethylene Glycol
>0.05 >0.05 >0.05 <0.002 (60%)
<0.002 — — <0.002
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1111
11.2 Chemical Page 1112 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 315. CORROSION
RATES OF 1020 STEEL AT 70˚F * (SHEET 4 OF 8)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Ethyl Chloride Ethylene Glycol Ethylene Oxide Fatty Acids
>0.05 (90%) <0.02 — —
<0.002 <0.002 <0.002 >0.05
Ferric Chloride Ferric Nitrate Ferrous Chloride Ferrous Sulfate
>0.05 >0.05 >0.05 >0.05
<0.02 — — —
Fluorine Formaldehyde Formic Acid Furfural
— <0.05 (40%) >0.05 <0.02 (30%)
<0.002 <0.002 >0.05 <0.02
Hydrazine Hydrobromic Acid Hydro-chloric Acid (Areated) Hydro-chloric Acid (Air Free)
>0.05 >0.05 >0.05 >0.05
>0.05 <0.02 — —
Hydrocyanic Acid Hydrofluoric Acid (Areated) Hydrofluoric Acid (Air Free) Hydrogen Chloride
— >0.05 >0.05 >0.05 (90%)
<0.002 <0.02 <0.05 <0.002
Hydrogen Fluoride Hydrogen Iodide Hydrogen Peroxide Hydrogen Sulfide
— <0.05 (1%) >0.05 (20%) <0.02
<0.002 <0.02 — <0.02
Lactic Acid Lead Acetate Lead Chromate Lead Nitrate
>0.05 >0.05 (20%) — >0.05
>0.05 <0.002 <0.02 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1112
CRC Handbook of Materials Science & Engineering
11.2 Chemical Page 1113 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 315. CORROSION
RATES OF 1020 STEEL AT 70˚F * (SHEET 5 OF 8)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Lead Sulfate Lithium Chloride Lithium Hydroxide Magnesium Chloride
— <0.02 (30%) <0.02 <0.02
<0.02 <0.002 <0.002 <0.002
Magnesium Hydroxide Magnesium Sulfate Maleic Acid Malic Acid
<0.02 <0.02 >0.05 >0.05
<0.002 <0.02 <0.002 —
Maganous Chloride Mercuric Chloride Mercurous Nitrate Methallyl-amine
>0.05 (40%) >0.05 — <0.02
— — <0.02 <0.02
Methanol Methyl Ethyl Ketone Methyl Isobutyl Ketone Methylamine
<0.02 <0.02 <0.02 <0.02
<0.002 <0.002 <0.02 <0.02
Methylene Chloride Monochloro-acetic Acid Monorthanol-amine Monoethal-amine
— >0.05 <0.02 <0.02
<0.02 <0.002 <0.02 <0.02
Monoethyl-amine Monosodium Phosphate Nickel Chloride Nickel Nitrate
<0.02 >0.05 >0.05 <0.02
<0.02 — — —
Nickel Sulfate Nitric Acid Nitric Acid (Red Fuming) Nitric + Hydrochloric Acid
>0.05 >0.05 — —
— >0.05 <0.05 >0.05
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1113
11.2 Chemical Page 1114 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 315. CORROSION
RATES OF 1020 STEEL AT 70˚F * (SHEET 6 OF 8)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Nitric + Hydrofluoric Acid Nitric + Sulfuric Acid Nitrobenzene Nitrocelluolose
— — — —
>0.05 >0.05 <0.002 <0.02
Nitroglycerine Nitrotolune Nitrous Acid Oleic Acid
— — — —
<0.05 <0.02 >0.05 <0.02
Oxalic Acid Phenol Phosphoric Acid (Areated) Phosphoric Acid (Air Free)
>0.05 — >0.05 >0.05
>0.05 <0.002 >0.05 >0.05
Picric Acid Potassium Bicarbonate Potassium Bromide Potassium Carbonate
>0.05 <0.02 <0.05 <0.02
>0.05 <0.002 >0.05 <0.02
Potassium Chlorate Potassium Chromate Potassium Cyanide Potassium Dichromate
<0.02 <0.02 <0.02 <0.02
<0.002 — <0.002 —
Potassium Ferricyanide Potassium Ferrocyanide Potassium Hydroxide Potassium Hypochlorite
<0.02 >0.05 <0.02 >0.05
<0.02 — <0.002 <0.002
Potassium Iodide Potassium Nitrate Potassium Nitrite Potassium Permanganate
<0.02 <0.02 <0.02 <0.02
<0.02 <0.002 <0.02 <0.002
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1114
CRC Handbook of Materials Science & Engineering
11.2 Chemical Page 1115 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 315. CORROSION
RATES OF 1020 STEEL AT 70˚F * (SHEET 7 OF 8)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Potassium Silicate Propionic Acid Pyridine Quinine Sulfate
<0.02 >0.05 <0.02 >0.05
<0.02 <0.02 <0.02 >0.05
Salicylic Acid Silicon Tetrachloride (Dry) Silicon Tetrachloride (Wet) Silver Bromide
— — — >0.05
>0.05 <0.002 >0.05 >0.05
Silver Chloride Silver Nitrate Sodium Acetate Sodium Bicarbonate
>0.05 >0.05 <0.02 <0.02
>0.05 — <0.002 <0.05
Sodium Bisulfate Sodium Bromide Sodium Carbonate Sodium Chloride
>0.05 <0.02 <0.002 <0.02
<0.002 <0.02 <0.02 <0.002
Sodium Chromate Sodium Hydroxide Sodium Hypochlorite Sodium Metasilicate
<0.02 <0.002 >0.05 <0.02
<0.02 <0.02 >0.05 <0.002
Sodium Nitrate Sodium Nitrite Sodium Phosphate Sodium Silicate
<0.02 <0.02 <0.02 <0.02
<0.02 <0.002 <0.02 <0.02
Sodium Sulfate Sodium Sulfide Sodium Sulfite Stannic Chloride
<0.02 <0.05 <0.02 >0.05
<0.02 <0.02 — <0.002
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1115
11.2 Chemical Page 1116 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 315. CORROSION
RATES OF 1020 STEEL AT 70˚F * (SHEET 8 OF 8)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Stannous Chloride Strontium Nitrate Succinic Acid Sulfur Dioxide
>0.05 >0.05 <0.02 >0.05
<0.02 >0.05 <0.02 <0.002
Sulfur Trioxide Sulfuric Acid (Areated) Sulfuric Acid (Air Free) Sulfuric Acid (Fuming)
— >0.05 >0.05 —
<0.02 <0.02 <0.02 <0.02
Sulfurous Acid Tannic Acid Tartaric Acid Tetraphosphoric Acid
<0.05 >0.05 >0.05 >0.05
>0.05 <0.002 <0.05 >0.05
Trichloroacetic Acid Trichloroethylene Urea
>0.05 — <0.05
>0.05 <0.002 —
Zinc Chloride Zinc Sulfate
>0.05 >0.05
<0.002 —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. *
<0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor).
©2001 CRC Press LLC
1116
CRC Handbook of Materials Science & Engineering
11.2 Chemical Page 1117 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 316. CORROSION
RATES OF GREY CAST IRON AT 70˚F * (SHEET 1 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride
<0.05 >0.05 >0.05 —
<0.002 >0.05 >0.05 >0.05
Acetoacetic Acid Acetone Acetylene Acrolein
>0.05 — — —
>0.05 <0.002 <0.002 <0.02
Acrylonitril Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl)
— <0.02 <0.02 —
<0.002 <0.02 <0.002 <0.02
Alcohol (Amyl) Alcohol (Butyl) Alcohol (Isopropyl) Allylamine
— — — —
<0.02 <0.002 <0.02 <0.02
Allyl Chloride Allyl Sulfide Aluminum Acetate Aluminum Chloride
— — >0.05 >0.05
<0.02 <0.02 — >0.05
Aluminum Fluoride Aluminum Fluosilicate Aluminum Hydroxide Aluminum Nitrate
<0.02 — <0.02 >0.05
— >0.05 — —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1117
11.2 Chemical Page 1118 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 316. CORROSION
RATES OF GREY CAST IRON AT 70˚F * (SHEET 2 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Aluminum Potassium Sulfate Aluminum Sulfate Ammonia Ammonium Acetate
>0.05 >0.05 <0.002 —
— — <0.002 <0.02
Ammonium Bicarbonate Ammonium Bromide Ammonium Carbonate Ammonium Chloride
<0.02 >0.05 <0.02 >0.05
<0.02 >0.05 <0.02 —
Ammonium Citrate Ammonium Nitrate Ammonium Sulfate Ammonium Sulfite
>0.05 <0.02 <0.05 >0.05
— <0.05 <0.02 —
Ammonium Thiocyanate Amyl Acetate Amyl Chloride Aniline
<0.02 — — —
— <0.02 <0.02 <0.002
Aniline Hydrochloride Anthracine Antimony Trichloride Barium Carbonate
>0.05 — >0.05 <0.02
>0.05 <0.02 — <0.02
Barium Chloride Barium Hydroxide Benzaldehyde Benzene
>0.05 — >0.05 —
<0.02 <0.02 >0.05 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1118
CRC Handbook of Materials Science & Engineering
11.2 Chemical Page 1119 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 316. CORROSION
RATES OF GREY CAST IRON AT 70˚F * (SHEET 3 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Benzoic Acid Boric Acid Bromic Acid Bromine (Dry)
>0.05 >0.05 >0.05 —
>0.05 — >0.05 >0.05
Bromine (Wet) Butyric Acid Cadmium Chloride Cadmium Sulfate
— >0.05 >0.05 <0.02
>0.05 — — <0.02
Calcium Acetate Calcium Bicarbonate Calcium Bromide Calcium Chlorate
<0.05 — — <0.02
<0.05 <0.02 <0.05 <0.02
Calcium Chloride Calcium Hydroxide Calcium Hypochlorite Carbon Dioxide
<0.02 <0.02 <0.05 —
<0.002 <0.02 <0.02 <0.002
Carbon Monoxide Carbon Tetrachloride Carbon Acid (Air Free) Chloroacetic Acid
— — — >0.05
<0.002 <0.05 <0.05 >0.05
Chlorine Gas Chloroform (Dry) Chromic Acid Citric Acid
>0.05 — <0.05 >0.05
<0.02 <0.002 <0.02 —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1119
11.2 Chemical Page 1120 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 316. CORROSION
RATES OF GREY CAST IRON AT 70˚F * (SHEET 4 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Copper Nitrate Copper Sulfate Ethylene Glycol Ethylene Oxide
>0.05 >0.05 — —
— — <0.02 <0.02
Fatty Acids Ferric Chloride Ferric Nitrate Ferrous Chloride
— >0.05 >0.05 >0.05
>0.05 — — —
Ferrous Sulfate Fluorine Formaldehyde Formic Acid
>0.05 — <0.05 (40%) >0.05
— >0.05 <0.02 >0.05
Furfural Hydrazine Hydrobromic Acid Hydrochloric Acid (Areated)
— >0.05 >0.05 >0.05
<0.02 — <0.02 —
Hydrochloric Acid (Air Free) Hydrocyanic Acid Hydrofluoric Acid (Areated) Hydrofluoric Acid (Air Free)
>0.05 — >0.05 >0.05
— <0.02 >0.05 >0.05
Hydrogen Chloride Hydrogen Iodide Hydrogen Peroxide Hydrogen Sulfide
>0.05 (90%) >0.05 >0.05 (20%) <0.02
<0.02 <0.02 — <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1120
CRC Handbook of Materials Science & Engineering
11.2 Chemical Page 1121 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 316. CORROSION
RATES OF GREY CAST IRON AT 70˚F * (SHEET 5 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Lactic Acid Lead Acetate Lead Chromate Lead Nitrate
>0.05 >0.05 — >0.05
>0.05 — <0.02 <0.02
Lead Sulfate Lithium Chloride Lithium Hydroxide Magnesium Chloride
— <0.02 (30%) <0.02 <0.02
<0.02 <0.002 — <0.02
Magnesium Hydroxide Magnesium Sulfate Maleic Acid Malic Acid
<0.02 >0.05 >0.05 >0.05
— <0.02 — —
Maganous Chloride Mercuric Chloride Methallylamine Methanol
>0.05 (40%) >0.05 — <0.02
— — <0.02 <0.002
Methyl Ethyl Ketone Methyl Isobutyl Ketone Methylamine Methylene Chloride
<0.02 <0.02 <0.02 —
<0.002 <0.02 <0.02 <0.02
Monochloroacetic Acid Monorthanolamine Monoethylamine Monosodium Phosphate
>0.05 — <0.02 >0.05
>0.05 <0.02 <0.02 —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC Shackelford & Alexander
1121
11.2 Chemical Page 1122 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 316. CORROSION
RATES OF GREY CAST IRON AT 70˚F * (SHEET 6 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Nickel Chloride Nickel Nitrate Nickel Sulfate Nitric Acid
>0.05 <0.02 >0.05 >0.05
— — — >0.05
Nitric Acid (Red Fuming) Nitric + Hydrochloric Acid Nitric + Hydrofluoric Acid Nitric + Sulfuric Acid
— — — —
>0.05 >0.05 >0.05 >0.05
Nitrobenzene Nitrocelluolose Nitroglycerine Nitrotolune
— — — —
<0.02 <0.02 <0.05 <0.02
Oleic Acid Oxalic Acid Phenol Phosphoric Acid (Areated)
— >0.05 — >0.05
<0.02 >0.05 <0.02 >0.05
Phosphoric Acid (Air Free) Picric Acid Potassium Bicarbonate Potassium Bromide
>0.05 >0.05 <0.02 <0.05
>0.05 >0.05 — >0.05
Potassium Carbonate Potassium Chromate Potassium Cyanide Potassium Dichromate
<0.02 <0.02 >0.05 <0.02
<0.02 — <0.02 —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1122
CRC Handbook of Materials Science & Engineering
11.2 Chemical Page 1123 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 316. CORROSION
RATES OF GREY CAST IRON AT 70˚F * (SHEET 7 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Potassium Ferricyanide Potassium Ferrocyanide Potassium Hydroxide Potassium Hypochlorite
<0.02 >0.05 <0.02 >0.05
<0.02 — <0.02 —
Potassium Nitrate Potassium Nitrite Potassium Permanganate Potassium Silicate
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
Propionic Acid Pyridine Quinine Sulfate Salicylic Acid
>0.05 <0.02 >0.05 —
— <0.02 >0.05 >0.05
Silicon Tetrachloride (Dry) Silicon Tetrachloride (Wet) Silver Bromide Silver Chloride
— — >0.05 >0.05
<0.002 >0.05 >0.05 >0.05
Silver Nitrate Sodium Acetate Sodium Bicarbonate Sodium Bisulfate
>0.05 — <0.02 >0.05
— <0.002 <0.05 —
Sodium Bromide Sodium Carbonate Sodium Chloride Sodium Chromate
— <0.002 <0.02 <0.02
<0.05 <0.02 <0.02 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC Shackelford & Alexander
1123
11.2 Chemical Page 1124 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 316. CORROSION
RATES OF GREY CAST IRON AT 70˚F * (SHEET 8 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Sodium Hydroxide Sodium Hypochlorite Sodium Metasilicate Sodium Nitrate
<0.02 >0.05 <0.02 <0.02
— — <0.02 <0.02
Sodium Nitrite Sodium Phosphate Sodium Silicate Sodium Sulfate
<0.02 <0.02 <0.02 <0.02
— <0.02 <0.02 <0.02
Sodium Sulfide Sodium Sulfite Stannic Chloride Stannous Chloride
<0.05 >0.05 >0.05 >0.05
<0.02 — — <0.02
Strontium Nitrate Succinic Acid Sulfur Dioxide Sulfur Trioxide
>0.05 <0.02 — —
>0.05 <0.02 <0.02 <0.02
Sulfuric Acid (Areated) Sulfuric Acid (Air Free) Sulfuric Acid (Fuming) Sulfurous Acid
>0.05 >0.05 — —
<0.02 <0.02 <0.02 >0.05
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1124
CRC Handbook of Materials Science & Engineering
11.2 Chemical Page 1125 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 316. CORROSION
RATES OF GREY CAST IRON AT 70˚F * (SHEET 9 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Tannic Acid Tartaric Acid Tetraphosphoric Acid Trichloroacetic Acid
— >0.05 >0.05 >0.05
<0.02 >0.05 >0.05 >0.05
Trichloroethylene Zinc Chloride Zinc Sulfate
— >0.05 >0.05
<0.02 <0.02 —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. *
<0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor).
©2001 CRC Press LLC
Shackelford & Alexander
1125
11.2 Chemical Page 1126 Wednesday, December 31, 1969 17:00
Chemical Properties
RATES OF NI–RESIST CAST IRON * AT 70˚F (SHEET 1 OF 8)
Table 317. CORROSION
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride
— <0.02 <0.02 —
<0.002 >0.05 >0.05 <0.02
Acetone Acetylene Acrolein Acrylonitril
— — — —
<0.002 <0.002 <0.02 <0.002
Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl) Alcohol (Amyl)
<0.02 <0.02 — —
<0.02 <0.002 <0.02 <0.02
Alcohol (Isopropyl) Allylamine Allyl Sulfide Aluminum Acetate
— — — —
<0.02 <0.02 <0.02 <0.02
Aluminum Chloride Aluminum Hydroxide Aluminum Potassium Sulfate Aluminum Sulfate
>0.05 <0.02 >0.05 <0.02
>0.05 — — —
Ammonia Ammonium Acetate Ammonium Bicarbonate Ammonium Carbonate
<0.002 <0.002 <0.02 <0.02
<0.002 <0.002 <0.02 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1126
CRC Handbook of Materials Science & Engineering
11.2 Chemical Page 1127 Wednesday, December 31, 1969 17:00
Chemical Properties
RATES OF NI–RESIST CAST IRON * AT 70˚F (SHEET 2 OF 8)
Table 317. CORROSION
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Ammonium Chloride Ammonium Citrate Ammonium Nitrate Ammonium Sulfate
<0.02 >0.05 <0.02 >0.05
— — — <0.02
Ammonium Sulfite Ammonium Thiocyanate Amyl Acetate Aniline
>0.05 <0.02 — <0.02
— — <0.002 <0.02
Aniline Hydrochloride Anthracine Antimony Trichloride Barium Carbonate
>0.05 — >0.05 <0.02
>0.05 <0.02 — <0.02
Barium Chloride Benzaldehyde Benzene Benzoic Acid
<0.02 <0.02 — —
— <0.002 <0.02 <0.02
Boric Acid Bromine (Dry) Bromine (Wet) Butyric Acid
<0.002 — — >0.05
<0.02 <0.02 >0.05 >0.05
Cadmium Chloride Calcium Chlorate Calcium Chloride Calcium Hydroxide
>0.05 <0.05 <0.02 <0.02
— <0.02 — —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1127
11.2 Chemical Page 1128 Wednesday, December 31, 1969 17:00
Chemical Properties
RATES OF NI–RESIST CAST IRON * AT 70˚F (SHEET 3 OF 8)
Table 317. CORROSION
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Calcium Hypochlorite Carbon Dioxide Carbon Monoxide Carbon Tetrachloride
<0.02 — — —
— <0.002 <0.002 <0.02
Carbon Acid (Air Free) Chloroacetic Acid Chlorine Gas Chromic Acid
— >0.05 >0.05 <0.05
<0.002 >0.05 <0.02 <0.02
Chromic Hydroxide Citric Acid Copper Nitrate Copper Sulfate
— >0.05 >0.05 >0.05
<0.02 >0.05 — —
Ethylene Glycol Fatty Acids Ferric Chloride Ferrous Chloride
— — >0.05 >0.05
<0.02 <0.02 — —
Formaldehyde Formic Acid Furfural Hydrobromic Acid
<0.05 (40%) >0.05 <0.02 (30%) —
— >0.05 <0.02 >0.05
Hydrochloric Acid (Areated) Hydrochloric Acid (Air Free) Hydrocyanic Acid Hydrofluoric Acid (Areated)
>0.05 <0.05 — <0.002
— — <0.02 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1128
CRC Handbook of Materials Science & Engineering
11.2 Chemical Page 1129 Wednesday, December 31, 1969 17:00
Chemical Properties
RATES OF NI–RESIST CAST IRON * AT 70˚F (SHEET 4 OF 8)
Table 317. CORROSION
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Hydrofluoric Acid (Air Free) Hydrogen Chloride Hydrogen Fluoride Hydrogen Iodide
<0.002 — — —
<0.02 <0.002 <0.02 <0.02
Hydrogen Sulfide Lactic Acid Lead Chromate Lead Sulfate
<0.02 >0.05 — —
<0.02 >0.05 <0.02 <0.02
Lithium Chloride Lithium Hydroxide Magnesium Chloride Magnesium Hydroxide
<0.002 (30%) <0.02 <0.02 <0.02
— — <0.02 <0.02
Magnesium Sulfate Maleic Acid Maganous Chloride Mercuric Chloride
<0.02 >0.05 <0.05 (40%) >0.05
<0.02 — — —
Methallylamine Methanol Methyl Ethyl Ketone Methyl Isobutyl Ketone
<0.02 <0.02 <0.02 <0.02
<0.02 <0.002 <0.002 <0.02
Methylamine Methylene Chloride Monochloroacetic Acid Monorthanolamine
<0.02 — — —
<0.02 <0.02 <0.05 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1129
11.2 Chemical Page 1130 Wednesday, December 31, 1969 17:00
Chemical Properties
RATES OF NI–RESIST CAST IRON * AT 70˚F (SHEET 5 OF 8)
Table 317. CORROSION
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Monoethalamine Monoethylamine Monosodium Phosphate Nickel Chloride
<0.02 <0.02 >0.05 >0.05
<0.02 <0.02 — —
Nickel Nitrate Nitric Acid Nitric Acid (Red Fuming) Nitric + Hydrochloric Acid
<0.02 >0.05 — —
— >0.05 >0.05 >0.05
Nitric + Hydrofluoric Acid Nitric + Sulfuric Acid Nitrobenzene Nitrocelluolose
— — — —
>0.05 >0.05 <0.02 <0.02
Nitroglycerine Nitrotolune Oleic Acid Oxalic Acid
— — — >0.05
<0.02 <0.02 <0.002 <0.02
Phenol Phosphoric Acid (Areated) Phosphoric Acid (Air Free) Picric Acid
— >0.05 >0.05 —
<0.02 >0.05 >0.05 >0.05
Potassium Bicarbonate Potassium Bromide Potassium Carbonate Potassium Chlorate
<0.02 <0.02 <0.02 <0.02
— <0.02 <0.02 —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1130
CRC Handbook of Materials Science & Engineering
11.2 Chemical Page 1131 Wednesday, December 31, 1969 17:00
Chemical Properties
RATES OF NI–RESIST CAST IRON * AT 70˚F (SHEET 6 OF 8)
Table 317. CORROSION
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Potassium Chromate Potassium Cyanide Potassium Dichromate Potassium Ferricyanide
<0.02 <0.02 <0.02 <0.02
— — <0.02 <0.02
Potassium Ferrocyanide Potassium Hydroxide Potassium Hypochlorite Potassium Iodide
<0.02 <0.02 >0.05 <0.02
— — — —
Potassium Nitrate Potassium Nitrite Potassium Permanganate Potassium Silicate
<0.02 <0.02 <0.02 <0.02
— <0.02 — <0.02
Pyridine Quinine Sulfate Salicylic Acid Silicon Tetrachloride (Dry)
<0.02 <0.02 — —
<0.02 <0.02 <0.02 <0.002
Silicon Tetrachloride (Wet) Silver Bromide Sodium Acetate Sodium Bicarbonate
— >0.05 <0.02 <0.02
>0.05 >0.05 — <0.02
Sodium Bisulfate Sodium Bromide Sodium Carbonate Sodium Chloride
<0.002 <0.02 <0.002 <0.02
<0.002 <0.02 <0.02 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1131
11.2 Chemical Page 1132 Wednesday, December 31, 1969 17:00
Chemical Properties
RATES OF NI–RESIST CAST IRON * AT 70˚F (SHEET 7 OF 8)
Table 317. CORROSION
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Sodium Chromate Sodium Hydroxide Sodium Hypochlorite Sodium Metasilicate
<0.02 <0.002 >0.05 <0.002
<0.02 <0.02 — <0.02
Sodium Nitrate Sodium Nitrite Sodium Phosphate Sodium Silicate
<0.02 <0.02 <0.02 <0.02
<0.02 — <0.02 <0.02
Sodium Sulfate Sodium Sulfite Stannic Chloride Stannous Chloride
<0.02 <0.02 >0.05 >0.05
<0.02 — — <0.02
Strontium Nitrate Succinic Acid Sulfur Dioxide Sulfur Trioxide
<0.02 <0.02 — —
— <0.02 <0.02 <0.02
Sulfuric Acid (Areated) Sulfuric Acid (Air Free) Sulfuric Acid (Fuming) Sulfurous Acid
<0.02 <0.02 — <0.05
<0.02 <0.02 <0.05 >0.05
Tartaric Acid Tetraphosphoric Acid Trichloroacetic Acid
<0.02 >0.05 >0.05
— <0.05 >0.05
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1132
CRC Handbook of Materials Science & Engineering
11.2 Chemical Page 1133 Wednesday, December 31, 1969 17:00
Chemical Properties
RATES OF NI–RESIST CAST IRON * AT 70˚F (SHEET 8 OF 8)
Table 317. CORROSION
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Trichloroethylene Zinc Chloride Zinc Sulfate
— <0.02 <0.02
<0.02 <0.02 —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. *
<0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor).
©2001 CRC Press LLC
Shackelford & Alexander
1133
11.3 Chemical Page 1134 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 318. CORROSION
RATES OF 12% CR STEEL AT 70˚ * (SHEET 1 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride
— <0.02 <0.02 —
<0.002 >0.05 >0.05 <0.05
Acetone Acetylene Acrolein Acrylonitril
<0.02 — <0.02 —
<0.002 <0.002 <0.02 <0.002
Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl) Alcohol (Amyl)
<0.02 <0.02 — —
<0.02 <0.02 <0.02 <0.02
Alcohol (Benzyl) Alcohol (Butyl) Alcohol (Cetyl) Alcohol (Isopropyl)
— — — —
<0.02 <0.002 <0.02 <0.02
Allylamine Allyl Chloride Allyl Sulfide Aluminum Acetate
— — — <0.02
<0.02 <0.02 <0.02 <0.02
Aluminum Chloride Aluminum Fluoride Aluminum Fluosilicate Aluminum Formate
>0.05 >0.05 — <0.02
<0.002 >0.05 <0.02 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1134
CRC Handbook of Materials Science & Engineering
11.3 Chemical Page 1135 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 318. CORROSION
RATES OF 12% CR STEEL AT 70˚ * (SHEET 2 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Aluminum Hydroxide Aluminum Nitrate Aluminum Potassium Sulfate Aluminum Sulfate
<0.02 <0.02 >0.05 >0.05
— <0.02 <0.05 >0.05
Ammonia Ammonium Acetate Ammonium Bicarbonate Ammonium Bromide
<0.002 <0.002 <0.02 <0.05
<0.002 <0.002 — >0.05
Ammonium Carbonate Ammonium Chloride Ammonium Nitrate Ammonium Sulfate
<0.02 <0.05 <0.02 >0.05
<0.02 >0.05 <0.02 —
Ammonium Sulfite Amyl Acetate Amyl Chloride Aniline
>0.05 — — <0.02
— <0.002 <0.05 <0.02
Aniline Hydrochloride Anthracine Antimony Trichloride Barium Carbonate
>0.05 — >0.05 <0.02
>0.05 <0.02 >0.05 <0.02
Barium Chloride Barium Hydroxide Barium Oxide Barium Peroxide
<0.05 — — >0.05
— <0.02 <0.02 —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1135
11.3 Chemical Page 1136 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 318. CORROSION
RATES OF 12% CR STEEL AT 70˚ * (SHEET 3 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Benzaldehyde Benzene Benzoic Acid Boric Acid
— <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
Bromic Acid Bromine (Dry) Bromine (Wet) Butyric Acid
>0.05 — — <0.05
>0.05 >0.05 >0.05 —
Cadmium Chloride Calcium Acetate Calcium Bicarbonate Calcium Bromide
>0.05 <0.02 — <0.02
— <0.02 <0.02 <0.02
Calcium Chlorate Calcium Chloride Calcium Hydroxide Calcium Hypochlorite
<0.02 <0.02 <0.02 >0.05
— — <0.02 >0.05
Carbon Dioxide Carbon Monoxide Carbon Tetrachloride Carbon Acid (Air Free)
— — >0.05 —
<0.002 <0.002 <0.02 <0.002
Chloroacetic Acid Chlorine Gas Chloroform (Dry) Chromic Acid
>0.05 >0.05 — >0.05
>0.05 <0.05 <0.002 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1136
CRC Handbook of Materials Science & Engineering
11.3 Chemical Page 1137 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 318. CORROSION
RATES OF 12% CR STEEL AT 70˚ * (SHEET 4 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Chromic Hydroxide Chromic Sulfates Citric Acid Copper Nitrate
— >0.05 <0.05 <0.02
<0.02 >0.05 — —
Copper Sulfate Ethyl Chloride Ethylene Glycol Ethylene Oxide
<0.02 >0.05 (90%) — —
— <0.002 <0.02 <0.02
Fatty Acids Ferric Chloride Ferric Nitrate Ferrous Chloride
— >0.05 <0.02 >0.05
<0.02 — — —
Ferrous Sulfate Fluorine Formaldehyde Formic Acid
<0.02 — <0.02 <0.05
— >0.05 <0.02 <0.02
Furfural Hydrobromic Acid Hydrochloric Acid (Areated) Hydrochloric Acid (Air Free)
<0.02 (80%) >0.05 >0.05 >0.05
— — — —
Hydrocyanic Acid Hydrofluoric Acid (Air Free) Hydrogen Chloride Hydrogen Fluoride
— >0.05 >0.05 (90%) —
>0.05 >0.05 >0.05 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1137
11.3 Chemical Page 1138 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 318. CORROSION
RATES OF 12% CR STEEL AT 70˚ * (SHEET 5 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Hydrogen Iodide Hydrogen Peroxide Hydrogen Sulfide Lactic Acid
<0.05 <0.02 (20%) <0.02 >0.05
>0.05 <0.02 <0.02 —
Lead Acetate Lead Chromate Lead Nitrate Lead Sulfate
<0.02 — <0.02 —
<0.02 <0.02 — <0.02
Lithium Hydroxide Magnesium Chloride Magnesium Hydroxide Magnesium Sulfate
<0.02 <0.05 <0.02 >0.05
— — <0.02 <0.05
Maleic Acid Malic Acid Mercuric Chloride Mercurous Nitrate
— <0.02 >0.05 <0.02
<0.05 — >0.05 <0.02
Methallylamine Methanol Methyl Ethyl Ketone Methyl Isobutyl Ketone
<0.02 <0.02 <0.02 <0.02
<0.02 <0.002 <0.002 <0.02
Methylamine Methylene Chloride Monochloroacetic Acid Monorthanolamine
<0.02 — >0.05 <0.02
<0.02 <0.02 >0.05 —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1138
CRC Handbook of Materials Science & Engineering
11.3 Chemical Page 1139 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 318. CORROSION
RATES OF 12% CR STEEL AT 70˚ * (SHEET 6 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Monoethalamine Monoethylamine Monosodium Phosphate Nickel Chloride
<0.02 <0.02 >0.05 >0.05
<0.02 <0.02 — —
Nickel Nitrate Nitric Acid Nitric Acid (Red Fuming) Nitric + Hydrochloric Acid
<0.02 <0.02 — —
— >0.05 <0.002 >0.05
Nitric + Hydrofluoric Acid Nitric + Sulfuric Acid Nitrobenzene Nitrocelluolose
— — — —
>0.05 >0.05 <0.02 <0.02
Nitroglycerine Nitrotolune Nitrous Acid Oleic Acid
— — <0.05 <0.02
<0.02 <0.02 — <0.02
Oxalic Acid Phenol Phosphoric Acid (Areated) Phosphoric Acid (Air Free)
>0.05 — <0.02 >0.05
>0.05 <0.02 — >0.05
Picric Acid Potassium Bicarbonate Potassium Bromide Potassium Carbonate
<0.02 <0.02 <0.02 <0.02
<0.02 — <0.002 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC Shackelford & Alexander
1139
11.3 Chemical Page 1140 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 318. CORROSION
RATES OF 12% CR STEEL AT 70˚ * (SHEET 7 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Potassium Chlorate Potassium Chromate Potassium Cyanide Potassium Dichromate
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
Potassium Ferricyanide Potassium Ferrocyanide Potassium Hydroxide Potassium Hypochlorite
<0.02 >0.05 <0.02 >0.05
— — <0.002 —
Potassium Iodide Potassium Nitrate Potassium Nitrite Potassium Permanganate
>0.05 <0.02 <0.02 <0.002
— <0.02 <0.02 <0.02
Potassium Silicate Pyridine Salicylic Acid Silicon Tetrachloride (Dry)
<0.02 <0.02 — —
<0.02 <0.02 <0.02 <0.002
Silicon Tetrachloride (Wet) Silver Bromide Silver Chloride Silver Nitrate
— >0.05 >0.05 <0.02
>0.05 >0.05 >0.05 —
Sodium Acetate Sodium Bicarbonate Sodium Bisulfate Sodium Bromide
<0.02 <0.02 <0.002 <0.05
<0.02 — >0.05 —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1140
CRC Handbook of Materials Science & Engineering
11.3 Chemical Page 1141 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 318. CORROSION
RATES OF 12% CR STEEL AT 70˚ * (SHEET 8 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Sodium Carbonate Sodium Chloride Sodium Chromate Sodium Hydroxide
<0.02 <0.02 <0.02 <0.002
<0.02 — <0.02 —
Sodium Hypochlorite Sodium Metasilicate Sodium Nitrate Sodium Nitrite
>0.05 <0.002 <0.02 <0.02
>0.05 <0.002 <0.02 <0.002
Sodium Phosphate Sodium Silicate Sodium Sulfate Sodium Sulfide
<0.02 <0.02 <0.05 >0.05
<0.02 <0.02 >0.05 <0.02
Sodium Sulfite Stannic Chloride Stannous Chloride Strontium Nitrate
<0.02 >0.05 >0.05 <0.02
— — — —
Succinic Acid Sulfur Dioxide Sulfur Trioxide Sulfuric Acid (Areated)
<0.02 >0.05 — <0.05
<0.02 <0.02 <0.02 >0.05
Sulfuric Acid (Air Free) Sulfuric Acid (Fuming) Sulfurous Acid Tannic Acid
>0.05 — >0.05 <0.02
<0.05 <0.002 >0.05 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC Shackelford & Alexander
1141
11.3 Chemical Page 1142 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 318. CORROSION
RATES OF 12% CR STEEL AT 70˚ * (SHEET 9 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Tartaric Acid Tetraphosphoric Acid Trichloroacetic Acid Trichloroethylene
<0.02 >0.05 >0.05 —
— >0.05 >0.05 <0.02
Urea Zinc Chloride Zinc Sulfate
<0.02 — <0.05
— >0.05 —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. *
<0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor).
©2001 CRC Press LLC
1142
CRC Handbook of Materials Science & Engineering
11.3 Chemical Page 1143 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 319. CORROSION
RATES OF 17% CR STEEL AT 70˚F * (SHEET 1 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride
— <0.002 <0.02 —
<0.002 <0.002 <0.05 <0.05
Acetoacetic Acid Acetone Acetylene Acrolein
<0.02 <0.02 — <0.02
<0.02 <0.002 <0.002 <0.02
Acrylonitril Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl)
— <0.02 <0.02 —
<0.002 <0.02 <0.02 <0.02
Alcohol (Amyl) Alcohol (Benzyl) Alcohol (Butyl) Alcohol (Cetyl)
— — — —
<0.02 <0.02 <0.002 <0.02
Alcohol (Isopropyl) Allylamine Allyl Chloride Allyl Sulfide
— — — —
<0.02 <0.02 <0.02 <0.02
Aluminum Chlorate Aluminum Chloride Aluminum Fluoride Aluminum Fluosilicate
<0.002 >0.05 >0.05 —
— <0.002 >0.05 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1143
11.3 Chemical Page 1144 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 319. CORROSION
RATES OF 17% CR STEEL AT 70˚F * (SHEET 2 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Aluminum Formate Aluminum Hydroxide Aluminum Nitrate Aluminum Potassium Sulfate
<0.02 <0.02 <0.02 <0.05
<0.02 <0.02 <0.02 >0.05
Aluminum Sulfate Ammonia Ammonium Acetate Ammonium Bicarbonate
— <0.002 <0.002 <0.02
>0.05 <0.002 <0.002 —
Ammonium Bromide Ammonium Carbonate Ammonium Chloride Ammonium Citrate
<0.05 <0.02 <0.05 <0.02
— <0.02 >0.05 —
Ammonium Nitrate Ammonium Sulfate Ammonium Sulfite Ammonium Thiocyanate
<0.002 <0.05 >0.05 <0.02
<0.02 — — —
Amyl Acetate Amyl Chloride Aniline Aniline Hydrochloride
— — <0.02 >0.05
<0.02 <0.05 <0.02 >0.05
Anthracine Antimony Trichloride Barium Carbonate Barium Chloride
— >0.05 <0.02 <0.02
<0.02 >0.05 <0.02 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1144
CRC Handbook of Materials Science & Engineering
11.3 Chemical Page 1145 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 319. CORROSION
RATES OF 17% CR STEEL AT 70˚F * (SHEET 3 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Barium Hydroxide Barium Nitrate Barium Oxide Benzaldehyde
— <0.02 — —
<0.02 — <0.02 <0.02
Benzene Benzoic Acid Boric Acid Bromic Acid
<0.02 <0.02 <0.02 >0.05
<0.02 <0.02 <0.02 >0.05
Bromine (Dry) Bromine (Wet) Butyric Acid Cadmium Chloride
— — <0.05 >0.05
>0.05 >0.05 <0.05 —
Cadmium Sulfate Calcium Acetate Calcium Bicarbonate Calcium Bromide
<0.002 <0.02 — <0.02
— <0.02 <0.02 <0.02
Calcium Chlorate Calcium Chloride Calcium Hydroxide Calcium Hypochlorite
<0.02 <0.05 <0.02 >0.05
— <0.02 <0.02 >0.05
Carbon Dioxide Carbon Monoxide Carbon Tetrachloride Carbon Acid (Air Free)
— — <0.002 —
<0.002 <0.002 <0.002 <0.002
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1145
11.3 Chemical Page 1146 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 319. CORROSION
RATES OF 17% CR STEEL AT 70˚F * (SHEET 4 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Chloroacetic Acid Chlorine Gas Chloroform (Dry) Chromic Acid
>0.05 >0.05 — <0.02
>0.05 <0.05 <0.02 —
Chromic Hydroxide Chromic Sulfates Citric Acid Copper Nitrate
— >0.05 <0.02 <0.02
<0.02 >0.05 — —
Copper Sulfate Diethylene Glycol Ethyl Chloride Ethylene Glycol
<0.02 — >0.05 (90%) —
— <0.002 <0.002 <0.02
Ethylene Oxide Fatty Acids Ferric Chloride Ferric Nitrate
— — >0.05 <0.02
<0.02 <0.02 — —
Ferrous Chloride Ferrous Sulfate Fluorine Formaldehyde
>0.05 <0.02 — <0.002
— — <0.002 <0.002
Formic Acid Furfural Hydrobromic Acid Hydrochloric Acid (Areated)
<0.05 <0.002 (30%) >0.05 >0.05
<0.05 — — —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1146
CRC Handbook of Materials Science & Engineering
11.3 Chemical Page 1147 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 319. CORROSION
RATES OF 17% CR STEEL AT 70˚F * (SHEET 5 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Hydrochloric Acid (Air Free) Hydrocyanic Acid Hydrofluoric Acid (Air Free) Hydrogen Chloride
>0.05 — >0.05 >0.05 (90%)
— <0.05 >0.05 >0.05
Hydrogen Fluoride Hydrogen Iodide Hydrogen Peroxide Hydrogen Sulfide
— — <0.02 (20%) <0.02
<0.02 >0.05 <0.02 <0.05
Lactic Acid Lead Acetate Lead Chromate Lead Nitrate
>0.05 <0.02 — <0.02
— <0.02 <0.02 —
Lead Sulfate Lithium Hydroxide Magnesium Chloride Magnesium Hydroxide
— <0.02 <0.05 <0.02
<0.02 — — <0.02
Magnesium Sulfate Maleic Acid Malic Acid Mercuric Chloride
<0.002 <0.02 <0.02 >0.05
<0.02 <0.02 — >0.05
Mercurous Nitrate Methallylamine Methanol Methyl Ethyl Ketone
<0.02 <0.02 <0.02 <0.02
— <0.02 <0.002 <0.002
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1147
11.3 Chemical Page 1148 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 319. CORROSION
RATES OF 17% CR STEEL AT 70˚F * (SHEET 6 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Methyl Isobutyl Ketone Methylamine Methylene Chloride Monochloroacetic Acid
<0.02 <0.02 — >0.05
<0.02 <0.02 <0.02 >0.05
Monorthanolamine Monoethalamine Monoethylamine Monosodium Phosphate
<0.002 <0.02 <0.02 >0.05
— <0.02 <0.02 —
Nickel Chloride Nickel Nitrate Nitric Acid Nitric Acid (Red Fuming)
>0.05 <0.02 <0.02 —
— — <0.05 <0.002
Nitric + Hydrochloric Acid Nitric + Hydrofluoric Acid Nitric + Sulfuric Acid Nitrobenzene
— — — —
>0.05 >0.05 >0.05 <0.02
Nitrocelluolose Nitroglycerine Nitrotolune Nitrous Acid
— — — <0.02
<0.02 <0.02 <0.02 —
Oleic Acid Oxalic Acid Phenol Phosphoric Acid (Areated)
<0.02 >0.05 — <0.02
<0.02 >0.05 <0.02 —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1148
CRC Handbook of Materials Science & Engineering
11.3 Chemical Page 1149 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 319. CORROSION
RATES OF 17% CR STEEL AT 70˚F * (SHEET 7 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Phosphoric Acid (Air Free) Picric Acid Potassium Bicarbonate Potassium Bromide
>0.05 <0.02 <0.02 <0.02
>0.05 <0.02 <0.02 <0.02
Potassium Carbonate Potassium Chlorate Potassium Chromate Potassium Cyanide
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
Potassium Dichromate Potassium Ferricyanide Potassium Ferrocyanide Potassium Hydroxide
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 — <0.002
Potassium Hypochlorite Potassium Iodide Potassium Nitrate Potassium Nitrite
>0.05 >0.05 <0.02 <0.02
— — <0.02 <0.02
Potassium Permanganate Potassium Silicate Pyridine Quinine Sulfate
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
Salicylic Acid Silicon Tetrachloride (Dry) Silicon Tetrachloride (Wet) Silver Bromide
— — — >0.05
<0.02 <0.002 >0.05 >0.05
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC Shackelford & Alexander
1149
11.3 Chemical Page 1150 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 319. CORROSION
RATES OF 17% CR STEEL AT 70˚F * (SHEET 8 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Silver Chloride Silver Nitrate Sodium Acetate Sodium Bicarbonate
>0.05 <0.02 <0.02 <0.02
>0.05 — <0.02 <0.02
Sodium Bisulfate Sodium Bromide Sodium Carbonate Sodium Chloride
<0.002 <0.05 <0.02 <0.02
— — <0.02 —
Sodium Chromate Sodium Hydroxide Sodium Hypochlorite Sodium Metasilicate
<0.02 <0.002 >0.05 <0.002
<0.02 — >0.05 <0.002
Sodium Nitrate Sodium Nitrite Sodium Phosphate Sodium Silicate
<0.02 <0.02 <0.02 <0.02
<0.002 — <0.02 <0.02
Sodium Sulfate Sodium Sulfide Sodium Sulfite Stannic Chloride
<0.05 >0.05 <0.02 >0.05
>0.05 >0.05 — —
Stannous Chloride Strontium Nitrate Succinic Acid Sulfur Dioxide
>0.05 <0.02 <0.02 >0.05
<0.05 <0.02 <0.02 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1150
CRC Handbook of Materials Science & Engineering
11.3 Chemical Page 1151 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 319. CORROSION
RATES OF 17% CR STEEL AT 70˚F * (SHEET 9 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Sulfur Trioxide Sulfuric Acid (Areated) Sulfuric Acid (Air Free) Sulfuric Acid (Fuming)
— <0.05 >0.05 —
<0.02 >0.05 <0.05 <0.002
Sulfurous Acid Tannic Acid Tartaric Acid Tetraphosphoric Acid
>0.05 <0.02 <0.02 >0.05
>0.05 <0.02 — >0.05
Trichloroacetic Acid Trichloroethylene Urea
>0.05 — <0.02
>0.05 <0.02 —
Zinc Chloride Zinc Sulfate
— <0.05
>0.05 —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. *
<0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor).
©2001 CRC Press LLC
Shackelford & Alexander
1151
11.3 Chemical Page 1152 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 320. CORROSION
RATES OF 14% SI IRON AT 70˚F * (SHEET 1 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride
<0.002 <0.002 <0.002 <0.002
<0.002 <0.002 <0.002 <0.002
Acetoacetic Acid Acetone Acetylene Acrolein
<0.02 <0.002 — <0.02
<0.02 <0.002 <0.002 <0.02
Acrylonitril Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl)
— <0.002 <0.002 <0.02
<0.002 <0.002 <0.002 <0.02
Alcohol (Amyl) Alcohol (Benzyl) Alcohol (Butyl) Alcohol (Cetyl)
— — — —
<0.02 <0.02 <0.002 <0.02
Alcohol (Isopropyl) Allylamine Allyl Chloride Allyl Sulfide
— <0.002 (30%) — —
<0.02 <0.02 <0.002 <0.02
Aluminum Acetate Aluminum Chlorate Aluminum Chloride Aluminum Fluoride
<0.02 <0.02 <0.002 >0.05
<0.002 <0.002 <0.02 >0.05
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1152
CRC Handbook of Materials Science & Engineering
11.3 Chemical Page 1153 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 320. CORROSION
RATES OF 14% SI IRON AT 70˚F * (SHEET 2 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Aluminum Fluosilicate Aluminum Formate Aluminum Hydroxide Aluminum Potassium Sulfate
— <0.02 <0.02 —
<0.02 <0.02 — <0.002
Aluminum Sulfate Ammonia Ammonium Acetate Ammonium Bicarbonate
<0.002 <0.02 <0.002 <0.002
<0.02 <0.02 <0.02 <0.002
Ammonium Bromide Ammonium Carbonate Ammonium Chloride Ammonium Formate
<0.002 <0.002 <0.002 <0.02
— <0.02 <0.02 <0.02
Ammonium Nitrate Ammonium Sulfate Ammonium Sulfite Ammonium Thiocyanate
<0.002 <0.002 <0.02 <0.02
— <0.002 — —
Amyl Acetate Amyl Chloride Aniline Aniline Hydrochloride
<0.002 <0.02 <0.002 <0.02
<0.002 <0.02 <0.002 <0.02
Anthracine Antimony Trichloride Barium Carbonate Barium Chloride
— <0.002 <0.02 <0.02
<0.02 — <0.02 —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC Shackelford & Alexander
1153
11.3 Chemical Page 1154 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 320. CORROSION
RATES OF 14% SI IRON AT 70˚F * (SHEET 3 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Barium Hydroxide Barium Nitrate Barium Oxide Barium Peroxide
— <0.02 — <0.02
<0.02 <0.02 <0.02 —
Benzaldehyde Benzene Benzoic Acid Boric Acid
<0.02 <0.002 <0.02 <0.02
<0.02 <0.002 <0.02 <0.02
Bromine (Dry) Bromine (Wet) Butyric Acid Cadmium Chloride
— — <0.002 <0.02
>0.05 >0.05 <0.002 —
Cadmium Sulfate Calcium Acetate Calcium Bicarbonate Calcium Bromide
<0.002 <0.02 — —
— <0.02 <0.02 <0.02
Calcium Chlorate Calcium Chloride Calcium Hydroxide Calcium Hypochlorite
<0.02 <0.002 <0.02 <0.02
— <0.02 — <0.05
Carbon Dioxide Carbon Monoxide Carbon Tetrachloride Carbon Acid (Air Free)
— — <0.002 <0.02
<0.002 <0.002 <0.002 <0.002
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1154
CRC Handbook of Materials Science & Engineering
11.3 Chemical Page 1155 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 320. CORROSION
RATES OF 14% SI IRON AT 70˚F * (SHEET 4 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Chloroacetic Acid Chlorine Gas Chromic Acid Chromic Hydroxide
>0.05 — <0.002 —
>0.05 <0.02 <0.02 <0.02
Chromic Sulfates Citric Acid Copper Nitrate Copper Sulfate
<0.002 <0.002 <0.002 <0.002
<0.02 <0.002 — —
Diethylene Glycol Ethyl Chloride Ethylene Glycol Ethylene Oxide
— — <0.02 —
<0.002 <0.002 <0.02 <0.02
Fatty Acids Ferric Chloride Ferric Nitrate Ferrous Chloride
— >0.05 <0.02 >0.05
<0.002 — — —
Ferrous Sulfate Fluorine Formaldehyde Formic Acid
<0.02 — <0.002 <0.002
— >0.05 <0.002 <0.002
Furfural Hydrobromic Acid Hydrochloric Acid (Areated) Hydrochloric Acid (Air Free)
<0.02 (20%) >0.05 <0.02 <0.02
<0.02 >0.05 — —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1155
11.3 Chemical Page 1156 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 320. CORROSION
RATES OF 14% SI IRON AT 70˚F * (SHEET 5 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Hydrocyanic Acid Hydrofluoric Acid (Areated) Hydrofluoric Acid (Air Free) Hydrogen Chloride
— >0.05 >0.05 <0.02 (90%)
<0.02 >0.05 >0.05 <0.02
Hydrogen Iodide Hydrogen Peroxide Hydrogen Sulfide Lactic Acid
>0.05 <0.02 (20%) — <0.002
<0.02 <0.02 <0.02 <0.02
Lead Acetate Lead Chromate Lead Nitrate Lead Sulfate
<0.02 — <0.002 —
<0.05 <0.02 <0.002 <0.02
Lithium Chloride Lithium Hydroxide Magnesium Chloride Magnesium Hydroxide
<0.02 (30%) >0.05 <0.002 <0.02
<0.02 — >0.05 —
Magnesium Sulfate Maleic Acid Mercuric Chloride Mercurous Nitrate
<0.002 <0.02 <0.02 <0.02
<0.002 <0.02 <0.02 <0.002
Methallylamine Methanol Methyl Ethyl Ketone Methyl Isobutyl Ketone
<0.02 <0.002 <0.02 <0.02
<0.002 <0.002 <0.002 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1156
CRC Handbook of Materials Science & Engineering
11.3 Chemical Page 1157 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 320. CORROSION
RATES OF 14% SI IRON AT 70˚F * (SHEET 6 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Methylamine Methylene Chloride Monochloroacetic Acid Monoethalamine
<0.02 — <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
Monoethylamine Monosodium Phosphate Nickel Chloride Nickel Nitrate
<0.02 <0.02 <0.02 <0.002
<0.02 — — —
Nickel Sulfate Nitric Acid Nitric Acid (Red Fuming) Nitric + Hydrochloric Acid
<0.002 <0.002 — —
— <0.002 <0.002 <0.05
Nitric + Hydrofluoric Acid Nitric + Sulfuric Acid Nitrobenzene Nitrocelluolose
— <0.02 — —
>0.05 <0.02 <0.002 <0.02
Nitroglycerine Nitrotolune Nitrous Acid Oleic Acid
— — <0.002 <0.002
<0.05 <0.02 <0.002 <0.002
Oxalic Acid Phenol Phosphoric Acid (Areated) Phosphoric Acid (Air Free)
<0.02 — <0.002 <0.02
<0.02 <0.002 <0.002 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC Shackelford & Alexander
1157
11.3 Chemical Page 1158 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 320. CORROSION
RATES OF 14% SI IRON AT 70˚F * (SHEET 7 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Picric Acid Potassium Bicarbonate Potassium Bromide Potassium Carbonate
<0.02 <0.02 <0.02 <0.02
<0.02 — <0.02 <0.02
Potassium Chlorate Potassium Chromate Potassium Cyanide Potassium Dichromate
<0.02 <0.02 <0.02 <0.002
<0.02 — <0.02 —
Potassium Ferricyanide Potassium Ferrocyanide Potassium Hydroxide Potassium Hypochlorite
<0.02 <0.02 >0.05 <0.002
— — >0.05 <0.002
Potassium Iodide Potassium Nitrate Potassium Nitrite Potassium Permanganate
<0.02 <0.002 <0.02 <0.02
<0.02 <0.002 <0.02 —
Potassium Silicate Propionic Acid Pyridine Quinine Sulfate
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
Salicylic Acid Silicon Tetrachloride (Dry) Silicon Tetrachloride (Wet) Silver Bromide
— — — —
<0.02 <0.002 <0.002 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1158
CRC Handbook of Materials Science & Engineering
11.3 Chemical Page 1159 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 320. CORROSION
RATES OF 14% SI IRON AT 70˚F * (SHEET 8 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Silver Chloride Silver Nitrate Sodium Acetate Sodium Bicarbonate
— <0.002 <0.002 <0.002
<0.02 — <0.02 —
Sodium Bisulfate Sodium Bromide Sodium Carbonate Sodium Chloride
<0.002 <0.05 <0.02 <0.02
<0.002 — <0.02 —
Sodium Chromate Sodium Hydroxide Sodium Metasilicate Sodium Nitrate
<0.02 >0.05 <0.02 <0.002
<0.02 — <0.02 <0.002
Sodium Nitrite Sodium Phosphate Sodium Silicate Sodium Sulfate
<0.02 <0.02 <0.02 <0.002
— <0.02 <0.02 <0.002
Sodium Sulfide Sodium Sulfite Stannic Chloride Stannous Chloride
<0.02 <0.002 >0.05 <0.002
<0.02 — — —
Strontium Nitrate Succinic Acid Sulfur Dioxide Sulfur Trioxide
<0.02 <0.02 — —
<0.02 — >0.05 >0.05
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1159
11.3 Chemical Page 1160 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 320. CORROSION
RATES OF 14% SI IRON AT 70˚F * (SHEET 9 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Sulfuric Acid (Areated) Sulfuric Acid (Fuming) Sulfurous Acid Tannic Acid
<0.002 — <0.02 <0.002
<0.02 <0.02 <0.02 <0.002
Tartaric Acid Tetraphosphoric Acid Trichloroacetic Acid
<0.02 — <0.002
<0.02 <0.05 <0.002
Trichloroethylene Urea Zinc Sulfate
— <0.02 <0.002
<0.002 — —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. *
<0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor).
©2001 CRC Press LLC
1160
CRC Handbook of Materials Science & Engineering
11.3 Chemical Page 1161 Wednesday, December 31, 1969 17:00
Chemical Properties
RATES OF STAINLESS STEEL 301 * AT 70˚F (SHEET 1 OF 9)
Table 321. CORROSION
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride
— <0.002 <0.02 —
<0.002 <0.002 <0.002 <0.02
Acetoacetic Acid Acetone Acetylene Acrolein
<0.02 <0.02 — <0.02
<0.02 <0.002 <0.002 <0.002
Acrylonitril Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl)
— <0.02 <0.02 —
<0.002 <0.02 <0.02 <0.02
Alcohol (Amyl) Alcohol (Benzyl) Alcohol (Butyl) Alcohol (Cetyl)
— — — —
<0.02 <0.02 <0.002 <0.02
Alcohol (Isopropyl) Allylamine Allyl Chloride Allyl Sulfide
— <0.002 (30%) — —
<0.02 <0.02 <0.02 <0.02
Aluminum Acetate Aluminum Chlorate Aluminum Chloride Aluminum Fluoride
<0.02 <0.002 >0.05 >0.05
<0.02 — <0.002 >0.05
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC Shackelford & Alexander
1161
11.3 Chemical Page 1162 Wednesday, December 31, 1969 17:00
Chemical Properties
RATES OF STAINLESS STEEL 301 * AT 70˚F (SHEET 2 OF 9)
Table 321. CORROSION
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Aluminum Fluosilicate Aluminum Formate Aluminum Hydroxide Aluminum Nitrate
— <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
Aluminum Potassium Sulfate Aluminum Sulfate Ammonia Ammonium Acetate
<0.02 <0.02 <0.002 <0.002
<0.02 <0.02 <0.002 <0.002
Ammonium Bicarbonate Ammonium Bromide Ammonium Carbonate Ammonium Chloride
<0.02 <0.05 <0.02 <0.02
<0.05 <0.05 <0.02 >0.05
Ammonium Citrate Ammonium Formate Ammonium Nitrate Ammonium Sulfate
<0.02 <0.02 <0.002 <0.05
— <0.02 <0.002 —
Ammonium Sulfite Ammonium Thiocyanate Amyl Acetate Amyl Chloride
<0.05 <0.02 <0.002 >0.05
<0.05 — <0.002 <0.002
Aniline Aniline Hydrochloride Anthracine Antimony Trichloride
<0.02 >0.05 — >0.05
<0.02 >0.05 <0.02 >0.05
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1162
CRC Handbook of Materials Science & Engineering
11.3 Chemical Page 1163 Wednesday, December 31, 1969 17:00
Chemical Properties
RATES OF STAINLESS STEEL 301 * AT 70˚F (SHEET 3 OF 9)
Table 321. CORROSION
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Barium Carbonate Barium Chloride Barium Hydroxide Barium Nitrate
<0.02 <0.02 — <0.02
<0.02 <0.05 <0.02 <0.02
Barium Oxide Barium Peroxide Benzaldehyde Benzene
— <0.02 <0.02 <0.02
<0.02 — <0.02 <0.02
Benzoic Acid Boric Acid Bromic Acid Bromine (Dry)
<0.02 <0.002 >0.05 —
<0.02 <0.02 — >0.05
Bromine (Wet) Butyric Acid Cadmium Chloride Cadmium Sulfate
— <0.02 <0.02 <0.002
>0.05 <0.02 — —
Calcium Acetate Calcium Bicarbonate Calcium Bromide Calcium Chlorate
<0.02 — <0.02 <0.02
<0.02 <0.02 <0.02 —
Calcium Chloride Calcium Hydroxide Calcium Hypochlorite Carbon Dioxide
<0.02 <0.02 <0.05 —
<0.02 — — <0.002
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC Shackelford & Alexander
1163
11.3 Chemical Page 1164 Wednesday, December 31, 1969 17:00
Chemical Properties
RATES OF STAINLESS STEEL 301 * AT 70˚F (SHEET 4 OF 9)
Table 321. CORROSION
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Carbon Monoxide Carbon Tetrachloride Carbon Acid (Air Free) Chloroacetic Acid
— >0.05 <0.02 >0.05
<0.002 <0.02 <0.02 —
Chlorine Gas Chloroform (Dry) Chromic Acid Chromic Hydroxide
— — <0.02 —
<0.002 <0.002 — <0.02
Chromic Sulfates Citric Acid Copper Nitrate Copper Sulfate
<0.02 <0.02 <0.02 <0.02
<0.05 <0.02 — —
Diethylene Glycol Ethyl Chloride Ethylene Glycol Ethylene Oxide
— >0.05 (90%) — —
<0.002 <0.002 <0.02 <0.02
Fatty Acids Ferric Chloride Ferric Nitrate Ferrous Chloride
— >0.05 <0.02 >0.05
<0.02 — — —
Ferrous Sulfate Fluorine Formaldehyde Formic Acid
<0.02 — <0.002 (20%) <0.02
— <0.002 <0.002 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1164
CRC Handbook of Materials Science & Engineering
11.3 Chemical Page 1165 Wednesday, December 31, 1969 17:00
Chemical Properties
RATES OF STAINLESS STEEL 301 * AT 70˚F (SHEET 5 OF 9)
Table 321. CORROSION
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Furfural Hydrazine Hydrobromic Acid Hydrochloric Acid (Areated)
<0.002 (30%) <0.002 >0.05 >0.05
<0.02 — >0.05 —
Hydrochloric Acid (Air Free) Hydrocyanic Acid Hydrofluoric Acid (Areated) Hydrofluoric Acid (Air Free)
>0.05 — <0.002 >0.05
— <0.02 <0.02 >0.05
Hydrogen Chloride Hydrogen Fluoride Hydrogen Iodide Hydrogen Peroxide
>0.05 (90%) — <0.02 (1%) <0.02 (20%)
<0.002 <0.002 <0.02 <0.02
Hydrogen Sulfide Lactic Acid Lead Acetate Lead Chromate
>0.05 <0.02 <0.02 —
<0.05 <0.02 <0.02 <0.02
Lead Nitrate Lead Sulfate Lithium Chloride Lithium Hydroxide
<0.02 — <0.002 (30%) <0.02
<0.02 <0.02 <0.002 —
Magnesium Chloride Magnesium Hydroxide Magnesium Sulfate Maleic Acid
<0.05 <0.02 <0.002 <0.02
— <0.02 <0.02 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1165
11.3 Chemical Page 1166 Wednesday, December 31, 1969 17:00
Chemical Properties
RATES OF STAINLESS STEEL 301 * AT 70˚F (SHEET 6 OF 9)
Table 321. CORROSION
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Malic Acid Maganous Chloride Mercuric Chloride Mercurous Nitrate
<0.002 <0.02 (40%) >0.05 <0.02
<0.002 — >0.05 <0.02
Methallylamine Methanol Methyl Ethyl Ketone Methyl Isobutyl Ketone
<0.02 <0.02 <0.02 <0.02
<0.02 <0.002 <0.002 <0.02
Methylamine Methylene Chloride Monochloroacetic Acid Monorthanolamine
<0.02 <0.02 <0.05 <0.002
<0.02 <0.02 <0.02 <0.02
Monoethalamine Monoethylamine Monosodium Phosphate Nickel Chloride
<0.02 <0.02 <0.02 >0.05
<0.02 <0.02 — —
Nickel Nitrate Nickel Sulfate Nitric Acid Nitric Acid (Red Fuming)
<0.02 <0.002 <0.002 —
— — <0.002 <0.002
Nitric + Hydrochloric Acid Nitric + Hydrofluoric Acid Nitric + Sulfuric Acid Nitrobenzene
— — — —
>0.05 >0.05 >0.05 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1166
CRC Handbook of Materials Science & Engineering
11.3 Chemical Page 1167 Wednesday, December 31, 1969 17:00
Chemical Properties
RATES OF STAINLESS STEEL 301 * AT 70˚F (SHEET 7 OF 9)
Table 321. CORROSION
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Nitrocelluolose Nitroglycerine Nitrotolune Nitrous Acid
— — — <0.02
<0.02 <0.02 <0.02 <0.02
Oleic Acid Oxalic Acid Phenol Phosphoric Acid (Areated)
<0.02 <0.02 — <0.02
<0.02 >0.05 <0.02 >0.05
Phosphoric Acid (Air Free) Picric Acid Potassium Bicarbonate Potassium Bromide
<0.02 <0.02 <0.02 <0.02
— <0.02 <0.02 <0.05
Potassium Carbonate Potassium Chlorate Potassium Chromate Potassium Cyanide
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
Potassium Dichromate Potassium Ferricyanide Potassium Ferrocyanide Potassium Hydroxide
<0.002 <0.02 <0.02 <0.02
<0.02 <0.02 — <0.002
Potassium Hypochlorite Potassium Iodide Potassium Nitrate Potassium Nitrite
>0.05 <0.02 <0.02 <0.02
— <0.02 <0.02 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC Shackelford & Alexander
1167
11.3 Chemical Page 1168 Wednesday, December 31, 1969 17:00
Chemical Properties
RATES OF STAINLESS STEEL 301 * AT 70˚F (SHEET 8 OF 9)
Table 321. CORROSION
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Potassium Permanganate Potassium Silicate Pyridine Quinine Sulfate
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
Salicylic Acid Silicon Tetrachloride (Dry) Silicon Tetrachloride (Wet) Silver Bromide
— — — >0.05
<0.02 <0.002 >0.05 <0.05
Silver Chloride Silver Nitrate Sodium Acetate Sodium Bicarbonate
>0.05 <0.02 <0.02 <0.02
>0.05 — <0.02 —
Sodium Bisulfate Sodium Bromide Sodium Carbonate Sodium Chloride
<0.002 <0.05 <0.02 <0.02
>0.05 — <0.02 —
Sodium Chromate Sodium Hydroxide Sodium Hypochlorite Sodium Metasilicate
<0.02 <0.002 >0.05 <0.002
<0.02 — >0.05 <0.002
Sodium Nitrate Sodium Nitrite Sodium Phosphate Sodium Silicate
<0.002 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1168
CRC Handbook of Materials Science & Engineering
11.3 Chemical Page 1169 Wednesday, December 31, 1969 17:00
Chemical Properties
RATES OF STAINLESS STEEL 301 * AT 70˚F (SHEET 9 OF 9)
Table 321. CORROSION
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Sodium Sulfate Sodium Sulfide Sodium Sulfite Stannic Chloride
<0.02 <0.02 <0.002 >0.05
<0.002 >0.05 — —
Stannous Chloride Strontium Nitrate Succinic Acid Sulfur Dioxide
>0.05 <0.02 <0.02 >0.05
<0.05 <0.02 <0.02 <0.02
Sulfur Trioxide Sulfuric Acid (Areated) Sulfuric Acid (Air Free) Sulfuric Acid (Fuming)
— >0.05 >0.05 —
<0.02 <0.02 <0.05 <0.02
Sulfurous Acid Tannic Acid Tartaric Acid Tetraphosphoric Acid
<0.02 <0.02 <0.002 —
>0.05 <0.02 — <0.02
Trichloroacetic Acid Trichloroethylene Urea Zinc Sulfate
>0.05 — <0.02 <0.002
>0.05 <0.02 — —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. *
<0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor).
©2001 CRC Press LLC
Shackelford & Alexander
1169
11.3 Chemical Page 1170 Wednesday, December 31, 1969 17:00
Chemical Properties
RATES OF STAINLESS STEEL 316 * AT 70˚F (SHEET 1 OF 9)
Table 322. CORROSION
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride
— <0.002 <0.002 —
<0.002 <0.002 <0.02 <0.02
Acetoacetic Acid Acetone Acetylene Acrolein
<0.02 <0.02 — <0.02
<0.02 <0.002 <0.002 <0.02
Acrylonitril Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl)
— <0.002 <0.002 —
<0.002 <0.002 <0.002 <0.02
Alcohol (Amyl) Alcohol (Benzyl) Alcohol (Butyl) Alcohol (Cetyl)
— — — —
<0.02 <0.02 <0.002 <0.02
Alcohol (Isopropyl) Allylamine Allyl Chloride Allyl Sulfide
— <0.002 (30%) — —
<0.02 <0.02 <0.002 <0.02
Aluminum Acetate Aluminum Chloride Aluminum Fluoride Aluminum Fluosilicate
<0.02 <0.05 — —
<0.02 — <0.05 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1170
CRC Handbook of Materials Science & Engineering
11.3 Chemical Page 1171 Wednesday, December 31, 1969 17:00
Chemical Properties
RATES OF STAINLESS STEEL 316 * AT 70˚F (SHEET 2 OF 9)
Table 322. CORROSION
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Aluminum Formate Aluminum Hydroxide Aluminum Nitrate Aluminum Potassium Sulfate
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 —
Aluminum Sulfate Ammonia Ammonium Acetate Ammonium Bicarbonate
<0.02 <0.002 <0.002 <0.02
<0.02 <0.002 <0.002 <0.02
Ammonium Bromide Ammonium Carbonate Ammonium Chloride Ammonium Citrate
<0.02 <0.02 <0.02 <0.02
— <0.02 — —
Ammonium Formate Ammonium Nitrate Ammonium Sulfate Ammonium Sulfite
<0.02 <0.002 <0.02 <0.02
<0.02 <0.002 — <0.02
Ammonium Thiocyanate Amyl Acetate Amyl Chloride Aniline
<0.02 <0.002 — <0.02
— <0.002 <0.002 <0.02
Aniline Hydrochloride Anthracine Antimony Trichloride Barium Carbonate
>0.05 — >0.05 <0.02
>0.05 <0.02 — <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1171
11.3 Chemical Page 1172 Wednesday, December 31, 1969 17:00
Chemical Properties
RATES OF STAINLESS STEEL 316 * AT 70˚F (SHEET 3 OF 9)
Table 322. CORROSION
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Barium Chloride Barium Hydroxide Barium Nitrate Barium Oxide
<0.02 — <0.02 —
<0.02 <0.02 <0.02 <0.02
Barium Peroxide Benzaldehyde Benzene Benzoic Acid
<0.02 — <0.02 <0.02
— <0.02 <0.02 <0.02
Boric Acid Bromic Acid Bromine (Dry) Bromine (Wet)
<0.002 >0.05 — —
<0.02 — >0.05 >0.05
Butyric Acid Cadmium Chloride Cadmium Sulfate Calcium Acetate
<0.02 <0.02 <0.002 <0.02
<0.02 — — <0.02
Calcium Bicarbonate Calcium Bromide Calcium Chlorate Calcium Chloride
— <0.02 <0.02 <0.02
<0.02 <0.02 — <0.002
Calcium Hydroxide Calcium Hypochlorite Carbon Dioxide Carbon Monoxide
<0.02 <0.05 — —
— — <0.002 <0.002
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1172
CRC Handbook of Materials Science & Engineering
11.3 Chemical Page 1173 Wednesday, December 31, 1969 17:00
Chemical Properties
RATES OF STAINLESS STEEL 316 * AT 70˚F (SHEET 4 OF 9)
Table 322. CORROSION
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Carbon Tetrachloride Carbon Acid (Air Free) Chloroacetic Acid Chlorine Gas
<0.02 <0.02 >0.05 —
<0.02 <0.02 — <0.02
Chloroform (Dry) Chromic Acid Chromic Hydroxide Chromic Sulfates
— <0.02 — <0.02
<0.002 — <0.02 —
Citric Acid Copper Nitrate Copper Sulfate Diethylene Glycol
<0.02 <0.002 <0.02 —
<0.02 — — <0.002
Ethyl Chloride Ethylene Glycol Ethylene Oxide Fatty Acids
— — — —
<0.002 <0.02 <0.02 <0.002
Ferric Chloride Ferric Nitrate Ferrous Chloride Ferrous Sulfate
>0.05 <0.02 >0.05 <0.02
— — — —
Fluorine Formaldehyde Formic Acid Furfural
— <0.02 <0.002 <0.002
<0.002 <0.002 <0.002 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1173
11.3 Chemical Page 1174 Wednesday, December 31, 1969 17:00
Chemical Properties
RATES OF STAINLESS STEEL 316 * AT 70˚F (SHEET 5 OF 9)
Table 322. CORROSION
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Hydrazine Hydrobromic Acid Hydrochloric Acid (Areated) Hydrochloric Acid (Air Free)
<0.002 >0.05 >0.05 >0.05
— — — —
Hydrocyanic Acid Hydrofluoric Acid (Areated) Hydrofluoric Acid (Air Free) Hydrogen Chloride
— <0.002 >0.05 —
<0.02 <0.02 <0.02 <0.002
Hydrogen Fluoride Hydrogen Iodide Hydrogen Peroxide Hydrogen Sulfide
— — <0.02 (20%) <0.002
<0.002 <0.02 <0.02 <0.02
Lactic Acid Lead Acetate Lead Chromate Lead Nitrate
<0.02 <0.02 — <0.02
<0.02 <0.02 <0.02 <0.02
Lead Sulfate Lithium Chloride Lithium Hydroxide Magnesium Chloride
— <0.002 (30%) <0.02 <0.02
<0.02 <0.002 — —
Magnesium Hydroxide Magnesium Sulfate Maleic Acid Malic Acid
<0.02 <0.002 <0.02 <0.002
<0.02 <0.02 <0.02 <0.002
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1174
CRC Handbook of Materials Science & Engineering
11.3 Chemical Page 1175 Wednesday, December 31, 1969 17:00
Chemical Properties
RATES OF STAINLESS STEEL 316 * AT 70˚F (SHEET 6 OF 9)
Table 322. CORROSION
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Maganous Chloride Mercuric Chloride Mercurous Nitrate Methallylamine
<0.02 (40%) >0.05 <0.02 <0.02
— — <0.02 <0.02
Methanol Methyl Ethyl Ketone Methyl Isobutyl Ketone Methylamine
<0.02 <0.02 <0.02 <0.02
<0.002 <0.002 <0.02 <0.02
Methylene Chloride Monochloroacetic Acid Monorthanolamine Monoethalamine
<0.02 <0.05 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
Monoethylamine Monosodium Phosphate Nickel Chloride Nickel Nitrate
<0.02 <0.02 >0.05 <0.02
<0.02 — — —
Nickel Sulfate Nitric Acid Nitric Acid (Red Fuming) Nitric + Hydrochloric Acid
<0.02 <0.002 — —
— <0.002 <0.002 >0.05
Nitric + Hydrofluoric Acid Nitric + Sulfuric Acid Nitrobenzene Nitrocelluolose
— — — —
>0.05 >0.05 <0.02 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1175
11.3 Chemical Page 1176 Wednesday, December 31, 1969 17:00
Chemical Properties
RATES OF STAINLESS STEEL 316 * AT 70˚F (SHEET 7 OF 9)
Table 322. CORROSION
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Nitroglycerine Nitrotolune Nitrous Acid Oleic Acid
— — <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
Oxalic Acid Phenol Phosphoric Acid (Areated) Phosphoric Acid (Air Free)
<0.02 — <0.002 <0.02
>0.05 <0.02 <0.02 —
Picric Acid Potassium Bicarbonate Potassium Bromide Potassium Carbonate
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 — <0.02
Potassium Chlorate Potassium Chromate Potassium Cyanide Potassium Dichromate
<0.02 <0.02 <0.02 <0.002
<0.02 <0.02 <0.02 <0.02
Potassium Ferricyanide Potassium Ferrocyanide Potassium Hydroxide Potassium Hypochlorite
<0.02 <0.02 <0.02 <0.05
<0.02 — — <0.02
Potassium Iodide Potassium Nitrate Potassium Nitrite Potassium Permanganate
<0.02 <0.02 <0.02 <0.02
<0.02 — <0.02 —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1176
CRC Handbook of Materials Science & Engineering
11.3 Chemical Page 1177 Wednesday, December 31, 1969 17:00
Chemical Properties
RATES OF STAINLESS STEEL 316 * AT 70˚F (SHEET 8 OF 9)
Table 322. CORROSION
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Potassium Silicate Propionic Acid Pyridine Quinine Sulfate
<0.02 — <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
Salicylic Acid Silicon Tetrachloride (Dry) Silver Bromide Silver Chloride
— — >0.05 >0.05
<0.02 <0.002 — —
Silver Nitrate Sodium Acetate Sodium Bicarbonate Sodium Bisulfate
<0.002 <0.02 <0.02 <0.002
<0.02 <0.02 — —
Sodium Bromide Sodium Carbonate Sodium Chloride Sodium Chromate
<0.05 <0.02 <0.02 <0.02
— <0.02 — <0.02
Sodium Hydroxide Sodium Hypochlorite Sodium Metasilicate Sodium Nitrate
<0.002 >0.05 <0.002 <0.002
— >0.05 <0.002 <0.02
Sodium Nitrite Sodium Phosphate Sodium Silicate Sodium Sulfate
<0.02 <0.02 <0.02 <0.002
— <0.02 <0.02 <0.002
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1177
11.3 Chemical Page 1178 Wednesday, December 31, 1969 17:00
Chemical Properties
RATES OF STAINLESS STEEL 316 * AT 70˚F (SHEET 9 OF 9)
Table 322. CORROSION
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Sodium Sulfide Sodium Sulfite Stannic Chloride Stannous Chloride
>0.05 <0.002 >0.05 <0.02
— — — —
Strontium Nitrate Succinic Acid Sulfur Dioxide Sulfur Trioxide
<0.02 <0.02 <0.002 —
<0.02 <0.02 <0.02 <0.02
Sulfuric Acid (Areated) Sulfuric Acid (Air Free) Sulfuric Acid (Fuming) Sulfurous Acid
<0.002 <0.05 — <0.02
<0.02 <0.02 <0.02 <0.002
Tannic Acid Tartaric Acid Tetraphosphoric Acid Trichloroacetic Acid
<0.02 <0.02 — >0.05
<0.02 — <0.02 >0.05
Trichloroethylene Urea Zinc Sulfate
— <0.02 <0.02
<0.02 — —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. *
<0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor).
©2001 CRC Press LLC
1178
CRC Handbook of Materials Science & Engineering
11.4 Chemical Page 1179 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 323. CORROSION
RATES OF ALUMINUM AT 70˚F * (SHEET 1 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride
<0.02 <0.02 <0.002 —
<0.002 <0.002 <0.002 <0.002
Acetoacetic Acid Acetone Acetylene Acrolein
<0.02 <0.02 — <0.02
<0.02 <0.002 <0.002 <0.02
Acrylonitril Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl)
— <0.02 — —
<0.002 <0.02 <0.02 <0.02
Alcohol (Amyl) Alcohol (Benzyl) Alcohol (Butyl) Alcohol (Cetyl)
— — <0.002 —
<0.002 <0.02 <0.002 <0.02
Alcohol (Isopropyl) Allyl Chloride Allyl Sulfide Aluminum Acetate
— — — <0.002
<0.02 >0.05 <0.02 <0.002
Aluminum Chloride Aluminum Fluoride Aluminum Formate Aluminum Hydroxide
>0.05 <0.002 <0.02 <0.02
<0.02 — <0.02 —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1179
11.4 Chemical Page 1180 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 323. CORROSION
RATES OF ALUMINUM AT 70˚F * (SHEET 2 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Aluminum Nitrate Aluminum Potassium Sulfate Aluminum Sulfate Ammonia
<0.02 <0.02 <0.002 <0.002
<0.02 <0.02 >0.05 <0.002
Ammonium Acetate Ammonium Bicarbonate Ammonium Bromide Ammonium Carbonate
<0.002 <0.02 >0.05 <0.02
<0.002 <0.02 — <0.02
Ammonium Chloride Ammonium Citrate Ammonium Formate Ammonium Nitrate
>0.05 <0.02 <0.02 <0.02
<0.02 <0.02 — <0.02
Ammonium Sulfate Amyl Acetate Amyl Chloride Aniline
>0.05 — — —
<0.02 <0.002 <0.02 <0.02
Aniline Hydrochloride Anthracine Antimony Trichloride Barium Carbonate
>0.05 — >0.05 —
>0.05 <0.02 <0.02 >0.05
Barium Chloride Barium Hydroxide Barium Nitrate Barium Peroxide
<0.02 >0.05 <0.02 >0.05
>0.05 >0.05 — —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1180
CRC Handbook of Materials Science & Engineering
11.4 Chemical Page 1181 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 323. CORROSION
RATES OF ALUMINUM AT 70˚F * (SHEET 3 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Benzaldehyde Benzene Benzoic Acid Boric Acid
<0.02 <0.02 <0.02 <0.05
<0.002 <0.02 <0.02 <0.02
Bromic Acid Bromine (Dry) Bromine (Wet) Butyric Acid
>0.05 — — <0.02
— <0.02 >0.05 <0.002
Cadmium Chloride Cadmium Sulfate Calcium Acetate Calcium Bicarbonate
>0.05 <0.02 — —
— — <0.05 <0.02
Calcium Bromide Calcium Chlorate Calcium Chloride Calcium Hydroxide
<0.05 <0.02 <0.002 >0.05
<0.05 — >0.05 >0.05
Calcium Hypochlorite Carbon Dioxide Carbon Monoxide Carbon Tetrachloride
>0.05 — — —
— <0.002 <0.002 <0.02
Carbon Acid (Air Free) Chloroacetic Acid Chlorine Gas Chloroform (Dry)
<0.02 >0.05 — —
<0.002 >0.05 <0.02 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1181
11.4 Chemical Page 1182 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 323. CORROSION
RATES OF ALUMINUM AT 70˚F * (SHEET 4 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Chromic Acid Chromic Hydroxide Chromic Sulfates Citric Acid
>0.05 — — <0.02
>0.05 <0.02 <0.05 <0.02
Copper Nitrate Copper Sulfate Diethylene Glycol Ethyl Chloride
>0.05 >0.05 — —
— >0.05 <0.02 <0.002
Ethylene Glycol Ethylene Oxide Fatty Acids Ferric Chloride
<0.002 — — >0.05
<0.002 <0.002 <0.002 >0.05
Ferric Nitrate Ferrous Chloride Ferrous Sulfate Fluorine
>0.05 >0.05 <0.002 —
— — — >0.05
Formaldehyde Formic Acid Furfural Hydrazine
<0.02 <0.02 — —
<0.002 <0.02 <0.02 <0.002
Hydrobromic Acid Hydrochloric Acid (Areated) Hydrochloric Acid (Air Free) Hydrocyanic Acid
>0.05 >0.05 >0.05 <0.02
>0.05 — — <0.002
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1182
CRC Handbook of Materials Science & Engineering
11.4 Chemical Page 1183 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 323. CORROSION
RATES OF ALUMINUM AT 70˚F * (SHEET 5 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Hydrofluoric Acid (Areated) Hydrofluoric Acid (Air Free) Hydrogen Chloride Hydrogen Fluoride
>0.05 >0.05 — —
— — >0.05 <0.02
Hydrogen Iodide Hydrogen Peroxide Hydrogen Sulfide Lactic Acid
— <0.002 — <0.02
>0.05 <0.002 <0.002 <0.02
Lead Acetate Lead Chromate Lead Nitrate Lead Sulfate
— >0.05 >0.05 >0.05
>0.05 — — —
Lithium Chloride Lithium Hydroxide Magnesium Chloride Magnesium Hydroxide
<0.05 >0.05 >0.05 >0.05
— >0.05 — >0.05
Magnesium Sulfate Maleic Acid Malic Acid Mercuric Chloride
<0.02 <0.02 <0.02 >0.05
<0.02 — <0.002 —
Mercurous Nitrate Mercury Methallylamine Methanol
>0.05 — — —
>0.05 >0.05 <0.02 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1183
11.4 Chemical Page 1184 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 323. CORROSION
RATES OF ALUMINUM AT 70˚F * (SHEET 6 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Methyl Ethyl Ketone Methyl Isobutyl Ketone Methylamine Methylene Chloride
<0.02 <0.02 <0.02 >0.05
<0.002 <0.002 <0.02 <0.002
Monochloroacetic Acid Monorthanolamine Monoethalamine Monoethylamine
>0.05 — <0.02 <0.02
>0.05 <0.02 <0.02 <0.02
Monosodium Phosphate Nickel Chloride Nickel Nitrate Nickel Sulfate
>0.05 >0.05 >0.05 >0.05
— >0.05 — >0.05
Nitric Acid Nitric Acid (Red Fuming) Nitric + Hydrochloric Acid Nitric + Sulfuric Acid
>0.05 — — >0.05
<0.02 <0.002 >0.05 >0.05
Nitrobenzene Nitrocelluolose Nitroglycerine Nitrotolune
— — — —
<0.02 <0.002 <0.002 <0.02
Nitrous Acid Oleic Acid Oxalic Acid Phenol
<0.05 — <0.02 —
— <0.002 <0.02 <0.002
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1184
CRC Handbook of Materials Science & Engineering
11.4 Chemical Page 1185 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 323. CORROSION
RATES OF ALUMINUM AT 70˚F * (SHEET 7 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Phosphoric Acid (Areated) Phosphoric Acid (Air Free) Picric Acid Potassium Bicarbonate
>0.05 >0.05 >0.05 >0.05
<0.02 >0.05 <0.02 <0.02
Potassium Bromide Potassium Carbonate Potassium Chlorate Potassium Chromate
<0.02 >0.05 <0.02 <0.02
— >0.05 <0.02 <0.02
Potassium Cyanide Potassium Dichromate Potassium Ferricyanide Potassium Ferrocyanide
>0.05 <0.002 <0.02 <0.002
— <0.02 — <0.02
Potassium Hydroxide Potassium Hypochlorite Potassium Iodide Potassium Nitrate
>0.05 >0.05 <0.02 <0.002
— — — <0.02
Potassium Nitrite Potassium Permanganate Potassium Silicate Propionic Acid
<0.02 <0.02 >0.05 <0.02
<0.02 <0.02 <0.02 <0.02
Pyridine Salicylic Acid Silicon Tetrachloride (Dry) Silicon Tetrachloride (Wet)
<0.02 >0.05 — —
<0.02 <0.02 <0.02 >0.05
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1185
11.4 Chemical Page 1186 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 323. CORROSION
RATES OF ALUMINUM AT 70˚F * (SHEET 8 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Silver Bromide Silver Chloride Silver Nitrate Sodium Acetate
>0.05 >0.05 >0.05 <0.02
— — — <0.002
Sodium Bicarbonate Sodium Bisulfate Sodium Bromide Sodium Carbonate
>0.05 >0.05 <0.05 >0.05
<0.02 — — —
Sodium Chloride Sodium Chromate Sodium Hydroxide Sodium Hypochlorite
<0.05 <0.02 >0.05 >0.05
— <0.02 — >0.05
Sodium Metasilicate Sodium Nitrate Sodium Nitrite Sodium Phosphate
>0.05 <0.002 <0.02 >0.05
<0.02 <0.02 — —
Sodium Silicate Sodium Sulfate Sodium Sulfide Sodium Sulfite
>0.05 <0.002 >0.05 <0.02
<0.002 — >0.05 —
Stannic Chloride Stannous Chloride Strontium Nitrate Succinic Acid
>0.05 >0.05 <0.02 <0.02
— — <0.02 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1186
CRC Handbook of Materials Science & Engineering
11.4 Chemical Page 1187 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 323. CORROSION
RATES OF ALUMINUM AT 70˚F * (SHEET 9 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Sulfur Dioxide Sulfur Trioxide Sulfuric Acid (Areated) Sulfuric Acid (Air Free)
>0.05 — >0.05 >0.05
<0.02 <0.02 >0.05 >0.05
Sulfuric Acid (Fuming) Sulfurous Acid Tannic Acid Tartaric Acid
— <0.02 <0.02 <0.02
<0.02 <0.02 >0.05 —
Tetraphosphoric Acid Trichloroacetic Acid Trichloroethylene
>0.05 >0.05 —
>0.05 >0.05 <0.002
Urea Zinc Chloride Zinc Sulfate
<0.02 >0.05 <0.05
<0.02 — —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. *
<0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor).
©2001 CRC Press LLC
Shackelford & Alexander
1187
11.5 Chemical L Page 1188 Wednesday, December 31, 1969 17:00
Table 324. CORROSION
RESISTANCE OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 1 OF 10)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Corrosion Resistance (b)
C10100 Oxygen-free electronic C10200 Oxygen-free copper C10300 Oxygen-free extra-low phosporus C10400, C10500, C10700 Oxygen-free, silver-bearing
99.99 Cu 99.95 Cu 99.95 Cu, 0.003 P 99.95 Cu(e)
F, R, W, T, P, S F, R, W, T, P, S F, R, T, P, S F, R, W, S
G-E G-E G-E G-E
C10800 Oxygen-free, low phosporus CS11000 Electrolytic tough pitch copper C11100 Electrolytic tough pitch, anneal resistant C11300, C11400, C11500, C11600 Silver-bearing tough pitch copper
99.95 Cu, 0.009 P 99.90 Cu, 0.04 O 99.90 Cu, 0.04 O, 0.01 Cd 99.90 Cu, 0.04 O, Ag(f)
F, R, T, P F, R, W, T, P, S W F, R, W, T, S
G-E G-E G-E G-E
C12000, C12100 C12200 Phosphorus deoxidized copper, high residual phosphorus C12500, C12700, C12800, C12900, C13000 Fire-refined tough pitch with silver C14200 Phosphorus deoxidized, arsenical
99.9 Cu(g) 99.90 Cu, 0.02 P 99.88 Cu(h) 99.68 Cu, 0.3 As, 0.02 P
F, T, P F, R, T, P F, R, W, S F, R, T
G-E G-E G-E G-E
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. (b) E, excellent; G, good; F, fair. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
11.5 Chemical L Page 1189 Wednesday, December 31, 1969 17:00
Table 324. CORROSION
RESISTANCE OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 2 OF 10)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Corrosion Resistance (b)
C19200 C14300 C14310 C14500 Phosphorus deoxidized, tellurium bearing
98.97 Cu, 1.0 Fe, 0.03 P 99.9 Cu, 0.1 Cd 99.8 Cu, 0.2 Cd 99.5 Cu, 0.50 Te, 0.008 P
F, T F F F, R, W, T
G-E G-E G-E G-E
C14700 Sulfur bearing C15000 Zirconium copper C15500 C16200 Cadmium copper
99.6 Cu, 0.40 S 99.8 Cu, 0.15 Zr 99.75 Cu, 0.06 P, 0.11 Mg, Ag(i) 99.0 Cu, 1.0 Cd
R, W R, W F F, R, W
G-E G-E G-E G-E
C16500 C17000 Beryllium copper C17200 Beryllium copper C17300 Beryllium copper
98.6 Cu, 0.8 Cd, 0.6 Sn 99.5 Cu, 1.7 Be, 0.20 Co 99.5 Cu, 1.9 Be , 0.20 Co 99.5 Cu, 1.9 Be, 0.40 Pb
F, R, W F, R F, R, W, T, P, S R
G-E G-E G-E G-E
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. (b) E, excellent; G, good; F, fair. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
11.5 Chemical L Page 1190 Wednesday, December 31, 1969 17:00
Table 324. CORROSION
RESISTANCE OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 3 OF 10)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Corrosion Resistance (b)
C17500 Copper-cobalt-beryllium alloy C18200, C18400, C18500 Chromium copper C18700 leaded copper C18900
99.5 Cu, 2.5 Co, 0.6 Be 99.5 Cu(j) 99.0 Cu, 1.0 Pb 98.75 Cu, 0.75 Sn, 0.3 Si, 0.20 Mn
F, R F, W, R, S, T R R, W
G-E G-E G-E G-E
C19000 Copper-nickel-phosphorus alloy C19100 Copper-nickel-phosphorus-tellurium alloy C19400
98.7 Cu, 1.1 Ni, 0.25 P 98.15 Cu, 1.1 Ni, 0.50 Te, 0.25 P 97.5 Cu, 2.4 Fe, 0.13 Zn, 0.03 P
F, R, W R, F F
G-E G-E G-E
C19500 C21000 Gilding, 95% C22000 Commercial bronze, 90% C22600 Jewelry bronze, 87.5%
97.0 Cu, 1.5 Fe, 0.6 Sn, 0.10 P, 0.80 Co 95.0 Cu, 5.0 Zn 90.0 Cu, 10.0 Zn 87.5 Cu, 12.5 Zn
F F, W F, R, W, T F, W
G-E G-E G-E G-E
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. (b) E, excellent; G, good; F, fair. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
11.5 Chemical L Page 1191 Wednesday, December 31, 1969 17:00
Table 324. CORROSION
RESISTANCE OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 4 OF 10)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Corrosion Resistance (b)
C23000 Red brass, 85% C24000 Low brass, 80% C26000 Cartridge brass, 70% C26800, C27000 Yellow brass
85.0 Cu, 15.0 Zn 80.0 Cu, 20.0 Zn 70.0 Cu, 30.0 Zn 65.0 Cu, 35.0 Zn
F, W, T, P F, W F, R, W, T F, R, W
G-E F-E F-E F-E
C28000 Muntz metal C31400 Leaded commercial bronze C31600 Leaded commercial bronze, nickel-bearing C33000 Low-leaded brass tube
60.0 Cu, 40.0 Zn 89.0 Cu, 1.75 Pb, 9.25 Zn 89.0 Cu, 1.9 Pb, 1.0 Ni, 8.1 Zn 66.0 Cu, 0.5 Pb, 33.5 Zn
F, R, T F, R F, R T
F-E G-E G-E F-E
C33200 High-leaded brass tube C33500 Low-leaded brass C34000 Medium-leaded brass C34200 High-leaded brass
66.0 Cu, 1.6 Pb, 32.4 Zn 65.0 Cu, 0.5 Pb, 34.5 Zn 65.0 Cu, 1.0 Pb, 34.0 Zn 64.5 Cu, 2.0 Pb, 33.5 Zn
T F F, R, W, S F, R
F-E F-E F-E F-E
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. (b) E, excellent; G, good; F, fair. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
11.5 Chemical L Page 1192 Wednesday, December 31, 1969 17:00
Table 324. CORROSION
RESISTANCE OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 5 OF 10)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Corrosion Resistance (b)
C34900 C35000 Medium-leaded brass C35300 High-leaded brass C35600 Extra-high-leaded brass
62.2 Cu, 0.35 Pb, 37.45 Zn 62.5 Cu, 1.1 Pb, 36.4 Zn 62.0 Cu, 1.8 Pb, 36.2 Zn 63.0 Cu, 2.5 Pb, 34.5 Zn
R, W F, R F, R F
F-E F-E F-E F-E
C36000 Free-cutting brass C36500 to C36800 Leaded Muntz metal C37000 Free-cutting Muntz metal C37700 Forging brass
61.5 Cu, 3.0 Pb, 35.5 Zn 60.0 Cu(k), 0.6 Pb, 39.4 Zn 60.0 Cu, 1.0 Pb, 39.0 Zn 59.0 Cu, 2.0 Pb, 39.0 Zn
F, R, S F T R, S
F-E F-E F-E F-E
C38500 Architectural bronze C40500 C40800 C41100
57.0 Cu, 3.0 Pb, 40.0 Zn 95 Cu, 1 Sn, 4 Zn 95 Cu, 2 Sn, 3 Zn 91 Cu, 0.5 Sn, 8.5 Zn
R, S F F F, W
F-E G-E G-E G-E
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. (b) E, excellent; G, good; F, fair. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
11.5 Chemical L Page 1193 Wednesday, December 31, 1969 17:00
Table 324. CORROSION
RESISTANCE OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 6 OF 10)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Corrosion Resistance (b)
C41300 C41500 C42200 C42500
90.0 Cu, 1.0 Sn, 9.0 Zn 91 Cu, 1.8 Sn, 7.2 Zn 87.5 Cu, 1.1 Sn, 11.4 Zn 88.5 Cu, 2.0 Sn, 9.5 Zn
F, R, W F F F
G-E G-E G-E G-E
C43000 C43400 C43500 C44300, C44400, C44500 Inhibited admiralty
87.0 Cu, 2.2 Sn, 10.8 Zn 85.0 Cu, 0.7 Sn, 14.3 Zn 81.0 Cu, 0.9 Sn, 18.1 Zn 71.0 Cu, 28.0 Zn, 1.0 Sn
F F F, T F, W, T
G-E G-E G-E G-E
C46400 to C46700 Naval brass C48200 Naval brass, medium-leaded C48500 Leaded naval brass C50500 Phosphor bronze, 1.25% E
60.0 Cu, 39.25 Zn, 0.75 Sn 60.5 Cu, 0.7 Pb, 0.8 Sn, 38.0 Zn 60.0 Cu, 1.75 Pb, 37.5 Zn, 0.75 Sn 98.75 Cu, 1.25 Sn, trace P
F, R, T, S F, R, S F, R, S F, W
F-E F-E F-E G-E
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. (b) E, excellent; G, good; F, fair. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
11.5 Chemical L Page 1194 Wednesday, December 31, 1969 17:00
Table 324. CORROSION
RESISTANCE OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 7 OF 10)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Corrosion Resistance (b)
C51000 Phosphor bronze, 5% A C51100 C52100 Phosphor bronze, 8% C C52400 Phosphor bronze, 10% D
95.0 Cu, 5.0 Sn, trace P 95.6 Cu, 4.2 Sn, 0.2 P 92.0 Cu, 8.0 Sn, trace P 90.0 Cu, 10.0 Sn, trace P
F, R, W, T F F, R, W F, R, W
G-E G-E G-E G-E
C54400 Free-cutting phosphor bronze C60800 Aluminum bronze, 5% C61000 C61300
88.0 Cu, 4.0 Pb, 4.0 Zn, 4.0 Sn 95.0 Cu, 5.0 Al 92.0 Cu, 8.0 Al 92.65 Cu, 0.35 Sn, 7.0 Al
F, R T R, W F, R, T, P, S
G-E G-E G-E G-E
C61400 Aluminum bronze, D C61500 C61800 C61900
91.0 Cu, 7.0 Al, 2.0 Fe 90.0 Cu, 8.0 Al, 2.0 Ni 89.0 Cu, 1.0 Fe, 10.0 Al 86.5 Cu, 4.0 Fe, 9.5 Al
F, R, W, T, P, S F R F
G-E G-E G-E G-E
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. (b) E, excellent; G, good; F, fair. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
11.5 Chemical L Page 1195 Wednesday, December 31, 1969 17:00
Table 324. CORROSION
RESISTANCE OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 8 OF 10)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Corrosion Resistance (b)
C62300 C62400 C62500 C63000
87.0 Cu, 10.0 Al, 3.0 Fe 86.0 Cu, 3.0 Fe, 11.0 Al 82.7 Cu, 4.3 Fe, 13.0 Al 82.0 Cu, 3.0 Fe, 10.0 Al, 5.0 Ni
F, R F, R F, R F, R
G-E G-E G-E G-E
C63200 C63600 C63800 C64200
82.0 Cu, 4.0 Fe, 9.0 Al, 5.0 Ni 95.5 Cu, 3.5 Al, 1.0 Si 99.5 Cu, 2.8 Al, 1.8 Si, 0.40 Co 91.2 Cu, 7.0 Al
F, R R, W F F, R
G-E G-E G-E G-E
C65100 Low-silicon bronze, B C65500 High-silicon bronze, A C66700 Manganese brass C67400
98.5 Cu, 1.5 Si 97.0 Cu, 3.0 Si 70.0 Cu, 28.8 Zn, 1.2 Mn 58.5 Cu, 36.5 Zn, 1.2 Al, 2.8 Mn, 1.0 Sn
R, W, T F, R, W, T F, W F, R
G-E G-E G-E F-E
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. (b) E, excellent; G, good; F, fair. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
11.5 Chemical L Page 1196 Wednesday, December 31, 1969 17:00
Table 324. CORROSION
RESISTANCE OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 9 OF 10)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Corrosion Resistance (b)
C67500 Manganese bronze, A C68700 Aluninum brass, arsenical C68800 C69000
58.5 Cu, 1.4 Fe, 39.0 Zn, 1.0 Sn, 0.1 Mn 77.5 Cu, 20.5 Zn, 2.0 Al, 0.1 As 73.5 Cu, 22.7 Zn, 3.4 Al, 0.40 Co 73.3 Cu, 3.4 Al, 0.6 Ni, 22.7 Zn
R, S T F F
F-E G-E G-E G-E
C69400 Silicon red brass C70400 C70600 Copper nickel, 10% C71000 Copper nickel, 20%
81.5 Cu, 14.5 Zn, 4.0 Si 92.4 Cu, 1.5 Fe, 5.5 Ni, 0.6 Mn 88.7 Cu, 1.3 Fe, 10.0 Ni 79.00 Cu, 21.0 Ni
R F, T F, T F, W, T
G-E G-E E E
C71500 Copper nickel, 30% C71700 C72500 C73500
70.0 Cu, 30.0 Ni 67.8 Cu, 0.7 Fe, 31.0 Ni, 0.5 Be 88.20 Cu, 9.5 Ni, 2.3 Sn 72.0 Cu, 18.0 Ni , 10.0 Zn
F, R, T F, R, W F, R, W, T F, R, W, T
E G-E E E
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. (b) E, excellent; G, good; F, fair. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
11.5 Chemical L Page 1197 Wednesday, December 31, 1969 17:00
Table 324. CORROSION
RESISTANCE OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 10 OF 10)
UNS Number and Name
Nominal Composition (%)
Commercial Forms(a)
Corrosion Resistance (b)
C74500 Nickel silver, 65-10 C75200 Nickel silver, 65-18 C75400 Nickel silver, 65-15 C75700 Nickel silver, 65-12
65.0 Cu, 25.0 Zn, 10.0 Ni 65.0 Cu, 17.0 Zn, 18.0 Ni 65.0 Cu, 20.0 Zn, 15.0 Ni 65.0 Cu, 23.0 Zn, 12.0 Ni
F, W F, R, W F F, W
E E E E
C76200 C77000 Nickel silver, 55-18 C72200 C78200 Leaded nickel silver, 65-8-2
59.0 Cu, 29.0 Zn, 12.0 Ni 55.0 Cu, 27.0 Zn, 18.0 Ni 82.0 Cu, 16.0 Ni, 0.5 Cr, 0.8 Fe, 0.5 Mn 65.0 Cu, 2.0 Pb, 25.0 Zn, 8.0 Ni
F, T F, R, W F, T F
G-E E G-E E
(a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. (b) E, excellent; G, good; F, fair. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993).
©2001 CRC Press LLC
11.6 Chemical Page 1198 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 325. CORROSION
RATES OF 70-30 BRASS AT 70˚F * (SHEET 1 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride
<0.02 >0.05 >0.05 —
<0.002 >0.05 >0.05 >0.05
Acetone Acetylene Acrolein Acrylonitril
<0.002 — <0.02 —
<0.002 <0.002 <0.02 <0.002
Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl) Alcohol (Benzyl)
<0.002 <0.02 — —
<0.002 <0.02 <0.02 <0.02
Alcohol (Butyl) Alcohol (Isopropyl) Allylamine Allyl Chloride
— — — —
<0.002 <0.02 >0.05 <0.02
Allyl Sulfide Aluminum Acetate Aluminum Chloride Aluminum Fluoride
— — >0.05 >0.05
>0.05 <0.02 >0.05 —
Aluminum Fluosilicate Aluminum Hydroxide Aluminum Potassium Sulfate Aluminum Sulfate
— <0.02 >0.05 <0.02
<0.02 — >0.05 <0.05
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1198
CRC Handbook of Materials Science & Engineering
11.6 Chemical Page 1199 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 325. CORROSION
RATES OF 70-30 BRASS AT 70˚F * (SHEET 2 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Ammonia Ammonium Acetate Ammonium Bicarbonate Ammonium Bromide
>0.05 — >0.05 >0.05
<0.002 >0.05 — —
Ammonium Carbonate Ammonium Chloride Ammonium Citrate Ammonium Nitrate
>0.05 >0.05 >0.05 >0.05
— >0.05 — >0.05
Ammonium Sulfate Ammonium Sulfite Ammonium Thiocyanate Amyl Acetate
>0.05 >0.05 >0.05 <0.02
<0.02 >0.05 — <0.02
Amyl Chloride Aniline Aniline Hydrochloride Anthracine
— — >0.05 —
<0.02 >0.05 — <0.02
Antimony Trichloride Barium Carbonate Barium Chloride Barium Hydroxide
>0.05 <0.02 >0.05 >0.05
— <0.02 <0.02 —
Barium Nitrate Barium Peroxide Benzaldehyde Benzene
>0.05 >0.05 >0.05 <0.02
— — <0.02 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1199
11.6 Chemical Page 1200 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 325. CORROSION
RATES OF 70-30 BRASS AT 70˚F * (SHEET 3 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Benzoic Acid Boric Acid Bromic Acid Bromine (Dry)
<0.02 <0.02 >0.05 —
<0.02 <0.02 >0.05 <0.02
Bromine (Wet) Butyric Acid Cadmium Chloride Cadmium Sulfate
— <0.05 >0.05 <0.02
>0.05 — — —
Calcium Acetate Calcium Bicarbonate Calcium Bromide Calcium Chlorate
<0.02 — <0.02 >0.05
<0.02 <0.02 <0.02 <0.02
Calcium Chloride Calcium Hydroxide Calcium Hypochlorite Carbon Dioxide
<0.02 <0.02 <0.02 —
<0.02 — — <0.002
Carbon Monoxide Carbon Tetrachloride Carbon Acid (Air Free) Chloroacetic Acid
— — — >0.05
<0.002 <0.05 >0.05 >0.05
Chlorine Gas Chloroform (Dry) Chromic Acid Chromic Hydroxide
— — >0.05 —
>0.05 <0.02 >0.05 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1200
CRC Handbook of Materials Science & Engineering
11.6 Chemical Page 1201 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 325. CORROSION
RATES OF 70-30 BRASS AT 70˚F * (SHEET 4 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Chromic Sulfates Citric Acid Copper Nitrate Copper Sulfate
<0.02 >0.05 >0.05 >0.05
— <0.02 >0.05 >0.05
Diethylene Glycol Ethyl Chloride Ethylene Glycol Ethylene Oxide
— — — —
<0.002 <0.002 <0.02 >0.05
Fatty Acids Ferric Chloride Ferric Nitrate Ferrous Chloride
— >0.05 >0.05 >0.05
<0.05 <0.02 — —
Ferrous Sulfate Fluorine Formaldehyde Formic Acid
>0.05 — <0.002 <0.05
<0.05 <0.02 <0.02 <0.02
Furfural Hydrazine Hydrobromic Acid Hydrochloric Acid (Areated)
<0.02 >0.05 >0.05 >0.05
<0.02 — >0.05 —
Hydrochloric Acid (Air Free) Hydrocyanic Acid Hydrofluoric Acid (Areated) Hydrofluoric Acid (Air Free)
>0.05 >0.05 >0.05 >0.05
— <0.02 — <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1201
11.6 Chemical Page 1202 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 325. CORROSION
RATES OF 70-30 BRASS AT 70˚F * (SHEET 5 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Hydrogen Chloride Hydrogen Fluoride Hydrogen Iodide Hydrogen Peroxide
— — — >0.05
<0.02 <0.02 >0.05 >0.05
Hydrogen Sulfide Lactic Acid Lead Acetate Lead Chromate
<0.02 <0.05 —
<0.02 <0.05 <0.05 <0.02
Lead Sulfate Lithium Chloride Lithium Hydroxide Magnesium Chloride
— <0.02 (30%) >0.05 <0.02
<0.02 — — —
Magnesium Hydroxide Magnesium Sulfate Maleic Acid Mercuric Chloride
<0.02 <0.02 <0.02 >0.05
<0.02 <0.02 — >0.05
Mercurous Nitrate Mercury Methallylamine Methanol
>0.05 — — <0.02
>0.05 >0.05 >0.05 <0.02
Methyl Ethyl Ketone Methyl Isobutyl Ketone Methylamine Methylene Chloride
<0.02 <0.02 — —
<0.002 <0.02 >0.05 <0.002
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1202
CRC Handbook of Materials Science & Engineering
11.6 Chemical Page 1203 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 325. CORROSION
RATES OF 70-30 BRASS AT 70˚F * (SHEET 6 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Monochloroacetic Acid Monorthanolamine Monoethalamine Monoethylamine
>0.05 — — —
>0.05 >0.05 >0.05 >0.05
Monosodium Phosphate Nickel Chloride Nickel Nitrate Nickel Sulfate
<0.02 >0.05 <0.05 <0.05
— — — <0.02
Nitric Acid Nitric Acid (Red Fuming) Nitric + Hydrochloric Acid Nitric + Sulfuric Acid
>0.05 — — >0.05
>0.05 >0.05 >0.05 >0.05
Nitrobenzene Nitrocelluolose Nitroglycerine Nitrotolune
— — — —
<0.02 <0.02 <0.02 <0.02
Nitrous Acid Oleic Acid Oxalic Acid Phenol
— >0.05 <0.02 —
>0.05 <0.02 <0.05 <0.002
Phosphoric Acid (Areated) Phosphoric Acid (Air Free) Picric Acid Potassium Bicarbonate
>0.05 <0.02 >0.05 <0.02
>0.05 >0.05 >0.05 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1203
11.6 Chemical Page 1204 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 325. CORROSION
RATES OF 70-30 BRASS AT 70˚F * (SHEET 7 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Potassium Bromide Potassium Carbonate Potassium Chlorate Potassium Chromate
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.05 <0.02
Potassium Cyanide Potassium Dichromate Potassium Ferricyanide Potassium Ferrocyanide
>0.05 <0.02 <0.02 <0.02
>0.05 — — —
Potassium Hydroxide Potassium Hypochlorite Potassium Nitrate Potassium Nitrite
<0.02 >0.05 <0.02 <0.02
— — <0.02 <0.02
Potassium Permanganate Potassium Silicate Propionic Acid Pyridine
<0.02 <0.02 <0.02 <0.02
— <0.02 — <0.02
Quinine Sulfate Silicon Tetrachloride (Dry) Silicon Tetrachloride (Wet) Silver Bromide
<0.02 — — >0.05
<0.02 <0.002 >0.05 —
Silver Chloride Silver Nitrate Sodium Acetate Sodium Bicarbonate
>0.05 >0.05 <0.02 <0.02
— — — —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1204
CRC Handbook of Materials Science & Engineering
11.6 Chemical Page 1205 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 325. CORROSION
RATES OF 70-30 BRASS AT 70˚F * (SHEET 8 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Sodium Bisulfate Sodium Bromide Sodium Carbonate Sodium Chloride
>0.05 <0.05 >0.05 <0.05
<0.05 — — —
Sodium Chromate Sodium Hydroxide Sodium Hypochlorite Sodium Metasilicate
<0.02 >0.05 >0.05 <0.02
<0.02 — >0.05 <0.02
Sodium Nitrate Sodium Nitrite Sodium Phosphate Sodium Silicate
<0.05 <0.02 <0.02 <0.02
<0.05 — <0.02 <0.02
Sodium Sulfate Sodium Sulfide Sodium Sulfite Stannic Chloride
<0.02 <0.05 >0.05 >0.05
>0.05 >0.05 >0.05 —
Stannous Chloride Strontium Nitrate Succinic Acid Sulfur Dioxide
>0.05 <0.02 <0.02 >0.05
— <0.02 <0.02 <0.05
Sulfur Trioxide Sulfuric Acid (Areated) Sulfuric Acid (Air Free) Sulfuric Acid (Fuming)
— >0.05 <0.05 —
<0.02 >0.05 — >0.05
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1205
11.6 Chemical Page 1206 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 325. CORROSION
RATES OF 70-30 BRASS AT 70˚F * (SHEET 9 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Sulfurous Acid Tannic Acid Tartaric Acid Tetraphosphoric Acid
<0.02 — <0.05 >0.05
>0.05 <0.05 — <0.05
Trichloroacetic Acid Trichloroethylene Urea
>0.05 — <0.02
>0.05 <0.02 —
Zinc Chloride Zinc Sulfate
>0.05 <0.05
— <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. *
<0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor).
©2001 CRC Press LLC
1206
CRC Handbook of Materials Science & Engineering
11.6 Chemical Page 1207 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 326. CORROSION
RATES OF COPPER , SN-BRAZE, AL-BRAZE AT 70˚F * (SHEET 1 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride
<0.002 >0.05 <0.002 —
<0.002 <0.02 <0.002 <0.02
Acetone Acetylene Acrolein Acrylonitril
<0.002 — <0.02 —
<0.002 <0.002 <0.02 <0.002
Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl) Alcohol (Amyl)
<0.002 <0.02 — —
<0.002 <0.02 <0.02 <0.002
Alcohol (Benzyl) Alcohol (Butyl) Alcohol (Cetyl) Alcohol (Isopropyl)
— — — —
<0.02 <0.002 <0.02 <0.02
Allylamine Allyl Chloride Allyl Sulfide Aluminum Acetate
— — — <0.02
>0.05 <0.02 >0.05 <0.02
Aluminum Chloride Aluminum Fluoride Aluminum Fluosilicate Aluminum Formate
<0.02 <0.02 — —
<0.02 — <0.02 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1207
11.6 Chemical Page 1208 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 326. CORROSION
RATES OF COPPER , SN-BRAZE, AL-BRAZE AT 70˚F * (SHEET 2 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Aluminum Hydroxide Aluminum Potassium Sulfate Aluminum Sulfate Ammonia
<0.02 <0.02 <0.02 >0.05
— <0.02 <0.002 <0.002
Ammonium Acetate Ammonium Bicarbonate Ammonium Bromide Ammonium Carbonate
— >0.05 >0.05 >0.05
>0.05 — — —
Ammonium Chloride Ammonium Citrate Ammonium Nitrate Ammonium Sulfate
>0.05 >0.05 >0.05 <0.05
>0.05 — >0.05 <0.02
Ammonium Sulfite Ammonium Thiocyanate Amyl Acetate Amyl Chloride
>0.05 >0.05 <0.02 <0.02
>0.05 — <0.02 <0.002
Aniline Aniline Hydrochloride Anthracine Antimony Trichloride
— >0.05 — >0.05
>0.05 — <0.02 <0.05
Barium Carbonate Barium Chloride Barium Hydroxide Barium Nitrate
<0.02 <0.02 >0.05 >0.05
<0.02 <0.02 — —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1208
CRC Handbook of Materials Science & Engineering
11.6 Chemical Page 1209 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 326. CORROSION
RATES OF COPPER , SN-BRAZE, AL-BRAZE AT 70˚F * (SHEET 3 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Barium Peroxide Benzaldehyde Benzene Benzoic Acid
>0.05 >0.05 <0.002 <0.02
— <0.02 <0.02 <0.02
Boric Acid Bromic Acid Bromine (Dry) Bromine (Wet)
<0.02 >0.05 — —
<0.02 >0.05 <0.02 >0.05
Butyric Acid Cadmium Chloride Cadmium Sulfate Calcium Acetate
<0.05 <0.02 <0.02 <0.02
<0.02 — — <0.02
Calcium Bicarbonate Calcium Bromide Calcium Chlorate Calcium Chloride
— <0.02 <0.02 <0.002
<0.02 <0.02 — <0.02
Calcium Hydroxide Calcium Hypochlorite Carbon Dioxide Carbon Monoxide
<0.02 <0.02 — —
— — <0.002 <0.002
Carbon Tetrachloride Carbon Acid (Air Free) Chloroacetic Acid Chlorine Gas
— <0.02 >0.05 —
<0.002 <0.02 >0.05 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1209
11.6 Chemical Page 1210 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 326. CORROSION
RATES OF COPPER , SN-BRAZE, AL-BRAZE AT 70˚F * (SHEET 4 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Chloroform (Dry) Chromic Acid Chromic Hydroxide Chromic Sulfates
— >0.05 — <0.02
<0.002 — <0.02 <0.05
Citric Acid Copper Nitrate Copper Sulfate Diethylene Glycol
<0.05 >0.05 >0.05 —
<0.02 >0.05 >0.05 <0.002
Ethyl Chloride Ethylene Glycol Ethylene Oxide Fatty Acids
<0.02 <0.02 — —
<0.002 <0.02 >0.05 <0.05
Ferric Chloride Ferric Nitrate Ferrous Chloride Ferrous Sulfate
>0.05 >0.05 <0.02 <0.02
<0.02 — <0.02 <0.02
Fluorine Formaldehyde Formic Acid Furfural
— <0.002 <0.02 <0.02
<0.002 <0.002 <0.02 <0.02
Hydrazine Hydrobromic Acid Hydrochloric Acid (Areated) Hydrochloric Acid (Air Free)
>0.05 >0.05 >0.05 >0.05
— <0.02 — —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1210
CRC Handbook of Materials Science & Engineering
11.6 Chemical Page 1211 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 326. CORROSION
RATES OF COPPER , SN-BRAZE, AL-BRAZE AT 70˚F * (SHEET 5 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Hydrocyanic Acid Hydrofluoric Acid (Areated) Hydrofluoric Acid (Air Free) Hydrogen Chloride
>0.05 <0.02 <0.02 —
<0.02 <0.02 <0.02 <0.02
Hydrogen Fluoride Hydrogen Iodide Hydrogen Peroxide Hydrogen Sulfide
— — >0.05 <0.02
<0.02 <0.02 >0.05 <0.02
Lactic Acid Lead Acetate Lead Chromate Lead Sulfate
<0.002 <0.05 — —
<0.02 — <0.02 <0.02
Lithium Chloride Lithium Hydroxide Magnesium Chloride Magnesium Hydroxide
<0.02 (30%) >0.05 <0.02 <0.02
— — <0.02 <0.02
Magnesium Sulfate Maleic Acid Mercuric Chloride Mercurous Nitrate
<0.002 <0.02 >0.05 >0.05
<0.02 <0.02 >0.05 >0.05
Mercury Methallylamine Methanol Methyl Ethyl Ketone
— — <0.02 <0.02
>0.05 >0.05 <0.02 <0.002
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1211
11.6 Chemical Page 1212 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 326. CORROSION
RATES OF COPPER , SN-BRAZE, AL-BRAZE AT 70˚F * (SHEET 6 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Methyl Isobutyl Ketone Methylamine Methylene Chloride Monochloroacetic Acid
<0.02 — <0.02 >0.05
<0.02 >0.05 <0.002 >0.05
Monorthanolamine Monoethalamine Monoethylamine Monosodium Phosphate
— — — <0.02
>0.05 >0.05 >0.05 —
Nickel Chloride Nickel Nitrate Nickel Sulfate Nitric Acid
>0.05 <0.05 <0.02 >0.05
— — <0.02 >0.05
Nitric Acid (Red Fuming) Nitric + Hydrochloric Acid Nitric + Hydrofluoric Acid Nitric + Sulfuric Acid
— — — >0.05
>0.05 >0.05 >0.05 >0.05
Nitrobenzene Nitroglycerine Nitrotolune Nitrous Acid
— — — —
<0.02 <0.02 <0.02 >0.05
Oleic Acid Oxalic Acid Phenol Phosphoric Acid (Areated)
— <0.02 — >0.05
<0.002 <0.05 <0.002 >0.05
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1212
CRC Handbook of Materials Science & Engineering
11.6 Chemical Page 1213 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 326. CORROSION
RATES OF COPPER , SN-BRAZE, AL-BRAZE AT 70˚F * (SHEET 7 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Phosphoric Acid (Air Free) Picric Acid Potassium Bicarbonate Potassium Bromide
<0.02 >0.05 <0.02 <0.02
— >0.05 <0.02 <0.02
Potassium Carbonate Potassium Chlorate Potassium Chromate Potassium Cyanide
<0.02 <0.02 <0.02 >0.05
<0.02 <0.05 — >0.05
Potassium Dichromate Potassium Ferricyanide Potassium Ferrocyanide Potassium Hydroxide
<0.02 <0.02 <0.02 <0.02
— <0.02 — —
Potassium Hypochlorite Potassium Iodide Potassium Nitrate Potassium Nitrite
<0.02 <0.02 <0.02 <0.02
— <0.02 <0.002 <0.02
Potassium Permanganate Potassium Silicate Propionic Acid Pyridine
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
Quinine Sulfate Salicylic Acid Silicon Tetrachloride (Dry) Silicon Tetrachloride (Wet)
<0.02 — — —
<0.02 <0.02 <0.002 >0.05
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1213
11.6 Chemical Page 1214 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 326. CORROSION
RATES OF COPPER , SN-BRAZE, AL-BRAZE AT 70˚F * (SHEET 8 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Silver Bromide Silver Chloride Silver Nitrate Sodium Acetate
>0.05 >0.05 >0.05 <0.02
— <0.02 — <0.02
Sodium Bicarbonate Sodium Bisulfate Sodium Bromide Sodium Carbonate
<0.02 — <0.02 <0.02
<0.02 <0.02 <0.05 —
Sodium Chloride Sodium Chromate Sodium Hydroxide Sodium Hypochlorite
<0.02 <0.02 <0.002 >0.05
— <0.02 — —
Sodium Metasilicate Sodium Nitrate Sodium Nitrite Sodium Phosphate
<0.02 <0.02 <0.02 <0.02
<0.02 <0.05 — <0.02
Sodium Silicate Sodium Sulfate Sodium Sulfide Sodium Sulfite
<0.02 <0.02 >0.05 <0.02
<0.02 <0.02 >0.05 <0.05
Stannic Chloride Stannous Chloride Strontium Nitrate Succinic Acid
>0.05 >0.05 <0.02 <0.02
— — <0.02 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1214
CRC Handbook of Materials Science & Engineering
11.6 Chemical Page 1215 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 326. CORROSION
RATES OF COPPER , SN-BRAZE, AL-BRAZE AT 70˚F * (SHEET 9 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Sulfur Dioxide Sulfur Trioxide Sulfuric Acid (Areated) Sulfuric Acid (Air Free)
<0.02 — >0.05 <0.02
<0.02 <0.02 >0.05 —
Sulfuric Acid (Fuming) Sulfurous Acid Tannic Acid Tartaric Acid
— <0.02 <0.02 <0.02
>0.05 <0.05 <0.02 <0.02
Tetraphosphoric Acid Trichloroacetic Acid Trichloroethylene
— >0.05 —
<0.05 >0.05 <0.002
Urea Zinc Chloride Zinc Sulfate
<0.02 <0.02 <0.02
— — <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. *
<0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor).
©2001 CRC Press LLC Shackelford & Alexander
1215
11.6 Chemical Page 1216 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 327. CORROSION
RATES OF SILICON BRONZE AT 70˚F * (SHEET 1 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride
<0.02 >0.05 >0.05 —
<0.002 >0.05 <0.02 <0.02
Acetone Acetylene Acrolein Acrylonitril
<0.002 — <0.02 —
<0.002 <0.002 <0.02 <0.002
Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl) Alcohol (Amyl)
<0.002 <0.02 — —
<0.002 <0.02 <0.02 <0.02
Alcohol (Benzyl) Alcohol (Butyl) Alcohol (Isopropyl) Allylamine
— — — —
<0.02 <0.002 <0.02 >0.05
Allyl Chloride Allyl Sulfide Aluminum Acetate Aluminum Chloride
— — <0.02 <0.02
<0.02 >0.05 <0.02 <0.02
Aluminum Fluoride Aluminum Fluosilicate Aluminum Formate Aluminum Hydroxide
<0.02 — <0.02 <0.02
— <0.02 <0.02 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1216
CRC Handbook of Materials Science & Engineering
11.6 Chemical Page 1217 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 327. CORROSION
RATES OF SILICON BRONZE AT 70˚F * (SHEET 2 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Aluminum Potassium Sulfate Aluminum Sulfate Ammonia Ammonium Acetate
<0.02 <0.02 >0.05 —
<0.02 <0.02 <0.002 >0.05
Ammonium Bicarbonate Ammonium Bromide Ammonium Carbonate Ammonium Chloride
>0.05 >0.05 >0.05 >0.05
— — <0.02 >0.05
Ammonium Citrate Ammonium Nitrate Ammonium Sulfate Ammonium Sulfite
>0.05 >0.05 <0.02 >0.05
— >0.05 <0.02 >0.05
Ammonium Thiocyanate Amyl Acetate Amyl Chloride Aniline Hydrochloride
>0.05 <0.02 — >0.05
— <0.02 <0.002 —
Anthracine Antimony Trichloride Barium Carbonate Barium Chloride
— >0.05 <0.02 <0.02
<0.02 — <0.02 <0.02
Barium Hydroxide Barium Nitrate Barium Peroxide Benzaldehyde
>0.05 >0.05 >0.05 >0.05
— — — <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1217
11.6 Chemical Page 1218 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 327. CORROSION
RATES OF SILICON BRONZE AT 70˚F * (SHEET 3 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Benzene Benzoic Acid Boric Acid Bromic Acid
<0.02 <0.02 <0.02 >0.05
<0.02 <0.02 <0.02 >0.05
Bromine (Dry) Bromine (Wet) Butyric Acid Cadmium Chloride
— — <0.02 <0.02
<0.02 >0.05 <0.02 —
Cadmium Sulfate Calcium Acetate Calcium Bicarbonate Calcium Bromide
<0.02 <0.02 — <0.02
— <0.02 <0.02 <0.02
Calcium Chlorate Calcium Chloride Calcium Hydroxide Calcium Hypochlorite
<0.02 <0.02 <0.02 <0.02
— <0.02 — —
Carbon Dioxide Carbon Monoxide Carbon Tetrachloride Carbon Acid (Air Free)
— — — <0.02
<0.002 <0.002 <0.002 <0.02
Chloroacetic Acid Chlorine Gas Chloroform (Dry) Chromic Acid
— — — >0.05
<0.05 <0.02 <0.02 —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1218
CRC Handbook of Materials Science & Engineering
11.6 Chemical Page 1219 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 327. CORROSION
RATES OF SILICON BRONZE AT 70˚F * (SHEET 4 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Chromic Hydroxide Chromic Sulfates Citric Acid Copper Nitrate
— <0.02 <0.05 >0.05
<0.02 — <0.02 <0.05
Copper Sulfate Diethylene Glycol Ethyl Chloride Ethylene Glycol
<0.02 — — —
>0.05 <0.002 <0.002 <0.02
Ethylene Oxide Fatty Acids Ferric Chloride Ferric Nitrate
— — >0.05 >0.05
>0.05 <0.05 <0.02 —
Ferrous Chloride Ferrous Sulfate Fluorine Formaldehyde
<0.05 <0.02 — <0.002
<0.02 <0.02 >0.05 <0.02
Formic Acid Furfural Hydrazine Hydrobromic Acid
<0.02 <0.02 >0.05 <0.02
<0.02 <0.02 — <0.02
Hydrochloric Acid (Areated) Hydrochloric Acid (Air Free) Hydrocyanic Acid Hydrofluoric Acid (Areated)
>0.05 <0.02 >0.05 >0.05
— — <0.02 —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC Shackelford & Alexander
1219
11.6 Chemical Page 1220 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 327. CORROSION
RATES OF SILICON BRONZE AT 70˚F * (SHEET 5 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Hydrofluoric Acid (Air Free) Hydrogen Chloride Hydrogen Fluoride Hydrogen Iodide
<0.02 — — —
<0.02 <0.02 <0.02 <0.02
Hydrogen Peroxide Hydrogen Sulfide Lactic Acid Lead Acetate
>0.05 <0.02 <0.05 —
>0.05 <0.02 <0.02 <0.02
Lead Chromate Lead Sulfate Lithium Chloride Lithium Hydroxide
— — <0.02 (30%) >0.05
<0.02 <0.02 — —
Magnesium Chloride Magnesium Hydroxide Magnesium Sulfate Maleic Acid
<0.02 <0.02 <0.002 <0.02
<0.02 <0.02 <0.02 —
Mercuric Chloride Mercurous Nitrate Mercury Methallylamine
>0.05 >0.05 — —
>0.05 — >0.05 >0.05
Methanol Methyl Ethyl Ketone Methyl Isobutyl Ketone Methylamine
<0.02 <0.02 <0.02 —
<0.02 <0.002 <0.02 >0.05
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1220
CRC Handbook of Materials Science & Engineering
11.6 Chemical Page 1221 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 327. CORROSION
RATES OF SILICON BRONZE AT 70˚F * (SHEET 6 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Methylene Chloride Monochloroacetic Acid Monorthanolamine Monoethalamine
<0.02 >0.05 — —
<0.02 >0.05 >0.05 >0.05
Monoethylamine Monosodium Phosphate Nickel Chloride Nickel Nitrate
— <0.02 >0.05 <0.05
>0.05 — <0.02 —
Nickel Sulfate Nitric Acid Nitric Acid (Red Fuming) Nitric + Hydrochloric Acid
<0.02 >0.05 — —
<0.02 >0.05 >0.05 >0.05
Nitric + Sulfuric Acid Nitrobenzene Nitrocelluolose Nitroglycerine
>0.05 — — —
>0.05 <0.02 <0.02 <0.02
Nitrotolune Nitrous Acid Oleic Acid Oxalic Acid
— — — <0.02
<0.02 >0.05 <0.02 <0.02
Phenol Phosphoric Acid (Areated) Phosphoric Acid (Air Free) Picric Acid
— >0.05 <0.02 >0.05
<0.002 >0.05 — >0.05
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1221
11.6 Chemical Page 1222 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 327. CORROSION
RATES OF SILICON BRONZE AT 70˚F * (SHEET 7 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Potassium Bicarbonate Potassium Bromide Potassium Carbonate Potassium Chlorate
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.05
Potassium Chromate Potassium Cyanide Potassium Dichromate Potassium Ferricyanide
<0.02 >0.05 <0.02 <0.02
<0.02 >0.05 — —
Potassium Ferrocyanide Potassium Hydroxide Potassium Hypochlorite Potassium Iodide
<0.02 <0.02 >0.05 <0.02
— >0.05 — <0.02
Potassium Nitrate Potassium Nitrite Potassium Permanganate Potassium Silicate
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
Propionic Acid Pyridine Quinine Sulfate Salicylic Acid
<0.02 <0.02 <0.02 —
— <0.02 <0.02 <0.02
Silicon Tetrachloride (Dry) Silicon Tetrachloride (Wet) Silver Bromide Silver Chloride
— — >0.05 >0.05
<0.002 >0.05 — —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1222
CRC Handbook of Materials Science & Engineering
11.6 Chemical Page 1223 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 327. CORROSION
RATES OF SILICON BRONZE AT 70˚F * (SHEET 8 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Silver Nitrate Sodium Acetate Sodium Bicarbonate Sodium Bisulfate
>0.05 <0.02 <0.02 <0.02
— — — <0.02
Sodium Bromide Sodium Carbonate Sodium Chloride Sodium Chromate
<0.02 <0.02 <0.02 <0.02
— <0.02 — <0.02
Sodium Hydroxide Sodium Hypochlorite Sodium Metasilicate Sodium Nitrate
<0.02 <0.02 <0.02 <0.02
— >0.05 <0.02 <0.02
Sodium Nitrite Sodium Phosphate Sodium Silicate Sodium Sulfate
<0.02 <0.02 <0.02 <0.02
— <0.02 <0.02 <0.02
Sodium Sulfide Sodium Sulfite Stannic Chloride Stannous Chloride
>0.05 <0.02 >0.05 <0.02
>0.05 <0.02 >0.05 <0.02
Strontium Nitrate Succinic Acid Sulfur Dioxide Sulfur Trioxide
<0.02 <0.02 — —
<0.02 <0.02 <0.02 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1223
11.6 Chemical Page 1224 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 327. CORROSION
RATES OF SILICON BRONZE AT 70˚F * (SHEET 9 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Sulfuric Acid (Areated) Sulfuric Acid (Air Free) Sulfuric Acid (Fuming) Sulfurous Acid
>0.05 <0.02 — <0.02
>0.05 — >0.05 <0.02
Tannic Acid Tartaric Acid Tetraphosphoric Acid Trichloroacetic Acid
<0.02 <0.05 >0.05 —
<0.02 <0.02 <0.05 <0.05
Trichloroethylene Urea Zinc Chloride Zinc Sulfate
— <0.02 <0.02 <0.02
<0.02 — >0.05 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. *
<0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor).
©2001 CRC Press LLC
1224
CRC Handbook of Materials Science & Engineering
11.6 Chemical Page 1225 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 328. CORROSION
RATES OF HASTELLOY AT 70˚F * (SHEET 1 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride
— <0.002 <0.002 <0.002
<0.002 <0.002 <0.002 <0.002
Acetoacetic Acid Acetone Acetylene Acrolein
<0.02 <0.002 — —
<0.02 <0.002 <0.002 <0.02
Acrylonitril Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl)
— <0.002 <0.002 —
<0.002 <0.002 <0.002 <0.02
Alcohol (Benzyl) Alcohol (Isopropyl) Allyl Chloride Aluminum Acetate
<0.02 — — <0.02
<0.02 <0.02 <0.02 <0.02
Aluminum Chlorate Aluminum Chloride Aluminum Fluoride Aluminum Fluosilicate
<0.02 <0.002 <0.02 —
<0.02 <0.002 — <0.02
Aluminum Formate Aluminum Hydroxide Aluminum Nitrate Aluminum Potassium Sulfate
<0.02 <0.02 <0.02 <0.02
<0.02 — — —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1225
11.6 Chemical Page 1226 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 328. CORROSION
RATES OF HASTELLOY AT 70˚F * (SHEET 2 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Aluminum Sulfate Ammonia Ammonium Acetate Ammonium Bromide
<0.002 <0.002 <0.002 <0.02
<0.02 <0.002 <0.002 —
Ammonium Carbonate Ammonium Chloride Ammonium Citrate Ammonium Formate
>0.05 <0.002 <0.02 <0.002
— <0.02 — —
Ammonium Nitrate Ammonium Sulfate Amyl Acetate Amyl Chloride
<0.02 <0.02 <0.002 —
— <0.02 <0.002 <0.02
Aniline Aniline Hydrochloride Anthracine Antimony Trichloride
— <0.02 — >0.05
<0.02 <0.05 <0.02 <0.002
Barium Carbonate Barium Chloride Barium Hydroxide Barium Nitrate
— <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
Barium Oxide Benzaldehyde Benzene Benzoic Acid
— — <0.02 <0.002
<0.02 <0.02 <0.02 —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1226
CRC Handbook of Materials Science & Engineering
11.6 Chemical Page 1227 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 328. CORROSION
RATES OF HASTELLOY AT 70˚F * (SHEET 3 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Boric Acid Bromine (Dry) Bromine (Wet) Butyric Acid
<0.002 — — <0.002
<0.002 <0.002 <0.002 <0.002
Cadmium Chloride Cadmium Sulfate Calcium Acetate Calcium Bicarbonate
<0.02 <0.002 <0.02 —
— — <0.02 <0.02
Calcium Bromide Calcium Chlorate Calcium Chloride Calcium Hydroxide
<0.02 <0.02 <0.002 <0.002
<0.02 <0.02 <0.002 —
Calcium Hypochlorite Carbon Dioxide Carbon Monoxide Carbon Tetrachloride
<0.02 — — <0.002
<0.02 <0.002 <0.002 <0.002
Carbon Acid (Air Free) Chloroacetic Acid Chlorine Gas Chloroform (Dry)
<0.002 <0.02 — —
<0.002 <0.002 <0.02 <0.02
Chromic Acid Chromic Hydroxide Chromic Sulfates Citric Acid
<0.02 — <0.02 <0.002
<0.02 <0.02 <0.02 <0.002
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC Shackelford & Alexander
1227
11.6 Chemical Page 1228 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 328. CORROSION
RATES OF HASTELLOY AT 70˚F * (SHEET 4 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Copper Nitrate Copper Sulfate Diethylene Glycol Ethyl Chloride
<0.02 <0.002 — —
<0.02 <0.002 <0.02 <0.02
Ethylene Oxide Fatty Acids Ferric Chloride Ferric Nitrate
— — <0.002 <0.002
<0.002 <0.002 <0.02 —
Ferrous Chloride Ferrous Sulfate Fluorine Formaldehyde
<0.02 <0.02 — <0.02
<0.02 <0.02 <0.02 <0.02
Formic Acid Furfural Hydrazine Hydrobromic Acid
<0.002 <0.02 — <0.02
<0.002 <0.02 <0.002 —
Hydrochloric Acid (Areated) Hydrochloric Acid (Air Free) Hydrocyanic Acid Hydrofluoric Acid (Areated)
<0.02 <0.02 — <0.02
— — <0.02 <0.02
Hydrofluoric Acid (Air Free) Hydrogen Chloride Hydrogen Fluoride Hydrogen Iodide
<0.02 — — —
<0.05 <0.002 <0.02 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1228
CRC Handbook of Materials Science & Engineering
11.6 Chemical Page 1229 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 328. CORROSION
RATES OF HASTELLOY AT 70˚F * (SHEET 5 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Hydrogen Peroxide Hydrogen Sulfide Lactic Acid Lead Acetate
<0.002 — <0.02 <0.02
<0.002 <0.002 <0.02 >0.05
Lead Chromate Lead Nitrate Lead Sulfate Lithium Chloride
— — — <0.002 (30%)
<0.02 <0.02 <0.02 —
Lithium Hydroxide Magnesium Chloride Magnesium Hydroxide Magnesium Sulfate
<0.02 <0.002 <0.02 <0.002
<0.02 <0.002 — <0.002
Maleic Acid Maganous Chloride Mercuric Chloride Mercurous Nitrate
<0.002 <0.02 <0.02 <0.02
<0.02 — — <0.02
Mercury Methallylamine Methanol Methyl Ethyl Ketone
— — <0.002 <0.02
<0.02 <0.02 <0.02 <0.002
Methyl Isobutyl Ketone Methylene Chloride Monochloroacetic Acid Monosodium Phosphate
<0.02 <0.02 — <0.02
<0.002 — <0.002 —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1229
11.6 Chemical Page 1230 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 328. CORROSION
RATES OF HASTELLOY AT 70˚F * (SHEET 6 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Nickel Chloride Nickel Nitrate Nickel Sulfate Nitric Acid
<0.002 <0.02 <0.02 <0.002
<0.002 <0.02 <0.02 —
Nitric Acid (Red Fuming) Nitric + Hydrochloric Acid Nitric + Hydrofluoric Acid Nitrobenzene
— — — —
<0.02 >0.05 <0.05 <0.02
Oleic Acid Oxalic Acid Phenol Phosphoric Acid (Areated)
— <0.02 — <0.002
<0.02 <0.02 <0.002 <0.002
Phosphoric Acid (Air Free) Picric Acid Potassium Bicarbonate Potassium Bromide
<0.002 <0.02 <0.02 <0.002
<0.002 <0.02 — <0.02
Potassium Carbonate Potassium Chlorate Potassium Chromate Potassium Cyanide
<0.02 <0.02 <0.002 <0.02
<0.02 — — —
Potassium Dichromate Potassium Ferricyanide Potassium Ferrocyanide Potassium Hydroxide
<0.02 <0.02 <0.02 <0.02
— — — —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1230
CRC Handbook of Materials Science & Engineering
11.6 Chemical Page 1231 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 328. CORROSION
RATES OF HASTELLOY AT 70˚F * (SHEET 7 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Potassium Hypochlorite Potassium Iodide Potassium Nitrate Potassium Nitrite
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 — <0.02
Potassium Permanganate Potassium Silicate Pyridine Quinine Sulfate
<0.002 <0.02 <0.02 <0.02
<0.002 <0.02 <0.02 <0.02
Salicylic Acid Silicon Tetrachloride (Dry) Silicon Tetrachloride (Wet) Silver Bromide
— — — <0.002
<0.02 <0.02 <0.02 —
Silver Chloride Silver Nitrate Sodium Acetate Sodium Bicarbonate
<0.02 <0.002 <0.02 <0.02
— — — —
Sodium Bisulfate Sodium Bromide Sodium Carbonate Sodium Chloride
<0.02 <0.02 <0.02 <0.02
<0.02 — <0.02 —
Sodium Chromate Sodium Hydroxide Sodium Hypochlorite Sodium Metasilicate
<0.02 <0.002 <0.002 <0.002
<0.02 <0.002 <0.05 <0.002
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1231
11.6 Chemical Page 1232 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 328. CORROSION
RATES OF HASTELLOY AT 70˚F * (SHEET 8 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Sodium Nitrate Sodium Nitrite Sodium Phosphate Sodium Silicate
<0.02 <0.02 <0.02 <0.02
— — <0.02 <0.02
Sodium Sulfate Sodium Sulfide Sodium Sulfite Stannic Chloride
<0.02 <0.02 <0.02 <0.02
<0.002 — — <0.02
Stannous Chloride Strontium Nitrate Succinic Acid Sulfur Dioxide
<0.02 <0.02 <0.02 <0.002
<0.02 <0.02 — <0.02
Sulfur Trioxide Sulfuric Acid (Areated) Sulfuric Acid (Air Free) Sulfuric Acid (Fuming)
— <0.002 <0.002 —
<0.02 <0.02 <0.02 <0.002
Sulfurous Acid Tannic Acid Tartaric Acid Tetraphosphoric Acid
<0.02 <0.02 <0.02 —
<0.02 — <0.02 <0.02
Trichloroacetic Acid Trichloroethylene Urea
<0.02 — <0.02
<0.02 <0.002 —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1232
CRC Handbook of Materials Science & Engineering
11.6 Chemical Page 1233 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 328. CORROSION
RATES OF HASTELLOY AT 70˚F * (SHEET 9 OF 9)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Zinc Chloride Zinc Sulfate
<0.02 <0.02
<0.02 —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. *
<0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor).
©2001 CRC Press LLC
Shackelford & Alexander
1233
11.6 Chemical Page 1234 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 329. CORROSION RATES OF INCONEL AT (SHEET 1 OF 8)
70˚F *
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride
— <0.02 <0.02 —
<0.002 <0.02 <0.02 <0.02
Acetone Acetylene Acrolein Acrylonitril
<0.002 — — —
<0.002 <0.002 <0.02 <0.002
Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl) Alcohol (Benzyl)
<0.002 <0.002 — —
<0.002 <0.002 <0.02 <0.02
Alcohol (Butyl) Alcohol (Cetyl) Alcohol (Isopropyl) Allyl Chloride
— — — —
<0.002 <0.02 <0.02 <0.02
Aluminum Acetate Aluminum Chlorate Aluminum Chloride Aluminum Fluosilicate
<0.02 <0.02 >0.05 —
— <0.02 — <0.02
Aluminum Formate Aluminum Nitrate Aluminum Sulfate Ammonia
<0.02 <0.02 <0.02 <0.002
<0.02 — — <0.002
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1234
CRC Handbook of Materials Science & Engineering
11.6 Chemical Page 1235 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 329. CORROSION RATES OF INCONEL AT (SHEET 2 OF 8)
70˚F *
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Ammonium Acetate Ammonium Carbonate Ammonium Chloride Ammonium Citrate
<0.002 >0.05 <0.02 <0.02
<0.002 <0.02 <0.02 <0.02
Ammonium Formate Ammonium Sulfate Ammonium Sulfite Amyl Acetate
<0.02 <0.02 >0.05 —
<0.02 — — <0.02
Aniline Hydrochloride Anthracine Barium Chloride Barium Hydroxide
>0.05 — <0.02 <0.02
— <0.02 <0.02 <0.02
Barium Nitrate Barium Oxide Benzaldehyde Benzene
<0.02 — — <0.002
<0.02 <0.02 <0.02 <0.02
Benzoic Acid Boric Acid Bromic Acid Bromine (Dry)
<0.02 <0.02 >0.05 —
— <0.02 >0.05 <0.002
Bromine (Wet) Butyric Acid Cadmium Sulfate Calcium Acetate
— <0.05 <0.002 <0.02
>0.05 <0.05 — <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1235
11.6 Chemical Page 1236 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 329. CORROSION RATES OF INCONEL AT (SHEET 3 OF 8)
70˚F *
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Calcium Bicarbonate Calcium Bromide Calcium Chlorate Calcium Chloride
— <0.02 <0.02 <0.002
<0.02 <0.02 — <0.02
Calcium Hydroxide Calcium Hypochlorite Carbon Dioxide Carbon Monoxide
<0.02 >0.05 — —
<0.02 — <0.002 <0.002
Carbon Tetrachloride Carbon Acid (Air Free) Chloroacetic Acid Chlorine Gas
<0.002 <0.02 — —
<0.002 <0.002 <0.05 <0.02
Chloroform (Dry) Chromic Acid Chromic Hydroxide Citric Acid
— <0.02 — <0.02
<0.002 — <0.02 <0.02
Copper Nitrate Copper Sulfate Diethylene Glycol Ethyl Chloride
>0.05 <0.02 — —
— — <0.02 <0.002
Ethylene Glycol Ethylene Oxide Fatty Acids Ferric Chloride
— — — <0.05
<0.02 <0.02 <0.02 >0.05
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1236
CRC Handbook of Materials Science & Engineering
11.6 Chemical Page 1237 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 329. CORROSION RATES OF INCONEL AT (SHEET 4 OF 8)
70˚F *
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Ferric Nitrate Ferrous Chloride Ferrous Sulfate Fluorine
>0.05 >0.05 <0.02 —
— — — <0.002
Formaldehyde Formic Acid Furfural Hydrazine
<0.002 <0.02 <0.02 —
<0.02 <0.02 <0.02 <0.002
Hydrochloric Acid (Areated) Hydrochloric Acid (Air Free) Hydrocyanic Acid Hydrofluoric Acid (Areated)
>0.05 >0.05 — <0.02
— — <0.02 <0.02
Hydrofluoric Acid (Air Free) Hydrogen Chloride Hydrogen Fluoride Hydrogen Peroxide
<0.02 — — <0.02
<0.02 <0.002 <0.02 <0.02
Hydrogen Sulfide Lactic Acid Lead Acetate Lead Chromate
<0.02 <0.02 <0.02 —
<0.02 — — <0.02
Lead Nitrate Lead Sulfate Lithium Chloride Lithium Hydroxide
— — <0.002 (30%) <0.02
<0.02 <0.02 — <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1237
11.6 Chemical Page 1238 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 329. CORROSION RATES OF INCONEL AT (SHEET 5 OF 8)
70˚F *
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Magnesium Chloride Magnesium Sulfate Maleic Acid Malic Acid
<0.002 <0.02 <0.02 <0.002
<0.02 <0.02 — <0.02
Mercuric Chloride Mercury Methallylamine Methanol
>0.05 — — <0.002
— <0.02 <0.02 <0.002
Methyl Ethyl Ketone Methyl Isobutyl Ketone Methylene Chloride Monochloroacetic Acid
<0.02 <0.02 — <0.02
<0.002 <0.02 <0.02 <0.02
Monorthanolamine Monosodium Phosphate Nickel Chloride Nickel Nitrate
— <0.02 — >0.05
<0.02 — <0.02 <0.02
Nickel Sulfate Nitric Acid Nitric Acid (Red Fuming) Nitric + Hydrochloric Acid
<0.02 <0.02 — —
<0.02 — <0.02 >0.05
Nitric + Sulfuric Acid Nitrobenzene Nitrocelluolose Nitroglycerine
>0.05 — — —
>0.05 <0.02 <0.02 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1238
CRC Handbook of Materials Science & Engineering
11.6 Chemical Page 1239 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 329. CORROSION RATES OF INCONEL AT (SHEET 6 OF 8)
70˚F *
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Nitrotolune Oleic Acid Oxalic Acid Phenol
— — <0.02 —
<0.02 <0.002 <0.02 <0.002
Phosphoric Acid (Areated) Phosphoric Acid (Air Free) Picric Acid Potassium Bicarbonate
<0.02 <0.02 — <0.02
>0.05 — <0.02 —
Potassium Bromide Potassium Carbonate Potassium Chlorate Potassium Chromate
<0.02 <0.02 <0.05 <0.002
<0.02 <0.02 — —
Potassium Cyanide Potassium Dichromate Potassium Ferrocyanide Potassium Hydroxide
<0.02 <0.02 <0.02 <0.02
<0.02 — — —
Potassium Hypochlorite Potassium Iodide Potassium Nitrate Potassium Nitrite
<0.05 <0.02 <0.02 <0.02
— <0.02 — <0.02
Potassium Permanganate Potassium Silicate Pyridine Quinine Sulfate
<0.02 <0.02 <0.02 <0.02
— <0.02 <0.02 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC Shackelford & Alexander
1239
11.6 Chemical Page 1240 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 329. CORROSION RATES OF INCONEL AT (SHEET 7 OF 8)
70˚F *
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Salicylic Acid Silicon Tetrachloride (Dry) Silver Nitrate Sodium Acetate
— — <0.02 <0.02
<0.02 <0.002 — <0.02
Sodium Bicarbonate Sodium Bisulfate Sodium Bromide Sodium Carbonate
<0.02 <0.02 <0.02 <0.02
— <0.02 — <0.02
Sodium Chloride Sodium Chromate Sodium Hydroxide Sodium Hypochlorite
<0.002 <0.02 <0.002 >0.05
— <0.02 <0.002 —
Sodium Metasilicate Sodium Nitrate Sodium Nitrite Sodium Phosphate
<0.002 <0.002 <0.02 <0.02
<0.002 — <0.02 <0.02
Sodium Silicate Sodium Sulfate Sodium Sulfide Sodium Sulfite
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 — <0.02
Stannic Chloride Stannous Chloride Strontium Nitrate Succinic Acid
>0.05 >0.05 <0.02 <0.02
— <0.02 <0.02 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1240
CRC Handbook of Materials Science & Engineering
11.6 Chemical Page 1241 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 329. CORROSION RATES OF INCONEL AT (SHEET 8 OF 8)
70˚F *
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Sulfur Dioxide Sulfur Trioxide Sulfuric Acid (Areated) Sulfuric Acid (Air Free)
<0.02 — >0.05 <0.05
<0.02 <0.02 >0.05 —
Sulfuric Acid (Fuming) Sulfurous Acid Tannic Acid Tartaric Acid
— <0.05 — <0.02
<0.02 <0.02 <0.02 —
Tetraphosphoric Acid Trichloroethylene Urea
— — <0.02
<0.02 <0.02 —
Zinc Chloride Zinc Sulfate
— <0.002
<0.02 —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. *
<0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor).
©2001 CRC Press LLC
Shackelford & Alexander
1241
11.7 Chemical Page 1242 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 330. CORROSION RATES OF (SHEET 1 OF 9)
NICKEL AT 70˚F *
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride
<0.002 <0.05 <0.02 —
<0.002 >0.05 <0.02 <0.02
Acetoacetic Acid Acetone Acetylene Acrolein
<0.02 <0.002 — —
<0.02 <0.002 <0.002 <0.02
Acrylonitril Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl)
— <0.002 <0.002 —
<0.002 <0.002 <0.002 <0.02
Alcohol (Benzyl) Alcohol (Butyl) Alcohol (Cetyl) Alcohol (Isopropyl)
— — — —
<0.02 <0.002 <0.02 <0.02
Allyl Chloride Aluminum Acetate Aluminum Chlorate Aluminum Chloride
— <0.02 <0.02 <0.05
<0.02 — <0.02 <0.02
Aluminum Fluoride Aluminum Fluosilicate Aluminum Formate Aluminum Hydroxide
<0.02 — <0.02 <0.02
— <0.02 <0.02 —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1242
CRC Handbook of Materials Science & Engineering
11.7 Chemical Page 1243 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 330. CORROSION RATES OF (SHEET 2 OF 9)
NICKEL AT 70˚F *
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Aluminum Nitrate Aluminum Potassium Sulfate Aluminum Sulfate Ammonia
<0.02 <0.02 <0.02 >0.05
— — <0.02 <0.002
Ammonium Acetate Ammonium Bromide Ammonium Carbonate Ammonium Chloride
<0.002 <0.02 >0.05 <0.02
<0.002 — <0.02 <0.02
Ammonium Citrate Ammonium Formate Ammonium Nitrate Ammonium Sulfate
<0.02 <0.02 <0.02 <0.02
— — <0.02 <0.02
Ammonium Sulfite Ammonium Thiocyanate Amyl Acetate Amyl Chloride
>0.05 <0.02 — <0.02
— <0.02 <0.02 <0.02
Aniline Aniline Hydrochloride Anthracine Antimony Trichloride
<0.02 <0.05 — >0.05
<0.02 — <0.02 <0.02
Barium Carbonate Barium Chloride Barium Hydroxide Barium Nitrate
<0.02 <0.02 <0.002 <0.02
<0.02 <0.02 <0.02 —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC Shackelford & Alexander
1243
11.7 Chemical Page 1244 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 330. CORROSION RATES OF (SHEET 3 OF 9)
NICKEL AT 70˚F *
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Barium Peroxide Benzaldehyde Benzene Benzoic Acid
<0.02 — <0.002 <0.02
— <0.02 <0.02 <0.02
Boric Acid Bromic Acid Bromine (Dry) Bromine (Wet)
<0.02 >0.05 — —
<0.02 >0.05 <0.002 >0.05
Butyric Acid Cadmium Chloride Cadmium Sulfate Calcium Acetate
<0.05 <0.02 <0.002 <0.02
<0.05 — — <0.02
Calcium Bicarbonate Calcium Bromide Calcium Chlorate Calcium Chloride
— <0.02 <0.02 <0.002
<0.02 <0.02 — <0.02
Calcium Hydroxide Calcium Hypochlorite Carbon Dioxide Carbon Monoxide
<0.02 >0.05 — —
<0.02 — <0.002 <0.002
Carbon Tetrachloride Carbon Acid (Air Free) Chloroacetic Acid Chlorine Gas
<0.02 <0.02 — —
<0.002 <0.02 <0.02 <0.002
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1244
CRC Handbook of Materials Science & Engineering
11.7 Chemical Page 1245 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 330. CORROSION RATES OF (SHEET 4 OF 9)
NICKEL AT 70˚F *
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Chloroform (Dry) Chromic Acid Chromic Hydroxide Citric Acid
— >0.05 — <0.02
<0.002 — <0.02 <0.02
Copper Nitrate Copper Sulfate Diethylene Glycol Ethyl Chloride
>0.05 <0.02 — —
— — <0.02 <0.002
Ethylene Glycol Ethylene Oxide Fatty Acids Ferric Chloride
— — — >0.05
<0.02 <0.02 <0.02 —
Ferric Nitrate Ferrous Chloride Ferrous Sulfate Fluorine
>0.05 <0.05 >0.05 —
— — <0.02 <0.002
Formaldehyde Formic Acid Furfural Hydrazine
<0.002 <0.02 <0.02 —
<0.002 <0.02 <0.02 <0.002
Hydrobromic Acid Hydrochloric Acid (Areated) Hydrochloric Acid (Air Free) Hydrocyanic Acid
>0.05 >0.05 >0.05 —
<0.02 — — <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1245
11.7 Chemical Page 1246 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 330. CORROSION RATES OF (SHEET 5 OF 9)
NICKEL AT 70˚F *
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Hydrofluoric Acid (Areated) Hydrofluoric Acid (Air Free) Hydrogen Chloride Hydrogen Fluoride
<0.02 <0.02 — —
<0.02 <0.02 <0.002 <0.002
Hydrogen Iodide Hydrogen Peroxide Hydrogen Sulfide Lactic Acid
— <0.02 — <0.02
<0.02 <0.02 <0.02 —
Lead Acetate Lead Chromate Lead Nitrate Lead Sulfate
<0.02 — <0.02 <0.02
— <0.02 <0.02 <0.02
Lithium Chloride Lithium Hydroxide Magnesium Chloride Magnesium Hydroxide
<0.002 (30%) <0.02 <0.002 —
— <0.02 <0.02 <0.02
Magnesium Sulfate Maleic Acid Malic Acid Mercuric Chloride
<0.02 <0.02 <0.02 <0.05
<0.02 — <0.02 —
Mercury Methallylamine Methanol Methyl Ethyl Ketone
— — <0.002 <0.02
<0.02 <0.02 <0.002 <0.002
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1246
CRC Handbook of Materials Science & Engineering
11.7 Chemical Page 1247 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 330. CORROSION RATES OF (SHEET 6 OF 9)
NICKEL AT 70˚F *
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Methyl Isobutyl Ketone Methylene Chloride Monochloroacetic Acid Monorthanolamine
<0.02 — <0.02 —
<0.02 <0.02 <0.02 <0.02
Monosodium Phosphate Nickel Nitrate Nickel Sulfate Nitric Acid
<0.02 >0.05 <0.02 >0.05
— <0.02 — >0.05
Nitric Acid (Red Fuming) Nitric + Hydrochloric Acid Nitric + Sulfuric Acid Nitrobenzene
— — >0.05 —
>0.05 >0.05 >0.05 <0.02
Nitrocelluolose Nitrotolune Nitrous Acid Oleic Acid
— — >0.05 —
<0.02 <0.02 >0.05 <0.002
Oxalic Acid Phenol Phosphoric Acid (Areated) Phosphoric Acid (Air Free)
<0.02 — <0.05 <0.02
<0.05 <0.002 >0.05 —
Picric Acid Potassium Bicarbonate Potassium Bromide Potassium Carbonate
>0.05 <0.02 <0.02 <0.02
<0.02 — <0.02 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1247
11.7 Chemical Page 1248 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 330. CORROSION RATES OF (SHEET 7 OF 9)
NICKEL AT 70˚F *
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Potassium Chlorate Potassium Chromate Potassium Cyanide Potassium Dichromate
<0.02 <0.002 <0.02 <0.02
— — <0.02 —
Potassium Ferricyanide Potassium Ferrocyanide Potassium Hydroxide Potassium Hypochlorite
<0.02 <0.02 <0.002 <0.05
— — — —
Potassium Iodide Potassium Nitrate Potassium Nitrite Potassium Permanganate
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 —
Potassium Silicate Propionic Acid Pyridine Quinine Sulfate
<0.02 <0.02 <0.02 <0.02
<0.02 — <0.02 <0.02
Salicylic Acid Silicon Tetrachloride (Dry) Silicon Tetrachloride (Wet) Silver Bromide
<0.02 — — —
<0.02 <0.002 >0.05 <0.02
Silver Nitrate Sodium Acetate Sodium Bicarbonate Sodium Bisulfate
>0.05 <0.02 <0.02 <0.02
— <0.02 — <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1248
CRC Handbook of Materials Science & Engineering
11.7 Chemical Page 1249 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 330. CORROSION RATES OF (SHEET 8 OF 9)
NICKEL AT 70˚F *
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Sodium Bromide Sodium Carbonate Sodium Chloride Sodium Chromate
<0.02 <0.02 <0.002 <0.02
— <0.02 — <0.02
Sodium Hydroxide Sodium Hypochlorite Sodium Metasilicate Sodium Nitrate
<0.002 >0.05 <0.002 <0.02
<0.002 — <0.002 <0.02
Sodium Nitrite Sodium Phosphate Sodium Silicate Sodium Sulfate
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
Sodium Sulfide Sodium Sulfite Stannic Chloride Stannous Chloride
<0.02 <0.02 >0.05 <0.05
— — — <0.02
Strontium Nitrate Succinic Acid Sulfur Dioxide Sulfur Trioxide
<0.02 <0.02 >0.05 —
<0.02 <0.02 <0.02 <0.02
Sulfuric Acid (Areated) Sulfuric Acid (Air Free) Sulfuric Acid (Fuming) Sulfurous Acid
<0.05 <0.02 — <0.05
>0.05 >0.05 >0.05 >0.05
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC Shackelford & Alexander
1249
11.7 Chemical Page 1250 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 330. CORROSION RATES OF (SHEET 9 OF 9)
NICKEL AT 70˚F *
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Tannic Acid Tartaric Acid Tetraphosphoric Acid Trichloroacetic Acid
— <0.02 — —
<0.02 — >0.05 <0.02
Trichloroethylene Urea Zinc Chloride Zinc Sulfate
— <0.02 <0.02 <0.02
<0.002 — <0.02 —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. *
<0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor).
©2001 CRC Press LLC
1250
CRC Handbook of Materials Science & Engineering
11.7 Chemical Page 1251 Wednesday, December 31, 1969 17:00
Chemical Properties
s
Table 331. CORROSION RATES OF (SHEET 1 OF 9)
MONEL AT 70˚F *
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride
<0.002 <0.02 <0.02 —
<0.002 <0.02 <0.02 <0.02
Acetoacetic Acid Acetone Acetylene Acrolein
<0.02 <0.002 — —
<0.02 <0.002 <0.002 <0.02
Acrylonitril Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl)
— <0.002 <0.002 —
<0.002 <0.002 <0.002 <0.02
Alcohol (Benzyl) Alcohol (Butyl) Alcohol (Cetyl) Alcohol (Isopropyl)
— — — —
<0.02 <0.002 <0.02 <0.02
Allyl Chloride Aluminum Acetate Aluminum Chlorate Aluminum Chloride
— <0.02 <0.02 <0.02
<0.02 — <0.02 —
Aluminum Fluoride Aluminum Fluosilicate Aluminum Formate Aluminum Hydroxide
<0.002 — <0.02 <0.02
— <0.02 <0.02 —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC Shackelford & Alexander
1251
11.7 Chemical Page 1252 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 331. CORROSION RATES OF (SHEET 2 OF 9)
MONEL AT 70˚F *
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Aluminum Nitrate Aluminum Potassium Sulfate Aluminum Sulfate Ammonia
<0.02 <0.02 <0.02 >0.05
— — <0.02 <0.002
Ammonium Acetate Ammonium Bromide Ammonium Carbonate Ammonium Chloride
<0.002 <0.02 <0.02 <0.02
<0.002 — <0.02 <0.02
Ammonium Citrate Ammonium Formate Ammonium Nitrate Ammonium Sulfate
<0.02 <0.02 >0.05 <0.02
— — <0.02 <0.02
Ammonium Sulfite Ammonium Thiocyanate Amyl Acetate Amyl Chloride
>0.05 <0.02 <0.02 <0.02
— <0.02 <0.02 <0.02
Aniline Aniline Hydrochloride Anthracine Antimony Trichloride
<0.02 >0.05 — >0.05
<0.02 — <0.02 —
Barium Carbonate Barium Chloride Barium Hydroxide Barium Oxide
<0.02 <0.02 <0.02 —
<0.02 <0.02 <0.02 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1252
CRC Handbook of Materials Science & Engineering
11.7 Chemical Page 1253 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 331. CORROSION RATES OF (SHEET 3 OF 9)
MONEL AT 70˚F *
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Barium Peroxide Benzaldehyde Benzene Benzoic Acid
<0.02 — <0.002 <0.02
— <0.02 <0.02 <0.02
Boric Acid Bromic Acid Bromine (Dry) Bromine (Wet)
<0.02 >0.05 — —
<0.02 >0.05 <0.002 >0.05
Butyric Acid Cadmium Chloride Cadmium Sulfate Calcium Acetate
<0.05 <0.02 <0.002 <0.02
<0.02 — — <0.02
Calcium Bicarbonate Calcium Bromide Calcium Chlorate Calcium Chloride
— <0.02 <0.02 <0.002
<0.02 <0.02 — <0.02
Calcium Hydroxide Calcium Hypochlorite Carbon Dioxide Carbon Monoxide
<0.02 >0.05 — —
<0.02 — <0.002 <0.002
Carbon Tetrachloride Carbon Acid (Air Free) Chloroacetic Acid Chlorine Gas
<0.02 <0.02 <0.02 —
<0.002 <0.05 <0.05 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1253
11.7 Chemical Page 1254 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 331. CORROSION RATES OF (SHEET 4 OF 9)
MONEL AT 70˚F *
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Chlorine Liquid Chloroform (Dry) Chromic Acid Chromic Hydroxide
— — >0.05 —
<0.02 <0.002 — <0.02
Chromic Sulfates Citric Acid Copper Nitrate Copper Sulfate
— <0.02 >0.05 <0.02
<0.05 <0.02 — —
Diethylene Glycol Ethyl Chloride Ethylene Glycol Ethylene Oxide
— <0.02 — —
<0.02 <0.02 <0.02 <0.02
Fatty Acids Ferric Chloride Ferric Nitrate Ferrous Chloride
— >0.05 >0.05 >0.05
<0.02 >0.05 — —
Ferrous Sulfate Fluorine Formaldehyde Formic Acid
— — <0.002 <0.02
<0.02 <0.002 <0.002 —
Furfural Hydrazine Hydrobromic Acid Hydrochloric Acid (Areated)
<0.02 — >0.05 >0.05
<0.02 >0.05 — —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1254
CRC Handbook of Materials Science & Engineering
11.7 Chemical Page 1255 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 331. CORROSION RATES OF (SHEET 5 OF 9)
MONEL AT 70˚F *
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Hydrochloric Acid (Air Free) Hydrocyanic Acid Hydrofluoric Acid (Areated) Hydrofluoric Acid (Air Free)
>0.05 >0.05 <0.02 <0.02
— <0.02 <0.02 <0.02
Hydrogen Chloride Hydrogen Fluoride Hydrogen Iodide Hydrogen Peroxide
— — <0.02 <0.02
<0.002 <0.02 — <0.002
Hydrogen Sulfide Lactic Acid Lead Acetate Lead Chromate
— >0.05 <0.02 —
<0.02 — <0.02 <0.02
Lead Nitrate Lead Sulfate Lithium Chloride Lithium Hydroxide
— — <0.002 (30%) <0.02
<0.02 <0.02 <0.002 <0.02
Magnesium Chloride Magnesium Hydroxide Magnesium Sulfate Maleic Acid
<0.002 <0.02 <0.02 <0.05
<0.02 <0.02 <0.02 —
Malic Acid Mercuric Chloride Mercurous Nitrate Mercury
<0.02 >0.05 <0.02 —
— — — <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1255
11.7 Chemical Page 1256 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 331. CORROSION RATES OF (SHEET 6 OF 9)
MONEL AT 70˚F *
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Methallylamine Methanol Methyl Ethyl Ketone Methyl Isobutyl Ketone
— <0.002 <0.02 <0.02
<0.05 <0.002 <0.002 <0.02
Methylene Chloride Monochloroacetic Acid Monorthanolamine Monosodium Phosphate
— — — <0.02
<0.002 <0.05 <0.02 —
Nickel Chloride Nickel Nitrate Nickel Sulfate Nitric Acid
<0.02 >0.05 — >0.05
<0.02 <0.02 <0.02 >0.05
Nitric Acid (Red Fuming) Nitric + Hydrochloric Acid Nitric + Sulfuric Acid Nitrobenzene
— — >0.05 —
>0.05 >0.05 >0.05 <0.02
Nitrocelluolose Nitroglycerine Nitrotolune Nitrous Acid
— — — —
<0.002 <0.02 <0.02 >0.05
Oleic Acid Oxalic Acid Phenol Phosphoric Acid (Areated)
— <0.02 <0.002 <0.05
<0.002 <0.02 <0.002 —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1256
CRC Handbook of Materials Science & Engineering
11.7 Chemical Page 1257 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 331. CORROSION RATES OF (SHEET 7 OF 9)
MONEL AT 70˚F *
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Phosphoric Acid (Air Free) Picric Acid Potassium Bicarbonate Potassium Bromide
<0.02 <0.05 <0.02 <0.02
— >0.05 — <0.02
Potassium Carbonate Potassium Chlorate Potassium Chromate Potassium Cyanide
<0.02 <0.05 <0.02 <0.02
<0.02 — — <0.02
Potassium Dichromate Potassium Ferricyanide Potassium Ferrocyanide Potassium Hydroxide
<0.02 <0.02 <0.02 <0.002
— — — —
Potassium Hypochlorite Potassium Iodide Potassium Nitrate Potassium Nitrite
<0.05 <0.02 <0.02 <0.02
— <0.02 <0.02 <0.02
Potassium Permanganate Potassium Silicate Propionic Acid Pyridine
<0.05 <0.02 <0.02 <0.02
— <0.02 <0.02 <0.02
Quinine Sulfate Salicylic Acid Silicon Tetrachloride (Dry) Silicon Tetrachloride (Wet)
<0.02 <0.02 — —
<0.02 <0.02 <0.002 >0.05
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1257
11.7 Chemical Page 1258 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 331. CORROSION RATES OF (SHEET 8 OF 9)
MONEL AT 70˚F *
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Silver Bromide Silver Nitrate Sodium Acetate Sodium Bicarbonate
— >0.05 <0.05 <0.02
<0.02 — <0.02 —
Sodium Bisulfate Sodium Bromide Sodium Carbonate Sodium Chloride
<0.02 <0.02 <0.02 <0.002
<0.02 — <0.02 —
Sodium Chromate Sodium Hydroxide Sodium Hypochlorite Sodium Metasilicate
<0.02 <0.002 >0.05 <0.002
<0.02 <0.002 <0.02 <0.002
Sodium Nitrate Sodium Nitrite Sodium Phosphate Sodium Silicate
<0.02 <0.02 <0.02 <0.02
<0.02 <0.002 <0.02 <0.02
Sodium Sulfate Sodium Sulfide Sodium Sulfite Stannic Chloride
<0.02 <0.02 <0.02 >0.05
<0.02 — <0.02 —
Stannous Chloride Strontium Nitrate Succinic Acid Sulfur Dioxide
>0.05 <0.02 <0.02 >0.05
<0.02 <0.02 <0.02 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1258
CRC Handbook of Materials Science & Engineering
11.7 Chemical Page 1259 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 331. CORROSION RATES OF (SHEET 9 OF 9)
MONEL AT 70˚F *
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Sulfur Trioxide Sulfuric Acid (Areated) Sulfuric Acid (Air Free) Sulfuric Acid (Fuming)
— <0.05 <0.002 —
<0.02 >0.05 >0.05 >0.05
Sulfurous Acid Tannic Acid Tartaric Acid Tetraphosphoric Acid
>0.05 <0.02 <0.02 —
>0.05 <0.02 — <0.05
Trichloroacetic Acid Trichloroethylene Urea
— — <0.02
>0.05 <0.002 —
Zinc Chloride Zinc Sulfate
<0.02 <0.02
<0.02 —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. *
<0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor).
©2001 CRC Press LLC
Shackelford & Alexander
1259
11.7 Chemical Page 1260 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 332. CORROSION RATES OF (SHEET 1 OF 8)
LEAD AT 70˚F *
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride
<0.02 >0.05 >0.05 —
<0.002 <0.05 <0.02 <0.002
Acetoacetic Acid Acetone Acetylene Acrolein
— <0.002 — <0.02
<0.02 <0.02 <0.002 —
Acrylonitril Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl)
— <0.002 <0.02 —
<0.002 <0.002 <0.02 <0.02
Alcohol (Benzyl) Alcohol (Cetyl) Alcohol (Isopropyl) Allyl Chloride
— — — _
<0.02 <0.02 <0.002 <0.05
Allyl Sulfide Aluminum Acetate Aluminum Chlorate Aluminum Chloride
— <0.002 <0.02 >0.05
>0.05 <0.002 <0.02 —
Aluminum Fluoride Aluminum Fluosilicate Aluminum Formate Aluminum Hydroxide
<0.02 — — <0.02
— <0.02 <0.02 —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1260
CRC Handbook of Materials Science & Engineering
11.7 Chemical Page 1261 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 332. CORROSION RATES OF (SHEET 2 OF 8)
LEAD AT 70˚F *
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Aluminum Nitrate Aluminum Potassium Sulfate Aluminum Sulfate Ammonia
<0.02 <0.002 <0.02 <0.02
— <0.02 — <0.02
Ammonium Bicarbonate Ammonium Bromide Ammonium Carbonate Ammonium Chloride
<0.02 >0.05 <0.02 >0.05
— — — <0.02
Ammonium Nitrate Ammonium Sulfate Amyl Acetate Amyl Chloride
>0.05 <0.02 — —
— <0.02 <0.02 >0.05
Aniline Aniline Hydrochloride Anthracine Antimony Trichloride
— >0.05 — <0.02
>0.05 — <0.02 <0.002
Barium Carbonate Barium Chloride Barium Hydroxide Barium Nitrate
— <0.02 >0.05 <0.02
>0.05 — >0.05 —
Barium Peroxide Benzaldehyde Benzene Benzoic Acid
>0.05 >0.05 <0.02 >0.05
— >0.05 <0.02 >0.05
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1261
11.7 Chemical Page 1262 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 332. CORROSION RATES OF (SHEET 3 OF 8)
LEAD AT 70˚F *
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Boric Acid Bromic Acid Bromine (Dry) Bromine (Wet)
<0.02 <0.02 — —
<0.02 <0.02 <0.002 >0.05
Butyric Acid Cadmium Sulfate Calcium Acetate Calcium Bicarbonate
>0.05 <0.002 <0.02 —
>0.05 — <0.02 <0.05
Calcium Bromide Calcium Chlorate Calcium Chloride Calcium Hydroxide
<0.02 <0.02 >0.05 >0.05
<0.02 — — —
Calcium Hypochlorite Carbon Dioxide Carbon Monoxide Carbon Tetrachloride
<0.05 — — —
<0.002 <0.002 <0.002 <0.002
Carbon Acid (Air Free) Chloroacetic Acid Chlorine Gas Chlorine Liquid
— >0.05 — —
>0.05 >0.05 <0.02 <0.02
Chloroform (Dry) Chromic Acid Chromic Hydroxide Chromic Sulfates
— <0.02 — <0.02
<0.02 — <0.02 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1262
CRC Handbook of Materials Science & Engineering
11.7 Chemical Page 1263 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 332. CORROSION RATES OF (SHEET 4 OF 8)
LEAD AT 70˚F *
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Citric Acid Copper Sulfate Diethylene Glycol Ethyl Chloride
<0.02 <0.02 — —
>0.05 <0.02 <0.02 <0.02
Ethylene Glycol Ethylene Oxide Fatty Acids Ferric Chloride
— — — >0.05
<0.05 <0.02 >0.05 —
Ferric Nitrate Ferrous Chloride Ferrous Sulfate Fluorine
<0.002 >0.05 <0.02 —
<0.002 — — <0.02
Formaldehyde Formic Acid Furfural Hydrazine
<0.02 >0.05 — >0.05
<0.02 >0.05 <0.02 >0.05
Hydrobromic Acid Hydrochloric Acid (Areated) Hydrochloric Acid (Air Free) Hydrocyanic Acid
>0.05 <0.02 <0.02 >0.05
— — — <0.02
Hydrofluoric Acid (Areated) Hydrofluoric Acid (Air Free) Hydrogen Chloride Hydrogen Fluoride
>0.05 <0.002 — —
— >0.05 <0.02 >0.05
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC Shackelford & Alexander
1263
11.7 Chemical Page 1264 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 332. CORROSION RATES OF (SHEET 5 OF 8)
LEAD AT 70˚F *
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Hydrogen Peroxide Hydrogen Sulfide Lactic Acid Lead Chromate
>0.05 — >0.05 —
<0.002 <0.02 >0.05 <0.02
Lead Nitrate Lead Sulfate Lithium Chloride Lithium Hydroxide
— — <0.02 >0.05
<0.02 <0.02 <0.02 —
Magnesium Chloride Magnesium Hydroxide Magnesium Sulfate Mercuric Chloride
>0.05 >0.05 <0.02 <0.05
>0.05 — — —
Mercurous Nitrate Mercury Methanol Methyl Ethyl Ketone
— — <0.02 <0.02
>0.05 >0.05 <0.02 <0.002
Methyl Isobutyl Ketone Methylene Chloride Monochloroacetic Acid Monosodium Phosphate
<0.02 — >0.05 <0.02
<0.002 <0.02 >0.05 —
Nickel Chloride Nickel Nitrate Nickel Sulfate Nitric Acid
— — <0.02 >0.05
<0.02 <0.02 <0.02 >0.05
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1264
CRC Handbook of Materials Science & Engineering
11.7 Chemical Page 1265 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 332. CORROSION RATES OF (SHEET 6 OF 8)
LEAD AT 70˚F *
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Nitric + Hydrochloric Acid Nitric + Sulfuric Acid Nitrobenzene Nitrocelluolose
— >0.05 — —
>0.05 >0.05 <0.02 <0.002
Nitroglycerine Nitrotolune Nitrous Acid Oleic Acid
— — — —
<0.05 <0.02 >0.05 >0.05
Oxalic Acid Phenol Phosphoric Acid (Areated) Phosphoric Acid (Air Free)
>0.05 — <0.02 <0.002
>0.05 <0.02 <0.02 <0.02
Picric Acid Potassium Bicarbonate Potassium Bromide Potassium Carbonate
>0.05 >0.05 <0.02 >0.05
<0.02 — <0.02 >0.05
Potassium Chlorate Potassium Chromate Potassium Cyanide Potassium Dichromate
<0.02 <0.02 >0.05 <0.02
— — — —
Potassium Ferricyanide Potassium Ferrocyanide Potassium Hydroxide Potassium Hypochlorite
<0.02 <0.02 >0.05 <0.02
— — >0.05 —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC Shackelford & Alexander
1265
11.7 Chemical Page 1266 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 332. CORROSION RATES OF (SHEET 7 OF 8)
LEAD AT 70˚F *
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Potassium Iodide Potassium Nitrate Potassium Nitrite Potassium Permanganate
>0.05 <0.02 <0.02 <0.05
— — <0.02 >0.05
Propionic Acid Pyridine Salicylic Acid Silicon Tetrachloride (Dry)
>0.05 <0.02 — —
— <0.02 <0.02 <0.02
Silver Nitrate Sodium Acetate Sodium Bicarbonate Sodium Bisulfate
>0.05 — <0.02 <0.02
— <0.02 — —
Sodium Carbonate Sodium Chloride Sodium Chromate Sodium Hydroxide
<0.02 <0.02 <0.02 <0.02
— — <0.02 —
Sodium Hypochlorite Sodium Nitrate Sodium Nitrite Sodium Phosphate
>0.05 >0.05 <0.02 <0.02
>0.05 — — <0.02
Sodium Silicate Sodium Sulfate Sodium Sulfide Sodium Sulfite
>0.05 <0.02 <0.002 <0.02
— <0.02 <0.002 <0.02
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1266
CRC Handbook of Materials Science & Engineering
11.7 Chemical Page 1267 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 332. CORROSION RATES OF (SHEET 8 OF 8)
LEAD AT 70˚F *
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Stannic Chloride Stannous Chloride Succinic Acid Sulfur Dioxide
>0.05 >0.05 <0.02 —
— — <0.02 <0.02
Sulfur Trioxide Sulfuric Acid (Areated) Sulfuric Acid (Air Free) Sulfuric Acid (Fuming)
— <0.002 <0.002 —
<0.02 >0.05 >0.05 >0.05
Sulfurous Acid Tannic Acid Tartaric Acid Tetraphosphoric Acid
<0.02 >0.05 <0.02 >0.05
<0.02 >0.05 >0.05 >0.05
Trichloroacetic Acid Trichloroethylene Zinc Chloride Zinc Sulfate
>0.05 — <0.02 <0.02
>0.05 >0.05 <0.02 —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. *
<0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor).
©2001 CRC Press LLC
Shackelford & Alexander
1267
11.7 Chemical Page 1268 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 333. CORROSION
RATES OF TITANIUM AT 70˚F * (SHEET 1 OF 5)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride
— <0.002 <0.002 —
<0.002 <0.002 <0.002 <0.002
Acetone Acetylene Acrolein Acrylonitril
<0.002 — — —
<0.002 <0.002 <0.02 <0.002
Alcohol (Ethyl) Alcohol (Allyl) Alcohol (Amyl) Alcohol (Benzyl)
<0.002 — — —
<0.002 <0.002 <0.002 <0.002
Alcohol (Butyl) Alcohol (Cetyl) Aluminum Acetate Aluminum Chlorate
— — — <0.002
<0.002 <0.002 <0.002 —
Aluminum Chloride Aluminum Formate Aluminum Hydroxide Aluminum Nitrate
>0.05 — <0.002 <0.002
— <0.002 <0.002 <0.002
Aluminum Potassium Sulfate Aluminum Sulfate Ammonia Ammonium Chloride
— <0.002 <0.002 <0.002
<0.002 — <0.002 —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1268
CRC Handbook of Materials Science & Engineering
11.7 Chemical Page 1269 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 333. CORROSION
RATES OF TITANIUM AT 70˚F * (SHEET 2 OF 5)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Ammonium Citrate Ammonium Formate Ammonium Nitrate Ammonium Sulfate
<0.002 <0.002 <0.05 <0.002
<0.002 <0.002 — —
Amyl Acetate Aniline Hydrochloride Anthracine Barium Chloride
— <0.002 — <0.002
<0.002 — <0.002 —
Benzene Benzoic Acid Boric Acid Bromine (Dry)
<0.002 <0.002 <0.002 —
<0.002 <0.002 — >0.05
Bromine (Wet) Butyric Acid Calcium Acetate Calcium Bicarbonate
— <0.002 <0.002 —
>0.05 <0.002 <0.002 <0.002
Calcium Bromide Calcium Chlorate Calcium Chloride Calcium Hypochlorite
— — <0.002 <0.002
<0.05 <0.002 — —
Carbon Dioxide Carbon Monoxide Carbon Tetrachloride Chloroacetic Acid
— — — —
<0.002 <0.002 <0.002 <0.002
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1269
11.7 Chemical Page 1270 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 333. CORROSION
RATES OF TITANIUM AT 70˚F * (SHEET 3 OF 5)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Chlorine Gas Chromic Acid Citric Acid Diethylene Glycol
— <0.002 <0.002 —
>0.05 — — <0.002
Ethyl Chloride Ethylene Oxide Fatty Acids Ferric Chloride
— — — <0.002
<0.002 <0.002 <0.002 —
Ferric Nitrate Ferrous Chloride Ferrous Sulfate Formaldehyde
<0.002 <0.002 <0.002 <0.002
— — — <0.002
Formic Acid Furfural Hydrochloric Acid (Areated) Hydrochloric Acid (Air Free)
<0.02 — <0.02 <0.02
<0.02 <0.002 — —
Hydrofluoric Acid (Areated) Hydrofluoric Acid (Air Free) Hydrogen Fluoride Hydrogen Peroxide
>0.05 >0.05 — <0.002
— >0.05 <0.002 >0.05
Hydrogen Sulfide Lactic Acid Lead Acetate Magnesium Chloride
— <0.002 <0.002 <0.002
<0.002 <0.002 — <0.002
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
1270
CRC Handbook of Materials Science & Engineering
11.7 Chemical Page 1271 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 333. CORROSION
RATES OF TITANIUM AT 70˚F * (SHEET 4 OF 5)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Malic Acid Maganous Chloride Mercuric Chloride Methyl Ethyl Ketone
— <0.002 <0.002 <0.002
<0.002 — — <0.002
Methyl Isobutyl Ketone Monochloroacetic Acid Nickel Chloride Nitric Acid
<0.002 — <0.02 <0.002
<0.002 <0.002 — —
Nitric Acid (Red Fuming) Nitric + Hydrochloric Acid Nitric + Hydrofluoric Acid Oleic Acid
— — — —
<0.002 <0.02 >0.05 <0.002
Oxalic Acid Phosphoric Acid (Areated) Phosphoric Acid (Air Free) Potassium Bromide
<0.02 <0.02 — <0.002
— >0.05 >0.05 —
Potassium Carbonate Potassium Chlorate Potassium Cyanide Potassium Dichromate
<0.002 <0.002 — <0.002
— — >0.05 —
Potassium Hydroxide Potassium Hypochlorite Potassium Iodide Potassium Nitrate
<0.002 <0.002 <0.002 <0.002
— — <0.002 —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
Shackelford & Alexander
1271
11.7 Chemical Page 1272 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 333. CORROSION
RATES OF TITANIUM AT 70˚F * (SHEET 5 OF 5)
Corrosive Medium
Corrosion Rate* in 10% Corrosive Medium (ipy)
Corrosion Rate** in 100% Corrosive Medium (ipy)
Potassium Nitrite Propionic Acid Quinine Sulfate Silver Bromide
<0.002 — — —
<0.002 >0.05 <0.002 <0.002
Silver Chloride Sodium Chloride Sodium Hydroxide Sodium Hypochlorite
<0.002 <0.002 <0.002 <0.002
— — — <0.002
Sodium Nitrite Sodium Sulfide Stannic Chloride Succinic Acid
<0.002 <0.002 <0.002 <0.002
— — — <0.002
Sulfuric Acid (Areated) Sulfuric Acid (Air Free) Sulfurous Acid Tannic Acid
<0.02 — <0.002 <0.002
>0.05 >0.05 <0.002 <0.002
Tartaric Acid Trichloroacetic Acid Trichloroethylene Zinc Chloride
<0.002 <0.002 — <0.002
<0.002 >0.05 <0.002 —
* 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. *
<0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor).
©2001 CRC Press LLC
1272
CRC Handbook of Materials Science & Engineering
11.7 Chemical Page 1273 Wednesday, December 31, 1969 17:00
Chemical Properties
\
Table 334. CORROSION
RATES OF ACI HEAT–RESISTANT CASTINGS ALLOYS IN AIR Oxidation Rate in Air (mils/yr)
Alloy
(870 °C)
(980 °C)
(1090 °C)
HC HD HE HF
10 10– 5– 5–
50 50– 25– 50+
50 50– 35– 100
HH HI HK HL
5– 5– 10– 10+
25– 10+ 10– 25–
50 35– 35– 35
HN HP HT HU
5 25– 5– 5–
10+ 25 10+ 10–
50– 50 50 35–
HW HX
5– 5–
10– 10–
35 35–
Based on 100–h tests. To convert mils/yr to µm/yr multiply by 25 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p392, (1993).
©2001 CRC Press LLC
Shackelford & Alexander
1273
11.7 Chemical Page 1274 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 335. CORROSION
RATES FOR ACI HEAT–RESISTANT CASTINGS ALLOYS IN FLUE GAS Corrosion rate (mils/yr)
flue gas sulfur content 0.12 g/m3
flue gas sulfur content 2.3 g/m3
Alloy
Oxidizing
Reducing
Oxidizing
Reducing
HC HD HE HF
25– 25– 25– 50+
25+ 25– 25– 100+
25 25– 25– 50+
25– 25– 25– 250–
HH HI HK HL
25– 25– 25– 25–
25 25– 25– 25–
25 25– 25– 25–
25– 25– 25– 25–
HN HP HT HU
25– 25– 25 25–
25– 25– 25– 25–
25 25– 25 25–
25 25– 100 25
HW HX
25 25–
25– 25–
50– 25–
250 25–
Basd on 100–h tests. To convert mils/yr to µm/yr multiply by 25 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p392, (1993).
©2001 CRC Press LLC
1274
CRC Handbook of Materials Science & Engineering
11.8 Chemical L Page 1275 Wednesday, December 31, 1969 17:00
Table 336. FLAMMABILITY OF (SHEET 1 OF 11)
POLYMERS
Polymer
Type
Flammability, (ASTM D635) (ipm)
ABS Resins; Molded, Extruded
Medium impact High impact Very high impact
1.0—1.6 1.3—1.5 1.3—1.5
Low temperature impact Heat resistant
1.0—1.5 1.3—2.0
Acrylics; Cast, Molded, Extruded
Thermoset Carbonate
(0.125 in.) Cast Resin Sheets, Rods: General purpose, type I General purpose, type II
0.5—2.2 0.5—1.8
Moldings: Grades 5, 6, 8 High impact grade
0.9—1.2 0.8—1.2
Allyl diglycol carbonate
0.35
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
11.8 Chemical L Page 1276 Wednesday, December 31, 1969 17:00
Table 336. FLAMMABILITY OF (SHEET 2 OF 11)
POLYMERS
Polymer
Type
Flammability, (ASTM D635) (ipm)
Alkyds; Molded
Putty (encapsulating) Rope (general purpose) Granular (high speed molding) Glass reinforced (heavy duty parts)
Nonburning Self extinguishing Self extinguishing Nonburning
Cellulose Acetate; Molded, Extruded
ASTM Grade: H6—1 H4—1 H2—1
0.5—2.0 0.5—2.0 0.5—2.0
MH—1, MH—2 MS—1, MS—2 S2—1
0.5—2.0 0.5—2.0 0.5—2.0
ASTM Grade: H4 MH S2
0.5—1.5 0.5—1.5 0.5—1.5
Cellulose Acetate Butyrate; Molded, Extruded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
11.8 Chemical L Page 1277 Wednesday, December 31, 1969 17:00
Table 336. FLAMMABILITY OF (SHEET 3 OF 11)
POLYMERS
Polymer
Type
Flammability, (ASTM D635) (ipm)
Cellusose Acetate Propionate; Molded, Extruded
ASTM Grade: 1 3 6
0.5—1.5 0.5—1.5 0.5—1.5
Chlorinated Polymers
Chlorinated polyether Chlorinated polyvinyl chloride
Self extinguishing Nonburning
Polycarbonates
Polycarbonate Polycarbonate (40% glass fiber reinforced)
Self extinguishing Self extinguishing
Orlon filled Dacron filled Asbestos filled Glass fiber filled
ignition time (s) 68 s 84—90 s 70 s 70—400 s
Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE)
Noninflammable Noninflammable
Diallyl Phthalates; Molded
Fluorocarbons; Molded,Extruded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
11.8 Chemical L Page 1278 Wednesday, December 31, 1969 17:00
Table 336. FLAMMABILITY OF (SHEET 4 OF 11)
POLYMERS
Polymer
Type
Flammability, (ASTM D635) (ipm)
Fluorocarbons; Molded,Extruded (Con’t)
Ceramic reinforced (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF)
Noninflammable Noninflammable Self extinguishing
Epoxies; Cast, Molded, Reinforced
Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible Molded
0.3-0.34 Self extinguishing
General purpose glass cloth laminate High strength laminate Filament wound composite
Slow burn to Self extinguishing Self extinguishing Self extinguishing
High performance resins (cycloaliphatic diepoxides) Cast, rigid Molded Glass cloth laminate
Self extinguishing Self extinguishing Self extinguishing
Epoxies—Molded, Extruded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
11.8 Chemical L Page 1279 Wednesday, December 31, 1969 17:00
Table 336. FLAMMABILITY OF (SHEET 5 OF 11)
POLYMERS
Polymer
Type
Flammability, (ASTM D635) (ipm)
Melamines; Molded
Filler & type Unfilled Cellulose electrical Glass fiber Alpha cellulose and mineral
Self extinguishing Self extinguishing Self extinguishing Self extinguishing
Type 6 General purpose Glass fiber (30%) reinforced Cast Flexible copolymers
Self extinguishing Slow burn Self extinguishing Slow burn, 0.6
Type 8 Type 11
Self extinguishing Self extinguishing
Nylons; Molded, Extruded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
11.8 Chemical L Page 1280 Wednesday, December 31, 1969 17:00
Table 336. FLAMMABILITY OF (SHEET 6 OF 11)
POLYMERS
Polymer
Type
Flammability, (ASTM D635) (ipm)
Nylons; Molded, Extruded (Con’t)
6/6 Nylon General purpose molding Glass fiber reinforced Glass fiber Molybdenum disulfide filled General purpose extrusion
Self extinguishing Slow burn Slow burn Self extinguishing
6/10 Nylon General purpose Glass fiber (30%) reinforced
Self extinguishing Slow burn
Type and filler General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber
Self extinguishing Self extinguishing Self extinguishing Self extinguishing
Phenolics; Molded
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
11.8 Chemical L Page 1281 Wednesday, December 31, 1969 17:00
Table 336. FLAMMABILITY OF (SHEET 7 OF 11)
POLYMERS
Polymer
Type
Flammability, (ASTM D635) (ipm)
Phenolics; Molded (Con’t)
Arc resistant—mineral Rubber phenolic—woodflour or flock Rubber phenolic—chopped fabric Rubber phenolic—asbestos
Self extinguishing Self extinguishing Self extinguishing Self extinguishing
ABS–Polycarbonate Alloy PVC–Acrylic Alloy
Polyacetals
0.9 PVC–acrylic sheet PVC–acrylic injection molded
Nonburning Nonburning
Polyimides Unreinforced Unreinforced 2nd value Glass reinforced
IBM Class A IBM Class A UL SE—0
Homopolymer: Standard 20% glass reinforced 22% TFE reinforced
1.1 0.8 0.8
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
11.8 Chemical L Page 1282 Wednesday, December 31, 1969 17:00
Table 336. FLAMMABILITY OF (SHEET 8 OF 11)
POLYMERS
Polymer
Type
Flammability, (ASTM D635) (ipm)
Polyacetals (Con’t)
Copolymer: Standard 25% glass reinforced High flow
1.1 1 1.1
Injection Moldings: General purpose grade Glass reinforced grades
Slow burn Slow burn
Glass reinforced self extinguishing General purpose grade Glass reinforced grade
Self extinguishing Slow burn Slow burn
Cast polyyester Rigid Flexible
0.87 to self extinguishing Slow burn to self extinguishing
Polyester; Thermoplastic
Polyesters: Thermosets
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
11.8 Chemical L Page 1283 Wednesday, December 31, 1969 17:00
Table 336. FLAMMABILITY OF (SHEET 9 OF 11)
POLYMERS
Polymer
Type
Flammability, (ASTM D635) (ipm)
Reinforced polyester moldings
High strength (glass fibers) Heat and chemical resistant (asbestos) Sheet molding compounds, general purpose
Self extinguishing Self extinguishing Self extinguishing
Phenylene Oxides
SE—100 SE—1 Glass fiber reinforced
Self extinguishing Self extinguishing Self extinguishing
Phenylene oxides (Noryl)
Standard Glass fiber reinforced
Self extinguishing Self extinguishing
Polyarylsulfone Polypropylene:
Self extinguishing General purpose High impact
0.7—1 1
Asbestos filled Glass reinforced Flame retardant
1 1 Self extinguishing
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
11.8 Chemical L Page 1284 Wednesday, December 31, 1969 17:00
Table 336. FLAMMABILITY OF (SHEET 10 OF 11)
POLYMERS
Polymer
Type
Flammability, (ASTM D635) (ipm)
Polyphenylene sulfide:
Standard 40% glass reinforced
Non—burning Non—burning
Polyethylenes; Molded, Extruded
Type I—lower density (0.910—0.925) Melt index 0.3—3.6 Melt index 6—26 Melt index 200
1 1 1
Type II—medium density (0.926—0.940) Melt index 20 Melt index l.0—1.9
1 1
Type III—higher density (0.941—0.965) Melt index 0.2—0.9 Melt index 0.l—12.0 Melt index 1.5—15 High molecular weight
1 1 1 1
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
11.8 Chemical L Page 1285 Wednesday, December 31, 1969 17:00
Table 336. FLAMMABILITY OF (SHEET 11 OF 11)
POLYMERS
Polymer
Type
Flammability, (ASTM D635) (ipm)
Polystyrenes; Molded
Polystyrenes General purpose Medium impact High impact Styrene acrylonitrile (SAN)
1.0—1.5 0.5—2.0 0.5—1.5 0.8
Polyvinyl Chloride And Copolymers; Molded, Extruded
Nonrigid—general
Self extinguishing
Nonrigid—electrical Rigid—normal impact Vinylidene chloride
Self extinguishing Self extinguishing Self extinguishing
Silicones; Molded, Laminated
Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate
Nonburning Nonburning 0.12
Ureas; Molded
Alpha—cellulose filled (ASTM Type l) Cellulose filled (ASTM Type 2) Woodflour filled
Self extinguishing Self extinguishing Self extinguishing
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
11.9 Chemical Page 1286 Wednesday, December 31, 1969 17:00
Chemical Properties
Table 337. FLAMMABILITY OF
FIBERGLASS REINFORCED PLASTICS Class
Material
Glass fiber content (wt%)
Glass fiber reinforced thermosets
Sheet molding compound (SMC)
15 to 30
5V
Bulk molding compound(BMC) Preform/mat(compression molded) Cold press molding–polyester
15 to 35 25 to 50 20 to 30
5V V–0 V–0
Spray–up–polyester Filament wound–epoxy Rod stock–polyester Molding compound–phenolic
30 to 50 30 to 80 40 to 80 5 to 25
V–0 V–0 V–0 V–0
Glass–fiber–reinforced thermoplastics
Flammability (UL94)
Acetal
20 to 40
HB
Nylon Polycarbonate Polyethylene
6 to 60 20 to 40 10 to 40
V–0 V–0 V–0
Polypropylene Polystyrene Polysulfone ABS(acrylonitrile butadiene styrene)
20 to 40 20 to 35 20 to 40 20 to 40
V–0 V–0 V–0 V–0
PVC (polyvinyl chloride) Polyphenylene oxide(modified) SAN (styrene acrylonitrile) Thermoplastic polyester
15 to 35 20 to 40 20 to 40 20 to 35
V–0 V–0 V–0 V–0
Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p106, (1994).
©2001 CRC Press LLC
1286
CRC Handbook of Materials Science & Engineering
Shackelford, James F.& Alexander, W. “Selecting Structural Properties” Materials Science and Engineering Handbook Ed. James F. Shackelford & W. Alexander Boca Raton: CRC Press LLC, 2001
12.0 sel Structure Page 1287 Wednesday, December 31, 1969 17:00
CHAPTER 10
List of Tables
Selecting Structural Properties
Atomic and IonicRadii Selecting Atomic Radii of the Elements Selecting Ionic Radii of the Elements Bond Lengths and Angles Selecting Bond Lengths Between Elements Selecting Bond Angles Between Elements Density Selecting Density of the Elements
©2001 CRC Press LLC
1287
12.1 sel Structure Page 1288 Wednesday, December 31, 1969 17:00
Selecting Structural Properties
Table 338. SELECTING
ATOMIC RADII OF THE ELEMENTS* (SHEET 1 OF 3)
Atomic Number
Symbol
Atomic Radius (nm)
1 8 7 6
H O N C
0.046 0.060 0.071 0.077
5 16 17 15
B S Cl P
0.097 0.106 0.107 0.109
25 4 34 14
Mn Be Se Si
0.112 0.114 0.116 0.117
35 32 26 24
Br Ge Fe Cr
0.119 0.122 0.124 0.125
27 28 33 29
Co Ni As Cu
0.125 0.125 0.125 0.128
23 30 44 45
V Zn Ru Rh
0.132 0.133 0.134 0.134
31 76 77 42
Ga Os Ir Mo
0.135 0.135 0.135 0.136
Source: After a tabulation by R. A. Flinn and P. K. Trojan, Engineering Materials and Their Applications, Houghton Mifflin Company, Boston, 1975.
©2001 CRC Press LLC
1288
CRC Handbook of Materials Science & Engineering
12.1 sel Structure Page 1289 Wednesday, December 31, 1969 17:00
Selecting Structural Properties
Table 338. SELECTING
ATOMIC RADII OF THE ELEMENTS* (SHEET 2 OF 3)
Atomic Number
Symbol
Atomic Radius (nm)
53 46 74 75
I Pd W Re
0.136 0.137 0.137 0.138
78 92 84 13
Pt U Po Al
0.138 0.138 0.140 0.143
41 52 47 79
Nb Te Ag Au
0.143 0.143 0.144 0.144
22 73 48 80
Ti Ta Cd Hg
0.147 0.147 0.150 0.150
3 49 40 50
Li In Zr Sn
0.152 0.157 0.158 0.158
72 10 12 21
Hf Ne Mg Sc
0.159 0.160 0.160 0.160
51 81 71 69
Sb Tl Lu Tm
0.161 0.171 0.173 0.174
Source: After a tabulation by R. A. Flinn and P. K. Trojan, Engineering Materials and Their Applications, Houghton Mifflin Company, Boston, 1975.
©2001 CRC Press LLC
Shackelford & Alexander
1289
12.1 sel Structure Page 1290 Wednesday, December 31, 1969 17:00
Selecting Structural Properties
Table 338. SELECTING
ATOMIC RADII OF THE ELEMENTS* (SHEET 3 OF 3)
Atomic Number
Symbol
Atomic Radius (nm)
68 82 67 65
Er Pb Ho Tb
0.175 0.175 0.176 0.177
66 64 90 39
Dy Gd Th Y
0.177 0.180 0.180 0.181
62 58 60 83
Sm Ce Nd Bi
0.181 0.182 0.182 0.182
59 11 57 18
Pr Na La Ar
0.183 0.186 0.187 0.192
70 20 36 63
Yb Ca Kr Eu
0.193 0.197 0.197 0.204
38 56 54 19
Sr Ba Xe K
0.215 0.217 0.218 0.231
37 55
Rb Cs
0.251 0.265
Source: After a tabulation by R. A. Flinn and P. K. Trojan, Engineering Materials and Their Applications, Houghton Mifflin Company, Boston, 1975. *
The ionic radii are based on the calculations of V. M. Goldschmidt, who assigned radii based on known interatomic distances in various ionic crystals.
©2001 CRC Press LLC
1290
CRC Handbook of Materials Science & Engineering
12.1 sel Structure Page 1291 Wednesday, December 31, 1969 17:00
Selecting Structural Properties
Table 339. SELECTING IONIC RADII OF THE (SHEET 1 OF 5) Ion
ELEMENTS*
Ionic Radius (nm)
N5+ C4+
0.01–0.2
B3+
0.02
P5+
0.03–0.04
Cr6+
0.03–0.04
6+
0.03–0.04
6+
0.034
4+
0.039
V5+
0.04
Se S
Si
<0.02
5+
~0.04
4+
0.044
2+
Pd
0.050
Mn4+
0.052
As
Ge
2+
0.052
2+
0.054
4+
Pt
0.055
Al3+
0.057
4+
0.061
3+
0.062
7+
0.062
Ti4+
0.064
3+
0.064
3+
0.065
3+
0.065
Pt
Be
V
Ga At
Cr V
Co
Source: After a tabulation by R. A. Flinn and P. K. Trojan, Engineering Materials and Their Applications, Houghton Mifflin Company, Boston, 1975.
©2001 CRC Press LLC Shackelford & Alexander
1291
12.1 sel Structure Page 1292 Wednesday, December 31, 1969 17:00
Selecting Structural Properties
Table 339. SELECTING IONIC RADII OF THE (SHEET 2 OF 5)
ELEMENTS*
Ion
Ionic Radius (nm)
Mo6+
0.065
4+
0.065
4+
0.065
6+
W
0.065
Ir4+
0.066
2+
0.067
4+
0.067
6+
0.067
Mo4+
0.068
3+
0.068
5+
0.068
4+
0.068
Ti3+
0.069
3+
0.069
5+
0.069
3+
Mn
0.070
Re4+
0.072
4+
0.074
4+
0.074
2+
0.076
Li+
0.078
Ru
Rh
Fe
Os Po
Rh Ta
W
As
Nb
Nb Sn Ti
2+
0.078
2+
0.078
2+
0.082
Mg Ni
Co
Source: After a tabulation by R. A. Flinn and P. K. Trojan, Engineering Materials and Their Applications, Houghton Mifflin Company, Boston, 1975.
©2001 CRC Press LLC
1292
CRC Handbook of Materials Science & Engineering
12.1 sel Structure Page 1293 Wednesday, December 31, 1969 17:00
Selecting Structural Properties
Table 339. SELECTING IONIC RADII OF THE (SHEET 3 OF 5)
ELEMENTS*
Ion
Ionic Radius (nm)
Sc2+
0.083
2+
0.083
4+
0.084
4+
Pb
0.084
Fe2+
0.087
Zn Hf
4+
0.087
4+
Te
0.089
Tb4+
0.089
Sb3+
0.090
2+
0.091
Zr
Mn In
3+
0.091
5+
0.094
Cu+
0.096
+
0.098
3+
0.099
4+
0.100
Yb3+
0.100
4+
0.102
2+
0.103
3+
0.104
Tm3+
0.104
3+
0.105
I
Na Lu Pr
Ce
Cd Er
Ho
4+
0.105
2+
0.106
U
Ca
Source: After a tabulation by R. A. Flinn and P. K. Trojan, Engineering Materials and Their Applications, Houghton Mifflin Company, Boston, 1975.
©2001 CRC Press LLC Shackelford & Alexander
1293
12.1 sel Structure Page 1294 Wednesday, December 31, 1969 17:00
Selecting Structural Properties
Table 339. SELECTING IONIC RADII OF THE (SHEET 4 OF 5)
ELEMENTS*
Ion
Ionic Radius (nm)
Y3+
0.106
3+
0.106
3+
0.106
3+
Dy
0.107
Tb3+
0.109
Pm Tl
4+
0.110
3+
Gd
0.111
Hg2+
0.112
Ag+
0.113
Th
3+
0.113
3+
0.113
3+
Nd
0.115
Pr3+
0.116
3+
0.118
Sm Eu
Ce
3+
0.118
3+
Bi
0.120
La3+
0.122
2+
0.127
Ac
Sr
2+
0.13
2–
0.132
Pb2+
0.132
–
0.133
+
0.133
+
0.137
Ba O
F
K
Au
Source: After a tabulation by R. A. Flinn and P. K. Trojan, Engineering Materials and Their Applications, Houghton Mifflin Company, Boston, 1975.
©2001 CRC Press LLC
1294
CRC Handbook of Materials Science & Engineering
12.1 sel Structure Page 1295 Wednesday, December 31, 1969 17:00
Selecting Structural Properties
Table 339. SELECTING IONIC RADII OF THE (SHEET 5 OF 5)
ELEMENTS*
Ion
Ionic Radius (nm)
Rb+
0.149
+
0.149
+
0.152
–
H
0.154
Cs+
0.165
2–
0.174
+
0.180
–
0.181
Se2–
0.191
–
0.196
4–
0.198
2–
0.211
Sn4–
0.215
4–
0.215
–
0.220
Tl
Ra
S
Fr
Cl
Br Si
Te
Pb I
Source: After a tabulation by R. A. Flinn and P. K. Trojan, Engineering Materials and Their Applications, Houghton Mifflin Company, Boston, 1975. *
The ionic radii are based on the calculations of V. M. Goldschmidt, who assigned radii based on known interatomic distances in various ionic crystals.
©2001 CRC Press LLC
Shackelford & Alexander
1295
12.1 sel Structure Page 1296 Wednesday, December 31, 1969 17:00
Selecting Structural Properties
Table 340. SELECTING
BOND LENGTHS BETWEEN ELEMENTS (SHEET 1 OF 2)
Elements
Compound
Bond length (Å)
O-H
H2O2
0.960
±
0.005
O-H N-H N-N
OD HNCS N 3H
0.9699 1.013
±
0.005
1.02
±
0.01
O-H
[OH]+
1.0289
N-H
]+
1.034
±
0.003
N-H N-H
[NH4 NH ND
N=O
[NO]+
1.0619
N-N
[N2]+
1.116
1.038 1.041
N-N
N2O
N=O
N2O
1.126 1.186
± ±
0.002 0.002
N-O B-O B-H
NO2 BO Hydrides
1.188
±
0.005
1.2049 1.21
±
.02
O-O
[O2
]+
1.227
N-O
NO2Cl
1.24
±
0.01
1.26
±
0.2
±
0.01
± ±
0.02 0.005 (av)
]-
O-O B-F B-F
[O2 BF BF3
S-D S-D N-F B-O
SD2 SD NF3 B(OH)3
1.262
1.29 1.345 1.3473
1.36 1.362
To convert Å to nm, multiply by 10-1 Source: from Kennard, O., in Handbook of Chemistry and Physics, 69th ed., Weast, R. C., Ed., CRC Press, Boca Raton, Fla., 1988, F-167.
©2001 CRC Press LLC
1296
CRC Handbook of Materials Science & Engineering
12.1 sel Structure Page 1297 Wednesday, December 31, 1969 17:00
Selecting Structural Properties
Table 340. SELECTING
BOND LENGTHS BETWEEN ELEMENTS (SHEET 2 OF 2)
Elements
Compound
B-H bridge B-N
Hydrides (BClNH)3
P-H
[PH4]+ PD
P-D
Bond length (Å) 1.39
±
.02
1.42 1.42
± ±
.01 0.02
± ± ±
0.02 0.01 0.005
1.49
±
0.02
±
0.003 (av)
±
0.005
1.72
±
0.01
1.770 1.79 1.86 1.87
± ± ± ±
0.013 0.02 0.02 0.02
2.03 2.04 2.17
± ± ±
1.01 (av) 0.01 1.01
2.27 2.30
± ±
0.02 0.02
1.429
S-O S-O O-O Si-H
SO2 SOCl2 H2O2 SiH4
1.4321 1.45 1.48 1.480
O-O P-N Si-O
[O2]- PN
1.4910
Si-F
[SiO]+ SiF4
1.504 1.561
N-Si S-F B-Cl B-Cl
SiN SOF2 BCl BCl3
B-B
B2H6
N-Cl
NO2Cl
P-S B-Br
PSBr3 (Cl3,F3) BBr3
B-Br Si-Cl
BBF SiCl4
S-S Si-Br
S2Cl2 SiBr4
S-Br Si-Si
SOBr2 [Si2Cl2]
1.572
1.585 1.715
1.88
To convert Å to nm, multiply by 10-1 Source: from Kennard, O., in Handbook of Chemistry and Physics, 69th ed., Weast, R. C., Ed., CRC Press, Boca Raton, Fla., 1988, F-167.
©2001 CRC Press LLC
Shackelford & Alexander
1297
12.1 sel Structure Page 1298 Wednesday, December 31, 1969 17:00
Selecting Structural Properties
Table 341. SELECTING Bond
BOND ANGLES BETWEEN ELEMENTS Compound
Bond angle (•)
F-S-F
SOF2
Br-S-Br O-O-H F-N-F
SOBr2 H2O2 NF3
92.8 96 100 102.5
± ± ± ±
1 2 2 1.5
H-N-N’ O-S-O O-B-O Br-B-Br
N3H SO2 B(OH)3 BBr3
112.65 119.54 119.7 120
±
0.5
±
6
Cl- B-Cl F-B-F B-N-B H-B-H
BCl3 BF3 (BClNH)3 B2H6
120 120 121 121.5
±
3
±
7.5
O-N-O H-N-C O-N-O
NO2Cl HNCS NO2
126
±
2
130.25
±
0.25
134.1
±
0.25
Source: from Kennard, O., in Handbook of Chemistry and Physics, 69th ed., Weast, R. C., Ed., CRC Press, Boca Raton, Fla., 1988, F-167.
©2001 CRC Press LLC
1298
CRC Handbook of Materials Science & Engineering
12.1 sel Structure Page 1299 Wednesday, December 31, 1969 17:00
Selecting Structural Properties
Table 342. SELECTING DENSITY OF THE (SHEET 1 OF 3)
ELEMENTS
Element
At. No.
Sym.
Solid Density (Mg/m3)
Lithium Potassium Sodium Calcium
3 19 11 20
Li K Na Ca
0.533 0.862 0.966 1.53
Rubidium Magnesium Phosphorus (White)
37 12
Rb Mg
1.53 1.74
15
P
1.82
Beryllium Cesium Sulfur Carbon
4 55 16 6
Be Ce S C
1.85 1.91 2.09 2.27
Silicon Boron Strontium Aluminum
14 5 38 13
Si B Sr Al
2.33 2.47 2.58 2.7
Scandium Barium Yttrium Titanium
21 56 39 22
Sc Ba Y Ti
2.99 3.59 4.48 4.51
Selenium Iodine Europium Germanium
34 53 63 32
Se I Eu Ge
4.81 4.95 5.25 5.32
Arsenic Gallium Vanadium Lanthanum
33 31 23 57
As Ga V La
5.78 5.91 6.09 6.17
Source: data from James F. Shackelford, Introduction to Materials Science for Engineers, Second Edition, Macmillian Publishing Company, New York, pp.686-688, (1988).
©2001 CRC Press LLC
Shackelford & Alexander
1299
12.1 sel Structure Page 1300 Wednesday, December 31, 1969 17:00
Selecting Structural Properties
Table 342. SELECTING DENSITY OF THE (SHEET 2 OF 3)
ELEMENTS
Element
At. No.
Sym.
Solid Density (Mg/m3)
Tellurium Zirconium Antimony Cerium
52 40 51 58
Te Zr Sb Ce
6.25 6.51 6.69 6.77
Praseodymium Ytterbium Neodymium Zinc
59 70 60 30
Pr Yb Nd Zn
6.78 6.97 7.00 7.13
Chromium Indium Tin Manganese
24 49 50 25
Cr In Sn Mn
7.19 7.29 7.29 7.47
Samarium Iron Gadolinium Terbium
62 26 64 65
Sm Fe Gd Tb
7.54 7.87 7.87 8.27
Dysprosium Niobium Cadmium Cobalt
66 41 48 27
Dy Nb Cd Co
8.53 8.58 8.65 8.8
Holmium Nickel Copper Erbium
67 28 29 68
Ho Ni Cu Er
8.80 8.91 8.93 9.04
Polonium Thulium Bismuth Lutetium
84 69 83 71
Po Tm Bi Lu
9.2 9.33 9.80 9.84
Source: data from James F. Shackelford, Introduction to Materials Science for Engineers, Second Edition, Macmillian Publishing Company, New York, pp.686-688, (1988).
©2001 CRC Press LLC
1300
CRC Handbook of Materials Science & Engineering
12.1 sel Structure Page 1301 Wednesday, December 31, 1969 17:00
Selecting Structural Properties
Table 342. SELECTING DENSITY OF THE (SHEET 3 OF 3)
ELEMENTS
Element
At. No.
Sym.
Solid Density (Mg/m3)
Molybdenum Silver Lead Technetium
42 47 82 43
Mo Ag Pb Tc
10.22 10.50 11.34 11.5
Thorium Thallium Palladium Ruthenium
90 81 46 44
Th Tl Pd Ru
11.72 11.87 12.00 12.36
Rhodium Hafnium Tantalum Uranium
45 72 73 92
Rh Hf Ta U
12.42 13.28 16.67 19.05
Tungsten Gold Plutonium Rhenium
74 79 94 75
W Au Pu Re
19.25 19.28 19.81 21.02
Platinum Iridium Osmium
78 77 76
Pt Ir Os
21.44 22.55 22.58
Source: data from James F. Shackelford, Introduction to Materials Science for Engineers, Second Edition, Macmillian Publishing Company, New York, pp.686-688, (1988).
©2001 CRC Press LLC
Shackelford & Alexander
1301
Shackelford, James F. et al. “Selecting Thermodynamic and Kinetic Properties” Materials Science And Engineering Handbook Ed. James F. Shackelford, et al. Boca Raton: CRC Press LLC, 2001
13.0 sel Thermodynamics Page 1303 Wednesday, December 31, 1969 17:00
CHAPTER 11
List of Tables
Selecting Thermodynamic and Kinetic Properties
Bond Strengths Selecting Bond Strengths in Diatomic Molecules Selecting Bond Strengths of Polyatomic Molecules Heat of Formation Selecting Heat of Formation of Inorganic Oxides Specific Heat Selecting Specific Heat of Elements Selecting Specific Heat of Polymers Melting Points Selecting Melting Points of The Elements Selecting Melting Points of Elements and Inorganic Compounds Selecting Melting Points of Ceramics Heat of Fusion Selecting Heat of Fusion For Elements and Inorganic Compounds Entropy Selecting Entropy of the Elements Diffusion Activation Energy Selecting Diffusion Activation Energy in Metallic Systems
©2001 CRC Press LLC
1303
13.1 sel Thermodynamics Page 1304 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 343. SELECTING
BOND STRENGTHS IN DIATOMIC
MOLECULES * (SHEET 1 OF 18) Molecule
kcal • mol-1
Ar–Ar N–I Mg–I Xe–Xe
0.2 ~.38 ~.68 ~ 0.7
Hg–Tl Cd–Cd Ga–Ga Mn–Mn
1 2.7 3 4
Ga–Ag Hg–Hg Zn–Zn Mg–Mg
4 4.1 7 8?
±3 ± 0.5
O–Xe I–Hg H–Hg F–Xe
9 9 9.5 11
±5
Cs–Cs Rb–Rb K–K Na–Rb
11.3 12.2 12.8 14
Tl–Tl Na–K H–Cd Be–Be
15? 15.2 16.5 17
Br–Hg Ca–Au Na–Na At–At
17.3 18 18.4 19
Range
± 0.2 ±3 ±3
±1
± 0.7 ± 0.1
To convert kcal to KJ, multiply by 4.184. Source: from Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F-204.
©2001 CRC Press LLC
1304
CRC Handbook of Materials Science & Engineering
13.1 sel Thermodynamics Page 1305 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 343. SELECTING
BOND STRENGTHS IN DIATOMIC
MOLECULES * (SHEET 2 OF 18) Molecule
kcal • mol-1
Range
H–Zn As–Se In–In Cl–Hg
20.5 23 23.3 24
± 0.5
Fe–Fe Pb–Pb Li–Li Sc–Sc
24 24 24.55 25.9
±5 ±5 ± 0.14 ±5
Cl–Ti F–Hg Au–Pb Pb–Bi
26 31 31 32
± 2 ±9 ± 23 ±5
Ag–Sn Zn–Se Zn–I Cd–I
32.5 33 33 33
±5 ±3 ±7 ±5
Pd–Pd Ti–Ti Pd–Au In–Sb
33? 34 34.2 36.3
±5 ±5 ± 2.5
I–I Cr –Cu Cr–Cr F–F
36.460 37 <37 37.5
± 0.002 ±5
H–Yb Br–Cd Ba–Au Y–Y
38 ~38 38 38.3
±1
± 2.5 ± 2
± 2.3
± 14
To convert kcal to KJ, multiply by 4.184. Source: from Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F-204.
©2001 CRC Press LLC Shackelford & Alexander
1305
13.1 sel Thermodynamics Page 1306 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 343. SELECTING
BOND STRENGTHS IN DIATOMIC
MOLECULES * (SHEET 3 OF 18) Molecule
kcal • mol-1
Range
H–Sr Co–Cu H–Rb Co–Co
39 39 40 40
±2 ±5 ±5 ±6
H–Ca Cr–Ge Ag–Ag Cu–Ag
40.1 41 41 41.6
±7 ±2 ± 2.2
H–Ba H–Pb Cu–Te Cu–Sn
42 42 42 42.3
±4 ±5 ±9 ±4
H–Cs Br–I H–K Al–Al
42.6 42.8 43.8 44
± 0.9 ± 0.1 ± 3.5
Mn–Au Po–Po H–Ti Fe–Au
44 44.4 45 45
±3 ± 2.3 ±2 ±4
Bi–Bi Bi–Br Cu–Cu Sn–Sn
45 46.336 46.6 46.7
±2 ± 0.001 ± 2.2 ±4
H–Mg O–I Bi–Sn I–Pb
47 47 47 47
± 12 ±7 ± 23 ±9
To convert kcal to KJ, multiply by 4.184. Source: from Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F-204.
©2001 CRC Press LLC
1306
CRC Handbook of Materials Science & Engineering
13.1 sel Thermodynamics Page 1307 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 343. SELECTING
BOND STRENGTHS IN DIATOMIC
MOLECULES * (SHEET 4 OF 18) Molecule
kcal • mol-1
Cu–I H–Na S–Cd Mn–Se
47? 48 48 48
Ni–Cu Y–La Ag–Au S–Zn
48 48.3 48.5 49
Cu–Ge Zn–Te Cl–Cd C–I
49 49? 49.9 50
±5
Fe–Ge Ga–As Cl–I O–Ag
50 50.1 50.5 51
±7 ± 0.3 ± 0.1 ± 20
S–Hg Co–Au Ga–Au Cr–Au
51 51 51 51.3
±3 ± 23 ± 3.5
Al–P In–Te I–Bi Cl–Br
52 52 52 52.3
±3 ±4 ±1 ± 0.2
Au–Au H–Be Cl–Zn N–Xe
52.4 54 54.7 55
± 2.2
Range
±5 ±3 ±5 ± 2.2 ±3
±5
± 4.7
To convert kcal to KJ, multiply by 4.184. Source: from Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F-204.
©2001 CRC Press LLC Shackelford & Alexander
1307
13.1 sel Thermodynamics Page 1308 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 343. SELECTING
BOND STRENGTHS IN DIATOMIC
MOLECULES * (SHEET 5 OF 18) Molecule
kcal • mol-1
Range
Cu–Au Ni–Ni F–Br H–Mn
55.4 55.5 55.9 56
± 2.2 ±5
O–F O–Pd P–Ga Ag–I
56 56 56 56
±9 ±7
Te–Bi Mg–S O–Br H–Li
56 56? 56.2 56.91
±3 ± 0.6 ± 0.01
O–K Co–Ge V–V Te–Eu
57 57 58 58
±8 ±6 ±5 ±4
Cl–Cl Sn–Au La–Ld H–Ag
58.066 58.4 58.6 59
± 0.001 ±4
H–In H–Bi Mg–Au Fe–Br
59 59 59 59
±2 ±7 ± 23 ± 23
Ni–Au Se–in Br–Pb Te–Au
59 59 59 59
±5 ±4 ±9 ± 16
±7
±7
±1
To convert kcal to KJ, multiply by 4.184. Source: from Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F-204.
©2001 CRC Press LLC
1308
CRC Handbook of Materials Science & Engineering
13.1 sel Thermodynamics Page 1309 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 343. SELECTING
BOND STRENGTHS IN DIATOMIC
MOLECULES * (SHEET 6 OF 18) Molecule
kcal • mol-1
Range
F–Cl Ga–Te Sb–Bi Te–Pb
59.9 60 60 60
± 0.1 ± 6 ±1 ±3
O–Rb H–Ni O–Na Ge–Br
(61) 61 61 61
± 20 ±7 ±4 ±7
Sb–Te F–Bi Te–Ho N–F
61 62 62 62.6
±4 ±4 ± 0.8
H–Sn Sr–Au Te–Te Br–Bi
63 63 63.2 63.9
±1 ± 23 ± 0.2 ±1
H–Te Se–Te O–Cl H–As
64 64 64.29 65
±1 ±2 ± 0.03 ±3
Al–Au I–Ti Ge–Ge Si–Co
65 65 65.8 66
±2 ±3 ±4
Ce–Ce O–Zn O–Cd B–B
66 ≤ 66 ≤ 67 ~ 67
±1
±5
To convert kcal to KJ, multiply by 4.184. Source: from Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F-204.
©2001 CRC Press LLC
Shackelford & Alexander
1309
13.1 sel Thermodynamics Page 1310 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 343. SELECTING
BOND STRENGTHS IN DIATOMIC
MOLECULES * (SHEET 7 OF 18) Molecule
kcal • mol-1
Range
Be–Au H–Cr H –Cu C–Br
~ 67 67 67 67
± 12 ±2 ±5
N–Br O–Cs Se–Bi F–I
67 67 67.0 67?
±5 ±8 ± 1.5
Ni–Ge Mn–I H–Al H –Ga
67.3 67.6 68 68
±4 ± 2.3 ±2 ±5
O–Ga Cr–I S–In Th–Th
68 68.6 69 <69
± 15 ± 5.8 ±4
P–S Ca–I Ni–I Cu–Se
70 70 70 70
± 23 ±5 ±9
Ge–Au Br–Ag Ag–Te Nd–Au
70 70 70 70
± 23 ±7 ± 23 ±6
B–Th N–Al Si–Fe H–Si
71 71 71 71.4
± 23 ±6 ± 1.2
To convert kcal to KJ, multiply by 4.184. Source: from Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F-204.
©2001 CRC Press LLC
1310
CRC Handbook of Materials Science & Engineering
13.1 sel Thermodynamics Page 1311 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 343. SELECTING
BOND STRENGTHS IN DIATOMIC
MOLECULES * (SHEET 8 OF 18) Molecule
kcal • mol-1
Range
H–I Sb–Sb N–Sb Si–Ge
71.4 71.5 72 72
± 0.2 ± 1.5 ± 12 ±5
S–Mn S–Cu Cl–Pb Cl–Bi
72 72 72 72
±4 ± 12 ±7 ±1
Se–Eu Se–Pb Na–I H–Se
72 72.4 72.7 73
±4 ±1 ±1 ±1
F–Cd P–W Te–Nd Pr–Au
73 73 73 74
±5 ±1 ±4 ±5
H–N H–Au Si–Pd Si–Au
75 75 75 75
±4 ±3 ±4 ±3
Mg–Br S–Ca S–Sr Cl–Ag
75 75 75 75
± 23 ±5 ±5 ±9
Se–Cd Br–Sb CI–Sn Mn–Br
~75 75 75? 75.1
± 14 ± 23
To convert kcal to KJ, multiply by 4.184. Source: from Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F-204.
©2001 CRC Press LLC
Shackelford & Alexander
1311
13.1 sel Thermodynamics Page 1312 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 343. SELECTING
BOND STRENGTHS IN DIATOMIC
MOLECULES * (SHEET 9 OF 18) Molecule
kcal • mol-1
Range
S–Bi Si–Si Si–Ni Mg–Cl
75.4 76 76 76
± 1.1 ±5 ±4 ±3
Sn–Te Ce–Au Au–U Rb–I
76 76 76 76.7
±1 ±4 ±7 ±1
H–Ge K–I O–In Li–O
76.8 76.8 ≤ 77 78
± 0.2 ± 0.5
Al–U S–Fe Te–Lu Cr–Br
78 78 78 78.4
±7
H–B B–Pd O–Mg Al–S
79 79 79 79
Cl–Sc Cu–Br Se–Se Br–Ti
79 79 79.5 79.8
Se–Ho In–I La–Au H–C
80 80 80 80.9
±6
±4 ±5 ±1 ±5 ±7
±65 ± 0.1 ± 0.4 ±4 ±5
To convert kcal to KJ, multiply by 4.184. Source: from Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F-204.
©2001 CRC Press LLC
1312
CRC Handbook of Materials Science & Engineering
13.1 sel Thermodynamics Page 1313 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 343. SELECTING
BOND STRENGTHS IN DIATOMIC
MOLECULES * (SHEET 10 OF 18) Molecule
kcal • mol-1
Range
S–Te Ga–I O–Bi H–P
81 81 81.9 82
±5 ±2 ± 1.5 ±7
B–Au O–Cu Si–Br Cl–Y
82 82 82 82
±4 ± 15 ± 12 ± 23
Cl–Au Cl–Ra Te–Gd Cl–Ge
82 82 82 82?
± 2 ± 18 ±4
H–S I–Cs S–Pb O–Pt
82.3 82.4 82.7 83
± 2.9 ±1 ± 0.4 ±8
H–Pt O–Ca Cl–Cu Cl–Fe
84 84 84 84?
±9 ±7 ±6
Li–I F–Ag B–Te F–Pb
84.6 84.7 85 85
±2 ± 3.9 ±5 ±2
Cl–Sb Ni–Br Cl–Mn Na–Br
86 86 86.2 86.7
± 12 ±3 ± 2.3 ±1
To convert kcal to KJ, multiply by 4.184. Source: from Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F-204.
©2001 CRC Press LLC
Shackelford & Alexander
1313
13.1 sel Thermodynamics Page 1314 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 343. SELECTING
BOND STRENGTHS IN DIATOMIC
MOLECULES * (SHEET 11 OF 18) Molecule
kcal • mol-1
Range
S–Eu H–Br Cl–Cr O–Co
87 87.4 87.5 88
±4 ± 0.5 ± 5.8 ±5
F–Cu Al–I Be–S O–Ni
88 88 89 89
±9 ± 14 ±5
O–Sb F–Ni Cl–Ni Cl–Ti
89 89 89 89.0
± 20 ±4 ±5 ± 0.5
O–Rh P–Th O–Pb Br–Rb
90 90 90.3 90.4
± 15
K–Br S–Se Te–La As–As
90.9 91 91 91.7
± 0.5 ±5 ±4
Se–Nd Be–Cl B–N C–Cl
92 92.8 93 93
±4 ± 2.2 ± 12
N–Cl O–Sr Ge–Te Br–In
93 93 93 93
± 12 ±6 ±2
± 1.0 ±1
To convert kcal to KJ, multiply by 4.184. Source: from Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F-204.
©2001 CRC Press LLC
1314
CRC Handbook of Materials Science & Engineering
13.1 sel Thermodynamics Page 1315 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 343. SELECTING
BOND STRENGTHS IN DIATOMIC
MOLECULES * (SHEET 12 OF 18) Molecule
kcal • mol-1
Range
O–Fe O–Ir Si–Ru Si–Rh
93.4 ≤ 94 95 95
±2
Cl–Ca Se–Sn O–Mn O–Fe
95 95.9 96 96
±3 ± 1.4 ±8 ±5
S–Ba Br–Cs Cl–Sr Na–Cl
96 96.5 97 97.5
±5 ±1 ±3 ± 0.5
Be–O O–Yb S–Au Se–Lu
98 98 100 100
±7 ± 15 ±6 ±4
B–Ce Li–Br Cl–Rb B–Br
~ l00 100.2 100.7 101
±2 ±1 ±5
O–Se Ga–Br F–Mn Cl–K
101 101 101.2 101.3
±4 ± 3.5 ± 0.5
S–S S–Ho H–O Se–Gd
101.9 102 102.34 103
± 2.5 ±4 ± 0.30 ±4
±5 ±5
To convert kcal to KJ, multiply by 4.184. Source: from Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F-204.
©2001 CRC Press LLC Shackelford & Alexander
1315
13.1 sel Thermodynamics Page 1316 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 343. SELECTING
BOND STRENGTHS IN DIATOMIC
MOLECULES * (SHEET 13 OF 18) Molecule
kcal • mol-1
Range
H–Cl Al–Br Cl–In C–Si
103.1 103.1 103.3 104
±5
H–H F–Cr N–Si N–Se
104.207 104.5 105 105
± 0.001 ± 4.7 ±9 ± 23
F–P Si–Cl F–Sb H–D
105 105 105 105.030
± 23 ± 12 ± 23 ± 0.001
Cl–Ba D–D Cl–Cs F–Ti
106 106.010 106.2 106.4
±3 ± 0.001 ± 1 ± 4.6
B–Ru C–Ce B–Se C–Ge
107 109 110 110
±5 ±7 ±4 ±5
O–Cr F–Mg Si–Ir C–U
110 110 110 111
± 10 ±1 ±5 ±7
N–Ti S–Sn F–Sn Li–Cl
111 111 111.5 111.9
±1 ±3 ±2
To convert kcal to KJ, multiply by 4.184. Source: from Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F-204.
©2001 CRC Press LLC
1316
CRC Handbook of Materials Science & Engineering
13.1 sel Thermodynamics Page 1317 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 343. SELECTING
BOND STRENGTHS IN DIATOMIC
MOLECULES * (SHEET 14 OF 18) Molecule
kcal • mol-1
Range
S– Nd B–Rh B–Pt F–Na
113 114 114 114
±4 ±5 ±4 ±1
S–Sc Ge–Se Se–La Cl–Ga
114 114 114 114.5
±3 ± ±4
O–As O–Mo O–Ru N–As
115 115 115 116
±3 ± 12 ± 15 ± 23
O–Al F–Si F–Ge F–Rb
116 116 116 116.1
±5 ± 12 ±5 ±1
P–P O–O F–K B–Cl
117 118.86 118.9 119
±3 ± 0.04 ± 0.6
Al–Cl O–P F–Cs N–S
119.0 119.6 119.6 ~ 120
±1 ±3 ±1 ±6
Si–Pt Si–Te F–In S–Lu
120 121 121 121
±5 ±9 ±4 ±4
To convert kcal to KJ, multiply by 4.184. Source: from Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F-204.
©2001 CRC Press LLC
Shackelford & Alexander
1317
13.1 sel Thermodynamics Page 1318 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 343. SELECTING
BOND STRENGTHS IN DIATOMIC
MOLECULES * (SHEET 15 OF 18) Molecule
kcal • mol-1
Range
O–Tm S–Pr B–Ir O–S
122 122.7 123 124.69
± 15 ±4 ± 0.03
F–Ca S–Gd F–Eu F–Sm
125 126 126.1 126.9
±5 ±4 ± 4.4 ± 4.4
N–U O–Sn Si–Se S–Y
127 127 127 127
±1 ±2 ±4 ±3
C–F C–Ti F–Pu F–Sr
128 ~128 129 129.5
±5 ±7 ± 1.6
O–Eu F–Nd O–Ba S–Ge
130 130 131 131.7
± 10 ±3 ±6 ± 0.6
C–V O–Sm O–Cm S–U
133 134 ≤ 134 135
H–F Be–F F–Ti S–La
135.9 136 136 137
±8 ±2 ± 0.3 ±2 ±8 ±3
To convert kcal to KJ, multiply by 4.184. Source: from Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F-204.
©2001 CRC Press LLC
1318
CRC Handbook of Materials Science & Engineering
13.1 sel Thermodynamics Page 1319 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 343. SELECTING
BOND STRENGTHS IN DIATOMIC
MOLECULES * (SHEET 16 OF 18) Molecule
kcal • mol-1
Range
S–Ce Li– F N–Th F–Ga
137 137.5 138 138
±3 ±1 ±1 ±4
B–S C–P C–Se C–Rh
138.8 139 139 139
± 2.2 ± 23 ± 23 ±2
F–Ba F–Sc F–Gd O–Os
140.3 141 141. < 142
± 1.6 ±3 ± 46.5
C–C F–Y C–Pt O–Dy
144 144 146 146
±5 ±5 ±2 ± 10
O–Er N–P Si–S C–Ir
147 148 148 149
± 10 ±5 ±3 ±3
O–Ho N–O C–Ru O–V
149 150.8 152 154
± 10 ± 0.2 ±3 ±5
O–Sc O–W O–Ti O–Ge
155 156 158 158.2
±5 ±6 ±8 ±3
To convert kcal to KJ, multiply by 4.184. Source: from Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F-204.
©2001 CRC Press LLC Shackelford & Alexander
1319
13.1 sel Thermodynamics Page 1320 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 343. SELECTING
BOND STRENGTHS IN DIATOMIC
MOLECULES * (SHEET 17 OF 18) Molecule
kcal • mol-1
Range
O–Lu F–Al O–Y O–Gd
159 159 162 162
±8 ±3 ±5 ±6
O–Pu O–Tb O–Nd O–Np
163 165 168 172
± 15 ±8 ±8 ±7
C–S B–F O–Zr O–U
175 180 181 182
±7 ±3 ± 10 ±8
O–Ta O–Pr C–N O–Si
183 183.7 184 184
± 15
O–Hf O–La O–Ce O–Nb
185 188 188 189
± 10 ±5 ±6 ± 10
±1 ±3
To convert kcal to KJ, multiply by 4.184. Source: from Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F-204.
©2001 CRC Press LLC
1320
CRC Handbook of Materials Science & Engineering
13.1 sel Thermodynamics Page 1321 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 343. SELECTING
BOND STRENGTHS IN DIATOMIC
MOLECULES * (SHEET 18 OF 18) Molecule
kcal • mol-1
Range
O–Th B–O N–N C–O
192 192.7 226.8 257.26
± 10 ± 1.2 ± 1.5 ± 0.77
To convert kcal to KJ, multiply by 4.184. Source: from Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F-204. *
The strength of a chemical bond, ∆(R - X), often known as the bond dissociation energy, is defined as the heat of the reaction: RX -> R + X. It is given by: ∆(R - X) = ∆Hf˚(R) + ∆Hf˚(X) - ∆Hf˚(RX). Some authors list bond strengths for 0 K, but here the values for 298K are given because more thermodynamic data are available for this temperature. Bond strengths, or bond dissociation energies, are not equal to, and may differ considerable from, mean bond energies derived solely from thermochemical data on molecules and atoms. The values in this table have usually been measured spectroscopically or by mass spectrometric analysis of hot gases effusing from a Knudsen cell.
©2001 CRC Press LLC
Shackelford & Alexander
1321
13.1 sel Thermodynamics Page 1322 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 344. SELECTING
BOND STRENGTHS OF POLYATOMIC
MOLECULES * Bond
(SHEET 1 OF 6) Strength Kcal • mol –1
NO – NO2 NO2 – NO2 NF2 – NF2 CH3CO2 – O2CCH3
9.5 12.9 21 30.4
± 0.5 ± 0.5 ±1 ±2
C2H5CO2 – O2CC2H5 n -C3H7CO2 – O2Cn –C3H7 Cl – NF2 BH3–BH3
30.4 30.4 32 35
±2 ±2
CH3 –Tl(CH3)2 s -C4H9O – O s –C4H9 (CH3)3CCH2O – OCH2C(CH3)3 CH3O – OCH3
36.4 36.4 36.4 36.9
± 0.6 ±1 ±1 ±1
i –C3H7O – O i –C3H7 n –C3H7O – O n –C3H7 C2H5O – OC2H5 t –C4H9O – O t –C4H9
37.0 37.2 37.3 37.4
±1 ±1 ± 1.2 ±1
C6H5CH2N:N–C6H5CH2 O – N2 i –C3H7 – Hg i –C3H7 CH2 = N2
37.6 40 40.7 41.7
±1
HO – OC(CH3)3 t –C4H9N:N–t –C4H9 F – OCF3 C2H5 – HgC2H5
42.5 43.5 43.5 43.7
± 0.5 ±1
To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–213.
©2001 CRC Press LLC
1322
CRC Handbook of Materials Science & Engineering
13.1 sel Thermodynamics Page 1323 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 344. SELECTING
BOND STRENGTHS OF POLYATOMIC
MOLECULES * Bond
(SHEET 2 OF 6) Strength Kcal • mol –1
s –C4H9N:N–s –C4H9 n –C3H7 – Hg n –C3H7 i –C3H7N:N–i –C3H7 i –C4H9N:N–i –C4H9
46.7 47.1 47.5 49.0
CH3 – Pb(CH3)3 Allyl–O2SCH3 HO – N:CHCH3 C2H5N:N–C2H5
49.4 49.6 49.7 50.0
n –C4H9N:N–n –C4H9 HO – OH NH2 – NHC6H5
50.0 51 51.1
CH3N:N – CH3
52.5
C6H5CH2 – O2SCH3 I – CF3 C6H5CH2 – SCH3
52.9 53.5 53.8
CH3 – CdCH3
54.4
CF3N:N – CF3 Br – OH I – OH Br – CBr3
55.2 56 56 56.2
I – CH3 CH3 – HgCH3
56.3 57.5
O – O2CIF
58.4
ClO3 – ClO4
58.4
±1
±1
±2
±3 ±3 ± 1.8 ±1
To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–213.
©2001 CRC Press LLC Shackelford & Alexander
1323
13.1 sel Thermodynamics Page 1324 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 344. SELECTING
BOND STRENGTHS OF POLYATOMIC
MOLECULES *
(SHEET 3 OF 6) Strength Kcal • mol –1
Bond O – ClO (C6H5CH2)2CH–COOH
59 59.4
CH3 – Ga(CH3)2
59.5
C6H5C(CH3 )(CN) – CH3
59.9
C6H5S – CH3 Cl – OH C6H5CH2 – N(CH3)2
60 60 60.9
C2H5 – NO2
62
1–norbornyl NH2 – N(CH3)2
62.5 62.7
Br – COC6H5
64.2
NH2 – NHCH3
64.8
CF3 – NF2
65
C6H5N(CH2) – CH3
65.2
C6H5CH2CO – CH2C6H5
65.4
C6H5CO – COC6H5
66.4
Br –n –C3F
66.5
CH3 – O2SCH3
66.8
C6H5CH2–n –C3H7
67
C6H5CH2 – O2CCH3
67
CH3CO – COCH3
67.4
C6H5NH–CH3
67.7
C6H5 – HgC6H5
68
C6H5CH2 – COOH
68.1
±3
±3 ±1
± 2.5
± 2.5
± 2.5 ±2
± 2.3
To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–213.
©2001 CRC Press LLC
1324
CRC Handbook of Materials Science & Engineering
13.1 sel Thermodynamics Page 1325 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 344. SELECTING
BOND STRENGTHS OF POLYATOMIC
MOLECULES *
(SHEET 4 OF 6) Strength Kcal • mol –1
Bond C6H5CH2 – NHCH3
68.7
±1
Br – C2F5
68.7
± 1.5 ±2
C6H5CH2–C2H5
69
C6H5CH2 – O2CC6H5
69
CH3–C(CH3)2CH:CH2 Br – CH3 CH3–C(CH3)2CN Br – CF3
69.4 70.0 70.2 70.6
± 1.2 ±2 ± 1.0 ±2
NH2 – NH2
70.8
C6H5CH(CH3) – CH3
71
C6H5CH2 –NH2
71.9
±1
CH3–CH2CN
72.7
±2
Cl – CCl2F I – CN O – NO
73 73 73 73.8
±2 ±1
Cl – COC6H5
74
±3
CF2 = CF2 H–ONO H–pentadien–1,4–yi–3
76.3 78.3 80
±3 ± 0.5 ±1
(CH3)3Si – Si(CH3)3
80.5
SiH3 – SiH3 H–cyclopentadien–1,3–yl–5 Cl – C2F5
81 81.2 82.7
C6H5CO – CF3
±4 ± 1.2 ± 1.7
To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–213.
©2001 CRC Press LLC
Shackelford & Alexander
1325
13.1 sel Thermodynamics Page 1326 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 344. SELECTING
BOND STRENGTHS OF POLYATOMIC
MOLECULES *
(SHEET 5 OF 6) Strength Kcal • mol –1
Bond H–methdllyl Br – CN Cl – CF3 H–OC6H5
83 83 86.1 88
±1 ±1 ± 0.8 ±5
H3C–CH3
88
±2
CH2F – CH2F H–SCH? H–allyl
88 ≥ 88 89
±2 ±1
H–O2H H–SH H–Si(CH3)3
90 90 90
±2 ±2 ±3
H–t–C4H9
92
± 1.2
H–propargyl H–SiH3 H–i–C3H7
93.9 94 95
± 1.2 ±3 ±1
H–s–C4H9
95
±1
H–cyclobutyl CF3 – CF3 Cl – CN H–cyclopropycarbinyl
96.5 96.9 97 97.4
±1 ±2 ±1 ± 1.6
H–C2H5
98
±1
H–n–C3H7 H–cyclopropyl H–ONO2
98 100.7 101.2
±1 ±1 ± 0.5
To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–213.
©2001 CRC Press LLC
1326
CRC Handbook of Materials Science & Engineering
13.1 sel Thermodynamics Page 1327 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 344. SELECTING
BOND STRENGTHS OF POLYATOMIC
MOLECULES * Bond
(SHEET 6 OF 6) Strength Kcal • mol –1
H–CH H–O2Cn–C3H7 F – CH3 H–OCH3
102 103 103 103.6
±2 ±4 ±3 ±1
H–OC2H5 H–CH3
103.9 104 104.7 ≥ 108
±1 ±1 ±1 ±2
H–O2CC2H3
110 110
±2 ±4
H–O2CCH3 H–OH
112 119
±4 ±1
O = PBr3 O = PCl3 O=CO H–ethynyl
119 122 127.2 128
±5 ±5 ± 0.1 ±5
NC–CN O = PF3 O – SO H2C=CH2
128 130 132 172
±1 ±5 ±2 ±2
HC=CH
230
±2
H–OC(CH3)3 H–vinyl H–CH2
To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–213. *
The values refer to a temperature of 298 K and have mostly been determined by kinetic methods. Some have been calculated from formation of the species involved according to equations: D(R–X) = ∆Hf˚ (R•) + ∆Hf˚(X•) – ∆Hf˚ (RX) or D(R–X) = 2∆Hf˚ (R•) – ∆Hf˚ (RR)
©2001 CRC Press LLC Shackelford & Alexander
1327
13.1 sel Thermodynamics Page 1328 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 345. SELECTING
HEAT OF FORMATION OF INORGANIC OXIDES (SHEET 1 OF 9)
Reaction
Temperature Range of Validity
∆H0
6 V(c) + 13/2 O2(g) = V6O13(c) 3 U(l) + 4 O2(g) = U3O8(c) 3 U(α) + 4 O2(g) = U3O8(c) 3 U(γ) + 4 O2(g) = U3O8(c)
298.16–1,000K 1,405–1,500K 298.16–935K 1,045–1,405K
–1,076,340 –869,460 –863,370 –863,230
3 U(β) + 4 O2(g) = U3O8(c)
935–1,045K 298.16–1,700K 298.16–317.4K 298.16–2,000K
–856,720 –745,730 –711,520 –492,790
1,785–2,000K 298.16–1,785K 298.16–1,000K 1,048–1,900K
–463,630 –458,640 –446,090 –440,400
298.16–1,048K 298.16–1,773K 931.7–2,000K 298.16–931.7K
–435,600 –419,600 –407,950 –404,080
298.16–2,000K 298.16–943K 473–1,150K 298.16–473K
–382,050 –381,960 –369,710 –360,660
345–1,818K 209.16–345K 298.16–1,000K 298.16–723K
–345,330 –342,890 –332,400 –304,690
4W(c) + 11/2 O2(g) = W4O11(c) 4 P (white) + 5 O2(g) = P4H10 (hexagonal) 2 Ta(c) + 5/2 O2(g) = Ta2O5(c) 2 Nb(c) + 5/2 O2(g) = Nb2O5(l) 2 Nb(c) + 5/2 O2(g) = Nb2O5(c) 2 Ac(c) + 3/2 O2(g) = Ac2O3(c) 2 Ce(l) + 3/2 O2(g) = Ce2O3(c) 2 Ce(c) + 3/2 O2(g) = Ce2O3(c) 2 Y(c) + 3/2 O2(g) = Y2O3(c) 2 Al(l) + 3/2 O2(g) = Al2O3 (corundum) 2 Al(c) + 3/2 O2(g) = Al2O3 (corundum) 2 Nb(c) + 2 O2(g) = Nb2O4(c) 2 V(c) + 5/2 O2(g) = V2O5(c)
2 Ti(α) + 3/2 O2(g) = Ti2O3(β)
2 Ti(α) + 3/2 O2(g) = Ti2O3(α) 2 V(c) + 2 O2(g) = V2O4(β) 2 V(c) + 2 O2(g) = V2O4(α)
3 Mn(α) + 2 O2(g) = Mn3O4(α) 2 B(c) + 3/2 O2(g) = B2O(c) The ∆Ho values are given in gram calories per mole .
Source: data from CRC Handbook of Materials Science, Vol II, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC
1328
CRC Handbook of Materials Science & Engineering
13.1 sel Thermodynamics Page 1329 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 345. SELECTING
HEAT OF FORMATION OF INORGANIC OXIDES (SHEET 2 OF 9)
Reaction 2 Re(c) + 7/2 07(g) = Re2O7(c) 2 V(c) + 3/2 O2(g) = V2O3(c) 2 B(c) + 3/2 O2(g) = B2O3(gl) 2 Re(c) + 7/2 07(g) = Re2O7(l) Th(c) + O2(g) = ThO2(c)
U(α) + 3/2 O2(g) = UO3 (hexagonal) U(γ) + 3/2 O2(g) = UO3 (hexagonal)
U(β) + 3/2 O2(g) = UO3 (hexagonal) 2 Cr(l) + 3/2 O2(g) = Cr2O3(β) 3 Fe(γ) + 2 O2(g) = Fe3O4(β)
2 Cr(c) + 3/2 O2(g) = Cr2O3(β) 3 Fe(α) + 2 O2(g) = Fe3O4(β)
Hf(c) + O2(g) = HfO2 (monoclinic)
3 Fe(α) + 2 O2(g) = Fe3O4(magnetite) U(l) + O2(g) = UO2(l)
Zr(β) + O2(g) = ZrO2(α) 3 Fe(β) + 2 O2(g) = Fe3O4(β) Zr(α) + O2(g) = ZrO2(α) U(α) + O2(g) = UO2(c) U(γ) + O2(g) = UO2(c)
Zr(β) + O2(g) = ZrO2(β) U(β) + O2(g) = UO2(c)
Ce(l) + O2(g) = CeO2(c) Ce(c) + O2(g) = CeO2(c)
Temperature Range of Validity
∆H0
298.16–569K 298.16–2,000K 298.16–723K 569–635.5K
–301,470 –299,910 –298,670 –295,810
298.16–2,000K 298.16–935K 1,045–1,400K 935–1,045K
–294,350 –294,090 –294,040 –291,870
1,823–2,000K 1,179–1,674K 298.16–1,823K 900–1,033K
–278,030 –276,990 –274,670 –272,300
298.16–2,000K 298.16–900K 1,405–1,500K 1,135–1,478K
–268,380 –268,310 –264,790 –264,190
1,033–1,179K 298.16–1,135K 298.16–935K 1,045–1,405K
–262,990 –262,980 –262,880 –262,830
1.478–2,000K 935–1,045K 1,048–2,000K 298.16–1,048K
–262,290 –260,660 –247,930 –245,490
The ∆Ho values are given in gram calories per mole . Source: data from CRC Handbook of Materials Science, Vol II, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC
Shackelford & Alexander
1329
13.1 sel Thermodynamics Page 1330 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 345. SELECTING
HEAT OF FORMATION OF INORGANIC OXIDES (SHEET 3 OF 9)
Reaction 2 Mn(α) + 3/2 O2(g) = Mn2O3(c) Si(l) + O2(g) = SiO2(l)
Ti(α) + O2(g) = TiO2 (rutile)
Ti(α) + O2(g) = TiO2 (rutile)
2 As(c) + 5/2 O2(g) = As2O5(c) Si(c) + O2(g) = SiO2(α–quartz) Si(c) + O2(g) = SiO2(β–quartz) Si(c) + O2(g) = SiO2(β–cristobalite) Si(c) + O2(g) = SiO2(β–tridymite) Si(c) + O2(g) = SiO2(α–cristobalite) Si(c) + 02(g ) = SiO2(α–tridymite) W(c) + 3/2 O2(g) = WO3(l) 2 Fe(α) + 3/2 O2(g) = Fe2O3(β) 2 Fe(γ) + 3/2 O2(g) = Fe2O3(γ) W(c) + 3/2 O2(g) = WO3(c)
2 Fe(α) + 3/2 O2(g) = Fe2O3(hematite) 2 Fe(β) + 3/2 O2(g) = Fe2O3(β) 2 Fe(β) + 3/2 O2(g) = Fe2O3(γ)
2 Fe(α) + 3/2 O2(g) = Fe2O3(γ) Mo(c) + 3/2 O2(g) = MoO3(c) Mg(g) + 1/2 O2(g) = MgO (periclase) 3 Pb(c) + 2 O2(g) = Pb3O4(c) 2 Sb(c) + 3/2 O2(g) = Sb2O3 (cubic) 2 Sb(c) + 3/2 O2(g) = Sb2O3 (orthorhombic)
Temperature Range of Validity
∆H0
298.16–1,000K 1,883–2,000K 1,150–2,000K 298.16–1,150K
–230,610 –228,590 –228,380 –228,360
298.16–883K 298.16–848K 848–1,683K 523–1,683K
–217,080 –210,070 –209,920 –209,820
390–1,683K 298.16–523K 298.16–390K 1,743–2,000K
–209,350 –207,330 –207,030 –203,140
950–1,033K 1,179–1,674K 298.16–1,743K 298.16–950K
–202,960 –202,540 –201,180 –200,000
1,033–1,050K 1,050–1,179K 1,674–1,800K 298.16–1,068K
–196,740 –193,200 –192,920 –182,650
1,393–2,000K 298.16–600.5K 298.16–842K 298.16–903K
–180,700 –174,920 –169,450 –168,060
The ∆Ho values are given in gram calories per mole . Source: data from CRC Handbook of Materials Science, Vol II, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC
1330
CRC Handbook of Materials Science & Engineering
13.1 sel Thermodynamics Page 1331 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 345. SELECTING
HEAT OF FORMATION OF INORGANIC OXIDES (SHEET 4 OF 9)
Reaction 2 As(c) + 3/2 O2(g) = As2O3 (orthorhombic) Ca(α) + 1/2 O2(g) = CaO(c) Ca(β) + 1/2 O2(g) = CaO(c)
2 As(c) + 3/2 O2(g) = As2O3 (monoclinic) Re(c) + 3/2 O2(g) = ReO3(c) 2 Cs(g) + 3/2 O2(g) = Cs2O3(l) Re(c) + 3/2 O2(g) = ReO3(l) Mg(l) + 1/2 O2(g) = MgO (periclase) Be(c) + 1/2 O2(g) = BeO(c) Mg(c) + 1/2 O2(g) = MgO (periclase) Cr(c) + O2(g) = CrO2 (c) Sr(c) + 1/2 O2(g) = SrO(c) 2 Bi(l) + 3/2 O2(g) = Bi2O3(c) 2 Li(c) + 1/2 O2(g) = Li2O(c) Cr(c) + 3/2 O2(g) = CrO3(c) Cr(c) + 3/2 O2(g) = Cr2O3(l) 2 Bi(c) + 3/2 O2(g) = Bi2O3(c) W(c) + O2(g) = WO2(c)
Ba(α) + 1/2 O2(g) = BaO(c) Ba(β) + 1/2 O2(g) = BaO(c) 2 K(g) + 1/2 O2(g) = K2O(c) Mo(c) + O2(g) = MoO2(c) Ra(c) + 1/2 O2(g) = RaO(c)
Mn(α) + O2(g) = MnO2(c)
Temperature Range of Validity
∆H0
298.16–542K 298.16–673K 673–1,124K 298.16–586K
–154,870 –151,850 –151,730 –150,760
298.16–433K 963–1,500K 433–1,000K 923–1,393K
–149,090 –148,680 –146,750 –145,810
298.16–1,556K 298.16–923K 298.16–1,000K 298.16–1,043K
–144,220 –144,090 –142,500 –142,410
544–1,090K 298.16–452K 298.16–471K 471–600K
–142,270 –142,220 –141,590 –141,580
298.16–544K 298.16–1,500K 298.16–648K 648–977K
–139,000 –137,180 –134,590 –134,140
1,049–1,500K 298.16–2,000K 298.16–1,000K 298.16–1,000K
–133,090 –132,910 –130,000 –126,400
The ∆Ho values are given in gram calories per mole . Source: data from CRC Handbook of Materials Science, Vol II, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC
Shackelford & Alexander
1331
13.1 sel Thermodynamics Page 1332 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 345. SELECTING
HEAT OF FORMATION OF INORGANIC OXIDES (SHEET 5 OF 9)
Reaction Ti(α) + 1/2 O2(g) = TiO(α)
Ti(α) + 1/2 O2(g) = TiO(α) 2 Na(c) + O2(g) = Na2O2(c) 2 Cs(l) + 3/2 O2(g) = Cs2O3(c) 2 Cs(g) + 1/2 O2(g) = Cs2O(l) 2 Cs(c) + 3/2 O2(g) = Cs2O3(c) S(rhombohedral) + 3/2 O2(g) = SO3(c–I) 2 Cs(l) + 3/2 O2(g) = Cs2O3(l) 1/2 S2(g) + 3/2 O2(g) = SO3(g) S(rhombohedral) + 3/2 O2(g) = SO3(c–II) S(rhombohedral) + 3/2 O2(g) = SO3(l) V(c) + 1/2 O2(g) = VO(c) 2 Na(l) + 1/2 O2(g) = Na2O(c) 2 Na(c) + 1/2 O2(g) = Na2O(c)
2 Tl(α) + 3/2 O2(g) = Tl2O3(c) S(monoclinic) + 3/2 O2(g) = SO3(g) S(rhombohedral) + 3/2 O2(g) = SO3(g) S(lλ,µ) + 3/2 O2(g) = SO3(g) C(graphite) + O2(g) = CO2(g) Mn(l) + 1/2 O2(g) = MnO(c) Mn(α) + 1/2 O2(g) = MnO(c) Mn(β) + 1/2 O2(g) = MnO(c) Mn(γ) + 1/2 O2(g) = Mno(c)
Mn(δ) + 1/2 O2(g) = MnO(c)
Temperature Range of Validity
∆H0
1,150–1,264K 298.16–1,150K 298.16–371K 301.5–775K
–125,040 –125,010 –122,500 –113,840
963–1,500K 298.16–301.5K 298.16–335.4K 775–963K
–113,790 –112,690 –111,370 –110,740
298.16–1,500K 298.16–305.7K 298.16–335.4K 298.16–2,000K
–110,420 –108,680 –107,430 –101,090
371–1,187K 298.16–371K 298.16–505.5K 368.6–392K
–100,150 –99,820 –99,410 –95,120
298.16–368.6K 392–718K 298.16–2,000K 1,517–2,000K
–95,070 –94,010 –93,690 –93,350
298.16–1,000K 1,000–1,374K 1,374–1,410K 1,410–1,517K
–92,600 –91,900 –89,810 –89,390
The ∆Ho values are given in gram calories per mole . Source: data from CRC Handbook of Materials Science, Vol II, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC
1332
CRC Handbook of Materials Science & Engineering
13.1 sel Thermodynamics Page 1333 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 345. SELECTING
HEAT OF FORMATION OF INORGANIC OXIDES (SHEET 6 OF 9)
Reaction 2 K(l) + 1/2 O2(g) = K2O(c) 2 K(c) + 1/2 O2(g) = K2O(c) 1/2 S2(g) + O2 (g) = SO2(g) Zn(c) + 1/2 O2(g) = ZnO(c) 2 Rb(l) + 1/2 O2(g) = Rb2O(c) 2 Rb(c) + 1/2 O2(g) = Rb2O(c) 2 Cs(l) + 1/2 O2(g) = Cs2O(c) 2 Cs(c) + 1/2 O2(g) = Cs2O(c) 2 Cs(l) + 1/2 O2(g) = Cs2O(l) D2(g) + 1/2 O2(g) = D2O(l) S(monoclinic) + O2(g) = SO2(g) S(rhombohedral) + O2(g) = SO2(g) H2(g) + 1/2 O2(g) = H2O(l) S(lλ,µ) + O2(g) = SO2(g) Sn(l) + 1/2 O2(g) = SnO(c) Sn(c) + 1/2 O2(g) = SnO(c) 0.947 Fc(β) + 1/2 O2(g) = Fe0.9470(c) Pb(c) + O2(g) = PbO2(c)
0.947 Fe(α) + 1/2 O2(g) = Fe0.9470(c) 0.947 Fe(γ) + 1/2 O2(g) = Fe0.9470(l)
0.947 Fe(δ) + 1/2 O2(g) = Fe0.9470(l) Cd(l) + 1/2 O2(g) = CdO(c)
0.947 Fe(α) + 1/2 O2(g) = Fe0.9470(c) Cd(c) + 1/2 O2(g) = CdO(c)
Temperature Range of Validity
∆H0
336.4–1,049K 298.16–336.4K 298.16–2,000K 298.16–692.7K
–87,380 –86,400 –86,330 –84,670
312.2–750K 298.16–312.2K 301.5–763K 298.16–301.5K
–79,950 –78,900 –76,900 –75,900
763–963K 298.16–374.5K 368.6–392K 298.16–368.6K
–75,370 –72,760 –71,020 –70,980
298.16–373.16K 392–718K 505–1,300K 298.16–505K
–70,600 –69,900 –69,670 –68,600
1,179–1,650K 298.16–600.5K 298.16–1,033K 1,650–1,674K
–66,750 –66,120 –65,320 –64,200
1,803–2,000K 594–1,038K 1,033–1,179K 298.16–594K
–63,660 –63,240 –62,380 –62,330
The ∆Ho values are given in gram calories per mole . Source: data from CRC Handbook of Materials Science, Vol II, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC
Shackelford & Alexander
1333
13.1 sel Thermodynamics Page 1334 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 345. SELECTING
HEAT OF FORMATION OF INORGANIC OXIDES (SHEET 7 OF 9)
Reaction 0.947 Fe(γ) + 1/2 O2(g) = Fe0.9470(l) D2(g) + 1/2 O2(g) = D2O(g) Co(γ) + 1/2 O2(g) = CoO(c) I2(g) + 5/2 O2(g) = I2O5(c) Ni(α) + 1/2 O2(g) = NiO(c) Ni(β) + 1/2 O2(g) = NiO(c)
H2(g) + 1/2 O2(g) = H2O(g)
Co(α,β) + 1/2 O2(g) = CoO(c) Pb(l) + 1/2 O2(g) = PbO (red) Pb(l) + 1/2 O2(g) = PbO (yellow) Bi(l) + 1/2 O2(g) = BiO(c) Pb(c) + 1/2 O2(g) = PbO (red) Pb(c) + 1/2 O2(g) = PbO (yellow) Bi(c) + 1/2 O2(g) = BiO(c)
2 Tl(β) + O2(g) = Tl2O(c)
2 Tl(α) + O2(g) = Tl2O(c) 2 Cu(l) + 1/2 O2(g) = Cu2O(c) I2(l) + 5/2 O2(g) = I2O5(c) I2(c) + 5/2 O2(g) = I2O5(c) Cu(l) + 1/2 O2(g) = CuO(l) Ir(c) + O2(g) = IrO2(c) Cu(l) + 1/2 O2(g) = CuO(c) 2 Al(l) + 1/2 O2(g) = Al2O(g) Cu(c) + 1/2 O2(g) = CuO(c)
Temperature Range of Validity
∆H0
1,647–1,803K 298.16–2,000K 1,400–1,763K 456–500K
–59,650 –58,970 –58,160 –58,020
298.16–633K 633–1,725K 298.16–2,000K 298.16–1,400K
–57,640 –57,460 –56,930 –56,910
600.5–762K 600.5–1,159K 544–1,600K 298.16–600.5K
–53,780 –53,020 –52,920 –52,800
298.16–600.5K 298.16–544K 505.5–573K 298.16–505.5K
–52,040 –50,450 –44,260 –44,110
1,357–1,502K 386.8–456K 298.16–386.8K 1,720–2,000K
–43,880 –43,490 –42,040 –41,060
298.16–1,300K 1,357–1,720K 931.7–2,000K 298.16–1,357K
–39,480 –39,410 –38,670 –37,740
The ∆Ho values are given in gram calories per mole . Source: data from CRC Handbook of Materials Science, Vol II, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC
1334
CRC Handbook of Materials Science & Engineering
13.1 sel Thermodynamics Page 1335 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 345. SELECTING
HEAT OF FORMATION OF INORGANIC OXIDES (SHEET 8 OF 9)
Reaction 2 Cu(l) + 1/2 O2(g) = Cu2O(l) 2 Al(c) + 1/2 O2(g) = Al2O(g) Si(l) + 1/2 O2(g) = SiO(g) C(graphite) + 1/2 O2(g) = CO(g) 2 Hg(l) + 1/2 O2(g) = Hg2O(c) Hg(l) + 1/2 O2(g) = HgO (red) Si(c) + 1/2 O2(g) = SiO(g) P(l) + 1/2 O2(g) = PO(g) P (white) + 1/2 O2(g) = PO(g) 2 Ag(c) + 1/2 O2(g) = Ag2O2(c) 1/2 Se2(g) + 1/2 O2(g) = SeO(g) 2 Ag(c) + O2(g) = Ag2O2(c) 2 Au(c) + 3/2 O2(g) = Au2O3(c) 1/2 S2 (g) + 1/2 O2(g) = SO(g) Al(l) + 1/2 O2(g) = AlO(g) Se(c) + 1/2 O2(g) = SeO(g) Se(l) + 1/2 O2(g) = SeO(g) 2 Cu(c) + 1/2 O2(g) = Cu2O(c) Al(c) + 1/2 O2(g) = AlO(g) Cl2(g) + 1/2 O2(g) = Cl2O(g) S(monoclmic) + 1/2 O2(g) = SO(g) S(rhombohedral) + 1/2 O2(g) = SO(g) S(lλ,µ ) + 1/2 O2(g) = SO(g) 1/2 Cl2(g) + 1/2 O2(g) = ClO(g)
Temperature Range of Validity
∆H0
1,502–2,000K 298.16–931.7K 1,683–2,000K 298.16–2,000K
–37,710 –31,660 –30,170 –25,400
298.16–629.88K 298.16–629.88K 298.16–1,683K 317.4–553K
–22,400 –21,760 –21,090 –9,390
298.16–317.4K 298.16–1,000K 1,027–2,000K 298.16–500K
–9,370 –7,740 –7,400 –6,620
298.16–500K 298.16–2,000K 931.7–2,000K 298.16–490K
–2,160 +3,890 +8,170 +9,280
490–1,027K 298.16–1,357K 298.16–931.7K 298.16–2,000K
+9,420 +10,550 +10,740 +17,770
368.6–392K 298.16–368.6K 392–718K 298.16–1,000K
+19,200 +19,250 +20,320 +33,000
The ∆Ho values are given in gram calories per mole . Source: data from CRC Handbook of Materials Science, Vol II, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC Shackelford & Alexander
1335
13.1 sel Thermodynamics Page 1336 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 345. SELECTING
HEAT OF FORMATION OF INORGANIC OXIDES (SHEET 9 OF 9) Temperature Range of Validity
∆H0
Te(c) + 1/2 O2(g) = TeO(g)
298.16–2,000K 298.16–500K 723–1,360K 298.16–723K
+33,980 +37,740 +39,750 +43,110
V(c) + 1/2 O2(g) = VO(g)
298.16–2,000K
+52,090
Reaction 3/2 O2(g) = O3(g) 2 Cl2(g) + 3/2 O2(g) = ClO(g) Te(l) + 1/2 O2(g) = TeO(g)
The ∆Ho values are given in gram calories per mole . Source: data from CRC Handbook of Materials Science, Vol II, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC
1336
CRC Handbook of Materials Science & Engineering
13.1 sel Thermodynamics Page 1337 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 346. SELECTING
SPECIFIC HEAT OF ELEMENTS (SHEET 1 OF 4) Cp at 25 ˚C
Element
(cal • g-l • K–1)
Radon Thorium Uranium Radium
0.0224 0.0271 0.0276 0.0288
Protactinium Bismuth Polonium Thallium
0.029 0.0296 0.030 0.0307
Gold Osmium Iridium Platinum
0.0308 0.03127 0.0317 0.0317
Tungsten Rhenium Mercury Tantalum
0.0317 0.0329 0.0331 0.0334
Ytterbium Hafnium Lutetium Xenon
0.0346 0.035 0.037 0.0378
Lead Thulium Hollnium Erbium
0.038 0.0382 0.0393 0.0401
See also: Thermodynamic Coefficients of the Elements. Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-144., Kelly, K. K., Bulletin 592, Bureau of Mines, Washington, D. C., 1961.and Hultgren, R., Orr, R L., Anderson, P. D., and Kelly, K. K., Selected Values of Thermodynamic Properties of Metals and Alloys, John Wiley & Sons, New York, (1963).
©2001 CRC Press LLC
Shackelford & Alexander
1337
13.1 sel Thermodynamics Page 1338 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 346. SELECTING
SPECIFIC HEAT OF ELEMENTS (SHEET 2 OF 4) Cp at 25 ˚C
Element
(cal • g-l • K–1)
Dysprosium Europium Samarium Terbium
0.0414 0.0421 0.043 0.0437
Promethium Barium Praseodymium Lanthanum
0.0442 0.046 0.046 0.047
Tellurium Antimony Cerium Neodymium
0.0481 0.049 0.049 0.049
Tin (α) Tin (β) Gadolinium Cadmium
0.0510 0.0530 0.055 0.0555
Indium Silver Cesium Ruthenium
0.056 0.0566 0.057 0.057
Technetium Rhodium Palladium Krypton
0.058 0.0583 0.0584 0.059
Niobium Zirconium Yttrium Strontium
0.064 0.0671 0.068 0.0719
See also: Thermodynamic Coefficients of the Elements. Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-144., Kelly, K. K., Bulletin 592, Bureau of Mines, Washington, D. C., 1961.and Hultgren, R., Orr, R L., Anderson, P. D., and Kelly, K. K., Selected Values of Thermodynamic Properties of Metals and Alloys, John Wiley & Sons, New York, (1963).
©2001 CRC Press LLC
1338
CRC Handbook of Materials Science & Engineering
13.1 sel Thermodynamics Page 1339 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 346. SELECTING
SPECIFIC HEAT OF ELEMENTS (SHEET 3 OF 4) Cp at 25 ˚C
Element
(cal • g-l • K–1)
Selenium (Se2) Germanium Arsenic Rubidium
0.0767 0.077 0.0785 0.0861
Gallium Copper Zinc lodine (I2)
0.089 0.092 0.0928 0.102
Iron (α) Nickel Chromium Cobalt
0.106 0.106 0.107 0.109
Bromine (Br2) Chlorine (Cl2) Manganese, a Vanadium
0.113 0.114 0.114 0.116
Argon Carbon, diamond Titanium Scandium
0.124 0.124 0.125 0.133
Calcium Phosphorus, red, triclinic Silicon Carbon, graphite
0.156 0.160 0.168 0.170
See also: Thermodynamic Coefficients of the Elements. Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-144., Kelly, K. K., Bulletin 592, Bureau of Mines, Washington, D. C., 1961.and Hultgren, R., Orr, R L., Anderson, P. D., and Kelly, K. K., Selected Values of Thermodynamic Properties of Metals and Alloys, John Wiley & Sons, New York, (1963).
©2001 CRC Press LLC Shackelford & Alexander
1339
13.1 sel Thermodynamics Page 1340 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 346. SELECTING
SPECIFIC HEAT OF ELEMENTS (SHEET 4 OF 4) Cp at 25 ˚C
Element
(cal • g-l • K–1)
Sulfur, yellow Potassium Phosphorus, white Fluorine (F2)
0.175 0.180 0.181 0.197
Aluminum Oxygen (O2) Magnesium Boron
0.215 0.219 0.243 0.245
Neon Nitrogen (N2) Sodium Beryllium
0.246 0.249 0.293 0.436
Molybdenum Lithium Manganese (β) Helium
0.599 0.85 1.119 1.24
Hydrogen (H2)
3.41
See also: Thermodynamic Coefficients of the Elements. Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-144., Kelly, K. K., Bulletin 592, Bureau of Mines, Washington, D. C., 1961.and Hultgren, R., Orr, R L., Anderson, P. D., and Kelly, K. K., Selected Values of Thermodynamic Properties of Metals and Alloys, John Wiley & Sons, New York, (1963).
©2001 CRC Press LLC
1340
CRC Handbook of Materials Science & Engineering
13.1 sel Thermodynamics Page 1341 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 347. SELECTING
SPECIFIC HEAT OF POLYMERS (SHEET 1 OF 3)
Polymer
Specific Heat (Btu/lb/•F)
Polymide: Glass reinforced Reinforced polyester moldings: Sheet molding compounds, general purpose Standard Epoxies: High strength laminate Polytrifluoro chloroethylene (PTFCE)
0.15—0.27
Silicone: Woven glass fabric/ silicone laminate Phenylene oxides (Noryl): Standard Standard Epoxies: Filament wound composite Polystyrenes; Molded: Glass fiber -30% reinforced
0.246 0.24 0.24 0.256
Polytetrafluoroethylene (PTFE) Polymide: Unreinforced Reinforced polyester moldings: High strength (glass fibers) Polyphenylene sulfide: Standard
0.25 0.25—0.35 0.25—0.35 0.26
Phenolics; Molded; General: Arc resistant—mineral filled Fluorinated ethylene propylene(FEP) Nylon, Type 6: Type 12 Phenolics; Molded; General: Very high shock: glass fiber filled
0.27—0.37 0.28 0.28 0.28—0.32
PVC–acrylic sheet Phenolics; Molded; General: High shock: chopped fabric or cord filled Polystyrenes; Molded: General purpose Polystyrenes; Molded: High impact
0.293 0.30—0.35 0.30—0.35 0.30—0.35
Polystyrenes; Molded: Medium impact Polyesters: Thermoset Cast; Rigid Vinylidene chloride Polyvinylidene— fluoride (PVDF)
0.30—0.35 0.30—0.55 0.32 0.33
Rubber phenolic—woodflour or flock Styrene acrylonitrile (SAN) Acrylic Moldings: High impact grade Acrylic Moldings: Grades 5, 6, 8
0.33 0.33 0.34 0.35
0.20—0.25 0.21 0.22
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC Shackelford & Alexander
1341
13.1 sel Thermodynamics Page 1342 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 347. SELECTING
SPECIFIC HEAT OF POLYMERS (SHEET 2 OF 3)
Polymer
Specific Heat (Btu/lb/•F)
Acrylics; Cast Resin Sheets, Rods: General purpose, type I Acrylics; Cast Resin Sheets, Rods: General purpose, type II Polyacetal Copolymer: High flow Polyacetal Copolymer: Standard
0.35 0.35 0.35 0.35
Polyacetal: Standard ABS Resins; Molded, Extruded; Low temperature impact Phenolics; Molded; General: woodflour and flock filled ABS Resins; Molded, Extruded; High impact
0.35 0.35—0.38 0.35—0.40 0.36—0.38
ABS Resins; Molded, Extruded; Medium impact ABS Resins; Molded, Extruded; Very high impact ABS Resins; Molded, Extruded; Heat resistant Chlorinated polyvinyl chloride
0.36—0.38 0.36—0.38 0.37—0.39 0.3
Polycarbonate Thermoset Carbonate: Allyl diglycol carbonate Cellulose Acetate; Molded, Extruded; ASTM Grade: H2—1 Cellulose Acetate; Molded, Extruded; ASTM Grade: H4—1
0.3 0.3 0.3—0.42 0.3—0.42
Cellulose Acetate; Molded, Extruded; ASTM Grade: H6—1 Cellulose Acetate; Molded, Extruded; ASTM Grade: MH—1, MH—2 Cellulose Acetate; Molded, Extruded; ASTM Grade: MS—1, MS—2 Cellulose Acetate; Molded, Extruded; ASTM Grade: S2—1
0.3—0.42 0.3—0.42 0.3—0.42 0.3—0.42
Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: H4 Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: MH Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: S2 Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 1
0.3—0.4 0.3—0.4 0.3—0.4 0.3—0.4
Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 3 Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 6 6/10 Nylon: General purpose 6/6 Nylon: General purpose extrusion
0.3—0.4 0.3—0.4 0.3—0.5 0.3—0.5
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1342
CRC Handbook of Materials Science & Engineering
13.1 sel Thermodynamics Page 1343 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 347. SELECTING
SPECIFIC HEAT OF POLYMERS (SHEET 3 OF 3)
Polymer
Specific Heat (Btu/lb/•F)
6/6 Nylon: General purpose molding Standard Epoxies: Cast rigid Polypropylene: General purpose Polypropylene: High impact
0.3—0.5 0.4-0.5 0.45 0.45—0.48
Polyethylenes; Molded, Extruded; Type III: Melt index 0.2—0.9 Polyethylenes; Molded, Extruded; Type III: Melt index 0.l—12.0 Polyethylenes; Molded, Extruded; Type III: Melt index 1.5—15 Nylon, Type 6: Cast
0.46—0.55 0.46—0.55 0.46—0.55 0.4
Nylon, Type 6: General purpose Nylon, Type 6: Type 8 Polyethylenes; Molded, Extruded; Type I: Melt index 0.3—3.6 Polyethylenes; Molded, Extruded; Type I: Melt index 200
0.4 0.4 0.53—0.55 0.53—0.55
Polyethylenes; Molded, Extruded; Type I: Melt index 6—26 Polyethylenes; Molded, Extruded; Type II: Melt index 20 Polyethylenes; Molded, Extruded; Type II: Melt index l.0—1.9
0.53—0.55 0.53—0.55 0.53—0.55
Nylon, Type 6: Type 11
0.58
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
1343
13.1 sel Thermodynamics Page 1344 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 348. SELECTING
MELTING POINTS OF THE ELEMENTS (SHEET 1 OF 4)
At. No.
Element
Sym.
Melting Point (˚C)
2 1 10 9
Helium Hydrogen Neon Fluorine
He H N F
-272.2 -259.14 -248.67 -219.62
8 7 18 36
Oxygen Nitrogen Argon Krypton
O N Ar Kr
-218.4 -209.86 -189.2 -156.6
54 17 86 80
Xenon Chlorine Radon Mercury
Xe Cl Rn Hg
-111.9 -100.98 -71 -38.87
35 56 87 55
Bromine Barium Francium Cesium
Br Ba Fr Ce
-7.2 7.25 ~27 28.4
31 37 15
Gallium Rubidium Phosphorus (White)
Ga Rb P
29.78 38.89 44.1
19 11 16 53
Potassium Sodium Sulfur Iodine
K Na S I
63.65 97.81 112.8 113.5
49 3 34 50
Indium Lithium Selenium Tin
In Li Se Sn
156.61 180.54 217 231.9681
Source: data from James F. Shackelford, Introduction to Materials Science for Engineers, Second Edition, Macmillian Publishing Company, New York, pp.686-688, (1988).
©2001 CRC Press LLC
1344
CRC Handbook of Materials Science & Engineering
13.1 sel Thermodynamics Page 1345 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 348. SELECTING
MELTING POINTS OF THE ELEMENTS (SHEET 2 OF 4)
At. No.
Element
Sym.
Melting Point (˚C)
84 83 85 81
Polonium Bismuth Asatine Thallium
Po Bi At Tl
254 271.3 302 303.5
48 82 30 52
Cadmium Lead Zinc Tellurium
Cd Pb Zn Te
320.9 327.502 419.58 449.5
51 93 94 12
Antimony Neptunium Plutonium Magnesium
Sb Np Pu Mg
630.74 640 641 648.8
13 88 38 58
Aluminum Radium Strontium Cerium
Al Ra Sr Ce
660.37 700 769 798
33 63 70 20
Arsenic Europium Ytterbium Calcium
As Eu Yb Ca
817 822 824 839
57 59 32 47
Lanthanum Praseodymium Germanium Silver
La Pr Ge Ag
920 931 937.4 961.93
95 60 89 79
Americium Neodymium Actinium Gold
Am Nd Ac Au
994 1010 1050 1064.43
Source: data from James F. Shackelford, Introduction to Materials Science for Engineers, Second Edition, Macmillian Publishing Company, New York, pp.686-688, (1988).
©2001 CRC Press LLC Shackelford & Alexander
1345
13.1 sel Thermodynamics Page 1346 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 348. SELECTING
MELTING POINTS OF THE ELEMENTS (SHEET 3 OF 4)
At. No.
Element
Sym.
Melting Point (˚C)
62 61 29 92
Samarium Promethium Copper Uranium
Sm Pm Cu U
1072 ~1080 1083.4 1132
25 4 64 96
Manganese Beryllium Gadolinium Curium
Mn Be Gd Cm
1244 1278 1311 1340
65 66 14 28
Terbium Dysprosium Silicon Nickel
Tb Dy Si Ni
1360 1409 1410 1453
67 27 68 39
Holmium Cobalt Erbium Yttrium
Ho Co Er Y
1470 1495 1522 1523
26 21 69 46
Iron Scandium Thulium Palladium
Fe Sc Tm Pd
1535 1539 1545 1552
91 71 22 90
Protoactinium Lutetium Titanium Thorium
Pa Lu Ti Th
<1600 1659 1660 1750
78 40 24 23
Platinum Zirconium Chromium Vanadium
Pt Zr Cr V
1772 1852 1857 1890
Source: data from James F. Shackelford, Introduction to Materials Science for Engineers, Second Edition, Macmillian Publishing Company, New York, pp.686-688, (1988).
©2001 CRC Press LLC
1346
CRC Handbook of Materials Science & Engineering
13.1 sel Thermodynamics Page 1347 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 348. SELECTING
MELTING POINTS OF THE ELEMENTS (SHEET 4 OF 4)
At. No.
Element
Sym.
Melting Point (˚C)
45 43 72 5
Rhodium Technetium Hafnium Boron
Rh Tc Hf B
1966 2172 2227 2300
44 41 77 42
Ruthenium Niobium Iridium Molybdenum
Ru Nb Ir Mo
2310 2408 2410 2617
73 76 75 74
Tantalum Osmium Rhenium Tungsten
Ta Os Re W
2996 3045 3180 3410
6
Carbon
C
~3550
Source: data from James F. Shackelford, Introduction to Materials Science for Engineers, Second Edition, Macmillian Publishing Company, New York, pp.686-688, (1988).
©2001 CRC Press LLC
Shackelford & Alexander
1347
13.2 sel Thermodynamics Page 1348 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 349. SELECTING
MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 1 OF 12)
Compound
Formula
Melting Point •C
Hydrogen
H2
–259.25
Neon Fluorine Oxygen
Ne F2 O2
–219.6 –218.8
Nitrogen Carbon monoxide Nitric oxide Boron trifluoride
N2 CO NO BF3
Hydrogen chloride Xenon Boron trichloride Chlorine
HCl Xe BCl3 Cl2
–248.6
–210 –205 –163.7
–128.0 –114.3 –111.6
–107.8 –103±5
Nitrous oxide
N2O
Hydrogen sulfide, di– Hydrogen bromide Hydrogen sulfide
H2S2 HBr H2S
–86.96
Sulfur dioxide Silicon tetrachloride Bromine pentafluoride Carbon dioxide
SO2 SiCl4 BrF5 CO2
–73.2 –67.7 –61.4 –57.6
Hydrogen iodide Hydrogen telluride Boron tribromide Hydrogen nitrate
HI H2Te BBr3 HNO3
–50.91
–90.9 –89.7 –85.6
–49.0 –48.8 –47.2
Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 .
©2001 CRC Press LLC
1348
CRC Handbook of Materials Science & Engineering
13.2 sel Thermodynamics Page 1349 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 349. SELECTING
MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 2 OF 12)
Compound
Formula
Mercury Tin chloride,tetra–
Hg SnCl4
Silane, hexafluoro–
Si2F6
Cyanogen
C2N2
Titanium chloride, tetra– Iron pentacarbonyl Arsenic trichloride Nitrogen tetroxide
TiCl4 Fe(CO)5 AsCl3
Bromine Arsenic trifluoride Cyanogen chloride Hydrogen peroxide
Br2 AsF3 CNCl H2O2
–7.2 –6.0
Tungsten hexafluoride Hydrogen oxide (water) Phosphorus oxychloride Deuterium oxide
WF6 H2O POCl3
–0.5 0 1.0 3.78
Antimony pentachloride Seleniumoxychloride Hydrogen sulfate lodine chloride (β) Sulfur trioxide (α) Molybdenum hexafluoride lodine chloride (α) Phosphorus acid, hypo–
N2O4
D2O SbCl5 SeOCl3 H2SO4
ICl SO3 MoF6
ICl H3PO2
Melting Point •C –39
–33.3 –28.6 –27.2 –23.2 –21.2 –16.0 –13.2
–5.2
–0.7
4.0 9.8 10.4 13.8 16.8 17 17.1 17.3
Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 .
©2001 CRC Press LLC
Shackelford & Alexander
1349
13.2 sel Thermodynamics Page 1350 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 349. SELECTING
MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 3 OF 12)
Compound
Formula
Melting Point •C
Rhenium hexafluoride Niobium pentachloride Phosphorus trioxide Cesium
ReF6 NbCl5
19.0 21.l 23.7
Gallium Tin bromide, tetra– Arsenic tribromide Sulfur trioxide (β)
Ga SnBr4 AsBr3
Titanium bromide, tetra– Cesium chloride Rubidium Osmium tetroxide (white)
TiBr4 CsCl Rb OsO4
Phosphoric acid Phosphorus, yellow Phosphoric acid. hypo– Osmium tetroxide (yellow)
H3PO4 P4 H4P2O6 OsO4
Hydrogen selenate
H2SeO4
Sulfur trioxide (γ) Potassium Antimony trichloride
SO3
57.8 62.1
K SbCl3
73.3
Phosphorus acid, ortho– Arsenic pentafluoride Hydrogen fluoride Aluminum bromide
H3PO3 AsF5 HF Al2Br6
P4O6 Cs
SO3
28.3 29
29.8 30.0 32.3 38 38.5 38.9
41.8 42.3 44.1 54.8 55.8
63.4
73.8 80.8 83.11
87.4
Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 .
©2001 CRC Press LLC
1350
CRC Handbook of Materials Science & Engineering
13.2 sel Thermodynamics Page 1351 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 349. SELECTING
MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 4 OF 12)
Compound
Formula
Melting Point •C
Antimony tribromide Sodium lodine Sulfur (monatomic)
SbBr3 Na I2 S
96.8
Tin iodide, tetra– Indium Lithium Potassium thiocyanate
SnI4 In Li KSCN
143.4
Argon Aluminum iodide
Ar Al2I6
190.2
Aluminum chloride Chromium trioxide
Al2Cl6 CrO3
Tantalum pentachloride Thallium nitrate Silver nitrate Selenium
TaCl5 TINO3 AgNO3 Se
206.8 207 209
Bismuth trichloride Tin Tin bromide, di– Mercury bromide
BiCl3 Sn SnBr2 HgBr2
223.8
Tin chloride, di– Lithium nitrate Mercury iodide Sodium chlorate
SnCl2 LiNO3 HgI2 NaClO3
247 250 250 255
Bismuth Thallium carbonate Mercury chloride Zincchloride
Bi Tl2CO3 HgCl2 ZnCl2
273 276.8 283
97.8
112.9 119
156.3 178.8 179
190.9 192.4 197
217
231.7
231.8 241
271
Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 .
©2001 CRC Press LLC
Shackelford & Alexander
1351
13.2 sel Thermodynamics Page 1352 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 349. SELECTING
MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 5 OF 12)
Compound
Formula
Rhenium heptoxide Thallium Iron (III) chloride Rubidium nitrate
Re2O7 Tl Fe2Cl6 RbNO3
Sodium nitrate Arsenic trioxide Cadmium Sodium hydroxide
NaNO3
Sodium thiocyanate Tungsten tetrachloride Lead Potassium nitrate
NaSCN WCl4 Pb KNO3
Silver cyanide Potassium hydroxide Cadmium iodide
AgCN KOH CdI2
Potassium dichromate
K2Cr2O7
Beryllium chloride Cesium nitrate Lead iodide Zinc
BeCl2 CsNO3 PbI2 Zn
404.8 406.8 412
Thallium chloride, mono– Copper (I) chloride Copper (II) chloride Silver bromide
TICl CuCl CuCl2 AgBr
427 429
Lithium iodide Thallium iodide, mono– Boron trioxide
LiI TlI B2O3
Thallium sulfide
Tl2S
As4O6 Cd NaOH
Melting Point •C
296 302.4
303.8 305 310 312.8 320.8 322 323
327 327.3
338 350 360
386.8 398
419.4
430 430 440 440
448.8 449
Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 .
©2001 CRC Press LLC
1352
CRC Handbook of Materials Science & Engineering
13.2 sel Thermodynamics Page 1353 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 349. SELECTING
MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 6 OF 12)
Compound
Formula
Melting Point •C
Tellurium Silver chloride Sodium peroxide Thallium bromide, mono–
Te AgCl Na2O2 TlBr
453 455
Lithium hydroxide Copper(l) cyanide Beryllium bromide Lead bromide
LiOH Cu2(CN)2 BeBr2 PbBr2
Potassium peroxide
K2O2
Antimony trisulfide Lithium bromide Silver iodide
Sb4S6 LiBr Agl
Calcium nitrate Sodium cyanide Cadmium bromide Cadmium chloride
Ca(NO3)2 NaCN CdBr2 CdCl2
560.8
Phosphorus pentoxide Copper (I) iodide Uranium tetrachloride
P4O10 CuI UCl4
569.0
Barium nitrate
Ba(NO3)2
Lithium chloride Europium trichloride Potassium cyanide Antimony
LiCl EuCl3 KCN Sb
Thallium sulfate Rubidium iodide Strontium bromide Magnesium
Tl2SO4 RbI SrBr2 Mg
460 460 462
473 487.8 487.8 490 546.0 552 557
562
567.8 567.8
587
590 594.8 614
622 623 630
632 638
643 650
Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 .
©2001 CRC Press LLC Shackelford & Alexander
1353
13.2 sel Thermodynamics Page 1354 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 349. SELECTING
MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 7 OF 12)
Compound
Formula
Melting Point •C
Manganese dichloride Antimony trioxide
MnCl2
Silver sulfate Aluminum
Ag2SO4 Al
650 655.0 657
Sodium iodide Vanadium pentoxide Iron (II) chloride Rubidium bromide
Nal V2O5 FeCl2 RbBr
Potassium iodide Sodium molybdate
KI Na2MoO4
Sodium tungstate
Na2WO4
Lithium molybdate
Li2MoO4
Barium iodide Magnesium bromide Magnesium chloride Rubidium chloride
BaI2 MgBr2 MgCl2 RbCl
Barium Bismuth trifluoride Molybdenum dichloride Cobalt (II) chloride
Ba BiF3 MoCl2 CoCl2
Zirconium dichloride Calcium bromide Lithium tungstate Potassium bromide
ZrCl2 CaBr2 Li2WO4 KBr
Sodium bromide Strontium Thorium chloride Potassium chloride
NaBr Sr ThCl4 KCl
Sb4O6
658.5 662
670 677 677 682
687 702 705 710.8 711 712 717 725
726.0 726.8 727 727 729.8 742 742 747 757
765 770
Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 .
©2001 CRC Press LLC
1354
CRC Handbook of Materials Science & Engineering
13.2 sel Thermodynamics Page 1355 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 349. SELECTING
MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 8 OF 12)
Compound
Formula
Melting Point •C
Cerium Calcium chloride
Ce CaCl2
Nickel subsulfide Molybdenum trioxide
Ni3S2 MoO3
Sodium chloride Chromium (II) chloride
NaCl CrCl2
Bismuth trioxide Arsenic
Bi2O3 As
Lead fluoride Ytterbium Europium Rubidium fluoride
PbF2 Yb Eu RbF
823
Silver sulfide Barium bromide Mercury sulfate Calcium
Ag2S BaBr2 HgSO4 Ca
841 846.8 850
Sodium carbonate
Na2CO3
Lithium sulfate Strontium chloride Potassium fluoride
Li2SO4 SrCl2 KF
854 857 872
Sodium silicate, di–
Na2Si2O5
Sodium sulfate Lead oxide Lithium fluoride
Na2SO4 PbO LiF
Potassium carbonate Lanthanum Sodium sulfide Praseodymium
K2CO3 La Na2S Pr
775
782 790 795 800
814 815.8 816.8
823 826 833
851
875
884 884 890 896
897 920
920 931
Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 .
©2001 CRC Press LLC Shackelford & Alexander
1355
13.2 sel Thermodynamics Page 1356 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 349. SELECTING
MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 9 OF 12)
Compound
Formula
Melting Point •C
Potassium borate, meta– Germanium Barium chloride Silver
KBO2 Ge BaCl2 Ag
947
Sodium borate, meta–
NaBO2
Sodium pyrophosphate
Na4P2O7
Potassium chromate Sodium phosphate, meta–
K2CrO4 NaPO3
Titanium oxide Sodium fluoride Cadmium sulfate Neodymium
TiO NaF CdSO4 Nd
Vanadium dichloride Nickel chloride Tin oxide Actinium227
VCl2 NiCl2 SnO Ac
Gold Lead molybdate Samarium Potassium sulfate
Au PbMoO4 Sm K2SO4
Copper Lead sulfate
Cu PbSO4
Sodium silicate, meta–
Na2SiO3
Potassium pyro–phosphate
K4P2O7
Sodiumsilicate,aluminum– Cadmium fluoride Lead sulfide Copper (I) sulfide
NaAlSi3O8 CdF2 PbS Cu2S
959
959.8 961
966 970 984 988 991 992
1000 1020
1027 1030 1042 1050±50 1063
1065 1072
1074 1083
1087 1087 1092 1107 1110 1114
1129
Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 .
©2001 CRC Press LLC
1356
CRC Handbook of Materials Science & Engineering
13.2 sel Thermodynamics Page 1357 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 349. SELECTING
MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 10 OF 12)
Compound
Formula
Melting Point •C
Uranium235 Lithium metasilicate Iron (II) sulfide Manganese
U Li2SiO3 FeS Mn
~1133 1177 1195 1220
Magnesium fluoride Iron carbide
MgF2
Copper (I) oxide
Cu2O
Lithium orthosilicate
Li4SiO4
Tungsten dioxide Manganese metasilicate Beryllium Calcium carbonate
WO2 MnSiO3 Be CaCO3
1270 1274
Barium fluoride Calcium sulfate Gadolinium Magnesium sulfate
BaF2 CaSO4 Gd MgSO4
1286.8 1297
Potassium phosphate Barium sulfate Terbium Iron (II) oxide
K3PO4 BaSO4 Tb FeO
1340 1350
Calcium fluoride Strontium fluoride Dysprosium Silicon
CaF2 SrF2 Dy Si
1382 1400
Copper (II) oxide Nickel Holmium
CuO Ni Ho
1446 1452 1461
Fe3C
1221 1226.8 1230 1249
1278
1282
1312
1327
1356 1380
1407 1427
Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 .
©2001 CRC Press LLC Shackelford & Alexander
1357
13.2 sel Thermodynamics Page 1358 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 349. SELECTING
MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 11 OF 12)
Compound
Formula
Melting Point •C
Tungsten trioxide Cobalt Erbium Yttrium
WO3 Co Er Y
1470
Niobium pentoxide Calcium metasilicate Magnesium silicate Iron
Nb2O5 CaSiO3 MgSiO3 Fe
1511 1512 1524
Scandium Thulium Palladium Manganese oxide
Sc Tm Pd Mn3O4
Iron oxide Lutetium Barium phosphate Zinc sulfide
Fe3O4 Lu Ba3(PO4)2 ZnS
1596
Platinum Manganese (II) oxide Titanium Titanium dioxide
Pt MnO Ti TiO2
1770 1784 1800
Thorium Zirconium Tantalum pentoxide Chromium
Th Zr Ta2O5 Cr
Vanadium Barium oxide Zinc oxide Aluminum oxide
V BaO ZnO Al2O3
1490 1496 1504
1530.0 1538 1545 1555
1590
1651
1727 1745
1825 1845 1857
1877 1890 1917 1922.8 1975
2045.0
Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 .
©2001 CRC Press LLC
1358
CRC Handbook of Materials Science & Engineering
13.2 sel Thermodynamics Page 1359 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 349. SELECTING
MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 12 OF 12)
Compound
Formula
Melting Point •C
Vanadium oxide
VO
2077
Hafnium Yttrium oxide
Hf Y2O3
2227
Chromium (III) sequioxide Boron Strontium oxide Niobium
Cr2O3 B SrO Nb
2279
Beryllium oxide Molybdenum Magnesium oxide Osmium
BeO Mo MgO Os
2550.0 2622 2642 2700
Calcium oxide Zirconium oxide Thorium dioxide Tantalum
CaO ZrO2 ThO2 Ta
2715 2952 2996 ± 50
Rhenium Tungsten
Re W
3167±60 3387
2214
2300 2430 2496
2707
Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 .
©2001 CRC Press LLC
Shackelford & Alexander
1359
13.2 sel Thermodynamics Page 1360 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 350. SELECTING
MELTING POINTS OF CERAMICS (SHEET 1 OF 11)
Compound
(K)
TaC NbC VC ZrC
3813 3770 3600 3533
ThO2 TiC Ta2N
3493
ZrB2
3433
3360 3313
TiB2 ZrN TiN CaO
3253
UO2 WB ZrO2
3151
UN
3123
MgO BN SiC Mo2C
3098 3000 2970
2963
SrO ThN WC ThC
2933 2903 2900 2898
CeO2 UC BeO B4C
>2873
3250 3200 3183
3133
3123
2863 2725
2720
Source: data from Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348.
©2001 CRC Press LLC
1360
CRC Handbook of Materials Science & Engineering
13.2 sel Thermodynamics Page 1361 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 350. SELECTING
MELTING POINTS OF CERAMICS (SHEET 2 OF 11)
Compound
(K)
Si3N4 TaSi2
2715 2670
MoB Cr2O3
>2603
VN MoSi2 BaB4 Be3N2
2625
2593
2553 2543 2513
SrB6 AlN CeB6
>2475
CeS
2400
Be2C VB2
>2375 2373
NbN Al2O3
2323
WSi2 BaO SrS MgS ThB4 TaB NbB NiO ZnO BeB2 NbSi2 ThS2
2508 2463
2322 2320 2283 >2275 >2275
>2270 >2270 >2270 2257 2248
>2243 2203 2198
Source: data from Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348.
©2001 CRC Press LLC
Shackelford & Alexander
1361
13.2 sel Thermodynamics Page 1362 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 350. SELECTING
MELTING POINTS OF CERAMICS (SHEET 3 OF 11)
Compound
(K)
In2O3
2183 2168 2123 2113
Cr3C2 CrB2 TiO2 Fe3C Ta2O5 VSi2
2110 2100 2023
CdS
2023
Al4C3 SiO2
2000 1978 >1975 1970
Li2O USi2 SrC2 SrSO4 Fe2O3 BaSO4 CrSi2 MnO ZrS2
>1970 1878 1864 1853 1843 1840
TiSi2
1823 1813
CdO UB2
>1770
CrN Nb2O5
1773 1770
1764
Source: data from Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348.
©2001 CRC Press LLC
1362
CRC Handbook of Materials Science & Engineering
13.2 sel Thermodynamics Page 1363 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 350. SELECTING
MELTING POINTS OF CERAMICS (SHEET 4 OF 11)
Compound
(K)
WO3 SrF2 CaSO4
1744 1736 1723 1710
CeF2 CaF2 BaF2 TaS4 AlF3 MgF2 WS2 Cu2O TiF3 BaS FeS Ca3N2 MoS2 Na2S PbSO4 InF3 Cu2S MgSO4 PbS US2 ThF4
1675 1627 >1575 1564 1535 1523 1508 1475 1473 1468
1468 1458 1453 1443 1443 1400 1397 1387
>1375 1375
Source: data from Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348.
©2001 CRC Press LLC
Shackelford & Alexander
1363
13.2 sel Thermodynamics Page 1364 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 350. SELECTING
MELTING POINTS OF CERAMICS (SHEET 5 OF 11)
Compound
(K)
Mg2Si CdF2
1375 1373 1373
Al2S3 SnO K2SO4 In2S3 FeF3 NiCl3
1353
1342 1323 >1275 1274
NiF2 CdSO4 NaF NiBr2
1273 1273
BaCl2 UF4
1235 1233 1198
Li2S PbO Na2SO4 SnS SrCl2 ZnF2 Li2SO4 KF MnF2 CuF2
1267
1236
1159
1157 1153
1148 1145 1132 1131
1129 1129
Source: data from Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348.
©2001 CRC Press LLC
1364
CRC Handbook of Materials Science & Engineering
13.2 sel Thermodynamics Page 1365 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 350. SELECTING
MELTING POINTS OF CERAMICS (SHEET 6 OF 11)
Compound
(K)
Cu4Si BaBr2
1123 1123 1121
NiSO4 LiF Li3N K2S B2O3 Ag2S PbF2 CeCl3 VF3 NaCl NiS NiI2 MoO3 CaCl2
1119
1118 1113 1098 1098 1095 1095 >1075 1073 1070
1070 1068 1055
FI2 ThCl4 KCl
1048 1043
Al2(SO4)3
1043
CeI3 NaBr Bi2S3
1025
BaI2
1043
1023
1020 1013
Source: data from Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348.
©2001 CRC Press LLC Shackelford & Alexander
1365
13.2 sel Thermodynamics Page 1366 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 350. SELECTING
MELTING POINTS OF CERAMICS (SHEET 7 OF 11)
Compound
(K)
KBr TeO2 CaBr2 BiF3
1006 1003 1000
MgCl2 MgBr2 SnF4 NaC2
987 984 978 973
KI FeBr2 V2O5 FeCl2
958
NaI Ag2SO4 Sb2O3 MnCl2 SrBr2 MgI2 ThBr4 LiCl CuI V2S3 ZrF4 ZnSO4
1008
955 947 945 935
933 928 923 916 <910 883 883 878
>875 873 873
Source: data from Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348.
©2001 CRC Press LLC
1366
CRC Handbook of Materials Science & Engineering
13.2 sel Thermodynamics Page 1367 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 350. SELECTING
MELTING POINTS OF CERAMICS (SHEET 8 OF 11)
Compound
(K)
TiI2 Ba(NO3)2
873 865 854 848
PtCl2 CaI2 BeSO4 UCl4 CdCl2 CdBr2
848 843 841 841
Cd(NO3)2 AgI LiBr SbS3
834
BeF2 BeBr2 UBr4 SnI2
813 793 789 788
BeI2 UI4
783 779
CuBr ZrI4
772
PbCl2 Fe2(SO4)3 Pb(NO3)2 AgCl
831 823
820
777
771 753 743 728
Source: data from Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348.
©2001 CRC Press LLC Shackelford & Alexander
1367
13.2 sel Thermodynamics Page 1368 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 350. SELECTING
MELTING POINTS OF CERAMICS (SHEET 9 OF 11)
Compound
(K)
B2O3 LiI ZnI2
723 722
BeCl2
719 713
InBr3
709
AgF K2O3
703
AgBr
703
CuCl Zr(SO4)2 BiI3
695
Bi(SO4)3 PbI2 ZnBr2 BS4 Sr(NO3)2 PbBr2 SnSO4 PtI2 ZrBr2 ZrCl2 Ca(NO3)2 TeBr2 KNO3
708
683 681 678 675 667 663 643 643 >635 633 >625 623 623 612 610
Source: data from Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348.
©2001 CRC Press LLC
1368
CRC Handbook of Materials Science & Engineering
13.2 sel Thermodynamics Page 1369 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 350. SELECTING
MELTING POINTS OF CERAMICS (SHEET 10 OF 11)
Compound
(K)
SrI2 NaNO3 SnCl2
593 583 581 573
Na2N Cu3N Ag2O SbF3 ZnCl2 WCl6 TaBr5 LiNO3 PtBr2
573 573 565 548 548 538 527 523
PtS2 BiCl3 InCl BiBr3
508 507
TaCl5 SnBr2 InI3 AgNO3
489 488 483 483
Ce(SO4)2 AlCl3
468 465
AlI TeCl2
448
498
491
464
Source: data from Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348.
©2001 CRC Press LLC Shackelford & Alexander
1369
13.2 sel Thermodynamics Page 1370 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 350. SELECTING
MELTING POINTS OF CERAMICS (SHEET 11 OF 11)
Compound
(K)
SbI3 CdI2 MoI4
443 423 373 371
AlBr3 TaF5 SbBr3 SbCl3 TiBr4 MoF6 TiCl4 VCl4
370 370 346 312
BBr3
290 250 245 227
SiF4 BCl3 BF3
183 166 146
Source: data from Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348.
©2001 CRC Press LLC
1370
CRC Handbook of Materials Science & Engineering
13.2 sel Thermodynamics Page 1371 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 351. SELECTING
HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 1 OF 15) Heat of fusion
Compound
Formula
Melting point •C
Hydrogen
H2
–259.25
13.8
28
Neon Oxygen Nitrogen
Ne O2 N2
–248.6
3.83
77.4
–218.8 –210
3.3 6.15
106.3 172.3
Carbon monoxide Fluorine Argon Sulfur (monatomic)
CO F2 Ar S
Hydrogen chloride Boron trifluoride Boron trichloride Cesium
HCl BF3 BCl3 Cs
Rubidium Nitric oxide Mercury Potassium
cal/g
cal/g mole
–205
7.13
199.7
–219.6
6.4
244.0
190.2 119
7.25 9.2
290 295
–114.3
13.0
476.0
–128.0 –107.8
7.0 (4.3)
480 (500)
28.3
3.7
500
Rb NO Hg K
38.9 –163.7 –39 63.4
6.1 18.3 2.7 14.6
525 549.5 557.2 574
Hydrogen bromide Phosphorus, yellow Hydrogen nitrate Sodium
HBr P4 HNO3 Na
–86.96
7.1
575.1
44.1 –47.2
4.8 9.5
600 601
97.8
27.4
630
Hydrogen iodide Boron tribromide Xenon Indium
HI BBr3 Xe In
–50.91
5.4
686.3
–48.8
(2.9)
(700)
–111.6 156.3
5.6 6.8
740 781
For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
Shackelford & Alexander
1371
13.2 sel Thermodynamics Page 1372 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 351. SELECTING
HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 2 OF 15) Heat of fusion
Compound
Formula
Melting point •C
Seleniumoxychloride Thallium Hydrogen fluoride Lithium
SeOCl3 Tl HF Li
9.8
6.1
1010
302.4 83.11 178.8
5.0 54.7 158.5
1030 1094 1100
Sodium sulfide Selenium Lead Gallium
Na2S Se Pb Ga
920
15.4
(1200)
217 327.3 29
15.4 5.9 19.1
1220 1224 1336
Rubidium nitrate Bromine pentafluoride Lithium iodide Hydrogen oxide (water)
RbNO3 BrF5 LiI H2O
305 –61.4
9.1 7.07
1340 1355
440
(10.6)
(1420)
0
79.72
1436
Mercury sulfate Cadmium Deuterium oxide Chlorine
HgSO4 Cd D2O Cl2
Nitrous oxide Zinc Hydrogen telluride Neodymium
N2O Zn H2Te Nd
Tin Tin bromide, di– Tungsten hexafluoride Hydrogen sulfide, di–
Sn SnBr2 WF6 H2S2
cal/g
cal/g mole
850
(4.8)
(1440)
320.8
12.9
1460
3.78 –103+5
75.8 22.8
1516 1531
–90.9
35.5
1563
419.4
24.4
1595
–49.0
12.9
1670
1020
11.8
1700
231.7
14.4
1720
231.8 –0.5 –89.7
(6.1) 6.0 27.3
(1720) 1800 1805
For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
1372
CRC Handbook of Materials Science & Engineering
13.2 sel Thermodynamics Page 1373 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 351. SELECTING
HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 3 OF 15) Heat of fusion
Compound
Formula
Melting point •C
Barium Silicon tetrachloride Lead fluoride Carbon dioxide
Ba SiCl4 PbF2 CO2
725
13.3
1830
–67.7 823 –57.6
10.8 7.6 43.2
1845 1860 1900
Potassium hydroxide Sodium hydroxide Cyanogen
KOH NaOH C2N2 SO2
360 322
(35.3) 50.0
(1980) 2000
–27.2 –73.2
39.6 32.2
2060 2060
16.8 38 1723
25.8 (5.6) 35.0
2060 (2060) 2100
775
27.2
2120
650 430 757
88.9 11.6 25.0
2160 2180 2190
–33.3
8.4
2190
Sulfur dioxide
cal/g
cal/g mole
Sulfur trioxide (α) Titanium bromide, tetra– Silicon dioxide (Cristobalite) Cerium
TiBr4 SiO2 Ce
Magnesium Silver bromide Strontium Tinchloride,tetra–
Mg AgBr Sr SnCl4
Ytterbium Calcium Cyanogen chloride Titanium chloride, tetra–
Yb Ca CNCl TiCl4
823 851 –5.2
12.7 55.7 36.4
2200 2230 2240
–23.2
11.9
2240
Potassium thiocyanate Silver iodide lodine chloride (β) Thallium nitrate
KSCN AgI
179 557
23.1 9.5
2250 2250
ICl
13.8 207
13.3 8.6
2270 2290
SO3
TINO3
For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
Shackelford & Alexander
1373
13.2 sel Thermodynamics Page 1374 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 351. SELECTING
HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 4 OF 15) Heat of fusion
Melting point •C
cal/g
cal/g mole
17.3 41.8 10.4
35.0 9.2 24.0
2310 2340 2360
896
(91.1)
(2360)
2400
Compound
Formula
Phosphorus acid, hypo– Osmium tetroxide (white) Hydrogen sulfate Lithium fluoride
H3PO2 OsO4
Antimony pentachloride Lanthanum Arsenic trichloride Lithium hydroxide
SbCl5 La AsCl3 LiOH
Arsenic trifluoride Europium Molybdenum hexafluoride Molybdenum trioxide
AsF3 Eu MoF6 MoO3
Bismuth Phosphoric acid Aluminum Bromine
Bi H3PO4 Al Br2
Bismuth trichloride Copper (I) iodide Samarium Copper (I) chloride
BiCl3 CuI Sm CuCl
223.8
8.2
2600
587 1072 429
(13.6) 17.3 26.4
(2600) 2600 2620
lodine chloride (α) Praseodymium Silver Silver cyanide
ICl
17.1
16.4
2660
Pr Ag AgCN
931 961 350
19.0 25.0 20.5
2700 2700 2750
H2SO4 LiF
4.0
8.0
920
17.4
2400
–16.0
13.3
2420
462
103.3
2480
–6.0
18.9
2486
826
16.4
2500
17 795
11.9 (17.3)
2500 (2500)
271
12.0
2505
42.3
25.8
2520
658.5
94.5
2550
–7.2
16.1
2580
For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
1374
CRC Handbook of Materials Science & Engineering
13.2 sel Thermodynamics Page 1375 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 351. SELECTING
HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 5 OF 15)
Compound
Formula
Silver nitrate Arsenic pentafluoride Arsenic tribromide Copper (II) oxide
AgNO3 AsF5 AsBr3 CuO
Lead oxide Potassium nitrate
PbO KNO3
Sulfur trioxide (β) Lithium bromide
Heat of fusion
Melting point •C
cal/g
cal/g mole
209 80.8 30.0
16.2 16.5 8.9
2755 2800 2810
1446
35.4
2820
890
12.6
2820
SO3
338 32.3
78.1 36.1
2840 2890
LiBr
552
33.4
2900
Hydrogen peroxide Rubidium iodide Barium fluoride Beryllium chloride
H2O2 Rbl BaF2 BeCl2
–0.7
8.58
2920
638
14.0
2990
1286.8
17.1
3000
404.8
(30)
(3000)
Thallium sulfide
Tl2S SnBr4 SbCl3 Au
449 29.8 73.3
6.8 6.8 13.3
3000 3000 3030
1063
(15.3)
3030
857 247 73.8
27.6 16.0 37.4
3040 3050 3070
1083
49.0
3110
Tin bromide, tetra– Antimony trichloride Gold Lithium sulfate Tin chloride, di– Phosphorus acid, ortho– Copper
Li2SO4 SnCl2 H3PO3 Cu
For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
Shackelford & Alexander
1375
13.2 sel Thermodynamics Page 1376 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 351. SELECTING
HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 6 OF 15) Heat of fusion
Compound
Formula
Melting point •C
Phosphorus oxychloride Thallium iodide, mono– Silver chloride Lithium chloride
POCl3 TlI AgCl LiCl
1.0
20.3
3110
440 455 614
9.4 22.0 75.5
3125 3155 3200
Tellurium Cesium nitrate Iron pentacarbonyl Phosphorus trioxide
Te CsNO3 Fe(CO)5
Silver sulfide
Ag2S
P4O6
Actinium227
Ac
Hydrogen selenate Manganese
H2SeO4 Mn
Magnesium sulfate Potassium cyanide Antimony tribromide Iron
MgSO4 KCN SbBr3 Fe
Cesium chloride Sodium molybdate Cobalt lodine
CsCl Na2MoO4 Co I2
Cadmium iodide Chromium Gadolinium Rubidium bromide
CdI2 Cr Gd RbBr
cal/g
cal/g mole
453
25.3
3230
406.8 –21.2 23.7
16.6 16.5 15.3
3250 3250 3360
841 1050±50 57.8
13.5 (11.0) 23.8
3360 (3400) 3450
1220
62.7
3450
1327
28.9
3500
623
(53.7)
(3500)
96.8
9.7
3510
1530.0
63.7
3560
38.5
21.4
3600
3600
687
17.5
1490
62.1
3640
112.9
14.3
3650
386.8
10.0
3660
1890 1312 677
62.1 23.8 22.4
3660 3700 3700
For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
1376
CRC Handbook of Materials Science & Engineering
13.2 sel Thermodynamics Page 1377 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 351. SELECTING
HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 7 OF 15) Heat of fusion
Melting point •C
cal/g
cal/g mole
~1133 310 197
20 44.2 37.7
3700 3760 3770
1538
84.4
3800
3900
Compound
Formula
Uranium235 Sodium nitrate Chromium trioxide Scandium
NaNO3 CrO3 Sc
Silane, hexaHuoro– Terbium Mercury bromide Osmium tetroxide (yellow)
Si2F6 Tb HgBr2 OsO4
–28.6
22.9
1356
24.6
3900
241 55.8
10.9 15.5
3960 4060
Calcium fluoride Dysprosium Erbium Holmium
CaF2 Dy Er Ho
1382
52.5
4100
1407 1496 1461
25.2 24.5 24.8
4100 4100 4100
Potassium iodide Strontium chloride Yttrium Palladium
Kl SrCl2 Y Pd
Rubidium fluoride Lead sulfide Mercury chloride Calcium bromide
RbF PbS HgCl2 CaBr2
U
Chromium (III) sequioxide
Cr2O3
Lithium molybdate Nickel Vanadium
Li2MoO4 Ni V
682
24.7
4100
872
26.5
4100
1504 1555
46.1 38.6
4100 4120
833 1114
39.5 17.3
4130 4150
276.8 729.8
15.3 20.9
4150 4180
2279 705
27.6 24.1
4200 4200
1452 1917
71.5 (70)
4200 (4200)
For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
Shackelford & Alexander
1377
13.2 sel Thermodynamics Page 1378 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 351. SELECTING
HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 8 OF 15) Heat of fusion
Melting point •C
cal/g
cal/g mole
1400
34.0
4260
427
17.7
4260
657 487.8
(13.7) 11.7
(4280) 4290
Compound
Formula
Strontium fluoride Thallium chloride, mono– Silver sulfate Leadbromide
SrF2 TICl Ag2SO4 PbBr2
Tin iodide, tetra– Sodium cyanide Rubidium chloride Thallium carbonate
SnI4 NaCN RbCl Tl2CO3
143.4
(6.9)
(4330)
562 717
(88.9) 36.4
(4360) 4400
273
9.5
4400
Thulium Sodium thiocyanate Zinc oxide Beryllium bromide
Tm NaSCN ZnO BeBr2
1545 323 1975
26.0 54.8 54.9
4400 4450 4470
487.8
(26.6)
(4500)
Mercury iodide Thorium Lutetium Platinum
HgI2 Th Lu Pt
250
9.9
4500
1845 1651 1770
(<19.8) 26.3 24.1
(<4600) 4600 4700
Antimony Strontium bromide Cadmium sulfate Copper (II) chloride
Sb SrBr2 CdSO4 CuCl2
630
39.1
4770
643 1000 430
19.3 22.9 24.7
4780 4790 4890
Sodium phosphate, meta– Cadmium bromide Iron (II) sulfide Potassium bromide
NaPO3 CdBr2 FeS KBr
988 567.8
(48.6) (18.4)
(4960) (5000)
1195 742
56.9 42.0
5000 5000
For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
1378
CRC Handbook of Materials Science & Engineering
13.2 sel Thermodynamics Page 1379 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 351. SELECTING
HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 9 OF 15)
Compound
Formula
Rhenium hexafluoride Titanium Calcium nitrate Sodium chlorate
ReF6 Ti Ca(NO3)2 NaClO3
Boron Cadmium chloride Sodium iodide Barium chloride
B CdCl2 NaI BaCl2
Cadmium fluoride Copper(l) cyanide
CdF2 Cu2(CN)2
Aluminum bromide
Al2Br6
Boron trioxide
B2O3
Copper (I) sulfide
Cu2S
Thallium sulfate Zirconium Nitrogen tetroxide
Tl2SO4 Zr N2O4
Zinc chloride Lead chloride Potassium borate, meta– Hydrogen sulfide
ZnCl2 PbCl2 KBO2 H2S
Melting point •C
Heat of fusion cal/g
cal/g mole
19.0
16.6
5000
1800
(104.4)
(5000)
560.8 255
31.2 49.7
5120 5290
2300
(490)
(5300)
567.8
28.8
5300
662
35.1
5340
959.8
25.9
5370
1110 473 87.4 448.8
(35.9) (30.1) 10.1 78.9
(5400) (5400) 5420 5500
1129 632
62.3 10.9
5500 5500
1857
(60)
(5500)
–13.2
60.2
5540
283 497.8 947 –85.6
(406) 20.3 (69.1) 16.8
(5540) 5650 (5660) 5683
For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
Shackelford & Alexander
1379
13.2 sel Thermodynamics Page 1380 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 351. SELECTING
HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 10 OF 15)
Compound
Formula
Heat of fusion
Melting point •C
cal/g
cal/g mole
790 702 884 460
25.8 19.6 41.0 75.1
5800 5800 5830 5860
Nickel subsulfide
Ni3S2
Sodium tungstate
Na2WO4
Sodium sulfate
Na2SO4
Sodium peroxide
Na2O2
Barium nitrate Magnesium fluoride Lead iodide Thallium bromide, mono–
Ba(NO3)2 MgF2 PbI2 TlBr
594.8 1221 412
(22.6) 94.7 17.9
(5900) 5900 5970
460
21.0
5990
Barium bromide Hafnium Molybdenum dichloride Tungsten tetrachloride
BaBr2 Hf MoCl2 WCl4
846.8
21.9
6000
2214
(34.1)
(6000)
726.8 327
3.58 18.4
6000 6000
Lithium nitrate Calcium chloride Potassium peroxide Sodium bromide
LiNO3 CaCl2
250 782 490
87.8 55 55.3
6060 6100 6100
747
59.7
6140
Bismuth trifluoride
BiF3
Sulfur trioxide (γ) Tin oxide Potassium chloride
SO3
726.0 62.1
(23.3) 79.0
(6200) 6310
SnO KCl
1042 770
(46.8) 85.9
(6400) 6410
K2O2 NaBr
For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
1380
CRC Handbook of Materials Science & Engineering
13.2 sel Thermodynamics Page 1381 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 351. SELECTING
HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 11 OF 15) Heat of fusion
Compound
Formula
Melting point •C
Niobium Potassium fluoride Molybdenum Arsenic
Nb KF Mo As
2496 875 2622 816.8
(68.9) 111.9 (68.4) (22.0)
(6500) 6500 (6600) (6620)
Calcium sulfate
CaSO4
Lithium tungstate Barium iodide Bismuth trioxide
Li2WO4 BaI2
1297 742 710.8 815.8
49.2 (25.6) (17.3) 14.6
6700 (6700) (6800) 6800
Potassium chromate Osmium Sodium carbonate Sodium fluoride
K2CrO4 Os Na2CO3 NaF
Lithium metasilicate Sodium chloride Zirconium dichloride Manganese dichloride
Li2SiO3 NaCl ZrCl2 MnCl2
Cobalt (II) chloride Lithium orthosilicate Tantalum Chromium (II) chloride
CoCl2
Bi2O3
Li4SiO4 Ta CrCl2
cal/g
cal/g mole
984
35.6
6920
2700
(36.7)
(7000)
854
66.0
7000
992
166.7
7000
1177
80.2
7210
800
123.5
7220
727 650
45.0 58.4
7300 7340
727 1249
56.9 60.5
7390 7430
2996 ± 50
34.6–41.5
(7500)
814
65.9
7700
For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC Shackelford & Alexander
1381
13.2 sel Thermodynamics Page 1382 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 351. SELECTING
HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 12 OF 15)
Compound
Formula
Iron (II) oxide Iron (II) chloride
FeO FeCl2
Potassium carbonate Rhenium
K2CO3 Re
Aluminum iodide
Al2I6
Arsenic trioxide Europium trichloride Vanadium dichloride
As4O6 EuCl3 VCl2
Magnesium chloride Potassium sulfate Manganese metasilicate Germanium
K2SO4 MnSiO3 Ge
Magnesium bromide Phosphoric acid. hypo– Niobium pentachloride Tungsten
H4P2O6 NbCl5 W
Sodium silicate, di– Sodium borate, meta– Potassium dichromate Potassium phosphate
MgCl2
MgBr2
Na2Si2O5 NaBO2 K2Cr2O7 K3PO4
Heat of fusion
Melting point •C
cal/g
cal/g mole
1380
(107.2)
(7700)
677 897
61.5 56.4
7800 7800
3167±60
(42.4)
(7900)
190.9 312.8 622 1027
9.8 22.2 (20.9) 65.6
7960 8000 (8000) 8000
712 1074 1274
82.9 46.4 (62.6)
8100 8100 (8200)
959
(114.3)
(8300)
711 54.8 21.1
45.0 51.2 30.8
8300 8300 8400
3387
(45.8)
(8420)
884 966 398 1340
46.4 134.6 29.8 41.9
8460 8660 8770 8900
For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
1382
CRC Handbook of Materials Science & Engineering
13.2 sel Thermodynamics Page 1383 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 351. SELECTING
HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 13 OF 15) Melting point •C
Heat of fusion
Compound
Formula
Tantalum pentachloride Zinc sulfide Silicon Lead sulfate
TaCl5 ZnS Si PbSO4
206.8
25.1
9000
1745 1427
(93.3) 337.0
(9100) 9470
1087
31.6
9600
Barium sulfate Sodium silicate, meta– Uranium tetrachloride Antimony trisulfide
BaSO4 Na2SiO3 UCl4
1350 1087 590 546.0
41.6 84.4 27.1 33.0
9700 10300 10300 11200
Titanium dioxide Calcium oxide Iron carbide Calcium carbonate
TiO2 CaO Fe3C CaCO3
1825
(142.7)
(11400)
2707
(218.1)
(12240)
1226.8 1282
68.6 (126)
12330 (12700)
Manganese (II) oxide Sodiumsilicate, aluminum– Calcium metasilicate Copper (I) oxide
MnO NaAlSi3O8 CaSiO3
1784
183.3
13000
1107 1512 1230
50.1 115.4 (93.6)
13150 13400 (13400)
Sodium pyrophosphate Barium oxide Tungsten dioxide Tungsten trioxide
Na4P2O7 BaO WO2 WO3
(13700)
Sb4S6
Cu2O
cal/g
cal/g mole
970
(51.5)
1922.8
93.2
13800
1270 1470
60.1 60.1
13940 13940
For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
Shackelford & Alexander
1383
13.2 sel Thermodynamics Page 1384 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 351. SELECTING
HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 14 OF 15) Heat of fusion
Melting point •C
cal/g
cal/g mole
1092
42.4
14000
991
219
14000
1524
146.4
14700
2077
224.0
15000
296 670
30.1 85.5
15340 15560
2430 2550.0
161.2 679.7
16700 17000
17080 18470
Compound
Formula
Potassium pyro–phosphate Titanium oxide Magnesium silicate Vanadium oxide
K4P2O7 TiO MgSiO3 VO
Rhenium heptoxide
Re2O7
Vanadium pentoxide Strontium oxide Beryllium oxide
V2O5 SrO BeO
Phosphorus pentoxide
P4O10 NiCl2 MgO Ba3(PO4)2
569.0 1030
60.1 142.5
2642
459.0
18500
1727
30.9
18600
Aluminum chloride
Al2Cl6
Iron (III) chloride Zirconium oxide Thorium chloride
Fe2Cl6 ZrO2 ThCl4
192.4 303.8 2715 765
63.6 63.2 168.8 61.6
19600 20500 20800 22500
Niobium pentoxide
Nb2O5
Yttrium oxide Lead molybdate Aluminum oxide
Y2O3 PbMoO4
1511 2227 1065 2045.0
91.0 110.7 70.8 (256.0)
24200 25000 (25800) (26000)
Nickel chloride Magnesium oxide Barium phosphate
Al2O3
For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973)
©2001 CRC Press LLC
1384
CRC Handbook of Materials Science & Engineering
13.2 sel Thermodynamics Page 1385 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 351. SELECTING
HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 15 OF 15)
Compound
Formula
Antimony trioxide
Sb4O6
Heat of fusion
Melting point •C
cal/g
cal/g mole
(46.3) 142.5 (170.4)
(26990) 33000 (39000)
108.6 1102.0
48000 291100
Iron oxide
Fe3O4
Manganese oxide
Mn3O4
655.0 1596 1590
Tantalum pentoxide Thorium dioxide
Ta2O5 ThO2
1877 2952
For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973) *
Values in parentheses are of uncertain reliability.
©2001 CRC Press LLC
Shackelford & Alexander
1385
13.2 sel Thermodynamics Page 1386 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 352. SELECTING ENTROPY OF THE (SHEET 1 OF 3)
ELEMENTS
Element
Phase
Entropy at 298K (e.u.)
C B Be Si
solid solid solid solid
1.3609 1.42 2.28 4.50
Cr Fe Li Al
solid solid, α solid solid
Co Mo Ru V
solid, α solid solid, α solid
6.83
Ni Ti Mn Rh
solid, α solid, α solid, α solid
7.137 7.334 7.59
S Mg Os Cu
solid, α solid solid solid
7.62
Tc W Nb As
solid solid solid solid
8.0 8.0 8.3 8.4
Ir Re Pd Sc
solid solid solid solid
8.7 8.89 8.9 9.0
5.68
6.491 6.70 6.769
6.8 6.9 7.05
7.6
7.77 7.8 7.97
Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44.
©2001 CRC Press LLC
1386
CRC Handbook of Materials Science & Engineering
13.2 sel Thermodynamics Page 1387 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 352. SELECTING ENTROPY OF THE (SHEET 2 OF 3)
ELEMENTS Entropy at 298K (e.u.)
Element
Phase
Zr Ga Ca Zn
solid, α solid solid, α solid
9.29
Pt Ge Se Ag
solid solid solid solid
10.0 10.1 10.144 10.20
Sb Y Au Te
solid (α, β, γ) solid solid solid, α
10.5
U Cd Sn Na
solid, α solid solid (α, β) solid
12.03
Th Ac Am Po
solid solid solid solid
12.76 13 13 13
Pu Sr Hf Pa
solid solid solid solid
13.0 13.0 13.1 13.5
Pr Bi La Ce
solid solid solid solid
13.5 13.6 13.7 13.8
9.82
9.95 9.95
11 11.32
11.88
12.3
12.3 12.31
Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44.
©2001 CRC Press LLC
Shackelford & Alexander
1387
13.2 sel Thermodynamics Page 1388 Wednesday, December 31, 1969 17:00
Selecting Thermodynamic and Kinetic Properties
Table 352. SELECTING ENTROPY OF THE (SHEET 3 OF 3)
ELEMENTS
Element
Phase
Entropy at 298K (e.u.)
In Nd Np Sm
solid solid solid solid
13.88 13.9 14 15
K Tl Pb Ba
solid solid, α solid solid, α
Rb Ra Hg Cs
solid solid liquid solid
16.6 17 18.46 19.8
H2 P4 N2 F2
gas solid, white gas gas
31.211 42.4 45.767 48.58
O2 Cl2 Ta
gas gas
49.003 53.286
solid
99
15.2
15.4 15.49
16
Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44.
©2001 CRC Press LLC
1388
CRC Handbook of Materials Science & Engineering
13.3 sel Thermodynamics L Page 1389 Wednesday, December 31, 1969 17:00
Table 353. SELECTING
DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 1 OF 33) Activation Energy, Q kcal • mol–1
Frequency Factor, D o
Crystal Form
Purity %
Temperature Range ˚C
P P
99.996 99.999 99.99
25–100 338–415 1.0–77
1.2 2.0 2.21
— 2.0 3.34 x l0–4
P⊥c
99.999
110–260
2.8
2.0 x 10–5
Metal
Tracer
Selenium
Hg203
Zinc Sodium
Cu64
S⊥c
Au198
cm2 • s–1
α-Thallium
Au
Potassium
Au198
P
99.95
5.6–52.5
3.23
1.29 x10–3
α-Thallium
Au198
P||c
99.999
110–260
5.2
5.3 x 10–4
Cobalt
35
198
S Au198
P
99.99
1150–1250
5.4
1.3
β-Thallium
P
99.999
230–310
6.0
5.2 x 10–4
Indium
Au198
Potassium
Na22
Sodium
K42
Sodium
Rb86
S P P P
99.99 99.7 99.99 99.99
25–140 0–62 0–91 0–85
6.7 7.45 8.43 8.49
9 x 10–3 0.058 0.08 0.15
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
13.3 sel Thermodynamics L Page 1390 Wednesday, December 31, 1969 17:00
Table 353. SELECTING
DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 2 OF 33)
Metal
Tracer
Potassium
Rb86
Selenium Lithium Potassium
59
Fe Cu64 K42
Phosphorus
P32
Lead
Au198
Temperature Range ˚C
Activation Energy, Q kcal • mol–1
Frequency Factor, D o
Crystal Form
Purity %
P P
99.95
0.1–59.9 40–100
8.78 8.88
0.090 —
P
99.98
51–120
9.22
0.47
S
99.7
–52–61
9.36
0.16
99.999 99.99 92.5
0–44 190–320 0–98 47–153
9.4 10.0 10.09 10.49
1.07 x 10–3 8.7 x 10–3 0.145 0.21
135–225
11.0
5.8 x 10–3
cm2 • s–1
Sodium
Na
Lithium
Au195
P S P P
Tin
Au198
S||c
110
P||c
99.999
80–250
11.2
2.7 x 10–2
Ag110
S||c P
99.99
25–140 35–140
11.5 11.7
0.11
α-Thallium Indium Selenium
22
Ag
75
Se
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
1.4 x 10–4
13.3 sel Thermodynamics L Page 1391 Wednesday, December 31, 1969 17:00
Table 353. SELECTING
DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 3 OF 33) Activation Energy, Q kcal • mol–1
Frequency Factor, D o
Metal
Tracer
Crystal Form
Purity %
Temperature Range ˚C
α-Thallium
Ag110
P⊥c
99.999
80–250
11.8
3.8 x 10–2
99.999 99.99
230–310 787–990
11.9 12.0
4.2 x 10–2 2.69 x 10–4
135–225
12.3
7.1 x 10–3
cm2 • s–1
β-Thallium γ-Uranium
Ag Fe55
P P
Tin
Ag110
S||c
γ-Uranium
Co60
Lithium
Li6
Lithium
Na22
Indium
Ag110
P P P S⊥c
99.99 99.98 92.5 99.99
783–989 35–178 52–176 25–140
12.57 12.60 12.61 12.8
3.51 x 10–4 0.14 0.41 0.52
Lithium
Ag110
Lithium
72
Ga
Lithium
Zn65 Mo99
92.5 99.98 92.5 99.995
65–161 58–173 60–175 400–630
12.83 12.9 12.98 13.1
0.37 0.21 0.57
Aluminum
P P P P
110
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
1.04 x 10–9
13.3 sel Thermodynamics L Page 1392 Wednesday, December 31, 1969 17:00
Table 353. SELECTING
DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 4 OF 33)
Metal
Tracer
g-Uranium
Mn54
Lithium
Hg203
Lead
Ag110
Lead
Cu64
Tin
Tl204
Lithium
Sn113
Indium
Tl204
Selenium
S35
g-Uranium
Ni63
Aluminum
Ni63
Lithium
In114
Lithium
Cd115
Temperature Range ˚C
Activation Energy, Q kcal • mol–1
Frequency Factor, D o
Crystal Form
Purity %
P P P S
99.99 99.98 99.9
787–939 58–173 200–310 150–320
13.88 14.18 14.4 14.44
1.81 x 10–4 1.04 0.064 0.046
P P S S||c
99.999 99.95 99.99
137–216 108–174 49–157 60–90
14.7 15.0 15.5 15.6
1.2 x 10–3 0.62 0.049 1100
P P P P
99.99 99.99 92.5 92.5
787–1039 360–630 80–175 80–174
15.66 15.7 15.87 16.05
5.36 x10–4 2.9 x 10–8 0.39 2.35
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
cm2 • s–1
13.3 sel Thermodynamics L Page 1393 Wednesday, December 31, 1969 17:00
Table 353. SELECTING
DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 5 OF 33) Activation Energy, Q kcal • mol–1
Frequency Factor, D o
Metal
Tracer
Crystal Form
Purity %
Temperature Range ˚C
a-Praseodymium
Co60
P
99.93
660–780
16.4
4.7 x 10–2
95
cm2 • s–1
γ-Uranium γ–Plutonium
Zr Pu238
P P
800–1000 190–310
16.5 16.7
3.9 x 10–4 2.1 x 10–5
Tin
Au198
S⊥c
135–225
17.7
0.16
a-Zirconium
Cr51
P
99.9
700–850
18.0
1.19 x 10–8
β–Zirconium
Cr51
P
99.9
700–850
18.0
1.19 x 10–8
Lanthanum
La140
99.97
Zinc
Ga72
P S⊥c
690–850 240–403
18.1 18.15
2.2 x 10–2 0.018
Tin
Ag110
Zinc
Ga72
Zinc
Sn113
S⊥c S||c S⊥c
135–225 240–403 298–400
18.4 18.4 18.4
0.18 0.016 0.13
ε-Plutonium
Pu238
P
500–612
18.5
2.0 x 10–2
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
13.3 sel Thermodynamics L Page 1394 Wednesday, December 31, 1969 17:00
Table 353. SELECTING
DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 6 OF 33)
Metal
Tracer
Indium
In114
Indium
114
In
Tellurium
Hg203
Cadmium
Zn65
Zinc
In114
Cadmium
Cd115
Zinc
Sn113
Aluminum
V48
Zinc
In114
Aluminum
95
Nb
Temperature Range ˚C
Activation Energy, Q kcal • mol–1
Frequency Factor, D o
44–144 44–144 270–440 180–300
18.7 18.7 18.7 19.0
3.7 2.7
99.995
271–413 110–283 298–400 400–630
19.10 19.3 19.4 19.6
S⊥c P
99.95
271–413 350–480
19.60 19.65
1.66 x 10–7
99.93
650–780
19.7
4.3 x 10–2
260–413
19.70
0.056
Crystal Form
Purity %
S⊥c S||c P S
99.99 99.99
S||c S S||c P
α-Praseodymium
Au195
P
Zinc
Hg203
S||c
99.99
99.95
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
cm2 • s–1
3.14 x 10–5 0.0016 0.062 0.14 0.15 6.05 x 10–8 0.14
13.3 sel Thermodynamics L Page 1395 Wednesday, December 31, 1969 17:00
Table 353. SELECTING
DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 7 OF 33)
Metal
Tracer
Crystal Form
Silicon
Fe59
S
14
Purity %
Temperature Range ˚C
Activation Energy, Q kcal • mol–1
Frequency Factor, D o
1000–1200
20.0
6.2 x 10–3
cm2 • s–1
β-Titanium β-Praseodymium
C Au195
P P
99.62 99.93
1100–1600 800–910
20.0 20.1
3.02 x 10–3 3.3 x 10–2
Zinc
Cd115
S⊥c
99.999
225–416
20.12
0.117
Zinc
Hg203
20.18 20.2 20.54
0.073
99.995 99.999
260–413 400–630 225–416
1.92 x 10–7 0.114
Zinc
Cd115
S⊥c P S||c
β-Thallium
Tl204
S
99.9
230–280
20.7
0.7
Magnesium
Fe59
Lead
Cd115
99.95 99.999
Na24
400–600 150–320 800–1100
21.2 21.23 21.25
4 x 10–6 0.409
Molybdenum
P S S
2.95 x 10–9
β-Praseodymium
Ag110
P
99.93
800–900
21.5
3.2 x 10–2
Aluminum
103
Pd
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
13.3 sel Thermodynamics L Page 1396 Wednesday, December 31, 1969 17:00
Table 353. SELECTING
DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 8 OF 33) Temperature Range ˚C
Activation Energy, Q kcal • mol–1
Frequency Factor, D o
920–1600 240–418 140–217
21.82 21.9 22.0
3.26 x 10–3 0.13 5.5
Crystal Form
Purity %
99.99 99.999
Co60
P S||c S,P
α-Zirconium
Sn113
P
300–700
22.0
1.0 x 10–8
b–Zirconium
Sn113
Niobium
K42 Tl204
P S
300–700 900 1100
22.0 22.10
1 x 10–8 2.38 x 10–7
Metal
Tracer
b–Zirconium
Co60
Zinc
Zn65
Tin
α-Thallium Aluminum
153
Sm
cm2 • s–1
S⊥c
99.9
135–230
22.6
0.4
P
99.995
450–630
22.88
3.45 x 10–7
Magnesium
Ni63
P
99.95
400 600
22.9
1.2 x 10–5
α-Thallium α-Zirconium
Tl204 V48
S||c P
99.9 99.99
135–230 600–850
22.9 22.9
0.4 1.12 x 10–8
Silicon
Cu64
P
800–1100
23.0
4 x 10–2
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
13.3 sel Thermodynamics L Page 1397 Wednesday, December 31, 1969 17:00
Table 353. SELECTING
DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 9 OF 33) Activation Energy, Q kcal • mol–1
Frequency Factor, D o
0.18
Metal
Tracer
Crystal Form
Purity %
Temperature Range ˚C
Zinc
Zn65
S⊥c
Calcium
Fe59
99.999 99.95
240–418 500–800
23.0 23.3
2.7 x 10–3
δ–Plutonium
Pu238
P
350–440
23.8
4.5 x 10–3
Aluminum
142
Pr
P
99.995
520–630
23.87
3.58 x 10–7
g-Uranium
Cu64
P
99.99
787–1039
24.06
1.96 x 10–3
β-Titanium
P32
P
99.7
950–1600
24.1
3.62x10–3
Copper
Tm170
Lead
Tl205
P P
99.999 99.999
705–950 207–322
24.15 24.33
7.28 x 10–9 0.511
g-Uranium
Cr51
P
99.99
797–1037
24.46
5.37 X 10–3
α-Zirconium
Mo99
P
600–850
24.76
6.22 x 10–8
Germanium
Fe59 Zn65
S
775–930
24.8
0.13
766–603
24.8
0.18
α-Praseodymium
P
99.96
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
cm2 • s–1
13.3 sel Thermodynamics L Page 1398 Wednesday, December 31, 1969 17:00
Table 353. SELECTING
DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 10 OF 33) Activation Energy, Q kcal • mol–1
Frequency Factor, D o
25.0 25.04 25.1 25.2
4.8 x 10–7 5.5 x 10–9 10.7 160
Crystal Form
Purity %
P S S⊥c P
99.995 99.999 99.95
450–630 800–1100 160–226 129–169
Ag110
S
99.99
180–300
25.4
2.21
110
P
99.93
610 730
25.4
0.14
S S||c
99.999 99.998
150–320 181–221
25.52 25.6
0.887 12.2
Metal
Tracer
Aluminum
Nd147
Molybdenum
K42
Tin
Sn113
Lithium
Pb204
Cadmium α-Praseodymium
Temperature Range ˚C
Ag
cm2 • s–1
Lead
Pb204
Tin
114
In
Tin
Sn113 La140
S||c
99.999
160–226
25.6
7.7
P
99.96
800–930
25.7
1.8
114
S⊥c S||c
99.998 99.999
181–221 271–413
25.8 26.0
34.1 0.32
β-Praseodymium Tin
In
Zinc
Ag110
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
13.3 sel Thermodynamics L Page 1399 Wednesday, December 31, 1969 17:00
Table 353. SELECTING
DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 11 OF 33)
Metal
Tracer
Crystal Form
Purity %
Temperature Range ˚C
Copper
Lu177
P
99.999
857–1010
P
β-Praseodymium
166
Ho
Chromium
C14
Aluminum
Ce141
Copper
Eu152
Activation Energy, Q kcal • mol–1
Frequency Factor, D o
26.15
4.3 x 10–9
cm2 • s–1
99.96
800–930
26.3
9.5
P P
99.995
120~1500 450–630
26.5 26.60
9.0 x 10–3 1.9 x 10–6
99.999 99.999 99.995 99.97
750–970 423–609 500–630 1020–1220
26.85 27.0 27.0 27.0
1.17 x 10–7 0.077
Aluminum
Au
Aluminum
La140
Nickel
Sb124
P S P P
b-Praseodymium
Zn65
P
99.96
822–921
27.0
0.63
β–Zirconium
Ta182
P
99.6
900–1200
27.0
5.5 x 10–5
Vanadium
C14
Magnesium
U235
P P
99.7 99.95
845–1130 500–620
27.3 27.4
4.9 x 10–3 1.6 x 10–5
198
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
1.4 x 10–6 1.8 x 10–5
13.3 sel Thermodynamics L Page 1400 Wednesday, December 31, 1969 17:00
Table 353. SELECTING
DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 12 OF 33) Activation Energy, Q kcal • mol–1
Frequency Factor, D o
Metal
Tracer
Crystal Form
Purity %
Temperature Range ˚C
Copper
Tb160
P
99.999
770–980
27.45
8.96 x 10–9
β–Uranium
Co60
P
99.999
692–763
27.45
1.5 x 10–2
Copper
Pm147
Aluminum
In114
P P
99.999 99.99
720–955 400–600
27.5 27.6
3.62 x 10–8 0.123
Copper
Ce141
Zinc
Ag110
Aluminum
Co60
Aluminum
Ag110
P S⊥c S S
99.999 99.999 99.999 99.999
766–947 271–413 369–655 371–655
27.6 27.6 27.79 27.83
2.17 x 10–3 0.45 0.131 0.118
Molybdenum
Cs134
Magnesium
In114
99.99 99.9
Aluminum
Sn113 U233
S P P
1000–1470 472–610 400–600
28.0 28.4 28.5
8.7 x 10–11 5.2 x 10–2 0.245
P
99.99
800–1070
28.5
2.33 x 10–3
γ-Uranium
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
cm2 • s–1
13.3 sel Thermodynamics L Page 1401 Wednesday, December 31, 1969 17:00
Table 353. SELECTING
DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 13 OF 33)
Metal
Tracer
Magnesium
Ag110
Magnesium
65
Temperature Range ˚C
Activation Energy, Q kcal • mol–1
Frequency Factor, D o
28.50 28.6 28.6 28.8
0.34 0.41
99.99
476–621 467–620 320–440 450–650
99.999 99.95
357–653 550–800
28.86 28.9
1.0 x 10–6
Crystal Form
Purity %
99.9 99.9
cm2 • s–1
Tellurium
Se75
Aluminum
54
Mn
P P P P
Aluminum
Zn65
S
Calcium
Ni63
β-Praseodymium
In114
P
99.96
800–930
28.9
9.6
Aluminum
71
Ge
S
99.999
401–653
28.98
0.481
Aluminum
Sb124
Aluminum
Ga72
P S
99.999
448–620 406–652
29.1 29.24
0.09 0.49
α-Iron β-Titanium
C14
P P
99.98 99.9
616–844 900–400
29.3 29.3
2.2
Zn
U235
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
2.6 x 10–2 0.22 0.259
5.1 x 10–4
13.3 sel Thermodynamics L Page 1402 Wednesday, December 31, 1969 17:00
Table 353. SELECTING
DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 14 OF 33)
Metal
Tracer
b-Praseodymium Zinc β-Titanium
Pr142
Aluminum
Cu64 Ni63 115
Cd
Zinc
Au198
Activation Energy, Q kcal • mol–1
Frequency Factor, D o
Crystal Form
Purity %
Temperature Range ˚C
P
99.93 99.999
800–900 338–415
29.4 29.53
8.7 2.22
99.7
925–1600
29.6
9.2 x 10–3
S
99.999
441–631
29.7
1.04
S⊥c S||c
99.999 99.999 99.95
29.72 29.73 29.8 29.9
0.29 0.97 3.2 x 10–5 1700
S||c P
cm2 • s–1
Zinc
Au198
Calcium
C14
Selenium
S35
S⊥c
315–415 315–415 550–800 60–90
b–Zirconium
Zr95
P
1100–1500
30.1
2.4 x 10–4
γ-Uranium β–Zirconium β-Titanium
Au195
P P P
785–1007 900–1065 900–1600
30.4 30.5 30.6
4.86 x 10–3 5.7 x 10–4 1.2 x 10–2
235
U Co60
99.99 99.7
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
13.3 sel Thermodynamics L Page 1403 Wednesday, December 31, 1969 17:00
Table 353. SELECTING
DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 15 OF 33) Activation Energy, Q kcal • mol–1
Frequency Factor, D o
Metal
Tracer
Crystal Form
Purity %
Temperature Range ˚C
b–Zirconium
Be7
P
99.7
915–1300
31.1
8.33 x 10–2
44
P P P
99.95 99.99 99.7
900–1540 740–857 900–1600
31.2 31.5 31.6
3.58 x 10–4 6.6 x 10–6
P P S||c
99.7
950–1600 800–1250 467–635
31.6 32.0 32.2
3.8 x 10–4 1.09 x 10–5 1.0
P
99.95
900–1545
32.2
3.1 x 10–4
S
99.999
433–652
32.27
0.647
P
99.95
940–1590
32.4
4.0 x 10–3
467–635
32.5
1.5
99.94
950–1200
33.3
0.33
β-Titanium α-Zirconium β-Titanium
Ti Nb95
b-Titanium
Sn113
Niobium
C14
Magnesium
Mg28 V48
β-Titanium Aluminum β-Titanium Magnesium β–Zirconium
Fe59
Cu64 Sc46 Mg28 P32
S⊥c P
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
cm2 • s–1
7.8 x 10–3
13.3 sel Thermodynamics L Page 1404 Wednesday, December 31, 1969 17:00
Table 353. SELECTING
DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 16 OF 33) Temperature Range ˚C
Activation Energy, Q kcal • mol–1
Frequency Factor, D o
33.7 34.0 34.0
6.1 x 10–3 1.71 0.21
Crystal Form
Purity %
99.7
C14
P S P
99.82
900–1600 450–650 600–1400
14
C
P
99.34
800–1400
34.0
0.15
Nickel
Cl4 S35
P P
99.86 99.8
600–1400 1320 1520
34.0 34.0
0.012
Vanadium
3.1 x l0–2
β–Zirconium
C14
P
96.6
1100–1600
34.2
3.57 x 10–2
Calcium
U235
99.95
500–700
34.8
l.l x 10–5
b-Titanium
Cr51
P
99.7
950–1600
35.1
5 x 10–3
β–Zirconium β-Titanium
Mo99 Zr95
P P
98.94
900–1635 920–1500
35.2 35.4
1.99 x 10–6 4.7 x 10–3
Tellurium
Te127
S||c
99.9999
300–400
35.5
130
Metal
Tracer
b-Titanium
Mn54
Aluminum
Al27
Cobalt γ-Iron
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
cm2 • s–1
13.3 sel Thermodynamics L Page 1405 Wednesday, December 31, 1969 17:00
Table 353. SELECTING
DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 17 OF 33) Temperature Range ˚C
Activation Energy, Q kcal • mol–1
Frequency Factor, D o
700–850 640–870
35.9 36.5
8.6 x 10–6 0.084
1230–1635
36.6
7.8 x 10–4
600–1027
37.38
0.116
99.99
843–997 565–1065 640–870 653–948
37.5 37.6 37.9 38.1
4.8 x 10–4 0.52 0.15 0.079
99.95
700–865 500–800
38.1 38.5
0.22 8.3
97.9
1795–1995
38.7
1.2 x10–3
770–940
38.90
0.47
Crystal Form
Purity %
Silver
P P
99.99
Ge77
β–Zirconium
Nb95
P
Gold
Hg203
S
Copper
Pt195
Beryllium
Be7
Silver
Tl204
Silver
Hg203
P S⊥c P P
Silver
Pb210
P
Metal
Tracer
a-Titanium
Ti44
Calcium
45
β–Hafnium
Ca Hf181
P
Silver
Te125
P
99.994
99.75
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
cm2 • s–1
13.3 sel Thermodynamics L Page 1406 Wednesday, December 31, 1969 17:00
Table 353. SELECTING
DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 18 OF 33)
Metal
Tracer
Silver
Sb124
Beryllium
110
Activation Energy, Q kcal • mol–1
Frequency Factor, D o
Crystal Form
Purity %
Temperature Range ˚C
P S||c
99.999 99.75
780–950 650–900
39.07 39.3
0.234 0.43
P
99.7
1000–1600
39.3
5.0 x 10–3
39.30
0.255
cm2 • s–1
β-Titanium
Ag Nb95
Silver
Sn113
S
99.99
592–937
Beryllium
S||c
99.75
565–1065
39.4
0.62
γ-Uranium
Be7 Nb95
P
99.99
791–1102
39.65
4.87 x 10–2
Germanium
In114
Silver
S35
S S
99.999
600–920 600–900
39.9 40.0
2.9 x 10–4 1.65
a–Uranium
U234
Gold
Ag110
P S
99.99
580–650 699–1007
40.0 40.2
2 x 10–3 0.072
β-Titanium
7
Be
P
99.96
Tantalum
C14
P
915–1300
40.2
0.8
1450–2200
40.3
1.2 x 10–2
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
13.3 sel Thermodynamics L Page 1407 Wednesday, December 31, 1969 17:00
Table 353. SELECTING
DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 19 OF 33) Temperature Range ˚C
Activation Energy, Q kcal • mol–1
Frequency Factor, D o
592–937 1200–1600 360–430
40.80 41.0 41.0
0.41 2.04 x 10–2 320
880–1600
41.4
3.16
41.5 41.5 41.6 41.6
1.6 x 1010 – 0.068 0.082
41.69 41.7 41.74 42.0
0.44 0.54 464 0.34
Crystal Form
Purity %
99.99 99.98
Tl204
S P P
β–Zirconium
Ce141
P
Lithium
Sb124
Silicon Gold
Co60
Gold
59
P S P P
99.95
P32
99.93 99.93
141–176 1100–1250 702–948 701–948
S S S S
99.99 99.99 99.999 99.999
592–937 640–925 422–654 600–1000
Metal
Tracer
Silver
In114
Molybdenum
C14
Tellurium
Fe
Silver
Cd115
Silver
Zn65
Aluminum
Cr51
Copper
Sb124
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
cm2 • s–1
13.3 sel Thermodynamics L Page 1408 Wednesday, December 31, 1969 17:00
Table 353. SELECTING
DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 20 OF 33)
Crystal Form
Purity %
Temperature Range ˚C
198
P S
99.97
810–1075 850–1050
P
99.92
193
Au
S, P
b-Titanium
Mo99
Beryllium β-Titanium
Ag110 Ag110
P S⊥c
Copper
Metal
Tracer
Copper
As76
Gold α-Iron
Au K42
Activation Energy, Q kcal • mol–1
Frequency Factor, D o
42.13 42.26
0.20 0.107
cm2 • s–1
500–800
42.3
0.036
400–1050
42.6
0.03
99.7 99.75
900–1600 650–900
43.0 43.2
8.0 x 10–3 1.76
P
99.95
940 1570
43.2
3 x 10–3
Tl204
S
99.999
785–996
43.3
0.71
g-Iron
P32
P
99.99
950–1200
43.7
0.01
β-Titanium
W185
P
99.94
900–1250
43.9
3.6 x 10–3
Copper
Hg203 U235
P
_
44.0
0.35
P
690–750
44.2
2.8 x10–3
Copper
β–Uranium
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
13.3 sel Thermodynamics L Page 1409 Wednesday, December 31, 1969 17:00
Table 353. SELECTING
DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 21 OF 33)
Metal
Tracer
Copper
Ge68
Copper
113
Sn
Temperature Range ˚C
Activation Energy, Q kcal • mol–1
Frequency Factor, D o
44.76 45.0 45.1 45.2
0.397 0.11 1.5 0.67
Crystal Form
Purity %
S P P S
99.998 99.97 99.999
653–1015 680–910 600–800 640–955
cm2 • s–1
Lanthanum
Au198
Silver
Ag110
a-Zirconium
Zr95
Copper
Cd115
P S
99.95 99.98
750–850 725–950
45.5 45.7
5.6 x 10–4 0.935
β–Zirconium
V48
P
99.99
870–1200
45.8
7.59 x 10–3
Copper
Ga72
_
45.90
0.55
Aluminum
Fe59
550–636 880–940 717–945 1020–1400
46.0 46.0 46.1 46.2
135 0.30 1.23 0.019
Gold
Ni63
Silver
Cu64
Nickel
Be7
S P P P
99.99 99.96 99.99 99.9
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
13.3 sel Thermodynamics L Page 1410 Wednesday, December 31, 1969 17:00
Table 353. SELECTING
DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 22 OF 33)
Crystal Form
Purity %
Temperature Range ˚C
Activation Energy, Q kcal • mol–1
Frequency Factor, D o
580–980 300–400 700–1300 540–920
46.5 46.7 47.0 47.2
0.61 3.91 x 104 2.75 x 10–3 102 5.3 x 1013
cm2 • s–1
Metal
Tracer
Copper
Ag110
Tellurium
Te127
Silicon
Au198
Carbon
Ni63
S, P S⊥c S ⊥c
Lithium
Bi
P
99.95
141–177
47.3
Copper
P
99.999
890–1000
47.50
0.73
α-Zirconium β–Zirconium
Zn65 Fe55 Fe55
750–840 750–840
48.0 48.0
2.5 x 10–2 2.5 x 10–2
Silver
Au198
Silver
Co60
Silver
Fe59
Copper
S35
P S S S
718–942 700–940 720–930 800–1000
48.28 48.75 49.04 49.2
0.85 1.9 2.42 23
99.9999
P P
99.99 99.999 99.99 99.999
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
13.3 sel Thermodynamics L Page 1411 Wednesday, December 31, 1969 17:00
Table 353. SELECTING
DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 23 OF 33)
Metal
Tracer
Vanadium
P32
Germanium
Sb124
Copper
Cu67
Nickel
Mo99
Nickel
Pu238
Niobium
P32
Beryllium
Fe59
Copper
Crystal Form
Purity %
P S S P
99.8 99.999
Temperature Range ˚C
Activation Energy, Q kcal • mol–1
Frequency Factor, D o
1200–1450 720–900 698–1061 900–1200
49.8 50.2 50.5 51.0
2.45 x l0–2 0.22 0.78
1025–1125 1300–1800 700–1076 460–1070
51.0 51.5 51.6 52.0
0.5 5.1 x 10–2 0.67 1.36
cm2 • s–1
1.6 x 10–3
99.0 99.75
Fe59
P P S S. P
a-Iron
Mn54
P
99.97
800–900
52.5
0.35
γ-Iron
S35
P
900–1250
53.0
1.7
Carbon
Ni63
Copper
51
||c S, P
750–1060 800–1070
53.3 53.5
2.2 1.02
Cr
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
13.3 sel Thermodynamics L Page 1412 Wednesday, December 31, 1969 17:00
Table 353. SELECTING
DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 24 OF 33) Temperature Range ˚C
Activation Energy, Q kcal • mol–1
Frequency Factor, D o
53.5 53.8 54.0 54.1
8.91 x 10–3 1.1 2.5 x 10–4 1.93
Crystal Form
Purity %
P P P S
99.51
99.998
1200–1600 620–1080 1000–1500 701–1077
Ni63
S S
99.999 99.99
807–1056 749–950
54.37 54.8
1.71 21.9
α-Iron δ-Iron
P32 P32
P P
99.99
860–900 1370–1460
55.0 55.0
2.9 2.9
Nickel
Au198 W185 V48 W185
S,P
99.999
700–1075
55.0
0.02
99.7
755–875 755–875 900–1250
55.1 55.4 55.8
0.29 1.43 0.41
Metal
Tracer
Tungsten
C14
Copper
Ni63
Molybdenum
Cr51
Copper
Co60
Copper
Pd102
Silver
α-Iron α-Iron β–Zirconium
P P P
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
cm2 • s–1
13.3 sel Thermodynamics L Page 1413 Wednesday, December 31, 1969 17:00
Table 353. SELECTING
DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 25 OF 33)
Metal
Tracer
Crystal Form
Germanium
Te125
S
63
P
α-Iron
Purity %
Temperature Range ˚C
Activation Energy, Q kcal • mol–1
Frequency Factor, D o
770–900
56.0
2.0
cm2 • s–1
99.97
680–800
56.0
1.3
S
99.999
736–939
56.75
9.56
α-Iron
Pd102 Cu64
P
99.9
800 1050
57.0
0.57
a-Iron
Cr51
Silver
Ni
P
99.95
775–875
57.5
2.53
δ-Iron γ-Iron β–Zirconium
59
Fe Be7 V48
P P P
99.95 99.9 99.99
1428–1492 1100–1350 1200–1400
57.5 57.6 57.7
2.01 0.1 0.32
Beryllium
Ni63
Chromium
P P P P
800–1250 1100–1420 700–1350 1020–1263
58.0 58.0 58.0 58.6
0.2
99
Mo
Nickel
Sn113
Nickel
Fe59
99.8
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
2.7 x 10–3 0.83 0.074
13.3 sel Thermodynamics L Page 1414 Wednesday, December 31, 1969 17:00
Table 353. SELECTING
DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 26 OF 33)
Metal
Tracer
Platinum
Cu64 95
Temperature Range ˚C
Activation Energy, Q kcal • mol–1
Frequency Factor, D o
Crystal Form
Purity %
P P P
99.999
1098–1375 807–906 1192–1297
59.5 60.06 60.2
0.074 2.04 0.10
P
99.92
809–889
60.3
5.4
S||c P, S
99.98
900–1300 800–1060
60.3 60.9
0.82 7.6
cm2 • s–1
Copper
Nb
Cobalt α-Iron
Ni63 Fe55
Yttrium
Y90
Gold δ-Iron
Pt195 Co60
P
99.995
1428–1521
61.4
6.38
Nickel
Cu64
P
99.95
1050–1360
61.7
0.57
a-Iron
Co60
P
99.995
638–768
62.2
7.19
α-Iron γ-Iron
Au198 54
Mn
P P
99.999 99.97
800–900 920–1280
62.4 62.5
31 0.16
Cobalt
Fe59
P
99.9
1104–1303
62.7
0.21
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
13.3 sel Thermodynamics L Page 1415 Wednesday, December 31, 1969 17:00
Table 353. SELECTING
DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 27 OF 33)
Metal
Tracer
Palladium
Pd103
Carbon Vanadium
110
Ag
Cr51 51
Temperature Range ˚C
Activation Energy, Q kcal • mol–1
Frequency Factor, D o
1060–1500 750–1050 960–1200 1100–1270
63.6 64.3 64.6 65.1
0.205 9280
99.99
793–945 1149–1390 940–1240 800–1300
65.8 65.9 66.0 66.5
1.4 x 10–2 0.87
800–900
66.6
1100
99.97
930–2050
67.0
0.77
900–1300 1070–1400
67.1 67.2
5.2 0.33
Crystal Form
Purity %
S ⊥c P P
99.999
99.99 99.97
Nickel
Cr
Silver
Ru103
Nickel
Co60
Tungsten
Fe59
Nickel
V48
S P P P
a-Iron
Sb124
P
γ-Iron
Ni63
P
Yttrium
Y90
Silicon
C14
S⊥c P
99.8 99.95
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
cm2 • s–1
9.54 x10–3 1.1 180 1.39
13.3 sel Thermodynamics L Page 1416 Wednesday, December 31, 1969 17:00
Table 353. SELECTING
DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 28 OF 33) Activation Energy, Q kcal • mol–1
Frequency Factor, D o
Purity %
Temperature Range ˚C
P
99.9
1100–1405
67.7
0.83
P
99.98
1171–1361
67.86
0.49
195
Pt
P P
99.95 99.99
1042–1404 1325–1600
68.0 68.2
1.9 0.33
Ge71 Ag110 V48 Cr51
S
766–928
68.5
7.8
P P P
9999 99.99
748–888 1120–1380 950–1400
69.0 69.3 69.7
1950 0.28 10.8
P
99.0
1970–2110
70.0
100
α-Zirconium
S35 Ta182
P
99.6
700–800
70.0
100
Niobium
Co60 Fe59
P P
99.85
Vanadium
1500–2100 960–1350
70.5 71.0
0.74 0.373
Metal
Tracer
Crystal Form
Cobalt
Co60
γ-Iron
Fe59
Nickel
Ni63
Platinum Germanium α-Iron γ-Iron γ-Iron Tantalum
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
cm2 • s–1
13.3 sel Thermodynamics L Page 1417 Wednesday, December 31, 1969 17:00
Table 353. SELECTING
DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 29 OF 33)
Metal
Tracer
Tantalum
Fe59
Nickel
185
γ-Iron α-Iron
W Co60 Mo99
Niobium
S35
Vanadium
V48
Chromium
Cr51
Platinum
Co60
a-Thorium
Pa231
Molybdenum
235
U
Niobium
U235
Niobium
Fe51
Crystal Form
P P
Purity %
Temperature Range ˚C
Activation Energy, Q kcal • mol–1
Frequency Factor, D o
99.95
930–1240 1100–1300
71.4 71.5
0.505 2.0
P P
99.98
1138–1340 750–875
72.9 73.0
1.25 7800
S S,P P P
99.9 99.99 99.98 99.99
1100–1500 880–1360 1030–1545 900–1050
73.1 73.65 73.7 74.2
2600 0.36 0.2 19.6
P P P P
99.85 99.98 99.55 99.85
770–910 1500–2000 1500–2000 1400–2100
74.7 76.4 76.8 77.7
126
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
cm2 • s–1
7.6 x 10–3 8.9 x10–3 1.5
13.3 sel Thermodynamics L Page 1418 Wednesday, December 31, 1969 17:00
Table 353. SELECTING
DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 30 OF 33)
Metal
Tracer
Germanium
Tl204
Niobium
113
Sn
α-Thorium
Fe59 U233
Molybdenum
P32
Tantalum
Mo99
Chromium
Molybdenum
Ta
182
Activation Energy, Q kcal • mol–1
Frequency Factor, D o
Crystal Form
Purity %
Temperature Range ˚C
S P P
99.85 99.8
800–930 1850–2400 980–1420
78.4 78.9 79.3
1700 0.14 0.47
P
99.85
700–880
79.3
2210
P P P S
99.97
2000–2200 1750–2220 1700–2150 943–1435
80.5 81.0 83.0 83.5
0.19 1.8 x 10–3 3.5 x 10–4 0.30
99.99
1000–1400 994–1492
85.0 86.9
2.21 0.099
cm2 • s–1
Niobium
Cr51
Niobium
V48
Niobium
Ti44
S S
γ-Iron
W185
P
99.5
1050–1250
90.0
1000
Copper
54
S
99.99
754–950
91.4
107
Mn
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
13.3 sel Thermodynamics L Page 1419 Wednesday, December 31, 1969 17:00
Table 353. SELECTING
DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 31 OF 33)
Metal
Tracer
Niobium
W185
Silicon
Sb124
Vanadium
V48
Molybdenum
186
Re
Niobium
Nb95
Molybdenum
Mo99
Silicon γ-Iron
Ni63 Hf181
Tantalum
Nb95
Tantalum
Ta182
Niobium
Ta182
Molybdenum
S35
Crystal Form
Purity %
P S S,P P
99.8 99.99
Temperature Range ˚C
Activation Energy, Q kcal • mol–1
Frequency Factor, D o
1800–2200 1190–1398 1360–1830 1700–2100
91.7 91.7 94.14 94.7
5 x 10–4 12.9 214.0 0.097
P, S P P
99.99
878–2395 1850–2350 450–800
96.0 96.9 97.5
1.1 0.5 1000
P
99.99
1110–1360
97.3
3600
P, S P, S P, S S
99.996 99.996 99.997 99.97
921–2484 1250–2200 878–2395 2220–2470
98.7 98.7 99.3 101.0
0.23 1.24 1.0 320
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
cm2 • s–1
13.3 sel Thermodynamics L Page 1420 Wednesday, December 31, 1969 17:00
Table 353. SELECTING
DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 32 OF 33)
Metal
Tracer
Tungsten
Mo99
Germanium
Cd115
Molybdenum
Co60
Molybdenum
95
Nb
Molybdenum
Wl85
Silicon
Si31
Carbon
Th228
Carbon
U232
Carbon
U232 95
Tungsten
Nb
Tungsten
Ta182
Tungsten
W185
Crystal Form
P S P P P S ||c ⊥c ||c P P P
Purity %
Temperature Range ˚C
Activation Energy, Q kcal • mol–1
Frequency Factor, D o
101.0 102.0 106.7 108.1
0.3
99.98 99.98
1700–2100 750–950 1850–2350 1850–2350
1.75 x 109 18 14
1700–2260 1225–1400 1800–2200 140~2200
110 110.0 114.7 115.0
1.7 1800 2.48 6760
1400 1820 1305–2367 1305–2375 1800–2403
129.5 137.6 139.9 140.3
385 3.01 3.05 1.88
99.98 99.99999
99.99 99.99 99.99
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61.
©2001 CRC Press LLC
cm2 • s–1
13.3 sel Thermodynamics L Page 1421 Wednesday, December 31, 1969 17:00
Table 353. SELECTING
DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 33 OF 33)
Metal
Tracer
Tungsten
Re186
Carbon
Th228
Carbon
C14
α-Thorium
Th228
Crystal Form
Purity %
S ⊥c P
99.85
Temperature Range ˚C
Activation Energy, Q kcal • mol–1
Frequency Factor, D o
2100–2400 1400–2200 2000–2200
141.0 145.4 163
19.5 1.33 x 10–5 5
720–880
716
395
Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. *
The diffusion coefficient DT at a temperature T(K) is given by the following: DT =Do e–Q/RT Abbreviations: P= polycrystalline S = single crystal ⊥ c = perpendicular to c direction || c = parallel to c direction
©2001 CRC Press LLC
cm2 • s–1
Shackelford, James F. & Alexander, W. “Selecting Thermal Properties” Materials Science and Engineering Handbook Ed. James F. Shackelford & W. Alexander Boca Raton: CRC Press LLC, 2001
14.0 sel Thermal Page 1423 Wednesday, December 31, 1969 17:00
CHAPTER 12
List of Tables
Selecting Thermal Properties
Thermal Conductivity Selecting Thermal Conductivity of Metals Selecting Thermal Conductivity of Metals at Temperature Selecting Thermal Conductivity of Alloy Cast Irons Selecting Thermal Conductivity of Ceramics Selecting Thermal Conductivity of Ceramics at Temperature Selecting Thermal Conductivity of Polymers Thermal Expansion Selecting Thermal Expansion of Tool Steels Selecting Thermal Expansion of Tool Steels at Temperature Selecting Thermal Expansion of Alloy Cast Irons Selecting Thermal Expansion of Ceramics Selecting Thermal Expansion of Glasses Selecting Thermal Expansion of Polymers Selecting Thermal Expansion Coefficients for Materials used in Integrated Circuits Selecting Thermal Expansion Coefficients for Materials used in Integrated Circuits at Temperature
©2001 CRC Press LLC
1423
14.1 sel Thermal Page 1424 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 354. SELECTING
THERMAL CONDUCTIVITY OF METALS * (SHEET 1 OF 29)
Metal
Temperature (K)
Thermal Conductivity (watt • cm-1 • K-1)
Titanium Titanium Titanium Titanium
1 2 3 4
0.0144 0.0288 0.0432 0.0576
Titanium Titanium Titanium Zirconium
5 6 7 1
0.0719 0.0863 0.101 0.111
Titanium Tantalum Titanium Titanium
8 1 9 10
0.115 0.115 0.129 0.144
Molybdenum Titanium Titanium Titanium
1 11 12 13
0.146 0.158 0.172 0.186
Titanium Titanium Titanium Titanium
600 700 500 800
0.194 0.194 0.197 0.197
Titanium Titanium Titanium Zirconium
14 900 400 600
0.2 0.202 0.204 0.207
Titanium Zirconium Zirconium Titanium
1000 700 500 1100
0.207 0.209 0.21 0.213
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
1424
CRC Handbook of Materials Science & Engineering
14.1 sel Thermal Page 1425 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 354. SELECTING
THERMAL CONDUCTIVITY OF METALS * (SHEET 2 OF 29)
Metal
Temperature (K)
Thermal Conductivity (watt • cm-1 • K-1)
Titanium Zirconium Zirconium Titanium
15 400 800 300
0.214 0.216 0.216 0.219
Titanium Zirconium Titanium Zirconium
1200 2 273 900
0.22 0.223 0.224 0.226
Zirconium Titanium Tantalum Zirconium
300 16 2 273
0.227 0.227 0.23 0.232
Titanium Zirconium Titanium Zirconium
1400 1000 200 1100
0.236 0.237 0.245 0.248
Niobium Zirconium Titanium Titanium
1 200 1600 18
0.251 0.252 0.253 0.254
Zirconium Titanium Zirconium Titanium
1200 1800 1400 20
0.257 0.271 0.275 0.279
Iron Zirconium Molybdenum Iron
1200 1600 2 1100
0.282 0.29 0.292 0.297
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
Shackelford & Alexander
1425
14.1 sel Thermal Page 1426 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 354. SELECTING
THERMAL CONDUCTIVITY OF METALS * (SHEET 3 OF 29)
Metal
Temperature (K)
Thermal Conductivity (watt • cm-1 • K-1)
Zirconium Iron Titanium Lead
1800 1400 100 600
0.302 0.309 0.312 0.312
Zirconium Titanium Lead Iron
2000 90 500 1000
0.313 0.324 0.325 0.326
Iron Zirconium Zirconium Titanium
1600 100 3 25
0.327 0.332 0.333 0.337
Lead Titanium Tantalum Zirconium
400 80 3 90
0.338 0.339 0.345 0.35
Lead Lead Titanium Lead
300 273 70 200
0.352 0.355 0.356 0.366
Zirconium Titanium Iron Titanium
80 60 900 30
0.373 0.377 0.38 0.382
Lead Titanium Lead Chromium
100 50 90 1
0.396 0.401 0.401 0.401
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
1426
CRC Handbook of Materials Science & Engineering
14.1 sel Thermal Page 1427 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 354. SELECTING
THERMAL CONDUCTIVITY OF METALS * (SHEET 4 OF 29)
Metal
Temperature (K)
Thermal Conductivity (watt • cm-1 • K-1)
Zirconium Lead Titanium Lead
70 80 35 70
0.403 0.407 0.411 0.415
Titanium Titanium Lead Iron
45 40 60 800
0.416 0.422 0.424 0.433
Lead Molybdenum Zirconium Zirconium
50 3 4 60
0.435 0.438 0.442 0.442
Lead Lead Tantalum Lead
45 40 4 35
0.442 0.451 0.459 0.462
Lead Iron Zirconium Niobium
30 700 50 2
0.477 0.487 0.497 0.501
Lead Niobium Niobium Zirconium
25 200 273 45
0.507 0.526 0.533 0.535
Niobium Iron Zirconium Niobium
300 600 5 100
0.537 0.547 0.549 0.552
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
Shackelford & Alexander
1427
14.1 sel Thermal Page 1428 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 354. SELECTING
THERMAL CONDUCTIVITY OF METALS * (SHEET 5 OF 29)
Metal
Temperature (K)
Thermal Conductivity (watt • cm-1 • K-1)
Niobium Niobium Niobium Tantalum
400 90 500 5
0.552 0.563 0.567 0.571
Tantalum Tantalum Tantalum Tantalum
273 200 300 400
0.574 0.575 0.575 0.578
Zirconium Niobium Tantalum Niobium
40 80 500 600
0.58 0.58 0.582 0.582
Molybdenum Tantalum Tantalum Lead
4 600 700 20
0.584 0.586 0.59 0.59
Tantalum Tantalum Tin Tantalum
100 800 500 90
0.592 0.594 0.596 0.596
Tantalum Niobium Tantalum Tantalum
900 700 1000 80
0.598 0.598 0.602 0.603
Tantalum Tantalum Niobium Chromium
1100 1200 70 1400
0.606 0.61 0.61 0.611
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
1428
CRC Handbook of Materials Science & Engineering
14.1 sel Thermal Page 1429 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 354. SELECTING
THERMAL CONDUCTIVITY OF METALS * (SHEET 6 OF 29)
Metal
Temperature (K)
Thermal Conductivity (watt • cm-1 • K-1)
Niobium Iron Tantalum Tantalum
800 500 70 1400
0.613 0.613 0.616 0.618
Tin Chromium Tantalum Niobium
400 1200 1600 900
0.622 0.624 0.626 0.629
Tantalum Chromium Tantalum Nickel
1800 1100 2000 1
0.634 0.636 0.64 0.64
Niobium Tantalum Zirconium Tantalum
1000 2200 35 60
0.644 0.647 0.65 0.651
Zirconium Nickel Chromium Nickel
6 700 1000 600
0.652 0.653 0.653 0.655
Tantalum Niobium Niobium Lead
2600 1100 60 18
0.658 0.659 0.66 0.66
Tantalum Tin Nickel Niobium
3000 300 800 1200
0.665 0.666 0.674 0.675
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC Shackelford & Alexander
1429
14.1 sel Thermal Page 1430 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 354. SELECTING
THERMAL CONDUCTIVITY OF METALS * (SHEET 7 OF 29)
Metal
Temperature (K)
Thermal Conductivity (watt • cm-1 • K-1)
Chromium Tantalum Tin Iron
900 6 273 400
0.678 0.681 0.682 0.694
Nickel Niobium Chromium Nickel
900 1400 800 1000
0.696 0.705 0.713 0.718
Platinum Tantalum Platinum Nickel
500 50 600 500
0.719 0.72 0.72 0.721
Platinum Platinum Platinum Platinum
400 700 800 300
0.722 0.723 0.729 0.73
Molybdenum Tin Platinum Niobium
5 200 273 1600
0.73 0.733 0.734 0.735
Platinum Nickel Zirconium Zirconium
900 1100 30 7
0.737 0.739 0.74 0.748
Platinum Platinum Niobium Iron
200 1000 3 1
0.748 0.748 0.749 0.75
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
1430
CRC Handbook of Materials Science & Engineering
14.1 sel Thermal Page 1431 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 354. SELECTING
THERMAL CONDUCTIVITY OF METALS * (SHEET 8 OF 29)
Metal
Temperature (K)
Thermal Conductivity (watt • cm-1 • K-1)
Chromium Platinum Niobium Nickel
700 1100 50 1200
0.757 0.76 0.76 0.761
Niobium Lead Platinum Tantalum
1800 16 1200 45
0.764 0.77 0.775 0.78
Tantalum Platinum Niobium Nickel
7 100 2000 400
0.788 0.79 0.791 0.801
Chromium Iron Nickel Chromium
2 300 1400 600
0.802 0.803 0.804 0.805
Platinum Platinum Niobium Molybdenum
1400 90 2200 2600
0.807 0.81 0.815 0.825
Iron Zirconium Platinum Niobium
273 8 80 45
0.835 0.837 0.84 0.84
Lead Platinum Chromium Zirconium
15 1600 500 25
0.84 0.842 0.848 0.85
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
Shackelford & Alexander
1431
14.1 sel Thermal Page 1432 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 354. SELECTING
THERMAL CONDUCTIVITY OF METALS * (SHEET 9 OF 29)
Metal
Temperature (K)
Thermal Conductivity (watt • cm-1 • K-1)
Tin Molybdenum Tantalum Chromium
100 2200 40 400
0.85 0.858 0.87 0.873
Molybdenum Platinum Tin Molybdenum
6 1800 90 2000
0.876 0.877 0.88 0.88
Tantalum Platinum Chromium Nickel
8 70 300 300
0.891 0.9 0.903 0.905
Molybdenum Tin Platinum Tungsten
1800 80 2000 3000
0.907 0.91 0.913 0.915
Zirconium Cadmium Tungsten Nickel
9 500 2600 273
0.916 0.92 0.94 0.94
Lead Iron Molybdenum Cadmium
14 200 1600 400
0.94 0.94 0.946 0.947
Chromium Tin Cadmium Niobium
273 70 300 40
0.948 0.96 0.968 0.97
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
1432
CRC Handbook of Materials Science & Engineering
14.1 sel Thermal Page 1433 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 354. SELECTING
THERMAL CONDUCTIVITY OF METALS * (SHEET 10 OF 29)
Metal
Temperature (K)
Thermal Conductivity (watt • cm-1 • K-1)
Cadmium Tungsten Zirconium Tantalum
273 2200 10 9
0.975 0.98 0.984 0.989
Tantalum Niobium Cadmium Molybdenum
35 4 200 1400
0.99 0.993 0.993 0.996
Tungsten Zirconium Platinum Molybdenum
2000 20 60 7
1 1.01 1.01 1.02
Tungsten Cadmium Zirconium Tin
1800 100 11 60
1.03 1.03 1.04 1.04
Cadmium Zinc Molybdenum Nickel
90 600 1200 200
1.04 1.05 1.05 1.06
Cadmium Tungsten Lead Zirconium
80 1600 13 12
1.06 1.07 1.07 1.08
Zirconium Tantalum Molybdenum Cadmium
18 10 1100 70
1.08 1.08 1.08 1.08
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
Shackelford & Alexander
1433
14.1 sel Thermal Page 1434 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 354. SELECTING
THERMAL CONDUCTIVITY OF METALS * (SHEET 11 OF 29)
Metal
Temperature (K)
Thermal Conductivity (watt • cm-1 • K-1)
Zirconium Zinc Tungsten Chromium
13 500 1400 200
1.11 1.11 1.11 1.11
Zirconium Molybdenum Zirconium Zirconium
16 1000 14 15
1.12 1.12 1.13 1.13
Cadmium Tungsten Tin Molybdenum
60 1200 50 900
1.13 1.15 1.15 1.15
Zinc Tantalum Tantalum Niobium
400 11 30 35
1.16 1.16 1.16 1.16
Molybdenum Tungsten Platinum Molybdenum
8 1100 50 800
1.17 1.18 1.18 1.18
Chromium Cadmium Zinc Tungsten
3 50 300 1000
1.2 1.2 1.21 1.21
Zinc Molybdenum Tin Niobium
273 700 45 5
1.22 1.22 1.23 1.23
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
1434
CRC Handbook of Materials Science & Engineering
14.1 sel Thermal Page 1435 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 354. SELECTING
THERMAL CONDUCTIVITY OF METALS * (SHEET 12 OF 29)
Metal
Temperature (K)
Thermal Conductivity (watt • cm-1 • K-1)
Lead Tungsten Tantalum Cadmium
12 900 12 45
1.23 1.24 1.24 1.25
Zinc Molybdenum Nickel Tungsten
200 600 2 800
1.26 1.26 1.27 1.28
Tantalum Molybdenum Magnesium Molybdenum
13 500 1 9
1.3 1.3 1.3 1.31
Zinc Platinum Iron Cadmium
100 45 100 40
1.32 1.32 1.32 1.32
Tungsten Zinc Molybdenum Tin
700 90 400 40
1.33 1.34 1.34 1.35
Tantalum Tantalum Zinc Molybdenum
14 25 80 300
1.36 1.36 1.38 1.38
Tungsten Molybdenum Tantalum Cadmium
600 273 15 35
1.39 1.39 1.4 1.41
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
Shackelford & Alexander
1435
14.1 sel Thermal Page 1436 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 354. SELECTING
THERMAL CONDUCTIVITY OF METALS * (SHEET 13 OF 29)
Metal
Temperature (K)
Thermal Conductivity (watt • cm-1 • K-1)
Molybdenum Tantalum Niobium Molybdenum
200 16 30 10
1.43 1.44 1.45 1.45
Magnesium Niobium Magnesium Lead
900 6 800 11
1.45 1.46 1.46 1.46
Iron Tantalum Tantalum Magnesium
90 18 20 700
1.46 1.47 1.47 1.47
Zinc Tungsten Magnesium Iron
70 500 600 2
1.48 1.49 1.49 1.49
Tin Platinum Magnesium Magnesium
35 40 500 400
1.5 1.51 1.51 1.53
Magnesium Cadmium Magnesium Nickel
300 30 273 100
1.56 1.56 1.57 1.58
Chromium Magnesium Molybdenum Chromium
100 200 11 4
1.58 1.59 1.6 1.6
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
1436
CRC Handbook of Materials Science & Engineering
14.1 sel Thermal Page 1437 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 354. SELECTING
THERMAL CONDUCTIVITY OF METALS * (SHEET 14 OF 29)
Metal
Temperature (K)
Thermal Conductivity (watt • cm-1 • K-1)
Tungsten Niobium Iron Chromium
400 7 80 90
1.62 1.67 1.68 1.68
Magnesium Zinc Nickel Molybdenum
100 60 90 12
1.69 1.71 1.72 1.74
Tin Tungsten Magnesium Lead
30 300 90 10
1.76 1.78 1.78 1.78
Molybdenum Cadmium Platinum Tungsten
100 25 35 273
1.79 1.79 1.8 1.82
Chromium Niobium Niobium Molybdenum
80 8 25 13
1.82 1.86 1.87 1.88
Nickel Molybdenum Nickel Magnesium
3 90 80 80
1.91 1.92 1.93 1.95
Tungsten Chromium Molybdenum Niobium
200 5 14 9
1.97 1.99 2.01 2.04
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
Shackelford & Alexander
1437
14.1 sel Thermal Page 1438 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 354. SELECTING
THERMAL CONDUCTIVITY OF METALS * (SHEET 15 OF 29)
Metal
Temperature (K)
Thermal Conductivity (watt • cm-1 • K-1)
Iron Chromium Molybdenum Zinc
70 70 80 50
2.04 2.08 2.09 2.13
Aluminum Molybdenum Niobium Aluminum
900 15 10 800
2.13 2.15 2.18 2.2
Nickel Tin Magnesium Iron
70 25 70 3
2.21 2.22 2.23 2.24
Cadmium Aluminum Platinum Molybdenum
20 700 30 16
2.26 2.26 2.28 2.28
Niobium Niobium Molybdenum Lead
20 11 70 9
2.29 2.3 2.3 2.3
Platinum Aluminum Tungsten Aluminum
1 600 100 273
2.31 2.32 2.35 2.36
Aluminum Aluminum Aluminum Chromium
200 300 500 6
2.37 2.37 2.37 2.38
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
1438
CRC Handbook of Materials Science & Engineering
14.1 sel Thermal Page 1439 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 354. SELECTING
THERMAL CONDUCTIVITY OF METALS * (SHEET 16 OF 29)
Metal
Temperature (K)
Thermal Conductivity (watt • cm-1 • K-1)
Niobium Aluminum Niobium Tungsten
12 400 18 90
2.39 2.4 2.42 2.44
Niobium Zinc Chromium Niobium
13 45 60 14
2.46 2.48 2.48 2.49
Niobium Niobium Molybdenum Nickel
16 15 18 4
2.49 2.5 2.53 2.54
Tungsten Magnesium Molybdenum Gold
80 2 60 1200
2.56 2.59 2.6 2.62
Cadmium Nickel Iron Gold
18 60 60 1100
2.62 2.63 2.65 2.71
Magnesium Tungsten Molybdenum Chromium
60 70 20 7
2.74 2.76 2.77 2.77
Gold Gold Gold Zinc
1000 900 800 40
2.78 2.85 2.92 2.97
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC Shackelford & Alexander
1439
14.1 sel Thermal Page 1440 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 354. SELECTING
THERMAL CONDUCTIVITY OF METALS * (SHEET 17 OF 29)
Metal
Temperature (K)
Thermal Conductivity (watt • cm-1 • K-1)
Iron Gold Molybdenum Aluminum
4 700 50 100
2.97 2.98 3 3.0
Gold Gold Gold Chromium
600 500 400 8
3.04 3.09 3.12 3.14
Platinum Gold Nickel Cadmium
25 300 5 16
3.15 3.15 3.16 3.16
Chromium Tungsten Gold Tin
50 60 273 20
3.17 3.18 3.18 3.2
Lead Molybdenum Molybdenum Gold
8 25 45 200
3.2 3.25 3.26 3.27
Nickel Aluminum Copper Gold
50 90 1200 100
3.36 3.4 3.42 3.45
Gold Copper Chromium Molybdenum
90 1100 9 40
3.48 3.5 3.5 3.51
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
1440
CRC Handbook of Materials Science & Engineering
14.1 sel Thermal Page 1441 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 354. SELECTING
THERMAL CONDUCTIVITY OF METALS * (SHEET 18 OF 29)
Metal
Temperature (K)
Thermal Conductivity (watt • cm-1 • K-1)
Gold Molybdenum Cadmium Copper
80 30 15 1000
3.52 3.55 3.55 3.57
Silver Gold Molybdenum Copper
1200 70 35 900
3.58 3.58 3.62 3.64
Silver Chromium Iron Copper
1100 45 5 800
3.66 3.67 3.71 3.71
Zinc Iron Silver Magnesium
35 50 1000 50
3.72 3.72 3.74 3.75
Nickel Copper Gold Silver
6 700 60 900
3.77 3.77 3.8 3.82
Copper Chromium Magnesium Copper
600 10 3 500
3.83 3.85 3.88 3.88
Silver Nickel Copper Silver
800 45 400 700
3.89 3.91 3.92 3.97
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC Shackelford & Alexander
1441
14.1 sel Thermal Page 1442 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 354. SELECTING
THERMAL CONDUCTIVITY OF METALS * (SHEET 19 OF 29)
Metal
Temperature (K)
Thermal Conductivity (watt • cm-1 • K-1)
Copper Tin Aluminum Copper
300 18 80 273
3.98 4 4.0 4.01
Cadmium Silver Silver Copper
14 600 500 200
4.01 4.05 4.13 4.13
Tungsten Chromium Silver Gold
50 11 400 50
4.17 4.18 4.2 4.2
Silver Silver Silver Chromium
300 273 200 40
4.27 4.28 4.3 4.3
Nickel Gold Iron Chromium
7 1 6 12
4.36 4.4 4.42 4.49
Silver Iron Magnesium Silver
100 45 45 90
4.5 4.5 4.57 4.6
Platinum Gold Nickel Cadmium
2 45 40 13
4.6 4.6 4.63 4.67
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
1442
CRC Handbook of Materials Science & Engineering
14.1 sel Thermal Page 1443 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 354. SELECTING
THERMAL CONDUCTIVITY OF METALS * (SHEET 20 OF 29)
Metal
Temperature (K)
Thermal Conductivity (watt • cm-1 • K-1)
Silver Chromium Copper Zinc
80 13 100 30
4.71 4.78 4.83 4.9
Platinum Lead Nickel Silver
20 7 8 70
4.9 4.9 4.94 4.97
Aluminum Chromium Chromium Tungsten
70 35 14 45
5.0 5.03 5.04 5.07
Iron Copper Magnesium Gold
7 90 4 40
5.13 5.14 5.15 5.2
Chromium Tin Chromium Nickel
15 16 16 9
5.27 5.3 5.48 5.49
Silver Iron Cadmium Chromium
60 40 12 30
5.5 5.55 5.56 5.58
Nickel Magnesium Copper Iron
35 40 80 8
5.62 5.7 5.7 5.8
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC Shackelford & Alexander
1443
14.1 sel Thermal Page 1444 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 354. SELECTING
THERMAL CONDUCTIVITY OF METALS * (SHEET 21 OF 29)
Metal
Temperature (K)
Thermal Conductivity (watt • cm-1 • K-1)
Chromium Nickel Chromium Chromium
18 10 20 25
5.81 6 6.01 6.07
Platinum Gold Tin Magnesium
18 35 15 5
6.1 6.1 6.3 6.39
Iron Nickel Tungsten Copper
9 11 40 70
6.45 6.48 6.5 6.7
Aluminum Platinum Iron Zinc
60 3 35 25
6.7 6.79 6.81 6.9
Nickel Cadmium Nickel Silver
12 11 30 50
6.91 6.91 6.95 7
Iron Nickel Magnesium Tin
10 13 35 14
7.05 7.3 7.4 7.6
Platinum Magnesium Gold Iron
16 6 30 11
7.6 7.6 7.6 7.62
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
1444
CRC Handbook of Materials Science & Engineering
14.1 sel Thermal Page 1445 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 354. SELECTING
THERMAL CONDUCTIVITY OF METALS * (SHEET 22 OF 29)
Metal
Temperature (K)
Thermal Conductivity (watt • cm-1 • K-1)
Nickel Aluminum Nickel Iron
14 1 15 12
7.64 7.8 7.92 8.13
Iron Nickel Nickel Lead
30 16 25 6
8.14 8.15 8.15 8.2
Silver Platinum Nickel Copper
45 15 18 60
8.4 8.4 8.45 8.5
Nickel Iron Magnesium Platinum
20 13 7 4
8.56 8.58 8.75 8.8
Cadmium Tungsten Gold Iron
10 35 2 14
8.87 8.9 8.9 8.97
Tin Platinum Iron Iron
13 14 15 25
9.3 9.3 9.3 9.36
Magnesium Iron Magnesium Iron
30 16 8 18
9.5 9.56 9.83 9.88
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC Shackelford & Alexander
1445
14.1 sel Thermal Page 1446 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 354. SELECTING
THERMAL CONDUCTIVITY OF METALS * (SHEET 23 OF 29)
Metal
Temperature (K)
Thermal Conductivity (watt • cm-1 • K-1)
Iron Aluminum Platinum Gold
20 50 13 25
9.97 10.0 10.1 10.2
Silver Platinum Zinc Magnesium
40 5 20 9
10.5 10.5 10.7 10.8
Platinum Tin Platinum Magnesium
12 12 11 10
10.9 11.6 11.7 11.7
Platinum Magnesium Copper Cadmium
6 25 50 9
11.8 12 12.2 12.2
Platinum Magnesium Aluminum Platinum
10 11 45 7
12.3 12.5 12.5 12.6
Platinum Platinum Tungsten Magnesium
9 8 30 12
12.8 12.9 13.1 13.1
Gold Zinc Magnesium Silver
3 18 13 35
13.1 13.3 13.6 13.7
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
1446
CRC Handbook of Materials Science & Engineering
14.1 sel Thermal Page 1447 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 354. SELECTING
THERMAL CONDUCTIVITY OF METALS * (SHEET 24 OF 29)
Metal
Temperature (K)
Thermal Conductivity (watt • cm-1 • K-1)
Lead Magnesium Magnesium Magnesium
5 20 14 15
13.8 13.9 14 14.3
Magnesium Tungsten Magnesium Tin
18 1 16 11
14.3 14.4 14.4 14.8
Gold Copper Aluminum Aluminum
20 45 2 40
15 15.3 15.5 16.0
Zinc Gold Gold Cadmium
16 4 18 8
16.9 17.1 17.7 18
Zinc Tin Silver Zinc
1 10 30 15
19 19.3 19.3 19.4
Tungsten Copper Gold Gold
25 40 5 16
20.4 20.5 20.7 20.9
Aluminum Zinc Lead Gold
35 14 4 15
21.0 22.4 22.4 22.6
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC Shackelford & Alexander
1447
14.1 sel Thermal Page 1448 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 354. SELECTING
THERMAL CONDUCTIVITY OF METALS * (SHEET 25 OF 29)
Metal
Temperature (K)
Thermal Conductivity (watt • cm-1 • K-1)
Aluminum Gold Gold Gold
3 6 14 13
23.2 23.7 24.1 25.5
Tin Gold Zinc Gold
9 7 13 12
26 26 26.1 26.7
Gold Lead Gold Cadmium
8 1 11 7
27.5 27.7 27.7 28
Gold Gold Aluminum Tungsten
9 10 30 2
28.2 28.2 28.5 28.7
Copper Copper Silver Zinc
1 35 25 12
28.7 29 29.5 30.8
Aluminum Tungsten Lead Tin
4 20 3 8
30.8 32.6 34 36
Zinc Zinc Aluminum Silver
11 2 5 1
36.4 37.9 38.1 39.4
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
1448
CRC Handbook of Materials Science & Engineering
14.1 sel Thermal Page 1449 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 354. SELECTING
THERMAL CONDUCTIVITY OF METALS * (SHEET 26 OF 29)
Metal
Temperature (K)
Thermal Conductivity (watt • cm-1 • K-1)
Tungsten Aluminum Lead Tungsten
18 25 2 3
40 40.0 42.4 42.6
Copper Zinc Cadmium Aluminum
30 10 6 6
43 43.2 44.2 45.1
Cadmium Tungsten Silver Aluminum
1 16 20 7
48.7 49.3 51 51.5
Zinc Tin Tungsten Zinc
9 7 15 3
51.9 52 54.8 55.5
Tungsten Aluminum Copper Aluminum
4 20 2 8
55.6 56.5 57.3 57.3
Tungsten Zinc Aluminum Aluminum
14 8 9 18
60.4 61.8 62.2 63.5
Silver Aluminum Tungsten Tungsten
18 10 13 5
66 66.1 66.4 67.1
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
Shackelford & Alexander
1449
14.1 sel Thermal Page 1450 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 354. SELECTING
THERMAL CONDUCTIVITY OF METALS * (SHEET 27 OF 29)
Metal
Temperature (K)
Thermal Conductivity (watt • cm-1 • K-1)
Copper Aluminum Cadmium Aluminum
25 16 5 11
68 68.4 69 69.0
Zinc Aluminum Aluminum Aluminum
4 15 12 14
69.7 70.2 70.8 71.3
Aluminum Zinc Tungsten Tin
13 7 12 6
71.5 71.7 72.4 76
Tungsten Zinc Tungsten Zinc
6 5 11 6
76.2 77.8 77.9 78
Silver Tungsten Tungsten Silver
2 7 10 16
78.3 82.4 82.4 85
Tungsten Tungsten Copper Cadmium
9 8 3 2
85.1 85.3 85.5 89.3
Cadmium Silver Cadmium Copper
4 15 3 20
92 96 104 105
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
1450
CRC Handbook of Materials Science & Engineering
14.1 sel Thermal Page 1451 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 354. SELECTING
THERMAL CONDUCTIVITY OF METALS * (SHEET 28 OF 29)
Metal
Temperature (K)
Thermal Conductivity (watt • cm-1 • K-1)
Silver Copper Silver Tin
14 4 3 5
109 113 115 117
Silver Copper Copper Silver
13 18 5 12
124 124 138 139
Copper Silver Silver Copper
16 4 11 15
145 147 154 156
Copper Copper Silver Silver
6 14 10 5
159 166 168 172
Copper Copper Tin Silver
13 7 4 9
176 177 181 181
Copper Silver Copper Silver
12 6 8 8
185 187 189 190
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC Shackelford & Alexander
1451
14.1 sel Thermal Page 1452 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 354. SELECTING
THERMAL CONDUCTIVITY OF METALS * (SHEET 29 OF 29)
Metal
Temperature (K)
Thermal Conductivity (watt • cm-1 • K-1)
Silver Copper Copper
7 11 9
193 193 195
Copper Tin
10 3
196 297
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. *
These data apply only to metals of purity of at least 99.9%. The third significant figure may not be accurate.
©2001 CRC Press LLC
1452
CRC Handbook of Materials Science & Engineering
14.1 sel Thermal Page 1453 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 355. SELECTING
AT Temperature (K) 1
2
THERMAL CONDUCTIVITY OF METALS
TEMPERATURE *
(SHEET 1 OF 30)
Metal
Thermal Conductivity (watt • cm-1 • K-1)
Titanium Zirconium Tantalum Molybdenum
0.0144 0.111 0.115 0.146
Niobium Chromium Nickel Iron
0.251 0.401 0.64 0.75
Magnesium Platinum Gold Aluminum
1.3 2.31 4.4 7.8
Tungsten Zinc Lead Copper
14.4 19 27.7 28.7
Silver Cadmium
39.4 48.7
Titanium Zirconium Tantalum Molybdenum
0.0288 0.223 0.23 0.292
Niobium Chromium Nickel Iron
0.501 0.802 1.27 1.49
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC Shackelford & Alexander
1453
14.1 sel Thermal Page 1454 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 355. SELECTING
AT Temperature (K)
3
THERMAL CONDUCTIVITY OF METALS
TEMPERATURE *
(SHEET 2 OF 30)
Metal
Thermal Conductivity (watt • cm-1 • K-1)
Magnesium Platinum Gold Aluminum
2.59 4.6 8.9 15.5
Tungsten Zinc Lead Copper
28.7 37.9 42.4 57.3
Silver Cadmium
78.3 89.3
Titanium Zirconium Tantalum Molybdenum
0.0432 0.333 0.345 0.438
Niobium Chromium Nickel Iron
0.749 1.2 1.91 2.24
Magnesium Platinum Gold Aluminum
3.88 6.79 13.1 23.2
Lead Tungsten Zinc Copper
34 42.6 55.5 85.5
Cadmium Silver Tin
104 115 297
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
1454
CRC Handbook of Materials Science & Engineering
14.1 sel Thermal Page 1455 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 355. SELECTING
AT Temperature (K) 4
5
THERMAL CONDUCTIVITY OF METALS
TEMPERATURE *
(SHEET 3 OF 30)
Metal
Thermal Conductivity (watt • cm-1 • K-1)
Titanium Zirconium Tantalum Molybdenum
0.0576 0.442 0.459 0.584
Niobium Chromium Nickel Iron
0.993 1.6 2.54 2.97
Magnesium Platinum Gold Lead
5.15 8.8 17.1 22.4
Aluminum Tungsten Zinc Cadmium
30.8 55.6 69.7 92
Copper Silver Tin
113 147 181
Titanium Zirconium Tantalum Molybdenum
0.0719 0.549 0.571 0.73
Niobium Chromium Nickel Iron
1.23 1.99 3.16 3.71
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
Shackelford & Alexander
1455
14.1 sel Thermal Page 1456 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 355. SELECTING
AT Temperature (K)
6
THERMAL CONDUCTIVITY OF METALS
TEMPERATURE *
(SHEET 4 OF 30)
Metal
Thermal Conductivity (watt • cm-1 • K-1)
Magnesium Platinum Lead Gold
6.39 10.5 13.8 20.7
Aluminum Tungsten Cadmium Zinc
38.1 67.1 69 77.8
Tin Copper Silver
117 138 172
Titanium Zirconium Tantalum Molybdenum
0.0863 0.652 0.681 0.876
Niobium Chromium Nickel Iron
1.46 2.38 3.77 4.42
Magnesium Lead Platinum Gold
7.6 8.2 11.8 23.7
Cadmium Aluminum Tin Tungsten
44.2 45.1 76 76.2
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
1456
CRC Handbook of Materials Science & Engineering
14.1 sel Thermal Page 1457 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 355. SELECTING
AT Temperature (K)
7
8
THERMAL CONDUCTIVITY OF METALS
TEMPERATURE *
(SHEET 5 OF 30)
Metal
Thermal Conductivity (watt • cm-1 • K-1)
Zinc Copper Silver
78 159 187
Titanium Zirconium Tantalum Molybdenum
0.101 0.748 0.788 1.02
Niobium Chromium Nickel Lead
1.67 2.77 4.36 4.9
Iron Magnesium Platinum Gold
5.13 8.75 12.6 26
Cadmium Aluminum Tin Zinc
28 51.5 52 71.7
Tungsten Copper Silver
82.4 177 193
Titanium Zirconium Tantalum Molybdenum
0.115 0.837 0.891 1.17
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
Shackelford & Alexander
1457
14.1 sel Thermal Page 1458 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 355. SELECTING
AT Temperature (K)
9
THERMAL CONDUCTIVITY OF METALS
TEMPERATURE *
(SHEET 6 OF 30)
Metal
Thermal Conductivity (watt • cm-1 • K-1)
Niobium Chromium Lead Nickel
1.86 3.14 3.2 4.94
Iron Magnesium Platinum Cadmium
5.8 9.83 12.9 18
Gold Tin Aluminum Zinc
27.5 36 57.3 61.8
Tungsten Copper Silver
85.3 189 190
Titanium Zirconium Tantalum Molybdenum
0.129 0.916 0.989 1.31
Niobium Lead Chromium Nickel
2.04 2.3 3.5 5.49
Iron Magnesium Cadmium Platinum
6.45 10.8 12.2 12.8
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
1458
CRC Handbook of Materials Science & Engineering
14.1 sel Thermal Page 1459 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 355. SELECTING
AT Temperature (K)
10
THERMAL CONDUCTIVITY OF METALS
TEMPERATURE *
(SHEET 7 OF 30)
Metal
Thermal Conductivity (watt • cm-1 • K-1)
Tin Gold Zinc Aluminum
26 28.2 51.9 62.2
Tungsten Silver Copper
85.1 181 195
Titanium Zirconium Tantalum Molybdenum
0.144 0.984 1.08 1.45
Lead Niobium Chromium Nickel
1.78 2.18 3.85 6
Iron Cadmium Magnesium Platinum
7.05 8.87 11.7 12.3
Tin Gold Zinc Aluminum
19.3 28.2 43.2 66.1
Tungsten Silver Copper
82.4 168 196
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
Shackelford & Alexander
1459
14.1 sel Thermal Page 1460 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 355. SELECTING
AT Temperature (K) 11
12
THERMAL CONDUCTIVITY OF METALS
TEMPERATURE *
(SHEET 8 OF 30)
Metal
Thermal Conductivity (watt • cm-1 • K-1)
Titanium Zirconium Tantalum Lead
0.158 1.04 1.16 1.46
Molybdenum Niobium Chromium Nickel
1.6 2.3 4.18 6.48
Cadmium Iron Platinum Magnesium
6.91 7.62 11.7 12.5
Tin Gold Zinc Aluminum
14.8 27.7 36.4 69
Tungsten Silver Copper
77.9 154 193
Titanium Zirconium Lead Tantalum
0.172 1.08 1.23 1.24
Molybdenum Niobium Chromium Cadmium
1.74 2.39 4.49 5.56
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
1460
CRC Handbook of Materials Science & Engineering
14.1 sel Thermal Page 1461 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 355. SELECTING
AT Temperature (K)
13
THERMAL CONDUCTIVITY OF METALS
TEMPERATURE *
(SHEET 9 OF 30)
Metal
Thermal Conductivity (watt • cm-1 • K-1)
Nickel Iron Platinum Tin
6.91 8.13 10.9 11.6
Magnesium Gold Zinc Aluminum
13.1 26.7 30.8 70.8
Tungsten Silver Copper
72.4 139 185
Titanium Lead Zirconium Tantalum
0.186 1.07 1.11 1.3
Molybdenum Niobium Cadmium Chromium
1.88 2.46 4.67 4.78
Nickel Iron Tin Platinum
7.3 8.58 9.3 10.1
Magnesium Gold Zinc Tungsten
13.6 25.5 26.1 66.4
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC Shackelford & Alexander
1461
14.1 sel Thermal Page 1462 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 355. SELECTING
AT Temperature (K)
14
15
THERMAL CONDUCTIVITY OF METALS
TEMPERATURE *
(SHEET 10 OF 30)
Metal
Thermal Conductivity (watt • cm-1 • K-1)
Aluminum Silver Copper
71.5 124 176
Titanium Lead Zirconium Tantalum
0.2 0.94 1.13 1.36
Molybdenum Niobium Cadmium Chromium
2.01 2.49 4.01 5.04
Tin Nickel Iron Platinum
7.6 7.64 8.97 9.3
Magnesium Zinc Gold Tungsten
14 22.4 24.1 60.4
Aluminum Silver Copper
71.3 109 166
Titanium Lead Zirconium Tantalum
0.214 0.84 1.13 1.4
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
1462
CRC Handbook of Materials Science & Engineering
14.1 sel Thermal Page 1463 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 355. SELECTING
AT Temperature (K)
16
THERMAL CONDUCTIVITY OF METALS
TEMPERATURE *
(SHEET 11 OF 30)
Metal
Thermal Conductivity (watt • cm-1 • K-1)
Molybdenum Niobium Cadmium Chromium
2.15 2.5 3.55 5.27
Tin Nickel Platinum Iron
6.3 7.92 8.4 9.3
Magnesium Zinc Gold Tungsten
14.3 19.4 22.6 54.8
Aluminum Silver Copper
70.2 96 156
Titanium Lead Zirconium Tantalum
0.227 0.77 1.12 1.44
Molybdenum Niobium Cadmium Tin
2.28 2.49 3.16 5.3
Chromium Platinum Nickel Iron
5.48 7.6 8.15 9.56
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC Shackelford & Alexander
1463
14.1 sel Thermal Page 1464 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 355. SELECTING
AT Temperature (K)
18
THERMAL CONDUCTIVITY OF METALS
TEMPERATURE *
(SHEET 12 OF 30)
Metal
Thermal Conductivity (watt • cm-1 • K-1)
Magnesium Zinc Gold Tungsten
14.4 16.9 20.9 49.3
Aluminum Silver Copper
68.4 85 145
Titanium Lead Zirconium Tantalum
0.254 0.66 1.08 1.47
Niobium Molybdenum Cadmium Tin
2.42 2.53 2.62 4
Chromium Platinum Nickel Iron
5.81 6.1 8.45 9.88
Zinc Magnesium Gold Tungsten
13.3 14.3 17.7 40
Aluminum Silver Copper
63.5 66 124
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
1464
CRC Handbook of Materials Science & Engineering
14.1 sel Thermal Page 1465 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 355. SELECTING
AT Temperature (K) 20
25
THERMAL CONDUCTIVITY OF METALS
TEMPERATURE *
(SHEET 13 OF 30)
Metal
Thermal Conductivity (watt • cm-1 • K-1)
Titanium Lead Zirconium Tantalum
0.279 0.59 1.01 1.47
Cadmium Niobium Molybdenum Tin
2.26 2.29 2.77 3.2
Platinum Chromium Nickel Iron
4.9 6.01 8.56 9.97
Zinc Magnesium Gold Tungsten
10.7 13.9 15 32.6
Silver Aluminum Copper
51 56.5 105
Titanium Lead Zirconium Tantalum
0.337 0.507 0.85 1.36
Cadmium Niobium Tin Platinum
1.79 1.87 2.22 3.15
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC Shackelford & Alexander
1465
14.1 sel Thermal Page 1466 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 355. SELECTING
AT Temperature (K)
30
THERMAL CONDUCTIVITY OF METALS
TEMPERATURE *
(SHEET 14 OF 30)
Metal
Thermal Conductivity (watt • cm-1 • K-1)
Molybdenum Chromium Zinc Nickel
3.25 6.07 6.9 8.15
Iron Gold Magnesium Tungsten
9.36 10.2 12 20.4
Silver Aluminum Copper
29.5 40 68
Titanium Lead Zirconium Tantalum
0.382 0.477 0.74 1.16
Niobium Cadmium Tin Platinum
1.45 1.56 1.76 2.28
Molybdenum Zinc Chromium Nickel
3.55 4.9 5.58 6.95
Gold Iron Magnesium Tungsten
7.6 8.14 9.5 13.1
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
1466
CRC Handbook of Materials Science & Engineering
14.1 sel Thermal Page 1467 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 355. SELECTING
AT Temperature (K)
35
40
THERMAL CONDUCTIVITY OF METALS
TEMPERATURE *
(SHEET 15 OF 30)
Metal
Thermal Conductivity (watt • cm-1 • K-1)
Silver Aluminum Copper
19.3 28.5 43
Titanium Lead Zirconium Tantalum
0.411 0.462 0.65 0.99
Niobium Cadmium Tin Platinum
1.16 1.41 1.5 1.8
Molybdenum Zinc Chromium Nickel
3.62 3.72 5.03 5.62
Gold Iron Magnesium Tungsten
6.1 6.81 7.4 8.9
Silver Aluminum Copper
13.7 21 29
Titanium Lead Zirconium Tantalum
0.422 0.451 0.58 0.87
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
Shackelford & Alexander
1467
14.1 sel Thermal Page 1468 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 355. SELECTING
AT Temperature (K)
45
THERMAL CONDUCTIVITY OF METALS
TEMPERATURE *
(SHEET 16 OF 30)
Metal
Thermal Conductivity (watt • cm-1 • K-1)
Niobium Cadmium Tin Platinum
0.97 1.32 1.35 1.51
Zinc Molybdenum Chromium Nickel
2.97 3.51 4.3 4.63
Gold Iron Magnesium Tungsten
5.2 5.55 5.7 6.5
Silver Aluminum Copper
10.5 16 20.5
Titanium Lead Zirconium Tantalum
0.416 0.442 0.535 0.78
Niobium Tin Cadmium Platinum
0.84 1.23 1.25 1.32
Zinc Molybdenum Chromium Nickel
2.48 3.26 3.67 3.91
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
1468
CRC Handbook of Materials Science & Engineering
14.1 sel Thermal Page 1469 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 355. SELECTING
AT Temperature (K)
50
THERMAL CONDUCTIVITY OF METALS
TEMPERATURE *
(SHEET 17 OF 30)
Metal
Thermal Conductivity (watt • cm-1 • K-1)
Iron Magnesium Gold Tungsten
4.5 4.57 4.6 5.07
Silver Aluminum Copper
8.4 12.5 15.3
Titanium Lead Zirconium Tantalum
0.401 0.435 0.497 0.72
Niobium Tin Platinum Cadmium
0.76 1.15 1.18 1.2
Zinc Molybdenum Chromium Nickel
2.13 3 3.17 3.36
Iron Magnesium Tungsten Gold
3.72 3.75 4.17 4.2
Silver Aluminum Copper
7 10 12.2
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC Shackelford & Alexander
1469
14.1 sel Thermal Page 1470 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 355. SELECTING
AT Temperature (K) 60
70
THERMAL CONDUCTIVITY OF METALS
TEMPERATURE *
(SHEET 18 OF 30)
Metal
Thermal Conductivity (watt • cm-1 • K-1)
Titanium Lead Zirconium Tantalum
0.377 0.424 0.442 0.651
Niobium Platinum Tin Cadmium
0.66 1.01 1.04 1.13
Zinc Chromium Molybdenum Nickel
1.71 2.48 2.6 2.63
Iron Magnesium Tungsten Gold
2.65 2.74 3.18 3.8
Silver Aluminum Copper
5.5 6.7 8.5
Titanium Zirconium Lead Niobium
0.356 0.403 0.415 0.61
Tantalum Platinum Tin Cadmium
0.616 0.9 0.96 1.08
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
1470
CRC Handbook of Materials Science & Engineering
14.1 sel Thermal Page 1471 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 355. SELECTING
AT Temperature (K)
80
THERMAL CONDUCTIVITY OF METALS
TEMPERATURE *
(SHEET 19 OF 30)
Metal
Thermal Conductivity (watt • cm-1 • K-1)
Zinc Iron Chromium Nickel
1.48 2.04 2.08 2.21
Magnesium Molybdenum Tungsten Gold
2.23 2.3 2.76 3.58
Silver Aluminum Copper
4.97 5 6.7
Titanium Zirconium Lead Niobium
0.339 0.373 0.407 0.58
Tantalum Platinum Tin Cadmium
0.603 0.84 0.91 1.06
Zinc Iron Chromium Nickel
1.38 1.68 1.82 1.93
Magnesium Molybdenum Tungsten Gold
1.95 2.09 2.56 3.52
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
Shackelford & Alexander
1471
14.1 sel Thermal Page 1472 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 355. SELECTING
AT Temperature (K)
90
100
THERMAL CONDUCTIVITY OF METALS
TEMPERATURE *
(SHEET 20 OF 30)
Metal
Thermal Conductivity (watt • cm-1 • K-1)
Aluminum Silver Copper
4 4.71 5.7
Titanium Zirconium Lead Niobium
0.324 0.35 0.401 0.563
Tantalum Platinum Tin Cadmium
0.596 0.81 0.88 1.04
Zinc Iron Chromium Nickel
1.34 1.46 1.68 1.72
Magnesium Molybdenum Tungsten Aluminum
1.78 1.92 2.44 3.4
Gold Silver Copper
3.48 4.6 5.14
Titanium Zirconium Lead Niobium
0.312 0.332 0.396 0.552
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
1472
CRC Handbook of Materials Science & Engineering
14.1 sel Thermal Page 1473 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 355. SELECTING
AT Temperature (K)
200
THERMAL CONDUCTIVITY OF METALS
TEMPERATURE *
(SHEET 21 OF 30)
Metal
Thermal Conductivity (watt • cm-1 • K-1)
Tantalum Platinum Tin Cadmium
0.592 0.79 0.85 1.03
Zinc Iron Nickel Chromium
1.32 1.32 1.58 1.58
Magnesium Molybdenum Tungsten Aluminum
1.69 1.79 2.35 3
Gold Silver Copper
3.45 4.5 4.83
Titanium Zirconium Lead Niobium
0.245 0.252 0.366 0.526
Tantalum Tin Platinum Iron
0.575 0.733 0.748 0.94
Cadmium Nickel Chromium Zinc
0.993 1.06 1.11 1.26
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC Shackelford & Alexander
1473
14.1 sel Thermal Page 1474 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 355. SELECTING
AT Temperature (K)
273
THERMAL CONDUCTIVITY OF METALS
TEMPERATURE *
(SHEET 22 OF 30)
Metal
Thermal Conductivity (watt • cm-1 • K-1)
Molybdenum Magnesium Tungsten Aluminum
1.43 1.59 1.97 2.37
Gold Copper Silver
3.27 4.13 4.3
Titanium Zirconium Lead Niobium
0.224 0.232 0.355 0.533
Tantalum Tin Platinum Iron
0.574 0.682 0.734 0.835
Nickel Chromium Cadmium Zinc
0.94 0.948 0.975 1.22
Molybdenum Magnesium Tungsten Aluminum
1.39 1.57 1.82 2.36
Gold Copper Silver
3.18 4.01 4.28
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
1474
CRC Handbook of Materials Science & Engineering
14.1 sel Thermal Page 1475 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 355. SELECTING
AT Temperature (K) 300
400
THERMAL CONDUCTIVITY OF METALS
TEMPERATURE *
(SHEET 23 OF 30)
Metal
Thermal Conductivity (watt • cm-1 • K-1)
Titanium Zirconium Lead Niobium
0.219 0.227 0.352 0.537
Tantalum Tin Platinum Iron
0.575 0.666 0.73 0.803
Chromium Nickel Cadmium Zinc
0.903 0.905 0.968 1.21
Molybdenum Magnesium Tungsten Aluminum
1.38 1.56 1.78 2.37
Gold Copper Silver
3.15 3.98 4.27
Titanium Zirconium Lead Niobium
0.204 0.216 0.338 0.552
Tantalum Tin Iron Platinum
0.578 0.622 0.694 0.722
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
Shackelford & Alexander
1475
14.1 sel Thermal Page 1476 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 355. SELECTING
AT Temperature (K)
500
THERMAL CONDUCTIVITY OF METALS
TEMPERATURE *
(SHEET 24 OF 30)
Metal
Thermal Conductivity (watt • cm-1 • K-1)
Nickel Chromium Cadmium Zinc
0.801 0.873 0.947 1.16
Molybdenum Magnesium Tungsten Aluminum
1.34 1.53 1.62 2.4
Gold Copper Silver
3.12 3.92 4.2
Titanium Zirconium Lead Niobium
0.197 0.21 0.325 0.567
Tantalum Tin Iron Platinum
0.582 0.596 0.613 0.719
Nickel Chromium Cadmium Zinc
0.721 0.848 0.92 1.11
Molybdenum Tungsten Magnesium Aluminum
1.3 1.49 1.51 2.37
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
1476
CRC Handbook of Materials Science & Engineering
14.1 sel Thermal Page 1477 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 355. SELECTING
AT Temperature (K)
600
700
THERMAL CONDUCTIVITY OF METALS
TEMPERATURE *
(SHEET 25 OF 30)
Metal
Thermal Conductivity (watt • cm-1 • K-1)
Gold Copper Silver
3.09 3.88 4.13
Titanium Zirconium Lead Iron
0.194 0.207 0.312 0.547
Niobium Tantalum Nickel Platinum
0.582 0.586 0.655 0.72
Chromium Zinc Molybdenum Tungsten
0.805 1.05 1.26 1.39
Magnesium Aluminum Gold
1.49 2.32 3.04
Copper Silver
3.83 4.05
Titanium Zirconium Iron Tantalum
0.194 0.209 0.487 0.59
Niobium Nickel Platinum Chromium
0.598 0.653 0.723 0.757
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC Shackelford & Alexander
1477
14.1 sel Thermal Page 1478 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 355. SELECTING
AT Temperature (K)
800
900
THERMAL CONDUCTIVITY OF METALS
TEMPERATURE *
(SHEET 26 OF 30)
Metal
Thermal Conductivity (watt • cm-1 • K-1)
Molybdenum Tungsten Magnesium Aluminum
1.22 1.33 1.47 2.26
Gold Copper Silver
2.98 3.77 3.97
Titanium Zirconium Iron Tantalum
0.197 0.216 0.433 0.594
Niobium Nickel Chromium Platinum
0.613 0.674 0.713 0.729
Molybdenum Tungsten Magnesium Aluminum
1.18 1.28 1.46 2.2
Gold Copper Silver
2.92 3.71 3.89
Titanium Zirconium Iron Tantalum
0.202 0.226 0.38 0.598
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
1478
CRC Handbook of Materials Science & Engineering
14.1 sel Thermal Page 1479 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 355. SELECTING
AT Temperature (K)
1000
1100
THERMAL CONDUCTIVITY OF METALS
TEMPERATURE *
(SHEET 27 OF 30)
Metal
Thermal Conductivity (watt • cm-1 • K-1)
Niobium Chromium Nickel Platinum
0.629 0.678 0.696 0.737
Molybdenum Tungsten Magnesium Aluminum
1.15 1.24 1.45 2.13
Gold Copper Silver
2.85 3.64 3.82
Titanium Zirconium Iron Tantalum
0.207 0.237 0.326 0.602
Niobium Chromium Nickel Platinum
0.644 0.653 0.718 0.748
Molybdenum Tungsten Gold
1.12 1.21 2.78
Copper Silver
3.57 3.74
Titanium Zirconium Iron Tantalum
0.213 0.248 0.297 0.606
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC Shackelford & Alexander
1479
14.1 sel Thermal Page 1480 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 355. SELECTING
AT Temperature (K)
1200
1400
THERMAL CONDUCTIVITY OF METALS
TEMPERATURE *
(SHEET 28 OF 30)
Metal
Thermal Conductivity (watt • cm-1 • K-1)
Chromium Niobium Nickel Platinum
0.636 0.659 0.739 0.76
Molybdenum Tungsten Gold
1.08 1.18 2.71
Copper Silver
3.5 3.66
Titanium Zirconium Iron Tantalum
0.22 0.257 0.282 0.61
Chromium Niobium Nickel
0.624 0.675 0.761
Platinum Molybdenum Tungsten
0.775 1.05 1.15
Gold Copper Silver
2.62 3.42 3.58
Titanium Zirconium Iron Chromium
0.236 0.275 0.309 0.611
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC
1480
CRC Handbook of Materials Science & Engineering
14.1 sel Thermal Page 1481 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 355. SELECTING
AT Temperature (K)
1600
1800
2000
THERMAL CONDUCTIVITY OF METALS
TEMPERATURE *
(SHEET 29 OF 30)
Metal
Thermal Conductivity (watt • cm-1 • K-1)
Tantalum Niobium Nickel
0.618 0.705 0.804
Platinum Molybdenum Tungsten
0.807 0.996 1.11
Titanium Zirconium Iron Tantalum
0.253 0.29 0.327 0.626
Niobium Platinum Molybdenum Tungsten
0.735 0.842 0.946 1.07
Titanium Zirconium Tantalum Niobium
0.271 0.302 0.634 0.764
Platinum Molybdenum Tungsten
0.877 0.907 1.03
Zirconium Tantalum Niobium
0.313 0.64 0.791
Molybdenum Platinum Tungsten
0.88 0.913 1
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968.
©2001 CRC Press LLC Shackelford & Alexander
1481
14.1 sel Thermal Page 1482 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 355. SELECTING
AT
THERMAL CONDUCTIVITY OF METALS
TEMPERATURE *
(SHEET 30 OF 30)
Metal
Thermal Conductivity (watt • cm-1 • K-1)
2200
Tantalum Niobium Molybdenum Tungsten
0.647 0.815 0.858 0.98
2600
Tantalum Molybdenum Tungsten
0.658 0.825 0.94
3000
Tantalum Tungsten
0.665 0.915
Temperature (K)
Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. *
These data apply only to metals of purity of at least 99.9%. The third significant figure may not be accurate.
©2001 CRC Press LLC
1482
CRC Handbook of Materials Science & Engineering
14.2 sel Thermal Page 1483 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 356. SELECTING
THERMAL CONDUCTIVITY OF ALLOY CAST IRONS
Description
Thermal Conductivity W/(m • K)
Heat–Resistant High–Nickel Ductile Iron (20 Ni) Corrosion–Resistant High–Nickel Ductile Iron Heat–Resistant Gray High–Chromium Iron
13 13.4 20
Abrasion–Resistant Low–C White Iron Heat–Resistant Gray Nickel–Chromium–Silicon Iron Abrasion–Resistant Martensitic Nickel–Chromium White Iron
22† 30 30†
Heat–Resistant Gray Medium–Silicon Iron Heat–Resistant Gray High–Nickel Iron Corrosion–Resistant High–Nickel Gray Iron
37 37 to 40 38 to 40
† Estimated. Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p172, (1984).
©2001 CRC Press LLC Shackelford & Alexander
1483
14.2 sel Thermal Page 1484 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 357. SELECTING
THERMAL CONDUCTIVITY OF CERAMICS (SHEET 1 OF 12)
Ceramic
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
Zirconium Oxide (ZrO2) (plasma sprayed) Zirconium Oxide (ZrO2) (plasma sprayed) Silicon Dioxide (SiO2) Cerium Dioxide (CeO2)
0.0019-0.0022 at 800oC 0.0019-0.0031 at room temp.
Silicon Dioxide (SiO2) Sillimanite (Al2O3 SiO2) (0% porosity)
0.003 at 400oC
Silicon Carbide (SiC) (cubic, CVD) Zirconium Oxide (ZrO2) (plasma sprayed and coated with Cr2O3) Zirconium Oxide (ZrO2) (plasma sprayed and coated with Cr2O3)
0.0025 at 200oC 0.00287 at 1400K
0.003 at 1500oC 0.0032 at 1530oC
0.0033 at 800oC 0.0033 at room temp.
Sillimanite (Al2O3 SiO2) (0% porosity) Sillimanite (Al2O3 SiO2) (0% porosity)
0.0035 at 800oC 0.0035 at 1200oC
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3) Zirconium Oxide (ZrO2) (stabilized)
0.0038 at 800oC
Sillimanite (Al2O3 SiO2) (0% porosity) Silicon Dioxide (SiO2)
0.004 at 400oC 0.004 at 800oC
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3)
0.0040 at 500oC
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3)
0.0041 at 300oC
0.004 at 100oC
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
1484
CRC Handbook of Materials Science & Engineering
14.2 sel Thermal Page 1485 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 357. SELECTING
THERMAL CONDUCTIVITY OF CERAMICS (SHEET 2 OF 12)
Ceramic
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
Sillimanite (Al2O3 SiO2) (0% porosity)
0.0042 at 100oC
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3) Zirconium Oxide (ZrO2) (stabilized)
0.0043 at 20oC
Zirconium Oxide (ZrO2) (5-10% CaO stabilized)
0.0044 at 500oC 0.0045 at 400oC
Zirconium Oxide (ZrO2) (stabilized) Zirconium Oxide (ZrO2) (stabilized) Zirconium Oxide (ZrO2) (5-10% CaO stabilized) Zirconium Oxide (ZrO2) (stabilized, 0% porosity)
0.0048-0.0055 at 1000oC 0.0049-0.0050 at 1200oC 0.0049 at 800oC 0.005 at 100oC
Zirconium Oxide (ZrO2) (stabilized, 0% porosity) Zirconium Oxide (ZrO2) (stabilized, 0% porosity) Silicon Dioxide (SiO2) Zirconium Oxide (ZrO2) (Y2O3 stabilized)
0.005 at 200oC 0.005 at 400oC 0.005 at 1200oC 0.0053 at 800oC
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3) Zirconium Oxide (ZrO2) (stabilized, 0% porosity)
0.0055 at 500oC
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3)
0.0055 at 800oC 0.0055 at room temp.
Zirconium Oxide (ZrO2) (Y2O3 stabilized) Zirconium Oxide (ZrO2) (MgO stabilized) Zirconium Oxide (ZrO2) (5-10% CaO stabilized) Silicon Carbide (SiC) (cubic, CVD) Thorium Dioxide (ThO2) (0% porosity)
0.0055 at 800oC
0.0057 at 800oC 0.0057 at 1200oC 0.0059 at 1250oC 0.006-0.0076 at 1200oC
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
Shackelford & Alexander
1485
14.2 sel Thermal Page 1486 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 357. SELECTING
THERMAL CONDUCTIVITY OF CERAMICS (SHEET 3 OF 12)
Ceramic
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
Uranium Dioxide (UO2) Uranium Dioxide (UO2) Zirconium Oxide (ZrO2) (stabilized, 0% porosity) Thorium Dioxide (ThO2) (0% porosity)
0.006 at 1000oC 0.006 at 1200oC 0.006 at 1200oC 0.006 at 1400oC
Silicon Dioxide (SiO2)
0.006 at 1600oC
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3) Zirconium Oxide (ZrO2) (stabilized, 0% porosity) Thorium Dioxide (ThO2) (0% porosity)
0.0062 at 300oC 0.0065 at 1400oC 0.007-0.0074 at 1000oC
Zirconium Oxide (ZrO2) (MgO stabilized)
0.0076 at room temp. 3
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm ) Titanium Oxide (TiO2) (0% porosity) Uranium Dioxide (UO2) Uranium Dioxide (UO2) Thorium Dioxide (ThO2) (0% porosity) Titanium Oxide (TiO2) (0% porosity) Titanium Oxide (TiO2) (0% porosity) Uranium Dioxide (UO2) (0% porosity) Titanium Oxide (TiO2) (0% porosity) Titanium Oxide (TiO2) (0% porosity) Uranium Dioxide (UO2) (0% porosity)
0.0077 at 20oC 0.008 at 600oC 0.008 at 600oC 0.008 at 700oC 0.008 at 800oC 0.008 at 800oC 0.008 at 1000oC 0.008 at 1000oC 0.008 at 1200oC 0.009 at 400oC 0.009 at 800oC
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
1486
CRC Handbook of Materials Science & Engineering
14.2 sel Thermal Page 1487 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 357. SELECTING
THERMAL CONDUCTIVITY OF CERAMICS (SHEET 4 OF 12)
Ceramic
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
Mullite (3Al2O3 2SiO2) (0% porosity) Mullite (3Al2O3 2SiO2) (0% porosity) Mullite (3Al2O3 2SiO2) (0% porosity) Mullite (3Al2O3 2SiO2) (0% porosity)
0.009 at 1000oC 0.009 at 1200oC 0.009 at 1400oC 0.0095 at 800oC
Zircon (SiO2 ZrO2) (0% porosity) Zircon (SiO2 ZrO2) (0% porosity)
0.0095 at 1200oC
Magnesium Oxide (MgO) Thorium Dioxide (ThO2) (0% porosity) Uranium Dioxide (UO2) (0% porosity) Mullite (3Al2O3 2SiO2) (0% porosity) Zircon (SiO2 ZrO2) (0% porosity) Magnesium Oxide (MgO) Mullite (3Al2O3 2SiO2) (0% porosity) Nickel monoxide (NiO) (0% porosity) Magnesium Oxide (MgO) Titanium Oxide (TiO2) (0% porosity) Uranium Dioxide (UO2) Zircon (SiO2 ZrO2) (0% porosity) Nickel monoxide (NiO) (0% porosity) Spinel (Al2O3 MgO) (0% porosity)
0.0095 at 1400oC 0.0096-0.0191 at 1800oC 0.010 at 600oC 0.010 at 600oC 0.010 at 600oC 0.010 at 800oC 0.0108-0.016 at 1600oC 0.011 at 400oC 0.011 at 1000oC 0.012-0.014 at 1400oC 0.012 at 200oC 0.012 at 400oC 0.012 at 400oC 0.012 at 800oC 0.013-0.0138 at 1000oC
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC Shackelford & Alexander
1487
14.2 sel Thermal Page 1488 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 357. SELECTING
THERMAL CONDUCTIVITY OF CERAMICS (SHEET 5 OF 12)
Ceramic
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
Aluminum Oxide (Al2O3) Mullite (3Al2O3 2SiO2) (0% porosity) Spinel (Al2O3 MgO) (0% porosity) Aluminum Oxide (Al2O3)
0.013-0.015 at 1200oC 0.013 at 200oC 0.013 at 1200oC 0.013 at 1400oC
Zircon (SiO2 ZrO2) (0% porosity)
0.0135 at 200oC
Titanium Monocarbide (TiC) Magnesium Oxide (MgO) Aluminum Oxide (Al2O3)
0.0135 at 1000 oC 0.0139-0.0148 at 1200oC 0.014-0.016 at 1000oC
Thorium Dioxide (ThO2) (0% porosity)
0.014 at 400oC 0.014 at 1600oC
Aluminum Oxide (Al2O3) Mullite (3Al2O3 2SiO2) (0% porosity) Zircon (SiO2 ZrO2) (0% porosity)
0.0145 at 100oC 0.0145 at 100oC
Aluminum Oxide (Al2O3) Uranium Dioxide (UO2) (0% porosity) Spinel (Al2O3 MgO) (0% porosity)
0.015-0.017 at 800oC 0.015 at 400oC 0.015 at 800oC
Zirconium Mononitride (TiN)
0.015 at 1100 oC
Hafnium Diboride (HfB2)
0.015 at room temp.
Magnesium Oxide (MgO) Titanium Oxide (TiO2) (0% porosity)
0.016-0.020 at 1000oC 0.016 at 100oC
Zirconium Mononitride (TiN)
0.016 at 875 oC
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
1488
CRC Handbook of Materials Science & Engineering
14.2 sel Thermal Page 1489 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 357. SELECTING
THERMAL CONDUCTIVITY OF CERAMICS (SHEET 6 OF 12)
Ceramic
Nickel monoxide (NiO) (0% porosity) Aluminum Oxide (Al2O3) Uranium Dioxide (UO2) Zirconium Mononitride (TiN)
Thermal Conductivity (cal • cm-1 • sec-1 • K-1) 0.017 at 400oC 0.017 at 1800oC 0.018 at 100oC 0.018 at 650 oC
Calcium Oxide (CaO) Thorium Dioxide (ThO2) (0% porosity) Spinel (Al2O3 MgO) (0% porosity)
0.0186-0.019 at 1000oC
Calcium Oxide (CaO)
0.019 at 800oC
Magnesium Oxide (MgO) Aluminum Oxide (Al2O3) Thorium Dioxide (ThO2) (0% porosity) Uranium Dioxide (UO2) (0% porosity)
0.0198-0.026 at 800oC
Calcium Oxide (CaO)
0.020 at 600oC 0.020 at 1000 oC 0.021-0.022 at 600oC
0.019 at 200oC 0.019 at 600oC
0.02-0.031 at 400oC 0.020 at 100oC 0.020 at 200oC
Titanium Mononitride (TiN) Aluminum Oxide (Al2O3) Trisilicon tetranitride (Si3N4) (pressureless sintered)
0.022-0.072 at 127 oC
Calcium Oxide (CaO) Cerium Dioxide (CeO2) Dichromium Trioxide (Cr2O3)
0.022 at 400oC 0.0229 at 400K 0.0239-0.0788
Nickel monoxide (NiO) (0% porosity)
0.024 at 200oC
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
Shackelford & Alexander
1489
14.2 sel Thermal Page 1490 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 357. SELECTING
THERMAL CONDUCTIVITY OF CERAMICS (SHEET 7 OF 12) Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
Ceramic
0.024 at 400oC 0.024 at room temp.
Spinel (Al2O3 MgO) (0% porosity) Thorium Dioxide (ThO2) (0% porosity) Uranium Dioxide (UO2) (0% porosity) Zirconium Mononitride (TiN)
0.025 at 100oC 0.025 at 425 oC
Tantalum Diboride (TaB2)
0.026 at room temp.
Calcium Oxide (CaO) Titanium Mononitride (TiN) Hafnium Dioxide (HfO2)
0.027 at 200oC 0.027 at 650 oC 0.0273 at 25-425oC
Nickel monoxide (NiO) (0% porosity) Aluminum Oxide (Al2O3) (single crystal)
0.029 at 100oC
Boron Nitride (BN) parallel to a axis Aluminum Oxide (Al2O3)
0.0295 at 1000oC 0.03-0.064 at 200oC
Spinel (Al2O3 MgO) (0% porosity)
0.031 at 200oC 0.0318 at 700oC
0.029 at 800oC
Boron Nitride (BN) parallel to a axis Beryllium Oxide (BeO) Trisilicon tetranitride (Si3N4) (pressureless sintered) Beryllium Oxide (BeO) Tantalum Diboride (TaB2) Beryllium Oxide (BeO) Beryllium Oxide (BeO)
0.032-0.34 at 100oC 0.033-0.034 at 1200 oC 0.033-0.039 at 1600oC 0.033 at 200 oC. 0.033 at 1700oC 0.034 at 1500oC
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
1490
CRC Handbook of Materials Science & Engineering
14.2 sel Thermal Page 1491 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 357. SELECTING
THERMAL CONDUCTIVITY OF CERAMICS (SHEET 8 OF 12)
Ceramic
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
Beryllium Oxide (BeO)
0.035 at 100oC 0.035 at 500oC 0.036-0.042 at 500 oC 0.036 at 1400oC
Beryllium Oxide (BeO)
0.036 at 1800oC
Beryllium Oxide (BeO) Beryllium Oxide (BeO)
0.036 at 1900oC 0.036 at 2000oC
Boron Nitride (BN) parallel to a axis
0.0362 at 300oC
Calcium Oxide (CaO) Aluminum Oxide (Al2O3)
0.037 at 100oC
Magnesium Oxide (MgO) Beryllium Oxide (BeO)
0.038-0.045 at 400oC 0.038-0.47 at 20oC
Trisilicon tetranitride (Si3N4) (pressureless sintered) Beryllium Oxide (BeO) Aluminum Oxide (Al2O3)
0.038 at 1000 oC 0.038 at 1300oC 0.04-0.069 at 100oC
Titanium Mononitride (TiN)
0.040 at 200 oC
Zirconium Mononitride (TiN) Beryllium Oxide (BeO) Titanium Monocarbide (TiC) Trisilicon tetranitride (Si3N4) (pressureless sintered)
0.040 at 200 oC 0.041-0.054 at 1200oC 0.041-0.074 at room temp. 0.041 at 200-750 oC
Spinel (Al2O3 MgO) (0% porosity) Aluminum Oxide (Al2O3) Trisilicon tetranitride (Si3N4) (pressureless sintered)
0.037 at 315oC
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC Shackelford & Alexander
1491
14.2 sel Thermal Page 1492 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 357. SELECTING
THERMAL CONDUCTIVITY OF CERAMICS (SHEET 9 OF 12)
Ceramic
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
Aluminum Nitride (AlN)
0.041 at 1100oC 0.042 at 800oC
Beryllium Oxide (BeO) Molybdenum Disilicide (MoSi2)
0.043 at 1100oC 0.046 at 875oC
Aluminum Oxide (Al2O3) (single crystal)
0.047 at 300oC
Aluminum Nitride (AlN) Chromium Diboride (CrB2)
0.048 at 600oC 0.049-0.076 at room temp.
Silicon Carbide (SiC) (cubic, CVD)
0.049-0.080 at 600oC
Zirconium Monocarbide (ZrC) Silicon Carbide (SiC) (cubic, CVD) Aluminum Nitride (AlN) Molybdenum Disilicide (MoSi2)
0.049 at room temp. 0.051 at 1000oC
Hafnium Monocarbide (HfC) Tantalum Monocarbide (TaC) Zirconium Diboride (ZrB2) Zirconium Diboride (ZrB2)
0.053 at room temp. 0.053 at room temp. 0.055-0.058 at room temp.
Titanium Mononitride (TiN) Molybdenum Disilicide (MoSi2) Titanium Diboride (TiB2) Aluminum Oxide (Al2O3)
0.057 at 127 oC
Molybdenum Disilicide (MoSi2)
Beryllium Oxide (BeO) Aluminum Nitride (AlN) Zirconium Monocarbide (ZrC) Silicon Carbide (SiC) (cubic, CVD)
0.053 at 400oC 0.053 at 540oC
0.055-0.060 at 200 oC
0.057 at 650oC 0.058-0.062 at room temp. 0.06 at room temp. 0.060-0.093 at 800oC 0.060 at 200oC 0.061 at 288oC 0.061 at 800oC
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
1492
CRC Handbook of Materials Science & Engineering
14.2 sel Thermal Page 1493 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 357. SELECTING
THERMAL CONDUCTIVITY OF CERAMICS (SHEET 10 OF 12)
Ceramic
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
Boron Nitride (BN) parallel to c axis
0.063 at 200 oC 0.0637 at 1000oC
Magnesium Oxide (MgO) Boron Nitride (BN) parallel to c axis
0.064-0.065 at 200oC 0.0646 at 700oC
Titanium Diboride (TiB2)
Boron Carbide (B4C)
0.065-0.069 at room temp.
Zirconium Monocarbide (ZrC) Boron Nitride (BN) parallel to c axis
0.065 at 188oC 0.0687 at 300oC
Titanium Mononitride (TiN)
0.069 at 25 oC
Zirconium Monocarbide (ZrC) Aluminum Nitride (AlN) Trisilicon tetranitride (Si3N4) (pressureless sintered) Molybdenum Disilicide (MoSi2)
0.069 at 150oC
Magnesium Oxide (MgO) Zirconium Monocarbide (ZrC) Silicon Carbide (SiC) (cubic, CVD) Zirconium Monocarbide (ZrC) Zirconium Monocarbide (ZrC) Beryllium Oxide (BeO) Zirconium Monocarbide (ZrC) Zirconium Monocarbide (ZrC)
0.072 at 25oC 0.072 at room temp. 0.074 at 425oC 0.078-0.082 at 100oC 0.080 at 600oC 0.0827 at 1327oC 0.083 at 800oC 0.086 at 1000oC 0.089-0.1137 at 600oC 0.089 at 1200oC 0.092 at 1400oC
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC Shackelford & Alexander
1493
14.2 sel Thermal Page 1494 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 357. SELECTING
THERMAL CONDUCTIVITY OF CERAMICS (SHEET 11 OF 12) Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
Ceramic
0.096 at 1600oC 0.097 at room temp. 0.098-0.10 at 20oC 0.098 at 50oC
Zirconium Monocarbide (ZrC) Magnesium Oxide (MgO) Silicon Carbide (SiC) Zirconium Monocarbide (ZrC) Zirconium Monocarbide (ZrC) Aluminum Oxide (Al2O3) (single crystal)
0.099 at 1800oC
Zirconium Monocarbide (ZrC) Zirconium Monocarbide (ZrC)
0.103 at 2000oC 0.105 at 2200oC
Molybdenum Disilicide (MoSi2)
0.129 at 150oC 0.136 at 2300 oC
0.103 at 20oC
Titanium Mononitride (TiN) Beryllium Oxide (BeO) Silicon Carbide (SiC) (with 1 wt% Al additive)
0.14-0.16 at 400oC 0.143
Titanium Mononitride (TiN) Boron Carbide (B4C)
0.162 at 1500 oC 0.198 at 425 oC
Tungsten Monocarbide (WC) Tungsten Monocarbide (WC) (6% Co, 1-3µm grain size)
0.201 at 20 oC 0.239
Tungsten Monocarbide (WC) (24% Co, 1-3µm grain size) Tungsten Monocarbide (WC) (12% Co, 1-3µm grain size) Tungsten Monocarbide (WC) (6% Co, 2-4µm grain size) Tungsten Monocarbide (WC) (6% Co, 3-6µm grain size)
0.239 0.251 0.251 0.256
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
1494
CRC Handbook of Materials Science & Engineering
14.2 sel Thermal Page 1495 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 357. SELECTING
THERMAL CONDUCTIVITY OF CERAMICS (SHEET 12 OF 12)
Ceramic
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
Silicon Carbide (SiC) (with 2 wt% BN additive) Silicon Carbide (SiC) (cubic, CVD) Silicon Carbide (SiC) (with 1 wt% B additive) Trichromium Dicarbide (Cr3C2)
0.263 0.289 at 127oC 0.406 0.454
Silicon Carbide (SiC) (with 1 wt% Be additive) Silicon Carbide (SiC) (with 1.6 wt% BeO additive) Silicon Carbide (SiC) (with 3.2 wt% BeO additive)
0.621 0.645 at room temp. 0.645 at room temp.
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
Shackelford & Alexander
1495
14.3 sel Thermal L Page 1496 Wednesday, December 31, 1969 17:00
Table 358. SELECTING
THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 1 OF 19)
Temperature (˚C)
20 20 20 20 20 20 20 20 20 20 20
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
Ceramic
Zirconium Oxide (ZrO2) (plasma sprayed) Zirconium Oxide (ZrO2) (plasma sprayed and coated with Cr2O3) Cordierite (2MgO 2Al2O3 5SiO2
) (ρ=2.1g/cm3)
0.0019-0.0031 0.0033 0.0043
Zirconium Oxide (ZrO2) (Y2O3 stabilized) Zirconium Oxide (ZrO2) (MgO stabilized)
0.0055 0.0076
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3) Hafnium Diboride (HfB2)
0.0077
Thorium Dioxide (ThO2) (0% porosity) Tantalum Diboride (TaB2) Beryllium Oxide (BeO) Titanium Monocarbide (TiC)
0.024 0.026 0.038-0.47 0.041-0.074
0.015
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
14.3 sel Thermal L Page 1497 Wednesday, December 31, 1969 17:00
Table 358. SELECTING
THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 2 OF 19)
Temperature (˚C)
Ceramic
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
20 20 20 20
Zirconium Monocarbide (ZrC) Chromium Diboride (CrB2) Hafnium Monocarbide (HfC) Tantalum Monocarbide (TaC)
0.049 0.049-0.076 0.053 0.053
20
20
Zirconium Diboride (ZrB2) Titanium Diboride (TiB2) Aluminum Oxide (Al2O3) Boron Carbide (B4C)
0.055-0.058 0.058-0.062 0.06 0.065-0.069
20 20 20 20
Trisilicon tetranitride (Si3N4) (pressureless sintered) Magnesium Oxide (MgO) Silicon Carbide (SiC) Aluminum Oxide (Al2O3) (single crystal)
0.072 0.097 0.098-0.10 0.103
20 20
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
14.3 sel Thermal L Page 1498 Wednesday, December 31, 1969 17:00
Table 358. SELECTING
THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 3 OF 19) Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
Temperature (˚C)
Ceramic
20 20 20
Tungsten Monocarbide (WC)
0.201
Silicon Carbide (SiC) (with 1.6 wt% BeO additive) Silicon Carbide (SiC) (with 3.2 wt% BeO additive)
0.645 0.645
Hafnium Dioxide (HfO2)
0.0273
25-425 25 25
Titanium Mononitride (TiN)
0.069
Aluminum Nitride (AlN)
0.072
50
Zirconium Monocarbide (ZrC)
0.098
100
Zirconium Oxide (ZrO2) (stabilized) Sillimanite (Al2O3 SiO2) (0% porosity) Zirconium Oxide (ZrO2) (stabilized, 0% porosity) Mullite (3Al2O3 2SiO2) (0% porosity)
0.004 0.0042 0.005 0.0145
100 100 100
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
14.3 sel Thermal L Page 1499 Wednesday, December 31, 1969 17:00
Table 358. SELECTING
THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 4 OF 19) Ceramic
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
100
Zircon (SiO2 ZrO2) (0% porosity) Titanium Oxide (TiO2) (0% porosity) Uranium Dioxide (UO2) Thorium Dioxide (ThO2) (0% porosity)
0.0145 0.016 0.018 0.020
100 100 100 100
Uranium Dioxide (UO2) (0% porosity) Nickel monoxide (NiO) (0% porosity) Beryllium Oxide (BeO) Spinel (Al2O3 MgO) (0% porosity)
0.025 0.029 0.032-0.34 0.035
100 100 100
Calcium Oxide (CaO) Aluminum Oxide (Al2O3) Magnesium Oxide (MgO)
0.037 0.04-0.069 0.078-0.082
Temperature (˚C)
100 100 100
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
14.3 sel Thermal L Page 1500 Wednesday, December 31, 1969 17:00
Table 358. SELECTING
THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 5 OF 19)
Temperature (˚C)
Ceramic
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
127 127 127
Trisilicon tetranitride (Si3N4) (pressureless sintered) Titanium Mononitride (TiN)
0.022-0.072
Silicon Carbide (SiC) (cubic, CVD)
0.289
150 150
Zirconium Monocarbide (ZrC) Molybdenum Disilicide (MoSi2)
0.069 0.129
188
Zirconium Monocarbide (ZrC)
0.065
200
Silicon Dioxide (SiO2) Zirconium Oxide (ZrO2) (stabilized, 0% porosity) Titanium Oxide (TiO2) (0% porosity) Mullite (3Al2O3 2SiO2) (0% porosity)
0.0025 0.005 0.012 0.013
200 200 200
0.057
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
14.3 sel Thermal L Page 1501 Wednesday, December 31, 1969 17:00
Table 358. SELECTING
THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 6 OF 19) Ceramic
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
Zircon (SiO2 ZrO2) (0% porosity) Thorium Dioxide (ThO2) (0% porosity) Uranium Dioxide (UO2) (0% porosity) Nickel monoxide (NiO) (0% porosity)
0.0135 0.019 0.020 0.024
200.
Calcium Oxide (CaO) Aluminum Oxide (Al2O3) Spinel (Al2O3 MgO) (0% porosity) Tantalum Diboride (TaB2)
0.027 0.03-0.064 0.031 0.033
200 200 200-750
Titanium Mononitride (TiN) Zirconium Mononitride (TiN) Trisilicon tetranitride (Si3N4) (pressureless sintered)
0.040 0.040
200
Zirconium Diboride (ZrB2)
Temperature (˚C)
200 200 200 200 200 200 200
0.041 0.055-0.060
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
14.3 sel Thermal L Page 1502 Wednesday, December 31, 1969 17:00
Table 358. SELECTING
THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 7 OF 19)
Temperature (˚C)
Ceramic
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
200 200 200
Aluminum Nitride (AlN) Titanium Diboride (TiB2) Magnesium Oxide (MgO)
0.060 0.063 0.064-0.065
288
Zirconium Monocarbide (ZrC)
0.061
300
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3)
0.0041
300
) (ρ=2.3g/cm3)
0.0062 0.0362 0.047 0.0687
300 300 300 315
Cordierite (2MgO 2Al2O3 5SiO2 Boron Nitride (BN) parallel to a axis Aluminum Oxide (Al2O3) (single crystal) Boron Nitride (BN) parallel to c axis Aluminum Oxide (Al2O3)
0.037
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
14.3 sel Thermal L Page 1503 Wednesday, December 31, 1969 17:00
Table 358. SELECTING
THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 8 OF 19)
Temperature (˚C)
400 400 400 400 400 400 400 400 400 400 400
Ceramic
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
Silicon Dioxide (SiO2) Sillimanite (Al2O3 SiO2) (0% porosity) Zirconium Oxide (ZrO2) (5-10% CaO stabilized) Zirconium Oxide (ZrO2) (stabilized, 0% porosity)
0.003 0.004 0.0045 0.005
Titanium Oxide (TiO2) (0% porosity) Mullite (3Al2O3 2SiO2) (0% porosity) Uranium Dioxide (UO2) Zircon (SiO2 ZrO2) (0% porosity)
0.009 0.011 0.012 0.012
Thorium Dioxide (ThO2) (0% porosity) Uranium Dioxide (UO2) (0% porosity) Nickel monoxide (NiO) (0% porosity)
0.014 0.015 0.017
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
14.3 sel Thermal L Page 1504 Wednesday, December 31, 1969 17:00
Table 358. SELECTING
THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 9 OF 19)
Temperature (˚C)
Ceramic
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
400 400 400
Aluminum Oxide (Al2O3) Calcium Oxide (CaO) Spinel (Al2O3 MgO) (0% porosity)
0.02-0.031 0.022 0.024
400 400 400
Magnesium Oxide (MgO) Aluminum Nitride (AlN) Beryllium Oxide (BeO)
0.038-0.045 0.053 0.14-0.16
425 425
Zirconium Mononitride (TiN) Boron Carbide (B4C)
425
Molybdenum Disilicide (MoSi2)
0.198 0.074
500 500
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3) Zirconium Oxide (ZrO2) (stabilized)
0.0040 0.0044
500
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3)
0.0055
0.025
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
14.3 sel Thermal L Page 1505 Wednesday, December 31, 1969 17:00
Table 358. SELECTING
THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 10 OF 19) Ceramic
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
500
Aluminum Oxide (Al2O3) Trisilicon tetranitride (Si3N4) (pressureless sintered)
0.035 0.036-0.042
540
Molybdenum Disilicide (MoSi2)
0.053
600
Titanium Oxide (TiO2) (0% porosity) Uranium Dioxide (UO2) Thorium Dioxide (ThO2) (0% porosity) Uranium Dioxide (UO2) (0% porosity)
0.008 0.008 0.010 0.010
Mullite (3Al2O3 2SiO2) (0% porosity) Spinel (Al2O3 MgO) (0% porosity) Calcium Oxide (CaO) Aluminum Oxide (Al2O3)
0.010 0.019 0.020 0.021-0.022
Temperature (˚C)
500
600 600 600 600 600 600 600
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
14.3 sel Thermal L Page 1506 Wednesday, December 31, 1969 17:00
Table 358. SELECTING
THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 11 OF 19)
Temperature (˚C)
Ceramic
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
600 600 600 600
Aluminum Nitride (AlN) Silicon Carbide (SiC) (cubic, CVD) Zirconium Monocarbide (ZrC) Beryllium Oxide (BeO)
0.048 0.049-0.080 0.080 0.089-0.1137
650 650 650
Zirconium Mononitride (TiN) Titanium Mononitride (TiN)
0.018 0.027
Molybdenum Disilicide (MoSi2)
0.057
700 700 700
Uranium Dioxide (UO2) Boron Nitride (BN) parallel to a axis Boron Nitride (BN) parallel to c axis
0.008 0.0318 0.0646
800
Zirconium Oxide (ZrO2) (plasma sprayed) Oxide (ZrO2) (plasma sprayed and coated with Cr2O3) Sillimanite (Al2O3 SiO2) (0% porosity)
0.0019-0.0022 0.0033 0.0035
800 800
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
14.3 sel Thermal L Page 1507 Wednesday, December 31, 1969 17:00
Table 358. SELECTING
THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 12 OF 19)
Temperature (˚C)
Ceramic
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
0.0038
800
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3) Silicon Dioxide (SiO2) Zirconium Oxide (ZrO2) (5-10% CaO stabilized) Zirconium Oxide (ZrO2) (Y2O3 stabilized)
800
Zirconium Oxide (ZrO2) (stabilized, 0% porosity)
0.0055
800
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3) Zirconium Oxide (ZrO2) (MgO stabilized) Thorium Dioxide (ThO2) (0% porosity)
0.0055 0.0057 0.008
Titanium Oxide (TiO2) (0% porosity) Uranium Dioxide (UO2) (0% porosity) Mullite (3Al2O3 2SiO2) (0% porosity) Zircon (SiO2 ZrO2) (0% porosity)
0.008 0.009 0.0095 0.010
800 800 800
800 800 800 800 800 800
0.004 0.0049 0.0053
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
14.3 sel Thermal L Page 1508 Wednesday, December 31, 1969 17:00
Table 358. SELECTING
THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 13 OF 19) Ceramic
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
800 800
Nickel monoxide (NiO) (0% porosity) Spinel (Al2O3 MgO) (0% porosity) Aluminum Oxide (Al2O3) Calcium Oxide (CaO)
0.012 0.015 0.015-0.017 0.019
800 800 800
Magnesium Oxide (MgO) Aluminum Oxide (Al2O3) (single crystal) Aluminum Nitride (AlN)
0.0198-0.026 0.029 0.042
800 800 800
Beryllium Oxide (BeO) Silicon Carbide (SiC) (cubic, CVD) Zirconium Monocarbide (ZrC)
0.060-0.093 0.061 0.083
875 875
Zirconium Mononitride (TiN)
0.016
Molybdenum Disilicide (MoSi2)
0.046
Temperature (˚C)
800 800
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
14.3 sel Thermal L Page 1509 Wednesday, December 31, 1969 17:00
Table 358. SELECTING
THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 14 OF 19)
Temperature (˚C)
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
Ceramic
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
Zirconium Oxide (ZrO2) (stabilized) Uranium Dioxide (UO2) Thorium Dioxide (ThO2) (0% porosity) Titanium Oxide (TiO2) (0% porosity)
0.0048-0.0055 0.006 0.007-0.0074 0.008
Uranium Dioxide (UO2) (0% porosity) Mullite (3Al2O3 2SiO2) (0% porosity) Nickel monoxide (NiO) (0% porosity) Spinel (Al2O3 MgO) (0% porosity)
0.008 0.009 0.011 0.013-0.0138
Titanium Monocarbide (TiC)
0.0135
Aluminum Oxide (Al2O3) Magnesium Oxide (MgO) Calcium Oxide (CaO)
0.014-0.016 0.016-0.020 0.0186-0.019
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
14.3 sel Thermal L Page 1510 Wednesday, December 31, 1969 17:00
Table 358. SELECTING
THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 15 OF 19) Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
Temperature (˚C)
Ceramic
1000 1000 1000
Titanium Mononitride (TiN)
0.020
Boron Nitride (BN) parallel to a axis Trisilicon tetranitride (Si3N4) (pressureless sintered)
0.0295 0.038
1000 1000 1000
Silicon Carbide (SiC) (cubic, CVD) Boron Nitride (BN) parallel to c axis Zirconium Monocarbide (ZrC)
0.051 0.0637 0.086
1100 1100 1100
Zirconium Mononitride (TiN)
0.015
Molybdenum Disilicide (MoSi2) Beryllium Oxide (BeO)
0.041 0.043
1200
Sillimanite (Al2O3 SiO2) (0% porosity)
1200
Zirconium Oxide (ZrO2) (stabilized)
1200
Silicon Dioxide (SiO2)
1200
Zirconium Oxide (ZrO2) (5-10% CaO stabilized)
0.0035 0.0049-0.0050 0.005 0.0057
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
14.3 sel Thermal L Page 1511 Wednesday, December 31, 1969 17:00
Table 358. SELECTING
THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 16 OF 19)
Temperature (˚C)
Ceramic
1200
Uranium Dioxide (UO2)
1200
Zirconium Oxide (ZrO2) (stabilized, 0% porosity)
1200
Thorium Dioxide (ThO2) (0% porosity)
1200
Titanium Oxide (TiO2) (0% porosity)
1200
Mullite (3Al2O3 2SiO2) (0% porosity)
1200
Zircon (SiO2 ZrO2) (0% porosity)
1200
Spinel (Al2O3 MgO) (0% porosity)
1200
Aluminum Oxide (Al2O3)
1200 1200 1200 1200
Magnesium Oxide (MgO) Trisilicon tetranitride (Si3N4) (pressureless sintered) Beryllium Oxide (BeO) Zirconium Monocarbide (ZrC)
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
0.006 0.006 0.006-0.0076 0.008 0.009 0.0095 0.013 0.013-0.015 0.0139-0.0148
0.033-0.034 0.041-0.054 0.089
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
14.3 sel Thermal L Page 1512 Wednesday, December 31, 1969 17:00
Table 358. SELECTING
THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 17 OF 19)
Temperature (˚C)
Ceramic
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
1250
Silicon Carbide (SiC) (cubic, CVD)
0.0059
1300
Beryllium Oxide (BeO)
0.038
1327
Silicon Carbide (SiC) (cubic, CVD)
0.0827
1400
1400
Thorium Dioxide (ThO2) (0% porosity) Zirconium Oxide (ZrO2) (stabilized, 0% porosity) Mullite (3Al2O3 2SiO2) (0% porosity) Zircon (SiO2 ZrO2) (0% porosity)
0.006 0.0065 0.009 0.0095
1400 1400 1400 1400
Magnesium Oxide (MgO) Aluminum Oxide (Al2O3) Beryllium Oxide (BeO) Zirconium Monocarbide (ZrC)
0.012-0.014 0.013 0.036 0.092
1400 1400
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
14.3 sel Thermal L Page 1513 Wednesday, December 31, 1969 17:00
Table 358. SELECTING
THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 18 OF 19) Ceramic
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
1500 1500 1500
Sillimanite (Al2O3 SiO2) (0% porosity) Beryllium Oxide (BeO)
0.003 0.034
Titanium Mononitride (TiN)
0.162
1530
Silicon Carbide (SiC) (cubic, CVD)
0.0032
1600 1600 1600
Silicon Dioxide (SiO2) Magnesium Oxide (MgO) Aluminum Oxide (Al2O3)
0.006 0.0108-0.016 0.014
1600 1600
Beryllium Oxide (BeO) Zirconium Monocarbide (ZrC)
0.033-0.039 0.096
1700
Beryllium Oxide (BeO)
0.033
Temperature (˚C)
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
14.3 sel Thermal L Page 1514 Wednesday, December 31, 1969 17:00
Table 358. SELECTING
THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 19 OF 19)
Temperature (˚C)
Ceramic
Thermal Conductivity (cal • cm-1 • sec-1 • K-1)
1800 1800 1800 1800
Magnesium Oxide (MgO) Aluminum Oxide (Al2O3) Beryllium Oxide (BeO) Zirconium Monocarbide (ZrC)
0.0096-0.0191 0.017 0.036 0.099
1900
Beryllium Oxide (BeO)
0.036
2000 2000
Beryllium Oxide (BeO) Zirconium Monocarbide (ZrC)
0.036 0.103
2200
Zirconium Monocarbide (ZrC)
0.105
2300
Titanium Mononitride (TiN)
0.136
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
14.4 sel Thermal Page 1515 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 359. SELECTING
THERMAL CONDUCTIVITY OF POLYMERS (SHEET 1 OF 4)
Polymer
Thermal Conductivity (ASTM C177) Btu / (hr • ft • ˚F)
ABS Resins; Molded, Extruded: Very high impact Polystyrene: Medium impact Polystyrene: High impact Rubber Phenolic: Asbestos Filled
0.01—0.14 0.024—0.090 0.024—0.090 0.04
Rubber Phenolic: Chopped Fabric Filled Vinylidene Chloride Polystyrene: General purpose Polyvinyl Chloride & Copolymers: Nonrigid—General
0.05 0.053 0.058—0.090 0.07—0.10
Polyvinyl Chloride & Copolymers: Nonrigid—Electrical Polyvinyl Chloride & Copolymers: Rigid—Normal Impact Silicone: Woven Glass Fabric/ Silicone Laminate ABS Resins; Molded, Extruded: Low temperature impact
0.07—0.10 0.07—0.10 0.075—0.125 0.08—0.14
ABS Resins; Molded, Extruded: Medium impact Phenolics; High Shock: Chopped Fabric or Cord Filled Phenolics; Molded: General: Woodflour and Flock Filled Polyester, Thermoset: Cast Rigid
0.08—0.18 0.097—0.170 0.097—0.3 0.10—0.12
Cellulose Acetate, ASTM Grade: H6—1 Cellulose Acetate, ASTM Grade: H4—1 Cellulose Acetate, ASTM Grade: H2—1 Cellulose Acetate, ASTM Grade: MH—1, MH—2
0.10—0.19 0.10—0.19 0.10—0.19 0.10—0.19
Cellulose Acetate, ASTM Grade: MS—1, MS—2 Cellulose Acetate, ASTM Grade: S2—1 Cellulose Acetate Butyrate; ASTM Grade: H4 Cellulose Acetate Butyrate; ASTM Grade: MH
0.10—0.19 0.10—0.19 0.10—0.19 0.10—0.19
Cellulose Acetate Butyrate; ASTM Grade: S2 Cellulose Acetate Propionate, ASTM Grade: 1 Cellulose Acetate Propionate, ASTM Grade: 3 Cellulose Acetate Propionate, ASTM Grade: 6
0.10—0.19 0.10—0.19 0.10—0.19 0.10—0.19
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC Shackelford & Alexander
1515
14.4 sel Thermal Page 1516 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 359. SELECTING
THERMAL CONDUCTIVITY OF POLYMERS (SHEET 2 OF 4)
Polymer
Thermal Conductivity (ASTM C177) Btu / (hr • ft • ˚F)
Phenolics; Molded: Shock: Paper, Flock, or Pulp Filled Epoxy, Standard: Cast rigid Epoxy, Standard: Molded Polycarbonate
0.1—0.16 0.1—0.3 0.1—0.5 0.11
Polystyrene: Glass fiber -30% reinforced Acrylic Cast Resin Sheets, Rods: General purpose, type I Acrylic Cast Resin Sheets, Rods: General purpose, type II Acrylic Moldings: Grades 5, 6, 8
0.117 0.12 0.12 0.12
Acrylic Moldings: High impact grade Fluorinated ethylene propylene(FEP) Rubber Phenolic: Woodflour or Flock Filled ABS Resins; Molded, Extruded: High impact
0.12 0.12 0.12 0.12—0.16
ABS Resins; Molded, Extruded: Heat resistant Polycarbonate (40% glass fiber reinforced) Polyacetal Homopolymer: Standard Polytetrafluoroethylene (PTFE)
0.12—0.20 0.13 0.13 0.14
Polyvinylidene— fluoride (PVDF) Polytrifluoro chloroethylene (PTFCE) Polyacetal Copolymer: Standard Melamine; Molded: Cellulose Electrical
0.14 0.145 0.16 0.17—0.20
Urea; Molded: Alpha—Cellulose Filled (ASTM Type l) Silicone: Fibrous (Glass) Reinforced Polyethylene; Molded, Extruded; Type I: Melt Index 0.3—3.6 Polyethylene; Molded, Extruded; Type I: Melt Index 6—26
0.17—0.244 0.18 0.19 0.19
Polyethylene; Molded, Extruded; Type I: Melt Index 200 Polyethylene; Molded, Extruded; Type II: Melt Index 20 Polyethylene; Molded, Extruded; Type II: Melt Index L.0—1.9 Polyethylene; Molded, Extruded; Type III: Melt Index 0.2—0.9
0.19 0.19 0.19 0.19
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1516
CRC Handbook of Materials Science & Engineering
14.4 sel Thermal Page 1517 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 359. SELECTING
THERMAL CONDUCTIVITY OF POLYMERS (SHEET 3 OF 4)
Polymer
Thermal Conductivity (ASTM C177) Btu / (hr • ft • ˚F)
Polyethylene; Type III: Melt Melt Index 0.1—12.0 Polyethylene; Molded, Extruded; Type III: Melt Index 1.5—15 Polyethylene; Molded, Extruded; Type III: High Molecular Weight Phenolics; Molded: Very High Shock: Glass Fiber Filled
0.19 0.19 0.19 0.2
Alkyds; Molded: Glass reinforced (heavy duty parts) Phenolics; Molded: Arc Resistant—Mineral Silicone: Granular (Silica) Reinforced Melamine; Molded: Glass Fiber Filled
0.20—0.30 0.24—0.34 0.25—0.5 0.28
Alkyds; Molded: Putty (encapsulating) Alkyds; Molded: Rope (general purpose) Alkyds; Molded: Granular (high speed molding) Polyester Injection Moldings: General purpose grade
0.35—0.60 0.35—0.60 0.35—0.60 0.36—0.55
Chlorinated polyether Chlorinated polyvinyl chloride PVC–Acrylic Injection Molded PVC–Acrylic Sheet
0.91 0.95 0.98 1.01
Phenylene Oxide: SE—100 Polyarylsulfone Phenylene Oxide: Glass fiber reinforced Nylon; Molded, Extruded Type 6: General purpose
1.1 1.1 1.1–1.15 1.2—1.69
Nylon; Type 6: Cast Polypropylene: General Purpose Polyester, Thermoset: High strength (glass fiber filled) Thermoset Allyl diglycol Carbonate
1.2—1.7 1.21—1.36 1.32—1.68 1.45
Nylon: Type 11 6/10 Nylon: General purpose Phenylene Oxide: SE—1 6/6 Nylon: Glass fiber reinforced
1.5 1.5 1.5 1.5— 3.3
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC Shackelford & Alexander
1517
14.4 sel Thermal Page 1518 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 359. SELECTING
THERMAL CONDUCTIVITY OF POLYMERS (SHEET 4 OF 4)
Polymer
Thermal Conductivity (ASTM C177) Btu / (hr • ft • ˚F)
Polyacetal Copolymer: High flow 6/6 Nylon: General purpose molding Nylon; Molded, Extruded Type 6: Glass fiber (30%) reinforced Nylon: Type 12
1.6 1.69—1.7 1.69—3.27 1.7
6/6 Nylon: General purpose extrusion Polypropylene: High Impact Phenylene oxides (Noryl): Standard Polyphenylene Sulfide: Standard
1.7 1.72 1.8 2
Polyphenylene Sulfide: 40% Glass Reinforced Epoxy, Standard: High strength laminate ABS–Polycarbonate Alloy
2 2.35 2.46
6/10 Nylon: Glass fiber (30%) reinforced Polymide: Glass Reinforced Polymide: Unreinforced
3.5 3.59 3.8–6.78
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1518
CRC Handbook of Materials Science & Engineering
14.4 sel Thermal Page 1519 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 360. SELECTING
THERMAL EXPANSION OF TOOL STEELS (SHEET 1 OF 2)
Type
Temperature Change from 20 •C to
Thermal Expansion mm/(m•K)
M2 T1 T15 M2
260˚C 200 ˚C 200 ˚C 100 ˚C
9.4 9.7 9.9 10.1
H13 W1 A2 A2
100 ˚C 100 ˚C 260˚C 100 ˚C
10.4 10.4 10.6 10.7
W1 T15 M2 T1
200 ˚C 425˚C 425˚C 425˚C
11 11 11.2 11.2
L6 H13 T15 T1
100 ˚C 200 ˚C 540˚C 540˚C
11.3 11.5 11.5 11.7
H11 M2 T1 H13
100 ˚C 540˚C 600˚C 425˚C
11.9 11.9 11.9 12.2
M2 H21 S1 H11
600˚C 100 ˚C 100 ˚C 200 ˚C
12.2 12.4 12.4 12.4
H13 H26 H21 L6
540˚C 540˚C 200 ˚C 200 ˚C
12.4 12.4 12.6 12.6
S1 S7
200 ˚C 200 ˚C
12.6 12.6
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p242, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
1519
14.4 sel Thermal Page 1520 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 360. SELECTING
THERMAL EXPANSION OF TOOL STEELS (SHEET 2 OF 2)
Type
Temperature Change from 20 •C to
Thermal Expansion mm/(m•K)
L6 S5
425˚C 425˚C
12.6 12.6
H11 A2 H21 H11
425˚C 425˚C 425˚C 540˚C
12.8 12.9 12.9 12.9
W1 H13 S7 S5
425˚C 600˚C 425˚C 540˚C
13.1 13.1 13.3 13.3
H11 S7 S1 H21
600˚C 600˚C 425˚C 540˚C
13.3 13.3 13.5 13.5
L6 S7 L6 S5
540˚C 500˚C 600˚C 600˚C
13.5 13.7 13.7 13.7
W1 S1 H21 A2
500˚C 540˚C 600˚C 540˚C
13.8 13.9 13.9 14
A2 S1 W1
600˚C 600˚C 600˚C
14.2 14.2 14.2
L2 L2 L2
425˚C 540˚C 600˚C
14.4 14.6 14.8
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p242, (1984).
©2001 CRC Press LLC
1520
CRC Handbook of Materials Science & Engineering
14.4 sel Thermal Page 1521 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 361. SELECTING
AT Temperature Change from 20 •C to
THERMAL EXPANSION OF TOOL STEELS
TEMPERATURE
(SHEET 1 OF 2)
Type
Thermal Expansion mm/(m•K)
M2 H13 W1 A2
10.1 10.4 10.4 10.7
L6 H11 H21 S1
11.3 11.9 12.4 12.4
T1 T15 W1
9.7 9.9 11
H13 H11 H21
11.5 12.4 12.6
L6 S1 S7
12.6 12.6 12.6
260˚C
M2 A2
9.4 10.6
425˚C
T15 M2 T1 H13
11 11.2 11.2 12.2
L6 S5 H11 A2
12.6 12.6 12.8 12.9
H21 W1
12.9 13.1
100 ˚C
200 ˚C
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p242, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
1521
14.4 sel Thermal Page 1522 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 361. SELECTING
AT Temperature Change from 20 •C to
THERMAL EXPANSION OF TOOL STEELS
TEMPERATURE
(SHEET 2 OF 2)
Type
Thermal Expansion mm/(m•K)
S7 S1 L2
13.3 13.5 14.4
500˚C
S7 W1
13.7 13.8
540˚C
T15 T1 M2 H13
11.5 11.7 11.9 12.4
H26 H11 S5 H21
12.4 12.9 13.3 13.5
L6 S1 A2 L2
13.5 13.9 14 14.6
T1 M2 H13 H11
11.9 12.2 13.1 13.3
S7 L6 S5 H21
13.3 13.7 13.7 13.9
A2 S1 W1 L2
14.2 14.2 14.2 14.8
600˚C
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p242, (1984).
©2001 CRC Press LLC
1522
CRC Handbook of Materials Science & Engineering
14.4 sel Thermal Page 1523 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 362. SELECTING
THERMAL EXPANSION OF ALLOY CAST IRONS
Description
Thermal Expansion Coefficient mm/(m • ˚C)
Abrasion–Resistant White Martensitic Nickel–Chromium Iron Corrosion–Resistant High–Nickel Gray Iron Heat–Resistant Gray High–Nickel Iron
8 to 9 8.1 to 19.3 8.1 to 19.3
Heat–Resistant Gray High–Chromium Iron Corrosion–Resistant High–Chromium Iron Heat–Resistant Gray Medium–Silicon Iron
9.3 to 9.9 9.4 to 9.9 10.8
Heat–Resistant Medium–Silicon Ductile Iron Abrasion–Resistant Low–C White Irons Corrosion–Resistant High– Silicon Iron
10.8 to 13.5 12 12.4 to 13.1
Heat–Resistant Gray Nickel–Chromium–Silicon Iron Corrosion–Resistant High–Nickel Ductile Iron Heat–Resistant Gray High–Aluminum Iron
12.6 to 16.2 12.6 to 18.7 15.3
Heat–Resistant High–Nickel Ductile (23 Ni) Heat–Resistant High–Nickel Ductile (20 Ni)
18.4 18.7
Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p172, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
1523
14.4 sel Thermal Page 1524 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 363. SELECTING
THERMAL EXPANSION OF CERAMICS (SHEET 1 OF 16)
Ceramic
Thermal Expansion (˚C–1)
Hafnium Dioxide (HfO2) monoclinic, parallel to b axis
0 for 28–262˚C
Silicon Dioxide (SiO2) Vitreous
0.5 x 10–6 for 20–1250˚C
Silicon Dioxide (SiO2) Vitreous Silicon Dioxide (SiO2) Vitreous
0.527 x 10–6 for 25–500˚C 0.564 x 10–6 for 25–1000˚C
Boron Nitride (BN) parallel to a axis
0.59 x 10–6 for 25 to 350˚C
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=1.8g/cm3)
0.6 x 10–6 for 25 to 400˚C
Boron Nitride (BN) parallel to a axis Boron Nitride (BN) parallel to a axis Hafnium Dioxide (HfO2) monoclinic, parallel to a axis
0.77 x 10–6 for 25 to 1000˚C 0.89 x 10–6 for 25 to 700˚C 0.9x10–6 for 28–494˚C
Zirconium Oxide (ZrO2) tetragonal, parallel to b axis
1.1 x 10–6 for 27 to 759˚C
Hafnium Dioxide (HfO2) monoclinic, parallel to a axis Hafnium Dioxide (HfO2) — tetragonal polycrystalline Hafnium Dioxide (HfO2) monoclinic, parallel to a axis
1.3x10–6 for 28–697˚C 1.31 x 10–6 for 25–1700˚C 1.4x10–6 for 28–903˚C
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=1.8g/cm3)
1.5 x 10–6 for 25 to 700˚C
Zirconium Oxide (ZrO2) tetragonal, parallel to b axis Aluminum Oxide (Al2O3) perpendicular to c axis
1.5 x 10–6 for 27 to 964˚C 1.65 x 10–6 for 0 to –273˚C
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=1.8g/cm3)
1.7 x 10–6 for 25 to 900˚C
Aluminum Oxide (Al2O3) — polycrystalline
1.89 x 10–6 for 0 to –273˚C
Zirconium Oxide (ZrO2) tetragonal, parallel to b axis Aluminum Oxide (Al2O3) parallel to c axis Zirconium Oxide (ZrO2) tetragonal, parallel to b axis
1.9 x 10–6 for 27 to 1110˚C 1.95 x 10–6 for 0 to –273˚C 2 x 10–6 for 27 to 504˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
1524
CRC Handbook of Materials Science & Engineering
14.4 sel Thermal Page 1525 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 363. SELECTING
THERMAL EXPANSION OF CERAMICS (SHEET 2 OF 16)
Ceramic
Thermal Expansion (˚C–1)
Hafnium Dioxide (HfO2) monoclinic, parallel to a axis
2.1x10–6 for 28–1098˚C
Trisilicon Tetranitride (Si3N4)
2.11 x 10–6 for 25 to 500˚C 3
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm )
2.2 x 10–6 for 25 to 400˚C
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3)
2.3 x 10–6 for 25 to 400˚C
Beryllium Oxide (BeO) — polycrystalline Aluminum Oxide (Al2O3) perpendicular to c axis
2.4 x 10–6 for 25–200˚C 2.55 x 10–6 for 0 to –173˚C
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.51g/cm3) Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3)
2.7 x 10–6 for 25 to 1100˚C
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3) Trisilicon Tetranitride (Si3N4) Trisilicon Tetranitride (Si3N4) (reaction sintered)
2.8 x 10–6 for 25 to 900˚C
Aluminum Oxide (Al2O3) — polycrystalline
2.91 x 10–6 for 0 to –173˚C
Zirconium Oxide (ZrO2) tetragonal, parallel to b axis
3 x 10–6 for 27 to 264˚C
Trisilicon Tetranitride (Si3N4) (hot pressed)
3–3.9 x 10–6 for 20 to 1000˚C
Aluminum Oxide (Al2O3) parallel to c axis
3.01 x 10–6 for 0 to –173˚C
Hafnium Dioxide (HfO2) — tetragonal polycrystalline
3.03 x 10–6 for 25–2000˚C
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3) Trisilicon Tetranitride (Si3N4) (sintered)
3.3 x 10–6 for 25 to 700˚C
Trisilicon Tetranitride (Si3N4)
3.66 x 10–6 for 25 to 1500˚C
Thorium Dioxide (ThO2)
3.67 x 10–6 for 0 to –273˚C
2.8 x 10–6 for 25 to 700˚C
2.87 x 10–6 for 25 to 1000˚C 2.9 x 10–6 for 20 to 1000˚C
3.5 x 10–6 for 20 to 1000˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
Shackelford & Alexander
1525
14.4 sel Thermal Page 1526 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 363. SELECTING
THERMAL EXPANSION OF CERAMICS (SHEET 3 OF 16)
Ceramic
Thermal Expansion (˚C–1)
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3) Trisilicon Tetranitride (Si3N4) (pressureless sintered) Cordierite (2MgO 2Al2O3 5SiO2) (glass) Aluminum Oxide (Al2O3) perpendicular to c axis
3.7 x 10–6 for 40 to 1000˚C 3.7–3.8 x 10–6 for 25 to 900˚C 3.75 x 10–6 for 0 to –73˚C
Zircon (SiO2 ZrO2)
3.79 x 10–6 for 25 to 500˚C
Zirconium Oxide (ZrO2) — tetragonal
4.0 x 10–6 for 0 to 500˚C
Aluminum Nitride (AlN) Aluminum Oxide (Al2O3) — polycrystalline
4.03 x 10–6 for 25 to 200˚C 4.10 x 10–6 for 0 to –73˚C
Aluminum Oxide (Al2O3) parallel to c axis
4.39 x 10–6 for 0 to –73˚C
Tungsten Monocarbide (WC) Mullite (3Al2O3 2SiO2) Boron Carbide (B4C)
4.42 x 10–6 for 25–500˚C 4.5 x 10–6 for 20 to 1325˚C 4.5 x 10–6 for room temp.–800˚C
Chromium Diboride (CrB2)
3.7 x 10–6 for 25 to 900˚C
Zircon (SiO2 ZrO2)
4.6–11.1 x 10–6 for 20–1000˚C 4.6–8.1 x 10–6 4.62 x 10–6 for 25 to 1000˚C
Mullite (3Al2O3 2SiO2)
4.63 x 10–6 for 25 to 500˚C
Silicon Carbide (SiC)
4.63 x 10–6 for 25–500˚C
Silicon Carbide (SiC) Silicon Carbide (SiC) Aluminum Oxide (Al2O3) perpendicular to c axis
4.70 x 10–6 for 0–1700˚C 4.70 x 10–6 for 20–1500˚C 4.78 x 10–6 for 0 to 27˚C
Titanium Diboride (TiB2)
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
1526
CRC Handbook of Materials Science & Engineering
14.4 sel Thermal Page 1527 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 363. SELECTING
THERMAL EXPANSION OF CERAMICS (SHEET 4 OF 16)
Ceramic
Thermal Expansion (˚C–1)
Aluminum Nitride (AlN)
4.78 x 10–6 for 25–500˚C 4.83 x 10–6 for 25 to 600˚C
Aluminum Nitride (AlN) Tungsten Monocarbide (WC)
4.84 x 10–6 for 25 to 500˚C 4.84–4.92 x 10–6 for 25–1000˚C
Zirconium Oxide (ZrO2) — tetragonal
5.0 x 10–6 for 0 to 1400˚C
Mullite (3Al2O3 2SiO2) Tantalum Diboride (TaB2)
5.0 x 10–6 for 25 to 800˚C 5.1 x 10–6 at room temp.
Silicon Carbide (SiC)
5.12 x 10–6 for 25–1000˚C
Mullite (3Al2O3 2SiO2)
5.13 x 10–6 for 25 to 1000˚C
Aluminum Oxide (Al2O3) parallel to c axis Thorium Dioxide (ThO2) Tungsten Monocarbide (WC)
5.31 x 10–6 for 0 to 27˚C 5.32 x 10–6 for 0 to –173˚C 5.35–5.8 x 10–6 for 25–1500˚C
Hafnium Dioxide (HfO2) — monoclinic polycrystalline
5.47 x 10–6 for 25–500˚C
Silicon Carbide (SiC) Zircon (SiO2 ZrO2) Hafnium Diboride (HfB2)
5.48 x 10–6 for 25–1500˚C 5.5 x 10–6 for 20 to 1200˚C 5.5 –5.54 x 10–6 for 20 to1000˚C
Zirconium Oxide (ZrO2) — tetragonal
5.5–5.58 x 10–6 for 20 to 1200˚C
Zirconium Diboride (ZrB2)
5.5–6.57 x 10–6 ˚C for 25–1000˚C
Aluminum Oxide (Al2O3) perpendicular to c axis
5.51 x 10–6 for 0 to 127˚C
Boron Carbide (B4C)
5.54 x 10–6 for 25–1000˚C
Aluminum Nitride (AlN) Aluminum Oxide (Al2O3) — polycrystalline Mullite (3Al2O3 2SiO2) Zircon (SiO2 ZrO2)
5.54–5.64 x 10–6 for 25 to 1000˚C
Boron Carbide (B4C)
5.60 x 10–6 for 0 to 27˚C 5.62 x 10–6 for 20 to 1500˚C 5.63 x 10–6 for 20 to 1500˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC Shackelford & Alexander
1527
14.4 sel Thermal Page 1528 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 363. SELECTING
THERMAL EXPANSION OF CERAMICS (SHEET 5 OF 16) Thermal Expansion (˚C–1)
Ceramic
5.69 x 10–6 for 25–500˚C 5.77 x 10–6 for 25–2000˚C
Zirconium Diboride (ZrB2) Silicon Carbide (SiC) Hafnium Dioxide (HfO2) — monoclinic polycrystalline Tungsten Monocarbide (WC)
5.8 x 10–6 for 25–1300˚C 5.82–7.4 x 10–6 for 25–2000˚C
Hafnium Dioxide (HfO2) — monoclinic polycrystalline
5.85 x 10–6 for 25–1000˚C
Silicon Carbide (SiC) Boron Carbide (B4C) Aluminum Oxide (Al2O3) — polycrystalline
5.94 x 10–6 for 25–2500˚C 6.02 x 10–6 for 25–1500˚C 6.03 x 10–6 for 0 to 127˚C
Aluminum Nitride (AlN) Aluminum Oxide (Al2O3) perpendicular to c axis
6.09 x 10–6 for 25 to 1350˚C
Zirconium Monocarbide (ZrC) Zirconium Monocarbide (ZrC)
6.10x 10–6 for 25–500˚C 6.10–6.73 x 10–6 for 25–650˚C
Zirconium Mononitride (TiN) Hafnium Dioxide (HfO2) monoclinic, parallel to a axis
6.13 x 10–6 for 20–450˚C
6.10 x 10–6 for 0 to 227˚C
Hafnium Monocarbide (HfC) Aluminum Oxide (Al2O3) parallel to c axis
6.2x10–6 for 28–494˚C 6.25 x 10–6 for 25–1000˚C 6.26 x 10–6 for 0 to 127˚C
Hafnium Monocarbide (HfC)
6.27–6.59 x 10–6 for 25–650˚C
Tantalum Monocarbide (TaC) Beryllium Oxide (BeO) parallel to c axis Hafnium Dioxide (HfO2) — monoclinic polycrystalline
6.29–6.32 x 10–6 for 25–500˚C 6.3 x 10–6 for 28 to 252˚C 6.30 x 10–6 for 25–1500˚C
Beryllium Oxide (BeO) — polycrystalline
6.3–6.4 x 10–6 for 25–300˚C
Zirconium Monocarbide (ZrC) Hafnium Dioxide (HfO2) — monoclinic polycrystalline
6.32x 10–6 for 0–750˚C 6.45 x 10–6 for 20–1700˚C
Zirconium Monocarbide (ZrC)
6.46–6.66x 10–6 for 0–1000˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
1528
CRC Handbook of Materials Science & Engineering
14.4 sel Thermal Page 1529 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 363. SELECTING
THERMAL EXPANSION OF CERAMICS (SHEET 6 OF 16)
Ceramic
Thermal Expansion (˚C–1)
Thorium Dioxide (ThO2)
6.47 x 10–6 for 0 to –73˚C
Tantalum Monocarbide (TaC) Aluminum Oxide (Al2O3) perpendicular to c axis Titanium Monocarbide (TiC)
6.50 x 10–6 for 0–1000˚C 6.52 x 10–6 for 0 to 327˚C 6.52–7.15 x 10–6 for 25–500˚C
Zirconium Oxide (ZrO2) — monoclinic
6.53 x 10–6 for 25 to 500˚C
Boron Carbide (B4C) Aluminum Oxide (Al2O3) — polycrystalline
6.53 x 10–6 for 25–2000˚C 6.55 x 10–6 for 0 to 227˚C
Zirconium Monocarbide (ZrC)
6.56x 10–6 for 25–1000˚C
Sillimanite (Al2O3 SiO2)
6.58 x 10–6 at 20˚C
Tantalum Monocarbide (TaC) Zirconium Monocarbide (ZrC) Tantalum Monocarbide (TaC)
6.64 x 10–6 for 0–1200˚C 6.65x 10–6 for 25–800˚C 6.67 x 10–6 for 25–1000˚C
Zirconium Monocarbide (ZrC)
6.68x 10–6 for 0–1275˚C
Beryllium Oxide (BeO) parallel to c axis Hafnium Dioxide (HfO2) monoclinic, parallel to a axis Zirconium Oxide (ZrO2) tetragonal, parallel to a axis
6.7 x 10–6 for 28 to 474˚C 6.7x10–6 for 28–697˚C 6.8 x 10–6 for 27 to 759˚C
Hafnium Dioxide (HfO2) monoclinic, parallel to a axis
6.8x10–6 for 28–262˚C
Beryllium Oxide (BeO) average for (2a+c)/3 Zirconium Monocarbide (ZrC) Aluminum Oxide (Al2O3) parallel to c axis
6.83 x 10–6 for 28 to 252˚C 6.83x 10–6 for 0–1525˚C 6.86 x 10–6 for 0 to 227˚C
Aluminum Oxide (Al2O3) perpendicular to c axis
6.88 x 10–6 for 0 to 427˚C
Aluminum Oxide (Al2O3) — polycrystalline Zirconium Diboride (ZrB2)
6.93 x 10–6 for 0 to 327˚C 6.98 x 10–6 for 20–1500˚C
Zirconium Monocarbide (ZrC)
6.98x 10–6 for 0–1775˚C
Zirconium Mononitride (TiN)
7.03 x 10–6 for 20–680˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
Shackelford & Alexander
1529
14.4 sel Thermal Page 1530 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 363. SELECTING
THERMAL EXPANSION OF CERAMICS (SHEET 7 OF 16)
Ceramic
Thermal Expansion (˚C–1)
Zirconium Monocarbide (ZrC)
7.06x 10–6 for 25–1500˚C
Titanium Monocarbide (TiC) Boron Carbide (B4C)
7.08 x 10–6 for 0–750˚C 7.08 x 10–6 for 25–2500˚C 7.1 x 10–6 for 28 to 252˚C
Beryllium Oxide (BeO) perpendicular to c axis Tantalum Monocarbide (TaC) Aluminum Oxide (Al2O3) perpendicular to c axis
7.12 x 10–6 for 25–1500˚C
Boron Nitride (BN) parallel to c axis
7.15 x 10–6 for 0 to 527˚C 7.15 x 10–6 for 25 to 1000˚C
Titanium Monocarbide (TiC)
7.18–7.45 x 10–6 for 25–750˚C
Zirconium Oxide (ZrO2) — tetragonal
7.2 x 10–6 for –10 to 1000˚C
Aluminum Oxide (Al2O3) — polycrystalline Aluminum Oxide (Al2O3) parallel to c axis Aluminum Oxide (Al2O3) perpendicular to c axis
7.24 x 10–6 for 0 to 427˚C 7.31 x 10–6 for 0 to 327˚C 7.35 x 10–6 for 0 to 627˚C
Titanium Monocarbide (TiC)
7.40–8.82 x 10–6 for 25–1000˚C
Beryllium Oxide (BeO) average for (2a+c)/3 Zirconium Oxide (ZrO2) tetragonal, parallel to a axis Aluminum Oxide (Al2O3) — polycrystalline
7.43 x 10–6 for 28 to 474˚C 7.5 x 10–6 for 27 to 504˚C 7.50 x 10–6 for 0 to 527˚C
Hafnium Dioxide (HfO2) monoclinic, parallel to a axis
7.5x10–6 for 28–903˚C
Aluminum Oxide (Al2O3) perpendicular to c axis Zirconium Oxide (ZrO2) — monoclinic Beryllium Oxide (BeO) — polycrystalline
7.53 x 10–6 for 0 to 727˚C 7.59 x 10–6 for 25 to 1000˚C 7.59 x 10–6 for 25–500˚C
Tantalum Monocarbide (TaC)
7.64 x 10–6 for 25–2000˚C
Zirconium Monocarbide (ZrC) Aluminum Oxide (Al2O3) perpendicular to c axis Aluminum Oxide (Al2O3) parallel to c axis
7.65x 10–6 for 25–650˚C 7.67 x 10–6 for 0 to 827˚C 7.68 x 10–6 for 0 to 427˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
1530
CRC Handbook of Materials Science & Engineering
14.4 sel Thermal Page 1531 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 363. SELECTING
THERMAL EXPANSION OF CERAMICS (SHEET 8 OF 16)
Ceramic
Thermal Expansion (˚C–1)
Aluminum Oxide (Al2O3) — polycrystalline
7.69 x 10–6 for 0 to 627˚C
Zirconium Oxide (ZrO2) — monoclinic Spinel (Al2O3 MgO) Molybdenum Disilicide (MoSi2)
7.72 x 10–6 for 25 to 1050˚C 7.79 x 10–6 for 25 to 500˚C 7.79 x 10–6 for 25–500˚C
Tungsten Disilicide (WSi2)
7.79 x 10–6 for 25–500˚C
Titanium Oxide (TiO2) — polycrystalline Thorium Dioxide (ThO2) Zirconium Oxide (ZrO2) tetragonal, parallel to a axis
7.8 x 10–6 for 20–600˚C 7.8 x 10–6 for 27 to 223˚C 7.8 x 10–6 for 27 to 964˚C
Beryllium Oxide (BeO) perpendicular to c axis
7.8 x 10–6 for 28 to 474˚C
Beryllium Oxide (BeO) parallel to c axis Aluminum Oxide (Al2O3) perpendicular to c axis Aluminum Oxide (Al2O3) — polycrystalline
7.8 x 10–6 for 28 to 749˚C 7.80 x 10–6 for 0 to 927˚C 7.83 x 10–6 for 0 to 727˚C
Titanium Monocarbide (TiC) Aluminum Oxide (Al2O3) perpendicular to c axis Titanium Oxide (TiO2) perpendicular to a axis
7.85–7.86 x 10–6 for 0–1000˚C
Titanium Monocarbide (TiC)
7.90 x 10–6 for 0–2500˚C
Hafnium Dioxide (HfO2) monoclinic, parallel to a axis
7.9x10–6 for 28–1098˚C
Aluminum Oxide (Al2O3) parallel to c axis Aluminum Oxide (Al2O3) perpendicular to c axis Aluminum Oxide (Al2O3) — polycrystalline
7.96 x 10–6 for 0 to 527˚C 7.96 x 10–6 for 0 to 1127˚C 7.97 x 10–6 for 0 to 827˚C
Zirconium Oxide (ZrO2) — monoclinic
8.0 x 10–6 for 25 to 1080˚C
Trichromium Dicarbide (Cr3C2)
8.00 x 10–6 for 25–500˚C 8.02 x 10–6 for 0–1275˚C 8.05 x 10–6 for 0 to 1227˚C
Titanium Monocarbide (TiC) Aluminum Oxide (Al2O3) perpendicular to c axis
7.88 x 10–6 for 0 to 1027˚C 7.9 x 10–6 for 26 to 240˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
Shackelford & Alexander
1531
14.4 sel Thermal Page 1532 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 363. SELECTING
THERMAL EXPANSION OF CERAMICS (SHEET 9 OF 16)
Ceramic
Thermal Expansion (˚C–1)
Thorium Dioxide (ThO2)
8.06 x 10–6 for 0 to 127˚C
Boron Nitride (BN) parallel to c axis Aluminum Oxide (Al2O3) — polycrystalline Titanium Oxide (TiO2) perpendicular to a axis
8.06 x 10–6 for 25 to 700˚C 8.08 x 10–6 for 0 to 927˚C 8.1 x 10–6 for 26 to 670˚C
Thorium Dioxide (ThO2)
8.10 x 10–6 for 0 to 27˚C
Aluminum Oxide (Al2O3) perpendicular to c axis Titanium Monocarbide (TiC) Aluminum Oxide (Al2O3) perpendicular to c axis
8.12 x 10–6 for 0 to 1327˚C 8.15–9.45 x 10–6 for 25–1500˚C 8.16 x 10–6 for 0 to 1427˚C
Aluminum Oxide (Al2O3) — polycrystalline
8.18 x 10–6 for 0 to 1027˚C
Aluminum Oxide (Al2O3) parallel to c axis Titanium Oxide (TiO2) perpendicular to a axis Titanium Oxide (TiO2) perpendicular to a axis
8.19 x 10–6 for 0 to 627˚C 8.2 x 10–6 for 26 to 455˚C 8.2 x 10–6 for 26 to 940˚C
Beryllium Oxide (BeO) parallel to c axis Aluminum Oxide (Al2O3) perpendicular to c axis Tungsten Disilicide (WSi2) Cerium Dioxide (CeO2)
8.2 x 10–6 for 28 to 872˚C
Titanium Oxide (TiO2) — polycrystalline
8.22 x 10–6 for 25–500˚C
Aluminum Oxide (Al2O3) — polycrystalline Aluminum Oxide (Al2O3) perpendicular to c axis Titanium Monocarbide (TiC)
8.25 x 10–6 for 0 to 1127˚C 8.26 x 10–6 for 0 to 1627˚C 8.26 x 10–6 for 0–1525˚C
Beryllium Oxide (BeO) average for (2a+c)/3
8.27 x 10–6 for 28 to 749˚C
Titanium Monocarbide (TiC) Titanium Oxide (TiO2) perpendicular to a axis Aluminum Oxide (Al2O3) perpendicular to c axis
8.29 x 10–6 for 0–1400˚C 8.3 x 10–6 for 26 to 1110˚C 8.30 x 10–6 for 0 to 1727˚C
8.20 x 10–6 for 0 to 1527˚C 8.21 x 10–6 for 0–1000˚C 8.22 x 10–6 for 25–500˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
1532
CRC Handbook of Materials Science & Engineering
14.4 sel Thermal Page 1533 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 363. SELECTING
THERMAL EXPANSION OF CERAMICS (SHEET 10 OF 16)
Ceramic
Thermal Expansion (˚C–1)
Thorium Dioxide (ThO2)
8.31 x 10–6 for 0 to 227˚C
Tungsten Disilicide (WSi2) Aluminum Oxide (Al2O3) — polycrystalline Aluminum Oxide (Al2O3) parallel to c axis
8.31 x 10–6 for 25–1000˚C 8.32 x 10–6 for 0 to 1227˚C 8.38 x 10–6 for 0 to 727˚C
Aluminum Oxide (Al2O3) — polycrystalline
8.39 x 10–6 for 0 to 1327˚C
Zirconium Oxide (ZrO2) tetragonal, parallel to a axis Titanium Monocarbide (TiC)
8.4 x 10–6 for 27 to 264˚C 8.40 x 10–6 for 0–1775˚C
Tantalum Monocarbide (TaC)
8.40 x 10–6 for 25–2500˚C
Beryllium Oxide (BeO) — polycrystalline Molybdenum Disilicide (MoSi2) Spinel (Al2O3 MgO) Dichromium Trioxide (Cr2O3)
8.4–8.5 x 10–6 for 25–800˚C
Aluminum Oxide (Al2O3) — polycrystalline
8.45 x 10–6 for 0 to 1427˚C
Aluminum Oxide (Al2O3) — polycrystalline Beryllium Oxide (BeO) perpendicular to c axis Molybdenum Disilicide (MoSi2)
8.49 x 10–6 for 0 to 1527˚C 8.5 x 10–6 for 28 to 749˚C 8.51 x 10–6 for 25–1000˚C
Aluminum Oxide (Al2O3) parallel to c axis
8.52 x 10–6 for 0 to 827˚C
Thorium Dioxide (ThO2) Aluminum Oxide (Al2O3) — polycrystalline Titanium Oxide (TiO2) average for (2a+c)/3
8.53 x 10–6 for 0 to 327˚C 8.53 x 10–6 for 0 to 1627˚C 8.53 x 10–6 for 26 to 240˚C
Molybdenum Disilicide (MoSi2)
8.56 x 10–6 for 0–1400˚C
Aluminum Oxide (Al2O3) — polycrystalline Dichromium Trioxide (Cr2O3) Thorium Dioxide (ThO2)
8.58 x 10–6 for 0 to 1727˚C 8.62 x 10–6 for 25–1000˚C 8.63 x 10–6 for 25 to 500˚C
8.41 x 10–6 for 0–1000˚C 8.41 x 10–6 for 25 to 1000˚C 8.43 x 10–6 for 25–500˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
Shackelford & Alexander
1533
14.4 sel Thermal Page 1534 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 363. SELECTING
THERMAL EXPANSION OF CERAMICS (SHEET 11 OF 16)
Ceramic
Thermal Expansion (˚C–1)
Zirconium Oxide (ZrO2) — tetragonal
8.64 x 10–6 for –20 to 600˚C
Aluminum Oxide (Al2O3) parallel to c axis Thorium Dioxide (ThO2) Zirconium Oxide (ZrO2) tetragonal, parallel to a axis
8.65 x 10–6 for 0 to 927˚C 8.7 x 10–6 for 27 to 498˚C 8.7 x 10–6 for 27 to 1110˚C
Thorium Dioxide (ThO2)
8.71 x 10–6 for 0 to 427˚C
Aluminum Oxide (Al2O3) parallel to c axis Trichromium Dicarbide (Cr3C2) Tungsten Disilicide (WSi2)
8.75 x 10–6 for 0 to 1027˚C 8.8 x 10–6 for 25–120˚C 8.81 x 10–6 for 0–1400˚C
Titanium Monocarbide (TiC) Dichromium Trioxide (Cr2O3) Titanium Oxide (TiO2) — polycrystalline Aluminum Oxide (Al2O3) parallel to c axis
8.81 x 10–6 for 25–2000˚C
Thorium Dioxide (ThO2)
8.87 x 10–6 for 0 to 527˚C
Beryllium Oxide (BeO) average for (2a+c)/3 Thorium Dioxide (ThO2)
8.87 x 10–6 for 28 to 872˚C 8.9 x 10–6 for 27 to 755˚C
Beryllium Oxide (BeO) parallel to c axis
8.9 x 10–6 for 28 to 1132˚C
Aluminum Oxide (Al2O3) parallel to c axis
8.92 x 10–6 for 0 to 1227˚C
Cerium Dioxide (CeO2) Titanium Oxide (TiO2) average for (2a+c)/3 Thorium Dioxide (ThO2)
8.92 x 10–6 for 25–1000˚C 8.93 x 10–6 for 26 to 670˚C 8.96 x 10–6 for 0 to 1000˚C
Titanium Oxide (TiO2) average for (2a+c)/3
8.97 x 10–6 for 26 to 455˚C
Titanium Oxide (TiO2) average for (2a+c)/3 Aluminum Oxide (Al2O3) parallel to c axis Titanium Oxide (TiO2) — polycrystalline
8.97 x 10–6 for 26 to 940˚C 8.98 x 10–6 for 0 to 1327˚C 8.98 x 10–6 for 0–1000˚C
8.82 x 10–6 for 25–1500˚C 8.83 x 10–6 for 25–1000˚C 8.84 x 10–6 for 0 to 1127˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
1534
CRC Handbook of Materials Science & Engineering
14.4 sel Thermal Page 1535 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 363. SELECTING
THERMAL EXPANSION OF CERAMICS (SHEET 12 OF 16)
Ceramic
Thermal Expansion (˚C–1)
Spinel (Al2O3 MgO)
9.0 x 10–6 for 20 to 1250˚C
Thorium Dioxide (ThO2) Zirconium Monocarbide (ZrC)
9.00 x 10–6 for 0 to 627˚C 9.00–9.18 x 10–6 for 25–1500˚C 9.0x 10–6 for 1000–2000˚C
Aluminum Oxide (Al2O3) parallel to c axis
9.02 x 10–6 for 0 to 1427˚C
Beryllium Oxide (BeO) — polycrystalline Uranium Dioxide (UO2) (heating) Aluminum Oxide (Al2O3) parallel to c axis
9.03 x 10–6 for 25–1000˚C 9.07 x 10–6 for 27 to 400˚C 9.08 x 10–6 for 0 to 1527˚C
Thorium Dioxide (ThO2)
9.1 x 10–6 for 27 to 1087˚C
Aluminum Oxide (Al2O3) parallel to c axis Titanium Oxide (TiO2) average for (2a+c)/3 Thorium Dioxide (ThO2)
9.13 x 10–6 for 0 to 1627˚C 9.13 x 10–6 for 26 to 1110˚C 9.14 x 10–6 for 0 to 727˚C
Spinel (Al2O3 MgO)
9.17 x 10–6 for 25 to 1500˚C
Aluminum Oxide (Al2O3) parallel to c axis Beryllium Oxide (BeO) — polycrystalline Uranium Dioxide (UO2)
9.18 x 10–6 for 0 to 1727˚C 9.18 x 10–6 for 25–1250˚C 9.18 x 10–6 for 27 to 400˚C
Thorium Dioxide (ThO2)
9.2 x 10–6 for 27 to 994˚C
Beryllium Oxide (BeO) perpendicular to c axis Thorium Dioxide (ThO2) Uranium Dioxide (UO2) (cooling)
9.2 x 10–6 for 28 to 872˚C 9.24 x 10–6 for 0 to 827˚C 9.28 x 10–6 for 27 to 400˚C
Titanium Monocarbide (TiC) Thorium Dioxide (ThO2)
9.32 x 10–6 for 25–1250˚C
Molybdenum Disilicide (MoSi2)
Titanium Mononitride (TiN) Thorium Dioxide (ThO2)
9.34 x 10–6 for 0 to 927˚C 9.35 x 10–6
9.35 x 10–6 for 0 to 1200˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
Shackelford & Alexander
1535
14.4 sel Thermal Page 1536 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 363. SELECTING
THERMAL EXPANSION OF CERAMICS (SHEET 13 OF 16)
Ceramic
Thermal Expansion (˚C–1)
Beryllium Oxide (BeO) — polycrystalline Thorium Dioxide (ThO2) Thorium Dioxide (ThO2) Uranium Dioxide (UO2)
9.40 x 10–6 for 500–1200˚C
Titanium Oxide (TiO2) — polycrystalline
9.50 x 10–6 for 25–1500˚C
Thorium Dioxide (ThO2) Thorium Dioxide (ThO2) Thorium Dioxide (ThO2)
9.53 x 10–6 for 0 to 1127˚C 9.55 x 10–6 for 20 to 800˚C 9.55 x 10–6 for 20 to 1400˚C
Dichromium Trioxide (Cr2O3)
9.55 x 10–6 for 20–1400˚C
Beryllium Oxide (BeO) average for (2a+c)/3 Thorium Dioxide (ThO2) Thorium Dioxide (ThO2)
9.57 x 10–6 for 28 to 1132˚C 9.60 x 10–6 for 0 to 1227˚C 9.68 x 10–6 for 0 to 1327˚C
Thorium Dioxide (ThO2)
9.76 x 10–6 for 0 to 1427˚C
Titanium Oxide (TiO2) parallel to c axis Thorium Dioxide (ThO2) Thorium Dioxide (ThO2)
9.8 x 10–6 for 26 to 240˚C 9.83 x 10–6 for 0 to 1527˚C 9.84 x 10–6 for 0 to 1400˚C
Beryllium Oxide (BeO) perpendicular to c axis Thorium Dioxide (ThO2) Trichromium Dicarbide (Cr3C2) Thorium Dioxide (ThO2)
9.9 x 10–6 for 28 to 1132˚C
Boron Nitride (BN) parallel to c axis Thorium Dioxide (ThO2)
10.15 x 10–6 for 25 to 350˚C
Beryllium Oxide (BeO) — polycrystalline Thorium Dioxide (ThO2)
9.42 x 10–6 for 0 to 1027˚C 9.44 x 10–6 for 25 to 1000˚C 9.47 x 10–6 for 25 to 500˚C
9.91 x 10–6 for 0 to 1627˚C 9.95 x 10–6 for 25–500˚C 9.97 x 10–6 for 0 to 1727˚C
10.17 x 10–6 for 25 to 1500˚C 10.3 x 10–6 for 25–1500˚C 10.43 x 10–6 for 25 to 1700˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
1536
CRC Handbook of Materials Science & Engineering
14.4 sel Thermal Page 1537 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 363. SELECTING
THERMAL EXPANSION OF CERAMICS (SHEET 14 OF 16)
Ceramic
Thermal Expansion (˚C–1)
Silicon Dioxide (SiO2) β2 tridymite
10.45 x 10–6 for 25–1000˚C
Zirconium Oxide (ZrO2) — tetragonal
10.5 x 10–6 for 0 to 1000˚C
Titanium Oxide (TiO2) parallel to c axis
10.5 x 10–6 for 26 to 455˚C
Titanium Oxide (TiO2) parallel to c axis
10.5 x 10–6 for 26 to 940˚C
Zirconium Oxide (ZrO2) — tetragonal Titanium Oxide (TiO2) parallel to c axis
10.52 x 10–6 for 0 to 1000˚C (MgO) 10.6 x 10–6 for 0 to 1200˚C (CaO) 10.6 x 10–6 for 26 to 670˚C
Titanium Oxide (TiO2) parallel to c axis
10.8 x 10–6 for 26 to 1110˚C
Uranium Dioxide (UO2) (cooling)
10.8 x 10–6 for 400 to 800˚C
Uranium Dioxide (UO2) (cooling) Hafnium Dioxide (HfO2) monoclinic, parallel to c axis Trichromium Dicarbide (Cr3C2)
10.8 x 10–6 for 400 to 800˚C 10.8x10–6 for 28–697˚C
Zirconium Oxide (ZrO2) — tetragonal
11.0 x 10–6 for 0 to 1500˚C
Hafnium Dioxide (HfO2) monoclinic, parallel to c axis Beryllium Oxide (BeO) — polycrystalline Uranium Dioxide (UO2) (heating)
11x10–6 for 28–262˚C 11.1 x 10–6 for 25–2000˚C 11.1 x 10–6 for 400 to 800˚C
Uranium Dioxide (UO2)
11.15 x 10–6 for 25 to 1750˚C
Uranium Dioxide (UO2) Hafnium Dioxide (HfO2) monoclinic, parallel to c axis Zirconium Oxide (ZrO2) tetragonal, parallel to c axis
11.19 x 10–6 for 25 to 1000˚C 11.4x10–6 for 28–494˚C 11.9 x 10–6 for 27 to 759˚C
Hafnium Dioxide (HfO2) monoclinic, parallel to c axis
11.9x10–6 for 28–903˚C
Hafnium Dioxide (HfO2) monoclinic, parallel to c axis Uranium Dioxide (UO2)
12.1x10–6 for 28–1098˚C 12.19 x 10–6 for 25 to 1200˚C
Boron Nitride (BN)
12.2 x 10–6 for 25 to 500˚C
Zirconium Oxide (ZrO2) — tetragonal
10.9 x 10–6 for 150–980˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
Shackelford & Alexander
1537
14.4 sel Thermal Page 1538 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 363. SELECTING
THERMAL EXPANSION OF CERAMICS (SHEET 15 OF 16)
Ceramic
Thermal Expansion (˚C–1)
Uranium Dioxide (UO2) (cooling)
12.6 x 10–6 for 800 to 1250˚C
Zirconium Oxide (ZrO2) tetragonal, parallel to c axis
12.8 x 10–6 for 27 to 964˚C
Magnesium Oxide (MgO) Uranium Dioxide (UO2) (cooling)
12.83 x 10–6 for 25–500˚C 12.9 x 10–6 for 800 to 1200˚C
Zirconium Oxide (ZrO2) tetragonal, parallel to c axis
13 x 10–6 for 27 to 504˚C
Uranium Dioxide (UO2) (heating) Magnesium Oxide (MgO)
13.0 x 10–6 for 800 to 1200˚C 13.3 x 10–6 for 20–1700˚C
Boron Nitride (BN)
13.3 x 10–6 for 25 to 1000˚C
Zirconium Oxide (ZrO2) tetragonal, parallel to c axis
13.6 x 10–6 for 27 to 1110˚C
Magnesium Oxide (MgO) Magnesium Oxide (MgO) Zirconium Oxide (ZrO2) tetragonal, parallel to c axis
13.63 x 10–6 for 25–1000˚C 13.90 x 10–6 for 0–1000˚C 14 x 10–6 for 27 to 264˚C
Magnesium Oxide (MgO)
14.0 x 10–6 for 20–1400˚C
Magnesium Oxide (MgO) Magnesium Oxide (MgO) Silicon Dioxide (SiO2) β quartz
14.2–14.9 x 10–6 for 20–1700˚C 14.46 x 10–6 for 0–1200˚C 14.58 x 10–6 for 25–1000˚C
Magnesium Oxide (MgO)
15.06 x 10–6 for 0–1400˚C
Magnesium Oxide (MgO) Magnesium Oxide (MgO) Silicon Dioxide (SiO2) α tridymite
15.11 x 10–6 for 25–1500˚C 15.89 x 10–6 for 25–1800˚C 18.5 x 10–6 for 25–117˚C
Silicon Dioxide (SiO2) α quartz
19.35 x 10–6 for 25–500˚C
Silicon Dioxide (SiO2) β2 tridymite Silicon Dioxide (SiO2) α quartz Silicon Dioxide (SiO2) β1 tridymite
19.35 x 10–6 for 25–500˚C 22.2 x 10–6 for 25–575˚C 25.0 x 10–6 for 25–117˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
1538
CRC Handbook of Materials Science & Engineering
14.4 sel Thermal Page 1539 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 363. SELECTING
THERMAL EXPANSION OF CERAMICS (SHEET 16 OF 16)
Ceramic
Thermal Expansion (˚C–1)
Silicon Dioxide (SiO2) β1 tridymite
27.5 x 10–6 for 25–163˚C
Silicon Dioxide (SiO2) β quartz Silicon Dioxide (SiO2) β2 tridymite
27.8 x 10–6 for 25–575˚C 31.9 x 10–6 for 25–163˚C
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
Shackelford & Alexander
1539
14.4 sel Thermal Page 1540 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 364. SELECTING
THERMAL EXPANSION OF GLASSES (SHEET 1 OF 11)
Glass
Temperature Range of Validity
Thermal Expansion (K–1)
SiO2 glass SiO2 glass SiO2 glass SiO2 glass
–60—20˚C –40—20˚C –20—20˚C 0–20˚C
3.50x10–7 3.80x10–7 4.00x10–7 4.30x10–7
SiO2 glass
20–100˚C 20–150˚C 20–200˚C 20–350˚C
5.35x10–7 5.75x10–7 5.85x10–7 5.90x10–7
20–250˚C 20–300˚C
5.92x10–7 5.94x10–7
20–980˚C
6.2x10–7
20–980˚C
6.2x10–7
20–800˚C
8.8x10–7
20–350˚C
12.2x10–7
20–950˚C
14.5x10–7
20–600˚C
17.2x10–7
20–700˚C
20.7x10–7
SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2–Al2O3 glass (3.1% mol Al2O3, 1000˚C for 115 hr) SiO2–Al2O3 glass
(3.1% mol Al2O3, water quenching) SiO2–Al2O3 glass (8.2% mol Al2O3, water quenching) SiO2–Al2O3 glass
(5.4% mol Al2O3, 1130˚C for 20 hr) SiO2–Al2O3 glass (8.2% mol Al2O3, 1000˚C for 115 hr) SiO2–Al2O3 glass
(13.9% mol Al2O3, water quenching) SiO2–Al2O3 glass (17.4% mol Al2O3, water quenching)
Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
1540
CRC Handbook of Materials Science & Engineering
14.4 sel Thermal Page 1541 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 364. SELECTING
THERMAL EXPANSION OF GLASSES (SHEET 2 OF 11) Temperature Range of Validity
Thermal Expansion (K–1)
(13.9% mol Al2O3, 1000˚C for 115 hr) SiO2–Al2O3 glass (17.4% mol Al2O3, 1000˚C for 115 hr)
20–900˚C
22.7x10–7
20–800˚C
28.3x10–7
SiO2–B2O3 glass (39.2% mol B2O3 )
100–200˚C 0–100˚C 0–100˚C 100–200˚C
44.9x10–7 47.5x10–7 49.8x10–7 50.8x10–7
20–170˚C 100–200˚C room temp. to 100˚C room temp. to 100˚C
51.45–52.23x10–7 54.8x10–7 54.9–56.4x10–7 57.3–58.2x10–7
0–100˚C 20–170˚C room temp. to 100˚C 100–200˚C
57.6x10–7 57.68–59.08x10–7 60.1–66.2x10–7 60.2–60.8x10–7
20–170˚C 20–170˚C room temp. to 100˚C 100–200˚C
60.62–62.31x10–7 61.58–63.33x10–7 63.1–64.0x10–7 63.5–65.1x10–7
200–300˚C 20–170˚C –196—25˚C –196—25˚C
63.9–65.4x10–7 63.99–66.17x10–7 65.9x10–7 67.4x10–7
Glass SiO2–Al2O3 glass
SiO2–B2O3 glass (39.2% mol B2O3 ) SiO2–B2O3 glass (44.2% mol B2O3 ) SiO2–B2O3 glass (44.2% mol B2O3 ) SiO2–PbO glass (25.7% mol PbO) SiO2–B2O3 glass (50.8% mol B2O3 ) B2O3–CaO glass (29.3% mol CaO) B2O3–CaO glass (31.4% mol CaO) SiO2–B2O3 glass (50.8% mol B2O3 ) SiO2–PbO glass (30.0% mol PbO) B2O3–CaO glass (34.9% mol CaO) B2O3–CaO glass (29.3% mol CaO) SiO2–PbO glass (32.5% mol PbO) SiO2–PbO glass (33.2% mol PbO) B2O3–CaO glass (37.1% mol CaO) B2O3–CaO glass (31.4% mol CaO) B2O3–CaO glass (29.3% mol CaO) SiO2–PbO glass (35.0% mol PbO) B2O3–Na2O glass (16.2% mol Na2O) B2O3–Na2O glass (15.8% mol Na2O)
Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC Shackelford & Alexander
1541
14.4 sel Thermal Page 1542 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 364. SELECTING
THERMAL EXPANSION OF GLASSES (SHEET 3 OF 11)
Glass
B2O3–CaO glass (31.4% mol CaO) B2O3–CaO glass (34.9% mol CaO) B2O3–CaO glass (37.1% mol CaO) SiO2–PbO glass (37.5% mol PbO) B2O3–Na2O glass (15% mol Na2O, Tg = 407˚C) B2O3–Na2O glass (18.4% mol Na2O) B2O3–Na2O glass (13.7% mol Na2O) SiO2–B2O3 glass (58.4% mol B2O3 ) B2O3–CaO glass (29.3% mol CaO) B2O3–Na2O glass (11.5% mol Na2O) SiO2–B2O3 glass (58.4% mol B2O3 ) B2O3–Na2O glass (22.5% mol Na2O) B2O3–CaO glass (37.1% mol CaO) B2O3–CaO glass (34.9% mol CaO) SiO2–PbO glass (42.6% mol PbO) B2O3–CaO glass (31.4% mol CaO) B2O3–CaO glass (29.3% mol CaO) B2O3–Na2O glass (10% mol Na2O, Tg = 354˚C) B2O3–CaO glass (34.9% mol CaO) SiO2–PbO glass (45.8% mol PbO) B2O3–CaO glass (31.4% mol CaO) B2O3–Na2O glass (15.8% mol Na2O)
Temperature Range of Validity
Thermal Expansion (K–1)
200–300˚C 100–200˚C 100–200˚C 20–170˚C
67.4–68.1x10–7 67.5–67.6x10–7 68.4–70.4x10–7 68.75–71.44x10–7
below Tg –196—25˚C –196—25˚C
69x10–7 69.1x10–7 69.3x10–7
100–200˚C 300–400˚C –196—25˚C 0–100˚C
70.1x10–7 71.3–71.6x10–7 71.5x10–7 71.9x10–7
–196—25˚C 200–300˚C 200–300˚C 20–170˚C
71.9x10–7 74.6–75.8x10–7 74.7–75.2x10–7 75.16–78.58x10–7
300–400˚C 400–500˚C
76.5–76.7x10–7 76.9–77.1x10–7
below Tg
77x10–7
300–400˚C 20–170˚C 400–500˚C 20–50˚C
77.8–78.5x10–7 78.85–82.60x10–7 79.2–81.0x10–7 80.7x10–7
Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
1542
CRC Handbook of Materials Science & Engineering
14.4 sel Thermal Page 1543 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 364. SELECTING
THERMAL EXPANSION OF GLASSES (SHEET 4 OF 11) Temperature Range of Validity
Thermal Expansion (K–1)
500–600˚C –196—25˚C 300–400˚C 20–170˚C
80.9–86.8x10–7 81.4x10–7 81.6–82.2x10–7 83.03–87.03x10–7
500–600˚C 400–500˚C 20–170˚C 20–50˚C
83.1–88.5x10–7 83.8–95.0x10–7 85.57–89.82x10–7 85.6x10–7
(20% mol Na2O, Tg = 456˚C) B2O3–Na2O glass (16.2% mol Na2O) B2O3–Na2O glass (18.4% mol Na2O)
below Tg 20–50˚C 20–50˚C
86x10–7 86.0x10–7 86.2x10–7
B2O3–Na2O glass (19.6% mol Na2O)
20–50˚C 400–500˚C 0–100˚C 20–50˚C
86.8x10–7 86.9–87.6x10–7 87.0x10–7 87.5x10–7
20–50˚C 20–150˚C 20–150˚C 20–50˚C
87.6x10–7 87.7x10–7 87.8x10–7 88.7x10–7
20–150˚C 20–150˚C 100–200˚C 20–50˚C
89.1x10–7 89.2x10–7 89.7x10–7 90.4x10–7
Glass
B2O3–CaO glass (29.3% mol CaO) B2O3–Na2O glass (28.9% mol Na2O) B2O3–CaO glass (37.1% mol CaO) SiO2–PbO glass (47.8% mol PbO) B2O3–CaO glass (31.4% mol CaO) B2O3–CaO glass (34.9% mol CaO) SiO2–PbO glass (49.8% mol PbO) B2O3–Na2O glass (17.4% mol Na2O) B2O3–Na2O glass
B2O3–CaO glass (37.1% mol CaO) SiO2–B2O3 glass (72.7% mol B2O3 ) B2O3–Na2O glass (13.7% mol Na2O) B2O3–Na2O glass (20.0% mol Na2O) B2O3–Na2O glass (16.2% mol Na2O) B2O3–Na2O glass (15.8% mol Na2O) B2O3–Na2O glass (11.5% mol Na2O) B2O3–Na2O glass (17.4% mol Na2O) B2O3–Na2O glass (18.4% mol Na2O) SiO2–B2O3 glass (72.7% mol B2O3 ) B2O3–Na2O glass (22.5% mol Na2O)
Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC Shackelford & Alexander
1543
14.4 sel Thermal Page 1544 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 364. SELECTING
THERMAL EXPANSION OF GLASSES (SHEET 5 OF 11)
Glass
B2O3–Na2O glass (23.6% mol Na2O) SiO2–PbO glass (53.8% mol PbO) B2O3–Na2O glass (13.7% mol Na2O) B2O3–Na2O glass (16.2% mol Na2O) B2O3–Na2O glass (19.6% mol Na2O) B2O3–Na2O glass (20.0% mol Na2O) B2O3–CaO glass (34.9% mol CaO) B2O3–Na2O glass (13.7% mol Na2O) B2O3–Na2O glass (17.4% mol Na2O) B2O3–Na2O glass (15.8% mol Na2O) B2O3–CaO glass (37.1% mol CaO) B2O3–Na2O glass (18.4% mol Na2O) B2O3–Na2O glass (4.4% mol Na2O) B2O3–Na2O glass (22.5% mol Na2O) B2O3–Na2O glass (11.5% mol Na2O)
Temperature Range of Validity
Thermal Expansion (K–1)
20–50˚C 20–170˚C 20–250˚C 20–250˚C
90.4x10–7 90.62–95.25x10–7 90.9x10–7 90.9x10–7
20–150˚C 20–150˚C 500–600˚C 20–150˚C
91.2x10–7 91.6x10–7 91.8–92.1x10–7 92.3x10–7
20–250˚C 20–250˚C 500–600˚C 20–250˚C
92.4x10–7 93.3x10–7 93.5–95.5x10–7 94.1x10–7
–196—25˚C 20–150˚C 20–150˚C
94.6x10–7 94.7x10–7 94.9x10–7
below Tg 20–250˚C 20–170˚C
95x10–7 95.3x10–7 95.64–100.45x10–7
20–350˚C 20–350˚C 20–150˚C 20–350˚C
96.2x10–7 96.3x10–7 96.7x10–7 96.9x10–7
B2O3–Na2O glass
(25% mol Na2O, Tg = 466˚C) B2O3–Na2O glass (19.6% mol Na2O) SiO2–PbO glass (57.5% mol PbO) B2O3–Na2O glass (18.4% mol Na2O) B2O3–Na2O glass (17.4% mol Na2O) B2O3–Na2O glass (23.6% mol Na2O) B2O3–Na2O glass (16.2% mol Na2O)
Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
1544
CRC Handbook of Materials Science & Engineering
14.4 sel Thermal Page 1545 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 364. SELECTING
THERMAL EXPANSION OF GLASSES (SHEET 6 OF 11)
Glass
SiO2–PbO glass (59.0% mol PbO) SiO2–Na2O glass (20.3% mol Na2O) B2O3–Na2O glass (20.0% mol Na2O) B2O3–Na2O glass (11.5% mol Na2O) B2O3–Na2O glass (15.8% mol Na2O) B2O3–Na2O glass (22.5% mol Na2O) B2O3–Na2O glass (8.7% mol Na2O) SiO2–Na2O glass (20.3% mol Na2O) B2O3–Na2O glass (19.6% mol Na2O) B2O3–Na2O glass (8.7% mol Na2O) SiO2–Na2O glass (20.3% mol Na2O) SiO2–PbO glass (61.0% mol PbO) B2O3–Na2O glass (23.6% mol Na2O) B2O3–Na2O glass (20.0% mol Na2O) SiO2–PbO glass (61.75% mol PbO) B2O3–Na2O glass (28.9% mol Na2O) B2O3–Na2O glass (4.4% mol Na2O) B2O3–Na2O glass (22.5% mol Na2O) B2O3–Na2O glass (8.7% mol Na2O) B2O3–Na2O glass (23.6% mol Na2O) SiO2–Na2O glass (20.3% mol Na2O) B2O3–Na2O glass (28.9% mol Na2O) SiO2–Na2O glass (24.0% mol Na2O) B2O3–Na2O glass (4.4% mol Na2O)
Temperature Range of Validity
Thermal Expansion (K–1)
20–170˚C room temp–100˚C 20–250˚C 20–250˚C
97.00–101.90x10–7 97.5x10–7 97.6x10–7 97.9x10–7
20–350˚C 20–250˚C 20–50˚C 100–200˚C
97.9x10–7 98.7x10–7 98.8x10–7 99.3x10–7
20–350˚C 20–150˚C 200–300˚C 20–170˚C
99.6x10–7 100.5x10–7 100.6x10–7 100.66–105.58x10–7
20–250˚C 20–350˚C 20–170˚C 20–50˚C
101.2x10–7 101.3x10–7 101.36–106.30x10–7 102.1x10–7
20–50˚C 20–350˚C 20–250˚C 20–350˚C
103.0x10–7 104.0x10–7 105.3x10–7 106.5x10–7
300–400˚C 20–150˚C room temp–100˚C 20–150˚C
106.9x10–7 107.4x10–7 109.7x10–7 109.9x10–7
Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC Shackelford & Alexander
1545
14.4 sel Thermal Page 1546 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 364. SELECTING
THERMAL EXPANSION OF GLASSES (SHEET 7 OF 11)
Glass
SiO2–PbO glass (67.7% mol PbO) SiO2–B2O3 glass (83.2% mol B2O3 ) B2O3–Na2O glass (28.9% mol Na2O) SiO2–Na2O glass (24.0% mol Na2O) B2O3–Na2O glass (5% mol Na2O, Tg = 318˚C) B2O3–Na2O glass (4.4% mol Na2O) SiO2–B2O3 glass (83.2% mol B2O3 ) SiO2–Na2O glass (24.0% mol Na2O) B2O3–Na2O glass (28.9% mol Na2O) SiO2–B2O3 glass (88.6% mol B2O3 ) SiO2–Na2O glass (20% mol Na2O, Tg = 478˚C) SiO2–Na2O glass (24.0% mol Na2O) SiO2–B2O3 glass (88.6% mol B2O3 ) B2O3–Na2O glass (30% mol Na2O, Tg = 468˚C) SiO2–B2O3 glass (94.0% mol B2O3 ) SiO2–Na2O glass (31.1% mol Na2O) B2O3–Na2O glass (0.01% mol Na2O) SiO2–B2O3 glass (94.0% mol B2O3 ) SiO2–Na2O glass (31.1% mol Na2O) SiO2–Na2O glass (33.8% mol Na2O)
Temperature Range of Validity
Thermal Expansion (K–1)
20–170˚C 0–100˚C 20–250˚C 100–200˚C
110.38–115.48x10–7 111.4x10–7 112.8x10–7 114.3x10–7
below Tg 20–250˚C 100–200˚C
115x10–7 116.0x10–7 116.6x10–7
200–300˚C 20–350˚C 0–100˚C
116.6x10–7 117.1x10–7 118.1x10–7
below Tg
120x10–7 121.7x10–7 126.0x10–7
300–400˚C 100–200˚C
0–100˚C room temp–100˚C
128x10–7 131.7x10–7 136.0x10–7
–196—25˚C 100–200˚C 100–200˚C room temp–100˚C
140x10–7 141.9x10–7 142.5x10–7 143.9x10–7
below Tg
Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
1546
CRC Handbook of Materials Science & Engineering
14.4 sel Thermal Page 1547 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 364. SELECTING
THERMAL EXPANSION OF GLASSES (SHEET 8 OF 11) Temperature Range of Validity
Thermal Expansion (K–1)
200–300˚C 20–150˚C 20–50˚C 20–200˚C
148.3x10–7 149.0x10–7 149.3x10–7 150±3–158±3x10–7
below Tg room temp–100˚C 100–200˚C
152x10–7 152.1x10–7 153.6x10–7
SiO2–Na2O glass (31.1% mol Na2O)
100–200˚C 0–100˚C 200–300˚C 300–400˚C
154.5–169x10–7 154.5–183x10–7 159.1x10–7 160.0x10–7
SiO2–Na2O glass (37.2% mol Na2O)
100–200˚C
160.9x10–7
SiO2–Na2O glass (33% mol Na2O, Tg = 445˚C) SiO2–Na2O glass (37.2% mol Na2O)
below Tg 200–300˚C
165x10–7 171.6x10–7
SiO2–Na2O glass (33.8% mol Na2O)
300–400˚C
173.6x10–7
below Tg
179x10–7 187.7x10–7
Glass
SiO2–Na2O glass (31.1% mol Na2O) B2O3–Na2O glass (0.01% mol Na2O) B2O3–Na2O glass (0.01% mol Na2O) B2O3 glass SiO2–Na2O glass (30% mol Na2O, Tg = 455˚C) SiO2–Na2O glass (37.2% mol Na2O) SiO2–Na2O glass (33.8% mol Na2O) B2O3 glass B2O3 glass SiO2–Na2O glass (33.8% mol Na2O)
SiO2–Na2O glass
(40% mol Na2O, Tg = 421˚C) SiO2–Na2O glass (37.2% mol Na2O) SiO2–Na2O glass (45% mol Na2O, Tg = 417˚C) SiO2–B2O3 glass (39.2% mol B2O3 )
300–400˚C
below Tg 390–410˚C
219x10–7 301x10–7
Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
Shackelford & Alexander
1547
14.4 sel Thermal Page 1548 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 364. SELECTING
THERMAL EXPANSION OF GLASSES (SHEET 9 OF 11)
Glass
Temperature Range of Validity
Thermal Expansion (K–1)
above Tg
315x10–7
above Tg
402x10–7
380–400˚C
450x10–7
above Tg
465x10–7
above Tg
500x10–7 53±5x10–6
SiO2–Na2O glass
(20% mol Na2O, Tg = 478˚C) SiO2–Na2O glass (30% mol Na2O, Tg = 455˚C) SiO2–B2O3 glass (44.2% mol B2O3 ) SiO2–Na2O glass (33% mol Na2O, Tg = 445˚C) SiO2–Na2O glass (40% mol Na2O, Tg = 421˚C) SiO2–CaO glass (35% mol CaO)
1700˚C
SiO2–Na2O glass
(45% mol Na2O, Tg = 417˚C) SiO2–B2O3 glass (50.8% mol B2O3 ) B2O3–Na2O glass (20% mol Na2O, Tg = 456˚C) SiO2–CaO glass (40% mol CaO) SiO2–CaO glass (30% mol CaO) SiO2–Na2O glass (20% mol Na2O) SiO2–B2O3 glass (58.4% mol B2O3 ) SiO2–PbO glass (50% mol PbO) SiO2–CaO glass (42.5% mol CaO)
above Tg 350–370˚C
574x10–7 579x10–7
1700˚C 1700˚C
586x10–7 64±4x10–6 66±5x10–6
liquidus temp. to 1400˚C 320–340˚C 1100˚C 1700˚C
6.7x10–5 694x10–7 723x10–7 76±4x10–6
above Tg
Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
1548
CRC Handbook of Materials Science & Engineering
14.4 sel Thermal Page 1549 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 364. SELECTING
THERMAL EXPANSION OF GLASSES (SHEET 10 OF 11) Temperature Range of Validity
Thermal Expansion (K–1)
1700˚C 1700˚C
76±4x10–6 76–107±4x10–6
above Tg
761x10–7
(25% mol Na2O, Tg = 466˚C) SiO2–CaO glass (50% mol CaO) SiO2–CaO glass (45% mol CaO)
above Tg 1700˚C 1700˚C
834x10–7 84–85±4x10–6 85–100±4x10–6
SiO2–PbO glass (66.7% mol PbO)
1100˚C 300–320˚C 1700˚C 1700˚C
867x10–7 899x10–7 94–95±4x10–6 95±4x10–6
280–300˚C 280–300˚C 1700˚C
970x10–7 1023x10–7 103±4x10–6
above Tg 270–290˚C
1150x10–7 1200x10–7
above Tg
1230x10–7
above Tg
1400x10–7
Glass
SiO2–CaO glass (47.5% mol CaO) SiO2–CaO glass (52.5% mol CaO) B2O3–Na2O glass
(15% mol Na2O, Tg = 407˚C) B2O3–Na2O glass
SiO2–B2O3 glass (72.7% mol B2O3 ) SiO2–CaO glass (55% mol CaO) SiO2–CaO glass (57.5% mol CaO) SiO2–B2O3 glass (83.2% mol B2O3 ) SiO2–B2O3 glass (88.6% mol B2O3 ) SiO2–CaO glass (60% mol CaO) B2O3–Na2O glass (30% mol Na2O, Tg = 468˚C) SiO2–B2O3 glass (94.0% mol B2O3 ) B2O3–Na2O glass
(10% mol Na2O, Tg = 354˚C) B2O3–Na2O glass (5% mol Na2O, Tg = 318˚C)
Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC Shackelford & Alexander
1549
14.4 sel Thermal Page 1550 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 364. SELECTING
THERMAL EXPANSION OF GLASSES (SHEET 11 OF 11)
Glass
SiO2–Na2O glass (33.3% mol Na2O) SiO2–Na2O glass (40% mol Na2O) SiO2–Na2O glass (50% mol Na2O)
Temperature Range of Validity
Thermal Expansion (K–1)
liquidus temp.to 1400˚C liquidus temp. to 1400˚C liquidus temp. to 1400˚C
17.2x10–5 20.0x10–5 23.7x10–5
Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
1550
CRC Handbook of Materials Science & Engineering
14.4 sel Thermal Page 1551 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 365. SELECTING
THERMAL EXPANSION OF POLYMERS (SHEET 1 OF 5)
Polymer
Thermal Expansion Coefficient ASTM D696 (•F–1)
Polymides: Glass Reinforced
0.8 x 10–6
Polycarbonate (40% Glass Fiber Reinforced) Epoxy Novolacs: Cast, Rigid Epoxies: High Performance Resins: Molded
1.0—1.1 x 10–6 1.6—3.0 x 10–6 1.7—2.2 x 10–6
Polymides: Unreinforced
2.5—4.5 x 10–6
ABS Resin; Molded, Extruded: Heat Resistant
3.0—4.0 x 10–6 3—4 x 10–6 3.2—4.8 x 10–6
Acrylic Moldings: Grades 5, 6, 8 ABS Resin; Molded, Extruded: Medium Impact Standard Epoxies: General Purpose Glass Cloth Laminate Standard Epoxies: High Strength Laminate Polycarbonate Acrylic Moldings: High Impact Grade
3.3—4.8 x 10–6 3.3—4.8 x 10–6 3.75 x 10–6 4—6 x 10–6
Chlorinated Polyvinyl Chloride
4.4 x 10–6
Acrylics; Cast Resin Sheets, Rods: General Purpose, Type I Acrylics; Cast Resin Sheets, Rods: General Purpose, Type II ABS Resin; Molded, Extruded: Very High Impact
4.5 x 10–6 4.5 x 10–6 5.0—6.0 x 10–6
ABS Resin; Molded, Extruded: Low Temperature Impact
5.0—6.0 x 10–6
ABS Resin; Molded, Extruded: High Impact Chlorinated Polyether
5.5—6.0 x 10–6 6.6 x 10–6
Melamines; Molded: Glass Fiber Filled
0.82 x 10–5
Rubber Phenolic—Woodflour or Flock
0.83—2.20 x 10–5
Phenolics, Molded; General: Very High Shock: Glass Fiber Filled
0.88 x 10–5
Standard Epoxies: Molded
1—2 x 10–5
Melamines; Molded: Cellulose Filled Electrical
1.11—2.78 x 10–5
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
1551
14.4 sel Thermal Page 1552 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 365. SELECTING
THERMAL EXPANSION OF POLYMERS (SHEET 2 OF 5)
Polymer
Thermal Expansion Coefficient ASTM D696 (•F–1)
Nylon; Molded, Extruded; Type 6: Glass Fiber (30%) Reinforced
1.2 x 10–5
Phenylene Oxides (Noryl): Glass Fiber Reinforced
1.2–1.6 x 10–5
Ureas; Molded: Alpha—Cellulose Filled (ASTM Type l)
1.22—1 .50 x 10–5
Alkyds; Molded: Putty (encapsulating)
1.3 x 10–5
Alkyds; Molded: Rope (general purpose)
1.3 x 10–5
Alkyds; Molded: Granular (high speed molding)
1.3 x 10–5
Alkyds; Molded: Glass reinforced (heavy duty parts)
1.3 x 10–5
Reinforced Polyester Moldings: High Strength (Glass Fibers)
13—19 x 10–6
Phenylene Oxides: Glass Fiber Reinforced
1.4–2.0 x 10–5
6/10 Nylon: General purpose
1.5 x 10–5
6/6 Nylon; General Purpose Molding: Glass Fiber Reinforced
1.5—3.3 x 10–5
Glass Fiber (30%) Reinforced SAN
1.6 x 10–5
Phenolics, General: High Shock: Chopped Fabric or Cord Filled
1.60—2.22 x 10–5
Phenolics, Molded; General: Shock: Paper, Flock, or Pulp
1.6—2.3 x 10–5
Polypropylene: Glass Reinforced
1.6—2.4 x 10–5
Phenolics, Molded; General: Woodflour And Flock Filled
1.66—2.50 x 10–5
6/6 Nylon; General Purpose Molding
1.69—1.7 x 10–5
6/6 Nylon; General Purpose Extrusion
1.7 x 10–5
Rubber Phenolic—Chopped Fabric
1.7 x 10–5
Polytetrafluoroethylene (PTFE), Ceramic Reinforced
1.7—2.0 x 10–5
Polystyrenes; Molded: Glass Fiber -30% Reinforced
1.8 x 10–5
Polymide Homopolymer: 20% Glass Reinforced
2.0—4.5 x 10–5
Polypropylene: Asbestos Filled
2—3 x 10–5
Standard Epoxies: Filament Wound Composite
2—6 x 10–5
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1552
CRC Handbook of Materials Science & Engineering
14.4 sel Thermal Page 1553 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 365. SELECTING
THERMAL EXPANSION OF POLYMERS (SHEET 3 OF 5)
Polymer
Thermal Expansion Coefficient ASTM D696 (•F–1)
Diallyl Phthalates; Molded: Glass Fiber Filled
2.2.—2.6 x 10–5
Rubber Phenolic—Asbestos
2.2 x 10–5
Polymide Copolymer: 25% Glass Reinforced
2.2—4.7 x 10–5
Polystyrenes; Molded: High Impact
2.2—5.6 x 10–5
Silicones; Molded, Laminated: Granular (Silica) Reinforced
2.5—5.0 x 10–5
Polyarylsulfone
2.6 x 10–5
Polyester; Injection Moldings: Glass Reinforced Grades
2.7—3.3 x 10–5
Polyvinyl Chloride; Molded, Extruded: Rigid—normal impact
2.8—3 .3 x 10–5
Polyphenylene Sulfide: Standard
3.0—4.9 x 10–5
Standard Epoxies: Cast Flexible
3—5 x 10–5
Phenylene Oxides (Noryl): Standard
3.1 x 10–5
Silicones; Molded, Laminated: Fibrous (Glass) Reinforced
3.17—3.23 x 10–5
Standard Epoxies: Cast rigid
3.3 x 10–5
Phenylene Oxides: SE—1
3.3 x 10–5
Polystyrenes; Molded: Medium Impact
3.3—4.7 x 10–5
Polystyrenes; Molded: General Purpose
3.3—4.8 x 10–5
6/10 Nylon: Glass fiber (30%) reinforced
3.5 x 10–5
PVC–Acrylic Alloy Sheet
3.5 x 10–5
Polyester; Injection Moldings: Glass Reinforced Self Extinguishing
3.5 x 10–5
Styrene Acrylonitrile (SAN)
3.6—3.7 x 10–5
Phenylene Oxides: SE—100
3.8 x 10–5
Polypropylene: General Purpose
3.8—5.8 x 10–5
Polytrifluoro chloroethylene (PTFCE)
3.88 x 10–5
Thermoset Cast Polyyester: Rigid
3.9—5.6 x 10–5
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC Shackelford & Alexander
1553
14.4 sel Thermal Page 1554 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 365. SELECTING
THERMAL EXPANSION OF POLYMERS (SHEET 4 OF 5)
Polymer
Thermal Expansion Coefficient ASTM D696 (•F–1)
Polyphenylene Sulfide: 40% Glass Reinforced
4 x 10–5
Diallyl Phthalates; Molded: Asbestos Filled
4.0 x 10–5
Polypropylene: High Impact
4.0—5.9 x 10–5
Nylon; Type 6: Cast
4.4 x 10–5
Cellulose Acetate; Molded, Extruded; ASTM Grade: H6—1
4.4—9.0 x 10–5
Cellulose Acetate; Molded, Extruded; ASTM Grade: H4—1
4.4—9.0 x 10–5
Cellulose Acetate; Molded, Extruded; ASTM Grade: H2—1
4.4—9.0 x 10–5
Cellulose Acetate; ASTM Grade: MH—1, MH—2
4.4—9.0 x 10–5
Cellulose Acetate; ASTM Grade: MS—1, MS—2
4.4—9.0 x 10–5
Cellulose Acetate; Molded, Extruded; ASTM Grade: S2—1
4.4—9.0 x 10–5
Polymide Homopolymer: Standard
4.5 x 10–5
Polymide Homopolymer: 22% TFE Reinforced
4.5 x 10–5
Polymide Copolymer: Standard
4.7 x 10–5
Polymide Copolymer: High Flow
4.7 x 10–5
Nylon; Molded, Extruded; Type 6: General Purpose
4.8 x 10–5
Polyester; Injection Moldings: General Purpose Grade
4.9—13.0 x 10–5
Diallyl Phthalates; Molded: Orlon Filled
5.0 x 10–5
Diallyl Phthalates; Molded: Dacron Filled
5.2 x 10–5
Polyester; Thermoplastic Injection Moldings: General Purpose Grade
5.3 x 10–5
Nylon; Type 11
5.5 x 10–5
Thermoset Carbonate: Allyl diglycol carbonate
6 x 10–5
Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: H4
6—9 x 10–5
Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: MH
6—9 x 10–5
Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: S2
6—9 x 10–5
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1554
CRC Handbook of Materials Science & Engineering
14.4 sel Thermal Page 1555 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 365. SELECTING
THERMAL EXPANSION OF POLYMERS (SHEET 5 OF 5)
Polymer
Thermal Expansion Coefficient ASTM D696 (•F–1)
Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 1
6—9 x 10–5
Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 3
6—9 x 10–5
Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 6
6—9 x 10–5
ABS–Polycarbonate Alloy
6.12 x 10–5
Nylon; Type 12
7.2 x 10–5
Fluorinated Ethylene Propylene(FEP)
8.3—10.5 x 10–5
Polyethylene; Molded, Extruded; Type II: Melt Index 20
8.3—16.7 x 10–5
Polyethylene; Molded, Extruded; Type II: Melt index l.0—1.9
8.3—16.7 x 10–5
Polyethylene; Molded, Extruded; Type III: Melt Index 0.2—0.9
8.3—16.7 x 10–5
Polyethylene; Type III: Melt Melt Index 0.l—12.0
8.3—16.7 x 10–5
Polyethylene; Molded, Extruded; Type III: Melt Index 1.5—15
8.3—16.7 x 10–5
Polyvinylidene— Fluoride (PVDF)
8.5 x 10–5
Vinylidene chloride
8.78 x 10–5
Polyethylene; Molded, Extruded; Type I: Melt Index 0.3—3.6
8.9—11.0 x 10–5
Polyethylene; Molded, Extruded; Type I: Melt Index 6—26
8.9—11.0 x 10–5
Polyethylene; Molded, Extruded; Type I: Melt Index 200
11 x 10–5
Polytetrafluoroethylene (PTFE)
55 x 10–5
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC Shackelford & Alexander
1555
14.4 sel Thermal Page 1556 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 366. SELECTING
THERMAL EXPANSION COEFFICIENTS FOR
MATERIALS USED IN INTEGRATED CIRCUITS (SHEET 1 OF 6) Material
Temperature Range (K)
Linear Thermal Expansion Coefficient (K–1)
Vitreous silica
300
0.42 x 10–6
Vitreous silica
700
0.54 x 10–6
Vitreous silica
800
0.54 x 10–6
Vitreous silica
600
0.55 x 10–6
Vitreous silica
400
0.56 x 10–6
Vitreous silica
500
0.56 x 10–6
Vitreous silica
500
0.56 x 10–6
Silicon nitride (β)
25–1,000
2.25 x 10–6
Pyroceram cement (Devitrified)
25–300
2.4 x 10–6
Silicon
300
2.5 x 10–6
Silicon nitride (α)
25–1,000
2.9 x 10–6
Silicon
400
3.1 x 10–6
Pyrex glass
25–300
3.2 x 10–6
Silicon
500
3.5 x 10–6
Silicon
500
3.5 x 10–6
Silicon
600
3.8 x 10–6
Pyroceram cement (Vitreous #45)
0–300
4 x 10–6
Silicon
700
4.1 x 10–6
Silicon
800
4.3 x 10–6
Tungsten
300
4.5 x 10–6
Source: from Beadles, R. L., Interconnections and Encapsulation, Integrated Silicon Device Technology, Vol. 14, Research Triangle Institute, Research Triangle Park, N. C., 1967. in CRC Handbook of Materials Science, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC
1556
CRC Handbook of Materials Science & Engineering
14.4 sel Thermal Page 1557 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 366. SELECTING
THERMAL EXPANSION COEFFICIENTS FOR
MATERIALS USED IN INTEGRATED CIRCUITS (SHEET 2 OF 6) Material
Temperature Range (K)
Linear Thermal Expansion Coefficient (K–1)
Tungsten
400
4.6 x 10–6
Tungsten
500
4.6 x 10–6
Tungsten
500
4.6 x 10–6
Beryllium oxide
300
4.7 x 10–6
Tungsten
600
4.7 x 10–6
Tungsten
700
4.7 x 10–6
Tungsten
800
4.8 x 10–6
Silicon carbide
0–1,000
4.8 x 10–6
Molybdenum
300
5 x 10–6
Kovar
25–300
5.0 x 10–6
Molybdenum
400
5.2 x 10–6
Molybdenum
500
5.3 x 10–6
Molybdenum
500
5.3 x 10–6
Molybdenum
600
5.4 x 10–6
Molybdenum
700
5.5 x 10–6
Germanium
300
5.7 x 10–6
Molybdenum
800
5.7 x 10–6
Beryllium oxide
500
6 x 10–6
Beryllium oxide
500
6 x 10–6
Aluminum oxide ceramic
25–300
6.0–7.0 x 10–6
Source: from Beadles, R. L., Interconnections and Encapsulation, Integrated Silicon Device Technology, Vol. 14, Research Triangle Institute, Research Triangle Park, N. C., 1967. in CRC Handbook of Materials Science, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC Shackelford & Alexander
1557
14.4 sel Thermal Page 1558 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 366. SELECTING
THERMAL EXPANSION COEFFICIENTS FOR
MATERIALS USED IN INTEGRATED CIRCUITS (SHEET 3 OF 6) Material
Temperature Range (K)
Linear Thermal Expansion Coefficient (K–1)
Germanium
400
6.2 x 10–6
Tantalum
300
6.5 x 10–6
Germanium
500
6.5 x 10–6
Germanium
500
6.5 x 10–6
Tantalum
400
6.6 x 10–6
Germanium
600
6.7 x 10–6
Tantalum
500
6.8 x 10–6
Tantalum
500
6.8 x 10–6
Tantalum
600
6.9 x 10–6
Germanium
700
6.9 x 10–6
Beryllium oxide
700
7 x 10–6
Tantalum
700
7 x 10–6
Tantalum
800
7.1 x 10–6
Germanium
800
7.2 x 10–6
Pyroceram cement (#89, #95)
—
8–10 x 10–6
Platinum
300
8.9 x 10–6
Platinum
400
9.2 x 10–6
Platinum
500
9.5 x 10–6
Platinum
500
9.5 x 10–6
Platinum
600
9.7 x 10–6
Source: from Beadles, R. L., Interconnections and Encapsulation, Integrated Silicon Device Technology, Vol. 14, Research Triangle Institute, Research Triangle Park, N. C., 1967. in CRC Handbook of Materials Science, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC
1558
CRC Handbook of Materials Science & Engineering
14.4 sel Thermal Page 1559 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 366. SELECTING
THERMAL EXPANSION COEFFICIENTS FOR
MATERIALS USED IN INTEGRATED CIRCUITS (SHEET 4 OF 6) Material
Temperature Range (K)
Linear Thermal Expansion Coefficient (K–1)
Platinum
700
10 x 10–6
Platinum
800
10.2 x 10–6
Nickel
300
12.7 x 10–6
Nickel
400
13.8 x 10–6
Kanthal A
20–900
13.9–15.1 x 10–6
Gold
300
14.1 x 10–6
Gold
400
14.5 x 10–6
Gold
500
15 x 10–6
Gold
500
15 x 10–6
Nickel
500
15.2 x 10–6
Nickel
500
15.2 x 10–6
Gold
600
15.4 x 10–6
Gold
700
15.9 x 10–6
Nickel
700
16.4 x 10–6
Gold
800
16.5 x 10–6
Copper
300
16.8 x 10–6
Nickel
800
16.8 x 10–6
Nickel
600
17.2 x 10–6
Copper
400
17.7 x 10–6
Brass
25–300
17.7–21.2 x 10–6
Source: from Beadles, R. L., Interconnections and Encapsulation, Integrated Silicon Device Technology, Vol. 14, Research Triangle Institute, Research Triangle Park, N. C., 1967. in CRC Handbook of Materials Science, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC
Shackelford & Alexander
1559
14.4 sel Thermal Page 1560 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 366. SELECTING
THERMAL EXPANSION COEFFICIENTS FOR
MATERIALS USED IN INTEGRATED CIRCUITS (SHEET 5 OF 6) Material
Temperature Range (K)
Linear Thermal Expansion Coefficient (K–1)
Copper
500
18.3 x 10–6
Copper
500
18.3 x 10–6
Copper
600
18.9 x 10–6
Silver
300
19.2 x 10–6
Copper
700
19.4 x 10–6
Silver
400
20 x 10–6
Copper
800
20 x 10–6
Silver
500
20.6 x 10–6
Silver
500
20.6 x 10–6
Tin
300
21.2 x 10–6
Silver
600
21.4 x 10–6
Silver
700
22.3 x 10–6
Aluminum
300
23.2 x 10–6
Silver
800
23.4 x 10–6
Tin
400
24.2 x 10–6
Aluminum
400
24.9 x 10–6
Aluminum
500
26.4 x 10–6
Aluminum
500
26.4 x 10–6
Tin
500
27.5 x 10–6
Tin
500
27.5 x 10–6
Source: from Beadles, R. L., Interconnections and Encapsulation, Integrated Silicon Device Technology, Vol. 14, Research Triangle Institute, Research Triangle Park, N. C., 1967. in CRC Handbook of Materials Science, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC
1560
CRC Handbook of Materials Science & Engineering
14.4 sel Thermal Page 1561 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 366. SELECTING
THERMAL EXPANSION COEFFICIENTS FOR
MATERIALS USED IN INTEGRATED CIRCUITS (SHEET 6 OF 6) Material
Temperature Range (K)
Linear Thermal Expansion Coefficient (K–1)
Aluminum
600
28.3 x 10–6
Lead
300
28.9 x 10–6
Lead
400
29.8 x 10–6
Aluminum
700
30.7 x 10–6
Indium
300
31.9 x 10–6
Lead
500
32.1 x 10–6
Lead
500
32.1 x 10–6
Aluminum
800
33.8 x 10–6
Indium
400
38.5 x 10–6
Pyroceram (#9608)
25–300
420 x 10–6
Solder glass (Kimble CV-101)
0–300
809 x 10–6
Source: from Beadles, R. L., Interconnections and Encapsulation, Integrated Silicon Device Technology, Vol. 14, Research Triangle Institute, Research Triangle Park, N. C., 1967. in CRC Handbook of Materials Science, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC Shackelford & Alexander
1561
14.4 sel Thermal Page 1562 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 367. SELECTING
THERMAL EXPANSION COEFFICIENTS FOR
MATERIALS USED IN INTEGRATED CIRCUITS AT TEMPERATURE (SHEET 1 OF 5) Temperature Range (K)
Material
Linear Thermal Expansion Coefficient (K–1)
25–300
Pyroceram cement (Devitrified)
2.4 x 10–6
25–300
Pyrex glass
3.2 x 10–6
0–300
Pyroceram cement (Vitreous #45)
4 x 10–6
25–300
Kovar
5.0 x 10–6
25–300
Aluminum oxide ceramic
6.0–7.0 x 10–6
25–300
Brass
17.7–21.2 x 10–6
25–300
Pyroceram (#9608)
420 x 10–6
0–300
Solder glass (Kimble CV-101)
809 x 10–6
300
Vitreous silica
0.42 x 10–6
300
Silicon
2.5 x 10–6
300
Tungsten
4.5 x 10–6
300
Beryllium oxide
4.7 x 10–6
300
Molybdenum
5 x 10–6
300
Germanium
5.7 x 10–6
300
Tantalum
6.5 x 10–6
300
Platinum
8.9 x 10–6
300
Nickel
12.7 x 10–6
300
Gold
14.1 x 10–6
300
Copper
16.8 x 10–6
300
Silver
19.2 x 10–6
Source: from Beadles, R. L., Interconnections and Encapsulation, Integrated Silicon Device Technology, Vol. 14, Research Triangle Institute, Research Triangle Park, N. C., 1967. in CRC Handbook of Materials Science, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC
1562
CRC Handbook of Materials Science & Engineering
14.4 sel Thermal Page 1563 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 367. SELECTING
THERMAL EXPANSION COEFFICIENTS FOR
MATERIALS USED IN INTEGRATED CIRCUITS AT TEMPERATURE (SHEET 2 OF 5) Temperature Range (K)
Material
Linear Thermal Expansion Coefficient (K–1)
300
Tin
21.2 x 10–6
300
Aluminum
23.2 x 10–6
300
Lead
28.9 x 10–6
300
Indium
31.9 x 10–6
400
Vitreous silica
0.56 x 10–6
400
Silicon
3.1 x 10–6
400
Tungsten
4.6 x 10–6
400
Molybdenum
5.2 x 10–6
400
Germanium
6.2 x 10–6
400
Tantalum
6.6 x 10–6
400
Platinum
9.2 x 10–6
400
Nickel
13.8 x 10–6
400
Gold
14.5 x 10–6
400
Copper
17.7 x 10–6
400
Silver
20 x 10–6
400
Tin
24.2 x 10–6
400
Aluminum
24.9 x 10–6
400
Lead
29.8 x 10–6
400
Indium
38.5 x 10–6
Source: from Beadles, R. L., Interconnections and Encapsulation, Integrated Silicon Device Technology, Vol. 14, Research Triangle Institute, Research Triangle Park, N. C., 1967. in CRC Handbook of Materials Science, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC Shackelford & Alexander
1563
14.4 sel Thermal Page 1564 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 367. SELECTING
THERMAL EXPANSION COEFFICIENTS FOR
MATERIALS USED IN INTEGRATED CIRCUITS AT TEMPERATURE (SHEET 3 OF 5) Temperature Range (K)
Material
Linear Thermal Expansion Coefficient (K–1)
500
Vitreous silica
0.56 x 10–6
500
Silicon
3.5 x 10–6
500
Tungsten
4.6 x 10–6
500
Molybdenum
5.3 x 10–6
500
Beryllium oxide
6 x 10–6
500
Germanium
6.5 x 10–6
500
Tantalum
6.8 x 10–6
500
Platinum
9.5 x 10–6
500
Gold
15 x 10–6
500
Nickel
15.2 x 10–6
500
Copper
18.3 x 10–6
500
Silver
20.6 x 10–6
500
Aluminum
26.4 x 10–6
500
Tin
27.5 x 10–6
500
Lead
32.1 x 10–6
600
Vitreous silica
0.55 x 10–6
600
Silicon
3.8 x 10–6
600
Tungsten
4.7 x 10–6
600
Molybdenum
5.4 x 10–6
Source: from Beadles, R. L., Interconnections and Encapsulation, Integrated Silicon Device Technology, Vol. 14, Research Triangle Institute, Research Triangle Park, N. C., 1967. in CRC Handbook of Materials Science, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC
1564
CRC Handbook of Materials Science & Engineering
14.4 sel Thermal Page 1565 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 367. SELECTING
THERMAL EXPANSION COEFFICIENTS FOR
MATERIALS USED IN INTEGRATED CIRCUITS AT TEMPERATURE (SHEET 4 OF 5) Temperature Range (K)
Material
Linear Thermal Expansion Coefficient (K–1)
600
Germanium
6.7 x 10–6
600
Tantalum
6.9 x 10–6
600
Platinum
9.7 x 10–6
600
Gold
15.4 x 10–6
600
Nickel
17.2 x 10–6
600
Copper
18.9 x 10–6
600
Silver
21.4 x 10–6
600
Aluminum
28.3 x 10–6
700
Vitreous silica
0.54 x 10–6
700
Silicon
4.1 x 10–6
700
Tungsten
4.7 x 10–6
700
Molybdenum
5.5 x 10–6
700
Germanium
6.9 x 10–6
700
Beryllium oxide
7 x 10–6
700
Tantalum
7 x 10–6
700
Platinum
10 x 10–6
700
Gold
15.9 x 10–6
700
Nickel
16.4 x 10–6
700
Copper
19.4 x 10–6
700
Silver
22.3 x 10–6
700
Aluminum
30.7 x 10–6
Source: from Beadles, R. L., Interconnections and Encapsulation, Integrated Silicon Device Technology, Vol. 14, Research Triangle Institute, Research Triangle Park, N. C., 1967. in CRC Handbook of Materials Science, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC Shackelford & Alexander
1565
14.4 sel Thermal Page 1566 Wednesday, December 31, 1969 17:00
Selecting Thermal Properties
Table 367. SELECTING
THERMAL EXPANSION COEFFICIENTS FOR
MATERIALS USED IN INTEGRATED CIRCUITS AT TEMPERATURE (SHEET 5 OF 5) Temperature Range (K)
Material
Linear Thermal Expansion Coefficient (K–1)
800
Vitreous silica
0.54 x 10–6
800
Silicon
4.3 x 10–6
800
Tungsten
4.8 x 10–6
800
Molybdenum
5.7 x 10–6
800
Tantalum
7.1 x 10–6
800
Germanium
7.2 x 10–6
800
Platinum
10.2 x 10–6
800
Gold
16.5 x 10–6
800
Nickel
16.8 x 10–6
800
Copper
20 x 10–6
800
Silver
23.4 x 10–6
800
Aluminum
33.8 x 10–6
0–1,000
Silicon carbide
4.8 x 10–6
25–1,000
Silicon nitride (α)
25–1,000
Silicon nitride (β)
2.9 x 10–6 2.25 x 10–6
Source: from Beadles, R. L., Interconnections and Encapsulation, Integrated Silicon Device Technology, Vol. 14, Research Triangle Institute, Research Triangle Park, N. C., 1967. in CRC Handbook of Materials Science, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974).
©2001 CRC Press LLC
1566
CRC Handbook of Materials Science & Engineering
Shackelford, James F. & Alexander, W. “Selecting Mechanical Properties” Materials Science and Engineering Handbook Ed. James F. Shackelford & W. Alexander Boca Raton: CRC Press LLC, 2001
15.0 sel Mechanical Page 1567 Wednesday, December 31, 1969 17:00
CHAPTER 13
List of Tables
Selecting Mechanical Properties
Tensile Strength Selecting Tensile Strength of Tool Steels Selecting Tensile Strength of Gray Cast Irons Selecting Tensile Strength of Ductile Irons Selecting Tensile Strengths of Malleable Iron Castings Selecting Tensile Strengths of Aluminum Casting Alloys Selecting Tensile Strengths of Wrought Aluminum Alloys Selecting Tensile Strengths of Ceramics Selecting Tensile Strengths of Glass Selecting Tensile Strengths of Polymers Compressive Strength Selecting Compressive Strengths of Gray Cast Iron Bars Selecting Compressive Strengths of Ceramics Selecting Compressive Strengths of Polymers Yield Strength Selecting Yield Strengths of Tool Steels Selecting Yield Strengths of Ductile Irons Selecting Yield Strengths of Malleable Iron Castings Selecting Yield Strengths of Cast Aluminum Alloys Selecting Yield Strengths of Wrought Aluminum Alloys Selecting Yield Strengths of Polymers Selecting Compressive Yield Strengths of Polymers
©2001 CRC Press LLC
1567
15.0 sel Mechanical Page 1568 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties List of Tables (Continued)
Flexural Strength Selecting Flexural Strengths of Polymers Shear Selecting Shear Strengths of Wrought Aluminum Alloys Selecting Torsional Shear Strengths of Gray Cast Iron Bars Hardness and Microhardness Selecting Hardness of Tool Steels Selecting Hardness of Gray Cast Irons Selecting Hardness of Gray Cast Iron Bars Selecting Hardness of Ductile Irons Selecting Hardness of Malleable Iron Castings Selecting Hardness of Wrought Aluminum Alloys Selecting Hardness of Ceramics Selecting Microhardness of Glass Selecting Hardness of Polymers Friction Selecting Coefficients of Static Friction for Polymers Abrasion Resistance Selecting Abrasion Resistance of Polymers Fatigue Selecting Fatigue Strengths of Wrought Aluminum Alloys Selecting Reversed Bending Fatigue Limits of Gray Cast Iron Bars Impact Energy and Impact Strength Selecting Impact Energy of Tool Steels Selecting Impact Strengths of Polymers
©2001 CRC Press LLC
1568
CRC Handbook of Materials Science & Engineering
15.0 sel Mechanical Page 1569 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties List of Tables
Moduli
(Continued)
Selecting Tensile Moduli of Gray Cast Irons Selecting Tensile Moduli of Treated Ductile Irons Selecting Young’s Moduli of Ceramics Selecting Young’s Moduli of Glass Selecting Moduli of Elasticity in Tension for Polymers Selecting Compression Moduli of Treated Ductile Irons Selecting Modulus of Elasticity in Compression for Polymers Selecting Bulk Moduli of Glass Selecting Moduli of Elasticity in Flexure of Polymers Selecting Shear Moduli of Glass Selecting Torsional Moduli of Gray Cast Irons Selecting Torsional Moduli of Treated Ductile Irons Selecting Moduli of Rupture for Ceramics Poisson’s Ratio Selecting Poisson’s Ratios for Ceramics Selecting Poisson’s Ratios of Glass Selecting Compression Poisson’s Ratios of Treated Ductile Irons Selecting Torsion Poisson’s Ratios of Treated Ductile Irons Elongation Selecting Elongation of Tool Steels Selecting Elongation of Ductile Irons Selecting Elongation of Malleable Iron Castings Selecting Total Elongation of Cast Aluminum Alloys Selecting Total Elongation of Polymers Selecting Elongation at Yield of Polymers Area Reduction Selecting Area Reduction of Tool Steel
©2001 CRC Press LLC Shackelford & Alexander
1569
15.1 sel Mechanical Page 1570 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 368. SELECTING
TENSILE STRENGTH OF TOOL STEELS
Type
Condition
Tensile Strength (MPa)
S7 L6 S1
Annealed Annealed Annealed
640 655 690
L2 S5
Annealed Annealed
710 725
L2 L6 S5
Oil quenched from 855 •C and single tempered at: 650 •C Oil quenched from 845 •C and single tempered at: 650 •C Oil quenched from 870 •C and single tempered at: 650 •C
930 965 1035
S7 L2 L6 S1
Fan cooled from 940 •C and single tempered at: 650 •C Oil quenched from 855 •C and single tempered at: 540 •C Oil quenched from 845 •C and single tempered at: 540 •C Oil quenched from 845 •C and single tempered at: 650 •C
1240 1275 1345 1345
S5 L2 L6 S1
Oil quenched from 870 •C and single tempered at: 540 •C Oil quenched from 855 •C and single tempered at: 425 •C Oil quenched from 845 •C and single tempered at: 425 •C Oil quenched from 845 •C and single tempered at: 540 •C
1520 1550 1585 1680
L2 S1 S7 S5
Oil quenched from 855 •C and single tempered at: 315 •C Oil quenched from 845 •C and single tempered at: 425 •C Fan cooled from 940 •C and single tempered at: 540 •C Oil quenched from 870 •C and single tempered at: 425 •C
1790 1790 1820 1895
S7 S7 L2 L6
Fan cooled from 940 •C and single tempered at: 425 •C Fan cooled from 940 •C and single tempered at: 315 •C Oil quenched from 855 •C and single tempered at: 205 •C Oil quenched from 845 •C and single tempered at: 315 •C
1895 1965 2000 2000
S1 S1 S7 S5
Oil quenched from 845 •C and single tempered at: 315 •C Oil quenched from 845 •C and single tempered at: 205 •C Fan cooled from 940 •C and single tempered at: 205 •C Oil quenched from 870 •C and single tempered at: 315 •C
2030 2070 2170 2240
S5
Oil quenched from 870 •C and single tempered at: 205 •C
2345
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984).
©2001 CRC Press LLC
1570
CRC Handbook of Materials Science & Engineering
15.1 sel Mechanical Page 1571 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 369. SELECTING
TENSILE STRENGTH OF GRAY CAST IRONS
SAE grade
Maximum Tensile Strength (MPa)
G1800 G2500 G2500a
118 173 173
G3000 C3500 G4000
207 241 276
G3500b G3500c G4000d
1241 1241 1276
Grey Cast Iron Bars ASTM Class
Tensile Strength (MPa)
20 25 30
152 179 214
35 40 50 60
252 293 362 431
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984).
©2001 CRC Press LLC Shackelford & Alexander
1571
15.1 sel Mechanical Page 1572 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 370. SELECTING
TENSILE STRENGTH OF DUCTILE IRONS
Specification Number
Grade or Class
Tensile Strength (MPa)
MlL-I-24137(Ships) MlL-I-24137(Ships) ASTM A395-76; ASME SA395
Class C Class B 60-40-18
345 379 414
ASTM A536-72; MIL-1-11466B(MR) SAE J434c MlL-I-24137(Ships)
60-40-18 D4018 Class A
414 414 414
ASTM A536-72; MIL-1-11466B(MR) SAE J434c ASTM A476-70(d); SAE AMS5316
65-45-12 D4512 80-60-03
448 448 552
ASTM A536-72; MIL-1-11466B(MR) SAE J434c ASTM A536-72; MIL-1-11466B(MR)
80-55-06 D5506 100-70-03
552 552 689
SAE J434c ASTM A536-72; MIL-1-11466B(MR)
D7003 120-90-02
689 827
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169, (1984).
©2001 CRC Press LLC
1572
CRC Handbook of Materials Science & Engineering
15.1 sel Mechanical Page 1573 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 371. SELECTING
TENSILE STRENGTHS OF MALLEABLE IRON CASTINGS
a
Specification Number
grade or class
Tensile Strength (MPa)
ASTM A197 ASTM A47, A338; ANSI G48.1; FED QQ–I–666c ASTM A602; SAE J158 ASTM A47, A338; ANSI G48.1; FED QQ–I–666c
32510 M3210 35018
276 345 345 365
ASTM A220; ANSI C48.2; MIL–I–11444B ASTM A220; ANSI C48.2; MIL–I–11444B ASTM A220; ANSI C48.2; MIL–I–11444B ASTM A602; SAE J158
40010 45008 45006 M4504(a)
414 448 448 448
ASTM A220; ANSI C48.2; MIL–I–11444B ASTM A602; SAE J158 ASTM A602; SAE J158 ASTM A220; ANSI C48.2; MIL–I–11444B
50005 M5003(a) M5503(b) 60004
483 517 517 552
ASTM A220; ANSI C48.2; MIL–I–11444B ASTM A602; SAE J158 ASTM A220; ANSI C48.2; MIL–I–11444B ASTM A220; ANSI C48.2; MIL–I–11444B
70003 M7002(b) 80002 90001
586 621 655 724
ASTM A602; SAE J158
M8501(b)
724
Air quenched and tempered
b Liquid quenched and tempered
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p171, (1984).
©2001 CRC Press LLC Shackelford & Alexander
1573
15.1 sel Mechanical Page 1574 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 372. SELECTING
TENSILE STRENGTHS OF ALUMINUM CASTING ALLOYS (SHEET 1 OF 3)
Alloy AA No.
Temper
Tensile Strength (MPa )
443.0 208.0 B443.0 850.0
F F F T5
130 145 159 160
514.0 355.0 356.0 A390.0
F T71 T51 F,T5
170 175 175 180
242.0 319.0 308.0 355.0
T21 F F T51
185 185 195 195
356.0 A390.0 242.0 355.0
T71 F,T5 T77 T51
195 200 205 210
713.0 242.0 295.0 356.0
T5 T571 T4 T7
210 220 220 220
713.0 C443.0 356.0 319.0
T5 F T6 F
220 228 230 235
356.0 355.0 712.0 295.0
T7 T6 F T6
235 240 240 250
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
1574
CRC Handbook of Materials Science & Engineering
15.1 sel Mechanical Page 1575 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 372. SELECTING
TENSILE STRENGTHS OF ALUMINUM CASTING ALLOYS (SHEET 2 OF 3)
Alloy AA No.
Temper
Tensile Strength (MPa )
319.0 336.0 355.0 A390.0
T6 T551 T71 T7
250 250 250 250
296.0 A390.0 355.0 356.0
T4 T7 T7 T6
255 260 265 265
296.0 355.0 242.0 296.0
T7 T61 T571 T6
270 270 275 275
535.0 319.0 355.0 390.0
F T6 T7 F
275 280 280 280
A390.0 295.0 355.0 A413.0
T6 T62 T6 F
280 285 290 290
390.0 413.0 355.0 383.0
T5 F T62 F
300 300 310 310
A390.0 518.0 A360.0 242.0
T6 F F T61
310 310 320 325
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC Shackelford & Alexander
1575
15.1 sel Mechanical Page 1576 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 372. SELECTING
TENSILE STRENGTHS OF ALUMINUM CASTING ALLOYS (SHEET 3 OF 3)
Alloy AA No.
Temper
Tensile Strength (MPa )
336.0 360.0 359.0 380.0
T65 F T61 F
325 325 330 330
384.0, A384.0 520.0 359.0 771.0
F T4 T62 T6
330 330 345 345
357.0, A357.0 201.0 354.0 206.0, A206.0
T62 T4 T61 T7
360 365 380 435
201.0 201.0
T7 T6
460 485
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
1576
CRC Handbook of Materials Science & Engineering
15.1 sel Mechanical Page 1577 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 373. SELECTING
TENSILE STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 1 OF 7)
Alloy
Temper
Tensile Strength (MPa)
1060 1050 1060 1350
0 0 H12 0
69 76 83 83
1100 6063 1060 1350
0 0 H14 H12
90 90 97 97
6101 1050 1060 1100
H111 H14 H16 H12
97 110 110 110
1350 3003 3105 Alclad 6061
H14 0 0 0
110 110 115 115
1100 1350 5005 6061
H14 H16 0 0
125 125 125 125
1050 1060 Alclad 5457
H16 H18 H12 0
130 130 130 130
5005 5005 1100 4043
H12 H32 H16 0
140 140 145 145
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299—302, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
1577
15.1 sel Mechanical Page 1578 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 373. SELECTING
TENSILE STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 2 OF 7)
Alloy
Temper
Tensile Strength (MPa)
5050 6070 3003 3105
0 0 H14 H12
145 145 150 150
6063 6066 6463 1050
TI 0 Tl H18
150 150 150 160
5005 5005 5657 1100
H14 H34 H25 H18
160 160 160 165
Alclad 2014 2219 3105 5050
0 0 H14 H32
170 170 170 170
6005 6063 Alclad 2024 3003
T1 T4 0 H16
170 170 180 180
3004 3105 5005 5005
0 H25 H16 H36
180 180 180 180
5457 1350 2014 2024
H25 H19 0 0
180 185 185 185
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299—302, (1984).
©2001 CRC Press LLC
1578
CRC Handbook of Materials Science & Engineering
15.1 sel Mechanical Page 1579 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 373. SELECTING
TENSILE STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 3 OF 7)
Alloy
Temper
Tensile Strength (MPa)
6063 6463 7005 3105
T5 T5 0 H16
185 185 193 195
5050 5052 5652 5657
H34 0 0 H28, H38
195 195 195 195
3003 5005 5005 5050
H18 H18 H38 H36
200 200 200 205
5457 6063 Alclad 3105
H28, H38 T831 H32 H18
205 205 215 215
5050 6151 Alclad 7075 5052
H38 T6 0 H32
220 220 220 230
5652 Alclad 6061 7075 5252
H32 T4, T451 0 H25
230 230 230 235
6009 3004 5154 5154
T4 H34 0 H112
235 240 240 240
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299—302, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
1579
15.1 sel Mechanical Page 1580 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 373. SELECTING
TENSILE STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 4 OF 7)
Alloy
Temper
Tensile Strength (MPa)
5254 5254 6061 6063
0 H112 T4, T451 T6
240 240 240 240
6463 5454 5454 6351
T6 0 H112 T4
240 250 250 250
6010 6063 3004 5052
T4 T83 H36 H34
255 255 260 260
5086 5454 5454 5652
0 H111 H311 H34
260 260 260 260
6005 6205 5086 5154
T5 Tl H112 H32
260 260 270 270
5254 5052 5182 5454
H32 H36 0 H32
270 275 275 275
5652 3004 4043 5252
H36 H38 H18 H28, H38
275 285 285 285
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299—302, (1984).
©2001 CRC Press LLC
1580
CRC Handbook of Materials Science & Engineering
15.1 sel Mechanical Page 1581 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 373. SELECTING
TENSILE STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 5 OF 7)
Alloy
Temper
Tensile Strength (MPa)
5052 5056 5083 5086
H38 0 0 H32, H116, H117
290 290 290 290
5154 5254 5652 Alclad 6061
H34 H34 H38 T6, T651
290 290 290 290
6063 5083 5454 5154
T832 H112 H34 H36
290 305 305 310
5254 5456 5456 6061
H36 0 H112 T6, T651
310 310 310 310
6205 6351 5083 5083
T5 T6 H113 H321
310 310 315 315
5182 6070 5083 5086
H32 T4 H323, H32 H34
315 315 325 325
5456 2218 5154 5254
H111 T72 H38 H38
325 330 330 330
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299—302, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
1581
15.1 sel Mechanical Page 1582 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 373. SELECTING
TENSILE STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 6 OF 7)
Alloy
Temper
Tensile Strength (MPa)
6201 6201 2036 5182
T6 T81 T4 H34
330 330 340 340
5454 2218 5083 6009
H36 T71 H343, H34 T6
340 345 345 345
5456 2219 2219 6066
H321, H116 T42 T31, T351 T4, T451
350 360 360 360
5454 7005 2011 4032
H38 T6,T63,T6351 T3 T6
370 372 380 380
6070 7005 2219 6066
T6 T53 T37 T6, T651
380 393 395 395
6262 2011 2218 2219
T9 T8 T61 T62
400 405 405 415
5056 Alclad 2014 5182 2014
H38 T4 H19(n) T4
415 420 420 425
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299—302, (1984).
©2001 CRC Press LLC
1582
CRC Handbook of Materials Science & Engineering
15.1 sel Mechanical Page 1583 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 373. SELECTING
TENSILE STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 7 OF 7)
Alloy
Temper
Tensile Strength (MPa)
Alclad 2014 5056 Alclad 2024 2618
T3 H18 T4, T351 All
435 435 440 440
Alclad 2024 Alclad 2024 2048 2219
T T81, T851 T81, T851
450 450 455 455
Alclad 2024 Alclad 2014 2024 2219
T361 T6 T4, T351 T87
460 470 470 475
2014 2024 Alclad 2024 2124
T6 T3 T861 T851
485 485 485 490
2024 7075 7050 Alclad 7075
T361 T73 T736 T6,T651
495 505 515 525
7175 7475 7075 7175
T736 T61 T6,T651 T66
525 525 570 595
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299—302, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
1583
15.1 sel Mechanical Page 1584 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 374. SELECTING
TENSILE STRENGTHS OF CERAMICS (SHEET 1 OF 4)
Ceramic
Temperature
Tensile Strength (psi)
Boron Nitride (BN)
1000˚C
0.35 x103
Boron Nitride (BN)
1500˚C
0.35 x103
Beryllium Oxide (BeO)
1300˚C
0.6 x103
Spinel (Al2O3 MgO)
1300˚C
1.1 x103
Boron Nitride (BN)
1800˚C
1.15 x103
Aluminum Oxide (Al2O3)
1460˚C
1.5 x103 2-42 x103
Tantalum Monocarbide (TaC) Beryllium Oxide (BeO)
1140˚C
2.0 x103
Boron Nitride (BN)
2000˚C
2.25 x103
Cordierite (2MgO 2Al2O3 5SiO2)(ρ=1.8g/cm3)
1200˚C
2.5 x103
Cordierite (2MgO 2Al2O3 5SiO2)(ρ=2.1g/cm3)
800˚C
3.5 x103
Zircon (SiO2 ZrO2)
1200˚C
3.6 x103
Aluminum Oxide (Al2O3)
1400˚C
4.3 x103
Silicon Carbide (SiC)
25˚C
5-20 x103
Beryllium Oxide (BeO)
1000˚C
5.0 x103
Silicon Carbide (SiC) (hot pressed)
1400˚C
5.75-21.75 x103
Magnesium Oxide (MgO)
1300˚C
6 x103
Spinel (Al2O3 MgO)
1150˚C 1300˚C 1000˚C
6.1 x103 6.4 x103 6.75-17.0 x103
Aluminum Oxide (Al2O3) Zirconium Oxide (ZrO2)
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
1584
CRC Handbook of Materials Science & Engineering
15.1 sel Mechanical Page 1585 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 374. SELECTING
TENSILE STRENGTHS OF CERAMICS (SHEET 2 OF 4)
Ceramic
Temperature
Tensile Strength (psi)
Boron Nitride (BN)
2400˚C
6.80 x103
Beryllium Oxide (BeO)
900˚C
7.0 x103
Cordierite (2MgO 2Al2O3 5SiO2)(ρ=2.51g/cm3)
25˚C
7.8 x103
Magnesium Oxide (MgO)
1200˚C
8 x103
Zircon (SiO2 ZrO2)
1050˚C
8.7 x103
Magnesium Oxide (MgO)
1100˚C
10 x103
Zirconium Oxide (ZrO2)
1300˚C
10.2 x103 10.6 x104
Beryllium Oxide (BeO)
500˚C
11.1 x103
Silicon Carbide (SiC) (reaction bonded)
20˚C
11.17 x103
Magnesium Oxide (MgO)
1000˚C
11.5 x103
Zirconium Monocarbide (ZrC)
980˚C
11.7-14.45 x103
Zirconium Oxide (ZrO2) Zircon (SiO2 ZrO2)
1200˚C room temp.
12.1 x103 12.7 x103
Zirconium Monocarbide (ZrC)
1250˚C
12.95-15.85 x103
Zirconium Oxide (ZrO2)
1100˚C
13.0-13.5 x103
Beryllium Oxide (BeO)
room temp.
13.5-20 x103
Spinel (Al2O3 MgO)
550˚C
13.7 x103
Magnesium Oxide (MgO)
room temp.
14 x103
Magnesium Oxide (MgO)
200˚C
14 x103
Chromium Diboride (CrB2)
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
Shackelford & Alexander
1585
15.1 sel Mechanical Page 1586 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 374. SELECTING
TENSILE STRENGTHS OF CERAMICS (SHEET 3 OF 4)
Ceramic
Temperature
Tensile Strength (psi)
Thorium Dioxide (ThO2)
room temp.
14 x103
Magnesium Oxide (MgO)
400˚C
15.2 x103
Magnesium Oxide (MgO)
800˚C
16 x103
Zirconium Monocarbide (ZrC)
room temp.
16.0 x103
Zirconium Oxide (ZrO2) Zirconium Oxide (ZrO2)
800˚C 25˚C 200˚C
16.0 x103 16 x103 16.8 x103
Titanium Monocarbide (TiC)
1000˚C
17.2 x103
Zirconium Oxide (ZrO2)
400˚C 600˚C room temp.
17.5 x103 17.6 x103 17.9-20 x103 18.4 x103
1200˚C room temp. 500˚C 1400˚C
18.5-20 x103 19.2 x103 20.0 x103 20.3 x103
1400˚C 980˚C 20˚C
21.8 x103 22.5 x103 24.7 x103
Mullite (3Al2O3 2SiO2)
Zirconium Oxide (ZrO2) Zirconium Oxide (ZrO2) Titanium Diboride (TiB2) Aluminum Oxide (Al2O3) Spinel (Al2O3 MgO) Zirconium Oxide (ZrO2) Trisilicon tetranitride (Si3N4) (reaction bonded) Trisilicon tetranitride (Si3N4) (hot pressed) Boron Carbide (B4C) Trisilicon tetranitride (Si3N4) (reaction bonded)
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
1586
CRC Handbook of Materials Science & Engineering
15.1 sel Mechanical Page 1587 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 374. SELECTING
TENSILE STRENGTHS OF CERAMICS (SHEET 4 OF 4)
Ceramic
Temperature
Tensile Strength (psi)
28.7 x103
Zirconium Diboride (ZrB2) Silicon Carbide (SiC) (hot pressed)
20˚C
29 x103
Aluminum Oxide (Al2O3)
1140˚C 300˚C
31.4 x103 33.6 x103
1050˚C 800˚C 1000˚C room temp.
33.9 x103 34.6 x103 35 x103 37-37.8 x103
Molybdenum Disilicide (MoSi2)
500˚C 980˚C 1300˚C 1090˚C
40 x103 40 x103 41.07 x103 42.16 x103
Molybdenum Disilicide (MoSi2)
1200˚C
42.8 x103
Aluminum Oxide (Al2O3) Aluminum Oxide (Al2O3) Aluminum Oxide (Al2O3) Aluminum Oxide (Al2O3) Aluminum Oxide (Al2O3) Aluminum Oxide (Al2O3) Molybdenum Disilicide (MoSi2) Molybdenum Disilicide (MoSi2)
50 x103
Tungsten Monocarbide (WC) Trisilicon tetranitride (Si3N4) (hot pressed) Spinel (Al2O3 MgO)
20˚C 900˚C
54.4 x103 110.8 x103
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
Shackelford & Alexander
1587
15.1 sel Mechanical Page 1588 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 375. SELECTING
TENSILE STRENGTHS OF GLASS (SHEET 1 OF 2) Tensile Strength (Kg • mm–2)
Glass (Corning 7940 silica glass @ 100˚C)
5.6
SiO2 glass (1.5 mm diameter rod, 0.5 g/mm2•s stress rate) (Corning 7940 silica glass @ 300˚C) (Corning 7940 silica glass @ 500˚C)
5.84–7.08
(Corning 7940 silica glass @ 700˚C) (Corning 7940 silica glass @ 900˚C)
7.1 7.6
SiO2 glass (1.5 mm diameter rod, 54 g/mm2•s stress rate)
8.52±2.52
SiO2 glass (1.5 mm diameter rod, 50 g/mm2•s stress rate)
9.73±2.13
SiO2–Na2O glass (5 mm diameter rod, 20% mol Na2O)
15 28.3 28.8 35.8
SiO2 glass (112 µm diameter fiber) SiO2 glass (108 µm diameter fiber) SiO2 glass (78 µm diameter fiber) SiO2 glass (74 µm diameter fiber) SiO2 glass (65 µm diameter fiber) SiO2 glass (60 µm diameter fiber)
SiO2–PbO glass (17.2 µm diameter fiber, 50% mol PbO) SiO2 glass (56 µm diameter fiber) SiO2 glass (48 µm diameter fiber)
SiO2–PbO glass (11.4 µm diameter fiber, 50% mol PbO) B2O3 glass (10–30 µm diameter fiber)
SiO2–PbO glass (7.1 µm diameter fiber, 50% mol PbO) SiO2–PbO glass (4.3 µm diameter fiber, 50% mol PbO) SiO2–PbO glass (8.0 µm diameter fiber, 50% mol PbO) SiO2–PbO glass (5.7 µm diameter fiber, 50% mol PbO)
6.2 6.6
36.5 39.7 42.3 43–51.6 44.3 49.6 51.9–56 60 62–71.3 64 64.5 66–67.2
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
1588
CRC Handbook of Materials Science & Engineering
15.1 sel Mechanical Page 1589 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 375. SELECTING
TENSILE STRENGTHS OF GLASS (SHEET 2 OF 2)
Glass
Tensile Strength (Kg • mm–2)
SiO2-PbO glass (3.0 mm diameter fiber, 50% mol PbO) SiO2-Na2O glass (11.4mm diameter fiber, 36.3% mol Na2O) SiO2-Na2O glass (25.7mm diameter fiber, 19.5% mol Na2O) SiO2-Na2O glass (8.6mm diameter fiber, 36.3% mol Na2O)
70.8 91.2±1.480 92.5±10.08 98.0±0.344
B2O3-Na2O glass (10-30 mm diameter fiber, 10% mol Na2O) SiO2-Na2O glass (12.8mm diameter fiber, 25.5% mol Na2O) SiO2-Na2O glass (5.4mm diameter fiber, 36.3% mol Na2O) SiO2-Na2O glass (6.3mm diameter fiber, 25.5% mol Na2O)
102 103±1.020 107.6±0.308 127±0.259
SiO2-Na2O glass (8.6mm diameter fiber, 19.5% mol Na2O) B2O3-Na2O glass (10-30 mm diameter fiber, 20% mol Na2O) SiO2-Na2O glass (3.6mm diameter fiber, 25.5% mol Na2O) B2O3-Na2O glass (10-30 mm diameter fiber, 30% mol Na2O)
134±1.34 137 142±0.189 152
SiO2-Na2O glass (6.0mm diameter fiber, 19.5% mol Na2O)
173±1.36
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
Shackelford & Alexander
1589
15.1 sel Mechanical Page 1590 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 376. SELECTING
TENSILE STRENGTHS OF POLYMERS (SHEET 1 OF 5)
Polymer
Tensile Strength (ASTM D638) (103 psi)
Olefin Copolymer: EEA (ethylene ethyl acrylate) Olefin Copolymer: Ethylene butene Olefin Copolymer: EVA (ethylene vinyl acetate) Propylene–ethylene
0.2 0.35 0.36 0.4
Ethylene Ionomer Fluorocarbons: Ceramic reinforced (PTFE) Polyethylene, Type I, low density: Melt index 200 Polyvinyl Chloride & Copolymer: Nonrigid—general
0.4 0.75—2.5 0.9—1.1 (ASTM D412) 1—3.5 (ASTM D412)
Polyesters, cast thermoset: Flexible 6/6 Nylon: General purpose extrusion Polyethylene, Type I, low density: Melt index 6—26 Polyethylene, Type I, low density: Melt index 0.3—3.6
1—8 1.26, 8.6 1.4—2.0 (ASTM D412) 1.4—2.5 (ASTM D412)
Standard Epoxy: Cast flexible Polyethylene, Type II, medium density: Melt index 20 Polyvinyl Chloride & Copolymer: Nonrigid—electrical Polyethylene, Type II, medium density: Melt index l.0—1.9
1.4—7.6 2 2—3.2 (ASTM D412) 2.3—2.4
Fluorocarbons: Fluorinated ethylene propylene(FEP) Fluorocarbons: Polytetrafluoroethylene (PTFE) Polyethylene, Type III, higher density: Melt Melt index 0.l— 12.0 Cellulose Acetate Butyrate, ASTM Grade: S2
2.5—4.0 2.5—6.5 3.0—4.0 at Fracture
Cellulose Acetate; ASTM Grade: S2—1 Alkyd; Molded: Granular (high speed molding) Ethylene Polyallomer Phenolics: Rubber phenolic—chopped fabric
3.0—4.4 at Fracture 3—4 3—4.3 3—5 (ASTM D651)
2.9—4.0
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1590
CRC Handbook of Materials Science & Engineering
15.1 sel Mechanical Page 1591 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 376. SELECTING
TENSILE STRENGTHS OF POLYMERS (SHEET 2 OF 5)
Polymer
Tensile Strength (ASTM D638) (103 psi)
Polystyrene: High impact Cellulose Acetate; ASTM Grade: MS—1, MS—2 Cellulose Acetate Propionate, ASTM Grade: 6 Phenolics: Rubber phenolic—asbestos
3.3—5.1 3.9—5.3 at Fracture 4 4 (ASTM D651)
Polystyrene: Medium impact Alkyd; Molded: Putty (encapsulating) ABS Resin; Molded, Extruded: Low temperature impact Reinforced polyester moldings: Heat & chemical resistant (asbestos)
4.0—6.0 4—5 4—6
Silicone: Granular (silica) reinforced Diallyl Phthalates, Molded: Asbestos filled Polyvinyl Chloride & Copolymer: Vinylidene chloride Polyethylene, Type III, higher density: Melt index 0.2—0.9
4—6 (ASTM D651) 4—6.5 4—8,15—40 (ASTM D412) 4.4
Polyethylene, Type III, higher density: Melt index 1.5—15 Diallyl Phthalates, Molded: Orlon filled ABS Resin; Molded, Extruded: Very high impact Polypropylene: general purpose
4.4 4.5—6 4.5—6.0 4.5—6.0
Phenolics: Rubber phenolic—woodflour or flock Fluorocarbons: Polytrifluoro chloroethylene (PTFCE) Diallyl Phthalates, Molded: Dacron filled Cellulose Acetate; ASTM Grade: MH—1, MH—2
4.5—9 (ASTM D651) 4.6—5.7 4.6—6.2 4.8—6.3 at Fracture
Polystyrene: General purpose ABS Resin; Molded, Extruded: High impact Cellulose Acetate Butyrate, ASTM Grade: MH Phenolics, General: woodflour and flock filler
5.0—10 5.0—6.0 5.0—6.0 at Fracture 5.0—8.5 (ASTM D651)
4—6
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
1591
15.1 sel Mechanical Page 1592 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 376. SELECTING
TENSILE STRENGTHS OF POLYMERS (SHEET 3 OF 5)
Polymer
Tensile Strength (ASTM D638) (103 psi)
Phenolics, Shock: paper, flock, or pulp filler Reinforced polyester moldings: High strength (glass fibers) Urea: Alpha, cellulose filled (ASTM Type l) Phenolics, Very high shock: glass fiber filler
5.0—8.5 (ASTM D651) 5—10 5—10 5—10 (ASTM D651)
Polyesters, cast thermoset: Rigid Allyl diglycol carbonate (thermoset) Melamine, molded: Alpha cellulose and mineral filler Alkyd; Molded: Glass reinforced (heavy duty parts)
5—15 5—6 5—8 5—9
Melamine, molded: Cellulose electrical filler Phenolics, High shock: chopped fabric or cord filler Cellulose Acetate Propionate, ASTM Grade: 3 Epoxiy, (cycloaliphatic diepoxides): Molded
5—9 5—9 (ASTM D651) 5.1—5.9 5.2—5.3
Fluorocarbons: Polyvinylidene— fluoride (PVDF) Polyethylene, Type III, higher density, high molecular weight Diallyl Phthalates, Molded: Glass fiber filled Polyvinyl Chloride & Copolymer: Rigid—normal impact
5.2—8.6 5.4 5.5—11 5.5—8 (ASTM D412)
Acrylic Moldings: High impact grade Cellulose Acetate; ASTM Grade: H2—1 Cellulose Acetate Propionate, ASTM Grade: 1 Chlorinated polyether
5.5—8.0 5.8—7.2 at Fracture 5.9—6.5 6
Phenolics: Arc resistant—mineral Acrylic Cast Resin Sheets, Rods: General purpose, type I Melamine, molded: Glass fiber filler ABS Resin; Molded, Extruded: Medium impact
6 (ASTM D651) 6—9 6—9 6.3—8.0
Silicone: Fibrous (glass) reinforced Polyacetal homopolymer: 22% TFE reinforced Cellulose Acetate Butyrate, ASTM Grade: H4 ABS Resin; Molded, Extruded: Heat resistant
6.5 (ASTM D651) 6.9 6.9 at Fracture 7.0—8.0
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1592
CRC Handbook of Materials Science & Engineering
15.1 sel Mechanical Page 1593 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 376. SELECTING
TENSILE STRENGTHS OF POLYMERS (SHEET 4 OF 5)
Polymer
Tensile Strength (ASTM D638) (103 psi)
Alkyd; Molded: Rope (general purpose) Cellulose Acetate; ASTM Grade: H4—1 Nylon, Type 12 6/10 Nylon: General purpose
7—8 7—8 at Fracture 7.1—8.5 7.1—8.5
Chlorinated polyvinyl chloride Nylon, Type 6: Flexible copolymers Acrylic Cast Resin Sheets, Rods: General purpose, type II Standard Epoxy: Molded
7.3 7.5—10.0 8—10 8—11
Epoxiy, (cycloaliphatic diepoxides): Cast, rigid ABS–Polycarbonate Alloy Polystyrene: Styrene acrylonitrile (SAN) Polyacetal homopolymer: 20% glass reinforced
8—12 8.2 8.3—12.0 8.5
Polyacetal copolymer: Standard Polyacetal copolymer: High flow Acrylic Moldings: Grades 5, 6, 8 Polycarbonate
8.8 8.8 8.8—10.5 9.5
Standard Epoxy: Cast rigid Nylon, Type 6: General purpose Epoxy novolacs: Cast, rigid Polyacetal homopolymer: Standard
9.5-11.5 9.5—12.5 9.6—12.0 10
6/6 Nylon: General purpose molding Nylon, Type 6: Cast Polyarylsulfone Polystyrene: Glass fiber -30% reinforced
11.2—11.8 12.8 13 14
Reinforced polyester: Sheet molding, general purpose Polycarbonate (40% glass fiber reinforced) Polystyrene: Glass fiber (30%) reinforced SAN Polyacetal copolymer: 25% glass reinforced
15—17 18 18 18.5
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
1593
15.1 sel Mechanical Page 1594 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 376. SELECTING
TENSILE STRENGTHS OF POLYMERS (SHEET 5 OF 5)
Polymer
Tensile Strength (ASTM D638) (103 psi)
6/10 Nylon: Glass fiber (30%) reinforced 6/6 Nylon: Glass fiber Molybdenum disulfide filled Nylon, Type 6: Glass fiber (30%) reinforced 6/6 Nylon: Glass fiber reinforced
19 19—22 21—24 25—30
Silicone: Woven glass fabric / silicone laminate Epoxy: Glass cloth laminate Epoxiy, (cycloaliphatic diepoxides): Glass cloth laminate Epoxy novolacs: Glass cloth laminate
30—35 (ASTM D651) 50-58 50—52 59.2
Epoxy: Glass cloth: High strength laminate Epoxy: Glass cloth laminate: Filament wound composite
160 230-240 (hoop)
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1594
CRC Handbook of Materials Science & Engineering
15.1 sel Mechanical Page 1595 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 377. SELECTING
COMPRESSIVE STRENGTHS OF GRAY CAST IRON BARS
ASTM Class
Compressive Strength (MPa)
20 25 30
572 669 752
35 40 50 60
855 965 1130 1293
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
1595
15.1 sel Mechanical Page 1596 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 378. SELECTING
COMPRESSIVE STRENGTHS OF CERAMICS (SHEET 1 OF 3) Temperature (˚C)
Compressive Strength (psi)
Aluminum Oxide (Al2O3)
1500 1500 1400 1600
1.5 x103 2.8 x103 5.7 x103 7 x103
Beryllium Oxide (BeO)
1600
7 x103
Spinel (Al2O3 MgO) Trisilicon tetranitride (Si3N4)
1600 25 1000
8.5 x103 10-100 x103 10-30 x103
Aluminum Oxide (Al2O3)
1500
14 x103
Beryllium Oxide (BeO)
1500
17 x103
Zirconium Oxide (ZrO2)
1400
18.5 x103
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=1.8g/cm3)
1200
18.5 x103
Spinel (Al2O3 MgO)
1400
21.4 x103
Beryllium Oxide (BeO)
1400
24 x103
Beryllium Oxide (BeO)
1145
28.5 x103
Thorium Dioxide (ThO2)
1200
28.5 x103
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3)
800
30 x103
Ceramic Thorium Dioxide (ThO2) Zirconium Oxide (ZrO2) Thorium Dioxide (ThO2)
Trisilicon tetranitride (Si3N4)
34.0 x103
Boron Nitride (BN), parallel to c axis Beryllium Oxide (BeO)
1000
35.5-40 x103
Aluminum Oxide (Al2O3)
1400
35.6 x103
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
1596
CRC Handbook of Materials Science & Engineering
15.1 sel Mechanical Page 1597 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 378. SELECTING
COMPRESSIVE STRENGTHS OF CERAMICS (SHEET 2 OF 3)
Ceramic
Temperature (˚C)
Compressive Strength (psi)
Boron Nitride (BN), parallel to a axis
45 x103
Titanium Diboride (TiB2)
47-97 x103
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.51g/cm3)
25
50 x103
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3)
400
50 x103
Thorium Dioxide (ThO2)
1000
51 x103
Beryllium Oxide (BeO)
800
64 x103
Aluminum Oxide (Al2O3)
1200
71 x103
Beryllium Oxide (BeO)
500
71 x103
Thorium Dioxide (ThO2) Mullite (3Al2O3 2SiO2)
800 1200 25
71 x103 71 x103 80-190 x103
Silicon Carbide (SiC)
25
82-200 x103
Aluminum Oxide (Al2O3) Spinel (Al2O3 MgO)
1100 600 1100
85 x103 85 x103 85.5 x103
Magnesium Oxide (MgO)
room temp.
112 x103
Beryllium Oxide (BeO)
room temp.
114-310 x103
Zirconium Oxide (ZrO2)
1200 1000
114 x103 128 x103
Spinel (Al2O3 MgO)
Thorium Dioxide (ThO2)
Aluminum Oxide (Al2O3) Titanium mononitride (TiN)
141 x103
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC Shackelford & Alexander
1597
15.1 sel Mechanical Page 1598 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 378. SELECTING
COMPRESSIVE STRENGTHS OF CERAMICS (SHEET 3 OF 3) Temperature (˚C)
Compressive Strength (psi)
room temp. 400 1000 800
146-214 x103 156 x103 171 x103 171 x103
800 600 500 room temp.
183 x103 199 x103 199 x103 205-300 x103
Zirconium Oxide (ZrO2)
400 500
214 x103 228 x103
Zirconium Monocarbide (ZrC)
room temp.
238 x103
Spinel (Al2O3 MgO)
room temp.
270 x103
Aluminum Oxide (Al2O3)
room temp.
427 x103
Titanium Monocarbide (TiC) Boron Carbide (B4C)
room temp.
10.9-19 x104
room temp.
41.4 x104 60 x104
Ceramic
Thorium Dioxide (ThO2) Thorium Dioxide (ThO2) Zirconium Oxide (ZrO2) Spinel (Al2O3 MgO) Aluminum Oxide (Al2O3) Aluminum Oxide (Al2O3) Spinel (Al2O3 MgO) Zirconium Oxide (ZrO2) Aluminum Oxide (Al2O3)
Trichromium Dicarbide (Cr3C2)
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
1598
CRC Handbook of Materials Science & Engineering
15.1 sel Mechanical Page 1599 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 379. SELECTING
OF
COMPRESSIVE STRENGTHS
POLYMERS
(SHEET 1 OF 3)
Polymer
Compressive Strength (1000 psi)
ABS Resins; Molded, Extruded: Medium impact Polyester, Cast Thermoset: Flexible Styrene acrylonitrile (SAN), Glass fiber (30%) reinforced Polystyrene, Molded: Medium impact
0.5—11.0 1—17 2.3 4—9
Polystyrene, Molded: High impact PVC–acrylic injection molded ABS Resins; Molded, Extruded: High impact PVC–acrylic sheet
4—9 6.2 7.0—9.0 8.4
Chlorinated polyether ABS Resins; Molded, Extruded: Heat resistant Silicone, Molded: Fibrous (glass) reinforced silicones Rubber phenolic, Molded: , chopped fabric filled
9 9.3—11.0 10—12.5 10—15
Rubber phenolic, Molded: , asbestos filled Silicone, Molded: Granular (silica) reinforced silicones Polyvinyl Chloride: Rigid—normal impact ABS–Polycarbonate Alloy
10—20 10.6—17 11—12 11.1—11.8
Polystyrene, Molded: General purpose Phenylene Oxide: SE—100 Rubber phenolic, Molded: woodflour or flock filled Polyester, Cast Thermoset: Rigid
11.5—16.0 12 12—20 12—37
Polycarbonate Polyester; Thermoplastic Moldings: General purpose grade Phenylene oxide (Noryl): Standard Silicone, Laminated with woven glass fabric
12.5 13 13.9—14 15—24
Phenolic; Molded: High shock, chopped fabric or cord filled Polyester; Thermoplastic Moldings: Glass reinforced grades Alkyds; Molded: Granular (high speed molding) Phenylene Oxide: SE—1
15—30 16—18 16—20 16.4
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
1599
15.1 sel Mechanical Page 1600 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 379. SELECTING
OF
COMPRESSIVE STRENGTHS
POLYMERS
(SHEET 2 OF 3)
Polymer
Compressive Strength (1000 psi)
Epoxy, Standard : Cast rigid Epoxy, High performance resins: Cast, rigid Phenolic; Molded: Very high shock, glass fiber filled Phenylene Oxide: Glass fiber reinforced
16.5—24 17—19 17—30 17.6—17.9
Polyarylsulfone Polyester; Thermoplastic: Glass reinforced, self extinguishing Diallyl Phthalate; Molded: Asbestos filled Polymide: Unreinforced
17.8 18 18—25 18.4, 27.4
Polycarbonate (40% glass fiber reinforced) Polystyrene, Molded: Glass fiber -30% reinforced Alkyds; Molded: Putty (encapsulating) Diallyl Phthalate; Molded: Orlon filled
18.5 19 20—25 20—25
Polyester: Heat and chemical resistsnt (asbestos reinforced) Polyester: High strength, (glass fibers reinforced) Diallyl Phthalate; Molded: Dacron filled Phenolic, Molded: Arc resistant, mineral filled
20—25 20—26 20—30 20—30
Melamine; Molded: Glass fiber filled Epoxy, High performance resins: Molded Phenolic; Molded: General, woodflour and flock filled Polyester: Sheet molding compounds, general purpose
20—42 22—26 22—36 22—36
Thermoset Carbonate: Allyl diglycol carbonate Alkyds; Molded: Glass reinforced (heavy duty parts) Phenolic; Molded: Shock, paper, flock, or pulp filled Diallyl Phthalate; Molded: Glass fiber filled
22.5 24—30 24—35 25
Melamine; Molded: Cellulose electrical filled Urea, Molded: Woodflour filled Urea, Molded: Alpha—cellulose filled (ASTM Type l) Melamine; Molded: Mineral filled
25—35 25—35 25—38 26—30
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1600
CRC Handbook of Materials Science & Engineering
15.1 sel Mechanical Page 1601 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 379. SELECTING
OF
COMPRESSIVE STRENGTHS
POLYMERS
(SHEET 3 OF 3)
Polymer
Compressive Strength (1000 psi)
Alkyds; Molded: Rope (general purpose) Epoxy novolac: Cast, rigid Epoxy, Standard : Molded Melamine; Molded: Unfilled
28 30—50 34-38 40—45
Melamine; Molded: Alpha cellulose filled Polymide: Glass reinforced Epoxy novolac: Glass cloth laminate Epoxy, Standard : General purpose glass cloth laminate
40—45 42 48—57 50-60
Epoxy, High performance resins: Glass cloth laminate Epoxy, Standard : High strength laminate
67—71 80-90 (edgewise)
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC Shackelford & Alexander
1601
15.1 sel Mechanical Page 1602 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 380. SELECTING
YIELD STRENGTHS OF TOOL STEELS
Type
Condition
0.2% Yield Strength (MPa)
L6 S7 S1
Annealed Annealed Annealed
380 380 415
S5 L2
Annealed Annealed
440 510
L2 L6 S7 L6
Oil quenched from 855 •C and single tempered at 650 •C Oil quenched from 845 •C and single tempered at 650 •C Fan cooled from 940 •C and single tempered a 650 •C Oil quenched from 845 •C and single tempered at 540 •C
760 830 1035 1100
L2 S5 S1 L2
Oil quenched from 855 •C and single tempered at 540 •C Oil quenched from 870 •C and single tempered a 650 •C Oil quenched from 930 •C and single tempered at 650 •C Oil quenched from 855 •C and single tempered at 425 •C
1170 1170 1240 1380
L6 S5 S7
Oil quenched from 845 •C and single tempered at 425 •C Oil quenched from 870 •C and single tempered a 540 •C Fan cooled from 940 •C and single tempered a 540 •C
1380 1380 1380
S7 S7 S1 S7
Fan cooled from 940 •C and single tempered a 425 •C Fan cooled from 940 •C and single tempered a 205 •C Oil quenched from 930 •C and single tempered at 540 •C Fan cooled from 940 •C and single tempered a 315 •C
1410 1450 1525 1585
L2 S1 S5 L2
Oil quenched from 855 •C and single tempered at 315 •C Oil quenched from 930 •C and single tempered at 425 •C Oil quenched from 870 •C and single tempered a 425 •C Oil quenched from 855 •C and single tempered at 205 •C
1655 1690 1690 1790
L6 S1 S5 S1
Oil quenched from 845 •C and single tempered at 315 •C Oil quenched from 930 •C and single tempered at 315 •C Oil quenched from 870 •C and single tempered a 315 •C Oil quenched from 930 •C and single tempered at 205 •C
1790 1860 1860 1895
S5
Oil quenched from 870 •C and single tempered a 205 •C
1930
Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984).
©2001 CRC Press LLC
1602
CRC Handbook of Materials Science & Engineering
15.1 sel Mechanical Page 1603 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 381. SELECTING
YIELD STRENGTHS OF DUCTILE IRONS
Specification Number
Grade or Class
Yield Strength (MPa)
MlL-I-24137(Ships) MlL-I-24137(Ships) ASTM A395-76; ASME SA395 ASTM A536-72, MIL-1-11466B(MR)
Class C Class B 60-40-18 60-40-18
172 207 276 276
SAE J434c ASTM A536-72, MIL-1-11466B(MR) SAE J434c MlL-I-24137(Ships)
D4018 65-45-12 D4512 Class A
276 310 310 310
ASTM A536-72, MIL-1-11466B(MR) SAE J434c ASTM A476-70(d); SAE AMS5316 ASTM A536-72, MIL-1-11466B(MR)
80-55-06 D5506 80-60-03 100-70-03
379 379 414 483
SAE J434c ASTM A536-72, MIL-1-11466B(MR)
D7003 120-90-02
483 621
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169, (1984).
©2001 CRC Press LLC Shackelford & Alexander
1603
15.1 sel Mechanical Page 1604 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 382. SELECTING
YIELD STRENGTHS OF MALLEABLE IRON CASTINGS
Specification Number
Grade or Class
Yield Strength (MPa)
ASTM A197 ASTM A47, A338; ANSI G48.1; FED QQ–I–666c ASTM A602; SAE J158 ASTM A47, A338; ANSI G48.1; FED QQ–I–666c
32510 M3210 35018
207 224 224 241
ASTM A220; ANSI C48.2; MIL–I–11444B ASTM A220; ANSI C48.2; MIL–I–11444B ASTM A220; ANSI C48.2; MIL–I–11444B ASTM A602; SAE J158
40010 45008 45006 M4504(a)
276 310 310 310
ASTM A220; ANSI C48.2; MIL–I–11444B ASTM A602; SAE J158 ASTM A602; SAE J158 ASTM A220; ANSI C48.2; MIL–I–11444B
50005 M5003(a) M5503(b) 60004
345 345 379 414
ASTM A220; ANSI C48.2; MIL–I–11444B ASTM A602; SAE J158 ASTM A220; ANSI C48.2; MIL–I–11444B ASTM A602; SAE J158
70003 M7002(b) 80002 M8501(b)
483 483 552 586
ASTM A220; ANSI C48.2; MIL–I–11444B
90001
621
(a) Air quenched and tempered (b) Liquid quenched and tempered Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p171, (1984).
©2001 CRC Press LLC
1604
CRC Handbook of Materials Science & Engineering
15.1 sel Mechanical Page 1605 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 383. SELECTING
YIELD STRENGTHS OF CAST ALUMINUM ALLOYS (SHEET 1 OF 3)
Alloy AA No.
Temper
Yield Strength (MPa)
443.0 B443.0 850.0 514.0
F F T5 F
55 62 75 85
208.0 295.0 308.0 C443.0
F T4 F F
97 110 110 110
242.0 319.0 296.0 319.0
T21 F T4 F
125 125 130 130
A413.0 296.0 356.0 413.0
F T7 T51 F
130 140 140 140
535.0 356.0 383.0 713.0
F T71 F T5
140 145 150 150
713.0 242.0 355.0 295.0
T5 T77 T51 T6
150 160 160 165
319.0 355.0 356.0 356.0
T6 T51 T6 T7
165 165 165 165
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
1605
15.1 sel Mechanical Page 1606 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 383. SELECTING
YIELD STRENGTHS OF CAST ALUMINUM ALLOYS (SHEET 2 OF 3)
Alloy AA No.
Temper
Yield Strength (MPa)
A360.0 380.0 384.0, A384.0 360.0
F F F F
165 165 165 170
712.0 355.0 296.0 A390.0
F T6 T6 F,T5
170 175 180 180
520.0 319.0 356.0 355.0
T4 T6 T6 T6
180 185 185 190
518.0 336.0 355.0 A390.0
F T551 T71 F,T5
190 195 200 200
242.0 355.0 356.0 201.0
T571 T7 T7 T4
205 210 210 215
355.0 295.0 242.0 355.0
T71 T62 T571 T61
215 220 235 240
390.0 355.0 A390.0 359.0
F T7 T7 T61
240 250 250 255
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
1606
CRC Handbook of Materials Science & Engineering
15.1 sel Mechanical Page 1607 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 383. SELECTING
YIELD STRENGTHS OF CAST ALUMINUM ALLOYS (SHEET 3 OF 3)
Alloy AA No.
Temper
Yield Strength (MPa)
390.0 A390.0 771.0 355.0
T5 T7 T6 T62
260 260 275 280
A390.0 354.0 242.0 357.0, A357.0
T6 T61 T61 T62
280 285 290 290
359.0 336.0 A390.0 206.0, A206.0
T62 T65 T6 T7
290 295 310 345
201.0 201.0
T7 T6
415 435
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
1607
15.1 sel Mechanical Page 1608 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 384. SELECTING
YIELD STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 1 OF 7) Alloy
Yield Strength Temper
(MPa)
1050 1060 1350 1100
0 0 0 0
28 28 28 34
5005 3003 5457 Alclad 6061
0 0 0 0
41 42 48 48
6063 3105 5050 6061
0 0 0 0
48 55 55 55
Alclad 2014 3004 4043 6070
0 0 0 0
69 69 69 69
1060 2024 Alclad 2024 2219
H12 0 0 0
76 76 76 76
6101 1350 6066 7005
Hlll H12 0 0
76 83 83 83
1060 5052 5652 6063
H14 0 0 T1
90 90 90 90
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299–302, (1984).
©2001 CRC Press LLC
1608
CRC Handbook of Materials Science & Engineering
15.1 sel Mechanical Page 1609 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 384. SELECTING
YIELD STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 2 OF 7) Alloy
Yield Strength Temper
(MPa)
6063 6463 Alclad 7075 1350
T4 Tl 0 H14
90 90 95 97
2014 1050 1060 1100
0 H14 H16 H12
97 105 105 105
6005 7075 1350 1100
T1 0 H16 H14
105 105 110 115
5005 5086 5154 5154
H32 0 0 H112
115 115 115 115
5254 5254 5454 1050
0 H112 0 H16
115 115 115 125
1060 Alclad 5454 3105
H18 H12 H112 H12
125 125 125 130
5005 5086 6009 Alclad 6061
H12 H112 T4 T4, T451
130 130 130 130
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299–302, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
1609
15.1 sel Mechanical Page 1610 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 384. SELECTING
YIELD STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 3 OF 7) Alloy
Yield Strength Temper
(MPa)
1100 5005 5182 5657
H16 H34 0 H25
140 140 140 140
6205 1050 3003 5050
Tl H18 H14 H32
140 145 145 145
5083 6061 6063 6463
0 T4, T451 T5 T5
145 145 145 145
1100 3105 5005 5056
H18 H14 H14 0
150 150 150 150
6351 3105 5456 5457
T4 H25 0 H25
150 160 160 160
1350 5005 5050 5456
H19 H36 H34 H112
165 165 165 165
5657 3003 Alclad 3105
H28, H38 H16 H32 H16
165 170 170 170
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299–302, (1984).
©2001 CRC Press LLC
1610
CRC Handbook of Materials Science & Engineering
15.1 sel Mechanical Page 1611 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 384. SELECTING
YIELD STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 4 OF 7) Alloy
Yield Strength Temper
(MPa)
5005 5252 6010 6070
H16 H25 T4 T4
170 170 170 170
5050 5454 5454 2219
H36 H111 H311 T42
180 180 180 185
3003 5005 5457 6063
H18 H38 H28, H38 T831
185 185 185 185
2036 3105 5005 5052
T4 H18 H18 H32
195 195 195 195
5083 5652 6151 3004
H112 H32 T6 H34
195 195 195 200
5050 5086 5154 5254
H38 H32, H116, H117 H32 H32
200 205 205 205
5454 6066 5052 5652
H32 T4, T451 H34 H34
205 205 215 215
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299–302, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
1611
15.1 sel Mechanical Page 1612 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 384. SELECTING
YIELD STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 5 OF 7) Alloy
Yield Strength Temper
(MPa)
6063 6463 3004 5083
T6 T6 H36 H113
215 215 230 230
5083 5154 5254 5456
H321 H34 H34 H111
230 230 230 230
5182 5052 5252 5454
H32 H36 H28, H38 H34
235 240 240 240
5652 6005 6063 2219
H36 T5 T83 T31, T351
240 240 240 250
3004 5083 5154 5254
H38 H323, H32 H36 H36
250 250 250 250
Alclad 2014 2218 5052 5086
T4 T72 H38 H34
255 255 255 255
5456 5652 Alclad 6061 4043
H321, H116 H38 T6, T651 H18
255 255 255 270
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299–302, (1984).
©2001 CRC Press LLC
1612
CRC Handbook of Materials Science & Engineering
15.1 sel Mechanical Page 1613 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 384. SELECTING
YIELD STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 6 OF 7) Alloy
Yield Strength Temper
(MPa)
5154 5254 6063 Alclad 2014
H38 H38 T832 T3
270 270 270 275
2218 5454 6061 5083
T71 H36 T6, T651 H343, H34
275 275 275 285
5182 6351 2014 Alclad 2024
H34 T6 T4 T4, T351
285 285 290 290
2219 6205 2011 6201
T62 T5 T3 T6
290 290 295 300
2218 2011 Alclad 2024 5454
T61 T8 T H38
305 310 310 310
6201 2219 4032 7005
T81 T37 T6 T6,T63,T6351
310 315 315 315
2024 6009 2024 5056
T4, T351 T6 T3 H38
325 325 345 345
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299–302, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
1613
15.1 sel Mechanical Page 1614 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 384. SELECTING
YIELD STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 7 OF 7) Alloy
Yield Strength Temper
(MPa)
7005 2219 6070 6066
T53 T81, T851 T6 T6, T651
345 350 350 360
Alclad 2024 2618 6262 2024
T361 All T9 T361
365 370 380 395
2219 5182 5056 2014
T87 H19(n) H18 T6
395 395 405 415
Alclad 2014 Alclad 2024 2048 7075
T6 T81, T851 T73
415 415 415 435
2124 Alclad 2024 7050 7175
T851 T861 T736 T736
440 455 455 455
Alclad 7075 7475 7075 7175
T6,T651 T61 T6,T651 T66
460 460 505 525
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299–302, (1984).
©2001 CRC Press LLC
1614
CRC Handbook of Materials Science & Engineering
15.1 sel Mechanical Page 1615 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 385. SELECTING
YIELD STRENGTHS OF POLYMERS (SHEET 1 OF 2)
Polymer
Yield Strength, (ASTM D638) (l03 psi)
Polypropylene: High impact Polystyrene, Molded: High impact Polypropylene: Asbestos filled Polypropylene: Flame retardant
2.8—4.3 2.8—5.3 3.3—8.2 3.6—4.2
Polystyrene, Molded: Medium impact Nylon; Molded or Extruded: Type 8 Polypropylene: General purpose Polystyrene, Molded: General purpose
3.7—6.0 3.9 4.5—6.0 5.0—10
Polymide: Unreinforced PVC–acrylic injection molded Nylon; Molded or Extruded: Type 12 Chlorinated Polyether
5—7.5 5.5 5.5—6.5 5.9
PVC–acrylic sheet Polypropylene: Glass reinforced Nylon, Type 6/10; Molded or Extruded: General purpose Nylon; Molded or Extruded: Flexible copolymers
6.5 7—11 7.1—8.5 7.5—10.0
Polyester Injection Moldings: General purpose grade Phenylene Oxide: SE—100 Nylon, Type 6/6: General purpose molding Polyarylsulfone
7.5—8 7.8 8.0—11.8 8—12
ABS–Polycarbonate Alloy Polyester: General purpose grade Polycarbonate Nylon; Molded or Extruded: Type 11
8.2 8.2 8.5 8.5
Nylon; Molded or Extruded: General purpose Nylon, Type 6/6: General purpose extrusion Polyacetal Copolymer: Standard Polyacetal Copolymer: High flow
8.5—12.5 8.6—12.6 8.8 8.8
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
1615
15.1 sel Mechanical Page 1616 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 385. SELECTING
YIELD STRENGTHS OF POLYMERS (SHEET 2 OF 2)
Polymer
Yield Strength, (ASTM D638) (l03 psi)
Polyphenylene sulfide: Standard Phenylene Oxide: SE—1 Polyacetal Homopolymer: Standard Phenylene oxide (Noryl): Standard
9.511 9.6 10 10.2
Polyester: Asbestos filled grade Nylon; Molded or Extruded: Cast Polyester: Glass reinforced grade Polystyrene, Molded: Glass fiber 30% reinforced
12 12.8 14 14
Phenylene Oxide: Glass fiber reinforced Polyester Moldings: Glass reinforced self extinguishing Phenylene oxide (Noryl): Glass fiber reinforced Polyester Injection Moldings: Glass reinforced grades
14.5—17.0 17 17—19 17—25
Styrene acrylonitrile (SAN): Glass fiber (30%) reinforced Polyacetal Copolymer: 25% glass reinforced Polyphenylene sulfide: 40% glass reinforced Nylon, Type 6/6; Molded or Extruded: Glass fiber reinforced
18 18.5 20—21
Polymide: Glass reinforced
28
25
To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1616
CRC Handbook of Materials Science & Engineering
15.2 sel Mechanical Page 1617 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 386. SELECTING
OF
COMPRESSIVE YIELD STRENGTHS
POLYMERS
(SHEET 1 OF 2)
Polymer
Compressive Yield Strength (ASTM D690 or D695) (0.1% offset, 1000 psi)
Polytetrafluoroethylene (PTFE) Ceramic reinforced (PTFE) Fluorinated ethylene propylene(FEP) Polytrifluoro chloroethylene (PTFCE)
0.7—1.8 1.4—1.8 1.6 2
Cellulose Acetate Butyrate, ASTM Grade: S2 6/10 Nylon: General purpose Cellulose Acetate, ASTM Grade: S2—1 Cellulose Acetate, ASTM Grade: MS—1, MS—2
2.6—4.3 3.0 3.15—6.1 3.2—7.2
Cellulose Acetate, ASTM Grade: H2—1 Polypropylene: High impact Cellulose Acetate, ASTM Grade: MH—1, MH—2 Polyacetal Homopolymer: 22% TFE reinforced
4.3—9.6 4.4 4.4—8.4 4.5
Polyacetal Copolymer: Standard Polyacetal Copolymer: High flow 6/6 Nylon: General purpose molding 6/6 Nylon: General purpose extrusion
4.5 4.5 4.9 4.9
Cellusose Acetate Propionate, ASTM Grade: 3 Polyacetal Homopolymer: Standard Polyacetal Homopolymer: 20% glass reinforced Cellulose Acetate Butyrate, ASTM Grade: MH
4.9—5.8 5.2 5.2 5.3—7.1
Polypropylene: General purpose Cellusose Acetate Propionate, ASTM Grade: 1 Cellulose Acetate, ASTM Grade: H4—1 Polypropylene: Glass reinforced
5.5—6.5 6.2—7.3 6.5—10.6 6.5—7
Polypropylene: Asbestos filled Acrylic Moldings: High impact grade Cellulose Acetate Butyrate, ASTM Grade: H4 Nylon, Type 6: General purpose
7 7.3—12.0 8.8 9.7
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
1617
15.2 sel Mechanical Page 1618 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 386. SELECTING
OF
COMPRESSIVE YIELD STRENGTHS
POLYMERS
(SHEET 2 OF 2)
Polymer
Compressive Yield Strength (ASTM D690 or D695) (0.1% offset, 1000 psi)
Polyvinyl Chloride: Rigid—normal impact Acrylic Cast Resin Sheets, Rods: General purpose, type I Polyvinylidene— fluoride (PVDF) Nylon, Type 6: Cast
10—11 12—14 12.8—14.2 14
Acrylic Cast Resin Sheets, Rods: General purpose, type II Acrylic Moldings: Grades 5, 6, 8 6/10 Nylon: Glass fiber (30%) reinforced Nylon, Type 6: Glass fiber (30%) reinforced
14—18 14.5—17 18 19—20
6/6 Nylon: Glass fiber reinforced Vinylidene chloride
20—24 75—85
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1618
CRC Handbook of Materials Science & Engineering
15.2 sel Mechanical Page 1619 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 387. SELECTING
FLEXURAL STRENGTHS OF POLYMERS (SHEET 1 OF 4)
Polymer
Flexural Strength (ASTM D790) (103 psi)
Epoxy, Standard: Cast flexible Cellulose Acetate Butyrate, ASTM Grade: S2 Fluorinated ethylene propylene(FEP) Nylon, Type 6: Flexible copolymers
1.2—12.7 2.5—3.95 (yield) 3 (0.1% offset) 3.4—16.4
Polytrifluoro chloroethylene (PTFCE) Cellulose Acetate, ASTM Grade: S2—1 Cellulose Acetate, ASTM Grade: MS—1, MS—2 Polyesters, Cast Thermoset: Flexible
3.5 (0.1% offset) 3.5—5.7 (yield) 3.8—7.1 (yield) 4—16
Polypropylene: High impact Cellulose Acetate, ASTM Grade: MH—1, MH—2 Chlorinated polyether ABS Resins; Molded or Extruded: Low temperature impact
4.1 (yield) 4.4—8.65 (yield) 5 (0.1% offset) 5—8
Cellusose Acetate Propionate, ASTM Grade: 3 Cellulose Acetate Butyrate, ASTM Grade: MH Cellulose Acetate, ASTM Grade: H2—1 ABS Resins; Molded or Extruded: Very high impact
5.6—6.2 (yield) 5.6—6.7 (yield) 6.0—10.0 (yield) 6.0—9.8
Silicone: Granular (silica) reinforced Melamines, Molded: Cellulose filled, electrical Reinforced polyester: High strength (glass fibers) Polypropylene: General purpose
6—10 6—15 6—26 6—7 (yield)
Polymide: Unreinforced Cellusose Acetate Propionate, ASTM Grade: 1 Rubber phenolic—chopped fabric filled Rubber phenolic—asbestos filled
6.6—11 6.8—7.9 (yield) 7 7
Alkyd, Molded: Granular (high speed molding) Rubber phenolic—woodflour or flock filled Diallyl Phthalate, Molded: Orlon filled Urea, Molded: Woodflour filled
7—10 7—12 7.5—10.5 7.5—12.0
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC Shackelford & Alexander
1619
15.2 sel Mechanical Page 1620 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 387. SELECTING
FLEXURAL STRENGTHS OF POLYMERS (SHEET 2 OF 4)
Polymer
Flexural Strength (ASTM D790) (103 psi)
Urea, Molded: Cellulose filled (ASTM Type 2) Polypropylene: Asbestos filled ABS Resins; Molded or Extruded: High impact 6/10 Nylon: General purpose
7.5—13 7.5—9 (yield) 7.5—9.5 8
Phenolic: Shock: paper, flock, or pulp filled Diallyl Phthalate, Molded: Asbestos filled Alkyd, Molded: Putty (encapsulating) Polypropylene: Glass reinforced
8.0—11.5 8—10 8—11 8—11 (yield)
Phenolic: High shock, chopped fabric or cord filled Urea, Molded: Alpha—cellulose filled (ASTM Type l) Polyesters, Cast Thermoset: Rigid Cellulose Acetate, ASTM Grade: H4—1
8—15 8—18 8—24 8.1—11.15 (yield)
Phenolic: General, woodflour and flock filled Polyvinylidene— fluoride (PVDF) PVC–acrylic injection molded Acrylic Moldings: High impact grade
8.5—12 8.6—10.8 (0.1% offset) 8.7 8.7—12.0
Cellulose Acetate Butyrate, ASTM Grade: H4 Diallyl Phthalate, Molded: Dacron filled Melamines, Molded: Unfilled ABS Resins; Molded or Extruded: Medium impact
9 (yield) 9—11.5 9.5—14 9.9—11.8
Epoxy, High performance resins: Molded Phenolic: Arc resistant—mineral filled Reinforced polyester: Heat and chemical resistant (asbestos) Polystyrene: General purpose
10—12 10—13 10—13 10—15
Diallyl Phthalate, Molded: Glass fiber filled Phenolic: Very high shock, glass fiber filled PVC–acrylic sheet ABS Resins; Molded or Extruded: Heat resistant
10—18 10—45 10.7 11.0—12.0
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1620
CRC Handbook of Materials Science & Engineering
15.2 sel Mechanical Page 1621 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 387. SELECTING
FLEXURAL STRENGTHS OF POLYMERS (SHEET 3 OF 4)
Polymer
Flexural Strength (ASTM D790) (103 psi)
Epoxy, High performance resins: Cast, rigid Melamines, Molded: Alpha cellulose filled Polyvinyl Chloride And Copolymers: Rigid—normal impact Polyester Injection Moldings: General purpose grade
11—16 11—16 11—16 12
Epoxy novolacs: Cast, rigid Acrylic, Cast Resin Sheets, Rods: General purpose, type I Alkyd, Molded: Glass reinforced (heavy duty parts) Polyester Injection Moldings: General purpose grade
12—13 12—14 12—17 12.8
Phenylene Oxide: SE—100 Polyacetal Copolymer: Standard Polyacetal Copolymer: High flow Polycarbonate
12.8 13 13 13.5
Phenylene Oxide: SE—1 Epoxy, Standard: Cast rigid Melamines, Molded: Glass fiber filled Polyacetal Homopolymer: Standard
13.5 14—18 14—18 14.1
ABS–Polycarbonate Alloy Chlorinated polyvinyl chloride Acrylic Moldings: Grades 5, 6, 8 Acrylic, Cast Resin Sheets, Rods: General purpose, type II
14.3 14.5 15—16 15—17
Vinylidene chloride Phenylene oxides (Noryl): Standard Silicone: Fibrous (glass) reinforced Polyarylsulfone
15—17 15.4 16—19 16.1—17.2
Nylon, Type 6: Cast Polystyrene: Glass fiber —30% reinforced Melamines, Molded: Alpha mineral filled Polyester Injection Moldings: Glass reinforced grade
16.5 17 18—10 19
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
1621
15.2 sel Mechanical Page 1622 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 387. SELECTING
FLEXURAL STRENGTHS OF POLYMERS (SHEET 4 OF 4)
Polymer
Flexural Strength (ASTM D790) (103 psi)
Polyester Injection Moldings: Asbestos—filled grade Alkyd, Molded: Rope (general purpose) Epoxy, Standard: Molded Polyphenylene sulfide: Standard
19 19—20 19—22 20
Phenylene Oxide: Glass fiber reinforced Styrene acrylonitrile (SAN): Glass fiber (30%) reinforced Polyester Injection Moldings: Glass reinforced grades 6/10 Nylon: Glass fiber (30%) reinforced
20.5—22 22 22—24 23
Polyester Injection Moldings: Glass reinforced self extinguishing Phenylene oxides (Noryl): Glass fiber reinforced 6/6 Nylon: Glass fiber Molybdenum disulfide filled Reinforced polyester sheet molding: general purpose
23 25—28 26—28 26—32
Nylon, Type 6: Glass fiber (30%) reinforced 6/6 Nylon: Glass fiber reinforced Polycarbonate (40% glass fiber reinforced) Polyacetal Copolymer: 25% glass reinforced
26—34 26—35 27 28
Silicone: Woven glass fabric/ silicone laminate Polyphenylene sulfide: 40% glass reinforced Polymide: Glass reinforced Epoxy, High performance resins: Glass cloth laminate
33—47 37 56 70—72
Epoxy, Standard: General purpose glass cloth laminate Epoxy novolacs: Glass cloth laminate Epoxy, Standard: High strength laminate Epoxy, Standard: Filament wound composite
80—90 84—89 165—177 170—180
Nylon, Type 6: General purpose 6/6 Nylon: General purpose molding
Unbreakable Unbreakable
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1622
CRC Handbook of Materials Science & Engineering
15.2 sel Mechanical Page 1623 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 388. SELECTING
SHEAR STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 1 OF 6) Alloy AA No.
Temper
Shear Strength (MPa)
1060 1060 1350 7072
0 H12 0 0
48 55 55 55
1050 1060 1100 1350
0 H14 0 H12
62 62 62 62
7072 1050 1060 1100
H12 H14 H16 H12
62 69 69 69
1350 6063 7072 1050
H14 0 H14 H16
69 69 69 76
1060 1100 1350 3003
H18 H14 H16 0
76 76 76 76
5005 Alclad 6061 1050 1100
0 0 H18 H16
76 76 83 83
Alclad 3105 5457 6061
H12 0 0 0
83 83 83 83
Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
1623
15.2 sel Mechanical Page 1624 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 388. SELECTING
SHEAR STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 2 OF 6) Alloy AA No.
Temper
Shear Strength (MPa)
1100 3003 3105 5005
H18 H14 H12 H12
90 97 97 97
5005 5005 5005 5657
H14 H32 H34 H25
97 97 97 97
6063 6066 6070 6463
T1 0 0 T1
97 97 97 97
1350 3003 3105 3105
H19 H16 H14 H25
105 105 105 105
5005 5005 5050 5657
H16 H36 0 H28, H38
105 105 105 105
3003 3004 3105 5005
H18 0 H16 H18
110 110 110 110
5005 5457 Alclad 3105
H38 H25 H32 H18
110 110 115 115
Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
1624
CRC Handbook of Materials Science & Engineering
15.2 sel Mechanical Page 1625 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 388. SELECTING
SHEAR STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 3 OF 6) Alloy AA No.
Temper
Shear Strength (MPa)
5050 6063 6463 7005
H32 T5 T5 0
115 115 115 117
2014 Alclad 2014 2024 Alclad 2024
0 0 0 0
125 125 125 125
3004 5050 5052 5457
H34 H34 0 H28, H38
125 125 125 125
5652 6063 5050 3004
0 T831 H36 H36
125 125 130 140
5050 5052 5652 6151
H38 H32 H32 T6
140 140 140 140
3004 5052 5252 5652
H38 H34 H25 H34
145 145 145 145
5154 5154 5182 5254
0 H32 0 0
150 150 150 150
Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
1625
15.2 sel Mechanical Page 1626 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 388. SELECTING
SHEAR STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 4 OF 6) Alloy AA No.
Temper
Shear Strength (MPa)
5254 6009 Alclad 6061 6063
H32 T4 T4, T451 T6
150 150 150 150
6063 6463 7075 Alclad 7075
T83 T6 0 0
150 150 150 150
5052 5086 5252 5454
H36 0 H28, H38 0
160 160 160 160
5454 5454 5454 5652
H111 H112 H311 H36
160 160 160 160
5052 5154 5254 5454
H38 H34 H34 H32
165 165 165 165
5652 6061 5083 5056
H38 T4, T451 0 0
165 165 170 180
5154 5254 5454 5086
H36 H36 H34 H34
180 180 180 185
Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
1626
CRC Handbook of Materials Science & Engineering
15.2 sel Mechanical Page 1627 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 388. SELECTING
SHEAR STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 5 OF 6) Alloy AA No.
Temper
Shear Strength (MPa)
Alclad 6061 6063 5154 5254
T6, T651 T832 H38 H38
185 185 195 195
6066 6351 2218 5456
T4, T451 T6 T72 H321, H116
200 200 205 205
6005 6061 6070 6205
T5 T6, T651 T4 T5
205 205 205 205
7005 2011 5056 7005
T6,T63,T6351 T3 H38 T53
214 220 220 221
5056 6066 6070 2011
H18 T6, T651 T6 T8
235 235 235 240
6262 Alclad 2014 Alclad 2014 2014
T9 T3 T4 T4
240 255 255 260
2618 4032 7475 7475
All T6 T7351 T7651
260 260 270 270
Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC Shackelford & Alexander
1627
15.2 sel Mechanical Page 1628 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 388. SELECTING
SHEAR STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 6 OF 6) Alloy AA No.
Temper
Shear Strength (MPa)
Alclad 2024 Alclad 2024 Alclad 2024 Alclad 2014
T T4, T351 T81, T851 T6
275 275 275 285
2024 2024 Alclad 2024 2014
T3 T4, T351 T361 T6
285 285 285 290
2024 Alclad 2024 7175 7475
T361 T861 T736 T651
290 290 290 295
Alclad 7075 7175 7075
T6,T651 T66 T6,T651
315 325 330
Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
1628
CRC Handbook of Materials Science & Engineering
15.2 sel Mechanical Page 1629 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 389. SELECTING
TORSIONAL SHEAR STRENGTHS OF GRAY CAST IRON BARS
ASTM Class
Torsional Shear Strength (MPa)
20 25 30
179 220 276
35 40 50 60
334 393 503 610
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
1629
15.2 sel Mechanical Page 1630 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 390. SELECTING
HARDNESS OF TOOL STEELS
Type
Condition
Hardness (HRC)
S7 L2 S1 S5
Annealed Annealed Annealed Annealed
95 HRB 96 HRB 96 HRB 96 HRB
L2 L6 S5 S7
Oil quenched from 855 •C and single tempered at 650 •C Oil quenched from 845 •C and single tempered at 315 •C 650 •C Oil quenched from 870 •C and single tempered at 650 •C Fan cooled from 940 •C and single tempered at 650 •C
30 32 37 39
L2 L6 S1 L6
Oil quenched from 855 •C and single tempered at 540 •C Oil quenched from 845 •C and single tempered at 315 •C 540 •C Oil quenched from 930 •C and single tempered at 650 •C Oil quenched from 845 •C and single tempered at 315 •C 425 •C
41 42 42 46
L2 S1 S5 S1
Oil quenched from 855 •C and single tempered at 425 •C Oil quenched from 930 •C and single tempered at 540 •C Oil quenched from 870 •C and single tempered at 540 •C Oil quenched from 930 •C and single tempered at 425 •C
47 47.5 48 50.5
S7 L2 S5 S7
Fan cooled from 940 •C and single tempered at 540 •C Oil quenched from 855 •C and single tempered at 315 •C Oil quenched from 870 •C and single tempered at 425 •C Fan cooled from 940 •C and single tempered at 425 •C
51 52 52 53
L2 L6 S1 S7
Oil quenched from 855 •C and single tempered at 205 •C Oil quenched from 845 •C and single tempered at 315 •C Oil quenched from 930 •C and single tempered at 315 •C Fan cooled from 940 •C and single tempered at 315 •C
54 54 54 55
S1 S5 S7 S5
Oil quenched from 930 •C and single tempered at 205 •C Oil quenched from 870 •C and single tempered at 315 •C Fan cooled from 940 •C and single tempered at 205 •C Oil quenched from 870 •C and single tempered at 205 •C
57.5 58 58 59
Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984).
©2001 CRC Press LLC
1630
CRC Handbook of Materials Science & Engineering
15.2 sel Mechanical Page 1631 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 391. SELECTING
HARDNESS OF GRAY CAST IRONS
SAE grade
Hardness (HB)
G2500 G2500a G1800
170 to 229 170 to 229 187 max
G3000 C3500 G3500b
187 to 241 207 to 255 207 to 255
G3500c G4000 G4000d
207 to 255 217 to 269 241 to 321
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984).
Table 392. SELECTING
HARDNESS OF GRAY CAST IRON BARS
Grey Cast Iron Bars ASTM Class
Hardness (HB)
20 25 30
156 174 210
35 40
212 235
50 60
262 302
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
1631
15.2 sel Mechanical Page 1632 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 393. SELECTING
HARDNESS OF DUCTILE IRONS
Specification Number
Grade or Class
Hardness (HB)
ASTM A395-76; ASME SA395 SAE J434c SAE J434c
60-40-18 D4512 D4018
143-187 156-217 170 max
MlL-I-24137(Ships) SAE J434c MlL-I-24137(Ships)
Class C D5506 Class A
175 max 187-255 190 max
MlL-I-24137(Ships) ASTM A476-70(d); SAE AMS5316 SAE J434c
Class B 80-60-03 D7003
190 max 201 min 241-302
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169, (1984).
©2001 CRC Press LLC
1632
CRC Handbook of Materials Science & Engineering
15.2 sel Mechanical Page 1633 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 394. SELECTING
HARDNESS OF MALLEABLE IRON CASTINGS
Specification Number
Grade or Class
Hardness (HB)
ASTM A220; ANSI C48.2; MIL–I–11444B ASTM A47, A338; ANSI G48.1; FED QQ–I–666c ASTM A47, A338; ANSI G48.1; FED QQ–I–666c ASTM A197
40010 32510 35018
149–197 156 max 156 max 156 max
ASTM A602; SAE J158 ASTM A220; ANSI C48.2; MIL–I–11444B ASTM A220; ANSI C48.2; MIL–I–11444B ASTM A602; SAE J158
M3210 45008 45006 M4504(a)
156 max 156–197 156–207 163–217
ASTM A220; ANSI C48.2; MIL–I–11444B ASTM A602; SAE J158 ASTM A602; SAE J158 ASTM A220; ANSI C48.2; MIL–I–11444B
50005 M5003(a) M5503(b) 60004
179–229 187–241 187–241 197–241
ASTM A220; ANSI C48.2; MIL–I–11444B ASTM A602; SAE J158 ASTM A220; ANSI C48.2; MIL–I–11444B ASTM A602; SAE J158
70003 M7002(b) 80002 M8501(b)
217–269 229–269 241–285 269–302
ASTM A220; ANSI C48.2; MIL–I–11444B
90001
269–321
(a) Air quenched and tempered (b) Liquid quenched and tempered Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p171, (1984).
©2001 CRC Press LLC Shackelford & Alexander
1633
15.2 sel Mechanical Page 1634 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 395. SELECTING
HARDNESS OF WROUGHT ALUMINUM ALLOYS (SHEET 1 OF 5)
Alloy AA No.
Temper
Hardness (BHN)
1060 7072 1060 1100
0 0 H12 0
19 20 23 23
6063 1060 1100 3003
0 H14 H12 0
25 26 28 28
5005 7072 1060 6061
0 H12 H16 0
28 28 30 30
1100 5457 7072 1060
H14 0 H14 H18
32 32 32 35
Alclad 6070 5005 5050
H12 0 H32 0
35 35 36 36
1100 3003 5657 5005
H16 H14 H25 H34
38 40 40 41
6063 6463 6066 1100
T1 T1 0 H18
42 42 43 44
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
1634
CRC Handbook of Materials Science & Engineering
15.2 sel Mechanical Page 1635 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 395. SELECTING
HARDNESS OF WROUGHT ALUMINUM ALLOYS (SHEET 2 OF 5)
Alloy AA No.
Temper
Hardness (BHN)
2014 3004 5005 5050
0 0 H36 H32
45 45 46 46
2024 3003 5052 5652
0 H16 0 0
47 47 47 47
5457 5657 5005 Alclad
H25 H28, H38 H38 H32
48 50 51 52
5050 3003 5457 5050
H34 H18 H28, H38 H36
53 55 55 58
5154 5182 5254 5052
0 0 0 H32
58 58 58 60
5652 6063 6463 7075
H32 T5 T5 0
60 60 60 60
5454 5454 3004 5050
0 H112 H34 H38
62 62 63 63
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
1635
15.2 sel Mechanical Page 1636 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 395. SELECTING
HARDNESS OF WROUGHT ALUMINUM ALLOYS (SHEET 3 OF 5)
Alloy AA No.
Temper
Hardness (BHN)
5154 5254 5056 6061
H112 H112 0 T4, T451
63 63 65 65
6205 5154 5254 5052
T1 H32 H32 H34
65 67 67 68
5252 5652 3004 5454
H25 H34 H36 H111
68 68 70 70
5454 6009 6063 6151
H311 T4 T831 T6
70 70 70 71
5052 5154 5254 5454
H36 H34 H34 H32
73 73 73 73
5652 6063 6463 5252
H36 T6 T6 H28, H38
73 73 74 75
6010 3004 5052 5652
T4 H38 H38 H38
76 77 77 77
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
1636
CRC Handbook of Materials Science & Engineering
15.2 sel Mechanical Page 1637 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 395. SELECTING
HARDNESS OF WROUGHT ALUMINUM ALLOYS (SHEET 4 OF 5)
Alloy AA No.
Temper
Hardness (BHN)
5154 5254 5154 5254
H36 H36 H38 H38
78 78 80 80
5454 6063 5456 6066
H34 T83 H321, H116 T4, T451
81 82 90 90
6070 6201 2011 2218
T4 T6 T3 T72
90 90 95 95
6005 6061 6063 6205
T5 T6, T651 T832 T5
95 95 95 95
6351 2011 5056 2014
T6 T8 H38 T4
95 100 100 105
2218 5056 2218 2024
T71 H18 T61 T3
105 105 115 120
2024 4032 6066 6070
T4, T351 T6 T6, T651 T6
120 120 120 120
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
1637
15.2 sel Mechanical Page 1638 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 395. SELECTING
HARDNESS OF WROUGHT ALUMINUM ALLOYS (SHEET 5 OF 5)
Alloy AA No.
Temper
Hardness (BHN)
6262 2024 2014 7049
T9 T361 T6 T73
120 130 135 135
7175 7075 7175
T736 T6,T651 T66
145 150 150
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
1638
CRC Handbook of Materials Science & Engineering
15.2 sel Mechanical Page 1639 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 396. SELECTING HARDNESS OF (SHEET 1 OF 6)
CERAMICS
Ceramic
Hardness
Tantalum Monocarbide (TaC)
Brinell: 840
Titanium Oxide (TiO2)
Knoop: 713-1121 kg/mm2
Trisilicon tetranitride (Si3N4) (α)
Knoop: 815-1936kg/mm2
Zirconium Oxide (ZrO2) (partially stabilized)
Knoop: 1019-1121 kg/mm2
Zirconium Oxide (ZrO2)(fully stabilized) Trichromium Dicarbide (Cr3C2)
Knoop: 1019-1529 kg/mm2 Knoop: 1019-1834 kg/mm2
Hafnium Monocarbide (HfC)
Knoop: 1790-1870 kg/mm2
Zirconium Monocarbide (ZrC)
Knoop: 2138 kg/mm2
Silicon Carbide (SiC) (cubic, CVD) Dichromium Trioxide (Cr2O3)
Knoop: 2853-4483 kg/mm2
Zirconium Mononitride (ZrN) Titanium mononitride (TiN) Tantalum Diboride (TaB2)
Knoop 30g: 1983 kg/mm2 Knoop 30g: 2160 kg/mm2 Knoop 30g: 2537 kg/mm2
Titanium Diboride (TiB2)
Knoop 30g: 3370 kg/mm2
Tantalum Monocarbide (TaC)
Knoop 50g: 1800-1952 kg/mm2
Calcium Oxide (CaO) Uranium Dioxide (UO2) Silicon Dioxide (SiO2) (parallel to optical axis)
Knoop 100g: 560 kg/mm2 Knoop 100g: 600 kg/mm2
Silicon Dioxide (SiO2) (normal to optical axis)
Knoop: 2955 kg/mm2
Knoop 100g: 710 kg/mm2 Knoop 100g: 790 kg/mm2 Knoop 100g: 825 kg/mm2
Tantalum Monocarbide (TaC) Thorium Dioxide (ThO2) Tungsten Disilicide (WSi2)
Knoop 100g: 945 kg/mm2 Knoop 100g: 1090 kg/mm2
Zirconium Oxide (ZrO2)
Knoop 100g: 1200 kg/mm2
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC Shackelford & Alexander
1639
15.2 sel Mechanical Page 1640 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 396. SELECTING HARDNESS OF (SHEET 2 OF 6)
CERAMICS
Ceramic
Hardness
Aluminum Nitride (AlN) Molybdenum Disilicide (MoSi2)
Knoop 100g: 1225-1230 kg/mm2 Knoop 100g: 1257 kg/mm2
Beryllium Oxide (BeO) Zirconium Mononitride (ZrN)
Knoop 100g: 1300 kg/mm2 Knoop 100g: 1510 kg/mm2
Zirconium Diboride (ZrB2)
Knoop 100g: 1560 kg/mm2
Chromium Diboride (CrB2) Titanium mononitride (TiN)
Knoop 100g: 1700 kg/mm2 Knoop 100g: 1770 kg/mm2
Tungsten Monocarbide (WC)
Knoop 100g: 1870-1880 kg/mm2
Aluminum Oxide (Al2O3)
Knoop 100g: 2000-2050 kg/mm2
Titanium Monocarbide (TiC)
Knoop 100g: 2470 kg/mm2
Silicon Carbide (SiC) Tantalum Diboride (TaB2)
Knoop 100g: 2500-2550 kg/mm2 Knoop 100g: 2615 ± 120 kg/mm2
Titanium Diboride (TiB2)
Knoop 100g: 2710-3000 kg/mm2 Knoop 100g: 2745 kg/mm2 (green)
Silicon Carbide (SiC) Boron Carbide (B4C)
Knoop 100g: 2800 kg/mm2
Silicon Carbide (SiC) Titanium Diboride (TiB2) (single crystal)
Knoop 100g: 2960 kg/mm2 (black)
Zirconium Diboride (ZrB2) (single crystal)
Knoop 160g: 2000 kg/mm2
Zirconium Diboride (ZrB2)
Knoop 160g: 2100 kg/mm2
Hafnium Diboride (HfB2) (polycrystalline)
Knoop 160g: 2400kg/mm at 24 oC
Titanium Diboride (TiB2)
Knoop 160g: 3500 kg/mm2
Hafnium Diboride (HfB2) (single crystal)
Knoop 160g: 3800kg/mm at 24 oC
Knoop 100g: 3250±100 kg/mm2
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
1640
CRC Handbook of Materials Science & Engineering
15.2 sel Mechanical Page 1641 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 396. SELECTING HARDNESS OF (SHEET 3 OF 6)
CERAMICS
Ceramic
Hardness
Titanium Monocarbide (TiC) Boron Carbide (B4C)
Knoop 1000g: 1905 kg/mm2
Tantalum Diboride (TaB2)
Micro: 1700 kg/mm2
Zirconium Monocarbide (ZrC)
Micro: 2090 kg/mm2
Titanium Monocarbide (TiC) Molybdenum Disilicide (MoSi2)
Micro 20g: 3200 kg/mm2
Tungsten Disilicide (WSi2)
Micro 50g: 1260 kg/mm2
Molybdenum Disilicide (MoSi2)
Micro 100g: 1290 kg/mm2
Chromium Diboride (CrB2)
Micro 100g: 1800 kg/mm2
Boron Nitride (BN) (hexagonal) Aluminum Nitride (AlN) Magnesium Oxide (MgO) Uranium Dioxide (UO2)
Mohs: 2 Mohs: 5-5.5 Mohs: 5.5 Mohs: 6-7
Sillimanite (Al2O3 SiO2)
Mohs: 6-7
Thorium Dioxide (ThO2)
Mohs: 6.5
Zirconium Oxide (ZrO2)
Mohs: 6.5
Mullite (3Al2O3 2SiO2)
Mohs: 7.5
Zircon (SiO2 ZrO2) Zirconium Mononitride (ZrN) Titanium mononitride (TiN)
Mohs: 7.5 Mohs: 8+ Mohs: 8-10
Knoop 1000g: 2230 kg/mm2
Micro 50g: 1200 kg/mm2
Aluminum Oxide (Al2O3) (single crystal)
Mohs: 9
Trisilicon tetranitride (Si3N4) Silicon Carbide (SiC)
Mohs: 9+ Mohs: 9.2
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC Shackelford & Alexander
1641
15.2 sel Mechanical Page 1642 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 396. SELECTING HARDNESS OF (SHEET 4 OF 6)
CERAMICS
Ceramic
Hardness
Beryllium Oxide (BeO) Mullite (3Al2O3 2SiO2)
R45N: 64-67 R45N: 71
Aluminum Oxide (Al2O3)
R45N: 78-90
Aluminum Nitride (AlN) (thin film) Aluminum Nitride (AlN) (thick film)
Rockwell 15N: 94.0 Rockwell 15N: 94.5
Tungsten Monocarbide (WC) (6% Co, 1-3µm grain size) Tungsten Monocarbide (WC) (24% Co, 1-3µm grain size) Zirconium Diboride (ZrB2) Tungsten Monocarbide (WC) (6% Co, 3-6µm grain size) Titanium Monocarbide (TiC) (98.6% density) Tungsten Monocarbide (WC) (6% Co, 2-4µm grain size)
Rockwell A: 81.4 ± 0.4 Rockwell A: 86.9 ± 0.6 Rockwell A: 87-89 Rockwell A: 87.3 ± 0.5 Rockwell A: 88-89 Rockwell A: 88.6 ± 0.5
Tantalum Diboride (TaB2) Tantalum Monocarbide (TaC) Tungsten Monocarbide (WC) (12% Co, 1-3µm grain size)
Rockwell A: 89.4 ± 0.5
Titanium Monocarbide (TiC) (99.5% density) Titanium Monocarbide (TiC) (100% density) Tungsten Monocarbide (WC)
Rockwell A: 91-93.5 Rockwell A: 91-93.5 Rockwell A: 92
Zirconium Monocarbide (ZrC) Trisilicon tetranitride (Si3N4)
Rockwell A: 92.5 Rockwell A: 99
Rockwell A: 89 Rockwell A: 89
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
1642
CRC Handbook of Materials Science & Engineering
15.2 sel Mechanical Page 1643 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 396. SELECTING HARDNESS OF (SHEET 5 OF 6)
CERAMICS
Ceramic
Hardness
Cordierite (2MgO 2Al2O3 5SiO2) (glass)
Vickers: 672.5 kg/mm2
Titanium Oxide (TiO2) Trisilicon tetranitride (Si3N4) (α)
Vickers: 713-1121 kg/mm2 Vickers: 815-1936kg/mm2
Cordierite (2MgO 2Al2O3 5SiO2)
Vickers: 835.6 kg/mm2
Zirconium Oxide (ZrO2) (partially stabilized) Zirconium Oxide (ZrO2)(fully stabilized) Trichromium Dicarbide (Cr3C2)
Vickers: 1019-1121 kg/mm2 Vickers: 1019-1529 kg/mm2 Vickers: 1019-1834 kg/mm2
Mullite (3Al2O3 2SiO2)
Vickers: 1120 kg/mm2
Boron Carbide (B4C)
Vickers: 2400 kg/mm2
Silicon Carbide (SiC) (cubic, CVD) Dichromium Trioxide (Cr2O3)
Vickers: 2853-4483 kg/mm2
Tungsten Disilicide (WSi2)
Vickers 10g: 1632 kg/mm2
Aluminum Oxide (Al2O3)
Vickers 20g: 2600 kg/mm2
Silicon Carbide (SiC)
Vickers 25g: 3000-3500 kg/mm2
Chromium Diboride (CrB2)
Vickers 50g: 1800 kg/mm2
Tantalum Monocarbide (TaC) Zirconium Diboride (ZrB2)
Vickers 50g: 1800 kg/mm2
Tungsten Monocarbide (WC)
Vickers 50g: 2400 kg/mm2
Hafnium Monocarbide (HfC)
Vickers 50g: 2533-3202 kg/mm2
Zirconium Monocarbide (ZrC)
Vickers 50g: 2600 kg/mm2
Aluminum Oxide (Al2O3)
Vickers 50g: 2720 kg/mm2
Titanium Monocarbide (TiC) Titanium Diboride (TiB2)
Vickers 50g: 2900-3200 kg/mm2 Vickers 50g: 3400 kg/mm2
Vickers: 2955 kg/mm2
Vickers 50g: 2200 kg/mm2
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
Shackelford & Alexander
1643
15.2 sel Mechanical Page 1644 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 396. SELECTING HARDNESS OF (SHEET 6 OF 6)
CERAMICS
Ceramic
Hardness
Tungsten Disilicide (WSi2) Molybdenum Disilicide (MoSi2)
Vickers 100g: 1090 kg/mm2 Vickers 100g: 1290-1550 kg/mm2
Tungsten Monocarbide (WC)
Vickers 100g: 1730 kg/mm2
Zirconium Monocarbide (ZrC)
Vickers 100g: 2836-3840 kg/mm2
Titanium Monocarbide (TiC)
Vickers 100g: 2850-3390 kg/mm2
Silicon Dioxide (SiO2) (1011 face) 10 µm diagonal Silicon Dioxide (SiO2) (normal to optical axis) Silicon Dioxide (SiO2) Silicon Dioxide (SiO2) (parallel to optical axis)
Vickers 500g: 1040-1130 kg/mm2 Vickers 500g: 1103 kg/mm2 Vickers 500g: 1120 kg/mm2 Vickers 500g: 1260 kg/mm2
Silicon Dioxide (SiO2) (polished 1010 face) 10 µm diagonal Silicon Dioxide (SiO2)
Vickers 500g: 1300 kg/mm2
(1010 face) 10 µm diagonal
Vickers 500g:1120-1230 kg/mm2
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
1644
CRC Handbook of Materials Science & Engineering
15.2 sel Mechanical Page 1645 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 397. SELECTING
MICROHARDNESS OF GLASS
Glass
Test
Microhardness
SiO2 glass
Knoop
500–679
B2O3 glass
Vickers Vickers Vickers Vickers
194–205 227–253 231–257 237–269–345
Vickers Vickers Vickers Vickers
239–267 239–271 251–279 276
Vickers Vickers Vickers Vickers
292 293–297 297 328–345
Vickers Vickers Vickers Vickers
378±2 380 394±2 413±3
Vickers Vickers Vickers Vickers
414±4 423±4 460 503
SiO2–B2O3 glass (95% mol B2O3) SiO2–B2O3 glass (90% mol B2O3) SiO2–B2O3 glass (75% mol B2O3) SiO2–B2O3 glass (85% mol B2O3) SiO2–B2O3 glass (80% mol B2O3) SiO2–B2O3 glass (70% mol B2O3) B2O3–Na2O glass (5% mol Na2O) B2O3–Na2O glass (10% mol Na2O) SiO2–B2O3 glass (65% mol B2O3) B2O3–Na2O glass (15% mol Na2O) SiO2–B2O3 glass (60% mol B2O3) SiO2–Na2O glass (45% mol Na2O) B2O3–Na2O glass (20% mol Na2O) SiO2–Na2O glass (40% mol Na2O) SiO2–Na2O glass (30% mol Na2O) SiO2–Na2O glass (35% mol Na2O) SiO2–Na2O glass (25% mol Na2O) B2O3–Na2O glass (25% mol Na2O) B2O3–Na2O glass (30% mol Na2O)
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
Shackelford & Alexander
1645
15.2 sel Mechanical Page 1646 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 398. SELECTING HARDNESS OF (SHEET 1 OF 5)
POLYMERS
Polymer
Hardness, (ASTM D785) (Rockwell)
Polyester, Thermoset: Flexible Polyester, Thermoset: Rigid Polyester: Heat & chemical resistant (asbestos reinforced) Polyester: Sheet molding compounds, general purpose
6—40 (Barcol) 35—50 (Barcol) 40—70 (Barcol) 45—60 (Barcol)
Cellusose Acetate Propionate, ASTM Grade: 6 Polyethylene, Type III: High molecular weight Alkyd, Molded: Putty (encapsulating) Alkyd, Molded: Granular (high speed molding)
57 60—65 (Shore) 60—70 (Barcol) 60—70 (Barcol)
Polyester moldings: High strength (glass fibers) Reinforced Epoxy, Standard: Cast High strength laminate Alkyd, Molded: Rope (general purpose) Alkyd, Molded: Glass reinforced (heavy duty parts)
60—80 (Barcol) 70—72 (Barcol) 70—75 (Barcol) 70—80 (Barcol)
Silicone: Woven glass fabric/ silicone laminate Epoxy, Standard: Cast Molded Epoxy, High performance resins: Glass cloth laminate Cellusose Acetate Propionate, ASTM Grade: 3
75 (Barcol) 75-80 (Barcol) 75—80 92—96
Cellusose Acetate Propionate, ASTM Grade: 1 Epoxy, High performance resins: Cast, rigid
100—109 107—112
Polyvinyl Chloride: Nonrigid—general
Vinylidene chloride
A50—100 (Shore, ASTM D676) A78—100 (Shore, ASTM D676) >A95 (Shore, ASTM D676)
Polyethylene, Type I: Melt index 6—26 Polyethylene, Type I: Melt index 0.3—3.6
C73, D47—53 (Shore) C73, D50—52 (Shore)
Olefin Copolymer, Molded: EEA (ethylene ethyl acrylate) Olefin Copolymer, Molded: EVA (ethylene vinyl acetate) Polyethylene, Type I: Melt index 200 Polytetrafluoroethylene (PTFE)
D35 (Shore) D36 (Shore) D45 (Shore) D52
Polyvinyl Chloride: Nonrigid—electrical
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1646
CRC Handbook of Materials Science & Engineering
15.2 sel Mechanical Page 1647 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 398. SELECTING HARDNESS OF (SHEET 2 OF 5) Polymer
POLYMERS
Hardness, (ASTM D785) (Rockwell)
Polyethylene, Type II: Melt index 20 Polyethylene, Type II: Melt index l.0—1.9 Fluorinated ethylene propylene(FEP) Olefin Copolymer, Molded: Propylene—ethylene ionomer
D55 (Shore) D55—D56 (Shore) D57—58
Polyethylene, Type III: Melt Melt index 0.l—12.0 Olefin Copolymer, Molded: Ethylene butene Polyethylene, Type III: Melt index 0.2—0.9
D60—70 (Shore) D65 (Shore) D68—70 (Shore)
Polyethylene, Type III: Melt index 1.5—15
D68—70 (Shore) D70—85 (Shore, ASTM D676) D94—96
Polyvinyl Chloride: Rigid—normal impact Epoxy, High performance resins: Molded
D60 (Shore)
6/10 Nylon: Glass fiber (30%) reinforced Phenolic, Molded: Very high shock: glass fiber filled 6/6 Nylon: Glass fiber reinforced Phenolic, Molded: High shock: chopped fabric or cord filled
E40—50 E50—70 E60—E80
Phenolic, Molded: General: woodflour and flock filled Phenolic, Molded: Shock: paper, flock, or pulp filled Urea, Molded: Alpha—cellulose filled (ASTM Type l)
E85—100 E85—95 E94—97
Melamine, Molded: Unfilled Polymide: Glass reinforced
E110 E114
Phenylene Oxide: Glass fiber reinforced
L106, L108
Polystyrene, Molded: High impact Acrylic Moldings: High impact grade Rubber phenolic—woodflour or flock filled Polystyrene, Molded: Medium impact
M3—43 M38—45 M40—90 M47—65
E80—90
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
1647
15.2 sel Mechanical Page 1648 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 398. SELECTING HARDNESS OF (SHEET 3 OF 5)
POLYMERS
Polymer
Hardness, (ASTM D785) (Rockwell)
Rubber phenolic—asbestos filled Epoxy, Standard: Cast Cast flexible Polyvinyl Chloride & Copolymers: Vinylidene chloride Rubber phenolic—chopped fabric filled
M50 M50-100 M50—65 M57
Polycarbonate Silicone: Granular (silica) reinforced Polystyrene, Molded: General purpose Styrene acrylonitrile (SAN)
M70 M71—95 M72 M75—85
Polyacetal Homopolymer: 22% TFE reinforced Polyacetal Copolymer: 25% glass reinforced Polyacetal Copolymer: Standard Polyacetal Copolymer: High flow
M78 M79 M80 M80
Acrylic Moldings: Grades 5, 6, 8 Acrylic Cast Resin Sheets, Rods: General purpose, type I Phenylene oxides (Noryl): Glass fiber reinforced Polyester, Thermoplastic Moldings: Asbestos—filled grade
M80—103 M80—90 M84
Polyarylsulfone Polystyrene, Molded: Glass fiber -30% reinforced Silicone: Fibrous (glass) reinforced Polyacetal Homopolymer: 20% glass reinforced
M85—110 M85—95 M87 M90
Glass fiber (30%) reinforced Styrene acrylonitrile (SAN) Polyacetal Homopolymer: Standard 6/6 Nylon: Glass fiber Molybdenum disulfide filled Thermoset Carbonate: Allyl diglycol carbonate
M90—123 M94 M95—100 M95—M100 (Barcol)
Acrylic Cast Resin Sheets, Rods: General purpose, type II Polycarbonate (40% glass fiber reinforced) Epoxy, Standard: Cast Filament wound composite Phenolic, Molded: Arc resistant—mineral
M96—102 M97 M98-120 M105—115
M85
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1648
CRC Handbook of Materials Science & Engineering
15.2 sel Mechanical Page 1649 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 398. SELECTING HARDNESS OF (SHEET 4 OF 5) Polymer Epoxy, Standard: Cast rigid Cellusose Acetate Propionate, ASTM Grade: Asbestos filled Cellusose Acetate Propionate, ASTM Grade: Orlon filled Cellusose Acetate Propionate, ASTM Grade: Glass fiber filled
POLYMERS
Hardness, (ASTM D785) (Rockwell) M106 M107 M108 M108
Epoxy, Standard: Cast General purpose glass cloth laminate Melamine, Molded: Cellulose filled electrical Urea, Molded: Alpha—cellulose filled (ASTM Type l) Urea, Molded: Woodflour filled
M115—125 M116—120 M116—120
Cellulose Acetate Butyrate, ASTM Grade: S2 Polypropylene: High impact Polytetrafluoroethylene (PTFE): Ceramic reinforced Cellulose Acetate, ASTM Grade: S2—1
R23—42 R28—95 R35—55 R49—88
Cellulose Acetate, ASTM Grade: MS—1, MS—2 Polypropylene: Flame retardant Nylon, Type 6: Flexible copolymers Cellulose Acetate, ASTM Grade: MH—1, MH—2
R54—96 R60—R105 R72—Rll9 R74—104
ABS Resin; Molded, Extruded: Low temperature impact Cellulose Acetate Butyrate, ASTM Grade: MH Polypropylene: General purpose ABS Resin; Molded, Extruded: Very high impact
R75—95 R80—100 R80—R100 R85—105
Cellulose Acetate, ASTM Grade: H2—1 Polypropylene: Asbestos filled Polypropylene: Glass reinforced Nylon, Type 6: Glass fiber (30%) reinforced
R89—112 R90—R110 R90—R115 R93—121
ABS Resin; Molded, Extruded: High impact Chlorinated polyether Nylon, Type 11 Cellulose Acetate, ASTM Grade: H4—1
R95—113 R100 R100—R108 R103—120
M115—117
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC Shackelford & Alexander
1649
15.2 sel Mechanical Page 1650 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 398. SELECTING HARDNESS OF (SHEET 5 OF 5)
POLYMERS
Polymer
Hardness, (ASTM D785) (Rockwell)
PVC–acrylic injection molded PVC–acrylic sheet Nylon, Type 12 ABS Resin; Molded, Extruded: Heat resistant
R104 R105 R106 R107—116
ABS Resin; Molded, Extruded: Medium impact Polyvinylidene— fluoride (PVDF) Polytrifluoro chloroethylene (PTFCE) Polyvinyl Chloride & Copolymers: Rigid—normal impact
R108—115 R109—110 R110—115 R110—120
6/10 Nylon: General purpose Cellulose Acetate Butyrate, ASTM Grade: H4 Phenylene Oxide: SE—100 Nylon, Type 6: Cast
R111 R114 R115 R116
Polyester, Thermoplastic Moldings: General purpose grade Polyester, Thermoplastic Moldings: General purpose grade Polyester, Thermoplastic Moldings: Glass reinforced grade Chlorinated polyvinyl chloride
R117
R117—M85 R118
ABS–Polycarbonate Alloy 6/6 Nylon: General purpose extrusion Nylon, Type 6: General purpose 6/6 Nylon: General purpose molding
R118 R118—108 R118—R120 R118—120, R108
Polyester, Thermoplastic Moldings: Glass reinforced grades Polyester, Thermoplastic: Glass reinforced self extinguishing Phenylene Oxide: SE—1
R118—M90
Phenylene oxides (Noryl): Standard Polyphenylene sulfide: Standard Polyphenylene sulfide: 40% glass reinforced
R120 R120—124 R123
R117
R119 R119
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1650
CRC Handbook of Materials Science & Engineering
15.2 sel Mechanical Page 1651 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 399. SELECTING
COEFFICIENTS OF STATIC FRICTION FOR POLYMERS
Polymer
Coefficient of Static Friction (Against Self) (Dimensionless)
6/6 Nylon: General purpose molding Polyacetal Homopolymer: 22% TFE reinforced Polyarylsulfone Polyacetal Homopolymer: Standard
0.04—0.13 0.05—0.15 (against steel) 0.1—0.3 0.1—0.3 (against steel)
Polyacetal Homopolymer: 20% glass reinforced Polyester; Thermoplastic Moldings: General purpose grade Polyester; Thermoplastic Moldings: Glass reinforced grades Polyester; Thermoplastic : Glass reinforced self extinguishing
0.1—0.3 (against steel) 0.13 (against steel) 0.14 (against steel)
Polyacetal Copolymer: Standard Polyacetal Copolymer: 25% glass reinforced Polyacetal Copolymer: High flow Polyester; Thermoplastic Moldings: Glass reinforced grades
0.15 (against steel) 0.15 (against steel) 0.15 (against steel) 0.16 (ASTM D1894)
Polyester; Thermoplastic: Glass reinforced self extinguishing Polyester; Thermoplastic Moldings: General purpose grade ABS–Polycarbonate Alloy Nylon, Type 6: Cast
0.16 (ASTM D1894) 0.17 (ASTM D1894) 0.2 0.32 (dynamic )
Polycarbonate Phenylene oxides (Noryl): Standard
0.52 0.67
0.14 (against steel)
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
1651
15.2 sel Mechanical Page 1652 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 400. SELECTING
ABRASION RESISTANCE OF POLYMERS
Polymer
Abrasion Resistance (Taber, CS—17 wheel, ASTM D1044) (mg / 1000 cycles)
Polymide: Unreinforced PVC–acrylic injection molded PVC–acrylic sheet Nylon, Type 6: Cast
0.004—0.08 0.0058 (CS—10 wheel) 0.073 (CS—10 wheel) 2.7
6/6 Nylon: General purpose extrusion 6/6 Nylon: General purpose molding Nylon, Type 6: General purpose Polyester Injection Moldings:General purpose grade
3—5 3—8 5 6.5
Polyacetal Homopolymer: 22% TFE reinforced Polyester Injection Moldings:Glass reinforced grades Polycarbonate Polyester Injection Moldings:Glass reinforced self extinguishing
9 9—50 10
Polyacetal Copolymer:Standard Polyacetal Copolymer:High flow Polyacetal Homopolymer: Standard Polymide: Glass reinforced
14 14 14—20 20
Phenylene Oxide: SE—1 Phenylene oxides (Noryl): Standard Polyacetal Homopolymer: 20% glass reinforced Phenylene Oxide: Glass fiber reinforced
20 20 33 35
Polycarbonate (40% glass fiber reinforced) Polyacetal Copolymer:25% glass reinforced Polyarylsulfone Phenylene Oxide: SE—100
40 40 40 100
Polystyrene, Molded: Glass fiber -30% reinforced Polyvinylidene— fluoride (PVDF) Polytrifluoro chloroethylene (PTFCE)
164 600—1200 8000
11
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1652
CRC Handbook of Materials Science & Engineering
15.2 sel Mechanical Page 1653 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 401. SELECTING
FATIGUE STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 1 OF 4)
Alloy AA No.
Temper
Fatigue Strength (MPa)
1060 1060 1060 1100
0 H12 H14 0
21 28 34 34
1100 1060 1060 1100
H12 H16 H18 H14
41 45 45 48
1350 3003 Alclad 6063
H19 0 H12 0
48 48 55 55
1100 1100 3003 6061
H16 H18 H14 0
62 62 62 62
6063 6070 3003 3003
T1 0 H16 H18
62 62 69 69
6063 6063 6463 6463
T5 T6 T1 T5
69 69 69 69
6463 5050 2014 2024
T6 0 0 0
69 83 90 90
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
1653
15.2 sel Mechanical Page 1654 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 401. SELECTING
FATIGUE STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 2 OF 4)
Alloy AA No.
Temper
Fatigue Strength (MPa)
5050 5050 6070 6262
H32 H34 T4 T9
90 90 90 90
6351 3004 5050 5050
T6 0 H36 H38
90 97 97 97
6005 6005 6061 6061
T1 T5 T4, T451 T6, T651
97 97 97 97
6070 2219 2219 2219
T6 T62 T81, T851 T87
97 105 105 105
Alclad 3004 6205 3004
H32 H34 T5 H36
105 105 105 110
3004 4032 5052 5652
H38 T6 0 0
110 110 110 110
6066 5052 5154 5154
T6, T651 H32 0 H112
110 115 115 115
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
1654
CRC Handbook of Materials Science & Engineering
15.2 sel Mechanical Page 1655 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 401. SELECTING
FATIGUE STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 3 OF 4)
Alloy AA No.
Temper
Fatigue Strength (MPa)
5254 5254 5652 6009
0 H112 H32 T4
115 115 115 115
6010 2011 2011 2014
T4 T3 T8 T6
115 125 125 125
2024 2036 2618 5052
T361 T4 All H34
125 125 125 125
5154 5254 5652 7005
H32 H32 H34 T6,T63,T6351
125 125 125 125
5052 5154 5254 5652
H36 H34 H34 H36
130 130 130 130
2014 2024 2024 5052
T4 T3 T4, T351 H38
140 140 140 140
5056 5154 5182 5254
0 H36 0 H36
140 140 140 140
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
1655
15.2 sel Mechanical Page 1656 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 401. SELECTING
FATIGUE STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 4 OF 4)
Alloy AA No.
Temper
Fatigue Strength (MPa)
5652 7005 5154 5254
H38 T53 H38 H38
140 140 145 145
5056 5056 5083 7075
H18 H38 H321 T6,T651
150 150 160 160
7175 7175 2048 7475
T66 T736 T7351
160 160 220 220
7050 7049
T736 T73
240 295
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
1656
CRC Handbook of Materials Science & Engineering
15.2 sel Mechanical Page 1657 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 402. SELECTING
REVERSED BENDING FATIGUE LIMITS OF GRAY CAST IRON BARS
ASTM Class
Reversed Bending Fatigue Limit (MPa)
20 25 30
69 79 97
35 40 50 60
110 128 148 169
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984).
©2001 CRC Press LLC Shackelford & Alexander
1657
15.2 sel Mechanical Page 1658 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 403. SELECTING IMPACT
ENERGY OF TOOL STEELS
Type
Condition
Impact Energy (J)
L6 L6 L2 L6
Oil quenched from 845 ˚C and single tempered at 315 ˚C Oil quenched from 845 ˚C and single tempered at 425 ˚C Oil quenched from 855 ˚C and single tempered at 315 ˚C Oil quenched from 845 ˚C and single tempered at 540 ˚C
12(a) 18(a) 19(a) 23(a)
L2 L2 L2 L6
Oil quenched from 855 ˚C and single tempered at 425 ˚C Oil quenched from 855 ˚C and single tempered at 205 ˚C Oil quenched from 855 ˚C and single tempered at 540 ˚C Oil quenched from 845 ˚C and single tempered at 650 ˚C
26(a) 28(a) 39(a) 81(a)
L2 S5 S1
Oil quenched from 855 ˚C and single tempered at 650 ˚C Oil quenched from 870 ˚C and single tempered at 540 ˚C Oil quenched from 930 ˚C and single tempered at 425 ˚C
125(a) 188(b) 203(b)
S5 S1 S5 S1
Oil quenched from 870 ˚C and single tempered at 205 ˚C Oil quenched from 930 ˚C and single tempered at 540 ˚C Oil quenched from 870 ˚C and single tempered at 315 ˚C Oil quenched from 930 ˚C and single tempered at 315 ˚C
206(b) 230(b) 232(b) 233(b)
S5 S7 S7 S1
Oil quenched from 870 ˚C and single tempered at 425 ˚C Fan cooled from 940 ˚C and single tempered at 425 ˚C Fan cooled from 940 ˚C and single tempered at 205 ˚C Oil quenched from 930 ˚C and single tempered at 205 ˚C
243(b) 243(b) 244(b) 249(b)
S7 S7 S7
Fan cooled from 940 ˚C and single tempered at 315 ˚C Fan cooled from 940 ˚C and single tempered at 540 ˚C Fan cooled from 940 ˚C and single tempered at 650 ˚C
309(b) 324(b) 358(b)
(a) Charpy V-notch. (b) Charpy unnotched. Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984).
©2001 CRC Press LLC
1658
CRC Handbook of Materials Science & Engineering
15.2 sel Mechanical Page 1659 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 404. SELECTING IMPACT STRENGTHS OF (SHEET 1 OF 5)
POLYMERS
Polymer
Impact Strength (Izod notched, ASTM D256) (ft—lb / in.)
Thermoset Cast Polyyester: Rigid Melamine, Molded: mineral filled Urea, Molded: Cellulose filled (ASTM Type 2) Urea, Molded: Alpha—cellulose filled (ASTM Type l)
0.18—0.40 0.2 0.20—0.275 0.20—0.35
Acrylic Moldings: Grades 5, 6, 8 Thermoset Allyl diglycol carbonate Polystyrene, Molded: General purpose Epoxy, Standard: Cast rigid
0.2—0.4 0.2—0.4 0.2—0.4 (ASTM D638) 0.2—0.5
Phenolic, Molded: General, woodflour and flock filled Alkyd, Molded: Putty (encapsulating) Urea, Molded: Woodflour filled Melamine, Molded: Cellulose filled electrical
0.24—0.50 0.25—0.35 0.25—0.35 0.27—0.36
Styrene acrylonitrile (SAN) Polyphenylene sulfide: Standard Alkyd, Molded: Granular (high speed molding) Melamine, Molded: Alpha cellulose filled
0.29—0.54 0.3 0.30—0.35 0.30—0.35
Phenolic, Molded: Arc resistant—mineral filled Diallyl Phthalate, Molded: Asbestos filled Epoxy, Standard: Cast flexible Rubber phenolic—asbestos filled
0.30—0.45 0.30—0.50 0.3—0.2 0.3—0.4
Epoxy, High performance: Molded Silicone, Molded: Granular (silica) reinforced Rubber phenolic—woodflour or flock filled Acrylic Cast Resin Sheets, Rods: General purpose, type I
0.3—0.5 0.34 0.34—1.0 0.4
To convert ft–lb / in. to N•m/m, multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
1659
15.2 sel Mechanical Page 1660 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 404. SELECTING IMPACT STRENGTHS OF (SHEET 2 OF 5)
POLYMERS
Polymer
Impact Strength (Izod notched, ASTM D256) (ft—lb / in.)
Acrylic Cast Resin Sheets, Rods: General purpose, type II Olefin Copolymers, Molded: Ethylene butene Chlorinated polyether Epoxy, Standard: Molded
0.4 0.4 0.4 (D758) 0.4—0.5
Phenolic, Molded: Shock: paper, flock, or pulp filled Polypropylene: General purpose Polyethylene, Type III: Melt Melt index 0.l—12.0 Reinforced polyester: Heat and chemical resistsnt (asbestos)
0.4—1.0 0.4—2.2 0.4—6.0 0.45—1.0
Epoxy, High performance: Cast, rigid Polymide: Unreinforced Polyester; Thermoplastic Moldings: Asbestos—filled grade Diallyl Phthalate, Molded: Orlon filled
0.5 0.5 0.5 0.5—1.2
Polystyrene, Molded: Medium impact Polypropylene: Asbestos filled Polyvinyl Chloride And Copolymers: Rigid—normal impact Melamine, Molded: Glass fiber filled
0.5—1.2 (ASTM D638) 0.5—1.5
Diallyl Phthalate, Molded: Glass fiber filled Polypropylene: Glass reinforced 6/6 Nylon: General purpose molding Nylon Type 6: General purpose
0.5—15.0 0.5—2 0.55—2.0 (ASTM D638) 0.6—1.2
6/10 Nylon: General purpose Phenolic, Molded: High shock: chopped fabric or cord filled Polyacetal Homopolymer: 22% TFE reinforced Polyacetal Homopolymer: 20% glass reinforced
0.6—1.6 0.6—8.0 0.7 (ASTM D638) 0.8 (ASTM D638)
0.5—10 0.5—12.0
To convert ft–lb / in. to N•m/m, multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1660
CRC Handbook of Materials Science & Engineering
15.2 sel Mechanical Page 1661 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 404. SELECTING IMPACT STRENGTHS OF (SHEET 3 OF 5)
POLYMERS
Polymer
Impact Strength (Izod notched, ASTM D256) (ft—lb / in.)
Polystyrene, Molded: High impact Acrylic Moldings: High impact grade Polyacetal Copolymer: High flow Polyester; Thermoplastic Moldings: General purpose grade
0.8—1.8 (ASTM D638) 0.8—2.3 1 1.0—1.2
Polyester; Thermoplastic Moldings: Glass reinforced grades Reinforced polyester moldings: High strength (glass fibers) Polyphenylene sulfide: 40% glass reinforced Olefin Copolymers, Molded: Propylene—ethylene
1.0—2.2 1—10 1.09 1.1
Nylon Type 6: Cast Phenylene oxides (Noryl): Standard Polyethylene, Type III: Melt index 1.5—15 Nylon: Type 12
1.2 1.2—1.3 1.2—2.5 1.2—4.2
Polyacetal Copolymer: Standard 6/6 Nylon: General purpose extrusion Glass fiber (30%) reinforced Styrene acrylonitrile (SAN) Polyacetal Homopolymer: Standard
1.3 1.3 (ASTM D638) 1.35—3.0 1.4 (ASTM D638)
Olefin Copolymers, Molded: Polyallomer Polypropylene: High impact Nylon Type 6: Flexible copolymers Polyarylsulfone
1.5 1.5—12 1.5—19 1.6—5.0
Cellusose Acetate Propionate, ASTM Grade: 1 Diallyl Phthalate, Molded: Dacron filled Polyacetal Copolymer: 25% glass reinforced Polyester; Moldings: Glass reinforced self extinguishing
1.7—2.7 1.7—5.0 1.8 1.8
To convert ft–lb / in. to N•m/m, multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC Shackelford & Alexander
1661
15.2 sel Mechanical Page 1662 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 404. SELECTING IMPACT STRENGTHS OF (SHEET 4 OF 5)
POLYMERS
Polymer
Impact Strength (Izod notched, ASTM D256) (ft—lb / in.)
Phenylene oxides (Noryl): Glass fiber reinforced Rubber phenolic—chopped fabric filled ABS Resin: Medium impact ABS Resin: Heat resistant
1.8—2.0 2.0—2.3 2.0—4.0 2.0—4.0
Polytetrafluoroethylene (PTFE) Vinylidene chloride Alkyd, Molded: Rope (general purpose) Polypropylene: Flame retardant
2.0—4.0 2—8 2.2 2.2
Nylon Type 6: Glass fiber (30%) reinforced Phenylene Oxide: Glass fiber reinforced Polystyrene, Molded: Glass fiber —30% reinforced 6/6 Nylon: Glass fiber reinforced
2.2—3.4 2.3 (ASTM D638) 2.5 2.5—3.4 (ASTM D638)
Cellulose Acetate Butyrate, ASTM Grade: H4 Polyvinylidene— fluoride (PVDF) ABS Resin: High impact Nylon: Type 11
3 3.0—10.3 3.0—5.0 3.3—3.6
6/10 Nylon: Glass fiber (30%) reinforced Polytrifluoro chloroethylene (PTFCE) Cellusose Acetate Propionate, ASTM Grade: 3 Thermoset Cast Polyyester: Flexible
3.4 3.50—3.62 3.5—5.6 4
Polyethylene, Type III: Melt index 0.2—0.9 Cellulose Acetate Butyrate, ASTM Grade: MH Phenylene Oxide: SE—100 Phenylene Oxide: SE—1
4.0—14 4.4—6.9 5 (ASTM D638) 5 (ASTM D638)
To convert ft–lb / in. to N•m/m, multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1662
CRC Handbook of Materials Science & Engineering
15.2 sel Mechanical Page 1663 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 404. SELECTING IMPACT STRENGTHS OF (SHEET 5 OF 5)
POLYMERS
Polymer
Impact Strength (Izod notched, ASTM D256) (ft—lb / in.)
ABS Resin: Very high impact Reinforced polyester Sheet molding, general purpose ABS Resin: Low temperature impact Chlorinated polyvinyl chloride
5.0—7.5 5—15 6—10 6.3
Cellulose Acetate Butyrate, ASTM Grade: S2 Alkyd, Molded: Glass reinforced (heavy duty parts) Olefin Copolymers, Molded: Ionomer Cellusose Acetate Propionate, ASTM Grade: 6
7.5—10.0 8—12 9—14 9.4
Silicone, Molded: Fibrous (glass) reinforced ABS–Polycarbonate Alloy Silicone: Woven glass fabric/ silicone laminate Phenolic, Molded: Very high shock: glass fiber filled
10 10 (ASTM D638) 10—25 10—33
Epoxy, Standard: General purpose glass cloth laminate Polycarbonate Epoxy novolacs: Cast, rigid PVC–acrylic sheet
12—15 12—16 13—17 15
PVC–acrylic injection molded Polymide: Glass reinforced Epoxy, Standard: High strength laminate Nylon: Type 8
15 17 60—61 >16
Polyethylene, Type III: High molecular weight Fluorinated ethylene propylene(FEP) Polyvinyl Chloride And Copolymers: Nonrigid—general Polyvinyl Chloride And Copolymers: Nonrigid—electrical
>20 No break Variable Variable
To convert ft–lb / in. to N•m/m, multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
1663
15.3 sel Mechanical Page 1664 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 405. SELECTING
TENSILE MODULI OF GRAY CAST IRONS
ASTM Class
Tensile Modulus (GPa)
20 25 30 35
66 to 97 79 to 102 90 to 113 100 to 119
40 50 60
110 to 138 130 to 157 141 to 162
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984).
Table 406. SELECTING
TENSILE MODULI OF TREATED DUCTILE IRONS
Treatment
Tension Modulus (GPa)
120 90-02 65-45-12 80-55-06 60-40-18
164 168 168 169
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169-170, (1984).
©2001 CRC Press LLC
1664
CRC Handbook of Materials Science & Engineering
15.3 sel Mechanical Page 1665 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 407. SELECTING
YOUNG’S MODULI OF CERAMICS (SHEET 1 OF 6)
Ceramic
Temperature
Young’s Modulus (psi)
Boron Nitride (BN), parallel to c axis
700˚C
0.51x106
Boron Nitride (BN), parallel to a axis
700˚C
1.54x106
Boron Nitride (BN), parallel to a axis Zirconium Oxide (ZrO2) (plasma sprayed)
1000˚C
1.65x106
500˚C
2x106
Zirconium Oxide (ZrO2) (plasma sprayed)
1100˚C
3.05x106
Zirconium Diboride (ZrB2) (22.4% density, foam)
3.305x106
Boron Nitride (BN), parallel to c axis
300˚C
3.47x106
Magnesium Oxide (MgO)
1300˚C
4 x106
Mullite (3Al2O3 2SiO2) (ρ=2.77 g/cm3)
1200˚C
4.00x106
Boron Nitride (BN), parallel to c axis Titanium Diboride (TiB2)
23˚C
4.91x106
(12.0 µm grain size, ρ=4.66g/cm3, 9.6wt% Ni) Zirconium Oxide (ZrO2) (plasma sprayed)
6.29x106 room temp.
Hafnium Dioxide (HfO2)
6.96x106 8.2x106
Boron Nitride (BN), parallel to a axis
300˚C
8.79x106
Magnesium Oxide (MgO)
1200˚C
10 x106
Boron Nitride (BN), parallel to a axis Thorium Dioxide (ThO2)
23˚C
11.47-36.3x106 12.46x106
1200˚C
12.8x106
Zirconium Oxide (ZrO2) (plasma sprayed)
1500˚C
12.8x106
Titanium Mononitride (TiN)
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC Shackelford & Alexander
1665
15.3 sel Mechanical Page 1666 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 407. SELECTING
YOUNG’S MODULI OF CERAMICS (SHEET 2 OF 6)
Ceramic
Temperature
Cordierite (2MgO 2Al2O3 5SiO2) glass
Young’s Modulus (psi)
13.92x106
Zirconium Oxide (ZrO2) (fully stabilized)
room temp.
14.1-30.0x106
Zirconium Oxide (ZrO2) (plasma sprayed)
1400˚C
14.2x106
Trisilicon tetranitride (Si3N4) (reaction sintered)
20˚C
14.5-31.9x106
Mullite (3Al2O3 2SiO2) (ρ=2.77 g/cm3)
800˚C
14.79x106
Dichromium Trioxide (Cr2O3)
>14.9x106
Zirconium Oxide (ZrO2) (plasma sprayed)
1200˚C
17.1-18.0x106
Thorium Dioxide (ThO2)
1000˚C
17.1x106
Trisilicon tetranitride (Si3N4) (reaction sintered)
1400˚C
17.4-29.0x106
Thorium Dioxide (ThO2)
room temp.
17.9-34.87x106
Thorium Dioxide (ThO2)
800˚C
18-18.5x106
Mullite (3Al2O3 2SiO2) (ρ=2.77 g/cm3)
25˚C
18.42x106
Zirconium Oxide (ZrO2) (plasma sprayed)
1000˚C
18.5-25x106
400˚C
18.89x106
800˚C
18.9x106
room temp.
19.96x106
1145˚C 1300˚C
20 x106 20.1x106
Mullite (3Al2O3 2SiO2
) (ρ=2.77 g/cm3)
Zirconium Oxide (ZrO2) (plasma sprayed) Zirconium Oxide (ZrO2) (stabilized, ρ=5.634 g/cm3) Beryllium Oxide (BeO) Spinel (Al2O3 MgO) To convert from psi to MPa, multiply by 145.
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
1666
CRC Handbook of Materials Science & Engineering
15.3 sel Mechanical Page 1667 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 407. SELECTING
YOUNG’S MODULI OF CERAMICS (SHEET 3 OF 6)
Ceramic
Temperature
Cordierite (2MgO 2Al2O3 5SiO2) Mullite (3Al2O3 2SiO2
) (ρ=2.779 g/cm3)
Young’s Modulus (psi)
20.16x106 room temp.
20.75x106
Magnesium Oxide (MgO) Uranium Dioxide (UO2)
1000˚C
21 x106
0-1000˚C
21x106
Zircon (SiO2 ZrO2)
room temp.
24x106
Zirconium Oxide (ZrO2) (plasma sprayed)
room temp.
24.8-27x106
Cerium Dioxide (CeO2)
24.9x106
Spinel (Al2O3 MgO)
1200˚C
25.0x106
Uranium Dioxide (UO2)
20˚C
25x106
Trisilicon tetranitride (Si3N4) (hot pressed)
1400˚C
25.38-36.25x106
Aluminum Oxide (Al2O3)
1500˚C
25.6 x106
Uranium Dioxide (UO2) (ρ=10.37 g/cm3)
room temp.
27.98x106
Trisilicon tetranitride (Si3N4) (sintered)
20˚C
28.28-45.68x106
Zirconium Monocarbide (ZrC)
room temp.
28.3-69.6x106
Silicon Carbide (SiC) (reaction sintered)
1400˚C
29-46.4x106
Magnesium Oxide (MgO)
600˚C
29.5 x106
Zirconium Oxide (ZrO2) (partially stabilized)
room temp.
29.7x106
Spinel (Al2O3 MgO)
1000˚C
30.4x106
Magnesium Oxide (MgO) Chromium Diboride (CrB2)
room temp.
30.5-36.3x106 30.6x106
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
Shackelford & Alexander
1667
15.3 sel Mechanical Page 1668 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 407. SELECTING
YOUNG’S MODULI OF CERAMICS (SHEET 4 OF 6)
Ceramic
Temperature
Young’s Modulus (psi)
Aluminum Oxide (Al2O3)
1250˚C
32 x106
Aluminum Oxide (Al2O3)
1400˚C
32.7 x106
Spinel (Al2O3 MgO)
800˚C
32.9x106
Beryllium Oxide (BeO)
1000˚C
33 x106
Mullite (3Al2O3 2SiO2) (full density)
room temp.
33.35x106
Spinel (Al2O3 MgO)
600˚C
34x106
Spinel (Al2O3 MgO)
200˚C
34.4x106
Spinel (Al2O3 MgO)
room temp.
34.5x106
Spinel (Al2O3 MgO)
400˚C
34.5x106
Zirconium Oxide (ZrO2) (plasma sprayed)
20˚C
36x106
Trisilicon tetranitride (Si3N4) (hot pressed)
20˚C
36.25-47.13x106
Tantalum Diboride (TaB2)
37 x106
Spinel (Al2O3 MgO) (ρ=3.510 g/cm3)
room temp.
38.23x106
Molybdenum Disilicide (MoSi2)
room temp.
39.3-56.36x106
Aluminum Oxide (Al2O3)
1200˚C
39.8-53.65 x106
Beryllium Oxide (BeO)
800˚C
40 x106
Aluminum Nitride (AlN) Titanium Oxide (TiO2)
1400˚C
40x106
Tantalum Monocarbide (TaC) Boron Carbide (B4C)
room temp.
41.3-91.3x106
room temp.
42-65.2x106
41x106
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
1668
CRC Handbook of Materials Science & Engineering
15.3 sel Mechanical Page 1669 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 407. SELECTING
YOUNG’S MODULI OF CERAMICS (SHEET 5 OF 6)
Ceramic
Temperature
Young’s Modulus (psi)
Magnesium Oxide (MgO) (ρ = 3.506 g/cm3) Beryllium Oxide (BeO)
room temp.
42.74x106
room temp.
42.8-45.5x106
Silicon Carbide (SiC) (sintered)
1400˚C
43.5-58.0x106
Silicon Carbide (SiC) (pressureless sintered)
room temp.
43.9x106
Titanium Monocarbide (TiC) Aluminum Oxide (Al2O3)
1000˚C
45-55x106
1000˚C
45.5-50 x106
Aluminum Nitride (AlN) Zirconium Diboride (ZrB2)
1000˚C
46x106
Aluminum Oxide (Al2O3)
500˚C
50-57.275 x106
Aluminum Oxide (Al2O3) Aluminum Nitride (AlN)
room temp. 25˚C
50-59.3x106 50x106
Silicon Carbide (SiC) (reaction sintered)
20˚C
50.75-54.38x106
Silicon Carbide (SiC) (reaction sintered) Aluminum Oxide (Al2O3)
1200˚C
51x106
800˚C
51.2 x106
Silicon Carbide (SiC) (reaction sintered) Titanium Diboride (TiB2)
800˚C
53x106
49.8-63.8x106
53.2x106
Trichromium Dicarbide (Cr3C2)
54.1x106
Silicon Carbide (SiC) (sintered)
20˚C
54.38-60.9x106
Silicon Carbide (SiC) (reaction sintered)
400˚C
55x106
Silicon Carbide (SiC) (hot presses)
1400˚C
55.1x106
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
Shackelford & Alexander
1669
15.3 sel Mechanical Page 1670 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 407. SELECTING
YOUNG’S MODULI OF CERAMICS (SHEET 6 OF 6)
Ceramic
Temperature
Young’s Modulus (psi)
Silicon Carbide (SiC) (ρ = 3.128 g/cm3) Silicon Carbide (SiC) (self bonded)
room temp.
58.2x106
room temp.
59.5x106
Silicon Carbide (SiC) (ρ = 3.120 g/cm3) Silicon Carbide (SiC) (cubic, CVD)
room temp.
59.52x106
room temp.
60.2-63.9x106
Hafnium Monocarbide (HfC) (ρ = 11.94 g/cm3) Silicon Carbide (SiC) (hot pressed)
room temp.
61.55x106
20˚C
62.4-65.3x106
Titanium Monocarbide (TiC)
room temp.
63.715x106
Silicon Carbide (SiC) (hot pressed)
room temp.
63.8x106
Titanium Diboride (TiB2) (3.5 µm grain size, ρ=4.37g/cm3, 0.8wt% Ni) Titanium Diboride (TiB2)
75.0x106
(6.0 µm grain size, ρ=4.56g/cm3, 0.16wt% Ni)
77.9x106
Titanium Diboride (TiB2) (6.0 µm grain size, ρ=4.46g/cm3) Tungsten Monocarbide (WC)
81.6x106 room temp.
96.91-103.5x106
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
1670
CRC Handbook of Materials Science & Engineering
15.3 sel Mechanical Page 1671 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 408. SELECTING YOUNG’S MODULI OF (SHEET 1 OF 2) Glass
Temperature
B2O3 glass SiO2–B2O3 glass (90% mol B2O3) SiO2–B2O3 glass (85% mol B2O3) SiO2–B2O3 glass (95% mol B2O3)
room temp.
SiO2–B2O3 glass (65% mol B2O3) SiO2–B2O3 glass (60% mol B2O3) SiO2–B2O3 glass (70% mol B2O3) SiO2–B2O3 glass (75% mol B2O3)
15˚C
SiO2–PbO glass (65.0% mol PbO) B2O3–Na2O glass (20% mol Na2O)
15˚C
SiO2–PbO glass (60.0% mol PbO) SiO2–PbO glass (50.0% mol PbO) SiO2–Na2O glass (40% mol Na2O)
200–250˚C
SiO2–PbO glass (35.7% mol PbO) SiO2–PbO glass (24.6% mol PbO) SiO2–PbO glass (55.0% mol PbO) SiO2–PbO glass (30.0% mol PbO) SiO2–Na2O glass (33% mol Na2O)
200–250˚C
SiO2–PbO glass (45.0% mol PbO) SiO2–Na2O glass (40% mol Na2O)
–196˚C
SiO2–PbO glass (38.4% mol PbO) B2O3–Na2O glass (25% mol Na2O)
Young’s Modulus (GPa)
17.2–17.7 20.9 21.2 21.2 22.5 22.8 23.3 23.5
SiO2–B2O3 glass (80% mol B2O3)
B2O3–Na2O glass (10% mol Na2O)
GLASS
15˚C
24.1 31.4 41.2 43.2 43.6 44.1 46.1 46.3 47.1 49.3 50.1 51.0 51.7 51.9 52.8 53.7
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC Shackelford & Alexander
1671
15.3 sel Mechanical Page 1672 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 408. SELECTING YOUNG’S MODULI OF (SHEET 2 OF 2)
GLASS
Glass
Temperature
Young’s Modulus (GPa)
SiO2–Na2O glass (25% mol Na2O)
200–250˚C –196˚C –196˚C 15˚C
53.9 54.9 56.9 57.1
15˚C room temp. room temp. room temp.
59.4 60.2 60.3 60.5
room temp. room temp. room temp. 20˚C
61.4 62.0 64.4 72.76–74.15
998˚C (annealing point) 1096˚C (straining point)
79.87 80.80
SiO2–Na2O glass (33% mol Na2O) SiO2–Na2O glass (25% mol Na2O) B2O3–Na2O glass (37% mol Na2O) B2O3–Na2O glass (33.3% mol Na2O) SiO2–Na2O glass (35% mol Na2O) SiO2–Na2O glass (33% mol Na2O) SiO2–Na2O glass (30% mol Na2O) SiO2–Na2O glass (25% mol Na2O) SiO2–Na2O glass (20% mol Na2O) SiO2–Na2O glass (15% mol Na2O) SiO2 glass SiO2 glass SiO2 glass
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
1672
CRC Handbook of Materials Science & Engineering
15.3 sel Mechanical Page 1673 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 409. SELECTING
MODULI OF ELASTICITY IN TENSION FOR POLYMERS (SHEET 1 OF 3)
Polymer
Modulus of Elasticity in Tension (ASTM D638) (l05 psi)
Polyester, Cast Thermoset: Flexible Polyvinyl Chloride & Copolymers: Nonrigid—general Polyvinyl Chloride & Copolymers: Nonrigid—electrical Polyethylene, Type I: Melt index 6—26
0.001—0.10 0.004—0.03 (ASTM D412) 0.01—0.03 (ASTM D412) 0.20—0.24
Polyethylene, Type I: Melt index 0.3—3.6 Polytetrafluoroethylene (PTFE) Fluorinated ethylene propylene(FEP) Epoxy, Standard: Cast flexible
0.21—0.27 0.38—0.65 0.5—0.7 0.5—2.5
Vinylidene chloride Chlorinated polyether Polystyrene, Molded: High impact Ceramic reinforced (PTFE)
0.7—2.0 (ASTM D412) 1.5 1.50—3.80 (D638) 1.5—2.0
Polyester, Cast Thermoset: Rigid Polyvinylidene— fluoride (PVDF) Polytrifluoro chloroethylene (PTFCE) ABS Resin: Very high impact
1.5—6.5 1.7—2 1.9—3.0 2.0—3.1
ABS Resin: Low temperature impact Acrylic Cast Resin Moldings: High impact grade ABS Resin: High impact Polystyrene, Molded: Medium impact
2.0—3.1 2.3—3.3 2.6—3.2 2.6—4.7 (D638)
Polyvinyl Chloride & Copolymers: Rigid—normal impact ABS Resin: Medium impact Polycarbonate ABS Resin: Heat resistant
3 5—4.0 (ASTM D412) 3.3—4.0 3.45 3.5—4.2
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC Shackelford & Alexander
1673
15.3 sel Mechanical Page 1674 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 409. SELECTING
MODULI OF ELASTICITY IN TENSION FOR POLYMERS (SHEET 2 OF 3)
Polymer
Modulus of Elasticity in Tension (ASTM D638) (l05 psi)
Acrylic Cast Resin Sheets, Rods: General purpose, type I Acrylic Cast Resin Moldings: Grades 5, 6, 8 Rubber phenolic—chopped fabric filled Chlorinated polyvinyl chloride
3.5—4.5 3.5—5.0 3.5—6 3.7
Acrylic Cast Resin Sheets, Rods: General purpose, type II Styrene acrylonitrile (SAN) Epoxy, High performance: Cast, rigid Rubber phenolic—woodflour or flock filled
4.0—5.0 4.0—5.2 4—5 4—6
Epoxy, Standard: Cast rigid Polystyrene, Molded: General purpose Epoxy novolacs: Cast, rigid Rubber phenolic—asbestos filled
4.5 4.6—5.0 (D638) 4.8—5.0 5—9
Diallyl Phthalate, Molded: Orlon filled Phenolic, Shock: paper, flock, or pulp filled Phenolic, General: woodflour and flock filled Phenolic, High shock: chopped fabric or cord filled
6 8—12 8—13 9—14
Melamine; Molded: Cellulose filled electrical Phenolic, Molded: Arc resistant—mineral filled Urea, Molded: Woodflour filled Diallyl Phthalate, Molded: Asbestos filled
10—11 10—30 11—14 12
Reinforced polyester moldings: Heat & chemical resistsnt (asbestos) Polystyrene, Molded: Glass fiber -30% reinforced Urea, Molded: Alpha—cellulose filled (ASTM Type l) Reinforced polyester Sheet molding: general purpose
12.1 (D638) 13—16 15—20
12—15
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1674
CRC Handbook of Materials Science & Engineering
15.3 sel Mechanical Page 1675 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 409. SELECTING
MODULI OF ELASTICITY IN TENSION FOR POLYMERS (SHEET 3 OF 3)
Polymer
Modulus of Elasticity in Tension (ASTM D638) (l05 psi)
Reinforced polyester moldings: High strength (glass fibers) Polycarbonate (40% glass fiber reinforced) Glass fiber (30%) reinforced Styrene acrylonitrile (SAN) Epoxy novolacs: Glass cloth laminate
16—20 17 17.5 27.5
Silicone: Woven glass fabric/ silicone laminate Phenolic, Very high shock: glass fiber filled Epoxy, High performance Molded: Glass cloth laminate Epoxy, Standard, Molded: General purpose glass cloth laminate
28 (ASTM D651) 30—33 32—33
Epoxy, Standard, Molded: High strength laminate Epoxy, Standard, Molded: Filament wound composite
57—58 72—64
33—36
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC Shackelford & Alexander
1675
15.3 sel Mechanical Page 1676 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 410. SELECTING
COMPRESSION MODULI OF TREATED DUCTILE IRONS
Treatment
Compression Modulus (GPa)
65-45-12 60-40-18 120 90-02 80-55-06
163 164 164 165
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169-170, (1984).
Table 411. SELECTING
MODULUS OF ELASTICITY IN COMPRESSION FOR POLYMERS
Polymer
Modulus of Elasticity in Compression (ASTM D638) (l05 psi)
Polytetrafluoroethylene (PTFE) Fluorinated ethylene propylene(FEP)
0 70—0.90 0.6—0.8
Ceramic reinforced (PTFE) Polyvinylidene— fluoride (PVDF) Polytrifluoro chloroethylene (PTFCE)
1.5—2.0 1.7—2 1.8
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1676
CRC Handbook of Materials Science & Engineering
15.3 sel Mechanical Page 1677 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 412. SELECTING
BULK MODULI OF GLASS
Glass
Temperature
B2O3-Na2O glass (10% mol Na2O) SiO2-PbO glass (38.4% mol PbO) SiO2-PbO glass (30.0% mol PbO) SiO2-PbO glass (55.0% mol PbO)
15˚C
SiO2-PbO glass (50.0% mol PbO)
Bulk Modulus (GPa)
23.2 25.1 25.6 29.5 30.5 30.6 31.01-37.62 31.1
SiO2-PbO glass (45.0% mol PbO) SiO2 glass SiO2-PbO glass (35.7% mol PbO) SiO2-PbO glass (65.0% mol PbO)
15˚C room temp.
31.6 33.1 33.6 33.8
room temp. room temp. room temp.
33.9 34.8 36.5 38.2
B2O3-Na2O glass (37% mol Na2O)
15˚C room temp. room temp. 15˚C
39.2 39.8 40.1 42.1
B2O3-Na2O glass (33.3% mol Na2O)
15˚C
44.4
SiO2-PbO glass (60.0% mol PbO) B2O3-Na2O glass (20% mol Na2O) SiO2-Na2O glass (15% mol Na2O) SiO2-PbO glass (24.6% mol PbO) SiO2-Na2O glass (20% mol Na2O) SiO2-Na2O glass (25% mol Na2O) SiO2-Na2O glass (30% mol Na2O) B2O3-Na2O glass (25% mol Na2O) SiO2-Na2O glass (35% mol Na2O) SiO2-Na2O glass (33% mol Na2O)
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC Shackelford & Alexander
1677
15.3 sel Mechanical Page 1678 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 413. SELECTING
MODULI OF ELASTICITY IN FLEXURE OF POLYMERS (SHEET 1 OF 6)
Polymer
Modulus of Elasticity in Flexure (ASTM D790) (105 psi)
Polyester, Thermoset Cast: Flexible Olefin Copolymer, Molded: Propylene—ethylene Olefin Copolymer, Molded: Ethylene butene Polyethylene, Type I: Melt index 200
0.001—0.39 0.00140 0.00165 0.1 (ASTM D747)
Polyethylene, Type I: Melt index 6—26 Polyethylene, Type I: Melt index 0.3—3.6 Polyethylene, Type II: Melt index 20 Polyethylene, Type II: Melt index l.0—1.9
0.12—0.3 (ASTM D747) 0.13—0.27 (ASTM D747) 0.35—0.5 (ASTM D747) 0.35—0.5 (ASTM D747)
Epoxy, Standard: Cast flexible Nylon, Type 8 Polytetrafluoroethylene (PTFE) Cellulose Acetate Butyrate, ASTM Grade: S2
0.36—3.9 0.4 0.6—1.1 0.70—0.90 (ASTM D747)
Olefin Copolymer, Molded: Polyallomer Polyethylene, Type III: High molecular weight Fluorinated ethylene propylene(FEP) Polyethylene, Type III: Melt Melt index 0.l—12.0
0.7—1.3 0.75 (ASTM D747) 0.8 0.9—0.25 (ASTM D747)
Nylon, Type 6: Flexible copolymers Nylon, Type 6: Glass fiber (30%) reinforced Polypropylene: High impact Polyester, Thermoset Cast: Rigid
0.92—3.2 1.0—1.4 1.0—2.0 1—9
Cellulose Acetate, ASTM Grade: S2—1 Cellusose Acetate Propionate, ASTM Grade: 6 Cellulose Acetate Butyrate, ASTM Grade: MH Cellulose Acetate, ASTM Grade: MS—1, MS—2
1.05—1.65 (ASTM D747) 1.1 1.20—1.40 (ASTM D747) 1.25—1.90 (ASTM D747)
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1678
CRC Handbook of Materials Science & Engineering
15.3 sel Mechanical Page 1679 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 413. SELECTING
MODULI OF ELASTICITY IN FLEXURE OF POLYMERS (SHEET 2 OF 6)
Polymer
Modulus of Elasticity in Flexure (ASTM D790) (105 psi)
Chlorinated polyether Polyethylene, Type III: Melt index 0.2—0.9 Nylon, Type 6: General purpose Cellusose Acetate Propionate, ASTM Grade: 3
1.3 (0.1% offset) 1.3—1.5 (ASTM D747) 1.4—3.9 1.45—1.55
Polyethylene, Type III: Melt index 1.5—15 Cellulose Acetate, ASTM Grade: MH—1, MH—2 Cellulose Acetate, ASTM Grade: H2—1 Nylon, Type 11
1.5 (ASTM D747) 1.50—2.15 (ASTM D747) 1.50—2.35 (ASTM D747) 1.51
6/10 Nylon: General purpose Cellusose Acetate Propionate, ASTM Grade: 1 Polypropylene: General purpose Polyvinylidene— fluoride (PVDF)
1.6—2.8 1.7—1.8 1.7—2.5 1.75—2.0
6/6 Nylon: General purpose extrusion Cellulose Acetate Butyrate, ASTM Grade: H4 Polypropylene: Flame retardant Polytrifluoro chloroethylene (PTFCE)
1.75—4.1 1.8 (ASTM D747) 1.9—6.1 2.0—2.5
Cellulose Acetate, ASTM Grade: H4—1 ABS Resins; Molded, Extruded: Very high impact ABS Resins; Molded, Extruded: Low temperature impact Polystyrene; Molded: High impact
2.0—2.55 (ASTM D747) 2.0—3.2 2.0—3.2 2.3—4.0
ABS Resins; Molded, Extruded: High impact Thermoset Allyl diglycol carbonate Acrylic Moldings: High impact grade PVC–acrylic injection molded
2.5—3.2 2.5—3.3 2.7—3.6 3
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC Shackelford & Alexander
1679
15.3 sel Mechanical Page 1680 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 413. SELECTING
MODULI OF ELASTICITY IN FLEXURE OF POLYMERS (SHEET 3 OF 6)
Polymer
Modulus of Elasticity in Flexure (ASTM D790) (105 psi)
Polycarbonate Polyester, Injection Moldings: General purpose grade Polypropylene: Asbestos filled Rubber phenolic—chopped fabric filled
3.4 3.4 3.4—6.5 3.5
ABS Resins; Molded, Extruded: Medium impact ABS Resins; Molded, Extruded: Heat resistant Acrylic Cast Resin Sheets, Rods: General purpose, type I Acrylic Moldings: Grades 5, 6, 8
3.5—4.0 3.5—4.2 3.5—4.5 3.5—5.0
Polystyrene; Molded: Medium impact Phenylene Oxide: SE—100 Phenylene Oxide: SE—1 Polyacetal Copolymer: Standard
3.5—5.0 3.6 3.6 3.75
Polyacetal Copolymer: High flow Polyvinyl Chloride And Copolymers: Rigid—normal impact Chlorinated polyvinyl chloride Phenylene oxides (Noryl): Standard
3.75 3.8—5.4 3.85 3.9
ABS–Polycarbonate Alloy PVC–acrylic sheet Polyacetal Homopolymer: 22% TFE reinforced Polyarylsulfone
4 4 4 4
Acrylic Cast Resin Sheets, Rods: General purpose, type II Epoxy, High performance: Cast, rigid Polystyrene; Molded: General purpose Rubber phenolic—woodflour or flock filled
4.0—5.0 4—5 4—5 4—6
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1680
CRC Handbook of Materials Science & Engineering
15.3 sel Mechanical Page 1681 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 413. SELECTING
MODULI OF ELASTICITY IN FLEXURE OF POLYMERS (SHEET 4 OF 6)
Polymer
Modulus of Elasticity in Flexure (ASTM D790) (105 psi)
Polypropylene: Glass reinforced Polyacetal Homopolymer: Standard 6/6 Nylon: General purpose molding Epoxy novolacs: Cast, rigid
4—8.2 4.1 4.1—4.5, 1.75 4.4—4.8
Epoxy, Standard: Cast rigid Ceramic reinforced (PTFE) Rubber phenolic—asbestos filled Polymide: Unreinforced
4.5—5.4 4.64 5 5—7
Nylon, Type 6: Cast Polyphenylene sulfide: Standard Phenylene Oxide: Glass fiber reinforced Phenolic, Molded: General: woodflour and flock filled
5.05 5.5—6.0 7.4—10.4 8—12
Phenolic, Molded: Shock: paper, flock, or pulp filled 6/10 Nylon: Glass fiber (30%) reinforced Polyacetal Homopolymer: 20% glass reinforced Phenolic, Molded: High shock: chopped fabric or cord filled
8—12 8.5 8.8 9—13
Melamine, Molded: Unfilled Melamine, Molded: Cellulose filled electrical 6/6 Nylon: Glass fiber reinforced Phenolics: Molded: Arc resistant—mineral
10—13 10—13 10—18 10—30
Polyacetal Copolymer: 25% glass reinforced 6/6 Nylon: Glass fiber Molybdenum disulfide filled Polycarbonate (40% glass fiber reinforced) Polyester, Moldings: Glass reinforced self extinguishing
11 11—13 12 12
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
1681
15.3 sel Mechanical Page 1682 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 413. SELECTING
MODULI OF ELASTICITY IN FLEXURE OF POLYMERS (SHEET 5 OF 6) Modulus of Elasticity in Flexure (ASTM D790) (105 psi)
Polymer Polystyrene; Molded: Glass fiber -30% reinforced Phenylene oxides (Noryl): Glass fiber reinforced Polyester, Thermoplastic Moldings: Glass reinforced grades Silicone, Molded: Granular (silica) reinforced
12 12, 15.5
Glass fiber (30%) reinforced Styrene acrylonitrile (SAN) Reinforced polyester sheet molding: general purpose Epoxy, Standard: Molded Reinforced polyester moldings: High strength (glass fibers)
14.5 15—18 15—25
Polyphenylene sulfide: 40% glass reinforced Alkyds, Molded Rope (general purpose) Alkyds, Molded: Granular (high speed molding) Alkyds, Molded: Glass reinforced (heavy duty parts)
17—22 22—27 22—27 22—28
Melamine, Molded: Glass fiber filled Silicone, Molded: Fibrous (glass) reinforced Silicone, Molded: Woven glass fabric/ silicone laminate Epoxy, High performance: Glass cloth laminate
24 25 26—32 28—31
Phenolic, Molded: Very high shock: glass fiber filled Epoxy novolacs: Glass cloth laminate Polyester, Thermoplastic Moldings: General purpose grade Epoxy, Standard: General purpose glass cloth laminate
30—33 32—35
12—15 14—17
15—25
33 36—39
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1682
CRC Handbook of Materials Science & Engineering
15.3 sel Mechanical Page 1683 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 413. SELECTING
MODULI OF ELASTICITY IN FLEXURE OF POLYMERS (SHEET 6 OF 6)
Polymer
Modulus of Elasticity in Flexure (ASTM D790) (105 psi)
Polyimide: Glass reinforced Epoxy, Standard: High strength laminate Epoxy, Standard: Filament wound composite Polyester, Thermoplastic Moldings: Glass reinforced grade
38.4 53—55 69—75
Polyester, Thermoplastic Moldings: Asbestos—filled grade
90
87
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
1683
15.3 sel Mechanical Page 1684 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 414. SELECTING SHEAR MODULI OF (SHEET 1 OF 2)
GLASS
Glass
Temperature
Shear Modulus (GPa)
B2O3 glass B2O3 glass B2O3 glass B2O3 glass
300˚C 290˚C 280˚C 270˚C
4.75 5.15 5.49 5.78
B2O3 glass
260˚C 250˚C room temp. 15˚C
6.07 6.29 6.55 12.3
B2O3 glass B2O3 glass B2O3–Na2O glass (10% mol Na2O) SiO2–PbO glass (65.0% mol PbO) B2O3–Na2O glass (20% mol Na2O)
15˚C
SiO2–PbO glass (60.0% mol PbO) SiO2–PbO glass (50.0% mol PbO) SiO2–PbO glass (35.7% mol PbO) SiO2–PbO glass (55.0% mol PbO) SiO2–PbO glass (24.6% mol PbO) B2O3–Na2O glass (25% mol Na2O)
15˚C
SiO2–PbO glass (45.0% mol PbO) SiO2–PbO glass (30.0% mol PbO) B2O3–Na2O glass (37% mol Na2O)
15˚C
SiO2–PbO glass (38.4% mol PbO) B2O3–Na2O glass (33.3% mol Na2O) SiO2–Na2O glass (35% mol Na2O) SiO2–Na2O glass (18% mol Na2O) SiO2–Na2O glass (33% mol Na2O)
15˚C room temp. 160˚C room temp.
16.1 16.8 17.0 17.5 18.5 20.2 20.4 21.1 21.2 21.4 22.4 23.0 23.2 24.1 24.2 24.2
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
1684
CRC Handbook of Materials Science & Engineering
15.3 sel Mechanical Page 1685 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 414. SELECTING SHEAR MODULI OF (SHEET 2 OF 2)
GLASS
Glass
Temperature
Shear Modulus (GPa)
SiO2–Na2O glass (30% mol Na2O)
room temp. 80˚C 0˚C room temp.
24.5 24.8 25.0 25.2
–100˚C room temp. –100—160˚C –100˚C
25.8 25.8 26.9 27.2
160˚C room temp. 0˚C 80˚C
27.2 27.2 27.4 27.6
20˚C 998˚C (annealing point) 1096˚C (straining point)
31.38 33.57 34.15
SiO2–Na2O glass (18% mol Na2O) SiO2–Na2O glass (18% mol Na2O) SiO2–Na2O glass (25% mol Na2O) SiO2–Na2O glass (18% mol Na2O) SiO2–Na2O glass (20% mol Na2O) SiO2–Na2O glass (7.5% mol Na2O) SiO2–Na2O glass (5% mol Na2O) SiO2–Na2O glass (5% mol Na2O) SiO2–Na2O glass (15% mol Na2O) SiO2–Na2O glass (5% mol Na2O) SiO2–Na2O glass (5% mol Na2O) SiO2 glass SiO2 glass SiO2 glass
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
Shackelford & Alexander
1685
15.3 sel Mechanical Page 1686 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 415. SELECTING
TORSIONAL MODULI OF GRAY CAST IRONS
ASTM Class
Torsional Modulus (GPa)
20 25 30
27 to 39 32 to 41 36 to 45
35 40 50 60
40 to 48 44 to 54 50 to 55 54 to 59
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984).
Table 416. SELECTING
TORSIONAL MODULI OF TREATED DUCTILE IRONS
Treatment
Torsion Modulus (GPa)
80-55-06 60-40-18 120-90-02 65-45-12
62 63 63.4 64
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169-170, (1984).
©2001 CRC Press LLC
1686
CRC Handbook of Materials Science & Engineering
15.3 sel Mechanical Page 1687 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 417. SELECTING
MODULI OF RUPTURE FOR CERAMICS (SHEET 1 OF 5)
Ceramic
Temperature (˚C)
Modulus of Rupture (psi)
Boron Nitride (BN) parallel to c axis
1000
1.08x103
Boron Nitride (BN) parallel to c axis
1500
1.25x103
Boron Nitride (BN) parallel to c axis
1800
1.50x103
Boron Nitride (BN) parallel to c axis
700
1.90x103
Boron Nitride (BN) parallel to a axis
1000
2.18x103
Boron Nitride (BN) parallel to c axis
2000
2.45x103
Zirconium Monocarbide (ZrC)
2000
2.5x103
1200
3.4x103
Boron Nitride (BN) parallel to a axis
700
3.84x103
Hafnium Monocarbide (HfC) (ρ = 11.9 g/cm3) Zirconium Monocarbide (ZrC)
2200
4.78x103
1750
5.14x103
) (ρ=1.8g/cm3)
Cordierite (2MgO 2Al2O3 5SiO2
5.37x103
Titanium Diboride (TiB2) (98% dense) Titanium Diboride (TiB2)
(3.5 µm grain size, ρ=4.37g/cm3, 0.8wt% Ni) Mullite (3Al2O3 2SiO2)
25
Titanium Diboride (TiB2) (6.0 µm grain size, ρ=4.46g/cm3)
5.7x103 6-27x103 6.2x103
Titanium Diboride (TiB2)
(12.0 µm grain size, ρ=4.66g/cm3, 9.6wt% Ni)
6.29x103
Boron Nitride (BN) parallel to c axis
300
7.03x103
Trisilicon Tetranitride (Si3N4) (reaction sintered)
20
7.25-43.5x103
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
Shackelford & Alexander
1687
15.3 sel Mechanical Page 1688 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 417. SELECTING
MODULI OF RUPTURE FOR CERAMICS (SHEET 2 OF 5)
Ceramic
Temperature (˚C)
Modulus of Rupture (psi)
Boron Nitride (BN) parallel to c axis
25
7.28-13.2x103
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3)
800
8x103
Zirconium Monocarbide (ZrC)
1250
8.3x103
25
8.5x103
room temp.
10-14.9x103 10x103
) (ρ=2.77g/cm3)
Mullite (3Al2O3 2SiO2
Titanium Oxide (TiO2) Hafnium Dioxide (HfO2) Titanium Diboride (TiB2)
(6.0 µm grain size, ρ=4.56g/cm3, 0.16wt% Ni)
11.0x103
Silicon Carbide (SiC)
1400
11x103
Mullite (3Al2O3 2SiO2) (ρ=2.77g/cm3)
1200
11.5x103
Hafnium Monocarbide (HfC) (ρ = 11.9 g/cm3) Titanium mononitride (TiN) (10wt% AlO & 10wt% AlN)
2000
12.64x103
Mullite (3Al2O3 2SiO2) (ρ=2.77g/cm3)
400
13.5x103
Titanium Monocarbide (TiC) (ρ = 4.85 g/cm3) Silicon Carbide (SiC)
2000
13.6x103
1800
15x103
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3)
400
15x103
Boron Nitride (BN) parallel to a axis
300
15.14x103
Boron Nitride (BN) parallel to a axis
25
15.88x103
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.51g/cm3)
25
16x103
Zirconium Monocarbide (ZrC)
room temp.
16.6-22.5x103
13.34x103
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
1688
CRC Handbook of Materials Science & Engineering
15.3 sel Mechanical Page 1689 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 417. SELECTING
MODULI OF RUPTURE FOR CERAMICS (SHEET 3 OF 5)
Ceramic
Temperature (˚C)
Modulus of Rupture (psi)
Mullite (3Al2O3 2SiO2) (ρ=2.77g/cm3)
800
16.7x103
Aluminum Nitride (AlN)
1400
18.1x103
Molybdenum Disilicide (MoSi2) (ρ = 5.57 g/cm3)
room temp.
18.57x103 19x103
Titanium Diboride (TiB2) Zirconium Oxide (ZrO2) (5-10 CaO stabilized)
room temp.
20-35x103 23.93x103
Titanium mononitride (TiN) (30wt% AlO & 10wt% AlN) Beryllium Oxide (BeO)
room temp.
24-29 x103
Silicon Carbide (SiC)
1300
25x103
Silicon Carbide (SiC)
room temp.
27x103
Aluminum Nitride (AlN)
1000
27x103
Aluminum Oxide (Al2O3) (80% dense, 20µm grain size)
600 20
28x103 30x103
1100 room temp. 900 room temp.
30x103 30x103 31x103 32.67x103
Aluminum Oxide (Al2O3) (80% dense, 20µm grain size) Aluminum Oxide (Al2O3) (80% dense, 20µm grain size) Zirconium Oxide (ZrO2) (MgO stabilized) Aluminum Oxide (Al2O3) (80% dense, 20µm grain size) Titanium Monocarbide (TiC) (ρ = 4.85 g/cm3) Titanium mononitride (TiN) (30wt% AlO & 30wt% AlN)
33.25x103
Titanium mononitride (TiN)
34x103
Hafnium Monocarbide (HfC) (ρ = 11.9 g/cm3) Molybdenum Disilicide (MoSi2) (hot pressed)
room temp. room temp.
34.67x103 36-57x103
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
Shackelford & Alexander
1689
15.3 sel Mechanical Page 1690 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 417. SELECTING
MODULI OF RUPTURE FOR CERAMICS (SHEET 4 OF 5) Temperature (˚C)
Ceramic
Modulus of Rupture (psi)
>38x103
Dichromium Trioxide (Cr2O3) Aluminum Nitride (AlN) (hot pressed)
25
38.5x103
Trisilicon Tetranitride (Si3N4) (sintered)
20
39.9-121.8x103 42x103
Silicon Carbide (SiC) (with 1wt% B addictive)
Molybdenum Disilicide (MoSi2) (hot pressed)
1100 room temp. 1200
42x103 50.7x103 55.00x103
Tungsten Monocarbide (WC)
room temp.
55.65-84x103
Aluminum Oxide (Al2O3) (80% dense, 3µm grain size)
20
56x103
Aluminum Oxide (Al2O3) (80% dense, 3µm grain size) Molybdenum Disilicide (MoSi2) (sintered)
58x103
Silicon Carbide (SiC) (with 1 wt% Be addictive)
900 room temp.
58x103 60 x103
Molybdenum Disilicide (MoSi2) (hot pressed)
600 20 980 1090
62x103 65.3-159.5x103 67.25x103 72.00x103
Molybdenum Disilicide (MoSi2) (sintered)
1090
86.00x103 131 x103
Aluminum Oxide (Al2O3) (80% dense, 3µm grain size) Aluminum Oxide (Al2O3) Aluminum Oxide (Al2O3) (80% dense, 3µm grain size) Trisilicon Tetranitride (Si3N4) (hot pressed) Molybdenum Disilicide (MoSi2) (sintered)
Aluminum Oxide (Al2O3) (single crystal) Silicon Carbide (SiC) (with 1wt% Al addictive) Aluminum Oxide (Al2O3)
136x103
(zirconia toughened alumina, 15 vol% ZrO2)
137x103
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
1690
CRC Handbook of Materials Science & Engineering
15.3 sel Mechanical Page 1691 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 417. SELECTING
MODULI OF RUPTURE FOR CERAMICS (SHEET 5 OF 5)
Ceramic
Temperature (˚C)
Modulus of Rupture (psi)
Aluminum Oxide (Al2O3)
(zirconia toughened alumina, 25 vol% ZrO2) Aluminum Oxide (Al2O3) (zirconia toughened alumina, 50 vol% ZrO2) Zirconium Oxide (ZrO2) (sintered yittria doped zirconia) Zirconium Oxide (ZrO2) (hot pressed yittria doped zirconia)
139x103 145x103 148x103 222x103
To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).
©2001 CRC Press LLC
Shackelford & Alexander
1691
15.3 sel Mechanical Page 1692 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 418. SELECTING
POISSON ’S RATIOS FOR CERAMICS (SHEET 1 OF 2)
Ceramic
Poisson’s Ratio
Titanium Diboride (TiB2)
0.09—0.28 0.10
Titanium Diboride (TiB2) (6.0 µm grain size, ρ=4.46g/cm3) Titanium Diboride (TiB2)
(6.0 µm grain size, ρ=4.56g/cm3, 0.16wt% Ni) Titanium Diboride (TiB2)
0.11
(3.5 µm grain size, ρ=4.37g/cm3, 0.8wt% Ni)
0.12
Zirconium Diboride (ZrB2)
0.144
Titanium Diboride (TiB2)
(12.0 µm grain size, ρ=4.66g/cm3, 9.6wt% Ni) Molybdenum Disilicide (MoSi2)
0.15 0.158—0.172
Magnesium Oxide (MgO) (ρ = 3.506 g/cm3) (room temp) Hafnium Monocarbide (HfC)
0.163 0.166
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3)
0.17
Tantalum Monocarbide (TaC)
0.1719—0.24
Silicon Carbide (SiC) (ρ = 3.128 g/cm3) (room temp) Titanium Monocarbide (TiC) Boron Carbide (B4C)
0.183—0.192
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3) Aluminum Oxide (Al2O3) Trisilicon tetranitride (Si3N4) (presureless sintered) Zirconium Oxide (ZrO2) (partially stabilized) Zirconium Oxide (ZrO2) (fully stabilized)
0.187—189
0.207 0.21 0.21—0.27 0.22—0.27 0.23 0.23—0.32
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
1692
CRC Handbook of Materials Science & Engineering
15.3 sel Mechanical Page 1693 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 418. SELECTING
POISSON ’S RATIOS FOR CERAMICS (SHEET 2 OF 2)
Ceramic
Poisson’s Ratio
Mullite (3Al2O3 2SiO2) (ρ=2.779 g/cm3) Tungsten Monocarbide (WC) Trisilicon tetranitride (Si3N4)
0.238
Zirconium Oxide (ZrO2) (plasma sprayed) Zirconium Monocarbide (ZrC) (ρ = 6.118 g/cm3) Cordierite (2MgO 2Al2O3 5SiO2) (glass) Beryllium Oxide (BeO) Cerium Dioxide (CeO2) Thorium Dioxide (ThO2) (ρ=9.722 g/cm3)
0.24
0.24 0.25 0.257 0.26 0.26—0.34
0.27—0.31
Titanium Oxide (TiO2)
0.275 0.28
Spinel (Al2O3 MgO) (ρ=3.510 g/cm3)
0.294
Uranium Dioxide (UO2) (ρ=10.37 g/cm3)
0.302
Zirconium Oxide (ZrO2) (room temp)
0.324—0.337
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)
©2001 CRC Press LLC
Shackelford & Alexander
1693
15.3 sel Mechanical Page 1694 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 419. SELECTING
POISSON ’S RATIOS OF GLASS (SHEET 1 OF 2)
Glass
SiO2–PbO glass (38.4% mol PbO) SiO2 glass SiO2–PbO glass (30.0% mol PbO) SiO2–Na2O glass (15% mol Na2O) SiO2–Na2O glass (20% mol Na2O) SiO2–Na2O glass (25% mol Na2O)
Temperature (˚C)
room temp. room temp.
0.203 0.219 0.219 0.222
room temp. room temp. room temp.
0.236 0.248 0.249 0.249
SiO2–PbO glass (55.0% mol PbO)
SiO2–Na2O glass (35% mol Na2O) SiO2–Na2O glass (33% mol Na2O) SiO2–PbO glass (24.6% mol PbO) SiO2–PbO glass (35.7% mol PbO) SiO2–PbO glass (50.0% mol PbO) B2O3–Na2O glass (15.4% mol Na2O) B2O3–Na2O glass (25% mol Na2O)
15
B2O3–Na2O glass (22.8% mol Na2O) B2O3–Na2O glass (37% mol Na2O)
15
B2O3–Na2O glass (29.8% mol Na2O) B2O3–Na2O glass (10% mol Na2O)
0.150 0.166–0.177 0.174 0.183
room temp. room temp.
SiO2–PbO glass (45.0% mol PbO)
SiO2–Na2O glass (30% mol Na2O)
Poisson’s Ratio
15
0.252 0.259 0.271 0.2713 0.272 0.2739 0.274 0.2740
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
1694
CRC Handbook of Materials Science & Engineering
15.3 sel Mechanical Page 1695 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 419. SELECTING
POISSON ’S RATIOS OF GLASS (SHEET 2 OF 2)
Glass
Temperature (˚C)
B2O3–Na2O glass (33.3% mol Na2O)
15
0.2771 0.279 0.281 0.283
15 room temp.
0.2860 0.288–0.309 0.292
B2O3–Na2O glass (5.5% mol Na2O) SiO2–PbO glass (60.0% mol PbO) SiO2–PbO glass (65.0% mol PbO) B2O3–Na2O glass (20% mol Na2O) B2O3 glass B2O3–Na2O glass (37.25% mol Na2O)
Poisson’s Ratio
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
Shackelford & Alexander
1695
15.3 sel Mechanical Page 1696 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 420. SELECTING
COMPRESSION POISSON ’S RATIOS OF TREATED DUCTILE IRONS
Treatment
Compression Poisson’s Ratio
60-40-18 120 90-02 65-45-12 80-55-06
0.26 0.27 0.31 0.31
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169-170, (1984).
Table 421. SELECTING
TORSION POISSON ’S RATIOS OF TREATED DUCTILE IRONS
Treatment
Torsion Poisson’s Ratio
120 90-02 60-40-18 65-45-12 80-55-06
0.28 0.29 0.29 0.31
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169-170, (1984).
©2001 CRC Press LLC
1696
CRC Handbook of Materials Science & Engineering
15.3 sel Mechanical Page 1697 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 422. SELECTING
ELONGATION OF TOOL STEELS
Type
Condition
Elongation (%)
L6 S1 L2 S1
Oil quenched from 845 •C and single tempered at 315 •C Oil quenched from 930 •C and single tempered at 315 •C Oil quenched from 855 •C and single tempered at 205 •C Oil quenched from 930 •C and single tempered at 425 •C
4 4 5 5
S5 S5 S7 L6
Oil quenched from 870 •C and single tempered at 205 •C Oil quenched from 870 •C and single tempered at 315 •C Fan cooled from 940 •C and single tempered at 205 •C Oil quenched from 845 •C and single tempered at 425 •C
5 7 7 8
S1 S5 S7 L2
Oil quenched from 930 •C and single tempered at 540 •C Oil quenched from 870 •C and single tempered at 425 •C Fan cooled from 940 •C and single tempered at 315 •C Oil quenched from 855 •C and single tempered at 315 •C
9 9 9 10
S5 S7 S7 L2
Oil quenched from 870 •C and single tempered at 540 •C Fan cooled from 940 •C and single tempered at 425 •C Fan cooled from 940 •C and single tempered at 540 •C Oil quenched from 855 •C and single tempered at 425 •C
10 10 10 12
L6 S1 S7 L2
Oil quenched from 845 •C and single tempered at 540 •C Oil quenched from 930 •C and single tempered at 650 •C Fan cooled from 940 •C and single tempered at 650 •C Oil quenched from 855 •C and single tempered at 540 •C
12 12 14 15
S5 L6 S1 L2
Oil quenched from 870 •C and single tempered at 650 •C Oil quenched from 845 •C and single tempered at 650 •C Annealed Annealed
15 20 24 25
L2 L6 S5 S7
Oil quenched from 855 •C and single tempered at 650 •C Annealed Annealed Annealed
25 25 25 25
Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984).
©2001 CRC Press LLC Shackelford & Alexander
1697
15.3 sel Mechanical Page 1698 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 423. SELECTING
ELONGATION OF DUCTILE IRONS
Specification Number
Grade or Class
Elongation (%)
ASTM A536-72; MIL-1-11466B(MR) ASTM A476-70(d); SAE AMS5316 ASTM A536-72; MIL-1-11466B(MR) SAE J434c
120-90-02 80-60-03 100-70-03 D7003
2 3 3 3
ASTM A536-72; MIL-1-11466B(MR) SAE J434c MlL-I-24137(Ships) ASTM A536-72; MIL-1-11466B(MR)
80-55-06 D5506 Class B 65-45-12
6 6 7 12
SAE J434c MlL-I-24137(Ships) ASTM A395-76; ASME SA395 ASTM A536-72; MIL-1-11466B(MR)
D4512 Class A 60-40-18 60-40-18
12 15 18 18
SAE J434c MlL-I-24137(Ships)
D4018 Class C
18 20
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169, (1984).
©2001 CRC Press LLC
1698
CRC Handbook of Materials Science & Engineering
15.3 sel Mechanical Page 1699 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 424. SELECTING
ELONGATION OF MALLEABLE IRON CASTINGS
Specification Number
Grade or Class
Elongation (%)
ASTM A220; ANSI C48.2; MIL-I-11444B ASTM A602; SAE J158 ASTM A220; ANSI C48.2; MIL-I-11444B ASTM A602; SAE J158
90001 M8501(b) 80002 M7002(b)
1 1 2 2
ASTM A220; ANSI C48.2; MIL-I-11444B ASTM A602; SAE J158 ASTM A602; SAE J158 ASTM A220; ANSI C48.2; MIL-I-11444B
70003 M5003(a) M5503(b) 60004
3 3 3 4
ASTM A602; SAE J158 ASTM A197 ASTM A220; ANSI C48.2; MIL-I-11444B ASTM A220; ANSI C48.2; MIL-I-11444B
M4504(a) 50005 45006
4 5 5 6
ASTM A220; ANSI C48.2; MIL-I-11444B ASTM A47, A338; ANSI G48.1; FED QQ-I-666c ASTM A220; ANSI C48.2; MIL-I-11444B
45008 32510 40010
8 10 10
ASTM A602; SAE J158 ASTM A47, A338; ANSI G48.1; FED QQ-I-666c
M3210 35018
10 18
(a) Air quenched and tempered (b) Liquid quenched and tempered Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p171, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
1699
15.3 sel Mechanical Page 1700 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 425. SELECTING
TOTAL ELONGATION OF CAST ALUMINUM ALLOYS (SHEET 1 OF 3)
Alloy AA No.
Temper
Elongation (in 2 in.) (%)
242.0 242.0 336.0 336.0
T571 T61 T551 T65
0.5 0.5 0.5 0.5
355.0 A390.0 A390.0 A390.0
T7 F,T5 T6 T7
0.5 <1.0 <1.0 <1.0
A390.0 A390.0 242.0 242.0
T6 T7 T21 T571
<1.0 <1.0 1.0 1.0
355.0 390.0 390.0 A390.0
T61 F T5 F,T5
1.0 1.0 1.0 1.0
355.0 355.0 355.0 242.0
T51 T71 T62 T77
1.5 1.5 1.5 2.0
295.0 308.0 319.0 319.0
T62 F F T6
2.0 2.0 2.0 2.0
355.0 355.0 356.0 356.0
T51 T7 T51 T7
2.0 2.0 2.0 2.0
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
1700
CRC Handbook of Materials Science & Engineering
15.3 sel Mechanical Page 1701 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 425. SELECTING
TOTAL ELONGATION OF CAST ALUMINUM ALLOYS (SHEET 2 OF 3)
Alloy AA No.
Temper
Elongation (in 2 in.) (%)
208.0 319.0 384.0, A384.0 413.0
F F F F
2.5 2.5 2.5 2.5
319.0 355.0 355.0 360.0
T6 T6 T71 F
3.0 3.0 3.0 3.0
380.0 713.0 356.0 356.0
F T5 T6 T71
3.0 3.0 3.5 3.5
383.0 A413.0 355.0 713.0
F F T6 T5
3.5 3.5 4.0 4.0
201.0 296.0 295.0 296.0
T7 T7 T6 T6
4.5 4.5 5.0 5.0
356.0 A360.0 712.0 518.0
T6 F F F
5.0 5.0 5.0 5.0—8.0
359.0 354.0 356.0 359.0
T62 T61 T7 T61
5.5 6.0 6.0 6.0
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
1701
15.3 sel Mechanical Page 1702 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 425. SELECTING
TOTAL ELONGATION OF CAST ALUMINUM ALLOYS (SHEET 3 OF 3)
Alloy AA No.
Temper
Elongation (in 2 in.) (%)
201.0 357.0, A357.0 443.0 295.0
T6 T62 F T4
7 8.0 8.0 8.5
296.0 C443.0 514.0 771.0
T4 F F T6
9.0 9.0 9.0 9.0
B443.0 850.0 206.0, A206.0 535.0
F T5 T7 F
10.0 10.0 11.7 13
520.0 201.0
T4 T4
16 20
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
1702
CRC Handbook of Materials Science & Engineering
15.3 sel Mechanical Page 1703 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 426. SELECTING
TOTAL ELONGATION OF POLYMERS (SHEET 1 OF 4)
Polymer
Elongation (in 2 in.), (ASTM D638) (%)
Polycarbonate (40% glass fiber reinforced) Phenolic, Molded, Very high shock: glass fiber filled Reinforced polyester moldings: High strength (glass fibers) Phenolic, Molded, High shock: chopped fabric or cord filled
0—5 0.2 0.3—0.5 0.37—0.57
Phenolic, Molded, General: woodflour and flock filled Styrene acrylonitrile (SAN) Melamine, Molded: Cellulose electrical Rubber phenolic—woodflour or flock filled
0.4—0.8 0.5—4.5 0.6 0.75—2.25
Polymide: Glass reinforced Polymide: Unreinforced Ureas; Molded: Alpha—cellulose filled (ASTM Type l) Polystyrenes, Molded: General purpose
<1 <1—1.2 1 1.0—2.3
Polyvinyl Chloride & Copolymers: Rigid—normal impact Polyester, Thermoplastic Moldings: Glass reinforced grades Polystyrenes, Molded: Glass fiber -30% reinforced Glass fiber (30%) reinforced Styrene acrylonitrile (SAN)
1—10 1—5 1.1 1.4—1.6
Epoxy, Standard: Cast flexible Polyester, Thermoset Cast: Rigid 6/6 Nylon, Molded, Extruded: Glass fiber reinforced 6/10 Nylon: Glass fiber (30%) reinforced
1.5-60 1.7—2.6 1.8—2.2 1.9
Polypropylene: Glass reinforced Epoxy, High performance: Cast, rigid Acrylic Cast Resin Sheets, Rods: General purpose, type I Acrylic Cast Resin Sheets, Rods: General purpose, type II
2—4 2—5 2—7 2—7
Nylon, Type 6: Glass fiber (30%) reinforced Epoxy novolacs: Glass cloth laminate Silicones: Fibrous (glass) reinforced silicones Silicone: Granular (silica) reinforced
2.2—3.6 2.2—4.8 <3 (ASTM D651) <3 (ASTM D651)
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
1703
15.3 sel Mechanical Page 1704 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 426. SELECTING
TOTAL ELONGATION OF POLYMERS (SHEET 2 OF 4)
Polymer
Elongation (in 2 in.), (ASTM D638) (%)
6/6 Nylon: Glass fiber Molybdenum disulfide filled Polyacetal Copolymer: 25% glass reinforced Polyphenylene sulfide: Standard Polystyrenes, Molded: Medium impact
3 3 3 3.0—40
Polypropylene: Flame retardant Polypropylene: Asbestos filled Acrylic Moldings: Grades 5, 6, 8 Polyphenylene sulfide: 40% glass reinforced
3—15 3—20 3—5 3—9
Phenylene Oxides: Glass fiber reinforced Epoxy, Standard: Cast rigid Polyester, Thermoplastic Moldings: Glass reinforced grade Polyester, Thermoplastic Moldings: Asbestos—filled grade
4—6 4.4 <5 <5
Polyester, Thermoplastic: Glass reinforced self extinguishing ABS Resins: Medium impact ABS Resins: High impact Polyacetal Homopolymer: 20% glass reinforced
5 5—20 5—50 7
Ceramic reinforced (PTFE) Polyacetal Homopolymer: 22% TFE reinforced Polyvinyl Chloride & Copolymers: Vinylidene chloride Polyarylsulfone
10—200 12 15—30 15—40
6/6 Nylon: General purpose molding ABS Resins: Heat resistant Nylon, Molded, Extruded Type 6: Cast Olefin Copolymers, Molded: Ethylene butene
15—60, 300 20 20 20
ABS Resins: Very high impact Polyacetal Homopolymer: Standard Acrylic Moldings: High impact grade Polyester, Thermoset Cast: Flexible
20—50 25 >25 25—300
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1704
CRC Handbook of Materials Science & Engineering
15.3 sel Mechanical Page 1705 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 426. SELECTING
TOTAL ELONGATION OF POLYMERS (SHEET 3 OF 4)
Polymer
Elongation (in 2 in.), (ASTM D638) (%)
Nylon, Molded, Extruded Type 6: General purpose ABS Resins: Low temperature impact Polypropylene: High impact Polyacetal Copolymer: High flow
30—100 30—200 30—>200 40
Phenylene Oxides: SE—100 Phenylene oxides (Noryl): Standard Polyethylene, Type III: Melt Melt index 0.l—12.0 Phenylene Oxides: SE—1
50 50—100 50—l,000 60
Polyacetal Copolymer: Standard Polyethylene, Type I: Melt index 200 6/10 Nylon: General purpose 6/6 Nylon: General purpose extrusion
60—75 80—100 (ASTM D412) 85—220 90—240
PVC–Acrylic Alloy: sheet Nylon, Type 11 Polypropylene: General purpose Polyethylene, Type III: Melt index 1.5—15
>100 100—120 100—600 100—700
Polycarbonate ABS–Polycarbonate Alloy Nylon, Type 12 Polytrifluoro chloroethylene (PTFCE)
110 110 120—350 125—175
Polyethylene, Type I: Melt index 6—26 Chlorinated polyether PVC–Acrylic Alloy: injection molded Polyethylene, Type II: Melt index 20
125—675 (ASTM D412) 130 150 200
Polyvinylidene— fluoride (PVDF) Nylon, Molded, Extruded Type 6: Flexible copolymers Polyethylene, Type II: Melt index l.0—1.9 Polyvinyl Chloride & Copolymers: Nonrigid—general
200—300 200—320 200—425 200—450
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
1705
15.3 sel Mechanical Page 1706 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 426. SELECTING
TOTAL ELONGATION OF POLYMERS (SHEET 4 OF 4)
Polymer
Elongation (in 2 in.), (ASTM D638) (%)
Polyvinyl Chloride & Copolymers: Nonrigid—electrical Polyester, Thermoplastic Moldings: General purpose grade Fluorinated ethylene propylene (FEP) Polytetrafluoroethylene (PTFE)
220—360 250 250—330 250—350
Polyester, Thermoplastic Moldings: General purpose grade Olefin Copolymers, Molded: Polyallomer Nylon, Type 8 Polyethylene, Type III: High molecular weight
300 300—400 400 400
Olefin Copolymers, Molded: Ionomer Polyethylene, Type I: Melt index 0.3—3.6 Olefin Copolymers, Molded: EEA (ethylene ethyl acrylate)
450 500—725 (ASTM D412) 650
Olefin Copolymers, Molded: EVA (ethylene vinyl acetate) Polyethylene, Type III: Melt index 0.2—0.9
650 700—1,000
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1706
CRC Handbook of Materials Science & Engineering
15.3 sel Mechanical Page 1707 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 427. SELECTING
ELONGATION AT YIELD OF POLYMERS
Polymer
Elongation at Yield, (ASTM D638) (%)
Polystyrene: General purpose Polystyrene: Glass fiber -30% reinforced Polystyrene: Medium impact Polyphenylene sulfide: 40% glass reinforced
1.0—2.3 1.1 1.2—3.0 1.25
Polystyrene: Glass fiber (30%) reinforced SAN Polystyrene: High impact Polyphenylene sulfide: Standard Phenylene oxides (Noryl): Glass fiber reinforced
1.4—1.6 1.5—2.0 1.6 2—1.6
Polyacetal Copolymer: 25% glass reinforced Polycarbonate Nylon, Type 6: Cast Polypropylene: Asbestos filled
3 5 5 5
6/6 Nylon: General purpose molding 6/6 Nylon: General purpose extrusion 6/10 Nylon: General purpose Phenylene oxides (Noryl): Standard
5—25 5—30 5—30 5.6
Nylon, Type 12 Polyarylsulfone Polypropylene: High impact Polypropylene: General purpose
5.8 6.5—13 7—13 9—15
Polyacetal Homopolymer: Standard Polyacetal Copolymer: Standard Polyacetal Copolymer: High flow Chlorinated polyether
12 12 12 15
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
1707
15.3 sel Mechanical Page 1708 Wednesday, December 31, 1969 17:00
Selecting Mechanical Properties
Table 428. SELECTING
AREA REDUCTION OF TOOL STEELS
Type
Condition
Area Reduction (%)
L6 S1 L2 S1
Oil quenched from 845 •C and single tempered at 315 •C Oil quenched from 930 •C and single tempered at 315 •C Oil quenched from 855 •C and single tempered at 205 •C Oil quenched from 930 •C and single tempered at 425 •C
9 12 15 17
L6 S5 S7 S1
Oil quenched from 845 •C and single tempered at 425 •C Oil quenched from 870 •C and single tempered at 205 •C Fan cooled from 940 •C and single tempered at 205 •C Oil quenched from 930 •C and single tempered at 540 •C
20 20 20 23
S5 S7 S5 S7
Oil quenched from 870 •C and single tempered at 315 •C Fan cooled from 940 •C and single tempered at 315 •C Oil quenched from 870 •C and single tempered at 425 •C Fan cooled from 940 •C and single tempered at 425 •C
24 25 28 29
L2 L6 S5 S7
Oil quenched from 855 •C and single tempered at 315 •C Oil quenched from 845 •C and single tempered at 540 •C Oil quenched from 870 •C and single tempered at 540 •C Fan cooled from 940 •C and single tempered at 540 •C
30 30 30 33
L2 S1 S5 L2
Oil quenched from 855 •C and single tempered at 425 •C Oil quenched from 930 •C and single tempered at 650 •C Oil quenched from 870 •C and single tempered at 650 •C Oil quenched from 855 •C and single tempered at 540 •C
35 37 40 45
S7 L6 L2 S5
Fan cooled from 940 •C and single tempered at 650 •C Oil quenched from 845 •C and single tempered at 650 •C Annealed Annealed
45 48 50 50
S1 L2 L6 S7
Annealed Oil quenched from 855 •C and single tempered at 650 •C Annealed Annealed
52 55 55 55
Area Reduction in 50 mm or 2 in. Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984).
©2001 CRC Press LLC
1708
CRC Handbook of Materials Science & Engineering
Shackelford, James F. & Alexander, W. “Selecting Electrical Properties” Materials Science and Engineering Handbook Ed. James F. Shackelford & W. Alexander Boca Raton: CRC Press LLC, 2001
16.0 sel Electrical Page 1709 Wednesday, December 31, 1969 17:00
CHAPTER 14
List of Tables
Selecting Electrical Properties
Resistivity Selecting Electrical Resistivity of Alloy Cast Irons Selecting Resistivity of Ceramics Selecting Volume Resistivity of Glass Selecting Volume Resistivity of Polymers Critical Temperature Selecting Critical Temperature of Superconductive Elements Dissipation Factor Selecting Dissipation Factor for Polymers at 60 Hz Selecting Dissipation Factor for Polymers at 1 MHz Dielectric Selecting Dielectric Strength of Polymers Selecting Dielectric Constants of Polymers at 60 Hz Selecting Dielectric Constants of Polymers at 1 MHz Tangent Loss Selecting Tangent Loss in Glass Selecting Tangent Loss in Glass by Temperature Selecting Tangent Loss in Glass by Frequency (continued)
©2001 CRC Press LLC
1709
16.0 sel Electrical Page 1710 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties List of Tables (Continued)
Permittivity Selecting Electrical Permittivity of Glass Selecting Electrical Permittivity of Glass by Frequency Arc Resistance Selecting Arc Resistance of Polymers
©2001 CRC Press LLC
1710
CRC Handbook of Materials Science & Engineering
16.1 sel Electrical Page 1711 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 429. SELECTING
ELECTRICAL RESISTIVITY OF ALLOY CAST IRONS
a
Description
Electrical Resistivity (µΩ • m)
Corrosion–Resistant High– Silicon iron Abrasion–Resistant Low–C White Iron Heat–Resistant Medium–silicon Ductile Iron
0.50 0.53 0.58 to 0.87
Abrasion–Resistant Martensitic nickel–chromium White Iron Corrosion–Resistant High–nickel gray iron
0.80
Corrosion–Resistant High–nickel ductile iron
1.0a
Heat–Resistant High–nickel Ductile Iron (23 Ni) Heat–Resistant High–nickel Ductile Iron (20 Ni) Heat–Resistant Gray High–nickel Iron
1.0a 1.02 1.4 to 1.7
Heat–Resistant Nickel–chromium–silicon Gray Iron Heat–Resistant High–aluminum Gray Iron
1.5 to 1.7 2.4
1.0a
Estimated.
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC
Shackelford & Alexander
1711
16.1 sel Electrical Page 1712 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 430. SELECTING RESISTIVITY OF (SHEET 1 OF 5)
CERAMICS
Temperature Range of Validity
Ceramic Boron Carbide (B4C) Titanium Monocarbide (TiC) Zircoium Oxide (ZrO2) (stabilized) Zircoium Oxide (ZrO2) (stabilized) Silicon Carbide (SiC) (with 1 wt% Al additive) Zircoium Oxide (ZrO2) (stabilized)
Resistivity (Ω–cm)
0.3–0.8 0.3–0.8
2200˚C 2000˚C
0.37 0.59 0.8
Zircoium Oxide (ZrO2) (stabilized)
1700˚C 1300˚C 1200˚C
1.6 9.4 77
Silicon Carbide (SiC)
20˚C
102 –1012
Magnesium Oxide (MgO) Zircoium Oxide (ZrO2) (stabilized)
1727˚C
4x102
700˚C 900˚C
2300
Zircoium Oxide (ZrO2) (stabilized)
) (ρ=2.3g/cm3)
Cordierite (2MgO 2Al2O3 5SiO2
1.9x104 2x104
Silicon Carbide (SiC) (with 1 wt% B additive) Boron Nitride (BN)
1000˚C
3.1x104
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3)
700˚C
8.0x104
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3)
900˚C
3.5x105
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=1.8g/cm3)
900˚C
7.0x105
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3)
500˚C
7.7x105
Zirconium Diboride (ZrB2)
liquid air temperature 1000˚C
1.8x106 2x106
Aluminum Oxide (Al2O3)
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986–1991).
©2001 CRC Press LLC
1712
CRC Handbook of Materials Science & Engineering
16.1 sel Electrical Page 1713 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 430. SELECTING RESISTIVITY OF (SHEET 2 OF 5)
CERAMICS
Ceramic
Temperature Range of Validity
Resistivity (Ω–cm)
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3)
700˚C
3.0x106
Titanium Diboride (TiB2) (polycrystalline)
liquid air temp.
3.7x106
Zirconium Mononitirde (TiN)
liquid air
3.97x106
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=1.8g/cm3)
700˚C
4.7x106
room temp.
6.6±0.2x106
(crystal length 1.5 cm, 16.5 deg. and 90 deg. orientation with respect to growth axis)
room temp.
6.7±0.2x106
Tantalum Monocarbide (TaC) (80% dense)
4.2K
8x106
Titanium Mononitirde (TiN) Titanium Diboride (TiB2) (polycrystalline)
liquid air
8.13x106
(100% dense, extrapolated)
room temp.
8.7–14.1x106
(polycrystalline) (85% dense) Zirconium Diboride (ZrB2)
room temp. 20 ˚C
9.0x106 9.2x106
Tantalum Monocarbide (TaC) (80% dense)
80K
10x106
Hafnium Diboride (HfB2)
room temp.
10–12 x 106
Titanium Mononitirde (TiN)
room temp.
11.07–130x106
Zirconium Mononitirde (TiN)
room temp.
11.52–160x106
Tantalum Monocarbide (TaC) (80% dense)
160K
15x106
(100% dense, extrapolated)
Titanium Diboride (TiB2) (monocrystalline)
(crystal length 5 cm, 39 deg. and 59 deg. orientation with respect to growth axis) Titanium Diboride (TiB2) (monocrystalline)
Titanium Diboride (TiB2)
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986–1991).
©2001 CRC Press LLC
Shackelford & Alexander
1713
16.1 sel Electrical Page 1714 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 430. SELECTING RESISTIVITY OF (SHEET 3 OF 5)
CERAMICS
Ceramic
Temperature Range of Validity
Resistivity (Ω–cm)
Molybdenum Disilicide (MoSi2)
–80˚C
18.9x106
Magnesium Oxide (MgO)
1000˚C
0.2–1x108
Tantalum Monocarbide (TaC) (80% dense)
240K
20x106
21x106
Chromium Diboride (CrB2) Molybdenum Disilicide (MoSi2)
22˚C
21.5x106
Tantalum Monocarbide (TaC) (80% dense) Titanium Diboride (TiB2)
300K
25x106
(polycrystalline) (85% dense)
room temp.
26.5–28.4x106
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3)
300˚C
3.3x107 33.4–54.9x106
Tungsten Disilicide (WSi2) Hafnium Monocarbide (HfC)
4.2K
41x106
Hafnium Monocarbide (HfC)
80K
41x106
Zirconium Monocarbide (ZrC)
4.2K
41x106
Hafnium Monocarbide (HfC)
160K
45x106
Zirconium Monocarbide (ZrC)
80K
45x106
Zirconium Monocarbide (ZrC)
160K
47x106
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=1.8g/cm3)
500˚C
4.9x107
Hafnium Monocarbide (HfC)
240K
49x106
Zirconium Monocarbide (ZrC)
240K
53x106
Hafnium Monocarbide (HfC)
300K
60x106
Zirconium Monocarbide (ZrC)
300K
61–64x106
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986–1991).
©2001 CRC Press LLC
1714
CRC Handbook of Materials Science & Engineering
16.1 sel Electrical Page 1715 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 430. SELECTING RESISTIVITY OF (SHEET 4 OF 5)
CERAMICS
Temperature Range of Validity
Ceramic
Resistivity (Ω–cm)
68 x106
Tantalum Diboride (TaB2) 1600˚C
75–80x106
500˚C
9.0x107
Zirconium Monocarbide (ZrC)
773K
97x106
Mullite (3Al2O3 2SiO2)
500˚C
108
Zirconium Monocarbide (ZrC)
1273K
137x106
Zirconium Mononitirde (TiN)
melting temp.
320x106
Titanium Mononitirde (TiN)
melting temp.
340x106
Aluminum Oxide (Al2O3)
700˚C
5.0x108
300˚C
3.0x109
Boron Nitride (BN) (90% humidity)
25˚C
5.0x109
Mullite (3Al2O3 2SiO2)
300˚C
1010
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3)
300˚C
2.0x1010
Boron Nitride (BN)
480˚C
2.3x1010
Aluminum Oxide (Al2O3)
500˚C
6.3x1010
Boron Nitride (BN) (50% humidity)
25˚C
7.0x1010
room temp.
1x1011 2x1011–1013
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm )
100˚C
2.5x1011
Boron Nitride (BN) (20% humidity)
25˚C
1.0x1012
Molybdenum Disilicide (MoSi2) Cordierite (2MgO 2Al2O3 5SiO2
) (ρ=2.1g/cm3)
Cordierite (2MgO 2Al2O3 5SiO2
) (ρ=1.8g/cm3)
Silicon Carbide (SiC) (with 2.0 wt% BN additive) Aluminum Nitride (AlN) 3
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986–1991).
©2001 CRC Press LLC
Shackelford & Alexander
1715
16.1 sel Electrical Page 1716 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 430. SELECTING RESISTIVITY OF (SHEET 5 OF 5)
CERAMICS
Ceramic
Temperature Range of Validity
Resistivity (Ω–cm)
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=1.8g/cm3)
100˚C
1.0x1013
Aluminum Oxide (Al2O3)
300˚C
1x1013 >1013
Silicon Carbide (SiC) (with 1.6 wt% BeO additive) Trisilicon tetranitride (Si3N4)
>1013
Boron Nitride (BN)
25˚C
1.7x1013
Aluminum Oxide (Al2O3)
100˚C
2x1013
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3)
100˚C
3.0x1013
Silicon Carbide (SiC) (with 1 wt% Be additive)
3x1013
Silicon Carbide (SiC) (with 3.2 wt% BeO additive)
4x1013
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=1.8g/cm3)
25˚C
1.0x1014
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3)
25˚C
1x1014
Mullite (3Al2O3 2SiO2)
25˚C
>1014
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3)
25˚C
>1x1014
Beryllium Oxide (BeO)
500˚C
1–5x1015
Beryllium Oxide (BeO)
300˚C
>1015
Aluminum Oxide (Al2O3)
25˚C
>10x1014
Magnesium Oxide (MgO)
27˚C
1.3x1015
Beryllium Oxide (BeO)
700˚C
1.5–2x1015
Beryllium Oxide (BeO)
1000˚C
4–7x1015
Beryllium Oxide (BeO)
25˚C
>1017
Silicon Dioxide (SiO2)
room temp.
1018
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986–1991).
©2001 CRC Press LLC
1716
CRC Handbook of Materials Science & Engineering
16.1 sel Electrical Page 1717 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 431. SELECTING
VOLUME RESISTIVITY OF GLASS (SHEET 1 OF 13) Temperature (˚C)
Resistivity (log Ω cm)
SiO2–Na2O glass (57.5% mol Na2O) SiO2–Na2O glass (49.3% mol Na2O) SiO2–Na2O glass (57.5% mol Na2O) SiO2–Na2O glass (49.3% mol Na2O)
1300 1300
–0.67 –0.61
1200
–0.61
1200
–0.56
SiO2–Na2O glass (44.5% mol Na2O)
1300
–0.52
SiO2–Na2O glass (57.5% mol Na2O)
1100
–0.52
SiO2–Na2O glass (49.3% mol Na2O)
1100
–0.47
SiO2–Na2O glass (44.5% mol Na2O)
1200
–0.46
SiO2–Na2O glass (39.5% mol Na2O)
1400
–0.45
SiO2–Na2O glass (39.5% mol Na2O)
1300
–0.39
SiO2–Na2O glass (44.5% mol Na2O)
1100
–0.38
SiO2–Na2O glass (34.7% mol Na2O)
1400
–0.33
SiO2–Na2O glass (39.5% mol Na2O)
1200
–0.32
SiO2–Na2O glass (34.7% mol Na2O)
1300
–0.27
SiO2–Na2O glass (39.5% mol Na2O)
1100
–0.24
SiO2–Na2O glass (34.7% mol Na2O)
1200
–0.20
SiO2–Na2O glass (29.7% mol Na2O)
1400
–0.16
SiO2–Na2O glass (39.5% mol Na2O)
1000
–0.13
SiO2–Na2O glass (34.7% mol Na2O)
1100
–0.11
SiO2–Na2O glass (29.7% mol Na2O)
1300
–0.10
SiO2–Na2O glass (29.7% mol Na2O)
1200
–0.02
SiO2–Na2O glass (34.7% mol Na2O)
1000
0.00
SiO2–Na2O glass (39.5% mol Na2O)
900
0.00
SiO2–Na2O glass (29.7% mol Na2O)
1100
0.08
Glass
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
Shackelford & Alexander
1717
16.1 sel Electrical Page 1718 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 431. SELECTING
VOLUME RESISTIVITY OF GLASS (SHEET 2 OF 13)
Glass
Temperature (˚C)
Resistivity (log Ω cm)
SiO2–Na2O glass (34.7% mol Na2O)
900
0.12
SiO2–Na2O glass (39.5% mol Na2O)
800
0.13
SiO2–Na2O glass (24.8% mol Na2O)
1200
0.17
SiO2–Na2O glass (29.7% mol Na2O)
1000
0.20
SiO2–Na2O glass (24.8% mol Na2O)
1100
0.26
SiO2–PbO glass (66.7% mol PbO)
1000
0.26
SiO2–Na2O glass (19.9% mol Na2O)
1300
0.30
SiO2–Na2O glass (39.5% mol Na2O)
700
0.33
SiO2–Na2O glass (29.7% mol Na2O)
900
0.34
SiO2–CaO glass (55.2% mol CaO)
1600
0.34
SiO2–Na2O glass (19.9% mol Na2O)
1200
0.38
SiO2–Na2O glass (24.8% mol Na2O)
1000
0.38
SiO2–CaO glass (51.4% mol CaO)
1618
0.38
SiO2–PbO glass (60% mol PbO)
1000
0.40
B2O3–Na2O glass (32.8% mol Na2O)
900
0.40
SiO2–CaO glass (55.2% mol CaO)
1550
0.42–0.43
SiO2–CaO glass (51.4% mol CaO)
1560
0.47
SiO2–Na2O glass (19.9% mol Na2O)
1100
0.48
SiO2–CaO glass (51.4% mol CaO)
1500
0.48–0.49
SiO2–PbO glass (66.7% mol PbO)
900
0.50
SiO2–CaO glass (55.2% mol CaO)
1499
0.51–0.53
SiO2–Na2O glass (24.8% mol Na2O)
900
0.52
SiO2–Na2O glass (29.7% mol Na2O)
800
0.52
SiO2–CaO glass (45.4% mol CaO)
1622
0.52
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
1718
CRC Handbook of Materials Science & Engineering
16.1 sel Electrical Page 1719 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 431. SELECTING
VOLUME RESISTIVITY OF GLASS (SHEET 3 OF 13)
Glass
Temperature (˚C)
Resistivity (log Ω cm)
SiO2–PbO glass (51.6% mol PbO)
1200
0.54
SiO2–Na2O glass (15% mol Na2O)
1500
0.56
SiO2–CaO glass (45.4% mol CaO)
1585
0.58–0.59
SiO2–PbO glass (50.0% mol PbO)
1200
0.60
B2O3–Na2O glass (32.8% mol Na2O)
800
0.60
SiO2–Na2O glass (15% mol Na2O)
1400
0.61
SiO2–Na2O glass (19.9% mol Na2O)
1000
0.61
SiO2–CaO glass (45.4% mol CaO)
1550
0.65
B2O3–Na2O glass (21.9% mol Na2O)
1000
0.65
SiO2–Na2O glass (39.5% mol Na2O)
600
0.67
SiO2–CaO glass (41.3% mol CaO)
1600
0.67–0.68
SiO2–PbO glass (51.6% mol PbO)
1100
0.70
B2O3–Na2O glass (27.5% mol Na2O)
900
0.70
B2O3–CaO glass (40.0% mol CaO)
1250
0.75
SiO2–Na2O glass (19.9% mol Na2O)
900
0.76
SiO2–PbO glass (60% mol PbO)
900
0.76
SiO2–CaO glass (41.3% mol CaO)
1550
0.76
SiO2–Na2O glass (29.7% mol Na2O)
700
0.78
SiO2–CaO glass (33.6% mol CaO)
1600
0.79–0.80
SiO2–PbO glass (50.0% mol PbO)
1100
0.80
SiO2–PbO glass (44.7% mol PbO)
1300
0.82
SiO2–PbO glass (66.7% mol PbO)
800
0.82
SiO2–CaO glass (41.3% mol CaO)
1519
0.82
B2O3–CaO glass (33.3% mol CaO)
1250
0.85
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
Shackelford & Alexander
1719
16.1 sel Electrical Page 1720 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 431. SELECTING
VOLUME RESISTIVITY OF GLASS (SHEET 4 OF 13)
Glass
Temperature (˚C)
Resistivity (log Ω cm)
B2O3–Na2O glass (17.3% mol Na2O)
1000
0.89
SiO2–Na2O glass (39.5% mol Na2O)
550
0.91
SiO2–Na2O glass (10% mol Na2O)
1600
0.92
SiO2–PbO glass (51.6% mol PbO)
1000
0.92
SiO2–CaO glass (33.6% mol CaO)
1560
0.93–0.94
B2O3–Na2O glass (21.9% mol Na2O)
900
0.94
SiO2–Na2O glass (19.9% mol Na2O)
800
0.96
SiO2–CaO glass (33.6% mol CaO)
1500
0.97
SiO2–PbO glass (44.7% mol PbO)
1200
0.98
B2O3–CaO glass (40.0% mol CaO)
1150
0.98
B2O3–Na2O glass (27.5% mol Na2O)
800
1.00
SiO2–PbO glass (50.0% mol PbO)
1000
1.02
B2O3–Na2O glass (32.8% mol Na2O)
700
1.02
SiO2–Na2O glass (10% mol Na2O)
1500
1.03
SiO2–PbO glass (38.5% mol PbO)
1300
1.04
SiO2–PbO glass (60% mol PbO)
800
1.07
B2O3–CaO glass (33.3% mol CaO)
1150
1.10
SiO2–PbO glass (44.7% mol PbO)
1100
1.15
SiO2–Na2O glass (29.7% mol Na2O)
600
1.16
B2O3–Na2O glass (17.3% mol Na2O)
900
1.18
SiO2–PbO glass (51.6% mol PbO)
900
1.20
B2O3–CaO glass (55.4% mol CaO)
1150
1.22
SiO2–PbO glass (38.5% mol PbO)
1200
1.26
B2O3–Na2O glass (21.9% mol Na2O)
800
1.29
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
1720
CRC Handbook of Materials Science & Engineering
16.1 sel Electrical Page 1721 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 431. SELECTING
VOLUME RESISTIVITY OF GLASS (SHEET 5 OF 13)
Glass
Temperature (˚C)
Resistivity (log Ω cm)
SiO2–Na2O glass (29.7% mol Na2O)
550
1.31
SiO2–PbO glass (66.7% mol PbO)
700
1.32
SiO2–Na2O glass (19.9% mol Na2O)
700
1.34
SiO2–PbO glass (50.0% mol PbO)
900
1.36
B2O3–Na2O glass (17.3% mol Na2O)
850
1.39
SiO2–PbO glass (44.7% mol PbO)
1000
1.40
B2O3–CaO glass (40.0% mol CaO)
1050
1.40
B2O3–Na2O glass (12.1% mol Na2O)
900
1.48
B2O3–CaO glass (33.3% mol CaO)
1050
1.52
SiO2–PbO glass (38.5% mol PbO)
1100
1.56
SiO2–PbO glass (51.6% mol PbO)
800
1.62
SiO2–Na2O glass (19.9% mol Na2O)
600
1.68
B2O3–CaO glass (55.4% mol CaO)
1050
1.70
SiO2–PbO glass (60% mol PbO)
650
1.72
SiO2–PbO glass (60% mol PbO)
700
1.74
SiO2–PbO glass (44.7% mol PbO)
900
1.82
B2O3–Na2O glass (12.1% mol Na2O)
800
1.89
SiO2–PbO glass (50.0% mol PbO)
800
1.90
SiO2–PbO glass (38.5% mol PbO)
1000
1.94
B2O3–Na2O glass (3.63% mol Na2O)
1000
2.00
B2O3–CaO glass (40.0% mol CaO)
950
2.06
B2O3–CaO glass (33.3% mol CaO)
950
2.25
SiO2 glass (0.5 atm Ar pressure)
2100
2.30
B2O3–Na2O glass (3.63% mol Na2O)
900
2.30
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
Shackelford & Alexander
1721
16.1 sel Electrical Page 1722 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 431. SELECTING
VOLUME RESISTIVITY OF GLASS (SHEET 6 OF 13)
Glass
Temperature (˚C)
Resistivity (log Ω cm)
SiO2–Na2O glass (45% mol Na2O)
350
2.35
SiO2–PbO glass (44.7% mol PbO)
800
2.38
B2O3–Na2O glass (12.1% mol Na2O)
700
2.43
B2O3–CaO glass (55.4% mol CaO)
950
2.46
SiO2–PbO glass (38.5% mol PbO)
900
2.47
SiO2–Na2O glass (48% mol Na2O)
300
2.58
SiO2–Na2O glass (40% mol Na2O)
350
2.66
SiO2–Na2O glass (45% mol Na2O)
300
2.69
SiO2 glass (0.5 atm Ar pressure)
2000
2.70
B2O3–Na2O glass (3.63% mol Na2O)
800
2.70
SiO2–Na2O glass (35% mol Na2O)
350
2.92
SiO2–Na2O glass (40% mol Na2O)
300
2.97
B2O3–CaO glass (40.0% mol CaO)
850
2.97
SiO2 glass (0.5 atm Ar pressure)
1900
3.00
B2O3–CaO glass (33.3% mol CaO)
850
3.10
SiO2–PbO glass (38.5% mol PbO)
800
3.20
SiO2–Al2O3 glass (5.51% wt Al2O3)
1900
3.20
SiO2–Al2O3 glass (10.86% wt Al2O3)
1900
3.20
SiO2–Na2O glass (36% mol Na2O)
300
3.22
SiO2–Al2O3 glass (2.83% wt Al2O3)
1900
3.28
SiO2–Na2O glass (45% mol Na2O)
250
3.30
SiO2–Na2O glass (33.3% mol Na2O)
300
3.34
SiO2–Al2O3 glass (10.86% wt Al2O3)
1700
3.34
SiO2–Al2O3 glass (5.51% wt Al2O3)
1700
3.36
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
1722
CRC Handbook of Materials Science & Engineering
16.1 sel Electrical Page 1723 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 431. SELECTING
VOLUME RESISTIVITY OF GLASS (SHEET 7 OF 13)
Glass
Temperature (˚C)
Resistivity (log Ω cm)
SiO2–Na2O glass (30% mol Na2O)
350
3.46
SiO2–Al2O3 glass (2.83% wt Al2O3)
1700
3.46
SiO2 glass (0.5 atm Ar pressure)
1800
3.48
SiO2–Na2O glass (25% mol Na2O)
350
3.52
SiO2–Al2O3 glass (10.86% wt Al2O3)
1500
3.52
SiO2–B2O3 glass (2.74% wt B2O3)
1900
3.56
SiO2–Al2O3 glass (5.51% wt Al2O3)
1500
3.56
SiO2–Na2O glass (40% mol Na2O)
250
3.59
SiO2–Na2O glass (30% mol Na2O)
300
3.64–3.78
SiO2–Al2O3 glass (2.83% wt Al2O3)
1500
3.67
SiO2–Al2O3 glass (10.86% wt Al2O3)
1300
3.74
SiO2–B2O3 glass (2.74% wt B2O3)
1700
3.76
SiO2–Al2O3 glass (5.51% wt Al2O3)
1300
3.76
SiO2–Na2O glass (20% mol Na2O)
350
3.80
SiO2–B2O3 glass (19.37% wt B2O3)
1900
3.84
SiO2–Na2O glass (35% mol Na2O)
250
3.85
B2O3–CaO glass (55.4% mol CaO)
850
3.86
SiO2–Na2O glass (27% mol Na2O)
300
3.94
SiO2–B2O3 glass (5.48% wt B2O3)
1900
3.94
SiO2–Al2O3 glass (2.83% wt Al2O3)
1300
3.94
SiO2–B2O3 glass (10.75% wt B2O3)
1900
3.98
SiO2 glass (0.5 atm Ar pressure)
1700
4.00
SiO2–B2O3 glass (19.37% wt B2O3)
1700
4.00
SiO2–B2O3 glass (2.74% wt B2O3)
1500
4.02
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
Shackelford & Alexander
1723
16.1 sel Electrical Page 1724 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 431. SELECTING
VOLUME RESISTIVITY OF GLASS (SHEET 8 OF 13)
Glass
Temperature (˚C)
Resistivity (log Ω cm)
SiO2–Al2O3 glass (10.86% wt Al2O3)
1100
4.02
SiO2–Na2O glass (25% mol Na2O)
300
4.03
SiO2–Na2O glass (48% mol Na2O)
150
4.09
SiO2–B2O3 glass (5.48% wt B2O3)
1700
4.10
SiO2–Al2O3 glass (5.51% wt Al2O3)
1100
4.15
SiO2–B2O3 glass (10.75% wt B2O3)
1700
4.16
SiO2–B2O3 glass (19.37% wt B2O3)
1500
4.22
SiO2–Al2O3 glass (2.83% wt Al2O3)
1100
4.29
SiO2–B2O3 glass (5.48% wt B2O3)
1500
4.30
SiO2–Na2O glass (15% mol Na2O)
350
4.32
SiO2–Na2O glass (45% mol Na2O)
150
4.33
SiO2–Na2O glass (20% mol Na2O)
300
4.36–4.64
SiO2 glass (0.5 atm Ar pressure)
1600
4.40
SiO2–PbO glass (38.5% mol PbO)
700
4.40
SiO2–B2O3 glass (2.74% wt B2O3)
1300
4.40
SiO2–B2O3 glass (10.75% wt B2O3)
1500
4.40
SiO2–Na2O glass (30% mol Na2O)
250
4.42
SiO2–B2O3 glass (19.37% wt B2O3)
1300
4.48
SiO2–Na2O glass (25% mol Na2O)
250
4.50
SiO2–Al2O3 glass (10.86% wt Al2O3)
900
4.54
SiO2–B2O3 glass (5.48% wt B2O3)
1300
4.56
SiO2–Na2O glass (40% mol Na2O)
150
4.58
SiO2–Al2O3 glass (5.51% wt Al2O3)
900
4.65
SiO2 glass (0.5 atm Ar pressure)
1500
4.66
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
1724
CRC Handbook of Materials Science & Engineering
16.1 sel Electrical Page 1725 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 431. SELECTING
VOLUME RESISTIVITY OF GLASS (SHEET 9 OF 13)
Glass
Temperature (˚C)
Resistivity (log Ω cm)
SiO2–B2O3 glass (10.75% wt B2O3)
1300
4.69
SiO2–B2O3 glass (2.74% wt B2O3)
1100
4.72
SiO2–Na2O glass (13% mol Na2O)
300
4.77–4.79
SiO2–B2O3 glass (19.37% wt B2O3)
1100
4.82
SiO2–Al2O3 glass (2.83% wt Al2O3)
900
4.82
SiO2–Na2O glass (20% mol Na2O)
250
4.85
SiO2–Na2O glass (36% mol Na2O)
150
4.89
SiO2 glass
1500
4.90
SiO2–Na2O glass (10% mol Na2O)
350
4.96
SiO2 glass
1400
5.00
SiO2–Na2O glass (33.3% mol Na2O)
150
5.06
SiO2–B2O3 glass (10.75% wt B2O3)
1100
5.08
SiO2 glass
1300
5.15
SiO2–Na2O glass (44.2% mol Na2O) SiO2–B2O3 glass (5.48% wt B2O3) SiO2–Na2O glass (10% mol Na2O)
100 1100 300
5.15 5.16 5.18
SiO2 glass
1200
5.30
SiO2–Na2O glass (7.5% mol Na2O)
300
5.30
SiO2–B2O3 glass (2.74% wt B2O3)
900
5.30
SiO2–Al2O3 glass (5.51% wt Al2O3)
700
5.34
SiO2–Al2O3 glass (10.86% wt Al2O3)
700
5.38
SiO2–Na2O glass (15% mol Na2O)
250
5.44
SiO2 glass
1100
5.46
SiO2–Na2O glass (30% mol Na2O)
150
5.48–5.75
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
Shackelford & Alexander
1725
16.1 sel Electrical Page 1726 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 431. SELECTING
VOLUME RESISTIVITY OF GLASS (SHEET 10 OF 13)
Glass
Temperature (˚C)
Resistivity (log Ω cm)
B2O3 glass
840
5.5
SiO2–B2O3 glass (5.48% wt B2O3)
900
5.64
SiO2–B2O3 glass (19.37% wt B2O3)
900
5.65
SiO2 glass
1000
5.66
SiO2–B2O3 glass (10.75% wt B2O3)
900
5.74
SiO2–Al2O3 glass (2.83% wt Al2O3)
700
5.74
B2O3 glass
780
5.8
SiO2–Na2O glass (27% mol Na2O)
150
5.87
SiO2 glass
900
5.90
SiO2–Na2O glass (25% mol Na2O)
150
6.05
B2O3–CaO glass (55.4% mol CaO)
750
6.13
SiO2–Na2O glass (10% mol Na2O)
250
6.14
B2O3 glass
730
6.2
SiO2 glass
800
6.20
SiO2–Na2O glass (5% mol Na2O)
350
6.37
SiO2–Na2O glass (20% mol Na2O)
150
6.45–6.80
SiO2 glass
700
6.56
SiO2–Na2O glass (30.2% mol Na2O) B2O3 glass B2O3 glass
100 680 640
6.58 6.6 6.9
SiO2–Na2O glass (13% mol Na2O)
150
6.90–6.96
SiO2 glass
600
7.00
B2O3 glass
600
7.3
SiO2–Na2O glass (5% mol Na2O)
300
7.33–8.25
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
1726
CRC Handbook of Materials Science & Engineering
16.1 sel Electrical Page 1727 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 431. SELECTING
VOLUME RESISTIVITY OF GLASS (SHEET 11 OF 13)
Glass
Temperature (˚C)
Resistivity (log Ω cm)
SiO2–Na2O glass (10% mol Na2O)
150
7.35
SiO2–Na2O glass (7.5% mol Na2O)
150
7.59
B2O3 glass
560
7.6
SiO2–Na2O glass (5% mol Na2O)
250
7.63
SiO2 glass
500
7.80
SiO2–PbO glass (65% mol PbO)
300
7.81
SiO2–PbO glass (60% mol PbO)
300
8.11
SiO2–Na2O glass (15.1% mol Na2O)
100
8.15
B2O3–Na2O glass (40% mol Na2O)
100
8.46
SiO2 glass
400
8.5–10.80
SiO2–CaO glass (50% mol CaO)
400
8.70
SiO2–PbO glass (50% mol PbO)
300
8.80–9.2
B2O3–Na2O glass (30% mol Na2O)
100
8.82
B2O3–Na2O glass (40% mol Na2O)
80
9.08
B2O3–Na2O glass (30% mol Na2O)
80
9.43
SiO2–PbO glass (40% mol PbO)
300
9.48
B2O3–Na2O glass (40% mol Na2O)
60
9.73
SiO2–PbO glass (65% mol PbO)
200
9.76
SiO2–Na2O glass (7.8% mol Na2O) SiO2–PbO glass (35% mol PbO)
100 300
9.89 9.89
SiO2–PbO glass (60% mol PbO)
200
10.04
SiO2–PbO glass (57.1% mol PbO)
172
10.14
B2O3–Na2O glass (30% mol Na2O)
60
10.14
SiO2–PbO glass (63.2% mol PbO)
159
10.34
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
Shackelford & Alexander
1727
16.1 sel Electrical Page 1728 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 431. SELECTING
VOLUME RESISTIVITY OF GLASS (SHEET 12 OF 13)
Glass
Temperature (˚C)
Resistivity (log Ω cm)
SiO2–PbO glass (30% mol PbO)
300
10.44
SiO2–Na2O glass (5% mol Na2O)
150
10.45–11.71
B2O3–Na2O glass (40% mol Na2O)
40
10.48
SiO2–PbO glass (50% mol PbO)
200
10.69
SiO2 glass
250
11.0–13.6
B2O3–Na2O glass (20% mol Na2O)
100
11.28
SiO2–PbO glass (40% mol PbO)
200
11.54
SiO2–PbO glass (51.4% mol PbO)
139
11.59
B2O3–Na2O glass (10% mol Na2O)
100
11.61
SiO2–PbO glass (40.2% mol PbO)
175
11.70
SiO2–PbO glass (47.3% mol PbO)
149
11.74
B2O3–Na2O glass (30% mol Na2O)
40
11.90
B2O3–Na2O glass (20% mol Na2O)
80
12.05
SiO2–PbO glass (35% mol PbO)
200
12.10
SiO2–CaO glass (50% mol CaO)
300
12.2
B2O3–Na2O glass (10% mol Na2O)
80
12.40
B2O3–Na2O glass (20% mol Na2O)
60
12.91
SiO2–PbO glass (30% mol PbO)
200
12.94
B2O3–CaO glass (33.3% mol CaO)
300
13.16
B2O3–Na2O glass (10% mol Na2O)
60
13.21
B2O3–CaO glass (33.3% mol CaO)
250
13.50
B2O3–Na2O glass (16% mol Na2O)
100
13.58
SiO2–PbO glass (33.8% mol PbO)
135
13.68
SiO2–PbO glass (57.1% mol PbO)
77
13.70
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC
1728
CRC Handbook of Materials Science & Engineering
16.1 sel Electrical Page 1729 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 431. SELECTING
VOLUME RESISTIVITY OF GLASS (SHEET 13 OF 13)
Glass
Temperature (˚C)
Resistivity (log Ω cm)
B2O3–Na2O glass (20% mol Na2O)
40
13.86
B2O3–CaO glass (33.3% mol CaO)
200
13.92
B2O3–Na2O glass (10% mol Na2O)
40
14.20
SiO2–PbO glass (63.2% mol PbO)
57
14.29
B2O3–Na2O glass (16% mol Na2O)
80
14.32
B2O3–CaO glass (33.3% mol CaO)
150
14.40
SiO2–PbO glass (47.3% mol PbO)
79
14.48
SiO2–PbO glass (51.4% mol PbO)
65
14.52
SiO2–PbO glass (40.2% mol PbO)
78
14.85
B2O3–Na2O glass (16% mol Na2O)
60
15.08
B2O3–Na2O glass (16% mol Na2O)
40
15.89
SiO2–PbO glass (33.8% mol PbO)
66
16.14
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC Shackelford & Alexander
1729
16.1 sel Electrical Page 1730 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 432. SELECTING
VOLUME RESISTIVITY OF POLYMERS (SHEET 1 OF 6) Volume Resistivity (ASTM D257) (Ω • cm)
Polymer
Diallyl Phthalates; Molded: Orlon Filled
102—2.5 x 104 102—5 x 103 104—5 x 104 6 x 104—6 x 106
Standard Epoxies: Cast Flexible
9.1 x 105—6.7 x 109
Standard Epoxies; Reinforced: High Strength Laminate
6.6 x 107—109
Molded Rubber Phenolic—Woodflour or Flock Filled
108—1011
Phenolics; Molded: General: Woodflour and Flock Filled
109—1013
Cellulose Acetate; Molded, Extruded; ASTM Grade: H6—1
1010—1013
Cellulose Acetate; Molded, Extruded; ASTM Grade: H4—1
1010—1013
Cellulose Acetate; Molded, Extruded; ASTM Grade: H2—1
1010—1013
Cellulose Acetate; ASTM Grade: MH—1, MH—2
1010—1013
Cellulose Acetate; ASTM Grade: MS—1, MS—2
1010—1013
Cellulose Acetate; Molded, Extruded; ASTM Grade: S2—1
1010—1013
Phenolics; Molded: High Shock: Chopped Fabric or Cord Filled
>1010
Phenolics; Molded: Very High Shock: Glass Fiber Filled
1010—1011
Phenolics: Molded: Arc Resistant—Mineral Filled
1010—1012
Ureas; Molded: Cellulose Filled (ASTM Type 2)
5—8 x 1010
Cellulose Acetate Butyrate; ASTM Grade: H4
1011—1014
Cellulose Acetate Butyrate; ASTM Grade: MH
1011—1014
Diallyl Phthalates; Molded: Dacron Filled Diallyl Phthalates; Molded: Asbestos Filled Diallyl Phthalates; Molded: Glass Fiber Filled
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1730
CRC Handbook of Materials Science & Engineering
16.1 sel Electrical Page 1731 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 432. SELECTING
VOLUME RESISTIVITY OF POLYMERS (SHEET 2 OF 6)
Polymer
Volume Resistivity (ASTM D257) (Ω • cm)
Cellulose Acetate Butyrate; ASTM Grade: S2
1011—1014
Cellusose Acetate Propionate; ASTM Grade: 1
1011—1014
Cellusose Acetate Propionate; ASTM Grade: 3
1011—1014
Cellusose Acetate Propionate; ASTM Grade: 6
1011—1014
Phenolics: Molded: Rubber Phenolic—Chopped Fabric Filled
1011
Phenolics: Molded: Rubber Phenolic—Asbestos Filled
1011
Ureas; Molded: Alpha—Cellulose filled (ASTM Type l)
0.5—5 x 1011
Melamines; Molded: Glass Fiber Filled
1—7 x 1011
Phenolics; Molded: Shock: Paper, Flock, or Pulp Filled
1—50 x 1011
Nylons: Type 8
1.5 x 1011
Polyvinyl Chloride & Copolymers: Nonrigid—Electrical
4—300 x 1011
Melamines; Molded: Alpha Cellulose And Mineral Filled
1012
Polyesters, Thermosets; Cast polyyester: Flexible
1012
Melamines; Molded: Cellulose Electrical Filled
1012—1013
Reinforced Polyester: High Strength (Glass Fibers)
1 x 1012 —1 x 1013
Reinforced Polyester: Heat & Chemical Resistant (Asbestos)
1 x 1012 —1 x 1013
Polyvinyl Chloride & Copolymers: Nonrigid—General
1—700 x 1012
Polyesters, Thermosets; Cast polyyester: Rigid
1013
PVC–Acrylic Alloy: PVC–Acrylic Sheet
1—5 x 1013
Nylons: Type 11
2 x 1013
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
1731
16.1 sel Electrical Page 1732 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 432. SELECTING
VOLUME RESISTIVITY OF POLYMERS (SHEET 3 OF 6)
Polymer
Volume Resistivity (ASTM D257) (Ω • cm)
Nylons; Molded, Extruded; Type 6: General purpose
4.5 x 1013
Alkyds; Molded: Putty (Encapsulating)
1014
Alkyds; Molded: Rope (General Purpose)
1014
Alkyds; Molded: Glass reinforced (heavy duty parts)
1014
Acrylics; Moldings: Grades 5, 6, 8
>1014
Alkyds; Molded: Granular (high speed molding)
1014 — 1015
Nylons: Type 12
1014 —1015
6/6 Nylon: General purpose molding
1014—1015
Polyacetal Copolymer: Standard
1 x 1014
Polyacetal Copolymer: High Flow
1.0 x 1014
Polyacetal Copolymer: 25% Glass Reinforced
1.2 x 1014
High Performance Epoxies: Molded
1.4—5.5 x 1014
Woven Glass Fabric/ Silicone Laminate
2—5 x 1014
High Performance Epoxies: Cast, rigid
2.10 x 1014
Nylons; Type 6: Cast
2.6 x 1014
Nylons; Type 6: Glass fiber (30%) Reinforced
2.8 x 1014—1.5 x 1015
Polyester; Thermoplastic Moldings: Asbestos—Filled Grade
3 x 1014
Thermoset Carbonate: Allyl Diglycol Carbonate
4 x 1014
Polyphenylene sulfide: 40% Glass Reinforced
4.5 x 1014
Polyvinylidene— fluoride (PVDF)
5 x 1014
Polyacetal Homopolymer: 20% Glass Reinforced
5 x 1014
Granular (Silica) Reinforced Silicones
5 x 1014
Fibrous (Glass) Reinforced Silicones
9 x 1014
Polyvinyl Chloride & Copolymers: Rigid—Normal Impact
1014—1016
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1732
CRC Handbook of Materials Science & Engineering
16.1 sel Electrical Page 1733 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 432. SELECTING
VOLUME RESISTIVITY OF POLYMERS (SHEET 4 OF 6)
Polymer
Volume Resistivity (ASTM D257) (Ω • cm)
Vinylidene chloride
1014—1016
Ceramic Reinforced (PTFE)
1015
6/6 Nylon: General Purpose Extrusion
1015
6/10 Nylon: General purpose
1015
Acrylics; Cast Resin Sheets, Rods: General purpose, type II
>1015
Acrylics; Cast Resin Sheets, Rods: General purpose, type I
>1015
Polyethylenes; Molded, Extruded; Type II: Melt Index 20
>1015
Polyethylenes; Molded, Extruded; Type II: Melt Index l.0—1.9
>1015
Polyethylenes; Molded, Extruded; Type III: Melt Index 0.2—0.9
>1015
Polyethylenes; Type III: Melt Melt Index 0.l—12.0
>1015
Polyethylenes; Molded, Extruded; Type III: Melt Index 1.5—15
>1015
Polyethylenes; Molded, Extruded; Type III: High Molecular Weight
>1015
Olefin Copolymers; Molded: EVA (ethylene vinyl acetate)
0.15 x 1015
Chlorinated Polyvinyl Chloride
1 x 1015—2 x 1016
Standard Epoxies: Molded
1—5 x 1015
Polyacetal Homopolymer: Standard
1 x 1015
ABS Resins; Molded, Extruded: High impact
1—4 x 1015
ABS Resins; Molded, Extruded: Very high impact
1—4 x 1015
ABS Resins; Molded, Extruded: Low temperature impact
1—4 x 1015
ABS Resins; Molded, Extruded: Heat resistant
1—5 x 1015
Polycarbonate (40% Glass Fiber Reinforced)
1.4 x 1015
Polypropylene: Asbestos Filled
1.5 x 1015
Polyester; Thermoplastic Moldings: General Purpose Grade
2 x 1015
ABS Resins; Molded, Extruded: Medium impact
2—4 x 1015
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC Shackelford & Alexander
1733
16.1 sel Electrical Page 1734 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 432. SELECTING
VOLUME RESISTIVITY OF POLYMERS (SHEET 5 OF 6)
Polymer
Volume Resistivity (ASTM D257) (Ω • cm)
Olefin Copolymers; Molded: EEA (ethylene ethyl acrylate)
2.4 x 1015
6/6 Nylon; Molded, Extruded: Glass Fiber Reinforced
2.6—5.5 x 1015
Polymides: Unreinforced
4 x 1015
PVC–Acrylic Alloy: PVC–Acrylic Injection Molded
5 x 1015
Standard Epoxies: Cast Rigid
6.1 x 1015
Reinforced Polyester Sheet Molding, General Purpose
6.4 x 1015 —2.2 x 1016
Polymides: Glass Reinforced
9.2 x 1015
Olefin Copolymers; Molded: Ionomer
10 x 1015
Styrene Acrylonitrile (SAN)
>1016
Epoxy Novolacs: Cast, rigid
>1016
Olefin Copolymers; Molded: Polyallomer
>1016
Polystyrenes; Molded: General Purpose
>1016
Polystyrenes; Molded: Medium Impact
>1016
Polystyrenes; Molded: High Impact
>1016
Polyester; Thermoplastic Moldings: General Purpose Grade
1—4 x 1016
Chlorinated Polyether
1.5 x 1016
Polypropylene: Glass Reinforced
1.7 x 1016
Acrylics; Moldings: High Impact Grade
2.0 x 1016
Polycarbonate
2.1 x 1016
ABS–Polycarbonate Alloy
2.2 x 1016
Polyester; Thermoplastic Moldings: Glass Reinforced Grades
3.2—3.3 x 1016
Polyarylsulfone
3.2—7.71 x 1016
Polyester Moldings: Glass Reinforced Self Extinguishing
3.4 x 1016
Polystyrenes; Molded: Glass Fiber -30% Reinforced
3.6 x 1016
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1734
CRC Handbook of Materials Science & Engineering
16.1 sel Electrical Page 1735 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 432. SELECTING
VOLUME RESISTIVITY OF POLYMERS (SHEET 6 OF 6)
Polymer
Volume Resistivity (ASTM D257) (Ω • cm)
Polypropylene: Flame Retardant
4 x 1016—1017
Glass Fiber (30%) Reinforced SAN
4.4 x 1016
Phenylene Oxides (Noryl): Standard
5 x 1016
Phenylene Oxides: SE—100
1017
Phenylene Oxides: SE—1
1017
Phenylene Oxides: Glass Fiber Reinforced
1017
Phenylene Oxides (Noryl): Glass Fiber Reinforced
1017
Polypropylene: High Impact
1017 >1017
Polypropylene: General Purpose Polyethylenes; Molded, Extruded; Type I: Melt Index 0.3—3.6
17—1019
10
Polyethylenes; Molded, Extruded; Type I: Melt Index 6—26
1017—1019
Polyethylenes; Molded, Extruded; Type I: Melt Index 200
1017—1019
Polytrifluoro Chloroethylene (PTFCE), Molded,Extruded
1018
Polytetrafluoroethylene (PTFE), Molded,Extruded
>1018
Fluorinated Ethylene Propylene (FEP)
>2 x 1018
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
1735
16.1 sel Electrical Page 1736 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 433. SELECTING
CRITICAL TEMPERATURE OF SUPERCONDUCTIVE ELEMENTS (SHEET 1 OF 2) Element
Tc(K)
W Be Ir Ti
0.0154 0.026 0.11-0.14 0.39
Ru Cd Zr Zr (ω)
0.493 0.518-0.52 0.53
Os Zn Mo Ga
0.655 0.875 0.916 1.0833
Al Th Pa Re
1.175 1.39 1.4 1.697
Ti Sb In Sn
2.332-2.39
Hg (β) Hg (α) Ta La (α)
3.949 4.154
0.65
2.6-2.7a 3.405 3.721
4.47
4.88
a Metastable.
Source: data from Roberts, B. W., Properties of Selected Superconductive Materials - 1974 Supplement, NBS Technical Note 825, National Bureau of Standards, U.S. Government Printing Office, Washington,D.C., 1974, 10.
©2001 CRC Press LLC
1736
CRC Handbook of Materials Science & Engineering
16.1 sel Electrical Page 1737 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 433. SELECTING
CRITICAL TEMPERATURE OF SUPERCONDUCTIVE ELEMENTS (SHEET 2 OF 2) Element
Tc(K)
V Ga (β) La (β) Pb
5.43-5.31
Ga (γ) Tc Ga (δ) Nb a
5.90-6.2 6.00 7.23
7.62 7.73-7.78
7.85 9.25
Metastable.
Source: data from Roberts, B. W., Properties of Selected Superconductive Materials - 1974 Supplement, NBS Technical Note 825, National Bureau of Standards, U.S. Government Printing Office, Washington,D.C., 1974, 10.
©2001 CRC Press LLC
Shackelford & Alexander
1737
16.1 sel Electrical Page 1738 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
.
Table 434. SELECTING
DISSIPATION FACTOR FOR POLYMERS AT 60 HZ (SHEET 1 OF 5)
Polymer
Dissipation Factor (ASTM D150) @ 60 Hz
Polystyrenes; Molded: General purpose Fluorocarbons; Molded,Extruded: Polytetrafluoroethylene (PTFE) Fluorocarbons; Molded,Extruded: Fluorinated ethylene propylene (FEP) Polystyrenes; Molded: Medium impact
0.0001–0.0003 0.0002 0.0003 0.0004–0.002
Polystyrenes; Molded: High impact Polyethylenes; Molded, Extruded: Type I: Melt index 0.3—3.6 Polyethylenes; Molded, Extruded: Type I: Melt index 6—26 Polyethylenes; Molded, Extruded: Type I: Melt index 200
0.0004–0.002 <0.0005 <0.0005 <0.0005
Polyethylenes; Molded, Extruded: Type II: Melt index 20 Polyethylenes; Molded, Extruded: Type II: Melt index l.0—1.9 Polyethylenes; Molded, Extruded: Type III: Melt index 0.2—0.9 Polyethylenes; Molded, Extruded: Type III: Melt Melt index 0.l—12.0
<0.0005 <0.0005 <0.0005 <0.0005
Polyethylenes; Molded, Extruded: Type III: Melt index 1.5—15 Polyethylenes; Molded, Extruded: Type III: High molecular weight Olefin Copolymers; Molded: Polyallomer Polypropylene: General purpose
<0.0005 <0.0005 >0.0005 0.0005–0.0007
Fluorocarbons; Molded,Extruded: Ceramic reinforced (PTFE) Phenylene Oxides: SE—100 Phenylene Oxides: SE—1 Polypropylene: Flame retardant
0.0005–0.0015 0.0007 0.0007 0.0007–0.017
Phenylene oxides (Noryl): Standard Polycarbonate Phenylene Oxides: Glass fiber reinforced Olefin Copolymers; Molded: EEA (ethylene ethyl acrylate)
0.0008 0.0009 0.0009 0.001
Epoxy novolacs: Cast, rigid Polypropylene: High impact Polyarylsulfone Phenylene oxides (Noryl): Glass fiber reinforced
0.001—0.007 <0.0016 0.0017—0.003 0.0019
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1738
CRC Handbook of Materials Science & Engineering
16.1 sel Electrical Page 1739 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 434. SELECTING
DISSIPATION FACTOR FOR POLYMERS AT 60 HZ (SHEET 2 OF 5)
Polymer
Dissipation Factor (ASTM D150) @ 60 Hz
Polypropylene: Glass reinforced Silicones; Molded, Laminated: Granular (silica) reinforced silicones ABS–Polycarbonate Alloy Polymides: Unreinforced
0.002 0.002—0.004 0.0026 0.003
Olefin Copolymers; Molded: EVA (ethylene vinyl acetate) Olefin Copolymers; Molded: Ionomer ABS Resins; Molded, Extruded: Medium impact Polyester;: Thermosets: Cast Rigid
0.003 0.003 0.003—0.006 0.003—0.04
Polymides: Glass Reinforced Standard Epoxies: General Purpose Glass Cloth Laminate Diallyl Phthalates; Molded: Glass Fiber Filled Diallyl Phthalates; Molded: Dacron Filled
0.0034 0.004-0.006 0.004—0.015 (Dry) 0.004—0.016 (Dry)
Polyacetal Homopolymer: 20% glass reinforced Polyacetal Homopolymer: Standard Standard Epoxies: Cast Flexible Polystyrenes; Molded: Glass fiber -30% reinforced
0.0047 0.0048 0.0048-0.0380 0.005
Polystyrenes; Molded: Glass fiber (30%) reinforced SAN ABS Resins; Molded, Extruded: High impact ABS Resins; Molded, Extruded: Low temperature impact ABS Resins; Molded, Extruded: Very high impact
0.005 0.005—0.007 0.005—0.01 0.005—0.010
Epoxies; High Performance Resins: Cast, Rigid Polycarbonate (40% glass fiber reinforced) Polystyrenes; Molded: Styrene acrylonitrile (SAN) Polypropylene: Asbestos filled
0.0055—0.0074 0.006 >0.006 0.007
Nylons; Molded, Extruded; Type 6: Flexible Copolymers Epoxies; High Performance Resins: Molded Standard Epoxies: Cast Rigid Reinforced Polyester Sheet molding compounds, general purpose
0.007—0.010 0.0071—0.025 0.0074 0.0087—0.04
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
1739
16.1 sel Electrical Page 1740 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 434. SELECTING
DISSIPATION FACTOR FOR POLYMERS AT 60 HZ (SHEET 3 OF 5)
Polymer
Dissipation Factor (ASTM D150) @ 60 Hz
Silicones; Molded, Laminated: Fibrous (glass) reinforced silicones Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: H4 Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: MH Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: S2
0.01 0.01—0.04 0.01—0.04 0.01—0.04
Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 1 Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 3 Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 6 Cellulose Acetate; Molded, Extruded; ASTM Grade: H4—1
0.01—0.04 0.01—0.04 0.01—0.04 0.01—0.06
Cellulose Acetate; Molded, Extruded; ASTM Grade: H2—1 Cellulose Acetate; Molded, Extruded; ASTM Grade: MH—1, MH—2 Cellulose Acetate; Molded, Extruded; ASTM Grade: MS—1, MS—2 Cellulose Acetate; Molded, Extruded; ASTM Grade: S2—1
0.01—0.06 0.01—0.06 0.01—0.06 0.01—0.06
Polyester;: Thermosets: Flexible Chlorinated polyether Standard Epoxies: Molded Nylons; Molded, Extruded; 6/6 Nylon: General purpose molding
0.01—0.18 0.011 0.011-0.018 0.014—0.04
Nylons; Type 6: Cast Nylons; Molded, Extruded; 6/6 Nylon: Glass fiber reinforced Chlorinated polyvinyl chloride Alkyds; Molded: Rope (general purpose)
0.015 0.018—0.009 0.0189—0.0208 0.019
Fluorocarbons; Molded,Extruded: Polytrifluoro chloroethylene (PTFCE) Silicones; Molded, Laminated: Woven glass fabric/ silicone laminate Polyvinyl Chloride & Copolymers: Rigid—normal impact Alkyds; Molded: Glass reinforced (heavy duty parts)
0.02 0.02 0.020—0.03 0.02—0.03
Phenolics; Molded; Very High Shock: Glass Fiber Filled Nylons; Molded, Extruded; Type 6: Glass fiber (30%) reinforced Diallyl Phthalates; Molded: Orlon Filled Melamines; Molded: Cellulose Electrical Filled
0.02—0.03 0.022—0.008 0.023—0.015 (Dry) 0.026—0.192
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1740
CRC Handbook of Materials Science & Engineering
16.1 sel Electrical Page 1741 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 434. SELECTING
DISSIPATION FACTOR FOR POLYMERS AT 60 HZ (SHEET 4 OF 5)
Polymer
Dissipation Factor (ASTM D150) @ 60 Hz
Nylons; Molded, Extruded: Type 11 ABS Resins; Molded, Extruded: Heat resistant Alkyds; Molded: Granular (high speed molding) Alkyds; Molded: Putty (encapsulating)
0.03 0.030—0.040 0.030—0.040 0.030—0.045
Acrylics; Moldings: High impact grade Thermoset Carbonate: Allyl diglycol carbonate Polyvinyl Chloride & Copolymers: Vinylidene chloride Ureas; Molded: Woodflour filled
0.03—0.04 0.03—0.04 0.03—0.15 0.035—0.040
Ureas; Molded: Alpha—cellulose filled (ASTM Type l) PVC–Acrylic Injection Molded Nylons; Molded, Extruded; 6/10 Nylon: General purpose Acrylics; Moldings: Grades 5, 6, 8
0.035—0.043 0.037 0.04 0.04—0.06
Ureas; Molded: Cellulose filled (ASTM Type 2) Melamines; Molded: Unfilled Fluorocarbons; Molded,Extruded: Polyvinylidene—fluoride (PVDF) Diallyl Phthalates; Molded: Asbestos Filled
0.042—0.044 0.048—0.162 0.05 0.05—0.03 (Dry)
Acrylics; Cast Resin Sheets, Rods: General Purpose, Type I Acrylics; Cast Resin Sheets, Rods: General Purpose, Type II Polyvinyl Chloride & Copolymers; Molded, Extruded: Nonrigid—general Phenolics; Molded; General: Woodflour & Flock Filled
0.05—0.06 0.05—0.06 0.05—0.15 0.05—0.30
Nylons; Molded, Extruded; Type 6: General Purpose PVC–Acrylic Sheet Polyvinyl Chloride & Copolymers: Nonrigid—electrical Phenolics; Molded; Shock: Paper, Flock, or Pulp Filled
0.06—0.014 0.076 0.08—0.11 0.08—0.35
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
1741
16.1 sel Electrical Page 1742 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 434. SELECTING
DISSIPATION FACTOR FOR POLYMERS AT 60 HZ (SHEET 5 OF 5)
Polymer
Dissipation Factor (ASTM D150) @ 60 Hz
Phenolics; Molded; High Shock: Chopped Fabric or Cord Filled Phenolics: Molded: Arc resistant—Mineral Filled Melamines; Molded: Glass Fiber Filled Rubber Phenolic—Asbestos Filled
0.08—0.45 0.13—0.16 0.14—0.23 0.15
Phenolics: Molded: Rubber Phenolic—Woodflour or Flock Filled Nylons; Molded, Extruded: Type 8 Rubber Phenolic—Chopped Fabric Filled
0.15—0.60 0.19 0.5
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1742
CRC Handbook of Materials Science & Engineering
16.1 sel Electrical Page 1743 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 435. SELECTING
DISSIPATION FACTOR FOR POLYMERS AT 1 MHZ (SHEET 1 OF 4)
Polymer
Dissipation Factor (ASTM D150) @ 106 Hz
Polystyrenes; Molded: General purpose Fluorocarbons; Molded,Extruded: Polytetrafluoroethylene (PTFE) Polypropylene: General purpose Polypropylene: High impact
0.0001–0.0005 0.0002 0.0002–0.0003 0.0002—0.0003
Molded,Extruded Fluorinated ethylene propylene (FEP) Polystyrenes; Molded: Medium impact Polystyrenes; Molded: High impact Fluorocarbons; Molded,Extruded: Ceramic reinforced (PTFE)
0.0003 0.0004–0.002 0.0004–0.002 0.0005–0.0015
Polypropylene: Flame retardant Polyphenylene sulfide: Standard Silicones; Molded, Laminated: Granular (silica) reinforced silicones Polyphenylene sulfide: 40% glass reinforced
0.0006–0.003 0.0007 0.001—0.004 0.0014—0.0041
Phenylene Oxides: Glass fiber reinforced Polypropylene: Asbestos filled Polystyrenes; Molded: Glass fiber -30% reinforced Silicones; Molded, Laminated: Woven glass fabric/ silicone laminate
0.0015 0.002 0.002 0.002
Phenylene Oxides: SE—100 Phenylene Oxides: SE—1 Polypropylene: Glass reinforced Phenylene oxides (Noryl): Standard
0.0024 0.0024 0.003 0.0034
Polyacetal Homopolymer: 20% glass reinforced Silicones; Molded, Laminated: Fibrous (glass) reinforced silicones Polyacetal Homopolymer: Standard Phenylene oxides (Noryl): Glass fiber reinforced
0.0036 0.004 0.0048 0.0049
ABS Resins; Molded, Extruded: Heat resistant Polymides: Glass Reinforced Polyarylsulfone ABS–Polycarbonate Alloy
0.005—0.015 0.0055 0.0056—0.012 0.0059
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
1743
16.1 sel Electrical Page 1744 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 435. SELECTING
DISSIPATION FACTOR FOR POLYMERS AT 1 MHZ (SHEET 2 OF 4)
Polymer
Dissipation Factor (ASTM D150) @ 106 Hz
Polyester;: Thermosets: Cast Rigid Polycarbonate (40% glass fiber reinforced) Polystyrenes; Molded: Styrene acrylonitrile (SAN) Fluorocarbons; Molded,Extruded: Polytrifluoro chloroethylene (PTFCE)
0.006—0.04 0.007 0.007–0.010 0.007—0.010
ABS Resins; Molded, Extruded: High impact ABS Resins; Molded, Extruded: Medium impact ABS Resins; Molded, Extruded: Very high impact ABS Resins; Molded, Extruded: Low temperature impact
0.007—0.015 0.008—0.009 0.008—0.016 0.008—0.016
Reinforced Polyester Sheet molding compounds, general purpose Polystyrenes; Molded: Glass fiber (30%) reinforced SAN Diallyl Phthalates; Molded: Dacron Filled Polycarbonate
0.0086—0.022 0.009 0.009—0.017 (Wet) 0.01
Standard Epoxies: High Strength Laminate Nylons; Molded, Extruded; Type 6: Flexible Copolymers Acrylics; Moldings: High impact grade Cellulose Acetate; Molded, Extruded; ASTM Grade: H4—1
0.010-0.017 0.010—0.015 0.01—0.02 0.01—0.10
Cellulose Acetate; Molded, Extruded; ASTM Grade: H2—1 Cellulose Acetate; Molded, Extruded; ASTM Grade: MH—1, MH—2 Cellulose Acetate; Molded, Extruded; ASTM Grade: MS—1, MS—2 Cellulose Acetate; Molded, Extruded; ASTM Grade: S2—1
0.01—0.10 0.01—0.10 0.01—0.10 0.01—0.10
Chlorinated polyether Polymides: Unreinforced Diallyl Phthalates; Molded: Glass Fiber Filled Standard Epoxies: Molded
0.011 0.011 0.012—0.020 (Wet) 0.013—0.020
Alkyds; Molded: Glass reinforced (heavy duty parts) Epoxies; High Performance Resins: Glass Cloth Laminate Alkyds; Molded: Putty (encapsulating) Nylons; Molded, Extruded; 6/6 Nylon: Glass fiber reinforced
0.015—0.022 0.0158 0.016—0.020 0.017—0.018
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1744
CRC Handbook of Materials Science & Engineering
16.1 sel Electrical Page 1745 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 435. SELECTING
DISSIPATION FACTOR FOR POLYMERS AT 1 MHZ (SHEET 3 OF 4)
Polymer
Dissipation Factor (ASTM D150) @ 106 Hz
Alkyds; Molded: Granular (high speed molding) Nylons; Molded, Extruded; Type 6: Glass fiber (30%) reinforced Chlorinated polyvinyl chloride Nylons; Molded, Extruded: Type 11
0.017—0.020 0.019—0.015 0.02 0.02
Phenolics; Molded; Very High Shock: Glass Fiber Filled Melamines; Molded: Glass Fiber Filled Acrylics; Cast Resin Sheets, Rods: General Purpose, Type I Acrylics; Cast Resin Sheets, Rods: General Purpose, Type II
0.02 0.020—0.03 0.02—0.03 0.02—0.03
Acrylics; Moldings: Grades 5, 6, 8 Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: H4 Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: MH Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: S2
0.02—0.03 0.02—0.05 0.02—0.05 0.02—0.05
Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 1 Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 3 Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 6 Polyester;: Thermosets: Flexible
0.02—0.05 0.02—0.05 0.02—0.05 0.02—0.06
Alkyds; Molded: Rope (general purpose) Standard Epoxies: General Purpose Glass Cloth Laminate Ureas; Molded: Cellulose filled (ASTM Type 2) Melamines; Molded: Alpha Cellulose Filled
0.023 0.024—0.026 0.027—0.029 0.028
Ureas; Molded: Alpha—cellulose filled (ASTM Type l) Ureas; Molded: Woodflour filled Epoxies; High Performance Resins: Cast, Rigid Melamines; Molded: Alpha Cellulose Mineral Filled
0.028—0.032 0.028—0.032 0.029—0.028 0.030
Nylons; Molded, Extruded; Type 6: General Purpose Phenolics; Molded; General: Woodflour & Flock Filled Phenolics; Molded; Shock: Paper, Flock, or Pulp Filled Phenolics; Molded; High Shock: Chopped Fabric or Cord Filled
0.03—0.04 0.03—0.07 0.03—0.07 0.03—0.09
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC Shackelford & Alexander
1745
16.1 sel Electrical Page 1746 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 435. SELECTING
DISSIPATION FACTOR FOR POLYMERS AT 1 MHZ (SHEET 4 OF 4)
Polymer
Dissipation Factor (ASTM D150) @ 106 Hz
PVC–Acrylic Injection Molded Melamines; Molded: Unfilled Standard Epoxies: Cast Rigid Melamines; Molded: Cellulose Electrical Filled
0.031 0.031—0.040 0.032 0.032—0.12
Standard Epoxies: Cast Flexible Nylons; Molded, Extruded; 6/6 Nylon: General purpose molding Diallyl Phthalates; Molded: Orlon Filled Nylons; Type 6: Cast
0.0369-0.0622 0.04 0.045—0.040 (Wet) 0.05
Nylons; Molded, Extruded: Type 8 Rubber Phenolic—Chopped Fabric Filled PVC–Acrylic Sheet Phenolics: Molded: Arc resistant—Mineral Filled
0.08 0.09 0.094 0.1
Thermoset Carbonate: Allyl diglycol carbonate Phenolics: Molded: Rubber Phenolic—Woodflour or Flock Filled Rubber Phenolic—Asbestos Filled
0.1—0.2 0.1—0.2 0.13
Diallyl Phthalates; Molded: Asbestos Filled Fluorocarbons; Molded,Extruded: Polyvinylidene—fluoride (PVDF)
0.154—0.050 (Wet) 0.184
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1746
CRC Handbook of Materials Science & Engineering
16.1 sel Electrical Page 1747 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 436. SELECTING
DIELECTRIC STRENGTH OF POLYMERS (SHEET 1 OF 5)
Polymer
Dielectric Strength (Short Time, ASTM D149) (V / mil)
Polyvinyl Chloride & Copolymers: Nonrigid–electrical Phenolics; Molded: High shock: chopped fabric or cord filled Reinforced polyester moldings: High strength (glass fibers) Phenolics; Molded: General: woodflour and flock filled
24—500 200—350 200—400 200—425
Phenolics; Molded: Rubber phenolic—chopped fabric filled Melamines; Molded: Glass fiber filled Phenolics; Molded: Shock: paper, flock, or pulp filled Phenolics; Molded: Rubber phenolic—woodflour or flock filled
250 250 —300 250—350 250—375
Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: H4 Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: MH Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: S2 Cellulose Acetate; Molded, Extruded; ASTM Grade: H6—1
250—400 250—400 250—400 250—600
Cellulose Acetate; Molded, Extruded; ASTM Grade: H4—1 Cellulose Acetate; Molded, Extruded; ASTM Grade: H2—1 Cellulose Acetate; ASTM Grade: MH—1, MH—2 Cellulose Acetate; ASTM Grade: MS—1, MS—2
250—600 250—600 250—600 250—600
Cellulose Acetate; Molded, Extruded; ASTM Grade: S2—1 Polyvinylidene— fluoride (PVDF): Molded,Extruded Silicones: Fibrous (glass) reinforced silicones Epoxies; High performance resins: Molded
250—600 260 280 (in oil) 280—400 (step)
Polymides: Glass reinforced Resins; Molded, Extruded: Very high impact Ceramic reinforced (PTFE): Molded,Extruded 6/6 Nylon: Glass fiber Molybdenum disulfide filled
300—310 300—375 300—400 300—400
Polyesters: Cast Thermosets: Rigid Polyesters: Cast Thermosets: Flexible Ureas; Molded: Alpha–cellulose filled (ASTM Type l) Ureas; Molded: Woodflour filled
300—400 300—400 300—400 300—400
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
1747
16.1 sel Electrical Page 1748 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 436. SELECTING
DIELECTRIC STRENGTH OF POLYMERS (SHEET 2 OF 5)
Polymer
Dielectric Strength (Short Time, ASTM D149) (V / mil)
Diallyl Phthalates; Molded: Asbestos filled Resins; Molded, Extruded: Low temperature impact Diallyl Phthalates; Molded: Glass fiber filled Cellusose Acetate Propionate; Molded, Extruded’ ASTM Grade: 1
300—400 (wet) 300—415 300—420 (wet) 300—450
Cellusose Acetate Propionate; Molded, Extruded’ ASTM Grade: 3 Cellusose Acetate Propionate; Molded, Extruded’ ASTM Grade: 6 Polystyrenes; Molded: High impact Polypropylene: Glass reinforced
300—450 300—450 300—650 317—475
Nylons; Molded, Extruded: Type 8 Ureas; Molded: Cellulose filled (ASTM Type 2) Phenolics; Molded: Rubber phenolic—asbestos filled Reinforced polyester moldings: Heat & chemical resistant (asbestos)
340 340—370 350 350
Polyarylsulfone Melamines; Molded: Cellulose electrical Phenolics; Molded: Arc resistant—mineral filled Diallyl Phthalates; Molded: Glass fiber filled
350—383 350—400 350—425 350—430 (dry)
Resins; Molded, Extruded: High impact Diallyl Phthalates; Molded: Asbestos filled Diallyl Phthalates; Molded: Dacron filled Resins; Molded, Extruded: Heat resistant
350—440 350—450 (dry) 360—391 (wet) 360—400
Melamines; Molded: Alpha cellulose and mineral filled Diallyl Phthalates; Molded: Orlon filled Phenolics; Molded: Very high shock: glass fiber filled Diallyl Phthalates; Molded: Dacron filled
375 375 (wet) 375—425 376—400 (dry)
Nylons; Molded, Extruded; Type 6: Cast Silicones: Granular (silica) reinforced silicones ABS Resins; Molded, Extruded: Medium impact 6/6 Nylon: General purpose molding
380 380 (in oil) 385 385
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1748
CRC Handbook of Materials Science & Engineering
16.1 sel Electrical Page 1749 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 436. SELECTING
DIELECTRIC STRENGTH OF POLYMERS (SHEET 3 OF 5)
Polymer
Dielectric Strength (Short Time, ASTM D149) (V / mil)
Nylons; Molded, Extruded; Type 6: General purpose Polystyrenes; Molded: Glass fiber -30% reinforced Acrylics; Moldings: Grades 5, 6, 8 Chlorinated polyether
385—400 396 400 400
Polycarbonate PVC–Acrylic Alloy: PVC–acrylic injection molded Phenylene Oxides: SE—100 Diallyl Phthalates; Molded: Orlon filled
400 400 400 (1/8 in.) 400 (dry)
Reinforced polyester: Sheet molding compounds, general purpose Nylons; Molded, Extruded; Type 6: Glass fiber (30%) reinforced 6/6 Nylon; Molded, Extruded: Glass fiber reinforced Acrylics; Moldings: High impact grade
400—440 400—450 400—480 400—500
Styrene acrylonitrile (SAN) Polyester; Thermoplastic Moldings: General purpose grade Nylons; Molded, Extruded: Type 11 Phenylene oxides (Noryl): Standard
400—500 420—540 425 425
Polystyrenes; Molded: Medium impact PVC–Acrylic Alloy: PVC–acrylic sheet Nylons; Molded, Extruded; Type 6: Flexible copolymers Epoxy novolacs: Cast, rigid
>425 >429 440 444
Polypropylene: Asbestos filled Acrylics; Cast Resin Sheets, Rods: General purpose, type II Acrylics; Cast Resin Sheets, Rods: General purpose, type I Polyphenylene sulfide: Standard
450 450—500 450—530 450—595
Polypropylene: High impact 6/10 Nylon: General purpose extrusion Polycarbonate (40% glass fiber reinforced) Phenylene oxides (Noryl): Glass fiber reinforced
450—650 470 475 480
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
1749
16.1 sel Electrical Page 1750 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 436. SELECTING
DIELECTRIC STRENGTH OF POLYMERS (SHEET 4 OF 5)
Polymer
Dielectric Strength (Short Time, ASTM D149) (V / mil)
Polyethylenes; Molded, Extruded; Type I: Melt index 0.3—3.6 Polyethylenes; Molded, Extruded; Type I: Melt index 6—26 Polyethylenes; Molded, Extruded; Type I: Melt index 200 Polyethylenes; Molded, Extruded; Type II: Melt index 20
480 480 480 480
Polyethylenes; Molded, Extruded; Type II: Melt index l.0—1.9 Polyethylenes; Molded, Extruded; Type III: Melt index 0.2—0.9 Polyethylenes; Molded, Extruded; Type III: Melt Melt index 0.l—12.0 Polyethylenes; Molded, Extruded; Type III: Melt index 1.5—15
480 480 480 480
Polyethylenes; Molded, Extruded; Type III: High molecular weight Polypropylene: Flame retardant Polyphenylene sulfide: 40% glass reinforced ABS–Polycarbonate Alloy
480 485—700 490 500
Polyacetal Homopolymer: Standard Polyacetal Homopolymer: 20% glass reinforced Polyacetal Copolymer: Standard Polyacetal Copolymer: High flow
500 500 500 500
Phenylene Oxides: SE—1 Polystyrenes; Molded: General purpose Olefin Copolymers; Molded: Polyallomer Glass fiber (30%) reinforced SAN
500 (1/8 in.) >500 500—650 515
Olefin Copolymers; Molded: EVA (ethylene vinyl acetate) Polytrifluoro chloroethylene (PTFCE): Molded,Extruded Olefin Copolymers; Molded: EEA (ethylene ethyl acrylate) Polyester; Thermoplastic Moldings: Glass reinforced grades
525 530—600 550 560—750
Polyacetal Copolymer: 25% glass reinforced Polyester; Thermoplastic Moldings: Asbestos—filled grade Polyester; Thermoplastic Moldings: General purpose grade Polypropylene: General purpose
580 580 590 650 (125 mil)
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1750
CRC Handbook of Materials Science & Engineering
16.1 sel Electrical Page 1751 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 436. SELECTING
DIELECTRIC STRENGTH OF POLYMERS (SHEET 5 OF 5)
Polymer
Dielectric Strength (Short Time, ASTM D149) (V / mil)
Silicones: Woven glass fabric/ silicone laminate Polyvinyl Chloride & Copolymers: Rigid–normal impact Polyester; Thermoplastic Moldings: Glass reinforced self extinguishing Nylons; Molded, Extruded: Type 12
725 725—1,400 750 840
Olefin Copolymers; Molded: Ionomer Polytetrafluoroethylene (PTFE): Molded,Extruded Phenylene Oxides: Glass fiber reinforced
1,000 1,000—2,000 1,020 (1/32 in.)
Chlorinated polyvinyl chloride Fluorinated ethylene propylene(FEP): Molded,Extruded
1,250—1,550 2,100
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
1751
16.1 sel Electrical Page 1752 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 437. SELECTING
DIELECTRIC CONSTANTS OF POLYMERS AT 60 HZ (SHEET 1 OF 5)
Polymer
Dielectric Constant (ASTM D150) 60 Hz
Polytetrafluoroethylene (PTFE) (0.01 in thickness) Fluorinated ethylene propylene(FEP) (0.01 in thickness) Polypropylene: General purpose Polypropylene: High impact
2.1 2.1 2.20—2.28 2.20—2.28
Polyethylenes; Molded, Extruded; Type I: Melt index 0.3—3.6 Polyethylenes; Molded, Extruded; Type I: Melt index 6—26 Polyethylenes; Molded, Extruded; Type I: Melt index 200 Polyethylenes; Molded, Extruded; Type II: Melt index 20
2.3 2.3 2.3 2.3
Polyethylenes; Molded, Extruded; Type II: Melt index l.0—1.9 Polyethylenes; Molded, Extruded; Type III: Melt index 0.2—0.9 Polyethylenes; Molded, Extruded; Type III: Melt Melt index 0.l—12.0 Polyethylenes; Molded, Extruded; Type III: Melt index 1.5—15
2.3 2.3 2.3 2.3
Polyethylenes; Molded, Extruded; Type III: High molecular weight Polyallomer Polypropylene: Glass reinforced Polyvinyl Chloride & Copolymers: Rigid—normal impact
2.3 2.3 2.3—2.5 2.3—3.7
Olefin Copolymers; Molded: Ionomer Polystyrenes; Molded: General purpose Polystyrenes; Molded: Medium impact Polystyrenes; Molded: High impact
2.4 2.45—2.65 2.45—4.75 2.45—4.75
Polypropylene: Flame retardant ABS Resins; Molded, Extruded: Low temperature impact Polytrifluoro chloroethylene (PTFCE) Styrene acrylonitrile (SAN)
2.46—2.79 2.5—3.5 2.6—2.7 2.6—3.4
Phenylene Oxides: SE—100 Phenylene Oxides: SE—1 ABS Resins; Molded, Extruded: Heat resistant ABS–Polycarbonate Alloy
2.65 2.69 2.7—3.5 2.74
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1752
CRC Handbook of Materials Science & Engineering
16.1 sel Electrical Page 1753 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 437. SELECTING
DIELECTRIC CONSTANTS OF POLYMERS AT 60 HZ (SHEET 2 OF 5)
Polymer
Dielectric Constant (ASTM D150) 60 Hz
Polypropylene: Asbestos filled Olefin Copolymers; Molded: EEA (ethylene ethyl acrylate) ABS Resins; Molded, Extruded: Medium impact ABS Resins; Molded, Extruded: High impact
2.75 2.8 2.8—3.2 2.8—3.2
ABS Resins; Molded, Extruded: Very high impact Polyesters Cast Thermosets: Rigid Ceramic reinforced (PTFE) Phenylene Oxides: Glass fiber reinforced
2.8—3.5 2.8—4.4 2.9—3.6 2.93
Polyvinyl Chloride & Copolymers: Vinylidene chloride Phenylene oxides (Noryl): Standard Chlorinated polyvinyl chloride Chlorinated polyether
3—5 3.06—3.15 3.08 3.1
Polystyrenes; Molded: Glass fiber -30% reinforced Polyester; Thermoplastic Moldings: General purpose grade Polyester; Thermoplastic Moldings: General purpose grade Olefin Copolymers; Molded: EVA (ethylene vinyl acetate)
3.1 3.1—3.3 3.16 3.16
Polycarbonate Polyesters Cast Thermosets: Flexible Nylons; Molded, Extruded Type 6: Flexible copolymers Nylons: Type 11
3.17 3.18—7.0 3.2—4.0 3.3 (103 Hz)
Diallyl Phthalates; Molded: Orlon filled Epoxy novolacs: Cast, rigid Glass fiber (30%) reinforced Styrene acrylonitrile (SAN) Diallyl Phthalates; Molded: Dacron filled
3.3—3.9 (Dry) 3.34—3.39 3.5 3.5—3.8 (Dry)
Acrylics; Moldings: Grades 5, 6, 8 Acrylics; Moldings: High impact grade Polyester; Thermoplastic Moldings: Asbestos—filled grade Acrylics; Cast Resin Sheets, Rods: General purpose, type I
3.5—3.9 3.5—3.9 3.5—4.2 3.5—4.5
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
1753
16.1 sel Electrical Page 1754 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 437. SELECTING
DIELECTRIC CONSTANTS OF POLYMERS AT 60 HZ (SHEET 3 OF 5)
Polymer
Dielectric Constant (ASTM D150) 60 Hz
Acrylics; Cast Resin Sheets, Rods: General purpose, type II Diallyl Phthalates; Molded: Glass fiber filled Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: H4 Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: MH
3.5—4.5 3.5—4.5 (Dry) 3.5—6.4 3.5—6.4
Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: S2 Cellulose Acetate; Molded, Extruded; ASTM Grade: H6—1 Cellulose Acetate; Molded, Extruded; ASTM Grade: H4—1 Cellulose Acetate; Molded, Extruded; ASTM Grade: H2—1
3.5—64 3.5—7.5 3.5—7.5 3.5—7.5
Cellulose Acetate; Molded, Extruded; ASTM Grade: MH—1, MH—2 Cellulose Acetate; Molded, Extruded; ASTM Grade: MS—1, MS—2 Cellulose Acetate; Molded, Extruded; ASTM Grade: S2—1 Polyarylsulfone
3.5—7.5 3.5—7.5 3.5—7.5 3.51—3.94
Phenylene oxides (Noryl): Glass fiber reinforced Nylons: Type 12 Polyacetal Homopolymer: Standard Polyacetal Copolymer: Standard
3.55 3.6 (103 Hz) 3.7 3.7 (100 Hz)
Polyacetal Copolymer: High flow Polyester Moldings: Glass reinforced self extinguishing Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 1 Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 3
3.7 (100 Hz) 3.7—3.8 3.7—4.0 3.7—4.0
Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 6 Polyester; Thermoplastic Moldings: Glass reinforced grades Polycarbonate (40% glass fiber reinforced) PVC–Acrylic Alloy: PVC–acrylic sheet
3.7—4.0 3.7—4.2 3.8 3.86
6/10 Nylon: General purpose Polyacetal Copolymer: 25% glass reinforced Silicones; Molded, Laminated: Woven glass fabric/ silicone laminate High performance Epoxies: Cast, rigid
3.9 3.9 (100 Hz) 3.9—4.2 3.96—4.02
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1754
CRC Handbook of Materials Science & Engineering
16.1 sel Electrical Page 1755 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 437. SELECTING
DIELECTRIC CONSTANTS OF POLYMERS AT 60 HZ (SHEET 4 OF 5)
Polymer
Dielectric Constant (ASTM D150) 60 Hz
Nylons; Type 6: Cast 6/6 Nylon: General purpose molding PVC–Acrylic Alloy: PVC–acrylic injection molded Polyacetal Homopolymer: 20% glass reinforced
4 4 4 4
Nylons; Molded, Extruded Type 6: General purpose Standard Epoxies: Cast rigid Silicones; Molded, Laminated: Granular (silica) reinforced silicones Polymides: Unreinforced
4.0—5.3 4.02 4.1—4.5 4.12
Silicones; Molded, Laminated: Fibrous (glass) reinforced silicones Thermoset Carbonate: Allyl diglycol carbonate Standard Epoxies: Molded Epoxy novolacs: Glass cloth laminate
4.34 4.4 4.4-5.4 4.41—4.43
Standard Epoxies: Cast flexible Diallyl Phthalates; Molded: Asbestos filled Nylons; Molded, Extruded Type 6: Glass fiber (30%) reinforced Polyester Thermosets: Sheet molding compounds, general purpose
4.43-4.79 4.5—5.2 (Dry) 4.6—5.6 4.62—5.0
High performance Epoxies: Molded Polymides: Glass reinforced Phenolics; Molded; General: woodflour and flock filled Alkyds; Molded: Glass reinforced (heavy duty parts)
4.7—5.7 4.84 5.0—9.0 5.2—6.0
Standard Epoxies: General purpose glass cloth laminate Alkyds; Molded: Putty (encapsulating) Polyvinyl Chloride & Copolymers: Nonrigid—general Phenolics; Molded; Shock: paper, flock, or pulp filled
5.3-5.4 5.4—5.9 5.5—9.1 5.6—11.0
Alkyds; Molded: Granular (high speed molding) Polyvinyl Chloride & Copolymers: Nonrigid—electrical Melamines; Molded: Cellulose electrical Phenolics; Molded; High shock: chopped fabric or cord filled
5.7—6.3 6.0—8.0 6.2—7.7 6.5—15.0
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC Shackelford & Alexander
1755
16.1 sel Electrical Page 1756 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 437. SELECTING
DIELECTRIC CONSTANTS OF POLYMERS AT 60 HZ (SHEET 5 OF 5)
Polymer
Dielectric Constant (ASTM D150) 60 Hz
Melamines; Molded: Glass fiber filled Ureas; Molded: Alpha—cellulose filled (ASTM Type l) Ureas; Molded: Woodflour filled Phenolics; Molded; Very high shock: glass fiber filled
7.0—11.1 7.0—9.5 7.0—9.5 7.1—7.2
Ureas; Molded: Cellulose filled (ASTM Type 2) Alkyds; Molded: Rope (general purpose) Phenolics; Molded: Arc resistant—mineral Melamines; Molded: Unfilled
7.2—7.3 7.4 7.4 7.9—11.0
Phenolics; Molded: Rubber phenolic—woodflour or flock Nylons: Type 8 Polyvinylidene— fluoride (PVDF) (0.125 in thickness)
9—16 9.3 10
Rubber phenolic—chopped fabric Rubber phenolic—asbestos 6/6 Nylon; Molded, Extruded:Glass fiber reinforced
15 15 40—44
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1756
CRC Handbook of Materials Science & Engineering
16.2 sel Electrical Page 1757 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 438. SELECTING
DIELECTRIC CONSTANTS OF POLYMERS AT 1 MHZ (SHEET 1 OF 4) Polymer
Dielectric Constant (ASTM D150) 106 Hz
Polypropylene: Glass reinforced Polypropylene: General purpose Polypropylene: High impact ABS Resins; Molded, Extruded: Very high impact
2—2.25 2.23—2.24 2.23—2.27 2.4—3.0
ABS Resins; Molded, Extruded: Low temperature impact Polystyrenes; Molded: Medium impact Polystyrenes; Molded: General purpose Polypropylene: Flame retardant
2.4—3.0 2.4—3.8 2.45—2.65 2.45—2.70
Acrylics; Moldings: High impact grade Polystyrenes; Molded: High impact Styrene acrylonitrile (SAN) Polypropylene: Asbestos filled
2.5—3.0 2.5—4.0 2.6—3.02 2.6—3.17
Phenylene Oxides: SE—100 Phenylene Oxides: SE—1 ABS–Polycarbonate Alloy Acrylics; Moldings: Grades 5, 6, 8
2.64 2.68 2.69 2.7—2.9
ABS Resins; Molded, Extruded: High impact Acrylics; Cast Resin Sheets, Rods: General purpose, type I Acrylics; Cast Resin Sheets, Rods: General purpose, type II ABS Resins; Molded, Extruded: Medium impact
2.7—3.0 2.7—3.2 2.7—3.2 2.75—3.0
Standard Epoxies: Cast flexible ABS Resins; Molded, Extruded: Heat resistant Polyesters Cast Thermosets: Rigid Chlorinated polyether
2.78-3.52 2.8—3.2 2.8—4.4 2.92
Phenylene Oxides: Glass fiber reinforced Polycarbonate Polystyrenes; Molded: Glass fiber -30% reinforced Nylons; Molded, Extruded Type 6: Flexible copolymers
2.92 2.96 3 3.0—3.6
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
1757
16.2 sel Electrical Page 1758 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 438. SELECTING
DIELECTRIC CONSTANTS OF POLYMERS AT 1 MHZ (SHEET 2 OF 4) Polymer
Dielectric Constant (ASTM D150) 106 Hz
Polyacetal Copolymer: Standard Polyacetal Copolymer: High flow Polyacetal Copolymer: 25% glass reinforced Phenylene oxides (Noryl): Standard
3—7 3—7 3—9 3.03—3.10
Chlorinated polyvinyl chloride Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: H4 Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: MH Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: S2
3.2—3.6 3.2—6.2 3.2—6.2 3.2—6.2
Cellulose Acetate; Molded, Extruded; ASTM Grade: H6—1 Cellulose Acetate; Molded, Extruded; ASTM Grade: H4—1 Cellulose Acetate; Molded, Extruded; ASTM Grade: H2—1 Cellulose Acetate; Molded, Extruded; ASTM Grade: MH—1, MH— 2
3.2—7.0 3.2—7.0 3.2—7.0 3.2—7.0
Cellulose Acetate; Molded, Extruded; ASTM Grade: MS—1, MS—2 Cellulose Acetate; Molded, Extruded; ASTM Grade: S2—1 Polyphenylene sulfide: Standard Nylons; Type 6: Cast
3.2—7.0 3.2—7.0 3.22—3.8 3.3
PVC–Acrylic Alloy: PVC–acrylic injection molded Silicones; Molded, Laminated: Granular (silica) reinforced silicones Glass fiber (30%) reinforced Styrene acrylonitrile (SAN) Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 1
3.4 3.4 —4.3 3.4—3.6 3.4—3.7
Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 3 Phenylene oxides (Noryl): Glass fiber reinforced Standard Epoxies: Cast rigid PVC–Acrylic Alloy: PVC–acrylic sheet
3.4—3.7 3.41 3.42 3.44
6/10 Nylon: General purpose Thermoset Carbonate: Allyl diglycol carbonate 6/6 Nylon; Molded, Extruded:Glass fiber reinforced High performance Epoxies: Cast, rigid
3.5 3.5—3.8 3.5—4.1 3.53—3.58
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1758
CRC Handbook of Materials Science & Engineering
16.2 sel Electrical Page 1759 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 438. SELECTING
DIELECTRIC CONSTANTS OF POLYMERS AT 1 MHZ (SHEET 3 OF 4) Polymer
Dielectric Constant (ASTM D150) 106 Hz
Polyarylsulfone Polycarbonate (40% glass fiber reinforced) 6/6 Nylon: General purpose molding Nylons; Molded, Extruded Type 6: General purpose
3.54—3.7 3.58 3.6 3.6—3.8
Polyacetal Homopolymer: Standard Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 6 Diallyl Phthalates; Molded: Dacron filled Polyesters Cast Thermosets: Flexible
3.7 3.7—3.4 3.7—3.9 (Wet) 3.7—6.1
Silicones; Molded, Laminated: Woven glass fabric/ silicone laminate Polyphenylene sulfide: 40% glass reinforced Nylons; Molded, Extruded Type 6: Glass fiber (30%) reinforced Polymides: Unreinforced
3.8—397 3.88 3.9—5.4 3.96
Nylons: Type 8 Phenolics; Molded; General: woodflour and flock filled Polyacetal Homopolymer: 20% glass reinforced Standard Epoxies: Molded
4 4.0—7.0 4—0 4.1-4.6
Diallyl Phthalates; Molded: Orlon filled Silicones; Molded, Laminated: Fibrous (glass) reinforced silicones High performance Epoxies: Molded Diallyl Phthalates; Molded: Glass fiber filled
4.1—3.4 (Wet) 4.28 4.3—4.8 4.4—4.6 (Wet)
Alkyds; Molded: Putty (encapsulating) Alkyds; Molded: Glass reinforced (heavy duty parts) Phenolics; Molded; Shock: paper, flock, or pulp filled Phenolics; Molded; High shock: chopped fabric or cord filled
4.5—4.7 4.5—5.0 4.5—7.0 4.5—7.0
Polyester Thermosets: Sheet molding compounds, general purpose Phenolics; Molded; Very high shock: glass fiber filled Standard Epoxies: General purpose glass cloth laminate Polymides: Glass reinforced
4.55—4.75 4.6—6.6 4.7-4.8 4.74
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
1759
16.2 sel Electrical Page 1760 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 438. SELECTING
DIELECTRIC CONSTANTS OF POLYMERS AT 1 MHZ (SHEET 4 OF 4) Polymer
Dielectric Constant (ASTM D150) 106 Hz
Standard Epoxies: High strength laminate Alkyds; Molded: Granular (high speed molding) Diallyl Phthalates; Molded: Asbestos filled Phenolics; Molded: Arc resistant—mineral
4.8-5.2 4.8—5.1 4.8—6.5 (Wet) 5
Phenolics; Molded: Rubber phenolic—woodflour or flock Rubber phenolic—chopped fabric Rubber phenolic—asbestos High performance Epoxies: Glass cloth laminate
5 5 5 5.1
Melamines; Molded: Cellulose electrical Melamines; Molded: Alpha cellulose mineral filled Melamines; Molded: Glass fiber filled Melamines; Molded: Unfilled
5.2—6.0 5.6 6.0—7.9 6.3—7.3
Ureas; Molded: Cellulose filled (ASTM Type 2) Ureas; Molded: Alpha—cellulose filled (ASTM Type l) Ureas; Molded: Woodflour filled
6.4—6.5 6.4—6.9 6.4—6.9
Melamines; Molded: Alpha cellulose filled Alkyds; Molded: Rope (general purpose)
6.4—8.1 6.8
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1760
CRC Handbook of Materials Science & Engineering
16.2 sel Electrical Page 1761 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 439. SELECTING
TANGENT LOSS IN GLASS
(SHEET 1 OF 5) Glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass B2O3 glass B2O3 glass SiO2 glass B2O3 glass B2O3-Na2O glass (10% mol Na2O) B2O3 glass B2O3 glass B2O3-Na2O glass (12.5% mol Na2O) SiO2 glass B2O3 glass SiO2 glass B2O3 glass B2O3 glass B2O3-Na2O glass (10% mol Na2O) B2O3-Na2O glass (20% mol Na2O) B2O3-CaO glass (33.3% mol CaO) B2O3 glass SiO2-B2O3 glass (46.3% mol B2O3) SiO2 glass B2O3-Na2O glass (15% mol Na2O)
Frequency (Hz)
Temperature
Tangent Loss (tan δ)
100 Hz
25˚C
0.00002
1 kHz 10 kHz 10 kHz
25˚C 25˚C 200˚C
0.00002 0.00002 0.00004
32 kHz 32 kHz 1 kHz 32 kHz
50K 100K 200˚C 300K
0.00005 0.00011 0.00012 0.0003
1 kHz 1 MHz 1 MHz 1 kHz
134.5˚C 100˚C 200˚C 134.5˚C
0.0003 0.0004 0.0005 0.0005
100 Hz 32 kHz 10 kHz 32 kHz
200˚C 150K 300˚C 250K
0.00052 0.0007 0.00072 0.0008
1 MHz 1 kHz 1 kHz 2 MHz
300˚C 214˚C 16˚C 25˚C
0.0009 0.0009 0.0009 0.001
32 kHz 10 GHz 9.4 GHz 1 kHz
200K
0.0010 0.0014 0.0015 0.0015
20˚C 134.5˚C
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
Shackelford & Alexander
1761
16.2 sel Electrical Page 1762 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 439. SELECTING
TANGENT LOSS IN GLASS
(SHEET 2 OF 5) Glass SiO2 glass SiO2 glass B2O3-CaO glass (33.3% mol CaO) SiO2-Al2O3 glass (0.5% mol Al2O3) B2O3-Na2O glass (10% mol Na2O) B2O3-Na2O glass (12.5% mol Na2O) B2O3-Na2O glass (25% mol Na2O) SiO2-Al2O3 glass (0.5% mol Al2O3) B2O3-Na2O glass (8% mol Na2O) B2O3-CaO glass (33.3% mol CaO) SiO2-Al2O3 glass (0.5% mol Al2O3) B2O3-Na2O glass (20% mol Na2O) SiO2 glass B2O3-Na2O glass (16% mol Na2O) B2O3-CaO glass (33.3% mol CaO) B2O3-Na2O glass (10% mol Na2O) B2O3-CaO glass (33.3% mol CaO) SiO2 glass SiO2-PbO glass (40% mol PbO) B2O3-CaO glass (33.3% mol CaO) SiO2-Na2O glass (16% mol Na2O) B2O3-Na2O glass (25% mol Na2O) B2O3-Na2O glass (15% mol Na2O) B2O3-Na2O glass (10% mol Na2O)
Frequency (Hz)
Temperature
Tangent Loss (tan δ)
9.4 GHz 9.4 GHz 2 MHz 100 K
200˚C 400˚C 100˚C 100 K
0.0018 0.002 0.002 0.0021
1MHz 1 kHz 1 kHz 50 K
room temp. 214˚C 16˚C 50 K
0.0022 0.0022 0.0022 0.0025
1MHz 2 MHz 150 K 1 kHz
room temp. 200˚C 150 K 90.5˚C
0.0025 0.0025 0.0026 0.0026
9.4 GHz 1MHz 2 MHz 1 kHz
600˚C room temp. 300˚C 277˚C
0.0029 0.0031 0.0035 0.0038
2 MHz 9.4 GHz 100 GHz 2 MHz
400˚C 800˚C room temp. 500˚C
0.0045 0.0048 0.005 0.0055
4.5x108 Hz 1MHz 1 kHz 1 kHz
20˚C room temp. 214˚C 298˚C
0.0058 0.0063 0.0064 0.0066
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
1762
CRC Handbook of Materials Science & Engineering
16.2 sel Electrical Page 1763 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 439. SELECTING
TANGENT LOSS IN GLASS
(SHEET 3 OF 5) Glass B2O3-CaO glass (33.3% mol CaO) SiO2 glass SiO2-Na2O glass (20% mol Na2O) SiO2-Na2O glass (22.2% mol Na2O) B2O3-Na2O glass (28% mol Na2O) B2O3-Na2O glass (12.5% mol Na2O) SiO2-Na2O glass (28.6% mol Na2O) SiO2 glass B2O3-Na2O glass (20% mol Na2O)
Frequency (Hz)
2 MHz 1 kHz 4.5x108 Hz 4.5x108 Hz 1MHz 1 kHz 4.5x108 Hz 9.4 GHz
Temperature
Tangent Loss (tan δ)
550˚C 300˚C 20˚C 20˚C
0.007 0.0072 0.0073 0.0081
room temp. 277˚C 20˚C 1000˚C
0.0081 0.0100 0.0102 0.011 0.0149 0.015 0.0150 0.0162
B2O3-Na2O glass (25% mol Na2O)
1 kHz 32 GHz 1 kHz
SiO2-Na2O glass (36% mol Na2O)
4.5x108 Hz
157˚C -150˚C 90.5˚C 20˚C
B2O3-Na2O glass (12.5% mol Na2O)
1 kHz 32 GHz 32 GHz 10 kHz
298˚C -100˚C -50˚C 400˚C
0.0170 0.018 0.020 0.022
32 GHz 32 GHz 9.4 GHz 300 kHz
0˚C 50˚C 1200˚C room temp.
0.022 0.024 0.025 0.0295
1 kHz 100 kHz 300 kHz 50 kHz
277˚C room temp. room temp. room temp.
0.0296 0.0364 0.0369 0.0428
SiO2-PbO glass (40% mol PbO)
SiO2-PbO glass (40% mol PbO) SiO2-PbO glass (40% mol PbO) SiO2 glass SiO2-PbO glass (40% mol PbO) SiO2-PbO glass (40% mol PbO) SiO2 glass SiO2-Na2O glass (19.5% mol Na2O) B2O3-Na2O glass (15% mol Na2O) SiO2-Na2O glass (19.5% mol Na2O) SiO2-Na2O glass (24.4% mol Na2O) SiO2-Na2O glass (19.5% mol Na2O)
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
Shackelford & Alexander
1763
16.2 sel Electrical Page 1764 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 439. SELECTING
TANGENT LOSS IN GLASS
(SHEET 4 OF 5) Glass SiO2-Na2O glass (24.4% mol Na2O) SiO2 glass B2O3-Na2O glass (15% mol Na2O) SiO2-Na2O glass (19.5% mol Na2O) SiO2-PbO glass (40% mol PbO) SiO2-Na2O glass (24.4% mol Na2O) SiO2-Na2O glass (29.4% mol Na2O) SiO2-Na2O glass (24.4% mol Na2O) SiO2-Na2O glass (19.5% mol Na2O) SiO2-Na2O glass (29.4% mol Na2O) SiO2 glass SiO2-Na2O glass (19.5% mol Na2O) B2O3-Na2O glass (20% mol Na2O) SiO2-Na2O glass (24.4% mol Na2O) SiO2-Na2O glass (34.3% mol Na2O) SiO2-Na2O glass (29.4% mol Na2O) SiO2-Na2O glass (19.5% mol Na2O) SiO2-Na2O glass (34.3% mol Na2O) B2O3-Na2O glass (25% mol Na2O) SiO2-Na2O glass (29.4% mol Na2O) SiO2-Na2O glass (24.4% mol Na2O) SiO2-Na2O glass (34.3% mol Na2O) SiO2-Na2O glass (39.3% mol Na2O) SiO2-Na2O glass (19.5% mol Na2O)
Frequency (Hz)
Temperature
Tangent Loss (tan δ)
100 kHz 9.4 GHz 1 kHz 30 kHz
room temp. 1400˚C 298˚C room temp.
0.0456 0.046 0.0477 0.0492
1000 GHz 50 kHz 300 kHz 30 kHz
room temp. room temp. room temp. room temp.
0.050 0.0563 0.0568 0.0652
10 kHz 100 kHz 100 Hz 5 kHz
room temp. room temp. 300˚C room temp.
0.0656 0.0758 0.080 0.0832
1 kHz 10 kHz 300 kHz 50 kHz
219˚C room temp. room temp. room temp.
0.0890 0.0916 0.0936 0.0972
3 kHz 1kHz 1 kHz 30 kHz
room temp. room temp. 157˚C room temp.
0.0984 0.10324 0.1080 0.1172
5 kHz 100 kHz 300 kHz 1kHz
room temp. room temp. room temp. room temp.
0.1194 0.1388 0.1402 0.144
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
1764
CRC Handbook of Materials Science & Engineering
16.2 sel Electrical Page 1765 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 439. SELECTING
TANGENT LOSS IN GLASS
(SHEET 5 OF 5) Glass SiO2-Na2O glass (24.4% mol Na2O) SiO2-Na2O glass (29.4% mol Na2O) SiO2-Na2O glass (34.3% mol Na2O) SiO2 glass SiO2-Na2O glass (39.3% mol Na2O) SiO2-Na2O glass (24.4% mol Na2O) SiO2-Na2O glass (34.3% mol Na2O) SiO2-Na2O glass (29.4% mol Na2O) B2O3-Na2O glass (20% mol Na2O) SiO2-Na2O glass (29.4% mol Na2O) SiO2-Na2O glass (39.3% mol Na2O) SiO2-Na2O glass (34.3% mol Na2O) SiO2-Na2O glass (39.3% mol Na2O) SiO2-Na2O glass (29.4% mol Na2O) SiO2-Na2O glass (34.3% mol Na2O) SiO2-Na2O glass (39.3% mol Na2O) SiO2-Na2O glass (34.3% mol Na2O) SiO2 glass
Frequency (Hz)
Temperature
Tangent Loss (tan δ)
3 kHz 10 kHz 50 kHz 1 kHz
room temp. room temp. room temp. 400˚C
0.1455 0.1764 0.1864 0.2
100 kHz 1kHz 30 kHz 5 kHz
room temp. room temp. room temp. room temp.
0.2144 0.2207 0.2314 0.2426
1 kHz 3 kHz 50 kHz 10 kHz
274˚C room temp. room temp. room temp.
0.2480 0.3027 0.3032 0.3752
30 kHz 1kHz 5 kHz
room temp. room temp. room temp.
0.3835 0.4923 0.5280
10 kHz 3 kHz 100 Hz
room temp. room temp. 400˚C
0.6338 0.6520 1.0
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
Shackelford & Alexander
1765
16.2 sel Electrical Page 1766 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 440. SELECTING
TANGENT LOSS IN GLASS BY
TEMPERATURE
(SHEET 1 OF 5) Frequency
Glass
(Ηz)
Tangent Loss
Temperature
-100˚C
0˚C
SiO2-PbO glass (40% mol PbO) SiO2-PbO glass (40% mol PbO) SiO2-PbO glass (40% mol PbO) SiO2-PbO glass (40% mol PbO)
32 GHz 32 GHz 32 GHz 32 GHz
0.018 0.015 0.020 0.022
16˚C
B2O3-Na2O glass (20% mol Na2O)
16˚C
B2O3-Na2O glass (25% mol Na2O)
1 kHz 1 kHz
0.0009 0.0022 0.0015 0.0022 0.0025 0.0031 0.005 0.0058 0.0063 0.0073
-150˚C -50˚C
20˚C
SiO2 glass
20˚C
B2O3-Na2O glass (10% mol Na2O)
(tan δ)
20˚C
B2O3-Na2O glass (8% mol Na2O)
20˚C
B2O3-Na2O glass (16% mol Na2O)
9.4 GHz 1MHz 1MHz 1MHz
20˚C
SiO2-PbO glass (40% mol PbO)
100 GHz
20˚C
SiO2-Na2O glass (16% mol Na2O)
4.5x108 Hz
20˚C
B2O3-Na2O glass (25% mol Na2O)
1MHz
20˚C
SiO2-Na2O glass (20% mol Na2O)
4.5x108 Hz
20˚C
B2O3-Na2O glass (28% mol Na2O)
1MHz
20˚C
SiO2-Na2O glass (22.2% mol Na2O)
4.5x108 Hz
20˚C
SiO2-Na2O glass (28.6% mol Na2O)
20˚C
SiO2-Na2O glass (36% mol Na2O)
4.5x108 Hz 4.5x108 Hz
0.0081 0.0081 0.0102 0.0162
20˚C
SiO2-Na2O glass (19.5% mol Na2O)
20˚C
SiO2-Na2O glass (19.5% mol Na2O)
20˚C
SiO2-Na2O glass (24.4% mol Na2O)
20˚C
SiO2-Na2O glass (19.5% mol Na2O)
300 kHz 100 kHz 300 kHz 50 kHz
0.0295 0.0364 0.0369 0.0428
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
1766
CRC Handbook of Materials Science & Engineering
16.2 sel Electrical Page 1767 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 440. SELECTING
TANGENT LOSS IN GLASS BY
TEMPERATURE
(SHEET 2 OF 5) Frequency
Glass
(Ηz)
Tangent Loss
Temperature
20˚C
SiO2-Na2O glass (24.4% mol Na2O)
20˚C
SiO2-Na2O glass (19.5% mol Na2O)
20˚C
SiO2-PbO glass (40% mol PbO)
20˚C
SiO2-Na2O glass (24.4% mol Na2O)
100 kHz 30 kHz 1000 GHz 50 kHz
0.0456 0.0492 0.050 0.0563
20˚C
SiO2-Na2O glass (29.4% mol Na2O)
20˚C
SiO2-Na2O glass (24.4% mol Na2O)
20˚C
SiO2-Na2O glass (19.5% mol Na2O)
20˚C
SiO2-Na2O glass (29.4% mol Na2O)
300 kHz 30 kHz 10 kHz 100 kHz
0.0568 0.0652 0.0656 0.0758
20˚C
SiO2-Na2O glass (19.5% mol Na2O)
20˚C
SiO2-Na2O glass (24.4% mol Na2O)
20˚C
SiO2-Na2O glass (34.3% mol Na2O)
20˚C
SiO2-Na2O glass (29.4% mol Na2O)
5 kHz 10 kHz 300 kHz 50 kHz
0.0832 0.0916 0.0936 0.0972
20˚C
SiO2-Na2O glass (19.5% mol Na2O)
20˚C
SiO2-Na2O glass (34.3% mol Na2O)
20˚C
SiO2-Na2O glass (29.4% mol Na2O)
20˚C
SiO2-Na2O glass (24.4% mol Na2O)
3 kHz 1kHz 30 kHz 5 kHz
0.0984 0.10324 0.1172 0.1194
20˚C
SiO2-Na2O glass (34.3% mol Na2O)
20˚C
SiO2-Na2O glass (39.3% mol Na2O)
20˚C
SiO2-Na2O glass (19.5% mol Na2O)
20˚C
SiO2-Na2O glass (24.4% mol Na2O)
100 kHz 300 kHz 1kHz 3 kHz
0.1388 0.1402 0.144 0.1455
20˚C
SiO2-Na2O glass (29.4% mol Na2O)
20˚C
SiO2-Na2O glass (34.3% mol Na2O)
10 kHz 50 kHz 100 kHz 1kHz
0.1764 0.1864 0.2144 0.2207
20˚C
SiO2-Na2O glass (39.3% mol Na2O)
20˚C
SiO2-Na2O glass (24.4% mol Na2O)
(tan δ)
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
Shackelford & Alexander
1767
16.2 sel Electrical Page 1768 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 440. SELECTING
TANGENT LOSS IN GLASS BY
TEMPERATURE
(SHEET 3 OF 5) Frequency
Glass
(Ηz)
Tangent Loss
Temperature
20˚C
SiO2-Na2O glass (34.3% mol Na2O)
20˚C
SiO2-Na2O glass (29.4% mol Na2O)
20˚C
SiO2-Na2O glass (29.4% mol Na2O)
20˚C
SiO2-Na2O glass (39.3% mol Na2O)
30 kHz 5 kHz 3 kHz 50 kHz
0.2314 0.2426 0.3027 0.3032
20˚C
SiO2-Na2O glass (34.3% mol Na2O)
20˚C
SiO2-Na2O glass (39.3% mol Na2O)
20˚C
SiO2-Na2O glass (29.4% mol Na2O)
10 kHz 30 kHz 1kHz
0.3752 0.3835 0.4923
20˚C
SiO2-Na2O glass (34.3% mol Na2O)
20˚C
SiO2-Na2O glass (39.3% mol Na2O)
20˚C
SiO2-Na2O glass (34.3% mol Na2O)
5 kHz 10 kHz 3 kHz
0.5280 0.6338 0.6520
25˚C
SiO2 glass
25˚C
SiO2 glass
100 Hz 1 kHz 10 kHz 2 MHz
0.00002 0.00002 0.00002 0.001
32 GHz 1 kHz 1 kHz
0.024 0.0026 0.0150
1 MHz 2 MHz
0.0004 0.002
1 kHz 1 kHz 1 kHz
0.0003 0.0005 0.0015
1 kHz 1 kHz
0.0149 0.1080
25˚C
SiO2 glass
25˚C
B2O3-CaO glass (33.3% mol CaO)
50˚C
SiO2-PbO glass (40% mol PbO)
90.5˚C
B2O3-Na2O glass (20% mol Na2O)
90.5˚C
B2O3-Na2O glass (25% mol Na2O)
100˚C
B2O3 glass
100˚C
B2O3-CaO glass (33.3% mol CaO)
134.5˚C
B2O3-Na2O glass (10% mol Na2O)
134.5˚C
B2O3-Na2O glass (12.5% mol Na2O)
134.5˚C
B2O3-Na2O glass (15% mol Na2O)
157˚C
B2O3-Na2O glass (20% mol Na2O)
157˚C
B2O3-Na2O glass (25% mol Na2O)
(tan δ)
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
1768
CRC Handbook of Materials Science & Engineering
16.2 sel Electrical Page 1769 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 440. SELECTING
TANGENT LOSS IN GLASS BY
TEMPERATURE
(SHEET 4 OF 5) Frequency
Glass
(Ηz)
Tangent Loss
Temperature
200˚C
SiO2 glass
10 kHz 1 kHz 1 MHz 100 Hz 9.4 GHz 2 MHz
0.00004 0.00012 0.0005 0.00052 0.0018 0.0025
1 kHz 1 kHz 1 kHz
0.0009 0.0022 0.0064
1 kHz 1 kHz
0.0890 0.2480
1 kHz 1 kHz 1 kHz
0.0038 0.0100 0.0296
1 kHz 1 kHz 1 kHz
0.0066 0.0170 0.0477
10 kHz 1 MHz 2 MHz 1 kHz 100 Hz
0.00072 0.0009 0.0035 0.0072 0.080
200˚C
SiO2 glass
200˚C
B2O3 glass
200˚C
SiO2 glass
200˚C
SiO2 glass
200˚C
B2O3-CaO glass (33.3% mol CaO)
214˚C
B2O3-Na2O glass (10% mol Na2O)
214˚C
B2O3-Na2O glass (12.5% mol Na2O)
214˚C
B2O3-Na2O glass (15% mol Na2O)
219˚C
B2O3-Na2O glass (20% mol Na2O)
274˚C
B2O3-Na2O glass (20% mol Na2O)
277˚C
B2O3-Na2O glass (10% mol Na2O)
277˚C
B2O3-Na2O glass (12.5% mol Na2O)
277˚C
B2O3-Na2O glass (15% mol Na2O)
298˚C
B2O3-Na2O glass (10% mol Na2O)
298˚C
B2O3-Na2O glass (12.5% mol Na2O)
298˚C
B2O3-Na2O glass (15% mol Na2O)
300˚C
SiO2 glass
300˚C
B2O3 glass
300˚C
B2O3-CaO glass (33.3% mol CaO)
300˚C
SiO2 glass
300˚C
SiO2 glass
(tan δ)
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
Shackelford & Alexander
1769
16.2 sel Electrical Page 1770 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 440. SELECTING
TANGENT LOSS IN GLASS BY
TEMPERATURE
(SHEET 5 OF 5) Frequency
Glass
(Ηz)
Tangent Loss
Temperature
323˚C
B2O3 glass
32 kHz 32 kHz 100 K 50 K
0.00005 0.00011 0.0021 0.0025
9.4 GHz 2 MHz 10 kHz
0.002 0.0045 0.022
1 kHz 100 Hz
0.2 1.0
150 K 32 kHz 32 kHz
0.0026 0.0007 0.0010
2 MHz 32 kHz 2 MHz 32 kHz
0.0055 0.0008 0.007 0.0003
9.4 GHz 9.4 GHz
0.0029 0.0048
9.4 GHz 9.4 GHz 9.4 GHz
0.011 0.025 0.046
373˚C
B2O3 glass
373˚C
SiO2-Al2O3 glass (0.5% mol Al2O3)
323˚C
SiO2-Al2O3 glass (0.5% mol Al2O3)
400˚C
SiO2 glass
400˚C
B2O3-CaO glass (33.3% mol CaO)
400˚C
SiO2 glass
400˚C
SiO2 glass
400˚C
SiO2 glass
423˚C
SiO2-Al2O3 glass (0.5% mol Al2O3)
423˚C
B2O3 glass
473˚C
B2O3 glass
500˚C
B2O3-CaO glass (33.3% mol CaO)
523˚C
B2O3 glass
550˚C
B2O3-CaO glass (33.3% mol CaO)
573˚C
B2O3 glass
600˚C
SiO2 glass
800˚C
SiO2 glass
1000˚C
SiO2 glass
1200˚C
SiO2 glass
1400˚C
SiO2 glass
(tan δ)
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
1770
CRC Handbook of Materials Science & Engineering
16.2 sel Electrical Page 1771 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 441. SELECTING
TANGENT LOSS IN GLASS BY FREQUENCY (SHEET 1 OF 5)
Frequency (Ηz)
Glass
Temperature
Tangent Loss (tan δ)
100 Hz
SiO2 glass SiO2 glass SiO2 glass SiO2 glass
25˚C 200˚C 300˚C 400˚C
0.00002 0.00052 0.080 1.0
1 kHz
SiO2 glass
1 kHz
SiO2 glass
25˚C 200˚C 134.5˚C 134.5˚C
0.00002 0.00012 0.0003 0.0005
214˚C 16˚C 134.5˚C 214˚C
0.0009 0.0009 0.0015 0.0022
16˚C 90.5˚C 277˚C 214˚C
0.0022 0.0026 0.0038 0.0064
298˚C 300˚C 277˚C 157˚C
0.0066 0.0072 0.0100 0.0149
90.5˚C 298˚C 277˚C 298˚C
0.0150 0.0170 0.0296 0.0477
100 Hz 100 Hz 100 Hz
1 kHz
B2O3-Na2O glass (10% mol Na2O)
1 kHz
B2O3-Na2O glass (12.5% mol Na2O)
1 kHz
B2O3-Na2O glass (10% mol Na2O)
1 kHz
B2O3-Na2O glass (20% mol Na2O)
1 kHz
B2O3-Na2O glass (15% mol Na2O)
1 kHz
B2O3-Na2O glass (12.5% mol Na2O)
1 kHz
B2O3-Na2O glass (25% mol Na2O)
1 kHz
B2O3-Na2O glass (20% mol Na2O)
1 kHz
B2O3-Na2O glass (10% mol Na2O)
1 kHz
B2O3-Na2O glass (15% mol Na2O)
1 kHz
B2O3-Na2O glass (10% mol Na2O)
1 kHz
SiO2 glass
1 kHz
B2O3-Na2O glass (12.5% mol Na2O)
1 kHz
B2O3-Na2O glass (20% mol Na2O)
1 kHz
B2O3-Na2O glass (25% mol Na2O)
1 kHz
B2O3-Na2O glass (12.5% mol Na2O)
1 kHz
B2O3-Na2O glass (15% mol Na2O)
1 kHz
B2O3-Na2O glass (15% mol Na2O)
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
Shackelford & Alexander
1771
16.2 sel Electrical Page 1772 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 441. SELECTING
TANGENT LOSS IN GLASS BY FREQUENCY (SHEET 2 OF 5)
Frequency (Ηz)
Glass
Temperature
Tangent Loss (tan δ)
1 kHz
B2O3-Na2O glass (20% mol Na2O)
1 kHz
SiO2-Na2O glass (34.3% mol Na2O)
219˚C room temp. 157˚C room temp.
0.0890 0.10324 0.1080 0.144
400˚C room temp. 274˚C room temp.
0.2 0.2207 0.2480 0.4923
room temp. room temp. room temp. room temp.
0.0984 0.1455 0.3027 0.6520
room temp. room temp. room temp. room temp.
0.0832 0.1194 0.2426 0.5280
25˚C 200˚C 300˚C
0.00002 0.00004 0.00072
400˚C room temp. room temp.
0.022 0.0656 0.0916
room temp. room temp. room temp.
0.1764 0.3752 0.6338
1 kHz
B2O3-Na2O glass (25% mol Na2O)
1 kHz
SiO2-Na2O glass (19.5% mol Na2O)
1 kHz
SiO2 glass
1 kHz
SiO2-Na2O glass (24.4% mol Na2O)
1 kHz
B2O3-Na2O glass (20% mol Na2O)
1 kHz
SiO2-Na2O glass (29.4% mol Na2O)
3 kHz
SiO2-Na2O glass (19.5% mol Na2O)
3 kHz
SiO2-Na2O glass (24.4% mol Na2O)
3 kHz
SiO2-Na2O glass (29.4% mol Na2O)
3 kHz
SiO2-Na2O glass (34.3% mol Na2O)
5 kHz
SiO2-Na2O glass (19.5% mol Na2O)
5 kHz
SiO2-Na2O glass (24.4% mol Na2O)
5 kHz
SiO2-Na2O glass (29.4% mol Na2O)
5 kHz
SiO2-Na2O glass (34.3% mol Na2O)
10 kHz
SiO2 glass
10 kHz
SiO2 glass
10 kHz
SiO2 glass
10 kHz
SiO2 glass
10 kHz
SiO2-Na2O glass (19.5% mol Na2O)
10 kHz
SiO2-Na2O glass (24.4% mol Na2O)
10 kHz
SiO2-Na2O glass (29.4% mol Na2O)
10 kHz
SiO2-Na2O glass (34.3% mol Na2O)
10 kHz
SiO2-Na2O glass (39.3% mol Na2O)
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
1772
CRC Handbook of Materials Science & Engineering
16.2 sel Electrical Page 1773 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 441. SELECTING
TANGENT LOSS IN GLASS BY FREQUENCY (SHEET 3 OF 5)
Frequency (Ηz)
Glass
Temperature
Tangent Loss (tan δ)
30 kHz
SiO2-Na2O glass (19.5% mol Na2O)
30 kHz
SiO2-Na2O glass (24.4% mol Na2O)
30 kHz
SiO2-Na2O glass (29.4% mol Na2O)
room temp. room temp. room temp.
0.0492 0.0652 0.1172
30 kHz
SiO2-Na2O glass (34.3% mol Na2O)
30 kHz
SiO2-Na2O glass (39.3% mol Na2O)
room temp. room temp.
0.2314 0.3835
50K 100K 300K
0.00005 0.00011 0.0003
150K 250K 200K
0.0007 0.0008 0.0010
room temp. room temp. room temp.
0.0428 0.0563 0.0972
room temp. room temp.
0.1864 0.3032
room temp. room temp. room temp.
0.0364 0.0456 0.0758
room temp. room temp.
0.1388 0.2144
room temp. room temp. room temp.
0.0295 0.0369 0.0568
32 kHz
B2O3 glass
32 kHz
B2O3 glass
32 kHz
B2O3 glass
32 kHz
B2O3 glass
32 kHz
B2O3 glass
32 kHz
B2O3 glass
50 kHz
SiO2-Na2O glass (19.5% mol Na2O)
50 kHz
SiO2-Na2O glass (24.4% mol Na2O)
50 kHz
SiO2-Na2O glass (29.4% mol Na2O)
50 kHz
SiO2-Na2O glass (34.3% mol Na2O)
50 kHz
SiO2-Na2O glass (39.3% mol Na2O)
100 kHz
SiO2-Na2O glass (19.5% mol Na2O)
100 kHz
SiO2-Na2O glass (24.4% mol Na2O)
100 kHz
SiO2-Na2O glass (29.4% mol Na2O)
100 kHz
SiO2-Na2O glass (34.3% mol Na2O)
100 kHz
SiO2-Na2O glass (39.3% mol Na2O)
300 kHz
SiO2-Na2O glass (19.5% mol Na2O)
300 kHz
SiO2-Na2O glass (24.4% mol Na2O)
300 kHz
SiO2-Na2O glass (29.4% mol Na2O)
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
Shackelford & Alexander
1773
16.2 sel Electrical Page 1774 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 441. SELECTING
TANGENT LOSS IN GLASS BY FREQUENCY (SHEET 4 OF 5)
Frequency (Ηz)
Glass
Temperature
Tangent Loss (tan δ)
300 kHz
SiO2-Na2O glass (34.3% mol Na2O)
300 kHz
SiO2-Na2O glass (39.3% mol Na2O)
room temp. room temp.
0.0936 0.1402
1 MHz
B2O3 glass
1 MHz
B2O3 glass
100˚C 200˚C 300˚C room temp.
0.0004 0.0005 0.0009 0.0022
room temp. room temp. room temp. room temp.
0.0025 0.0031 0.0063 0.0081
25˚C 100˚C 200˚C 300˚C
0.001 0.002 0.0025 0.0035 0.0045 0.0055 0.007
1 MHz
B2O3 glass
1 MHz
B2O3-Na2O glass (10% mol Na2O)
1 MHz
B2O3-Na2O glass (8% mol Na2O)
1 MHz
B2O3-Na2O glass (16% mol Na2O)
1 MHz
B2O3-Na2O glass (25% mol Na2O)
1 MHz
B2O3-Na2O glass (28% mol Na2O)
2 MHz
B2O3-CaO glass (33.3% mol CaO)
2 MHz
B2O3-CaO glass (33.3% mol CaO)
2 MHz
B2O3-CaO glass (33.3% mol CaO)
2 MHz
B2O3-CaO glass (33.3% mol CaO)
2 MHz
B2O3-CaO glass (33.3% mol CaO)
2 MHz
B2O3-CaO glass (33.3% mol CaO)
2 MHz
B2O3-CaO glass (33.3% mol CaO)
400˚C 500˚C 550˚C
4.5x108 Hz
SiO2-Na2O glass (16% mol Na2O) SiO2-Na2O glass (20% mol Na2O) SiO2-Na2O glass (22.2% mol Na2O)
20˚C 20˚C 20˚C
0.0058 0.0073 0.0081
SiO2-Na2O glass (28.6% mol Na2O) SiO2-Na2O glass (36% mol Na2O)
20˚C 20˚C
0.0102 0.0162
4.5x108 Hz 4.5x108 Hz 4.5x108 Hz 4.5x108 Hz
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
1774
CRC Handbook of Materials Science & Engineering
16.2 sel Electrical Page 1775 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 441. SELECTING
TANGENT LOSS IN GLASS BY FREQUENCY (SHEET 5 OF 5)
Frequency (Ηz)
Glass
Temperature
Tangent Loss (tan δ)
9.4 GHz
SiO2 glass
9.4 GHz
SiO2 glass
9.4 GHz
SiO2 glass
9.4 GHz
SiO2 glass
20˚C 200˚C 400˚C 600˚C
0.0015 0.0018 0.002 0.0029
9.4 GHz
SiO2 glass
9.4 GHz
SiO2 glass
9.4 GHz
SiO2 glass
9.4 GHz
SiO2 glass
800˚C 1000˚C 1200˚C 1400˚C
0.0048 0.011 0.025 0.046
10 GHz
SiO2-B2O3 glass (46.3% mol B2O3)
32 GHz
SiO2-PbO glass (40% mol PbO)
32 GHz
SiO2-PbO glass (40% mol PbO)
32 GHz
SiO2-PbO glass (40% mol PbO)
32 GHz
SiO2-PbO glass (40% mol PbO)
32 GHz
SiO2-PbO glass (40% mol PbO)
100 GHz
SiO2-PbO glass (40% mol PbO)
1000 GHz
SiO2-PbO glass (40% mol PbO)
0.0014 -150˚C -100˚C -50˚C
0.015 0.018 0.020
0˚C 50˚C
0.022 0.024
room temp. room temp.
0.005 0.050
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC Shackelford & Alexander
1775
16.2 sel Electrical Page 1776 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 442. SELECTING
ELECTRICAL PERMITTIVITY OF GLASS (SHEET 1 OF 6) Temperature
Electrical
(˚C)
Permittivity
50 kHz 50 kHz 50 kHz 50 kHz
800 620 750 700
3.04 3.05 3.06 3.09
50 kHz 50 kHz 50 kHz 50 kHz
500 650 580 550
3.10 3.10 3.115 3.12
10 kHz 10 kHz 10 kHz 3 kHz
500 550 580 500
3.13 3.14 3.145 3.15
10 kHz 10 kHz 10 kHz 1 kHz
620 650 700 500
3.15 3.15 3.16 3.17
3 kHz 3 kHz 1 kHz 3 kHz
550 580 550 620
3.17 3.18 3.21 3.21
3 kHz 1 kHz 10 GHz 56.8 MHz
650 580
3.25 3.27 3.55 3.72
Frequency Glass
(Ηz)
B2O3 glass B2O3 glass B2O3 glass B2O3 glass B2O3 glass B2O3 glass B2O3 glass B2O3 glass B2O3 glass B2O3 glass B2O3 glass B2O3 glass B2O3 glass B2O3 glass B2O3 glass B2O3 glass B2O3 glass B2O3 glass B2O3 glass B2O3 glass B2O3 glass B2O3 glass SiO2–Al2O3 glass (46.3% mol B2O3) B2O3–Na2O glass (4.08% mol Na2O)
room temp.
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
1776
CRC Handbook of Materials Science & Engineering
16.2 sel Electrical Page 1777 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 442. SELECTING
ELECTRICAL PERMITTIVITY OF GLASS (SHEET 2 OF 6) Temperature
Electrical
(˚C)
Permittivity
9.4 GHz 10 GHz 10 GHz 9.4 GHz
20 20 220 200
3.81 3.82 3.82 3.83
9.4 GHz 9.4 GHz 9.4 GHz 9.4 GHz
400 600 800 1000
3.84 3.86 3.88 3.91
10 GHz 9.4 GHz 9.4 GHz 10 GHz
888 1200 1400 1170
3.91 3.93 3.96 3.98
100 Hz 100 Hz 100 Hz 1 kHz
25 200 300 25
4.0 4.0 4.0 4.0
1 kHz 1 kHz 10 kHz 10 kHz
200 300 25 200
4.0 4.0 4.0 4.0
10 kHz 10 kHz 10 GHz 10 GHz
300 400 1764 1335
4.0 4.0 4.04 4.05
Frequency Glass
(Ηz)
SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC Shackelford & Alexander
1777
16.2 sel Electrical Page 1778 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 442. SELECTING
ELECTRICAL PERMITTIVITY OF GLASS (SHEET 3 OF 6) Temperature
Electrical
(˚C)
Permittivity
10 GHz 10 GHz 10 GHz 1 kHz
1764 1420 1480 400
4.05 4.07 4.09 4.1
10 GHz 10 GHz 10 GHz 10 GHz
1526 1584 1647 1602
4.11 4.12 4.12 4.15
56.8 MHz 32 GHz 32 GHz 32 GHz
room temp. –150 –100 –50
4.20 4.25 4.30 4.40
32 GHz 56.8 MHz 32 GHz 1 kHz
0 room temp. 50 73
4.45 4.94 5.00 5.00
1 kHz 1 kHz 56.8 MHz 1 kHz
134.5 214 room temp. 277
5.05 5.15 5.27 5.45
1 kHz 100 Hz 1 kHz 1 kHz
73 400 298 134.5
5.45 5.5 5.60 5.60
Frequency Glass
(Ηz)
SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass B2O3–Na2O glass (7.35% mol Na2O) SiO2–PbO glass (40% mol PbO) SiO2–PbO glass (40% mol PbO) SiO2–PbO glass (40% mol PbO) SiO2–PbO glass (40% mol PbO) B2O3–Na2O glass (14.15% mol Na2O) SiO2–PbO glass (40% mol PbO) B2O3–Na2O glass (10% mol Na2O) B2O3–Na2O glass (10% mol Na2O) B2O3–Na2O glass (10% mol Na2O) B2O3–Na2O glass (17.31% mol Na2O) B2O3–Na2O glass (10% mol Na2O) B2O3–Na2O glass (12.5% mol Na2O) SiO2 glass B2O3–Na2O glass (10% mol Na2O) B2O3–Na2O glass (12.5% mol Na2O)
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
1778
CRC Handbook of Materials Science & Engineering
16.2 sel Electrical Page 1779 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 442. SELECTING
ELECTRICAL PERMITTIVITY OF GLASS (SHEET 4 OF 6) Temperature
Electrical
(˚C)
Permittivity
4.5x108 Hz
214 73 134.5 20
5.75 5.80 6.00 6.01
1 kHz 56.8 MHz 1 kHz 1 kHz
16 room temp. 277 90.5
6.15 6.24 6.30 6.43
B2O3–Na2O glass (12.5% mol Na2O)
4.5x108 Hz 1 kHz 1 kHz
SiO2–Na2O glass (22.2% mol Na2O)
4.5x108 Hz
20 214 298 20
6.48 6.50 6.65 6.85
B2O3–Na2O glass (31.98% mol Na2O)
56.8 MHz 1 kHz 1 kHz 300 kHz
room temp. 157 16 room temp.
7.03 7.45 7.50 7.62
4.5x108 Hz 100 kHz 1 kHz 50 kHz
20 room temp. 277 room temp.
7.62 7.74 7.80 7.88
30 kHz 10 kHz 5 kHz 1 kHz
room temp. room temp. room temp. 298
8.00 8.26 8.56 8.60
Frequency Glass
(Ηz)
B2O3–Na2O glass (12.5% mol Na2O) B2O3–Na2O glass (15% mol Na2O)
1 kHz 1 kHz 1 kHz
SiO2–Na2O glass (16% mol Na2O) B2O3–Na2O glass (20% mol Na2O)
B2O3–Na2O glass (15% mol Na2O)
B2O3–Na2O glass (24.77% mol Na2O) B2O3–Na2O glass (12.5% mol Na2O) B2O3–Na2O glass (20% mol Na2O) SiO2–Na2O glass (20% mol Na2O) B2O3–Na2O glass (15% mol Na2O)
B2O3–Na2O glass (20% mol Na2O) B2O3–Na2O glass (25% mol Na2O) SiO2–Na2O glass (19.5% mol Na2O) SiO2–Na2O glass (28.6% mol Na2O) SiO2–Na2O glass (19.5% mol Na2O) B2O3–Na2O glass (15% mol Na2O) SiO2–Na2O glass (19.5% mol Na2O) SiO2–Na2O glass (19.5% mol Na2O) SiO2–Na2O glass (19.5% mol Na2O) SiO2–Na2O glass (19.5% mol Na2O) B2O3–Na2O glass (15% mol Na2O)
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
Shackelford & Alexander
1779
16.2 sel Electrical Page 1780 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 442. SELECTING
ELECTRICAL PERMITTIVITY OF GLASS (SHEET 5 OF 6) Temperature
Electrical
(˚C)
Permittivity
300 kHz 1 kHz 100 kHz 3 kHz
room temp. 90.5 room temp. room temp.
8.75 8.90 8.91 8.97
SiO2–Na2O glass (19.5% mol Na2O)
50 kHz 30 kHz 1kHz
SiO2–Na2O glass (36% mol Na2O)
4.5x108 Hz
room temp. room temp. room temp. 20
9.14 9.30 9.40 9.40
SiO2–Na2O glass (24.4% mol Na2O)
10 kHz 300 kHz 5 kHz 100 kHz
room temp. room temp. room temp. room temp.
9.74 10.15 10.21 10.47
3 kHz 50 kHz 300 kHz 30 kHz
room temp. room temp. room temp. room temp.
10.61 10.86 11.14 11.21
1kHz 100 kHz 1 kHz 10 kHz
room temp. room temp. 219 room temp.
11.62 11.78 11.85 12.08
300 kHz 50 kHz 5 kHz 30 kHz
room temp. room temp. room temp. room temp.
12.43 12.57 13.19 13.28
Frequency Glass
(Ηz)
SiO2–Na2O glass (24.4% mol Na2O) B2O3–Na2O glass (25% mol Na2O) SiO2–Na2O glass (24.4% mol Na2O) SiO2–Na2O glass (19.5% mol Na2O) SiO2–Na2O glass (24.4% mol Na2O) SiO2–Na2O glass (24.4% mol Na2O)
SiO2–Na2O glass (29.4% mol Na2O) SiO2–Na2O glass (24.4% mol Na2O) SiO2–Na2O glass (29.4% mol Na2O) SiO2–Na2O glass (24.4% mol Na2O) SiO2–Na2O glass (29.4% mol Na2O) SiO2–Na2O glass (34.3% mol Na2O) SiO2–Na2O glass (29.4% mol Na2O) SiO2–Na2O glass (24.4% mol Na2O) SiO2–Na2O glass (34.3% mol Na2O) B2O3–Na2O glass (20% mol Na2O) SiO2–Na2O glass (29.4% mol Na2O) SiO2–Na2O glass (39.3% mol Na2O) SiO2–Na2O glass (34.3% mol Na2O) SiO2–Na2O glass (29.4% mol Na2O) SiO2–Na2O glass (34.3% mol Na2O)
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
1780
CRC Handbook of Materials Science & Engineering
16.2 sel Electrical Page 1781 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 442. SELECTING
ELECTRICAL PERMITTIVITY OF GLASS (SHEET 6 OF 6) Temperature
Electrical
(˚C)
Permittivity
100 kHz 3 kHz 50 kHz 10 kHz
room temp. room temp. room temp. room temp.
13.55 14.23 15.06 15.22
30 kHz 1 kHz 1kHz 5 kHz
room temp. 157 room temp. room temp.
16.56 17.30 17.52 18.13
3 kHz 10 kHz 1 kHz 1kHz
room temp. room temp. 274 room temp.
21.30 22.08 31.00 38.61
Frequency Glass
(Ηz)
SiO2–Na2O glass (39.3% mol Na2O) SiO2–Na2O glass (29.4% mol Na2O) SiO2–Na2O glass (39.3% mol Na2O) SiO2–Na2O glass (34.3% mol Na2O) SiO2–Na2O glass (39.3% mol Na2O) B2O3–Na2O glass (25% mol Na2O) SiO2–Na2O glass (29.4% mol Na2O) SiO2–Na2O glass (34.3% mol Na2O) SiO2–Na2O glass (34.3% mol Na2O) SiO2–Na2O glass (39.3% mol Na2O) B2O3–Na2O glass (20% mol Na2O) SiO2–Na2O glass (34.3% mol Na2O)
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
Shackelford & Alexander
1781
16.2 sel Electrical Page 1782 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 443. SELECTING
ELECTRICAL PERMITTIVITY OF GLASS
BY FREQUENCY (SHEET 1 OF 6) Frequency (Hz)
Glass
100 Hz 100 Hz
SiO2 glass SiO2 glass
100 Hz
SiO2 glass
100 Hz
SiO2 glass
1 kHz
B2O3 glass
1 kHz
B2O3 glass
1 kHz
B2O3 glass
1 kHz
SiO2 glass
1 kHz
SiO2 glass
1 kHz
SiO2 glass
1 kHz
SiO2 glass
1 kHz
B2O3–Na2O glass (10% mol Na2O)
1 kHz
B2O3–Na2O glass (10% mol Na2O)
1 kHz
B2O3–Na2O glass (10% mol Na2O)
1 kHz
B2O3–Na2O glass (10% mol Na2O)
1 kHz
B2O3–Na2O glass (12.5% mol Na2O)
1 kHz
B2O3–Na2O glass (10% mol Na2O)
1 kHz
B2O3–Na2O glass (12.5% mol Na2O)
1 kHz
B2O3–Na2O glass (12.5% mol Na2O)
1 kHz
B2O3–Na2O glass (15% mol Na2O)
1 kHz
B2O3–Na2O glass (15% mol Na2O)
1 kHz
B2O3–Na2O glass (20% mol Na2O)
1 kHz
B2O3–Na2O glass (12.5% mol Na2O)
1 kHz
B2O3–Na2O glass (20% mol Na2O)
Temperature (˚C)
Electrical Permittivity
25
4.0
200 300 400
4.0 4.0 5.5
500 550 580 25
3.17 3.21 3.27 4.0
200 300 400 73
4.0 4.0 4.1 5.00
134.5 214 277 73
5.05 5.15 5.45 5.45
298 134.5 214 73
5.60 5.60 5.75 5.80
134.5 16 277 90.5
6.00 6.15 6.30 6.43
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
1782
CRC Handbook of Materials Science & Engineering
16.2 sel Electrical Page 1783 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 443. SELECTING
ELECTRICAL PERMITTIVITY OF GLASS
BY FREQUENCY (SHEET 2 OF 6) Frequency (Hz)
Glass
1 kHz
B2O3–Na2O glass (15% mol Na2O)
1 kHz
B2O3–Na2O glass (12.5% mol Na2O)
1 kHz
B2O3–Na2O glass (20% mol Na2O)
1 kHz
B2O3–Na2O glass (25% mol Na2O)
1 kHz
B2O3–Na2O glass (15% mol Na2O)
1 kHz
B2O3–Na2O glass (15% mol Na2O)
1 kHz
B2O3–Na2O glass (25% mol Na2O)
1 kHz
SiO2–Na2O glass (19.5% mol Na2O)
1 kHz
SiO2–Na2O glass (24.4% mol Na2O)
1 kHz
B2O3–Na2O glass (20% mol Na2O)
1 kHz
B2O3–Na2O glass (25% mol Na2O)
1 kHz
SiO2–Na2O glass (29.4% mol Na2O)
1 kHz
B2O3–Na2O glass (20% mol Na2O)
1 kHz
SiO2–Na2O glass (34.3% mol Na2O)
3 kHz
B2O3 glass
3 kHz
B2O3 glass
3 kHz
B2O3 glass
3 kHz
B2O3 glass
3 kHz
B2O3 glass
3 kHz
SiO2–Na2O glass (19.5% mol Na2O)
3 kHz
SiO2–Na2O glass (24.4% mol Na2O)
3 kHz
SiO2–Na2O glass (29.4% mol Na2O)
3 kHz
SiO2–Na2O glass (34.3% mol Na2O)
Temperature (˚C)
Electrical Permittivity
214 298 157 16
6.50 6.65 7.45 7.50
277 298 90.5 room temp.
7.80 8.60 8.90 9.40
room temp. 219 157
11.62 11.85 17.30
room temp. 274 room temp.
17.52 31.00 38.61
500 550 580 620
3.15 3.17 3.18 3.21
650 room temp. room temp.
3.25 8.97 10.61
room temp. room temp.
14.23 21.30
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC Shackelford & Alexander
1783
16.2 sel Electrical Page 1784 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 443. SELECTING
ELECTRICAL PERMITTIVITY OF GLASS
BY FREQUENCY (SHEET 3 OF 6) Frequency (Hz)
Glass
5 kHz
SiO2–Na2O glass (19.5% mol Na2O)
5 kHz
SiO2–Na2O glass (24.4% mol Na2O)
5 kHz
SiO2–Na2O glass (29.4% mol Na2O)
5 kHz
SiO2–Na2O glass (34.3% mol Na2O)
10 kHz
B2O3 glass
10 kHz
B2O3 glass
10 kHz
B2O3 glass
10 kHz
B2O3 glass
10 kHz
B2O3 glass
10 kHz
B2O3 glass
10 kHz
SiO2 glass
10 kHz
SiO2 glass
10 kHz
SiO2 glass
10 kHz
SiO2 glass
10 kHz
SiO2–Na2O glass (19.5% mol Na2O)
10 kHz
SiO2–Na2O glass (24.4% mol Na2O)
10 kHz
SiO2–Na2O glass (29.4% mol Na2O)
10 kHz
SiO2–Na2O glass (34.3% mol Na2O)
10 kHz
SiO2–Na2O glass (39.3% mol Na2O)
30 kHz
SiO2–Na2O glass (19.5% mol Na2O)
30 kHz
SiO2–Na2O glass (24.4% mol Na2O)
30 kHz
SiO2–Na2O glass (29.4% mol Na2O)
30 kHz
SiO2–Na2O glass (34.3% mol Na2O)
30 kHz
SiO2–Na2O glass (39.3% mol Na2O)
Temperature (˚C)
Electrical Permittivity
room temp. room temp. room temp. room temp.
8.56 10.21 13.19 18.13
500 550 580 620
3.13 3.14 3.145 3.15
650 700 25 200
3.15 3.16 4.0 4.0
300 400 room temp. room temp.
4.0 4.0 8.26 9.74
room temp. room temp. room temp.
12.08 15.22 22.08
room temp. room temp. room temp.
8.00 9.30 11.21
room temp. room temp.
13.28 16.56
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
1784
CRC Handbook of Materials Science & Engineering
16.2 sel Electrical Page 1785 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 443. SELECTING
ELECTRICAL PERMITTIVITY OF GLASS
BY FREQUENCY (SHEET 4 OF 6) Frequency (Hz)
Glass
50 kHz
B2O3 glass
50 kHz
B2O3 glass
50 kHz
B2O3 glass
50 kHz
B2O3 glass
50 kHz
B2O3 glass
50 kHz
B2O3 glass
50 kHz
B2O3 glass
50 kHz
B2O3 glass
50 kHz
SiO2–Na2O glass (19.5% mol Na2O)
50 kHz
SiO2–Na2O glass (24.4% mol Na2O)
50 kHz
SiO2–Na2O glass (29.4% mol Na2O)
50 kHz
SiO2–Na2O glass (34.3% mol Na2O)
50 kHz
SiO2–Na2O glass (39.3% mol Na2O)
100 kHz
SiO2–Na2O glass (19.5% mol Na2O)
100 kHz
SiO2–Na2O glass (24.4% mol Na2O)
100 kHz
SiO2–Na2O glass (29.4% mol Na2O)
100 kHz
SiO2–Na2O glass (34.3% mol Na2O)
100 kHz
SiO2–Na2O glass (39.3% mol Na2O)
300 kHz
SiO2–Na2O glass (19.5% mol Na2O)
300 kHz
SiO2–Na2O glass (24.4% mol Na2O)
300 kHz
SiO2–Na2O glass (29.4% mol Na2O)
300 kHz
SiO2–Na2O glass (34.3% mol Na2O)
300 kHz
SiO2–Na2O glass (39.3% mol Na2O)
Temperature (˚C)
Electrical Permittivity
800 620 750 700
3.04 3.05 3.06 3.09
500 650 580 550
3.10 3.10 3.115 3.12
room temp. room temp. room temp.
7.88 9.14 10.86
room temp. room temp.
12.57 15.06
room temp. room temp. room temp.
7.74 8.91 10.47
room temp. room temp.
11.78 13.55
room temp. room temp. room temp.
7.62 8.75 10.15
room temp. room temp.
11.14 12.43
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
Shackelford & Alexander
1785
16.2 sel Electrical Page 1786 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 443. SELECTING
ELECTRICAL PERMITTIVITY OF GLASS
BY FREQUENCY (SHEET 5 OF 6) Frequency (Hz)
Glass
Temperature (˚C)
Electrical Permittivity
56.8 MHz 56.8 MHz 56.8 MHz
B2O3–Na2O glass (4.08% mol Na2O)
room temp.
3.72
B2O3–Na2O glass (7.35% mol Na2O) B2O3–Na2O glass (14.15% mol Na2O)
room temp. room temp.
4.20 4.94
56.8 MHz 56.8 MHz 56.8 MHz
B2O3–Na2O glass (17.31% mol Na2O)
room temp.
5.27
B2O3–Na2O glass (24.77% mol Na2O) B2O3–Na2O glass (31.98% mol Na2O)
room temp. room temp.
6.24 7.03
4.5x108 Hz
SiO2–Na2O glass (16% mol Na2O) SiO2–Na2O glass (20% mol Na2O) SiO2–Na2O glass (22.2% mol Na2O)
20 20 20
6.01 6.48 6.85
4.5x108 Hz
SiO2–Na2O glass (28.6% mol Na2O) SiO2–Na2O glass (36% mol Na2O)
20 20
7.62 9.40
9.4 GHz
SiO2 glass
9.4 GHz
SiO2 glass
9.4 GHz
SiO2 glass
9.4 GHz
SiO2 glass
20 200 400 600
3.81 3.83 3.84 3.86
9.4 GHz
SiO2 glass
9.4 GHz
SiO2 glass
9.4 GHz
SiO2 glass
9.4 GHz
SiO2 glass
800 1000 1200 1400
3.88 3.91 3.93 3.96
10 GHz
SiO2–Al2O3 glass (46.3% mol B2O3)
10 GHz
SiO2 glass
10 GHz
SiO2 glass
10 GHz
SiO2 glass
20 220 888
3.55 3.82 3.82 3.91
4.5x108 Hz 4.5x108 Hz 4.5x108 Hz
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
1786
CRC Handbook of Materials Science & Engineering
16.2 sel Electrical Page 1787 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 443. SELECTING
ELECTRICAL PERMITTIVITY OF GLASS
BY FREQUENCY (SHEET 6 OF 6) Frequency (Hz)
Glass
10 GHz
SiO2 glass
10 GHz
SiO2 glass
10 GHz
SiO2 glass
10 GHz
SiO2 glass
10 GHz
SiO2 glass
10 GHz
SiO2 glass
10 GHz
SiO2 glass
10 GHz
SiO2 glass
10 GHz
SiO2 glass
10 GHz
SiO2 glass
32 GHz
SiO2–PbO glass (40% mol PbO)
32 GHz
SiO2–PbO glass (40% mol PbO)
32 GHz
SiO2–PbO glass (40% mol PbO)
32 GHz
SiO2–PbO glass (40% mol PbO)
32 GHz
SiO2–PbO glass (40% mol PbO)
Temperature (˚C)
Electrical Permittivity
1170 1764 1335 1764
3.98 4.04 4.05 4.05
1420 1480 1526
4.07 4.09 4.11
1584 1647 1602
4.12 4.12 4.15
–150 –100 –50
4.25 4.30 4.40
0 50
4.45 5.00
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
Shackelford & Alexander
1787
16.2 sel Electrical Page 1788 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 444. SELECTING
ARC RESISTANCE OF POLYMERS (SHEET 1 OF 3)
Polymer
Arc Resistance (ASTM D495) (seconds)
Rubber phenolic—asbestos filled Phenolics; Molded; General: woodflour and flock filled Phenolics; Molded; Shock: paper, flock, or pulp filled Phenolics; Molded; High shock: chopped fabric or cord filled
5—20 5—60 5—60 5—60
Rubber phenolic—woodflour or flock filled Rubber phenolic—chopped fabric filled Polypropylene: Flame retardant Polystyrenes; Molded: High impact
7—20 10—20 15—40 20—100
Polystyrenes; Molded: Medium impact PVC–Acrylic Alloy: PVC–acrylic injection molded Polystyrenes; Molded: Glass fiber -30% reinforced Polyphenylene sulfide: 40% glass reinforced
20—135 25 28 34
Polymides: Glass reinforced Phenolics; Molded; Very high shock: glass fiber filled Polystyrenes; Molded: General purpose Glass fiber (30%) reinforced SAN
50—180 60 60—135 65
Polyarylsulfone Melamines; Molded: Cellulose electrical filled Polypropylene: Glass reinforced Phenylene Oxides: SE—100
67—81 70—135 73—77 75
Phenylene Oxides: SE—1 Standard Epoxies: Cast flexible PVC–Acrylic Alloy: PVC–acrylic sheet Polyester; Thermoplastic Moldings: Glass reinforced self extinguishing
75 75—98 80
Ureas; Molded: Woodflour filled Ureas; Molded: Cellulose filled (ASTM Type 2) Diallyl Phthalates; Molded: Orlon filled Nylons; Molded, Extruded Type 6: Glass fiber (30%) reinforced
80—110 85—110 85—115 92—81
80
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1788
CRC Handbook of Materials Science & Engineering
16.2 sel Electrical Page 1789 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 444. SELECTING
ARC RESISTANCE OF POLYMERS (SHEET 2 OF 3)
Polymer
Arc Resistance (ASTM D495) (seconds)
ABS–Polycarbonate Alloy Standard Epoxies: Cast rigid Ureas; Molded: Alpha—cellulose filled (ASTM Type l) Melamines; Molded: Unfilled
96 100 100—135 100—145
Styrene acrylonitrile (SAN) Diallyl Phthalates; Molded: Dacron filled Polyester; Thermoplastic Moldings: Asbestos—filled grade Phenylene oxides (Noryl): Glass fiber reinforced
100—150 105—125 108 114
Polyesters Cast Thermosets: Rigid Epoxy novolacs: Cast, rigid 6/6 Nylon; Molded, Extruded: General purpose molding 6/6 Nylon; Molded, Extruded: General purpose extrusion
115—135 120 120 120
6/10 Nylon: General purpose Phenylene Oxides: Glass fiber reinforced
Polycarbonate (40% glass fiber reinforced)
120 120 120 (tungsten electrode) 120 (tungsten electrode)
Polypropylene: Asbestos filled Phenylene oxides (Noryl): Standard Polypropylene: High impact Melamines; Molded: Alpha cellulose and mineral filled
121—125 122 123—140 125
Polyester; Thermoplastic Moldings: General purpose grade Polypropylene: General purpose Diallyl Phthalates; Molded: Asbestos filled Diallyl Phthalates; Molded: Glass fiber filled
125 125—136 125—140 125—140
Polyesters Cast Thermosets: Flexible Polyacetal Homopolymer: Standard Polyester; Thermoplastic Moldings: Glass reinforced grades Reinforced polyester moldings: High strength (glass fibers)
125—145 129 130 130—170
Polycarbonate
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC Shackelford & Alexander
1789
16.2 sel Electrical Page 1790 Wednesday, December 31, 1969 17:00
Selecting Electrical Properties
Table 444. SELECTING
ARC RESISTANCE OF POLYMERS (SHEET 3 OF 3) Arc Resistance (ASTM D495) (seconds)
Polymer Standard Epoxies: General purpose glass cloth laminate Reinforced polyester: Sheet molding compounds, general purpose 6/6 Nylon; Molded, Extruded: Glass fiber Molybdenum disulfide filled Standard Epoxies: Molded
135—190
Polyacetal Copolymer: 25% glass reinforced 6/6 Nylon; Molded, Extruded: Glass fiber reinforced Polymides: Unreinforced Alkyds; Molded: Putty (encapsulating)
136 148—100 152 180
Alkyds; Molded: Rope (general purpose) Alkyds; Molded: Granular (high speed molding) Alkyds; Molded: Glass reinforced (heavy duty parts) Phenolics; Molded: Arc resistant—mineral
180 180 180 180
High performance Epoxies: Molded Melamines; Molded: Glass fiber filled Thermoset Carbonate: Allyl diglycol carbonate Polyacetal Homopolymer: 20% glass reinforced
180—185 180—186 185 188
Polyester; Thermoplastic Moldings: General purpose grade Molded,Extruded Polytetrafluoroethylene (PTFE) Silicones; Molded, Laminated: Woven glass fabric/ silicone laminate Polyacetal Copolymer: Standard
190 >200
Polyacetal Copolymer: High flow Silicones; Molded, Laminated: Fibrous (glass) reinforced silicones Silicones; Molded, Laminated: Granular (silica) reinforced silicones Molded,Extruded Polytrifluoro chloroethylene (PTFCE) Acrylics; Cast Resin Sheets, Rods: General purpose, type I Acrylics; Cast Resin Sheets, Rods: General purpose, type II Acrylic Moldings: Grades 5, 6, 8 Acrylic Moldings: High impact grade
130—180 130—180 135
225—250 240 240 240 250—310 >360 No track No track No track No track
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1790
CRC Handbook of Materials Science & Engineering
Shackelford, James F. & Alexander, W. “Selecting Optical Properties” Materials Science and Engineering Handbook Ed. James F. Shackelford & W. Alexander Boca Raton: CRC Press LLC, 2001
17.0 sel Optical Page 1791 Wednesday, December 31, 1969 17:00
CHAPTER 15
List of Tables
Selecting Optical Properties
Transmission Range Selecting Transmission Range of Optical Materials Transparency Selecting Transparency of Polymers Refractive Indices Selecting Refractive Indices of Glasses Selecting Refractive Indices of Polymers
©2001 CRC Press LLC
1791
17.1 sel Optical Page 1792 Wednesday, December 31, 1969 17:00
Selecting Optical Properties
Table 445. SELECTING
TRANSMISSION RANGE OF OPTICAL
MATERIALS
(SHEET 1 OF 2)
Material & Crystal Structure
Transmission Region (µm, at 298 K)
Magnesium Fluoride (Single Crystal) Silica (High Purity Crystalline) Silica (High Purity Fused) Lithium Fluoride (Single Crystal)
0.1 – 9.7 0.12 – 4.5 0.12 – 4.5 0.12 – 9.0
Ammonium Dihydrogen Phosphate (ADP, Single Crystal) Calcium Fluoride (Single Crystal) Alumina (Sapphire, Single Crystal) Sodium Fluoride (Single Crystal)
0.13 – 1.7 0.13 – 12 0.15 – 6.5 0.19 – 15
Magnesium Fluoride (Film) Calcium Carbonate (Calcite, Single Crystal) Thallium Chloribromide (KRS–6, Mixed Crystal) Magnesium Oxide (Single Crystal)
0.2 – 5.0 0.2 – 5.5 0.21 – 35 0.25 – 8.5
Barium Fluoride (Single Crystal) Potassium Bromide (Single Crystal) Potassium Iodide (Single Crystal) Cesium Iodide (Single Crystal)
0.25 – 15 0.25 – 35 0.25 – 45 0.25 – 80
Cesium Bromide (Single Crystal) Lithium Niobate (Single Crystal) Strontium Titanate (Single Crystal) Silver Chloride (Single Crystal)
0.3 – 55 0.33 – 5.2 0.39 – 6.8 0.4 – 2.8
Cuprous Chloride (Single Crystal) Titanium Dioxide (Rutile, Single Crystal) Silver Bromide (Single Crystal) Cadmium Sulfide (Bulk and Hexagonal Single Crystal)
0.4 – 19 0.43 – 6.2 0.45 – 35 0.5 – 16
Zinc Selenide (Single Crystal, Cubic) Arsenic Trisulfade (Glass) Zinc Sulfide (Single Crystal, Cubic) Thallium Bromoiodide (KRS–5, Mixed Crystal)
~0.5 – 22 0.6 – 13 ~0.6 – 15.6 0.6 – 40
External transmittance ≥ 10% with 2.0 mm thickness. Source: Data compiled by J.S. Park from various sources.
©2001 CRC Press LLC
1792
CRC Handbook of Materials Science & Engineering
17.1 sel Optical Page 1793 Wednesday, December 31, 1969 17:00
Selecting Optical Properties
Table 445. SELECTING
TRANSMISSION RANGE OF OPTICAL
MATERIALS
(SHEET 2 OF 2)
Material & Crystal Structure
Transmission Region (µm, at 298 K)
Cadmium Telluride (Hot Pressed Polycrystalline) Gallium Arsenide (Intrinsic Single Crystal) Selenium (Amorphous) Silicon (Single Crystal)
0.9 – 16 1.0 – 15 1.0 – 20 1.2 – 15
Germanium (Intrinsic Single Crystal) Lead Sulfide (Single Crystal) Tellurium (Polycrystalline Film)
1.8 – 23 3.0 – 7.0 3.5 – 8.0
Tellurium (Single Crystal) Indium Arsenide (Single Crystal)
3.5 – 8.0 3.8 – 7.0
External transmittance ≥ 10% with 2.0 mm thickness. Source: Data compiled by J.S. Park from various sources.
©2001 CRC Press LLC
Shackelford & Alexander
1793
17.1 sel Optical Page 1794 Wednesday, December 31, 1969 17:00
Selecting Optical Properties
Table 446. SELECTING
TRANSPARENCY OF POLYMERS (SHEET 1 OF 3)
Polymer
Transparency (visible light) (ASTM D791) (%)
Alkyds; Molded: Putty (encapsulating) Alkyds; Molded: Rope (general purpose) Alkyds; Molded: Granular (high speed molding) Alkyds; Molded: Glass reinforced (heavy duty parts)
Opaque Opaque Opaque Opaque
Chlorinated polyether Chlorinated polyvinyl chloride Standard Epoxies: General purpose glass cloth laminate Standard Epoxies: High strength laminate
Opaque Opaque Opaque Opaque
Standard Epoxies: Filament wound composite High performance Epoxies: Molded High performance Epoxies: Glass cloth laminate Epoxy novolacs: Glass cloth laminate
Opaque Opaque Opaque Opaque
Melamines; Molded: Cellulose electrical 6/6 Nylon; Molded, Extruded: Glass fiber reinforced 6/6 Nylon; Molded, Extruded: Glass fiber Molybdenum disulfide filled 6/6 Nylon; Molded, Extruded: General purpose extrusion
Opaque Opaque Opaque Opaque
6/10 Nylon: General purpose 6/10 Nylon: Glass fiber (30%) reinforced ABS–Polycarbonate Alloy PVC–Acrylic Alloy: PVC–acrylic injection molded
Opaque Opaque Opaque Opaque
Polymides: Unreinforced Polymides: Glass reinforced Reinforced polyester moldings: High strength (glass fibers) Reinforced polyester moldings: Heat & chemical resistsnt (asbestos)
Opaque Opaque Opaque Opaque
Reinforced polyester: Sheet molding compounds, general purpose Phenylene Oxides: SE—100 Phenylene Oxides: SE—1 Phenylene Oxides: Glass fiber reinforced
Opaque Opaque Opaque Opaque
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1794
CRC Handbook of Materials Science & Engineering
17.1 sel Optical Page 1795 Wednesday, December 31, 1969 17:00
Selecting Optical Properties
Table 446. SELECTING
TRANSPARENCY OF POLYMERS (SHEET 2 OF 3)
Polymer
Transparency (visible light) (ASTM D791) (%)
Phenylene oxides (Noryl): Glass fiber reinforced Polypropylene: Asbestos filled Polypropylene: Glass reinforced Polypropylene: Flame retardant
Opaque Opaque Opaque Opaque
Polyphenylene sulfide: Standard Polyphenylene sulfide: 40% glass reinforced Polystyrenes; Molded: Medium impact Polystyrenes; Molded: High impact
Opaque Opaque Opaque Opaque
Polystyrenes; Molded: Glass fiber -30% reinforced Glass fiber (30%) reinforced Styrene acrylonitrile (SAN) Silicones; Molded, Laminated: Fibrous (glass) reinforced silicones Silicones; Molded, Laminated: Granular (silica) reinforced silicones
Opaque Opaque Opaque Opaque
Silicones; Molded, Laminated: Woven glass fabric/ silicone laminate Ureas; Molded: Cellulose filled (ASTM Type 2) Ureas; Molded: Woodflour filled PVC–Acrylic Alloy: PVC–acrylic sheet
Opaque Opaque Opaque Opaque
Polypropylene: General purpose Polypropylene: High impact Polycarbonate (40% glass fiber reinforced) 6/6 Nylon; Molded, Extruded: General purpose molding
Translucent—opaque Translucent—opaque Translucent Translucent
Polystyrenes; Molded: General purpose Styrene acrylonitrile (SAN) Ureas; Molded: Alpha—cellulose filled (ASTM Type 1) Polycarbonate
Transparent Transparent 21.8 75—85
Cellulose Acetate; Molded, Extruded; ASTM Grade: H6—1 Cellulose Acetate; Molded, Extruded; ASTM Grade: H4—1 Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: H4 Cellulose Acetate; Molded, Extruded; ASTM Grade: H2—1
75—90 75—90 75—92 80—90
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC Shackelford & Alexander
1795
17.1 sel Optical Page 1796 Wednesday, December 31, 1969 17:00
Selecting Optical Properties
Table 446. SELECTING
TRANSPARENCY OF POLYMERS (SHEET 3 OF 3)
Polymer
Transparency (visible light) (ASTM D791) (%)
Cellulose Acetate; Molded, Extruded; ASTM Grade: MH—1, MH—2 Cellulose Acetate; Molded, Extruded; ASTM Grade: MS—1, MS—2 Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: MH Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 1
80—90 80—90 80—92 80—92
Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 3 Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 6 Polytrifluoro chloroethylene (PTFCE) Molded, Extruded Cellulose Acetate; Molded, Extruded; ASTM Grade: S2—1
80—92 80—92 80—92 80—95
Standard Epoxies: Molded Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: S2 Thermoset Carbonate: Allyl diglycol carbonate Acrylic Moldings: High impact grade
85 85—95 89—92 90
Standard Epoxies: Cast flexible Acrylics; Cast Resin Sheets, Rods: General purpose, type I Acrylics; Cast Resin Sheets, Rods: General purpose, type II Acrylic Moldings: Grades 5, 6, 8
90 91—92 (0.125 in.) 91—92 (0.125 in.) >92
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1796
CRC Handbook of Materials Science & Engineering
17.1 sel Optical Page 1797 Wednesday, December 31, 1969 17:00
Selecting Optical Properties
Table 447. SELECTING
REFRACTIVE INDICES OF GLASSES (SHEET 1 OF 6) Wavelength
Glass
(λ)
B2O3 glass SiO2 glass B2O3 glass B2O3 glass B2O3 glass SiO2 glass B2O3 glass B2O3 glass SiO2 glass B2O3 glass SiO2 glass B2O3 glass SiO2 glass SiO2 glass B2O3 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2–B2O3 glass (quenched, 13.5% mol B2O3) SiO2–B2O3 glass (annealed, 13.5% mol B2O3) SiO2 glass
Temperature
Refractive Index
(˚C)
(nD)
5461 Å 3.245 µm 5461 Å 5461 Å
700 26 650 600
1.4130 1.41353 1.4155 1.4180
5461 Å 3.245 µm 5461 Å 5461 Å
550 828 500 450
1.4210 1.42243 1.4240 1.4270
2.553 µm 5461 Å 2.553 µm 5461 Å
26 400 471 350
1.42949 1.4315 1.43450 1.4365
2.553 µm 1.981 µm 5461 Å 1.660 µm
828 26 300 26
1.43854 1.43863 1.4420 1.44307
1.981 µm 1.470 µm 1.981 µm 1.254 µm
471 26 828 26
1.44361 1.44524 1.44734 1.44772
1.660 µm 1.002439 µm 1.002439 µm 1.470 µm
471 23 23 471
1.44799 1.4485 1.4493 1.45031
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
Shackelford & Alexander
1797
17.1 sel Optical Page 1798 Wednesday, December 31, 1969 17:00
Selecting Optical Properties
Table 447. SELECTING
REFRACTIVE INDICES OF GLASSES (SHEET 2 OF 6) Wavelength
Glass
(λ)
SiO2 glass B2O3 glass SiO2–B2O3 glass (quenched, 13.5% mol B2O3) SiO2–B2O3 glass (annealed, 13.5% mol B2O3) SiO2 glass SiO2–B2O3 glass (quenched, 13.5% mol B2O3) SiO2 glass SiO2–B2O3 glass (annealed, 13.5% mol B2O3) SiO2 glass SiO2 glass SiO2–B2O3 glass (quenched, 13.5% mol B2O3) SiO2 glass SiO2–B2O3 glass (annealed, 13.5% mol B2O3) SiO2–B2O3 glass (20% mol B2O3) SiO2–B2O3 glass (15% mol B2O3) SiO2–B2O3 glass (30% mol B2O3) SiO2–B2O3 glass (10% mol B2O3) SiO2–Al2O3 glass (1.4% mol Al2O3) SiO2 glass SiO2 glass SiO2–B2O3 glass (50% mol B2O3) B2O3 glass SiO2–B2O3 glass (quenched, 13.5% mol B2O3) SiO2–B2O3 glass (75% mol B2O3)
Temperature
Refractive Index
(˚C)
(nD)
1.01398 µm 5461 Å 0.852111 µm 0.852111 µm
26 250 23 23
1.45039 1.4505 1.4507 1.4515
1.660 µm 0.734620 µm 1.254 µm 0.734620 µm
828 23 471 23
1.45174 1.4528 1.45283 1.4537
1.470 µm 1.01398 µm 0.589263 µm 1.254 µm
828 471 23 828
1.45440 1.45562 1.4570 1.45700
0.589263 µm 5145 Å 5145 Å 5145 Å
23
1.4579 1.4582 1.4584 1.4588
5145 Å 589.262 nm 1.01398 µm 0.54607 µm 5145 Å 5461 Å 0.508582 µm 5145 Å
828 26
200 23
1.4592 1.4595 1.45960 1.46028 1.4604 1.4605 1.4606 1.4612
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
1798
CRC Handbook of Materials Science & Engineering
17.1 sel Optical Page 1799 Wednesday, December 31, 1969 17:00
Selecting Optical Properties
Table 447. SELECTING
REFRACTIVE INDICES OF GLASSES (SHEET 3 OF 6) Wavelength
Glass
(λ)
SiO2–B2O3 glass (annealed, 13.5% mol B2O3)
0.508582 µm 5145 Å 5461 Å 589.262 nm
SiO2–B2O3 glass (90% mol B2O3) B2O3 glass SiO2–Al2O3 glass (3.1% mol Al2O3) B2O3 glass B2O3 glass SiO2–Al2O3 glass (3.7% mol Al2O3)
5461 Å 5461 Å 589.262 nm
SiO2 glass SiO2–B2O3 glass (annealed, 13.5% mol B2O3) B2O3 glass B2O3 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass
(˚C)
(nD)
23
1.4615 1.4617 1.4625 1.4630
150
100 20 25
0.435833 µm 0.54607 µm 0.435833 µm 5461 Å
23 471 23 0
1.4657 1.46575 1.4665 1.467
5461 Å 0.40466 µm 0.54607 µm 0.40466 µm
–100 26 828 471
1.469 1.46978 1.47004 1.47575
0.33415 µm 0.40466 µm
26 828
1.48000 1.48033 1.4822 1.48387
SiO2–Na2O glass (15% mol Na2O) B2O3–Na2O glass (4.4% mol Na2O) SiO2 glass SiO2 glass SiO2 glass SiO2–Na2O glass (20% mol Na2O)
Refractive Index
1.4635 1.4650 1.4652–1.4667 1.46536
B2O3–Na2O glass (0.01% mol Na2O) SiO2–B2O3 glass (quenched, 13.5% mol B2O3)
Temperature
25 0.33415 µm 0.30215 µm 3.245 µm
471 26 471
1.48633 1.48738 1.4893 1.4906
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
Shackelford & Alexander
1799
17.1 sel Optical Page 1800 Wednesday, December 31, 1969 17:00
Selecting Optical Properties
Table 447. SELECTING
REFRACTIVE INDICES OF GLASSES (SHEET 4 OF 6) Wavelength
Glass
(λ)
SiO2 glass SiO2 glass SiO2 glass
(nD)
0.28936 µm 0.33415 µm 0.30215 µm
26 828 471 25
1.49121 1.49135 1.49407 1.49442
0.27528 µm
26 25 471
1.49615 1.49662 1.49818 1.4983
25 828 25 25
1.49841 1.49942 1.49984 1.50024
25 25 471 828
1.50155 1.50210 1.50327 1.50358
25 25
1.5041 1.50468 1.50500 1.5061
25 26 828 25
1.50806 1.50865 1.50889 1.50979
B2O3–Na2O glass (11.5% mol Na2O) SiO2 glass
0.28936 µm
SiO2–Na2O glass (25% mol Na2O) B2O3–Na2O glass (13.7% mol Na2O) SiO2 glass
0.30215 µm
B2O3–Na2O glass (16.2% mol Na2O) B2O3–Na2O glass (15.8% mol Na2O) B2O3–Na2O glass (17.4% mol Na2O) B2O3–Na2O glass (18.4% mol Na2O) SiO2 glass SiO2 glass
0.27528 µm 0.28936 µm
SiO2–Na2O glass (30% mol Na2O) B2O3–Na2O glass (19.6% mol Na2O) B2O3–Na2O glass (20.0% mol Na2O) SiO2–Na2O glass (33.3% mol Na2O) B2O3–Na2O glass (22.5% mol Na2O) SiO2 glass SiO2 glass B2O3–Na2O glass (23.6% mol Na2O)
Refractive Index
(˚C)
B2O3–Na2O glass (8.7% mol Na2O) SiO2 glass
Temperature
0.24827 µm 0.27528 µm
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
1800
CRC Handbook of Materials Science & Engineering
17.1 sel Optical Page 1801 Wednesday, December 31, 1969 17:00
Selecting Optical Properties
Table 447. SELECTING
REFRACTIVE INDICES OF GLASSES (SHEET 5 OF 6) Wavelength
Glass
(λ)
Temperature
(˚C)
SiO2–Na2O glass (39.3% mol Na2O) SiO2 glass
0.2407 µm
26
SiO2–Na2O glass (45.1% mol Na2O) B2O3–Na2O glass (28.9% mol Na2O) SiO2 glass
25
SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2–CaO glass (39.0% mol CaO) B2O3–CaO glass (35% mol CaO) SiO2–CaO glass (44.6% mol CaO) SiO2–PbO glass (20.78% mol PbO) SiO2–Al2O3 glass (70.2% mol Al2O3) SiO2–CaO glass (50.0% mol CaO) SiO2–Al2O3 glass (77.0% mol Al2O3) SiO2–CaO glass (52.9% mol CaO) SiO2–CaO glass (57.5% mol CaO) SiO2–PbO glass (24.90% mol PbO) B2O3–CaO glass (64.1% mol CaO) SiO2–PbO glass (29.71% mol PbO)
(nD) 1.5099 1.51361 1.5137 1.51611
0.24827 µm
471
0.23021 µm 0.2407 µm
26 471
1.51665 1.517 1.52034 1.52201
0.24827 µm 0.2407 µm 0.23021 µm 0.23021 µm
828 828 471 828
1.52289 1.52832 1.52908 1.53584
SiO2–Na2O glass (50% mol Na2O) SiO2 glass
Refractive Index
1.5905 1.6021 1.6120 1.6174 1.629 1.6295 1.634 1.6350 1.6455 1.6509 1.6525 1.6948
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
Shackelford & Alexander
1801
17.1 sel Optical Page 1802 Wednesday, December 31, 1969 17:00
Selecting Optical Properties
Table 447. SELECTING
REFRACTIVE INDICES OF GLASSES (SHEET 6 OF 6) Wavelength
Glass SiO2–Al2O3 glass (84.1% mol Al2O3) SiO2–PbO glass (33.01% mol PbO) SiO2–Al2O3 glass (91.8% mol Al2O3) SiO2–PbO glass (36.64% mol PbO) SiO2–PbO glass (40.80% mol PbO) SiO2–PbO glass (44.07% mol PbO) SiO2–PbO glass (47.83% mol PbO) SiO2–PbO glass (50.50% mol PbO) SiO2–PbO glass (53.46% mol PbO) SiO2–PbO glass (56.43% mol PbO) SiO2–PbO glass (61.38% mol PbO) SiO2–PbO glass (65.97% mol PbO)
(λ)
Temperature
(˚C)
Refractive Index
(nD) 1.720 1.7270 1.728 1.7632 1.8092 1.8457 1.8865 1.9189 1.9545 1.9894 2.0460–2.0512 2.1030
Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983.
©2001 CRC Press LLC
1802
CRC Handbook of Materials Science & Engineering
17.1 sel Optical Page 1803 Wednesday, December 31, 1969 17:00
Selecting Optical Properties
Table 448. SELECTING
REFRACTIVE INDICES OF POLYMERS (SHEET 1 OF 2)
Polymer
Refractive Index (ASTM D542) (nD)
Fluorinated ethylene propylene(FEP) Molded, Extruded Polytetrafluoroethylene (PTFE) Molded, Extruded Polyvinylidene— fluoride (PVDF) Molded, Extruded Polytrifluoro chloroethylene (PTFCE) Molded, Extruded
1.34 1.35 1.42 1.43
Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 1 Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 3 Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 6 Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: H4
1.46—1.49 1.46—1.49 1.46—1.49 1.46—1.49 (D543)
Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: MH Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: S2 Cellulose Acetate; Molded, Extruded; ASTM Grade: H6—1 Cellulose Acetate; Molded, Extruded; ASTM Grade: H4—1
1.46—1.49 (D543) 1.46—1.49 (D543) 1.46—1.50 1.46—1.50
Cellulose Acetate; Molded, Extruded; ASTM Grade: H2—1 Cellulose Acetate; Molded, Extruded; ASTM Grade: MH—1, MH—2 Cellulose Acetate; Molded, Extruded; ASTM Grade: MS—1, MS—2 Cellulose Acetate; Molded, Extruded; ASTM Grade: S2—1
1.46—1.50 1.46—1.50 1.46—1.50 1.46—1.50
Acrylics; Cast Resin Sheets, Rods: General purpose, type II Acrylics; Cast Resin Sheets, Rods: General purpose, type I Acrylic Moldings: Grades 5, 6, 8 Acrylic Moldings: High impact grade
1.485—1.495 1.485—1.500 1.489—1.493 1.49
Thermoset Carbonate: Allyl diglycol carbonate Polyesters Cast Thermosets: Flexible Polyethylenes; Molded, Extruded; Type I: Melt index 0.3—3.6 Polyethylenes; Molded, Extruded; Type I: Melt index 6—26
1.5 1.50—1.57 1.51 1.51
Polyethylenes; Molded, Extruded; Type I: Melt index 200 Polyethylenes; Molded, Extruded; Type II: Melt index 20 Polyethylenes; Molded, Extruded; Type II: Melt index l.0—1.9 Polyesters Cast Thermosets: Rigid
1.51 1.51 1.51 1.53—1.58
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC Shackelford & Alexander
1803
17.1 sel Optical Page 1804 Wednesday, December 31, 1969 17:00
Selecting Optical Properties
Table 448. SELECTING
REFRACTIVE INDICES OF POLYMERS (SHEET 2 OF 2)
Polymer
Refractive Index (ASTM D542) (nD)
Polyethylenes; Molded, Extruded; Type III: Melt index 0.2—0.9 Polyethylenes; Molded, Extruded; Type III: Melt Melt index 0.l—12.0 Polyethylenes; Molded, Extruded; Type III: Melt index 1.5—15 Styrene acrylonitrile (SAN)
1.54 1.54 1.54 1.565—1.569
Polycarbonate Polystyrenes; Molded: General purpose Polyvinyl Chloride & Copolymers: Vinylidene chloride Standard Epoxies: Cast flexible
1.586 1.6 1.60—1.63 1.61
Standard Epoxies: Molded Phenylene oxides (Noryl): Standard Polyarylsulfone Polyacetal Homopolymer: Standard
1.61 1.63 1.651 Opaque
Polyacetal Homopolymer: 20% glass reinforced Polyacetal Homopolymer: 22% TFE reinforced Polyacetal Copolymer: Standard Polyacetal Copolymer: 25% glass reinforced
Opaque Opaque Opaque Opaque
Polyacetal Copolymer: High flow Polystyrenes; Molded: Medium impact Polystyrenes; Molded: High impact
Opaque Opaque Opaque
Polystyrenes; Molded: Glass fiber -30% reinforced Glass fiber (30%) reinforced Styrene acrylonitrile (SAN)
Opaque Opaque
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1804
CRC Handbook of Materials Science & Engineering
Shackelford, James F. & Alexander, W.“Selecting Chemical Properties” Materials Science and Engineering Handbook Ed. James F. Shackelford & W. Alexander Boca Raton: CRC Press LLC, 2001
18.0 sel Chemical Page 1805 Wednesday, December 31, 1969 17:00
CHAPTER 16
List of Tables
Selecting Chemical Properties
Water Absorption Selecting Water Absorption of Polymers Corrosion Selecting Iron Alloys in 10% Corrosive Medium Selecting Iron Alloys in 100% Corrosive Medium Selecting Nonferrous Metals for use in a 10% Corrosive Medium Selecting Nonferrous Metals for use in a 100% Corrosive Medium Selecting Corrosion Rates of Metals Selecting Corrosion Rates of Metals in Corrosive Environments Flammability Selecting Flammability of Polymers
©2001 CRC Press LLC
1805
18.1 sel Chemical Page 1806 Wednesday, December 31, 1969 17:00
Selecting Chemical Properties
Table 449. SELECTING
WATER ABSORPTION OF POLYMERS (SHEET 1 OF 5)
Polymer
Water Absorption in 24 hr (ASTM D570) (%)
Polytrifluoro chloroethylene (PTFCE); Molded, Extruded Alkyds; Molded: Glass reinforced (heavy duty parts) Fluorinated ethylene propylene(FEP) Polyethylenes; Molded, Extruded; Type I: Melt index 0.3—3.6
0 0.007—0.10 <0.01 <0.01
Polyethylenes; Molded, Extruded; Type I: Melt index 6—26 Polyethylenes; Molded, Extruded; Type I: Melt index 200 Polyethylenes; Molded, Extruded; Type II: Melt index 20 Polyethylenes; Molded, Extruded; Type II: Melt index l.0—1.9
<0.01 <0.01 <0.01 <0.01
Polyethylenes; Molded, Extruded; Type III: Melt index 0.2—0.9 Polyethylenes; Molded, Extruded; Type III: Melt Melt index 0.l—12.0 Polyethylenes; Molded, Extruded; Type III: Melt index 1.5—15 Polyethylenes; Molded, Extruded; Type III: High molecular weight
<0.01 <0.01 <0.01 <0.01
Polypropylene: High impact Polypropylene: General purpose Chlorinated polyether Polytetrafluoroethylene (PTFE); Molded, Extruded
<0.01—0.02 <0.01—0.03 0.01 0.01
Polyvinyl Chloride & Copolymers: Vinylidene chloride Polypropylene: Flame retardant Polypropylene: Asbestos filled Polypropylene: Glass reinforced
>0.1 (ASTM D635) 0.02—0.03 0.02—0.04 0.02—0.05
Silicones: Woven glass fabric/ silicone laminate Polyvinylidene— fluoride (PVDF) Polystyrenes; Molded: Medium impact Polyvinyl Chloride & Copolymers: Rigid—normal impact
0.03—0.05 0.03—0.06 0.03—0.09 0.03—0.40 (ASTM D635)
High performance Epoxies; Glass cloth laminate Standard Epoxies; High strength laminate Standard Epoxies; General purpose glass cloth laminate Standard Epoxies; Filament wound composite
0.04—0.06 0.05 0.05—0.07 0.05—0.07
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1806
CRC Handbook of Materials Science & Engineering
18.1 sel Chemical Page 1807 Wednesday, December 31, 1969 17:00
Selecting Chemical Properties
Table 449. SELECTING
WATER ABSORPTION OF POLYMERS (SHEET 2 OF 5)
Polymer
Water Absorption in 24 hr (ASTM D570) (%)
Alkyds; Molded: Rope (general purpose) Polystyrenes; Molded: High impact PVC–Acrylic Alloy: PVC–acrylic sheet Phenylene Oxides: Glass fiber reinforced
0.05—0.08 0.05—0.22 0.06 0.06
Polyester; Thermoplastic Moldings: Glass reinforced grades Polyester; Moldings: Glass reinforced self extinguishing Polyester; Thermoplastic Moldings: Glass reinforced grade Phenylene Oxides: SE—100
0.06—0.07 0.07 0.07 0.07
Phenylene Oxides: SE—1 Polystyrenes; Molded: Glass fiber –30% reinforced Polycarbonate (40% glass fiber reinforced) Polyester; Thermoplastic Moldings: General purpose grade
0.07 0.07 0.08 0.08
Silicones; Molded, Laminated: Granular (silica) reinforced Alkyds; Molded: Granular (high speed molding) Polyester; Thermoplastic Moldings: General purpose grade Melamines; Molded: Glass fiber filled
0.08—0.1 0.08—0.12 0.09 0.09—0.60
Polyester; Thermoplastic Moldings: Asbestos—filled grade Alkyds; Molded: Putty (encapsulating) Rubber phenolic—asbestos filled Silicones; Molded, Laminated: Fibrous (glass) reinforced
0.1 0.10—0.15 0.10—0.50 0.1—0.15
Standard Epoxies; Cast rigid Epoxy novolacs: Cast, rigid Phenolics; Molded; Very high shock: glass fiber filled Chlorinated polyvinyl chloride
0.1—0.2 0.1—0.7 0.1—1.0 0.11
High performance Epoxies; Molded Polyesters: Cast Thermosets: Flexible PVC–Acrylic Alloy: PVC–acrylic injection molded Polycarbonate
0.11—0.2 0.12—2.5 0.13 0.15
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
1807
18.1 sel Chemical Page 1808 Wednesday, December 31, 1969 17:00
Selecting Chemical Properties
Table 449. SELECTING
WATER ABSORPTION OF POLYMERS (SHEET 3 OF 5)
Polymer
Water Absorption in 24 hr (ASTM D570) (%)
Styrene acrylonitrile (SAN): Glass fiber (30%) reinforced Polyester: Sheet molding compounds, general purpose Phenylene oxides (Noryl): Glass fiber reinforced Thermoset Carbonate: Allyl diglycol carbonate
0.15 0.15—0.25 0.18—0.22 0.2
6/10 Nylon: Glass fiber (30%) reinforced Polymides: Glass reinforced Polyacetal Homopolymer: 22% TFE reinforced Ceramic reinforced (PTFE)
0.2 0.2 0.2 >0.2
Styrene acrylonitrile (SAN) Polyesters: Cast Thermosets: Rigid ABS Resins; Molded, Extruded: Medium impact ABS Resins; Molded, Extruded: Heat resistant
0.20—0.35 0.20—0.60 0.2—0.4 0.2—0.4
Acrylics; Cast Resin Sheets, Rods: General purpose, type II Acrylics; Moldings: High impact grade ABS Resins; Molded, Extruded: High impact ABS Resins; Molded, Extruded: Very high impact
0.2—0.4 0.2—0.4 0.2—0.45 0.2—0.45
ABS Resins; Molded, Extruded: Low temperature impact Melamines; Molded: Unfilled Polyvinyl Chloride & Copolymers: Nonrigid—general ABS–Polycarbonate Alloy
0.2—0.45 0.2—0.5 0.2—1.0 (ASTM D635) 0.21
Polyacetal Copolymer: Standard Polyacetal Copolymer: High flow Phenylene oxides (Noryl): Standard Polymides: Unreinforced
0.22 0.22 0.22 0.24—0.47
Nylons; Type 12 Polyacetal Homopolymer: Standard Polyacetal Homopolymer: 20% glass reinforced Ppolyester moldings: Heat & chemical resistant (asbestos)
0.25 0.25 0.25 0.25—0.50
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1808
CRC Handbook of Materials Science & Engineering
18.1 sel Chemical Page 1809 Wednesday, December 31, 1969 17:00
Selecting Chemical Properties
Table 449. SELECTING
WATER ABSORPTION OF POLYMERS (SHEET 4 OF 5)
Polymer
Water Absorption in 24 hr (ASTM D570) (%)
Melamines; Molded: Cellulose electrical filled Polyacetal Copolymer: 25% glass reinforced Polystyrenes; Molded: General purpose Acrylics; Cast Resin Sheets, Rods: General purpose, type I
0.27—0.80 0.29 0.30—0.2 0.3—0.4
Acrylics; Moldings: Grades 5, 6, 8 Melamines; Molded: Alpha cellulose and mineral filled Standard Epoxies; Molded Phenolics; Molded; General: woodflour and flock filled
0.3—0.4 0.3—0.5 0.3—0.8 0.3—0.8
Nylons; Type 11 6/10 Nylon: General purpose Polyarylsulfone Polyvinyl Chloride & Copolymers: Nonrigid—electrical
0.4 0.4 0.4 0.40—0.75 (ASTM D635)
Standard Epoxies; Cast flexible Ureas; Molded: Alpha—cellulose filled (ASTM Type l) Phenolics; Molded; Shock: paper, flock, or pulp filled Phenolics; Molded; High shock: chopped fabric or cord filled
0.4—0.1 0.4—0.8 0.4—1.5 0.4—1.75
Nylons; 6/6 Nylon: Glass fiber Molybdenum disulfide filled Phenolics; Molded; Arc resistant—mineral filled Reinforced polyester moldings: High strength (glass fibers) Rubber phenolic—woodflour or flock filled
0.5—0.7 0.5—0.7 0.5—0.75 0.5—2.0
Rubber phenolic—chopped fabric filled Nylons; Type 6: Cast Nylons; Molded, Extruded; 6/6 Nylon: Glass fiber reinforced Nylons; Molded, Extruded; Type 6: Flexible copolymers
0.5—2.0 0.6 0.8—0.9 0.8—1.4
Nylons; Molded, Extruded; Type 6: Glass fiber (30%) reinforced Cellulose Acetate Butyrate; ASTM Grade: S2 Cellulose Acetate Butyrate; ASTM Grade: MH Cellusose Acetate Propionate; ASTM Grade: 3
0.9—1.2 0.9—1.3 1.3—1.6 1.3—1.8
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
1809
18.1 sel Chemical Page 1810 Wednesday, December 31, 1969 17:00
Selecting Chemical Properties
Table 449. SELECTING
WATER ABSORPTION OF POLYMERS (SHEET 5 OF 5)
Polymer
Water Absorption in 24 hr (ASTM D570) (%)
Nylons; Molded, Extruded; Type 6: General purpose Nylons; Molded, Extruded; 6/6 Nylon: General purpose molding Nylons; Molded, Extruded; 6/6 Nylon: General purpose extrusion Cellusose Acetate Propionate; ASTM Grade: 6
1.3—1.9 1.5 1.5 1.6
Cellusose Acetate Propionate; ASTM Grade: 1 Cellulose Acetate; Molded, Extruded; ASTM Grade: H4—1 Cellulose Acetate; Molded, Extruded; ASTM Grade: H2—1 Cellulose Acetate; ASTM Grade: MH—1, MH—2
1.6—2.0 1.7—2.7 1.7—2.7 1.8—4.0
Cellulose Acetate Butyrate; ASTM Grade: H4 Cellulose Acetate; ASTM Grade: MS—1, MS—2 Cellulose Acetate; Molded, Extruded; ASTM Grade: S2—1 Nylons; Type 8
2 2.1—4.0 2.3—4.0 9.5
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1810
CRC Handbook of Materials Science & Engineering
18.2 sel Chemical L Page 1811 Wednesday, December 31, 1969 17:00
Table 450. SELECTING IRON
ALLOYS IN 10% CORROSIVE MEDIUM (SHEET 1 OF 16)
Corrosion Rate * at 70˚F in a 10% Corrosive Medium †
Corrosive Medium
1020 Steel
Grey Cast Iron
Ni–Resist Cast Iron
12% Cr Steel
17% Cr Steel
Stainless Steel 301
Stainless Steel 316
14% Si Iron
Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride
<0.05 >0.05 >0.05 —
<0.05 >0.05 >0.05 —
— <0.02 <0.02 —
— <0.02 <0.02 —
— <0.002 <0.02 —
— <0.002 <0.02 —
— <0.002 <0.002 —
<0.002 <0.002 <0.002 <0.002
Acetoacetic Acid Acetone Acrolein Alcohol (Ethyl)
>0.05 <0.05 <0.02 <0.02
>0.05 — — <0.02
— — — <0.02
— <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.002
<0.02 <0.002 <0.02 <0.002
Alcohol (Methyl) Alcohol (Allyl)
<0.02 — <0.02 (30%) >0.05
<0.02 —
<0.02 —
<0.02 —
<0.02 —
<0.002 —
—
—
—
—
>0.05
—
<0.02
—
<0.02 — <0.002 (30%) <0.02
<0.002 <0.02 <0.002 (30%) <0.02
Allylamine Aluminum Acetate
<0.002 (30%) <0.02
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.2 sel Chemical L Page 1812 Wednesday, December 31, 1969 17:00
Table 450. SELECTING IRON
ALLOYS IN 10% CORROSIVE MEDIUM (SHEET 2 OF 16)
Corrosion Rate * at 70˚F in a 10% Corrosive Medium †
Corrosive Medium
1020 Steel
Grey Cast Iron
Ni–Resist Cast Iron
12% Cr Steel
17% Cr Steel
Stainless Steel 301
Stainless Steel 316
14% Si Iron
Aluminum Chlorate Aluminum Chloride Aluminum Fluoride Aluminum Formate
— >0.05 <0.02 <0.05
— >0.05 <0.02 —
— >0.05 — —
— >0.05 >0.05 <0.02
<0.002 >0.05 >0.05 <0.02
<0.002 >0.05 >0.05 <0.02
— <0.05 — <0.02
<0.02 <0.002 >0.05 <0.02
Aluminum Hydroxide Aluminum Nitrate Aluminum Potassium Sulfate Aluminum Sulfate
<0.02 >0.05
<0.02 >0.05
<0.02 —
<0.02 <0.02
<0.02 <0.02
<0.02 <0.02
<0.02 <0.02
<0.02 —
>0.05
>0.05
>0.05
>0.05
<0.05
<0.02
<0.02
—
>0.05
>0.05
<0.02
>0.05
—
<0.02
<0.02
<0.002
<0.002 — <0.02 >0.05
<0.002 — <0.02 >0.05
<0.002 <0.002 <0.02 —
<0.002 <0.002 <0.02 <0.05
<0.002 <0.002 <0.02 <0.05
<0.002 <0.002 <0.02 <0.05
<0.002 <0.002 <0.02 <0.02
<0.02 <0.002 <0.002 <0.002
Ammonia Ammonium Acetate Ammonium Bicarbonate Ammonium Bromide
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.2 sel Chemical L Page 1813 Wednesday, December 31, 1969 17:00
Table 450. SELECTING IRON
ALLOYS IN 10% CORROSIVE MEDIUM (SHEET 3 OF 16)
Corrosion Rate * at 70˚F in a 10% Corrosive Medium †
Corrosive Medium
1020 Steel
Grey Cast Iron
Ni–Resist Cast Iron
12% Cr Steel
17% Cr Steel
Stainless Steel 301
Stainless Steel 316
14% Si Iron
Ammonium Carbonate Ammonium Chloride Ammonium Citrate Ammonium Formate
<0.02 <0.05 >0.05 —
<0.02 >0.05 >0.05 —
<0.02 <0.02 >0.05 —
<0.02 <0.05 — —
<0.02 <0.05 <0.02 —
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.002 <0.002 — <0.02
Ammonium Nitrate Ammonium Sulfate Ammonium Sulfite Ammonium Thiocyanate
<0.002 <0.02 >0.05 <0.02
<0.02 <0.05 >0.05 <0.02
<0.02 >0.05 >0.05 <0.02
<0.02 >0.05 >0.05 —
<0.002 <0.05 >0.05 <0.02
<0.002 <0.05 <0.05 <0.02
<0.002 <0.02 <0.02 <0.02
<0.002 <0.002 <0.02 <0.02
Amyl Acetate Amyl Chloride Aniline Aniline Hydro-chloride
<0.002 >0.05 — >0.05
— — — >0.05
— — <0.02 >0.05
— — <0.02 >0.05
— — <0.02 >0.05
<0.002 >0.05 <0.02 >0.05
<0.002 — <0.02 >0.05
<0.002 <0.02 <0.002 <0.02
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.2 sel Chemical L Page 1814 Wednesday, December 31, 1969 17:00
Table 450. SELECTING IRON
ALLOYS IN 10% CORROSIVE MEDIUM (SHEET 4 OF 16)
Corrosion Rate * at 70˚F in a 10% Corrosive Medium †
Corrosive Medium
1020 Steel
Grey Cast Iron
Ni–Resist Cast Iron
12% Cr Steel
17% Cr Steel
Stainless Steel 301
Stainless Steel 316
14% Si Iron
Antimony Trichloride Barium Carbonate Barium Chloride Barium Nitrate
>0.05 <0.02 <0.02 <0.02
>0.05 <0.02 >0.05 —
>0.05 <0.02 <0.02 —
>0.05 <0.02 <0.05 —
>0.05 <0.02 <0.02 <0.02
>0.05 <0.02 <0.02 <0.02
>0.05 <0.02 <0.02 <0.02
<0.002 <0.02 <0.02 <0.02
Barium Peroxide Benzal-dehyde Benzene Benzoic Acid
<0.05 >0.05 — >0.05
— >0.05 — >0.05
— <0.02 — —
>0.05 — <0.02 <0.02
— — <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 — <0.02 <0.02
<0.02 <0.02 <0.002 <0.02
Boric Acid Bromic Acid Butyric Acid Cadmium Chloride
<0.05 >0.05 <0.05 >0.05
>0.05 >0.05 >0.05 >0.05
<0.002 — >0.05 >0.05
<0.02 >0.05 <0.05 >0.05
<0.02 >0.05 <0.05 >0.05
<0.002 >0.05 <0.02 <0.02
<0.002 >0.05 <0.02 <0.02
<0.02 — <0.002 <0.02
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.2 sel Chemical L Page 1815 Wednesday, December 31, 1969 17:00
Table 450. SELECTING IRON
ALLOYS IN 10% CORROSIVE MEDIUM (SHEET 5 OF 16)
Corrosion Rate * at 70˚F in a 10% Corrosive Medium †
Corrosive Medium
1020 Steel
Grey Cast Iron
Ni–Resist Cast Iron
12% Cr Steel
17% Cr Steel
Stainless Steel 301
Stainless Steel 316
14% Si Iron
Cadmium Sulfate Calcium Acetate Calcium Bicarbonate Calcium Bromide
<0.02 <0.02 <0.02 —
<0.02 <0.05 — —
— — — —
— <0.02 — <0.02
<0.002 <0.02 — <0.02
<0.002 <0.02 — <0.02
<0.002 <0.02 — <0.02
<0.002 <0.02 — —
Calcium Chlorate Calcium Chloride Calcium Hydroxide Calcium Hypochlorite
<0.002 <0.002 <0.02 <0.05
<0.02 <0.02 <0.02 <0.05
<0.05 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 >0.05
<0.02 <0.05 <0.02 >0.05
<0.02 <0.02 <0.02 <0.05
<0.02 <0.02 <0.02 <0.05
<0.02 <0.002 <0.02 <0.02
Carbon Tetrachloride Carbon Acid (Air Free) Chloroacetic Acid Chlorine Gas
— <0.02 >0.05 >0.05
— — >0.05 >0.05
— — >0.05 >0.05
>0.05 — >0.05 >0.05
<0.002 — >0.05 >0.05
>0.05 <0.02 >0.05 —
<0.02 <0.02 >0.05 —
<0.002 <0.02 >0.05 —
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.2 sel Chemical L Page 1816 Wednesday, December 31, 1969 17:00
Table 450. SELECTING IRON
ALLOYS IN 10% CORROSIVE MEDIUM (SHEET 6 OF 16)
Corrosion Rate * at 70˚F in a 10% Corrosive Medium †
Corrosive Medium
1020 Steel
Grey Cast Iron
Ni–Resist Cast Iron
12% Cr Steel
17% Cr Steel
Stainless Steel 301
Stainless Steel 316
14% Si Iron
Chromic Acid Chromic Sulfates Citric Acid Copper Nitrate
>0.05 >0.05 >0.05 >0.05
<0.05 — >0.05 >0.05
<0.05 — >0.05 >0.05
>0.05 >0.05 <0.05 <0.02
<0.02 >0.05 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.002
<0.002 <0.002 <0.002 <0.002
Copper Sulfate
>0.05
>0.05
<0.02
<0.02
<0.02
<0.02
<0.002
—
—
—
—
—
—
—
—
— —
>0.05 (90%) —
>0.05 (90%) —
—
—
>0.05 (90%) —
—
Ethylene Glycol
>0.05 <0.002 (60%) >0.05 (90%) <0.02
—
<0.02
Ferric Chloride Ferric Nitrate Ferrous Chloride Ferrous Sulfate
>0.05 >0.05 >0.05 >0.05
>0.05 >0.05 >0.05 >0.05
>0.05 — >0.05 —
>0.05 <0.02 >0.05 <0.02
>0.05 <0.02 >0.05 <0.02
>0.05 <0.02 >0.05 <0.02
>0.05 <0.02 >0.05 <0.02
>0.05 <0.02 >0.05 <0.02
Diethylene Glycol Ethyl Chloride
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.2 sel Chemical L Page 1817 Wednesday, December 31, 1969 17:00
Table 450. SELECTING IRON
ALLOYS IN 10% CORROSIVE MEDIUM (SHEET 7 OF 16)
Corrosion Rate * at 70˚F in a 10% Corrosive Medium † Grey Cast Iron
Ni–Resist Cast Iron
12% Cr Steel
17% Cr Steel
Stainless Steel 301
<0.05 (40%) >0.05 <0.02 (30%) >0.05
<0.05 (40%) >0.05
<0.02
<0.002
>0.05
<0.05 (40%) >0.05 <0.02 (30%) —
<0.05 <0.02 (80%) —
<0.05 <0.002 (30%) —
<0.002 (20%) <0.02 <0.002 (30%) <0.002
>0.05
>0.05
—
>0.05
>0.05
>0.05
>0.05
>0.05
>0.05
>0.05
>0.05
<0.05
>0.05
>0.05
<0.002
Corrosive Medium
1020 Steel
Formaldehyde Formic Acid Furfural Hydrazine Hydrobromic Acid Hydrochloric Acid (Areated) Hydrochloric Acid (Air Free) Hydrofluoric Acid (Areated)
—
Stainless Steel 316
14% Si Iron
<0.02
<0.002
<0.002 <0.002
<0.002 <0.02 (20%) —
>0.05
>0.05
>0.05
>0.05
>0.05
>0.05
<0.02
>0.05
>0.05
>0.05
>0.05
<0.02
—
—
<0.002
<0.002
>0.05
<0.002
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.2 sel Chemical L Page 1818 Wednesday, December 31, 1969 17:00
Table 450. SELECTING IRON
ALLOYS IN 10% CORROSIVE MEDIUM (SHEET 8 OF 16)
Corrosion Rate * at 70˚F in a 10% Corrosive Medium †
Corrosive Medium
1020 Steel
Grey Cast Iron
Ni–Resist Cast Iron
12% Cr Steel
17% Cr Steel
Stainless Steel 301
Stainless Steel 316
14% Si Iron
Hydrofluoric Acid (Air Free) Hydrogen Chloride Hydrogen Iodide
>0.05
>0.05
<0.002
>0.05
>0.05
>0.05
>0.05
>0.05
>0.05 90 <0.05 (1%) >0.05 (20%)
>0.05 90 >0.05 >0.05 (20%)
— —
>0.05 90 — <0.02 (20%)
>0.05 90 <0.02 1%) <0.02 (20%)
— —
—
>0.05 90 <0.05 <0.02 (20%)
<0.02 (20%)
<0.02 90 >0.05 <0.02 (20%)
<0.02 >0.05 >0.05 (20%) >0.05
<0.02 >0.05
<0.02 >0.05
<0.02 >0.05
<0.02 >0.05
>0.05 <0.02
<0.002 <0.02
— <0.002
>0.05
—
<0.02
<0.02
<0.02
<0.02
<0.02
>0.05
—
<0.02
<0.02
<0.02
<0.02
<0.002
Hydrogen Peroxide Hydrogen Sulfide Lactic Acid Lead Acetate Lead Nitrate
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.2 sel Chemical L Page 1819 Wednesday, December 31, 1969 17:00
Table 450. SELECTING IRON
ALLOYS IN 10% CORROSIVE MEDIUM (SHEET 9 OF 16)
Corrosion Rate * at 70˚F in a 10% Corrosive Medium †
Corrosive Medium
1020 Steel
Grey Cast Iron
Ni–Resist Cast Iron
12% Cr Steel
17% Cr Steel
Stainless Steel 301
Stainless Steel 316
14% Si Iron
Lithium Chloride
<0.02 (30%) <0.02 <0.02 <0.02
<0.02 (30%) <0.02 <0.02 <0.02
<0.002 (30%) <0.02 <0.02 <0.02
—
—
<0.002 (30%)
<0.02 <0.05 <0.02
<0.02 <0.05 <0.02
<0.002 (30%) <0.02 <0.05 <0.02
<0.02 <0.02 <0.02
<0.02 (30%) >0.05 <0.002 <0.02
>0.05 >0.05 >0.05 >0.05 (40%)
<0.02 >0.05 — <0.05 (40%)
>0.05 — <0.02
<0.002 <0.02 <0.02
<0.002 <0.02 —
—
—
<0.002 <0.02 <0.002 <0.02 (40%)
<0.002 <0.02 <0.002
Maganous Chloride
<0.02 >0.05 >0.05 >0.05 (40%)
<0.02 (40%)
—
Mercuric Chloride Mercurous Nitrate Methallylamine Methanol
>0.05 — <0.02 <0.02
>0.05 — — <0.02
>0.05 — <0.02 <0.02
>0.05 <0.02 <0.02 <0.02
>0.05 <0.02 <0.02 <0.02
>0.05 <0.02 <0.02 <0.02
>0.05 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.002
Lithium Hydroxide Magnesium Chloride Magnesium Hydroxide Magnesium Sulfate Maleic Acid Malic Acid
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.2 sel Chemical L Page 1820 Wednesday, December 31, 1969 17:00
Table 450. SELECTING IRON
ALLOYS IN 10% CORROSIVE MEDIUM (SHEET 10 OF 16)
Corrosion Rate * at 70˚F in a 10% Corrosive Medium †
Corrosive Medium
1020 Steel
Grey Cast Iron
Ni–Resist Cast Iron
12% Cr Steel
17% Cr Steel
Stainless Steel 301
Stainless Steel 316
14% Si Iron
Methyl Ethyl Ketone Methyl Isobutyl Ketone Methylamine Methylene Chloride
<0.02 <0.02 <0.02 —
<0.02 <0.02 <0.02 —
<0.02 <0.02 <0.02 —
<0.02 <0.02 <0.02 —
<0.02 <0.02 <0.02 —
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 —
Monochloroacetic Acid Monorthanolamine Monoethalamine Monoethylamine
>0.05 <0.02 <0.02 <0.02
>0.05 — — <0.02
— — <0.02 <0.02
>0.05 <0.02 <0.02 <0.02
>0.05 <0.002 <0.02 <0.02
<0.05 <0.002 <0.02 <0.02
<0.05 <0.02 <0.02 <0.02
<0.02 — <0.02 <0.02
Monosodium Phosphate Nickel Chloride Nickel Nitrate Nickel Sulfate
>0.05 >0.05 <0.02 >0.05
>0.05 >0.05 <0.02 >0.05
>0.05 >0.05 <0.02 —
>0.05 >0.05 <0.02 —
>0.05 >0.05 <0.02 —
<0.02 >0.05 <0.02 <0.002
<0.02 >0.05 <0.02 <0.02
<0.02 <0.02 <0.002 <0.002
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.2 sel Chemical L Page 1821 Wednesday, December 31, 1969 17:00
Table 450. SELECTING IRON
ALLOYS IN 10% CORROSIVE MEDIUM (SHEET 11 OF 16)
Corrosion Rate * at 70˚F in a 10% Corrosive Medium †
Corrosive Medium
1020 Steel
Grey Cast Iron
Ni–Resist Cast Iron
12% Cr Steel
17% Cr Steel
Stainless Steel 301
Stainless Steel 316
14% Si Iron
Nitric Acid Nitric + Sulfuric Acid Nitrous Acid Oleic Acid
>0.05 — — —
>0.05 — — —
>0.05 — — —
<0.02 — <0.05 <0.02
<0.02 — <0.02 <0.02
<0.002 — <0.02 <0.02
<0.002 — <0.02 <0.02
<0.002 <0.02 <0.002 <0.002
Oxalic Acid Phosphoric Acid (Areated) Phosphoric Acid (Air Free) Picric Acid
>0.05 >0.05
>0.05 >0.05
>0.05 >0.05
>0.05 <0.02
>0.05 <0.02
<0.02 <0.02
<0.02 <0.002
<0.02 <0.002
>0.05
>0.05
>0.05
>0.05
>0.05
<0.02
<0.02
<0.02
>0.05
>0.05
—
<0.02
<0.02
<0.02
<0.02
<0.02
Potassium Bicarbonate Potassium Bromide Potassium Carbonate Potassium Chlorate
<0.02 <0.05 <0.02 <0.02
<0.02 <0.05 <0.02 —
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.2 sel Chemical L Page 1822 Wednesday, December 31, 1969 17:00
Table 450. SELECTING IRON
ALLOYS IN 10% CORROSIVE MEDIUM (SHEET 12 OF 16)
Corrosion Rate * at 70˚F in a 10% Corrosive Medium †
Corrosive Medium
1020 Steel
Grey Cast Iron
Ni–Resist Cast Iron
12% Cr Steel
17% Cr Steel
Stainless Steel 301
Stainless Steel 316
14% Si Iron
Potassium Chromate Potassium Cyanide Potassium Dichromate Potassium Ferricyanide
<0.02 <0.02 <0.02 <0.02
<0.02 >0.05 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.002 <0.02
<0.02 <0.02 <0.002 <0.02
<0.02 <0.02 <0.002 <0.02
Potassium Ferrocyanide Potassium Hydroxide Potassium Hypochlorite Potassium Iodide
>0.05 <0.02 >0.05 <0.02
>0.05 <0.02 >0.05 —
<0.02 <0.02 >0.05 <0.02
>0.05 <0.02 >0.05 >0.05
<0.02 <0.02 >0.05 >0.05
<0.02 <0.02 >0.05 <0.02
<0.02 <0.02 <0.05 <0.02
<0.02 >0.05 <0.002 <0.02
Potassium Nitrate Potassium Nitrite Potassium Permanganate Potassium Silicate
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.002 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.002 <0.02 <0.02 <0.02
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.2 sel Chemical L Page 1823 Wednesday, December 31, 1969 17:00
Table 450. SELECTING IRON
ALLOYS IN 10% CORROSIVE MEDIUM (SHEET 13 OF 16)
Corrosion Rate * at 70˚F in a 10% Corrosive Medium †
Corrosive Medium
1020 Steel
Grey Cast Iron
Ni–Resist Cast Iron
12% Cr Steel
17% Cr Steel
Stainless Steel 301
Stainless Steel 316
14% Si Iron
Propionic Acid Pyridine Quinine Sulfate Silver Bromide
>0.05 <0.02 >0.05 >0.05
>0.05 <0.02 >0.05 >0.05
— <0.02 <0.02 >0.05
— <0.02 — >0.05
— <0.02 <0.02 >0.05
— <0.02 <0.02 >0.05
— <0.02 <0.02 >0.05
<0.02 <0.02 <0.02 —
Silver Chloride Silver Nitrate Sodium Acetate Sodium Bicarbonate
>0.05 >0.05 <0.02 <0.02
>0.05 >0.05 — <0.02
— — <0.02 <0.02
>0.05 <0.02 <0.02 <0.02
>0.05 <0.02 <0.02 <0.02
>0.05 <0.02 <0.02 <0.02
>0.05 <0.002 <0.02 <0.02
— <0.002 <0.002 <0.002
Sodium Bisulfate Sodium Bromide Sodium Carbonate Sodium Chloride
>0.05 <0.02 <0.002 <0.02
>0.05 — <0.002 <0.02
<0.002 <0.02 <0.002 <0.02
<0.002 <0.05 <0.02 <0.02
<0.002 <0.05 <0.02 <0.02
<0.002 <0.05 <0.02 <0.02
<0.002 <0.05 <0.02 <0.02
<0.002 <0.05 <0.02 <0.02
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.2 sel Chemical L Page 1824 Wednesday, December 31, 1969 17:00
Table 450. SELECTING IRON
ALLOYS IN 10% CORROSIVE MEDIUM (SHEET 14 OF 16)
Corrosion Rate * at 70˚F in a 10% Corrosive Medium †
Corrosive Medium
1020 Steel
Grey Cast Iron
Ni–Resist Cast Iron
12% Cr Steel
17% Cr Steel
Stainless Steel 301
Stainless Steel 316
14% Si Iron
Sodium Chromate Sodium Hydroxide Sodium Hypochlorite Sodium Metasilicate
<0.02 <0.002 >0.05 <0.02
<0.02 <0.02 >0.05 <0.02
<0.02 <0.002 >0.05 <0.002
<0.02 <0.002 >0.05 <0.002
<0.02 <0.002 >0.05 <0.002
<0.02 <0.002 >0.05 <0.002
<0.02 <0.002 >0.05 <0.002
<0.02 >0.05 — <0.02
Sodium Nitrate Sodium Nitrite Sodium Phosphate Sodium Silicate
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.002 <0.02 <0.02 <0.02
<0.002 <0.02 <0.02 <0.02
<0.002 <0.02 <0.02 <0.02
Sodium Sulfate Sodium Sulfide Sodium Sulfite Stannic Chloride
<0.02 <0.05 <0.02 >0.05
<0.02 <0.05 >0.05 >0.05
<0.02 — <0.02 >0.05
<0.05 >0.05 <0.02 >0.05
<0.05 >0.05 <0.02 >0.05
<0.02 <0.02 <0.002 >0.05
<0.002 >0.05 <0.002 >0.05
<0.002 <0.02 <0.002 >0.05
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.2 sel Chemical L Page 1825 Wednesday, December 31, 1969 17:00
Table 450. SELECTING IRON
ALLOYS IN 10% CORROSIVE MEDIUM (SHEET 15 OF 16)
Corrosion Rate * at 70˚F in a 10% Corrosive Medium †
Corrosive Medium
1020 Steel
Grey Cast Iron
Ni–Resist Cast Iron
12% Cr Steel
17% Cr Steel
Stainless Steel 301
Stainless Steel 316
14% Si Iron
Stannous Chloride Strontium Nitrate Succinic Acid Sulfur Dioxide
>0.05 >0.05 <0.02 >0.05
>0.05 >0.05 <0.02 —
>0.05 <0.02 <0.02 —
>0.05 <0.02 <0.02 >0.05
>0.05 <0.02 <0.02 >0.05
>0.05 <0.02 <0.02 >0.05
<0.02 <0.02 <0.02 <0.002
<0.002 <0.02 <0.02 —
Sulfuric Acid (Areated) Sulfuric Acid (Air Free) Sulfurous Acid Tannic Acid
>0.05 >0.05 <0.05 >0.05
>0.05 >0.05 — —
<0.02 <0.02 <0.05 —
<0.05 >0.05 >0.05 <0.02
<0.05 >0.05 >0.05 <0.02
>0.05 >0.05 <0.02 <0.02
<0.002 <0.05 <0.02 <0.02
<0.002 <0.02 <0.002
Tartaric Acid Tetraphosphoric Acid Trichloroacetic Acid Urea
>0.05 >0.05 >0.05 <0.05
>0.05 >0.05 >0.05 —
<0.02 >0.05 >0.05 —
<0.02 >0.05 >0.05 <0.02
<0.02 >0.05 >0.05 <0.02
<0.002 — >0.05 <0.02
<0.02 — >0.05 <0.02
<0.02 — <0.002 <0.02
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.2 sel Chemical L Page 1826 Wednesday, December 31, 1969 17:00
Table 450. SELECTING IRON
ALLOYS IN 10% CORROSIVE MEDIUM (SHEET 16 OF 16)
Corrosion Rate * at 70˚F in a 10% Corrosive Medium †
Corrosive Medium
1020 Steel
Grey Cast Iron
Ni–Resist Cast Iron
12% Cr Steel
17% Cr Steel
Stainless Steel 301
Stainless Steel 316
14% Si Iron
Zinc Chloride Zinc Sulfate
>0.05 >0.05
>0.05 >0.05
<0.02 <0.02
— <0.05
— <0.05
— <0.002
— <0.02
— <0.002
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. *
<0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor).
†
10% corrosive medium in 90% water at 70˚F
©2001 CRC Press LLC
18.2 sel Chemical L Page 1827 Wednesday, December 31, 1969 17:00
Table 451. SELECTING IRON
ALLOYS IN 100% CORROSIVE MEDIUM (SHEET 1 OF 17) Corrosion Rate * at 70˚F in a 100% Corrosive Medium †
Corrosive Medium
1020 Steel
Grey Cast Iron
Ni–Resist Cast Iron
12% Cr Steel
17% Cr Steel
Stainless Steel 301
Stainless Steel 316
14% Si Iron
Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride
<0.002 >0.05 >0.05 >0.05
<0.002 >0.05 >0.05 >0.05
<0.002 >0.05 >0.05 <0.02
<0.002 >0.05 >0.05 <0.05
<0.002 <0.002 <0.05 <0.05
<0.002 <0.002 <0.002 <0.02
<0.002 <0.002 <0.02 <0.02
<0.002 <0.002 <0.002 <0.002
Acetoacetic Acid Acetone Acetylene Acrolein
>0.05 <0.002 <0.002 <0.02
>0.05 <0.002 <0.002 <0.02
— <0.002 <0.002 <0.02
— <0.002 <0.002 <0.02
<0.02 <0.002 <0.002 <0.02
<0.02 <0.002 <0.002 <0.002
<0.02 <0.002 <0.002 <0.02
<0.02 <0.002 <0.002 <0.02
Acrylonitril Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl)
<0.002 <0.002 <0.002 <0.002
<0.002 <0.02 <0.002 <0.02
<0.002 <0.02 <0.002 <0.02
<0.002 <0.02 <0.02 <0.02
<0.002 <0.02 <0.02 <0.02
<0.002 <0.02 <0.02 <0.02
<0.002 <0.002 <0.002 <0.02
<0.002 <0.002 <0.002 <0.02
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.2 sel Chemical L Page 1828 Wednesday, December 31, 1969 17:00
Table 451. SELECTING IRON
ALLOYS IN 100% CORROSIVE MEDIUM (SHEET 2 OF 17) Corrosion Rate * at 70˚F in a 100% Corrosive Medium †
Corrosive Medium
1020 Steel
Grey Cast Iron
Ni–Resist Cast Iron
12% Cr Steel
17% Cr Steel
Stainless Steel 301
Stainless Steel 316
14% Si Iron
Alcohol (Amyl) Alcohol (Benzyl) Alcohol (Butyl) Alcohol (Cetyl)
<0.02 <0.002 <0.002 <0.02
<0.02 — <0.002 —
<0.02 — — —
<0.02 <0.02 <0.002 <0.02
<0.02 <0.02 <0.002 <0.02
<0.02 <0.02 <0.002 <0.02
<0.02 <0.02 <0.002 <0.02
<0.02 <0.02 <0.002 <0.02
Alcohol (Isopropyl) Allylamine Allyl Chloride Allyl Sulfide
<0.002 <0.02 <0.002 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 — <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.002 <0.02
<0.02 <0.02 <0.002 <0.02
Aluminum Acetate Aluminum Chlorate Aluminum Chloride Aluminum Fluoride
— — <0.002 —
— — >0.05 —
<0.02 — >0.05 —
<0.02 — <0.002 >0.05
— — <0.002 >0.05
<0.02 — <0.002 >0.05
<0.02 — — <0.05
<0.002 <0.002 <0.02 >0.05
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.2 sel Chemical L Page 1829 Wednesday, December 31, 1969 17:00
Table 451. SELECTING IRON
ALLOYS IN 100% CORROSIVE MEDIUM (SHEET 3 OF 17) Corrosion Rate * at 70˚F in a 100% Corrosive Medium †
Corrosive Medium
1020 Steel
Grey Cast Iron
Ni–Resist Cast Iron
12% Cr Steel
17% Cr Steel
Stainless Steel 301
Stainless Steel 316
14% Si Iron
Aluminum Fluosilicate Aluminum Formate Aluminum Hydroxide Aluminum Nitrate
>0.05 >0.05 — —
>0.05 — — —
— — — —
<0.02 <0.02 — <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 — —
Aluminum Potassium Sulfate Aluminum Sulfate Ammonia Ammonium Acetate
— — <0.002 <0.002
— — <0.002 <0.02
— — <0.002 <0.002
<0.05 >0.05 <0.002 <0.002
>0.05 >0.05 <0.002 <0.002
<0.02 <0.02 <0.002 <0.002
— <0.02 <0.002 <0.002
<0.002 <0.02 <0.02 <0.02
Ammonium Bicarbonate Ammonium Bromide Ammonium Carbonate Ammonium Chloride
<0.002 >0.05 <0.002 <0.02
<0.02 >0.05 <0.02 —
<0.02 — <0.02 —
— >0.05 <0.02 >0.05
— — <0.02 >0.05
<0.05 <0.05 <0.02 >0.05
<0.02 — <0.02 —
<0.002 — <0.02 <0.02
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.2 sel Chemical L Page 1830 Wednesday, December 31, 1969 17:00
Table 451. SELECTING IRON
ALLOYS IN 100% CORROSIVE MEDIUM (SHEET 4 OF 17) Corrosion Rate * at 70˚F in a 100% Corrosive Medium †
Corrosive Medium
1020 Steel
Grey Cast Iron
Ni–Resist Cast Iron
12% Cr Steel
17% Cr Steel
Stainless Steel 301
Stainless Steel 316
14% Si Iron
Ammonium Citrate Ammonium Formate Ammonium Nitrate Ammonium Sulfate
<0.002 — <0.02 —
— — <0.05 <0.02
— — — <0.02
— — <0.02 —
— — <0.02 —
— <0.02 <0.002 —
— <0.02 <0.002 —
— <0.02 — <0.002
Ammonium Sulfite Amyl Acetate Amyl Chloride Aniline
— <0.02 <0.02 <0.002
— <0.02 <0.02 <0.002
— <0.002 — <0.02
— <0.002 <0.05 <0.02
— <0.02 <0.05 <0.02
<0.05 <0.002 <0.002 <0.02
<0.02 <0.002 <0.002 <0.02
— <0.002 <0.02 <0.002
Aniline Hydrochloride Anthracine Antimony Trichloride Barium Carbonate
>0.05 <0.02 <0.05 <0.02
>0.05 <0.02 — <0.02
>0.05 <0.02 — <0.02
>0.05 <0.02 >0.05 <0.02
>0.05 <0.02 >0.05 <0.02
>0.05 <0.02 >0.05 <0.02
>0.05 <0.02 — <0.02
<0.02 <0.02 — <0.02
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.2 sel Chemical L Page 1831 Wednesday, December 31, 1969 17:00
Table 451. SELECTING IRON
ALLOYS IN 100% CORROSIVE MEDIUM (SHEET 5 OF 17) Corrosion Rate * at 70˚F in a 100% Corrosive Medium †
Corrosive Medium
1020 Steel
Grey Cast Iron
Ni–Resist Cast Iron
12% Cr Steel
17% Cr Steel
Stainless Steel 301
Stainless Steel 316
14% Si Iron
Barium Chloride Barium Hydroxide Barium Nitrate Barium Oxide
<0.002 <0.02 <0.02 <0.002
<0.02 <0.02 — —
— — — —
— <0.02 — <0.02
<0.02 <0.02 — <0.02
<0.05 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
— <0.02 <0.02 <0.02
Barium Peroxide Benzaldehyde Benzene Benzoic Acid
<0.002 <0.002 <0.02 >0.05
— >0.05 <0.02 >0.05
— <0.002 <0.02 <0.02
— <0.02 <0.02 <0.02
— <0.02 <0.02 <0.02
— <0.02 <0.02 <0.02
— <0.02 <0.02 <0.02
— <0.02 <0.002 <0.02
Boric Acid Bromic Acid Bromine (Dry) Bromine (Wet)
— >0.05 <0.05 >0.05
— >0.05 >0.05 >0.05
<0.02 — <0.02 >0.05
<0.02 >0.05 >0.05 >0.05
<0.02 >0.05 >0.05 >0.05
<0.02 — >0.05 >0.05
<0.02 — >0.05 >0.05
<0.02 — >0.05 >0.05
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.2 sel Chemical L Page 1832 Wednesday, December 31, 1969 17:00
Table 451. SELECTING IRON
ALLOYS IN 100% CORROSIVE MEDIUM (SHEET 6 OF 17) Corrosion Rate * at 70˚F in a 100% Corrosive Medium †
Corrosive Medium
1020 Steel
Grey Cast Iron
Ni–Resist Cast Iron
12% Cr Steel
17% Cr Steel
Stainless Steel 301
Stainless Steel 316
14% Si Iron
Butyric Acid Cadmium Chloride Cadmium Sulfate Calcium Acetate
>0.05 <0.002 <0.02 <0.05
— — <0.02 <0.05
>0.05 — — —
— — — <0.02
<0.05 — — <0.02
<0.02 — — <0.02
<0.02 — — <0.02
<0.002 — — <0.02
Calcium Bicarbonate Calcium Bromide Calcium Chlorate Calcium Chloride
<0.02 <0.05 <0.02 <0.002
<0.02 <0.05 <0.02 <0.002
— — <0.02 —
<0.02 <0.02 — —
<0.02 <0.02 — <0.02
<0.02 <0.02 — <0.02
<0.02 <0.02 — <0.002
<0.02 <0.02 — <0.02
Calcium Hydroxide Calcium Hypochlorite Carbon Dioxide Carbon Monoxide
<0.02 <0.02 <0.002 <0.002
<0.02 <0.02 <0.002 <0.002
— — <0.002 <0.002
<0.02 >0.05 <0.002 <0.002
<0.02 >0.05 <0.002 <0.002
— — <0.002 <0.002
— — <0.002 <0.002
— <0.05 <0.002 <0.002
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.2 sel Chemical L Page 1833 Wednesday, December 31, 1969 17:00
Table 451. SELECTING IRON
ALLOYS IN 100% CORROSIVE MEDIUM (SHEET 7 OF 17) Corrosion Rate * at 70˚F in a 100% Corrosive Medium †
Corrosive Medium
1020 Steel
Grey Cast Iron
Ni–Resist Cast Iron
12% Cr Steel
17% Cr Steel
Stainless Steel 301
Stainless Steel 316
14% Si Iron
Carbon Tetrachloride Carbon Acid (Air Free) Chloroacetic Acid Chlorine Gas
<0.002 <0.02 >0.05 <0.02
<0.05 <0.05 >0.05 <0.02
<0.02 <0.002 >0.05 <0.02
<0.02 <0.002 >0.05 <0.05
<0.002 <0.002 >0.05 <0.05
<0.02 <0.02 — <0.002
<0.02 <0.02 — <0.02
<0.002 <0.002 >0.05 <0.02
Chlorine Liquid Chloroform (Dry) Chromic Acid Chromic Hydroxide
<0.02 <0.002 <0.002 <0.02
— <0.002 <0.02 —
— — <0.02 <0.02
— <0.002 <0.02 <0.02
— <0.02 — <0.02
— <0.002 — <0.02
— <0.002 — <0.02
— — <0.02 <0.02
Chromic Sulfates Citric Acid Diethylene Glycol Ethyl Chloride
>0.05 <0.002 <0.002 <0.002
— — — —
— >0.05 — —
>0.05 — — <0.002
>0.05 — <0.002 <0.002
<0.05 <0.02 <0.002 <0.002
— <0.02 <0.002 <0.002
<0.02 <0.002 <0.002 <0.002
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.2 sel Chemical L Page 1834 Wednesday, December 31, 1969 17:00
Table 451. SELECTING IRON
ALLOYS IN 100% CORROSIVE MEDIUM (SHEET 8 OF 17) Corrosion Rate * at 70˚F in a 100% Corrosive Medium †
Corrosive Medium
1020 Steel
Grey Cast Iron
Ni–Resist Cast Iron
12% Cr Steel
17% Cr Steel
Stainless Steel 301
Stainless Steel 316
14% Si Iron
Ethylene Glycol Ethylene Oxide Fatty Acids Ferric Chloride
<0.002 <0.002 >0.05 <0.02
<0.02 <0.02 >0.05 —
<0.02 — <0.02 —
<0.02 <0.02 <0.02 —
<0.02 <0.02 <0.02 —
<0.02 <0.02 <0.02 —
<0.02 <0.02 <0.002 —
<0.02 <0.02 <0.002 —
Fluorine Formaldehyde Formic Acid Furfural
<0.002 <0.002 >0.05 <0.02
>0.05 <0.02 >0.05 <0.02
— — >0.05 <0.02
>0.05 <0.02 <0.02 —
<0.002 <0.002 <0.05 —
<0.002 <0.002 <0.02 <0.02
<0.002 <0.002 <0.002 <0.02
>0.05 <0.002 <0.002 <0.02
Hydrazine Hydrobromic Acid Hydrocyanic Acid Hydrofluoric Acid (Areated)
>0.05 <0.02 <0.002 <0.02
— <0.02 <0.02 >0.05
— >0.05 <0.02 <0.02
— — >0.05 —
— — <0.05 —
— >0.05 <0.02 <0.02
— — <0.02 <0.02
— >0.05 <0.02 >0.05
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.2 sel Chemical L Page 1835 Wednesday, December 31, 1969 17:00
Table 451. SELECTING IRON
ALLOYS IN 100% CORROSIVE MEDIUM (SHEET 9 OF 17) Corrosion Rate * at 70˚F in a 100% Corrosive Medium †
Corrosive Medium
1020 Steel
Grey Cast Iron
Ni–Resist Cast Iron
12% Cr Steel
17% Cr Steel
Stainless Steel 301
Stainless Steel 316
14% Si Iron
Hydrofluoric Acid (Air Free) Hydrogen Chloride Hydrogen Fluoride Hydrogen Iodide
<0.05 <0.002 <0.002 <0.02
>0.05 <0.02 — <0.02
<0.02 <0.002 <0.02 <0.02
>0.05 >0.05 <0.02 >0.05
>0.05 >0.05 <0.02 >0.05
>0.05 <0.002 <0.002 <0.02
<0.02 <0.002 <0.002 <0.02
>0.05 <0.02 — <0.02
Hydrogen Peroxide Hydrogen Sulfide Lactic Acid Lead Acetate
— <0.02 >0.05 <0.002
— <0.02 >0.05 —
— <0.02 >0.05 —
<0.02 <0.02 — <0.02
<0.02 <0.05 — <0.02
<0.02 <0.05 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.05
Lead Chromate Lead Nitrate Lead Sulfate Lithium Chloride
<0.02 <0.02 <0.02 <0.002
<0.02 <0.02 <0.02 <0.002
<0.02 — <0.02 —
<0.02 — <0.02 —
<0.02 — <0.02 —
<0.02 <0.02 <0.02 <0.002
<0.02 <0.02 <0.02 <0.002
<0.02 <0.002 <0.02 <0.02
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.2 sel Chemical L Page 1836 Wednesday, December 31, 1969 17:00
Table 451. SELECTING IRON
ALLOYS IN 100% CORROSIVE MEDIUM (SHEET 10 OF 17) Corrosion Rate * at 70˚F in a 100% Corrosive Medium †
Corrosive Medium
1020 Steel
Grey Cast Iron
Ni–Resist Cast Iron
12% Cr Steel
17% Cr Steel
Stainless Steel 301
Stainless Steel 316
14% Si Iron
Lithium Hydroxide Magnesium Chloride Magnesium Hydroxide Magnesium Sulfate
<0.002 <0.002 <0.002 <0.02
— <0.02 — <0.02
— <0.02 <0.02 <0.02
— — <0.02 <0.05
— — <0.02 <0.02
— — <0.02 <0.02
— — <0.02 <0.02
— >0.05 — <0.002
Maleic Acid Malic Acid Mercuric Chloride Mercurous Nitrate
<0.002 — — <0.02
— — — —
— — — —
<0.05 — >0.05 <0.02
<0.02 — >0.05 —
<0.02 <0.002 >0.05 <0.02
<0.02 <0.002 — <0.02
<0.02 — <0.02 <0.002
Methallylamine Methanol Methyl Ethyl Ketone Methyl Isobutyl Ketone
<0.02 <0.002 <0.002 <0.02
<0.02 <0.002 <0.002 <0.02
<0.02 <0.002 <0.002 <0.02
<0.02 <0.002 <0.002 <0.02
<0.02 <0.002 <0.002 <0.02
<0.02 <0.002 <0.002 <0.02
<0.02 <0.002 <0.002 <0.02
<0.002 <0.002 <0.002 <0.02
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.2 sel Chemical L Page 1837 Wednesday, December 31, 1969 17:00
Table 451. SELECTING IRON
ALLOYS IN 100% CORROSIVE MEDIUM (SHEET 11 OF 17) Corrosion Rate * at 70˚F in a 100% Corrosive Medium †
Corrosive Medium
1020 Steel
Grey Cast Iron
Ni–Resist Cast Iron
12% Cr Steel
17% Cr Steel
Stainless Steel 301
Stainless Steel 316
14% Si Iron
Methylamine Methylene Chloride Monochloroacetic Acid Monorthanolamine
<0.02 <0.02 <0.002 <0.02
<0.02 <0.02 >0.05 <0.02
<0.02 <0.02 <0.05 <0.02
<0.02 <0.02 >0.05 —
<0.02 <0.02 >0.05 —
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 —
Monoethalamine Monoethylamine Nitric Acid Nitric Acid (Red Fuming)
<0.02 <0.02 >0.05 <0.05
— <0.02 >0.05 >0.05
<0.02 <0.02 >0.05 >0.05
<0.02 <0.02 >0.05 <0.002
<0.02 <0.02 <0.05 <0.002
<0.02 <0.02 <0.002 <0.002
<0.02 <0.02 <0.002 <0.002
<0.02 <0.02 <0.002 <0.002
Nitric + Hydrochloric Acid Nitric + Hydrofluoric Acid Nitric + Sulfuric Acid Nitrobenzene
>0.05 >0.05 >0.05 <0.002
>0.05 >0.05 >0.05 <0.02
>0.05 >0.05 >0.05 <0.02
>0.05 >0.05 >0.05 <0.02
>0.05 >0.05 >0.05 <0.02
>0.05 >0.05 >0.05 <0.02
>0.05 >0.05 >0.05 <0.02
<0.05 >0.05 <0.02 <0.002
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.2 sel Chemical L Page 1838 Wednesday, December 31, 1969 17:00
Table 451. SELECTING IRON
ALLOYS IN 100% CORROSIVE MEDIUM (SHEET 12 OF 17) Corrosion Rate * at 70˚F in a 100% Corrosive Medium †
Corrosive Medium
1020 Steel
Grey Cast Iron
Ni–Resist Cast Iron
12% Cr Steel
17% Cr Steel
Stainless Steel 301
Stainless Steel 316
14% Si Iron
Nitrocelluolose Nitroglycerine Nitrotolune Nitrous Acid
<0.02 <0.05 <0.02 >0.05
<0.02 <0.05 <0.02 —
<0.02 <0.02 <0.02 —
<0.02 <0.02 <0.02 —
<0.02 <0.02 <0.02 —
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.05 <0.02 <0.002
Oleic Acid Oxalic Acid Phenol Phosphoric Acid (Areated)
<0.02 >0.05 <0.002 >0.05
<0.02 >0.05 <0.02 >0.05
<0.002 <0.02 <0.02 >0.05
<0.02 >0.05 <0.02 —
<0.02 >0.05 <0.02 —
<0.02 >0.05 <0.02 >0.05
<0.02 >0.05 <0.02 <0.02
<0.002 <0.02 <0.002 <0.002
Phosphoric Acid (Air Free) Picric Acid Potassium Bicarbonate Potassium Bromide
>0.05 >0.05 <0.002 >0.05
>0.05 >0.05 — >0.05
>0.05 >0.05 — <0.02
>0.05 <0.02 — <0.002
>0.05 <0.02 <0.02 <0.02
— <0.02 <0.02 <0.05
— <0.02 <0.02 —
<0.02 <0.02 — <0.02
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.2 sel Chemical L Page 1839 Wednesday, December 31, 1969 17:00
Table 451. SELECTING IRON
ALLOYS IN 100% CORROSIVE MEDIUM (SHEET 13 OF 17) Corrosion Rate * at 70˚F in a 100% Corrosive Medium †
Corrosive Medium
1020 Steel
Grey Cast Iron
Ni–Resist Cast Iron
12% Cr Steel
17% Cr Steel
Stainless Steel 301
Stainless Steel 316
14% Si Iron
Potassium Carbonate Potassium Chlorate Potassium Chromate Potassium Cyanide
<0.02 <0.002 — <0.002
<0.02 — — <0.02
<0.02 — — —
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 — <0.02
Potassium Dichromate Potassium Ferricyanide Potassium Hydroxide Potassium Hypochlorite
— <0.02 <0.002 <0.002
— <0.02 <0.02 —
<0.02 <0.02 — —
<0.02 — <0.002 —
<0.02 <0.02 <0.002 —
<0.02 <0.02 <0.002 —
<0.02 <0.02 — <0.02
— — >0.05 <0.002
Potassium Iodide Potassium Nitrate Potassium Nitrite Potassium Permanganate
<0.02 <0.002 <0.02 <0.002
— <0.02 <0.02 <0.02
— — <0.02 —
— <0.02 <0.02 <0.02
— <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 — <0.02 —
<0.02 <0.002 <0.02 —
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.2 sel Chemical L Page 1840 Wednesday, December 31, 1969 17:00
Table 451. SELECTING IRON
ALLOYS IN 100% CORROSIVE MEDIUM (SHEET 14 OF 17) Corrosion Rate * at 70˚F in a 100% Corrosive Medium †
Corrosive Medium
1020 Steel
Grey Cast Iron
Ni–Resist Cast Iron
12% Cr Steel
17% Cr Steel
Stainless Steel 301
Stainless Steel 316
14% Si Iron
Potassium Silicate Propionic Acid Pyridine Quinine Sulfate
<0.02 <0.02 <0.02 >0.05
<0.02 — <0.02 >0.05
<0.02 — <0.02 <0.02
<0.02 — <0.02 —
<0.02 — <0.02 <0.02
<0.02 — <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
Salicylic Acid Silicon Tetrachloride (Dry) Silicon Tetrachloride (Wet) Silver Bromide
>0.05 <0.002 >0.05 >0.05
>0.05 <0.002 >0.05 >0.05
<0.02 <0.002 >0.05 >0.05
<0.02 <0.002 >0.05 >0.05
<0.02 <0.002 >0.05 >0.05
<0.02 <0.002 >0.05 <0.05
<0.02 <0.002 — —
<0.02 <0.002 <0.002 <0.02
Silver Chloride Silver Nitrate Sodium Acetate Sodium Bicarbonate
>0.05 — <0.002 <0.05
>0.05 — <0.002 <0.05
— — — <0.02
>0.05 — <0.02 —
>0.05 — <0.02 <0.02
>0.05 — <0.02 —
— <0.02 <0.02 —
<0.02 — <0.02 —
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.2 sel Chemical L Page 1841 Wednesday, December 31, 1969 17:00
Table 451. SELECTING IRON
ALLOYS IN 100% CORROSIVE MEDIUM (SHEET 15 OF 17) Corrosion Rate * at 70˚F in a 100% Corrosive Medium †
Corrosive Medium
1020 Steel
Grey Cast Iron
Ni–Resist Cast Iron
12% Cr Steel
17% Cr Steel
Stainless Steel 301
Stainless Steel 316
14% Si Iron
Sodium Bisulfate Sodium Bromide Sodium Carbonate Sodium Chloride
<0.002 <0.02 <0.02 <0.002
— <0.05 <0.02 <0.02
<0.002 <0.02 <0.02 <0.02
>0.05 — <0.02 —
— — <0.02 —
>0.05 — <0.02 —
— — <0.02 —
<0.002 — <0.02 —
Sodium Chromate Sodium Hydroxide Sodium Hypochlorite Sodium Metasilicate
<0.02 <0.02 >0.05 <0.002
<0.02 — — <0.02
<0.02 <0.02 — <0.02
<0.02 — >0.05 <0.002
<0.02 — >0.05 <0.002
<0.02 — >0.05 <0.002
<0.02 — >0.05 <0.002
<0.02 — — <0.02
Sodium Nitrate Sodium Nitrite Sodium Phosphate Sodium Silicate
<0.02 <0.002 <0.02 <0.02
<0.02 — <0.02 <0.02
<0.02 — <0.02 <0.02
<0.02 <0.002 <0.02 <0.02
<0.002 — <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 — <0.02 <0.02
<0.002 — <0.02 <0.02
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.2 sel Chemical L Page 1842 Wednesday, December 31, 1969 17:00
Table 451. SELECTING IRON
ALLOYS IN 100% CORROSIVE MEDIUM (SHEET 16 OF 17) Corrosion Rate * at 70˚F in a 100% Corrosive Medium †
Corrosive Medium
1020 Steel
Grey Cast Iron
Ni–Resist Cast Iron
12% Cr Steel
17% Cr Steel
Stainless Steel 301
Stainless Steel 316
14% Si Iron
Sodium Sulfate Sodium Sulfide Stannic Chloride Stannous Chloride
<0.02 <0.02 <0.002 <0.02
<0.02 <0.02 — <0.02
<0.02 — — <0.02
>0.05 <0.02 — —
>0.05 >0.05 — <0.05
<0.002 >0.05 — <0.05
<0.002 — — —
<0.002 <0.02 — —
Strontium Nitrate Succinic Acid Sulfur Dioxide Sulfur Trioxide
>0.05 <0.02 <0.002 <0.02
>0.05 <0.02 <0.02 <0.02
— <0.02 <0.02 <0.02
— <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 — >0.05 >0.05
Sulfuric Acid (Areated) Sulfuric Acid (Air Free) Sulfuric Acid (Fuming) Sulfurous Acid
<0.02 <0.02 <0.02 >0.05
<0.02 <0.02 <0.02 >0.05
<0.02 <0.02 <0.05 >0.05
>0.05 <0.05 <0.002 >0.05
>0.05 <0.05 <0.002 >0.05
<0.02 <0.05 <0.02 >0.05
<0.02 <0.02 <0.02 <0.002
<0.02 <0.02 <0.02
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.2 sel Chemical L Page 1843 Wednesday, December 31, 1969 17:00
Table 451. SELECTING IRON
ALLOYS IN 100% CORROSIVE MEDIUM (SHEET 17 OF 17) Corrosion Rate * at 70˚F in a 100% Corrosive Medium †
Corrosive Medium
1020 Steel
Grey Cast Iron
Ni–Resist Cast Iron
12% Cr Steel
17% Cr Steel
Stainless Steel 301
Stainless Steel 316
14% Si Iron
Tannic Acid Tartaric Acid Tetraphosphoric Acid Trichloroacetic Acid
<0.002 <0.05 >0.05 >0.05
<0.02 >0.05 >0.05 >0.05
— — <0.05 >0.05
<0.02 — >0.05 >0.05
<0.02 — >0.05 >0.05
<0.02 — <0.02 >0.05
<0.02 — <0.02 >0.05
<0.002 <0.02 <0.05 <0.002
Trichloroethylene Zinc Chloride
<0.002 <0.002
<0.02 <0.02
<0.02 <0.02
<0.02 >0.05
<0.02 >0.05
<0.02 —
<0.02 —
<0.002 —
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. *
<0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor).
†
Water-free, Dry or Maximum concentration of corrosive medium. Quantitatively
©2001 CRC Press LLC
18.3 sel Chemical L Page 1844 Wednesday, December 31, 1969 17:00
Table 452. SELECTING
NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM (SHEET 1 OF 18) Corrosion Rate * at 70˚F in a 10% Corrosive Medium †
Copper, Sn-Braze, Al-Braze
70-30 Brass
Silicon Bronze
Monel
Nickel
Inconel
Hastelloy
Aluminum
Lead
<0.002 >0.05
<0.02 >0.05
<0.02 >0.05
<0.002 <0.02
<0.002 <0.05
— <0.02
— <0.002
<0.02 <0.02
<0.02 >0.05
— <0.002
<0.002
>0.05
>0.05
<0.02
<0.02
<0.02
<0.002
<0.002
>0.05
<0.002
—
—
—
—
—
—
<0.002
—
—
—
Acetoacetic Acid Acetone Acrolein Alcohol (Ethyl)
— <0.002 <0.02 <0.002
— <0.002 <0.02 <0.002
— <0.002 <0.02 <0.002
<0.02 <0.002 — <0.002
<0.02 <0.002 — <0.002
— <0.002 — <0.002
<0.02 <0.002 — <0.002
<0.02 <0.02 <0.02 <0.02
— <0.002 <0.02 <0.002
— <0.002 — <0.002
Alcohol (Methyl) Alcohol (Benzyl) Alcohol (Butyl) Aluminum Acetate
<0.02 — — <0.02
<0.02 — — —
<0.02 — — <0.02
<0.002 — — <0.02
<0.002 — — <0.02
<0.002 — — <0.02
<0.002 <0.02 — <0.02
— — <0.002 <0.002
<0.02 — — <0.002
— — — —
Corrosive Medium Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride
Titanium
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.3 sel Chemical L Page 1845 Wednesday, December 31, 1969 17:00
Table 452. SELECTING
NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM (SHEET 2 OF 18) Corrosion Rate * at 70˚F in a 10% Corrosive Medium †
Corrosive Medium
Copper, Sn-Braze, Al-Braze
70-30 Brass
Silicon Bronze
Monel
Nickel
Inconel
Hastelloy
Aluminum
Lead
Aluminum Chlorate Aluminum Chloride Aluminum Fluoride Aluminum Formate
— <0.02 <0.02 —
— >0.05 >0.05 —
— <0.02 <0.02 <0.02
<0.02 <0.02 <0.002 <0.02
<0.02 <0.05 <0.02 <0.02
<0.02 >0.05 — <0.02
<0.02 <0.002 <0.02 <0.02
— >0.05 <0.002 <0.02
<0.02 >0.05 <0.02 —
<0.002 >0.05 — —
Aluminum Hydroxide Aluminum Nitrate Aluminum Potassium Sulfate Aluminum Sulfate
<0.02
<0.02
<0.02
<0.02
<0.02
—
<0.02
<0.02
<0.02
<0.002
—
—
—
<0.02
<0.02
<0.02
<0.02
<0.02
<0.02
<0.002
<0.02
>0.05
<0.02
<0.02
<0.02
—
<0.02
<0.02
<0.002
—
<0.02
<0.02
<0.02
<0.02
<0.02
<0.02
<0.002
<0.002
<0.02
<0.002
Titanium
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.3 sel Chemical L Page 1846 Wednesday, December 31, 1969 17:00
Table 452. SELECTING
NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM (SHEET 3 OF 18) Corrosion Rate * at 70˚F in a 10% Corrosive Medium †
Corrosive Medium Ammonia Ammonium Acetate Ammonium Bicarbonate Ammonium Bromide Ammonium Carbonate Ammonium Chloride Ammonium Citrate Ammonium Formate
Copper, Sn-Braze, Al-Braze
70-30 Brass
Silicon Bronze
Monel
Nickel
Inconel
Hastelloy
Aluminum
Lead
>0.05 —
>0.05 —
>0.05 —
>0.05 <0.002
>0.05 <0.002
<0.002 <0.002
<0.002 <0.002
<0.002 <0.002
<0.02 —
<0.002 —
>0.05
>0.05
>0.05
—
—
—
—
<0.02
<0.02
—
>0.05
>0.05
>0.05
<0.02
<0.02
—
<0.02
>0.05
>0.05
—
>0.05
>0.05
>0.05
<0.02
>0.05
>0.05
>0.05
<0.02
<0.02
—
>0.05
>0.05
>0.05
<0.02
<0.02
<0.02
<0.002
>0.05
>0.05
<0.002
>0.05
>0.05
>0.05
<0.02
<0.02
<0.02
<0.02
<0.02
—
<0.002
—
—
—
<0.02
<0.02
<0.02
<0.002
<0.02
—
<0.002
Titanium
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.3 sel Chemical L Page 1847 Wednesday, December 31, 1969 17:00
Table 452. SELECTING
NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM (SHEET 4 OF 18) Corrosion Rate * at 70˚F in a 10% Corrosive Medium †
Corrosive Medium Ammonium Nitrate Ammonium Sulfate Ammonium Sulfite Ammonium Thiocyanate Amyl Acetate Amyl Chloride Aniline Aniline Hydrochloride
Copper, Sn-Braze, Al-Braze
70-30 Brass
Silicon Bronze
Monel
Nickel
Inconel
Hastelloy
Aluminum
Lead
>0.05 <0.05 >0.05
>0.05 >0.05 >0.05
>0.05 <0.02 >0.05
>0.05 <0.02 >0.05
<0.02 <0.02 >0.05
— <0.02 >0.05
<0.02 <0.02 —
<0.02 >0.05 —
>0.05 <0.02 —
<0.05 <0.002 —
>0.05
>0.05
>0.05
<0.02
<0.02
—
—
—
—
<0.02 <0.02 —
<0.02 — —
<0.02 — —
<0.02 <0.02 <0.02
— <0.02 <0.02
— — —
<0.002 — —
— — —
— — —
— — —
>0.05
>0.05
>0.05
>0.05
<0.05
>0.05
<0.02
>0.05
>0.05
<0.002
Titanium
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.3 sel Chemical L Page 1848 Wednesday, December 31, 1969 17:00
Table 452. SELECTING
NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM (SHEET 5 OF 18) Corrosion Rate * at 70˚F in a 10% Corrosive Medium †
Copper, Sn-Braze, Al-Braze
70-30 Brass
Silicon Bronze
Monel
Nickel
Inconel
Hastelloy
Aluminum
Lead
Antimony Trichloride Barium Carbonate Barium Chloride Barium Hydroxide
>0.05
>0.05
>0.05
>0.05
>0.05
—
>0.05
>0.05
<0.02
—
<0.02 <0.02 >0.05
<0.02 >0.05 >0.05
<0.02 <0.02 >0.05
<0.02 <0.02 <0.02
<0.02 <0.02 <0.002
— <0.02 <0.02
— <0.02 <0.02
— <0.02 >0.05
— <0.02 >0.05
— <0.002 —
Barium Nitrate Barium Peroxide Benzaldehyde Benzene
>0.05 >0.05 >0.05 <0.002
>0.05 >0.05 >0.05 <0.02
>0.05 >0.05 >0.05 <0.02
— <0.02 — <0.002
<0.02 <0.02 — <0.002
<0.02 — — <0.002
<0.02 — — <0.02
<0.02 >0.05 <0.02 <0.02
<0.02 >0.05 >0.05 <0.02
— — — <0.002
Benzoic Acid Boric Acid Bromic Acid Butyric Acid
<0.02 <0.02 >0.05 <0.05
<0.02 <0.02 >0.05 <0.05
<0.02 <0.02 >0.05 <0.02
<0.02 <0.02 >0.05 <0.05
<0.02 <0.02 >0.05 <0.05
<0.02 <0.02 >0.05 <0.05
<0.002 <0.002 — <0.002
<0.02 <0.05 >0.05 <0.02
>0.05 <0.02 <0.02 >0.05
<0.002 <0.002 — <0.002
Corrosive Medium
Titanium
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.3 sel Chemical L Page 1849 Wednesday, December 31, 1969 17:00
Table 452. SELECTING
NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM (SHEET 6 OF 18) Corrosion Rate * at 70˚F in a 10% Corrosive Medium †
Corrosive Medium
Copper, Sn-Braze, Al-Braze
70-30 Brass
Silicon Bronze
Monel
Nickel
Inconel
Hastelloy
Aluminum
Lead
Cadmium Chloride Cadmium Sulfate Calcium Acetate Calcium Bromide
<0.02 <0.02 <0.02 <0.02
>0.05 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.002 <0.02 <0.02
<0.02 <0.002 <0.02 <0.02
— <0.002 <0.02 <0.02
<0.02 <0.002 <0.02 <0.02
>0.05 <0.02 — <0.05
— <0.002 <0.02 <0.02
— — <0.002 —
Calcium Chlorate Calcium Chloride Calcium Hydroxide Calcium Hypochlorite
<0.02 <0.002 <0.02
>0.05 <0.02 <0.02
<0.02 <0.02 <0.02
<0.02 <0.002 <0.02
<0.02 <0.002 <0.02
<0.02 <0.002 <0.02
<0.02 <0.002 <0.002
<0.02 <0.002 >0.05
<0.02 >0.05 >0.05
— <0.002 —
<0.02
<0.02
<0.02
>0.05
>0.05
>0.05
<0.02
>0.05
<0.05
<0.002
Titanium
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.3 sel Chemical L Page 1850 Wednesday, December 31, 1969 17:00
Table 452. SELECTING
NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM (SHEET 7 OF 18) Corrosion Rate * at 70˚F in a 10% Corrosive Medium †
Corrosive Medium
Copper, Sn-Braze, Al-Braze
70-30 Brass
Silicon Bronze
Monel
Nickel
Inconel
Hastelloy
Aluminum
Lead
—
—
—
<0.02
<0.02
<0.002
<0.002
—
—
—
Titanium
Carbon Tetrachloride Carbon Acid (Air Free) Chloroacetic Acid Chromic Acid
<0.02
—
<0.02
<0.02
<0.02
<0.02
<0.002
<0.02
—
—
>0.05 >0.05
>0.05 >0.05
— >0.05
<0.02 >0.05
— >0.05
— <0.02
<0.02 <0.02
>0.05 >0.05
>0.05 <0.02
— <0.002
Chromic Sulfates Citric Acid Copper Nitrate Copper Sulfate
<0.02 <0.05 >0.05 >0.05
<0.02 >0.05 >0.05 >0.05
<0.02 <0.05 >0.05 <0.02
— <0.02 >0.05 <0.02
— <0.02 >0.05 <0.02
— <0.02 >0.05 <0.02
<0.02 <0.002 <0.02 <0.002
— <0.02 >0.05 >0.05
<0.02 <0.02 — <0.02
— <0.002 — —
Ethyl Chloride Ethylene Glycol Ferric Chloride Ferric Nitrate
<0.02 <0.02 >0.05 >0.05
— — >0.05 >0.05
— — >0.05 >0.05
<0.02 — >0.05 >0.05
— — >0.05 >0.05
— — <0.05 >0.05
— — <0.002 <0.002
— <0.002 >0.05 >0.05
— — >0.05 <0.002
— — <0.002 <0.002
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.3 sel Chemical L Page 1851 Wednesday, December 31, 1969 17:00
Table 452. SELECTING
NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM (SHEET 8 OF 18) Corrosion Rate * at 70˚F in a 10% Corrosive Medium †
Corrosive Medium
Copper, Sn-Braze, Al-Braze
70-30 Brass
Silicon Bronze
Monel
Nickel
Inconel
Hastelloy
Aluminum
Lead
Ferrous Chloride Ferrous Sulfate Formaldehyde Formic Acid
<0.02 <0.02 <0.002 <0.02
>0.05 >0.05 <0.002 <0.05
<0.05 <0.02 <0.002 <0.02
>0.05 — <0.002 <0.02
<0.05 >0.05 <0.002 <0.02
>0.05 <0.02 <0.002 <0.02
<0.02 <0.02 <0.02 <0.002
>0.05 <0.002 <0.02 <0.02
>0.05 <0.02 <0.02 >0.05
<0.002 <0.002 <0.002 <0.02
Furfural Hydrazine Hydrobromic Acid Hydrochloric Acid (Areated)
<0.02 >0.05 >0.05
<0.02 >0.05 >0.05
<0.02 >0.05 <0.02
<0.02 — >0.05
<0.02 — >0.05
<0.02 — —
<0.02 — <0.02
— — >0.05
— >0.05 >0.05
— — —
>0.05
>0.05
>0.05
>0.05
>0.05
>0.05
<0.02
>0.05
<0.02
<0.02
>0.05
>0.05
<0.02
>0.05
>0.05
>0.05
<0.02
>0.05
<0.02
<0.02
>0.05
>0.05
>0.05
>0.05
—
—
—
<0.02
>0.05
—
<0.02
>0.05
>0.05
<0.02
<0.02
<0.02
<0.02
>0.05
>0.05
>0.05
<0.02
>0.05
<0.02
<0.02
<0.02
<0.02
<0.02
>0.05
<0.002
>0.05
Hydrochloric Acid (Air Free) Hydrocyanic Acid Hydrofluoric Acid (Areated) Hydrofluoric Acid (Air Free)
Titanium
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.3 sel Chemical L Page 1852 Wednesday, December 31, 1969 17:00
Table 452. SELECTING
NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM (SHEET 9 OF 18) Corrosion Rate * at 70˚F in a 10% Corrosive Medium †
Corrosive Medium
Copper, Sn-Braze, Al-Braze
70-30 Brass
Silicon Bronze
Monel
Nickel
Inconel
Hastelloy
Aluminum
Lead
Hydrogen Iodide Hydrogen Peroxide Hydrogen Sulfide Lactic Acid
— >0.05 <0.02 <0.002
— >0.05 <0.02 <0.05
— >0.05 <0.02 <0.05
<0.02 <0.02 — >0.05
— <0.02 — <0.02
— <0.02 <0.02 <0.02
— <0.002 — <0.02
— <0.002 — <0.02
— >0.05 — >0.05
— <0.002 — <0.002
Lead Acetate Lead Chromate Lead Nitrate Lead Sulfate
<0.05 — — —
— — —
— — — —
<0.02 — — —
<0.02 — <0.02 <0.02
<0.02 — — —
<0.02 — — —
— >0.05 >0.05 >0.05
— — — —
<0.002 — — —
Titanium
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.3 sel Chemical L Page 1853 Wednesday, December 31, 1969 17:00
Table 452. SELECTING
NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM (SHEET 10 OF 18) Corrosion Rate * at 70˚F in a 10% Corrosive Medium †
Corrosive Medium
Copper, Sn-Braze, Al-Braze
Lithium Chloride
<0.02 30
Lithium Hydroxide Magnesium Chloride Magnesium Hydroxide
70-30 Brass
Silicon Bronze
<0.02 30
>0.05 <0.02
<0.02 30 >0.05 <0.02
<0.02
Magnesium Sulfate Maleic Acid Malic Acid Maganous Chloride Mercuric Chloride Mercurous Nitrate Methanol Methyl Ethyl Ketone
Monel
Nickel
Inconel
Hastelloy
Aluminum
Lead
Titanium
<0.002 30
<0.002 30
<0.002 30
<0.05
<0.02
—
>0.05 <0.02
<0.002 30 <0.02 <0.002
<0.02 <0.002
<0.02 <0.002
<0.02 <0.002
>0.05 >0.05
>0.05 >0.05
— <0.002
<0.02
<0.02
<0.02
—
—
<0.02
>0.05
>0.05
—
<0.002 <0.02 — —
<0.02 <0.02 — —
<0.002 <0.02 — —
<0.02 <0.05 <0.02 —
<0.02 <0.02 <0.02 —
<0.02 <0.02 <0.002 —
<0.002 <0.002 — <0.02
<0.02 <0.02 <0.02 —
<0.02 — — —
— — — <0.002
>0.05 >0.05 <0.02 <0.02
>0.05 >0.05 <0.02 <0.02
>0.05 >0.05 <0.02 <0.02
>0.05 <0.02 <0.002 <0.02
<0.05 — <0.002 <0.02
>0.05 — <0.002 <0.02
<0.02 <0.02 <0.002 <0.02
>0.05 >0.05 — <0.02
<0.05 — <0.02 <0.02
<0.002 — — <0.002
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.3 sel Chemical L Page 1854 Wednesday, December 31, 1969 17:00
Table 452. SELECTING
NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM (SHEET 11 OF 18) Corrosion Rate * at 70˚F in a 10% Corrosive Medium †
Copper, Sn-Braze, Al-Braze
70-30 Brass
Silicon Bronze
Monel
Nickel
Inconel
Hastelloy
Aluminum
Lead
Methyl Isobutyl Ketone Methylamine Methylene Chloride Monochloroacetic Acid
<0.02
<0.02
<0.02
<0.02
<0.02
<0.02
<0.02
<0.02
<0.02
<0.002
— <0.02
— —
— <0.02
— —
— —
— —
— <0.02
<0.02 >0.05
— —
— —
>0.05
>0.05
>0.05
—
<0.02
<0.02
—
>0.05
>0.05
—
Monoethalamine Monoethylamine Monosodium Phosphate Nickel Chloride
— —
— —
— —
— —
— —
— —
— —
<0.02 <0.02
— —
— —
<0.02
<0.02
<0.02
<0.02
<0.02
<0.02
<0.02
>0.05
<0.02
—
>0.05
>0.05
>0.05
<0.02
—
—
<0.002
>0.05
—
<0.02
Corrosive Medium
Titanium
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.3 sel Chemical L Page 1855 Wednesday, December 31, 1969 17:00
Table 452. SELECTING
NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM (SHEET 12 OF 18) Corrosion Rate * at 70˚F in a 10% Corrosive Medium †
Corrosive Medium
Copper, Sn-Braze, Al-Braze
70-30 Brass
Silicon Bronze
Monel
Nickel
Inconel
Hastelloy
Aluminum
Lead
Titanium
Nickel Nitrate Nickel Sulfate Nitric Acid Nitric + Sulfuric Acid
<0.05 <0.02 >0.05
<0.05 <0.05 >0.05
<0.05 <0.02 >0.05
>0.05 — >0.05
>0.05 <0.02 >0.05
>0.05 <0.02 <0.02
<0.02 <0.02 <0.002
>0.05 >0.05 >0.05
— <0.02 >0.05
— — <0.002
>0.05
>0.05
>0.05
>0.05
>0.05
>0.05
—
>0.05
>0.05
—
Nitrous Acid Oleic Acid Oxalic Acid Phenol
— — <0.02 —
— >0.05 <0.02 —
— — <0.02 —
— — <0.02 <0.002
>0.05 — <0.02 —
— — <0.02 —
— — <0.02 —
<0.05 — <0.02 —
— — >0.05 —
— — <0.02 —
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.3 sel Chemical L Page 1856 Wednesday, December 31, 1969 17:00
Table 452. SELECTING
NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM (SHEET 13 OF 18) Corrosion Rate * at 70˚F in a 10% Corrosive Medium †
Corrosive Medium
Copper, Sn-Braze, Al-Braze
70-30 Brass
Silicon Bronze
Monel
Nickel
Inconel
Hastelloy
Aluminum
Lead
>0.05
>0.05
>0.05
<0.05
<0.05
<0.02
<0.002
>0.05
<0.02
<0.02
<0.02
Titanium
Phosphoric Acid (Areated) Phosphoric Acid (Air Free) Picric Acid Potassium Bicarbonate
<0.02
<0.02
<0.02
<0.02
<0.02
<0.002
>0.05
<0.002
—
>0.05
>0.05
>0.05
<0.05
>0.05
—
<0.02
>0.05
>0.05
—
<0.02
<0.02
<0.02
<0.02
<0.02
<0.02
<0.02
>0.05
>0.05
—
Potassium Bromide Potassium Carbonate Potassium Chlorate Potassium Chromate
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.05 <0.02
<0.02 <0.02 <0.02 <0.002
<0.02 <0.02 <0.05 <0.002
<0.002 <0.02 <0.02 <0.002
<0.02 >0.05 <0.02 <0.02
<0.02 >0.05 <0.02 <0.02
<0.002 <0.002 <0.002 —
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.3 sel Chemical L Page 1857 Wednesday, December 31, 1969 17:00
Table 452. SELECTING
NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM (SHEET 14 OF 18) Corrosion Rate * at 70˚F in a 10% Corrosive Medium †
Corrosive Medium Potassium Cyanide Potassium Dichromate Potassium Ferricyanide Potassium Ferrocyanide Potassium Hydroxide Potassium Hypochlorite Potassium Iodide Potassium Nitrate
Copper, Sn-Braze, Al-Braze
70-30 Brass
Silicon Bronze
Monel
Nickel
Inconel
Hastelloy
Aluminum
Lead
>0.05
>0.05
>0.05
<0.02
<0.02
<0.02
<0.02
>0.05
>0.05
—
<0.02
<0.02
<0.02
<0.02
<0.02
<0.02
<0.02
<0.002
<0.02
<0.002
<0.02
<0.02
<0.02
<0.02
<0.02
—
<0.02
<0.02
<0.02
—
<0.02
<0.02
<0.02
<0.02
<0.02
<0.02
<0.02
<0.002
<0.02
—
<0.02
<0.02
<0.02
<0.002
<0.002
<0.02
<0.02
>0.05
>0.05
<0.002
<0.02
>0.05
>0.05
<0.05
<0.05
<0.05
<0.02
>0.05
<0.02
<0.002
<0.02 <0.02
— <0.02
<0.02 <0.02
<0.02 <0.02
<0.02 <0.02
<0.02 <0.02
<0.02 <0.02
<0.02 <0.002
>0.05 <0.02
<0.002 <0.002
Titanium
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.3 sel Chemical L Page 1858 Wednesday, December 31, 1969 17:00
Table 452. SELECTING
NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM (SHEET 15 OF 18) Corrosion Rate * at 70˚F in a 10% Corrosive Medium †
Corrosive Medium Potassium Nitrite Potassium Permanganate Potassium Silicate Propionic Acid
Copper, Sn-Braze, Al-Braze
70-30 Brass
Silicon Bronze
Monel
Nickel
Inconel
Hastelloy
Aluminum
Lead
Titanium
<0.02
<0.02
<0.02
<0.02
<0.02
<0.02
<0.02
<0.02
<0.02
<0.002
<0.02
<0.02
<0.02
<0.05
<0.02
<0.02
<0.002
<0.02
<0.05
—
<0.02 <0.02
<0.02 <0.02
<0.02 <0.02
<0.02 <0.02
<0.02 <0.02
<0.02 —
<0.02 —
>0.05 <0.02
— >0.05
— —
Pyridine Quinine Sulfate Salicylic Acid Silver Bromide
<0.02 <0.02 — >0.05
<0.02 <0.02 — >0.05
<0.02 <0.02 — >0.05
<0.02 <0.02 <0.02 —
<0.02 <0.02 <0.02 —
<0.02 <0.02 — —
<0.02 <0.02 — <0.002
<0.02 — >0.05 >0.05
<0.02 — — —
— — — —
Silver Chloride Silver Nitrate Sodium Acetate Sodium Bicarbonate
>0.05 >0.05 <0.02 <0.02
>0.05 >0.05 <0.02 <0.02
>0.05 >0.05 <0.02 <0.02
— >0.05 <0.05 <0.02
— >0.05 <0.02 <0.02
— <0.02 <0.02 <0.02
<0.02 <0.002 <0.02 <0.02
>0.05 >0.05 <0.02 >0.05
— >0.05 — <0.02
<0.002 — — —
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.3 sel Chemical L Page 1859 Wednesday, December 31, 1969 17:00
Table 452. SELECTING
NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM (SHEET 16 OF 18) Corrosion Rate * at 70˚F in a 10% Corrosive Medium †
Corrosive Medium
Copper, Sn-Braze, Al-Braze
70-30 Brass
Silicon Bronze
Monel
Nickel
Inconel
Hastelloy
Aluminum
Lead
Sodium Bisulfate Sodium Bromide Sodium Carbonate Sodium Chloride
— <0.02 <0.02 <0.02
>0.05 <0.05 >0.05 <0.05
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.002
<0.02 <0.02 <0.02 <0.002
<0.02 <0.02 <0.02 <0.002
<0.02 <0.02 <0.02 <0.02
>0.05 <0.05 >0.05 <0.05
<0.02 — <0.02 <0.02
— — — <0.002
Sodium Chromate Sodium Hydroxide Sodium Hypochlorite Sodium Metasilicate
<0.02 <0.002
<0.02 >0.05
<0.02 <0.02
<0.02 <0.002
<0.02 <0.002
<0.02 <0.002
<0.02 <0.002
<0.02 >0.05
<0.02 <0.02
— <0.002
>0.05
>0.05
<0.02
>0.05
>0.05
>0.05
<0.002
>0.05
>0.05
<0.002
<0.02
<0.02
<0.02
<0.002
<0.002
<0.002
<0.002
>0.05
—
—
Sodium Nitrate Sodium Nitrite Sodium Phosphate Sodium Silicate
<0.02 <0.02 <0.02 <0.02
<0.05 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.002 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.002 <0.02 >0.05 >0.05
>0.05 <0.02 <0.02 >0.05
— <0.002 — —
Titanium
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.3 sel Chemical L Page 1860 Wednesday, December 31, 1969 17:00
Table 452. SELECTING
NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM (SHEET 17 OF 18) Corrosion Rate * at 70˚F in a 10% Corrosive Medium †
Corrosive Medium
Copper, Sn-Braze, Al-Braze
70-30 Brass
Silicon Bronze
Monel
Nickel
Inconel
Hastelloy
Aluminum
Lead
Sodium Sulfate Sodium Sulfide Sodium Sulfite Stannic Chloride
<0.02 >0.05 <0.02 >0.05
<0.02 <0.05 >0.05 >0.05
<0.02 >0.05 <0.02 >0.05
<0.02 <0.02 <0.02 >0.05
<0.02 <0.02 <0.02 >0.05
<0.02 <0.02 <0.02 >0.05
<0.02 <0.02 <0.02 <0.02
<0.002 >0.05 <0.02 >0.05
<0.02 <0.002 <0.02 >0.05
— <0.002 — <0.002
Stannous Chloride Strontium Nitrate Succinic Acid Sulfur Dioxide
>0.05 <0.02 <0.02 <0.02
>0.05 <0.02 <0.02 >0.05
<0.02 <0.02 <0.02 —
>0.05 <0.02 <0.02 >0.05
<0.05 <0.02 <0.02 >0.05
>0.05 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.002
>0.05 <0.02 <0.02 >0.05
>0.05 — <0.02 —
— — <0.002 —
Sulfuric Acid (Areated) Sulfuric Acid (Air Free) Sulfurous Acid Tannic Acid
>0.05
>0.05
>0.05
<0.05
<0.05
>0.05
<0.002
>0.05
<0.002
<0.02
<0.02
<0.05
<0.02
<0.002
<0.02
<0.05
<0.002
>0.05
<0.002
—
<0.02 <0.02
<0.02 —
<0.02 <0.02
>0.05 <0.02
<0.05 —
<0.05 —
<0.02 <0.02
<0.02 <0.02
<0.02 >0.05
<0.002 <0.002
Titanium
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.3 sel Chemical L Page 1861 Wednesday, December 31, 1969 17:00
Table 452. SELECTING
NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM (SHEET 18 OF 18) Corrosion Rate * at 70˚F in a 10% Corrosive Medium †
Corrosive Medium
Copper, Sn-Braze, Al-Braze
70-30 Brass
Silicon Bronze
Monel
Nickel
Inconel
Hastelloy
Aluminum
Lead
<0.02
<0.05
<0.05
<0.02
<0.02
<0.02
<0.02
<0.02
<0.02
<0.002
Titanium
Tartaric Acid Tetraphosphoric Acid Trichloroacetic Acid Urea
—
>0.05
>0.05
—
—
—
—
>0.05
>0.05
—
>0.05 <0.02
>0.05 <0.02
— <0.02
— <0.02
— <0.02
— <0.02
<0.02 <0.02
>0.05 <0.02
>0.05 —
<0.002 —
Zinc Chloride Zinc Sulfate
<0.02 <0.02
>0.05 <0.05
<0.02 <0.02
<0.02 <0.02
<0.02 <0.02
— <0.002
<0.02 <0.02
>0.05 <0.05
<0.02 <0.02
<0.002 —
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. *
<0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor).
†
10% corrosive medium in 90% water
©2001 CRC Press LLC
18.3 sel Chemical L Page 1862 Wednesday, December 31, 1969 17:00
Table 453. SELECTING
NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM (SHEET 1 OF 18) Corrosion Rate * at 70˚F in a 100% Corrosive Medium †
Corrosive Medium
Copper, Sn-Braze, Al-Braze
70-30 Brass
Silicon Bronze
Monel
Nickel
Inconel
Hastelloy
Aluminum
Lead
Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride
<0.002 <0.02 <0.002 <0.02
<0.002 >0.05 >0.05 >0.05
<0.002 >0.05 <0.02 <0.02
<0.002 <0.02 <0.02 <0.02
<0.002 >0.05 <0.02 <0.02
<0.002 <0.02 <0.02 <0.02
<0.002 <0.002 <0.002 <0.002
<0.002 <0.002 <0.002 <0.002
<0.002 <0.05 <0.02 <0.002
<0.002 <0.002 <0.002 <0.002
Acetoacetic Acid Acetone Acetylene Acrolein
— <0.002 <0.002 <0.02
— <0.002 <0.002 <0.02
— <0.002 <0.002 <0.02
<0.02 <0.002 <0.002 <0.02
<0.02 <0.002 <0.002 <0.02
— <0.002 <0.002 <0.02
<0.02 <0.002 <0.002 <0.02
<0.02 <0.002 <0.002 <0.02
<0.02 <0.02 <0.002 —
— <0.002 <0.002 <0.02
Acrylonitril Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl)
<0.002 <0.002 <0.02 <0.02
<0.002 <0.002 <0.02 <0.02
<0.002 <0.002 <0.02 <0.02
<0.002 <0.002 <0.002 <0.02
<0.002 <0.002 <0.002 <0.02
<0.002 <0.002 <0.002 <0.02
<0.002 <0.002 <0.002 <0.02
<0.002 <0.02 <0.02 <0.02
<0.002 <0.002 <0.02 <0.02
<0.002 <0.002 — <0.002
Titanium
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.3 sel Chemical L Page 1863 Wednesday, December 31, 1969 17:00
Table 453. SELECTING
NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM (SHEET 2 OF 18) Corrosion Rate * at 70˚F in a 100% Corrosive Medium †
Corrosive Medium
Copper, Sn-Braze, Al-Braze
70-30 Brass
Silicon Bronze
Monel
Nickel
Inconel
Hastelloy
Aluminum
Lead
Alcohol (Amyl) Alcohol (Benzyl) Alcohol (Butyl) Alcohol (Cetyl)
<0.002 <0.02 <0.002 <0.02
— <0.02 <0.002 —
<0.02 <0.02 <0.002 —
— <0.02 <0.002 <0.02
— <0.02 <0.002 <0.02
— <0.02 <0.002 <0.02
— <0.02 — —
<0.002 <0.02 <0.002 <0.02
— <0.02 — <0.02
<0.002 <0.002 <0.002 <0.002
Alcohol (Isopropyl) Allylamine Allyl Chloride Allyl Sulfide
<0.02 >0.05 <0.02 >0.05
<0.02 >0.05 <0.02 >0.05
<0.02 >0.05 <0.02 >0.05
<0.02 — <0.02 —
<0.02 — <0.02 —
<0.02 — <0.02 —
<0.02 — <0.02 —
<0.02 — >0.05 <0.02
<0.002 — <0.05 >0.05
— — — —
Aluminum Acetate Aluminum Chlorate Aluminum Chloride Aluminum Fluosilicate
<0.02 — <0.02 <0.02
<0.02 — >0.05 <0.02
<0.02 — <0.02 <0.02
— <0.02 — <0.02
— <0.02 <0.02 <0.02
— <0.02 — <0.02
<0.02 <0.02 <0.002 <0.02
<0.002 — <0.02 —
<0.002 <0.02 — <0.02
<0.002 — — —
Titanium
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.3 sel Chemical L Page 1864 Wednesday, December 31, 1969 17:00
Table 453. SELECTING
NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM (SHEET 3 OF 18) Corrosion Rate * at 70˚F in a 100% Corrosive Medium †
Corrosive Medium
Copper, Sn-Braze, Al-Braze
70-30 Brass
Silicon Bronze
Monel
Nickel
Inconel
Hastelloy
Aluminum
Lead
Aluminum Formate Aluminum Hydroxide Aluminum Nitrate Aluminum Potassium Sulfate
<0.02 — — <0.02
— — — >0.05
<0.02 <0.02 — <0.02
<0.02 — — —
<0.02 — — —
<0.02 — — —
<0.02 — — —
<0.02 — <0.02 <0.02
<0.02 — — <0.02
<0.002 <0.002 <0.002 <0.002
Aluminum Sulfate Ammonia Ammonium Acetate Ammonium Bicarbonate
<0.002 <0.002 >0.05 —
<0.05 <0.002 >0.05 —
<0.02 <0.002 >0.05 —
<0.02 <0.002 <0.002 —
<0.02 <0.002 <0.002 —
— <0.002 <0.002 —
<0.02 <0.002 <0.002 —
>0.05 <0.002 <0.002 <0.02
— <0.02 — —
— <0.002 — —
Ammonium Carbonate Ammonium Chloride Ammonium Citrate Ammonium Formate
— >0.05 — —
— >0.05 — —
<0.02 >0.05 — —
<0.02 <0.02 — —
<0.02 <0.02 — —
<0.02 <0.02 <0.02 <0.02
— <0.02 — —
<0.02 <0.02 <0.02 —
— <0.02 — —
— — <0.002 <0.002
Titanium
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.3 sel Chemical L Page 1865 Wednesday, December 31, 1969 17:00
Table 453. SELECTING
NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM (SHEET 4 OF 18) Corrosion Rate * at 70˚F in a 100% Corrosive Medium †
Corrosive Medium
Copper, Sn-Braze, Al-Braze
70-30 Brass
Silicon Bronze
Monel
Nickel
Inconel
Hastelloy
Aluminum
Lead
Ammonium Nitrate Ammonium Sulfate Ammonium Sulfite Ammonium Thiocyanate
>0.05 <0.02 >0.05 —
>0.05 <0.02 >0.05 —
>0.05 <0.02 >0.05 —
<0.02 <0.02 — <0.02
<0.02 <0.02 — <0.02
— — — —
— <0.02 — —
<0.02 <0.02 — —
— <0.02 — —
— — — —
Amyl Acetate Amyl Chloride Aniline Aniline Hydrochloride
<0.02 <0.002 >0.05 —
<0.02 <0.02 >0.05 —
<0.02 <0.002 — —
<0.02 <0.02 <0.02 —
<0.02 <0.02 <0.02 —
<0.02 — — —
<0.002 <0.02 <0.02 <0.05
<0.002 <0.02 <0.02 >0.05
<0.02 >0.05 >0.05 —
<0.002 — — —
Anthracine Antimony Trichloride Barium Carbonate Barium Chloride
<0.02 <0.05 <0.02 <0.02
<0.02 — <0.02 <0.02
<0.02 — <0.02 <0.02
<0.02 — <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 — — <0.02
<0.02 <0.002 <0.02 <0.02
<0.02 <0.02 >0.05 >0.05
<0.02 <0.002 >0.05 —
<0.002 — — —
Titanium
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.3 sel Chemical L Page 1866 Wednesday, December 31, 1969 17:00
Table 453. SELECTING
NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM (SHEET 5 OF 18) Corrosion Rate * at 70˚F in a 100% Corrosive Medium †
Corrosive Medium
Copper, Sn-Braze, Al-Braze
70-30 Brass
Silicon Bronze
Monel
Nickel
Inconel
Hastelloy
Aluminum
Lead
Barium Hydroxide Barium Nitrate Barium Oxide Benzaldehyde
— — — <0.02
— — — <0.02
— — — <0.02
<0.02 — <0.02 <0.02
<0.02 — — <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
>0.05 — — <0.002
>0.05 — — >0.05
— — — —
Benzene Benzoic Acid Boric Acid Bromic Acid
<0.02 <0.02 <0.02 >0.05
<0.02 <0.02 <0.02 >0.05
<0.02 <0.02 <0.02 >0.05
<0.02 <0.02 <0.02 >0.05
<0.02 <0.02 <0.02 >0.05
<0.02 — <0.02 >0.05
<0.02 — <0.002 —
<0.02 <0.02 <0.02 —
<0.02 >0.05 <0.02 <0.02
<0.002 <0.002 — —
Bromine (Dry) Bromine (Wet) Butyric Acid Calcium Acetate
<0.02 >0.05 <0.02 <0.02
<0.02 >0.05 — <0.02
<0.02 >0.05 <0.02 <0.02
<0.002 >0.05 <0.02 <0.02
<0.002 >0.05 <0.05 <0.02
<0.002 >0.05 <0.05 <0.02
<0.002 <0.002 <0.002 <0.02
<0.02 >0.05 <0.002 <0.05
<0.002 >0.05 >0.05 <0.02
>0.05 >0.05 <0.002 <0.002
Titanium
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.3 sel Chemical L Page 1867 Wednesday, December 31, 1969 17:00
Table 453. SELECTING
NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM (SHEET 6 OF 18) Corrosion Rate * at 70˚F in a 100% Corrosive Medium †
Corrosive Medium
Copper, Sn-Braze, Al-Braze
70-30 Brass
Silicon Bronze
Monel
Nickel
Inconel
Hastelloy
Aluminum
Lead
Calcium Bicarbonate Calcium Bromide Calcium Chlorate Calcium Chloride
<0.02 <0.02 — <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 — <0.02
<0.02 <0.02 — <0.02
<0.02 <0.02 — <0.02
<0.02 <0.02 — <0.02
<0.02 <0.02 <0.02 <0.002
<0.02 <0.05 — >0.05
<0.05 <0.02 — —
<0.002 <0.05 <0.002 —
Calcium Hydroxide Calcium Hypochlorite Carbon Dioxide Carbon Monoxide
— — <0.002 <0.002
— — <0.002 <0.002
— — <0.002 <0.002
<0.02 — <0.002 <0.002
<0.02 — <0.002 <0.002
<0.02 — <0.002 <0.002
— <0.02 <0.002 <0.002
>0.05 — <0.002 <0.002
— <0.002 <0.002 <0.002
— — <0.002 <0.002
Carbon Tetrachloride Carbon Acid (Air Free) Chloroacetic Acid Chlorine Gas
<0.002 <0.02 >0.05 <0.02
<0.05 >0.05 >0.05 >0.05
<0.002 <0.02 <0.05 <0.02
<0.002 <0.05 <0.05 <0.02
<0.002 <0.02 <0.02 <0.002
<0.002 <0.002 <0.05 <0.02
<0.002 <0.002 <0.002 <0.02
<0.02 <0.002 >0.05 <0.02
<0.002 >0.05 >0.05 <0.02
<0.002 — <0.002 >0.05
Titanium
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.3 sel Chemical L Page 1868 Wednesday, December 31, 1969 17:00
Table 453. SELECTING
NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM (SHEET 7 OF 18) Corrosion Rate * at 70˚F in a 100% Corrosive Medium †
Corrosive Medium
Copper, Sn-Braze, Al-Braze
70-30 Brass
Silicon Bronze
Monel
Nickel
Inconel
Hastelloy
Aluminum
Lead
Chlorine Liquid Chloroform (Dry) Chromic Acid Chromic Hydroxide
— <0.002 — <0.02
— <0.02 >0.05 <0.02
— <0.02 — <0.02
<0.02 <0.002 — <0.02
— <0.002 — <0.02
— <0.002 — <0.02
— <0.02 <0.02 <0.02
— <0.02 >0.05 <0.02
<0.02 <0.02 — <0.02
— — — —
Chromic Sulfates Citric Acid Copper Nitrate Copper Sulfate
<0.05 <0.02 >0.05 >0.05
— <0.02 >0.05 >0.05
— <0.02 <0.05 >0.05
<0.05 <0.02 — —
— <0.02 — —
— <0.02 — —
<0.02 <0.002 <0.02 <0.002
<0.05 <0.02 — >0.05
<0.02 >0.05 — <0.02
— — — —
Diethylene Glycol Ethyl Chloride Ethylene Glycol Ethylene Oxide
<0.002 <0.002 <0.02 >0.05
<0.002 <0.002 <0.02 >0.05
<0.002 <0.002 <0.02 >0.05
<0.02 <0.02 <0.02 <0.02
<0.02 <0.002 <0.02 <0.02
<0.02 <0.002 <0.02 <0.02
<0.02 <0.02 — <0.002
<0.02 <0.002 <0.002 <0.002
<0.02 <0.02 <0.05 <0.02
<0.002 <0.002 — <0.002
Titanium
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.3 sel Chemical L Page 1869 Wednesday, December 31, 1969 17:00
Table 453. SELECTING
NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM (SHEET 8 OF 18) Corrosion Rate * at 70˚F in a 100% Corrosive Medium †
Corrosive Medium
Copper, Sn-Braze, Al-Braze
70-30 Brass
Silicon Bronze
Monel
Nickel
Inconel
Hastelloy
Aluminum
Lead
Fatty Acids Ferric Chloride Ferric Nitrate Ferrous Chloride
<0.05 <0.02 — <0.02
<0.05 <0.02 — —
<0.05 <0.02 — <0.02
<0.02 >0.05 — —
<0.02 — — —
<0.02 >0.05 — —
<0.002 <0.02 — <0.02
<0.002 >0.05 — —
>0.05 — <0.002 —
<0.002 — — —
Ferrous Sulfate Fluorine Formaldehyde Formic Acid
<0.02 <0.002 <0.002 <0.02
<0.05 <0.02 <0.02 <0.02
<0.02 >0.05 <0.02 <0.02
<0.02 <0.002 <0.002 —
<0.02 <0.002 <0.002 <0.02
— <0.002 <0.02 <0.02
<0.02 <0.02 <0.02 <0.002
— >0.05 <0.002 <0.02
— <0.02 <0.02 >0.05
— — <0.002 <0.02
Furfural Hydrazine Hydrobromic Acid Hydrocyanic Acid
<0.02 — <0.02 <0.02
<0.02 — >0.05 <0.02
<0.02 — <0.02 <0.02
<0.02 >0.05 — <0.02
<0.02 <0.002 <0.02 <0.02
<0.02 <0.002 — <0.02
<0.02 <0.002 — <0.02
<0.02 <0.002 >0.05 <0.002
<0.02 >0.05 — <0.02
<0.002 — — —
Titanium
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.3 sel Chemical L Page 1870 Wednesday, December 31, 1969 17:00
Table 453. SELECTING
NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM (SHEET 9 OF 18) Corrosion Rate * at 70˚F in a 100% Corrosive Medium †
Corrosive Medium
Copper, Sn-Braze, Al-Braze
70-30 Brass
Silicon Bronze
Monel
Nickel
Inconel
Hastelloy
Aluminum
Lead
Hydrofluoric Acid (Areated) Hydrofluoric Acid (Air Free) Hydrogen Chloride Hydrogen Fluoride
<0.02 <0.02 <0.02 <0.02
— <0.02 <0.02 <0.02
— <0.02 <0.02 <0.02
<0.02 <0.02 <0.002 <0.02
<0.02 <0.02 <0.002 <0.002
<0.02 <0.02 <0.002 <0.02
<0.02 <0.05 <0.002 <0.02
— — >0.05 <0.02
— >0.05 <0.02 >0.05
— >0.05 — <0.002
Hydrogen Iodide Hydrogen Peroxide Hydrogen Sulfide Lactic Acid
<0.02 >0.05 <0.02 <0.02
>0.05 >0.05 <0.02 <0.05
<0.02 >0.05 <0.02 <0.02
— <0.002 <0.02 —
<0.02 <0.02 <0.02 —
— <0.02 <0.02 —
<0.02 <0.002 <0.002 <0.02
>0.05 <0.002 <0.002 <0.02
— <0.002 <0.02 >0.05
— >0.05 <0.002 <0.002
Lead Acetate Lead Chromate Lead Nitrate Lead Sulfate
— <0.02 — <0.02
<0.05 <0.02 — <0.02
<0.02 <0.02 — <0.02
<0.02 <0.02 <0.02 <0.02
— <0.02 <0.02 <0.02
— <0.02 <0.02 <0.02
>0.05 <0.02 <0.02 <0.02
>0.05 — — —
— <0.02 <0.02 <0.02
— — —
Titanium
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.3 sel Chemical L Page 1871 Wednesday, December 31, 1969 17:00
Table 453. SELECTING
NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM (SHEET 10 OF 18) Corrosion Rate * at 70˚F in a 100% Corrosive Medium †
Corrosive Medium
Copper, Sn-Braze, Al-Braze
70-30 Brass
Silicon Bronze
Monel
Nickel
Inconel
Hastelloy
Aluminum
Lead
Lithium Chloride Lithium Hydroxide Magnesium Chloride Magnesium Hydroxide
— — <0.02 <0.02
— — — <0.02
— — <0.02 <0.02
<0.002 <0.02 <0.02 <0.02
— <0.02 <0.02 <0.02
— <0.02 <0.02 —
— <0.02 <0.002 —
— >0.05 — >0.05
<0.02 — >0.05 —
— — <0.002 —
Magnesium Sulfate Maleic Acid Malic Acid Mercuric Chloride
<0.02 <0.02 — >0.05
<0.02 — — >0.05
<0.02 — — >0.05
<0.02 — — —
<0.02 — <0.02 —
<0.02 — <0.02 —
<0.002 <0.02 — —
<0.02 — <0.002 —
— — — —
— — <0.002 —
Mercurous Nitrate Mercury Methallylamine Methanol
>0.05 >0.05 >0.05 <0.02
>0.05 >0.05 >0.05 <0.02
— >0.05 >0.05 <0.02
— <0.02 <0.05 <0.002
— <0.02 <0.02 <0.002
— <0.02 <0.02 <0.002
<0.02 <0.02 <0.02 <0.02
>0.05 >0.05 <0.02 <0.02
>0.05 >0.05 — <0.02
— — — —
Titanium
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.3 sel Chemical L Page 1872 Wednesday, December 31, 1969 17:00
Table 453. SELECTING
NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM (SHEET 11 OF 18) Corrosion Rate * at 70˚F in a 100% Corrosive Medium †
Corrosive Medium
Copper, Sn-Braze, Al-Braze
70-30 Brass
Silicon Bronze
Monel
Nickel
Inconel
Hastelloy
Aluminum
Lead
Methyl Ethyl Ketone Methyl Isobutyl Ketone Methylamine Methylene Chloride
<0.002 <0.02 >0.05 <0.002
<0.002 <0.02 >0.05 <0.002
<0.002 <0.02 >0.05 <0.02
<0.002 <0.02 — <0.002
<0.002 <0.02 — <0.02
<0.002 <0.02 — <0.02
<0.002 <0.002 — —
<0.002 <0.002 <0.02 <0.002
<0.002 <0.002 — <0.02
<0.002 <0.002 — —
Monochloroacetic Acid Monorthanolamine Monoethalamine Monoethylamine Nickel Chloride
>0.05 >0.05 >0.05 >0.05 —
>0.05 >0.05 >0.05 >0.05 —
>0.05 >0.05 >0.05 >0.05 <0.02
<0.05 <0.02 — — <0.02
<0.02 <0.02 — — —
<0.02 <0.02 — — <0.02
<0.002 — — — <0.002
>0.05 <0.02 <0.02 <0.02 >0.05
>0.05 — — — <0.02
<0.002 — — — —
Nickel Nitrate Nickel Sulfate Nitric Acid Nitric Acid (Red Fuming)
— <0.02 >0.05 >0.05
— <0.02 >0.05 >0.05
— <0.02 >0.05 >0.05
<0.02 <0.02 >0.05 >0.05
<0.02 — >0.05 >0.05
<0.02 <0.02 — <0.02
<0.02 <0.02 — <0.02
— >0.05 <0.02 <0.002
<0.02 <0.02 >0.05 —
— — — <0.002
Titanium
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.3 sel Chemical L Page 1873 Wednesday, December 31, 1969 17:00
Table 453. SELECTING
NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM (SHEET 12 OF 18) Corrosion Rate * at 70˚F in a 100% Corrosive Medium †
Corrosive Medium
Copper, Sn-Braze, Al-Braze
70-30 Brass
Silicon Bronze
Monel
Nickel
Inconel
Hastelloy
Aluminum
Lead
Nitric + Hydrochloric Acid Nitric + Hydrofluoric Acid Nitric + Sulfuric Acid Nitrobenzene
>0.05 >0.05 >0.05 <0.02
>0.05 — >0.05 <0.02
>0.05 — >0.05 <0.02
>0.05 — >0.05 <0.02
>0.05 — >0.05 <0.02
>0.05 — >0.05 <0.02
>0.05 <0.05 — <0.02
>0.05 — >0.05 <0.02
>0.05 — >0.05 <0.02
<0.02 >0.05 — —
Nitrocelluolose Nitroglycerine Nitrotolune Nitrous Acid
— <0.02 <0.02 >0.05
<0.02 <0.02 <0.02 >0.05
<0.02 <0.02 <0.02 >0.05
<0.002 <0.02 <0.02 >0.05
<0.02 — <0.02 >0.05
<0.02 <0.02 <0.02 —
— — — —
<0.002 <0.002 <0.02 —
<0.002 <0.05 <0.02 >0.05
— — — —
Oleic Acid Oxalic Acid Phenol Phosphoric Acid (Areated) Phosphoric Acid (Air Free)
<0.002 <0.05 <0.002 >0.05 —
<0.02 <0.05 <0.002 >0.05 >0.05
<0.02 <0.02 <0.002 >0.05 —
<0.002 <0.02 <0.002 — —
<0.002 <0.05 <0.002 >0.05 —
<0.002 <0.02 <0.002 >0.05 —
<0.02 <0.02 <0.002 <0.002 <0.002
<0.002 <0.02 <0.002 <0.02 >0.05
>0.05 >0.05 <0.02 <0.02 <0.02
<0.002 — — >0.05 >0.05
Titanium
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.3 sel Chemical L Page 1874 Wednesday, December 31, 1969 17:00
Table 453. SELECTING
NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM (SHEET 13 OF 18) Corrosion Rate * at 70˚F in a 100% Corrosive Medium †
Corrosive Medium
Copper, Sn-Braze, Al-Braze
70-30 Brass
Silicon Bronze
Monel
Nickel
Inconel
Hastelloy
Aluminum
Lead
Picric Acid Potassium Bicarbonate Potassium Bromide Potassium Carbonate Potassium Chlorate
>0.05 <0.02 <0.02 <0.02 <0.05
>0.05 <0.02 <0.02 <0.02 <0.05
>0.05 <0.02 <0.02 <0.02 <0.05
>0.05 — <0.02 <0.02 —
<0.02 — <0.02 <0.02 —
<0.02 — <0.02 <0.02 —
<0.02 — <0.02 <0.02 —
<0.02 <0.02 — >0.05 <0.02
<0.02 — <0.02 >0.05 —
— — — — —
Potassium Chromate Potassium Cyanide Potassium Dichromate Potassium Ferricyanide
— >0.05 — <0.02
<0.02 >0.05 — —
<0.02 >0.05 — —
— <0.02 — —
— <0.02 — —
— <0.02 — —
— — — —
<0.02 — <0.02 —
— — — —
— >0.05 — —
Potassium Ferrocyanide Potassium Hydroxide Potassium Hypochlorite Potassium Iodide
— — — <0.02
— — — —
— >0.05 — <0.02
— — — <0.02
— — — <0.02
— — — <0.02
— — <0.02 <0.02
<0.02 — — —
— >0.05 — —
— — — <0.002
Titanium
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.3 sel Chemical L Page 1875 Wednesday, December 31, 1969 17:00
Table 453. SELECTING
NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM (SHEET 14 OF 18) Corrosion Rate * at 70˚F in a 100% Corrosive Medium †
Corrosive Medium
Copper, Sn-Braze, Al-Braze
70-30 Brass
Silicon Bronze
Monel
Nickel
Inconel
Hastelloy
Aluminum
Lead
Potassium Nitrate Potassium Nitrite Potassium Permanganate Potassium Silicate
<0.002 <0.02 <0.02 <0.02
<0.02 <0.02 — <0.02
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 — <0.02
<0.02 <0.02 — <0.02
— <0.02 — <0.02
— <0.02 <0.002 <0.02
<0.02 <0.02 <0.02 <0.02
— <0.02 >0.05 —
— <0.002 — —
Propionic Acid Pyridine Quinine Sulfate Salicylic Acid
<0.02 <0.02 <0.02 <0.02
— <0.02 <0.02 —
— <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 <0.02
— <0.02 <0.02 <0.02
— <0.02 <0.02 <0.02
— <0.02 <0.02 <0.02
<0.02 <0.02 — <0.02
— <0.02 — <0.02
>0.05 — <0.002 —
Silicon Tetrachloride (Dry) Silicon Tetrachloride (Wet) Silver Bromide Silver Chloride
<0.002 >0.05 — <0.02
<0.002 >0.05 — —
<0.002 >0.05 — —
<0.002 >0.05 <0.02 —
<0.002 >0.05 <0.02 —
<0.002 — — —
<0.02 <0.02 — —
<0.02 >0.05 — —
<0.02 — — —
— — <0.002 —
Titanium
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.3 sel Chemical L Page 1876 Wednesday, December 31, 1969 17:00
Table 453. SELECTING
NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM (SHEET 15 OF 18) Corrosion Rate * at 70˚F in a 100% Corrosive Medium †
Corrosive Medium
Copper, Sn-Braze, Al-Braze
70-30 Brass
Silicon Bronze
Monel
Nickel
Inconel
Hastelloy
Aluminum
Lead
Sodium Acetate Sodium Bicarbonate Sodium Bisulfate Sodium Bromide
<0.02 <0.02 <0.02 <0.05
— — <0.05 —
— — <0.02 —
<0.02 — <0.02 —
<0.02 — <0.02 —
<0.02 — <0.02 —
— — <0.02 —
<0.002 <0.02 — —
<0.02 — — —
— — — —
Sodium Carbonate Sodium Chromate Sodium Hydroxide Sodium Hypochlorite
— <0.02 — —
— <0.02 — >0.05
<0.02 <0.02 — >0.05
<0.02 <0.02 <0.002 <0.02
<0.02 <0.02 <0.002 —
<0.02 <0.02 <0.002 —
<0.02 <0.02 <0.002 <0.05
— <0.02 — >0.05
— <0.02 — >0.05
— — — <0.002
Sodium Metasilicate Sodium Nitrate Sodium Nitrite Sodium Phosphate
<0.02 <0.05 — <0.02
<0.02 <0.05 — <0.02
<0.02 <0.02 — <0.02
<0.002 <0.02 <0.002 <0.02
<0.002 <0.02 <0.02 <0.02
<0.002 — <0.02 <0.02
<0.002 — — <0.02
<0.02 <0.02 — —
— — — <0.02
— — — —
Titanium
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.3 sel Chemical L Page 1877 Wednesday, December 31, 1969 17:00
Table 453. SELECTING
NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM (SHEET 16 OF 18) Corrosion Rate * at 70˚F in a 100% Corrosive Medium †
Corrosive Medium
Copper, Sn-Braze, Al-Braze
70-30 Brass
Silicon Bronze
Monel
Nickel
Inconel
Hastelloy
Aluminum
Lead
Sodium Silicate Sodium Sulfate Sodium Sulfide Sodium Sulfite
<0.02 <0.02 >0.05 <0.05
<0.02 >0.05 >0.05 >0.05
<0.02 <0.02 >0.05 <0.02
<0.02 <0.02 — <0.02
<0.02 <0.02 — —
<0.02 <0.02 — <0.02
<0.02 <0.002 — —
<0.002 — >0.05 —
— <0.02 <0.002 <0.02
— — — —
Stannic Chloride Stannous Chloride Strontium Nitrate Succinic Acid
— — <0.02 <0.02
— — <0.02 <0.02
>0.05 <0.02 <0.02 <0.02
— <0.02 <0.02 <0.02
— <0.02 <0.02 <0.02
— <0.02 <0.02 <0.02
<0.02 <0.02 <0.02 —
— — <0.02 <0.02
— — — <0.02
— — — <0.002
Sulfur Dioxide Sulfur Trioxide Sulfuric Acid (Areated) Sulfuric Acid (Air Free)
<0.02 <0.02 >0.05 —
<0.05 <0.02 >0.05 —
<0.02 <0.02 >0.05 —
<0.02 <0.02 >0.05 >0.05
<0.02 <0.02 >0.05 >0.05
<0.02 <0.02 >0.05 —
<0.02 <0.02 <0.02 <0.02
<0.02 <0.02 >0.05 >0.05
<0.02 <0.02 >0.05 >0.05
— — >0.05 >0.05
Titanium
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.3 sel Chemical L Page 1878 Wednesday, December 31, 1969 17:00
Table 453. SELECTING
NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM (SHEET 17 OF 18) Corrosion Rate * at 70˚F in a 100% Corrosive Medium †
Corrosive Medium
Copper, Sn-Braze, Al-Braze
70-30 Brass
Silicon Bronze
Monel
Nickel
Inconel
Hastelloy
Aluminum
Lead
Sulfuric Acid (Fuming) Sulfurous Acid Tannic Acid Tartaric Acid
>0.05 <0.05 <0.02 <0.02
>0.05 >0.05 <0.05 —
>0.05 <0.02 <0.02 <0.02
>0.05 >0.05 <0.02 —
>0.05 >0.05 <0.02 —
<0.02 <0.02 <0.02 —
<0.002 <0.02 — <0.02
<0.02 <0.02 >0.05 —
>0.05 <0.02 >0.05 >0.05
— <0.002 <0.002 <0.002
Tetraphosphoric Acid Trichloroacetic Acid Trichloroethylene Urea
<0.05 >0.05 <0.002 —
<0.05 >0.05 <0.02 —
<0.05 <0.05 <0.02 —
<0.05 >0.05 <0.002 —
>0.05 <0.02 <0.002 —
<0.02 — <0.02 —
<0.02 <0.02 <0.002 —
>0.05 >0.05 <0.002 <0.02
>0.05 >0.05 >0.05 —
— >0.05 <0.002 —
Titanium
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967.
©2001 CRC Press LLC
18.3 sel Chemical L Page 1879 Wednesday, December 31, 1969 17:00
Table 453. SELECTING
NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM (SHEET 18 OF 18) Corrosion Rate * at 70˚F in a 100% Corrosive Medium †
Corrosive Medium
Copper, Sn-Braze, Al-Braze
70-30 Brass
Silicon Bronze
Monel
Nickel
Inconel
Hastelloy
Aluminum
Lead
Zinc Chloride Zinc Sulfate
— <0.02
— <0.02
>0.05 <0.02
<0.02 —
<0.02 —
<0.02 —
<0.02 —
— —
<0.02 —
Titanium — —
Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. *
<0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor).
†Water-free, Dry or Maximum concentration of
©2001 CRC Press LLC
corrosive medium. Quantitatively
18.4 sel Chemical Page 1880 Wednesday, December 31, 1969 17:00
Selecting Chemical Properties
Table 454. SELECTING
CORROSION RATES OF METALS (SHEET 1 OF 5)
Metal
Corrosive Environment
Corrosion Rate * (Mils Penetration per Year)
Silicon iron Iron Nickel alloys Stainless steel
Acetic, 5% (Non–oxidizing) Sodium Hydroxide, 5% Sodium Hydroxide, 5% Sodium Hydroxide, 5%
0–0.2 0–0.2 0–0.2 0–0.2
Nickel alloys Silicon iron Stainless steel Copper alloys
Fresh Water Fresh Water Fresh Water Normal Outdoor Air (Urban Exposure)
0–0.2 0–0.2 0–0.2 0–0.2
Lead Nickel alloys Silicon iron Stainless steel
Normal Outdoor Air (Urban Exposure) Normal Outdoor Air (Urban Exposure) Normal Outdoor Air (Urban Exposure) Normal Outdoor Air (Urban Exposure)
0–0.2 0–0.2 0–0.2 0–0.2
Tin Stainless steel Tin Aluminum
Normal Outdoor Air (Urban Exposure) Acetic, 5% (Non–oxidizing) Fresh Water Normal Outdoor Air (Urban Exposure)
0–0.2 0–0.5 0–0.5 0–0.5
Zinc Copper alloys Nickel alloys Silicon iron
Normal Outdoor Air (Urban Exposure) Fresh Water Sea Water Sodium Hydroxide, 5%
0–0.5 0–1 0–1 0–10
Stainless steel Stainless steel Silicon iron Silicon iron
Sulfuric, 5% (Non–oxidizing) Nitric, 5% (Oxidizing) Sulfuric, 5% (Non–oxidizing) Nitric, 5% (Oxidizing)
0–2 0–2 0–20 0–20
Stainless steel Silicon iron Gold Platinum
Sea Water Sea Water Sulfuric, 5% (Non–oxidizing) Sulfuric, 5% (Non–oxidizing)
0–200*** 0–3 <0.1 <0.1
Source: data compiled by J.S. Park from R. E. Bolz and G. L. Tuve, CRC Handbook of Tables for Applied Engineering Science, 2nd edition, CRC Press, Inc., Boca Raton, Florida, (1987).
©2001 CRC Press LLC
1880
CRC Handbook of Materials Science & Engineering
18.4 sel Chemical Page 1881 Wednesday, December 31, 1969 17:00
Selecting Chemical Properties
Table 454. SELECTING
CORROSION RATES OF METALS (SHEET 2 OF 5)
Metal
Corrosive Environment
Corrosion Rate * (Mils Penetration per Year)
Tantalum Zirconium Gold Molybdenum
Sulfuric, 5% (Non–oxidizing) Sulfuric, 5% (Non–oxidizing) Acetic, 5% (Non–oxidizing) Acetic, 5% (Non–oxidizing)
<0.1 <0.1 <0.1 <0.1
Platinum Silver Tantalum Titanium
Acetic, 5% (Non–oxidizing) Acetic, 5% (Non–oxidizing) Acetic, 5% (Non–oxidizing) Acetic, 5% (Non–oxidizing)
<0.1 <0.1 <0.1 <0.1
Zirconium Gold Platinum Tantalum
Acetic, 5% (Non–oxidizing) Nitric, 5% (Oxidizing) Nitric, 5% (Oxidizing) Nitric, 5% (Oxidizing)
<0.1 <0.1 <0.1 <0.1
Zirconium Gold Molybdenum Platinum
Nitric, 5% (Oxidizing) Sodium Hydroxide, 5% Sodium Hydroxide, 5% Sodium Hydroxide, 5%
<0.1 <0.1 <0.1 <0.1
Silver Zirconium Gold Molybdenum
Sodium Hydroxide, 5% Sodium Hydroxide, 5% Fresh Water Fresh Water
<0.1 <0.1 <0.1 <0.1
Platinum Silver Tantalum Titanium
Fresh Water Fresh Water Fresh Water Fresh Water
<0.1 <0.1 <0.1 <0.1
Zirconium Aluminum Gold Molybdenum
Fresh Water Fresh Water Sea Water Sea Water
<0.1 0.1 <0.1 <0.1
Source: data compiled by J.S. Park from R. E. Bolz and G. L. Tuve, CRC Handbook of Tables for Applied Engineering Science, 2nd edition, CRC Press, Inc., Boca Raton, Florida, (1987).
©2001 CRC Press LLC Shackelford & Alexander
1881
18.4 sel Chemical Page 1882 Wednesday, December 31, 1969 17:00
Selecting Chemical Properties
Table 454. SELECTING
CORROSION RATES OF METALS (SHEET 3 OF 5)
Metal
Corrosive Environment
Corrosion Rate * (Mils Penetration per Year)
Platinum Silver Tantalum Titanium
Sea Water Sea Water Sea Water Sea Water
<0.1 <0.1 <0.1 <0.1
Zirconium Tin Gold Molybdenum
Sea Water Sea Water Normal Outdoor Air (Urban Exposure) Normal Outdoor Air (Urban Exposure)
<0.1 0.1 <0.1 <0.1
Platinum Silver Tantalum Titanium
Normal Outdoor Air (Urban Exposure) Normal Outdoor Air (Urban Exposure) Normal Outdoor Air (Urban Exposure) Normal Outdoor Air (Urban Exposure)
<0.1 <0.1 <0.1 <0.1
Zirconium Titanium Titanium Iron
Normal Outdoor Air (Urban Exposure) Sulfuric, 5% (Non–oxidizing) Nitric, 5% (Oxidizing) Fresh Water
<0.1 0.1–1 0.1–1 0.1–10**
Iron Nickel alloys Nickel alloys Lead
Sea Water Sulfuric, 5% (Non–oxidizing) Nitric, 5% (Oxidizing) Fresh Water
0.1–10** 0.1–1500 0.1–1500 0.1–2
Titanium Lead Copper alloys Zinc
Sodium Hydroxide, 5% Sea Water Sea Water Fresh Water
<0.2 0.2–15 0.2–15** 0.5–10
Zinc Aluminum Tantalum Aluminum
Sea Water Acetic, 5% (Non–oxidizing) Sodium Hydroxide, 5% Sea Water
0.5–10** 0.5–5 <1 1–50
Source: data compiled by J.S. Park from R. E. Bolz and G. L. Tuve, CRC Handbook of Tables for Applied Engineering Science, 2nd edition, CRC Press, Inc., Boca Raton, Florida, (1987).
©2001 CRC Press LLC
1882
CRC Handbook of Materials Science & Engineering
18.4 sel Chemical Page 1883 Wednesday, December 31, 1969 17:00
Selecting Chemical Properties
Table 454. SELECTING
CORROSION RATES OF METALS (SHEET 4 OF 5)
Metal
Corrosive Environment
Corrosion Rate * (Mils Penetration per Year)
Iron Nickel alloys Copper alloys Copper alloys
Normal Outdoor Air (Urban Exposure) Acetic, 5% (Non–oxidizing) Acetic, 5% (Non–oxidizing) Sodium Hydroxide, 5%
1–8 2–10** 2–15** 2–5
Tin Tin Lead Lead
Acetic, 5% (Non–oxidizing) Sodium Hydroxide, 5% Sodium Hydroxide, 5% Acetic, 5% (Non–oxidizing)
2–500** 5–20 5–500** 10–150**
Iron Zinc Aluminum Aluminum
Acetic, 5% (Non–oxidizing) Sodium Hydroxide, 5% Sulfuric, 5% (Non–oxidizing) Nitric, 5% (Oxidizing)
10–400 15–200 15–80 15–80
Tin Tin Lead Lead
Sulfuric, 5% (Non–oxidizing) Nitric, 5% (Oxidizing) Sulfuric, 5% (Non–oxidizing) Nitric, 5% (Oxidizing)
100–400 100–400 100–6000 100–6000
Copper alloys Copper alloys Zinc Iron
Sulfuric, 5% (Non–oxidizing) Nitric, 5% (Oxidizing) Acetic, 5% (Non–oxidizing) Sulfuric, 5% (Non–oxidizing)
150–1500 150–1500 600–800 1000–10000
Iron Aluminum Molybdenum Silver
Nitric, 5% (Oxidizing) Sodium Hydroxide, 5% Sulfuric, 5% (Non–oxidizing) Sulfuric, 5% (Non–oxidizing)
1000–10000 13000 high high
Source: data compiled by J.S. Park from R. E. Bolz and G. L. Tuve, CRC Handbook of Tables for Applied Engineering Science, 2nd edition, CRC Press, Inc., Boca Raton, Florida, (1987).
©2001 CRC Press LLC
Shackelford & Alexander
1883
18.4 sel Chemical Page 1884 Wednesday, December 31, 1969 17:00
Selecting Chemical Properties
Table 454. SELECTING
CORROSION RATES OF METALS (SHEET 5 OF 5)
Metal
Corrosive Environment
Corrosion Rate * (Mils Penetration per Year)
Zinc Molybdenum Silver Zinc
Sulfuric, 5% (Non–oxidizing) Nitric, 5% (Oxidizing) Nitric, 5% (Oxidizing) Nitric, 5% (Oxidizing)
high high high high
Source: data compiled by J.S. Park from R. E. Bolz and G. L. Tuve, CRC Handbook of Tables for Applied Engineering Science, 2nd edition, CRC Press, Inc., Boca Raton, Florida, (1987). *
Corrosion Rate Ranges Expressed in Mils Penetration per Year (1 Mil = 0.001 in) Note: The corrosion–rate ranges for the solutions are based on temperature up to 212 ˚F.
** Aeration leads to the higher rates in the range. *** Aeration leads to passivity, scarcity of dissolved air to activity.
©2001 CRC Press LLC
1884
CRC Handbook of Materials Science & Engineering
18.4 sel Chemical Page 1885 Wednesday, December 31, 1969 17:00
Selecting Chemical Properties
Table 455. SELECTING
CORROSION RATES OF METALS IN CORROSIVE ENVIRONMENTS (SHEET 1 OF 5)
Corrosive Environment
Metal
Corrosion Rate * (Mils Penetration per Year)
Sulfuric, 5% (Non–oxidizing)
Stainless steel Silicon iron Gold Platinum
0–2 0–20 <0.1 <0.1
Tantalum Zirconium Titanium Nickel alloys
<0.1 <0.1 0.1–1 0.1–1500
Aluminum Tin Lead Copper alloys
15–80 100–400 100–6000 150–1500
Iron Molybdenum Silver Zinc
1000–10000 high high high
Gold Molybdenum Platinum Silver
<0.1 <0.1 <0.1 <0.1
Tantalum Titanium Zirconium Silicon iron
<0.1 <0.1 <0.1 0–0.2
Stainless steel Aluminum Nickel alloys
0–0.5 0.5–5 2–10**
Copper alloys
2–15**
Acetic, 5% (Non–oxidizing)
Source: data compiled by J.S. Park from R. E. Bolz and G. L. Tuve, CRC Handbook of Tables for Applied Engineering Science, 2nd edition, CRC Press, Inc., Boca Raton, Florida, (1987).
©2001 CRC Press LLC Shackelford & Alexander
1885
18.4 sel Chemical Page 1886 Wednesday, December 31, 1969 17:00
Selecting Chemical Properties
Table 455. SELECTING
CORROSION RATES OF METALS IN CORROSIVE ENVIRONMENTS (SHEET 2 OF 5)
Corrosive Environment
Nitric, 5% (Oxidizing)
Sodium Hydroxide, 5%
Metal
Corrosion Rate * (Mils Penetration per Year)
Tin
2–500**
Lead Iron Zinc
10–150** 10–400 600–800
Stainless steel Silicon iron Gold Platinum
0–2 0–20 <0.1 <0.1
Tantalum Zirconium Titanium Nickel alloys
<0.1 <0.1 0.1–1 0.1–1500
Aluminum Tin Lead Copper alloys
15–80 100–400 100–6000 150–1500
Iron Molybdenum Silver Zinc
1000–10000 high high high
Iron Nickel alloys Stainless steel Silicon iron
0–0.2 0–0.2 0–0.2 0–10
Gold Molybdenum Platinum Silver
<0.1 <0.1 <0.1 <0.1
Source: data compiled by J.S. Park from R. E. Bolz and G. L. Tuve, CRC Handbook of Tables for Applied Engineering Science, 2nd edition, CRC Press, Inc., Boca Raton, Florida, (1987).
©2001 CRC Press LLC
1886
CRC Handbook of Materials Science & Engineering
18.4 sel Chemical Page 1887 Wednesday, December 31, 1969 17:00
Selecting Chemical Properties
Table 455. SELECTING
CORROSION RATES OF METALS IN CORROSIVE ENVIRONMENTS (SHEET 3 OF 5)
Corrosive Environment
Fresh Water
Sea Water
Metal
Corrosion Rate * (Mils Penetration per Year)
Zirconium Titanium Tantalum
<0.1 <0.2 <1
Copper alloys Tin Lead Zinc Aluminum
2–5 5–20 5–500** 15–200 13000
Nickel alloys Silicon iron Stainless steel Tin
0–0.2 0–0.2 0–0.2 0–0.5
Gold Molybdenum Platinum Silver
<0.1 <0.1 <0.1 <0.1
Tantalum Titanium Zirconium Copper alloys
<0.1 <0.1 <0.1 0–1
Aluminum Iron Lead Zinc
0.1 0.1–10** 0.1–2 0.5–10
Nickel alloys Stainless steel Silicon iron Gold
0–200*** 0–3 <0.1
0–1
Source: data compiled by J.S. Park from R. E. Bolz and G. L. Tuve, CRC Handbook of Tables for Applied Engineering Science, 2nd edition, CRC Press, Inc., Boca Raton, Florida, (1987).
©2001 CRC Press LLC
Shackelford & Alexander
1887
18.4 sel Chemical Page 1888 Wednesday, December 31, 1969 17:00
Selecting Chemical Properties
Table 455. SELECTING
CORROSION RATES OF METALS IN CORROSIVE ENVIRONMENTS (SHEET 4 OF 5)
Corrosive Environment
Normal Outdoor Air (Urban Exposure)
Metal
Corrosion Rate * (Mils Penetration per Year)
Molybdenum Platinum Silver Tantalum
<0.1 <0.1 <0.1 <0.1
Titanium Zirconium Tin Iron
<0.1 <0.1 0.1 0.1–10**
Lead Copper alloys
0.2–15 0.2–15**
Zinc Aluminum
0.5–10** 1–50
Copper alloys Lead Nickel alloys Silicon iron
0–0.2 0–0.2 0–0.2 0–0.2
Stainless steel Tin Aluminum Zinc
0–0.2 0–0.2 0–0.5 0–0.5
Gold Molybdenum Platinum Silver
<0.1 <0.1 <0.1 <0.1
Source: data compiled by J.S. Park from R. E. Bolz and G. L. Tuve, CRC Handbook of Tables for Applied Engineering Science, 2nd edition, CRC Press, Inc., Boca Raton, Florida, (1987).
©2001 CRC Press LLC
1888
CRC Handbook of Materials Science & Engineering
18.4 sel Chemical Page 1889 Wednesday, December 31, 1969 17:00
Selecting Chemical Properties
Table 455. SELECTING
CORROSION RATES OF METALS IN CORROSIVE ENVIRONMENTS (SHEET 5 OF 5)
Corrosive Environment
Metal
Corrosion Rate * (Mils Penetration per Year)
Tantalum Titanium Zirconium Iron
<0.1 <0.1 <0.1 1–8
Source: data compiled by J.S. Park from R. E. Bolz and G. L. Tuve, CRC Handbook of Tables for Applied Engineering Science, 2nd edition, CRC Press, Inc., Boca Raton, Florida, (1987). *
Corrosion Rate Ranges Expressed in Mils Penetration per Year (1 Mil = 0.001 in) Note: The corrosion–rate ranges for the solutions are based on temperature up to 212 ˚F.
** Aeration leads to the higher rates in the range. *** Aeration leads to passivity, scarcity of dissolved air to activity.
©2001 CRC Press LLC
Shackelford & Alexander
1889
18.4 sel Chemical Page 1890 Wednesday, December 31, 1969 17:00
Selecting Chemical Properties
Table 456. SELECTING
FLAMMABILITY OF POLYMERS (SHEET 1 OF 5)
Polymer
Flammability (ASTM D635) (ipm)
Alkyds; Molded: Glass reinforced (heavy duty parts) Alkyds; Molded: Putty (encapsulating) Ceramic reinforced (PTFE) Chlorinated polyvinyl chloride
Nonburning Nonburning Noninflammable Nonburning
Fibrous (glass) reinforced silicones Fluorinated ethylene propylene (FEP) Granular (silica) reinforced silicones Polyphenylene sulfide: 40% glass reinforced
Nonburning Noninflammable Nonburning Non—burning
Polyphenylene sulfide: Standard Polytetrafluoroethylene (PTFE); Molded,Extruded Polytrifluoro chloroethylene (PTFCE); Molded,Extruded
Non—burning Nonintlammable Noninflammable
PVC–Acrylic Alloy: PVC–acrylic injection molded PVC–Acrylic Alloy: PVC–acrylic sheet
Nonburning Nonburning
Alkyds; Molded: Granular (high speed molding) Alkyds; Molded: Rope (general purpose) Chlorinated polyether Epoxies; High performance resins: Cast, rigid
Self extinguishing Self extinguishing Self extinguishing Self extinguishing
Epoxies; High performance resins: Glass cloth laminate Epoxies; High performance resins: Molded Melamines; Molded: Alpha cellulose and mineral filled Melamines; Molded: Cellulose electrical filled
Self extinguishing Self extinguishing Self extinguishing Self extinguishing
Melamines; Molded: Glass fiber filled Melamines; Molded: Unfilled Nylons; Molded, Extruded; Type 6: Cast Nylons; Molded, Extruded; Type 6: General purpose
Self extinguishing Self extinguishing Self extinguishing Self extinguishing
Nylons; Molded, Extruded; Type 8 Nylons; Molded, Extruded; Type 11 6/6 Nylon: General purpose extrusion 6/6 Nylon: General purpose molding
Self extinguishing Self extinguishing Self extinguishing Self extinguishing
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1890
CRC Handbook of Materials Science & Engineering
18.4 sel Chemical Page 1891 Wednesday, December 31, 1969 17:00
Selecting Chemical Properties
Table 456. SELECTING
FLAMMABILITY OF POLYMERS (SHEET 2 OF 5)
Polymer
Flammability (ASTM D635) (ipm)
6/10 Nylon: General purpose Phenolics: Molded: Arc resistant—mineral filled Phenolics; Molded; General: woodflour and flock filled Phenolics; Molded; High shock: chopped fabric or cord filled
Self extinguishing Self extinguishing Self extinguishing Self extinguishing
Phenolics; Molded; Shock: paper, flock, or pulp filled Phenolics; Molded; Very high shock: glass fiber filled Phenylene oxides (Noryl): Glass fiber reinforced Phenylene oxides (Noryl): Standard
Self extinguishing Self extinguishing Self extinguishing Self extinguishing
Phenylene Oxides: Glass fiber reinforced Phenylene Oxides: SE—1 Phenylene Oxides: SE—100 Polyarylsulfone
Self extinguishing Self extinguishing Self extinguishing Self extinguishing
Polycarbonate Polycarbonate (40% glass fiber reinforced) Polyester; Moldings: Glass reinforced self extinguishing Polypropylene: Flame retardant
Self extinguishing Self extinguishing Self extinguishing Self extinguishing
Polyvinyl Chloride & Copolymers: Nonrigid—electrical Polyvinyl Chloride & Copolymers: Nonrigid—general Polyvinyl Chloride & Copolymers: Rigid—normal impact Polyvinyl Chloride & Copolymers: Vinylidene chloride
Self extinguishing Self extinguishing Self extinguishing Self extinguishing
Polyvinylidene— fluoride (PVDF) Reinforced polyester moldings: High strength (glass fibers) Reinforced polyester: Heat and chemical resistant (asbestos) Reinforced polyester: Sheet molding compounds, general purpose
Self extinguishing Self extinguishing Self extinguishing Self extinguishing
Rubber phenolic—asbestos filled Rubber phenolic—chopped fabric filled Rubber phenolic—woodflour or flock filled Standard Epoxies: Filament wound composite
Self extinguishing Self extinguishing Self extinguishing Self extinguishing
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
1891
18.4 sel Chemical Page 1892 Wednesday, December 31, 1969 17:00
Selecting Chemical Properties
Table 456. SELECTING
FLAMMABILITY OF POLYMERS (SHEET 3 OF 5)
Polymer
Flammability (ASTM D635) (ipm)
Standard Epoxies: High strength laminate Standard Epoxies: Molded Ureas; Molded: Alpha—cellulose filled (ASTM Type l)
Self extinguishing Self extunguishing Self extinguishing
Ureas; Molded: Cellulose filled (ASTM Type 2) Ureas; Molded: Woodflour filled
Self extinguishing Self extinguishing
Standard Epoxies: General purpose glass cloth laminate Polyester; Thermoset: Cast polyyester: Flexible
Slow burn to Self extinguishing Slow burn to self extinguishing
Nylons; Molded, Extruded; Type 6: Glass fiber (30%) reinforced 6/6 Nylon: Glass fiber reinforced 6/6 Nylon: Glass fiber Molybdenum disulfide filled 6/10 Nylon: Glass fiber (30%) reinforced
Slow burn Slow burn Slow burn Slow burn
Polyester; Thermoplastic Injection Moldings: General purpose grade Polyester; Thermoplastic Injection Moldings: Glass reinforced grades Polyester; Thermoplastic Moldings: General purpose grade Polyester; Thermoplastic Moldings: Glass reinforced grade
Slow burn Slow burn Slow burn Slow burn
Silicones; Woven glass fabric/ silicone laminate Standard Epoxies: Cast rigid Thermoset Carbonate: Allyl diglycol carbonate Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: H4
0.12 0.3-0.34 0.35 0.5—1.5
Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: MH Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: S2 Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 1 Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 3
0.5—1.5 0.5—1.5 0.5—1.5 0.5—1.5
Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 6 Polystyrenes; Molded: High impact Cellulose Acetate; Molded, Extruded; ASTM Grade: H6—1 Cellulose Acetate; Molded, Extruded; ASTM Grade: H4—1
0.5—1.5 0.5—1.5 0.5—2.0 0.5—2.0
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1892
CRC Handbook of Materials Science & Engineering
18.4 sel Chemical Page 1893 Wednesday, December 31, 1969 17:00
Selecting Chemical Properties
Table 456. SELECTING
FLAMMABILITY OF POLYMERS (SHEET 4 OF 5)
Polymer
Flammability (ASTM D635) (ipm)
Cellulose Acetate; Molded, Extruded; ASTM Grade: H2—1 Cellulose Acetate; Molded, Extruded; ASTM Grade: MH—1, MH—2 Cellulose Acetate; Molded, Extruded; ASTM Grade: MS—1, MS—2 Cellulose Acetate; Molded, Extruded; ASTM Grade: S2—1
0.5—2.0 0.5—2.0 0.5—2.0 0.5—2.0
Polystyrenes; Molded: Medium impact Nylons; Molded, Extruded; Type 6: Flexible copolymers Polypropylene: General purpose Polyacetal Homopolymer: 20% glass reinforced
0.5—2.0 Slow burn, 0.6 0.7—1 0.8
Polyacetal Homopolymer: 22% TFE reinforced Polystyrenes; Molded: Styrene acrylonitrile (SAN) Polyester; Thermoset: Cast polyyester: Rigid ABS–Polycarbonate Alloy
0.8 0.8 0.87 to self extinguishing 0.9
Polyacetal Copolymer: 25% glass reinforced Polypropylene: High impact Polypropylene: Asbestos filled Polypropylene: Glass reinforced
1 1 1 1
Polyethylenes; Molded, Extruded; Type I: Melt index 0.3—3.6 Polyethylenes; Molded, Extruded; Type I: Melt index 6—26 Polyethylenes; Molded, Extruded; Type I: Melt index 200 Polyethylenes; Molded, Extruded; Type II: Melt index 20
1 1 1 1
Polyethylenes; Molded, Extruded; Type II: Melt index l.0—1.9 Polyethylenes; Molded, Extruded; Type III: Melt index 0.2—0.9 Polyethylenes; Molded, Extruded; Type III: Melt Melt index 0.l—12.0 Polyethylenes; Molded, Extruded; Type III: Melt index 1.5—15
1 1 1 1
Polyethylenes; Molded, Extruded; Type III: High molecular weight ABS Resins; Molded, Extruded: Low temperature impact Polystyrenes; Molded: General purpose ABS Resins; Molded, Extruded: Medium impact
1 1.0—1.5 1.0—1.5 1.0—1.6
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
Shackelford & Alexander
1893
18.4 sel Chemical Page 1894 Wednesday, December 31, 1969 17:00
Selecting Chemical Properties
Table 456. SELECTING
FLAMMABILITY OF POLYMERS (SHEET 5 OF 5)
Polymer
Flammability (ASTM D635) (ipm)
Polyacetal Homopolymer: Standard Polyacetal Copolymer: Standard Polyacetal Copolymer: High flow
1.1 1.1 1.1
ABS Resins; Molded, Extruded: High impact ABS Resins; Molded, Extruded: Very high impact ABS Resins; Molded, Extruded: Heat resistant
1.3—1.5 1.3—1.5 1.3—2.0
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC
1894
CRC Handbook of Materials Science & Engineering